U.S. ENVIRONMENTAL PROTECTION AGENCY
LABORATORY EXPERIMENTS OF SUBMERGED
DISCHARGES WITH CURRENT
By
James P. Chasse
Lawrence Winiarski
PNERL WORKING PAPER #12
PACIFIC NORTHWEST ENVIRONMENTAL RESEARCH LABORATORY
An Associate Laboratory of
National Environmental Research Center—Corvallis

-------
LABORATORY EXPERIMENTS OF SUBMERGED
DISCHARGES WITH CURRENT
By
James P. Chasse
Lawrence Winiarski
PNERL WORKING PAPER #12
THERMAL POLLUTION BRANCH
Pacific Northwest Environmental Research Laboratory
National Environmental Research Center - Corvallis
Office of Research and Development
U.S. Environmental Protection Agency
June 1974

-------
ACKNOWLEDGMENT
The computer assistance of Judith Burton and Kenneth Byram of the
Laboratory Services Branch is gratefully acknowledged.

-------
Review Notice
This report has been reviewed by the Pacific Northwest Environmental
Research Laboratory, EPA. Approval does not signify that the contents
necessarily reflect the views and policies of the Environmental
Protection Agency, nor does mention of trade names or commercial
products constitute endorsement or recommendation for use.

-------
INTRODUCTION
The optimization of a submerged thermal diffuser design often implies
maximizing the effluent plume dilution by the receiving water body for
a given discharge flow rate and temperature. In some instances, it
may be more desirable to limit the plume spread and dilution rate, such
as. in a river where fish passage is required. Predesign analyses to
minimize the potentially harmful effects of a thermal effluent, thus
require an adequate estimate of the dilution, spread, and trajectory
of the discharge plume. These estimates are often obtained from
mathematical or laboratory models, which determine the physical charac-
teristics of the plume for a given set of source/ambient conditions.
The important parameters affecting dilution, spread, and trajectory include:
.1. the source strength as characterized by the ratio (K) of the
jet velocity (U.) to the ambient velocity (U );
J	a
2.	the angle of discharge (0) with respect to the horizontal
and the direction of ambient current; and
3.	the ratio of the inertia forces, to the bouyancy forces in the
jet as described by the Froude number (F^).
The Froude number is defined as F = U.//p -p- " where D is the nozzle
r J 0 '3- qD
p
Mo
diameter, (p0"Pj)/p0 1s the normalized density excess at the source, .and
g is the gravitational constant. Other factors to be considered include:

-------
4.	the proximity of the discharge port to any boundaries which
could limit the physical spread and dilution of the plume;
5.	the turbulence level of the receiving water body; and
6.	the existence of any temperature (density) gradients.
The relationships between certain of these parameters and plume behavior
have been studied directly or indirectly by various researchers. Most
applicable to the present study is the work of Fan^. Fan conducted a
series of experiments using a negatively buoyant salt water jet discharged
perpendicularly to an ambient current (cross flow). He reported vertical
trajectories, plume half widths, and concentrations as a function of the
distance downstream of the source. The experiments were conducted for
a Froude number range of 10 to 80 and velocity ratios (K) from 4 to 16.
Turbulence was present in the ambient stream although it was a constant
level throughout the experiments. Boundary effects and density gradients
were nonexistent.
Complementing the experiments of Fan are those of McQuivey, Keefer, and
2 3
Shirazi ' , who worked with a horizontal discharge in the direction
of the ambient current (coflow).. Measurements of temperature distribution
and trajectory were made using both warm water and salt water discharges.
Froude numbers varied from 4 to infinity and jet to current velocity
ratios ranged from 0.3 to 10. The surface of the laboratory flume
was altered to provide three different levels of turbulence in the
ambient stream. As with Fan's experiments, the receiving water body
was not density stratified.
Experimental data are sparse for the intermediate angles of discharge
4
from deeply submerged jets in ambient currents. Shirazi and Davis
have attempted to interpolate to intermediate angles using the previously
2

-------
reported data for angles of 0° and 90°.* To do this they employed the
5 6
analytical model of Hirst ' and forced it to agree qualitatively with
the data for References (1) and (2). Once this was accomplished, the
model was used to predict plume behavior for discharge angles of 30
and 60 degrees. The results of this interpolation as well as the
qualitative trend of data in References (1) and (2) are reported by Shirazi
and Davis in the form of nomograms. These nomograms provide estimates
of the temperature distribution and trajectory of the discharge plume
as it is influenced by the discharge angle (0), velocity ratio (K),
and Froude number (Fr).
The results of the interpolation scheme used in Reference (4) are untested
by experimental data. Indeed, the results. have raised unanswered questions
as to the relative effect of other parameters, especially turbulence. Shirazi,
Davis, and Byran/ have noted that the effects of ambient.turbulence are
greatly influenced by the angle of discharge and that more data are needed
to make quantitative predictions over a wide range of parameters.
8
Winiarski and Chasse attempted to include this effect but due to
limitations of the experimental apparatus the results are not conclusive.
More discussion of these experiments will follow.
It was the objective of this study to gain additional insight as to the
fundamental relationships between the physical characteristics of a
thermal plume and the initial source/ambient conditions. The principle
tool for this investigation was a laboratory model, which simulated a
submerged single port discharge to an ambient stream. So that the scope
might be limited,, the effects of ambient turbulence and density gradients
were not examined. The parameters which were varied are the velocity
ratio (K), the f-roude number (F^), and the discharqe angle (0). So that
*When using Reference 4 a multiplier factor of 1.4 for coflow width
data and 1.7 for.cross flow data must be applied. The data for these
conditions, were obtained from different sources with inadvertant
misinterpretation of the widths used.
3

-------
the relative effects of boundaries might also be examined, data pertaining
to shallow discharges (Ref. 8) is included for comparison with the more
recent data. Hopefully, the results of these experiments may be used
to test, at least qualitatively, the trends predicted by other data
or analytical models.
4

-------
EXPERIMENTAL METHODS
DEEPLY SUBMERGED DISCHARGES
Test Apparatus
Test equipment and instrumentation were nearly the same as those previously
8
reported by Winiarski and Chasse . These more recent experiments were
conducted in a towing channel, 40 feet (12 m) long and two (2)
feet (0.6 m) wide. The discharge nozzle was suspended from a carriage
mounted on rails along the top of the channel. Heated effluent was
discharged from a constant head tank, which was also mounted on a carriage
(see Figure 1). The reservoir was periodically refilled with hot water
from a constant temperature bath. Discharge velocities were fixed by
valves at the effluent reservoir.
A third carriage supported the temperature transducer and cable. Traversing
vertically through the discharge plume, the transducer monitored temperature
profiles at predetermined distances downstream from the nozzle exit. The
traversing mechanism was directly linked to the horizontal movement of
the carriage through a simple pulley arrangement. As with the experiments
of Reference (8), the transducer was a hot film anemometer with signals
processed through a Thermo-Systems Inc. Model 1050 anemometer and
recorded on an X-Y recorder.
A primary difference between these experiments and those of Ref. (8)
was the absence of the false bottom. These more recent data are
concerned with the behavior of deeply submerged jets uninfluenced by
boundary effects. As previously noted, the artificially generated
turbulence was also neglected. Unlike the experiments for shallow
discharges, three different nozzles were utilized to attain a wide range

-------
Constant Head
Cable Drum
Hot Water
Supply Tcnk
Tow Cable
Carriage Rail
Water Surface
	Vertical Traversing Mechanism
Temperature Sensor
r^T^-Nozzle
Flume Bottom
Figure 1. Experimental Apparatus

-------
of Froude numbers and velocity ratios. These nozzles had diameters of
0.25 in (0.63 cm), 0.38 in (0.96 cm), and 0.55 in (1.40 cm). Jet
Reynolds numbers ranged between 2,000 and 15,000 although very few
experiments were conducted at Reynolds numbers less than 3,500:.
Test Procedure
The recorder was calibrated for temperature and position and the
discharge valves were adjusted to attain the desired discharge velocity.
With an attached chiller/boiler system, the water in the channel
was brought to approximately 20°C (68°F). The constant head reservoir
was then filled with heated water, such that the exit temperature
at the orifice would be approximately 38°C (100°F). Prior to each
series of test runs the actual exit temperature was monitored with
a Hewlett Packard Model 1801A quartz thermometer. The transducer
carriage was then located at a predetermined distance from the orifice
with the anemometer probe properly positioned. Next, the nozzle
was opened and the carriage assembly was towed through the channel
at a uniform velocity. The above procedure was repeated at various
stations downstream from the nozzle and for many combinations of
0, K, and F ;
Specifically, four angles (6) between the horizontal and the discharge
nozzle were studied: 0, 30, 60, and 90°.. Velocity ratios (K) ranged
from approximately 2 to 16. Froude numbers varied between 6 and 100.
These ranges provided a wide parameter space within which it is possible
to evaluate the effect of one parameter independently on one or more
plume characteristics.
Data Reduction and Analysis
Raw data, as plotted on the X-Y recorder, were in the form of a temperature
profile in the vertical direction through the axis of the plume. This
information was reduced to plume trajectory, width, and peak temperature
7

-------
at a given station. The trajectory was delineated by the vertical location
of the peak temperature and was made dimension!ess by dividing by the
discharge nozzle diameter. Vertical plume widths, taken from an X-Y
plot of temperature, were made dimensionless in a similar manner.
Temperatures along the trajectory were.expressed as the ratio of the
excess temperature at a point to the excess discharge temperature.
The temperature excess is with respect to that of the ambient water
body. Algebraically that is:
AT	T -T
C = CO
AT	T.-T
o	jo
where T. is the discharge temperature; T is the ambient temperature; and
J	*
Tc is the peak temperature in the plume at point C. A listing of the data is
in the Appendix A, Table A -1.
Data analysis was patterned after that, employed by Shirazi, Davis, and
Byran/. The plume characteristics of temperature (ATc/ATq), vertical
trajectory (Z/D), and width (W/D), were expressed as functions of the
dimensionless horizontal coordinate (X/D); the jet to ambient velocity
ratio (K); the jet Froude number (F^); and when appropriate, the
discharge angle (9). Multiple regression analysis was applied
to data sets separately (ie. 0 = constant), and to all the data
jointly (with 0 an independent variable). Simple exponential equations
were assumed to express the functional form of the plume relationships.
Thus:
AT
c Z W _ ^a _b „c rd
D
ATT > ~D ' n ~ e n K Fr
where n =X/D, the dimensionless horizontal distance, and a, b, c,
d, and f are the partial regression coefficients derived from the
exponential transformation. Although the correlations obtained in
this manner may hot adequately describe other situations which involve
additional parameters, they can be very useful in identifying the
relationships among those variables tested.
8

-------
SHALLOW SUBMERGED DISCHARGES
As noted previously, the information from Ref. (8) was examined for
comparison with the data for the condition of deep submergence. Details
as to equipment androperating procedure may be found in that reference.
Discharges were made from one nozzle diameter (1.40 cm) and jet Reynolds
numbers ranged from 4,000 to 12,000. Experiments were conducted both
with and without ambient turbulence. Because the data in Reference (8)
are nominal averages of several experimental runs, it was the raw data,
as listed in Appendix A (Tables A-2,and A-3), which were used in this
report. Numerical treatment is the same as that discussed on the
previous page.
9

-------
EXPERIMENTAL RESULTS
DEEPLY SUBMERGED DISCHARGES
Experimental data for the deep submergence configuration are listed in
Table A-l of Appendix A. These data were correlated according to- the
exponential form on Page 8 and the results of this analysis are tabulated
in Appendix B. The regression equations were then used to generate a
set of graphs which visually explain the quantitative and qualitative
experimental results. These nomograms are in Appendix C.
The most obvious result is that increasing the angle of discharge, (0),
promotes plume dilution and spreading. This is shown in Figure 2 for
Fp = 20 and K = 4. The velocity ratio, K, has the same relative effect
on the plume when all the data are considered in composite. For a
given 0 and X/D, as the velocity of the ambient stream is decreased
relative to the jet velocity (i.e. K increases), the plume becomes
wider and more diluted. Similarly, plume width decreases and temperature
increases as the jet Froude number increases although the relationship
is much less intense than with the other variables. These results
are illustrated in Figures C-l to C-8 for a wide range of parameters.
The results obtained when each angle is considered separately are shown
in Figures C-9 to C-24. The major difference between the plume behavior
for the different angles is the effect of the velocity ratio on plume
dilution. At a discharge angle of 0° plume temperatures increased as
K was increased while the reverse was true for angles of 60° and 90°.
At 30° there was no significant relationship between K and ATc/ATo.
10

-------
12
o
\
N
10
liJ
o

Q
8
<
o
f= -4
cr
LiJ
> .
90
30
W/D = 10
0.05
0.1
AT= 0.075
0.2 \
20	40	60	80
HORIZONTAL DISTANCE (X/D)
FIGURE 2. Temperature-Width-Trajectory
Chart, Deep Submergence, K=4, Fr=20

-------
SHALLOW SUBMERGED DISCHARGES
Qualitative results of the shallow discharge experiments, conducted with
and without ambient turbulence, were reported in Reference (8). Here
the data are treated in the same manner as the deep submergence data for
purposes of comparison. Because of boundary effects, plume widths
for the shallow configuration did not conform to the exponential function
and correlation of that parameter was not feasible. The data for these
experiments are also listed in Appendix A.
As with the deep submergence data, correlations were made of the combined
data (i.e. 0 included as a variable) and of the individual data sets
(with 0 not a. variable). These results, listed in Appendix B generally
substantiate the qualitative interpretations made in Ref. (8) and show
the trends of temperature and trajectory with respect to the independent
variables are the same as for the deep submergence condition.
The relative effect of boundaries on plume dilution may be seen in
Figure 3 which compares results for shallow discharges with those for
deeply submerged discharges. The bottom has a dominant influence as it
limits dilution of the coflow plume. The bottom effect is important
to the other plume characteristics, trajectory and width, as well. When
the coflow discharge was located on the bottom, the plume was attached
and spreading was limited.
An interesting feature of the bottom effect is revealed in the relationship
of temperature to relative jet velocity. For the deeply submerged coflow
discharges, increasing K was associated with higher relative plume
temperatures. When the discharge port was located on the bottom this
relationship of AT /AT to K was reversed. The difference may be
CO
even seen in comparing Figures C-ll and C-31.
12

-------
DEEP DISCHARGE
SHALLOW DISCHARGE
0.25
ui 0.20
LlI
0.15
90
0.10
LU
Q_
0.05
LU
20	40	60	80
HORIZONTAL DISTANCE (X/D)
FIGURE 3. Effect of Boundaries on Plume Dilution.

