PB89-192033
Technology Evaluation Report
SITE (Superfund Innovative Technology Evaluation)
Program Demonstration Test. Terra Vac in situ
Vacuum Extraction System, Groveland, Massachusetts. Volume 2
Foster Wheeler Enviresponse, Inc., Livingston, NJ
Prepared for:
Environmental Protection Agency, Cincinnati, OH
Apr 89
1
-------
JuS*-15*0j j
EPA/540/5-89/003b
April 1989
TECHNOLOGY EVALUATION REPORT:
SITE PROGRAM DEMONSTRATION TEST
TERRA VAC IN SITU VACUUM EXTRACTION SYSTEM
GROVELAND, MASSACHUSETTS
VOLUME II
RISK REDUCTION ENGINEERING LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U. S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
TECHNICAL REPORT DATA
(Please reed Instructions on Ihe reverse before completing)
TO7&T(f/5-89/003b
3 RECIPIENT'S ACCESSION NO.
PB-89-192033
* TITLE ANO SUBTITLE
?chnology Evaluation Report: SITE Program Demonstration
iest»Terra Vac In Situ Vacuum Extraction System,
Groveland, Massachusetts (Volume II)
5. REPORT DATE
April 1989
6. PERFORMING ORGANIZATION CODE
AUTHOR(S)
•ter A. Michaels
8.PERFORMING ORGANIZATION REPORT NO.
* PERFORMING ORGANIZATION NAME ANO ADDRESS
>ster wheeler Enviresponse, Inc.
Livingston* New Jersey 07039
10. PROGRAM ELEMENT NO.
1). CONTRACT/GRANT NO.
68-03-3255
. SPONSORING AGENCY NAME AND ADDRESS
Usk Reduction Engineering Laboratory Cincinnati, Ohio
Office of Research and Development
.S. Environmental Protection Agency
<_incinnnti, Ohio 45268
13. TYPE OF REPORT ANO PERIOO COVERED
14. SPONSORING AGENCY COOE
EPA/600/14
i*. SUPPLEMENTARY NOTES
roject Manager: Mary K. Stinson (201) 321-6683
16. ABSTRACT •"
An evaluation was made of the performance of Terra Vac Inc.'s vacuum extraction
ysten during a 56-day demonstration test run at VaJley Manufactured Product Company's
site in Groveland, Massachusetts. This site is part of the Groveland Wells Superfund
-ite, a source of drinking water for the town of Groveland, and is contaminated mainly
y trichloroethylene. The report includes a detailed discussion of the operations of
the vacuum extraction unit, a process description and diagram of the system and a
summary of the sampling and analytical protocols. The final sampling and analytical
eport prepared by the sampling and analytical contractor, including the quality
ssurance project plan, is an integral part of this document. An overall cost
evaluation of the process is included and conclusions are drawn regarding the efficiency
-f the process and its applications to other Superfund sites across the country,
esults of the demonstration test are promising, and it is felt that a site remediation
can be accomplished using this technology. Both shallow soil gas and soil VOC
concentrations showed a decline with time which was correlatable. The process worked
ell in soils of both high and low permeability. The system operation was very reliable
uring the 56 day demonstration test run and the only operation attention required was
to replace the spent activated carbon canisters with fresh canisters.
17i KEY WOROS ANO DOCUMENT AMALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDEO TERMS
c. COSati Field/Croup
1
|18. DISTRIBUTION STATEMENT
elease to Public
L ————J
19. SECURITY CLASS /This Report)
Unclassified
31. NO. OF PAGES
335
30. SECURITY CLASS (T*lt pofi
Unclassified
33. PRICE
EPA Fna 3330—1 (R«*. 4-77) pneviou* coition it e(iou(T(
-------
NOTICE
THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING AGENCY
ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE
ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF
MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
I O.
-------
NOTICE
The information in this document has been funded by the U.S. Environmental
Protection Agency under Contract No. 68-03-3255 and the Superfund Innovative
Technology Evaluation (SITE) Program. It has been subjected to the Agency's
peer review, and it has been approved for publication as an EPA document.
Mention of trade names or commercial products does not constitute an
endorsement or recommendation for use.
i i
-------
FOREWORD
The Superfund Innovative Technology Evaluation (SITE) program was author-
ized in the 1986 Superfund amendments. The program is a joint effort between
EPA's Office of Research and Development and the Office of Solid Waste and
Emergency Response. The purpose of the program is to assist the development
of hazardous waste treatment technologies necessary to implement new cleanup
standards which require greater reliance on permanent remedies. This is
accomplished through technology demonstrations which are designed to provide
engineering and cost data on selected technologies.
This project was a demonstration of Terra Vac Inc.'s in situ vacuum
extraction process on the property of an operating machine shop. The property
is part of the Groveland Wells Superfund Site in Groveland, Massachusetts.
Information on the performance and cost of the process was obtained as the
result of extensive field observations, data collection, and sampling and
analytical work. This information may be employed in assessments at other
sites. The documentation of the demonstration will consist of two reports.
This Technology Evaluation Report describes the field activities and labor-
atory results. An Applications Analysis Report will follow and provide an
interpretation of the data and conclusions on the applicability of the
technology.
Additional copies of this report may be obtained at no charge from EPA's
Center for Environmental Research Information, 26 West Martin Luther King
Drive, Cincinnati, Ohio, 45268, using the EPA document number found on the
report's front cover. Once this supply is exhausted, copies can be purchased
from the National Technical Information Service, Ravensworth Building,
Springfield, VA, 22161, (702) 487-4600. Reference copies will be available
at EPA libraries in their Hazardous Waste Collection. You can also call the
SITE Clearinghouse hotline at 1-800-424-9346 or 382-3000 in Washington, DC to
inquire about the availability of other reports.
Margaret M. Kelly, Acting Director Alfred W. Lindsey, Acting Director
Office of Program Management Office of Environmental Engineering
and Technology and Technology Demonstration
iii
-------
ABSTRAC1
An evaluation was made of the performance of Terra Vac Inc.'s vacuum
extraction system during a 56-day demonstration test run at Valley Manufac-
tured Product Company's site in Groveland, Massachusetts. This site is part
of the Groveland Wells Superfund site, a source of drinking water for the
town of Groveland, and is contaminated mainly by trichloroethylene.
The report includes a detailed discussion of the operations of the vacuum
extraction unit, a process description and diagram of the system, and a sum-
mary of the sampling and analytical protocols. The final sampling and analy-
tical report prepared by the sampling and analytical contractor, including
the quality assurance project plan, is an integral part of this document. An
overall cost evaluation of the process is included and conclusions are drawn
regarding the efficiency of the process and its applications to other
Superfund sites across the country.
Results of the demonstration test are promising, and it is felt that a
site remediation can be accomplished using this technology. Both shallow
soil gas and soil VOC concentrations were reduced substantially and wellhead
VOC gas concentrations showed a decline with time, which was correlatable.
The process worked well in soils of both high and low permeability.
The system operation was very reliable during the 56-day demonstration
test run, and the only operation attention required was to replace the spent
activated carbon canisters with fresh canisters.
iv
-------
VOLUME II - CONTENTS*
aword i i i
HUitract iv
Figures vi
i les viii
1 deviations and Symbols x
Conversions xii
* ">nowledgements xiii
1. Introduction 1
!. Project Summary 3
Results Summary 10
J. Quality Assurance 56
\ppendices
A. Soil Borings 125
B. Drillers Logs 128
.. Engineering Borings 149
J. Shallow Soil Gas 205
E. Process and Soil Gas 213
Process Parameters 269
i. Flow Rates and Flux Rates 278
H. Process and Soil Gas Analytical SOPs 300
olume I is the evaluation of the technology and includes an Executive
nummary as well as sections on the description of the process, the
sampling and analysis program, the performance data and evaluation and
conomics.
v
-------
FIGURES
Number Page
2-1 Soil borings 6
2-2 Shallow soil gas monitoring locations 7
2-3 Process schematic 8
3-1A Extraction Well #1 results from soil boring program 21
3-1B Vacuum Monitoring Well #2 results from soil boring program ... 22
3-1C Extraction Well #2 results from soil boring program 23
3-10 extraction Well #3 results from soil boring program 24
3-1E Vacuum Monitoring Well #3 results from soil boring program ... 25
3-1F Extraction Well #4 results from soil boring program 26
3-2A Extraction Well #1 shallow 27
3-2B Extraction Well #1 deep 28
3-2C Extraction Well #2 shallow 29
3-2D Extraction Well HZ deep 30
3-2E Extraction Well #3 shallow 31
3-2F Extraction Well #3 deep 32
3-2G Extraction Well #4 shallow 33
3-2H Extraction Well #4 deep 34
3-21 Vacuum Monitoring Well #1 shallow 35
3-2J Vacuum Monitoring Well #1 deep 36
3-2K Vacuum Monitoring Well #2 shallow 37
3-2L Vacuum Monitoring Well #2 dee > 38
3-2M Vacuum Monitoring Well #3 shallow 39
3-2N Vacuum Monitoring Well #3 deep 40
vi
-------
FIGURES (continued)
Number Page
3-20 Vacuum Monitoring Well #4 shallow 41
3-2P Vacuum Monitoring Well #4 deep 42
3-2Q Extraction Well #1 shallow 43
3-2R Extraction Well #1 shallow 44
3-2S Extraction Well #1 deep 45
3-2T Extraction Well #1 deep 46
3-3A Pretreatment shallow soil gas concentration 48
3-3B Mid-treatment shallow soil gas concentration 49
3-3C Posttreatment shallow soil gas concentration 50
vi i
-------
TABLES
Number Page
3-IA Comparison Table/Extraction We7T §1 12
3-18 Comparison Table/Extraction Well #2 13
3-1C Comparison Table/Extraction Well #3 14
3-1D Comparison Table/Extraction Well #4 15
3-1E Comparison Table/Monitoring Well #1 16
3-1F Comparison Table/Monitoring Well §2 17
3-1G Comparison Table/Monitoring Well #3 IS
3-1H Comparison Table/Monitoring Well #4 19
3-2 Grovel and Separator Water GC Data 51
3-3 Groveland Carbon Canister GC Data 55
4-1 Precision of Analysis of Soil Samples for pH 58
4-2 Precision of Soil Oil and Grease Analysis 59
4-3 Results of Triplicate Analysis of Soil Samples for
Oil and Grease 60
4-4 Results of Analysis of Oil and Grease LCSs 62
4-5 Precision of Analysis of Soil for TOC 63
4-6 Accuracy of Soil TOC Analysis 64
4-7 Precision Results uf Replicate Injections (GC/FID) 65
4-8 Precision Results of Duplicates (GC/FID) 69
4-9 LCS Percent Recovery - GC/FID 71
4-10 Precision Results of Replicate Inject (GC/ECD) 74
4-11 Precision Result of Onsite Duplicate Sampling and
Analysis (GC/ECD) 78
4-12 LCS Percent Recovery - GC/ECD 80
vi i i
-------
TABLES (continued)
Number Page
4-13 Precision of Sampling and Analysis of Carbon Canisters 84
4-14 Accuracy of Analysis of Carbon Canisters 85
4-15 ICS and Surrogate Recovery for Analysis of Separator Liquid . . 86
4-16 Results of Analysis ov Soil Matrix Spikes by Purge and
Trap GC/MS 37
4-17 Surrogate Recovery of Purge and Trap Analysis of Soil 88
4-18 Precision of Soil Sampling and Analysis by Purge and Trap GC/MS 89
4-19 Results of Analysis of TCLP Matrix Spikes by Purge and Trap GC/MS 91
4-20 Surrogate Recovery of TCLP Analysis 92
4-21 Precision of TCLP Sampling and Analysis 93
4-22 Results of Analysis of Headspace LCSs 94
4-24 Results of TCLP Holding Time Study 12C
ix
-------
ABBREVIATIONS AND SYMBOLS
API American Petroleum Institute
ASTM American Society for Testing and Materials
CERCLA Comprehensive Environmental Response, Compensation, and Liability
Act
cm/sec centimeters per second
cu ft cubic feet
cu yd cubic yard
DCE trans 1,2-dichloroethylene
ECD electron capture detector
EPA Environmental Protection Agency
EW extraction well
FID Flame ionization detector
GC/MS Gas Chromatograph/Mass Spectrometer
g/ml grams per milliliter
gmol gram mole
GPM gallons per minute
in Hg inches of mercury
KPa kilopascal
Kw kilowatt
m/sec meters per second
MeCl methylene chloride
mg/kg milligrams per kilogram
mg/1 milligrams per liter
MM monitoring well
NPDES National Pollutant Discharge Elimination System
NPL National Priorities List
x
-------
ABBREVIATIONS AND SYMBOLS (cont.)
OLM
Organic Leachate Model
ORD
Office of Research and Development
OSHA
Occupational Safety and Health Act
OSWER
Office of Solid Waste and Emergency Response
PAHs
Polycyclic Aromatic Hydrocarbons
ppb
parts per bill ion
ppm
parts per million
ppmv
parts per million by volume
ppmw
parts per million by weight
psi
pounds per square inch
RCRA
Resource Conservation and Recovery Act
RI/FS
Remedial Investigation/Feasibility Study
ROD
Record of Decision
RREL
Risk Reduction Engineering Laboratory
SARA
Superfund Amendments and Reauthorization Act of 1986
SCFM
standard cubic feet per minute
SITE
Superfund Innovative Technology Evaluation Program
TCE
trichloroethylene
TCLP
Toxicity Characteristic Leaching Procedure
TOC
Total Organic Carbon
TRI
1,1,1-trichloroethane
u
micron
ug/1
micrograms per liter
VOC
Volatile Organic Compound
VHS
Vertical and Horizontal Spread Model
xi
-------
Area:
CONVERSIONS
English (US) Metric (SI)
1 ft2 9.2903 x 10'3 m2
1 in 2 6.4516 cm2
Flow Rate: 1 gal/min 6.3090 x 10"^ m3/s
1 gal/min 6.3090 x 10"2 L/s
1 Mgal/d 43.8126 L/s
1 Mgal/d 3.7854 x 103 m3/d
1 Mgal/d 4.3813 x 10"2 m3/s
Length: 1 ft 0.3048 m
1 in 2.54 cm
1 yd 0.9144 m
Mass: 1 lb 4.5359 x 10"2 g
1 lb 0.4536 kg
Volume: 1 ft3 28.3168 L
1 ft3 2.8317 x 10"2 m3
1 gal 3.7854 L
1 gal 3.7854 x 10"3 m3
ft = foot, ft2 = square foot, ft3 = cubic foot
in = inch, inz = square inch
yd = yard
lb = pound
gal = gallon
gal/min = gallons per minute
Mgal/d = million gallons per day
m = meter, mz = square meter, m3 = cubic meter
cm = centimeter, cm2 = square centimeter
L = liter
g = gram
kg = kilogram
m3/s = cubic meters per second
L/s = liters/sec
m3/d = cubic meters per day
xi i
-------
ACKNOWLEDGMENTS
This report was prepared under the direction and coordination of Mary
Stinson, EPA SITE Program Manager in the Risk Reduction Engineering Laboratory
- Cincinnati, Ohio. Contributors and reviewers for this report were Mr. James
Ciriello of EPA Region I - Remedial Project Manager for the Groveland
Superfund site; John Kingscott from the Office of Solid Waste and Emergency
Response; Greg Ondich from the Office of Research and Development; James Malot
and Neil James from Terra Vac Corporation; and Patrick Ford and James Thomas
from Alliance Technologies, Inc.
This report was prepared for EPA's Superfund Innovative Technology
Evaluation (SITE) Program by Peter A. Michaels of Foster Wheeler Enviresponse,
Inc. for the U.S. Environmental Protection Agency under Contract No.
68-03-3255.
xiii
-------
SECTION 1
INTRODUCTION
Alliance Technologies Corporation was subcontracted by Enviresponse, Inc
to conduct sampling and analysis during the Terra-Vac In-situ Vacuum
Extraction Project in Groveland, Massachusetts. The Terra-Vac process was
demonstrated and tested under the U S. Environmental Protection Agency's
(EPA's) Superfund Innovative Technology Evaluation (SITE) program.
The major objectives of the demonstration were: 1) determine the ability
of the technology to reach an acceptable low level of contaminant
concentration in the soil; 2) to assess the effectiveness in various soil
types; 3) to gather capital and operating costs; and 4) to gain performance
and reliability information. A secondary objective was to establish a
correlation between volatile organic concentrations in soils and concentration
in extracted vapor.
The site selected for this demonstration was the Valley Manufactured
Products facility in Groveland, Massachusetts. The Valley site is the
location of an operating machine shop which manufactures valves, screws, and
other industrial products. Soil contamination at the site is apparently the
result of an underground storage tank leak and improper disposal of various
chlorinated solvents used at the machine shop.
The geology of the site can be basically described as three distinct
zones. Glacial till is overlain by a regional variable silty, clay lens.
This clay lens may be acting as a barrier in preventing contamination from
entering the glacial till. An upper sand zone consisting of top soil, fill
(as evidenced by brick and cinders), and outwash sands have been shown to be
contaminated with various concentrations of methylene chloride (MeCl),
1,2-trans-dichloroethylene (DCE) , 1,1,1-trichloroethane (TRI),
trichloroethylene (TCE) and tetrachloroethylene (PCE).
1
-------
Alliance's role during this program was to conduct the field sampling and
analytical work. Alliance established an onsite laboratory equipped with a
GC/FID and GC/ECD and other support equipment. As well as being a center for
all data gathering during the demonstration, this onsite lab also allowed for
very short holding times for the analyses of process and soil gas samples
(24-48 hours). Analysis of soil borings, process liquids and carbon was
conducted at the Alliance Analytical Laboratory in Bedford, Massachusetts
The following sections of this report summarize Alliance's contribution
to the program. The report has been organized into three volumes. Volume I
contains the bulk of the study results and has been subdivided as follows
Section I contains an Introduction which summarizes the project objectives.
Section 2, Project Summary describes a chronology of project activities and
details the project scope of work Section 3, Results presents a compiliation,
in summary form, of all results obtained during the program. Section h,
presents the Quality A-.surance/Quality Control procedures followed and results
obtained. The remainder of this volume contains Appendices A through H which
includes all analytical data, process parameters and the SOP's for process and
soil gas analysis.
Volume II, Field Data Sheets, contains copies of the original daily
sample data sheets which were used to record process conditions and sampling
information. In addition, copies of the chain-of-custody sheets used during
the project are also included. Volume III, Daily Sample Log, contains the
daily log book used to record project activity at the site.
2
-------
SECTION 2
PROJECT SUMMARY
PROJECT BRIEF
On July 7, 1987, Alliance Technologies Corporation was awarded the
sampling and analysis portion of the Terra Vac, Inc. In-situ Vacuum Extraction
Technology SITE Demonstration Project to be conducted at the Valley
Manufactured Products site in Groveland, Massachusetts. Alliances role in
this project involved providing sampling and analytical support before, during
and after the active treatment phase of the demonstration project.
Shortly after the project award date, a project kick off meeting was held
on August 13, 1987 at Terra-Vac's Tampa Florida office. At the meeting, the
overall project scope and logistical considerations were discussed. One
specific topic involved the length of time for the Active Treatment phase
Initially, Active Treatment was to involve 14-days of continuous operation
during which volatiles would be stripped from in-situ soils. It was decided,
however, that a 14-day period would not be sufficient to fully demonstrate the
effectiveness of the process. It was therefore decided to increase the active
treatment phase to 28 days. Ultimately it was decided to extend the active
treatment period to 56 days.
Preparation of the Quality Assurance Project Plar followed and Revision 0
was submitted on September 1, 1987. Revision 1 to the QAPP was submitted on
October 10, 1987.
The field program was originally scheduled to start on October 5, 1987,
but a series of delays postponed field activities until November 1987. This
initial delay was caused primarily by problems encountered with scheduling the
pretreatment drilling contractor.
3
-------
The following is a presentation of the chronology of field activities
from mobilization through demobilization:
PROJECT SCOPE
The field portion of this program was broken down into six distinct
phases. These phases were:
During Pretreatment, Terra Vac installed the extraction wells (EW 1-4),
the vacuum monitoring wells (VMW 1-4), and assembled the vacuum extraction
system. Continuous split spoon soil samples were collected from each of the
eight borings and analyzed for TCLP (ZHE), purge and trap volatiles, head
space volatiles, pH, TOC, and oil and grease. In addition. Alliance arranged
to have two additional borings completed for collection and analysis of
engineering parameters.
November 1987
December 1-14, 1987
December 11-15, 1987
December 16-18, 1987
Dec. 18 - Jan. 7, 1988
January 7, 1988
January 8-15, 1988
January 15, 1988
Jan. 15-Feb. 10, 1988
February 11, 1988
February 26, 1988
February 29, 1988
March 11, 1988
March 14-16, 1988
March 15-17, 1988
March 18, 1988
April 4, 1988
April 5, 1988
April 18, 1988
April 19-26, 1988
April 19-22, 1988
April 26-29, 1988
Site mobilization
Pretreatment soil borings and well installation
Pretreatment shallow soil gas samples
Well commissioning
Operations suspended due to holidays
Commissioning continues
Active treatment
Treatment aborted
System redesigned
Active treatment Phase 1, day 1
Separator pump malfunction, system off
Pump repaired, system on
System off for Mid-Treatment
Soil boring program
Shallow soil gas samples collected
System on, active treatment Phase 2
Separator pump malfunction, system off
Pump repaired, system on
System off - post treatment
Soil boring program
Shallow soil gas samples collected
Site Demobilization
Pretreatment
Commissioning
Active Treatment 1
Mid-Treatment
Active Treatment 2
Post Treatment
4
-------
During Commissioning, process and soil gas samples were collected from
each of Che extraction veils and process sampling points. Soil gas samples
were also collected using shallow bar-punch probes and from the shallow and
deep monitoring well points. All samples were analyzed onsite for the
specified volatile organic compounds. Samples of the separator drain water
were also collected for volatiles analysis.
Active Treatment (Active Treatment 1 and 2) involved collecting process
gas samples, separator waters, and spent activated carbon samples during the
56-day period that the Terra-Vac unit was in operation actively extracting
volatiles from the in-situ soil matrix. Gas samples were collected from each
of the extraction and monitoring wells, the separator inlet, the primary
carbon outlet and secondary carbon outlet. These samples were analyzed onsite
for selected volatile organics. Separator water and spent activated carbon
samples were collected whenever the separator tank was scheduled for pick-up
and when the carbon units were taken off line respectively. Process
parameters were also measured during each day of active treatment. These
parameters included moisture at the separator inlet, monitoring well vacuum,
process flows, process gas stream temperature, ambient temperature and
barometric pressure.
Mid-Treatment was conducted at the half way point of Active Treatment
(between Active Treatment 1 and 2). The purpose of the Mid-Treatment was to
assess the effectiveness of the Terra Vac system at the mid point of the
Active Treatment phase. During Mid-Treatment, four soil borings were drilled
and soil samples collected for analysis. Analytical parameters were identical
to those for Pretreatment soil samples. Shallow soil gas samples were also
collected as in Pretreatment.
Post Treatment was conducted at the completion of Active Treatment 2.
During Post Treatment, eight (8) borings were advanced and samples collected
for the identical parameters analyzed during Pre and Mid-Treatment. As
before, shallow soil gas samples were collected and analyzed. Two additional
engineering borings were also advanced and analyzed for the physical
parameters outlined in Pretreatment.
Figures 2-1, 2-2, and 2-3 illustrate the locations of all extraction
wells and boreholes, the shallow bar punch locations and the process gas
stream locations sampled during commissioning and pre, aid, and post
treatment.
5
-------
10
20
30
40
¦tee i
CO
t—
O
ZD
O
o
cr
Q_
O
UJ
0c
ZJ
h-
o
<
u_
3
<
UJ
cr
<
LlI
o
<
cc
o
< to
>
UJ
_)
£
E«
o
M
-------
M4
Eo
# Ml
I M3
EBl
~
EB3
o
tart
EB2
c
EE 4
~
40 X
« x
*
E2_
Washington Street
LEGEND
O EXTRACTION WELLS
• VACUUM MONITORING WELLS
x PUNCH BAR
~ ENGINEERING BORINGS
— MANIfOLD
Figure 2-2. Shallow Soil Gas Monitoring locations.
7
-------
CEMENT WALL
STACKOUTLET
VACUUM
PUMP
SAMPLE
LOCATION 4
SAMPLE -
LOCATION 3
SECONDARY
V CARSON
1 CANISTER
. SAMPLE
LOCATION 2
PRIMARY
CARBON
CANISTER
—O EW 4D
—o F.W 4S
LEVEL
CONTROL
PUMP
FLEX HOSE
--O FW 1D
—O EW 1S
4 INCH PVC
MANIFOLD
1,000 GALLON
SEPARATOR
TANK
—O EW 3D
—O EW 3S
SAMPLE "
LOCATION 1
FLEX HOSE
—O EW 2D
—O EW2S
SEPARATOR
INLET
2,000 GALLON
SURGE TANK
OUTSIDE
BUILDING
LEGEND
SAMPLE LOCATIONS
1 = Separator Inlet
2 s Primary Carbon Outlet
3 = Secondary Carbon Outlet
4 = Stack Outlet
MS3/3/D
Figure 2-3. Process schematic.
8
-------
Figure 2-1, Soli Borings, shows the locations of the extraction wells,
monitoring wells and engineering borings. Figure 2-2, Shallow Soil Gas
Monitoring Locations, illustrates the locations of the bar punch probe
sampling locations and the gas monitoring wells with respect to extraction
Well No 1 (El). Figure 2-3, Process Schematic provides an illustration of
the Terra-Vac system as it was configured for the majority of the project and
also indicates the locations of all process gas stream sampling points. These
locations, as indicated in the schematic, are as follows:
Sample Location 1 - Separator Inlet;
Sample Location 2 - Primary Carbon Outlet;
Sample Location 3 - Secondary Carbon Outlet; and
Sample Location 4 - Stack Outlet.
For a detailed discussion of the samples collected and analysis conducted
during each of the sampling phases, refer to the Quality Assurance Project
Plan (Revision 1) entitled, Sampling and Analysis - Terra Vac. Inc. In situ
Vacuum Extraction Technology SITE Demonstration Project. Valley Manufactured
Products Site. Groveland. Massachusetts. October 7. 1987.
9
-------
SECTION 3
RESULTS SUMMARY
GENERAL
This section contains a summary of the analytical data obtained during
the course of the project consolidated in the form of the following tables a
figures
Due to the quantity of data generated during the project, complete data tabl
are not included in this section. Tables containing all analytical results,
recordings and measurements are included in the Appendices to Volume I of th
report.
SOIL BORINGS COMPARISON TABLES
Three separate sets of soil borings were conducted during the course of
this project (Figure 2-1). Each boring set coincided with the project phase
of Pre-, Mid, and Post Treatment. Pretreatment borings were advanced and
samples collected to establish baseline contamination levels across the site
Extraction veils and vacuum monitoring wells were then completed in these
boreholes.
Tables 3-la - 3-lh
Figures 3-la - 3-lf
Figures 3-2a - 3-2t
Figures 3-3a - 3-3c
Table 3-2
Soil Borings Comparison Tables
Soil Borings: TCE vs. Depth
Well Head Gas Concentration
Shallow Soil Gas Plots
Separator Water Analytical Results
Carbon Canister Analytical Results
Table 3-3
10
-------
Mid-Treatment boreholes were advanced in close proximity to existing
vacuum monitoring wells. Samples were collected and analyzed to establish
amount of "clean up" to that point in time. Post treatment boreholes were
advanced in close proximity to all extraction and vacuum monitoring wells.
Samples were again collected and analyzed to establish amount of "clean up"
achieved during the demonstration.
Tables 3-la through 3-lh are presented as comparison tables; in other
words, the analytical results from the three soil boring programs (i.e., pre-,
mid and post treatment) are presented in a location by location basis. For
example, all the GC/MS P&T, Headspace, and TCLP data for Pre, Mid and Post
Treatment drilling for vacuum monitoring Well #1 are presented on one table so
that a comparison can be easily made and trends readily established
The various quantitation limits for GC/MS purge and trap, TCLP extracts
and GC soil headspace respectively for Pre, Mid, and Post Treatment are as
follows:
GC/MS Purge and Tnp-- The quantitation limit varies depending on the
individual sample weight and moisture content The typical range
observed for the thre« phases of the program are.
Pretreatment 0.94-2 4 nig/kg
Mid-Treatment 1.2 -2.0 mg/kg
Post Treatment 1 1 -1.6 mg/kg
GC/MS TCLP Extracts - The quantitation limit observed was the same for
all three phases of the program.
Pretreatment 0.05 tng/L
Mid-Treatment 0.05 mg/L
Post Treatment 0.05 mg/L
GC Soil Headspace - The quantitation limit varies depending on the
individual sample weight and moisture content. The typical range
observed for the three phases of the program are as follows:
(mg/kg)
MeCl DCE TRI TCE PCE
Pretreatment (1.40-4.46) (1.12-3.53) (1.40-4.44) (1.40-4.44) (1.40-4 44)
Mid-Treatment (0.79-2.07) (1.58-4.10) (7.99-20.7) (7.99-20.7) (7.99-20 7)
Post Treatment (1.30-3 2*) (0.65-1.63) (0.87-2.16) (0.6S-1.69) (1.29-3 22)
11
-------
TABLE 3-1A. ANALYTICAL DATA FROM SOIL BORINCS: COMPARISON TABLE/EXTRACTION WELL #1 - PRETREATMENT. POST TREATMENT
1
CC/NS Concentration*
Hcadspace Concentration*
ICIP
Sample
Soil
)
(¦g/Kfl)
(mg/kg)
(mg/ll
ld«r '.cat
Depth
1
Humcr
1
HcCI
ocfc
1*1
ICS
PCE
j NeCl
Kf
III
TCE
PCE
NaCI
OCE
III
Tee
pu
IWS1/1
0 2
1
<5.0
MO
1 MO
1 MO 1
HO
|NR
.
.
.
n
.
IWSI/2
2 4
1
<5.0
HO
1 110
1 M0 1
NO
|HR
j
-
-
.
HI
_
1
IMSI/I
4 6
1
<5.0
2.11
1 "0
1 610 1
2.22
j MO
j 6.94
1.22
198.20
2.92
IRACE
IRACE
1 "0
0.370
HO
IUSI/4
A 6
1
5.0
MO
1 110
j NO j
NO
j MO
| IRACE
IRACE
29.52
HO
TR-0.076
NO
j NO
NO
HO
IUS1/9
16- IS
1
<5.0
HO
1 110
1 i
HO
t
| TRACE
(RACE
41.91
TRACE
IRACE
HO
1 W
HO
NO
(usi/to
18-20
1
<5.0
HO
1 110
1 110 1
NO
j NO
1 "0
HO
IIACC
HO
IRACE
NO
j NO
NO
MO
EUS1/I1
20-22
1
<5.0
HO
I "0
1 1° 1
NO
1 110
1 IRACE
IRACE
7.60
HO
IRACE
NO
j NO
HO
NO
(us1/12
22-24
1
1
<5.0
HO
1 *°
1 110 1
1 1
1.28
j HO
| NO
1
NO
NO
NO
IRACE
NO
1 MO
NO
HO
•9/1
0 2
1
<5.0
1.70
1 110
1 1-60 1
NO
1 110
1 1(0
HO
NO
HO
IRACE
NO
1 MO
HO
HO
•9/2
2 4
1
<5 0
1.40
I 110
i '•"> i
NO
| HO
j 1.20
NO
9.10
IRACE
0.14(8)
1IACE
j NO
0.20
NO
•9/1
4-6
1
<5.0
HO
i m°
i " i
NO
j NO
| 2.10
NO
9.50
NO
1.W
HO
j NO
0.11
MO
•9/4
6 8
| 1.4(1)
HO
i 110
j IRACE j
NO
1 MO
1 M>
NO
IRACE
HO
1.4(8)
NO
j NO
IRACE
NO
•9/5
8 10
1
<5.0
HO
i w
1 " j
NO
1 MO
1 MO
NO
5.80
IRACE
TRACE
NO
j NO
0.071
NO
•9/6
10-12
1
<5.0
HO
i m
1 1
6.6
I "0
j 2.60
M>
114.00
1.10
TRACE
HO
j NO
1.2
MO
•9/7
12-14
1
<5.0
HO
i 110
1 110 1
NO
1 »
j HO
NO
IRACE
HO
0.59<»)
HO
j NO
IRACE
MO
•9/a
14-16
1
<5.0
HO
i 110
j 24 j
NO
(HR
j
-
-
-
IRACE
HO
j HO
0.77
HO
•9/9
16-18
1
<5.0
HO
j MO
j 5.4 |
NO
1 10
| IRACE
NO
10.10
IRACE
IRACE
NO
1 MO
IRACE
NO
•9/10
18-20
1
<5.0
NO
1 NO
1 w 1
NO
1 MO
j IRACE
HO
12.50
IRACE
IRACE
NO
1 MO
NO
HO
•9/11
20 22
•
|
-
|NR
j
.
-
-
HR
.
¦
•9/12
22 24
|NR
•
j
-
j HI
j
-
-
HI
-
j
.
.
mi Iocalad adjacent to tut Taction veil #1
(H) - Suspected lnl> emit
-------
TABLE 3-IB. ANALYTICAL DATA FROM SOIL BORINCS: COMPARISON TABLE/EXTRACTION UELL 02 - PRETREATMENT. POST TREATMENT
GC/NS Concentration*
1
Mtidipace Concentration*
ICIP
Sacple
Soil
(¦S/K0)
1
(aq/kg)
(aa/D
Identified Depth
1
OCE
Ntafcer
j NtCI
DCE
1>l
ICE
PCE
| MeCI
Ml
ICE
PCE
j NeCl
OCE
Ml
rcc
PCE j
IUS2/1
0 2
| <5.0
MO
1 110
1 110 1
MO
1 m
| IRACE
NO j
IRACE
NO
j IRACE
NO
j NO
MO
NO |
IMS2/2
2 4
j <5.0
NO
1 K°
j NO |
MO
j NO
j IRACE
NO |
IRACE
NO
j IRACE
NO
j NO
NO
NO j
IwSJ/l
4 6
| <5.0
MO
1 M
j NO j
MO
j MO
| 7.44
IRACE |
27.61
IRACE
j IRACE
NO
j NO
HO
NO j
(WS2/4
6 a
| <5.0
M0
j MO
1 2.99 |
MO
j NO
j IRACE
NO j
1.81
MO
| IRACE
NO
j NO
MO
NO j
luii/i
8 10
| <5.0
MO
1 10
j 11.60 j
NO
j NO
j MO
MO |
MO
NO
j IRACE
NO
| IRACE
MO
NO |
fUS2/6
10-12
j <5.0
M0
| NO
1 1
NO
1 110
j IRAlc
MO j
IRACE
NO
jo.054(1)
MO
j NO
NO
NO j
IUS2/7
12-14
| <5.0
M0
| NO
1 162 1
MO
|MR
j
j
-
-
|NR
-
j
-
|
IUS2/8
H-16
| <5.0
MO
1 m
1 1
MO
| NO
1 w>
NO j
MO
NO
j IRACE
NO
j NO
NO
NO j
(WS2/9
16-18
j <5.0
NO
j NO
1 KO I
NO
j MO
j I'ACE
MO |
10.08
NO
I IRACE
NO
j NO
NO
NO j
IWS2/I0
18-20
| <5.0
NO
j NO
1 110 1
NO
j MO
j 2 06
MO |
14.21
NO
j IRACE
NO
j NO
IRACE
NO j
IUS2/11
20-22
| <5.0
MO
| NO
1 1
NO
j MO
1 •»
NO j
IRACE
NO
j IR-0.091
NO
j NO
NO
NO j
IWS2/12
22-24
j <5.0
NO
j NO
1 110 1
NO
1 110
1 1(0
NO j
IRACE
NO
j TRACE
NO
j NO
NO
MO j
•6/1
0-2
| <5.0
NO
1 110
1 110 1
NO
1 110
| IRACE
NO |
IRACE
NO
| IRACE
NO
1 110
NO
NO |
•6/2
2-4
| <5.0
NO
j NO
1 110 1
NO
j MO
j IRACE
NO j
IRACE
NO
| IRACE
NO
j NO
IRACE
MO j
¦6/1
4-6
j <5.0
IRACE
j NO
| IRACE j
NO
j NO
j IRACE
NO j
IRACE
NO
j IRACE
NO
j NO
M>
NO j
•6/4
6-8
|NR
•
1 1
-
j MS
j
j
-
•
|U
•
j
-
j
•6/5
8-10
i <5.0
NO
j NO
1 110 1
NO
j MO
j NO
NO j
NO
NO
j IRACE
NO
j NO
NO
NO j
¦6/6
10-12
j <5.0
MO
j NO
1 *«> |
NO
j NO
1 110
NO j
NO
K>
j IRACC
NO
j NO
NO
NO j
¦6/7
12-H
I MI
•
1 1
•
j Ml
j
-
-
jlU
-
j
-
j
•6/8
14-14
|M
-
j j
-
Mt
j
j
-
-
|0.55(B)
NO
j NO
NO
MO j
¦6/9
16-18
j <5.0
MO
| NO
j 21 |
NO
j MO
j IRACE
NO j
17.42
NO
jo.80(8)
NO
j NO
IRACE
NO |
¦6/10
18-20
| <5.0
NO
j MO
| 5.10 j
NO
j NO
j IRACE
NO j
17.05
IRACE
jlR-I.O(B)
NO
j NO
NO
NO |
¦6/11
20-22
j <5.0
MO
1 M
j MO j
MO
1 10
j IRACE
NO j
IRACC
M
j1.50(8)
NO
j NO
NO
NO j
¦6/12
22-24
| <5.0
NO
j NO
I M> |
NO
j MO
j NO
MO j
NO
NO
j IRACE
NO
j NO
NO
NO j
•or ing N wt located adjacent to olfaction we 11 12
-------
TABI.E 3-lC ANALYTICAL DATA FROH SOIL BORINCS: COMPARISON TABLE/EXTRACTION UELL - PRETREATMENT, POST TREATMENT
GC/NS Concentrations
Neadspace Concentrations
1CIP
SMpI*
Soil
(¦g/Kg)
(¦g/kg)
(¦B/i)
Identified Ocpih
OCE
U\mb»r
N«CI
HI
ICE
PCE
MeCl
OCE
IRI
ICE
PCE
NeCI
OCE
IRI
ICE
PCE |
tusi/1
0 2
<4.0 |
MO
1 10
| NO-2.77 |
NO
IRACE
| 1.66
IRACE j
71 67
IRACE
IRACE
NO
j NO
NO
NO j
fws)/2
2 4
<5.0 j
NO
j NO
j 15.40 j
NO
NO
| 1.19
IRACE j
67.17
IRACE
IRACE
NO
j NO
NO
NO j
fusj/l
4 6
<5.0 |
MO
j NO
j 50.50 j
2.10
NO
j IRaiE
IRACE j
109.08
2.12
IRACE
NO
1 10
NO
NO |
iUSJ/4
6-8
<5.0 j
MO
1 10
1 641 1
NO
NO
| IRACE
IRACE j
70.51
IRACE
IRACE
NO
1 m
0.185
NO |
(usi/5
8-10
<5.0 |
NO
j NO
1 2.64 |
NO
NO
j NO
NO j
1.70
NO
0.069(8)
NO
| NO
NO
NO |
IUSJ/6
10-12
<5.0 j
NO
j NO
1 1
NO
NO
j TSACE
M> |
15.98
NO
0.057(8)
NO
1 110
IRACE
NO j
tuSl/7
12-14
<4.0 |
NO
( 110
1 "° I
NO
NO
1 I*0
NO j
NO
NO
0.050(8)
NO
| NO
NO
NO |
iwsi/a
H-16
<5.0 |
NO
j NO
j NO j
NO
NO
j IRACE
NO j
7.17
IRACE
0.054(8)
NO
j NO
ie
NO j
tusl/9
16-18
<5.0 j
NO
1 **0
j NO j
NO
NO
| IRACE
NO j
11.51
1.16
IRACE
NO
j NO
NO
NO j
IUSJ/10
18-20
<5.0 j
NO
j NO
j NO j
NO
NO
j NO
NO j
NO
NO
IRACE
NO
1
M>
NO |
wsi/n
20-22
<5.0 |
NO
1 110
1 m 1
NO
NO
| NO
NO |
IRACE
NO
IRACE
NO
1 110
NO
NO j
twsl/12
22-24
<5.0 j
NO
j NO
j NO j
NO
NO
1 110
NO j
NO
NO
IRACE
NO
j NO
NO
NO j
¦ 7/1
0-2
<5.0 |
NO
1 110
1 110 1
NO
NO
1 110
NO |
1.27
IRACE
IRACE
NO
1 ¦«>
IRACE
NO |
•7/2
2-4
<5.0 |
NO
j NO
1 2.40 |
NO
NO
j IRACE
NO |
9.26
IRACE
IRACE
NO
j NO
IRACE
NO j
•7/1
4-6
<5.0 j
NO
1 110
j 45.0 j
NO
NO
j IRACE
NO |
11.00
IRACE
IRACE
NO
j NO
0.28
NO j
•7/4
6 8
<5.0 j
NO
j NO
j 19.0 j
NO
NO
| IRACE
NO j
18.00
NO
IRACE
NO
j NO
0.44
NO j
• 7/ 5
8-10
<5.0 |
NO
j NO
1 60 1
NO
NO
| IRACE
NO |
IRACE
NO
IRACE
NO
j NO
0.05
NO |
•7/6
10-12
<5.0 |
NO
| NO
1 " 1
IRACE
NO
| IRACE
NO j
5.20
IRACE
0.41(8)
NO
1 »
0.11
NO j
•7/7
12-14
<5.0 |
NO
1 110
j 16 |
NO
NO
j IRACE
1
2.10
NO
0.88(8)
NO
j NO
0.21
NO 1
•7/8
14-16
<5.0 j
NO
j NO
j IRACE j
NO
NO
j IRACE
K> j
2.00
NO
1.50(8)
NO
j NO
NO
NO j
•7/9
16-18
<5.0 |
NO
1 10
1 i
NO
NO
| 1.20
IRACE |
8.70
NO
IRACE
NO
1 10
0.16
NO j
•7/10
18-20
<5.0 |
NO
1 110
1 1
NO
NO
j IRACE
NO j
6.10
NO
0.71(8)
NO
j NO
IRACE
NO j
•7/11
20-22
<5.0 |
2.50
1
j 11 j
NO
NO
| IRACE
NO j
4.10
NO
IRACE
NO
| NO
0.15
NO j
•7/12
22-24
<5.0 |
NO
j NO
j I«*CE j
NO
NO
| IRACE
NO j
5.60
NO
IRACE
NO
1 110
NO
NO |
•oring *7
uia lociltd adjacent
to extraction well 1)
-------
TABLE 3-1D. ANALYTICAL DATA FROM SOIL BORINCS: COMPARISON TABLE/EXTRACTION WELL - PRETREATHENT. POST TREATMENT
S«V>I« toil
Identllicat Depth
Hiafctr
CC/NS Cone*ntrat ioni
(ag/Cg)
Ntadspaca Concent rallona
(¦g/kg)
N«CI
OCE
III
TCE
PCE
MeCI
OCE
111
ICE
PCE
tust/1
0 2
<5.0
1 » 1
MO
| 2.94
MO |
NO
IIArE
NO
2.78
IIACE
IIACE
NO
K>
NO
HO
IUS4/2
2 4
<5.0
1 **> 1
MO
j 29.90
NOS.69 |
HO
NO
NO
IIACE
NO
IIACE
NO
NO
NO
NO
(U»M
4 6
«5.o
|MO 2.16 I
HO
j 260.00
11.50 j
NO
2.16
IIACE
127.11
ii-i la
IIACE
NO
NO
0.264
NO
IUS4/4
6 8
•5.0
1 ¦» 1
MO
j 101.00
0.80 j
NO
11.11
1.9/
649.58
11.59
IIACE
MO
NO
NO
HO
(WS4/5
a 10
<5.0
1 1
HO
j 151.00
11.50 |
HO
IIACE
IIACE
68.17
1.86
TIACE
MO
HO
NO
HO
fUSt/6
10-12
<5.0
1 MO |
HO
| 195.00
6.62 |
HO
IIACE
IIACE
141 47
2.19
NO
HO
HO
NO
NO
(US4/7
12- H
<5.0
1 "0 1
HO
j S.14
NO j
NO
IIACE
IIACE
98.48
IIACE
IIACE
MO
MO
IIACE
NO
iusi/a
14-16
<5.0
j NO j
HO
j NO-1.9/
HO j
NO
NO
HO
HO-1.97
NO
IIACE
HO
NO
NO
NO
(US4/9
16 18
<5.0
1 1
HO
1 MO
NO |
HO
IIACE
HO
1.56
NO
IIACE
NO
HO
NO
NO
IW54/I0
18-20
<5.0
1 *> 1
MO
1 110
HO |
NO
IIACE
HO
1.81
NO
tIACE
NO
HO
NO
NO
cus«yii
20 22
<5.0
j NO |
MO
j NO
HO j
MO
IIACE
HO
2.51
HO
IIACE
HO
MO
NO
HO
EMS4/12
22 24
<5.0
1 io 1
MO
j 6.71
HO |
NO
IIACE
HO
4.41
IIACE
IIACE
NO
HO
NO
NO
• 12/1
0-2
a. t
1 1
HO
1 110
MO |
NO
IIACE
HO
IIACE
NO
IIACE
NO
HO
0.01
NO
112/2
2-4
6.7
1 •» 1
MO
j HO
NO j
NO
1.90
HO
1.40
NO
IIACE
0.09
HO
0.011
HO
• 12/1
4-6
8.6
1 1
MO
1 19
1.80 j
HO
*1ACE
HO
6.20
NO
1.9
NO
HO
0.09
NO
• 12/4
6-a
<5.0
| IIACE j
NO
| 9.0
1.10 j
NO
1.80
NO
11.00
NO
IIACE
NO
HO
0.10
NO
• 12/5
8 10
<5.0
1 W i
NO
j NO
MO |
NO
NO
HO
NO
NO
IIACE
HO
HO
NO
NO
•12/1
10-12
6.0
j HO i
KO
1
NO |
HO
NO
HO
MO
MO
0.14(8)
NO
HO
NO
NO
• 12/7
12-14
<5.0
j MO |
NO
j 2.10
NO |
NO
IIACE
MO
MO
MO
TIACE
HO
HO
MO
NO
• 12/8
14-1*
<5.0
j MO i
NO
1
NO j
NO
IIACE
HO
2.10
NO
0.28(a)
HO
HO
IIACE
NO
• 12/9
16 18
<5.0
j NO j
MO
j HO
NO 1
NO
IIACE
HO
IIACE
NO
0.17(1)
HO
HO
HO
NO
•12/10
18-20
<5.0
1 1
MO
j MO
NO |
NO
IIACE
HO
1.95
NO
IIACE
HO
NO
HO
NO
•12/11
20-22
<5.0
j NO j
NO
j NO
NO j
NO
NO
NO
MO
NO
IIACE
HO
HO
NO
NO
•12/12
22-24
<5.0
1 HI I
NO
| IIACE
1
NO j
1
NO
IIACE
NO
MO
NO
IIACE
HO
MO
NO
HO
IMl
OCE
1CIP
(¦8/1)
III
ICE
PCE
•orlng 112 uti located adjacent to infraction mil IV
-------
TABLE 3-IE. ANALYTICAL DATA FROM SOIL b~*INCS: COMPARISON TABLE/MONITORING WELL #1 -
PRETREATMENT, MID-TREATMENT. POST TREATMENT
1
CC/HS Concentration*
Neadipace Concentrati
ona
icir
SM?l«
Sou I
(«0/K«>
(ag/kg)
(¦0/1)
Identificat Depth |
H later
1
N«CI
DC£
HI
ICE
PCE
MoCI
OCE
1RI
ICE
PCE
NeCl
OCE
TRI
TU
KC |
MUSI/1
0 2 I
<5.0 |
ND
1 *>
1 110 1
MD
IRAU
| IRACE
MO |
IRAU
HD
TRACE
HD
MO
MD
MD j
NUS1/2
2* j
<5.0 j
ND
1 *
1 ,it0 1
NO
HO
f TRACE
HO |
IRACE
MO
IRACE
HO
. 110
ND
MD j
Ml/1
4-6 |
<5.0 j
MO
j MO
1 M° 1
ND
ND
| TRACE
HO |
IRACE
HO
MD
MD
' ND
HD
MO j
rvsi/4
6-6 j
<5.0 j
MO
1 *
1 MO 1
MO
MO
j TRACE
MO j
TRACE
HD
TRACE
MD
MD
IS
MD |
NUSI/5
a-io |
¦ |
MO
j NO
1 MO |
HO
NO
| TRACE
MO j
IRACE
NO
TRACE
HO
HO
ND
MD j
MUSI/6
10-12 1
<5.0 j
MO
1 **0
j NO j
HO
NO
j IRACE
NO |
IRACE
NO
IRAU
HO
HO
NO
NO }
MUSIfT
12-H I
<5.0 j
MO
| MO
j MO j
HO
TRACE
j TRACE
MO j
TRACE
NO
IRACE
HO
HO
ND
HO j
NUS1/8
u-ia j
<5 0 |
NO
j MO
1 MO j
NO
NO
| IRACE
NO j
IRACE
NO
ND
HD
HO
HD
M |
NUS1/9
16 IB I
<5.0 j
MO
I 110
1 MO j
NO
NO
| IRACE
NO j
IRACE
HO
IRACE
HO
MD
HD
HO j
MWSt/tO
18 20 j
<5.0 j
MO
j NO
j MO j
NO
NO
j IRACE
NO j
IRACE
HO
IRACE
HO
HO
HO
HO |
Mrtl/ll
20 22 j
<5.0 j
NO
1 10
1 MO |
HO
IRACE
| IRACE
HO j
IRACE
IRACE
IRACE
HO
HO
NO
HO |
NWSI/12
22 24 j
<5.0 |
NO
1 **0
j NO |
NO
HO
| IRACE
NO j
IRACE
NO
IRAU
HO
HO
NO
NO |
KWS1/11
24-26 j
<5.0 j
HO
| NO
f MO j
NO
NO
j IRACE
MO j
HO
HO
IRACE
HO
HO
NO
ND |
BJ/I
0-2 |
<5.0 |
IRACE
1 10
1 1
1.00
IRACE
| IRACE
HO 1
IRACE
IRACE
IRACE
IRAU
HD
0.24
IRAU |
Bl/2
2-4 |
<5.0 |
IRAU
i ¦*>
| IRACE |
HO
TRACE
| TRACE
NO i
TRACE
IRACE
IRACE
0.12
MO
0.40
ND j
• J/1
4-6 |
<5.0 |
MO
j MO
| IRACE j
MO
IRACE
j IRACE
HO |
TRACE
HO
TRACE
HO
MO
IRAU
NO |
Bi/4
6-8 j
<5.0 j
NO
1 MO
1 MO j
MO
IRACE
1 MO
MO |
IRACE
HO
IRAU
HO
NO
IRACE
HO j
5> »»/S
a io j
<5.0 j
MO
j MD
j NO j
NO
NO
j HO
HO j
IRACE
NO
IRACE
HO
HO
IRAU
NO |
•J/6
10-12 |
<5.0 |
NO
j MO
1 MO j
NO
MO
j TRACE
MO |
IRAU
NO
IRAU
M>
HO
NO
MO |
¦5/7
12-14 |
<5.0 j
MO
1 «
1 MO j
HO
NO
j IRACE
MO |
IRACE
IRACE
IRAU
MO
HO
HO
HD j
Bl/B
U-16 j
<5.0 j
NO
j HO
1 MO j
HO
HO
j HO
MO 1
IRACE
NO
IRACE
HO
HD
HO
HO |
¦1/9
1i-11 j
<5.0 |
NO
1 10
1 NO |
HD
NO
1 MO
MO |
HO
NO
IRAU
HO
HO
HO
NO j
¦1/10
18-20 |
<5.0 |
NO
j NO
1 MO |
HO
MO
| NO
MO I
IRACE
NO
IRAU
»
HD
HO
NO j
¦ I/It
20-22 j
<5.0 j
NO
j NO
f MO j
HO
HO
| NO
MO 1
HO
NO
IRAU
m
HO
MO
NO |
as/12
22-24 |
<5.0 |
MO
j NO
1 MO 1
HO
HO
1 MO
NO j
NO
MO
0.078(1)
to
ND
NO
MO j
Soring fl
ii located
adjacent
to •
vtltoring Melt 41
all/l
0-2 (
<5.0 |
NO
1 110
1 2.40 |
NO
ND
| 1.21
HO 1
8.40
IRACE
IRAU
HO
HO
HO
NO |
• 11/2
2-4 |
<5.0 j
NO
j NO
1 *-"> 1
HO
NO
j IRACE
MO I
TRACE
NO
0.18(B)
HD
HD
0.11
NO |
•11/1
4-6 |
<5.0 j
HO
i 1°
1 MO |
HO
NO
j S.vt
MO 1
1.50
MD
0.41(B)
NO
NO
0.02
HO |
• 11/4
6-8 |
<5.0 |
NO
1 10
1 MO j
HO
MO
1 MO
MO i
TRACE
ND
TRACE
HO
NO
HO
HO j
B11/5
a-io j
<5.0 j
NO
| HO
1 NO j
HO
NO
NO
MO j
NO
HD
TRACE
HD
NO
NO
MO |
•11/6
10-12 j
<5.0 j
NO
1 MO
1 MO j
NO
NO
1 MO
MD |
NO
HO
IRACE
m
HO
HO
HO j
•11/7
12-14 |
<5.0 j
NO
1 MO
j NO j
HO
NO
j IRACE
ID |
IRACE
HO
0.20(B)
HD
HO
NO
NO |
• 11/S
14-16 j
<5.0 j
NO
j HO
1 MO |
HO
HO
j 1.07
MO |
TRACE
NO
0.67(B)
MO
HO
HO
*> 1
•11/9
16-18 |
<5.0 j
NO
j NO
j MO |
HO
NO
j HO
MO |
HO
NO
IRACE
HO
HO
NO
HO j
811/10
1B-20 j
<5.0 |
NO
j NO
1 MO j
HO
HO
j NO
MD I
HO
HO
IRACE
HO
NO
HO
NO j
•11/11
20 22 |
<5.0 |
NO
j NO
1 HO j
NO
HO
j KO
NO |
NO
NO
0.75(B)
MO
NO
NO
NO |
611/12
22 24 j
I
<5 0 |
i
NO
j NO
I
1 MO j
l ¦
NO
NO
| NO
NO j
HO
NO
(RACE
NO
NO
HO
NO |
lltf All
• i ¦
fitiai rill lu Urfiilui liiy
1 1
Mil «l
1
1
-------
TABLE 3-IF. ANALYTICAL DATA FROM SOIL buRINCS: COMPARISON TABLE/HONITORINC WELL m2
PRETREATHENT, MID-TREATMENT, POST TREATMENT
6C/NS Concentration!
Mcadtpaca Concantrattorn
tap
iMpl*
Soil
(«0/Ks)
(¦8/kg)
(«B/l)
Idtnllfictl 0*plh
0CE
DCE
N Later
MCI
Ml
ICE
PCE
N«Cl
III
ICE
pa
NaCI
OCE
III
ia
PCX I
NUS2/I
| 0-2
• |
NO
1 110
1 4.06 |
NO
NO
| 1.44
UACE |
7.78
NO
TRACE
NO
NO
j NO
IB j
NUS2/2
1 2-4
¦ |
NO
1 110
j 67.80 j
NO
K>
j 8.10
2.27 j
210.60
1.48
0.062(1)
NO
.NO
|0.071
¦0 j
NUS2/1
j 4-6
8.20 j
NO
j IB
j 81.00 j
NO
NO
j 5.16
1.48 j
281.89
2.65
0.051(1)
NO
NO
jo.218
IB j
MK2/4
| 6 8
• j
NO
j IB
1 701 1
NO
NO
j 2.29
2.68 |
406.62
1.89
0.056(1)
NO
NO
j to
ND j
NUS2/5
j 8-10
<5.0 j
NO
j NO
1 9W 1
NO
NO
j NO
NO |
2.05
NO
0.055(1)
NO
NO
1
NO |
HUS2/6
| 10-12
• j
NO
j NO
1 110 1
NO
NO
j NO
NO j
NO
NO
0.091(()
NO
NO
i MO
NO j
MUS2/7
j 12-H
• j
NO
| NO
j NO j
NO
NO
j UACE
NO j
7.11
NO
0.167(1)
NO
NO
j NO
NO j
NWS2/8
| 14-16
<5.0 |
NO
j NO
1 NO j
NO
NO
j NO
NO j
TRACE
NO
0.051(0
m
NO
j IB
NO j
HWS2/9
j 16-18
<5.0 |
NO
j NO
1 1
NO
NO
1 110
NO j
1.56
NO
UACE
NO
NO
j NO
NO j
MUS2/I0
j 18 20
<5.0 |
NO
j NO
1 NO I
NO
NO
1 HO
NO |
UACE
NO
IRACE
NO
NO
1 MO
MO j
NUS2/11
j 20 22
<5.0 j
NO
j NO
j NO j
NO
NO
j NO
NO j
NO
NO
UACE
NO
NO
j NO
ND |
NWS2/I2
| 22 24
<5.0 j
NO
1 110
1 "O |
NO
NO
1 HO
NO j
UACE
NO
IRACE
NO
NO
1 MO
NO |
at/t
| 0 2
5.0(0 |
NO
1 NO
| 280.0 |
UACE
NO
| UACE
UACE |
49.01
UACE
IRACE
0.072
IRACE
| 4.90
NO |
¦ 1/2
1 24
5.0(8) j
(RACE
j IIACE
1 5» 0 j
UACE
UACE
j UACE
UACE j
26.14
TRACE
TRACE
NO
NO
| 2.00
MO |
• 1/1
1 46
<5.0 |
NO
| UACE
| 190.0 |
UACE
IBACE
j 1.71
UACE |
111.09
IRACE
IRACE
0.072
NO
| 4.50
NO |
81/4
| 6-8
14 j
UACE
j UACE
| 780.0 j
5.80
UACE
j UACE
(RACE |
274.07
UACE
IRACE
IRACE
IRACE
j 6.60
TRACE j
_ 11/^
j 8-10
" 1
NO
1 mo
j U-S.O j
NO
UACE
j UACE
NO j
NO
NO
UACE
NO
NO
j UACE
MO |
^ B1/6
| 10-12
5.6(0 |
NO
j NO
1 S-0 1
NO
NO
j NO
NO j
NO
NO
UACE
NO
NO
| IRACE
IB j
•i n
j 12-14
5.6<8> j
NO
j NO
| UACE j
NO
NO
| UACE
NO j
(RACE
NO
IRACE
NO
NO
j 0.10
NO j
•t/a
| 14-16
5.8(0 j
NO
1 MO
j 5.4 j
NO
NO
| UACE
UACE j
29.52
NO
IRACE
NO
NO
| 0.06
NO j
¦ 1/9
| 16-18
5.0(8) |
NO
1 110
1 110 |
NO
NO
j UACE
UACE j
UACE
NO
IRACE
NO
NO
j TRACE
ND |
• 1/10
j 18-20
<5.0 j
NO
j NO
j NO j
NO
NO
1 M
NO I
(RACE
NO
IRACE
NO
NO
j TRACE
NO j
¦1/ti
| 20-22
6.4(1) |
NO
j HO
1 110 |
NO
NO
j NO
MO |
UACE
NO
IRACE
NO
NO
j IRACE
NO j
¦ 1/12
| 22-24
<5.0 |
NO
1
1 |
NO
NO
1 110
NO j
NO
IB
IRACE
NO
NO
| UACE
NO j
•oring #1
m locat
td adjacanf to Monitoring ucl 1 #2
¦fl/1
| 0 2
<5.0 |
NO
1 MO
| UACE |
HO
NO
1 110
NO 1
UACE
NO
0.80(8)
NO
NO
1 MO
MO |
M/2
j 2 4
<5.0 j
2.20
1 110
i i
UACE
NO
j 1.70
NO j
29.00
NO
0.68(8)
IRACE
NO
j NO
NO j
U/I
1
NR j
-
|
-
NR
1
.
.
HI
¦
.
|
M/4
j 6-8
<5.0 j
NO
j NO
j NO j
NO
NO
1 W>
NO j
NO
NO
1.20(0
NO
NO
j NO
NO j
¦8/5
j 8-10
<5.0 j
NO
1 MO
j NO j
NO
NO
| NO
NO I
NO
NO
1.40(0
NO
NO
j NO
ND j
¦8/6
j 10-12
<5.0 j
NO
| NO
j NO j
NO
NO
1 MO
MO |
NO
NO
U-0.8MO
NO
NO
j NO
ND |
•8/7
j 12-14
<5.0 j
NO
1 W
1 '•*«> I
NO
NO
1 MO
NO |
UACE
M>
0.10(0
NO
NO
j NO
NO |
M/8
j 14-16
<5.0 |
NO
| NO
j NO j
NO
NO
j MO
NO j
NO
NO
0.07
NO
NO
j NO
MO |
¦8/9
| 16-18
<5.0 j
NO
j NO
j NO |
NO
NO
1 NO
NO |
NO
NO
0.05
NO
NO
| UACE
MO |
¦8/10
| 18-20
<5.0 j
NO
| NO
j NO j
NO
NO
j NO
NO
TRACE
NO
NO
NO
NO
| UACE
MO j
¦8/11
j 20-22
" 1
NO
1 NO
j NO j
NO
NO
j UACE
NO I
1.70
NO
UACE
NO
NO
j NO
MO |
88/12
j 22-24
5.0 j
NO
1 NO
j NO {
NO
NO
j NO
NO |
NO
NO
TRACE
NO
NO
j NO
MO j
Boring (8 u*t located adjacent to nonitoring wclI #2
-------
TABLE 3-1G. ANALYTICAL DATA FROM SOIL ouKINCS: COMPARISON TABLE/MONITOR INC WELL -
PRETREATMENT, MID-TREATMENT, POST TREATMENT
CC/HS Concentre*ion*
Meadipece Concentration*
ICIP
Staple
toil
0.077
4.00
TRACE j
mrtl/9
| 16 18
<5.0
1 110
| 3.86
| 218.00 j
3.12
m.
|
-
IRACE
0.053
0.11
5.00
TRACE j
MWil/IO
| 18 20
<5.0
j 20.40
j 16.80
j 1570.00 j
NO
m
|
-
IRACE
MO
NO
0.059
MO |
Mrtl/11
| 20 22
<5.0
j MO
j HO
j 1M.00 |
HO
m
-
IRACE
MO
MO
0.089
MO j
•Mit/i;
| 22 24
<5.0
1 "°
1
1 64.10 j
HO
m
|
-
IRACE
NO
NO
HO
NO |
¦2/1
1 0 2
<5.0
1 *•*
1 NO
1 2.4 |
NO
II ACE
| IRACE
IRACE |
IRACE
IRACE
IRACE
IRACE
NO
IRACE
HO |
¦2/2
1 2 4
<5.0
| 16.0
i M
j 32.0 j
1.90
IRACE
| 25.12
IRACE j
13.98
IRACE
IRACE
0.49
MO
0.73
IRACE |
82/>
i 4 6
<5.0
1 50
j HO
1 66.0 |
3.40
NO
1 110
HO |
IRACE
MO
TRACE
0.44
IRACE
4.70
0.064 |
•2/4
j 6 8
<5.0
j l»*CE
1
1 4.0 j
HO
TRACE
| 2.23
HO j
IRACE
IRACE
IRACE
0.13
MO
0.30
IRACE j
£ ,2/S
| 8-10
<5.0
1 *°
1 M
1 10 1
NO
IRACE
j IRACE
MO j
IRACE
IRACE
IRACE
NO
MO
IRACE
HO j
DO
#2/6
| 10-12
<5.0
j NO
j HO
1 "° 1
NO
NO
j NO
MO j
HO
HO
TRACE
NO
NO
IRACE
MO j
¦2/7
| 12-14
<5.0
j HO
| HO
j NO j
NO
NO
j IRACE
MO j
IRACE
HO
TRACE
NO
NO
IRACE
HO j
¦2/6
| 14-16
<5.0
j MO
j NO
j NO |
NO
NO
j IRACE
NO j
IRACE
IRACE
TRACE
HO
NO
NO
NO |
¦2/9
| 16-18
<5.0
1 110
1 110
j NO |
NO
NO
j IRACE
IRACE j
IRACE
IRACE
TRACE
HO
NO
IRACE
NO j
¦2/10
| 18-20
<5.0
1 110
1 110
| IRACE |
NO
NO
| IRACE
IRACE j
14.65
IRACE
IRACE
HO
HO
IRACE
HO j
•2/11
j 20 22
<5.0
j MO
1 110
1 >o I
NO
NO
j NO
NO j
TRACE
HO
IRACE
HO
HO
HO
HO j
¦2/12
| 22-24
<5.0
j NO
1 110
j NO j
NO
HO
j NO
NO j
MO
HO
IRACE
HO
NO
HO
HO j
loring (2
uif local
cd adjacent lo son
itoring
Mil fl
¦ 11/1
| 0-2
<25.0
1 10
1 110
1 I10 1
NO
HO
1 10
NO |
TRACE
HO
NO
NO
HO
HO
HO |
¦ IS/2
1 24
<25.0
j 59.00
j NO
j 800.00 j
NO
HO
| 22.0
NO j
300.0
HO
IR-0.27
0.09
NO
5.8
HO |
¦ tl/I
j 4-6
<25.0
j MO
j MO
j 84.00 |
NO
HO
1
HO j
18.0
HO
IRACE
0.46
HO
0.37
NO j
¦ IS/4
j 6-8
<5.0
j NO
j NO
1 1
HO
HO
| 1R4CE
HO j
NO
HO
TRACE
NO
NO
0.06
HO |
¦ 11/5
| 8-10
<5.0
1 "0
j NO
| 61.00 j
4.10
HO
j IRACE
HO j
HO
HO
0.06(1)
HO
NO
HO
HO j
• 13/6
| 10-12
<5.0
j NO
j NO
j 2.10 j
NO
HO
j IRACE
NO j
27.0
HO
0.06(B)
NO
NO
HO
HO |
¦ 11/7
j 12-14
<5.0
j NO
j NO
j NO j
NO
HO
1 2.5
HO j
17.0
HO
IRACE
NO
HO
HO
NO j
¦11/S
j 14-16
<5.0
j NO
j NO
j NO j
NO
NO
j 1.1
MO j
6.8
HO
IRACE
HO
HO
HP
NO j
¦ 11/9
| 16-18
<5.0
j NO
1 *#
1 62 |
NO
NO
j IRACE
IRACE j
91.0
HO
NO
NO
NO
HO
NO j
¦11/10
1 18 20
<5.0
j NO
j NO
| 2 4 j
NO
NO
| NO
HO |
NO
NO
IRACE
HO
NO
NO
NO |
¦11/11
| 20 22
<5.0
j NO
j NO
1 **o |
NO
NO
j HO
NO |
HO
HO
0.48(8)
HO
NO
NO
NO j
•11/12
j 22-24
<5 0
1 "°
j NO
1 "0 |
1 1
NO
NO
j IRACE
1
NO j
HO
NO
NO
NO
NO
NO
NO |
ftortng ftS located adjacent lo nunilorirvj well #1
-------
TABLE 3-111. ANALYTICAL DATA FROM SOIL uORINCS: COMPARISON TAB LE/MONITOK1NG UELL uU
FKETREATMENT. MID-TREATMENT, POST TREATMENT
GC/NS Concentration*
Headipace Concentration*
1CLP
Saapla
Soil
(¦0/(0)
(ag/kg)
<¦8/1)
¦ dentideal Oepth
OCE
Kwtttr
HeCI
III
ICC
PCE
HeCI
OCE
1*1
ICE
PCE
HeCI
OCE
TRI
ICC
rcc j
MUS4/I
0-2
<5.0 |
NO
NO
1 10
NO
NO
1 *>
NO
NO
NO
TRACE |
NO
| NO
Ml
NO j
MUS4/2
2-4
<5.0 |
NO
IB
1 HO
NO
NO
j NO
MO
NO
NO
TRACE |
NO
1 -HO
NO
IB j
NUS4/1
4-4
<5.0 j
IB
NO
j 2.21
NO
NO
| 2.19
NO
40.6B
1.49
TRACE j
NO
j NO
IRACE
IB |
NUS4/4
it
<5.0 |
M0
NO
| 1.25
NO
NO
j 7.46
IRACE
m.aa
5.95
TRACE j
M>
j NO
TRACE
NO |
NUS4/5
a-io
<5.0 | *0-6.6
NO
j NO
NO
NO
j NO-6.8
NO
7.16
1.29
IRACE j
IB
1 HO
TRACE
HO j
NWS4/6
10-12
<5.0 |
NO
NO
| NO-4.24
NO
NO
1 10
NO
NO
NO
IRACE j
NO
1 HO
IB
NO j
NWS*//
12-14
<5.0 |
NO
NO
j NO
NO
NO
j TRACE
IRACE
15.16
1.11
IRACE |
NO
1 HO
IB
HO |
MUS4/6
14-16
<5.0 j
NO
NO
1 110
NO
NO
1 HO
NO
IRACE
NO
IRACE |
H>
1 HO
NO
HO j
KUS4/9
16-ia
<5.0 |
NO
NO
j NO
NO
NO
1
NO
IRACE
NO
IRACE j
NO
1 HO
NO
NO |
HMS4/10
10-20
• j
NO
NO
1 "0
NO
NO
j NO
NO
NO
NO
IRACE |
NO
I NO
NO
HO |
Nwsi/n
20-22
<5.0 j
NO
NO
1 110
NO
NO
1 10
NO
NO
NO
TRACE |
NO
1 HO
NO
HO |
m/U/U
22-24
IRACE 1
NO
NO
j NO
NO
NO
j NO
NO
IRACE
NO
TRACE j
NO
j NO
NO
HO j
84/1
0 2
<5.0 |
NO
NO
1 NO
NO
TRACE
1 10
NO
ICACE
TRACE
O.OTl(R) |
NO
1 HO
TRACE
HO |
•4/2
2-4
<5.0 j
NO
HO
j NO
NO
NO
j NO
NO
IRACE
NO
0.062(B) |
NO
1 HO
NO
HO j
84/1
4-6
<5.0 j
NO
NO
j NO
NO
NO
| NO
NO
TRACE
NO
TRACE j
M>
1 *<0
TRACE
HO j
•4/4
6-8
<5.0 |
NO
NO
1 110
NO
IRACE
1 10
NO
TRACE
IRACE
IRACE j
NO
1 HO
NO
HO |
•4/5
a-io
<5.0 j
NO
NO
| NO
NO
NO
1 10
NO
NO
NO
IRACE |
NO
j NO
NO
HO |
O 84/6
10-12
<5.0 j
NO
NO
1 110
NO
NO
j 11ACE
NO
IRACE
NO
TRACE j
NO
1 HO
NO
HO j
n/r
12-14
<5.0 j
NO
NO
1 110
NO
NO
j IRACE
NO
IRACE
NO
IRACE j
NO
1 HO
NO
HO j
n/a
U-16
<5.0 j
NO
NO
j NO
NO
NO
j NO
NO
NO
NO
IRACE j
NO
1 HO
NO
HO j
•4/9
16- ia
<5.0 j
NO
NO
j NO
NO
NO
1 HO
NO
NO
NO
IRACE j
NO
1 HO
NO
NO j
•4/ to
18-20
<5.0 j
NO
NO
j NO
NO
NO
j NO
NO
NO
NO
IRACE j
NO
j HO
NO
HO j
¦4/11
20-22
<5.0 j
NO
NO
j NO
NO
NO
1 W>
NO
NO
NO
IRACE j
NO
1 HO
NO
HO j
84/12
22 24
<5.0 i
NO
NO
j NO
NO
NO
| U>
NO
NO
NO
TRACE j
NO
j NO
NO
HO j
¦or ins *4
•t located adjacent
io aon
toring wet I #4
B10/1
0-2
<5.0 |
NO
NO
1 2.S
NO
NO
| IRACE
¥>
IRACE
NO
0.72(1) |
NO
1 HO
NO
HO |
• 10/2
2-4
<5.0 j
NO
NO
1
NO
NO
j 2.90
NO
11.70
IRACE
0.092 j
IB
1 HO
0.15
HO |
• 10/J
4-6
<5.0 j
NO
NO
1
NO
NO
1 HO
NO
NO
NO
0.52(B) j
IB
j NO
IRACE
HO |
¦ 10/4
6 8
<5.0 |
NO
NO
1
NO
NO
j NO
NO
TRACE
NO
IR-0.60(I)|
NO
j NO
NO
HO j
•10/J
a-10
<5.0 j
NO
NO
| IRACE
NO
NO
| NO
NO
NO
NO
TRACE j
NO
| NO
NO
HO |
• 10/6
10-12
<5.0 j
NO
NO
j 1.60
TRACE
NO
j NO
NO
TR-5.04
NO
IR-0.I4(I)|
NO
1 HO
NO
NO |
¦10/7
12 14
<5.0 (
NO
NO
1 ' 10
NO
NO
j IRACE
NO
IRACE
NO
0.07 |
NO
j NO
NO
HO i
¦ 10/6
14-16
<5.0 j
NO
NO
| 4.SO
NO
NO
| IRACE
NO
IRACE
NO
IRACE |
NO
j NO
IRACE
HO 1
¦10/9
16-ia
<5.0 j
NO
NO
j i.n
NO
NO
j NO
NO
NO
NO
IRACE j
NO
1 HO
HO
HO |
•10/10
18-20
<5.0 |
NO
NO
1 10
NO
NO
I NO
NO
NO
NO
0.70(B) j
NO
i HO
HO
HO j
¦10/tl
20-22
<5.0 j
NO
NO
j NO
NO
NO
j NO
NO
NO
NO
0.41(B) |
NO
1 H°
NO
HO |
•10/12
22-24
<5.0 j
l
MO
W>
I NO
1
NO
NO
| NO
|
NO
NO
NO
IRACE |
NO
j NO
I
NO
NO |
lor log fU
¦ ¦
mi located ad|a<.«ni
lu u
n lot ti>g
1
Ml ( Si
1
1
-------
SOIL BORING: TCE VERSUS DEPTH
Figures 3-la through 3-If are representative of the changes in TCE
concentration and location of concaainaeion in the borehole over time. These
graphs were generated by plotting TCE results obtained over the course of the
soli borirjg programs. Each applicable phase for each location is presented on
one figure. For example, TCE concentrations for vacuum monitoring Veil No. 3
vere plotted on one graph for PTe, Hid, and Post Treatment so that a phase to
phase comparison can be made.
