United States Office of Air Quality EPA-45Q/4-88-011
Environmental Protection Planning and Standards August 1988
Agency Research Triangle Park NC 27711
1987 Nonmethane
Organic Compound
And Air Toxics
Monitoring Program
Final Report
Volume 1—Hydrocarbons
-------
EPA-450/4-88-011
1987 Nonmethane Organic Compound
And Air Toxics Monitoring Program
Final Report
Volume 1—Hydrocarbons
RADIAN CORPORATION
3200 E. Chapel Hill Road
Post Office Box 13000
Research Triangle Park, N.C. 27709
Contract No. 68-02-4391
Task No. 3
Project Officer
Harold G. Richter
Technical Representatives, EMSL
Frank F. McElroy
Vinson L. Thompson
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office Of Air Quality Planning And Standards
Monitoring Section
Monitoring And Reports Branch
Technical Support Division
Research Triangle Park, N.C. 27711
August 1988
-------
This report has been reviewed by the Office of Air Quality Planning and
Standards, U.S. Environmental Protection Agency, and has been approved
for publication as received from the contractor. Approval does not sig-
nify that the contents necessarily reflect the views and policies of the
Agency. Neither does mention of trade names or commercial products con-
stitute endorsement or recommendation for use.
EPA-450/4-88-011
i i
-------
PREFACE
This document, 1987 NONNMETHANE ORGANIC COMPOUND MONITORING REPORT,
VOL 1, HYDROCARBONS, summarizes the data obtained from a program designed
to obtain nonmethane organic compound (NMOC) information needed by state
agencies to prepare their ozone state implementation plans (SIP). Similar
programs were carried out in 1984. 1985, and 1986, but data from those
programs were not widely distributed. Because of increased concern about
ambient NMOC concentrations, these data from the 1987 studies are being
made available for wider use.
The method for analysis of the samples was preconcentration, flame
ionization detection (PDFID) developed in 1983 by the Environmental
Monitoring and Systems Laboratory at Research Triangle Park, NC (EMSL/RTP).*
This method produces reliable, high quality NMOC data in contrast to that
produced by the continuous hydrocarbon analyzers used in years prior to
1984. During all of the monitoring programs, 1984-1987, an extensive
quality assurance (QA) program was carried out to assure that the data met
rigid standards. Much of the body of this report is devoted to a dis-
cussion of the data from that QA program.
The NMOC data collected during this study were for use as one input
to the Environmental Kinetic Modeling Approach (EKMA). That model requires
average NMOC/NO,. ratios from the 6 to 9 AM time period. The samples were
collected only during the ozone season in most states - June through
September. Thus, the data in this report are not representative of
24-hour average concentrations at the individual sites, nor can they be
used to infer annual average concentrations of ambient NMOC.
During large measurement programs, many people contribute to their
success. It is impossible to acknowledge everyone by name. However,
the following Radian Corporation personnel were especially important to
the success of this program: Dave-Paul Dayton, Robert F. Jongleux,
Robert McAllister, and Phyllis O'Hara. In addition, the cooperation of
state and local monitoring station operators was vital to smooth operation
of the network. The dedication of all these people to seeing the project
through is greatly appreciated.
* For details of the PDFID method, the interested reader should consult
Document No. PB 86-120631, A CRYOGENIC PRECONCENTRATION -DIRECT FID
(PDFID) METHOD FOR MEASUREMENT OF NMOC IN AMBIENT AIR, available from
the US Department of Commerce, National Technical Information Service.
-------
TABLE OF CONTENTS
Page
LIST OF FIGURES vii
LIST OF TABLES xiii
SYMBOLS AND ABBREVIATIONS xvii
1.0 NMOC SUMMARY AND CONCLUSIONS 1-1
1.1 NMOC Data 1-1
1.2 NMOC Calibration and Drift 1-2
1.3 NMOC Precision 1-2
1.4 NMOC Accuracy .. 1-2
1.5 Other Quality Assurance Measures 1-4
2.0 NMOC DATA SUMMARY 2-1
3.0 NMOC TECHNICAL NOTES 3-1
3.1 NMOC Sampling Equipment 3-1
3.1.1 Installation 3-1
3.1.2 Operation - Presampling 3-3
3.1.3 Operation - Post-Sampling 3-3
3.1.4 Troubleshooting Instructions 3-4
3.2 NMOC Analysis 3-4
3.2.1 Instrumentation 3-4
3.2.2 Hewlett-Packard, Model 5880 Gas Chromatograph
Operating Conditions 3-6
3.2.3 NMOC Analytical Technique 3-6
(continued)
i i i
-------
TABLE OF CONTENTS (Continued)
Page
3.3 Canister Cleanup System 3-8
3.3.1 Canister Cleanup Equipment 3-8
3.3.2 Canister Cleanup Procedure 3-10
4.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND NMOC
DATA ANALYSIS 4-1
4.1 Introduction and Conclusions 4-1
4.2 QA/QC Data 4-1
4.2.1 Calibration and Instrument Performance 4-2
4.2.1.1 NMOC Performance Results 4-2
4.2.1.2 Daily NMOC Calibration Zero, Span,
and Drift 4-2
4.2.1.3 NMOC Calibration Drift 4-20
4.2.2 Radian In-House NMOC QC Samples 4-34
4.2.3 Comparable Analyses 4-51
4.2.3.1 NMOC Site Sample Results 4-52
4.2.3.2 Local Ambient Samples 4-61
4.2.4 Duplicate Site Sample Results 4-71
4.2.5 Canister Cleaning Results 4-87
4.2.6 External Audit Results 4-87
4.2.7 Data Validation 4-90
4.3 Quality Assurance Records 4-96
4.3.1 Archives 4-96
4.3.2 Magnetic Disks 4-97
5.0 NMOC DATA ANALYSIS AND CHARACTERIZATION 5-1
6.0 RECOMMENDATIONS 6-1
6.1 Equipment Design Changes 6-1
6.2 Operating Procedure Changes 6-1
6.3 Multilevel NMOC Study 6-2
6.4 Seasonal NMOC Studies 6-2
(continued)
i v
-------
TABLE OF CONTENTS (concluded)
Page
7.0 REFERENCES 7-1
Appendix A: CRYOGENIC PRECONCENTRATION AND DIRECT FLAME
IONIZATION DETECTION (PDFID) METHOD A-l
Appendix B: INTEGRATOR PROGRAMMING INSTRUCTIONS B-l
Appendix C: STANDARD OPERATING PROCEDURE FOR PDFID
SAMPLE ANALYSIS C-l
Appendix D: SAMPLING SITES FOR THE 1987 NMOC PROGRAM D-l
v
-------
LIST OF FIGURES
Number Page
1-1 In-house quality control, orthogonal regression for
Channel A 1-5
1-2 In-house quality control, orthogonal regression for
Channel B 1-6
1-3 In-house quality control, orthogonal regression for
Channel C 1-7
1-4 In-house quality control, orthogonal regression for
Channel D 1-8
1-5 Orthogonal regression comparing QAD with Radian NMOC
analyses 1-12
1-6 Orthogonal regression comparing ASRL with Radian NMOC
analyses 1-14
1-7 Orthogonal regression comparing ASRL with QAD NMOC
analyses 1-15
2-1 Plot of NMOC concentration for Boston, MA (Chelsea) 2-14
2-2 Plot of NMOC concentration for Boston, MA (E. Boston) 2-18
2-3 Plot of NMOC concentration for Hartford, CT 2-22
2-4 Plot of NMOC concentration for New York, NY (Bronx) 2-26
2-5 Plot of NMOC concentration for New York, NY
(Manhattan) 2-30
2-6 Plot of NMOC concentration for Newark, NJ (NWNJ) 2-34
2-7 Plot of NMOC concentration for Atlanta, GA 2-38
2-8 Plot of NMOC concentration for Atlanta, GA (Decatur) 2-42
2-9 Plot of NMOC concentration for Birmingham, AL 2-46
(continued)
vi i
-------
LIST OF FIGURES (continued)
Number Page
2-10 Plot of NMOC concentration for Louisville, KY
(Expanded) 2-51
2-11 Plot of NMOC concentration for Louisville, KY 2-52
2-12 Plot of NMOC concentration for Chicago, IL (State
Office Building) 2-56
2-13 Plot of NMOC concentration for Chicago IL
(Sears Tower) 2-60
2-14 Plot of NMOC concentration for Cincinnati, OH 2-64
2-15 Plot of NMOC concentration for Baton Rouge, LA 2-68
2-16 Plot of NMOC concentration for Beaumont, TX 2-72
2-17 Plot of NMOC concentration for Dallas, TX 2-76
2-18 Plot of NMOC concentration for El Paso, TX 2-80
2-19 Plot of NMOC concentration for Ft. Worth, TX 2-84
2-20 Plot of NMOC concentration for Houston, TX 2-88
2-21 Plot of NMOC concentration for Longview, TX . 2-92
2-22 Plot of NMOC concentration for St. Louis, MO 2-96
2-23 Plot of NMOC concentration for Salt Lake City, UT
(North).. 2-100
2-24 Plot of NMOC concentration for Salt Lake City, UT
(Central) 2-104
2-25 Plot of NMOC concentration for El Cajon, CA 2-108
2-26 Plot of NMOC concentration for Fresno, CA
(Expanded) 2-113
2-27 Plot of NMOC concentration for Fresno, CA 2-114
2-28 Plot of NMOC concentration for Livermore, CA 2-118
2-29 Plot of NMOC concentration for San Diego, CA 2-122
2-30 Plot of NMOC concentration for San Francisco, CA 2-126
(continued)
viii
-------
LIST OF FIGURES (continued)
Number Page
2-31 Plot of NMOC concentration for Visalia, CA
(Expanded) 2-131
2-32 Plot of NMOC concentration for Visalia, CA 2-132
2-33 Plot of NMOC concentration for Portland, OR 2-136
2-34 Plot of NMOC concentration for Bakersfield, CA 2-140
2-35 Plot of NMOC concentration for Pittsburg, CA
(Expanded) 2-143
2-36 Plot of NMOC concentration for Pittsburg, CA 2-144
3-1 NMOC analytical equipment 3-7
3-2 Canister cleanup system 3-9
4-1 NMOC performance results, Channel A 4-4
4-2 NMOC performance results, Channel B 4-5
4-3 NMOC performance results, Channel C 4-6.
4-4 NMOC performance results, Channel D 4-7
4-5 Daily calibration zero, Channel A 4-21
4-6 Daily calibration zero, Channel B 4-22
4-7 Daily calibration zero, Channel C 4-23
4-8 Daily calibration zero, Channel D 4-24
4-9 Daily calibration span, Channel A 4-25
4-10 Daily calibration span, Channel B 4-26
4-11 Daily calibration span, Channel C 4-27
4-12 Daily calibration span, Channel D 4-28
4-13 Daily calibration percent drift, Channel A 4-29
4-14 Daily calibration percent drift, Channel B 4-30
4-15 Daily calibration percent drift, Channel C 4-31
(continued)
ix
-------
LIST OF FIGURES (continued)
Number Page
4-16 Daily calibration percent drift, Channel D 4-32
4-17 In-house quality control results, Channel A 4-43
4-18 In-house quality control results, Channel B 4-44
4-19 In-house quality control results, Channel C 4-45
4-20 In-house quality control results, Channel D 4-46
4-21 Stem-and-leaf plot of in-house quality control
differences 4-50
4-22 Orthogonal regression comparing QAD with Radian NMOC
analyses 4-53
4-23 Orthogonal regression comparing ASRL with Radian NMOC
analyses 4-54
4-24 Orthogonal regression comparing ASRL with QAD NMOC
analyses 4-55
4-25 95% confidence intervals for mean NMOC difference... 4-68
4-26 95% Confidence intervals for mean NMOC difference,
Radian first analysis 4-81
4-27 95% Confidence intervals for mean NMOC difference,
EPA first analysis 4-82
4-28 Audit bias, Radian Channel A vs. EPA-QAD 4-91
4-29 Audit bias, Radian Channel B vs. EPA-QAD 4-92
4-30 Audit bias, Radian Channel C vs. EPA-QAD 4-93
4-31 Audit bias, Radian Channel D vs. EPA-QAD 4-94
4-32 Audit bias, EPA-ASRL vs. EPA-QAD 4-95
(continued)
x
-------
LIST OF FIGURES (concluded)
Number Page
5-1 Stem-and-leaf plot of the 1986 NMGC data 5-2
5-2 Stem-and-leaf plot for the 1987 ln(NMOC) data 5-4
5-3 Cumulative frequency distribution for 1987 NMOC 5-5
5-4 Cumulative frequency distribution for 1n(NMOC) data 5-6
5-5 Stem-and-leaf plot of the NMOC data for June, 1987 5-9
5-6 Stem-and-leaf plot of the NMOC data for July, 1987 5-10
5-7 Stem-and-leaf plot of the NMOC data August, 1987 5-11
5-8 Stem-and-leaf plot of the NMOC data for September, 1987.. 5-12
5-9 Stem-and-leaf plot of the NMOC data for October, 1987 5-13
5-10 Monthly mean NMOC emissions for 1984, 1985, 1986,
and 1987 5-14
xi
-------
LIST OF TABLES
Number Page
1-1 1987 NMOC Statistics 1-2
1-2 Orthogonal Regression Parameters for In-House Quality
Control Data 1-9
1-3 Audit Sample Results, Percent Bias 1-10
1-4 Audit Sample Results, Absolute Percent Bias 1-11
1-5 Orthogonal Regression Parameters for Repeated Analyses
of Site Samples 1-16
1-6 Expected Values of EPA-QAD and EPA-ASRL NMOC
Concentrations 1-16
2-1 1987 NMOC Statistics.. 2-2
2-2 1987 NMOC Lognormal Statistics 2-4
2-3 1987 NMOC Study, Chronological Invalidated and
Missing Samples 2-5
2-4 1987 NMOC Study, Site-Specific Invalidated and
Missing Samples 2-9
2-5 Summary of the 1987 NMOC Data for Boston, MA (B1MA} 2-15
2-6 Summary of the 1987 NMOC Data for Boston, MA (B2MA) 2-19
2-7 Summary of the 1987 NMOC Data for Hartford, CT
(HTCT) 2-23
2-8 Summary of the 1987 NMOC Data for New York, NY (BNY) 2-27
2-9 Summary of the 1987 NMOC Data for New York, NY (MNY) 2-31
2-10 Summary of the 1987 NMOC Data for Newark, NJ (NWNJ) 2-35
2-11 Summary of the 1987 NMOC Data for Atlanta, GA (ATGA) 2-39
(continued)
xiii
-------
LIST OF TABLES
Number Page
2-12 Summary of the 1987 NMOC Data for Atlanta, GA (DEGA) 2-43
2-13 Summary of the 1987 NMOC Data for Birmingham, AL
(BHAL) 2-47
2-14 Summary of the 1987 NMOC Data for Louisville, KY
(L1KY) 2-53
2-15 Summary of the 1987 NMOC Data for Chicago, IL (CIIL) 2-57
2-16 Summary of the 1987 NMOC Data for Chicago, IL (C3IL) 2-61
2-17 Summary of the 1987 NMOC Data for Cincinnati, OH
(CIOH) . 2-65
2-18 Summary of the 1987 NMOC Data for Baton Rouge, LA
(BRLA) 2-69
2-19 Summary of the 1987 NMOC Data for Beaumont, TX (BMTX) 2-73
2-20 Summary of the 1987 NMOC Data for Dallas, TX (DLTX) 2-77
2-21 Summary of the 1987 NMOC Data for El Paso, TX (ELTX)..... 2-81
2-22 Summary of the 1987 NMOC Data for Ft. Worth, TX (FWTX)... 2-85
2-23 Summary of the 1987 NMOC Data for Houston, TX (H1TX) 2-89
2-24 Summary of the 1987 NMOC Data for Longview, TX (LVTX) 2-93
2-25 Summary of the 1987 NMOC Data for St. Louis, MO (SLMO)... 2-97
2-26 Summary of the 1987 NMOC Data for Salt Lake City, UT
(S1UT) 2-101
2-27 Summary of the 1987 NMOC Data for Salt Lake City, UT
(S2UT) 2-105
2-28 Summary of the 1987 NMOC Data for El Cajon, CA (ELCA) 2-109
2-29 Summary of the 1987 NMOC Data for Fresno, CA (FRCA) 2-115
2-30 Summary of the 1987 NMOC Data for Livermore, CA (LICA)... 2-119
2-31 Summary of the 1987 NMOC Data for San Diego, CA (SDCA)... 2-123
2-32 Summary of the 1987 NMOC Data for San Francisco, CA
(SFCA) 2-127
(continued)
xiv
-------
LIST OF TABLES (continued)
Number Page
2-33 Summary of the 1987 NMOC Data for Visalia, CA (VICA) 2-133
2-34 Summary of the 1987 NMOC Data for Portland, OR (PIOR).... 2-137
2-35 Summary of the 1987 NMOC Data for Bakersfield, CA
(BACA) 2-141
2-36 Summary of the 1987 NMOC Data for Pittsburg, CA (PICA)... 2-145
3-1 Troubleshooting NMOC Ambient Sampling Procedure 3-5
3-2 Support Gas Operating Conditions 3-6
4-1 NMOC Calibration Summary, Radian Channels 4-3
4-2 NMOC 1987 Daily Calibration Summary (Channel A) 4-8
4-3 NMOC 1987 Daily Calibration Summary (Channel B) ... 4-11
4-4 NMOC 1987 Daily Calibration Summary (Channel C) 4-14
4-5 NMOC 1987 Daily Calibration Summary (Channel D) 4-17
4-6 Summary NMOC Calibration Factor Drift Results 4-33
4-7 NMOC In-House Quality Control Samples (Channel A) 4-35
4-8 NMOC In-House Quality Control Samples (Channel B) 4-37
4-9 NMOC In-House Quality Control Samples (Channel C) 4-39
4-10 NMOC In-House Quality Control Samples (Channel D) 4-41
4-11 Orthogonal Regression Parameters for In-House Quality
Control Data 4-47
4-12 In-House Quality Control Statistics, by Radian Channel... 4-48
4-13 Overall In-House Quality Control Statistics 4-49
4-14 Orthogonal Regression Parameters for Repeated Analyses
of Site Samples 4-56
4-15 Summary Statistics of Comparative Analyses for Radian
Channels vs. QAD Channel 4-57
(continued)
xv
-------
LIST OF TABLES (concluded)
Number Page
4-16 Summary Statistics of Comparative Analyses for Radian
Channels vs QAD Channel, by Radian Channels 4-58
4-17 Summary Statistics of Comparative Anayses for Radian
Channels vs. ASRL Channel 4-59
4-18 Summary Statistics of Comparative Analyses for Radian
Channels vs. ASRL Channel, by Radian Channels 4-60
4-19 Summary Statistics of Comparative Analyses for ASRL vs.
QAD Channels 4-62
4-20 Summary Statistics for Comparative Analyses on Radian
Channels 4-63
4-21 Summary Statistics for Comparative Analyses on Radian
Channels, by Channel Pair 4-64
4-22 95% Confidence Intervals for Mean Delta, Repeated
Analyses 4-67
4-23 Overall Statistics for Local Ambient Samples 4-69
4-24 Overall Statistics for Local Ambient Samples, by Radian
Analysis Order 4-70
4-25 Statistics for Local Ambient samples, by Radian
Analysis Order and Channel Pair 4-72
4-26 Local Ambient Samples, Radian First Analysis 4-79
4-27 Local Ambient Samples, Radian Second Analysis 4-80
4-28 Comparison of Percent Difference in NMOC 4-83
4-29 Statistics for Duplicate Analyses 4-84
4-30 Duplicate Analysis Statistics by Site 4-85
4-31 1987 NMOC Audit Sample Results 4-88
4-32 Audit Samples Results, Relative to EPA-Quality Assurance
Division (QAD) 4-89
5-1 Summary Statistics for NMOC by Month 5-8
xvi
-------
SYMBOLS AND ABBREVIATIONS
AC, or A.C.
ADELTA
ADIF
ADIFF
AM
APDIFF
APDIF
ASRL
ATGA
Aug
B1MA
B2MA
BACA
BHAL
Bldg.
BMTX
BNY
BRLA
CI IL
C3IL
Cal., or
Calib.
CIOH
cm
DELTA
DEGA
DIF
DIFF
DLTX
Dup.
e
ECD
ELCA
ELTX
EPA
F
FID
FRCA
FWTX
GC/ECD
GC/FID
GC/MS
H
H1TX
Hg
HTCT
area counts, generated from
absolute value of DELTA
absolute value of DIF
absolute value of DIFF
ante meridiem
absolute value
absolute value
a gas chromatograph
of
of
PDIFF
PDIF
Atmospheric Sciences Research Laboratory (EPA)
Atlanta, Georgia
August
Boston, Massachusetts (Chelsea)
Boston, Massachusetts (E. Boston)
Bakersfield, California
Birmingham, Alabama
building
Beaumont, Texas
New York, New York (Bronx)
Baton Rouge, Louisiana
Chicago, Illinois (State Office Building)
Chicago, Illinois (Sears Tower)
calibration
Cincinnati, Ohio
centimeter
Radian NMOC concentration - QAD NMOC concentration, ppmC;
Radian NMOC concentration - ASRL concentration, ppmC; or
ASRL NMOC concentration - QAD NMOC concentration, ppmC
Atlanta, Georgia (Decatur)
(NMOC concentration for the second channel) - (NMOC
concentration for the first channel
measured NMOC concentration - calculated NMOC concentration
ppmC for in-house quality control samples
Dallas, Texas
duplicate
base of natural logarithm, 2.71828...
electron capture detector
El Cajon, California
El Paso, Texas
United States Environmental Protection Agency
Friday
flame ionization detector
Fresno, California
Fort Worth, Texas
gas chromatography electron capture detection
gas chromatography flame ionization detection
gas chromatography mass spectrometry
Thursday
Houston, Texas
mercury
Hartford, Connecticut
(continued)
xvi i
-------
SYMBOLS AND ABBREVIATIONS (continued)
i .d.
ID
INST.
Jul
Jun
L1KY
L
LICA
Lpm
LVTX
m
M
MAX
MIN
min.
mL
mm
MNY
MU
NBS
NC
NMOC
NOx
Oct
o.d.
Off.
PIOR
PCDIFF
PDELTA
PDFID
PDIF
PICA
PPb
ppbv
ppm
ppmC
ppmv
psi
psig
inside diameter
identification
instrument
July
June
Louisville, Kentucky
liter
Livermore, California
liters per minute
Longview, Texas
meter
Monday
maximum
minimum
minute
milliliter
millimeter
New York, New York (Manhattan)
mean of In(NMOC)
National Bureau of Standards
North Carolina
Nonmethane organic compound
oxides of nitrogen
October
outside diameter
Office
Portland, Oregon
percent difference = DIFF/calculated NMOC concentration x 100,
for in-house QC samples
x 100;
[(Radian NMOC concentration + QAD NMOC concentration)/2]
DELTA
[(Radian NMOC concentration + ASRL NMOC concentration)/?]
x 100;
or,
DELTA
x 100
[(ASRL NMOC concentration + QAD NMOC concentration)/?]
preconcentration, direct flame ionization detection
0IF/([(NMOC concentration, 1st channel) + (NMOC concentration,
2nd channel)]/2) x 100
Pittsburg, California
parts per billion
parts per billion by volume
parts per million
parts per million by volume as carbon
parts per million by volume
pounds (force) per square inch
pounds (force) per square inch gauge
(continued)
xvi i i
-------
SYMBOLS AND ABBREVIATIONS (concluded)
quality assurance
Quality Assurance Division (EPA)
Quality Assurance Project Plan
quality control
Radian analysis order: RAO = 1 for the local ambient duplicate
sample analyzed first by Radian; RAO = 2 for the local ambient
duplicate sample analyzed first by EPA
retention time
Research Triangle Park
Salt Lake City, Utah (North)
Salt Lake City, Utah (Central)
San Diego, California
September
St. Louis, Missouri
San Francisco, California
standard operating procedure
oxides of sulfur
Standard Reference Material
standard deviation of ln(NMOC)
standard deviation
Tuesday
United States
Visalia, California
Wednesday
degrees Celsius
degrees Fahrenheit
percent coefficient of variation
xix
-------
1.0 NMOC SUMMARY AND CONCLUSIONS
In certain areas of the country where the National Ambient Air Quality
Standard for ozone is being exceeded, additional measurements of ambient
nonmethane organic compounds (NMOC) are needed to assist the affected states
in developing revised ozone control strategies. Because of previous
difficulty in obtaining accurate NMOC measurements, the U.S. Environmental
Protection Agency (EPA) has provided monitoring and analytical assistance to
these states through Radian Corporation. This assistance began in 1984.
Between June 1 and October 30, 1987, Radian analyzed 2,745 ambient air
samples, collected in electropolished stainless steel canisters at 32 sites.
These NMOC analyses were performed by the cryogenic preconcentration, direct
flame ionization detection (PDFID) method, using four identical channels.
Based on the 1984, 1985, and 1986 studies, the method was shown to be precise,
accurate, and cost effective relative to the capillary column gas chromato-
graphic, flame ionization detection (GC/FID) method. The 1987 study confirmed
these findings and supported the conclusion that the P0FI0 method is the
method of choice to measure NMOC concentration in ambient air.
In 1986, specific toxic compounds, primarily aromatics and halocarbons,
were detected in the ambient air samples used for the NMOC analyses. In 1987,
Radian Corporation developed a sample interface system and a three detector
gas chromatographic analytical system to determine the concentration of
selected air toxic compounds in ambient air. Fifteen of the 32 NMOC sites
participated in the 3-hour air toxics program in 1987, and used the same
ambient samples for the 3-hour air toxics analyses and the NMOC analyses.
1.1 NMOC DATA
Table 1-1 lists the site codes, numbers of scheduled samples, numbers of
valid samples, percent completeness, and statistics for the NMOC concentrations
in parts per million carbon (ppmC) by volume. Percent completeness, a quality
measure which ratios the number of valid samples to the number of scheduled
1-1
-------
TABLE 1-1. 1987 NMOC STATISTICS
Radian Scheduled Scheduled Total Total NMOC, ppeoC
Site Sampling Duplicate Scheduled Valid Percent ^—————————
Code Days Samples Saoples Saoples Complete Minimum Median Mean Maximum Std.Dev. Skevness Kurtosis
B1MA
86
7
93
87
93.55
0.078
0.307
0.358
1.397
0.223
1 .766
4.289
B2MA
86
6
92
94
102.17
0.123
0.477
0.693
3.433
0.632
2.573
6.844
HTCT
85
6
91
84
92.31
0.137
0.370
0.438
1.170
0.217
1.037
0.839
BNY
85
6
91
B4
92.31
0.160
0.641
0.737
1.812
0.405
0.854
-0.163
MNY
85
6
91
77
84.62
0.203
0.711
0.760
1.494
0.265
0.440
0.095
KWNJ
86
6
92
90
97.83
0.165
0.712
0.765
1.764
0.354
0.681
-0.019
ATGA
81
6
87
87
100.00
0.191
0.663
0.770
2.213
0.4 20
0.856
0.288
DEGA
81
6
87
87
100.00
0.103
0.397
0.480
1.257
0.300
0.763
-0.512
BHAL
84
6
90
91
101.11
0.214
0.907
1.171
4 .448
0.929
1.213
0.843
L1KY
85
6
91
85
93.41
0.366
0.811
1.252
10.767
1 .553
4.629
23.513
C1IL
85
6
91
83
91.21
0.301
1 .291
1.340
3 .470
0.495
1.072
3.328
C3IL
86
6
92
86
93.48
0.053
0.357
0.488
2.280
0.408
1.824
3.951
CIOH
86
6
92
90
97.83
0.152
0.530
0.660
2.348
0.448
1.937
4.081
BRLA
86
6
92
93
101.09
0.121
0.632
0.759
3 .053
0.526
1.674
3.283
BMTX
87
6
93
95
102.15
0.128
0.512
0.675
2.670
0.542
1.844
3.497
DLTX
84
6
90
78
86.67
0.159
0.4 75
0.571
2.087
0.342
1.708
3.948
ELTX
86
6
92
91
98.91
0.045
0.376
0.437
2 .095
0.313
2.304
8.291
FWTX
81
6
87
79
90.81
0.277
0.660
0.861
3.278
0.631
2.427
6.030
H1TX
86
6
92
90
97.83
0.237
0.817
0.969
3.060
0.611
1.661
2.732
LVTX
80
5
85
85
100.00
0.154
0.422
0.574
1 .483
0.355
1.132
0.129
SLMO
85
6
91
87
95.60
0.182
0.597
0.880
4 .475
0.873
2.623
6.540
SlUT
87
6
93
84
90.32
0 .132
0 .866
0.957
2 .242
0.437
0.779
0 .453
S2UT
86
6
92
71
77.17
0.127
0.754
0.837
1.824
0.424
0.643
-0.319
ELCA
86
6
92
86
93.48
0.107
0.282
0.323
1.567
0.198
3.442
17.380
FRCA
83
7
90
89
98.89
0.257
0.7 75
1 . 414
9.984
1 .864
3.326
11.180
LICA
66
5
91
92
101.10
0.142
0.789
0.862
3.462
0 . 466
2.299
9.585
SDCA
86
6
92
80
86.96
.0.118
0.312
0.423
1 .728
0. 308
1.933
3 997
SFCA
86
6
92
91
98.91
0.091
0.242
0. 345
1 .825
0.292
2.712
8.235
VICA
84
5
89
84
94.38
0.150
0.421
0.575
5.309
0.620
5.787
39.641
PIOR
85
4
89
84
94.38
0.073
0.266
0 . 357
1 .313
0.271
1.859
3.499
BACA
75
4
79
73
92.41
0.341
1 . 466
1 . 424
2.733
0.560
-0.042
-0.816
PICA
87
4
91
89
97.80
0.164
0 .416
0.543
5 .243
0.573
6.411
49.394
Overall: 2707 185 2892 2746 94.95 0.045 0.559 0.738 10.767 0.634 5.476 54.383
-------
samples, averaged 95.0% in 1987 compared to 96.1% in 1986. Percent
completeness ranged from 77.2% for the Salt Lake City (S2UT) central city site
to 102.2% for Beaumont, Texas (BMTX). The Beaumont site surpassed 100% by
taking samples on a holiday (July 3rd), and on October 1, 1987, when no
sampling had been scheduled for BMTX.
1.2 NMOC CALIBRATION AND DRIFT
Each Radian PDFID channel was calibrated twice daily, using propane
standards referenced to the National Bureau of Standards (NBS) Standard
Reference Material (SRM) No. 1667b propane. Zero readings were determined
with cleaned, dried air. Daily percent drift of the calibration factor ranged
from -5.7% to +7.7%, averaging 0.98%. The absolute value of the percent drift
of the daily calibration factors ranged from zero to 7.7%, averaging 1.44%.
1.3 NMOC PRECISION
Analytical precision was determined by repeated analyses of 157 site
samples. Percent differences between the second and the first analysis
averaged -3.72%. The average of the absolute values of the percent difference
was 9.6%. The analytical precision includes the variability between Radian
channels and within Radian channels.
Overall precision, including sampling and analysis variability, was
determined by repeated analyses of 232 duplicate site samples, simultaneously
collected in two identical canisters from a common sampling system. Percent
difference for Radian's analyses of the duplicates averaged -2.92%. The
average absolute percent difference was 15.4% with a standard deviation of
23.1.
1.4 NMOC ACCURACY
Because the NMOC measurements encompass a range of mixtures of unknown
compounds, it was not possible to define absolute accuracy. Instead, accuracy
was determined relative to propane standards with internal and external audit
samples.
Accuracy was monitored internally throughout the program by the use of
in-house propane standards. Four days per week an in-house propane quality
control (QC) sample was prepared and analyzed. The propane used to prepare
the in-house QC standards was certified by the EPA-Quality Assurance Division
(QAD) and was referenced to NBS SRM 1667b.
1-3
-------
Figures 1-1 through 1-4 show the in-house quality control results for
Radian Channels A, B, C, and D. Measured propane values are plotted against
calculated propane standards. Table 1-2 shows the orthogonal regression
parameters for the Radian in-house quality control data. Daily quality
control samples of propane were mixed from a propane standard certified by
EPA-QAD and referenced to NBS SRM propane Standard No. 1667b. The regression
used the propane concentration calculated from the mixing operation to the
concentration measured by each Radian Channel. The concentration range of the
in-house quality control samples was 0.0 to 9.0 ppmC. Table 1-2 indicates
excellent quality control for each channel since the intercepts are all near
zero, and the slopes and coefficients of correlation are all near 1.0, as
expected.
External propane audit samples were provided by the EPA-QAD. The propane
samples were referenced to NBS SRM propane Standard No. 1667b. Table 1-3
summarizes the percent bias of the Radian channels and the EPA-Atmospheric
Sciences Research Laboratory (ASRL) channel relative to the EPA-QAD channel.
The average percent bias for the Radian channels was -1.31%, ranging from
-2.88% for Channel B to -0.061% for Channel A. Absolute percent biases are
listed in Table 1-4 and range from 1.69% for Channel A to 3.56% for Channel B,
averaging 2.68% overall for the Radian channels.
1.5 OTHER QUALITY ASSURANCE MEASURES
The results of other quality assurance measures are discussed below.
Canister cleanup studies established that .here was little carryover of NM0C
from one sample to the next, when using the canister cleanup apparatus and
procedure developed for this study. In 419 separate determinations, percent
cleanup averaged 99.374%, ranging from 92.1% to 100%. Cleanup was defined in
terms of the percent of the NMOC concentration that was removed in three
cleanup cycles of evacuating the canister followed by filling the canister
with cleaned, dried air that had been humidified. In 1987, the canister
cleanup procedure was changed to use cleaned, dried air that had been
humidified instead of cleaned, dried air. It has been found that in the
cleanup cycle, humidified air (that had been previously cleaned and dried) did
a better job of removing residual hydrocarbon that had adsorbed on canister
surfaces, than cleaned, dried air alone.
Figure 1-5 shows a between-laboratory comparison of site sample analyses
involving Radian channels and the EPA-QAD channel for the PDFID method.
1-4
-------
IN-HOUSE PROPANE QC RESULTS
Channel A
9.00
8.00
7.00 -
6.00
5.00 -
4.00 -
3.00 -
2.00
1.00 -
0.00
0.00
2.00
4.00
6.00
8.00
Calculated Propane Concentration (ppmC)
Figure 1-1. In-house quality control, orthogonal regression for Channel A.
-------
IN-HOUSE PROPANE QC RESULTS
Channel B
9.00
8.00 -
7.00 -
6.00 -
5.00 -
4.00 -
3.00 -
2.00 -
1.00 -
0.00
0.00
2.00
4.00
8.00
6.00
Calculated Propane Concentration (ppmC)
Figure 1-2. In-house quality control, orthogonal regression for Channel B.
-------
IN-HOUSE PROPANE QC RESULTS
Channel C
9.00
8.00
7.00
6.00
5.00
4.00
J.00
2.00
1.00
0.00
0.00
2.00
8.00
4.00
6.00
Calculated Propane Concentration (ppmC)
Figure 1-3. In-house quality control, orthogonal regression for Channel C.
-------
IN-HOUSE PROPANE QC RESULTS
Channel D
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00
0.00
8.00
2.00
4.00
6.00
Calculated Propane Concentration (ppmC)
Figure 1-4. In-house quality control, orthogonal regression for Channel D.
-------
TABLE 1-2. ORTHOGONAL REGRESSION PARAMETERS FOR IN-HOUSE
QUALITY CONTROL DATA
Radian
Number
Coefficient of
Channel
of Data
Intercept
Slope
Correlation
A
50
-0.002140
0.986320
0.999734 •
B
50
0.020943
0.959413
0.999582
C
52
0.024876
0.965475
0.999085
D
53
0.010937
0.973832
0.999392
1-9
-------
TABLE 1-3. AUDIT SAMPLE RESULTS, PERCENT BIAS3
Channel A Channel B Channel C
Percent Percent Percent
Bias Bias Bias
Channel D Radian EPA-ASRL
Percent Percent Percent
Bias Bias Bias
0.18692
¦4.63964
-1.12150
¦10.00000
1.12150
-5.76577
-1.68224
¦8.44595
¦0.62500
0.15232
-4.16667
-4.03656
¦1.40625
¦1.44707
•1.40625
¦3.17339
2.05942
2.49867
0.27009
1.75439
0.87779
2.28602
3.37610
1.91388
9.01418
9.50027
AVERAGE -0.06122 -2.88337 -0.72230 -1.56964 -1.30913 9.25722
STD.DEV. 2.54704 4.19953 2.87887 4.15909 3.52525 0.34371
Percent Bias = (Measured NMOC - QAD NMOC)/QAD NMOC * 100.
1-10
-------
TABLE 1-4. AUDIT SAMPLE RESULTS, ABSOLUTE PERCENT BIAS3
Channel A
Absolute
Percent
Bias
Channel B
Absolute
Percent
Bias
Channel C
Absolute
Percent
Bias
Channel D
Absolute
Percent
Bias
Radi an
Absolute
Percent
Bias
EPA-ASRL
Absolute
Percent
Bias
0.18692
4.63964
1.12150
10.00000
1.12150
5.76577
1.68224
8.44595
0.62500
0.15232
4.16667
4.03656
1.40625
1.44707
1.40625
3.17339
2.05942
2.49867
0.27009
1.75439
0.87779
2.28602
3.37610
1.91388
9.01418
9.50027
AVERAGE
STD.DEV.
1.69366
1.74635
3.55820
3.52417
2.15073
1.83390
3.33297
2.63138
2.68389
2.53756
9.25722
0.34371
Absolute Percent Bias
Absolute Value of
(Measured NM0C - QAD NM0C)/QAD NMOC *
100
1-11
-------
1987 NMOC PROGRAM
Orthogonal Regression
5.00
4.00
3.00
2.00
<*>
1.00
0.00
0.00
2.00
4.00
Radian NMOC (ppmC)
Figure 1-5. Orthogonal regression comparing QAD with Radian NMOC analyses.
-------
Figure 1-6 compares EPA-ASRL for the GC/FID method with the Radian analyses
for the PDFID method, and is a between-laboratory, between-method comparison.
Figure 1-7 shows comparisons of EPA-ASRL and EPA-QAD channels. Table 1-5
gives the orthogonal regression parameters, assuming a linear relationship,
for Figures 1-5 through 1-7. The results show good agreement because the
intercepts are very close to zero, the slopes are within 12 percent of 1.0,
and the coefficients of correlation are within 2 percent of 1.0.
For selected values of NMOC measured by Radian channels, Table 1-6 gives
the predicted NMOC values for the EPA-QAD and EPA-ASRL channels, based on the
orthogonal regression parameters of Table 1-5. The agreement of the Radian
measurements and the EPA-QAD expected values is excellent. The percent
differences between predicted EPA and Radian NMOC measurements are largest at
the lower range of NMOC values, as expected.
Approximately 10.1% of the NMOC data base was validated by checking data
transcriptions from original data sheets for 54. entries per sample. The three
errors found equal a database error rate of 0.017%.
Volume I of the Final Report includes Sections 1.0 through Sections 7.0,
and reports the data, procedures, and assessment of the NMOC portion of the
monitoring program. Sections 8.0 through 12.0 are included in Volume II, and
report the data, procedures, and assessment of the air toxics portion of the
air toxics monitoring program.
In October 1987, 19 sites began collecting 24-hour ambient air samples on
12-day, year-round schedule. Sampling and analytical results from the 24-hour
ambient air samples will be reported separately, since they are not part of
the NMOC monitoring program, and are on a 12-month sampling schedule.
1-13
-------
1987 NMOC PROGRAM
Orthogonal Regression
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00
0.00
8.00
2.00
4.00
6.00
Radian NMOC (ppmC)
Figure 1-6. Orthogonal regression comparing ASRL with
Radian NMOC analyses.
-------
1987 NMOC PROGRAM
Orthogonal Regression
6.00
5.00
4.00
3.00
2.00
1.00
0.00
0.00
2.00
4.00
6.00
ASRL NMOC (ppmC)
Figure 1-7. Orthogonal regression comparing ASRL with
QAD NMOC analyses.
-------
TABLE 1-5. ORTHOGONAL REGRESSION PARAMETERS FOR REPEATED
ANALYSES OF SITE SAMPLES
Channel
Number
Coefficient of
Pai r
of Data
Intercept
Slope
Correlation
QAD-Radian
192
0.050041
0.922151
0.986502
ASRL-Radian
306
-0.08213
1.046873
0.988228
ASRL-QAD
132
0.096856
0.857136
0.987968
TABLE 1-6.
EXPECTED VALUES OF EPA-QAD AND EPA-ASRL NMOC CONCENTRATIONS
Hypothetical
Predicted
NMOC
Radian NMOC
QAD
ASRL
Radian-QAD
Radian-ASRL
ppmC
ppmC
ppmC
% Difference
% Difference
0.2
0.234
0.127
-14.5
+57.2
0.5
0.511
0.441
-2.1
+ 13.3
1.0
0.972
0.965
+2.9
+3.6
5.0
4.661
5.152
+7.2
-2.9
1-16
-------
2.0 NMOC DATA SUMMARY
This section presents the data summary for the 1987 NMOC Sampling and
Analysis Program conducted during June, July, August, September, and
October. The majority of the data presented in this section pertain to the
NMOC concentrations measured for samples collected at 32 sites throughout the
continental United States. Sites were located in the urban and/or industrial
locations listed in Appendix 0. The site codes listed in Appendix D are used
throughout the report to identify the sites. Samples were collected in
stainless steel canisters by local site operators trained by Radian
Corporation personnel. The sampling procedure was described in detailed
written instructions provided to the site operators. A copy of these sampling
procedure instructions is also included in Section 3. Analytical
concentration measurements of NMOC were made in the Radian Corporation
Perimeter Park (NC) laboratory under carefully controlled conditions.
The concentration of oxides of nitrogen (NOx), site temperature,
barometric pressure, wind direction, and weather conditions were provided by
site personnel at the time of sampling. These data were recorded in the 1987
NMOC data base, but are not presented in this report because they were not
subjected to Radian Quality Assurance procedures.
Table 2-1 summarizes the 1987 NMOC data, sorted by region and listed
alphabetically within region. The scheduling of sample days and the
scheduling of duplicate samples are described in the Quality Assurance Project
Plan (QAPP).1 The total scheduled samples and the total valid samples were
used to calculate the percent completeness values. In Table 2-1, the means
are the arithmetic averages of the NMOC concentrations at each site. The
standard deviations (Std.Dev.), skewness, and kurtosis are the second, third,
and fourth moments, respectively about the arithmetic means. A skewness value
2-1
-------
TABLE 2-1. 1987 NMOC STATISTICS
Radian Scheduled Scheduled Total Total NMOC, ppitC
Site Sampling Duplicate Scheduled Valid Percent '
Code Days Sample* Samples Samples Complete HLnlim.ro Median Mean Maximum Std. dev. Skevness Kurtosla
B1MA
86
7
93
67
93.55
0.078
0.307
0. 358
1. 397
0.223
1. 766
4.289
B2MA
86
6
92
94
102.17
0.123
0.477
0.693
3.433
0.632
2. 573
6.844
HTCT
85
6
91
84
92.31
0.137
0.370
0.438
1.170
0.217
1.03 7
0.839
BNY
85
6
91
84
92.31
0.160
0.641
0. 737
1.812
0.405
0.854
-0.163
HNY
85
6
91
77
84.62
0.203
0.711
0. 760
1. 494
0.265
0.440
0.095
NVNJ
86
6
92
90
97.83
0.165
0.712
0. 765
1. 764
0. 354
0.681
-0.019
ATGA
81
6
87
87
100.00
0.191
0.663
0.770
2.213
0.420
0.856
0.288
DEGA
81
6
87
87
100.00
,0.103
0.397
0.480
1.257
0.300
0.763
-0.512
BHAL
84
6
90
91
101.11
0.214
0.907
1.171
4. 448
0. 929
1.213
0.843
L1KY
85
6
91
85
93.41
0.366
0.811
1.252
10.767
1.553
4.629
23.513
C1IL
85
6
91
83
91. 21
0.301
1.291
1. 340
3. 470
0. 495
1.072
3.328
C3IL
86
6
92
86
93.48
0.053
0.357
0.488
2.280
0.408
1.824
3.951
CIOH
86
6
92
90
97.83
0.152
0.530
0.660
2.348
0. 448
1. 937
4 .081
BRLA
86
6
92
93
101.09
0.121
0.632
0. 759
3.053
0.526
1.674
3.283
BMTX
87
6
93
95
102.15
0.128
0.512
0.675
2.670
0.542
1.844
3.497
DLTX
84
6
90
78
86.67
0.159
0.475
0.571
2.087
0.342
1.708
3.948
ELTX
86
6
92
91
98.91
0.045
0.376
0.437
2.095
0.313
2.304
8.291
FWTX
81
6
82
79
90.81
0.277
0.660
0.861
3.278
0.631
2.427
6.030
H1TX
86
6
92
90
97.83
0.237
0.817
0.969
3.060
0. 611
1.661
2.732
LVTX
80
5
85
85
100.00
0.154
0. 422
0.574
1.483
0. 355
1.132
0.129
SLMO
85
6
91
87
95.60
0.182
0.597
0.880
4.475
0.873
2.623
6.540
S1UT
87
6
93
84
90. 32
0.132
0.866
0.957
2.242
0. 437
0.779
0 . 453
S2UT
86
6
92
71
77.17
0.127
0. 754
0.837
1.824
0. 424
0. 64 3
-0.319
ELCA
86
6
92
86
93.48
0.107
0.282
0. 323
1.567
0.198
3. 442
17.380
FRCA
83
7
90
89
98.89
0.257
0.775
1.414
9.984
1.864
3. 326
11 . 180
LICA
86
5
91
92
101.10
0.142
0. 789
0.862
3.462
0. 466
2.299
9.585
SDCA
86
6
92
80
86.96
0.118
0. 312
0. 423
1. 728
0. 308
1.933
3.997
SFCA
86
6
92
91
98.91
0.091
0. 242
0. 345
1.825
0.292
2. 712
8.235
VICA
84
5
89
84
94 . 38
0.150
0. 421
0. 575
5. 309
0. 620
5. 787
39.641
P10R
85
4
89
84
94.38
0.073
0.266
0. 357
1.313
0.271
1 .859
3.499
BACA
75
4
79
73
92.41
0.341
1.486
1. 424
2. 733
0 . 560
-0.042
-0.816
PICA
87
4
91
89
97.80
0.164
0.416
0.543
5. 243
0. 573
6.411
49.394
Overall: 2707 185 2892 2746 94.95 0.045 0.559 0.738 10.767 0.634 5.476 54.383
-------
greater than zero applies to distributions having a longer tail to the right.
A distribution that is normally distributed would have a kurtosis of 3.0. A
distribution more peaked (or pointed) than a normal distribution, having the
same variance, would have a kurtosis greater than 3.0.
Completeness figures for the 1987 NMOC Program show 95.0% complete. This
compares with 96.8% complete in 1986, 95.8% complete in 1985 and 90.6%
2 3 4
complete in 1984. ' ' Completeness was defined as the percentage of samples,
scheduled in the QAPP, that were collected and analyzed as valid samples,
beginning with the first valid sample and ending with the last valid sample.
The overall (arithmetic) mean NMOC concentration for 1987 was 0.738 ppmC,
0.776 in 1986, 0.755 in 1985, and 0.853 in 1984.
The data from the 1987 NMOC program can be better characterized by a
lognormal distribution than by a normal distribution. This follows the 1986
and 1985 findings.^ Table 2-2 summarizes the 1987 NMOC data using the
definitions which characterize a lognormal distribution, overall, and for each
site. MU and SIGMA are the mean and standard deviation, respectively, of the
logarithm of NMOC to the Napierian base e. The geometric mean is e raised to
the power MU; the geometric standard deviation is e raised to the power SIGMA.
The mode is the most frequently occurring NMOC value.
Table 2-3 itemizes the invalidated and missing samples chronologically.
Table 2-4 lists the same information sorted by site code. The purpose of
these tabulations was to characterize collection equipment, procedures, and
problems to facilitate ongoing corrective action and to suggest procedural
revisions for the future.
Figures 2-1 through 2-36 plot the measured NMOC concentration data for
the 32 participating sites for 1987. Tables 2-5 through 2-36 present the
site-specific data chronologically. Figures and tables are arranged by city,
with, for example, the concentration plot for Atlanta, GA, facing the table of
summary data for that city. Sites at Louisville, KY; Fresno, CA; Visalia, CA;
and Pittsburg, CA have additional figures reflecting an expanded NMOC
concentration scale. The summary data tables include:
• date sampled;
• Julian date sampled;
• weekday sampled (M, T, W, H, F);
• sample ID number, assigned consecutively upon receipt;
• sample canister number;
2-3
-------
TABLE 2-2. 1987 NMOC LOGNORMAL STATISTICS
Radian Logarithmic Normal Distribution of NMOC, ppmC
Site
Code
Minimum
Mode
Median
Mean
Maximum
MUa
SIGMA1
B1MA
0.078
0.223
0.307
0.357
1.397
-1.187
0.561
B2MA
0.123
0.340
0.477
0.672
3.433
-0.625
0.674
HTCT
0.137
0.309
0.370
0.439
1.170
-0.940
0.484
BNY
0.160
0.464
0.641
0.743
1.812
-0.454
0.560
MNY
0.203
0.636
0.711
0.765
1.494
-0.339
0.377
NWNJ
0.165
0.538
0.712
0.772
1.764
-0.379
0.490
ATGA
0.191
0.480
0.663
0.778
2.213
-0.412
0.567
DEGA
0.103
0.253
0.397
0.487
1.257
-0.938
0.661
BHAL
0.214
0.450
0.907
1.192
4.448
-0.149
0.806
L1KY
0.366
0.626
0.811
0.767
10.767
-0.062
0.637
CI IL
0.301
1.072
1.291
1.350
3.470
0.223
0.392
C3IL
0.053
0.190
0.357
0.496
2.280
-1.021
0.800
CIOH
0.152
0.392
0.536
0.656
2.348
-0.594
0.586
BRLA
0.121
0.413
0.632
0.758
3.053
-0.479
0.636
BMTX
0.128
0.309
0.512
0.672
2.670
-0.656
0.720
DLTX
0.159
0.362
0.475
0.571
2.087
-0.712
0.550
ELTX
0.045
0.217
0.376
0.445
2.095
-1.048
0.692
FWTX
0.277
0.529
0.660
0.843
3.278
-0.326
0.558
H1TX
0.237
0.594
0.817
0.965
3.060
-0.197
0.569
LVTX
0.154
0.351
0.422
0.413
3.155
-0.722
0.571
SLMO
0.182
0.416
0.597
0.839
4.475
-0.410
0.684
S1UT
0.132
0.668
0.866
0.969
2.242
-0.155
0.498
S2UT
0.127
0.515
0.754
0.858
1.824
-0.323
0.584
ELCA
0.107
0.229
0.282
0.319
1.567
-1.252
0.471
FRCA
0.257
0.458
0.775
1.303
9.987
-0.084
0.835
LICA
0.142
0.590
0.789
0.865
3.462
-0.272
0.505
SDCA
0.118
0.243
0.312
0.416
1.728
-1.056
0.598
SFCA
0.091
0.195
0.242
0.332
1.825
-1.279
0.596
VICA
0.150
0.330
0.421
0.547
5.309
-0.772
0.581
PIOR
0.073
0.182
0.266
0.356
1.313
-1.258
0.669
BACA
0.341
1.032
1.486
1.448
2.733
0.257
0.475
PICA
0.164
0.322
0.416
0.517
5.243
-0.817
0.562
Overall:
0.045
0.389
0.559
0.669
10.767
-0.582
0.601
A U II
MU is the mean of ln(NMOC). e is the geometric mean.
^SIGMA is the standard deviation of In(NMOC). is called the geometric
standard deviation.