-------
Boundary effects due to the water surface are less evident. Because lateral
plume widths were not recorded and vertical plume widths for shallow
discharges were not correlated, direct comparison of these parameters
is difficult. Nevertheless, the gross effect of the surface boundary on
plume widths and trajectories may be anticipated; its influence on plume
temperatures is less apparent.
As noted in Reference 8, the.effect of ambient turbulence is not conclusively
revealed in the two shallow water data sets. The most significant effect
of turbulence is in the relationship of plume temperatures to the
relative velocity. Without ambient turbulence increased dilution
was associated with increased K-, with turbulence the opposite was
true. It is to be.remembered that conclusions drawn relative to
the effect of turbulence are concerned only with the presence or absence
of turbulence and not with its intensity or scale.
14

-------
CONCLUSIONS
At least two conclusions are apparent from an examination of the experimental
results:
1.	For the cases of both deep and shallow submergence, the angle ,
of discharge was the most important variable affecting dilution
of the plume by the ambient stream. Plume widths were influenced
primarily by the relative jet strength, described by the ratio,
of the discharge velocity of the jet to the ambient stream velocity.
The Froude number of the issuing jet was a relatively minor variable
influencing plume behavior, although it did have an important effect
on trajectories of the coflow discharge.
2.	The location of the discharge port relative to the bottom was an
important factor in determining the behavior of the horizontal
(coflow) discharge. The coflow discharges, which were located on
the bottom, had plumes which were warmer and narrower than those
for which the boundary was not a factor. The lower boundary
did not appear to have any influence on the plumes for the higher
angles of discharge. Proximity of the jet to the water surface did
not affect the relationship between temperatures and velocity ratio
or Froude nunber. There is insufficient data to make comparisons
on the basis of magnitude. The upper boundary had a more predictable
effect on the plume trajectory and width in that it limited plume
rise and vertical spread.
Additional data are required for the condition of a deeply submerged plume
discharging into a turbulent stream. Such information collected for a
15

-------
range of turbulence intensity and scale, may be compared with the data
reported herein to more adequately describe the effects of turbulence on
plume behavior. It is also suggested that, where possible, these laboratory
experiments be compared with other studies and field data.
16

-------
REFERENCES
1.	Fan, Loh-Nien. Turbulent Buoyant Jets into Stratified or Flowing
Ambient Fluids. California Institute of Technology. Pasadena,
California. Rept. No. KH-R-15. June 1967. 196 p.
2.	McQuivey, R. S., Keefer, T. N., and Shirazi, M. A. Basic Data Report
on the Turbulent Spread of Heat and Matter. U. S. Geological Survey
and U. S. Environmental Protection Agency. Fort Collins, Colorado.
August 1971. 166 p.
3.	Shirazi, M. A. , McQuivey, R. S., and Keefer, T. N. Heated Water Jet
in a Coflowing Turbulent Stream. ASCE J. Hydraulics Div. Vol. 100,
HY 7. July 1974.
4.	Shirazi, M. A. and Davis, L. R. Workbook of Thermal Plume Prediction,
Volume I. U. S. Environmental Protection Agency. Corvallis, Oregon.
Rept. No. EPA-R2-72-005a. August 1972. 228 p.
5.	Hirst, E. A. Analysis of Round, Turbulent, Buoyant Jets Discharged
to Flowing Stratified Ambients. Oak Ridge National Laboratory.
Oak Ridge, Tennessee. Rept. No. ORNL-4685. June 1971. 36 p.
6.	Hirst, E., A. Analysis of Buoyant Jets Within the Zone of Flow
Establishment. Oak Ridge National Laboratory. Oak Ridge, Tennessee.
Rept. No. 0RNL-TM-3470. August 1971.
7.	Shirazi, M. A., Davis, L, R., and Byram, K. V. Effects of Ambient
Turbulence on Buoyant Jets Discharged into a Flowing Environment.
U. S. Environmental Protection Agency. PNERL Working Paper #2.
January 1973.
8.	Winiarski, L., and Chasse, J. P. Plume Measurements of Shallow,
Submerged Model Discharges with Current. U. S. Environmental
Protection Agency. Rept. No. EPA-660/2-73-001. Corvallis, Oregon
54 p.
17

-------
APPENDIX A
Table A - 1 Deep Submergence Data
Table A - 2 Shallow Submergence Data,
No Ambient Turbulence
Table A - 3 Shallow Submergence Data,
With Ambient Turbulence
19

-------
Table A-l. Deep Submergence Data


o
= r ._ .
... . .W9'..
		!© .~
1.7 .
..... 5, 3 -
... .... «¦> 06:	
60
1.9
13.2
2.2
6.5
.357
	60	
	3.4 ._
	10.3
			4.7 .
		 .7.5
...070 		
60
5.8
10.4
8.7
7.6
.070
	 90 .
. J. 4.
	,10.5...
	:.7.6...
		8^9	
.046 ... 		
90
2.0
10.6
4.4
• 6.5
.042
10 .....
	2.1 —
...... . 12.3 _
	 		..0 .
		3.4 	
	 .380 . ^	
10
2.1
12.3
.3
3.4
.370
10 . ..
. 	4.3 . .
		12.4
.... 	 .3, .
..	3.8 	
	.413..... . 	
10
5.0
12.6
.3
4.0
.439
	20;	
	6 . 2
	12.7, ...
	 . ,1.4
. . . 6 . 0.
	237.	
20
6.0
12.8
1.0
6.0
.250
20
,2.0
.11.3
. ... .4 .
4.3
.190
30
2.0
11.4
.6
5.0
.140
30
	2.0.
.. .11.4
.5 .
4.6
	 .122 . ..	
30
5.9
11.5
2.4
7.0
.163
._4n
.. ..... 5.3. ..
		 11.6
. . ,3.6 . .
9.0
.. . .120 . ..
" * 40
2.0
. 11.7
1.2
4.7
.089
40
1.9 ..
1 1.8
1. 1
5.0
.116 	
60
1 .9
11.9
1.4
5.9
.07?
	60			
	2.-0	
	:	11. ?.
. 	 l.H...
6.0
.070
60
^.9
1 1.4
7.1
9.5
• 068
		9.0.	
	2.0 _
	1.1.2 .
. 	 . .3, 1.
6.8
.•048..
90
2. 1
11.3
3.5
7.5
.044
	90.'. ...
	5.7 ..
.	i i.e..
	11.7
_ 		12.5	
	.046 ...
10
1.9
20.2
.0
2.9
.477
		JO	
		 2
-------
Table
© = 0°
X/D
K
fr
Z/D
W/D
ATC/AT0
	k 0	
j
i
r-
P
•
1
	30.4..
	 	1.5	
- -9.6	
	-.083	
90
1.9
30.2
.4
6.6
.046
on
. 3.9-.
	30.5
1
fl.4
...	.065	
90
10.1
30.9
4.2
1 1.2
.066
JO
-3.S-
—23.7-
			...0	
	3.8	
	.430.	
10
10.2
29.0
.0
3.8,
.435
. —20	
	3.9	
-26.5
- —	-.0 . - ....
._. 5.8	
.210
20
3.8
26.4
.0
5.6
.209
?n
—LQ.JL-
	26.6
.n
6.3-
	.239-
20
10.?
27.0
.0
6.1
.233
	30 		
...3..8	
-- 27.3
		 .0	.
.... 6.6
	.160 ..
30
9.1
27.5
.5
8.3
.161
	30	
.......... 9.4	
27.7
		 .8 ...
	8.6	
	.167	 -
40
3.8
28.2
.0
8.1
.114
		4Q_	
	3.9.	
— 28.4_
.0
-1.9	
.115
40
9.3
?8.5
.9
9.4
.120
	40	
9.4
-'-28.6-
	:		.8	
.9.4	
. . .126...	
60
3.7
29.1
.3
8.8
.069
— 60.
3.6
29.2
	.3	
	9.4	
.07-4
60
9.3
29.3
1.6
12.5
.087
	60	
	8^8	
	29. 6
		bl.9	
.
_~080.
60
2.1
28.9
.0
7.8
• 054
	 .90	
2.0	
_ 28. 1
	 . .9 . ...
. .9.6	
	.035 	
90
2.0
28.2
1.2
9.7
.040
	90	
		3.7.	
28.4
	 - . J.l_. ...
- 12.2	
	.035
90
3.8
28.5
1.4
1 1 .5
.040
	95	
	*i. 3	
-—28.6.
				_A.A	
	16.6 .:	
_ ... .-061 ..
1?0
3.8
28.8
2.8
10.2
.031
in
3.1 _ ...
- 30.0
	.0	
. 3.4	
... 	.427 	
10
4.3
:n>. i
• 0
3.4
.431
10 _
	8.0	
30.7
	: . .0
4.1
	.44,4		
?0
8.4
30.8
.0
6.5
.250
	20	
	A..3__	
. .3.0-..8.
... . 0
. .5.6	
	.234	
20
?.9
31.2
.0
5.6
.198
30	
,2. 7	
. 31.4
	 	.0	
1 7.2.. -
.135
30
4.0
31 . 3
.0
7.0
.145
30	
	 R.6_._.
- 31.6
. _. .0	
__ 7.8	
. 	.170	
40
,8.9
3?. 0
.3
9.5
.118
	40 	
..'	&.l0	
	32 • 1.
		 .4	
7.6
	.104 	
40
2.ft
32.?
.0
7.6
.079
	60 	 .
. , ?.a	
_ 31.6
.... .0 .
.. . 8.8	
... .058..
60
4.1
31.6
.1
8.3
.068
	 61 	
8.0
. 3?.0
	 . .1.1 	
,12.0	
	.073	
90
7,5
32.5
1.9
11.9
.050
_ .. .90	
.. . 4.1	
32.9
		1.4		
.10.8
		.041. 	
90
?. 7
33."
.4
8.9
.041
)?•> . . .
. .. 2.8
33.2
	1.0 . ...
-.9.8- - .
. .. .026
120
4.1
33. 3
1.3
10.5
.028
	 10 _...	
- ... 8.7
. 55.9.
. ... 			 .0 . .
	3.7	
. .440
10
H.5
55.9
.0
3.8
.460
	10	
	14. 2_.	
	56.5_
	.0 	
.. -.4 . 0	 ...
._. .^..'...446	
10
l?.7
56.7
.0
3.9
.458
_ ... . _?3
12.7
.. 57. 1
.•o...
... 6.3.
. . .245
20
1 ?.5 '
57.4
.0
6.3
.218
¦>n	
4.0	
# ft
		-_.0 . 	 „
... 5.3__
. 		.223	
Cont.
0 = 0°
X/D	K	Fr	Z/D W/D	ATC/AT(
20 	3.9	_.54.7;_		.0	 .5.0... 	.224 . .
20	5.4	54.9	.0	5.3	.255
_2Q	 J.-fl	55. 5	.0	5.5			.250 ....
30	3.9	55.9	.0	6.0	.153
..30		 .3.9 	55.6_ .. 	 .0	6.3 	 -.152
30	4.0	56.?	.3	7.2	.1'65
	30	—	I'.O	56.4 ._. . ...	.A			7.5	.166...
30	15.0	56.6	.1	8.4	.177
AO	4^0	5k. 5	..Q	.6^3-	J.17	
40	3.9	54.7	.0	7.5	.11? •
_i_A0_	__		5A.9	 	.2		9.4	:	.123
40	8.1	55.4	.5	9.4	.120
AO	Ji.7	55.5		5		1L.2	^131_
60	14.R	56.?	.6	15.7	.088
__60		Z_9	56 . 9	.8	L1-..9		.J) 8 1_
60	2-9	53.3	»2	9»1	*0 fiU
	60	3 . 9		53.7.	.0.. 	9._7.	^063.
90	3.9	54.?	.0	9.8	.056
	90		54.5	.0	10.7	.051.—
90	8.1	54.9	1.1	12.2	.05?
	SLO	__li» . 6	—55,.5	2 .5	L9 .ft			.J352_
1?0	3.9	56.0	1.1.	13.1	.0 35
1.0	„5.,.3.	78.6.	 	 ...0	3.5	:	.497
10	7.3	78 . R	.0	4.0	.484
_ tb		1.1.1	.79.6		.0	A..0	.523	
20	,11.9	60.1	.0	6.1	.256
..20	7..3_	80.9	.0		5u. 9	_	,248.....
20	5.3	81. i	.0	5.8	.254
30	0.3	91.3	. . _ -0	7.0 		.159 _
30	7.3	76.7	.0	7.2	.153
,30		1,1./-"		 77.3	 '	«.0_		8.7	.164...
40	l?.l	7 R • 0	.3	10.9	.131
<.0	;	7.,_3	'._.7rt,3	-O...	9.1		127. ._
40	5.3	78.6	.0	8.6	.114
60	5.3	. . 79.4__ 	.0 ... 	 „_9.4._,	.074 ..
60	7.5	7 7.7	.0	9.7	.077
SO		11.9	 . 78.?	. 3	. 12.5 . 	.077
90 	 11 .9	73. o	.6	17.2	.041
9,0	7 ,.?	79 ..1			. 0.	12>_R	.041....
90	5.1	79.6 "	.1	11.9	.04?
10	I?-.''	57. 8 _ 	.0.	 ._ 3.8 		.433 .
?0	14.3	53.4	.0	7.1	.26?
?0	H.O	 58.6		 .0		 6.0		.24.1 _
PO	<».0	59.0	.0	4.9	.218
30	4.0 	^9.4 _ 	 _ .0.	7,.5_		.... 1 18 ..
" ;»0	' ' "..0	"59.6 "	.0	8.0	.147
30_	13.a . 60.0	.'4	 R.P	.17? .
40	13.6	60.4	.7	10.7	.135
40		7.5	. 60.9.	.0	 9.7	..117
40	4.0	61.3	.0	8.0	.119
f>0	.-3.9	5;t.S_ • '.			.0	..8.3		...061;..
" 
-------
Table
A-
Cont.
e = o
© = 30
X/D
K
Fr
Z/D
W/D
90
3.9
60.3
.0
13.0
1?.*
5.0
f-O.f
• 5
12.3
IPO
j.9
61. n
2:0
16.0
10
6.4
«?.. 5
.0
2.5
	10	
. -16.0.. .
98.8- ..
¦ .0 - .
4. 1
20
15.9
99.5
.0
6.4
.20
9.7
100.1
.0
. 6.2
20
6.2
100.3
.0
5.3
. 30— .
— .6.2 ..
. - 101.4 .
.0
. 7.8
30
9.7
101.7
.0
8.0
30
16.4
102.1
.0
8.5
40
15.9
97.2
.0
10.3
40 . . .
	 9.S .
. .97.9
.0 .
10.1
40
6.3
98. 1
. 0
9.9
t.n
f.. ->
99.0 . -
_ .0	
10.6-
60
10.0
99.3
.4
11.0
	60 -
15.7
. 99.8 - - .
1.5 ..-		
14.3
90
16.1
95.8
1.5
16.6
— .90	
	9.6	
- 96.6 —
	 .8	:.
.13.0
90
6.2
97.1
.0
11.5
1
7.7
. 97.9
.(1
—12.3
120
13.3
98.8
• o
17.5
—:	
	
