ENVIRON ENTAL PROTECTION AGENCY
OFFICE OF ENFORCEMENT
PHELPS DODGE
< '
DOUGLAS
F
NATIONAL ENFORCEMENT INVESTIGATIONS
DENVER, COLORADO
CENTER

-------
STATE IMPLEMENTATION PLAN
INSPECTION OF
PHELPS DODGE CORPORATION
DOUGLAS REDUCTION WORKS SMELTER
Douglas, Arizona
September 1976
ENVIRONMENTAL PROTECTION AGENCY
NATIONAL ENFORCEMENT INVESTIGATIONS CENTER
Denver
OFFICE OF AIR QUALITY PLANNING AND STANDARDS
Durham
REGION IX
San Francisco

-------
CONTENTS
INTRODUCTION 	 . 1
PROCESS DESCRIPTION 	 2
EMISSION SOURCES AND RELATED
CONTROL EQUIPMENT 	 6
EMISSIONS DATA 			10
BIBLIOGRAPHY 	 12
TABLES
1	Smelter Process Equipment and
Operating Data	 4
2	Smelter Air Pollution Control
Equipment and Operating Data 	 8
3	Particulate Matter Emissions Test
Results	 11
FIGURES
1	Phelps Dodge, Douglas Process Flow
Diagram 	 3
2	Phelps Dodge, Douglas Plant Layout,
Process Exhaust Flow and Air
Pollution Control Systems 	 7
APPENDICES
A NEIC Information Request
Letter to Phelps Dodge
B Phelps Dodge Response to
NEIC Information Request
C SIP Regulation Applicable to
Phelps Dodge
D Calculations of Gas Flow
Rates and Allowable
Emissions

-------
PHELPS DODGE
Douglas, Arizona
SUMMARY AND CONCLUSIONS
Phelps Dodge Corporation operates a smelter in Douglas, Arizona.
An inspection to acquire data with which to evaluate the design and
operation of existing particulate matter air pollution control equipment
at the smelter was conducted by EPA personnel on February 4, 1976.
Substantial amounts of process, control equipment, and stack sampling
information were requested of, and received from, Phelps Dodge.
The following conclusions are based on the inspection and a review
of the information obtained:
1.	The design gas volume handling rates of all the electrostatic
precipitators (ESP1s) are greater than the reported gas
volumes treated by them. However, the stack gas volumes
measured at the roaster/reverberatory furnace (R/R) stack and
converter stack sampling stations are much larger than ESP
design gas volumes. This could be a result of air infiltratior
prior to or following the ESP units. If it is the former, the
control effectiveness of the ESP1s could be significantly
reduced. To ascertain the true situation, tests would need to
be performed in the ducts preceding and following the ESP's,
while carefully monitoring the process.
2.	The Douglas Smelter does not have an acid plant, therefore
there is no cold gas control system following the ESP's, on at
least the converter process, to provide additional particulate
matter reduction.

-------
3. Several source tests have been conducted at both the R/R stack
and converter stack sampling stations. All have been performed
in an acceptable manner, meeting all minimum requirements and
tolerances, however the results indicate the smelter is not in
compliance with the allowable process weight rates.

-------
INSPECTION OF
PHELPS DODGE CORPORATION
DOUGLAS REDUCTION WORKS SMELTER
Douglas, Arizona
February 4, 1976
602/364-2441
INTRODUCTION
The Phelps Dodge Corporation, Douglas Reduction Works, operates a
smelter in Douglas, Arizona to produce anode copper and copper shot from
concentrates, precipitates, and scrap brass fines. Anode copper production
averages 330 m. tons (363 tons)/day, within a daily production range of
212 to 476 m. tons (233 to 524 tons)/day.
On December 17, 1975 the superintendent of the Douglas Reduction
Works was requested by letter to provide process and air pollution
control information on the Douglas Smelter and informed of a planned
plant inspection [Appendix A]. On February 4, 1976 the following EPA
personnel conducted a process inspection: Dr. Norman Gribb, Region IX;
Mr. Reid Iversen, OAQPS; Mr. Gary D. Young, NEIC; Mr. Jim V. Rouse,
NEIC. The only Company person participating was Mr. Walter L. Gage,
Superintendent. The data requested were furnished at the completion of
the inspection and by subsequent letter [Appendix B].
The purpose of the inspection was to acquire data with which to
evaluate the design and operation of existing particulate matter air
pollution control equipment. The process equipment, the particulate
matter emission sources, and the air pollution control equipment were
all examined.

-------
2
The applicable regulation contained in the Arizona State Implemen-
tation Plan (SIP) of interest for this inspection was the approved
process weight regulation, Article 7-1-3.6 entitled Process Industries
[Appendix C]. This regulation provides an allowable emission rate for
each process unit based on the production feed rate to the unit.
PROCESS DESCRIPTION
Figure 1 is a simplified process control diagram for the smelter.
Table 1 lists the smelter process equipment and operating data.
Feed for the smelter, consisting of concentrates, precipitates,
direct smelting ore, and scrap brass fines, together with silica and
lime rock flux, arrives at the facility by railroad. The material is
unloaded directly to the bedding plant after being crushed and blended
as required. The bedded material is reclaimed and fed to one of the
twenty-four Herreshoff six-hearth roasters. The feed is continuously
moved by rotating arms so that the blend is spread across the hearths
and is dropped from hearth to hearth until it passes into a hopper. The
roasters are heated with natural gas, or fuel oil when natural gas is
not available, to the point of sulfur ignition. The heat that is
produced dries the charge and eliminates enough sulfur to produce the
desired balance between copper, iron and sulfur for smelting. The
resultant hot material (calcine) is discharged from the roaster hoppers
into rail cars and conveyed to the reverberatory furnace building.
Roaster calcine is charged into either two deep, bath-style furnaces
or one side-charged style furnace. The furnaces are all 8 m (26 ft)
wide and 31 to 33 m (103 to 107 ft) long, inside dimensions, and are
fired with natural gas, or with fuel oil if natural gas delivery is
interrupted.
The side-charged furnace sidewalls and uptake walls are constructed
of basic magnesite-chrome brick. The roof is flat and of Detrick

-------
CONCENTRATES
PRECIPITATES
LIMEROCK
>
c
(00.7%)
CASTINO WHEEL

ROASTERS (84)
SLAO
SILICA
PLUX
Cu
:URNACE
(2)
SLAO
AIR
ONVERTER
(0)
REPORMCO OAS
flgvr* I. Phtlpi Dodgt,	fr*c«n Plow Diagram
CO

-------
4
Table 1
SMELTER PROCESS EQUIPMENT AND OPERATING DATA
PHELPS DODGE CORPORATION
Douglas, Arizona
Parameter	Roasters	Reberberatory	Converters
Furnace
No. of Units 24	3 5
Feed Constituents* C,0,P,B,S,L	Ca,R,F,CS M,F,R
Feed Rate m.tons/day tons/day	m.tons/day tons/day m.tons/day tons/day
C,0,P,B,S,L 1,919
2,114 Ca
1,785
1,966
M
674
743
R
83
91
F
127
140
F
54
59
R
246
271
CS
469
517

1,047
17154
Total
2,391
2,633



Size of Units	NR	NR	m ft
diameter 4 .13
length 9 30
Hours of
Operation/month* 9,113	1,692	1,344
Gas Volume 3	3	3
Generated m /min	scfm**	m /min	scfm	m /min	scfm
6,970	246,300	7,940	280,300	9,000	318,000
Exit Gas
Temperature °C	°F	°C	°F	°C	°F
256	493	288	550	260	500
t Concentrates (Co), Ores (0)s Precipitates (P) s Scrap Brass Fines (B),
Silica (S)y Limerock (L)3 Calcine (Ca), Reverts (R)3 Flux (F),
Converter Slag (CS)} Matte (M)
ft NR = Not Reported
* Based on Nov. 1975 data for all similar process units
** Standard conditions are 760 mm Hg (29.92 in Hg or 13.7 psi) and
21°C (70°F); gas volumes are results of emission tests.

-------
5
construction. The charging system consists of drag chain conveyors
running along the sides of the furnace distributing calcine through gate
valves and charge pipes into the furnace. Slag is skimmed at the center
of the endwall into a launder leading to a slag car. Matte is tapped
through the sidewalls into launders which carry it to ladles in the
converter aisle.
The two bath smelting furnaces' sidewalls and arches are constructed
of silica brick and are maintained by hot patching with a silica slurry.
At the slag zone, 51 cm (20 in) high water jackets of cast copper with
cooling coils are embedded in the furnace walls. The furnaces are fed
through Wagstaff feeders located on each furnace sidewall. When not in
use, charging ports are covered with air operated, cast refractory doors
to minimize air infiltration. Slag is skimmed similar to the method
used for the side-charged furnace. Matte is tapped through the side-
walls near the converter aisle.
The matte ladles in the converter aisle are picked up by an over-
head crane and charged to one of five 4 x 9 m (13 x 30 ft) Pierce-Smith
converters. Converting is done in two stages with matte additions in
batches. During the first stage, the matte blow, sulfur is converted to
sulfur oxides and iron is oxidized and fluxed with silica to form a
liquid slag which is skimmed and returned to the reverberatory furnaces.
White metal is further converted in a second stage, the copper blow,
during which sulfur is oxidized, producing blister copper.
The blister copper is poured into ladles and carried by overhead
crane to one of the two anode furnaces for final refining. In the anode
furnaces, air is introduced into the charge through tuyeres to oxidize
the blister copper completely. Then the copper is blown with reformed
natural gas (cracked methane) to reduce the blister copper to anode
grade copper. Finished anode copper is then poured into 340 kg (750 lb)

-------
6
anode molds on a single casting wheel. Anodes are cooled, inspected and
loaded on railroad flat cars for shipment to the Phelps Dodge Refinery
in El Paso, Texas.
EMISSION SOURCES AND RELATED CONTROL EQUIPMENT
The primary particulate matter sources at the Douglas Smelter are
the roasters, reverberatory furnaces, and the converters. The majority
of the exhaust gas volumes produced by these sources is treated by
control systems which are discussed below. Fugitive emissions from the
roaster process are treated in a separate baghouse. Fugitive emissions
from feeding calcine into the furnaces, tapping matte, skimming slag, or
returning converter slag to the reverberatory furnaces are in some cases
collected, but are not treated before being exhausted to the atmosphere.
Similarly, converter "smoke" not collected by the primary hood system is
exhausted untreated through the roof vents in the converter aisle. The
anode furnaces also emit some untreated particulate matter directly to
the atmosphere above the converter aisle; however, since the gas stream
is not collected, the concentrations are indeterminate.
Figure 2 is a diagram of the Douglas Smelter layout, the air pollution
control system, and the exhaust gas flow. Table 2 summarizes certain
design and operating data for the individual air pollution control
systems. Appendix B contains more specific information on each control
system.
Multihearth Roaster Control System
The roaster off-gases are collected and pass through a common flue
to four parallel electrostatic precipitators (ESP's). An average gas
volume of 6,970 std m^/min (246,300 scfm) is treated by the ESP's

-------
WASTE HEAT
BOILERS (3)
CONN

>

tt

0
ft
w
»-

<
(/)
K
u
UJ
U
to
<
a
z
w
ft
>
D
UJ
IL
£

...JtOASTERS
\ry
EXHAUST
EXHAUST
ANODE
CONVERTERS
FURNACES
CAST ING WHEEL
ESP

ESP
O)

<4>
ROASTER/REVERB STACK
WASTE HEAT
BOILERS (8)
PROCESS PLOW
EXHAUST OASES

•EXHAUST
kCK
Ho*r« i. fktlpt Dodo*. Dowofai Plant larovf. Froft txhwvtt How. mnd Air P*llvlI«R Control Sritomi

-------
Table 2
SMELTER AIR POLLUTION CONTROL EQUIPMENT AND OPERATING DATA
PHELPS DODGE CORPORATION
Douglas, Arizona
Control
Device
Manufacturer
bate of
Installation/
Modification
No. of
Units
Gas Flow Operating
Rate Temperature
Pressure Drop
Collection
Area
Velocity
Retention
Time




m^/min scfm+ °C
°F
cm
h2o
1n
2 2
m ft m/sec
ft/sec
sec
ESP
Research
Cottrell
11/75
4
Roasters
9,770 345,000tt260
500
1.3

0.5
23,278 250,550
1.3-
1.4
4.2-
4.6
7.8-
8.6
ESP
Research
Cottrell
11/75
3
Reverberatory Furnaces
8,240 291,000 232
450
1.3

0.5
17,458 187,920
0.8-
0.9
2.6-
3.0
12-
13.8
ESP
Research
Cottrell
2/76m
4
Converters
9,000- 318,000- 343
9,540 337,000
650
1.3

0.5
17,458 187,920
0.7-
1.1
2.2-
3.5
7.7-
12.3
t Standard conditions are 760 mm Eg (29.92 in Hg or 13.7 psi) and 21°C (70°F).
+t Design parameters; operation parameters for ESP'a are assumed to be the gas volumes generated by the processes controlled
by the ESP's.
+tt Modification was in progress during inspection.
Co

-------
9
O
designed to handle a gas flow rate of 9,770 std m /min (3S45,000 scfm)
2
[Appendix D]. The ESP's have a total collection area of 23,300 m
2
(250,600 ft ). Gas retention time is approximately 8 seconds with an
average gas velocity of 1.3 m (4.4 ft)/sec. The pressure drop across
the ESP's is 1.3 cm (0.5 in) of water, maximum. The cleaned roaster
gases are then ducted to and discharged from the 166 m (544 ft) R/R
stack.
Reverberatory Furnace Control System
The reverberatory furnace exhaust gases pass through waste heat
boilers and travel through a common flue to three parallel ESP's. An
average of 7,940 std m /min (280,300 scfm) of exhaust gas generated is
handled by the ESP's designed for 8,240 std m^/min (291,000 scfm). The
ESP's have a total collection area of 17,500 m^ (188,000 ft^). The gas
retention time is approximately 13 seconds with an average gas velocity
of 0.9 m (2.8 ft)/sec. The pressure drop across the ESP's is less than
1.3 cm (0.5 in) of water. The cleaned reverberatory furnace gases are
then discharged through the 166 m (544 ft) R/R stack.
Converter Control System
The principal converter exhaust gases become laden with particulate
matter when air is blown into a converter through tuyeres to oxidize the
iron and copper sulfides. The converter process gases are collected in
hoods and pass through a balloon flue to four parallel ESP's. The gas
volume of 9,000 to 9,540 std m^/min (318,000 to 337,000 scfm) exhausted
3
is less than the design capacity of 10,100 std m /min (358,000 scfm).
2	2
The total collection area is 17,500 m (188,000 ft ). Gas retention
time varies between 8 and 12 seconds with an average gas velocity of
between 0.7 and 1.1 m (2.2 and 3.5 ft)/sec. The maximum pressure drop
across the ESP is 1.3 cm (0.5 in) of water. The cleaned converter gases
are ducted to and exhausted from the 172 m (564 ft) converter stack.

-------
10
EMISSIONS DATA
Several source tests were conducted at the Douglas Smelter during
1975 by the Douglas Reduction Works test team. All tests were conducted
as compliance tests following the methods prescribed as Methods 1-5 by
EPA. The R/R stack tests were conducted at the 93 m (304 ft) elevation
of the 166 m (544 ft) stack where the internal diameter is 8.4 m (27.7
ft). The converter stack tests were conducted at the 87 m (285 ft)
elevation of the 172 m (564 ft) stack where the internal diameter is 7.8
m (25.7 ft). Each stack has four sampling ports spaced 90° apart.
During each test, a total of 12 points, six on each diameter were
sampled.
Hourly process weights were determined by calculating the average
input to each of the three process units -- roasters, reverberatory
furnaces, converters -- during the test period. Allowable emissions
were calculated by the formula contained in the applicable regulation
[Appendix C] and compared with the test results. During all tests the
minimum sampling time (2 hr), minimum sampling volume [1.70 m (60
ft )], and isokinetic tolerances (90 to 110%) were met.
The probe used was a 3 m (10 ft) glass-lined stainless steel probe
fitted with a stainless steel nozzle for at least the first eight test
runs (1-4 D and 5-8 C). The back-half (impinger case) consisted of four
impingers; the first two contained hydrogen peroxide, the third was dry,
and the fourth contained silica gel. No such methodology information
was provided for the other test runs, but since the same test team
performed all the tests it would be reasonable to assume that similar
sampling trains were used.
The results of all ten test runs conducted at the R/R stack and the
ten test runs conducted at the converter stack are presented in Table 3.

-------
11
Table 3
PARTICULATE MATTER EMISSIONS TEST RESULTS
PHELPS DODGE CORPORATION
Douglass Arizona


Stack
Gas
Moisture
Actual
Allowable
Test
Date
Temperature
Volume
Content
Emissions
Emissions
Run
(1975)
°F
°C
acfm m^/min
%
Ib/hr
kg/hr
Ib/hr
kg/hr
1 -Da
5-20
351
177
749,000 21,200
NRb
1,300
590
108 0
49
2-D
5-20
362
183
702,000 19,900
NR
1,480
671
108
49
3-D
5-21
386
197
716,000 20,300
NR
771
350
108
49
4-D
5-21
422
217
771,000 21,800
NR
878
398
108
49
113-D
10-28
381
194
829,000 23,500
2.8
359
163
105
48
114-D
10-29
372
189
865,000 24,500
8.4
419
190
110
50
115-D
10-30
344
173
827,000 23,400
4.9
346
157
108 '
49
117-D
11-2
NR

NR
NR
350
159
105
- 48
118-D
11-3
400
204
908,000 25,700
6d
544
247
108
49
123-D
12-3
325 _
163
901,000 25,500
3.2
543
246
105 '
48
5-Ce
5-22
354 ^
179
557,000 15,800
NR
223
101
50f
23
6-C
5-22
400
204
573,000 16,200
NR
154
70
50
23
7-C
5-23
422
217
580,000 16,400
NR
189
86
50
23
8-C
5-23
411
211
552,000 15,600
NR
115
52
50
23
108-C
10-21
294
146
523,000 14,800
3.3
232
105
52
24
109-C
10-22
330
166
551,000 15,600
4.0
225
102
51
23
111-C
10-26
374
190
591,000 16,700
1.6
306
139
51
23
112-C
10-27
363
184
581,000 16,500
0.8
278
126
50
23
116-C1
10-31
378
192
538,000 15,200
0.8
370
168
50
23
125-C
12-11
327.
164
577,000 16,300
1.3
293
133
52
24
a "D" -indicates test run was conducted at the roaster/reverberatory (R/R)
stack.
b NR = not reported
0 Values for R/R test runs are calculated as the sum of the allowable for the
roaster process and the allowable for the reverberatory furnace process; values
for the allowable of the combination of the two process weights are not reported here
[Appendix Z>].
^ Assumed value by the Company
e "C" indicates test run was conducted at the converter stack.
* Values for converter test runs are calculated as the allowable for the
converter process {Appendix £>.].

-------
12
BIBLIOGRAPHY
1.	Phelps Dodge Corporation, Douglas Reduction Works, Douglas, Arizona,
EPA Questionnaire, Feb. 2, 1976.
2.	Letter - Feb. 12, 1976, from Walter L. Gage, Superintendent,
Douglas Reduction Works, Phelps Dodge Corporation to Gary D. Young,
EPA-NEIC, Denver, Co.
3.	Letter - June 3, 1975, from Walter L. Gage, Superintendent, Douglas
Reduction Works, Phelps Dodge Corporation to Frank M. Covington,
Director, Enforcement Division, EPA-Region IX.
4.	Compilation and Analysis of Design and Operating Parameters of the
Phelps Dodge Corporation, Douglas Branch Smelter, Douglas, Arizona,
for Emisson Control Studies, Pacific Environmental Services, Inc.,
Santa Monica, Jan. 1976.
5.	Letter - Mar. 1, 1976, from Walter L. Gage, Superintendent, Douglas
Reduction Works, Phelps Dodge Corporation to Gary D. Young, EPA-
NEIC, Denver, Co.

-------
APPENDICES
A NEIC Information Request
Letter to Phelps Dodge
B Phelps Dodge Response to
NEIC Information Request
C SIP Regulation Applicable to
Phelps Dodge
D Calculations of Gas Flow
Rates and Allowable
Emissions

-------
Appendix A
NEIC Information Request Letter to Phelps Dodge

-------
ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF ENFORCEMENT
NATIONAL FIELD INVESTIGATIONS CENTER-DENVER
BUILDING 53, BOX 25227. DENVER FEDERAL CENTER
DENVER. COLORADO 80225
December 17, 1975
Walter L. Gage
Superintendent
Douglas Reduction Works
Phelps-Dodge Corporation
P.O. Drawer E
Douglas, Arizona 85607
Dear Mr. Gage:
The Environmental Protection Agency has undertaken a program to
evaluate the performance characteristics of particulate control facilities
at the copper smelters in Arizona and Nevada. Representatives of EPA
will observe each smelter's process operations and air pollution control
facilities, review source test data, examine appropriate records, etc.,
during a site inspection of each smelter.
In anticipation of such a site inspection of your smelter, we have
prepared the attached list of detailed information needs which we intend
to use as a discussion outline during our inspection. We would appreciate
it if you could inform the appropriate company personnel about the
attached list and the forthcoming inspection of your facility so that
the necessary information will be readily available and the inspections
can be expedited.
We are conducting these inspections under the authority of Section
114(a)(ii) of the Clean Air Act, which authorizes representatives of EPA
to enter facilities for the purpose of determining whether the facility
is in violation of any requirement of a state implementation plan. At
your facility, we anticipate that EPA or a contractor hired by EPA will
be conducting an emissions source test for particulate matter within the
next few months. Therefore, EPA will make a source test pre-survey,
either separately or in conjunction with our site inspections, prior to
performing such a source test.
If you have any questions concerning the purpose of these site
inspections, please feel free to contact Mr. Gary D. Young of my staff
(303/234-4658) or Mr. Larry Bowerman, EPA Region IX (415/556-6150). Mr.
Young will be in contact with you within the next few weeks concerning a
site inspecton of your smelter during January or early February.
Sincerely,
Attachment
Thomas P. Gallagher
Director
cc: Richard O'Connell
Bruce Scott

-------
COPPER SMELTER INFORMATION NEEDS
A.	GENERAL
1.	Plant location
2.	Person to contact regarding plant survey information needs, his
telephone number and address
3.	Simple block flow diagram showing smelter process equipment, air
pollution control devices, and stack configuration
B.	PROCESS
1. General
a.	Detailed description of the process, including flow diagrams,
unique features, and how the process operates
b.	Definition of normal operation
c.	Actual production rate (lbs blister copper/hr and percent Cu)
d.	Type and quantity of fuel consumed
Oil
- i.
Heating value (BTU's/gal)

ii.
Percent sulfur (by weight)

iii.
Percent ash (by weight)

iv.
Specific gravity

v.
Consumption (gals or bbls/yr)
Gas
- i.
Type of gas (constituents in percent by weight)

ii.
Density (lbs/SCF)

iii.
Heating value (BTU's/SCF)

iv.
Percent sulfur (by volume and grains/SCF)

v.
Consumption (SCF/yr)
Coal
- i.
Heating value (BTU's/T)

ii.
Percent sulfur (by weight)

iii.
Percent ash (by weight)

iv.
Consumption (lbs/unit/hr)
e.	Ore composition, including a typical percent and range of
percentages for each chemical constituent
f.	Flux composition, including a typical percent and range of
percentages for each chemical constituent
g.	Standard conditions - pressure (psi) and temperature (°F) -
used to calculate SCFM

-------
Concentrators
a.	Design process feed rate (lbs raw ore/hr)
b.	Actual process feed rate (lbs raw ore/hr), including method
and estimated accuracy of measurement
c.	Average number of hours of operation per month
d.	Process instrumentation used, including data for a typical
reading and range of readings
e.	Description of where and how samples of process material can
be collected
f.	Description of typical types of process fluctuations and/or
malfunctions, including frequency of occurrence and anticipated
emission results
g.	Expected life of process equipment (years)
h.	Plans to modify or expand process production rate
Roasters
a.	Design process feed rate (lbs concentrate/hr)
b.	Actual process feed rate (lbs concentrate/hr), including
method and estimated accuracy of measurement
c.	Design process gas volumes (SCFM)
d.	Actual process gas volumes (SCFM), including method of
determination, calculation, or measurement
e.	Actual process temperature (°F)
f.	Average number of hours of operation per month
g.	Process instrumentation used, including data for a typical
reading and range of readings
h.	Description of where and how samples of process material
can be collected
i.	Description of typical types of process fluctuations and/or
malfunctions, including frequency of occurrence and anticipated
emission results

-------
j. Expected life of process equipment (years)
k. Plans to modify or expand process production rate
4.	Reverberatory furnaces
a.	Design process feed rate (lbs calcine/hr + lbs flux/hr +
lbs converter slag/hr)
b.	Actual process feed rate (lbs calcine/hr + lbs flux/hr +
lbs converter slag/hr), including method and estimated
accuracy of measurement
c.	Design process gas volumes (SCFM)
d.	Actual process gas volumes (SCFM), including method of
determination, calculation, or measurement
e.	Actual process temperature (°F)
f.	Average number of hours of operation per month
g.	Process instrumentation used, including data for a typical
reading and range of readings
h.	Description of where and how samples of process material can
be collected
i.	Description of typical types of process fluctuations and/or
malfunctions, including frequency of occurrence and anticipated
emission results
j. Expected life of process equipment (years)
k. Plans to modify or expand process production rate
5.	Converters
a.	Design process feed rate (lbs matte/hr + lbs slag/hr +
lbs flux/hr)
b.	Actual process feed rate (lbs matte/hr + lbs slag/hr +
lbs flux/hr), including method and estimated accuracy of
. measurement
c.	Design process gas volumes (SCFM)
d.	Actual process gas volumes (SCFM), including method of
determination, calculation, or measurement
e. Actual process temperature (°F)

-------
f.	Average number of hours of operation per month
g.	Process instrumentation used, including data for a typical
reading and range of readings
h.	Description of where and how samples of process material can
be collected
i.	Description of typical types of process fluctuations and/or
malfunctions, including frequency of occurrence arid anticipated
emission results
j. Expected life of process equipment (years)
k. Plans to modify or expand process production rate
6. Refining Furnaces
a.	Design process feed rate (lbs blister copper/hr)
b.	Actual process feed rate (lbs blister copper/hr), including
method and estimated accuracy of measurement
c.	Design process gas volumes (SCFM)
d.	Actual process gas volumes (SCFM), including method of
determination, calculation, or measurement
e.	Actual process temperature (°F)
f.	Average number of hours of operation per month
g.	Process instrumentation used, including data for a typical
reading and range of readings
h.	Description of where and how samples of process material can
be collected
i.	Description of typical types of process fluctuations and/or
malfunctions, including frequency of occurrence and anticipated
emission results
j. Expected life of process equipment (years)
k. Plans to modify or expand process production rate

-------
EMISSIONS
1.	List of sources of particulate emissions in the plant (including
fugitive emissions)
2.	Level of uncontrolled particulate emissions by source (lbs/hr or
T/yr)
3.	Existing source test data employed for particulates by stack,
process unit, or control device, including:
a.	Test method
b.	Data acquired
c.	Operating process weight rate
d.	Calculations
e.	Test results
4.	Particle size and chemical composition of uncontrolled particulate
emissions, including method of determination
5.	Level of uncontrolled visible emissions by source (percent opacity)
and method of determination
6.	Extent of and reason for variance of particulate emissions with:
a.
Process design parameters
b.
Process operating parameters
c.
Raw material composition or type
d.
Product specifications or composition
e.
Production rate
f.
Season or climate
g»
Sulfur dioxide control
CONTROL SYSTEMS
1. Detailed description of the particulate and sulfur dioxide emissions
control systems, including:
a. Process treated

-------
b. Type of fuel consumed per unit
c.	Quantity of fuel consumed per unit
d.	Method of determination of design parameters
e.	Engineering drawings or block flow diagrams
f.	Expected life of control system
g.	Plans to upgrade existing system
2. Electrostatic precipitators
a.	Manufacturer, type, model number
b.	Manufacturer's guarantees, if any
c.	Date of installation or last modification and a detailed
description of the nature and extent of the modification
d.	Description of cleaning and maintenance practices, including
frequency and method
e.	Design and actual values for the following variables:
i.
Current (amperes)
ii.
Voltage
iii.
Rapping frequency (times/hr)
iv.
Number of banks
v.
Number of stages
vi.
Particulate resistivity (ohm-centimeters)
vii.
Quantity of ammonia injected (lbs/hr)
viii.
Water injection flow fate (gals/min)
ix.
Gas flow rate (SCFM)
X.
Operating temperature (°F)
xi.
Inlet particulate concentration (lbs/hr or grains/SCFM)
xii.
Outlet particulate concentration (lbs/hr or grains/SCFM)
xiii.
Pressure drop (inches of water)
3. Fabric filters
a.	Manufacturer, type, model number
b.	Manufacturer's guarantees, if any
i
c.	Date of installation or last modification and a detailed
description of the nature and extent of the modification

-------
d.	Description of cleaning and maintenance practices, including
frequency and method
e.	Filter material
f.	Filter weave
g.	Bag replacement frequency
h.	Forced or induced draft
i.	Design and actual values for the following variables:
i.	Bag area (ft2)
ii.	Bag spacing (inches)
iii.	Number of bags
iv.	Gas flow rate (SCFM)
v.	Operating temperature (°F)
vi.	Inlet particulate concentration (lbs/hr or grains/SCF);
vii.	Outlet particulate concentration (lbs/hr or grains/SCF)
viii.	Pressure drop (inches of water)
Scrubbers
a.	Manufacturer, type, model number
b.	Manufacturer's guarantees, if any
c.	Date of installation of last modification and a detailed
description of the nature and extent of the modification
d.	Description of cleaning and maintenance practices, including
frequency and method
e.	Scrubbing media
f.	Design and actual values for the following variables:
i.	Scrubbing media flow rate (gals/min)
ii.	Pressure of scrubbing media (psi)
iii.	Gas flow rate (SCFM)
iv.	Operating temperature (°F)
v.	Inlet particulate concentration (lbs/hr or grains/SCF)
vi.	Outlet particulate concentration (lbs/hr or grains/SCF)
vii.	Pressure drop (inches of water)
Sulfuric acid plants
a. Manufacturer, type, model number

-------
b.
Manufacturer's guarantees, if any
c.	Date of installation or last modification and a detailed
description of the nature and extent of the modification
d.	Description of cleaning and maintenance practices, including
frequency and method
e.	Frequency of catalyst screening
f.	Type of demister
g.	Design and actual values for the following variables:
i.	Production (T of acid/day)
ii.	Conversion rate (percent)
ill.	Acid strength (percent H2SO4)
iv.	Number of catalyst beds
v.	Gas flow rate (SCFM)
vi.	Operating temperature (0,F)
vii.	Inlet SO2 concentration (ppm)
viii.	Outlet SO2 concentration (ppm)
ix.	Acid mist (lbs H2SO4/T of acid)
x.	Blower pressure (psi)
6. Liquid SO2 plants
a.	Manufacturer, type, model number
b.	Manufacturer's guarantees, if any
c.	Date of installation or last modification and a detailed
description of the nature and extent of the modification
d.	Description of cleaning and maintenance practices, including
frequency and method
e.	Absorbing media
f.	Design and actual values for the following variables
i.	Production (T of S02/day)
ii.	Conversion rate (percent)
iii.	Gas flow rate (SCFM)
iv.	Operating temperature (°F)
v.	Inlet SO2 concentration (ppm)
vi.	Outlet S02 concentration (ppm)
vii.	Acid mist (lbs H2SO4/T of SO2)

-------
7.	Detailed description of how the particulate and sulfur dioxide
emission control systems operate
8.	Description of instrumentation (flow meters, continuous monitors,
opacity meters, etc.) used, including manufacturer and model
number, data for typical and range of readings, and identification
of location by process unit, control system unit, or by stack
9.	Description of typical types of control system malfunctions,
including frequency of occurrence and anticipated emission results
E. STACKS
1.	Detailed description of stack configuration, including process
and/or control system units exhausted
2.	Identification by stack of:
a.	Heights (ft above terrain)
b.	Elevation of discharge points (ft above sea level)
c.	Inside diameters (ft)
d.	Exit gas temperatures (°F)
e. Exit gas velocities (ft/sec)

-------
Appendix B
Phelps Dodge Response to NEIC Information Request

-------
EPA QUESTIONNAIRE
February 2, 1976
A.	GENERAL
1.	Plant location:
Douglas, Arizona
2.	Person to contact regarding plant survey information needs, his telephone
number and address:
Walter L. Gage
Douglas Reduction Works
Phelps Dodge Corporation
Douglas, Arizona 85607
Telephone Number 602-364-2441
3.	Simple block flow diagram shewing smelter process equipment, air pollution
control devices, and stack configuration:
SEE FLOW SHEET 17-255
B.	PROCESS
1. General
a. Detailed description of the process, including flew diagrams, unique
features, and how the process operates:
Roasters
A blend of copper concentrates, ores, precipitates, scrap brass fines,
silica, and limerock is fed to each of 24 Herreshoff six hearth roa-
sters. The feed is continuously moved by bladed rotating arms so that
the blend is spread across the hearths and is dropped from hearth to
hearth until it passes into a hopper.
A fuel is bumed to raise the temperature of the feed so that an exo-
thermic reaction can occur between the sulfur in the feed and the
oxygen in air, and calcine is formed. The feed is wet and at ambient
temperature, and the calcine is dry and at approximately 1200 degrees
fahrenheit.
On full production, all operable roasters (usually 18 to 21) would be
used to meet the calcine requirements of the reverberatory furnaces.
When reduced sulfur oxide missions are required, roaster operations
are curtailed so that emissions will not exceed ambient air standards.
Reverberatory Furnaces
Roaster calcine is charged into two deep bath style furnaces and one
side charge style furnace where a fuel is burned to provide heat for

-------
-2-
B. PROCESS - Continued
1. General - Continued
a. Detailed description of the process, including flew diagrams	:-Continued
Reverberator/ Furnaces - Continued
smelting. If necessary, material may be charged into the furnaces
without passing through the roasters.
In the furnaces, the liquid formed frcm the charge separates into
two immiscible layers of different densities - matte, the more dense
liquid, contains the sulfur which selectively combines with copper
then iron; and slag, the less dense liquid, contains the oxidized
impurities which combine with the fluxes. Matte being rare dense
settles to the bottom where it can be stored until needed by the
converters. Slag floats on top of the matte and is skimmed off for
disposal on the slag dumps.
On full production, all furnaces are operated 24 hours per day. Oper-
ation of reverberatory furnaces must be curtailed when calcine becomes
unavailable due to roaster curtailments.
Converters
Matte is treated in any of five Pierce-Smith type converters. Matte,
flux, and cold material are charged through an eight foot by nine fcot
opening called the mouth located midway between the ends of the 13 fcot
diameter by 30 foot long brick lined, steel cylinder. The cylinder is
then rolled so that the mouth is upright and the passages through which
air enters the converter, called tuyeres, are in a horizontal position
106 degrees about the circumference frcm the center of the mouth.
Converting is done in two stages with matte additions in batches. The
first stage is called the matte blow during which sulfur in matte is
converted to gaseous sulfur oxides and iron is oxidized and fluxed with
silica to form a liquid slag, which is skirmed off and returned to the
reverberatory furnaces. The product of the matte blew is white metal
which is mostly liquid copper sulfide. Tne second converting stage is
called the copper blow during which sulfur is oxidized to form gaseous
sulfur oxides and blister copper is produced.
As both' stages of converting are exothermic, no fuel is required, and
cold material may be added to use excess heat.
On full production, a maximum of four converters are blowing at any one
time. When reduced sulfur oxide missions are required, converter opera-
tions are curtailed so that emissions will not exceed ambient air stand-
ards.
Anode Furnaces
Anode furnaces are similar to the converters, but have only two tuyeres
which are located nearer the mouth. Blister copper from the converters