WELL HEAD AND PROCESS GAS CONCENTRATIONS
Cas Samples collected from extraction and vacuum monitoring well heads
during the course of this program vere analyzed on a GC/FID and a GC/ECD in
the onsLte mobile laboratory In all cases, TCE concentrations were much
higher Chan any of the other compounds looked for during the study. TCE was,
therefore, used as the dominant indicator parameter and graphs of TCE
concentration for all extraction and monitoring wells are presented in
Figures 3.2a through 3 2p. Additionally, two other compounds
1,1,1-trichloroethane (TR1) and tetrachloroethylene (PERC), were routinely
found in Extraction Veil No. 1. Therefore. TRI and PERC concentrations were
graphed for extraction Veil No. 1, deep and shallow, and are presented In
Figures 3-2q through 3-2t.
All of the graphs presented in this section were prepared on a semi-log
scale with the x coordinate representing the day of active treatment (1-60)
and the y coordinate designated as the concentration of the compound in parts
per million (ppmv). Fit line equations in the form of y - a eb* and curve
coefficients (measure of accuracy of "fit") are included on each graph. The
results of all well head and process gas samples can be found in Appendix E.
SHALLOW SOIL CAS PLOTS
During the Pre. Hid, and Post Treatment phases, shallow soil gas samples
were collected from 12 hollow stainless steel tubes that were hand driven at
20
-------
GROVE LAND/TERRA-VAC DEMONSTRATION
400 n
300
cr»
cn
J=,200
UJ
O
100
0-
PRETREATMENT
POST TREATMENT
\ /
v.
/
i i i T n-rT'i~rri~rT-r,Kr r i | i rrl i r r'r fprtT-n-frrTt i i i t i i i fr |
0 5 10 15 20 25
DEPTH IN FEET
Figure 3.1A. Extraction Well #1 results from soli boring program.
-------
CROVELAND/TERRA-VAC DEMONSTRATION
800 "I
PRETREATMCNT
* — — MIDTREATMENT
ooooo POST TREATMENf
600-
CT>
400-
Ld
200-
'tTTr ?:r~fTHTTt rTTt"i-r-r tTTYt ~n
IT) ?0
rrr
25
0
f
10
DEPTH IN I EE1
Figure 3.IB. Vacuum Monitoring Well #2 results from soil boring program
-------
GROVELAND/TERRA-VAC DEMONSTRATION
25 ~|
20-
PRETREATMENT
POST TREATMENT
cn
LJ 10-
10
rr f-n-r^T-rrTTi
20 25
rtrprfrnTnT
5
rrn i~| irrn
5
DEPTH IN FEET
Figure 3.1C Extraction Well #2 results from soil boring program.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
60 n
50-
cn
CF>
£
LlJ
o
40-
30-
20-
10-
0-"-
"i-r-rKrr
0
n ri-]-|-i n i r
10
DEP'
PRETREA1 Mf. MT
. POST TRflATMLM'l
-------
GROVELAND/IERRA-VAC DEMONSTRATION
2000 "I
1 500 -
CF>
PRETRCATMCM T
MIDTRCATMCNT
o-o-o-o-o POST TREAIMRNf
cn
1000-
rs>
cn
LJ
O
500-
i rrfr-p-rr-i f rf i TfTT i"t"rn T i f i t'T ri r n'Tf i i i tn i Tt]
0 I!) 20 25
DEPTI"
Fip,ure 3 IF.. Vncuum Monitoring Uoll u3 results from soil boring progr.nm
-------
LAN RRA
or " STR ~ ~ vl
400 H
300-
cn
CT>
200-
LJ
O
100-
o-
PRETREATMENT
POST TREATMENT
/ I
T-rrTi7"n i rr rrri f-m-t rr-i i'i f t? ri"TT rri f rTTtri i T"n
0 5 10 1'. ?0 25
DEPTH IN I I ;. I
FLgure 3.IF Extrnctlon Well #4 results from soil boring progr.im
-------
GROVE LAND/TERRA-VAC DEMONSTRATION
no
1000
>
£
Q_
Q_
100
O
I—
<
(X
10
LlJ
O
z
o
o
LU
o
1 -
0 1
0 01
L,'-rrj
0
n~n~n rry -iTrrni iT "cr rrr it i i it rri i rrr-rrr rirrrr
(-0'.«,*)
Y= I59JVCXP'
cuRvr corrncirrir R'-.n r,?
20
40
f>0
o
0
100
DAY OF AC'IIVI AI M
NT
Figure 3-2/V Extraction Well #1 shallow
-------
)VEL TER 'AC ONS ON
no
00
1000^
>
E
Q_
Ql
O
<
cr
Ld
o
o
o
LJ
o
100^
10^
1 -
0.1
Jh_
««*
0 01 i i i i i i i m r"ri~rrT~i ~T~r rri n i i ii"i rrrTi 'i n~ m i i i i i i
,(-nco)
Yr- r>2 86'Exr
CURVE COEfTICICIII R?=0<12
0 20 4 0 00 80
DAY OF ACT IVI-; TREATMENT
Figure 3-2B Extraction Well #1 deep.
00
-------
GROVELAND/TERRA-VAC DEMONSTRATION
1000
ro
>
E
Q_
Q_
O
100
<
tr
10
Ld
o
z
o
o
LJ
o
h-
0.1
0 01
* ~
• •
.iv *
-
^
*
-
*
*
t , *
~
•
—.
-
-
-
~m rrrrrr
( i f i i i m r
[ 1 1 ! 1 I 1 [ (
i M1111M
i i i i i i i i i
0
20
40
Y= 116 17»rxp("0035<)
curvf. coefficient r=o 5g
60
80
100
DAY OF ACTIVE TREATMENT
Figure 3-2C. Extraction Well P2 shallow.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
1000
W
o
>
Q_
Q_
Z
o
100
<
(Z
10
Ld
(J
Z
o
o
LU
o
0.1
0.01 -
0
20
40
1)0
- —
«
+
-
—^
* •
*
—^ *
•
*
-
-
-
-
— ..
—
i-rrrT rrrr
i i i i i i i i i
1 M 1 1 1 1 1 1
i-1 r i rr r r i"
i i i m i m i
Y= 65 28«CXP(~00"*)
CURVE COCFFICIEMT R =0 5C
80
100
DAY OF ACTIVE TREATMENT
Figure 3-2D Extraction Well tt2 deep
-------
CROVELAND/TERRA-VAC DEMONSTRATION
> 1000
£
Cl
Q_
^ 100
O
< 10
cr
LlJ
o
o
o
UJ
o
0.1
0.01
Y= 709 07«EXP("001""
curve corrriciENT r'-o f>2
i • i " i i i i i | i i i i i i i i i | i i i c i i rr_r "i i i i i i i~r~i—m ii l m ii
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2E. Extraction Well "3 shallow.
-------
CROVEIAND/TERRA-VAC DEMONSTRATION
CJ
M
1000
>
£
Q_
Q_
o
100
<
(Y.
10
LU
o
z
o
o
LU
o
0.1
0.01
's. «
_~
I M I I I I I
0
I 11 I I I ITT
"lTTTT'i-rrr
20
11 11 i i i i
i i i i m i M
Y= 238 06«EXP<"00,i*)
CURVE COEFFICIENT RJ = 0 47
40
60
80
100
DAY OF ACTIVE TREATMENT
Figure 3-2F Extraction Well tt3 deep.
-------
grovelano/terra-vac demonstration
>
1000
Q.
Q_ .
100
O
10
to
U>
<
cr
t—
z
Ld
O
2
o
o
LU 0-1
O
~ *
9
~M u, » ~
7~*~*—
*
== .
__
-
-
1 1 1 1 1 1 1 1 1
l l l l l I l i 1
I l l l l l i M
ri i m i in
i i m i i i i i
Y= 19)8 07»FXP<~00,*>
CURVE COEFFICIENT R2=0 70
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2G. F.xtrnrtion Well #4 shallow.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
u>
1000
>
E
Q_
Q_
o
I—
<
(H
100
10
LlI
O
z
o
o
LJ
O
0.1
0.01
rr
» »
Y= 348 78'EXP'"004*'
CURVE COEFFICIENT R^Q 29
I I II II I I I I I I II I I I I I II I I I i IT I I 1 I II I I I I I I I I I I I'll
0 20 40 fiO 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2H. Extraction Well deep.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
1000
w
ui
>
Cl
Cl
100
o
<
(Z
10
LjU
O
z
o
o
UJ
o
0.1
•
m
•
*
*
~ t
* *
~
• ~ ~
* ~ ~
^—.
II 11 1 II 1 1
1 1 11 II 1 1 1
II 1 II 1 1 1 I
i i i i i m i i
1 1 1 1 1 II II
V= 25 29«EXP(~op,)
CURVE COEFFICIENT R}=0 39
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-21. Vacuum Monitoring Well "1 shallow.
-------
GROVEIAND/TERRA-VAC DEMONSTRATION
CJ
o>
1000
>
E
CL
Q_
o
\—
<
cr
100
10
UJ
O
2
O
o
UJ
o
h-
0.1
» * ~ • ~
~ ~ * » • ~
• ~ t ~ » <"
Y = 7 7.EXP("0 005)
CURVC COEFHCICNT RJ = 0 02
0.01 - | M i i ii i i i I n i m m i i prTrrrm | i i i i i i i i i | i i i i i i i i
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2J. Vacuum Monitoring Well #1 deep.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
u
1000
>
Q.
Q_
100
O
<
cr
LlJ
o
o
o
Ld
o
0.1 -
0
20
AO
*
-
-
« .
¦~ W —-
•
„ ~
-
* ~
#
•
*
~ ~ t
*
* ~
~
*
-
~~~ - -
—
'
~
-
— —
-
1 1 I 1 1 1 1 1 1
<11111111
m m mi n
i i i i i i i i i
i m m i i i l
Y= 59 98'EXP*"0077*'
CURVE COEFFICICNT RJ = 0 <15
GO
80
100
DAY OF ACTIVE TREATMENT
Figure 3-2K. Vacuum Monitoring Well #2 shallow.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
1000
>
E
CL
Q_
O
100
<
cz
10
CO
00
LlJ
o
o
o
LU
CJ
0.1
0.01
-
»
• *
*
r
~
•
~
• •
~
~
•
~
--
-
TiTrrrT rn_
1 1 1 1 1 1 1 | |
II 1 I I 1 1 1 !
i i i i i i i i i
i i i i ii i i"
0
20
40
y= <17 87.exp(~0 000?,,)
CURVE COErFICIENT RJr:0 00
60
80
100
DAY OF ACTIVE TREATMENT
Figure 3-2L V.ncuum Monitoring Well "2 deep.
-------
CROVELAND/TERRA-VAC DEMONSTRATION
u>
«o
> 1000^
Q_
Cl
100
o
cr
Ld
O
z:
o
CJ
LJ
O
0.
•
•
-
~
-
-
-
-
*
-
-
-
-
. -
¦ ¦ - ¦ ¦
~
1 1 1 11 1 1 1 1
"I M 1 1 1 1 11
M M M i r i
ii i i i i i rr
11111 m 11
Y= 'ISO 34«EXP(~ony"<)
CURVC COEFflCICNT R3^0 33
0 20 40 GO 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2M Vacuum Hon i tor inf; Wo LI shallow
-------
GROVELAND/TERRA-VAC DEMONSTRATION
1000
>
o
<
rr
LJ
o
z
o
o
LU
O
Q.
Q_
100
10
0.1 -
0.01 I i i i m i i n_rrTi i i i i i i i i i i r m-rri i i i i i ii | i i i ri i i i i
Y= 1 /1 52»EXP(~0(m,()
CURVE COEFriCIENT RJ = 0?1
0 20 40 GO 80 100
DAY OF ACTIVE TREA1 ME NT
Figure 3-2N. Vacuum MonLtorinp, Well tt3 cloop
-------
GROVELAND/TERRA-VAC DEMONSTRATION
1000
>
£
Cl
CL
100
o
f—
<
(X
10
Ld
O
O
O
LjJ
o
0.1
•_* t_
-~—1~
• • • • •
Y= 1 7 94.CXP("005x)
CURVE COEFFICIENT fT = 0 27
0.01 i m i i ii m i i i i i i i i i ii ri i i i rr ii m ii n i I m i m i ii i
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-20. Vncuum Monitoi. Ing Well shallow.
-------
GROVELANO/TERRA-VAC DEMONSTRATION
1000
>
Cl
Cl
O
<
cr
LlJ
o
o
o
LJ
O
I—
100
10
1 -
0.1
~ ~ ~ ~ ~
0.01 I ' 1 i i i i i i i rrrri mm m m n rrr~m i i i i i i i i i i i i i ii
Y= 14 8?»EXP< 00I*'
CURVE COEmCIENT R?=0 25
0 20 40 GO 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2P Vacuum Monitoring Well #4 deep
-------
CROVELAND/TERRA-VAC DEMONSTRATION
100
u>
10
>
Q_
Q_
O
cr
Ld
CL
0.1
0.01
T I I II II
J, V r~
~ri i i i i i i
I.I
1— —
rr ~i i i i ii i i i—ii i i i i i i i
Y= 0 <150»EXP(~o
-------
CROVELAND/TERRA-VAC DEMONSTRATION
100
> 10"
cr
Cl
Cl
~ 0.1
•
**
.
1
~
~ ~ •
•
* «
N. +
N . M
\ »*
4 . * \ »
V •
X ?
• *
~ \
•
1 1 1 1 1 11 1 1
1 1 1 1 1 1 1 II
1 El 1 1 1 1 1 1
i i i i i iV'rT
i i i i m i i i
Y = 0 485*EXP<~00ix>
CURVE COEFFICIENT RJ=0 09
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2R. ExtrnctLon Well #1 shnllow
-------
CROVELAND/TERRA-VAC DEMONSTRATION
100
u>
>
Cl
Cl
CC
10
0.1
~ ~
0.01 ~| i i i i i ( i i i~ m i i i i i M—i m i i M i j~ I 11 M i m i—i 11 M m m
Y= 0 i^EXR1"003*'
CURVE COEFFICIENT R2=0 30
0
20
40
60
80
100
DAY OF ACTIVE TREATMENT
Figure 3-2S. Extraction Well #1 deep.
-------
GROVELAND/TERRA-VAC DEMONSTRATION
100
10
>
Ol
Q_
Q_
O
(Z
Ld
DL
0.1
~
» *
t
^71 •
0.01 I M I M I I I n I I I I I I I 1 M II I I M
t « .*
~ *
TTTTTTTTT
Y= 0 1 39«EXP<~00lx>
CURVE COEFFICIENT R?=Q )J
0 20 40 60 80 100
DAY OF ACTIVE TREATMENT
Figure 3-2T Extraction Well #1 deep.
-------
approximate 3 foot depths at specified locations around extraction Uell No. 1
(Figure 2-2). The gas samples from the vacuum monitoring wells were also
collected at these times. Three dimensional (3-D) plots were generated from
the results of these sampling programs and are presented in this report as
Figures 3-3a through 3-3c. A complete listing of these results are tabulated
in Appendix D.
These plots were created by setting up a coordinate system around
extraction Veil No.l (origin) to locate all sampling points. The location of
each sample point (punch bars and shallow vacuum wells) becomes a function, of
"x" and "y". TCE (ppmv) concentration at each location is plotted on a "Z"
scale resulting in a 3-D plot of TCE levels across the grid. Values of "Z"
between data points and around the grid are generated by the Kriging method
which uses given data points and a regional variable theory to generate values
between sample locations.
SEPARATOR WATER
The moisture laden soil vapors that were extracted from the wells were
routed to a tangential inlet separator tank to "knock out" entrained
moisture. This separator tank was drained periodically into a 2,000 gallon
holding tank. When the 2,000 gallon holding tank reached capacity, a
contracted waste hauler would pump the contents into a tank truck for delivery
to a treatment facility. Prior to the arrival of the tank truck, a sample of
Che tank contents was taken and analyzed for the five volatile compounds of
interest. The results of these analyses are contained in Table 3-2.
CARBON CANISTERS
Soil vapors extracted from the wells passed through activated carbon
canisters downstream from the separator tank prior to discharge to the
atmosphere. Each canister contained 1,200 pounds of carbon to adsorb the
volatile organics contained in the extracted gas. Canisters were set up in
series with one canister (sometimes two) as the primary followed by a single
secondary canister. The primary carbon outlet was sampled, with few
exceptions, on a daily basis to monitor the concentrations and indicate when
47
-------
m~:2
VnUij
map vitw
U
"eU" 3"3A- shallow solI gas «„centratlOT.
48
-------
T'
VTfiy
V^'7
gUre 3-3b
tfid-
tre
a toje
nt
shall
49
ov
Soil
£as
c©nc
e°tra
tiorj.
/*
-------
WAP Wflv
3C.
Post
treatment
shaij
ow
50
soij
gas
c®nc
e°tra
c*on.
/
A
-------
TABLE 3-2. GROVELAND SEPARATOR WATER GC DATA
OATE CONCENTRATION
SAMPLE Of (MQ/L) QUANTITATION .
1.0. | COLLECTION | NC I 0CE | TRl | TCE | PCE | LIMIT |
I I I I I I I I
SEPORAIN/12-16/1 | 12/16/87 | NO | 16 | TRACE | 96 | NO | 0.5 |
I I I I I I I I
SEPOBAIN/1-11/1 | 1/11/88 | TRACE | 4.2 | TRACE | 35 | NO | 0.5 |
I I I I I I I I
StPORAIN/1•12/1 | 1/12/88 | TRACE | 3.5 | TRACE | 26 | NO | 0.5 |
I I I I I I I I
SEPORAIN/1 -13/1 | 1/13/88 | TRACE | 3.1 | TRACE | 22 | HO [ 0.5 |
I I I I I I I I
SEPORAIN/1-15/1 | 1/15/88 | TRACE | 3.9 | TRACE | 29 | NO | 0.5 |
I I I I I I I I
SEPORAIN/2-23/1 | 2/23/88 | NO | 1.1 | NO | 92 | NO | 0.5 |
I I I I I I I I
SEPORAIN/3-6/1 | 3/6/88 | TRACF | 0.93 | NO | 8.8 | NO | 0.5 |
I I I I I I I I
SEPORAIN/3-22 | 3/20/88 | TRACE | TRACE | NO | 5.3 | NO | 0.05 |
I I I I I I I I
SCPORAIN/4-08 | 4/8/88 | TRACE | TRACE | NO | 3.3 | NO | 0.05 |
I I I I I I I I
mauuaininmimiiiiiasniaiiiiiifiiiini«iaiiaiiiiit>aiiiiiiatiiiitnaiiimniiiiiii
51
-------
breakthrough was occurring. The Terra-Vac representative onsite periodically
changed canisters based on the outlet concentration. Normally, primary outlet
concentrations of 10-20 ppm were used as the threshold limit indicating that
canisters should be changed. Once a canister was taken "off line" it was
opened and a carbon sample collected for subsequent analysis for the five
volatile compounds of interest. The results of these analyses are presented
in Table 3-3.
CONCLUSIONS
The data collected during this project indicates that a measure of clean
up did occur within the study area at the Valley Manufactured Products site.
This is particularly supported by the well head concentration graphs
(Figures 3.2a - 3.2t) which all show negative slopes. Along with the decrease
in soil gas concentration, the results of the soil boring program indicate a
general reduction in volatile organic soil contaminants across the site. The
concentrations of volatiles adsorbed in the activated carbon (as indicated by
the carbon analyses), as well as the calculated flux rates, also support the
conclusion that contaminants were removed froin the site.
In general, the amount of total volatiles collected on the activated
carbon during the study periods was over 1,300 lbs of VOC. This figure was
based on a total amount of carbon in each canister of 1,200 lbs. The actual
amount of VOC collected may vary from the above amount if the canister
contained more or less carbon. In support of the carbon analysis, the flux
rates at the extraction well heads sum to approximately 1,300 lbs of VOC's.
Results of TOC and oil and grease analyses (Appendix A) have been
reviewed and no clear cleanup trends could be established. Oil and grease and
TOC were chosen as additional indicator parameters of gross organic
contamination present at the site. The variability of the results, however,
indicates that a variety of factors may be responsible for lack of clear
trends. Analytical method variability and matrix interferences are two
possible factors.
Several factors associated with this site contribute to make direct
correlations and estimations of cleanup difficult. Among these factors are:
variable geology, poorly defined contaminant plume, and amount of time
allotted for this particular demonstration.
52
-------
The geology of Che site varies greatly from one end of the study area to
the other (approximately 70 ft). The information contained in the drilling
logs (Appendix B) and the engineering borings (Appendix C) indicate
variability across the site and from zone to zone. These variations resulted
in non-homogeneous samples which effect the analytical precision and
coorelations of pre, mid, and post treatment soil boring results The clay
layer found at a depth of 10-15 feet varies in thickness, cohesion, and silt
content. Also the amount and type of fill varies across the site from clean
sands and gravel to brick and cinders. Differences among these distinct zones
probably resulted in a regional (well to well) variable impact on overall
effect of the process In other words, the extractions of valors around EV1,
as compared to EW4 may have been impacted by the difference in the overlying
sands and the difference in thickness and cohesion of the clay.
Previous studies conducted at the Groveland Site indicates that the
contamination plume is at it's highest concentration directly beneath the
concrete floor of the storage area with a general movement to the northeast
toward Mill Pond. For this reason, the process was configured to isolate the
main contamination plume and provide a relatively "clean area" around
extraction Well No. 1 to assess the effectiveness of the process. This was to
be accomplished by positioning the three barrier wells (Extraction Wells No. 2
3, and &) between the known contamination plumes and extraction Veil No 1
Contaminants from the main plume would be drawn towards the barrier wells and
not into the study area.
Several factors, however, occurred during the course of the study that
raise questions about the placement o£ the barrier wells and their overall
effectiveness in preventing contaminant migration towards the study area.
Results obtained from pretreatment soil analysis indicates an area of
high volatiles contamination in the vicinity of monitoring Veil No. 3; well
within the influence of Extraction Well No. 1. The barrier wells, therefore,
may have had little influence on this plume in respect to the influence
induced by Extraction Veil No. 1. As a result, as the study period
progressed. Extraction Veil No. 1 would have had a tendency to draw
contaminants from the vicinity of monitoring Veil No. 3, acutally resulting in
higher concentrations (or a less dramatic reduction) for some of the mid and
post treatment samples. Data obtained during this study does support this
possibility.
53
-------
In addition, Extraction Well No. 4, deep (barrier well) became
Inoperative on the 20th day of active treatment (due to siltation) and was
therefore not a factor in preventing contaminant migration from the main plume
for the last 40 days of active treatment. The actual impact of Extraction
Veil No. U deep's plugging is difficult to assess.
The fact that this well was meant to prevent contaminant migration into
the study area, and was inoperative for two thirds of the active treatment
period, can only lead to the speculation that contaminants could have migrated
into the study area thereby impacting mid and post treatment results.
The duration of this demonstration over the course of this program was
increased from 14 days to 28 days to 56 days and actually lasted 60 days. A
60-day program was enough time to develop trends, but may not have been enough
time to make predictions of the amount of time until "clean" site would be
achieved.
54
-------
TABLE
3-3.
GROVELAND
CARBON
CANISTER
CC DATA
OATE
SAMPLE Of
1.0. | CARBON CHANCE | NC
DCE
CONCENTRATION
<«B/g>
| TRI I TCE I
PCS. 1
CARBCAN 19141
1
2/14/88
| <0.18
I
12
I 0.64 |
1 i
80* |
I
<0.18 |
1
CAR(CAM 1910|
1
2/16/88
I
| <0.18
i
5.2
1 1
| <0.18 |
¦ i
1
42b |
i
<0.18 j
1
CAMCAM 1909|
I
2/25/88
1
| <0.18
1
2.5
J 1
| <0.18 [
i i
1
150* |
¦
<0.18 |
1
CARICAN 1911|
t
2/25/88
1
| <0.18
¦
3.5
1 1
1 0-26 |
i j
1
120* |
i
<0.18 |
1
CARBCAN 1912|
1
J/15/88
1
| <0.18
i
5.5
1 1
[ <0.18 |
i i
1
120a |
i
<0.18 |
1
CARICAN 2037|
¦
3/15/88
1
( <0.18
¦
10
I 1
| <0.18 |
i i
I
50b |
i
<0.18 j
1
CARBCAN 2039|
i
3/24/88
1
| <0.18
i
10
1 1
1 0.26 (
i i
1
74b |
i
<0.18 j
1
CARBCAN 2040|
t
3/29/88
1
| <0.18
I
2.8
1 1
| <0.18 |
r i
1
115a |
i
<0.18 |
1
CARBCAN 1915|
i
3/31/88
1
| 0.36
23
f J
1 0.7 |
i i
1
82a |
p
<0.18 |
i
CARBCAN 1913|
1
4/08/88
I
| <0.18
i
6.6
1 1
1 0.42 |
1 r
1
81a |
i
<0.18 |
1
CARBCAN 2038|
i
4/10/88
1
| <0.18
¦
4.8
1 1
1 0.38 1
i i
J
80a |
t
<0.18 |
1
CARBCAN 2088|
i
4/15/88
1
| <0.18
¦
2.8
1 J
| <0.18 |
i i
1
0.53 |
r
<0.18 |
1
CARBCAN 2089|
I
4/18/88
1
| <0.18
1
U
1 1
| <0.18 |
1 I
1
<0.18 |
1
<0.18 {
•» valu* baiod an 1:10 dilution
b" valu* bnad on 1:5 dilution
55
-------
SECTION 4
QUALITY ASSURANCE
INTRODUCTION
Quality Assurance/Quality Control (QA/QC) procedures followed in this
program were based on routine laboratory and field practice and the HWERL
Category II QA Project Plan (QAPP) entitled Sampling and Analysis - Terra Vac
Inc In Situ Vacuum Extraction Technology Site Demonstration Project. Vallev
Manufactured Products Site. Groveland. Massachusetts. The QAPP was initially
submitted September 1, 1987, and was approved by EPA after the submittal of
Revision 1 on October 7, 1987 This QA section will detail areas where
changes in laboratory and/or field procedures were made, and will compare the
precision, accuracy, and completeness obtained during this program with the
data quality objectives presented in the QAPP. To facilitate review of
pertinent QC data, this section will follow the outline of the QAPP
PROJECT ORGANIZATION AND RESPONSIBILITY
During the course of this program, several organizational changes were
made. Mr. Patrick Ford replaced Mr. Thomas Nunno as the Program Manager,
responsible for the overall program direction. Ms. Joanna Hall replaced
Dr. Neil Ram with the overall responsibility of coordinating the analytical
work, and Mr. Louis Macri replaced Mr. Mario Iannacone as Analytical QC
Coordinator. In addition, one of Alliance's subcontractors, metaTRACE, Inc ,
was unable to conduct any analysis for soil TCLP. The TCLP samples were
returned to Alliance and the analysis was conducted at the Bedford facilities,
56
-------
QUALITY ASSURANCE OBJECTIVES
Precision. Accuracy and Completeness
Precision was estimated through analysis of duplicates and matrix spike
duplicates. Accuracy was estimated through analysis of laboratory control
sample and matix spikes. Completeness is estimated after review of the
precision and accuracy data; completeness is the estimate of the generated
data judged to be valid based upon comparison of the achieved precision and
accuracy with the goals stated in the QA Plan.
Precision, accuracy and completeness for each analytical category are
addressed in the following sections.
pH--
The precision of sampling and analysis for pH was estimated through the
analysis of field-generated duplicates. Results of these analyses are
presented in Table 4-1. Four out of twenty-four duplicate analyses exceeded
the QA objective of plus or minus 0.2 pH units, resulting in 83 percent
completeness for this analysis. The objective of 90 percent completeness was
not met.
Oil and Grease--
Sampling and analysis precision for oil and grease was established
through the analysis of field-generated duplicate samples. Table 4-2 provides
a summary of sixteen analyses for which relative percent difference can be
calculated. Ten duplicate analyses were not within the QA objective,
resulting in 38 percent completeness for this analysis. The frequent
occurrence of poor replication of results was investigated by analyzing
triplicate aliquots of the B2/6 duplicates, sampled on 3/15/88. Results of
these analyses (Table 4-3) verify the poor precision indicated by the single
analysis of the duplicate sample. The analyst noted that it was difficult to
obtain a representative aliquot from these samples because they were a mixture
of oily soil and sand. Consequently, it was determined that the QA objective
of plus or minus 30 percent relative percent difference was not reasonable for
this sample matrix.
57
-------
TABLE 4-1. PRECISION OF ANALYSIS OF SOIL SAMPLES FOR pH
Date
Sampled
Sample ID
PH
Initial
Value
Duplicate
Allowable Range
12/01/87
MWS1/4
6.35
7.55 *
6.75
-
7.15
12/02/87
MWS1/9
6.30
7.65 *
6.78
-
7.18
12/07/87
EWS2/9
6.37
6.31
6.14
-
6.54
12/08/87
EWS3/9
5.88
6.05
5.77
-
6.17
12/09/87
EWS4/4
6.31
6.27
6.09
-
6.49
EWS4/9
6.44
6.57
6.31
6.71
12/10/87
EWS1/11
6.00
5.82
5.71
-
6.11
EWS1/5
6.97
6.74
6.66
•
7.06
12/11/87
MWS3/5
5.92
5.99
5.76
-
6.16
12/14/87
MWS4/7
5.84
5. 54
5.49
-
5.89
3/15/88
Bl/8
• 6.50
6.53
6.32
-
6.72
B2/5
6.38
6. 57
6.28
—
6.68
B2/6
6.-57
6.45
6.31
-
6.71
B3/6
6.90
6.95
6.73
—
7.13
3/16/88
B4/7
6.96
7.02
6.79
-
7.19
4/19/88
B6/10
6.37
6.69
6.33
-
6.73
B6/5
6.95
7.24
6.90
7.30
4/20/88
B7/11
6.50
6.87
6.49
-
6.89
B7/8
6.52
6.31
6.22
—
6.62
4/21/88
B10/4
7.53
7.11 *
7.12
-
7.52
B10/6
6.05
7.23
6.89
—
7.29
4/22/88
Bll/9
6.69
6.52
6.41
-
6.81
B12/5
6.15
6.40
6.08
•
6.48
4/25/88
B13/2
6.39
5.92 *
5.96
-
6.36
QA Objective = +/- 0.2 pH units from the mean.
* = Result is outside QA objective.
58
-------
TABLE U-2. PRECISION OF SOIL OIL AND GREASE ANALYSIS
(mg/kg)
Date
Relative
Sampled Sample ID
Initial Duplicate
Percent Difference
12/01/87
MWS1/4
1300
1310
NC
12/02/87
MWS1/9
100
556
NC
12/07/87
EWS2/9
1620
1780
9
12/09/87
EWS3/9
1090
2330
73
*
EWS4/4
16110
14060
14
EWS4/9
416
465
11
12/10/87
EWS1/11
95
236
NC
12/11/87
MWS3/5
10350
2880
113
•k
12/14/87
MWS4/7
1010
147
NC
3/15/88
Bl/8
447
378
17
B2/5
229
232
1
B2/6
3942
1590
85
*
B3/6
365
253
36
*
3/16/88
B4/7
ND
ND
NC
4/19/88
B6/10
603
1040
53
*
B6/5
390
1010
89
*
4/20/88
B7/11
384
771
67
*
B7/8
2420
272
160
*
4/21/88
B10/4
6330
5180
20
B10/6
5580
2720
69
*
4/22/88
Bll/9
ND
ND
NC
B12/5
877
ND
NC
4/25/88
B13/2
21500
29500
31
*
QA Objective = +/- 30% RPD
* - RPD is outside control limits.
ND = Not Detected.
NC = Not Calculated. Precision values are calculated only for
concentrations greater than twice the quantitation limit.
59
-------
TABLE 4-3. RESULTS OF TRIPLICATE ANALYSIS OF SOIL SAMPLES FOR OIL AND GREASE
Concentration (mg/Kg)
Sample Sampling
Location Date ABC Average RSD
B2/6 #1 3/15/88 3940 2640 2630 3070 20
B2/6 #2 3/15/88 1590 4560 2480 2877 43
-------
Accuracy of oil and grease analysis was determined by che analysis of
Laboratory Control Samples (LCS), generated from a U S. EPA Municipal Digested
Sludge. An LCS was analyzed for every 20 program samples. Results of these
analyses are provided in Table 4-4. All data are within the QA objective of
80 to 120 percent recovery.
T0C--
TOC precision was provided via the analysis of field duplicates.
Table 4-5 is a summary of the results obtained. QA goals were not listed for
this non-critical analysis, however, results in Table 4-5 indicate evidence of
sample non-homogeneity similar to that experienced with the oil and grease
analysis.
Table 4-6 shows the accuracy obtained for the determination of TOC
through the analysis of LCSs. These samples were generated utilizing U.S
EPA/EMSL QC samples. QA goals were not provided for this analysis.
Soil and Process Gas
FID- -
Trans-l,2-dichloroethylene (DCE) and trichloroethylene (TCE) were
determined in field samples at the onsite location by gas chromatography with
flame ionization detection (GC/FID). Precision has been estimated through the
analysis of duplicate samples and through duplicate injection of aliquots of
single samples. Accuracy has been estimated through the analysis_ of
laboratory control samples.
A total of 148 samples (Table 4-7) were analyzed in duplicate, i.e ,
single samples each analyzed twice. These analyses provide an estimate of the
analytical precision independent of the sampling precision. Of the 148
samples analyzed for TDE, 38 sample concentrations are high enough to provide
an estimate of precision. (The other 111 sample concentrations are less than
twice the quantitation limit) Of the available 38 precision estimates for
DCE, all are within the QA objective of plus-or-minus 50 relative percent
difference. The average precision for these 38 DCE precision values is
3 relative percent difference Of che 148 samples analyzed for TCE, 108
sample concentrations are high enough to provide an estimate of precision Cf
the available 108 TCE precision estimates, all are within the QA objective
The average precision for these 108 TCE precision values is 4 relative percent
difference.
61
-------
TABLE k-U. RESULTS OF ANALYSIS OF OIL AND GREASE LCSs
Concentration (mg/Kg)
Reported
Expected
Percent
Recovery
55930
52700
106
49110
52700
93
48340
52700
92
49820
52700
95
51450
52700
98
53950
52700
102
52900
52700
100
54300
52700
103
Average percent recovery = 99 +/- 5
QA Objective = 80 - 120 %Recovery
62
-------
TABLE 4-5. PRECISION OF ANALYSIS OF SOIL FOR TOC
(mg/kg)
Relative
Date
Sample ID
Initial Duplicate
Percent Difference
12/01/87
MWS1/5
910
600
41
12/02/87
MWS1/8
240
340
34
12/07/87
EWS2/11
5080
12600
5
12/09/87
EWS4/10
1290
1260
2
EWS4/5
20000
22200
10
12/10/87
EWS1/7
8540
20700
83
EWS1/8
1160
1400
19
12/11/87
MWS3/4
22000
27300
22
12/14/87
MWS4/4
7250
8380
14
3/15/88
Bl/8
2100
1650
24
B2/5
1020
1140
11
B2/6
1970
829
82
B3/6
617
657
6
3/16/88
B4/7
1240
1100
12
4/19/88
B6/10
2930
4220
36
B6/5
383
,38
13
4/20/88
B7/11
1070
6490
143
B7/8
1590
768
70
4/21/88
B10/4
5980
3360
56
BIO/6
4760
5900
21
4/22/88
Bll/9
154
276
57
B12/5
3820
3580
6
4/25/88
B13/2
10800
11300
5
Average RPD = -12 +- 50
63
-------
TABLE 4-6. ACCURACY OF SOIL TOC ANALYSIS
Concentration (mg/Kg)
Reported
Expected
Percent
Recovery
1993
2000
100
2017
2000
101
1 975
2000
99
1992
2000
100
2009
2000
100
2016
2000
101
2011
2000
101
1980
2000
99
2019
2000
101
2051
2000
103
1994
2000
100
1979
2000
99
2030
2000
102
1975
2000
99
1966
2000
98
1947
2000
97
2073
2000
104
2036
2000
102
2032
2000
102
2044
2000
102
Average percent recovery — 100 +/- 2
QA Objective = 80 - 120 %Recovery
64
-------
TASU 4-7. PRECISION RESULTS Of ON-SITE REPLICATE SAMPLE INJECTION AMD ANALYSIS (GC/FIO)
(ug/eiAle mttr)
t-1.2-OleMoroathylana
Ralatlva
Tr1eh(eroathyIana
Ralatlva II
SjflplIng
Oat*
(OCE)
Pareant
(TCE)
Pareant ||
SM?I« 10
Original
Oipl leata
Otffaranca
Original
Dipllcata
Olffaranea ||
16-0*e-87
nsu-J
38000
38000
NC
570000
590000
3* II
Pt-06
1300000
1300000
OX
1400000
1400000
OX 11
17-0ac-87
EUG3S-4
S60000
560000
OX
14000000
14000000
ox
EWG3S-8
290000
300000
3X
7400000
7900000
7X 11
18-0ac-87
tvG40*i
320000
320000
OX
7900000
7800000
'*
ncu-7
220000
220000
ox
3200000
3200000
OX 11
07-j«o-aa
EWC3D-1
NO
IC
NC
NO
NO
NC
08-Jan-Sfl
EVG1S-3
900000
850000
6X
12000000
11000000
9X | |
PCSCPtIM
370000
290000
241
7700000
5000000
43X
11-Jan-88
EWG2S-1
100000
86000
15X
2000000
1600000
22X ||
PGStPIN-1
330000
310000
6X
6600000
6100000
" II
VNUG43*1
NO
NO
NC
43000
51000
NC |l
12-J«n-88
EWS23-1
81000
77000
NC
1500000
1400000
7X II
EVG40-1
410000
400000
2X
2800000
2800000
OX 11
13-Jan-88
EU61S-1
180000
160000
12X
2800000
2400000
1SX ||
CWSi-1
NO
NO
NC
34000
35000
NC 11
VMUC2S-1
63000
65000
NC
1800000
1700000
6X 11
15-Jan-88
EWS1D-2
NO
NO
NC
140000
130000
7* 11
EUC2S-1
NO
NO
NC
280000
360000
25 X II
EYG40-1
400000
400000
OX
2500000
2500000
OX 11
VNW610-1
NO
NO
NC
97000
99000
2X
IWab-88
EWS10/1
92000
74000
NC
1300000
920000
34X ||
PCSCCONO
NO
NO
NC
73000
84000
14X
VMWG10/1
NO
NO
NC
36000
39000
NC ||
VNMG40/1
NO
NO
NC
48000
49000
NC |
i2-r«b-aa
EUStS/2
36000
36000
NC
730000
730000
OX ||
EWC2D/1
43000
41000
NC
400000
390000
3*
VNUG2D/1
110000
110000
OX
450000
430000
5* II
13-Fab-88
EUS1S/2
36000
36000
NC
740000
740000
OX |
EUC2D/1
110000
110000
ox
410000
430000
5X ||
PCSEPIH
86000
86000
NC
1400000
1400000
OX 11
VHWG4S/1
NO
NO
NC
70000
73000
4X 11
U-fato-88
EVG30/1
250000
250000
OX
2100000
2100000
OX 1
VNUC3S/1
NO
NO
NC
280000
290000
tx 11
VMA40/1
NO
NO
NC
84000
94000
11X
WMS4S/1
NO
NO
NC
NO
NO
NC
13-fato-88
EWC10/1
NO
NO
NC
690000
760000
10X
EWC1S/2
NO
NO
NC
540000
540000
ox
VNUC10/1
NO
NO
NC
NO
28000
NC
VMUC3S/1
140000
140000
OX
2300000
2300000
ox
16*Fab*88
EW610/2
NO
NO
NC
160000
160000
ox
EW63S/1
88000
88000
NC
4300000
4300000
OX
VNUG3S/1
240000
240000
OX
4600000
4500000
2X
17-Fato-88
EUC10/2
NO
NO
NC
140000
150000
7X
EWC30/1
120000
UOOOO
7X
1300000
1300000
OX
VMUG30/1
60000
59000
NC
1100000
1100000
ox
VNWG40/1
NO
NO
NC
44000
48000
NC
18-'#b-8a
(WC3S/1
NO
NO
NC
1100000
1100000
ox
EUOtt/1
120000
120000
OX
1SOOOOO
tsooooo
ox
i9*r«b-aa
VMUG1S/1
NO
NO
NC
57000
64000
NC
VNMG4S/1
NO
NO
NC
29000
35000
NC
20-fab-8#
EV02S/1
NO
NO
NC
450000
430000
sx
(W3D/1
6.WJ0
66000
NC
660000
660000
.ox
2i-r«b-sa
VMA2D/1
NO
NO
NC
58000
58000
NC
22-r«to-aa
MS/t
52000
5)000
NC
100000
100000
ox
23-Fat>-88
VMU010/1
NO
NO
NC
NO
NO
NC
VNUG40/1
NO
NO
NC
67000
72000
NC
24-Pato-88
EWG2S/1
51000
51000
NC
110000
140000
24X
EWG40/1
62000
60000
NC
2200000
2200000
OX ||
2S-rtb-U
VHUC10/1
NO
NO
NC
NO
48000
NC II
VNUG4S/1
NO
NO
NC
120000
130000
8X |
26-fab-88
EW30/1
49000
49000
NC
. 320000
320000
OX II
PGCARIOUT
NO
NO
NC
NO
NO 1
NC
29-Fab-88
VNMG2S/1
NO
NO
NC
550000
540000 |
2* II
VNUG40/1
NO
NO
NC
41000
45000 I
NC
01-Nar-88
EW3S/1
41000
42000
NC
2500000
2500000 |
OX II
PGSEPIN
36000
36000
NC 1
1100000
1100000 |
OX II
65
-------
TMU 4-7. PHC1SICM RESULTS Of OB-SITE It PLICATE SAMPLE INJECTlOr ANO ANALYSIS (GC/FIO)
(•jg/cifeic aeter)
t-1.2-0ieftloro#thyler»
Relative 1
TricMoroethylene
II
Sailing
Oat*
(OCE)
Pereent
CTCE)
Percent ||
10
Original
Dipt (cat*
Difference |
Original
Diplicate
Difference jj
02-Mar-aa
EW10/1
MO
MO
MC
110000
'20000
9S 11
NC I I
VMWS40/1
MO
NO
MC
NO
NO
(Q-Kar-88
M-Mar-88
EW2S/1
VMUC2S/1
NO
NO
MO
«
MC
MC
200000
160000
200000
160000
OS
OS | I
VMUC30/1
130000
130000
OS
950000
940000
15 i
OS-Kar-88
EWS20/1
53000
52000
MC
120000
120000
OS 11
EUG4S/1
180000
180000
OS
8300000
8400000
1S
06-Mar-88
VMUS2S/1
MO
NO
MC
160000
160000
OS | |
VMJG40/1
NO
NO
MC
78000
80000
3S
07-Mar-88
EVC2D/1
53000
53000
MC
490000
500000
2S 11
Oa-Har-88
EWS10/1
MO
NO
MC
220000
220000
OS I
VNUC2S/1
NO
NO
MC
130000
130000
OS 11
VNUG4S/1
IC
NO
MC
NO
MO
NC
09-war-U
EVG30/1
63000
63000
MC
710000
710000
OS 11
10-Nar-88
VWW1D/1
NO
NO
MC
NO
MO
NC
VNUG30/1
96000
95000
IX
710000
700000
IS | |
VHWC4S/1
NO
NO
NC
280000
280000
OS 1
ll-Kar-88
EWG2S/1
NO
NO
NC
320000
340000
61 11
EW4S/1
170000
170000
01
7500000
7400000
IS 1
IS-Mer-88
VMUC10/1
NO
MO
NC
NO
70000
MC | |
16-Nar-88
PB8/1
NO
NO
NC
160000
160000
OS I
17-Nar-SS
Pt11/1
530000
510000
4S
510000
500000
2X | |
18-Mar-88
EWG3S/1
55000
55000
NC
2600000
2600000
OS II
VMWS10/1
MO
NO
NC
MO
NO
NC 11
VMUC40/1
NO
MO
NC
2SOOOO
250000
OS
19-Nar-88
EVC2D/1
53000
53000
NC
110000
110000
OS | |
EUC40/1
200000
200000
OS
1200000
1200000
OS
20-Mar-S8
VWUC2D/1
NO
NO
NC
500000
520000
4* I I
VMWC40/1
NO
NO
NC
200000
240000
18S I
21-Nar-88
EWC2D/1
47000
45000
NC
90000
120000
29S | |
EWC40/1
110000
110000
OS
710000
710000
OS | |
22-Nar-88
VMUG1S/1
NO
NO
NC
47000
71000
MC | |
VMUC3S/1
120000
120000
OS
700000
740000
6X |
23-Mar-88
EUG2S/1
MO
NO
MC
180000
210000
15X 11
EUG40/1
92000
91000
IS
720000
710000
1X
24-Nar-SS
VNWG2S/1
NO
NO
NC
180000
180000
OS I |
VMUC40/1
NO
NO
NC
NO
MO
NC
2S-Nar-88
EUC40/1
57000
54000
NC
550000
520000
6S 11
26-Nar-S8
VMWC2D/1
NO
NO
NC
360000
350000
3X
VMUC40/1
NO
MO
NC
NO
MO
NC | |
27-«ar-88
EWC3S/1
NO
MO
NC
1900000
1900000
OS I
28-Nar-88
EWC10/1
MO
MO
NC
32000
NO
NC | |
VMUC3S/1
98000
98000
OS
580000
570000
2S | |
29-Mar-88
EVG2D/1
MO
NO
NC
82000
81000
1* I I
EWG40/1
NO
MO
NC
NO
NO
NC |
30-Har-S8
EW10/1
NO
NO
NC
73000
79000
as 11
VMWC30/1
130000
130000
OS
1000000
1000000
OS | j
31-Nar-88
Evca/i
NO
NO
NC
72000
73000
11
EVG40/1
99000
97000
2X
860000
840000
2S
91 -Apr-88
VMUC1S/1
MO
NO
MC
NO
NO
NC | I
VNUG30/1
93000
92000
IS
700000
700000
OS I
02-Apr-88
EW40/1
120000
120000
OS
1000000
990000
1* 11
04-Apr-88
VMUC2S/1
NO
NO
NC
78000
78000
OS ||
VMUS40/1
NO
NO
MC
MO
NO
NC 1 1
05-Apr-88
EUC30/1
52000
51000
DC
500000
490000
2S
EUG40/1
MO
NO
MC
NO
30000
NC 11
06-Apr-88
VMUC10/1
NO
NO
MC
NO
58000
NC
VW1J40/1
NO
NO
MC
MO
MO
NC 11
07-Apr-88
EUC2D/1
43000
42000
NC
86000
86000
OS ||
PCSEPIM
NO
NO
NC
580000
510000
13S !|
08-Apr-88
VNMS1S/1
NO
NO
MC
NO
NO
NC j|
VMUC30/1
68000
65000
NC
360000
350000
3S 11
09-Apr-88
EUC2D/1
43000
(. JO&O
NC
91000
94000
H II
EWG4S/1
130000
: 30000
OS
5300000
5200000
zs II
10-Apr-88
WYG1D/1
NO
NO
NC
NO
87000
NC |
U-Apr-88
EUC10/1
NO
MO
NC
43000
58000
MC | I
EW4S/1
roooc
• 10000
OS 1
4600000
4500000
a II
66
-------
TABU 4-7. PRECISION RESULTS OF CM-SITE REPLICATE SAMPLE INJECTION AW ANALYSIS (CC/F1D)
(te/cvfcfc aeter)
Saopllna
Date
Mpl* (0
t-1,2-0fdiloroethyl*ne
C0CE)
Original duplicate
Relative
Percent
Of fftrtnet
TrlcMoroethylane
(TCE)
Original 0*11 cat#
Relative
Percent
Oiffereoee
iz-Apr-ae
Eweio/1
NO
NO
NC
32000
31000
NC
WUG2S/1
NO
ND
NC
110000
100000
iox
VNUG4S/1
ND
NO
NC
ND
NO
NC
13-Apr-aa
EWB4S/1
92000
91000
1*
3500000
3500000
ox
PCCAMOUT
110000
100000
10X
65000
62000
5X
14-Apr-M
VMUS2S/1
ND
NO
NC
130000
130000
OX
UUG30/1
81000
80000
NC
540000
540000
OX
15-Apr-88
EYG40/1
130000
130000
OX
ISOOOOO
1600000
6X
18-Apr-a8
EW63S/1
NO
ND
NC
480000
470000
2X
PCKPtN
NO
NO
NC
450000
460000
ZX
20-Apr-88
Pt10/1
«>
NO
NC
NO
NO
NC
Pt5/1
NO
ND
NC
io
NO
NC
21-Aer-sa
ru/i
NO
NO
NC
NO
NO
NC
22-App-a#
VNUS4S/1
NO
ND
NC
NO
NO
HC
Average »PO ¦ 2.6 ~/• 5.2 Average RPO ¦ 4.3 ~/• 7.4
Met*: ND ¦ "Net Detected", i.e., less than the quantitation linft.
Quantitation limits: DCS " t5,000 uo/cuOic-meter, TCE - 30,000 ug/eubic-neter.
NC ¦ "Not Calculated".
Precision value* are calculated only for concentration values acre than twice the quantitation llatt.
67
-------
A total of 75 samples (Table 4-8) were sampled in duplicate and
analyzed. These analyses provide an estimate of the sampling and analytical
precision. Of the 75 samples analyzed for DCE 16 sample concentrations are
high enough to provide an estimate of precision. Of the available 16 DCE
precision estimates, all are within the QA objective. The average precision
for these-16 DCE precision values is 8 relative percent difference. Of the
available 53 TCE precision values, 50 (94 percent) are within the QA
objective. The average precision for these 53 TCE precision values is 10
relative percent difference.
Analytical accuracy for methylene chloride (MC).DCE, and TCE has been
estimated through the analysis of 150 laboratory control samples (Table 4-9)
The QA objective is 100 plus-or-minus 50 percent recovery of these compounds
spiked into nitrogen. Of the 150 recovery values for KC, 148 (99 percent) r.ec
the QA objective. For DCE 148 values (99 percent) met the QA objective For
TCE, 146 values (97 percent) met the QA objective.
Precision and accuracy completeness values for CC/FID onsite analyses
ranged from 94 percent to 100 percent which meets the QA completeness
objective of 90 percent
ECD--
1,1,1-Trichloroethane (TRI) and Tetrachloroethylene (PCE) were determined
in field samples at the onsite laboratory location by gas chromatography wi;h
electron capture detection (GC/ECD). Precision has been estimated through the
analysis of duplicate samples and through duplicate injection of cliquots of
single samples. Accuracy has been estimated through the analysis of
laboratory control samples.
A total of 134 samples (Table 4-10) were analyzed in duplicate (i.e .
single samples each analyzed twice). These analyses provide an estimate of
the analytical precision independent of the sampling precision. Of the L34
samples analyzed for TRI. 75 sample concentrations are high enough to provide
an estimate of precision (the other 59 sample concentrations are less than
twice the quantitation limit). Of the available 75 precision estimates for
TRI, 74 (99 percent) are wichin the QA objective of plus-or-minus 50 relative
percent difference The average precision tor these 75 TRI precision values
68
-------
TABLE t-8. PRECISIOM RESULTS Of OM-StTE DUPLICATE SAMPLE COLLECTION AMD ANALYSIS CGC/FIO)
-aa
VMUC3S/1
560000
580000
4X
6300000
6500000
3X |i
14-Feb-88
EUJ40/1
230000
240000
4X
3100000
3100000
OX I
1S-F«b-U
EWC2S/1
MO
NO
NC
680000
720000
6X ||
16-Feb-SS
VMMS1S/1
NO
NO
NC
91000
100000
9X |
18-Fat>-88
EW&30/1
96000
100000
4X
1000000
1100000
10X 1 I
19-ftb-aa
VWUGTS/1
NO
NO
NC
180000
170000
6X |
VKWG40/1
NO
NO
NC
61000
51000
NC |
20-F«b-aa
EV01S/1
NO
NO
NC
350000
360000
3X
21-Fat>-88
VKUG10/1
HO
NO
NC
NO
29000
NC |
22-F#to-aa
PCSEP1M
37000
37000
NC
930000
930000
OX |
23-Fat>-88
VMUG2D/1
NO
NO
NC
210000
180000
15X |
24-F«b-aa
EUC2D/1
40000
53000
NC
86000
110000
24X |
EWG3S/1
A1000
43000
NC
2400000
2500000
4X I
25-Fato-88
VMA30/1
48000
NO
NC
620000
39000
NC |
26-Fob-aa
EWC10/1
NO
NO
NC
81000
86000
6X |
02-Ntr-aa
VMWCAS/1
NO
NO
NC
100000
NO
HC I
03-Mar-U
EUG1S/1
NO
NO
NC
170000
210000
21X |
EUGAS/1
120000
160000
29%
5700000
7600000
29X
04-Mar-8A
VMWG1S/1
NO
NO
NC
NO
NO
NC |
VMWC3S/1
81000
72000
NC
800000
720000
11X
07-Nar-M
EUC1S/1
NO
NO
NC
120000
180000
40X |
EUC3S/1
NO
NO
NC
1300000
1700000
27X 1
PGSEPIN
NO
NO
NC
1100000
1100000
OX |
OS'Har-Sa
VNWG10/1
NO
NO
NC
NO
NO
NC
VMWC20/1
NO
NO
NC
160000
150000
61 |
09-Mar-U
EWG1S/1
NO
NO
NC
330000
1500000
1281 |
EWC2S/1
NO
NO
NC
480000
470000
2X |
EUG4S/1
190000
160000
17X
7800000
7400000
5* I
io-«»r-aa
VNWG2S/1
NO
NO
NC
110000
86000
241 |
VMUWO/1
NO
NO
NC
130000
83000
44X
11-Mar-B8
EUC2D/1
48000
49000
NC
UOOOO
110000
120X |
EWG3S/1
NO
NO
NC
1100000
1300000
17X |
EWG40/1
81000
92000
NC
850000
940000
10X |
14-Kar-88
VMWG2S/1
NO
NO
NC
450000
380000
17* |
15-«ar-88
VHWG4S/1
NO
NO
NC
39000
37000
NC |
16-Mar-SA
PB3/1
NO
NO
NC
NO
NO
NC j
20-Mar-a8
EUC1S/1
NO
NO
NC
520000
160000
106X |
21-Mar-aa
EUC10/1
NO
NO
NC
70000
67000
1
EWG30/1
62000
59000
NC
630000
570000
10X |
22-Mar-BS
PGSECONO
NO
NO
NC
NO
NO
NC
25-Nar-M
EWG1S/1
NO
NO
NC
160000
160000
OX 1
EWC2S/1
NO
NO
«C
200000
210000
5X
EUG4S/1
160000
160000
OX
6600000
6400000
3* 1
28-Mar-88
PGCARBOUT
70000
70000
NC
110000
110000
OX 1
29-Mar-88
EWG4I/1
160000
UOOOO
13X
7300000
6200000
16X |
30-Mar-88
VWUC10/1
NO
NO
NC
NO
NO
NC |
VMUC2D/1
NO
NO
NC
240000
240000
OX 1
01-Apr-M
PfiCAMOUT
NO
NO
NC
NO
NO
NC |
02-Apr-Si
EWG2S/1
NO
NO
NC
170000
110000
43X |
06-Apr-88
VMUC30/1
NO
NO
NC
250000
250000
OX 1
VMUG4S/1
NO
NO
NC
NO
W)
NC |
08-Apr-88
VMUC2S/1
NO
NO
NC
110000
roooo
OX II
VWWG40/1
NO
NO
NC
48000
NO
NC ||
ll-Apr-88
EWG40/1
120000
150000
22X
660000
800000
19X |
ll-Apr-88
PGCARBOUT
89000
36000
NC
480000
450000
6x : |
12-Apr-aa
VMUC30/1
NO
NO
NC
| 79000
74000
7* II
VWWC3S/1
NO
NO
NC
| 110000
97000
13X | |
VMWG40/1
NO
NO
NC
NO
NO
NC | |
U-Apr-88
VWWG10/1
NO
NO
NC
| NO
71000
NC | |
VMUC1S/1
NO
NO
NC
I «
NO
NC | i
69
-------
TAtLB 4-8. PRECISION RESULTS 0* CM-SITE DUPLICATE SAMPLE COUECTICJ AND AJULT31S (GC/FID)
(u®/cubic Htir)
[ t-1,2-01dtloroathy(an«
tatatlv*
| Trfch(oro*(oroathy(ana
Sailing
(OCE)
Pareant
(TCE)
Pareant
Oata
Sa^ta 10
| Original
Oiplicata
Diffaranea
1 Origlrwl
Duvllcata
Diffaranea
WK2D/1
NO
NO
MC
310000
310000
OX
VWUJ/1
MO
IB
NC
MO
NO
NC
13-Apr-M
EW10/1
NO
NO
MC
120000
MC
CW2D/1
NO
m
MC
83000
6X
EVC3S/1
IB
m
MC
610000
560000
5X
even/1
130000
130000
01
4900000
3100000
4X
21-Apr*88
VNMG2S/1
NO
IB
MC
320000
290000
10X
22-Apr-88
P112/1
NO
IB
MC
IB
NO
MC
Avaraga *P0 » 8.1 ~/- 8.2 Avaraga tfO • 9.8 11.0
for n ¦ 53
Avara«a RPO * 16 ~/• 27
for n • 56
Hot*: KO ¦ 'Met Oatactad", (as* than tha quantitation
Quantitation liaita: OCE • 45,000 ug/cvAic-aatar, TCI - 30,000 us/cvJblc-aatar.
KC • "Hot Calculate-.
PracUion valuas era calculattd only for concantratien valuas aora than twica tha quantitation Unit.