	.... - -
		 • 	
.
ATCMT0
.042
.027
.037
.520
. .534
.259
.246
.233
. . .151
.1*1
. 167
.127
.121
.103
	—.068-
.073
	.079
.051
		 .051
.040
	.D29-
.034
X/D
. - 10 -
1	?
10
2	J
	20
21
- . 30
3n
	33-..
40
40.
40 .
. . 60 .
60
	90—
90
	10 —
1 0
	10-
10
	2J—
20
—	20- -
30
...30.
30
_40	
40
—	60 -
60
. 90
90
—	90 —
90
_.10_
10
..... 10 .. .
10
	2CI-—
20
...20 ...
30
	30	
30
	4Q_
40
_..40
40
_ -60— _
60
	60 _
90
.. .90 ...
30
	10	
1.3
1 • 6
2.S
3.4
1 .*
1.2
1.?
1 .4
2.0-
3.4
2.1
1 .4
1.5
2.6
-3.0-
1.5
1 .9-
2.	1
3.2
5.7
3.0
1.9.-
2.	1
3.2
5.6
-4..1-
2.0
.2.1
3.5
3.6
3.0
. 2.1 .
1.9
2.0
2.0
-3.4..
7.4
-7.7
3.2
2.0.
2.0
-3.3
7.0
-2.0-
2.0
3.3-
6.6
5..7
3.4
—.4 . 4—
2.0
3.8
3.	3
3j;
6.?
6.4
- 6.5
6.5
-	6.6
6.5
- 6.6
6.1
6. 1
6.2
-	6.2
6.3
	6 .
6.4
	11.1-
I	1.4
—	1 1.4
11.s
	1-1 .7-
II	.8
-.11 .9 .„
10.5
10.6
10.7
	io_a-
10.9
	10.6
10.7
-	io.a
10.9
1 l-.o.
11.1
17.2
17.3
... 17.5
17.6
	17.7.
16.0
.. 16; 2 _
16.2
		16.4,.
.16.5
_ 16.8-
16.9
—	.17.1
17.2
. ... 17.5
16.5,
-^-16.7..
lb.9
17.0
17. 1
	-	33.. 6 .
Z/D W/D	ATC/AT0
1.3	3.5	.195
2.4	3.4	. 19 r>
2.9 4.2	.231
o.9 6 • ^	.138
- 3 • 5 - ¦ - • - - 4 .* 6	. 1 29.
i>.'1 3.6	.143
7.9 6<5	.094
2.8	".7	.102
. <..7. . -	 5.6	. .098
10.0	7.1	.070
6 » rt • 6 • ti	.077
4 . 5.9	.043
5.1 7.1	.059
1J.3 7.3	.151
_1<..4	!l.0.0	.033-
7.6 7.9	.043
__2.5_ 3.5		 .290
.3.0 3.5	.270
_ 3.a	 4.4	.257
5.0	5.3	.314
_—7..9	a.-l	-153-
5.4 6.2	.183
.. 3,3.....:		 5.C		 .143
4.1	5.7	.120
6.2	7.1	.111
10.5 9.1	.108
.10.1	a.3—	;	.084
4.4	6.4	-.099
. 5.7 . - ... 6.5	' .069
10.1	7.7	.056'
11.2	.. 10.0	.035
11.3	9.2	.041
.. t. 8 	 _... 0.7 		 . . 050
/. 1 7.H	.051
2.6 3.3	. . .281-
2.5	3.9	.267
. j.B . .. .4.3	. .278
5.3	5.3	.301
—	y.2	7.9 		1_	.178
4.9	5.2	.124
. 2.9 . . . 4.9	.150
3.1 5.0	.111
--5.7	6.B	.._...	.112.
10.8 9.0	.105
—	4.1— ^	 6.3	...103
4.0 5.5	.112
6.6-		 ._7• 3 	 . ..OSfe
12.3 10.8	.075
:13.&_, . _. 10.0	—. - - .065
0.5 8.6	.055
... 4.4		7.1	.070-
6.0" 7.4	.055
_10.7	8.8 	 . .044
9.6	8.7	•045
	3.3	_4.2	 _ . .250

-------
e = 30°
X/D	K _. Fr	Z/D	W/D
10	- - ' 5.4	7"}. 1	4.8	A.7
10	9.3	73.7	5.3	5.3
.10	.12.7.	74.4	• . . . 5.4	_ - 5.0
20	12.8	74.9	9.7	<5.0
-20 	 a.9-.	• IS,2	¦ 8.6	fl.l
29	5.2	75.4	6.6	7.0
30	• 5.0	74.2	7.6	8.5
30 8.5 74.9 10.7 10.4
—	30		12.4- 		 75.3	12.3	12.0
40 12.0	75.7	14.6	14.6
—	40 	 8.4	76.6	12.4	.12.8
40 5.2	77.1	9.6	9.4
,_60 -	 5.1... ¦	72.0	10.3...	11.7
60	9.9	74.5	16.0	15.7
-SO	5.3—		72.H	 11.«		 11.7
90	8.6	75.4	17.5	15.3
90 	 7.7	75.8 -	16.9	15.1
120	5.2	73.6	13.0	13.0
—20	2.6-	 36.6-- 	 3.3	 6.7
20	4.4	37.6	6.4	7.1
—ZO	6—3	3a»a	7-*6	7.5
30	6.3	38.2	rt.S	8.9
—30	,	4.4	38.4 	7.3	8.0.
30	2.6	38.5	4.5	7.0
—•40	2.6		38.6- 		4.9..	£.2
40	4.4	38.9	8.0	8.6
_40-	A.4.	39.0.		10.B	10..8
60	5.9	39.3	11.8	11.3
	6Q	4.3	.39.6		 9.4		 . 9.7
60	2.8	39.7	5.6	9.0
90	 	2.7 ._ 40.0 ._ . .. 6.6 	 12.3
90	4.6	. 40.1	13.0	11.4
-120	S-0	¦— 40.4		-13.-5	12.6.
1?0	2.6	40.8	6.3	12.5
' -20	4.1	 . ... 64.8. -- 	—6.0 	 7.7
20	6.9	65.0	7.8	8.3
-20	10.3—.: .65.5 		9.7 ... 9.5
30	9.9	66.2	11.4	13.2
	30.			6^5:	66.5	9.9.	t	9.9,
30	4.0 '	67.1	6.6	8.1
—40	4..0	67.6		 7.1		9.5
40	6.5	67.B	10.8	12.1
—	4.0	9.3	68.4		14.5.		15.0
60	9.9	68.6	17.0	16.4
—61)	7...0	69.4	13.4	 ..13. 7.
60	4.0	70.2	9.0	10.6
	4.0_ . ._ _.70.5	 9.5	 . .12.8
<50	8.2	71.3	18.1	16.6
20	6.4	 . 92.6		 	7.2. 	... 7.5
20	10.8	93.4	8.7	10.0
—20			14.6		93 . B	1 0 . 0.	1.0 ,.7..
30	14.6	95.0	13.5	13.7
-.30	 10.6		95-5... 	11.3	 11.7.
30 6.4 96.1 8.8 10.3
. _4fl.	!	6.3	96.8	9.6 	 .11.5-
Table A-l. Cont.
0 = 30°
ATC /AT0			X/D	K	 . Fr 	Z/D	W/D	ATC/ATQ
.299 ... 	.	10 		 6.1	33.9	4.7	5.5	.352
.387	10	10.1	3^.2	5.5	5.3	.340
.»29 - -	 - .- 	 20		 . _.9.-9	32.6	9.4	9.0	.ISO
.193	20	6.8	32.8	B.l	~'.Z	.136
.171	-20	3.1- . 	33.0		4.6. _	6.0	... .170
.163	30	3.1	33.2	5.2	6.2	.127
.114 			.30—	4.3- - . 33.5	 6.5 ....... . 7.6	.HO
.112	30	6.8	33.6	9.7	9.4	.118
..122 	40-		5.6- ... .34.5 	 V.P	.-10.2 	 .094
.089	40	3.1	34.7	5.8	6.4	.097
.0 86	.	:	60			-3.1.	- 34.4 _ 		6.6..	7.3	.058
.087	60	5.3	35.0	11.3	10.5	.064
.061	90	3..L	34.7					.7.5	 ....10.4 ... . .. .046
.051	90	5.2	35.5	12.3	11.0	.050
. .043 	10	2.3	23.3	2.1	3^9.. 	.201
.033	10	2.3	23.5	3.1	4.1	.220
.035 	10	4.1	23.7		_4.4 		 4.7	.262
.032	10	9.2	23.9	5.4	5.6	.315
.110	:	20	7.«.9	 - 24.0	 8.3. 	9.6 	 .160
.126	20	4.1	24.2	6.0	6.8	.142
.152	?o	2.4	24.4	:US	5.3	.13 L.
.088	30	2.4	. 24.6	4.4	6.3	.111
	.081.	10	3^.9	24.. 7	6.6	8 • B	.099;
.097	30	3.9	24.8	7.2	7.0	.099
.032 	;	 30 . . 7. !	24,o	a.a	9.*»„	 	 .ICS
.078	40	7.4	25.1	12.1	11.0	.080
_ .076 -	40	3.8		25*3	&..1	10.2	.081
.050	40	2.3	25.4	5.2	7.0	.082
.. .059 	.40	2.4 	_.22.4	4.5 	 ..7.6	.083
.062*	60	2.4	22.4 ¦	4.7	9.1	.06^
.049 				60	 .... 3.9.	22.5 	 8.7	10.4 .	.061
.041	60	6.2	.22.6	14.0	11.8	.064
. .033 			9.0	;	6.2	22.8		__.lc..0	 13..%..	- ... __.0 37
.039	90	3.8	22.9	11.0	12.0	.047
.147	90	2.4	23.0	6.7 	 10.4. 	 . .049
.138	120	2.3	23.1	7.2	10.3	.040
.155		10	3.4		46.8	3.8.	• . . ..4,2		 .275
.115	10	5.8	47.1	4.4	5.4	.319
.098 	1.0	1.0*6		4.7 ..3	5,8	...5.. 4.	.42 7.
^091	20	' 10.9	47.6	9.4	9.0	.184
.076 	.20	6,;0._	_ .43.1	7.3.		7.9._ . ...... .160
.076	20	3.4	48.5	5.2	6.6	.145
.. .083-	13.0	3.3	49.0	5.3	 7.2__ 	.121
.053	30	5.7	49.3	H.3	a.. 5	.104
.054 	30	1JL..2	49..5	1.1-..S	1 1 ,5__:	:..12Q
.057	40	9.6	49.8	.12.5	12.5	.082
.049 	:			49..1	9.4	 10.6..	_.. .087
.038	.40	3.4	49.4	6.7	8.3	.104
.134 		65	 	3.4	49.7		7.5 _ _ _8.6 . _.	.069
.1^5	60	5.8	50.0	9.7	11.5	.060
^167_-	-	60	9.5	50.2	;	16..°	13.8 		.054
.111	90	7.7	50.9	' 16.5	l4.r~	.038
.102	90	3.7	51.-3		„8.6	10.7 _	.051
.095 1?0 3.6 51.7 . 10.1 12. r .037
.077 	:	JO	:	.5. 2		 _;72.8	4.9_ 		.4.7		 .308

-------
0 = 30
X/D.
..K,
Z/D
W/D
— 4 0'.-
40
. 60 .
60 .
—60—
90
,90
-10.1-
1-.3
19.3 -
10.7
— 6.5.;
b . 5
10.9-
97.5
94.3
53.2
Si. 1
at. 7.^
95.2
9ft. 4
ia.9
15.->
19.5
16.9
12.0.-
13.2
19.1 .
13.0
16.0
18.A
17.0
-13.0 .
16.5
16;2
ro
Table A-l. Cont.
0 = 60°
ATC/AT0		X/D. -	K ,			Fr		Z/D	W/D	ATC/AT0
. .076	10	. 1.9	5.3	3.3	-.5	.203
.-.092 " , .	lr'	2.4	i.3	4,£	r • r	.172
. 045 .	1 0 . ...		 „ 4 • 1. . .. .vf . 5 • 4	.7.6	~ t	.170
.051	20	1.6	3. 4	5. 6	*137
	.057 .	_ J	20	1 . 9	5.4	i.9	. 5 . ¦?	.117
.042	23	2-3	5.5	5.7	5.?	.114
¦ .035-	. ?0	:	3.3..	5^5. ,	7.5	6.5	,.094
31	2.7	5.6	7.6	6".0	.077
	 .30 	1,7	5.6 .	4.6,	6.6	.035
4i>	. ..1.9 .	5.3	7.4	-6.3	.065
4 0 		2.8	5.3	10.6	.-.1	.045
60	2. 1	5.4	9.8	.r.3	.041
_ _90;	2.0 		5.5 . . . 11.0	- .4	.031 .
'	10	1.9 .	9.4	3.1	3.7	.245
__ 		;	1.0	 1.9	9, 5	2.. P.	3 . 7	20 5... .
.	10	4.1	9.5	6.4	6.2	.186
		20	U8	9.*	;		 3-2	_ 5.6 	 ...129.
20 ""	1.9	9.7	3.2	5.7	.126
				20	 3.7	9. 7_	8.1 	,. 	7.3	,098. _
¦30	1.8	9.7	3.4	6.-t	.088
	^	.	30_	U9	9_. 8	3j.i	5. .T			.097
30	3.6	9.8	9.2	8.4	.078
	__		-«0	 3.7	;	9 ,_1	:	11.3 	r..J)_	;	. 062_.
40	1.8	9.2	3.7	6.5	.074
	40	_J . 9	L	9. ?		_ 4,1	k,7	,.-.077
60	2.0"	9.3	" " 5.4" " 7.4 	.057" .'
_ _J	^	__60	3. 9_	9.4	J 3 .9	 9 . 2 _,.J	. 045
90	1.9	9.5	6.3	8.1	.040
			10	2.3	14.7	3.6,	 4.8	.235
•	10	3.6	14.8	4.9	5.2	. 183*
.	¦	1_0	6.1	14.9	7 . 0_J	6._?		 169 _
20	6.1	15.2	11.I	9.6	.093
		L	_20	3.8	14 »_9	6.0 	_7.1	 ...114	
20	2.2	"15.0	3.5	5.?	.124
	30_ 	2^2		J.5.1	4.1 	*.0 . 	 .093
30 "	4.4 " 15.2	<•.*	. .0/4
		40	4.1	j	15.4		 _ 10 . 3 '	9.4 		. 0 62_.
40	2.1	15.6	3.7 , 5.4.	.068'
.-	._	61 _ 			2.2 		 14.7 ' •.	5.H	•	 7.3 ..	. .065
." "	(iO "	4.2 " . " 14. H	." 9.2	10.0	.041'
_ .' €0	4.i _^'_14.9..	^ 12-.8	9.": .	.041 '.
' " "• 	 '"'90 '	2.2	15.1 ' 		6.'6	?.:¦>	.037
_¦				10	2_.0___		¦	4.0	_	.252
" ¦	1C!	3.'	21.0"	-5.8	5. >	.155
				._. 10	1	6._0	21.?	h.7 	 7.0		.167
:	' . .~0- •• -	?'.o' ¦ * 21.3	2.9	5.0	.140
_ _ 	 . 		20	3.7	21.5	__7.6_	7.9 ....		.109
""""	•"	"	' 20 ' . h.n	22.0	10.9	8.5	.104
				-30 _ _ 2.0	''2.3 		 3.5 ....... 6.."'			.105	
" " .10	2-0	 22.8	3.4	5.7	.100
				:_30 	 4.0	23.1	*.5	8.1	.079
: "	40*	2.0	23.4	3.9	7.1	.069
_•	_J\_ 4«> 	.	3.J?_-	. _??. 6...		-9.3		7. 7 ... 	.059-	
		 	 "4'J	6.1 	 22.4 " 13.7"	9.9	.040
_ _	60	__ 2._0_ 	22.7	4.?		7.4 	.056	

