600R97127
United Slates NHEERL EPA/R-97/1 27
Environmental Protection Western Ecology Division August 1997
Agency Corvallis OR 97333
Research and Development
aeEPA
LAKE REGIONS OF FLORIDA
Jra, .
i
-------
LAKE REGIONS OF FLORIDA
Glenn E. Griffith1, Daniel E. Canfield, Jr.2, Christine A. Horsburgh2, James M. Omernik3
August 15, 1997
1 U.S. Environmental Protection Agency, 200 SW 35th St.,Corvallis, OR 97333;
phone: 541-754-4465; email: glenn@mail.cor.epa.gov
2 Department of Fisheries and Aquatic Sciences, University of Florida, 7922 NW 71st
St., Gainesville, FL 32653; phone: 352-392-9617; email: danjr2@nervm.nerdc.ufl.edu
3 U.S. Environmental Protection Agency, 200 SW 35th St., Corvallis, OR 97333;
phone: 541-754-4458; email; omernik@mail.cor.epa.gov
WESTERN ECOLOGY DIVISION
NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CORVALLIS, OREGON 97333
The information in this document has been funded in part by the U.S. Environmental Protection Agency. It
has been subjected to the Agency's peer and administrative review, and it has been approved for publication
as an EPA document. Mention of trade names or commercial products does not constitute endorsement or
recommendation for use.
-------
ABSTRACT
Water resources can be managed more effectively if they are organized by regions that
reflect differences in their quality, quantity, hydrology, and their sensitivity or resilience to
ecological disturbances. The management of lake resources requires a spatial framework
that distinguishes regions within which there is homogeneity in the types and quality of
lakes and their association with landscape characteristics, or where there is a particular
mosaic of lake types and quality. In the early 1980's, Canfield and others documented
regional differences in Florida lake water chemistry and related these to geology and
physiography. Building on this work, we have defined forty-seven lake regions of Florida
by mapping and analyzing water quality data sets in conjunction with information on soils,
physiography, geology, vegetation, climate, and land use/land cover, as well as relying on
the expert judgement of local limnologists and resource managers. This spatial framework
has also been used to help illustrate the regional differences in parameters such as total
phosphorus and acid-neutralizing capacity. A large-format color poster of the lake region
maps with photographs and regional descriptions has also been produced. The Florida lake
regions and associated maps and graphs of lake chemistry are intended to provide an
effective framework for assessing lake characteristics, calibrating predictive models,
guiding lake management, and framing expectations by lake users and lakeshore
residents.
To obtain a large color map of the Florida lake regions or an ARC /INFO export file of the region boundaries,
contact the first author. To obtain the associated color poster publication of Florida lake regions contact
Michael Scheinkman, FL DEP, 2600 Blair Stone Rd, Tallahassee, FL 32399, (904) 921-9918.
-------
TABLE OF CONTENTS
ABSTRACT ii
PROJECT BACKGROUND 1
Introduction 1
Overview and Classifications of Florida Lakes 3
FLORIDA LAKE REGIONALIZATION 6
Methods and Materials 6
Results and Regional Descriptions 7
65-01 Western Highlands 7
65-02 Dougherty/Marianna Plains 8
65-03 New Hope Ridge/Greenhead Slope 9
65-04 TiftoniTallahassee Uplands 10
65-05 Norfleet/Spring Hill Ridge 11
65-06 Northern Peninsula Karst Plains 12
75-01 Gulf Coast Lowlands. 13
75-02 Okefenokee Plains 14
75-03 Upper Santa Fe Flatwoods 15
75-04 Trail Ridge 16
75-05 Northern Brooksville Ridge 16
75-06 Big Bend Karst 17
75-07 Marion Hills 18
75-08 Central Valley 18
75-09 Ocala Scrub r 20
75-10 Eastern Flatlands 20
75-11 Crescent City/DeLand Ridges 21
75-12 TsalaApopka 22
75-13 Southern Brooksville Ridge 22
75-14 Lake Weir/Leesburg Upland 23
75-15 Mount Dora Ridge. 24
75-16 Apopka Upland 24
75-17 Weeki Wachee Hills 25
75-18 Webster Dry Plain 25
75-19 Clermont Uplands 26
75-20 Doctor Phillips Ridge 27
75-21 Orlando Ridge 27
75-22 Tampa Plain 28
75-23 Keystone Lakes 28
75-24 Land-o-Lakes 29
75-25 Hillsborough Valley 29
75-26 Green Swamp 30
75-27 Osceola Slope 30
75-28 Pinellas Peninsula 31
75-29 Wimauma Lakes 31
75-30 Lakeland/Bone Valley Upland 31
75-31 Winter Haven/Lake Henry Ridges 32
75-32 Northern Lake Wales Ridge 32
iii
-------
75-33 Southern Lake Wales Ridge 33
75-34 Lake Wales Ridge Transition 33
75-35 Kissimmee/Okeechobee Lowland 34
75-36 Southwestern Flatlands 35
75-37 Immokalee Rise 35
76-01 Everglades 35
76-02 Big Cypress 36
76-03 Miami Ridge/Atlantic Coastal Strip 36
76-04 Southern Coast and Islands 37
CONCLUSIONS AND RECOMMENDATIONS 37
REFERENCES 39
APPENDIX A. Lake Region Maps and Graphs 49
Figure Al. Florida lake regions 51
Figure A2. Regional median value of lake total phosphorus 53
Figure A3. Distribution of lake phosphorus values by region 55
Figure A4. Regional median value of lake total alkalinity 57
Figure A5. Distribution of lake alkalinity values by region 59
APPENDIX B. Lake Database (selected parameters) 61
iv
-------
PROJECT BACKGROUND
INTRODUCTION
The lakes of Florida provide important ecological habitats for a diverse flora and fauna,
and comprise a valuable resource for human activities. With over 7,700 lakes in Florida,
the assessment and management of this resource is complicated by its physical, chemical,
and biological diversity. Differences in physiography, geology, soils, hydrology, vegetation,
and climate affect lake characteristics, and these can occur in regional patterns. Lake
management strategies regarding protective water quality standards or restoration goals
cannot be carried out effectively on a lake-by-lake basis only, but must consider regional
differences in limnological capabilities and potentials.
Regional frameworks are useful for structuring the research, assessment, monitoring,
and management of environmental resources. These frameworks are helpful for
comparing regional land and water patterns; locating monitoring, refererence or special
study sites; extrapolating site-specific information; predicting effects of management
practices; and establishing reasonable and realistic regional standards and expectations. A
variety of spatial frameworks can be useful for lake assessment and management, ranging
from general purpose regional frameworks to specific-purpose single-characteristic maps
(Figure 1; Omernik 1994). A national-scale ecoregion framework (Omernik 1987) has
proven useful to lake managers in Minnesota for developing realistic regional goals, for
protective as well as restorative purposes, relative to summer nutrient concentrations,
nuisance algal conditions, and Secchi transparency ranges (Heiskary 1994; Heiskary and
Wilson 1989; Wilson and Walker 1989). Lake user expectations and sensitivities to
eutrophication conditions can differ greatly between ecoregions (Heiskary 1989; Smeltzer
and Heiskary 1990). Ecoregions have been used in Ohio to estimate attainable reservoir
phosphorus concentrations and help prioritize reservoir restoration efforts (Fulmer and
Cooke 1990). A recent past president of the North American Lake Management Society
suggested that a regional approach is needed in the/development of lake quality standards
with respect to eutrophication:
"Standards should be specific to regions, subregions, and if warranted, even
individual lakes. Because bedrock character and soil type, some areas are
naturally richer in nutrients than others. Therefore, standards should be
based on attainable quality for that region, or subunit. That approach is
consistent with the ecoregion concept and would assist the difficult task of
allocating the always limited funds for remediation." (Welch 1993).
As part of the Florida Department of Environmental Protection's Lake Bioassessment /
Regionalization Initiative, we have examined regional patterns of lake characteristics in
Florida to develop a spatial framework for lake assessment and management. In an earlier
project with the FL DEP, level IV ecological regions of Florida were defined to help in the
assessment, of environmental resources (Griffith et al. 1994). The level IV ecoregion
1
-------
General ECOLOGICAL REGIONS
purpose
Based on spatial coincidence
of numerous geographic
phenomena affecting or
reflecting ecosystem
quality/integrity
LAKE MANAGEMENT
REGIONS
I
Specific LAKE PHOS. REGIONS
purpose AND SURFACE WATER
ALKALINITY REGIONS
Based on patterns of one
characteristic and spatial
associations with causal
and reflective geographic
phenomena
Figure 1. Regional frameworks for lake assessment and management (Omernik 1994).
framework of Florida has been used to select regional stream reference sites, and to assess
that data to help develop biological criteria for streams (Barbour et al. 1996). Ecoregion
maps are general purpose maps, and for lake assessment and management, more specific
maps are often needed (See Figure 1). For the DEP's lake bioassessment work using the
paired lake concept (Frydenborg and Lurding 1994; FL DEP 1994), the ecoregion
framework appeared too general.
Physiographic maps are also used to classify land and water resources, and have been
used to assess Florida lake chemistry (Canfield 1981), but there are several reasons why a
physiographic map alone may not work as well as a lake region framework. First, the
physiographer obviously has a different purpose and focus than that of lake management.
Second, there are several different physiographic frameworks available for Florida, such as
Fenneman (1938), Cooke (1939; 1945), White (1958; 1970) and Brooks (1981b; 1982), and
each source provides a different interpretation. And third, a particular physiographic
division may be too general or too detailed for lake management purposes. Brooks' (1981b)
physiographic framework, for example, provides 3 Sections, 10 Districts, and 180
Subdistricts. We have tried to utilize the most useful elements of all of these sources as
they appeared to best explain lake differences in Florida.
Hydrologic unit or watershed frameworks are also commonly used for surface water
assessments. The DEP has adopted a hybrid watershed/region framework to help
implement an ecosystem management strategy to protect the functions of entire ecological
systems (Barnett et al. 1995). Florida's unique topographic and hydrological characteristics,
however, reduces the significance of basins or watersheds for explaining water quality
patterns and, as shown elsewhere, surface water characteristics or ecological
characteristics do not coincide with hydrologic units (Omernik and Griffith 1991; Omernik
and Bailey 1997). Our intent in this project was to build on the ecological subregion
2
-------
framework, the regional lake assessment of Canfield (1981), and other sources of
ecological and limnological information to define regions of similarity in the physical,
chemical, and biological characteristics of Florida lakes and their associations with
landscape features.
OVERVIEW AND CLASSIFICATIONS OF FLORIDA LAKES
Florida has an amazing abundance and diversity of lakes, reflecting the state's
differences in surface features, geology, and hydrology. The more than 7,700 lakes of
Florida have an uneven spatial distribution (Figure 2), with more than half occuring in the
central upland portion of the peninsula. Approximately 35 percent of the lakes are located
in the four central Florida counties of Lake, Orange, Polk, and Osceola (Palmer 1984).
Figure 2. Distribution of Florida lakes (after Brenner et al. 1990).
Although the spatial location of lakes helps explain some of their characteristics, gaining an
understanding of their features is complicated by temporal considerations. One could
generalize that Florida's subtropical climate has essentially two seasons, a warmer wet one
and a cooler dry one, and lake physical, chemical and biological conditions can differ within
the year. In addition, longer term climatic fluctuations can make lakes appear or
disappear, or alter their chemistry. With relatively flat suirounding topography, some
Florida lakes historically had wide fluctuations in surface area. Littoral zone habitats
expanded during wet periods, creating productive fish and wildlife areas; and in dry
3
-------
periods, declined, dried out, decomposed, and consolidated, rejuvenating the system
(Estevez et al. 1984). As the human population has encroached on these areas with
urbanization, agricultural activities, and lake stabilization, these natural processes have
been confined and reduced, Other lakes in the state have remarkably stable water levels,
such as Kingsley (Deevey 1988).
Average physical configurations of lakes in Florida are varied. There are thousands of
lakes with small lake areas, and five lakes, Okeechobee, George, Kissimmee, Apopka, and
Istokpoga, have surface areas greater than 40 mi2 (Heath and Conover 1981). Lake
Okeechobee (681 mi2) is the largest natural freshwater lake in the conterminous U.S. that
is entirely within one state. The smallest lakes are primarily the seepage lakes located on
the sandy upland ridges, and the largest lakes are drainage types most often found in
lowland areas. Florida lakes in general are relatively shallow, and most of the large lakes
are very shallow. Lake Okechobee has a maximum depth of about 14 feet and Lake
Apopka about 11 feet. Some sinkhole lakes are more than 100 feet deep (Heath and
Conover 1981). More detailed overviews of Florida lakes and their characteristics can be
found in Brenner et al. (1990), Pollman and Canfield (1991), and Fernald and Patton
(1984).
Classifications of Florida's water body types can be found in several references. The
lake-related sections of some of these classifications are shown in Table 1. Lake types are
usually classified using chemical or physical criteria. In the Water Resources Atlas of
Florida, Estevez et al. (1984, p. 96) classifies lakes simply as acid clear, acid colored, or
alkaline clear. This is similar to the cluster analysis of 55 lakes by Shannon and Brezonik
(1972) showing acid colored, alkaline colored, alkaline clear, and softwater clear lakes.
Also in the Atlas, Palmer (1984, p.62) discusses the lake types as impoundments, solution
lakes (two basic types: those that are circular at the surface with conical cross sections,
and lakes that are elongated and branching formed in valley floor sinkholes), lakes in relict
sea bottom depressions, and lakes formed by erosion and sedimentation processes in
rivers. He also shows the percentage of total lakes classified by stream connection, ie., no
inlets and outlets, inlets and outlets, outlets only, and inlets only. The Florida Museum of
Natural History (Burgess and Walsh 1991) used this common straightforward hydrologic
classification, but at least 70% of Florida's 7800+ lakes axe of the "landlocked" type (no inlet
or outlet). Berner and Pescador (1988) used bottom type, sand or silt, for their lakes and
several criteria for ponds, but did not make a clear distinction between a lake and a pond.
Huber et al. (1983) undertook a trophic state index classification of Florida's lakes in
response to the requirements of the EPA's Clean Lakes Program. Lakes were first
classified as nitrogen limited, phosphorus limited, or nutrient balanced. 573 lakes were
classified by an average trophic state index (TSI) as well as by several subindices.
Hydrologic lake types (inflow, outflow, inflow-outflow, seepage, unspecified) were found to
not be a major factor influencing TSI values.
4
-------
Table 1. Lake types from Florida aquatic classifications.
Bemerand Pescador(1988)
FL Natural Areas Inventory (1990)
Buroessand Walsh (1991)
Frvdenborp(199l)
Ponds
Clastic Upland'Lake
Streams flowing into lake
Karst solution lake
Sinkhole ponds
Coastal Dune Lake
Streams flowing out of lake
Relict estuaiy lake
Fluctuating ponds
Coastal Rockland Lake
Streams flowing in and out of lake
Stream-cap tune lake
Temporary woods ponds
Ratwobds/Prairie/Mansh Lake
Landlocked lake
Perched aquifer lake
Sporadic ponds
Jerome sink
Lakes
Sand-bottomed lakes
River Floodplain Lake and
Swamp Lake
Sandhill Upland Lake
Sinkhole Lake
Riverine lake (SL Johns River)
Impounded lake
Others
Marsh
Swamp
Temporary pond
Silt-bottomed lakes
Coastal dune pond
Disappearing lakes
Myers and Edmiston's (1983) Florida lake classification project grouped lakes into "poor"
or "fair to good" classes using trophic state index. They then prioritized lakes for
restoration using a quantitative scheme based on the trophic state, recreational use, public
interest, impaired use, nutrient loading, and the importance as a public water body. They
listed the top 50 lakes in Florida in need of restoration. Most all occurred in central Florida
and were affected by cultured eutrophication. Myers and.Edmiston also formulated a
ranking scheme for the top 50 lakes in Florida most deserving protection and preservation
(i.e., those with good quality, public interest, recreation use, importance as water body),
and these were located throughout the state.
It is obvious that many different classifications of lakes have been made for Florida and
for different reasons. The spatial extent of the lake classes of these different classifications
is rarely defined.
5
-------
FLORIDA LAKE REGIONALIZATION
METHODS AND MATERIALS
The regionalization process included compiling and reviewing relevant materials, maps,
and data; outlining the regional characteristics; drafting the lake region boundaries,
creating digital boundary coverages and producing cartographic products; and revising as
needed after additional data collection and review by state managers and scientists. In our
regionalization process we employed primarily qualitative methods. That is, expert
judgement was applied throughout the selection, analysis, and classification of data to form
the regions, basing judgments on the quantity and quality of reference data and on
interpretation of the relationships between the data and other environmental factors.
More detailed descriptions of the methods, materials, rationale, and philosophy for our
regionalization process can be found in Omernik (1987; 1995), Gallant et al. (1989), and
Omernik and Gallant (1990). Maps of environmental characteristics and other documents
were collected from the state of Florida, ERL-C, and several university libraries. The most
important of these documents are listed in the References section. The most useful map
types for our lake region delineation were physiography or land-surface form, soils,
geology, natural vegetation, and land cover. Physiographic and land surface-form
information were gathered from many sources including Brooks (1981b; 1982), White
(1970), Puri and Vernon (1964), and Fenneman (1938). Geology maps included the
1:250,000-scale Environmental Geology Series from the Florida Bureau of Geology, state
scale maps (Brooks 1981a; Vernon and Puri 1964), regional scale quaternary geologic maps
(Scott et al. 1986; Copeland et al. 1988), and national scale maps (King and Biekman 1974).
Soils information was obtained from the Florida Agricultural Experiment Stations and U.S.
Department of Agriculture's (USDA) Soil Conservation Service (SCS) (1962), Caldwell and
Johnson (1982), the 1:250,000-scale SCS (now NRCS) State Soil Geographic Data Base
(STATSGO) soil maps, and the USDA's county-level soil survey publications. Some
historical county soil maps (USDA 1914, 1927, 1928, 1954) also proved useful. Climate
information was collected from Bradley (1974), Fernald (1981), and Jordan (1984). The
vegetation and forest cover maps that we used included Davis (1943, 1967), those in the
state atlas (Fernald 1981), and a recent vegetation classification of Landsat Thematic
Mapper imagery (1985-1989) developed by the Florida Game and Fresh Water Fish
Commission. Land use and land cover were interpreted from a hardcopy USGS Landsat
Multispectral Scanner imagery (1979-1985; scale 1:500,000) as well as from 1:250,000-scale
USGS land use/land cover maps from the 1970's.
Lake chemical and physical data were gathered from several sources. Our primary lake
data came from mean values from 1133 lakes, sampled between 1979 and 1996. Most of
the data (82%) were from lakes sampled between 1990 and 1996. The data came from the
University of Florida Department of Fisheries and Aquatic Sciences (54%), the Lakewatch
program (34%), the U.S. EPA's Eastern Lake Survey (8%) (Kanciruk et al. 1986), and from
the U.S. Forest Service (4%). A selected set of parameters for the 1133 lakes of the
primary data set can be found in Appendix 2. Water quality and limnological data collected
from the Florida Department of Environmental Protection, the Florida water management
6
-------
districts, Huber et al. (1983), the U.S. EPA (Omernik et al. 1988a; Griffith and Omernik
1990), the Gazeteer of Florida Lakes (Shafer et al. 1986), and other sources were also
assessed for the delineation of the lake region boundaries, but were not included in our
primary data set due to differences, in detection limits, sampling methods, duplication of
lakes, or other quality control and comparison efforts.
We used USGS l:250,000-scale topographic maps as the base for delineating the lake
region boundaries. Although some maps in this series are old, it does provide quality in
terms of the relative consistency , and comparability of the series across Florida, in the
accuracy of the topographic information portrayed, and in the locational control. It is also a
very convenient scale. Fifteen of these maps give complete coverage of the state. Larger-
scale (1:100,000) topographic maps were also examined for more detail on hydrology and
other physical and cultural features. Lake data were plotted at severed scales, but
primarily at l:250,000-scale for overlay on topographic maps.
RESULTS AND REGIONAL DESCRIPTIONS
We have attempted to synthesize the above material to define a reasonable number of
lake regions that appear to have some meaningful differences between them. In our first
draft, we defined 41 lake regions of Florida. The current version contains 47 lake regions
(Figure Al, Appendix A). These regions were developed primarily by evaluating patterns
of features that influence lake characteristics. The numbering system for each lake region
consists of two numbers: the first number (65, 75, or 76) relates to the numbering scheme
of U.S. ecoregions (Omernik 1987), and the second number refers to the Florida lake
regions within an ecoregion.
65-01 Western Highlands
The Western Highlands lake region is characterized by rolling hills, 100-300 feet in
elevation, of mixed hardwood and pine forest, with some cropland and pasture. The lake
region includes the Blackwater Hills, Escambia Terraced Lands, Milton-Crestview Ridge,
¦ .. r.
and Eglin Ridge (Brooks 1982). The hilly areas are composed of the sands, gravels; and
clays of the Citronelle Formation, and the sands and clays of the older Shoal River
formation (Brooks 1981a). The Citronelle Formation generally contains more coarse sands
and gravels than the clayey sands of the Hawthorn and Miccosukee formations that are
found in Panhandle uplands east of the Appalachicola River, such as the Tifton/Tallahassee
Uplands (Scott et alf 1980). r Soils are well-drained, acidic sands and loamy sands, such as
the Dothan-Orangeburg soils.in the northern clayhill uplands and the excessively drained
Lakeland-Troup soils of sandhill areas such as Eglin Ridge. The region receives some of
the highest mean annual precipitation totals of the state, generally 60-75 inches, and, with
the rest of the northern part of the Panhandle, the coolest mean minimum and mean
maximum temperatures (Bradley 1972; Fernald 1981).
The region has very few natural lakes, primarily just a few ponds and small reservoirs.
Local farmers or landowners have made many small ponds, often in a series, for cattle or
recreatioii by damming up small drainages, and the clay content of the sediments in some
7
-------
parts of the region prevents much downward seepage (Schmidt 1978). The largest lakes
include Lake Stone in Escambia County, Bear Lake in Santa Rosa County, and lakes
Hurricane, Karick, and Silver in Okaloosa County. Similar to the streams of the region
that feed these small reservoirs, these would generally be acidic, softwater, low to
moderate nutrient lakes, if lake management inputs were low. In Canfield's (1981) study,
Western Highland lakes were classified as oligo-mesotrophic, with median phosphorus
values generally in the 10-20 (O.g/1 range. However, most lakes in this region, including
Karick, Hurricane, and Bear lakes, have been artificially limed and fertilized in an attempt
to increase fish production. Bear Lake, for example, in 1980 had a pH of 4.5, alkalinity 2
mg/L, and phosphorus of 15 |J.g/L. In 1995 the pH was 7.9, alkalinity 20 mg/L, and
phosphorus 91 |ig/L. Median lake phosphorus values for the region are now generally in
the 70-80 |ig/l range.
The region also contains some oxbow lakes and other lowland lakes of the river
floodplains. Little data exist for these lakes, but they are likely to be darker, more acidic,
with moderate nutrients compared to the managed fish ponds and small reservoirs. The
characteristics may vary greatly depending on river flow.
65-01 Western Highlands Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(|xS/cm@25°C)
(ng/i)
(jig/i)
(WJ/I)
(pcu)
(m)
n=4
n=4
n=4
n=4
n=4
n=4
n=4
n=4
minimum
7.0
9.6
33
70
417
1 5
1 4
1.0
25th %
7.3
12.2
39
76
532
1 9
1 5
1.3
median
7.6
16.5
4 6
8 5
6 03
2 4
1 5
1 .5
75th %
8.0
20.3
50
102
642
27
1 6
1.6
maximum
8.2
21.0
5 1
135
657
28
1 9
1.7
65-02 Dougherty/Marianna Plains
Stream erosion and solution of Eocene, Oligocene and Miocene limestones has lowered
the surface to form this broad lowland (Puri and Vernon 1964; Cooke 1945). This region is
characterized by low rolling hills, generally more flat than the regions to the east and west,
with agriculture as a dominant land use. There are few streams in the eastern portion of
the region and more stream dissection and hills to the west. The Floridan aquifer is at or
near the surface in much of the region (Conover et al. 1984; Miller 1990). The
northwestern boundary of our region extends further west than the Dougherty Karst
District boundary of Brooks (1981b) to include Lake Jackson and the apparant karst-like
characteristics of northern Walton County. In this part of northern Walton County, the
Floridan aquifer is still only thinly confined (Miller 1990). The lake region is different from
the Dougherty/Marianna Plains ecological subregion of Griffith et al (1994) in that the New
Hope Ridge/Greenhead Slope area has been separated as a distinct lake region (65-03).
Once called the Lime Sink region (Harper 1914), the solution activity on the limestone
bedrock has formed numerous sinks, caverns, springs, and other karst features. Many of
the shallow depressions or sinks contain ponds or small lakes surrounded by cypress trees
8
-------
and other hydrophytic vegetation (Hubbel et al. 1956). Bays, dome swamps, or gum ponds
are names often used for these wetland areas. Some sinks contain water all year, while
many of the others are dry except in rainy periods. Other sinks appear only as areas of
darker more moist soils than the surrounding higher land (Head and Marcus 1984). The
region contains typically red sandy soils with clay loam subsoils developed on the
limestones or on weathered clastic sediments (Fernald 1981; Brooks 1982). The limestone
is exposed in some areas, but in other areas, sands and clayey sands reach thicknesses of
over 200 feet (Scott et al. 1980). Elevations are generally 100 to 200 feet, but range from
50 feet in the southern ends of the major river floodplains to 345 feet in northwest Walton
County, Florida's high point.
The chemical characteristics of lakes in this region can be variable depending upon a
lake's contact with bedrock geology or its isolation from the bedrock by surficial deposits of
impermeable clays and sands (Canfield 1981). Most of the lakes can be characterized as
acidic, slightly acidic or neutral, softwater lakes. They are relatively clear,' with low
nutrients, and low chlorophyll-o. Merrits.Mill Pond, which is spring-fed, is somewhat
anomalous, with high pH and hard water, and high nitrogen. Blue Lake chemistry also
appears affected by limestone near the surface. Cassidy and DeFuniak lakes are
somewhat different from the rest of the region's lakes, but the reasons are not readily
apparent. Cassidy Lake may be different due to its greater depth. DeFuniak is surrounded
by urbanization, but remains clear and unproductive with low color and low nutrients. The
Marianna Lowland lakes in Canfield's (1981) study were classified as oligo-mesotrophic or
mesotrophic.
65-02 Dougherty/Marianna Plains Lake Values
Mean
Value
PH
(lab)
n=17
Total Alkalinity
(mg/l)
n=17
Conductivity
(jiS/cm@25°C)
n=17
Total phosphorus
(WJ/I)
n=17
Total Nitrogen
(M-g/i)
n=18
Chlorophyll a
(ng/1)
n=18
Color
(pcu)
n=17
Secchi
(m)
n=14 ^
minimum
4.7
0.0
1 1
3
100
1
2
0.5
25th %
5.5
0.8
17
8
317
3
9
1.5
median
6.3
1 .8
2 0
1 3
43 8
5
12
2.3
75th %
6.4
5.4
28
16
499
9
20
2.7
maximum
8.2
96.0
191
44
1497
12
45
4.5
65-03 New Hope Ridge/Greenhead Slope
Also known as the Compass Lake Highlands and Crystal Lake Karst (Brooks 1982), this
region contains a relatively high density of solution lakes for the Florida Panhandle. The
New Hope Ridge section, with its northern boundary along the Holmes Valley scarp,
consists of high sand hills developed over Miocene sands, clays, and gravels (Puri and
Vernon 1964; Brooks 1981a, 1982). Elevations are generally 100-300 feet. The relief and
elevations decrease on the Greenhead Slope to the south, where karst features and
numerous lakes have developed on the Plio-Pleistocene clastic deposits that overlie
Miocene and earlier limestone. Similar to other well-drained upland sand ridge areas in
Florida, the region is a high recharge area for the Floridan aquifer (Conover et al. 1984).
9
-------
Soils for the lake region are primarily Entisols, such as those in the Lakeland-Troup-
Blanton association.
Lakes of the New Hope Ridge/Greenhead Slope region were chemically characterized as
acidic, softwater lakes of extremely low mineral content (Canfield 1981; Canfield et al.
1983). Along with the lakes in the Trail Ridge region, these may be some of the most acid-
sensitive lakes of the state, and, as precipitation/evaporation ratios are high and inseepage
fluxes of acid neutralizing capacity is small, the ionic chemical composition is largely
determined by atmospheric inputs (Canfield 1983b; Pollman and Canfield 1991). The
composition of the biotic communities of Florida's acid lakes appear to depend more on the
phosphorus and nitrogen status than on pH levels (Canfield 1983b; Pollman and Canfield
1991). Lakes in the New Hope Ridge/Greenhead Slope region are clear, low in nitrogen
and phosphorus, low in chlorophyll-a, and are among the most oligotrophic lakes in the
United States (Canfield 1981). Some of the lakes connected to stream drainages, such as
Black Double Lake and Lighter Log Lake in Washington County, are more colored. Round
Lake in Jackson County has anomalous chemistry with higher pH, conductivity, and
alkalinity values. It is not known if this is related to limestone or groundwater contact,
greater depth, or if highway runoff is affecting this lake.
65-03
Mew Hope Ridge/Greenhead Slope Lake Values
Mean
Value
pH
(lab)
n=28
Total Alkalinity
(mg/l)
n=28
Conductivity
(n.S/cm@25°C)
n=28
Total phosphorus
(Ml/I)
n=28
Total Nitrogen
(m-q/i)
n=21
Chlorophyll a
(M-g/")
n=21
Color
(pcu)
n=28
Secchi
(m)
n=22
minimum
4.5
0.0
1 1
0.7
23
0.5
0
0.9
25th %
4.9
0.0
1 5
2
87
1
3
3.2
median
5.2
O
O
1 7
3
1 5 3
2
5
3 . 6
75th %
5.7
0.7
1 9
4
213
2
8
5.0
maximum
7.1
6.7
36
8
233
3
29
6.9
65-04 Tifton/Tallahassee Uplands
The characteristics of this region change distinctly from west to east, and it contains a
heterogeneous mosaic of mixed forest, pasture, and agricultural land throughout it. The
upland region is composed primarily of sands, clays, and clayey sands of the Hawthorn and
Miccosukee formations. Mixed hardwoods and pine are found on the clayhill upland soils,
while longleaf pine/xerophytic oak types occur on the sandy, well-drained areas. The
western part of the region, the Tifton Upland, includes the Appalachicola Bluffs and
Ravines and the Quincy Hills, and is classified as Hawthorn and Citronelle formations by
Brooks (1981a). Dissection has left many shallow to moderately deep valleys, while flat to
rolling land tends to be located on the uplands. Elevations can exceed 300 feet. This
western part has few if any natural lakes, but many small ponds and reservoirs created on
stream channels. The southwest part of the region consists of thick sand delta deposits
(Brooks 1982) and contains one small lake, Lake Mystic three miles south of Bristol in
Liberty County, and a large reservoir. Lake Talquin, on the Ochlockonee River, is the
second oldest large reservoir in Florida, built originally for power generation in 1929
10
-------
(Heath and Conover 1981). To the east of the Ochlockonee River, entering Leon County,
karst features are more evident with many solution basins and swampy depressions. Two
of the larger lakes in the region, Lakes Iamonia and Miccosukee were classified by Wolfe
et al. (1988) as swamp lakes. Lake Iamonia drains periodically (e.g., 1910,1917, 1934, and
1981) when its karst drainage system becomes unplugged (Lane 1986). Lake Jackson has
drained about every 25 years since 1881 when its underground karst drainage system
becomes unplugged; the most recent drainage was in 1982 (Lane 1986). With diminishing
relief, the lake region narrows between Monticello and Greenville, arid extends east to
near Madison where it merges with the Northern Peninsula Karst Plains (65-06).
Lakes in this region tend to be slightly acidic to neutral, colored softwater lakes with
moderate nutrient values. Some lakes, such as Razor and Simpson in Jefferson County
and Blairstone in Leon County, have quite high pH and conductivity values because
groundwater is pumped in to counteract draining.
65-04 Tifton/Tallahassee Uplands Lake Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab) ,
(mg/l)
(jiS/cm®25°C)
(M/l)
(M/l)
(ng/D
(pcu)
(m)
n=25
n=25
n=25
n=37
n=36
n=36
n=25
n=27
minimum
5.4
0.4
1 1
'3
227
1
6
0.2
25th %
6.0
2.8
23
1;5
396
4
8
0.9
median
6.5
5.1
3 1
2 6
53 8
1 2
1 8
1 .3
75th -%->
7.3
,16
57
47
697
25
40
2.1
maximum
9.9
69 .
198
297
3.323
216
1 57
5.8
65-05 Norfleet/Spring Hill Ridge
This lake region contains small, upland, clear, acid type lakes that differ from the ;
darker, swampy, more nutrient-rich lakes of the Tifton/Tallahassee Uplands (65-04) and
Gulf Coast Lowlands (75-01) regions. It is somewhat of an anomalous area of xeric sand
hills that extend into the Gulf Coast Lowlands. Elevations are generally 60-120 feet, and
the natural vegetation consists of longleaf pine and xerophytic oaks (Davis 1967). Acid-
tolerant aquatic plants are found here, as most of the lakes have pH levels less than 5.5.
Some lakes and ponds show some color associated with rain events, especially Moore Lake
and Loften Ponds.
65-05 Norfleet/Spring Hill Ridge Lake Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab) ,
(mg/l)
(jiS/cm®25°C)
(M/l)
(M/l)
(M-g/t) .
(pcu)
(m)
n=6
n=6
n=6
n=7
. n=7
n=7
n=6
n=3
minimum
4.6
0.0
1 4
5
197
2
4 •
2.5
25th %
4.9
0.0
1 6
5
237
2
9
-
median
5.1
0.1
1 7
5
300
3
1 1
2.5
75th %
5.5.
0.8
1 9
6
330
3
17
.
maximum
5.8
2.2
24
11
633
4
20
5.3
11
-------
65-06 Northern Peninsula Karst Plains
This region, also known as the Suwannee Limestone Plains, is generally a well-drained
flat to rolling karst upland with elevations of 50-180 feet, but it contains a diversity of
physiographic subdistricts and geologic formations. Natural vegetation consisted of
longleaf pine/turkey oak, or hardwood forests on the richer soils (Davis 1967) soils, but
agriculture is now extensive in much of the region. Most areas are underlain by the
geologically diverse Miocene-age Hawthorn Group or by undifferentiated Quaternary-age
sediments. Brooks (1981a) mapped much of the region as the Pliocene Bone Valley
formation. Nutrient levels vary, but many lakes tend to have high phosphorus
concentrations.
In the north, the Madison Hills and Jennings Hills are somewhat hilly uplands of rich
soils with hardwood forests and agriculture. There are a few lakes, mostly small in size;
the largest are Grassy and Langford ponds in Madison County and lakes Octahatchee and
Alcyone in Hamilton County. Grassy Pond, as shown in the county soil survey, is located
in more poorly drained soils, the Plummer-Surrency association compared to the sandy
upland soils (Alaga-Blanton-Troup) of Langford Pond.
Many of the lakes in the lake region are located in an area between Live Oak and Lake
City in eastern Suwannee and western Columbia counties. The Lake City Kaxst
subdistrict is a karst area with several lake basins and xeric hills with elevations 90-180
feet. Lakes in this subdistrict include Orange Pond, Johns Pond, Hancock Lake, lakes
Wilson and Lona (appear intermittent on l;100,000-scale topographic maps), Lake Jeffery,
and several lakes in the Lake City urban area including Lake Hamburg, Alligator Lake,
and Watertown Lake. Both Alligator and Watertown lakes are hard-water lakes (Canfield
1981), although Alligator has received municipal sewage and stormwater runoff and parts
of it have been diked and drained for agriculture (Hand and Paulic 1992). Groundwater
connections as well as anthropogenic inputs could be elevating the conductivity and
phosphorus of some lakes around Lake City. The area occurs over Miocene deposits with
phosphatic sand and clayey sand (Brooks 1981a,b; 1982). The Wellborn Uplands (Live Oak
Hills, Rocky Creek Terrace, and Wellborn Hills) are primarily clastic capped hills of
moderate relief. Some areas have thick deposits of fine to medium sands and silts,
especially the Wellborn Hills between Wellborn and Live Oak (Knapp 1978b; Brooks 1982).
The McAlpin Plain, Haile Limestone Plain, and Williston Plain, karst plains generally 50-
150 feet in elevation, are part of Brooks' (1981b; 1982) Northern Peninsula Plains. Lakes
are not abundant in these areas but the many solution basins may fill seasonally.
In summary, the mosaic of lake types in this region has a wide-ranging distribution of
chemical and physical characteristics, as can be seen in the ranges between the 25th and
75th percentiles in the table below. Lakes tend to be slightly acidic, with low to moderate
alkalinity, and some color. Nutrient levels are variable, with some lakes definitely having
high levels. The region's median phosphorus is one of the highest in northern Florida.
12
-------
65-06 Northern Peninsula Karst Plains Lake Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(M/l)
(M/l)
(M/l)
(pcu)
(m)
n=21
n=19
n=21
n=28
n=26
n-25
n=21
n=22
minimum
4.6
0.0
22
11
282
1
12
0.3
25th %
5.8
2.3
39
23
605
6
19
0.7
median
6.5
00
<0
5 2
7 4
867
1 2
4 2
1 .2
75th %
7.3
33.5
131
153
1011
37
73
1.5
maximum
9.2
80.7
169
346
3083
300
333
2.8
75-01 Gulf Coast Lowlands
This is a disjunct region of three sections: Escambia County to Wakulla County in the
west, parts of Taylor, Madison and Lafayette counties in the center, and a narrow strips of
central Gilchrist and Levy counties. In the western Panhandle, xeric coastal strand and
pine scrub vegetation are found oh the relic lagoon, dune, and barrier island features.
Inland, pine flatwoods mixed with some hardwood forest and swamp vegetation are typical
on the clastic non-karst terraces and deltas of the Appalachicola area and the other flats
and swamps areas.