2-4
-------
TABLE 2-3. 1987 NMOC STUDY, CHRONOLOGICAL INVALIDATED AND MISSING SAMPLES
SITE DATE DESCRIPTION ASSIGNED
CIIL 06/02/87 SOLENOID FAILURE
CI IL 06/03/87 SOLENOID FAILURE
ELTX 06/03/87 ANALYSIS FAILURE
SDCA 06/03/87 CANISTER PRESSURE
CIIL 06/04/87 SOLENOID FAILURE
S2UT 06/04/87 CANISTER NOT OPENED
SDCA 06/04/87 CANISTER PRESSURE
B2MA 06/05/87 LOW PRESSURE
CIIL 06/05/87 SOLENOID FAILURE
CIIL 06/08/87 BROKEN FILTER
C3IL 06/08/87 CANISTER NOT OPENED
DLTX 06/09/87 LOW SAMPLE PRESSURE
DLTX 06/10/87 LOW SAMPLE PRESSURE
L1KY 06/10/87 CANISTER NOT OPENED
BRLA 06/11/87 NO EXPLANATION
DLTX 06/11/87 TIMER FAILURE
MNY 06/12/87 FITTING STRIPPED
LVTX 06/13/87 POWER FAILURE
MNY 06/15/87 SOLENOID LEAK
VICA 06/15/87 MISSED SAMPLE
BRLA 06/16/87 SAMPLE LINE DETACHED
MNY 06/16/87 SOLENOID LEAK
S2UT 06/16/87 LOW PRESSURE
MNY 06/17/87 SOLENOID FAILURE
ELCA 06/18/87 CANISTER NOT OPENED
L1KY 06/18/87 NO PRESSURE
MNY 06/18/87 SOLENOID FAILURE
FWTX 06/19/87 NO EXPLANATION
MNY 06/19/87 FITTING STRIPPED
S1UT 06/19/87 NO EXPLANATION
SDCA 06/19/87 CANISTER NOT OPENED
MNY 06/22/87 FITTING STRIPPED
SDCA 06/22/87 NO EXPLANATION
SLMO 06/22/87 CANISTER LEAK
BNY 06/24/87 ANALYSIS FAILURE
FWTX 06/25/87 NO PRESSURE
S1UT 06/26/87 CANISTER NOT OPENED
FRCA 06/29/87 SAMPLED ROOM AIR
P10R 06/29/87 CANISTER NOT OPENED
SLMO 06/29/87 TIMER FAILURE
DEGA 06/30/87 NO PRESSURE
ELCA 06/30/87 SAMPLE LINE DETACHED
ELCA 07/01/87 SAMPLE MANIFOLD OPEN
ELTX 07/01/87 NO PRESSURE
SDCA 07/01/87 FITTING LEAK
ELCA 07/02/87 SAMPLE MANIFOLD OPEN
MNY 07/02/87 NO EXPLANATION
P10R 07/02/87 LOW PRESSURE
SLMO 07/02/87 LOW PRESSURE
ELCA 07/06/87 SAMPLE MANIFOLD OPEN
FWTX 07/07/87 POWER FAILURE-STORM
FRCA 07/08/87 NO PRESSURE
C3IL 07/09/87 LOW PRESSURE
ATGA 07/10/87 NO PRESSURE
EQUIPMENT
EQUIPMENT
RADIAN
EQUIPMENT
EQUIPMENT
OPERATOR
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
EQUIPMENT
EQUIPMENT
OPERATOR
UNASSIGNED
EQUIPMENT
OPERATOR
SITE
EQUIPMENT
OPERATOR
OPERATOR
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
UNASSIGNED
EQUJPMENT
UNASSIGNED
EQUIPMENT
UNASSIGNED
OPERATOR
EQUIPMENT
UNASSIGNED
EQUIPMENT
RADIAN
EQUIPMENT
OPERATOR
OPERATOR
OPERATOR
EQUIPMENT
EQUIPMENT
OPERATOR
OPERATOR
EQUIPMENT
EQUIPMENT
OPERATOR
UNASSIGNED
UNASSIGNED
EQUIPMENT
OPERATOR
SITE
EQUIPMENT
OPERATOR
EQUIPMENT
2-
5
-------
TABLE 2-3. 1987 NMOC STUDY, CHRONOLOGICAL INVALIDATED AND MISSING SAMPLES
SITE
DATE
DESCRIPTION
ASSIGNED
C3IL
07/10/87
LOW PRESSURE
OPERATOR
VICA
07/10/87
CANISTER STRIPPED
EQUIPMENT
BHAL
07/13/87
POWER FAILURE
SITE
ELTX
07/13/87
NO PRESSURE
EQUIPMENT
PICA
07/13/87
POWER FAILURE
SITE
BHAL
07/14/87
POWER FAILURE
SITE
BRLA
07/14/87
CANISTER NOT ATTACHED
OPERATOR
C3IL
07/14/87
LOW PRESSURE
OPERATOR
DLTX
07/14/87
CANISTER NOT OPENED
OPERATOR
PIOR
07/16/87
CANISTER NOT OPENED
OPERATOR
ATGA
07/17/87
OPEN BURNING
SITE
B1MA
07/17/87
NO EXPLANATION
UNASSIGNED
ATGA
07/20/87
OPEN BURNING
SITE
VICA
07/20/87
CANISTER NOT OPENED
OPERATOR
FWTX
07/21/87
NO PRESSURE
UNKNOWN
H1TX
07/22/87
CANISTER NOT OPENED
OPERATOR
S2UT
07/22/87
LOW PRESSURE
EQUIPMENT
S1UT
07/23/87
NO PRESSURE
EQUIPMENT
S2UT
07/23/87
CANISTER NOT OPENED
OPERATOR
SLMO
07/23/87
NO SAMPLE COLLECTED
SITE
C3IL
07/24/87
NO EXPLANATION
UNASSIGNED
SDCA
07/24/87
TIMER LEAD
EQUIPMENT
SDCA
07/27/87
TIMER LEAD
EQUIPMENT
B1MA
07/28/87
HIGH PRESSURE
EQUIPMENT
CI IL
07/28/87
CANISTER NOT OPENED
EQUIPMENT
MNY
07/28/87
CANISTER NOT OPENED
EQUIPMENT
S2UT
07/28/87
NO PRESSURE
EQUIPMENT
B1MA
07/29/87
HIGH PRESSURE
EQUIPMENT
B2MA
07/29/87
LOW PRESSURE
EQUIPMENT
BMTX
07/29/87
HIGH PRESSURE
EQUIPMENT
SFCA
07/29/87
SAMPLE LINE DETACHED
EQUIPMENT
B1MA
07/30/87
HIGH PRESSURE
EQUIPMENT
C3IL
07/30/87
CANISTER NOT OPENED
EQUIPMENT
DLTX
07/30/87
SIDEARM LEAK
OPERATOR
NWNJ
07/30/87
SAMPLE LINE LOOSE
OPERATOR
BNY
07/31/87
CANISTER NOT OPENED
OPERATOR
DLTX
07/31/87
SIDEARM LEAK
OPERATOR
B1MA
08/03/87
HIGH PRESSURE
EQUIPMENT
PIOR
08/03/87
NO PRESSURE
UNASSIGNED
S1UT
08/03/87
NO EXPLANATION
UNASSIGNED
S2UT
08/03/87
BROKEN LINE-ROOM AIR
EQUIPMENT
DLTX
08/04/87
EQUIPMENT LEAK
OPERATOR
L1KY
08/04/87
HIGH PRESSURE
EQUIPMENT
S2UT
08/05/87
NO PRESSURE
EQUIPMENT
S2UT
08/06/87
SOLENOID FAILURE
EQUIPMENT
FWTX
08/07/87
CANISTER NOT OPENED
EQUIPMENT
MNY
08/07/87
SOLENOID LEAK
EQUIPMENT
HTCT
08/07/87
HIGH PRESSURE
EQUIPMENT
S2UT
08/07/87
TIMER FAILURE
EQUIPMENT
HTCT
08/10/87
BROKEN FILTER ASSEMBLY
EQUIPMENT
C3IL
08/11/87
CANISTER VALVE
EQUIPMENT
ELCA
08/11/87
FAULTY ORIFICE
EQUIPMENT
HTCT
08/11/87
BROKEN LINE
EQUIPMENT
SDCA
08/11/87
SAMPLE LINE DETACHED
OPERATOR
HTCT
08/12/87
BROKEN LINE
EQUIPMENT
2-6
-------
TABLE 2-3. 1987 NMOC STUDY, CHRONOLOGICAL INVALIDATED AND MISSING SAMPLES
SITE DATE DESCRIPTION ASSIGNED
HTCT
08/13/87
BROKEN LINE
EQUIPMENT
L1KY
08/13/87
SAMPLE LINE DETACHED
OPERATOR
BNY
08/14/87
HIGH PRESSURE
EQUIPMENT
C3IL
08/14/87
LOW PRESSURE
EQUIPMENT
ELCA
08/14/87
LOW PRESSURE
EQUIPMENT
HTCT
08/14/87
BROKEN LINE
EQUIPMENT
S1UT
08/14/87
CANISTER NOT OPENED
EQUIPMENT
DLTX
08/17/87
SAMPLE LINE DETACHED
OPERATOR
S2UT
08/17/87
NO PRESSURE
EQUIPMENT
S2UT
08/18/87
NO PRESSURE
EQUIPMENT
CI IL
08/19/87
SOLENOID LEAK
EQUIPMENT
ELTX
08/19/87
NO PRESSURE
EQUIPMENT
S2UT
08/19/87
NO PRESSURE
EQUIPMENT
PIOR
08/20/87
NO EXPLANATION
UNASSIGNED
S2UT
08/20/87
SAMPLE LINE DETACHED
OPERATOR
VICA
08/20/87
NO EXPLANATION
UNASSIGNED
C1 IL
08/21/87
SOLENOID LEAK
EQUIPMENT
S2UT
08/21/87
PUMP UNPLUGED
OPERATOR
H1TX
08/24/87
POWER FAILURE
SITE
MNY
08/24/87
HIGH PRESSURE
EQUIPMENT
S2UT
08/25/87
PLUGGED FILTER
EQUIPMENT
BACA
08/26/87
MISSED RUN
OPERATOR
PIOR
08/26/87
HIGH PRESSURE
EQUIPMENT
CI IL
08/27/87
LOW PRESSURE
EQUIPMENT
DLTX
08/27/87
NO EXPLANATION
UNASSIGNED
FWTX
08/27/87
CANISTER LOST VACUUM
OPERATOR
. L1KY
08/27/87
CANISTER PARTLY OPENED
OPERATOR
S2UT
08/27/87
NO PRESSURE
EQUIPMENT
S2UT
08/28/87
SOLENOID FAILURE
EQUIPMENT
HTCT
08/31/87
HIGH PRESSURE
EQUIPMENT
S2UT
08/31/87
PUMP FAILURE
EQUIPMENT
BACA
09/01/87
POWER FAILURE
SITE
FWTX
09/01/87
SAMPLE LINE DETACHED
OPERATOR
S2UT
09/01/87
AWAITING EQUIPMENT
EQUIPMENT
BNY
09/02/87
NO EXPLANATION
UNASSIGNED
CI IL
09/02/87
POWER FAILURE
SITE
CIOH
09/02/87
CANISTER STRIPPED
EQUIPMENT
S2UT
09/02/87
NO SAMPLE - PUMP FAILURE
EQUIPMENT
VICA
09/02/87
MISSED SAMPLE
OPERATOR
B1MA
09/04/87
MISSED SAMPLE
SITE
BACA
09/04/87
MISSED SAMPLE
SITE
FRCA
09/04/87
MISSED SAMPLE
SITE
H1TX
09/04/87
MISSED SAMPLE
SITE
PICA
09/08/87
CONTAMINATION-PAINTING
SITE
S2UT
09/08/87
UNKNOWN EQUIPMENT PROBLEM
UNASSIGNED
SDCA
09/08/87
CANISTER NOT OPENED
OPERATOR
BNY
09/09/87
OPERATOR AVAILABILITY
SITE
MNY
09/09/87
OPERATOR AVAILABILITY
SITE
NWNJ
09/09/87
CANISTER NOT OPENED
OPERATOR
S2UT
09/09/87
SOLENOID FAILURE
EQUIPMENT
BNY
09/10/87
OPERATOR AVAILABILITY
SITE
MNY
09/10/87
OPERATOR AVAILABILITY
SITE
S2UT
09/10/87
SOLENOID FAILURE
EQUIPMENT
SLMO
09/10/87
SAMPLER UNPLUGGED
OPERATOR
CI IL
09/11/87
CANISTER LEAK
EQUIPMENT
2-7
-------
TABLE 2-3. 1987 NMOC STUDY, CHRONOLOGICAL INVALIDATED AND MISSING SAMPLES
SITE
DATE
DESCRIPTION
ASSIGNED
DLTX
09/11/87
NO SAMPLE CANISTER
SHIPPING
H1TX
09/11/87
NO EXPLANATION
UNASSIGNED
PICA
09/11/87
NO EXPLANATION
UNASSIGNED
S1UT
09/11/87
CANISTER NOT OPENED
OPERATOR
S2UT
09/11/87
TIMER LATE
EQUIPMENT
ELTX
09/14/87
NO EXPLANATION
UNASSIGNED
PIOR
09/14/87
NO EXPLANATION
UNASSIGNED
S2UT
09/14/87
TIMER/SOLENOID FAILURE
EQUIPMENT
ELTX
09/15/87
NO EXPLANATION
UNASSIGNED
S1UT
09/15/87
NO EXPLANATION
UNASSIGNED
S2UT
09/15/87
TIMER/SOLENOID FAILURE
EQUIPMENT
DLTX
09/16/87
CANISTER NOT OPENED
OPERATOR
H1TX
09/16/87
SAMPLE LINE BROKEN
EQUIPMENT
C1IL
09/17/87
TIMER FAILURE
EQUIPMENT
FRCA
09/17/87
NO EXPLANATION
UNASSIGNED
L1KY
09/17/87
CANISTER NOT OPENED
OPERATOR
S1UT
09/17/87
NO EXPLANATION
UNASSIGNED
S2UT
09/17/87
NO EXPLANATION
UNASSIGNED
SLMO
09/17/87
NO SAMPLE COLLECTED
SITE
PIOR
09/21/87
LOW PRESSURE
EQUIPMENT
S2UT
09/21/87
LOW PRESSURE
EQUIPMENT
B1MA
09/22/87
HIGH PRESSURE
EQUIPMENT
S1UT
09/22/87
UNKNOWN FAILURE
EQUIPMENT
S2UT
09/22/87
LOW PRESSURE
EQUIPMENT
VICA
09/22/87
NO EXPLANATION
UNKNOWN
BACA
09/23/87
SOLENOID FAILURE
EQUIPMENT
C1IL
09/23/87
NO PRESSURE
EQUIPMENT
S1UT
09/23/87
BROKEN SIDEARM
EQUIPMENT
VICA
09/23/87
CANISTER NOT OPENED
OPERATOR
BACA
09/24/87
SOLENOID FAILURE
EQUIPMENT
BNY
09/24/87
SCHOOL HOLIDAY
SITE
FWTX
09/24/87
TIMER ELECTRICAL FAILURE
EQUIPMENT
MNY
09/24/87
SCHOOL HOLIDAY
SITE
BACA
09/25/87
SOLENOID FAILURE
EQUIPMENT
BNY
09/25/87
SCHOOL HOLIDAY
SITE
LVTX
09/25/87
BROKEN FILTER
EQUIPMENT
MNY
09/25/87
SCHOOL HOLIDAY
SITE
BACA
09/28/87
SOLENOID FAILURE
EQUIPMENT
BNY
09/28/87
SCHOOL HOLIDAY
SITE
CIOH
09/28/87
SAMPLE CONTAMINATED
SITE
L1KY
09/28/87
NO EXPLANATION
UNASSIGNED
MNY
09/28/87
SCHOOL HOLIDAY
SITE
S1UT
09/28/87
NO EXPLANATION
EQUIPMENT
SDCA
09/28/87
NO PRESSURE
EQUIPMENT
BACA
09/29/87
SOLENOID FAILURE
EQUIPMENT
BACA
09/30/87
SOLENOID FAILURE
EQUIPMENT
S1UT
09/30/87
NO EXPLANATION
EQUIPMENT
BACA
10/01/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/02/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/05/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/06/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/12/87
SOLENOID FAILURE
EQUIPMENT
PICA
10/12/87
NO EXPLANATION
UNASSIGNED
PICA
10/21/87
OPERATOR AVAILABILITY
SITE
2-8
-------
TABLE 2-4. 1987 NMOC STUDY, SITE SPECIFIC INVALIDATED AND MISSING SAMPLES
SITE
DATE
DESCRIPTION
ASSIGNED
ATGA
07/10/87
NO PRESSURE
EQUIPMENT
ATGA
07/17/87
OPEN BURNING
SITE
ATGA
07/20/87
OPEN BURNING
SITE
B1MA
07/17/87
NO EXPLANATION
UNASSIGNED
B1MA
07/28/87
HIGH PRESSURE
EQUIPMENT
B1MA
07/29/87
HIGH PRESSURE
EQUIPMENT
B1MA
07/30/87
HIGH PRESSURE
EQUIPMENT
B1MA
08/03/87
HIGH PRESSURE
EQUIPMENT
B1MA
09/04/87
MISSED SAMPLE
SITE
B1MA
09/22/87
HIGH PRESSURE
EQUIPMENT
82MA
06/05/87
LOU PRESSURE
EQUIPMENT
B2MA
07/29/87
LOW PRESSURE
EQUIPMENT
BACA
08/26/87
MISSED RUN
OPERATOR
BACA
09/01/87
POWER FAILURE
SITE
BACA
09/04/87
MISSED SAMPLE
SITE
BACA
09/23/87
SOLENOID FAILURE
EQUIPMENT
BACA
09/24/87
SOLENOID FAILURE
EQUIPMENT
BACA
09/25/87
SOLENOID FAILURE
EQUIPMENT
BACA
09/28/87
SOLENOID FAILURE
EQUIPMENT
BACA
09/29/87
SOLENOID FAILURE
EQUIPMENT
BACA
09/30/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/01/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/02/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/05/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/06/87
SOLENOID FAILURE
EQUIPMENT
BACA
10/12/87
SOLENOID FAILURE
EQUIPMENT
BHAL
07/13/87
POWER FAILURE
SITE
BHAL
07/14/87
POWER FAILURE
SITE
BMTX
07/29/87
HIGH PRESSURE
EQUIPMENT
BNY
06/24/87
ANALYSIS FAILURE
RADIAN
BNY
07/31/87
CANISTER NOT OPENED
OPERATOR
BNY
08/14/87
HIGH PRESSURE
EQUIPMENT
BNY
09/02/87
NO EXPLANATION
UNASSIGNED
BNY
09/09/87
OPERATOR AVAILABILITY
SITE
BNY
09/10/87
OPERATOR AVAILABILITY
SITE
BNY
09/24/87
SCHOOL HOLIDAY
SITE
BNY
09/25/87
SCHOOL HOLIDAY
SITE
BNY
09/28/87
SCHOOL HOLIDAY
SITE
BRLA
06/11/87
NO EXPLANATION
UNASSIGNED
BRLA
06/16/87
SAMPLE LINE DETACHED
OPERATOR
BRLA
07/14/87
CANISTER NOT ATTACHED
OPERATOR
CI IL
06/02/87
SOLENOID FAILURE
EQUIPMENT
-------
TABLE 2-4. 1987 NMOC STUDY, SITE SPECIFIC INVALIDATED AND MISSING SAMPLES
SITE
DATE
DESCRIPTION
ASSIGNED
CI IL
06/03/87
SOLENOID FAILURE
EQUIPMENT
CI IL
06/04/87
SOLENOID FAILURE
EQUIPMENT
C1IL
06/05/87
SOLENOID FAILURE
EQUIPMENT
CI IL
06/08/87
BROKEN FILTER
EQUIPMENT
CI IL
07/28/87
CANISTER NOT OPENED
EQUIPMENT
C1IL
08/19/87
SOLENOID LEAK
EQUIPMENT
CI IL
08/21/87
SOLENOID LEAK
EQUIPMENT
CI IL
08/27/87
LOW PRESSURE
EQUIPMENT
CI IL
09/02/87
POWER FAILURE
SITE
CI IL
09/H/87
CANISTER LEAK
EQUIPMENT
CI IL
09/17/87
TIMER FAILURE
EQUIPMENT
CI IL
09/23/87
NO PRESSURE
EQUIPMENT
C3IL
06/08/87
CANISTER NOT OPENED
OPERATOR
C3IL
07/09/87
LOW PRESSURE
OPERATOR
C3IL
07/10/87
LOW PRESSURE
OPERATOR
C3IL
07/14/87
LOW PRESSURE
OPERATOR
C3IL
07/24/87
NO EXPLANATION
UNASSIGNED
C3IL
07/30/87
CANISTER NOT OPENED
EQUIPMENT
C3IL
08/11/87
CANISTER VALVE
EQUIPMENT
C3IL
08/14/87
LOW PRESSURE
EQUIPMENT
CIOH
09/02/87
CANISTER STRIPPED
EQUIPMENT
CIOH
09/28/87
SAMPLE CONTAMINATED
SITE
DEGA
06/30/87
NO PRESSURE
EQUIPMENT
DLTX
06/09/87
LOW PRESSURE
EQUIPMENT
DLTX
06/10/87
LOW PRESSURE
EQUIPMENT
DLTX
06/11/87
TIMER FAILURE
EQUIPMENT
DLTX
07/14/87
CANISTER NOT OPENED
OPERATOR
DLTX
07/30/87
SIDEARM LEAK
OPERATOR
DLTX
07/31/87
SIDEARM LEAK
OPERATOR
DLTX
08/04/87
EQUIPMENT LEAK
OPERATOR
DLTX
08/17/87
SAMPLE LINE DETACHED
OPERATOR
DLTX
08/27/87
NO EXPLANATION
UNASSIGNED
DLTX
09/11/87
NO SAMPLE CANISTER
SHIPPING
DLTX
09/16/87
CANISTER NOT OPENED
OPERATOR
ELCA
06/18/87
CANISTER NOT OPENED
OPERATOR
ELCA
06/30/87
SAMPLE LINE DETACHED
OPERATOR
ELCA
07/01/87
SAMPLE MANIFOLD OPEN
OPERATOR
ELCA
07/02/87
SAMPLE MANIFOLD OPEN
OPERATOR
ELCA
07/06/87
SAMPLE MANIFOLD OPEN
OPERATOR
ELCA
08/11/87
FAULTY ORIFICE
EQUIPMENT
ELCA
08/14/87
LOW PRESSURE
EQUIPMENT
ELTX
06/03/87
ANALYSIS FAILURE
RADIAN
ELTX
07/01/87
NO PRESSURE
EQUIPMENT
ELTX
07/13/87
NO PRESSURE
EQUIPMENT
ELTX
08/19/87
NO PRESSURE
EQUIPMENT
2-10
-------
TABLE 2-4. 1987 NMOC STUDY, SITE SPECIFIC INVALIDATED AND MISSING SAMPLES
SITE
DATE
DESCRIPTION
ASSIGNED
ELTX
09/14/87
NO EXPLANATION
UNASSIGNED
ELTX
09/15/87
NO EXPLANATION
UNASSIGNED
FRCA
06/29/87
SAMPLED ROOM AIR
OPERATOR
FRCA
07/08/87
NO PRESSURE
EQUIPMENT
FRCA
09/04/87
MISSED SAMPLE
SITE
FRCA
09/17/87
NO EXPLANATION
UNASSIGNED
FWTX
06/19/87
NO EXPLANATION
UNASSIGNED
FWTX
06/25/87
NO PRESSURE
EQUIPMENT
FWTX
07/07/87
POWER FAILURE-STORM
SITE
FWTX
07/21/87
NO PRESSURE
UNKNOWN
FWTX
08/07/87
CANISTER NOT OPENED
EQUIPMENT
FWTX
08/27/87
CANISTER LOST VACUUM
OPERATOR
FWTX
09/01/87
SAMPLE LINE DETACHED
OPERATOR
FWTX
09/24/87
TIMER ELECTRICAL FAILURE
EQUIPMENT
H1TX
07/22/87
CANISTER NOT OPENED
OPERATOR
H1TX
08/24/87
POWER FAILURE
SITE
H1TX
09/04/87
MISSED SAMPLE
SITE
H1TX
09/11/87
NO EXPLANATION
UNASSIGNED
Hl-TX
09/16/87
SAMPLE LINE BROKEN
EQUIPMENT
HTCT
08/07/87
HIGH PRESSURE
EQUIPMENT
HTCT
08/10/87
BROKEN FILTER ASSEMBLY
EQUIPMENT
HTCT
08/11/87
BROKEN LINE
EQUIPMENT
HTCT
08/12/87
BROKEN LINE
EQUIPMENT
HTCT
08/13/87
BROKEN LINE
EQUIPMENT
HTCT
08/14/87
BROKEN LINE
EQUIPMENT
HTCT
08/31/87
HIGH PRESSURE
EQUIPMENT
L1KY
06/10/87
CANISTER NOT OPENED
OPERATOR
L1KY
06/18/87
NO PRESSURE
UNASSIGNED
L1KY
08/04/87
HIGH PRESSURE
EQUIPMENT
L1KY
08/13/87
SAMPLE LINE DETACHED
OPERATOR
L1KY
08/27/87
CANISTER PARTLY OPENED
OPERATOR
L1KY
09/17/87
CANISTER NOT OPENED
OPERATOR
L1KY
09/28/87
NO EXPLANATION
UNASSIGNED
LVTX
06/13/87
POWER FAILURE
SITE
LVTX
09/25/87
BROKEN FILTER
EQUIPMENT
MNY
06/12/87
FITTING STRIPPED
OPERATOR
MNY
06/15/87
SOLENOID LEAK
EQUIPMENT
MNY
06/16/87
SOLENOID LEAK
EQUIPMENT
MNY
06/17/87
SOLENOID FAILURE
EQUIPMENT
MNY
06/18/87
SOLENOID FAILURE
EQUIPMENT
MNY
06/19/87
FITTING STRIPPED
EQUIPMENT
MNY
06/22/87
FITTING STRIPPED
EQUIPMENT
MNY
07/02/87
NO EXPLANATION
UNASSIGNED
MNY
07/28/87
CANISTER NOT OPENED
EQUIPMENT
2-11
-------
TABLE 2-4. 1987 NMOC STUDY, SITE SPECIFIC INVALIDATED AND MISSING SAMPLES
SITE DATE DESCRIPTION ASSIGNED
MNY
08/07/87
SOLENOID LEAK
EQUIPMENT
MNY
08/24/87
HIGH PRESSURE
EQUIPMENT
MNY
09/09/87
OPERATOR AVAILABILITY
SITE
MNY
09/10/87
OPERATOR AVAILABILITY
SITE
MNY
09/24/87
SCHOOL HOLIDAY
SITE
MNY
09/25/87
SCHOOL HOLIDAY
SITE
MNY
09/28/87
SCHOOL HOLIDAY
SITE
NWNJ
07/30/87
SAMPLE LINE LOOSE
OPERATOR
NWNJ
09/09/87
CANISTER NOT OPENED
OPERATOR
PIOR
06/29/87
CANISTER NOT OPENED
OPERATOR
PIOR
07/02/87
LOW PRESSURE
UNASSIGNED
PIOR
07/16/87
CANISTER NOT OPENED
OPERATOR
PIOR
08/03/87
NO PRESSURE
UNASSIGNED
PIOR
08/20/87
NO EXPLANATION
UNASSIGNED
PIOR
08/26/87
HIGH PRESSURE
EQUIPMENT
PIOR
09/14/87
NO EXPLANATION
UNASSIGNED
PIOR
09/21/87
LOW PRESSURE
EQUIPMENT
PICA
07/13/87
POWER FAILURE
SITE
PICA
09/08/87
CONTAMINATION-PAINTING
SITE
PICA
09/11/87
NO EXPLANATION
UNASSIGNED
PICA
10/12/87
NO EXPLANATION
UNASSIGNED
PICA
10/21/87
OPERATOR AVAILABILITY
SITE
S1UT
06/19/87
NO EXPLANATION
UNASSIGNEO
S1UT
06/26/87
CANISTER NOT OPENED
OPERATOR
S1UT
07/23/87
NO SAMPLE PRESSURE
EQUIPMENT
S1UT
08/03/87
NO EXPLANATION
UNASSIGNED
S1UT
08/14/87
CANISTER NOT OPENED
EQUIPMENT
S1UT
09/11/87
CANISTER NOT OPENED
OPERATOR
S1UT
09/15/87
NO EXPLANATION
UNASSIGNED
S1UT
09/17/87
NO EXPLANATION
UNASSIGNED
S1UT
09/22/87
UNKNOWN FAILURE
EQUIPMENT
S1UT
09/23/87
BROKEN SIDEAR*
EQUIPMENT
S1UT
09/28/87
NO EXPLANATION
EQUIPMENT
S1UT
09/30/87
NO EXPLANATION
EQUIPMENT
S2UT
06/04/87
CANISTER NOT OPENED
OPERATOR
S2UT
06/16/87
LOW PRESSURE
EQUIPMENT
S2UT
07/22/87
LOW PRESSURE
EQUIPMENT
S2UT
07/23/87
CANISTER NOT OPENED
OPERATOR
S2UT
07/28/87
NO PRESSURE
EQUIPMENT
S2UT
08/03/87
BROKEN LINE-ROOM AIR
EQUIPMENT
S2UT
08/05/87
NO PRESSURE
EQUIPMENT
S2UT
08/06/87
SOLENOID FAILURE
EQUIPMENT
S2UT
08/07/87
TIMER FAILURE
EQUIPMENT
S2UT
08/17/87
NO PRESSURE
EQUIPMENT
S2UT
08/18/87
NO PRESSURE
EQUIPMENT
S2UT
08/19/87
NO PRESSURE
EQUIPMENT
2-12
-------
TABLE 2-4. 1987 NMOC STUDY, SITE SPECIFIC INVALIDATED AND MISSING SAMPLES
SITE
DATE
DESCRIPTION
ASSIGNED
S2UT
08/20/87
SAMPLE LINE DETACHED
OPERATOR
S2UT
08/21/87
PUMP UNPLUGED
OPERATOR
S2UT
08/25/87
PLUGGED FILTER
EQUIPMENT
S2UT
08/27/87
NO PRESSURE
EQUIPMENT
S2UT
08/28/87
SOLENOID FAILURE
EQUIPMENT
S2UT
08/31/87
PUMP FAILURE
EQUIPMENT
S2UT
09/01/87
AWAITING EQUIPMENT
EQUIPMENT
S2UT
09/02/87
NO SAMPLE - PUMP FAILURE
EQUIPMENT
S2UT
09/08/87
UNKNOWN EQUIPMENT PROBLEM
UNASSIGNED
S2UT
09/09/87
SOLENOID FAILURE
EQUIPMENT
S2UT
09/10/87
SOLENOID FAILURE
EQUIPMENT
S2UT
09/11/87
TIMER LATE
EQUIPMENT
S2UT
09/14/87
TIMER/SOLENOID FAILURE
EQUIPMENT
S2UT
09/15/87
TIMER/SOLENOID FAILURE
EQUIPMENT
S2UT
09/17/87
NO EXPLANATION
UNASSIGNED
S2UT
09/21/87
LOW PRESSURE
EQUIPMENT
S2UT
09/22/87
LOW PRESSURE
EQUIPMENT
SDCA
06/03/87
CANISTER PRESSURE
EQUIPMENT
SDCA
06/04/87
CANISTER PRESSURE
EQUIPMENT
SDCA
06/19/87
CANISTER NOT OPENED
OPERATOR
SDCA
06/22/87
NO EXPLANATION
UNASSIGNED
SDCA
07/01/87
FITTING LEAK
EQUIPMENT
SDCA
07/24/87
TIMER LEAD
EQUIPMENT
SDCA
07/27/87
TIMER LEAD
EQUIPMENT
SDCA
08/11/87
SAMPLE LINE DETACHED
OPERATOR
SDCA
09/08/87
CANISTER NOT OPENED
OPERATOR
SDCA
09/28/87
NO PRESSURE
EQUIPMENT
SFCA
07/29/87
SAMPLE LINE DETACHED
EQUIPMENT
SLMO
06/22/87
CANISTER LEAK
EQUIPMENT
SLMO
06/29/87
TIMER FAILURE
EQUIPMENT
SLMO
07/02/87
LOW SAMPLE PRESSURE
EQUIPMENT
SLMO
07/23/87
NO SAMPLE COLLECTED
SITE
SLMO
09/10/87
SAMPLER UNPLUGGED
OPERATOR
SLMO
09/17/87
NO SAMPLE COLLECTED
SITE
VICA
06/15/87
MISSED SAMPLE
OPERATOR
VICA
07/10/87
CANISTER STRIPPED
EQUIPMENT
VICA
07/20/87
CANISTER NOT OPENED
OPERATOR
VICA
08/20/87
NO EXPLANATION
UNASSIGNED
VICA
09/02/87
MISSED SAMPLE
OPERATOR
VICA
09/22/87
NO EXPLANATION
UNKNOWN
VICA
09/23/87
CANISTER NOT OPENED
OPERATOR
2-13
-------
BOSTON, MA (CHELSEA)
B1MA - 1987 NMOC PROGRAM
I
*i v * ¦. v J Ak f \ ¦** A-i
i i i i i i i i i i i i
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-1. Plot of NMOC concentration for Boston, MA (Chelsea).
-------
TABLE 2-5. SUMMARY OF THE 1987 NHOC OATA FOR BOSTON, MA (B1MA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NHOC
NHOC
NKOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(ppmC)
(ppmC)
(pptnC)
06/01/87
152
M
1008
32
B
0.277
06/01/87
152
M
1009
151
C
0.346
06/02/87
153
T
1012
150
C
0.416
06/02/87
153
T
1012
150
8
0.436
06/03/87
154
U
1044
79
A
0.136
06/04/87
155
H
1067
73
B
0.674
06/05/87
156
F
1086
52
A
1.397
06/08/87
159
M
1118
138
0
0.176
06/09/87
160
T
1155
677
0
0.634
06/10/87
161
U
1164
182
A
0.093
06/11/87
162
H
1199
191
C
0.295
0.332
0.258
06/12/87
163
F
1217
302
A
0.214
06/12/87
163
F
1217
302
B
0.250
06/15/87
166
M
1280
100
C
0.307
06/16/87
167
T
1294
659
B
0.173
0.242
0.153
06/17/87
168
W
1320
151
C
0.078
06/18/87
169
H
1343
668
C
0.567
0.586
0.464
06/19/87
170
F
1381
191
0 .
0.356
06/22/87
173
M
1430
99
C
0.851
06/23/87
174
T
1442
71
A
0.176
06/24/87
175
W
1477
181
B
0.722
06/25/87
176
H
1556
103
B
0.150
06/26/87
177
F
1560
90
A
0.395
06/26/87
177
F
1561
149
A
0.422
06/29/87
180
M
1583
89
A
0.346
06/30/87
181
T
1642
723
0
0.164
07/01/87
182
U
1621
686
C
0.188
07/02/87
183
H
1668
656
C
0.409
07/03/87
184
F
1693
150
D
0.139
07/06/87
187
M
1714
501
A
0.778
07/06/87
187
M
1714
501
A
0.773
07/07/87
188
T
1741
179
B
0.176
0.156
07/08/87
189
VI
1813
172
B
0.193
07/09/87
190
H
1826
682
B
0.190
07/10/87
191
F
1858
711
D
0.733
07/13/87
194
M
1894
143
0
0.319
07/14/87
195
T
1909
698
A
0.170
07/15/87
196
U
1947
43
D
0.157
07/16/87
197
H
1984
725
B
0.198
07/16/87
197
H
1986
180
C
0.198
07/20/87
201
M
2084
140
C
0.207
0.223
0.156
07/21/87
202
T
2078
669
D
0.291
07/22/87
203
U
2120
24
A
0.140
2-15
-------
TABLE 2-5. SUMMARY OF THE 1987 NMOC DATA FOR BOSTON, MA (B1MA)
Julian
Sample
Sample
Radian
QAO
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
number
Number
Channel
(ppmC)
(ppmC)
(ppnC)
07/23/87
204
H
2153
70
C
0.370
07/24/87
205
F
2162
14
D
0.254
07/27/87
208
M
2215
158
D
0.384
0.380
07/31/87
212
F
2336
72
B
0.180
08/04/87
216
T
2418
766
D
0.328
08/04/87
216
T
2423
769
D
0.358
08/05/87
217
U
2434
636
D
0.185
0.247
0.248
08/06/87
218
H
2513
197
B
0.169
08/07/87
219
F
2511
692
A
0.280
08/10/87
222
M
2552
625
A
0.222
08/11/87
223
T
2583
156
B
0.217
08/12/87
224
W
2619
766
A
0.237
08/13/87
225
H
2623
104
D
0.566
08/13/87
225
H
2623
104
A
0.557
08/14/87
226
F
2657
715
D
0.720
08/17/87
229
H
2730
123
A
0.367
08/18/87
230
T
2726
100
B
0.530
08/19/87
231
U
2782
19
C
0.422
08/20/87
232
H
2791
130
B
0.849
08/21/87
233
F
2821
674
0
0.212
08/24/87
236
M
2897
86
B
0.177
08/25/87
237
T
2930
791
C
0.640
08/26/87
238
W
2907
789
A
0.312
0.324
08/26/87
238
U
2908
768
A
0.324
0.336
08/27/87
239
H
2983
53
D
0.211
08/28/87
240
F
2998
730
B
0.374
08/31/87
243
M
3056
657
C
0.259
09/01/87
244
T
3077
710
A
0.485
09/02/87
245
U
3113
112
C
0.472
09/03/87
246
H
3164
89
c
0.567
09/08/87
251
T
3229
779
c
0.377
09/09/87
252
U
3266
675
A
0.541
09/10/87
253
H
3280
640
0
0.236
09/11/87
254
F
3313
781
A
0.178
0.141
09/14/87
257
N
3353
645
C
0.391
09/14/87
257
M
3354
689
C
0.388
09/15/87
258
T
3394
785
A
0.377
09/16/87
259
U
3410
75
D
0.471
0.489
09/17/87
260
H
3452
692
D
0.261
09/18/87
261
F
3455
83
C
0.343
09/21/87
264
N
3502
196
C
0.129
0.104
09/23/87
266
W
3594
764
C
0.760
09/24/87
267
H
3662
795
A
0.321
2-16
-------
TABLE 2-5. SUMMARY OF THE 1987 NMOC DATA FOR BOSTON, MA (81MA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nunber
Channel
(ppmC)
(ppmC)
(ppmC)
09/25/87
268
F
3642
191
D
0.248
09/28/87
271
N
3694
141
A
0.280
09/29/87
272
T
3710
147
D
0.938
09/29/87
272
T
3710
147
A
0.830
09/30/87
273
U
3807
194
C
0.212
09/30/87
273
U
3808
667
D
0.226
2-17
-------
BOSTON, MA (E. BOSTON)
B2MA - 1987 NMOC PROGRAM
I
. ~
1
t
1
1
I
I i [—
i
WvA
i i i
i i i i i
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-2. Plot of NMOC concentration for Boston, MA (E. Boston).
-------
TABLE 2-6. SUMMARY OF THE 1987 NMOC DATA FOR BOSTON, MA (B2MA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Number
Channel
(ppmC)
(pprC)
CppmC)
06/01/87
152
M
1006
178
C
0.334
06/01/87
152
M
1005
93
B
0.399
06/02/87
153
T
1015
197
A
0.259
0.315
0.265
06/03/87
154
U
1032
106
A
0.190
06/03/87
154
U
1032
106
C
0.156
06/04/87
155
H
1055
10
B
0.159
0.166
06/08/87
159
M
1124
137
C
0.620
06/09/87
160
T
1156
666
B
0.558
06/10/87
161
U
1163
79
8
0.123
06/11/87
162
H
1202
42
B
0.401
06/12/87
163
F
1219
66
A
0.438
06/15/87
166
M
1279
101
D
0.430
06/16/87
167
T
1286
80
D
0.417
06/16/87
167
T
1286
80
C
0.489
06/17/87
168
U
1319
70
B
0.244
06/18/87
169
H
1346
1
0
0.539
06/19/87
170
F
1380
60
C
0.698
06/22/87
173
M
1431
82
B
0.740
06/22/87
173
M
1432
72
D
0.772
06/23/87
174
T
1450
185
C
2.323
06/24/87
175
U
1476
43
A
0.694
06/25/87
176
H
1552
309
B
1.507
06/26/87
177
f
1538
730
B
0.271
06/29/87
180
M
1584
169
B
0.330
06/30/87
181
T
1641
659
D
0.433
07/01/87
182
W
1620
193
A
0.494
07/02/87
183
H
1671
178
B
1.308
07/03/87
184
F
1697
711
D
2.665
07/06/87
187
M
1715
678
C
0.488
07/06/87
187
M
1715
678
A
0.436
07/07/87
188
T
1740
188
C
0.384
0.386
0.457
07/08/87
189
U
1812
82
0
0.367
07/09/87
190
H
1827
12
B
0.472
07/10/87
191
F
1867
102
B
3.433
07/13/87
194
N
1873
25
D
0.468
07/13/87
194
M
1873
25
B
0.482
07/14/87
195
T
1902
661
0
0.436
07/14/87
195
T
1902
661
C
0.350
07/15/87
196
U
1948
155
A
0.247
07/16/87
197
H
2034
12
D
0.867
07/17/87
198
F
2031
711
B
0.925
07/17/87
198
F
2032
95
D
0.924
07/20/87
201
M
2071
729
B
0.346
2-19
-------
TABLE 2-6. SUMMARY OF THE 1987 NMOC DATA FOR BOSTON, MA (B2MA)
Julian
Sample
Sample
Radian
QA0
ASRl
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(ppmC)
(ppmC)
(ppnC)
07/21/87
202
T
2070
306
B
1.511
07/22/87
203
W
2119
154
B
0.745
07/23/87
204
2156
694
C
0.794
07/24/87
205
F
2163
682
C
0.562
07/27/87
208
2216
707
C
0.469
0.358
0.314
07/28/87
209
T
2250
24
0
0.27V
07/30/87
211
2302
149
A
0.536
07/31/87
212
F
2369
70
D
0.759
08/03/87
215
M
2378
191
B
0.271
0.351
0.228
08/04/87
216
T
2400
707
A
0.472
08/05/87
217
2432
121
A
1.521
1.574
1.603
08/05/87
217
VI
2433
135
A
1.522
08/06/87
218
2518
51
B
2.193
08/07/87
219
F
2510
19
C
0.706
08/10/87
222
M
2549
635
C
0.287
08/11/87
223
T
2602
95
D
0.319
08/12/87
224
U
2607
38
B
0.591
08/13/87
225
2632
74
A
3.302
3.401
08/14/87
226
F
2662
108
C
0.515
08/17/87
229
M
2727
637
B
0.384
08/18/87
230
2714
640
C
0.416
0.444
08/19/87
231
U
2792
633
c
0.559
08/20/87
232
2778
42
B
0.463
08/21/87
233
F
2832
37
B
0.362
08/24/87
236
2886
106
C
0.329
08/25/87
237
T
2937
800
0
0.531
08/26/87
238
W
2913
680
C
0.699
08/27/87
239
3028
30
B
1.010
08/27/87
239
3029
764
0
1.098
08/28/87
240
F
2999
151
A
2.537
08/31/87
243
M
3060
775
C
0.472
09/01/87
244
T
3073
781
A
0.889
09/01/87
244
T
3073
781
B
0.357
09/02/87
245
3112
73
C
0.351
09/03/87
246
3141
791
C
0.316
09/04/87
247
F
3166
12
c
0.555
09/04/87
247
F
3153
780
B
0.284
0.348
09/08/87
251
T
3222
171
A
0.569
0.590
09/09/87
252
U
3262
302
A
0.605
09/10/87
253
3279
618
0
0.431
09/11/87
254
F
3320
114
B
0.232
0.198
09/14/87
257
N
3364
113
D
0.390
09/15/87
258
T
3400
24
C
0.522
2-20
-------
TABLE 2-6. SUMMARY OF THE 1987 NMOC DATA FOR BOSTON, MA (B2MA)
Jut ian
Sample
Sample
Radian
0AD
ASRL
Date
Date
Weekday
ID
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(ppnC)
(ppro
09/15/87
258
T
3401
120
D
0.482
09/16/87
259
U
3412
684
B
0.519
0.509
09/17/87
260
H
3486
42
A
0.597
09/18/87
261
F
3489
93
C
0.142
09/21/87
264
M
3504
143
C
0.241
0.270
09/22/87
265
T
3509
114
A
0.286
09/22/87
265
T
3509
114
A
0.287
09/23/87
266
W
3604
122
3
1.122
09/23/87
266
U
3603
790
B
1.129
09/24/87
267
H
3630
704
A ¦
0.325
09/25/87
268
F
3635
93
B
1.001
09/28/87
271
M
3700
711
C
0.376
0.327
09/29/87
272
T
3724
643
B
0.739
09/30/87
273
W
3801
91
C
0.240
09/30/87
273
W
3802
61
D
0.249
2-21
-------
HARTFORD, CT
HTCT - 1987 NMOC PROGRAM
t «
i i i i i i i i i i i i
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-3. Plot of NMOC concentration for Hartford, CT.
-------
TABLE 2-7. SUMMARY OF THE 1987 NMOC DATA FOR HARTFORD, CT (HTCT)
Julian
Sample
Sample
Radian
0AD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Niinber
Number
Channel
(ppmC)
(ppmC)
(ppmC)
06/01/87
152
M
1047
90
0
0.419
06/02/87
153
T
1048
96
A
0.250
06/03/87
154
U
1073
35
C
0.178
06/04/87
155
H
1064
42
A
0.357
06/04/87
155
H
1065
198
B
0.185
06/05/87
156
F
1077
133
B
0.212
06/08/87
159
M
1136
668
C
0.788
0.834
06/09/87
160
T
1162
38
B
0.243
06/10/87
161
U
1193
8
A
0.177
0.243
0.142
06/11/87
162
H
1254
401
A
0.380
06/12/87
163
F
1274
73
D
0.255
06/15/87
166
M
1288
68
A
0.492
0.413
06/16/87
167
T
1349
194
C
0.504
06/17/87
168
W
1351
410
0
0.208
06/18/87
169
H
1364
126
A
0.487
06/19/87
170
F
1453
500
B
0.459
06/22/87
173
N
1456
676
0
0.454
06/23/87
174
T
1487
193
0
0.268
06/24/87
175
U
1509
186
C
0.374
06/24/87
175
U
1510
77
b
0.363
06/25/87
176
H
1544
129
0
0.698
06/26/87
177
F
1571
179
c
0.137
06/29/87
180
M
1660
9
c
0.651
06/30/87
181
T
1609
400
c
0.475
0.384
0.227
07/01/87
182
W
1662
676
0
0.393
07/02/87
183
H
1764
409
c
0.243
07/06/87
187
M
1747
691
0
0.282
07/07/87
188
T
1771
194
c
0.492
0.378
0.374
07/08/87
189
U
1806
122
c
0.363
07/09/87
190
H
1887
41
0
0.333
0.359
0.331
07/10/87
191
F
1886
154
c
0.633
0.448
07/13/87
194
N
1907
3
A
0.303
07/13/87
194
M
1908
136
c
0.285
07/14/87
195
T
1935
55
0
0.445
0.181
07/15/87
196
U
2026
153
c
0.262
07/16/87
197
K
2033
405
c
0.245
07/17/87
198
F
2054
176
c
0.306
07/17/87
198
F
2054
176
B
0.301
07/20/87
201
N
2076
401
D
0.376
07/21/87
202
T
2139
166
A
0.404
07/22/87
203
U
2134
105
A
0.200
0.189
0.170
07/23/87
204
H
2204
32
A
0.287
07/24/87
205
F
2220
77
c
0.355
2-23
-------
TABLE 2-7. SUMMARY OF THE 1987 NMOC DATA FOR HARTFORD, CT (HTCT)
Julian
Sample
Sample
Radian
QAD
ASRl
Date
Date
Weekday
ID
Canister
Radian
NKOC
NMOC
NKOC
Sampled
Sampled
Sampled
Number
Number
Channel
(ppmC)
(ppmC)
(ppnC)
07/27/87
208
M
2239
171
D
0.245
07/28/87
209
T
2259
176
A
0.408
07/28/87
209
T
2259
176
A
0.413
07/29/87
210
W
2300
630
C
0.141
07/30/87
211
H
2324
187
C
0.366
07/31/87
212
F
2376
103
C
0.191
0.292
0.177
08/03/87
215
M
2399
32
A
0.244
0.330
0.200
08/04/87
216
T
2446
768
C
0.445
08/05/87
217
U
2480
56
B
0.334
08/06/87
218
H
2495
720
D
0.353
08/06/87
218
H
2528
17
B
0.279
08/17/87
229
M
2711
669
A
0.553
0.552
08/18/87
230
T
2734
3
C
0.310
08/19/87
231
U
2790
656
0
0.664
08/20/87
232
H
2868
722
c
0.551
08/21/87
233
F
2914
655
D
0.689
08/24/87
236
M
2929
658
A
0.518
08/25/87
237
T
2916
779
D
0.632
08/26/87
238
W
2988
47
' B
0.729
08/27/87
239
H
2993
630
A
0.348
08/28/87
240
F
3030
162
C
0.205
08/28/87
240
F
3031
61
C
0.205
09/01/87
241
T
3115
41
B
0.959
09/02/87
245
W
3173
782
D
0.664
09/03/87
246
H
3163
156
C
0.324
09/04/87
247
F
3201
37
D
0.350
09/08/87
251
T
3253
82
D
0.741
09/08/87
251
T
3253
82
B
0.616
09/09/87
252
U
3303
91
0
0.601
09/10/87
253
H
3298
637
B
0.642
0.684
09/11/87
254
F
3318
15
C
0.738
09/14/87
257
M
3380
7
B
0.769
09/15/87
258
T
3415
406
C
0.937
0.972
09/16/87
259
U
3493
695
D
0.717
09/16/87
259
U
3492
109
0
0.700
09/17/87
260
H
3447
122
C
0.342
09/18/87
261
F
3526
658
D
0.206
09/21/87
264
M
3543
74
0
0.278
09/21/87
264
M
3543
74
c
0.422
09/22/87
265
T
3593
187
A
0.467
09/23/87
266
U
3621
146
A
0.578
09/24/87
267
H
3627
160
D
0.611
09/25/87
268
F
3718
634
B
1.170
2-24
-------
TABLE 2-7. SUMMARY OF THE 1987 NMOC DATA FOR HARTFORD, CT (HTCT)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nunber
Channel
(ppmC)
(ppmC)
(ppmC)
09/28/87
271
M
3722
78
B
0.351
09/29/87
272
T
3716
8
0
1.038
2-25
-------
NEW YORK, NY (BRONX)
BNY - 1987 NMOC PROGRAM
La j p
i i i i i I 1 I 1 1 1 1
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-4. Plot of NMOC concentration for New York, NY (Bronx).
-------
TABLE 2-8. SUMMARY OF THE 1987 NMOC DATA FOR NEW YORK, NY (BNY)
Julian
Sample
Sample
Radi an
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nimber
Channel
(ppmC)
(ppmC)
(ppmC)
06/02/87
153
T
1046
187
D
0.342
06/03/87
154
W
1043
19
B
0.358
06/04/87
155
H
1056
111
C
0.843
0.687
06/04/87
155
H
1057
169
0
1.502
06/05/87
156
F
1114
120
A
0.846
06/08/87
159
M
1142
309
C
1.812
06/09/87
160
T
1184
184
C
1.097
06/10/87
161
W
1183
21
C
0.341
06/11/87
162
H
1221
44
B
0.529
06/12/87
163
F
1220
644
A
1.275
06/15/87
166
M
1262
84
D
1.369
1.049
1.060
06/16/87
167
T
1290
182
C
0.629
0.636
0.547
06/17/87
168
U
1327
156
A
0.371
06/18/87
169
H
1353
660
B
1.117
06/19/87
170
F
1389
130
D
1.150
0.900
06/22/87
173
M
1425
400
A
0.528
06/23/87
174
T
1449
308
C
1.282
06/25/87
176
H
1558
6
D
1.665
06/25/87
176
H
1559
171
0
1.597
06/26/87
177
F
1569
678
A
0.579
06/26/87
177
F
1569
678
. 0
0.837
06/29/87
180
M
1602
668
D
1.324
06/30/87
181
T
1595
44
C
1.175
0.898
07/01/87
182
W
1646
44
B
0.935
07/02/87
183
H
1688
687
D
0.392
07/02/87
183
H
1688
687
0
0.390
07/06/87
187
M
1716
28
B
0.652
0.561
07/07/87
188
T
1746
130
A
0.548
07/08/87
189
V
1801
650
D
1.120
07/09/87
190
H
1882
184
A
1.044
07/10/87
191
F
1869
7
B
0.865
07/13/87
194
M
1889
306
C
1.532
1.330
1.490
07/14/87
195
T
1953
157
C
0.634
07/15/87
196
U
1962
170
B
0.167
07/15/87
196
U
1963
47
B
0.160
07/16/87
197
H
1999
31
0
0.279
07/17/87
198
F
2042
727
A
0.426
07/20/87
201
M
2051
697
A
0.439
07/21/87
202
T
2099
104
A
0.333
0.348
0.270
07/22/87
203
U
2130
73
B
0.345
07/23/87
204
H
2170
410
0
0.831
07/24/87
205
F
2184
646
A
0.877
07/27/87
208
M
2218
135
0
0.435
0.368
2-27
-------
TABLE 2-8.