-------
Table A-t. Cont.
0= 60°	0 = 60°
X/D	K	 Fr	Z/D . W/D	ATC/AT0		X/D	K	Fr		 Z/D W/D	ATC/AT0
'SO.. 	3.8 	„23.?	9.5	9.4. _	.047	. 20 		 4.4	53.0	£.5	«.3	.103
90	?.0	22. 'i	v.3	H • 1	.036	?0	7.4	58.3	13.0	10.5	.09?
....10..:.		J. I	?f.4_	 4.1	4.t»	.164	.	?0 	. . 12.4	SS.6.	. 1?.7	14.3	.103
10	5.7	34.6	h.L	7.2	.156	30	11.7	59.0	?3.0	17.2	.073
	Lft	8._5	;	3,4.9	1,0.0		...9.1	.179	_ 		30		6.8	 59.6 ...	14.4	12.2	.063
20	8.8	32.5	14.2	10.0	.105	30	4.4	60.0	8.9.	10.3	.071
— 2.0	5..J7	33.0 		11.0 J	9.2: . 	 .094			40. 	6.9	56.8. .. . 16.4	12.0	.054
20	3.0	33.3	5.1	6.0	.112,	40	10.3	57.3	21.3	16.0	.052
..JO		3..1	32.0			... 5.4	6.0,		_ .090'		_40	4.4	56.3		 - . . 10.3.	10.9	.067
30	S.6	32.fl	11.9	9.2	.05R	60	8.4	57.5	21.1	15.0	.036
,_4Q	•	3.1 	32.? . .. . ... 5.9.	6.9 . .	.077.		60 		 . 4.5. . .. 5fl.2		11.4	12.2	.044
40	5.7	13.2	13.1	9.6	.04*3	90	4.5	56.6	13.0	14.1	.035
	&Q		3. ..ft	:	.'32 ..1	7.6.			.9.0. 		.059..		90	ti.S	:	5b.9		 25.2 ....... . 16.0	.030
60	4.6	32.6	10.9	9.4	.047	20	4.9	73.1	10.1	7.9	.099
__9JJ	itQ	32.9	9.3	9.-4:			..036	20	 6-9	ZA.2_:	12^4	10.3. 	!.... . . .099 ..
20	2. 1	21.7 ¦ - ¦	3.6	7.5	.122	20	9.3	75.4	15.6	12.0	.109
20	2.1'	21.8		3j»X	6.6	. 102_ 		3J3	JOjJ	1	7.5.8		20.9	13.7 	 .074
20	3. 1	21. R	6.2	6.9	.107	JO	7.0	73.1	15.2	11.7	.067
	20	3.6	21..9	7_. 6		.093	10	.4^9	73.5	10.0.	9.4		.070	
20	10.0	22.0	19.5	13.0	.098	40	4.8	74.1	10.9	10.0	.064
30	3^6	22.3 	7.8	7.8	. .0 72	40	£l.S	74^	L5^3	Ll—6	!	^OSJ	
....	30	3.7	22.4	7.8	7.5	.073	40	10.6	74.7	22.3	14.2	.057
30	6j4	22.5J	14.4	 10.9		.059_	6X1	Id. 4	75.5—	26.7	15.7	.047...
^	30	2. 1	22.8	3.6	,7.8	.0&7-	60	6.7	72.3	16.3	13.6	.037
30 		2.1 	22.9	3.5	7.2	- .076 	_	;		4...Z	72.?	.11.?		11.3	 .045..
40	2.1	23.2	3.8	8.0	.066	90	4.8	73.3	12.9	l'l.O	.040
40	2.1-	23.4 	3.8	7.8	_ .066					9Q	iiS	73.8	24.7_	15.8	.025. ..
40	3.5	23.5	7.3	8.7	.067	20	4.5	57.2	7.0	7.7	.104
__40	3.5	23j6	8.7	9.7	.067 				_20	4^	57.5	6.9	 	7.5.. 	.108. .
40	5.6	23.7	12.9 .	11.3	".049	20	7.6	57.7	13.2	9.8	.08$
	60	5.6	23.8	12.4	 11.9 _ _	.037				j?0	1,£	5.«..1.J.			12.7... 	9.8. .:	 .095 .
ISO	3.5 . 24.1 ¦	9.3	9.5..	.051 ~ ~	20	11.5	. 58.3	16.7	14.3	.106
60 	_	£.,0	24y_R	• _ 9.4 . ..	.053	3.0.	4,2	5A.5	8.5	7.5	 ... .075. _
90	3.5	24.3	7.2	11.7	" .039	30	4.3	59.3	9.6	9.3	.U31
	90	2.0	?4.7	4...1	10.2.		.039 			30.	£.Q	"551.5		14.5	1.0.9 ... 	 .066 .
20	2.9	40.0	7.4	7.7	.111	30	10.9	59.9	18.0	15.)	.072
_ 20	5.3	...40,7. 		 10.0 . .7.7, . .	.087 _ 		4.0	10.JZ	60..3	22.8	 .15.2	 	.053 ...
20	2.9	40.3	5.6	7.6	.102	40	h.7	61.1	15.0	11.1	,05)
._2*	5.1	,40 .£		V. 	 _V.4 		1 .09? _		,_4iJ	4.J	55. m	6.5	 _ ...9.3.. 	 .064. .
20	7.7	4i.0'~" "" ' 13.5	9.8	".094	. "	40	4.2	56.1	8.9	8.9	.067
30	 8.2 ^ M.3_ _	16.6	12.3	.064			4.2	56.5___		 ..11,2	11.0		.053,
30	5.0	41.7	10.6	9.2	.071	60	4.1	56.7	10.8	10.4	.053
30	5.3		 4i.fi .	10.-	9.8	.063 _		6P	7.0	57.J	16.8	!.	12.8 	 . ,036...
3°	2.9	41.9.	6.0	7.7	.075	~60	10.9	57.9	24.0	16.6	..03*
,.J0	2„._9	„.._4?...l	6«-2... ~	 ..7.5 _ _ . .081 _		9 0 _	\0..6		5,7.9	26.6	17.8 _ 		 .026
40.	2.9	39.2	6.4	8.6	.06?	QO'	6.7	58.5	16.2	15.2	.029
-*<>	2-9._	3=>.'3_ ,_. 	:_-f>.4	 , 8.6	. .062	_ 	90_	4,.2_^	53.. 7_		11.1	11.7._		.. .043
40	6.?	39..P	15.2	11.0	.056	20	6.6	80.1	' 11.8	10.3	.102
. .40	;		_.7;9 _	39.o. _ _ 1«.5	" 13.2	_ .050			 _ ?0	6.2	30.7		1.1.4' _ 9.4	.094
60	6.5'	40.1	13.6	13.0-/	.037	¦	20	11.1	81.6	16.9	. 14.3	.111
..60		_-_4.9		,40.6..:__;		 11.7-. . _ .038		 		._?/L:	IJjJB.	.82..0^_		 16._7..._	1 3.. ?_..	..108.
60	3.0	'*40,8	.. 6.7 • 9.ft	.055	-	20 -	18.4 .	.62.fl	22.6	20.0	_ .106 .
. :?_Q	3...0	;	41.2 	 .8.6	10.4	.039			30		 17^6	 ,"3.4		...27.4	 	21.*	_ .074
90 5.5. 41.5 ' 17.0 12.0 .028 30 11.0 84.1 21.0	14.5	.073
_2Q	4.4	57.6 	;	7.6	 _ 8.7 			 ^.105		30	,6.4	67.3		1 3.5 . 10.1.	. .069

-------
Table A-1. Cont.
0 = 60°	0 = 90°
_X/D.
. —K.		 _ Er	 ... .Z/D 	 W/D .
ATC/AT0
X/D
_-.__K.__
Fr Z/D
W/D
ATC/AT0
.. _3 o :	
	6.5,_..	88.7.	13.6 . . _ - 10.9 ..
. .073
l" .
1 .
		 _ 5.4.- 4.3
4.8
.146
4G
6. 3 1^.? 11.7.
.053
10
.1.9
.-5.5 3.9
<• . 4
.131.

_.6.3 . _ ,._£?• 5 . , _• " 1^.2 . .. . 11.1 '. ,
.051
... l"
. .2.0.
. ... 5.4. 3.0
3.7
.163
4 0 •
11.2-' *0.9 23.0 1^.8
.052
20
1.8
5.4 4.7
5.1
.095
' "4Q
17.5 91.5 33.S 18.8
	. 067_
20
	1.9 .
. 	 5.4 ... 5.2
T>. 2
.088
60
11.8 «9.^ 29.2 16.0
. .041
?0
2.0
5.4 5.5
5.=
.03?
.... 60		
3 	90,1.. , , 1^.2 .. 13.6 . ... .
.047
30
... .1.8
5.5 6.1
7.0
.062
90
• 6.2 90.8 17.7 14.2
.033
30
2.0
5.5 7.4
6.4
.074
90
11.4 91.5 30.9 17.8
_.. .024 	 -.
	.__.__4 0.,.___
..... . l.e ..
	-.5.6	I.'. 7.6 . ..
.6.6
.047



40
1.9
. 5.6 7.1
6.5
.046
. . . . 	
		•_		 . ..... . • ."

60. .
.. 1..9.
		 _ 5.4 . .. .. 9.5
6.4
.044



60
1.9
5.4 9.6
5.9
.039



90
?.o
	5..A		 ,12.4
. . 8.7
.022



90
2.1
5.5 13.0
7.6
.028'



10
4.7
6.9 8.3
7.1
.116



10
5.7
7.1 11.2
9.0
.107



10
5.8
7.0 12.4
_ 1 1 .0
	 . 1 10



10
6.5
7.0 13.4
9.7
.103



?0
4.3
6.7 11.P
8.5
_ -..067.



20
4.8
6.8 14.9
8.5
.063



20
6.1
6.8 14.8
7.5
.060



30
3.6
6.7. 11.0
7.0
.054


-•
1(1
4.8
6.9 14.8
8.3
.056



30
6.4
6.6 18.5
9.9
.053



/. n '
i p'
6. H ! 1 . C
. . _..7.fc, ...
. P"



40
3.3
6.8 -¦ 11.8
7.3
.046'



40
3.6
7.7 12.7
8.7
.057



40
4.1
6.9. 13.1
8.2
.047



60
3.9
7.7 16.1
8,2....
.038



60
4.6
7.6 18.6
- 8.4
.032'



60
5.1
7.6 21.3
8.3
		.032



90
3.4
7.6 18.4
9.3
.0 32



Qi)
3.6
7.5 18.8
10.2
..032



.90
4.0
7.5 19.6
1 1 .5
. .021


i
TO
2.0
14.4 3.1
4.2
. 158



10
2. 1
14.5 3.3
4.3
. 141



10
2.4
14.5 4.3
... -4.4 .
_	..126;


