PB87-145363
PTPLU - A Single Source Gaussian
Dispersion Algorithm. Addendum
(U.S.) Environmental Protection Agency
Research Triangle Park, NC
Dec 86
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
-------
PB37-1453o3
EPA/600/8-86/042
December 1986
ADDENDUM TO PTPLU
A Single Source Gaussian Dispersion Algorithm
by
Thomas E. Pierce
Meteorology and Assessment Division
Atmospheric Sciences Research Laboratory
Research Triangle Park, NC 27711
ATMOSPHERIC SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NC
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1 REPORT NO 2
EPA/600/8-86/042
3 RECIPIENT'S ACCESSION NO
.. " o
1 J -
4. TITLE AND SUBTITLE
ADDENDUM TO PTPLU
A Single Source Gaussian Dispersion Algorithm
5 REPORT DATE
December 1986
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(SI
Thomas E. Pierce
8 PERFORMING ORGANIZATION REPORT NO
9 PERFORMING ORGANIZATION NAME AND ADDRESS
Atmospheric Sciences Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
10 PROGRAM ELEMENT NO
A101/B/65/04 - 1315 (FY-87^
11 CONTRACT/GRANT NO
12. SPONSORING AGENCY NAME AND AOORESS
Atmospheric Sciences Research Laboratory —— RTP, NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
13 TYPE OF REPORT AND PERIOD COVERED
In-house (6/86-10/86)
14 SPONSORING AGENCY CODE
EPA/600/09
15 SUPPLEMENTARY NOTES
The base report is EPA/600/8-82/014 (PB 83 211235)
16 ABSTRACT
PTPLU has been modified to include urban dispersion coefficients, urban wind
profile exponents, and a default option. This modification has resulted in
PTPLU - Version 2.0. This document briefly describes the modifications to
PTPLU and presents a test case.
17 KEY WORDS AND DOCUMENT ANALYSIS
a DESCRIPTORS
b IDENTIFIERS/OPEN ENOED TERMS
c COSATi Field/Group
18 DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19 SECURITY CLASS (Tins Report)
UNCLASSIFIED
21 NO OF PAGES
17
20 SECURITY CLASS (This page)
UNCLASSIFIED
22 PRICE
EPA Form 2220-1 (Rev. 4-77) previous edition is obsolete
-------
NOTICE
The Information tn this document has been funded by the United States
Environmental Protection Agency. It has been suMect to the Agency's
peer and administrative review, and it has been approved for publication
as an EPA document. Mention of trade names or commercial products does
not constitute endorsement or recommendation for use.
ii
-------
ABSTRACT
PTPLIJ has been modified to include urban dispersion coefficients,
urban wind profile exponents, and a default option. This modification
has resulted in PTPLU - Version 2.0. This document briefly describes the
modifications to PTPLU and presents a test case.
ill
-------
INTRODUCTION
In 1981, PTPLIJ (Pierce et al. , 1982) was introduced as an improve-
ment over PTMAX (Turner and Busse, 197 3). Both models were intended for
use as point source screening models in which maximum short-term concen-
trations were estimated for various meteorological conditions. PTPLU's
improvements over PTMAX included wind profile exponents, momentum and
buoyancy driven plume rise, and options for calculating buoyancy induced
dispersion, stack tip downwash, and gradual plume rise.
This new version of PTPLU, Version 2.0, offers enhancements to the
original PTPLU algorithm. In Version 2.0, we offer a choice of either
urban or rural dispersion coefficients and wind profile exponents, and an
option for selecting default values.
This addendum describes the changes, presents a test case, and shows
FORTRAN coding changes that were made in the batch version of PTPLU.
Both the Interactive and batch versions of PTPLIJ-2.0 were included in
UNAMAP, Version 6, which was released August 1986. Users wishing infor-
mation on UNAMAP may contact the Environmental Protection Agency through
Environmental Operations Branch
IIS EPA (MD—80)
Research Triangle Park, NC 27711
Phone: (919) 541-4564 FTS 629-4564
CHANGES TO PTPLU
Urban/Rural Option
A new option was added to Version 2.0 to allow the user to select
either urban or rural dispersion coefficients and wind profile exponents.
The urban dispersion coefficients, known also as the Briggs urban coef-
ficients are described by Giffo,rd (1976). Their formulation for each
stability class is given in Table 1.