SUMMARY
OF THE 1987 NMOC DATA FOR NEW YORK,
NY (BNY)
Julian
Sample
Sample
Radian
OAD ASRl
Date
Oate
Weekday
10
Canister
Radian
NMOC
NMOC NMOC
Sampled
Sampled
Saiqpled
Ninfcer
Nifflber
Channel
(ppnC)
(ppmC) (ppmC)
07/28/87
209
T
2278
17
8
0.361
07/29/87
210
U
2281
677
0
0.261
07/30/87
211
H
2338
709
A
1.001
08/03/87
215
M
2424
182
B
0.911
08/04/87
216
T
2395
770
D
0.567
08/04/87
216
T
2395
770
B
0.599
08/05/87
217
W
2449
90
B
0.397
0.398
08/06/87
218
H
2494
782
D
0.649
08/07/87
219
F
2529
150
C
0.652
08/10/87
222
H
2569
181
C
0.607
08/11/87
223
T
2605
659
A
0.376
08/12/87
224
W
2595
769
0
0.445
08/13/87
225
H
2699
143
D
0.835
08/17/87
229
M
2732
53
B
0.874
08/18/87
230
T
2761
302
A
0.471
08/19/87
231
U
2775
683
C
0.689
0.620
08/20/87
232
H
2841
50
A
0.287
08/21/87
233
F
2817
782
C
01.546
08/21/87
233
F
2817
782
c
0.548
08/24/87
236
M
2905
704
A
0.256
08/24/87
236
M
2906
697
0
0.269
08/25/87
237
T
2933
707
A
0.534
08/26/87
238
W
2964
307
D
0.798
08/27/87
239
H
2984
682
D
0.561
08/28/87
240
F
2992
703
C
0.476
08/31/87
243
M
3040
699
0
0.780
09/01/87
244
T
3091
96
C
0.370
09/03/87
246
H
3116
148
B
0.794
09/03/87
246
H
3156
13
C
0.275
09/04/87
247
F
3187
75
A
0.354
09/08/87
251
T
3406
401
0
0.524
09/11/87
254
F
3408
726
A
0.596
09/14/87
257
M
3422
772
C
0.760
09/15/87
258
T
3438
674
C
0.763
09/16/87
259
U
3430
35
B
0.588
09/17/87
260
H
3540
147
A
0.647
09/17/87
260
H
3541
192
A
0.747
09/18/87
261
F
3512
115
B
0.428
0.388
09/21/87
264
M
3577
302
B
0.433
09/22/87
265
T
3585
72.
0
0.766
09/23/87
266
U
3598
162
A
0.447
09/29/87
272
T
3741
647
A
1.591
09/29/87
272
T
3742
712
A
1.344
2-28
-------
TABLE 2-8. SUMMARY OF THE 1987 NMOC DATA FOR NEU YORK, NY (BNY)
Julian
Sanple
Sample
Radian
QAD
ASRL
Date
Oate
Ueekday
ID
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nunber
Channel
(ppmC)
(ppnC)
(ppnC)
09/30/87
273
U
3770
46
A
1.412
09/30/87
273
U
3771
679
B
1.616
2-29
-------
NEW YORK, NY (MANHATTAN)
MNY - 1987 NMOC PROGRAM
n A /it A A o t t
i i i i i i i i i i i i
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-5. Plot of NMOC concentration for New York, NY (Manhattan).
-------
TABLE 2-9. SUMMARY OF THE 1987 NMOC DATA FOR NEW YORK, NY (MNY)
Julian
Sample
Sample
Radian
QAD
ASRL
Oate
Oate
Weekday
ID
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nunber
Channel
(ppmC)
(ppmC)
(ppmC)
06/02/87
153
T
1050
8
C
0.713
06/03/87
154
U
1045
126
B
0.203
06/04/87
155
H
1062
175
a
0.403
0.398
06/05/87
156
F
1092
301
D
0.740
06/05/87
156
F
1093
48
0
0.750
06/08/87
159
M
1149
89
c
0.675
06/09/87
160
T
1189
680
c
0.896
06/10/87
161
W
1186
645
c
0.636
06/11/87
162
H
1222
153
8
0.610
06/23/87
174
T
1459
198
D
0.856
06/24/87
175
U
1504
55
c
0.786
06/25/87
176
H
1518
42
0'
1.494
06/25/87
176
H
1519
180
D
1.091
06/26/87
177
F
1570
118
C
0.689
06/26/87
177
F
1570
118
0
0.689
06/29/87
180
M
1603
304
0
0.909
06/30/87
181
T
1594
96
A
0.626
0.711
0.612
07/01/87
182
U
1648
7
c
0.904
07/01/87
182
U
1689
112
c
0.859
07/06/87
187
M
1717
693
c
0.942
0.826
0.674
07/07/87
188
T
1744
18
c
0.650
07/08/87
189
U
1798
307
B
0.599
0.619
0.516
07/09/87
190
H
1876
89
D
1.136
07/10/87
191
F
1865
33
D
1.176
07/13/87
194
M
1888
161
A
0.810
0.710
0.605
07/14/87
195
T
1951
121
c
0.711
07/15/87
196
U
1949
188
8
0.396
07/15/87
196
U
1950
703
B
0.444
07/16/87
197
H
2001
42
c
0.284
07/17/87
198
H
2039
308
A
0.590
07/20/87
201
M
2053
49
D
0.521
07/21/87
202
T
2098
166
0
0.810
07/22/87
203
V
2131
662
0
0.960
0.783
0.742
07/23/87
204
H
2199
157
c
0.854
07/24/87
205
F
2181
113
0
1.186
07/27/87
208
H
2217
20
C
0.935
0.747
0.605
07/29/87
210
U
2286
163
A
0.420
07/30/87
211
H
2331
721
0
0.727
07/31/87
212
F
2348
668
C
0.901
0.669
08/03/87
215
M
2426
115
A
1.379
08/04/87
216
T
2419
771
B
1.045
08/05/87
217
U
2437
158
A
0.583
08/06/87
218
H
2536
781
C
1.123
2-31
-------
TABLE 2-9. SUMMARY OF THE 1987 NMOC DATA FOR NEW YORK, MY (MNY)
Julian
Sample
Sample
Radi an
OAD
ASRL
Date
Date
Ueekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nurber
Channel
(ppmC)
(ppnC)
(ppmC)
08/07/87
219
F
2482
691
c
0.664
08/10/87
222
2564
409
D
1.440
08/11/87
223
T
2618
404
0
0.968
08/12/87
224
2596
714
C
0.708
08/13/87
225
2658
172
B
0.917
0.937
08/14/87
226
F
2697
83
D
1.062
08/17/87
229
2722
193
C
0.710
08/18/87
230
T
2745
695
D
0.466
08/18/87
230
T
2745
695
D
0.690
08/19/87
231
2777
119
A
0.668
0.790
08/20/87
232
2835
781
B
0.623
08/21/87
233
F
2823
48
C
0.369
08/25/87
237
T
2935
729
B
0.701
09/26/87
238
2957
792
A
0.678
08/27/87
239
2974
780
B
0.615
08/28/87
240
F
3012
196
D
0.560
0.564
08/31/87
243
M
3041
186
8
0.502
09/01/87
244
T
3095
705
A
0.432
09/02/87
245
3128
624
C
0.999
09/03/87
246
3171
766
D
0.352
09/04/87
247
F
3198
702
B
0.428
09/08/87
251
T
3417
771
B
0.607
09/11/87
254
?
3409
702
B
0.903
0.937
09/14/87
257
N
3428
103
C
0.786
09/15/87
258
T
3424
763
D
1.116
09/16/87
259
3435
307
B
0.509
09/17/87
260
3536
780
D
0.876
09/18/87
261
F
3538
784
A
0.691
09/18/87
261
F
3539
656
B
0.593
09/21/87
264
M
3596
729
0
0.710
09/22/87
265
T
3586
727
C
0.953
0.797
09/23/87
266
3584
166
C
0.876
09/29/87
272
T
3743
185
B
1.016
09/29/87
272
T
3744
767
A
1.047
09/30/87
273
U
3766
151
A
0.453
09/30/87
273
U
3767
180
B
0.400
2-32
-------
2-33
-------
NEWARK, NJ
NWNJ - 1987 NMOC PROGRAM
150
170
I—
190
1
210
JULIAN DATE
230
250
270
Figure 2-6. Plot of NMOC concentration for Newark, NJ.
-------
TABLE 2-10. SUMMARY OF THE 1987 NHOC OATA FOR NEWARK, NJ (NUNJ)
Julian
Sample
Sample
Radian
0AD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NHOC
NHOC
NHOC
Sampled
Sampled
Sampled
Nurber
Number
Channel
(ppnC)
CppmC)
(ppmC)
06/01/87
152
N
1017
21
D
0.540
06/02/87
153
T
1031
501
D
0.518
06/03/87
154
W
1081
171
C
0.314
0.392
0.299
06/04/87
155
H
1091
193
B
0.562
06/05/87
156
F
1126
139
C
0.926
06/08/87
159
N
1133
673
A
1.577
06/08/87
159
M
1134
670
A
0.896
06/09/87
160
T
1169
121
0
0.529
06/10/87
161
U
1194
170
B
0.214
0.276
0.186
06/11/87
162
H
1255
35
D
0.616
06/12/87
163
F
1272
16
C
0.733
06/15/87
166
M
1299
64
D
0.761
06/16/87
167
T
1312
309
D
0.426
06/17/87
168
W
1347
179
D
0.165
06/18/87
169
tt
1390
11
C
1.007
06/19/87
170
F
1404
136
B
0.652
0.592
06/22/87
173
N
1451
19
D
0.938
06/23/87
174
T
1467
409
B
0.722
06/24/87
175
W
1500
22
D
0.387
06/25/87
176
H
1527.
17
A
0.734
06/26/87
177
F
1579
75
B
0.268
06/29/87
180
N
1634
79
0
0.854
06/30/87
181
T
1627
12
D
0.491
07/01/87
182
U
1677
140
A
0.702
07/02/87
183
H
1724
97
B
0.484
07/02/87
183
H
1725
25
B
0.485
07/06/87
187
M
1753
726
B
0.693
07/07/87
188
T
1796
51
0
0.364
0.392
0.385
07/08/87
189
U
1808
113
D
1.029
07/09/87
190
H
1814
112
A
0.959
07/10/87
191
F
1930
107
A
0.667
07/13/87
194
M
1925
84
B
1.203
07/14/87
195
T
1956
142
B
0.542
07/15/87
196
U
2002
30
C
0.265
07/16/87
197
H
2014
8
A
0.417
07/17/87
198
F
2056
409
A
0.881
07/20/87
201
M
2110
707
B
0.459
07/21/87
202
T
2145
143
A
0.586
07/22/87
203
W
2144
160
C
0.575
07/23/87
204
H
2171
727
C
1.134
07/24/87
205
F
2241
11
A
0.561
07/24/87
205
F
2242
696
B
0.492
07/27/87
208
M
2240
34
C
0.389
2
-35
-------
TABLE 2-10. SUMMARY OF THE 1987 NMOC OATA FOR NEWARK, NJ (NUNJ)
Julian
Sample
Sanple
Radian
Date
Date
Weekday
10
Canister
Radian
NMOC
Sampled
Sampled
Sampled
Nurfcer
Nunber
Channel
(ppmC)
07/28/87
209
T
2517
31
C
0.33
07/29/87
210
U
2274
112
0
0.796
07/31/87
212
F
2414
84
C
0.984
08/03/87
215
M
2415
646
C
0.895
08/04/87
216
T
2467
34
B
0.900
08/05/87
217
W
2491
136
C
0.874
08/06/87
218
H
2489
780
D
0.906
08/07/87
219
F
2748
146
0
1.336
08/10/87
222
M
2614
764
A
1.054
08/11/87
223
T
2612
713
A
0.533
08/12/87
224
U
2648
646
B
0.421
08/12/87
224
U
2680
661
C
0.483
08/13/87
225
H
2674
135
C
1.650
08/14/87
226
F
2739
798
C
1.524
08/17/87
229
M
2717
630
0
0.747
08/18/87
230
T
2776
14
A
0.364
08/19/87
231
U
2809
54
D
0.972
08/20/87
232
H
2812
73
0
0.296
08/21/87
233
F
2895
133
B
0.336
08/24/87
236
M
2912
645
B
0.464
08/25/87
237
T
2927
724
C
1.764
08/26/87
238
U
3020
62
C
1.182
08/27/87
239
H
2981
109
A
0.732
08/28/87
240
F
3044
134
D
0.568
08/31/87
243
M
3072
777
A
1.505
09/01/87
244
T
3132
660
0
0.939
09/01/87
244
T
3133
794
D
1.058
09/02/87
245
U
3119
34
B
0.989
09/03/87
246
H
3208
729
D
0.371
09/04/87
247
F
3214
786
0
0.928
09/08/87
252
U
3269
769
D
1.057
09/10/87
253
H
3315
151
B
0.500
09/11/87
254
F
3339
657
C
0.564
09/11/87
254
F
3339
657
A
0.686
09/14/87
257
N
3389
705
C
0.974
09/15/87
258
T
3436
790
B
1.309
09/16/87
259
U
3465
55
B
0.864
09/17/87
260
H
3523
306
C
1.451
09/18/87
261
F
3532
693
0
1.184
09/21/87
264
M
3570
725
A
0.484
09/21/87
264
M
3571
79
C
0.484
09/22/87
265
T
3578
175
0
1.159
09/23/87
266
W
3641
182
A
0.656
QAD ASRL
NMOC NMOC
(ppnC) (ppmC)
0.385
1.123
1.446
1.011
0.663
2-36
-------
TABLE 2-10. SUMMARY OF THE 1987 NMOC DATA FOR NEWARK, NJ (NWNJ)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nunber
Channel
(ppnC)
(ppmC)
(ppnC)
09/24/87
267
H
3656
307
A
0.626
09/25/87
268
F
3708
793
C
0.652
09/28/87
271
M
3717
789
D
0.967
09/29/87
272
T
3752
196
D
1.364
09/29/87
272
T
3752
196
A
1.223
09/30/87
273
U
3780
115
A
0.820
09/30/87
273
U
3781
706
B
0.953
0.855
2-37
-------
a
E
a.
a
o
o
2
Z
ro
I
u
00
150 170 190 210 230 250 270
JULIAN DATE
ATLANTA, GA
ATGA - 1987 NMOC PROGRAM
Figure 2-7. Plot of NMOC concentration for Atlanta, GA.
-------
TABLE 2-11. SUMMARY OF THE 1987 NMOC DATA FOR ATLANTA, GA (ATGA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nirber
Channel
(pptnC)
(ppmC)
(ppmC)
06/08/87
159
M
1150
658
D
1.615
06/09/87
160
T
1147
672
A
1.320
06/09/87
160
T
1148
135
B
1.307
06/10/87
161
W
1187
163
C
0.732
06/11/87
162
H
1242
37
D
0.613
06/12/87
163
F
1213
198
A
1.404
1.155
1.554
06/15/87
166
M
1259
501
0
0.829
06/16/87
167
T
1324
55
C
0.698
06/17/87
168
W
1358
52
C
0.486
06/18/87
169
H
1356
38
D
0.555
06/19/87
170
F
1396
647
B
0.857
06/22/87
173
M
1403
689
C
0.463
0.533
0.430
06/23/87
174
T
1479
78
D
0.591
06/24/87
175
U
1501
305
C
0.643
06/25/87
176
H
1515
147
0
0.648
06/26/87
177
F
1578
54
A
0.793
06/29/87
180
M
1596
86
A
0.942
06/29/87
180
N
1597
45
B
0.860
06/30/87
181
T
1632
8
C
0.994
07/01/87
182
U
1613
102
C
0.609
0.618
0.661
07/02/87
183
H
1701
17
A
0.563
07/06/87
187
M
1752
101
B
0.614
07/07/87
188
T
1790
717
A
0.972
07/08/87
189
W
1817
720
B
2.213
07/09/87
190
H
1844
403
A
0.547
07/13/87
194
M
1929
686
B
0.349
0.331
07/14/87
195
T
1946
410
C
0.227
07/15/87
196
U
1983
108
D
0.434
07/16/87
197
H
2013
40
B
0.390
07/21/87
202
T
2097
301
D
1.324
1.328
07/22/87
203
U
2140
673
B
0.594
07/23/87
204
H
2125
703
A
1.367
07/23/87
204
H
2126
647
A
1.402
07/24/87
205
F
2176
46
D
1.278
07/27/87
208
M
2284
95
B
1.575
07/28/87
209
T
2282
669
C
1.054
07/29/87
210
U
2299
151
A
0.758
07/30/87
211
H
2349
106
C
0.563
0.288
07/31/87
212
F
2327
660
D
0.921
08/03/87
215
M
2413
145
A
0.560
08/04/87
216
T
2443
501
D
0.549
08/05/87
217
U
2450
108
A
0.687
08/06/87
218
H
2470
44
B
1.150
1.090
2-39
-------
TABLE 2-11. SUMMARY OF THE 1987 NMOC DATA FOR ATLANTA, GA (ATGA)
Julian
Sample
Sairple
Radian
QAO ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC NMOC
Sampled
Sampled
Sampled
Nurber
Nuitoer
Channel
(ppmC)
(ppmC) (ppmC)
08/07/87
219
F
2508
137
D
0.385
08/10/87
222
M
2576
133
B
0.359
08/11/87
223
T
2601
118
A
0.599
08/12/87
224
W
2628
105
C
0.384
08/13/87
225
H
2672
66
B
1.407
08/13/87
225
H
2683
698
0
1.315
08/14/87
226
F
2647
796
C
0.494
08/17/87
229
M
2706
638
0
0.313
08/18/87
230
T
2763
92
C
0.930
08/19/87
231
U
2786
703
C
0.335
08/19/87
231
U
2786
703
A
0.174
08/20/87
232
H
2855
709
A
0.669
08/21/87
233
F
2871
35
D
1.187
08/24/87
236
M
2873
659
A
0.256
08/24/87
236
M
2873
659
0
0.244
08/25/87
237
M
2940
667
C
0.198
08/26/87
238
U
2943
802
C
1.016
08/27/87
239
H
2987
176
0
. 0.663
08/28/87
240
F
2976
16
C
0.417
08/31/87
243
M
3039
150
C
0.223
08/31/87
243
M
3039
150
A
0.159
09/01/87
244
T
3094
105
B
0.335
09/02/87
245
W
3136
651
A
1.430
09/02/87
245
W
3137
6
A
1.482
09/03/87
246
H
3152
305
B
1.520
09/04/87
247
F
3181
24
B
0.210
09/08/87
251
T
3232
784
A
0.656
0.755
09/09/87
2S2
U
3264
161
A
0.380
0.358
09/10/87
253
H
3285
661
0
1.513
09/11/87
254
F
3338
102
A
0.853
09/11/87
254
f
3338
102
A
0.812
09/14/87
257
M
3365
4
D
0.488
09/15/87
258
T
3396
177
A
0.907
0.926
09/16/87
259
U
3416
163
A
0.467
09/17/87
260
H
3462
672
C
0.363
09/18/87
261
f
3456
106
B
0.816
0.385
09/21/87
264
M
3531
670
D
1.367
09/22/87
265
T
3556
783
C
0.998
09/23/87
266
U
3582
172
B
0.668
0.380
09/24/87
267
H
3634
24
A
0.507
09/25/87
268
F
3637
799
B
0.413
09/25/87
268
F
3638
83
D
0.756
09/28/87
271
M
3706
700
D
0.825
2-40
-------
TABLE 2-11. SUMMARY OF THE 1987 NMOC DATA FOR ATLANTA, GA (ATGA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Ueekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nimber
Channel
(ppmC)
(ppmC)
(ppmC)
09/28/87
271
M
3707
90
C
0.723
09/29/87
272
T
3735
646
A
0.271
09/29/87
272
T
3736
96
A
0.269
09/30/87
273
U
3792
154
C
0.474
09/30/87
273
U
3793
640
B
0.277
2-41
-------
ATLANTA, GA (DECATUR)
OEGA - 1987 NMOC PROGRAM
St .I. A f J
1 1 1 1 1 1 1 1 1 1 i 1
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-8. Plot of NMOC concentration for Atlanta, GA (Decatur).
-------
TABLE 2-12. SUMMARY OF THE 1987 NMOC DATA FOR ATLANTA, GA (OEGA)
Julian
Sample
Sample
Radian
QAD
ASRl
Date
Date
Ueekday
to
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nimber
Nuifcer
Channel
CPPmC)
(ppn£)
(ppmC)
06/08/87
159
M
1152
662
D
0.867
06/09/87
160
T
1226
651
C
0.991
06/10/87
161
U
1176
675
A
0.893
06/10/87
161
W
1177
669
C
1.060
06/11/87
162
H
1241
196
C
0.505
06/12/87
163
F
1212
97
D
0.549
06/15/87
166
M
1260
62
C
0.246
06/16/87
167
T
1323
40
D
0.128
06/17/87
168
U
1357
118
D
0.138
06/18/87
169
H
1355
662
8
0.165
06/19/87
170
F
1375
115
B
0.262
06/22/87
173
M
1408
684
C
0.154
0.218
0.126
06/23/87
174
T
1478
112
C
0.169
06/24/87
175
U
1499
36
0
0.665
06/25/87
176
H
1516
37
C
0.330
06/26/87
177
F
1580
87
B
0.138
06/29/87
180
M
1599
116
B
0.607
06/30/87
181
T
1636
33
0
0.397
07/01/87
182
W
1614
198
0
0.137
0.107
07/02/87
183
H
1698
32
C
0.125
07/06/87
187
M
1756
43
B
0.322
07/07/87
188
T
1791
718
A
0.334
07/08/87
189
U
1816
145
0
0.850
07/09/87
190
H
1843
672
A
0.975
07/10/87
191
F
1859
20
C
0.326
07/13/87
194
M
1928
32
0
0.581
0.547
0.501
07/14/87
195
T
1952
647
0
0.265
07/15/87
196
U
1982
62
A
0.348
07/16/87
197
H
2025
156
D
0.485
07/17/87
198
F
2007
670
C
1.180
07/20/87
201
M
2108
163
C
0.441
07/20/87
201
N
2109
668
C
0.563
07/21/87
202
T
2117
690
B
0.678
07/22/87
203
U
2135
4
B
0.628
07/23/87
204
H
2147
725
C
0.661
07/24/87
205
F
2177
89
C
0.596
07/27/87
208
M
2276
131
0
0.806
07/28/87
209
T
2277
139
D
0.267
07/29/87
210
U
2306
305
C
0.558
07/30/87
211
H
2332
401
A
0.170
0.133
07/31/87
212
F
2339
185
C
0.228
08/03/87
215
M
2417
722
A
0.116
08/04/87
216
T
2442
104
C
0.292
2-43
-------
TABLE 2-12. SUMMARY OF THE 1987 NMOC DATA FOR ATLANTA, GA (DEGA)
Julian
Sample
Sample
Radian
OAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nirber
Channel
(ppmC)
(ppnC)
(ppnC)
08/05/87
217
U
2452
767
0
1.066
08/06/87
218
H
2469
164
A
0.551
0.577
08/07/87
219
F
2490
680
D
0.195
08/10/87
222
M
2571
621
D
0.297
08/11/87
223
T
2592
161
C
0.327
08/12/87
224
U
2638
707
C
0.180
08/13/87
225
H
2644
11
B
0.125
08/14/87
226
F
2676
794
C
0.491
0.406
08/14/87
226
F
2677
797
C
0.202
08/17/87
229
M
2707
783
C
1.005
08/18/87
230
T
2762
785
C
1.257
08/19/87
231
W
2788
192
D
0.210
08/20/87
232
H
2854
670
D
0.296
08/21/87
233
F
2853
652
D
0.500
08/24/87
236
M
2902
188
B
0.255
08/25/87
237
M
2941
120
D
0.103
08/26/87
238
U
2936
182
A
0.197
08/27/87
239
H
2975
629
D
0.320
08/27/87
239
H
2975
629
C
0.299
08/28/87
240
F
3017
64
B
0.418
08/31/87
243
M
3045
763
D
0.176
09/01/87
244
T
3092
57
0
0.567
09/02/87
24S
U
3102
721
D
0.891
0.946
09/03/87
246
H
3193
309
B
1.022
09/03/87
246
H
3155
647
A
0.989
09/04/87
247
F
3165
126
B
0.218
0.164
09/08/87
251
T
3230
405
A
0.310
09/09/87
252
U
3267
678
0
0.402
09/10/87
253
H
3287
138
C
0.872
09/11/87
254
F
3336
51
0
0.363
09/14/87
257
M
3363
635
8
0.577
09/15/87
258
T
3399
150
D
0.922
0.858
09/16/87
259
U
3413
153
A
0.431
09/17/87
260
H
3476
49
D
0.451
09/18/87
261
F
3461
796
C
0.257
09/21/87
264
M
3525
644
B
0.939
0.921
09/22/87
265
T
3560
305
0
0.581
09/23/87
266
W
3590
631
8
0.454
0.438
09/24/87
267
H
3639
52
C
0.955
0.840
09/25/87
268
F
3620
22
c
0.732
09/28/87
271
M
3698
35
A
0.323
09/29/87
272
T
3737
155
8
0.213
09/29/87
272
T
3738
709
A
0.226
2-44
-------
TABLE 2-12. SUMMARY OF THE 1987 NMOC DATA FOR ATLANTA, GA (OEGA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nunber
Channel
(ppnC)
(ppmC)
(ppnC)
09/30/87
273
U
3790
658
A
0.360
09/30/87
273
U
3791
39
C
0.338
2-45
-------
BIRMINGHAM, AL
BHAL - 1987 NMOC PROGRAM
< ~
< •
150
170
190
210
250
270
230
JULIAN DATE
Figure 2-9. Plot of NMOC concentration for Birmingham, AL.
-------
TABLE 2-13. SUMMARY OF THE 1987 NMOC DATA FOR BIRMINGHAM, AL (BHAL)
Julian
Sample
Sanple
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(ppmC)
(ppnC)
(ppnC)
06/04/87
155
H
1116
661
A
0.658
06/05/87
156
F
1123
655
A
1.125
06/08/87
159
M
1105
654
C
1.340
06/09/87
160
T
1191
126
C
2.367
06/10/87
161
U
1205
109
C
4.448
5.199
06/11/87
162
H
1236
190
C
3.029
06/11/87
162
H
1228
86
C
3.008
06/12/87
163
F
1267
12
C
0.583
06/15/87
166
M
1292
30
D
0.598
06/16/87
167
T
1369
66
B
0.305
06/17/87
168
U
1345
649
C
0.564
06/18/87
169
H
1372
175
A
0.216
06/19/87
170
F
1420
45
0.
0.215
06/22/87
173
M
1441
688
A
0.418
06/23/87
174
T
1455
135
C
0.329
0.336
06/24/87
175
U
1474
51
C
1.134
06/25/87
176
H
1530
719
0
0.613
06/26/87
177
F
1539
31
A
0.595
06/29/87
180
M
1644
158
0
1.145
06/30/87
181
T
1615
170
0
0.325
07/01/87
182
W
1666
164
B
0.225
07/01/87
182
U
1672
181
A
0.214
07/02/87
183
H
1686
672
B
0.276
07/06/87
187
M
1767
139
B
0.310
07/07/87
188
T
1834
90
B
0.399
07/08/87
189
U
1831
719
C
0.760
07/09/87
190
H
1830
722
A
1.593
07/10/87
191
F
1872
146
D
1.162
07/15/87
196
U
1975
687
C
0.907
07/16/87
197
H
2000
684
0
2.087
07/17/87
198
F
2064
97
0
1.797
1.632
07/20/87
201
M
2074
60
c
1.617
07/21/87
202
T
2093
708
C
1.352
07/21/87
202
T
2094
674
0
1.210
07/22/87
203
U
2133
175
C
1.008
1.085
07/23/87
204
H
2187
25
C
1.576
07/24/87
205
F
2238
15
D
1.690
07/27/87
208
N
2256
114
c
0.713
07/28/87
209
T
2275
41
C
0.601
07/29/87
210
W
2312
650
c
1.141
07/30/87
211
H
2292
500
c
1.884
1.789
07/31/87
212
F
2337
728
A
1.021
08/03/87
215
M
2410
38
A
0.675
2-47
-------
TABLE 2-13. SUMMARY OF THE 1987 NMOC DATA FOR BIRMINGHAM, AL (BHAL)
Julian
Sample
Sample
Radian
QAO
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nunber
Channel
(pprrC)
(ppmC)
(ppmC)
08/04/87
216
T
2475
140
0
0.439
08/05/B7
217
U
2527
695
0
0.903
08/06/87
218
H
2521
152
C
1.339
08/07/87
219
F
2484
784
8
1.198
08/10/87
222
M
2599
712
A
0.295
08/10/87
222
M
2610
35
0
0.289
08/11/87
223
T
2624
675
C
1.201
08/12/87
224
W
2634
660
D
0.531
08/13/87
225
H
2645
778
0
0.781
08/14/87
226
F
2650
78
C
0.223
08/17/87
229
M
2733
98
C
0.488
08/18/87
230
T
2766
410
c
0.650
08/19/87
231
W
2805
140
D
0.387
08/20/87
232
H
2824
51
C
2.177
08/21/87
233
F
2882
122
c
2.873
08/24/87
236
M
2901
10
c
1.046
08/25/87
237
T
2955
99
D
0.974
08/26/87
238
U
2996
728
B
0.558
08/27/87
239
H
2977
83
D
0.343
08/28/87
240
F
3064
175
0
0.503
08/31/87
243
M
3082
152
C
0.930
09/01/87
244
T
3157
785
D
2.734
09/02/87
245
V
3148
145
0
1.491
09/03/87
246
H
3186
140
D
1.751
09/04/87
247
F
3220
639
A
0.456
09/04/87
247
f
3237
45
C
0.422
09/08/87
251
T
3244
115
C
1.087
09/09/87
252
U
3299
18
C
1.065
09/10/87
253
H
3323
629
B
3.060
09/10/87
253
H
3324
776
A
3.130
09/11/87
254
F
3390
80
C
0.750
09/14/87
257
N
3382
682
0
1.692
1.624
09/15/87
258
T
3407
116
D
2.486
09/16/87
259
U
3439
792
0
0.658
09/16/87
259
U
3440
164
D
0.542
09/17/87
260
H
3471
636
C
0.285
09/18/87
261
F
3514
403
B
0.275
09/21/87
264
M
3549
623
A
2.439
09/22/87
265
T
3591
808
A
2.052
09/23/87
266
U
3617
148
B
2.578
09/24/87
267
H
3612
38
B
2.997
09/24/87
' 267
H
3613
164
C
3.024
09/25/87
268
F
3629
106
C
3.314
2.894
2-48
-------
TABLE 2-13. SUMMARY OF THE 1987 NMOC DATA FOR BIRMINGHAM, AL (BHAL)
Julian
Sample
Sample
Radian
QAD
ASRl
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurtoer
Nunber
Channel
CppmC)
(ppmC)
(ppmC)
09/28/87
271
M
3729
189
C
0.516
0.549
09/29/87
272
T
3772
25
D
0.280
09/29/87
272
T
3773
118
0
0.274
09/30/87
273
W
3798
661
0
0.562
10/01/87
274
H
3800
175
C
1.280
2-49
-------
2-50
-------
LOUISVILLE, KY
L1KY — 1987 NMOC PROGRAM
<
~
<
~
*
«ft
T .
. An
iv. M
\. L iv IJ
I
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-10. Plot of NMOC concentration for Louisville, KY (Expanded).
-------
LOUISVILLE, KY
L1KY — 1987 NMOC PROGRAM
t I
<
~
?
* I
/i i
4 >
I
It ft t
J
I i,|/
¥
~
MhJ)
n
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-11. Plot of NMOC concentration for Louisville, KY.
-------
TABLE 2-14. SUMMARY OF THE 1987 NMOC DATA FOR LOUISVILLE, KY (L1KY)
Julian
Sample
Sample
Radian
QAO
ASRL
Date
Date
Weekday
ID
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuifcer
Nunber
Channel
(ppnC)
(ppmC)
(ppnC)
06/01/87
152
M
1001
108
c
0.664
06/01/87
152
M
1001
108
A
0.737
06/02/87
153
T
1049
118
D
0.754
06/03/87
154
U
1072
82
A
0.818
06/04/87
155
K
1083
112
C
1.126
0.984
1.034
06/05/87
156
F
1111
410
3
0.700
0.755
0.748
06/08/87
159
M
1131
183
D
0.686
0.707
0.660
06/09/87
160
T
1180
660
A
0.797
06/11/87
162
H
1225
172
D
0.525
06/12/87
163
F
1268
193
8
0.514
06/12/87
163
F
1275
61
B
0.574
06/15/87
166
M
1297
679
B
1.137
06/16/87
167
T
1330
57
A
0.825
06/17/87
168
W
1344
152
C
0.846
06/19/87
170
F
1376
20
A
0.697
0.681
0.667
06/22/87
173
M
1447
644
A
0.451
06/23/87
174
T
1464
687
A
0.501
06/23/87
174
T
1464
687
A
0.501
06/24/87
175
U
1503
64
0.524
06/25/87
176
H
1563
718
A
1.093
06/26/87
177
F
1521
120
C
0.421
0.410
0.500
06/29/87
180
H
1605
175
C
0.654
06/30/87
181
T
1635
91
c
2.896
07/01/87
182
U
1659
111
0.408
07/02/87
183
H
1704
302
A
0.423
07/06/87
187
M
1718
62
C
0.527
07/07/87
188
T
1782
152
0.730
07/07/87
188
T
1783
677
D
0.948
07/08/87
189
U
1794
46
A
0.712
07/08/87
189
W
1794
46
C
0.847
07/09/87
190
H
1881
95
C
0.848
07/10/87
191
F
1838
141
0
0.568
07/10/87
191
F
1838
141
A
0.555
07/13/87
194
M
1919
78
C
0.675
07/14/87
195
T
1942
74
D
2.064
07/15/87
196
W
1969
678
C
0.986
07/16/87
197
H
2017
130
B
0.755
07/17/87
198
F
2004
75
D
0.755
07/20/87
201
N
2083
187
0
1.859
1.630
1.719
07/21/87
202
T
2100
181
D
0.811
07/22/87
203
W
2103
84
D
0.844
07/22/87
203
U
2104
403
D
0.835
07/23/87
204
H
2196
121
C
9.420
9.553
2-53
-------
TABLE 2-14. SUMMARY OF THE 1987 NHOC DATA FOR LOUISVILLE, KY (LUCY)
Julian
Sample
Sample
Radian
QAD ASRL
Date
Date
Weekday
10
Canister
Radian
NHOC
NHOC NHOC
Sanpled
Sampled
Sampled
Nurber
Nurber
Channel
(ppmC)
(ppmC) (ppmC)
07/24/87
205
F
2198
153
D
1.603
07/27/87
208
M
2247
56
C
1.007
07/28/87
209
T
2261
137
A
0.418
0.415 0.362
07/29/87
210
U
2308
632
0.807
07/30/87
211
H
2323
659
A
0.827
07/31/87
212
F
2319
16
A
0.978
08/03/87
215
M
2402
126
A
0.420
08/05/87
217
U
2454
139
0.377
08/05/87
217
U
2454
139
C
0.354
08/06/87
218
H
2479
688
C
0.768
08/07/87
219
F
2492
55
C
0.569
08/10/87
222
M
2561
73
D
0.577
08/11/87
223
T
2620
309
B
0.715
08/11/87
223
T
2621
678
D
0.766
08/12/87
224
U
2637
771
0
0.892
08/14/87
226
F
2667
696
A
0.630
08/17/87
229
M
2743
763
C
0.916
08/18/87
230
T
2771
780
B
0.903
08/19/87
231
U
2783
781
D
1.977
08/20/87
232
H
2838
409
B
0.830
08/21/87
233
F
2825
39
B
0.773
08/24/87
236
M
2890
115
C
1.200
08/25/87
237
T
2938
60
0
0.668
08/26/87
238
W
2958
11
A
0.746
08/28/87
240
F
3021
90
C
0.578
08/31/87
243
M
3066
160
C
0.874
08/31/87
243
M
3067
157
0
0.750
09/01/87
244
T
3088
622
A
1.625
09/02/87
245
U
3110
668
0
2.272
2.177
09/03/87
246
H
3169
52
C
0.862
09/04/87
247
F
3151
770
C
1.071
09/08/87
251
T
3204
74
C
2.173
09/09/87
252
U
3249
633
C
3.155
3.150
09/10/87
253
H
3282
696
0
2.122
09/11/87
254
F
3306
137
C
0.800
09/14/87
257
N
3366
22
0
1.232
09/15/87
258
T
3368
621
0
0.982
09/16/87
259
U
3426
764
B
0.658
09/18/87
261
F
3472
649
C
4.462
09/21/87
264
H
3530
703
C
1.933
09/22/87
265
T
3548
1
0
10.767
09/23/87
266
W
3583
766
c
2.821
09/23/87
266
W
3677
75
c
1.151
0.943
2-54
-------
TABLE 2-14. SUMMARY OF THE 1987 NMOC DATA FOR LOUISVILLE, ICY
-------
CHICAGO, IL (ST. OFF. BLDG.)
C1IL — 1987 NMOC PROGRAM
5
4
3
2
1
0
150
170
190
270
210
250
230
JULIAN DATE
Figure 2-12. Plot of NMOC concentration for Chicago, IL (State Office Building).
-------
TABLE 2-15. SUMMARY OF THE 1987 NMOC DATA FOR CHICAGO, IL (CI IL J
Julian
Sample
Sample
Radian
0AD
ASRl
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nunber
Channel
(ppfflC)
CppmC)
(ppmC)
06/01/87
152
N
1018
191
C
1.514
06/09/87
160
T
1159
649
A
1.102
06/10/87
161
W
1252
188
A
0.551
06/11/87
162
H
1240
197
0
1.303
06/12/87
163
F
1258
133
C
1.423
06/12/87
163
F
1258
133
B
1.285
06/15/87
166
M
1284
650
A
0.864
06/15/87
166
M
1285
51
B
0.682
06/16/87
167
T
1302
183
C
0.686
0.801
06/17/87
168
W
1365
307
C
1.517
06/18/87
169
H
1418
114
A
1.180
06/19/87
170
F
1411
302
C
1.752
06/22/87
173
M
1457
172
C
1.416
06/23/87
174
T
1469
693
D
1.749
1.806
1.932
06/24/87
175
U
1506
143
A
1.977
06/25/87
176
H
1528
152
A
1.458
06/26/87
177
F
1513
726
A
0.883
06/26/87
177
F
1513
726
D
1.119
06/29/87
180
N
1588
113
0
0.959
06/29/87
180
M
1588
113
A
0.919
06/30/87
181
T
1651
196
C
1.135
07/01/87
182
U
1618
92
B
0.613
07/02/87
183
H
1683
10
0
1.557
1.429
07/06/87
187
M
1713
153
0
1.377
1.115
1.097
07/07/87
188
T
1784
176
B
1.418
07/07/87
188
T
1785
160
D
1.608
07/08/87
189
U
1789
674
0
1.530
07/09/87
190
H
1866
91
C
1.437
07/10/87
191
F
1874
187
C
1.803
07/13/87
194
M
1900
106
B
1.352
07/13/87
194
M
1900
106
B
1.201
07/14/87
195
T
1937
21
C
0.974
0.836
0.784
07/15/87
196
W
1980
100
c
0.910
07/16/87
197
H
2030
500
c
0.808
07/17/87
198
F
2020
682
c
1.200
07/20/87
201
M
2055
192
0
1.555
07/21/87
202
T
2115
96
A
1.565
07/22/87
203
U
2137
47
B
1.754
1.634
1.796
07/23/87
204
H
2179
78
C
2.169
07/24/87
205
F
2208
180
A
1.455
07/27/87
208
M
2234
654
C
1.244
07/29/87
210
W
2301
667
D
1.893
07/30/87
211
H
2340
181
C
2.001
2-57
-------
TABLE 2-15. SUMMARY OF THE 1987 NMOC DATA FOR CHICAGO, IL (C1IL)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Number
Channel
(ppmC)
(ppmC)
(ppmC)
07/30/87
211
H
2344
307
3
1.898
07/31/87
212
F
2343
699
8
1.506
1.387
1.449
08/03/87
215
M
2421
142
C
2.546
08/04/87
216
T
2444
186
B
1.372
08/05/87
217
U
2473
15
B
0.983
08/06/87
218
H
2498
131
D
1.280
08/07/87
219
F
2535
4
A
1.248
08/10/87
222
M
2570
175
C
1.246
08/11/87
223
T
2585
21
A
1.009
08/12/87
224
U
2630
60
A
1.291
08/13/87
225
H
2702
80
B
1.571
08/14/87
226
F
2747
782
A
1.525
08/17/87
229
M
2723
8
D
1.270
08/18/87
230
T
2760
20
B
1.847
08/18/87
230
T
2760
20
D
2.009
08/20/87
232
H
2822
690
A
1.330
08/24/87
236
M
2898
101
B
1.190
08/25/87
237
T
2909
634
C
1.190
08/25/87
237
T
2910
72
D
1.029
08/26/87
238
U
2963
725
D
0.301
08/28/87
240
F
2978
147
C
0.510
0.520
08/31/87
243
M
3084
646
A
1.760
09/01/87
244
T
3087
36
B
0.862
09/03/87
246
H
3175
670
A
0.679
09/04/87
247
F
3206
47
B
0.843
0.819
09/08/87
251
T
3215
404
B
0.929
09/08/87
251
T
3215
404
B
0.892
09/09/87
252
U
3271
649
0
1.377
09/10/87
253
H
3294
671
A
0.489
09/11/87
254
F
3321
809
B
3.470
09/14/87
257
M
3330
95
B
2.533
2.689
09/14/87
257
M
3331
659
A
0.951
0.936
09/15/87
258
T
3346
38
C
1.842
1.738
09/15/87
258
T
3347
34
D
1.774
1.633
09/16/87
259
W
3429
654
A
1.599
09/18/87
261
F
3524
661
C
1.434
09/21/87
264
N
3552
157
B
1.130
09/22/87
265
T
3551
190
B
0.931
09/24/87
267
H
3636
149
B
1.456
09/25/87
268
F
3669
655.
D
1.256
09/25/87
268
F
3668
45
B
1.254
09/28/87
271
M
3686
788
A
1.072
09/29/87
272
T
3727
703
C
1.093
2-58
-------
TA8LE 2-15. SUMMARY OF THE 1987 NMOC DATA FOR CHICAGO, [L (C1IL)
Julian
Sample
Sample
Radi an
QAO
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nuifcer
Channel
(PP"0
(ppmC)
(ppnC)
09/29/87
272
T
3764
158
D
1.241
0.987
2-59
-------
CHICAGO, IL (SEARS TOWER)
C3IL - 1987 NMOC PROGRAM
150
170
190
250
230
270
210
JULIAN DATE
Figure 2-13. Plot of NMOC concentration for Chicago, IL (Sears Tower).
-------
TABLE 2-16. SUMMARY OF THE 1987 NMOC DATA FOR CHICAGO, IL (C3IL)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Number
Channel
(ppnC)
(ppnC)
(ppnC)
06/01/87
152
M
1019
160
D
0.603
06/02/87
153
r
1013
172
S
0.390
0.421
0.409
06/03/87
154
u
1069
37
D
1.109
06/04/87
155
H
1075
61
D
0.468
06/04/87
155
H
1075
61
C
0.573
06/05/87
156
F
1110
78
8
0.249
06/09/87
160
T
1161
656
0
0.435
06/09/87
160
T
1161
656
C
0.488
06/10/87
161
W
1253
158
B
0.118
06/11/87
162
H
1243
19
0
0.242
06/12/87
163
F
1257
140
A
0.310
06/12/87
163
F
1257
140
B
0.303
06/15/87
166
M
1307
654
C
0.486
06/16/87
167
T
1325
147
A
0.075
06/16/87
167
T
1326
129
C
0.077
06/17/87
168
U
1367
177
C
0.445
06/18/87
169
It .
1402
89
0
0.718
06/18/87
169
H
1402
89
8
0.556
06/19/87
170
F
1412
196
D
0.241
06/22/87
173
M
1446
157
B
0.471
06/23/87
174
r
1468
178
B
1.480
1.476
06/24/87
175
u
1508
673
A
1.282
06/25/87
176
H
1529
56
C
0.349
06/26/87
177
F
1514
660
C
1.167
06/26/87
177
F
1514
660
0
1.216
06/29/87
180
N
1587
93
B
0.784
06/29/87
180
N
1587
93
A
0.680
06/30/87
181
T
1652
664
0
1.107
07/01/87
182
U
1619
190
B
0.992
07/02/87
183
H
1684
57
A
1.016
1.048
1.124
07/06/87
187
N
1712
697
8
1.024
0.970
0.887
07/07/87
188
r
1781
171
D
1.760
07/08/87
189
u
1828
83
C
0.430
07/08/87
189
u
1829
649
C
0.544
07/13/87
194
N
1901
186
D
0.642
07/15/87
196
V
1976
692
B
0.194
07/16/87
197
H
2037
36
0
0.130
07/17/87
198
F
2023
646
C
0.257
07/20/87
201
N
2057
146
0
0.369
07/21/87
202
T
2118
679
A
0.230
07/22/87
203
U
2136
18
C
0.509
0.398
0.341
07/23/87
204
H
2172
186
B
0.398
07/27/87
208
M
2232
7
C
0.225
2-61
-------
TABLE 2-16. SUMMARY OF THE 1987 NMOC DATA FOR CHICAGO, IL (C3IL)
Julian
Sample
Sample
Radian
GAD
ASRL
Date
Oats
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nurber
Channel
(ppmC)
(ppno
(ppmC)
07/28/87
209
T
2280
10
C
1.224
07/29/87
210
U
2310
12
C
0.231
07/31/87
212
F
2364
190
C
1.117
0.951
0.835
07/31/87
212
F
2365
22
C
1.071
08/03/87
215
M
2420
729
C
0.663
08/04/87
216
T
2429
874
C
0.878
08/05/87
217
U
2461
697
D
0.520
08/06/87
218
H
2526
721
A
0.913
08/07/87
219
F
2532
33
D
0.566
08/10/87
222
M
2573
668
B
0.238
08/12/87
224
U
2633
700
A
0.442
08/13/87
225
H
2703
28
A
0.373
0.455
08/17/87
229
M
2724
147
A
0.270
08/18/87
230
T
2759
169
C
0.829
08/19/87
231
W
2819
55
A
2.280
08/20/87
232
H
2866
765
B
0.279
08/20/87
232
H
2865
22
A
0.215
08/21/87
233
F
2834
52
B
0.243
08/24/87
236
M
2896
675
B
0.175
08/25/87
237
T
2947
706
C
0.279
08/26/87
238
U
2968
38
C
0.209
08/27/87
239
H
3015
673
C
0.169
08/28/87
240
F
2997
681
A
0.095
08/31/87
243
M
3079
716
C
0.342
09/01/87
244
T
3085
180
C
0.162
09/02/87
245
U
3122
50
B
0.165
09/03/87
246
H
3176
793
0
0.093
0.223
09/04/87
247
F
3209
77
0
0.134
09/08/87
251
T
3218
25
C
0.159
09/09/87
252
W
3265
177
C
0.511
09/10/87
253
H
3273
134
a
0.053
09/10/87
253
H
3274
711
C
0.094
0.096
09/11/87
254
F
3311
57
A
0.362
09/11/87
254
F
3311
57
A
0.304
09/14/87
257
M
3328
142
C
0.488
0.519
09/14/87
257
M
3329
40
C
0.487
0.473
09/14/87
257
M
3332
721
C
0.267
0.214
09/14/87
257
M
3333
12
0
0.307
0.203
09/15/87
258
T
3345
187
0
0.648
0.515
09/15/87
258
T
3348
501
C
0.155
0.149
09/16/87
259
U
3427
663
C
0.293
09/17/87
260
H
3484
16
0
0.304
09/18/87
261
F
3519
728
A
0.476
2-62
-------
TA8LE 2-16. SUMMARr OF THE 1987 NMOC DATA FOR CHICAGO, II (C3IL)
Julian
Sample
Sample
Radian
QAD
ASRl
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sanpled
Sampled
Number
Nutter
Channel
(ppnC)
(ppiC)
(ppmC)
09/21/87
264
M
3563
690
A
0.483
09/22/87
265
T
3561
102
S
0.365
09/23/87
266
W
3592
660
D
0.273
09/24/87
267
H
3646
686
C
0.205
09/25/87
268
F
3651
50
C
0.060
09/29/87
272
T
3725
20
C
0.275
09/30/87
273
U
3759
681
C
0.250
0.261
2-63
-------
CINCINNATI, OH
CIOH - 1987 NMOC PROGRAM
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-14. Plot of NMOC concentration for Cincinnati, OH.
-------
TABLE 2-17. SUMMARY OF THE 1987 NMOC DATA FOR CINCINNATI, OH (CIOH)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nimber
Nimber
Channel
(ppmC)
(ppnC)
(ppnC)
06/01/87
152
N
1004
20
0
0.745
06/02/87
153
T
1038
122
D
0.545
06/03/87
154
U
1070
644
C
0.409
06/04/87
155
H
1054
165
A
0.152
06/04/87
155
H
1054
165
0
0.152
06/05/87
156
F
1120
53
A
0.304
06/08/87
159
M
1103
91
B
0.388
06/08/87
159
M
1103
91
B
0.352
06/09/87
160
T
1165
102
C
0.600
06/10/87
161
w
1170
11
0
0.272
06/11/87
162
H
1234
676
0
0.628
06/12/87
163
F
1238
305
C
0.321
06/15/87
166
M
1276
33
C
0.540
06/16/87
167
T
1318
120
C
0.479
06/17/87
168
W
1338
56
A
1.044
06/17/87
168
U
1339
79
0
1.094
1.209
06/18/87
169
H
1394
677
A
0.822
06/19/87
170
F
1395
166
A
0.401
06/22/87
173
M
1406
74
C
0.401
06/23/87
174
T
1458
653
0
0.255
06/24/87
175
U
1492
145
A
0.453
0.403
06/25/87
176
H
1495
48
A
0.574
06/25/87
176
H
1495
48
C
0.627
06/26/87
177
F
1525
160
B
0.186
06/29/87
180
M
1592
683
D
0.355
0.375
0.312
06/30/87
181
T
1626
404
C
0.394
07/01/87
182
U
1628
500
0
0.421
07/02/87
183
H
1653
107
0
0.267
07/06/87
187
N
1721
1
C
0.351
07/07/87
188
T
1786
714
B
0.268
08/08/87
189
U
1805
695
C
0.410
07/09/87
190
H
1847
151
c
0.605
07/09/87
190
H
1848
13
0
0.614
07/10/87
191
F
1864
716
c
0.887
07/13/87
194
M
1896
96
0
0.308
07/14/87
195
T
1921
696
A
0.173
07/15/87
196
W
1971
135
C
0.755
0.623
0.574
07/16/87
197
H
2012
39
A
0.193
07/17/87
198
F
2029
676
0
1.788
07/20/87
201
M
2079
664
B
0.755
07/21/87
202
T
2092
44
B
0.972
07/22/87
203
U
2132
164
A
1.220
07/23/87
204
H
2210
9
C
2.348
2-65
-------
TABLE 2-17. SUMMARY OF THE 1987 NMOC DATA FOR CINCINNATI, OH (CIOH)
Julian
Sample
Sample
Radian
QAO
ASJil
Date
Date
Weekday
ID
Canister
Radi an
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Ninfcer
Hurtier
Channel
(ppmC)
(ppnC)
(pprrC)
07/24/87
205
F
2188
705
0
1.681
1.694
1.795
07/27/87
208
M
2253
684
A
0.474
07/27/87
208
M
2254
714
0
0.470
07/28/87
209
T
2270
33
8
0.519
0.503
07/29/87
210
U
2283
68
C
1.438
07/30/87
211
H
2354
686
C
0.801
07/31/87
212
F
2351
672
D
0.567
08/03/87
215
N
2389
91
C
0.426
08/04/87
216
T
2405
682
C
1.023
08/05/87
217
W
2428
143
D
0.530
08/05/87
217
U
2428
143
C
0.492
08/06/87
218
H
2483
728
C
0.303
0.333
08/07/87
219
F
2534
684
B
0.486
08/10/87
222
M
2544
75
B
0.839
08/11/87
223
T
2590
642
0
0.265
08/12/87
224
U
2580
761
A
0.903
08/12/87
224
«
2580
761
D
0.985
08/13/87
225
H
2660
791
A
0.893
08/14/87
226
F
2651
87
0
0.392
08/17/87
229
M
2746
40
A
0.328
08/18/87
230
T
2713
41
D
1.121
08/19/87
231
U
2794
183
A
2.003
08/20/87
232
H
2827
184
D
0.648
0.631
08/21/87
233
F
2863
650
A
0.495
08/21/87
233
F
2864
766
C
0.679
08/24/87
236
M
2B87
12
A
0.212
08/25/87
237
T
2920
111
A
0.253
08/26/87
238
V
2953
773
0
0.492
08/26/87
238
W
2953
773
A
0.446
08/27/87
239
H
3004
66
A
1.767
08/28/87
240
F
2989
19
C
0.304
08/31/87
243
N
3065
799
C
0.642
0.578
09/01/87
244
T
3078
169
A
1.006
09/03/87
246
H
3183
623
A
0.613
09/04/87
247
F
3144
723
0
0.501
09/08/87
251
T
3239
655
A
0.893
09/08/87
251
T
3240
123
0
0.966
09/09/87
252
U
3261
146
C
0.781
09/10/87
253
3289
773.