Several types of lakes occur in this region including coastal dune lakes, flatwood lakes,
"edge lakes", river floodplain or oxbow lakes, and reservoirs. Most of the lakes tend to be
darkwater, acidic, softwater lakes with low to moderate nutrients. Coastal dune lakes are
generally within two miles of the coast. These lakes can be eliptical or irregular in shape,
with or without surface inlets and outlets. Water is generally derived from lateral ground
water seepage through the well-drained coastal sands. They are slightly acidic, low
nutrient, darkwater systems that can freshen or turn salty depending on rainfall and
subsurface or overwash saltwater input, or salt spray. As one would expect, these dune
lakes have higher sulfate, sodium, and chloride levels than inland lakes. Examples of
coastal dune iakes are Morris, Campbell, Western, and Camp Creek lakes in Walton
County, Powell Lake in Bay County, and Duck Lake and Corn Landing Lake in Franklin
County. Coastal lakes, such as Corn Landing Lake, that are higher in elevation would
have longer periods of freshwater. Some lakes such as Western Lake in Walton County
contain freshwater fish, with saltwater fish in the more saline bottom layers. Dune lakes
are important breeding areas for insects that form the base of many food chains, and are
important'for birds and mammals inhabiting surrounding xeric and coastal ecosystems
(Wolfe et al. 1988; Florida Natural Areas Inventory 1990).
Flatwood lakes receive the majority of their water from direct rainfall and runoff from
surrounding poorly drained soils. These are generally acid, softwater lakes that are
oligotrophia to oligomesotrophic.
"Edge lakes" or sag ponds are found at the foot of relict marine terrace scarps or where
soluble limestone that is near the surface abuts an upland of thick insoluble sands. As
Wolfe (1989) explained it, "The slope of the water table steepens behind the face of the
scarp with the increased gradient of water flow, bringing the water table closer to the
ground surface immediately below the scarp. The increased water flow tends to dissolve
13
-------
the buried surface of the limestone, creating sag ponds along the tow of the scarp." An
example is Chunky Pond near the western edge of the Northern Brooksville Ridge (75-05).
In the Wacasassa Flats area of northern Gilchrist County, Sevenmile and Bagget lakes
appear to have some limestone influence, showing high pH, alkalinity, and conductivity
values (Suwannee River Water Management District data). These lakes are darker in
color, however, than the limestone influenced lakes of the nearby Big Bend Karst (75-06).
Two large reservoirs are located in the Gulf Coast Lowlands region. Dead Lake on the
Chipola River in Gulf and Calhoun counties was originally a natural impoundment created
by the alluvial sediments and old levees of the Appalachicola River. A dam was constructed
in the 1960's to enlarge and stabilize the impoundment, but was removed in 1988 (Florida
Resources and Environmental Analysis Center 1989). Dead Lake could be classified as a
riverine swamp lake. Its pH is generally between 6.0 and 7.0 and the lake receives some
limestone groundwater inputs. Deer Point Lake on Econfina Creek, is impounded above
North Bay, and is the major potable water supply for Panama City and Bay County (Florida
Resources and Environmental Analysis Center 1989).
75-01 Gulf Coast Lowlands Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(|iS/cm@25°C)
(HQ/I)
(HQ/I)
(M'l)
-------
Swift Creek Pond appear to have more swampy soils surrounding them (Plummer-
Pamlico-Dorovan association) than does Ocean Pond.
75-02 Okefenokee Plains Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll_a
Color
Secchi
Value
(lab)
(mg/l)
(p.S/cm@25°C)
" (ng/i)
(W3/I)
(ng/i)
(pcu)
(m)
n=4
n=4
. n=4
n=4
n=4
n=4
n=4
' n=3
minimum:
-4;4
0.0
40
1 1
383
• 1
77 ;
0.3
25th %
" 4.6
0.0
43
12
411
4
109
.
median
4.7
o
o
5 0
1 4
73 1
6
23 1
CO
o
75th %
4.8
0.0
59
. 27
1086
9
368
-
maximum
5.0
0.0
70
61
1220
16
445
1.2
75-03 Upper Santa Fe Flatwoods
This region includes portions of the High Flatwoods in the Sea Island District, and the
Perched Lakes and Prairies physiographic subdistrict from the Central Lakes District of
Brooks (1981b; 1982). It is predominantly an area of pine flatwoods with some swamp
forests (Davis 1967), and elevations are generally 120-180 feet. Lakes in this region
include Butler, Sampson, Crosby, Rowell, Hampton Lake, Alto, Hickory Pond, Santa Fe,
and Little Santa Fe. Punchbowl Lake sampled by the Lakewatch Program is on or near
the boundary with the adjacent Trail Ridge lake region. Almost all bf the lakes in the
region occur on thin Plio-Pleistocene undifferentiated sediments that overlie deeply
weathered clayey sand, granular sand, and kaolinitic clay of the Miocene Hawthorn Group.
In general the lakes are slightly acid, colored, with low to moderate nutrients. The pH
and alkalinity levels are higher than the Okefenokee Plains (75-02) to the north, and
phosphorus levels of the lakes are relatively low, averaging in the 10-15 fxg/l range. Lake
Rowell phosphorus levels are two to three times higher than the regional average,
receiving wastewater treatment plant discharges from the city of Starke via Alligator
Creek (Hand and Paulic 1992). Lake Sampson's chemistry may also be affected by these
discharges. Santa Fe Lake receives stormwater runoff from the city of Melrose.
75-03 Upper Santa Fe Flatwoods Lake Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(ng/1)
(M-g/f)
(pcu)
(m)
n=9
n=9
n=9
n=11
,n=1l
n=11
n=9
n=11
minimum
5.0
0.0
52
8
422
3
17
1.0
25th %,
5.4
0.3
66
10
515
5
33
1.2
median
5.9
1.0
6 8
1 3
557
6
5 5
1 .6
75th %
6.2
1.8
69
14
647
10
72
1.7
maximum
7.2
23.3
234
37
753
15
79
1.8
15
-------
75-04 Trail Ridge
Our Trail Ridge lake region consists of the Trail Ridge and Interlachen Sand Hills
physiographic subdistricts, and extends into the St. Johns Offset (Brooks 1981b; 1982).
The lake region has different characteristics from north to south. In the north, the narrow
depositional ridge has poor drainage and flatwood forest vegetation. It broadens to the
south becoming a karstic landscape with numerous solution depressions and lakes, with
longleaf pine-xerophytic oak vegetation. The sands that overlie the Hawthorn Group in
western Putnam County are slightly clayey, silty, poorly sorted quartz sands (Readle 1987).
The region is dominated by well-drained, nutrient-poor upland soils such as Candler,
Apopka, Astatula, and Tavares (Readle 1987; Caldwell and Johnson 1982).
Lakes in the Trail Ridge region are mostly small, acid, clear lakes, with some slightly
colored lakes, and are characterized as oligotrophic or oligo-mesotrophic. To the south,
conductance and macrophytes in the lakes tend to increase. Average lake phosphorus
values were mostly less than 10 |lg/l, with several lakes in the 10-15 (J.g/1 range.
With soils that generally have low cation exchange capacity and base saturation, there
is concern about increased acidification of Trail Ridge lakes. Although the evidence is not
clear for many lakes, there is some evidence that atmospheric deposition is contributing to
progressive acidification of lakes in this region (Hendry and Brezonik 1984; Pollman and
Canfield 1991).
Kingsley Lake is one of the largest lakes in the region and is also one of the deeper
lakes in Florida at around 85 feet (Heath and Conover 1981). It is different chemically
from most Trail Ridge lakes, with higher pH, alkalinity, and a different cation/anion mix
that reflects groundwater inputs rather than atmospheric controls on chemistry (Canfield
1981). Kingsley Lake water levels were shown to be remarkably stable over time from
1945-1985 (Deevey 1988). Kingsley Lake and Lake Geneva, another lake of elevated
alkalinity and pH, also have the most shoreline development in the region.
75-04 Trail Ridge Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll_a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(M/l)
(ng/i)
(M-g/i)
(pcu)
(m)
n=50
n=50
n=50
n=72
n=62
n=62
o
in
II
c
n=64
minimum
4.3
0.0
25
2
57
0.5
0
0.7
25th %
4.9
0.0
41
5
137
2
5
1.8
median
5.6
0.3
4 8
9
2 4 3
3
9
2.2
75th %
6.2
1.6
64
1 2
391
5
1 1
3.3
maximum
8.0
33
99
40
1 161
24
65
7.6
75-05 Northern Brooksville Ridge
This region, also known as the Newberry Sand Hills (Brooks 1981b), extends from the
southeast corner of Gilchrist County, through Levy County and into western Marion
County. Similar to the Southern Brooksville Ridge (75-13), the region's land surface is
very irregular. Elevations vary over short distances from about 70-170 feet. It is an area
of internal drainage and xeric sand hills, with natural vegetation of longleaf pine and
16
-------
turkey oak. Soils are of the Candler-Apopka-Astatula association. The thick sand
sequence is underlain by clayey phosphatic sediments of the Alachua Formation (Scott et al
1980). It is these underlying relatively insoluble elastics that provide the ridge's resistence
to solution and lowering of elevation compared to surrounding limestone plains areas1
(Knapp 1978; Scott et al. 1980). Brooks (1981a) mapped these Miocene-age elastics as
Hawthorn Formation of the Statenville type.
Several ponds are located west of Archer (Horseshoe, Watermelon, Barrel, Gossman,
Cubberly, Jake White) and another group of lakes is located in the southern end in the
Rainbow Lakes Estates area (Sand Pond, Little Bonable Lake, Bonable Lake, Tiger Lake,
Lindsdey Lake, Turner Lake, Section Sixteen Lake). Brooks (1981a,b) puts these southern
lakes on Plio-Pleistocene "terrace deposits" in the Waccasassa Flats flatwoods
physiographic subdistrict. Data from Bonable, Dinner, Section Sixteen, Tiger, and
Watermelon Pond indicate generally acidic lakes with moderately low nutrients and
moderate color. Bonable Lake has the darkest color, highest nutrients, and highest
alkalinity in the region, but-is still slightly acidic.
75-05 Northern
Brooksville Ridge Lake Values
Mean
Value
PH
, (lab)
n=5
Total Alkalinity
(mg/l)
n=5
Conductivity
(nS/cm@25°C)
n=5
Total phosphorus
(M/l)
n=5
Total Nitrogen
(MI/I)
n=5
Chlorophyll a
(M/l)
n=5
Color1
(pcu)
n=5
Secchi
(m)
n=3
minimum
4.8
0.0
31 .
5
293
1.7
21
0.5
25th % ¦:
48;
0.0
33
8
573
2.1
23
.
median
5.0
o
o
4 9
3 1
660
12
2 6
o
<0
75th %
5.8
0.6
49
34
840
% 24
35
-
maximum
6.1
1.1
54
42
953
26
85
2.4
75-06 Big Bend Karst
In this region, Miocene to Eocene-age limestone is at or near the surface from eastern
Wakulla County south to Pasco County. The inland parts of the region are typified by pine
flatwoods and swamp forest on poorly drained Spodosol soils, with some areas of mixed
pine and hardwood forest. The Big Bend coast is characterized by coastal salt marshes and
mangrove, rather than the barrier islands or beaches of the Gulf Coast Lowlands (75-01).
Reflecting the limestone influence, pH, alkalinity, and conductivity values in lakes are very
high for this part of Florida; nutrients are moderately low and lake color is variable but
generally low. Lake Rousseau is a large reservoir located on the Withlacoochee River at
the Levy/Citrus county line. Sediments, nutrients, and bacteria are added to this lake from
human activities, and abundant hydrilla growth occurs (Hand et al. 1994).
17
-------
75-06 Big Bend Karst Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(M-g/i)
(no/i)
(M-g/i)
(pcu)
(m)
n=6
n=6
n=6
n=9
n=7
n=7
n=6
n=7
minimum
7.1
29
81
7
260
1
1 4
1.1
25th %
7.5
91
201
1 2
378
1.2
1 9
1.8
median
7.9
1 0 5
2 3 0
1 8
4 8 0
1 . 4
2 9
2 . 0
75th %
8.4
1 36
280
32
517
2.2
62
2.2
maximum
1 1.7
234
468
48
863
1 1
105
3.6
75-07 Marion Hills
This lake region corresponds closely with Brooks' (1981b; 1982) Marion Hills region that
includes the Fairfield Hills, Anthony Hills, Kendrick Hills, Ocala Hills, and Cotton Plant
Hills. Elevations are generally 75-180 feet with some higher hills, and the natural
vegetation was primarily mixed evergreen and deciduous hardwood forests. Miocene-age
Hawthorn Group sediments of clayey sands compose much of the hill systems, with the
Eocene-age Ocala Limestone (or Crystal River Formation) near the surface in much of the
intervening karst terrain (Knapp 1978a; Brooks 1981a).
The region has few if any lakes, but contains about a dozen small ponds and some wet
prairie areas. Many of the small ponds are located in the area between Blichton and
Cotton Plant. These appear to be associated with soils of the Sparr-Lochloosa-Tavares
association that are not as well drained as other upland soils in the area. Bird Pond near
Cotton Plant was sampled in the ELS (Kanciruk 1986). Influenced by the near-surface
limestone, it had high pH and alkalinity, with low to moderate total phosphorus and color.
Small ponds located on the hilly Hawthorn sands would likely have a different chemistry,
although there appear to be fewer of these. Thus, while lake resources are not an
important characteristic of this region, the pond chemistry types may show a bi-modal
distribution. Lillian is a Lakewatch lake in Marion County that shows higher nutrient
levels.
75-07 IV
arion Hills Lake Values
Lake
PH
(lab)
Total Alkalinity
(mg/l)
Conductivity
;ixS/cm@25°C)
Total phosphorus
(Hfl/D
Total Nitrogen
(Hfl/D
Chlorophyll a
(M-S/l)
Color
(pcu)
Secchi
(m)
Bird Pond
8.5
166
3 1 3
1 1
-
30
1.2
Lillian
-
-
-
137
. 2088
101
-
0.6
75-08 Central Valley
This lake region is more similar to the physiographic divisions made by White (1970)
than those of Brooks (1981b), but it includes several physiographic areas and geologic
types. Our intent was to enclose an area where the lake types, chemistry, and productivity
were similar, but the lakes' sites and situations are variable, and they may have reached
their conditions for different physical reasons. In general, lakes of this region tend to be
large, shallow, and eutrophic: nitrogen, phosphorus, and chlorophyll-a levels are high, and
18
-------
Secchi disk transparency is low. The lakes tend to have abundant macrophytes or are
green with algae. The wide range of values shown in the table below underscores the fact
that lake water characteristics within the region, as well as lake size and type, are variable.
Most of the phosphorus values are in the 20 to 80 jxg/1 range with a median of 40 (Xg/1, but
the range is extreme. Alkalinity values are generally greater than 10 mg/1, but can range
from less than 5 to greater than 100 mg/1; pH values are mostly greater than 6.5. Canfield
(1981) found that much of the variability could be explained by dividing the lakes into two
groups: low mineral content and high mineral content. This relates to geologic influences,
although anthropogenic inputs and watershed size to lake volume ratios need to be
considered. The northern lakes in sandy deposits, such as Lake Eaton, Lochloosa Lake,
Newnans Lake, Orange Lake, and Lake Wauberg, were characterized as the softwater
eutrophic lakes, and tend to have lower pH and darker water than the southern lakes.
The southern lakes, such as Apopka, Dora, Eustis, Griffin, Harris, and Yale, often receive
mineralized groundwater as well as surface inflows through nutrient-rich soils, and were
classified as eutrophic hardwater lakes.
In the north, the lakes and marshes in the Alachua Prairies/Gainesville area occur on
either a limestone plain of the Eocene-age Ocala Limestone, on some clayey sand and
pebbles of the Hawthorn Group, or on fine to medium sands, silts and clays of Plio-
Pleistocene age. The small to medium scale geology references -show different
interpretations of the spatial extent of these geologic formations in this area (Brooks
1981a; Knapp 1978a; Thomas et al. 1983; Scott et al. 1986; Pirkle and Brooks 1959). The
prairies and lakes are around 60 feet in elevation and are associated with groundwater
levels. Several of the relatively large drainage lakes, such as Newnans, Orange, and
Lochloosa in the north, are structurally controlled. Structural controls on these lakes can
increase the accumulation of sediment and nutrient-rich detritus, affecting the lake
ecosystem's depth, clarity, plant communities, and productivity (Gottgens and Crisman
1993). '
In the south, lakes Apopka, Carlton, Beauclair, Dora, Harris, Eustis, Yale and Griffin,
are part of the Oklawaha chain of lakes. In this part of the Central Valley the water table
is within a few feet of the land surface and the po'tentiometric surface of the Floridan
Aquifer can be above the land surface (Bush 1974). Canals have altered the natural flow
patterns and agricultural activities on the muck soils have added chemicals and nutrients
to the connected surface water system. Lake Apopka has historically received large
amounts of industrial, agricultural, and urban wastes, and with lakes Dora, Eustis, and
Griffin are considered hypereutrophic and of poor quality (Hand and Paulic 1992).
We have extended the lake region westward across the Lake Harris Cross Valley
(White 1970), to include lakes Deaton, Miona, and Panasoffke in Sumter County. Lake
Panasoffke, with aquifer-fed springs, has high pH, hardness, and low to moderate
nutrients. It is sometimes included with the Tsala Apopka chain (region 75-12).
Panasoffke has stabilized water levels due to a dam on the outlet, and it also receives
limestone mining discharges (James Hulbert, FL DEP, personal communication).
19
-------
75-08 Central Valley Lake Values
Value
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
(lab)
(mg/l)
(n.S/cm@25°C)
(M-g/i)
(M-g/i)
(M-g/i)
(pcu)
(m)
n=44
n=44
n=44
n=46
n=45
n=46
n=44
n=42
minimum
4.3
0.0
36
6
373
1
7
0.2
25th %
6.5
6.8
64
20
900
6
24
0.4
median
7.0
16.1
9 8
4 0
1400
2 2
4 0
0 . 7
75th %
8.6
105.1
276
77
2462
80
1 00
1 .3
maximum
9.7
129
590
384
4393
382
700
2.9
75-09 Qcala Scrub
This is a region of ancient dunes with excessively drained deep sandy soils and sand pine
scrub forests. The western two-thirds of the region is underlain by deeply weathered
Miocene-age Hawthorn Group deposits, and contains more clayey sand with areas of
longleaf pine and turkey oak (Brooks 1981a, 1982; Scott 1979). Elevations range from 75-
180 feet. The eastern portion is lower in elevation and contains medium to fine sand and
silt developed on the Pleistocene sand dunes. Common soil series across the region are
Candler and Astatula. The Ocala Scrub contains acid, mostly clearwater, low-nutrient
lakes. The clear lakes are generally on the higher sandy ridges, moderate color lakes are
in lower transitional areas, and some prairie lakes can have darker water.
75-09 Ocala Scrub Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(H.S/cm@25°C)
(M/l)
(ng/i)
(ng/i)
(pcu)
(m)
n=57
N.
IT)
II
C
n=57
n=61
n=57
n=57
n=57
n=61
minimum
4.1
0.0
22
1
1 08
0.5
0
0.6
25th %
4.5
0.8
35
1 0
310
1.0
7
1.7
median
4 . 7
1 . 3
4 3
1 0
4 8 0
1 .4
1 8
2 . 8
75th %
5.0
2.0
5 1
1 1
687
3.2
27
3.5
maximum
8.5
114.5
252
29
2040
1 1.0
369
5.8
75-10 Eastern Flatlands
Due to a variety of landform features and its latitudinal extent, the Eastern Flatlands
forms a diverse lake region The landform features tend to be coast-parallel, reflecting the
marine forces that controlled their shape and formation. Ancient barrier islands, lagoons,
dune ridges, spits, and bars have left the current region ribbed by low sand ridges and
intervening valleys and swampy lowlands. The geology is a complex mix of Pleistocene
sand, shell, and clay deposits, as well as areas of peats. The St. Johns River and its
associated large lakes, formed in an ancient coastal lagoon system, are the dominant,
physical features of the region. River vegetation changes to hardwood swamp forests
north of Lake Harney from wet grassland prairies in the south (Davis 1967)
There are a mix of different lake types in the region. St. Johns River lakes tend to be
alkaline, hardwater, eutrophic, colored lakes. These include lakes Harney, Jessup,
Monroe, Dexter, and George, among others. To the south, the St. Johns Wet Prairie
20
-------
contains marshes, grass prairie and clumps of cabbage palms. The lake basins, according to
Brooks (1982), are controlled by structures in the Eocene-age Ocala limestone that
underlie the fine sand, silty sand, and clayey sand of the Pleistocene lagoonal deposits. The
upper St. Johns marsh lakes are also alkaline, mesotrophic to eutrophi'c, darkwater lakes,
but the chemical concentrations are somewhat lower than in the north. These include
Blue Cypress, Lake Hellen Blazes, Little Sawgrass and Sawgrass Lakes, Lake Washington,
Lake Winder, Lake Poinsett. Once the St. Johns River passes north of Sawgrass Lake,
inputs of mineralized water derived from marine sediments and salt springs increase in
importance (McLane 1955, Canfield 1981). Brooks (1981a) shows geology changes from Ft.
Thompson Group clastic and shell deposits to Princess Ann beach and dune sand and shell
deposits between Lake Winder and Lake Poinsett.
Flatwoods lakes in the region are acid to slightly acid, colored softwater lakes of
moderate mineral content, with variable trophic states. Other lake types include coastal
ridge lakes and dredged "build" ponds that are found along the more populated seaboard
area.
75-10 Eastern Flatlands Lake Values
Mean
Value
PH
(lab)
n=39
Total Alkalinity,
(mg/l)
n=39
Conductivity
(nS/cm@25°C)
n=39
Total phosphorus
(ng/1)
n=85
Total Nitrogen
(M-g/i)
n=84
Chlorophyll a
(M/l)
n=84
Color
(PC")
n=39
Secchi
(m)
n=75
minimum'
4.1
0.0
36
4
101
1
3
0.3
25th %. <•
5.0
0.5
76
17
621
4
85
0.6
median
6. 6
3.4
102
2 6
777
9
1 0 6
0.9
75th %
7.6
"46.0
420
46
1102
18
236 „
1.3
maximum
8.5
120.0
1111
165
2440
85
546
3.9
75-11 Crescent Gity/DeLand Ridges
We have included several sandy upland ridges in this lake region including, from north
to south, Palatka Hill, Crescent City Ridge, Deland Ridge, and the Geneva-Chuluotia-
Oviedo Hills area. The parent material for the thick sand soils of these upland areas is
deeply weathered Plio-Pleistocene coastal sand deposits (Brooks 1981a). Candler and
Astatula are the typical soil series, and natural vegetation consisted of longleaf
pine/xerophytic oak forests and some areas of sand pine scrub forests.
Our boundaries are sometimes different from physiographic boundaries in an attempt
to exclude some of the lakes at the edge of the ridges that receive water-inputs from
poorly-drained soils, such as Lake Margaret. These lakes that have lowland-type soils may
be more characteristic of the smaller darkwater lakes of the Eastern Flatlands, region 75-
10. Many lakes in region 75-11 are clear, acid, oligotrophic lakes of low mineral content
that obtain the majority of water from direct rainfall and surface/subsurface inflows
through well-drained sandy soils (e.g., Lake Broward). Canfield (1981) proposed that other
lake types on the Crescent City Ridge included'mesotrophic lakes of moderate mineral
content that receive inputs of groundwater (e.g., Lake Stella). In general, color values
tend to increase from north to south.
21
-------
75-11 Crescent City/DeLand Ridges Lake Va
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll_a
Color
Secchi
Value
(lab)
(mg/l)
(|xS/cm@25°C)
(WJ/I)
(ng/i)
(M-g/i)
(pcu)
(m)
n=29
n=29
n=29
n=51
n=50
n=50
n=28
CD
II
C
minimum
4.2
0.0
52
0.1
1 1 8
1
1
0.4
25th %
5.7
1.3
74
7
453
3
1 6
1.6
median
6.8
11.0
1 4 4
1 2
6 3 2
5
3 1
2.2
75th %
7.1
1 6.7
1 67
1 6
825
7
56
2.7
maximum
7.8
40.7
349
1 24
1 300
38
296
5.7
ues
75-12 Tsala Apopka
This is an erosional valley with thin surficial sands over Eocene-age Ocala limestone.
Some medium fine sand and silt cover the Tsala Apopka Lake area, but limestone is at the
surface on the other side of the Withlacoochee River within the region (Deuerling and
MacGill 1981). Swamps, marshes, and lakes cover much of the west side of the region,
with flatwood vegetation types found on firmer ground. Tsala Apopka Lake to the west of
the Withlacoochee River is a large area of interconnected ponds and wetlands that may be
a relict of a larger former lake that occupied the Tsala Apopka Plain (White 1970). Many of
the interconnected water bodies are intermittent. There are generally three open-water
pool areas: the Floral City Pool, the Inverness Pool, and the Hernando Pool. The "lake"
gets shallower and turns to marsh as one moves east. Canals and flow control structures
regulate water movement northward toward the Withlacoochee River. Tsala Apopka
water bodies are alkaline, hard-water, and mesotrophic to eutrophic. The average pH
shown by Canfield (1981) and Hand and Paulic (1992) was 7.3, and our values are all
greater than 7.1. Nutrient levels appear to be variable. Color decreases and conductivity
increases as one moves from the Floral City Pool in the south to Hernando Pool in the
north.
75-12 Tsala Apopka Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(M-g/D
(M-g/i)
(M-Q/l)
(pcu)
(m)
n=16
n=16
n=16
n=17
n=12
n=18
n=16
n=14
minimum
7.1
34.0
1 13
8
600
1
1 7
0.7
25th %
7.4
40.9
1 20
12
905
2
30
0.9
median
7 . 6
46.0
1 3 4
2 2
1042
9
3 6
1 . 2
75th %
7.7
60.3
171
35
1 176
27
1 10
1.5
maximum
8.5
185.1
376
1 68
1763
48
172
2.7
75-13 Southern Brooksville Ridge
Similar to the Northern Brooksville Ridge (75-05), this region has a very irregular
surface, but reaches higher elevations, with several hills between 200 and 300 feet. These
hills are often covered by mixed evergreen and deciduous hardwood forests, as well as
areas of pine (hammock, turkey oak sandhill, and longleaf pine sandhill communities).
22
-------
The region is characterized by thick sands, and drainage is generally internal to the
Floridan aquifer. Oligocene-age Suwannee Limestone is found near the surface in areas
just north of Brooksville and in Citrus County, although Alachua Formation or Hawthorn
Group deposits cover much of the region (Brooks 1981a; Deuerling and MacGill 1981).
Orange to reddish-orange clayey sands occur the length of the ridge and cap many of the
hills in the limestone area near Brooksville (Deuerling and MacGill 1981). Soils include the
Arredondo-Sparr-Kendrick, Lake-Candler, and Blichton-Flemington-Kanapaha
associations. The lake region includes the Hernando Hammock, Brooksville Hills and Dade
City Hills physiographic suhdistricts designated by Brooks (1981b, 1982).
The lakes tend to have higher pH, alkalinity, conductivity, and nitrogen than the
Northern Brooksville Ridge (75-05).- Although a few lakes are acidic, most are neutral to
alkaline, slightly colored, mesotrophic or meso-eutrophic lakes. Some lake phosphorus
values appear low, as the nutrients are taken up by dense aquatic macrophyte growth.
Canfield (1981) divided Brooksville Ridge'lakes into two groups: acidic, softwater,
mesotrophic lakes; and alkaline, relatively hard, softwater, mesotrophic lakes.
75-13 Southern
3r6oksville Ridge Lake Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll_a
Color
Secchi
Value
(lab)
(mg/l)
(n.S/cm®25°C)
(M/f)
(ng/i)
(ng/i)
(pcu)
(m)
n=18
n=18
n=18
n=18
n=17
. n=17
n=18
n=17
minimum
4.6
0.0
33
8
447
r'2
9
0.5
25th %
"6.5
9.9
59
17
737
5
26
0.8
median
7.2
1 8.2
1 1 3
3 0
1100
1 0
5 9
1 .3
75th %
8.0
30.2
141
62
1290
21
103
1.9
maximum
8.6
123.3
463
1221
1470
93
204
2.8
75-14 Lake Weir/Leesburg Upland
This upland region with elevations generally 75-125 feet stretches from Lake Weir in
the north to the city of Leesburg in the south. Lake Weir is the largest lake in the region
and there are numerous small lakes among citrus groves. The natural vegetation was
primarily longleaf pine/xerophytic oak (Davis 1967). Soils are primarily in the sandy, well-
drained Candler-Apopka-Astatula association (Thomas et al. Ii979; Furman et al. 1975), and
the underlying material consists of deeply weathered clayey sand of the Hawthorn Group.
Lakes in 75-14 are generally clear, acidic to neutral, low nutrient lakes.
75-14 Lake,Weir/Leesburg Upland Lake Va
Mean
pH -
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/dm@25°C)
(ng/1)
(ng/i)
(ng/i)
(pcu)
(m)
n=13
n=13
n=13
n=17
n=14
n=14
n=13
n=16
minimum
5.2
0.0
37
5
403
1
3
0.3
25th %
6.1
2.1
1 12
10
538
2
8
1.4
median
7.1
12.0
1 3 6
1 0
804
4
1 0
o
CM
75th %
7.3
17.9
153
12
1076
6
1 5
3.4
maximum
7.9
38.3
178
2 5
1522
12
68
4.5
ues
23
-------
75-15 Mount Dora Ridge
The Mount Dora Ridge lake region extends from near the Lake County / Marion County
border near Altoona, south to the towns of Eustis and Mount Dora. It is composed of high
sand hills, 75-180 feet in elevation, with excessively-drained to well-drained acid soils of the
Astatula and Apopka series, developed over coarse sands of Upper Miocene age (Brooks
1981a, 1982). There are many small, circumneutral, clear lakes of low color, low nutrients,
low chlorphyll_a, and moderate to moderately-high alkalinity. Nutrient and color values
tend to be slightly less than the adjacent Apopka Upland (75-16), and pH, alkalinity, and
conductivity are higher than the Lake Weir/Leesburg Upland (75-14). Steeply sloping sand
hills and old orange groves surround the lakes.
75-15 Mount Dora Ridge Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(M.S/cm@25°C)
(M-g/i)
(M-g/l)
(M-g/i)
(pcu)
(m)
n=14
n=14
n=14
n=18
n=16
n=16
n=14
n=16
minimum
6.9
8.5
161
5
433
0.8
4
0.7
25th %
. 7.1
1 6.0
1 84
7
482
2
5
1.9
median
7.5
3 1.6
2 4 7
1 0
5 2 4
3
1 0
O
CO
75th %
7.8
40.4
330
1 2
605
5
1 5
3.5
maximum
8.5
58.0
449
235
990
25
26
4.9
75-16 Apopka Upland
This is a region of residual sand hills modified by karst processes, with many small lakes
and scattered sinkholes. The lake region contains the southern part of White's (1970) Mt.
Dora Ridge region, and the Apopka Hills region of Brooks (1981b; 1982). Elevations range
from 70-150 feet. Candler-Apopka-Astatula and Tavares-Zolfo-Millhopper are the most
common soil associations, developed over more silt and clay than the coarser elastics of the
Mount Dora Ridge (Brooks 1981b; 1982). Longleaf pine/xerophytic oak was the natural
vegetation, although the current cover consists of citrus, pasture, and urban and
residential development. The physical and chemical characteristics of the lakes are varied,
and lake water level can be highly fluctuating through drought periods. There are some
acidic, clear, softwater lakes of low mineral content; some clear lakes with moderate
nutrients (some may lack macrophytes); and some darker water lakes that still have
circumneutral pH values. The high nutrient, darkwater data for Orange County's Lake
Wekiva stands out, as it once received sewage wastewater. Because of some of the
surrounding flatwoods soils, there is some debate that Lake Wekiva might have historically
had slightly higher nutrients compared to the upland lakes on the well-drained sandy soils
of the region.
The southwest boundary of the region is uncertain, as there was little distinct evidence
for the break. Portions of that boundary are similar to Brooks' (1981b) physiographic
boundary, but there was some debate among the authors on the placement of the line
around Johns Lake.
24
-------
75-16 Apopka Upland La
-------
75-18 Webster Dry Plain Lake Values
Lake
pH
(lab)
Total Alkalinity
(mg/l)
Conductivity
(p.S/cm@25°C)
Total phosphorus
(ng/i)
Total Nitrogen
(M-Q/l)
Chlorophyll a
(M-g/i)
Color
(pcu)
Secchi
(m)
Big Gant
7.6
149.0
351
46
773
10
42
1.7
Bugg Spr.
7.6
121.5
271
83
670
3
3
3.4
Indian Pr.
6.1
5.9
59
1 1
2520
1 1
170
0.9
75-19 Clermont Uplands
The Clermont Uplands is a region of prairies, swamps, solution lakes, and low to high
sand hills covered by citrus groves. Elevations range from 100 feet in the lower swamp
and prairie areas to 300 feet on the highest hills. The lake region includes the Groveland
Karst and Sugar Loaf Mountains regions of Brooks (1981b). The natural vegetation
consisted of pine flatwoods and hardwood swamp forests on Myakka-Placid-Swamp
association soils in the lowlands, and longleaf pine/xerophytic oaks on the well-drained
Astatula-Apopka soils of the uplands. Water-tolerant grasses grow in the shallow ponds
and marshes (Furman et al. 1975; Davis 1967). Deeply weathered clayey sands of the
Hawthorn Group make up the geological material on the western part, while the Sugarloaf
Mountains are underlain by the quartz sands, gravels, and clayey sands (Brooks 1981a).
There are some small areas of peat, especially between lakes Minneola and Minnehaha
west of Clermont (Scott 1978). Surface and subsurface waters from the Green Swamp
(75-26) flow into this region and parts of the region are drained by the Palatlakaha Kiver.
Lakes of this region are acidic, softwater lakes of low mineral content that are
oligotrophic to slightly mesotrophic. Some lakes have low color and high Secchi depth
values, such as Crescent, Emma, Hickorynut, and Trout, while other lakes are very dark.
Of the larger lakes in the region, the ones that receive drainage from the Green Swamp,
such as Lake Louisa are darkwater, and with distance to the north they tend to lighten:
Lake Minnehaha has less color than Louisa, while Minneola is clearer and deeper, and
Cherry Lake is clear.
75-19 Clermont Uplands Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(|iS/cm@25°C)
(*g/i)
(M-g/i)
(M-g/i)
(pcu)
(m)
CO
CO
II
c
CO
CO
11
c
n=33
n=39
n=32
n=32
n=33
n=36
minimum
4.7
0.0
49
5
347
1
5
0.2
25th %
6.3
2.0
101
1 0
608
2
17
1.0
median
6.6
4.4
1 22
1 2
8 8 5
3
5 0
1 . 6
75th %
7.0
14.0
168
1 6
1084
5
90
2.4
maximum
8.5
77.0
268
28
1557
2 1
471
4.6
26
-------
75-20 Doctor Phillips Ridge
This ridge of thick sands ranges in elevation from 100-.170 feet within the region and
contains many solution depression lakes. Soils of the ridge are primarily of the sandy
Tavares-Zolfo-Millhopper association (Orange County soil survey) or Candler-Astatula
(STATSGO), but there are also some wetter, lowland-type soils. The soils are underlain by
clayey sands and fine sands and silt of the Hawthorn Group (Brooks 1981a), or by other
formations of uncertain identity (Scott 1978; Doolittle and Schellentrager 1989).
There are over 30 lakes in this lake region; they are generally clear with circumneutral
pH, and are low in nutrients. As a group, these are some of the clearest lakes in central
Florida. The clearest lakes tend to be deeper than the others in the region, and the slightly
darker lakes, such as Lake Sheen, are lower in elevation or have wetter, lowland-type soils
near the lake. Lake Floy is darker with unusually high nutrients, but is heavily impacted
by road and stormwater drainage.
75-20 Doctor Phillips Ridge Lake Values
Mean
Value
pH
(lab)
n=9
Total Alkalinity
(mg/lj
ri=9
Conductivity
(|iS/cm@25°C)
-n=9
Total phosphorus
(M/i)",
n=15
Total Nitrogen
(H9/I)
n=15
Chlorophyll a
(*g/i)
n=16
Color
(pcu)
n=9
Secchi
(m)
n=15
minimum
6.9;
12.0
129
¦ 6
363
1.6
7
1.2
25th %
7.1
14.3
195
7
464
2.7 -
13
2.5
median
7.2
15.3
21 7
1 0
501
3.2
1 6
3.2
75th %
7.3
24.0
255
11
523
4.6
17
3.5 .
maximum
8.4
27.0
266
243
1735
66.6
20
5.2
75-21 Orlando Ridge
This is an urbanized karst area of low relief, with elevations from 75-120 feet. Longleaf
pine and xerophytic ,o6ks were the dominant trees of the natural vegetation. Soils are
primarily the Tavares, Smyrna, and Pomello series. An unnamed unit of non-marine
coarse clastic sediments, of Miocene age (poorly sorted quartz sands and pebbles imbedded
in kaolinitic clay) form the ridge (Scott et al. 1980). Phosphatic sand and clayey sand are at
a shallow depth according to Brooks (1982).
Lakes in this region can be characterized as clear, alkaline, hardwater lakes of
moderate mineral content. They are mesotrophic to eutrophic (Canfield 1981), but it is
difficult to distinguish between effects of urbanization and natural phosphatic levels.
Lakes are more phosphatic and green than the Crescent City/DeLand Ridges (75-11), and
only slightly more than the Apopka Upland (75-16). The water of clear, low nutrient Lake
Conway is somewhat anomalous, possibly related to lake depth.
The area around Cassleberry could-be included with the Geneva-Choluota Hills as
depicted by Brooks' (1981b) physiographic region, but, perhaps because of the urban
influence, it appears to fit with the Orlando Ridge lakes.
27
-------
75-21 Orlando Ridge Lake Values
Mean
Value
pH
(lab)
n=40
Total Alkalinity
(mg/l)
n=40
Conductivity
(|iS/cm@25<>C)
n=40
Total phosphorus
(ng'i)
n=89
Total Nitrogen
(MI/I)
n=89
Chlorophyll a
(Hfl/I)
n=89
Color
(pcu)
n=40
Secchi
(m)
n=85
minimum
5.7
1.6
1 3
6
1 1 8
0.5
0
0.4
25th %
7.7
29.8
169
21
650
1 4
1 0
1.0
median
7.8
4 8.1
1 8 3
3 1
76 1
2 2
1 4
1 .3
75th %
8.1
56.6
205
47
940
35
1 7
1.9
maximum
9.3
88.7
267
179
2177
1 1 6
68
8.1
75-22 Tampa Plain
The low-relief Tampa Plain has elevations ranging from 5 to 90 feet and contains some
karst features. Medium to fine sand and silt cover the Quaternary Ft. Thompson
Formation elastics and shell deposits, and the MioceneTampa Member of the Arcadia
Formation. The lake region includes the Odessa Flats, Lake Tarpon Basin, and parts of the
Land-o-Lakes physiographic subdistricts of Brooks (1981b). Common soil associations
include Smyrna-Sellers-Myakka (Pasco County) and Myakka-Bassinger-Holopaw
(Hillsborough County). Pine flatwood vegetation was dominant in this area. The region
has slightly acidic, darkwater, mesotrophic lakes, in contrast to the clearer lakes of the
bordering Keystone Lakes (75-23) and Land-o-Lakes (75-24) regions.