70
-------
TABLE 4-9. LCS PERCENT RECOVERY - GC/FID
(Linear Regression with Zero Intercept)
Sampling
Date
Sample ID
MC
%
Recovery
DCE
TCE
16-Dec-87
LCS
8-15-1
83
88
71
17—Dec—87
LCS
8-15-1
90
91
92
CC
7-17-1
108
112
129
18-Dec-87
CC
7-17-1
110
112
114
19—Dec—87
CC
7-15-1
73
84
78
07-Jan-88
LCS
1-5-1
70
73
62
LCS
1-7-1
90
91
88
LCS
1-7-1
93
95
96
08-Jan-88
LCS
1-7-1
88
91
85
LCS
1-7-1
85
86
96
ll-Jan-88
LCS
1-11-1
90
91
92
LCS
1-11-1
87
91
88
LCS
1-11-1
85
86
85
12-Jan-88
LCS
1-11-1
82
82
77
LCS
1-11-1
82
82
88
13-Jan-88
LCS
1-13-1
60
64
69
LCS
1-13-1
102
159 X
292 X
LCS
1-13-1
118
200 X
319 x
14-Jan-88
LCS
1-14-lb
77
82
85
15-Jan-88
LCS
1-14-lb
67
68
65
LCS
2-15-1
32
X
88
85
08-Feb-88
LCS
1-8-1
97
100
108
ll-Feb-88
LCS
1-11-1
95
95
88
LCS
1-11-1
95
100
100
12-Feb-88
LCS
1-11-1
90
95
92
LCS
1-11-1
87
91
85
13-Feb-88
LCS
1-13-1
107
109
123
LCS
3-13-1
102
105
115
LCS
1-13-1
95
100
100
14—Feb-88
LCS
3-13-1
88
91
88
LCS
3-13-1
88
91
88
15-Feb-88
LCS
3-13-1
82
82
77
LCS
3-13-1
80
82
77
16-Feb-88
LCS
3-13-1
73
77
65
LCS
6-16-1
105
109
119
LCS
3-13-1
73
73
65
17-Feb-88
LCS
6-16-1
100
100
104
LCS
6-16-1
107
109
119
18-Feb-88
LCS
6-16-1
100
100
108
LCS
1-18-1
87
91
100
LCS
1-18-1
87
91
108
19-Feb-88
LCS
1-18-1
83
87
92
LCS
1-18-1
83
89
100
20-Feb-88
LCS
2-20-1
37
X
91
100
21-Feb-88
LCS
1-21-1
93
91
115
LCS
1-21-1
87
91
108
LCS
1-21-1
87
89
100
22-Feb-88
LCS
1-21-1
80
84
92
LCS
1-21-1
77
82
85
23-Feb-88
ICS
1-21-1
70
75
72
LCS
3-23-1
83
88
108
24-Feb-88
LCS
3-23-1
77
82
92
LCS
3-23-1
77
84
100
25-Feb-88
LCS
2-25-1
63
65
85
LCS
2-25-1
63
70
92
26-Feb-88
LCS
2-25-1
70
77
92
LCS
2-25-1
67
75
92
29-Feb-88
LCS
3-19-1
70
74
108
LCS
3-19-1
70
74
108
Ol-Mar-88
LCS
3-19-1
63
65
85
LCS
1-1-1
70
74
115
LCS
1-1-1
70
76
123
02-Mar-88
LCS
1-1-1
63
69
100
LCS
1-1-1
67
71
108
03-Mar-88
LCS
7-3-1
83
89
92
71
-------
TABLE 4-9. LCS PERCENT RECOVERY - GC/FID
(Linear Regression with Zero Intercept)
Sampling
Date
Sample ID
MC
% Recovery
DCE
TCE
LCS
7-3-1
87
91
92
04-Mar-88
LCS
7-3-1
100
109
108
LCS
7-3-1
100
109
108
05-Mar-88
LCS
2-5-1
103
109
108
LCS
2-5-1
103
109
108
06-Mar-88
LCS
1-6-1
100
109
92
LCS
1-6-1
107
118
108
07-Mar-88
LCS
1-6-1
103
109
100
LCS
1-6-1
103
109
100
08-Mar-88
LCS
1-8-1
117
127
115
LCS
1-8-1
113
118
108
LCS
1-8-1
110
118
115
09-Mar-88
LCS
1-8-1
97
100
92
LCS
1-8-1
93
100
100
10-Mar-88
LCS
1-10-1
103
109
108
LCS
1-10-1
i:3
109
108
ll-Mar-88
LCS
1-10-1
93
100
85
14-Mar-88
LCS
2-14-1
110
118
115
15-Mar-88
LCS
2-14-1
100
109
92
16-Mar-88
LCS
2-16-1
100
109
100
LCS
2-16-1
87
100
92
17-Kar-88
LCS
1-17-1
113
118
115
18-Mar-88
LCS
2-18-1
110
118
115
19-Kar-88
LCS
2-18-1
107
118
108
LCS
2-18-1
107
109
108
20-Mar-88
LCS
2-18-1
97
100
92
LCS
2-18-1
97
100
92
21-Mar-88
LCS
1-21-1
113
118
115
LCS
1-21-1
110
118
115
22-Kar-88
LCS
1-21-1
93
100
92
LCS
1-21-1
87
91
85
23-Mar-88
LCS
1-23-1
107
118
108
LCS
1-23-1
93
100
100
24-Mar-88
LCS
1-24-1
113
127
131
LCS
1-24-1
113
127
123
25-Mar-88
LCS
1-24-1
103
109
108
27-Mar-88
LCS
2-27-1
97
100
108
28-Mar-88
LCS
2-27-1
97
100
92
LCS
2-27-1
100
109
108
29-Mar-88
LCS
3-29-1
113
118
131
LCS
3-29-1
117
127
138
30-Mar-88
LCS
3-29-1
110
118
123
LCS
3-29-1
113
118
123
31-Mar-88
LCS
1-31-1
113
118
146
LCS
1-31-1
110
118
138
LCS
1-31-2
107
118
131
LCS
1-31-1
100
109
123
01-Apr-88
LCS
2-1-1
107
118
138
04—Apr-88
LCS
2-4-1
113
127
162 X
LCS
2-4-1
110
118
154 x
05—Apr-88
LCS
2-4-1
107
118
146
LCS
2-5-1
113
118
108
LCS
2-5-1
113
118
108
06-Apr-88
LCS
2-5-1
103
109
92
LCS
2-5-1
103
109
92
07-Apr-88
LCS
2-5-1
93
100
77
LCS
3-7-1
120
118
115
LCS
3-7-1
113
118
115
08-Apr-88
LCS
3-7-1
97
100
85
09-Apr-88
LCS
2-9-1
127
127
131
LCS
2-9-1
120
127
123
10-Apr-88
LCS
2-9-1
110
118
108
LCS
3-10-1
123
127
115
ll-Apr-88
LCS
3-10-1
93
100
85
LCS
4-11-1
133
136
138
72
-------
TABLE 4-9. LCS PERCENT RECOVERY - GC/FID
(Linear Regression with Zero Intercept)
Sampling
Date
% Recovery
Sample ID
MC
DCE
TCE
LCS 1-12-1
113
118
108
LCS 1-12-1
113
118
108
LCS 1-12-1
90
91
77
LCS 2-13-1
93
91
92
LCS 2-13-1
103
109
108
LCS 2-14-1
110
118
108
LCS 2-14-1
110
118
108
LCS 2-15-1
120
118
115
LCS 2-15-1
120
127
123
LCS 2-18-1
117
118
115
LCS 2-18-1
113
118
108
LCS 2-18-1
113
118
108
LCS 2-20-1
117
118
115
LCS 2-20-1
110
118
108
LCS 2-21-1
127
136
123
LCS 2-21-1
127
127
123
LCS 2-21-1
117
118
108
LCS 2-21-1
100
109
85
LCS 2-22-1
110
118
108
LCS 2-22-1
107
109
108
Recovery » 96 +/- 18
103 +/- 19
106 +/- 29
12-Apr-88
13-Apr—88
14-Apr-88
15-Apr-88
18-Apr-88
19-Apr-88
20-Apr-88
21-Apr-88
22-Apr-88
Data Quality Objective is 100% +- 50%
73
-------
Di lutn
Factor
* 1
X 100
X 200
X 200
X 100
X 200
X 100
X 100
X 100
X 100
X 50
X 50
X 50
X 100
x ioo
X 100
X 100
X 200
X 333
X 1
X 200
X 1
X 100
X 100
X 200
X 100
X 200
X 1
X 200
X 100
X 100
X 200
X 200
X 200
X 50
X 200
X 100
X 50
X 50
X 5
X 25
X 1
X 25
X 50
X 1
X 1
X 25
X 25
X 1
X 50
X 1
X 25
X 100
X 50
X 200
X 1
X 1
X 1
X 1
X 2S
X 20
X 10
X 20
X 200
X 5
X 1
X 50
PRECISION RESULTS OF ON-SITE REPLICATE SAXPLE INJECTION AND ANALYSIS (CC/ECC)
(ug/cifcic meter)
II,1,1-Trichloroethone I Relative |
(TRI) | Percent j
| Original Duplicate | Difference |
Tetrachloroethylene I Relative II
(PCE) I Percent ||
Original Duplicate j Difference jj
NO
ND
NC
NO
NO
NC
230000
230000
OX
170000
170000
OX
83000
80000
4%
110000
110000
OX
150000
150000
OX
11000
11000
OX
7700
7700
OX
55000
54000
zx
1300
1300
NC
3600
3600
ox
6500
6500
ox
15000
16000
6X
ND
ND
NC
2100
2500
NC
37000
36000
3X
7800
7100
NC
59000
59000
OX
360
670
60X
160000
150000
6X
280
190
38X
ND
NO
NC
ND
NO
ac
18000
19000
5X
NO
NO
NC
47000
45000
4X
92
75
2 OX
21000
21000
OX
ND
ND
NC
NO
ND
NC
17000
17000
OX
7000
7000
NC
25000
24000
4X
NO
ND
NC
11000
11000
OX
14000
14000
ox
ND
ND
NC
7300
7100
3X
1800
1200
40X
460
ND
NC
52
58
11X
390
390
NC
9800
9800
ox
NO
ND
NC
96
98
2X
770
660
MC
7500
7500
OX
740
740
OX
17000
17000
OX
440
410
7X
1100
1100
NC
ND
NO
NC
1100
1100
NC
13003
14000
n
350
ND
NC
73
&3
13X
73
7V
8X
ND
ND
NC
23000
22000
4X
430
390
NC
540
560
4X
NO
ND
NC
9600
10000
4X
860
860
OX
150
150
OX
ND
ND
NC
74
ND
ND
NC
ND
ND
NC
15000
18000
NC
41000
41000
OX
16000
16000
OX
92000
90000
2X
19000
20000
sx
4000
3400
NC
4600
4500
NC
40000
38000
SX
ND
ND
NC
NO
ND
NC
7700
7600
IX
11000
11000
NC
ND
ND
NC
11000
4200
NC
9300
8000
NC
ND
ND
NC
8700
8400
NC
120
360
100X
62000
60000
3X
570
430
28X
3500
3200
NC
2500
2700
NC
ND
NO
NC
ND
ND
NC
14000
13000
NC
76
57
NC
13000
12000
NC
ND
ND
NC
ND
NO
NC
9900
9400
NC
ND
ND
NC
ND
ND
NC
ND
ND
NC
8800
9000
NC
30000
29000
3X
ND
ND
NC
13000
13000
OX
760
580
27X
1300
850
NC
320
350
9X
1700
1800
NC
13000
14000
7X
26
ND
NC
490
440
11X
1800
1100
NC
9000
8800
2X
520
520
OX
2500
3400
NC
ND
ND
NC
ND
ND
NC
ND
ND
NC
3000
2600
NC
15000
17000
NC
ND
ND
NC
430
540
23X
580
590
2X
ND
ND
NC
12000
11000
9X
NO
5600
NC
2000
2400
18X
ND
640
NC
12000
17000
NC
1000
1500
40X
680
680
OX
ND
ND
NC
-------
Sampling
Date
TABLE 4-10. PRECISION RESULTS OF ON-SITE REPLICATE SAMPLE INJECTION AND ANALYSIS (GC/ECO)
(ug/cubic aeter)
Die ID
1,1,1-Trichloroethane
(TRI)
Original Diplicate
Relative
Percent
Difference
Tetrachloroethylene
(PCE)
Original Duplicate
Relative
Percent
Difference
Dilution
Factor
08-Mar-88
EUG1S/1
390
390
VMUG1S/1
54
64
VNWC3S/1
3400
3500
09-Mar-88
EWG3S/1
2000
2000
09-Mar-88
PCSECOND
ND
ND
10-Har-88
VMUG2D/1
1200
1200
VMWG3S/1
2800
2900
VNUG4S/1
ND
ND
11-Mar-88
EUG2S/1
480
400
EUG4S/1
14000
14000
15-Nar-88
VMWG40/1
200
200
16-Nar-88
PB4/1
ND
NO
PBfl/1
ND
NO
17-Nar-88
PB11/1
2600
2700
18-Nar-8a
EUG3S/1
2700
1800
VMWG1S/1
ND
NO
VMUG4S/1
30
32
19-Mar-8a
EUC2S/1
450
470
EUG4S/1
21000
21000
20-Mar-88
VMWG2D/1
2200
2200
VMWG4D/1
ND
ND
21-Har-88
EWC3S/1
1200
1200
FB
ND
ND
PGSEPIN
1200
1200
22-Mar-88
VNWG1S/1
ND
ND
23-Mar-88
EWG2D/1
350
330
24-Mar-88
VMUG1S/1
ND
ND
VMUG3S/1
3400
3400
25-Mar-88
EWC3S/1
1000
990
26-Nar-88
VMWG1D/1
ND
ND
VMWG2D/1
2300
2300
27-Mar-88
EUG3S/1
2300
2000
EUG4S/1
16000
16000
28-Mar-88
EWG10/1
290
280
VMWG2D/1
1800
1900
29-Nar-88
EUC2D/1
310
290
EWC30/1
1800
1900
30-Mar-88
EWG1D/1
SOO
450
VNUG2S/1
270
310
30-Ma r-88
VMWG30/1
17000
17000
31-Mar-88
EWG3S/1
1200
1400
EWG4D/1
5700
5700
OI-Apr-88
VMWG1S/1
ND
53
VMWG2S/1
490
460
02-Apr-88
EUG4D/1
4700
4800
04-Apr-8S
VMWG1D/1
140
ND
VKUG30/1
16000
16000
05-Apr-88
EWC3S/1
1400
1400
EUG4S/1
13000
13000
06-Apr-88
VMWC2S/1
890
890
VMUG4D/1
ND
HO
07-Apr-88
EUC3S/1
890
940
PCSEP1N/1
1200
1100
08-Apr-88
VMJG1S/1
HO
ND
VMUG3S/1
3000
3000
09-Apr-88
EUG1D/1
180
180
EUG3S/1
540
540
10-Apr-88
VMWG1D/1
ND
KD
VMUC40/1
NO
MO
11-Apr-88
EWG1D/1
200
180
EWG3S/1
ND
450
13-Apr-88
EWG4S/1
13000
8800
PCCASBOUT
5400
5400
20-Apr-88
PB10/1
NO
ND
PB5/1
1500
2300
21-Apr-88
FBB/1
330
500
22-Apr-88
VMWS4S/1
430
430
OX
1900
2200
15X
X 5
17X
330
400
19X
X 1
3X
11000
12000
9X
X 25
NC
14000
13000
7X
X 50
NC
ND
ND
NC
X 1
OX
510
830
NC
X 5
4X
4800
5600
15X
X 25
NC
230
300
NC
X 5
NC
4600
5300
14X
X 10
OX
26000
24000
8X
X 200
OX
340
360
6X
X 1
NC
3700
5000
NC
X 100
NC
ND
NO
NC
X 200
4X
4700
5800
21X
X 10
NC
23000
14000
• 49X
X 50
NC
ND
ND
NC
X 50
NC
430
440
2X
X 1
4X
3500
4300
21X
X 10
OX
48000
51000
6X
X 200
OX
1700
2800
49X
X 10
NC
280
710
NC
X 5
NC
9400
9900
5X
X 50
NC
46
75
NC
X 1
OX
2800
2700
NC
X 25
NC
190
220
15X
X 1
6X
1800
2100
15X
X 5
NC
680
680
NC
X 10
OX
3900
4300
10X
X 25
NC
10000
8500
16X
X 25
NC
170
210
NC
X 5
OX
1800
2500
33X
X 10
NC
21000
19000
10X
X 50
OX
54000
52000
4X
X 200
4X
380
360
5X
X 1
5X
1700
2800
49X
X 10
7X
1200
1200
OX
X 5
5X
7300
7800
7X
X 25
11X
580
580
OX
X 1
14X
690
920
29X
X 5
OX
7700
7500
3X
X 25
NC
10000
9800
2X
X 33
OX
14000
14000
OX
X 25
NC
180
210
15X
X 1
6X
500
460
NC
X 5
2X
13000
13000
OX
X 100
NC
310
230
NC
X 5
OX
6100
5100
18X
X 25
OX
13000
13000
OX
X 25
OX
31000
30000
3X
X 200
ox
470
550
NC
X 5
NC
440
580
NC
X 10
NC
7900
7500
5X
X 25
NC
3100
3000
3X
X 25
NC
160
310
NC
X 5
OX
10000
9800
2X
X 25
NC
280
350
NC
X 5
NC
6700
6800
IX
X 25
NC
ND
ND
NC
X 10
NC
21
36
NC
X 1
NC
370
340
NC
X 5
NC
3100
3100
OX
X 25
NC
11000
11000
NC
X 200
OX
63
55
NC
X 5
NC
NO
NO
NC
X 10
42X
ND
ND
NC
X 1
41X
HD
HD
NC
X 1
NC
1100
1400
NC
X 20
75
-------
TABLE 4-10. PRECISION RESULTS OF ON-SITE REPLICATE SAMPLE INJECTION AND ANALYSIS (GC/ECO)
(ug/citofc Meter)
Stapling
Date
Sample ID
1,1,1-TrichIoroetharte
(TR1)
Original Delicate
Relative
Percent
difference
Tetraehloroethylene
-------
is 6 relative percent difference. Of the 134 samples analyzed for PCE, 65
sample concentrations are high enough to provide an estimate of precision. Of
the available 65 PCE precision estimates, 64 (98 percent) are within the QA
objective. The average precision for these 65 PCE precision values is 12
relative percent difference.
A total of 62 samples (Table 4-11) were sampled in duplicate and
analyzed. These analyses provide an estimate of the sampling and analytical
precision. Of the 62 samples analyzed for TRI, 38 sample concentrations are
high enough to provide an estimate of precision. Of the available 38 TRI
precision estimates, 37 (97 percent) are within the QA objective. The average
precision for these 38 TRI precision values is 12 relative percent
difference. Of the available 33 PCE precision values, 32 (97 percent) are
within the QA objective. The average precision for these 33 PCE precision
values is 19 relative percent difference.
Analytical accuracy for MC, TRI, and PCE his been estimated through the
analysis of 170 laboratory control samples (Table 4-12). The QA objective is
100 plus-or-minus 50 percent recovery of these compounds spiked into
nitrogen. Of the 170 recovery values for MC, 168 (99 percent) met the QA
objective, For TRI, 163 values (96 percent) met the QA objective. For PCE,
127 values (75 percent) met the QA objectives.
Precision and accuracy completeness values for GC/ECD onsite analyses
ranged from 75 percent to 100 percent which does not meet the QA completeness
objective of 90 percent for all parameters. All parameters except PCE
•recovery do meet the completeness objective.
Failure to meet PCE completeness goals for accuracy is thought to be due
to the use of a linear calibration curve during most of the program. A
detailed assessment of PCE calibration data at the end of the program
indicated that the rCE calibration curve is decidedly non-linear and that a
quadratic calibration curve is required to adequately represent the data. All
PCE concentrators provided in this report have been calculated with a
quadratic calibration curve. Unfortunately, LCS recoveries which had appeared
to be within limits during a linear calibration curve frequently proved to
have been just outside the QA objective when recalculated with a quadratic
curve after the completion of the field program. If recovery objectives for
PCE were reset to 40 to 200 percent recovery, the observed recoveries would be
93 percent complete.
77
-------
TABLE 4-11. PRECISION RESULTS OF ON-SITE DUPLICATE SAMPLING AND ANALYSIS (CC/ECO)
(ug/cubic neter)
Sampling
Date
Sample ID
1,1,1-Tr i chloroethane
(TRI)
Original Diplicate
Relative
Percent
Difference
Tetrachloroethylene
(PCE)
Original Duplicate
Relative
Percent
Difference
Di lilt ion
Factor
18-Dee-87
VMUG2D-1
120000
110000
9X
10000
6000
NC
X 200
19-De"-57
EWG3S-7
200000
230000
14X
11000
14000
NC
X 200
07-Jan-88
EUG2D-3
61000
60000
2X
14000
12000
15X
X 100
EUG30-S
63000
62000
2%
18000
17000
6X
X 100
09-Jan-88
VMWG3S-1
150000
150000
OX
12000
14000
15X
X 100
12-Jan-8fl
VMWC2S-1
9000
17000
62X
8000
16000
NC
X 100
15-Jan-88
EUG1S-1
26000
30000
14X
12000
15000
22X
X 100
12-Feb-88
EWG4D/1
52000
53000
2X
18000
23000
NC
X 200
13-Feb-88
VMUG3S/1
54000
52000
4X
22000
22000
NC
X 200
14-Feb-88
EWG40/1
38000
30000
24X
29000
23000
23X
X 100
15-Feb-88
EWG2S/1
2200
2300
NC
1300
1700
NC
X 50
16-Feb-88
VNUG1S/I
NO
ND
NC
ND
ND
NC
X 50
18-Feb-88
EUG30/1
3600
3600
OX
8800
9300
6X
X 50
19-Feb-88
VMWG2S/1
ND
ND
NC
1700
1800
NC
X 67
VMWG4D/1
110
120
9X
590
390
41X
X 1
21-Feb-88
VNUG1D/1
24
27
NC
100
160
NC
X 1
22-Feb-88
PGSEPIN
2300
2200
NC
3000
3000
NC
X 50
23-Feb-88
PGCARBOUT
25
24
NC
24
ND
NC
X 1
VMUG2D/1
970
1000
NC
ND
ND
NC
X 25
24-Feb-86
EUS2D/1
320
500
44X
1700
2300
30X
X 5
EWG3S/1
4100
4400
7X
11000
12000
9X
X 50
26-Feb-88
EUG1D/1
480
510
6X
220
330
NC
X 5
02-Har-88
VKWG4S/1
240
310
25X
1500
2200
38X
X 5
03-Nar-88
EWG1S/1
340
270
NC
790
460
NC
X 10
EUC4S/1
28000
30000
7X
60000
73000
20X
X 200
04-Mar-88
VMVG1S/1
120
24
NC
110
280
NC
X 1
VMUG3S/1
3200
2400
29X
3800
3200
17X
X 50
07-Nar-88
EUG1S/1
400
350
NC
2000
2000
OX
X 10
07-Mar-88
EWG3S/1
1500
2200
NC
7500
11000
38X
X 50
PGSEPIN/1
1800
1800
NC
4500
4300
NC
X 50
08-Mar-88
VMWG1D/1
30
NO
NC
67
33
NC
X 1
VMUG20/1
1300
1200
8X
600
600
OX
X 5
09-Har-B8
EUG1S/1
470
450
4X
2600
3000
14X
X 10
EUG2S/1
290
320
NC
2200
3500
46X
X 10
EUG4S/1
15000
13000
14X
25000
23000
8X
X 200
10-Har-88
V1UG2S/1
500
420
17X
610
670
9X
X 1
11-Mar-88
EWG2D/1
660
410
NC
4700
3900
19X
X 10
EWG3S/1
1200
1200
NC
7000
8900
24X •
X 33
EUG40/1
2600
3800
38X
11000
15000
31X
X 25
14-Mar-88
VXWG2S/1
4300
4500
5X
2800
3100
10X
X 10
15-Har-88
VMUC4S/1
180
200
11X
650
700
7X
X 1
16-Mar-88
PB3/1
NO
ND
NC
ND
NO
NC
X 100
20-Mar-88
EWG1S/1
710
750
5X
3800
2900
27X
X 10
21-Nar-88
EWG3D/1
2000
2200
10X
6100
5800
5X
X 25
25-Mar-88
EWG1S/1
580
520
11X
2500
2300
8X
X 5
EUG2S/1
330
330
ox
2700
2700
OX
X 5
EWG4S/1
13000
12000
8X
40000
32000
22X
X 200
28-Mar-88
PGCARBOUT
2800
3100
10X
190
170
NC
X 5
29-Har-88
EUG4S/1
11000
9900
11X
35000
29000
19X
X 200
30-Mar-88
VMWG1D/1
ND
ND
NC
330
210
44X
X 1
VMWG2D/1
1300
1400
7X
1300
1600
21X
X 10
01 -Apr-88
PGCARBOUT
24
26
NC
26
29
NC
X 1
02-Apr-88
EWG2S/1
ND
NO
NC
1200
1400
NC
X 25
06-Apr-88
VMUG3D/1
430
2500
NC
450
3800
NC
X 10
VMUC4S/1
ND
ND
NC
340
290
NC
X 10
08-Apr-88
VMWG2S/1
520
460
12X
680
480
NC
X 5
VMWC40/1
ND
ND
NC
370
210
NC
X 5
11-Apr-88
EUG40/1
3700
4300
15X
7200
9700
30X
X 25
PGCARBOUT
5600
6500
15X
220
ND
NC
X 10
12-Apr-88
VMWG3S/1
690
700
IX
670
470
NC
X 5
21-Apr-88
VNWG2S/1
3800
3700
3X
190
1200
NC
X 10
22-Apr-88
PB12/1
32
48
NC
ND
ND
NC
X 1
Average RPD
12.2 ~/- 12.9
78
Average RPO =
19 ~/- 13
-------
TABLE 4-11. PRECISION RESULTS OF OB-SITE DUPLICATE SAMPLING AND ANALYSIS (GC/ECD)
(ug/cubic neter)
Sanpl Ing
fate
Sacple to
1,1, WrieMoroethane
CTRI)
Original OMpticete
Relative
Percent
Offference
Tetrachloroethylene
(PCE)
Original Duplicate
Relative
Percent
Difference
Oilution
Factor
Note: ND • "Not Detected", i.e., less than the quantitation tiait.
Quantitation limits: TR1 - 22 ug/a&ic-meter tfines dilution factor,
PCE - 55 ug/cifeic-neter tines dilution factor.
NC * "Not Calculated".
Precision values are calculated only for reported concentrations more than twice the quantitation limit.
79
-------
TABLE 4-12. LCS PERCENT RECOVERY - GC/ECD
(Quadratic Regression with Zero Intercept)
Sampling
Date
Sample ID
% Recovery
MC TRI
PCE
ll-Dec-87
14-Dec-87
15-Dec-87
16-Dec-87
17-Dec-87
18-Dec-87
19-Dec-87
20-Dec-87
07-Jan-88
08-Jan-88
09-Jan-88
10-Jan-88
11-Jan-88
12-Jan-88
13-Jan-88
14-Jan-88
15-Jan-88
09-Feb-88
11-Feb-88
12-Feb-88
14-Feb-88
15-Feb-88
16-Feb-88
17-Feb-88
18-Feb-88
19-Feb-88
20-Feb-88
21-Feb-88
22-Feb-88
23-Feb-88
24-Feb-8S
25-Feb-88
CC 5-
1-
2-
CC 1-
LCS 5
CC 5-
LCS 2
LCS 6
LCS 6
LCS 6
CC 1-
1-
LCS 2
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
LCS
10-1
11-1
1J.-1
14-1
-15-1
16-1
-16-1
-17-1
-17-1 L
-17-1 L
19-1
20-1
-07-1
-07-1
-07-1
-07-1
-07-1
-07-1
-09-1
-10-1
-09-1
-11-1
-12-1
-12-1
-13-1
-13-1
-14-1
-13-1
-15-1
-15-1
-15-1
-15-1
-9-1
-9-1
-11-1
-11-1
-11-1
-11-1
-12-1
-12-1
-12-1
-12-1
-14-1
-14-1
-15-1
-15-1
-16-1
-16-1
-16-2
-16-2
-16-2
-16-1
-16-1
-16-1
-16-1
-20-1
-20-1
-20-1
-20-1
-22-1
-23-2
-23-2
-23-2
-23-2
-25-2
90
107
98
95
91
131
92
88
68
68
91
99
88
89
93
89
85
86
97
94
88
103
93
94
72
90
74
77
87
84
86
72
43
41
87
81
80
81
74
73
68
76
88
78
78
78
102
95
82
76
68
78
80
75
74
87
76
75
70
99
98
91
82
86
80
x
X
78
91
102
93
82
135
82
164
143
129
100
108
95
99
81
87
81
86
96
86
86
96
90
90
90
107
102
104
105
95
99
139
45
47
102
106
123
127
107
120
110
128
162
157
146
148
125
120
104
97
89
102
104
95
95
87
79
85
74
88
91
92
80
84
65
X
X
147
99
100
96
269 X
121
148
165 X
104
65
65
13',
138
133
81
76
65
212 x
113
53
71
45 X
50
65
127
106
97
98
107
68
85
103
120
126
150
150
111
107
85
57
55
59
150
115
90
67
220 X
186 X
101
96
66
81
75
6'-
64
104
164
167
167
88
80
61
50
4 0 x
44 X
x
x
x
80
-------
TABLE 4-12. LCS PERCENT RECOVERY - GC/ECD
(Quadratic Regression with Zero Intercept)
% Recovery
Sampling
Date
Sample ID
MC
TRI
PCE
LCS
4-25-2
73
67
36
X
LCS
4-25-2
70
63
36
X
26-Feb-88
LCS
4-25-2
60
47 X
24
X
LCS
1-26-2
74
56
2 6
X
LCS
1-26-2
71
56
35
X
2 ?-Feb-88
LCS
4-29-1
98
118
168
X
LCS
4-29-2
116
147
114
LCS
4-29-2
100
154 X
88
Ol-Mar-88
LCS
2-1-1
92
127
105
LCS
2-1-1
97
142
95
LCS
6-29-1
69
140
14 x
02-Mar-88
LCS
3-2-1
94
92
57
LCS
3-2-1
92
100
54
03-Mar-88
LCS
5-3-1
91
92
76
LCS
5-3-1
85
84
55
LCS
5-3-1
89
101
79
04-Mar-88
LCS
5-3-1
75
88
59
LCS
6-4-1
84
83
39
X
LCS
6-4-1
76
95
61
05-Mar-88
LCS
1-5-1
82
87
92
LCS
1-5-1
87
94
112
06-Mar-88
LCS
1-5-1
75
77
93
LCS
2-6-1
85
84
52
07-Mar-88
LCS
2-6-1
83
84
47
X
LCS
2-6-1
78
94
45
X
08-Mar-88
LCS
2-8-1
100
106
81
LCS
2-8-1
99
114
107
09-Mar-88
LCS
2-8-1
90
98
106
LCS
2-8-1
93
111
120
10-Mar-88
LCS
3-10-2
108
119
120
LCS
3-10-2
105
123
104
ll-Mar-88
LCS
3-10-2
98
106
90
LCS
3-10-2
103
118
114
14-Mar-88
LCS
4-14-1
97
84
119
15-Mar-88
LCS
4-14-1
81
89
95
16-Mar-88
LCS
4-16-1
94
94
128
LCS
4-16-1
91
106
109
17-Mar-88
LCS
4-16-1
83
89
91
18-Mar-88
LCS
4-16-1
81
92
100
LCS
4-16-1
72
97
88
19-Mar-88
CC 3
-18-1
93
110
133
20-Mar-88
LCS
1-20-1
89
97
148
LCS
1-20-1
83
99
123
21-Mar-88
LCS
2-21-1
85
88
75
LCS
2-21-1
91
99
79
22-Mar-88
LCS
2-21-1
82
81
53
LCS
2-22-1
80
87
64
LCS
2-21-1
81
93
77
23-Mar-88
LCS
2-23-1
97
103
177
X
LCS
2-23-1
95
104
133
LCS
2-23-1
97
115
163
X
24-Mar-88
LCS
2-23-1
72
100
110
LCS
2-23-1
86
112
114
25-Mar-88
LCS
2-23-1
70
96
101
LCS
1-25-1
91
101
90
26-Mar-88
LCS
1-25-1
68
97
86
LCS
1-25-1
68
106
90
27-Mar-88
LCS
4-27-1
90
104
157
X
LCS
4-27-1
88
106
163
X
28-Mar-88
LCS
4-27-1
78
92
116
LCS
2-28-1
78
84
90
LCS
2-28-1
68
86
89
29-Mar-88
LCS
1-29-1
91
106
171
X
LCS
1-29-1
91
120
204
X
30-Mar-88
LCS
1-29-1
86
104
150
81
-------
TABLE 4-12. LCS PERCENT RECOVERY - GC/ECD
(Quadratic Regression with Zero Intercept)
Sampling
Date
Sample ID
%
MC
Recovery
TRI
PCE
LCS
1-29-1
88
113
155
X
LCS
3-31-1
83
118
258
X
LCS
6-31-1
99
115
72
LCS
6-31-1
90
121
90
LCS
4-1-1
105
121
107
LCS
4-1-1
92
124
102
LCS
4-1-1
87
108
69
LCS
4-1-1
89
113
69
LCS
4-4-1
121
124
216
X
LCS
4-4-1
106
135
150
LCS
4-4-1
90
118
140
LCS
3-5-1
110
118
166
X
LCS
3-5-1
97
126
92
LCS
1-6-1
109
111
67
LCS
1-6-1
107
124
80
LCS
1-6-1
97
104
60
LCS
5-7-1
84
86
67
LCS
5-7-1
75
95
85
LCS
6-8-1
87
95
79
LCS
7-8-1
95
122
97
LCS
4-9-1
119
133
159
X
LCS
4-9-1
103
140
156
X
LCS
4-9-1
79
89
101
LCS
1-10-1
82
85
75
LCS
2-10-1
60
113
71
LCS
3-11-1
90
107
114
LCS
3-11-1
89
111
115
LCS
6-13-1
98
102
94
LCS
6-13-1
93
105
92
LCS
4-19-1
99
113
150
LCS
4-19-2
98
111
143
LCS
4-19-2
104
106
137
LCS
3-20-1
91
98
97
LCS
3-20-1
100
110
144
LCS
3-20-1
99
104
150
LCS
6-21-1
107
121
158
X
LCS
6-21-1
106
119
150
LCS
6-21-1
103
119
150
LCS
6-21-1
100
106
133
LCS
6-21-1
106
117
150
% Recovery =
88 +/" 13
103 +/- 21
105 +/- 44
31-Mar-88
01-Apr-88
02-Apr-88
04-Apr-88
05-Apr-88
06-Apr-88
06-Apr-88
07-Apr-88
08-Apr-88
09-Apr-88
10-Apr-88
11-Apr-88
13-Apr-88
19-Apr-88
20-Apr-88
21-Apr-88
22-Apr-88
Data Quality Objective is 100% +- 50%
82
-------
GC/'FID Analysis of Activated Carbon--
Sampling and analysis precision for carbon canisters was estimated
through the analysis of field-generated duplicate samples. Results of these
analyses are presented in Table 4-13. Precision goals were met for all GC/FID
analysis of carbon canister samples, resulting in 100 percent completeness.
The accuracy of this analysis was estimated through the preparation and
analysis of eleven LCSs, spiked with the five components of interest. As
Table 4-14 shows, all analyses were within the QA objective.
GC/MS Analysis of Separator Liquid--
Separator liquid samples were analyzed for volatile organics via purge
and trap GC/HS. Accuracy of this analysis was estimated through the use of
surrogate standards and LCSs. An LCS was analyzed daily with the samples.
Table 4-15 is a summary of the QC data for this analysis, all of which met QA
obj ectives.
GC/MS Purge and Trap Analysis of Soil--
GC/MS analysis of soil samples was performed by purge and trap techniques
on a methanol dispersion. Analytical precision and accuracy was estimated via
the analysis of matrix-spiked pairs of soil sample methanol dispersions.
Table 4-16 summarizes soil matrix spike recovery data from the program.
Accuracy estimates were also obtained via the recovery of surrogate-spiked
components, provided in Table 4-17. Review of this data indicates 100 percent
completeness for both precision and accuracy of the analysis.
Sampling and analytical precision estimates were obtained by analyzing
field duplicate soil samples. Table 4-18 summarizes the data obtained from
twenty-five pairs of duplicate samples. Only seven values were within the
objectives provided in the QAPP, resulting in twenty-eight percent
completeness. Comparison of Table 4-18 with Table 4-16 indicates that the
poor precision of the former is a consequence of sampling a non-homogeneous
matrix. Poor precision was also evident for analysis of pH, TOC and oil and
grease and may also be attributed to sampling of a non-homogeneous matrix.
83
-------
TABLE 4-13. PRECISION OF SAMPLING AND ANALT5SS ®F CARBON CANISTERS
Snpll ID
Saopl ing
Date
jaR6CAW/1-13/1
CARBCAN/2-16/1
CARBCAN/2-25/1
CAR8CAN/3-H/1
CARBCAN/3-24/1
CAR0CAKM-5/1
CARBCM/4-V1
CARBCAN/l-8/1
CASBCAN/i-11/1
CARBCAN/1911
CARBCAN/2088
H-Jan-88
14-F»b-8a
25-Feb-88
H-Nar-M
25-N«r-6S
OS-Apr-88
OS-Apr-ea
oa-Apr-ea
12-Apr-BS
n-Apr-aa
19-Apr-ea
Methylene Chloride
Cone. 0
Trfchloroettoe
Cone. (ra9/iCg) »PtD
Trichloroethylene Tetrachloroethylenc
Cone. (mg/Kg) RPD Cone. (tng/Kg) RrD
NO
NO
NO
ND
ND
ND
ND
NO
NO
NO
ND
ND
ND
ND
HO
NO
ND
NO
NO
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
ND
NO
ND
NO
ND
12
8.4
2 8
2.5
3.5
2.a
NO
NO
NO
NO
NO
1?
8.4
2.4
2.2
3.4
J.t
I.C
NC
NC
ur
NC
0
0
15
13
3
19
0.5
NO
ND
WO
ND
NO
NO
ND
0.27 0.28
0.26 0.28
O.t Z22
NO ME
ND MC
ND wr
ND MC
ND MC
NO ME
ND NCC
U
V
ND
HO MC
11
21
33
51
26
18
16
110
188
120
0.53
9.1
17
48
55
27
17
16
98
208
120
0.7
19
21
6
0
12
10
0
28
ND
ND
37 0.56
8 NO
ND
NO
ND
ND
NO
ND
ND
ND
ND
0 76
NO
ND
ND
NO
ND
NO
ND
NO
NC
NC
30
NC
NC
NC
NC
NC
NC
NC
NC
NO • Not Detected.
NC ¦ Mot Calculated. Precision value* are calculated (or reported concentration*; greater than tmceitte quantitation 'imlt.
M objective la ~/- 50 X relative percent difference (RPO».
-------
TABLE 4-14. ACCURACY OF ANALYSIS OF CARBON CANISTERS
Percent Recovery
Sampling — —--———-
Date
(MC)
(DCE)
(TRI)
(TCE)
(PCE)
1/14/88
98
104
84
77
83
3/14/88
90
90
100
77
73
118
94
94
82
82
3/25/88
85
89
89
92
92
79
91
100
91
105
3/30/88
92
94
98
96
96
4/05/88
102
101
99
97
92
4/08/88
90
90
100
77
73
4/12/88
118
94
94
82
82
4/19/88
77
88
88
94
102
75
82
100
105
110
average %Rec
» 93
92
95
88
90
QA Objective = 50 - 150%
85
-------
TABLE 4-15. LCS AND SURROGATE RECOVERY FOR ANALYSIS OF SEPARATOR LIQUID
Date (MC) (DCE) (TRI) (TCE) (PCE)
1/04/88 - 104 102 98 105 105
1/28/88 97 89 100 99 90
3/15/88 124 117 96 95 96
3/30/88 102 101 94 92 94
4/12/88 109 106 98 96 94
Average %Rec "107 103 97 97 96
QA objective » 50 - 150%
- SURROGATE % RECOVERY -
(AVERAGE)
d4-dichloroethane « 107 +/~ 5
d8-Toluene =» 99 +/~ 2
QA Objective - 50 - 150%
86
-------
TABLE 4-16. RESULTS OF ANALYSIS OF SOIL MATRIX SPIKES BY PURGE AND TRAP CC/MS
Percent Recovery
Methylene Chloride Trlchloroethylene trans-1,2-Dichloroethylene Trichloroethane Tetraehloroethylene
NS MSO RPO MS HSO RPO HS MSD RPO HS HSO RPO HS HSO RPO
ii8«tti*lvifiaii«uiiiliB*8388S8833a888B88a&a838S333S3::::3::::::3:38es83s::s::ss::::::::3::::s::s3::e:£::3::3::::s:5s::s3s:s:s:s3:8ss:BsB*as
103
105
1.9
100
103
3.0
82
100
19.8
103
108
4.7
82
82
0.0
106
106
0.0
103
103
0.0
97
100
3.0
106
106
0.0
100
103
3.G
85
90
5.7
103
109
5.7
103
109
5.7
109
119
8.8
103
109
5.7
115
115
0.0
105
105
0.0
105
105
0.0
122
127
4.0
105
102
2.9
106
109
2.S
109
109
0.0
10*
106
2.9
122
122
0.0
109
109
0.0
97
97
0.0
97
94
3.1
94
94
0.0
92
106
14.1
92
92
0.0
107
104
2.8
104
104
0.0
104
104
0.0
118
114
3.4
100
100
0.0
92
92
0.0
109
109
0.0
105
103
1.9
114
114
0.0
111
108
2.7
98
98
0.0
110
110
0.0
107
104
2.8
121
121
0.0
114
114
0.0
99
99
0.0
115
111
3.5
100
100
0.0
123
121
1.6
109
109
0.0
105
101
3.9
100
89
11.6
100
93
7.3
107
96
10.8
96
86
11.0
112
112
0.0
100
93
7.3
104
100
3.9
107
100
6.8
93
89
4.4
111
115
3.5
96
96
0.0
96
100
4.1
104
104
0.0
89
86
3.4
123
115
6.7
111
103
7.5
102
97
5.0
111
106
4.6
97
89
8.6
121
IIS
2.5
103
105
1.9
100
100
0.0
114
114
0.0
95
103
8.1
Average
105
105
2
104
103
3
100
101
4
112
112
4
100
99
3
OA objective for this analysis is ~/- 50 X relative percent difference (RPO).
-------
TABLE 4-17. SURROGATE RECOVERY OF PURGE & TRAP ANALYSIS OF SOIL
Pretreatment
Average +- Std.Dev.
d4-Dichloroethane
104
+-
7.0
d8-Toluene
101
+-
3.7
BFB
107
+ -
10.0
Midtreatment
Average +- Std.Dev.
d4-Dichloroethane
103
+-
6.5
d8-Toluene
101
+-
3.4
BFB
112
+-
13.4
Posttreatment
Average +- Std.Dev.
d4-Dichloroethane
105
+-
3.5
d8-Toluene
102
+-
2.6
BFB
110
+-
11.5
QA Objective is 50 - 150 %Recovery
88
-------
TABLE 4-18. PRECISION OF SOIL SAMPLING AND ANALYSIS BY PURCE & TRAP CC/MS
Saplt
Date
Methylene Chloride
tram-
1,2-Oichloro-
Trichloroethnnc
Trichloroethylene
Tetrachloroethyl
cnc
10
Saopled
ethylene
Cone.
(ag/Kg) I
»P0
Cone.
(mg/Kg)
RPO
Cone.
(mg/Kg)
RPO
Cone.
(mg/Kg)
RPO
Cone.
(nq/Kg)
RPO
MUSI/1
01-0«c-87
uo
NO
NC
NO
HD
HC
ND
HD
HC
HD
ND
NC
HO
ND
NC
MUSI/6
01-0ec-87
NO
NO
NC
NO
HO
NC
ND
HD
HC
ND
ND
NC
ND
HD
NC
CUS2/8
07-0ec-87
NO
NO
NC
ND
HD
NC
NO
HO
HC
9.54
5.83
(8
ND
ND
HC
IUS3/1
0a-0«c-87
NO
NO
NC
NO
HD
NC
NO
HD
NC
1.2
2.77
79
•
ND
ND
HC
1USA/2
09 0ec-87
NO
NO
NC
ND
HD
HC
NO
HD
NC
29.9
91.8
102
•
1.4
8.69
144 •
IUS4/7
09-0ec-87
NO
NO
NC
HO
NO
NC
NO
ND
NC
1 14
17.4
119
•
ND
ND
NC
CUS1/S
10-0«c-87
NO
HO
NC
ND
NO
HC
ND
HD
NC
12.5
4 27
98
•
3.6
1.4
88 •
CUil/9
IO'Oec-87
NO
NO
HC
HO
HD
HC
NO
HD
NC
HD
HO
NC
ND
NO
NC
IMS)/]
ll-Otc-87
7. 5
5
40
1.6
:.9j
84 *
ND
ND
NC
60
43.9
58
*
ND
NO
NC
MUS4/6
H-Oec-87
NO
NO
NC
HD
ND
NC
NO
ND
NC
1.3
4.24
106
ft
NO
HD
NC
¦1/5
IS-Har-88
14
14
0
HD
UO
NC
NO
NO
NC
]
1.5
67
•
ND
NO
NC
¦1/11
IS-Har-88
6.4
5
25
HD
HO
NC
ND
ND
NC
ND
1.4
200
•
ND
ND
NC
•2/3
U-Mar-88
NO
NO
NC
5
2.4
70 •
ND
NO
NC
66
30
75
•
3.4
2.4
34 •
¦1/3
15-Mar-8S
NO
NO
NC
HD
HO
NC
ND
NO
NC
1.5
1.3
14
ND
ND
NC
¦4/2
16-Nar-88
NO
NO
NC
HO
HD
NC
ND
HD
NC
ND
NO
NC
ND
ND
NC
¦6/S
19-Apr-88
NO
NO
NC
NO
HO
NC
ND
HD
HC
NO
ND
HC
HD
ND
NC
¦6/10
19-Apr-88
NO
HO
NC
NO
HD
NC
NO
HD
HC
5.J
1.9
94
ft
HD
ND
NC
¦7/6
19-Apr-8a
NO
NO
NC
HD
HD
NC
NO
HD
HC
12
13
8
HD
ND
NC
¦7/10
19-Apr-88
NO
HO
NC
HO
HO
NC
ND
HD
HC
12
3.1
118
•
NO
HD
NC
¦8/6
20-Apr-88
NO
HO
NC
HD
HO
NC
ND
HD
HC
ND
ND
HC
NO
ND
NC
¦ 10/4
21-Apr-88
NO
ND
NC
HD
ND
NC
HD
NO
NC
1.3
1.1
17
NO
VO
NC
¦10/6
2l-Apr-88
NO
HD
NC
ND
NO
HC
HO
ND
HC
1.6
3.7
79
•
1.2
1.8
40
¦11/9
22-Apr-88
NO
HO
NC
ND
HO
HC
ND
NO
HC
ND
NO
HC
NO
ND
HC
8)2/5
22-Apr-88
NO
HO
NC
ND
HD
NC
HD
ND
HC
ND
ND
HC
ND
ND
NC
¦13/2
25-Apr-88
NO
HD
NC
32
10
105 •
HD
ND
HC
810
98
157
•
ND
ND
NC
ND • Not Detected.
NC ¦ Not Calculated. Precision values are calculated (or reported concentrations grc.ncr than the quantitation limit.
• • Value Is outside OA objective of ~/- 50 X relative percent difference )
-------
GC/MS Analysis of TCLP Leachates--
TCLP leachates were analyzed for volatile organics via purge and trap
GC/MS. Precision and accuracy of the analysis is shown from the analysis of
matrix-spiked pairs of leachates (Table 4-19). Analytical accuracy was
estimated through the analysis of surrogate spikes of each sample. Table 4-20
summarizes surrogate spike recovery. Completeness of 100 percent was obtained
for this analysis.
Table 4-21 provides an estimate of the sampling and analysis precision
for TCLP leachates. The poor precision obtained can be attributed to sampling
a non-homogeneous matrix.
GC/FID Analysis of Soil Headspace--
Accuracy of the GC/FID analysis of soil headspace was estimated via the
analysis of LCSs As shown in Table 4-22, all LCS recoveries are within the
QA objectives for this analysis.
Precision of sampling and analysis is provided in Table 4-23. This
estimate was obtained by the analysis of field-generated duplicates
Twenty-three duplicate samples were analyzed. Of these, seventeen measurable
concentrations were utilized to estimate precision. Seven concentrations were-
within the QA objective, resulting in 59 percent completeness for this
procedure. This poor precision is attributable tn the collection of a small
sample aliquot (5 grams) from a non-homogeneous matrix
SITE SELECTION AND SAMPLING PROCEDURES
Site Selection and Sampling Procedures
The location of extraction wells and vacuum monitoring wells were
selected by the Terra Vac geologist based on the location of the contaminant
plume and site access. All sampling and process measurement ports along the
system were installed by Terra Vac. Sampling procedures were conducted as
specified in the QA project plan with the following deviations:
90
-------
TABLE 4-19. RESULTS OF ANALYSIS OF TCLP MATRIX SPIKES BY PURGE & TRAP CC/MS
Percent Recovery
Methylene Chloride frichloroethylene trBns-1,2-Dichloroethylerte Trichloroethene Tetrachloroethylene
MS HSO RPO HS MSG RPD HS HSO RPD MS MSO RPO HS HSO RPO
96
101
5.1
97
101
4.0
98
102
4.0
103
108
4.7
88
99
11.8
102
101
1.0
94
100
6.2
95
too
5.1
104
108
3.8
103
84
20.3
83
106
24.3
93
109
15.8
97
101
4.0
85
112
27.4
94
99
5.2
97
97
0.0
100
99
1.0
97
98
1.0
105
104
1.0
101
99
2.0
98
99
1.0
100
100
0.0
100
96
4.1
105
107
1.9
100
98
2.0
101
102
1.0
102
100
2.0
102
100
2.0
107
106
0.9
101
101
0.0
99
100
1.0
107
106
0.9
98
97
1.0
107
106
0.9
99
106
6.8
105
107
1.9
105
106
0.9
104
106
1.9
103
104
1.0
99
102
3.0
111
105
5.6
109
102
6.6
110
102
7.5
108
102
5.7
105
100
4.9
110
106
3.7
108
108
0.0
110
108
1.8
108
106
1.9
106
104
1.9
106
102
1.9
102
98
4.0
104
100
3.9
102
102
0.0
98
94
4.2
104
106
1.9
98
102
4.0
96
98
2.1
104
108
3.8
94
98
4.2
Average
101
103
4
101
103
4
101
101
3
103
106
4
99
99
6
OA objective for this analysis is ~/- SO X relative percent difference (RPO).
-------
TABLE 4-20. SURROGATE RECOVERY OF TCLP ANALYSIS
Pretreatment
Average +- Std.Dev.
d4-Dichloroethane
108
+-
2.8
d8-Toluene
101
+-
1.9
BFB
105
+-
2.4
Midtreatment
Average +- Std.Dev.
d4-Dichloroethane
103
+-
4.7
d8-Toluene
99
+-
1. 8
BFB
101
+-
2 . 0
Posttreatjnent
Average +- Std.Dev.
d4-Dichloroethane
106
+-
10.3
d8-Toluene
100
+-
3.4
BFB
103
+-
4.2
QA Objective is 50 - 150 % Recovery.
92
-------
TABLE 4-21. PRECEISION OF TCLP SAMPLINC AND ANALYSIS
t«pl« Stapling Methylene Chloride trans-1,2-0lchloro- Trlchloroethane Irlchloroethylene letrachloroethylene
10 OaU ethylene
Cone, (ag/l) RPO Cone, (mg/i) RPO Cone. (mg/l) RPO Cone.
-------
TABLE 4-22. RESULTS OF ANALYSIS OF HEADSPACE LCSs
Sampling
Date
(MC)
Percent
(DCE)
Recovery
(TRI)
(TCE)
(PCE)
12/03/87
100
111
105
102
88
3/16/88
106
111
105
95
85
3/17/88
96
100
94
82
76
3/18/88
90
94
90
81
74
3/19/88
120
120
119
107
96
3/20/88
99
104
98
89
81
4/20/88
98
105
96
91
79
103
109
102
99
85
80
90
78
82
63
86
96
85
87
69
4/25/88
102
103
90
108
90
83
97
85
83
71
Average %Rec = 97 103 96 92 80
QA Objective ¦ 50 - 150%
94
-------
OUWUUB/TIUU VAC maun
MULTTtCU. OAT* US* »1l (KIKl
MtTtUTMOIT
t«pU
Identification
later
tod
OaptPt
MCL
0CE
SC/M CancTtrgtlcrm
hi ra
oce
MCI
Ktadspiei Concentrate
(ng/kg)
OCE TRI
ont
rcc
PCE
MUSI/1
| 0*2
4 1
MO
m
NO |
NO
TRACE
| TUCt
NO I
TUCC
HO
M1/I
I 2*4
«» 1
IB
no
13.tO |
NO
NO
1 TtACt
NO j
TUCC
Ml/3
| 4-6
1
ID
m
* 1
NO
m
j TUCC
NO |
TUCC
HO
«t/t
j 6-8
1
TUCE
TRACE
Ml/12
| 22-24
«» I
NO
HO
m |
NO
NO
i TUCC
MO j
TUCC
MO
Ml/13
| 24-26
1
1
NO
NO
NO |
1
«
NO
| TUCC
NO |
1
NO
NO
nu/i
| 0-2
1
1
no
HO
I
• 1
NO
MO
| TUCC
1
MO |
TUCE
HO
IVtZ/2
I 2-4
«> 1
HO
M0
MO j
NO
NO
| TUCC
MO j
TUCE
k'D
CVW/J
| 4-6
«> 1
DO
NO
NO |
NO
NO
| 7.44
TUCC |
27.61
TRACE
IW2/4
| 6-8
«S 1
w
M0
2.99 |
NO
NO
I TUCC
NO |
1.01
k'D
«tt/5
j 8-10
«» 1
no
MO
13.60 r
»
NO
1 W
NO j
40
WO
IUU/«
| 10-12
«> i
NO
M0
5.36 |
NO
NO
| TUCC
HO |
TRACE
UD
(usz/r
| 12-H
«» t
40
NO
3.62 |
MO
Nft
|
•
nu/a
j 14-16
«s t
NO
M0
9.54 |
IC
HO
1 »
MO j
MO
NO
MS2/9
| 16-18
«» i
«
M0
NO j
NO
NO
| TUCC
NO |
10.00
HO
twtt/10
| 18-20
*> t
NO
MO
*• j
NO
NO
| 2.06
NO j
14.21
HO
EVS2/11
| 20-22
«» 1
NO
m
5.45 |
NO
NO
1 *>
NO |
TUCE
HO
CVU/12
| 22-24
*» 1
1
NO
NO
NO j
1
NO
¦0
j NO
NO |
1
TUCE
NO
(US3/1
| 0-2
1
<5 1
NO
H0
1
NO-2.77 |
NO
TUCC
| 3.66
1
TUCE |
71.07
TUCE
tWtt/2
1 *"*
«s 1
NO
NO
15.tO |
NO
NO
| 1.19
TUCE |
67.17
TRACE
HS3/3
j 4-6
«» 1
NO
NO
50.50 |
2.10
NO
| TUCC
TUCE |
109.00
2. '2
tWJ/4
| 6-8
«* I
NO
NO
6.H |
NO
NO
j TRACE
TUCE j
70.53
TUCE
iwj/i
| 8-10
«S 1
NO
m
2-64 |
NO
NO
1
NO |
t .70
HO
MJ/i
| 10-12
«s 1
NO
4.90 |
NO
NO
| TUCC
MO j
15.90
NO
naj/r
j 12-14
<5 1
NO
NO
® j
«
MO
1 «
JO j
NO
NO
nsi/s
J 14-16
<5 1
NO
e
B j
NO
tt
| TUCC
* |
7.37
TUC£
CW3/9
1 16-18
1
NO
NO
NO |
IC
NO
| TUCC
NO j
11.53
1 36
CWI/10
| 18-20
«s 1
NO
NO
IC j
NO
NO
1 *
HO |
NO
HO
nu/11
| 20-22
<5 1
NO
tt
NO |
NO
NO
j NO
• i
TUCE
HO
CWJ/12
| 22-24
«' 1
1
NS
NO
NO |
I
MO
NO
j NO
NO f
1
NO
NO
M2/1
| 0-2
1
¦ |
NO
NO
I
4.06 |
«
MO
| 1.44
1
TUCC (
7.78
HO
wn/i
1 2-4
1 |
W
NO
67.00 |
HO
NO
| 8.30
2.27 |
230.60
1.48
Mi/)
1 *"6
8.20 |
¦s
NO
03.00 |
HO
m
| 3.16
1.48 |
201.09
2.65
NUJ2/4
I 6-8
¦ |
M
NO
7.07 |
NO
ic
| 2.29
2.60 |
406.62
.99
95
-------
CKMLMD/TOM VAC NUCIW
uumcii MT4 mm tea macs
wrmiwur
tapl*
Idwitlf lotion
toll
twpoi
1
1
1
| MCI
DCS
GC/KS Concentration*
(¦a/ta)
Ttl TCf
PCC
MtCl
HttdSp*C«
ire
Coneantrittorts
( ««/kg J
TNI TCC
PCC
MZ/5 |
8-10
1 «*
no
NO
| 9.95
NO
IB
1 *
IB
2.05
ND
UZ/i |
10-12
| 8
m
NO
1 to
IB
IB
1 to
NO
NO
NO
M2/T |
12-14
1 8
no
NO
j NO
IB
IB
1 TUCt
NO
7 13
MO
MA2/S |
14-14
1 **
m
«
1 ®
IB
NO
1 m
NO
TUCC
NO
WA2/7 |
14-W
1
no
m
| 9.15
NO
NO
1
NO
1.56
MO
wtz/to |
18-20
1 "S
10
NO
1 #>
m
NO
1 *®
IB
TUCC
MO
NUtt/11 |
20-22
1
IB
m
j IB
(B
NO
1 10
MO
NO
KO
Wt2/12 1
22-24
1 <3
|
10
«
i *
NO
NO
1 »
[
NO
TUCC
MO
IW4/1 |
0-2
1
1
NO
NO
| 2.94
NO
NO
| TUCC
NO
2.78
TRACE
iw/] i
2-4
1 <*
MO
NO
| 29.90
NO-6.69
MO
1 *>
NO
TUCC
MD
WM/J |
4-4
1 <*
NO-2.16
NO
| 260.00
13.30
NO
| 2.16
TUCt
127.31
TA-3.38
rat/4 j
4-4
1 **
MD
NO
| 303.00
6.80
NO
j M.11
1.97
649.38
13.59
nu/1 1
8-10
1 «*
NO
NO
1 351.00
11.50
NO
] TUCC
TUCC
68.17
1 86
CUM/4 1
10-12
1
NO
NO
j 195.00
6.62
MO
| TUCC
TUCC
141.47
2.39
CVM/7 |
12-14
1
NO
NO
1 J.H
IB
NO
| TUCC
TUCt
98.48
TRACE
IWS4/8 |
14-14
1 <*
NO
NO
j N0*1.97
NO
NO
j NO
NO
NO-1.97
KO
EVH/9 |
14-18
1
NO
NO
1 NO
NO
NO
j TUCC
NO
1.56
KO
IW4/10 |
18-20
1 *>
NO
NO
1 *
NO
NO
| TUCt
NO
3.63
*0
EVS4/11 |
20-22
1 <*
NO
NO
1 NO
NO
m
I TUCC
mo
2.53
WD
cw/tz (
22-24
1 «J
¦
NO
NO
[ 6.71
NO
NO
( TUCC
|
NO
4.43
TRACE
IM3/1 |
0-2
1
1 8
NO
NO
| 10.30
NO
NR
-
•
MWU/2 j
2-4
1 «>
IB
NO
| 8.33
MO
NO
| 17.05
TUCt
56.77
TRACE
NVS3/3 j
4-4
| 7.SO
N0-3.93
NO
j 80.00
NO
NO
I
NO
TUCC
MD
NUti/4 j
4-8
j 1
NO
NO
j 160.00
9.8S
NO
| 4.10
1.66
315.31
3 90
MA3/5 |
8-10
1 <*
NO
NO
j to
NO
NO
j
NO
NO
1.66
M3/4 |
10-12
|M
•
j
•
MR
1 '
•
*
NUS3/7 j
12-14
1
6.97
6.36
( 316.00
3.42
nr
1 *
•
MM3/8 j
14-14
1 <3
2.11
i.ta
j 195.00
NO
NR
I -
¦
•
MOS/9 j
14-18
1 "¦»
NO
3.86
1 218.00
3.12
NR
1
¦
Ml/10 j
14-20
I
20.40
36.30
| 1579.00
NO
MR
\ '
•
*
MUS3/11 |
20-22
1 *i
NO
NO
| 106.00
NO
nr
1 -
•
-
Wti/12 |
22-24
1 <*
NO
a
1 64.10
MO
NR
1 "
|
IW1/1 |
0-2
1
I
NO
*
1 *>
NO
NR
1 *
-
•
Wtt/J |
2-4
1 ^
NO
¦a
1
IB
MR
f '
•
*
EUS1/3 j
4-4
t
2.11
NO
| 61.0
2.22
NO
| 6 94
1.22
198.20
2 ?2
MV* |
4*8
1
2.03
m
| 328.00
8.31
NO
| 6.40
2.39
392.11
2.:3
CVS 1/3 I
8-10
1
NO
«
(4.2M2.S
NO-J.6
10
1 10
MO
NO
MO
OBI/4 |
10-12
1 ^
NO __
NO .
| 3.06
?•«
NO
| KO*3.05
NO
KO-68.58
MO
CWS1/7 |
12-14
1 ^
•
NO
| 3.15
MD
NO
| " 6.40
1 .S3
93.76
2.12
IW1/8 j
14-14
1 4
NO
NO
| NO
MO
NO
j TUCC
t TUCC
29.52
UD
EVJ1/9 |
14-18
1 ^
NO
NO
1 MO
MD
NO
I TUCC
TUCC
41.93
TRACE
nai/io |
18-20
1 «*
NO
NO
1 m
NO
KO
1 to
NO
TUCC
KO
evji/ii |
20-22
1 «5
•
NO
| NO
NO
NO
| TIACC
TUCC
7.60
KO
EVJ1/12 |
22-24
1 <5
HO
NO
1 *o
1.28
NO
1 *®
NO
NO
ft
96
-------
OtMLMD/TUU VAC MOOUN
UUlt 'I OAT* NUN toil, HUMCS
/«r»UTWIT
Uap<*
tdanttfIcitlon
Sell
Dcptft
¦MCI
on
6C/W Copc«rrr«t lon»
TCI TC«
PCM
1
I mcx
M«tdap*c» Concentrations
(no/kg)
DOE Til TCC
PCE
1
1
wu/t |
0-2
<5
j m
1
1
1
1 1
1 1
1 *• 1
NO
1
1
1 *
1
I
1 *
m
1
1
NO |
NO
main |
2-4
<1
1 *
i ¦*
i m i
m
j 10
1 NO
NO
NO |
NO
WM/! |
4-6
«5
1 m
m
1 2-21 1
NO
1 *
| 2.39
NO
40.60 |
1.49
Mi/1 |
6-8
<5
1 10
1 •
1 325 1
NO
j 10
| 7.44
TXACC
13T.M |
3.95
mai/1 |
a-io
<1
j e-6.8
f m
i •• i
NO
1 NO
| «>*6.a
10
7.sa |
3.29
ma*/6 1
10-12
<)
j »
1 "0
| MO-4.24 i
NO
j *>
1 ®
NO
NO j
NO
OUU/7 |
12-14
«!
i 110
1 *
i «° i
NO
t NO
j t ua
TSACS
1S.18 |
3.33
NUU/8 |
14-14
j m
1
1 NO |
NO
j NO
j NO
NO
TRACf |
NO
NWS4/9 j
16-18
<5
1
1 *0
i i
NO
i •
t NO
NO
TWCf |
HO
MUW/10 |
18-20
1
1 "0
1 *
I NO 1
NO
j NO
j *
NO
NO |
NO
NUU/11 |
20-22
<5
I
j NO
j no j
NO
i *®
i 1(0
NO
KO |
HO
WSt/12 |
22-24
TWCt
1 10
1 *°
j NO j
NO
i NO
| KO
NO
TUCC |
NO
97
-------
CMHUUO/TOU v*c pmouh
MULTTICJU. MTA FKJI SOIL MtlKS
MITIUTMOT
S«pl«
Idwntf 1 cation
Sad
Mptti
!
1 (*
1
| UNITS
| OIL
j t
| GlUSt
j ug/g
torn
CMGANIC
CM Ma
US/9
Mt
0CE
TCLP
(ag/t)
rn
ra
PCI 1
Ml/1 I
0-2
| 6.28
| 3130
37300
ruct |
NO
1
1 "° 1
NO 1
MA1/Z |
2-*
| 6.26
| 1700
10900
rua j
NO
1 NO
1 NO I
NO 1
MUSI/3 I
4-6
j 6.49
| 1420
7980
*
-------
OKMUtB/TtlM VAC MOSXAN
UUU.niUl DATA 'M SOU so*i*cs
PftTKATWIT
»«*<•
tdattl "cation
Soil
Doptii
1
1 P"
1
| uuti
| Oil
| t
j GMASt
1 ua/«
( TOTAL
| ORGANIC
j CARBON
1 u«/f
j MCI
oa
TCIP
(¦a/n
Tt!
TCE
pa |
man |
8*10
| 7.38
| 8800
1 427
10.055(8) |
IO
>0 1
NO |
40 1
MA2/6 |
10-12
| 6.93
| 2290
| 1560
|0.093(8) j
10
* 1
NO i
tt j
maw |
12-14
j 6.73
| 870
| 1240
|0.167(8) j
is
• i
NO j
tt 1
NUtZ/8 |
1A-16
| 6.59
1 3*4
| 490
(0.051(8) j
MD
NO I
tt i
tt 1
M2/V |
16-18
| 6.74
1 "9
j 1600
t TUCZ j
10
10 1
tt 1
tt j
M2/10 |
18-20
1 7•*
1 4W
1 136
j TtAa |
m
i
NO |
tt 1
MS2/11 |
20-22
| 6.23
| 376
| 60.3
1 TIMC* 1
M0
MO i
NO |
«0 1
NUS2/12 I
22-24
| 7.32
i
1 <>6
¦
| 212
j TUCC j
NO
NO j
NO j
NO 1
I
IUU/1 |
0-2
1
| 6.46
1
| 9420
| 2670
j TRAa |
MO
NO I
NO 1
NO )
mi/2 |
2-4
j 6.76
| 24500
| 2010
j TKACZ j
M0
NO |
tt j
NO 1
tvun |
4-6
| 6.33
| 11720
| 18500
j TKACC j
NO
NO j
0.264 |
tt 1
(USA/4 |
6-8
1 6.27
j 14060
| 29100
j t ua i
10
NO j
NO j
NO j
(US4/5 |
8-10
| 6.3
| 21020
| 20000
1 TtAa i
10
NO 1
NO i
tt |
Mi/6 |
10-12
| 6.28
| 15580
| 8780
j MO j
10
1
NO I
NO |
tWU/7 |
12-14
| 6.38
j 2230
{ 7220
j rua |
10
10 j
ma i
NO {
MA/8 |
14-16
1 5.95
j <113
I «S
| TRACE I
NO
NO 1
tt |
NO |
M4/9 j
16-18
1 t.u
j 416
j 1490
j TtAa j
NO
NO |
NO |
NO |
ma/io |
18-20
j 6.46
1 B4
| 1290
1 1
NO
10 |
NO j
NO |
ma/ii |
20-22
| 6.38
| <115
| 1780
| TIAC8 I
NO
NO 1
NO |
NO
MA/12 j
22-24
j 6.4
| <98
1
| 204
j TtAa j
NO
MO |
NO j
NO |
1
MUS3/1 |
0-2
1
1 ¦*
1
|NK
| 29100
1 TRACE 1
10
>0 1
TtA« |
NO )
WS3/2 |
2-4
| 6.98
j 17670
| 12200
j TtAa j
M0
10 j
TtAa |
tt |
masn |
4-6
| 6 .Ti
| U550
| 15200
j TUCC j
NO
NO 1
0*136 1
tt j
WS3/4 |
6-8
| 6.13
| 13270
1 22000
j TtAa j
M0
MO |
0.067 j
NO |
WS3/S |
8-10
| 5.92
I 10350
j I860
| TUCZ j
10
NO j
tt j
NO j
MS3/6 j
10-12
I ••
|Nt
IXI
|NR j
•
|
* |
|
mas/T |
12-14
I 58
| 4170
| 2810
1 TtAa j
10
TtAa j
2.50 1
tt (
wu/s |
H-16
I 5.77
| U70
| 5870
1 TtAa |
10
0.077 j
4.00 j
TtAa i
MA5/9 |
16-18
| 5.79
| 5890
| 6130
j TtAa j
0.053
0.11 |
5.00 |
TRAa 1
MUU/10 |
18-20
| 5.92
| 4550
j 4170
i i
M0
NO 1
0.059 j
NO 1
*1*3/11 |
20-22
I M
| Ml
| 8530
1 TtAa |
M0
NO |
0.089 j
NO 1
MWSS/12 |
1
22-24
I n
i
| *8
1
| 4210
j rua |
M0
NO |
NO |
MO j
1
Ml/1 |
0-2
1
1 *>
j MR
| Mi
| MR j
•
|
I
|
Ml/2 |
2-4
j n
|NR
j MA
MR 1
•
|
I
• |
Ml/3 j
4-6
| 6.89
| 9210
| 14800
j TtAa |
TtACE
NO j
0.370 |
NO |
Ml/A |
6-8
1
j*t
| 24500
I TtAa i
M0
NO |
0.138 |
tt |
Ml/) |
8-10
| 6.97
| 5400
| 6590
j Tua j
10
NO |
tt j
N° |
Ml/6 |
10-12
| 6.83
| 2260
| 506
1 TRAa 1
HO
NO i
tt j
tt |
Ml/7 |
12-14
| 6.37
| 3630
8540
| Tt-O.tl I
M0
« i
NO i
tt |
Ml/8 j
14-16
| 6.45
1 629
| 1160
[TR-0.076 1
10
NO j
tt j
tt j
Ml/9 |
16-18
| 6.47
1 *2'
| 1260
1 TtAa |
m
tt j
tt j
tt j
Ml/10 j
18-20
j 6.4A
I 118
I 159
1 TtAa j
M0
NO j
tt j
tt j
M1/11 j
20-22
1 6
| 95-236
1 764
1 TtAa j
10
NO |
tt |
NO |
Ml/12 j
22-24
| 5.96
1 "3
1
1 Tua |
10
tt j
tt j
NO |
99
-------
OtOVtUUB/TUM ¥*C MOOUff
UALTTtCAL UTA rtCM toll HttlKS
wvinar
lapli
Idvitif fcatfsn
loll
0«plh
pt
win
Oil
8
OttUt
ue/i
TOTAL
OIGMIC
omcn
«/•
met
0CE
TCLP
(•3/1)
m
TCE
PCt |
MUM/1 |
0-2
4.38
soa
1420
nua
IB
1
1
1 "©
HD
M0 1
HUMS! |
]•«
4,22
930
481
tua
NO
1 "0
NO
"0 1
Mi/1 j
4-t
3.92
2290
13100
Tua
m
i *>
ruce
MO j
WS4/4 1
6-8
4.11
7270
7230
ma
*
j ®
rua
* 1
mtu/1 ]
8-10
4
7090
8220
iua
NO
I
TftACt
no |
MS4/4 |
tO-12
3.4t
J660
8340
tua
NO
1 «>
HO
HO j
mat/r j
12-14
I.St
10«8
1430
tua
IC
1 "0
10
M0 |
WW/8 |
1**14
4.07
2010
97J
xua
NO
1 "0
NO
NO j
mat/? j
14-18
4.23
2790
283
rua
NO
j NO
10
NO j
NUM/10 i
18-20
3.41
414
304
tua
»
1 "0
NO
NO j
1W4/11 I
20-22
3.82
600
177
rua
NO
i »
NO
m j
NUS4/12 j
22-24
3.84
234
283
tuci
NO
1 "0
1
10
NO |
100
-------
OWWUUB/TOBU-VAC W*MI
MU1.TTIOU. W SOIL KSIKS
atormrmr
tavl*
IdBitlflcattan
toil
Oaptn
Met
OCX
SC/M cancaniratlom
(¦B/tfl)
tii »ee
oa
NaCl
K«K2*0*ct Cencantratf
(¦S/kg)
oct iki
ra
TCt
pce
¦1/1 |
0-2 1
5.0(l»
1 *
n
| 280.0 |
rua
ND
I rua
rua |
*9.01
iu:e
11/2 1
2-4 |
5.0(1)
1 tua
TUCI
1 58.0 |
rua
tua
j rua
rua ;
26.14
r»«E
¦1/1 1
4-6 |
<5.0
1 *o
TUCt
j 190.0 j
rua
rua
| 3.71
rua |
111.«
tmce
¦1/4 j
6-8 |
14
; rua
rua
| 7B0.0 |
5.80
rua
j rua
rua |
274.or
tuce
11/5 |
8-10 1
14
1 no
»
| Tt-3.0 |
»
rua
1 run
NO 1
ia
no
¦1/6 1
10-12 i
5.6(1)
1 NO
NO
1 3.0 |
NO
NO
1 NO
NO |
m
wo
»1 P I
12-14 |
5.6(1)
1 *0
NO
1 TUCI j
NO
NO
I rua
NO |
r wee
*0
It/8 j
14-16 |
5.8(1)
j NO
NO
1 1
NO
NO
I tuq
rua i
29 52
NO
It/4 1
16-18 |
i no
NO
j » j
a
NO
| rua
rua |
ruct
ND
(1/10 I
18-20 |
<5.0
1 NO
NO
1 * 1
NO
NO
1 *
» 1
TUCt
M0
•1/11 I
20-22 |
6.4(f)
1 NO
NO
1 ® 1
NO
NO
t NO
NO |
rua
*0
¦1/12 1
22-24 |
<1.0
1 "0
NO
1 3-* 1
IB
IS
i nb
NO |
NO
*0
•orlnt n an loealad adjaeant to men
Itertng «all
•2
•2/1
1 0-2
<5.0
| 4.2 1
«0
\ 1
NO
rua
TtACf i
Tua
rucc
1RACS
¦2/2
1 *-«¦
<5.0
1 16-0 1
M0
1 U.O |
1.90
rua
25.32 |
Tua
tJ.M
IMC£
ti/3
1 4-4
<5.0
1 5.0 |
M0
1 66-0 1
3.40
NO
NO j
MO
ruce
HO
•2/4
j 6-8
<5.0
1 1
M0
i i
NO
1IU1
2.23 1
tt
TRACE
1UC8
U/5
| 8-10
<5.0
1 *> 1
MO
1 MO j
NO
TUCt
TUCK |
MO
T«Aa
trace
U/6
| 10-12
<5.0
1 *0 |
M0
j ie j
m
MO
•0 1
NO
NO
NO
U/7
j 12-14
<5.0
1 NO |
M0
| 0 |
MO
m
TUCt |
NO
TUCt
L'O
82/8
| 14-16
<5.0
1 NO |
M0
i tf> i
NO
10
TUCK
ND
ruct
TMtt
•2/9
j 16-18
<5.0
1 NO |
10
1 ® 1
10
NO
TUCI |
rua
TUCt
IRACc
•2/10
| 18-20
<5.0
1 «0 1
M0
1 rua I
10
10
rua I
tua
11.63
TRACE
(2/11
| 20-22
<5.0
1 *0 |
NO
1 ¦© |
NO
ND
MO j
NO
TUCI
MD
•2/12
I 22-24
<5.0
1 NO |
M0
t *° i
MO
NO
MO |
NO
NO
ND
taring *2 «*
• lacttad adjacvu to aa
nltortne vail *3
•3/1
| 0-2
<5.0
| rua |
M0
1 "0 1
1.50
TRACK
TUCt |
NO
TRACE
TRAC1
•3/2
1
<5.0
j Tua |
NO
1 rues t
NO
rucc
rua |
MO
TUCI
TRAC3
¦3/3
1 *-6
<5.0
1 no |
M0
| TtACe |
NO
TffACC
rua j
NO
ruct
HO
•3/4
) 6-8
<5.0
1 » 1
m
1 « 1
NO
TMCI
MO j
MO
TUCt
*0
U/1
| 8-10
<5.0
1 no 1
m
1 NO I
m
NO
- >0 (
NO
TUCt
MO
•3/6
| 10-12
<5.0
1 no |
m
1 NO 1
m
NO
rua j
NO
TUCI
MO
•3/7
| 12-1*
<5.0
1 "O 1
MO
i NO 1
NO
10
Tua i
MO
TUCt
t?a;s
•3/8
| 14-16
<5.0
1 * 1
MO
( * 1
NO
NO
MO j
NO
TRACt
HO
U/9
| 16-18
<5.0
1 * 1
MO
1 * 1
NO
NO
NO |
MO
NO
«0
¦3/10
| 18-20
<4.0
1 tt 1
NO
1 * 1
NO
m
MO |
MO
TRACt
ML
•3/11
| 20-22
<5.0
1 *> t
NO
i MO 1
NO
NO
NO j
MO
NO
HO
•3/12
I 22-24
<5.0
1 «0 1
NO
( MO j
NO
NO
NO j
MO
NO
HO
larlna n
-------
e*WILMB/TBtt*-VAC MOCXAM
JUUITTIOU. MM tttm (Oft. KKIKS
«lDTMAn*»T
CC/M Caneartratlar*
1
Ht«d*pae« Conc«ntr«tfont
ta«l«
Sell
1
(¦g/kf)
(dantfffcacfon
Oaptti
1
TBI
TCS
PCE
KJtar
MCI
OCE
Til
ra
Kt
\ Ml
OCC
•4/1 |
0-2
<1.0
«
1 ®
1 *
1 *
I rucc
1 10
1 10
TUCC
TRACE
•4/2 t
*-4
<1.0
»
1 *0
I *
1 NO
1 10
i 10
I 10
TUCE
MO
M/3 I
4-6
<1.0
NO
1 IB
1 *
i ®
i 10
i *>
1 W
TtACC
MO
•4/4 I
t-a
<1.0
»
1 NO
1 NO
i »
1 Tuet
i 10
1 10
TMCI
TRACE
»4/l |
8-10
<1.0
NO
1 *>
1 NO
1 NO
1 M0
| NO
1 V
K0
MO
•4/6 I
10-12
<1.0
NO
1 >0
1 «0
1 *>
1
I rucf
1 10
TJMCE
MO
•4/7 |
12-14
<1.0
*0
1 »
1 «°
1 »
I *
j ruce
| KO
TRACE
HO
•4/8 |
14-16
<1.0
w
1 NO
| *>
1 »
1 10
| NO
| MO
MO
NO
un I
16-18
<1.0
w
1 <0
1 •
1 <•
1 10
i 10
i 10
KO
NO
•4/10 |
18-20
<1.0
IS
1 ®
1 •
1 NO
1 »
1 10
1 10
HO
NO
•4/11 |
20-22
<1.0
NO
1 NO
1 NO
1 ¦>
1 10
1 10
| MO
NO
MO
>4/11 1
22-24
<1.0
NO
1 NO
1 NO
1 w
| M0
1 10
1 MO
NO
NO
lorlng « not located adjacent to monitoring Mil *
102
-------
OOmMO/TUM-VM mogum
AJULYTICAL OAT* FMM soil. (MINGS
NtOTMATWT
Sa«l*
Identification
Hater
(oil
Daptfi
I*
UNITS
| OIL
j I
j oust
j uo/g
| TOTAL |
j atCAMIC |
| cahom |
1 ua/s 1
Ml
OCE
TCLP
(¦l/D
T»l
TCC
PCC |
11/1 1
0-2
1 7.67
| 14600
| 12700 |
Tua
0.072
TtACC
4.90 |
NO |
¦1/2 1
2-4
¦*
jut
|Nt j
rua
Nj
NO
2.00 |
NO |
(1/3 1
4-6
M
jm
|M j
TtACC
0.072
¦e
4.SO |
NO |
(1/4 j
6-8
|U
|M
j MB j
rua
Tua
TtACC
6.60 j
TtACC |
(1/9 1
8-10
j 7.19
| 8390
1 4280 |
TtACC
MO
*>
TtACC |
NO 1
(1/4 I
10-12
| 6.90
| 4S60
1 2240 |
TtACC
MO
MO
TtACC |
NO |
(1/7 |
12-14
| 6.87
| 839
1 1040 I
rua
NO
NO
0.10 |
NO j
(1/8 |
14-16
| 6.SO
1 u7
1 2100 I
TtACC
NO
NO
0.06 |
NO |
(1/9 1
16-18
j 6.67
1 242
1 1M0 |
TtACC
»
MO
TtACC j
NO |
(1/10 |
18-20
| 6.92
| <172
1 209 |
TRACE
NO
\t>
TtACC j
NO j
(1/11 I
20-22
| 6.56
| <174
1 249 |
TtACC
NO
NO
rua j
NO j
(1/12 1
22-24
| 6.47
| 209
1 213 |
TtACC
MO
NO
TtACC j
NO |
lor trig *1 «i located adjacent to aonltaring w*lt *2
U/1
I 0-2 |
6.39
3430 |
7520
TRACE
TRACC |
NO
TRACC |
NO |
(2/:
I 2-4 |
6.52
9730 j
12000
TtACt
0.49 |
IC
0.73 |
TRACC |
(2/3
I 4-6 |
6.32
16400 |
6820
TtACC
0.44 j
TRACC
4.70 |
0.064 |
U/4
I 4*8 I
6.34
762 |
11900
TRACC
0.13 |
NO
0.30 |
TRACC |
U/3
| 8-10 |
6.38
229 |
1020
TRACC
NO j
NO
TRACC |
MO i
(2/6
| 10-12 |
6.57
2635 |
1970
TRACC
NO j
NO
TRACC j
NO |
(2/7
1 12*14 1
6.57
209 |
339
TRACC
MO |
NO
TRACC j
NO |
(2/8
| 14-16 |
5.90
<192 |
844
TRACC
NO |
NO
NO j
MO |
(2/9
| 16-18 |
6.17
<202 |
589
TRACC
NO |
NO
TRACC j
MO |
U/10
| 18-20 |
6.30
816 1
2950
TRACC
NO j
NO
TRACC j
MO j
(2/11
| 20-22 |
6.82
333 |
195
TRACC
no j
NO
NO |
NO |
U/12
1 22-24 |
6.83
365 |
794
TRACC
MO j
NO
NO j
NO |
(orlng *2 <•*
¦ Located adjaevtt
to aa
nftering Mil
03
U/1
1 0-2 |
6.73
1960 |
6550
TRACC
TRACE |
MO
0.24 |
TRACC |
(3/2
1 2-* 1
6.83
606 t
5820
TRACC
0.12 |
NO
0.40 |
MO |
(3/3
1 1
6.87
647 |
3640
TRACC
ISO j
NO
TRACC j
MO |
(3/4
1 6-e 1
7.00
1650 |
1470
TRACC
¦o j
NO
TRACC |
NO |
(3/3
1 a-10 !