D
2.339
09/11/87
254
f
3310
39
0
0.489
0.402
09/14/87
257
M
3350
139
B
0.722
09/15/87
258
T
3386
34
B
0.680
09/16/87
259
U
3441
50
0
0.550
2-66
-------
TABLE 2-17. SUMMARY OF THE 1987 NMOC DATA FOR CINCINNATI, OH (CIOH)
Juli an
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Ninber
Channel
(pprnC)
09/16/87
259
U
3442
90
0
0.591
09/17/87
260
H
3446
775
C
0.475
09/18/87
261
F
3451
141
B
0.381
0.330
09/21/87
264
M
3515
137
C
0.917
09/22/87
265
T
3553
701
C
0.423
0.287
09/23/87
266
U
3579
409
D
0.406
09/24/87
267
H
3652
714
0
0.413
09/25/87
268
F
3619
782
0
0.767
09/29/87
272
T
3730
695
0
0.545
09/30/87
273
U
3760
77
C
0.270
2-67
-------
BATON ROUGE, LA
BRLA - 1987 NMOC PROGRAM
150
JULIAN DATE
Figure 2-15. Plot of NMOC concentration for Baton Rouge, LA.
-------
TABLE 2-18.
SUMMARY
OF THE '
1987 NMOC DATA FOR
BATON ROUGE, LA (BRLA)
Julian
Sample
Sample
Radian
QAO ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC NMOC
Sampled
Sampled
Sampled
Nuitoer
Nuitoer
Channel
CppnC)
(ppmC) (ppmC)
06/01/87
152
M
1000
70
A
0.277
06/01/87
152
M
1000
70
A
0.253
06/02/87
153
T
1011
11
A
0.570
06/02/87
153
T
1011
11
B
0.552
06/03/87
154
U
1039
44
B
0.586
06/04/87
155
H
1084
134
C
0.240
06/05/87
156
F
1089
136
A
0.203
06/08/87
159
M
1121
62
C
0.301
06/09/87
160
T
1154
663
0
0.639
06/09/87
160
T
1174
106
D
0.621
0.651
06/10/87
161
U
1203
130
0
0.315
06/12/87
163
F
1278
306
D
0.467
06/15/87
166
N
1277
185
C
1.332
06/17/87
168
T
1303
21
0
0.606
06/17/87
168
T
1303
21
A
0.557
06/18/87
169
H
1359
27
B
0.266
06/18/87
169
H
1360
35
B
0.263
06/19/87
170
F
1385
658
0
0.837
06/22/87
173
M
1410
44
0
1.089
06/23/87
174
T
1443
61
0
0.738
0.713 0.733
06/24/87
175
U
1483
165
B
0.654
06/25/87
176
H
1507
183
8
0.637
06/26/87
177
F
1531
650
0
1.477
06/29/87
180
M
1581
184
C
0.469
06/30/87
181
T
1623
66
B
0.740
07/01/87
182
U
1640
188
C
0.589
07/02/87
183
H
1654
197
C
0.430
07/06/87
187
N
1726
55
A
0.519
07/07/87
188
T
1745
60
C
0.495
07/08/87
189
W
1832
177
A
0.398
07/09/87
190
H
1833
406
0
0.628
07/10/87
191
F
1853
37
0
1.134
07/10/87
191
F
1854
668
0
1.154
07/13/87
194
M
1897
181
C
0.419
07/15/87
196
U
1941
162
C
0.387
07/16/87
197
H
2010
654
A
0.444
07/17/87
198
F
1994
718
A
0.489
0.536 0.462
07/20/87
201
M
2046
197
C
0.377
0.405 0.341
07/21/87
202
T
2090
38
B
0.257
07/22/87
203
W
2155
136
0
0.440
07/23/87
204
H
2200
644
C
0.715
07/24/87
205
F
2194
142
8
1.687
07/27/87
208
M
2219
30
C
1.829
2-69
-------
TABLE 2-18. SUMMARY OF THE 1987 NMOC DATA FOR BATON ROUGE, LA (BRLA)
Jul fan
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurtoer
Nunber
Channel
(ppmC)
(ppmC)
CpprC)
07/28/87
209
T
2248
129
3
0.801
07/28/87
209
T
2249
120
3
0.793
07/29/87
210
V
2262
691
D
0.446
0.461
0.507
07/30/87
211
H
2313
302
D
0.518
07/31/87
212
F
2350
173
A
1.252
08/03/87
215
N
2373
118
B
0.351
08/03/87
215
M
2373
118
A
0.352
08/04/87
216
T
2408
40
B
0.380
08/05/87
217
U
2427
779
B
0.547
08/05/87
217
w
2427
779
C
0.748
08/06/87
218
H
2462
725
D
0.653
08/07/87
219
F
2512
122
B
0.772
08/10/87
222
M
2551
667
A
0.362
08/11/87
223
T
2574
126
B
0.209
08/12/87
224
U
2625
662
B
0.235
0.270
08/13/87
225
H
2685
676
C
0.215
08/14/87
226
F
2670
111
A
0.337
08/17/87
229
N
2716
136
C
0.280
08/17/87
229
M
2731
792
D
0.366
08/18/87
230
T
2755
82
B
0.316
08/19/87
231
U
2785
17
A
2.210
. 2.404
08/19/87
231
U
2785
17
A
2.180
08/20/87
232
H
2852
131
A
0.586
08/21/87
233
F
2840
57
B
1.170
08/24/87
236
N
2951
33
B
2.000
2.160
08/25/87
237
T
2942
780
A
1.095
08/26/87
238
U
2915
769
B
0.657
08/27/87
239
H
2979
302
A
0.640
0.691
08/28/87
240
F
3007
713
A
0.316
08/31/87
243
N
3051
671
D
0.260
09/01/87
244
T
3090
683
C
0.485
09/02/87
245
U
3131
782
D
1.014
09/03/87
246
H
3109
802
B
1.266
09/04/87
247
F
3161
652
C
0.635
09/07/87
250
N
3202
38
A
1.790
09/08/87
251
T
3200
193
B
0.566
09/09/87
252
U
3257
42
B
0.688
09/09/87
252
U
3258
186
B
0.713
09/10/87
253
H
3302
3
A
0.924
09/11/87
254
F
3283
710
D
0.875
0.868
09/14/87
257
N
3355
686
A
1.659
09/15/87
258
T
3379
632
D
1.740
1.705
09/16/87
259
U
3403
722
C
0.431
2-70
-------
TABLE 2-18. SUMMARr OF THE 1987 NMOC OATA FOR BATON ROUGE, LA (BRLA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NHOC
NHOC
NHOC
Sampled
Sampled
Sampled
Nurter
Number
Channel
(ppnC)
(ppmC)
(ppmC)
09/17/87
260
H
3497
184
A
0.718
09/17/87
260
H
3498
25
A
0.686
09/18/87
261
r
3450
699
B
0.874
09/21/87
264
H
3510
30
D
0.496
09/21/87
264
M
3510
30
D
0.489
09/22/87
265
T
3547
689
B
1.615
09/23/87
266
U
3580
21
D
0.738
09/24/87
267
H
3649
792
0
1.424
09/25/87
268
F
3616
687
A
3.053
09/28/87
271
H
3691
68
C
0.121
09/29/87
272
T
3688
635
A
1.826
09/30/87
273
U
3757
694
A
0.978
09/30/87
273
U
3758
192
B
0.936
2-71
-------
BEAUMONT, TX
BMTX - 1987 NMOC PROGRAM
JULIAN DATE
Figure 2-16. Plot of NMOC concentration for Beaumont, TX.
-------
TABLE 2-19. SUMMARY OF THE 1987 NMOC DATA FOR BEAUMONT, TX (8MTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuifeer
Nurber
Channel
(ppmC)
(ppmC)
(ppmC)
06/01/87
152
M
1007
17
C
0.899
06/02/87
153
r
1021
130
A
1.431
06/03/87
154
u
1074
190
C
1.046
06/03/87
154
u
1074
190
C
1.056
06/04/87
155
H
1066
186
C
0.330
06/05/87
156
F
1101
34
A
0.371
06/08/87
159
M
1122
80
C
0.128
06/09/87
160
T
1130
32
C
0.271
0.335
0.274
06/10/87
161
V
1190
150
B
0.263
06/11/87
162
H
1206
49
0
0.318
06/12/87
163
F
1223
27
B
1.238
06/15/87
166
N
1264
181
C
0.690
0.618
06/16/87
167
r
1291
77
C
0.760
06/17/87
168
w
1331
182
B
0.727
06/18/87
169
H
1354
13
C
0.445
06/19/87
170
F
1426
683
B
0.180
06/19/87
170
F
1427
170
C
0.146
06/22/87
173
M
1416
66
0
0.647
06/23/87
174
T
1440
702
A
0.281
06/24/87
175
U
1471
30
C
1.047
1.009
06/25/87
176
H
1542
14
C
0.403
06/26/87
177
F
1540
657
B
0.486
06/29/87
180
M
1598
670
0
0.159
06/30/87
181
T
1608
115
0
0.666
06/30/87
181
T
1608
115
8
0.751
07/01/87
182
U
1656
647
A
1.011
07/02/87
183
H
1678
721
A
1.258
07/03/87
184
F
1722
148
D
0.512
07/06/87
187
H
1727
30
B
0.470
07/07/87
188
T
1770
56
C
0.843
07/07/87
188
T
1770
56
B
0.886
07/08/87
189
U
1779
182
0
0.439
0.647
07/09/87
190
H
1820
50
C
0.251
07/09/87
190
H
1821
93
D
0.235
07/10/87
191
F
1883
656
C
1.096
07/13/87
194
M
1B70
163
B
0.333
07/13/87
194
N
1870
163
B
0.320
07/14/87
195
T
1904
681
C
1.466
07/15/87
196
W
1944
19
B
2.109
07/16/87
197
H
2027
660
0
1.105
07/17/87
198
F
2040
305
A
2.534
07/20/87
201
H
2044
184
B
0.192
0.298
0.262
07/21/87
202
T
2101
54
C
0.341
0.286
0.426
2-73
-------
TABLE 2-19. SUMMARY OF THE 1987 NHOC DATA FOR BEAUMONT, TX (8MTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NHOC
NMOC
Sampled
Sampled
Sampled
Nunber
Member
Channel
CppnC)
(ppmC)
(ppmC)
07/22/87
203
U
2146
188
B
0.367
07/23/87
204
H
2207
681
A
1.289
07/24/87
205
F
2192
99
A
0.976
07/27/87
208
M
2211
55
C
0.263
07/27/87
208
M
2211
55
0
0.254
07/28/87
209
T
2255
13
A
0.328
07/30/87
211
H
2291
694
B
0.520
0.507
0.444
07/31/87
212
F
2330
405
B
0.286
08/03/87
215
M
2375
693
0
0.363
08/04/87
216
T
2401
92
0
0.163
08/05/87
217
U
2138
773
D
0.832
08/06/87
218
H
2522
154
C
0.235
08/07/87
219
F
2487
683
A
0.609
0.666
08/07/87
219
F
2488
638
C .
0.603
08/10/87
222
H
2543
301
D
0.231
0.202
08/11/87
223
T
2608
770
B
0.288
08/12/87
224
W
2600
501
C
0.183
08/13/87
225
H
2631
305
B
0.249
08/14/87
226
.F
2664
4
B
0.756
08/17/87
229
N
2729
308
0
0.712
08/18/87
230
T
2736
706
D
0.192
08/18/87
230
T
2740
680
0
0.212
08/19/87
231
U
2796
129
B
0.321
08/20/87
232
H
2845
500
C
0.756
08/21/87
233
F
2820
114
B
0.423
08/24/87
236
M
2891
143
0
0.421
08/25/87
237
T
2884
787
A
2.670
2.762
2.859
08/26/87
238
U
2965
770
A
1.118
08/27/87
239
H
3000
788
B
0.779
08/28/87
240
F
3014
139
B
0.244
08/31/87
243
M
3049
87
B
0.253
09/01/87
244
T
3076
92
D
0.355
09/02/87
245
W
3111
55
A
0.155
0.354
09/03/87
246
H
3114
40
C
1.855
09/04/87
247
F
3145
189
8
0.679
09/08/87
251
T
3205
636
D
0.405
09/09/87
252
U
3276
728
C
0.381
09/10/87
253
H
3277
72
B
0.660
09/10/87
253
H
3278
20
C
0.661
09/11/87
254
F
3304
105
0
0.737
0.741
09/14/87
257
N
3360
183
C
0.796
0.806
09/14/87
257
M
3375
46
C
0.840
09/15/87
258
T
3391
27
D
0.617
2-74
-------
TABLE 2-19. SUMMARY OF THE 1987 NMOC DATA FOR BEAUMONT, TX (BHTX)
Julian
Sample
Sample
Radian
OAO
ASRL
Date
Data
Weekday
ID
Canister
Radian
MMOC
NMOC
NMOC
Sarpled
Sampled
Sampled
Nurfcer
Nintoer
Channel
(PP"C)
(ppmC)
(ppnC)
09/16/87
259
W
3420
680
0
0.462
09/17/87
260
H
3445
37
A
0.520
09/17/87
260
H
3445
37
B
0.526
09/18/87
261
F
3466
64
B
0.804
09/21/87
264
M
3528
15
B
0.263
09/22/87
265
T
3542
667
0
2.369
09/22/87
265
T
3542
667
B
2.479
09/23/87
266
W
3595
7
A
2.183
09/24/87
267
H
3626
36
0
1.013
09/25/87
268
F
3623
86
A
0.516
09/28/87
271
N
3687
119
A
0.353
09/29/87
272
T
3712
768
C
0.247
09/30/87
273
W
3754
9
C
0.418
10/01/87
274
H
3811
10
0
0.977
10/01/87
274
H
3812
762
A
0.961
2-75
-------
DALLAS, TX
DLTX - 1987 NMOC PROGRAM
i h A
!
'"^AV'V V
wu
1 I I 1 1 I I 1 1 1 1 1
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-17. Plot of NMOC concentration for Dallas, TX.
-------
TABLE
2-20. SUMMARY OF
THE 1987 NHOC DATA
FOR DALLAS, TX (OLTX)
Julian
Sample
Sample
Radian QAD ASRL
Oate
Oate
Weekday
ID
Canister
Radian
NHOC NHOC NHOC
Sampled
Sampled
Sampled
Ninfcer
Nurtoer
Channel
(ppnC) (ppnC) (pprrC)
06/05/87
156
F
1098
166
C
0.785
06/08/87
159
M
1138
145
C
0.667
06/12/87
163
F
1287
143
B
0.460
06/15/87
166
M
1317
54
C
0.847
06/16/87
167
T
1301
103
A
0.583
06/16/87
167
T
1301
103
0
0.583
06/17/87
168
U
1392
404
0
1.106
06/18/87
169
H
1433
102
B
0.444
06/18/87
169
H
1433
102
B
0.414
06/19/87
170
F
1486
197
C
0.464
06/22/87
173
N
1482
97
B
0.280
06/23/87
174
T
1545
682
C
0.375
06/24/87
175
W
1549
119
C
0.632
06/25/87
176
H
1612
410
C
0.465
06/26/87
177
H
1649
15
A
0.361
06/26/87
177
F
1650
645
A
0.407
06/29/87
180
N
1643
725
A
0.478
06/30/87
181
T
1735
24
D
0.288
07/01/87
182
U
1755
133
0
0.567
07/02/87
183
H
1750
308
A
0.590
07/04/87
185
S
1748
77
0
0.171
07/06/87
187
N
1749
53
0
0.160
07/07/87
188
T
1857
175
C
0.310
07/08/87
189
U
1861
129
B
0.396
07/09/87
190
H
1970
86
C
0.311
07/10/87
191
F
1967
666
D
0.278
07/10/87
191
F
1967
666
A
0.293
07/13/87
194
N
200S
173
0
0.431
07/15/87
196
U
1985
77
0
0.859
07/15/87
196
U
1985
77
0
0.738
07/16/87
197
H
2061
10
B
0.555
07/16/87
197
H
2062
122
C
0.676
07/17/87
198
F
2160
87
B
0.216
07/20/87
201
M
2143
722
0
1.371
07/21/87
202
T
2178
194
C
0.653
07/22/87
203
U
2205
155
c
1.062
07/23/87
204
H
2243
107
c
0.544
07/24/87
20$
F
2328
656
0
0.635
07/27/87
208
N
2329
726
0
0.558 0.560
07/28/87
209
T
2321
666
A
0.364
07/29/87
210
W
2352
50
0
0.471
08/03/87
215
N
2471
83
0
1.040
08/05/87
217
V
2578
705
A
0.887
2-77
-------
TABLE 2-20. SUMMARY Of THE 1987 NMOC DATA FOR OALLAS, TX (DLTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NHOC
NHOC
NMOC
Sampled
Sampled
Sampled
Number
Number
Channel
(ppnC)
(PP"C)
08/06/87
218
H
2575
708
B
1.356
08/07/87
219
F
2560
141
C
0.391
0.466
08/10/87
222
M
2686
719
A
0.613
08/11/87
223
T
2689
699
C
0.584
08/12/87
224
W
2661
652
D
0.634
08/13/87
225
H
2752
139
B
0.299
08/14/87
226
F
2725
145
D
0.201
08/18/87
230
T
2795
691
B
0.320
08/19/87
231
U
2793
45
0
0.323
08/20/87
232
H
2849
141
0
0.352
08/21/87
233
F
2869
25
A
0.376
08/24/87
236
N
2880
776
C
1.263
08/25/87
237
T
2971
663
B
0.253
08/25/87
237
T
2972
123
B
0.184
08/25/87
237
T
2932
18
B
0.429
08/26/87
238
W
2982
56
B
0.302
08/28/87
240
F
3006
676
B
0.235
08/31/87
243
N
3057
640
0
0.322
09/01/87
244
T
3071
158
0
0.377
0.364
09/02/87
245
U
3123
693
0
1.173
09/03/87
246
H
3177
663
C
2.087
09/04/87
247
F
3178
764
A
1.318
09/07/87
250
H
3228
56
C
0.159
09/08/87
251
T
3259
143
D
1.000
0.950
09/09/87
252
U
3322
83
0
0.733
09/10/87
253
H
3312
808
0
0.489
09/14/87
257
N
3393
653
B
0.244
09/15/87
258
T
3434
140
A
0.350
09/17/87
260
H
3481
118
B
0.496
09/18/87
261
F
3516
410
0.239
0.218
09/21/87
264
N
3572
8
A
0.700
09/21/87
264
M
3573
32
C
0.558
09/22/87
265
T
3587
769
A
0.589
09/23/87
266
W
3622
401
B
0.748
09/24/87
267
H
3611
156
0.902
0.809
09/25/87
268
f
3696
101
A
0.774
0.811
09/28/87
271
M
3715
92
C
0.460
0.411
09/29/87
272
T
3753
684
0
0.451
0.459
09/30/87
273
U
3806
181
D
0.586
2-78
-------
2-79
-------
EL PASO, TX
ELTX - 1987 NMOC PROGRAM
150
170
190
250
270
230
210
JULIAN PATE
Figure 2-18. Plot of NMOC concentration for El Paso, TX.
-------
TABLE 2-21. SUMNARY OF THE 1987 NMOC DATA FOR EL PASO, TX (ELTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Oate
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sanpled
Sampled
Sampled
Nimtoer
Nunber
Channel
(ppmC)
(ppmC)
(ppmC)
06/01/87
152
M
1027
188
C
0.394
06/02/87
153
T
1028
149
a
0.250
06/02/87
153
T
1029
6
D
0.057
06/04/87
155
H
1059
66
D
0.686
0.870
06/05/87
156
F
1078
155
0
0.275
0.323
0.225
06/08/87
159
H
1109
179
C
0.385
06/09/87
160
T
1157
93
C
0.875
06/10/87
161
U
1168
176
0
0.398
06/11/87
162
H
1210
105
c
0.573
06/12/87
163
F
1224
14
D
0.162
06/15/87
166
M
1265
71
0
0.844
06/16/87
167
T
1293
653
c
0.575
06/17/87
168
U
1304
189
B
0.278
0.296
0.280
06/18/87
169
H
1336
164
D
0.279
06/19/87
170
F
1391
116
C
0.210
06/22/87
173
N
1401
694
A
0.388
06/22/87
173
M
1401
694
A
0.367
06/23/87
174
T
1448
701
0
0.180
06/24/87
175
U
1472
35
A
0.196
06/25/87
176
H
1557
46
C
0.269
06/26/87
177
F
1534
658
A
0.340
06/26/87
177
F
1535
100
A
0.286
06/29/87
180
N
1593
126
C
0.289
06/30/87
181
T
1622
671
A
0.305
07/02/87
183
H
1670
173
D
2.095
07/03/87
184
f
1695
78
C
0.357
07/06/87
187
N
1723
661
0
0.123
07/07/87
188
T
1768
138
0
0.111
07/08/87
189
U
1818
725
B
0.264
07/09/87
190
H
1815
183
A
0.121
07/10/87
191
F
1856
654
C
0.285
07/14/87
193
T
1918
22
D
0.332
07/15/87
196
U
1943
701
C
0.305
07/16/87
197
H
2015
37
B
0.075
07/17/87
198
F
1988
34
B
0.045
07/17/87
198
F
1989
46
0
0.165
07/20/87
201
N
2047
149
D
0.434
0.407
07/21/87
202
T
2114
102
C
0.183
07/22/87
203
U
2091
170
D
0.376
07/23/87
204
H
2191
191
A
0.413
07/24/87
205
F
2189
729
B
0.383
07/27/87
208
M
2224
645
D
0.320
07/27/87
208
M
2224
645
D
0.316
2-81
-------
TABLE 2-21. SUMMARY OF THE 1987 NMOC DATA FOR EL PASO, TX (ELTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
to
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Member
Nurtoer
Channel
(ppmC)
(PPnC)
(ppmC)
07/28/37
209
T
2226
79
C
0.248
0.215
0.206
07/29/87
210
U
2304
39
8
0.398
07/30/87
211
H
2355
73
C
0.460
07/31/87
212
F
2325
99
0
0.520
08/03/87
215
M
2374
157
0
0.204
08/03/87
215
M
2374
157
A
0.196
0.155
08/04/87
216
T
2463
696
C
0.722
08/05/87
217
U
2460
406
B
0.411
08/06/87
218
H
2486
96
a
0.706
08/06/87
218
H
2530
176
A
0.720
08/07/87
219
F
2504
775
C
0.822
08/10/87
222
M
2548
674
0
0.548
08/11/87
223
T
2591
91
C
0.105
08/12/87
224
U
2584
704
D
0.078
0.082
08/13/87
225
H
2663
768
0
0.553
08/14/87
226
F
2655
113
A
0.167
08/17/87
22?
M
2720
162
0
0.210
08/18/87
230
T
2770
142
A
0.257
08/20/87
232
H
2843
121
C
1.150
08/21/87
233
F
2847
700
C
0.434
08/24/87
236
M
2883
4
B
0.433
08/25/87
237
T
2885
118
0
0.551
08/26/87
238
U
2928
410
B
0.222
08/27/87
239
H
3023
130
D
0.301
08/27/87
239
H
3022
686
B
0.345
08/28/87
240
F
3034
177
C
0.235
08/31/87
243
N
3046
27
0
0.520
09/01/87
244
T
3081
690
B
0.390
09/02/87
245
U
3127
164
0
0.703
09/03/87
246
H
3140
792
A
0.832
09/03/87
246
H
3140
792
0
0.821
09/04/87
247
F
3172
162
C
0.227
09/07/87
250
M
3217
656
C
0.496
09/08/87
251
T
3227
642
c
0.667
09/09/87
252
W
3270
100
A
0.293
09/10/87
253
H
3307
66
A
1.450
1.439
09/11/87
254
F
3373
158
C
0.614
09/16/87
259
U
3468
101
A
0.155
09/17/87
260
H
3470
678
A
0.343
09/18/87
261
F
3483
96
B
0.375
09/21/87
264
N
3534
673
C
0.184
09/22/87
265
T
3557
193
C
0.974
0.804
09/23/87
266
U
3605
61
B
0.627
2-82
-------
TABLE 2-21. SUMMARY OF THE 1987 NHOC DATA FOR EL PASO, TX (ELTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Hunter
Channel
(ppmC)
(ppmC)
(ppmC)
09/23/87
266
u
3606
722
B
0.673
09/24/87
267
H
3614
666
A
1.100
09/25/87
268
F
3676
13
D
0.453
09/28/87
271
M
3692
; 9
B
0.534
09/29/87
272
T
3721
178
C
0.476
09/30/87
273
V
3776
784
B
0.622
09/30/87
273
U
3777
62
A
0.537
2-83
-------
FT. WORTH, TX
FWTX - 1987 NMOC PROGRAM
J T
~
I
h* 1* f / /
vi ft
MW
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-19. Plot of NMOC concentration for Fort Worth, TX.
-------
TABLE 2-22. SUMMARY OF THE 1987 NMOC DATA FOR FT. WORTH, TX (FVTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Oate
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuitoer
Nuitoer
Channel
CppmC)
(ppmC)
(PpnC)
06/08/87
159
M
1112
156
A
0.976
0.998
1.183
06/08/87
159
M
1113
185
A
1.023
06/09/87
160
T
1185
50
0
0.825
06/10/87
161
U
1181
405
C
0.993
06/11/87
162
H
1251
45
C
0.768
06/12/87
163
F
1273
646
D
0.896
06/15/87
166
M
1261
43
A
0.748
0.727
0.615
06/16/87
167
T
1313
108
0
0.414
06/17/87
168
W
1350
10
0
0.660
06/18/87
169
H
1378
146
B
0.493
06/22/87
173
M
1407
98
0
0.461
06/23/87
174
T
1462
92
C
0.431
06/23/87
174
T
1463
7
C
0.545
06/24/87
175
U
1494
669
A
0.766
06/24/87
175
U
1494
669
B
0.782
06/26/87
177
F
1533
101
8
0.663
06/29/87
180
M
1591
192
C
0.645
0.481
0.516
06/30/87
181
T
1630
685
C
0.609
07/01/87
182
W
1664
63
C
0.787
07/02/87
183
H
1685
141
B
0.465
07/02/87
183
H
1685
141
0
0.430
07/06/87
187
M
1731
713
A
0.327
07/06/87
187
M
1731
713
A
0.328
07/08/87
189
U
1802
165
0
0.417
07/09/87
190
H
1884
131
A
0.405
07/10/87
191
f
1860
651
C
0.413
07/13/87
194
N
1923
655
A
2.659
07/13/87
194
N
1924
705
C
1.523
07/14/87
195
T
1939
699
0
3.126
07/15/87
196
W
1981
728
0
3.278
3.358
07/16/87
197
H
2041
70
B
2.460
07/17/87
198
F
2006
653
D
0.438
07/20/87
201
M
2063
183
A
1.056
07/20/87
201
N
2063
183
C
1.145
07/22/87
203
U
2151
709
C
1.032
07/23/87
204
H
2154
80
B
0.742
07/23/87
204
H
2154
80
B
0.728
07/24/87
205
f
2209
700
0
0.985
07/27/87
208
M
2233
712
0
0.636
07/28/87
209
T
2271
130
0
0.416
07/29/87
210
W
2307
671
0
0.626
07/30/87
211
H
2315
37
A
0.782
07/30/87
211
H
2315
37
C
0.687
2-85
-------
TA8LE 2-22. SUMMARY OF THE 1987 NHOC DATA FOR FT. WORTH, TX (FWTX)
Julian
Sample
Sample
Radi an
QAD ASRL
Date
Date
Weekday
ID
Canister
Radian
NHOC
NMOC NHOC
Sanpled
Sampled
Sampled
Nurber
Nurber
Channel
(PPnC)
(ppnC) CpprnC)
07/31/87
212
F
2342
93
A
0.613
08/03/87
215
M
2379
724
0
0.572
0.590 0.487
08/04/87
216
T
2447
160
B
0.445
08/05/87
217
W
2474
43
A
1.102
08/06/87
218
H
2481
45
8
1.112
08/06/87
218
H
2501
196
A
1.054
08/10/87
222
M
2565
163
C
0.866
08/11/87
223
T
2581
99
C
1.127
08/11/87
223
T
2581
99
C
1.231
08/12/87
224
W
2642
401
A
0.521
08/12/87
224
U
2642
401
0
0.561
08/13/87
225
H
2654
86
B
0.887
08/14/87
226
F
2684
685
C
0.418
08/17/87
229
M
2719
62
0
0.277
08/18/87
230
T
2769
151
A
0.305
08/19/87
231
U
2807
639
B
0.617
08/20/87
232
H
. 2830
153
D
0.446
08/21/87
233
F
2837
96
B
0.882
08/24/87
236
M
2874
156
0
1.651
08/24/87
236
M
2874
156
C
1.610
08/25/87
237
T
2948
694
c
0.541
08/26/87
238
W
2961
701
c
0.289
08/28/87
240
F
3024
400
c
0.448
08/28/87
240
F
3025
198
c
0.430
08/31/87
243
N
3061
666
c
0.757
09/02/87
245
W
3121
142
D
1.217
09/03/87
246
H
3167
620
0
3.215
09/04/87
247
F
3191
165
A
1.413
09/08/87
251
T
3234
725
D
0.843
0.805
09/09/87
252
U
3263
198
A
1.106
09/10/87
253
H
3290
685
B
0.487
09/11/87
254
F
3340
767
0
1.451
09/14/87
257
M
3372
781
B
0.424
09/15/87
258
T
3425
638
A
0.593
09/16/87
259
U
3411
652
A
0.342
09/17/87
260
H
3464
108
D
0.606
09/18/87
261
F
3453
178
A
0.654
0.679
09/21/87
264
M
3500
683
A
0.792
09/21/87
264
M
3500
683
A
0.807
09/22/87
265
T
3559
709.
D
1.125
09/23/87
266
U
3607
54
8
0.991
09/23/87
266
W
3608
691
B
1.030
09/25/87
268
F
3615
89
C
0.508
2-86
-------
TABLE 2-22. SUMMARr OF THE 1987 NMOC DATA FOR FT. WORTH, TX (FUTX)
Julian
Sample
Sample
Radian
QAO
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nutter
Channel
CppmC)
(PPnC)
(ppmC)
09/28/87
271
N
3701
165
B
0.307
09/30/87
273
W
3733
626
0
0.611
09/30/87
273
U
3751
500
B
0.434
09/30/87
273
u
3751
500
B
0.448
2-87
-------
HOUSTON, TX
H1TX — 1987 NMOC PROGRAM
150
190
210
JULIAN DATE
230
250
270
Figure 2-20. Plot of NMOC concentration for Houston, TX.
-------
TABLE 2-23. SUMMARY OF THE 1987 NMOC DATA FOR HOUSTOM, TX (H1TX)
Julian
Sanple
Sanple
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nutter
Nutfcer
Channel
(ppmC)
(ppmC)
(ppmC)
06/01/87
152
N
1002
173
0
0.735
06/02/87
153
T
1014
163
D
1.304
06/03/87
154
U
1068
101
B
0.713
06/04/87
155
H
1060
405
C
0.716
06/04/87
155
H
1061
400
0
0.323
06/05/87
156
F
1095
72
0
0.237
06/08/87
159
M
1106
33
0
0.624
06/09/87
160
T
1144
307
C
0.646
06/10/87
161
U
1192
1
D
0.798
06/11/87
162
H
1201
186
B
0.482
06/12/87
163
F
1227
136
D
0.951
06/15/87
166
- H
1256
91
B
1.013
06/16/87
167
T
1298
119
A
1.108
06/17/87
168
U
1306
142
C .
0.696
0.734
06/18/87
169
H
1334
32
a
0.614
06/18/87
169
H
1334
32
B
0.610
06/19/87
170
F
1377
31
A
0.802
06/22/87
173
N
1421
91
0
0.427
06/23/87
174
T
1437
686
8
2.967
06/24/87
175
U
1484
32
C
0.500
06/24/87
175
U
1485
164
0
0.494
06/25/87
176
H
1524
715
C
0.391
06/26/87
177
F
1526
677
A
0.595
06/29/87
180
M
1575
187
A
0.966
1.016
1.055
06/30/87
181
T
1604
172
B
1.233
06/30/87
181
T
1604
172
B
1.222
07/01/87
182
U
1610
690
A
1.017
0.992
1.130
07/02/87
183
H
1657
121
B
1.636
07/03/87
184
F
1706
682
A
1.544
07/04/87
189
S
1728
108
0
1.918
07/07/87
188
T
1732
700
C
1.351
07/07/87
188
T
1732
700
B
1.142
07/08/87
189
U
1787
116
A
0.584
07/09/87
190
H
1800
723
0
0.376
0.411
07/10/87
191
f
1871
164
A
0.944
07/13/87
194
N
1891
679
A
1.117
07/14/87
195
T
1913
693
A
0.505
07/14/87
195
T
1914
18
0
0.475
0.476
0.447
07/15/87
196
U
1938
406
C
0.545
07/16/87
197
H
1987
145
A
1.234
07/16/87
197
H
1987
145
A
1.017
07/17/87
198
F
2009
27
C
1.437
07/20/87
201
M
2052
64
0
0.499
2-89
-------
TABLE 2-23. SUMMARY OF THE 1987 NMOC DATA FOR HOUSTON, TX (HITX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(ppnC)
(ppmC)
(ppmC)
07/21/87
202
T
2107
137
A
0.367
07/23/87
204
H
2195
308
D
1.959
07/24/87
205
F
2193
57
B
1.008
1.042
1.010
07/27/87
208
M
2214
657
0
1.267
07/27/87
208
M
2214
657
0
1.275
07/28/87
209
T
2223
6
A
1.007
07/28/87
209
T
2223
6
A
1.031
07/29/87
210
U
2269
96
C
0.731
07/30/87
211
H
2335
409
A
0.655
07/31/87
212
F
2359
308
D
0.734
0.849
08/03/87
215
M
2381
653
C
0.632
08/04/87
216
T
2425
685
B
0.868
08/05/87
217
U
2430
172
D
0.266
08/06/87
218
H
2533
36
C
0.387
08/07/87
219
F
2515
664
A
0.981
08/07/87
219
F
2516
640
B
0.975
08/10/87
222
M
2546
185
A
0.634
08/10/87
222
M
2546
185
B
0.646
08/11/87
223
T
2586
180
B
0.295
0.303
08/12/87
224
U
2587
72
D
0.478
08/13/87
225
H
2698
799
A
1.291
08/14/87
226
F
2673
191
0
0.979
08/17/87
229
M
2738
196
A
0.613
08/18/87
230
T
2803
727
D
0.981
08/19/87
231
U
2784
107
C
0.398
08/20/87
232
H
2801
720
B
0.831
08/21/87
233
F
2833
660
0
1.168
08/25/87
237
T
2934
89
0
2.551
08/26/87
238
U
2962
31
A
1.314
08/27/87
239
H
3011
103
D
1.286
08/28/87
240
F
3018
8
A
0.912
08/31/87
243
M
3052
137
C
0.355
09/01/87
244
T
3096
135
C
0.455
09/02/87
245
U
3103
712
A
0.884
09/02/87
245
U
3103
712
C
0.816
09/03/87
246
H
3179
727
A
1.165
09/03/87
246
H
3150
172
B
1.474
1.415
09/07/87
250
M
3207
109
C
1.476
09/08/87
251
T
3210
6S4
B
0.777
09/09/87
252
U
3268
643
C
1.495
09/10/87
253
H
3293
135
C
0.610
09/14/87
257
M
3351
646
c
2.546
09/14/87
257
M
3351
646
B
2.609
2-90
-------
TABLE 2-23. SUMMARY OF THE 1987 NMOC DATA FOR HOUSTON, TX (H1TX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nirtoer
Nurtoer
Channel
(ppmC)
(ppmC)
(PPnC)
09/15/87
258
T
3378
133
D
1.369
09/17/87
260
H
3480
707
A
0.662
09/18/87
261
F
3477
138
C
0.999
09/21/87
264
M
3537
186
0
0.911
09/22/87
26S
T
3597
637
C
0.748
09/23/87
266
U
3588
10
c
0.747
09/24/87
26 7
H
3609
308
B
2.621
09/24/87
267
H
3610
121
C
2.642
09/25/87
268
F
3628
407
0
3.060
09/28/87
271
M
3697
138
D
1.034
09/29/87
272
T
3756
145
A
0.387
09/30/87
273
U
3739
137
C
0.387
09/30/87
273
U
3740
197
B
0.408
2-91
-------
LONGVIEW, TX
LVTX - 1987 NMOC PROGRAM
I
t lit ^ A I?
yW
i i i i i i i i i i i i
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-21. Plot of NMOC concentration for Longview, TX.
-------
TABLE 2-24. SUMMARY OF THE 1987 NMOC DATA FOR LONGVIEU, TX (LVTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuitoer
Nurber
Channel
CppiC)
(ppmC)
(pptnC)
06/09/87
160
T
1153
152
D
0.948
06/10/87
161
U
1200
189
0
0.179
0.224
06/11/87
162
H
1195
96
A
0.301
06/11/87
162
H
1195
96
A
0.284
06/12/87
163
F
1271
148
0
0.432
06/15/87
166
N
1266
178
A
1.144
06/17/87
168
U
1332
53
B
0.423
06/18/87
169
H
1366
670
A
0.526
06/19/87
170
F
1387
645
D
0.518
06/22/87
173
M
1409
109
C
0.676
06/23/87
174
T
1452
652
C
0.351
06/24/87
175
U
1466
656
0
0.625
06/25/87
176
H
1536
501
0
1.404
06/25/87
176
H
1537
712
0
1.429
06/26/87
177
F
1543
692
0
0.343
06/29/87
180
N
1601
60
0
0.552
06/30/87
181
T
1645
709
B
0.268
07/01/87
182
U
1665
728
0
0.366
07/02/87
183
H
1663
696
C
0.288
07/03/87
184
F
1719
135
0
0.351
07/06/87
187
M
1720
104
C
0.610
07/07/87
188
T
1766
653
A
0.416
07/08/87
189
U
1769
309
A
0.391
07/08/87
189
W
1769
309
C
0.397
07/09/87
190
H
1849
147
A
0.229
07/10/87
191
F
1842
710
B
0.244
0.174
07/13/87
194
N
1893
669
0
0.952
07/14/87
195
T
1940
35
0
0.285
07/15/87
196
U
1960
189
B
1.152
07/15/87
196
U
1961
685
B
1.142
07/16/87
197
H
1991
649
0
0.503
0.478
0.406
07/17/87
198
F
1996
112
C
0.515
07/20/87
201
N
2105
6
C
0.673
07/21/87
202
T
2077
79
0
0.791
07/22/87
203
U
2185
152
C
0.415
07/23/87
204
H
2141
695
0
0.368
07/24/87
205
W
2173
40
0
0.360
0.248
0.235
07/27/87
208
M
2252
715
A
0.528
07/28/87
209
T
2251
704
C
0.500
07/29/87
210
U
2311
675
A
0.657
07/30/87
211
H
2305
156
0
1.431
07/31/87
212
F
2320
708
A
0.694
08/03/87
215
M
2403
21
C
0.681
2-93
-------
TABLE 2-24. SUMMARY OF THE 1987 NMOC DATA FOR LONGVIEU, TX (LVTX)
Julian
Sample
Sample
Radian
QAO ASRl
Oate
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC NMOC
Sampled
Sampled
Sampled
Number
Nimber
Channel
(ppfflC)
(ppmC) (ppmC)
08/03/87
215
M
2404
98
D
0.648
08/04/87
216
T
2422
727
C
0.780
08/05/87
217
U
2440
762
A
0.558
08/06/87
218
H
2507
763
0
0.636
08/07/87
219
F
2524
41
c
0.374
08/10/87
222
N
2554
500
0
0.580
08/11/87
223
T
2611
39
B
1.194
08/12/87
224
U
2643
194
C
0.338
08/12/87
224
U
2643
194
D
0.360
08/13/87
225
H
2687
649
A
0.331
08/14/87
226
F
2728
682
C
0.300
08/17/87
229
M
2754
307
B
0.348
08/18/87
230
T
2810
13
C
0.262
08/19/87
231
U
2799
15
B
0.295
08/20/87
232
H
2836
623
0
1.130
08/21/87
233
F
2815
138
A
0.396
08/21/87
233
F
2815
138
C
0.385
08/24/87
236
M
2878
761
C
0.840
08/25/87
237
T
2945
7
C
0.274
08/26/87
238
u
2922
309
B
0.185
08/27/87
239
H
2995
679
A
0.339
08/28/87
240
F
3048
191
C
0.217
08/31/87
243
M
3043
15
0
0.348
09/01/87
244
T
3099
644
0
0.364
09/01/87
244
T
3098
188
0
0.323
09/02/87
245
U
3126
790
B
1.186
09/03/87
246
H
3105
774
B
1.483
09/04/87
247
F
3199
689
0
0.564
09/08/87
231
T
3233
166
C
1.304
1.269 1.261
09/09/87
252
w
3284
719
c
1.158
1.090
09/10/87
253
H
3305
96
A
0.367
09/11/87
254
F
3367
706
D
0.265
09/14/87
257
N
3359
681
A
0.262
09/15/87
258
T
3376
677
C
0.162
09/15/87
258
T
3376
677
A
0.147
09/16/87
259
W
3423
716
0
0.225
09/17/87
260
H
3482
197
0
0.222
09/18/87
261
F
3533
643
0
0.321
09/21/87
264
M
3511
53
C
1.341
09/22/87
265
T
3544
777
A
0.351
0.287
09/23/87
266
U
3575
116
A
1.142
09/23/87
266
W
3575
116
A
1.120
09/24/87
267
H
3625
785
C
0.831
2-94
-------
TABLE 2-24. SUMMARY OF THE 1987 NMOC DATA FOR IONGVIEW, TX (LVTX)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nuifcer
Channel
(ppnC)
(ppnC)
(ppnC)
09/28/87
271
M
3704
406
A
0.318
09/28/87
271
M
3705
678
B
0.411
09/29/87
272
T
3711
796
B
0.288
09/30/87
273
U
3784
186
A
0.477
09/30/87
273
W
3785
12
D
0.422
2-95
-------
150
ST. LOUIS, MO
SLMO - 1987 NMOC PROGRAM
210
JUUAN DATE
Figure 2-22. Plot of NMOC concentration for St. Louis, MO.
-------
TABLE 2-25. SUMMARY Of THE 1987 NMOC DAJA FOR ST. LOUIS, MO (SLMO)
Julian
Sample
Sanpte
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Munber
Channel
(PPnC)
(ppnC)
06/02/87
153
T
1119
154
D
0.611
06/03/87
154
U
1104
98
D
2.733
06/04/87
155
H
1117
105
C
3.448
06/05/87
156
F
1128
4
B
3.651
5.425
06/05/87
156
F
1128
4
A
3.684
5.425
06/08/87
159
M
1145
151
A
2.235
06/08/87
159
M
1146
407
A
3.290
06/09/87
160
T
1166
164
0.483
06/10/87
161
U
1247
63
A
0.286
06/11/87
162
N
1249
671
C
0.578
06/12/87
163
F
1296
78
C
0.381
06/15/87
166
M
1352
149
C
0.751
06/16/87
167
T
1335
160
C
0.656
06/16/87
167
T
1335
160
0.656
06/17/87
168
U
1382
93
A
0.679
06/18/87
169
H
1383
«
C
0.712
06/19/87
170
F
1388
100
c
0.474
06/23/87
174
7
1465
690
c
1.204
06/23/87
174
T
1465
690
A
1.037
06/24/87
175
U
1532
711
0.613
06/25/87
176
H
1551
649
c
1.126
06/26/87
177
F
1548
194
0.378
06/30/87
181
T
1611
74
c
0.597
07/01/87
182
W
1679
105
B
0.315
07/06/87
187
M
1762
660
B
0.654
07/06/87
187
N
1763
61
C
0.699
07/07/87
188
T
17V9
652
A
0.443
0.467
0.424
07/08/87
189
W
1804
126
0
0.583
07/09/87
190
H
1852
708
S
1.140
07/10/87
191
F
1875
193
0
0.443
07/13/87
194
*
1903
72
A
0.354
07/14/87
195
T
1954
715
0.359
07/15/87
196
U
1974
172
A
0.633
07/16/87
197
H
2016
14
B
0.303
07/17/87
198
f
2088
165
0.546
0.596
0.550
07/20/87
201
M
2089
672
C
0.781
07/20/87
201
N
2089
672
C
0.829
07/21/87
202
M
2106
133
B
1.641
07/22/87
203
T
2174
177
C
0.731
07/24/87
205
F
2237
162
C
0.519
07/27/87
208
M
2227
146
A
4.475
4.156
5.142
07/27/87
208
N
2228
90
0
4.328
07/28/87
209
T
2353
674
0
1.106
2-97
-------
TABLE 2-2S. SUMMARY OF THE 1987 NMOC DATA FOR ST. LOUIS, MO (SLMO)
Julian
Sample
Sample
Radian
QAD
ASRL
Oate
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nutter
Nwfcer
Channel
(ppmC)
(ppmC)
(ppmC)
07/29/87
210
V
2341
306
D
0.943
07/30/87
211
H
2326
14
C
1.078
07/31/87
212
F
2322
87
B
0.812
08/03/87
215
M
2411
161
C
0.814
08/03/87
215
H
2412
123
0
0.651
08/04/87
216
T
2439
701
D
0.492
08/05/87
217
y
2465
710
C
0.721
0.712
08/06/87
218
H
2506
657
0
0.605
08/07/87
219
F
2559
405
C
2.394
08/07/87
219
F
2559
405
A
2.191
08/10/87
222
M
2572
189
C
0.679
08/11/87
223
T
2627
780
B
0.390
0.472
08/12/87
224
W
2640
9
C
0.702
08/13/87
225
H
2694
77
A
0.547
08/14/87
226
F
2649
18
C
0.477
08/17/87
229
M
2751
730
C
0.343
08/18/87
230
T
2757
677
A
0.596
08/19/87
231
U
2811
618
0
0.58 V
08/20/87
232
H
2842
166
D
0.998
08/21/87
233
F
2844
163
B
0.272
08/24/87
236
M
2889
692
D
0.232
08/25/87
237
T
2919
102
0
0.293
08/26/87
238
U
2994
20
B
0.323
08/27/87
239
H
3016
783
0
0.368
08/28/87
240
F
3032
711
0
0.353
08/28/87
240
F
3032
711
0
0.388
08/31/87
243
M
3042
635
0
0.484
09/01/87
244
T
3097
114
0
0.849
09/02/87
245
W
3134
173
A
1.096
09/02/87
245
U
3135
500
A
0.914
09/03/87
246
H
3143
658
C
0.542
0.569
09/04/87
247
F
3194
182
B
1.313
09/08/87
251
T
3246
141
B
0.519
09/08/87
251
T
3246
141
B
0.515
09/09/87
252
U
3256
306
C
0.422
09/11/87
254
F
3317
801
D
1.293
09/14/87
257
M
3381
662
D
0.935
0.781
09/15/87
258
T
3377
13
C
0.596
09/15/87
258
T
3377
13
C
0.702
09/16/87
259
U
3495
799
0
0.361
09/16/87
259
V
3496
188
0
0.394
09/18/87
261
F
3474
92
B
0.310
09/21/87
264
M
3535
9
D
0.571
2-98
-------
TABLE 2-25. SUMMARY OF THE 1987 NMOC DATA FOR ST. LOUIS, MO (SLMO)
Julian Sample Sample Radian QAD ASRL
Date Date Ueekday ID Canister Radian NMOC NMOC NMOC
Sampled Sampled Sampled Nuifcer Nunber Channel (ppmC) (ppnC) (ppnC)
09/22/87
265
T
3562
710
C
0.429
09/23/87
266
W
3624
726
D
0.254
09/24/87
267
H
3657
303
B
0.805
09/25/87
268
F
3732
134
B
0.220
09/28/87
271
M
3709
636
A
0.823
09/28/87
271
M
3709
636
D
1.001
09/29/87
272
T
3747
784
B
0.596
09/29/87
272
T
3743
625
A
0.595
09/30/87
273
W
3788
674
A
0.460
09/30/87
273
U
3789
28
B
0.182
2-99
-------
SALT LAKE CITY, UT (NORTH)
S1UT - 1987 NMOC PROGRAM
150
210
JULIAN DATE
Figure 2-23. Plot of NMOC concentration for Salt Lake City, UT (North).
-------
TABLE 2-26. SUMMARY OF THE 1987 NMOC DATA FOR SALT LAKE CITY, UT (S1UT)
Julian
Sample
Sanple
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sanpled
Number
Nurber
Channel
(ppmC)
(ppnC)
(ppmC)
06/01/87
152
M
1003
407
B
0.521
06/02/87
153
T
1042
102
A
1.312
06/03/87
154
U
1036
86
C
1.879
1.765
1.842
06/04/87
155
H
1058
38
A
1.670
06/05/87
156
F
1100
100
A
0.362
06/08/87
159
M
1115
95
D
0.831
06/09/87
160
T
1139
70
A
0.582
06/09/87
160
T
1140
173
B
0.990
06/10/87
161
W
1158
3
B
1.278
06/10/87
161
U
1158
3
0
1.303
06/11/87
162
H
1211
400
0
0.782
06/12/87
163
F
1233
667
D
1.284
06/15/87
166
M
1270
167
A
0.797
06/16/87
167
T
1283
674
0.827
06/16/87
167
T
1283
674
A
0.685
06/17/87
168
U
1321
17
0.592
06/18/87
169
H
1348
50
A
1.256
06/22/87
173
M
1414
86
0^278
06/23/87
174
T
1445
667
A
1.162
06/24/87
175
W
1490
706
C
0.872
06/25/87
176
H
1550
681
A
1.214
06/29/87
180
M
1606
13
A
0.524
06/29/87
180
M
1607
146
0.514
06/30/87
181
T
1629
34
C
0.895
07/01/87
182
W
1624
16
1.175
07/02/87
183
H
1691
675
C
1.665
07/03/87
184
F
1687
19
A
0.617
0.681
0.634
07/06/87
187
N
1743
42
C
0.996
07/07/87
188
T
1777
64
1.259
07/08/87
189
U
1836
49
1.295
07/09/87
190
H
1825
673
A
0.694
07/10/87
191
F
1855
401
C
0.729
07/13/87
194
M
1911
114
0.250
07/14/87
195
T
1920
662
A
1.044
07/15/87
196
U
1957
28
0.816
07/16/87
197
H
2038
158
0.527
07/17/87
198
F
1992
719
C
0.610
0.445
07/20/87
201
N
2121
404
A
0.668
07/21/87
202
T
208S
710
A
0.601
07/22/87
203
U
2157
28
C
1.616
07/24/87
205
F
2201
405
0
0.589
07/27/87
208
M
2279
8
A
0.541
07/28/87
209
T
2263
154
B
0.372
2-101
-------
TABLE 2-26. SUMMARY OF THE 1987 NMOC DATA FOR SALT LAKE CITY, UT (S1UT)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nunber
Channel
(ppmC)
(ppmC)
(pprrC)
07/29/87
210
U
2285
141
B
0.831
07/30/87
211
H
2294
692
D
0.891
0.889
0.786
07/31/87
212
F
2316
188
C
0.708
07/31/87
212
F
2316
188
D
0.630
08/01/87
213
S
2383
701
B
1.532
08/04/87
216
T
2398
654
B
1.279
1.309
08/05/87
217
W
2472
107
A
0.979
08/06/87
218
H
2519
670
A
1.875
08/06/87
218
H
2520
166
A
1.902
08/07/87
219
F
2497
22
B
0.387
08/10/87
222
M
2542
179
C
0.545
0.580
08/11/87
223
T
2617
106
C
1.429
08/12/87
224
U
2588
781
c
1.065
08/13/87
225
H
2695
103
B
0.859
08/17/87
229
M
2749
785
B
0.132
08/18/87
230
T
2753
109
0
1.301
08/19/87
231
U
2813
686
A
2.217
08/19/87
231
V
2814
721
A
2.242
08/20/87
232
H
2802
681
B
0.644
08/21/87
233
F
2872
644
0
1.138
08/24/87
236
M
2876
405
A
0.513
08/25/87
237
T
2931
401
C
0.575
08/26/87
238
U
2960
708
B
0.989
08/27/87
239
H
2986
146
0
1.426
08/28/87
240
F
3055
618
C
0.733
08/31/87
243
M
3089
39
0
1.230
09/01/87
244
T
3118
95
C
1.095
09/02/87
245
W
3124
35
A
1.105
09/02/87
245
U
3125
621
A
1.092
09/03/87
246
H
3149
672
C
0.810
09/04/87
247
F
3185
680
C
0.582
09/07/87
250
M
3221
130
B
0.713
09/08/87
251
T
3211
1
C
1.190
1.273
09/09/87
252
U
3255
630
A
0.742
09/10/87
253
H
3286
62
A
0.715
09/14/87
257
M
3358
774
0
0.801
0.751
09/16/87
259
U
3433
780
D
0.525
09/18/87
261
F
3494
301
B
0.673
09/18/87
261
F
3499
152
A
0.701
09/24/87
267
H
3644
40
B
1.069
09/25/87
268
F
3645
140
B
1.251
09/26/87
269
S
3702
675
B
0.928
09/29/87
272
T
3763
30
C
1.142
2-102
-------
TABLE 2-26. SUMMARY OF THE 1987 NMOC DATA FOR SALT LAKE CITY, UT (S1UT)
Juli an
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Ueekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(PPnC)
(ppmC)
(ppnC)
10/01/87
274
H
3799
664
0
1.435
2-103
-------
SALT LAKE CITY, UT (CENTRAL)
S2UT - 1987 NMOC PROGRAM
150
170
190
210
230
250
270
JUUAN DATE
Figure 2-24. Plot of NMOC concentration for Salt Lake City, UT (Central).