Urban and rural wind profile exponents were added and are based on
recommendations of Irwin (1979). The exponents are used only in the
default mode. Their values as a function of stability class are listed
in Table 2. The user should note that the wind profile exponents are
read from card type two. Unless the default option Is turned on, the
values specified by the user in card type two will be used to extrapolate
the wind speed from the anemometer height up to stack top.
I
-------
TABLE 1. URBAN DISPERSION COEFFICIENTS USED IN PTPLU-2.0.
Distance, x, is in kilometers; Sy and sz are in meters.
Stability A and B
cl. = 320x/(l + 0.4 x)1/2
a* = 240x/(l + x)1/2
Stability C
CL = 220x/(1 + 0.4x)*'2
7Z = 200x
Stability D
or = 160k/(1 + 0.4x)}/2
az - 140x/(l + 0.3x)
Stability E and F .
ex = 110x/ (1 + 0.4x)
az = 80x/(l + 1.5x)
TABLE 2. WIND PROFILE EXPONENTS USED AS DEFAULT IN PTPLU-2.0.
Stability
class Rural Urban
A 0.07 0.15
B 0.07 0.15
C 0.10 0.20
D 0.15 0.25
E 0.35 0.30
F 0.55 0.30
2
-------
Default option
As previously indicated, the user can invoke an option that will in
turn cause other options to be automatically specified and default values
of wind profile exponents to be used. The default values for the other
options will cause PTPLU-2.0 to do the following: not compute gradual
plume rise, compute stack tip downwash, and compute buoyancy induced
dispersion.
Although the intent of the default option is to provide a convenient
way for the user to perform regulatory modeling, the user should always
consult with the EPA Regional Meteorologist/Modeling Contact to ensure
that the correct option values have been used.
It should be noted that since PTPLU-2.0 does not consider pollutant
removal or chemical reactions, this option does not incorporate a decay
half life for urban SO2 concentration that is included in the "regulatory
default option" of several other UNAMAP, Version 6, models.
CHANGES IN INPUT DATA
Because new parameters were added to the model, minor changes were
necessary in the input data. The only card tvpe affected by this change
was card type one. The new format is listed in Table 3.
The user should note that since free format is used, values must
be input for every variable even though certain options will not be
recognized when the default option is turned on.
TEST CASE
Table 4 contains the input data for the test case. The data are
arranged in free format which means that individual values must be
separated by either a comma or a space. Results from the test case are
presented in Appendix A.
3
-------
TABLE 3. PTPLU-2.0 DATA INPUT. Only card type one was modified.
CARD TYPE ONE «< FREE FORMAT »>
Description
Gradual plume rise option
0 = do not compute gradual rise (default value)
1 = compute gradual rise
Stack tip downwash option
0 = do not compute stack tip downwash
1 = compute stack tip downwash (default value)
Buoyancy induced dispersion option
0 = do not compute buoyancy induced dispersion
1 = compute buoyancy induced dispersion (default value)
Ambient air temperature (Kelvin)
Mixing height (m)
Receptor height above the ground surface (m)
Default option
0 = do not use default values
1 => use default values
Dispersion option
1 = use urban dispersion coefficients
2 = use rural dispersion coefficients
* New variables added for PTPLU-2.0.
Variable name
I0PT(1)
I0PT(2)
I0PT(3)
T
HL
Z
IDFLT*
MUOR*
TABLE 4. INPUT DATA FOR THE PTPLU-2.0 TEST CASE.
0,1,1,278.,1500.,2.,0,2
7.,0.07,0.07,0.10,0.15,0.35,0.55
PTPLU EXAMPLE RUN - INPUT BY T. PIERCE 7/9/86
1000. ,200. ,450. ,20. ,5.
4
-------
FORTRAN CODING CHANGES
This section lists those FORTRAN coding changes that are necessary
for the original version of PTPLU (contained in Pierce et al., 1982) to
correspond to PTPLU, Version 2.0. Users who already have UNAMAP, Version
6, do not need to modify their PTPLU program.