-------
-3-
B. PROCESS - Con tin vied
1. General - Continued
a.	Detailed description of the process, including flow diagrams, unique
features, and hew the process operates: - Continued
Anode Furnaces - Continued
is treated in two stages. In the first stage, air is blown into
the liquid blister copper to oxidize impurities and form a slag
which is returned to the converters. In the second stage, reformed
natural gas (cracked methane) is blown through the liquid to reduce
copper oxide that began forming in the first stage.
Refined copper is then cast into anode shapes weighing about 750
pounds each.
b.	Definition of normal operation:
Operations are normal whenever process units scheduled for use achieve
their naninal daily level of performance or availability.
c.	Actual production rate (tons ancde copper/day and percent Cu):
Production Rate	Tons/Day	% Cu
Average	363	99.7
Range	233-524	99.7
d.	Type and quantity of fuel consumed:
Oil — Mn c. Piiai n; i
i.
ii.
iii.
iv.
v. Consumption (gals or bbls/yr):
103,101 (1975)*

Heating value (BTU's gal)
Range — 152,381 - 153,095
Average- 153,000
Percent sulfur (by weight):
Range — .90 - -98
Average- .95
Percent ash (by weight):
Range — .03 - .05
Average- . 04
Specific gravity:
Range — .9937 - .9951
Average- -9946

-------
-4-
B. PROCESS - Continued
1. General - Continued
d. Type and quantity of fuel consumed: - Continued
Gas - Natural Gas
i. Type of gas (constituents in percent by weight):
Helium	-	0.02
Carbcn Dioxide	-	0.20
Nitrogen	-	1.28
Methane	-	89.49
Ethane	-	7.29
Propane	-	1.48
Iso-Butane	-	0.08
N-Butane	-	0.14
Iso-Butane	-	0.01
N-Pentane	-	0.01
ii. Density (Ibs/SCF):
0.047
iii.	Heating value (BTU's/SCF):
1064
iv. Percent sulfur (by volume and grains/SCF):
.0007 grains/SCF
v. Consumption (SCF/yr):
3,516,346 MSCF (1975)
Goal - N/A
i. Heating value (BTU's/T):
N/A
ii. Percent sulfur (by weight):
N/A
iii. Percent ash (by weight):
N/A
iv.	Consumption (lbs/unit/hr):
N/A

-------
-5-
B. PROCESS - Continued
1.	General - Continued
e.	Ore opposition, including a typical percent and range of percentages
for each chemical constituent:
SEE TABLES I & II ¦
f.	Flux composition, including a typical percent and range of percentages
for each chemical constituent:
SEE TABLES III & IV
g.	Standard condition - pressure (psi) and temperature (°F) - used to
calculate SCFM:
Pressure 29.92 in Hg or 14.6907 psi
Temperature 60°F.
2.	Concentrators - N/A
3.	Roasters
a- Design process feed rate (lbs feed/day):
Not Available
b.	Actual process feed rate (lbs feed/day), including method and estimated
accuracy of measurement:
Method: Measure length of reclaim and calculated percentage of
known total weight that was reclaimed.
Estimated Accuracy: Within ten percent.
Feed Rate (Dry Basis) = 2,114 Tons/Day (Daily Average - November, 1975)
c.	Design process gas volumes (SCFM):
Not Available
d.	Actual process gas volumes (SCFM), including method of determination,
calculation, or measurement:
Fran No. 9 Precipitator Efficiency Tests:
November 6, 1975	12,200,000 SCFH
November 14, 1975	16,800,000 SCFH
Average	14,500,000 SCFH
Process Gas Volume = 14,500,000 SCFH = 241,670 SCFM
60 Min/Hr

-------
-6-
B. PROCESS - Continued
3. Roasters - Continued
d. Actual process gas volumes (SCFM), including method of determination,
calculation, or measurement: - Continued
Method: Measurements frcm pitot tube, thermocouple, and L-arcmeter
are used in a head meter formula for the gas of known
molecular weight, then, volume flow is calculated for
the known cross-section and corrected to standard conditions.
e.	Actual process temperature (°F):
Calcine = Approximately 1200°F
Flue Temperature at No. 9 Precipitator Inlet = 493°F
f.	Average number of hours of operation per month:
November, 1975 = 9,113.28 Roaster.Hcurs
Process instrumentation used, including data for a typical reading and
range of readings:
Instrument	
Draft Recorder Between No. 1
Roaster and Modulating Damper
Temperature Recorder For Main
Flue Between Hauck Burner and
Precipitator Inlets
Reading
0.35 in. H2O
Range of Readings
0.20 - 0.40 in. H2O
500°F	300°F - 650°F
h. Description of where and hew samples of process material can te collected:
Material	Location	t-fethod
Calcine
Caline Hoppers
Grab with steel cup
on long handle
1.
Description of typical types of process fluctuations and or malfunctions,
including frequency of occurrence and anticipated emission results:
Fluctuation	Frequency
Feed Rate	Hourly
Roaster Unusable	Daily
(lost floor, lost
rabbles, lost arms,
inoperable drive
system)
Expected life of process equipment (years):
Indeterminate
Bnission Results
Direct Relationship
Approximately 5% De-
crease Per Roaster
Lost

-------
-7-
B. PROCESS - Continued
3- Roasters - Continued
k. Plans to modify or expand process production rate:
No Present Plans
4. Reverberator/ Furnaces
a.	Design process feed rate (tons calcine/day + tons flax/day + tons converter
slag/day:
Not Available
b.	Actual process feed rate (tons calcine/day + tons flux/day + tons converter
slag/day, including method and estimated accuracy of measurement:
Feed Rate Estimated
Process Feed	Method of Measurer,ent		Tons/Day Accuracy
Calcine	Assures net effect of roasting	1966	103
reduces dry weight of roaster
feed by seven percent
Reverts	Scale weight	91	15%
Flux (Direct)	Scale weight for solid flux	59	15%
and hours of slurry operation
for slurry
Converter Slag Factor of 10 tons per ladle	517	20%
c.	Design process gas volumes (SCFM):
Not Available
d.	Actual process gas volumes (SCFM) including method of determination, cal-
culation, or measurement:
Fran November, 1975 Emission Surrcnary Report
Roaster/Reverb Stack Total = 516,670 SCFM
Fran No. 9 Precipitator Efficiency Test (See Question B.3.d.)
Roaster Flue = 241,670 SCFM
By Difference, Reverb Flue = 275,000 SCET4
Method: Measurements frcm pi tot tube, thermocouple, and barometer
are used in a head meter formula for the gas of known mole-
cular weight. Then, volume flew is calculated for the known
cross-section and corrected to standard conditions.

-------
-8-
B. PROCESS - Continued
4. Reverberatory Furnaces - Continued
e. Actual process temperature (°F):
Gas temperature inside furnace
Gas temperature inside flue
Reverberatory slag temperature
Reverberatory matte temperature
2650°F
550°F
?100°F
2000°F
f.	Average number of hours of operation per month:
November, 1975 Monthly Report Total = 1,692 Hours
g.	Process instrumentation used, including data for a typical reading and
range of readings:
Instrument
Temperature recorder for
inside furnaces
Flue temperature recorder
Draft gauges for outlet
damper controls
Gas flew meters
Readings
2650°p
550°F
0.008 in H20
126,000 ACFH
Range of Readings
2200°F - 2700^F
300°F - 650°F
0.005 to 0.015 in H20
120,000 - 135,000 ACFH
h. Description of where and hew samples of process material can be collected:
Material
Location
Methcd
Reverb Slag
Skim Hole
Grab
with steel
cup on


long
handle

Matte
Matte Launder
Grab
with steel
cup on


long
handle

Calcine
Roaster Calcine
Grab
with steel
cup on

Hoppers
long
handle

Converter Slag
Converter Skinner's
Grab
with steel
cup on

Stand
long
handle

i. Description of typical types of process fluctuations and or malfunctions,
including frequency of occurrence and anticipated emission results:

-------
-9-
B. PROCESS - Continued
4. Reverberatory Furnaces - Continued
i. Description of typical types of process fluctuations	Continued
Fluctuation
Feed Rate
Supplementary Con-
trol System
Boiler Failure
Mechanical Failures
(Paver, Drag Chain,
Calcine Trolley)
Frequency
45 Times Daily
As Needed
Approximately
twice annually
Weekly
Emission Results
Direct Relationship-Peak
Bnission Rate while feed-
ing
Reduced to comply with
ambient air standards
Reduction by one-third
Reduction dependent upon
nature of failure
j. Expected life of process equipment (years):
Indeterminate
k. Plans to modify or expand process production rate:
No Present Plans
5. Converters
a.	Design process feed rate (Tons matte/day + Tons slag/day + Tons flux/day):
Not Available
b.	Actual process feed rate (Tons matte/day + Tons slag/day + Tons flux/day,
including method and estimated accuracy of measurement:
Process Feed
Matte
Flux
Reverts
Method of f-feasurement
Factor of 14 Tons/Ladle
Measurement of reclaim
and calculation of % of
total weight reclaimed
Boat Factors
Feed Rate
Tons/Day
743
140
271
Estimated
Accuracy
15%
10%
15%
c. Design process gas volumes (SCFM):
Not Available

-------
-10-
B. PROCESS - Continued
5. Converters - Continued
d.	Actual process gas volumes (SCFM), including method of determination,
calculation, or measursnent:
November, 1975 Emission Surrmary Report -
Converter Process Gas Voluma = 311,670 SCFM
Method: teasurorients from pitot tube, thermocouple, and barometer
used in head meter formula for gas of known molecular weight.
Then, volume flow is calculated for the known cross-section
and corrected to standard conditions.
e.	Actual process temperature (°F):
Flue at precipitator inlet = 500°F
Converter Slag	= 2250°F
Blistorr Copper	= 2050 F
f.	Average number of hours of operation per month:
November, 1975 Monthly Report = 1,344.48 Hours
g.	Process instrumentation used, including data for a typical reading and
range of readings:
Instrument	Reading	Range of Readings
SC>2 Recorder in Main	By Volume	0% - 5% SO2
Flue	2% SO2
Converter Air Flow	20,000 ACEM	12,000-30,000 ACFM
Meters
h. Description of where and hew samples of process material can be collected:
Material	Location	Method
Converter Slag	Skinner's Stand	Grab with steel cup on
long handle
Blister Copper .	Skinnier's Stand	Grab with steel cup on
long handle
Flux
Sample Mill
Automatic Sampler

-------
-11-
B. PROCESS - Continued
5. Converters - Continued
i. Description of typical
including frequency of
Fluctuation
types of process fluctuations and/or malfunctions,
occurrence and anticipated emission results:
Matte Grade
Air Flow Rate
Mechanical Failure
(Puncher, Air,
Power)
Supplementary Control
System
Matte Shortage
Frequency
Continually Changing
Continually Changing
Weekly
As Needed
Daily
Bnissi.on Results
Inverse Relations': lip-
Higher emission with
lcwer matte gratis
Direct Relationship
Reduction depends upon
nature of failure
Reduction to comply
with ambient air
standards
Reduction in proportion
to matte shortage
j. Expected life of process equipment (years) :
Indeterminate
k. Plans to modify or expand process production rate:
No Present Plans
6. Refining Furnaces
a.	Design process feed rate (Tons blister copper/day):
Not Available
b.	Actual process feed rate (tons blister copper/day), including method and
estimated accuracy of measurement:
Method: Number of anodes produced is multiplied by weight per anode.
To calculate back to blister copper, the copper content of
anode is divided by the copper fraction of blister copper.
Accuracy: Within five percent
Feed Rate: Average = 354 tons/day
Range = 152- 531 tons/day
c.	Design process gas volumes (SCFM):
Not Available

-------
-12-
B. PROCESS - Continued
6. Refining Furnaces - Continued
d.	Actual process gas volumes (SCFM), including method of determination
and estimated accuracy of measurement:
Not Available
e.	Actual process temperature (°F):
Anode Copper = 2200°F
f.	Average number of hours of operation per month:
November, 1975 Anode Logs
Oxidizing = 74.25 Hours
Reducing = 266.67 Hours
Casting = 326.00 Hours
TOTAL	666.92 Hours
g.	Process instrumentation used, including data for a typical reading and
range of readings:
None
h.	Description of where and hew samples of process material can be controlled:
Material		Location		Method	
Slag	Refiner's Platform	Grab with steel cup on
long handle
Refined Copper	Casting Wheel	Pour into tmall mold
i.	Description of typical types of process fluctuations and/or malfunctions,
including frequency of occurrence and anticipated emission results:
Anode furnaces operate as blister copper beccnies available and are
seldcm affected by malfunctions. Anode furnaces have little effect
on emissions.
j. Expected life of process equipment (years):
Indeterminate
k. Plans to modify or expand process production rate:
No Present Plans

-------
EMISSIONS
1.	List of sources of particulate emissions in the plant (including fugitive
emissions):
a.	Preparation of Material:
i. Fabric filter for coarse crushing
ii. Fabric filter for fine crushing
iii. Fabric filter for screening
b.	Roasters
i. Electrostatic precipitator on process gas stream
ii. Fabric filter for fugitive emissions
iii. Fabric filter on dust storage bin
c.	Reverberatory Furnaces
i. Electrostatic precipitator on process gas stream
ii. Fugitive smoke and dust from the matte and slag launders which
are hooded and vented to the converter electrostatic precipitator.
d.	Converter electrostatic precipitator on process gas stream and fugitive
emissions from reverberatory furnace.
e.	Brass Plant
i. Fabric filter for dust generated from preparing samples
ii. Incinerators for burning insulated wire
f.	Painting and Sandblasting Shed fabric filter for dust generated from
sandblasting.
2.	Level of uncontrolled particulate emissions by source (lbs/hr or T/hr):
a. Preparation of Material
I. Fabric filter for coarse crushing
Inlet particulate level	300.7 lbs/hr
Outlet particulate level	2.6 lbs/hr
ii. Fabric filter for fine crushing
Inlet particulate level	1579.4 lbs/hr
Outlet particulate level	6.3 lbs/hr

-------
-14-
C. EMISSIONS - Continued
2. Level of uncontrolled particulate emissions by source
a. Preparation of Material - Continued
iii. Fabric filter for screening
: -Continued
Inlet particulate level
Outlet particulate level
34.3 lbs/hr
1.5 lbs/hr
b. Roasters
i. Electrostatic precipitator on process gas stream
See Note Below
ii. Fabric filter for fugitive emissions
See Note Belcw
iii. Fabric filter for dust storage bin
c. Reverberatory Furnaces
i. Electrostatic precipitator on process gas stream
See Note Belcw
ii. Fugitive smoke and dust from the matte and slag launders which are
hooded and vented to the converter electrostatic precipitator. '
d.	Converter .
Electrostatic precipitator on process gas stream and fugitive emissions
from reverberatory furnaces. The inlet level of particulates is not
known. The outlet level of particulates is 75 to 370 lbs/hr. which in-
cludes acid mist and other sulfates.
e.	Brass Plant
i. Fabric filter for dust generated from preparing samples
NOTE: b(i) and b(ii) Roaster process stream and fugitive emissions are exhausted through
the Roaster-Reverberatory stack along with c(i) Reverberatory furnaces process gas.
The individual inlet and outlet particulate levels are not known. The level of
particulate emission for the Roaster-Reverberatory stack is 333 to 544 lbs/hr. which
includes acid mist and other sulfates.
The inlet and outlet particulate levels are not known.
Refer to C.2.d. for details
Neither inlet or outlet emission levels are known.

-------
EMISSIONS - Continued
2. Level of uncontrolled particulate emissions by source (lbs/hr or T/yr): -Continued
e.	Brass Plant - Continued
ii. Incinerators for burning insulated wire
The outlet emission level is not known.
f.	Painting and Sandblasting Shed fabric filter for dust generated frcm
sandbla s ting
Neither inlet or outlet emission levels are kncwn-
3. Existing source test data employed for particulates by stack, process unit,
or control device, including:
a.	Test method
b.	Data acquired
c.	Operating process weight rate
d.	Calculations
e.	Test results
No. 1 Preparation Department Baghouse
a.	KP-50 or ASTM D2928-71
b.	See Exhibit A
c.	Not Available
d.	See Exhibit A
e.	See Exhibit A
No. 2 Preparation Department Baghouse
a.	WP-50 or ASTM D2928-71
b.	See Exhibit B
c.	Not Available
d.	See Exhibit B
e.	See Exhibit B
No. 3 Preparation Department Baghouse
a.	WP-50 or ASTM D2928-71
b.	See Exhibit C
c.	Not Available
d.	See Exhibit C
e.	See Exhibit C
Roaster-Reverberatory Stack
a.	See Exhibit D
b.	See Exhibit D
c.	See Exhibit D
d.	See Exhibit D
e.	See Exhibit D

-------
-16-
EMISSIONS - Continued
3.	Existing source test data employed for particulates by stack, process unit,
or control device, including: - Continued
a.	Test method
b.	Data acquired
c.	Operating process weight rate
d.	Calculations
e.	Test results
Converter Stack
a.	See Exhibit D
b.	See Exhibit D
c.	See Exhibit D
d.	See Exhibit D
e.	See Exhibit D
4.	Particulate size and chemical composition of uncontrolled particulate emissions,
including method of determination:
Not Available
5.	Level of uncontrolled visible erassions by source (percent opacity) and mathcd
of determination:
Not Available
6.	Extent of and reason for variance of particulate emissions with:
a.	Process design parameters
b.	Process operating parameters
c.	Raw material composition or type
d.	Product specifications or composition
e.	Production rate
f.	Season or climate
g.	Sulfur dioxide control
Variances have been due to the particulate control equipment being designed
to catch hard particulates as measured by ASTt-1 or ASME approved methods. The
use of EPA's prescribed Method 5 on a smelter gas collects sulfuric acid mist
as well as other sulfates which are counted as particulate matter.
CONTROL SYSTEMS
1. Detailed description of the particulate and sulfur dioxide emission control
systems, including:
a.	Process treated
b.	Type of fuel consorted per unit
c.	Quantity of fuel consumed per unit
d.	Method of determination of design parameters

-------
CONTROL SYSTEMS - Continued
1. Detailed description of the particulate and sulfur dioxide	: -Continued
e.	Engineering drawings or block flew diagrams
f.	Expected life of control system
g.	Plans to upgrade existing system
Preparation Department Baghouses
a.	These baghouses (Nos. 1, 2 and 3) collect dust from pick up
points at the mill and preparation department. These points
are belt conveyors and milling equipment.
b.	None
c.	None
d.	Determination of design parameters were established theoretically
in the most part. The design parameters (such as volume, chemical
content, and particulate loading of the process gas streams) were
in cases backed up by actual measurement and experience.
e.	See Drawing 17-259
f.	Indefinite
g.	None
Roaster-Reverberatory System
a.	Roaster flue gases, reverberatory flue gases and roaster calcine
loading system.
b.	Natural gas/and or No. 6 Fuel Oil are used by Roaster and Reverb
precipitators to maintain heat in the precipitators.
c.	Roaster precipitator	2.70 x 105 nm BTU per day
Reverb precipitator 2.20 x 10-> mm BTU per day
d.	Determination of design parameters were established theoretically
in the most part. The design parameters (such as volume, chemical
content, and particulate loading of the process gas streams) were
in cases backed up by actual measurement and experience.
e.	See Drawing 17-258
f.	Indefinite
g.	None
Converter System
a.	Converter off gases, gases from reverberatory fume system.
b.	Natural gas/and or No. 6 Fuel Oil
c.	1.0 x 105 nm BTU per day
d.	Determination of design parameters were established theoretical.ly
in the most part. The design parameters (such as volume, chemical
content, and particulate loading of the process gas streams) v/ere
in cases backed up by actual measurement and experience.
e.	See Drawing 17-257
f.	Indefinite
g.	None

-------
-18-
D. CONTROL SYSTEMS - Continued
1. Detailed description of the particulate and sulfur dioxide emissions control
systems, including: - Continued
Brass Plant
a.	Bucking Room
b.	None
c.	None
d.	Determination of design parameters were established theoretically
in the most part. The design parameters (such as volume, chemical
content, and particulate loading of the process gas streams) were
in cases backed up by actual measurement and experience.
e.	See Drawing 17-256
f.	Indefinite
g.	None
Sandblast Shed
a.	Sandblasting
b.	None
c.	None
d.	Determination of design parameters were established theoretically
in the most part. The design parameters (such as volume, chemical
content, and particulate loading of the process gas streams) were
in cases backed up by actual measurement and experience.
e.	See Drawing 17-256
f.	Indefinite
g.	Add larger fan to provide better particle collection
Roaster Dust Din
a.	Dust frcm dust bin to calcine car
b.	None
c.	None
d.	Determination of design parameters were established theoretically
in the most part. The design parameters (such as volume, chemical
content, and particulate loading of the process gas streams) were
in cases backed up by actual measurement and experience.
e.	See Drawing 17-260
f.	Indefinite
g.	None
2. Electrostatic Precipitators - (SEE TABLE V)
a.	Manufacturer, type, model number
b.	Manufacturer's guarantee, if any
c.	Date of installation or last modification and a detailed description
of the nature and extent of the modification
d.	Description of cleaning and maintenance practices, including frequency
and method
e.	Design and actual values for the following variables:

-------
-19-
D. OOOTRDL SYSTEMS - Continued
2.	Electrostatic Precipitators - Continued
i.	Current (arrperes)
ii.	Voltage
iii.	Flapping frequency (times/hr)
. iv.	Number of banks
v.	Number of stages
vi.	Particulate resistivity (ohr>-centimeters)
vii.	Quantity of aimionia injected (lbs/hr)
viii.	Water injection flew rate (gals/min)
ix..	Gas flow rate (SCFM)
x.	Operating temperature (°F)
xi.	Inlet particulate concentration (lbs/hr or gra.ins/SCFM)
xii.	Outlet particulate concentration (lbs/hr or grains/SCFM)
xiii.	Pressure drop (inches of water)
3.	Fabric Filters - (SEE TABLE VI)
a.	Manufacturer, type, model nuirber
b.	Manufacturer's guarantees, if any
c.	Date of installation or last modification and a detailed frequency
of the nature and extent of the modification
d.	Description of cleaning and maintenance practices, including frequency
and method
e.	Filter material
f.	Filter weave
g.	Bag replacenient frequency
h.	Forced or induced draft
i.	Design and actual values for the following variables:
2
i.	Bag area (ft )
ii.	Bag spacing (inches)
iii.	Number of bags
iv.	Gas flow rate (SCFM)
v.	Operating temperature (°F)
vi.	Inlet particulate concentration (lbs/hr or grains/SCF)
vii.	Outlet particulate concentration (lbs/hr or grains/SCF)
viii.	Pressure drop (inches of water)
4.	Scrubbers - N/A
5.	Sulfuric Acid Plants - N/A
6.	Liquid SO2 Plants - N/A
7.	Detailed description of how the particulate and sulfur dioxide emission control
systems operate:
N/A

-------
-20-
D. CONTROL SYSTEMS - Continued
8. Description of instrumentation (flow meters, continuous monitors, opacity
meters, etc.) used, including manufacturer and model number, data for typi-
cal and range of readings, and identification of location by process unit,
control system unit, or by stack
9. Description of typical types of control system malfunctions, including fre-
quency of occurrence and anticipated emission results:
1.	Detailed description of stack configuration, including process and/or control
system units e>chausted:
SEE DRAWING No. 44-54
The Roaster-Reverberatory System is exhausted through the Roaster-Reverb stack
and the Converter System is exhausted through the converter stack.
2.	Identification by stack of:
a. Heights (ft. above terrain):
N/A
N/A
E. STACKS
Roaster/Reverb Stack
Converter Stack
544.00 Ft.
556.00 Ft.
b. Elevation of discharge points (ft. above sea level):
Roaster/Reverb Stack
Converter Stack
4479.84 Ft.
4479.84 Ft.
c. Inside diamaters (ft.):
Roaster/Reverb Stack I.D. at Test Plane - 26.89 Ft.
Converter Stack I.D. at Test Plane - 25.71 Ft.
d. Exit gas temperature (°F):
Roaster/Reverb Stack
Converter Stack
325°F
327°F
e. Exit gas velocities (ft/sec):
Roaster/Reverb Stack
Converter Stack
24.1 FPS
19,0 FPS
/February 2, 1976

-------
PHELPS DODGE CORPORATION
TABLE I
TYPICAL PERCENTAGE COMPOSITION OF ORES SMELTED
NOVEMBER, 1975
DOUGLAS REDUCTION WORKS
MATERIAL
% Cu
% SiO^
% AI2O3
% Fe
% CaO
% S
% MgO
% Pb
% Zn
Copper Queen Concts.
7.30
18.5
5.6
28.2
1.4
33.3
0.6
0.12
1.00
Copper Queen Ppts.
81.31
1.8
1.7
3.0
0.2
—
0.2
0.10
0.08
Tyrone Concts.
18.77
6.5
2.1
31.2
0.2
40.5
0.1
0.04
0.33
Morenci Foul Slag
11.26
23.3
3.2
38.8
3.0
10.1
0.4
• 0.02
0.61
Cyprus Pima Concts.
27.15
7.2
1.7
27.6
0.8
32.1
0.7
0.20
1.45
Cyprus Bruce Concts.
24.42
1.7
0.3
26.5
0.4
32.4
0.6
3.04
8.24
Cyprus Bagdad Concts.
32.87
10.2
2.4
23.5
0.4
29.9
0.3
0.03
0.10 "
Scrap Brass
45.81
—
—
28.9
—
—
—
—
— ¦
El Paso Slags
54.14
—
5.2
19.2
7.8
—
—
—
— .

-------
PHELPS DODGE 'CORPQRAXICtf.
TABLE II
TYPICAL RANGE OF PERCENTAGE COMPOSITION OF ORES SHEWED
YEAR 1975
DOUGLAS REDUCTION WORKS
MATERIAL
% Cu
% Sip2
% AI2O3
% Fe
% CaO.
% S
% MoO
% Pb
% ?n
Sulfide Ore
5.31- 7.90
20.3-29.0
4.2- 7.0
25.4-29.4
1.5-3.4
24.2-30.6
1.4-4.0
0.05-0.30
0.23-0.79
Oxide Ore
4.47-10.32
10.7-21.2
6.2-15.2
20.3-27.6
1.5-5.1
0.5-29.4
1.8-4.0
0.11-0.30
0.28-1.58
Copper Queen Concts.
4.41-11.99
5.6-10.5
2.2- 5.6
28.2-34.6
. 0.5-1.4
33.3-48.9
0.5-0.7
0.12-0.31
1.00-1.62
Copper Oueen Ppts.
76.33-82.43
1.4- 2.8
1.3- 3.0
2.7- 4.8
0.2-0.5
	
0.2-0.3
0.06-0.13
0.07-0.09
Tyrone Concts.
16.90-25.07
4.7- 6.5
1.4- 2.1
28.1-32.1
0.2-0.3
37.8-42.5
' 0.1-0.3
0.03-0.06
0.32-0.86
Morenci Slag
10.90-11.69
22.6-24.0
2.9- 3.2
38.6-39.2
2.5-3.0
8.1-10.4
0.4-0.4
0.02-0.06
0.61
Cyprus Pirra Concts.
21.37-27.22
5.6- 9.5
1.1- 1.8
25.2-30.3
0.7-1.7
31.8-36.1
0.3-1.1
0.13-0.32
0.58-4.30
Cyprus Bruce Concts.
23.34-25.62
1.6- 2.6
0.3- 0.5
25.0-26.7
0.3-0.5
32.3-33.2
0.1-1.0
2.36-5.00
7.80-9.58
Cyprus Bagdad Ooncts.
28.00-32.B7
5.5-10.2
1.2- 2.4
23.5-27.1
0.2-0.4
29.9-33.5
0.1-0.3
0.03-0.12
0.10-0.33
Scrap Brass
33.05-62.94
	
	
14.2-40.3
	
	
	
	
	
El Paso Slag
24.62-60.43
4.5-49-9
1.0-13.8
1.7-36.7
1.9-8.7
	
	
	
	
Laurel Hill Slag
32.12-60.00
12.4-27.8
0.8-10.1
4.0-12.4
0.6-7.6
	
	
	
	

-------
PHELPS DODGE CORPORATION
TABLE III
TYPICAL PERCENT COMPOSITION OF FLUX
NOVEMBER, 1975
DOUGLAS REDUCTION WDRKS
MATERIAL
% Si02
% AI2O3
% Fe
% CaO
% MgO
Silica
88.9
4.0
1.6
0.9
0.3
Limerock
3.5
1.7
0.4
52.4
0.6
TABLE IV
TYPICAL RANGE OF PERCENTAGE COMPOSITION OF FLUX
YEAR 1975
MATERIAL
% Si02
% AI2O3
% Fe
% CaO
% MgO
Silica
88.8 - 91.2
3.0 - 4.5
1.4 - 2.0
0.3 - 1.9
0.2 - 0.4
Limerock
2.9 - 4.4
1.1 - 1.8
0.4 - 0.5
51.3 - 52.4
0.5 - 0.9

-------
TABU
D. CCNTRQL SYSTEMS - Continued
2. Electrostatic Precipitators
ELECTROSTATIC PRECIPITATORS
ROASTER
REVERB
CONVMKTKR
a. Manufacturer, type
and model number
Research-Cottrell
No Type or Model Number
Research-Cottrell
No Type or Model Number
Re search-Cottrel1
No Type or Model Number
b. Manufacturer's guarantee/
if any
99.6% (Total Dust)
When operated at specified
conditions and with an inlet
dust loading of 2.72 grains
per ACF. With an inlet dust
loading of 2.72 grains per
ACF and an outlet concentra-
tion of 0.010 grains per ACF
shall constitute fulfillment
of the guarantee.
99.0% (Total Dust)
When operated at specified
conditions and with an inlet
dust loading of 1.0 grains per
ACF. With an inlet dust load-
ing of 1.0 grains per ACF and
an outlet concentration of
0.010 grains/ACF shall consti-
tute fulfillment of the guar-
antee.
96.5% (Total Dust)
At concentration below 0.5
grains per ACF an outlet con-
centration of 0.020 grains
per ACF @ 650°F shall consti-
tute fulfillment of the guar-
antee.
c. Date of installation or
last modification and a
detailed description of
the nature of and extent
of modification
November, 1975
Insulator housing vent system
with 1600 CFM § 10" SP fan and
40 KW blast heater each of 7
units. These are to eliminate
the effects of dust accumula-
tion and condensation on sup-
port and wall bushings.
November, 1975
Same As Roaster
Started February, 1975, still
in progress.
Installing tappered plates and
strap brace to prevent collect-
ing plate cracks adjacent to
the anvil beam. These will be
installed on all 360 collect-
ing plates.
d. Description of cleaning
and maintenance practices
including frequency and
method
Cleaning Method-Short Impact-
ing Air Vibrator
Frequency Plate: 5 minutes
High Tension Frame: 3 minutes
Maintenance-Daily checking for
equipment malfunctions
Same As Roaster
Cleaning Method-Magnetic Im-
pulse, Gravity Impact, Sin-
gle Controlled Blow
Frequency Plate: 4 minutes
High Tension Frane: 1.75 min.

-------
TABLE CONTINUED
D. CONTROL SYSTEMS - Continued
2. Electrostatic Precipitators - Continued
ELECTROSTATIC PRECIPITATORS
ROASTER
Design
e. Design and actual values for
the following variables:
i.	Current (amperes)
ii.	Voltage
iii.	Rapping frequency (times/hr)
iv.	Number of banks
v.	Number of stages
vi. Particulate resistivity
(ohm-centimeters)
vii. Quantity of aimionia injected
(lbs/hr)
viii. Water injection flow rate
(gals/min)
ix. Gas flew rate (SCFM)
x. Operating terrperature (°F)
xi. Inlet particulate concentration
(lbs/hr or grains/SCFM)
xii. Outlet particulate concentration
(lbs/hr or grains/SCFM)
xiii. Pressure drop (inches of water)
1000
50,000 RMS
Variable
4
4
1.95 x 10
None
10
None
625,000 ACFM
@ 500°F
450 to 650
2.72 gr/ACF
0.01 gr/ACF
0.5" W.G. at
conditions
Actual.
1000
NA
See "d" above
4
4
NA
None
None
NA
500
NA
NA
Less than
0.5" W.G.
when unit
full open
REVERB
-Rg-Sign.
1000
50,000 RMS
Variable
3
4
1Q
1.37 to 1.8x10
None
None
500,000 ACFM
0 450OF
400 to 500
1.0 gr/ACF
0.01 gr/ACF
0.5" W.G. at
conditions
JkrtuaL
1000
NA
See "d" above
3
4
NA
None
None
NA
450
NA
NA
Less than
G.5" W.G.
when unit
full open
CONVERTER
Design
1500/split
50,000 RMS
Variable
4
3
NA
None
None
750,000 ACFM
@ 650°F
650
0.5 to 1.5gr/
ACF
0.2gr/cu.ft
650°F
MA
J\ct_uaL
1500/split
NA
See "d "above
4
3
NA
None
None
331,000 DSOT'
NA
NA
r^ss than
0.5" W.G.
when unit
full open

-------
TABLE VI
D. CONTROL SYSTEMS - Continued
3.	Fabric Filters

Nos. 1 fi 2
NO. 3
NO. 4
No. 5
Brass Plant
Sandblast Sh-d
a. Manufacturer
Type
Model Number
Research-Cot tirel 1
Shake Clean
0A29S1440
Research-Cottrell
Shake Clean
029S1352M148
Research-Cottre11
Shake Clean
2-49Z95720
Research-Cottrell
Flex-Clean
84EV-36 ^.rrgrrrt: 11
Research-Cottrell
L'niclean
114UK98
Hennesey Equip.
b. Manufacturer's guarantee,
if any

NA
NA
NA
NA
NA
c. Date of installation or
last modification and a
detailed description of
the nature and extent of
the modification
rJoverci>er, 1971 (1)
December, 1971 (2)
No Modifications
March, 1974
No Modifications
April, 1975
No Modifications
April, 1975
No Modifications
1973
No Modifications
1973
No Modifications
d. Description of cleaning
and maintenance practices,
including frequency and
method
Cleaning-Automatic
Shaking - daily in-
spections when op-
erating - repairs
as required.
Cleaning-Shaking
when unit is down
daily inspection-
repairs as re-
quired .
Same as Nos. 1&2
Pulse Jet Cleaning
daily inspections-
no repairs to date
Cleaning-Shaking
5 minutes at end
of: shift - no re-
pairs to date
Open bags at bot-
tom - no repairs
to date
e. Filter material
Cotton
Cotton Sateen
Polyester
Siliconized Dacron
Cotton
Cotton
f. Filter weave
JCA
NA
Satin
MA
NA
riA
g. Bag replacement frequency
As Required
As Required
Ar. Acquired
"tone replaced to
date
"one replaced to
date
None replaoed to
data
h. Forced or induced draft
Induced
'
Induced
Induced
Induced
Forced
Forced

-------
TABLE VI - CONTINUED
D. C3.TSOL SYS3S - CEntiiued
3. r^jrle Filters

No.
1
No.
2
NO.
3
No.
4
KO
5
Brass Plant
F.v£"«.st 5h«!