7.03
1080 j
2120
TRftCC
NO |
NO
TRACC j
NO j
83/6
| 10-12 |
6.90
365 |
617
TRACC
NO |
NO
NO j
NO j
(3/7
1 12-14 1
7.01
323 |
1050
TRACC
NO |
NO
NO |
MO |
(3/8
j 14*16 1
7.31
274 |
116
TRACC
NO |
MO
NO |
NO j
(3/9
| 16-18 I
6.90
<174 |
161
fRACC
MO |
NO
« |
MO |
(3/10
| 18*20 |
7.26
<158 |
149
TRACC
MO |
NO
NO j
NO j
(3/11
| 20*22 1
7.14
<152 |
91
TtACC
MO 1
MO
MO I
MO \
(3/12
1 22*24 |
7.17
<166 |
73
0.078(B)
MO j
MO
HO j
NO |
taring <3 Ml 1 oca tad adjacent ts Monitoring mil *1
103
-------
OKMbUB/TCIU-VAe PfOCUN
JUULYT1CAL DATA F(OI 101L MtlNCI
hiotiutmut
OIL
TOTAL
TCLP
(MPl*
Soil
P»
I
OiUMIC
Identification
Oaptf)
CICASt
CAJI80M
*mtr
talis
uo/«
UQ/fl
| NtCl
oci
mi
TCC
pce i
84/*
| 0-2
6.77
259
1540
|0.073(1) |
no
1
rua
» 1
un
1 ***
7.23
<170
2920
|0.062(l> |
no
1 *>
•
*0 1
un
1 4-4
7.18
<190
Z300
j Tua j
no
j m>
rua
W 1
84/4
| 4-8
7.40
2820
1400
1 rua |
is
1 no
M0
ic |
84/3
j 8-10
6.69
318
1040
1 'ua |
MO
1 *>
no
MO I
u/t
| 10-12
6.22
<184
875
j run |
a
j NO
NO
1
84/7
| 12-H
6.96
<170
1240
| TUCt j
to
1 *°
NO
NO |
u/t
j 14-16
7.12
<166
18)
1 rua j
MO
j NO
MO
MO j
84/9
| 16-18
6.89
<164
18)
1 rua 1
NO
1 •
MO
• 1
84/10
| 18-20
7.43
191
96
1
-------
CMVCUUB/TttlA-VM PCOCAH
multdcal mi* twm mi taiina
POST TIEArmiT
Savlf
Idantlf lottlen
WMT
Mil
Depth
Ml
0CE
SC/MS Cone«ntr»tlorn
<«B/K9>
rn ra
PCt
I
1
1
| MCI
Mttdspte* Cone#rtr«iont
(no/kg)
0CE TV t TCE
fCE
•6/1 1
0-2
| «1.0
•O
1 •
1 10
M0
I 10
I ruct
NO
TRACE )
NO
•6/2 |
2-4
| <5.0
1 110
i m
MO
i *>
| TUCt
ko
met |
"0
•6/3 |
4-6
1 <5.0
nux
t M
j TUCt
to
j H>
j TUCt
MO
TRACE |
»0
¦6/1 |
6*0
|M
¦
-
|lt
•
I
"
¦6/3 |
a-io
| <5.0
m
1 "0
1 10
M0
1 10
1 10
MO
K0 |
K0
¦6/6 |
10-12
| <4.0
1 **>
1 10
to
1 10
1 •
NO
NO |
K0
16/T |
12-14
|M
-
1
-
|K«
-
t
*
•6/« |
14- (6
|tt
-
1
*
|m*
*
*
16/9 j
16-18
| <1.0
1
1 Z3
M0
1 10
| TJUCE
ra
17 42 |
«D
16/10 |
18-20
|
NO |
NO
TRACE |
WO
•8/8
<9.0 |
MO
MO
1 MO
MO
I 10
MO |
NO
MO j
wo
•8/9
<9.0 |
MO
MO
1 10
NO
1 MO
10 i
MO
MO |
vO
•8/10
<9.0 |
MO
MO
1 MO
MO
1 10
10 i
MO
TUCE 1
WO
U/11
" I
MO
MO
1 10
MD
i 10
TRACE {
KO
3.70 (
WO
•8/12
5.0 I
MO
MO
1 10
W
t 10
NO j
MO
MO j
WO
lor Ing M «•
*c«nr
to aonltorin? wviI
'2
•9/1
<9.0 |
1.70
MO
| 3.40
MO
i 10
10 !
MO
10 )
HO
•9/1
<9.0 |
1.40
MO
j 7.70
MO
| MO
3.20 |
NO
9.tO |
TUCE
89/3
<9.0 |
M0
MO
1 "
«
j 10
2.10 |
NO
9.SO |
MO
•9/4
.fc
-------
OmtUMB/mM-VAC mcom
mmlttical mta ncm ton kkiks
nr nunor
CC/M Concaitratlons
1
N«ad>p*c« Conecntrttf
orts
tMPl*
Soil
im/tg)
1
(HQ/kg)
idanfflcatlon
Dapcft
1
| Ml
TCE
PCE
MaC I
Oct
Til
res
pa
0CE
TRI
wtn
| 8*10 | <3.0
1 10
m
1 22
10
1 10
t m
i0 1
5.80 |
TRACE
(9/6
| 10-12 j <3.0
10
MO
| 240
6.6
1 10
| 2.60
10 I
134.00 j
1.3
•9/7
| 12-1* | <3.0
m
m
j MO
m
j 10
1 10
10 1
TRACE |
NO
•9/8
| 14-16 j <3.0
1 10
m
1 24
m
(Ml
|
*
19/9
| 16-18 j <3.0
•
m
1 54
MO
1 10
1 tug
I0 1
10.3u j
TRACE
19/10
| 18-20 | <3.0
j V
m
1 3*
m
\ 10
j TRACE
10 i
32.50 |
TRACE
•9/11
| 20-22 |M
*
|
•
|MR
1 •
• |
•
•9/12
| 22-24 |W
*
•
|Nl
i
1
torlnf 99 ma
ocatad adjacent to attraction wait
#1
110/1
| 0-2 | <3.0
1 *
m
1 2.3
m
1 10
I rua
NO |
TRACE 1
NO
•10/2
| 2-* | <3.0
1 10
MO
1 7-3
10
i 10
| 2.90
no i
11.70 |
TRACE
•10/3
| 4-6 | <3.0
m
10
1
m
i 10
1 10
NO j
NO j
NO
•10/4
| 6-8 | <3.0
j no
10
1 1-3
MO
j 10
1 10
10 1
TRACE |
NO
•10/3
| 8-10 1 <3.0
MO
j TUCZ
MO
j NO
i 10
• i
NO I
KD
•10/4
| 10-12 | <3.0
MO
10
j 1.60
trace
j NO
i 10
NO j
TR-5.04 |
k'D
T0/7
j 12-14 | <5.0
1 *>
10
1 10
10
1 10
1 trace
NO |
TRACE |
ifD
110/8
j H-16 | <3.0
mo
HO
| 4.30
M0
! 10
i TRACE
NO i
TRACE |
I'D
•10/9
| 16-18 j <3.0
j NO
10
| $.70
NO
| NO
1 10
• I
10 j
L'D
•10/10
| 18-20 | <3.0
j MO
MO
1 MO
M0
j NO
j NO
NO |
NO |
Lt>
•10/11
| 20-22 | <3.0
I m
MO
1 10
MO
j NO
j 10
10 i
NO (
uO
•10/12
| 22-24 | <3.0
i
1 10
i
m
1 10
1
NO
1 10
j
1 10
|
10 i
i
MO |
uo
I
(orln« no mm 1 oca tad adjacant to ma
i
nltoHnf
M
i
•11/1
| 0-2 | <3.0
1 *
MO
| 2.40
10
1 10
| 1.23
MO |
8.40 |
trace
•11/2
| 2-4 | <3.0
HO
MO
j 1.70
NO
j MO
I trace
NO j
TRACE j
HO
•11/3
| 4-6 j <3.0
10
MO
I 10
MO
j NO
j 3.01
NO 1
1.50 »
NO
811/4
| 6-8 | <3.0
no
HO
j NO
NO
i 10
j NO
NO |
TRACE |
NO
•11/3
| 8-10 j <3.0
1 «
MO
j MO
NO
1 10
1 10
10 i
NO |
NO
•11/6
| 10-12 | <3.0
HO
MO
i 10
HO
i
i 10
I0 1
NO j
MO
•11/7
j 12-14 | <3.0
1 10
MO
i 10
HO
i 10
| trace
NO |
tbace j
NO
• 11/8
j 14-16 | <3.0
j MO
MO
i 10
MO
i 10
| 3.07
MO j
TRACE |
NO
• 11/9
j 16-18 | <3.0
1 10
MO
i 10
MO
i 10
1 10
NO |
NO |
NO
•11/10
j 18-20 | <3.0
1 10
M0
i 10
10
i 10
j M0
NO |
NO ]
HO
•11/11
| 20-22 | <3.0
•
MO
i 10
NO
j MO
1 10
NO |
NO |
NO
•11/12
| 22-24 | <3.0
i
j MO
1
0
i 10
i
MO
j MO
|
1 NO
|
HO j
|
NO |
NO
•erlna #11 mm
1
locitad adjacant to ma
1
nltoring
•12/1
| 0-2 | 8.7
1 10
MO
i 10
MO
1 10
1 trace
10 1
TRACE I
NO
•12/2
| 2-4 | 6.7
10
M0
i 10
m
j NO
| 1.90
NO j
1.40 |
I/O
•12/3
j 4-6 | 8.6
t *-9
10
1 »
i.so
j NO
| TRACE
10 j
6.20 |
KO
•12/4
j " 6-8 | <3.0
TRACE
¦0
j 9.0
1.10
1 10
| 1.80
no i
11.00 |
UO
•12/3
| 8-10 | <3.0
j «
NO
1 10
10
j NO
j NO
10 i
NO |
MO
• 12/6
| 10-12 | 6.0
1 "0
M0
1 10
10
| 10
I 10
a j
NO I
MO
•12/7
| 12-14 j <3.0
1 1,0
MO
j 2.30
MO
i 10
j TRACE
10 i
NO 1
kO
106
-------
aovtuu0/rouu-v«c pwow
ANALYTICAL OATA FtOI SOIL HCMS
rar Tturai
CC/WS Cmvitrttlcni
*««dtp*et Cencarttrtti
sn»
tavl*
loll
(na/kff)
IdmM (cation
0«pth
NaCI
TCC
PCE
MCI
DCE
Tl!
TCt
PCK
OCE
T*l
112/8
1 14-16 1
<5.0
1 »
0
1 * f
0
10
| TtACZ
0 |
2.30 |
NO
112/9
| 16-18 |
<3.0
1 »
0
t 0 i
10
10
[ T KMC
0 |
TftACC |
M0
§12/10
| 18-20 |
<3.0
1 ®
0
j 10 [
0
10
| T1ACC
0 |
1.95 |
KD
112/11
1 1
<3.0
! •
0
i mo |
w
0
j 0
0 |
*> i
M0
112/12
1 22" J* 1
i
<3.0
t »
1
HO
1 TKAQ f
1 1
10
10
1 ma
j
0 |
j
0 j
j
NO
taring *12
1
locate *dj*ca
i
rtt to utractlcn ual
M
1 1
•13/1
1 0-2 I
<23.0
1 »
MO
1 <® 1
M0
MO
1 ®
0 |
TRACE |
0
•13/2
1 2"4 1
<23.0
1 39.00
MP
| 000.00 1
NO
MO
| 22.00
0 |
300.00 j
0
113/3
1 4-4 |
<23.0
1 »
MO
| 84.00 I
10
M0
j 1.60
0 j
18.00 |
NO
113/4
1 6-8 |
<3.0
1 *
10
j MO |
M0
10
j TUCC
0 |
0 i
0
•13/5
1 1
<5.0
1 *>
MO
| 63.00 |
4.30
MO
| TUCZ
0 j
0 j
0
113/6
| 10-12 |
<3.0
1 *>
MO
1 1
NO
0
j TftACC
0 j
27.00 |
0
•13/7
1 12-H )
®
0 |
0 |
W>
113/11
| 20-22 |
<3.0
1 »
NO
i «o i
10
0
i *
0 j
0 |
«0
¦13/12
1 22-24 1
i
<3.0
1 *
1
0
1 M0 j
NO
0
| TtACt
|
0 j
j
0 |
j
UO
taring 013 tmt
i
1 act ltd ad/acant to m
1
rtftorfng «•(
a
l 1
107
-------
gtoMUUB/TUU-VAC PtOOUM
MUirriUl OATA m SOIL KBIMS
POST TtCATWIT
OIL
| TOTAL
Tap
Santo
Soil
P*
i
| OtGAMIC
(«a/i>
tifcntlflcatlon Oaptti
OtEASf
| CAMOI
0CE
TCE
PCE |
mrntrnr
1*1 TJ
ue/g
I 14/fl
NaCI
TXI
¦9/9
" I 8-10 1
7.0*
S040
4600
TRACE |
ND
1 m
0.071
NO |
19/6
| 10-12 |
7.J7
7460
4500
iua j
*
j IB
1.2
NO j
¦9/7
I 12-H |
8.10
1080
3Z30
0.59(1) |
IB
I m
TRACE
« j
¦9/8
j 14-16 |tt
M
iua |
ND
i ®
0.77
® j
¦9/9
| 16-18 |
8.46
1570
3630
TUCt j
ND
I NO
TRACE
NO j
¦9/10
j 18-20 |
7.81
996
2240
TUCZ j
NO
1 ®
IB
IB j
¦9/11
| 20-22 |n
Ml
j Ml
Ml |
•
|
•
J
¦9/12
| 22-24 |l(
III
|M
«* 1
|
•
|
lorlnf *9 h*i
locatad adjacant
to aitraetion wall
#1
¦10/1
1 0-2 |
7.49
908
4660
0.72(1) |
NO
1 NO
NO
NO 1
¦10/2
I 2-4 I
7.32
4040
6350
0.092 |
NO
j NO
0.33
NO j
110/3
1 4-6 |
7.54
5730
10900
0.52(1) |
HO
1 m
TRACE
NO j
¦ 10/4
1 6-8 |
7. S3
6330
5980
Tl-0.60(l|
NO
j NO
NO
NO j
¦10/5
1 8-10 |
7.SI
10700
7610
iua i
NO
i
NO
NO i
110/6
j 10-12 |
6.9S
5580
4760
Tl-0.14(l|
ND
j NO
IB
NO j
¦10/7
1 12*H 1
6.79
512
1200
0.07 |
NO
i "0
NO
NO j
¦10/8
j 14-16 |
7.01
620
6150
TIACZ j
NO
1 *>
TRACE
NO j
¦ 10/9
| 16-18 |
7.64
<165
213
TRACE |
NO
1
NO
IB j
¦10/10
| 18-20 |
8.06
234
960
0.70(1) |
NO
j IB
NO
NO j
¦10/11
| 20-22 ' |
7.26
311
79
0.41(1) j
NO
1 "0
NO
NO |
¦10/12
1 22-24 |
t
6.99
303
111
met j
I
IB
| NO
NO
NO i
1 1
¦orlflQ *10 «M locatad adjacant to aonitorlng
¦all
•4
1
¦11/1
1 0-2 |
7.14
5670
15700
TUCt (
NO
1 NO
NO
NO 1
¦11/2
1 2-4 |
6.12
5000
13500
0.18(B) I
IB
I NO
0.13
NO 1
¦11/3
1 4-6 |
6.S3
3720
4750
o.ii(t) i
IB
1 NO
0.02
NO j
¦11/6
1 6-8 |
6.6S
23S0
2290
rua j
NO
1 NO
NO
NO i
¦11/S
1 8-10 |
6.32
32S0
2380
TRACE |
NO
j NO
NO
NO j
¦11/6
I 10-12 |
6.30
370
1580
TRACE |
NO
1 NO
NO
NO j
¦11/7
1 12-1* 1
6.12
<189
1560
0.28(B) |
NO
1 NO
NO
NO |
¦11/8
| 14-16 |
6.87
<163
650
0.67(B) j
NO
j NO
NO
NO j
¦11/9
| 16-18 j
6.69
<170
154
TRACE |
NO
1 NO
NO
NO j
¦11/10
| 18-20 |
7.46
<189
77
trace |
NO
| NO
NO
NO |
• 111/11
| 20-22 |
7.07
<175
67
0.77(B) |
NO
j NO
NO
NO |
¦11/12
1 22-24 |
1
7.41
<163
90
TRACE j
1
NO
j NO
NO
NO 1
toring ill aa
1
it locatad adjacvti to ac
mi taring
Hit
11
l
¦12/1
| 0-2 |
7.3S
2370
5000
TRACE |
NO
1 NO
0.01
NO |
¦12/2
1 2-4 |
7.07
6330
7200
TRACE |
0.09
j NO
0.013
NO j
¦12ft
1 *-6 I
6.88
10700
10500
1.9 |
NO
i no
0.09
IB |
¦12/4
1 6-8 |
6.22
9530
17500
TRACE I
IB
1
0.10
NO |
¦12/S
1 8-10 |
6.IS
<167-877
3820
TRACE |
IB
1 NO
NO
no i
112/6
| 10-12 |
6.78
<167
373
0.34(B) 1
NO
j NO
NO
NO |
¦12/7
1 12-14 |
7.80
881
199
trace |
NO
1 NO
NO
NO j
108
-------
amtUUB/TUU-MC MOOUN
amlyticm. oat* iw tea to*ms»
WIT TOAnOT
ta*t«
Identification
toil
Daptft
1
1* 1
1
UilTf |
Oil
t
GMMC
v^/g
| TOTM.
| CBGM1C
1 CAIMM
1 uo/g
ItoCl
occ
TCIP
r*r
rar
PCI |
(12/8
14-14 |
4.54 |
904
( 64T0
0.29(9) i
m
1 »
TUCZ
NO [
•12/9
14-18 |
6.13 |
243
j 1000
0.37(9) |
m
1 >©
ND
ND |
¦12/10
18-20 |
6.14 1
<167
j 945
tucz j
m
j NO
m
*> |
Bit/11
20-22 |
6.30 I
<167
I 439
TUCZ j
m
i •
m
KO |
•12/12
22-24 |
i
6.02 |
i
<171
| 498
TUCI |
m
I "0
m
NO |
torlnf #12 mm
1
vealad adjaci
i
¦nt to utrtctleri
J
Mil #4
113/1
0-2 |
4.93 |
4490
| S340
m |
no
1 *
NO
NO |
(11/2
2*4 I
6.3V |
21500
| 10800
Tt-0.27 j
0.09
1 ®
5.9
NO |
•13/3
4-6 |
4.20 1
U200
1 26900
TUCI j
0.46
1 NO
o.jr
KO j
>n/4
6-8 |
6.63 |
21400
i 16500
TUCI |
m
1 **0
0.06
NO j
•13/5
8-10 |
6.62 |
14800
j 11700
0.06(B) j
«
j NC
NO
no i
• 13/6
10-12 |
6.73 |
7040
j 6040
0.06<9) (
no
j NO
«
NO [
•ij/r
12-14 |
4.38 |
<191
| T60
rua |
no
1 M>
NO
NO i
113/8
14-14 |
6.38 |
<186
1 ?ia
rucc |
NO
j NO
NO
NO j
•13/9
16-18 |
6.07 |
725
| 931
m j
NO
i »
ND
KO |
113/10
18-20 [
6.76 |
415
1 444
rucc j
m
1 "0
ND
ND j
«U/H
20-22 (
6.48 |
<149
| 239
0.49(9) j
NO
j ND
ND
NO j
*13/12
22-24 |
1
6.58 |
<167
t 12600
t
NO |
NO
1 110
NO
NO j
lartftf (13 ma
1 1
ecatad adjacmt to aor
Itorlnf
1
Mil *3
109
-------
caa«UUe/TBtM-MC MQOtM
AJUU.TTICM. MTA ANN HIl MMCS
rarr nunwr
| OIL
TOTAL
1
TCLP
Met*
loll
P*
j C
oauuuc
(¦B/t)
IAntif 1
16/6
| 10-12
| 6.97
1
927
j TUd j
IB
j NO
IB
*> l
16/7
| 12-U
|M
in*
Ml
ju j
•
|
•
|
16/S
| U-16
|U
|M
Ml
10.55(f) |
M0
j m
NO
NO j
16/9
1 16-18
| t.,i
j 1660
5490
(0.80(1) [
0
1
TRACE
m j
>6/10
| 18-20
| 6.37
| 603
2930
JTI-1,0(8)J
MO
i *o
NO
IB ]
16/11
| 20-22
| 6.89
1 795
3400
11.50(B) |
IB
1 NO
NO
MO 1
*6/12
I 22-24
| 6.84
| 912
1260
1 t**CE j
MO
j NO
NO
MO j
lorIns » "•
* located adj*c«nt is utrtetlon Mil *2
»T/1
| 0-2
| 6.89
| (680
5410
rua t
NO
1 m
TtACC
NO [
i in
1 2-*
1 7. SO
| 6420
#080
ruct j
NO
j HO
'«ACf
* |
•7/3
1 4-6
| 7.38
| 9470
8410
Tua |
NO
| IB
0.28
no j
•7/*
j 6-8
| 7.20
j 9170
12100
TUCt j
IB
1 1(0
0.44
NO |
•7/5
| 8-10
| 6.87
| 9470
11900
rua |
M0
i no
0.05
NO |
17/6
| 10-12
| 7.DO
| 4340
6180
0.43(1) |
HO
i
0.13
NO j
•7/7
| 12*14
| 6.88
| 887
6790
0.88(1) |
HO
1
0.23
NO |
17/6
| 14-16
| 6.52
| 2420
5180
1.50(1) j
Iff)
j K0
*0
MO |
•7/9
| 16-18
1 6.03
| 680
2710
ma (
NO
1 NO
0.16
ND j
17/10
t 18-20
[ J.71
| 665
1720
0.73(1) |
NO
j NO
rua
NO j
17/11
| 24-22
| 6.SO
1 793
1390
TRACZ |
NO
1 "0
0.15
NO j
•7/12
| 22-24
| 6.86
i «152
378
IRACt |
KD
| MO
NO
NO |
lor frig #7 no
looted «dj*e«nt to utrietten Mil tl
18/1
1 0-2
| 6.66
| 1090
12300
0.80(1) |
M0
1
NO
NO |
18/2
1 2-4
| 6.39
| 13800
25100
0.68(1) |
TftACE
| MO
NO
NO (
18/3
1 4-6
|M
|1R
HI
Ml |
•
|
•
|
18/4
| 6-8
| 6.73
| J400
3740
1.20(B) |
NO
| NO
NO
NO |
U/5
| 8-10
| 6.69
1 ion
3340
1.40(1) [
M0
j NO
NO
ND j
ta/6
| 10-12
| 7.04
1 »
1070
TI-0.81(B)
MO
1 *>
NO
MO |
u/7
| 12-H
| 6.82
| 6140
9770
0.10(1) 1
NO
1 NO
NO
MO j
u/a
) 14-16
) 6.68
| 270
640
0.07 |
MO
j HO
MO
MO ]
w/9
| 16-18
| 6.82
I
395
0.05 1
M0
1 110
TRAtt
NO (
U/10
| 18-20
| 6.93
| 597
363
NO I
NO
1 NO
ma
NO j
18/11
| 20-22
| 6.94
1100
1310
TIACC 1
MO
[ NO
MO
NO j
M/12
| 22-24
| 7.31
i «H7
86
rua |
NO
1 ^
NO
NO |
loft HQ K
-------
Pretreatment
Vacuum monitoring wells were constructed at two discrete depths
(shallow, deep) in each of the four boreholes. These wells
were completed with 2-inch PVC casing and not 1/4-inch Teflon
as had been mentioned in the QA project plan.
Shallow soil gas samples were collected from vacuum monitoring
wells and hand driven stainless steel tubes. Punch bar holes
were not used for sample collection because the stainless steel
tubes proved to be a better sampling technique.
¦ Commissioning
Commissioning of each well required less than the expected
eight hours. Terra-Vac representatives conducted this test
until trends in flow rates and gas concentrations were
established. In-line flow meters were not provided. Flows
were measured with a large rotoraeter that was moved from well
to well.
o Active Treatment
The process gas sampling schedule was revised as follows:
Location
Week #1
Remainder of program
EW2S, EW1D
2/day
1/day
EU2S, EW2D
EW3S, EW3D
EW4S, EW4D
1/day
every other day
VW1S, VW1D
VW2S, VW2D
VW3S, VW3D
VW4S, WAD
1/day
every other day
Separator inlet
~Primary carbon out
Secondary carbon out
1/day 1/week
~Primary carbon was actually monitored more closely in order to detect
breakthrough.
Ill
-------
ANALYTICAL METHODS AND CALIBRATION
EH
Soil pH was determined without deviation from the QAPP.
Oil and Grease
Oil and grease was determined without deviation from the QAPP.
IOC
TOC was determined without deviation from the QAPP, Samples from the
Pretreatment phase were analyzed at meeaTRACE Laboratories due to an
instrument malfunction at the Alliance Laboratory. All other TOC samples were
analyzed at Alliance.
Soil and Process Gas
Soil and process gases were analyzed in accordance with the procedures
provided in Appendix H. Reported concentrations of TDE and TCE were
quantified using GC/FID because the levels generally exceeded the calibration
range of the ECD. FID calibration curves were generated using a linear
regression analysis with the y-in';ercept forced through zero. Quantitation of
TRI and PCE was performed using GC/ECD. Calibration curves were analyzed
using a quadratic fit equation due to the non-linear response typical of the
detector.
Activated Carbon
Analysis of carbon canister samples was performed in accordance with
Section 5.2.7 of the QAPP. A 1.5 to 2.0 gram sample of carbon was desorbed
with 10 mL of carbon disulfide. GC/FID analysis was conducted using a
Hewlett-Packard 5890 gas chromatograph.
112
-------
Separator Liquid
Separator liquid was analyzed by purge and trap GC/MS in place of GC/HECD
as stated in the QAPP due to instrument malfunctions. Calibration and
analysis were in accordance with SW 846 Method 8240.
Soil
Soil samples were dispersed in methanol and analyzed by purge and trap
GC/MS using the procedures detailed in the QAPP. It was anticipated that the
low-level purge and trap method described in Method 8240 would be utilized if
headspace concentrations for mid and post-treatment samples were in the 3 to 5
ppm range. This method which employs a soil impinger for the direct analysis
of a 5 gram sample was not implemented because the samples contained
significant concentrations of oily material which would have caused matrix
interferences.
TCLP Leachates
Generation and analysis of TCLP leachates was performed as detailed in
the QAPP. One deviation in the procedure was the use of 40 mL VOA vials to
collect ZHE extracts in place of Tedlar bags or syringes as listed in Section
5.2.2 of the QAPP. An additional deviation from the holding time for leachate
generation is discussed later in this section.
DATA REDUCTION VALIDATION AND REPORTING
Data reduction, validation, and reporting procedures described in
Section 6 of the QAPP were followed during this program. The only data
reduction change made during the course of the program was in the calculation
of the onsite GC calibration curves.
While onsite, the analyst used a standard linear regression with a finite
Y-intercept to calculate the calibration curves for both detectors (ECD and
FID). After reducing the data it became apparent that these curves did not
provide the best fit to use for calculating the POHC concentrations.
113
-------
The FID data was revised by recalculating the calibration curves using a
linear regression with a Y-intercept forced through zero. Forcing the
intercept through zero provided a more reliable value for the lower POHC
concentrations without altering the higher concentrations.
Due to the non-linearity of the ECD at higher concentrations, the
calibration curve was calculated using the following quadratic fit equation:
Y - Slope 1 (X) + Slope 2 (X2)
where Y - Concentration and X - Peak Area
INTERNAL QUALITY CONTROL CHECKS
Internal QC procedures for Data Collection, Sampling and Analysis,
described in Section 7 of the QAPP were followed during the course of the
program.
Initially Terra-Vac was to be responsible for taking all process
operation readings and transfer the data to Alliance onsite personnel. Since
Alliance was onsite every day of the program and Terra-Vac did not plan ro be,
Alliance personnel decided to use the Terra-Vac supplied instruments and take
the measurements themselves. Flow rate measurements were taken utilizing a
rotometer manufactured by Blue-White Industries, not a Dwyer stainless steel
pitot tube as originally stated. Vacuum readings were taken at each well head
and the separator inlet with a guage.
The precision of the flow rate and pressure measurements were never
assessed by Terra-Vac as indicated in the QAPP. The system was not designed
to enable a redundant measurement as specified. Also, the summation of flows
from each well head could not be compared to a measurement at the separator
inlet because a measurement port was not made available. From our
observation, Terra-Vac did not take any steps as outlined above to assure the
quality of the measurements from their instruments.
114
-------
PERFORMANCE AND SYSTEM AUDITS
Numerous audits were conducted by both Alliance staff and external
auditors during the course of this program. The full Audit Reports are
available for review from the project file. A brief summary of the audit
results follows:
Internal Audits
A system audit was conducted by the Alliance QA Officer in December 1987
during the pretreatment period of the program. The audit focused on the
sampling and onsite analysis portions of the pretreatment period which
included all activities before commissioning and start-up of the vacuum
extraction unit. During the inspection of the onsite GC/ECD analysis it was
noted that the analyst was getting very high TCE readings which required
diluting the sample 200X and more to get quantifiable values. Discussions
arose about bringing up a GC equipped with an FID to analyze the high
concentration samples. This was done the next day and a modified onsite
analytical scheme for process and soil gas was prepared. A review of the
chain-of-custody forms showed that the number of Split Spoon, Shelby Tube, and
Soil Gas samples collected were very close to what was stated in the QA Plan
and that the percent completeness of sample collection ran from 90-100 percent
In January, the Alliance QA Officer conducted a review of the
chain-of-custody forms for samples collected during the commissioning/start-up
period of the program. Again the samples collected were compared to what was
stated in the QA Plan. The review showed that the number of samples collected
from the Process Gas Streams, Separator Drain, and Extraction Well Gas were
the same as or more than what was stated in the QA Plan with percent
completeness ranging from 100-128 percent.
External Audits
A series of three external audits were conducted on Alliance's work
during the course of the program. The first was a field audit conducted by
S-Cubed during January 1988. The audit was rated "Acceptable with
115
-------
Qualifications" which meant that Che minimum criteria was satisfied and good
data quality is likely, however some minor deficiencies were revealed. The
deficiencies were items such as failure of the analyst to initial
chromatograms, not monitoring the refrigerator temperature which was used to
store stock GC standards and failure to record oven temperature used for
preparation of sampling equipment and calibration standards. All of these
items were discussed with the field crew and were included in the routine
operation from then on.
During February 1988, a Technical System Review was conducted at Alliance
Technologies laboratory in Bedford, MA by PEI Associates, Inc. The review was
conducted to determine the status of TCLP extraction and subsequent analysis
of the ZHE extract of 103 pretreatment samples for the 5 POHCs. Earlier,
Alliance notified Enviresponse that the holding times for these analyses had
been exceeded. The samples were originally scheduled to be analyzed by
metaTRACE, Inc., however, when Alliance discovered that the 14 day holding
time for extraction was not met, they recalled the samples to continue the
extraction and analyses on the remaining samples at Alliances lab. Although
no concerns were noted during the audit, the concern for exceeding the holding
times for the TCLP extraction still existed and as a result the audit rating
was "Not Acceptable". The action that was recommended and subsequently taken
by Alliance was that the TCLP data be flagged noting the exceedance of holding
times and a stability study was to be conducted on mid-treatment samples.
The last external audit was conducted during March 1988 by PEI
Associates, Inc. This Technical System Review focused on the analysis of
raid-treatment samples by Alliance Technologies. The analysis being performed
by Alliance were pH, oil and grease, total organic carbon, headspace
volatiles, purge and trap GC/MS, and TCLP. The auditor noted that the
schedule appeared adequate to meet the listed holding time requirements. The
audit was given a "Satisfactory" rating. No concerns were noted and the
auditor stated that "During the audit there appeared to be a very
conscientious effort to track and schedule these analyses to ensure that no
oversight occurred".
116
-------
CALCULATION OF DATA QUALITY INDICATORS
Sampling and analytical precision was reported in terms of relative
percent difference using the following equation:
RPD -
Value 1 - Value 2
Arithmetic mean of
values 1 and 2
* 100
Accuracy assessments were based on the results of analyses of EPA
Standard Reference Materials and of matrix spiked samples and reported in
terms of percent recovery which was calculated as shown below:
Percent Recovery - 100 * Measured Value
J True Value
The following formula was used to estimate completeness:
C - 100 * ^
T
where C - Percent completeness,
V - Number of measurements judged valid, and
T - Total number of measurements.
CORRECTIVE ACTION
TCLP Sample Stability Study
Between 1 December and 15 December, 1987, Alliance field crews collected
pretreatment soil samples of TCLP analyses. During this time period, a total
of 103 samples were shipped to metaTRACE, Inc., Alliance's subcontract
laboratory. As per the protocol specified in the QAPP, analysis for TCLP was
to be conducted as described in Federal Register, Volume 51, No. 216,
November 7, 1986 (pp. 40643-40653). This procedure requires that samples be
extracted within 14 days of collection and analyzed within 14 days of
generating the extract. Based on this requirement, all samples should have
been extracted and analyzed by approximately 12 January 1988.
117
-------
During the above time period, Alliance was in concact with metaTRACE on
numerous occasions and had no reason to believe that analysis was not
proceeding as scheduled. In fact, on 12 January 1988, Alliance was informed
by metaTRACE that the chemical analysis for all 103 TCLP samples was complete
and that data would be submitted to Alliance by 22 January 1988. When data
did not arrive as promised, further inquiries led to the understanding on 27
January that only 39 samples had been analyzed. Apparently, metaTRACE was
under the erroneous assumption that there was no holding time up to extraction
and that the only holding time that applied was for analysis within 14 days
after extraction. In fact, this was the case up until the TCLP procedure was
revised on November 7, 1986. metaTRACE's delay in extracting the samples was
due to a desire on their part to reserve a block of mass spectrometer time to
allow for all samples to be analyzed within the 14 day window after
extraction. metaTRACE's reporting to Alliance that all samples had been
analyzed was described as an internal miscommunication within metaTRACE which
led their project manager to believe that all samples had been analyzed and to
subsequently report this to Alliance.
Alliance's response to the news that only 39 TCLP samples had been
analyzed was to immediately gain control of the samples and thereby initiate
steps to regain control of the situation as a whole, We promptly instructed
metaTRACE to return all TCLP samples and took immediate steps to purchase the
necessary equipment to conduct the ZHE extraction procedure for TCLP.
Sixty-four unanalyzed samples arrived at Alliance on 28 January 1988. The
remaining 39 samples were not received until 4 February 1988.
On Tuesday, 9 February, Alliance received a formal data package from
metaTRACE accounting for only 20 samples. Communications with metaTRACE up to
this point indicated that data for 39 analyses were forthcoming. On Thursday,
11 February, mecaTF'.^E confirmed that only 22 analyses had been conducted (20
samples and two matrix spikes). Apparently, 39 samples had been extracted but
at the time Alliance recalled the samples from metaTRACE, only 20 had actually
been analyzed. Analysis of the remaining 19 extracts was cancelled. In
addition, extraction dates reported in the metaTRACE data package showed that
none of the samples had been analyzed within the 14 day holding time. At this
point, Alliance made the decision to reanalyze all samples that had been
118
-------
analyzed by metaTRACE (where adequate sample remained) and to proceed with the
analyses of all remaining samples.
Initially, it was Alliances intent to analyze a subset of samples where
measureable TCLP concentrations were expected and to compare this data with
metaTRACE data as a measure of negative holding time effects. Insufficient
data was obtained from the initial study to make a conclusive assessment of
the effect of measured TCLP holding times. It was therefore Alliance's
recommendations to conduct a TCLP stability study to assess the effect. This
study involved the collection of replicate samples during the Midtreatraent
Phase and successively analyzing three samples over a time period that covers
the maximum time interval that Pretreatment TCLP samples were held.
The Stability Study involved collecting three sets of seven replicate
samples during the midtreatment phases. Separate boreholes were advanced
specifically for the purpose of collecting these samples All samples were
prescreened with an OVA hydrocarbon analyzer to predict the presence of
organics in the soil.
Soil samples submitted for the holding time study were extracted via the
TCLP leaching procedure within one week of collection for the "time zero"
concentration, and subsequently at 3, 5, 7, 9, 10, and 12 weeks after
collection. The "time zero" samples were prepared and analyzed in duplicate
Table 4-24 presents the concentrations of trichloroethylene found in the
leachates generated during this study. Review of the data indicates that
there was significant loss of trichloroethylene in Borings Bl/1 and Bl/2
within three weeks after collection. The mean "time zero" concentration for
Bl/1 and Bl/2 was 4.0 mg/L. The average concentration for these two borings
between weeks 3 and 12 (exclusive of the outlier in Bl/2 at week 10) was
0.18 mg/L (plus or minus 54 percent) Boring B5/8 did not evidence a
sufficient "time zero" concentration to provide valid data.
The data indicates that the operative mechanism of volatile losses
reaches a plateau at a leachate concentration equivalent to approximately
0.2 mg/L. No conclusions concerning the identity of this mechanism (microbial
degradation, volatilization, etc) can be drawn because this study was designed
only to quantify the occurrence of volatile loss with time.
119
-------
TABLE U-2U. RESULTS OF TCLP HOLDING TIME STUDY
Trichloroethylene Concentration (mg/L)
Weeks After Boring-B5/8 Boring-Bl/1 Boring-Bl/2
0
0.072 (a)
5.3 (a)
CO
•
3
ND
0.30
0.051
5
0.38
0.27
0.26
7
ND
0.33
0.20
9
ND
0.12
0.11
10
ND
0.075
0.84
12
NA
0. 067
0.17
(a) Reported result is mean of duplicate determinations.
(b) Value rejected as an outlier using Dixon's Test (see text).
ND= Not detected above the quantitation limit of 0.05 mg/L.
NA= Not analyzed.
120
-------
It can be concluded that the TCLP data from the Pretreatment Phase of
this program were negatively impacted by the generation of leachates after
expiration of the two week holding time. Reported concentrations should be
qualified as minimum values, which, in the absence of any other contributing
factors except holding time, could be diminished by a factor of 100 or more.
Neither of the two valid sets of samples (Bl/1 and 31/2) evidenced
reduction in concentration below approximately 0.2 mg/L. Consequently, it
could reasonably be assumed that any program samples reported as "ND" (Not
Detected below 0.05 mg/L) would not have contained measureable concentrations
in the leachate even if the holding times had not been exceeded. In order to
verify this assumption, a comparison of Pretreatment purge-and-trap data with
TCLP data was performed. Although the extraction efficiency of the TCLP
leachate generation is unknown, there should be some correlation between
concentrations of 100 to 400 mg/Kg in soil with measurable concentrations in
leachates. Comparison of data from extraction Well A indicates a lack of
correlation, thus indicating that factors other than holding times impacted
the integrity of the Pretreatment TCLP samples. These factors probably
include sample storage with varying amounts of headspace and repeated opening
of sample containers.
QUALITY ASSURANCE REPORTS
All pertinent quality control data and activities have been summarized in
this Final Report.
121
-------
APPENDICES
APPENDIX A - SOIL BORINGS
APPENDIX B - DRILLERS LOGS
APPENDIX C - ENGINEERING BORINGS
APPENDIX D - SHALLOW SOIL GAS
APPENDIX E - PROCESS AND SOIL GAS
APPENDIX F - PROCESS PARAMETERS
APPENDIX G - FLOW RATES AND FLUX RATES
APPENDIX H - PROCESS AND SOIL GAS ANALYTICAL SOP's
122
-------
APPENDICES SAMPLE CODES
Soil Borings--sample codes were assigned based on the location of sample
collection. Pretreatment borings were labeled according to which
treatment well was to be constructed in the borehole. Therefore, these
samples are labeled as EWS (extraction well soils) or MWS (monitoring
well soils). Mid and post treatment borings (B) were labelled
sequentially as they were drilled. Engineering borings (EB) are simply
the four locations where Shelby tube samples were collected.
MWSx/n - Monitoring Well x - 1, 2, 3, 4
EWSx/n - Extraction Well n = 1-12, represents
EBx/n - Engineering Boring 2 ft. intervals
By/n - Boring y - 1-4, 6-13
Soil and Process Gas--sample codes were assigned based on sample location
along the system. During the first week of active treatment, samples
were collected twice per day at extraction Well #1 (shallow and deep)
resulting in the following codes: EWGIS/1; EWGIS/2; EWGID/1; and
EWGID/2. Generally, all other points were sampled on their scheduled
sample day once per day (the exception being the primary carbon which on
occassion was sampled more than once per day). During pre, mid, and post
treatment punch bar (PB) samples were collected around extraction Well #1
to characterize the shallow soil vapor concentration.
EWGxS/1
VMWGxS/1
EWGxD/1
VMWGxD/1
PBn
PG Sepln
PG CarbOut -
PG Second
PG Stout
Extraction Wells x
Vacuum Monitoring Wells n
Extraction Wells S
Vacuum Monitoring Wells D
Punch Bar
Process gas, separator inlet
Process gas, primary carbon outlet
Process gas, secondary carbon outlet
Process gas, stack outlet
1. 2, 3, 4
1-12
shallow
deep
123
-------
3. Background and QA samples - codes were assigned based on location of
sample collection:
Background System Samples Collected Before Operations:
BKG 1 Carb - primary carbon
BKG 2 Carb - secondary carbon
BKG Sepln - separator inlet
BKG Sepout - separator outlet
BKG Vac Out - stack outlet
QA Sampler
GTV-BL -
GTVFBB -
Fieldblank
FBB -
Field biased blanks - sample consisted of ambient air
drawn into a syringe from a point onsite generally in the
area of the extraction wells.
GLamb - Groveland onsite laboratory ambient, sample collected
inside the laboratory
Tripblank - Sample of pure nitrogen collected in the laboratory before
field sample collection. This sample was then carried
into the field and handled in the same manner as the
process samples collected that day.
124
-------
APPENDIX A
SOIL BORINGS
125
-------
SOIL BORINGS
The various quantitation limits for GC/MS purge and trap, TCLP extracts
and GC soil headspace, respectively, for pre, mid, and post treatment are as
follows:
GC/MS Purge and Trap
The quantitation limit varies depending on the individual sample weight
and moisture content. The typical range observed for the three phases of the
program are:
Pretreatment 0.94-2.4 mg/kg
Hidtreatment 12-2 0 mg/kg
Post treatment 1.1-1.6 mg/kg
GC/MS TCLP Extracts
The Quantitation limit observed was the same for all three phases of the
program.
Pretreatment 0.05 mg/L
Hidtreatment 0.05 mg/L
Post treatment 0.05 mg/L
-------
Oil and Grease
The quancitation limit varies with individual weight and moisture
content. Values labeled as "less than" are at or below the quantitation limit.
The following codes are used on these tables:
ND - Not detected.
TRACE - Detected below quantification limit.
NR - No recovery; no samples collected or limited samples collected.
(B) - Suspected laboratory or field contamination.
127
-------
APPENDIX B
DRILLERS LOGS
128
-------
AK ALLIANCE
"e:---5c;.es Zz — £. ci
prcje:- /sjluui
~; n
TEST SORING LOG
90RING NO
I SHEE 7 NC I
CL'Ent Lnviresponse
ijce no
SORING CCVTflcCTOP NE Bonn"
lELEVATlOfc
GnOUNO Wi"[3
« 1 C-S
i S-vj=> i CC-E 1
-JS£ IOATE STiP?i3
oi*E « -me i wrp *_ « s:r-is
t —y o c »
i » i
10-. a. 17-10-37
1 1 >
i Cli '
i i i
' 0 P i L L £ 3 T Lnroonter
1 1 1
M *7 1
1 t 1
llNSPSCTOR K Scullv
u;e co'c* ?'ooo' w/
trice in*oll
Ccn«nve Consistency
0*4 Soft JO +• Hofg
C'Q f
8-15 Stiff
15-30 v-Snff
SUmwapv
Eofth Boring
Roc* Cormg __
Somgits ,
HOLE NO
te«H Mtu - t*it mov
129
-------
AK ALLIANCE
EW I'2
» i-S i sOsING _CG
z v - IN G NO 2
Ioojje;- 7531002
»s-E" *»z i or 1 i
I CLIENT Enviresponse
«JCS •
eofimc CCN""«*C70f NE Borinr.
lE-rsi'cs i
G-OU^ C *-"i:
- : i_». = ;
: -.Er .
::-r i -ime • :_ r:cr:s
— c:
•
• p»s s-i: i?-7-«7 .
i >
z -
T0'--!- r Camencer i
i i
* "
i i
HN£=£:-?= k. Scullv 1
i i >
i •
i
: 1 jr I
15
20;
25;
Sc-?.*
It: -%
iL
i i
0-2
> SS
2
2-4
5
3
5
r
f.
i
i 3
4-6
6
4
?
t
3
1 4 1
6-8 '
' 4
4
3
1 '
!
S
8-10
7
Q
1
\Z
1 6 1
10-12
13
1-'.
1 7
1
l 7
12-14
28
12
13
I
8
1 8
1j-16
3
7
7
1
10
i 9 ¦
16-18
10
10
1 1
16
in '
1R-70
?n
IP
1 3
i
in
11 ¦
1 3
14
IS
¦
2i
12 '
22-24 SS 18
14
14
?n
s:. r: -¦«- ci-s | <
•« -?f :cc- ;*ccc"0* ~»:>t c* i
t . 1;. ::: «v?e ;r^c,,rc*.
*'*• ~"-ttint : OVA
7 '
M stiff brn mcd sand v/
some organic soil 6 wood
chips
Soft It brn fine sand
VI stiff dk brn fine sand
v/ rock frngs
Soft d/ brn - It brn fine
sand - stiff dk brn sand,
soft It brn fine sand
V stiff It brn fine sand
15'
18'
Cla\ Stiff j:r<\ fcrccn silt\ clay
Sand
f.
Gravel
V stiff mcd-coarse brn sand
w/ rock fraj;s
V stiff It brn mod sand
BOB P 24' No Water
18
' 12
H
J_L
24
18
IU
2U
U
JJl
CSOUNO SURFACE TO
Sqmpit Type
O'Dry C* Cored W«V*oj**d
U°tOfi&stur&fd PijtdA
TPtTf^jPif AfAuQtr ViVoncTtlf
UT»Unflijtureed ThnwOit
?9wm >iiii . i*ir mo*
cs:c
P'030'ti?^$ U$«C
t'oct O'C'0%
KM.f : :2C°/c
»o«r 2C'c25°/<
o*d 35»c5C%
CASING Thin
MOowt I 30 foiio^2"OD So^D'tf
Cywouess Density
0 <0 looif
>0 30 Med Dense
30 tO Oenie
50 + Vt»y Omtt
Cc*e*wf Consistency
0-4 ScM 30*Hord
«-e m/Snfr
0-15 Shff
15-30 V*Si»H
SUMVflQy
Ec»h Bor^g __
Roci Cofmfl
SOT^Ifl
|HOLE NO
130
-------
A.K ALLIANCE
~ZZ~ = Or. INC- LjC-
/W4. '«"«;« :: *
rw 03
EC=.IN'S NO
poCJE" 75JI002
s^rr* » or i i
bnviresponse
-cs nc i
fiOflJwc CCn"*s*»C"CP NE Borinr
f.rv.-.CK ,
c-.* z:
-; "JSC
;i-c r--=-s: W-M-U; i
Di'C ' ""IMC * : s
—V S f
•
:-"i r ¦> s-e: 12-B-8; i
i
5 -
I. Carpenter i
1 '
1 <* • 1 »
IIN£er;-oc K.. Scullv I
1 1
1 ' 1 1 1
i
JT |
;:»ty
8 6j>
I
-» I c'
f'o* - *. L:-r
sr. ::•
-: »t *: urt :o»c* 7'cccio- c'
f ::: '»;*(.-r*»C"'Of. *>r*c ' i
• ; I':-1. : ~ : r': OVAi-*-i-»
10:
15'
20;
25 :
J I
_LL
12
0-2
I SS ' 1 1
2-4
U-b
6-8
8-10
10-12
12r14-
16-18
18-20
20-22
22-2''
2 '
16
Sb ''1
17
2H 2U
28 20
6d
1 3
Tt,
_LS_
2H
15
13
18
29
24
29
hS
1150
15*
18'
Silti
cla\
Sand
' 4
Gravel
M stiff brn mod sand w/ some | 50' 1&
dk organic soil j
Sft ncd brn sand u/ some
grave I
II stiff It brn sand
Soft It brn fine sand, trace
silt, v/ some med-coarse
sand
V stiff It brn sand
"1 stiff It brn mod sand
0
I
•B.O.B. I? 23.5 t.o Water
10
\ stiff grn-brn silty clay
v/ sand stringer
V <;tiff ncd "sand v>/ rock
frafs & gravel
V stiff med-coarse brn sand
v/ sone gravel
21
IT
IT
18
' 16
20
TT
"TtT
TT
~nr
GttOUHO SURFACE TO
SQffipIt Typt
0*0fy C'Ccrtd Wi*os**d
U°*Und»*twrDefl FS$ion
TPtT#*»Pit fliAuQtr ViVoneTiii
UT»UnOfjlurced Thm»oil
tOWM Ml|| - |A»f MOV
•wSS3
Pr O3O'»i0M L»*«C
t'oce O'cGVo
h H»
C :2Z9c
io^e 2C'c25-/c
c«d J5'e5C%
CASING Tri-N
i40»5W»«30 foil01 2"0D Sonpicr
Co^fi'Oiiess Oenj.ty
0 '0 Loose
iQ 30 Med Oentc
30-50 Oe«jt
50 ~ Very Otnte
Ce*f1ive ContiSttncy
0-* Sc'f 30+MQfti
4-8 M/Shff
0-15 St.ff
15-30 V-Shlf
SUMMAPy
Eorih Bor _
ffocfc Corcftg __
SoTijits
HOLE NO
131
Reproduced from
b*itiv«ll«bW copy.
-------
Asl alliance
E* #4
j"57 EOF.IKG j
/VtfC
IE O^IN'G NO ,
"«ZJ Z" 7531002
• nc r r*r i
C»fCsT Er.vl response
¦-?? [
eomwc eSKTSi£-0« KK IVorinr
i
€50t»NC •"""
C-T 5-ta,c CT-
: -toss .st-! r--*-:: 12-9-fl; "
3i~E ' ~ i i £_ - r ~
•jt: -t
1 '
|
1
• ^ ;< -
I* : i j ¥/'
S =:
«:. i-'.Cv
-:u:fco"0 jceo'ie* ^ c
t „ » ;
\ /*
[ —r . " -
_ .
¦ •
"
OV/i ..
—
'
- „
C fy/C. •
" 1 Ifi'"' C'C»"
• - *
L
0-2'
1 ss
' 3
u
6 ¦
SoXc brn ncd sand w/ some
10
¦ J5
,
11 '
gravel
7
2-4
3
2
2 '
S
Soft It brn fine sand
100
18
'
A
.1
M stiff It brn fine sand v/
L J
n
some discoloration
5
3
i-C,
5
5
0 »
d
Soft d^ brn fine sand
5U0
B
j i
Ji stiff brn <;nnd
f,
fi-fi
3
J
3
V stiff It brn mcd sand
500
15
1
V stiff brn fine sand v/
i
10
5
8-10
0
y
.soiro silt 1000
18
r" '
6 •
10-12
li
n
20 •
5U0
IB
27
7
12-14
19
17
15
• 30L)
21
15
IS
8
14-16
9
7
6
30
20
1
S
'1 stiff gm-brn clav v/ some
1
Q
ir,-is
J
5
6 '
silt
15
24
(
& ;
Soft uct clny
f
10
18-20
J
3
» {
0
24
*Uj
4 1
¦
U
20-22
3 1
6
ih ' j
Sand ¦
V stiff brn mod-coarsc sand
10
23
17 !
J. '
i S'avcl
1
1?
??-?/.
1ft
V*
*0 ' I
Cr.ivo!
10'
U
?¦> 1
?V 1
¦
I
'
1
i
1
1
«
I
GROUND SUftWE TO
So^OK Typt
DiDrjr C* Cored
U° * O^cituraed Prjton
TP*T*MPif V»VoneTe*t
U?*U*ft»Vjf teg TttelW«ll
io*h mmi - r*ir not
u5;C
P'?93'I>"5"1 UMC
>*ece 0 : 0%
* - c-"* c
2Cc;sv-
is-tscv,
V«ip
JG1-!*
0"C
CASr\C T~IN
icqo #t ¦ 30 fo"o^ 2"0 0 SenvHr
Csto^i'tu
0 '0 (.o^ie
»0*3Q V«< D«am
30-50 Oen st
50 ~ Very Oenit
Centime Co*ns»«ney
Q-4 Sc'r JO+Ho'd
6*6 v/Sirr f
B->3 S »H
13-30 V-StiH
SUW^gy
Eo"h Bor<*q __
9«* Corntg __
SoTattt
| HOLE
NO
132
-------
AK ALLIANCE
TEST EC r INC- LDC-
MW P\
EO^INS NO i
Io^cje:- 7 S11002
s-rr" s: • 1
C^iCs* Enviresponse
EORinc CCN"«*.;TCrP Nt Borin«*
IC.E*a-io»* 1
G%OU*Z tfc.-rs
• cr
r-- = -:: 12- 1-4j>
0-~ 7 , -lyr i * T = Z _ SCe£Iv
—s, - -
- ¦¦¦•. :-e: n-7-R7 ,
' - - O® r. Carocntcr i
i i •
. » • > 1
hns=e:-o= k. Scullv i
I 1 ' r--. 1 » l Jl |
ic-:'
I
It: -i I c*
F-c---: L:—••
0-2'
' SS ' 1 '
2-4
'.-6
6-8
ior
0-10
ic-iz
1?-14
15.
is-ir>
16-18
20 r
10
1H-20
11 L
JSL22-
_u_
7
25;
"T?i nr
11
_L5_
_L2_
2 4-26
SE 11 L
I.T
1 J
I - 1
13
\fy
26
IT
1
A1 LL
_U_
20
:t :oir* -'ccc>or "»:>~ c'
¦ ',ri "*0 :
i if — c-r f.
OVA'-
Siitv
Sand
Soft dl. brn sijt & fine
sand *>/ some or^anics
Stiff I "ltd stiff brn-^rn clay
14'
Sand ' S _ l. f f It br-i fine sand v/
E i sunt1 cia\, some f.ravel
|Cravel 'Stiff brn nc.d sand w/ some
j gravel
20' r
Cla\ .Stiff crev-f.rcen cla\
j Sand ' Brn ncd sand
! ! Brn f 1 Tie sand
20
~nr
20
To"
~ZU~
"Ta"
iz
l«
B.O.B. J 26' No Water
G30UND SOSsAC£ TO
SOTQIt Typf
0*0/y c. Corf (I
CfO* PrtlOrt
TPiTt^jPif ViVon* T|»t
JTiUndijtufted Tfcn*«il
roww piiii • i*tt mo*
P'033"
T'OC*
Vttf
»9lf
• Z'\ j\tc
O'cC V©
?c*£:;v.
:vc
C&S'NS Tf?«
«40i5Wfijo fo"o^2"*0 0 Sa^Dijr
C^fsio^tesi Deputy
0 rO Loom
'? SO wee Densi
10'to OtfMt
50* Vrry Oense
Cc>ev
-------
rK.
ALLIANCE
jTlST rCF.INC- LC*3
*s:--oc;fS Zz :: i ~~
MW ''2
Ir 0DING NC !
°°ZjZZ"
7531002
i s-;r~ *»c i er 1 •
C.IES-
Lnvircsponse
¦JCS h: >
50PINC CCn"
Sf Borinp
i r - £ v —~ f w ^ ,
G 5 0U^» w * —:
=
C-! s-*r
'wi t S--* .. ]?.R.R^
1 2-" r t
• vkiT: z.~ 51= r"*>
—» s r
• l f**» io-q-a7 i
i
•
r -
'COJ-.r2 T. Carnenter
1
i
>* ¦*
•
MNS»t:-0C K Scullv 1
I J1
U-r
-:t :oip , 5'cefci -,o« c'
• :: r •,rc r-ic-'-c-. nc :
jp:— c-:''¦
I... i.-
Jhl
ss ' l
10
15
20'
i
u
*> 1 •'-z. '
S I,
i
Ul
Js
1
J 3 3 •
1
J
00
1
1 4 7
a
5 8-10
13 19 33
17
1 ft in-i2
12 19 21
3 '
7 12-14
10 12 i:
1 1
3 14-16
4 7 9
9
9 16-18
19 30 21
ny I
10 18-20
16 19 2 7
1
33
11 20-22
27 14 15
.
15
n •>?-?4 ss n i.? n
25-
|Soft It brn sand ' 0
| Tied fine sand v/ some gravel(
I somr orr.niic soil 1300
Soft brn f mo sand I
M-V stiff brn fine sand
Stiff It brn fine sand
Stiff dl. brn fine sand
15
T
1600
auu
15U0
14' L
! I\ stiff !_re\-brn clov w/
. LJ3\ , ,,_
some slit
9 U
17 *
j Sand
' L
lC ravel
V stiff brn med-coarse sand
u/ sore gravel
[V stiff It brn L brn mcd
sane!
400
IT
15
¦ 15
~TT
TT
15
HE
he
TT
"7U"
HE
~nr
BOB n 24' No Water
j
GROUND $U*PACE TO .
SSTQIt Typ»
Oj Dry C»C0'ed *x*cs*<»d
U°* OnO«4turDfC Ptjton
TPxTf^jPif A 6gQ?f VsVoneTei*
UTiU^dijlurSed T«hi«o»
IOVM Mill - (Alt HO*
PrCDC"
t^OCf
v.f
O^fl
<:m ju:
0 c C :/0
; :2:\
CAS'SC ^-rN
t40cwfi30 fo"oi2'"C0 So^D'f
C3*>M*oi'ess Oeo^'y
O '0 Loos*
O 30 ^*ec 0en*«
30 SO Denie
50 ~ Ve»y 0«n»e
Cc»*iwf Cortsi$*»r»cy
0*4 Sc't 30 * no'fl
«i-8 M/Shff
e-is strif
15-30 V-SMf
SUMVAPv
Eo'th 3or«^ _
^0C> Coring
Sar^if i
HOLE NO
134
Reproduced from
best avaltablecopY
-------
/X ALLIANCE
/iVi " £
IrCRINc ro
i
11
7531002
?»££" sC ' -1 i
IIST
fcnv 1 rcspnrnt.'
eOHNQ Crs-»-:-C» ?:i. Mnrlnc
I
G =
OUNI »
,-r:
i
-t • -l"C »i-E«
**»
• V
—* i r
• • s ?-l: i?-11-R7"
i
% - I. L.irp«»nfpr .
1
» "" •
HsSDr;-Ce K> Sculls
¦
1
1
Ti
1 JT
:
ie-: • 1"
|
••• 1 " *
' -
• * J'ty
i **yf
. t
'is ::
SI . "*.*ir Zim 7'- | ^ y
L-- : • > -: -r» :cc :*ccc'
U
6-8
U <
t.
>4
ion
24
!
•
1U
s
s-in
(,
*
1(10
14
u
i
6
10-1 2
1
<1
0
- !.o 1 i cover* - 0
0
0
7
l?-l u
1
n
n i/.'
Solc brn slit
16
f
I
I
15*
8
li-10
1
i»
e
; Vet
J Clnv
1
n »
uct rrn-bm siltv cla> 5y
14
I
9
16-18
1
(i
I)
I
u •
i
100
10
i
IU
18-20
1
1
1 -o'
tui
i
100
12
i
11
20-22
1
o
1
' Sand
Silt, some gravel 4 rock
i
1
i 4
fra=s iso
ft
i
12
??-?i SS 1
7
? •
! Cr.ivcl
0»f Clfl - lAlt MO*
Pc
e-3 :5-:J3%
C4J.SS r«tr«
i<0':*f<30 'oi'flnJ'OO
5 '0 Looif
>3-33 v«e C*M»
50-50 Don
JC ~ Vfr, Ot>nt
Ccvi,.»
0-< So"» 30*«a»«
<¦9 •'/Si.ff
8-13 Stiff
iS-30 V-SM»
iUMV««»
Co"t Bert
9sc« Coring
SCT5**1
| HOLE no
135
Reproduced from
b««t available copy.
-------
/X ALLIANCE
:c4."
|"S7 50F.ING L;c
INKING nc
"ZJC" 7STI002
J-rr" mi c l
J2HnC C5k"~*AC70c NK Hor (nr
'E.rvi-ir^
C--0L'»»: * r -
• ::
--sr :a-t 12-IJ.-H7
Zm~ C ' t L- !?*??*»
—v - -
¦:-*e "s :-r: U-IA-H7
- - - - ' - ° - - T1 T. r.iroonf or
I i
» » - • i
• •k£»e:-=' k. Scum
t I '
. r-^. ¦ • i
1 Ji-
f) &J
I
I »•
L:-*-
«-- • ,
t.v:
c»»: •• :cr ;-cce'>e- c* <
ia i :::¦ ¦.rr rr*>s>*.e-.n;*: ¦
• M* I . e-r ft OVA -•*
25-
t i
0-2'
Sg ' \
I ? 1
• 1 ' 4-f>
2 2 3
I
J
i 4 • 6-8
3 5 :
1
s
1 S s-10
11 ift ::
1
i]
1 r, m-11
in
1
/
1 7 12-14
0 6
1
1 1
1 8 14-lfi
If* .»*
1
3*
1 0 ,ft-lR
\U 20 \f>
1
16
in is-->n
10 12 n
1
11 20-22
8 10 10
10
12 • 22-24 SS 17 12 1J
' 2
_LL
40
Soft dl^ brn fine sand w/
sonc organic soil
Soft It hrn ncd tine sand
trace silt __
Soft It brn fine sand
Med stiff brn fine sand ¦
Stiff It brn rrcd-coarse sand
w/ some qravel
100
200
Cla\
I
Sand
rivel
40
Stiff grn-brn cla> v/ trace
silt
\ stiff brn ned-coarse sand
6 pr.ivel
V stiff It brn racd sand
-12.
10
10
JIL
;n.o.n. f 24'
!»o Water
19
rre
TT
16
16
15
20
15
18
Jl LL
JL£L
GfiOUKO Suft'AC? TO
L«f =
Sew T^p»
writ'
O'Ofy C*Corrd
*«# 0 c C V0
U°lU^»tyfced extort
C :2:"c
TO«Tf«tO,f AiL^ztf ViVM Tft»
iO"»t £C*t2i"/:
UT»tnc>jturtfi3 T%^*0ll
C<« 1^1.4^0^
ie»» Miti • • »*» »io*
CAS>\3 T»-£N
UOrr w» « 30 fone^2"0 0 So-D'rr
0«nx»y
O '9 Loot*
C-30 Mee Otnw
30 tO Oe-ii*
50 * Very 0«nt
CCfV't
0-« Se'f 30**0'C
*-e */smi
6-13 St*ff
»5*30 V-SMf
SUVVAQy
Cortft 69^
Pse* Co**g ___
HOLE NO
t
136
Rep>o4ucM from
best mlliM copy.
-------
\m ~ N'Hf AND nORIKC. ( ()\ I H \("t tyu 1 t I IM
!09 COMMERCE ST"t€T
CLASTON0U«V CT G60J1
<703)633-4649 - (413) 733-t?j:
CL'fNI .
»no;tCT name
LOCATION
^Alliance Tech
Crovcl.ind Wei is
Crovel.md. MA
Roe
iNVicron J. Thomis
OATIstart 3/14/88
OATC finum 3/15/88
10'
15*
201
25'
5'.
SI
S2
51.
S 4
S6
S7
sa
S9
SIO
ill
ill
*I*CM|T|CT
(NCiNttn
C«I -4
MM "SA
¦?„ 1 /1"
wc • n - '' -
HtMv(¦nf
MAWVf D l S.rnd. Tr. Cravel
i:.o:
:u" i
I j C rc\ ( recn Cl.ij
17.0
JO"
1 6
JLfr" i
Cre\ Hr. Fine Sand. Little Med.-
Crs. Sand, Tr. Cravel, Silt
i.O .
Botton of Boring 24.0
No Wj t c r
Sealed Hole iith one Bucket
Bcntonltc Pellets
S*fTiE pf%:eti>*iiO*j he^istancF
140% wi is 20 o- ; on s*"p»'
O"** I* C i'"** »»( <~***« I
v» » ior«* 0 .* v#<» >ci
t t tort* I * lr*i
IO ?» M*« (*»•«• » » M
JO <* • l> 1' "
>0 • Vto, li JO V VI "
j| • ¦ i a
PROPORTION*
l<«,r 0 'O*
Mllr 10 'P ro»
t<» «w JO >«
4>«i li *»»
137
-------
NEW FNC.t AM) HOHINC CONTRACTOR Ml (T IN(
109 commerce street
GLASTONBURY CT 06033
t?Q3) 6J3-4M9 - (¦'13)733 1?:?
ORIL c«r
T. Roe
•NiMCTon J. Thomas
OATlSTART 3/15/88
OATI *INISM 3/15/88
Clifnt
'"OjIC name
l.OCATtON
Alliance Tech
Crowe 1 and Wells
Grove I.ind. MA
A "CMi T C C I
E NG'Nf c n
T»»|
SUC • D
MAMUfa n(
HkMW(nIm
C..~.
HSA
2-1/2" 1-3/8"
SS
SI
£2.
5'
10'
15'
il.
S4
SX.
S6
S7
Dt'TM RANCC
0.0-2.0
2.0-4.0
A.0-6.0
6.0-8.0
blows 'I •' r.
ON 5AV»Lf">
8.0-10.0
10 0-12.0
S8
12.0-14.0
14.0-16.0
I 7 18
4
! 3 I
i:
10
»tc
i-iiL
J.