MAIN Program
Replace line PLB00010 with
C PTPLU-2.0 (DATED 86196)
Insert after line PLB00510
C IDFLT DEFAULT OPTION
C
C MUOR DISPERSION
C
Replace line PLB01260 with
COMMON /MS/ KST,X,SY,SZ,MUOR
Replace line PLB01320 with
&(6,14),AH2(6,14),UZ(6,14),PL(6),WI(6),PLL(6,2)
Insert after line PLB01330
DATA PLL/.15,.15,.20,.25,.30,.30,.07,.07,.10,.15,.35,.55/
Replace lines PLB01380 through PLB01410 with
5432 URITE('1',2IX,'PTPLU-2.0 (DATED 86196)')
Replace lines PLB01420 and PLB01430 with
C READ CARD TYPE 1, OPTIONS, TEMP, MX HT, RECEPTOR HT, IDFLT, MUOR
READ(IRD,*)(I0PT(I),I=1,3),T,HL,Z,IDFLT,MUOR
5
0:NO DEFAULT
1:DEFAULT
1:URBAN (BRIGGS)
2:RURAL (PG)
-------
Insert after PLB01500 the following lines
IF (IDFLT.EO.O) GO TO 18
C
DO 15 I = 1,6
15 *PL(I) => PLL(I.MUOR)
IOPT(l) => 0
IOPT(2) = 1
IOPT(3) = 1
Replace line PLB01510 with
18 DO 20 K = 1,6
Replace line PLB01710 with
WRITE(IWRI,463) I0PT(3),(PL(I),1=4,6),D
WRITE(IWRI,464) IDFLT,MUOR,Z
Replace lines PLB04630 through PLB04650 with
463 F0RMAT(1X,'I0PT(3) = ',11,' (BUOY. INDUCED DISP.)',30X,
&'D:',F4.2,', E:' , F4.2,', F:',F4.2,2X,'STACK DIAM. = ',
&F9.2,' (M)')
464 F0RMAT(1X, 'IDFLT =¦',12,' (1 = USE DEFAULT, 0 = NOT USE DEFAULT)'
&/1X,'MUOR =',12,1(1 = URBAN, ',
&' 2 = RURAL)'/'0***RECEPT0R HEIGHT*** =',F9.2,' (M)')
SUBROUTINE RCON
Replace line PLB04950 with
COMMON /MS/ KST,X,SY,SZ,MU0R
Replace lines PLB05470 and PLB05480 with
C CALL SIG TO OBTAIN VALUES FOR SY AND SZ
CALL SIG
6
-------
SUBROUTINE PH
Replace line PLB08030 with
COMMON /MS/ KST,X,SY,SZ,MUOR
SUBROUTINE PHX
Replace line PLB08770 with
COMMON /MS/ KST,X,SY,SZ,MUOR
SUBROUTINE TPMX
Replace line PLB07280 with
COMMON /MS/ KST,X,SY,SZ,MUOR
7
-------
REPLACE SUBROUTINE PSIG WITH SUBROUTINE SIG
C
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINE SIG PLB09220
SUBROUTINE SIG PLB09230
PLB09240
VERTICAL DISPERSION PARAMETER VALUE, SZ DETERMINED BY PLB09250
SZ = A * X ** B WHERE A AND B ARE FUNCTIONS OF BOTH STABILITY PLB09260
AND RANGE OF X. PLB09270
HORIZONTAL DISPERSION PARAMETER VALUE, SY-DETERMINED BY PLB09280
LOGARITHMIC INTERPOLATION OF PLUME HALF-ANGLE'ACCORDING TO PLB09290
DISTANCE AND CALCULATION OF 1/2.15 TIMES HALF-ARC LENGTH. PLB09300
COMMON /MS/ KST,X,SY,SZ,MUOR PLB09310
DIMENSION XA(7), XB(2), XD(5), XE(8), XF(9), AA(8), BA(8), AB(3), PLB09320
1BB(3), AD(6), BD(6), AE(9), BE(9), AF(IO), BF(IO) PLB09330
DATA XA /.5,.4,.3,.25,.2,.15,.1/ PLB09340
DATA XB /.4, .2/ PLB09350
DATA XD /30. ,10. ,3. ,1. ,.3/ PLB09360
DATA XE /40.,20.,10.,4.,2. ,1. , .3,.1/ PLB09370
DATA XF /60. ,30. ,15. ,7. ,3. ,2. ,1. ,.7,.2/ PLB09380
DATA AA /453.85,346.75,258.89,217.41,179.52,170.22,158.08,122.8/ PLB09390
DATA BA /2.1166,1.7283,1.4094,1.2644,1.1262,1.0932,1.0542,.9447/' PLB09400
DATA AB /109.30,98.483,90.673/ PLB09410
DATA BB /l.0971,0.98332,0.93198/ PLB09420