At«»1
D^v.cn
Ar*v.*i
Desion |
*ctuaj.
ocsicn
ACCUM
DGSICTI
rtCtuai
fos\cn



1. Design ani actual values
for t>ic follcu-ing vari-
ablcs:














i. Sag area (5t.J)
20664
22664
20664
20664
17906 -
17906
2C664
20664
360 '
360
1240
1240
19.6
19.6
11. Bog spacing (inches)
6.5*
6.5"
6.5" '
6.5"
6.5"
6.5"
6.5"
6.5"
6.5"
6.5"
6.5"
6.5"
2'1S-
:*1S"
ill. rT-jrbcr of bags
1440
1440
1440
1440
1248
1248
1440
1440
36
36
93
98
5
5
Iv. Co3 fla* rate (SOO
<5,000 ACFM
37,000 DSCTM
45,000 KCFK
37,000 CGOW
40,000 AON
16,000 DGCFK
40,000 SCFM
NA
2000 ACFtt
ta

^ '
ra
NA
v. Operating tja
!A
XA

viii. Pressure drop (ine!ies
of water)
3.5 to 5.0
6-8" W.C.
3.5 to 5.0
6-8" W.G.
JCV
3-5" W.G.
NA
17"
NA
MA

UA
KA
JvV

-------
KEV. Z-VJC,
PUELF5 PODG£ CORPORATION
POUGLNS KEDUCT\ON
DQ11GL N«b; MUIQNk
gA.OCK rvjpw DVKGKKVA
SL/kG TO DUMP
AIR
"S3-
HA'iT^K CCTFTZX
gp?rtt WOP&S
t^HOT CO??

KHOOE
KOA<=>TtS SEPS
OO^KTtK &SDS
^SVpR^KfcTTOKX fUK^NCpS
s
.ElECTKDSlKnC
FKEC\PntaORS
SLECTnO^TMTVC
plC^C|p\TM-O^S

-------
17 - 1J7(*
CLBM4 MV; T°
T&7LK59 PLkMT € SKHQ	SH&P
H-Z9&

-------
17-2.57
FROM
GONVEKTET^
fWc 'au^.u^s
Ct&ScS	\^E.N'c^E>.
^=\\*Y=j-
ELEC-nsO^TAO_\C
PKE-c\pil k*xO^
CO^M g.KT^K St STc>A
.n-297

-------
17 - W8
p\CVUiP
WOTFE-P.
N/1
fw
' TsO^S 13.~ \
REVER5ER&T0Sw^T.\-v\c .
?^C\P\TtvTCP^
ELECT ROSTOT\C
PRSc\?\TiNTO^
ftOAvST?-K ^VB.g)fcfsNTO^ S^ST^-M
t'J

-------
17-2.^
i
TO
•KWOOTW5."K6
POINT
' ?\^r^KKT\OH D^fNKTV\BUT ^KGWOW^BS
friccy. puo\'j p\k6ftNM
i- to-T?
17 -

-------
17 - ZG O
61M N1EMT Cu* 5 E?^UOUST^
PU5T
sm
CMClKe
KCX^T^-K D\AST E>vVA
17-260

-------
DRAWN BY 1. HL
iCKED
¦ROVED
Phelps Dodge Corporation
Copper Queen Branch Smelter Div.
DOUGLAS, ARIZONA
SHEET NO. A4 - 5-A-
Concrete Stacks
ACCT. NO.
— \LE ~
DATE \-3l-'V5
/ ' - 0/o>c;ova/js;¦)^"/c? r/ - c; s. /¦/. >¦} -2 0 -50.
Shzlt.
f- S/ZA--t'fiWtS £r/c*\>2$.Ji- \\, p ,,
5 $	' C £*?#£:/.•/,?£?} - T^7H 		
uu~;>n~s£>'- 4% WW '.'0-rfc
l""$W7'-SS'-ie.tz Vi!-5!i!i:
.¦f 	
c> i
cress yzs-'r/rsj- s?/i o;v ??£'<'¦ c* /-w* r .cv ,r ; v: *"
^77=	- /2f-3s'-/s:si} "h/
^Zl'-Z'^O.D.ShcJt 			
j?Lo'J.l.D. 	 ....
!u/<5:"
'.^Invcrtcr Fv.ue
' Iib rlE!/,

" 5hen ~
jiiLo: oui.L.^
El- f(> :o
3?l> 8'3S*
\4r-7"I.D.S},iiiA
[fr5':'/0-D_._ ,
	iS3:G:.0,.D^
-El. 15-6 "
Roaster-i?evet?^ Stack
SuQS'DE'vce Muot Sft At 4'J.'fS'. 5"ce 2 2/-M/
GONViCPTER STACK

-------
EXHIBIT A
NO. 1 PREPARATION DEPT. BAGHOUSE
PLUG '/E'ZT C.fi LCI-A /-iy^A/	pc, i/z
T£±r a.-. ju-K J2±L
ft ft r ft ;	l-lcT <£^Ao-/C
A~P ,J0 "-'#>.0 Vc^.o - f-hl Ra t {'¦?* /*'//& Cp ¦
IV ^/O • & V\Q
£ ?.-fr X i o' ^
f-hl
RU
,-J fk
G
r ? r.
tfj He,
'//c>

"A5
c/^"
. % Scs

Y-£<->
-/a1
-T7-
A,, -'.inrj ~rj^
Vm	FT3 7^7^ 	•/=" ¦ %	7? ^7? ^ c/
/*-
•/ SO,. 	 % Cd\	 'j. CL	^		
n>i& - , 17,7% ¦
(. t<, sro = 'I*** Va ,£7//^ r ^-/-x	* iifl/ ?/Q =	-7U1Q Ft 3
2d.	oi^'S 0^7 A
DfM^.s r = Psnrfe^RH/^.K ^ A2I0: * ^	c
£>t>i y, Met f r(/'"i>TT~c j//^.vc)/'-1T- - f oc. k 	/		 r	. > ' °/
3.	•• .cm* £-- :CV7V (V--" '	- c'^lLi(	+	V > rr3
Vi; vro ~ lv-j s,-t "•" i'U'fc^i)svi =		 + 		 -	_ ~7 6 ¦ 7 V	Fr "
6' Cova t-)c ii~ = 'C'C. t/sKc^^s.-z/ti >r-j - foo a		/ = .	£>	"/
(. I< r ((00 - fiC^o. //c r)//cL- ~ (j Cci -		1
7. I^-Z /f'y = Z/'/oto ('<:¦''¦¦- 0 i^,\r)/,oc. - (too-	, I '6 )/f oc '- 7
9, /?d « I- S^o- I-	=	J47S
to.
U c, 0 / rr^- lV/\^ i>ro - O. CJ/5"4 x &'J/U.C> / If,, (a '	>'?^ ^ ay
^Dit 'F
'/. Cs5 /.fo-*C; - i. si-szA'.*"/	 «	i%y.iiG
12, Md - o.6^ (7. soz) h c. 44 (c/( co2) -t 6. -;2(v: 6.4) + o. ?.e(k'. + co)
•= o.L^*	4-o,4-i	+D.^d + if'- &.c. =	x	+ /&*_

-------
jounce rz-'s" c/Ilcu	vs.
EXHIBIT A
P
-------
T-64
I? (e-M Jt-JT - Tj"
D A V
SHEET
Source
Location
Testmn
Dat£
K roctor
. * /Sf.
J.j$rk£_ 3~n/jCA.
_\//Vn_c E	 _
_/ XzTi^JJuL-
Z-XJZ-
Silica Gel Tare 	/jQjLJ^SAid.,
RC-l\RKS:
•130
Start Time
Stoo Tire
Filter Type(s) C c/> A sf C -c.	Pi tot #
Filter Tare (s)	Pitot Cp
Filter Wt. (s) *£f - /^V/aV- 12Nozzle Die.
Cli-I if	9 $9 /		Orifice S/Dia.
DTM Corr. (Start)	._J? ?cLjlz_22'^L	Orifice Cp
(Finish)	Silica Gel Wfc.
Condensate	_?.4L2£L	
Pb Start <2 &. //
JO: t-f 5" Pb Stop
in. Hg.
in. Kg.
Ar.'bient
Ambient _SI~L.
°F Start
[p? Srop

^2_£d_
.
R. H. %
R. II. %

	 Start
¦ ^ X Stcu
rVJTX)
4 P
(Pitot)
In H20
Ps (Duct)
In H2O Vac
f-i"
TS
(Duct)°F
Tin
Inlet °F
Ira
Outlet °F
Traverse
Feint Ko
In H2O
In Hcj.
Tin>2
3J~ ; j/V
/op ;j£ 7JO
s-.rq
£^zzrz.5
a.rx
f<.tO
XtO


i.ot,
i.2._ gz.L/.n
<-/S-z3LL.L
I Sicld >*}'_- 	6..;7
-4/5; 7s j> • c? i . g'J /• & & <	i
I
13 .5'bA	X 5"-3_i	? 7A
12-3 !	V^-3 ! v3"7. 7
6~~J?o
L3.z2jLj
\>L
jw-Qb
ss-^f
l/6- n

'/o.)


J^o.:S:JA?A—2.
500 :
J0L£..£
T+ ^0 - u of / a1 •
in fb&Ocer

k !p—ap
'z> H-.

-------
EXHIBIT A
FL Ud 77T f>T Cft LC (¦ / h\T'c ^	PCr !/l
Tmr A/PC-U'SI-7J50;j)__ /7^?. 7r -nM£ 4:7o tQ /onr__
tit-) T~f\ '¦
f\ p i.'i') /V//L0 Vc?t.o 	17	 A>l Prf	/VZ4- Op '8!
W lolV'l Mr, G.u.GVi - - c, ¦ 7T MlZL";^ A/ /-PA Pt7-
£• *]>¦« 6 X it-'c. I~r,»c. ^ • l^- .tJ i/cr Tn ^ f ' A5 "$ §- /x/i i¦ i
V/m I'-0** ft3 TZocTrt	c/^ ^ foT- -y? ^	%
*/s<\	%06^	 •/. CL	^^a; 	 PS*T .23"?g-
/. I'/, s,-* : /'X 7/ V/.; Tn/i% ' -VTrrrt ("-of * Ik^i f" =		/-'r 3
2rt. /^-m Urr -3^3 !> r = f%i>r(Tj.z) fi%K ~ ^T^C> < *Z(r /Kj./t -
D7>) y, /\,c,f. ,- -(/-? \t(~<, )/Pft.vl)l'2r- " (OZ.K 	._ /	r	/	*/d
3. v'v (<"-*) s 1 ¦> ¦ . c 4 7 V li -- . C* 7V (V< v.-i ¦' S.;_ C'/.\ • . C H 7 4 (	+	)= g rr2
4:	Vs ^>ro ~ Iv-is ,-& ^ iu'('<--'j)s/'o -	+ 		 '	.$/¦ (* ^	r7r *
*>	/-(Cisr - 'oo ^-fc^-i)sro//i r /6& x	 /	= C>	/{
£.	K " (/C'O-/(€-/.•£>. z/c/s r^//co - {/Cf' -	)//("^tl ~	•	^	
7.	<^y = V<'i <,to(/c°- O'/i'-/, ,^c,^r)/ioc. - q!• C¦ \ (ioo - .%(q )//oo =	2		ft'
6r fi'z/.c " ^ ^ •- <o 7-(o
9, ^ - /- = i-	=
'C\ Cs u C. 0/ ri'4- IV/W««>' " C-. 0/5-4-X So7v.'f /J,U1,	-	. ¦ T?/
soscf
//. Cs = /. 4-32*/o~4es r /. <\3Z'-'SUt	 =
SlML
OICF
12. Wd = O. f °/« SOa)+0.44 (°/CD2)-f 6vv'2(7;o.z) + ^.ZpCa^co)
-zO.kl*	+0,4-4-*,	+ 0.32*	 *-0.2£*	 -
3.	e*Md + //< -		 *	+ 18* . -

-------
£OOHC£ -rZ-'s~ CriLCU L/l-r/c.-t-'l
EXHIBIT A
PO 7.(2.
TG^T /«'c.
eft 7 k = £s. q R * _JL- XJJ^JLJ^L ' - _£
t A/s ^	I - X_1LZ£
6-. £- r r
/s;	-Mx _. s
A*GK %,"% Wui* < i.Gfj* 1 » T/' < ?C7£
/£ I =	=	_/	-	JiL2--
/7, ~L - 6/3 '77 x /c- * tf, ^ /4s /I/n
= 6. '5 7 7 x /£ ^ if;?'_	x	* _iJL2*L /jjZl^-l'JlJlZ-
CSci-if
~ '	y	=	* '.^.J
yv^';'
/£ /W/* * ^ Cs
/£ ^cr - C. ^	- 6. 0$, * JrO±_* I-ft- -	6.'5 KcFA?

-------
T-64
Scarce
Location
Testaan
Data
K Factor
Silica Gel Tare
(g.C^-hfts'T -7^5"
JtaaJJ.	J~(0/c^-
P/ ,'r a <1- Q/r/, C./S*.	
/a- /jj- 7 5	
		
DAT-- SHE E T
Cpjr./Z ? g	' C.
so/So f&S. ?c,9(t>
Filter Type(s)
Filter Tare(s)
Filter Wt. (s)
DT!-! S
DTM Corr. (Start) 		j. OOO
(Finish)	7
Condajisate		
U2i±=P:Q3jh2.
--Z_._
Fitot #
Pitct Cp
1L
'M-AWf Nozzle Dia.
O.rifica if /Dia.
Orifice Cp
Silica Gel Wt.
VI

.zso
RS^KS:
Start'Time
Stoo Ti.Te
iq:TjT
Fd Start JC-. f!
pb Stop	f
in.
in.
Hg.
Hg.
Arrbient
Ambient
<32
°F Start
"Op Stop
R.
R.
H.
K.
n
Start
_!
/ • SO-.
3 .70
3 >52
3 ~: P 3
7 	L.-1.3J-
? if. 3/Jf:	/, ,?3
9 "(9." 	Z- £<2
A 3'/-
7-3?
13.-3 i.
zy c
^4.33 !.

£.2:i. '
W/ __L
'



533.5"
I a.s(o
¥Q:n_l
30._0 0 h

-------
.PL UG > 5T Cf\ LC L:I A
EXHIBIT A
P& l/Z
Tt£±T Ar. !?(>- ^lC>' 75Pi\-r- n-r?-?r TiMc	'7"?° Miin.
: °^le t J't h-"?1 *"e
&P /• 7- ^ .w//L0 V'coao ~~ ///,	76.1c>_.-*.'Mg- C> ¦ 7-7
iv' ^^ — * g /i	?r^ //,• /Vc; i/T'-- P^*•
£• 3 Vo (70-/1 ,/J ifO Ttf	5 0 ?> ' A' f\,. 3.'^'\ j F\
M* A2-.1I	F-3	^ W 7? ^ _2±—..%
*/scy		 /. ct 		'/Co	_ -/a! 	 Ps„r -?£77
	 _ /7v3"
/. I'/., sro - /'7. 7/ V/., fti /TXj - ^7/ < iZJ?_ * i:^-.l2./ ^ s =
Fr3
Zrt.	t-U-r 6^3
C> T/-; /'I ' s> r = ^¦i' •• .O-JTf l{ --	So. <£?/.}- . c-47 H (	+	
4:	Vs vro •" I'/-/ s re, t ilv'Cc.--0)^ro "	+ 		 -
5	^ Cov.i hour -  — 		~
7-	K'-f tr~'y " V/,/ .^ro (ii-'t' - b'P? l/t~)/rOi--	(lOO - <77	}/t OO -
8.	&/.c -- (-.,o-Vn m)/\is	=
y.	&yi ~ I ~~ - I — 	 ~
/c\ C;, = c. o/ IV/V/^ />*>' = c. 0/5-4 x 4-M- /jLliIil—"
//. 0'$= 1. 4-32*/o~*Cs? /.43ZA'°"'x	 «
->'-
rr
7g, 76 Fr-
^ v/
f
7£\ rr
,(S7 6

i- r ¦
?>Jlll±Lo,y
1.19/10
~0>
-y -
^OSCr
^2. A1, = o. 6^/ f°/SO^)+C.44 (e/{ Co2) 1 6-.^-2(7;C'.z) + C.2f C^ + co)
"= O.L.U*	+0,4-'?-^.
/3. Ms --	^ ta =	
+ D.32*
+ j$x_
¦*-0.2t*
rr ¦ (21,1 i 1
-------
fOOfici: VZ'S ~ C/lLCU L/J-r't /.'s.
EXHIBIT A
pCt ?.(2
Tf>7" /r'C,	6 - 7-£
0\1 r I t>'tjlr D" i C-
/4. 1%= gS, 4-S
/7V A P = 6'5". _.-7 ^
t'U /I
!tl5- x	_ £,7,3 r^s
>7 . *JS-.2H
g?.r3x f-M « 76. to. .	
A/ 0^ Xj7T 3.a'liio'^r, _y.uu? * I- * c x %?¦<>¦?
/ 1^/ ^ V/S, /<; /%
"W
_	r»-
r'js
/<& I - ^-/v, =
./.
. /./#
/•7, ^ = b/sm * to * &d /I /n
s 6/3? 7
-------
1-64
Source
Location
Testrran
Da tQ.
K Factor
Silica Gel
REMARKS:

- ff-t-O-L
_ojsr/^TL_
Tare
r.AmPn / 7-A.m?P-*
	L2^iJL2=2£	
/. 9 9
Start Tine
Stoo tLte
KQf- u J f £
A/3
' -


-------
EXHIRIT B
NO. 2 PREPARATION DEPT. BAGHOUSE
FL U£ Tt- r CP, LC U L Pi ~r< o 'l/	PC* I/Z
TiS^r As*f~HxT-->r p/,-vr * f'*hr T/Mc	o **:'<>
^	<* O ^Ci-fcO 'J/a	^ CP 'f9
W	V\C, S.l-.Gll ¦ Ci Pi, >*¦ 11	f\c tl.S'f P
G 3.(.Kip* Fitz -JAilL !/o % S2U	A., y.'i;y.io~'i
V/,; 6 7. 3 3	p-3 7^7^ 7V -,r "/"s	"7? __£2	 A
*/ scy •	% Cc^	 /. oi	/ ^			 "/ *'». 	 r
r7-
	7.
: /

i. t/js ro - 7/ V/.,	-- n.H X	* ^t.19 / vTJ»/ =		f.L?/	rr 3
2rt.	U^7 .-Siv6 oat A
D/» /s^-'Sr =	~S2-.Z2— * —12..../ 1C 'T
2 3; f ("ic C	it /* /(' Ai/"
D~n "yC /Mc.s. /	..= / oc a.	/		 r	^	X
3. V\" (c^.i)<;,.5 " . C •17'/ li --, C V 7 V (V--o - S,;_ . c- H 7 H (		 -*-	^ = -° -	rr?
^ Vs; ">to " I'A'i 5 ;o t	,	 ¦*.. ..?... 	 				si.m	fr '
6'	A/c.sr - /oc.y^.-ojsto/'/* >f-j-./c. <./•)/,«6 ¦= ('oo - _>_)//u.t; = • ^.?.y	fr
8,	- CKs	s/-o = ( st.v - n.xs)/ ci.v _ =	.-go7
9,	Hd - /- 8^0 z 1 -	 --	.113
/c.\ c,, = C, 0/ :74- IV/V/^ ar.>' " O. *0 3/ f
/o*CF '
{2,	~ C. (¦ 4 ( % SOz) + Or 4 4 ( '/{ COz ) -T &. :;2 (% C.z ) + 0. 2lr C o)
? O, i>1 <	+ O. 4-4-K	*fr. 32*	*-6. 2t- < t 9- 1 S J 8. ?*/
^3. A"s -	^ if'- =		 ^	+ /6,Jf		 =	»>.- h

-------
£C-QRCC 7/-'sr C/)LCUi-/-Jr/fA's
EXHIBIT B
PCr ?./2
T/rsr //p. V-//2T- is
- 8S. 4-8 Cp ir?, Ap - ^r>
'1i
I K
t$\ VM- \Z/y?__ Tc /% _	X		 _ SLJd. Fp<-
Arf 0 K %¦, % iMiXia'4*.	* " ' * -CiV <
/£ J '=	=	/_
/. f> ? V
'r /o'
/7' ?* " 6. "3 '77 x n, * tfj irs A S fl/l\
¦ - (o. -377 x to	*_£±1L x //•¦fv K >g-77 /Jl2L~"±111
OScFH
/B. Ptfft ~ ^ Cj - -i. in*'Ql * . 7./.a*'o''f ~	" J ItIlL. i-p/ _
19. °hr\~r ~ C.Ctr-^A, - C.ek<*	X /'•¦>'*' =	jy.fe . Kc.c/-?

-------
.EXHIBIT. B

1 , ! 1 I j
1 \nAT/-l <>nunr I 1

£(\f>e ..!	 .

T*->+ *
SH-\tex-\?'5 1 1 " ! I

I

-» 	
- oofciT
.1 A)l\?.b i ^Lr^ T^-'lT) * i/ S
P/7t>-r
*• u

/-- C f\ ~fu*j
//• ?k FnTi\z •7%C&(>\ /~5 %¦ *•'/¦?¦'S
f> to r
Cp i .79 o

~resr»^	I r-.^-rk' 	6 ezn	#1,Jjz.
(\ ~T£~ 	\£— /%\-75 j £,7/.;!-' 	j	! 9 i	'a&F,cf_\ f/ajA	[_/y
Mix,?#-x
¦ |\ t ft'. ifli\ ' ' fc " w'
///.•V,' ??, ! -)\-.r:< . (- JA-
J V < ~i J-* J^K \Jlr. Zj
*)r.4 -r/r
' est '¦ Gcl '/Jr
I
	 . -


77 >/
hrf?
I Otn
&P |
. ~n ¦
/a/

ft
p
/ I'VM ^
l/'C
1 /
fZ^ b\j
¦- —
fi>M 7*

\ V*
i
[f.'J'tfi
f Of-f>'cl
VKo
(i* if ^
'-'hi
/
( 0 1' d' ^

/ 2(-JV


:/&
! #'4
J.C)0
/r&^j
70
7y
7?-
' 5~.C,

]f 7z -rri'i
	


l/z\2
¦ .9 5?
/.l,o
7o
71
73-
5~ 1 0?
Z.&\
°"-5 'frj.-f.
		
f
wo
\:?4. C.
' , 35
/
7_1_
S. L
P,?? &H % 2? sU
IDS
Is#< *
r
f.dd

*74*
73
5"- 6>
i •'. cu


' '.30




1 ¦







1 •



t
!

•


—
S/c!q. b
60',z6
b*f.J5
¦'"' r ^ £
/ SST
7&
7 3j 73
5.



/>
'.65
39.8
/.o6
/. &3
72.
yq 7H
St
j. 9



4
'JO
1^.5
/.OS
/.te
72-
?H- 7<1 ¦
Si b
3.0


... —
3
!/Z
!s"A/
/.oo
/.13
79-
?i ! 7H
5, 6
3. *1


«?
'.£<>
k*. 3
.92
/.so
77-
7&
IS
s:l
S.H


/
US
)Ai-A-
! .£7.33
Jo
/./'I
7 £-
7(*

JT.6
o> /y
	

_ —

,'3 0

















—	



i

i. nn
71

73
& u




. ¦


S3t &
?T3> t A
PS- 7/






I
t
/.£)
¦>£/








- —


1
1
!


















1


1
1

|
1
1

1


l i ! i I
•
1
1


i
i








1



1 •




•



/S /*}-.J L -? ,'fr ^ /
> ' 1

1



5
j
To
3 ' '
i ! ! 1 i



1

; ) . . 1 l



!
1
i 1 ! i


-------
EXHIBIT D
f-L (-¦'L- / L: *5 T C. /I L C i: L /I ~7~'4/
PO i/Z
72fir A:-. f*-H20-K py.trc-	T/Mc 01^ to OT'0
D'flM ••	„
A p 511 '*'^0 ^cc-NO 	HO/jL. Nl Pni _Mj2£_s»'Op
0.7?
IV q°-'' ^c.
£.	J.t-y to 1 i,t-c
Vm t-g /¦ r 3
'/ 		%
S. u Xt ;"L vfa O, Pi	3 f. to /Vc,	As	"¦H P"Z
.+ /; . t$ ,,v .Vg- 7^	.S".?3 4/V	J.'/'V/o f71
7c 73 ^ 7?	£/J	7-3	%
_ f.oL ' % Co */ a'j. 		Ps„r m g 3
I. l£, sro = '*7.7/	r '7.7/ *	* j£-/7 / _££3_ =
¦s~tf.ii ft
/
Zrt.	Urr C''»-:;? Mr**
D/~>/f-;--'*» r - fsfl R M^Z/V;,}/;
2 ^ f hlv .i\	C ^ ^A ji I? yi'Al/°	.
0 i f'l (^'iOiS. r	1 c \/fft.';	- / C/C A	_ /
p^./f -
o. m °/.
¦V - rr
3.	• .o-t7To D '/-? /. ^c,<.r)/,oc- - ff-QT (loo - . !>-._)//PC -	S'f.lCj PT
8.	B,ilC r- (I''- --,o -V^ ^i)/\l3 sro = (	" rH.ri)/ S'/.tr =
9,	Bd -	t -	 --
A.\	C>~ C.O! W/Vn t.ai- ~ C.0/5-4* St^ / S't-i'i =
//.	C$ = Z. 432X7 /. 4S -2x^""x__£2±L »
/z.	Md ~ C.G4 (%so2)+c.m(%Coz)ic.v2(%o.1.)-i-o.ze(riz + co)
.00 7
.993
+ 0, *

¦=  =
&> OILS &y
SDicf
3,>u*'o Lty
Soicr-
2 8. f*/
ni(.

-------
EXHIBIT B
£OOKCG TZ-'sr C/)LCUL/-)r/tx'i	PCt 7.12.
Tes r /VP. S'/-t/io-7r
¦ 3.^1 r <>',
is\ - Mm _ Vc f% = JLbig. * . ^	_ g*.  S' i~H
/& PMti ' -tOC V. i.lUtto'0 =	" Q.O'/ t.p;
rA s	~~	/>/*
/£	- C:. <^6 tT. /4c - 6. c-fc a	* i/.j't/ =	jc.y kcP"/-;
#/ = f/3^>' - W«,.. -	99.4%
«?<>. %V, I IJW.r J			
/• \ /	('/¦?) *7°
» (/./V? *70" - /-int to'Jtoo /kto"	~1		—

-------
'DA -T/'l <> t/tTE z:
	I #!/£_.
EXIIIBI
' M-.hfi-VS	l" "I"'	|	LI	 I i" '	* ¦¦OV'%
¦ jyf/i-'/s't 1 Fiitztf	T-ierC\ l)fej		1/^.rorj •/	
> -fuJ ! # g/o )ci/x.g[	F, t Tc'\.'- J o PS# 1 ^SC^f To r Cp	j ¦ 7	|	
~TfSrv<„J ! I f.L.r.X?	U>T(}) 8t\r/(*3~ i	/l_Jllijfi ¦¦'¦' ~ T1-9 /	tr/ 1	
oA7£	J I	L.Z)7/;? !J	|	'g j _ 		bfrF'cfj^/bjA	/$9
	_f<	i ^ 	PZH/ 1	Cp . !
Si/tCs <0 I -j\- n-r
I	/
£«/»»-»*•,••••'		
/ b»vip
sUy(
s/*n
"J^<0 i'.vJ i0 A'
L/2 J-tjL. &¦'? A.
P tlx ,¦'/!.
dfH,.sL
¦o'9S~S~
•571
Oo
j.; i ft i
' i
/a fo
Co. 8
/od. 7
ffi'. 7

?£•*?
7SjJX''
f\0?
f __ 7T;

-------
exhid.it c
• NO. 3 PREPARATION DEPT. BAQIOUSf
PL l.'L / /' T C f\ LC U L A ~7~> 'l'	PG l/Z
VL PtA
3 3
nJ h'c.
C, £


'//g 7^:
S*7
"A'
c/^ . 7i
Z/t
7?


/a',
h'c. QP / 2/
Tz£±T P7-H31-7S |)Mrt- /<7-/9- 75 T/Aic	^c
A P ' ^ * ;*>' f/Lo Vd'i. o ~
Iv'	S.^Gtc -
£• 3 y /q ^ s tc /«.* < ^9
Va'i 5"/ FT3 lc.fi / c,!3 ——
*/ S-A	% Cflz	 /. Ct _
•2.
or i
7

Ps„r ~^*-3-
53"- / 5 Fr
,11
^s- °/c
->
ys: / s r-
_ -
/* ^/j sro -	\aj i/^ ~	(yS'S! ~k cMn?2 j 7 ~
2/1.	U:r o'-'*-'3 oat/\ •	0&(o^
D /» ;; /¦;< IS," = ^r(T^) KH /^,K = .ga-frT X 3? /
2 3; I Cc .»•. C A- >4 /•! '/i'f 't/1
(~->Tc^ *1* fro,¦Li - \Fl\-r(~<.)//r>.-,^J'?Z - SOCfs 			 /_	__
3. I^vMsm ¦- .c-m ;cy 7«/ -r s.;-<£./.}* . *47 4 (	
'+ Vs \ro "~ I'A/ s,-c. i(vCcv.^svd -	+ 		 -
^ ^cisr " '<"><¦ yW>"»)s,v>/Vs i,-.j - /££' x	/_
£. l< - (/oc -	//c li i~)//Ci> - (/co -	'
7.	^"7 Wy = ^/"/'..To C'~ 0 rf'} Mc t ^ O o ~ S^,^/f>(lOO-	*)//Qc- -
jV-.to
8.	ft/.c ' f ^ •-,<> - ^cy)/lA sro ~ ( 5"5~./5~ - ^V.-9g) / ST./.r =
9.	B,, = I- I- .00 3 =
$^.60
a>. c, - a cw rr^- IV/V/-? - 0.0/4-4 x yg?.4 / g-ur*ftr =
//. C* - /. 4:-ig X /t?"4Cc - A 43g * % ;*P.7*/°^=
A7^ = o. 6^ ( % Soz) +0.44 (c/co2) -» o.-iZ^/O.f) + ft 2pCa/, + co)
- C.64 it	+ 0,4-4- *	+ 0. *	 -*-0.	yy
'3. /Vs ^	^ !f< a^c.. = .997 n g-Sr.yy + J8* .o<>\ -	g /
rr
/. 6
S-s+-9-t f r '¦
,0(0
. >Ho
.oro
£^±^iy
So* cr-
Cf- St,4 - l?ro ~ - ft?'T%

-------
EXHIBIT C
£OUHC£ TL'%7 C/)LCU L/1-r/cS.'l	pCr ?.! 2
TTrsr AT. 7- //3I - ?_5
/4, . Vs- fi 4 S C„l/ 7, A_p i Gs.tii* ^1L-\L£U=.1s=M:- -	rr-'S
4 S ^1/ 7c, Ap - 6'5. ** S X _JLL_ \ /_^ii4 x
I $ /'	i g£Z^J__ * P-S- 6 ?
!•>.	7^	-AHL * _£ZZ- ¦ *	.		 ^ t,7c fP s
/lA> 6 /< ^ 7^ J, ? y /o % 2 %/t>3 *	/ o * 5>7 < £
/<£ I - tV/ta = UK- /"	jLIIJL-
/7, ~t =6. -3 77 x to * 8d ViAi7s/T%
- 6.5 77 x /o *x X_£m_. * rn *'
&SCI-,' -/
/a mt< - ;,c-; -	*	-	~s±±- %.
ft	' c. C-L T^/^'s ' C'.O.fc * _£LlLx	S	IB*'1 |
-------
T-£4
Source
Location
Tesinvm .
Dste
K Factor
Silica Gel Tare
REMAPS:
*1
iX
r i ^
-fl 3 Q&q house
XTTIZ]-
V*hrF_ Cl.-^rruiion
M-jJSLLl'r ^
	£jjk	
DATA SHEET
Filter Type(s) £oa/?q £.eu>,J*t"&
Filter Tare(s) 7Sq.L/9o<$- /£ 3?dH
Filter Ivt. (s) 		, y if e'j	
DIM •=	^3	¦
DTlvI Corr. (Start)	;.£?/	
(Finish) .• n
JQQ.Q
R. H. %
Start
°F Start
fp Step
Arsbien
Ainbient
in- Hg
in. Hg
Start Ture
Stoo Tine
R. H
ULA.&
a
(Orifice?)
In Hr>0
A ?
(P.itot)
In H?0
Ps (Duct)
In H?0 Vac
T-l
Trn
In! fit °F
Tin
Outlet °F
Traverse
Point Ko.
is	1
(Duct)°F '
.tyo inside.


 i > 1 £,
'¦63-
3-S i
-OAIo>
oj.rf | .«?/
/-is- 1
5~/l !
~~ ~r r-ii "
i
7-ci '
f
M
H
n
/I >V0 ; .1- Jjjl	
0 Ts P k
AP

-------
EXHIBIT C
FL i;u Tl~<>T c'f\LCuLA~r>c4/	P6 tjz
Tt£±T Ar. W-H30- 7S 0^Tlr /?-/;/*Vcj A^ /A P^*
G- t? / ^ ^ i>trc /rt'i ' f 9 ,/J t!) 7- ^",C,L ,¦ *(l-l\T(~~<.)//ry-,<>)/'?r- - fOC* 		 /		 r	X
3.	^ .C47* . C.-«.• a A-/ciS7 r	S ro^/14 b,-j r / O Oa ______ /	~	— /o
£. ' K - (^'f' - X//C- /s -y/oc =" (/Co - , ^3" ^y/W-. ^	/. c>
-27,^7-
7. A-'y ~ V/-1 's7o (/C:C' ~ C> ""/•; X <<.f)/tOO -- £"?. /< 1 (lOO -	)./r' u'C- =	F'
2-7. c' 7-	, O / f}
a &/.0 C ^	sro = ( ^7-^7 - -r^-r)/ ^ 7.^7 = .QJ2-^
.4- W/V,i or.) - C.O/S-4-x l9, 9 / ^Tr^r? j
IA-t
/(.	(. 4-32 */o~^ Cs ; /, 413 ^ /D "x lLhi£^ -	y.^"t/y
SoiCF
12. A1d - c. C-4 ( % so2) + 0.44 ( c/ Co2) -t 6", v-^(7; ) + ft 2f (v, + CO)
- O.G^t	4-0.4-4-x	+ D,	 *-O.ZSk	= 9^.2H
tS. Ms '- S«Kd + '/< &',< - .j93A— K	/&* .00*1. -

-------
foofice vZ'sr CllLCU L/j~r/t
EXHIBIT C
fS f/-.'¦/
/.?r;
/& /V-/rt - cs = _	*	_ =
/£ ^-AcT ' C: C-& A< - g. 06: * W-C-K II¦ '	J±l£- WH
^A-?-r°rY7d
	f * ' >¦ ' v	y
-WtT^-Yro-*	- '155/yoo ; ^

-------
T-64
123- fi30^7^~
Source
Location
Testjran
Date
K Factor
Silica Gel Tare
RS-'AKKS;
Start'Tims
Stoo Tiire
=# J &
A-aloctS g
On 
Filter Type(s)
Filter Tare(s)
Filter Wt.(s)
DTM .§
DTM Corr. (Start)
(Finish)
Condensate
TaA.