-------
TABLE 2-27. SUMMARY OF THE 1987 NMOC OATA FOR SALT LAKE CITY, UT (S2UT)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Number
Nurtoer
Channel
(ppmC)
(ppmC)
(ppmC)
06/02/87
153
T
1037
404
A
0.956
1.052
1.007
06/03/87
154
W
1033
170
C
0.902
06/03/87
154
U
1033
170
C
0.902
06/05/87
156
F
1090
46
B
0.708
06/08/87
159
M
1085
40
B
1.097
06/09/87
160
T
1151
115
A
0.438
06/10/87
161
U
1178
113
A
0.712
06/10/87
161
U
1179
142
C
0.710
06/11/87
162
H
1207
500
A
0.699
06/12/87
163
F
1235
34
D
0.999
06/15/87
166
M
1263
41
A
0.612
0.724
1.131
06/17/87
168
W
1322
6
B
0.414
06/18/87
169
H
1340
173
C
1.535
1.386
1.544
06/19/87
170
F
1371
33
C
0.638
06/22/87
173
N
1415
34
C
0.455
06/23/87
174
T
1460
672
A
0.821
06/24/87
175
U
1489
708
C
0.512
06/25/87
176
H.
1553
695
B
0.754
06/26/87
177
F
1512
150
B
1.026
06/29/87
180
M
1573
666
0
0.435
0.452
0.379
06/30/87
181
T
1637
401
A
0.350
06/30/87
181
T
1638
191
C
0.338
07/01/87
182
W
1625
703
a
0.920
07/02/87
183
H
1699
684
B
1.122
07/03/87
184
F
1682
701
C
0.663
0.606
0.568
07/06/87
187
M
1739
715
0
0.658
07/07/87
188
T
1778
36
C
0.894
07/08/87
189
W
183S
702
A
1.004
07/09/87
190
H
1824
646
A
0.530
07/10/87
191
F
1862
190
B
0.269
07/13/87
194
M
1917
721
C
0.684
07/14/87
195
T
1916
24
0
o.sa
07/15/87
196
W
1959
712
D
0.847
07/16/87
197
H
2024
90
C
0.775
07/17/87
198
F
1993
51
0
0.174
0.135
07/18/87
199
S
2048
50
C
0.130
07/18/87
199
S
2058
185
C
0.127
07/20/87
201
M
2067
723
C
0.793
07/20/87
201
M
2116
671
c
0.762
07/21/87
202
T
2069
657
A
0.629
07/24/87
205
F
2203
660
D
0.849
07/27/87
208
H
2267
147
D
0.669
07/29/87
210
U
2287
86
C
0.332
2-105
-------
TABLE 2-27. SUMMARY OF THE 1987 NMOC DATA FOR SALT LAKE CITY, UT (S2UTJ
Julian
Sample
Sample
Radian
QAO
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurtoer
Number
Channel
(ppmC)
(ppmC)
(ppmC)
07/30/87
211
H
2293
647
A
0.815
0.730
0.629
07/31/87
212
F
2318
19
0
0.668
08/04/87
216
T
2396
120
D
1.483
1.474
1.563
08/10/87
222
M
2545
50
0
0.662
0.708
08/11/87
223
T
2613
701
A
0.437
08/12/87
224
U
2594
782
0
0.688
08/13/87
225
H
2682
89
B
0.648
08/14/87
226
F
2691
645
C
0.231
08/14/87
226
F
2666
773
C
0.294
08/24/87
236
M
2877
771
c
0.579
08/26/87
238
U
2954
627
c
0.674
09/03/87
246
H
3142
121
A
0.647
09/04/87
247
F
3213
684
C
1.210
09/04/87
247
F
3212
101
A
0.761
09/07/87
250
N
3216
694
C
0.688
09/16/87
259
W
3431
700
C
0.784
09/18/87
261
F
3490
784
A
1.283
09/18/87
261
F
3491
675
1.621
09/21/87
264
N
3529
39
C
1.621
09/23/87
266
W
3650
652
1.607
09/24/87
267
H
3632
34
C
1.622
09/25/87
268
F
3661
774
C
1.089
09/26/87
269
S
3690
800
0.814
09/28/87
271
M
3699
400
C
1.824
09/29/87
272
T
3762
689
c
1.373
09/30/87
273
W
3786
193
1.628
09/30/87
273
W
3787
777
D
1.589
10/01/87
274
H
3803
637
C
1.626
10/01/87
274
H
3804
671
C
1.667
2-106
-------
2-107
-------
EL CAJON, CA
ELCA - 1987 NMOC PROGRAM
Integrated Sample Collection Period
6:00 to
12:00 noon to 3:00 p.m.
9:00 a.m.
¦
—4
~
I i 1 I I I 1 I 1 1 1 I
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-25. Plot of NMOC concentration for El Cajon, CA.
-------
TABLE 2-28. SUMMARY OF THE 1987 NMOC DATA FOR EL CAJON, CA (ELCA)
Julian
Sample
Sample
Radian
SAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nirber
Nutter
Channel
(ppnC)
(ppmC)
(pprC)
06/01/87
152
M
1027
188
C
0.394
06/02/87
153
T
1026
1
C
0.937
06/03/87
154
U
1052
306
A
0.517
06/03/87
154
U
1052
306
C
0.405
06/04/87
155
H
1088
12
C
0.654
06/05/87
156
F
1107
103
C
0.306
06/06/87
157
S
1143
47
C
0.211
06/09/87
160
T
1173
665
A
0.156
0.306
0.692
06/10/87
161
U
1197
169
C
0.247
06/11/87
162
H
1239
31
C
0.247
06/11/87
162
H
1248
15
C
0.260
06/12/87
163
F
1244
175
C
0.181
06/15/87
166
M
1309
301
A '
0.150
06/16/87
167
T
1362
150
0.162
06/17/87
168
U
1384
3
C
0.400
0.420
0.264
06/19/87
170
F
1435
133
A
0.153
0.281
0.176
06/22/87
173
M
1480
1*
0.205
06/23/87
174
T
1493
80
0.174
0.213
0.149
06/24/87
175
U
1555
704
C
0.319
06/25/87
176
H
1523
662
0.282
06/26/87
177
F
1574
142
C
0.236
06/29/87
180
M
1617
724
A
0.266
07/07/87
188
T
1803
79
0.187
07/08/87
189
U
1846
707
A
0.246
07/09/87
190
H
1837
8
A
0.282
07/09/87
190
H
1837
8
0.555
07/10/87
191
F
1906
644
C
1.567
1.814
1.944
07/13/87
194
M
1912
694
0.46S
07/14/87
195
T
1972
658
0
0.456
07/15/87
196
U
2003
726
C
0.535
07/16/87
197
H
2028
724
A
0.184
07/17/87
198
F
2065
307
0.107
0.073
07/20/87
201
N
2080
659
0.207
07/21/87
202
T
2148
71
C
0.121
07/21/87
202
T
2158
98
0.124
07/22/87
203
U
2167
701
A
0.144
07/23/87
204
H
2213
655
0
0.219
07/24/87
205
F
2235
697
C
0.243
07/27/87
208
M
2265
687
c
0.178
0.141
07/28/87
209
T
2309
723
c
0.269
07/29/87
210
U
2361
703
B
0.374
07/30/87
211
H
2380
678
8
0.382
2-109
-------
TABLE 2-28. SUMMARY OF THE 1987 NMOC DATA FOR EL CAJOH, CA (ELCA)
Julian
Sanple
Sample
Radian
QAO
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Ni/nber
Nunber
Channel
(pprC)
CppnC)
(PPTC)
07/31/87
212
F
2384
194
C
0.394
08/03/87
215
M
2394
679
B
0.299
08/03/87
215
M
2394
679
A
0.351
08/04/87
216
T
2464
690
C
0.245
08/05/87
217
U
2540
119
D
0.305
08/06/87
218
H
2478
689
0
0.312
08/06/87
218
H
2478
689
0
0.338
08/07/87
219
F
2553
10
A
0.269
08/10/87
222
M
2609
709
C
0.333
08/10/87
222
M
2615
187
0.195
08/12/87
224
U
2652
70
C
0.151
08/13/87
225
H
2690
627
A
0.197
08/17/87
229
M
2764
679
0.787
08/18/87
230
T
2800
775
C
0.558
08/19/87
231
W
2870
24
C
0.319
08/20/87
232
H
2848
784
C
0.472
08/21/87
233
F
2899
301
A
0.230
08/24/87
236
M
2946
161
0.146
08/25/87
237
T
2952
407
A
0.173
08/25/87
237
T
2952
407
0.189
08/26/87
238
U
3009
809
C
0.365
08/27/87
239
H
3003
306
0.257
08/28/87
240
F
3047
698
C
0.273
08/31/87
243
M
3093
778
0.307
09/01/87
244
T
3130
653
0.576
09/02/87
245
U
3184
709
A
0.366
09/03/87
246
H
3182
187
0.136
09/04/87
247
F
3197
33
C
0.249
09/04/87
247
F
3196
32
A
0.256
09/08/87
251
T
3327
111
C
0.393
09/09/87
252
U
3297
676
0.173
09/10/87
253
H
3316
53
C
0.282
09/11/87
254
F
3349
679
A
0.267
09/11/87
254
F
3349
679
A
0.266
09/14/87
257
M
3383
798
A
0.242
09/15/87
258
T
3418
89
C
0.320
09/16/87
259
U
3473
712
C
0.336
09/17/87
260
H
3458
100
A
0.313
09/18/87
261
F
3522
801
C
0.354
09/21/87
264
M
3564
781
A
0.400
09/21/87
264
M
3565
62
C
0.365
09/22/87
265
T
3581
659
A
0.309
09/23/87
266
W
3633
653
C
0.192
2-110
-------
TABLE 2*28. SUMMARY OF THE 1907 NMOC OATA FOR EL CAJOH, CA (ELCA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sanpled
Sampled
Sampled
Nuntoer
Nunber
Channel
(ppnC)
(ppnC)
(ppnC)
09/24/87
267
H
3658
662
A
0.291
09/25/87
268
F
3685
702
B
0.331
09/28/87
271
M
3726
708
C
0.532
0.361
09/29/87
272
T
3782
70
A
0.378
09/29/87
272
T
3783
779
D
0.507
09/30/87
273
U
3796
143
C
0.378
09/30/87
273
U
3797
79
c
0.367
'Sampling period through Julian Oate 163 occurred from 6:00 AM to 9:00 AM.
Sampling period beginning Julian Oate 166 occurred from 12:00 Noon to 3:00 PM.
2-111
-------
2-112
-------
o
E
a
a
o
o
2
z
10
8
7
6
FRESNO, CA
FRCA - 1987 NMOC PROGRAM
150
JULIAN DATE
Figure 2-26. Plo! of NMOC concentration for Fresno, CA (Expanded).
-------
o
E
a
a
o
o
2
z
150
FRESNO, CA
FRCA - 1987 NMOC PROGRAM
190
210
JULIAN DATE
230
250
270
Figure 2-27. Plot of NMOC concentration for Fresno, CA.
-------
TABLE 2-29. SUMMARY OF THE 1987 NMOC OATA FOR FRESMO, CA (FRCA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurtoer
Nunber
Channel
(PpmC)
(ppmC)
(ppmC)
06/04/87
155
H
1063
657
C
0.898
06/05/87
156
F
1096
679
A
0.609
06/08/87
159
M
1108
674
D
3.547
3.036
3.251
06/09/87
160
T
1135
647
B
2.309
2.100
2.122
06/10/87
161
U
1171
404
D
2.106
06/11/87
162
H
1246
20
C
1.635
06/12/87
163
F
1232
157
D
0.775
06/12/87
163
F
1237
36
C
0.877
06/15/87
166
M
1300
95
0
0.475
06/16/87
167
T
1308
661
0
0.529
06/17/87
168
W
1368
4
A
0.462
06/18/87
169
H
1393
113
0
0.390
06/19/87
170
F
1413
169
C
0.664
06/22/87
173
N
1444
188
B
0.445
06/23/87
174
T
1488
696
D
1.376
06/24/87
175
U
1496
153
C
1.177
06/25/87
176
. H
1547
707
c
1.632
1.380
06/26/87
177
F
1520
4
c
0.724
0.750
0.545
06/30/87
181
T
1631
166
A
0.495
07/01/87
182
U
1674
98
0
0.673
07/02/87
183
H
1700
137
B
0.355
07/03/87
184
F
1692
20
C
0.450
07/06/87
187
N
1733
35
a
0.442
07/06/87
187
M
1734
658
c
0.561
07/07/87
188
T
1772
149
D
1.076
0.930
0.834
07/09/87
190
H
1877
192
B
0.840
07/10/87
191
F
1890
16
C
0.572
07/13/87
194
M
1915
15
c
2.289
07/14/87
195
T
1936
111
A
0.570
0.627
0.411
07/15/87
196
U
1979
677
B
0.727
07/16/87
197
H
1997
139
0
0.892
07/17/87
198
F
2018
113
C
0.257
07/20/87
201
M
2081
151
0
0.507
07/21/87
202
T
2087
13
A
0.326
07/21/87
202
T
2087
13
0
0.366
07/22/87
203
U
2142
692
0
0.257
07/22/87
203
W
2149
721
0
0.269
07/23/87
204
H
2164
658
c
0.773
07/24/87
205
F
2166
74
A
1.274
1.035
07/27/87
208
M
2236
119
C
0.688
07/28/87
209
T
2268
689
B
0.571
07/29/87
210
W
2298
649
D
0.446
07/30/87
211
H
2334
725
B
0.271
2-115
-------
TABLE 2-29. SUMMARY OF THE 1987 NMOC DATA FOR FRESNO, CA (FRCA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nimber
Channel
(ppnC)
(ppmC)
07/31/87
212
F
2317
404
B
1.225
1.292
1.372
08/03/87
215
M
2416
180
0
0.586
08/04/87
216
T
2455
706
C
0.921
08/05/87
217
U
2466
645
B
0.379
08/06/87
218
H
2537
100
B
1.870
08/07/87
219
F
2531
716
D
1.254
08/10/87
222
M
2577
173
B
1.165
08/11/87
223
T
2597
12
B
0.354
08/11/87
223
T
2598
686
B
0.363
08/12/87
224
W
2668
787
0
0.706
08/13/87
225
H
2696
783
B
0.822
08/14/87
226
F
2671
71
A
0.436
08/17/87
229
M
2741
795
C
1.317
08/18/87
230
T
2768
717
D
0.830
08/19/87
231
W
2826
689
C
0.467
08/20/87
232
H
2829
678
C
0.318
08/21/87
233
F
2867
137
B
0.407
08/24/87
236
M
2875
718
B
0.595
0.580
08/25/87
237
T
2917
70
C
1.242
08/26/87
238
U
2956
91
B
4.420
08/27/87
239
H
3001
181
B
9.984
08/28/87
240
F
3033
717
A
9.350
10.118
08/31/87
243
M
3054
687
A
8.917
8.893
09/01/87
244
T
3074
696
C
8.520
09/01/87
244
T
3074
696
B
8.050
09/02/87
245
W
3108
78
C
2.839
2.517
2.946
09/03/87
246
H
3146
718
A
2.069
2.073
09/03/87
246
H
3147
765
0
2.355
2.018
09/07/87
250
M
3231
70
D
0.410
0.472
09/08/87
251
T
3243
60
A
0.368
09/08/87
251
T
3238
61
0
0.582
09/09/87
252
W
3272
666
C
1.850
09/10/87
253
H
3295
634
A
0.925
0.684
09/11/87
254
F
3335
41
D
0.693
09/14/87
257
M
3356
84
0
0.425
09/15/87
258
T
3398
404
D
1.207
09/16/87
259
W
3478
189
0
0.836
09/18/87
261
F
3454
627
C
1.316
09/21/87
264
M
3520
91.
A
2.373
2.075
09/22/87
265
T
3566
718
A
2.052
09/22/87
265
T
3567
12
0
2.237
09/23/87
266
W
3631
47
B
1.301
09/24/87
267
H
3655
501
A
0.632
2-116
-------
TABLE 2-29. SUMMARY OF THE 1987 NMOC DATA FOR FRESNO, CA (FRCA)
Julian
Sample
Sample
Radian
QAO
ASRL
Date
Dace
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nunber
Channel
(ppmC)
-------
LIVERMORE, CA
UCA - 1987 NMOC PROGRAM
Integrated Sampling Collection Period
12:00 noon to 3:00 p.m.
6:00 to
9:00 am
150
JULIAN DATE
Figure 2-28. Plot of NMOC concentration for Livermore, CA.
-------
TABLE 2-30. SUMMARY OF THE 1987 NMOC DATA FOR LIVERMORE, CA (LICA)
Julian
Sample
Sanple
Radian
QA0
ASRL
Date
Oate
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuifeer
Niraber
Channel
(ppmC)
(ppmC)
(ppnC)
06/01/87
152
M
1010
307
0
0.893
06/02/87
153
T
1034
142
B
1.330
1.029
0.940
06/03/87
154
U
1041
192
B
0.443
06/04/87
155
H
1099
55
B
0.404
06/05/87
156
F
1097
84
C
0.326
06/08/87
159
M
1132
177
0
0.140
06/08/87
159
M
1132
177
B
0.143
06/09/87
160
T
1167
648
0
0.320
0.388
0.340
06/10/87
161
U
1196
99
B
0.384
06/10/87
161
W
1196
99
0
0.387
06/11/87
162
H
1250
116
B
0.560
06/12/87
163
F
1230
134
A
0.669
06/15/87
166
M
1281
673
A
0.590
06/15/87
166
M
1281
673
C
0.721
06/15/87
166
M
1282
655
8
0.547
06/16/87
167
T
1314
123
0
0.525
06/17/87
168
U
1337
657
A
0.390
06/18/87
169
H
1386
15
A
1.235
06/19/87
170
F
1419
664
A
1.379
06/22/87
173
M
1461
651
B
0.347
06/23/87
174
T
1470
691
0
0.734
0.715
0.624
06/24/87
175
U
1505
698
B
1.181
06/25/87
176
H
1541
70
C
1.133
06/26/87
177
F
1582
680
A
0.709
06/29/87
180
M
1589
182
C
0.929
06/30/87
181
T
1639
109
c
1.542
07/01/87
182
U
1661
185
A
0.975
07/02/87
183
H
1703
3
0
0.673
07/06/87
187
N
1736
68
8
0.272
0.354
0.235
07/06/87
187
M
1737
662
C
0.333
07/07/87
188
T
1776
500
A
0.907
07/08/87
189
U
1797
158
B
0.919
07/09/87
190
H
1878
301
D
1.346
07/10/87
191
F
1868
54
0
0.575
07/13/87
194
M
1922
706
B
0.634
07/14/87
195
T
1955
11
A
0.890
07/15/87
196
U
1968
178
C
1.464
1.348
07/16/87
197
H
2045
407
0
0.774
0.777
0.819
07/17/87
198
F
2050
147
B
0.284
07/20/87
201
M
2072
717
A
0.412
07/21/87
202
T
2111
82
0
1.415
07/22/87
203
U
2138
103
B
0.599
2-119
-------
TABLE 2-30. SUMMARY OF THE 1987 NMOC DATA FOR LIVERMORE, CA (LICA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuifcer
Nuitoer
Channel
(ppmC)
(ppmC)
(ppmC)
07/23/87
204
H
2165
35
0
2.280
2.031
07/24/87
205
F
2180
706
0
0.881
07/27/87
208
M
2244
36
B
0.474
07/28/87
209
T
2260
172
C
0.856
07/28/87
209
T
2260
172
A
0.745
07/29/87
210
W
2314
652
C
3.462
07/30/87
211
H
2390
71
C
1.100
07/30/87
211
H
2391
170
0
0.942
07/31/87
212
F
2333
175
8-
0.432
08/03/87
215
M
2445
718
C
0.897
1.149
08/04/87
216
T
2436
700
B
0.782
08/05/87
217
W
2453
18
D
0.691
08/06/87
218
H
2499
129
C
1.186
08/07/87
219
F
2514
730
0
0.698
08/10/87
222
M
2563
7
F
1.767
08/11/87
223
T
2616
16
C
1.784
08/12/87
224
W
2626
306
D .
0.781
0.670
08/13/87
225
H
2659
671
C
0.860
08/14/87
226
f
2705
120
B
0.826
0.781
08/17/87
229
M
2735
789
A
0.726
08/18/87
230
T
2767
30
C
0.595
08/19/87
231
W
2858
710
A
0.395
08/19/87
231
U
2859
34
A
0.409
08/20/87
232
H
2828
404
C
1.040
08/21/87
233
f
2850
684
D
1.392
08/24/87
236
N
2879
501
0
0.713
08/25/87
237
T
2923
647
0
0.979
08/26/87
238
U
2967
74
C
1.392
08/27/87
239
H
2990
108
C
0.829
08/28/87
240
F
3036
661
C
0.636
08/31/87
243
N
3038
80
A
1.153
08/31/87
243
M
3038
80
A
1.306
09/01/87
244
T
3053
669
C
0.972
0.897
09/02/87
245
U
3170
722
0
0.969
09/03/87
246
H
3189
797
0
1.192
09/04/87
247
F
3188
122
B
0.539
09/08/87
251
T
3225
700
0
0.708
09/09/87
252
U
3254
98
A
0.490
0.569
09/10/87
253
H
3291
T91
C
0.484
09/11/87
254
F
3357
21
B
0.498
09/11/87
254
F
3358
173
0
0.518
09/14/87
257
M
3369
190
C
0.834
09/15/87
258
T
3402
407
A
1.094
2-120
-------
TABLE 2-30. SUMMARY OF THE 1987 NMOC DATA FOR LIVERNORE, CA (LICA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nurber
Channel
(ppmC)
(ppnC)
(ppmC)
09/15/87
258
T
3402
407
C
1.323
09/16/87
259
U
3405
36
C
0.820
09/17/87
260
H
3488
131
D
1.143
09/18/87
261
F
3503
77
A
0.912
09/21/87
264
M
3521
786
0
1.166
09/22/87
265
T
3555
719
B
0.869
09/23/87
266
U
3601
87
B
0.779
09/23/87
266
U
3602
685
B
0.926
09/24/87
267
H
3647
724
D
0.795
09/25/87
268
F
3675
37
0
0.933
0.559
09/28/87
271
M
3693
782
A
0.708
09/29/87
272
T
3723
699
D
0.773
0.545
09/30/87
273
U
3755
641
C
0.776
'Sampling through Julian Date 163 occurred from 6:00 AM to 9:00 AM.
Sampling beginning Julian Date 166 occurred from 12:00 Noon to 3:00 PH.
2-121
-------
SAN DIEGO, CA
SDCA - 1987 NMOC PROGRAM
150
170
190
210
230
250
270
JULIAN DATE
Figure 2-29. Plot of NMOC concentration for San Diego, CA.
-------
TABLE 2-31. SUMMARY OF THE 1987 NMOC DATA FOR SAN DIEGO, CA (SOCA)
Julian
Sample
Sample
Radian
QA0
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurtoer
Nimber
Channel
(ppnC)
(ppmC)
(ppmC)
06/01/87
152
M
1025
109
D
0.550
06/02/87
153
T
1020
135
A
0.378
06/05/87
156
F
1076
194
A
0.536
0.525
0.599
06/08/87
159
M
1141
13
D
0.327
06/09/87
160
T
1182
653
D
0.335
06/10/87
161
U
1198
657
D
0.200
06/11/87
162
H
1218
166
A
0.240
06/11/87
162
H
1218
166
A
0.224
06/12/37
163
F
1245
138
C
0.288
06/15/87
166
N
1310
139
S
0.323
06/16/87
167
T
1328
403
A
0.313
06/16/87
167
T
1329
145
C
0.325
06/17/87
168
U
1363
680
0
0.310
06/18/87
169
H
1373
105
B
0.273
06/18/87
169
H
1373
105
9
0.273
06/20/87
171
S
1434
140
C
0.223
06/20/87
171
S
1434
140
0
0.208
06/23/87
174
T
1481
122
c
0.200
06/24/87
175
U
1491
138
B
0.206
0.185
0.182
06/25/87
176
H
1562
307
B
0.273
06/26/87
177
F
1522
290
c
0.254
06/29/87
180
M
1576
403
0
0.217
06/30/87
181
T
1616
163
A
0.293
07/02/87
183
H
1694
306
A
0.227
07/06/87
187
M
1760
22
0
0.260
07/07/87
188
T
1757
712
A
0.189
07/08/87
189
U
1822
71
c
0.209
07/08/87
189
W
1823
689
c
0.265
07/09/87
190
H
1845
120
B
0.176
07/10/87
191
F
1841
671
0
0.200
0.235
0.160
07/13/87
194
N
1905
166
B
0.407
07/14/87
195
T
1910
105
0
1.480
07/15/87
196
U
1978
713
8
0.231
07/16/87
197
H
1998
309
c
0.129
07/17/87
198
f
2035
704
C
0.286
07/20/87
201
M
2073
141
B
0.256
07/21/87
202
T
2082
93
0
0.210
07/22/87
203
U
2159
661
B
0.327
07/23/87
204
H
2168
43
B
0.345
07/28/87
209
T
2266
51.
0
0.281
07/29/87
210
W
2288
664
A
0.386
07/29/87
210
U
2288
664
B
0.395
07/30/87
211
H
2360
4
B
0.359
2-123
-------
TABLE 2-31. SUMMARY OF THE 1987 NMOC DATA FOR SAN OIECO, CA (SDCA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sanpled
Sampled
Sampled
Nifitoer
Nimber
Channel
(ppnC)
(ppmC)
(ppmC)
07/31/87
212
F
2356
42
C
0.823
07/31/87
212
F
2357
179
C
0.899
08/03/87
215
M
2386
47
D
0.944
08/04/87
216
T
2406
53
A
0.302
08/05/87
217
V
2459
48
C
0.315
08/06/87
218
H
2500
11
0
0.196
08/07/87
219
F
2477
651
A
0.225
08/07/87
219
F
2477
651
A
0.259
08/10/87
222
M
2547
48
C
0.301
08/10/87
222
M
2547
48
B
0.294
08/12/87
224
U
2622
149
A
0.288
08/12/87
224
U
2622
149
0
0.271
08/13/87
225
H
2681
116
B
0.150
08/14/87
226
F
2675
160
0
0.254
08/17/87
229
M
2712
84
0
0.223
08/17/87
229
M
2712
8
c
0.242
08/18/87
230
T
2765
651
c
0.498
08/19/87
231
u
2804
6
c
0.430
08/20/87
232
H
2856
767
B
0.949
08/20/87
232
H
2857
716
B
. 0.852
08/21/87
233
F
2831
126
A
0.646
08/24/87
236
M
2893
171
A
0.154
08/25/87
237
T
2944
75
c
0.141
08/26/87
238
U
2969
194
a
0.840
08/27/87
239
H
3013
715
0
0.347
08/28/87
240
F
3019
21
A
0.492
08/31/87
243
M
3058
714
A
0.432
09/01/87
244
T
3075
44
C
0.844
09/02/87
245
U
3107
46
0
1.728
09/03/87
246
H
3159
131
c
0.224
09/04/87
247
F
3195
197
B
0.404
09/09/87
252
U
3292
14
0
1.130
09/10/87
253
H
3296
30
A
0.315
09/11/87
254
F
3325
160
B
0.118
09/11/87
254
f
3326
175
0
0.127
09/14/87
257
M
3352
730
A
0.725
09/15/87
258
T
3387
10
A
0.995
09/16/87
259
U
3419
48
B
0.213
09/17/87
260
H
3469
145
c
0.182
09/18/87
261
F
3459
70
0
0.561
09/21/87
264
T
3513
44
B
0.208
09/22/87
265
T
3550
181
0
0.779
09/23/87
266
W
3589
43
A
0.558
2-124
-------
TABLE 2-31. SUMMARY OF THE 1987 NHOC DATA FOR SAN DIEGO, CA (SDCA)
Jut ian
Sample
Sample
Radian
0A0
ASRL
Date
Date
Weekday
ID
Canister
Radian
NHOC
NHOC
NHOC
Sampled
Sampled
Sampled
Nurfcer
Nuifeer
Channel
(ppnC)
CppmC)
(ppmC)
09/24/87
267
H
3664
772
B
0.348
09/24/87
267
H
3665
680
C
0.276
09/25/87
268
F
3653
109
C
0.736
09/29/87
272
T
3731
624
8
1.096
0.956
09/30/87
273
U
3774
644
D
0.498
09/30/87
273
W
3775
6
a
0.483
2-125
-------
SAN FRANCISCO, CA
SFCA - 1987 NMOC PROGRAM
1
I I t
VjU
¦ ¦ 1 1 1 1 1 1 1 1 1 1
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-30. Plot of NMOC concentration for San Francisco, CA.
-------
TABLE 2-32. SUMMARY OF THE 1987 NMOC DATA FOR SAN FRANCISCO, CA (SFCA)
Julian
Sample
Sample
Radian
0A0
ASRl
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sanpled
Sampled
Nuitoer
Nunber
Channel
(ppnC)
(ppmC)
(ppnC)
06/01/87
152
M
1022
148
A
0.565
06/02/87
153
T
1035
99
D
1.370
1.438
1.550
06/03/87
154
W
1071
87
D
0.450
06/04/87
155
H
1094
64
C
0.151
06/05/87
156
F
1127
308
M
0.444
06/08/87
159
M
1129
403
0
0.269
06/08/87
159
M
1129
403
B
0.231
06/09/87
160
T
1160
60
A
0.105
0.129
06/10/87
161
U
1209
165
C
0.303
06/11/87
162
H
1229
48
C
0.207
0.210
0.173
06/12/87
163
F
1216
308
0
0.319
0.299
0.345
06/15/87
166
M
1289
90
D
0.279
0.328
06/16/87
167
T
1305
405
0
0.168
0.188
06/17/87
168
U
1341
165
A
0.226
06/17/87
168
u
1342
49
0
0.235
0.265
0.195
06/18/87
169
H
1397
141
C
0.259
06/19/87
170
F
137V
158
D
0.175
0.236
0.165
06/22/87
173
M
1436
148
C
0.656
0.565
0.574
06/23/87
174
T
1439
111
A
0.206
06/24/87
175
U
1502
697
D
0.539
06/25/87
176
H
1517
68
C
0.657
06/26/87
177
F
1577
154
0
0.209
06/29/87
180
M
1600
156
C
0.196
06/30/87
181
T
1633
82
D
0.248
07/01/87
182
U
1667
157
A
0.222
07/02/87
183
H
1690
73
C
0.236
07/03/87
184
F
1765
31
C
0.139
07/06/87
187
M
1742
729
0
0.279
0.231
07/07/87
188
T
1775
75
C
0.382
07/08/87
189
V
1819
709
A
1.825
07/09/87
190
H
1850
676
C
0.282
07/09/87
190
F
1851
9
0
0.331
07/10/87
191
F
1892
150
A
0.151
07/13/87
194
M
1927
645
B
0.135
07/14/87
195
T
1933
691
D
0.205
07/14/87
195
T
1933
691
C
0.208
07/15/87
196
U
1945
68
0
0.132
0.191
0.136
07/16/87
197
H
2022
179
B
0.144
07/17/87
198
F
2008
119
A
0.195
07/20/87
201
M
2075
190
A
0.342
07/21/87
202
T
2096
106
C
0.276
07/22/87
203
U
2129
699
0
0.392
07/22/87
203
U
2129
699
A
0.365
2-127
-------
TABLE 2-32. SUMMARY OF THE 1987 NMOC DATA FOR SAM FRANCISCO, CA (SFCA)
Julian
Sample
Sample
Radian
0AD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nimber
Channel
(PPmC)
(ppmC)
(ppmC)
07/23/87
204
H
2182
92
A
0.167
0.125
0.125
07/24/87
205
F
2183
115
D
0.156
07/27/87
208
M
2230
49
A
0.234
07/27/87
208
M
2231
183
D
0.223
07/28/87
209
T
2273
717
B
0.323
07/30/87
211
H
2346
661
0
0.324
07/31/87
212
F
2388
105
A
0.794
08/03/87
215
M
2397
60
C
0.286
0.328
0.261
08/04/87
216
T
2441
410
C
0.180
08/05/87
217
U
2457
162
D
0.177
08/05/87
217
W
2457
162
C
0.167
08/06/87
218
H
2523
192
A
0.531
08/07/87
219
F
2550
93
C
0.166
08/10/87
222
M
2562
647
B
0.195
0.215
08/11/87
223
T
2603
407
0
0.276
08/12/87
224
U
2646
620
A
0.152
0.273
08/13/87
225
H
2653
788
D
0.311
08/14/87
226
F
2704
31
A
0.207
0.246
08/17/87
229
M
2742
762
A
0.240
08/18/87
230
T
2781
687
D
0.233
08/19/87
231
U
2787
636
B
0.154
08/20/87
232
H
2860
170
D
0.331
08/21/87
233
F
2861
32
A
0.252
08/21/87
233
F
2862
158
C
0.243
08/24/87
236
N
2894
98
A
0.108
08/25/87
237
T
2924
68
B
0.222
08/26/87
238
U
2970
638
C
1.172
08/27/87
239
H
2991
808
0
0.667
08/28/87
240
F
3037
633
A
0.208
08/31/87
243
N
3063
100
B
0.144
09/01/87
244
T
3080
301
0
0.199
09/02/87
245
U
3106
113
0
0.443
09/03/87
246
H
3160
407
0
0.238
09/04/87
247
F
3180
713
A
0.091
09/08/87
251
T
3235
136
D
0.882
09/09/87
252
W
3252
86
B
0.174
09/09/87
252
W
3251
788
B
0.160
0.162
09/10/87
253
H
3309
500
B
0.189
09/11/87
254
f
3314
410
C
0.266
09/11/87
254
F
3314
410
A
0.265
09/14/87
257
N
3361
52
C
0.219
09/15/87
258
T
3404
694
B
0.372
0.333
09/16/87
259
U
3414
121
C
1.191
2-128
-------
TABLE 2-32. SUMMARY OF THE 1987 NMOC DATA FOR SAN FRANCISCO, CA (SFCA)
Juli an
Sample
Sanple
Radian
QAD
ASRL
Date
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Norber
Nurfcer
Channel
(ppmC)
(ppmC)
(ppmC)
09/17/87
260
H
3448
68
D
0.403
09/18/87
261
F
3460
646
C
0.190
09/21/87
264
M
3554
682
8
0.221
09/22/87
265
T
3546
3
B
1.069
09/23/87
266
W
3576
120
C
0.365
09/23/87
266
U
3576
120
A
0.202
09/24/87
267
H
3660
775
0
0.241
09/25/87
268
F
3672
778
C
0.242
09/25/87
268
F
3673
173
D
0.245
09/28/87
271
M
3695
64
C
0.726
09/29/87
272
T
3714
790
B
0.837
09/30/87
273
W
3778
764
C
0.339
09/30/87
273
U
3779
82
B .
0.294
2-129
-------
2-130
-------
VISALIA, CA
V1CA - 1987 NMOC PROGRAM
10
8
7
ro
~—»
u>
O
E
a
a.
V-/
o
o
2
z
5
4
3
t i 1 1 1 1 1 1 r
L
150
170
190 210
JULIAN DATE
230
250
T 1—
270
Figure 2-31. Plot of NMOC concentration for Visalia, CA (Expanded).
-------
VISALIA, CA
V1CA - 1987 NMOC PROGRAM
I
L
V
150 170 190 210 230 250 270
JULIAN DATE
Figure 2-32. Plot of NMOC concentration for Visalia, CA.
-------
TABLE 2-33. SUMMARY OF THE 1987 NMOC DATA FOR VISALIA, CA (VICA)
Julian
Sample
Sample
Radian
OAD
ASRL
Date
Date
Ueekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nimber
Number
Channel
(PPnC)
(ppnC)
(ppnO
06/04/87
155
H
1079
652
C
0.660
06/04/87
155
H
1080
671
D
0.746
06/05/87
156
F
1102
667
D
0.412
06/08/87
159
M
1137
664
C
0.885
06/09/87
160
T
1188
131
D
0.623
06/10/87
161
U
1204
82
A
0.744
06/11/87
162
H
1214
122
8
0.403
0.255
0.430
06/12/87
163
F
1231
74
B
0.680
06/16/87
167
T
1315
171
C
0.382
06/17/87
168
U
1361
24
A
0.26*1
06/18/87
169
H
1423
675
B
0.361
06/18/87
169
H
1424
96
B
0.200
06/19/87
170
F
1405
401
0
0.400
06/22/87
173
M
1454
190
D
0.332
06/23/87
174
T
1473
73
B
0.380
06/24/87
175
U
1497
62
0
0.410
06/25/87
176
H
1546
646
c
0.726
0.578
0.534
06/26/87
177
F
1568
123
B
0.550
0.330
06/29/87
180
M
1590
654
B
0.340
06/30/87
181
T
1676
72
B
0.332
07/01/87
182
U
1675
699
0
0.196
07/02/87
183
H
1707
106
C
0.438
07/03/87
184
F
1705
405
B
0.280
07/06/87
187
M
1738
407
0
0.405
07/07/87
188
T
1773
119
B
0.472
0.535
0.573
07/08/87
189
U
1807
180
0
0.200
07/09/87
190
H
1880
185
A
0.363
07/13/87
194
M
1926
700
B
0.381
07/14/87
195
T
1934
302
A
0.656
0.649
0.506
07/15/87
196
W
1966
92
B
0.520
07/15/87
196
U
1966
92
D
0.551
07/16/87
197
H
2011
17
B
0.606
07/17/87
198
F
2021
109
C
5.309
4.954
07/21/87
202
T
2112
118
D
0.205
07/22/87
203
U
2127
693
A
0.213
07/22/87
203
U
2127
693
D
0.212
07/23/87
204
H
2161
83
D
0.340
07/23/87
204
H
2161
83
B
0.403
07/24/87
205
F
2169
406
B
0.343
0.278
07/27/87
208
N
2229
676
B
0.362
0.281
07/28/87
209
T
2272
670
C
0.484
07/29/87
210
U
2295
61
B
0.170
07/29/87
210
U
2296
197
C
0.316
2-133
-------
TA8LE 2-33. SUMMARY OF THE 1987 NMOC OATA FOR VISALIA, CA (VICA)
Julian
Sauple
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Muitoer
Channel
(ppmC)
(ppnC)
(ppmC)
07/30/87
211
H
2358
133
A
0.150
07/31/87
212
F
2385
713
D
0.492
08/03/87
215
M
2407
658
C
0.500
08/04/87
216
T
2448
54
A
0.381
08/05/87
217
U
2468
62
A
2.446
08/06/87
218
H
2505
112
C
0.916
08/07/87
219
F
2541
307
0
0.379
08/10/87
222
M
2568
42
0
0.311
08/11/87
223
T
2593
170
• C
0.267
08/12/87
224
W
2629
784
B
0.311
08/13/87
225
H
2688
49
A
0.293
08/14/87
226
F
2679
64
0
0.182
08/17/87
229
M
2710
793
8
0.735
08/17/87
229
M
2710
793
C
0.830
08/18/87
230
T
2779
197
0
0.313
08/18/87
230
T
2780
155
D
0.444
08/19/87
231
W
2798
56
B
0.212
08/21/87
233
F
2851
668
0
0.418
08/24/87
236
M
2881
189
B
0.378
08/25/87
237
T
2966
172
0
0.341
08/26/87
238
W
2959
643
A
0.526
08/27/87
239
W
2989
77
0
0.582
08/28/87
240
F
3035
726
B
0.561
08/31/87
243
M
3086
183
C
0.566
09/01/87
244
T
3117
4
0
0.424
09/03/87
246
H
3168
185
0
0.917
09/04/87
247
F
3192
800
B
0.597
09/08/87
251
T
3219
761
0
0.769
09/08/87
251
T
3219
761
B
0.727
09/09/87
252
U
3247
403
B
0.659
09/09/87
252
W
3248
149
8
0.623
09/10/87
253
H
3275
79
C
0.313
09/11/87
254
F
3334
783
B
0.518
09/14/87
257
M
3395
620
C
0.352
09/15/87
258
T
3388
165
A
0.562
09/16/87
259
U
3479
761
C
0.698
09/17/87
260
H
3457
793
C
0.220
09/18/87
261
F
3475
191
C
0.514
09/21/87
264
M
3558
635
C
1.782
09/24/87
267
H
3618
632
D
0.488
09/25/87
268
F
3640
108
A
0.249
09/28/87
271
M
3734
301
0
0.961
09/29/87
272
T
3745
618
A
0.900
2-134
-------
TABLE 2-33. SUMMARY OF THE 1987 NMOC DATA FOR VISAL1A, CA (VICA)
Julian
Sample
Sarcple
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nuiter
Nurber
Channel
(pprnC)
(ppmC)
(ppmC)
09/29/87
272
T
3744
302
A
0.906
09/30/87
273
U
3809
728
C
0.902
10/01/87
274
H
3794
7
0
1.090
2-135
-------
PORTLAND, OR
P10R - 1987 NMOC PROGRAM
150
170
190
250
270
230
210
JULIAN DATE
Figure 2-33. Plot of NMOC concentration for Portland, OR.
-------
TABLE 2-34. SUMMARY OF THE 1987 NMOC DATA FOR PORTLAND, OR (P10R)
Julian
Sample
Ssnple
Radi an
QAD
ASRL
Oate
Oate
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sanpled
Nuitoer
Xoitoer
Channel
(ppiC)
CppnO
(ppiC)
06/01/87
152
M
1016
409
B
0.351
0.715
06/02/87
153
T
1051
49
C
0.223
06/03/87
154
U
1030
153
C
0.478
06/04/87
155
H
1087
68
0
0.338
06/08/87
159
N
1172
56
B
0.250
06/09/87
160
T
1175
123
B
1.246
06/10/87
161
W
1208
187
C
0.366
06/11/87
162
H
1215
409
B
0.399
0.430
06/12/87
163
F
1269
111
0
0.145
06/15/87
166
M
1295
112
0
0.185
06/16/87
167
T
1316
135
D
0.189
06/17/87
168
U
1311
131
A
0.293
06/18/87
169
H
1374
187
B
0.273
06/18/87
169
H
1374
187
0
0.275
06/19/87
170
F
1417
137
B
0.210
0.198
0.186
06/19/87
170
F
1422
12
C
0.214
06/22/87
173
M
1438
306
0
0.117
06/23/87
174
T
1475
703
A
0.371
06/24/87
. 175
U
1498
134
C
0.356
06/25/87
176
H
1547
21
B
0.344
06/26/87
177
F
1572
710
C
0.217
0.202
0.189
06/30/87
181
T
1647
301
D
0.250
07/01/87
182
W
1673
99
C
0.134
07/03/87
184
F
1758
40
0
0.177
07/06/87
187
N
1754
1334
A
0.073
07/07/87
188
T
1774
4
B
0.140
07/08/87
189
W
1810
109
C
0.914
07/08/87
189
U
1811
191
c
1.313
07/09/87
190
H
1863
103
A
0.258
07/10/87
191
F
1895
140
C
0.228
07/13/87
194
N
1931
73
D
0.164
07/14/87
195
T
1932
683
B
0.141
07/14/87
195
T
1932
683
C
0.152
07/15/87
196
U
1990
689
B
0.355
0.382
0.306
07/17/87
198
F
2049
688
C
0.344
07/17/87
198
F
2049
688
B
0.354
07/20/87
201
N
2113
116
A
0.333
07/21/87
202
T
2152
72
D
0.447
07/22/87
203
W
2190
126
B
0.149
07/23/87
204
H
2212
53
0
0.081
07/24/87
205
F
2259
108
C
0.305
07/27/87
208
M
2245
48
0
0.396
07/28/87
209
T
2362
102
B
0.252
0.222
2-137
-------
TABLE 2-34. SUMMARY OF THE 1987 NMOC OATA FOR PORTLAND, OR (P10R)
Julian
Sample
Sanple
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Nurber
Channel
CppnC)
(ppmC)
(ppiO
07/28/87
209
T
2363
97
B
0.240
07/29/87
210
U
2303
719
A
0.285
07/30/87
211
2366
680
A
0.255
07/31/87
212
F
2382
193
A
0.076
08/04/87
216
T
2451
673
A
0.408
08/05/87
217
U
2525
138
A
0.245
08/06/87
218
3496
637
0.175
08/07/87
219
F
2558
68
A
0.167
08/07/87
219
F
2558
68
A
0.163
08/10/87
222
M
2589
171
C
0.138
08/11/87
223
T
2639
634
C
0.169
08/12/87
224
U
2636
157
B
0.095
08/13/87
225
2692
697
B
0.096
08/14/87
226
F
2721
653
B
0.131
08/17/87
229
M
2715
57
C
0.579
0.589
08/17/87
229
M
2737
152
0
0.569
08/18/87
230
2789
177
c
0.210
08/19/87
231
2808
641
c
0.118
08/21/87
233
F
2892
672
B
0.219
08/24/87
236
M
2950
165
D
0.652
08/25/87
237
T
2949
719
0
0.188
08/27/87
239
2980
772
D
0.803
0.832
08/28/87
240
F
3050
103
B
0.320
08/31/87
243
M
3083
796
B
0.473
09/01/87
244
T
3129
308
C
1.299
09/02/87
245
U
3158
153
C
0.251
0.199
09/03/87
246
3190
49
0.514
09/04/87
247
F
3203
184
A
0.464
09/08/87
231
T
3260
9
C
0.240
09/09/87
2S2
W
3281
707
A
0.294
0.239
09/10/87
253
3300
93
0.625
09/10/87
253
3301
154
C
0.603
09/11/87
254
F
3370
157
C
0.110
09/15/87
258
T
3421
185
B
0.210
09/16/87
259
U
3432
176
A
0.525
09/17/87
260
3467
800
B
0.335
09/18/87
261
F
3518
56
C
1.109
09/22/87
265
T
3666
669
A
0.534
09/22/87
265
T
3667
99
0.527
09/23/87
266
U
3643
133
A
0.732
09/24/87
267
3648
688
C
0.114
09/25/87
268
F
3682
771
B
0.154
09/25/87
268
F
3683
718
D
0.570
2-138
-------
TABLE 2-34. SUMMARY OF THE 1987 NMOC DATA FOR PORTLAND, OR (P10R)
Julian
Sample
Sample
Rsdi an
a ad
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nunber
Nunber
Channel
(ppmC)
(ppmC)
(ppiC)
09/28/87
271
M
3719
797
0
0.327
0.297
09/29/87
272
T
380S
786
D
0.836
2-139
-------
BAKERSFIELD, CA
BACA - 1987 NMOC PROGRAM
J\j
¦fi
n
JT T
¦ 1 1 1 1 1 1 1 I 1 1 1 I
180 200 220 240 260 280 300
JULIAN DATE
Figure 2-34. Plot of NMOC concentration for Bakersfield, CA.
-------
TABLE 2-35. SUMMARY OF THE 1987 NMOC DATA FOR BAKERSFIELD, CA (BACA)
Julian
Sample
Sample
Radi an
OAD
ASRL
Date
Date
Weekday
to
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nintoer
Nurtoer
Channel
(ppmC)
(ppiC)
(ppnC)
07/17/87
198
F
1995
652
B
0.368
0.448
07/20/87
201
N
2086
680
A
0.779
07/21/87
202
T
2102
86
B
0.341
07/22/87
203
U
2150
189
0
0.514
07/23/87
204
H
2206
123
A
1.137
07/24/87
205
F
2175
60
C
0.652
07/27/87
208
H
2257
688
B
1.044
07/28/87
209
T
2264
642
0
1.020
1.021
1.153
07/29/87
210
U
2290
165
C
1.009
07/29/87
210
U
2290
165
B
0.873
07/30/87
211
H
2347
79
C
0.902
07/31/87
212
F
2368
55
0
1.215
08/03/87
215
N
2409
714
B
1.968
08/04/87
216
T
2431
82
0
1.710
08/05/87
217
W
2458
79
C
1.647
08/06/87
218
H
2485
97
0
1.913
1.653
08/07/87
219
F
2503
694
c
1.625
08/11/87
223
T
2582
641
0
0.868
0.721
08/12/87
224
U
2635
644
c
1.000
08/13/87
225
H
2665
718
B
0.964
08/13/87
225
H
2678
694
0
1.006
08/14/87
226
F
2669
632
B
0.436
08/17/87
229
M
2744
725
c
1.259
08/18/87
230
T
2758
164
0
1.498
08/19/87
231
U
2806
43
c
0.414
08/20/87
232
H
2818
95
c
0.668
08/21/87
233
F
2839
705
B
0.661
08/24/87
236
M
2900
649
C
1.113
08/25/87
237
T
2918
173
C
1.127
08/27/87
239
H
3002
3
A
1.010
08/28/87
240
F
3026
71
C
1.709
08/28/87
240
F
3027
641
C
1.217
08/31/87
243
M
3059
42
C
1.400
09/02/87
245
U
3104
10
C
1.700
09/02/87
245
U
3104
10
C
1.821
09/03/87
246
H
3154
194
0
1.801
09/08/87
251
T
3226
119
B
1.336
09/09/87
252
U
3245
650
0
1.742
1.580
09/10/87
253
H
3288
673
D
0.747
09/11/87
254
F
3319
688
C
1.486
09/14/87
257
M
3362
87
B
0.603
0.465
09/15/87
258
T
3397
194
B
0.945
09/16/87
259
W
3463
169
0
1.493
2-141
-------
TABLE 2-35. SUMMARY OF THE 1987 NMOC DATA FOR BAKERSFIELD, CA (BACA)
Julian
Sample
Sample
Radian
0AD
ASRL
Date
Oate
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurtoer
Nuitoer
Channel
(ppnC)
(ppmC)
-------
PITTSBURG, CA
PICA - 1987 NMOC PROGRAM
I 1
1 1 III 1 1 1 1 1
180 200 220 240 260 280 300
JUUAN DATE
Figure 2-35. Plot of NMOC concentration for Pittsburg, CA (Expanded).
-------
PITTSBURG, CA
PICA - 1987 NMOC PROGRAM
11 A
Av-
180 200 220 240 260 280 300
JULIAN DATE
Figure 2-36. Plot of NMOC concentration for Pittsburg, CA.
