-------
M-14P
4-MPH ND nig/kg
HEM ND mg/kg
T-PAH ND mg/kg
M-13P
MPH ND mg/kg
HEM 12400 mg/kg
PAH 29.37 mg/kg
M-12P
4-MPH ND mg/kg
HEM 7200 mg/kg
T-PAH 12.01 mg/kg
M-11P
2-MPH ND mg/kg
HEM 8300 mg/kg
T-PAH 15.24 mg/kg
M-9P
4-MPH ND mg/kg
HEM 3100 mg/kg
T-PAH 7.87 mg/kg
M-10P
4-MPH ND mg/kg
HEM 6600 mg/kg
T-PAH 15.01 mg/kg
M-4P
4-MPH ND mg/kg
HEM 2600 mg/kg
T-PAH 3.01 mg/kg
M-3P
4-MPH 0.55 mg/kg
HEM 3200 mg/kg
T-PAH 4.8 mg/kg
M-2P
4-MPH 0.47 mg/kg
HEM 1900 mg/kg
T-PAH 3.63 mg/kg
M-8P
4-MPH ND mg/kg
HEM 8800 mg/kg
T-PAH 9.61 mg/kg
E
M-7P
4-MPH 0.55 mg/kg
HEM 4000 mg/kg
T-PAH 11.89 mg/kg
M-6P
4-MPH 0.49 mg/kg
HEM 26000 mg/kg
T-PAH 17.58 mg/kg
M-5P
4-MPH
ND mg/kg
HEM
4300 mg/kg
T-PAH
4.8 mg/kg
M-1P
4-MPH ND mg/kg
HEM 100 mg/kg
T-PAH ND mg/kg)
Figure 4.5.1.2 Hexane Extract able Materials, 4-Methylphenol (4-MPH),
And Total PAH Compounds In Ponar Samples Collected From Manistee
Lake, November 1998. (ND-Not Detected)
58
-------
Hexane Extractables
Station
mg/kg
M-1
100
M-14
ND
M-2
1900
M-3
3200
M-4
2600
M-5
4300
M-6
26000
M-7
4000
M-8
8800
M-9
3100
M-10
6600
M-11
8300
M-12
7200
M-13
12400
Hexane Extractable Materials
in Ponar Samples
C 19000
2
D
X 10000
n.n.n
¦ ¦ 1 I"
I I I I
M-1 M-14 M-2 M-3 M-4
M-8 M-7
Station
M-0 M-9 M-10 M-11 M-12 M-13
Total PAH Compounds
mg/kg
M-1
ND
M-14
ND
M-2
3.63
M-3*
4.8
M-4
3.01
M-5'
4.8
M-6*
17.58
M-7*
11.89
M-8*
9.61
M-9*
7.87
M-10*
15.01
M-11*
15.24
M-12*
12.01
M-13*
29.37
Total PAH Compounds
in Ponar Samples
M-1 M-14 M-2 M-3* M-4 M-9'
M-7" M-8* M-9' M-10* M-11* M-12* M-13'
Station
4-Methylphenol
mg/kg
M-1
ND
M-14
ND
M-2
0.47
M-3
0.55
M-4
ND
M-5
ND
M-6
0.49
M-7
0.65
M-8
ND
M-9
ND
M-10
ND
M-11
ND
M-12
ND
M-13
ND
4-Methylphenol
in Ponar Samples
fo.a
0.7
to.a
0.5
I °-4
s 0-3
0.2
0.1
n
rq
1;
—
iVj!
•i\t'
s
$
¦ft
$
!:i5
M-1 M-14 M-2
M-6 M-7
Station
M-10 M-11 M-12 M-13
~ Control ~ PCA WM Brine
Figure 4.5.1.3 Hexane Extractable Materials, 4-Methylphenol (4-MPH),
And Total PAH Compounds In Ponar Samples Collected From Manistee
Lake, November 1998. Patterns Denote Regions Of Manistee Lake.
Stations Identified In Bold* Exceeded PEC Levels. (ND-Not Detected)
59
-------
O Control a "
e„ractable Materials
FIGUW; 4-5^n"^'cOffi SECTION SAMPLE®f^aONS OF MANISTEE LAKE.
PonarAndToplom p tebnsDENOTEREGIONS
November 1998. J£^ableEffect Concentratio
60
-------
PAH compounds follow a similar pattern as HEM. The stations with the highest HEM
concentrations, M-6P and M-13P, also had the highest total PAH levels (17.6 mg/kg and
29.3 mg/kg respectively). The highest PAH levels were found in the lower region of the
lake near the salt brine facilities and near Manistee Drop Forge at M-6 (Figures 4.5.1.1,
4.5.1.2, and 4.5.1.3). With the exception of M-2, M-10, and M-12, the highest levels of
PAHs were found in the Ponar samples (Figure 4.5.1.4). These compounds are subject
to anaerobic degradation in the sediments and consequently older releases would show
lower levels. HEM was also higher in the top core section (0" - 24") than the Ponar
sample (0" - 6") at M-2, which suggests that an older release of oils or fuels occurred at
this location. M-2 is located near the old PCA outfall where kerosene was discharged.
Levels of PAHs that exceed Probable Effect Concentrations (PECs) (MacDonald et al.
2000) are marked with an asterisk in Table 4.5.1.3. With the exception of the control
stations and M-4, PECs for individual PAH compounds were exceeded at most of the
sample locations. Sediment concentrations that exceed PEC levels have a 75%
probability of exhibiting some type of adverse ecological effect. Correlations between
PAH data and sediment toxicity are discussed in Section 4.7.
In contrast to the HEM and PAH compounds that are found at all non-control locations,
4-methyl phenol (4-MPH) appears to occur only at several locations where the PCA
groundwater enters the lake (Figure 4.5.1.3) and is found at low levels. Concentrations
ranged from 0.47 mg/kg at M-2P to 0.65 mg/kg at M-7P. The highest levels were found
near the center of the groundwater plume (M-6, and M-7). It is interesting to note that 4-
MPH was found at station M-6, which was located on the western side of the lake. Even
though the PCA groundwater enters the lake along the eastern shore, this station is close
enough to be influenced by the plume. Elevated chloride at this location confirms the
presence of the groundwater discharge (Figure 4.3.2). The chemical stratification of
Manistee Lake as shown in Figures 4.1.1 and 4.1.2 may provide a density driven
mechanism for a persistent layer of contaminated groundwater to remain in the flocculent
surface sediments. 4-MPH was not detected at the northern edge of the groundwater
plume area (Stations M-8P and M-9P). These locations were lower in sediment chloride
concentration that may illustrate a more limited influence from contaminated
groundwater. Probable effect concentrations are not available for 4-MPH. Based on the
laboratory toxicity tests (Section 4.6) and the analysis of the macroinvertebrate
community, the presence of brine and PAH compounds appear to have a more adverse
affect on benthic organisms.
In summary, the control sites near the mouths of the Manistee River and Little Manistee
River showed no evidence of anthropogenic chemicals such as petroleum hydrocarbons,
PAH compounds, and phenols. Oil and PAH compounds were found at elevated levels
all of the sampling locations in the lake near industrial facilities. The distribution
followed a pattern that indicated a combination of point and nonpoint sources were
responsible for the sediment contamination. A previous investigation by Grant (1975)
found oil and grease levels in the sediments to range from 3000 mg/kg to 20,000 mg/kg.
These results were similar to the concentrations reported by this investigation, which
suggested that minimal changes have occurred for these contaminants over the last 25
61
-------
years. Basch (1971) investigated total phenols and hydrogen sulfide in Manistee Lake
sediments and found concentrations to range from 2 mg/kg to 27 mg/kg for total phenols
and 500 mg/kg to 4500 mg/kg for hydrogen sulfide. These contaminants were directly
related to the historic effluent discharge and the groundwater plume from the PCA
facility. While hydrogen sulfide was not measured in this investigation, field
observations revealed a slight sulfide odor in only a few samples. Camp Dresser and
McKee (1993) measured semivolatiles in sediment pore water and found no detectable
phenols (including 4-methyl phenol) at a reporting limit of 0.01 mg/1. The current
investigation measured whole sediments and found concentrations of 4-methyl phenol in
limited areas at levels ranging from 0.47 mg/kg to 0.65 mg/kg. A comparison of
historical and recent/current data for phenolic compounds suggests that sediment
contamination for this class of compounds has improved with the elimination of the direct
effluent discharge and the closure of the lagoon system.
4.5.2 Resin Acids
Resin acid analyses were conducted on all core and Ponar samples from Manistee Lake.
The compounds included in the resin acid scan are shown in Figure 4.5.2.1. Surrogate
recoveries for stearic acid exceeded 100% in most of the sediment samples due to the
natural presence of this compound in sediments (Appendix B). Surrogate recoveries for
the other surrogate, tetrachlorostearic acid were acceptable. Resin acids are produced
during the breakdown of lignin and wood resins in the Kraft process (Stevens et al. 1997)
and during natural aerobic/anaerobic degradation processes (Judd et al. 1998). Resin
acids have been detected in sediments from many areas impacted by Kraft Mill effluents
(Tavendale et al. 1997, Wilkins et al. 1996, and Brownlee et al. 1977). In addition
anthropogenic sources, Judd et al. (1998) found resin acids in the sediments in watersheds
containing conifer and hardwood forests. The results of the resin acid analyses in
Manistee Lake sediment are shown in Table 4.5.2.1 and displayed graphically in Figures
4.5.2.2 - 4.5.2.5. The highest levels of total resin acids appear to be located in the top
core sections and ranged from 3 mg/kg to 13 mg/kg (Figure 4.5.2.2). Areas influenced by
the PCA groundwater plume had slightly higher levels of resin acids when compared with
locations near the brine plumes. Two locations, M-2 and M-5, showed peaks of total
resin acid concentration (11 mg/kg and 18 mg/kg) in the middle core sections. Resin
acids were found at concentrations of < 5 mg/kg in the bottom core sections and at the
control locations. Levels in the bottom core sections showed an even concentration in the
lower strata.
62
-------
HjC COOH
Dehydroabietic acid
COOH
Abietic acid
?H3
-CH,
H3C COOH
Pimaric acid
"CH,
COOH
Isopimeric acid
CH,
H3C COOH
Neoabietic acid
Figure 4.5.2.1 Resin Acid Compounds Analyzed In Manistee Lake Sediments.
63
-------
Table 4.5.2.1. Results Of Resin Acid Analyses For Manistee Lake Sediments,
November 1998.
Sample
Number
Sample ID
Abietic
Acid
Dehydroabietic
Acid
Plmerlc
Acid
Isopimerlc
Acid
Neoabletic
Acid
Total Resin
Acids
mg/kg
mg/kg
mg/kg
mg/kg
mo/ka
mg/kg
5069
M-1 Top
1.1
0.8
0.9
0.5
0.1
3
5070
M-1-Mid
0.4
0.8
0.3
0.3
0.2
2
5071
M-1 Bot
0.3
0.7
0.1
0.2
0.1
1
5072
M-2Top
2.1
3.6
1.0
0.8
1.0
8
5073
M-2 Mid
2.4
4.0
2.3
1.2
1.0
11
5074
M-2 Bot
0.9
1.8
0.5
0.7
0.3
4
5075
M-3 Top
M-3 Mid
2.4
4.3
1.1
2.1
0.4
10
5076
1.3
2.9
0.7
0.6
0.5
6
5077
M-3 Bot
0.6
1.1
0.3
0.2
0.1
2
5078
M-4 Top
2.6
4.0
2.6
1.8
0.7
12
5079
M-4 Mid
1.4
2.8
1.0
1.2
0.9
7
5080
M-4 Bot
0.5
0.7
0.4
0.2
0.2
2
5081
M-S Top
2.8
4.6
1.8
0.4
1.2
11
5082
M-5 Mid
2.9
7.8
2.2
3.6
1.9
18
5083
M-5 Bot
0.7
1.1
0.7
0.3
0.6
3
5084
M-6 Top
2.6
6.1
1.3
2.4
0.7
13
5085
M-6 Mid
1.5
2.6
1.4
0.7
1.2
7
5086
M-6 Bot
0.5
0.8
0.2
0.2
0.0
2
5087
M-7 Top
M-7 Mid
2.6
2.8
0.8
2.3
0.7
9
5088
1.9
2.7
0.3
0.7
0.2
6
5089
M -7 Bot
0.9
1.5
0.2
0.3
0.2
3
5090
M-8 Top
1.8
3.9
1.5
0.2
1.2
9
5091
M-8 Mid
1.3
1.5
0.5
0.8
0.3
4
5092
M-8 Bot
0.8
1.4
0.3
0.5
0.2
3
5093
M-9 Top
M-9 Mid
1.8
2.1
0.7
0.2
0.4
5
5094
0.8
1.6
0.3
0.3
0.1
3
5095
M-9 Bot
0.3
0.4
0.1
0.2
0.1
1
5096
M-9 Top Dup
M-9 Mid Dup
M-9 Bot Oup
0.8
1.3
0.2
0.3
0.2
3
5097
1.5
2.7
0.5
0.8
0.3
6
5098
0.5
0.7
0.2
0.2
0.1
2
5099
M-10 Top
1.0
2.4
0.4
1.0
0.3
5
5100
M-10 Mid
0.8
1.0
0.6
0.3
0.3
3
5101
M-10 Bot
0.5
1.1
0.4
0.5
0.1
3
5102
M-11 Top
M-11 Mid
2.1
3.4
0.7
1.2
0.4
8
5103
1.1
1.9
0.3
1.0
0.0
4
5104
M-11 Bot
0.3
0.4
0.2
0.3
0.1
1
5105
M-12 Top
1.7
2.1
1.5
1.6
0.6
7
5106
M-12 Mid
0.9
1.6
0.1
0.6
0.1
3
5107
M-12Bot
0.5
0.7
0.3
0.3
0.1
2
5108
M-13 Top
2.0
2.1
0.2
0.8
0.2
5
5109
M-13 Mid
0.8
1.1
0.8
0.5
0.7
4
5110
M-13 Bot
0.6
0.9
0.1
0.4
0.1
2
5111
M-14 Top
1.1
1.5
1.1
0.9
0.9
5
5112
M-14 Mid
0.9
1.7
0.5
0.2
0.2
4
5113
M-14 Bot
0.2
0.4
0.1
0.1
0.1
1
5114
M-1 P
0.8
1.5
0.5
0.5
0.3
4
5115
M-2 P
1.6
3.3
2.2
1.4
1.2
10
5116
M-3 P
2.4
3.8
1.9
0.8
0.4
9
5117
M-4 P
2.1
3.1
0.2
1.9
0.2
8
5118
M-5 P
2.9
3.8
0.5
2.5
0.4
10
5119
M-6 P
2.0
4.8
1.4
1.7
1.5
11
5120
M-7 P
2.2
2.8
0.6
0.8
0.3
7
5121
M-8P
1.5
2.0
1.4
1.4
0.8
7
5122
M-9 P
1.1
2.6
0.8
0.9
0.6
0.2
0.5
0.6
8
6
5123
M-9 P Dup
M-10 P
1.3
3.2
5124
1.8
3.3
0.5
1.2
0.2
7
5125
M-11 P
1.5
3.1
0.3
0.9
0.2
6
5126
M-12P
2.2
2.2
0.4
1.3
0.3
6
5127
M-13 P
3.1
4.3
0.6
2.5
0.3
11
5128
M-14 P
0.7
1.6
0.3
0.3
0.3
3
64
-------
Total Resin Acids
Top Core Sections
Station
20.0 t-
18.0 -
o>
ft
16.0 -
E
14.0 —
>
•a
12.0 -
o
<
100 -
c
V)
8.0 -
£
6.0 -
a
o
4.0 -
1-
2.0 -
0.0 J-
Total Resin Acids
Middle Core Sections
7 8
Station
9 10 11 12 13 14
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
Total Resin Acids
Bottom Core Sections
n
n
7 8
Station
10 11
n
12 13 14
HZ! Control ~ PCA
Brine
Figure 4.5.2.2. Results Of Total Resin Acid Analyses For Manistee Lake
Sediments, November 1998. Patterns Denote Regions Of Manistee Lake.
65
-------
14
S
m
Figure 4.5.2.3. Distribution Of Abeetic Acid In Manistee Lake Sediment Cores,
November 1998.
Station
Figure 4.5.2.4. Distribution Of Dehydroabietic Acid In Manistee Lake Sediment
Cores, November 1998.
66
-------
Total Resin Acids in Ponar Samples
12 n
ra 10
1
M-7 M-8
Station
M-10 M-11 M-12 M-13 M-14
Total Resin Acids in Top Core Sections
F1
r"—i
its
m
i
i
i
'•*
'
M-7 M-8
Station
M-9 M-10 M-11 M-12 M-13 M-14
I I Control
PCA
Brine
Figure 4.5.2.5. Results Of Total Resin Acid Analyses For Manistee Lake
Sediments, November 1998. Patterns Denote Regions Of Manistee Lake.
67
-------
With respect to individual resin acid compounds, abietic and dehydroabietic acid were found
at the greatest concentrations. The distribution of these resin acids is shown in Figures
4.2.5.3 and 4.2.5.4. Dehydroabietic was almost always found at higher levels than abietic
acid, which probably reflects its resistance to anaerobic degradation (Tavendale et al 1997).
Neoabietic acid was typically found at the lowest concentration of the resin acids analyzed.
This compound undergoes an isomerization/conversition reaction to abietic acid (Leppaenen
and Oikari. 1999). The distribution of dehydroabietic acid (DEHA) and abietic acid
followed the same pattern as the total resin acids. The highest level of DEHA (7.8 mg/kg)
was found in the middle core section at M-5. The next highest concentration (6.1 mg/kg) was
found in the top core section of M-6. This station had the highest concentration of HEM
(15,000 mg/kg). The high oil content present at this location may act to trap the hydrophobic
DEHA molecules. There was little difference noted in the distribution of abietic acid
between the PC A and brine facility impacted sites. DEHA levels however were higher (two-
fold difference) in the area impacted by the PCA plume. Concentrations of the two resin
acids were considerably lower in the control locations.
A comparison of total resin acids in Ponar samples and top core sections is provided in
Figure 4.5.2.5. With the exception of M-13, the concentration of total resin acids was similar
in both the top core sections and the Ponar samples. The Ponar sample at M-13 was high in
HEM (12,400 mg/kg) and may also exhibit the phenomena of concentrating hydrophobic
resin acids. These results suggest that the concentration of resin acids is uniform in the top
24" of the sediment.
The concentrations of individual and total resin acids determined in sediment samples from
Manistee Lake were similar to those reported by Fox et al. (1976) in Nipigon Bay (Lake
Superior) and Tian et al. (1998) in New Zealand. The area in Nipigon Bay was located
downstream from a paper mill discharge. The resin acids in the study conducted in New
Zealand were from a stormwater discharge from a large log handling facility. In contrast, the
concentrations of resin acids in Manistee Lake were an order of magnitude less than those
reported by Wilkins et al. (1997) and Leppaenen and Oikari (1999). These investigations
examined sediments from the receiving waters of softwood pulp and paper mill discharges
which may produce higher levels of resin acids than the hardwood box operation at PCA.
Softwoods are known to contain higher levels of resin acids (Liss et al. 1997). The historical
operation of the PCA facility and Hie nature of the current groundwater discharge also may
have contributed to the lower levels of resin acids observed. Beginning in the early 1950s,
the direct discharge of process effluent on the southwestern side of the lake was phased out in
favor of the lagoon system. The presence of elevated levels of resin acids in the middle core
sections (24" - 48") taken downgradient from the old outfall shows the influence of the
historic point-source discharge. The stratification of the plume in a layer beneath the
sediment plus the hydrophobic nature of the compounds limits the migration of these
compounds by groundwater advection into the sediments of Manistee Lake.
68
-------
4.6 Fish Tissue Results
Seven walleye (Stizostedion vitreum) and five common carp (Cyprinus carpio) were
harvested from Manistee Lake and analyzed for resin acids according to the methods outlined
in Section 3.6. Resin acids were not detected in any of the fish samples analyzed. (Table
4.6.1.) Even though resin acids were detected in the sediments of Manistee Lake, they appear
to be in a form that has limited bioavailability. The high oil content of the sediments and the
hydrophobic nature of the chemicals limits the amount that can be exchanged with the water
column. In addition, the chemical stratification of the water column near the sediment
interface (Section 4.1) will prohibit mixing until the spring or fall isothermal conditions are
achieved. Any dissolved resin acids that have accumulated in this zone would be diluted by
rapid mixing of the lake.
Table 4.6.1. The Results Of Fish Tissue Analyses Conducted On Organisms
Harvested From Manistee Lake, April 2000.
Species
Size
(mm)
Weight
(g)
Abietic
Acid
(ug/g)
Dehydroabietic
Acid
(ug/g)
Pimeric
Acid
(ug/g)
Isopimeric
Acid
(ug/g)
Neoabietic
Acid
(ug/g)
Walleye
533
1307
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye
574
2009
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye
610
2541
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye
635
2853
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye
655
3834
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye
698
4935
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye
719
6463
<0.5
<0.5
<0.5
<0.5
<0.5
Carp
243
477
<0.5
<0.5
<0.5
<0.5
<0.5
Carp
304
932
<0.5
<0.5
<0.5
<0.5
<0.5
Carp
364
1605
<0.5
<0.5
<0.5
<0.5
<0.5
Carp
405
2205
<0.5
<0.5
<0.5
<0.5
<0.5
Carp
445
2909
<0.5
<0.5
<0.5
<0.5
<0.5
69
-------
4.7 Toxicity Testing Results
The toxicity evaluations of the Manistee Lake sediments were completed in November 1998.
Grab sediment samples collected from 14 different sites (14 samples with one additional field
duplicate) were evaluated using the EPA (1994) solid phase testing protocol with Hyalella.
azteca and Chironomus tentans.
Conductivity, hardness, alkalinity, ammonia, and pH were determined on the culture water at
the beginning and on the tenth day of each test (Appendix D: Tables D-l, D-3). With the
exception of ammonia in most of the sediments and conductivity and hardness in M10-P,
these parameters remained relatively constant. Variations of less than 50%, from initial to
final measurements for both test species were observed. Based on the initial pH values (all <
8.00) and the fact that the overlying water was exchanged prior to adding the organisms,
toxicity related to unionized ammonia was not anticipated to be a factor in these experiments.
The change in conductivity and hardness was related to the high level of brine found in the
sediments at Station M-10. Even after the daily water exchanges, levels of dissolved ions in
the overlying water remained higher than all of the other sediments evaluated. Temperature
and dissolved oxygen measurements were recorded daily throughout the duration of the tests
(Appendix D: Tables D-2, D-4). Very little variation was noted with respect to temperature.
The dissolved oxygen occasionally dropped slightly below 40% saturation in some of the test
beakers. The lowest dissolved oxygen levels were measured in the control sediment (M-
14P) and no toxicity related impacts were noted with respect to survival of the test organisms.
4.7.1 Hyalella azteca
The evaluation of Manistee Lake's sediment began on November 3,1998 and was completed
on November 13, 1998. Survival data are presented in Table 4.7.1.1. The survival in both
control (M-1P and M-14P) treatments exceeded the required 80%. Survival in M-14P
(83.75%) was slightly lower than in M-1P (88.75%), however the difference was not
significant.