- ;<¦
20
2.0
14.9 i..O
4.7
.089



20
2.1
14.6 3.5
5.5 _
.. _.. .096



20
2.1
14.7 3.7
4.6
.102


-
30
2.0
14.9 *..6
5.1
.0 74



30
2.0.
15.1 4.2
5.0
. .074



30
2.0
!5.3 4.3
4.1
.074



40
2.1
14.1 <,.7
4.9
.062



40
2. 1
14.2 5.4
5.3
• 056



40
2.2
14.1 5.6
5."
.053



60
2.0
	;14.5 		 _ _5.8 ... .
6.1
. 	i 045



60
2.1
14.3 6.1
7.0
.044

V

60
2.1 .
14.4 f,.l
6.8
.045



90
2.0
14.6 7.4
7.2
.030



po-
2.0.
14.7 6.3
6.7
. 031 -



lo
3.9
!3.9 6.7
5.0
.122



10
4.1
13.7 7.0
6. 1
	._ . 124



10
4. 1
13.8 7.2
5.7
.112

-------
e = 90°
X/D	
_ K.
... Fr
Z/D
W/D
?f> .
-. j
1 4. i)
«. i
5.8
20
-. C:
l->. 1
8. a
6.2
-.30
3.7
	 . . 14.3
9.2
7.'-
30
3.8
1 4
9.4
7.9
30
3.a
13.4
. 9.8
8.5
40
3.H
1 3.6
10.5
9.2
40
3.9
	13.5
11.0
8.5
40
3.9
13.7
11.3
9. 7
_JJ0	
	3.8.
		13.R		
. 13.5 .
9.9
60
1.9
14.0
13.7
9.8
,b0
.. 3 .9.
	 13.3 	
. .13.?
. 8.2
90
3.7
13.6
15.0
11.4
90
3.a
13.5
15.2	
1 1.0 	
90
3.8
13.4
14.8
10.8
10
5.3
18.7
8.6
5.6
10
7.2
18.8
12.4
7.1
10
9.a
18.4
17.3
12.8
20
5.8
19.4
13.0
9.0
20
7.4
19.2
15.9
11.1
20
10.9
18.9
20.6
14.3
30
5.5
19.0
9.6
10.3
30
7.2
19. 1
17.0
10.2
30
7.4
18.7
18.4
11.9
30
5.2
19.2
9.9
9.9
40
5.5
1 8.5
13.8
8.6
40
5.6
18.7
14.5
9.6
40
7.2
18.9
18.8
12.0
40
7.4
18.3
18.0
12.9
63
5.5
18.4
15.8
9. 1
60
5.6
17.7
17.9
10.8
60
7. 1
18.?
20.0
12.5
60
7. 3
18.0
21 .0
14. 1
9(1
5.*
1*.?:
20.0
12.0
90
6.7
18.4
23.6
15.4
10
2.0
29.5
4.1
5.8
10
2.0
29.8
4.2
5.9
10
4. 1
30.0
7.5
5.9
10
4. 1
30.3
7.5
6.0
20
2.0
30.5
4.7
6.4
20
2.7
29.4
4.3
6.3
20
4.0
30.4
8.4
6.5
20
4.2
29.5
8.6
6. <~
30
2.0
30. 1
4.9
6.0
30
?. 1
30.2
5.0
6.3
30
4.2
29.7
9.7
8.8
30
4.2
30.0
9.4
8.5
40
?. 1
23.5
5.2
6.6
40
2.1
28.7
5.2
6.6
-40
4.1
?8. 7
10.3
8.2
40
4.2
29.0
10.2
8.1
60
2.0
29.4
7.0
8.2
60
2.0
28.7
6. 1
7.5
60
_ 1
29.2
12.0
9. 1
60
4.1
28.4
11.8
9.5
90
2.1
28.9
7.7
7.8
Table
A-l. Cont.
0 = 90°
.086
.0??
.054
.070
.067
.060
.059
.056
.033
.031"
.035
.032
_• 0 3?
.027
... 123
.101
.099
.075
.055
.067
.063
.046
_.053„
.060
.053
.049
.041
.043
.035
.037*
.034
.034
.03 0
~	028
_• 125
. 1 36
.147
.139
.093
.0 93
.097
.10?"
.087
.077
.070
. 086
.079
.071
.062
.059
.04 7
•	054
.046
.057
.0 36
T0 XZD
.K
Fr._ Z/D
W/D
ATc/AT(
.90
2.1
29.1 ?.3
7.8
.041
90
4.2
29.2 14.3
9.8
.04 1
.90
. .4.1
2*.4 lJ.fr
.*•9
.04?
1 20
2.1
29.5 7.6
7.7
.02?
10
8.6
28.8 14.4
9.6
.102
10
9.4
?9.1 15.Q
9.8
.104
. 10
10.3
2^.4 16.8
9.7
.095
20
8.3
26.3 15.6
11.3
.071
.. ..20
9.4
.26.6	 . 18.0.
11.5
'.055
20
6.9
26.9 13.3
9.3
.0 65
30
9.5
?7.1 19.0
12.2
.047
30
8.0
27.2 17.2
11.2
.043
. . . ...	JO... 	
7..?	
27.5 16.3
9.6
.043
40
10.0
28.4 22.2
14.1
.040
40
8.1
PS.8 18.8
1X..7
.047
40
6.7
29.2. 15.9
10.5
.042
60
8.4
30.3 22.0
.. .14.6
... .039
60
7.3
30.7 20.0
11.1
.040
90
7 ._1__
..2,9.2	23.5 ...
-.15.6.
_ - .032
90
7.0
29.7 23.5
13.8
.033
90
8.0
29.R 24.6
15.1
.033
10
4.7
25.3 8.1
7.4
.132
10
4.2
?5.4 6.7
7.4
.122
10
2.3
25.5 4.8
5.7
.111
10
2.3
?5.6 4.8
5.8
.107
iO
7.4
25.8 12.4
9.b
• 0 86
10
7.5
25.9 13.1
9.5
.086
20
4.5
25.3 10.6
8.2
.078
. 20
4.6
25.4 9.8
7.7
.0 78
20
2.2
25.6 5.8
6. 1
.068
20
2.2
25.7 4.9
6.7
.068
30
4.6
25.8 10.8
9. 1
.063
30
4.5
25.9 11.9
10.4
.058
30
2.2
26.0 5.5
7.6
.058
30
2.2
26.1 5.2
7.3
.058
40
2.3
23.8 5.8
7.4
.046
40
2.3
23.9 6.3
7.9
.046
40
4.7
24.0 12.6
10.2
.043
40
4.5
24.] 12.2

• u ** **
60
4.6
24.3 12.8
12. 4
.037
60
4.6
24.4 13.6
11.3
.037
60
2.2
24.7 7.0
8.3
.0 32
60
2.3
.6 7*0
7.9
.032
90
4.3
24 . H 1 4 . *5
11.3
.0 32
90
4.4
24.9 14.5
12.5
.033
90
2.2
25.0 7.3
10.4
.030
90
2.2
_?S.? 8.2
8.9
.029
120
2.2
25.2 9.8
7.9
.022
10
8.6
30.0 14.2
11.3
.086
10
9.0 •
30.3 . . 14.6
11.0
.075
20
8.7
30.6 16.?
11.2
.053
20
9.7
30.8 19.2
12.4
.053
30
9.2
31.0 21.1
13.7
.045
30
10.3
31.4 22.0
15.0
.048
40
1 1.0
29.1 25.8
15.4
.033

-------
Table


0 =
0
O
0>


X/D	
. _ K
..... Fr
Z/D
W/D
ATC/AT0
40
10.6
29.4
25.9
14.3
-0.33
60 '
9.9
29.6
27.6
16.2
.0 34
" 60
° . 9
29.9
26.3
15.6
.029
90
8.8
30.2
28.3
16. 1
.026
90
8.5
30.3
27.7
14.0
.026
10
2.6
57.4
4.7
. 6.3
.138
10
2.9
56.8
5.1
6.4 ,
.131
10" '
4.1
58.0"
6.7
7.0
.130
10
4.3
58. 2
7.2
7.3
.131
10"
9.4
58.4
16.3
12.9
.109
10
10.7
59.1
19.1
12.8
.111
20
2.6
55.0
5.5 .
6.5
.100 1
20
4.3
54.0
8.8
8.5
. .082
20
4.3
54.5
9.3
8.4
.089
20
9.6
59.8
19.?
11.3
.052
20
10.5
60.7
21.6
12.2
.053
30
2.6
55.5
b. /
7. 1
.078
30
2.6
55.7
6.2
7.8
.074
30. .
4.3
56.0
10.0
9. 1
.066
30
4.3
56.5
10.4
8.6
.059
30
10.3
57.0
22.4
...	; 15.6
.0 39
30
10.5
56.4
23.6
14.8
.038
40 '
2.7
58.5
7.0
7.6
.060
40
2.7
59.0
6.7
'7.6
.066
<*0
4.3
57.6
1 1 .8
9.3
.054
40
4.3"
58.0
10.8
9.5
.060
40
10.4
..60.0
24.3
14.4
.039
4 0 ~~
10 ;"6
59.5
25.0
14.8
.041
60
2.6
56.5
7.1
8.9
	• 055
60"
2-6
56.8
7.7
8. 3
.048
60
4.3
56.3
12.2
10.6
.049
60
-4.'3'
56.5
12.4
9. 7
.040 + "
60
10.3
59.6
27.8
17.3
.028
"90
2.6
57.11
8.8
"" 8.81
.0321"
90
2.6
57.4(
8.3
a. 21
.0 39 I
90 " "
4.3
57.7 >
13.9
12. i y
.034 (
90
4.3
58.0 (
14.4
i i.p
.0351
90
"TO .5 "
5B.2J
27.8"
16. 7 j
• 025J
1 0
8.5
. 74.7*'
14.3
,10.0
. 104
10
a.5
75.0
14.0
10.4 "
.097
10
3.2
75.7
6.1
6.0
.143
10	
3.2"
76.2 *
5.5
6.0
. 155
20 .
3.2
76.5
6.6
7.2
.113
20
3.2
76.9
6.7
7.2
.111
20
8.7
74.3 -
18.3
11.6
.057
20
8.6
74.5
18.3
11.6
.052
	1.0	
	8.2
75.0
18.7
12.4
.047
30
8.2
75.5
18.9
12.7
. .04?
30
3.2
76.4
6.5
7. 1
.086
40
3.2
72.7" 	
9.0
8. 1
.075
40
3.2
73.0
8. 7
6.2
.070
40
8.4
73. 1
20. 3
13.8
.040-r
40
8.2
73.3
20. 7
13.5
.035
60
8.8
73.8
"23.6 .
15. h
.028
60
8.4
74. 1
23.6
15.B
.031
A-l. Cont.
0= 90°
		X/Q			K		Fr	. JZ/D.		W/D__. . . ._ATC/AT0
	60.	.3.2^	72.6.		9.0 ... . 	.9.9.-		.050'
60 3.2 72. o	-J. 3 9.6	.050
	9.0	_3. 2_	7 3. 3:	___10.S:	__	9.. 6	.OA 1 _fc_
90 3.2 73. P	10.is 10.2	.038
		90. ...3.2 ¦	 74.4 .	26.5 It.5	.021 =
90 ^.1 75.1	?7.6 13.6	.026.
120 		.3.2. . .74.1	11.A . 9.1	.034 ,-
10 4.0 69.3	7.0 6.0	.150
10 	 _ 10.4	__.69.6_.	17.0. 11.8 ..	. .086 ...
10 10.9 70. 1	17.3 15.5	.087.
20 	11.1. . 70.8 _	23.0 12.7	..047 . _
20 11.n 71 . 1	23.3 1 1.0	.062
20 4.0 71.*	6.9 8.2	...0 84
20 4.0 72.2	8.7 7.7	.090
	30		4.0	_Z2_.J3			10... 4.	8.5	__	,.0 73	
30 4.0 73.1	10.4 9.0	.065
30		10.3	73.4	24.0	13.a 	...044	
30 10.0 74.0	24.8 13.4	.044
	40	__1Q_._1	63.7		25,0	15.3	,040+1
40 10.4 69.3	25.3 15.8	.030
	40		_	4 .J			.69.6			1 0.J5		8.9	.058	
40 4.1 ,70.0	10.5 8.7	.059
60 		3.9	_ 70.4		11.8	 	9.3 		»041___
60 3.9 70.7	11.7 10.0	.047
60 9.8 71. 3	27. 1 16.8	.031' ,
60 9.8 71.7	27.6 17.0	.029
OO 	_10.0.. 	72.0	 '31.5	__1 7. 3 		*0.21?	
90 10.1 72.5	31.5 18.4	.021^
90	3.9 _ 73.1	13.1		 .11.7		.0 38
90 3.9 73.3	U.S 13.?	.033-
120 4.0 7.1.6	15.3 _ 12.5	.028
10 '..0 85.9	7.3 7.5	.145
10		 3.?	*6.4	6.9 		7.1		 	.135 _
10 " 10.8 86.9" ~	17.6 12.?	.098
10'	10.8	3 7.9	17.7 	 13-5__.	;	.096	
20 10.4 R*.?	21.8 13.5	" .055
20	10.6 _ 88.3	_ 21.1 	 14.1	.046
20 ' 4.0 ,0S.9	8.0 8.<»	.088
20	 	3._9	,	«9. 1	 	7.P	_ ,8.9	_._093.	
30 " 4.0 09^ 9 * "" '	9.5 9.5	.066
30	4.0 „ 69.9	9.2 	 9.1	.. ,.07l' __
" 30 10.8 90.4	2A.0 15.0	.045
	3.0_	!_')_• 3	5.U)	23.6	14. 2	;	. _,041
40 4.0 88.0	8.7 9.3 .064
	40			4.1	88.3		 8.0 		 9.7	 _.064 .
40 10.9 88.5	25.3 18.0	.035
	 40 	11. n 		89.1 .....	.. 25.0 ' 16. r. ...... ...035 ._
60 11.2 89.5	29.6 17.4	.031
60 _ 10.9 		 89.8		28.5 _ _17.9 	 . ,031...
60 4.0 90.7	10 i 3 ' 9.2	.048
	60 3.8	91.1		 10.0	10.2				 ... . 053
90 3.9 91.4	9.7 11.7	.039 X
00 	 3-S	91.6 _	10.2 . 11 . = .039 + ,
90 10.9 92.5	29.3 18.1 .025
...	?0	1.0_.jL:	1	9_2. 8_	...29.4	18.9		.027	

-------
Table A-2. Shallow Submergence Data, No Turbulence
0 = 0°	0 = 15°
X/D	K		^	Z/D	WD	ATC/AT0	X/D	K	Fr		ZZD	W/D	ATC/AT0
9.1
2.0
12.3
0
1.9
.475