-------
TABLE 2-36. SUMMARY OF THE 1987 NMOC DATA FOR PITTSBURG, CA (PICA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nurber
Number
Channel
(ppnC)
(ppmC)
(PPlC)
07/01/87
182
W
1655
183
A
0.254
07/02/87
183
H
1680
679
C
0.324
07/02/87
183
H
1681
669
0
0.339
07/06/87
187
M
1759
6
0
0.435
07/07/87
188
T
1788
703
C
0.747
07/08/87
189
U
1809
115
B
0.262
07/09/87
190
H
1879
98
B
0.331
07/10/87
191
F
1840
680
B
0.275
0.361
0.183
07/14/87
195
T
1958
675
A
0.321
07/15/87
196
U
1977
191
A
0.258
07/16/87
197
H
1973
171
A
0.446
0.440
0.391
07/17/87
198
f
2036
115
D
0.310
07/20/87
201
M
2066
730
C
5.244
07/20/87
201
M
2066
730
C
5.241
07/21/87
202
T
2068
91
C
0.338
07/22/87
203
U
2128
22
C
0.392
07/23/87
204
H
2186
685
C
0.292
0.345
0.267
07/24/87
205
F
2197
409
A
0.193
07/24/87
205
F
2202
64
B
0.218
07/27/87
208
M
2246
100
D
0.308
07/28/87
209
T
2225
716
0
0.212
0.260
0.161
07/29/87
210
W
2289
407
0
0.202
07/30/87
211
H
2297
636
0
0.471
07/31/87
212
F
2367
301
D
0.557
08/03/87
215
N
2377
113
A
0.454
0.398
08/04/87
216
T
2435
89
A
0.376
08/05/87
217
U
2456
20
0.406
08/06/87
218
H
2509
3
0.431
08/07/87
219
F
2539
130
C
0.481
08/10/87
222
N
2566
693
A
0.254
08/10/87
222
M
2567
726
0.236
08/11/87
223
T
2604
37
0.313
08/12/87
224
W
2606
672
A
0.234
08/13/87
225
H
2693
790
C
0.789
08/14/87
226
F
2656
32
0.268
08/17/87
229
N
2718
90
0.315
08/18/87
230
T
2750
673
A
0.217
08/19/87
231
U
2797
657
A
0.212
08/20/87
232
M
2846
693
0.320
08/21/87
233
F
2816
642
A
0.164
0.220
08/24/87
236
N
2888
187
C
0.416
08/25/87
237
T
2921
49
D
0.464
2-145
-------
TABLE 2-36. SUMMARY OF THE 1987 NMOC DATA FOR PITTS8URG, CA (PICA)
Julian
Sanple
Sample
Radian
QAD
ASRL
Date
Date
Weekday
10
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Nimber
Nunber
Channel
(PPffC)
(ppnC)
(ppmC)
08/26/87
238
U
2911
662
B
0.251
08/27/87
239
H
3005
116
A
0.334
08/28/87
240
F
3008
798
A
0.681
08/31/87
243
M
3062
720
A
0.330
0.371
09/01/87
244
T
3100
637
0
0.419
09/01/87
244
T
3101
6 77
0
0.409
09/02/87
245
U
3120
632
0
0.597
09/03/87
246
H
3162
92
0
0.366
09/04/87
247
F
3174
501
c
0.279
09/08/87
251
T
3236
762
B
0.318
09/09/87
252
W
3250
71
D
0.331
0.288
09/09/87
252
U
3337
180
B
0.195
0.172
09/10/87
253
H
3308
783
0
0.322
09/14/87
257
M
3371
641
A
0.250
09/15/87
258
T
3385
791
B
0.489
0.271
09/16/87
259
U
3437
156
C
0.568
09/17/87
260
H
3487
119
C
0.718
09/21/87
264
M
3517
19
A
1.294
09/22/87
265
T
3545
681
C
0.840
09/23/87
266
U
3599
798
B
0.435
09/23/87
266
U
3600
183
B
0.395
09/24/87
267
H
3663
672
C
0.440
09/25/87
268
F
3674
161
C
0.428
0.332
09/28/87
271
M
3681
639
A
0.598
09/29/87
272
T
3728
620
C
1.033
09/30/87
273
u
3765
781
D
0.532
10/01/87
274
H
3761
183
C
0.713
10/02/87
275
F
3795
187
D
0.508
10/05/87
278
N
3810
780
C
1.232
10/06/87
279
T
3813
701
0
0.472
0.517
10/07/87
280
U
3814
716
C
0.671
10/08/87
281
H
3816
772
D
0.661
10/09/87
282
F
3818
156
C
0.319
10/13/87
286
T
3821
774
D
0.626
10/14/87
287
W
3825
785
B
0.640
10/15/87
288
H
3826
688
D
0.585
10/16/87
289
F
3827
639
C
0.934
10/19/87
292
M
3832
786
B
0.534
10/20/87
293
T
3834
646
A
0.575
10/22/87
295
H
3840
784
C
0.652
10/23/87
296
F
3841
68
0
0.828
10/26/87
299
M
3850
149
A
0.338
10/26/87
299
M
3851
36
B
0.363
2-146
-------
TABLE 2-36. SUMMARY OF THE 1987 NMOC DATA FOR PITTSBURG, CA (PICA)
Julian
Sample
Sample
Radian
QAD
ASRL
Date
Date
Weekday
ID
Canister
Radian
NMOC
NMOC
NMOC
Sampled
Sampled
Sampled
Member
Nuifcer
Channel
(ppmC)
(pprC)
(ppmC)
10/27/87
300
T
3852
500
A
1.044
10/27/87
300
T
3853
147
B
1.100
10/28/87
301
W
3858
15
C
1.118
10/29/87
302
H
3861
89
A
1.379
10/30/B7
303
F
3860
129
B
1.081
'Sanplirtg period for Julian Date 182 occurred front 6:00 AM to 9:00 AM.
Sampling period beginning Julian Date 183 occurred from 12:00 Noon to 3:00 PM.
2-147
-------
• Radian Channel A, B, C, or D;
$ Radian NMOC, ppmC determined by Radian Channel A, B, C, or 0,;
« QAD NMOC, ppmC, determined by EPA-QAO channel; and
• ASRL NMOC, ppmC, determined by EPA-ASRL channel-
2-148
-------
3.0 NMOC TECHNICAL NOTES
This section includes instructions on the installation and operation of
the field sampling equipment, a summary of the analytical equipment and
procedures for NMOC measurement, and a description of the canister cleanup
equipment and procedure.
3.1. NMOC SAMPLING EQUIPMENT
The field sampling equipment used in the collection of ambient air samples
for NMOC measurement is described in detail in Appendix A. The notes presented
below outline site installation instructions, operating instructions, and
suggestions for correcting certain operating difficulties.
3.1.1 Installation
The following general instructions outline the requirements for installing
the ambient NMOC sampling equipment at the sample site, including a checklist
of instructions necessary for operator training.
1. Locate the sampler as close to the sample inlet point as is
convenient. The location should be in a temperature controlled (70°
to 85 F) area with space which provides access to the equipment and
with sufficient electrical power to operate the equipment.
2. Make sure that the electrical solenoid valve is installed on the pump
outlet. The solenoid valve should have a tee fitting on top, one
port of which is plugged during single sample collection and
unplugged and attached to a second sample canister during duplicate
sample collection.
3. Verify that the inlet to the pump has a flow-control orifice/filter
assembly mounted on it. An orifice assembly marked with an "S" is
used for single sample collections; an orifice assembly marked with a
"D" is used for duplicate sample collections.
4. Connect a 1/8-inch stainless steel inlet line from the top of the
orifice/filter assembly to the inlet manifold. This should be the
same manifold used by the NOx monitor. The manifold inlet port
selected for NMOC sampling should be the first port (closest to
atmosphere) on a multiple port manifold.
3-1
-------
If there is no inlet manifold, install a suitable inlet line of
1/4-inch chromatographic-grade stainless steel j^o the sampling point.
Avoid using any plastic parts, including Teflon , in the sample
inlet. The sample inlet should be kept as short as possible and
installed so that it will drain by gravity and not collect water. If
it is necessary to use a long sample inlet line (over 10 to 12 feet
from the sample pump to the manifold or sample point), a small vacuum
pump should be connected to the exit of the inlet line tee to keep
the inlet purged during sampling. The local agencies for whom the
samples are being collected are asked to supply the small vacuum
pump, if needed, and any other incidental items necessary to connect
the sampler to the sample inlet point.
5. Connect the pump and the solenoid valve to the timer, and connect the
timer to an electrical power outlet. Set the timer to the correct
local time by turning the large dial in a clockwise direction only.
Clock time should be checked daily and reset as necessary.
6. Verify that the pump and timer switch are operational by turning the
timer switch ON and OFF. The solenoid valve is a special latching
valve with a time-delay power circuit. It may not operate properly
if the timer switch is turned ON and OFF too rapidly. The switch
must be left in the ON or OFF position at least 20 seconds before it
is switched to the opposing position for proper valve actuation.
7. Disconnect the sample inlet from the top of the filter assembly and
connect the rotameter to the filter.assembly, holding or mounting the
rotameter in a vertical position. Start the pump and record the
flowmeter reading. Remove the "S" orifice assembly, install the "D"
orifice assembly, and record the flowmeter reading. Turn the time
switch OFF and reconnect the solenoid valve. Disconnect the
rotameter, reinstall the "S" orifice assembly, and reconnect the
sample inlet to the filter assembly.
8. Instruct the site operator in the following:
1. Installing canister(s),
2. Turning the solenoid valve on and off, emphasizing the
20-second time delay,
3. Measuring flow with a rotameter,
4. Changing orifice assemblies,
5. Changing filter element,
6. Tightening Swagelok fittings correctly,
7. Setting timer, and adjustment of ON/OFF dogs,
8. Filling out field sample data forms,
9. Sampling procedure,
10. Troubleshooting instructions,
(Section 3.1.4 below), and
11. Identifying person(s) to call at Radian Research Triangle Park
(RTP) if problems are encountered.
3-2
-------
3.1.2 Operation - Presamplinq
The following instructions pertain to the sampling operation prior to
collection of the sample(s).
1. Set the timer to the correct day and time, clockwise advance only.
Verify that the ON/OFF dogs are in their correct positions on the
timer disk.
2. With no canisters connected to the sampling system, turn the timer
switch to the OFF position.
3. Disconnect the sample inlet from the top of the orifice/filter
assembly mounted on the pump inlet. Connect the rotameter to the top
of the orifice/filter assembly. Hold or mount the rotameter
vertically.
4. After the timer switch has been OFF at least 20 seconds, turn the
timer switch ON. The pump should run and the latching valve should
open. Verify that the rotameter reading is approximately the same
(+15%) as the reading obtained during installation. If the rotameter
reading is not correct, see the troubleshooting instructions.
5. Allow the pump to run for at least 20 seconds, then turn the timer
switch OFF.
6. Connect a cleaned, evacuated canister to the sampling system. If
duplicate samples are to be collected, remove the plug from the
second port of the tee and connect a second canister to the sampling
system. Remove the orifice assembly marked with an "S", but do not
remove the filter assembly, install the orifice assembly marked with
a "D". After obtaining scheduled duplicate samples, replace the plug
and the "S" orifice assembly to return to single sample collection
status.
7. With the pump off, open completely the valve on the canister (or on
one of the canisters if two are connected) and verify that no flow is
registered on the rotameter. If any flow is detected by the
rotameter, immediately close the canister valve and refer to the
troubleshooting instructions (Table 3-1).
8. If no flow is observed, disconnect the rotameter and reconnect the
inlet sample line to the filter assembly. If two canisters are
connected, completely open the valve on the second canister.
9. Reverify that the canister valve(s) is(are) completely open and the
timer is properly set for sampling from 6 to 9 AM the next weekday.
3.1.3 Operation - Postsamplinq
The following instructions pertain to the postsampling operation after
collection of sample(s).
3-3
-------
1. Close the canister valve(s) firmly. Disconnect the canister(s) from
the sampling system.
2. Connect the pressure gauge to the canister inlet and open the
canister valve. Record the canister pressure on the field sampling
data form. Close the canister valve and remove the pressure gauge.
Repeat pressure measurement for second canister if you are collecting
a duplicate sample.
3. Fill in the required information on the field sample data form(s).
4. Verify that the timer shows the correct time setting. If not, note
that fact on the field sample data form along with any information
pertaining to the possible cause. Reset the timer to the correct
time, if necessary.
5. Verify that the canister valve(s) are closed firmly. Do not
overtighten them. Put the protective cap(s) on the valve(s) and
prepare the canister(s) for shipment to Radian (RTP).
3.1.4 Troubleshooting Instructions
In Table 3-1, several potential problems that may occur in the sample
collection procedure are identified, and suggested measures are listed to
correct the problem. In every case that a problem occurs, it is recommended
that Radian (RTP) be notified.
3.2 NMOC ANALYSIS
The NMOC analysis equipment and analysis procedure are described in
greater detail in Appendix A. A brief description of the equipment and
operating procedure used in this study follows.
3.2.1 Instrumentation
Two gas chromatographs were used by Radian. Each was a dual-channel
Hewlett-Packard Model 5880 (HP-5880) using flame ionization detection (FID).
NMOC instrument Channels A and B refer to the two FIDs on one HP-5880 unit, and
Channels C and D refer to the two FIDs on the other HP-5880 unit. These
chromatographs were modified similar to the prototype unit (EPA-QAD
instrument), which is described in Appendix A. The EPA-QAD was used as a
quality assurance check during this program. In addition, an HP-5880 gas
chromatograph equipped with a 60 m x 0.32 mm i.d., DB-1, fused silica capillary
column was used as the gas speciation method and as a quality assurance check.
This capillary column instrument is called EPA-ASRL Channel in subsequent
sections of this report.
3-4
-------
TABLE 3-1. TROUBLESHOOTING NMOC AMBIENT SAMPLING PROCEDURE
Diagnostic
Recommended Correction
Rotameter flow too low
Rotameter flow too high
Flow is detected with
canister valve open and
pump off
Canister pressure over
20 psig after sampling
1. Make sure pump is running.
2. Valve may not be open. Turn timer switch
OFF, wait 20 seconds, then turn the switch
ON.
3. Disconnect the solenoid valve from pump.
If flow is then correct, solenoid valve may
be defective. Consult Radian (RTP).
4. Needle may be plugged. Replace orifice
assembly (not filter) with spare "S" orifice
assembly. If flow is correct, return
defective orifice assembly with note of
explanation to Radian (RTP) for replacement.
5. Filter may be plugged. Remove filter and assess
whether flow is correct. If flow is correct,
install spare filter element in filter assembly
and reattach to orifice assembly. Return
defective filter element with note of explanation
to Radian (RTP) for replacement.
1. Check for leaks.
2. Try spare orifice assembly. If flow is
correct, return defective orifice assembly
to Radian (RTP) for replacement.
1. Solenoid valve not closed. Turn off
canister valve. Turn timer switch ON, wait
20 seconds, then turn timer switch OFF.
Open canister valve and check again. If flow
is still detected, consult Radian (RTP).
1. Check flow rate.
2. Check for leaks; tighten all fittings.
3. Check timer for correct position of ON/OFF
dogs.
4. Canister may have leaked or may not have been
completely evacuated. Note on sample form
and collect the next scheduled sample. If
the next sample also has excessive pressure,
consult Radian (RTP).
3-5
-------
3.2.2 Hewlett-Packard. Model 5880. Gas Chromatooraph Operating Conditions
The sample trap consisted of 30 cm of 1/8-inch outside diameter (o.d.)
stainless steel tubing, packed with 60/80 mesh glass beads.
Three support gases were used in this analysis: helium, hydrogen, and
hydrocarbon-free air. Details of their use are given below in Table 3-2.
Table 3-2. SUPPORT GAS OPERATING CONDITIONS
Purpose
Cylinder
Composition
Pressure
Mean
Flow Rate
Carrier Gas
FID Air
FID Fuel
Helium
Hydrocarbon-free air
Hydrogen
30 psig
30 psig
32 psig
30.4 ml/min
356.9 mL/min
27.9 mL/min
aFlow rates corrected to standard conditions (1 atmosphere pressure, 0°C).
The operating temperatures of the HP-5880 were controlled for the NMOC
analysis. The FID and auxiliary area were controlled at 250°C and 90°C,
respectively. The oven temperature was programmed from 30°C to 90°C at a rate
of 30°C per minute for four minutes, holding at 90°C for the fourth minute.
Oven and integration parameters were controlled by HP Level 4 programmable
integrators. A complete listing of the integrator programming sequence for
NMOC measurement by the PDFID method is given in Appendix B.
3.2.3 NMOC Analytical Technique
The modified HP-5880, dual-FID chromatographs were operated during the
1987 study according to the Standard Operating Procedure (SOP) listed in
Appendix C. Further description is given below to help explain the analytical
apparatus and procedure.
The six-port valve shown in Figure 3-1 was installed in the auxiliary
heated zone of the HP-5880 and was pneumatically actuated using the chromato-
graphic valve control signals to apply either compressed air or vacuum to the
valve. The sample trap itself was located inside the chromatograph's column
oven. A section of 1/16-inch o.d. stainless steel tubing was sized to a length
3-6
-------
Absolute
Pressure Gauge
Low Pressure
Regulator
Vacuum
Valve
Sample
Valve
Vacuum Pump
He
Valve
y v
1.7 Liter
Reservoir
Vent
6 - Port
Valve
Sample Injection
Glass Beads
By • Pass
Rotameter
Cryogenic
Sample Trap
Canister Valve
Liquid Argon
Air
Hydrogen
FID
Integrator -
Recorder
in
Sample Canister
CO
ID
Figure 3-1. NMOC analytical equipment.
-------
which prevented pressure and flow surges from extinguishing the FID flame.
This length was determined experimentally and is different between chromato-
graphs and between channels within chromatographs. This length of tubing
effectively substitutes for the pressure restriction provided by a column, but
does not perform its speciation function.
During sample trapping, a slight excess of sample gas flow was maintained.
A pressure change of 80 mm Hg in a 1.7-liter vacuum reservoir was used to gauge
and control the volume of sample gas cryogenically trapped. After the trapping
cycle was complete, the HP-5880 program shown in Appendix B was initiated.
When the program triggered a horn emitting an audible beep, the cryogen was
removed from the trap and the oven door was closed. The chromatographic
program then assumed control of raising the oven temperature, at a preset rate,
to release the trapped sample to the FID, as well as setting up the integration
parameters.
3.3 CANISTER CLEANUP SYSTEM
A cleanup cycle consisted of first pulling a vacuum of 5 mm Hg absolute
pressure in the canister, followed by pressurizing the canister to 40 psig with
cleaned, dried air that had been humidified. This cycle was repeated three
times during the canister cleanup procedure. The cleanness of the canister was
qualified by PDFID analysis. Upon meeting the cleanness criterion, the
canister was evacuated to 5 mm Hg absolute pressure a fourth time, in
preparation of shipment to the site.
3.3.1 Canister Cleanup Equipment
A canister cleanup system was developed and used to prepare sample
canisters for reuse after analysis. A diagram of the system is shown in
Figure 3-2. An oil-free compressor with a twelve-gallon reservoir provided
source air for the system. The oil-free compressor was chosen to minimize
hydrocarbon contamination. The compressor reservoir was drained of condensed
water each morning. A coalescing filter provided water mist and particulate
matter removal down to a particle size of one micron. Permeation dryers
removed water vapor from the compressor source air. These permeation dryers
were followed by moisture indicators to show detectable moisture in the
compressor source air. Air was then passed through catalytic oxidizers to
destroy any residual hydrocarbons. The oxidizers were followed by one-micron
inline filters for secondary particulate matter removal, and a cryogenic trap
3-8
-------
RADIAN
Coalescing Filter
Xh—^
Flowmeter
Oil-Free
Compressor
Single-Stage
Regulator
FlowShu,°" Va,ve
Control
Valves
Flowmeter
CO
i
l£>
6»
Humidllier
Cryogenic
Trap
Bellows
Valve
Permeation Dryers
Catalytic
Oxidizers
with
Moisture
Indicators
and 1 micron
Filters
H
Cryogenic
Trap
Heise
Vacuum
Gauge
V
8-Port Manifold
Bellows
Valve
n
Single-Stage
Regulator
Shutoff Valve
Flowmeter
Flow
Control
Valves Flowmeter
JLir N
Humidifier
aJj Turbomolecular
8-Port Manifold
Vacuum Pump
Cryogenic
Trap
tt
S
CM
Figure 3-2. Canister cleanup apparatus. I
-------
to condense any water formed during oxidation. A single-stage regulator
controlled the final air pressure in the canisters and a metering valve was
used to control the flowrate at which the canisters were filled during the
cleanup cycle. The flow was indicated with a rotameter installed in the clean,
dried air line. There was a shutoff valve between the rotameters and the
humidifier system. The humidifier system consisted of an electropolished
6-liter canister partially filled with high pressure liquid chromatographic
grade (HPLC-grade) water. One flowmeter and flow control valve routed the
cleaned, dried air into the 6-liter canister where it was bubbled through the
HPLC-grade water. A second flow-control valve and flowmeter allowed air to
bypass the canister/bubbler. By setting the flow control valves separately,
the downstream relative humidity was regulated. For the 1987 study, Radian
used a setting of 1.5 volumes through the humidifier to 12.5 volumes bypassing
the humidifier to achieve 15% to 20% relative humidity. There was another
shutoff valve between the humidifier and the 8-port manifold where the
canisters were connected for cleanup.
The vacuum system consisted of a turbomolecular vacuum pump, a cryogenic
trap, an absolute pressure gauge and a bellows valve connected as shown in
Figure 3-2. The cryogenic trap prevented the sample canisters from being
contaminated by back diffusion of hydrocarbons from the vacuum pump into the
cleanup system. There are no oil free high vacuum pumps currently available.
The bellows valves enabled isolation of the vacuum pump from the system without
shutting off the vacuum pump.
3.3.2 Canister Cleanup Procedure
After NMOC analyses were completed, a bank of eight canisters was
connected to each manifold shown in Figure 3-2. The valve on each canister was
opened, with the shutoff valves and the bellows valves closed. The vacuum pump
was started and one of the bellows valves was opened, drawing a vacuum on the
canisters connected to the corresponding manifold. After reaching 5 mm Hg
absolute pressure as indicated by the absolute pressure gauge, the vacuum was
maintained for 15 minutes on the eight canisters connected to the manifold.
The bellows valve was then closed and the cleaned, dried air that had been
humidified was introduced into the evacuated canisters until the pressure
reached 40 psig. The canisters were filled from the clean air system
at the rate of 7.0 L/min. This flowrate was recommended by the manufacturer as
3-10
-------
the highest flowrate at which the catalytic oxidizers could handle elimination
of hydrocarbons with a minimum 99.7% efficiency.
When the first manifold had completed the evacuation phase and was being
pressurized, the second manifold was then subjected to vacuum by opening its
bellows valve. After 15 minutes, the second manifold was isolated from the
vacuum and connected to the clean, dried air that had been humidified. The
first manifold of canisters was then taken through a second cycle of evacuation
and pressurization. Each manifold bank of eight canisters was subjected to
three cleanup cycles.
During the third cleanup cycle, the canisters were pressurized to 40 psig
with cleaned, dried air that had not been humidified. For each bank of eight
canisters, the canister having the highest precleanup NMOC concentration was
selected for NMOC analysis to determine potential hydrocarbon residues. If the
analysis measured less than 0.030 ppmC, then the eight canisters on the
manifold were considered to be clean. Finally the canisters were again
evacuated to 5 mm Hg pressure absolute; they were capped under vacuum and then
packed into the containers used for shipping to the field sites.
3-11
-------
4.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND NMOC DATA ANALYSIS
This section details the steps taken in the 1987 NMOC Project to ensure
that the data taken were of known quality and were well documented. Analysis
results are given in terms of precision, accuracy, and completeness. Repeated
analyses provided analytical precision. Duplicate samples provided sampling
and analysis precision. Completeness was measured in terms of percent of
scheduled samples that resulted in valid samples, beginning with the first
valid site-specific sample collected and ending with the last valid
site-specific sample collected. Accuracy of NMOC concentrations was reported
as percent bias of audit samples referenced to an NBS SRM propane by EPA-QAD.
4.1 INTRODUCTION
Completeness for the 1987 NMOC study was 95.0%. This value compares to
96.8% completeness for the 1986 study and 95.8% for the 1985 study, and
indicates that good communication and planning were maintained between the
site personnel and the laboratory personnel. Precision for the 1987 NMOC
study averaged 9.61% absolute percent difference of repeated analysis and
compared to 9.01% for the 1986 study and 10 percent for the 1985 study. Bias
of the Radian channels for the 1987 audit results ranged from -2.9% to -0.06%.
In 1986 the accuracy determined from the external audit samples ranged from
-0.52% to -3.3%. In 1985 bias ranged from -2.3% to +5.2%.
An initial multipoint performance evaluation was done with propane
responses for each Radian channel. Twice daily calibration checks, and daily
in-house propane QC samples monitored instrument and operator performance.
Duplicate site samples showed good overall sampling and analysis precision as
well as sample stability.
Data validation was performed on 10.1% of the NMOC data base, as
described later in this section.
4.2 QA/QC DATA
Calibration and drift determinations showed that the instrumentation was
stable and that the calibration procedures were consistent. Canister cleanup
4-1
-------
results showed there was negligible carry-over from one sample to the next.
In-house QC samples of propane demonstrated that the analytical systems were
in control.
4.2.1 Calibration and Instrument Performance
Initial performance assessments for NMOC were conducted with propane.
Daily calibrations were checked with 3.0 ppmC propane for the NMOC
measurements.
4.2.1.1 NMOC Performance Results. An initial performance assessment was
done on each Radian channel, using propane certified by EPA-QAD. EPA-QAD
referenced the certified propane to an NBS SRM No. 1667b propane. The
concentration of the propane used in the performance assessment ranged from
0.000 to 6.038 ppmC. The "zero" value was determined using cleaned, dried air
from the canister cleanup system described in Section 3.0. Table 4-1
summarizes the performance assessments below. The responses are linear,
having coefficients of correlation from 0.999836 to 0.999995. Figures 4-1
through 4-4 show plots of the NMOC performance results for Radian Channels A,
B, C, and D, respectively. The plots show the regression line and the
boundary lines for the 95 percent confidence interval.
4.2.1.2 Daily NMOC Calibration Zero. Span, and Drift. All Radian
channels were spanned twice daily using a mixture of approximately 3.0 ppmC
propane-in-air. The propane concentration was certified against an NBS SRM
No. 1667b. Daily zero readings were measured using cleaned, dried air,
supplied by the clean air system described in Section 3.4.1. The air was
dried using a permeation dryer and the hydrocarbon content was destroyed by
catalytic oxidation. Particulate was removed from the dried air with sintered
stainless steel filters.
Daily calibration and drift data are given in Tables 4-2 through
Tables 4-5 for Radian Channels A, B, C, and D, respectively. The data include
calibration dates, initial and final zeros and calibration factors,
calibration factor drift, and percent calibration factor drift. Initial zero
readings and calibration factor determinations were made daily before any
site samples were analyzed. Initial and final zero readings indicated NMOC
concentrations present in the cleaned, dried air. The maximum initial zero
reading was 0.020 ppmC.
4-2
-------
TABLE 4-1. PERFORMANCE ASSESSMENT SUMMARY, RADIAN CHANNELS
Radian
Channel
Cases
Linear Regression Results3
Intercept
Slope
Coefficient of
Correlation
A
4
-93.326
8715.519
0.999975
B
4
-230.110
8600.559
0.999945
C
4
-226.053
8369.515
0.999836
D
4
57.088
8206.020
0.999995
aFigures 4-1 through 4-4 plot propane area counts vs. concentration in ppmC.
4-3
-------
60.00
NMOC INST A - PERFORMANCE
Linear Regression
o
«
(0
c
3
O
TJ
c
_ o
65
s°
St
o
a
n
a>
ir
50.00
40.00
30.00
20.00
10.00
0.00
-10.00
0.00
—I 1 1—
2.00 4.00
Concentration (ppmC)
6.00
Figure 4-1. NMOC performance results, Channel A.
-------
NMOC INST B - PERFORMANCE
c
3
o
o
o
®
L.
<
©
01
c
o
a
in
o
a:
o
¦o
c
o
ID
3
O
£
»-
60.00
50.00
40.00
30.00
20.00
10.00
0.00
Linear Regression
-10.00
0.00
2.00 4.00
Concentration (ppmC)
6.00
Figure 4-2. NMOC performance results, Channel B.
-------
NMOC INST C - PERFORMANCE
o
en
n
-*->
c
3
3-
U fu
X)
c
l. a
S3
• 5
o
a
a
«
0C
60.00
50.00
40.00
30.00
20.00
10.00
0.00
-to.oo
0.00
Linear Regression
2.00 4.00
Concentration (ppmC)
6.00
Figure 4-3. NMOC performance results, Channel C.
-------
V)
c
~
o
o
(0
o
L_
TJ
C
0
<
a
>—/
D
0
o
JZ
m
h
c
0
a
m
VI
u
a:
60.00
50.00
40.00
30.00
20.00
10.00
0.00
NMOC INST D - PERFORMANCE
Linear Regression
-10.00
0.00
2.00 4.00
Concentration (ppmC)
6.00
Figure 4-4. NMOC performance results, Channel D.
-------
TABLE 4-2. DAILY CALIBRATION DATA SUMMARY (CHANNEL A)
Julian
Initial
Final
Initial
Final
Initial
Final
(Drift)
(X Orift)
Calib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Date
Date
A.C.
A.C.
ppmC
pprC
Factor
Factor
Factor
Factor
09/24/87
267
2.045
1.600
0.0006
0.0005
0.000314
0.000319
0.000005
1.592
09/25/87
268
13.915
1.165
0.0043
0.0004
0.000308
0.000313
0.000005
1.623
09/28/87
271
7.500
7.500
0.0023
0.0023
0.000308
0.000308
0.000000
0.000
09/30/87
273
0.650
1.885
0.0002
0.0006
0.000310
0.000298
-0.000012
-3.871
10/01/87
274
2.875
2.875
0.0009
0.0009
0.000313
0.000313
0.000000
0.000
10/02/87
275
1.735
1.735
0.0005
0.0005
0.000308
0.000308
0.000000
0.000
10/19/87
292
0.000
0.000
0.0000
0.0000
0.000316
0.000316
0.000000
0.000
10/22/87
295
2.565
2.565
0.0008
0.0008
0.000313
0.000313
0.000000
0.000
10/29/87
302
0.000
0.000
0.0000
0.0000
0.000316
0.000316
0.000000
0.000
11/02/87
306
2.175
2.175
0.0007
0.0007
0.000328
0.000328
0.000000
0.000
11/09/87
313
0.000
0.000
0.0000
0.0000
0.000319
0.000319
0.000000
0.000
11/12/87
316
0.000
0.000
0.0000
0.0000
0.000315
0.000315
0.000000
0.000
11/18/87
322
0.000
0.000
0.0000
0.0000
0.000335
0.000335
0.000000
0.000
11/23/87
327
2.570
2.570
0.0009
0.0009
0.000339
0.000339
0.000000
0.000
11/24/87
328
0.000
0.000
0.0000
0.0000
0.000323
0.000323
0.000000
o.ooo
11/30/87
334
0.585
0.585
0.0002
0.0002
0.000331
0.000331
0.000000
0.000
4-10
-------
TABLE 4-3. DAILY CALIBRATION DATA SUMMARY (CHANNEL B)
Julian Initial Final Initial Final Initial Final (Drift) (X Drift)
Calib. Calib. Zero Zero Zero Zero Cal. Cal. Cal. Cal.
Date Date A.C. A.C. pprC ppnC Factor Factor Factor Factor
04/27/87
117
2.260
2.260
0.0008
0.0008
0.000347
05/12/87
132
2.065
2.065
0.0007
0.0007
0.000336
05/13/87
133
0.000
0.000
0.0000
0.0000
0.000337
05/18/87
138
0.000
0.000
0.0000
0.0000
0.000340
05/19/87
139
1.050
1.050
0.0004
0.0004
0.000335
05/29/87
149
0.000
0.000
0.0000
0.0000
0.000339
06/02/87
153
0.000
1.540
0.0000
0.0005
0.000317
06/03/87
154
0.000
5.100
0.0000
0.0016
0.000319
06/04/87
155
0.000
5.535'
0.0000
0.0018
0.000316
06/05/87
156
0.000
4.850
0.0000
0.0015
0.000314
06/08/87
159
0.000
6.040
0.0000
0.0019
0.000313
06/09/87
160
4.495
87.420
0.0014
0.0281
0.000317
06/10/87
161
0.000
2.595
0.0000
0.0008
0.000316
06/11/87
162
0.000
1.930
0.0000
0.0006
0.000313
06/12/87
163
0.000
7.275
0.0000
0.0023
0.000317
06/15/87
166
0.000
0.000
0.0000
0.0000
0.000315
06/16/87
167
0.000
4.970
0.0000
0.0016
0.000314
06/17/87
168
0.000
18.840
0.0000.
0.0060
0.000312
06/18/87
169
0.000
11.350
0.0000
0.0036
0.000319
06/19/87
170
0.000
0.000
0.0000
0.0000
0.000310
06/22/87
173
0.890
7.960
0.0003
0.0024
0.000300
06/23/87
174
0.000
38.565
0.0000
0.0121
0.000303
06/24/87
175
17.735
5.650
0.0055
0.0018
0.000309
06/25/87
176
1.160
39.505
0.0004
0.0122
0.000309
06/26/87
177
0.000
0.000
0.0000
0.0000
0.000313
06/29/87
180
0.000
0.000
0.0000
0.0000
0.000305
06/30/87
181
0.000
0.000
0.0000
0.0000
0.000300
07/01/87
182
0.000
0.000
0.0000
0.0000
0.000303
07/02/87
183
0.000
0.000
0.0000
0.0000
0.000311
07/03/87
183
1.990
1.990
0.0006
0.0006
0.000305
07/06/87
187
0.000
0.000
0.0000
0.0000
0.000299
07/07/87
188
0.995
0.000
0.0003
0.0000
0.000315
07/08/87
189
0.000
1.680
0.0000
0.0005
0.000301
07/09/87
190
0.000
1.695
0.0000
0.0005
0.000304
07/10/87
191
1.595
2.850
0.0005
0.0009
0.000306
07/13/87
194
56.700
60.580
0.0173
0.0189
0.00030S
07/14/87
195
22.175
20.520
0.0068
0.0063
0.000306
07/15/87
196
16.825
20.235
0.0052
0.0063
0.000312
07/16/87
197
13.995
18.495
0.0043
0.0057
0.000307
07/17/87
198
16.465
21.380
0.0050
0.0067
0.000306
07/20/87
201
19.680
19.680
0.0059
0.0059
0.000299
07/21/87
202
24.415
24.460
0.0075
0.0076
0.000308
07/22/87
203
18.305
17.460
0.0056
0.0054
0.000304
0.000347
0.000336
0.000337
0.000340
0.000335
0.000339
0.000323
0.000319
0.000318
0.000319
0.000319
0.000322
0.000323
0.000321
0.000319
0.000319
0.000320
0.000319
0.000318
0.000310
0.000307
0.000315
0.000312
0.000310
0.000307
0.000310
0.000311
0.000311
0.000314
0.000305
0.000309
0.000309
0.000305
0.000302
0.000307
0.000312
0.000307
0.000310
0.000310
0.000314
0.000299
0.000309
0.000310
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000006
1.893
0.000000
0.000
0.000002
0.633
0.000005
1.592
0.000006
1.917
0.000005
1.577
0.000007
2.215
0.000008
2.556
0.000002
0.631
0.000004
1.270
0.000006
1.911
0.000007
2.244
-0.000001
-0.313
0.000000
0.000
0.000007
2.333
0.000012
3.960
0.000003
0.971
0.000001
0.324
-0.000006
-1.917
0.000005
1.639
0.000011
3.667
0.000008
2.640
0.000003
0.965
0.000000
0.000
0.000010
3.344
-0.000006
-1.905
0.000004
1.329
-0.000002
-0.658
0.000001
0.327
0.000007
2.295
0.000001
0.327
-0.000002
-0.641
0.000003
0.977
0.000008
2.614
0.000000
0.000
0.000001
0.325
0.000006
1.974
4-11
-------
TABLE 4-3. DAILY CALIBRATION DATA SUMMARY (CHANNEL B)
Julian
Initial
Final
Initial
Final
Initial
Final
(Drift)
(X Drift)
Catib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Dace
Date
A.C.
A.C.
ppmC
ppmC
Factor
Factor
Factor
Factor
07/23/87
07/24/87
07/27/87
07/29/87
07/30/87
07/31/87
08/03/87
08/04/87
08/05/87
08/06/87
08/07/87
08/10/87
08/11/87
08/12/87
08/13/87
08/14/87
08/17/87
08/18/87
08/19/87
08/20/87
08/21/87
08/24/87
08/25/87
08/26/87
08/27/87
08/28/87
08/31/87
09/01/87
09/02/87
09/03/87
09/04/87
09/08/87
09/09/87
09/10/87
09/11/87
09/14/87
09/15/87
09/16/87
09/17/87
09/18/87
09/21/87
09/22/87
09/23/87
204
205
208
210
211
212
215
216
217
218
219
222
223
224
225
226
229
230
231
232
233
236
237
238
23 9
240
243
244
245
246
247
251
252
253
254
257
258
259
260
261
264
265
266
26.180
20.990
29.440
28.420
27.580
25.740
25.410
26.615
28.130
28.715
27.815
35.380
31.800
37.905
9.130
9.795
11.085
7.010
11.165
5.945
11.155
8.000
12.190
7.860
15.430
6.040
10.335
10.495
12.540
9.550
11.960
0.000
0.000
0.000
0.000
0.000
0.000
0.000
7.080
0.000
0.000
0.000
0.000
23.685
19.670
29.440
27.920
34.760
23.450
25.410
23.260
28.975
30.690
30.230
35.680
33.935
37.995
3.585
9.195
10.665
7.010
5.505
10.490
8.765
8.000
12.190
15.270
11.965
8.550
10.335
14.405
8.770
26.800
12.040
0.000
0.000
1.980
0.000
0.000
0.000
20.150
3.730
0.000
0.000
0.000
0.000
0.0080
0.0064
0.0091
0.0086
0.0085
0.0079
0.0080
0.0083
0.0087
0.0087
0.0087
0.0108
0.0099
0.0118
0.0028
0.0030
0.0034
0,0021
0.0034
0.0018
0.0034
0.0024
0.0036
0.0024
0.0046
0.0018
0.0030
0.0031
0.0039
0.0029
0.0036
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0022
0.0000
0.0000
0.0000
0.0000
0.0075
0.0060
0.0091
0.0086
0.0109
0.0074
0.0080
0.0074
0.0089
0.0097
0.0095
0.0112
0.0106
0.0120
0.0011
0.0029
0.0033
0.0021
0.0017
0.0031
0.0027
0.0024
0.0036
0.0046
0.0036
0.0025
0.0030
0.0043
0.0027
0.0085
0.0038
0.0000
0.0000
0.0006
0.0000
0.0000
0.0000
0.0063
0.0012
0.0000
0.0000
0.0000
0.0000
0.000306
0.000303
0.000310
0.000304
0.000307
0.000306
0.000313
0.000310
0.000311
0.000303
0.000311
0.000306
01000312
0.000311
0.000311
0.000310
0.000311
0.000305
0.000307
0.000305
0.000306
0.000295
0.000294
0.000299
0.000295
0.000297
0.000290
0.000298
0.000308
0.000299
0.000305
0.000320
0.000320
0.000312
0.000316
0.000315
0.000318
0.000320
0.000310
0.000311
0.000312
0.000313
0.000313
0.000316
0.000304
0.000310
0.000308
0.000314
0.000314
0.000313
0.000317
0.000308
0.000315
0.000313
0.000314
0.000313
0.000315
0.000314
0.000315
0.000314
0.000305
0.000310
0.000299
0.000307
0.000295
0.000294
0.000304
0.000300
0.000297
0.000290
0.000297
0.000305
0.000317
0.000316
0.000320
0.000320
0.000320
0.000312
0.000320
0.000324
0.000312
0.000315
0.000311
0.000320
0.000313
0.000319
0.000010
0.000001
0.000000
0.000004
0.000007
0.000008
0.000000
0.000007
-0.000003
0.000012
0.000002
0.000008
0.000001
0.000004
0.000003
0.000005
0.000003
0.000000
0.000003
-0.000006
0.000001
0.000000
0.000000
0.000005
0.000005
0.000000
0.000000
-0.000001
-0.000003
0.000018
0.000011
0.000000
0.000000
0.000008
-0.000004
0.000005
0.000006
•0.000008
0.000005
0.000000
0.000008
0.000000
0.000006
3.268
0.330
0.000
1.316
2.280
2.614
0.000
2.258
-0.965
3.960
0.643
2.614
0.321
1.286
0.965
1.613
0.965
0.000
0.977
-1.967
0.327
0.000
0.000
1.672
1.695
0.000
0.000
-0.336
-0.974
6.020
3.607
0.000
0.000
2.564
-1.266
1.587
1.887
-2.500
1.613
0.000
2.564
0.000
1.917
4-12
-------
TABLE 4-3. DAILY CALIBRATION DATA SUMMARY (CHANNEL B)
Julian
Initial
Final
Initial
Final
Initial
Final
(Orift)
(X Orift)
Calib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Date
Date
A.C.
A.C.
ppmC
ppnC
Factor
Factor
Factor
Factor
09/24/87
267
0.000
0.000
0.0000
0.0000
0.00031S
0.000320
0.000005
1.587
09/25/87
268
8.775
0.000
0.0028
0.0000
0.000316
0.000318
0.000002
0.633
09/28/87
271
6.250
6.250
0.0020
0.0020
0.000314
0.000314
0.000000
0.000
09/30/87
273
2.600
3.180
0.0008
0.0010
0.000316
0.000319
0.000003
0.949
10/01/87
274
0.000
0.000
0.0000
0.0000
0.000314
0.000314
0.000000
0.000
10/02/87
275
7.000
7.000
0.0022
0.0022
0.000314
0.000314
0.000000
0.000
10/19/87
292
1.895
1.895
0.0006
0.0006
0.000322
0.000322
0.000000
0.000
10/22/87
295
1.150
1.150
0.0004
0.0004
0.000320
0.000320
0.000000
0.000
10/29/87
302
O.GOO
0.000
0.0000
0.0000
0.000323
0.000323
0.000000
0.000
11/02/87
306
1.095
1.095
0.0004
0.0004
0.000326
0.000326
0.000000
0.000
11/09/87
313
0.000
0.000
0.0000
0.0000
0.000324
0.000324
0.000000
0.000
11/12/87
316
0.000
0.000
0.0000
0.0000
0.000325
0.000325
0.000000
0.000
11/18/87
322
0.000
0.000
0.0000
0.0000
0.000343
0.000343
0.000000
0.000
11/23/87
327
1.155
1.155
0.0004
0.0004
0.000344
0.000344
0.000000
0.000
11/24/87
328
0.000
0.000
0.0000
0.0000
0.000331
0.000331
0.000000
0.000
11/30/87
334
0.000
0.000
0.0000
0.0000
0.000335
0.000335
0.000000
0.000
4-13
-------
TABLE 4-4. DAILY CALIBRATION DATA SUMMARY (CHANNEL C)
Julian Initial Final Initial Final Initial Final (Drift) (X Drift)
CaIib. Calib. Zero Zero Zero Zero Cal. Cal. Cal. Cal.
Date Date A.c. A.C. ppnc ppmC Factor Factor Factor Factor
04/27/87 117
05/12/87 132
05/13/87 133
05/18/87 138
05/19/87 139
05/29/87 149
06/02/87 153
06/03/87 154
06/04/87 155
06/05/87 156
06/08/87 159
06/09/87 160
06/10/87 161
06/11/87 162
06/12/87 163
06/15/87 166
06/16/87 167
06/17/87 168
06/18/87 169
06/19/87 170
06/22/87 173
06/23/87 174
06/24/87 175
06/25/87 176
06/26/87 177
06/29/87 180
06/30/87 181
07/01/87 182
07/02/87 183
07/03/87 184
07/06/87 187
07/07/87 188
07/08/87 189
07/09/87 190
07/10/87 191
07/13/87 194
07/14/87 195
07/15/87 196
07/16/87 197
07/17/87 198
07/20/87 201
07/21/87 202
07/22/87 203
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 2.570
0.000 0.000
0.000 0.000
0.000 0.000
0.000 24.555
3.250 0.000
0.000 34.435
0.000 45.195
0.000 0.000
0.000 1.060
0.000 0.000
0.000 3:325
0.000 0.000
0.000 6.845
0.000 43.080
0.000 5.780
0.000 9.050
0.000 0.000
2.615 0.000
0.000 4.135
0.000 0.000
0.000 1.855
0.000 0.000
1.215 0.000
0.000 0.000
0.000 1.500
0.000 0.000
0.000 0.000
69.455 62.745
17.815 17.320
14.500 17.665
13.065 16.405
19.070 18.985
15.975 95.975
21.905 18.200
18.990 18.685
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0009
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0083
0.0010 0.0000
0.0000 0.0115
0.0000 0.0151
0.0000 0.0000
0.0000 0.0003
0.0000 0.0000
0.0000 0.0011
0.0000 0.0000
0.0000 0.0022
0.0000 0.0137
0.0000 0.0018
0.0000 0.0029
0.0000 0.0000
0.0008 0.0000
0.0000 0.0013
0.0000 0.0000
0.0000 0.0006
0.0000 0.0000
0.0004 0.0000
0.0000 0.0000
0.0000 0.0005
0.0000 0.0000
0.0000 0.0000
0.0216 0.0193
0.0056 0.0054
0.0047 0.0056
0.0041 0.0051
0.0059 0.0061
0.0051 0.0304
0.0067 0.0058
0.0060 0.0061
0.000344 0.000344
0.000347 0.000347
0.000346 0.000346
0.000344 0.000344
0.000342 0.000342
0.000345 0.000345
0.000324 0.000325
0.000321 0.000331
0.000327 0.000326
0.000329 0.000315
0.000320 0.000339
0.000329 0.000336
0.000323 0.000335
0.000329 0.000333
0.000323 0.000335
0.000322 0.000330
0.000322 0.000328
0.000305 0.000328
0.000322 0.000328
0.000317 0.000317
0.000311 0.000319
0.000319 0.000318
0.000316 0.000320
0.000316 0.000318
0.000313 0.000317
0.000315 0.000316
0.000319 0.000315
0.000309 0.000313
0.000314 0.000318
0.000319 0.000319
0.000310 0.000318
0.000314 0.000312
0.000306 0.000318
0.000312 0.000312
0.000308 0.000313
0.000311 0.000307
0.000314 0.000312
0.000322 0.000317
0.000310 0.000313
0.000310 0.000320
0.000317 0.000317
0.000304 0.000321
0.000316 0.000324
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000000
0.000
0.000001
0.309
0.000010
3.115
-0.000001
-0.306
-0.000014
-4.255
0.000019
5.937
0.000007
2.128
0.000012
3.715
0.000004
1.216
0.000012
3.715
0.000008
2.484
0.000006
1.863
0.000023
7.541
0.000006
1.863
0.000000
0.000
0.000008
2.572
-0.000001
-0.313
0.000004
1.266
0.000002
0.633
0.000004
1.278
0.000001
0.317
-0.000004
-1.254
0.000004
1.294
0.000004
1.274
0.000000
0.000
0.000008
2.581
-0.000002
-0.637
0.000012
3.922
0.000000
0.000
0.000005
1.623
-0.000004
-1.286
-0.000002
-0.637
-0.000005
-1.553
0.000003
0.968
0.000010
3.226
0.000000
0.000
0.000017
5.592
0.000008
2.532
4-14
-------
TABLE 4-4. DAILY CALIBRATION DATA SUMMARY (CHANNEL C)
Julian
Initial
Final
Initial
Final
Initial
Final
(Drift)
(X Drift)
Calib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Date
Oate
A.C.
A.C.
ppnC
ppmC
Factor
Factor
Factor
Factor
07/23/87
204
19.245
30.815
07/24/87
205
22.265
19.480
07/27/87
208
19.840
19.840
07/28/87
209
18.780
22.670
07/29/87
210
19.635
20.420
07/30/87
211
21.805
24.290
07/31/87
212
22.670
21.175
08/03/87
215
24.220
24.220
08/04/87
216
25.650
26.790
08/05/87
217
27.960
27.695
08/06/87
218
28.300
24.060
08/07/87
219
29.640
25.645
08/10/87
222
31.210
33.325
08/11/87
223
34.270
32.630
08/12/87
224
37.510
37.705
08/13/87
225
7.480
6.590
08/14/87
226
5.725
5.045
08/17/87
229
2.790
3.730
08/18/87
230
5.165
5.165
08/19/8?
231
6.480
11.130
08/20/87
232
12.960
9.940
08/21/87
233
11.970
8.375
08/24/87
236
8.800
8.800
08/26/87
238
11.225
8.445
08/27/87
239
12.465
8.275
08/28/87
240
9.580
14.425
08/31/87
243
7.875
7.875
09/01/87
244
7.175
5.675
09/02/87
245
7.220
5.480
09/03/87
246
3.480
23.315
09/04/87
247
4.090
5.190
09/08/87
251
0.000
0.000
09/09/87
252
0.000
0.000
09/10/87
253
0.000
3.875
09/11/87
254
0.000
1.360
09/14/87
257
0.000
0.000
09/15/87
258
0.000
0.000
09/16/87
259
0.000
0.000
09/17/87
260
0.000
2.515
09/18/87
261
0.000
0.000
09/21/87
264
0.000
0.000
09/22/87
265
0.000
0.000
09/23/87
266
0.000
21.580
0.0061
0.0070
0.0062
0.0059
0.0062
0.0069
0.0072
0.0076
0.0082
0.0086
0.0090
0.0092
0.0101
0.0109
0.0121
0.0024
0.0018
0.0009
0.0016
0.0021
0.0041
0.0038
0.0026
0.0035
0.0039
0.0030
0.0024
0.0022
0.0023
0.0011
0.0013
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0100
0.0060
0.0062
0.0072
0.0065
0.0077
0.0068
0.0076
0.0086
0.0089
0.0077
0.0082
0.0109
0.0103
0.0129
0.0021
0.0016
0.0012
0.0016
0.0035
0.0031
0.0026
0.0026
0.0026
0.0026
0.0045
0.0024
0.0018
0.0017
0.0074
0.0016
0.0000
0.0000
0.0013
0.0005
0.0000
0.0000
0.0000
0.0008
0.0000
0.0000
0.0000
0.0071
0.000315
0.000315
0.000315
0.000315
0.000318
0.000318
0.000318
0.000313
0.000318
0.000306
0.000317
0.000309
0.000324
0.000319
0.000322
0.000322
0.000320
0.000319
0.000316
0.000319
0.000313
0.000321
0.000299
0.000310
0.000309
0.000309
0.000310
0.000303
0.000312
0.000313
0.000318
0.000326
0.000330
0.000340
0.000314
0.000332
0.000328
0.000317
0.000321
0.000330
0.000330
0.000318
0.000330
0.000324
0.000309
0.000315
0.000319
0.000316
0.000319
0.000320
0.000313
0.000320
0.000321
0.000318
0.000321
0.000327
0.000317
0.000341
0.000325
0.000326
0.000326
0.000316
0.000317
0.000315
0.000313
0.000299
0.000311
0.000315
0.000310
0.000310
0.000313
0.000311
0.000318
0.000315
0.000326
0.000333
0.000340
0.000336
0.000334
0.000324
0.000332
0.000322
0.000330
0.000340
0.000318
0.000330
0.000009
-0.000006
0.000000
0.000004
-0.000002
0.000001
0.000002
0.000000
0.000002
0.000015
0.000001
0.000012
0.000003
-0.000002
0.000019
0.000003
0.000006
0.000007
0.000000
-0.000002
0.000002
-0.000008
0.000000
0.000001
0.000006
0.000001
0.000000
0.000010
-0.000001
0.000005
-0.000003
0.000000
0.000003
0.000000
0.000022
0.000002
-0.000004
0.000015
0.000001
0.000000
0.000010
0.000000
0.000000
2.B57
-1.905
0.000
1.270
-0.629
0.314
0.629
0.000
0.629
4.902
0.315
3.883
0.926
-0.627
5.901
0.932
1.875
2.194
0.000
-0.627
0.639
-2.492
0.000
0.323
1.942
0.324
0.000
3.300
-0.321
1.597
-0.943
0.000
0.909
0.000
7.006
0.602
-1.220
4.732
0.312
0.000
3.030
0.000
0.000
4-15
-------
TA8LE 4-4. DAILY CALIBRATION DATA SUMMARY (CHANMEL C)
Julian
I ni t i a I
Final
Initial
Final
Initial
Final
(Drift)
(X Drift)
Calib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Date
Date
A.C.