Un-transformed survival data were evaluated for normality with Anderson-Darling's Test at
a = 0.01 and the data were normally distributed. Dunnett's Test (Table 4.7.1.2) showed a
statistically significant (alpha = 0.05) difference on the survival data compared with control
site M-14P in 7 out of 13 sediments. Sediments from site M-5P, M-6P, M-7P, M-8P, M-10P,
M-11P, and M-13P had significantly reduced survival compared to M-14P. Based on
amphipod mortality, the seven sediments listed in order of increasing toxicity are M-7P, M-
1 IP and M-13P (tie), M-8P, M-10P, M-5P, and M-6P. The control sediment from M-1P had
a slightly higher survival and consequently, Dunnett's analysis of the data showed 10 of the
13 sediments to have statistically significant difference (a = 0.05) for the survival data
compared to control. The three sediments that were statistically significant with M-IP as a
reference and not with M-14P: M-2P, M-3P, and M-9Pdup all had mean survival values >
70%. Based on the high survival measured and the fact that M-1P had lower organic carbon
70
-------
Table 4.7.1.1 Summary Of Hyalella azteca Survival Data Obtained During
The 10 Day Toxicity Test With Manistee Lake Sediments.
Sample
Number of
Rep
icate
Survival
ID
Organisms
A
B
C
D
E
F
G
H
Mean
Std Dev
C.V.%
M-1P
Initial
10
10
10
10
10
10
10
10
Final
8
8
10
8
10
9
10
8
8.87
0.991
11.16
M-2P
Initial
10
10
10
10
10
10
10
10
Final
6
9
6
7
8
6
9
5
7.00
1.511
21.59
M-3P
Initial
10
10
10
10
10
10
10
10
Final
8
8
6
8
7
6
5
8
7.00
1.195
17.07
M-4P
Initial
10
10
10
10
10
10
10
10
Final
10
7
6
6
7
8
7
6
7.12
1.356
19.03
M-5P
Initial
10
10
10
10
10
10
10
10
Final
4
4
5
5
3
5
4
7
4.62
1.187
25.68
M-6P
Initial
10
10
10
10
10
10
10
10
Final
5
5
6
4
3
4
5
3
4.37
1.060
24.24
M-7P
Initial
10
10
10
10
10
10
10
10
Final
6
7
5
8
7
8
6
4
6.37
1.407
22.08
M-8P
Initial
10
10
10
10
10
10
10
10
Final
7
6
4
7
5
7
5
6
5.87
1.126
19.16
M-9P
Initial
10
10
10
10
10
10
10
10
Final
10
5
7
7
6
6
8
9
7.25
1.669
23.02
M-9Pd
Initial
10
10
10
10
10
10
10
10
Final
7
11
5
6
6
6
8
7
7.00
1.851
26.45
M-10P
Initial
10
10
10
10
10
10
10
10
Final
4
7
6
7
6
5
4
6
5.62
1.187
21.11
M-11P
Initial
10
10
10
10
10
10
10
10
Final
6
8
6
5
5
6
7
5
6.00
1.069
12.72
M-12P
Initial
10
10
10
10
10
10
10
10
Final
10
8
7
8
9
9
7
6
8.00
1.309
16.36
M-13P
Initial
10
10
10
10
10
10
10
10
Final
6
10
7
3
2
6
8
6
6.00
2.563
42.72
M-14P
Initial
10
10
10
10
10
10
10
10
Final
8
7
10
8
7
8
9
10
8.37
1.187
14.18
71
-------
Table 4.7.1.2 Summary Of Dunnett's Test Analysis Of Hyalella Azteca Survival
Data Obtained During The 10 Day Toxicity Test With Manistee Lake
Sediments.
ID
TRANS
ORIGINAL
T STAT
SIG
MEAN
MEAN
0.05
M-1P
8.8750
8.8750
-0.6667
M-2P
7.0000
7.0000
1.9969
M-3P
7.0000
7.0000
1.9969
M-4P
7.2500
7.2500
1.6339
M-5P
4.6250
4.6250
5.4462
*
M-6P
4.3750
4.3750
5.8093
*
M-7P
6.3750
6.3750
2.9046
*
M-8P
5.8750
5.8750
3.6308
*
M-9P
7.2500
7.2500
1.6339
M-9Pd
7.0000
7.0000
1.9969
M-10P
5.6250
5.6250
3.6667
*
M-l IP
6.0000
6.0000
3.1667
*
M-12P
8.0000
8.0000
0.5000
M-13P
6.0000
6.0000
3.1667
*
M-14P
8.3750
8.3750
0.0000
Dunnett's critical value = 2.4800. 1 Tailed, alpha = 0.05.
and a greater sand fraction than M-14P and the other Manistee Lake locations, comparisons
with M-l were not used in the data assessment.
4.7.2 Chironomus tentans
The evaluation of Manistee Lake sediments began on November 17, 1998 and was completed
on November 27, 1998. Survival data are presented in 4.7.2.1. The survival in the control
treatments (M-1P and M-14P) exceeded the required 70% and was similar for both sites. Un-
transformed survival data were evaluated for normality with the Anderson-Darling's Test at a
= 0.01 and the data were normally distributed. Dunnett's Test (Table 4.7.2.2) showed a
statistically significant (a = 0.05) difference on the survival data compared with controls for
M-6P and M-13P.
72
-------
Table 4.7.2.1 Summary Of Chironomus tentans Survival Data Obtained During
The 10 Day Toxicity Test With Manistee Lake Sediments.
Sample
Number of
Rep
icate
Survival
ID
Organisms
A
B
C
D
E
F
G
H
Mean
Std
Dev
C.V.%
M-1P
Initial
10
10
10
10
10
10
10
10
Final
9
9
10
10
10
9
9
10
9.50
0.534
5.62
M-2P
Initial
10
10
10
10
10
10
10
10
Final
9
8
8
9
10
10
8
9
8.87
0.834
9.40
M-3P
Initial
10
10
10
10
10
10
10
10
Final
9
8
9
9
10
8
10
9
9.00
0.755
8.39
M-4P
Initial
10
10
10
10
10
10
10
10
Final
10
9
9
8
10
8
9
9
9.00
0.755
8.39
M-5P
Initial
10
10
10
10
10
10
10
10
Final
9
9
9
10
9
10
10
9
9.37
0.517
5.52
M-6P
Initial
10
10
10
10
10
10
10
10
Final
7
6
7
5
8
9
8
8
7.25
1.281
17.67
M-7P
Initial
10
10
10
10
10
10
10
10
Final
8
8
9
8
10
8
9
10
8.75
0.886
10.13
M-8P
Initial
10
10
10
10
10
10
10
10
Final
10
7
10
8
9
10
10
10
9.250
1.165
12.59
M-9P
Initial
10
10
10
10
10
10
10
10
Final
9
9
10
8
10
8
8
9
8.8
0.834
9.40
M-9Pd
Initial
10
10
10
10
10
10
10
10
Final
10
8
8
10
8
9
10
9
9.00
0.925
10.28
M-10P
Initial
10
10
10
10
10
10
10
10
Final
9
9
10
7
7
9
10
10
8.87
1.246
7.23
M-11P
Initial
10
10
10
10
10
10
10
10
Final
9
9
9
10
10
9
10
9
9.37
0.517
2.74
M-12P
Initial
10
10
10
10
10
10
10
10
Final
10
8
9
9
10
9
9
9
9.12
0.640
3.52
M-13P
Initial
10
10
10
10
10
10
10
10
Final
7
7
6
8
5
8
8
9
7.25
1.281
17.67
M-14P
Initial
10
10
10
10
10
10
10
10
Final
10
9
9
10
8
10
10
10
9.50
0.751
4.06
73
-------
Table 4.7.2.2 Summary Of Dunnett's Test Analysis Of Survival Data
Chironomus tentans Obtained During The 10 Day Toxicity Test With Manistee
Lake Sediments.
GRP
ID
/
TRANS
MEAN
ORIGINAL
MEAN
T STAT
SIG 0.05
1
M-1P
0.9500
0.9500
2
M-2P
0.8875
0.8875
1.3615
3
M-3P
0.9000
0.9000
1.0892
4
M-4P
0.9000
0.9000
1.0892
5
M-5P
0.9375
0.9375
0.2723
6
M-6P
0.7250
0.7250
4.9016
*
7
M-7P
0.8750
0.8750
1.6339
8
M-8P
0.9250
0.9250
0.5446
9
M-9P
0.8875
0.8875
1.3615
10
M-9Pd
0.9000
0.9000
1.4402
11
M-10P
0.8875
0.8875
1.3615
12
M-11P
0.9375
0.9375
0.3600
13
M-12P
0.9125
0.9125
1.0801
13
M-13P
0.7250
0.7250
4.9016
~
14
M-14P
0.9500
0.9500
0.0000
Dunnett's critical value = 2.4800. 1 Tailed, alpha = 0.05
4.7.3 Sediment Toxicity Data Discussion
Statistically significant (alpha = 0.05) acute toxicity effects were observed in the sediments
from sites M-5P, M-6P, M-7P, M-8P, M-10P, M-11P, and M-13P for the amphipod, H.
azteca. In addition, statistically significant (alpha = 0.05) mortality was seen for the midge,
C. tentans in sediment from site M-6P and M-13P. Sediments from stations M-6P and M-
13P were toxic to both organisms and had the highest levels of hexane extractable materials
(26,000 mg/kg and 12,400 mg/kg, respectively) and the highest level of total PAHs (17.6
mg/kg and 29.37 mg/kg, respectively). Stations that had PAH concentrations above PEC
guidelines (MacDonald et al. 2000) are shown in Table 4.7.3.1. Sediment samples from all
the sites that exhibited toxicity to amphipods all had levels of individual PAH compounds
that exceeded PEC levels. Overall, resin acids did not appear to be the cause of toxicity since
the samples with the highest levels (M-2, M-3, and M-9) were not toxic to amphipods and
midges. The results of toxicity tests however could not rule out the fact that resin acids may
act in consort with hydrocarbons and PAH compounds to produce a toxic response. These
materials were widely distributed in the sediments of Manistee Lake.
74
-------
The static water renewal process employed in solid phase toxicity bioassays will remove
water soluble materials from the sediments. Any toxicity present in the sediments related to
brine contamination would therefore be reduced or eliminated by the daily water renewal.
The change in specific conductance observed from Day 0 to Day 10 (Tables D-l and D-3)
illustrates the effect of the water renewal on removing dissolved materials from the
sediments. Because of the potential for water renewal to reduce the toxicity of brine
impacted sediments, the results of the solid phase bioassays need to be analyzed in
conjunction with the benthic macroinvertebrate data. The status of the benthic community at
each station reflects the presence of the organic contaminants and the elevated dissolved
solids content of the pore water.
Table 4.7.3.1. Summary Of Ponar Sampling Locations In Manistee Lake That
Exceed Consensus Based PEC Guidelines (MacDonald et al. 2000).
PAH Compound
Consensus based
PEC Guidelines
(mg/kg)
Manistee Lake Stations that Exceed PEC
Guidelines
Anthracene
0.85
None
Fluorene
0.54
None
Naphthalene
0.56
None
Phenanthrene
1.17
M-3P, M-5P, M-6P, M-7P, M-8P, M-9P, M-10P,
M-11P, M-12P, M-13P
B enz[a] anthracene
1.05
M-6P, M-10P, M-11P, M-13P
Benzo(a)pyrene
1.45
M-11P, M-13P
Chrysene
1.29
M-6P, M-7P, M-10P, M-11P, M-12P, M-13P
Fluoranthene
2.23
M-6P, M-10P, M-11P, M-13P
1.53
M-6P, M-7P, M-8P, M-9P, M-10P, M-11P, M-
Pyrene
12P, M-13P
Total PAHs
22.8
M-13P
4.8 Benthic Macroinvertebrate Results
Triplicate Ponar grab samples were used to characterize the benthic macroinvertebrate
populations at each of the investigative stations. The locations, depths, and physical
characteristics of the sediments are given in Table 2.1. The population composition and
abundance data are summarized in Table 4.8.1 by mean and standard deviation for each
station. The results for each replicate are presented in Appendix F, Table F-l. Benthic
macroinvertebrate populations were statistically analyzed in two manners. The individual
samples were first analyzed to determine general trends and differences between the controls.
The samples were also analyzed based on potential sources to determine if there were
differences between locations impacted by the PCA groundwater plume (M-2 through M-9)
75
-------
and stations influenced by brine plumes (M-10 through M-13). The results of the statistical
analyses of the individual and group sample data are presented in sections 4.8.1 and 4.8.2
respectively.
4.8.1 Benthic Macroinvertebrate Results Of Individual Samples
Control stations M-l and M-14 near the river mouths had the greatest number of taxa with 23
and 19, respectively. On the lower end, M-10, M-12, and M-13 had only five or six taxa,
reflecting some impact of contamination (Figure 4.8.1). Stations M-10 and M-12 had the highest
levels of chloride in the sediments (Figure 4.3.1.). Station M-13 had the highest reported level of
PAH compounds and petroleum hydrocarbons (HEM). The Student-Newman-Keuls (SNK)
method, utilizing studentized range statistics, was performed on the data to determine
statistically significant difference in species composition between controls and the remaining
stations (Miller, 1981). The results of this analysis revealed that M-l was significantly
different from the rest (Table 4.8.2); whereas, M-14 was similar to M-2, M-3, M-5, M-ll, M-
9R and M-9. Also according to this procedure, M-2 was similar to the remaining sampling
sites. This comparative method between sampling locations utilized total taxa and showed
that all in-Iake stations were similar with the exception of the controls (M-l and M-14).
25
20
w
CD
o
® 15
Q. 13
(/)
O
j§ 10
E
3
z
5
0
M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-9r M-10 M-11 M-12 M-13 M-14
Sampling Site
Figure 4.8.1 Summary Composite Of Macroinvertebrate Taxa Identified In
Manistee Lake Stations, November 1998.
76
-------
Benthic macroinvertebrate assemblages at control sites M-l and M-14 contained pollution
sensitive taxa that were not found at any other locations within the lake. This included
representatives of mayflies, dragonflies, caddisflies, and a beetle larva. The family Naididae
was also only found at these two locations. The remainder of the population was distributed
among tubificids, midges, phantom midges, pelecypods, and snails. The majority of tubificids
were immatures and were found at all locations with the exception of M-6 and M-8. Only
one of three samples at M-4 and M-5 (Table 4.8.1) contained tubificid worms. The absence
of tubificids at these sites may be related to a combination of elevated levels of oil and PAH
compounds in addition to poor substrate quality. Considerable compaction was observed in
the core samples which suggests that the sediments were very flocculent.
77
-------
Table 4.8.1 Benthic Macroinvertebrate Distribution In Manistee Lake,
November 1998. Mean Number Of Organisms And Standard Deviation Reported
For Each Station.
Station
M-2
M-3
M-5
M-7
M-a
M-9
M-9B
M-tO
M-11
M-12
M-13
M-14
m • SO
rn | SD
m j 90
m | SO
m • SD
m j SD
m • SO
m j SD
m : SO
m j SO
m | SO
m j SD
m • SO
m : SD
m ¦ SD
iwSsteH
PiteBShSfM
...nmmm
j—
j—
MTii.
I
j
"iilXIis".
¦f
j
[
jjiiXiti!
t
Hifeufcnvfl.
...JjfMBSM
.mxKMetmtl
MMctwJtocsfi/ia
OK&MfWW.ffl#
WrnMttsJMflfaflawtf/....
.AIA.A&.
"£!D£
-H'.'pA
fla :53
"z'JJi
7* j 12
zy:..
jhlIjx.
|
'Viojiii
"ra'*Xs»I
"tiJ.K
.14..;
"is.
w
i-
i
;—
.mj.w.i
tfflMftOK.
w'.Q.sadW.qn7!.?tuiiiiA».
wllhc«DMIOtracn»«laa
21 ¦ as
77 f 44
M7S:S5S
175 1140
as : 61
m.-m
«ii<>»
¦—\
.« j K
4
•no isw
..Iffl.l.M.
3+t i«7
29 ¦ 29
¦19i4i m
IH I 174
..m.i.iw
1*3 j 131
¦ an iat
...AfflR&toStfA
Smrnmt.m
tiYAWAAPi
...IWQGM
mivuM
inssssi
...EBlMiMfaBiejt
fiMtfefW,
(SWCft.M.
(Awmmfm
...PSMWft
Smrw/ivuM
...GPteWStS.
(MOmMma.
J7AU??'
..3SU..M.
j
j
..w.i.a?.
!!»4"w]
.j...
.M.
.....
..95.4.M.
"HlXiiiil
"STal
4
+
3ii&
-M.i.JW..
•—f
"™T
J
|.—..
'"""j
PMxtnytuM,
StapftaJSw.
f
...7...U?.
|
..j...
-f
—4
—t
4
4
i--
i
Gfwa/xwMn.
GWffllflmWM
i
..M.
iii.S.
i
..i?4.?s.
..a.
......
.M.
"m.
-»1
CWiwiamww.
G&KtMMfmwsuw
aiSlSa
j.«.;..3a.
.77-4.M.
..434J.95
;
..Z.i.M.
..W.i.32.
j.«4.?.°.
¦SM4.M.
..«4.7A.
..7R.
..57..
•JW.J
..w..
•J.4..
.liS
CKammmM
GatmUnrnmAa.
fiWftBWmwnM.M
Safest** jm,.
GHdteedwft.M
, MKrntewflwjup..
fWwiM)wnw.
fisBMfvj.aa
..flsMfiW.jft,
C^nmtM.gpjsMjfli
.—fMs»JM!mwi!
-------
Table 4.8.2 The Student-Newman-Keuls Test Values Derived For Between-
Station Comparisons.
SNK Grouping*
Mean
N
ID
A
16.000
3
M-l
B
11.333
3
M-14
B
c
B
9.333
3
M-2
c
B
c
B
8.000
3
M-3
c
B
c
B
7.667
3
M-5
c
B
c
B
6.333
3
M-ll
c
B
c
B
6.000
3
M-9R
c
B
c
B
5.333
3
M-9
c
c
4.667
3
M-7
c
c
4.667
3
M-6
c
c
4.667
3
M-8
c
c
4.333
3
M-12
c
c
4.333
3
M-4
c
c
4.000
3
M-13
c
c
3.000
3
M-10
*Same letter indicates similar taxa composition.
79
-------
The highest concentration of 5,509 organisms was found at M-l and the population consisted
mostly of midges (75%), oligochaetes (9%), and amphipods (9%). The other control site, M-
14, had a density of 3755 macroinvertebrates with oligochaetes making up 31%, midges
accounting for 30% and the mayfly Hexagenia comprising nearly 25%. The differences in
control site populations were attributed to substrate variations. The sediment at M-l was
sandy and would favor midges and oligochaetes while the substrate at M-14 contained more
organic detritus. This type of sediment would be more favorable to mayflies. The lowest
density of 329 individuals was noted at M-6 and the midges and mussels made up 79% and
13%, respectively. M-10 had a concentration of 373 individuals and 258 were worms, with
no mussels and 100 midge larvae. Again a shift in the major groups was observed at the
impacted sites. The overall reduction in species composition and density as was seen at
sampling sites M-6, M-7, M-8, and M-10 was attributed to toxicity.
The macroinvertebrate assemblage data in Table 4.8.1 were used to calculate the community
loss index (EPA 1990) and the quantitative similarity index (Rabeni et al. 1999). These
metrics were employed to evaluate the potential impact of contamination between controls
and other in-lake sampling locations. The community loss matrix was calculated between the
control sites (M-l, M-14) and the remaining stations (Table 4.8.3). A value of 0.6 or greater
designated a significant loss of taxa. Based upon this analysis, M-l and M-14 had a value of
0.4 and M-2 and M-5 were close in showing no taxa loss to M-14 with a 0.63 and a 0.6 value.
The remaining comparisons yielded considerably larger values. Higher community loss
values were observed when M-l was compared to the other sites, and a value of 6.0 was
obtained for M-10; whereas, M-8, M-9R, M-12 and M-13 had a value of 3.2. It should also
be noted that these locations also produced the lowest number of taxa. The same comparison
between M-14 and other sites had values greater than 1.0 and the largest number was 3.0 for
M-12.
The Quantitative Similarity Index (QSI) was also determined for each collecting site (Rabeni
et al. 1999). The calculations are presented in Appendix F (Table F-2) and summarized in
Table 4.8.4. The QSI provides calculated values for determining if an adequate number of
samples were secured. The advantage of this matrix is that the investigator can then make a
decision on the number of sample analyses to be performed in order to obtain optimum
information as to the community structure and respective concentration per species. Positive
values for the QSI indicate that the analysis improved the reliability of the benthic data. Nine
of the 15 samples had positive QSI values (Table 4.8.4). Negative QSI values indicate that
the third replicate did not significantly improve the reliability of the data and that more
samples would be required for a more accurate characterization. Six locations had negative
values: M-5, M-6, M-7, M-8, M-9R, and M-12. Highly negative values for M-5 (-22.8) and
M-7 (-64.6) indicate a larger difference between replicates and suggest that the population
may not be adequately characterized. Additional samples for benthic macroinvertebrate
analysis need to be collected in order to define the population at this location. The other
locations had QSI values that were only slightly negative and indicate the potential for only a
marginal improvement with the collection of additional samples.
80
-------
Table 4.8.3 A Summary Of Community Loss Values Derived From Comparing M-
1 And M-14 With The Remaining Sampling Sites In Manistee Lake, November
1998.
M-1 M-2
M-3 M-4
M-5 M-6
M-7 M-8
M-9 M-9R
M-10 M-11
M-12 M-13
M-14
M-1
M-2
0.82
M-3
1.33
M-4
2.50
M-5
3.00
M-6
0.91
M-7
1.86
M-8
3.20
M-9
2.00
M-9R
3.20
M-10
6.00
M-11
1.63
M-12
3.20
M-13
M-14
3.20
0.40 0.63
1.00 1.83
0.60 2.75
1.13 2.40
1.11 1.50
2.33 1.00
3.00 2.40
a- c
Community Loss Index =
b
where a: number of taxa at the reference site
b: number of taxa at the impacted/recovery site
c: number of taxa common to 'the reference site' and 'the impacted/recovery site*
Note : Critical value chosen is 0.60 therefore values greater than or equal to 0.60 indicate significant
Community Loss
-------
Table 4.8.4 A Summary Quantitative Similarity Index Values For The
Sampling Sites In Manistee Lake, November 1998.
M2 M3 M4 M5 M6 M7 MB M9 M9R M10 M11 M12 M13 M14
0.748 0.746 0.433 0.261 0.633 0.211 0.771 0.313 0.782 0.361 0.674 0.765 0.666 0.469
0.719 0.733 0.337 0.338 0.667 0.596 0.788 0.118 0.642 0.333 0.663 0.78 0.572 0.303
4.0 1.8 28.5 -22.8 -5.1 -64.6 -2.2 165.3 -7.1 8.4 1.7 -1.9 16.4 54.8
In summary, the controls, M-l and M-14, had the greatest number of taxa with 23 and 19,
respectively and contained several pollution sensitive organisms. Taxa comparisons between
these two locations were different as M-l was dominated by midges and tubificids while M-
14 had a greater component of mayflies. These differences are more reflective of substrate
conditions (more sand and less organic carbon at M-l) than impacts related to pollution,
A comparison of the indigenous fauna between the controls and the remaining sampling sites
showed a significant difference in species composition and density of organisms. A drastic
reduction in taxa as was seen in M-10, M-12, and M-13 that generated only five to six
species, respectively, indicated a problem with sediment contamination. Even though other
in-lake stations had a somewhat higher diversity, none approached the number of taxa found
in M-l and M-14.