DATA AD /44.053,36.650,33.504,32.093,32.093,34.459/ PLB09430
DATA BD /0.51179,0.56589,0.60486,0.64403,0.81066,0.86974/ PLB09440
DATA AE /47. 618,35.420,26.970,24.703,22.534,21.628,21.628,23.331,2PLB09450
14.26/ PLB09460
DATA BE /0.29592,0.37615,0.46713,0.50527,0.57154,0.63077,0.75660,0PLB09470
1.81956,0.8366/ PLB09480
DATA AF /34.219,27.074,22.651,17.836,16.187,14.823,13.953,13.953,1PLB09490
14.457,15.209/ PLB09500
DATA BF /0.21716,0.27436,0.32681,0.41507,0.46490,0.54503,0.63227,0PLB09510
PLB09520
PLB09530
GO TO 9 PLB09540
PLB09550
PLB09560
PLB09570
PLB09580
PLB09590
PLB09600
PLB09610
PLB09620
PLB09630
PLB09640
PLB09650
P1.B09660
1.68465,0.78407,0.81558/
IF (MUOR.EQ.2)
MCELROY-POOLER URBAN DISPERSION PARAMETERS FROM ST. LOUIS
EXPERIMENT AS PUT IN EQUATION FORM BY BRIGGS.
X IS DISTANCE IN KM.
KST IS PASQUILL STABILITY CLASS.
SY AND SZ ARE IN METERS.
GO TO(2,2,3,4,5,5), KST
SY=320.*X/SQRT(1.+0.4*X)
SZ=240.*X*SQRT(1.+X)
GO TO 6
SY=220.*X/SORT(1.+0.4*X)
SZ=200.*X
8
-------
GO TO 6
4 SY=160.*X/SQRT(1.+0.4*X)
SZ=» 140. *X/S0RT( 1. +0.3*X)
GO TO 6
5 SY=1'10.*X/S0RT(1.+0.4*X)
SZ=80.*X/S0RT(1.+1.5*X)
6 IF (SZ.GT.5000.) SZ=5000.
RETURN
C
9 XY=X
GO TO (10,40,70,80,110,140), KST
C STABILITY A
10 TH=(24.167-2.5334*AL0G(X3O)/57.2958
IF (X.GT.3.11) GO TO~ 170 '
DO 20 ID=1,7
IF (X.GE.XA(ID)) GO TO 30
20 CONTINUE
ID=8
30 SZ=AA(ID)*X**BA(ID)
GO TO 190
C STABILITY B
40 TH=(18.333-1.8096*ALOG(XY))/57.2958
IF (X.GT.35.) GO TO 170
DO 50 ID=1,2
IF (X.GE.XB(ID)) GO TO 60
50 CONTINUE
ID=»3
60 SZ=AB(ID)*X**BB(ID)
GO TO 180
C STABILITY C
70 TH=(12.5—1.0857*ALOG(XY))/57.2958
SZ=61.141*X**0.91465
GO TO 180
C STABILITY D
80 TH=(8.3333-0.72382*AL0G(XY))/57.2958
DO 90 ID=1,5
IF (X.GE.XD(ID)) GO TO 100
90 CONTINUE
ID=6
100 SZ=AD(ID)*X**BD(ID)
GO TO 180
C STABILITY E
110' TH=(6.25-0.54287*ALOG(XY))/57.2958
DO 120 ID=1,8
IF (X.GE.XE(ID)) GO TO 130
120 CONTINUE
ID=9
130 SZ=AE(ID)*X**BE(ID)
GO TO 180
PLB09670
PLB09680
PLB09690
PLB09700
PLB09710
PLB09720
PLB09730
PLB09740
PLB09750
PLB09760
PLB09770
PLB09780
PLB09790
PLB09800
PLB09810
PLB09820
PLB09830
PLB09840
PLB09850
PLB09860
PLB09870
PLB09880
PLB09890
PLB09900
PLB09910
PLB09920
PLB09930
PLB09940
PLB09950
PLB09960
PLB09970
PLB09980
PLB09990
PLB10000
PLB10010
PLB10020
PLB10030
PLB10040
PLB10050
PLB10060
PLB10070
PLB10080
PLB10090
PLB10100
PLB10110
PLB10120
PLB10130
PLB10140
PLB10150
9
-------
C STABILITY F PLB10160
140 TH=(4.1667-0.36191*ALOG(XY))/57.2958 PLB10170
DO 150 ID=1,9 PLB10180
IF (X.GE.XF(ID)) GO TO 160 PLB10190
150 CONTINUE PLB10200
ID=10 PLB10210
160 SZ=AF(ID)****B,F(ID) PLB10220
GO TO 180" PLB10230
170 SZ=5000. PLB10240
GO TO 190 PLB10250
180 IF (SZ.GT.SOOO.) SZ=5000. PLB10260
190 SY=465.116*XY*SIN(TH)/COS(TH) PLB10270
C 465.116 =1000. (M/KM) / 2.15 PLB10280
RETURN PLB10290
C PLB10300
END PLB10310
10
-------
REFERENCES
Gifford, F., 1976: Turbulent diffusion - typing schemes: a review.