140
30"
S T n a 1 *
CMANCt
3.0
'ill HO
BORING
NUMBER
B-2
Su«r»ct Etfv _
LiNf & STA1 ION ,
Of SCT
field CLASSIFICATION ano remarks
I It'lit Kr Mnc Sand. Tr. Slit
¦241L
101L
2jrj_
IB"
J4"
J'l"
Uark lir Kinc Sand. Some Silt,
Tr. Mi'J.-Crc. Sand. Gravel
(Cinders (? 6.0)
15.0 I
20'
25"
*
V ¦ II
to <« o»«»»
* It
V '•
)0 • v»»
lb JO
V Vf H
Br. Fine-Crs. Sand, Llctlc Cravel,
Tr. Silt
notion of Boring 24.0
No Water
Sealed Hole vlth one Bucket
Bentonltc Pellets
paoponrioivs
»»jf* O in
to ic :ov
:o ><• jsn
»-<3 *r WJ*
138
-------
NtU l-NM AM) flOKINC KIMHA("H)K(ll ( t l\t
109 COMMFOCC STRfC
OLAOtOSMt'H* CI
(90JP 033 «0*0 - 1*131 *3^
T. Roe
inspcctop J. Thomas
OAT C START 3/15/88
oati finish 3/1 5/88
Client All 1 mce_TecJi.
M.oirri r«AV) __ < r»*v« Ion J We ]) * _
UKAIiO». . Cf OV«i 1 «H«J » MA— .
Tier
I NC.lHl I M
c*» 1* f i» '
i vrI H^A SS
si;i io 2- 1 /2" !~3/8"
»«avw o its • _
tin _ 30
oc*th rangc
SAMPLf
OLO^
ON SAM'Lf"
0.0-2 0
2.0-4.0
6.0-6.0
b 0-8 0
8 0-10 0
o«
J
"2 t
c i?
3
i? »«
~~ 3
COL
strata
(.HANOI
ID"
:u* '
3 0
»«L€ NO
So»fACt fltv _
U**c A station .
0"S£'
BOAinT.
NUMQCM
_ H-3_
|u»M
«• _L-
o. _L.
FlElO CLASSIFICATION AND REMARKS
Br. Dark Br. Fine-Med. Sand, Tr.
Crs. Sind, Cravcl, Silt
(Possible Fill)
J . j j.
: 1 si
& i
—r
is" l
jo • »
] I lc'it br. Flne-Med. S.ind, Some
1 Silt
1 h" t
10 0'
¦4VI*. «• »
10.0-IZ LI
_<•_ 1—LI
I 11 I I'i
I 8"
Crc\ kreen Cla\, Tr. Crovel
I :.")- I i. 0
U I
1 i' I
1 U (I ,
I 4.0-lb 0
I I '
i ill i:
lb'
16 0-18.0
I f> I
18.0-20 0
20.0-2..'.0
22.0-26.0
b I
u I
Ai.
20" ;
I
:(T'"
ft I
-r
J
br f-inc-Xcd. Sand. Little Crs.
S.ind. Tr. Crnvel
7 I 10
i :i.o;
j.
Bottom of Boring 26.0
No Water
Sealed Hole with one bucket
Bentonlce Pellets
i i
jamplE p£'jFTMAriONHEMsrA\' c
14Q to *Vi f«it Ag jo rw» ? O O
i ¦«•*»« o»'».» n»«» i. C' *»»» ¦' c««»«*¦
c * v«>« t •«««• o ; i«(i
/ ^ J 4
10 "< p»«»» t I ^ > ••
jo <« p»-»» «• i»
>.» . v*., p#-«» It JO V Si
J i n
PROPORTIONS
\>»tr 0 It) 10*
tt V 10 r> ?0^
n»«f ;o u« 35V
* M IS to S0^
139
-------
NFW FiVn AND HflRIW. ( PNIKAMCJK (H ( 1 l\f
iw coMMfnrr ^tmcct
C.lASTONBUnr rfuftoji
f?03) 603^9 - (413)733i:j?
ri iFfjt Alliance Tecli.
"ifinri WAuf Crovel.md Ucllq
in^ATiriK Croveland. HA
BO^'NC
MUM0CH
B-4
S«EC1
No !
of 1
oni
INS*
ll€« T. Roc
1 AflCHi T ( C T
t^c-t r n
r it e no
ICTOfl
J. Thomns
C«i (W' C<"» »•
HSA_ _SS_ _
wr io 2-I/2" 1-3/8"
iU«f*Cf (LIV
OATI ItAt
OATC f«NI1
r 3/16/88
t mr a
« 3/16/88
NtuM|> Kl
hi i uui it
K0
30"
nr»*r t
Z
t-
M
o
SAMPl f
COL
*
JlflAfA
CHANGE
NO
DEPTH HANGC
PL
0^
06
3"
T~
OWS ri
SAVP
6 l7
3
u t
n»
i; ig
ncc
f H in Cl A$mr icatiON ANO RE MARKS
5'
5 L
0.0-2.0
12" t
Lirl't Kr. Hed.-Crs. Sand
~o~
1
2~
2
S2
2.0-4 0
~2~
1 6" i
4.0
2~
SJ
4 0-6 0
I
j I.irlit lir. Flne-Med. Sand, Sotte
10'
1
2
2-" t
r"
S4
ft 0-8 0
i
4
7
12
24" I
»
V
If," ?
S5
8.0-10.0
1
I I
10.0
Silt
6 1
15'J
$6
10.0-12 0
3
6
h
(.rev i.recn Clav
9
15
is" r
5?
12 o-u.o
/I 6 1
>
i 8 ! :;
IS" >
\t> 0
ss
14.0-16.0
l! 15
*
| Br. hmo-Crs. Sand, Sonc Gravel
16.0 !
o
r j
i i:
12
IS" '
S9
16.0-18.0
7 1 10
~
Llclit Hr. Flne-Med. Sand, Sone
Silt. 1 ittlc Crs. Sand
1 12
-_!Q-
i r
20" r.
SIO
18.0-20.11
5 ! 8
i
20" :
i a
25'
Sll
20.0-22.0
4
6
t
18" I
6
7
SI 2
22.0-24.0
4
6
1
6
7
20" I
24.0 .
!
Botcon of Boring 24.0
No Water
SenJed Hole with one bucket
Bcntonlcc relicts
1
>
f
1
t
I
1
I
I
1
1
1
i
i
•*»»»*
ft* »d
*» «.
<•
-I •> «• - -
SAVPIE ffrjEfoatiON RESISTANCE
M0 m Wi 3Q ? OO
C 0««< i v <#»••» »' C
0 * v*>T uwt* O .* v»n if'i
) « J 4 4 c*l
to.** M«a D««|» VI M ,!«~»
JO 4« D»«»» «• 1% 1' •«
50 v»., D«-«* It 10 V n •»
Jl • •• <*
proportions
»»»c» 0 r« '0-*
i i •»» 10k ?0^
*,*• , "o •
4™fJ 1S iO »
RCMARKS
1
140
-------
I'9ZJCZ
ALLIANCE
florinf <*6
1 — ST E0=.ING LCc 1
"c:,v>oc;fs Z:'zz i
nd|. to r.u "2
rC^JN'v NO 1
C.ICN-
Fnvf rp^nnn<;f»
sr
i
•C* t*C
cck~**:"c*
Htdrc Croup
1Z
•
c-cu»»c
» cs -*
•
<" c
j.m 12i"E fit-r;
i-iy-8? i
O-'E '
""IM J ' =
E_
i *>» c r
•!-"£ C,si«-E-
4-19-87 1
1
C'»
1 17 o_ r c gob
1*. 1
1
1
1 » ""
• ' i*s!*Efc* j.
Thomas |
If • 1 Fi_ < * 1 1 1
. e""*
t,e« . •
r.r
! «¦
L:-:
15 *
. :" '.",r
¦* »:» :o c-.j-rcc'ict "rptc'
•• '-"M vtc—« c*:»': ,0VAl5-»
20
25,-
1 '
0-2
i SS
; I j 7 i
2 ' 2~t* '
i 2 i T i u
i
' I.
3 A-ft
fy f, 1 O
' « 1'.
4 ¦ ft-R
H If, ¦ ¦<()
i
' 1 23
5 8-10
14 1 23 ' :3
i
- 7
1 6 10-12
,
1
n in I ill
) ; i ¦>-1 a
VI
17 !'I
8 14-16
8 Id ' '.r.
•
' 20
9 16-18
« 11 :?
• ?7
in 18-2"
17
i
• ¦* ">
11 20-22
2 « i * *
IJ
12 22-2.'. V. IS 1 -'5 J 5
I 10
-LL
16'
19'
Mliv
Ll.-n
I Sand
1 &
Iravcl
Stiff brn - ]t brn sand
Mod grn w/ qomc silt &
orc.-mtcs, rock frafis
6-8' - I.'o rutovcri
Hoc! on «;poon month
Stiff It brn s.rnd
Mod-flue Rr,lined stlty sand,
sorit- r.rnvel
12-14' - No recovery
3D
Stiff grcv-prceit slltv clay 1
15.
3S
Brn sand & r.ravcl
Mcd-conrsc prn
10
Q.O.li. ? 24' No Water
1 5
12
22
12
_LL
IB
12
CSOyO SuSfACE TO .
$©*•©«• TyP«
P'999'
:m *jtts
OtOry CtCored
*' set
* '5 C ~'0
U®»0ru3>1lg/0#a Pi»fO«
C :2C'c
TPtT#*tPif dt^etr V»Voft« T«»t
?C'eJ5Vc
UTtu-itfijtg'ted Trt.rt.oii
C3"t»'0""«si Oenn'r
0 'O Lcojt
'5-30 *¦"»!! 0t«»«
30-10 £>»"»»
IVc;C% 50* Vtr> Otmi
CAS'SG
ti0irw!_»30
-------
/X ALLIANCE
yiftfi C: " £ "
Boring 07
adj. to F1J 03
"S7 £0=ING L33 j
rC=l.\G NC I
i°»cje:- 7531UU-;
5-cr" st rr 1 !
C»iCs7 tnvlrosponso
JC£ I
POP'NC C2K~PLZ~3* IKHrn rrni.n
»C-S . iC*» j
G?CUN2 »t"E =
- w t r
4-iq-Sfl t
£i""£ « "iwj »i*;s * _ *'c Z T *
—¦» c -
;i-r r.s.;-c; 4_7o_a(j ,
,
r - •
Bob p. i
i i
* • i
i'sSssr~Ce J. Thomas \
1 I
i r-_ _ i • i
i
1'f - - I I c*
'¦e- - L:-ir-
*:> t . -:
* -r( :cc' "*ccp*'o*
¦ :: : *. r«
: ¦ — »~=-• c-e f:
ova:
10
15
20
25 r
1 i
0-2'
SS
3 ' 1 1
1 1 1
9 i
1 2
2-/.
30
1 7
3
1
<¦ >
1
1 3
6-6
4
5
1U l
1 1
4
6-8
6
7
12 1
1 '<
¦>
8-10
S
1'.
1 7 1
i
?1 •
6
10-12
•4
1 1
J , 1
|
iO ¦
7
12-1/.
IS
2»
J5
/.s
8
14-K.
U'
1 3
2 1
a
00
I
vc
s
s
1 i
2J •
10
18-JO
7
1 1
12
¦
Jf>
1 I
20-2.'
I 1
J J
J3
61
12 >
??-?/. SS 23
50
<<(,
in:; w 2"
left
Stiff brn sand v/ some blk
organic soli
Coirsc mod ll brn sand &
sone gravel
Med stiff It brn fine sand
v/ sonc silt
¦ 0' '10
100
100
75
73
16'
19'
rra\v \
j Silt\
I Clm
Fine-rod sand, sonc silt,
Jsonc coarse gravel
Stiff sllt> r.rcy-grccn clay
Sand
I
Crave 1
_21L
i
Lt brn - brn, fine-mcd sand
v/ sonc gravel
jMcd-conrsc sand v/ sonc
j prnvol
Jb.O.B. ^ 24* No Water
-1L
12
- Sone C\ndor«? -
Lt brn ncd-fine sand w/ sone ^
silt
U
13
22
22
JA.
12
CSOUNO SuR'ACC TO
So^Qtf Typf
0«0ry C*
Cs^MVitt OeMify
0 '0 loot*
O 30 0*"**
30 50 0en»f
c*d 25»eSC% 50 ~ very Otitt
Casing ThLN
i40o WI I 30 'oilo- 2"c 0 $*-
-------
AK ALLIANCE
/viri * ~n
Borinq £'3
adj. to >n; '2
jTEST =3 = !!,G LOG
p«»CJC:- 7331002
!-c:_ >; • ;r i
CLit*»T i Enviresponsc*
eOftiNO CSN— fiAC'O* Mvriro C.rour
'C.r---iCk
CflCusC •
C- * Ei- « c '
: -.i'. 'Zi-i r£_->ci-rr
;i" [ i ""iw[ ' <*a""I E Z. _ : I v
""r:
'in 5-e; /,.7n.RB
» » '
1 < 1
.1= Bnh P.
"M-E- -1 .1. Thonas
10
15
Sc"0«
Frgm. Tq
©«•* St' 5
r S:^ji
f ^ .
r?)' 4 >z
I :*>:*•'
20
25
I
.c* :o.c ;'ccc*iq»> "ot c* i
>,:» ;:*,c • c*, ic*c ¦ —
we-* f. OVA 1i •*
0-2
SS '
| Soft It brn f Ino-med sand t 0* MO
i i
!
5 •
j
j v/ sono «silt
:
2 1
2-6 t
7
7
' 10 i
!
l)k brn fine lilk orR.inlc
! soil
noo
i 10
i
i5 •
I '
a
t
3 '
4-6
8
8
y '
n
4-6' :.o Rccovor\
' 0
0
1<>
d
'1 stiff fine It brn sand
well sorted some slit
4 1
6-8
• 7 '
?
9
0
10
II
¦
r> '
R- 10
HI
1 J
17
'V fjnc fjrn. It brn silty
s.ind.
1
?n
1?
2-
6 1
10-12
17
21
it*
.
10
1
il
7 1
n-1/,
1 '•
lu
V*
5
<8
15'
R 1
i l- l r.
r.
1'.
1 ^
Stirf ] r<.\ C"n silt> cla>
ion
?4
1
?1
*ilt\
lnrie.ir-.c fctli sorted brn
1? 1
?-'-->4 is
in
1 n
n
^1-
sand
B.0.I3«
2*'
No Vator
C^OU-NO SJRFAZI TO
$g*gCored *«*ov*d
onC'ttkfratd r«»io«
TPsTt^tPif ViVcxTttt
UT«tf-iC>*lurtefl TsnwoH
IO«« Hill - t*tt MO*
CAS'NC T-£N
P'C3s-,-:">*
f«e C r - :>3
- » < - " w
2C*cIi;/c
stc%
S" *
is-ie
cfl
i4Co*r«30 'oi'o->2 0 0 Sc^Dttt
C3*f»o^e*t Cen*i»y
0 0 Coott
• C 23 Vefl OtMc
30 SO OeMt
50 ~ v**r Of*te
I SLrVMAOv
ei«v* ton* Bor«^g
0 * Sc'i 30**«'« «?oc* Cor 1*4
-6 V/S»'f!
0*15 s»'tl
»S-30 V-SMt
Sa-rs»M
I HOLE NO
143
-------
AK ALLIANCE
fKf4r4 :r::«ci
Boring ''9
ndj to F.<: f]
TEST 3 Or in:-
= C = INC? NC
"•tCJt;- 7531002
l ;r 1 1
C.iEnt tnvirc;pon'!t>
»Ci sI !
BORING zsvatz-o' llMlro Croup
ic-r^i-CH i
0=CUn; »i"E-
^ 1 5. - w 6 . I ~ ~
• t f
A-il-dH
2i-t i -imc i »:•£= ?_
- Z
:- ; r'- a-->i-hr ,
Bob V t
| 1
i » ¦" ' • >
fv«sr--?c Je Thonas I
ii • i i ¦ i i i
0*2
20
25r
To
t.v:,;
¦» "• ;o«e* ceeco* "vat t* j
:. * ; »,-f ;--e»*o* ir: 1
*; jifl-1 :*:r: OVA:- ^
i i
U - |
2 i 2-4
t. u
i i
^ ,
1 3 • 4-6
10 S» 8 ¦ !
I i
Ill 1
4 6-8
f. s i" :
| •
a |
1 i k- in
son '
•
l" 1
1 ft 10-12
\ «¦, ) j i '
1
?Ty *
| 7 12-14
Jl 5J
{fy _
H 14-lf.
yi
1
Q 1?>-IB
3 -i S i
7
Id ¦
7 jo Jl ]
)
2M
1 1 20-22
10 11 1J
¦
I I 1
12 ' 22-2^
» Sl>
-
-
Soft nod-fine ®iltv it brn
sand v/ dk organic soil &
vonj chips. |)V coarse
j sands, ^urc l\ iders
I Brn fim-p'i-cJ q.ind, sonc
j sjlt. c. nders I orpanic
| bo i 1
i
I Brn rxd-Mne «;tiff veil
| norutl sind, sore silt
]Coarse brn sind v/ soac silt
I
I
0
SO
20
.800
^ilt\
CI.v
^arple 11 contained
RcMitnmti i run veil pack
around LW '*1
Sa-Hc 12 contained sand
p.ic* pf u-Jl FVC "1
No smnU's collected from
11 or 12
, B.O.D.
24*
:;o Water
50
:V ctifi j,re> f,r.i silcy cla%
100
. 15
13
_22
12
13
G-2USD 5^'ACe TO
Sctf^Qif Type
0 Oty C*Co'ed ~ ifcov-o
u°t Unfl.»tgroed Pilto*
TPiTfMPit ViVoneuest
UT*U«Cfjtwrctd ThiftwOi*
town vant - i*»t »io»
P'CMMO % UttC
*ac« O'c C v0
»»-!•
C*tf
: :z:\
lyciiVz
CiS'S5 Tr?N
i4C'?wr»30 'ono*"2""v0
Oeftv'y
0 '0 L?ei*
O'JO 0e*i»*
30 tO Oe*je
5C ~ ve'y 0t*»«
Cc"*M«e C«n»»v»ficy
C-* Sc'f 20**o'C
< 8 v/SMt
9-13 SMf
'5-30 v-SMI
SUMVfe">
Co^m Bo__
Roe- Cor**? .
S5T"3«tl
HOLE NO
144
Reproduced from
b»«t ivalKM* copy
-------
/r4 ALLIANCE
AV4,
p^cje:-
7531002
Boring 010
TEST EOr.ING LOG
adj. to *IW 04
90RING NO
ISH££T WO I pc 1
ijae nc
SOWING
CSVTSACTCP HvHrft C.rmm
IE'-Eva-iO*
GflOu^D
*t*E5
*
• CiS
• » CC-£ 1 "-J5E STiP"E3
oi-e •
rrwe ( w:-£3 r_ < ;.°-£n
t
• » I !C- a
i i
• Cli
i
!0»'LUE=> Rob P.
i
i i
n
0-2
S' : :
SS I 3
3 I U !
2
2-'.
1 J 1 4 1 Hi
, 1 I p i
i 1 I 1
3 1 4-6 1
1 11 1 10 1 7 1
1 1
I i 1 7 1
6
6-8 1
18 1 SI 8 I
1
i i '11'
5 1 8-10 1
' 7 < \7 • 2? !
i
i i • "> r, t
6
10-12 1
I 30 I 29 1 3-U 1
111 SI o •
1
! i l-> '
8 1 14-lb '
i 5 i y » j 7i
1 1
1 1 l 29 1
9 1 1 ft-1H 1
14 1 7 1 34 1
1 1
1 I 40 1
10 1 18-2(1 i
• 3(1 i M ' 4'. •
1 1
i i ' 53 :
11 20-22 1
1 10 I 15 1 15 1
1 1
1 1 i ?() 1
i? | 7">_?£ i ss i is i ~"i t n I
12*
15'
s:.
cf~:• • 1 cc"o\g*cdo*ie*
is f :::* :r**C">sr.
*»v
OVAIs-
Silt\
Clav
Sand
Cm\cl
Dk organic soil, wood chips
Soft It bm well sorted
sand. Unc-mcd p.rn
Lt bm fine sand, sllty
sand
M stiff fine sllty sand,
brn - lt brn
Flnc-ned sand «/ sonc
Rravcl
Stiff pre* prn silev clay
_1L
20 I
Brn coarse sand £ gravel,
rockb f rock fragments
Lt brn coar^e-med well
sorted sand w/ sonc silt
& fine sand
Finc-ncd sand, lt brn,
veil sorted, sitty sand
B.O.B. 0 24' No Water
1 5 l
i 6
I < i
1 r>n 1
1 Ifl
1 i :
' 20'
' 17
, t
20 •
i lb
¦
n i
' 24
S'
1 14
i i
o 1
1 14
1 i
i n i
'
t «
r> i
' Iff
i
n'
I*
16-
TP
OSOUNO SjR'ACC TO
So**pt« Typt
O'fry C»COrfd
U©i OnGthfOta
TP*T«MPit AiA^tr V*Von« T«ft
UT*Un0i)!ur:r^ Tfrft«att
io«« atin - i*lt mot
»*eee
s—t
c-o
e-i u»ts
0*0>C v0
>r-:r:ec
ZC-zll'/c
33»eSC%
C^S'NS
T flfi
iJQcwtOO fo'iirt
Crtne^iess
0 >0 Loci*
>0-30 "ed 0«n*c
30 SO Oer-u
iC ~ v«fy Oense
Cc"<»«*e Ccri*ii*»ncy
0-« So'! 30 *
6.Q tf/Siiff
8-15 5r.fi
15-30 v-Stiff
SUvvaQY
Cctft 3or*x; _
Cortng __
Se*r9««
|MOLE NO
145
-------
/r* ALLIANCE
JT4f4f4 Te:---cc;esC=-=rc =-*
Bor inf fl 11
TEST BOr.ING LOG
adj to "1
SORING NO
"CJE" 7531002
ISh£" SC f
C' 1
CUCNT ' Knv I response
IJCB SC
1
B0*INC CCNTn&CTCR
Itvdro (.roup
lE'.IVflOS
1
GACunC
• Ci«
• ~ CC£5 1
"_s* ict-e r-io-tr
6-25-tE ~i
E * Ti*r ,
r _
—— c r
» i »
Ci-t r s <-e:
4-22-S3 i
i i
Z x
i i •
RoS
renal is i
1 1
«
• tf- •
i i
1 1
1
n fall i
i i i
1
.CVC
Si-: •
s:. c
• % tu:» :ot'. ¦;-c03,nc.-
*»\* •-; wj-j c*e
OVA| =
to
IS
20
25
0-2'
SS I 3 I
2-6
A'(l
(<-8
JMU
io-i:
I 12-16
I
I 16-lb
I
Jl 1 lft-18
12-
1H-30
-Ll_
20-2
I I f. I
9 112 I I J I
i 8 l
i r. i 8 i 9
I 7 I
15
19
¦ i /.1 ? 7 1 t :
I 201 Jl) I 33 l
I 62
10'
ir
«.ra\el
Soft orr.anlc soil, blk
oll\ band -
l)k brn s 1 1 C*. sand v/ some
c\ ndt rs>
Brn fine-red veil sorted
sand, so-io silt
Brn fine sand
Lt brn fine - V fine sand
Sone silt - coarse sand
& Krivel, rocks
110
I 7
1 I I
I I
l'i i 3»
I 80 i
33i 5 J
I
. 1.0 I
I 57 '
H" r
I
.'b I
S111 \
Clav
V sti'f crev fm slltv cla\ |
u/ sone sand stringers
U£L
I 201 62 1 "5 '
22-26
SS I Ml IS I f»f) I
.90 i
\ . coarse sand 4 pravel
Brn ucll sorted nod prn
sand v/ pone fine sand
V f ine It brn sand v/ soae
si It
Brn (inrsr sand, well
sorted
B.O.H.
26'
r.o Water
17 I
2 I
10
18
•>s
16
2SL
JLfi.
26
20
CS^S3 TO
So-;.f T,;t
0 0'y C*Cc p_ ai
'Jc - o-c • ¦.*;»; -
T 3 : Tf - • 31' - • - JZ~* J'
UT>u^en*b':-c
- 'jii:
2C*c2;c/:
iiTirVo
i-Ct a* i 3C
:«2
t j : - fM Cfi*f
.? C:«» 5 r:
C : wr;je
C •* Sr"
~C IZ 3f-j*
v/S'.**
1Z 10 0f-se
e-«s s* if
! I • 0c*te
'5-20 V-SM*
IC- t-z-e
-------
A
/i^i
/iVi
ALLIANCE
Bonne fl2
TEST EOriNG LOG
*«:v:c;
cind. \ «t1(f
Fine 111v lt brn sand
0 I
10 I
140 i
¦50
•-JLL
( ra\ol
Sand
•'orU. toarso snnd, sone
f,ra\ i I
V stif TO-Rrn siltv cla>
\arUd cln\*»
Coarse sand L gravel
Lt brn fine-nod silt> sand
L^L
I
I
ILL
b i
B O.B.
\o Uatcr
G-rj*o 5-=--:£ :c
5a^g.» T>y
C Z'v Z-Zft:
J°1 o-c :t: ' ' ?•
•©»?#•? o.« J¦ /r* ~»i*
u* * j-C'fw-:?c
• zm> -»•:
C'z Z c
.:*fi :* mi -f» ,
Zf,f
iz zz :••••
• v«'>
j »*:»
: - 5:" ;
• £ V/S *•
6 5 e' "
i *ib v-V »*
ac:» Zof*s
S:-: n
| HOLE NO
TO*
Mill - l»1f »IO»
147
-------
ALLIANCE
Borin-; '13
nd i. to "
n
Tz.3T 90R!NC
boring no
LCG
°pc •£:* 7331'ju:
tSu£i"" SC 1
0C 1 1
CUEnt Lnv ire soon so
*-C8 SC
1
scpino c:tp-::c« i»\tiro (.mi*-
>£-£
C*CU*C ' ' C-S ' Siw3 1c:-«
\2S «c«t-s
4-Ji-id |
Ci"£ » "iw£ » %i-s= £ _ «:a££s -^ac . .
lC-"£
1
» • - i » i
fD®*LL£s Roh
"en.nl i«; 1
II i - * T l I |
J
Thonas I
II ' C f 1 »
i
1
r ~;
I:-.
p **,
-:t Tec,;'sca*ic
I -M-
OVA |
to
15
20
25
i
i 1 9 1
7 1 7-U
i 7 I A 1 o 1
i i ii .
| 1
i 1
3 16-6 I
i ii i i: i lJ !
i 1
>n •
U
b-S 1
inn ¦ i i :
1
1 . IS'
*\ I fl-in •
' If.' ' < ' 1 i
i i
h \
I I'l I Vl I t'. i
1 l
1 '
7 12-U
. <. i 1 y ¦
i
i | •
R 1 l/.-lf. f
(<> n -i
1 '
i I i f,„ i
Q 1 Ift-ll •
' \f* 1 i>M
-•1 1
1 !
i )
inn •
1<» 1 I3-^H i
^ , In
i 1
I ' n « 1
11 1 20-22 >
1 lis i i ¦- i
1 t
I i . 3^ '
11 1 y-T. i <;s • i ? i rs i r*> 1
13' L.
1Q'
^ 111 \
(. 1 U
S.i id
Cr*v c3|
I
Of 110
I I
Vood chips, seme organic
soli. It brn fine-aed well
sorted conJ - 3* • c\ndcr«;.fiQnl I Ifi
oxlv
v / m« • Sim! *u r i it, crs
L2i LLfi_
:o
' 18
_ZL
I I
I 10
aa.
m
\ .ir U ii
Ml 12Q_
\ coarvc sand 6 gravul
' ln-
LLL
1 p
| B (> 3.
\o l>j:cr
C=:jN3 5-5"iCi *:
lc~:t T.;t
O-Ofj C":c-«: 4»»:r*:
»,e > - i ""
T®l Tf" P»» • i#?"*""*!*
to*« miu • uii no*
51 - v»«*
f .:*» * *-:T
- i c-«.
I t v.'5t"
6 J e* •'
5 *23 v-5 iJ•
<."Vi3v
Ss—» by
*c:» -of-c
MOLi NO
148
Reproduced from
b**t >va
-------
APPENDIX C
ENGINEERING BORINGS
149
-------
Engineering Borings
Shelby tube samples were collected from four locations during the course of
:his project. Two locations were sampled to 24 feet during both the pre (EB1
and EB2) and post (EB3 and EB4) treatment phases. Twenty three samples were
collected during pretreatment and twenty one samples were collected during
>ost treatment. All samples were analyzed for moisture, particle density,
>ulk density, grain size and permeability at the GZA Geotechnical Laboratory
in Newton, MA.
:ome samples were unsuitable for permeability testing due to disturbance or
insufficient sample quantity. The samples which were unable to be tested
are:
EB1- 2
EB1- 5
EB1- 6
EB1-11
EB2- 6
EB2-11
EB2-12
EB2-13
EB4- 4
EB4- 8
EB4-11
Included are the Laboratory Testing Data Summary sheets which presents the
esults of all geotechnical tests.
Summary Sheet Key:
ater Content % = percent moisture
rorosity % = function of particle density and bulk density
rain Size
Sieve -200 = percent fines by weight
"ydrometer -2u = percent fines by weight
s - specific gravity, a measure of particle density
8d - bulk density in pounds per cubic foot.
150
-------
LABORATORY TEST PROCEDURES
Terra-Vac Demonstration Project
Groveland, Massachusetts
File No. L-10636
The following tests were performed with the noted ASTM test
designation:
Test Procedures for Combined Sieve and Hydrometer Analysis
When both sieve and hydrometer analyses are required a
combined mechanical analysis is performed. This procedure
is, in part, similar to ASTM's 2217-66 (wet preparation of
soil sample for grain-size analysis and determination of
soil constants-B).
A representative portion of the minus No. 4 material was
mixed with water so as to form a thin homogeneous slurry.
The fines suspended in this slurry were then decanted into
an empty hydrometer jar, and the mixing-decanting process
repeated until most of the fines had been removed. Coarser
fractions remaining after the decantation were then oven
dried and sieved through a nest of screens (Nos. 10, 20, 40,
50, 100, and 200). Any material passing the No. 200 screen
was added to the hydrometer jar containing the finer
fraction.
Hydrometer analysis of these fines was performed in the
conventional manner.
Test Procedures for Permeability Tests
Test samples were performed on full diameter samples (2.87-
inch diameter and 5.75-inch length) or were trimmed in a
vertical lathe to dimensions of approximately 2.00-inch
diameter and 4.00-inch length. Hater contents were obtained
from trimmings adjacent to the test sample, the specimen's
weight was determined, and its dimensions verified.
After trimming, the test specimen was placed on a previously
de-aired triaxial cell base and porous stone. A membrane
was added and the sample was sealed top on bottom by "O"
rings.
TEST
ASTM DESIGNATION
Grain Size
D422-63 (see Item 2)
D2216-80
(see Item 2)
D854-83
Moisture Content
Permeability Test
Specific Gravity
151
-------
Samples were back pressured under a small effective stress
to create complete saturation of the samples. The chamber
pressure was then increased such that the desired
consolidation effective stress was obtained. This effective
consolidation stress was allowed to act for 24 hours+.
During the consolidation phase, readings of volume change
versus time were recorded.
After consolidation, the response of the soil samples was
checked by increasing the cell pressure and monitoring the
pore pressure. Where required, additional back pressure was
applied so as to achieve a pore pressure response equal to
or greater than 95 percent. When the desired saturation was
achieved, the samples were attached to the permeability
apparatus and tested in accordance with procedures described
in the Army Corps of Engineers Manual EM 1110-2-1906,
Appendix VII, pages VII 17 through VII 22, Number 7,
"Falling Head Permeability Test with Back Pressure."
Records of head change vs time were recorded for the test
with the permeability value reported being the average of
several consistent values obtained during the test.
152
-------
Terra-Vac Denonstratlan Project
Groveland, MA
LABORATORY TESTING DATA SUMMARY
Project Mo L-10636 Project Enqr P- Schilze Assigned By
P. Ford
Reviewed by.
Dote
Oote Assigned Required.
Boring
No
Sor.ipl*
No
Ocplh
fl
k o
IDENTIFICATION TESTS
• »>
E -
k. n
• A
a. o
STRENGTH TESTS
CONSOL
Laboratory Log
and
Soil Oticriplion
SS
s •
Zo
Wal«r
Conltat
%
LL
%
ft>ro«-
ity
n(%)
Si
• 200
%
H,d
-2/1
%
c«
Yd
pel
Tor«on«
or
T19*
Toil
17c or °c
or ff
P*l
Failure
Criltrio
or r
P«f
Strain
%
V
/ e0
FBI
1
a-2
1
Aver;
«P Toi
al Ur
it W
slgjit
(0-1.1
) =
114.2 p
I
Broun, fine to mediun SAM).
little(+) Gravel, trace
Silt trace Organic Hatter
0.2
10.8
0.2-0.5
8
1
2.63
0.5
16.8
0.6 0 9
17.0
36
105.1
ifo
K
Ofc =
144
1.0
17.7
2
3.S4.5
2
Aven
06 Toi
al Ik
It u
sltfit
(3.W
.8)
> 94.0 i
cf
Dark brown, fine to mediun
SAM), sane(-) Silt, trace(+)
Roots, Wbcd Chips at
4.2' change to
Black fine to medim SAM),
sane Silt (oily texture)
(Entire Simple Disturbed)
3.7
17,0
4.1
4.14.7
60
29
3
2.59
4.7
49.9
3
5.5-7.5
3
Awn
ee Toi
al Ur
It w
tight
(5.5-7
.5')
=¦ 91.7
c£
Bran fine SAM), scne(+)
Silt
5.7
37.7
6.1
24.8
6.5-6.8
24.1
72.1
\'1>
(6-3
K
-------
Terra-Vac Demonstration Project
Crweland, MA
LABORATORY TESTING DATA SUMMARY
Protect No ^"10636 Project Enqr t>- Schilze Assigned By
P. Ford
Oote Assigned.
Dec. 87
Reviewed by.
Oote
Required.
Qonnq
No
•
a
E
° 5
M Z
Oiprh
r*
r o
IDENTIFICATION TESTS
e|j
STRENGTH TESTS
CONSOL
Laboratory Log
end
Soil Diicnplion
2 :
% *
Wolir
Stnlinl
%
LL
%
Poros-
ity
n(%)
Sit»«
-200
%
Hyd
-2 >i
%
G.
v„
pet
•5p
• »>
£ ;
• A
& O
Toroonr
or
Typo
Till
°c »'
or <7
P»f
Foilur*
Crittrio
of r
p«i
Sfroin
%
V
/ 8o
FBI
k
7.5-9.5
4
Aven
fleToi
al Ur
It U
(7.5-9
5')
* 97.5 i
cf
Dark brtwi, fine to coarse
SAM), sate Gravel, little
Slit at 7.8' change to
Broun, fine to medlun SAM),
little(+) Silt
7.8
20.0
7.8-8.2
SAVE
8.2
13.4
8.3-6.5
11.7
82.5
j.6x
fK
tf
nediiia SAM),
little(-) Silt
9.7
7-9
10.0
7.1
M.n-ifu
14
1
? fi7
10.4
12.0
10.5-10. £
SAVE
10.9
11.2
in
Z '
c
m i
OOLDBERQ-ZOINO 4 ASSOCIATES, INC
GEOTECHNICAl-GEOHVDROLOGICAL CONSULTANTS
APPENDIX E-2
SM ?
-------
Terra-Vac Demonstration Project
Croveland, MA
Project No
LABORATORY TESTING DATA SUMMARY
Project EnqrD- Sclul2e Assigned By P- Fnnl Dole Assigned J>S£i_8L
Reviewed by.
Oote
Required.
Boring
No
•
a
E
o o
VI z
Dtpth
It
J o
IDENTIFICATION TESTS
pi
STRENGTH TESTS
CONSOL
Laboratory Log
and
Soil Description
S m
i'
5s
Wofir
'OAtlAl
%
LL
%
Poros-
ity
n(%)
Sn««
¦ 200
%
H»d
-2 fl
%
c.
Y„
pel
Z\*
• »»
E t
• a
1 o
Torvont
Of
T»pi
Tad
.75
1S.1
22.9
15.2-15.1
i
31.0
47
90.2
K
?
ft? A
i.!w
10-7
if
<
® :
r
m :
z:
Z '
a>'
JO
GCOTCCHNICAL GCOHYOROLOGICAL CONSULTANTS
APPENDIX E - 2
SM 2
-------
Terr* Vac Demonstration Project
Croveland, MA
Project No Lr 10636
LABORATORY TESTING OATA SUMMARY
Project Engr P. Schilze Assigned By p- pole Assigned __EEE^®L
Reviewed by
Dote
Required.
a z
in *
Otplh
ft
a •-
Walcr
Conttnl
%
IDENTIFICATION TESTS
LL
%
Poro*
it If
n(%)
Si««*
200
%
Hid
2/1
%
Yd
pcf
J
£ t
Torvoni
Of
Typo
Till
STHCNGTH TESTS
"c" °c
or (T
P»t
Foilurf
Critorio
a.-tr,
Of T
Slroin
CONSOL
•o
Laboratory Log
and
Soil Doicnption
EB1
18-20
Avera p Tot il Urt t Me l|
18.0-19.6
- 109. pcf
18.2
33.9
18.6
T8"5=-
19.0
38.?
X.O
50
85.3
TTTx
£hZ
&c-
J£5&
19.1
36.9
36.5
97
44
2.75
10
23-
2X5
11L
Avpra
p Tot iLik
UjeL
«tiL
Ml
AH,
1 pcf
ui
cn
23.1
8.8
35
J.67
Olive-gray Sllty CLAY,
trace fine Sand, trace
thin Slit layers
Brown fine to median SAN),
trace Slit
Note: Insufficient sample
to perform permeability
test
-i vi
> c
o{
r £
n >
15
SO
CD "n
;r
x j»
CD
-i
m
in
-1
w
OOtMCRQ-ZOINO • ASSOCIATES, INC
GEOTECHNICAL-OEOHVOROIOOICAL CONSULTANTS
APPENDIX E-2
SM ?
-------
Terra-Vac Demonstration Project
Cleveland, MA
Project No
LABORATORY TESTING DATA SUMMARY
Project Engr. D- Schilze Assigned By P. Fnrrl Oote Assigned i*»- ft7
Reviewed by
Oote
Required.
in
H W
*» C
09 S
r *
m x>
I"
SO
(S "n
5r
» >
CD
-I
m
«/»
w |
Boring
No
•
a
E
o •
M Z
Otplh
II
r O
identification tests
STRENGTH TESTS
C0NS0L
5:
o •
A h
Wotar
?OAt«At
%
LL
%
Poro»-
ily
n(%)
Si
• 200
%
M»d
-2M
%
G.
Yd
pet
•
E 2
• a
a. o
Torvont
or
Typa
T.tl
t <
2.0-3.
•') =
96.9 or
f
2.2
9.1
2.5
8.2
2.7-3.0
21
1
2.66
3.0
15.3
3.1-3.3
17.2
47
88.8
K
-------
Terra-Vac Demonstration Project
Croveland, MA
Project No
L-10636
LABORATORY TESTING DATA SUMMARY
Project Engr Sc^ze Assigned By p- Ford Dote Assigned _Dec:_87_
Reviewed by
Dote
Required.
8ormg |
NO
«
a
€
o o
V> Z
Dopth
ft
£* o
identification tests
gfi
strength tests
CONSOL
Laboraloiy Log
ond
Soil Ottcnplion
o
1;
a .
-1 o
Wales
:onUnt
%
LL
%
Poros-
ity
n<%)
SltM
¦ 200
%
Hyd
%
6.
Yd
pel
•uF
• »
£ ^
• o
& o
romont
or
Typ«
Toil
ft or
tote: Eh tire sanple
listurbed. Ftoor recovery
l
10.3
7.5
10.5
8.5
|
ir>
00
2
C
QOLOBf RG-ZOINO 4 ASSOCIATIS, INC
QEOTCCHNICAL-GCOHVOROLOGICAL CONSULTANTS
APPENDIX E-2
SM. 2
-------
Terra-Vac Demonstration Project
Crcrveland, M(\
LABORATORY TESTING DATA SUMMARY
Project No I/-10636 Project Eriqr. [). Srhili-r Assigned By P. FnrH Dote Assigned iw m
Reviewed by
Dote
Required.
Boring
No
Sompl*
No
Otplh
II
f«
IDENTIFICATION TEiTS
*1*
strength tests
CONSOL
Laboratory Log
ond
Soil Ootcnpfion
: s
s •
o .
•J o
1* oltr
Canltnl
%
LL
%
Porot-
'r
*(%)
Situ*
-200
%
H»»
C -
w "Z
• o
a. o
Torvant
or
T»P«
T.»t
<7e or <7e
or <7
Pit
Failurt
Ct ittno
or r
pit
Stroin
%
Cc/
/ «o
EB2
7
12-14
17
Avera
se Tot
ll Uh
t Me
Iffit
(12.0-
3.2*
¦» 119.
Dcf
Olive-gray Sllty QLAY,
little(+) fine Sand
12.1
21.9
12.4
19.6
12.5-12.
26.2
46
93.5
K
720
12.8
29.6
12.8-13.
8]
,71
?.7 5
13.0
30,0
ft
14-16
10
Avpra
p Tot
il Ifn
r Hf
ighr
14.0-
5.7'
= 119.
1 prf
Olive-gray Sllty CLAY,
trace fine Sand
14.?
?¦>. I
14.1
14.ft
?5.9
il a-is
%
4?
? 75
IS.l
30.9
15.2-15.
32.9
49
86.9
to
K
i?c =
1440
15.6
35,3
cn
Z •
C
aOlDBCRO-ZOINO t ASSOCIATES. INC.
OEOTCCHNtCAL-QEOHTOnOLOaiCAL CONSULTANTS
APPENOIX E-2
SM 2
-------
Terra-Vac Demonstration rroject
Groveland, HA
LABORATORY TESTING DATA SUMMARY Reviewed by
Date
Project No L~10636 Project Enqt D« Schiize Assigned By p- Fortl Dote Assigned Dec- 87 Required
o
c
k
O o
O Z
•
a
E
o £
vt 2
0«pih
rt
? o
IDENTIFICATION TESTS
ft
STRENGTH TESTS
CONSOL
:;
2 *
3s
Wolir
Conltnl
%
LL
%
fros-
ty
n(%)
Sn»«
¦ 200
%
Hyd
-2/1
%
c.
Va
pel
•
E -
• a
& o
Tor«ont
Of
T«p«
T#H
21
Avera
je Tot
il Un
t Me
Itfit
>20.o-;
0.3*
= 120.
) DCf
20.0-20.
47
92
45
J.75
20.2
32.0
20.3
7-6
laboratory Log
ond
Soil Ottcnplton
as
O
r
m
z ¦
3live-gray Sllty CLAY
)live-gray Slity CLAY,
:rsce fire Sand at 18.5'
:hange to brrwi, fire to
nedluo SAM), little Slit,
seme fine Gravel
)llve-gray Slity CLAY at
!0.2' change to brawn,
lne to coarse SAM), sane
Iravel, little SLlt
tote: Entire sanple
llsturbed. ftwr Recovery.
OOCDBCRQ-ZOINO • ASSOCIATES. INC
GEOTECHNICAl-QEOHYDftOlOGICAL CONSULTANTS
APPENDIX E-2
SM 2
-------
Terra-Vac narcnstratJcri Project
Grovel and, HA
Project No
L-10636
LABORATORY TESTING OATA SUMMARY
Project Engr D- Schilze Assigned Bv P. Fort! Qote Assigned _Dec_8L
Reviewed by
Dote
Required.
Boring
NO
Samplt
No
Oiplh
It
f o
IDENTIFICATION TESTS
elS
STRENGTH TESTS
CONSOL
O —
2£
o .
¦J o
Wolff
;ont«nl
%
LL
%
"oroi-
• *
n(%)
Sitx
200
%
Hyd
if-
%
6.
vd
pel
rorvont
or
T»pl
Toil
7c or ac
or <7
ptf
Foilurt
Criltno
or r
ptf
Strain
%
Ct /
/ «o
EB2
12
20.5-22.
22
Aver
1KB To
-1] Ih
It V
2l.fi
) = im
1 nrf
E
20.7
5.7
a
20.7-21.
28
6
2
2.67
b
21.1
8.9
21.5
10.0
13
22.5-24.:
23
Avert
«P Toi
al Ur
1t V
Irfit
(22.5-
24,|-
1-116
1 prf
t
22.5-22.f
SAVE
22.8
8.0
(
12.9-23.2
SAVE
i
L3.2
'A. 7
~.2-23.6
AYE
23.7
7.3
J.7-23.q
V\
in
?
7 66
¦
>
*
ft
>
1
)
i
)
Laboratory Log
and
Soil Oficriplion
CT>
Z '
c'
OOLOMNQ'XOINO • ASSOCIATES, INC.
QEOTCCHNICAL-OCOHYOROiOaiCAL CONSULTANTS
chmge to bmun.
Kill I rr «vmplr
APPENDIX E-2
SM. 2
-------
o .>
^ —
-» Ul
Q
U
V*
K
. o
n l
Z
<
ir .
a
tei
• &
C
u
L
C 11
o _
X. •
X W
w
u
• 1'
1
«r
T f.
c.1
-i
C £
<
c a
j
w
L —
^0 *
G
0
wi
3
V
0
v>
«tO
M *
•
cn
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
OOIDMNO-ZOIHO » ASSOCUTf t. IMC.
OlOTICMMICAL-aiOKreitOLOOICW. CONSULTAMTS
BORING NO
SAMPLE «•
DEPTH 0.2-o.V
TECH js-
REVIEWER
4PPENCK E-9
TEST SERIES
NO. 1
DATE -<=• »
..C836
FILE
S.3
162
Reproduced tram
bew available copy
-------
o
s
o
o
«n
o
«
-C
in ^
a
*
«
tm.
A
u
0
r
U
¦r
r r»
O
o
«•
4
C-
ir a
ft
c n
tat
w r.
<
o ¦*
a
n
s
ts>
a
v
Vie
MX
r'
u*
o o o o o
N • «> ~ **
PERCENT riNCH ®T WtlOHT
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
OOlOtCRO-ZOINO * AMOCIATtt. IMC
OtOTSCMNICAi.-0(OHTONOLOaiC*L CONSULTANT*
BORING NO rl
SAMPLE =
DEPTH -3-.-
TECH "S-
REVIEWER
APPCNTX* E-9
TEST SERIES
NO 2
DATE Jen 88
IG63S
FILE
S3
163
-------
o
o
TERRA VAC DEMONSTRATION rROJ.
CROVELANO. MASS.
GRADATION TESTS
aoioaino-zoiNO » amociate*. inc
0I0TICMNICM.-0I0NT0M0C0O1CAL CONtUlTANT*
0ORING NO ,q'
SAMPLE 3
DEPTH 6.S--.3
TECH. »s:
REVIEWER
flPPENtXX E-9
TEST SERIES
NO 3
DATE 80
.IC636
FILE
S3
164
-------
QOLDMRO-ZOtNO ¦ ASSOCIATES, IMC.
atOTtCMfnCAL-OtOMTDNOLOOICAL CONSULTANTS
TERRA VAC DEHONSTRAT1 ON PROJ.
CROVELANO. MASS.
GRADATION TESTS
BORING NO. c3-
SAMPLE «
DEPTH 8.O-0.B
TECH »s-
REVIEWEf?
APPENOX E-9
TEST SERIES
NO «
DATE <"=" 98
• C636
FILE
S3
165
-------
OOLOMRO-ZOINO A ASSOCUTtt. IMC
OtOTtCHNICAL-QCOMYOftOlOGtCAL CONSULTANTS
TERRA VAC DEMONSTRATION PROJ.
CR0VELAN3. MASS.
GRADATION TESTS
BORING NO. -3
SAMPLE "i
DEPTH ac-.s.-
TECH 'S*
REVIEWER
APPENtW E-9
TEST SERIES
NO. "5
DATE "s
. .:b38
file
S3
166
-------
9
u
o
L
<3-
(E
«
S"
a
w
t 7
K
W.
c
•
o
c
m
hi
U
- b
K
3
o
O
V)
, «t
o .
-1
<
cn
oe
c r
w
« j
k-
L C
<
0 9
a
r* n
a
~
M
K
tflO
MIX
(O
o o o o
K « «l « ^
PC'CCNT 'INCH 0Y weiOHT
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
ooldscmo-zoino » associatcs. inc.
atOTtCMNICAL-QtOHTDMOlOaiCAL CONSULTANTS
BORING NO. '-0-;
SAMPLE c
OEPTH i a
TECH. 'S-
REVIEWER
APPEND* E-9
TEST SERIES
NO s
DATE 98
..IBM
FILE
S3
167
-------
V
- TJ
US
to
V
d 9
V
— C
a
4
tn u.
a
0 '
c
L w
t>
O
0 c
- o
- o
n
w
u
—
«
3
e o
O
«t
f
0
J
<
a
in
r
w
— ^
<
i s
m
r* n
J
>•
t/i
1
w
wO
wz
\r
o o o o o
H
pc*cc*t riNtn •* wciqnt
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
OOlOaiRO-ZOINO* ASSOCIATtS. INC
a(0TtCHNICM.-
-------
o
o
o o o o o
K o #1 t «
PCKCINT FINE)* 8T weiOMT
aOUO«(KO-ZOINO » A*»OClATt». IMC.
OIOT«CMNICM.-0(OHTDIIOl.OOICAL CONtULTAWTt
TERRA VAC DEMONSTRATION PROJ.
GROVELAND. MASS.
GRADATION TESTS
.a-i
BORING NO.
SAMPLE
OEPTH -e "
tech 's
REVIEWER
APPENDIX E-9
TEST SERIES
NO. «
DATE •<*• ¦>»
.MM
FILE
S3
169
-------
-*
a
*>
V
a
to
«
a
w
«
>.
a
l3
9
O
y
u
— l/»
c
9
c 0»
O
«rt
. f\l
o .
-1
®
<
u>
oe
c r
w
— j
( a
<
o o
a
ei n
a
.1
«rt
trtO
MZ
o*
fc*
in
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
QOLOaiMO-ZOINO • AMOCUTM, INC
a(OTioancM.-oiOHTO«ocooiCAL consultant*
BORING NO. t.a-i
SAMPLE "
DEPTH -9.J-I9.S
TECH. »s-
REVIEWER
APPCNOR E-9
TEST SERIES
NO. »
DATE '¦<*» 88
-j0836
FILE
S3
170
-------
•Sr.
o o o
K «0 A ~ «
PCHCtNT FINCK BY wetOHT
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
QOLOKRO-ZOINO 1 AMOClATt*. INC
atOTICMMICAL-OIOHrOMavOOICAL CONVUI.TAMTS
B0RIN3 NO. EB-'
SAMPLE 10
DEPTH 23. 1-23. 4'
TECH. "ST
REVIEWER
APPENtW E-9
TEST SERIES
NO. >o
DATE ;on 89
'.isua
FILE
S.3
171
-------
TERRA VAC (DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
OOLMIMO-ZOIMO « AMOCIATCS. IMC.
(MOTtCM«ICM.-MOMVD«OlOaiCM. CCNtULTAKT*
BORING NO.
SAMPLE
DEPTH a --
TECH -s
REVIEWER
APPENDIX E-9
£9-2
i
. i
TEST SERIES
NO. n
DATE Jv> m
.IC830
file
S3
172
-------
o
F
o
o
•t
"a
V
B
*
-< —
gi W>
a
F «•»
w
m
""
C
«
o
L
u
w
u
m
c
_
¦* "
O
• i
r
*>
J
o r
• Z »¦»
<
u.
r
w
CP 3
- n
~»
t.
<
.2 *
a
0
a
v
VI
nO
y ^
r,
»—
•
in
O O O O o
s •
ftnctHT Hutu sr weight
TERRA VAC DEMONSTRATION PROJ.
GROVELANO. MASS.
GRADATION TESTS
OOU)«tNO-ZOINO t ASSOCIATES. INC
aiOTtCMNiau.-a(OMTO*ot.ooiCAi consultants
BORING NO. !
SAMPLE
DEPTH "-3
TECH -s-
REVIEWER
APPENCCX £-9
TEST SERIES
NO. ti
DATE •a" WH
. :ew
file
S3
173
-------
o w
o
0 L
F O
O "K
O 0 t
— Q
D 3
^ U O
V
< us
ac
to L
4
•> u
2
c
. c
w •> O
— L">
C - c
« wn u
o
L -•
rj ^
©
1*1
u
pj
c
a co
3
OJ
O
lit
C Z
-J
ml **
4
f.
CP 3
X
c n
W
l n
c «
a
3
F
'J
J-
a
V
«»
-
«iO
_
MX
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. HASS.
GRADATION TESTS
OOtSatRO-ZOIMO » AMOCUT1*. INC
aiOTVCMMtCM.-OCONYO«0(.OOICAI. CONSULTANT*
BORING NO.
SAMPLE 7
DEPTH - 0 -B
TECH 's-
REVIEWER
APPENOOC E-9
TEST SERIES
NO. 1
DATE q,»
.:ce se
FILE
S3
174
-------
o o o o ©
N « A «
PERCENT riNg* St WCIOHT
fc
c
¥>
V
a
V
*
4
a
F
w
a
•
c
L
e
<-»
tal
u
f. *
r
3
~ o
O
M
? r
J
<
K
Z M
w
K
t. «*
<
£ *
a
F
J
a
~
v>
•AO
w Z
k*
ERRA VAC DEMONSTRATION PROJ.
GROVEL ANO, MASS.
GRADATION TESTS
19-;
OOLOMHO-ZOINO 1 ASSOCIATE* INC
OCOTICMMICiU.-0(OMTD*OlOaiC«k COMSUlTftNTS
BORING NO.
SAMPLE
DEPTH =
TECH ^
REVIEWER
APPENOK E-9
TEST SERIES
NO.
DATE -- ""
-f w
FILE
S3
175
-------
o
o
TERRA VAC DEMONSTRATION PROJ.
CROVELANO, MASS.
GRADATION TESTS
aoiOscno-20iNO * assocmtc*. inc.
atOTCCMNICAL-OtOHTDMOLOaiCAL CONSUITAHT*
BORING NO. IB-
SAMPLE 5
DEPTH 9 9-s.c
TECH. «S-
REVIEWER
APPENtW E-9
TEST SERIES
NO. 5
DATE -¦>" 80
_-.S616
FILE
S3
176
-------
GRADATION TESTS
• USOCUTtt. mc
OWCM. CONSULTANT*
BORING NO. '•*-*
SAMPLE 8
OEPTH :=.:-ic.r
TECH.
REVIEWER
APPCMCXX E-9
TEST SERIES
NO. :«
OATE ••
FILE
s:
177
-------
* »
-
V
c
«
1
*» •
+m
9 -
m
O »
^ •# 1
" "*
f5
;
m
w
i
-V J J
«
J- ^
3
q
— •-
m
, s
a
C
m
V
*
: f I
r" i
*
a
-c-. i
!
a
]
»•
1
(
*
#o
MX
* m
TERR* VAC DEMONSTRATION PRDJ
CSOVELAHJ. MASS.
GRADATION TESTS
3 :
i uwcum, mc.
COMMTUfTI
BORING NO.
sample
DEPTH
TECH. **-
REVIEWER
MVCNtn E-9
TEST SERIES
NO.
DATE
FILE
:=sjs
S3
178
-------
w2
28
w
>
*9
f
2 •
St
*
s
I
5
i
I
a
*
O w
i <
* ,
i .
"1
> i I
I i i
pen
.{____! J
TT
i i
<
o o o o o
• f»et»»T »mf« nr «cia«r
I -¦
. s
TESS*, YMT DEMONSTRATION PRO J.
C90VELAW0. MASS.
GRADATION TESTS
• Asaocum. me
•oiowonoioffic »i cimurum
BORING NO. J
sample ¦
DEPTH --a .v :
TECH. -v
REVIEWER
tfOENOR E-9
TEST SERIES
NO.
DATE
.9
.zjsyi
FILE
S3
179
-------
! I
it
I I !
T~i*
-1-1-
©
o
VAC 0€MOr*STRAriCM PRO J.
CnOVELAMD. MASS.
GRADATION TESTS
OOLMCMMOMO • MMCUm. MC
BORING NO. « *
sample 9
DEPTH
TECH. ¦*-
REVIEWER
APItNOK E-9
TEST SERIES
NO. • *
DATE —
.:ss
f«lc
S3
180
-------
r*ira»^* fc*r«
* 6
o
•(•cixr *¦•«(• •~ w(i«mt
GRADATION TESTS
ia-j
TEST SCRIES
NO
DATE :«»«•
'JOM
eoittNO no.
SAMPLE
DEPTH
TECH.
REVIEWER
APFCMOOC E-9
FltE
S3
mum»—> m imumuwihoiwm i rmww iwn
181
-------
8
•»
oJ
V
«
J*»
a
**
ft
1
3
ft
O
'
•rf
r.
C
3
& u
m
a
«
K
m
«
a
. O
c .
r:-
ii j
a
*»
"
So
M C
*•
K
v»
o o o o o
^ • n ^ «
»(«ct«r I* «tit«T
TERRA VAC OEMffJSrRAriOM PROJ.
CHOVEUANO. MASS.
GRADATION TESTS
•9-:
IMMCUTU.MC
4tONTOWIOaCH CWIMT«lfTI
BORING NO
sample 1!
DEPTH " ^ —
TECH. -s:
REVIEWER
APPENOK E-9
TEST SERIES
NO.
OATE -"a- »
.:vsx
FILE
S3
182
-------
I I I ! I ! I
! 1 I ! 1 !
a r>
TERRA VAC DEMONSTRATION PROJ
GRQVELANO. MASS
GRADATION
aOLOBCMO-ZOINO k ASSOCIATES, IHC.
OCOTECMM1CAL-OCOMTOMOLOOICAL CONSW.TAKTB
BORING NO. «-=
SAMPLE a
DEPTH
TECH vs".
REVIEWER
APPENDIX E-9
TEST SERJES
NO.
DATE Jar* 80
_.ZB3B
FILE
S3
183
-------
o
o
0
01
o
*
o
«1
pcaccht finch ar weight
TERRA VAC DEMONSTRATION PROJ.
GROVELANO. MASS.
GRADATION TESTS
OOL0«(KO-ZOINO * ASSOCIATES. INC.
OCOTCCHMCAL-OCOHTONOCOOICAL CONSULTANTS
BORING NO. E0"2
SAMPLE >3
DEPTH -3-23-9
TECH -si
REVIEWER
APPENDIX E-9
TEST SERIES
NO. ^3
DATE Son 00
'.:C696
FILE
S3
184
-------
o
o
o
0k
o
o
<0
PC^CCNT 0T WEIOHT
"CRRA VAC DEMONSTRATION PHDJ,
GROVELANO. MASS.
GRADATION TESTS
ClOLDMftO-ZOmO 4 ASSOCIATri. INC
atOTfCMKIC*t-QeOHTO*OL
-------
o
o
o
0»
o
o
pcwcent at weiomt
TERRA VAC DEMONSTRATION PROJ,
CROVELANO. MASS.
GRADATION TESTS
OOLOBtMO-ZOINO t ASSOCIATES, INC
OtOTCCHNICAL-OeOHYDnOLOOIMl CONSULTANT#
BORING NO. »"1
SAMPLE 1
OEPTH 20. o-i*. o-
TECH
REVIEWER
APPENDIX E-9
TEST SERIES
NO. 23
DATE *°y m
uons
file
S3
186
-------
PERCENT PiHER WEIOHT
TERRA VAC DEMONSTRATION PROJ.
CROVELAND. MASS.
GRADATION TESTS
OOUStCHO-ZUINO • AMOCIATtl. IMC
OIOTtCMNICAL-OEOHYOROLOOlCAL CONSULTANTS
BORING NO.
SAMPLE »
DEPTH «.0-*a.0-
TECH •"
REVIEWER
APPFNCXX E-9
TEST SERIES
NO. "
DATE ¦"* —
FILE
S3
187
-------
z
o
o
in
Q
I-
s —
• o
o
«n
? •
a:
<
sg
a
Ui
ri
€
W-
c;
5«
*
y
fVI ®
u
7°
a
O
o
CO •
«"«
1
0°
Zgg-
5
w
<
oi<-
5f
a
®o
»
a
>
~ 1
u>
1
_
*0
~
WZ
U)
aotoMfto-zomo * assooatcs. inc
atOTf CMWfCM-OCOHrOftOtOOICAl CONSULTANTS
TERRA VAC DEMONSfRAriCN PROJ\
GROVELANO. MASS.
GRADATION TESTS
0ORING NO.
SAMPLE *
OEPTH tb. o-«i. 0"
TECH.
REVIEWER
APPENOK £-9
TEST SERIES
NO. »
OATE "°r —
F!LE
S3
188
-------
© o o © ©
« o * «
PtJ^CCNT FlHCff 9T WCtOHT
terra VAC DEMONSTRATION PROJ.
CROVCUANO. MASS-
GRADATION TESTS
OOUSHRO-ZOINO t AMOCUTU. IMC
OtOTlCHMtC*i.-Q(OMTDHOLOaiCJH. CONtULTAMTS
BORING NO. ca-a
SAMPLE 3
DEPTH uz.D-na.0*
TECH. -r
REVIEWER
APPENOPC E-9
TEST SERIES
NO. n
DATE «? m
FILE
S3
189
-------
o o o o o
N « »» * **
Pe*Ce*T fiXER »r wttGMT
TERRA VAC DEMONSTRATION PROJ.
GROVELANO. MASS.
GRADATION TESTS
OOUHCftO-ZOINO * ASSOCIATU. INC
OtOTfCHMCAL-OCOMVOflOLOOICAL CO*«IAT*jrr«
BORING NO. **•*
SAMPLE «
DEPTH wi.ft-ja*.o-
TECH.
REVIEWER
APPENDR E-9
TEST SERIES
NO. »
DATE **r ••
FILE
S3
190
-------
o
o
o
9
©
<0
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
QOkOaiftO-ZOINO • ASSOCIATE 1, INC.
OKOTVCMNICAL-OCONYOMOlOaieAL CONSULTANTS
BORING NO
SAMPLE 7
DEPTH JBa.D-J7l.0-
TECH. -r
REVIEWER
APPENOCC E-9
TEST SERIES
NO. »
OATE "°r "•
FILE
S3
191
-------
o
PE*CENT FINE* 8* WEIOMT
TERRA VAC DEMGNSTRATJON PROJ.
GROVELAND. MASS.
GRADATION TESTS
aoLOsmo-zoiNo »amocfati*. inc
OCOTtCMB)CJU.-QeOHrOROl.OOIC*L CONJW.Tl.KTB
BORING NO. »-»
SAMPLE •
DEPTH ire. o-i80.0"
TECH
REVIEWER
APPENOOC E-9
TEST SERIES
NO. «
DATE "
FILE
S3
192
-------
i I I
I fl
o
o
o
^ : _.
i —i
:—r —7 -i—-— - - -
O
o>
o
CD
o o o o o
k tc r> * •"»
PC^CCNf Fin Eft BY WEIGHT
ffl
CD
JL
5§
dw
•
fi
n £
i
CD —
UB
H
an"
H
m •
TERRA VAC 0EH0N5TRATION PROI.
CROVELAND. MASS.
GRADATION TESTS
ootcaino-zoiMo * amocatm, inc.
aCOTCCMmCAL-OCOHTOttOLOOICAL CONSULTANTS
BORING NO.
SAMPLE "
DEPTH «*-«• «"
TECH. "*T
REVIEWER
APPENOK E-9
TEST SERIES
NO. *
DATE ¦"»
ua~
FILE
s.3
193
-------
o
d
A
5o
w z
CD
«fS
-------
PERCENT rinER B* WjlOKT
TER9A VAC DEMONSTRATION PROJ.
GRQVELANO. MASS.
GRADATION TESTS
QOLOSCHO-ZOINO • AMOCIATf S. IMC
aaOTICMNICAL-OlOMYDIIOLOOICAL CONSULTAMTS
BORING NO.
SAMPLE
OEPTH
TECH
REVIEWER
APPENCK E-9
EB-3
>1
ZU-Z38 in
«ST
TEST SERIES
NO. 3
DATE
May «
U10838
file
S.3
195
-------
o o o o o
~- « f> ~
PERCENT FINER Br WEIGHT
• **
*» •*
p (/>
f/t
K
X
< u
a
w
a:
r*
«•. •
si
aJ ti
MATERIAL SOURCE
~
ȣ
Ul
0
1*
F| i
s
>»
v»
~
TEST
NO
S35. 1
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
OOIOBCRO-ZOINO • AJJOCIATU. INC
QCOTCCMNICAL-OeOMTONOLOaiCAL CONSULTANTS
BORING NO tB"4
SAMPLE 1
OEPTH ®"" »"
TECH «r
REVIEWER
APPENDIX E-9
TEST SERIES
NO. 13
DATE **
L1GS96
FILE
S3
196
-------
o o o o o
S <• l> * n
pe*cc*r fiwcff sr wtianr
TERRA VAC DEMONSTRATION PROJ.
GPOVELAND, MASS.
GRADATION TESTS
aOU)»(RO-ZOINO * AMOCIATt*. INC.
aCOTtCMN)CM.-C(OHTORO(.OaiCAL COWfULTAWTl
BORING NO.
SAMPLE
OEPTH
TECH.
REVIEWER
APPENDIX E-9
ee-4
2
3B-43 in
HST
TEST SEfyES
DATE "*
L1083B
FILE
S3
197
-------
PtRceNi ?incft sr wcioht
TERRA VAC DEMONSTRATION PRDJ.
CROVELANO. MASS.
GRADATION TESTS
OOLOtCIIO-201NO • ASSOCIATf *. INC.
OIOTtCMNICAL-OCOHTD(*OLOO]CAL COM»VM-T*MTS
BORING NO.
SAMPLE
OEPTH
TECH
REVIEWER
APPEND* E-9
tB- 4
BS-B9 In
HST
TEST SE$ES
DATE "7 "
FILE
S3
198
-------
o
o
o
o o O -
s • o t
PCACCNT FINER BV WCIOHT
TERRA VAC DEMONSTRATION PROJ.
CROVELANO. MASS.
GRADATION TESTS
aOLOURO-ZOINO « ASSOCIATES. INC.
aCOTtCHMtCAL-aeOHVOROLOOICAl CONSULTANTS
BORING NO. EB"4
SAMPLE 9
DEPTH lcs-iii m
TECH. «T
REVIEWER
flPPENOOC E-9
TEST SERIES
NO. 39
DATE 0#
L109J8
FILE
S3
199
-------
t
TERRA VAC DEMONSTRATION PROJ.
GROVELANC. MASS.
GRADATION TESTS
aokoacRO-zoiNO a associates.
-------
*1
/
1
(3r
ui
-j
9
U 9
0 —
U ~»
•f *1
••
y)
Q
Z . •»
< — —
W 9"
4
>1/1
a
e o
HJ
i t-
ae
u
C 9
• c
0 —
UI
4
n
u
i
X
ffl tp
3
O
(A
• 1
_J
<
0>~
£
C£
w
7 *i
<
a
U
a
>-
~
M
(AO
wm
W X
\n
TERRA VAC DEMONSTRATION PROJ.
GROVELANO. MASS.
GRADATION TESTS
EB-«
OOtOMftO-ZOINO • AtSOCIATIS. INC.
QtOTlCMNICAL-OCONTOROLOaiCAL CONtUlTANTS
80RING NO.
SAMPLE
OEPTH >70-173 in
TECH. "ST
REVIEWER
APPENDIX E-9
TEST SERIES
DATE Mar m
u1c LIOUO
FILE
S3
201
-------
o
o
O O O o o
* **
PE»*CeitT FINE* #Y WClOHt
TERRA VAC OEHDNSTRATION PROJ.
GROVELAND. MASS.
GRADATION TESTS
aoinMno-zomo » kSSOCUTi*. inc.
QKOTicMNiCAL-ocOMronocoaiCAi. co"«uvT*»rrt
BORING NO.
SAMPLE
OEPTH
TECH.
REVIEWER
APPENtW E-9
c»-*
8A
197-200 In
KST
TEST SEfyES
DATE
Hey n
110830
FILE
S3
202
-------
o
o
percent une* s* weiOMr
TERRA VAC DEMONSTRATION PROJ.
GROVELANO. MASS.
GRADATION TESTS
OeU»(RO-ZOI«IO • ASSOCIATE*. INC.
Of
-------
oc
o
t-
zi 9
w 8
•*" •
V >
M
S
<
s
y\ a
It1
9 0 c
a:
oiw
>
¦; s
a
w
<# c
o
i *"
s
D
O
® —
No
29-
<
«n™
K
W
£r
K
<
o I
a
o
a
>-
~
MO
w c
«•
U1
PERCENT ftHt* BY WCIOHT
TERRA VAC DEMONSTRATION PROJ.
GROVELANO. MASS.
GRADATION TESTS
aoioacfto-zoiMO • aisociatc*, inc
aCOTCCXmCAL-OCOHYOROLOOICAL CONtUlTAMTt
BORING NO. „eB"
SAMPLE 10
DEPTH
TECH.
REVIEWER
APPEND* E-9
mst
TEST SERIES
N0- ¦ M
OATE ""
LI0830
FILE
S3
204
-------
APPENDIX D
SHALLOW SOIL GAS SAMPLES
205
-------
Shallow Soil Cas Samples
Samples vere collected to monitor the shallow soil gas concentrations on
three occasions during this project corresponding with pre, mid and post
treatment activities. Shallow vacuum monitoring wells (1-4) and twelve
shallow punch bar tubes were used at sample locations. The purch bar samples
were collected from hollow stainless steel probes that had been driven to a
depth of 3 to 5 feet. As with the vacuum wells, soil gas was drawn up the
punch bar probes with a low volume personal puap and tygon tubing. Gas tight
50 ml syringes were used to collect the sample out of the tygon tubing.
The twelve punch bar probes were placed in approximately the same location on
each sampling phase (pre, mid, post). This was accomplished by setting up a
coordinate system around the main extraction well and recording the location
of the punch bar probes. The grid was established by using extraction veil
#1 as the origin (0,0). While facing the building, the positive x axis was
in the direction of east and the negative x axis was in the direction of
west. The y axis corresponded to the north-south line. The following table
illustrates the coordinates, and the sample codes used during each phase.