~r-
, otQ 3
5
Pb Start
Pb Stop ~
/g'
	 	 	 in.
(o «f?-C> in.
I!g.
Her.

T~
~d. CO
• 26
, HP-

i ~ 73" "T
~s-o
'Of

/o

A. £>$"
..1 3
i H
(n Gz.
^ L
78
,0/
-8


U Q
S, 3 5
3
• H 7
6 3
cT 5 i
Ci' Q
• O/



Us
sr. n

. h 7
3
<7-3 !
§ O
. of
.P

7
S o
	 }! , O '/
>9-5
. iV-
A3
: i
o-o
¦ ot ! • ,5"


JS"
/£/ • eU
.3- 7
. St,
6 f
: rr \
^-o



.f
/ ^ o O
r-
.3 J"
•73
£> t
i » r" ¦
To
-Ot
¦8-

4
o _T
A/ . b'H
.^> 7
.7 >
(> (
^ ^ 1
J-?. _
¦O)
>X
3
f o

¦ 33
,0 1
£}
!
ir <=>
,0!

3
f 5
^9. / 7
OJ
.6?
&/
?/ .... L
&/
.£>(
¦8

/
fQ 8-0
a«?./;/
, 3o
.c*
& /
C-/ t
Zr /
•Of 1 . g-
i
I . ...

¦&-ro~nr
r.c,t

?
797
. /
&n
i 0 -
6

1 -tSco !
U. L>L
r


. 9
/ o
r ¦
.





9
i : !

• 'AS.
7.


i ¦ S

I
i ! I
! 7

! 1
: 1 J !
1 i :
!' £
i i i
! 1
• 1
I
-5"

! )


i
: 1



4
; ! 1
J I
• f 1 i
i 3
i ! i
1 » ? !
2-

i -
!
5.3^
S.
-------
EXHIBIT D
ROASTED- REVF3 RB E RATORY STACK .
CDiWERTKR STACK
DATE: December 17, 1975
FROM: E. C. Thompson, Chief Chemist
L. A. Gehl, Test Engineer
TO: w. L. Gage, Superintendent
RE: Results of Special Stack Tests Requested
	by the State of Arizona	
At the request of the State of Arizona, tests were conducted
on December 3, 1975, on the Roaster/Reverb Stack and on December
4 and 11, 1975, on the Converter Stack. Mr. C..J. Mercer from
the Department of Health Services witnessed all three tests. In
addition, Mr. J. Steiner represented the Environmental Protection
Agency on the test platforms during the December 3 and 4 tests.
All tests were conducted in accordance with EPA Method 5,
v.'ith the following exceptions. The probe was fitted with a tef-
lon liner, the hot box was maintained at a temperature of 2 50°F
¦ and the sample train after the filter was modified to allow ana-
lysis of the gas passing through the filter. A separate condenser
was used to determine the moisture content of the stack gases,
since use of the modified impinger train precluded moisture deter-
mination by weighing the condensate and silica gel. A 12-point,
4--radius traverse was conducted at the 304 1 level on the Roaster/
Reverb Stack and at the 205' level on the Converter Stack. Samp-
ling times were two hours for the Roaster/Reverb Stack and two
hours, twenty-four minutes for the Converter Stack. Production
rates were typical of those experienced during full production and
all precipitators were in operation.
Production rates are included in Table II, in addition to the
.information requested. Data sheets taken during the test and pre-
cipitator logs are also included.
All stack testing was done by members of the Test Department
under the supervision of L. A. Gehl, Test Engineer. All analytical
work, was performed in the laboratory under the direction of 13. C.
Thompson.
ECT/LAG:jc
Attachments
cc: R. R. Stricklen
W. H. Leipold
jm'Jrtij:'<7rr.t-4?
flhtJIsLUs-- jL
tiu&uriiuraHtin • interoffice correspondence
13. C. ^lompson
Chief Chemist
^-0? (9, A
L. A. Gehl
Test Engineer

-------
EXHIBIT D
ttlELPS DODGE CORPORATION	DOUGLAS REDUCTION WORKS
TABLE I
TEST SCHEDULE AND COMMENTS
TEST NO.
DATE
LOCATION
COMMENTS
123-D
124-C
125-C
12/03/75
12/04/75
12/11/75
ROASTER/REVERB
CONVERTER
CONVERTER
FILTER BROKL - DISCARDED

-------
PHELPS DODGE CORPORATION
TABLE II
DOUGLAS REDUCTION WORKS
TEST RESULTS
TEST
NO.
TOTAL NON-SPECIFIC
"PARTICULATES
H2S04
FeS04
NON-WATER SOLUBLE
NON-SPECIFIC PARTICULATES
PROCESS VCIGCT*
TPH
GR/DSCF
13./KR.
•
% OF TOTAL
LB./HR.
% OF TOTAL
L3./KR.
% OF TOTAL
LB./HR.
ROAS.
REV.
CONV.
123-D
.124
543
81.4
442
6.5
35
12.1
66
Ill
118.5

125-C
.102
293
31.4
92
32.2
94
36.4
107


108
~Average for 8-Hour Shift.

-------
EXHIBIT D
FL U£ TZ S 7* C fi L C i' /. h\ ~r< * 'i	PC, i/i
- 1
I
_ 7.
I
Ti£±T Ar, 17 3 -0!- 7f P/itV 7 ^ TiMe l±Ll—tc
MBZA-	„
£~p -111 if' //Lo Vco.o - Ra 1>^£..'v7/c	Cp -gr
W' Kir, S.^ Gt-L - G Pi, ±£±L-'-:^(>	As Jl£l_ p
e 7.-*X'J* it-c .J bfr„ % _s±]__ "f\	A., 7.VX'0'>
Mm Ft3 _c:	c£" ^ "V?		X
*/'ScV '•*- /. Ct /"3-7 -g	#*'>.	P5(,r 	
/?.33 _._ 17.35	.
I. t>, sro = Va, * ~10l r	-Z^I2	^ ?
Urr <3'-6 o^ta
OTl ) I !•);•<> r - ^fiT('Tj.V)'^'"'^/'rt'K ~	 *	/	
*/> ^*l «'-•" r (/'£ >T (~i)//o ¦¦¦'»')/^- = / OC A _. / ~		X
3. V(v(c-.-i)sv^ ' .C'LI f ; .CH^H (^< —r S. / Civi r /OO \/\'J (t *>-?>) S ,'^ / r^> i /" -J ~ f O O f. / -	*3 • 2- 	 ^
£ l< r (/^-c> - '/c^'d. /U /i r)//co - (icq- 1,-l ))/e-t> --
7. /vy = Vv,Tu('Cc- 0-a;/. r!o',r)/oo - ?U2- C/OO- ° 1//C6	= !<(¦. <1 F T "
6, &/i, c ' ( '-co ~~ ^"7 f, ro = ( *76. ^ 0 ~~ "7 4 - f> ^ / 7 6. *7 ¦> _ -	,'n Z!
9. Bd ~ Bhxo ~ I - _l£AI~ -	' 'it*1!
fC\ ~ C.0/'JT4- Vj/V,it>m - G.O/6-4-X ^l^.o / msi ~	'¦ n 4- Kry
Dt-
^2>ic>
'oicr
'/. Cs = 1.4-32 */o-^Cs - /. 43Z*'o~"/		 «	;?,? x/p'fez/v
rz. A?^ = o. 6^ ( % Soz) H C-.44 (c/( co2) -r a ^(7:0.,)+ o.ze(f^co)
•s O.C,lt* i-f-' ¦(¦ P.4-4- * ?¦/ +0.-JZ* n>l *-0.1£ a tl-Z	S 7 7.g-
'3. /v5 - Qc A.v ^ //f = .ALL- * 7-4^ + Jfjx .C>v -	3-4T.O

-------
SO once T/C'sr CtlLCU L/j-r/ca's.
EXHIBIT D
PO 7. ( 2.
'7C<>T //C.
48 c,in~ A_p - aa.-t'd
1 A/./I
'1
K . 1%- 8S. 48 7V. A.P -	- 2J--L— FP?
r V? x 2T.-r-f
• - v>-<	 Tc/f.? iiif2.L x _2?r ,» ,		 ?£./ r,>s
/lA-6A' ^ /»" 7.->ni>'!' * _y,nto * . /V? * r*-? *
J =	'	-'??
"3 77 X /& * /!,• 7T/r|
- 77 x ic .UsH *_2±^i_ * 0o 1 * ?r- ?? /- 3Q.i>hj^_
/OS It-H
I FriT\ - ^ c/ - ^o.i X'o° * /?.•) =	S_££J	
^cr " C. vL^s. - C. ^'• _2JLl_* ? -	'%Ot KCFh

-------
rHELPS DDCGE OORTORATICN
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZGa'A
EXHIBIT D
DM3 '
/fest Kurbcr }^3
WEIGHING D/\TA
- o/- ?y
Filter S
feight
fare
Jet Gain
Gos);ct
Weight
Tare
Net Gain
Cyclone (By-Pass)
Weight
Tare
Net Gain
Probe Wash-Bottle 8
Gross Weight
Tare
Net Gnin
Patches Bottle i}
Gross
Tare
Ket Gain
£5*. 03 si
^JITZjL
< >ls£.
? 3. jmo
JZXllJiJ-
	dlQjlL.
Date I2-3-7S
hJ.'i*. 'vj	lupijigc:. {1
Contents
Gross Wt. A'ol
TareA'ol
l-Jet Gain
Inpinger #2
Contents
Gross Wt./Vol
TareA'ol
Ket Gain
Inpinger 53
Contents
Gross WL./Vol
Tare
Ket Gain
Inpinger #4
200 g. Silica Gel
Gross Wt.A'ol
Tare
Ket Gain
troU $Jo'/ .ifioa
/<2W &'/
^ /~7-
Total Particulate
Weight Gain

Total Water
•Volume Increase

-------
I) 0 U G J, A S REDUCTION WUHKb
• DOUGLAS, ARIZONA	EXHIBIT D
Ambient Temperature	f-4	
Barometric Pressure 	6 R	0>
Assumed Maisture		&l/o	
Prcbc Length	(ft.)	JQ' 77/ Jr.¦)
Nozzle Diarroter (in.) ^		
Probe Heater Setting 	3	
S 6* d.^	Co
p.cz4t> /,3 £•{ !4

-£. f~esv ,£dQ Traverse Point Nun.ber . Sampling Tire Pressure In H?0 (Draft) Stack Tenx>. TS_°F. Velocity Head Al In H?0 Orifice Meter Diff. A In H-jO Gas Sample Volirra C'l. Ft. 4 T i Gas Tc~x Inlet op. Cutlet °P. ^ 1 9^49- US 37 S ,//0 /. 4o 7 7 7^ 1 41 /. IS 3 6> 5 .as ? (3 yy / 53 /JQ^ ,/s-o f, fo 7S f03 7! Z *3 /o5~ 3 on h/5 3 3.0 >6fd /.ot> / OG • s - la /< ( 5 % z° .6fO j. 6 0 6?3. (>?<£> ' to u 7<^ 1 f z T~-o- (c P ¦- 3 /DO 73 :' <2 So lr ?>2-0 °/s~s 2-2o (OO 7-s 3 S5 (¦£o 2?-° 1 f /¦ex Uc^o !°( 7 ^ 7. 3 &4 o o ¦ l.3o 3 f $ \(,iicuyn l°5 ^ 7- 1OTAL > •- 9-f. oe 771° £.og5 j 0.6 37fy | nfp- /»//? ol 3P-5 m'r /**• A VG. lOl AVG. 7 J AVERAGE ¦fO X/*5 2^ r? fe5 -l<3 S7-S-7 5 . a? SA7 Test No. /<# 3 - bl - T5" Date !Jx - 3-7"^" location / .S-^-a £ Control Do:< No. / .> H @ /¦ P o C Factor /.go £>T/>f 9?^ (Lf>, <8$


-------
JfllTJjtO LAJI.Vjli V_Ul /o ;/
Nozzle Diameter (in.) ^ 0-j I^
Probe Heater Setting 	§	

•g 5~
$o,o hi *-* 		 &-°-
2no 1,4 a'° >2-*
« $ ¦2^* /'owuiq
'	- SCSin-FiTIC OF STACK CR3SS-SECTI0M
Nofct'A p*£-T Ig.4 k /e^T^ , Ob 0- Q tS /Vq ,
Traverse
PODJlt
Number
Sanpling
Tjjre
Pressure
In H?0
(Dr£u:t)
Stack
Tern.
°F.
Velocity
Head 41
In H20
0rifj.ee
Meter
Diff. &
In HoO
Go. a
Sarnple
Volume
Cu. Ft.
A TM G?.s Te^o.
Inlet
OF.
Cutlet
°T'.
A)-}
£o4£
-/. /.f
c?£ <2
. <9 90
/..3 5"
tt&C 34

|
1

/•/4f
3/ £>

. l-SS
&
rJ / , "7c?
/oo.
7/ I
c2
05
/./r
' 3/a
j/oo
I. 7o
-57 .<£ << O
/05.
7/
3 '
10
A/5"
25 <9
,66 a
Loo

/o4
79-
3
19-
A/r
3 &-o
i 'o (>S
/, / 0
cf/„?\6e
fO '1
TP 4-
¦ *
/.T
A/?"
3 
.0 70
{¦Id-
5" ?'/. >-;P3
f 6 ,T
7d. 4-

I -e/1
t /es 7
£—


?PV


: l
2/2S
A/-*'
3 3s
. lib
I.&D
5Vy, ?4a
78
74 d<
1
/

IJtT-
3 
-//*
/, bo
£TS. 73,
/00 .
ft &.<¦
1 /

I-IS
3'<5 6
.(fO
/. SS
e
/. 43
Si) 3.0 4
/&£.
i4 J-<
1 .

. i*n

.US
1.14
&P> Loo
JO £
//
J

f>/7
3j.<

/.JO
0.0 3
/t>7
//
' 7TAL 3

f-/7

*083-
¦7.3 0
573. P55
/o f







2./.30?
AVG.
AVG.
wjjragf:









-------
8-20-74
TEST D1.1Vi
FLUE TESTING Dmjl/V SHEET
EXHIBIT D
•C No: lH-Ul- 75-
Station:
Date: 3 Oct IT

1C S t_i i 'i^D • [
Silica G\l fa) 1 ('*"/
oter No.: j
Final Rec.dlr.~j:
IXu^CAG^^irrr) : £(„el-j
)r "°": I.OOI-
Corr. Vol. (V-):
Itanarks: ^ f ¦
C <• £««-u m ,"C , (l>'> »!C«rS''
collection /wV
"a' >r "F": .796
!)p Vol. (Vw) :
ivg. Fact.: ,CjCjq
Grains Dus'c (g) :
qII boh '~S m I 511 e. a I
10. o 3










r-
Time
SCTple
-A H
T-In
| 'r-out
pn
Ts
Draft
pm
TV/-Out

frKCO)
O.Go

(/> (r-
1 (t fl-
3.^





I5~


(*«-






3
3 <7


GS~
ti ¦
.3-«?





'/-S~ I

Ar
65-
!t.(«





h0 1

r,-r
hT
/-2_





-?_T" 1

&4-
>bL
ir.&.




7
HO 1

(n(L
b(L
n





/PS' 1

' rt»3
bCL
n





/'Z.-9 1

6^,
te'4-
0.(3




J.U
thvr
I LJ\. (>0

(>l
Co 3
fO-3 *




n
i



!



.




1




: ! .¦



:




is




1








|





.1



l





]










18










]"










/










/










22







1

2"







j

2





• 1 .
1

2_






1 1

26
i i



1 1

2
i




1


2
i








2^




.





30










3





1



3





1



3j

1







3,1 4

f



-



3

1







T





1



37






1


3" !









3










•; i










Averages ^



'stir
5%*
/&	^ 2-

-------
F"LU<2 Tl' v\(j	S. i. ~~~ ¦ G /L IT- i"/7 P"7"
e iW^_L bvC	2JL12- „v//o %.s±3z^ 'K A,. 7.7/vo"' rrr
Vm Bf-frgfr FT3	X ?£7 7? ^ — %
V'SC,. /¦? "L CO?_ ,6tVil/! Y? A1°
p~n	--(p. VTy/;5,,)/'-n: = /6Ca	._ /	r		°/-
3.	•¦ .047* £	"r S';- <"•/.}• -		.+	)=		 Fjr 2
Vi ^>ro " iv-7 s ro "*¦ i(v'fc>i.v6)i/-ci -	¦+¦	~	'. *? 2 .?¦ / r r
^5. ti'"5 '¦'jeiST - SC'O \/<,-l	S ,"o / ><*••> ~ f OO * .		 / , ~	^i
£. K' ((C'O - '/c^'o./zcJi r)//cti - (l Cc. - /¦ 1 ^), I'Ti ^		¦ 7 82—
% Vn nfif- Vai wi'f - o^/^c, %,•)/, 00 •=. 7/'^--"l (100- V )/iog -	t7-1.4-8 ft?
a &/.o = ( l's - V*	S/-o - ( 77.0-1 - 2L±L)/l2JlL-	s	-o/1
ci, Bd -- I- 3hxo = /-	-¦	.^.g?
r'A - a a/ rr4- lV/V^ - oUt		 c	Kb.lilO"0 J* fis-
SuiCF
!7-< Md = o. 6^ f?£ so^) +0.44 (°/( Cd2) f O. ?2 0
-------
jpoUficc vz-'sr criLCU	a's.
EXHIBIT D
r« r./ 2
*77rs t at. US'- a- ?5~~
il. ir5= 5^.46 c.
//;. a p
/'kH
5f I j?n y -P6 3
I'/. 5^
/8-& n-c
^ = VM
Tc/fv, _
*7.9"? * T-G,
A/6K %,'p ?.-)/< It?"* g.Wf>y * ,'f 5-7 » ryz- <
/£ I = IV/V, = /1>0 fl5.tr
= £L F'"'s
/, A//!
= 6. 3 7 7 x to .m X /g. :• A S"/7 X 2 f• y g /?>fl =A/,///o
/& /Wa1 - ^ c/ = lUJJU.!_-* JhUl2lL ~
19. ~*j-t\cr - C: V;/?s - £'• A JJLk—^
G
O S <- 
-------
Test No.
Date
location
O^ntrol Box No.
^ H @
C Factor
OTrA
CP
Z'5'
, Z/Z° ' ,
DOUGLAS REDUCTION WORKS
¦ DOUGLAS, ARIZONA
EXHIBIT D
rtsr-c /-IS
n. -//'ir
— '/ -r.
JLL	
/. fio	
A'^Z.	
er
¦7'

Airibicnt Tcnrcerature 	
Harare trie Pressure 	
Assumed Moisture		
Probe Longtii (ft.) !OF*.
Nozzle Diaireter (in.) --* ..7 *'/ .
Probe Heater- Setting 	3

?>•/	yja	ys/t '

SarEMYTIC OF STACK CROSS- SECTIOIf
¦— O.OO/ 0 /ST" * yi-c
^ . s. a
Co o O ,
•* r*-3
CTo ' © •
Traverse
Point
Nurpbar
. Sampling
Tjjre
Pressure
In H2O
(Draft)
Stack
Terra.
Ts °F.
Velocity
Head A1
In H?0
Orifice
Meter
Diff. A
In KoO
Gas
Sample
Volurc
Cu. Ft.
ATA Gas Tenn.
Inlet
Op.
Cutlet
°F.
- /
0
X So
C. O '/o
/./**
777. /£
/o f
tc.

¦CS
/.Za ¦ - ¦
S° 0'
O . O «^'6
0 , C "^0
7at. fc 0
/*>/
tc

ss,
/¦Z°
S 0 0
<5 . ^ O

7Sfi.£-?7
So /
68

sc
/.Z"
S/O
O . O <^0
0 . ^ ^0
. i^V. j
/o 0
C -s


lObf ¦
2 75~©


71. Iff
BS1S
f










CP sT'/'Cr
crS'lr.















.








TOTAL 5G
8. (,-< *.'C"
5"f 2-

-------
iSfc No.
»te
Location
"^ntrol Box No.
JI 0
lctor
c - ~f~
/2 -s/ - r 7 ,
'« ' •/—V/. V
C-f
' o.lfC
.o , 6f
.	zZZo
^«rvv^ . -rt*stt	o. o oj?
SCHEMATIC OF STACK CFSSS-SECTICU
e^Wr- o 2£3°
:2-*>
Ce>z s ' « >;/¦
<17

. ~Z
/C.
/• 3q
'jSo
0 . o<^^
a, 7
Z
7.
X-
'
z ¦ C '/o
608, cC7
'°3
.
wc.
VERAGR
.








-------
DOUGLAS
REDUCTION
DOUGLAS, ARIZONA
WORKS
EXHIBIT D
Test No.	/sf- c-rs-		Ambient Tcrrporaturo
Date			Barometric Pressure	
Location		z ?/-<¦ »¦		Assured Moisture			r^<	
'Tontrol Box No.	/		Probe Length	(ft.)	
^ H @		/.sc		Nozzle Diairoter (in.) x- r
C Factor		~. 			Probe Heater Setting 		
—, .	o.9'iC
c ,6S*
e?Y
f _ ^
^ /	SCHEMATIC OF STACK CFOSS-SECTIOX
/ © Z35S-
¦	/ cT/^o'C / —A* o. O/^ ¦
Traverse
Point
NuTi-xir
. Sampling
Tjjre
Pressure
In H?0
(Draft)
Stack
Tero.
°i-.
Velocity
Head A1
In :!/0
. Orifice
Meter
Diff. ^
Ln HoO
Gas
Sanple
Volume
Cu. Ft.
A TM G?.s Term.

Inlet
OF.
Cutlet
op.

¦?" - /

/. 3 o
»?<£o
k
0
0
/./o°
6Z/.Z&7

cc
V'

od.
/.3°
jf<0
o, oC^
o. °S~o
gp.s.7cz.
C?3
/**>
CI
'• C
-o
?.e

o 3
/.Jo
iVo
o , c C o
o , f~o
8Z c. . '0°
9c
6&

sZ
/.e°
S'°
o . c '/
C.
1 ^
1
<77
69
-z
sC
/.So
3Z°
o. o *rc~
/. /?°
fif/. ZZ5~
/oo
C.6


/.&o
3
-------
iSfc No.
. Jte
f/>cation
)ntrol Box No.
1{ Q
actor
/2S-. es - vs-
/.? - ~/"- r.r-
2.
/
/¦So
S. O > J > " ii.
1
Traverse
Point
Nurr.bar
, Sailing
Tire
Pressure
In HpO
(Draft)
Stack
Teiro.
Tcr °F.
Velocity
Head 2il
In H20
Orifice
Meter
Diff. A
In H-jO
Gas
Sanrple
Volume
Cu. Ft.
A TM Gas Teno.

Inlet I Cutlet
Ot_ Op

' ~
o
/>&o
¦ ^0
o . o 8 »
/. /?o
_
C- 2.228
97
66
i ¦

/.3S-
So O
0,0 Co
0. #c> 0
G--'-
-------
EXHIBIT. D
PHELPS DDDGE CORTOMTICN
DOUGLAS REDUCTION WORKS
•DOUGLAS, ARIZONA
T-43
Test Nurcbex )2 S~~ df - 95'
ifflGIKG DATA
Date JZZILU-
Filter #
Weight
Tare
Net Gain
JMAvl
sjl
IK
MJIHL
Inpinger #1
• Contents
Gross VJt.A'ol
Tare/V°l
..Net Gain .
/ 5"(£W. SO'/
Gasket
VJeight
Tare
Net Gain
Cyclone (By-Pass)
Vfeicjht
Vcae
Net Gain
'Probe Wash-Eottle §
Gross Iveight
Tare
Nat G-iin
Patches Bottle #
Gross
Tare
Net Gain
fi. ?<>> e?
&. 8? f?
__J? 7 I 0
JL£10jL-L
> OP! 7
Inpinger S2
Contents
Gross Ivt./Vol
TareA'ol
Net Gain
'Inpinger S3
Contents
Gross Wt./^ol
Tare
Net Gain
Impinqsr }}4
200 g. Silica Gel
; Gross V^t./Vol
Tare
, Net Gain
l>t / 0 '/; r^P/C)A
2o0n .< ,7
—-"< —-j- /

Total Particulate
Weight Gain
,9- 7fG>
¦ Total Water
Volute In carcase

-------
8-20-74
TEST
FLUE TESTING DTuA SHEET
EXHIBIT D
v. : No: IZS"-CZ- 7S~
Station: ff^srac^ /j,.r77i /^r~
If !)c* 75~

'l'escjiian:
Sil ica Gol (c.)cf30.1
feterNo.: /
Final Reading:
-GtiixVeiefi—Vi^rri-.C'/-? Cj _
»«>/-'. / /vt /
:'i or "0": .<773
Corr. Vol. (V~):
Rsuarks: £/>/j £
¦« or "F": tco'1-
H2O Vol. \VW):
°P
wy. Fact.:
Grams Dusc (g):

Cot/ &t4 QJ
SiU J





1 -vir-




" >.•
Time
Scsrrale
A H
T-In
T-Out
Pm
Ts
Draft

Tv/-Out

{?: io
| C>.r<£>

&o


1
1
—
/s- 1

bZ'
bs-
4-7
1
1

30 1

6

£0
1
1

A.T



k'J-
5". a
1
1

Id 0


f /
/i a
Z-Z
1
1
u
75-


(11
1 ^



i
7



(of
1 Ci /
4.G


1

4 ^
/


loO
1 0
5.'/ -


I

'/ /l c2


6 0
1 (n O
s./i


1
JLU
/?\£


(QO
1 d 0
i / -


i
n
txo


bO
rr 7
|

1 1

)/,<

1 5T0 .

1 ¦$". i

1 ¦ 1 ••

/Co I

5%
i"V
1S~.4

1 !
• 14
ic&- 1

se
&
wO
ZA

1 i
1
$JO 1

s-r
rr^
5". Cf |
1 1

 T

5 b
.s"r
5". CO

1

18
r.'-.fr


$(,
S 7






/: 0 0


$<=¦
* 7
57/3
1




1 1


1









i


22






t 1








1 1 •







i 1

z	>






1 1

26






1 1








i









1









1


•*n ~
^ <»





1









i













"33










¦j/i






-























1
37









:•
•>» 1
l









n










1










^"oragcs
Ibd-JO


ft
S~l?
5.3
jcy.6&



$


K
^inr)
'' ^itJc 11 C.72 Fi}
,/ . r -rC /7i-3
l/3r /I £.3 '/
/ . / _ / 3



-------
EXHIBIT D
rr •tvj rr ¦ ~r.TTrl
iiuL'arporniian • interoffice correspondence
DATE: November 11, 1975
FROM: w- H. Leipold, Dust Control Foreman
E. C. Thompson, Chief Chemist
TO: W_. L. Gage, Superintendent
RE: Results of Special Stack Tests Requested by the State
¦ of Arizona and Discussed at the October 20, 1975
	Meeting With Western Engineering	
In order to supply the data requested by the State of
Arizona, a special series of stack tests at the Douglas Reduction
Works was conducted. The test schedule and comments relative to
the validity of data are listed in Table I. Messrs. Mercer and
Etirland from the Department of Health Services witnessed the
October 30 and 31, 1975 tests. Mr. Mercer was present on the
Roaster/Reverb test platform for the October 30, 1975 tests, with
Mr, Stirland present on the Converter test platform on October 31,
1975.
All testing was conducted in accordance with EPA Method
5. The sample train beyond the filter was, however, modified to
allow analysis of the gas which passed through the filter which was
located in a hot box maintained at 250°F. Because of the modified
impinger train, moisture content could not be determined by weigh-
ing the condensate and silica gel; a separate condenser was used to
determine moisture for most of the tests. A 12-point, 4-radius tra-
verse was conducted at the 3041 level on the Roaster/Reverb stack and
at the 285' level on the Converter stack. All precipitators were
in operation for the tests. Although unit 10C (Roaster Precipitator)
has not yet been reworked to straighten or remove bent plates, it is
felt that the efficiency was probably within 10% of design. All

-------
-2-
EXHIBIT D
sampling times were two hours or more, and with the exception of
one test (noted in Table I), production rates were typical of
those experienced during full production. Although production
rates were not requested in the letter, they are included.
The information requested by Mr. Scott in his letter
of October 27, 1975 to Mr. Scanlon, i.e., non-specific particulate
(solid + liquid) grain loading and mass emission rates, the percent
of the total weight which was sulfuric acid (based on a pH 7 titra-
tion of the water leach) and the mass emission rate attributed to
it, the percent present as ferrous sulfate (gravametric sulfate
minus acid sulfate) and its mass emission rate, and the percent of
non-water-soluble, non-specific particulates remaining together
with the mass emission rate, are tabulated in Tables II and III.
The average values for each parameter are also tabulated.
All stack testing was done by members of the- Test Depart-
ment under the supervision of Lee Gehl, Test Engineer, or W. H.
Leipold, Dust Control Foreman. All analytical work was performed
in the Laboratory under the direction of E. C. Thompson.
WHL/ECT:j c
Enclosures
cc: R. R. Stricklen

-------
PHELPS DODGE CORPORATION
TABLE I
EXHIBIT D
DOUGLAS REDUCTION WORKS
TEST SCHEDULE AND CCf ME^TS
TEST NO.
DATE
LOCATION
COMMENTS
108-C
10/21/75
Converter

109-C
10/22/75
Converter

110-C
10/23/75
Converter
On curtaiLTent during par;., of test.
11.1 .-c
10/26/75
Converter

:i):2-c
10/27/75
Converter

113-D
10/28/75
Roaster/Reverb

'114-D
10/29/75
Roaster/Reverb

115-D
10/30/75
Roaster/Reverb
State witnessed.
116-C1
10/31/75
Converter
State witnessed.
116-C2
10/31/75
Converter
Validity questionable - thrown out*.
117-D
11/ 2/75
Roaster/Reverb

118-D
11/ 3/75
Roaster/Reverb

* 116-C1 and C2 ware run simultaneously with the probes located 130" apart in the
stack.

-------
PHELPS DODGE CORPORATION
TABLE II
DOUGLAS REDUCTION.WORKS
ROASTER/REVERB STACK
TEST
NO.
TOTAL NON-SPECIFIC
PARTICULATES
H2S04
FeSO^
NON-V3VTER SOLUBLE
NON-SPECIFIC PARTICULATES
PROCESS WEIGHT (1)
TPH
GR/DSCF
LD./IK.
% OF TOTAL
L3./HR.
% OF TOTAL
LB./KR.
% OF TOTAL
LB./HR.
ROASTERS
REVER3S
113
.092
359
69.0
242
8.6
30
22.4
78
104
126
114
.111
419
69.4
291
7.9
33
22.7
95
136
152
115
.090
346
72.4
250
8.1
28
19.5
68
126
142
117
.030
350
77.5
271
8.5
30
13.9
49
104
124
118
.133
544
81.5
443
6.4
35
12.1
66
112
146
AVERAGE
i
.104
402
' 74.0
239
7.9
31
18.1
i
71
116
133 .
NOTES
(1) Average for 8-hour shift.