9. 1-
2. 1
11.3
1.60
2.9
.356
9.1
?.o
12.3
0
2.0
.469

9. 1
2.1
11.4
1.70
2.8
.328.
9.1
6.2
12.3
0
2.8
.491

9. 1
5.3
12.2
2.60
3.6
.425,
<>.1
5*8
12.4
0
3.0
.510

9.1
6.0
12.3
2.50
3.7
.424
cl'8.2
2.0
12.3
0
2.9
.314

) 8.2
2.0
11.5
2.30
3.7
• 191.
18i2
2;3
12^4
0
2.9
.310

18. 2
2.0
11.6
2.30
3.7
.188
18.2
6.6
12.5
0
3.8
.295

18.2
6. 1
12.0
4.50
5.5
.200
IB. 2
6.0
12i6
.10
4.0
.299

18.2
6.0
12.2
4.70
5.6
.223
27.3
2.0
12.4
.03
3.S
.223

27.3
2. 1
11.4
2.90
3.8
• 1A0
27.3
2.0
12.5
.20
3.5
.244

27. 3
2.0
11.9
2.60
3.9
.139
27.3
2.0
12.5
.20
3.3
.219

27.3
2.0
12.6
2.60
4.0
. 146
27.3
¦5.9
12.7
.40
4.9
.204

27.3
6.2
12.4
5.90
7.0
.156
27.3
5i3
12.8
.40
4.9
.207

21. 3
5.7
12.5
5.90
6.0
.143

2.0
12.6
.50
4.5
.175

27.3
5.4
Id.6
b.80
6.5
.162
36. A
2.0
12.6
.50
3.7
. 188

36.4.
2.0
12. 1
2.70
4. 1
.113
36. A
5.7
12.9
.50
6.0
. 169

36.4
2.0
12. 1
2.80
4.2
. 108
36. A
6.6
12.5
.50
6.0
.172

36.4
2.0
12.2
3. 10
4.2
.120
54.5.
-,2.0
12.7
.90
4.9
.138

36.4
6.0
11.4
8.00
6.2
• 108.
S4i5
2.0
12.7
1.10
5.2
.126

36.4
5.9
11.5
8.50
6.5
.115
54i5
6.3
12.6
2.00
7.9
.104

36.4
5.7
11.6
8.40
6.4
.100
54.5
6.2
.12.7
2.40
7.6
. 105

54.5
2.0
11.9
3.SO
4.6
.076
81.9
2.0
12.8
2.80
5.3
.087

54.5
2.0
12.0
. 3.60
5.0
.082
81.8
2.0
12.8
2.40
4.7
.074

54.5
5.8
11.1
d.50
A.4
.081
ei.0
5.1
12.8
4.00
8.6
.074

54.5
5.7
11.3
8.50
4.9
.075
81.8
5.8
12.9
4.20
8.7
.069

81 .8
2.0
12.2
4.90
$.2
.061
9.1
1.8
33.4
0
1.8
.532

81.8
2.0
12.4
4.70
5.5
.067
. I
1 c
33.4
V
l.v
.550

81.8
6.5
J 1 A
* A •
£.50
3.5
* -
9. 1
1.8
33.0
0
1.9
.544

81.8
6.3
11 . 1
8.50
3.5
.068
9.1
5.5
32.6
0
2.3
.521

».l
2.0
33.8
1 .60
Hit
.361
,9.1
5.5
32.9
0
2.3
.557

9. 1
2.0
34. 1
1.60
2.6
.370
19.2
1.8
34.0
0
2.2
.382

9. 1
2.0
34.4
1.60
2.6
.362
18 .2
1.8
34.2
0
2.3
.353

9. 1
6.5
32.7
2.40
3.6
.470
13.2
1.8
34.2
0
2.2
* 396'

9.1
5.7
32.9
1.80
3.6
.482
IB.2
5.6
33.1
0
3.0
.331

18.2
1.9
.. 34.4
2. 10
3.5
.193.
13.2
¦ 5.6
33.1
0
3. 1
• 364

18.2
1.9
34. 6
2.10
3.5
.200
18.2
5.6
33.4
0
3.1
.363

18.?
1.9
35.0
2.20
3.4
.190
27.3
1.8
34.5
0
2.5
.281

18.2
5; 7
32.2
3.50
5.5
. .252
27.3
1.9
- 34.5
0
2.6
".298

IB.2
5;8
32.4
3.70
5.3
.253
2?.3
1.9
34. A
0
2.7
.300

18.2
5.6
32.7
3.50
b. 3
.256
27.3
5.6
33. 1
0
3.6
.235

27.3
1.9
34. 1
2.50
4.3
. 144
27.3
5.5
33.4
0
3.2
.231

27.3
1.9
34.3
2.50
4.2
. 152
'27-. 3
5.4
33.7
0
3.6
.251

27.3
1.8
34.4
2:40
4.0
.165
36. A
1.8
33. 1
0
2.5
.220

27.3
5.8
33. 1
5. 10
6.0
.165
36. A
1.8
33.4
.10 .
2.9
.234

27.3
5.8
33.2
5.30
5.6
.167
36.A
5.5
34.0
.30
4.1
..167

..27.3
5.5
33.5
4.80
5.6
.156
36. A
5.5
32. 1
. 10
4.2
.182

36.4
1.8
33. 7
2.80
3.8
. 123
36.4
5.5
32.4
.20
4.2
.185

36.4
1.4
34.0
. 2.60
4.0
.131
36.4
5.5.
34.2
0
4.2
.174

36.4
1.8
34.2
2.90
4. 1
.131
¦ 36i'4
5.5
34.4
.20
4.1
.163

36.4
5.4
32.3
S.60
7.8
.121
54.5
1.8
33.4
.30
3.4
.. 143

3S.4
5.5
32.5
5.70
7.5
.120
54.5
1.8
33.7
.40.
3.4
.144

36. 4
S.5
32.7
6.00
7.7
.121
54.5
1.8
34.0
.30
3.6
.146

54.5
1 .<*
32.3
2.90
3.9
.103
*4.5
5.5
32.8'
.30
4.3
.127

54.5
1.9
32.7
3.10
3. 7
.099
54.5
5.5
33.0
.50
4.7
.145

54.5
1.9
32.9.
2.90
4. 1
.094,
81.8
1.8
34.0
.10
3.6
.122

54.5
H>.4
31 .7
8.20
8.2
.0 86
. 81.8
1.8
34.3
.10
3.8
. 104

5^.5
5.4
31.8
3.20
8.2
.073
81.8
S.S
33. 3
.90
5.8
.085

'¦ -il .3
1.9
32.7
3.70
4. 1
.081







- 81 .a
1.9
33.0
3.60
4.0
.082







81.8
1.9
33.3
3.50
4.1
.077







81.8
5.6
31 .8
8.50
7.5
.064







81.8
5.4
32.0
8.50
7.3
.076







81 .8
5.3
32.2
8.50
7. 3
.060

-------
Table A-2. Cont.
© = 45°	0 = 90°
X/D	K 	^	im	W/D	ATC /AT0	XZD			Z/D	WZD.	AI^AI^
•5. 1
?. 1
11.8
2.30
3.5
.1
9.1
2.0
12. 1
3.20
*..0
. 1 37
. 9. 0
12.?
3.40
3.9
.136
9. 1
6.2
12.4
8.70
3.8
.135
l - .?
2. 1
12.3
3.50.
4.1
. 1 37
I * • 2
2.0
12.2
3.70
4.2
. .0 99
18.2'.
7,0
12.3
- 8.70
5.2
.169
18.2
2.0
12.3
4.10
4.8
.08 1
- 1"J . 2
6.3-
12 .4
8. 70
5.S_
.147
1».2
2.0
12.3
3.80
4.8
. 0-75
i.e. 2
. . 5.4
12.5
8.60.
5.0
.124
18.2
6.4
12.3
8.'70
3.3
.057
1 v. 2
2.0
12.2
3.20
4.2
.124
18.2
5.7
12.3
>1.70
3.3
.051
.. .. Z'/ .i
2. 1
12. 1
3.90
4.8
.105
?7.3
2.0
12.3
4.70
5.1
.'0 70
?T.3
2. 1
12. 1
4.00
4.4
106
27. 3
2.0
12.3
4.50
5.0
.0/0
27 . 3
... .2.1
12.2
A.20
4.5
.100
27.3
6.5
12.3
8.70
3.2
.038
2 7.3 -
b-6
12.1
8.50
4.5
.093
36.4
2. 1
12.4
5.40
5.4
.057
27.3
. . 6.6
12.2.
8. 50
4.5
.080
36.4
2. 1
12.4
5.40
5.5
.058
36.4
2. 1
12.3
4.7U
5.7
.077
36.4
5.9
12.6
6.70
3.4
.026
36.A
2.0
12.5
A.00 -
5.1
.089
36.4
5.7
12.7
8.70
3.4
.026
¦36.4
6.3
12.0
8.50
3.2
.073
54.5
2.1
12.5
¦ 5.7.0
5.3
.055
.36.4
5.8
12. 1
d.50
3.5
,06ft
54.5
2. 1
12.5
5.60
5.2
.052
5A. V
2.0
1 1 .9.
4.90
5.8
.068
54 . 3
5.5
12.3
8.70
2.7
.019
. 54.5
2.0
12.0
4.80
5.4
.063
81.8
2.0.
12.6
6,40
5.5
.039
54. 5
?.o
12. 1
4.80
5.5
.058
81.8
6.0
12.5
8. 70
2.7
.014
. . .54.5
5.8
12.0
8.50
2.6
.061
9.1
1.7
32.2
2,90
3.9
. 160
Hi . H ¦
2'. 0
12.3
5.60
5.6
.053
9. 1
¦ 1.8
32.3
3.00
3.5
.161
« 1 .3
2.0
12.5
5.40
5.3
.049-
9. 1
1.8
32.3
2.90
4.0
.162
« 1 . *5
5.9
12. 1
8.50
2.6
.037
^ . 1 '
5.5
32.3
8.70
4.9
»'i 3 C
8 1.8
5.8
12. 1
8.50
2.6
.031
9.1
5.5
32.3
8.70
4.9
.130
9. L
i;9
34.9
2.30
2.9
.204
18.2
1 . 8
32.6
3.20
4.4
.103
9.1
1 .9
35. 1
2.40
2.6
,199
18.2.
1 .8
32.9
3.30
4.4
.110
•?. 1
5.0.
33.2
5.10
5.4
.194
M.2
1.9
33. 1
3.50
4.5
.099
9. 1
5.0.
33.3
5.30
5.6
.190
18.2
5.5
32.«
8.70
<..5
.084
lb.2
1.8
33.7
3.00
3.5
. 150
18.2
5.5
33. 1
8.70
4.5
.086
18.2
1.8
34.0
2.90
3.6
.140
2 7.3
1.8
33. 1
3.70
5.1
.077
18.2
1.9
33.0
2.90
3.5
.152
27.3
1.8
33.3
3.80
5. 1
.0 74
18.2
1.9
33.4
3.20
3.6
.155
?7. 3
5.5
31.0
8.70
4.6
.068
18.?
1.9
33.6
3.30
3.6
'. 148
27.3
5.5
31.2
8.70
4.4
.050
18.?
5.6
32.3
8.50
5.5
.123
27.3
1.8
32.8
4.10
5. 1
.073
18.2
5.6
32.6
H.50
5.5
.125
.36.4
1.8
33.6
4.30
5.4
• 05 7
27.3
1.9
32.1
3.30
3.6
.123
36.4
! . 9
33.8
4,10
S.4
.051
27.3-
1.9
32.3
3.50
3.5
.129
36.4
1 .9
33.8
4.10
5.5
.064
27.3
1.8 ,
32.4
3.00
3.9
.107,
36.4
5.4
32.5
8.70
4.4
.047
27.3
S.6
32. 1
8.50
S.5
.092
36.4
5.4
¦ 32.2
0.70
4.5
.04 S
27.3
5.7
32.2
8.50
5.5
.099
54.5
1.9
33.0
5.10
5.4
.056
27.3
fv.7
-32.3
8.50
5.5
.082
54.5
1.9
33. 1
5.00
5.3
.044
36. 4
1.9
'32.5
3.60
4. 1
.107.
- 54.5
5V6
32.3
8.70
4.5
.030
36.4
1 .9
32.7
3.30
3.9
.102
54.5
b.5
32.6
8..70
4.2
• 0 2 7
36.4
1.9
32.9
3.60
3.9
.114
81 .H
1.9
33.2
5.40
5.4
.041
36.A
5.9
iZ.l
6.56
5.5
.076
.81.8
1.9
33.4
5.10
5.5
.038
36.<4
5.8
32.5
8.50
5.5
.083
81.8
6.0
32.8
8.70
5. 1
.021
54.5
1.9
32.0
4.50
4.6
-.081