SflfflPH CQtiflg
coordinates ££& Mid Boat
(feet)
2, 0
6, 0
10, 0
2, 0
6, 0
10, 0
0, 2
0, 6
0, 10
0,- 2
0,- 6
0,-10
PB1
PB2
PB3
PB5
PB6
PB7
PB10
PB11
PB12
PB4
PB8
PB9
PB1
PB2
PB3
PB7
PB8
PB9
PB10
PB11
PB12
PB4
PBS
PB6
PB8
PB9
PB10
PB4
PBS
PB6
PB11
PB12
PB13
PB1
PB3
PB7
206
-------
MITMATKH
PUNCH
IAA SAMPLES (US/cubic Mtir]
Mticur
Notify lano
Trana 1,2
Triehtcro
TatracMgro
Saapla to
Oata
Oiler (do
act
1*1
athylana
elftylana
Oilutior
Pl-Ot
12/1 vsr
res
0
5
0
153
55
X 1
Pf-02
12/11/87
ECO
0
3
0
2
66
X 1
Pf-03
12/11/87
ECO
0
3
1347
2
2
X 1
W-04
12/14/87
ECO
0
3
2
2
2
X 1
M-04
12/14/8T
CCD
0
3
21922
2
12803
X 100
PI-04
12/H/87
CCD
0
3
23442
2
1
X 200
Pl-M
12/H/87
CCS
0
3
12037
2
4415
X 200
Pt'07
12/14/87
ECO
0
3
1
2
0
X 2000
Pt-ll-1
12/14/87
ECO
0
3
0
9
0
X 1
PI-ll-2
12/14/87
ECO
0
3
0
163
0
X 1
PI *03
12/15/87
ECO
1
3
27
2
73
X 1
Pi-06
12/15/87
ECO
172*374
3
63821
2
2
X 200
PI-07
12/15/87
ECS
0
3
19811
2
2
X 1
PI-00
12/15/87
ECS
t
3
16453
2
2
X 1
PI-09
12/15/87
MO
0
97539
1
561193
0
X 1
pa* io
12/15/87
FID
0
1604896
0
0
0
X 1
P8-11
12/15/87
ECO
0
3
38
2
t
X 1
P8-11
12/15/87
no
0
2616488
0
0
0
X 1
PI-12
12/15/87
no
0
¦>17281
1
3973080
407025
X 1
PI-05
12/16/87
MO
0
332970
0
292262
0
X 1
PI-06
12/18/87
MO
0
1348251
1
1419513
0
X I
PI-07
12/14/87
MB
0
207530
1
1016113
0
X 1
P8-08
12/16/87
ECO
0
3
39496
2
1
X 100
PI-10
12/16/87
ECS
0
I
1
7065
0
X 100
PI* 11
12/18/87
ECO
0
3
6216
2
0
X 200
PI* 12
12/18/87
ECO
0
3
cVtht©
2
7700
X 1C0
PI-08
12/15/88
MO
0
' 173172
1
1505377
0
X 1
0 ¦ ••(on Oatactlon Unit
1 ¦ lalotf Quantitation Limit (Tract)
2 • ttm Ouantitttfan Liait
3 ¦ not quantified auo to Mtrii intarforanca
207
-------
PfCTICATNENT
VMU* MONITORING igLLS (uo/cifclc aatar)
Oataetor
Mathylana
Trana 1.2
Trfehlcro
Tatracftloro
Sa*pla to
Data
Typ»
CMorida
occ
TRI
•thy(ana
athytana
Oiluti
VMUG10-1
12/15/87
no
0
1
0
312999
0
X 1
VNUC1S-1
12/15/87
rro
0
1986059
97533
3709979
0
X 1
VNWC2S-1
12/15/87
FID
0
303049
154992
5192027
0
X 1
VMWS2S-1
12/15/87
FID
0
5571C2
429027
23412722
0
X 1
VNUS3D-1
12/15/87
FID
0
659022
1378130
28046470
1
X 1
VNU63S-1
12/15/87
FtO
0
2053161
387183
17162136
1
X 1
MM' 1
12/15/87
FIO
0
2144*7
0
1083832
0
X 1
VNU64I-1
12/15/87
FtO
0
1
1
540782
0
X 1
VMUQ10-1
12/18/87
CCD
1
5
20299
2
4815
x 100
VWB1I-1
12/18/87
CCD
0
3
63259
2
7479
x 200
VMUC2D-1
12/18/87
CCD
0
3
116722
2
10463
X 200
VWUG2C-1
12/18/87
CCD
0
3
106115
2
5677
X 200
VNWC2I*1
12/18/87
ICO
0
3
237594
2
5460
X 200
VMWC30-I
12/18/87
CCD
0
3
1321190
2
20450
x 200
VMUC3I-1
12/18/87
CCD
0
3
373302
2
13217
X 200
VNUS40-1
12/18/87
CCD
0
3
7451
2
6127
X 200
VNWG4S-1
12/18/87
CCD
0
I
16551
2
1
X 200
0 ¦ latoM Dataction Kalt
1 ¦ (alow Quantitation l(»lt (Traca)
2 ¦ Abova Quantitation Knit
3 * Not quantified dua to aatrii fntarfaranca
208
-------
*10 riEATMCHT
PUNCH IM SHALLOW SOIL SU (UB/Ojtjlc M»r)
Oetector
Methylene
Trana 1,2
Trichloro
TetracMoro
Saaple 10
Sate
Type
Chloride
DCS
TBI
ethylene
ethylene
Oflutton
P»1/1
3/i6/aa
ECS
0
3
1723
2
426
X
Pt 1/1
3/14/SB
ECO
0
3
2008
2
788
X
0
Ml/1
3/16/88
(CO
0
3
1
2
1
X
00
PI1/1
3/16/88
no
0
339348
a
1
0
X
PI2/1
3/14/88
ECO
0
3
24
2
696
X
PI2/1
3/16/88
no
0
0
0
1
0
X
PU/1
3/16/88
ICO
0
3
0
2
1
1
00
Ptf/1
3/16/88
FID
0
1
0
0
0
X
Pti/1
3/16/88
CCD
0
3
0
2
3731
X
00
PM/1
3/16/88
fio
0
0
0
0
0
X
PIS/1
3/16/88
ECO
0
3
0
2
1
X
00
P8S/1
3/16/88
no
0
0
0
0
0
X
PI6/1
3/16/88
ECO
0
3
0
6899
1
X
00
PI6/1
3/16/88
FID
0
0
0
1
0
X
PI7/1
3/16/88
ECO
0
3
0
2
1
X
00
pir/i
3/16/88
no
0
1
0
0
X
p«a/i
3/16/88
ECO
0
3
0
2
1
X
00
PM/1
3/16/88
FID
0
0
0
1*6778
0
X
PI9/1
3/16/88
ECS
0
3
0
2
1
X
00
P99/1
3/16/88
FIO
0
0
0
1 -
0
X
PS10/1
3/17/88
ECO
0
3
1068
2
3349
X
PH0/1
3/17788
FID
0
183092
c
306461
0
X
PI11/1
3/17/88
ECO
0
3
2389
2
4488
I
e
P81I/1
3/17/88
FIO
0
531699
a
514260
0
X
P81I/1
3/17/68
CCS
0
3
i
2
406
X
p«i2/i
3/17/88
FIO
0
0
0
1
0
X
0 a a*low Detection Mailt
1 ¦ (•ion Quantitation Malt {Trace)
2 • Above Quantitation Malt
3 • Mot quantified due to Mtrli Interference
209
-------
NIOTREATMNT
VACUUM MONITORING UCUS (US/ei£lc
aatar)
Oatactor
Nathylana
Trana 1,2
Triehlcro
Tatrtchloro
Sa^la ID
Data
Typa
CM or (da
OCE
TBI
athyiana
athyiana
Oiluti
VMUG2D/1
3/14/88
ECO
0
3
7297
2
3459
X 10
VMW2D/1
3/K/88
FID
0
54439
0
618666
0
X 1
VM6»/1
3/14/88
ECO
0
3
4322
2
2845
X 10
VMU62S/1
3/14/88
MO
0
1
0
451413
0
X 1
VMU63D/1
3/14/88
ECO
0
3
430721
2
44359
x 200
VMUG30/1
3/14/88
no
0
695993
459716
16296184
1
X 1
VNWS3S/1
3/14/88
ECO
0
3
29166
2
23810
x 100
VNK3S/1
3/14/88
no
0
303444
1
3851542
a
X 1
VMM10/1
3/1S/88
ECO
0
3
286
2
91
X 1
vMweio/i
3/IS/88
no
0
0
0
70168
0
X 1
VMJG1S/1
3/13/88
ECO
0
3
172
2
661
X 1
VMUC1S/1
3/1S/88
no
0
0
0
37167
0
X 1
VWM/1
3/13/88
ECO
0
3
200
2
344
X 1
vwicto/i
3/13/88
no
0
0
0
0
0
X 1
VMWMt/1
3/13/88
ECO
0
3
179
2
652
X 1
VMWMt/1
3/13/88
no
0
0
0
38857
0
X 1
0 ¦ talon Oataction Limit
1 ¦ >«(ow Quantitation (.(alt (Traca)
2 • Abeva Quantitation Unit
3 ¦ Met quantified du* to oatrii intarfaranea
210
-------
post treatment
punch Ul SMLLOW soil CAS (uo/cubic atctr)
Detector
Methyl one
Trana 1,2
TrieJiloro
TetraeMoro
S«*le ID
Data
Type
CMorlde
OCE
TR1
ethylan*
ethylene
P«1/1
4/19/88
CCD
1
3
27
2
1
Ptt/1
4/19/88
MO
0
0
0
33211
0
PB2/1
4/19/88
CCD
0
3
68
2
1
PB2/1
4/19/88
no
0
0
35358
0
PB10/1
4/20/88
CCD
0
3
1
2
22
PB10/1
4/20/88
fio
0
0
0
0
PU/1
4/20/88
era
0
3
44
2
1
PI3/1
4/20/88
FID
0
0
0
0
PB4/1
4/20/88
CCD
0
3
52
2
1
PB4/1
4/20/88
no
0
0
0
0
PBS/1
4/20/88
ECO
0
3
1533
10
0
P85/1
4/20/88
no
0
0
0
0
PU/1
4/20/88
CCD
0
3
121
2
1
PB6/1
4/20/88
FID
0
0
0
0
0
PB7/1
4/20/88
CCD
0
3
171
2
19
PI7/T
4/20/88
FID
0
0
0
0
PU/1
4/20/88
CCD
0
3
119
2
142
PB8/1
4/20/88
FID
0
1
0
0
0
PW/1
4/20/88
CCD
0
3
74
2
1
PI9/1
4/20/88
FIO
0
0
0
0
PB11/1
4/22/88
CCD
0
3
3432
2
1!7
PB11/1
4/22/88
FID
0
0
0
0
P912/1
4/22/88
CCD
0
3
32
2
1
PB12/1
4/22/88
FID
0
0
0
0
PB13/1
4/22/88
CCD
0
3
21
2
50
PB13/1
4/22/88
FIO
0
0
0
0
0
01lutioo
X
0 ¦ ¦•ten Detection Liait
1 ¦ ¦•Ion Quantitation Limit (Tract)
2 ¦ Above Quantitation Limit
J ¦ Rot quantified duo to matrix "interference
211
-------
POST TREATMENT
VAOJLM WW I TOR I KG WELLS (UQ/CUbie aeter)
Detector Methylene Trena 1,2 Trichloro TetracMoro
Saapla 10 Oat* Type Chloride DCE TRI ethylene ethylene Dilution
VNUQ10/1
4/21/88
ECS
0
3
6399
2
1
X 1
VNWG10/1
4/21/88
FID
0
0
0
0
X 1
VMU61S/1
4/21/88
ECO
1
3
102
2
219
X 1
VMWC1S/1
4/21/88
FID
0
0
0
0
X 1
VMUC2D/1
4/21/88
ECO
1
3
4620
2
1074
X 10
VNWG2D/1
4/21/88
F10
0
0
350233
0
X 1
VNUC2S/1
4/21/88
ECO
S6536
3
3840
2
189
X 10
VMUG2S/1
4/21/88
FID
0
0
318016
0
X 1
VMWC30/1
4/21/88
ECO
0
3
596128
2
29026
x 20C
VNUG30/1
4/21/88
FID
0
911813
566737
17670335
1
X 1
VMK3S/1
4/21/88
ECO
0
3
22827
2
6732
x 25
VNWG3S/1
4/21/88
FID
0
170198
1
1483036
0
X 1
VMK40/1
4/22788
ECO
0
3
4725
2
208
X 1
VNUG40/1
4/22/88
FID
0
0
0
0
X 1
VNUG4S/1
4/22/88
ECO
0
3
275
2
588
X 1
VMUG4S/1
4/22/88
ECO
0
3
431
2
1115
X 20
VMWC4S/1
4/22/88
FID
0
0
0
1
0
X 1
0 ¦ Below Detection Limit
1 ¦ Below Quantitation limit (Trace)
2 ¦ Above Quantitation Limit
3 ¦ Mot quantified dua to matrix interference
212
-------
APPENDIX E
PROCESS AND SOIL GAS
213
-------
PROCESS AND SOIL CAS
The FID was generally used to quantify the DCE and TCE values and the ECD
was used Co quantify the TRI and PCE values. MeCl was usually not detected on
either detector. The following codes indicate the reason a quantifiable value
is not reported for a given sample.
Below Detection Limit
Below Quantitation Limit (Trace)
Above Quantitation Limit
Not quantified due to matrix Interference
For the majority of analyses TCD values from the ECD are reported as "2"
because the concentrations present exceeded the linear range of the detector.
Also there were problems with additional unidentified compounds elutlng at the
same time as TDE on the ECD Consequently, all DCE values on the ECD are
reported as "3".
Typical detection limits and quantitation limits for each of the
compounds on the FID (in ug/cubic meter) are as follows:
IBI IC£ PCE
Detection Limit - <30.000 <6,500 <20.000 <15,000 <30,000
Quant. Limit - <100,000 <45.000 <100,000 <30,000 <100,000
Determination of detection limits and upper and lower quantitation limits
are more complicated for the ECD Because of the high TCE concentrations,
most of the samples injected on the ECD had to be diluted and this dilution
factor has tr je applied when determining detection and quantitation limits
The last column on each of the attached tables shows the dilution factor used
to calculate all reported component concentrations. To determine the actual
detection and quantitation limits for each run, multiply the value given below
by the dilution factor (all values in ug/cubic meter)
0 -
1 -
2 -
3 -
214
-------
D£E ISi TCE PCE
Detection Limit — <1,000 <1,300 <8 <8 <45
Quanc. Limit - <3,000 <4,000 <22 >160t <55
¦ - Upper Quantitation Limit
These values are averages because they all change slightly when a new
calibration curve is generated. In addition these are based on standard
temperature and pressure whereas the values reported in the tables are
corrected to process conditions.
The attached data tables are broken down by source, test phase, and
date. The following test phases were used:
Commissioning - 12/16/87 - 12/18/87 and 1/7/88
Aborted Active Treatment - 1/8/88 - 1/15/88
Active Treatment - 2/11/88 - 4/18/88
The dates listed in these tables are the dates the samples were analyzed
on the GC. In most cases this is also the date the sample was collected,
however, early in the program some samples were analyzed a day or two after
collection for various reasons.
215
-------
C9WISSICNING ANO ABORTED ACTIVE TREATMENT
BACKGROUND PROCESS GAS AMO AMBfEMT BUNKS (ug/ctfcfe meter)
Detector
Methylene
Trans 1,2
Triehloro
Tetrachloro
SMVl* 10
Data
Typa
Chloride
OCE
TRI
ethylene
ethylene
Di lutu
BKG 1 CARS
12/f6/87
ECO
0
3
0
2
1
X 1
BKG 2 CAM
12/16/87
ECO
0
3
0
2
0
X 1
BKG SEP IN
12/16/87
ECO
0
3
2
0
2
X 1
BKG SEP IN
12/16/87
ECS
0
3
39980
2
1
X 333
BKG SEP OUT
12/16/87
ECO
0
3
206
2
39
X 1
BKG SEP OUT
12/16/87
ECO
0
3
0
9507
0
X 100
BKG VAC OUT
12/16/87
ECO
1
3
1
137
33
X 1
GTV-Bl
1/07/88
ECO
0
3
0
2
1
X 1
GTVFB8-1
1/13/88
ECO
0
3
101
2
308
X 1
(TVfH-1
1/13/88
FID
0
0
0
33620
0
X 1
GTV FBB-1
1/14/88
ECO
1
3
78
2
292
X 1
GTVFB8-1
1/14/88
FIO
0
0
0
0
0
X 1
0 ¦ Belo» Detection Limit
1 * Below Quantitation Limit (Trace)
2 ¦ Above Quantitation Limit
3 ¦ Not quantified due to matrix interference
216
-------
COMMISSIONING
EXTUCTICH WtLLS (ua/cubic HHP)
D»t«cter
tothyltr*
Trans 1,2
Trichlora
T«tr»ehloro
s«e(« id
Data
fyp*
Oilorida
DC£
TR1
ethyl en*
ethylene
DiLution
ewws-t
12/16/87
fid
0
584852
1
9128599
0
X 1
CWS4S-2
12/14/87
MO
0
113657
1
2032381
0
X 1
EWG4S-3
12/16/87
fid
0
2*9063
1
4061706
0
X 1
EVCit-)
12/16/87
FID
0
37566
0
568417
0
X 1
EUMS-6
12/16/87
no
0
1064421
120113
19474554
1
X 1
EUC4I-7
12/16/87
FID
0
1070386
122174
18774964
71770
X 1
EUM-I
12/16/87
FID
0
1071S1S
132475
18287653
1
X 1
EVHI-*
12/16/87
FID
0
1153353
130621
18925394
1
* 1
CUUS-1
12/17/87
no
0
374189
1
3380349
0
X 1
EUG2S-2
12/17/47
FIO
0
298232
1
2448486
0
X 1
EVG21-3
12/17/87
FIO
0
379138
1
3448380
0
X 1
EVC2J-4
12/T7/87
FID
a
369240
1
3458660
0
X 1
EVC2S-S
12/17/17
FID
a
328572
1
3202866
0
X
EVCit-t
12/17/87
FIO
0
2SS413
1
2388014
0
X 1
IWC2J-7
12/17/87
FIO
0
168697
1
1674452
0
X 1
ewus-1
12/17/87
ECO
0
3
339438
2
31487
X 100
EVC3J-t
12/17/87
FIO
0
9338S9
296687
20873507
0
X 1
CVC3S-2
12/17/87
ECO
0
3
313147
2
130678
X 500
EWG3J-2
12/17/87
FIO
0
718667
236830
16700011
89725
X 1
EUC3S-3
12/17/87
ECO
0
3
389892
2
37993
X 500
EWC3I-3
12/17/87
FIO
0
720799
227326
17041155
91405
X 1
EVG3S-4
12/17/87
FID
0
563182
186! 73
14352328
95061
X 1
EVC3S-5
12/17/87
FID
0
646322
192226
15430708
1
X 1
EVC3S-6
12/17/87
FID
0
631575
201178
15403768
1
X 1
evcis-7
12/17/87
no
0
537189
188693
13524698
93416
t 1
MJM
12/17/87
FIO
0
292928
121555
7383654
1
X 1
HG3S-1
12/18/87
ECO
0
3
227639
2
14655
X 200
EWG3S-2
12/18/87
ECO
0
3
222715
2
10743
X 200
EUS3S-3
12/18/87
ECO
0
3
94567
2
9822
x 200
evc4o-i
12/18/87
FIO
0
319965
200724
7933541
1
X 1
EUC4D-2
12/18/87
FID
0
294359
168003
6362797
1
X 1
EVG40-3
12/18/87
FIO
0
273702
145181
5294571
0
X 1
EWG40-4
12/18/87
FID
0
277134
125900
5334763
1
X 1
EWG40-S
12/18/87
FID
0
252167
103076
4245304
0
X 1
EVG40-6
12/18/87
FID
0
230657
91296
3686675
0
X 1
EWC40-7
12/18/87
FIO
a
218942
1
3244091
0
X 1
CUC4S-6
12/18/87
ECD
a
3
149969
2
43047
X 200
fVUi-7
12/18/17
ECO '
0
3
163454
2
39863
X 290
EWG4S*8
12/18/87
CCD
a
3
140871
2
32797
t 200
CWG4S*9
12/18/87
ECO
a
3
155352
2
33624
X 200
nca-i
12/19/87
ECO
0
3
35261
2
1
x 200
M2S-2
12/19/87
ECO
a
3
18020
2
0
X 200
EWC2S-3
12/19/87
ECD
a
3
32623
2
1
X 200
EUCa-4
12/19/87
ECO
0
3
27198
2
1
X 200
EUCIS-S
12/19/87
ECO
0
3
27907
2
1
x 200
EVG2S-6
12/19/87
ECO
0
3
17914
2
0
x 200
217
-------
Ottactor
Mthyltnt
Tr*n» 1,2
Trfehloro
Tctrtchloro
Sa^l* 10
Oat*
Typ»
CMoridt
DCS
TBI
*thy(«rw
•thyl«r»
Oilutio
EVG2S-7
12/19/87
ECO
0
3
4304
2
0
X 200
EWG3S-4
12/19/87
ECO
6835360
3
97369
2
5182
X 200
EWC3S-S
12/19/87
ECO
0
3
195092
2
11132
X 200
EUC3S-6
12/19/87
ECO
0
3
181290
2
13726
X 200
EUG3S-7
12/T9/87
ECO
0
3
203954
2
10890
X 200
EWC3S-8
12/19/87
ECO
0
3
127552
2
5152
X 200
EUG40'1
12/19/87
ECO
0
3
179585
2
11272
X 200
EVG40-2
12/19/87
ECO
0
3
288168
2
24056
X 200
EWG40-3
12/19/87
ECO
0
3
103572
2
0
X 200
EWS40*4
12/19/87
ECO
0
3
109111
2
9290
X 200
EUMO'S
12/19/87
ECS
0
3
90495
2
10831
X 200
EWG40-6
12/19/87
ECS
0
3
86339
2
9615
X 200
EUG40*7
12/19/87
ECS
0
3
67438
2
10183
X 200
EUC2D-2
1/07/88
ECO
1
3
62431
2
13558
X 100
EWC20-2
1/07/88
MO
0
154728
1
3447982
0
X 1
EUG20-3
1/07/88
ECO
0
3
61070
2
14132
X 100
EWG20-3
1/07/88
FID
0
154166
*
3590118
0
X 1
EVG2D-4
1/07/88
ECO
1581222
3
230691
2
2
X 100
EWC20-4
1/07/88
FID
0
126059
1
2913590
1
X 1
ewca-5
1/07/88
ECO
0
3
55553
2
28539
X 100
EVC20-5
1/07/88
FID
0
137302
1
3309597
0
X 1
EVC2S-6
1/07/88
ECO
0
3
39248
2
12143
X 100
EWG20-6
1/07/88
FID
0
123249
1
2837784
0
X 1
EWG20-7
1/07/88
ECO
0
'>0800
2
20876
o
o
X
EWC2D-7
1/07/88
FID
0
1284-B
1
3T77726
0
X 1
EV630-1
1/07/88
ECO
0
3
0
0
X 1
EWG30-1
1/07/88
FID
0
0
0
X 1
EVG30-2
1/07/88
ECO
0
3
52092
2
31438
X 100
EVC30-2
1/07/88
FID
0
178463
1
2641980
0
X 1
EVC30-3
1/07/88
ECS
0
3
42403
2
14763
X 100
EWC30-3
1/07/88
FID
0
161976
1
2492641
0
X 1
EVG3D-4
1/07/88
ECO
0
3
20727
2
5447
X 100
EVG30-4
1/07/88
FID
0
67402
1
1099667
0
X 1
EVC30-S
1/07/88
ECO
1
3
62855
2
17961
X 100
EW630-5
1/07/88
FID
0
149973
1
2629196
0
X 1
EVC30-6
1/07/88
ECO
0
3
61471
2
15459
X 130
EVG30-6
1/07/88
FIO
0
161844
1
2856726
0
X 1
EW630-7
1/07/88
ECO
0
3
63597
2
19726
X 100
EVGJO-7
1/07/88
FIO
0
162767
1
3217661
0
X 1
EUC1S-1
1/08/88
ECO
0
3
185736
2
52824
X 200
EVG1S-1
1/08/88
FID
0
1068552
170610
13904589
1
X 1
EVG1S-2
1/08/88
ECO
0
3
197203
2
44499
x 200
EVC1S-2
1/08/88
FID
0
929482
157298
12316003
1
X 1
EVC1S-3
1/08/88
ECO
0
3
168188
2
40643
X 200
EVC1S-3
1/08/88
FIO
0
897747
150736
11910436
1
X 1
EVG1S-4
1/08/88
ECO
0
3
159061
2
38967
X 200
EVG1S-4
1/08/88
FIO
0
810582
131426
10885522
1
X 1
EVG1S-5
1/08/88
ECO
0
3
223338
2
61458
x 200
EUC1S-5
1/08/88
FIO
0
793092
125426
10715529
1
X 1
EVG1S-6
1/08/88
ECS
0
3
144778
2
UAOQ
x 200
218
-------
Sample ID Date
Detector Methylene Trans 1,2 Trichloro Tetrachloro
Type Chloride DCE 1,1,1-Tri ethylene ethylene
Dilution
FID
0
826943
119989
10204954
1
X 1
ECO
0
3
89438
2
28931
X 200
FID
0
548803
77993
7453359
1
X 1
EWG1S-6
EVG1S-7
EUC1S-7
1/08/88
1/08/88
1/08/88
0 3 Below Detection Limit
1 = Below Quantitation Limit (Trace)
2 * Above Quantitation Limit
3 = Not quantified due to matrix interference
219
-------
aboated active treatment
EXTRACTION WELLS (ufl/cubic Mttr)
D*t*ctor
Mtthylcn*
Traru 1,2
TRI
Trfchloro
Tatraehlore
Saapl* ID
Oat*
Typ*
CM or Id*
OCE
etnylcn*
ethyl to*
Oi lutioi
EWG2S-1
1/08/80
ECO
1
3
22795
2
91540
X 200
EWS2S-1
1/08/88
no
0
125658
1
2155229
0
X 1
X 200
EUG3S-1
1/08/88
ECO
0
3
389351
2
70927
EVG3S-1
1/08/88
FID
0
414087
156162
13472502
0
X 1
X 200
EWG4S-1
1/08/88
ECO
0
3
95722
2
75301
EWG4S-1
1/08/88
flO
0
802466
81939
14733899
1
X 1
EWC1S-1
1/09/88
ECS
632112
3
46041
2
6333
X 100
EUCIS'1
1/09/88
FIO
0
681416
89531
7966045
0
X 1
EVC1J-2
1/09/88
ECS
8532
3
405
2
65
X 1
EWC2S-1
1/09/88
ECS
0
3
13103
2
4896
X 100
EWC2S-1
1/09/88
FIO
0
119625
1
2100488
0
X 1
EWC3S-1
1/09/88
ECO
0
3
157986
2
28806
X 200
EUC3S-1
1/09/88
FIO
0
317865
111731
11195156
1
X 1
EVG4S-1
1/09/88
ECS
0
3
0
0
X 1
EWG4S-1
1/09/88
FIO
0
731363
1
13931156
1
X 1
EUC10-1
1/11/88
ECO
0
3
16169
2
9584
X 200
EW61D-1
1/11/88
FIO
0
66564
1
1200891
0
X 1
EWG10-2
1/11/88
ECO
0
3
21056
2
7420
X 50
EVG10-2
1/11/88
FIO
0
79529
1
1386344
0
X 1
EUC1S-1
1/11/88
ECO
0
3
28884
2
8105
X 100
EUCIS'1
1/11/88
FIO
0
439012
1
4676146
0
X 1
EUC1S-2
1/11/88
ECS
0
3
60257
2
2
x 22
EUC1S-2
1/11/88
FIO
0
51132
0
441879
0
X 1
EV620-1
1/11/88
ECS
0
3
24240
2
11534
X 200
EUC20-1
1/11/88
FIO
0
101348
1
2638095
0
X 1
EWG2S-1
1/11/88
ECS
0
3
5289
2
2664
X 100
EUG2S-1
1/11/88
FIO
0
101535
0
1959903
0
X 1
EVG3D-1
1/11/88
ECS
0
3
109142
2
22344
X 200
EWG30-1
1/11/88
FIO
0
172181
1
2892843
0
X 1
EWC3S-1
1/11/88
ECO
0
3
82761
2
16047
x 100
EWG3S-1
1/11/88
FIO
0
417983
138997
14509164
1
X 1
EVG40-1
1/11/88
ECD
0
3
114881
2
92191
x 200
EVG40-1
1/11/88
FID
0
350063
1
2768164
1
X 1
EUC4S-1
1/11/88
ECO
0
3
51222
2
37625
x 100
EWG4S-1
1/11/88
FIO
0
864197
85581
15819019
1
X 1
EVG10-1
1/12/88
ECO
0
3
19396
2
5900
X 100
EWG10-1 '
1/12/88
FIO
0
71952
0
1255746
0
X 1
EWC10-2
1/12/88
ECS
0
3
10704
2
4026
X 100
EWC1D-2
1/12/88
FIO
0
82548
0
1107580
0
X 1
EW61S-1
1/12/88
ECO
0
3
57524
2
23990
X 100
EVG1S-1
1/12/88
FIO
0
316705
1
3599533
0
X 1
EWG1S-2
1/12/88
ECO
0
3
34310
2
21322
X 100
EWC1S-2
1/12/88
FIO
0
247255
1
3108099
0
X 1
EVG2D-1
1/12/88
ECS
0
3
16551
2
19808
X 100
EWG2D-1
1/12/88
FIO
0
58511
0
1864182
0
X 1
EWC2S-1
1/12/88
ECO
0
3
7604
2
4596
x ioc
220
-------
Detector
Methylene
Trans 1,2
Saaple 10
Data
Type
Chloride
OCE
CWG2S-1
1/12/88
no
0
80727
EWG30-1
1/12/88
CCD
0
3
215186
EMS30-1
1/12/88
FID
0
EVCJJ-1
1/12/88
ECO
0
3
CUG3S-1
1/12/88
FID
0
287167
EV640-1
1/12/88
ECO
0
3
CWC40-1
1/12/88
FID
0
409449
EUC4S-1
1/12/88
ECO
0
3
EUG4S-1
1/12/88
FID
0
698826
:ri
Trlehloro
ethylene
Tetrechloro
ethylene
Dilution
EWG1D-1
EW1D-1
CWtD-2
EWG10-2
EUG1S-1
EWG1I-1
EWG1S-2
M1t-2
EW2D-1
EUC2S-1
EWG23-1
EWC2S-1
EW63D-1
EW630-1
EVG3S-1
EVG3S-1
EVG40-1
EVG40* 1
EWG4S-1
EWG4S-1
EVG10*t
EUG1D-1
EWG10-2
r*io-2
EWG1S-1
EWG1S-1
ewcis-2
eucis-2
EWC20-1
EVG2D-1
EVG25-1
EVG2S-1
EUC30-1
EWG30-1
EVG3S-1
EUG3S-1
EWG40-1
EW40-1
EWG4S-1
EW4S-1
0
39*97
1
126695
99999
54423
1
89124
1
1459984
2
4321841
2
9944055
2
2819506
2
12451422
0
28025
1
28650
0
40394
1
54247
1
1
100
100
1
100
1
100
1
1/13/88
ECO
0
3
6103
2
3650
x ioo
1/13/88
FID
0
82982
0
944719
0
X 1
1/13/88
ECO
1
3
3563
2
1
x so
1/13/88
FID
0
55689
0
337067
0
X 1
1/13/88
ECS
0
3
19375
2
10394
X too
1/13/88
FID
0
179025
1
2824665
0
X 1
1/13/88
ECO
0
3
14378
2
4742
X so
1/13/88
FIO
0
iSi348
1
1804250
0
X 1
1/13/88
ECO
0
3
6536
2
7676
X 50
1/13/88
FID
0
92132
0
1548603
0
X 1
1/13/88
ECO
0
3
5925
2
3742
X 50
1/13/88
FID
0
67416
0
1362695
0
X 1
1/13/88
ECO
0
3
46068
2
18924
X 100
1/13/88
FIO
0
213408
1
4314039
1
X 1
1/13/88
ECO
0
3
75244
2
19337
X jO
1/13/88
FIO
a
227759
1
7691369
0
X 1
1/13/88
ECO
0
3
59711
2
29467
X 100
1/13/88
FID
0
452141
1
2455205
1
X 1
1/13/88
ECO
0
3
79588
2
43797
X 200
1/13/88
FIO
i
704779
1
11747508
1
X 1
1/15/88
ECO
0
3
0
2
1
x ioo
1/15/88
FIO
0
49678
0
415590
0
X 1
1/15/88
ECO
0
3
952
2
0
X 50
1/15/88
FID
0
1
0
136456
0
X 1
1/15/88
ECO
0
3
25518
2
12027
X 100
1/15/88
FID
0
244689
1
2803991
0
X 1
1/15/88
ECO
0
3
23593
2
9363
X 100
1/15/88
FIO
0
211592
1
2472789
0
X 1
1/15/88
ECO
0
3
1
2
1
x ioo
1/15/88
FID
0
65947
0
998452
0
X 1
1/15/88
ECO
0
3
1
2
1
X 100
1/15/88
FID
0
0
282044
0
X 1
1/15/88
ECO
1
3
30687
2
13257
X 100
1/15/88
FIO
0
194440
1
2771117
1
X 1
1/15/88
ECO
0
3
77763
2
27548
X too
1/15/88
FIO
0
262787
1
9204313
0
X 1
1/15/88
ECO
1
3
240095
2
2
x ioo
1/15/88
FID
0
401536
1
2505056
1
X 1
1/15/88
ECO
0
3
69851
2
48000
X 100
1/15/88
FID
0
613278
1
11591671
1
X 1
221
-------
ABORTED ACTIV* T*EAT*MT
VACUUM MONITORING UELLS (ua/citolc attar:
Detector
Methyl me
Trans 1,2
T rieh 1oro
Tetrachloro
SMVil 10
Oat*
r*p*
Chloride
OCE
TBI
ethylene
ethylene
Oi tutu
VMUC1S-1
t/oa/88
CCD
0
3
28491
2
17989
X 200
VMA1S-1
1/08/88
mo
0
1056707
1
2(01558
0
X 1
VMUS2S-I
1/03/58
no
0
162544
1
8047600
0
X 1
VMUGSS't
1/08/88
no
0
2580038
289073
18738147
1
X 1
VMWB4S-1
1/08/88
no
0
1
0
86349
0
X 1
V*USt»-1
1/09/88
ECO
0
3
22462
2
12941
X so
VMUG1S*1
1/09/88
FID
0
723182
1
1574110
0
X 1
VMWS1S-2
T/09/8S
no
0
729897
1
7917714
0
X 1
VXWC2S-1
1/09/88
ECO
S52ZJ7
3
17831
2
29174
X 100
vmc2s-t
1/09/88
MO
0
12948&
1
5959752
0
X 1
vwwjj-t
1/09/88
ECO
0
3
144559
2
12392
X 100
VNUC3S-1
1/09/88
HO
0
2632382
232769
19664037
1
X 1
VNWG4S-1
1/09/88
ECS
0
3
0
2
0
X 200
VMUCIO'1
1/11/88
ECS
0
3
3132
2
1039
X 25
VNMG10-1
1/11/88
no
0
1
0
167360
0
X 1
VNWG1S-1
1/11/88
ECO
0
3
2(966
2
11394
X 50
VWG1S-1
1/11/88
FIO
0
533433
0
1283137
0
X 1
VMUC2D-1
1/11/88
ECO
0
3
172469
2
36969
X 200
VNWC2S-1
1/11/88
no
0
222(65
1
3975184
0
X 1
VMK2S-I
1/11/88
ECS
0
3
58569
2
29597
X 200
VWWC2J-I
1/11/88
r to
0
96*24
1
5209704
0
X 1
VHH630-1
1/11/88
ECO
0
3
40945
2
7258
X 100
VNUC30-1
1/11/88
no
0
473168
0
5303067
0
X 1
VNWG3S-1
1/11/88
ECS
1
3
145348
2
18977
X 100
VNWC3S-I
1/11/88
no
0
2505825
220410
16751(02
t
X 1
VMWMI-t
1/11/88
ECO
0
3
6661
2
2454
X 50
VWW640-1
1/11/88
no
0
1
0
252757
0
X 1
VMUG4S* t
1/11/88
ECO
0
3
(49
2
689
X 1
VNMG4S-1
1/11/88
no
0
1
0
(3295
0
X 1
VNUG1D-1
1/12/88
ECO
0
3
1286
2
1
X 50
VNUG1D-1
1/12/88
no
0
1
0
146289
0
X 1
VHUC1S-1
1/12/88
ECS
0
3
3908
2
8425
X too
VMUG1S-1
1/12/88
no
0
312016
0
817861
0
X 1
VMUG2D-1
1/12/88
ECS
0
3
(7350
2
12303
X 100
VMWG2D-1
1/12/88
FID
0
27(6t1
1
4744451
0
X 1
VMUG2S-1
1/12/88
ECS
0
3
172(0
2
15914
X 100
VHUC2S-1
1/12/88
MO
0
52781
0
2057866
0
X 1
VMJC30-1
1/12/88
ECO
0
3
46S38
2
6236
X 100
VHUC30-1
1/12/88
MO
0
1(9726
1
2561259
0
X 1
VMK3S-1
1/12/88
ECS
0
3
203441
2
57(90
X 200
VM4G3S-1
1/12/88
MO
0
182(002
165096
18160731
1
X 1
VMUUO-1
1/12/88
ECS
1
3
5318
2
3(217
X 50
VMUUO-1
1/12/88
FIO
0
1
0
226630
0
X 1
VWC4S-1
1/12/88
ECO
0
3
1
2
1
X 50
222
-------
Detector
Methylene
Trana 1,2
TMehloro
Tetrachloro
Staple 10
Oat*
Type
Chloride
OCE
TBI
ethylene
ethylene
0(lutio
VMUG4S-1
1/12/88
no
0
0
0
96140
1
X 1
VNWGIO'1
1/13/88
CCD
0
3
1165
2
94148
2
X 1
VMWC10 * 1
1/13/88
no
0
0
1
X 1
VMUGIS'1
1/13/88
CCD
1
3
9860
2
721009
2
X 50
VMMGIf*1
1/13/88
no
0
219633
0
0
X 1
VMK2D-1
1/13/88
CCD
0
3
62042
2
5183408
19685
X 100
VWWC2D-1
1/13/88
no
0
341975
1
0
X 1
VNUG2S*1
1/13/88
CCD
436370
3
14995
2
1777911-
11047
X 100
VMUB2S-1
1/13/88
FIO
1
63173
0
0
X 1
VMUSSD*1
1/13/88
CCD
0
3
37467
2
6637
X 100
vMueso-1
1/13/88
no
0
118975
1
2228188
0
X 1
VMUCSS'I
1/13/88
CCD
0
3
10511
2
1
X 200
VMUC3S-1
1/13/88
FIO
0
1645891
121402
15708378
1
X 1
vmwcm-i
1/13/88
CCD
0
3
1188
2
683
X 1
VMWStO-1
1/13/88
FID
0
0
123468
0
X 1
VWUG4I-1
1/13/88
CCD
330573
3
1852
2
1
X 50
VWWC4I-1
1/13/88
FtO
0
0
296281
0
X 1
VMW610-1
1/15/88
CCS
0
3
983
2
662
X 1
VNUG1D*1
1/1S/88
FIO
0
0
0
96557
0
X 1
VMWG1S*1
1/13/88
CCD
0
3
2119
2
11497
x ioo
VMUC1S-1
1/13/88
FIO
0
128451
0
411668
0
X 1
VMUC20*1
1/15/88
CCD
0
3
36977
2
9271
X
o
o
VMWC2D-1
1/15/88
FID
0
328753
1
2955170
0
X 1
VNVG2S-1
1/15/88
CCD
0
3
12782
2
4139
X 100
VMU62S-1
1/15/88
FtO
0
77139
0
1558630
0
X 1
VMWG3D*1
1/15/88
CCD
0
3
33478
2
3406
X 100
VMUC30*1
1/15/88
FtO
0
66791
1
1363507
0
X 1
VMUC3S-1
1/15/88
CCD
0
3
38855
2
13365
X 100
VNWG3S-1
1/15/88
FID
1
1141963
1
7550444
1
X 1
VMWCU-1
1/15/88
ECD
0
3
1
2
1
X 50
VNWG40-1
1/15/88
FID
0
1
0
121914
0
X 1
VHWG4J-1
1/15/88
CCD
0
3
0
2
1
X so
VMUG4S-1
1/15/88
FIO
0
1
0
141657
0
X 1
0 ¦ ¦•Ion Oetection limit
1 ¦ lelow Quantitation unit (Trace)
2 » Above Ouantftatfen Limit
3 ¦ Net quanti fied due to matrix Interference
223
-------
AMI TED ACT IV! TREATMENT
PtOCtts GAS (UB/cti)
-------
ACTIVE TREATMENT
EXTRACTION UELL *1 SHALLOW (uQ/etite Mt«r)
»(• 10
Detector
Oat* Type
Methylene
Chloride
Trans 1,2
DCE
rm
Trfehl#ro
ethylene
Tetriehloro
ethylene
0ilution
EWG13/1
EWG1S/1
EWS1S/2
EWIS/l
2/11/88
2/11/88
2/11/88
2/11/88
ECD
F10
ECS
MO
3
160095
3
84651
15888
1
7753
0
2
29584X7
2
1396253
6988
0
1
0
X 200
x 1
x 200
1 1
EVC1S/1
EW1S/1
EW1S/2
EM1S/2
EUG1S/1
EWSIf/1
EWG1S/2
EV61S/2
2/12/88
2/12/88
2/12/88
2/12/88
2/13/88
2/13/88
2/13/88
2/13/88
ECD
no
ECO
FIO
ECS
FIO
ECO
FID
3
54421
3
35747
3
42996
3
35633
1
0
4002
0
4312
0
1
0
2
1070815
2
727803
2
797145
2
739873
4671
0
2524
0
3540
0
1
0
200
1
ICO
I
100
1
200
1
EW1S/1
EWC1S/1
EWG1S/2
EWC1S/2
2/14/88
2/14/88
2/14/88
2/14/88
ECO
no
ECD
FID
3215
0
1
0
2
717758
2
585332
2782
0
1
0
100
1
100
1
EW61S/1
EVG1S/1
EWG1S/2
EV61S/2
2/15/88
2/15/18
2/15/88
2/15/88
ECD
FID
ECD
FID
2
653833
2
537555
2187
0
1
0
100
1
20C
1
EUG1S/1
EVG1S/1
EUC1S/2
EUS1S/2
2/16/88
2/16/88
2/16/88
2/16/88
ECD
FIO
ECD
FIO
1481
0
1448
0
2
730565
2
581507
2308
0
2317
0
100
1
so
t
EWS1S/1
EUC1S/1
EWS1S/2
EWG1S/2
2/17/88
2/17/88
2/17/88
2/17/88
ECO
FID
ECD
FID
1614
0
1
0
2
569543
2
507996
1757
0
1455
0
10
1
50
1
EVC1S/1
EWC1S/1
EVC1S/1
2/18/88
2/18/88
2/18/88
ECD
ECO
FID
2665
864
0
2
2
507978
2
1492
0
x 1
* 10
X 1
EVG1S/1
EM01S/1
2/19/88
2/19/88
ECD
FID
1452
0
2
499608
2064
0
* 25
x 1
EW1S/1
EW1S/1
2/20/88
2/20/88
ECO
FIO
1655
0
2
350299
x 1
X 1
EWG1S/1
EUC1S/1
2/21/88
2/21/88
ECO
FIO
755
0
2
434579
588
0
x 25
x 1
EWC1S/1
2/22/88
ECO
519
x 25
225
-------
0«t*cter
Trtn* 1,2
Trlchloro
Tetrachloro
Oilutioo
swpi* 10
0«t«
Typ*
CMorfd*
OCE
r#i
•thyltn*
•thyler*
Eveis/i
2/22/88
FID
0
0
0
313707
0
X 1
EUS1S/1
2/23/88
CCD
0
3
1481
2
2
X 1
EVE1S/1
2/23/88
ECD
0
3
1378
2
2796
x 5
EWC1S/1
2/23/88
FID
0
1
0
334785
0
X 1
EWB1S/1
2/24/88
CCD
0
3
760
2
1167
X 25
EWG1S/1
2/24/88
FIO
0
0
462777
0
X 1
EWS1S/1
2/23/88
ECD
0
3
0
2
0
X 100
Eweis/i
2/23/88
FID
0
0
309017
0
X 1
EM1S/1
2/26/88
ECD
0
3
731
2
2295
X 5
EW1I/1
2/28/88
FID
0
0
277702
0
X 1
EW61S/1
2/29/S8
ECD
0
3
1782
2
5498
X 10
EWG1S/1
2/29/88
FtO
0
0
350668
0
X 1
EWG1S/1
3/01/88
ECO
0
3
1413
2
4958
X 10
EWC1S/1
3/01/88
FIO
0
0
260611
0
X 1
EVG1S/1
3/02/88
ECD
0
3
683
2
3187
X 25
EVC1S/1
3/02/88
FtO
0
0
232811
0
X 1
EVG1S/1
3/03/88
ECD
0
3
338
2
792
X 10
EWG1S/1
3/03/88
FIO
0
0
172273
0
X 1
EUC1S/1
3/06/88
ECD
0
3
1
2
727
X 20
EWC1S/1
3/04/88
FtO
0
0
214465
0
X 1
EWC1S/1
3/03/88
ECO
0
3
332
2
756
X 10
EUG1S/1
3/09/88
FIO
0
0
239042
0
X 1
EW1S/1
3/06/88
ECD
21983
3
993
2
0
X 10
eucis/1
3/06/88
FtO
0
0
219469
0
X 1
EW51S/1
3/07/88
ECD
0
3
398
2
1959
X 10
EWC1S/1
3/07/88
FIO
0
0
118072
0
X 1
EWS1S/1
3/08/88
ECD
0
3
388
2
1858
X 5
EVG1S/1
3/08/88
FID
0
0
136018
0
X 1
EWG1S/1
3/09/88
ECD
0
3
474
2
2633
X 10
EVG1S/1
3/09/88
FIO
0
0
1528703
0
X 1
EUB1S/1
3/10/88
ECD
0
3
454
2
2
X 1
EW1S/1
3/10/88
ECD
0
3
369
2
1970
x 5
WG1S/1
3/10/88
FIO
0
0
0
132297
0
X 1
EVG1S/1
3/11/88
ECD
0
3
417
2
2635
x 5
EM1S/1
3/11/88
FIO
0
0
0
132990
0
X 1
226
-------
*«*(• 10
Oat*
Oatactor
Typ»
K«thyl«n»
Chlorfd*
Irtra 1,2
oce
Tit
Trfchloro
•thyl«r»
TttrtcMoro
Dilution
eusts/t
eueis/1
eucis/i
3/18/88
3/ia/aa
3/18/88
to
CCD
FID
0
0
0
3
3
1380
1562
0
2
2
305895
2
5667
0
X )
X 10
X 1
EWG1S/1
EWS1S/1
3/1S/88
3/19/88
ECS
rro
0
0
3
1
941
0
2
211903
4221
0
X 10
X 1
EW1J/1
Eweis/i
3/20/88
3/20/88
ECO
FID
0
0
3
708
0
2
516653
2908
0
X 10
X 1
EWU/1
EVG1S/1
3/21/88
3/21/88
ECO
FID
0
0
3
1
1
0
2
193428
1
0
x S
X 1
ewu/i
EW1S/1
3/22/88
3/22/88
ECS
FID
0
0
3
529
0
2
122055
1966
0
X 5
X 1
EWU/I
EUG1S/1
EVG1S/1
3/23/88
3/23/88
3/23/88
ECS
ECS
FID
0
0
0
3
3
561
551
0
2
2
2004879
2
2414
0
X 1
x 5
X 1
EUS13/1
EWJ1S/1
3/24/88
3/21/88
ECS
FtO
0
0
3
446
0
2
112055
2
0
X 1
X 1
CVG1S/1
EW1J/1
3/23/88
3/23/88
ECO
FIO
0
0
3
581
0
2
156681
2469
0
X 5
X 1
EWG1S/1
ewis/i
3/26/88
3/26/88
ECS
FIO
0
0
3
0
579
a
2
106158
1893
0
x 5
X 1
EW51S/1
EW1S/1
3/27/88
3/27/88
ECS
FIO
0
0
3
788
0
2
141105
2274
0
X 5
X 1
ewcis/1
EWS1S/1
3/28/88
3/28/88
ECS
FIO
0
0
3
395
0
2
101337
1722
0
X 5
X 1
EWG1S/1
EWC1S/1
3/29/88
3/29/88
ECS
FIO
0
0
3
75
0
2
92829
310
0
X 1
X 1
EWCIS/1
EWG1S/1
3/30/88
3/30/88
ECS
FtO
0
0
3
339
0
2
109095
1694
0
X 5
X 1
EVC13/1
EWB1S/1
3/31/68
3/31/88
ECS
FIO
0
0
3
398
a
2
109177
1832
0
X 5
X 1
EW61S/1
EVC1S/1
4/01/88
4/01/83
ECS
FIO
0
0
3
331
0
2
85168
1614
0
X 5
X 1
EWCIS/1
EWCIS/1
4/02/88
4/02/08
ECS
FtO
0
0
I
230
0
2
68291
1467
0
X J
X 1
EWG1S/1
EWC1S/1
4/04/88
4/04/88
ECS
FtO
a
0
3
0
192
Q
2
6581S
945
0
X 5
X 1
227
-------
Datactor .lathy lent T rana 1,2
SMple ID Date Type Chloride OCH
TRI
Trichloro
ethylene
Tetrachloro
ethylene
Oflution
EW1S/1
EUS1S/1
EUG1S/1
EW1I/1
EW1J/1
EMS1S/1
EW1S/1
EWG1S/1
EVS1S/1
EW61S/1
EWC1S/1
EWG1S/1
EWG1S/1
eugis/1
EWJ1S/1
EWC1S/1
EWG1S/1
EUG1S/1
EWS1S/1
EMS1S/1
EWG1S/1
4/05/88
4/05/88
4/06/88
4/06/88
4/07/88
4/07/88
4/08/88
4/08/88
4/09/88
4/09/88
4/10/88
4/10/88
4/11/88
4/11/88
4/12/88
4/12/88
4/13/88
4/13/88
4/14/88
4/15/88
4/18/88
ECO
FID
ECO
FID
ECO
FID
ECS
FID
ECO
FID
ECO
FID
ECO
FID
ECO
FIO
ECO
FIO
FIO
FID
FIO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
0
0
0
306
0
241
0
262
0
172
0
133
0
229
0
147
0
299
0
195
0
0
0
0
2
69882
2
66965
2
60721
2
72380
2
54282
2
53082
2
47170
2
56509
2
77648
42796
49631
43816
1279
0
628
0
2
0
911
0
692
0
850
0
649
0
536
0
627
0
0
0
0
0 ¦ Below Oetectfon Limit
1 ¦ Below Quantitation Limit (Trace)
2 ¦ Above Quantitation unit
3 » Mot quantified due to matrix interference
228
-------
ACTIVE TREATMENT
EXTINCTION WELL it DEEP cMoro
athylcn*
OUuCion
1
1
0
0
0
0
0
0
0
0
0
0
a
o
o
o
o
c
2312
v)
0
0
0
0
0
0
1
0
484
0
0
0
1
0
412
0
378
0
X 200
x 1
X 200
X 1
X 100
x 1
X too
X 1
X 100
x 1
X 100
X 1
X 100
X 1
x too
X 1
x ioo
X 1
X 100
X 1
100
1
so
1
50
1
so
1
\
1
so
1
SO
1
X T
X 1
229
-------
D«t*eror Mcthylaw Trans 1,2 TrleMoro Tttrachloro
SMP(« 10 0«t* Typ» Ollorid* DCE TRt ethytan* ethylene Dilution
EUC10/1
EUB10/1
EW1D/1
EWC10/1
EWG'O/I
EWE10/1
EWtr/1
mio/1
EUE10/1
EWG10/1
EWC10/1
EWG10/1
EVC10/1
EUG10/1
Eveio/1
EVG1D/1
EWG10/1
EW1D/1
EWG1D/1
EMS10/1
EWG1D/1
EWG1D/1
EWG10/1
EVC10/1
EWGIO/1
EVG1D/1
EW610/1
EVG10/1
EWC1B/1
EVC10/1
EW10/1
EVG10/1
EV610/1
EW10/1
2/Z5/M
2/23/88
2/24/88
2/24/88
2/25/88
2/29/88
2/28/88
2/28/88
2/29/88
2/29/88
3/01/88
3/01/88
3/02/88
3/02/88
3/03/88
3/03/88
3/04/88
3/04/88
3/05/88
3/0S/88
3/06/88
3/06/88
3/07/88
3/07/88
3/08/88
3/08/88
3/09/88
3/09/88
3/10/88
3/10/88
3/11/88
3/11/88
3/18/88
3/18/88
CCD
MO
CCD
no
CCD
FID
ECO
MO
ECO
MD
ECO
F10
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FtO
ECO
FtO
ECO
FIO
ECO
FID
ECO
FIO
ECO
FIO
ECO
MD
ECS
FID
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7499
742
0
1
0
323
0
476
0
3028
0
1208
0
661
0
375
0
335
0
1
0
702
0
636
0
837
a
554
0
696
0
625
0
10905
0
2
95532
2
262091
2
21608S
2
81299
2
144659
2
121213
2
109979
2
99740
2
167594
2
127138
2
102666
2
110436
2
218785
2666895
2
94446
2
87586
2
1115636
525
0
0
0.
188
0
223
0
931
0
594
0
1658
0
1
0
831
0
1
0
1193
0
1
0
1430
0
809
0
622
0
625
0
2148
0
X 1
X 1
X 25
* 1
X 5
X 1
x s
X 1
x 5
X 1
X 5
X 1
X 10
X 1
X 10
X 1
X 10
X 1
x 20
X 1
X 10
X 1
X 5
X 1
X 10
X 1
X 10
X 1
X T
X 1
X 1
X 1
x 50
X 1
230
-------
0*t*ctor
Mtthylarw
Trant 1,2
TRI
Trlchloro
Tctrachloro
taplt 10
Data
lYt*
Chloride
OCE
•thytarw
•thylcn*
Dilution
EUC10/1
3/19/88
ECO
0
3
727
2
1132
X 10
EM10/1
3/19/88
no
0
1
0
142346
0
K 1
EUG10/1
3/20/88
ECS
0
3
540
2
1269
* 10
EU610/1
3/20/68
no
0
1
0
96493
0
X 1
EUC10/1
3/21/88
ECS
0
3
509
2
613
X 1
cue 10/1
3/21/88
no
0
1
0
70192
0
X 1
EUG10/1
3/22/88
CCD
0
3
508
2
554
X 1
EWG10/1
3/22/88
no
0
1
0
67721
0
X 1
EWG1D/1
3/23/88
ECO
0
3
385
2
639
X 1
EWS10/1
3/23/88
F10
0
0
45958
0
X 1
EUG10/1
3/21/88
ECS
0
3
381
2
499
X 1
EWC10/1
3/24/88
FID
0
0
57996
0
X 1
eugid/i
3/23/88
ECO
0
3
433
2
519
X 1
eucio/1
3/23/88
FtD
0
1
0
51518
0
X t
EWG10/1
3/26/88
ECO
0
3
320
2
648
X 5
EWG10/1
3/26/88
FIO
0
0
72637
0
X 1
EWS1D/1
3/27/88
EO
0
3
434
2
570
X 1
EVG1D/1
3/27/88
FID
0
0
45442
0
X 1
EUC10/1
3/28/88
ECS
0
3
290
2
376
X 1
EWG1D/1
3/28*68
FtO
0
0
31938
0
X 1
EVG10/1
3/29/88
ECS
0
3
326
2
554
X 1
EWC1D/1
3/29/88
FID
0
0
67421
0
X 1
EWG10/1
3/30/88
ECO
0
3
502
2
584
X 1
EUG10/1
3/30/88
FIO
0
0
72730
0
X 1
EWG10/1
3/31/88
ECS
0
3
500
2
725
X 5
EUC10/1
3/31/88
FIO
0
0
73637
0
X 1
EWG1D/1
4/01/88
EO
0
3
649
2
776
X s
EWQ10/1
4/01/88
FIO
0
0
89399
0
X 1
EWG10/1
4/02/88
ECS
0
3
265
2
555
x 5
EU6J0/1
4/02/88
FID
0
0
66178
0
X 1
EMS1D/1
4/04/88
ECS
0
3
514
2
528
x 5
EMS10/1
4/04/88
FIO
0
1
0
70791
0
X 1
EWG10/1
4/05/88
ECO
0
3
711
2
560
X 1
EMS10/1
4/03/88
FID
0
0
67643
0
X 1
EVC10/1
4/06/88
ECS
0
3
441
2
397
X 1
231
-------
la 10
EWG10/1
Detector Methyl an* Trana 1,2
Oat* Typa Chiorida OCE
TRI
0
Triehloro
ethylene
Tetracfiloro
ethylene
Of lution
X 1
cugid/i
FUC1D/1
CU610/1
EUG1D/1
EK10/1
EUC1D/1
EV610/1
EWG1D/1
CWC10/1
EUG1D/1
Eweio/i
EWIO/t
EW1D/1
EW1D/1
EVG1D/1
EWC10/1
EM1D/1
4/06/88
4/07/88
4/07/88
4/08/88
4/08/88
4/09/88
4/09/88
4/10/88
4/10/88
4/11/88
4/11/88
4/12/88
4/12/88
4/13/88
4/13/88
4/14/88
4/15/88
4/18/88
FIO
CCD
MO
ECD
FID
ECD
no
ECD
no
ECS
FID
ECO
FIO
ECD
FID
FIO
FIO
FIO
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
a
o
408
0
287
0
181
0
238
0
203
a
2320
0
227
0
a
o
0
59178
2
44822
2
45669
2
42472
2
35820
2
43016
2
31699
2
31988
32574
40483
1
452
0
360
0
280
0
J37
0
368
a
278
0
293
0
0
0
0
X 1
X 1
x 5
X 1
x 5
X I
X 5
X 1
X 5
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
0 • Below Detection Linit
1 • Balow Quantitation Limit
-------
ACTIVE TREATMENT
EXTRACTION UELL K SHALLOW (ug/ciftle Hllr)
SMpt« 10 Data
Oatactor
Typa
Nathylana
Oil or Ida
Trana
.2
Tdl
Triehloro
•thylana
TatracMoro
•thyltna
0itution
EWC2S/1
EVB2S/1
EWG2S/1
EWttS/1
EVG2S/1
EHS2J/1
EWC2S/1
CWS2S/1
EUG2S/1
EUG2S/1
EUG2S/1
EWC2S/1
EWG2S/1
EUC2S/1
EUC2S/1
EWS2S/1
EUC2S/1
EWC2S/1
EWG2J/1
EW62S/1
EWC2S/1
EWG2S/1
EUC2S/1
EWG2S/1
EUS2S/1
EUC2S/1
EVG2S/1
EUC2S/1
EUG2S/1
EW2S/1
EVC2S/1
EV62S/1
EWC2S/1
2/11/88
2/11/88
2/12/80
2/12/88
2/13/88
2/13/88
2/H/88
2/14/88
2/15/88
2/15/88
2/16/88
2/16/88
2/17/88
2/17/88
2/18/88
2/18/88
2/20/88
2/20/88
2/22/88
2/22/88
2/24/88
2/24/88
2/26/88
2/26/88
3/01/88
3/01/88
3/03/88
3/03/88
3/05/88
3/05/88
3/07/88
3/07/88
3/09/88
ECD
FID
ECD
FID
ECD
FID
ECD
rro
ECD
FID
ECD
FID
ECD
FID
ECD
r id
ECD
FID
ECD
F ID
ECD
FIO
ECS
FID
ECD
FID
ta
FIO
ECD
FtO
ECD
FID
ECD
0
0
0
124571
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
608
385
38729
3383
51073
5572
0
1
0
1
0
1
0
2180
0
1396
0
1107
0
927
0
769
0
1
0
407
¦0
1
0
343
0
393
0
1
0
251
0
294
2
1272733
2
689102
2
810465
2
621990
2
682672
2
878263
2
1230459
2
655905
2
449476
2
12547B
2
108053
2
322210
2
86634
2
199502
2
229233
2
178658
1
0
5289
0
0
0
1
0
1336
0
1904
0
1672
0
1707
0
1814
0
1
0
1837
0
618
0
740
0
5626
0
1
0
2204
0
2212
X 200
X 1
X 10
233
-------
Sopta 10
EW2S/1
Oat*
3/09/88
0«t«ctor
Typ»
N*thyl«r«
CM or id#
Tr«n» 1,2
DCE
TRI
0
Trtchloro
•tfryltn#
Tttrachloro
tthyterw
Otlution
EUG2S/1
EWG2S/1
EWB23/1
EVG2S/1
EV62S/1
EWS2S/1
euus/i
EWS2S/1
EWG2S/1
EWG2S/1
EVG2S/1
EWG2S/1
EWG2S/1
EWG2S/1
EWC2S/1
EWC2S/1
EWG2S/1
EMS2S/1
EWG2S/1
EUG2S/1
EWC2S/1
EUC2S/1
EUC2S/1
EW2S/1
EUC2S/1
CWG2S/1
EUC2S/1
EUS2S/1
EWC2S/1
EUC2S/1
EUC2S/1
EWC2S/1
3/11/88
3/11/88
3/18/88
3/18/88
3/19/88
"3/19/88
3/21/88
3/21/88
3/23/88
3/Z3/88
3/25/88
3/25/88
3/27/88
3/27/88
3/29/88
3/29/88
3/31/88
3/31/88
4/02/88
4/02/88
4/05/88
4/0S/88
4/07/88
4/07/88
4/09/88
4/09/88
4/11/88
4/11/88
4/13/88
4/13/88
4/15/88
4/18/88
no
ECO
F10
ECD
FID
ECO
HO
ECD
FtO
ECO
no
ECS
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECS
FIO
ECS
FID
ECO
FID
ECO
FIO
ECS
FID
FIO
FIO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
3
1
3
1
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
0
0
484
0
132*
0
4S3
0
368
0
319
0
326
0
179
0
146
0
1
0
0
0
208
0
209
0
114
0
143
0
386
0
0
0
480025
2
315384
2
394616
2
233238
2
225472
2
184630
2
204134
2
40682
2
142527
* 2
153289
2
172299
2
131769
2
108594
2
113243
2
109251
2
103214
124021
116660
4630
0
5056
0
3532
0
2164
0
2418
0
2693
0
496
0
2130
0
1241
0
1219
0
1630
0
2
0
9 77
0
943
0
865
0
0
0
234
-------
ACTIVE TREATMENT
EXTRACTION WELL fZ DEEP (ua/cubfe Mttr)
»l« 10
Dttactor M«thy(*n* Tr»n» 1,2
Oat* Type Chlorfd* OCE
TRI
Trlchloro
•thyleo*
Tetrichloro
ethylene
0
-------
>1* ID
Oat*
O*t«ctor
Typ*
N*thyl«n*
Chiorida
Tr«n» 1,2
OCE
TRI
Triehloro
•thyI an*
Tatracftloro
•thytan*
Oilutfon
EVG2D/1
EWG2D/1
3/09/88
3/09/88
ea
FID
3
51732
486
0
2
188766
3117
0
X 10
X 1
EUG2D/1
EWS2D/1
3/11/88
3/1T/88
ECD
FtO
3
48115
664
0
2
441078
4716
0
X 10
X 1
eus2D/t
EWS29/1
3/18/88
3/18/88
ECO
no
3
56761
1857
0
2
179839
2362
0
X 5
X 1
EWC2D/1
EWC2B/1
3/19/88
3/19/88
ECO
FtO
3
52944
504
0
2
107266
2056
0
X 10
X 1
EWG2D/1
CW62D/1
3/21/88
3/21/88
ECO
FtO
3
46710
356
0
2
89895
1122
0
X 5
X 1
EWG2D/1
EWG2S/1
3/23/88
3/23/88
ECO
FIO
3
46065
346
0
2
122939
1840
0
EWG2D/.1
ewc2D/i
3/25/88
3/23/88
ECO
FID
252
0
2
75105
1305
0
EVG2D/1
EVG2D/1
3/27/88
3/27/88
ECO
FIO
3
45961
401
0
2
135523
2073
0
EVG2D/1
EUC2D/1
3/29/88
3/29/88
ECO
FIO
312
0
2
82234
1158
0
EWG2D/1
EWG2D/1
3/31/88
3/31/88
ECO
FIO
271
0
2
71788
695
0
EUC2D/1
EUG2D/1
4/02/88
4/02/88
ECO
FtO
2
89645
1176
0
EVG2D/1
EVG2D/1
4/05/88
4/0S/88
ECD
FIO
3
45353
617
0
2
117396
1023
0
EUC2D/1
EUG2D/1
4/07/88
4/07/88
ECO
FIO
3
42967
482
0
2
85542
547
0
EUC20/1
EWB2D/1
4/09/88
4/09/88
ECS
FIO
3
42833
282
0
2
90844
510
0
EUG2D/1
EM22D/1
4/11/88
4/11/88
ECD
FIO
250
0
2
85594
378
0
EWC2D/1
EUC2D/1
4/13/88
4/13/88
ECS
FID
2
386403
538
0
EUG2D/1
EWG2D/1
4/15/88
4/18/88
FIO
FIO
80409
60522
236
-------
ACTIVE TREATMENT
EXTRACTION UCLl 03 SHALLOW (ug/cubic aatar)
3la 10
Oatactor
Typa
Nathylana
CM or f da
Trans 1,2
OCE
TRI
Triehloro
•thyI ana
Tatrachloro
ethylena
Otlution
88
88
ECS
FID
3
201471
59190
1
2
7280338
8653
1
x 333
x 1
88
88
ECD
no
3
158018
49790
1
2
5991336
10649
1
X 200
X 1
88
88
ECD
FID
3
121755
40371
1
2
4881273
21494
0
X 200
X 1
88
88
ECD
FID
3
92902
24029
1
2
4132960
8038
0
X 200
X 1
88
88
ECO
FIO
3
103367
24030
1
2
462389S
10310
1
X 200
x 1
88
88
ECD
FIO
3
87897
10626
1
2
4295493
8848
0
X 200
X 1
88
88
ECD
FIO
1669
0
2
852421
4080
0
r 50
X 1
88
88
ECD
FIO
226s
0
2
1144811
5191
0
X 50
X 1
88
88
ECD
FIO
4507
0
2
1130521
x 1
X 1
ECD
FID
3
54328
7451
0
2
2695682
8962
0
X 25
X 1
ECD
FIO
3
40756
4133
0
2
2390893
10754
0
X 50
X 1
ECD
FIO
3
40601
2
2304711
4865
0
X 200
X 1
ECD
FID
3
41440
3943
0
2
2545280
9000
0
X 100
X 1
ECD
FIO
3
37682
3202
0
2
2004823
12956
0
X 25
X 1
ECD
FIO
3
41304
1810
0
2
2009856
5603
0
X SO
X 1
ECD
FIO
1533
0
2
1302454
7502
0
x 50
x 1
ECO
1976
13890
X 50
237
-------
S«pl« 10
M3S/1
Oata
3/09/88
Datactor
Typ*
NathyI ana
CM or Ida
Trans 1,2
0C£
TBI
TricMoro
•thylana
TctracMoro
•thylana
Oi lution
EUB3S/1
EW1S/1
nssf/i
EMUS/1
EUB3S/1
EVB3S/1
EUB3S/1
EW3I/1
EUG3J/1
EUG3S/1
EW3S/1
EUG3S/1
EWG3S/1
EWC3S/1
EU63S/1
EWG3S/1
EVG3S/1
EVG3S/1
EW3S/1
EUC3S/1
CU63S/1
EW3S/1
EWG3S/1
EWG3S/1
EW03S/1
ewsss/i
EW3S/1
EWG3S/1
EUC3S/1
EUG3S/1
EW63S/1
EW63S/1
3/11/88
3/11/88
3/18/88
3/18/88
3/19/88
3/19/88
3/21/88
3/21/88
3/23/88
3/23/88
3/23/88
3/2S/88
3/27/88
3/27/88
3/29/88
3/29/88
3/31/88
3/31/88
1/02/88
4/02/88
4/05/88
4/03/88
4/07/88
4/07/88
4/09/88
4/09/88
4/11/88
4/11/88
4/13/88
4/13/88
4/1S/88
4/18/88
no
to
no
CCD
MO
ECO
fid
ECO
FIO
ECO
FIO
ECS
FIO
ECS
FID
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FID
ECO
FID
ECO
FIO
ECO
FIO
FID
FIO
44830
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a
o
o
o
o
o
0
0
0
0
0
0
0
35253
1183
0
2745
0
2152
0
1161
0
1511
0
1024
0
2345
0
1385
0
1155
0
1
0
1373
0
887
0
543
0
447
0
703
0
0
0
2027836
2
1134467
2
2641928
2
1752610
2
1203973
2
1269473
2
1169734
2
1930836
2
1739464
2
1225469
2
1077224
2
1451830
2
873621
2
1169109
2
473521
2
377367
606231
477198
7022
0
22*50
0
18028
0
9446
0
11739
0
10118
0
20938
0
20433
0
10185
0
7529
0
13450
0
7859
0
6694
0
3058
0
5714
0
0
0
X 1
x 33
x 1
X 50
X 1
X 50
X 1
X 50
X 1
X 25
X 1
X 25
X 1
X 50
x 1
X 50
X 1
x 33
X 1
X 40
X 1
X 25
X 1
X 25
X t
X 25
X 1
X 25
X 1
X 10
X 1
X 1
X I
238
-------
ACTIVE TREATMENT
EXTRACTION UELl « DEEP
-------
S«pt« ID
EW30/1
0«t»
3/09/88
0«t«etor
Typ«
Mthylww
Oilorfd*
Tr«n» 1,2
oa
TBI
Trlehloro
•thy(are
TctrscMoro
•thylen*
Oflutlan
EWS3D/1
EWB30/1
EW630/1
EVB30/1
EWS3D/1
IUC3D/1
EW23D/1
CVQ3D/1
CWC3D/1
CWG3D/1
EVG30/1
CWG30/1
EVG30/1
EWG3D/1
EWG30/1
EUC3D/1
EWS30/1
EW30/1
EM23D/1
EWG3D/1
EWC30/1
EUC30/1
EUG30/1
EV630/1
EUC30/1
EWG3D/1
EWG3D/1
EWC30/1
EVG30/1
EWCS0/1
EWG30/1
EWC30/1
3/11/88
3/11/88
3/18/88
3/18/88
3/19/88
3/19/88
3/21/88
3/21/88
3/23/88
3/23/88
3/29/88
3/23/88
3/27/88
3/27/88
3/29/88
3/29/88
3/31/88
3/31/88
4/02/88
4/02/88
4/03/88
4/05/88
4/07/88
4/07/88
4/09/88
4/09/88
4/11/88
4/11/88
4/13/88
4/13/88
4/13/88
4/18/88
FID
CCD
no
CCD
no
ECS
no
ECO
FID
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FID
ECO
FIO
FIO
FIO
62923
32073
73402
6071
62038
4913
4771
43840
54308
3
51894
5249
4848
4405;
3
1
1
1
1833
0
13313
0
3924
0
2015
0
3317
0
5972
0
1884
0
1776
0
1830
0
1763
0
2964
0
2412
0
1795
0
1548
0
1825
0
0
0
711553
2
1063502
2
900144
2
493237
2
626149
2
559930
2
397981
2
579078
2
521124
2
363936
2
430050
2
495237
2
457592
2
438252
2
424454
2
316575
353783
334188
6082
0
2
0
6626
0
6110
0
2
0
16271
0
8776
0
7330
0
4889
0
4091
0
4890
0
4176
0
4396
0
3694
0
2
0
0
0
X 25
X
X
X
X
X
X 25
X
X
X
240
-------
ACTIVE TREATMENT
EXTRACTION WELL *4 SHALLOW (ug/cubic aatcr)
3l« to
Oattctor
Tvp*
H«thyl«n«
CM or id*
Tr»n» 1,2
OCE
TRI
Trfchloro
•thylana
Tetrschloro
•thyltrw
Oilution
EUMS/1
EWMS/1
EWMS/1
EWMS/1
EWMI/1
EWMS/1
EUMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
EWMS/1
sa
as
88
88
88
88
88
88
88
88
88
88
88
ECO
FID
ECO
FID
ECS
FIO
ECO
FIO
ECO
FID
ECO
FID
ECO
FIO
ECO
FID
ECO
FIO
ECO
FID
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FID
ECO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
501453
3
327839
3
241333
3
293376
3
243827
3
250256
3
284006
3
232064
3
262098
3
189295
3
194459
3
160375
3
192727
3
119383
3
180807
3
147608
60456
1
5097?