4.8.2 Benthic Macroinvertebrate Analyses Based On Location Groups
The benthic macroinvertebrate data were further analyzed to determine if statistically
significant differences existed between locations impacted by the PCA groundwater plume
(M-2 through M-9) and stations influenced by brine plumes (M-10 through M-13). The
statistical methods are summarized in Appendix F (Tables F-3 and F-4). The following
metrics were utilized:
• Shannon-Weaver Diversity (Krebs 1989)
• Margalefs Richness (Krebs 1989)
• Evenness (Krebs 1989)
• Pielou's J (Krebs 1989)
• Oligochaete Index (Howmiller and Scott 1977)
• Chironomid Index (*)
• Oligochaete + Chironomid Index (*)
• Trophic Index (*)
* Modified from Howmiller and Scott (1977)
M1
Mean QSI 0.S3
{3 replicates)
QSI (replicates A n __
and B) 0"82
Improvement of 1 q
Silimarity(%)
82
-------
The organism-based indices were calculated based on the formula:
(Xn2 + 2£n3) / (Xnl + £n2 + £n3) = Index value
where: nl is the number of organisms in the low pollution tolerance group,
n2 is the number of organisms in the medium pollution tolerance group
n3 is the number of organisms in the high pollution tolerance
Tolerance rankings were based on data from Winnell and White (1985), Lauritsen et al.
(1985), Schloesser et al. (1995) and Barbour et al. (1999). The tolerance rankings are
included in Appendix F (Table F-4). For the purpose of statistical analysis, the following
groups were examined:
• Control (M-landM-14)
• Group 1 - PCA Ground Water Plume (M-2, M-3, M-4, M-5, M-6, M-7, M-8, M-9, M-
9R)
• Group 2 - Brine Processing Sites (M-10, M-l 1, M-12, M-13)
Group 1 locations were in the vicinity of the PCA ground water plume and also included
potential impacts from Manistee Drop Forge (M-6) and Martin Marietta (M-7 and M-8).
Group 2 locations were in the vicinity of the Abandon Brine Storage/Transmission Area (M-
10), Manistee Wastewater Treatment Plant/Hardy Salt (M-ll), Hardy Salt (M-12) and
Morton Chemical (M-13). The calculated data for the above metrics are summarized in
Table 4.8.5.
A linear model with a nested design was used for the ANOVA and included the factors listed
below:
• group (3 levels - control, group 1, group 2 as defined previously)
• site nested within group - that is, sites M-l and M-14 are within the control groups,
sites M-2 to M-9R are within group 1 and sites M-10 to M-13 are within group 2;
• replicate nested within site - there are three replicates for each site that serves as the
error term for the ANOVA.
The basic procedure used was as follows:
1. Assess the normality assumption that underlies the theory of ANOVA for the data within
each group
2. If the normality assumption is justified, test the significance of the model.
3. If the model is significant, then test the group and site within group factors.
4. Use post hoc multiple comparisons to assess which groups and/or sites were different if
the hypothesis of no difference is rejected from the ANOVA.
All analyses were done using SAS and SPSS.
83
-------
Table 4.8.5 Summary Statistics For The Analysis Of Benthic
Macroinvertebrate Samples From Manistee Lake, November 1998.
M-1
M-2
M-3
M-4
M-5
A
B
C
A
B
C
A
B
C
A
B
C
A
a
C
T rophic index
1.09
0.95
1.04
1.59
1.73
1.65
1.76
1.83
1.62
1.81
1.00
1.05
1.29
1.00
1.50
Oligochaete index
1.84
1.63
2.00
1.96
1.95
1.95
2.00
1.99
1.81
1.91
O.OO
0.00
0.00
0.00
0.00
Chironomid index
0.99
0.88
0.96
1.2B
1.35
1.46
1.77
1.55
1.69
1.75
1.69
1.43
1.67
1.67
1.B0
Oiigochaets and chironomid index
1.12
0.94
1.03
1.72
1.86
1.86
1.94
1.B6
1.76
1.86
1.69
1.43
1.67
1.67
1.80
Shannon-Weaver
1.32
1.46
1.40
1.75
1.28
1.17
1.40
0.98
1.51
1.13
0.90
0.79
1.68
1.09
0.87
Margalefs Richness
1.54
1.99
1.71
1.15
1.20
0.66
1.08
0.66
0.92
0.67
0.45
0.30
1.04
0.50
0.36
Eveness
0.27
0.23
0.27
0.57
0.33
0.54
0.40
0.44
0.57
0.51
0.61
0.73
0.77
0.74
0.79
J
0.50
0.50
0.52
0.76
0.54
0.65
0.61
0.55
0.73
0.63
0.65
0.72
0.86
0.79
0.79
M-6
M-7
M-S
M-9
M-9R
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
T rophic index
1.22
1.22
1.77
1.12
1.05
1.40
1.13
1.29
1.15
2.00
0.00
1.61
1.97
1.97
1.83
Oligochaete index
0.00
0.00
2.00
1.20
1.96
0.00
0.00
0.00
0.00
2.00
0.00
1.83
2.00
2.00
2.00
Chironomid index
1.00
1.00
1.00
0.00
1.50
0.00
1.83
2.00
1.75
2.00
1.80
1.33
1.83
2.00
1.86
Oligochaete and chironomid index
1.00
1.00
1.93
1.20
1.92
0.00
1.83
2.00
1.75
2.00
0.00
1.61
1.97
2.00
1.97
Shannon-Weaver
1.58
1.42
1.96
1.30
1.04
0.67
1.03
1.10
1.45
1.01
1.60
0.99
1.29
1.43
1.38
Margalefs Richness
0.76
0.95
1.36
0.68
0.94
0.21
0.50
0.52
0.83
0.39
0.74
0.65
0.67
0.67
0.68
Eveness
0.97
0.59
0.65
0.73
0.41
0.98
0.70
0.75
0.71
0.69
0.82
0.45
0.61
0.70
0.67
J
0.9S
0.73
0.82
0.81
0.54
0.97
0.75
0.80
0.81
0.73
0.89
0.55
0.72
0.80
0.77
M-10
M-11
M-12
M-13
M-14
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
Trophic index
2.00
1.44
1.88
1.77
1.90
1.87
1.93
1.72
1.82
1.27
1.89
1.96
1.48
1.00
1.26
Oligochaete Index
2.00
1.80
1.88
2.00
2.00
1.89
2.00
1.77
1.88
1.70
1.89
1.95
2.00
0.00
2.00
Chironomid index
0.00
1.43
O.OO
1.33
0.00
1.75
1.80
1.67
1.00
0.11
2.00
2.00
1.23
1.00
1.29
Oligochaete and chironomid index
2.00
1.58
1.88
1.88
2.00
1.89
1.95
1.76
1.82
1.25
1.91
1.96
1.68
1.00
1.76
Shannon-Weaver
1.01
1.29
0.38
1.62
0.97
1.25
0.71
0.94
0.71
1.24
0.84
0.68
2.31
0.91
1.96
Margalefs Richness
0.36
0.48
0.17
0.94
0.36
0.84
0.30
0.40
0.63
0.55
0.43
0.28
1.91
0.70
1.39
Eveness
0.92
0.90
0.73
0.63
0.66
0.43
0.68
0.64
0.34
0.69
0.68
0.65
0.56
0.41
0.69
J
0.92
0.93
0.54
0.78
0.70
0.60
0.64
0.68
0.40
0.77
0.60
0.61
0.80
0.51
0.79
The data were first analyzed for normality using the Shapiro-Wilks hypothesis test. The
results are summarized below:
p-values tor normality
Group
Trophic
Index
Oligochaete
Index
Chironomid
Index
o + c
Index
Shannon
Weaver
J
Evenness
Richness
Control
0.2820
0.0002
0.0076
0.0425
0.7669
0.0038
0.1821
0.3422
1
0.0048
0.0001
0.0001
0.0001
0.9323
0.2817
0.7107
0.6493
2
0.0074
0.1314
0.0186
0.0025
0.9732
0.6735
0.2931
0.2934
The data for Shannon-Weaver diversity, evenness, and richness were normally distributed (p-
value > 0.05) and could be analyzed by standard ANOVA methods. If the p-value was
< 0.05 for any group within the indices, the data were not normally distributed and the
84
-------
nonparametric ANOVA was performed on ranked data. The results of the ANOVA are
summarized below:
p-values for ANOVA
Group
Trophic
Index
Oligochaete
Index
Chironomid
Index
O + C
Index
Shannon
Weaver
J
Evenness
Richness
Model
0.0082
0.0402
0.0010
0.0865
0.0461
0.0579
0.0019
0.0001
Group
0.0002
0.1018
0.0035
0.0099
0.0035
0.0451
0.0006
0.0001
Site(Group)
0.2020
0.0518
0.0039
0.3274
0.2830
0.1098
0.0208
0.1754
Model significance and between group significance were indicated by p-values < 0.05 in both
categories. These conditions were met for the trophic index, chironomid index, Shannon-
Weaver diversity, evenness, and richness. With the exception of the chironomid index,
variation between replicates was not significant (p-values >0.1). Variation between replicates
was significant for the chironomid index.
Post hoc comparisons on the means of the above groups were then performed using the
Student-Newman-Keuls (SNK) test. Means for ranked data were used for the trophic index
and chironomid index since the original data did not meet the assumption of normality. The
results are presented in Table 4.8.6. Columns with the same letter indicate that the groups are
not significantly different. Conversely, columns with different letters indicate significant
differences between groups.
Table 4.8.6 Summary Statistics For The Analysis Of Benthic
Macroinvertebrate Samples From Manistee Lake, November 1998.
(Group 1 = PCA Impacted Sites, Group 2 = Brine Impacted Sites)
Student-Newman-Keuls post hoc comparisons
Group
Trophic
Mean
Rank
Trophic
Ranking
Chironomid
Mean
Rank
Chironomid
Ranking
Shannon -
Weaver
Mean
Shannon -
Weaver
Ranking
Control
9.000
A
11.333
A
1.561
A
Group 1
21.648
B
26.648
B
1.252
B
Group 2
33.042
C
20.625
B
0.954
B
Student-Newman-Keuls
Group
Evenness
Evenness
Margalefs
Margalefs
Mean
Ranking
Richness
Richness
Mean
Ranking
Control
0.389
A
1.541
A
Group 1
0.646
B
0.723
B
Group 2
0.654
B
0.478
B
>ost hoc comparisons
85
-------
The benthic macroinvertebrate populations in the control were significantly different from
both the brine-impacted group and the PCA-impacted group. With the exception of the
Trophic Index, the Student-Newman-Keuls analysis showed that the PCA and brine-impacted
sites had similar species evenness, species richness, Shannon-Weaver diversity and
chironomids index values. The overall trophic index values showed that the benthic
macroinvertebrate community near the brine sources had a significantly lower ranking (more
pollution-tolerant organisms) than the locations within the PCA groundwater plume.
The actual data or ranked data for trophic index, species evenness, species richness, and
Shannon-Weaver diversity values are presented in box plot format in Figures 4.8.2 - 4.8.5
respectively. Box plots provide a tool to visualize similarities and differences between the
test groups. All box plots show a clear difference between the control location and the
impacted sites. The benthic macroinvertebrates at the Group 1 and Group 2 locations were
significantly less diverse and dominated by a few pollution tolerant taxa. With the exception
of evenness, the brine-impacted sites (Group 2) showed a greater degree of degradation than
the PCA groundwater locations.
4.8.3. Benthic Macroinvertebrate Data Summary
The benthic macroinvertebrate community of Manistee Lake is highly fragmented. The river
delta areas where the control sites were located contain a diverse assemblage of pollution
intolerant and tolerant organisms made up of mayflies, oligochaetes, and midges. The
deposition of organic detritus by the rivers in these areas results in an environment that will
support both types of organisms. The assemblage changes dramatically in the vicinity of the
PCA groundwater plume and the salt brine companies to a population of pollution tolerant
oligochaetes and midges. Total numbers are reduced from 5000+/m2 at the northern most
control (M-l) to 798-2870/ m2 at M-2, M-3, M-4, and M-5. The PCA groundwater plume
enters the lake in this area. A dramatic reduction to 329-511/ m2 occurs in the area where the
plume combines with the historical release of oil from Manistee Drop Forge (M-6) and the
Martin Marietta brine plume (M-7 and M-8). Station M-9, located south of the combined
plume, however still within the influence of the PCA groundwater, shows a recovery with
organism counts of 1763/ m2 and 1706/ m2for the two replicate stations. Organism numbers
fall to 373/ m2 at M-10 near the brine-contaminated area and then recover to 1835-3311/ m2
near the salt brine facilities (M-ll, M-12, and M-13). Organism numbers at the control
location at the southern control station rise to 3770/ m2 with 30% of the population consisting
of mayflies. The decline in organism counts is mirrored by a decrease in taxa numbers for
stations M-6, M-7, M-8, and M-10 and coincides with measurable sediment toxicity in the
solid phase experiments.
As discussed in Section 4.7.3., the effects of brine contamination in the sediments were not
measured in the solid phase toxicity tests due to dilution from the daily renewal of the
overlying water. Consequently, the data from the sediment chemistry, solid-phase toxicity,
and benthic community assessment need to be evaluated in totality. Station M-10 had the
lowest number of taxa and total organisms. Levels of HEM and PAH compounds however
were moderate and the station had the third highest mortality. The high level of chloride
86
-------
measured at this location, suggested that brine contamination had the greatest ecological
effect. The results for M-12 show an apparent conflict between ecological and toxicity data
as low taxa numbers were obtained and no solid phase toxicity was measured. This location
was also influenced by a brine seep (high chloride levels in the sediment core) and salinity
effects are probably reflected in the ecological data.
A variety of statistical techniques was employed to examine the difference between the
control population and locations impacted by the PCA groundwater plume and the salt brine
companies. The results showed a clear difference between diversity and trophic status with
respect to the controls and the impacted sites. ANOVA results confirm that the impacted
populations are less diverse and dominated by pollution-tolerant organisms. The ANOVA
results also suggest that the brine-impacted sites have benthic invertebrate populations with a
lower trophic status than the locations collected in the area influenced by the PCA
groundwater plume.
87
-------
Comparison of the Shannon-Weaver Index
X
CO
Q)
c
o
c
c
cti
x:
CO
Group 1
Group 2
Control
Figure 4.8.2 Box Plot Of Shannon-Weaver Diversity Data For Manistee Lake
BenthicMacroinvertebrate Stations (Mean 25%-75%), November 1998.
Comparison of the Trophic Index
.2 1.0
Group 2
6
Control
27
Group 1
Figure 4.8.3 Box Plot Of Trophic Index Data For Manistee Lake Benthic
Macroinvertebrate Stations (Mean 25%-75%), November 1998.
88
-------
Comparison of Richness Index
2.5
2.0
X
0
"9 1.5
C/)
c
O 1.0
ir
.5
0.0
6
Control
27
Group 1
12
Group 2
Figure 4.8.4 Box Plot Of Species Richness Data For Manistee Lake Benthic
Macroinvertebrate Stations (Mean 25%-75%), November 1998.
Comparison of Eveness Index
a)
X)
c
V)
W
0
c
0>
>
UJ
1.2
1.0
0.0
o«
8
Control
27
Group 1
12
Group 2
Figure 4.8.5 Box Plot Of Species Evenness Data. For Manistee Lake Benthic
Macroinvertebrate Stations (Mean 25%-75%), November 1998.
89
-------
4.9 Summary And Conclusions
A preliminary investigation of the nature and extent of sediment contamination in the lower
Manistee Lake was performed. The investigation utilized the sediment quality triad approach
with integrated assessments of chemistry, toxicity, and benthic macroinvertebrates. Diverse
populations of benthic macroinvertebrates and limited evidence of anthropogenic chemical
contamination were found in the control locations near the Manistee and Little Manistee
Rivers (upper northeast and lower southeast sections of the lake). The remainder of
Manistee Lake was characterized by depauperate benthic communities and sediments
impacted by the influx of contaminated groundwater and the presence of oils and polycyclic
aromatic hydrocarbons (PAH). The influx of contaminated groundwater and brines from
surface discharges were evident by the presence of chemical stratification in the lower
hypolimnion. A layer (approximately 5') of water with high specific conductance was
present at the bottom of the lake in July 1998. High levels of chloride were also found in the
sediments. Areas of intense brine intrusion in the surficial sediments were found one mile
north of the Martin Marietta facility where abandon brine wells and transmission pipelines
were located across the lake from Hardy Salt. The chloride levels in the remaining stations
suggested a more diffuse venting of contaminated groundwater and the formation of a density
gradient in the sediments. A density gradient in the sediment pore water was described in a
previous investigation (Camp, Dresser, McKee, and Battelle Great Lakes Environmental
Center. 1993) with respect to specific conductance values.
Sediment oil contamination and the detection of elevated levels of PAH compounds indicated
extensive hydrocarbon pollution was still present in Manistee Lake. The levels reported for
oils were similar to the amounts found previously (Grant, J. 1975). Of the 12 sites
investigated in areas of anthropogenic impact, 10 locations exceeded the Probable Effect
Concentrations (PECs) for individual PAH compounds. The highest level of PAH
compounds was near Morton Chemical (M-13: 29.4 mg/kg) and the highest level of oil was
found near Manistee Drop Forge (M-6: 26,000 mg/kg). Historic releases of hydrocarbons
were reported near Manistee Drop Forge. Elevated levels of metals were found at all stations
with anthropogenic influences, however concentrations were below the PEC guidelines.
Resin acids were found to be distributed throughout Manistee Lake. The highest levels were
found in the 20"-40" core section downstream from the old PCA outfall. The distribution of
resin acids in the surficial sediments also supported the hypothesis of a diffuse venting of
groundwater from the PCA site. Resin acids were not detected in the fish samples collected.
The diffuse nature of the groundwater influx, the presence chemical stratification during the
summer, and the high levels of oil contamination in the sediments create conditions that limit
the exposure of fish populations to these chemicals.
Sediment toxicity to amphipods and midges was observed at M-6 and M-13. These stations
had the highest levels of hydrocarbon oils and PAH compounds. Amphipod toxicity was
measured at five additional sites, all containing levels of individual PAH compounds
exceeding PEC concentrations. Samples with lower concentrations of oils and PAHs and
elevated resin acid levels were not toxic to amphipods.
90
-------
A variety of statistical techniques was employed to examine differences in the benthic
macroinvertebrate communities between the control populations and locations impacted by
the PCA groundwater plume and the salt brine facilities. The results showed a clear
difference between diversity and trophic status with respect to the controls and the impacted
sites. ANOVA results confirmed that the impacted populations were less diverse and
dominated by pollution-tolerant organisms. The ANOVA results also suggested that the
brine-impacted sites as a group, had benthic invertebrate populations with a lower trophic
status than benthos collected in the area influenced by the PCA/Martin Marietta groundwater
plume.
The sediment quality triad approach was used to investigate Manistee Lake. Chemical
analyses found elevated levels of PAH compounds above PEC guidelines, high
concentrations of petroleum hydrocarbons, and areas of brine intrusion. Solid phase toxicity
studies (10-day) suggest that mortality was related to the presence of elevated PAH
compounds in the sediments. Since the daily water renewal in the solid phase toxicity tests
would reduce any impacts related brines, the benthic macroinvertebrate data was critical to
the evaluation of ecological effects. With respect to taxa numbers and abundance, brine
intrusion appeared to have a greater negative affect than the presence of HEM/PAH
compounds.
4.10 References
Barbour, M.T., J. Gerritsen, B.D. Snyder, J.B, Stribling. 1999. Rapid Bioassessment
Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic
Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S.
Environmental Protection Agency; Office of Water, Washington, D.C.
Basch, R. 1971. A Survey of the Bottom Sediments in Manistee Lake in the Vicinity of the
Packaging Corporation of America's Filer City Paper Mill. Michigan Water Resources
Commission., October 25,1971.
Brownlee B., M.E. Fox, W.M.J. Strachan, S.R. Joshi. 1977. Distribution of
Dehydroabietic Acid in Sediments Adjacent to a Kraft Pulp and Paper Mill. J. Fish.
Res. Board Can. 34: 838-843.
Camp, Dresser, McKee, and Battelle Great Lakes Environmental Center. 1993.
Packaging Corporation of America/Manistee Lake Site. 118 pp.
EPA 1990 Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological
Integrity of Surface Waters. EPA/600/4-90/03.
Grant, J. 1975. Water Quality and Biological Survey of Manistee Lake. Michigan
Department of Natural Resources. Pub. 4833-9310. 56pp.
Howmiller, R.P., M.A. Scott. 1977. An environmental index based on the relative
91
-------
Howmiller, R.P., M.A. Scott. 1977. An environmental index based on the relative
abundance of oligochaete species. J. Water Pollut. Cont. Fed. 49: 809-815.
Johnsen, K., K. Mattsson, J. Tana, T.R. Stuthridge, J. Hemming, K.J. Lehtinen. 1995.
Uptake and elimination of resin acids and physiological responses in rainbow trout
exposed to total mill effluent from an integrated newsprint mill. Environ. Toxicol.
Chem. 14(9): 1561-1568.
Judd, M.C., T.R. Stuthridge, R.W. Price. 1998. Pulp mill sourced organic compounds from
New Zealand sediments. Part 3: Mechanical pulp mills and remote sites.
Chemosphere 36(10):2311-2320.
Krebs, C. J. (1989). Ecological methodology. New York: Harper & Row. 325 pgs
Lauritsen, D.D., S.C. Mozley, D.S. White. 1985. Distribution of oligochaetes in Lake
Michigan and comments on their use as indices of pollution. J. Great Lakes Res.
11:67-76.
Leppaenen, H., and A. Oikari. 1999. Occurrence of retene and resin acids in sediments and
fish bile from a lake receiving pulp and paper mill effluents. Environ. Toxicol. Chem
18(7): 1498-1505
Liss, S.N., P.A. Bicho, J.N. Saddler. 1997 Microbiology and biodegradation of resin acids in
pulp mill effluents: a mini review. Canadian Journal of Microbiology 43 :599-611
MacDonald D.D., C.G. Ingersoll, T.A. Berger. 2000. Development and Evaluation of
Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch.
Environ. Contain. Toxicol. 39(1):20-31.
Miller, R.C. Jr. 1981. Simultaneous Statistical Inference. Springer-Verlag. New York, NY.
USA.
Myers, R. (2001). Michigan Department of Environmental Quality, Personal
Communication.
Niimi, A.J., H.B. Lee. 1992. Free and conjugated concentrations of nine resin acids in
rainbow trout (Oncorhynchus mykiss ) following waterbome exposure.
Environ. Toxicol. Chem. 11(10): 1403-1407.
Nyren, V. and E. Black. 1958. The ionization constant, solubility product and solubility of
abietic and dehydroabietic acid. Acta Chem. Scand. 12(7): 1516-1520.
Rabeni, C.F., N. Wang, R.J. Sarver. 1999. Evaluating adequacy of the representative
stream reach used in invertebrate monitoring programs. Journal of the North American
Benthological Society. 18:284-291.