75-22 Tampa Plain Lake Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(|xS/cm@25°C)
(M-g/i)
-------
75-23 Keystone Lakes La
ke Values
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
0iS/cm@25°C)
(ng/i) -
(NJ/I)
(ng/i)
(pcu)
(m)
n=19
n=19
n=19
n=32
n=33
n=32
n=19
in
CM
II
C
minimum
4.6
0.0
100
3
103
1
2
0.7
25th %
6.3
2.2
134 ¦
8
413
2
13
1.7
median
to
7.2
162
1 3 .
567
5
2 6
CO
CM
75th %
6.8
10.1
175
18
692
10
34
2.9
maximum
7.6
34.0
248
27
1078
21
75
4.5
75-24 Land-o-Lakes
This is a sandy upland region that separates the Tampa Plain (75-22) and Hillsborough
Valley (75-25). Elevations of the region are mostly 30-80 feet, and there is a high density
of lakes. Soils are generally similar to those in region 75-23. Natural vegetation was
dominated by longleaf pine and turkey oaks, now mostly removed for citrus groves and
residential development. The lakes are neutral to slightly alkaline, low to moderate
nutrient, clearwater lakes. Some lakes are occasionally augmented with groundwater.
75-24 Land-o-Lakes Lake Values
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(H9/I)
(m/|)
(H0/I)'
(pcu)
(m)
't:
;.n=20,
n=20
n=20
n=39
n=38
n=38
n=20
n=31
minimum^
6.1 :
2.1
56
6
260
1
12
. 0.4
25th'
" 7.0
12.3
126
1 1
537
3
17
1.5
median
7.3
2 3.0
1 78
1 4
734
6
2 1
2.3
75th %
7.6
40.1
211
21
921
1 2
33
3.4
maximum
8.4
93.7
257
42
1960 =
35
93
4.0
75-25 Hillsborough Valley
This: is a plain of low-relief containing relatively sluggish surface drainage of the
Hillsborough River watershed. Natural vegetation is varied, including longleaf pine/turkey
oak, pine flatwoods, and hardwood swamp forests (Davis 1967). There are karst features,
but almost no lakes in this region. Data for three lakes indicate that generally alkaline,
moderate to high nutrient, darkwater lakes are found in this region. Lake Thonotosassa is
the largest, and is alkaline and hypereutrophic (Brenner et al. 1996). High nutrient
loadings from urban and industrial sources also enter the lake, and algae blooms and fish
kills have been observed (Hand and Paulic 1992, Hand et al. 1994).
75-25 Hillsborough Valley
.ake Values
Lake
pH
(lab)
Total Alkalinity
(mg/l)
Conductivity
(nS/cm®25°C)
Total phosphorus
(ng/i)
Total Nitrogen
(ng/D
Chlorophyll a
(ng/0
Color
(pcu)
Secchi
(m)
no name
7.1
7.1
91
29
105
1.3
Ten Mile
-
-
-
40
1094
. 43
-
0.9
Thonoto-
sassa
8.3
47.9
214
834
1452
67
82
0.7
29
-------
75-26 Green Swamp
The Green Swamp is a distinctive feature of the central Florida peninsula. It is an
extensive area of flatland and swampland at a relatively high elevation, 75-150 feet, and it
contains the headwaters of the Withlacoochee, Oklawaha, Hillsborough, Peace, and
Kissimmee rivers. It is not a continuous expanse of swamp, but a composite of many
swamps interspersed with low ridges, hills, and flatlands (Pride et al. 1966). Our Green
Swamp region includes the Webster Limestone Wet Plain in the west that overlies the
Eocene Ocala limestone, as well as the Green Swamp area to the east above the Miocene
Hawthorn Group sediments. The overlying layer of clastic deposits of sand and clay are
thinner to the west (Pride et al. 1966). The vegetation includes cypress in the swampy
areas, pine flatwoods, and some pine and oak in the upland, better-drained areas.
The water table is at or near the surface in much of the region, with large areas of
standing water after heavy rainfall. Surface waters are generally colored and acidic, but
there are few, if any, natural lakes. Mill Stream Swamp was sampled under the
Lakewatch program.
75-26 Green Swamp Lake Values
Lake
PH
(lab)
Total Alkalinity
(mg/l)
Conductivity
(n.S/cm@25°C)
Total phosphorus
(ng/i)
Total Nitrogen
(ixg/D
Chlorophyll a
(M-g/i)
Color
(pcu)
Secchi
(m)
Mill Stream
Swamp
-
46
1346
33
75-27 Osceola Slope
This region is composed of Pleistocene lagoonal deposits with a top layer of medium to
fine sands and silts. Elevations are generally 60-90 feet, and somewhat higher than the
Lake Toho area lakes to the west, and the soils are more heterogeneous as well. Smyrna,
Myakka, and Tavares soils are on the better-drained low ridges and knolls, and Basinger
and Samsula soils are found in the wet and swampy areas adjacent to parts of some lakes.
Vegetation is primarily pine flatwoods (Davis 1967), but some low, dry ridges have turkey
oak and sand scrub. Osceola Slope lakes are acidic, relatively low nutrient, colored lakes.
The lakes have lower color, pH, alkalinity, conductivity, and nutrient values than lakes in
the Kissimmee/Okeechobee Lowland (75-35).
75-27 Osceola Slope Lake Values
Mean
Value
PH
(lab)
n=17
Total Alkalinity
(mg/l)
n=17
Conductivity
(n.S/cm@25°C)
n=17
Total phosphorus
0MJ/I)
n=18
Total Nitrogen
(M>l)
n=16
Chlorophyll a
(M-g/i)
n=16
Color
(pcu)
n=16
Secchi
(m)
n=15
minimum
4.5
0.0
56
10
389
2
22
0.2
25th %
5.6
0.5
88
14
637
4
64
0.6
median
5.8
2.2
1 0 1
1 7
847
7
1 3 5
1 . 1
75th %
6.1
3.1
1 16
23
985
9
219
1.6
maximum
7.1
11.5
1 52
84
1280
1 1
300
2.6
30
-------
75-28 Pinellas Peninsula
The coastal geology changes in this region from the exposed limestone in regions to the
north to, a covering of clastic sediments. The northern part of the Pinellas Peninsula is
underlain by deeply weathered sand hills of the Miocene Hawthorn Group, with
Pleistocene sand, shell, and clay deposits covering the southern part. Besides the coastal
strand, the natural vegetation consisted of longleaf pine/xerophytic oak on the north and
west, and pine flatwoods on the southeast (Davis 1967). The dominant characteristic of the
region now is the Clearwater/St. Petersburg urbanization.
Several small lakes are found in this region, with sampling done at Cliff Stephens Park,
Harbor, Loch Haven, Maggiore, Moccasin, and Seminole. They are high nutrient lakes,
and this may be a result of phosphoritic pebbles in the Hawthorn Group sediments; as well
as due to anthropogenic impacts- Alkalinity and pH values also appear high, although this
is based on data only from lakes Maggiore and Seminole.
75-28 Pinellas Peninsula Lake Values
Mean
Value
PH
(lab)
• n=2 .
Total Alkalinity
. (mg/l)
• n=2
Conductivity
(nS/cm®25°C)
n=2
Total phosphorus
n=6
Total Nitrogen
(M-g/i)
n=6
Chlorophyll a
(ng/i).
n=6
Color
(PCU)
n=2
Secchi
(m)
n=6
minimum
8.6
90.4
404
14
545
4
27
0.3
25th %
-
-
- ¦
78
930
45
s
0.4
median
8.7
1 00.2
7 06
87
1 370
4 9
2 9":
0.9
75th %
-
.
98
1837
61
-
1.2
maximum
8.8
109.9
1008
122
2330
67
32
3.2
75-29 Wimauma Lakes
This very small region includes only Lake Wimauma and Carlton Lake. These are
clear, acidic, low nutrient, small water bodies. No lake data were collected from this region
for this project. The soils in this area are a complex mosaic of alkaline and acid sands. The
extent of these relatively anomalous clear, acidic, oligotrophic lakes within the
Southwestern Flatlands (75-36) region is not known, although there are probably very few
other lakes similar to Wimauma and Carlton.
75-30 Lakeland/Bone Valley Upland
The'lake region includes the Lakeland Ridge, the Bone Valley Uplands, and part of the
Bartow Embayment physiographic subdistricts of Brooks (1981b; 1982). The Lakeland
Ridge consists of sand hills hear 200 feet in elevation with many solution depression lakes;
the Bone Valley Uplands and the Bartow' Embayment, within White's (1970) Polk Upland
physiographic region, tend to be more poorly drained flatwoods areas. All of these areas
are covered by phosphatic sand or clayey sand from the Miocene-Pliocene Bone Valley
Member of the Peace River Formation in the Hawthorn Group (Scott 1992; Scott and
31
-------
MacGill 1981). The region generally encompasses the area of most intensive phosphate
mining, but phosphate deposits and mining activites are also found south of this region.
As one might expect, the dominant characteristic of all lakes in this region is high
phosphorus, along with high nitrogen and chlorophyll-a values. The lakes are alkaline,
with some receiving limestone-influenced groundwater.
75-30 Lakeland/Bone Valley Upland Lake Va
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm@25°C)
(M-g/i)
(M/l)
(M/l)
(pcu)
(m)
n=17
n=17
n=17
n=18
n=18
n=18
n=17
n=13
minimum
7.3
22.7
101
59
1276
40
1 5
0.3
25th %
7.5
24.0
1 52
120
1703
79
1 8
0.6
median
o
00
50.8
1 63
3 4 4
1852
9 1
2 8
0 . 7
75th %
9.1
66.0
197
526
2420
1 36
33
0.9
maximum
9.8
143.7
408
965
4493
252
40
1 .0
ues
75-31 Winter Haven/Lake Henry Ridges
This upland karst area, 130-170 feet in elevation, has an abundance of small to medium
sized lakes. Candler-Tavares-Apopka is the dominant soil association of the well-drained
upland areas, with longleaf pine and xerophytic oak natural vegetation. Pliocene quartz
pebbly sand and the phosphatic Bone Valley Member (Peace River Formation) of the
Hawthorn Group comprise the underlying geology. The lakes can be characterized as
alkaline, moderately hardwater lakes of relatively high mineral content, and are eutrophic.
75-31 Winter Haven/Lake Henry R
Mean
pH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color ¦
Secchi
Value
(lab)
(mg/l)
(H.S/cm@25°C)
(M-g/i)
(n-g/i)
(Hfl/D
(pcu)
(m)
n=25
n=25
n=25
n=44
n=43
II
c
n=26
o
II
c
minimum
6.6
3.2
147
8
358
1.5
8
0.3
25th %
7.5
31.0
191
21
695
1 3
1 2
0.8
median
-nI
OO
37.6
2 75
2 6
8 7 0
2 4
2 0
1 . 1
75th %
8.0
59.4
331
39
1312
40
26
1.3
maximum
9.0
87.0
417
470
1997
1 05
57
3.7
idges Lake Values
75-32 Northern Lake Wales Ridge
This narrow ridge forms the topographic crest of central Florida, with our lake region
extending south from the Clermont Uplands in Lake County to the Livingston Creek
drainage in Highlands County. Elevations are generally 100-300 feet. An unnamed unit of
non-marine coarse clastic sediments of Miocene age (poorly sorted quartz sands and
pebbles imbedded in kaolinitic clay) form the ridge (Scott 1980). Although the Iron
Mountains (Brooks 1981b) are shown as the Miocene Hawthorn Formation, Interlachen
facies, other parts of this region are classified as Pleistocene beach and dune sand and
Pliocene undifferentiated sand (Brooks 1981a). The well-drained sandy soils are
dominated by the Candler-Tavares-Apopka association, covered by citrus groves, pasture,
32
-------
and urban and residential development. The lakes are mostly alkaline, low to moderate
nutrient, clearwater Lakes. Nitrogen values tend to be high. These lakes are richer in
nutrients than lakes in the Southern Lake Wales Ridge (75-33), although the cause of this
is not readily apparent. Citrus production and land cover appear similar in both regions.
75-32 Northern Lake Wales Ric
Mean
PH
Total Alkalinity
Conductivity
Total phosphorus
Total Nitrogen
Chlorophyll a
Color
Secchi
Value
(lab)
(mg/l)
(nS/cm®25?C)
(M-g/i)
(HQ/I)
(pcu)
(m)
n=15
n=15
n=15
n=20
n=18
00
n
c
n=15
n=16
minimum
6.0
0.2
79
3
331
1
6
0.5
25th %
7.2
15.2 .
125
8
632
4
7
1.0
median
7.9
35.0
192
1 6
1015
1 1
1 0
1 .9
75th %
8.3.
56.5
- 291
22
1760
20
17
2.6
maximum
8.9
130.6
425
38
5970
52
96
7.5
ge Lake Values
75-33 Southern Lake Wales Ridge
This lake region contains parts of the southern ridge and the Intraridge Valley where
there are mostly clearwater lakes. Elevations range from 70-150 feet, and soils are
generally in the sandy, well-drained Astatula-Paola-Tavares association. The landcover is
primarily citrus groves, with rapidly expanding urban.and. residential areas. The lakes in
the region range from acidic to alkaline, but almost all are clear with low color and low
nutrients.
75-3
3 Southern
Lake Wales Rid
ge Lake Values
Mean
Value
PH
(lab)
n=35
Total Alkalinity
(mg/l)
n=35
Conductivity
(jiS/cm®25°C)
n=35
Total phosphorus
(ng/i)
n=42
Total Nitrogen
(ng/i)
n=31
Chlorophyll a
(M/l)
n=29
Color
(pcu)
n=35
Secchi
(m)
n=41
minimum
5.0
0.0
36
2
233
1 .
2
0.8-
25th %
6.3
1.9
132
5
418
3
5
2.0
median
CO
fx.
14.3
1 6 1
8
5 1 7
4
9
3.1
75th %
7.7
22.6
233
12
882
6
11
4.8
maximum
; 9.4
37.1
367
125
4803
35
28
7.2
75-34 Lake Wales Ridge Transition
This lake region includes the ridge margin or transition lakes that aire darker colored
with higher nutrients than the lakes found on the Southern Lake Wales Ridge (75-33).
Elevations are 70-130 feet, and there.are more extensive areas of poorly-drained soils,
such as the Satellite and Basinger. series. Peaty muck Samsula soils border many of the
lakes. The lake region also includes the narrow Bombing Range Ridge on the east. This is
a narrow, 20 mile long sand ridge located in the Avon Park Bombing Range between Lake
Kissimmee and Lake Istokpoga. Elevations reach near 150 feet. The ridge may have been
an offshore sand bar associated with and created together with the Lake Wales Ridge
(Lane et al. 1980). The sand pine and scrub covered ridge contains soils of the Satellite-
Archbold-Pomello association, similar to the edges of the Lake Wales Ridge where the
33
-------
more colored lakes are located. There are several very small lakes on this ridge, but little
is known about them. About ten small lakes are shown within Bombing Range Ridge on
the Bartow 1:100, 000-scale topographic map with two named lakes: Submarine Lake and
Little Lake. The lake region also includes a small area of upland soils near Lake Buffum
on the west. Most of the lakes in the region are acidic, although about one-third of them
tend to be alkaline. They have low to moderate nutrients, and are slightly to moderately
colored.
75-34 Lake Wales Ridge Transition Lake Va
Mean
Value
pH
(lab)
n=28
Total Alkalinity
(mg/l)
n=28
Conductivity
(|iS/cm@25°C)
n=28
Total phosphorus
(M-g/i)
n=27
Total Nitrogen
(ng/i)
n=25
Chlorophyll a
(ng/1)
n=25
Color
(pcu)
n=28
Secchi
(m)
n=30
minimum
4.4
0.0
50
0
279
4
5
0.1
25th %
5.8
2.3
76
1 4
517
6
22
0.8
median
6.6
•P*
CO
9 3
1 9
8 1 0
1 1
4 1
1 . 1
75th %
7.8
26.6
1 89
42
977
23
68
1.5
maximum
8.9
96.0
346
148
2940
75
250
3.4
ues
75-35 Kissimmee/Okeechobee Lowland
This region includes the Kissimmee Valley, a lowland with prairie type grasslands,
flatwoods, and some swamp forest. The regional boundaries also enclose most of the
Fisheating Creek drainage to capture the hydrologic inputs to Lake Okeechobee. The wet
prairies of this region are seasonally flooded, and dry prairies on seldom-flooded flatland
have mostly been converted to pasture (Davis 1967). Pleistocene lagoonal deposits of
coastal sand and shelly silty sand characterize the geology (Brooks 1981a). Lakes are
alkaline, eutrophic, and colored. The shallow, subtropical Lake Okeechobee is one of the
largest lakes in the United States, and historically formed the direct link between waters of
the Kissimmee basin and the Everglades (76-01). Now encircled by a flood-control dike,
with regulated inflows and outflows, the lake serves as a water supply for urban and
agricultural areas, as well as supporting habitat for migratory waterfowl and a valuable
fishery (Havens et al. 1996).
75-35 Kissimmee/Okeechobee Lowland Lake Values
Mean
Value
PH
(lab)
n=13
Total Alkalinity
(mg/l)
n=l3
Conductivity
(nS/cm@25°C)
n=13
Total phosphorus
(WJ/I)
n=13
Total Nitrogen
(M-g/i)
n=13
Chlorophyll a
(M-g/t)
n=13
Color
(pcu)
n=13
Secchi
(m)
n=13
minimum
6.9
8.4
76
1 7
455
2
42
0.5
25th %
7.0
14.7
102
34
847
1 0
53
0.6
median
CO
21.7
1 1 8
4 3
1063
1 5
9 1
0 . 7
75th %
7.8
25.9
126
57
1111
1 8
1 1 6
1.0
maximum
8.5
100.3
443
1 46
1276
44
216
1.2
34
-------
75-36 Southwestern Flatlands
This lowland lake region includes barrier islands, Gulf coastal flatlands and valleys, and
gently sloping coastal plain terraces at higher elevations. The elevations range from sea
level to 150 feet. Much of the pine flatwoods and wet and dry grassland prairies have been
converted to extensive areas of pasture, rangeland, and young citrus groves. Urban areas
are growing rapidly near the coast; Lakes in this region can range from slightly acidic to
alkaline, but almost all are eutrophic and have dark colored water. Some lakes near the
Lake Wales/WinterHaven area appear more similar to the Lake Wales Ridge Transition
(75-34) lakes, that is, with more moderate levels of nutrients and color, such as in South
Crooked, Myrtle, and Lowery lakes in Polk County. The larger number of lakes shown in
the phosphorus, nitrogen, chlorophyll-a, Mid Secchi columns in the table below are mostly
from small ponds and waterbodies on Sanibel Island and from a small area south of Punta
Gorda sampled in the Lakewatch program.
75-36 Southwestern Flatlands Lake Values
Mean
Value
pH
(lab);
n=17
Total Alkalinity
(mg/l)
n=17
Conductivity
(nS/cm©25°C)
n=17
Total phosphorus
(ng/i) '
n=44
Total Nitrogen
(M/l)
n=42
Chlorophyll_a
(ng/i)
n=39
Color
(pcu)
n=16
Secchi
(m)
n=37
minimum
5.4
1.8
82 .
16
618
3
23
0.2
25th %
6.6
4.8
121
54
1245
1 1
60
0.4
median
6.7
10.2
167
101
1662
3 4
9 1
0.7
75th %
7.3.
30.3
201
219
2182
52
125
1.2
maximum
8.6
76.0
'319
564
3686
190
390
2.8
75-37 Immokalee Rise
This area of slightly elevated land, with elevations of 25-35 feet, includes the Immokalee
Rise, Corkscrew Swamp, and Devils Garden physiographic subdistricts of Brooks (1981b;
1982). Pine flatwoods and wet prairies are dominant natural vegetation types. Geologic
formations include Miocene-age Tamiami Formation sands and clays, and Pleistocene-age
calcareous shelly sand of the Caloosahatchie Formation and clastic and shell deposits of the
Fort Thompson Group (Brooks 1981a; Vernon and Puri 1964). Lake Trafford is the largest
lake in the region. It was characterized as an alkaline, hard water lake of high mineral
content (Canfield 1981). There are few other lakes in the region, and these would tend to
be small, swampy, and seasonal.
75-37 Immokalee Rise Lake Values
Lake
PH
(lab)
Total Alkalinity
(mg/l)
Conductivity
(nS/cm®25°C)
Total phosphorus
(ng/l) • ¦
Total Nitrogen
(iifl/l)^
Chlorophyll a
(nq/l)
, Color
(pcu)
Secchi
(m)
Trafford
8.5
11 1
225
65
1270
28
48
1.0
76-01 Everglades
This region begins south of Lake Okeechobee to include the Everglades Agricultural.
Area, the water conservation areas, and the sawgrass and sloughs of the national park.
35
-------
The eastern and western boundaries of the region are from Griffith et al. (1995). The flat
plain of saw-grass marshes, tree-islands, and marsh prairies, with cropland in the north,
ranges in elevation from sea level to twenty feet. Peat, muck, and some clay are the main
surficial materials over the limestone. Wide sloughs, marshes, and some small ponds
contain most of the surface waters in this "River of Grass" region. Canals drain much of
the water in some areas. No data for the small ponds were collected for this study.
76-02 Big Cypress
The Big Cypress is a flat region, 5 to 30 feet in elevation and slightly higher than the
Everglades, covered by pine flatwoods, open scrub cypress, prairie type grasslands, and
extensive marsh and wetlands. Poorly drained soils overlie limestone, calcareous
sandstones, marls, swamp deposit mucks, and algal muds. Lakes are absent from the
region.
76-03 Miami Ridge/Atlantic Coastal Strip
This is a heavily urbanized region, sea level to 25 feet in elevation, with coastal ridges on
the east and flatter terrain to the west that grades into the Everglades. The western side
originally had wet and dry prairie marshes on marl and rockland and sawgrass marshes
(Davis 1967), but much of it now is covered by cropland, pasture, and suburbs. To the
south, the Miami Ridge extends from near Hollywood south to Homestead and west into
Long Pine Key of Everglades National Park. It is a gently rolling rock ridge of oolitic
limestone that once supported more extensive southern slash pine forests as well as
islands of tropical hardwood hammocks. The northern part of the region is occupied by the
Green Acres Sand Prairie (Brooks 1981), a plain of pine flatwoods and wet prairie, and
coastal sand ridges with scrub vegetation and sand pine. There are few natural lakes in
the region, but three types of ponded surface waters occur: 1) Pits dug deep into
underlying "rock" containing water that is clear, high pH and alkaline, with moderate
nutrients; 2) Shallow, surficial dug drains that are darker water; and 3) flow-through
lakes (e.g., Lake Osborne) that are colored and nutrient rich. Data for only two lakes were
collected in this region, Osborne in Palm Beach County was sampled by Canfield (1981)
and Lakewatch, and Tigertail in Broward County by Canfield (1981).
76-03 Miami Ridge/Atlantic Coastal Strip Mean La
Lake
pH
(lab)
Total Alkalinity
(mg/l)
Conductivity
((j.S/cm @25°C)
Total phosphorus
(M-g/i)
Total Nitrogen
(ng/D
Chlorophyll_a
(ng/i)
Color
(pcu)
Secchi
(m)
Osborne
8.2
204
477
138
11 68
40
60
1.0
Tigertail
8.9
66
1 66
1 4
607
2.5
4
-
-------
76-04 Southern Coast and Islands
This region includes the Ten Thousand Islands and Cape Sable, the islands of Florida
Bay, and the Florida Keys. It is an area of mangrove swamps and coastal marshes, coral
reefs, various coastal strand type vegetation on beach ridge deposits and limestone rock
islands. Although freshwater habitats are limited or non-existent in this region, any
freshwater that does occur for periods of time may have great ecological significance.
Coastal rockland lakes are small in size and number, occurring primarily in the Florida
Keys. With a limestone rock substrate, the waters are alkaline, with high mineral content
and highly variable, salinity levels. These rockland lakes provide important habitat for
several kinds of fish, mammals, and birds of the Keys (Florida Natural Areas Inventory
1990). Reduction,in the fresh groundwater lens that floats, on the more dense saline
groundwater can severely affect these lakes. Chemistry data for these lakes were not
available for this study.
CONCLUSIONS AND RECOMMENDATIONS
The lakes of Florida contain a wide range of variation in their limnological
characteristics. Similar to findings of other regional lake surveys, there is a strong
relationship between the chemical composition of Florida's lakes and factors such as soils,
physiography, and surficial geology. In addition to the natural variation of lake
characteristics through time and space, a variety of human activities have modified
surrounding landscapes, with certain modifications affecting some groups of lakes more
than others. The lake region classification for Florida appears to be a useful framework
for generalizing some of these complexities as an aid to lake resource assessment and
management. It is a formalization of some commonly recognized regions in Florida and
has similarities to several other frameworks of the state, but this framework is designed
for the specific purpose of lake classification.
The interest in such a regional framework should be in its usefulness as a general
stratifier, rather than with the potential correspondence of any single aquatic component.
Does the framework and the associated data provide a mechanism to better understand
the spatial variations in the characteristics and quality of Florida lakes? Does it help clarify
the general limnological capabilities and potentials of these lakes? We believe this work is
one piece of the foundation needed to achieve such lake management goails.
Modifications of the lake region framework might be warranted, however, as more
information and understanding is gained. Aggregations of several upland regions, for
example, might be useful for certain assessments. Small regions such as the Wimauma
Lakes (75-29) might be excluded, while large regions such as the Eastern Flatlands (75-10)
could be divided. Additional research will be needed to account for the natural variability
within the lake regions. If the selected lakes in a region show a high range of variability,
additional stratification or classification within the region may be necessary.
Regional-maps of the parameters such as phosphorus and alkalinity that appear on the
lake region poster, along with their associated histograms of the distribution of lakes, can
37
-------
be useful in assessing issues such as eutrophication and acidification. With the continued
growth of the UF lake database, along with other data sources, more precise maps of
various lake parameters should be developed.
The hypothesis that a regional framework and some type of reference lake condition
can give managers and scientists a better understanding of the spatial variations in the
chemical, physical, and biological components of Florida lakes is intuitive but remains to be
tested. Significant time and effort will be required for the collection and creative analysis
of data to develop biological or chemical criteria and regional water quality standards, and
to more fully understand attainable water conditions. The State of Florida continues to be
a national leader in this effort.
Water cannot be viewed in isolation from its watershed and that is why holistic
perspectives are important. Although watersheds and basins are useful study units for
understanding certain aspects about the quantity and quality of water, it must be
recognized that the spatial distribution of factors that affect water quantity and quality
(such as vegetation, land cover, soils, geology, etc.), does not coincide with topographic
watershed boundaries (Omernik and Griffith 1991). Watershed management or
ecosystem management requires a spatial framework that considers the regional
tolerances and capacities of landscapes. That is why the ecoregion framework and lake
region framework can help in the DEP's ecosystem management approach.
Improving the quality of aquatic and terrestrial ecosystems in Florida will require the
cooperation and coordination of local, state, and federal interests, both private and public.
It is our hope that these regional frameworks will help improve communication and
assessment within and among different groups and agencies. Although pollution of water
bodies, fragmentation or loss of habitat, and alteration of landscapes have many causes,
regional assessment tools can be valuable to both resource managers and researchers for
stratifying natural variability and addressing the nature of these issues.
38
-------
REFERENCES
Bachmann, R.W., B.L. Jones, D.D. Fox, M. Hoyer, L.A. Bull, and D.E. Canfield, Jr. 1996.
Relations between trophic state indicators and fish in Florida (USA) lakes. Canadian
Journal of Fisheries and Aquatic Sciences 53(4):842-855.
Baker, L.A., C.D. Pollman, and J.M. Eilers.'1988. Alkalinity regulation in softwater Florida
lakes. Water Resources Research 24(7):1069-1082.
Barbour, M.T., J. Gerritsen, G.E. Griffith, R. Frydenborg, E. McCarron, J.S. White, M.L.
Bastian. 1996. A framework for biological'criteria for Florida streams using benthic
macroinv'ertebrates. Journal of the North American Benthological Society 15(2):185-211.
Barnett, E., J. Lewis, J. Marx, and D. Trimble (eds.). 1995. Ecosystem Management
Implementation Strategy. Ecosystem Management Implementation Strategy Committee
and Florida Department of Environmental Protection. Tallahassee, FL.
Beaver, J.R. and T.L. Crisman. 1991. Importance of latitude and organic color on
phytoplankton primary productivity in Florida lakes. Canadian Journal of Fisheries and
Aquatic Sciences 48(7):1145-1150.
Beaver, J.R., T.L. Crisman, and J.S. Bays. 1981. Thermal regimes of Florida lakes.
Hydrobiologia 83: 267-273.
Berner, L. and M.L. Pescador. 1988. The mayflies of Florida. University Presses of Florida,
Gainesville, FL. 415p.
Bradley, J.T. 1974. The climate of Florida. In: Climates of the States. Volume I - Eastern
States. U.S. Department-of Commerce, National Oceanic and Atmospheric Administration,
pp.45-70.
Brenner, M., M.W. Binford, and E.S. Deevey. 1990. Lakes. In: Ecosystems of Florida. R.L.
Myers and J.J. Ewel (eds.). University of Central Florida Press, Orlando, FL. pp. 364-391.
Brenner, M., T.J. Whitmore, and C.L. Schelske. 1996. Paleolimnological evaluation of
historical trophic state conditions in hypereutrophic Lake Thonotosassa, Florida, USA.
Hydrobiologia 331(1-3):143-152.
Brooks, H.K. 1981a. Geologic map.of Florida. Scale 1:500,000. Cooperative Extension
Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.
Brooks, H.K. 1981b. Physiographic divisions. Scale 1:500,000. Cooperative Extension
Service, Institute? of Food and Agricultural Sciences, University of Florida, Gainesville, FL.
Brooks, H.K. 1982. Guide to the physiographic divisions of Florida. Cooperative Extension
Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville.
39
-------
Burgess, G.H. and S.J. Walsh. 1991. Final report: Cooperative UF/DER/EPA Florida
ichthyofaunal regionalization/bioassessment project. Florida Museum of Natural History,
Gainesville, FL. 12p.
Bush, P.W. 1974. Hydrology of the Oklawaha lakes area of Florida. Map Series No. 69.
Florida Department of Natural Resources, Bureau of Geology. Tallahassee, FL.
Caldwell, R.E. and R.W. Johnson. 1982. General soil map - Florida. Scale 1:1,000,000. U.S.
Department of Agriculture, Soil Conservation Service in cooperation with University of
Florida Institute of Food and Agricultural Sciences and Agricultural Experiment Stations,
Soil Science Department. Gainesville, FL.
Canfield, D.E., Jr. 1981. Chemical and trophic state characteristics of Florida lakes in
relation to regional geology. University of Florida, Gainesville, FL. 444p.
Canfield, D.E., Jr. 1983a. Prediction of chlorophyl -a concentration in Florida lakes: the
importance of phosphorus and nitrogen. Water Resources Bulletin 19: 255-262.
Canfield, D.E., Jr. 1983b. Sensitivity of Florida lakes to acid precipitation. Water Resources
Research 19(3):833-839.
Canfield, D.E., Jr., and M.V. Hoyer. 1988a. Regional geology and the chemical and trophic
state characteristics of Florida lakes. Lake and Reservoir Management 4(1):21-31.
Canfield, D.E., Jr., and M.V. Hoyer. 1988b. The eutrophication of Lake Okechobee. Lake
and Reservoir Management 4(2):91-99.
Canfield, D.E., Jr., and M.V. Hoyer. 1989. Managing lake eutrophication: The need for
careful lake classification and assessment. In: Proceedings of a National Conference on
Enhancing States' Lake Management Programs. North American Lake Management
Society, Washington, D.C. pp. 17-25.
Canfield, D.E., Jr., S.B. Linda, and L.M. Hodgson. 1984. Relations between color and some
limnological characteristics of Florida lakes. Water Resources Bulletin 20(3):323-329.
Canfield, D.E., Jr., M.J. Maceina, L.M. Hodgson, and K.A. Langeland. 1983. Limnological
features of some northwestern Florida lakes. Journal of Freshwater Ecology 2(l):67-79.
Canfield, D.E., Jr., K.A. Langeland, M.J. Maceina, W.T. Haller, and J.V. Shireman. 1983.
Trophic state classification of lakes with aquatic macrophytes. Canadian Journal of
Fisheries and Aquatic Sciences 40(11):1713-1718.
Clewell, A.F. 1985. Guide to the vascular plants of the Florida panhandle. Florida State
University Press, Tallahassee. 605p.
Conover, C.S., J.J. Geraghty, and G.C. Parker, Sr. 1984. Groundwater. Chapter 4. In:
Water Resources Atlas of Florida. E.A. Fernald and D.J. Patton (eds.). Florida State
University, Tallahassee, FL. pp36-53.
40
-------
Cooke, C.W. 1939. Scenery of Florida interpreted by a geologist. Florida Geological Survey
Bulletin No. 17. pp 1-118.
Cooke, C.W. 1945. Geology of Florida. Florida Geological Survey Bulletin No. 29.
Tallahassee, FL. pp. 1-339.
Copeland, C.W., Jr., K.F. Rheams, T.L. Neathery, W.A. Gilliland, W. Schmidt, W.C. Clark,
Jr.^and D.E. Pope. 1988. Quaternary geologic map of the Mobile 4° x 6? quadrangle, United
States. U.S. Geological Survey. Miscellaneous Investigations Series, Map 1-1420 (NH-16).
Scale 1:1,000,000.
Craig, A.K. 1991. The physical environment of south Florida. In: South Florida: The Winds
of Change. T.D. Boswell (ed.). Prepared for the Annual Conference of the Association of
American Geographers, Miami, pp. 1-16.
Davis, J.H. Jr., 1943. The natural features of southern Florida, especially the vegetation
and'the Everglades. Florida Geological Survey Bulletin No. 25. Tallahassee, FL
Davis, J.H. Jr., 1946. The peat deposits of Florida. Florida Geological Survey Bulletin No.
30:1-247. Tallahassee, FL.
Davis, J.H. Jr., 1967. General map of the natural vegetation of Florida. Circular S-178.
Institute of Food and Agricultural Sciences, Agricultural Experiment Station, University of
Florida, Gainesville, FL.
'Deevey, E.S. Jr., 1988. Estimation of downward leakage from Florida lakes. Limnology and
Oceanography 33(6): 1308-1320.
Deevey, E.S., M.W. Binford, M. Brenner, and T.J. Whitmore. 1986. Sedimentary records of
accelerated nutrient loadings in Florida lakes. Hydrobiologia 143:49-53.
Deuerling, R.J., Jr., and P.L. MacGill. 1981. Environmental Geology Series, Tarpon Springs
Sheet. Map Series No. 99. Florida Bureau of Geology, Tallahassee, FL.
Dierberg, F.E., V.P. Williams, and W.H. Schneider. 1988. Evaluating water quality effects
of lake manageiment in Florida. Lake and Reservoir Management 4(2):101-111.
Doolittle, J.A. and G. Schellentrager. 1989. Soil survey of Orange County, Florida. U.S.
Department of Agriculture, Soil Conservation Service. 175p.
Eilers, J.M., D.H. Landers, and D.F. Brakke. 1988. Chemical and physical characteristics of
lakes in the southeastern United States. Environmental Science and Technology 22(2): 172-
177.
Estevez, E.D., B.J. Hartman, R. Kautz, and E.D. Purdum. 1984. Ecosystems of surface
waters. Chapter 7. In: Water Resources Atlas of Florida. E.A. Fernald and D.J. Patton
(eds.). Florida State University, Tallahassee, pp.92-107.
41
-------
Fenneman, N.M. 1938. Physiography of eastern United States. McGraw-Hill, New York.
714p.
Fernald, E.A. (ed.). 1981. Atlas of Florida. Institute of Science and Public Affairs. Florida
State University. Tallahassee, FL. 276p.
Fernald, E.A. and D.J. Patton (eds.). 1984. Water resources atlas of Florida. Florida State
University. Tallahassee, FL. 291p.
Florida Agricultural Experiment Stations and U.S. Department of Agriculture, Soil
Conservation Service. 1962. General soil map of Florida. Scale 1:1,000,000.
Florida Department of Environmental Protection. 1994 (Draft). Lake bioassessments for
the determination of nonpoint source impairment in Florida. Biology Section, Division of
Administrative and Technical Services, Tallahassee, FL.
Florida Natural Areas Inventory. 1990. Guide to the natural communities of Florida.
Florida Natural Areas Inventory and Florida Department of Natural Resources, Tallahasee.
lllp.
Florida Resources and Environmental Analysis Center. 1989. Florida rivers assessment.
Florida Department of Natural Resources, Tallahassee, FL. 452p.
Friedemann, M. and J. Hand. 1989. Typical water quality values for Florida's lakes,
streams, and estuaries. Florida Department of Environmental Regulation, Bureau of
Surface Water Management, Tallahassee, FL. 23pp + appendix.
Frydenborg, R. 1991. Water quality standards meeting, August 21. US EPA Region IV.
Atlanta, GA.
Frydenborg, R. and K.M. Lurding. 1994. Resource-effective lake bioassessments for the
determination of nonpoint source impairment in Florida. (Abstract). Lake and Reservoir
Management 9(2):75.
Fulmer, D.G. and G.D. Cooke. 1990. Evaluating the restoration potential of 19 Ohio
reservoirs. Lake and Reservoir Management 6(2): 197-206.
Furman, A.L., H.O. White, O.E. Cruz, W.E. Russell, and B.P. Thomas. 1975. Soil survey of
Lake County area, Florida. U.S. Department of Agriculture, Soil Conservation Service.
Gallant, A.L., T.R. Whittier, D.P. Larsen, J.M. Omernik, and R.M. Hughes. 1989.
Regionalization as a tool for managing environmental resources. EPA/600/3-89/060. U.S.
Environmental Protection Agency, Corvallis, Oregon. 152p.
Gottgens, J.F. and T.L. Crisman. 1993. Quantitative impacts of lake-level stabilization on
material transfer between water and sediment in Newnans Lake, Florida. Canadian
Journal of Fisheries and Aquatic Sciences 50:1610-1616.