A.C.
ppmC
ppmC
Factor
Factor
Factor
Factor
09/24/87
267
0.000
1.585
0.0000
0.0005
0.000325
0.000336
0.000011
3.385
09/25/87
268
3.300
0.000
0.0011
0.0000
0.000326
0.000324
-0.000002
-0.613
09/28/87
271
2.170
2.170
0.0007
0.0007
0.000324
0.000324
0.000000
0.000
09/29/87
272
0.000
6.625
0.0000
0.0022
0.000329
0.000327
-0.000002
-0.608
09/30/87
273
5.155
10.590
0.0017
0.0035
0.000327
0.000329
0.000002
0.612
10/01/87
274
0.000
0.000
0.0000
0.0000
0.000328
0.000328
0.000000
0.000
10/02/87
275
0.000
0.000
0.0000
0.0000
0.000324
0.000324
0.000000
0.000
10/05/87
278
0.000
0.000
0.0000
0.0000
0.000325
0.000332
0.000007
2.154
10/07/87
280
0.000
0.000
0.0000
0.0000
0.000332
0.000332
0.000000
0.000
10/12/87
285
0.000
0.000
0.0000
0.0000
0.000331
0.000331
0.000000
0.000
10/14/87
287
0.000
0.000
0.0000
0.0000
0.000330
0.000330
0.000000
0.000
10/19/87
292
0.000
0.000
0.0000
0.0000
0.000331
0.000331
0.000000
0.000
10/26/87
299
0.000
0.000
0.0000
0.0000
0.000324
0.000324
0.000000
0.000
10/30/87
303
0.000
0.000
0.0000
0.0000
0.000336
0.000336
0.000000
0.000
11/04/87
308
6.515
6.515
0.0022
0.0022
0.000332
0.000332
0.000000
0.000
11/10/87
314
0.000
0.000
0.0000
0.0000
0.000323
0.000323
0.000000
0.000
11/13/87
317
0.000
0.000
0.0000
0.0000
0.000357
0.000357
0.000000
0.000
11/23/87
327
0.000
0.000
0.0000
0.0000
0.000349
0.000349
0.000000
0.000
11/24/87
328
0.000
0.000
0.0000
o'.oooo
0.000340
.0.000340
0.000000
0.000
11/25/87
329
0.000
0.000
0.0000
0.0000
0.000353
0.000353
0.000000
0.000
4-16
-------
TABLE 4-5. DAILY CALIBRATION DATA SUMMARY (CHANNEL 0)
Julian Initial Final Initial Final Initial Final (Drift) (X Drift)
Calib. Calib. Zero Zero Zero Zero Cal. Cal. Cal. Cal.
Date Date A.C. A.C. ppnC ppmC Factor Factor Factor Factor
04/27/87
117
0.865
0.865
0.0003
05/12/87
132
0.000
0.000
0.0000
05/13/87
133
0.000
0.000
0.0000
05/18/87
138
0.000
0.000
0.0000
05/19/87
139
0.000
0.000
0.0000
05/29/87
149
0.000
0.000
0.0000
06/02/87
153
0.000
0.000
0.0000
06/03/87
154
0.000
0.000
0.0000
06/04/87
155
0.000
0.000
0.0000
06/05/87
156
0.000
0.000
0.0000
06/08/87
159
0.000
0.000
0.0000
06/09/87
160
0.000
0.000
0.0000
06/10/87
161
0.000
1.835
0.0000
06/11/87
162
0.000
21.940
0.0000
06/12/87
163
0.000
5.045
0.0000
06/15/87
166
0.905
0.000
0.0003
06/16/87
167
0.000
7.280
0.0000
06/17/87
168
0.000
9.925
0.0000
06/18/87
169
0.000
5.735
0.0000
06/19/87
170
0.000
0.000
0.0000
06/22/87
173
1.140
8.925
0.0003
06/23/87
174
0.000
74.855
0.0000
06/24/87
175
0.000
12.735
0.0000
06/25/87
176
0.000
30.975
0.0000
06/26/87
177
o.ooo
0.525
0.0000
06/29/87
180
0.000
14.565
0.0000
06/30/87
181
0.000
5.925
0.0000
07/01/87
182
0.0(H)
4.150
0.0000
07/02/87
183
0.000
3.025
0.0000
07/03/87
184
0.000
0.000
0.0000
07/06/87
187
1.650
2.230
0.0005
07/07/87
188
0.675
2.430
0.0002
07/08/87
189
0.000
4.945
0.0000
07/09/87
190
0.000
3.380
0.0000
07/10/87
191
0.000
0.600
0.0000
07/13/87
194
58.360
75.825
0.0178
07/14/87
195
20.510
15.850
0.0065
07/15/87
196
13.005
19.240
0.0043
07/16/87
197
11.250
15.485
0.0034
07/17/87
198
22.955
20.235
0.0073
07/20/87
201
16.440
16.440
0.0052
07/21/87
202
31.385
20.485
0.0095
07/22/87
203
16.240
21.920
0.0051
0.0003 0.000327 0.000327 0.000000 0.000
0.0000 0.000335 0.000335 0.000000 0.000
0.0000 0.000335 0.000335 0.000000 0.000
0.0000 0.000344 0.000344 0.000000 0.000
0.0000 0.000331 0.000331 0.000000 0.000
0.0000 0.000331 0.000331 0.000000 0.000
0.0000 0.000313 0.000311 -0.000002 -0.639
0.0000 0.000313 0.000318 0.000005 1.597
0.0000 0.000317 0.000315 -0.000002 -0.631
0.0000 0.000322 0.000326 0.000004 1.242
0.0000 0.000311 0.000315 0.000004 1.286
0.0000 0.000323 0.000317 -0.000006 -1.858
0.0006 0.000312 .0.000327 0.000015 4.808
0.0071 0.000321 0.000324 0.000003 0.935
0.0016 0.000317 0.000326 0.000009 2.839
0.0000 0.000317 .0.000329 0.000012 3.785
0.0024 0.000318 0.000327 0.000009 2.830
0.0032 0.000315 0.000326 0.000011 3.492
0.0019 0.000313 0.000326 0.000013 4.153
0.0000 0.000316 0.000316 0.000000 0.000
0.0028 0.000305 0.000309 0.000004 1.311
0.0243 0.000320 0.000325 0.000005 1.562
0.0041 0.000312 0.000324 0.000012 3.846
0.0099 0.000311 0.000320 0.000009 2.894
0.0002 0.000311 0.000297 -0.000014 -4.502
0.0046 0.000312 0.000315 0.000003 0.962
0.0019 0.000319 0.000314 -0.000005 -1.567
0.0013 0.000304 0.000310 0.000006 1.974
0.0009 0.000307 0.000309 0.000002 0.651
0.0000 0.000317 0.000317 0.000000 0.000
0.0007 0.000307 0.000321 0.000014 4.560
0.0007 0.000313 0.000305 -0.000008 -2.S56
0.0016 0.000318 0.000316 -0.000002 -0.629
0.0011 0.000307 0.000327 0.000020 6.515
0.0002 0.000308 0.000315 0.000007 2.273
0.0222 0.000305 0.000293 -0.000012 -3.934
0.0051 0.000316 0.000322 0.000006 1.899
0.0061 0.000330 0.000315 -0.000015 -4.545
0.0048 0.000304 0.000313 0.000009 2.961
0.0065 0.000318 0.000322 0.000004 1.258
0.0052 0.000318 0.000318 0.000000 0.000
0.0066 0.000303 0.000322 0.000019 6.271
0.0070 0.000317 0.000318 0.000001 0.315
4-17
-------
TABLE 4-5. DAILY CALIBRATION DATA SUMMARY (CHANNEL 0)
Julian
Initial
Final
Initial
Final
Initial
Final
(Drift)
(X Drift)
Calib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Date
Date
A.C.
A.C.
ppmC
ppmC
Factor
Factor
Factor
Factor
07/23/87
07/24/87
07/27/87
07/28/87
07/29/87
07/30/87
07/31/87
08/03/87
08/04/87
08/05/87
08/06/87
08/07/87
08/10/87
08/11/87
08/12/87
08/13/87
08/14/87
08/17/87
08/18/87
08/19/87
08/20/87
08/21/87
08/24/87
08/26/87
08/27/87
08/28/87
08/31/87
09/01/87
09/02/87
09/03/87
09/04/87
09/08/87
09/09/87
09/10/87
09/11/87
09/14/87
09/15/87
09/16/87
09/17/87
09/18/87
09/21/87
09/22/87
09/23/87
204
205
208
209
210
211
212
215
216
217
218
219
222
223
224
225
226
229
230
231
232
233
236
238
239
240
243
244
245
246
247
251
252
253
254
257
258
259
260
261
264
265
266
22.025
19.305
22.560
25.340
22.510
25.845
22.590
26.215
25.880
29.050
29.760
25.020
39.010
31.220
38.455
6.555
6.375
5.940
10.380
6.425
8.090
8.375
6.870
6.575
10.030
0.000
9.525
9.555
28.685
44.745
6.290
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
28.655
20.970
22.560
16.490
27.475
32.295
17.650
26.215
20.980
29.000
22.045
24.405
29.685
38.180
35.315
6.705
8.490
6.330
10.380
7.130
6.600
9.360
6.870
8.610
0.000
0.000
9.525
7.425
21.300
57.880
6.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.705
0.000
0.000
0.000
10.730
0.0069
0.0061
0.0072
0.0081
0.0071
0.0082
0.0072
0.0079
0.0083
0.0037
0.0096
0.0077
0.0128
0.0100
0.0125
0.0021
0.0021
0.0019
0.0032
0.0020
0.0026
0.0027
0.0020
0.0019
0.0031
0.0000
0.0030
0.0029
0.0088
0.0146
0.0021
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0092
0.0062
0.0072
0.0053
0.0088
0.0104
0.0057
0.0079
0.0068
0.0094
0.0071
0.0078
0.0094
0.0126
0.0116
0.0022
0.0028
0.0021
0.0032
0.0023
0.0021
0.0030
0.0020
0.0027
0.0000
0.0000
0.0030
0.0024
0.0065
0.0191
0.0020
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0006
0.0000
0.0000
0.0000
0.0035
0.000313
0.000314
0.000317
0.000318
0.000315
0.000319
0.000317
0.000303
0.000319
0.000300
0.000321
0.000307
0.000328
0.000321
0.000324
0.000325
0.000322
0.000320
0.000305
0.000310
0.000322
0.000325
0.000290
0.000294
0.000306
0.000314
0.000315
0.000302
0.000306
0.000326
0.000329
0.000336
0.000342
0.000340
0.000312
0.000328
0.000330
0.000327
0.000330
0.000340
0.000330
0.000323
0.000330
0.000321
0.000296
0.000317
0.000321
0.000321
0.000321
0.000321
0.000303
0.000323
0.000323
0.000320
0.000318
0.000317
0.000330
0.000328
0.000329
0.000330
0.000330
0.000305
0.000319
0.000316
0.000322
0.000290
0.000308
0.000314
0.000314
0.000315
0.000320
0.000306
0.000330
0.000326
0.000336
0.000341
0.000340
0.000306
0.000339
0.000336
0.000343
0.000332
0.000340
0.000330
0.000323
0.000330
0.000008
-0.000018
0.000000
0.000003
0.000006
0.000002
0.000004
0.000000
0.000004
0.000023
•0.000001
0.000011
-0.000011
0.000009
0.000004
0.000004
0.000008
0.000010
0.000000
0.000009
-0.000006
•0.000003
0.000000
0.000014
0.000008
0.000000
0.000000
0.000018
0.000000
0.000004
-0.000003
0.000000
-0.000001
0.000000
-0.000006
0.000011
0.000006
0.000016
0.000002
0.000000
0.000000
0.000000
0.000000
2.556
-5.732
0.000
0.943
1.905
0.627
1.262
0.000
1.254
7.667
-0.312
3.583
-3.354
2.804
1.235
1.231
2.484
3.125
0.000
2.903
-1.863
-0.923
0.000
4.762
2.614
0.000
0.000
5.960
0.000
1.227
-0.912
0.000
-0.292
0.000
-1.923
3.354
1.818
4.893
0.606
0.000
0.000
0.000
0.000
4-18
-------
TABLE 4-5. DAILY CALIBRATION DATA SUMMARY (CHANNEL D)
Julian
Initial
Final
Initial
Final
Initial
Final
(Drift)
(X Drift)
Calib.
Calib.
Zero
Zero
Zero
Zero
Cal.
Cal.
Cal.
Cal.
Date
Date
A.C.
A.C.
ppmC
ppmC
Factor
Factor
Factor
Factor
09/24/87
267
0.000
0.000
0.0000
0.0000
0.000336
0.000342
0.000006
1.786
09/25/87
268
1.005
1.905
0.0003
0.0006
0.000337
0.000333
-0.000004
-1.187
09/28/87
271
3.415
3.415
0.0011
0.0011
0.000333
0.000333
0.000000
0.000
09/29/87
272
0.000
1.105
0.0000
0.0004
0.000340
0.000335
-0.000005
-1.471
09/30/87
273
4.170
1.230
0.0014
0.0004
0.000329
0.000340
0.000011
3.343
10/01/87
274
0.000
0.000
0.0000
0.0000
0.000336
0.000336
0.000000
0.000
10/02/87
275
0.000
0.000
0.0000
0.0000
0.000326
0.000326
0.000000
0.000
10/05/87
278
7.940
0.000
0.0026
0.0000
0.000329
0.000340
0.000011
3.343
10/07/87
280
0.000
0.000
0.0000
0.0000
0.000340
0.000340
0.000000
0.000
10/12/87
285
0.000
0.000
0.0000
0.0000
0.000339
0.000339
0.000000
0.000
10/14/87
287
0.365
0.365
0.0001
0.0001
0.000326
0.000326
0.000000
0.000
10/19/87
292
0.000
0.000
0.0000
0.0000
0.000340
0.000340
0.000000
0.000
10/26/87
299
0.000
0.000
0.0000
0.0000
0,000328
0.00032B
0.000000
0.000
10/30/87
303
0.110
0.110
0.0000
0.0000
0.000343
0.000343
0.000000
0.000
11/04/87
308
5.840
5.840
0.0020
0.0020
0.000345
0.000345
0.000000
0.000
11/10/87
314
0.000
0.000
0.0000
0.0000
0.000308
0.000308
0.000000
0.000
11/13/87
317
0.555
0.555
0.0002
0.0002
0.000355
0.000355
0.000000
0.000
11/23/87
327
0.000
0.000
0.0000
0.0000
0.000352
0.000352
0.000000
0.000
11/24/87
328
0.000
0.000
0.0000
0.0000
0.000335
0.000335
0.000000
0.000
11/25/87
329
0.000
0.000
0.0000
0.0000
0.000358
0.000358
0.000000
0.000
4-19
-------
Final calibration factors were determined at the end of each day after
all the site samples had been analyzed. Calibration factor drift was defined
as final calibration factor minus initial calibration factor. Percent
calibration factor drift was defined as the calibration factor drift divided
by the initial calibration factor, expressed as a percentage.
Figures 4-5 through 4-8 show the daily calibration zeros; Figures 4-9
through 4-12 show the daily calibration spans; and Figures 4-13 through 4-16
show the daily percent calibration factor drifts for Radian Channels A, B, C,
and D, respectively.
4.2.1.3 NHOC Calibration Drift. Summary calibration factor drift data
are given in Table 4-6. The table presents calibration factor drift, percent
calibration factor drift, and absolute percent calibration factor drift.
Calibration factors were calculated from an analysis of a propane-air mixture
whose concentration was known and was referenced by the EPA-QAD to an NBS SRM
No. 1667b, propane reference standard as follows:
calibration = concentration of propane standard (ppm) x 3 ppmC/ppm
factor (propane standard response (area counts) - zero response
(area counts))
Daily calibration factors ranged from 0.000287 ppmC/area count to
0.000347 ppmC/area count, depending on the channel. Maxima, minima, and mean
values are given for calibration factor drift and percent calibration factor
drift. If drift and percent drift are random variables and normally
distributed, the mean values would be expected to be zero. The means shown in
Table 4-6 for the drift and percent drift are approximately zero, showing
little bias overall, or for any channel. The overall mean values shown in
Table 4-6 were weighted according to the number of calibration drift data for
each channel. The last two columns of Table 4-6 show the means and standard
deviations, of the absolute percent calibration factor drifts. The fact that
the standard deviations are the same order of magnitude as the means indicates
that the mean calibration factor drifts are not significantly different from
zero.
The absolute percent calibration factor drift is a measure of the
calibration drift variability and averages 1.44 percent overall. The mean
absolute percent calibration drift ranges from 1.21 percent for Radian
Channel B to 1.71 percent for Channel D.
4-20
-------
DAILY CALIBRATION - ZERO
RADIAN CHANNEL A
0.04
0.03
0.02
0.01
-0.01
-0.02
-0.03
-0.04
150
170
190
210
230
270
250
290
310
Julian Date, 1987
Figure 4-5. Daily calibration zero, Channel A.
-------
DAILY CALIBRATION - ZERO
RADIAN CHANNEL B
0.04
0.03
0.02
0.01
o
E
a.
a
oooo ooooo 006
o.oo
o
o
2
2
-0.01
-0.02
-0.03
-0.04
170
150
190
210
230
250
270
290
310
Julian Date, 1987
Figure 4-6. Daily calibration zero, Channel B.
-------
DAILY CALIBRATION - ZERO
RADIAN CHANNEL C
oo oo o—o
150
170
190
210 230
Julian Date. 1987
250
270
290
310
Figure 4-7. Daily calibration zero, Channel C.
-------
DAILY CALIBRATION - ZERO
RADIAN CHANNEL D
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02
-0.03
-0.04
150
170
190
270
290
210
230
250
310
Julian Date, 1987
Figure 4-8. Daily calibration zero, Channel D.
-------
DAILY CALIBRATION - SPAN
RADIAN CHANNEL A
0.0005 -i
0.00045
^ 0.0004
c
3
o
u 0.00035
o
0.0003
^ 0.00025
O
O
5
2 0.0002
0.00015
0.0001 H | i | 1 1 , 1 , 1 , 1 1 1 1 1
150 170 190 210 230 250 270 290 310
Julian Date. 1987
Figure 4-9. Daily calibration span, Channel A.
-------
DAILY CALIBRATION - SPAN
RADIAN CHANNEL D
0.0005
0.0005
0.0004
0.0004
0.0003
0.0003
0.0002
0.0002
0.0001
150
170
190
210
230
250
270
290
310
Julian Date, 1987
Figure 4-12. Daily calibration span, Channel D.
-------
DAILY CALIBRATION - PERCENT DRIFT
no
u>
Q
c
®
u
L.
4)
0.
30
20
10
0
-10
-20
RADIAN CHANNEL A
-30
150
170
190
I 1 1 1 1—
210 230 250
Julian Date, 1907
270
290
310
Figure 4-13. Daily calibration percent drift, Channel A.
-------
u
o
L-
Q
c
«
o
L.
V
a.
30
20
10
0
10
-20
-30
DAILY CALIBRATION - PERCENT DRIFT
RADIAN CHANNEL B
1 1—
1 50 170
T
T
T
T
190
210 230
Julian Date. 1987
250
270
290
310
Figure 4-14. Daily calibration percent drift, Channel B.
-------
30
20
10
DAILY CALIBRATION - PERCENT DRIFT
RADIAN CHANNEL C
-10
-20
—$—o—e—o-
-30
150
i r
170
T
T
T
190
210 230
Julian Date, 1987
250
I I I 1
270 290 310
Figure 4-15. Daily calibration percent drift, Channel C.
-------
30
20
DAILY CALIBRATION - PERCENT DRIFT
RADIAN CHANNEL D
CJ
ro
c
0)
u
L_
4)
£L
10
W—0 —0
-10
-20
—30
i r
170
150
T
T
T
190
210 230
Julian Date, 1987
250
270
290
310
Figure 4-16. Daily calibration percent drift, Channel D.
-------
TABLE 4-6. SUMMARY NMOC CALIBRATION FACTOR DRIFT RESULTS
Calibration Factor Dr||t
oomC/Area Count x 10
Percent
Factor Drift
Absolute Percent
Factor Drift
Radian
Channel
Cases
HLa
Hean Max
Mln
Mean
Max
St an da rd
Mean Deviation
A
96
-12
3.3 21
-3.8710
1.0765
7.1186
1.4382 1.5190
B
96
-a
2.8 18
-2.5000
0.9275
6.0201
1.2075 1.2023
C
1Q1
-15
3.1 23
-<..2553
0.9924
7.5410
1.3929 1.7030
D
101
-18
2.9 23
-5.7325
0.9374
7.6667
1.7063 1.8140
Overall
394
-18
3.03 23
-5.7325
0.9830
7.6667
1.4391 1.5857
-------
4.2.2 Radian In-House NMOC QC Samples
Various statistics are given for Radian in-house QC samples in Tables 4-7
through 4-10. Samples were prepared by diluting propane with cleaned, dried
air using calibrated flow controllers. The propane used to prepare the QC
samples was certified by the EPA-QAD. In addition to the dates and
identification numbers, Tables 4-7 through 4-10 show the gas concentrations
calculated from the dilution measurements, and the gas concentrations measured
by the Radian instrument channels. The differences between the measured NMOC
concentrations and the calculated concentrations are given in ppmC and in
percent, relative to the calculated ppmC.
Measured versus calculated NMOC concentrations in Figures 4-17 through
4-20 show excellent agreement. Table 4-11 summarizes the results of the
orthogonal regressions assuming a linear relationship for the Radian in-house
quality control data, showing regression intercepts near zero, and slopes and
coefficients of correlation all near one.
Tables 4-12 and 4-13 give statistics for in-house quality control
measurements. DIFF is the ppmC difference between the measured and the
calculated NMOC concentrations, and PCDIFF is the percentage of the difference
relative to the calculated value. Overall, PCDIFF shows a mean bias of
-0.47 percent, and ranges from -0.85 percent for Channel D to 1.21 percent for
Channel C. ADIFF and APCDIFF, absolute values of DIFF and PCDIFF,
respectively, were used as measures of precision. The absolute percent
difference ranged from 3.83 percent for Channel 0 to 5.01 percent for Channel
A and averaged 4.44 percent. These figures show excellent agreement and
consistency for the in-house quality control data and include errors, not only
in the instrumental analysis but also in the apparatus and method which is
used to generate the QC samples.
Figure 4-21 shows a stem-and-leaf plot of DIFF, the NMOC difference
between the calculated and measured in-house quality control samples. The
figure shows some negative skewness, but also shows the differences to be
approximately normally distributed, which supports to the assertion that DIFF
is a random variable. The normal distribution of DIFF also implies that there
is no significant bias between instrument channels.
4-34
-------
TABLE 4-7. NMOC IN-HOUSE QUALITY CONTROL SAMPLES (CHANNEL A)
Julian
Radian
NMOC Calculated NMOC Measured
NMOC
NMOC
Date
Date
10
Concentration
Concentration Difference Difference
Analyzed
Analyzed
Nunber
ppmC
ppmC
ppmC
(X)
06/19/87
170
1333
0.681
0.736
0.055
8.076
06/22/87
173
1370
1.344
1.331
•0.013
-0.967
06/23/87
174
1398
1.847
1.774
•0.073
-3.952
06/25/87
176
1399
0.997
0.973
-0.024
-2.407
06/29/87
180
1511
0.705
0.634
-0.071
-10.071
06/30/87
181
1564
0.458
0.431
-0.027
-5.895
07/01/87
182
1565
0.332
0.291
-0.041
-12.349
07/02/87
183
1566
0.195
0.185
-0.010
-5.128
07/07/87
188
1567
0.287
0.294
0.007
2.439
07/09/87
190
1710
0.324
0.326
0.002
0.617
07/10/87
191
1711
0.476
0.472
-0.004
-0.840
07/13/87
194
1792
0.533
0.539
0.006
1.126
07/14/87
195
1793
0.673
0.687
0.014
2.080
07/17/87
198
1964
0.857
0.864
0.007
0.817
07/20/87
201
1965
0.938
0.941
0.003
0.320
07/21/87
202
2043
2.840
2.820
-0.020
-0.704
07/23/87
204
2122
1.124
1.133
0.009
0.801
07/24/87
205
2123
1.281
1.309
0.028
2.186
07/29/87
210
2124
8.454
8.330
•0.124
-1.467.
08/03/87
215
2370
1.430
1.439
0.009
0.629
08/04/87
216
2371
0.644
0.659
0.015
2.329
08/06/87
218
2372
0.046
0.070
0.024
52.174
08/11/87
223
2555
0.310
0.321
0.011
3.548
08/12/87
224
2579
0.353
0.376
. 0.023
6.516
08/14/87
226
2641
0.392
0.403
0.011
2.806
08/17/87
229
2700
0.822
0.821
-0.001
-0.122
08/19/87
231
2701
1.139
1.169
0.030
2.634
08/20/87
232
2756
1.215
1.257
0.042
3.457
08/21/87
233
2772
1.321
1.339
0.018
1.363
08/25/87
237
2774
1.488
1.500
0.012
0.806
08/27/87
239
2925
1.645
1.610
-0.035
-2.128
08/31/87
243
2926
1.073
1.028
•0.045
•4.194
09/02/87
245
2973
0.765
0.678
-0.087
-11.373
09/03/87
246
3068
0.819
0.755
-0.064
-7.814
09/09/87
252
3069
0.872
0.842
-0.030
-3.440
09/11/87
254
3070
0.923
0.907
•0.016
-1.733
09/14/87
257
3241
0.969
0.900
•0.069
-7.121
09/15/87
258
3242
0.994
0.910
•0.084
-8.451
09/16/87
259
3342
1.040
0.952
•0.088
-8.481
09/17/87
260
3343
1.082
1.057
-0.025
-2.329
09/18/87
261
3443
1.048
1.075
0.027
2.576
09/21/87
264
3444
1.098
1.043
-0.055
-5.009
09/23/87
266
3505
0.981
0.944
-0.037
-3.772
4-35
-------
TABLE 4-7. NMOC IN-HOUSE QUALITY CONTROL SAMPLES (CHANNEL A)
Julian
Radian
NMOC Calculated NMOC Measured
NMOC
NMOC
Date
Date
ID
Concentration
Concentration Difference Difference
Analyzed
Analyzed
Nirnber
pprC
ppnC
ppnC
(X)
09/24/87
267
3506
0.851
0.795
-0.056
-6.580
09/25/87
268
3507
0.748
0.736
-0.012
-1.604
09/30/87
273
3678
0.600
0.522
-0.078
-13.000
10/19/87
292
3831
0.449
0.449
0.000
0.000
10/22/87
295
3835
8.662
8.543
-0.119
•1.374
10/29/87
302
3847
0.237
0.234
-0.003
-1.266
11/02/87
306
3865
0.250
0.299
0.049
19.600
11/09/87
313
3867
0.253
0.257
0.004
1.581
11/12/87
316
3869
0.348
0.352
0.004
1.149
4-36
-------
TABLE 4-8. NMOC IN-HOUSE QUALITY CONTROL SAMPLES (CHANNEL B)
Julian
Radian
NMOC Calculated NMOC Measured
NMOC
NMOC
Date
Date
ID
Concentration
Concentration Difference Difference
Analyzed
Analyzed
Number
ppnC
ppnC
PPnC
(X)
06/19/87
170
1333
0.681
0.738
0.057
8.370
06/22/87
173
1370
1.344
1.316
-0.028
-2.083
06/23/87
174
1398
1.847
1.710
-0.137
-7.417
06/25/87
176
1399
0.997
0.984
-0.013
-1.304
06/29/87
180
1511
0.705
0.690
-0.015
-2.128
06/30/87
181
1564
0.458
0.432
-0.026
-5.677
07/01/87
182
1565
0.332
0.297
-0.035
-10.542
07/02/87
183
1566
0.195
0.186
•0.009
-4.615
07/07/87
188
1567
0.287
0.300
0.013
4.530
07/09/87
190
1710
0.324
0.336
0.012
3.704
07/10/87
191
1711
0.476
0.499
0.023
4.832
07/13/87
194
1792
0.533
0.549
0.016
3.002
07/14/87
195
1793
0.673
0.695
0.022
3.269
07/17/87
198
1964
0.857
0.885
0.028
3.267
07/20/87
201
1965
0.938
0.938
0.000
0.000
07/21/87
202
2043
2.840
2.846
0.006
0.211
07/23/87
204
2122
1.124
1.083
-0.041
-3.648
07/24/87
205
2123
1.281
1.233
-0.048
-3.747
07/29/87
210
2124
8.454
8.222
-0.232
-2.744
08/03/87
215
2370
1.430
1.451
0.021
1.469
08/04/87
216
2371
0.644
0.662
0.018
2.795
08/06/87
218
2372
0.046
0.061
0.015
32.609
08/11/87
223
2555
0.310
0.327
0.017
5.484
08/12/87
224
2579
0.353
0.368
0.015
4.249
08/14/87
226
2641
0.392
0.397
0.005
1.276
08/17/87
229
2700
0.822
0.833
0.011
1.338
08/19/87
231
2701
1.139
1.178
0.039
3.424
08/20/87
232
2756
1.215
1.241
0.026
2.140
08/21/87
233
2772
1.321
1.363
0.042
3.179
08/25/87
236
2774
1.488
1.470
•0.018
-1.210
08/27/87
238
2925
1.645
1.620
-0.025
-1.520
08/31/87
243
2926
1.073
1.025
•0.048
-4.473
09/02/87
245
2973
0.768
0.726
-0.042
-5.469
09/03/87
246
3068
0.819
0.716
-0.103
-12.576
09/09/87
252
3069
0.872
0.805
-0.067
-7.683
09/11/87
254
3070
0.923
0.893
-0.030
-3.250
09/14/87
257
3241
0.969
0.918
-0.051
-5.263
09/15/87
258
3242
0.994
0.949
•0.045
•4.527
09/16/87
259
3342
1.040
0.994
-0.046
-4.385
09/17/87
260
3343
1.087
1.044
•0.043
-3.947
09/18/87
261
3443
1.048
1.077
0.029
2.767
09/21/87
264
3444
1.098
1.044
-0.054
-4.918
09/23/87
266
3505
0.981
0.929
-0.052
-5.301
4-37
-------
TABLE 4-9. NMOC IN-HOUSE QUALITY CONTROL SAMPLES (CHANNEL C)
Julian
Radian
NMOC Calculated NMOC Measured
NMOC
NMOC
Date
Date
!D
Concentration
Concentration Difference Difference
Analyzed
Analyzed
Number
ppmC
ppmC
ppmC
(X)
09/24/87
267
3506
0.851
0.800
-0.051
•5.993
09/25/87
268
3507
0.748
0.726
-0.022
-2.941
09/29/87
272
3508
0.622
0.601
-0.021
-3.376
09/30/87
273
3678
0.600
0.528
-0.072
-12.000
10/12/87
285
3819
0.519
0.505
-0.014
-2.697
10/19/87
292
3831
0.449
0.452
0.003
0.668
10/26/87
299
3846
0.216
0.224
0.008
3.704
10/30/87
303
3859
0.233
0.233
0.000
0.000
11/04/87
308
3866
2.936
2.949
0.013
0.443
11/10/87
314
3868
0.280
0.286
0.006
2.143
11/13/87
317
3869
0.348
0.362
0.014
4.023
4-40
-------
TABLE 4-10. NHOC IN-HOUSE QUALITY CONTROL SAMPLES (CHANNEL D)
Juli an
Radian
NHOC Calculated NHOC Measured
NHOC
NHOC
Date
Date
ID
Concentration
Concentration Difference Difference
Analyzed
Analyzed
Nuifcer
ppmC
ppmC
ppmC
06/19/87
170
1333
0.681
0.644
-0.037
-5.433
06/22/87
173
1370
1.344
1.368
0.024
1.786
06/23/87
174
1398
1.847
1.817
-0.030
-1.624
06/25/87
176
1399
0.997
1.017
0.020
2.006
06/26/87
177
1400
0.392
0.358
-0.034
-8.673
06/29/87
180
1511
0.705
0.672
-0.033
•4.681
06/30/87
181
1564
0.458
0.461
0.003
0.655
07/01/87
182
1565
0.332
0.311
-0.021
-6.325
07/02/87
183
1566
0.195
0.177
•0.018
-9.231
07/07/87
188
1567
0.287
0.295
0.008
2.787
07/09/87
190
1710
0.324
0.348
0.024
7.407
07/10/87
191
1711
0.476
0.490
0.014
2.941
07/13/87
194
1792
0.533
0.549
0.016
3.002
07/14/87
195
1793
0.673
0.656
-0.017
-2.526
07/17/87
198
1964
0.857
0.854
-0.003
-0.350
07/20/87
201
1965
0.938
0.952
0.014
1.493
07/21/87
202
2043
2.840
2.678
-0.162
-5.704
07/23/87
204
2122
1.124
1.110
-0.014
-1.246
07/24/87
205
2123
1.281
1.288
0.007
0.546
07/28/87
209
2124
8.454
8.378
-0.076
-0.899
07/29/87
210
2124
8.454
8.065
-0.389
-4.601
08/03/87
215
2370
1.430
1.377
-0.053
-3.706
08/04/87
216
2371
0.644
0.654
0.010
1.553
08/06/87
218
2372
0.046
0.055
0.009
19.565
08/11/87
223
2555
0.310
0.347
0.037
11.935
08/12/87
224
2579
0.353
0.363
0.010
2.833
08/14/87
226
2641
0.392
0.394
0.002
0.510
08/17/87
229
2700
0.822
0.809
-0.013
-1.582
08/19/87
231
2701
1.139
1.114
-0.025
-2.195
08/20/87
232
2756
1.215
1.306
0.091
7.490
08/21/87
233
2772
1.321
1.323
0.002
0.151
08/26/87
238
2773
1.462
1.369
-0.093
-6.361
08/27/87
239
2925
1.645
1.619
•0.026
-1.581
08/31/87
243
2926
1.073
1.047
•0.026
-2.423
09/03/87
246
3068
0.819
0.763
•0.056
-6.838
09/09/87
252
3069
0.872
0.871
-0.001
-0.115
09/11/87
254
3070
0.923
0.900
-0.023
-2.503
09/14/87
257
3241
0.969
0.920
•0.049
•5.046
09/15/87
258
3242
0.994
0.958
-0.036
•3.642
09/16/87
259
3342
1.040
0.963
-0.077
-7.404
09/17/87
260
3343
1.087
1.030
-0.057
-5.244
09/18/87
261
3443
1.048
1.097
0.048
4.628
09/21/87
264
3444
1.098
1.094
-0.004
•0.364
4-41
-------
TABLE 4-10. NMOC IN-HOUSE QUALITY CONTROL SAMPLES (CHANNEL 0)
Julian Radian NMOC Calculated NMOC Measured NMOC NMOC
Date Date 10 Concentration Concentration Difference Difference
Analyzed Analyzed Nurber ppnC ppmC pprC (X)
09/23/87
266
3505
0.981
0.961
-0.020
-2.039
09/24/87
267
3506
0.851
0.849
-0.002
-0.235
09/25/87
268
3507
0.748
0.759
0.011
1.471
09/29/87
272
3508
0.622
0.596
•0.026
-4.180
09/30/87
273
3678
0.600
0.516
•0.084
-14.000
10/12/87
285
3819
0.519
0.501
-0.018
-3.468
10/19/87
292
3831
0.449
0.454
0.005
1.114
10/26/87
299
3846
0.216
0.218
0.002
0.926
10/30/87
303
3859
0.233
0.233
0.000
0.000
11/04/87
308
3866
2.936
3.057
0.121
4.121
11/10/87
314
3868
0.280
0.269
-0.011
-3.929
11/13/87
317
3869
0.348
0.356
0.008
2.299
4-42
-------
IN-HOUSE PROPANE QC RESULTS
Channel A
O
E
a
a
•—'
c
o
c
a>
u
c
o
o
©
c
o
a
o
l_
Q.
TJ
m
i_
a
m
a
Q>
5
9.00
8.00
7.00
6.00 -
5.00
4.00 -
3.00 -
2.00 -
1.00 -
0.00
0.00
2.00 4.00 6.00
Calculated Propane Concentration (ppmC)
8.00
Figure 4-17. In-house quality control results, Channel A.
-------
IN-HOUSE PROPANE QC RESULTS
Channel B
O
E
a
a
c
o
c
Q
u
c
o
o
®
c
o
a
o
L.
Q.
T>
®
k.
D
0)
O
a>
2
9.00
8.00 -
7.00
6.00 -
5.00 -
4.00
3.00 -
2.00 -
1.00 -
0.00
0.00
2.00 " 4.00 6.00
Calculated Propane Concentration (ppmC)
8.00
Figure 4-18. In-house quality control results, Channel B.
-------
IN-HOUSE PROPANE QC RESULTS
Channel C
o
E
a
a
c
o
'*>
o
L.
+»
c
o
u
c
o
o
®
c
o
a
o
L-
a.
TJ
o
l_
D
W
O
ft)
9.00
8.00 -
7.00 -
6.00 -
5.00 -
4.00 -
3.00 -
2.00 -
1.00 -
0.00
0.00
2.00 4.00 6.00
Calculated Propane Concentration (ppmC)
8.00
Figure 4-19. In-house quality control results, Channel C.
-------
4*
O
E
a
a
c
0
c
0)
u
c
o
o
0)
c
o
a
o
T)
®
L.
3
0)
a
V
2
9.00
8.00 -
7.00 -
6.00 -
5.00 -
4.00
3:00 -
2.00 -
1.00 -
0.00
0.00
IN-HOUSE PROPANE QC RESULTS
Channel D
2.00 4.00 6.00
Calculated Propane Concentration (ppmC)
8.00
Figure 4-20. In-house quality control results, Channel D.
-------
TABLE 4-11. ORTHOGONAL REGRESSION PARAMETERS
FOR IN-HOUSE QUALITY CONTROL DATA
Radian
Channel
Cases
Intercept
Slope
Coefficient of
Correlation
A
50
-0.002140
0.986320
0.999734
B
50
0.020943
0.959413
0.999582
C
52
0.024876
0.965475
0.999085
0
53
0.010937
0.973832
0.999392
4-47
-------
TABLE 4-12. IN-HOUSE QUALITY CONTROL STATISTICS, BY RADIAN CHANNEL
Variables
Channel Statistics DIFFa ADIFFb PCIFFc APCDIFFd
Cases
50
50
50
50
Minimum
-0.12400
0.00000
-13.00000
0.00000
Maximum
.0.05500
0.12400
52.17391
52.17390
Mean
-0.01818
0.03426
-0.33343
5.00941
Std. Dev.
0.04268
0.03099
9.37434
7.89842
Std. Error
0.00603
0.00438
1.32573
1.11700
Skewness
-0.63322
1.14187
3.63363
4.51795
Kurtosls
0.29518
0.62077
18.18366
23.80398
Cases
50
50
50
50
Minimum
-0.45500
0.00000
-12.57600
0.00000
Maximum
0.05700
0.45500
32.60900
32.60870
Mean
-0.02664
0.04495
-0.46430
4.83241
Std. Dev.
0.07916
0.07020
7.04354
5.09927
Std. Error
0.01119
0.00992
0.99610
0.72114
Skewness
-3.8616
4.50951
2.11300
3.58225
Kurtosls
15.99441
22.38867
8.28383
16.06771
Cases
52
52
52
52
Minimum
-0.47800
0.00000
-12.00000
0.00000
Maximum
0.28400
0.47800
23.91300
23.91304
Mean
-0.01534
0.04122
-0.20728
4.15587
Std. Dev.
0.08565
0.07616
6.13281
4.47720
Std. Error
0.01187
0.01056
0.85046
0.62087
Skewness
-2.35919
4.38513
1.37540
2.32254
Kurtosls
17.16937
20.67629
4.08732
6.56499
Cases
53
53
53
53
Minimum
-0.38900
0.00000
-14.00000
0.00000
Maximum
0.12100
0.38900
19.56500
19.56522
Mean
-0.01971
0.03976
-0.85469
3.83281
Std. Dev.
0.6743
0.05908
5.33015
3.76599
Std. Error
0.00926
0.00811
0.73215
0.51729
Skewness
-3.11598
4.29806
0.97414
1.95432
Kurtosls
15.64371
22.01107
3.27821
4.81542
aDIFF i Measured NMOC Concentration - Calculated NMOC concentration, ppmC.
^ADIFF • Absolute value of DIFF, ppmC.
cPCDIFF - DIFF / Calculated NMOC concentration x 100.
dAPCDIFF - Absolute value of PCDIFF.
4-48
-------
TABLE 4-13. OVERALL IN-HOUSE QUALITY CONTROL STATISTICS
Variables
Statistics
DIFFa
ADIFFb PC0IFFc
APCDIFFd
Cases
205
205
205
205
Minimum
-0.47800
0.00000
-14.00000
0.00000
Maximum
0.28400
0.47800
52.17391
52.17390
Mean
-0.01992
0.03966
-0.46812
4.44554
Std. Dev.
0.07038
0.06140
7.05194
5.48547
Std. Error
0.00491
0.00428
0.49252
0.38312
Skewness
-2.00567
4.76877
2.88922
4.50538
Kurtosls
19.33574
27.23057
16.98976
30.53460
aDIFF - Measured NMOC concentration - Calculated NMOC concentration, ppmC.
bADIFF - Absolute value of DIFF.
cPCDIFF = DIFF/calculated NMOC concentration x 100.
dAPC0IFF » Absolute value of PCDIFF.
4-49
-------
•47
45
-38
-23
•10
•15
-13
¦12
•11
•10
-9
-8
•7
•8
-5
-4 H
-3
•2
•1
•0 M
0
1 H
2
3
4
5
6
7
8
9
12
28
a
5
9
2
2
1
7
4
9
3
3
98744
98784 3221
9741
78854 32211
98878 54321 110
88776 55430 000
88768 88559 54321 100
88877 78544 33333 2210
97443 3221
00000 01222 23333 45588 87777 88999
00011 11122 33344 45555 58678 889
01223 33444 58777 7889
00479 9
22589
57
DIFF, ppmC
Cases
205
Minimum
•0.478
Maximum
2.284
Mean
-0.020
Standard Deviation
0.070
Standard Error
0.005
Skewness
•3.006
Kurtosis
19.336
Lower Hinge (H)
-0.040
Median (M)
-0.009
Upper Hinge (H)
0.013
oc
0
1
oo
Figure 4-21. Stem-and-leaf plot of in-house quality control differences.
4-50
-------
4.2.3 Comparable Analyses
Two types of comparable, or repeated analyses were conducted in this
study. The first type of repeated analysis was conducted primarily to
establish precision, and to determine if significant differences in precision
existed among Radian (PDFID) channels, the EPA-QAD (PDFID) channel, and the
EPA-ASRL (GC/FID) channel. Two samples daily were selected from the received
site samples for a second analysis on a Radian channel. The schedule of which
Radian channels were selected for the repeated analyses was specified by the
Quality Assurance Project Plan (QAPP)*, so that all combinations of channel
pairs, i.e., A-A, B-B, B-C, A-D, etc., would be selected randomly. The
EPA-QAD and the EPA-ASRL channels randomly repeated analyses of the site
samples already analyzed once by Radian. None of the site samples selected
for repeated analyses by Radian channels was analyzed a third time by an EPA
channel.
The second type of comparative analysis was done on local ambient samples
collected by EPA-QAD personnel at or near Research Triangle Park, NC. These
samples were taken once weekly in duplicate at an initial pressure of about 35
psig. Each local ambient sample, called a "round-robin sample," was analyzed
by all four Radian channels, the EPA-QAD channel, and the EPA-ASRL channel.
One of the duplicate round-robin samples was analyzed first in the Radian
laboratory while the other duplicate round-robin sample was analyzed first in
the EPA laboratories. Upon completion of the analyses, the laboratories
exchanged canisters, and analyzed the other duplicate sample on all channels.
The purposes of these studies were:
t to determine if the order of analysis by one laboratory or
channel made a significant difference in the measured NMOC
value;
• to compare the precision of all the channels;
t to compare the PDFID method of analysis with the GCFID method of
analysis; and
• to compare the results between channels.
4-51
-------
The first type of comparable NMOC analysis is described in Section
4.2.3.1, the second type in Section 4.2.3.2.
4.2.3.1 NMOC Site Sample Comparable Analyses. Figure 4-22 compares the
EPA-QAD analyses with Radian analyses of the same site samples. Figure 4-23
compares the EPA-ASRL analyses with Radian analyses. Figure 4-24 compares
ASRL analyses with QAD analyses. Orthogonal regression parameters for the
three data sets are summarized in Table 4-14.
Summary statistics of the comparative analyses for Radian channels versus
the EPA-QAD channel are given in Table 4-15. The table gives DELTA, the
difference between the Radian NMOC concentration and the QAD NMOC
concentration in ppmC; and PDELTA, the percent difference relative to the mean
of the Radian and QAD analyses. ADELTA and APDELTA are the absolute values of
DELTA and PDELTA, respectively. The mean percent difference shows Radian NMOC
concentrations to average 4.48 percent lower than the QAD NMOC concentration.
This is an average bias figure for the Radian analyses relative to a mean NMOC
concentration. The average absolute percent difference is 14.07, which is a
measure of the precision.
In 1986, the mean percent differences showed Radian concentrations to
average 3.77% lower than the QAD NMOC concentration. The average absolute
percent difference was 14.84%, relative to the mean of the Radian and QAD NMOC
concentrations. The agreement between the 1986 and 1987 precision results is
good, and shows that the instruments and operating procedures were consistent
for the two years.
Summary statistics are given for the same data in Table 4-16 by Radian
channel, and show a mean absolute percent difference ranging from 12.46 for
Channel D to 14.88 for Channel A. The mean percent differences range from
-10.33% for Channel A to +0.35 percent for Channel C.
Table 4-17 summarizes statistics for comparative analyses for Radian
channels versus ASRL channels. DELTA is the difference between the NMOC
values determined by Radian channels and the NMOC values determined by ASRL.
PDELTA averages 8.37%, indicating that DELTA is not symmetrical about
zero. APDELTA is 15.88%, which is higher than the APDELTA mean for 1986,
which was 12.35%. Table 4-18 compares Radian NMOC analyses with ASRL NMOC
analyses, by Radian channels. APDELTA are 15.50%, 15.14%, 18.37%, and 15.36%
comparing the ASRL channel with Radian Channels A, B, C, and D, respectively.
4-52
-------
1987 NMOC PROGRAM
Orthogonal Regression
5.00
4.00
3.00
2.00
1.00
0.00
0.00
2.00
4.00
Radian NMOC (ppmC)
Figure 4-22. Orthogonal regression comparing QAD with Radian NMOC analyses.
-------
1987 NMOC PROGRAM
Orthogonal Regression
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00
0.00
2.00
8.00
6.00
4.00
Radian NMOC (ppmC)
Figure 4-23. Orthogonal regression comparing ASRL with
Radian NMOC analyses.
-------
1987 NMOC PROGRAM
Orthogonal Regression
6.00
5.00
4.00
3.00
2.00
1.00
0.00
0.00
2.00
4.00
6.00
ASRL NMOC (ppmC)
Figure 4-24. Orthogonal regression comparing ASRL with
QAD NMOC analyses.
-------
TABLE 4-14. ORTHOGONAL REGRESSION PARAMETERS FOR
REPEATED ANALYSES OF SITE SAMPLES
Channel
Coefficient of
Pair
Cases
Intercept
Slope
Correlation
QAD-Radian
144
0.05315
0.92725
0.97848
ASRL-Radian
306
-0.08213
1.04687
0.98823
ASRL-QAD
132
0.09686
0.85714
0.98797
4-56
-------
TABLE 4-15. SUMMARY STATISTICS OF COMPARATIVE
ANALYSES FOR RADIAN VS. QAD CHANNELS
Variables
Statistics
DELTA3
ADELTAb
PDELTAC
APDELTAd
Cases
192
192
192
192
Minimum
-0.47000
0.00100
132.02247
0.09799
Maximum
0.51100
0.51100
44.98480
132.02247
Mean
0.00488
0.07515
-4.48028
14.06780
Std. Dev.
0.11074
0.08130
21.04116
16.24712
Std. Error
0.00799
0.00586
1.51851
1.17253
Skewness
0.61345
2.44174
-1.91070
3.35127
Kurtosis
4.30150
7.60342
8.01716
16.62916
aDELTA = Radian NMOC concentration - QAD NMOC concentration, ppmC.
bADELTA = Absolute value of DELTA.
CPDELTA - DELTA/((Radian NMOC concentration + QAD NMOC
concentration)/2)xl00.
dAPDELTA - Absolute value of PDELTA.
4-57
-------
TABLE 4-16. SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR
RADIAN VS. QAD CHANNELS, BY RADIAN CHANNELS
Variables
Channel Statistics
DELTA3
ADELTAb PDELTA0
APDELTAd
Cases
45
45
45
45
Minimum
-0.19900
0.00100
-78.19253
0.18099
Maximum
0.31900
0.31900
28.76712
78.19253
Mean
-0.02826
0.07071
-10.32794
14.88330
Std. Dev.
0.09153
0.06388
20.99133
17.97720
Std. Error
0.01364
0.00952
3.12920
2.67988
Skewness
1.68927
1.89985
-1.44140
2.04954
Kurtosis
4.44741
4.39995
2.38143
3.65096
Cases
37
37
37
37
Minimum
-0.36400
0.00100
-68.29268
0.25157
Maximum
0.30100
0.36400
44.98480
68.29268
Mean
-0.01156
0.07513
-6.73759
14.16800
Std. Dev.
0.10823
0.07778
19.33323
14.63290
Std. Error
0.01779
0.01278
3.17836
2.40563
Skewness
0.01852
2.18772
-0.53058
1.88278
Kurtosis
3.11132
4.90403
2.28560
3.61876
Cases
57
57
57
57
Minimum
-0.47000
0.00200
-132.02247
0.51948
Maximum
0.32200
0.47000
29.12966
132.02247
Mean
0.02398
0.08335
0.34729
14.85040
Std. Dev.
0.11603
0.08353
23.57417
18.20416
Std. Error
0.01536
0.01106
3.12247
2.41120
Skewness
-1.09813
2.30637
-3.19245
4.81966
Kurtosis
4.78470
7.15679
15.59976
28.38844
Cases
53
53
53
53
Minimum
-0.13000
0.00100
-82.27848
0.09799
Maximum
0.51100
0.51100
36.84210
82.27848
Mean
0.02398
0.07013
-3.13136
12.46378
Std. Dev.
0.11591
0.09491
18.31558
13.67922
Std. Error
0.01592
0.01303
2.51583
1.87898
Skewness
2.14493
2.65959
-1.39101
2.75256
Kurtosis
5.08700
7.97600
5.15779
10.96167
aDELTA - Radian NMOC concentration - QAD NMOC concentration, ppmC.
bADELTA - Absolute value of DELTA.
CPDELTA - DELTA/((Radian NMOC concentration + QAD NMOC
concentration)/2)xlOO.
^APDELTA = Absolute value of PDELTA.
4-58
-------
TABLE 4-17. SUMMARY STATISTICS OF COMPARATIVE
ANALYSES FOR RADIAN VS. ASRL CHANNELS
Variables
Statistics
DELTA3
ADELTAb
PDELTAC
APDELTAd
Cases
306
306
306
306
Minimum
-1.757500
0.001810
-131.926864
0.158604
Maximum
0.641000
1.757500
84.345048
131.926864
Mean
0.034011
0.108950
8.369940
15.881842
Std. Dev.
0.184581
0.152714
21.028124
16.106138
Std. Error
0.010552
0.008730
1.202098
0.920727
Skewness
-3.625775
5.290134
-1.485333
3.179495
Kurtosis
30.991732
45.824318
11.742900
16.432695
aDELTA = Radian NMOC concentration - ASRL NMOC concentration, ppmC.
^ADELTA = Absolute value of DELTA.
CPDELTA = DELTA/((Radian NMOC concentration + ASRL NMOC concentration)/2)
xlOO
dAPDELTA = Absolute value of PDELTA.