1
43601
1
52596
1
44029
1
26700
1
28473
1
29896
1
25548
0
25460
1
24072
1
13420
1
27206
1
28409
0
9623
1
9833
0
14826
2
11012952
2
8960394
2
7390698
2
11269011
2
9104518
2
9577078
10066186
10072957
10344539
2
3370122
9129859
2
7423373
2
9163732
2
g i ± a A A. A.
JOOOOOO
2
8332832
2
6679094
20140
1
17690
1
12822
1
33964
1
31080
1
15920
1
25709
1
33005
1
39039
I
23255
1
35317
1
15435
1
0
1
59963
0
11522
1
16890
0
25163
x 333
X 1
x 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
x 200
X 1
X 200
X 1
X 200
X 1
X 200
x 1
x ;oo
x 1
X 100
X 1
x 2C0
x l
X 200
X 1
X 2C0
X 1
X 200
t 1
X 200
X 1
X 2CC
241
-------
s«elt to
EW64S/1
Oata
3/09/88
Datactor
Typa
Nathylana
Chlorida
Trana 1,2
DCS
TRI
Trldiloro
•thylana
Tetraehlero
•thylana
Oilution
* 1
EUG4S/1
EUG4S/1
EW4S/1
EWS4S/1
EVOJ/1
EW04I/1
EWG4S/1
CWC4S/1
EWC4S/1
EWC4I/1
EVG4S/1
EWG4I/1
ewwi/1
EUG4S/1
EWG4S/1
EWG4S/1
EWS4S/1
EMS4S/1
EWG4S/1
EWS4S/1
EWG4S/1
EWG4I/1
EWG4S/1
EMMS/1
EWG4S/1
EWC4S/1
EW64J/1
EVC4S/1
EWG4S/1
EUC4S/1
EWUS/1
EWWS/1
3/11/88
3/11/88
3/18/88
3/18/88
3/19/88
3/19/88
3/21/88
3/21/88
3/23/88
3/23/88
3/23/88
3/23/88
3/27/88
3/27/88
3/29/88
3/29/88
3/31/88
3/31/88
6/02/88
4/02/88
4/05/88
4/09/88
4/07/88
4/07/88
4/09/88
4/09/88
4/11/88
4/11/88
4/13/88
4/13/88
4/13/88
4/18/88
rto
ecD
no
ECD
FID
ECD
FID
ECD
FID
ECD
FID
ECD
F10
ECD
FtO
ECD
FID
ECD
FID
ECD
FtO
ECD
FIO
ECD
FIO
ECD
FIO
ECD
FIO
ECD
FIO
FIO
FIO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a
o
o
o
o
0
0
0
185228
3
174324
3
262881
3
230323
3
166839
3
167768
3
162070
3
186515
3
161997
3
108322
3
109622
3
140131
3
132524
3
129680
3
113014
3
92211
131272
133214
13869
0
19534
1
20736
1
11753
1
11269
1
13250
1
15739
1
11474
1
11976
0
7839
0
13178
0
11197
0
8611
0
7489
0
12876
0
0
0
7789541
2
7506034
10096622
2
8565937
2
5905565
2
6562014
2
6591108
2
7785513
2
7258047
2
5954157
2
S726432
2
6078556
5921278
2
5320282
4577271
2
3471174
4905952
5111885
25831
1
49298
1
48061
1
20308
1
33101
1
39620
0
53822
1
35194
0
27390
0
19894
1
31298
0
25437
0
25505
1
17294
0
11110
0
1
1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 200
X 1
X 1
X 1
242
-------
ACT (VI TRUrMCNT
EXTRACTION WILL K 0£IP (US/cubic a»tar)
9l« 10
Data
Dataetar
Typ»
Hathylana
CM or Ida
Tram 1,2
oee
rm
Trlehtoro
athylana
Tatrachloro
•tfiylana
Ottut too
EWGtt/1
EMS40/1
2/11/88
2/11/88
ECO
F10
3
50*277
36679
1
2
1921961
9460
1
X 230
X 1
EWC40/1
EWC40/1
2/12/88
2/12/88
CCD
no
3
435232
52095
1
2
3024487
15354
1
X 200
x 1
Eueto/i
EVG40/1
2/13/88
2/13/88
CC0
no
3
282843
46600
1
2
2593985
13706
0
x 200
X 1
EUG40/1
EVG40/1
2/14/88
2/14/88
ECO
H0
3
234423
38271
1
2
3079133
28742
0
X 100
X 1
EWC40/1
FUG40/1
2/15/88
2/15/88
ECO
FID
3
123301
168*0
0
2
1631889
9901
0
X 20 0
x 1
EVG4C/1
EMS40/1
2/16/88
2/16/88
ECO
F 10
3
158052
14308
1
2
2197859
18585
0
X 50
X 1
EWG40/1
CVS40/1
2/17/88
2/17/88
ECO
no
3
136161
12399
0
2
1836427
19149
0
X 50
x 1
EWC40/1
EUG4D/1
2/18/88
2/18/88
ECO
FIO
3
116361
9803
0
2
1468266
13236
0
X 50
x 1
EVG40,1
EWG4JV1
2/20/88
2/20/88
ECO
no
3
90719
7698
0
2
1213338
19415
0
x 50
x 1
EW40/1
EWS40/1
2/22/88
2/22/88
ECO
Fro
3
37430
1760
0
2
573997
4044
0
X 25
X 1
EWG40/1
EVJG40/1
2/24/88
2/24/88
ECO
FIO
3
61516
25*5
0
2
2212524
16544
0
X 50
X 1
EVC40/1
EUC40/1
2/26/88
2/26/88
ECO
FIO
3
59230
2
636326
10736
0
X 100
X 1
EVG40/1
EWG40/1
EUG40/1
EWS40/1
3/01/88
3/01/88
3/03/88
3/03/88
ECS
no
ECS
no
3
81694
3
0
7435
0
251
0
2
75S531
2
102668
2
0
696
0
X 10
X 1
X 5
X 1
EWtt/1
EUG40/1
EVC40/1
EU640/1
3/05/88
3/05/88
3/07/88
3/07/88
ECO
FIO
ECO
FID
3
47391
3
122228
1
0
4320
0
2
506933
2
13S0900
7533
0
50069
0
X 100
X 1
X 100
X I
EVG40/1
3/09/88
ECO
7(06
x 50
243
-------
Mpl* ID
EUC40/1
Data
3/09/88
Oatactor
Typ*
Nathylana
CM or Ida
Trana 1,2
DCE
TRI
Triehloro
•thyI ant
Tatraehloro
•thylena
Dtlutfon
EUG40/1
EUG40/1
EMM/1
EWU/1
EUG40/1
CUG40/1
EUG40/1
EW040/1
EUG40/1
EUG40/1
EUS40/1
EUMO/1
EUMO/1
EUG40/1
EUG40/1
EUG40/1
EUG40/1
EUGAO/1
EUG40/1
EUG40/1
EUG40/1
EUG40/1
EUG40/1
EUG40/1
ruo«a/i
EUG40/1
EUG40/1
EUG40/1
EUG40/1
EMM/1
EUG40/1
EUG40/1
3/11/88
3/11/88
3/18/88
3/18/88
3/19/88
3/19/88
3/21/88
3/21/88
3/23/88
3/23/88
3/25/88
3/2S/88
3/27/88
3/27/88
3/29/88
3/29/88
3/31/88
3/31/88
4/02/88
4/02/88
4/05/88
4/05/88
4/07/88
4/07/88
4/09/aa
4/09/88
4/11/88
4/11/88
4/13/88
4/13/88
4/15/88
4/18/88
F10
CO
ID
CO
10
CO
ID
CO
ID
CO
ID
CO
ID
CO
10
CO
10
CO
to
CO
10
CO
to
CO
to
CO
to
CO
10
CO
ID
to
10
3
80662
9388
20363
10921
9198
57079
9911
12262
12093
3
142875
130772
177234
2582
0
3349
0
9307
0
2631
0
4384
0
1785
0
1
0
22
0
5675
0
4665
0
75
0
0
0
0
0
3689
0
4005
0
0
0
657989
2
852140
2
844182
2
1199477
2
712077
2
719187
2
546952
2
88191
2
1
2
855140
2
1018648
2
30203
2
77340
2
0
2
657494
2
722342
1521913
878011
11131
0
22845
1
2
1
14608
0
2
1
3115
0
1409
0
573
0
14271
0
12547
0
350
0
252
0
121
0
7199
0
6452
0
0
0
X 1
* 25
x 1
X so
X 1
x 50
x 1
X 25
X 1
X 10
X 1
x 25
X 1
x 25
X 1
X 1
X 1
X 25
x 1
x 100
X 1
X 1
X 1
x 5
X 1
x 5
X 1
x 25
X 1
x 25
x 1
X 1
X 1
244
-------
Oiluti
X 100
X 1
* 100
X 1
X 100
X 1
X 100
X 1
X 50
X 1
X 50
X 1
X 1
x 25
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
X 1
ACTIVE TREATMENT
VAQA* NOMITMtMG WEIL «1 SHALLOW (u#/etf>ic Mtir)
Detector Methylene Trtns 1,2 Trlchloro Tetrechtoro
Type CM or id* DCE TRI ethylene ethylene
88 ECO 0 3 1 2 1
88 FID 0 78793 O 307266 0
88 ECS 0 3 0 2 1
88 FtO 0 1 0 135783 0
88 ECS O 3 0 2 1
88 FID 0 1 0 170837 0
88 ECS 0 3 0 2 1
88 FID 0 1 0 254879 0
88 ECS 0 3 0 2 0
88 FID 0 1 0 99050 0
88 ECO 0 3 0 2 0
88 FIO 0 1 0 91155 0
88 ECD 0 3 109 2 1250
88 FIO 0 0 0 339414 0
88 ECD 0 3 2267 2 9311
88 FIO 0 0 0 56598 0
88 ECS 1 3 545 2 341
88 FIO 0 0 0 0 0
88 ECS 0 3 53 2 546
88 FtO 0 0 0 1 0
88 ECS 0 3 0 2 234
88 FIO 0 0 0 40331 0
88 ECS 0 3 235 2 681
HO 0 0 0 46351 0
88 ECS 1 3 56 2 279
88 FIO 0 0 0 0 0
ECS 8304 3 118 2 114
FIO 0 0 0 1 0
88 ECS 0 3 26 2 290
88 FIO 0 0 0 1 0
88 ECD 0 3 54 2 325
88 FID 0 0 0 120114 0
88 ECO 0 3 47 2 266
245
-------
SMpla 10
VMWG1S/1
Oat*
3/10/aa
Detector
Type
Methylene
Chloride
T rin 1,2
OCE
TRI
0
Triehloro
ethylene
Tetrachloro
ethylene
OiluUon
x 1
YWUG1I/1
VNU61S/1
VKWG1S/1
vMweis/i
VMK1S/1
VMUC1S/1
VNUG1S/1
VMUG1S/1
VHWG1S/1
VNUC1S/1
VMUC1S/1
VMUC1S/1
VMWC1S/1
VMUG1S/1
VMUC1S/1
VMWC1S/1
WWS1S/1
VMUC1S/1
VHWG1S/1
VMUC1S/1
VMUC1S/1
VWUC1S/1
VMWG1S/1
VMUG1S/1
WU61S/1
VMUC1S/1
VMU61S/1
VMUC1S/1
VWU61S/1
VW01I/1
3/15/88
3/15/88
3/18/88
3/18/88
3/20/88
3/20/88
3/22/88
3/22/88
3/24/88
3/24/88
3/26/88
3/26/88
3/28/88
3/28/88
3/30/88
3/30/88
4/01/88
4/01/88
4/04/88
4/04/88
4/06/88
4/06/S8
4/08/88
4/08/88
4/10/88
4/10/88
4/12/88
4/14/88
4/21/88
4/21/88
FIO
CCD
FID
ECO
FIO
ECO
FID
eco
FID
ECS
FIO
ECS
FID
ECO
FIO
ECS
FIO
ECO
FIO
ECS
FIO
ECO
FIO
ECS
FID
ECO
FIO
FIO
FIO
ECS
FID
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
3
3
0
3
0
3
0
3
0
0
0
3
0
172
0
0
0
28
0
1
0
1
0
0
0
51
0
1
0
53
0
S49
0
1
0
0
0
0
0
0
0
102
0
2
37167
2
1666389
2
48280
2
46748
2
0
2
0
2
0
2
1
2
0
2
0
2
0
2
1
2
0
0
0
2
0
661
0
1
0
219
0
186
0
190
0
361
0
238
0
550
0
205
0
855
0
101
0
157
0
43
0
0
0
219
0
x 1
X 1
x 50
x 1
x 1
x 1
x 1
x 1
X 1
X 1
X 10
X 1
X 1
X 1
X 1
t ;
X 1
X 1
x ic
X 1
X 1
X 1
x 5
X 1
X 1
X 1
X 1
X 1
X 1
I 1
246
-------
ACTIVE TREATMENT
VACUUM KWITCXINC UEll #1 DEEP (uB/cifcfc Mt
-------
Sanpla ID
VNUC1D/1
Oat*
3/10/88
Oatacter
Typa
Nathyl«na
CMorfda
Trana 1,2
DCE
TR1
TMehloro
•thyIana
T«tracMoro
•thyl an*
Oi lution
VMUGIO/1
VMUGIO/1
1/15/88
3/15/88
FID
- CCD
FID
286
0
2
70168
91
0
VMUG1D/1
VMUC1D/1
3/18/88
3/18/88
eco
no
37
0
130
0
VMUGIO/1
VMUGIO/1
3/20/88
3/20/88
ECO
FlO
50
0
2
51313
322
a
VMWG1D/1
VMWG1D/1
3/22/88
3/22/88
CCD
FID
03
0
3U
0
VMUGIO/1
VMUG1D/1
3/24/88
3/24/88
ECO
FID
27
0
322
0
VMWS10/1
VMUGIO/1
3/26/88
3/26/88
ECO
FID
166
0
VMU610/1
VMWS1D/1
3/28/88
3/28/88
ECO
FlO
22
0
2
41721
372
0
VMUGIO/1
VMUGIO/1
3/30/88
3/30/88
ECO
FlO
334
0
VMUGIO/1
VMUGIO/1
4/01/88
4/01/88
ECO
F10
1030
0
VMUG10/1
VMUGIO/1
4/04/88
4/04/88
ECO
FIO
143
0
311
0
VMUG10/1
VMWG1D/1
4/06/88
4/06/88
ECO
FIO
25
0
VMWG1D/1
VMUGIO/1
VMUG1D/1
VMU61D/1
4/08/88
4/08/88
4/10/88
4/10/88
ECO
FID
ECO
FID
27
0
1
0
2
1
2
87417
230
0
1
0
VMUGIO/1
VMUG1D/1
4/12/88
4/14/88
FIO
FID
0
70763
VMUGIO/1
VMUGIO/1
4/21/88
4/21/88
ECU
FIO
6399
0
248
-------
ACTIVE T1EATICNT
VACOK MONITOR IMC WEIL #2 SHALLOW (ug/e^ie Mtir)
!>(• 10
Bttaetop
Typ»
N«thyl«n*
Chloride
Tr«n» 1,2
OCI
TRI
Trlchloro
•thyl«rw
Tatrtchloro
•thyl«n»
01 lutlen
VMUG2S/1
VNWG23/1
VMUS23/1
VMWS2S/1
VMU52S/1
VMWG2S/1
VMK2S/1
VWUS2S/1
VMWC2S/1
VMWC2S/1
VMUC23/1
VMJC23/1
VMUC2S/1
VMWC2S/1
VMWG2S/1
VMWG2S/1
VMUC2S/1
VMUG2S/1
VWG2S/1
VWWG2S/1
VNWG2S/1
VKWG2S/1
VMWC2S/1
VMWC2S/1
VNUC2S/1
VMUC2S/1
VMUG2S/1
VMWC2S/1
VMUG2S/1
VKUC2S/1
VNUG2S/1
VMWG2S/1
VKWG2S/1
88
SB
88
88
88
88
88
88
88
88
88
88
88
ECO
MO
ECO
FID
ECS
riD
ECS
no
ECS
FIO
ECO
no
ECS
no
ECO
FIO
ECO
FIO
ECO
FIO
ECS
FIO
ECO
FIO
ECO
FIO
ECO
FID
ECO
FID
ECO
FID
ECO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
0
3
1
3
1
3
1
3
1
3
1
3
0
1
0
1
0
1
0
1
0
1
0
1
0
462
0
1
0
t
0
1
0
234
0
1679
0
1032
0
543
0
859
0
682
0
496
2
1609823
2
u
2
341828
2
283944
2
233897
2
294440
2
204858
2
175620
2
148083
2
91943
2
124062
2
548344
2
147015
2
155241
2
155940
2
133149
5279
0
2460
0
1
0
1
0
1
0
1245
0
1317
0
1706
0
1092
0
1812
0
368
0
989
0
667
0
2023
0
1044
0
651
0
606
X 200
X 1
X too
X 1
X 100
X 1
x 100
X 1
X 50
X 1
X 50
X 1
X 25
X 1
X 67
X 1
x 25
x t
X 25
X 1
X 10
X 1
x 25
X 1
X T
X 1
X 10
X I
X 5
X 1
X 1
X 1
X 1
249
-------
SMPI*
VMWG2S/1
10
Oat*
3/10/88
0«t*ctor
TVP»
Methy(«o«
Chlorid*
Trent 1,2
OCE
TRl
Trlehtoro
•tnylana
TatrtcMoro
«thyl«o«
VNWC2S/1
VHW2S/1
VMUC2S/1
VNUS2S/1
VNMS2S/1
VMK2S/1
VNWC2S/1
VMWUS/1
VMWG2S/1
VHWC2I/1
VMUG23/1
VMWG2S/1
VMWUS/1
VNUG2S/1
VMWG2S/1
VMWC2S/1
VNWG2S/1
VNUC2S/1
VHW62S/1
VMWC2S/1
VMWG2S/1
VMWG2S/1
VWUG2S/1
VMWG2S/1
VMWC2S/T
VMUG2S/1
VMUC2S/1
VMUC2S/1
VKWG2S/1
VMUC2S/1
VXWG2S/1
3/14/88
3/14/88
3/18/88
3/18/88
3/20/88
3/20/88
3/22/88
3/22/88
3/24/88
3/24/88
3/26/88
3/26/88
3/28/88
3/28/88
3/30/88
3/30/88
4/01/88
4/01/88
4/04/88
4/04/88
4/06/88
4/06/88
4/08/88
4/08/88
4/10/88
4/10/88
4/12/88
4/12/88
4/14/88
4/21/88
4/21/88
FID
ECO
F 10
ECO
FIO
ECO
FID
ECO
FIO
ECO
FIO
ECO
FIO
ECO
FID
ECD
FIO
ECO
FIO
ECO
FID
ECO
FIO
ECO
FIO
ECS
FIO
ECO
FID
FIO
ECO
FIO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
54514
0
3
1
3
1
3
0
3
0
3
1
3
0
3
1
3
0
3
0
3
0
3
1
3
0
3
0
3
0
4322
0
2040
0
558
0
429
0
1224
0
487
0
496
0
271
0
486
0
486
0
888
0
524
0
345
0
743
0
3840
0
10648S
2
431413
2
324744
2
117936
2
80329
2
179254
2
84739
2
139955
2
81442
2
74754
2
77799
2
117798
2
111429
2
57021
2
111518
1J3417
2
3:8016
2845
0
2134
0
736
0
585
0
1697
0
779
0
1259
0
689
0
501
0
463
0
471
0
678
0
216
0
480
0
189
0
250
-------
Acrrve timtwmt
VACUUM H0HIT0HIN6 WCIL tZ DEEP (vie/ci£
-------
S«el«
ID Oat*
Oataetor
T*P»
Mtfiytan*
Chloride
Trana 1,2
DCS
TRI
TMehloro
•thyIana
TatracMoro
athylana
Of tut ion
VMMS2D/1
3/10/88
no
0
1
0
130972
0
X 1
VNM2D/1
3/14/88
E3
0
3
7297
2
3459
X 10
VWHS2D/1
3/14/88
F ID
0
54439
0
618666
0
X 1
VW*2D/1
3/18/88
CCD
0
3
4209
2
1437
X 25
VMK29/1
3/18/88
FID
0
1
0
531084
0
X 1
VMK2D/1
3/20/88
CCD
0
3
2187
2
1676
X 10
VMUS2D/1
3/20/88
no
0
1
0
$03103
0
X 1
VNUS2D/1
3/22/88
ECD
0
3
1698
2
1497
X 5
VNUS2D/1
3/22/88
FID
0
1
0
Z32096
0
X 1
VHUC2D/1
3/24/88
eca
0
3
3418
2
2296
X 10
VMUC20/1
3/24/88
FID
0
1
0
*77706
0
X 1
vw*28/i
3/26/88
ECO
0
3
2304
2
1753
X 10
VMUC2D/1
3/26/88
FIO
0
1
0
358874
0
X 1
VMUB20/1
3/28/88
ECD
0
3
1823
2
1737
X 10
VMUS2D/1
3/28/88
FID
0
1
0
323391
0
X 1
VWC2D/T
J/30/86
ECS
0
3
1285
2
1339
X 10
•/wwca/t
3/30/88
FID
0
1
0
242804
0
X 1
VHWG2D/1
1/01/88
ECS
0
3
1111
2
771
X 5
VNW62D/1
4/01/88
FIO
0
1
0
128613
0
X 1
VMA20/1
4/04/88
ECS
0
3
1S35
2
913
X 10
VMUG2D/1
4/04/88
FID
0
1
0
252910
0
X 1
VMUC2D/1
4/0A/88
ECO
0
3
2361
2
1292
X 10
VMUC20/1
4/06/88
FIO
0
1
0
383199
0
X 1
VMUC2D/1
4/08/88
ECO
0
3
906
2
751
X 10
VMWC2D/1
4/08/88
FIO
0
1
0
224685
0
X 1
VMHG2D/1
4/10/88
ECO
0
3
1829
2
977
X 10
VMUC2D/1
4/10/88
FIO
0
1
0
329991
0
X 1
VNUC2D/1
4/12/88
ECD
0
3
1934
2
880
X 10
VMUS2D/1
4/12/88
FID
0
1
0
313488
0
X 1
VMMC20/1
4/14/88
FIO
0
1
0
313486
0
X 1
VMUG2D/1
4/21/88
ECO
1
3
4620
2
1074
X 10
VMUCa/1
4/21/88
FID
0
1
0
350233
0
X 1
252
-------
ACTIVE TREATMENT
VACUUM HONI TOR INC WELL #3 SHALLOW (ug/cubic meter)
Sample 10
Detector
Type
Methylene
Chloride
Trans 1,2
OCE
1,1,1-Tri
Triehloro
ethylene
Tetrachloro
ethylene
Di tut ion
VMWG3S/1
VNWC3S/1
88
88
ECO
FID
3
403143
35328
1
2
4482785
5011
0
X 200
X 1
VMWG3S/1
VMWG3S/1
88
88
ECO
FIO
3
816933
81131
1
2
8560688
29470
0
X 200
X 1
VMWC3S/1
VMUG3S/1
88
ECO
FIO
3
564599
53512
1
2
6339445
22115
0
X 200
X 1
VMWG3S/1
VMWG3S/1
88
88
ECO
FID
4139
0
2
281935
16729
0
X 100
X 1
VMWG3S/1
VMWG3S/1
88
88
ECO
FID
3
136897
12358
0
2
2287011
10465
0
X 200
X 1
VMWG3S/1
VMWG3S/1
88
88
ECO
FID
3
239294
13946
1
2
4586937
29747
1
X 100
X 1
VMWG3S/1
VMWG3S/1
ECO
FID
3
186465
10858
0
2
4281694
25500
0
X 100
X 1
VMWG3S/1
VMWG3S/1
ECl
FID
3
125778
5766
0
2
2254946
19598
0
X 100
X 1
VMWG3S/1
VMWG3S/1
ECO
FID
3
144043
8026
0
2
2296366
30268
0
X 50
X 1
VMWG3S/1
VMWG3S/1
ECO
FID
3
103666
3042
0
2
1486262
7747
0
X 50
X 1
VMWG3S/1
VMWG3S/1
ECO
FID
3
81106
21
0
2
1114976
76
0
X 1
X 1
VMUG3S/1
VMWG3S/1
ECO
FIO
139
0
2
31783
435
0
X 1
X 1
VMWG3S/1
VMWG3S/1
ECO
FIO
3
89684
2942
0
2
884462
3994
0
X 50
X 1
VMUG3S/1
VMWG3S/1
ECO
FIO
0
0
3
81095
3168
0
2
795183
3827
0
X 50
X 1
VMUG3S/1
VMUG3S/1
VMWG3S/1
VMWG3S/1
ECO
FIO
ECO
FIO
0
0
0
0
3
60502
3
65513
2191
0
3367
0
2
735848
2
946323
3740
0
11066
0
X 50
X 1
X 25
X 1
VMVG3S/1
ECO
2798
4758
X 25
253
-------
Sample ID
VMWG3S/1
VMUG3S/1
VMVG3S/1
Date
3/10/88
3/14/88
3/14/88
Detector Methylene Trans 1,2
Type Chloride DCE
1,1,1-Tri
0
29166
1
Trichloro
ethylene
Tetrachloro
ethylene
Dllution
X 1
X 100
X 1
FID
ECO
FID
3
303444
604209
2
3851542
23810
0
VMWG3S/1
VMWG3S/1
3/18/88
3/18/88
ECO
FID
3
183420
10556
0
2
1697383
8490
0
X 25
X 1
VMWG3S/1
VMWG3S/1
VMUG3S/1
VMWG3S/1
VHUC3S/1
VMWG3S/1
3/20/88
3/20/88
3/22/88
3/22/88
3/24/88
3/24/88
ECO
FID
ECO
FID
ECO
fid
o
o
o
o
0
0
3
67092
3
123387
3
184909
2951
0
4913
0
3368
0
2
530583
2
703143
2
911746
6303
0
6739
0
3903
0
X 10
X 1
X 10
X 1
X 25
X 1
VMUG3S/1
VMWG3S/1
3/26/88
3/26/88
ECO
FID
3
102526
4024
0
2
547248
5972
0
X 10
X 1
VMWG3S/1
VMUG3S/1
3/28/88
3/28/88
ECO
FID
3
98129
3787
0
2
575246
X 10
X 1
VMWG3S/1
VMUG3S/1
3/30/88
3/30/88
ECD
FID
3
80675
2459
0
2
406643
X 10
X 1
VMVG3S/1
VMWG3S/1
4/01/88
4/01/88
ECD
FID
3
123576
7163
0
2
629353
5353
0
X 25
X 1
VMWG3S/1
VMUG3S/1
4/04/88
4/04/88
ECD
FID
3
117132
3933
0
2
582355
8878
0
X 25
X 1
VMUG3S/1
VMWG3S/1
4/06/88
4/06/88
ECO
FID
935
0
2
128143
766
0
X 5
X 1
VMWG3S/1
VMWG3S/1
4/08/88
4/08/88
ECO
FID
3
139716
3053
0
2
700206
10010
0
X 25
X 1
VMUG3S/1
VMUG3S/1
VMUG3S/1
VMWG3S/1
VMUG3S/1
VMWG3S/1
VMWG3S/1
4/10/88
4/10/88
4/12/88
4/12/88
4/14/88
4/21/88
4/21/88
ECD
FID
ECO
FID
FID
ECO
FID
3
194586
3
1
149208
3
170198
3649
0
686
0
22827
1
2
726100
2
109893
794468
2
1483036
2835
0
666
0
6732
0
X 25
x 1
X 5
X 1
X 1
X 25
X 1
254
-------
ACTIVE TREATMENT
VAOAM MMITORIHG *30 UEUS (ug/ciitic Mttr)
Bl • ID
Date
Detector Methylene Trin* 1,2
Type CM or Id* DCS
TR1
Trfehloro
ethylene
Tetrtchloro
ethylene
Oflution
VMWC3D/1
VMA30/1
2/11/88
2/maa
ECS
MO
3
105727
34008
1
2
1900910
92565
0
x 200
X 1
VMC30/1
VHUB30/1
2/12/88
2/12/88
ECS
FID
3
82948
17335
1
2
1488633
X 200
x 1
VMS30/1
VMA30/1
2/13/88
2/13/80
ECS
F10
3
51088
18905
0
2
910431
X 200
X 1
VMWG30/1
VMUC30/1
2/14/88
2/14/88
CCD
fid
3
59058
18964
0
2
967890
X 100
X 1
VNWG3D/1
VHWUO/1
2/15/88
2/15/88
ECS
FID
3
57297
24895
1
2
90S770
X 200
X 1
VMUC3D/1
VMWC30/1
2/16/88
2/16/88
ECS
FID
3
56545
14089
0
2
1012988
4385
0
X 50
X 1
VMWC3D/1
VMWC30/1
2/17/88
2/17/88
ECS
FIO
3
59674
H505
0
2
1090238
3261
0
X 50
X 1
VNUG30/1
VNUG3D/1
2/19/88
2/19/88
ECO
FID
3
55999
17066
0
2
864745
2007
0
X JO
X 1
VMWC30/1
VNWG30/1
2/21/88
2/21/88
ECS
FIO
3
53254
16088
0
2
798107
1712
0
X 50
x 1
VMWG30/1
VNWC3D/1
2/23/88
2/23/88
ECO
FIO
3
53084
17263
0
2
790946
2468
0
X SO
X I
VNWG3D/1
VNWG3D/1
2/25/88
2/25/88
ECO
FID
3
48131
9804
0
2
617524
1050
0
X 25
X 1
VMWS30/1
VMUG30/1
2/29/88
2/29/88
ECS
FID
39
0
2
42833
689
0
x 1
X 1
VMUG30/1
VMUC30/1
3/02/88
3/02/88
ECS
FIO
3
141675
22596
1
2
1012368
11981
0
x 25
x l
VNWG3D/1
VNWG3D/1
3/04/88
3/04/88
ECS
FID
3
132212
13992
1
2
947871
10318
0
x 50
X 1
VNUS30/1
VMWG30/1
3/06/88
3/06/88
ECS
FID
3
115997
10488
0
2
845356
14881
0
X 6?
X 1
VMWG30/1
VMWG3D/1
3/08/88
3/08/88
ECS
FIO
3
97968
11621
0
2
759997
7963
0
X 25
x 1
VNUC30/1
3/10/88
ECO
7994
1618
* 25
255
-------
S***)L« ID
VMWG30/1
VNWC3D/1
VMK3D/1
VMW53D/1
VMWUO/1
VMWC30/1
VMWC3D/1
VMUG3D/1
VMUC3D/1
VMUC3D/1
VKUS30/1
Oat*
3/io/as
3/14/88
3/u/aa
3/18/88
3/18/88
3/20/08
3/20/88
3/22/88
3/22/88
3/24/88
3/24/88
Detector Methylene
Typ» Chloride
Trans 1,2
OCE
TRI
TneMoro
•thy I or*
Tetrachloro
ethylene
Oilution
VMUC30/1
VMU630/1
VMWS30/1
VMWC30/1
VMUC30/1
VHW630/1
VMWC30/1
VMUC30/1
VMWC30/1
VMWC30/1
VMW&30/?
VMUC30/1
VMUC30/1
VMUC30/1
WUC30/1
VMU030/1
VNWC30/1
VMU630/1
VMUC30/1
vwgc30/1
3/26/88
3/26/88
3/28/M
3/28/88
3/30/88
3/30/88
4/01/88
4/01/88
4/04/88
4/04/88
4/06/88
4/06/88
4/08/88
4/08/88
4/10/88
4/10/88
4/12/88
4/14/88
4/21/88
4/21/88
FID
ECS
no
ECO
FID
ECD
FID
ECS
FID
ECS
FIO
ECS
FIO
ECS
FID
ECS
FID
ECO
FID
ECO
FID
ECS
FIO
ECO
FIO
ECS
FIO
FIO
FID
ECS
FID
0
0
0
0
0
0
0
0
0
0
0
0
a
o
0
0
0
0
0
0
0
0
o
o
o
o
0
0
0
0
96435
3
695993
3
0
3
0
3
0
3
0
3
1
3
0
3
125352
3
92955
3
89395
3
1
3
67335
3
61118
S0855
3
911813
430721
459716
27
0
1
0
1
0
0
0
3928
0
451
0
17426
a
KOU
o
16431
0
2455
0
1543
0
2035
0
0
o
596128
566737
705264
2
16298184
2
44145
2
1
40- '
2
36656
2
138951
2
0
2
1020293
2
700795
2
739361
2
245730
2
360122
2
300700
78642
SIX 169
2
17670335
46359
1
378
0
234
0
364
0
966
0
2068
0
100
0
7733
0
5247
0
6099
0
3821
0
6392
0
2
0
0
0
29026
1
* 1
256
-------
ACTIVE TREATMENT
VACUUM MOM(TORIKG WELL *4 SHALLOW (ug/eublc
>!• 10
Oat*
Detector M«thyl«rw Trans 1,2
Type Chloride OCE
TRl
Triehloro
ethylene
Tetreehloro
ethylene
0
-------
Smmil to
Dttt
0«t«etor
Typ«
ethylene
ChLorid*
Trarn 1,2
OCE
TS1
THehloro
•thyltr*
Tttrachloro
«thyl«ne
Oilution
WUG4S/1
3/10/88
ECD
0
3
0
2
231
x 5
VNUG4S/1
3/10/80
no
0
0
0
277908
0
X 1
VMUS4S/1
3/15/88
ECO
0
3
179
2
652
x 1
VMUCtS/1
3/15/88
FtO
0
0
0
38857
0
X 1
VMWSiS/1
3/18/88
ECS
0
3
30
2
428
X 1
VMJG4S/1
3/18/88
HO
0
0
0
56614
0
X 1
vMuets/1
3/20/88
ECO
0
3
1
2
446
X 1
vmets/1
3/20/88
FIO
0
0
0
1
0
X 1
3/22/88
ECO
0
3
1
2
254
X 1
mas/1
3/22/88
FID
0
0
0
1
0
X 1
VMUCtS/1
3/24/88
ECO
0
3
0
2
476
X 10
vMwets/i
3/24/88
FID
0
0
0
1
0
X 1
mus/1
3/26/88
ECO
0
3
0
2
327
x 5
VNUWS/1
3/26/88
FtO
0
0
0
66744
0
X 1
VMUG4S/1
3/28/88
ECS
0
3
0
2
1438
x 5
VWUS4S/1
3/28/88
FID
0
0
0
92704
0
X 1
VNVWS/1
3/70/88
ECO
0
3
0
2
&02
x 5
VNUG4S/1
3/30/88
F10
0
0
0
60696
0
X 1
VMUMS/1
4/01/88
ECO
0
3
0
2
998
x 25
VNWG4S/1
4/01/88
FtD
0
0
0
0
0
X 1
VWG4S/1
4/04/88
ECO
0
3
0
2
333
x 5
VMUUS/1
4/04/88
F10
0
0
0
1
0
X 1
VNWG4S/1
4/06/88
ECO
0
3
0
2
340
X 10
VNUG4S/1
4/06/88
FtO
0
0
0
1
0
X 1
VMWG4S/1
4/08/88
ECD
0
3
0
2
173
X 5
VtMWS/1
4/08/88
FID
0
0
0
1
0
X I
VMUG4S/1
4/10/88
ECO
0
3
0
2
35
X 1
VMG4S/1
4/10/88
FID
0
0
0
0
0
X 1
VMWC4S/1
4/12/88
FIO
0
0
0
0
0
X 1
VMJWS/1
4/14/88
FID
0
0
0
0
a
X 1
VHUG4S/1
4/22/88
ECO
0
3
275
2
588
X 1
VNUG4S/1
4/22/88
FIO
0
0
0
1
0
X 1
258
-------
ACTIVE TREATMENT
VACUUM MOUTHING WELL M BEEP (ug/c\4>1c settr)
SMVlt ID D«t*
D«t*etor Methylene
Typ» Chloride
Trun 1,2 Trlehloro T«tr»eMoro
DCE T HI (ttiyLan* ethylene
0>lutioo
VMGU/1
VWWG40/1
2/11/88
2/1T788
ECS
fio
155804
0
2
47«9S
62127
a
VMKiO/1
VMWS40/1
2/12/88
2/12/88
ECO
FiS
185
0
86
a
VMUQ40/1
VHHG40/1
2/13/88
2/13/80
ECS
no
92
0
2
45198
76
0
VMUC40/1
VNWG40/1
2/14/88
2/14/88
ECO
FIO
2
84322
VMUC40/I
VNMG40/1
2/13/88
2/15/88
ECO
FID
2
124136
VNWMO/1
VMXS40/1
2/16/88
2/16/88
ECS
FIO
39
0
2
72967
338
0
VMWG40/1
VMUUO/1
2/17/88
2/17/88
ECO
FIO
52
0
2
43707
318
0
VNWG40/1
VNWG40/1
2/19/88
2/19/88
ECO
FIO
105
0
2
61089
589
0
VMJG4D/1
VMK40/1
2/2I/SB
2/22/88
fid
ECO
0
110
18215r
2
0
430
WWG40/1
VNUG40/1
2/23/88
2/23/88
ECO
FID
45
a
2
67044
606
0
VNWG40/1
VNWG40/1
2/25/88
2/25/88
ECS
FID
23
0
118
0
VMWG40/1
VMWG40/1
2/29/88
2/29/88
ECB
FIO
U
0
2
41052
326
a
VMWS40/1
VHW640/1
3/02/88
3/02/88
eco
FIO
35
0
191
0
VNWG40/1
VMWS40/I
3/04/88
3/04/88
ECS
FID
2
40946
460
0
VMJG40/1
VNUG40/1
3/06/88
3/06/88
ECO
FIO
154
0
2
78055
682
0
VNW640/1
VNWG40/1
3/08/88
3/08/88
ECS
FIO
28
0
2
44164
107
0
259
-------
S«ct« to 0«tt
D«t«etor
Typ«
M«thy(«ni
Chloride
Trtnt 1,2
OCE
TBI
Trlehloro
•ttiylen*
T«tr»cMoro
ethylene
Dilution
VNWUO/1
VNUG40/1
VNUUO/1
VMUUO/1
3/10/ae
3/10/aa
3/15/88
3/13/88
ECO
FED
ECS
no
n
o
zoo
0
2
131779
2
0
227
0
lu.
0
VNUUO/1
VMUUO/1
3/18/88
3/18/88
ECO
FID
2
244799
953
0
VNWUO/1
VMUUO/1
VNWUO/1
VNUUO/1
3/20/88
3/20/88
3/22/88
3/22/88
ECO
FtO
ECO
FID
2
197845
2
1
281
0
201
0
VNUMO/1
VNWUO/1
3/24/38
3/24/88
ECO
FID
444
0
VNWUO/1
VMUUO/1
3/24/88
3/26/88
ECO
FID
286
0
VMUUO/1
VMUUO/1
3/28/88
3/28/88
ECO
no
26
0
2
41149
427
0
VMUC40/1
VMWUO/1
3/30/88
3/30/88
ECO
F10
619
0
2
56161
944
0
VMUUO/1
VMUUO/1
4/01/88
4/01/88
ECO
FIO
997
0
VMUG40/1
VMWUO/1
4/04/88
4/04/88
ECO
FID
243
0
VMWUO/1
VMUUO/1
4/06/88
4/06/88
ECO
FIO
439
0
VMWUO/1
VMUG40/1
4/08/88
4/08/88
ECO
FIO
2
47706
374
0
VMUUO/1
VNWUO/1
VMWUO/1
VNWUO/1
4/10/88
4/10/88
4/12/88
4/14/88
ECO
FtO
FIO
FIO
21
0
0
0
VNWUO/1
VNWUO/1
4/22/88
4/22/88
ECO
FIO
4725
0
208
0
260
-------
active treatnemt
PROCESS &AS-SEPMATO*
INLET (ug/ciAic aeter)
Detector
Methylene
Trans 1,2
TrteMoro
Tetrachloro
Saevle to
Date
Type
Chloride
OCE
TRl
ethylene
ethylene
Oilution
PCSEPI*
2/11/88
ECO
0
3
20447
2
5783
X 200
PSSEPtH
2/U/88
no
0
14739*
1
2544176
0
X 1
PGSEPIH
2/13/88
¦ECO
0
3
9570
2
4131
* 200
PGSEPIH
2/13/88
MO
0
85820
0
1373817
0
I 1
PGSEPIH
2/15/88
ECO
0
3
7016
2
1
* 200
PGSEPIH
2/15/88
no
0
40103
0
1290362
0
x 1
PGSEPIH
2/17/88
ECO
0
3
6643
2
6576
* 50
PGSEPIH
2/17/88
MO
0
58019
0
1098607
0
* 1
PGSEPIH
2/22/88
ECO
0
3
2292
2
3006
X 50
PGSEPIH
2/22/68
no
0
J7038
0
933929
0
X 1
PSSEPIN
3/01/88
ECO
0
3
7355
2
16691
* 50
PGSEPIH
3/01/88
no
a
35994
0
1127667
0
* 1
PGSEPIH
3/07/88
no
0
0
1104635
0
X 1
PGSEPIH/1
3/07/88
ECO
0
3
1823
2
4524
* 50
PGSEPIH
3/21/88
ECO
0
3
1195
2
2783
X 25
PGSEPIH
3/21/88
MO
0
0
644172
0
X 1
PGSEPIH
3/28/88
ECO
0
3
1708
2
5262
X 10
PCSEPIN
3/28/88
MO
0
0
681546
0
X 1
PGSEPIH
4/07/88
F TO
0
1
0
578695
0
X 1
PGSEPIN/1
4/07/88
ECO
0
3
1178
2
3101
x 25
PGSEPIM
4/13/88
ECO
0
3
1149
2
3252
X 10
PCSEPIM
4/13/88
FID
0
1
0
511199
0
X 1
PGSEPIH
4/18/8#
MO
0
1
0
454720
0
X 1
0 ¦ 8«(om Detection Limit
1 * Below Quantitation Limit (Trace)
2 • Above Quantitation Limit
3 * Not quanta Med due to natrix interference
261
-------
ACTIVE TREATMENT
PROCESS CAS-PRIHARY CARBON CUTLET (ug/ci*>fc Mter)
$WPl* 10
Detector Methylene Trans 1,2
Oat* Type Chiorid* OCE
TRl
TricMoro
ethylene
Tetrachtoro
ethylene
Dilutioo
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PGCAfMUT/1
PCCARBOUT
PCCARBOUT
pccarbout
pccarbout
pccarbout
PCCASBOUT
PCCARBOUT
PCCASBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT/2
PCCARBOUT
2/11/88
2/11/88
2/12/88
2/12/88
2/13/88
2/13/88
2/U/88
2/14/88
2/15/88
2/13/88
2/16/88
2/16/88
2/17/88
2/18/88
2/19/88
2/20/88
2/21/88
2/22/88
2/23/88
2/23/88
2/23/88
2/24/88
ECD
FID
ECS
FID
ECS
FIO
ECS
FIO
ECS
FID
ECS
FIO
ECO
ECS
ECS
ECS
ECS
ECS
ECS
FtO
ECS
ECS
0
0
8580
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
3
c
3
0
3
0
3
0
3
0
3
0
3
3
3
3
3
3
3
0
3
0
0
251
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
25
0
24
439
2
23492
2
0
28
0
2
0
2
0
2
0
22
0
2
14
2
42
2
0
50
74
1
0
1
0
0
0
0
0
0
0
0
0
0
0
26
1
0
0
24
0
0
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
PCCARBOUT
2/2S/88
2/23/88
2/26/88
2/26/88
2/29/88
3/01/88
3/02/88
ECS
FID
ECS
FIO
ECS
ECO
ECS
3
48432
3
0
3
3
3
1431
0
1
0
0
0
0
2
0
2
0
60
40
55
262
-------
SMpC« IB £>•{«
O«t«etor mthyltn# Tr«rt» 1,2
T*p« Chloride OCE
TBI
Tridiloro
*fhyl«rw
T«cr»eMoro
•thy(an*
MCJUIMUT
PCCABBOUT
PCCABBOUT
pocamout
PCCABBOUT
PCCMMUT
PCCABBOUT
PCCAMOUT
PCCABBOUT
PCCABBOUT
PCCABBOUT
POOUBCUT
pcoumut
PCCABBOUT
PCCABBOUT
PCCMMUT
PGCABBOJT
PCCABBOUT
PGCAMCUT
PCCABBOUT
PCCABBOUT
pgcabbout
PCCABBOUT
PGCM80UT/2
PCCABBOUT
pccabbout
PCCABBOUT
PCCABBOUT
PCCABBOUT
PCCABBOUT
PCCABBOUT
PCCABBOUT
5/03/88
3/03/88
3/04/88
3/05/88
3/03/88
3/06/88
3/07/88
3/07/88
3/08/88
3/08/88
3/09/88
3/10/88
3/1V88
3/11/88
3/19/88
3/20/88
3/21/88
3/22/88
3/22/88
3/23/88
3/23/88
3/24/88
3/24/88
3/24/88
3/23/88
3/26/88
3/27/88
3/27/88
3/28/88
3/28/88
3/29/88
3/29/88
ECS
FID
ECO
ECO
FI0
ECO
ECS
no
ta»
rio
MO
no
ECS
fib
ECS
ECO
ECO
ECO
FtO
ECO
HO
ECS
F10
ECO
ECO
(CD
ECO
no
ECO
FtO
ECO
FID
a
0
0
0
0
0
1
a
o
o
0
o
o
0
0
0
0
Q
1
0
0
Q
0
0
a
a
5909
601
5209
4740
5462
52177
61360
6957
6535
0
0
143
976
0
2984
0
0
0
3166
0
0
0
632
1556
a
3339
0
4714
0
0
25
634
2085
0
2819
0
2930
0
26
0
27
51
0
35
2
0
2
67100
313772
545419
2
613342
7
0
2
2
95493
2
390215
2
717317
45
12
13
2
1
2
113453
2
261832
0
0
0
0
0
0
1
0
1
59
98
126
0
145
0
494
0
\
1
1
29
0
188
0
372
0
263
-------
Bl« 10
Oat*
Otttctor
TVP*
N«thy<«*
CMor(d«
Trma 1,2
OCE
TRI
TrfcMoro
•thyl«r»
T«tr«ehloro
•thyl«o»
Dilutico
PGCMSOUT
PCCMSOUT
PCCMSOUT
PCCMSOUT
3/30/88
3/30/88
3/31/88
3/31/88
ECO
no
ECO
MO
0
0
28
0
36
0
28
0
PGCMSOUT
pgcmscut
4/01/88
4/01/88
ECO
no
24
0
76
0
26
0
PCCMSOUT
PGCMSOUT
4/02/88
4/02/88
ECD
FIO
3412
0
137
0
14
120338
40
0
PCCMMUT
PCCMMUT
4/04/88
4/04/88
ECD
FID
3
50440
24S0
0
2
490231
469
238315
pccmsout
PCCMSOUT
4/05/88
4/05/88
ECO
FIO
3
75751
823
0
180
0
X 1
X 1
PCCMSOUT
PGCMSOJT
4/06/88
4/06/88
ECO
FIO
3
76502
2356
0
45
0
PCCMMUT
PCCMMUT
4/07/88
4/07/88
ECO
FIO
3
82625
5057
0
2
188205
3S3
0
PCCMMUT
PCCMSOUT
PCCMMUT
PCCMMUT
4/08/88
4/08/88
4/09/88
4/09/88
ECO
FIO
ECO
FIO
3
74295
3
94678
2854
0
5993
0
2
292693
2
606610
25
1
PCCMSOUT
PCCMMUT
4/10/88
4/10/88
ECO
FIO
3
51923
6199
0
2
712281
2C
1
PCCMMUT
PGCMSOUT
4/11/88
4/11/88
ECO
FIO
3
88708
5408
0
2
475874
219
0
10
PGCMSOUT
PGCMSOUT
4/12/88
4/12/88
ECO
FID
3
117962
3112
0
2
33690
69
0
PCCMMUT
PGCMSOUT
4/13/88
4/13/88
ICO
MD
3
107683
5379
0
2
65488
63
0
PGCMSOUT
PGCMSOUT
4/14/88
4/15/88
FIO
FID
69971
47407
197926
346782
264
-------
tut
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
!
1
1
1
1
ACTIVE TREATMENT
PROCESS GAS-SECONDARY CARBON CUTLET (ug/cubfc mater)
Data
Oatactor Nathylana Trana 1,2
Typa CM or(da DCS
TBI
Trichtoro
athytana
Tatraehtoro
othylerta
2/11/88
2/11/aa
2/15/aa
2/15/88
2/17/88
2/17/88
3/01/88
3/01/88
3/07/88
3/07/88
3/08/88
3/08/88
ECS
FID
ECO
FID
ECO
no
ECO
FID
ECO
FIO
ECO
FIO
0
0
0
0
0
0
0
0
0
0
0
0
3
0
3
0
3
0
3
0
3
0
3
0
88
0
0
0
41
0
0
0
0
0
0
0
2
7313*
12
0
2
83798
58
0
26
0
2
0
72
0
1
0
259
0
0
0
1
0
1
0
3/09/88
3/10/88
3/11/88
3/21/88
ECO
ECO
ECO
ECO
11
9
10
14
3/22/88
3/22/88
3/22/88
3/23/88
3/23/88
3/24/88
3/2S/88
3/28/88
3/29/88
3/30/88
4/05/88
4/05/88
4/07/88
4/07/88
ECO
FIO
FIO
ECO
FIO
ECS
ECO
ECO
ECO
ECS
ECS
FIO
ECO
FIO
0
0
0
0
0
0
0
0
0
0
1
0
1
0
3
0
0
3
0
3
3
3
3
3
3
0
3
1
0
0
0
0
0
0
0
0
0
0
25
0
474
0
2
0
0
0
0
7
0
2
0
6
2
0
2
0
1
0
0
27
0
26
0
1
0
265
-------
Detector Nethylena T rara 1,2
SMV<« 10 Oat* Type CMortda DCS
PGSECONO 4/09/88 ECS 1 3
PCSCCCNO
PGUCOW/1
Triehloro TetracMoro
TBI ethylene ethylene Dilution
2327 2 30 XI
4/11/88 CCD 1 3 1560 2 130 x 1
4/11/88 no 0 51937 0 35942 0 x 1
0 ¦ Below Detection Limit
1 ¦ Below Quantitation Limit (Trace)
2 ¦ Above Quantitation Limit
3 • Mot quantified due to matrix interference
266
-------
ACTIVE TREATXtWT
KOCESS MS-JTACX CUTLET (ug/eU)ic mttr)
Detector Methylene Trim 1,2 Trlehloro Tetrschloro
Swple IB Date Type Chloride OCE TRI ethytene ethylene dilution
PCSTOUr 3/24/M ECS 0 3 0 M 1 XI
0 • Below Detection Limit
1 • Below Quantitation Limit (Tract)
2 » Above euant'tation Limit
3 ¦ Mot quantified due to matrix interference
267
-------
active hutment
FIELD, FIELD-BUSED I TRIP BLANKS (ug/cvilic meter)
Oetector Methylene Trans 1,2
Saqple ID Date Type Chloride DCE
T*l
0
30
9
0
0
0
Trlehloro
ethylene
TetraeMoro
ethylene
Oilution
X 1
X 1
X 1
X 1
X 1
X 1
HElCaiNK 2/15/88
F16UHUUIK 2/20/88
FIEIOIUINK 2/20/88
FIELDSLAJfK 3/01/88
ftElOfLANK 3/08/88
Ft
3/21/88
ECB
ECO
FIO
ECD
ECU
ECD
43
2
34739
13
2
112
0
92
0
0
0
46
CLAW
TRIPBLANK
FIEIDSLANK
FtELDBLAWC
FB9/1
FBI/1
FB9/1
FB8/1
3/24/88
3/25/88
4/06/88
4/06/88
4/13/88
4/13/88
4/21/88
4/21/88
ECS
ECO
ECD
FIO
ECO
FIO
ECD
FID
0
0
0
0
o
0
327
0
32
14
S9
0
2
0
2
0
1
1
33
0
22
0
0
0
X 1
X I
X 1
X 1
X 1
x 1
X 1
X 1
TMPBLNK
4/22/88
ECD
X t
0 • Below Oetection Limit
1 • Below Quantitation Limn (Trace)
2 ¦ Above Quantitation Limit
3 * Not quantified due to matrix interference
268
-------
APPENDIX F
PROCESS PARAMETERS
269
-------
Process Parameters
ly readings were obtained at several points along the system and were
r« orded and used in some of the calculations. The following tables are a
smpilation of all recorded data for this project. The following should be
¦•~¦.ed:
- Pbar = Barometric pressure in inches of mercury
- MM4 = Modified Method 4
- All system variables were obtained from the separator inlet.
- Slack tube manometer and Dwyer oil manometers were used to measure
vacuums on vacuum monitoring wells.
- % moisture at extraction wells were calculated from the formula:
% moisture = saturated vapor pressure
net pressure
270
-------
GROVELAND/TERRA-VAC PROGRAM
Day No.
1
2
3
4
5
6
7
8
9
Date
2/11/88
2/12/88
2/13/88
2/14/88
2/15/88
2/16/88
2/17/88
2/18/88
2/19/88
Pbardn. Hg.)
30.85
30.08
29.36
29.98
30.03
29.75
30.36
30.35
30.49
Temp(F)
36
34
32
26
40
40
32
42
34
SYSTEM VARIABLES
Tefip(F)
35
35
38
35
38
40
40
41
40
Vacuundn. Hg.)
6
5.5
5
4.75
5.5
6
4.5
5
4.5
X Mol#ture(HH4)
1.15
1.67
1.9
2.8
3.1
2.5
2.31
2.8
1.44
HOWrTOR IMC WELLS-
VACUUM (In.
Water)
VMW1S
2.3
2
2.4
2.5
2.5
2.4
2.6
2.6
2.7
VMU1D
4.5
4.3
5.2
5.4
4.7
5.1
5.4
5
5
VMW2S
5.6
5.4
5.5
5.4
5.7
4.3
3.8
4.3
3.9
VMU20
8.3
8.2
8.9
9.4
8.4
9
9.2
8.7
8.7
VHVJS
6.5
6.9
7.3
7.4
8
7
7
7.2
7.5
VMU3D
10
9.8
10
10
10
10
10
10.5
10
VMU4S
0.8
0.6
0.8
0.8
0.7
0.8
0.9
0.8
VMU4D
4
3.6
4.3
4.6
4.1
4.3
4.5
4.2
4.1
EXTRACTION WELLS
EU1D
Vacuundn.
Hg )
2.5
1.5
3
3.5
2.5
3
3
3
2.5
Flow(GPM)
16
34
34
31
40
33
26
29
28
X Moisture
0.72
0.71
0.87
0.77
0.83
0.93
0.91
0.94
0.89
EW1S
Vacuundn.
Hg.)
5.5
5
5
5
5
5.5
4.5
5
4.5
Flow(GPM)
8
10
10
9
9
10
8
8
8
X Moisture
0.8
0.82
0.94
0.81
0.91
1.02
0.96
1.01
0.95
EW2D
Vocuun(In.
Kg.)
2.5
2.5
3
2.5
2.5
3
I
2
3
Flow(GPM)
17
18
22
18
16
19
15
20
19
X Moisture
0.72
0.74
0.87
0.74
0.83
0.93
0.91
0.9
0.9
EU2S
Vacuundn,
Hg.)
6
5
5
4.5
5
5.5
4.5
5
4.5
Flow(GPM)
19
15
15
9
18
14
8
10
10
X Mofsture
0.82
0.82
0.94
0.8
0.91
1.02
0.96
1.01
0.95
EUJO
Vacuundn.
Hg.)
2.5
3.5
4
3.5
2
3
3.25
2
3.5
Flow(GPK)
.0
10
6
5
6
8
5
7
5
X Moisture
0.72
0.77
0.9
0.77
0.81
0.93
0.91
0.9
0.92
EW33
Vseuundn,
Hg.)
5
s
4.5
4.5
5
5.5
4.5
5
4.5
Flow(GPM)
9
8
10
8
7
5
4
5
5
X Moisture
0.79
0.82
0.92
0.8
0.91
1.02
0.96
1.01
0.95
EU40
Vacuundn.
Hg.)
2
1.5
1.5
3.5
2.5
3.5
2
3.5
3.5
Flou(GPM)
8
10
7
7
16
8
9
8
6
X Moisture
0.8
0.71
0.81
0.77
0.83
0.94
0.87
0.96
0.92
EW4S
VacuumIn.
Hg.)
5
5
4.5
4.5
5
5.5
4.5
4.5
4.5
riow(GPM)
7
8
10
e
8
7
7
7
7
X Moisture
0.79
0.82
0.92
0.8
0.91
1.02
0.96
0.99
0.95
271
-------
GROVELAND/TERRA-VAC PROGRAM
Day Ho.
10
11
12
13
14
15
16
17
18
Date
2/20/88
2/21/88
2/22/88
2/23/88
2/24/88
2/25/88
2/26/88
2/29/88
3/1/88
PbarCin. Hg.)
29.54
29.78
30.29
29.92
30.15
30.25
30.38
30.17
30.35
T««np( F)
42
28
27
50
35
30
30
54
39
SYSTEM VARIABLES
TempCF)
40
40
36
43
40
38
40
40
40
VacuunC in. Hg.)
4.5
4
4.5
5
4.5
4.5
5
5
5
X MoistureCMM4)
1.4
0.77
0.72
1.6
1.3
0.98
1.3
1.6
1.04
MONITORING UELLS-
VACUUM (in.
Uater)
VMU13
3.4
3
3.2
3.2
2.8
3.1
3.6
3.8
4
VMU10
5.2
5.4
5
4.4
4.8
5.5
5.2
4.4
4.1
VMW2S
4.3
3.1
5.1
4.9
4.8
4.7
6.3
6.5
7.3
VHU2D
8.7
10
8.9
7.7
8.7
9.8
9.3
7.9
7
VMW3S
8.3
8
8.9
9.1
8.7
8.3
10.2
9.2
10
VMV30
10.5
10
10.5
9.3
10.1
10.5
10.1
10
8.1
VHU4S
1
0.9
0.9
1
0.7
0.8
0.8
0.9
1.1
VMU4D
4.2
4.6
4.2
3.6
3.9
4.4
4
3.6
3.3
EXTRACTION WELLS
EU10
VacuunC in.
Hg.)
2.5
2.5
3.5
2.5
2.5
2.5
2
3
3
Flou(CPM)
29
28
26
26
25
26
30
27
28
X Moisture
0.92
0.91
0.79
1
0.89
0.82
0.87
0.91
0.9
EU1S
VBCuumCin.
Hg.)
4.5
3.5
5
4.5
4
3.5
4.5
4.5
4.5
FlowCGPM)
8
8
9
9
9
9
12
10
12
X Moisture
0.99
0.94
0.84
1.09
0.94
0.85
0.95
0.97
0.96
EV2D
VacuunC in.
Hg.)
2.5
2.5
3.25
3.5
2.7
2.5
2.5
3.5
3
FlowCGPM)
16
15
15
18
20
16
16
16
14
X Moisture
0.94
0.91
0.78
1.05
0.9
0.82
0.88
0.93
0.9
EU2S
VacuunC in.
Hg.)
4.5
4
4.5
4.5
4
4
4.5
4.5
4.5
F(ow(GPM)
8
12
12
10
9
9
12
16
16
X Moisture
0.99
0.96
0.82
1.09
0.94
0.87
0.95
0.97
0.96
EU30
VacuunC in.
Hg.)
2.5
2.5
3.5
2.5
3
3
2
4.5
F(owCGPM)
6
6
5
8
6
5
5
9
6
X Moisture
0.92
0.91
0.79
1.01
0.91
0.84
0.9
0.88
0.96
EU3S
VacuunC in.
Hg.)
4.5
4
4
4.5
4
4
4.5
4.5
4.5
Ftow(GPM)
4
5
6
5.5
6
6
6
10
8
X Moisture
0.99
0.96
0.8
1.09
0.94
0.87
0.95
0.97
0.96
EW40
VacuunC in.
Hg.)
2
2.5
3.5
3
3
3
2.5
4
3.5
FlowCGPM)
6
6
5
6
5.5
5
5
5
4
X Moisture
0.9
0.91
0.79
1.03
0.91
0.84
0.88
0.95
0.92
EMS
VacuunC in.
Hg.)
4.5
4
4
4.75
4
4
4.5
4.5
4.5
FlowCGPM)
6
B
7
7
7
7
8
12
9
X Moisture
0.99
0.96
0.8
1.11
0.94
0.87
0.95
0.97
0.96
272
-------
GROVEI.AND/TERRA-VAC PROGRAM
Day No.
19
20
21
22
23
24
25
26
27
Date
3/2/88
3/3/88
3/4/88
3/5/88
3/6/88
3/7/88
3/8/88
3/9/88
3/10/88
Pbar(
-------
GROVELAND/TERRA-VAC PROGRAM
Oar "0.
28
29
30
31
32
33
34
35
36
Date
3/11/88
3/18/88
3/19/88
3/20/88
3/21/88
3/22/88
3/23/88
3/24/88
3/25/88
PbarCin. Hg.)
30.02
30.2
29.85
29.8
30.4
30.62
30.88
30.24
30.68
Tenp(F)
45
46
60
40
16
29
42
68
46
SYSTEM VARIABLES
TempCF)
40
40
42
35
35
38
40
45
40
VacuunC in. Hg.)
5
3.5
4.5
5
4.5
5
5
5
5
X Moisture(MM4)
1.3
1.3
0.97
0.91
1.3
0.99
1.8
1.5
1.22
MONITORING UELLS-VACUUM (In.
Uater)
VNW1S
3.4
3.4
3.1
3
3.4
3.4
3.4
3.4
3.5
VMW10
5.3
5
5
5.3
5.2
5.3
5.2
5.4
4.9
VMU2S
4.7
5.9
5.2
5.1
5.9
5.9
5.9
5.6
5.8
VMV20
9.S
9.3
9.5
10
9.7
9.8
10
10.2
9.5
VMW3S
10
10.5
9.5
8.8
9.8
10.2
9.9
10
10.5
VMW3D
10
10.1
9.4
9.8
9.7
9.9
9.7
10
9.6
VNW4S
0.7
1.1
0.9
1
0.9
1.1
1.1
1.1
1.1
VMU40
4.2
4.2
4.1
4.2
4.2
4.2
4.2
4.1
3.9
EXTRACTION UELLS
EU1D
VacuunC in.
Hg.)
3
2
3
2.5
2.5
3
2.5
2.5
2.5
FlowCGPM)
26
26
36
28
29
21
30
30
26
X Moisture
1.1
0.88
1
0.91
0.73
0.83
0.87
1.07
0.88
EU1S
VacuunC in.
Hg.)
4.5
3.5
4
4
4
4.5
5
4.5
5
FlowCGPM)
11
10
10
11
12
12
15
12
11
X Moisture
1.2
0.93
1
0.96
0.77
0.89
0.96
1.15
0.96
EV2D
VacuunC in.
Hg.)
2.5
2
2.5
2.5
2.5
2.5
3
3
2.5
FlowCGPM)
21
18
22
27
26
24
22
20
24
X Moisture
1.09
0.88
0.97
0.91
0.73
0.82
0.89
1.09
0.88
EU2S
VacuunC in.
Hg.)
4.5
3.5
4.5
4
4
4.5
5
4.5
4.5
Flow(GPM)
16
14
14
16
15
16
17
15
16
X Moisture
1.18
0.93
1
0.96
0.77
0.89
0.96
1.15
0.95
EV30
VacuunC in.
Hg.)
3
2
1.5
3.5
3
2.5
3.5
2.5
2
FlowCGPM)
4
8
8
7
5
7
5
6
6
X Moisture
1.11
0.88
0.94
0.94
0.74
0.82
0.91
1.07
0.86
EU3S
VacuunC in.
Hg.)
4.5
3.5
4.5
4
4
4.5
5
4.5
4.5
FlowCGPM)
8
7
7
6
8
8
8
8
7
X Moisture
1.18
0.93
1
0.96
0.77
0.89
0.96
1.15
0.95
EW4D
VacuunC in.
Hg.)
2
3
1.5
3.5
2.5
4
2.5
2.5
4.5
FlowCGPM)
0
1
0
0
0
0
0
0
0
X Moisture
1.07
0.91
0.94
0.94
0.73
0.86
0.87
0.87
EMS
VacuunC in.
Hg.)
4.5
3.5
4.5
4
4.5
4.5
5
4.5
4.5
FlowCGPM)
10
8
9
10
10
10
10
10
10
X Moisture
1.18
0.93
1
0.96
0.79
0.89
0.96
1.15
0.95
274
-------
GROVELAMD/TERRA-VAC PROGRAM
Day No.
37
38
39
40
41
42
43
44
46
Date
3/26/88
3/27/68
3/28/88
3/29/88
3/30/88
3/31/88
4/1/88
4/2/88
4/4/88
Pbar(in. Hg.)
30.35
29.93
30.38
30.54
30.71
30.64
30.67
30.6
30.14
Tenp(F)
66
62
42
62
52
56
58
67
62
SYSTEM VARIABLES
TemptF)
45
45
40
45
45
45
43
45
45
VaCLKJtif in. Hg.)
4.5
6
S.5
5.5
5.5
5.5
S.5
6
3
X Moisture(KM4)
1.9
1.47
1.22
0.64
1.53
1.07
1.4
0.97
*
KOMI TOR I KG UELLS-
VACUUM (in.
Water)
VHV1S
3.2
3.5
3.6
3.8
3.3
3.4
3.3
1.5
2
VMV1D
6
5.6
5.1
5.2
5
4.7
5.2
3.7
3.8
VMV2S
4.7
7.3
6.6
6.6
6.1
6.5
6.2
4.1
3.9
VHW2D
10
10
10
9.6
9.3
8.6
9.8
7.2
7.3
VHV3S
9.2
10
10
10
10
10
10.1
10
7.1
VMW30
10
10
9.9
10
9.6
9
9.6
9.3
7.5
vmrts
1.2
1.1
1
1.1
0.7
1
1
0.6
0.5
VMU40
4.7
4.5
4.1
4.2
3.9
3.9
4.2
2.8
3
EXTRACTION WELLS
EW1D
Vacuun(in.
Hg.)
3
2
2.5
2.5
3
3
2.5
2.5
2
FlowCGPM)
29
26
25
25
28
28
31
22
20
X Moisture
1.1
1.12
0.88
1.07
1.08
1.09
1
1.06
1.07
EU1S
VacuunC in.
Hg.)
4
5
5
5
5
5
5
5
3
Flow(GPH)
13
11
12
12
13
13
13
13
8
X Moisture
1.1
1.2
0.97
1.18
1.17
1.17
1.1
1.17
1.11
EW2D
VacuunCin.
Hg.)
3
3
3
3
3
3
3
3
2
Ftov(GPM)
20
22
20
18
20
19
19
21
15
X Moisture
1.1
1.12
0.9
1.09
1.08
1.09
1
J.09
1.07
EW2S
Vacuum(in.
Hg.)
4
5
5
5
5
5.5
5
5
3
Flow(GPM)
12
14
14
14
15
15
16
16
9
X Moisture
1.1
1.2
0.97
1.18
1.17
1.19
1.1
1.17
1.11
EU30
VacuunCin.
Hg.)
3
2.5
3
3
1.5
4.5
3.5
4
3
Flow(GPM)
5
7
6
5
6
5
4
2
4
X Moisture
1.1
1.1
0.9
1.09
1.03
1.15
1
1.12
1.11
EU3S
VacuunC in.
Hg.)
4
5.5
5
5
5
5.5
5
5
3
Flou(GPM)
8
6
7
8
8
8
8
6
5
X Moisture
2.2
1.23
0.97
1.18
1.17
1.19
1.1
1.17
1.11
EU40
VacuunC in.
Hg.)
1
5
4.5
2.5
5
5
5
5
3
Flow(GPK)
0
0
0
0
0
0
0
0
0
X Moisture
1
0.95
1.07
1.17
1.17
1.1
1.17
1.11
EW4S
VacuunC(n.
Kg.)
4
5.5
5
5
5
5.5
5
5
3
Flow(GPM)
11
8
8
8
10
9
9
10
6
X Moisture
1.1
1.23
0.97
1.18
1.17
1.19
1.1
1.17
1.11
275
-------
GROVELAMD/TERRA-VAC PROGRAM
Day No.