42
-------
Griffith, G.E. and J.M. Omernik. 1990. Mapping and regionalizing acid-sensitive surface
waters of the United States. International Conference on Acidic Deposition: Its Nature and
Impacts, Conference Abstracts. Royal Society of Edinburgh, p.447.
Griffith, G.E., J.M. Omernik, C.M. Rohm, and S.M. Pierson. 1994. Florida regionalization
project. EPA/600/Q-95-002. U.S. Environmental Protection Agency, Corvallis, OR. 83p.
Grigg, D. 1965. The logic of regional systems. Annals of the Association of American
Geographers 55:465-491.
Hampson, P.S. 1984. Wetlands in Florida. U.S. Geological Survey, Florida Bureau of
Geology Map Series No. 109. Tallahassee, FL.
Hand, J. and M. Paulic. 1992.1992 Florida water quality assessment, 305(b) technical
appendix. Bureau of Surface Water Management, Florida Department of Environmental
Regulation.,Tallahassee, FL. 355p.
Hand, J., J. Col, and E. Grimson. 1994. Southwest Florida district water quality 1994 305(b)
technical appendix. Bureau of Surface Water Management, Florida Department of
Environmental Protection. Tallahassee, FL. 122p.
Harper, R.M. 1914. Geography and vegetation of northern Florida. Florida Geological
Survey, 6th Annual Report. ppl63-487.
Havens, K.E., N.G. Aumen, R.T. James, V.H. Smith. 1996. Rapid ecological change in a
large subtropical lake undergoing cultural eutrophication. Ambio 25(3):150-155.
Head, C.M. and R.B. Marcus. 1984. The face of Florida. Kendall-Hunt, Dubuque, IA.
Heath, R.C. and C.S. Conover. 1981. Hydrologic almanac of Florida. U.S. Geological Survey
Open File Report 81-1107. Tallahassee, FL. 239p.
Heiskary, S.A. 1989. Integrating ecoregion concepts into state lake management programs.
In: Enhancing Lake Management Programs, Proceedings of the National Conference, May
12-13, 1988, Chicago, IL. pp.89-100.
Heiskary, S.A. 1994. Use of the ecoregion framework for lake and watershed management
in Minnesota. (Abstract). Lake and Reservoir Management 9(2):81.
Heiskary, S.A. and C.B. Wilson. 1989. The regional nature of lake water quality across
Minnesota: an analysis for improving resource management. Journal of the Minnesota
Academy of Sciences 55(l):71-77.
Hendry, C.D. Jr., and P.L. Brezonik. 1984. Chemical composition of softwater Florida lakes
and their sensitivity to acid precipitation. Water.Resources Bulletin 20(l):75-86.
Hoyer, M.V. and D.E. Canfield, Jr. 1990. Limnological factors influencing bird abundance
and species richness on Florida,lakes. Lake and Reservoir Management 6(2):133-141.
43
-------
Hoyer, M.V., D.E. Canfield, Jr., C.A. Horsburgh, and K. Brown. 1996. Florida freshwater
plants: A handbook of common aquatic plants in Florida lakes. University of Florida. 280p.
Huber, W.C., P.L. Brezonik, J.P. Heaney, R.E. Dickinson., S.D. Preston, D.S. Dwornik, and
M.A. DeMaio. 1983. A classification of Florida lakes. Two volumes. Final Report to the
Florida Department of Environmental Regulation. ENV-05-82-1. Department of
Environmental Engineering Sciences. University of Florida, Gainesville, FL.
Hughes, R.M. 1989. Ecoregional biological criteria. In: Proceedings of an EPA Conference,
Water Quality Standards for the 21st Century, Dallas, Texas, March 1989. pp.147-151.
Hughes, R.M. 1995. Defining biological status by comparing with reference conditions. In:
Biological Assessment and Criteria: Tools for Water Resource Planning and Decision
Making. T.P. Simon and W. Davis (eds.). Lewis Publishing.
James, R.T. 1991. Microbiology and chemistry of acid lakes in Florida: I. Effects of drought
and post-drought conditions. Hydrobiologia 213:205-225.
Jordan, C.L. 1984. Florida's weather and climate: implications for water. Chapter 3. In:
Water Resources Atlas of Florida. E.A. Fernald and D.J. Patton (eds.). Florida State
University, Tallahassee, pp. 18-35.
Kanciruk, P., J.M. Eilers, R.A. McCord, D.H. Landers, D.F. Brakke and R.A. Linthurst.
1986. Characteristics of lakes in the eastern United States. Volume III: Data compendium
of site characteristics and chemical variables. EPA/600/4-86/007c. U.S. Environmental
Protection Agency, Washington, D.C. 439p.
Keller, A.E. and T.L. Crisman. 1990. Factors influencing fish assemblages and species
richness in subtropical Florida lakes and a comparison with temperate lakes. Canadian
Journal of Fisheries and Aquatic Sciences 47:2137-2146.
King, P.B. and H.M. Biekman. 1974. Geologic map of the United States. Map scale
1:2,500,000. U.S. Geological Survey, Reston, VA.
Klein, H.F., J. Armbruster, B.F. McPherson, and H.J. Freiberger. 1975. Water and the
south Florida environment. U.S. Geological Survey Water Resources Investigations 75-24.
Tallahassee, FL.
Knapp, M.S. 1978a. Environmental Geology Series, Gainesville Sheet. Map Series No. 79.
Florida Bureau of Geology, Tallahassee, FL.
Knapp, M.S. 1978b. Environmental Geology Series, Valdosta Sheet. Map Series No. 88.
Florida Bureau of Geology, Tallahassee, FL.
Kunneke, T. and T.F. Palik. 1984. Northwestern Florida ecological characterization: an
ecological atlas. Map narratives. U.S. Fish and Wildlife Service, FWS/OBS-82/47.1. 323p.
Lane, E. 1986. Karst in Florida. Special Publication No. 29. Florida Geological Survey,
Tallahassee, FL. lOOp.
44
-------
Lane, E., M.S. Knapp, and T. Scott. 1980. Environmental Geology Series, Fort Pierce
Sheet. Map Series No. 80. Florida Bureau of Geology, Tallahassee, FL.
Loveland, T.R., J.W. Merchant, D.O. Ohlen, J.F. Brown. 1991. Development of a land-cover
characteristics database for the conterminous U.S. Photogrammetric Engineering and
Remote Sensing 57(11):1453-1463.
McLane, W.M. 1955. The fishes of the St. Johns River system. PhD. Dissertation,
University of Florida, Gainesville, FL.
McDiffett, _W.F. 1980. Limnological characteristics of several lakes on the Lake Wales
Ridge, south-central Florida. Hydrobiologia 71:137-145.
McPherson, B.F., G.Y. Hendrix, H. Klein, and H.M. Tyus. 1976. The environment of south
Florida: a summary report. U.S., Geological Survey Professional Paper 1011. Washington,
D.C. 77p.
Miller, J.A. 1990. Ground water atlas of the United States, Segment 6, Alabama, Florida,
Georgia, and South Carolina. Hydrologic Investigations Atlas 730-G. U.S. Geological
Survey. 28p.
Myers, V.B. and H.L. Edmiston. 1983. Florida lake classification and prioritization. Project
#S004388: Final report. Florida Department of Environmental Regulation, Tallahassee.
77pp+ appendices.
Omernik, J.M. 1987. Ecoregions of the conterminous United States. Annals of the
Association of American Geographers 77(1):118-125.
Omernik, J.M. 1994. Distinguishing between ecoregions, lake phosphorus regions, and
lake management regions. (Abstract) Lake and Reservoir Management 9(2): 101.
Omernik, J.M. 1995: Ecoregions: A spatial framework for environmental management. In:
Biological Assessment and Criteria: Tools for Water Resource Planning and Decision
Making. W.S. Davis and T. Simon (eds.). Lewis Publishers. Boca Raton, FL. pp.49-62.
Omernik, J.M. and R.G. Bailey. 1997 (in press). Distinguishing between watersheds and
ecoregions. Journal of the American Water Resources Association.
Omernik, J.M. and A.L. Gallant. 1990. Defining regions for evaluating environmental
resources. In: Global Natural Resource Monitoring and Assessments. Proceedings of the
International Conference and Workshop, Venice, Italy, pp.936-947.
Omernik, J.M. and G.E. Griffith. 1991. Ecological regions vs. hydrological units:
Frameworks for managing water quality. Journal of Soil and Water Conservation
46(5):334-340.
45
-------
Omernik, J.M., G.E. Griffith, J.T. Irish, and C.B. Johnson. 1988a. Total alkalinity of surface
waters: a national map. Corvallis Environmental Research Laboratory, U.S.
Environmental Protection Agency, Corvallis, OR.
Omernik, J.M., D.P. Larsen, C.M. Rohm, and S.E. Clarke. 1988b. Summer total phosphorus
in lakes: a map of Minnesota, Wisconsin, and Michigan, USA. Environmental Management
12(6):8l5-825.
Omernik, J.M., C.M. Rohm, R.A. Lillie, and N. Mesner. 1991. Usefulness of natural regions
for lake management: analysis of variation among lakes in northwestern Wisconsin, USA.
Environmental Management 15(2):281-293.
Palmer, S.L. 1984. Surface water. Chapter 5. In: Water Resources Atlas of Florida. E.A.
Fernald and D.J. Patton (eds.). Florida State University, Tallahassee, FL. pp.54-67.
Pascale, C.S., J.R. Wagner, and J.E. Sohm. 1978. Hydrologic, geologic, and water quality
data, Ochlockonee River basin area, Florida. U.S. Geological Survey, Water Resource
Investigation 70-97.
Parker, G.G. et al., 1955. Water resources of southeastern Florida. U.S. Geological Survey
Water Supply Paper No. 1255.
Paulic, M. and J. Hand. 1994. Florida water quality assessment 1994 305(b) main report.
Bureau of Surface Water Management, Florida Department of Environmental Protection.
Tallahassee, FL. 261p.
Pfischner, F.L., Jr. 1968. Relation between land use and chemical characteristics of lakes in
southwestern Orange County, Florida. U.S. Geological Survey Professional Paper 600-B.
pp.B190-Bl94.
Pirkle, E.C. and H.K. Brooks. 1959. Origin and hydrology of Orange Lake, Santa Fe Lake,
and Levys Prairie Lakes of north-central peninsular Florida. Journal of Geology 63(3):302-
317.
Pollman, C.D. and D.E. Canfield, Jr. 1991. Florida. In: Acidic Deposition and Aquatic
Ecosystems, Regional Case Studies. D.F. Charles and S. Christie (eds). Springer-Verlag,
New York. pp.367-416.
Pride, R.W., F.W. Meyer, and R.N. Cherry. 1966. Hydrology of Green Swamp area in
central Florida. Report of Investigations No.42. Florida Geological Survey, Tallahassee, FL.
137p.
Puri, H.S. and R.O. Vernon. 1964. Summary of the geology of Florida and a guidebook to
the classic exposures. Florida Geological Survey Special Publication No. 5. Tallahassee, FL.
312p.
Readle, E.L. 1987. Soil survey of Putnam County area, Florida. U.S. Department of
Agriculture, Soil Conservation Service.
46
-------
Schmidt, W. 1978. Environmental geology series, Pensacola sheet. Florida Department of
Natural Resources, Bureau of Geology. Map Series No.78. Tallahassee, FL.
Scott, T.M. 1978. Environmental geology series, Orlando sheet. Florida Department of
NaturalResources, Bureau of Geology. Map Series No. 85. Tallahassee, FL.
Scott, T.M. 1979. Environmental geology series, Daytona Beach sheet. Florida Department
of Natural Resources, Bureau of Geology. Map Series No. 93. Tallahassee, FL.
Scott, T.M. 1992. A geological overview of Florida. Florida Department of Natural
Resources, Florida Geological Survey, Open File Report No. 50. Tallahassee, FL.
Scott, T.M and P.L. MacGill. 1981. The Hawthorn formation of central Florida. Part I.
Geology of the Hawthorn formation in central Florida. Report of Investigation No. 91.
Florida Bureau of Geology, Tallahassee, FL.
Scott, T.M., R.W. Hoenstine, M.S. Knapp, E. Lane, G.M. Odgen, Jr., R. Deuerling, and H.E.
Neel. 1980. The sand and gravel resources of Florida. Report of Investigation No. 90.
Florida Bureau of Geology, Tallahassee, FL. 41p.
Scott, T.M., M.S. Knapp, M.S. Friddell, and D.L. Weide. 1986. Quaternary geologic map of
the Jacksonville 4°. x 6° quadrangle, United States. U.S. Geological Survey. Miscellaneous
Investigations Series, Map 1-1420 (NH-17). Scale 1:1,000,000.
Scott, T.M., M.S. Knapp, and D.L. Weide. 1986. Quaternary geologic map of the Florida
Keys 4° x 6° quadrangle, United States. U.S. Geological Survey. Miscellaneous
Investigations Series, Map 1-1420 (NG-17). Scale 1:1,000,000.
Shafer, M.D., R.E. Dickinson, J.P. Heaney, and W.C. Huber. 1986. Gazeteer of Florida
lakes. Florida Water Resources Research Center, Publication No. 96. University of Florida,
Gainesville, FL.
Shannon, E.E. and P.L. Brezonik. 1972. Limnological characteristics of north and central
Florida lakes. Limnology and Oceanography 17:97-110.
Sinclair, W.C. and J.W. Stewart. 1985. Sinkhole type, development, and distribution in
Florida. Bureau of Geology Map Series No. 110. U.S. Geological Survey in cooperation with
Department of Environmental Regulation, Bureau of Water Resources Management,
Florida Department of Natural Resources. Tallahassee, FL.
Smeltzer, E. and S.A. Heiskary. 1990. Analysis and applications of lake user survey data.
Lake and Reservoir Management 6(1):109-118.
Snell, L.J. and W.E. Kenner. 1974. Surface water features of Florida. U.S. Geological
Survey, Florida Bureau of Geology Map Series No. 66. Stauffer, R.E.' 1991. Effects of citrus
agriculture on ridge lakes in central Florida. Water, Air, and Soil Pollution 59:125-144.
Stauffer, R.E. and D.E. Canfield, Jr. 1992. Hydrology and alkalinity regulation of soft
Florida waters: an integrated assessment. Water Resources Research 28(6):1631-1648.
47
-------
Sweets, P.R. 1992. Diatom paleolimnological evidence for lake acidification in the Trail
Ridge region of Florida. Water, Air, and Soil Pollution 65:43-57.
Thomas, B.P., E. Cummings, and W.H. Wittstruck. 1985. Soil survey of Alachua County,
Florida. U.S. Department of Agriculture, Soil Conservation Service.
Thomas, B.P., L. Law, Jr., and D.L. Stankey. 1979. Soil survey of Marion County area,
Florida. U.S. Department of Agriculture, Soil Conservation Service.
U.S. Department of Agriculture. 1914. Soil Survey of Bradford County, Florida. U.S.
Department of Agriculture Bureau of Soils, in cooperation with Florida State Geological
Survey.
U.S. Department of Agriculture. 1927. Soil Survey, Polk County, Florida. U.S. Department
of Agriculture Bureau of Chemistry, in cooperation with Florida State Geological Survey.
U.S. Department of Agriculture. 1928. Soil Survey, Lake County, Florida. U.S. Department
of Agriculture Bureau of Chemistry, in cooperation with Florida State Geological Survey.
U.S. Department of Agriculture. 1954. Soil Survey, Alachua County, Florida. U.S.
Department of Agriculture, Soil Conservation Service, in cooperation with University of
Florida Agricultural Experiment Station.
U.S. Department of Agriculture, Soil Conservation Service. 1985. 26 ecological
communities of Florida. USDA-SCS, Gainesville, FL.
Vernon, R.O. and H.S. Puri. 1964. Geologic map of Florida. Scale approx. 1:2,000,000.
Division of Geology Map Series No. 18. U.S. Geological Survey in cooperation with Florida
Board of Conservation, Tallahassee, FL.
Welch, E. 1993. The case for lake quality standards. Lake Line 13(3):4.
White, W.A. 1958. Some geomorphic features of central peninsular Florida. Florida
Geological Survey Bulletin No. 41. Tallahassee, FL.
White, W.A. 1970. The geomorphology of the Florida peninsula. Florida Department of
Natural Resources, Geological Bulletin No. 51. Tallahassee, FL.
Wilson, C.B. and W.W. Walker, Jr. 1989. Development of lake assessment methods based
on the aquatic ecoregion concept. Lake and Reservoir Management 5(2): 11-22.
Wolfe, S.H., (ed.). 1989. An ecological characterization of the Florida Springs Coast - Draft.
U.S. Fish and Wildlife Service, FWS/OBS-88/xx.x.
Wolfe, S.H., J.A. Reidenauer, and D.B. Means. 1988. An ecological characterization of the
Florida panhandle. U.S. Fish and Wildlife Service, Biological Report 88(12); Minerals
Management Service OCS Study MMS 88-0063. 277p.
48
-------
APPENDIX A
LAKE REGION MAPS AND GRAPHS
49
-------
50
-------
| 65-01 Western Highlands
I I 65-02 Dougherty/Marianna Plains
] 65-03 New Hope Ridge/Creenhead Slope
| 65-04 Tiflon/Tallahassce Uplands
I I 65-05 Norllcct/Spring Hill Ridge
I I 65-06 Northern Peninsula Karst Plains
75-01 Gulf Coast Lowlands
75-02 Okefenokee Plains
75-03 Upper Santa Fe Flatwoods
75-04 Trail Ridge
75-05 Northern Brooksvilk Ridge
75-06 Big Bend Karst
75-07 Marion Hills
75-08 Central Valley
75-09 Ocala Scrub
75-10 Eastern Flatlands
75-11 Crescent City/DeLand Ridges
75-12 Tsala Apopka
75-13 Southern Brooksville Ridge
75-14 Lake Weir/Leesburg Upland
75-15 Mount Dora Ridge
75-16 Apopka Upland
75-17 Weeki Wachee Hills
75-18 Webster Dry Plain
3 75-19 Clermont Uplands
I I 75-20 Doctor Phillips Ridge
¦ 75-21 Orlando Ridge
I I 75-22 Tampa Plain
II 75-23 Keystone Lakes
I I 75-24 Land-o-Lakes
ZD 75-25 Hillsborough Valley
75-26 Green Swamp
¦ 75-27 Osceola Slope
IMI 75-28 Pinellas Peninsula
U 75-29 Wimauma Lakes
¦ 75-30 Lakeland/Bone Valley Upland
I I 75-31 Winter Haven/Lake Henry Ridges
I 75-32 Northern Lake Wales Ridge
D 75-33 Southern Lake Wales Ridge
I 75-34 Lake Wales Ridge Transition
75-35 Kissimmee/Okeechobee Lowland
i^| 75-36 Southwestern Flatlands
I 1 75-37 lmmokalee Rise
~ 76-01 Everglades
1 I 76-02 Big Cypress
~ 76-03 Miami Ridge/Atlantic Coastal Strip
¦ 76-04 Southern Coast and Islands
Florida Lake
Regions
Figure A1. Lake Regions of Florida
-------
cn
oo
65-01
75-10
¦k
75-13
76-03
Total Phosphorus (p.g/1)
Regional median value
¦ <10
20-49
>50
I I few or no lakes
Figure A2. Regional median value of lake total phosphorus.
-------
65-01
n = 4
S
A
Total phosphorus (fig/1)
r 65-02
n = 17
I
D=.
Total phosphorus (fig/I)
•Q5;22R2£S
6 * a £ £ A
Total phosphorus (fig/1)
65-04
n = 37
*S3!!3J5*
Total phosphorus (fig/1)
— 60
o 50
«>
65-05
= 7
•g£ = 2 a s P s
" d ws a «* a *
Total phosphorus (fig/1)
r 65-06
n = 28
¦a 70
40
n-JTl-
. 22S5??S
^ ^ s ^ s
Total phosphorus (fig/I)
75-01
n= 32
iTln
•$ j 22aag: g
& 3£A
Total phosphorus (ng/l)
370
60
75-02
n = 4
LI
Total phosphorus (ng/1)
75-03
n - 11
i
Jl
f32£RIP8
A
Total phosphorus (fig/1)
I
75-04
n =72
Total phosphorus (jig/I)
-§ 70
_ 60
"o 50
^ 40
75-05
n = 5
=* fk 3 £ *
Total phosphorus (fig/I)
75-06
h n = 9
Si 70
-3 «,
O 50
^ 40
30
20
10
± t § a *
Total phosphorus (fig/I)
75-07
*******
Total phosphorus (fig/1)
JS 70
360
"3 50
.» «
75-08
n = 46
a* a 3 a
Total phosphorus (fig/1)
r 75-09
n = 61
M 70
3 60
bCL
sisis a
Total phosphorus (fig/1)
M 70
3 60
O 50
^ <0
30
75-10
n = 85
-THfl-n
± £ & 3 £
Total phosphorus (fig/1)
r 75-11
- n =
51
1
:|ih
o
t£
Jj
1 1—> > i
± £ £ 3 3
Total phosphorus (fig/1)
r 75-12
n = 17
ftjifL
"* ***!**
Total phosphorus (fig/1)
J2 60
50
75-13
n= 18
¦-htHI
± i a £ s"
Total phosphorus (pg/1)
75-14
n = 17
JL
& & a
Total phosphorus (fig/I)
J2 60
^ 50
75-15
n=18
L.
Total phosphorus (fig/I)
JS 60
"o 50
75-16
n =66
Jhm.
Total phosphorus ((ig/l )
75-17
io
£L
>9 £:! 2 r s £ a
* £ 4 a 3 5% *
Total phosphorus (fig/1)
100
90
80
jg 70
3 60"
•s 50
5 40
30
20
75-18
n = 3
§*
Total phosphorus (jig/1)
75-19
n = 39
J
31
X?2 22RSg:f
a * § 3 $ A
Total phosphorus (fig/1)
« 70
3 60
«*- 50
540
^ 30
20
75-20
n= 15
I
Total phosphorus ((i.g/1)
y 70
J2 60
50
r 75-21
- n = 89
Jfli
nzfta
±± S£si A
Total phosphorus (|ig/l)
75-22
LelLq
D
•Q 5 2 2 R 5 £
S 3S
Total phosphorus (fig/I)
75-23
n = 32
m.
"OS 2 2R s r a
a a 3 &
Total phosphorus (fig/1)
a 70
3 60
m- 50
75-24
n = 39
J
tCL
Total phosphorus (fig/1)
100 r 75-25
90 - n = 3
•gj; 2 2 R 2 R 3
**54*2**
Total phosphorus (fig/1)
r 75-26
n= 1
« 70
60
•Q5;:J2R2RS
*******
Total phosphorus (yg/1)
75-27
n = 18
h n-,
•qS^rrsrs
*******
Total phosphorus (fig/1)
2 70
75-28
n = 6
n,. n
^22?i3?S
Total phosphorus (fig/I)
100
60
75-30
n = 18
•0 5 2 2 R 2 R g
****3*A
Total phosphorus (fig/1)
00
90
80
aj
70
•3
60
50
O
40
30
20
10
75-31
- n = 44
- j~n rh-i
•g? :~ 2R 2R 2
a 2 a 3 * *
Total phosphorus (fig/1)
a 70
e3 60
75-32
n = 20
75-33
n = 41
£ 2 2 S 2 f£ 2
****3**
Total phosphorus (fig/1)
IL_
^22?,S?S
*******
Total phosphorus (fig/1)
8 70
13 60
«*- 50
75-34
n = 27
S 70
3 60
^ 50
"LriLCLn
a 3 ^A
Total phosphorus (fig/1)
75-35
n= 13
~
^:2R2SS
^ ^ a 3 s "
Total phosphorus (fig/I)
75-36
n = 44
;22R2?g
Total phosphorus (fig/I)
75-37
n= 1
•0 522R2PS
Total phosphorus (fig/1)
76-03
n = 2
a *i a 3 ^
Total phosphorus (fig/I)
Figure A3. Distribution of lake phosphorus values by region (n=number of lakes sampled).
55
-------
654)2
CJ1
-vj
75-06
75-07
75-26
76-03
Figure A4. Regional median value of lake total alkalinity.
Total Alkalinity (mg/1 as CaCo3)
Regional median value
¦
<2.0
¦
2.0 - 9.9
US
10.0-20.0
~
>20.0
~
few or no lakes
-------
o
65-01
n = 4
JD
o o< o> o 3
Total alkalinity (mg/1)
H 70
60
65-02
n= 17
WL
-"*g
Total alkalinity (mg/1)
S S S <£ ?
ci
Total alkalinity (mg/1)
•a -
— 60
O 50
^ 40
30
20
65-04
n = 25
Lfm.
nmv
™ "* 2
Total alkalinity (mg/1)
o 50
30
20
r 65-05
_ n = 6
L
- m •» <&. N
o
Total alkalinity (mg/1)
o so
# 40
r 65-06
n = 21
30"
20
Total alkalinity (mg/I)
75-01
n = 26
J2 60 -
o »¦
* J
S55SS
v5SS|a
Total alkalinity (mg/1)
75-02
¦3 70
75-03
n = 9
Total alkalinity (mg/1)
tm,
O O- OS »• O- O 3
— — m if. gi T 7
v d d> d 5 & A
Total alkalinity (mg/1)
o 50
too
75-05
90
¦ n = 5
80
70
60
50
40
30
20
¦
,0
1
G 0_ if_ <* O.
V
i A 3 3
0
^ 40
75-06
n = 6
Total alkalinity (mg/1)
Total alkalinity (mg/1)
Off » » » q o
v 2 S 5 t s
-ri ^ Q
Total alkalinity (mg/1)
75-11
n = 29
Eyit
Total alkalinity (mg/1)
75-12
n* 16
v 5 s 11S ^
ss-g"
Total alkalinity (mg/1)
75-13
n= 18
Total alkalinity (mg/1)
80
S 70
cl 60
C 50
O 40
30
20
I0|
75-14
n = 13
m
v <± <± <± '
S§
Total alkalinity (mg/1)
75-15
n= 14
Total alkalinity (mg/1)
75-16
n = 47
Jl£
J 5 f
' 2 3 5 | ^
Total alkalinity (mg/1)
75-17
n = 6
im
Total alkalinity (mg/1)
75-18
n = 3
o » o a o
*635
- rt f' ^
Total alkalinity (mg/1)
8
¦a
75-19
11 = 33
o 9; » > q 3
v 2 2 2 ^ 1
Total alkalinity (mg/1)
too
90
KO
S 70
¦a «
C 50
r 75-20
i = 9
o » » » » q q
v 2 2 2 ? I *
- rl •» g ^
Total alkalinity (mg/1)
£ 70
75-21
n = 40
© » o- » a
— — mac
v d d d ;
J
-""I'
Total alkalinity (mg/1)
100
90
80
S3 70
60
u- 50
5 10
^ 30
75-22
n = 6
i
3333 5 5*
Total alkalinity (mg/1)
70
60
50
40 -
30 "
75-23
n = 19
Hit.
v 2 2 2 ~ s *
- * - i *
Total alkalinity (mg/1)
75-24
n = 20
j£±J
O CT- O O C7> Q Q
*5331**
Total alkalinity (mg/1)
U 70
i2 60
75-25
n = 2
o O) » a
. ill1
2
Total alkalinity (mg/1)
r 75-27
n = 17
13*
Total alkalinity (mg/1)
100
90
u
70
«
60
50
O
40
30
20
10
75-28
n = 2
V 6 2 5 T 1 ^
-r4-»0N
Total alkalinity (mg/1)
75-30
n = 17
Total alkalinity (mg/1)
jj 70
J2 60
^ 50
a*40
^ 30
75-31
n = 25
~ d 2 S T £ ^
Total alkalinity (mg/1)
I
70
60
50
40
30
20 -
10
75-32
n = 15
J±]
i|S'
3 3 ¦* I
Total alkalinity (mg/1)
-3
75-33
n = 34
:Lid
v 2 2 2 ? | ^
-*Sg*
Total alkalinity (mg/1)
75-34
LtLJ
jis*
0
Total alkalinity (mg/1)
75-35
n= 13
JJ
» 5 f f
• a o 6 7 S
Total alkalinity (mg/1)
80
<2 70
60
75-36
n= 17
r £ 1 ^
3 g 5 6 ?
Total alkalinity (mg/1)
r 75-37
- n= 1
v 2 2 2 1^
— r4 -• =i.
Total alkalinity (mg/1)
m:
76-03
n = 2
V 2 2 2 ;
- " * 2
Total alkalinity (mg/1)
Figure A5 . Distribution of lake alkalinity values by region (n=number of lakes sampled).
59
-------
APPENDIX B
SELECTED PARAMETERS FROM LAKE DATABASE
61
-------
62
-------
A
B
C
D
,E
F | G
H
1
J
K
' L
M
N
1
Study
Region
Lake
County
Latitude
OMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(fiS/cmS25C)
Total
Phosphorus
(ng/i)
Total "
Nitrogen
(ng/i)
Chloro-
phyll a
(Hfl/I)
Color
(pcu)
Secchf
(m)
2
LW(6/96)
0
East Bay
Bay
30 05 34
85 32 50
-
16
328
4.3
2.4
3
LW(6/96)
¦i 0
North Bay
Bay
30 15 29
85 40 07
-
-
-
12
276
2.7
-
2.3
4
LW(6/96)
0
St Andrew Bay
Bay
30 08 25
85 41 37
- ¦
-
-
14
300
2.9
-
4.0
5
LW(6/96)
0 '
West Bay
Bay
30 15 55
85 47 18
-
-
-
14
309
3.6
-
2.0
6
LW(6/96)
. 0
Worth
Palm Beach
26 45 00
80 02 60
-
-
-
48
519
5.2
-
1.9
7
Regions
6501
Bear
Santa Rosa
30 51 51
86- 49 49
7.9
20.0
50
91
657
27.5
15
1.0
8
9
Regions
6501
Hurricane
Okaloosa
30 56 19
86 45 18
8.2
21.0
51
79
570
21.1
1 4
1.7
Regions
6501
Karick
Okaloosa
30 53 45
86 38 38
7.0
9.6
33
70
417
14.8
15
1.5
1 0
Regions
6501
Stone
Escambia.
30 57 55'
87 17 27
7.4
13.0
42
135
637
28.4
19
1.4
1 1
Regions
6502
Back
Walton '
30"44°31
86 08 35
6.7
6.1
36
16
497
10.8
12
1.5
. 12'
Regions
6502
Blue
Washington
30 44r 33
85 33 04
7.1
5.4
29
20
503
9.2
12
1.7
1 3
Regions
6502
Cassidy
Holmes
30" 49 00
86 01 56
5.2
0.0
20
4
100
1.5
3
4.5
14 :
1 5
Canfield (1981)
6502
Charles Bay
Washington
30;44 26
85 40 42
5.0
1.9
1 1
14
473
" 2.5
45
1.5
Regions
6502
Compass
Jackson
30 43 .14
8523 13
.6.3
0.7
18
3
200
2.0
.6
3.9
1 6
Regions
6502
DeFuniak
Walton
30 43 02
86 06 46
6.4
1.7
20
6
303
3.7
5
3.3
1 7
LW(6/96)
6502*
Haven
Walton
30 48 14
86 06 59
-
-
- ¦¦
1 5
435
11.8
-
1.5
18
Canfield (1981)
6502
Jackson(Walton)
Walton
30 59 44
86 19 27
6.4
4.1
19
13
359
2.8
10
2.7
19
Regions
6502
juniper
Walton
30 46 18
86 07 54
5.8
0.6
17
16
500
4.6
33
2.2
20
Regions
6502
Kings
Walton
.30 46 60
86 11 39
6.2
1.4
16
1 1
433
5.1
9
-
2.1
Canfield (1981)
6502
Merritts Mill
Jackson
30 46 35
85 10 09
8.2
95.6
191
19
1.497
1.1
2
-
2 2 -¦
Regions
6502
Ocheesee
Jackson
30 41 16
84 59 09
5.5
0.8
18
10
440
6.9
27
2.3
23
Regions
6502
Pate
Washington.
30 41 44
'85 44 33
4.7
0.0
20
8
270
- 4.5
37
1.3
2 4
Canfield' (1981).
6502
Seminole
Gadsden
30 42 42
84 51 15
6.8
20.1
.66
44
514
10.5
20
0.5
25
Summer '96
6502
Spring-
Walton .
30 45 06
86 03 40
6.2
1.4
15
-
510
12.1
10
-
26
Regions
6502
Stanley
Walton
30 44 .16
86 08 14
6.4
2.7
28
8
440
4.9
18
2.3
27
2 8
Canfield (1981)
6502
Sun '
Holmes
30 45 12
85 41 45
5.3
'1.8
15
14
420
2.0
10
- '
Canfield (1981)
6502
Victor
Holmes
30 56 54
85 53 54
6.4
6.1
25
12
294
2.9
15
2.7
2 9.
EPA-ELS 1984
6503
(NO NAME)
3B1-098
30 29 32
85 48 40
6.6
1.5
23
3
-
-
10
5.0
30
EPA-ELS 1984
6503
BUCK
3B1-113
30 31 48
85 45 14
5.3
0.0
16
8
-
-
15
3.4
31
Regions
6503
Black Double
Washinqton
30 35 34
85 33 27
5.3
0.0
13
5
170
3.0
23
2.4
32
Regions
6503
Boat
Washington
30 32 07
85 36 26
4.5
' 0.0
31
1
40
0.6
1
-
33
Regions
6503
Bream
Washinqton
30 34 09
85 32 60
5.3
0.0
12
2
87
0.8
3
5.6
34
EPA-ELS 1984
6503
COMPASS
3B3-185
30'27 34
85 42 37
6.5
1.2
14
2
.
.
5
7.0
35
Regions
6503
Cry'stal-
Washington
30 27 10
85 42 08
6.3
0.9
18
2
113
1.5
2
6.3
36
Canfield (1981)
6503
Dunford
Washinqton
30 33 08
85 40 59
5.0
1.0
15
7
220
0.8
6
5.0
37
Regions
6503.
Gap ''
Washinqton
30 33 02
85 34 18
5.1
0.0
16
3
213
1.7
5
-
38
Regions
6503
Gin
Washinqton
30 34 22
85 33 01
5.4
0.0
12
3
217
2.3
9
3.0
39
Regions
6503
Hicks
Washinqton
30 33 22
85 42 39
5.1
0.0
18
2
230
1.5
4
3.7
4 0
EPA-ELS 1984
6503
HOMESTEAD POND
3B1-064
30 31 17
85 42 15
4.9
0.0
14
1
-
5
5.5
41
Regions
6503
Liqhter Log
Washinqton
30 33 10
85 35 20
5.5
0.5
15
3
153
1.7
29
2.6
.42
Regions
6503
Lucas
Washington
30 32 47
85 41 45
5.7
0.7
17
5
233
1.9
8
-
43
Regions
6503
McCoimick
Jackson -
30 38 13
85 20 01
5.4
0.0
16
6
100
1.6
3
-
Appendix B, Page 63
-------
A
B
C
O
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(nS/cm©25C)
Total
Phosphorus
(ng/i)
Total
Nitrogen
(K9/I)
Chloro-
phyll_a
(Mfl/I)
Color
(pcu)
Secchi
(m)
44
Regions
6503
McKenzie
Calhoun
30 30 44
85 18 40
4.7
0.0
1 9
2
187
1 .9
9
3.4
45
Canfield (1981)
6503
Merial
Bay
30 23 24
85 40 37
4.7
0.4
1 9
6
64
0.5
0
3.2
46
Regions
6503
Mirrow
Calhoun
30 31 15
85 20 32
5.2
0.0
1 9
3
163
1 .2
4
5.2
47
EPA-ELS 1984
6503
OPEN
3B1-022
30 29 10
85 42 40
5.0
0.0
1 5
2
-
-
5
3.3
48
Regions
6503
Owens
Washington
30 39 49
85 35 37
4.9
0.0
20
4
150
1 .8
7
2.6
49
EPA-ELS 1984
6503
PAYNE
3B1-130
30 33 25
85 39 55
5.0
0.0
1 8
6
-
-
1 0
5.0
50
Regions
6503
Porter
Washington
30 30 38
85 32 12
5.0
0.0
1 6
3
193
1 .8
4
3.5
51
Regions
6503
Round
Jackson
30 39 12
85 23 33
7.1
6.7
36
4
227
2.0
5
3.8
52
Regions
6503
Silver(Seventeen Mile)
Jackson
30 34 40
85 18 50
4.9
0.0
20
3
23
0.8
2
.
53
EPA-ELS 1984
6503
SPARKLEBERRY
3B1-025
30 27 40
85 31 03
5.7
0.0
1 1
1
-
-
5
0.9
54
Regions
6503
Stewart
Washington
30 32 25
85 42 25
6.8
1 .6
1 7
2
60
0.9
3
-
55
Canfield&Hoyer1991
6503
Turkey Pen
Calhoun
30 33 25
85 17 11
4.7
0.4
21
2
132
1 .0
1
3.2
56
Regions
6503
White Double
Washington
30 35 19
85 33 33
6.6
2.7
1 5
1
77
1.1
3
4.8
57
EPA-ELS 1984
6504
(NO NAME)
3B3-O01
30 33 18
84 21 17
8.5
29.0
198
202
-
-
150
0.7
58
Regions
6504
Anderson
Madison
30 26 49
83 25 37
6.5
12.0
45
1 5
377
2.3
2 1
2.9
59
LW(6/96)
6504
Arrowhead
Leon
30 34 00
84 13 03
-
-
-
29
425
12.1
.
1 .0
60
LW(6/96)
6504
Belmont
Leon
30 33 01
84 10 45
-
-
-
47
1 130
22.9
-
0.9
61
Regions
6504
Blair
Madison
30 35 23
83 22 53
5.4
0.4
1 9
3
487
2.3
1 6
-
62
LW(6/96)
6504
Blairstone
Leon
30 24 50
84 15 25
-
-
-
7 1
1 187
42.4
-
0.7
63
LW 93
6504
Blue Heron
Leon
30 36 02
84 14 15
7.4
20.0
57
26
610
1 1.6
1 5
_
64
LW(6/96)
6504
Bockus
Leon
30 35 05
84 13 09
-
-
-
1 6
399
4.3
-
1 .8
65
LW(6/96)
6504
Carolyn
Leon
30 33 06
84 12 25
-
-
-
34
344
18.3
.