92
-------
Schloesser, Don W., Trefor B. Reynoldson, Bruce A. Manny. 1995, Oligochaete fauna of
western Lake Erie 1961 and 1982: signs of sediment quality recovery: Journal of
Great Lakes Research, v. 21, no. 3, 294-306.
Tavendale, M.H., P.N. McFarlane, K.L. Mackie, A.L. Wilkins, A.G. Langdon. 1997.
The fate of resin acids-2. The fate of resin acids and resin acid derived neutral
compounds in anaerobic sediments. Chemosphere 35(10):2153-2166.
Tian, F., A. L. Wilkins, T. R. Healy. 1998 Accumulation of resin acids in sediments
adjacent to a log handling area, Tauranga Harbour, New Zealand. Bull. Environ.
Contam. Toxicol.. 60(3):441-7.
VanOtteren, B. 1998. Michigan Department of Environmental Quality. Personal
Communication.
Wilkins, A. L., T. R. Healy, T. Leipe. 1997. Pulp mill-sourced substances in sediments
from a coastal wetland . J. Coast. Res. 13(2):341-348.
Wilkins, A. L., M. Singh-Thandi, A. G. Langdon. 1996. Pulp mill sourced organic
compounds and sodium levels in water and sediments from the Tarawera River,
New Zealand. Bull. Environ. Contam. Toxicol.. 57:434-41.
Winnell, M. H., D. S. White. 1985. Trophic status of southeastern Lake Michigan based
on the Chironomidae(Diptera). J. Great Lakes Res. 11:540-548.
Zheng, J., R. A. Nicholson. 1998 Action of resin acids in nerve ending fractions isolated
from fish central nervous system. Environ. Toxicol. Chem. 17(9): 1852-1859.
93
-------
5.0 Recommendations
The presence of high quality benthic macroinvertebrate communities near the Manistee and
Little Manistee Rivers indicates that the remainder Manistee Lake should also support a
diverse assemblage of sediment dwelling organisms. The depauperate benthic communities
that characterize the remaining regions of the lake however show a serious environmental
impact from the extensive influx of contaminated groundwater and historical releases of
hydrocarbons. Even though the groundwater venting appears to be diffuse, the size and
number of plumes entering Manistee Lake is sufficient to induce chemical stratification
during the summer. This change in salinity creates conditions that favor the survival of
tolerant organisms and the reduction of biological diversity. While only two locations
indicated the presence of the direct influx of a brine source, the apparent density gradient
observed may be problematic because of the concentration of salts and chemicals related to
the PCA facility appear to have stratified deep within the sediments. The fate of this
stratified layer is not known with respect to its direction of movement and degree of
confinement. In consideration of these conditions, the following recommendations are
made:
• Conduct an annual monitoring program in Manistee Lake to document the extent of
chemical and oxygen stratification. The thickness and composition of the chemically
stratified layer is important to the assessment of the significance of the venting
groundwater plumes and surface brine discharges.
• Conduct further investigation and corrective action in the locations where the influx
of brine was directly observed (abandon brinewell transmission pipeline area and
Morton Chemical).
• Determine the fate of the stratified chemical layer in the groundwater located in the
sediments beneath Manistee Lake. The direction of flow and the endpoint of
discharge are critical data gaps.
• Conduct a cost benefit analysis of a comprehensive program to reduce the influx of
contaminated groundwater on a lake wide basis. Given the widespread and diffuse
influx of contaminated groundwater, it is necessary to develop a strategy for Manistee
Lake as a whole.
94
-------
Appendices
-------
Appendix A. Results Physical Analyses On Manistee Lake Sediments,
November 1998.
-------
1-.
Solic
teig
%
30
25
21
15
14
17
17
17
17
17
20
21
16
18
19
18
17
20
20
18
22
14
20
23
15
22
25
16
22
24
17
23
26
21
28
2B
20
27
56
24
3B
36
47
64
44
77
13
14
11
14
14
16
13
14
13
17
23
38
20
38
Results Of Grain Size, TOC, And % Solids Analyses On Manistee
Lake Sediment Samples. November 1998.
>2000
1000-2000
850-1000
500-800
125-500
63-125
<63
Weight
Weight
Weight
Weight
Weight
Weight
Weight
TOC
Solids
%
%
%
%
%
%
%
%
%
0.2
2.0
0.0
0.2
3.1
2.5
92
5.3
30
0.9
0.1
0.0
0.0
1.4
3.4
94
7.4
25
0.0
0.2
0.1
0.5
4.4
28
67
16
21
0.1
0.1
0.0
0.7
2.0
4.6
92
12
15
0.1
2.0
0.0
0.0
0.9
2.7
94
12
14
0.5
1.8
3.0
0.1
4.3
8.1
82
14
17
0.0
0.0
0.0
0.0
3.4
13
84
5.2
17
0.0
0.0
0.0
0.0
3.2
14
82
10
17
0.0
0.1
0.0
0.2
2.3
8.9
89
11
17
0.0
0.1
0.1
0.1
1.4
6.5
92
9.4
17
0.5
0.2
1.0
1.0
0.5
1.4
95
11
20
0.0
0.0
0.0
0.5
3.5
7.0
89
8.4
21
0.5
0.4
0.1
0.6
5.0
8.0
85
12
16
0.4
0.0
0.1
0.2
1.9
11
87
12
18
0.1
0.1
0.0
0.3
3.4
9.6
87
11
19
0.8
0.5
0.2
1.3
4.7
8.4
84
10
18
0.0
0.1
0.1
0.1
0.5
7.1
92
9.1
17
0.0
0.0
0.0
0.0
2.5
7.3
90
11
20
4.4
0.6
0.2
0.8
5.2
7.5
81
10
20
0.8
0.3
0.1
0.2
4.1
5.6
89
9.0
18
0.1
0.1
0.1
0.4
2.9
4.0
92
8.8
22
0.9
0.0
0.0
0.1
2.7
6.7
90
4.8
14
0.3
0.4
3.5
1.1
4.0
4.5
86
7.5
20
0.0
0.0
0.0
0.0
1.5
3.2
95
7.5
23
0.3
0.0
0.0
0.1
3.9
5.5
90
8.5
15
0.6
0.2
0.0
0.2
1.7
3.1
94
2.9
22
0.0
0.1
0.0
0.5
2.1
3.4
94
6.4
25
1.0
0.3
0.1
0.6
5.1
6.1
87
10
16
1.4
0.9
0.1
0.5
1.8
2.7
93
6.4
22
0.0
0.0
0.0
0.1
1.2
2.5
96
8.3
24
1.2
2.3
0.1
0.7
0.8
3.9
91
7.7
17
19
0.5
0.3
0.8
2.0
2.9
75
5.3
23
0.0
0.0
0.2
0.0
1.3
2.6
96
5.7
26
1.4
0.2
0.0
0.8
6.5
8.8
82
4.7
21
0.0
0.0
0.0
0.1
3.0
3.8
93
4.4
26
0.5
0.1
0.0
0.7
2.6
2.4
94
4.9
28
0.0
0.0
0.0
0.0
3.7
5.9
90
5.6
20
0.4
0.1
0.0
0.4
3.0
5.4
91
4.7
27
6.0
2.0
0.7
7.1
35
1.6
47
1.7
56
0.7
0.0
0.0
0.0
5.9
8.6
85
6.2
24
4.1
0.9
0.2
1.2
2.6
3.6
87
4.6
38
0.6
0.7
0.2
0.1
0.7
2.7
95
3.1
36
0.0
0.1
1.1
0.8
1.4
2.1
94
Z5
47
0.3
0.3
0.1
0.8
56
17
26
<0.5
64
0.0
0.1
0.1
0.3
5.3
13
81
3.8
44
0.5
0.7
0.4
6.7
84
1.1
7
<0.5
77
0.0
0.0
0.0
0.0
7.0
11
82
9.3
13
0.1
0.3
0.0
0.4
4.9
9.6
85
8.8
14
1.1
3.7
0.0
1.2
6.3
11
77
13
11
0.0
0.1
0.1
0.4
5.0
2.6
92
15
14
0.8
0.2
0.1
1.0
11
4.9
82
13
14
0.5
0.2
0.1
0.5
6.8
8.2
84
11
18
0.8
2.6
0.1
0.5
6.8
2.8
67
7.6
13
0.3
0.1
0.1
0.2
6.9
7.3
85
7.5
14
0.0
0.0
0.0
0.0
3.8
6.8
89
8.1
13
0.0
0.1
0.1
0.3
10
9.1
80
6.5
17
0.3
0.0
0.1
0.6
2.5
3.B
93
8.1
23
0.0
0.1
0.0
0.1
4.2
10
86
5.6
38
0.0
0.0
0.1
0.1
3.2
6.7
90
4.7
20
0.2
0.3
0.3
1.0
0.0
44
54
2.3
38
A-l
-------
Table A-2. TOC Matrix Spike And Matrix Spike Duplicate Results For
Manistee Lake Sediment Samples. November 1998.
Matrix Spike Data
Sample MS
MS
Sample ID
TOC TOC
Cone.
% Recovery
mg/kg mg/kg
mg/kg
M-11 Mid
5.76 25.54
19.88
98
M-14 Bot
4.65 16.91
12.40
97
M-9 P
9.95 22.2013.760
85
M-13 P
5.46 20.70
13.20
137
M-4 Mid
15.47 25.34
12.18
85
M-7 Top
11.46 26.62
13.76
112
M-8 Bot
10.25 28.83
19.44
92
Matrix Spike Duplicate Data
Sample MSD
MS
%
Recovery
Sample ID
TOC TOC Cone,
mg/kg mg/kg mg/kg
RPD
M-11 Mid
5.76
22.77
16.52
109
11
M-14 Bot
4.65
19.72
14.64
109
15
Mid-9 P
9.95
24.39
14.96
95
9.4
Mid-13 P
5.46
21.22
14.12
130
2.5
M-4 Mid
15.47
27.03
14.76
79
6.5
M-7 Top
11.46
29.24
17.48
103
9.4
M-8 Bot
10.25
23.35
15.04
81
21
A-2
-------
Table A-3. Quality Control Results For Grain Size Analyses On Manistee
Lake Sediment Samples. November 1998.
M-6Top
0
0
0
1
5
8
M-6 Top Dup
0
0
0
1
5
10
M-8 Bot
0
0
0
0
I
3
M-8 Bot Dup
0
0
0
0
3
5
M-10 Med
19
0
0
0
2
3
M-10 Med
5
0
0
1
2
3
M-ll Mid
0
0
0
0
3
4
M-11 Mid Dup
0
0
0
0
3
5
M-13-Bot
0
0
0
0
0
3
M-13 Bot Dup
0
1
0
0
0
3
M-1P
0
1
0
7
84
1
M-l PDup
1
1
0
7
81
1
M-9 P Dup
0
0
0
0
4
7
M-9 P Dup/Dup
0
0
0
0
3
5
M-ll P
0
0
0
0
2
4
M-ll PDup
0
0
0
0
2
4
84
82
96
92
75
88
93
92
95
95
7
9
91
91
93
93
A-3
-------
Appendix B. Organic Analyses On Manistee Lake Sediments, Groundwater,
And Fish, November 1998.
-------
Table B-l. Results HEM And Semivolatele Organic Analyses On Manistee Lake
Sediments, November 1998.
Station
M-1
M-1
M-1
M-2
M-2
M-2
M-3
M-3
M-3
M-4
M-4
M-4
Core Section
Top
Mid
Bottom
Top
Mid
Bottom
Top
Mid
Bottom
Top
Mid
Bottom
Units
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mgftg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Hexane Extractables
130
2800
2300
1200
Naphthalene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-methylnaphthalene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Acenaphthyiene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Acenaphthene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Fluorene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Phenanthrene
< 0.33 <
0.33
< 0.33
3.5
0.85
0.33
0.82
0.33
0.33
0.33
0.33
0.33
Anthracene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Ruomnthena
< 0.33 <
0.33
< 0.33
2.4
0.33
0.33
0.50
0.33
0.33
0.33
0.33
0.33
Pyrene
< 0.33 <
0.33
< 0.33
2.1
0.33
0.33
0.63
0.33
0.33
0.33
0.33
0.33
B enzo(a) anthracene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Chrysene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(b)nuoranthene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(k)ftuoranthene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Berao(a) pyrene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
lndeno(1,2,3-cd)pyrena
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dibenzo(a,h)anthracene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(g,M)perylen0
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Total PHA Compounds
< 0.33 <
0.33
•e 0.33
6.0
0.33
0.33
1.9
0.33
0.33
0.33
0.33
0.33
4-Methy Phenol
< 0.33 <
0.33
< 0.33
0.51
0.33
0.33
0.47
0.33
0.33
0.63
0.33
0.33
Bie(2-chloFethyl)ether
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-CNorophenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Phenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0,33
0.33
0.33
0.33
0.33
0.33
1,3-DtaNorobenzene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,4-DteNorobenzene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,2-Dtahlorobanzene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bis(2-Chloroitoprepyl)ether
< 0.33 <
0.33
< 033
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Wathyiphencrf
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
3/4-Methytphenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
N-Mtraao-dhn-prapylamlne
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
HexacNoroethane
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
033
0.33
Nitrobenzene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Isophorone
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Nltrophenof
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-Olmethylphenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bis(2-CNoroethoxy)methane
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzoic Acid
< 3.3 <
3.3
< 3.3
<
3.3
3.3
3.3
<
3.3
3.3
3.3
3.3
3.3
3.3
1,2,4-Trichlorobenzene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-OtcNofophenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachloro-1,3-butadtene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-chtoro-3-methy(phenof
< 0.33 <
0.33
< 033
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachtorocyciopentadlene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4,6-Trichlorophenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4,5-Tdchlorophenol
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Chtororaphalene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dfmethylphthalate
< 0.33 <
0.33
< 0.33
c
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,&*Dlnltrototuenfl
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Obenzoftiran
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-DWtrotokiene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Mtrophenol
< 1.7 <
1.7
< 1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
2.4-OWtrophenol
< 1.7 <
1.7
< 1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
Olathylphthalate
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
.0.33
0.33
0.33
0.33
4-CMorophenyj-phenytether
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4,8-Olnitro-2-mefoylphenol
< 1.7 <
1.7
< 1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
N'Nftresodphenytamlne
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Bromophenyl-phenyl6ther
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Mexachloro benzene
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
pentachtorophenol
<: 1.7 <
1.7
< 1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
Dt-n-butylphthalate
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Butytoenzytphthaltie
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
S.^-OteNorobenzldlne
< 2.0 <
2.0
< to
<
ZO
2.0
2.0
<
&0
2.0
2.0
2.0
2.0
2.0
b(a(2-E(hylhexyi)phaiate
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Di-n-octylphthaJate
< 0.33 <
0.33
< 0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
B-l
-------
Table B-l (Continued). Results HEM And Semivolatile Organic Analyses On
Manistee Lake Sediments, November 1998.
Station
M-5
M-5
M-5
M-6
M-6
M-6
M-7
M-7
M-7
M-8
M-8
M-8
Core Section
Top
Mid
Bottom
Top
Mid
Bottom
Top
Mid
Bottom
Top
Mid
Bottom
Units
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Hexane Extractables
2900
15000
6400
5700
Naphthalene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
2-methylnaphthalene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
Acenaphthytene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
Acenaphthene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
Ruorene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
Phenanthrene
0.62
0.33
0.33
0.97
0.33
0.33
1.5
0.56
0.33
1.3
0.33
0.33
Anthracene
0.56
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Fluoranthene
0.59
0.33
0.33
0.60
0.33
0.33
1.2
0.33
0.33
1.2
0.33
0.33
Pyrene
<
0.33
0.33
0.33
0.84
0.33
0.33
1.3
0.41
0.33
1.1
0.33
0.33
Banzo(a)anthracene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.91
0.33
0.33
Chrysena
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
1.3
0.33
0.33
Benzo(b)fluoran thane
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(k)fluoranthene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.84
0.33
0.33
0.33
0.33
0.33
Benzo(a)pyrene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.73
0.33
0.33
0.33
0.33
0.33
lndeno(1,2,3-cd)pyrene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dlbenzo(a,h)anthracene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(g,h,l)peiylene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Total PHA Compounds
1.79
0.33
0.33
2.41
0.33
0.33
5.57
0.97
0.33
5.61
0.33
0.33
4-Methy Phenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bls(2-chlorethyl)ether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Chlorophencl
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Phenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,3-Dlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,4-Dlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,2-Dlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bla(2-Chlorolsopropyl)ether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Melhylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
3/4-Methylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
N-NHroao-dl-n-propylamlne
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachloroethane
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Nitrobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Isophorone
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Z-Nltrophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-Dlmethylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bls(2-Chloroethoxy)methane
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzoic Acid
<
3.3
3.3
3.3
<
3.3
3.3
3.3
<
3.3
3.3
3.3
3.3
3.3
3.3
1,2,4-Trlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-Dlchlorophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachloro-1,3-butadlene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-chloro-3-melhylphenol
<
0.33 '
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachlorocyclopentadlene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4,8-T rlchlorophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4,5-T rlchlorophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Chloronaphalene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dlmathylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,B-Dlnltrotoluene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dlbanzoluran
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-Dlnttrotoluans
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Nltrophenol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
2,4-Dlnitrophenol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
Diethylphlhalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Chlorophenyl-phenylether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4,6-Dlnitro-2-methy1phenol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
N-Nltroaodlphenylamlne
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Bromophenyl-phenylelher
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexadilorobenzena
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Pentachloroptianol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
c
1.7
1.7
1.7
1.7
1.7
1.7
Dl-n-butylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Butylbenzylphthalats
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
3,3'-DIcMorob8nzidine
<
2.0
2.0
2.0
<
2.0
2.0
£0
<
2.0
2.0
2.0
2.0
2.0
£0
bls(2-Ethylhe*yl)phalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dl-n-octylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
B-2
-------
Table B-l (Continued). Results HEM And Semivolatele Organic Analyses On
Manistee Lake Sediments, November 1998.
Station
M-9
M-9 OUP
M-9
M-9 OUP
M*9
M-9 OUP
M-10
M-10
M-10
M-11
M-11
M-11
Care Section
Top
Top
Mid
Mid
Botlop
Bottop
Top
Mid
Bottom
Top
Mid
Bottom
Units
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/Kg
mg/kg
mg/kg
mg/kg
mg/kg
Hexane Extractables
6700
6700
2900
6500
Naphthalene
<
0.33
<
0.33
0.33
0.33
0.33
0.33
<
0.33
< 0.33
< 0.33
<
0.33
0.33
0.33
2-fliethylnaphthalene
<
0.33
<
0.33
0.33
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
Acenaphthylene
<
0.33
<
0.33
0.33
0.33
0.33
0.33
<
0.33
0.33
0.33
<
0.33
0.33
0.33
Acenaphthene
<
0.33
<
0.33
0.33
0.33
0.33
0.33
<
0.33
< 0.33
< 0.33
<
0.33
0.33
0.33
Ruorene
<
0.33
<
0.33
0.33
0.33
0.33
0.33
<
0.33
< 0.33
< 0.33
<
0.33
0.33
0.33
Phenanthrene
1.6
2.0
0.33
0.33
0.33
0.33
3.1
1.4
< 0.33
1.9
0.33
0.33
Anthracene
<
0.33
<
0.33
0.33
0.33
0.33
0.33
<
0.33
< 0.33
< 0.33
0.36
0.33
0.33
Ruoranthene
1.3
1.8
0.33
0.33
0.33
0.33
2.7
< 0.33
< 0.33
2.4
0.33
0.33
Pyrene
3.0
3.3
0.33
0.33
0.33
0.33
2.7
0.55
< 0.33
2.1
0.33
0.33
Benzo(e)anthracene
<
0.33
1.2
0.33
0.33
0.33
0.33
0.79
< 0.33
< 0.33
0.93
0.33
0.33
Chrysene
<
0.33
1.2
0.33
0.33
0.33
0.33
1.4
< 0.33
< 0.33
1
0.33
0.33
Benzo
-------
Table B-l (Continued). Results HEM And Semivolatile Organic Analyses On
Manistee Lake Sediments, November 1998.
Station
M-12
M-12
M-12
M-13
M-13
M-13
M-14
M-14
M-14
Core Section
Top
Mid
Bottom
Top
Mid
Bottom
Top
Mid
Bottom
Units
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Hexane Extractables
5400
BB00
90
Naphthalene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-methytnaphthalena
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Acenaphthylene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Acenaphthene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Fluorene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Phenanthrene
1.6
0.7B
0.33
0.69
0.33
0.33
0.33
0.33
0.33
Anthracene
0.38
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Fluoranthane
2.3
0.33
0.33
0.83
0.33
0.33
0.33
0.33
0.33
Pyrene
2.3
0.53
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(a)anthracene
1
0.33
0.33
0.87
0.33
0.33
0.33
0.33
0.33
Chjysene
1.5
0.33
0.33
0.34
0.33
0.33
0.33
0.33
0.33
Benzo(b)fluoranthane
1.7
0.33
0.33
0.47
0.33
0.33
0.33
0.33
0.33
Benzo(k)fluoranthene
1.8
0.33
0.33
0.47
0.33
0.33
0.33
0.33
0.33
Banzo(a)pyrene
0.95
0.33
0.33
0.48
0.33
0.33
0.33
0.33
0.33
lndeno(1,2,3-cd)pyrane
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
~lbenzo(a,h)anthracene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzo(g,h,l)perylene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Total PHA Compounds
13.53
1.1
0.33
4.15
0.33
0.33
0.33
0.33
0.33
4-Mathy Phenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bls(2-chlorethyt)ether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Chlorophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Phenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,3-Dlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,4-Dlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
1,2-Dlchlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bla(2-Chlorolsopropy1)ether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Methylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
3/4-Methylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
N-Nltroso-dl-n-propylamine
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Haxachloroethane
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Nitrobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
laophorone
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Nltrophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-Dlmethylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Bla(2-Chloroethoxy)methane
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Benzoic Acid
<
3.3
3.3
3.3
<
3.3
3.3
3.3
3.3
3.3
3.3
1,2,4-Trichlorobenzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-Dlchlorophanol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Haxachloro-1,3-butadlene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-chloro-3-methylphenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachlorocyclopentadlene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4,8-T rlchlorophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4,5-Trtchlorophenol
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2-Chtoronaphalans
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Dlmethylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,6-Dinltrotoluene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
~ibenzofuran
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
2,4-DlnKrotoluene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Nltrophenol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
2,4-Dlnltrophanol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
Dlethytphthalats
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Chlorophenyl-phenylether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4,6-Dlnltro-2-methylphenol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
N-Nltrosodiphenylamine
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
4-Bnmophenyhphenylether
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Hexachlorabanzene
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Pentachlorophenol
<
1.7
1.7
1.7
<
1.7
1.7
1.7
1.7
1.7
1.7
Dl-n-butylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Butylbenzylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
3,3'-Dlchloro benzidine
<
2
2
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
bl3(2-Elhylhexyl)phalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
Di-n-octylphthalate
<
0.33
0.33
0.33
<
0.33
0.33
0.33
0.33
0.33
0.33
B-4
-------
Table B-l (Continued). Results HEM And Semivolatele Organic Analyses On
Manistee Lake Sediments, November 1998.