Si. 5
1.9
32.2
4.20
4.5 .
.070






5'-*. 5
1.8
32.3
4.70
4.7
.071






5^.5
5.6
32.7
8.50
5.0
.060






81.8
1 .«
32.5

S.O
.065






81.8
1.9
32.7
A.80
4.6
.060






31 .b
1.9
32. 8
4.90
5.1
.060






s i. e
5.6
31 .5
8.50
4.4
. 0S9






81.8
" "5.6--'-
"31.7 —
8.50
4.7
.0 29







-------
Table A-3. Shallow Submergence Data, With Turbulence
0=0°	0 = 15°
X/D	K	Fr	2/D W/D AT,. /ATQ	XZD	K_	E,	Z/.D	W12	ATC/AT0
¦qTI	T7i	I2.n	5	2.5	.	375	.256	18.2	2.7	izTS :	3.50	?75	.144
IB.2:	2.7	12.?	.20	3.3	.279	18.>	2.7	12.4	3.50 _ 'j^I	. 1 54-
18.2.	8.0	12^"S "	.20"	4"."2""	7Tf4 '	18.2	7.4	11.8	5.60'	7.0	.214
18.2	7^S	12. d	.J?0	4^0		.311	27.3.	2^9	12.4.	 4.50	5.4	, 1 24	.
18.2	7.8	13.0	.20	4.2	.301	27.3	2.8	12.2	4.60	5.1	.116
27.	3	2^7.	12.3	.40	3iH	.201	27. 3	9^5	1Z.l	_H.5_n_	5^8	j_l/> 1	
27.3 2.7 12.4 ,h>J 4.2 .196 27.3 u.3 12.2 8.60 6.3 .170
27:3	7^6	13.2	.50 	5.7	.200	16.4	2.9	12.2	5.60	7.2	.096
27.3	7.7	13.2	.50	5.5	.198	36.4	2.9	12.3	b.50	6.8	.097
36.	4	 2.6	12.6	^50	4^5	.175	36.4	8.0	11.9	h.70	6.1 	.138
36.4	2.7	12.7	.50	4.5	.157	36.4	8.0	12.0	c).70	6.5	.129
36.4	8^3	12.1	1 .BO	6.4 	.153 	54.5	2^7	11.8	6.50	]V3	.068
36.4	8.0	12.3	1.60	7.6	.138	54.5	2.9	11.8	6.BO	7.3	.058
36.	4	2.7	12.5	.80	4^5	. 148	54.S	8^0	12.2	8.70	5^	.095
54.5	?.7	12.7 1.90 5.9 .086 54.5 7.2	12.2	8.70	5.5	.066
54.5	?. 7 	12jJ	1.90	5_._9	. 100	81.8	2.8	12.0	8.70	6^9	.053	
54.5 6.0	12.4 2.70 8.7 .102 HI.8 8.3	12.2	8.70	4.0	.054
54.5 7.2	12.6 2.40 8.7 .111 81.8 8.3	12.3	8.70	4.0	.055
81.8 2.7	12.9 3.50~"~ 677 7®6"l 9.1 3.0	35.2	2.40	3.0	.375
fj.	81.3	2^7	13.0	 4.30	6i7	.062	9;J	3^0	35.0	2.50 _	2.9	.385
—	81.8	7.5	12.7	5.00	8.7	.073	9.1	H.V	35.3	"~3.10 	3.'8	.506
9. 1	3^0	34'. 8	0	2. 1	.532	Q^J		35.5	. 2. BO	3;H	.509
971	~~37S	35. 1	0	271	: 971	S75	3571	TTOO	371	: 7521
9.1	3.0	35.7	0	2.1	.518	18.2	3.0	34.7	3i50	4.9	.181
971	STeT	3^72	0"	?75~	."53?	T«75	5715	34.5	j7fT<5	570	7T83
o -	9.1	876	35. 3	._10	2^6	.521			18. ?	H_;5	35.6	 5.20	6;2	.256
£ 9 'j, fTl	876	3576	TTO	275	7S5l : 1	1875 : 872	35.7 :	4.90 : 674 : .251
< z, r	18.2	3.0	36.0	.20	2.5	.293	1«.2	8.1	35.9	5.00	6.0	_ .255 	
?. ¦	18.2	3.0	36.3	0	2.6	.333	2773	37o	337B	3.70"	5.4	.130
-i	18.2	3;0	36.5		.10	2.7	.337		27. 3	3^0	33.9	4.00	5.1 	L126	
~ . I • . M.? ~ 876	357* :	: 5 ! 373	733T"	;	27.3	371	347]	3.90	479	7139
V % :¦ S' 18.2	a;6	36.0	0	3^4	.305' 	 27.3	8^6	35.9	6.80	 7.6	. 174
g f J'	Ta72	876	3fT71	0"	373	.343	27.3	8.2	36.1	6.80	7.6	.169
rj~, 9, :• 27.3	3.0 ' 36.7	. 10	2.8	. .227 	27.3	 6.2	36.3	o.aO	7.0	iAU	
_ ~ 3 ¦	27.3	3.0 : 3o.9	u	J. o	.ccv	36.4	3.1	34.9	4.10	6.0	.109
SO® S	27^3	3.0	37.1	0	3.3	.243	36.4	3.1	35. 1	4.00	6.0	.094
^ ~ 2	Z773 ' T75	3-T75	720 ' 378	7226	3b74	876":	3671	7.5(3	775	7T26
S -	27.3	8.4	35.7	-^20	3^6	^17	36.4	Cu6	36.2	7.30	7^5	.120
3	27.3	8.«	36.0	.10	4.1	.207	36.4	^.3	36.3	7.80	7.4	.1 lH
2	'36.4	3.0	34.6	.10	3.6	.183	54.5	3.2	34.1	4.00	6.8	.079
£	36.4	375	34.8	.10	3.6	.235	rTT£	357?	4.20	<^78	.07?
S	36.4	3.0	35.0	.10	3.6	.192	54.5	8.3	35.2	8.70	8.5	.103 _
tr	3674	573	36.2	.i'o	475	. f?4	54.S-	ST3	35.6	'8.70	7.7	.092
Ci	36.4	8.3 	36. 1	^20	4^4	.149		54.5		35. P	fa. 70	7;3	'093
S475	ITT	357?	72^	475	.124-	5T7S	J7o	34.4 ; 5Tso	677	.058
£¦ 54.5	2.7	35.7	.20	4.6	.127	81.»	3.0	34.6 5.10 6.7 .063
^ 5171	§74	3?7T	7S5	: 479	: : .117	8T78	57T!	:3"57b a.tO T73 .06'h
54.5	8.3	35.3	.40	4.5	.113	81.8	*.2 35.7	8.73	6.5	.063	
T775	873	r353	75^3	- 4.8	.114
81 .8	2V9	35. 9	iflO	5^1	.061	;	¦ 			
5T71	r—1 275	357?	: 74®	~477	7074	1 '	:
81.6	8.4	35.8	.50	6.4	.079.	. 			 		

-------
Table A-3. Cont.
© = 45°	0 = 90°
£/Q	K	Fr_		ZZO		WZD	ATc/ATe 	 X/P	JS	E,.	ZZD_	W/Q_ atc /at^
9.1
3.0
12.ft
«.30
4.5
. 161
1
2.7
12.3
4.80
5.5
.125
V.J
2.9
12.7
4.40
4.8
. 163
9. 1
2.7
12.4
4. 81
5.7
. 144
9.1
2.8
12.8
3.°0
4.7
.160
T. 1
2.7
12.4
4.60
5.4
.139
9.1
8.0
li. a
8.20
5.7
.211
9. 1
7.4
11.9
8.50
4.2
.131
•*. 1
7. 1
12.0
/ • :>0
5.3
.215
9. 1
7.4
12.0
8. 70
3.9
.138
13..2
3.0
12.4
5.20
6.1
. 109
9. 1
*.0
12.0
8.70
3.3
. 146
1?.?
?. 9
12.5
5.40.
3.5
.103
1*.2
2.7
12.5
4.80
6.2
.121
1 8". 2
7. 1
1 l.S
8.70
4.e
. 1 7ft
18.2
2.7
12.6
4.10
5.8
.091
1".?
7.9
11.ft
8.70
5.3
.164
1 8.2
2.7
12.7
4.60
5.7
.091
27.3
•2.P
12.8
5.00
6.3
.083
1 «.2
8.0
12.2
8.70
2.7
.105
27.3
2.0
12.9
5.00
6.3
.088
18.2
8.7
1?.4
8.70
. 2.9
.108
27.3
ft.9
11.4
8.70
2.3
• .090
18.2
8.0
12.5
0.70
3.0
.090
27.3
8.5
1 l.S
8.70
2.5
. 107
27.3
2.7
12.3
6.30
7.3
.0 75
36.4
2.6
12. 1
5. 10
6.5
.070
27.3
2.7
12.3
6.20
6.2
.063
36.4
2.7
12. 1
5.80
6.8
.065
27.3
2.7
12.4
6.00
6.8
.063
36.4
2.7
12.2
6.00
6.2
.064
27.3
8.0
12.2
8.70
¦3.5
.094
36 • 4
9.6
11.5
8.70
2.7
.096
27.3
8.8
12.3
8. 70
3.4
. 100
36.4
9.6
11.5
8. 70
2.7
.093
36.4
2.7
12.6
6.30
6.0
.064
54.S
2.8
12.3
6.90
6.7
.053
36.4
2.7
12.6
6.50
6.2
.059
54.5
2.8
12.4
6.90
6.0
.048
36.4
2.7
12.6
6.40
6.0
.064
54,5
8.7
11.8
8.70
3.6
.078
36.4
7.7
12.4
8.70
3.3
.084
54.5
7.7
11.9
8.70
3.0
.085
36.4
7.7
12.5
8. 70
3.2
.078
54.5
7.4
12.0
8.70
3.0
.091
54.5
2.7
12.2
7.60
5.6
.057
81.8-
2.8
12.6
8. 20
6.2
.038
54.5
2.6
12.2
7.9.0
6.2
. 043
.81.8
2.8
12.7
8.20
5.6
.044
54.5
2.7
12.3
7.80
5.8
.050
81. 8
8.0
11.3
8.70
3.6
.068
54.5
8.7
12.3
8.70
4-. 3
.076
81.8
8.8
11.4
8.70
3.6
.068
54.5
8.8
12.3
8.70
4.0
'.083
9. 1
4.5
34.9
3.50
4.0
.174
81.8
2.7
12.3
8.40
5.0
.044
9.1
3.2
35.2
3.80
4.0
• 164
. 81.8
2.7
12.4
8.20
5.3
.038
9. 1
8.6
34. 1
7.90
6.3
.268
81.8
2.7
12.4
8.60
5.5 .
.044
9. 1
8.6
34.3 .
8.20
6.4
.269
81.8
8.7
12.3
8.70
4.5
.on
9. 1
8.6
34.6
8.20
6.0
.244
91.8
8.3
12.5
8.70
4.0
.065
18.2
3.1
35.7
3.90
5;5
.127
9. 1
3.2
36.4
3.60
4.9
. 149
18.2
3.2
35.»
4". 90
5.0
.133
9. 1
3.2
36.6
4.30
5.2
.156
18.2
3.3
36.0
4.40
5.4
.122
9. 1
3.2
36.9
4.30
5. 1
.127
1 8.2
8.6
33.9
8.70
5.7
.193
9. 1
9. 1
35.5
8.70
4.0
.174
1 8. 2
8.6
34. 1
8.70
5.3
.173
9.1
8.3
35.3
8.70
4.2
.178
11.2
8.6
34.2
8.70
4.5
.180
18.2
3.2
37.2
4.90
4.6
.096
?7.3
3.0
34.8
5.10
6.2
.110
18.2
3.2
37.5
4.50
4.6
.104
^ r. j
J.l>
3i>.0
5.10
5.8
.105
Id.2
3.2
J7.8
4.50
3. J
. 1 Ob
27.3
3.0
35.2
5.00
5. v
.097
. 18.2
8.6
34.0
8.70
3.5
.087
27. 3
a. 1
35.3
8.70
4.7
.130
l».2
8.6
34.4
8.70
<•.1
.084
27.3
H.3 -
35.4
8.70
4.4
.119
18.2
8.5
34.6
8.70
4.0
.084
3ft. 4
3.1
35.7
5.60
6.5
.091
2 7.3
3.2
36.6
5.50
6.7
.075
3ft • *+
3.0
36.0
5.80
6.4
.085
27.3
3.J
36.8
5.20
6. 1
.076
3ft.4
3.0
36.2
5.90
6.4
.0 74
27.3
3. 1
37. 1
4.90
6.5
.065
?ft.4
8.4
34.7
8. 70
3.6
.103
27.3
8.6
35.0
8.70
4.0
.080
3ft.4
8.4
34.9
8.70
3.6
.998
27.3
8.6
35.3
8.70
3.3 .
.075
3ft. <•
8.3
35. 1
0. 7U
3.5
.099
35.4
"3.1
37.3
5.60
6.1
.065
5<*.5
3.1
35.4
ft.70
7.3
.059
36.4
3.1' .
37.5
6.20
6.3
.065
5*».5
3.0 '
35.5
6.70
6.9
.060
36.4
3.0 "
37.7
5.50
6.o
.066
54.5
3.0
35.6
h.90
7.1
.066
36.^
8.4
35.3
8.70
4.5
; 058
5^.5
5.7
36.4
8.71>
4.0
.075
36.4
8. 3
35.4
8.70
4. 1
.053
54.5
8.5
36.6
8.70
3.7
.088
36.4
8.3
35.5 .
8.70
3.5
.053
5»*. 5
8.4
36. 7
8.70
3.8
• 0«8
54.5
3.0
35.8
- o . 7 0
6.3
. O'sS
81.8
3.0
3ft. 1
7.10
. 7.3
.043
54.5
3.0
36.0
5.90
6.3
.043
8 1.8
3.0
36.5
7.90
6.9 . .
.050
54.5
8.3
35. 1
8.70
4. it
.052
Hi. a
3.0
3b.8
8.00
6.5
.038
54.5
8. 3
35.3
8.70
4.4
.046
HI .8
8.4
35.0
8.70
5.4
.053
"1.3
3.0
36.3
b. 90
6.6
.038
H. J .fl
8.4
35.3
b. 70
5.4
.053
81.8
8.3
35.5
6. 70
4.£
.041
Ml .8
8.3
35.5
b. 70
5'. 0
.0*2
81.8
£. 3
2b. 7
£¦-. 70
4 . 7
.047

-------
APPENDIX B
Table B-l Correlations,	Deep
Table B-2 Correlations,	Shallow, No Turbulence
Table B-3 Correlations,	Shallow, With Turbulence
33

-------
Table B-l
Correlations for Deeply Submerged Discharge Data
Z ATC W _ pa b kc Fd f
J5 'AT' D 6 n K r mod
o
1 2
6 Plume Characteristics a b	c	d	f R
0,30,60,90
AT /AT
c 0
-5.79
-0.82
-0.10
0.04
1.28
0.910

W/D
2.40
0.35
0.37
0.04
-0.45
0.814
30,60,90
Z/D
3.72
0.37
0.89
-0.10
-0.79
0.908
0
Z/D
-1.22
CO
CO
•
0.99
-1.72

0.819

ATC/AT0
W/D
-1 .47
-0.29
-1.04
0.50
0.10
0.28
0
b

0.979
0.912
30
Z/D
-0.39
0.47
0.62
-0.05

0.872

AT /AT
C 0
W/D
0.69
-0.06
-0.86
0.40
0
0.30
0
0.09

0.950
0.906
60
Z/D.
-0.11
0.35
1.06
-0.13

0.948

AT /AT
C 0
0.26
-0.79
-0.21
0.05

0.946

W/D
0.53
0.28
0.48


0.926
90
Z/D
0.21
0.32
0.95
-0.10

0.957

ATc/ATo
-0.47
-0.62
-0.32
0.07

0.916

W/D
0.59
0.21
0.50
0.05

0.904
34

-------
Table B-2
Correlations for Shallow Sumberged Discharge Data, No Turbulence
Z AJr W a b „c cd
D> D " e * K r mod
1	2
0 Plume Characteristics a b c d f R
0,15,45,90 AT /AT	-8.71 -0.77 -0.13 0.T4 1.80 0.922
C	V
15,45,90	Z/D	3.80 0.34 0.69 -0.06 -0.82 0.869
Z/D	-5.85 2.22 0.73 -1.48	0.755
ATc/ATq	0.82 -0.81 -0.10 0.17	0.975
W/D	0.34 0.43 0.32 -0.29	0.954
15 Z/D	-0.89	0.51	0.66 -0.11 0.937
ATc/ATq	0.48	-0.81	0.10 0.968
45 Z/D	-0.10	0.27	0.73 0.938
AT /AT	-0,19	-0.66	-0.16 0.08 0.924
CO
90 Z/D	0.30	0.21	0.69 0.901
AT /AT	-0.42	-0.74	-0.38 0.16 0.888
C O
erod = 180° - e
35

-------
Table B-3
Correlations for Shallow Submerged Discharge Data, With Turbulence
1 AEc. K = ea nb.i^c	Fd flf
D' AT^' D e n K	r mod
1	2
8 Plume Characteristics a	be d f	R
0,15,45,90 AT /AT	-6.05	0.73	0.16 1.25 0.892
C O
15,45,90 Z/D	2.78 0.26	0.41 -0.10 -0.45 0.729
0 Z/D	-1.49	,1.28	0.35 -1.49 0.817
AT /AT	0.95	-0.89	0.12 0.974
C O
W/D	0.50 0.45	0.22 -0.30	0.956
15 Z/D	-0.14	0.47	0.48	-0.16 0.894
AT /AT	0.40	-0.90	0.24	0.09 0.982
CO
45 Z/D	0.67	0.18	0.40	0.777
AT /AT	-0.85	-0.64	0.31	0.06 0.947
C O
90 Z/D	1.18	0.16	0.39	-0.12 0.787
AT /AT	-0.70	-0.53	0.12	-0.09 0.871
C O
'• 0rod = 18O°-e
36