1 .4
66
Regions
6504
Car-
Leon
30 34 24
84 17 48
6.5
6.7
27
25
717
12.2
20
1 .3
67
Regions
6504
Cherry
Madison
30 36 48
83 24 47
6.1
0.7
40
27
543
21.5
6
1 .2
68
Regions
6504
Cobb
Madison
30 31 11
83 25 46
5.7
1 .2
1 5
1 0
423
3.9
28
1 .4
69
LW 93
6504
Diane
Leon
30 35 38
84 14 21
6.9
4.9
31
7
277
2.0
6
-
70
LW(6/96)
6504
Elizabeth
Leon
30 29 36
84 17 49
-
-
-
24
336
13.3
.
3.7
71
LW(6/96)
6504
Erie
Leon
30 22 05
84 07 46
-
-
-
6
424
2.3
-
2.3
72
Summer '96
6504
Hall
Leon
30 31 14
84 14 52
6.8
3.4
26
1 0
300
1 .5
6
5.8
73
Regions
6504
Hay Pond
Jefferson
30 36 46
83 49 20
6.3
1.1
1 1
21
533
31.1
8
-
74
Regions
6504
lamonia
Leon
30 38 01
84 14 48
5.8
2.8
23
1 7
567
6.8
40
.
75
Regions
6504
Jackson
Leon
30 31 47
84 19 40
6.9
13.3
45
24
527
8.8
1 3
2.0
76
Summer '96
6504
Maclay
Leon
30 30 57
84 14 47
6.7
3.5
27
1 0
353
1 .7
6
5.3
77
Regions
6504
Mays Pond
Jefferson
30 35 31
83 57 11
9.9
27.3
88
9 1
3323
124.1
157
0.3
78
Regions
6504
Miccosukee
Jefferson
30 33 56
83 58 16
6.0
5.0
26
1 7
443
5.8
25
1 .9
79
LW 93
6504
Monkey Business
Leon
30 36 21
84 13 56
7.2
16.0
54
42
630
30.3
1 7
.
80
Regions
6504
Mystic
Madison
30 29 00
83 26 36
6.6
14.7
64
28
693
5.6
51
1.1
81
Summer '96
6504
Overstreet
Leon
30 31 45
84 15 24
5.9
1 .6
1 9
1 1
287
1 .4
8
3.6
82
LW(6/96)
6504
Petty Gulf
Leon
30 35 24
84 13 46
.
-
-
33
547
22.4
.
1 .0
83
Regions
6504
Rachel
Madison
30 27 31
83 27 57
6.0
1.5
1 6
4
227
1 .6
6
-
84
Regions
6504
Razor
Jefferson
30 36 05
83 45 23
8.0
69.0
152
26
780
3.5
1 1
-
85
Regions
6504
Rock Island
Madison
30 35 41
83 27 44
6.2
5.1
38
127
607
40.7
88
0.5
Appendix B, Page 64
-------
A
B
C | D
E
-F
G
H
1
J
K
- L
M
N
1
Study
Region
Lake
County
Latitude
MAS
Longitude
'DM5
pH
Total
Alkalinity
(mg/l)
Conductivity
(|iS/cm@25C)
Total
Phosphorus
(M-S'l)
Total-
Nitrogen
(|i0/l)
Chloro;
phyll a
(ng/i)
Color
(pcu)
Secchi
(m)
86
LW(6/96)
6504
Shelly Pond
Leon
30 34 35
84 .16 17
-
-
- ,
96
1.057
41.5
-
0.9
87
Regions
6504
Silver
Jefferson
30 34 29
83 46 32
6.2
2.8
23
13
387
4.6 -
18
2.9
88
Regions
6504
Simpson
Jefferson
30 33 51
83 50 58
9.1
31.0
133
1 297
1593-
' 170.6
77
0.7
89
Regions
6504
Sneads Smokehouse
Jefferson
30 36 42
83 43 17.
6.0
5.1
24
31
620
15.5
40
-
90
LW(6/96)
6504
Sommerset
Leon
30 34 26
84 15 47
-
-
-
219
2008
216.3
-
0.5
91
LW(6/96)
6504
Tallavana
Gadsden
30 35 59
84 27 53
-
-
-
59
707
34.7
-
0.9
92
LW 93
6504
Talquin
Gadsden
30 26 23
84 34 10
8.2
22.0
114
50
580
16.6
27
-
93
LW(6/96)
6504
Wooten
Jefferson
30 23 58
83 59 25
-
-
-
16
490
7.6
-
2.0
94
Regions
6505
Andrew
Leon '
30 24 04
84 24 '25
5.3
0.0
14
5
197
2.7
12
-
95
Regions
6505
Dog
Leon
30 22 .39
84 23 45
5.0
0.0
16
5
217
2.5
4
-
96
Regions
6505
Oog Pond
Leon
30 21 02
84 24 47
4.6
0.0
24
5
300
2.1
9
-
97
Canfield&Hoyerl 991
6505 *
Loften
Leon
30 21 16
84 '22 52
4.9
1.0
20
5
633
2.0
20
2.5
98
Regions
6505 '
Lost
Leon
30 21 45
84 23 11
5.6
0.2
17
1 1
257
3.9
1 1
T
99
Canfield&Hoyerl 991
6505
Moore
Leon
30 23 31
84 24 13
5.8
2.2
17
5
353
3.0
19
5.3
100
LW(6/96)
6505
Trout Pond
Leon
30 20 02 r
.84 23 14
-
-
- '
7
307
3.6
-
2.5
101
EPA-ELS 1984
6506 '
(NO NAME)
3B3-060
29 19 55
82 28 05
8.4
74.0
153
12
-
15
2.5
102
Regions
6506
Alcyone
Hamilton
30 37 34
83 15 05
-5.5
0.4
26
22
283
5.6
1 2
2.4
103
Regions
6506
Alligator
Columbia
30 10 05
82 37 51
7.2
26.3
77
136
1933
102.1
46
0.8
104
Regions
6506
Amber Jack
Hamilton
30 34 37
83 11 14
4.6
0.0
22
1 1
910
3.2
33
-
105
Regions
6506
Blue
Suwannee
30 11, 25
82 55 48-
5.8
4.0
52
178
903
0.9
333
0.5
106
Regions'*
6506
Burnetts
Alachua
29 47 27
82 28 08
6.9
21.0
1 17
334
1020
33.4
102
- 1.2 '
1 07
LW(6/96)
6506
Clear
Alachua
29 39 11
82 23 47
-
-
-¦
97
865 .
12.1
-
1.4
108
Regionis
6506
DeSoto
Columbia
30 11 29
82 37 60
9.2-
51.7
144
116
3083
300.5
70
0.3
109
LW(6/96)
6506
Forest
Hamilton
30 31 56.
83 07 23
-•
-
118
567
6.3
-
1.9
110
Regions
6506
Frances
Madison
30 27: 57
83 24 26
8-.3
80.7
169
11 1
1750
70.5
17
0.4
111
LW(6/96)
6506 ^
Hammocks
Alachua
29 42c25
82 26 00
-
-
-
170
1044
36.7
-
1.2
112
EPA-ELS 1984
6506
HAVEN WINQUIPIN
3B3-168
29 33 54
82 45 03
6.5
2.4
38
28
-
175
0.6
113
Regions
6506
Jeffery
Columbia
30 12 34
82 41 34
5.8
0.8
39
13
597
5.6
64
1.5
114
Summer '96
6506
Kings wood
Alachua
29 40 49
82 24 19
6.5
6.8
71
20
655
5.5
45
-
115
Canfield (1981)
6506
Louise
Suwannee
30 19 05
82 52 40
6.4
5.0
46
22
632
6.5
42
1.8
116
Regions
6506
Low
Suwannee
30 13 16
82 50 09
5.8
2.4
52
296
937
4.7
242
0.6
117
Regions
6506
Mill Pond
Macfison
30 28 .22
83 24 00
6.7
8.0
38 J
23
540
13.1
16
2.8
118
LW(6/96)
6506
Mills Creek
Columbia
30 10 15
82 36 52
-
-
-
253
450
-
-
-
119
Regions
6506
Montgomery
Columbia
30 11 01
82 38 40
7.6
43.0
131
38
840
23.4
19
1.5
120
LW(6/96)
6506
Moon
Alachua
29 40 50
82 24 14
-
-
-
148
878
45.8
-
1.4
121
Regions
6506
Octahatchee
Hamilton
30 36 31
83 12 21
5.7
2.1
44
346
850
2.8
246
0.7
122
LW(6/96)
6506
Peacock
Suwannee
30 14 21
82 53 52
-
-
-
84
1286
39.3
-
1.3
123
Regions
6506
Prairie
Alachua
29 47 49
82 22 39
7.3
40.7
155
195
870
28.1
73
1.1
124
Regions
6506
Suwannee
Suwannee.
30 22 51
82 56 57
6.5
6.7
48
49
983
37.9
36
0.9
125
LW(6/96)
6506
Timber
Hamilton
30 32 22
83 06 .16
-
-
-
64
827
6.0
-
-
126
Regions
6506
Trout
Alachua
29 50 37
82 18 43
5.7
0.1
36
34
340
5.7
15
-
127
Regions
6506
Watertown
Columbia .
30 11 34
82 35 54
8.7
42.0
136
32
1073
36.0
29
0.8
Appendix B, Page 65
-------
A
B
C
D
E
F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
pH
Total
Alkalinity
(mg/'l
Conductivity
(nS/cm©25C)
Total
Phosphorus
(M9/I)
Total
Nitrogen
(M9/I)
Chloro-
phyll_a
(M-3'l)
Color
(pcu)
Secchi
(m)
128
Regions
6506
White
Suwannee
30 14 52
82 54 51
6.6
7.1
46
1 5
357
4.6
20
-
129
Regions
7501
Adams
Lafayette
29 58 45
83 02 17
5.3
1 .5
51
1 8
1367
2.3
499
0.4
1 30
Regions
7501
Andrews
Taylor
30 16 24
83 38 54
5.4
0.5
30
1 5
527
1 1.4
85
1 .1
131
Regions
7501
Booze
Madison
30 22 48
83 19 35
3.9
0.0
67
3 1
1303
39.5
196
0.6
132
1-QAQC
7501
Bradford
Leon
30 24 09
84 20 29
5.0
0.2
24
1 8
518
8.5
121
0.4
133
LW(6/96)
7501
Camp Creek
Walton
30 17 48
86 03 22
-
-
-
6
381
3.0
-
1 .2
134
LW(6/96)
7501
Campbell
Walton
30 21 55
86 17 20
-
-
-
5
354
2.5
-
2.9
135
LW(6/96)
7501
Cascade
Leon
30 25 10
84 21 38
-
-
-
1 5
671
8.3
-
0.7
136
Regions
7501
Christmas
Gilchrist
29 41 17
82 43 32
4.0
0.0
78
1 1
820
5.3
124
1 .2
1 37
Canfield (1981)
7501
Com Landing
Franklin
29 57 18
84 26 18
7.0
26.6
199
1 3
574
2.8
82
1 .3
138
Canfield (1981)
7501
Dead
Calhoun
30 14 35
85 10 12
6.3
1 1.8
38
1 4
297
3.6
68
2.0
139
Canfield (1981)
7501
Deer Point
Bay
30 16 08
85 26 15
6.9
22.6
60
8
184
1.9
62
2.1
140
Regions
7501
Ellen
Wakulla
30 06 46
84 23 56
5.1
0.0
30
6
450
3.9
95
1 .0
141
Regions
7501
Found
Leon
30 21 41
84 22 31
4.3
0.0
30
1 5
497
6.3
87
-
142
LW(6/96)
7501
Grassy
Leon
30 24 33
84 20 11
-
-
-
20
838
5.0
-
0.7
143
1-QAQC
7501
Hiawatha
Leon
30 24 36
84 20 53
4.5
0.0
31
20
625
9.3
129
0.4
144
Regions
7501
Jones
Levy
29 33 25
82 43 46
5.3
0.0
1 9
9
693
2.8
43
-
145
Canfield&Hoyerl 991
7501
Koon
Lafayett
30 02 24
83 07 35
5.2
2.6
29
5
687
3.0
63
1.4
146
Regions
7501
Middle
Madison
30 22 54
83 19 27
3.9
0.0
65
4 1
1423
64.5
342
0.6
147
1-QAQC
7501
Minniehaha
Leon
30 24 50
84 21 01
4.6
0.0
30
1 5
720
1 1.5
126
0.4
148
Regions
7501
Munson
Leon
30 22 09
84 18 30
10.3
34.0
1 19
109
693
20.2
28
-
149
Canfield (1981)
7501
Otter
Wakulla
30 01 27
84 25 15
4.9
2.3
128
29
501
2.9
222
0.9
150
Canfield (1981)
7501
Oyster
Walton
30 21 08
86 14 43
6.6
18.8
4338
34
554
4.0
208
0.9
151
LW(6/96)
7501
Peach Creek
Walton
30 22 24
86 06 19
-
-
-
6
440
0.9
.
1.0
152
LW(6/96)
7501
Powell
Bay
30 16 07
85 58 49
-
-
-
1 4
422
4.3
.
1.7
153
Reqions
7501
Ten Mile
Madison
30 17 08
83 18 55
5.6
0.5
23
6
807
6.2
48
1.9
154
Regions
7501
Townsend Pond
Lafayette
30 02 15
83 07 05
5.3
0.4
34
1 0
1070
4.2
206
0.7
155
Reqions
7501
Waccasassa
Gilchrist
29 36 50
82 41 35
6.6
6.9
50
42
987
1 1.6
64
0.5
156
Reqions
7501
Waters
Gilchrist
29 42 07
82 44 00
6.2
2.8
50
340
2500
21.1
521
0.1
157
Regions
7501
Waters Pond
Levy
29 33 10
82 42 52
5.2
0.0
36
1 6
983
10.0
248
0.8
158
Canfield (1981)
7501
Western
Walton
30 19 37
86 09 15
6.8
21 .3
5636
6
289
1.3
141
1.7
159
Canfield (1981)
7501
Wimico
Gulf
29 48 16
85 16 19
6.8
21.3
126
28
493
3.9
1 1 3
0.5
160
Reqions
7501
Winquipin
Levy
29 31 41
82 43 25
5.2
0.0
25
1 0
937
2.6
53
-
161
Regions
7502
Fisher
Union
30 04 02
82 22 45
4.4
0.0
70
1 3
1220
1.1
343
.
162
Regions
7502
Ocean Pond
Baker
30 13 37
82 26 13
4.7
0.0
40
1 6
383
7.4
120
0.8
163
Regions
7502
Palestine
Union
30 07 05
82 24 30
5.0
0.0
44
1 1
420
4.6
77
1.2
164
Regions
7502
Swift Creek
Union
30 07 30
82 17 53
4.7
0.0
56
6 1
1042
15.6
445
0.3
165
Regions
7503
Alto
Alachua
29 46 46
82 08 52
5.8
1 .0
69
1 4
553
5.8
62
1.2
166
Regions
7503
Butler
Union
30 02 06
82 20 17
6.2
1 .8
52
1 4
500
2.6
55
1 .7
1 67
Regions
7503
Crosby
Bradford
29 56 38
82 09 26
5.4
0.3
64
1 1
637
11.1
43
1.8
168
LW(6/96)
7503
DeValerio
Bradford
29 54 27
82 10 19
.
.
-
33
678
1 1.4
.
1 .0
169
Regions
7503
Hampton
Bradford
29 51 34
82 10 08
5.4
0.2
66
1 0
557
7.6
72
1.5
Appendix B, Page 66
-------
A
B
C
D
E
F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DM5
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(tiS/cm025C)
Total
Phosphorus
(iig/D
Total
Nitrogen
(ng/i)
Chloro-
phyll' a
(ug/U
Color
(peu)
Secchl
(m)
170
Reqions
7503
Little Santa Fe
Alachua
29 46 25
82 05 46
5.0
0.0
: 6.9
8
530
6.2
33
1.2
171
1-QAQC
7503
Melrose Bay
Alachua
29 42 54
82 03 11
6.0
1:1
68
10
422
8.8
17
1.6
172
LW(6/96)
7503
Punchbowl
Putnam
29 43 00
32 02 55
. .
-
-
14
607
6.5
-
1.1
173
Regions
7503
Rowell
Bradford
29 55 15
82 09 32.
7:2
. 23.3
234
37
753
15.4
74
1.7
174
Regions
7503
Sampson
Bradford
29 55 40
82 11 18
7.1
11.3
149
13
657
3.0
79
1.8
175
Regions
7503
Santa Fe
Alachua
29 44 33
82 04 37
5.9~
0.9
68
8
447
5.3
27
1.9
176
EPA-ELS 1984
7504
(NO NAME)
3B1-029
29" 46 10
81 56 45
5.7
0.1
39
12
-
-
65
0.7
177
EPA-ELS 1984
7504
(NO NAME)
3B1-033
29 37 17
81 54 38
7.4
12.3
41
22
-
-
20
3.3
178
179
EPA-ELS 1984
7504
(NO NAME)
3B1 -054
29 47 24
81" 57 34
6.4,
0.6
45
14
-
-
20
2.0
EPArELS 1984
7504
(NO-NAME)
3B1-089
29 36 30
81 58 25
6.2
0.7
33
8.5
-
-
10
4.4
180
EPA-ELS 1984
7504
(NO NAME)
3B1-099
29 37 07
81 53 52
7.0
3.8
34
13
-
-
10
1.9
181
EPA-ELS 1984
7504«
(NO NAME)
3B1-106
29 34 45
81 57 17.
4.7
0.0
50
3
.
.
10
2.7
182
183
Canfield&Hoyerl 991
7504k
Banco
Putnam
29 40 34
82 00 34
4.5-
0.1
43
2
82
1.0
2
5.4
Regions
7504
Bedford
Bradford
29 48 34
82 03 04"S
5.9
0:4
44
40
497
17.7
17
1.1
184
LW(6/96)
7504
Blue
Putnam.
29 30 42
82 02 21
-
-
5
138
1.6
-
3.1
185
EPA-ELS 1984
7504.
BLUE POND
3B1-090
29 52 30
82 01 30
4.4'-
0.0
43
8
-
-
25
2.5
186
1-QAQC .
7504
Boll Green
Putnam
29 37 53
81 50 19
6.3
2.2
61
10
187
1.7
7
1.5
187;
Regions .
7504
Bolt
Bradford
29 47 51
82 03 14
.5.7
0.2
29
1 1
263
4.3
7
2.0
188
Canfield&Hoyerl 991
7504
Brim pond
Putnam
29 32 12
81 58 32
7.8
29.1
95
9
624
8.0
10
2.2
189
LW(6/96)
7504
Brooklyn
Clay
29 48 09
82 01 52
•
- -
• -
9
. 194
4.2
-
2.1
190
LW(6/96)
7504
Brooklyn Bay
Clay
29 47 40
82 01 13
-
-
-
18
379
8.0
' -
1.6
191-
Canfield&Hoyerl 991
7504 ¦.
Bull Pond
Putnam
29'31 51
81 58 53
5.3
0.7
57
1 1
522
3.0
9
1.4
192.
LW(6/96)
7504
Chipco
Putnam
29 37- 44
81 53 32
-
-
-
8
243
4.8
-
3.5
193
LW(6/96)
7504
Church
Putnam'
29 39 06!
81 52 03
-
-
-
5
154
4.8
-
4.3
194
Regions
7504
Cowpen
Putnam
29 36 04
82 00 07
4.8
0.0
81
6
57
0.7
3
-
195
I^QAQC
7504
Crystal'
Clay
29 49 23
82 02 32
6.8
5.7
38
10
363
11.3
9
2.2
196
Canfield&Hoyerl 991
7504
Cue
Putnam
29 40 27
81 58 22
4.6
0.5
45
5
91
2.0
0
5.8
197
Canfield&Hoyerl 99 i
7504
Deep
Putnam
29 34 13
81 57 19
4.6
0.3
36
2
158
1.0
4
-
198
199
LW(6/96)
7504'
Deer
Clay
29 50 44
81 56 55
-
-
-
6
105
4.4
-
7.5
1-QAQC
7504
Deeitoack
Marion
29 29 06
81 58 00
5.8
0.7
84
13
747
4.2
14
1.8
200
Regions
7504
DJ
Putnam
29 33 24
81 57 38
4.9
0.0
41
2
297
1.7
6
-
201
LW(6/96)
7504
East .
Putnam
29 37 38
81 57 48
-
-
-
24
790
5.7
-
-
202
1-QAQC
.7504
Fanny
Putnam
29 33 35
81 59 05
4.6
0.0
78
10
205
3.5
5
2.1
203
LW(6/96)
7504
Gator Bone
Clay
29 48 53
81 57 39
-
- -
8
316
1.9
-
2.1
204
1-QAQC
7504
Geneva
Clay
29 45 54
82 01 22
5.8
0.4
83
10
380
2.5
5
1.6
205
1-QAQC
7504
Geoirjes
Putnam
29.47 15
81 51 02
4.6
0.0
57 .
15
133
3.2
7
1.5
206
1-QAQC
7504
Gillis
Putnam
29 34 03
81 59 05
'4.9
0.0
65
10
533
6.5
10
0.9
207
LW(6/96)
7504
Gold Head Branch
Clay
29 50 03
81 56 52
-
-
-
6
131
0.5
-
-
208
Regions
7.504 .
Green Pond
Putnam
29 33 14
82 02 10.:
. 5.6
0.0
39
3
87
1.9
3
3.1
209
Reqions
7504
Halfmoon
Putnam
29 44 18:
81 58 58
5.6
0.5
43
5
333
3.6
9
-
210
1-QAQC
7504
Hardssty
Putnam>
29 36 10
81 51 20
6.4
4.1
57
10 .
505
6.0
22
0.8
211
1-QAQC
7504
Hewitt
Putnam
29 32 32
81 55 35
5.3
0.0
51
10
153
1.8
7
1.8
Appendix B, Page 67
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(^S/cm@25C)
Total
Phosphorus
(MJ/I)
Total
Nitrogen
Chloro-
phyll_a
(M9/I)
Color
(pcu)
Secchi
(m)
212
1-QAQC
7504
Hiqqenbotham
Putnam
29 33 42
81 58 08
5.6
0.3
55
1 0
548
4.2
7
2.7
213
Regions
7504
Hutchinson
Clay
29 44 52
82 01 05
5.7
0.3
64
9
267
4.9
4
2.3
214
LW(6/96)
7504
Ida
Putnam
29 37 47
81 51 32
-
-
1 5
326
9.1
-
1 .8
215
1 -QAQC
7504
Island
Marion
29 28 36
81 58 30
6.1
1.1
65
1 5
300
5.5
9
1.8
216
LW(6/96)
7504
Johnson
Clay
29 49 30
81 56 16
-
-
-
8
237
3.4
1 .7
217
Canfield& Hoyerl 991
7504
Keys pond
Putnam
29 31 46
81 58 34
5.4
1 .7
43
2
208
1 .0
2
5.3
218
Canfield (1981)
7504
Kingsley
Clay
29 57 55
82 00 13
7.0
9.6
54
1 1
278
2.0
6
4.2
219
1 -QAQC
7504
Lily
Clay
29 44 26
82 01 25
5.4
0.0
56
1 0
200
6.3
6
2.7
220
LW(6/96)
7504
Little Crystal
Clay
29 49 47
82 02 50
-
-
1 4
526
14.8
-
1.8
221
Canfield&Hoyerl991
7504
Little Fish
Putnam
29 31 10
81 59 09
6.8
31.8
83
2 1
1161
13.0
29
1.4
222
LW(6/96)
7504
Little Johnson
Clay
29 49 31
81 56 55
-
-
-
9
217
3.9
1.4
223
LW(6/96)
7504
Little Keystone
Clay
29 46 55
82 02 08
-
-
-
1 3
395
4.4
-
2.5
224
Regions
7504
Long Pond
Putnam
29 40 21
81 59 45
4.6
0.0
64
2
1 1 3
1 .4
3
-
225
Regions
7504
Lowery
Clay
29 50 52
82 00 03
4.9
0.0
31
6
87
2.9
7
2.3
226
Regions
7504
Magnolia
Clay
29 49 28
82 01 07
4.8
0.0
32
3
123
2.9
1 2
3.5
227
EPA-ELS 1984
7504
MAGNOLIA
3B1-141
29 49 28
82 01 07
5.1
0.0
26
4
-
.
1 0
4.4
228
LW(6/96)
7504
Mariner
Putnam
29 38 44
81 53 19
-
-
-
2
120
3.3
-
4.6
229
EPA-ELS 1984
7504
MARINER
3B1-055
29 38 45
81 53 17
4.9
0.0
38
5
-
-
1 0
3.8
230
LW(6/96)
7504
Mason
Putnam
29 39 47
81 59 02
-
-
-
6
1 1 7
6.3
.
2.8
231
LWj6/96)
7504
Miles Kale
Marion
29 28 40
81 58 59
-
-
-
1 0
270
3.5
-
2.3
232
Regions
7504
Morris
Putnam
29 36 54
81 58 22
6.1
1 .5
41
7
150
1 .8
1 0
3.7
233
1-QAQC
7504
North Twin
Putnam
29 36 36
82 01 07
6.8
4.9
43
1 7
437
24.3
9
1 .5
234
LW(6/96)
7504
Opal
Clay
29 44 35
82 01 46
-
-
-
6
435
2.5
-
4.3
235
Regions
7504
Paradise
Bradford
29 47 17
82 02 51
8.0
33.0
99
7
350
3.2
6
2.8
236
LW(6/96)
7504
Pebble
Clay
29 49 32
81 54 15
-
-
-
1 3
219
4.6
.
1.8
237
1 -QAQC
7504
Pegram
Marion
29 28 13
. 81 59 12
6.3
2.6
73
1 0
877
9.3
1 4
1.9
238
Canfield&Hoyer1991
7504
Picnic
Putnam
29 30 52
81 58 28
4.3
0.0
69
8
137
1.0
0
2.6
239
1-QAQC
7504
Riley
Putnam
29 31 07
82 02 00
4.9
0.0
77
1 5
418
3.2
38
1.2
240
1-QAQC
7504
Rosa
Putnam
29 42 40
82 00 34
5.1
0.0
46
5
123
2.0
3
3.6
241
LW(6/96)
7504
Sheelar
Clay
29 50 24
81 57 31
-
-
4
81
1.8
-
7.6
242
Regions
7504
Silver
Bradford
29 47 51
82 03 36
6.3
1.0
42
1 6
260
7.2
7
3.1
243
LW(6/96)
7504
Spring
Clay
29 49 03
81 59 12
-
-
1 5
244
5.4
.
1 .7
244
EPA-ELS 1984
7504
STEVENS
3B1-027
29 53 30
82 00 35
4.8
0.0
30
4
.
.
20
2.7
245
1 -QAQC
7504
Swan
Putnam
29 43 30
82 00 37
5.2
0.0
62
2
70
1.0
3
.
246
LW(6/96)
7504
White Sand
Clay
29 48 42
81 58 35
-
-
-
9
216
2.8
-
1.6
247
1 -QAQC
7504
Winnott
Putnam
29 38 53
82 03 03
6.2
1 .9
52
1 0
418
2.5
1 2
1.9
248
Regions
7505
Bonable
Marion
29 08 16
82 31 29
6.1
1.1
54
42
953
25.6
85
0.5
249
Regions
7505
Dinner
Gilchrist
29 40 14
82 43 08
4.8
0.0
49
34
840
23.5
23
.
250
Regions
7505
Section Sixteen
Marion
29 05 37
82 29 13
5.0
0.0
31
8
293
1.7
• 26
2.4
251
Regions
7505
Tiger
Marion
29 07 52
82 31 05
5.9
0.6
49
3 1
660
12.4
35
0.9
252
Regions
7505
Watermelon Pond
Alachua
29 32 42
82 36 20
4.8
0.0
33
5
573
2.1
21
-
253
Regions
7506
Blue Creek
Taylor
29 50 27
83 34 07
7.1
141.7
290
1 8
497
11.1
1 8
1.7
Appendix B, Page 68
-------
A
B
C
D
E
.F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
Total
Alkalinity
(mg/l)
Conductivity
(liS/cm@25C)
Total
Phosphorus'
(HB/I)
Total
Nitrogen'
(HB/I)
Chloro-
phyll a
(ug/i)
Color
(peu)
Secchl
,(m)
254
Reqions
7506
Cocker Soq
Taylor
29 49 47
83 30 06
11.7
233.7
468
24
537
V 1.4
39
-
255
LW(6/96)
7506
Governor Hill
Dixie
29 45 17
83 02 14
. .
-
-
9
863
1.3
-
1.1
256
EPA-ELS 1984
7506
HAMMOCK
3B3-068
29 45 52-
83 01 07
8.6
119.4
251
1 8
-
-
105
1.8
257
LW(6/96)
7506
Home Sprinqs
Leon
30 19 06
84 07 53
-
-
-
35
295
0.7
-
2.4
258
Regions
7506
Lonq Pond
Levy
29 26 39
82 50 49
7.9
91.0
198
1 2
480
2.0
14
-
259.
EPA-ELS 1984
7506
MATTHIS
3B3-O06
29 47 32
83 00<36
7.9
29.5
81
7
•-
-
20
2.0
260
Canfield (1981)
7506
Rousseau
Levy
29 01 35
82 34 47
7.3
92.2
209
48
¦462
2.3
70
2.1
261
LW(6/96)
7506
.Wadssa
Jefferson
30 20 22
83 59 36
-:
-¦•
32
260
1.2
-
3.6
262'
EPA-ELS 1984
7507
BIRD POND
3B3489
29' 11 48'
82 20 18
8.5
166.0 >
313
1 1
-
30
1.2
263
LW(6/96)
7507
Lillian
Marion
29 03:44
82 03 11
-
-
-
137
2088
100.8
-
0.6
.264
EPA-ELS 1984
7508
(NO NAME)
3B1-057
29 00 33
81 51< 52
4.3
0.0
43
32
-
225
0.5
265!
Canfield&Hoyerl 991
7508
Apopka.
Lake
28 39 06
81 39 29
9.4
111.0
371
140
3789
127.0
34
0.3
266
,1-QAQC
7508
Beauclaire
Lake
28 46 09
81 39 36
8.9
128.7
420
152
3767
172.5
45
1.6
267
Canfield&Hoyerl 991
7508
Bivans Arm
Alachua
29 37 38
82 20 45
9.7
101.3
227
384
3256
241.0
25
0.4
268
LW 93 n1
7508
Bryant
Marion
29 08 41
81 51 17
7.7
23.0
100
23
1577
39.6
17
-
269
Canfield&Hoyerl 991
7508
Cariton
Oranqe
28 45 32
81 39 29
8.9
104.7
384
92
3228
173.0
37
0.4
270
Regions
7508
Chloe
Lake
28 50 34
81 46 22
6.8
15.0
87
6
1290
2.3
45
-
271
Greis (1985)
7508
Church
Lake
29 11 44
81' 55 15
5.0
2.7
36
20
900
3.4
349
0.5
272
Regions
7508
Deaton
Sumter
28 50 10
81 58 53
7.1
25.3
184
20
1613
19.0
29
1.2
-273
Canfield (1981)
7508
Dora-
Lake
28 47 20
81 41 36
8.9
120.1
321
90
3062
123.5
43
0.4
274
1-QAQC
7508
Dora East
Lake
28 47 32
81 39 24
8.7
126.2
416
75
3433
183.3
36
0.4
275
1-QAQC
7508
Dora West
Lake
28 47 08
81 42 31
8.7
125.0
404
57
3233
163.3
33
0.4
276
1-QAQC
7508
Eustis
Lake
28 50 31
81 43 27
8.8
106.3
324
45
2400
86.7,,-
20
0.5
277
Regions
7508
George's Pond
Alachua
29 32 02
82 18 42
6.5
14.0
93
320
1403
15.7
187
0.7
278
1-QAQC
7508
Griffin
Lake
28 51 33
81 50 52
8*6
107.8
339
65
2817
99.5
21
0.5
279
Greis (1985)
7508
Halfmoon
Marion
29 09 12
81 49 56
6.4
7.4
53-
1 0
820
1.6
80
2.0
280
1-QAQC
7508
Harris
Lake
28 46 19
81 48 50
8.8
108.2
284
33
1533
55.2
13
0.6
281
1-QAQC
7508
Idlewild
Lake
28 52 35
81 53 02
6.8
13.5
104
17
1267
7.2
65
1.3
282
LW(6/96)
7508
Johnson Pond
Alachua
29 43 19
82 21 04
•
-
-
188
1837.
187.4
-
0.7
283
Greis (1985)
7508
Jumper
Marion
29 13 09
81 51 11
6.8
15.6
72
140
1800
12.7
405
0.4
284
Greis (1985)
7508
Lake Chailes
Marion
29 13 53
81 54 29
6.1
8.8
53
50
1410
0.8
690
0.3
285
Greis (1985)
7508
Lake Eaton
Marion
29 15 25
81 51 57
6.5
11.5
89
50
1160
0.9
613
0.3
286
LW(6/96)
7508
Linda
Lake
28 50 20
81 46 48
- ¦
-
-
-
2.0
-
-
287
1<1AQC
7508
Little. Harris
Lake
28 43 15
81 45 15
8.5
101.5
274
33
1517
38.3
17
0.8
288
1-QAQC
7508.
Little Oranqe
Alachua
29 34 38
82 03 25
6.6
3.4
63
37
1072
29.0
91
0.9
289
Regions
7508
Lochloosa
Alachua
29 31 38
82 08 26
7.1
27.5
110
51
. 1358
32.4
92
0.7
290
LW(6/96)
7508
Lorraine
Lake
28 49 39
81 52 56
-
-
-
50
2462
41.4
-
0.6
291
Greis (1985)
7508
Lou
Marion
29 13 55
81 51 36
5.9
5.0
41
20
990
3.7
21 1
1.4
292
Slimmer '96
7508
McMeekin
Putnam
29.35 24
82 00 30
6.6
2.8
77
21
597
8.3
19
. 2.7
293
Canfield&Hoyerl 991
7508
Miona
Sumter
28 54 12
82 00 12
7.9
22.2
122
12
867
8.0
16
1.5
294
Canfield (1981)
7508
Newnan
Alachua
29 39 10
82 13 06s
6.8
14.4
59
52
1228
38.0
93
0.6
295
Regions.
7508
Newnans
Alachua
29- 38. 42
82 13 08
7.5
10.0
80
133
4393
382.2
133
0.2
Appendix B, Page 69
-------
A
B
C
D
E
F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(nS/cmQ25C)
Total
Phosphorus
Total
Nitrogen
mg/i)
Chloro-
phyll_a
(ng/i)
Color
(pcu)
Secchi
(m)
296
1-QAQC
7508
North
Marion
29 10 03
81 52 47
6.6
4.4
70
22
642
8.0
1 9
1.3
297
Canfield&Hoyerl 991
7508
Okahumpka
Sumter
28 49 29
82 00 24
9.0
54.6
188
21
1 033
1 1.0
37
1.4
298
Regions
7508
Orange
Alachua
29 27 20
82 10 20
7.0
23.3
96
43
1 150
26.3
5 1
1.1
299
LW 93
7508
Panasoffkee
Sumter
28 48 22
82 07 26
8.4
76.0
243
1 4
597
2.8
27
-
300
Regions
7508
Pendarvis
Marion
29 04 15
81 53 05
5.4
0.3
40
9
403
4.7
68
1.6
301
1-QAQC
7508
Picciola
Lake
28 50 10
81 52 27
8.8
109.0
340
57
2583
75.2
22
0.6
302
Greis (1985)
7508
Redwater
Marion
29 12 10
81 53 38
6.6
12.8
61
80
1 400
1 .0
700
0.3
303
1-QAQC
7508
Redwater
Putnam
29 33 50
82 01 04
6.5
4.5
64
27
897
17.8
64
1.1
304
1-QAQC
7508
Silver
Lake
28 50 03
81 48 06
8.1
1 13.5
590
1 0
2583
6.0
1 0
.
305
1-QAQC
7508
Star
Putnam
29 31 33
82 02 15
5.7
0.5
48
25
373
10.5
25
1.3
306
Regions
7508
T rout
Lake
28 51 54
81 40 49
7.0
15.0
142
137
1313
31.9
1 64
0.8
307
1-QAQC
7508
Unity
Lake
28 52 33
81 52 42
6.0
2.3
83
35
858
24.2
123
0.8
308
1-QAQC
7508
Wauberg
Alachua
29 31 32
82 18 07
8.2
16.7
84
78
1717
81.7
27
0.7
309
Greis (1985)
7508
Wells
Lake
29 07 47
81 50 16
5.0
2.0
40
1 0
620
0.7
37
2.9
310
Canfield (1981)
7508
Yale
Lake
28 54 43
81 44 08
8.3
1 16.4
264
1 4
655
9.8
7
1.4
311
EPA-ELS 1984
7509
(NO NAME)
3B1-039
29 07 06
81 52 45
8.5
1 14.5
252
29
-
-
35
2.7
312
EPA-ELS 1984
7509
(NO NAME)
3B1-061
28 59 04
81 45 15
6.3
0.8
37
5
-
-
25
3.0
313
EPA-ELS 1984
7509
(NO NAME)
3B1-105
29 09 46
81 36 57
4.5
0.0
56
2
.
.
5
4.2
314
Greis (1985)
7509
Baptist
Marion
29 01 21
81 40 04
4.6
0.8
35
20
560
5.7
26
1.4
315
Greis (19S5)
7509
Beakman
Lake
29 07 17
81 37 18
4.6
1 .3
43
1 4
340
0.8
6
3.1
316
Greis (1985)
7509
Big bass
Marion
28 59 17
81 46 50
5.0
2.3
32
1 0
1110
1.4
66
2.1
317
Greis (1985)
7509
Big Steep
Marion
29 05 08
81 49 26
4.9
2.7
37
1 0
350
1 .0
20
2.1
318
Greis (1985)
7509
Boyd
Lake
29 08 07
81 33 43
4.1
0.5
49
1 0
1 150
3.0
369
0.6
319
Greis (1985)
7509
Buck
Marion
29 05 33
81 39 09
5.2
2.8
34
1 0
510
1 .8
27
3.1
320
Greis (1985)
7509
Buckskin
Marion
29 25 35
81 44 56
4.9
1 .5
30
1 1
730
1.1
2 1
2.1
321
Greis (1985)
7509
Bunchground
Lake
29 01 50
81 33 02
4.4
0.5
35
20
1410
5.1
96
1.1
322
Canfield&Hoyerl 991
7509
Catherine
Marion
29 03 35
81 49 55
4.7
0.4
48
2
303
2.0
3
3.2
323
Greis (1985)
7509
Chain-O-Lakes
Lake
29 07 16
81 38 48
4.8
2.0
41
20
1230
1 .4
1 2
2.6
324
LW(6/96)
7509
Chastain
Marion
29 21 37
81 45 03
-
-
-
1 7
647
7.2
.