Station
M-lP
M-2P
M-3P
M-4P
M-5P
M-6P
M-7P
M-8P
Units
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Hexana Extractablas
100
1900
3200
2600
4300
26000
4000
8B00
Naphthalene
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
2- metbylnap hthale ne
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
Acenaphthylena
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
Acanaphthena
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
Fluarene
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
PhananthrariB
< 0.33
0.77
1.2
0.78
2.0
4.3
2.0
1.6*
Anthracene
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.S2
0.33
0.33
Fluorarrthene
< 0.33
0.82
0.90
0.76
1.4
3.0
1.6
1.8
Pyrene
< 0.33
0.81
1.00
0.74
1.4
2.8
1.8
1.7
Benzo(a)anlhracane
< 0.33
<
0.33
0.33
<
0.33
<
Q.33
1.3
0.83
0.53
Chrysene
< 0.33
0.41
0.33
0.39
<
0.33
1.7
1.7
1.1
Benzo(b)lluoranthene
< 0.33
0.42
0.54
0.34
<
0.33
1.8
1.4
1.2
Benzo(k)fluoramhane
< 0.33
0-4
<
0.33
<
0.33
<
0.33
1.3
1.3
0.71
Benzo(a)pyrene
< 0.33
<
0.33
0.71
<
0.33
<
0.33
0.B6
0.59
0.64
lndeno(1,2,3-cd)pyr8n9
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
Olbenzo(a,h)anthracene
< 0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
Benzo
-------
Table B-l (Continued). Results Hem And Semivolatile Organic Analyses On
Manistee Lake Sediments, November 1998.
Station
M-9P
M-9P DUP
M-10P
M-11P
M-12P
M-13P
M-14P
Units
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Hexane Extractables
3300
2900
6600
8300
12400
12400
50
Naphthalene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2-methyInaphthalene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Acenaphthylene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Acenaphthene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Ruorene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.95
0.33
Phenanthrene
1.5
1.1
3,1
1.9
1.4
3
0.33
Anthracene
<
0.33
<
0.33
0.6
0.42
0.34
0.81
0.33
Fluoranthene
1.6
1.4
2.9
2.8
1.8
5.1
0.33
Pyrens
1.6
1.4
2.7
2.5
2.4
4.8
0.33
Benzo(a)anthracene
0.63
0.33
0.92
1.0
1.1
2.2
0.33
Chrysene
1.1
0.62
1.5
1.5
1.8
2.6
0.33
Benzo(b)fluoranthene
1.1
0.93
1.7
1.3
1.1
3
0.33
Benzo(k)fluoranthene
0.82
0.71
0.95
1.2
0.57
2.7
0.33
6enzo(a)pyrene
0.45
0.44
0.64
1.4
0.94
1.6
0.33
lndeno(1,2,3-cd)pyrena
<
0.33
<
0.33
<
0.33
0.63
<
0.33
1.5
0.33
~ibenzo(a,h)anthracsns
<
0.33
<
0.33
<
0.33
0.33
<
0.33
0.66
0.33
Benzo(g,h,l)perylene
<
0.33
<
0.33
<
0.33
0.59
0.56
0.45
0.33
Total PHA Compounds
6.8
6.93
15.0
15.2
12
29.4
0.33
4-Methy Phenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Bis(2-chlorethyl)ether
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2-Chlorophenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Phenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
1,3-Olchlorobenzene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
1,4-Dichlorobenzene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
1,2-Dlchlorobenzene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Bls(2-Chlorolsopropyl)ether
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2-Uathylphenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
3/4-Methylphenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
N-Nltroao-dl-n-prapyl amine
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Hexachloroethane
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Nitrobenzene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Isophorone
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2-Nltrophenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2,4-Dimethylphenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Bfs(2-Chloroethoxy)inethane
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Benzoic Acid
<
3.3
<
3.3
<
3.3
<
3.3
<
3.3
<
3.3
3.3
12,4-Trtchlorobenzena
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2,4-Olchlorophenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Hexachloro-1,3-butadlene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
4-chloro-3-methylphenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Hexachlorocydopentadiene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2,4,6-Trlchlorophenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2,4,5-T rlchlorophenol
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2-Chloronaphalene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
~imethyiphthalate
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2,6-Dlnltrotoluene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Dlbenzofuran
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
2,4-Dlnltrotoluene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
4-Nltrophenol
<
1.7
<
1.7
<
1.7
1.7
<
1.7
1.7
1.7
2,4-Dlnttrophanol
<
1.7
<
1.7
<
1.7
1.7
<
1.7
1.7
1.7
Dlethyiphthalate
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
4-Chlorophenyl-phenylather
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
4,6-Dinltro-2-methylphenol
<
1.7
<
1.7
<
1.7
1.7
<
1.7
1.7
1.7
N-Nitrosodlphanyl amino
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
4-Bromophenyl-phenylsther
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Hexachlorobenzene
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Pentachlorophenol
<
1.7
<
1.7
<
1.7
1.7
<
1.7
1.7
1.7
Dl-n-butylphthalate
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Butylbenzylphthalate
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
3,3'-Olchlorobenzldlne
<
2.0
<
2.0
<
2.0
<
2.0
<
2.0
<
2.0
2.0
bis(2-Ethylhexyl)phalate
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
Ol-n-octylphthalate
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
<
0.33
0.33
B-6
-------
Table B-2. Surrogate Standard Recoveries For Semivolatile Organics Analyses
On Manistee Lake Sediments, November 1998.
Sample
2-Huoro
2-Huoro
a5-Nitra
d6-Phenol
o-Terphenyl
2,4,b-lriDromo
biphenyl
phenol
benzene
phenol
% Recovery
%
%
%
%
%
%
Control Limit
42-99
38-76
40-97
43-84
45-90
45-89
M-1 Top
77
79
61
72
66
59
M-1 -Mid
97
89
72
84
71
72
M-1 Bot
B9
92
77
80
70
67
M-2 Top
84
82
72
76
68
63
M-2 Mid
83
82
B0
79
66
63
M-2 Bot
86
81
73
79
70
63
M-3 Top
83
81
66
76
67
62
M-3 Mid
72
70
64
68
61
48
M-3 Bot
89
79
73
78
69
63
M-4Top
82
77
77
75
66
57
M-4 Mid
89
83
79
7B
73
60
M-4 Bot
81
67
67
63
87
46
M-5Top
90
74
61
72
65
58
M-5 Mid
63
52
49
53
52
53
M-5 Bot
56
46
36
46
45
45
M-6 Top
56
44
34*
45
47
47
M-6 Mid
75
71
68
67
65
54
M-6 Bot
77
73
59
73
70
58
M-7 Top
83
66
73
65
71
56
M-7 Mid
91
71
54
68
64
73
M -7 Bot
84
69
63
70
68
70
M-8 Top
80
69
60
71
67
55
M-8 Mid
53
41
57
43
46
34
M-8 Bot
70
58
£3
56
57
55
M-9 Top
65
46
52
52
52
52
M-9 Mid
63
51
56
52
51
47
M-9 Bot
84
45
65
51
41
65
M-9 Top Dup
82
56
65
65
68
61
M-9 Mid Dup
85
60
65
65
68
65
M-9 Bot Dup
86
70
70
66
61
62
M-10 Top
81
61
78
69
65
70
M-10 Mid
94
70
77
72
72
73
M-10 Bot
91
72
75
78
61
73
M-11 Top
81
73
70
73
58
67
M-11 Mid
87
80
76
73
64
68
M-11 Bot
91
69
72
76
63
71
M-12 Top
87
73
79
76
58
68
M-12 Mid
BS
77
66
74
65
65
M-12 Bot
78
75
79
70
52
70
M-13 Top
86
69
61
77
54
5B
M-13 Mid
72
63
65
65
61
57
M-13 Bot
69
64
85
62
48
60
M-14 Top
76
69
62
80
66
56
M-14 Mid
63
sa
77
63
49
66
M-14 Bot
82
77
83
75
57
73
M-1 P
89
79
67
78
60
67
M-2 P
81
67
74
63
46
65
M-3 P
90
61
52
72
58
52
M-4 P
83
49
46
53
53
45
M-5 P
56
36
44
46
45
47
M-6 P
56
44
32*
45
47
65
M-7 P
75
68
69
67
54
67
M-8 P
80
60
41
71
55
46
M-9 P
53
42
57
43
59
57
M-9 P Dup
70
58
53
56
56
55
M-1 OP
65
46
52
52
52
52
M-11 P
63
51
58
52
51
47
M-12 P
64
45
65
51
41
65
M-13 P
82
56
7B
65
34*
68
M-14 P
85
60
67
65
68
61
B-7
-------
Table B-3. Results Of Matrix Spike/Matrix Spike Duplicate Analyses For
Semivolatile Organics Analyses On Manistee Lake Sediments, November 1998.
M-7 MID Matrix Spike
Parameter Initial Sample Spiked Final Sample Spike Control
Concentration
Quantity
Concentration Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Phenol
<0.33
6.67
4.51
68
58-126
2-Chlorophenol
<0.33
6.67
6.11
92
51-126
1,4-Dichlorobenzene
<0.33
3.33
2.80
84
43-122
N-Nitrosodi-n-Propylamine
<0.33
3.33
2.72
82
48-120
1,2,4-T richlorobenzene
<0.33
3.33
2.86
86
57-116
Naphthalene
<0.33
3.33
2.96
89
55-129
4-Chloro-3-Methylphenol
<0.33
6.67
5.90
88
61-125
Acenaphthene
<0.33
3.33
2.86
86
47-112
4-Nitrophenol
<1.70
6.67
3.99
60
34-128
2,4-Dinitrotoluene
<0.33
3.33
2.84
85
52-128
Pentachlorophenol
<1.70
6.67
5.38
81
20-143
Pyrene
<0.33
3.33
2.33
70
42-129
M-7 MID Matrix Spike Duplicate
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Phenol
<0.33
6.67
4.91
74
58-126
2-Chlorophenol
<0.33
6.67
5.29
79
51-126
1,4-Dichlorobenzene
<0.33
3.33
2.25
68
43-122
N-Nitrosodi-n-Propylamine
<0.33
3.33
2.34
70
48-120
1,2,4-T richlorobenzene
<0.33
3.33
2.59
78
57-116
Naphthalene
<0.33
3.33
2.64
79
55-129
4-Chloro-3-Methylphenol
<0.33
6.67
5.39
81
61-125
Acenaphthene
<0.33
3.33
2.41
72
47-112
4-Nitrophenol
<1.70
6.67
3.20
48
34-128
2,4-Dinitrotoluene
<0.33
3.33
2.51
75
52-128
Pentachlorophenol
<1.70
6.67
4.47
67
20-143
Pyrene
<0.33
3.33
2.04
61
42-129
M-7 MID MS/MSD Relative Percent Difference
Parameter
MS
MSD
ppn
Control
Result
Result
nru
Limit
mg/kg
mg/kg
%
%
Phenol
4.51
4.91
8
0-19
2-Chlorophenol
6.11
5.29
14
0-20
1,4-Dichlorobenzene
2.80
2.25
22
0-27
N-Nitrosodi-n-Propylamine
2.72
2.34
15
0-23
1,2,4-T richlorobenzene
2.86
2.59
10
0-24
Naphthalene
2.96
2.64
11 '
0-20
4-Chloro-3-Methylphenol
5.90
5.39
9
0-18
Acenaphthene
2.86
2.41
17
0-22
4-Nitrophenol
3.99
3.20
22
0-24
2,4-Dinitrotoluene
2.84
2.51
12
0-22
Pentachlorophenol
5.38
4.47
18
0-36
Pyrene
2.33
2.04
13
0-20
B-8
-------
Table B-3 (Continued). Results Of Matrix Spike/Matrix Spike Duplicate Analyses
For Semivolatile Organics Analyses On Manistee Lake Sediments, November
1998.
M-13 TOP Matrix Spike
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Phenol
<0.33
6.67
4.51
68
58-126
2-Chlorophenol
<0.33
6.67
5.88
88
51-126
1,4-Dichlorobenzene
<0.33
3.33
2.60
78
43-122
N-Nitrosodi-n-Propylamine
<0.33
3.33
2.35
71
48-120
1,2,4-T richlorobenzene
<0.33
3.33
2.52
76
57-116
Naphthalene
<0.33
3.33
2.69
81
55-129
4-Chloro-3-Methylphenol
<0.33
6.67
5.63
84
61-125
Acenaphthene
<0.33
3.33
2.34
70
47-112
4-Nitrophenol
<1.70
6.67
3.55
53
34-128
2,4-Dinitrotoluene
<0.33
3.33
2.63
79
52-128
Pentachlorophenol
<1.70
6.67
5.08
76
20-143
Pyrene
<0.33
3.33
2.78
83
42-129
M-13 TOP Matrix Spike Duplicate
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Phenol
<0.33
6.67
4.22
63
58-126
2-Chlorophenol
<0.33
6.67
5.15
77
51-126
1,4-Dichlorobenzene
<0.33
3.33
2.56
77
43-122
N-Nitrosodi-n-Propylamine
<0.33
3.33
2.23
67
48-120
1,2,4-Trichlorobenzene
<0.33
3.33
2.40
72
57-116
Naphthalene
<0.33
3.33
2.43
73
55-129
4-Chloro-3-Methylphenol
<0.33
6.67
4.84
73
61-125
Acenaphthene
<0.33
3.33
2.72
82
47-112
4-Nitrophenol
<1.70
6.67
2.98
45
34-128
2,4-Dinitrotoluene
<0.33
3.33
2.41
72
52-128
Pentachlorophenol
<1.70
6.67
4.30
64
20-143
Pyrene
<0.33
3.33
3.16
95
42-129
M-13 TOP MS/MSD Relative Percent Difference
Parameter
MS
MSD
Rpn
Control
Result
Result
nru
Limit
mg/kg
mg/kg
%
%
Phenol
4.51
4.22
7
0-19
2-Chlorophenol
5.88
5.15
13
0-20
1,4-Dichlorobenzene
2.60
2.56
2
0-27
N-Nitrosodi-n-Propylamine
2.35
2.23
5
0-23
1,2,4-T richlorobenzene
2.52
2.40
5
0-24
Naphthalene
2.69
2.43
10
0-20
4-Chloro-3-Methylphenol
5.63
4.84
15
0-18
Acenaphthene
2.34
2.72
15
0-22
4-Nitrophenol
3.55
2.98
17
0-24
2,4-Dinitrotoluene
2.63
2.41
9
0-22
Pentachlorophenol
5.08
4.30
17
0-36
Pyrene
2.78
3.16
13
0-20
B-9
-------
Table B-3 (Continued). Results Of Matrix Spike/Matrix Spike Duplicate Analyses
For Semivolatile Organics Analyses On Manistee Lake Sediments, November
1998.
M-14 Bottom Matrix Spike
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Phenol
<0.33
6.67
4.96
74
58-126
2-Chlorophenol
<0.33
6.67
6.47
97
51-126
1,4-Dichlorobenzene
<0.33
3.33
2.86
86
43-122
N-Nitrosodi-n-Propylamine
<0.33
3.33
2.59
78
48-120
1,2,4-T richlorobenzene
<0.33
3.33
2.77
83
57-116
Naphthalene
<0.33
3.33
2.96
89
55-129
4-Chloro-3-Methylphenol
<0.33
6.67
5.19
78
61-125
Acenaphthene
<0.33
3.33
2.57
77
47-112
4-Nitrophenoi
<1.70
6.67
3.91
59
34-128
2,4-Dinitrotoluene
<0.33
3.33
2.89
87
52-128
Pentachlorophenol
<1.70
6.67
5.59
84
20-143
Pyrene
<0.33
3.33
3.06
92
42-129
M-14 Bottom Matrix Spike Duplicate
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Phenol
<0.33
6.67
4.51
68
58-126
2-Chlorophenol
<0.33
6.67
5.78
87
51-126
1,4-Dichlorobenzene
<0.33
3.33
2.54
76
43-122
N-Nitrosodi-n-Propylamine
<0.33
3.33
2.69
81
48-120
1,2,4-T richlorobenzene
<0.33
3.33
2.86
86
57-116
Naphthalene
<0.33
3.33
2.52
76
55-129
4-Chloro-3-Methylphenol
<0.33
6.67
4.65
70
61-125
Acenaphthene
<0.33
3.33
3.18
96
47-112
4-Nitrophenol
<1.70
6.67
3.23
48
34-128
2,4-Dinitrotoluene
<0.33
3.33
2.42
73
52-128
Pentachlorophenol
<1.70
6.67
5.03
75
20-143
Pyrene
<0.33
3.33
3.70
111
42-129
M-14 Bottom MS/MSD Relative Percent Difference
Parameter
MS
MSD
RPD
Control
Result
Result
Limit
mg/kg
mg/kg
%
%
Phenol
4.96
4.51
10
0-19
2-Chlorophenol
6.47
5.78
11
0-20
1,4-Dichlorobenzene
2.86
2.54
12
0-27
N-Nitrosodi-n-Propylamine
2.59
2.69
4
0-23
1,2,4-T richlorobenzene
2.77
2.86
3
0-24
Naphthalene
2.96
2.52
16
0-20
4-Chloro-3-Methylphenol
5.19
4.65
11
0-18
Acenaphthene
2.57
3.18
21
0-22
4-Nitrophenol
3.91
3.23
19
0-24
2,4-Dinitrotoluene
2.89
2.42
18
0-22
Pentachlorophenol
5.59
5.03
10
0-36
Pyrene
3.06
3.70
19
0-20
B-10
-------
Table B-4 Results Of Resin Acid Analyses For Manistee Lake Sediments,
November 1998.
Sample ID
Abietic
Acid
Dehydroa
bletlc
Pi merle
Acid
Isopimeric
Acid
Neoabletlc
Acid
Total
Resin
Acid
Acids
mg/kg
mg/kg
ma/ka
ma/ka
ma/ka
ma/ka
M-1 Top
1.1
0.8
0.9
0.5
0.1
3
M-1-Mid
0.4
0.8
0.3
0.3
0.2
2
M-1 Bot
0.3
0.7
0.1
0.2
0.1
1
M-2 Top
2.1
3.6
1.0
0.8
1.0
8
M-2 Mid
2.4
4.0
2.3
1.2
1.0
11
M-2 Bat
0.9
1.8
0.5
0.7
0.3
4
M-3 Top
2.4
4.3
1.1
2.1
0.4
10
M-3 Mid
1.3
2.9
0.7
0.6
0.5
6
M-3 Bot
0.6
1.1
0.3
0.2
0.1
2
M-4Top
2.6
4.0
2.6
1.8
0.7
12
M-4 Mid
1.4
2.8
1.0
1.2
0.9
7
M-4 Bot
0.5
0.7
0.4
0.2
0.2
2
M-5 Top
2.8
4.6
1.8
0.4
1.2
11
M-5 Mid
2.9
7.8
2.2
3.6
1.9
18
M-5 Bot
0.7
1.1
0.7
0.3
0.6
3
M-6 Top
2.6
6.1
1.3
2.4
0.7
13
M-6 Mid
1.5
2.6
1.4
0.7
1.2
7
M-6 Bot
0.5
0.8
0.2
0.2
0.0
2
M-7Top
2.6
2.8
0.8
2.3
0.7
9
M-7 Mid
1.9
2.7
0.3
0.7
0.2
6
M -7 Bot
0.9
1.5
0.2
0.3
0.2
3
M-8Top
1.8
3.9
1.5
0.2
1.2
9
M-6 Mid
1.3
1.5
0.5
0.8
0.3
4
M-8 Bot
0.8
1.4
0.3
0.5
0.2
3
M-fl Top
1.8
Z1
0.7
0.2
0.4
5
M-9 Mid
0.8
1.6
0.3
0.3
0.1
3
M-9 Bot
0.3
0.4
0.1
0.2
0.1
1
M-9 Top Dup
0.6
1.3
0.2
0.3
0.2
3
M-9 Mid Dup
1.5
2.7
0.5
0.6
0.3
6
M-9 Bot Dup
0.5
0.7
0.2
0.2
0.1
2
M-10 Top
1.0
2.4
0.4
1.0
0.3
6
M-10 Mid
0.8
1.0
0.6
0.3
0.3
3
M-10 Bot
0.5
1.1
0.4
OS
0.1
3
M-11 Top
2.1
3.4
0.7
1.2
0.4
8
M-11 Mid
1.1
1.9
0.3
1.0
0.0
4
M-11 Bot
0.3
0.4
0.2
0.3
0.1
1
M-12 Top
1.7
2.1
1.5
1.6
0.6
7
M-12 Mid
0.9
1.6
0.1
0.6
0.1
3
M-12 Bot
0.5
0.7
0.3
0.3
0.1
2
M-13 Top
2.0
2.1
0.2
0.8
0.2
5
M-13MW
O.S
1.1
0.8
0.5
0.7
4
M-13 Bot
0.6
0.9
0.1
0.4
0.1
2
M-14 Top
1.1
1.5
1.1
0.9
0.9
5
M-14 Mid
0.9
1.7
0.5
0.2
0.2
4
M-14 Bot
0.2
0.4
0.1
0.1
0.1
1
M-1 P
0.8
1.5
0.5
0.5
0.3
4
M-2 P
1.6
3.3
2.2
1.4
1.2
10
M-3 P
2.4
3.8
1.9
0.8
0.4
9
M-4 P
2.1
3.1
0.2
1.9
0.2
8
M-6 P
2.9
3.8
0.5
2.5
0.4
10
M-6 P
2.0
4.8
1.4
1.7
1.5
11
M-7 P
2.2
2.8
0.6
0.8
0.3
7
M-8 P
1.5
2.0
1.4
1.4
0.8
7
M-9 P
1.1
2.6
0.8
0.6
0.5
6
M-9 P Dup
1.3
3.2
0.9
0.2
0.6
6
M-10 P
1.8
3.3
0.5
1.2
0.2
7
M-11 P
1.5
3.1
0.3
0.9
0.2
6
M-12 P
2.2
2.2
0.4
1.3
0.3
6
M-13P
3.1
4.3
0.6
2.5
0.3
11
M-14 P
0.7
1.6
0.3
0.3
0.3
3
B-U
-------
Table B-5. Results Surrogate Standard Recoveries For Resin Acid Analyses For
Manistee Lake Sediments, November 1998
Sample
Tetrachiorosteric
Sample
T etrachlorosteric
acid
Steric Acid*
acid
Steric Acid'
% Recovery
%
%
% Recovery
%
%
Control Limit
40-90
40-90
Control Limit
40-90
40-90
M-1 Top
79
146
M-10 Top
61
142
M-1-Mid
89
169
M-10 Mid
70
160
M-1 Bot
92
164
M-10 Bot
72
166
M-2 Top
82
146
M-11 Top
73
148
M-2 Mid
82
157
M-11 Mid
80
148
M-2 Bot
81
164
M-11 Bot
69
146
M-3 Top
81
157
M-12 Top
73
146
M-3 Mid
70
153
M-12 Mid
77
126
M-3 Bot
79
140
M-12 Bot
75
142
M-4 Top
77
155
M-13 Top
69
139
M-4 Mid
83
130
M-13 Mid
63
149
M-4 Bot
67
124
M-13 Bot
64
121
M-5 Top
74
137
M-14 Top
69
133
M-5 Mid
52
113
M-14 Mid
58
94
M-5 Bot
46
148
M-14 Bot
77
83
M-6Top
44
160
M-1 P
79
79
M-6 Mid
71
146
M-2 P
67
128
M-6 Bot
73
162
M-3 P
61
131
M-7 Top
66
113
M-4 P
49
119
M-7 Mid
71
101
M-5 P
36
128
M -7 Bot
69
101
M-6 P
44
124
M-8 Top
69
135
M-7 P
68
124
M-8 Mid
41
144
M-8 P
60
74
M-8 Bot
58
95
M-9 P
42
104
M-9 Top
46
126
M-9 P Dup
58
83
M-9 Mid
51
117
M-10 P
46
92
M-9 Bot
45
113
M-11 P
51
81
M-9 Top Dup
56
115
M-12 P
45
101
M-9 Mid Dup
60
148
M-13 P
56
108
M-9 Bot Dup
70
153
M-14P
60
126
* Stearic acid detected in project samples. Surrogate data not used.