-------
PHELPS DODGE CORPORATION
TABLE III
DOUGLAS REDUCTION TORKS
CONVERTER STACK
TEST
NO.
TOTAL NONSPECIFIC
PARTICULATES
H2SO4
FeS04
NON-WATER SOLUBLE
NON-SPECIFIC PARTICULATES
PROCESS WEIGHT (1)
TPH
GR/DSCF
LB./HR.
% OF TOTAL
LB./HR.
% OF TOTAL
LB./HR.
% OF TOTAL
LB./IIR.
CONVERTERS
108
.086
232
42.8
99
22.6
53
34.6
80
104
109
.035
225
56.0
126
19.3
43
24.7
56
98
110
.028
75.
45.5
34
24.3
18
29.7
22
82
111
.112
306
63.5
209
11.1
34
20.4
63
93
112
.101
278
38.5
107
21.2
59
40.3
112 '
91
116-C1
.148
370
52.7
195
i
i4.4
53
33.0
122
85
(2)
AVERAGE
.106
282
--
51.7
147
17.7
48
30.6
87
94
NOTES
(1)	Average for 8-hour shift.
(2)	Excluding 110

-------
EXHIBIT D
F~L 1. (7 <:>r C f) LC L / A v~;° V	PCx i/z
72:-i- Ar. M-Pf' 7 r Dm-v- OS tKi")T TiHiT AlJL. tc ^21it'£
£>nrf\ ¦	_
A P	'A'//,0		 AIL	FrA MJl. ^ Cp • & ^
is/	Mg	s.^Sin • Ci	Ps	Ar	P.
&¦ ftMtt'S	^t-c	FLrjzc-o(' .jLfr.	% rr/ -re
V,, H-1Z1	FT3	Tc,//{• ^^->S r = ^A"('tj.:) £i"1!Pr>.ic ~	 * 			 ~
^3, '	C	il /» /j'-f*li°
Off') *ft fi't c-1 J. / "" ii T ("" ^,;)/CV : ^	/*		 -			
3. Vw (<•»-*) s;o* .C:-i7V li-- .C-V7V ¦' S.,.^'Aj-- . c-47h(	+		ft '
A Vi» vro ~ Iv-t i" r	.	-4-	 -	£U"^:	 r
5. Ajc^r - /or. >Js,-«s//s >,--j r /CO*	/__	=	7.6
(.' /< r ((c>o ~ '/{c>-f-e>. aU is r)//ot> - (/Co - \) / o-c ^	^ 7*2-
7.	1//-7 /.-¦* = yjJlClOO-	'j/zOO ~	8/• 2-ft* FT
8,	£>ri, c "C ^ ~ V/*? - ( _____ ~ 	"	iOl~)
^ sd-1-	1-	
A.\ ;C;, - C.o/-jrq- W/Vv mi - c.o/£4- x y-^-7 /
.'Diet
//. 'Cj s /. 4.3z x /o"^Cs - /. 43-2 < 'J4/		 «	n.ryt^/.as
/OiCF
iz. tAd - c. c-^ (7. so^) +o.44(e^coa)-tt:-.vi(^C'4) + o.zeC*/:+£°)
•=. o.m * !• o + o. ¦i- »• A k + o. £ * /f - r o. ^ / = ? 4, P
'5. /^s > Md + if. - .V1' * 9-1. r + /ff* ,o•>--). -	. 7'/. 2

-------
EXHIBIT D
£OQRC£ VZ'Sr C/)LCUi-/4r/c A's.	/V'
T/rsr at. in- Qt-7r
M. . v&- 8S.4-S CrlfrTAf
I tfs/l
is. vrf--_V^_	• <8.1^ > *»•' ¦ n,o 'i .			r;,i
A^eK	>,./,?»);« .<;•)•» x rn *
/£ . I - ^'/V, = 	_/	 *	JJ2±.
/% ^ = 6/3 '77 x /£> * /.?, /4S /I/?!	(
-&>. $!7 a/c .971 *_2ii_ * 6! /JdLr
£>S Chtf
/& 'Imr - c; - _______ y«	-
' /7.	- C. V;/'S - £• A J±±_* ^	KCW
• - 6 i'. ^ S <
^* *),(/ o I
H
ppc

-------
DOUGLAS It Ji U U L'T i U N w  i '		Nozzle Dianeter/g'^ (in.)	. co '/c-
C Factor	. Cf g	Probe Heater Setting 	^	
CP ^ .	-J££L		/.
•&Tm ¦ ^	• ,e!cf>			Vtc\(-L
ICtfd/( . OX^/n sc/O'VAc.
SCHEMATIC OF STACK CRDSS-SECTIOM
U.J/
'* 'i
i.-31"*
Traverse
Point
Number
. Sampling
TLtc
Pressure
In H?0
(Draft)
Stack
Tenro.
fp Ott
i. C? -
Velocity
Head-A 1
In K?.0
Ori.fice
t-teter
Diff. A
In H?0
Gas
Sar-ple
Volume
Cu. Ft.
A TM Gas Term.
Inlet
Op.
OutJ.clt
°i:'.i V;'! 4
F
^ ,r a
U*
¥)0
,10
/¦3
VtMff
L
i, ^

ll.f
3
(/
/./5"
^,0

/,5)
I
7'//./> 5? i -ilf
-7
)W
e:sr
o i
/./J
31D
,12
/, f n
•'-7.-57

l/Jd

0%
/.'T

Jl
i. o
1
¦/*>

/?¦

J)
/,/')
. ¦
• *«¦
1 y
. ! h

~1 V \ ^?c"
!0 0

1
I'o
/./r
W
,l/b~
)Xd

102
r'O i'/.V

70
/•/r
lio
' .\to
)¦ ^

! •••>
/
¦ ' \!U

X
/./?, ;
W
.01
^.c) '
riC)nV
/9 ?
'U *







-
































IOTAL ^
S.o?yfo1
^so
\Wz
lo.mb

rf~]> iU

ir/O


UlO
>0»o
-?£/•

liT-\

AVG. 101
AVC. PjO

WE RACK

1A
-------
DOUGLAS, ARIZONA
•EXHIBIT D
Tost No.

• h>-"» b
Date
JO
- -4 fc - "> S*~
Location
¦H
jr
Control Box No.
if
r
^ II 0

f.7<~
C F&ctor


b Tm.


Ambient Temperature 		
Bar one trie Fressure		
Assumed Moisture		/ 		
Probe Heater Setting 	^	
Qs* ('-y e
' SCUH-SVTIC OF STACK CROSS-SECTION
traverse
Point
Member
, Sampling
Tine
Pressure
In U2O
(Draft)
Stack
Teiro.
Te °F.
Velocity
Head .£1
In H?0
Orifice
Keter
Diff. A
In H-jO
Gas
Sairale
Volume
Cu. Ft.
TT-I Gas Terns.
Inlet
oF.
Cutlet
°F.
vO
*>
0 r
A 0 <
? ?o

I.^C,
1$ l.fl *
!?.<

.5

I.oS
390
JOS
LU
99 r\ */-,
"r7
/ J.

O V
1.1)5'

Jo
!.3u
09 'J>.l
¦/01
' 0 ..¦?

I
••JjT

JV
l.^o
?V
l°1
?.! /.!.£
JL
/ L-
t.otT
'' 17 f
. in r
1-3 t.
r'.7ir
. tOS-
L
O0 I-s s
/ d 7
5/ /J. 1

DJ
l.p S~
3 7?
JO
I.30
CO'I
/li
?/ IXX
I
P *
I.I K"
??£
' .07"
.V
o4.9 7
/ V
<7.0

3_->
Los,
**3
,6L>S
,VS
<30 9. / /"
/oy
<<¦0 :,9.'7

L
Lo3
10 hS
•%s
<5>/ / .4 66,
/ 0 y
£.,0


•





!








!


















I
.









IOTAL












•

i
AVG.
AVG. !
WETV\GE










-------
DOUGLAS, ARIZONA
EXHIBIT D
Test No.
Date
location
Control Eox No.
i II 0
C Factor
l'3	^
to
zr
^ Sr - ~7 .
T
1.1 S
JLil

Ambient Temperature
Bararctric Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Diiurcter (in.)
Probe Heater Setting
 -7 ?
o %
¦°~aj
SCHEMATIC OF STACK CROSS-SECTION
&
I y-

Traverse
Point
Nunter
Sanpling
Tir^e
Pressure
In H?0
(Draft)
Stack
Tcitd.
Te °F.
Velocity
Head .A 1
In H20
Orifice
/•Jeter
Diff. A
In I-bO
Gas
Sairple
Volume
Cu. Ft.
Zi TM Gas Terra.
Inlet
Cp.
Outlet
Op.
5° >71^. ?
w/
.oO
/.to
3 ^
JO
/ "? o
7
^7

/Atf
3
.0 V
l.o$
' I
,10
'¦)o
VP
/ 0 &
v# 1/ r
1

1. o£

. JOS
/ - 3 p-
?/-9,
1 0 b
i
v.i.5
?>
. ? a ¦
l,0£
5 pO
./ft
1-lD
°!'n. o s
/o'/
S3 V?
a
\L
1,10
'?.9r.
,10
1. 3 o
C 7 1/ C- ¦?
lo G
So. ii, ?

AO
f./O

. 10
' • ? 0
^7lJrO
10 h
9* //. Jn'X-

fcO. '

3>
l-ov

, OO
.$.l t
/ t>Q
s- a : *5', ^

H
/.0<
3X?
, 01 o
.9)
'f r<7,  0
? ^ .3.








¦








1








i
i




















rOTAL
















AVG.
AVG.

WERAGR










-------
Stest. No.
Date
location
Dntrol Box No.
/> H @
C ?"actor
Dr/o.
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
H i - O > Os"
•.-> - 0 
•<*<
SCHEMATIC OF STACK CROSS-SECTION1
Traverse
Point
Number
. Sanpling
Tire
Pressure
In H2O
(Draft)
Stack
Term.
Ts °F.
Velocity
Head -Al
In H20
Orifice
teter
Diff. A
In ibO
Gas
Sample
Voluirs
Cu. Ft.
A TM Gas Tenr).
Inlet
°F.
Outlier
°F.
jjen! L
?
oo
1.0 0
37tT
J J O
/. V ?
<0//. V a 4

!
5° ' /

¦ *X
/, oi>
3LO
. /Ot;
1 ¦ >L
OH,ID
W
rO ' 3•5

1 1
/.or
2L.D
,/oT
J. 3 u
r 5 0. c S"
It
Po /j>. 3
X
/ L
/. 0
' '37?
l,io

7
?7
7c / 0


i














I








1








1
.







J
TOTAL







¦



•



AVG.
AVC.
WE PACK









-------
PHELPS DODGE OORTOIttTIC 4
DOUGLAS REDUCTION WORKS
"DOUGLAS, ARIZONA
EXHIBIT D
V2EIGUNG DATA
Test Nurrber // 3 ~Q /- ?
Filter §
Weight
" a, 9 Tare
Net Gain
Gasket
Weight
Tare
Net Gain
Cyclcno (By-Pass)
Weight
Tare
Ket Gain
Probe Wash-Bottle §
Gross Weight
Tare
N?.t Gain
Gross
Tare
Wet Gain
%
3^
TWO
7et. O-K'J
¦ V', CO
• one.
¦ o9
¦ :
J2?.£3 £/„
Date
• s>~
Inpingcr SI
Contents
Sross Wt./Vol
Tare/Vol
tfet Gain
Irrpinger 52
Contents
Gross Wt./Vol
TcreAol
Ket Gain
Inpinger S3
Contents
Gross Wt./Vol
Tare
Ket Gain
Irrpinger 114
200 g. Silica Gel
Gross Wt./Vol
Tare
Net Gain
del
/S)> jvU
J-/

fr • cC
rotal Particulate
Weight Gain

Total Water
Volutre Increase

-------
8-20-74
test
FLUE TESTING DATA SHEET
EXHIBIT D
,'cst Ko: „Tp
Station: j; / ^
Date: v r; (' >'

Testiron: ,, /
Silica G?1 (a)
.No. : •}
Final Heading:
Duration (ruin.):
¦¦actor "0": / .n,w-
Corr. Vol. (V^):
Remarks:
Cp [r fs,h f—
^"F": /i(^f
H20 Vol. 
ZHlL
r/p
: }
I J ",
ni
"7 :
_LlA_


-7
¦7 - 'J
s
<
23
27_
/
/
3w
31
3
3
3JL
3°
\vurages

jO I'(fi-
ll ¦
£\JS11~
7
-! .7 r>
zf. v
u-j/a ^rt>. rf
v, «f-/= f- *>
7??

-------
EXHIBIT D
FL UC Ti' r C /) ICL ¦ L A ~7~'c 1/	PC* t/z
rz
7^-i-	pHTcr O'tQc^C T,Kc l3}2Lte 1H1L-
JiaiA ••	_
A p -an Vc^o 	»l fu io- (s fAC. S.u.4:LL. • Ct K %0-3l	Af f,Q C P
g ?,.o *<<¦>'' ^-c .	.sj/fo tm / /•' 1 ^ r - ^r,r(rjr,) f\ M"	 *		/	 "
2 ^ I K>v •% C v A»* 6» A- 'l /? / ^" A//"	,
D~n y< r ^{a,T^y^.vO/^ = /6'-a 		 /	,r 		 °J±
3. V'»vCc----^s-.o: •"¦¦^iii :ci 7Y	. c+m(	+	V 5?- rr2
O
4: Vt vrc> ~ 1 'hi s - a f i u'fc^ 'j)sr6 =	4-	--	-$%• 7- O Fr ''/.
tT ^ he 1ST - /oc l/rKc^'Olsro/ti i.'o T too x	 /	= . #¦ *fr
£. K= ('<"'<"' -/(ccf-'it. //ws r^ftob ~(/Co -	^J/vt* ~
7,	I//-/ A'y = V/./ .,Tt) (/Co - 0 -a; /. rU~,<. r)/,o o - 	 f'oo -	)// ^6- -	g' ^ FT ':
, oS^
8,	ft/.O r f l's v, o - V/vj	s,"o = (	"" 		)/		 =
9,	£?J = /- 8h,„ -- I-	--
4-
/O. C., - c. 0 / rr -9- W/V,-! i>n y ~ C. 0/^4- x	/Jr-j4__ -	. //^T c^j/
//. ci - f.4-32* ts'^Csi /.43ZA'out	=	J£&p£?'/;p,-
So^CF
n. Md = o. c<^ C°/« SO;,)+0.44 (°^ CD2)-r	.(- 6. 2F(V + C0)
•= o.m* i-G>+'o.4-<)-*. /.7 +cl'3z* K-i- -t-o.p.t* yt- *T = ^^/,r
/3. A/5 -- e«Md + //< &^c .~ Jill *• 7-^.r + js'x	2.g. C
"i^	.ovM

-------
jrou/'c/? -rz-'sr C/HC.U L/j~r /c a's.
EXHIBIT D
PCr ?.} 2
Tfsr A'C. U^-Pi-??
/4, . S£. 48 C,
[ 7« AP . _ s\ *v 8 < jiiH \Jill- * -lHH.
A/s £	f XA>-.^
- 2 J- F'-'

V/
M 's /% „
'	x _UlL.* ^
F?
_ ?r.i_ /~''s
/!// 0 /< P. 7- W<> * j;7. (¦-/ VQ*»'. ,Cfl -
./_
/, ? * /£J3_=„2AI*J—J
iO S C'/^.'-/
/A	~ ^,CS =	*		
/V, fncr - <^-< v;/?$ - c.^* 7-?-f ^
A:

-------
1) U U tj L A i) K U U V~ '1 JL W 1M II yj i\ i\ ->
DOUGLAS, ARIZONA
Tfcst No.
Date
ly^cation
Control Box No.
> ]J 0
C lector
CP
» n* **
ft*-/- t) >- 7 ?
EXHIBIT D
a
vj
ir
to - }f

' / c <'-'/A
7-7r
..¦,
Nozzle Diaireter (in.)	. ? i •?
Probe Jleater Setting		
P-f
' 9 ?jf
• of 5 /ejA orJ
I
;"o>£c,ra ^/- /f"y^a.
SCJIEH'YriC OF STACK CRDSS-SECriO'J
^ clF
Traverse
Point
Nurrbsr
, Sarnpling
Tine
Pressure
In H?0
(Draft)
Stack
Teirr).
Ts °F.
Velocity
Head Al
In !i;>0
Orifice
Meter
Diff. A
In H-?0
Gas
Sanple
Yolisre
C;j. Ft.
A 1"! Gas Tenrj.
Inlet
OF.
OutJet,
Cp , \ :.fi <_
Uoh-ik
'.00
*10 ¦
Igo
.10
/¦ 3/
.-1.21-7
^ '
z-1
yjv
1.
'O^
. 37
¦
JO
1.3 !
JO J J-)
-r* • / /V


/? /

:os
. cIO
12 0
jO
)¦ 3/

; •-.? 3

¦ ?
•• '.29

11 s~
¦ II
/,
'-'7*r
./6T
I-'/

//t>


.'34

D7€>
<01
>9X
vl.'sn
//•/



•





i


















1 •










.









IOTAL
<{Utr?
j im
1'iVS
//. n. 7 '4
f-CJ'7
wn
'iUHl
J


tOb


h 'iO
. 10

avg.
AVC.P
WEPAGD

lO.o0!
b\i
>0Q-)
to.ir



WJ

-------
DOUGLAS, ARIZONA

Test No.
Date
location
Control Eox No.
^ H @
C Factor
( p
¦DTfo
j£JL~P '
71
/¦ > i

/«ir
q V (/
g \
iff r
Ambient Tcn^perature
Barcne trie Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Di."rater (in.)
Probe 1 lev:or Setting
cPl' COt i)l £(; SaiE-ftTIC OF STACK CROSS-SECTION
Aft 'hO 'ft.L
Tz~rr

Traverse
Poijit
Niuroer
. Sampling
Tire
Pressure
In HpO
(Draft)
Stack
Teiro.
Tq °F.
Velocity
Head Al
In U20
Orifice
i'teter
Diff. A
In I hO
Gas
Sarrple
Volume
Cu. Ft.
A TM Gns Term.
Inlet
°F.
Outlet
°F.
VVCff /
7- '<¦; a £>
,er
^lO
JOf
/,£-
(&. r ?_
10
0 /
¦


,40
no
Jl
/• ? A
(s?JI
h'-,
"j 6 ¦ i?.-,

i)
>i10

JcJ
Mr
70. of
fJ j
s-} il-'l


JC
j?r
,tof
A 
no.
-pr
>01
, 
cs & • ./

-------
DOUGLAS REDUCTION WOK Kb
• DOUGLAS, ARIZONA
• EXM3IT D
Test No.
7//-0Z-
Ambient Temperature

Date
/u> -rlf-lT
Barometric Pressure
P £>•
Location

Assumed Moisture
6 %
"^ntrol Box No.
- /
Probe Length (ft.)
!:j' —S'S:,1/? /1
-• II @
/. 9 ^
Nozzle Diameter (in.)
- , >"/ i
C lector
.11*
Probe Heater Setting
s
C/?
.. fifsh .
'• ?"?V 		


SCHEMATIC OF STACK CROSS-SECriCM
	\/*h£ if
/. l/~SOj
i.-ftH10 2
tS.Z'Oi
,2 '.Co

Traverse
Point
Niirrbsr
50m/"A
Sanpling
Ti rre
Pressure
In H^O
(Drart)
Stack
Teno.
m Op
S>1
oo
Velocity
Head Al
In H?0
Orifice
Keter
Diff. A
In I-bO
Gas
Sample
Volume
Cu. Ft.
• 2b" 30 f
,/0
I.ZZ.

A TM Gas Teim.
Inlet
Otr
Outlet
°F. >/ -
Ail
p.'
\)n
I-
0lf
3JL
o?
e?h'
tel.
10 ?

/5"i
¦2'f
'£5~
J?0
.lof
/.
-------
Itest No.
Date
location
Control Box No.
^ H 0
C Factor
C A
o r^.
/¦3
r ^
/
AIL
diS2_
DOUGLAS, ARIZONA
EXHIBIT D
H'/'Of-lC
to -;m -
Ambient Temperature
Barometric Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Diarcter (in.)
Probe Heater Setting

rii' l . I ^
6
JO-
,'i
'J
SCUH-'ATIC OF STACK CFDSS-SECTIOU
^/Qho. £
Traverse
Point
Nurrfoir
, Sarnpling
Tirre
Pressure
In H?0
(Drart)
Stack
Terra.
Tr- °F.
Velocity
Head Al
In H20
Orifice
Meter
Diff. &
In H~,0
Gas
Sanple
Volume
Dj. Ft.
A 1" ! G'is Tom.
Inlet
op.
Cutlet
Op J , ¦ ¦

<*• 1 tf
oo
, .
• 10
&1/ !/ i :'

02
r
VO
.iv>
K 7,
H'Wl?
<12


!l
-fTD
¦Dir
\n
/vV
122S5)

1
I'ci
2
(G
• n
• ^7 v

l-s?
rit-fsccj
11
?,H
17

2C
>n
3
.rr
17 O
. uO '

I"i?.<\7.2.
1?







































.









IOTAL







1







AVG.
AVC.

wekace










-------
PHELPS DODGE OORTORrtTICN
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
WE1GJIING DATA
Stest Kirroer //*-/- Pi- 7 4"
Date
/
O- Z-'i ' ^
Filter #
Weight
••Tare
-'Net Gain
Gasket
Weight
Tare
Net Gain
cyclone (By-Pass)
height
Tare
Net Gain
'Probe Wash-Bottle §
Gross Waight
Tare
Net Gain
Pa;.ehes Bottle $
~Gro.;s
.-Tare
Net Gain
37/3
7
23-Tl 7 0
9? r, V 05
JJJLl
//
0t,

. J I 0 "3
2 3.33 '7
,~-9 0 H
Inpingcr §1
Contents
Gross Wt./Vol
Tare/Vol
Net Gain
Irrpinger 52
Contents
Gross Wt./Vol
TarcA7ol
Net Gain
'Irrpinger S3
Contents
Gross Wt./Vol
Tare
Net Gain
Impinger #4
200 g. Silica (rcl
Gross Wt./Vol
Tare
Net Gain

joorfS> /,> ¦ - ~
Total Particulate
Weight Gain
f
Total Water
Volure Increase

-------
£ 8-20-74
'X'EoT DL-r /iiv i-i^V a*
n/JE IcirXiNG Du-YlA, SHExTT
EXHIBIT ft
t ;:o: flt'0 1-?r
Suction:^ f ffs,y y;>-f
Da-x;: .j ¦( j < ') f~

TestlUIl: 6 r h /
Silica Gel fc) \
•2tcr Xo.: ^
Fjn^i Kc-adir.g:
Duration tnur..};.
" 3r"°": /¦¦:) -a/
Con-. Vol. fe] :
lv':sroi:k5: , -
% h
'¦ 'jr "F": / .00 Z
il20 Vol. {\'w) :
yg. Fact.:
Gratis Oust (g):
• PA^icjr"
I.T^
Time
Sample
-A H
r'i;rr:r<
Pm

Draft

TvrOut
V-In T-Cut

¦.;•.¦ i d \ s. . i

'' ••:. .






ft i

?«~
y<~

• rv



3
5U1

7C
~ 'a
"7 . '3 | C7




<1 T 1

?T

".,4 j ¦: / I


-
i V'."1

1L/
7 V
I J) I


i I

n •'¦
j ¦ •
i > ,2i


V
-^|

n <¦(
^ »
•-•-• 1 !


lo H

"tt
--'j
' -
? -)-1  1


' ;
t
c i !


-4. IJ
/ 'r


n^L.

n .
r z t


11
yc^

I -7V | ^
'' -"I-
c ¦). (



/ •,

1 V/..I


lb


! i
n v
M.
' i 1




¦t -¦

n -¦
i 1




tx 1
' j


< - 1




1



i


18





I


¦><¦>






' "!









1









i
<


22






I


—






i








i








!


26






<









i









i









!


30





"1








1









1


JJ










3
-------
EXHIBIT D
PL U (I TE <,T CflLC U LA T'**/	PC* l/z
Tmr A.~, JlEJUl Dm-,-- hh'hs- Tim £	_i±l1_
M£_LA:	_
A p iBlkL. O Vcc.o 	 /->l R*	Cp ii£
W .% KQ S.I.,(5u .	- G ifi ^ ^ . V /Vt, As	60 *. P T 7~
Q. Ttno3 h. irc iA±.,j//o % ^ "A5 ' A.,	r^
Vm 2&±tf-3 	cr ."'1 ^ c7?		%
*/scv W y. co, z, I /.oL n. 7 '/.A.\*h2_	rSAT ___	
/7-3^ — <_ .	(^.*3
/'• ' I'/, s.-a ~ VF*T7 V/., £,//X, - /7.7/ < gy.fn x Lk •" i	fr 3
Zrt.	Urr 3^3 oat a
t>/>? 7= ^--'S r = FsrtT^T^.RM/^K ""	 *	/	 "
2 J Cvi ••N
£>'">) '/, Mc.s /• )/Cy. ,-.j - /oo x	/	=	• on "/
£	Kr (/<^>/-U nr)//cu - (/Co-	) J i ^ -	. u i
7.	I//--; /vy = V/,/ ,jTo (/co- 0¦-/•;y. i-Ui<.r)/fOo - 	 ('OO -	)//£(.• -- .		 Fr
a	&/.o ^ (Vc ^ - V„ ^:0/^ s/ro = (	 - 	)/		 -	.0-79
9,	Sd- ir Bhxo - i -	=	, ?.r/
n.
,otU
to. c>" C. 0/ W/V;i or.)' - O. Q/1T4-X > i /3-Trrob -¦ -r^T
/¦vi r^il^
//. Cj'¦ /. 4:-j2 * /Q-4C< /. 43-a X /cTax
. /b!CF
i2. A1d = o. 6^ C7. SO^) +c.44 (°/co2) 1 o.^2(ylc^) + g 2p(V2 + co)
•5 C>. it ' J + O. 4- 4- * g? I + 0. * /t/ 7 ¦*-£, 2^" X P/- i'	 = z-^- 7
r 3. /Y5 6* Md + //< . = ¦ Kl k	+ J&x.^q ¦=	7.%.c\

-------
£OQHC£ r/'sr ClllCU lh-t/ca."*
EXHIBIT D
PO ?./ 2
7*ZTS 7" AT. /"Tfr
/4, .15:= 8 5-. 4-6 c.
' / 7c ap	r -	f'-
a/s /I	r iLi- "
g-o.rj?	¦
/s; JZm- iLS.	* ^r—.«¦	
/}/,< 0 A -jr^ P Ixi,. . y. i.x*,} * . q g i * ri x x - £7
/£ J =	= _iAil./_2l_l_ '
/•z 5" = 577 */c- * ^ ^ /T/t;
» '	.	A	. , ,
_. j^rT fi'%
O .97
= 6. 3 77 x /£¦¦ .in *Jil. * £<>3 * ^ ^ /jl^L'JlLAllZ
I	/.vi »"	"¦
s ¦	5 -3~t//-' /.*/
///a"
"T" /
/A	^ Cj - 26.? vi o X /t+^ v 1 J
/V. ^/icr - C.  A _HA_*
KCF7-?

-------
EXHIBIT D
PIIELPS DODGE CORPORATION
DOUGLAS REDUCTION WORKS
DCTJGLAS, ARIZC->a
¦ WEIGHING
Test Mvirfcer //-5~ 7?/~
iXLter «
Weight
Tare
Net Gain
. Gasket
2*/ , C.9R .
S"/. l-T/3
3 V7 3
Height
Tare
Net Gair
Cvclone (By-Par.5)
Weight
Tare
Net Gain
Probe Wash-Bottle 3
Gross Wsight
Tare
Net Gain
Patches Bottle ft
Gross
Tare
Net Gair
Jh Si bo
ll r N Jj ^
r.±
3 / J 5 / o'
OO / /
Date JO '.TO ' ..
Irrpingcr SI
Contents
Gross Wt./Vol
TareA'°l
Net Gain
Inpinger #2
Oontents
Gross Wt-A'°l
Tare/Vol
Net Gain
Inpinger f}3
conu::nts
Gross Wt./Vol
Tare
: Net Gain
Inpinger {14
200 g. Silica GdI
Gross Wt./Vol
Tare
Net Gain
ISOm! r'^y;P.
15"
-------
DOUGLAS, ARIZONA
EXHIBIT D
IfeSt NO.
Date
location
Control Box No.
t> II @
C Factor
nr-y,/ -•>«,~
/r> - r» - ~
f-' i	
«- i	
, /.? ^	
.1?
,*7*'
.-ri"
Ambient Temper? ture
Barometric Pressure
Assirrcd Moisture
Probe Length	(ft.).
Nozzle Diameter (in.)
Probe Heater Setting
SCHEMATIC OF STACK CEOSS-SECTIGI
•:x



:¦ '¦/

O
£¦
/.?
/S"
Traverse
Point
Nuober
. Sampling
T"i~e
Pressure
In HpO
(Draft)
Stack
Tero.
Tc °F.
Velocity
Head A1
In H?.0
Orifice
Keter
Diff. A
Ln IWO
Gas
Sanple
VolUTG
! Cu. Ft.
TT-1 Gas Terrrj.
Inlet
°F.
Outlet
°F.
/Jo^
1
/o: t>S
rr
/, 0
?'/ P
J I/O
/. ri
215.? CL
>1
?
& .0
1

. ^s"

.01
\%> [5?? .!/ 1?
*6 d. ?


	
'¦ ¦ 1


¦>

i








1
1
<

















1
i


















i
r








i








j
TOTAL







1







AVG.
AVG.
MURAGE
.








-------
DOUGLAS, ARIZONA
EXHIBIT D
Ambi.cn t Tcrrpcrzture
Bar arc trie Pressure
Assumed I-'oistuiz:
Probe Length	)
Nozzle Diameter (
Probe Heater Setting
(test No.
Date
Location
Tontrol Box No
r
,
3 30
.<70
'3V/
./DO
/. 3

* 0
.Sro
nil
, OSS
.11. \mmi
11v
it
C.2-



/

¦r ¦




























• i








• t








i








i








\



IOTAT,




i






•

i
AVG.
AVC.
WJJRftnR




i



-------
DOUGLAS, ARIZONA
EXHIBIT D
Test No.
Date
location
ODntrol Box Mo.
H @
C factor
n 7 J
3
6cu
:
Co
.to
3(/,l
Oq
/, ;?
zU I yx


.i«r
^3?0


1.0?
' "3^
,0*1
/, ax
	
• //?
?7 1 $.£>
1

I&.137
ll f
S* U -3


... .















i
1












'





i


















1
' |








i






?J>. iiu


IOTAL



i-n


X 1.-1-)








AVG. " ?
AVC."
WEMGR

~'A
7^\A vV
3 . ~-
,0^7-
'•'1
^ .O0|
Cju^-j-y-
,oT^
1 I J .
•
- 11.0 ^s
V.

-------
DOUPLAS REDUCTiUN
Douglas, Arizona
Yi \J K l\
EXHIBIT D
Tfcsfc No.
Date
location
'ontxol Box No.
-> H 0
C Factor
SCfro-MTC OF STACK CRDSS- SECTION
Traverse
Point
Kunrber
, Sanpling
Tiire
Pressure
In HpO
(Draft)
Stack
Teira.
Tc °F.
Velocity
Head Zil
In H20
Orifice
Mster
Diff. A
In HoO
Gas
Sairole
Volur-e
Cu. Ft.
A TM Gas Te.tr).
Inlet
OP.
Outlet
Op. )/
c'"r,y
i;ao.
0 0


Jo
1. 3 9
/ - .rr 7 ?
c c
.7. /J


. l '¦ \
/i9
£.£>

3D
1. 1 o- ¦

' , 01 "
.fc3
15". 7 £
¦)/%
Uj-








i







•
!







;








i








1





1

1





!

1
'OTAL




{

i



•



AVG.
AVG.
WCPAOR







1
w~	Ambient Temperature .	
/o- -j o - ^ C-"	Barometric Pressure	Jt. O'J
7 S'-r. ^ .v	Assured Moisture	i,
¦tt i	 Probe Length	(i:t.)	/.-j ; ¦¦ •-
	/, i <—	Nozzle Diajreter (in.)	r U
		Pnabe Heater Setting 	3
fib

-------
EXHIBIT D
TEST DEPARTMENT
flue testing dam sheet
Rev. B-20-74
Itst No: // .C -
ctor
| Station;
CeLe: /$ -.3 0 - >S
j TCGUTin: /_ , i/., /,'<...
r-iU-n Col .0)
:-fctcr No.:
V-
j final foac-i r.c:
Curiicion ir.'.iji.) :

foc.-tor "0":
/. l? ^ i
| Corr. Voi'. (V-J :
tenirK j: :

Fcctor "?'':
• 11 >
| HiO Voi. Cv.,-) :
°P

*vg. fact.:
«V>">
| Girci.*TL5 Dust (5) •



IvO.
7i;r£
Sarnie | A H
ys:r.-j<
T-;n | T-o.:t
J
?n
Draft

T-,,-O.it |
1
7; T. J
J 1
v / 1 i ° j !¦ t- i

1 . ...J
2
^•5/
i
zh 1 %o \ t. c \ 1 . . i n-y 1 1
3
7-LV-: 1/6 wy j l ^ 1 s U i /. t> j l ¦ ! <• I
J
!
1
.:)f> \2 / •>-¦ 1 l iO ! \ 1. .Aj 1%' .io i I 1 '/ ! f £» t ¦'. O! 1 1 i (
6
r.j- \->'o ¦-> & 1 i Jr.2- J VO 1 -i f \ i i -o, ( " ! |
7
V--1 r<^- ¦-• ! i vA 1 «-1 .->>\ \ < o.<- \ |
e
¦7-''^ 11'< .Jc> 1 j ^ ~x 1 :•: -> 1/. ¦¦¦ -'N I i C- < ' 1

9
7 •"•*•• K- •. - > 1 1 } 2 i ' O • . -1 »i
I r- |

3.0
'7¦'"J 1 ! ^ 1 1 r- 1 .---:
i &¦< ~ i
1
. 11
,7-^ K ? • -
j J? 1 -v 1 . 0 -¦ t

12.
\6f -Ji
j 1 )¦ \ ' ¦> } !
¦" 1 i
33

\ . *'¦ ; ! ; <.v t "7 >¦ 1 1 i
¦7. • - ! j
¦3.4

t-n . r- 1 ! 1'/ l >> 1 /• ¦ ^ ! 1
- 1 !
}'>

III ill 1 1 1
1&

111 ill i 1

IV
3.0

j
1 !
1 1 !




!
1
1 1 i
l'J
M


1
11:1 1 1


1
: i 1
21


1

s i
1
2?



1

1
23



!
1


2-5
25""



f


1



1


1 1
26



.. ! 1 .

! |
21

f
1


( I
28

1
1
i
1
1 1
M
rib







1 |







1 1
311





j

1
32



1 1 1 "

i
33




! 1

1
31


1
1 I



35



| 1



3f.



1 1 1



37


' 1
1 ;


3B !

! 1
!


_J*2_
40


1 1 !
1




1 !


1
Averages

j ti.»
-I'M
-uv




> * '	vv = i"«4.ra
w-f	ft . jVEL_.'.o*tif
•	--------	f'(.3J».Ml '

-------
EXHIBIT D
TEST DEPARTMENT
FLUE TESTING DATA SHEET
Rev. 8-20-74
Test No: // 3" ^ | Station:
Date: -jo - 7 r

TecUran: ^
Si lien G?.l
'¦'otcr No.:
Final fieaoiny: "
fLiruuAon i:.i.i-Ti. 1:
factor "0": J - GO 1^
Corr. Vol. (V--) :
Fitiirko:
rciCtOIT "r"': J , C 0 O
H20 Vol. (v.,,.) :
f\vg. fact.:
Gic.Tl3 1>^st (g) :"
tf CQ 		t>P ' j~ it. n
I	! vkc
No.
Tiir°
SnrrDle H
Y-3 ! v< c
Ts
Dra ft
R,, j T-.r-Oat;
T-In | T-Cjf. | ?n
1
I-0 ¦: 1 /o-ao • t -7 P ! 2/ l 0

i i
2
Ti S
¦Ji"}
1 1 1 •(<;
/ 7- i i i ' tr c-

3
'/ : -J
1 1 ')•¦} 1
i\.S\ ! I

4
y 1 ' 1 li Ji 3, J I "7 0 1 *j | , : i"' i I i !
5
C' V J 1 i
1 ! • i !
6
1 -•=—' - 1 |
1 1 l
1
7
Oi- ! 1
i 1

!
8

i,i ||
1 1
9

III II

J .
10

i ! 1 1 ¦ 1

1 !
. 11

i 1

I

1
J2.

! 1


1

i
13
1 III

1
1.
1<
1 If i
I !
i


1 1
I .1 1
16

i ! 1
1 1 1 1
17
! : !
-III 1 1
18
1
1
1 i 1


19


1
1




20


1



1

21


i



i

22


1 !
1
1

23


i 1
1



24


1 1
I |


2!>
25


1 !
• 1 1



1 1
1 i !

27


II 1 1


20

1 1 1
t



29

1 ! 1
1

I
30

I 1 1
1



31

I 1 1





32



1





33



!





3<1


1 1





35


	
1





30


! i
1


37
1
1 : !