1 .7
325
Canfield&Hoyerl 991
7509
Clay
Lake
29 01 28
81 27 10
4.8
0.7
51
7
356
4.0
3
4.0
326
Greis (1985)
7509
Clay
Marion
29 01 28
81 27 10
4.5
0.8
53
1 0
370
1.1
7
1 .6
327
EPA-ELS 1984
7509
CLEAR
3B1-097
29 10 42
81 52 06
6.9
3.6
48
4
.
-
25
3.8
328
Greis (1985)
7509
Clearwater
Lake
28 58 38
81 33 19
4.4
0.3
61
1 0
400
1 .1
3
2.0
329
Greis (1985)
7509
Cowpen Pond
Marion
29 01 10
81 27 24
4.7
1.5
47
1 0
660
1 .0
33
1.5
330
Canfield&Hoyer1991
7509
Crooked
Lake
29 09 10
81 36 10
4.6
0.4
45
7
313
2.0
4
3.1
331
Greis (1985)
7509
Crooked
Marion
29 09 10
81 36 10
4.7
1 .3
33
20
470
2.0
1 3
2.8
332
Greis (1985)
7509
Deer
Marion
29 12 00
81 50 20
4.6
1 .3
34
1 0
230
1.0
9
3.4
333
Greis (1985)
7509
Deerhaven
Marion
29 02 34
81 28 15
4.7
1 .5
36
1 0
510
0.9
22
2.0
334
Regions
7509
Delancy
Marion
29 25 40
81 46 28
5.1
0.0
51
1 0
750
7.3
24
1.1
335
Greis (1985)
7509
Doe
Marion
29 02 14
81 49 21
4.6
1.8
47
1 0
180
0.9
5
4.1
336
LW(6/96)
7509
Dolls
Lake
28 29 39
81 41 36
-
-
.
1 9
862
6.0
-
0.9
337
Greis (1985)
7509
Echo
Marion
29 06 14
81 39 00
4.5
2.0
33
1 0
310
1 .0
8
3.3
Appendix B, Page 70
-------
A
B.
C
D
E
"F
G
H
1
J
K
¦ L
M
N
1
Study
Region
Lake
County
Latitude
DM5
Longitude
.DMS
pH
. Total
Alkalinity
(mg/l)
Conductivity
(lLS/cm@25C)
Total
Phosphorus
(ng/i>
Total
Nitrogen
(ug/i)
Chloro-
phyll a
(1*9/1)
Color
(pcu)
Secchl
(m)
338
Greis (1985)
7509
Fades
Marion
29 06 42
-81 40-23
4.9
2.3
40
10
440
0.6
9
3.9
339
LW(6/96)
7509
Fore
Marion
29 16 23
81 54 48
-
-
-
8
480
5.0
-
3.5
340
Greis (1985)
7509
Fore
Putnam
29 16 23
¦*'81 • 54 48
4.9
1.5
40
10
640
3.7
69
1.9
341
Canfield&Hoyerl 991
7509
Grasshopper
Lake
29 08 20'
81 36 47_
-4.5
0.1
61
6
259
1.0
0
3.7
342
Greis (1985)
7509-
Grassy
Lake
29 03 31
81 48 57
5.1
3.0
35
10
1110
1 .8
164
0.8
343
Greis (1985)
7509
Hopkins Praire
Marion
29 16 39
81 42 29
4.7
1.8
45
10
2040
1.2
160
1.5
344
LW(6/96)
7509
Joes
Marion
29 16 46
81 54 36
-
-
-
12
660
4.9
-
2.7
345
Rsqions
7509
Kathryn
Lake
29 00 47
81 29 48
6.4
3.7
73
13
513
7.7
20
1.7
346
Reqions
7509
Kerr
Marion
29 21 04
81 46 52
6:0
0.6
218
7
203
1.7
7
3.0
347
Regions
7509
Kidney
Marion
29 22 46
81 46 27
4.7
0.0
42
10
1117
4.9 .
44
1.6
348
1-QAQC
7509
King
Marion
29 12 39
81 54 46
6.4
3.0
48
15
687
7.0
1 1
2.3
349.
Canfield&Hoverl 991
7509'
Lawbreaker
Lake
29 09 47
81 36 57
4.4
0.0
65
1
108
1.0
0
5.5
350
Greis (1985)
7509 ¦
Little Bryant
Marion
29 08 51
81 53 55
4.7
1.3
47
10
360
1.2
1 3
, 33
351
Greis (1985)
7509
Mary
Marion
29 04 32
81 49 42
4.5
1.0
52
10
220
0.7
6
4.1
352
Greis (1985)
7509
Mill Dam
Lake
29 10 54
81 50 '27
6.5
6:o
43
10
560
1.7
27
3.7
353
1-QAQC
7509
Mill Dam
Marion
29 10 54
81 50 27
6.4
2.2
52
15
592
5.0
.8
1.8
354
Greis (1985)
7509
Nicatoon
Marion
28 59 45
>81 42 53
6.1
9.3
107
10
1490
2.9
141
1.5
355
Greis (1985)
7509,
North Grasshopper
Lake
29 08-58
81 36 21
4.7
1.3
39
7
330
0.5
1 1
5.8
356
Greis (1985)
7509
Penner '
Marion
29 29 30
81 49 23
4.5
0.8
22
10
840
3.2
78
0.9
357
Greis (1985)
7509
Round Lake
Lake
29 07 21
81 54 20
4.8
1.0
33
10
190
1.1
6
4.0
358
Greis (1985)
7509
Round'Pond
Marion
29 04 30
81 48 28
.4.8
2.0
34
10
560
1.0
23
2.1
359
Greis (1985)
7509
Sellers
Lake
29 06 43
81 38 10
4.6
1.3
45
10
180
0.5
3
5.3
360
Greis (1985)
7509
Shoesole
Marion
29 07 32
81 54 40.
4.7
1.5
38
10
380
0.6
1 6
4.4
361
Regions
7509
Silver
Lake
28 59 14
81 31 05
4.9
0.0
87
5
490
2.3
22
2.7
362
Greis (1985)
7509
Skinny Dip
Marion
29 07 12
81 36 51
4.4
1.3
42
10
630
0.7
3
3.5
363
Rsqions
7509
South
Lake
28 58 52
81 31 04
4.4
0.0
64
6
723
2.3
94
1.3
364:
Greis (1985)
7509
South Grasshopper
Marion
29 08 10
81 36 48
4.7
1.3
36
20
350
0.9
9
3.3
365
Canfield&Hoyerl 991
7509
Swim-Pond
Marion
29 02 44
81 48 57
5.6
0.9
43
25
1025
11.0
26
0.6
366
Greis (1985)
7509
Tomahawk
Marion
29 07 57
81 54 23
4.7
1.0
32
10
260
0.8
7
4.7
367-
Greis (1985)
7509
Trout
Putnam
29 03 02
81 49 35
4.7
1.0
44
10
290
1.2
29
2.8
368
Greis (1985)
7509
Waldena
Marion
29 11 51
81 56 14
5.7
2.7
29
14
380
1.4
29
2.4
369
Canfield (1981)
7509
Wildcat
Lake
29 09 43
81 37 39
4.8
0.9
33
8
192
1.3
18
3.2
370
Greis (1985)
7509
Wildcat
Marion
29 09 43
81 37 39
4.5
1.8
43
10
260
1.1
24
3.5
371
Greis (1985)
7509
Yearlinq
Marion
29 06 14
81 39 28
4.5
1.5
32
6
230
0.8
2
4.6
372
Regions
7510
Akron
Lake
28 59 50
81 31 22
4.2
0.0
97
129
773
16.3
24 5
0.7
373
LW(6/96)
7510
Ann
St Lucie
27 32 04
80 24 14
-
-
-
34
1432
41.5
-
0.5
374
LW(6/96)
7510
Asbury North
Clay
30 03 29
81 49 08
-
-
-
13
410
4.0
-
2.5
375
Summer '96
7510
Asbury South
Clay
30 02 52
81 49 15
7.7
27.0
98
1 1
283
6.0
9
3.7
376
Canfield (1981)
7510
Ashby -
Volusia
28 55 29
81 05 58
6.9
12.7
80
18
573
11.4
146
0.8
377
1-QAQC
7510
Ashley
Putnam
29 42 30
81 58 55
4.6
0.0
69
10
180
3.0
3
0.5
378
LW(6/96)
7510
Bel Air
St Lucie
27 31 53
80 23 48
. -
-
-
8
502
2.2
-
-
379
LW(6/96)
7510
Belle Aire
Flagler-
29 33 45
81 13 48-
-
-
-
32
693
9.0
-
0.9
Appendix B, Page 71
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(jiS/cm @25C)
Total
Phosphorus
(ng/i)
Total
Nitrogen
(ng/i)
Chloro-
phyll_a
(ug/i)
Color
(pcu)
Secchi
(m)
380
LW(6/96)
7510
Belle Terre
Flagler
29 36 16
81 15 14
-
-
27
619
1 5.4
-
1 .2
381
LW(6/96)
7510
Beresford
Volusia
28 59 10
81 20 34
-
-
-
73
1287
37.9
.
0.7
382
LW(6/96)
7510
Bethel
Volusia
28 50 57
81 12 45
-
-
-
95
1035
20.6
-
1 .0
383
EPA-ELS 1984
7510
BIG
3B1-050
28 52 07
81 27 52
6.6
2.9
8 1
1 1
-
-
85
1 .3
384
LW(6/96)
7510
Birchwood
Flagler
29 34 46
81 14 20
-
-
-
42
473
6.7
-
1 .6
385
LW(6/96)
7510
Bird of Paradise
Flagler
29 35 31
81 14 48
-
-
-
19
494
7.8
-
1 .4
386
LW(6/96)
7510
Birdway
Flagler
29 35 15
81 14 57
-
-
-
22
621
1 1 .0
-
1 .0
387
LW(6/96)
7510
Blue
Lake
29 00 05
81 30 24
-
-
-
25
345
6.7
.
1 .2
388
LW(6/96)
7510
Blue
Volusia
29 01 58
81 16 07
-
-
-
36
1 1 00
19.1
.
1 .0
389
Regions
7510
Blue Cypress
Indian River
27 44 00
80 45 34
7.5
27.0
133
109
1003
5.7
254
0.6
390
LW(6/96)
7510
Brandon
Flagler
29 26 42
81 13 59
-
-
-
9
350
2.4
-
1 .8
391
Greis (1985)
7510
Calhead
Marion
29 24 51
81 40 33
5.0
2.8
36
30
710
5.3
452
0.3
392
LW(6/96)
751 0
Clearwater
Putnam
29 40 04
81 52 50
-
-
-
33
670
29.8
-
0.8
393
Regions
7510
Crane
Putnam
29 33 03
81 37 51
4.3
0.0
85
4
2440
2.8
85
-
394
Canfield (1981)
7510
Crescent
Flagler
29 26 24
81 28 48
7.2
19.9
234
30
1 1 04
24.8
247
0.6
395
Regions
7510
Crescent
Putnam
29 25 49
81 29 15
6.8
1 1.0
152
133
1463
3.8
546
0.3
396
LW(6/96)
7510
David
St Lucie
27 33 21
80 23 49
-
-
-
1 1
509
3.1
.
1 .4
397
Regions
7510
Davis
Putnam
29 38 11
81 41 18
6.0
2.5
94
1 1
860
4.0
99
0.8
398
LW(6/96)
7510
De Witt
St Lucie
27 33 18
80 24 31
-
-
-
30
739
14.6
-
1 .2
399
LW(6/96)
7510
Deborah
St Lucie
27 32 44
80 24 14
-
-
-
16
512
3.9
-
1.7
400
Canfield (1981)
751 0
Dexter(Volusia)
Volusia
29 06 26
81 28 44
7.6
51.3
730
1 1 4
994
17.6
136
0.7
401
Regions
7510
Dias
Volusia
29 09 40
81 19 07
6.6
4.3
106
2 1
760
8.4
105
1.1
402
Canfield (1981)
7510
Disston
Flagler
29 17 02
81 23 31
5.3
3,1
52
1 1
832
1.6
383
0.4
403
Regions
7510
Doctors Inlet
Duval
30 08 04
81 44 01
7.8
48.7
853
88
1307
58.0
132
0.5
404
LW(6/96)
751 0
Dolores
St Lucie
27 32 14
80 24 05
-
-
-
1 7
933
3.3
.
2.0
405
Canfield (1981)
751 0
Dorr
Lake
29 00 05
81 37 16
5.3
1 .9
44
20
369
4.2
92
1 .2
406
LW(6/96)
7510
Forest
Brevard
28 21 23
80 48 07
-
-
-
1 8
749
6.7
-
2.3
407
LW 93
7510
Fox
Brevard
28 35 32
80 52 04
7.4
56.7
908
52
1493
36.4
128
-
408
LW(6/96)
7510
Gemini Springs
Volusia
28 51 44
81 18 39
-
-
-
57
737
1.0
-
-
409
LW(6/96)
7510
George
Putnam
29 18 21
81 35 36
-
-
-
58
1 233
43.1
-
0.7
410
Regions
751 0
George
Volusia
29 18 34
81 35 43
7.8
47.0
484
79
1393
18.2
226
0.5
41 1
Greis (1985)
7510
Gobbler
Lake
29 09 45
81 36 36
4.1
0.0
53
1 0
1210
2.6
405
0.5
412
Regions
751 0
Goodson Prairie
Putnam
29 44 22
81 56 12
5.8
0.7
50
1 8
717
21 .9
30
1 .4
41 3
LW(6/96)
751 0
Gore
Flagler
29 27 40
81 13 07
-
-
.
1 2
659
¦ 1.8
-
0.7
41 4
1-QAQC
7510
Grandin
Putnam
29 40 33
81 52 51
5.5
0.4
54
47
715
31.0
35
0.7
415
Regions
7510
Hamey
Seminole
28 45 13
81 03 53
7.4
45.0
365
40
1027
1.7
106
0.7
41 6
Canfield (1981)
7510
Harney
Volusia
28 45 16
81 03 06
7.6
47.3
1111
99
1057
1 1 .8
103
0.8
417
LW(6/96)
7510
Harriet
St Lucie
27 32 38
80 23 36
-
-
-
37
683
5.9
.
1.2
41 8
Regions
7510
Horseshoe
Seminole
28 37 53
81 08 03
4.5
0.0
76
1 9
723
12.3
350
0.5
41 9
LW(6/96)
7510
Jean
St Lucie
27 32 29
80 23 30
-
.
-
1 2
578
3.2
-
2.2
420
LW(6/96)
7510
Jeffery
St Lucie
27 32 54
80 23 43
-
.
.
1 8
689
6.1
.
1 .6
421
Regions
7510
Jessup
Seminole
28 43 27
81 12 53
7.5
55.7
412
143
1590
84.8
68
0.4
Appendix B, Page 72
-------
A
B .
C
D
E
F
G
H
1
J
K
L
VM
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
pH
Total
Alkalinity
(mg/l)
Conductivity
(liS/cm@25C)
Total
Phosphorus
(ug/t)
Total
Nitrogen
(ng/i)
Chloro-
phyll a
(us/I)
"Color
(pcu)
Secchi
(m)
422
LW(6/96)
7510
Karen
St Lucie
27 33 19"
80 23 27
-
-
23
801
12.0
-
1.3
423
LW(6/96)
7510
Lag'una
St Lucie
27 32 58 '
80 -24 28
-
-
46
1545
48;0
0.7
424
Regions
7510-
Lulu
Lake
28 59-17
81 31 51-
5.1
0.0
76
8
890
10.2
200
0.8
425
Canfield (1981)
7510
Marqaret
Putnam
29 26 29
81 36 42
4.6
0.3
59
20
714
7.2
65
0.7
426
LW(6/96)
7510
Marqaret
St Lucie
27 32 58
.80 24 18
-
-
13
461
4.3
-
2.1
427
LW(6/96)
7510
McKenzie
Volusia
29 00 07
81 01 14
-
-
-
25
762
21.0
' -
2.2
428
Regions'
7510
Mills '
Seminole
28 38 07
81 06 60
6.2
2.9
115
21
620
5.8
100
1.0
429
Canfield (1981)
7510
Monroe
Seminole
28 49 55
81 16 21
7.7
44.6
907
91
1257
37.4
. 89
0.5
430
Reqions
7510s
Monroe
Volusia
28 50 34
81 16 19
7.5
43.0
406
54
1093
5.4
124
0.5
431
Regions
7510
Mud
Putnam
29 36 54
81 42 19
6.0
3.4
117
14
1163
5.6
141
1.0
432
LW(6/96)
7510
North Talmadqe
Volusia
29 02 50
81 15 57
.
-
-
22
1010
17.7
-
1.3
433
LW(6/96)
7510
Parkview Stream
Flagler
29 33 02
81 14 44
-
-
-
68
1130
18.8
-
0.5
434
LW(6/96)
7510.
Patricia
St Lucie
27 32 20
80 23 38
. -
-
-
1 0
657
4.7
-
2.4.
435
LW(6/96)
7510
Phyllis
St Lucie
27 32 26
80 24 03
-
-
-
1 4
432
1.5
-
436
Regions
'7510
Pierson
Volusia
29 13 59
81 28 24
4.9
0.0
89
42
1033
1.6
421
0.6
437
Canfield (1981)
7510
Poinsett
Brevard
28 20 24
80 50 10
7.7
57.8
842
49
1137
9.5
94
0.6
438
LW(6/96)
7510
Ribbon North
Flaqler
29 33 33
81 13 09
-
-
-
18
584
6.2
-
1.8
439
LW(6/96)
7510
Ripplinq
Flaqler
29 30 05
81 14 24
-
-
-
33
866
11.1
-
0.5
440
LW(6/96)
7510
Rose
St Lucie
27 33 04
80 24 28
-
-
54
712
12.9
-
1.1
441
LW(6/96)
7510
Ruce
StLucie
27- 32 03
80 23 42
-
-
26
591
9.7
-
1.4
442
LW(6/96)
7510
Ryan
Clay
30 03 41
81 49 36
-
-
-
1 0
371
4.0
-
2.0
443
LW(6/96)
7510
Sharon
St Lucie
27,32 44
80 24.19
-
- ¦
-
40
945
21.8
-
1.1
444
LW(6/96)
7510
Shaw
Volusia
29 13 54
. 81 26 23
- -
-¦ •
• -
44
1493
46.2
-
0.4
445
LW 93
7510
Silver
Putnam
29 26 37
81 34 23
6.1
1.2
102
1 1
887
15.6
30
-
446
LW(6/96)
7510
Silver Glenn
Marion
29 14 42
81 38 36
-
-
23
101
1.0
-
-
447
LW 93
7510
South Lake
Brevard
28 37 12
80 52 12
8.5
74.3
613
38
1720
32.0
27
-
448
tW(6/96)
7510-
South Talmadqe
Volusia
29 02 20
81 15 52
-
-
25
1204
24.3
-
1.3
449
LW 93
7510
Sprinq Garden
Volusia
29 07 24
81 22 21
8.4
120.0
763
39
710
5.7
5
-
450
LW(6/96)
7510
Spruce Creek
Volusia
29 04 24
81 04 10
-
-
165
1102
8.3
-
-
451
Canfield&Hoyerl 991
7510
Suggs
Putnam
29 41 19
82 01 20
5.0
2.0
60
66
1249
4.0
400
0.5
452
LW(6/96)
7510
Tucker
Putnam
29 43 23
8158 15
-
-
-
33
1742 -
17.1
-
0.3
453
Canfield (1981)
7510
Washinqton
Brevard
28 09 07
80 44 35
7.8
62.1
428
31
1056
3.4
92
0.8
454
LW(6/96)
7510
Wynnfield
Flaqler
29 32 10
81 15 12
-
r
-
28
668
12.1
-
1.0
455
LW(6/96)
7510
Yancey
Brevard
28 21 47
80 46 58
-
-
25
780
12.3
-
3.9
456
Regions
7510
Yankee
Seminole
28 48 58
81 23 27
5.0
0.0
86
20
1067
20.8
21 1
0.6
457
E PA-ELS 1984
7511
(NO NAME)
3B3-082
29 27 33
81 31 54
7.5
15.4
148
24
-
-
85
2.0
458
LW(6/96)
7511
Banana
Putnam
29 27 50
81 35 28.
-
-
9
451
4.5
-
1.4
459
LW(6/96)
7511
Bell
Putnam
29 25 44
81 32 18
- -
-
-
12
573
4.6
-
1.8
460
Reqions -
7511
Big
Volusia
28 52 06
81 12 52
6.7
12.3
163
15
637
4.9
105
1.5
461
LW(6/96)
7511
Binqham
Seminole
28 44 24
81 18 33
-
- .
-
12
886
4.8
-
1.9
462
LW(6/96)
7511
Broken Arrow
Volusia
28 51 56
81 13 24'
. -
-
-
5
227
1.7
-
-
463
Canfield (1981)
7511
Broward
Putnam
29 30 33
81 35 33
5.5
1.4
71
4
172
1.5
4
5.7
Appendix B, Page 73
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(fiS/cm @25C)
Total
Phosphorus
(ng/i)
Total
Nitrogen
(Mg/i)
Chloro-
phyll_a
(^g/i)
Color
(pcu)
Secchi
(m)
464
Regions
751 1
Butler
Volusia
28 52 15
81 10 50
5.1
0.0
69
¦ 5
700
3.9
63
1.8
465
LW(6/96)
751 1
Charles
Volusia
29 02 00
81 15 10
-
-
-
6
233
2.6
-
4.0
466
Regions
751 1
Charm
Seminole
28 40 46
81 11 48
7.3
31 .3
298
1 4
667
1 .8
3 1
-
467
Regions
751 1
Chuluota
Seminole
28 38 30
81 07 35
7.2
29.0
254
7
540
4.9
22
3.2
468
1 -QAQC
751 1
Clear
Putnam
29 25 20
81 33 16
4.2
0.0
144
0
1 1 8
1 .0
1
-
469
Regions
751 1
Colby
Volusia
28 57 52
81 13 55
6.8
11.0
88
20
857
15.2
1 1 7
1.1
470
LW(6/96)
7511
Como
Putnam
29 28 10
81 34 59
-
-
-
5
162
2.1
-
3.0
471
Regions
751 1
Crystal
Seminole
28 45 45
81 19 49
7.1
13.0
143
7
720
4.5
30
2.3
472
EPA-ELS 1984
751 1
DOYLE
3B1-073
28 51 43
81 11 39
4.6
0.0
65
9
-
-
25
2.8
473
Summer '96
751 1
DuPont
Volusia
28 55 34
81 12 26
6.5
2.7
62
-
-
.
.
-
474
LW(6/96)
751 1
East Crystal
Seminole
28 46 02
81 18 54
-
-
-
1 2
745
5.1
-
2.4
475
LW(6/96)
751 1
East Twin
Seminole
28 47 25
81 20 05
-
-
-
1 6
1061
7.0
-
-
476
LW(6/96)
751 1
Emma
Seminole
28 45 38
81 21 04
-
-
-
8
1 001
3.0
-
-
477
LW(6/96)
751 1
Emporia
Volusia
29 11 40
81 28 16
-
-
-
1 2
747
4.0
.
2.4
478
1-QAQC
751 1
Enqlish
Putnam
29 25 31
81 31 57
7.7
40.8
349
1 8
810
10.5
1 7
1 .6
479
LW(6/96)
751 1
Gem
Seminole
28 38 45
81 12 23
-
-
-
6
241
2.2
.
2.7
480
Regions
751 1
Geneva
Seminole
28 44 40
81 06 35
6.6
5.3
87
9
880
8.6
54
1.8
481
Regions
751 1
Giddings
Volusia
28 57 54
81 13 31
5.9
1.6
52
7
913
7.5
42
1 .7
482
Regions
751 1
Gleason
Volusia
28 53 37
81 15 57
7.2
38.3
157
1 3
1013
4.0
33
2.4
483
Regions
751 1
Golden
Seminole
28 46 10
81 14 30
7.4
13.0
167
124
1300
3.9
27
1 .6
484
LW(6/96)
751 1
Hamey
Volusia
28 45 16
81 03 06
-
-
-
44
1224
13.9
.
0.9
485
LW(6/96)
751 1
Hayes
Seminole
28 37 58
81 12 37
-
-
-
34
692
31.5
-
1.5
486
Regions
751 1
Helen
Volusia
28 59 06
81 13 48
6.9
13.0
165
25
830
9.8
1 4
1.5
487
Regions
751 1
Horseshoe
Volusia
29 05 32
81 17 58
5.7
0.5
74
5
277
2.0
30
3.2
488
Regions
751 1
Hutchenson
Volusia
28 50 54
81 11 05
5.2
0.1
70
4
500
1 .9
52
2.5
489
LW(6/96)
751 1
Lindley
Volusia
29 02 57
81 16 59
-
-
-
1 4
569
5.4
-
2.7
490
LW(6/96)
751 1
Utile Mary
Seminole
28 44 54
81 18 54
-
-
-
1 0
508
3.3
.
3.2
491
LW(6/96)
751 1
Long
Seminole
28 39 42
81 11 20
-
-
-
1 9
628
8.9
-
2.2
492
Regions
751 1
Lower Louise
Volusia
29 19 57
81 30 12
6.8
8.9
166
1 3
623
2.9
26
3.3
493
LW(6/96)
751 1
Marie
Volusia
28 53 07
81 18 41
-
-
-
55
1217
33.1
.
1.2
494
LW(6/96)
751 1
Mary
Seminole
28 45 14
81 18 54
-
-
-
9
500
2.9
.
3.0
495
Regions
751 1
Minnie
Seminole
28 45 14
81 17 29
7.1
39.0
159
1 3
387
3.8
296
0.4
496
LW 93
751 1
North Estella
Putnam
29 25 45
81 36 19
6.7
3.5
138
5
280
2.7
7
-
497
LW(6/96)
751 1
Odom
Volusia
29 09 25
81 21 07
-
-
-
1 1
780
5.5
.
2.2
498
1 -QAQC
751 1
Omega
Putnam
29 26 51
81 31 56
7.8
16.7
301
25
1 250
38.2
1 2
0.7
499
Regions
751 1
Rice
Seminole
28 45 03
81 22 37
6.9
20.7
1 1 4
20
1 053
8.5
52
1.6
500
LW(6/96)
751 1
Rock
Seminole
28 42 14
81 22 05
-
-
.
9
487
4.5
-
3.6
501
LW(6/96)
751 1
Round
Putnam
29 37 30
81 42 08
-
-
-
1 3
408
6.3
2.5
502
Regions
751 1
Round
Seminole
28 40 18
81 11 31
6.9
21.0
174
1 2
513
9.0
60
1.8
503
LW(6/96)
751 1
South Estella
Putnam
29 25 23
81 36 22
-
-
-
7
406
3.2
2.4
504
Canfield (1981)
751 1
Stella
Putnam
29 25 47
81 31 07
7.1
15.7
239
1 3
458
2.7
1 2
4.1
505
Regions
751 1
Sylvan
Seminole
28 48 17
81 22 49
5.6
0.7
1 1 7
7
737
4.6
43
2.6
Appendix B, Page 74
-------
A
B
c
D
E '
¦ F:. ¦ •
G
H
I
J
K
L
M
N
' 1
Study
Region
Lake
County
Latitude
QMS
Longitude
DMS
pH
Total
Alkalinity
(mg/l)
Conductivity
(US/em 025C)
Total
Phosphorus
(^g/D
Total
Nitrogen
(U3/I)
Chloro-
phyll_a
flig/l)
Color
(pcu)
Secchi
(m)
506
LW(6/96)
7511
Tedder
Volusia
29 08 52.
81 21 07.
-
-
19
787
7.4
-
0.7
507
Summer'96
7511
Three Island
Volusia
28'56 20'
81 12 37
5.7
1.3
64
-
650
- 5.7
82
1.9
508
LW(6/96)
7511
West Crystal
Seminole
28 45 41
81 19 45
-
-
1 3
542
5:0
"-
- 2.2
509
1-QAQC
7511
Winnemissett
Volusia
29 01 27
81 15 00
5.8
0.4
185
10
418
1.2
5
2.1
510
EPA-ELS 1984
7512
(NO NAME) "
3B3-109
28'48 19
82 17 07
8.5
185.1
314
9
-
-
30
1.2
511
Summer '96
7512
Bellamy
Citrus
28 55 55
82 22 23
7.4
34.0
113
-
- •
2.6
31
2.4
512
LW(6/96)
7512
Blue Cove
Marion
29 "03 04
82 27 24
-
-
-
168
1763
47.8
-
1.4
513
LW 93
7512
Croft
Citrus
28 52 59
82 19 46
7.6
36.0
115
9
600
2.2
1 9
-
514
Summer '96
7512
Dodd
Citrus
28. 56 24
82 22 26
7.2
34.3
113
1 2
-
6.0
29
2.7
515
Summer '96
7512
Floral City
Citrus
28 45 31
82 16 60
7.5
47.2
143
54
1155
34.3
152
0.9
516
Regions
7512
Fort Cooper
Citius
28 48 18
82 18 16
7.7
92.7
257
19
1380
2.5
34
-
517
Reqions
7512
Fred's
Citrus
28 51 22
82 18 30
7.9
97.7
275
8
. 1000
0.9
.17
-
518
Summer '96
7512
Hampton
Citrus
28 46 57
¦82 17 04
7.3
46.2
134
39 •
'
29.4
121
1.0
519
Summer '96
7512.
Henderson
Citrus
28 50 20
82 19 04
7.6
47.0
141
35
1083
21.0
107
1.2
520
Summer '96
7512'
Hernando
Citrus
28 54 22
82 22 12
7.7
41.7
130
-
7.0
39
2.5
521
LW(6/96)
7512
Little Henderson
Citrus
28 50 54>
82 19 46
17
978
10.1
i-
1.4
522
Regions
7512
Magnolia
Citrus
28 46 44
82 17 60
7.8
183.0
376
17
687
1.6
30
-
523
EPA-ELS 1984
7512
MOON
3B3-023
28 42 55
82 16 33
8.0^
49.5
121
22
-
-
50
1.6
524
Summer '96
7512
Spivey
Citius
28 49 54
,82'18 01
7.2
41.7
131
35 "
1240
37.3
172
0.9
525
Summer '96
7512
Todd
Citrus
28 56 31"
'82 22 18
7.1
38.7
119
-
-
5.6
40
-
526
LW(6/96)
7512
Tsala Apopka
Citrus
28 51 04
82 17 53
-
-
-
22
1118
10.5
-
1.2
527
Summer '96
7512
Tsala Apopka South
Citrus
28 46 10
82 16 60
7.6
46.7
138
42
30.0
127
0.7
i528
LW(6/96)
7512
Tussock
Citius
28 47 18
82 16 38
-
-
34
986
16.7
- ¦
0.9
'529-
LW 93
7512
Van Ness
Citrus
28 53 22
82 19 15
7.5
45.7
134
- 8 •
613
2.1
24
-
530
Regions
7513
Blanton
Pasco
28 24 10
82 14 48:
6.9
16.0
125
63
1277
47.9
162
1.0
531
Regions-'
7513
Bonnie
Hernando
28 32 21
82 24 55
7.3
38.0
96
105
1290
12.5
106
0.5
532
Canfield&Hoyerl 991
7513
Clea r( Pasco)
Pasco
28 20 29
82 15 49
8.6
44.9
195
21
761
21.0
13
1.3
533
Regions
7513
Dowiiriq
Pasco
28 26 11
82 14 57
6.7
7.2
106
35
960
31.0
60
1.3
534
Regions
7513'
Geneva
Hernando
28 30 10
82 10 59
7.1
29.0
114
35
1470
7.4
198
0.8
535
Regions
7513
lola
Pasco
28 23 40
82 17 55
8.2
7.1
145
26
737
19.2
9
1.8
536
Regions
7513
Keyhole
Pasco
28 21 32
82 10 41
8.4
123.3
463
1221
1443
93.5
31
0.8
537
Canfield&Hoyerl 991
7513
Lindsey
Hernando
28 37 50
82 21 59
6.9
10.2
33
19
636
6.0
37
1.9
538
Regions
7513
May Prairie
Hernando
28 37 27
82 21 15
4.6
0.0
36
8
1417
3.4
94
-
539
Regions
7513
McKethan
Hernando
28 38 48
82 20 16
6.5
12.3
49
61
1 100
17.4
1 12
1.3
540
Regions
7513
Middle
Pasco
28 25 17
82 18 55
7.3
25.0
148
80
1 123
36.1
58
0.8
541
EPA-ELS 1984
7513
MOODY
3B3-116
28 24 28
82 17 45
8.1
34.9
168
26
-
-
65
2.6
542
Canfield&Hoyerl 991
7513
Mountain(Hemando)
Hernando
28 28 48
82 18 46
7.3
25.6
113
37
81 3
10.0
39
1.7
543
Regions
7513
Neff
Hernando
28 28 40
82 19 30
6.5
11.3:
92
109
1417
5.1
204
0.8
544
Canfield&Hoyerl 991
7513
Pasadena
Pasco
28 19 04
82-13 08
7.8
20.4
131
1 5
702
3.0
19
2.2
545
Regions
7513
Rush
Citius
29 02 10
82 28.23
5.7
0.7
36
9
447
2.6
24
2.2
546
Canfield&Hoyerl 991
7513
West Moody
Pasco
28 24 44
82 18 07
8.1
30.6
127
14
584
2.0
20
2.8
547
Reqions
7513
Willow Prairie
Hernando
28 37 11
.82 24 31
6.5
9.8
48
17
1110
6.4
86
1.2
Appendix B, Page 75
-------
A
B
C
D
E
F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
pH
Total
Alkalinity
(mg/l)
Conductivity
(nS/cm©25C)
Total
Phosphorus
(fig/i)
Total
Nitrogen
(Hfl/I)
Chloro-
phyll_a
-------
A
B
C
D
E
F
G
H
1
J
K
L .
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity,
(|iS/cmS25C)
Total
Phosphorus
(ng/D
Total
Nitrogen
(ng/i)
Chloro-
phyll_a
(ng/i)
Color
(pcu)
Secchl
(m)
590
Regions
7516
Bracy
Lake
28 53 42
81 40 26
6.7
6.2
127
10
693
- 2.3
60
1.8
591
Regions
7516"
Brantley
Seminole
28 41 33
81 25 14
6.0
1.3
109
13
453
1.5
27
2.8
592
Reqions
7516
Carter
Orange
28 38 11
81 32 22
7.1
38.0
208
131
1363
3.7
108
1.2
593
Regions
7516
Cedar
Lake
28 56 19
81 41 09
7.1
17.0
154
8
917
2.3
38
2.0
594;
Regions
7516
Clear Water
Orange"
28 40 31
81 33 04'
7.5
67.3
263
33
1417
14.2
58
1.6
595
Reqions
7516
Crooked
Orange
28 38 40
81 28 44
7.4
39.0
133
39
980
6.0
81
1.4
596'
Regions
7516
Cypress
Orange
28.28 47
81 33 59
7.6
39.7
291
16
730
13.5
21
1.7
597.
LWI6/96)
7516'
Dream
Oranqe
28 41 03
81 30 42
. ¦ -
-
17
741
20.4
-
1.5
598
Regions
7516*
EOa :
Lake
28 57 29
•81 42 39
7.2
23.7
173
13
1047
3.3
97
1.2
599
Regions
7516"'
Enola
Lake
28 55 27
81: 40 26
7.7
41.0
215
4
953
19.1
21
1.2
600
1-QAQC
7516
Hiawassee
Orange'
28 31 39
81 29 03
7.4
33.0
273
20
593 .
8.3
26
2.7
601
Regions
7516
Holly
Lake
28 56 '27
.81 43 04
6.8
9.9
198
17
1020
7.1
75
1.3
602
EPA-ELS 1984
7516
HOLLY
3B1-044
28- 56 26 *
81 43 00
8.0
20.5
187
12
-
- ¦
55
2.0
603
EPA-ELS 1984
7516
HOLTS
3B3-024
28 41 11
81 33 23
8.7
105.2
309
58
-
-
55
1.1
604-
LW(6/96)
7516
Hope
Orange
28 38 19
81 22 22
-
-
-
16
493
5.3
-:
2.1
605
LW(6/96)
7516
Horseshoe
Orange
28 35 47
81 28 16
-
-
-
59
1153
40.8
-
0.7
606
Regions
7516
Idamere
Lake
28 45 60
81 44 49
6.8
6.3
272
9
613
4.2
1 1
1.5
607
Regions
7516
Jem
Lake
28 44 48
. 81 39 54
7.2
16.0
243
8
463
2.6
10
2.3
608
1-QAQC
7516
John's
Orange
28 31 35
81 40 30
7.0
19.8
259
43
1110
5.8
86
1.2
609
Canfield (1981)
7516
Johns
Lake *
28'31 35
-81 40 30
6.5
4.8
210
27
579
7.2
18
.1.0
610
Regions
7516
Lawne
Orange
28 33 54
81 26 14
7.6
63.0
233
76
1340
11.4
115
7 0.8
611
Regions -
7516
Lena
Lake
28 44 21
81 40 09
6.7
6.2
108
8
330
2.5
17
2.6
612.
LW(6/96)
7516
Little Bear
Seminole
28 38.42
81 26 41
'
-
-
1 5
519
5.6
-
2.8
613
1-QAQC
7516
Little Mary
Lake'
29 00 10
81 38 44
6.6
5.7
110
12
673
6:8
8
2.4
614
LW(6/96)
7516
Lucien
Orange
28 37 36
81 23 30
-
-
-
9
480
1.0
-
5.8
615
LW(6/96)
7516
Lucy
Orange
28 34 23
81 29 45
-
-
-
20
1151
7.1
-
1.7
616
Regions
7516
Maqgiore
Orange
28 44 11
81 36 19
7.2
17.0
246
1 1
783
2.3
14.
2.2
617
EPA-ELS 1984
7516
MARY
3B1-045
28 55 29
81 40 41
8.3
48.9
330
43
-
-
50
0.8
618
1-QAQC
7516
May
Lake
28 52 24
81 38 09
7.2
32.2
307
20
1087
8.2
25
1.6
619
LW(6/96)
75.16'
Metro West
Oranqe
28 31 62
81 28 14
-
-
-
16
618
6.9
-
2.3
620
LW(6/96)
7516
Mirror
Seminole
28 40 01
81 26 21
.