B-12
-------
Table B-6. Matrix Spike/Matrix Spike Duplicate Results For Resin Acid Analyses
For Manistee Lake Sediments, November 1998
M-7 MID Matrix Spike
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Abietic Acid
1.9
5.00
6.51
94
40-90
Dehydroabietic Acid
2.7
5.00
7.11
93
40-90
Pimeric Acid
0.3
5.00
4.80
90
40-90
Isopimeric Acid
0.7
5.00
4.72
83
40-90
Neoabietic Acid
0.2
5.00
3.86
74
40-90
M-7 MID Matrix Spike Duplicate
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Abietic Acid
1.9
5.00
6.91
100
40-90
Dehydroabietic Acid
2.7
5.00
6.49
85
40-90
Pimeric Acid
0.3
5.00
4.45
84
40-90
Isopimeric Acid
0.7
5.00
4.64
82
40-90
Neoabietic Acid
0.2
5.00
3.59
69
40-90
M-7 MID MS/MSD Relative Percent Difference
Parameter
MS
MSD
Rpn
ControS
Result
Result
nru
Limit
mg/kg
mg/kg
%
%
Abietic Acid
6.51
6.91
6
0-20
Dehydroabietic Acid
7.11
6.49
9
0-20
Pimeric Acid
4.80
4.45
8
0-20
Isopimeric Acid
4.72
4.64
2
0-20
Neoabietic Acid
3.86
3.59
7
0-20
B-13
-------
Table B-6 (Continued). Matrix Spike/Matrix Spike Duplicate Results For Resin
Acid Analyses For Manistee Lake Sediments, November 1998.
M-13 TOP Matrix Spike
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Abietic Acid
2.0
5.00
5.91
84
40-90
Dehydroabietic Acid
2.1
5.00
6.04
85
40-90
Pimeric Acid
0.2
5.00
3.76
72
40-90
Isopimeric Acid
0.8
5.00
3.54
61
40-90
Neoabietic Acid
0.2
5.00
3.42
66
40-90
M-13 TOP Matrix Spike Duplicate
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration
Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Abietic Acid
2.0
5.00
6.88
98
40-90
Dehydroabietic Acid
2.1
5.00
6.18
87
40-90
Pimeric Acid
0.2
5.00
3.64
70
40-90
Isopimeric Acid
0.8
5.00
3.38
58
40-90
Neoabietic Acid
0.2
5.00
3.19
62
40-90
M-13 TOP MS/MSD Relative Percent Difference
Parameter
MS
MSD
RPD
Control
¦
Result
Result
III w
Limit
mg/kg
mg/kg
%
%
Abietic Acid
5.91
6.88
15
0-20
Dehydroabietic Acid
6.04
6.18
2
0-20
Pimeric Acid
3.76
3.64
3
0-20
Isopimeric Acid
3.54
3.38
5
0-20
Neoabietic Acid
3.42
3.19
7
0-20
B-14
-------
Table B-6 (Continued). Matrix Spike/Matrix Spike Duplicate Results For Resin
Acid Analyses For Manistee Lake Sediments, November 1998.
M-14 Bottom Matrix Spike
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity Concentration Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Abietic Acid
0.7
5.00
5.53
97
40-90
Dehydroabietic Acid
1.6
5.00
6.11
93
40-90
Pimeric Acid
0.3
5.00
3.92
74
40-90
Isopimeric Acid
0.3
5.00
3.51
66
40-90
Neoabietic Acid
0.3
5.00
2.99
56
40-90
M-14 Bottom Matrix Spike Duplicate
Parameter
Initial Sample
Spiked
Final Sample
Spike
Control
Concentration
Quantity
Concentration Recovery
Limit
mg/kg
mg/kg
mg/kg
%
%
Abietic Acid
0.7
5.00
5.19
91
40-90
Dehydroabietic Acid
1.6
5.00
5.88
89
40-90
Pimeric Acid
0.3
5.00
3.35
63
40-90
Isopimeric Acid
0.3
5.00
3.05
58
40-90
Neoabietic Acid
0.3
5.00
2.59
49
40-90
M-14 Bottom MS/MSD Relative Percent Difference
Parameter
MS
MSD
RPD
Control
Result
Result
Limit
mg/kg
mg/kg
%
%
Abietic Acid
5.53
5.19
6
0-20
Dehydroabietic Acid
6.11
5.88
4
0-20
Pimeric Acid
3.92
3.35
16
0-20
Isopimeric Acid
3.51
3.05
14
0-20
Neoabietic Acid
2.99
2.59
14
0-20
B-15
-------
Table B-7. Results Of Resin Acid Analyses For Manistee Lake Fish, April 2000.
Species
Size
Weight
Abietic
Dehydroabietic
Pimeric
Isopimeric
Neoabietic
(ram)
(g)
Acid
Acid
Acid
Acid
Acid
(ug/g)
(ug/g)
(ug/g)
(ug/g)
(ug/g)
Walleye 1
533
1307
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye 2
574
2009
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye 3
610
2541
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye 4
635
2853
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye 5
655
3834
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye 6
698
4935
<0.5
<0.5
<0.5
<0.5
<0.5
Walleye 7
719
6463
<0.5
<0.5
<0.5
<0.5
<0.5
Carp 1
243
477
<0.5
<0.5
<0.5
<0.5
<0.5
Carp 2
304
932
<0.5
<0.5
<0.5
<0.5
<0.5
Carp 3
364
1605
<0.5
<0.5
<0.5
<0.5
<0.5
Carp 4
405
2205
<0.5
<0.5
<0.5
<0.5
<0.5
Carp 5
445
2909
<0.5
<0.5
<0.5
<0.5
<0.5
Table B-8. Results Of Resin Acid Surrogate Standard Analyses For Manistee
Lake Fish, April 2000.
Sample
Tetrachlorostearic
acid
Stearic Acid'
% Recovery
%
%
Control Limit
40-90
40-90
Walleye 1
77
233
Walleye 2
83
271
Walleye 3
67
262
Walleye 4
74'
233
Walleye 5
52
251
Walleye 6
69
262
Walleye 7
71
251
Carp 1
82
245
Carp 2
73
225
Carp 3
71
248
Carp 4
83
207
Carp 5
67
199
* Stearic acid detected in project samples. Surrogate data not used.
B-16
-------
Table B-9 Results Of Target Compound Analyses In Groundwater Samples
Collected Near Manistee Lake, November 1998.
Wen
86-2
KMW-80
KMW-flO Dug
Units
mq/\
mgfl
m^l
Naphthalene
1.0
OA
0-3
2-malhylnaphthatena
1.0
0.3
0.3
Acanaptttylene
1.0
0.3
0.3
AcenaphUiena
1.0
0.3
OA
Ruorene
1.0
0.3
OA
Phenanttvene
1.0
0.3
0.3
Anthracene
1.0
0.3
0.3
Fluoranthene
1.0
0.3
0.3
Pyrene
1.0
0.3
0.3
Banzo(a)anthracene
1.0
0.3
0.3
Chrysene
1.0
0.3
0.3
Benzo(b)liuoranthene
1.0
0.3
0J3
Benzo(k)fluoraMhene
1.0
0.3
OA
Banzo(a}pyrena
1.0
0.3
OA
lntfeno(1,2,3-cether
1.0
0.3
0.3
2-Mettiylphenol
72
0.3
0.3
3/4-Methylphenol
1.0
OA
OA
N-Nttraao-di'ivpfapyittntrte
1.0
04
OA
Hexachtoroethane
1.0
0-3
OA
Nitrobenzene
1.0
0.3
0.3
laophorone
1.0
OA
0.3
2-Nltrophenol
1.0
OA
0.3
2,4*0(methy4phenol
1.0
OA
0.3
Bla(2-Chioroettoxy)mathana
1.0
OA
0.3
Banzolc Add
140.0
0.5
0.4
1,2,4-Trtchtorotoert2ene
1.0
OA
0.3
2,4«Olchlorophanai
1.0
OA
0.3
Haxachtoro-1 ^txitadterw
t.o
OA
0.3
4-c«oro-3«roelhy1phend
1.0
OA
-0.3
Hexachtorocyctopentadlene
1.0
OA
OA
2.4,6-TrieWDroptnnol
1.0
02
0.3
2,4,5-Trfchbrophenoi
1.0
OA
0.3
2-ChloronaphaJene
1.0
OA
OA
Dlmethytphthatae
1.0
OA
03
2,6-OtnttrQtolueM
1.0
OA
OA
2,4-DMtrotohjene
1.0
OA
0.3
4-Nttrophanol
5.2
1A
1.3
2,4-DHtrophenol
5-2
1A
1.3
OMhylphthalala
1.0
OA
0.3
4-CNorophanyl-phenyMher
1.0
0.3
OA
4,6-Oinftn>-2*mBthylphenol
5.2
1.3
U
N-Ntococflphanylaminf
1.0
0.3
OA
4«8romophtnyH»henyWher
1.0
OA
OA
Haxachioroberaene
1.0
OA
0.3
PentacHorophenot
5.2
iA
1.3
Dl-n-tiutytphthalata
1.0
OA
0.3
ButytoenrytWwtoJe
1.0
OA
0.3
3J"-Othkirobanzk»ne
6.1
1.6
1.B
Wa<2-Ethyt>exy<)phaiata
1.0
OA
0.3
B-17
-------
Table B-9 (continued) Results Of Target Compound Analyses In Groundwater
Samples Collected Near Manistee Lake, November 1998.
Well
86-2
86-2 Dup
KMW-8D
Parameter
mg/l
mg/l
mg/l
Abietic Acid
0.85
0.7
0.64
Dehydroabietic Acid
1.6
1.7
0.97
Chlorodehydroabietic Acid
<0.5
<0.5
<0.05
Dichlorodehydroabietic Acid
<0.5
<0.5
<0.05
Pimeric Acid
0.43
0.55
0.15
Isopimeric Acid
0.21
0.13
0.08
Neoabietic Acid
0.14
0.21
0.09
Resin Acid
Surrogates
Tetrachlorostearic acid
53
58
51
Steric acid
70
46
45
Semivolatile surrogates could not be quantitated because of dilution
B-18
-------
Appendix C. Results Of Metals Analyses For Manistee Lake
Sediments, November 1998.
-------
Table C-l. Results Of Metals Analyses In Manistee Lake Sediment,
November 1998.
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Sample ID
Barium
Selenium
Mercury
Arsenic
Cadmium
Chromium
Copper
Lead
Nickel
Zinc
mg/kg
mg/kg
ug/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
M-1 Top
51
0.52
48
2.3
0.78
25
20
23
8.4
76
M-1-Mid
62
0.50
27
0.24
0.47
20
27
16
9.8
53
M-1 Bot
72
1.10
<25
0.33
0.54
30
12
4.8
9.5
53
M-2 Top
120
0.33
45
9.2
1.7
44
53
78
20
200
M-2 Mid
150
0.30
22
11
3.8
110
120
160
21
300
M-2 Bot
94
0.62
<25
6.6
0.74
78
18
15
14
64
M-3 Top
100
0.46
<25
8.4
0.85
37
29
24
16
92
M-3 Mid
120
0.73
<25
8.4
0.47
39
16
8.5
17
59
M-3 Bot
120
0.76
<25
7.0
0.49
41
18
7
1B
60
M-4 Top
110
0.79
<25
6.7
0.41
40
17
7.3
19
60
M-4 Mid
110
0.71
<25
6.5
0.43
36
16
7.6
18
58
M-4 Bot
130
0.71
<25
6.3
0.47
35
16
8 1
20
210
M-5 Top
110
0.36
<25
2.2
2.5
72
75
88
22
60
M-5 Mid
100
0.70
123
7.3
0.5
34
16
10
18
57
M-5 Bot
120
0.91
<25
6.9
0.52
36
16
8.2
19
110
M-6 Top
93
0.44
27
8.1
1.8
56
30
26
23
57
M-6 Mid
110
0.72
<25
6.2
0.45
36
15
8.4
20
66
M-6 Bot
120
0.74
<25
6.9
0.5
34
17
7.8
21
56
M-7Top
110
0.22
48
9.6
2.3
100
60
64
24
170
M-7 Mid
95
0.60
<25
5.4
0.63
33
17
12
22
67
M -7 Bot
120
0.68
<25
7.6
0.42
37
16
8.5
24
60
M-8 Top
110
0.36
95
17
2.6
130
100
91
26
230
M-8 Mid
110
0.52
<25
8.9
0.61
50
21
16
21
79
M-8 Bot
120
0.60
<25
7.8
0.35
39
16
6.2
19
61
M-9 Top
110
0.43
62
3.0
3.4
140
100
83
29
230
M-9 Mid
110
0.46
<25
7.7
0.37
39
19
12
21
71
M-9 Bot
130
0.51
<25
6.2
0.3
36
15
8
20
56
M-9 Top Dup
110
0.46
66
12
3.4
82
94
85
26
240
M-9 Mid Oup
110
0.46
26
5.4
0.3
31
15
10
18
54
M-9 Bot Dup
120
0.50
<25
6.5
0.41
36
16
8.7
20
59
M-10 Top
120
0.44
55
15
2.5
85
120
87
34
330
M-10 Mid
100
0.3
<25
6.4
0.36
36
21
20
24
30
M-10 Bot
120
0.38
<25
7.6
0.36
39
17
9.8
23
64
M-11 Top
110
0.39
150
14
1.3
48
150
67
33
190
M-11 Mid
110
0.35
<25
6.3
0.31
33
21
15
22
66
M-11 Bot
110
0.42
<25
4.0
0.44
29
16
9.5
22
63
M-12 Top
110
0.33
53
9.4
1.1
40
98
81
30
200
M-12 Mid
320
<0.20
152
17
1.4
44
140
85
29
240
M-12 Bot
67
<0.20
27
3.7
0.22
20
16
15
14
56
M-13 Top
88
0.29
48
11
0.82
35
180
58
35
150
M-13 Mid
94
0.21
188
9.4
0.57
34
84
30
24
120
M-13 Bot
96
0.25
<25
5.2
0.23
26
18
13
23
58
M-14 Top
46
0.23
<25
2.1
0.14
8.6
7.1
6.1
7.0
20
M-14 Mid
25
<0.20
<25
1.6
0.16
6.8
5.7
5.8
8.0
15
M-14 Bot
63
0.22
27
3.5
0.34
20
16
20
16
51
M-1 P
8
<0.20
29
0.63
<0.05
<2.0
<2.0
1.5
<4.0
<4.0
M-2 P
110
0.65
39
9.1
1.7
38
45
54
18
160
M-3 P
110
0.62
33
10
2.6
38
49
54
19
160
M-4 P
120
0.58
39
9.9
1.4
36
42
43
17
130
M-5 P
110
0.51
230
9.1
3.1
3B
72
85
16
190
M-6 P
84
0.52
44
13
3.1
68
71
71
19
160
M-7 P
83
1.20
<25
9.4
3.2
87
42
38
16
150
M-8 P
110
0.50
50
12
2.6
43
64
63
24
170
M-9 P
120
0.49
36
10
1.6
46
81
69
25
180
M-9 P Dup
130
0.52
43
11
1.5
47
82
72
24
180
M-10 P
120
0.58
58
15
1.1
40
100
66
28
200
M-11 P
110
0.49
89
12
1.3
35
140
77
30
190
M-12P
110
1.50
86
7.8
0.99
31
78
69
24
170
M-13P
120
0.72
52
7.9
0.82
34
95
56
34
150
M-14 P
38
<0.20
<25
2.7
0.18
12
9.6
8.9
9.6
25
c-i
-------
Table C-2. Results Of Quality Control Analyses For Metals In Manistee
Lake Sediment, November 1998. (NA= Not Analyzed. Units Are Mg/Kg
Except Where Noted)
Sample ID
As
Ba
Cd
Cr
Cu
Pb
Ni
Se
Zn
Spiked amount
1.0
40
0.1
40
40
40
40
1.0
40
Method Blank
<0.20
<2.0
<0.050
<2.0
<2.0
<1.0
<4.0
<0.20
<4.0
LCS GFAA
98%
NA
112%
NA
NA
101%
NA
101%
NA
LCS ICP
NA
108%
110%
106%
100%
108%
108%
NA
108%
M-1 Top
2.3
51
0.78
25
20
23
8.4
0.52
76
M-1 Top MS
117%
75%
64%
103%
101%
111%
109%
110%
103%
M-1 Top MSD
136%
89%
68%
97%
94%
100%
103%
- 120%
95%
% RSD
15%
17%
6%
6%
7%
10%
6%
9%
8%
Method Blank
<0.20
<2.0
<0.050
<2.0
<2.0
<1.0
<4.0
<0.20
<4.0
LCS GFAA
104%
NA
110%
NA
NA
107%
NA
104%
NA
LCS ICP
NA
110%
112%
107%
99%
111%
110%
NA
108%
M-4 Mid
6.5
110
0.43
36
16
7.6
18
0.71
58
M-4 Mid MS
NA
89%
NA
102%
99%
NA
103%
NA
100%
M-4 Mid MSD
NA
99%
NA
99%
96%
NA
101%
NA
103%
% RSD
NA
11%
NA
3%
3%
NA
2%
NA
3%
Method Blank
<0.20
<2.0
<0.050
<2.0
<2.0
<1.0
<4.0
<0.20
<4.0
LCS GFAA
107%
NA
112%
NA
NA
108%
NA
108%
NA
LCS ICP
NA
110%
114%
108%
100%
112%
110%
NA
108%
M-7 Bot
7.6
120
0.42
37
16
8.5
24
0.68
60
M-7 Bot MS
89%
93%
156%
97%
95%
103%
99%
88%
101%
M-7 Bot MSD
101%
82%
125%
95%
93%
128%
97%
79%
102%
% RSD
13%
13%
22%
2%
2%
22%
2%
11%
1%
Method Blank
<0.20
<2.0
<0.050
<2.0
<2.0
<1.0
<4.0
<0.20
<4.0
LCS GFAA
110%
NA
112%
NA
NA
113%
NA
110%
NA
LCS ICP
NA
100%
111%
107%
100%
112%
110%
NA
108%
M-10 Top
15
120
2.5
85
120
87
34
0.44
330
M-10-Top MS
100%
96%
101%
80%
89%
96%
97%
89%
89%
M-10-Top MSD
89%
79%
99%
79%
87%
94%
96%
104%
89%
% RSD
12%
19%
2%
1%
2%
2%
1%
16%
0%
Method Blank
<0.20
<2.0
<0.050
<2.0
<2.0
<1.0
<4.0
<0.20
<4.0
LCS GFAA
96%
NA
113%
NA
NA
116%
NA
99%
NA
LCS ICP
NA
108%
116%
113%
105%
116%
116%
NA
114%
M-13 Mid
9.4
94
0.57
34
84
30
24
0.21
120
M-13 Mid MS
98%
94%
99%
94%
98%
101%
99%
99%
106%
M-13 Mid MSD
137%
87%
104%
95%
100%
102%
98%
127%
107%
% RSD
33%
8%
5%
1%
2%
1%
1%
25%
1%
Method Blank
<0.20
<2.0
<0.050
<2.0
<2.0
<1.0
<4.0
<0.20
<4.0
LCS GFAA
106%
NA
113%
NA
NA
118%
NA
106%
NA
LCS ICP
NA
114%
116%
114%
106%
114%
116%
NA
113%
M-6P
13
84
3.1
68
71
71
19
0.52
160
M-6 P MS
67%
95%
101%
89%
95%
95%
98%
72%
99%
M-6 P MSD
89%
92%
100%
94%
94%
94%
96%
86%
99%
% RSD
28%
3%
1%
5%
1%
1%
2%
18%
0%
C-2
-------
Table C-3. Results Of Quality Control Analyses For Mercury In Manistee
Lake Sediment, November 1998. (NA= Not Analyzed. Units Are Ug/Kg
Except Where Noted. Spiked Amount = 0.11 Ug/Kg).
Sample
Hg
Sample
Hg
M-4 Top
<25
M-13 Top
46
M-4 Top MS
101%
M-13 Top MS
105%
M-4 Top MSD
104%
M-13 Top MSD
104%
% RSD
3%
% RSD
1%
M-7 Mid
<25
M-5P
230
M-7 Top MS
108%
M-5 P MS
110%
M-7 Top MSD
107%
M-5 P MSD
82.0%
% RSD
1%
% RSD
29%
M-9 Dup Bot
<25
M-14P
<25
M-9 Dup Bot MS
107%
M-14 P MS
110%
M-9 Dup Bot MSD
106%
M-14 P MSD
116%
% RSD
1%
% RSD
5%
Table C-4. Results Of Standard Reference Material Analyses For Metals
(Results In Mg/Kg Except Where Noted).
Sample ID
As
Hg
Cd
Cr
Cu
Pb
Ni
Zn
ERA-1
190
1.8
120
180
90
72
71
200
% RSD
95%
90%
86%
95%
82%
80%
89%
89%
ERA-2
160
1.8
110
150
76
58
60
170
% RSD
80%
90%
79%
79%
69%
64%
75%
76%
ERA-3
200
1.6
120
180
89
72
70
200
% RSD
100%
80%
86%
95%
81%
80%
88%
89%
C-3
-------
Appendix D. Summary Of Chemical Measurements For The Toxicity
Test With Sediments From Manistee Lake, November 1998.