Nuclear Safety, 17, 68 - 85.
Irwin, J. S., 1979: A theoretical variation of the wind -pijq>fi}.e power-
law exponent as a function of surface roughness and stability.
Atmos. Environ., 13, 191 - 194.
jPierce, T. E. , D. B. Turner, J. A. Catalano, and F.-V. Ha le.i'->1-982.
PTPLU - A Sirigle Source Gaussian Dispersion Algorithm. - EP.A-600/
8-82-014, U.S. Environmental Protection Agency, Research Triangle
Park, NC. 99 pp.
Turner, D. B., and A. D. Busse. 1973. User's Guide to the Interactive
Versions of Three Point Source Dispersion Programs: PTMAX, PTDIS,
PTMTP. Preliminary Draft. (Available from NTIS as PB81-164-667).
U. S. Environmental Protection Agency, Research Triangle Park, NC.
11
-------
PTPLU-2.0 (DATED 661961
AH AIR QUALITY DISPERSION MODEL IN
SECTION 3. M01I-GUIDELIHE MODELS.
IN UHAMAP (VERSION 6) JUL 66
SOURCE: UJIAMAP FILE ON EPA'S UNIVAC AT RTP> NC.
m* (HUE***, iPTPLU fXAMPLE RUN
»>INPUT PARAMETERS<<<
INPUT BY T, PIERCE 7/9/66
«*KOPUOHS»«.» <
OH Tl^l -US Er OPTION
IF = 0, IGNORE OPTION
IOPT(l) = 0 (GRAD .PLUME RISC)
I0PT(2) = 1- (STACK) •OOJfflMASHJ
10PT(3) = t ( BUOYo INDUCED OISP. Is
IDFLT = 0 (1 = USE DEFAULT. 0 =, NO^.USE. PEFAULT)
HUOR = 2 (1 = URBAN. 2 = RURAU,
*ft«METEOROLOGYft«li
AMBIENT AIR TEMPERATURE r
MIXING HEIGHT =
^ITOIIETEIJf, HEIGHT, =
HIND; PROFILE, EXRONEMTS =
,278.00 4KI
1500.00 "(hi
•7-jOO CM
Ar-O*;
DWiS.
10
E:v FA .55
***SOURCE***
EMISSION.RAT£
STACK HEIGHT
EXIT .TEMP—
EXIT .VELOCITY
STAtK MAM.
1000.00 (G/SEC)
200.00 (Ml
.450.00 IK)
20.'00 (M/SECI
:$.;oo (H>
*»*RECEPTOR HEIGHT*** =
2.00 (Ml,
VOLUMETRIC rF LOU = - 392.70 (M**3/§Ep)
»>CALCULATED PARAMETERS***
BUOYANCY FLUX PAtytflETJER =
468.52 {t1**4/SEC**3)
PTPLU EXAMPLE. RUN - INPUT BY T. PIERCE 7/9/64.
STABILITY
1
1
1
1
1
1
1
STABILITY
2
Z
2
2
2
Z
Z
Z
Z
STABILITY
3
3
3
3
/mmUINDS CONSTANT. Ui"ril HEIGHT"***
HlUtt SPEED MAX CONC DIST.0F MAX WJUME HT
I ll/SEC J,
.50
•BP.