-
-
20
797
16.3
-
1.4
621
LW(6/96)
7516
Moxie
Orange
28 34 53
81 32 08
-
-
-
1 1
633
7.5
-
2.6
622
LW(6/96)
7516
North Lotta
Orange
28 33 03
81 30 33
-
-
-
71
927
22.5
-
1.2
623
1-QAQC
7516
Ola
Orange
28 45 14
81 38 05
7.1
21.7
298
1 0
530
1.5
7
3.7
624
LW(6/96)
7516
Olivia
Orange
28 31 16
81 31 05
-
-
-
71
1135
54.5
-
1.3
625
LW(6/96)
7516
Olympia
Oranqe
28 34 07
81 31 25
-
-
-
10
683
6.4
-
2.7
626
1-QAQC
7516
Orlando
Orange
28 35 40
81 25 57
7.7
52.2
176
68
1292
56.3
56
0.8
627
LW(6/96)
7516
Peach
Orange
28 35 01
81 31 54
-
-
-
20
971
15.9
-
2.2
628
EPA-ELS 1984
7516
PRAIRIE
3B3-077
28 35 35
81 30*30
7.'9
•12.4'
107
.13 .
-
-
60
2.5
629
LW(6/96)
7516
Primavista
Orange
28 33 52
81 32 15
-
-
-
36
1457
32.9
-
1.0
630
Reqions
7516
Roberts
Oranqe
28 31' 03
81 34 16:
6.8
20.0
174
68
1177
21.1
133
1.0
631
1-QAQC
7516
Rose .
Oranqe
28 32 16
81 30 20
7.9
55.7
241
57
2433
62.2
44
0.6
Appendix B, Page 77
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
pH
Total
Alkalinity
(mg/l)
Conductivity
(jiS/cm @25C)
Total
Phosphorus
(ng/i)
Total
Nitrogen
(K9/I)
Chloro-
phyll_a
(C9/I)
Color
(pcu)
Secchi
(m)
632
Regions
7516
Sawyer
Orange
28 28 09
81 34 05
7.7
46.0
289
1 9
1253
29.0
20
1 .0
633
1-QAQC
7516
Seminary
Seminole
28 38 31
81 21 37
6.3
2.3
186
1 0
368
2.3
4
5.2
634
Regions
7516
Seneca
Lake
28 52 12
81 35 26
6.7
7.3
122
33
773
6.3
84
1 .3
635
Regions
7516
Sherwood
Orange
28 33 14
81 29 48
7.2
48.0
191
92
720
4.7
5 1
2.6
636
Regions
7516
Smith
Lake
28 54 01
81 40 57
7.5
49.0
253
37
1283
28.3
38
1.1
637
LW(6/96)
7516
Soulh Lotta
Orange
28 33 04
81 30 43
-
-
82
906
20.3
-
1 .2
638
LW(6/96)
7516
Sprinq 2
Orange
28 34 54
81 31 13
-
-
-
8
643
3.5
-
4.0
639
EPA-ELS 1984
7516
STANDISH
3B3-074
28 42 02
81 33 08
7.9
23.3
141
1 8
-
105
1 .4
640
Regions
7516
Stanley
Orange
28 34 55
81 30 00
9.0
48.0
202
48
1047
29.1
34
1 .0
641
LW(6/96)
7516
Starke
Orange
28 34 06
81 32 08
-
-
-
30
1057
26.7
.
1 .0
642
Regions
7516
Susanne (San Susan)
Orange
28 32 24
81 27 56
7.7
71.0
214
1 2
603
8.5
22
2.5
643
LW 93
7516
Swatara
Lake
28 51 57
81 38 37
8.4
20.0
179
1 0
630
21 .6
20
-
644
Regions
7516
Three Comers
Marion
28 57 49
81 40 49
7.2
22.0
132
1 8
1090
11 .0
45
1 .5
645
Regions
7516
Turkey
Orange
28 30 07
81 28 14
7.1
20.0
139
1 6
580
6.2
54
2.1
646
Regions
7516
Umatilla
Lake
28 55 14
81 39 57
7.6
43.0
231
24
657
11 .4
2 1
2.0
647
Regions
7516
Wekiva
Orange
28 35 50
81 25 55
8.4
59.0
198
90
1773
55.2
80
0.6
648
Summer '96
7516
Wekiva
Seminole
28 40 60
81 27 22
7.8
39.3
160
-
633
7.4
23
2.7
649
LW(6/96)
7516
Yvonne
Seminole
28 40 24
81 26 02
-
-
-
59
923
42.2
-
1 .2
650
LW(6/96)
7517
Christina
Pasco
28 18 46
82 40 38
-
- .
-
37
538
20.4
.
1 .6
651
Canfield (1981)
7517
Crews
Pasco
28 23 26
82 30 41
7.2
21.3
76
1 3
714
3.6
45
1 .5
652
Regions
7517
Green
Pasco
28 18 58
82 30 11
6.7
5.5
102
1 6
937
6.8
26
1 .6
653
LW(6/96)
7517
Hunter
Hernando
28 26 26
82 37 20
-
-
-
1 4
849
4.0
-
2.0
654
Regions
7517
Moon
Pasco
28 17 06
82 36 39
7.2
14.0
131
1 7
893
8.9
1 5
1 .3
655
Regions
7517
Pierce
Pasco
28 19 15
82 30 45
6.1
2.1
57
7
657
2.5
25
-
656
Regions
7517
Sugar Mill
Hernando
28 33 11
82 33 39
7.6
48.3
192
9
1623
1.1
4 1
-
657
Regions
7517
Tooke
Hemando
28 34 09
82 33 09
6.4
1.1
108
8
440
1.6
8
-
658
Regions
7518
Big Gant
Sumter
28 34 38
82 05 06
7.6
149.0
351
46
773
10.5
42
1 .7
659
1-QAQC
7518
Bugq Springs
Lake
28 45 13
81 54 16
7.6
121.5
271
83
670
2.8
3
3.4
660
Regions
7518
Indian Prairie
Hemando
28 32 28
82 08 55
6.1
5.9
59
1 1
2520
1 1 .2
170
0.9
661
EPA-ELS 1984
7519
(NO NAME)
3B1-052
28 38 19
81 52 39
6.4
0.8
1 15
28
-
-
45
0.5
662
Regions
7519
8-Ball
Lake
28 36 05
81 45 59
6.8
14.0
121
1 1
1083
5.5
40
-
663
Regions
7519
Avaion
Oranqe
28 30 38
81 38 39
6.4
3.9
129
9
920
3.3
42
1.7
664
Regions
7519
Big Merritt
Lake
28 38 03
81 42 19
6.7
5.3
135
20
1 107
10.6
90
0.7
665
EPA-ELS 1984
7519
BOGGYMARSH
3B1-087
28 23 15
81 42 02
5.4
0.3
77
1 1
-
-
250
0.4
666
1-QAQC
7519
Cherry
Lake
28 35 56
81 48 56
6.3
2.3
100
1 0
572
2.7
1 7
2.7
667
Regions
7519
Church
Lake
28 38 47
81 50 36
5.9
0.9
171
5
347
2.0
8
-
668
EPA-ELS 1984
7519
COOK
3B1 -088
28 35 27
81 48 30
6.8
3.4
95
1 6
.
-
100
1.8
669
LW(6/96)
7519
CR Biq
Lake
28 30 18
81 44 50
-
-
-
1 3
620
7.3
.
1 .6
670
LW(6/96)
7519
CR Small
Lake
28 30 29
81 44 58
-
-
.
1 7
1 048
14.8
-
0.9
671
Canfield (1981)
7519
Crescent
Lake
28 30 20
81 46 26
6.4
4.4
8 1
1 4
412
2.9
1 5
3.0
672
Regions
7519
David
Lake
28 33 27
81 51 90
7.2
34.0
137
23
840
9.7
34
2.2
673
Canfield&Hoyer1991
7519
Douglas
Lake
28 33 14
81 48 38
7.2
27.1
245
1 1
1 122
2.0
30
1 .5
Appendix B, Page 78
-------
A
B
C
D
E
¦F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(nS/cm©25C)
Total
Phosphorus
; (C9/I)
Total
Nitrogen
(ug/i)
,. Chloro-
phyll a
(Mfl'D
Color
(pcu)
Secchl
(m)
674
1-QAQC
7519:
Emma
Lake
28 36} 55
81 51 08
6.6
3.7
101
7
527
2.0.
1 5
3.7
675
Regions
7519-.
Florence
Lake
28 35 50
81 40 56
8.5
68.0
265
24
1087
17.7
12
1.5
676
EPA-ELS 1984
• 7519
GLONA
3B1-079
28 28 57
81 47 32
6.7
3.9
103
14
- -
105
1.5
677
Regions
7519
Grassy
Lake
28 35 43
81 44 38
6.8
6.3
220
6
480
2.2
1 5
-
678
Regions
751:9
Hancock
Orange
28 27 27
81 36 45
7.1
14.0
168
10
1090
3.6
56
2.4
679
LW(6/96)
7519
Hickorynut
Orange
28 25 38
.8138 32
-
-
-
7
987
1.9
-
4.0
680<
LW(6/96)
7519
Hickorynut South
Orange
28 24 49
:81 38 17
-
-
-
12
850
3.5
-
1.1
681
1-QAQC
75.19
KirWand
Lake
28 26 46
81 48 23
6.4
2.0
151
10
418
1.3
7
1.2
682
LW(6/96)
7519
Little Hickorynut
Orange
28 25 54
81 38 57
-
-
-
7
562
1.7
-
3.9
683
Regions
7519
Live Oak
Lake
28 25 24
81 46 21
7.6
37.3
174
24
1 160
20.7
52
1.0
684
Regions
7519
Long
Orange
28. 26 41
81 36 41
7.0
22.0
f 191
1 3
1043
5.1
69
1.7
685
Reqions
7519
Louisa
Late-"'
28 28 45
81 44 14
4.7
0.0
99
22
1557
4.8
447
0.3
.686
Regions
7519
Lucy
Lake
28 36 04
81 51 05
6.4
4.3
112
10
840
2.3
95
1.3
687
Regions
7.519
Minnehaha
Lake
28 31,59
81 45 56
5.4
1.0
108
17
1047
5.0
204
0.8
688
Regions
7519
Minneola
Lake
28 34 .37
:l81 46 01
6.7
5.2
122
14.
750
9.2
50
1.3
689
Regions.
7519
Needham
Lake
28 26 45
81„39 27
6:6
6.1
84
1 1
983
2.2
' 88
1.8
690
Regions
7519
North Merritt
Lake
28 38 05
81 42 34
6.8
11.0
133
16
997
3.5 .
52
1.0
691
EPA-ELS 1984
7519
OSAGE
3B1-013
28 21 05
81 38 11
5.6
0.0
49
17
-
-
50
1.9
692
Regions
7519
Rabbit
Orange
28 25. 32
81 37 21
6.6
10.0
154
8
757
3.2
50
2.4
693
1-QAQC
7519
Spencer
Lake
28 37 09
81 50 08
5.7
0.4
175
10
648
2.7
5
0.5
694
EPA-ELS 1984
7519-
SQUARE
3B1-010
28 25 31 t
81 42 03
7.9
14.6
150
15
-
-
150
1.1
695
Regions
•7519
Susan
Lake
28 31 -03
81 45-30
4.8
0.0
99
21
1537
3.8
471
0.3
696
Regions.
7519
Trout
Lake'
28 26 54.
81 42 42
8.0
77.0
268
6
793
1.7
9
4.6
697
Regions
7519
Tuikey
Lake
28 42 05
81 51 01
6.2
2.6
122
10
1360
2.2
78
1.9
698
EPA-ELS 1984
7519
WILMA (EAST)
3B1-051 '
28 32:21
81 43 49
7.3
7.3
107
12
-
-
20
3.4
699
LW(6/96)
7519
Winona
Lake!
28 32 51
81 45 57
' -
" -
-
1 1
560
3.9
-
3.3
700
LW(6/96)
7520
Bessie
Orange
28 29 15
81 31 36
-
-
-
6
386
1.6
- . ¦
5.2
701
Regions
7520
Blanche
Orange
28 28 52
81 30 59
7.5
27.0
206
6
380
2.6
15
3.6
702
Regions
7520
Butler
Orange
28-29 25
81 33 15
8.4
26.3
266
6
517
2.8
7
3.5
703
Regions
7520
Chase
Orange
28 28 30
81 31 13
7.2
15.3
195
7
483
3.1
18
3.1
704
Regions
7520
Down
Orange
28 30.16>
81 31 40
7.1
12.3
255
7 ¦
363
2.9
8
3.5
705
LW(6/96)
7520
Floy
Orange
28 29 03
81 28 54
-
243
1735
66.6
-
1.2
706
Regions
7520
Isleworth
Orange
28 28 19
81 31 46
7.2
17.0
217
10
510
4.2
20
2.4
707
Regions
7520 *
Little Down
Orange
28 30 31
81 32 24
7.1*
14.7
255
13
487
6.6
1 6
2.2
708
LW(6/96)
7520:
Little Wauseon Bay
Orange
28 30 '1.0 •"
81 32 26
-
-
-
1 1
535
4.0
-
3.6
709
Regions .
7520'
Louise
Orange'
28~28'39
81 32 06
7.3
24.0
249
1 1
567
6.8
1 6
2.1
710
LW 93
7520
Marsha
Orange
28 28 42
81 28 58
6.9
12.0
129
-
-
3.4
13
-
711
LW(6/96)
7520
Pocket
Orange
28 25 14
81 30 48
, -
-
-
13.
530
5.8
-
2.5
712
LW(6/96)
7520
Sheen
Orange
28 25 54
81 3114
- -
-
-
10
464
2.3
-
2.6
713
Regions
7520
Tibet
Orange
28 27 15
81 .31 28
7.2
14.3
194
7
463
2.4
17
3.2
714
LW(6/96)
7520
Wauseon Bay
Oranqe
28 30 08
81 32 44
-
-
-
9
516
3.4
-
4.7
715
LW(6/96)
7520
Willis
Orange
28 23 54
81 28 42
-
-
-
10
501
2.8
-
3.3
Appendix B, Page 79
-------
A
B
C
O
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longilude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(nS/cm®25C)
Total
Phosphorus
(MO/I)
Total
Nitrogen
(ng/i)
Chloro-
phyll_a
(rs'I)
Color
(pcu)
Secchi
(m )
71 6
LW(6/96)
7521
Adair
Orange
28 33 36
81 23 29
-
-
-
121
112 1
62.1
-
0.8
71 7
LW(6/96)
7521
Adelaide
Seminole
28 40 00
81 21 56
-
-
-
54
1234
57.8
-
1.0
71 8
1-QAQC
7521
Arnold
Orange
28 31 51
81 20 29
8.1
16.3
191
25
733
21.2
8
1.8
71 9
Canfield&Hoyer1991
7521
Baldwin
Orange
28 34 20
81 19 20
8.1
63.1
179
21
530
18.3
1 2
1.6
720
LW(6/96)
7521
Barton
Orange
28 33 04
81 18 57
-
-
-
20
541
14.6
-
2.0
721
1-QAQC
7521
Bay
Orange
28 27 34
81 22 17
8.0
50.2
227
27
962
16.8
1 9
1.6
722
LW(6/96)
7521
Bell
Orange
23 36 3S
81 22 43
-
-
21
664
14.5
-
1.7
723
LW(6/96)
7521
Burke It
Orange
28 36 36
81 16 06
-
-
-
24
741
23.1
-
1.3
724
1-QAQC
7521
C
Orange
28 31 52
81 19 10
7.0
45.0
215
40
855
19.3
28
1.5
725
1-QAQC
7521
Cay Dee
Orange
28 33 43
81 20 44
7.7
36.5
136
25
860
13.8
1 8
1.3
726
LW(6/96)
7521
Cherokee
Orange
28 32 02
81 22 18
-
-
-
64
t 0 1 1
47.3
-
0.8
727
1-QAQC
7521
Clear
Orange
28 31 09
81 24 37
8.0
70.0
206
40
1200
38.2
1 8
1 .0
728
1-QAQC
7521
Concord
Orange
28 33 24
81 23 07
7.9
50.8
1 83
35
745
30.0
1 1
1.3
729
Canfield (1981)
7521
Conway
Orange
28 28 12
81 20 58
7.6
29.2
193
1 3
401
4.4
3
3.7
730
LW(6/96)
7521
Cranes Roosl
Seminole
28 40 02
81 23 08
-
-
-
33
498
5.5
-
2.0
731
Canfield (1981)
7521
Crystal
Orange
28 30 58
81 21 27
5.7
1.6
13
6
1 18
0.5
0
8.1
732
1-QAQC
7521
Daniel
Orange
28 34 56
81 24 04
7.8
48.2
195
35
755
17.5
1 4
1.2
733
LW(6/96)
7521
Davis
Orange
28 31 54
81 22 01
-
-
.
164
2177
1 1 6.5
.
0.4
734
LW(6/96)
7521
Dot
Orange
28 33 08
81 23 13
-
-
-
26
754
15.9
.
1.8
735
LW(6/96)
7521
Druid
Orange
28 33 38
81 20 59
-
-
.
39
968
16.9
-
1.3
736
1-QAQC
7521
Eola
Orange
28 32 39
81 22 24
8.4
88.7
258
40
730
37.0
1 3
1.3
737
1-QAQC
7521
Estelle
Orange
28 34 30
81 21 60
8.5
47.7
1 67
35
687
32.2
2 1
1.4
738
LW(6/96)
7521
Eulalia
Orange
28 37 08
81 22 21
-
-
-
1 7
627
4.0
.
2.7
739
Canfield (1981)
7521
Fairview
Orange
28 35 34
81 24 13
8.1
52.2
1 73
1 4
446
2.4
5
4.8
740
1-QAQC
7521
Fauah
Orange ¦
28 30 30
81 19 16
7.9
29.0
267
22
835
13.7
1 0
1.6
741
LW(6/96)
7521
Florida
Seminole
28 40 28
81 21 51
-
-
-
71
965
36.6
-
1.3
742
LW(6/96)
7521
Formosa
Oranqe
28 34 07
81 22 09
-
-
.
38
761
32.7
.
1 .0
743
LW 93
7521
Fredrica
Oranqe
28 30 29
81 18 26
7.6
26.0
178
9
350
2.7
7
744
LW(6/96)
7521
Fruitwood
Seminole
28 40 55
81 18 27
-
-
.
71
1075
115.8
.
1.0
745
LW(6/96)
7521
Gatlin
Oranqe
28 29 30
81 22 07
-
-
-
2 1
1 054
27.6
.
1.0
746
LW(6/96)
7521
Gem
Oranqe
28 36 48
81 22 07
-
-
.
51
873
29.7
-
1.3
747
LW(6/96)
7521
George(Barber)
Oranqe
28 30 03
81 19 11
-
-
1 5
732
8.2
-
2.2
748
1-QAQC
7521
Georqia
Oranqe
28 36 23
81 14 47
6.3
2.3
1 9 1
1 8
800
12.3
1 5
1.8
74 9
1-QAQC
7521
Giles
Oranqe .
28 31 49
81 20 04
8.4
33.7
195
30
723
24.3
1 4
1.3
750
LW(6/96)
7521
Griffin
Seminole
28 40 47
81 20 28
-
-
-
179
1343
36,0
.
1 .4
751
1-QAQC
7521
Highland
Oranqe
28 33 36
81 22 15
8.0
30.0
138
37
592
17.8
1 4
1 .9
752
1 -QAQC
7521
Holden
Orange
28 30 12
81 23 04
8.4
75.5
256
45
1 550
66.5
1 5
0.6
753
LW(6/96)
7521
Hourglass
Oranqe
28 31 20
81 21 25
-
-
75
1442
85.8
0.6
754
LW(6/96)
7521
Howell
Seminole
28 38 21
81 18 36
.
-
.
47
914
40.6
.
t .0
755
LW(S/96)
7521
Irma
Oranqe
28 35 26
81 16 01
-
-
.
35
655
3.8
1.2
756
LW 93
7521
Ivanhoe East
Oranqe
28 33 48
81 22 33
9.1
61.0
184
23
857
25.4
1 4
757
LW 93
7521
Ivanhoe Middle
Oranqe
28 33 48
81 22 49
7.8
53.0
176
31
650
21 .6
1 5
Appendix B, Page 80
-------
A
B
C
D
E
' F
G
H
1
J
K ...
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
. DMS
PH
Total
Alkalinity
(mg/l)
Conductivity,
(nS/cm©25C)
Total
Phosphorus
(Ufl/D
Total :•
Nitrogen
(tig/D
Chloro-
phyll_a
(ng/i)
Color
(pcu)
Secchl
(m)
758
LW 93
7521
Ivanhoe West
Oranqe
28 33 55
81 22 57
7.7
51.0
176
31
667
19.3
15
-
759
LW(6/96)
7521
Jackson
Orange
28 -37 14
81 22 53
-
-
17
302
2.2
-
3.4
.760
Canfield (1981)
752V
Jessamine
Oranqe
28 28 52
81 23 10-
7.8
43.6
184
16
.612
4.9
5
3.4
761
LW(6/96)
752'1
Jessamine North
Orange'
28 29 18
81.22 51
-
-
-
23
1120
28.3
-
0.9
762
LW(6/96)
7521
Jessamine South
Oranqe
28 28 32
81 23 25
-
-
-
23
781
15.7
-
1.5
763
Canfield&Hoyerl 991
7521
Killamey
Oranqe
28 35 57
81 22 30"
8.4
65.4
193
21
.603
-22.0
19
1.0
764
1-QAQC
7521
La Grange
Orange
28 30 29
81 20 33
7.8
29.0
250
23
1 190
16.8
15
1.1
765
LW(6/96)
7521
Lancaster
Oranqe
28 31 22
81 21 59
-
-
-
55
916
35.2
1.1
766
LW(6/96)
7521
Lawsona
Orange
28 32 28
81 21 51
-
-
-
110
1199
38.5
-
0.9
767
LW(6^96)
7521
Little Conway
Oranqe
28 29 26
81 21 15
-
-
-
1 1
436
4.6
-
4.1
768
1-QAQC
7521
Little Fairview
Oranqe
28' 35 20
8123 17
7.7
30.0
136
20
663
17.3
13
1.0
769
LW(6/96)
7521
Loma Ooone
Orange
28 32 30
81 24 12
-
-
•
49
810 .
38.7
¦ -¦
1.0
770
1-QAQC
7521 '
Luma ¦
Orange
28 31 23
81 22 27
8.0
64.fl-
21 1
78
667 .
35.5
19
1.0
771
Canfield (1981)
7521
Maitland
Orange
28 36 51
81 21 05
7.7
ee.7
205
28
597
9.6
4
.1.9
772
LW(6/96)
7521
Mann .
Oranqe
28 32 12
81 25 27
-
-
35
. 778
17.3
-
1.2
773
LW(6/96)
7521
Martha'
Oranqe
28 36 30
81 16 22
-
-
24
594
14.7
-
1.7
774
LW(6/96)
7521
Minnehaha
Oranqe
28 37 48
81 21 18
-
-
34
. 761
27.0
-
1.2
775
LW(6/96)
7521
Nan
Orange
28 36 27
81 16 51
-
-
17
447.
10.2
' -
1.9
776
LW(6/96)
7521
Noname
Seminole
28 37 42
81 15 53
-
-
1 1
458
3.6
-
2.9
777
Canfield&Hoyerl 991
7521
Orienta
Seminole
28 39 14
81 22 39
6.8
6.6
114
25
448
9.0
17
2.2
778
LW(6/96)
7521
Park
Oranqe
28 36 56
81 22 15
¦ -
50
654
28.0
-
1.2
779
Canfield&Hoyerl 991
7521-
Pearl.
Orange
28 36 16!
81 15 54
7.4
18.8
118
28
819
21.7
68
0.9
780
1-QAQC
7521
Pineloch
Oranqe
28 30 29
81 22 02
7.8
53.5
216
32
940
33.0
14
1.0
781
LW(6/96)
7521
Porter
Oranqe
28 30 43
81 19 24
-
-
-
14
485
7.4
-
2.6
782
LW(6/96)
7521
Prairie
Seminole
28 39 29
81 21 08
-
-
-
21
729
10.3
. -
1.9
783
1-QAQC
7521
Rabama
Oranqe
28 31 15
81 19 44
7.8
56.5
215
52
983
29.8
26
1.2
784
LW(6/96)
7521
Red Buq
Seminole
28 39 04
81 17 28
-
-
-
25
664
6.8
-
1.8
785
LW(6/96)
7521
Richmond
Oranqe
28 31 39
81 22 29
-
-
-
53
1408
50.0
-
0.6
786
1-QAQC
7521
Rock
Orange
28 32 43
81 24 06
9.3
45.3
148
22
735
21.8
10
2.4
787
1-QAQC
7521
Rowena
Orange
28 34 15
81 21 37
8.2
48.8
173
40
822
30.5
15
1.2
788
LW(6/96)
7521
Santiaqo
Oranqe
28 31 46
81 22 45
-
-
- .
42
809
42.0
-
0.9
789
LW(6/96)
7521
Sarah
Oranqe
28 35 07
81" 24 09
. -
-
-
24
721
17.2
-
1.3
790
1-QAQC
7521
Shannon
Oranqe
28 33 53
81 20 29
7.2
28.7
170
17
710
4.7
10
2.4
791
1-QAQC
7521
Silver
Oranqe
28 34 42
81 23.46
8.6
48.2
187
15
537
20.3
1 1
2.4
792
LW(6/96)
7521
Sprinq
Oranqe
28 33 25
81 23 56
-
-
-
68
1126
53.1
-
0.9
793
LW(6/96)
7521
Sprinq
Seminole
28 39 02
81 23 50
-
-
-
43
1666
66.2
-
0.6
794
1-QAQC
7521
Susannah
Oranqe
28 33 45
81 19 23
7.8
30.5
133
20
748
13.7
13
2.2
795
LW(6/96)
7521
S^belia
Orange
28 37 39
81 22 16
-
-
-
30
897
21.8
-
1.4
796
LW(6/96)
7521
Tennessee
Oranqe
28 30 37
81 19 57
-
-
-
67
836 -
17.9
-
1.2
797
Canfield (1981)
7521
Underhill
Orange
28 32 16
81 20 10
7.8
58.4
183
51
777
38.2
10
0.8
798
Canfield (1981)
7521
Virginia
Oranqe'
28 35 20
81 20 40
8.1
56.8
177.
30
519
17.3
3
1.6
799
LW(6/96)
7521
Wade
Oranae
28 30 58
81 22 04
-
-
- - . ¦
108
122B
57.0
-
1.1
Appendix B, Page 81
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(MS/cm©25C)
Total
Phosphorus
(M9/I)
Total
Nitrogen
(Hfl/I)
Chloro-
phyll_a
(Mg/l)
Color
(pcu)
Secchi
(m)
800
LW(6/96)
7521
Waunatta
OrangB
28 36 09
81 16 44
-
-
-
20
434
3.0
-
2.8
801
LW(6/96)
7521
Weldona
Orange
28 31 46
81 21 39
-
-
-
70
947
31.3
-
1.0
802
LW(6/96)
7521
Willisana
Oranqe
28 30 29
81 21 40
-
-
-
45
820
33.2
-
1.1
803
1-QAQC
7521
Winyah
Orange
28 34 40
81 22 04
8.5
48.0
163
70
908
68.5
26
1 .3
804
LW(6/96)
7521
Woods
Seminole
28 38 39
81 20 60
-
-
-
42
852
42.0
-
1.1
805
EPA-ELS 1964
7522
(NO NAME)
3B3-169
28 26 10
82 23 15
6.6
3.5
39
136
-
-
80
0.4
806
1-QAQC
7522
Armistead
Hillsborough
28 06 05
82 33 36
6.7
6.4
120
25
812
16.3
87
1 .3
807
EPA-ELS 19S4
7522
CLEAR
3B3-173
28 21 45
82 28 45
7.8
28.0
92
1 4
-
-
60
1 .9
808
LW<6/96)
7522
Dosson
Hillsborough
28 07 22
82 31 32
-
-
-
38
1319
43.5
-
0.8
809
EPA-ELS 1984
7522
GOOSE
383-032
28 21 23
82 28 08
6.8
3.5
39
1 1
-
-
45
2.0
810
LW<6/96)
7522
Pretty
Hillsborough
28 06 28
82 34 08
-
-
-
29
807
8.7
-
1 .3
81 1
Canfield (1981)
7522
Tarpon
Pinellas '
28 06 28
82 43 31
6.9
15.8
596
39
635
3.8
50
1 .5
812
Regions
7522
Worrell
Pasco
28 17 02
82 40 08
7.6
69.3
23 1
24
1450
9.0
174
0.9
813
1-QAQC
7523
Alice
Hillsborough
28 07 56
82 36 07
4.6
0.0
137
3
135
1 .0
2
-
814
1-QAQC
7523
Bass
Pasco
28 10 59
82 35 18
6.4
7.3
1 15
22
817
10.8
27
1.6
815
LW(6/96)
7523
Calm
Hillsborouqh
28 08 32
82 34 54
-
-
-
6
221
1 .5
.
3.2
816
1-QAQC
7523
Church
Hillsborough
28 06 12
82 35 59
6.8
6.7
182
1 3
627
3.2
1 3
0.7
817
Regions
7523
Crescent
Hillsborough
28 09 26
82 35 28
5.1
0.0
174
1 0
500
1 .6
39
2.5
818
LW 93
7523
Dead Lady
Hillsborough
28 09 12
82 34 30
6.9
10.0
133
27
937
20.7
75
-
819
LW(6/96)
7523
Echo
Hillsborough
28 06 25
82 36 14
-
-
-
1 8
1078
5.7
.
-
820
LW(6/96)
7523
Elizabeth
Hillsborough
28 09 26
82 34 22
-
-
-
1 9
793
9.7
-
1 .4
821
LW(6/96)
7523
Garden
Hillsborough
28 07 53
82 37 57
-
-
-
1 4
494
4.7
.
2.0
822
1-QAQC
7523
Geneva
Pasco
28 11 16
82 34 23
6.7
16.0
162
20
833
1 1.5
38
1 .9
823
1-QAQC
7523
Grace
Hillsborough
28 05 49
82 35 15
6.2
2.3
165
10
483
6.3
9
0.8
824
LW 93
7523
Halfmoon
Hillsborough
28 05 47
82 32 51
6.7
2.4
169
1 3
540
8.4
9
-
825
1-QAQC
7523
Hiawatha
Hillsborough
28 10 07
82 34 22
6.4
2.5
100
20
598
14.7
26
2.3
826
1-QAQC
7523
Holiday
Pasco
28 10 36
82 35 20
6.7
10.2
136
15
1010
19.7
24
1 .3
827
Regions
7523
Island Ford
Hillsborough
28 09 10
82 36 04
6.3
0.9
122
7
403
3.2
12
2.3
828
LW(6/96)
7523
Jackson
Hillsborough
28 08 16
82 37 48
-
-
-
1 1
568
4.1
.
3.0
829
LW(6/96)
7523
James
Hillsborough
28 07 05
82 34 30
-
-
-
1 8
754
12.8
-
2.5
830
LW(6/96)
7523
Jewel
Hillsborough
28 06 59
82 35 08
-
-
-
5
103
1 .0
-
-
831
LW(6/96)
7523
Juanita
Hillsborouqh
28 06 59
82 35 18
-
-
1 1
500
2.3
-
2.9
832
1-QAQC
7523
Keystone
Hillsborouqh
28 08 03
82 35 23
6.3
2.3
100
1 2
488
6.7
30
2.4
833
Summer '96
7523
Little Halfmoon
Hillsborouqh
28 06 09
82 32 54
6.8
8.1
248
1 6
693
4.6
44
-
834
LW(6/96)
7523
Little Moon
Hillsborough
28 06 46
82 36 04
-
-
-
9
388
1 .2
3.6
835
1-QAQC
7523
Maurine
Hillsborouqh
28 05 20
82 35 06
7.6
11 .8
175
20
648
4.5
30
-
836
1-QAQC
7523
Minneola
Pasco
28 11 03
82 34 28
6.7
16.0
1 62
20
692
6.0
26
1 .7
837
LW(6/96)
7523
Mound
Hillsborouqh
28 08 50
82 34 19
.
.
.
7
345
1 .9
-
4.5
838
Regions
7523
Osceola
Hillsborouqh
28 10 13
82 35 10
5.9
0.7
224
5
413
0.6
7
-
839
1-QAQC
7523
Parker
Pasco
28 10 41
82 34 54
6.7
9.0
139
1 5
680
9.7
1 5
1 .7
840
LW(6/96)
7523
Rainbow
Hillsborouqh
28 06 56
82 35 38
-
-
-
7
312
1.9
-
2.6
841
Summer '96
7523
Seminole
Pasco
28 10 41
82 34 29
7.1
7.6
139
-
633
-
35
1 .8
Appendix B, Page 82
-------
A
B
C
D
E
F
G
H
1
J | K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS ,/*
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(|iS/cm@25C)
Total
Phosphorus
(ng/D
Total
Nitrogen
(ng/D
Chloro-
phyll a
(nfl/l)
Color
(pcu)
Secchi
(m)
842
Reqions
7523
Sunset
Hillsborough
28 08 09
82 37 31
7.4
34.0
203
13
660
9.2
33
1.5
843
LW(6/96)
7523
Taylor
Hillsborough
28,08 04
82: 36 45
-
-
-
14
656
9.9
1.7
844
LW(6/96)
7523
Wastena
Hillsborough
28 09 47
82 35 28
-
-
-
12
500
2.7
-
3.7
845
LW(6/96)
7523
Wood
Hillsborough
28 09 14
82 34 40
-
-
-
8
305
1.6
-
4.2.
846
Canfield&Hoyerl 991
7524
Bell(Pasco)
Pasco
28 13 19
82 27 13
7.6
13.3
116
17
641
20.0
21
1.5
847
1-QAQC
7524
Brant
Hillsborouqh
28 07 35
82 28 17
7.0
23.0
168
25
917
15.3
24
1.5
848
LW(6/96)
7524
Carroll
Hillsborough
28 03 04
82 29 14
-
-
-
1 0
427
3.0
-
3.7
849
LW(6/96)
7524
Carroll Cove
Hillsborough
28 02 41
82 29 06
- .
-
-
13
487
3.0
-
3.5
850
Reqions
7524
Catfish
Pasco
28 11 19
82 26 37
7.0
16.7
197
25
930
7.6
35
1.9
851
LW(6/96)
7524
Chapman
Hillsborough
28 06 18
82 27 48
-
-
-
26
1 103
10.3
-
1.5
852
1-QAQC
7524
Crenshaw
Hillsborough
28 07 24
82 29 46
6.6
6.5
56
23
885
26.2
58
1.1
853
LW(6/96)
7524
Deer
Hillsborough
28 10 03
82 27.36
-
-
-
1 1
613
6.4
-
2.1
854
Reqions
7524
Dog Leg
Pasco
28 15 25
82 '28 1.1
6.1
2.1
104
9
737
4.2
93
1.3
855
LW(6/96)
7524
East
Pasco
28 12 34
82 26 27
•
-
-
21
739
10.3
-
1.9
856
LW 93 r
7524
Egypt
Hillsborough
28 00 40
*82 29 31
7.6
62.7
257
21
780
18.1
1 2
-
857
1-QAQC
7524
Floyd
Pasco
28 11 05
82 27 44
6.9
29.5
158
12
922
2.2
26"
0.9
858
Reqions
7524
Gass
Hillsborough
28 05 35
82 27 46
7.3
30.0
126
6
557
2.6
19
3.4
859
LW(6/96)
,7524.
Hobbs
Hillsborough-
28 09 33
82 28 09
-
-
6
260
1.3
-
4.0
860
LW(6/96)
'7524
Joyce
Pasco
28 12 41
82 26 52
-
-
-
1 9
746
6.1
-
2.3
861
LW(6/96)
7524
Keene
Hillsborough
28 08 40
82 26 45
-
-
-
40
1355
26.6
-
1.1
862
LW(6/96)
7524
King
Pasco
28 13 49
82 27 04
-
-
12
948
6.0
-
-
863
Reqions
7524
Linda
Pasco
28 11 21
82 28 43
7.6
34.7
209
1 1
973
4.8
19
3.9
864
LW(6/96)
7524
Little East
Pasco
28 12 45
82 26 33
•
-
-
21
773
12.5
-
1.8
865
1-QAQC
7524
Little Moss
Pasco
28 10 57
82 28 31
6.3
4.2
150
35
1 177
13.2
77
1.3
866
LW(6/96)
7524
Little Vienna
Pasco
28 12 16
82 '27 56
-
-
-
13
725
5.3
- ¦
2.3
867
LW(6/96)
7524
Magdalene
Hillsborough
28 04 52
82 28 56
-
-
-
1 1
643
3.7
-
3.3
868
Reqions'
7524
Margarine
Pasco
28 .13 38
82 27 36
7.3
22.7
187
19
763
12.0
21
1.5
869
Reqions
7524
North Crystal
Hillsborough
28 08 21
82 28 32
7.9
60.7
234
6
470
1.3
12
-
870
Canfield (1981)
7524
Padgett North
Pasco
28 12 32
82 27 25
7.4
23.0
134
14
531
2.4
15
3.6
871
LW(6/96)
,7524 ~
Padgett South
Pasco
28 11 54
82 27 37
.
-
-
18
731
5.3
-
2.6
872
Regions
7524
Piatt
Hillsborough
28 05 40
82 28 44
7.4
20.0
112
9
497
2.0
32
3.5
873
LW 93
7524 '
Saddleback North -
Hillsborough
28 07 19
82 29 45
8.1
93.7
218
14
483
6.3
1 4
-
874
LW 93
7524
Saddleback South
Hillsborough
28 07 09
82 29 40
8.4
84.7
201
12
477
6.0
12
-
875
LW(6/96)
7524
Saddleback South
Hillsborough
28 07 09
82 29 40
-
-
-
12
4B3
6.0
-
-
876
LW(6/96)
7524
Saxon North
Pasco
28 12 01
82'27 15
-
-
-
14
617
3.0
-
4.0
877
LW(6/96)
7524
Saxon South
Pasco .
28 1151
82 26 50
-
-
-
1 5
635
4.3
-
3.4
878
LW(6/96)
7524
Snake
Hillsborough
28 06 49
82 29 42
-
-
-
10
714
1.9
-
-
879
Reqions
7524
Stemper
Hillsborough
28 08 00
82 27 26
7.5
29.0
194
42
1960
35.0
18
0.5
880
EPA-ELS 1984
7524
THOMAS
3B3-162
28 08 47.
82 29 15...