-------
Test No:
Toxicant:
Organism:
Manistee Lake Sediment
Hyalella azteca
Analyst: jab, mtv, cb
Test Start: 11/03/1998
Test Stop: 11/13/1998
Table D-1. Summary Of Initial And Final Chemical Measurements For
Hyalella azteca In Manistee Lake Sediments
Day
Difference
Sample
Parameter
0
10
(%)
pH
7.9
7.8
1
Conductivity (umhos/cm)
561
563
1
M-1P
Alkalinity (mg/l CaC03)
182
186
2
Hardness (mg/l CaC03)
197
190
4
Ammonia (mg/l NH3)
0.90
0.10
89
pH
7.6
7.2
5
Conductivity (umhos/cm)
621
553
12
M-2P
Alkalinity (mg/l CaC03)
166
190
14
Hardness (mg/l CaC03)
210
200
5
Ammonia (mg/l NH3)
0.70
0.20
71
pH
7.6
7.5
1
Conductivity (umhos/cm)
621
572
9
M-3P
Alkalinity (mg/l CaC03)
173
192
11
Hardness (mg/l CaC03)
210
203
3
Ammonia (mg/l NH3)
0.80
0.30
63
pH
7.5
7.6
1
Conductivity (umhos/cm)
616
626
2
M-4P
Alkalinity (mg/l CaC03)
173
196
13
Hardness (mg/l CaC03)
197
197
0
Ammonia (mg/l NH3)
0.60
0.20
67
PH
7.4
7.5
1
Conductivity (umhos/cm)
628
624
1
M-5P
Alkalinity (mg/l CaC03)
196
198
1
Hardness (mg/l CaC03)
232
204
12
Ammonia (mg/l NH3)
2.50
0.80
68
pH
7.9
7.6
4
Conductivity (umhos/cm)
666
638
4
M-6P
Alkalinity (mg/l CaC03)
190
193
2
Hardness (mg/l CaC03)
229
208
9
Ammonia (mg/l NH3)
2.90
0.90
69
PH
8.0
7.8
3
Conductivity (umhos/cm)
888
586
34
M-7P
Alkalinity (mg/l CaC03)
193
182
6
Hardness (mg/l CaC03)
236
190
19
Ammonia (mg/l NH3)
2.70
1.20
56
PH
8.1
7.6
6
Conductivity (umhos/cm)
852
613
36
M-8P
Alkalinity (mg/l CaC03)
192
193
1
Hardness (mg/l CaC03)
236
204
14
Ammonia (mg/l NH3)
1.40
0.50
64
D-1
-------
Test No:
Toxicant:
Organism:
Manistee Lake Sediment
Hyalella azteca
Analyst: jab, mtv, cb
Test Start: 11/03/1998
Test Stop: 11/13/1998
Table D-1 (Cont). Summary Of Initial And Final Chemical Measurements
For Hyalella azteca In Manistee Lake Sediments
Day
Difference
Sample
Parameter
0
10
(%)
pH
8.0
7.9
1
Conductivity (umhos/cm)
634
615
3
M-9P
Alkalinity (mg/l CaC03)
174
200
15
Hardness (mg/l CaC03)
224
205
8
Ammonia (mg/l NH3)
1.30
0.60
54
pH
8.0
7.6
5
Conductivity (umhos/cm)
611
604
1
M-9Pd
Alkalinity (mg/l CaC03)
176
196
11
Hardness (mg/l CaC03)
217
200
8
Ammonia (mg/l NH3)
1.40
0.60
57
PH
7.9
7.5
5
Conductivity (umhos/cm)
2320
972
58
M-10P
Alkalinity (mg/l CaC03)
160
187
17
Hardness (mg/l CaC03)
965
313
68
Ammonia (mg/l NH3)
2.70
0.90
67
PH
7.8
7.9
1
Conductivity (umhos/cm)
758
717
6
M-11P
Alkalinity (mg/l CaC03)
191
214
12
Hardness (mg/l CaC03)
231
225
3
Ammonia (mg/l NH3)
2.98
1.45
51
PH
7.8
7.4
5
Conductivity (umhos/cm)
721
613
18
M-12P
Alkalinity (mg/l CaC03)
188
212
13
Hardness (mg/l CaC03)
222
227
2
Ammonia (mg/l NH3)
0.60
0.70
17
pH
7.9
7.5
5
Conductivity (umhos/cm)
721
671
7
M-13P
Alkalinity (mg/l CaC03)
202
212
5
Hardness (mg/l CaC03)
266
224
16
Ammonia (mg/l NH3)
1.10
0.90
18
pH
7.6
7.4
82
Conductivity (umhos/cm)
579
560
2
M-14P
Alkalinity (mg/l CaC03)
168
216
29
Hardness (mg/l CaC03)
214
223
4
Ammonia (mg/I NH3)
0.60
0.80
33
D-2
-------
Test No:
Toxicant:
Organism:
Manistee Lake Sediments
Hyalella azleca
Analyst:
Test Start:
Test Stop:
mtv, jab, cb
11/03/1998
11/13/1998
Table D-2. Summary Of Daily Temperature And Dissolved Oxygen Measurements For Hyallela azteca In The Solid Phase Toxicity Tests For
Manistee Lake Sediments
Sample:
M-1P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
•c
mg/1
°C
mg/1
°C
mg/1
¦c
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
nd
4.90
24.2
5.61
22.9
6.39
22.6
6.30
23.5
5.70
23.2
6.08
23.0
6.07
23.1
5.06
23.3
6.04
23.3
4.81
23.0
6.25
Sample:
M-2P
Day
O
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
•c
mg/1
•c
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
nd
2.60
24.1
5.55
23.6
6.21
22.7
5.66
23.1
5.66
23.2
5.56
22.7
5.98
23.6
4.45
22.5
5.48
23.8
4.03
23.0
4.95
Sample:
M-3P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
IX)
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
"C
mg/1
°C
mg/1
•c
mg/1
"C
mg/1
•c
mg/1
•c
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
nd
5.10
24.4
5.45
23.0
5.96
22.8
5.81
23.1
5.81
22.9
5.04
22.7
5.57
23.2
4.44
23.0
5.63
23.5
4.32
23.4
5.02
Sample:
M-4P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
"C
mg/1
°C
mg/1
"C
mg/1
•c
mg/1
¦c
mg/1
•c
mg/1
•c
mg/1
°C
mg/1
"C
mg/1
°C
mg/1
°C
mg/1
nd
4.78
24.3
5.55
23.1
5.89
22.6
6.14
23.1
6.14
23.3
5.24
22.8
5.84
23.4
4.86
23.5
5.45
23.4
4.44
23.2
5.03
Sample:
M-5P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
"C
mg/1
•c
mg/1
mg/1
¦o
mg/1
°C
mg/1
•c
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
nd
4.70
23.4
5.83
23.6
5.52
22.6
5.88
22.5
5.88
23.3
5.00
22.7
5.63
23.4
3.65
23.5
4.52
23.5
3.25
23.3
4.57
-------
Tea No:
Toxicant;
Organism:
Manistee Lake Sediments
Hyalella azteca
Analyst:
Test Start:
Test Stop:
mtv, jab, cb
11/03/1998
11/13/1998
Table D-2 (Cont). Summary Of Daily Temperature And Dissolved Oxygen Measurements For Hyallela azteca In The Solid Phase Toxicity Tests For
Manistee Lake Sediments
Sample:
M-6P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
•c
mg/I
"C
mg/1
°C
mg/1
•c
mg/1
°C
mg/I
7
mg/1
"C
mg/1
7
mg/1
°C
mg/1
°C
mg/I
°C
rag/1
nd
4.61
23.6
5.20
23.2
5.28
23.1
5.96
23.0
5.96
23.4
4.46
22.4
5.73
23.8
4.77
23.6
5.11
23.2
4.01
23.0
4.71
Sample:
M-7P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
*C
mg/1
°C
rag/1
°C
mg/1
°C
mg/1
"C
mg/1
"C
mg/1
°C
mg/I
•c
mg/1
°C
mg/1
°C
mg/1
¦c
mg/1
nd
4.51
23.9
5.21
22.6
5.67
22.6
6.03
22.7
6.03
22.7
5.06
22.6
5.91
23.7
4.06
23.2
5.12
22.7
3.52
22.6
3.72
Sample:
M-8P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
*C
mg/I
°C
mg/1
°C
mg/i
T
mg/1
•7
mg/I
"(7
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
¦7
mg/1
nd
4.63
24.4
5.25
23.0
6.10
21.6
6.71
21.2
6.71
21.7
5.61
21.9
6.20
21.7
4.28
21.6
5.26
23.9
3.78
21.4
4.68
Sample:
M-9P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Ten®
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/I
•c
mg/1
°C
mg/1
°C
mg/1
•c
mg/1
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
»C
mg/1
°C
mg/1
nd
4.76
21.8
5.95
22.4
5.84
23.2
6.53
23.2
6.53
23.0
5.45
22.7
6.64
23.2
5.07
23.7
5.41
23.1
4.24
23.1
5.12
Sample:
M-9Pdup
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/I
°C
mg/1
¦c
mg/1
°C
mg/1
•7
mg/1
.7
mg/1
°C
mg/1
-7
mg/1
•c
mg/1
"C
mg/1
°C
mg/1
nd
4.55
23.2
5.56
24.0
5.65
23.7
5.62
23.5
5.62
23.3
4.90
24.3
5.53
23.5
4.39
22.9
5.34
22.7
3.60
21.6
4.53
-------
Test No:
Toxicant:
Organism:
Manistee Lake Sediments
Hyalella azteca
Analyst:
Test Start:
Test Stop;
zntv, jab, cb
11/03/1998
11/13/1998
Table D-2 (Cont). Summary Of Daily Temperature And Dissolved Oxygen Measurements For Hyallela azteca In The Solid Phase Toxicity Tests For
Manistee Lake Sediments
Sample:
M-10P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
•c
mg/1
°C
mg/1
"C
mg/1
°C
mg/1
°C
mg/1
•c
mg/1
"C
mg/1
°C
mg/!
"C
mg/1
°C
mg/1
°C
mg/1
rid
5.35
22.7
6.25
22.8
5.89
23.3
4.58
23.1
4.58
22.9
5.09
23.0
5.57
22.9
4.24
24.2
4.86
23.6
3.87
23.0
3.43
Sample:
M-11P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
•c
mg/1
°C
mg/1
•c
mg/1
°C
mg/1
°C
mg/1
•c
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
nd
4.63
23.5
5.46
22.4
5.94
23.0
6.00
22.9
6.00
22.9
4.28
23.9
4.67
23.3
2.59
23.1
3.82
23.4
2.87
23.2
3.93
Sample:
M-12P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
•c
mg/1
°C
mg/1
¦c
mg/1
°C
mg/1
°C
mg/1
•c
mg/1
°C
rag/1
"C
mg/1
°C
mg/1
°C
mg/1
ad
4.38
22.1
5.63
23.7
5.54
23.4
6.27
23.1
6.27
23.6
4.59
23.2
5.15
23.8
3.39
22.0
4.59
23.8
3.91
21.5
4.73
Sample:
M-13P
Day
0
1
2
3
4
5
6
7
8
9
to
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
"C
mg/l
°C
mg/1
°C
mg/1
°C
mg/1
•c
mg/1
•c
mg/1
¦c
mg/1
"C
mg/1
DC
mg/1
°C
mg/1
°C
mg/1
nd
4.81
23.7
5.19
22.5
5.95
22.8
6.25
22.4
6.25
22.8
4.61
22.5
5.69
22.8
3.30
23.9
4.11
22.3
3.51
22.9
4.07
Sample:
M-14P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
•c
mg/1
"C
mg/1
•c
mg/1
"C
mg/1
°C
mg/1
"C
mg/1
•c
mg/1
•c
mg/1
°C
mg/1
"C
mg/1
•c
mg/1
nd
5.65
23.5
5.62
22.3
5.74
21.8
6.48
21.8
6.48
21.8
4.80
22.1
5.43
22.1
3.27
22.8
3.55
22.9
3.07
22.5
3.78
-------
Test No: Analyst: mtv.jab, cb
Toxicant: Manistee Lake Sediment Test Start: 11/17/1998
Organism: Chironomus tentans Test Stop: 11/27/1998
Table D-3. Summary Of Initial And Final Chemical Measurements For Chironomus tentans In
Manistee Lake Sediments
Day
Difference
Sample
Parameter
0
10
(%)
PH
7.8
7.7
1
Conductivity (umhos/cm)
566
560
1
M-1P
Alkalinity (mg/l CaC03)
172
186
8
Hardness (mg/l CaC03)
189
191
1
Ammonia (mg/l NH3)
2.00
0.00
100
pH
7.9
7.5
5
Conductivity (umhos/cm)
630
571
9
M-2P
Alkalinity (mg/l CaC03)
148
187
26
Hardness (mg/l CaC03)
205
188
8
Ammonia (mg/l NH3)
0.30
0.00
100
pH
7.8
7.9
1
Conductivity (umhos/cm)
690
582
16
M-3P
Alkalinity (mg/l CaC03)
158
190
20
Hardness (mg/l CaC03)
207
207
0
Ammonia (mg/l NH3)
0.50
0.10
80
pH
7.6
7.5
1
Conductivity (umhos/cm)
670
617
8
M-4P
Alkalinity (mg/l CaC03)
161
180
12
Hardness (mg/l CaC03)
223
192
14
Ammonia (mg/l NH3)
2.50
0.00
100
pH
7.7
7.8
1
Conductivity (umhos/cm)
700
608
13
M-5P
Alkalinity (mo/l CaC03)
148
192
30
Hardness (mg/l CaC03)
194
206
6
Ammonia (mg/l NH3)
0.30
0.50
67
PH
7.7
7.5
3
Conductivity (umhos/cm)
717
700
2
M-6P
Alkalinity (mg/l CaC03)
179
184
3
Hardness (mg/l CaC03)
259
203
22
Ammonia (mg/l NH3)
2.30
0.50
78
PH
7.7
7.7
0
Conductivity (umhos/cm)
898
700
22
M-7P
Alkalinity (mg/l CaC03)
182
184
1
Hardness (mg/l CaC03)
256
225
12
Ammonia (mg/l NH3)
2.90
0.20
93
PH
7.9
7.8
1
Conductivity (umhos/cm)
935
690
26
M-8P
Alkalinity (mg/l CaC03)
182
182
0
Hardness (mg/l CaC03)
223
212
5
Ammonia (mg/l NHS)
1.00
0.20
80
D-6
-------
Test No:
Toxicant: Manistee Lake Sediment
Organism: Chironomus tentans
Analyst: mtv, jab, cb
Test Start: 11/17/1998
Test Stop: 11/27/1998
Table D-3 (cont). Summary Of initial And Final Chemical Measurements For Chironomus tentans In
Manistee Lake Sediments
Day
Difference
(%)
Sample
Parameter
0
10
M-9P
pH
7.6
7.8
3
Conductivity (umhos/cm)
710
601
15
Alkalinity (mg/1 CaC03)
164
177
8
Hardness (mg/I CaC03)
221
211
5
Ammonia (mg/I NH3)
1.10
0.10
91
M-9Pd
PH
7.7
7.5
3
Conductivity (umhos/cm)
690
601
13
Alkalinity (mg/I CaC03)
154
181
18
Hardness (mg/I CaC03)
212
226
7
Ammonia (mg/I NH3)
1.30
0.00
100
M-10P
pH
7.7
7.9
3
Conductivity (umhos/cm)
2700
1000
63
Alkalinity (mg/I CaC03)
123
176
43
Hardness (mg/I CaC03)
1083
316
71
Ammonia (mg/I NH3)
2.70
0.10
96
M-11P
PH
8.0
7.8
3
Conductivity (umhos/cm)
730
636
13
Alkalinity (mg/I CaC03)
163
206
26
Hardness (mg/I CaC03)
224
231
3
Ammonia (mg/I NH3)
0.70
0.20
71
M-12P
pH
8.0
7.6
5
Conductivity (umhos/cm)
710
604
15
Alkalinity (mg/I CaC03)
150
196
31
Hardness (mg/I CaC03)
207
249
20
Ammonia (mg/I NH3)
0.30
0.20
33
M-13P
PH
7.8
7.5
4
Conductivity (umhos/cm)
720
526
27
Alkalinity (mg/I CaC03)
192
189
2
Hardness (mg/I CaC03)
229
227
1
Ammonia (mg/1 NH3)
0.90
0.60
33
M-14P
PH
7.8
7.8
0
Conductivity (umhos/cm)
573
566
1
Alkalinity (mg/I CaC03)
176
199
13
Hardness (mg/I CaC03)
215
243
13
Ammonia (mg/I NH3)
0.80
0.90
13
D-7
-------
Test No:
Toxicant: Manistee Lake Sediment
Organism Ouronomus tentans
Analyst:
Test Start:
Test Stop:
mtvjab,cb
11/17/1998
11/27/1998
Table D4. Summary Of Daily Temperature And Dissolved Oxygen (Measurements For Chironomus tentans In The
Solid Phase Toxicity Tests For Manistee Lake Sediments
Sample:
M-1P
Day
0
1
2
3
4
5
6
7
8
9
10
Ten?
DO
Temp
DO
Ten?
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
227
6.22
22.8
6.05
23.1
6.18
23.5
5.91
23.2
6.15
23.2
5.93
23.2
5.92
23.7
5.66
23.1
4.08
23.1
5.97
23.5
6.00
Sample:
M-2P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
23.4
5.23
23.3
5.36
23.2
5.47
23.1
5.48
219
5.74
229
5.47
23.3
5.65
23.4
5.43
23.0
4.30
23.0
5.12
23.1
5.55
Sample:
M-3P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Teoqp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/I
°C
mg/1
°C
mg/1
°C
mg/i
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
22.5
0.59
23.3
5.39
22.5
5.87
23.4
5.38
23.2
5.76
22.7
5.75
229
6.65
23.0
5.51
23.4
4.21
22.8
4.95
226
5.49
Sample:
M-4P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/I
°C
mg/I
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/I
°C
mg/1
°C
mg/1
23.2
5.75
23.5
5.25
23.2
5.28
23.5
5.15
23.4
5.23
23.3
5.51
23.5
5.68
23.5
5.20
23.1
4.18
226
5.09
23.1
5.46
Sample:
M-5P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/I
°C
mg/1
°C
mg/1
°C
mg/1
23.1
225
23.3
5.34
23.1
5.61
23.1
5.47
23.8
5.37
23.0
5.45
23.5
5.19
23.5
4.72
23.9
3.39
23.4
4.13
22.8
4.76
-------
Test No:
Toxicant Manistee Lake Sediment
Organism: Chironomus tertians
Analyst:
Test Start:
Test Stop:
mtvjab.cb
11/17/1998
11/27/1998
Table D4 (Cont). Summary Of Daily Temperature And Dissolved Oxygen Measurements For Chironomus tartans In
The Solid Phase Toxicity Tests For Manistee Lake Sediments
Sample:
M-6P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
23.5
4.99
23.8
4.90
23.4
4.95
23.5
5.18
23.5
5.31
23.3
5.24
23.5
5.62
23.2
5.12
23.2
3.79
23.2
4.72
22.9
4.87
San|>le:
M-7P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/I
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
23.3
5.11
26.2
5.21
23.3
5.44
24.3
5.39
23.5
5.85
23.9
5.91
23.3
6.08
22.7
5.87
23.0
3.42
23.0
4.15
23.1
4.48
Sample:
M-8P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
218
5.83
22.4
6.00
21.9
5.75
22.8
5.71
22.0
6.07
22.8
5.83
22.0
6.36
22.9
5.59
22.4
3.12
21.2
4.60
21.1
5.05
Sample:
M-9P
Day
C
1
2
3
i
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/i
"c
mg/I
°C
mg/i
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
22.9
6.06
23.1
5.31
23.4
5.51
23.2
5.65
23.5
5.74
23.4
5.87
23.1
6.46
23.7
5.71
23.1
3.89
22.8
4.97
23.1
5.46
Sanple:
M-9Pdup
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
nqg/1
°C
rpg/1
°C
n®/l
°C
mg/I
°C
mg/1
°C
mg/1
°C
mg/1
°C
njg/1
°C
mg/1
°C
mg/l
23.5
4.99
23.3
4.66
23.3
5.17
23.8
5.17
23.6
5.53
23.6
5.08
23.0
5.47
24.2
5.25
24.6
3.57
25.7
4.29
24.2
4.80
-------
Test No:
Toxicant: Manistee Lake Sediment
Organism: Chironomus tenlcuis
Analyst:
Test Stait:
Test Stop:
mtvjab,cb
11/17/1998
11/27/1998
Table D-4 (Corrt). Summary Of Daily Temperature And Dissolved Oxygen Measurements for Chironomus tentans In
The Solid Phase Toxicity Tests For Manistee Lake Sediments
Sample:
M-10P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Tenp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
"C
mg/1
°C
nog/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
23.0
3.42
23.6
4.80
23.9
4.84
23.3
4.95
23.2
5.13
23.3
526
23.7
5.36
23.0
4.96
23.8
3.54
23.9
4.61
24.0
4.73
Sample:
M-11P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
21.8
4.89
23.6
5.16
23.4
5.44
23.7
5.74
23.8
5.61
23.4
5.60
22.8
5.60
23.6
5.24
23.7
3.61
23.5
4.56
23.6
4.49
Sample:
M-12P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Trap
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
"c
mg/I
23.3
5.33
23.0
5.25
22.1
5.84
22.4
5.90
23.1
5.37
23.0
5.57
21.9
6.11
23.7
5.24
23.4
2.85
24.0
3.37
22.0
4.56
Sample:
M-13P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Tenp
DO
Temp
DO
Temp
DO
Tonp
DO
Temp
DO
Temp
DO
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/I
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
23.4
5.54
223
5.17
226
4.96
228
5.26
222
5.71
224
5.32
24.3
5.54
21.7
5.26
22.3
2.83
22.2
3.69
22.4
3.26
Sample:
M-14P
Day
0
1
2
3
4
5
6
7
8
9
10
Temp
DO
Temp
DO
Temp
DO
Ten*}
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
Temp
DO
°C
mg/I
°C
mg/l
°C
mg/1
°C
mg/1
°C
mgfl
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
°C
mg/1
22.7
5.01
23.5
3.97
23.1
4.00
21.9
5.25
24.0
3.37
24.4
3.48
22.4
4.06
23.0
3.10
22.2
2.71
23.9
2.60
23.3
252
-------
Appendix E. Summary Of Reference Toxicity Test For The Sediments From
Manistee Lake, November 1998
-------
1.0 INTRODUCTION
This report contains the reference toxicity methods and data interpretation for the 96hour acute
tests for Hyalella azteca and Chironomus tentans when exposed to various concentrations of
potassium chloride (KC1).
2.0 PROCEDURES AND METHODS
A 96-hour acute static renewal survival test was performed with both Hyalella azteca and
Chironomus tentans. The procedures followed are contained in EPA/600/R-94/024, Methods for
Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Fresh
Water Invertebrates.
2.1 Laboratory Water Supply
A moderately hard well water is employed for H. azteca and C. tentans cultures and
maintenance. The water is obtained from R. Rediske and is checked quarterly for water quality
parameters. This moderately hard water was utilized as the culture water as well as the overlying
renewal water.
2.2 Test Organisms
H azteca and C. tentans used in these reference toxicity tests were from the same stock as those
organisms employed in the sediment toxicity tests. The original stocks were obtained from the
USEPA laboratory in Columbia, Missouri. Both are currently maintained in the Institute's
facilities. The H. azteca cultures are kept in a ~15L plastic rectangular storage boxes with lids.
Maple leaves and "coiled web material" (Aquatic Ecosystems, Inc.) are used as substrates. The
food source is a suspension of Tetrafin® goldfish food. The culture of C. tentans is maintained in
a 36L glass aquarium using shredded paper toweling as a substrate and is also fed a suspension of
Tetrafin® goldfish food. The H. azteca used were 7-14 days old and the C. tentans were third
instar larvae (12-14 days old).
2.3 Experimental Design
The purpose of these tests was to evaluate the "relative sensitivity" of both organisms to our
reference toxicant, potassium chloride. H. azteca were exposed to seven different concentrations
of potassium chloride and one control with 4 replicates, 10 organism per replicate for each
treatment. The organism were fed 2 drops of Tetrafin® (4 g/L) at the beginning of the test and
after 48 hours. The C. tentans test followed the same procedure as described above, except only
6 concentrations of KC1 were used and the concentrations were different. Routine water quality
parameters were measured at the beginning and end of the tests. In all tests, moderately hard
E-l
-------
well water was utilized as dilution water. Hyalella and Chironomus tests were run concurrently
during December 1998.
2.4 Statistical Analysis
Because survival data were not normally distributed according to Chi-square analysis, estimated
EC50 values were calculated using the Trimmed Spearman-Karber Method. TOXSTAT® 3.5 was
used in these evaluations.