1.00
1.50
2.00
2 $50
3r00
IG/CU «)
.0000
.G.QOO
.0000
3.9137-004
3.,3549-004
3^05-004
3.2733-004
(KJIt
.000
.000
.000
1.664
1.551
1.246
1.137
(11)
3299.5121
213,7.2(2)
1^9.7(2)
,123|3.2( 2}
97,4.9(2)
81,9.9(2)
?L6.6(2)
KWiD SPEED
(M/SE£1
cSP
• 6fl
l.og
1.50
2.00
,2.5fi
4.00
5.00
^**WINDS CON^ANT MITH HEl(jHT«J<**
MAX CONC
((,/CU
•flftOO
.0000
.0000
1.5562-004
J,. 3266-004
1*3650-004,
Irfi472-M^
1.5571-004
1.6102-004
DIST OF MAX
:W"
.000
.000
7.765
6.170
*.676,
t-W
3.427
3.025
H*|»*STAjCKTOP Wlrt>S (EXTRAPOLATES FROM
' MWft SPEEP. if,fx cqjii;.' oist of max.
W-
|IV5E£V
xloi
1:26
U90
zM
3-79.
, w*
4 ,.2,6.26-004
;3,W-004
30A52-004
3.M70-004
'3.3)40-004
(KM)
.000
.000
1.693
1.562
1.236
1.115
1.050
PLUME HT
.CM)
3299.5(2)
*137.2(2)
|7'»9.7I2)
,1233.2(2)
<>74.9(2)
,619.9(2)
507.4(2)
5(|9.9(2)
«*«S«itACK:T0(» (4180$ (EXTR^Ol^TEO FROM
HIND SP£g0 t|4X CONC' OIST OF MAX
" J " '(G/CU M) """
.paoo
.oboo
(M/SEC)
:63,
1.0L,
1.26
1.9fc
2.53,
3.1ft
MB
6,32
K7943-004
1.3^63-004
1.3700-004
fcfi00"!!!?'
KKftW
1^^91-004
(KM)
.000
.000
7 J 999
6.625
4.632
3.956.
2.664
«h««H{NDS CONSJAHIJ.MITH HEIGHT****
H|HD ?P^O COHC QJST OF MA8 fLlfllE HT
IM/?E5>' (G/CU M) (KM) .(Ml
2.00 8.2076-005 14.653 974.9(2)
2.50 8.6390-005 11.076 819.9(21
3.00 9.5617-005 9.543 716.6(2)
4.00 1.0570-004 7.754 587.41 ?>
(M/^ECJ
2.60
7:0 METEK3)****
PLUME HT
. ,(M)
?6H>.''2f2l
1^2.0(2)
1425.612)
i9x7.ll2 k
$12.812)
690.212)
6^8.5(2)
7J8;HETERS)««h»
>W'E HT
,(M)
£$51.2(2)
17^2.0(2)
i«5.6(2)
1Q17.K2)
'612.8(2)
690.2(2)
.5*2)
.4(2)
^5.1(2)
"IS:!
«M»SIACK.TQi? HIND? (EXTRAPOLATED FROM
HIS3 SPEED MAX CONC DIST Or MAX
IG/CU M) ' (KM)
9:2)353-005 10.077
3.50 1.0128-004 8.522
4.19 1.0710-004 7.507
5.59 1.1349-004 6.249
7r0 METERS)****
?L^2 SIT
(M)
754.212)
643.3.2)
569.4(2)
477.1(2)
>
TJ
m
25
O
H
X
H
M
W
H
O
a
H
c3
H
-------
5.09 },JU46-0p4;
7. ft J, J6*!$6-0p4r
10.00 i.ljlltffft..
12.00 1.0928-004
15.00 1»Q373tO04{
6.696
5-A?i
4.255
3.864
509.9(2)
421.412.1
329.1(2)
301.612)
6.99, 1,1555-0(1$
i,0538TOQ'4
1.0068-0J4
20.97 9.3312:005
5.500
4.64?
y3.-.9'9
3.717
3.434
421.7(2)
,*56.3(?)
il9%uH
i09.'3t2l
266.4(8)
STABILITY
CJ
STABILITY
5
5
5
5
5
MIND SPEED
(M/SEC)
.50
.SO
l.CO
1.50
2.00,
2-5ft
3.00
4.00
5.00
7.00
10.00
12.00
15.00
20.00
•«4«HiNDS.caMSTAftr.,UITH HEJGHT»**»
,|JAX fOIIC
IG/Cy M)
>9300,
.0060
fflOOO
9,.l999O*O09r
<».^90*009,
1.62^5-005,
1.9J70r005
2.4067-005
2;,^8017095
3??5
50.450
39.262
29.999
22.750
20.121
17.426
14.706
PLUME HT
(M) .