38 ! 1
1
1




39
1


1
i


•'.0

4 ?.. it




i


Averages
I—
1


1*

J




4;-7b 1 n.Wr Srt - '7.??¦ScF
-',.1 i'i(anV /t,?i ^cr

-------
RXHTRTT D
P-l
Rev. 0-20-74
TEST DEPARTMENT
TLUE TESTING DATA SHEET
l'est No: / j £- - C_M - IS-
Static.-,:
DUO: to - lo . Tf
I Tenure:
Si 1 i t'i Col fn)
'•'ctcr No.: f
Final Heading: »
IXiroticn (i.un. i :
Pa dor "0": /.oa 3
Corr. Vol. (V-):
1i' Zii'K S:
cactor "F": /,\vg. l'act.: i
Granis (q) :'

No.
J.
Tirr.e
Sample
A K

Ts
Draft

Ur-Oat
7-In | 'i'-Out ?r,
¦) : o i'
o. c c. |
£> IT? 1 //.S

! .

2
¦? : 26~"
-)¦¦¦> 1
7? \ li- \ 1 ' 1
3
-)•.
! 1 *?1 ¦>«' ; ii. i
1 i
1
!>
CT"~
1 "SU,C i 1 7^ 1 | IJ_ i
i !
,£¦-> 1 4-7 ,¦ | I | I |
i I
C
9
\
_ 	1 i i .... ..... !

i


I 1
1

i

10

1

1 1
i

. 11

l


1
!

12.

l 1



1

13

I i 1


1

¦14


! 1

1 1

Vj


i I


1

16

1 1 !


1 i
17

Ill

1 ! !
10

1 1


1 i
19

1 l
1
: i !

20

1

1
i ' 1

21
1


1
1 ¦ 1

22



1

l 1

23



1

I |
i I

21



1

1

25



I

1 1

26
27



1

1 !




• 1 1
1 1
20



1


I 1
29


!

1
1 !
30





1
i !
31








j
32








1
33






1
1
31






" 1


35



1

i


36


!
i


37




1




3f.t




1

1

39




1




<0

HI,*}




1


Averages
S °


1*
- //, S "»
7 i .




' v I"1-	31.1^ '
^ - .1si - l°>*rL %CP
\!u

-------
EXHIBIT D
. FL l;U 77T Z f CALC L A T' o 1f	PC* l/Z
Til ST A?. it <6 -0'-7r 0^Tlr 3 ?C T,H£ !lLj±to 21111
Mbjla :
£~P ¦ 104 —
7^ '¦ 3 %C0z_±Li_ /. ^
PrA
VC,.7f/tj//G

•
R
10 at-
Af
6^3 Pi7"
Tn
9T/ '-A'
A,.
rrr
"'s
^ 6 c5 7?

s { ~	0>4'-4-7 FT 3
Zfl. ^-<-1 (Ucr	OAT A
Ori*l ft /*):<% r = ^f>T(r^-)	~	 *	/	 =
2 3; I £*¦' • *\ t •¦' ^ £) » A-" >1 /J "/7* t-i
P7>) "/, AU'li /" f^-£ ,t Oc}//o.-. 'c)/^- - f (-'C K		 /		 r		
3.	\'*(.«»¦>)*> ¦ .C'Hv £? :cy 7V r s"-^y ¦		+	y	rr2
4:	\'a vro " i'/-i s to iuT<-'-"j)s/o =	+	 ~	6- V). 31- r r v;i __
•?	^C^J. A-ICI5-: /.-.j - /£-C> x	 / =	. ^ ^ <1,i' '-f
£.	K - ((e.o-'/,€•.¦*¦•£>./¦;¦*n i-)/tcb - (/co-	~	3
7.	V/7 /-y - Vf-1-,ro °r/-' V- r^^r)/,oc - 	 (loo -	Y' OO =	(o^J-l FT
£X	/?//«0 = ( '¦ ! •> ~~ V/1 jK i 1!o 5/"0 ~ ( ____*"	)/	::	tpn
9,	sd =1- e^o = i -	=	,rjH
to
\ Ci,'C.Ol'.>£b Vj/\lMi.ni - C-.O/eq * S~~?0- % / 0 ?-. + O.i)-4-k /.2 f o,"j^.K /7i(? -t-o.ZF* -/'-f 'I ? z 1, <-
.>	+ 1 ft a^c. - ..I'M K Vi-t + IS* -ort. <	z?j-8

-------
JCOOHCC T£'%r CI) LC U Lft-r/t
EXHIBIT D
Ptr 7.J2.
T/rsr s*'C. /Itt-Oi -?r
1Tc - 8 S, 4-fi C,
/ 7,: A P £-5. -v & < _ \i_JSjL X ~-i-_ _ 7-f- I pre
AA /I	F MX *_2iii±
/s;	5J, ' 2HgI" >J - ¦. •*xr?- •	
A/ &k 7^ K J+dAlitl*- -7-n'f ,d~'* *¦ -1L1— * n-
/£ I - '^/t7, =	__/	 -
= J£L T'^
hOG
/¦7. ci -- (c. -3 77 a /<. * /_?, 1; /i >• /I /rs
~ ^	.	/r . . ^ _
- 6. '5 7 7 1 to* * -, 3 * ?r. 1 * 60 3 * JZLJ21. / *''* =^7<6X/a'
/A /v-m1 ^ ^ ct' = 		__*	.:
/V>	c-L £;/?* - 6.0.4-- * JLLL* ^07
it> S f 1-l-f
'Jill:.
/trl
7oV KCP^

-------
DOUGLAS, ARIZONA.
EXHIBIT D
IfeSt No.
Date
Location
Control Box No.
-»1I /
J' /.1_
/O
' r.- //,
' J '/
J -r
"ft if.
ir&.-'ho-fci^c'C/n?)
n>f ,»>¦><.%/<¦ r)
/. 3;S6x
/. a.-CO»
¦teltcZl*- • CKierm^f *
/ . ' SCHEMATIC OF STAQ< CROSS-SECTION
e 'P. vs> 1 ^ '

Traverse
Point
Number
, Sarrpling
Tiire
Pressure
In H2O
(Draft)
Stack
TaTO.
Tc; °F.
Velocity
Head &'l
In H2O
Orifice
feter
Diff. A
In H?0
Gas
Sanple
Volume
Cu. Ft..
	v".			
A TM Gas Tc:
Inlet 1 Cu:"
Op. ® 1"
' f/9^
»"£ ^
),D5
-yoo
,/ s
A^r
srs-a
<0
r-;0 i i / 7
J'
v .T"'
/,
' i 0 0
, J  r
t. J A
w- 7.r

- ¦ I a/a
tL
fo
/.fO
¦ 37 ^
Ar9
/• A y
r/O -°-
'G ;
•7/"' U

t
£0
/./ 0
'fo C
' ti5 0
1.51
^ 'P-3. IS
V "7
"v !/V

«P5
¦
'to 5
¦ '
,7C
¦vinjj-
' Vtf ^
7 ) !•?. ^

50
1,10
'/Q0
,67s"*'
.76,
'J ^.i °>'o
/ ?£.
I
7/ i L-'.








|


•





I



























1
!










TOTAL

if- 77
10/!
1. Iff
7-r^r
7 7.5
• /0
-------
Test No.
Date
Location
Control Box No.
A II Q
C Factor
)
DOUGLAS REDUCTION WORKS
• DOUGLAS, ARIZONA
Hi
•EXHIBIT D
//£- /?¦''
!'¦
ip /
/>!<
, a o>~
? I'tr-
, tV

/ t-
Ambient Temperature
Bax are trie Pressure
Assumed Moisture		
Probe Length	(ft.) /c-' '¦
Nozzle Diameter I in.)	.•? :
Probe Heater Setting 	5
jr-Z
£
SCHEMATIC OF STACK CROSS-SECTION
1/sinCf
Traverse
Point
Nutb::r
, Sampling
Tire
Pressure
In H2O
(Drart)
Stack
Teiro.
Ik °F-
Velocity
Head A1
In H20
Orifice
Meter
Diff. A
In HoO
Ga_<»
Santile
Volume
Cu. Ft.
Z\ 17-1 Cos To:n.
Inlet
OF.
Ouulet
°F.
ci-
'' ° OO
\.!f)
'i>. ^
¦it
.1.11

9C/
y V

I
¦ 0 r
1. v-
> ¦ '
. n
¦ /• / ?
'/?, /. 'J •- •;>
• :•
- lo

/') 0
j >
'.L1
Hit!'-'?
' /
, 1
• ?¦
iC
l ')
m
, ! 1

til?..211

•
S
J>o
}.or
¦ ¦ Ll02

i. ") ?-
:hi "no
//, -}
" .¦ -* ' *- *-
3
.? C
1. Do"
Vo 0
JO
1.6 2-
ft/7.
10?
r - -



'¦loo
.n
. 7P-
*^¦77. 1 ? /
10''
' '
-------
Test No.
Date
location
tontxol Eox No.
b II 0
C Eactor
CP-
¦.orfa.
DOUGLAS

er
REDUCTION
DOUGLAS, ARIZONA
WORKS
vjJ<-
Ambient Temperature
Barometric Pressure
Assurrved r-toisture
ProbG Length	(f"«)
Nozzle Diameter (in.)
Probe Heater Setting
EXHIBIT D
7
' ¦' SCFJEWATIC OF STACK CROSS-SECriar
Traverse
Point
Nuator
, Sanpling
Time
Pressure
In HpO
(Draft)
Stack
Terro.
'JV °F.
Velocity
Head ^1
In H20
Orifice
l-i2ter
Diff. A
In HoO
Gas
Sanple
Volurre
Cu. Ft.
A TM Gas Te.Tr>.
Inlet
Op.
Outlet
Dp /..<
\j)rst

Un
V'?#
,1*5
/. CW
/
et2


j
.DC
1.10
4oc
¦ no
h/2

/o<>
C


/I
/.OS
Ve o
./'D
/./a
0
lot-
&y
/o .c

n~.
l./O
H00
'.HO
/./x
yrc,L ?
to (-
?'-/ 1 /o. 5


1,10 .
' " *7o ?
.115
/./
> N •
Up
<-/o 5
.0 7
.72
US.7 5
JcL
6
,0~!C
.77
V?, $. '
c o


r «" *
/. '1 ^

.;! )'¦)

0 <
I !j
"'90
'Pi
'J. If


if ? !///'

) 0
Ih'ST-
'/?¦ ry
J3
l
-------
PHELPS DODGE CORPORATION
DOUGLAS REDUCTION WORKS
DOUGLAS/ ARIZONA
EXHIBIT D
•NEIGHING DATA
Test Nurrber // £ - 0 < - ^*"
Date
JL
. 3 ¦
filter § %
Weight
¦-.Tare <»/fi LTi,t
¦Nst Gain
E.iv\pr-j (icTvK t. T|v£.fc_-
Gasket •
Weight
Tare
Net Gain
Cyclone (By-Pass)
Weight
Tare
Net Gain
Probe Wash-Bottle S
Gross Weight
Tare
Net Gain
Patches Bcttle n
Gross
..Tare
Net Gain
Total Particulate
Weight Gain
5?/
81. ?JiZcj
¦ S ^>1
go.
//. 5ll.ot/
//. r ? f
.oo a i
Inpingcr ftl ^
Contents
Gross Wt./Vol
Tarc/Vol
Net Gain
Iirpinger "2
Oontents
Gross Wt./Vol
Tare/Vol
Net Gain
. c?5 33 8.2
	 ,600 0, ¦
Inpinger if 3
Contents
Gross Wt./Vol
Tare
Net Gain

I tTo r>\. k•' Jr:/>. .
r/pO Sil-

Impingcr 84 - % &	pLo6S
79, ?

200 g. Silica Gel
Gross Wt./Vol		
Tare	j, £ 3 • %	
Net Gain		
" :r,.,f>,\j6E££- ..
A
y •/S'o tA. i.. ^ p. a.
Total Water	^
Voluna Incrc ase			

-------
test Dr^A,\-r>: ;cr	exhibit d
FLUE TESTING D,"»TA SHEET '
8-20-74
t No: nft-Dl--)f
Station:—//, 7- >• „
Dstc: S ) f

Tesbron:
Silica Col fc^
'/2ter No. : j--
Final Raiding:
Dirat^on (iron. J :
tor "°": /,Ofl(
Corr. Vol. • (Vm):
•*^rks:£//f^
:or "F": (?1|
H2O Vol. (Vw) :
-ivg. Fact. :
Grants Dust (g) :
(of< o-^b i--1 ¦ c*1' ^ ^ ~ ^ 'j a ^ >v_
"5.
Time
SOiTple
•A H .


T*t-
Draft
*n
Tv.r-Out
¦T-In
T-Out

L
O
0. j ')

~7
¦ : ^
- , -J.
~y ,¦ i 1

>
F


7 7
; '
s . '
<-0 I !

3
'1J


11
— 7 >

Tc; i


|	
>
' 1

-
^ 1 ¦'<
• ; f


) 1


1 ' -I
^ !


0 I -7 7



7 •?
5" •
" ^ i


7



7 ^
7 7
iT. ^
; t


t	
1 .




1 /
w'
1


i. s


-7 ;
-
• \ .
> |


JLl>



"7
/ -
' • .
1


1 \
\


"7 . '

• ¦>
Q- -1 »


\
i ¦¦¦

1
-v c..

r :i 1


;
liJ

1 7.^
" >-
. f.
u ¦,! (


1
f-'i\
rs\ i ¦>
1 ' '> J
'j ¦ •'
-r
-------
EXHIBIT D
. FL /-¦'cT	«? f C f) L (. L : A A° /Lr	P6- !/l
T^T Ar. !0<6-(-<-* Pn--,r 1L^lL2£ r,Mc lALULto HlfL
A p '>'//,o	l/co 	 /'/: . Ra	^ nl%s\ '	/¦ °5~ ''f7*
Zrt- .'*r'^^:'1 U;T 5l\?j |)^7'%
C>ri-l ft t-);i±r -	^'h/z^.k ~	 *	/	. "
^8, I Kw t*\ I v	ii/)
O i f) "ft fl'iC'T. ,' -^'i^rC 'c J)///3 VC j	^ £-0 A.' 			 /		 -	_______ X
,	.¦	\	f	\	-
3. V»v (<-¦-&) c;.i - . 11 •" ¦ C V 7V (iwa r s"- &Vl\* • <¦¦ ^ 7 4 (		 «	)- <9.9 7- ^ n •'
4 W vro " lv-i z7b ^ il.'fc-•>)*¦,-¦> =	4- ' -	. 3"7- 4 A'/cist- r 'f'C *.-•>)srej/j ~ /£¦£¦' x ______ /	**	-^2/ ^
£	Kr (/'f-o - '/c\^o. /U ¦<¦ r)//oL- - (/co -	)//'°"t'' '	JhJJO—
7,	V„ i^y= V,4 .,ro('^'— brV/.	OC. -- 	 (lOQ~ )//00-			 Fr
6.	£/,0 r f '-.-O *" V/VJ >>/
-------
EXHIBIT D
£OURC£ T£'<>r Cf\lCUL/l-r/tA."i.	P*r ?. / 2
re<>r a'c. <0* <21-nT
¦	 £'
'4, . Vs - g£. 4S 7; Ap s 6-5.^S9 r/--S
i //s /I	r
Tfr " \/m_ 7> /% ,	* -IgL-- " _J±^_ .	=iZJ^_ F'^
A,t> e K %, % 7>gQ<.»a * .7-2. y.i *	* ;b£d—
/£ I -	=	/		 -
/7,	=6.377* /c- * ,8J vi A s /I/n
- 6.377 X(Mif x • *=) » iTQ «
/A	c/ - _	*	 ~
/£ ^Acr - C. C-L-. v;/?s .- 6. C.4-- *	'* 	 -
z*. /p^~ "
o s <¦' /r;7
^ 2 37- /«/
U " •)	//// *
£2 3 kcf^

-------
DOU'GLAS REDUCTION WORKS
DOUGLAS, ARIZONA
Itest No.
Date
Location
Control Box No.
A H @
C Factor
CP
/OR -Cf - 7:
id-? i-7.r

J£ll±d£A-

I „
/•? r
Ambient Temperature
Barcmetric Pressure
Assumed Moisture
Probe Length	(ft.) Jp ' 7oX/.*¦'
Nozzle Diameter (in.) • J 73 '	" f-
Probe Heater Setting


i>r.^

SCHEMATIC OF STACK CROSS-SECTION
/O
//
<£> /jS
Traverse
Point
Number
, Sairpling
Tiire
Pressure
In H90
(Draft)
Stack
Term.
To °F.
Velocity
Head .A 1
In »20
Orifice
Meter
Diff. £
In H-?0
Gas
Sairole
Volune
Cu. Ft.
A TM Gas Terrp.
Inlet
°F.
Cutlet, y
Op.
k; /
iL:aS
/, 6>
2^0

, V«r
^'5-2
?S
7/ 5
/
30
/.OS
£SO
,*3
.V?
^5 SAL
10
71.! 5
' /

/, 2.5
$SC>
>° 3

Sin. 29
? *
70. \S
J
S
,%o
<^o,p S
3l(,o
- 02S
rSL
SSI.SS
frZ
13 7,
1
l£>
b*S
fx 10
,0Lts
,7^
5S'l 1 b

73 ^3"
X

I,os 1
D.lb
,D50


 3
<7^
//
X
4*0
/.OS
us
, o U D
.?/*
S^L.2DC

7/ II
IOTAL







i







AVG.
AVG.'
WERAGF.







!

-------
DOUjGLAS REDUCTION WORKS
DOUGLAS, ARIZONA	EXHIBIT D
Test No.
Date
Location
Control Box No.
fill @
C Factor
2>TYV1
/Or< - C / - 7

W X
JL
t, 1 s
5->
Ambient Temperature
Barometric Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Diaircter (in.)
Probe Heater Setting

u: v„
l :>


'¦S *JL
£ •o
0 ^ (J
»4. /X'/f —
. . . .	, /SaiBMIC'OF STACK CROSS-SECTION
¦ E Pfl' "t~ 1 ^ *	¦' ^^ b i1
> /'-"j'/sa-. jl"; «	lii- ,I-U 0^:^	J
1;
Traverse
Point
Number
. Sampling
Tiie
Pressure
In HjO
(Draft)
Stack
Teiro.
Ts °F.
Velocity
Head £l
In H20
orifies
Meter
Diff. A
In ihO
Gas
Sanrple
Volums
Cu. Ft.
A TM Gas Tera.
Inlet
°F.
Outlet
°F.
^ /

/.*>$
3*2 0
,0i O



/f./
1
to
1,0 5
' 33D
, cU'O
. £.U
¦ %
XO
1.! r

.3? ^
'.of
<"'? '• ? 5
^ '¦
7J 1 11
'
?r
/ ' r
•< To
,-v;. r
') c.
1
r??,v
7
0 ! / •.?
"5
T?
A./f

. cfio
l:o(

^2-
?0
5
'it?
/, ¦' r
"vr.o
. 0*0
/. 1

^ 2-.
7 ^
¦ >
•7 r
/..'£¦
V> >
' xO$
'.'n fMW
fz
7 O / :¦ .'
Pi
Ifr'-fO
/./^0

. <^0 |r
3 0 c\
• D&Z
.V2.
Sit.'ztf
9?,
^ I/O
y
10
IJO'
3 fto
.OL
.<50
C.0/.3 7&

' /¦ x
r.Xio,
IdXl
c.i .s
7?/'^
jloi



/
\ • .
1

to*''**'1
AVG. '/Z
AVG. 7/
WEKAGC

t.Ol
l-i J
/ 0. OS Gl-
o.i jT •

.
;, i f n

~ /
/
C*-»

-------
PHELPS DODGE CORPORATION .	D
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
¦KEJOTING DATA

i&.i 2 ts.
•(of
n «
Test Nurbcr J O P, ¦ C f ~7 5
Date / O / ~ 7 5"

Filter i
Weight

<1—
u 1t-.
Tare r/.77Ti	^
Ket Gain .nil rT-r-j. ',-i 4-
.j'mi
Gasket
Weight;
Tare
Net Gain
.3 2oS" WAjk (L« r Flit" C,a'i"
IV.0^9
Cyclone (By-Pass)
I'teight
Tare
Not Gain
Probe Wash-Bottle §
Gross VJaight
Tare
lfet Gain
Patches Bottle il
Gross
Tare .
Net Gain
12JJLQ&-
¦ OAS .3
* I¦ 33 1 1
j 11 ? ->e/
r>< 0 * X ?
Hipinger SI
Contents	)S0 mi 87)°' P/ro,2
Gross tvt./Vol	.f'/ _?	'
Tare/Vol
Net Gain
Ki>~r. 3
If (¦* • c1
"cT
Iitpinger 52

Contents	}S0^!. v, f	
Net Gain
Inpingcr #3


Contents .	"2~Dd,,-). 3 0 fL Dx
Gross Kt./Vol
Tare
. Ket Gain
Impinger if 4
200 g. Silica Ctel
Gross Wt./Vd
Tare
Ket Gain
b vy; 3
Total Particulate
Weight Gain
v*-5i
Total Water
Volu?Ti2 Increase
£>V)U fb-l Cj

-------
8-20-74
TEST DL'.r'Aui'M^Y
FLUE TESTING. DATA SHEET
EXHIBIT. D
Test No: t ? -c -V J"
Station: ^ •*. ,, )V
iiate: ^ / 0 ¦ * 7 r
; Tescran: ^ > ¦
Silica Col (c)
ivi=i.er No.: j-
Final Reading: «
IDuratiion (nin.) :
F—tor "0" : ,-! J a
Corr. Vol. .(V^j) :
jteriarks; . / / ,
cv &/>/! A ¦
TV-vr/*?-, it-Jp\.
PT X • • ' ¦¦
E tor "F": . ofu'iH
H2O Vol. i'-'v;) :
Avg. Fact.:
Grains Dust: (g) :
*>f(l'(*((>( . /; ( L- ?•% C,
P* ¦? r. ^ y->



/
fc~
i-'l
ETSP.





No.
Time
Sainple
•A—H
T-In
T-Out
Pm
Ts
Draft

Tvr-Out
L
'•c ' 1 J
J.O J
1 /,
. -1
C -!
' " ,*1-
" ' . •



>
">



J

> ^ .



3
• J


' //

/
\ . i






- • f

• )
•/•<:• 1 ' / "j-
¦. 1 1


>
--

V
"J
•;¦ ;
' 1



>

—
7 ">

^ ¦;
• 1 • ••
'

1
7
¦/ \
i- ,
''



¦¦ :


S





1



)





1



»


1






11


1






¦">


1



1

}


i


i
1
i



1

1


1.






!
1
1






1
1
1






i

1

Vs 1 '7.3f-
('r<-l .1 i-V/r-c.
3 yn->
- P 3,oT


1


19
N
•1
£
(?.!¦)¦ -5. ^
; -/f3



i




1 '
1
1



6u (j ' 0,
2i v /-. 7.a 7 ?¦
. 0/^.T" 1 ¦


1



1 '




l


23






i









1









!


i?b






i









1









i









i


30






I









l









1









1


31






' f









\









¦ 1









t


38






it









\









1


. Averages ' -j
Ltiito

no
ri (f

0O
PO
c- -
3 ^
7 03
(JV-
	
V
»
*
f J/-~ 1-Wi FT '
V wf,.~J)= ."5?
OPT
" \ZJf(/; 2 3.^6
% /• "C»

-------
EXHIBIT D
. PL U£ 'r fg T C.flLC U / ft 7~' ° 1'	P& >/z
T*£±t A.", 1-Cj'i^ 0«T?	,~/Vc,	Af -T/7 Pt7-
£• 7.1*1* ^iTc /"?>.•> < 7,^'£! .M l/cr	7a?.	'A5	f. >¦* Fj
V/m ^7-6Fr3 Tc^Tca 	cr	*s. 7*9 a	7?	^ 	'/
*/sct	%co,	/. ot	,	%*;. 	rs„r	
/. I'/, sro =	V/.^/TX, - /^7/ *	J£!Z/	FT 3
>-u'-	.		6. ~7 / £
2a.	U:r 6>-3 oat a	CL.tb
J	y 5" f
= fWfr^) £H=	 >(	/	* _ *7^T7T
O ^	^ ""
8,- I'Con	iJ
D7>", %^c^i '(p. ^C^y- /6C a 		 /	 r	_____ ^
3. I'v (<-•-•*) <¦..> •• . G3=Fr l-i -- . £*=?=/ (fc^-A T S./-  , TT^5TV	J	J	,
Vi vro " iv-i 5 70 "r iu,r^.'J)',/o ~		 + ______ "	^~tP' 'r-
6'	&fl±fcr r /CO l4'^—i)S,-.^/l4 I,-.; - /£&¦ x '¦^+r)n /gf.// . z	£/¦ 6 z
K. " ^(T'O - /iC^^i>. /A.-/s r}f/ct> ~ (l Co — ¦ yjJ/c~L< '	p. <7 b £>
7 K-/ 6: -			 Fr?
8/ Bfi.C " ( 1^5' - ,'i')/1/5 i"0 " ( ¦ "" 	.)/	"	¦
9. £?d = /- ^/^c. S I -	 -		.<773
/6\ = C. 0 / :7 4- IV/V/^ £/;>' - x	ay
 Cs - /• 4-3 2 x /O cs ' /, 43 2 / /	 =	/,7,1 v> 0 {.ry
rr-
r-
'O'CF
12. Md = 0. 0 4 C 7. s°^) + o. 44 ( c/^ COz) t 6. V2(^.O.a) + G Zf CO)
	+C. 	+ 0,32*	 -t-o.ZfK		 =	/	
/3. /v/5 £„ Md + //f Atc . r. J22— K 7-^-/ + /B * .o\l -	Zf-F

-------
£OUHC£ tL %7 C/)LCl/*-/4T/c a s.
EXHIBIT D
po ?./ 2
Tc*>r *'c.
M. . Vs'	c.
/ TV. ^ f? - #5. ^ 8 x jj£_
/'A /T
n°,s x .^rie
/7. f Ff-'S
i&- V/
A< Tc /% _
t.l.t-Lr x 71®
^ - x_£fiZ2
2s-sn
AxQK ~rMpu	* 7.t*.i^ * 0.9C.O * ^/£2._ * ?r'"?3
_ /£• ? f /'S
/<& . J = •**.-/IT* =
/-
/. <5 (1
n. ^ s 6. -3 7 7 X /£> ^ 8J i; / s /I /n
= '5 77 x /£•-	.XJ22L— x s~'7
£
-r /
/A /V-'a - ^ CS
* t <,>
.f
£S Ci~H
~ 7- ?-.S"~" /./y
yV//-:
/^. ^/,:r - £. C-6 a^/?i - c-'. ^* ay •* ^7
KC^h

-------
1
v. 8-20-74
TEST DL^AuIK^V
l,FLUE TESTING DATA siect
EXHIBIT D
'-st No: I j-i _ f ¦> - v r
Station: ^7. ^;:-
Date: '} J :J. -/ ; •

Testiran: ... /
(_ 1
Silicn G^l (cr)
jstex No.: j-
Final Readir.q:
Duration (min.):
ctor "O": 7./^
Corr. Vol. \Vylx) :
Reoiarks: ,
¦Cp Zfr AcUJ P
ik\^o!c .( A'-r'¦ •
v. f , . ./
ctor "F":
H2O Vol. \VW):
ivg. Fact.:
GraTis Dust (g) :
"Sll ¦] to-f/h)?' .1 1^.^:1,
No.
Time
Sample
u.
A-H-
KETrLR

Ts
Draft

T^/-Out
T-In T-Out
1 ~fm
J.
•.X()'.i ,y..vo 1
^ ^ 1 L" \t
1
¦> - ! A 0


2
I
h ^
J <
1
I-'i-
•' 1 '¦ ) :-


3
•i
T
0«

/, l-
i


A
¦? t 1
< ->
(i i ! :> W I I.z.
-? s 0 f. ¦'


5
¦> j 1

 1
<. s.i
r
'

'< — 1


«
1
is J
7

1
•: ¦' •' f ' •;


9
/:; 1
~v> I '
- ! /¦/.
•	 f


10
1 1 -"o 1
or
/< 0
S.'-S f /o


11
15. t „-?f. M
-¦> I 1." «.~ I
/. V
f 1

12.
1
I I

I


L3
1
I l

f


If
1L



1

f-




I I

r


.6

1 1 1

\


7

III'

\


jl8
1 '} i
nil (',s.7.V\{:.3
l/= 1

¦ 1

• 1


A
i
I I

1


5
' jo :>i 1 ~ //•''')/
'/l. ?7






t








I


38 !

1


f









1


3










Averages.
V
'





-------


PIELPS DODGE CORTOnATICN
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
7.
Vvf i filter
¦}i71 3Nl
WEIGHING DATA
Test Nirrber /<3 9r- c/ - J
Date
/£> - x 2 - 7-5"
,if«r
,/K3
Filter §
Weight
Tare
Net Gain
Ho/
/yo
AJc uj
3/uf
<,
r/
^	9 1. (, 3 ;
/_, , Impinger 51
.?/"	Contents
J* '/¦ T' ? .2- V
j 'I Ttf
Gross Wt./Vol
Tare/Vol
¦fa poTTlc %o.1C
. Gastet
Weight
Tare
Net Gain
Cyclone (By-Pass)
Weight
Tare
Net Gain
Probe Wash-Bottle #
Gross Vfeight
Tare
Net Gain
Patches Bottle #
Gross
Tare
Net Gain
tx <~X	i v Net Gain
1 1J0 & *f
-J 3 .??*>?
i Ol (, A
?, jy -A a -7 ¦
7-3- 3 3 i~7~
g. & a i ?
Iirpinger f!2
Contents
Gross Wt./Vol
TareA'ol
Net Gain
lupinger {J 3
Contents
Gross Wt./Vol
Tare
. Net Gain
/~S~a » fC'7r. ?-Pr;n;,¦.-/
/SO ml- g j-Q r/c ? - frcf.T*!
¦xpo W (?3o "/•*
' Inpinger j}4
200 g. Silica Gel
Gross Wt./Vol
Tare
Net Gain
6-is. '¦
Total Particulate
Weight Gain
3/f ->~v
: u~
Total. Water
Volima Increase.

-------
DOUGLAS REDUCTION WCRKS.
U	• DOUGLAS, ARIZONA
Test No.
Date
liocation
Control Dox No
i> H @
C Factor
O
& 77Vj
/£ 3'/./
y
?/


/0
).o r
~b^/o
',ol


i 1
7V 1 10
1
))sn
0 #
h

'AO
I if
¦ird
. .A .'¦>
• •7
'6'/16!d~


3
if
ur
\-TQ
•0 9

b il.
/Do
9^
/A
/0

30
K)0
l6i)
•c>/
• 5" ?
4 i./
to 0

Wrsh
a o
h/o ¦¦
^ 0-
.OP
/.*
3-J
?b
i /'/;
)
O-T
l.lb .


/.O'T
15~7.11C
1/
?3
/D

/0
h/o
Z90
togs'
A

/
1 j
-nl //
2
K
¦Iff ¦
VD
,01
;y? •
bSl3v<
in
1 *7

zd
hof
3 SO
•Qti


ID n
IxlfD
3
2>r
).0

.07 f

666,023
ft
\ p

3D
1.0
?2
fo5~
•7


il 17






41. >i>


TOTAL



r.ts"1

67.t-»r

1




...


AVG. fl-S'
AVG. T 7.''
WERAGE

1,0^
3 ^
0.0 z*'
O. 7. O'



i
(*} 1 " fc.)


-------
DOUGLAS REDUCTION
DOUGLAS, ARIZONA
WC.RKS
Stest No.
Date
Location
"tontrol Box No.
& H @
C Factor
/£>. 2. 5" TK ¦
	L	
EXHIBIT D
3/%
2 S~- S7
h 7?
iik
Ambient Temperature
Baranetric Pressure
Assumed Moisture
Probe Length	(ft.) /<9 ' T? r/,?,?
Nozzle Diameter (in.) Q.21\
Probe Heater Setting
3 »/o

I.W
' % SOz
^ -Let*	j >2*/ COz
£ SCHEMATIC OF STACK CROSS-SECTION •	° °A On
0- °Zc.o '
Traverse
Point
Number.
, Sampling
Tine
Pressure
In H2O
(Draft)
Stack
Tero.
Ts °F-
Velocity
Head A1
In H20
Orifice
Meter
Diff. A
In H-jO
Gas
Sample
Volume
Cu. Ft.
A TM Gas Temo.
Inlet
°F.
Outlet
Qt?^
/) onk

.1:0

¦ DG
, 0  .03?
to z
5 f 1 .r ^

20
r^r
J. n 1
. 01

/J 1 ,c\ ?Q
V
?yiy
'
irt oo
1,0
vo-
\0^(
¦V2
bll.vZ
V
7/ 1 lh$


f.O
2Z0




1/
IOTAL






¦j?. 'i
1







AVG.
AVG.
overact;







'
iar

-------
EXHIBIT D
FL U(I Ti.'ST C.f\LCvAtf~r/ Tt Mc	,J±^
J&BZ&'	_
(\ P '	/>' //L0 Vc?*. o 	 /'L	;*¦' Me. Cp O.^"^
W J" Mr-	__l_ g 7T 2*12L,'«-¦/^	.y/? Ptz
& ^*-".1 ^--ci /tU< z±LL_.w//g %	"Ay a,.7.5-)x^"' n~
fin	/„
		 . _				 _ 			 .. n/-( /.si f.>* r j1
Vm 6 ^ FT3 7^ ^	^	*¦"/? ^	V/
•/scfc	/.Co,	/.Ct	___ -/a; 	 p«
r
Ff-
»
rr -
I. I'/., sro r '-v^/ V/.J r,,/^ = /9r-7/ * _2£iz/ =	ST.?*? /rr 3
5V5" &,~7Jl(,,Sc\-	'		 6.1 ££ /-¥^
Zrt.	Urr 6i*-B data
0	TV/,/>);><> r = ftflrfor/) R H//?mc =	 *	/	 "	^ _ "T^TT"
2 S,- i c*.- • *\ c *¦ /'fit/*'it /j /^
D7>J "/* file,*. ! -' ,t(~<.)/fft.-,.'0 ) 7^- - / oc h 		 /		 -			^	°]±
1	.eWt.4 .  ¦¦ • f^=Pr '.'1 -• ;ej=9t/(lc^ T S^CsA- . C4-"7 4 (	_ +	) =	
l/.j--^- 1/ ; jZ22L(:rt..S(.') - /. S"?	?v^n
^ Vi. vr& ~ l'/'i sro "T ilv/rc-^^svi -	4- _ -	'. JS,-.a/K- " /£-£' x /-^gf-r?7 /=	4/6? /{
K ' ((00 - '/ c^i-b. skii r)j/cti - (/Co-	-	O.qLo
'7. Kv, ^./ = VA(- ..ro 0 rv% V>:<<>r)/,oc - 	 (/oo-	)//^c-' - . 		 Pr?
6^ 6^/, 0 r ^ «, r,i ~ V/-7 i"0 = C 			 "" 	^	/
9. 5"d = /- = 1 -	 -	,' - g. Q/5-^ x in / -	.'0^-? ^
//. Cs = /.4^2 * /0-*Cs r A 432 x/o%		 =
/OSCF
(2.	- O. C li ( % SOz) + o. 44 ( °/{ C02) -t 6, --;2(%0.:_) + C. 2f fv,+ ^o)
~ 0. 6^/ * ^___ + 0.4- 4- ^ 		"J" D< t? ii *		 J- o* 2(* *	-	'
/3 /v/5 c ^ Mj + /fi A.v. - ¦ ?7> k 2f./ + /B* .oil. -

-------
EXHIBIT D
£OOHC£ rz's r CO LCU L/AT/c a' S.	P*¦»* * 0.9CO *	< ZS.TZ
/&.. X - ^'/'l, =	_/	*	-A£-L
/•z £ - 6.-3'77 x /o * /£ /4,- /T/ri	£
* a 6, 3 77 x/S^* * /?-7 *' *f'7-S / 7«?° "
/>So-/V
77 '	' . . -f
IS. pf'1 i\ * £ Ct =
v: /. ?,/ v, J =	' ?-
'-0/
///*
/?. fflor - £. C-6 a^./?s - C'.o.fcA ay '* ^'7 s	- -<"r/ KcF/i

-------
TEST DLli'Aivi'MjM'i'	EXHIBIT D
FLUE TESTING SHEET
ks*. 8-20-74
;t NO: j -J./ -f~] - v r
Station: ^7,
Date: -7 J :J.. -/• ') r

Testrran: ^ ^ /
Silica Col fcr)
•:etar i\o.: (-
Final Reading:
Duration (min.):
tor "0": ././;/
. Corr. Vol. (V~):
]/) :
ivq. Fact.:
Grants Dust (9) :
"S(I*>(},( 'TH-il-1	!?'	/.^. *
!o.
Tirr.e
Scrapie
TV.
A—H-
KETnLR

Ts
Draft

Tv/-Out
T-In | T-Out
"fe
1

• v . 1;
'! ¦'
O 1 (" s'
¦-
> /
A O
1
2
<

h
¦y 1
/ •-
, >
1 ;


3
~ j

T s-
(/ 0. \
/.
:•••' • ¦ -•


4
<1 S"

v _>
(t V ! • V 1 i'Z-
•7 S ¦.") 1 '¦ .