-------
APPENDIX C
Figures C-l to C-24 Deep Submergence
Figures C-25 to C-35 Shallow, No Turbulence
Figures C-35- to C-46 Shallow, With turbulence
37

-------
_ 18
s
>
o
z 12
<
S 10
<
o
i-
a:
UJ
>
TEMPERATURE-TRAJECTORY
K « 2 . Ff • 10
0.03	
oT'0.2
—90
	 __ 60*-
	 —30* —
Q07J
V
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-I. Temperature-Trajectory Chart, Deep Discharge, K*2, Fr = IO.
90"
a 03
30
^ 16
UJ 14
o
2 12
0.075.
0.1
TEMPERATURE - TRAJECTORY
20
40
80
60
ilOO
HORIZONTAL DISTANCE (X/D)
FIGURE C-2. Temperature-Trajectory Chart, Deep [Discharge, K°8, Fr°IO.
38

-------

18
o

N
16

14
lii
O

Z 12
<

H

2
WIDTH-TRAJECTORY
K«2, ^ ¦ 10
W/0*8	
_ —8d-
	 —«o-
——r— -—30*-
20 40 60 80 nOO
HORIZONTAL DISTANCE (X/D)
FIGURE G- 3. Width-Trajectory Chart, Deep Discharge, Ka2, Fr«IO.
18
Q
N
Z 14
in 10
8
WIDTH-TRAJECTORW
K-8, -10
6
4
2
20
40 60
HORIZONTAL DISTANCE (X/D)
80
1100
FIGURE G-4. Width-Trajectory Chart, Deep Discharge, K= 8, Fr »10.
39

-------
_ 18
Q
N 16
U14
O
z 12
<
co 10
TEMPERATURE - TRAJECTORY
K-2, Fr - 50
<
O
h-
cr
UJ
>
8
6
4
2

a 075
02
\
Ql	v
\ -N	
-9
-------
~'8
§'6
ui'4
o
I12
fe 10
O
8
3 6
ir 4
UI
> 1
WIDTH-TRAJECTORY
K-2. ff «50
	90*—
W/O-8
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-7. Width-Trajectory Chart, Deep Discharge, K-2, Fr
o
\
90
u 14
O
5 12
w io
WIDTH-TRAJECTORY
K"8, ^-50

20
' 40 60
HORIZONTAL DISTANCE (X/D)
80
100
FIGURE C-8, Width-Trajectory Chart, Deep Discharge, K«8, Fr
41

-------
o
10
\
N

w

111
o
8
z

<

H

cn
6
Q

_i

<
4
o

h

oc

liJ
2
>

/
TEMPERATURE- TRAJECTORY
0-0°, K » 4
If -10

/


/
AT-0.05
I /
/1	0.073
Q2 / ai
.20'
	40—
—eo—
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-9. Temperature-Trajectory Chart, Deep Discharge, 0 = 0°, K = 4.
o
\
10
N



LlI
O
8
Z

<

f—

CO
6
o

_J

<
4
o

h*

a:

UJ
2
>

/
WIDTH - TRAJECTORY
G-O", K»4

y* o

W/D-12
/

/
6 /
.20'
	-40	
—eo-
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-10. Width-Trajectory Chart, Deep Discharge, 0=0°, K = 4
42

-------
v 10
N
U1
O
Z
<
H

8
<
o
H
OC
UJ
>
TEMPERATURE- TRAJECTORY
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C- 11. Temperature-Trajectory Chart, Deep Discharge, 0*0% Fr = 20.
o
\
10
N



UJ
8
o
z

<

h

ir>
6
Q



<
4
o

h-

a:

ui
2
>

WIDTH - TRAJECTORY
6- 0°, «20

K«I2

VV/D-12 /
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-12. Width-Trajectory Chart, Deep Discharge, 0=0°, Ff «20
43

-------
V 10
N
U ft
O O
z
<

,10 ,. 20.
..40'
;,.Fr-ao
AT-0.1 /
! ^
I
0.2'
0.03
Q07S
TEMPERATURE-TRAJECTORY
6-30°, K ¦ 4
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C- 13. Temperature-Trajectory Chart, Deep Discharge, 0=30°, K°4
W/D-6 X
A
WIDTH - TRAJECTORY
e»30°, K«4
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-14. Width-Trajectory Chart, Deep Discharge, £ =30? K = 4
44

-------
o
£25
uj
o 20
z
<
S 15
Q
2 'o
h
QT
s5
TEMPERATURE - TRAJECTORY
0-30°. Fr ¦ 20
K»I2
02

__l
AT-0.03
— 2 —
0.1
0
075
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C -15. Temperature - Trajectory Chart, Deep Discharge, 0=30? f' = 20.
5 25
N
y 2oi-
z
<
<2 I
a
< 10
o
H
£ 5
>
WIDTH-TRAJECTORY
6-30°, Fr -20
w/D-l;
12
"20 40 60 "80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-16. Width-Trajectory Chart, Deep Discharge, 0«30°, Fr » 20.
45

-------
10
N
W o
O °
z
<
I-
c/) 6
/
0.073
40
^•eo
AT'0 05
< 4
o
h
q;
lu
>
TEMPERATURE - TRAJECTORY
9-60°, K • 4
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C- 17. Temperature -Trajectory Chart, Deep Discharge, 0 = 60, K =4.
< 4
o
IS 2
>
W/0«I2
WIDTH-TRAJECTORY
0-60°, K-4
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C- 18. Width - Tra jectory Chart, Deep Discharge, 0 = 60°, K = 4
46

-------
"7
TEMPERATURE - TRAJECTORY
<1075
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-19. Temperature - Trajectory Chart, Deep Discharge, 0=60® =20.
/"
wo-s
WIDTH-TRAJECTORY
0 • 60°, Ff - 20

20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-20. Width-Trajectory Chart, Deep Discharge, 0=60, fy. ° 20.
47

-------
S 12
\
N
UJ
O
10
<8
V)
<
4
h-
cc
Ul O
> *
0.073
AT-0^3
/ -

5V ^
7\
10
20
40"
,Fr-eo
\
TEMPERATURE-TRAJECTORY
0-90°, K-4-
20 40 60 80 100
HORIZONTAL DISTANCE (X/D5
FIGURE C-21. Temperature - Trajectory Chart, Deep Discharge, 0 = 90, K =4.
3 12
N

N

UJ
10
O

z

<
8
K
co

Q
6
_J

<

o
4
h

CC

UJ
2
>

40
.60
WIDTH - TRAJECTORY
20 40 60 80 100
HORIZONTAL DISTANCE (X/D3
FIGURE C-22. Width-Trajectory Chart, Deep Discharge, 0=90°, K = 4.
48

-------
TEMPERATURE - TRAJECTORY
0073
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-23. Temperature-Trajectory Chart, Deep Discharge, 0» 90°, Fy°20.
° 25
N
uj 20
o
z
<
CO 15
<10
o
H
£ 5
>
/
WIDTH-TRAJECTORY
©•90°, Fr «20
	W/D* 9
— 2
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-24. Width-Trajectory Chart, Deep Discharge, 9 ° 90°, Fr«20.
49

-------
o

\

N



UJ
6
o

z

<

1—

(£>

a
4
-j

<

o

h
2
cr

Hi

>

TEMPERATURE -TRAJECTORY
K-2, Fr -10
,6Cf-
n m
— 7
^30*
X"
/

AT> 0.2
\
/
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C- 25 Temperature-Trajectory Chart, Shallow Discharge,
No Turbulence, K°2t 10.
*
/
AT* 0.075
TEMPERATURE-TRAJECTORY
K • 8, Fr - 10
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-26. Temperature-Trajectory Chart, Shallow Discharge,
No Turbulence, K*8, F^ »IO.
50

-------

8
o

\

N



111
6
O

z

<

>—

V)

a
4
_i

<

o

f—
?


TEMPERATURE - TRAJECTORY
K - 2 , Fr "50
-90*
,60-
-OQi.
. QQ7S
-309 "

AT" 0.1
02
__ —or—
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-27. Temperature-Trajectory Chart, Shallow Discharge,
No Turbulence, K ¦ 2 , Fr » 50.
_ 8
o
\
N
W e
O ©
Z
£
(/)
5 4-
<
o
2
a: 41
Ixl
>
AT-0.1
TEMPERATURE - TRAJECTORY
K"8, Fr -50
0.075
\
\
.0^
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-28. Temperature- Trajectory Chart, Shallow Discharge,
No Turbulence, K°8 , Fr °50.
51

-------
_ 8
Q
\
N
w 6
o
z
<
H
in
5 4
<
o
i- 2
a:
LU
>
TEMPERATURE-TRAJECTORY
6-0°, K-4
0.2
F. -tO
oT* 0.075
20 40 60 80
HORIZONTAL DISTANCE (X/D)
FIGURE C-29 Temperature - Trajectory Chart, Shal low Discharge,
No Turbulence, © ¦ 0°, K»4.
8
Q
s
N
W c
O o
<
h-
V)
Q 4
<
O
2
ce c
LU
>
WIDTH-TRAJECTORY
0- 0°, K = 4


W/D • 6 -

-10
/
20
_40-
— 80-
kfta		 	'
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-30r Width-Trajectory Chart, Shallow Discharge,
No Turbulence , 0 = 0*, Kc 4.
52

-------

8"
Q

\

N
¦


lii
6
O

z

<
.
H

to

O
4-


<
-
o

h-
2
a.

UJ

>

TEMPERATURE - TRAJECTORY
e-ov Fr • 20
K • 12
/
/ .
0.2
acre
AT*ar
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C- 31. Temperature-Trajectory Chart, Shallow Discharge,
No Turbulence, 0« 0°, Fr « 20.

8
a

v

N

w

UJ
o
6
z

<

h

V)

o
4
_1

<

o

h-
2
QL

LJ

>


WIDTH-TRAJECTORY
e-06, ^ '20
W/U'fl
20 40 60 80 1100
HORIZONTAL DISTANCE (X/DJ
FIGURE C-32, Width-Trajectory Chart, Shalllkw Discharge,
No Turbulence, $= Cf, Fr«20.
53

-------
/

8
a

\

N

'

UJ
6
o

z-

<

h-



o
4


<

o

h-
2
cr

LU

>

12
/
/ /
/ AT-0.1
/

02 /
/
0.075
0.05
TEMPERATURE-TRAJECTORY
e-158, Fr ' 20
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-33. Temperature - Trajectory Chart, Shallow Discharge,
No Turbulence, 0=15° F 3 20.
8
Q
\
fsl
W fi
a o
z
<
j—
V)
o 4
<
o
2
cc £
LU
>
/
K"0
\

\ -
Ql
£IT«0.05
0.075
TEMPERATURE - TRAJECTORY
6 - 45°Fr » 20
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-34. Temperature-Trajectory Chart, Shallow Discharge,
No Turbulence, 0 = 45, Fr *20.
54

-------
T §"
AT> 0.03
_K-2- -
0.078
TEMPERATURE- TRAJECTORY
e - 90°. Fr -20
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-35. Temperature-Trajectory Chart, Shallow Discharge,
No Turbulence, 0- 90°, Fr « 20.
55

-------
_ 8
o
\
N
B 6
z
<
H
a A
<
o
»- 2
q:
IU
>
TEMPERATURE-TRAJECTORY
K ¦ 2 , Ff « 10
_90*—'
-0 05
_60°-
-30°-

AT- 0.075
0*'
0.1
0.2
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-36. Temperature - Trajectory Chart, Shal low Discharge,
With Turbulence, K ¦ 2 , Fr = 10 .
AT«0.
0.075
TEMPERATURE-TRAJECTORY
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-37. Temperature-Trajectory Chart, Shal low Discharge,
With Turbulence, K ® 8 , Fr = 10.
56

-------
TEMPERATURE-TRAJECTORY
Fr - 50
•30
ftT-0.073
•- 2
or
UJ
0.2
100
80
40 60
HORIZONTAL DISTANCE (X/D)
20
FIGURE C-38. Temperature-Trajectory Chart, Shallow Discharge,
With Turbulence; K ¦ 2 , Fr » 50.
20 40 ~60~ 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-39l Temperature-Trajectory Chart, Shallow Discharge,
With Turbulence, K »8, Fr »50.
57

-------
_ 8
Q
\
N
S 6
Z
<
(/>
5 4
<
o
UJ
>
TEMPERATURE-TRAJECTORY
*
6 - 0# , K « 4
0.2
\.
0.075
0.4-
4T-0.I
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-40. Temperature - Trajectory Chart, Shallow Discharge,
With Turbulence, 0" 0°, K»4.
8
a
\
INI
UJ a
O O
z
<
I-
(f)
Q 4
<
o
2
DC. c~
UJ
>
WIDTH-TRAJECTORY
0 - 0°. K =¦ 4
W/D ¦ 6
F. . 10
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-41. Width-Trajectory Chart, Shallow Discharge,
With Turbulence, 9=0°, K = 4 .
58

-------
i ^	r
^ 8
Q
\
N
g 6
z
<
H
(O
5 4
<
o
P 2
a:
TEMPERATURE-TRAJECTORY
0»0\ Fr-20
0.073
AT-0.1
T
0.2
K-I2--
.—4 -
—2 —
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-42. Temperature-Trajectory Chart, Shallow Discharge,
With Turbulence, 0" 0°, Fr ° 20.
~ 8
a
\
N
u C
O 6
z
p
(0
5 4
_i
<
o
2
tr c
ui
>
*7
T	^	r
WIDTH-TRAJECTORY
0-0°, Fr-20
K-12
•4"
•2-
W/0-
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-43, Width-Trajectory Chart, Shallow Discharge,
With Turbulence, 0=0°, Fr»20.
59

-------
_ 8
Q
S
N
u 6
o
z
<
h-
cn
5 4
<
o
o:
LxJ
>
/
JZ.
V
AT »0.05
V
TEMPERATURE - TRAJECTORY
6-15°. F, -20
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-44. Temperature - Trajectory Chart, Shal low Discharge,
With Turbulence, 9 » 15°, Fr°20.
_ 8
a
\
is/
w a
O ©
z
<
H

uT'0.1
0.075
0.05
K- 2
7 /
TEMPERATURE- TRAJECTORY
6-45°. Fr « 20
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-45. Temperature-Trajectory Chart, Shallow Discharge,
With Turbulence, 0 = 45°, F =20.
GO

-------
AT«0.05
(X075-
TEMPERATURE -TRAJECTORY
0 » 90°, Fr = 20
20 40 60 80 100
HORIZONTAL DISTANCE (X/D)
FIGURE C-46. Temperature-Trajectory Chart, Shallow Discharge,
With Turbulence, 0 » 90°, Fr°20.
61

-------