6.8
3.5
126
1 5
-
-
20
2.9
881
LW(6/96) "
7524
Treasure
Pasco
28 14 50
82 27. 42
-
•
-
7
497
2.3
-
3.9
882
Reqions
7524
Twin
Pasco
28 11 17
82.25 11
7.2
56.3
248
28
1123
19.5
46
-
883
Reqions
7524
Virginia
Hillsborouqh
28 09 42
82 29 20
7.0
9.2
231
33
1533
26.0
28
0.8
Appendix B, Page 83
-------
A
B
C
D
E
F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
pH
Total
Alkalinity
(mg/l)
Conductivity
((iS/cm@25C)
Total
Phosphorus
(Hfl/I)
Total
Nitrogen
(Hfl/I)
Chioro-
phyll_a
(ng/i)
Color
(pcu)
Secchi
(m)
884
LW(6/96)
7524
Wilson
Hillsborough
28 04 21
82 30 04
-
-
-
1 3
764
9.1
-
2.6
885
EPA-ELS 1984
7525
(NO NAME)
3B3-157
28 17 03
82 19 07
7.1
7.1
9 1
29
-
-
105
1.3
886
LW(6/96)
7525
Ten Mile
Hillsborough
27 56 25
82 18 56
-
-
-
40
1094
42.6
-
0.9
887
Canfield (1981)
7525
Thonotosassa
Hillsborough
28 03 51
82 16 53
8.3
47.9
214
834
1452
66.8
82
0.7
888
LW(6/96)
7526
Mill Stream Swamp
Lake
28 31 13
81 52 13
-
-
-
46
1 346
33.2
-
-
889
Canfield (1981)
7527
Alligator
Osceola
28 12 38
81 12 04
5.8
2.2
105
1 5
570
4.0
47
1.6
890
LW(6/96)
7527
Brick
Osceola
28 09 57
81 11 40
-
-
-
1 6
933
5.6
-
0.6
891
EPA-ELS 1984
7527
BULLOCK
3B1-067
28 18 10
81 10 25
4.5
0.0
81
1 4
-
-
300
0.4
892
LW(6/96)
7527
Cscile
Osceola
28 19 39
81 28 42
-
-
1 5
513
8.6
-
2.0
893
LW 93
7527
Center
Osceola
28 16 44
81 11 25
5.6
1 .2
116
84
1 280
1 1 .4
289
-
894
LW 93
7527
Coon
Osceola
28 15 54
81 10 51
5.8
1 .6
101
63
1110
1 1.3
217
-
895
Summer '96
7527
Davenport-North
Polk
28 19 60
81 39 32
6.8
7.4
90
-
930
8.2
.
-
896
Canfield (1981)
7527
East Tohopekaliga
Osceola
28 17 42
81 17 14
6.1
3.1
96
24
643
8.6
32
1.5
897
Regions
7527
Gentry
Osceola
28 08 32
81 14 24
6.5
2.7
146
1 8
620
4.5
65
1.1
898
Regions
7527
Hancock
Lake
28 22 41
81 39 44
5.0
0.0
60
1 4
833
6.4
120
1.1
899
Canfield (1981)
7527
Hart
Orange
28 22 46
81 12 41
5.9
4.1
90
1 9
1112
4.2
183
0.6
900
Regions
7527
Huckleberry
Orange
28 26 05
81 36 45
6.3
2.5
152
1 1
860
1 .6
6 1
2.0
901
EPA-ELS 1984
7527
LITTLE FISH
3B1-091
28 24 05
81 30 47
5.1
0.0
139
1 7
-
-
1 50
0.7
902
Canfield&Hoyer1991
7527
Live oak
Osceola
28 13 54
81 14 02
7.1
11.5
132
1 3
389
9.0
22
2.6
903
1-QAQC
7527
Lizzie
Osceola
28 14 36
81 11 05
6.1
2.0
106
1 7
827
4.2
106
1 .4
904
Canfield (1981)
7527
Mary Jane
Orange
28 22 26
81 10 44
5.6
3.2
84
1 8
1250
9.2
225
0.5
905
Regions
7527
Oliver
Orange
28 22 02
81 38 57
4.7
0.0
56
1 0
647
4.9
139
1 .0
906
EPA-ELS 1984
7527
REEDY
3B1-093
28 24 55
81 36 48
5.6
0.5
1 1 0
57
-
-
225
0.3
907
LW 93
7527
Trout
Osceola
28 15 24
81 10 05
6.1
2.3
88
26
943
10.8
132
-
908
LW(6/96)
7528
Cliff Stephens Park
Pinellas
27 58 26
82 43 17
-
-
-
101
896
44.4
-
1 .3
909
LW(6/96)
7528
Harbor
Pinellas
27 59 46
82 44 57
-
-
-
1 4
545
4.3
-
3.2
91 0
LW(6/96)
7528
Loch Haven
Pinellas
28 07 57
82 46 12
-
-
-
89
1 709
50.0
-
1 .0
91 1
Canfield (1981)
7528
Maggiore
Pinellas
27 44 20
82 39 18
8.6
109.9
1008
76
2330
66.7
32
0.3
912
LW(6/96)
7528
Mocassin
Pinellas
27 58 35
82 43 45
-
-
.
85
1 032
48.2
-
0.8
913
Canfield (1981)
7528
Seminole(Pinr\ellas)
Pinellas
27 51 27
82 47 05
8.8
90.4
404
122
1880
64.9
27
0.3
914
Regions
7530
Banana
Polk
27 58 42
81 54 12
8.5
62.0
1 78
639
1593
89.4
34
0.6
91 5
Regions
7530
Banana Pit
Polk
27 58 35
81 54 51
7.3
66.0
197
674
1 783
76.7
37
1 .0
91 6
LW 93
7530
Big Bass
Polk
27 52 35
81 51 16
9.7
23.0
160
442
2465
136.0
35
-
917
LW 93
7530
Boca Cove
Polk
27 52 26
81 51 10
9.3
23.0
152
449
2807
252.0
24
-
91 8
Canfield&Hoyer1991
7530
Bonny
Polk
28 02 16
81 55 36
7.8
53.2
255
59
1858
40.0
33
0.6
919
Regions
7530
Bonny
Polk
28 02 16
81 55 36
7.4
36.0
121
99
1 783
90.7
32
0.6
920
Regions
7530
Christina Pit
Polk
27 57 05
81 58 02
8.0
68.3
250
130
1537
80.4
1 5
0.8
921
LW(6/96)
7530
Fauna
Polk
27 52 39
81 51 14
-
-
-
94
1277
54.9
-
1 .0
922
LW 93
7530
Flora
Polk
27 52 27
81 50 60
9.1
24.0
1 5 1
331
2117
102.8
23
-
923
Regions
7530
Ft. Meade Pit
Polk
27 45 41
81 48 17
7.8
92.0
170
357
1847
78.9
1 8
1.0
924
LW 93
7530
Gaskin's Cut
Polk
27 52 26
81 51 16
9.8
22.7
162
379
2233
1 10.4
29
-
925
Canfield&Hoyer1991
7530
Hollinqsworth
Polk
28 01 24
81 56 45
8.8
50.8
163
1 13
2517
135.0
1 6
0.3
Appendix B, Page 84
-------
A
B
C :
D
' E •••
f . '
G
H
1
J
K
L .,.
M
N
1
Study
Region
Lake'
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(|iS/cm625C)
Total
Phosphorus
(ufl/n
Total
Nitrogen
(Hfl/'l)
Chloro-
phyll a
(U9/I)
Color
(pcu)
Secchl
(m)
926
Regions
7530
Homeland Pit-
Polk
27 48 55
81 49 45
.8.0
143.7
408
965
4493
149.5
1 6
0.5
927
Regions
7530
Hunter
Polk
28 01 55'
81 57 59"
7.5
33.0
. 10.1
117
1843
86.5
1 7
0.7
928
LW 93
7530
Little Bass
Polk
27 52 33
81 51 09
9.7
23.0
160
552
3260
242.0
40
-
929
Regions
7530
Mulberry Pit
Polk
27 55 20
81 58 14
7.4
67.3
263
• 954
1540
41.5
30
1.0
930
Regions
7530
Parker
Polk
28'03-54:
81 55 52
7.7
38.0
142
170
2283
137.9
27
0.5
931
Regions
7530
Saddle Creek
Polk
28 0324
81 52 53
7.5
53.3
175
143
1677
91.5
28
0.8
932
Regions
7531
Agnes
Polk
28 10 06
81 -49 06
6.6..
3.2
178
38 ,
703
22.9
24
0.9
933
Regions
7531 ^
Alfred
Polk
28 05 57
81 44 33;
7.4"
63.0
356
28
1923
40.2
27
0.7
934
Regions
7531
Ariana
Polk
28 04-58
81 47. 59.'
7.8
34.0
260
22
860
31.1
10
1.0
935
Cainfield (1981)
7531
Arietta
Polk
28 06 12
81 48 17
7.0
6.3
199
16
358
7.6
8
2.9
936
Regions
7531 -
Bess
Polk.
27 58 01
81 39 13
7.7
33.0
368-
15
597
7.1
1 6
1.8
937
LW(6/96)
7531
Blue 2
Polk
28 02 50
81; 46 25
-
-
.84"
1728.
. 55.5
0.6
938
Regions
7531 '
Buckeye
Polk.
28 02 23
81 42 22
8.7
73.3
331
30
727
23.9
1 1
0.9
939
LW(6/96)
7531
Cannon
Polk
28 02 16
81 45 09
-
-
... -
51
1148
41.7
-
0.8
940
1-QAQC
7531
Conine
Polk
28 03 35
81 43-31
8.6
65.8
331
470
1900
85.8
47
0.5
941
Regions
7531
Deer
Polk
28 01 29
81 45 47
8.0
40.3
191
40
1857
63.1
19
0.6
942
LW(6/96)
7531
Dexter
Polk
27 59 23
81 40 53
-
r
-
8
458
2.7
-
3.7
943
Regions
7531 j
Eaqle
Polk
27 58 59
81 45 57
7.5
28.0
296
1 1
640
7.2
1 0
2.0
944
LW 93
7531
Elbert
Polk
28 01 35
81 42 33
.7.9
33.0
182
12
553
3.0
9
-
945
LW(6/96)
7531 -
Eloise
Polk
27 58 55
81 42 12"
-
-
-
.36
1283
.42:9
-
0.9
946
1-QAQC
7531
Fannie
Polk
28 03 42
81 41 27
7.8
34.2
383 .
67
1327
25.8
57
0.4
947
Canfleld&Hoyer1991
7531
Hariri dge
Polk
28 03 18
81-44 34
7.8
. 37.6
217
1.1 "
485
4.0
12
2.3
948
EPA-ELS 1984
7531
HELENE
3B3-052
28 10 24
8148 13
7.5
13.1
174
13
. -
-
20.
2.5
949
Regions
7531
Henry
Polk
27 46 43
81 42 60
7.8
87.0
346
22
927
9.0
23
1.8
950
Canfield (1981)
7531
Howard
Polk
28 01 22
81 44 34
9.0
41.2
164
52
1997
104.6
27
0.3
951
LW(6/96)
7531
Idylwild
Polk
28 03 00
81 45 24
-
-
•
30
961
33.3
-
1.1
952
LW(6/96)
7531
Jessie
Polk
28 03 25
81 45 49
-
-
-
79
1 182
36.4
-
0.8
953
LW(6/96)
7531
Link
Polk
28 01 04
81 42 21
-
-
-
26
688
21.8
-
1.4
954
LW(6/96)
7531
Little Elbert
Polk
28 01 21
81 42 55
¦
-
..
25
978
32.4
-
1.1
955
LW(6/96)
7531
Little Otis
Polk
28 00 34
81 42 35
-
-
-
19
710
15.1
-
1.7
956
LW 93
7531
Little Spirit
Polk
27 59 43
81 46 53
7.3
31.0
297
23
703
4.6
27
-
957
LW(6/96)
7531
Little Winterset
Polk
27 57 47
81 40 52
-
-
-
20
867
18.7
-
1.2
958
1-QAQC
7531
Lucerne
Polk
28 04 46
81 41 04
6.9
9.6
192
10
437
1.5
12
1.6
959
LW 93
7531
Lulu
Polk
27 59 43
81 43 13
8.8
61.0
260
54
1260
32.0
22
-
960
Canfield&Hoyerl 991
7531
Marianna
Polk
28 04 33
81 45 55
7.9
59.4
299
26
1054
21.0
16
1.3
961
LW(6/96)
7531
Maude
Polk
28 02 20
81 43 16
-
-
-
39
658
12.8
-
2.0
962
LW(6/96)
7531
May
Polk
28 00 44
81 44 14
-
-
-
70
1602
54.1
-
0.8
963
LW(6/96)
7531
Mirror
Polk
28 02 13
81 44 28
....
-
-
34
" 1297
39.4
-
0.8
964
LW(6/96)
7531
Otis
Polk
28 00 56
81 -42 39
-
-
26
593
16.6
-
2.8
965
LW 93
7531
Pansy
Polk
28 04 05
81 44 34
7.9
22.0
147
27
870
23.2
49
-
966
LW(6/96)
7531
Rev
Polk
28 00 09
81 42 25
-
-
-
22
787
14.7
-
1.6
967
Regions
7531
Rubv
Polk
27 58 14
81 39 45
8.1
49.7
417
23
1907
60.3
12
0.4
Appendix B, Page 85
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
pH
Total
Alkalinity
(mg/l)
Conductivity
(fiS/cm©25C)
Total
Phosphorus
(MS/I)
Total
Nitrogen
(ng")
Chloro-
phyll_a
(ng/i)
Color
(pcu)
Secchi
(m)
968
LW(6/96)
7531
Shipp
Polk
28 00 10
81 44 29
-
-
61
1713
68.2
-
0.6
969
LW(6/96)
7531
Silver
Polk
28 01 53
81 43 41
-
-
1 9
740
21.8
-
1.6
970
1-QAQC
7531
Smart
Polk
28 03 28
81 42 40
8.7
77.7
369
173
1950
63.5
37
0.4
971
LW 93
753 1
Spirit
Polk
27 59 53
81 46 38
7.8
32.0
307
22
620
12.6
8
.
972
LW(6/96)
7531
Sprinq
Polk
28 02 18
81 44 05
-
-
-
29
716
15.2
-
1.8
973
Reqions
7531
Star
Polk
27 52 34
81 42 58
##
-
-
-
-
26.2
22
1.1
974
LW(6/96)
7531
Summit
Polk
27 59 53
81 41 47
-
-
36
947
26.5
-
1.1
975
Regions
7531
Tennessee
Polk
28 08 44
81 48 47
7.7
41.0
275
32
1593
55.4
1 8
0.6
976
Canfield&Hoyerl 991
7531
Thomas
Polk
28 00 39
81 46 55
7.6
46.6
169
22
759
10.0
23
1.8
977
EPA-ELS 1984
7532
(NO NAME)
3B3-148
28 15 51
81 35 43
6.0
0.2
79
1 3
-
40
1.8
978
LW(6/96)
7532
Annie
Polk
27 59 26
81 36 29
-
-
-
22
1258
17.0
-
1.4
979
Summer '96
7532
Clinch
Polk
27 44 37
81 32 55
6.9
3.9
139
1 9
517
7.4
24
2.4
980
Reqions
7532
Crooked
Polk
27 48 27
81 34 42
6.5
1.3
94
7
367
6.0
1 1
2.1
981
Summer '96
7532
Davenport
Polk
28 09 42
81 36 40
6.3
13.7
1 1 1
39
1085
4.4
97
.
982
Canfield&Hoyerl 991
7532
Gate Lake
Polk
27 56 11
81 35 43
8.2
130.6
282
28
407
20.0
6
1.1
983
Reqions
7532
Ida
Polk
27 45 44
81 31 14
8.9
35.0
301
1 0
5503
14.8
7
.
984
Reqions
7532
Little Gum
Polk
27 55 15
81 28 52
7.9
46.0
356
5
5970
2.8
6
3.1
985
LW(6/96)
7532
Little Hamilton
Polk
28 04 19
81 38 12
-
-
-
32
660
19.2
-
1.0
986
LW(6/96)
7532
Mabel
Polk
27 58 14
81 35 20
-
-
-
1 7
983
26.0
.
0.9
987
Reqions
7532
Moody
Polk
27 46 49
81 31 55
8.5
70.0
425
1 6
21 40
52.3
9
0.5
988
Canfield&Hoyerl 991
7532
Mounlain(Polk)
Polk
27 56 08
81 35 20
7.9
82.3
201
1 7
331
2.0
7
2.4
989
LW(6/96)
7532
North Blue
Polk
27 51 20
81 34 52
-
-
-
3
4301
1.5
-
7.5
990
Reqions
7532
Parks
Polk
27 54 56
81 28 09
7.6
25.0
192
5
623
3.7
1 6
-
991
Reqions
7532
Reedy
Polk
27 44 31
81 29 58
7.9
46.0
237
1 5
1047
29.7
8
0.9
992
EPA-ELS 1984
7532
SADDLEBAG
3B3-132
27 53 52
81 27 52
7.7
16.8
132
8
-
.
1 5
3.4
993
Regions
7532
Silver
Polk
27 43 26
81 32 13
8.7
50.0
380
21
1830
13.0
7
-
994
LW(6/96)
7532
South Blue
Polk
27 51 05
81 34 41
-
-
-
5
1552
2.7
-
5.2
995
Regions
7532
Tracy
Polk
28 06 41
81 38 04
7.5
63.0
190
23
740
8.9
1 8
2.1
996
Canfield& Hoyerl 991
7532
Wales
Polk
27 54 02
81 34 20
8.7
25.6
1 1 8
27
899
42.0
1 0
0.8
997
EPA-ELS 1984
7533
ANGELO
3B2-020
27 35 09
81 28 00
5.8
0.0
197
7
-
.
5
3.4
998
Summer '96
7533
Annie
Hiqhlands
27 12 25
81 21 04
6.3
0.0
42
4
315
-
9
-
999
EPA-ELS 1984
7533
ANOKA
3B2-106
27 34 50
81 30 45
8.2
26.2
138
6
-
-
1 0
5.0
1000
LW(6/96)
7533
Auqust
Hiqhlands
27 16 32
81 24 45
-
-
-
126
961
2.8
0.8
1001
EPA-ELS 1984
7533
BASKET
3B2-024
27 31 43
81 26 38
7.7
22.8
333
3
-
-
5
5.8
1002
LW(6/96)
7533
Blue
Hiqhlands
27 26 07
81 30 42
-
-
-
1 1
596
4.8
-
3.1
1003
EPA-ELS 1984
7533
BREmT/VOOD
3B2-015
27 37 17
81 30 43
7.7
18.2
260
6
.
-
10
5.6
1004
Summer '96
7533
Byrd
Hiqhlands
27 37 19
81 31 04
7.2
9.2
276
3
4803
1.1
6
5.6
1005
EPA-ELS 1984
7533
CENTER NELLIE
3B2-091
27 21 08
81 22 45
8.1
26.1
318
8
-
.
1 5
1 .6
1006
LW(6/96)
7533
Chilton
Hiqhlands
27 37 54
81 33 24
-
.
-
21
580
7.6
-
2.0
1007
Reqions
7533
Clay
Hiqhlands
27 18 40
81 20 54
7.0
4.7
164
9
377
3.9
8
3.0
1008
EPA-ELS 1984
7533
DAMON
3B2-062
27 38 00
81 30 35
5.7
0.0
223
9
-
.
1 0
2.9
1009
EPA-ELS 1984
7533
DEER
3B2-096
27 36 34
81 28 30
7.8
23.6
158
1 2
-
-
20
3.4
Appendix B, Page 86
-------
A
B
C
D
E ¦'
F-
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
.Longitude
DMS
P»
Total
Alkalinity
(m-g/l)
Conductivity
(|iS/cm@25C)
Total
Phosphorus
(ng/i)
Total
Nitrogen
- (ns/i)
Chloro-
phyll a
(ng/i)
Color
(pcu)
Secchi
(m)
1010
LW(6/96)
7533
Denton
Hiqhlands
27 33 24
81 29 22
-
-
4
3502
1.8
-
7.2
1011
Canfield (1981)
'7533'
Dinner
Hiqhlands
27 30 57
81 26 49
8.2
37.1
- 175
9
456
4.1
. 3
2.9
1012
LW(6/96)
7533:
Eaqle Pond
Hiqhlands
27 37 41
81 31 39
-
-
-
7
943
4.8
2.0
1013
Summer '96
7533
Francis
Hiqhlands
27 20 33
81 24 33
6.3
1.9
151
-
477*"
6.9
5
1.8
1014
Reqions
7533
Grassy
Hiqhlands
27 15 14
81 20 06
7.3
15.0
152
6
550
2:5
9
2.7
1015
Summer '96
7533
Henry
Hiqhlands
27 19 24
81 23 00
6.9
4.6
148
-
437
4.7
13
-
1016
Summer '96
7533
Hill
Hiqhlands
27 20.59
81 26 18
5.6
0.3
50
-
383
5.5
1 3
1.6
1017
Reqions
7.533
Huntley
Hiqhlands
27 17 32
81 20 44
6.2
1.3
154
19
427
6.9
16
1.7
1018
LW(6/96)
7533
Isis
Hiqhlands
27 36 44
81 30 38
-
-
-
8
3583
2.0
-
6.9
1019
Canfield (1981)
7533
Jackson
Hiqhlands
27 29 05
81 27 52
6.0
3.4
87
14
271
2.6
6
2.8
1020
Summer '96
7533-
June
Hiqhlands
27 18 16
81 24 14
7.0
5.6
161
17
567
10.7
9
-
1021
LW(6/96)
7533
Lillian
Hiqhlands .
27 37 50
81 31 21
-
-
-
9
512
5.7
-
3.1
1022
Canfield (1981)
.7533
Lotela
Hiqhlands '
27 34 46
81 29 12
7.3
14.3
97
17
334
2.5
6
2.6
1023
Summer '96
7533
McCoy
Hiqhlands
27 17 03
81 21 15
7.8
22.0
193
6
1023
1.6
2
5.3
1024
Summer '96,
7533
Mirror
Hiqhlands
27 16 31
: 81 21 38
5.9
0.5
100
7
387
-
6
5.7
1025
EPA-ELS 1984
7533
NORTHWEST NELLIE
3B2-032
27 21 13
81 23 01
7.6 .
22.4"
309
8
-
10
2:0
1026
LW(6/96)
7533
Olivia
Hiqhlands
27 37 56
81 32 51
- .
-
-
1 1
481
3.6
3.1
1027
LW(6/96)
7533 .'
Peail
Hiqhlands
27 16 58
81 21 39
-
¦
-
4
746
1.6
¦¦ -
6.2
1028
EPAiELS 1984
7533
PIONEER
3B2-067
27 37 20
81 29 40
7:4
.11.2
244
5
-
-
10
3.7
1029
Canfield (1981)
7533
Placid
Hiqhlands
27 14 33
81 21 57
6.6
4.0
58
13
544
6.2
7
2.2
1030
EPA-ELS 1984
7533
PYTHIAS
3B2-014
27 38 09
81 29 50
5.7
0.0
168
14
-
-
15
1.7
1031
Summer'96
7533
Rachard
Hiqhlands
27 18 15
81 22 09
9.4
36.8
211
25
820
23.0
7 '
-1.2
1032
Reqions
7533
Saddlebaqs
Hiqhlands
27 17 41
81 21 16
7.4
22.0
351
6
1 133
2.8
5
-
1033
EPA-ELS 1984
7533
SILVER
3B2-107
27 33 58
81 31 25
5.0
0.0
36
4
-
-
5
4.9
1034
EPA-ELS 1984
7533
SIMMONS
3B2-105
27 20 18
81 22 33
8.2
27.6
367
2
-
-
5
5.8
1035
LW(6/96)
7533
Sirena
Hiqhlands
27 17 00
81 22 10
-
-
¦ -
5
500
3.6
-
4.0
1036
EPA-ELS 1984
7533
SOUTHEAST NELLIE
3B2-033
27 20 53
81 22 33
8.3
27.8
367
5
-
-
15
1.8
1037
Summer '96
7533
Trout
Hiqhlands
27 38 49
81 30 28
6.3
1.9
128
12
517
3.3
14
3.1
1038
Reqions
7533
Tulane
Hiqhlands
27 35 09
81 30 13
7.4
21.7
135
5
410
2.6
4
4.1 ~
1039
Reqions "
7533
Verona
Hiqhlands
27 35 52
81 29 49
7.7
27.0
109
8
233
2.0
9
4.0
1040
EPA-ELS 1984
7533
VIOLA
3B2-016
27 36 45
81 29 45
8.1
22.5
217
5
-
-
10
3.7
1041
EPA-ELS 1984
7534
(NONAME)
3B2-085
27 25 55
81 30 00
4.4
0.0
56
0
-
- .
5
3.4
1042
LW(6/96)
7534
Adelaide
Hiqhlands
27 38 23
81 31 54
-
-
-
1 1
517
5.3
-
1.9
1043
LW(6/96)
7534
Apthorpe
Hiqhlands
27 20 41
81 21 50
•
-
-
10
1662
10.2
-
2.0
1044
EPA-ELS 1984
7534
BLUE
3B2-080
27 26 06
81 30 45
5.7
0.0
82
8
-
-
30
1.4
1045
EPA-ELS 1984
7534
BONNET
3B2-023
27 32 38
81 26 28
7.8
22.5
245
40
-
40
0.8
1046
Reqions
7534
Buffum
Polk
27 47 54
81 40 00
5.7
0.4
174
26
413
10.9
21
1.0
1047
Summer '96
7534
Carrie
Hiqhlands
27 20 15
81 25 39
6.9
10.7
79
-
703
15.1
112
0.9
1048
Summer '96
7534
Charlotte
Hiqhlands
27 25 58
81 27 02
5.2
0.0
73
- -
377
5.7
43
1.3
1049
LW(6/96)
7534
Crews
Hiqhlands
27 17 47
81 26 11
. -
-
-
15
423
4.6
-
1.6
1050
Summer '96
7534
Diane
Hiqhlands
27 14 26
81 23 50
6.4
7.5
65
-
-
-
188
-
1051
Reqions
7534
Glenada
Hiqhlands
27 33 53
81 30 28
8.2
34.0
206
100
1067
45.2
51
0.9
Appendix B, Page 87
-------
A
B
C
D
E
F
G
H
I
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(tiS/cm©25C)
Total
Phosphorus
(H9'l)
Total
Nitrogen
(ng/i)
Chloro-
phyll_a
(ng/i)
Color
(pcu)
Secchi
(m)
1052
LW(6/96)
7534
Hill
Highlands
27 20 59
81 26 18
-
-
-
8
280
4.4
-
2.2
1053
EPA-ELS 1984
7534
HOG
3B2-101
27 31 47
81 31 05
8.6
96.0
215
1 4
-
-
45
1 .1
1054
Summer '96
7534
Huckleberry
Highlands
27 27 10
81 27 48
6.6
4.1
88
-
-
-
1 1 5
-
1055
Canfield (1981)
7534
Josephine
Highlands
27 23 41
81 26 33
5.6
2.6
83
24
518
10.8
52
0.8
1056
Reqions
7534
Josephine East
Highlands
27 23 37
81 26 24
6.6
3.1
98
43
890
29.6
58
0.8
1057
Reqions
7534
Josephine Middle
Hiqhlands
27 23 50
81 25 37
6.6
5.1
82
46
857
22.7
75
0.9
1058
Reqions
7534
Josephine West
Highlands
27 24 10
81 27 07
6.4
4.7
83
66
893
22.8
108
0.9
1059
Reqions
7534
Lelia
Highlands
27 34 24
81 30 15
7.9
26.0
184
1 6
810
20.1
17
1 .0
1060
EPA-ELS 1984
7534
LETTA
3B2-021
27 33 38
81 27 45
6.8
2.8
166
1 9
-
-
1 5
1.1
1061
Reqions
7534
Little Bonnet
Highlands
27 33 40
81 28 34
7.6
26.0
245
1 7
1770
34.5
23
0.6
1 062
Summer '96
7533
Little Jackson
Highlands
27 28 02
81 27 46
7.2
14.3
148
38
1120
34.8
28
0.9
1063
Canfield (1981)
7534
Little Redwater
Hiqhlands
27 32 07
81 28 18
5.8
2.0
50
34
474
16.3
28
0.7
1 064
Reqions
7534
Lizzie
Polk
27 49 04
81 40 16
6.6
5.8
120
1 6
723
7.2
25
1 .7
1065
Reqions
7534
Marion
Polk
28 04 48
81 31 59
7.8
34.7
160
1 4
803
6.1
57
-
1066
Regions
7534
Patrick
Polk
27 47 45
81 30 45
7.8
38.7
325
7
2893
4.4
1 1
2.4
1067
Summer '96
7534
Persimmon
Hiqhlands
27 21 16
81 24 27
8.9
36.3
346
-
2940
75.3
21
0.2
1068
Reqions
7534
Pierce
Polk
27 58 29
81 31 17
7.6
32.0
152
3 1
960
18.2
38
1.3
1069
Canfield (1981)
7534
Red Beach
Highlands
27 25 55
81 24 20
6.7
4.6
59
1 6
448
9.9
3 1
1.1
1070
Summer '96
7534
Redwater
Highlands
27 20 52
81 23 57
8.7
28.3
261
-
910
28.0
1 3
0.5
1071
EPA-ELS 1984
7534
RUTH
3B2-113
27 25 45
81 27 30
5.0
0.0
50
35
-
-
65
1 .6
1072
Canfield (1981)
7534
Sebrinq
Hiqhlands
27 31 38
81 29 09
5.8
2.4
54
112
690
5.9
133
0.4
1073
Reqions
7534
Wolf
Hiqhlands
27 25 20
81 28 26
5.2
0.3
77
148
977
1 1.3
250
0.6
1074
Canfield (1981)
7535
Arbuckle
Polk
27 41 51
81 24 01
7.0
10.2
108
49
847
19.0
1 1 2
0.8
1075
Reqions
7535
Cypress
Osceola
28 04 40
81 19 36
7.2
17.7
120
48
1230
1 1.8
19 1
0.6
1076
Canfield&Hoyer1991
7535
Fish
Osceola
28 16 12
81 20 43
7.6
25.9
187
25
935
18.0
43
1.0
1077
Reqions
7535
Hatchineha
Osceola
28 01 13
81 24 42
7.8
31.0
126
1 7
1087
1 .6
21 6
0.7
1078
Reqions
7535
Istokpoga
Highlands
27 21 07
81 17 02
6.9
9.9
1 18
57
1063
5.7
193
0.6
1079
Reqions
7535
Jackson
Osceola
27 54 36
81 09 50
7.0
21.7
101
120
1063
10.3
9 1
1 .0
1080
Canfield (1981)
7535
Kissimmee
Osceola
27 56 10
81 17 26
8.5
22.4
1 18
42
1276
29.2
53
0.7
1081
Reqions
7535
Marian
Osceola
27 52 44
81 06 21
7.3
21.0
102
146
1263
43.9
93
0.6
1082
Canfield (1981)
7535
Okeechobee
Okeechobee
26 56 15
80 48 46
8.5
100.3
443
105
1111
14.8
47
0.5
1083
Reqions
7535
Rosalie
Polk
27 56 04
81 24 18
7.2
14.7
1 1 1
38
783
13.6
78
1 .2
1084
Canfield (1981)
7535
Tiqer
Polk
27 53 34
81 21 21
8.4
32.6
84
43
796
16.1
67
0.6
1085
Reqions
7535
Toho
Osceola
28 12 60
81 23 25
7.4
24.7
127
34
983
17.1
1 1 6
0.8
1086
Canfield (1981)
7535
Weohyakapka
Polk
27 49 06
81 24 49
7.0
8.4
76
28
455
5.1
42
1 .0
1087
Summer '96
7536
Crystal
Polk
28 09 38
81 38 32
7.1
13.0
257
37
1090
6.2
23
-
1088
LW(6/96)
7536
Dunes
Lee
26 27 15
82 03 15
-
-
-
564
3686
41.5
-
1 .2
1089
LW(6/96)
7536
East Hocks
Lee
26 26 20
82 06 46
-
-
-
50
2501
47.9
-
0.6
1090
LW(6/96)
7536
East Rocks West
Lee
26 26 07
82 06 56
.
.
53
1898
24.4
-
1 .6
1091
Reqions
7536
Garfield
Polk
27 54 14
81 43 56
6.6
4.8
126
8 1
1240
42.7
1 20
0.4
1092
Canfield (1981)
7536
Gibson
Polk
28 06 33
81 57 46
6.7
10.2
105
269
691
5.9
69
0.8
1093
LW(6/96)
7536
Gulf Pines
Lee
26 26 40
82 07 49
-
-
-
74
1701
19.8
-
1 .4
Appendix B, Page 88
-------
A
B
C
D
E
F
G
H
1
J
K
L
M
N
1
Study
Region
Lake
County
Latitude
DMS
Longitude
DMS
PH
Total
Alkalinity
(mg/l)
Conductivity
(|LS/em625C)
Total
Phosphorus
(M9/I)
Total
Nitrogen
(cg/i)
Chloro-
phyll_a
(ng/i)
Color
(peu)
Secchi
(m)
1094
LW(6/96)
7536
Gulf Shores
Lee
26 26 41
82 08 01
-
- .
68
1971
42.5
-
1.2
1095
LW(6/96)
7536
Gulf Shores West
Lee
26 26 48
82 08 05
-
-
-
181
3185
128.2
-
0.6
1096
LW(6/96)
7536
Gumbo Limbo
Lee
26 26 41
82 03 49
-
-
-
75
1260
10.2
2.8
1097
1-QAQC
7536
Haines
Polk
28 05 31
81 42 25
8.2
76.0
319
122
1817
76.7
45
0.2
1098
LW 93
7536
Hamilton
Polk
28 02 44
81 39 18
7.3
12.0
269
112
1090
14.4
62
-
1099
Regions
7536
Hancock
Polk
27 58 23
81 50 15
7.4
52.0
189
427
2463
119.7
83
0.5
1100
1-QAQC
7536
Henry
Polk
28 05 38
81 40 11
5.9
2.1
196
. 97
1 183
8.2
167
0.4
1101
LW(6/96)
7536
Lady Finger
Lee
26 27 57
82 09 18
-
-
-
38
2625
9.1
-
1.4
1102
LW(6/96)
7536
Lake 1
Charlotte
26 53 15
81 01 47
-
-
393
2703
190.3
-
0.3
1103
LW(6/96)
7536...
Lake 2
Charlotte
26 53 08
82 01 47
-
-
-
331
2517
121.5
-
0.4
1104
LW(6/96)
7536
Lake 3
Charlotte
26 53 11
82 01 54
.
-
412
1902
63.9
.
0.5
1105
LW(6/96)1
7536
Lake 4
Charlotte
26 53 37
82 02 01
. - .
-
-
'65
-
16.2
-
~ 0.7
1106
1107
LW(6/96)
7536
Lake 5 ;
Charlotte
26 53 32
82 02 06
' -
-
-
181
1965
48.0
-
0.5
LW(6/96)
753i6
Lake 6
Charlotte
26 53. 44
82 02 01
-
-
130
1717
86.7
-
0.4
1108
LW(6/96)
7536
Lake 7
Charlotte
26 53 33
82 02 52
-
-
-
93
1552
42.5
-
0.6
1109
Canfield (1981)
7536
Little Crooked
Polk
27 46 10
81 35 03
5.4
1.8
82
54
1032
11.4
138
0.3
1110
LW(6/96)
7536
Little Murex
Lee
26 25 59
82 06 01
-
-
-
27
2509
12.0
-
0.9
1111
LW(6/96)
7536
Little Portion
Lee
26 25 3.1
81 54 22
-
-
30
1382
47.2
-
0.9
1112
Regions
7536
Livinqston
Polk
27 41 03
81 31 12
6.6
8.9
131
290
1527
3.5
390
0.3
1113
Regions
7536
Lowery
Polk
28 07 45
81 40 53
6.6
5.0
174
18
1343
23.2
44.
1 .2
1114
Canfield (1981)
7536
Manatee
Manatee
27 29 03
82 19 58
6.9
30.3
134
163
.61 8
7.3
101
1.2
1115
LW(6/96)
7536
Murex
Lee
26 25 52
82 06 02
-
-
-
367
2315
37.7
-
0.7
1116
LW(6/96)
7536
Pond 1
Charlotte
26 53 15
81 01 47
-
-
-
202
1943
-
-
-
111 7
LW(6/96)
7536
Pond 2
Charlotte
26 53 08
82 01^47
-
.
.
282
.
158.7
¦
0.3
1118
LW(6/96)
7536
Pond 3
Charlotte
26 53 11
82 01 54
.
.
¦-
296
1907
.
.
.
1119
LW(6/96)
7536
Pond 6
Charlotte
26 53 44
82 02 01
-
.
-
104
2288
.
-
-
1120
LW(6te6)
7536
Pond 7
Charlotte
26 53 33
82 02 52
-
-
-
70
1544
-
-
-
1121
1122
1-QAQC
7536
Rochelle
Polk
28 04 19
81 43 21
7.8
37.7
283
175
1283
33.7
55
0.4
LW(6/96)
7536
Roseate
Lee
26 26 11
82 03 56
-
-
-
64
2101
44.6
-
0.7
1123
LW(6/96)
7536
Sanibel River
Lee
26 25 38
82 05 17
-
•
-
257
2209
56.1
-
0.6
1124
Regions
7536
South Crooked
Polk
27 46 12
81 34 52
6.4
; 2.9
121
38
917
20.8
100
0.8
1125
Summer '96
7536
St. Charles
Polk .
28 10 19
81 38 50
6.6
12.0
112
16
940
I
-
-
1126
LW(6/96)
7536
SL Kilda
Lee
26 25 44
82 06 04
-
-
-
48
1391
22.2
-
1.3
1127
Regions
7536
Streety
Polk
27 40 48
81 34 19
6.0
2.1
115
142
817
8.1
230
0.8
1128
Regions
7536
Surveyors
Polk
27 50 11
81 41 38
7.1
6.8
167
76
1367
88.9
68
0.5
1129
Canfield (1981)
7536
Upper Myakka
Sarasota
27 16 26
82 17 13
8.6
41.2
201
206
863
6.7
99
1 .3
1130
LW(6/96)
7536
West Rocks
Lee
26 26 09
82 07 03
-
-
-
33
1623
8.2
-
1 .7
1131
Canfield (1981)
7537
Trafford
Collier
26 25 30
81 29 38
8.5
110.8
¦> 225
65
1270
27.7
48
1 .0
1132
Canfield (1981)
7603
Osborne
Palm Beach
26 35 38
80 04 47
8.2
203.8
477
138
1 168
39.9
60
1 .0
1133
Canfield (1981)
7603
Tiaertail
Broward
26 03 03
80 09 30
8.9
66.1
166
14
607
2.5
4
-
Appendix B, Page 89
------- |