5
y J

1 If -J. | 1 /. 1.
-7 1 S"


6
7 c

.7 . i

1/
/. / ¦

1 >.
•' • is


7
0

<_ >7
« ~.
/ >

¦< ?^\ / . ¦'


8



r>l


"'1


9
/:¦ i

J
/r
- ! /¦ 7. I ¦¦¦ ¦ 1


10
i '•


i ,'/-r I I- 0 1 S"| f.fo


'1
2.
t \ 1
.ff. 1'!
1 I--1 1 i, v 1 *\1




I I ||i


3


1 l





: 1


1 1
1



"5


1 1





. 6

1 1 1





J?

1 1 1





. 18
V/» - "
/-7.3F rrs.7> i?o ¦(•(¦ 2





: 9

"1 ¦ 7i 1 1

1


! 0
1/ ,1 ' .O ll
3 + !//• A -
!. I?i ,/f*

1


i *1.



1 '

1


! 22



6,1 1

1


; 3



1

i


! 4

j

1

1


i ZrJ
/¦ j »
/ 3
- 11.tn /
'/l.Ttii"
= =111

1


' ''6
i T~
! 0

'

1

1








1
1










! 29










! "0










1 1










1 2










i 33










1 "4
1




-



I 5









¦ .
; .6










i 37


\






1 :r i . _

1






; :'j










! .0










! " .vcragcs.
•
1 	 ...



o'1
">
V'~>
14^



t I
t


-------

S6>-
PIELTS DODGE OORTORATICN
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
7.
7 J. J.*/ Vvf i filter
&
A)e ij
Weight
Tare
Net Gain
Ttt #>ajnc %o.7L lb

<*
'/¦
* ^ */.
6 3 ,r j-
S W- *; ") I V
/, , Irrpinger SI
's
Contents
Gross Wt./Vol
x '* T>
Gastet
Weight
Tare
Net Gain
Cyclone (By-Pass)
Weight
Tare
Nat Gain
Probe Wash-Bottle #
Gross Vfcight
Tare
Net Gain
Patches Bottle S
Gross
Tare
Net Gain
'-SX£J
t\IO & 1 '
Tare/Vol
Net Gain
13J11 *-?
> ot o t>
V	JS -7 '
7- i . 3 3 I V
g. & on
Irrpinger #2
Contents
Gross Wt./Vol
. Tare/Vol
Net Gain
Irrpinger ft 3
Contents
Gross Wt./Vol
Tare
Net Gain
/J-Qfw/ & io7„ 2-Pren-,> -.-/
/SO ¦)"/¦ <3 
-------
DOUGLAS
REDUCTION
DOUGLAS, ARIZONA
WPRKS
Test No.
Date
Location
Control Box No.
Ah @
C Factor
C f>
bfM
lot - c / - 7 r
!Q - 7- 7 - 7 J"
A/,; 2 STK
/	
/. -?.r 	
I • 00 ¦)
Ambient Temperature
Barometric Pressure
Assured Moisture
Probe Length '	(ft.)
Nozzle Diaireter (in.)
Probe Heater Setting
EXHIBIT D
r/
'i-
3 "/•¦
Jl
O. J 73
a> ¦ Rlr
SCHEMATIC OF STACK CROSS-SECTION
Traverse
Point
Number
, Sanpling
Tire
Pressure
In H?0
(Draft)
Stack
Tenp.
Tq bF.
Velocity
Head Al
In H20
Orifice
teter
Diff. A
In HoO
Gas
Sarole
Volune
'•Cu. E't.
A TM Gas Terro.
Inlet
oF<
Outlet
°F.
sooH
/COD 0
/.or
330
.01
)M
6JLve
9 H
V

t
'/
Of
f.D
' 33 0
. 0 b
•1
(y/.nf
1 y
y/i f?

/0 ¦
id r.
3 '~/0
,01
htf
>31m 4
3
3 5
i./r

 <¦/
10 0
76
10 I iQ.2
yJrs-h
00
l./O¦¦¦¦
^ o>

l.z
yii'hS
)
o>r
/,/(>.
3<£.5"

/.Ob"

1/
71. ID

/0
1,10
3?£

A 10
GSLXlO
i /
i./
-nl //
X
K
ur ¦

.01
in
1513 i/<
11
n 1

' zd
1. 0 5"
350
¦0#
1.7-

loo
9 *.1/0
3

1.0
^ic?
.076"
bOb
(>6 6.02.]
71
Q-i i ^ ,5"

3D
).0
72 r

¦ 7
Mm

W 1?






t,i. >a

I
IOTAL



f.t, 11

ut,i
WE RAGE

1

0.0 £*<-
0. lO-

1*


tjjSl

-------
A | UL»I.«*. %J LA^L^JL^ CViaWiVUXUI
DOUGLAS REDUCTION WC.RKS
¦ DOUGLAS, ARIZONA
Otest No.
Date
location
Control Box No.
t> H 0
C Factor
lQ9 " Cf - 75
!t>
3. 7- - 7 r
A)o. 2. s <".<
-L
hJJL
\.Q°\
Ambient Temperature
Bararctric Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Diaireter (in.)
Probe Heater Setting
EXHIBIT D
2 j-.&y
J '/a
10' Trflo*
0. 31 \

2>. SS
If/iK CkFz/f-'-.ttnCFr"
SQIE'^TIC OF STACK CFOSS-SECTION
ux !
¦ % SO*
'2>y, coz
iP.-oy, o
°%C.O
,£'1
Traverse
Point
Number
. Sampling
TiITi3
Pressure
In H2O
(Draft)
Stack
Terno.
Ts °F.
Velocity
Head Al
In H20
Orifice
I-teter
Diff. A
In HoO ¦
Gas
Sarrela
Volurr.3
Cu. Ft.
A Ti-! Gas Temo.
l'nlet
OF.
Outlet
Op.
/I o rr'/
00
.1.0

• DG
. 90
:o 1^12 8
7V
9/! 6
7
0 -T
A 0
' "b?
, 01
I.of
(-M.H.'f
•40
¦7 ? ?
•
to
f. n

• o 1
l.of
&ovk~

?;> i >\ ^
2
/C
-!.D<
3)o
'.on
) .0^
(o/o.=:i
•
?? i ?. r

n,0
\.0O
300
. 0 H
< 6
0/7, >•'5^
)0l

3

.m M If CJ H U»
/..h. zi

•31

yo V
1! 1 L!

2d
hf)f
3>ad
• D<-\
¦ii
hllMt
10 V
1! 1 7


1.0
21 0




It
TOTAL






7 3. 
-------
-\ ^; i. v-a
t	0
PL UC1 > / " *? f C/) LC l. A /I ~T~*<=¦• 4/
\
r.v«" ^
f
j
Tt'iT" A:\ no-cr'-TC	Tim? 7;'p '//,o Vcc^o
l\/	S.t-.tij/.
EXHIBIT D /'
FYt //£

?•> <
in. Ra jSjdle;*.'tl.\ Op ¦
o» 71 ZL2i_-/^ A,- prz
e.	/?.«<	.v//o Tr. SJtJL "a' A,,7,rw/r,-'
V/.'i	^ FT3 'c 'o.1
/-
7; i?/£*)V.*r fit; if- y:
'/ s.ct /.p y„CY-\ .a /. ot /#.g-	-/a; 2^ r„1T 	
17,3V — . ¦	, ¦	, ^
/• l/i sr* = V/.J»«/ /a, - /7.7/ * 4£!Li x l£H/ S" f =	6 6.ST Fr
2rt- •(r'?-'''1 U^7	oat A
D/>/ y1! /•/-•(<; r =	RM /fr,.k
2 G. 1 k^.-a i\>ot>iu.' /If'"*
-/¦
DV>i y!, eMc-.r. /"	<1 )///i-:-:^I'-f- - f oz. a 		 /		 ::
l/u-	~ (^'l /'-.°'}iS)(°<-Sf ' ^
!. Vw-CcAc)/.! ' . C •/ 7 re ~ iv-i s (•£> "r ivft^^s/o =
tT Ci vS /-"jciST ~ /<^"0 (<.-'¦ •>)src1'"J ~ /£--£'
(,. Kr (f^CO-'/c^/•'£>./¦/<: IS r^f/oi.' ~0C°~~.	-)/7
7. I4v <^y '.ro	0 ¦/', / F.c,<.f)/.ob -- 	 (tOO -
/ o-c
/.
V 0.814 rr:
67^/V-
l-ib t-
IV-
> *; -
00. rr pr
B. Cy/,0 " ( / O ~ V/V7	1/5 S/'O " ( 6 7.^4 "" ItG.er)/ (>^fl-l -
9, ~ I" iBm±o ~ 1 ~	~
/O. " C. 0/ :'4- W/Vn or.)' - C. O/^Q- X fr'-b / LrC.,zr-fa + co)
•s O.m* l'° + C.4-4- K ,Z- +c».	/?-?-	^ S 7 * ¦ /
/3. /k/5 V /51( a.^ v-	k 21J_ + z^-x t=	• ¦ ^^.6

-------
.DOUGLAS REDUCTION WORTS
• DOUGLAS, ARIZONA
EXHIBIT D
5test No.
Date
location
Control Box No.
A H 0
C Factor
HO -U-'ld
r-
/o- 13- i 'J
S +AC
I. 1 T
1.0 0
JLL
+±i£-
Ambient Temperature
10°
Barometric Pressure
,-\U
Assigned Moisture
'< -'o
Probe Length (ft.)
)> r--
Nozzle Diaireter (in.)
. > ¦; •<
Probe Heater Setting
t
O
R.H.
212L	

Va ^
lenhcketk
SCHEMATIC OF STACK GROSS-SECTION
i ~ '• ^ C0i-^2 0,.CO-o
Traverse
Point
Ni inter
. Sampling
Tire
Pressure
In H2O
(Draft)
Stack
Teiro.
Ts °F.
Velocity
ilead ^1
In H20
Orifice
.Meter
Diff. A
In HiO
Gas
Ssole
Volure
Cu. Ft.
A TM Gas TerrD.
Inlet
°F.
Outlet ,
Or \f .'. :
UJEsi
^ *0
1.0
• 32S"

lh~
6 ? 2.0 V-
no
b 1
;c-
* -u
1
oi
I.o
¦ 1 2

!¦ i c.
6')1J f
0[)

1
- 710
Otf
1,0
3^ 5

L/<
6?v ,o?r
!> ¦! 1. 7 ST
¦¦ ¦)
"1
'") i
0

ok
>¦ 0 v
1, 7? fj
. 01
hO
j r)


/I
1.0
32 r
• 01
1,0
t^T.9.9^
' q c
hi
n
2
tt
• If
¦?zo
, 0 1
hO
6M.36?

6 b
7


• i.r
I/O
,0?
/, 0

101
17)
9
•

¦ rr
30 c
,0 b
-, 8 r'

io~)
V
b
5
n
.«{-¦
It!)
,oi
.5"?

70 3
7?
 '7]_
. 
Spl 1
0'/
f 9 <
'5 W
, D1
t-D
6-lh
I
/ •

0
¦ j

Q$
102
3 7 0
, 1
h n
M7.2- >rc
10)
? y
¦ 'i

n
hi
3QO
¦ 0 .5"
.'•7
6 C/U^
/oi
0c
b
2
n
H

¦ o-l
..51

tot>
15
:hi
TOTAL
















AVG.
AVC.

AVERAGE









${-zj*f>(Zd	qUs~s W>1 c/oj

-------
jCoorcc v/'sr ci) lcu c-n-r/<. *.'s.
EXHIBIT D
pCr T:/2
Tp<>t a'c. no-c?-7f
M. . 1%' BS. 4-S c.
[
T?. A P - SS.ttR'<
AA /T
X '	_ ("7.2- PT'S
)<},() * 7' .->!
^.Cs
f£. I - 'iV/74 -
/_
J7' % = ^ 3 77 * /c- ^ /.?, 1^/4* /I /?!
^ 6. '5 77 x to t*. . '^-j x a,*- * r i ¦) x'¦ •? r. -? :i
/;Sci~!-/
/V. f„cr - C-. C-L-. a- /?s - 6.0^
r.
-------
•DOUGLAS REDUCTION WOR'CS
DOUGLAS, ARIZONA
EXHIBIT D
3test NO.
Date
Location
>>ntrol Box No.
b H @
C Factor
CP
pr^n
w-a-n

/£>
^7
-/
- .7- 3 - 7 S
.s ifi e /r
/ -?/. r
)./;o/!
^L1
j* e>_
Ambient Temperature	9/7"	
Barometric Pressure	~2 lC. <7	
Assumed Moisture	.*>-/'•	
Probe Length (ft.)	A?' - v -
Nozzle Diaireter (in.) . .? 7 ?
Probe Heater Setting	A
/?*¦	- 7/y	

SCHEMATIC OF STACK CKOSS-SECriON
Traverse
Point
Nuntoar
, Sampling
Tiire
Pressure
In IbO
(Draft)
Stack
Teiro.
Tq °F.
Velocity
Head Al
In H20
Orifice
Meter
Diff. A
In HoO
Gas
Sarrole
Volune
Cu. ?'t.
A TM Gas Ten.
Inlet
OF.
Outlet /
°?. 1/

70
1.1 ¦
¦
¦oy-r
,6 • 7
Jp3S6'-
^/oS

" 5:0-


101
31 d
.07

-)d>T/ru;
' /(9a
?r
t >
3

10
2PO
; 03
WJ
70?< iz-
106
?rlv

n
/>os~
3*0
<01
, H
l°6r;i2
!¦-) •'/
~>r (/, i.


).o 0
,o'l
n y
*i-i
-?;0,"
. "V c-.
7 ¦>
v r
i
¦
•V o
, or
. 7 /-
7/7,6 2

7 2_r,,'

no'
,qr-
T/O
, t.y\
f
1/Ot. 1 I
viy
71
/*"

it
' Ao
llo
,
, 7 k
??/. gr
it
72
/'¦ /

? ')'
/.
V-o
i '.jS
i 7 9—
^ f %r

7/
c,/

'
/. o r
'( i'j
,uir
\ or
-) ¦: < jj
> O'O
"7 /
r-
.¦ •

JO
/. or
'? r ¦ ^
t s
,ou

-o 7 ;/ r.'.
/ jT »»(/ /
>'ri
7 /
' 0
IOTAL











¦



AVG.
AVC. !
WERAC.E










-------
3test No.
Date
location
Control Box No.
All @
C Factor
0 '2 3 ' 7?
•••'•' y a-
- /	
/¦;
/, 0 0 '	
^5
Hfz:
REDUCTION
DOUGLAS, ARIZONA
WORKS
Ambient Temperature
Barometric Pressure
Assumed f-foisture
Probe Length	(ft.)
Nozzle Diameter (in.)
Probe Heater Setting
A**
EXHIBIT D
7^>
s.w

n>


¦' SCHEMATIC OF STACK CFOSS-SECTIOtt
Traverse
Point
Nurrber
Sarmling
TL~e
Pressure
In H?0
(Draft)
Stack
Teira.
'TV Op _
Velocity
Head Al
In H?0
Orifice
Meter
Diff. £
In H9O
Gas
Sample
Volur-e
Cu. rt.
,4 TT-5 Gas Tero.
Inlet
Op.
Outlet /
op. |X-
D/vAh
>^° do
/. /y
¦2>60
.0?
10

>> 9


f
Ot/
Ho
36 0

/./?
730.510

6 *



). \ 0
?>&o
.01^
/./?
?33.U<
L 7*

2 3

¦ /X
1. o $
3>/f
xto
}.xf

lOl

IS
2
' //,
!./? 
7/
IX

? 0
*
~)s~o
<0 9
/, C

)o V
7/
%o

?i
/. /o
y.fo
.08 s~
/.L/ '
n i^UOi
' //)<•/
7/

¦ 3
2 8
/.i? -
vto
\0$f
/,*/'

jC '/
7/
oV,


!./
330
,oo r
.7.3 7^-7^
!0*
P |6'f

%

3*0
,0b

9r;.,:?3


i.5""


i






	

































i



IOTAL
V.&W")5

niio
£.3rr
7.1. h

"3 0-? ?
?r*7



-



AVG.
AVG. 7 2
WERAGR

l.t> L-
.03
111
¦ 0 Si-
>0*
. 0 o>
00.

£/-


-------
PHELPS DODGE CORPORATION	EXHIBIT D
DOUGLAS REDUCTION WORKS
DOUGLAS/ ARIZONA
vy Cntpf/ /tof, 7/>A
wp_rp_
Gross Vteight
Tare
ltet Gain
Patches Bottle #
Gross
Tare
Net Gain
Inpinger 54
200 g. Silica Gel
Gross Wt./Vol
Tare m c-qs.p
Net Gain

Total Particulate
Weight Gain

Total Water
VOluire Increase

-------
TEST DLVAICIT-U.;^'	EXHIBIT D
FLUE TESTING ElMA SIIECT .
lvcv'» 8-20-74
5 .t NO: 'r f ? . 7 r
Station: -j <,7',,^ h ,,rt /.
Date: -2 (, i ¦'i

Tesuran: £_ ^ f
Silica Col (c}
i<2tcr N'o. : V
Final Readar.c;:
duration iniin.j:
i tor "0": | Corr. Voi. (V-): r
r^ruaxKs:
<-p - ' /
. \'c,
t - -tor "F": / 0
H20 Vol. v.'w):
Aver. Fact.:
Gre."us Dusc (g) :
• Ci)/( htKi.o,,^ V/*,/;>.v y.G^ p, ?r,
0.
Tiir.e
Saxple
I c-
A-H-
T-In | T-Out
Pm
rp
Draft
¦ ^ ¦
T^v-Out
i
7' /. • y I ^ ' J o

• I" • •
/.
... i t-o
i
2
I
s
„ y

• /
? ? r I ¦ • j
.... (
3
I

f - .

¦•2 J 1
i
»
i A
I
... I .
> • ¦ i : • i i

r>
¦ ¦ I
' z-i /r
>v- I >¦ ; I ' I ¦ ¦ i "
i 1
6
/ I
r j i
i i ¦ - I - ¦ I . / I I !
- 7
- I
; o

	 I I !¦.¦•>! I I
3
'; V | | - ¦,
v..
> ; I -i I V \ I ,

1
! 9
I ^ I '-i - / I < ¦; I ./ , .-/ I -> •' .O I ¦ '' S !
1
¦ 10
¦ii.tot? I i - i J
P, /? I V I
¦ 1
"" 1 1 T-/f o | 1 cy 1 • •; I •; -5
l-^l - -:;l < • sT I I " ' i
2. 1 ; -r! 1 -T/71 r 1 7
- y I I /. I I ; I
: J 1 I 1 " "J 1 "T ^ 1 J 6>
I-O ! S/-.-TI )¦ ¦/> I ) I
• 1 • 1 1 t •/ ••• j i ~ - i 'y y 1 I / . 1 ' /, ¦ r

1
"b I /.-3 1 ! J. — l
J
I '<• to I /• /


6 1 -• | 17 :'.'•••> 1 !-r- I : r
—
'' ¦ ; I " 7 I '


_7 j I • 1 1
¦I I I


18 1
I I
I I I


3 1
I I
III


; o I
I

I I i


I ill
1 22

i

III I

. i i
I I I I

3 1 /*.¦>! n.ufn.,.-,
' T.r'i /
/. 7'?
I
1

' ^5
i

I
I


i
' ">6
7
- i

n
I



i

¦ I
I

i
, 0
re |/ 7«r //-[-; ;).(?!/? j |
I I


I 29
I /
II ! I I

1
I
- "'0
j
I
I I I

1
i 1


I

! • 1
i 1
12 1

I

I i
i i
¦ 33

I


I 1
i
"1






-

i
; 5


I


1
I *
> 5


i

1
t
37








0 (

i I

1









,


.3 J









i
; ' i'crrx:.-s
noar
r>o
Sto
....
u t
r?-2- j
7.J !
?Uo | 777

i
*
mj- ^ ih.r'	(J^r):: ^(V-- >lT-oQ'
V,^ !-'J 3	^777" / %r~/-

-------
EXHIBIT D
FL l.'C 77T5> r Cf)LC U L rf T* o V	PG \/l
T*>7 A..,	Da--	r,»c- Hilt* M2P-T-
SiBSA ¦	„
AP	Vc^O 	 Ml PrA	Op
,a'//lQ
Vc--v.O
/'JL
SAG
5.1. .dj t (.
G
^LrC

.w//o
FT3
/c ,-3 	
c(^
fl ILLAr	pT7-
7;, s-ss 'A3
*7
	 /"
YC- . Ts" 7? ^
V/V, ;	 «	*C ~ ^ ' O'i	.	- "	. ¦
V-*0*. /.^ %coz_o±_ /. tl %co	' -/a; ps„r 	
/. I'/., s= -w Va; /«//Xf r /7. 7/ * ?±£Ll X 	/ ££!_ =	7°- 3/,7— 3
2ri. ^^>>-1 U;t /3:'*-i3	¦
DFN % ~ W)	~	 *	/	
^ ci; i'C^-.n C «¦'a//)«.'a. >wl '/('
D7>1 file,*. ; -\J-\yT (~i)//	~ /6C* 	/	 r			 X
.ovttvj	^	^	.	. •	\	•,
3.	•• .©-m .cnn^ ^"'Ccuy .c^h(	+	)= ^7 ^	n~
4:	Vs ">ro " iv-'i s -6 "r i-u'ft^i)sro ~		 •+•	 -	-	^ r
5 ^ co.s ^-jcisr : /pp l/vVCc^-^s.-c/^ i.-j - *	/	" . _ /¦ (¦>	Vo
(. K r ((00 - XO A'y. /A' /$ rY/cn ~ {/Co - __	^//^ '	. 7^...
7.	= V*,- «,Tt) (/CC. - D V/ /. A1v. V,-)/oc - 	 (/OO -	)// £><; =		 FT '
a &/.0 = O7^"--V«*i)/V: s,-o = (	 - 	)/_	 ::	'
9, #, = /- = / -	*	'Wl ?
Cs - C. 0/ :r'/- IV/V/^ p/:>' - c,0/^4x 4"/o. / /^o- ¦¦=	jLLIJk--
Sfrscf
/O
//
A7rf
/3. MS'-8at-;d + /: O.i ) + ft 2P fv, + Co)
x: O.m* !¦ ' + O. 4- 4- * 0-1 •*- 0. « /^' -*-C.2fx	= "Z-*?.
' 'S'.yA.V + /f< &;,C. - >°l^ X T-'i- + /ft* °'u =	1

-------
£OQRC£ VZ"S>" CllLCU LM~r/t a' S.
EXHIBIT D
F* 2/2
T/rsr at. c-)»r
'/4, . U£ = 6 5.48 C^l/ T,. a P =	rP*
i /-a /I	r 2ULxjiiiiT '
/$: -i&- Vm Tc/% ' ^s'-'7.. x ili_ » 26 — •	^ / /I /7I	^	t
= &.'37yx/g^> x )
fo
OSct'f-/
LP/
//!*
B. PVR - ^ c/ =	*	-
7£	- 6. 06	= C'.0/f; A »^.o x C'1 =	;	$31 _ KcF7l

-------
PIELPS DODGE CORPORATION	EXIIIBrr D
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
WEIGHING DATA
Test Nunber //•' ( /¦"*"?
Date
r7 o 1
Filter #
iSoTtl\s. Weight
BO. k%JZ> Tare
Net Gain
i$/s
9/Vol ?3
MALVL
¦ 'i ' 11
Inpinger fil
Contents
Gross Wt./Vol
Tare/Vol
Net Gain
IfD^r ?/?,,„
Gasket
Weight
Tare
Net Gain
Cyclone (By-Pass)
JdAlPJ.
JHLii.
\oM
S\*. I
rirpingcx i\2
Contents
Gross Wt./Vol
Tare/Vol
Net Gain
/ *
Weight
Tare
Net Gain
Probe Wash-Bot Lie ?
Gross Vteight
Tare
Net Gain
Patches Bottle #
Gross
Tare
Net Gain


Inpinger §3
Contents
Gross Wt./Vol
Tare
Net Gain
Impinger {J4-
200 g.' Silica Gel
Gross Wt./Vol
Tare
Net Gain
*^/7 1~«
Total Particulate
Weight Gain

•j-Dtai water
Volume Increase

-------
DOUGLAS REDUCTION WORKS
¦ DOUGLAS, ARIZONA	, EXHIBIT D
Ambient Temperature	70 0
Barometric Pressure	2 <2 ¦; 7	
Assumed toisture .	'J>'/?	
Probe Length (ft.)	<.>'¦<
Nozzle Diameter (in.)	~V ._ */ '
Probe Heater Setting	*T
M	.
'OeM
schematic of stack cross-section
SOt- K£ (Ou— /2 %-8	0
1
Traverse
Point
1 Nunrber
. Sampling
Tire
Pressure
In H?0
(Draft)
Stack
Tero.
T^ °F.
Velocity
Head Al
In H?0
Orifice
Mater
Diff. &
In lioO
Gas
Sample
Volurre
Cu. Ft.
A TT-I Gas Tp-TD.
Inlet
°F.
Cutlet)
°F. V
1
ojrw

/¦/r
.110
.0'1

211 >J?,<
$. -
I 1
0V
i.'C
¦'<10
. ,¦> * r
. 1.1 ">
^/,r>
1 JO
' L
' 1 0
i f- C
1
OS
ur-

'ti?4
/,£-

! CP t-
5 1
¦
IZ
/«/r
-7^0
.of'-
1. "3
—
10^
'
¦' -2.-
U

¦ 7^0
, o-^T
M
$2 c/, 7
!o9-
^ t
1
20
)n~


/- 3
ffp'ff
JO
3;? 1c?r-
00 U. 7

V
/, (-y-o
>-n

Id °)
i ) ^-o


i







I



















1







\










^'OTAL





g't. oiJ






•


1
AVG.
AVC.

1
werage









Test No.
Date
Location
Control Box No.
All 0
C Factor
C.P
ff?
>'~J	,<¦
"¦/
I. /I
! .ot i
. 1. 0'* ,

-------
5bst No.
Date
location
Tontrol Box No.
b II 0
C Factor
C?
DOUGLAS REDUCTION WORKS
¦ DOUGLAS, ARIZONA
J'*'
if/-df- 7s'

/. ) 3


Ambient Temperature
Barometric Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Diarcter (in.)
Probe Heater Setting
.w-
EXHIBIT D
no'
V '> -f'J
i-'/r


SCHEMATIC OF STACK CTDSS-SECTION

Traverse
Point
Nirrber
, Sarroling
tLtg
Pressure
In H?0
(Draft)
Stack
Ta^o.
Tc °F.
Velocity
Head A1
In H20
Orifice
Meter
Diff. A
In HoO
Gas
Sanpls
Voluma
Oj. Ft.
A TM Gas Tejm!
Inlet
Op.
Outlet
Or."1;' •fs c .

-> 0

¦ 72.0'
,05~

¦ -}:>

¦?i 6
1
C'U

¦ 3* r
•!,¦
111
/'A
t
?3 k/



l/o >r
, O o
. $o

l i .
• " o
¦7s 1
^ n

¦ J2 .
).z
r ' ) ^
/
j
. r'O
"x)-sy-i'0
/J .0
/


z
1 b
wx<
'¦/ X)
. o r
.61
¦?, Vj*
Id'-i

'.I

10
1,7 <
tfr) /'
.r. t,
' /fl)
fOi.tr?
,'oQ
¦?/
?, {-

? V
>¦7%
'/O'f
'.<97



8/
. 3
V
1.7-S-
Hod
'.o6*r

&'/A
-------
DOUGLAS REDUCTION WORKS
• DOUGLAS, ARIZONA	EXHIBIT D
Stest No.
Date
Location
Control Box No.
4H @
C Factor
Cp
to -n ••
7 5 tV; //
hlS
1.0 hi
-liJL
•9t!f
Ambient Temperature
Barometric Pressure
Assumed Moisture
Probe Length	(~t.)
Nozzle Diarater (;ji.)
Probe Heater Setting
fi.ti
IP"
?, y ?
/•>
//'/
'7?.',
San3'37\TIC 01-- bTACK U-UbS-SECTIOM

Traverse
Point
Nurrbsr
, Sampling
Tiire
Pressure
In HpO
(Drart)
Stack
Temo.
T^ °F.
Velocity
Head Al
In H?0
Orifice
K-ter
Difr. A
Ln HiO
Gas
Sarrpi.e
Voluna
cj. rt.
\
A TM Gas Term.
Inlet
Op.
Cutlet. /
op. ;

O d
/•/^
¦j;r
.08
l.'x
0 7 0
£3
? .7
5? 0
I
r> '$
• lx
W. ?;>'
¦lie

:¦/

32
hid
-$ro

• rr

' 1 U
yj lx;/

36
f/D
ISO
.or
•Id 9
lc
-------
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
,5test No.
Date
"" ocation
_ontrol Ecv: No.
A H @
C Factor
J)T™
. O-C0^
Ojl
?~co
Z//-d/-)f
JO-'> S ~?T

/. C
I.o/V
J2X
Ambicnt Temperature	70
Barometric Pressure	2-5> f3
Assimcd f>'oisture		-5 y '/
Probe Length	(ft.)
Nozzle Diarroter (ii.)
Probe Heater Setting	t
fl.H	; / / %>
cbrck ~ ,otlc/T/t1,
SQIH-IATIC OF STACK CROSS-SECTIOM


3 5
Traverse
Point
Nuirber
, Sampling
Tire
Pressure
In H2O
(Draft)
Stack
Terro.
°F.
Velocity
Head .Al
In H20
Orifice
Meter
Diff. A
Ln H->0
Gas
Ssnple
Volune
""*•1 r.'<-
Zl TT-l Gbs Term.
Inlet
°F.
G'jtlCty ,
°F.
H» I
vo
lo5
• 3/^r
, 06 b
',Q'0
?C-j. u?k
7^~
i 7
i'.'/l 1
01
i.nc
• 2
>X -¦ 1 ->f
/ • '.
/0 7
77
?

20


, 0 h r
; 9 b
. frM
•)
hi
7 (!
0 -i
3
00
! • 0 tr-
~y/9
. 0-1



/—> .
A..

"a~>
>»¦
}, 0 '-/o
- 0 7
f 6
")??,•,"
i
1 <7
s

32
!. "?

. f

*)"? 7 V"
/ 0' 1
to U


1, 0 0 '
" 1/ ?

«7 0 '

//?
\1 .» i
• ¦; i j * ^








i








¦ i •














t

¦

.DTAL




|







.i"1 ¦
|
AVG. ^7;
AVC.

WERAGE



, 0^>%

	-4-V


• %

-------
tev. 8-20-74
TiZjT iJLx'j\iuiVj\i'
FLUE TESTING DATA SHEET
EXHIBIT D
a v'°: ui-cr-ir
Station :;/_/r7
Date: 2^ 1 J ('
Testrran: ,
Silica Gel (c)
¦£ r No. : "_S
Final Redoing:
Duration (min.):
:«• or "0": /, J r,
Corr. Vol. (V~):
J&inarks:
Cf- £/v1
07
factor "F":
HoO Voi. \Vv):
U FaCo.: j OC) j
Gratis Dust (g):
S/Y^ g7 /(f¦-
•
Time
Sample , J A H
METER
T-In | T-Out
Pm

Draft
Km
Tv/-0ut

O/tf J| o, oo

7 /- I V >=-
1 ¦"
1:/ i


2
( , -


7'j-
7

TG i



• = 1

7^_
•7 '¦
i 1 . • -
¦' - 1



- ¦' 1

7 *
"? "•? ! /V- 1 1


10
I S


^ 1 .(/)> 1 / ^. / 1 C ^ |i



i )

1 I i> ^ 1 / / -7 ! C~> ¦



b-, s

1 (f Cf .j (< 1 1 ) ) C'i f


j..~
U
> * 0

1 0-1 1
! > ¦'¦ ¦
r 7 !


/9 t
1 I ft b 1 o r
/ 1 i ^ s



2/ o
1

1 S-6 «



?:¦ r
1
&
[CO

b ° i fa j>
y . /a I ¦> '/ i


17 ~1




• 1 1 i


1 o




1 I e


- —




1 1 • ' J

1






1


21






i !

I .
1


j



1 -r /7.
1 li,--!- 1/5
Vl "¦ U C7 ,
t.
!