3.0 RESULTS AND DISCUSSION
Reference toxicity evaluations with Hyalella and Chironomus began on December 14,1998. The
results of the reference test are given in Table E-l and E-2. Statistical analyses are presented in
Tables E-3 E-4. Both tests satisfied the validity requirement of 90% or greater survival in the
control. Temperature, dissolved oxygen, pH, conductivity, alkalinity and hardness varied little
over the test period; however ammonia levels increased over the test period. As expected
conductivity increased with increasing KC1 concentrations. Chemistry data are presented in
Tables E-l and E-2.
3.1 Hyalella azteca
Survival data are presented in Table E-l. The survival in the control treatment exceeded the
required 90%. The Trimmed Spearman-Karber 96-hour EC50 estimate was 432 mg/L KCL with
a 95% confidence interval ranging from 410 to 456 mg/L. Statistical analyses are presented in
Table E-3.
3.2 Chironomus tentans
Survival data are presented in Table E-2. The survival in the control treatment exceeded the
required 90%. The Trimmed Spearman-Karber 96-hour EC50 estimate was 4.14 g/L KCL with
a 95% confidence interval ranging from 3.69 to 4.64 g/L. Statistical analyses are presented in
Table E-4.
4.0 SUMMARY
Reference toxicity evaluations with Hyalella azteca and Chironomus tentans were carried out
with potassium chloride in December 1998. Both tests satisfied the validity requirement of 90%
or greater survival in the control. In addition, Hyalella azteca appears to be more sensitive to
potassium chloride than Chironomus tentans
E-2
-------
Test No. Analyst:
Toxicant: Potassium chloride Test Start - Date/Time: 12/14/1998
Test Species: Hyalella azteca Test Stop - Date/Time: 12/18/1998
No. of Organisms per Replicate 10 EC Calculation Method: Probit
No. of Replicates 4
Table E-l. Summary Of Results Of Reference Toxicity Test For Hyalella azteca
0 hr
Concentration (mg/1)
Control
150
300
400
500
600
900
1200
No. of Individuals
40
40
40
40
40
40
40
40
Temperature (oC)
22
22
22
21.8
21.5
21.6
21.5
21.4
Dissolved Oxygen (mg/1)
8.12
7.5
7.7
7.8
7.6
7.5
7.5
7.5
PH
nd
8.55
8.66
8.66
8.66
8.64
8.18
8.21
Conductivity (umhos/cm)
nd
1004
1297
1511
1750
1975
2800
3490
Alkalinity (mg/1 as CaC03)
nd
88
82
84
80
80
96
96
Hardness (mg/1 as CaC03)
nd
158
162
162
165
160
204
200
Ammonia (ppm)
nd
<0.1
<0.1
<0.1
<0.1
<0.1
0.4
0.4
48 hr
Concentration (mg/1)
Control
150
300
400
500
600
900
1200
No. of Individuals Surviving
nd
nd
nd
nd
nd
nd
0
0
Temperature (oC)
23.5
23.6
23.6
23
22.8
22.6
23.4
23.9
Dissolved Oxygen (mg/1)
7.54
7.57
7.52
7.66
7.8
7.51
7.23
7.48
96 hr
Concentration (mg/1)
Control
150
300
400
500
600
900
1200
No. of Individuals Surviving
40
40
39
28
11
0
0
0
Temperature (oC)
19.9
19.6
19.7
20.0
19.8
19.9
20.1
20.3
Dissolved Oxygen (mg/1)
6.30
6.63
6.24
6.23
4.50
5.58
5.07
5.6
PH
8.4
7.9
7.9
7.9
7.9
7.9
7.9
7.9
Conductivity (umhos/cm)
490
990
1300
1530
1790
1970
2500
3120
Alkalinity (mg/1 as CaC03)
139
199
218
219
232
228
225
224
Hardness (mg/1 as CaC03)
140
216
205
207
218
214
213
215
Ammonia (ppm)
0.5
0.7
0.8
0.9
1.1
1.2
1.2
1.2
note: temperature and dissolved oxygen values are the mean of the four replicates;
water quality parameters were determined on a composite sample
E-3
-------
Table E-2. Summary Of Results Of Reference Toxicity Test For Chironomus
tentans.
Ohr
Concentration (g/1)
Control
1.0
2.0
4.0
6.0
8.0
10.0
No. of Individuals
40
40
40
40
40
40
40
Temperature (oC)
21.4
21.3
21.4
21.4
21.5
21.4
21.1
Dissolved Oxygen (mg/1)
8.12
8.04
8.11
8.09
8.19
8.19
8.19
PH
7.9
8.14
8.19
8.18
8.09
8.09
8.10
Conductivity (umhos/cm)
nd
2920
5260
9090
12830
16030
18870
Alkalinity (mg/1 as CaC03)
nd
98
96
96
36080
102
100
Hardness (mg/1 as CaC03)
nd
200
206
201
201
201
201
Ammonia (ppm)
nd
0.4
0.4
0.4
0.4
0.4
0.4
48 hr
Concentration (g/1)
Control
1.0
2.0
4.0
6.0
8.0
10.0
No. of Individuals Surviving
nd
nd
nd
nd
nd
0
0
Temperature (oC)
22.6
22.3
23.5
24.3
24.3
24.5
24.9
Dissolved Oxygen (mg/1)
6.13
5.91
5.39
5.92
5.70
5.08
5.41
96 hr
Concentration (g/1)
Control
1.0
2.0
4.0
6.0
8.0
10.0
No. of Individuals Surviving
40
40
35
29
8
0
0
Temperature (oC)
19.9
19.5
19.8
19.9
19.7
19.8
20.0
Dissolved Oxygen (mg/1)
4.02
3.70
3.95
2.91
4.36
3.16
4.54
PH
8.3
8.3
8.1
8.1
8.0
8.2
7.9
Conductivity (umhos/cm)
680
2630
4310
8310
11830
15350
18870
Alkalinity (mg/1 as CaC03)
182
215
193
201
200
202
203
Hardness (mg/1 as CaC03)
179
211
194
202
205
218
218
Ammonia (ppm)
0.6
0.7
0.3
0.5
0.7
0.3
0.4
note: temperature and dissolved oxygen values are the mean of the four replicates;
water quality parameters were determined on a composite sample
E-4
-------
Table E-3 Potassium Chloride Reference Test
96-Hour EC50 for Hyalella azteca
Probit Analysis - Using Smoothed Proportions - Transform: LOG 10 DOSE
DOSE
NUMBER
NUMBER
OBS
SMOOTH
PRED
SUBJECTS
OBSERVED
PROP
PROP
PROP
150.00
40
40
1.0000
1.0000
1.0000
300.00
40
39
0.9750
0.9750
0.9860
400.00
40
28
0.7000
0.7000
0.6980
500.00
40
11
0.2750
0.2750
0.2170
600.00
40
0
0.0000
0.0000
0.0325
900.00
40
0
0.0000
0.0000
0.0000
1200.00
40
0
0.0000
0.0000
0.0000
Est. Mu = 2.6407 Est. Sigma = 0.0745
sd = 0.0102 sd = 0.0098
Chi-Square lack of fit = 2.4827 Likelihood lack of fit = 3.6733
Table Chi-square = 15.0863 (alpha = 0.01, df = 5)
Table Chi-square = 11.0705 (alpha = 0.05, df = 5)
Trimmed Spearman - Karber Estimate Using Smoothed Proportions
Transform: LOG 10 DOSE WITH CONTROL DATA
Trimmed Spearman - Karber Estimate
95% C.I.
UNCONDITIONAL
95% C.I.
10.00%
439.6974
(416.28,464.44)
(415.81,464.96)
20.00%
442.6492
(417.40, 469.43)
(416.90, 469.99)
HIGHCALC 2.50%
437.1476
(416.35,458.99)
(415.93, 459.45)
LOWCALC 0.00%
432.6390
(410.87,455.56)
(410.44,456.04)
E-5
-------
Table E-4 Potassium Chloride Reference Test
96-Hour EC50 for Chironomus tentans
Probit Analysis - Using Smoothed Proportions - Transform: LOG 10 DOSE
DOSE
NUMBER
SUBJECTS
NUMBER
OBSERVED
OBS
PROP
SMOOTH
PROP
PRED PROP
1.00
40
40
1.0000
1.0000
0.9995
2.00
40
35
0.8750
0.8750
0.9544
4.00
40
29
0.7250
0.7250
0.5246
6.00
40
8
0.2000
0.2000
0.1867
8.00
40
0
0.0000
0.0000
0.0588
10.00
40
0
0.0000
0.0000
0.0184
Est. Mu = 0.6135 Est. Sigma = 0.1850
sd = 0.0232 sd= 0.0206
Chi-Square lack of fit = 15.5343 Likelihood lack of fit = 17.1291
Table Chi-square = 13.2767 (alpha = 0.01, df = 4)
Table Chi-square = 9.4877 (alpha = 0.05, df = 4)
Trimmed Spearman - Karber Estimate Using Smoothed Proportions
Transform: LOG 10 DOSE WITH CONTROL DATA
Trimmed Spearman - Karber Estimate
95% C.I.
UNCONDITION
AL 95% C.I.
10.00% 4.4380
( 3.93, 5.02)
( 3.92, 5.03)
20.00% 4.6740
( 4.16, 5.25)
( 4.15, 5.26)
HIGH CALC 12.50% 4.5034
( 3.99, 5.09)
( 3.98, 5.10)
LOWCALC 0.00% 4.1398
( 3.70, 4.63)
( 3.69, 4.64)
E-6
-------
Appendix F. Summary Of Benthic Macroinvertebrate Results For Manistee
Lake, November 1998
-------
Table F-l. Benthic Macroinvertebrate Results For Manistee Lake, November 1998
Station
M-l
M-2
M-3
M-4
M-5
M-6
M-7
M-8
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
Tfctrbell&ria
W&
12(f
21
21
21
42
42
63
OUcochaeta
Naklidae
VcjdorsfcyeDa intermedia
Soecaria fostaae
21
Nais eBneuis
84
147
Nais commaots
84
63
TnbiAridae
Aulodriltts Dieueti
AulodrDsS IhnnnWn*
21
Otristadrllas nraltisetostts
21
21
I Jmnrutrflas hofftneisterii
21
21
42
42
105
147
42
21
168
Limnodrlliis cervix
21
21
42
21
1 Jmnndrflus ctaoarediaaiis
Immihtits:
•w/a ran&ilifbrm chaetee
420
357
XS?
1113
2646
1113
2163
1386
861
1050
*19
4»
2^4
Wffh ranflftferm rh»#f*e
63
42
126
63
294
21
210
105
189
163
21
Crustacea
Amphipoda
Rsinimns SD.
315
147
63
42
42
21
21
21
Hyalella sp.
231
378
273
21
21
84
105
AseDossa
21
105
84
Iaseeta
Bactissn.
21
Zi
IT
RmMait tq.
21
84 1
1
-------
Table F-l (continued). Benthic Macroinvertebrate Results For Manistee Lake, November 1998
?
to
Ml
M2
M3
M4
M5
M6
M7
M8
A
B C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B 1 C
Insect* fContfnud)
ftocfrv.
Ctkidtin
DuMroBhiaaL
42 42
71
71
71
2|
21
42
42
42
42
84 42
OkfrawMiv.
3024
5502 2394
189
71
168
126
756
21
357
504
44!
525
336
126
252
168
21
IDS
42 63
CNiMumsaL
315
168
42
168
21
21
CmftdUraMMta.
42
357 161
147
105
103
147
21
105
63
21
84
21
84
21
21
21
- •
fWr
-------
Table F-l (continued). Benthic Macroinvertebrate Results For Manistee Lake,
November 1998
•n
• »
CO
Station
M-9
M-9R
M-10
M-1I
M~12
M-I3
M-14
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
TurbeUaria
Platvbelmlthes
172
1\6
ftri
43
129
Olieochaeta
Naididae
VeidovskveOa intermedia
172
Soecarin faunae
Nats tUngmis
Nats communis
Tubifiridae
Aulodrilus pirueti
86
43
Amtodritux timnohius
86
Ouistadrilus mmhisetosns
301
129
43
43
129
3R7
430
387
645
43
UmnadrUus haffmeisterii
43
43
Umnodrdus ctrrix
43
Limnodriius daDaraUmas
43
ImiMhim;
^Ai Mtifnifonn chaetae
1118
1290
860
731
817
86
172
258
516
2064
1677
602
1161
2408
68R
731
903
1247
387
vttfa caoiliifonn chactae
473
774
387
516
129
43
43
301
989
1849
344
215
301
fifi
43
B17
129
Crustacea
AmnhiDoda
Gmmunonts to.
43
43
86
43
HjmieOa sj>.
43
43
86
Isoooda
Asettussp.
Tnsrrta
Eofcerocrvotera
Baefiixp.
Coenisa.
Hexottnia to.
817 946
1075
I
-------
Table F-l (continued). Benthic Macroinvertebrate Results For Manistee Lake, November 1998
•n
1
u«
MOB
Mil
Mt?
Ml*
MU
Sudan
1 1
A . B , C
A . B , C
A . B . C
1 1
A . B . C
1 ""*1
a . B . r
t 1
A . B . C
I 1
A , B , c
Inttctt (CutJmeA.
1 1
I 1
I I
n 1 1
1 1
1 1
' 1 1
1 1
1 1 1
1 1
1 t
1 1
1 1
1 1
1 1
i i
i i
1 1
1 1
1 t
1 1
. . JFdcbp_ _
1 1
1 1
1 1
1 1
1 E
1 1
1 1
. ~ JWupfcn
Why
1 1
- - 7
i t
1 1
I (
1 1
1 1
Pfptcn
i I
^ t I
I i
1 i
1 1
1 1
1 1
i 7
1 1
t f
1 1
1 1
i i
i 7
/kMuL
I l
i i
1 I
I i
1 1
1 1
i i
i i
1 1
t i
1 1
i i
- -**- ¦
-A3 _J J
96 1 '
-« -j
- - -r — t
_o .J _ _[
129 1 '
k u»_ r - -j
_3l ILuHJiA.
J15j2JLiJ3
- _ u JM.i
j m.
J32a Jll j. JO.
_ _ j 12Li_25B .
_4J3_u _iJt
i I
i i
i i
i i
I i
I i
j® 1. _ i j*..
i i
-fli--JL„.
i i
I i
I i
i i
.OnMNPun.
i i
I i
i i
i i
_H*i 1
i i
GnMbwvw
M«wm»
i i
I i
i i
I i
.#UL- «
. U_J_ _ -J A .
_OQ_U42 J J7Z .
— —
AKMk»,
.43 * _ -J-41.
- - ^ M-)- -
43 1 1
" j 7
' 1 jfi
- - 7 - - T-P"L .
i i
_lH7_L.ltf-J.2U.
i i
I i
1 i
i i
1 1
I i
1---1
a.
i i
i i
1 1
. .rutoM .....
.Wit*
. _-J
-IB.} J44 -} -43- -
"T 1
_43Q_[_U -J
fiwtmfc
- -
. . JWtwtoc - -
• i
i t
i i
i i
I i
i i
i i
i i
I i
I i
i I
1 I
1 I
l i
1 1
1 1
1 1
1 1
I i
i i
1 I
t i
1 I
i t
r*tol iwimliir rfTm
6 8 9
t 9 t
6 6 J
10 7 10
4 6 t
7 6 5
21 I 13
WiiiAn «fTmy«rStKf—
13
10
10
13
1
S
24
-------
Table F- 2 QSI (Quantitative Similarity Index; Percentage Similarity Index) For Manistee Lake, November 1998
•"El
M-IA M-IB Ml-C
M-2A
M-2B
M-2C
M-3A M-3B
M-JC
M-4A
M-4B
M-4C
M-SA
M-5B
M-SC
M-6A M-6B
M-6C
M-7A
M-7B
M-7C
M-8A
M-8B
M-SC
M-IA
M-lB
v mm;
mi-c
M-2A
:: V>- • iii«r aiii
M-2B
M-2C
amy ojw ai4o
.r-Cal wWToitj T ftwip
0.719
0.686 043*
M-3A
• diiiW aojr aiM
0.699
0 782
0.112
MSB
; oped am
0.612
0.750
a7ii
171)
*-3C
OLtn^ aiof di46
0650
0622
0685
OS09 0497
M-4A
oast '-.asm
0-536
0680
0714
0766
OJOO
0403
M-4B
jf 04U»^V pp«5^ OOIO
aisi
ai04
0170
0246
0219
0-319
•J37
M-4C
V 0.000 aooo .0006
0iH4
0.051
0081
0119
0210
0J09
0326
0437
M-SA
••Jiliift®*V -i
0304
0-260
0343
056*
0219
0.415
Q-349
0627
0533
MSB
•f 4H*p| aoiilfpi
0231
air?
0243
0l3I9
0219
0415
0337
0401
0521
0467
M-SC
---0.000-ri" OiJQO nnry;
0474
OQ51
00*8
a i«9
&2I0
0-309
0.326
0433
0414
pm
0.700
M-6A
: aijo. aoss aus
0.107
0.141
0.242
a 149
0-041
0106
QJJ93
0243
0249
0333
0l200
nm
M-6B
ai»r-S dx« aui
am
ai73
n?q
0174
OOIO
0102
0412
0065
nnrw
0305
OI38
OOOO
0338
M-6C
'-I- 0224:». <"™
0.527
0-505
0527
0 651
0.557
0678
0617
0.167
OI69
0167
0167
0214
0095
0071
0-586
0405
0-500
0095
0238
nwn
0286
M-9RC
0.631
a72i
0760
0J75
07Z7
07S7
0792
0221
0771
0306
0294
0250
0194
Olll
a 702
0411
06CT7
0167
0333
0.292
0317
M-IOA
¦: aoso . ojM" am
0.333
OJ33
0113
0343
0-333
0333
0333
0.000
0426
OOOO
OOOO
OI67
OI67
OOOO
0346
0J33
0333
OI67
OIOO
OI67
aioo
M-IOB
3T am r QjQSO' 049
0423
04IS
0454
0-517
0552
0720
0717
0466
0513
03C3
0350
0417
am
OOOO
0417
0417
0405
aooo
0250
ai25
0-150
M-IOC
0-093 - 0X80 t 0.053
0.451
0473
0.615
0-5*2
0431
0-543
065i aooo aooo
aooo
OOOO
n nm
aooo
aooo
0645
O7S0
a 571
aooo
aooo
aooo
0000
M-ltA
M l IB
r~ j >i ix!n.\'2jrxjzwy*r?>*
e: 01 ~: TrriVWW frO-OCT
0.464
0.540
0.472
nun
0494
0655
n >rp»
0476
0L375
0-543
0525
0596
0436
n«n
OIOO
0027
O099
0000
am
0089
0.171
OOB9
0122
OOOO
a 195
a too
0122
OIOO
0541
OT45
a 488
OT44
0400
0571
0.146
00*9
0.195
0089
OI9S
OIOO
0195
0089
M-IIC
>" aoTf aflii
0465
0471
0.463
0.520
O430
0536
04** 0040 OlQJO
aoso
0 040
0.030
nnffi aooo n <57
0600 0466 0410
aoto
0440
0.050
M-I2A
..p.141 • O.OM. »U»
0.516 0484 Oia
0497
O790
0647
0792
02II
0211
0211
0311
0211
OOOO OOOO 0313
057S
0536
OOOO
0211
0125
0150
M-I2B
0-525
01714
0681
0.7D4
a 760
0665
a 761
0.122
0122
OI22
0122
0.123
P*»7H aooo P*3?
0.770
0571
0000
am
a 122
0112
M-I2C
0466
a7Q3
0652
nam
0482
0554
0.684 00(4 0044
0444
0-044
0-044
0429
OOOO
0387
0449
0550
0000
0.015
0415
0415
M-I3A
;.r. ao>.:.ano aoo
0.459
0-515
O-SIt
0-564
0494
0543
0543 0000 0-026
aooo
aooo
0 030
0430
0000
0603
0485
0521
nnv)
nnvi Q Q30 0410
M-13B
* C O120 : t - OjOSS'^OLflSI
0.533
o7n
4681
0.713
OT69
0654
O770
0130
0130
0130
0130
0130
aooo
0043
OA-}$
0462
0371
OOOO
0130
0125
0174
M-I3C
nm
a7i4
0681
0717 0400 0486
QJ31
0214
0214
0214
0214
0214
OOOO
OOOO
0349
0411
0571
0400
0214
OI25
OI50
M-I4A
0130 OOM ai4I
,rV-.a2S» r "" 0225 0232
mm?
"0013
03U
-r 0310
02M
0460
f/ 0125
Ol37
0125
aou aoz3 aoai
mmi
'-;r-"Oi72?^
000
, - om
aoj4
•• 0XD4
M-I4B
ao»
0056
-r^atw ^-ajjQ-aim
M-I4C
0134 0-075 0.I2J
%-ifcT^oa* 0337
id*
0185"
0329
v£fa5»r
02S6
;013»
riv.awrn
0169
0215
-------
Table F- 2 (Continued). QSI (Quantitative Similarity Index; Percentage Similarity Index) For Manistee Lake,
November 1998
M-9A M-9B M-9C
M-9RA M-9RB M-9RC
M-10A M-IOB M-IOC
M-IIAM-UB M-1IC
M-12A M-12B M IX
M-I3A M-I3B M-IX
M-I4A M-14B M-14C
M-IA
M-IB
MI-C
M-2A
M-2B
M-2C
M-3A
M-3B
M-3C
M-4A
M-4B
M-4C
M-5A
M-5B
M-5C
M-6A
M-6B
M-6C
M-7A
M-7B
M-7C
M-8A
M-8B
M-8C
M-9A
M-9B
0.118
M-9C
0.764 O.OS8
M-9RA
0 894 0220 0 765
M-9RB
M-9RC
0.762 0286 0.729
0.739 0361 0669
•142
0.770 8.734
M-1QA
0.490 0.150 0353
0.431 0.429 a417
M-10B
0 515 0_250 0.455
0.563 0.560 0.611
0333
M-IOC
0635 0.000 0.702
0613 0.530 0.611
0.333 0-417
M-11A
M-I1B
n aw n -ton O.S2I
0.837 a 100 0.719
0634 0.609 0.623
0.780 0.708 0.728
0.561 0.449 a4ll
0.444 0.417 0 658
8663
M-11C
0.726 0.040 0.755
0.713 0.740 0-541
0.423 0.447 0515
0613 0.746
M-12A
0608 0200 0-596
0610 0.548 0.694
0.333 0344 0.737
0394 0333 0.430
M-IZB
0803 0122 0.791
0.805 0.722 0.733
0333 0.539 0.784
0.512 0.728 0615
0.780
M-I2C
M-13A
0.598 0.044 0.684
0.717 0030 0.716
0600 0493 0.644
0.721 0647 0.598
0333 0451 0.824
0364 0.417 0.610
0.405 0607 0.493
0324 0697 0612
0752 0.761
0.515 0.704 0373
M-I3B
0695 a 174 0683
0.740 0666 0.742
0333 0347 0826
0.428 0620 0307
0867 0867 0.827
0372
M-I3C
0.644 0.200 0.632
0.643 0.583 0.710
0333 0383 0.786
0-377 0369 0.456
0.947 0.816 OBOO
0321 0305
M-14A
;d44ol
-------