3299.51|i
2137.2m
1749.7J?),
1233.212)
974.9(5),;
fll-VM
567.4(2)
509.9(2.)-
421.4((2))'
355.0 lU
329.1/2)
301.612)
272.
H»*»STACK TOP UIDQS (
HIND SPEED MAX
MIND SPfiEfl
(M/SEC)
2.00
3.00
4.00
S,.fiO
H»»»f|lKDS CCHSTANT MITH
MAX COMC
(P/CU M)
3.9085-005
3.5A56T00£.
3.2630-005
2.8441-005
2.5432-005
DIST OF M,AX
>JKM) t
88.940(1)
80.409(11
74.290
65.882
<60.260
PLUME iiT,
,(M)\
Sao. 0(2)
,367.1(2)
357.3(2)
342.9(2)
•hkkUIIIDS CONSTANT UITH HEIGHT""**
STABILITY MIND SPEED MAX COIIC DI^T.pFMAX PLUME HT
IM/SEC)
.2. OP
<2.50
S.iOO
4.-00,
5.00
(G/CU M)
9.9990*009
9.99904009:
9.9990*009
9j9990«009i
9.9990«00q
(KM)
9P9.999(3)
999„995»(,3|>
£99.999(3)
999.999(3)
999.999(3),
(M)
349.4(2)
338.7(2)
330.5(2)
(M/SEC)
8.27
11.57
16.53
19.84
24.80
33.07
IG/CI
^000r 'd
9.?99olo0?,
9:9990i00?1
1.6112-005
;rl)Q08-0p5
»
3t3882r005,
3,4511-Ofti,
3.3640^09$;
3L.J826^0)05.
TED FROM
§T OF MAX
(KM)
.000 „
$99,999(3)
999.999(3)
92.700
63.530
48.^2.
ft
26.220
20.600
16.400
14.772
13.204
11.699
m»*STACK Tip.JUtf>? (EX^APOI^TED FROM.
MIND sprtb , MAX cq)/£ jatST of mx
#v.H i'lii
8.08
9.70
12.93
1.9667-005
1.7767-005
1.5021-005
1.3611-005
50.352
47.220
42.670
.3J1.999
METERS)*<*»
»074.6(
387.5(
10 METErsihMi
.PLUHE HJ
(M)'
'321.812f)'
313.0(2)
306.4(2)
296.6(2)
287.1(2)
««m»sta£k Tdp Minds (extrapolated from 7.0 meters)«**»
MIND SPEED MAX CONC DIST OF MAX
(M/SEC)
12.64
15.60
J8>,96.
v iS. 28,
'31 .M
(G/CU M)
9.9990*009
9.9990*009
9.a93P*,0p9
;o'2S«^o«
.9.9990*009
(KM)
999.999(3)
999.999(31
S9V. 949(3),
J9J^9MiV
PLUME HT
(H)
280.8(2)
272.7(2)
266.1(21
i57.(M|j
250 .sui)!
(1) THE DISTANCE TA THE POINT OF MAXIMUM CONCENTRATIOH .IS..SO, CREAT. THAT. THE. SAME STABILITY IS.NQT WELX
¦.«*ft,*¥RSWJr LONG ENOUGH FOR THE PLUHE TO TRAVEL TH*5 FAR.
>
~D
PI
25
O
M
X
O
O
a
9
c
n
o.
(2) TH&RlllME -IS. CALCULATED TO BE AT A HEIGHT WHERE CARE SHOULD BE USED IN INTERPRETING THE COMPUTATION.
(3) NO COMPUTATION MAS ATTEMPTED FOR THIS HEIGHT AS THE POINT OF MAXIMUM CONCENTRATION IS GREATER THAN 100 KILOMETERS
FROM THE SO.i)CE.
------- |