/.,

'
1


25
! Yn ¦¦ o. ^
'fW / 1/'.
- ¦ k.o
/
I 1 .-7V


1
V 1 -1'


1
/ :-.'C



1


1


l;






1

? •' *

_2¦>
































<0










i :ragos
'



VA
—0— *-



...
*
(l£pT)

-------
EXHIBIT D
. F £ £ rS T C f] LC U / T/ O a/	P6 i/2
72/i- A ni-c-if Dmt- /0A-i)->' TtM£ i££2-if? JLI±i2_
rA :
A P '0fa 1 /VX^O Vcca.0 —	 /?;. ^
^ ^— WQ	S.t-.Crtt. 	 d
&	ii-c	.v//o -7^
Vm '^' ^ ^ FT 3 Ic'-'tldZ 	 C'~
-/ s>c, l,v> •/.Qc? o '/. c ill -ACu

Cp
¦0

A,
m PTZ
'A'
A.-
-J r-_'S.
•j.stj*.' Fj
c>?

%
*/aV
7^,7
Fsat
t~)l$ f —	*
/. VN STO = /-Sr?* Yai Ki/t« r '7.7/ < iMzVx J; ^ ^^ls r =	~	*	/	 -
^6.- ' Ike ^
¦ WV ••>	» - ' Wfc»- -»	'*"
£>'<">} Lj* flu-,?, f r ^/"LiT ^ ~c )/-Cy.-t j /— - f OC A 	 - /	r	¦	 X
3. ViV (c«--a) c.-i '	.Cv 74 {'ic-.vj •«¦ S«;-W/.^- . C-M7m(	+.		__ '
A' Vi ^>TD ~ l'V-1 5,-0 "r i	'1) sro = 			 •+- .	-	_		^ ~
t>. /» Cck-j t-jciiT ~ /c-c- l/\*J(c~<-*)s¦>;¦) ~ f<¦¦• O a	/ |		"	' • I
£. K r (foo - '/tC'.h'z- //c/s r)//o^ - (/co - __	_^y//w~t' -			
7. I'm i*:w = V/^ ..-r„ f/i^- 0rA7 •/. AJc,«v/-)/oc ¦=¦	(/OO-	y.'Oc; =			 FT
8,	= ( '-/ O ~V/7 y 1/5 S/-.J) " ( ________ "* 	-)/_
.008
9, - /- ' I -	 5
/<.\ C,, 5 C. Q/S-^ VJ/Vvtr.s - C.Oi^Q * 11 ^ / 1*1.12 '	tlc>l ay
//. *Cs= /.4-3Z*/C~4CS- f,f\-5Z*>o"t	 «	• MUJV^ ^
Soicr
12.	= o. f"/ 5 c2) + O. 4 4 ( °/{ C02 ) 1 6-, V /> (;/ ) + a ^ ? (a/, + c o)
~ Cf.C,U*JJ£.+ O.S-q-K O +0.-3Z* If. 7 *-G.te* 7!>-7 S ^ 7--
/3. /v/i '-	^ ifr	,^VLb_ ^	+ /i?* . W.7. -	1- ^ • 1—

-------
JpOUHC~£ T/'S ~ Ci)LCU L/j-T/c A'x j±^i
/s; v^' \lM__ t^/% __ 8s.Mvj_ x gvj— « it.o— ,		 h.i. rp% ¦
Atf e K % 7.^v°'J K f?& M o * 'Hi- * * 1-1^1.
/£ I =	=	_/	*
/7c % . ' - 6. "'3 7 7 * '0 * 8J -vi AilI /r%
-6.377 */r-^ ¦'H* * ^-1 » go
/A	' f.c; =	X I.MS'. ..
/V. ^cr - C. ^	¦ <\4> * JIL1_* SO
c.
x	/Vti_=_I*!,~ix >>
£>sa-:-{
tiy
///*
- -1-18
^I KCFfr

-------
rcV« 8-20-74
TEST
flue testing DXZ\ sinrr'
EXHIBIT D
;t No: ) \ 1, — ( / — 7 f~
Station: ¦
Date: 7 7 J. " 'J f

Testrran: ^ /
Silica Gel (
¦ '/-¦/
7^
7
v.o
¦ ¦



2


/ s"
7 —

/. ••• 1 '>0

i
3



J
*
- .-lev 1


4
(r- |
! ¦ '>
V /
/
•• ! •' ; 1


5
'.-¦¦I 1 If-.,
7 ?.
1
i '. 1 i

6
7 <7"
i !> J
"/1
/ 1
f 'l-
I

7
-/'0
•' J
"7 o
"> -J
! '¦ ^
f /
1

8
h'~
I lc>Y


u r
1 '

9

1
| (V-/

/ ¦ Os
1

10

1 iO-J
w . '
1
- •
1

'l
' .J


r/
<, - |





-

" /

1

1

3
/ / »
/ 9 y.
' /'
{?. -«
ir- v 1 I-...".

1 1 i
;_1 '
\j
6



. . 1


1








1











_7


I






18
1
1
I




D
0
a
l/< ' \/7.M( >oi4.
y;;!.o)/^T3o| = r
—	
(?>f-


«
1


-------
PIELFS DODGE CORPORATION
DOUGLAS REDUCT. ION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
•IJEIGUNG D.'VTA
Test Hunber //2- -f /-*? P
Date

Filter
Weight
Tare
Nat Gain
/A?
OKr7

Iirpinger £1
Contents
• Gross V.'t./Vol
TareA'ol
Net Gain
GasiM_w
jrpinger \\2
Weight	)J /•?•?}
Tare	J3, /Q « j	Contents
Net Gain	•!>! ?6	. • Gross Kt./Vol
;,n TareA'ol
Net Gain
Cyclone (By-Pass)
Vfeight	. £2. iiP-T	Inpingor #3
Tare	¦ s c c,
Net Gain	oo / 9	Contents
Gross V?t./Vol
Tare
Probe Kash-Eottle #	.	.	. Net Gain
Gro:.s Ifeight 	___
Tare		Impinger {,'4
Net Gain			-
200 g. Silica Gal
Gross Wt./Vol
Patches Dottle ft				Tare
Net Gain
Gross
Tare				
Net Gain
Total Particulate	/ .	Total Vfater
V.'eicjht Gain 4 s 2- Volume Increase
	.	

-------
D 0 U;S L A S
REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
•Jtest No.
Date
. Location
tontrol Box No.
k H 0
C Factor
btrn-
to - ?~> ' 7 ^
2	
A'^ ,71	
"/. 1 iT
1 	
s\i cT
Ambient Temperature
Baranetric Pressure
Assumed Moisture
Probe length	(f;z.)
Nozzle Diamster (iii.)
Probe Heater Setting
t- c. -f ±
/<:> ¦

¦ 3 73
\r lj?s9 kChzak--Ol £
SCHEMATIC OF STACK CKOSS-SECriON
f. 7
.(5
Ojj /f./
Co' ..<0
>W
^>A tr\r/r.
Traverse
Point
Number
, Sampling
Tirre
Pressure
In h'20
(Draft)
Stack
Tenro.
Tq °F.
Velocity
Head Al
In 1-3 20
Orifice
Meter
Diff. £
In H-jO
Gas
Sarrole
Vol urn;
Cu. Ft.
zi TM Gas Temo.
Inlet
OF.
Outlet
°F.
*3
!*•
1.05
355
,07 D
. 96
rsi.ni
to
//
r

0$
1,05
'35<
,C7o
.It*


77


.t
on
/' <5.?
ZLo
,070
, Vr
^Si.70
5 ?r ¦
7? Li"
3
n
/, f)f

. o 7is
l,o?
	^
/0 *
7 T- ! 7. 9
D
Pi
l.o«
2 £ D '
,oio
/,OQ
Ul.oi
/ro
7-2
¦ 1
P. 7
hot-
2Lo



/7i3
7?
¦37 <"
: /
? i
/. or
lit
. o ti C
; Lb
%7/Mi
///
79 !r.r'
/
¦>S~
/, 0%
3£ 2-
, o 6~D
,?v
$ 7 iTvo
1 li-
^ !.r.<
•

'





i








i
i






























IOl'AL
















ny g.
t
AVC. !
AVERAGE










-------
DOUGLAS, ARIZONA
EXHIBIT D
ttest NO.
Date
location
Control Box No.
C Factor
by/*
/f 7, - c / - 7 r
/o - .¦>-? -1 i
14 2 S7 fle.o
'¦ >r

¦¦ ib
Ambient To.^.iU^v.
Barometric Pressure
Assumed Moisture
Probe Length	(ft.)
Nozzle Diameter (ir..)
Probe Heater Setting
7 .
Tc °F.
Velocity
Head Al
In H?0
Orj.fice
Meter
Diff. A
In H->0
Gas
Sanple
Volume
Cu. Ft.
4 TT-1 Gas Tern.
Inlet
OF.
Outlet
°F.
* 7
¦J' '3/
/. ID
ILO
,OC*'
• *3
*16'. 1. '" $
So

/ 09
1 p; ©


1,1 X
3*<-/
, r/, o
.*63
c*V i?
I/O
SV ; 7, ?
1
^ r
hK—
3 b?
' ,0+0


ho
:^.o

t> a
htf
37 O
.0^0
,5'r
cf
t' 0
S/

^ 3 6
/.If
3S-o

.<•/
m i£;l
' > 'o
?/ ! £


i





i








1






















•







TOTAL
















AVG.
AVG.

WERAGR







.

.w. ^>

-------
DOUGLAS II K U U C T 1 U N iv U K A 3
DOUGLAS, ARIZONA
EXHIBIT D
9\2Sfc NO.
Date
Location
Control Box No.
-i JI @
C F&ctor
d/?
DT m
• >/7-r t--? r
tO ~ A 7 - ?'f
h ') J)
\.Q2

ff -j
Ambient Temperature 	?& 0
Bararctric Pressure	'^S. 

P •
Uf
:?o
.on
.otr

6-kJ
y/o
? >¦ ,?0

D'l
/•! 6
37 o
' . o 7
. 10'

i a
?} I no

?>3
f.ir
vr
, o*ro
, ? D

///
8* |6.f

V.»
nr.
y?f
.Oyr
• V1
?PJ
///'




;



























|



















[rcrrAT,
















7vVG.
AVG.

AVERAGE










-------
Otest No.
Date
location
Control Box No.
J 11 Q
C Factor
bTrrs.
C.P.
D O U (j L> A ii
i
m- -c /-? r
ft -T T- 7 s
^ .i 	
-uLH3_
.^9 0"
5-
H li 1) U L T i U N
DOUGLAS, ARIZONA
n u it h a
y
!.£\ .S RAi/JOjif^
EXHIBIT D
Ambient Temperature
Barometric Pressure
Assumed Moisture
Probe Length	(ft:.)
Nozzle Diareter (ir,.)
Probe Heater Setting
2>"7
£> 2
h 10
'

i
^->1,^/1
fry
7§- i

O'/
1.10
'

.77
Z 7 7 r7
' <;*-
*r ' z. s-
OP
I.DS
'{¦0
, t?7o
'^1

/o %
3io

.L2-

/'3
^ 'r.<
j
^ ?.b
/,
37D

70
^,h2:r
r h
Em
i ...

i






1









> 1 " — ¦





























IDfAL













y '
.

AVG.
AVC. !
WEIV\CR

~-o8j
^V
-4-^	
• Ob l
* -b\l





-------
EXHIBIT D
FL i.'G ttts r c f\ l c u l a ~r*c a,'	i/z
t<£±t Ar. Jlk£L2£"	0«T,r loj^h^ timf !±l£-tc 2zll±
r A :
A P • 0S 1	Vco*.0 	 /^JL	FU 3L£2^./VZ/a Cp o.frs
iv s^-^ *ag, 	* c-i	n»	_Si2__ p
e 211^.^	fa^j£d^L ,w/g	% S2r "X a,, 7. «/¦><.;v rr7-
Vm i*-s^ Fr 3	^^^	.7," g2g -y? *j?	V
V' ^c». ° % 'j. Ct ~/j	—H^r-^ /^j. 73 '^~.
T7"
t. I7/., sro = /,f Vai fti//-f r 77.7/ * X _£££_/ b"=	...^'^ . Fr 3
2fl. FA-fi Uct 6»»-i3 Of\T
ort-)%N*>± r -	™	*	/	"
2 3; i Cfc ^ t	ll /i / Air"
D<>-| C-|C,L / •" (Pu xt (~<.)///5-VC) /'^ - / oa. K 	.. /	, r		 /I
3, v'v,-(<-¦-*) s-i • C: 4 7 Y £ 1 . CH 7v (Y; — r s,;-		- +	V	FT 1
/ .	* /	. /	_ 9
+	Vs ^td = V^-i ire. ~+ hvfc*.^)ira =	¦+¦		 -	-	^'
5".	j/tco ^cisr - 'or- vW^)sro/V; >-*.j - /£«> *	 /	-			"/
^	K r ^T-O - fi C*/•'£¦ //c i^> r^jioti ~ (/Co —	^// """	«*? 1?,-
7.	1//-7 = V/., ,ro (/«• - D -v; /. r\-^/)/oo - 	 (IOO -	)//O0 -				FT :'
a ff«.c - (/*. ..,-o-v«.rti)/V;s-o = (	- 		)/„	"
9. = /- = I -	 =	il5 t-
/c\ Cs U C. Of -'4- W/V,-, ofi)- ~ C. O/^/J- X 4 / s'L ^7 -	'lLlZ (ky
^'DhcF
//. Cs = /. 432* /0~4Cf - /.43^'^X	 ^	2,1^-y'oV
'oicr
l?i Md - o.i-4 (%so.;)+c.<\A(iccoz)i o.-->2(%o.t) +o.ie(*!z + co)
•S O.LU * t o ¦*¦ 0.4-4- ^ ^— -/- o. 52 * ,c>-^ +-0. 2f <	' T-1. 1-
/3. Ns> ' ^ A/rf ^ IS . ¦¦ ,A3±_ K	+ J&x 't^S. '	(

-------
£oaf>cc TL:*±T CliLCU L/A-r/c. a's.
EXHIBIT D
Fir ?.(2
T/rsr a'c. / (t. c I - 1 '
'4. . Vs- 8S.4-& C,-]] T, Ap 85.i2£_\/SlZ^LL _ '7. rf'j
i /% /I	r 3^l. x_j:£2>
/s; " \7^_ t>/% _	* _ui— ' 	= jllH. F'"'*
A/ 8 A ^ ~7-^7y.ov * l-K.a * ,'qq z. * >*" < ZS1L.
/£ I - "^-/tTL =	/	 *	A
/% % - 377 x to * 8d ii As n/n	U
= 6. 3 77 X 10	X_1ZL1- x *' U'% - \lM yio
	 — , (,
/A Pmi\ ¦=¦ J.sci - n. M x. o	* ? .n-*n> =	^ 57 o x/?/
/£ ^cr =" s. v;/?s - 6. a J2^__x _1T)_ =	_QA

-------
HELPS DODGE CORPORATION	EXHIBIT D
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
WEIGHING DATA
Test Nurber //<£> - C f; - ^
Date
/vb7" /?<$/ ^ /
/o - 3/"- ^
Filter
Weight
.Tare
Net Gain
Gasket
Weight
Tare
Net Gain
Cyclone: (By-Pass)
Weight
Tare
Net Gain
Probe Wash-Bottle #
Gross Weight
Tare
Net Gain
Patches Bcttle
Gross
Tare
Net Gain
J2JLlJLk.
. 9 y O
• i o ^ ¦


¦r> i ¦ -•
5 3. "2-O-CS
j>,2.
. o o r>
Iirpinger #1 '/i -
Contents
Gross Wt./Vol
Tare/Vol
Net Gain
/a"o /•//¦ L-jrp/i
i, f'
Iirpinger #2 ^ _ 0MO6-&
Contents
Gross Wt./Vol
TareA'ol
Net Gain
Irrpinger §3

•/S'
Contents
Gross Wt./Vol
Tare
Net Gain
Irtpinger }!4 ©
200 g. Silica Gel
Gross Wt./Vol
Tare
Net Gain
/&&#). /CjZTAd.
6 ¦ o
^sn/rr/
¦
6 4- \r¦ z
Total Particulate
Weight Gain

Total Water
Volume Increase
,L> r f-O^ST3
/4 \ . 6 I o(*

-------

1 1
/
% C%-,
^OUiCclT
i
1
nnr i
i Mr A .<,U£er -
|
V
l 1 ¦ i 1

friTC>/} T-/PJ-Q) 1 1
f.L7?.7L.
L
ELICIT
i
C.f\
fSTWlrJ
:	i
	£stT±- 1$L
jflT/T
|/^ To f~ '£>p
I

j\mi.([_ '
[jgcr j¦*/[),a	I	
¦ILQ.
S,f,
'.fa?. -
e,i i,r, /m v.
5Z>?_ci
¦Co 'It''"'J
*JlL
:A-riT

1 ^-fiC/l
I &{'[-><¦£'
\&
tfc,
of
•F
pp

i>>U>
s/op -/yrnr-

1
{¦to
| - "


.	
Zi



- r sd-/ •

!
O j:'
I5-2A-

/. .fO
	
¦st
5 y


; Pb j?A
1
-
/¦I //,


?:tfo


/ / 0


r-y


!! /) rr** &¦"'<-
^ ¦
"FzlJ
,

i * /J/
|« 5: 3.;?

1.

3 H
3' V


"rs/r









¦ / v->
\n-y-

/. 70

^ -y
1
i 5 -


M I
zU


?.'3s>'
1

/.r/--;

<
>¦' /


i
%
- \ cl¦


y.vs"
iJ/?y

./.

-S"/







* - ' •
\3:'-'6 J

/. ffO




-




/. :. .¦
'¦0.:-3z>

/. < O

¦r^







'. io


/.fc?

jrJ
s&






/A'Vi'


f ¦ < /.

&
5cJ.
• ¦


1 .
\



r7.j«y

/•¦/ 0-

.5^
£0








-------
'D
Itest No.
Date
Location
Control Box No.
A U @
C Factor
~i>~ /77. _ ,".0
Gas
Sanple
Volume
Cu. Ft.
TM Gas Teirr>.
Inlet
OF.
Outlet
Oui

O
/¦(
3i.o
.ofc 0
.81
sAWi
4 O
4T8
1
r
¦/.OS"
1 10
, 0 t>o
<*>
-0
2.4-1. 77

6 0
•
10
/./o
3<-r
4 Of>^"
• H
Z.Cz.toTi'
8A,
60
. 2-

I/O
.
, O
,

t.o
/¦/°

. 0 & if
• ?o

9a
(00
3

//»
i&o
. nA<3
.Sf
Ji b 1.4-0O
9o
60

'i 0
//o
0
, o-TO
.68
6 3. 



































•






IOTAL











•



AVG.
AVG.
AVERAGE









-------
5bst No.
Date
location
Control Box No.
3 11 @
C factor
U U U
//f> - c I
*> • 3'- f-3-
rsL
A lj L/ U i JL W ii
DOUGLAS, ARIZONA
«% Ik w
EXHIBIT D
JTl
//-
Ambient Temperature
Barometric Pressure
Assuned Moisture
Probe Length	(ft.)
Nozzle Diameter (in.)
Probe Heater Setting
r,s~ A i>~
/¦ %
'/
¦ •-/o
A
SCHEMATIC OF STACK CROSS-SECTION	^
3
srrfjar Ti/v£
Traverse
Toint
NuTber
. Sairpling
Tirre
Pressure
In H2O
(Draft)
Stack
Terra.
Tc °F.
Velocity
Head-Al
In H20
Orifice
f-teter
Diff. A
In H?0
Gas
Sanple
VolUTTi2
Cu. Ft.
A T:-! Gas Terra.

Inlet
OF.
Cutlet
to.

(zf\y.9. cT3 b"

Sff
*
'
0
*
¦ 2,
iS"
//*

.060
¦ 1b
Z.nz-ZSt



Zo
/,//r
'38 iT
¦ 060
. -7^
ZVt-foS'
#8
J~S
3

/.f5~
S9a
,6 5"o
. 63

<7o
0

3t>
/•/.r
3#3T
,oi"o
.6&
£ ,~9





' .























i



































•






IUTAL





?.M"* 1





¦



AVG.
AVC.
WE RAGE









-------
No
DOUGLAS REDUCTION W OR K S
DOUGLAS, ARIZONA	EXHIBIT D
Ttest No.
Date
Location
;>ntrol Cox No.
e
C factor
/it, - C | ?jj-
/b - 2 t- fo

Cr>/o
JjL.

Ambient Temperature 	
BarcrreLric Pressure 	
Assumed Moisture			
Probe Length	(ft..)	
Nozz)e Diameter (in..) >*¦ if . ?.7o
Probe Heater Setting
jL2L
/'o
.7
- .
99 6
to: t-f
£o i. — 4*- - ~
• / — jf. 4- —o~
.*>
mi. rHi

-?ryt£- /Q;
'0/£~
SCHEMATIC OF STACK CFOSS-SECTI03 V~pi 6- -
Ifjjvt.r-b	,;J4^ '/, - 6C££t>< PL»&<>
Traverse
Point
Nimber
. Sampling
Tire
Pressure
In H2O
(Draft)
Stack
TeiTD.
Ts °F.
Velocity
Head Al
In H?0
Orifice
Meter
Diff. A
In HoO
Gas
Sarrple
Volume
Cu. Ft.
ZiTM Gas Tera.
Inlet;
Op.
Cutlet j
Op. i
Soe'~/ //
o

38o
. <56 0
. So
0
?&/. 9^-T
7°
7o
V
iT

3^"
• ea'o
¦ 616
4-4$

fo

JO

4oo
, 0 ±To
» (•> 6

#c>
6? ¦
¦ ^
/S~
IP.
4 00
.02 0
• ii £>
¦ .f&r
#8
6?

Z°

'4./0
' o£~h
.
of?3
8 ' -

So

(do
. ft I f
• 4(*
» 6 6 .3

-------
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA	EXHIBIT D
Test No. //fe -
Date to - ,5 /- 're-
location		Co^jiy^.- t--' *l
Control Box No.		r,,	
H @		/. P. (¦>
C Factor	<	
tX7T/?i. -
Ambient Temperature 		
Barometric Pressure 	j?. s*. f S
Assured Moisture		^ %	
Probe Lcngtli	(ft.)	/_o	
Nozzle Diaircter (ir...) •	V/-/ j?q
Probe Heater Setting 	j	
w fw mi
Stta-at T/'mj /o's'6'
SCHEMATIC OF STACK CRDSS-SECTIQI3 ^ /ft]
Traverse
Point
Kurrber
lORST" ...
	L_

Sampling
Tine
Pressure
In H?0
(Draft)
l-Z
to
jJl.
JiS-

2D
/• £
Stack
Terno.
Tc °F.
39b
4-00
370
210
¦iflo
Velocity
Head Al
In H?0
. e> fo
,r>A!Q
< o 4°
, q45~
• olr'
I o 3 o
I Q? if '
Orifice
f-feter
Diff. A
In HoO
, *~3
¦ (a O
. 6 O
Gas
Sarrplc;
Yolurro
Cu. Ft.
o
	•
¦ Of. £
a/ Z
. o'.3 9


.4^

/v
9^
A TT-1 Gns Tcitd.
Inlet
Or?
-TO
o 9
O 'O
Outlet
Or

9°
9o
<7/

Af_
C> &
AJL-
4e
'
s:
i;
t.
t ')' h"
o 1 !_
3o.o^ru
V. ¦
DOTAL
WJ'RAGE
s\y y 1J
)

,.1
.0 W
0 t,
ljC
^5. r>'3
AVG.
AVC.


-------
(\ I PHELPS DODGE CORPORATION
DOUGLAS REDUCTION WORKS
DOUGLAS, ARIZONA
EXHIBIT D
Test Nuvber "L C. / 7S
WEIGHING n"JA f/cT- /So/ ^ /
Date	/a - 5'' s
Filter f
Weight
Tare
Net Gain
Gasket
Weight
Tare
Net Gain
Cyclone (By-Pass)
Weight
Tare
Net Gain
Probe Wash--?ottle #
Gross Weight
Tare
Net Gain
Patches Bottle if
Gross
.Tare
Net. Gain
2z. ?y Zb
M ? 3 o

yrus -
¦ o y. - u
. 1?.
£3 . Q.0 :r<)
. joi :)
Inpingcr #1
Contents
Gross wt./Vol
Tare/Vol
Net Gain
Inpinger #2 4/^
Contents
Gross Wt./Vol
Tare/Vol
Net Gain
¦Inpjji^er £3
fs-
Contents
Gross Wt./Vol
Tare
Net Gain
Impinger S4 © (J)
200 g. Silica i?el
Gross Wt./Vol
Tare
Net Gain
¦szTo At./. ~r~/? si.
. &

£ rtifi 7-/
<'3±_. - .
(=4 '/¦
Total Particulate
Weight Gain
—		a-
Total Water
Volume Increase

-------
slmsllmis
nil Corporation Douglas Reduction Works, P.O. Drawer E. Douglas, Arizona 85607 • (B02) 354-2441
March 1, 1976
Mr. Gary D. Young, Environmental Engineer
U. S. Environmental Protection Agency
Office of Enforcement
National Field Investigations Center - Denver
Building 53, Box 25227, Denver Federal Center
Denver, Colorado 80225
Dear Mr. Young:
Confirming my phone conversation of February 26, with Mr. Reid E.
Iversen of the EPA, regarding the following information Mr. Iversen re-
quested :
Douglas Reduction Works
ELECTROSTATIC PRECIPITATORS	
Actual	boaster	Reverb	Converter
Question 1:
Collection Area, Sq. Ft.	250,560	187,920	187,920
Quest ion 2:
Gas Velocity, FPS	4.2 to 4.6	2.6 to 30 2.2 to 3.5
Question 3:
Treatment Time, Seconds 8.6 to 7.8	13.8 to 12	12.3 to 7.7
The above data is based on actual values obtained during precipita-
tor efficiency tests conducted during the month of January, 1976.
Very truly yours,
Walter L. Gage
Superintendent
WLG/rab
cc: Mr. Reid E. Iversen
U. S. Environmental Protection Agency
Office of Air Programs
Research Triangle Park, North Carolina 27711

-------
Appendix C
SIP Regulation Applicable to Phelps Dodge

-------
ARIZONA STATE DEPARTMENT OF HEALTH
Amendments to Rules and ~!cp,uLitions for Air Pollution Control
ARTICLE 7
Effective Date: 5/30/72
SEC. 7-1-3. PARTu.'ULATc, EMISSIONS FROM STATIO^AR" SGURCSS
					- • 					
REG. 7-1-3.6 PROCESS INDUSTRIES
A. Ko person shall c&'.ise, suffer, allow., or permit the discharge of particulate
matter into the atmosphere in an}/ one hour from any existing source operation whatso-
ever, except incineration and fuel-burning equipment, in total quantities in excess
of the amount calculated by the equation presented belcw .-md as illustrated by the
following table on the allowable rate of emission based on process weight rate:
PROCESS WEIGHT RATE
RATE OF
EMISSION
PROCESS 'vEIOHT RATE
RATE OF
emission
Lbs/Hr
Tcns/Hr
Lbs/Hr
L.bs/F::
Tons/Hr
Lbs/K
ir
ICO
200
400
600
800
1,000
1,500
2, COO
2,500
3,000
3,500
4,000
5,000
6,000
7,000
8,000
9,000
10,000
12,000
0.05
0.10
0.20
0.30
0.40
0.50
0. 75
1.00
1.25
1.50
1.75
2.00
2.50
3.00
3.50
4.00
4.50
5.00
6.00
0.551
0. 577
1.40
1.83
2.22
2.58
3.38
4.10
4.7b
^ TO
J • 'J
5.96
5.52
7.58
3.56
9.43
10.4
11.2
12.0
13.6
16,000
13,000
20,000
30,000
40,000
50;000
60,000
70,000
80,000
90,000
100,000
120,000
140,000
160,000
200,000
1,000,000
2j000,000
6,000,000
3.00
9.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
60.00
70.00
80.00
100.00
500.00
1,000.00
3,000.00
15.5
17.9
19.2
25.2
30.5
35.4
40.0
41.3
42.5
43.6
44.6
4 6.3
47.8
49.0
51.2
69.0
77.6
52.7
NOTE: To use the table, determine the process weight rate as defined in
Reg. 7-1-1.2.A.40. Find this figure on the table, opposite which is the maxi-
mum nur-iber of pounds per hour of perticulrtes which nay be discharged into the
atmosphere ir- any cue hour. The. method used for oet^ruininn allowable rater; of
emission bused o.i process weight toolos if. as follows: Interpol?v.ion of the
cata ir. the process wo 13"'it table for process vcighi: rates up to 60,000 J.bs/hr
shall be accomplished by -jse of the equation E = 4.10 F 0,6/1 and interpolation
and extrapolation cf the data for process weight rates in excess of 60,000
lbs/hr shaJ 1 be acccr.pj.ishea by use of the equation E - 55.0 P 0.11 - 40, where
E = rate of emission in lbs/hr and ? = process weight rate ir. tcr.s/hr. (See
following exrmpier..)

-------
EXAMPLE A: Process vnight = 6 tons per hour
Equation - Z = A.10 pO-67
Log E = Log 4.19 + (0.67) (Log 6)
Log E = 0.6123 + (0.67) (0.7782)
Log E = 0.6128 + 0.5214
Log E = 1.1342
E = Anti-log 1.1342
E = 13.6 pounds per hour
EXAMPLE B: Process weight = 60 tons per hour
Equation - E = 55.0 p0-H - 40.0
L05 (E+40.0)	- Log 55.0 + (0.11)(Log 60)
Log (E+4C.0)	= 1.7404 + (0.11) (1. 7732';
Log (E+40.0)	= 1.7404 + 0..1S5&
Log (2+40.0)	= 1.9360
(E+40.0)	= Anti-log 1.9360
(E+40.0)	= S6.3
E	=86.3-^0.0
E	=46.3 pounds per hour
B. Stock emission tests to determine the amount of particulate matter emitted
shall be performed in accordance with Reg. 7-1-3.3.C.
REG. 7-1-3.3 IKCIliTiRATION
*	a	*	*	*
The scount of pevt iculato. matter es-itted shall bo determined by generally
rcto,:'.'.Licd stardr.rcs or c-.r.foods of r.ic&sur octant. Tha ASVCL Test Code ror "Dust
Sc;>."i ;jt. ing Apparatus", PIC 21, the A3;A'Z Test Code for "D^terr.-ining Dust Concentra-
tio::s in C'.i Str-T-icc", PTC 27, and the latect i.5Sue of Che Los Angeles County Source
TvFtitig H'lUv'.al shall be used as general guides, but these r.-.ay be modified, adjusted,
or «v!dcd to by thy director to syit specific sroiVling coudir.ions or needs based upon
good practice, judgment and experience.

-------
WHERE:
"Particulate matter" means any finely divided liquid cr solid material,
other than unconbined water, as measured by Method 5 described in AO Code of the
Federal Regulati ons, Part 60, dated Decenber 23, 1973. or by an approved equivalent
ASJiE testing procedure.
"Process" means one or niore operations, including equipment and tech-
nology, used in the production of goods or services or the control of by-products or
waste.
"Process weight" rr.esrss the total weight of all materials introduced
into a source operation, including fuels, where these contribute to pollution gener-
ated by the process.
"Process weight rate" means a rate established as follows:
a.	For continuous or long-run, steady-state source operations, the
total process weight for the entire period of continuous operation or for a typical
portion thereof, divided by the number of hours of such period or portion thereof.
b.	For cyclical or batch source, operation?., t.hr. to.al process eight
for a period which covers s complete operation or an integral number of cycles,
divided by the hours of actual process operation, during such period.

-------
Appendix D
Calculations of Gas Flow Rates and Allowable Emissions

-------
Flowrate at Standard Conditions
P.V. P V	V = P.	T	V
i i = svs	or vs i X 's X vi
T. T.	P	T.
11	si
where: P^	=	given pressure
V.j	=	given gas volume
T.j	=	given temperature in ° R
P$	=	pressure 0 std condns (14.7 psi or 760 mm Hg)
Vg	=	gas volume @ std condns (in same units as V.)
Ts	=	temperature @ std condns (530°F!)
Roasters
V„ = 241,670 (5301 = 246,318 scfm
520
s
Reverberator.y Furnaces
v = 275,000 (530)
s	520
280,288 scfm
Converters
311,670 (530)
Vr =			i	L = 217,664 scrm
s	520
Roaster ESP
n • u 625,000 (530)	0/,r nco
Design: Vc = 	5			L = 345,052 scrm
s	960
Reverberatory Furnace ESP
Design: V. = 500,000 (530) = 291,209 scfm
s	910

-------
Converter ESP
n • w	750,000' (530) oco	c
Design: V$ = 	j ^qq	L	= 358,108 scfm
. . i ,,	331,000 (530) 0Cr c
Actual: V„ = 	Lcon 			= 337,365 scfm
s	520
Allowable Emission	Rates
E = 55.0 P0,11 - 40	P > 30
E = allowable emissions (lb/hr)
P = process weight (T/hr)
1-D: Proaster = Pro =
Preverb = Pre =
Pro + Pre = Pr/r =
124.8	Ero	=	53.5
133.9	Ere	=	54.3
258.7 Ero + Ere	=	107.8
Er/r	=	61.3
2-D:
Pro
= 124.8
Ero
53.5

Pre
= 133.9
Ere =
54.3

Pr/r =
= 258.7
Ero + Ere =
107.8



Er/r
61.3
3-D:
Pro =
= 116.2
Ero =
52.8

Pre =
= 149.4
Ere =
55.4

Pr/r =
= 265.6
Ero + Ere =
108.2



Er/r =
61.6
Pro
= 116.2
Ero =
52.8
Pre
= 149.4
Ere =
55.4
Pr/r
= 265.6
Ero + Ere =
108.2


Er/r
61.6
113-D:
Pro
Pre
Pr/r
= 104
= 126
= 230
Ero	=
Ere	=
Ero + Ere =
Er/r	=
51.7
53.6
105.3
60.0
114-D:
Pro
Pre
Pr/r
136
152
288
Ero =
Ere =
Ero + Ere =
Er/r =
54.4
55.6
110.0
62.5

-------
115-D: Pro
Pre
Pr/r
117-D: Pro
Pre
Pr/r
118-D: Pro
Pre
Pr/r
123-D: Pro
Pre
Pr/r
5-C:
P
6-C:
P
7-C:
P
8-C:
P
108-C:
P
109-C:
P
111-C:
P
112-C:
P
116-C1:
P
125-C:
P
126 Ero =	53.6
142 Ere =	54.9
268 Ero + Ere =	108.5
Er/r =	61.7
104	Ero =	51.7
124	Ere =	53.5
228 Ero + Ere =	105.2
Er/r =	59.9
112	Ero =	52.4
146	Ere =	55.1
258 Ero + Ere =	107.5
Er/r =	61.3
111
Ero
52.3
118.5
Ere
53.0
229.5
Ero + Ere =
105.3

Er/r =
60.0
86.6
E =
= 49.8
86.6
E =
= 49.8
'85.2
E =
= 49.7
85.2
E =
= 49.7
104
E =
= 52
98
E =
= 51
93
E =
= 51
91
E =
= 50
85
E =
= 50
108
E =
= 52

-------