47
48
49
50
51
52
53
54
55
Date
4/5/88
4/6/88
A/7/88
4/8/88
4/9/88
4/10/88
4/11/88
4/12/88
4/13/83
Pber(in. Hg.)
30.07
30.32
30.08
30.02
30
30.3
30.2
30.45
30.38
Temp(F)
62
44
44
43
54
60
42
43
44
SYSTEM VARIABLES
Teqp(F)
45
40
40
40
42
42
40
40
40
Vacuun(in. Hg.)
4.5
4
4.5
4.5
4.5
4.5
4.5
4.5
5
X Moisture(MM4)
1.42
1.05
1.09
1.5
1.53
1.2
1.33
1.1
:.25
MONITORING WELLS-
VACUUM (in.
Water)|
VMU1S
3.3
2
2
2.2
1.9
2
2
2
1.5
VMW1D
4.4
6
6.6
6.5
6.7
6.5
6.7
6.8
7
VMU2S
6.6
4
3.7
3.9
3.8
3.6
3.8
3.7
3.2
VKU20
8.7
12.7
12.5
12.5
12.7
12.5
12.5
13.1
13.5
VMU3S
10
7.2
6.9
7.5
7.1
7.5
7.1
7.2
6.9
VMW3D
8.7
12
11.5
12
12
12
11.8
12.5
13
VMW4S
1.1
0.6
0.5
0.6
0.7
0.5
0.7
0.6
0.6
VMW4D
3.8
5.3
5.3
5.2
5.4
5.1
5.3
5.4
5.8
EXTRACTION WELLS
EU1D
Vaeutm(in.
Hg.) |
3
3.5
4
3.5
4
3.5
3.5
3.5
3.5
HowfCPN)
28
28
30
30
29
28
28
29
32
X Moisture
1.11
0.92
0.95
0.93
1.02
1
0.93
0.9
0.92
EUli
Vacuun( in.
Hg.) 1
4
2.5
2.5
3
2.5
2.5
3
2
2
Flou(CPM)
16
9
10
9
12
11
10
8
9
X Moisture
1.15
0.89
0.9
0.92
0.97
0.96
0.91
0.9
0.87
EU20
Vacuun( in.
Hg.) |
3.5
3.5
4
4
4
3.5
4
4
4
Flow(GPM)
18
26
26
24
24
24
25
27
28
X Moisture
1.13
0.92
0.95
0.95
1.02
1
0.94
0.9
0.94
EW2S
VacumCin.
Hg.) 1
4
2
3
3
2.5
3
3
2.5
2
Flov(GPM)
14
12
10
12
10
11
11
8
12
X Moisture
1.15
0.87
0.92
0.92
0.97
0.98
0.91
0.9
0.87
EU30
Vacmn(in.
Hg.) I
4
3.5
4
4
4.S
4
4
4
4
Flow(CPM)
2
4
4
5
4
5
4
4
4
X Moisture
1.15
0.92
0.95
0.95
1.04
1
0.94
0.9
0.94
EW3S
Vacuun( in.
Hfl.) |
4
2.5
3
2.5
3.5
3
3
3
2.5
FIom(GPM)
8
6
6
65
6
6
5
4
5
X Moisture
1.15
0.89
0.92
0.9
1.1
0.98
0.91
0.9
0.89
EU4D
vacuundn.
Hg.) |
4
3.5
4
4
4.5
4
4
4
4
F(ow(GPM)
0
0
0
8
0
0
0
0
X Moisture
1.15
0.92
CI.95
0.95
1.04
1.02
0.94
0.9
0.94
EU4S
Vaeuun(in.
Hg.) |
4
2
3
3
3
2.5
3
3
4
Flow(GPM)
10
8
10
8
8
8
8
8
8
X Moisture
1.15
0.87
0.92
0.92
0.99
0.96
0.91
0.9
0.94
276
-------
GROVELAND/TERRA-VAC PROGRAM
Day No.
56
57
60
Date
4/14/88
4/15/88
4/18/88
Pbar(in. Hg.)
30.42
30.35
29.7
Tenp(F)
48
47
48
SYSTEM VARIABLES
Temp(F)
40
40
40
Vacuum(in. Hg.)
4
4.5
4.75
X Motsture(MM4)
1.24
0.99
1.32
MONITORING WELLS-VACUUM (in.
Water)
VMW1S
1.7
1.9
2.2
VMW1D
7
6.8
6.9
VHU2S
3.3
3.7
3.6
VMU20
13.5
13
13
VMU3S
6.5
7.5
7.9
VKU30
23
12.5
12.5
VMU4S
0.7
0.7
0.8
VMU40
5.7
5.5
5.5
EXTRACTION WELLS
EU10
Vacuun( in.
Hg.)
4
4
4
Flov(GPH)
30
30
30
X Moisture
0.93
0.94
0.96
EU1S
Vacuum(in.
Hg.)
2.5
3
3.5
Flow(GPM)
10
10
9
X Moisture
0.88
0.9
0.95
EW2D
VacuumCin.
Hg.)
4
3.5
4
Flow(GPM)
25
23
27
X Moisture
0.93
0.92
0.96
EW2S
Vacuun(in.
Hg.)
2
2.5
2.5
Flow(GPM)
10
10
12
X Moisture
0.87
0.89
0.91
EW3D
Vacuun( in.
Hg.)
4.5
4
4
Flow(GPM)
4
4
4
X Moisture
0.95
0.94
0.96
EU3S
VacuLfn( in.
Hg.)
2
3
3
Flow(GPM)
5
5
5
X Moisture
0.87
0.9
0.93
EW4D
Vacuun(in.
Hg.)
4.5
4
4
Flow(GPM)
0
0
0
X Moisture
0.95
0.94
0.96
EMS
Vacuun(in.
Hg.)
3
2.5
3
Flow(GPM)
8
8
8
X Moisture
0.9
0.89
0.93
1
277
-------
APPENDIX G
FLOW HATES AND FLUX RATES
278
-------
Flow Rates and Flux Rates
The following cables contain the flow rates and flux rates as determined
from Che process parameCer, analytical results, and the following formula:
Flow Rates
(14.7-vacuum @pt)
SCFM - GPM x 4.12x / x x
14.7 460 + temp. (3 pt.
where: SCFM - standard cubic feet per minute.
GPM - gallon per minute (read directly from rotomecer)
@pt *» readings of vacuum and temperature at specified sampling
points
Flux Rates
lbs/hr - Flow (F3/min) x 0.02832 (m3/F3) + [concentrations @pt. (ug/mJ)
4.54 x 10s(ug/lb)) x 60 min/hr
279
-------
FLOW RATES AND FLUX RATES, EW1S
FIRST WEEK OF SAMPLING-COLLECTION TWICE PER DAT
SAMPLE
CODE
DATE
FLOW
SCFM
Meci"
Lbs/hr
DCE T»I •• TCE PCE •• TOTAL FID(a) TOTAL ECO(a)
Lbs/hr Lbs/hr Lbs/hr Lbs/hr Lbs/OAY Lbs/DAT
EWG1S/1
EUG7S/2
EUG1S/1
EUG1S/2
EUC1S/1
EUG1S/2
EUG1S/1
EUG1S/2
EUG1S/1
EUC1S/2
EUG1S/1
EUG1S/2
EWG1S/1
EWG1S/2
2/11/88
2/11/88
2/12/88
2/12/88
2/13/88
2/13/88
2/14/88
2/14/88
2/15/88
2/15/88
2/16/88
2/16/88
2/17/88
2/17/88
27 0.000
27 0.000
35 0.000
35 0.000
35 0 000
35 0.000
31 0 000
31 0.000
31 0.000
31 0.000
34 0.000
34 0.000
28 O.OCO
28 0.000
0.016
0.009
0.007
0.005
0.006
0.005
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.001
0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.299
0.141
0.139
0.094
0.103
0.096
0.084
0.068
0.076
0.063
0.092
0.073
0.060
0.054
0.001
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
5.574
2.938
2.506
1.824
1.663
1.978
1.368
0.037
0.018
0.012
0.009
0.003
0.011
0.007
TOTAL Lbs FID VOC 17.851
TOTAL Lbs ECO VOC 0 097
•• RESULTS OF MeCl, TRI ,JPCE APE FROM ECO ANALYSt S'OCE&TCE RESULTS ARE FROM FIO ANALYSIS
(a) Average of two samples collected during the day.
280
-------
SECOND THROUGH EICTH WEEK-COLLECTION ONCE PER OAT
SAMPLE
CODE
DATE
FLOW MeCl" OCE TRI •• TCE P« •• TOTAL FIO
SCFH Lbs/hr Lbs/hr Lbs/hr Lbs/hr Lbs/hr Lbs/OAT
TOTAL ECD
Lbs/OAT
EWG1S/1
2/18/88
2/19/88
2/20/88
2/21/88
2/22/88
2/23/88
2/24/88
2/25/88
2/26/88
2/29/88
3/01/88
3/02/88
3/03/88
3/04/88
3/05/88
3/06/88
3/07/88
3/08/88
3/09/88
3/10/88
3/11/88
28
28
28
30
31
32
33
33
42
35
42
44
42
55
45
45
41
48
42
31
39
0.000
0.000
0.000
0.000
0 000
0.000
0.000
0 000
0 000
0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.000
0.000
0 000
0 000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
O.OOU
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.052
0.053
0.037
0.048
0.037
0.040
0.056
0.039
0.044
0.046
0.041
0.038
0.027
0.044
0.040
0.037
0.018
0.025
0.052
0.015
0.019
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
1.257
1.269
0.889
1.154
0.878
0.954
1.355
0.927
1.058
1.113
0.993
0.916
0.654
1.067
0.966
0.884
0.439
0.590
1.255
0.369
0.465
0.006
0.009
0.004
0.004
0.001
0.012
0.006
0.000
0.012
0.023
0.024
0.015
0.004
0.004
0.004
0.093
0.009
0.010
0.012
0.007
0.011
•• RESULTS or NaCl, TRI ,£PCE ARE <90* (CO 4HALYSIS OCEiTCE RESULTS ARE FROM FID ANALYSIS
281
-------
SAMPLE
CODE
DATE
FLOW KeCl" OCE r*l •• JCE PCE •• TOTAL FID TOTAL ECO
SCFN Lba/hr Lbs/hr lb*/hr Lbs/hr lb«/hr Lbs/OAT Lbs/OAY
EUG1S/1
3/18/88
3/19/88
3/20/88
3/21/88
3/22/88
3/23/88
3/24/88
3/25/88
3/26/88
3/27/88
3/28/88
3/29/88
3/30/88
3/31/88
4/01/88
4/02/88
4/04/88
4/05/88
4/06/68
4/07/88
4/08/88
4/09/88
4/10/88
4/11/88
37
36
40
a
43
52
42
38
47
38
41
41
O
45
45
45
30
58
35
39
34
46
42
38
0.000
0.000
0.000
0 000
0.000
0.000
0.000
0.000
0 000
0 000
0 000
0 000
0 000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0 000
] 000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.042
0.029
0.077
0.032
0.019
0.388
0.018
0.022
0.019
0.020
0.016
0.014
0 018
0.018
0.014
0.011
0.007
0.015
0.009
0.009
0.009
0.009
0.008
0.007
0.001
0.001
0.000
0.000
o.aoa
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.018
0.687
1.856
0.758
0.466
9.315
0.425
0.534
0.447
0.478
0.377
0.343
0.437
0.437
0.342
0.2 .
0.178
0.362
0.209
0.211
0.222
0.225
0.202
0.160
0.024
0.017
0.013
0.000
0.010
0.014
0.002
0.010
0.010
0.010
0.008
0 001
0 008
0 009
0.008
0 007
0.003
0.008
0 003
0.001
0.003
0.003
0.004
0.003
•• RESULTS or MCI, TBI ,&PC£ ARE n>
-------
SAMPLE
COM
OATI
nai Meet" oce
scr* Lba/hr Lbs/hr
r«i •• tce
Lb«/hr Lbs/hr
fC£ •• TOTAL FID
Lbs/hr Lbs/DAT
TOTAL ECO
lbs/DAT
EUC1S/1
4/12/88
4/11/88
4/14/88
4/1S/88
4/18/88
32
54
59
38
33
o.ooo
0.000
0.000
0.000
0.000
0.000
o.ooo
o.ooo
o.ooo
o.ooo
0.000
0.000
0.000
0.000
0.000
o.oor
0.010
0.006
o.oor
0.005
o.ooo
0.000
o.ooo
0.000
0.000
0.160
0.248
0.149
0.169
0.131
0.002
0.003
o.ooo
0.000
0.000
TOTAL Lb* no VOC 40.272
TOTAL lb* ECO VOC
0.4SJ
*• RESULTS or MKl, TRl ,fcPCE ARE ••AL'SIS 9CESTCE RESULTS ARC FROM r 10 ANALYSIS
283
-------
FLOW RATES AND FLUX RATES, EW ID
FIRST WEEC OF SAXPLIKG-COLLECTION TWICE PER DAT
SAMPLE
COOE
DATE
FLOW
ICFH
KeCl"
Lbs/hr
DCE
Lbs/hr
r«l •• TCE
Lbs/hr Lbs/hr
PCE •• TOTAL F(OCa) TOTAL ECO (a)
Lbs/hr Lbs/DAT Lbs/OAY
EWCIO/1
EWGIO/2
EUGIO/1
EUG10/2
EUGtO/1
EUC10/2
EWC1D/1
EUG10/2
EVGlO/1
EUCIO/2
EWG1D/1
EWCIO/2
EWG1D/1
EWC10/2
2/11/88
2/11/88
2/12/88
2/12/88
2/13/68
2/13/88
2/U/88
2/H/88
2/15/68
2/15/88
2/16/88
2/16/88
2/17/88
2/17/88
62
62
137
132
129
129
115
120
155
155
125
128
98
100
3.000
0.000
0 000
0.000
0 00?
0 000
0 000
0 000
0 000
0 000
0.000
0.000
0 coo
0.000
0 021
o on
0.038
0.027
0.018
0.000
0.000
0.000
0 000
0.000
0.000
0.000
0.000
0 000
0.003
0 000
0 002
0.002
0.000
0 oco
0.000
0.000
0.000
0.000
0 000
0 000
0.000
0.000
0 292
0.148
0.226
0.171
0.127
0.104
0.068
0 088
0 400
0.158
0.063
0 077
0.0(6
0.054
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
3.000
0.000
0.000
0.000
5.737
5.544
2.981
1.874
6.69V
1.680
1.198
0.041
0.037
0.000
0.000
0.018
0.000
0.000
TOTAL Lbs F10 VOC 25.713
TOTAL Lb* ECO VOC 0 i'4
•• RESULTS OF M«Cl, ,&pCE ARC r»CK ECO «NALTS1S-0CEITCE RESULTS ARE FROM FID ANALYSIS
(I) Average of two ««rple» collected during the day.
284
-------
SECOND THRCtiCH EIGTH WEEK-COLLECT ION MCE PER S*t
SAMPLE
COOE
DATE
FLOW
SCFM
»rtl"
Lbj/hr
DCE
Lbs/hr
Ibs/ir
TCE
Lbs/hr
PCE ••
Lbi/nr
TOTAL FID
Lbs/DAT
TOTAL ECD
Lbs/OAT
EVC1D/1
2/ta/88
2/19/88
2/tl/88
2/21/88
2/22/88
2/23/88
2/24/88
2/25/88
2/26/88
2/29/88
3/01/B8
3/02/8C
3/03/88
3/04/88
3/05/88
3/06/88
7/07/88
3/08/88
3/09/88
3/10/88
3/11/88
110
108
112
108
97
100
97
101
lis
102
106
106
89
107
113
120
106
108
116
121
98
0 000
0 ooo
0.000
0.000
0 oco
0 000
0 000
0 000
0 000
0 oco
0 000
0 oco
0 oco
0 000
0 000
0.000
0.000
0 000
0.000
0.000
0 000
o.ooo
0.000
0.000
0.000
0 000
0 030
0 000
0 000
0 000
0 000
0 000
0.000
0.000
0.000
0 000
0 000
0 000
0 ooo
0 000
0.000
0.000
0 000
0 000
0 000
0 000
0 000
0 000
0 000
0 ooo
0 ooo
0.001
0 oco
0 oco
0 000
0 ooo
0 ooo
0 oco
0 coo
0 000
0.000
0 000
0 000
0 048
0.039
0 Ml
0.038
0 031
0.036
0 095
0 081
0 036
0 055
o ota
0.044
0 033
0.067
0.054
0 046
0.044
0 089
1.158
0.043
0.032
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
3.000
0 000
0.001
o.oco
0 000
0.000
0 001
0 coo
0 001
0.000
0.000
0.000
1.152
0.932
0.973
0.903
0 755
0.860
2.276
1.955
0 863
1.328
1.154
1 051
0 794
1.610
1.285
1.106
1.052
2.128
27.794
1.028
0.775
0.013
0 000
0 OCO
0 Oil
0.009
0 Oil
0 000
0 005
0 00?
0 CJi
C 017
0 CJ2
0 OOJ
0 Oil
0 COO
0 C2'J
o :C6
0 on
o a u
O.OH
0 011
•• RESULTS or Meet, TBI ,t*>CE APE 'SON EC3 AWKrSlS DCEITCE RESULTS ABE "ON FID ANALYSIS
285
-------
UMMf MTf FLOW W#Cl" Kt T" ** TCl ?ct " total flO TOTAL CCD
CCD! sent Lb«/hr ib«/hr Lbi/hr Lb«/hr Lb«/hr Lb*/DAT Lb»/DAT
EWdO/1 3/18/88 103 0.000 0.029 0.00* 0.428 0.001 ,0.972 0.120
3/19/88
3/20/88
3/21/88
134 0.000 0.000 0.000 0.072 0.001 ,.737 0.023
109 0.000 O.OOO 0.000 0.039 O-001 0.9*2 °*018
113 0.000 0.000 0.000 0.030 0.000 0.710 0-011
3/22/88 80 0.000 0.000 0.000 0.020 0.000 a.CAS 0.008
3/23/88 116 0.000 0.000 0.000 0.020 0.000 0.479 0.011
3/2*/88 11S 0.000 0.000 0.000 0.025 0-000 0.601 0-009
3/29/88 101 0.000 0.000 0.000 0.019 O-000 0.463 0-009
3/26/88 109 0.000 0.000 0.000 0.030 0-000 0.713 0-009
3/27/88 98 O.OCT 0.000 0.000 0.017 0.000 o.iOO 0.009
3/28/88 97 0.000 0.000 0.000 0.012 0-000 0.277 0.006
3/29/88 96 0.000 0.000 0.000 0.02* 0.000 o.$82 °-0M
3/30/88 105 0.000 0.000 0.000 0.029 0-000 0.689 0.010
3/31/88 105 0 000 0.000 0.000 0.029 O.OOO 0.698 O-0'2
4/01/88 119 0.000 0.000 0.000 0.040 O.OOO 0.959 °-°15
4/02/88 85 0.000 0.000 0.000 0.021 0.000 0.503 0.006
4/04/88 78 0.000 0.000 0.000 0.021 O.OOO 0.499 0.007
4/05/88 105 0.000 0.000 0.000 0.027 O.OOO 0.641 0.018
4/06/88 10* 0.000 0.000 0.000 0.023 0.000 o.S52 0.008
4/07/aa 109 0.000 0.000 0.000 0.018 0.000 0.437 0-008
4/08/8B HI 0.000 0.000 0.000 0.019 0.000 0.456 0.006
4/09/8S 105 0.000 0.000 0.000 0.017 0.000 0.399 0.00*
*/10/88 103 0 000 0.000 0.000 0.01* O.OOO 0.333 0.005
*/11/88 10* 0 :00 0.000 0.000 0.017 0.000 0.401 0.005
•• riSJlTS Of ftaCl, T«l ,l«t »8£ 3CEITCH «tSULTS ABC F8W FID ANALYSIS
286
-------
SAWll
COM
OAT!
FLOW
sent
««Cl" OCE tri .. TCE PCI •• TOTAL ,,0 TOTAL ECO
Lb*/hr Lbt/hr ib«/hr ib«/hr lb«/hr Lb*/DAT ib*/0AT
EUC10/1
4/12/88
4/13/88
4/14/88
4/1S/88
4/18/88
107
119
109
109
109
0.000
0.000
0.000
0.000
0 000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.013
o.ou
0.013
0.016
0.000
0.000
0.000
0.000
0.000
0.000
0.306
0.341
9.318
0.395
0.000
0.025
0.006
0.000
0.000
0.000
TOTAL lb* FID VOC 78.06$
TOTAL Lb« ECO VOC
0.611
•• RESULTS OF HaCl, TBI ,JPCE i»E 'J* t:3 «**(.TSt J-OCEITCE SESUlTS A>E HO AHALTStS
287
-------
FLOW RATES AND FLUX RATES, EW2S
MTB HOM »Kl** OCI f«l ** rCE cce •• T0TAL no TOTAL ECO
ygg scm Lb«/hr Lb«/hr Lb«/hr Lb«/hr Lb«/hr i.b»/DAY it»/0AY
tttttciKtoiioiniiiit;::;.*
EVC23/1 2/11/88 62 0.000 0.014 0.001 0.297 0.000 7.445 0.031
2/12/88 52 0.000 0.007 0.000 0.134 0.001 3.395 0.025
2/13/88 52 0.000 0.008 0.000 0.157 0.000 3.950 0.000
2/14/88 32 0.000 0.000 0.000 0.074 0.000 1.786 0.000
2/15/88 62 0.000 0-000 0.001 0.159 0.000 3.811 0.020
2/16/88 47 0.000 0.006 0.000 0.154 0.000 3.849 0.014
2/17/88 28 0 000 0 000 0.000 0.130 0.000 3.124 0.007
2/18/88 34 0.000 0.000 0.000 0.085 0.000 2.028 0.008
2/20/88 28 0.000 0 000 0.000 0.048 0.000 1.141 0.007
2/22/88 43 0.000 0 000 0.000 0.020 0.000 0.480 0.300
2/24/88 33 0 000 0.006 0.000 0 013 0.000 0.466 O.OC7
2/26/88 42 o ooo 0.000 0.000 0.051 0.000 1.227 0 002
3/01/88 57 0.000 0.000 0.000 0.018 0.000 0.440 0.036
3/03/88 69 0.000 0.000 0.000 0.051 0.000 1.232 0.003
3/05/88 55 0.000 0.000 0.000 0.048 0.000 1.140 0.000
3/07/88 5S 0 000 0.000 0.000 0.037 0.000 0.885 0 012
3/09/88 H 0.000 0.000 0.000 0.099 0.000 2.379 0 012
3/11/88 37 0 000 0.000 0.000 0.067 0.001 1.603 0.026
3/18/88 52 0.000 0.000 0.000 0.077 0.001 1.839 0.030
3/19/88 49 0 000 0.000 0.000 0.043 0.001 1.033 0.018
3/21/88 55 0 :00 0.000 0.000 0.046 0.000 1.10* 0.012
3/23/88 59 3 :00 0 000 0.000 0.041 0.001 0.972 0.0K
•« kjuiTS Of MCI, T*' A#E '3t'Z »»H.*SIS'0CElTC€ RESULT! ABC FROM HO ANALYSIS
288
-------
MM
CON
OATS
FLOW
sera
h«ci** oa
iba/hr lt»/hr
mi - xce >ci .. Tom M9
Lbft/hr Lba/hr Lbt/hr Lta/DAY
TOTAL ECD
Lb*/OAT
EWE2S/1
3/23/88
3/27/88
3/29/88
3/31/88
4/02/88
4/01/88
4/07/88
4/09/88
4/11/88
4/13/88
4/13/88
4/18/88
57
48
48
50
55
50
38
39
42
47
39
46
0.000
0.000
0.000
o.ooo
o.ooo
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.043
0.007
0.026
0.029
0.035
0.025
0.015
0.016
0.017
0.018
0.018
0.020
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.037
o.m
0.61J
0.690
0.849
0.597
0.369
0.392
0.409
0.439
0.431
0.486
0.015
0.003
0.010
0.006
0.006
0.008
0.001
0.004
0.004
0.005
O.OOO
0.000
TOTAL Lba FID VOC 51.841
TOTAL Lb* ECO VOC
0.315
** (CULTS or MCI, TBI ,4PCI are '»» '•IL'SIS.DCEITCE RESULTS ARE FROM P10 ANALYSIS
289
-------
FLOW RATES AND FLUX RATES, EW20
SAMPU DATI
CflOl
flow oci •• rce »c« •• totai no total ta>
SCM itm/»r lb*/hr Lt»/ftr Ltm/hr lb»/hr Lba/OAT lb»/OAT
CWC2D/1 2/11/88 66 0.000 0.025 0.003 0.315 0.001 8-136 0.076
2/12/88 70 0.000 0.011 0.000 0.109 0.001 2.787 0.022
2/13/88 83 0.000 0.013 0.000 0.129 0.001 3.877 O.023
2/14/88 70 0.000 0 023 0.000 0.090 0.001 2.712 0.018
2/15/88 62 0.000 0.021 0.000 0.172 0.001 (.623 0.032
2/16/88 72 0.000 0.016 0.000 0.946 0.000 1.499 0.010
2/17/88 37 0.000 0.016 0.000 O.MS 0.000 1.461 0.009
2/18/88 79 0.000 0.020 0.000 0.054 0.001 1.778 0.015
2/20/A8 62 0.000 O.OH 0.000 0.370 0.000 9.204 0.002
2/22/88 56 0.000 0.011 0.000 0.021 0.000 0.773 0.002
2/24/88 77 0.000 0.011 0.000 0.025 0.000 0.868 O.OH
2/26/88 62 0.000 0.012 0.000 0.022 0.000 0-817 0.010
3/01/88 53 0.000 0.011 0.000 0.027 0.001 0.899 0.018
3/03/88 62 0.000 0.011 0.000 0.024 0.000 0.834 0.011
3/05/88 76 0.000 0.015 0.000 0.033 0.000 1-146 0.000
3/07/88 68 0.000 0.014 0.000 0.126 0.000 3.351 0.000
3/09/tt 81 0.000 0.016 0.000 0-057 0.001 0.026
S/lt/88 81 0.000 0.015 0.000 0.134 0.001 3.569 0.039
3/18/88 71 O.OOO 0.015 0.000 0.048 0.001 1-5W 0.027
3/19/tt 85 0.000 0.017 0.000 O.0J4 0.001 '-22® 0.019
3/21/88 101 0.000 0.018 O.OOO 0.034 o.OOO 1-238 0.013
3/23/88 83 o OOO 0 014 0.000 0.038 0.001 '-265 0.016
ttSULTt 0* MCI, ,4'Ct ARC "3" ' - 'Will OCEIfCC JESUITS ARC M
-------
UUVIC MT* rtOM *«Cl" OCt Tit *» tCI PCt •• TOTAL f!D TOTAL EO
coot Km l b»/hr Lb»/h r I b»/hr ibf/tir Lbt/hr ib»/o*r U»/D*r
CW2D/1 5/25/88 93 0.000 0.000 0.000 0.026 0.000 0.626 0.013
3/27/88 83 0.000 0.014 0.000 0.0*2 0.00* 1.351 0.018
3/29/88 68 0.000 0.000 0.000 0.021 0.000 0.501 0.009
3/31/88 72 0.000 0.000 0.000 0.019 0.000 0.462 0.006
4/02/88 79 0.000 0.000 0.000 0.027 0.000 0.637 0.008
4/09/88 66 0.000 0-011 0.000 0.029 0.000 0.970 0.010
4/07/88 94 0.000 0.015 0.000 0.030 0.000 1.087 0.009
4/09/88 87 0.000 O.OH 0.000 0.029 0.000 1.040 0.006
4/11/88 91 0.000 0.000 0.000 0.029 0.000 0.696 O.OOS
4/13/88 101 0.000 0.000 0.000 0.147 0.000 3.520 0.005
4/15/88 85 0.000 0.000 0.000 0.026 0.000 0.616 0.000
4/18/88 98 0.000 0.000 0.000 0.022 0.000 0.S32 0.000
TOTAL Lb* F10 VOC 67.377
TOTAL LtW ECS VOC 0 494
•• KSULTS 0* MCI, Tit ,tPC( »(( "y e:: iOLTSIS DCEtTCE RESULTS ARE FROM FIO ANALTSIS
291
-------
FLOW RATES AND FLUX RATES, EW3S
SANP18
COM
DAT!
FLOW MKl** OCC
SCFN Lbs/hr Lb«/hr
"I •• rce PCI •• TOTAL FID TOTAL ECO
Lba/hr itw/hr ib«/hr Lb*/OAT Lbs/DAT
IWII/1
2/11/88
2/12/88
2/13/88
2/14/88
2/15/88
2/16/88
2/17/88
2/18/88
2/20/88
2/22/88
2/24/88
2/26/88
3/01/88
3/03/88
3/09/88
3/07/88
3/09/88
3/11/88
3/18/88
3/19/88
3/21/88
3/23/88
31
28
33
28
24
17
14
17
14
22
22
21
28
27
35
28
24
28
26
25
29
28
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0 000
0.000
0 000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0 000
0.000
0 000
0.024
0.016
0.016
0.010
0.009
0.006
0.000
0.000
0.000
0.004
0.003
0.003
0.004
0.004
0.005
0.000
0.004
0.000
0.005
0.000
0.000
0.000
0.007
0.005
0.005
0.003
0.002
0.001
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.849
0.621
0.647
0.439
0.418
0.270
0.045
0.074
0.060
0.220
0.194
0.183
C.269
0.206
0.260
0.134
0.183
0.120
0.256
0.162
0.131
0.131
0.001
0.001
0.003
0.001
0.001
0.001
0.000
o.ooo
0.000
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.001
0.001
20.946
15.303
15.911
10.784
10.263
6.606
1.082
1.770
1.435
5.388
4.747
4.466
6.568
5.043
6.377
3.228
4.494
2.884
6.284
3.883
3.145
3.146
0.190
0.150
0.197
0.082
0.075
0.029
0.007
0.012
0.006
0.032
0.029
0 009
0.033
0.040
0.023
0.022
0.034
0.021
0.059
0.045
0.028
0.033
•• RESULTS W MCI, ,tPCf »SC "» OCE&TCE 5ESULTS ARl 'ROM HO ANALYSIS
292
-------
uml OATt FlOtf MCI" OCC T*| •• TCt f>c( .« TOTAL FID TOTAL ECS
COM Km Lba/hr lt»/hr Lb»/hr ibt/h r Ua*/h r Lb,/Mr Lb*/0AT
EVC3S/1
3/23/8B
3/27/88
3/29/88
3/31/88
4/02/88
4/05/88
4/07/88
4/09/88
4/11/88
4/13/88
4/15/88
4/18/88
23
20
27
27
21
29
23
22
19
19
19
19
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0 000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.108
0.145
0.179
0.123
0.083
0.157
0.074
0.097
0.034
0.027
0.043
0.034
0.001
0.002
0.902
0.001
0.001
0.001
O.OOt
0.001
0.000
0.000
0.000
o.ooo
2.601
3.476
4.287
2.942
1.991
3.758
1.783
2.326
0.805
0.655
1.031
0.812
0.025
0.042
0.054
0.027
0.014
0.038
0.018
0.014
0.005
0.011
0.000
0.000
TOTAL Lb* FIO VOC 170.222
TOTAL Lb* ECO VOC
1 COt
*• UMTS Of MCI, TVt ,4PCI ARE '»* 113 «»*LTSIS'OCEITCE RESULTS ABC ft
-------
FLOV RATES AND FLUX RATES, EV3D
sum. ¦
coot
Mn
now mci" oa t»i •• ret 'ce •• T0TU M0 T0T*L E®
ttm Lba/hr lbt/hr lba/hr Lb«/hr lb«/hr Lb*/C*T lb«/OAT
(VS3B/1
2/11/88
2/12/88
2/13/88
2/14/88
2/15/88
2/16/88
2/17/88
2/18/88
2/20/88
2/22/88
2/24/88
2/26/88
3/01/88
3/03/88
3/09/88
3/07/88
3/09/88
3/11/88
3/18/tt
3/19/88
3/21/88
3/23/88
39
37
22
19
24
30
19
28
23
19
23
19
21
20
15
19
24
19
12
32
19
19
0.000
0.000
0.000
Q.OOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
o.coo
0.000
0 000
0.038
0.036
0.028
0.018
0.016
0.016
0.008
0.010
0.006
0.004
0.004
0.003
0.004
0.005
0.005
0.003
0.006
0.003
0.009
o.oor
0.004
0.003
0.006
0.003
0.003
0.001
0.002
0.001
0.001
0.000
0.006
0.000
0.000
0.000
0.000
0.000
o.ooo
o.ooo
0.000
0.000
0.002
0.000
0.000
0.000
0.493
0.268
0.171
0.149
0.159
0.172
0.092
0.108
0.057
0.032
0.048
3.023
0.015
0.036
0.023
0.032
0.063
0.060
0.106
0.059
0.045
0.039
0.001
0.002
0.001
0.001
0.001
0.002
0.001
0.001
o.ooo
o.ooo
o.ooo
o.ooo
0.000
0.001
0.000
o.ooo
0.001
0.000
0.000
0.001
0.000
0.000
12.7U
7.302
4.773
3.996
4.191
4.510
2.409
2.822
1.513
0.863
1.233
0.623
0.458
0.988
0.734
0.849
1.647
1.518
2.760
1.596
1.173
1.014
0.173
0.104
0.082
0.058
0.082
0.060
0.035
0.031
0.145
0.010
0.007
0.007
0.017
0.030
0.004
0.009
0.022
0.011
0.038
0.030
0.014
0.006
»• KBJLTS Of Mac I, 1*1 ,1PCI ridi I:: »«»LtSIS.OCElTC£ hbjuj am '
-------
smi
COM
OATf
FLOW
NtCt*
oet
TBI •• TC«
PCI ••
sen Lb9/hr Lbs/hr __ ib«/hr Lba/hr Lb»/hr
TOTAL FID
Lba/DAT
TOTAL ECO
Lb*/DAT
CW3D/I
3/23/88
3/27/88
3/39/88
3/31/88
4/02/88
4/09/88
4/07/88
4/00/88
4/11/88
4/13/88
4/13/88
4/18/88
24
27
19
18
7
7
14
14
14
14
14
14
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.003
0.000
0.001
0.001
0.003
0.003
0.002
0.000
0.000
0.000
0.001
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.033
0.058
0.037
0.024
0.012
0.013
0.023
0.023
0.023
0.017
0.019
0.018
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.844
1.516
0.959
0.375
0.313
0.354
0.664
0.616
0.610
0.412
0.460
0.435
0.047
0.026
0.015
0.011
0.004
0.005
0.009
0.008
0.007
0.002
0.000
0.000
TOTAL Lba FID VOC 67.(76
TOTAL Lba ECO VOC
1.105
•• M9ULTI Of MaCI, T*( ,4PCI AffE »»a« t«»U'IIS OCEITCI »£SULTJ AM '*0* HO ANALYSIS
295
-------
FLOW RATES ANO FLUX RATES, EW4S
Mfftl OATI FLOW K*Cl" CCE HI •• TCE PCE •• TOTAL FID TOTAL ECO
cooe SCFM Lb»/hr Lbs/hr Lbs/hr lbs/hr Lbs/hr Lb»/0AT Lbs/OAT
E1M4S/1 2/11/88 24 0.000 0.0*5 0.009 0.999 0.002 29.073 0.175
2/12/88 28 0.000 0.034 0.009 0.929 0.002 23.1H 0.171
2/13/88 35 0.000 0.032 0.006 0.979 0.002 24.272 0.179
2/14/88 28 0.000 0.031 0.006 1.198 0.004 29.507 0.221
2/1S/88 28 0.000 0.025 0.005 0.941 0.003 23.194 0.186
2/16/88 23 0.000 0.322 0.002 0.342 0.G01 20.736 0.090
2/17/88 25 0.000 0.026 0.003 0.932 0.002 22.999 0.120
2/18/88 25 0.000 0.026 0.003 0.932 0.003 22.985 0.140
2/20/88 21 0.000 0 021 0.002 0.821 0.003 20.199 0.123
2/22/88 25 0.000 0.018 0.002 0.797 0.002 19.563 0.111
2/24/88 25 0.000 0.018 0.002 0.866 0.003 21.218 0.135
2/26/88 28 0.000 0.017 0.001 0.785 0.002 19.256 0.073
3/01/88 32 0.000 0.023 0.003 1.091 0.000 26.727 0.07B
3/03/88 34 0.000 0.015 0.004 0.729 0.008 17.865 0.273
3/09/88 35 0.000 0.023 0.001 1.079 0.001 26.467 0.066
3/07/88 34 0.000 0.019 0.001 0.862 0.002 21.146 0.083
3/09/88 31 0.000 0.022 0.002 0.905 0.003 22.232 0.111
3/11/88 35 0.000 0.023 0.002 0.993 0.003 24.396 0.126
3/18/88 30 0.000 0.029 0.002 1.120 O.OOS 27.589 0.183
3/19/88 32 0.000 0.027 0.002 1.017 0.006 25.056 0.196
3/21/88 35 0.000 0.022 0.002 0.784 0.003 19.358 0.102
3/23/88 34 0 000 0.022 0.001 0.847 0.004 20.846 0.117
•• RESULTS Of HtCl, TBI ,JPCE CC3 «N»L»SIS OCE&TCE RESUUS ME FROM FIO ANALYSIS
296
-------
SAWll
COM
»n
FLOW
sent
MeCl"
Lb»/hr
OCE
TRI •• TCE
PCE • •
TOTAL FtO
lb»/hr Lbs/hr Lbs/hr lbs/hr Lbt/OAT
TOTAL ECO
Lbf/OAY
EMS4S/1
3/29/88
3/27/88
3/29/88
3/31/88
4/02/88
4/09/88
4/07/88
4/09/88
4/t1/88
4/13/88
4/13/88
4/18/8^
39
27
27
30
34
36
38
30
30
29
31
30
0.000
O.OGO
0.000
0.000
0.000
0.000
0.000
0 000
0.000
0.000
0 000
0 ooo
0.021
0.019
0.017
0.012
O.OU
0.019
0.019
0.013
0.013
0.010
0.015
0.015
0.002
0.002
0.001
0.001
0.001
0.002
0.002
0.001
0.001
0.001
0.000
0.000
0.872
0.779
0.743
0.670
0.733
0.820
0.839
0.601
0.319
0.376
0.568
0.580
0.009
0.009
0.004
0.003
0.003
0.004
0.004
0.003
0.002
0.001
0.000
0.000
21.431
19.1J6
18.289
16.372
17.981
20.123
20.599
14.779
12.769
9.274
13.999
14.279
0.168
0.167
0.115
0.106
0.085
0.1U
0.125
0.093
0.067
0.062
0.000
0.000
TOTAL Lb* FIO VOC 702.830
TOTAL Lb* ECO VOC
4.214
•• RESULTS OF HeCl, TBI ,4PCt «sf o-m fCO awUTSIS-OCE&TCE RESULtS ARE FROM FIO ANALYSIS
297
-------
FLOW RATES AND FLUX RATES, EW4D
sa*>u
COOl
MTI
flow Meci" oce "i •* ice pct •* totu rid rouu eco
SCFN Lb«/hr Lb»/hr lb«/hr Ibs/hr ItJ/hr Lb*/OAT Lba/OAT
eweto/t
2/11/88
2/12/88
2/15/08
2/14/88
2/1S/88
2/16/88
2/17/88
2/10/88
2/20/88
2/22/88
2/24/88
2/24/88
3/01/88
3/03/88
3/09/88
3/07/88
3/09/88
3/11/88
3/18/88
3/19/88
3/21/88
3/Z3/88
32
40
28
26
23
30
35
30
24
19
21
19
IS
0
0
0
0
0
4
0
0
0
0.000
0.000
0.000
0.000
0.000
0.000
n.ooo
0.0 f>0
o.ooo
0.000
0 000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
o.ooo
o.ooo
0 ooo
0 ooo
0.036
0.066
0.030
0.023
0.011
0.018
0.018
0.013
0.008
0 003
0.005
0.004
0.005
0.000
0.000
0.000
0.000
0.000
0.001
o.ooo
0.000
0 000
0.004
0.008
o.oos
0.004
0.001
0.002
0.002
0.001
0 001
0.000
o.ooo
0.000
0.000
o.ooo
o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
o.ooo
0.228
0.457
0.274
0.30C
0.142
0.244
0.244
0.163
0.107
0.040
0.172
0.046
0.042
0.000
0.000
0.000
0.000
0.000
0.012
0.000
0.000
0.000
0.001
0.003
0.001
0.003
0.001
0.002
0.003
o.oot
0.002
O.OOO
O.COI
0.001
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.030
0.000
0.000
6.339
12.555
7.286
7.753
3.663
6.268
6.287
4.::2
2.771
1.021
4.252
1.207
1.114
O.OOO
0.000
0.000
0.000
0.000
0.319
0.000
0.000
o.ooo
0.131
0.256
0.153
0.157
0.056
o.oaa
0.101
0.061
o.o5«
0.010
0 036
0.019
0.010
0.000
0.000
0.000
o.ooo
0.000
0.009
o.ooo
o.ooo
o.ooo
•• RESULTS Of N«Cl, TBI ,tPCE toe <)-m {CO *m«ltS1S DCEI'CE BEttJUS *»E f BOH FID ANALYSIS
298
-------
mi mt*
CON
now M»Cl** OCE '»I •• TCE PCE •• TOTAL FIO TOTAL ECO
SCFM lb»/hr Ibs/hr Lb»/hr Lbs/hr lb«/hr Lbi/DAr Lbf/DAY
EUCiO/1 J/23/88 0 0.000 0.030 0.000 0.000 0.000 0.000 0.000
5/27/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3/29/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3/31/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4/02/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4/05/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4/07/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4/09/88 0 0.000 0.000 0.000 0.000 0.000 o.ooo o.ooo
4/11/88 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4/13/B8 0 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000
4/15/88 0 O.OCO 0.000 0.000 0.000 O.OOO 0.000 0.000
4/18/88 0 0.000 0-000 0.000 0.000 0.000 0.000 0.000
TOTAL Lt» fie VOC 65.047
TOTAL Lb« ECO VOC 1.112
" RESULT J OE IMC I, T*I ,4pCE APE ECO inaltSIS.OCEITCE RESULTS ARE FROM FIO AMALTS1S
299
-------
APPENDIX H
PROCESS AND SOIL GAS ANALYTICAL SOP's
300
-------
ALLIANCE TECHNOLOGIES CORPORATION
ON-SITE ANALYTICAL SCHEME FOR PROCESS AND SOIL GAS
Terra Vac Inc. Site Demonstration Project
The attached SOPs for the on-site GC/FID and GC/ECD analysis of
process and soil gas are to be used throughout this project.
Deviations from these protocols must be approved by the Alliance
Laboratory Analysis Coordinator, Joanna Hall, prior to use.
• With the exception of samples known to contain low
concentrations (e.g. outlet to the carbon cannisters, ambient
background, blanks, etc.), all samples are to be analyzed using
GC/FID.
• All FID chromatograms will be evaluated to determine whether
the five compounds of interest are within the limits of quantitation.
If all components are quantifiable, no ECD analysis is reauired. If
methylene chloride(MC) and trans 1,2-dichloroethylene (DCE) are not
detected and 1,1,1-trichloroethane(TRI), trichloroethylene(TCE) and
tetrachloroethylene(PCE) are quantifiable, then no further analysis is
required. Whenever GC/ECD analysis is required, the sample is diluted
into a Tedlar bag to generate a maximum concentration of 2 5 ng/ml of
TCE.
301
-------
ALLIANCE TECHNOLOGIES CORPORATION
STANDARD OPERATING PROCEDURE
Analysis of Volatile Organic Compounds in
Soil Gas and Extracted Process Air
using GC/FID
1.0 Scope and Application
This method is intended for use in the analysis of soil gas
or extracted air, collected in Tedlar bags or in glass and
Teflon gas-tight syringes, for chlorinated volatile organics.
The following sections present procedural information
detailing this analysis. Appended to this document are the
results of a validation study conducted on the following
components:
Methylene chloride (MC)
trans 1,2-Dichloroethylene (DCE)
1,1,1-Trichloroethane (TRI)
Trichloroethylene (TCE)
Tetrachloroethylene (?CE)
Application of this merhod to*any other chlorinated volatile
organic must be verified before use.
2.0 Apparatus and Materials
• Perkin Elmer 39 20 gas chromatograph equipped with
a flame ionization detector (GC/FID) , heated gas
sampling valve and 1 ml gas sampling loop.
• HP 3392 integrator (or equivalent)
• Glass column (6 ft by 2 mm ID) packed with 1%
SP 1000 on 60/80 mesh Carbopack B
• Glass'500 ml gas sampling bulbs
• Tedlar bags with Teflon septa and stainless steel
valves
• 100 ml gas flow metering bulb
• Assorted glass gas-tight syringes - 1.0 ml, 5.0
ml, 250 ul
• Assorted liquid syringes - 10 ul, 100 ul
302
-------
3.0 Calibration Standard Preparation
3.1 Stock Standards
prepare the following in a 5 ml vial with Teflon-lined
screw cap:
Stock A
MC 250 ul
DCE *250 Ul
TRI 250 ul
TCE 250 ul
PCE 250 Ul
Concentration
MC 0.265
DCE 0.251
TRI 0.268
TCE 0.293
PCE 0.324
(mg/ul)
All reference standards must be Chen Service 97* active (or
equivalent). Corrections for percent activity must be applied
when lot is below 98% active.
Cross contamination must be minimized by carefully rinsing
syringes with organic-free water and baking at a mininun
temperature of 50 degrees C for 30 minutes before use.
Stock standards are to be stored in Tlass vials with a
minimum of headspace. Vials must be refrigerated at 4 degrees
when not in use. Stocks must be prepared at a 60 day
frequency, or sooner, if degradation is noted.
3.2 Calibration Gas Standard Preparation
A minumum of three calibration standards are prepared by
dilution of the Stock A into 1 1 Tediar bags filled wich
1000 ml of UHP nitrogen. Once prepared, bags are maintained,
protected from light, for a period not to exceed 48 hours.
After expiration, new bags must be generated. The following
are the bag standards to be used:
• 1.0 ul of Stock A into 1000 al nitrogen
e 2.0 ul of Stock A into 1000 ml nitrogen
• 5.0 ul of Stock A into 1000 ml nitrocer.
• 10 ul of Stock A ..".to 1000 ml nitrogen
• 20 ul of Stack A into 1000 ml nitrogen
• 50 ul of Stock A ir.zo 1000 ml nitrogen
303
-------
Generation of these dilutions will result in the following
concentrations:
Component Concentration (ug/ml)
MC
TOE
TRI
TCE
PCE
1 ul
2 ul
5 ul
10 ul
20 ul
50 ul
0.26
0.53
1.3
2.6
5.3
13
0.25
0.50
1.3
2.6
5.0
13
0. 27
0.54
1.3
2.7
5.4
13
0.29
0.59
1.5
2.9
5.9
15
0.32
0.65
1.6
3.2
6.5
16
4.0 Instrument Calibration
Initial calibration is accomplished by the injection of
three calibration standards from the calibration range listed
above. Injections are performed by piercing the septum of the
Tedlar bag with the needle of a pre-cleaned 50-ml gas-tight
syringe and withdrawing approximataely 20 ml. The syringe
needle is then pusned through the septum of the gas sampling
valve, and the plunger depressed to flush the loop with 5 to
10 ml of gas. The valve is then changed to the on-column
position to inject the gas onto the gas chromatograph.
Chromatographic conditions are listed below:
Injection temp.
Valve temp.
Column temp.
FID temp.
Carrier flow
Run time
125 degrees C
100 degrees C
50 to 180 degrees at 3 deg/nin
250 degrees C
30 ml/min. helium
30 min.
Calibration curves are generated by plotting area counts
versus concentration via a linear regression analysis.
Acceptance of initial calibration is based on achievement of a
correlation coefficient of 0.99 or above.
Daily calibration is accomplished by verifying a single
mid-range point of the calibrataion curve. Acceptance of
continuing calibration is achievement of 20 per cent
difference with the initial curve. Recalibration is required
if the continuing calibration check is unacceptable.
304
-------
Typical retention times for the components studied under
the above conditions are:
MC 5.6 min.
DCE 11.5 min.
TRI 14.4 min.
TCE 17.8 min.
PCS 24.7 min.
5.0 Analysis of Samples
Sample analysis is initiated as soon as possible after
collection. Samples are analyzed by injecting filled syringes
into the gas sampling valve in the same manner used for
standards. Component identification is accomplished by
matching retention times of peaks in sample in]ections to
those of components in calibration standards. A 3% window for
identification is applied. Quantitation of identified
components is achieved via linear regression analysis of the
area count response .
Sample concentrations must be bracketed by standards. If a
sample exceeds the calibrated range additional standards must
be injected. If the sample response exceeds the linear range
of the detector or integrator, the sample must be diluted.
Dilution is performed by injecting a minumum of 10 ml from the
syringe into a Tedlar bag filled with a known volume of UHP
nitrogen.
Minimum detection limits for this analysis are the
following:
MC 0.03 ug/ml
DCE 0.02 ug/ml
TRI 0.02 ug/ml
TCE 0.02 ug/ml
PCE 0.03 ug/ml
Upper and lower quantitation limits are provided below:
Upper limit
Lower limit
MC
DCE
TRI
TCE
PCE
13 ug/al
13 ug/ml
13 ug/ml
15 ug/nl
16 ug/r.l
0.1 ug/nl
0.1 ug/ml
0.1 ug/ml
0 -1 ug/nl
0.1 ug/ml
305
-------
6.0 Quality Control
Quality control requirements for this analysis include the
following:
• Method blanks — one injection per day of a blank bag
or syringe filled with UHP nitrogen.
• Duplicate analysis — duplicate injection of one in
every five samples with a maximum of two per 24 hour period.
• Laboratory Control Samples (LCS) — analysis of one LCS
per 20 program samples. An LCS consists of a injection of an
independently prepared bag standard, containing the five
components of interest. Suggested for use is the following:
Stock B
Concentration (mg/ul)
MC
250
ul
0.603
DCE
100
ul
0.228
TRI
50
ul
0.122
TCE
100
ul
0.266
PCE
50
ul
0.14o
LCS
Sag
(5.0 ul Stock B /1000ml) Concentration (ug/ml)
MC 3.0
DCE 1.1
TRI 0.61
TCE 1.3
PCE 0.74
Recoveries for the five compounds in the LCS must be m the
range of 65 to 130 percent for acceptable performance.
306
-------
APPENDIX
ALLIANCE TECHNOLOGIES CORPORATION
Validation of Soil Gas and Extracted Process Air
Analysis by GC/ECD
A method validation was performed in support of the GC/ECD
analysis procedure to be utilized for the Terra Vac Inc. SITE
demonstration project at Groveland, MA. The purpose of the
validation was to generate precision and accuracy goals for
sample analysis using this technique.
Standards in tedlar bags were prepared in triplicate at
three concentration levels for the five components of,
interest; methylene chloride (MC), trans 1,2-dichloroethylene'
(DCE), 1,1,1-trichloroethane (TRI), trichloroethylene (TCE)
and tetrachloroethylene (PCE) . All bags were spiked with a
standard mixture independently prepared from the standards
used to calibrate the instrument for analysis. Gas from each
bag was injected onto a 1 ml heated gas sampling loop using a
50 ml gas-tight syringe. Response data was collected from the
GC/ECD analysis and concentrations calculated using a linear
regression analysis derived from a five-point calibration
curve. Results are presented below:
Compoment Concentration Percent Recovery
(ng/ml)
Bag 1
Bag 2
Bag 3
MC
330
101
98
97
DCE
270
101
101
97
TRI
6.1
91
111
120
TCE
0.11
100
1C0
100
PCE
0.50
100
100
138
MC
75
121
106
110
DCE
53
113
108
116
TRI
1.2
100
85
92
TCE
0. 022
119
104
111
PCE
0.099
158
100
100
MC
38
93
90
103
DCE
27
98
92
99
TRI
0 . 61
83
83
80
TCE
0 .011
109
117
109
PCE
0 . C50
175
160
192
307
-------
Review of the above results indicates that recoveries
ara between 80 and 120 percent recovery for all compounds
except PCS. The problem with PCE is a result of its elution on
the leading edge of a baseline drift at the end of the
teBperatur«-prograomed analysis. The integrator has difficulty
recognizing the start and end of the peak, especially at low
concentrations. Clearly, PCE is not quantifiable at the 0.050
ng/ml level, although it is repeatedly detectable.
As part of the above study, duplicate injections of one bag
were performed. Results of these injections show an 11 percent
difference is attainable for the components of interest.
Additionally, a brief verification of the sample dilution
technique was performed. A 500 ml gas bulb was spiked with MC
at a concentration of 13 3 mg/1 and subsequently diluted 1:1000
in a Tedlar bag. The dilution was analyzed by GC/ECD with a
resultant concentration within 1 percent of the nominal
concentration calculated.
308
-------
APPENDIX
ALLIANCE TECHNOLOGIES CORPORATION
Validation of Soil Gas and Extracted Process Air
Analysis by GC/FID
A method validation was performed in support of the GC/FID
analysis procedure to be utilized for the Terra Vac Inc. SITE
demonstration project at Groveland, MA. The purpose of .the
validation was to generate precision and accuracy goals for
sample analysis using this technique.
Standards in tedlar bags were prepared in triplicate at
three concentration levels for the five components of
interest; methylene chloride (MC), trans 1,2-dichloroethylene
(DCE), 1,1,1-trichloroethane (TRI), trichloroethylene (TCE)
and tetrachloroethylene (PCE). All bags were spiked with a
standard mixture independently prepared from the standards
used to calibrate the instrument far analysis. Gas from each
bag was injected onto a 1 ml heated gas sampling loop using a
50 ml gas-tight syringe. Response data was collected from the
GC/ECD analysis and concentrations calculated using a linear
regression analysis derived from a five-point calibration
curve. Results are presented below:
Compoment Concentration Percent Recovery
(ug/ml)
Bag 1
Bag 2
Bag 3
MC
3 . 0
102
120
7 6
DCE
1. I
101
117
91
TRI
0. SI
96
103
74
TCE
1.3
100
96
73
PCE
0.74
104
82
73
MC
0 . 60
103
36
77
DCE
0 .23
104
87
80
TRI
0. 12
127
112
106
TCE
0.27
89
73
67
PCE
0. 15
113
104
91
MC
0. 12
107
100
111
DCE
0 .046
116
108
133
TRI
0 . 024
80
75
120
TCE
0. 053
75
67
103
PCE
0 . 030
225
200
325
309
-------
Review of the above results indicates that recoveries
are between 65 and 130 percent recovery for all compounds.
Recovery data from the bag at the lowest concentration show
that although these components are detectable at the 0.2 to
0.3 ug/ml level, the quantitation is not reliable.
310
-------
ALLIANCE TECiiNOLOGIES CORPORATION
STANDARD OPERATING PROCEDURE
Analysis of Volatile Organic Compounds in
Soil Gas and Extracted Process Air
using GC/ECD
1.0 Scope and Application
This method is intended for use in the analysis of soil gas
or extracted air, collected in Tedlar bags or in glass and
Teflon gas-tight syringes, for chlorinated volatile organics.
The following sections present procedural information
detailing this analysis. Appended to this document are the
results of a validation study conducted on the following
components:
Methylene chloride (MC)
trans 1,2-Dichloroethylene (DCE)
1,1,1-Trichloroethane (TRI)
Trichloroethylene (TCE)
Tetrachloroetnylene (PCI)
Application of this method to any other chlorinated volatile
organic must be verified before use.
2.0 Apparatus and Materials
• Hewlett-Packard 5890 gas chromatograph equipped with NiS3
electron capture detector (ECD), heated gas sampling valve and
1.0 ml gas sampling loop.
• HP 3392 integrator (or equivalent)
• Glass column (6 ft by 2 mm ID) packed with 1%
SP 1000 on 60/80 mesh Carbopack B
• Glass 500 ml gas sampling bulbs
• Tedlar bags with Teflon septa and stainless steel
valves
• 100 ml gas flow metering bulb
• Assorted glass gas-tight syringes - 1.0 ml, 5.0
ml, 250 ul
• Assorted licruid syringes - 10 ul, 100 ul
311
-------
3.0 Calibration Standard Preparation
3.1 Stock Standards
Prepare the following in a 5 ml vial with Teflon-lined
screw cap:
Stock M Concentration
MC 2.0 ml MC 0.663 mg/ul
TDE 2.0 ml DCE 0.62 8 mg/ul
Stock N
TBI 3.0 ol
TCE 0.050 ml
PCE 0.20 ml
StocJc 0
"M" 1.0 ml
"N" 0.015 ml
TRI 1.236 mg/ul
TCE 0.0225 rng/ul
PCE 0.0998 mg/ul
MC
DCE
TRI
TCE
PCE
650 ug/ul
620 ug/ul
18.3 ug/ul
0.3 3 ug/ul
1.47 ug/ul
All reference standards oust be Chem Service 97% active (or
equivalent) . Corrections for percent activity must be applied
when lot is below ss% active.
Cross contamination must be minimized by carefully rinsing
syringes with organic-free water and baking at a minimum
temperature of 50 degrees c for 30 minutes before use.
Stock standards are to be stored in glass vials with a
minimum of headspace. Vials must be refrigerated at 4 degrees
when not in use. Stocks must be prepared at a 60 day
frequency, or sooner, if degradation is noted.
3.2 Stock Gas Standard Preparation
A gas standard stock is prepared in a 500 ml Glass bulb
which has been heated in a 105 degree ovan-for 30 minutes and
repeatedly purged with UHP nitrogen. Prior to use, the bulb
volume should be verified by determining its aqueous
capacity. A 50 ul aliquot of Stock "0" is injected into the
bulb and allowed to equilibrate at room temperature for 15
minutes. Aliquots of this bulb are removed for preparation of
calibration standards in Tedlar bags. No more than 10 ml of
gas should be removed from a bulb in order to prevent dilution
of the bulb concentration. Prepared in this manner, the
concentration of the bulb is the following:
MC
65
ug/ml
DCE
62
ug/ral
TP.I
1.
8 3 ug/al
TCE
0.
03 3 ug/nl
PCE
0.
14 7 ug/ml
312
-------
3.3 calibration Gas Standard Preparation
A minuaun of three calibration standards are prepared by
dilution of the bulb stock into 1 1 Tedlar bags filled with
1000 al of UHP nitrogen. Once prepared, bags are maintained,
protected from light, for a period not to exceed 48 hours.
After expiration, new bags must be generated from a freshly
prepared stock bulb. The following are the bag standards to
be used:
100X—¦ 10.0 ml of stock bulb into 1000 ml nitrogen
200X-- 5.0 ml of stock bulb into 1000 ml nitrogen
500X-- 2.0 ml of stock bulb into 1000 ml of nitrogen
1000X-- 1.0 ml of stock bulb into 1000 ml of nitrogen
2000X— 0.5 ml of stock bulb into 1000 ml of nitrogen
Generation of these dilutions will result in the following
concentrations:
Component Concentration (ng/ml)
100X
200X
500X
1000X
2.000X
MC
€50
320
130
65
32
DC E
€20
310
120
62
31
TSI
18
9.2
3.7
1.8
0.92
TCE
3.3
0. 16
0.066
0.033
0.016
PCZ
1.5
0. 74
0. 29
0.15
0.074
Additional calibration standards may be prepared as
required. Acceptable linearity for some compounds has been
achieved with bags at 4 000X and 2OX.
4.0 Instrument Calibration
Initial calibration is accomplished by the injection cf
three calibration standards frors the calibration rar.ge listed
above. Injections are performed by piercing the septum of the
Tedlar bag with the needle cf a pre-cleaned 50-nI gas-tight
syringe and withdrawing apcroximataely 20 al. The syringe
needle is then pushed through the septum of the gas sampling
valve, and the plunger depressed to flush the loop with 5 to
10 ml of gas. The valve is then changed to the on-column
position to inject the gas onto the gas chromatograph.
Chromatographic conditions are listed below:
313
-------
Injection temp.
Valve temp.
Column temp.
50 to 175 degrees at 8
deg/min
300 degrees C
3 0 ml/min. argon/methane
25 min.
110 degrees C
100 degrees C
ECO teap.
Carrier flow
Run time
Calibration curves are generated by plotting area counts
versus concentration via a linear regression analysis.
Acceptance of initial calibration is based on achievement of a
correlation coefficient of 0.99 or above.
Daily calibration is accomplished by verifying a single
mid-range point of the calibrataion curve. Acceptance of
continuing calibration is achievement of 20 per cent
difference with the initial curve. Hecalibration is required
iff the continuing calibration check is unacceptable.
Typical retention times for the components studied under
the above conditions are:
5.0 Analysis of Samples
Sample analysis is initiated as soon as possible after
collection. Samples are analyzed by injecting filled syringes
into the gas sampling valve in the sar.e manner used for
standards. Component identification is accomplished by
matching retention times of peaks in sample injections to
those of components in calibration standards. A 3% window fcr
identification is applied. Quantitation of identified
components is achieved via linear regression analysis of the
area count response .
Sample concentrations must be bracketed by standards. If a
sample exceeds the calibrated range additional standards -ust
be injected. If the sample response exceeds the linear range
of the detector or integrator, the sample must be diluted.
Dilution is performed by injecting a minumum of 10 ml from the
syringe into a Tedlar bag filled with a known volume of UK?
nitrogen.
Minimum detection limits for this analysis are the
following:
MC 4.9 min.
DCE 9.9 min.
TRI 12.5 min.
TCE 15.7 min.
PCE 21.7 min.
MC 3 ng/ml
DCS 6 ng/ml
TRI 0.09 ng/ml
TCI 0.003 ng/ml
PCE 0.04 ng/ml
314
-------
Upper and lower quantitation limits are provided below:
Upper limit
Lower limit
MC
DCE
TRI
TCE
PCE
2000 ng/ml
2000 ng/ml
5 ng/ml
9 ng/ml
90 ng/ml
10 ng/ml
4 ng/ml
0.14 ng/ml
0.012 ng/ml
0.06 ng/ml
6.0 Quality Control
Quality control requirements for this analysis include the
following:
• Method blanks — one injection per day of a blank bag
or syringe filled with UHP nitrogen.
• Duplicate analysis -- duplicate injection of one in
every five samples with a maximum of two per 24 hour period.
• Laboratory Control Samples (LCS) — analysis of one LCS
per 20 program samples. An LCS consists of an injection of an
independently prepared bag standard, containing the five
components of interest. Suggested for use is the following:
Stock X
TRI 1.5 ml
TCE 0.025 ml
PCE 0.10 ml
Concentration(mg/ul)
1.24
0.023
0.099
Stock Y
MC 1.0 ml
DCE 0.75 ml
0.76
0. 54
Stock XY
Concentration (ng/ul)
"Y" 0.5 ml
"X" 0.0050 ml
MC 750
DCE 530
TRI 12.2
TCE 0.22
PCE 0.99
315
-------
Bulb stock (50 Ul "XY")
Concentration (ug/ml)
MC 75
DCE 53
TRI 1.2
TCE 0.022
PCE 0.099
LCS Bag
(5.0ml Bulb Stoc)c/1000ml) Concentration (ng/ml)
MC 370
DCE 270
TRI 6.1
TCE 0.11
PCE 0.50
Recoveries for the five compounds in the LCS must be in the
range of 80 to 140 percent for acceptable performance.
316
-------
ALLIANCE TECHNOLOGIES CORPORATION
STANDARD OPERATING PROCEDURE
Analysis of Volatile Organic Compounds in
Soil Gas and Extracted Process Air
using GC/Fir
1.0 Scope and Application
This method is intended for use in the analysis of soil gas
or extracted air, collected in Tedlar bags or in glass and
Teflon gas-tight syringes, for chlorinated volatile organics.
The following sections present procedural information
detailing this analysis. Appended to this document are the
results of a validation study conducted on the following
components:
Methylene chloride (MC)
trans 1,2-Dichloroethylene (DCE)
1,1,1-Trichloroethane (TRI)
Trichloroethylene (TCE)
Tetrachlcroethylene (PCS)
Application of this method to'any other chlorinated volatile
organic must be verified before use.
2.0 Apparatus and Materials
• Perkin Elmer 3920 gas chromatograph equipped with
a flame ionization detector (GC/FID) , heated gas
sampling valve and 1 ml gas sampling loop.
• HP 3392 integrator (or equivalent)
• Glass column (6 ft by 2 mm ID) packed _with 1%
SP 1000 on 60/80 mesh Carbopack B
• Glass 500 ml gas sampling bulbs
• Tedlar bags with Teflon septa and stainless steel
valves
• 100 ml gas flow metering bulb
• Assorted glass gas-tight syringes - 1.0 ml, 5.0
ml, 250 ul
• Assorted liquid syringes - 10 ul, 100 ul
317
-------
3.0 Calibration Standard Preparation
3.1 Stock Standards
Prepare the following in a 5 ml vial with Teflon-lined
screw cap:
All reference standards must be Chem Service 97% active (or
equivalent). Corrections for percent activity must be applied
when lot is below 93% active.
Cross contamination must be minimized by carefully rinsing
syringes with organic-free water and baking at a minimum
temperature of 50 degrees C for 3 0 minutes before use.
Stock standards are to be stored in glass vials with a
minimum of headspace. vials must be refrigerated at 4 degrees
when not in use. Stocks must be prepared at a 60 day
frequency, or sooner, if degradation is noted.
3.2 Calibration Gas Standard Preparation
A oinumua of three calibration standards are prepared by
dilution of the Stock A into 1 1 Tedlar bags filled wirh
1000 ml of UHP nitrogen. Once prepared, bags are maintained,
protected from light, for a period not to exceed 43 hours.
After expiration, new bags must be generated. The following
are the bag standards to be used:
• 1.0 ul of Stock A into 1000 ml nitrogen
• 2.0 ul of Stock A into 1000 ml nitrogen
• 5.0 ul of Stock A into 1000 ml nitrogen
• 10 ul of Stock A into 1000 ml nitrogen
• 20 ul of Stock A into 1000 ml nitrogen
• SO ul of Stock A ir.zo 1000 ml nitrogen
Stock A
Concentration (ag/ul)
MC 250 ul
DCE "250 Ul
TRI 250 ul
TCE 2 50 ul
PCE 250 ul
MC 0.265
DCE 0.251
TRI 0.268
TCE 0.29 3
PCE 0.324
318
-------
Generation of these dilutions will result in the following
concentrations:
Component Concentration (ug/ml)
1 ul
2 Ul
5 ul
10 Ul
20 ul
50 ul
MC
0.26
0.53
1.3
2.6
5.3
13
DCE
0.25
0.50
1.3
2.6
5.0
13
TRI
0.27
0. 54
1.3
2.7
5.4
13
TCE
0.29
0.59
1.5
2.9
5.9
15
PCE
0.32
0.65
1.6
3.2
S . 5
16
4.0 Instrument Calibration
Initial calibration is accomplished by the injection of
three calibration standards from the calibration range listed
above. Injections are performed by piercing the septum of the
Tedlar bag with the needle of a pre-cleaned 50-rol gas-tight
syringe and withdrawing approxiaataely 2 0 ml. The syringe
needle is then pushed through the septum of the gas sampling
valve, and the plunger depressed to flush the loop with 5 to
10 ml of gas. The valve is then changed to the on-colu-n
position to inject the gas onto the cas chronatograpn.
Chromatographic conditions are listed belov:*
Injection temp.
Valve temp.
Column temp.
FID temp.
Carrier flow
Run time
125 degrees C
100 degrees C
50 to 180 degrees at o deg/nin
250 degrees C
30 nl/min. helium
30 nin.
Calibration curves are generated by plotting area counts
versus concentration via a linear regression analysis.
Acceptance of initial calibration is based on achievement of a
correlation coefficient of 0.99 or above.
Daily calibration is accomplished by verifying a single
mid-range point of the calibrataion curve. Acceptance of
continuing calibration is achievement of 20 per cent
difference with the initial curve. Recalibration is required
if the continuing calibration check is unacceptable.
319
-------
Typical retention tines for the components studied under
the above conditions are:
MC 5.6 min.
DCE 11.5 min.
TRI 14.4 min.
TCE 17.8 min.
PCE 24.7 min.
5.0 Analysis of Samples
Sample analysis is initiated as soon as possible after
collection. Samples are analyzed by injecting filled syringes
into the gas sampling valve in the same manner used for
standards. Component identification is accomplished by
matching retention times of peaks in sample injections to
those of components in calibration standards. A 3* vindov for
identification is applied. Quantitation of identified
components is achieved via linear regression analysis of the
area count response .
Sample concentrations must be bracketed by standards. If a
sample exceeds the calibrated range additional standards must
be injected. If the sample response exceeds the linear range
of the detector or integrator, the sample must, be diluted.
Dilution is performed by injecting a minimum of 10 ml from the
syringe into a Tedlar bag filled with a known volume of UHP
nitrogen.
Minimum detection limits for this analysis are the
following:
MC 0.03 ug/ml
DCE o.02 ug/ml
TRI 0.02 ug/ml
TCE 0.02 ug/ml
PCE 0.03 ug/ml
Upper and lower quantitation limits are provided below:
Upper limit
Lower Unit
MC
DCE
TRI
TCE
PCE
13 ug/ml
13 ug/ml
13 ug/ml
15 ug/ml
16 ug/nl
0.1 ug/ml
0.1 ug/ml
0.1 ug/ml
0.1 ug/nl
0.1 ug/ml
320
-------
6.0 Quality Control
Quality control requirements for this analysis include the
following:
• Method blanks — one injection per day of a blank bag
or syringe filled with UHP nitrogen.
• Duplicate analysis ~ duplicate injection of one in
every five samples with a maximum of two per 2 4 hour period.
• Laboratory Control Samples (LCS) — analysis of one LCS
per 20 program samples. An LCS consists of a injection of an
independently prepared bag standard, containing the five
components of interest. Suggested for use is the following:
Stock B
Concentration (mg/ul)
MC
250
ul
0. 603
DCE
100
ul
0.228
TRI
50
ul
0.122
TCE
100
ul
0.266
PCE
50
ul
0 .143
LCS
Bag
(5.0 ul Stock B /1000ml) Concentration (ug/ml)
MC 3.0
DCE i.i
TRI 0.61
TCE 1.3
PCE 0.74
Recoveries for the five compounds in the LCS must be in the
range of 65 to 130 percent for acceptable perforaance.
321
------- |