4-59
-------
TABLE 4-18. SUMMARY STATISTICS OF COMPARATIVE ANALYSES FOR
RADIAN VS. ASRL CHANNELS, BY RADIAN CHANNELS
Variables
Channel Statistics
DELTA3
ADELTAb PDELTAC
APDELTAd
Cases
61
61
61
61
Minimum
-0.768000
0.004000
-126.415094
0.193143
Maximum
0.298000
0.768000
32.415902
126.415094
Mean
-0.022564
0.110236
3.001502
15.500117
Std. Dev.
0.189982
0.155744
23.612804
17.957333
Std. Error
0.024325
0.019941
3.023310
2.299201
Skewness
-2.082197
2.657199
-2.904020
4.140821
Kurtosis
5.367350
7.024766
13.420767
22.403009
Cases
66
66
66
66
Minimum
-1.757500
0.001810
-38.658235
0.198216
Maximum
0.431500
1.757500
71.886714
71.886714
Mean
0.016908
0.095746
9.902209
15.143079
Std. Dev.
0.243266
0.223965
18.925036
14.995950
Std. Error
0.029944
0.027568
2.329511
1.845874
Skewness
-5.845160
6.414825
0.707757
1.755808
Kurtosis
41.492289
44.488754
1.815701
2.997532
Cases
90
90
90
90
Minimum
-0.751000
0.002400
-131.926864
0.158604
Maximum
0.641000
0.751000
70.655271
131.926864
Mean
0.062343
0.124261
11.010885
18.373748
Std. Dev.
0.172027
0.133826
23.564300
18.343670
Std. Error
0.018133
0.014107
2.483895
1.933593
Skewness
-1.065492
2.238971
-2.196936
3.121566
Kurtosis
6.406699
6.313511
13.689663
15.250867
Cases
89
89
89
89
Minimum
-0.208000
0.002000
-38.305709
0.301659
Maximum
0.374000
0.374000
84.345048
84.345048
Mean
0.056819
0.102376
8.242522
14.171414
Std. Dev.
0.126683
0.093347
17.244796
12.766482
Std. Error
0.013428
0.009895
1.827945
1.353244
Skewness
0.378469
1.145351
0.806988
2.385450
Kurtosis
0.147615
0.442802
3.585417
9.201223
aDELTA = Radian NMOC concentration - ASRL NMOC concentration, ppmC.
^ADELTA = Absolute value of DELTA.
CPDELTA = DELTA/((Radian NMOC concentration + ASRL NMOC
concentration)/2)xlOO.
^APDELTA = Absolute value of PDELTA.
4-60
-------
PDELTA averages are 3.00%, 9.90%, 11.01%, and 8.24% for ASRL versus Radian
Channels A, B, C, and D, respectively. PDELTA means in 1986 were -2.84,
-2.47, 4.55, and -1.31 for Channels A, B, C, and D, respectively. The
significant differences between the PDELTA values for 1986 and 1987 indicate
that the ASRL measurements for 1987 are biased relative to the Radian
measurements.
Table 4-19 gives a comparison of repeated analyses of site samples by the
EPA-ASRL GC/FID instrument and the EPA-QAD PDFID instrument. The results show
that PDELTA averaged -9.01%, while APDELTA averaged 17.17%. It is seen that
the ASRL concentrations average 9.01% lower than the QAD concentrations.
Radian concentrations were 4.48% lower than QAD concentrations. APDELTA
between ASRL and QAD concentrations averaged 17.17%, whereas APDELTA for
Radian and QAD concentrations averaged 14.07%.
Of NMOC concentration measurements, the comparison between Radian and the
EPA-QAD channel represents between-laboratory comparisons for the PDFID
method. Comparisons between the Radian channels and the EPA-ASRL channel are
between-laboratory and between-method comparisons.
Table 4-20 gives summary statistics for repeated analyses on Radian
channels. The QAPP^ specified the channel pair to be involved with the
repeated analysis each day. The mean APDELTA was the average percent
difference between the second and the first analysis and was 9.61 percent for
the overall data set. Table 4-21 shows the statistics for repeated analyses
by Radian channel pairs. Table 4-22 gives the 95% confidence intervals for
the mean differences by channel pairs. Figure 4-25 plots the means and 95
percent confidence intervals listed in Table 4-22. The squares on Figure 4-25
locate the mean difference for each channel pair. The vertical lines span the
95% confidence intervals of the mean differences.
4.2.3.2 Local Ambient Samples. Table 4-23 presents the overall
statistics for local ambient samples. These data include comparisons among
Radian channels and EPA channels. The mean differences and the mean percent
differences are both near zero, which indicates that they are random
variables. The overall mean absolute percent difference (APDIF) is 5.58%
which is lower than the precision for repeated analyses (9.61%).
Table 4-24 presents the same information separated into two cases, by
the Radian analysis order. The upper part of Table 4-24 shows statistics for
4-61
-------
TABLE 4-19. SUMMARY STATISTICS OF COMPARATIVE
ANALYSES FOR ASRL VS. QAD CHANNELS
Variables
Stati sties
DELTA3
ADELTAb
PDELTA0
APDELTAd
Cases
132
132
132
132
Minimum
-0.216000
0.000000
-65.441176
0.000000
Maximum
0.986000
0.986000
77.354709
77.354709
Mean
-0.004803
0.092333
-9.009571
17.170390
Std. Dev.
0.142370
0.108176
21.278001
15.410142
Std. Error
0.012392
0.009415
1.852012
1.341281
Skewness
3.291350
5.029842
0.323309
1.368669
Kurtosis
17.542419
35.133429
1.860614
1.534560
aDELTA = ASRL NMOC concentration - QAD NMOC concentration, ppmC.
^ADELTA = Absolute value of DELTA.
CPDELTA = DELTA/((ASRL concentration + QAD concentration)/2)xl00.
^APDELTA = Absolute value of PDELTA.
4-62
-------
TABLE 4-20. SUMMARY STATISTICS FOR COMPARATIVE
ANALYSES ON RADIAN CHANNELS
Variable
Statistics
DELTA3
ADELTAb
PDELTAC
APDELTAd
Cases
157
157
157
157
Minimum
-0.422330
0.000170
-64.994030
0.025420
Maximum
0.531250
0.531250
85.289990
85.289990
Mean
-0.024785
0.061590
-3.719633
9.612926
Std. Dev.
0.097082
0.078899
15.347544
12.508831
Std. Error
0.007748
0.006297
1.223867
0.998313
Skewness
0.369047
2.558255
0.172209
3.137740
Kurtosis
7.687498
9.474435
9.687963
12.589367
aDELTA = (NMOC concentration on Channel Y) - (NMOC concentration on
Channel X).
bADELTA = Absolute value of DELTA.
CPDELTA - DELTA/((NMOC concentration determined by Channel Y + NMOC
concentration determined by Channel X)/2)xl00.
^APDELTA » Absolute value of ADELTA.
4-63
-------
TABLE 4-21. SUMMARY STATISTICS FOR COMPARATIVE ANALYSES
ON RADIAN CHANNELS, BY CHANNEL PAIRS
5 h p
Pair Statistics DELTAd ADELTAC POELTA0 APDELTA
Cases
20
20
20
20
Minimum
-0.215670
0.000600
-19.173210
0.133070
Maximum
0.075670
0.215670
14.049590
19.173210
Mean
-0.014520
0.030747
-2.402161
5.130710
Std. Dev.
0.055410
0.047927
7.416498
5.776578
Std. Error
0.012390
0.010717
1.658379
1.291682
Skewness
-2.314638
3.074736
-0.444377
1.323117
Kurtosis
7.091910
9.378581
0.933168
0.630554
Cases
13
13
13
13
Minimum
-0.103500
0.001000
-15.362530
0.284230
Maximum
0.531250
0.531250
85.289990
85.289990
Mean
0.034097
0.064532
4.775353
11.798633
Std. Dev.
0.153826
0.142865
25.450508
22.839096
Std. Error
0.042664
0.039624
7.058701
6.334426
Skewness
2.844849
2.985396
2.654473
2.829963
Kurtosis
6.915344
7.298912
6.117974
6.707108
Cases
11
11
11
11
Minimum
-0.151330
0.000330
-11.853790
0.122170
Maximum
0.015000
0.151330
3.401360
11.853790
Mean
-0.025773
0.028560
-3.367082
4.007724
Std. Dev.
0.044568
0.042658
4.562505
3.952137
Std. Error
0.013438
0.012862
1.375647
1.191614
Skewness
-2.212350
2.408757
-0.563109
0.892378
Kurtosis
4.036074
4.601940
-0.608478
-0.496483
Cases
21
21
21
21
Minimum
-0.229000
0.004050
-63.261300
1.514160
Maximum
0.121950
0.229000
24.231460
63.261300
Mean
-0.052386
0.098511
-9.952177
17.504975
Std. Dev.
0.107201
0.064682
21.921340
16.211043
Std. Error
0.023393
0.014115
4.783629
3.537540
Skewness
0.114084
0.214553
-0.870703
1.791698
Kurtosis
-1.143398
-0.775350
0.700013
2.512840
Cases
14
14
14
14
Minimum
-0.422330
0.005670
-30.923590
1.867110
Maximum
0.125000
0.422330
6.287020
30.923590
Mean
-0.071594
0.103000
-5.519761
8.865784
Std. Dev.
0.140093
0.117137
10.621641
7.809114
Std. Error
0.037442
0.031306
2.838753
2.087073
Skewness
-1.057384
1.491966
-0.887089
1.729007
Kurtosis
0.807650
1.858876
0.249183
2.528654
(continued)
4-64
-------
TABLE 4-21.
Continued
Channel
Pair
Statistics
Variable
DELTAb
ADELTA0
PDELTAd
APDELTAe
C-C
Cases
10
10
10
10
Minimum
-0.034330
0.000830
-19.865000
0.066770
Maximum
0.120500
0.120500
16.262040
19.865000
Mean
0.036984
0.044716
1.979921
5.984755
Std. Dev.
0.054450
0.047570
9.318126
7.168412
Std. Error
0.017219
0.015043
2.946650
2.266851
Skewness
0.469887
0.618982
-1.019144
0.925325
Kurtosis
-1.272074
-1.301231
1.459796
-0.511029
C-D
Cases
18
18
18
18
Minimum
-0.145000
0.000170
-41.428570
0.025420
Maximum
0.086000
0.145000
21.882950
41.428570
Mean
-0.012889
0.040605
13.741045
10.098673
Std. Dev.
0.058261
0.040605
13.741045
10.098673
Std. Error
0.013732
0.009571
3.238795
2.380280
Skewness
-0.625618
1.021460
-0.924524
1.852659
Kurtosis
-0.095392
0.283705
1.576549
3.402549
D-A
Cases
25
25
25
25
Minimum
-0.272000
0.000170
-64.994030
0.057160
Maximum
0.016830
0.272000
6.031650
64.994030
Mean
-0.065787
0.070267
-9.359777
10.807746
Std. Dev.
0.087663
0.083963
15.136394
14.095806
Std. Error
0.017533
0.016793
3.027279
2.819161
Skewness
-1.210417
1.320136
-2.225807
2.599926
Kurtosis
0.257592
0.448797
5.567505
7.063711
D-B
Cases
16
16
16
16
Minimum
-0.162500
0.002330
-25.477370
0.605270
Maximum
0.110000
0.162500
16.860990
25.477370
Mean
-0.021393
0.060207
-2.435225
8.213131
Std. Dev.
0.079434
0.054142
10.956107
7.376272
Std. Error
0.019858
0.013536
2.739027
1.844068
Skewness
-0.335253
0.762909
-0.351193
0.948399
Kurtosis
-0.497303
-0.656490
-0.167995
-0.140008
(continued)
4-65
-------
TABLE 4-21. Continued
C^nnel r -j e
Pair Statistics DELTA0 ADELTA PDELTA APDELTA
D-D
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
-0.120500
0.224500
0.021222
0.089343
0.029781
1.023254
1.662026
0.002000
0.224500
0.050851
0.074698
0.024899
1.642216
1.295727
-15.095520
38.824040
4.873522
14.597602
4.865867
1.303564
1.621283
0.511950
38.824040
8.925544
12.255064
4.085021
1.791302
2.094630
aPairs X-Y = Channel pair.
''DELTA => (NMOC concentration on Channel X) - (NMOC concentration on
Channel Y).
CADELTA = Absolute value of DELTA.
^PDELTA - DELTA/((NMOC concentration determined by Channel X + NMOC
concentration determined by Channel Y)/2)xl00.
eAPDELTA = Absolute value of PDELTA.
4-66
-------
TABLE 4-22. 95% CONFIDENCE INTERVALS FOR MEAN DELTA, REPEATED ANALYSES
Mean Difference, ppmC
95% Confidence
Interval
Pair Channel Mean Standard . b
No. Pair Difference Deviation Cases 0.975,n-1 Upper Lower
1
A-A
-0.015
0.055
20
2.093
0.01074
-0.04074
2
B-B
-0.026
0.045
11
2.228
0.00423
-0.05623
3
C-C
0.037
0.054
10
2.262
0.07563
-0.00163
4
D-D
0.021
0.089
9
2.306
0.08941
-0.04741
5
B-A
0.034
0.154
13
2.179
0.12707
-0.05907
6
C-A
-0.052
0.107
21
2.086
0.00329
-0.10071
7
D-A
-0.066
0.088
25
2.064
-0.02967
-0.10233
8
C-B
-0.072
0.140
14
2.160
0.00882
-0.15282
9
D-B
-0.021
0.079
16
2.131
0.02109
-0.06309
10
C-D
-0.013
0.060
18
2.110
0.01684
-0.04284
an ¦» the number of data points In the mean DELTA.
\ 975 n_j a Student's t-statistlc for 95% confidence interval
4-67
-------
0.30
0.20-
0.10-
0.00
-0.10-
Repeated Analyses
Radian Channels
Pair
Channel
No.
Pair
1
A-A
2
B-B
3
C-C
4
DD
5
B A
6
C-A
7
D-A
8
C-B
9
D-B
10
C-D
-0.20 -
-0.30
T
2
T
5
nr
6
T"
9
I
4
T
8
10
Channel Pair Number
Figure 4-25. 95% Confidence intervals for mean NMOC difference.
-------
TABLE 4-23. OVERALL STATISTICS FOR LOCAL AMBIENT SAMPLES
Variables
Statistics
DIFa
ADIFb
PDI Fc
APDIFd
Cases
230
230
230
230
Minimum
-0.82500
0.00000
-24.54308
0.00000
Maximum
0.36300
0.82500
20.42254
24.54308
Mean
-0.00731
0.04677
1.58961
5.58342
Std. Dev.
0.10690
0.09636
7.10270
4.65569
Std. Error
0.00705
0.00635
0.46834
0.30699
Skewness
-3.73084
5.06770
-0.27716
1.38459
Kurtosis
25.02664
29.71466
1.12615
2.24271
aDIF = (NMOC concentration for the second channel) - (NMOC concentration for
first channel), ppmC.
bADIF = Absolute value of DIF.
CPDIF = DIF/((NMOC concentration, first channel + NMOC concentration, second
channel)/2)xlOO.
^APDIF = Absolute value of PDIF.
4-69
-------
TABLE 4-24.
, OVERALL
STATISTICS
FOR LOCAL AMBIENT
SAMPLES,
BY RADIAN
ANALYSIS ORDER
Radian
Variables
Analysis
a
h
c
f)
Order
Statistics
DIF
ADIF°
PDIF
APDIF
Firste
Cases
120
120
120
120
Minimum
-0.82500
0.00000
-24.54308
0.00000
Maximum
0.36300
0.82500
19.94885
24.54308
Mean
-0.02110
0.06105
0.23123
4.92670
Std. Dev.
0.14130
0.12906
6.75425
4.60408
Std. Error
0.01290
0.01178
0.61658
0.42029
Skewness
-2.82900
3.73300
-0.74620
1.83261
Kurtosis
13.53731
14.89656
2.18676
4.44268
Second^
Cases
110
110
110
110
Minimum
-0.15200
0.00000
-13.44307
0.00000
Maximum
0.12200
0.15200
20.42254
20.42254
Mean
0.00774
0.03119
3.07148
6.29985
Std. Dev.
0.04212
0.02920
7.20659
4.62638
Std. Error
0.00402
0.00278
0.68712
0.44111
Skewness
-0.76266
1.67820
0.03579
0.99422
Kurtosis
2.35709
3.20571
-0.15722
0.60278
aDIF = (NMOC concentration for the -second channel) - (NMOC concentration for the first
channel), ppmC.
^ADIF = Absolute value of DIF.
CPDIF = DIF/((NMOC concentration, first channel) + NMOC concentration, second
channel)/2)xl00.
^APDIF = Absolute value of PDIF for comparisons involving Radian Channels A, B, C, D,
QAD, and ASRL.
e"First" Radian analysis order describes those local ambient samples analyzed first by
Radian channels and secondly by EPA channels.
^"Second" Radian analysis order describes those local ambient samples analyzed first by
EPA channels and secondly by Radian channels.
4-70
-------
the local ambient sample analyzed first by Radian. The lower part of
Table 4-24 shows statistics for the local ambient sample analyzed first by the
EPA laboratories, Channels QAD and ASRL. In Table 4-24, two sets of
statistics for APDIF are shown. In the first set, footnote "d" indicates that
all Radian Table 4-23 channels (A, B, C, and D) and both EPA channels (ASRL
and QAD) are included.
Table 4-25 shows statistics for local ambient samples by analysis order
and channel pair. Mean absolute percent differences range from 0.85% for
Radian Channel Pair B-A for Radian first analysis order to 12.00 percent for
Channel Pair ASRL-3 for Radian second analysis order, averaging 5.58% overall.
Tables 4-26 and 4-27 use data extracted from Table 4-25 and add the 95%
confidence intervals for the mean values of DIF. For example, from the Table
4-26, for the channel pair B-A, the mean DIF is -0.008 ppmC, indicating that
the average the NMOC concentration determined for the local ambient samples
was larger for Channel A than for Channel B by 0.008 ppmC. Figures 4-26 and
4-27 display the data from Tables 4-26 and 4-27 graphically and indicate no
significant difference, at the 0.05 level of significance between the channel
pair mean differences and zero. The channel pairs containing QAD for Figure
4-26 show mean differences greater than zero.
Table 4-28 presents comparisons between percent differences in NMOC
concentrations for all channel pairs. Overall trends in the data are
difficult to discern with the exception of the fact that the standard
deviations of the differences for the site samples are larger than the
corresponding mean differences. This is true for 29 out of 30 comparisons for
the local ambient samples.
4.2.4 Duplicate Site Sample Results
Throughout the 1987 NMOC monitoring program, duplicate samples were
collected once every two weeks at each site. Each duplicate was analyzed by
Radian for its NMOC content. The results for the NMOC duplicate analyses are
given in Section 4.2.4.1.
Table 4-29 summarizes statistics for NMOC, DIFF, ADIFF, PCD IFF, and
APCDIFF. The mean absolute percent difference between the duplicate samples
was 15.4%. The range of the absolute percent difference was from zero to
173%. Table 4-30 summarizes the statistics for duplicate analyses by site
4-71
-------
TABLE 4-25. STATISTICS FOR LOCAL AMBIENT SAMPLES, BY RADIAN
ANALYSES ORDER AND CHANNEL PAIR
Radian
A Hh 1 ( |
-------
TABLE 4-25. Continued.
Radian „ . .,
Analysis Variable
Order/Pair Statistics DIFa ADIFb PDIF0 APDIFd
First/
Cases
6
6
6
6
ASRL-QAD
Minimum
-0.825000
0.005000
-10.752688
1.919386
Maximum
0.015000
0.825000
4.754358
10.752688
Mean
-0.146333
0.153000
-3.693744
5.918325
Std. Dev.
0.333040
0.329426
6.178693
3.537915
Std. Error
0.135963
0.134487
2.522441
1.444348
Skewness
-1.775310
1.783668
0.199716
0.379266
Kurtosis
1.175676
1.190576
-1.383574
-1.386509
First/
Cases
9
9
9
9
'B-A
Minimum
-0.094000
0.001000
-2.401372
0.246609
Maximum
0.020000
0.094000
1.463058
2.401372
Mean
-0.008556
0.014778
-0.199768
0.845674
Std. Dev.
0.032921
0.030339
1.126552
0.713761
Std. Error
0.010974
0.010113
0.375517
0.237920
Skewness
-2.209338
2.296304
-0.535256
1.232490
Kurtosis
-3.469399
3.568224
-0.133299
0.448937
First/
Cases
9
9
9
9
C-A
Minimum
-0.181000
0.002000
-24.543081
0.518135
Maximum
0.016000
0.181000
5.161290
24.543081
Mean
-0.045333
0.051333
-3.247652
5.617042
Std. Dev.
0.068690
0.063763
8.952242
7.517528
Std. Error
0.022897
0.021254
2.984081
2.505843
Skewness
-0.925894
1.031746
-1.616578
2.016685
Kurtosis
-0.485711
-0.270135
1.694582
2.719474
First/
Cases
9
9
9
9
C-B
Minimum
-0.118000
0.003000
-24.250326
0.776197
Maximum
0.018000
0.118000
5.787781
24.250326
Mean
-0.036778
0.044778
-3.048284
5.990802
Std. Dev.
0.052834
0.045359
9.152851
7.338412
Std. Error
0.017611
0.015120
3.050950
2.446137
Skewness
-0.382673
0.472679
-1.466781
1.924007
Kurtosis
-1.546344
-1.435875
1.273732
2.483023
First/
Cases
9
9
9
9
C-D
Minimum
-0.050000
0.002000
-12.345679
0.164454
Maximum
0.017000
0.050000
4.982206
12.345679
Mean
-0.005333
0.015778
-0.241558
3.182076
Std. Dev.
0.021875
0.015180
5.076826
3.801118
Std. Error
0.007292
0.005060
1.692275
1.267309
Skewness
-1.041236
1.396802
-1.550886
1.717540
Kurtosis
-0.119451
0.884729
1.800901
1.869988
(continued)
4-73
-------
TABLE 4-25. Continued.
Radian
Analysis
Order/Pair Statistics
Variable
DIFa
ADI Fb
PDIFC
APDIFd
First/
Cases
9
9
9
9
D-A
Minimum
-0.167000
0.002000
-12.290503
1.398601
Maximum
0.011000
0.167000
3.520000
12.290503
Mean
-0.040000
0.043778
-3.016760
4.266819
Std. Dev.
0.056745
0.053516
4.642272
3.362689
Std. Error
0.018915
0.017839
1.547424
1.120896
Skewness
-1.312091
1.483041
-0.561159
1.672514
Kurtosis
0.769592
1.129605
0.050286
1.720418
First/
Cases
9
9
9
9
D-B
Minimum
-0.089000
0.003000
-11.994421
0.861916
Maximum
0.013000
0.089000
4.506066
11.994421
Mean
-0.031444
0.037222
-2.817060
4.739904
Std. Dev.
0.039351
0.033199
5.187740
3.250451
Std. Error
0.013117
0.011066
1.729247
1.083484
Skewness
-0.284700
0.504761
-0.119179
1.202736
Kurtosis
-1.479958
-1.454446
-0.535990
0.880333
First/
Cases
9
9
9
9
QAD-A
Minimum
-0.016000
0.005000
-4.651163
1.312551
Maximum
0.182000
0.182000
9.074410
9.074410
Mean
-0.029556
0.034222
2.761816
4.142088
Std. Dev.
0.058686
0.055760
4.503110
3.091533
Std. Error
0.019562
0.018587
1.501037
1.030511
Skewness
2.223830
2.416187
0.004246
0.698834
Kurtosis
3.474253
3.960900
-0.819400
-1.066661
First/
Cases
9
9
9
9
QAD-B
Minimum
-0.015000
0.000000
-4.354136
0.000000
Maximum
0.276000
0.276000
11.469534
11.469534
Mean
0.038111
0.042111
2.961004
4.135951
Std. Dev.
0.090239
0.088216
4.831262
3.736339
Std. Error
0.030080
0.029405
1.610421
1.245446
Skewness
2.367277
2.421111
0.329347
0.805059
Kurtosis
3.822906
3.970035
-0.632862
-0.353834
First/
Cases
9
9
9
9
QAD-C
Minimum
-0.021000
0.007000
-6.720000
2.099738
Maximum
0.363000
0.363000
19.948849
19.948849
Mean
0.074889.
0.079556
6.016092
7.509426
Std. Dev.
0.116932.
0.113412
7.048195
5.191741
Std. Error
0.038977
0.037804
2.349398
1.730580
Skewness
1.850041
1.962604
0.242600
1.602969
Kurtosis
2.293453
2.563135
0.676271
1.849267
(continued)
4-74
-------
TABLE 4-25. Continued.
Radian „ .
Af,,lwp.p Variable
Analysis • .
Order/Pair Statistics DIF ADIF PDIF APDIF
First/
Cases
9
9
9
9
QAD-D
Minimum
-0.016000
0.014000
-5.079365
4.188922
Maximum
0.349000
0.349000
10.218978
10.218978
Mean
0.069556
0.073111
5.779007
6.907755
Std. Dev.
0.110065
0.107441
4.434198
1.884659
Std. Error
0.036688
0.035814
1.478066
0.628220
Skewness
2.059811
2.159606
-1.763574
0.218293
Kurtosis
2.918796
3.159993
2.231658
-0.772645
Second/
Cases
6
6
6
6
ASRL-A
Minimum
-0.093000
0.014000
-7.302709
4.204204
Maximum
0.052000
0.093000
18.505338
18.505338
Mean
0.013667
0.044667
7.765367
10.199603
Std. Dev.
0.053902
0.027119
9.003411
5.346421
Std. Error
0.022006
0.011071
3.675627
2.182667
Skewness
-1.557617
0.865192
-0.585345
0.488723
Kurtosis
0.775440
-0.141182
-0.563205
-1.074448
Second/
Cases
6
6
6
6
ASRL-B
Minimum
-0.050000
0.021000
-3.861004
3.861004
Maximum
0.058000
0.058000
20.422535
. 20.422535
Mean
0.021500
0.038167
8.614864
9.901865
Std. Dev.
0.037066
0.013438
7.975140
5.916552
Std. Error
0.015132
0.005486
3.255837
2.415422
Skewness
-1.341246
0.360779
-0.134669
0.882267
Kurtosis
0.556622
-1.060786
-0.394876
-0.229464
Second/
Cases
6
6
6
6
ASRL-C
Minimum
-0.152000
0.016000
-12.218650
3.874092
Maximum
0.060000
0.152000
16.853933
16.853933
Mean
0.008167
0.058833
7.930060
12.002944
Std. Dev.
0.080096
0.048392
10.828458
4.453508
Std. Error
0.032699
0.019756
4.420699
1.818137
Skewness
-1.630048
1.355705
-1.214786
-0.988488
Kurtosis
0.915837
0.475444
0.045953
0.044785
Second/
Cases
6
6
6
6
ASRL-D
Minimum
-0.045000
0.003000
-3.468208
0.738007
Maximum
0.060000
0.060000
19.469027
19.469027
Mean
0.024333
0.039333
9.108588
10.264657
Std. Dev.
0.040623
0.022456
9.191098
7.589473
Std. Error
0.016584
0.009168
3.752250
3.098389
Skewness
-0.809332
-0.759197
-0.252919
-0.047377
Kurtosis
-0.673111
-0.994277
-1.466668
-1.574794
(continued)
4-75
-------
TABLE 4-25. Continued.
.Ra?1ai) Variable
Analysis z j-
Order/Pair Statistics DIF ADIF PDIFC APDIF
Second/
Cases
6
6
6
6
ASRL-QAD
Minimum
-0.086000
0.007000
-6.734534
1.743462
Maximum
0.063000
0.086000
17.622378
17.622378
Mean
0.007500
0.038500
5.632958
8.458957
Std. Dev.
0.050922
0.029697
8.654003
5.206082
Std. Error
0.020789
0.012124
3.532982
2.125374
Skewness
-1.049759
0.691458
-0.165549
0.716529
Kurtosis
0.078984
-0.978301
-0.975351
-0.027695
Second/
Cases
8
8
8
8
B-A
Minimum
-0.043000
0.006000
-5.673759
0.398601
Maximum
0.056000
0.056000
4.132841
5.673759
Mean
0.000125
0.019125
-0.831063
3.291365
Std. Dev.
0.028271
0.019526
3.786610
1.657431
Std. Error
0.009995
0.006904
1.338769
0.585990
Skewness
0.591347
1.121961
-0.117697
0.370310
Kurtosis
0.412501
-0.433087
-1.530550
-1.374296
Second/
Cases
8
8
8
8
C-A
Minimum
-0.046000
0.008000
-12.672176
1.862464
Maximum
0.059000
0.059000
6.015038
12.672176
Mean
0.001875
0.024125
0.397828
5.106077
Std. Dev.
0.031823
0.018750
6.421404
3.408621
Std. Error
0.011251
0.006629
2.270309
1.205130
Skewness
0.251690
0.978994
-1.098632
1.430715
Kurtosis
-0.342017
-0.538848
0.068252
1.182305
Second/
Cases
8
8
8
8
C-B
Minimum
-0.082000
0.001000
-7.248322
0.314961
Maximum
0.102000
0.102000
11.678832
11.678832
Mean
0.001750
0.035000
1.225693
6.066924
Std. Dev.
0.052399
0.036731
7.368191
3.733818
Std. Error
0.018526
0.012986
2.605049
1.320104
Skewness
0.415882
1.010390
0.147592
-0.330341
Kurtosis
0.282585
-0.547062
-1.503762
-0.738352
Second/
Cases
8
8
8
8
C-D
Minimum
-0.013000
0.000000
-4.186795
0.000000
Maximum
0.107000
0.107000
8.759722
8.759722
Mean
-0.018375
0.025875
1.671748
3.751281
Std. Dev.
0.040767
0.035815
4.579727
2.843498
Std. Error
0.014413
0.012662
1.619178
1.005328
Skewness
1.431382
1.659955
0.240305
0.505101
Kurtosis
0.819469
1.409758
-1.171561
-0.608246
(continued)
4-76
-------
TABLE 4-25. Continued.
Radian .. .
Analysis Variable
Order/Pair Statistics DIF ADIF PDIFC APDIF
Second/
Cases
8
8
8
8
D-A
Minimum
-0.072000
0.003000
-12.672176
0.972447
Maximum
0.024000
0.072000
6.984127
12.672176
Mean
-0.016500
0.029000
-1.274732
5.190076
Std. Dev.
0.035214
0.024290
6.437859
3.538091
Std. Error
0.012450
0.008588
2.276127
1.250904
Skewness
-0.326207
0.570279
-0.331810
1.136236
Kurtosis
-1.266337
-0.866526
-0.671047
0.648086
Second/
Cases
8
8
8
8
D-B
Minimum
-0.128000
0.003000
-9.202013
0.392927
Maximum
0.018000
0.128000
8.633094
9.202013
Mean
-0.016625
0.028375
-0.444642
5.048225
Std. Dev.
0.047809
0.041005
6.284236
3.254588
Std. Error
0.016903
0.014497
2.221813
1.150671
Skewness
-1.788701
2.105674
-0.067390
-0.182646
Kurtosis
1.907439
2.737541
-1.281855
-1.203129
Second/
Cases
8
8
8
8
QAD-A
Minimum
-0.049000
0.006000
-13.443073
0.568874
Maximum
0.050000
0.050000
8.843537
13.443073
Mean
0.011625
0.025625
2.623696
6.126682
Std. Dev.
0.030052
0.017525
7.162683
4.033937
Std. Error
0.010625
0.006196
2.532391
1.426212
Skewness
-0.888786
0.317623
-1.534967
0.473464
Kurtosis
0.222644
-1.338278
1.309536
-0.525107
Second/
Cases
8
8
8
8
QAD-B
Minimum
-0.030000
0.005000
-8.021390
0.451128
Maximum
0.036000
0.036000
10.774411
10.774411
Mean
0.011500
0.020500
3.452024
5.570154
Std. Dev.
0.021948
0.012352
6.116118
3.945470
Std. Error
0.007760
0.004367
2.162374
1.394934
Skewness
-0.711771
-0.076581
-0.567032
0.050485
Kurtosis
-0,415888
-1.643595
-0.364430
-1.465159
Second/
Cases
8
8
8
8
QAD-C
Minimum
-0.066000
0.002000
-5.495420
0.774194
Maximum
0.076000
0.076000
7.445443
7.445443
Mean
0.009750
0.027500
2.226032
4.178051
Std. Dev.
0.039604
0.028511
4.408755
2.269447
Std. Error
0.014002
0.010080
1.558730
0.802371
Skewness
-0.339537
0.854837
-0.566543
-0.212321
Kurtosis
0.477603
-0.853098
-0.908528
-1.100343
(continued)
4-77
-------
TABLE 4-25. Continued.
Radian
Analysis
Order/Pair Statistics
Variable
DIFa
ADIFb
PDIFC
APDIFd
Second/
Cases
8
8
8
8
QAD-D
Minimum
-0.003000
0.001000
-0.774194
0.328407
Maximum
0.122000
0.122000
9.813875
9.813875
Mean
0.028125
0.029125
3.897432
4.173082
Std. Dev.
0.041087
0.040283
4.015169
3.684988
Std. Error
0.014526
0.014242
1.419577
1.302840
Skewness
1.653020
1.718849
0.340048
0.509223
Kurtosis
1.578668
1.724123
-1.332369
-1.326902
aDIF = (NMOC concentration for the second channel) - (NMOC concentration for
first channel), ppmC.
^ADIF =» absolute value of ADIF.
CPDIF = DELTA/(NNMOC concentration, first channel) + (NMOC concentration,
second channel)/2xl00.
^APDIF = Absolute value of PDIF
4-78
-------
TABLE 4-26. LOCAL AMBIENT SAMPLES, RADIAN FIRST ANALYSIS
Pair
No.
Channel
Pair
Mean
Difference
(ppmC)
Standard
Deviation
(ppmC)
95% Confidence Interval
Cases tQ.975.n-i Upper Lower
1
B-A
-0.008
0.033
9
2.306
0.017
-0.033
2
C-A
-0.045
0.069
9
2.306
0.008
-0.098
3
D-A
-0.040
0.057
9
2.306
0.004
-0.084
4
QAD-A
0.030
0.059
9
2.306
0.075
-0.015
6
C-B
-0.037
0.053
9
2.306
0.004
-0.078
7
D-B
-0.031
0.039
9
2.306
-0.001
-0.061
8
QAD-B
0.038
0.090
9
2.306
0.107
-0.031
10
C-D
-0.005
0.022
9
2.306
0.012
-0.022
11
QAD-C
0.075
0.117
9
2.306
0.165
-0.015
13
QAD-D
0.070
0.110
9
2.306
0.255
-0.015
tO 975 n 1 = Student's t-statistic for 95% confidence interval,
' where n = the number of cases in mean DIF.
4-79
-------
TABLE 4-27. LOCAL AMBIENT SAMPLES, RADIAN SECOND ANALYSIS
Pair
Channel
Mean
Difference
Standard
Deviation
95% Confidence
Interval
No.
Pair
(PpmC)
(ppmC)
Cases
t0.975,n-l
Upper
Lower
1
B-A
0.000
0.028
8
2.365
0.023
-0.023
2
C-A
0.002
0.032
8
2.365
0.029
-0.025
3
D-A
-0.016
0.035
8
2.365
0.013
-0.045
4
QAD-A
0.012
0.030
8
2.365
0.037
-0.013
6
C-B
0.002
0.052
8
2.365
0.045
-0.041
7
D-B
-0.017
0.048
8
2.365
0.023
-0.057
8
QAD-B
0.012
0.022
8
2.365
0.030
-0.006
10
C-D
0.018
0.041
8
2.365
0.052
-0.016
11
QAD-C
0.010
0.040
8
2.365
0.043
-0.023
13
QAD-D
0.028
0.041
8
2.365
0.062
-0.006
t« g75 , = Student's t-statistic for 95% confidence interval,
' " where n = the number of cases in mean DIF.
4-80
-------
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-0.40
-0.50
-0.60
-0.70
Figure 4-26. 95% Confidence intervals for mean NMOC difference,
Radian first analysis
Local Ambient Samples
Radianlst Analysis - EPA 2nd Analysis
Pair
Channel
No.
Pair
1
B
A
2
C
A
3
D
A
4
QAD
A
5
ASRL
A
e
C
B
7
D
B
8
QAD
B
9
ASRL
B
10
C
O
11
QAD
C
12
ASRL
c
13
QAD
D
14
ASRL
D
15
QAD
ASRL
4
i
"ft-
-r
4
"T
5
T
2
i
3
T
6
T
7
T"
8
T
9
~T
10
~r
11
r
12
I
13
-r
14
I
15
16
Pair Number
-------
CO
ro
O
E
Q.
Q.
0)
O
C
®
t—
®
c
CO
a>
2
0.70-
0.60-
0.50-
0.40-
0.30-
0.20-
0.10-
0.00-
-0.10-
-0.20-
-0.30-
-0.40-
-0.50-
-0.60-
-0.70-
Locat Ambient Samples
EPA 1st Analysis - Radian 2nd Analysis
Pair
Channel
No.
Pair
1
B
A
2
C
A
3
D
A
4
QAD
A
5
ASRL
A
6
C
B
7
D
B
e
QAD
B
e
ASRL
B
10
C
D
ii
QAD
C
12
ASRL
C
13
QAO
D
14
ASRL
D
IS
QAD
ASRL
4—f—j i f—|—f
j—i—I—J.
JL
i-i
JL
T
2
T
3
T
4
T
7
i
a
T
9
X
10
11
13 14
T
15
16
Pair Number
Figure 4-27. 95% Confidence intervals for mean NMOC difference,
EPA first analysis.
-------
TABLE 4-28. COMPARISON OF PERCENT DIFFERENCE IN NMOC CONCENTRATION BETWEEN CHANNEL PAIRS*
Site Saof>les
Percent Difference
Local Ambient Samples
Duplicate No. 1
Percent Difference
Duplicate No. 2
Percent Difference
Channel Pair
Mean
Standard
Deviation Cases
Mean
Standard
Deviation Cases
Mean
Standard
Deviation Cases
Radian vs.
B-A
C-A
D-A
C-B
D-B
C-D
Radian
00
U>
Overall
ASRL vs. Radian
ASRL-A
ASRL-B
ASRL-C
ASRL-D
Overall
QAD vs. Radian
QAD-A
QAD-B
QAD-C
QAD-D
fr/erall
QAD vs. ASRL
4.775353
25.450508
13
-0.199768
1.126552
9
>0.831063
3.786610
8
-9.952177
21.921340
21
-3.247652
8.952242
9
0.397828
6.421404
8
-9.359777
15.136394
25
-3.016760
4.642272
9
-1.274732
6.437859
8
-5.519761
10.621641
14
-3.048284
9.152851
9
1.225693
7.368191
8
-2.435225
10.956107
16
-2.817558
5.187740
9
-0.444642
6.284236
8
-3.633962
13.741045
18
-0.241558
5.076826
9
1.671748
4.579727
8
-3.719633
15.347544
157
-2.095180
6.159991
54
0.124139
5.719381
48
3.001502
23.612804
61
-1.482348
9.054478
6
7.765367
9.003411
6
9.902209
18.925036
66
-0.741377
9.569475
6
8.614864
7.975140
6
11.010885
23.564300
90
2.045537
6.134684
6
7.930060
10.828458
6
8.242522
17.244796
89
1.0762X6
5.142999
6
9.108588
9.191098
6
8.369940
21.028124
306
0.224507
7.707840
24
8.354719
9.305859
24
10.327947
20.991339
45
2.761816
4.503110
9
2.901161
53.049752
6
-6.737596
19.333231
37
2.961004
4.831262
9
3.848494
54.315249
6
0.347299
23.574175
57
6.016092
7.048195
9
3.170597
54.491644
6
-3.131360
18.315582
53
5.779007
4.434198
9
4.531125
56.390402
6
-4.480285
21.041160
192
4.379480
5.310531
36
3.049796
5.339478
32
-9.009571
21.276501
132
-3.693744
6.178693
6
5.632958
8.654003
6
*For the Radian Channel Pair B-A, {Difference - (NMOC (A) - (NMOC (B))/((NMOC (A) + NMOC (B>W2)*100.
-------
TABLE 4-29. STATISTICS FOR DUPLICATE ANALYSES
Variables
NMOCa DIFFb AD IFFC PDIFFd APDIF Fe
Statistics
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
232
0.073300
4.401500
0.804828
0.663909
0.043494
1.859036
4.517570
232
-1.670000
1.136000
-0.023947
0.222059
0.014548
-1.481555
22.075888
232
0.000000
1.670000
0.105956
0.196497
0.012873
4.673002
27.119239
232
-114.917130
172.949640
-2.921168
27.589135
1.807424
0.674198
11.004010
232
0.000000
172.949640
15.352906
23.086850
1.512470
3.251308
13.584372
aNM0C = Average NMOC concentration of duplicate samples, ppmC.
^DIFF = Difference between NMOC concentrations for duplicate samples, ppmC.
CADIFF = Absolute value of DIFF.
^PDIFF = DIFF/((ppmC for Duplicate No. 1 + ppmC for Duplicate No. 2)/2)x100.
eAPDIFF = Absolute value of PCDIFF.
4-84
-------
TABLE 4-30. DUPLICATE ANALYSES STATISTICS, BY SITE
Site NMQC. ppmC ADIFFa. ppmC APCDIFF^. ppmC Duplicate
Code Mean SD Mean SD Mean SD Pairs
ATGA
0.9356
B1MA
0.3125
B2MA
0.7682
BACA
1.6857
BHAL
1.3619
BMTX
0.5231
BNY
0.9865
BRLA
0.6897
CI IL
1.4013
C3IL
0.3873
CIOH
0.7406
DEGA
0.5665
DLTX
0.4618
ELCA
0.2821
ELTX
0.4053
FRCA
1.0423
FWTX
1.0185
H1TX
0.9762
HTCT
0.6305
L1KY
1.1190
LICA
0.6090
LVTX
0.7309
MNY
0.7770
NUNJ
0.7240
P10R
0.5217
PICA
0.4121
S1UT
1.2015
0.4614
0.1020
0.0795
0.0221
0.4123
0.0571
0.4536
0.1332
1.3047
0.0537
0.3221
0.0197
0.6123
0.1846
0.2949
0.0291
0.4427
0.1176
0.3265
0.1136
0.2360
0.0600
0.3409
0.1077
0.1973
0.0944
0.1101
0.0446
0.2428
0.0794
0.0809
0.1418
0.5954
0.2354
0.8028
0.1124
0.1789
0.0486
0.6304
0.3280
0.2749
0.0738
0.4496
0.0429
0.3190
0.0984
0.3141
0.1521
0.3053
0.1244
0.2774
0.0406
0.6989
0.0853
0.1075
16.4461
0.0233
6.9001
0.0857
11.9154
0.1379
7.9963
0.0555
5.8681
0.0151
6.5436
0.2284
15.8843
0.0261
5.7121
0.0738
9.9600
0.2001
37.4104
0.0660
8.8796
0.1082
23.3864
0.0448
21.4136
0.0558
14.5613
0.0604
42.0651
0.0990
15.3882
0.4424
15.9701
0.1652
16.1645
0.0655
16.3649
0.5961
21.7495
0.0633
11.3118
0.0288
9.5541
0.1372
11.3996
0.2386
15.5707
0.1936
23.4854
0.0413
12.5199
0.1585
10.2989
22.5961
9
7.3820
7
20.5264
9
8.7163
13
6.1055
9
7.3136
7
18.7380
7
8.5673
8
8.5651
6
57.6006
8
11.3689
6
30.4750
6
8.1526
4
17.6374
8
53.5894
7
13.6152
8
20.2724
6
27.4443
7
24.5172
6
28.5798
7
7.2135
6
9.2103
6
10.1675
7
18.5290
7
42.1800
7
16.1219
8
20.4536
6
(continued)
-------
TABLE 4-30. DUPLICATE ANALYSES STATISTICS, BY SITE
Site
Code
NMOC.
DDITlC
ADIFF3.
DDmC
APCDIFFb.
DDmC
Duplicate
Pairs
Mean
SD
Mean
SD
Mean
SD
S2UT
0.8795
0.5841
0.1086
0.1650
11.9628
15.6004
9
SDCA
0.4632
0.3058
0.0481
0.0359
11.4846
8.5426
7
SFCA
0.2486
0.0506
0.0200
0.0188
7.4536
5.6610
7
SLMO
1.3590
1.4557
0.2380
0.3426
23.0045
28.4839
8
VICA
0.5248
0.2642
0.0943
0.0627
28.4128
26.1746
6
OVERALL
0.7964
0.6527
0.1008
0.1802
15.2149
23.0402
232
aADIFF is the mean of the absolute value of the difference between duplicates, ppmC.
^APCDIFF is the mean of the absolute percent differences which equals
ADIFF/((NMOC Duplicate No. 1 + NMOC Duplicate No. 2)/2) x 100.
-------
code. The mean absolute percentage differences between duplicates ranged from
5.71% for BRLA to 37.4% for C3IL.
These results are higher than in 1986, but still represent good
precision. The analytical error for repeated analyses was 9.61% while the
precision for duplicates was 15.2%. The difference represents the duplicate
sampling error.
4.2.5 Canister Cleanup Results
Prior to the start of the 1987 NMOC Sampling and Analysis Program all of
the canisters were cleaned and analyzed for their NMOC content to establish
canister initial conditions. The resulting analysis with cleaned, dried air
that had been humidified averaged 12.7 area counts (0.0042 ppmC), ranging from
zero to 34.15 area counts (0.011 ppmC). Any canisters that produced greater
than 0.030 ppmC were recleaned.
Continual monitoring of the cleanup was important to ensure that there
was negligible carry-over from one site sample to the next. The daily
canister cleanup procedure is described in detail in Section 3.4. The NMOC
content was below 0.030 ppmC and cleanup was considered to be satisfactory.
Percent recoveries or percent cleanup, in 1987 averaged 99.374% (99.891%
in 1986 and 99.898% in 1985), ranging from 92.10% to 100%. The reported
percent cleanup figures should be considered to be minimum values. The actual
cleanup was greater than the reported values because, after the percent
cleanup was measured, the canister was evacuated a fourth time before being
shipped to the sites.
4.2.6 External Audit Results
Primary measures of accuracy were calculated from the results of the
analysis of audit samples provided by EPA-QAD. Results are reported in terms
of percent bias, relative to the EPA standards.
Audit samples of propane provided by EPA-QAD were referenced to NBS SRM
propane No. 1667b. Each Radian cannel and the EPA-ASRL channel analyzed each
audit sample. The results of these analyses are given in Table 4-31. Audit
sample bias, percent bias, and absolute percent bias are shown in Table 4-32.
In Table 4-32, all bias measurements are all relative to the QAD results.
Overall Radian average bias was -1.31% indicating Radian channels averaged
1.31 percent lower than the EPA-QAD reference values. Radian mean bias ranged
from -0.06 percent for Channel A to -2.8 percent for Channel B. The overall
4-87
-------
TABLE 4-31. 1987 NMOC AUDIT SAMPLE RESULTS
Date
Analyzed
Julian
Date
Analyzed
Radian
ID
Number
Chan. A
NMOC
(ppmC)
Chan. B
NMOC
(ppmC)
Chan. C
NMOC
(ppmC)
Chan. D
NMOC
(ppmC)
ASRL
NMOC
(ppmC)
08/18/87
230
2708
1.072
1.058
1.082
1.052
-
08/18/87
230
2709
4.234
3.996
4.184
4.065
-
09/04/87
247
3138
1.908
1.840
1.893
1.893
-
09/04/87
247
3139
3.945
3.780
3.882
3.814
-
10/01/87
274
3750
3.023
2.970
2.988
3.062
3.229
10/01/87
274
3749
1.928
1.914
1.924
1.917
2.060
4-88
-------
TABLE 4-32. AUDIT SAMPLES, RELATIVE TO EPA-QUALITY ASSURANCE DIVISION (QAD) RESULTS
dun. A Chan. B Chan. C Chan. D Chan. E
DELTAA DELTAB DELTAC DELTAD DELTAE Percent Percent Percent Percent Percent
(ppoC) (ppmC) (ppmC) (ppoC) (ppmC) Bias Bias Blai Bias BLaj
0.00200
-0.20600
-0.01200
0.00600
0.06100
0.04700
-0.01200
-0.44400
-0.08000
-0.15900
0.00800
0.03300
0.01200
-0.23600
-0.02700
-0.03700
0.02600
0.04300
-0.01800
-0.17500
-0.02700
-0.12300
0.10000
0.03600
0.26700
0.17870
0.18692
-4.61964
-0.62300
0.13232
2.03942
2.49867
-1.12130
-10.00000
-4.16667
-4.03636
0.27009
1.73439
1.12130
-5.76377
-1.40625
-1.44707
0.87779
2.28602
-1.68224
-8.44595
-1.40625
-3.17339
3.37610
1.91388
Radian
9.01418 Percent
9.50027 Bias
I
CD
VO
Average -0.01700
Std. Dev. 0.09676
-0.10900 -0.04317 -0.06817 0.22285
0.17823 0.11046 0.16776 0.06244
-0.06122 -2.88337 -0.72230 -1.56964
2.54704 4.19953 2.87887 4.13909
Absolute Value* of Percent Blaa
9.25722
0.34371
-1.30913
3.52525
For Channel A:
ppaC DELTAA
Percent Blaa
IM0CA - QAD
(ppmC DELTAA)/QAD*100
0.18692
4.63964
0.62300
0.13232
2.03942
2.49867
1.12130
10.00000
4.16667
4.03636
0.27009
1.73439
1.12150
5.76577
1.40623
1.44707
0.87779
2.28602
1.68224
8.44393
1.40623
3.17339
3.37610
1.91388
9.01418
9.50027
Radian
Absolute
Percent
Bias
Channel E Is EPA-ASKL Channel
Average 1.69366 3.55820 2.15073 3.33297 9.25722 2.68389
Std. Dev. 1.74635 3.52417 1.83390 2.63138 0.34371 2.51756
-------
average absolute percent bias for the Radian channels was 2.68 percent. These
accuracy measurements show excellent agreement with the reference values, and
lend confidence to the 1987 NMOC concentration results determined on all the
Radian channels.
The EPA-ASRL channel averaged +9.3% bias, relative to EPA-QAD.
Figures 4-28, 4-29, 4-30, and 4-31 show the audit bias results for the
Radian channels versus the reference values provided by EPA-QAD. A linear
relation exists over the range of concentrations of the audit samples. The
orthogonal regression lines shown on the figures indicate a negative slope.
The audit bias results comparing the EPA-ASRL versus EPA-QAD are shown in
Figure 4-32. For this comparison the orthogonal linear relation shows a
positive slope. The slopes for the Radian channels are not significantly
different form zero, while the slope of the ASRL-QAD comparison is
significantly greater than zero.
4.2.7 Data Validation
The secondary backup disks were updated daily on 20 megabyte hard disks.
At the completion of the sampling and analysis phase 10.1 percent of the data
base was checked to verify its validity. Items checked included original data
sheets, checks of all the calculations and data transfers. In making the
calculations for the final report and other reports, corrections were made to
the data base as errors or omissions were encountered.
A total of 3,207 NMOC measurements by Radian are in the 1987 NMOC data
base. This includes 2746 site samples and 157 repeated analyses of site
samples by Radian channels. In addition, 53 QC samples, 17 local ambient
samples, and 6 external audit samples were each analyzed by all four Radian
channels. Each of these samples had a unique sample I.D. number, with the
exception of the 157 repeated analyses. Each NMOC datum has 54 individual
items associated with that datum.
Ten percent of the data base (324 cases out of 3,207 data points) was
selected at random and validated according to the procedure outlined below.
A. Calibration factors were checked.
1. The area count from the strip chart that was used to determine
the calibration factor was examined to verify that the data had
been properly transferred to the calibration form.
4-90
-------
AUDIT BIAS
RADIAN A VS. QAD
-0.6
-0.8
QAD, ppmC
Figure 4-28. Audit bias, Radian Channel A vs.EPA-QAD.
-------
AUDIT BIAS
RADIAN B VS. QAD
O
E
a
a
a
<
o
c
o
T3
O
or
0)
o
in
QAD, ppmC
Figure 4-29. Audit bias, Radian Channel B vs. EPA-QAD.
-------
AUDIT BIAS
RADIAN C VS. QAD
i
vo
Cl>
O
E
a.
a
Q
«
O
c
o
TJ
o
a:
»
O
£D
-0.2
-O.J
-0.4-
-0.6
-0.8
-0.9
QAD, ppmC
Figure 4-30. Audit bias, Radian Channel C vs.EPA-QAD.
-------
AUDIT BIAS
RADIAN D VS. QAD
-0.2
-0.5
-0.6
-0.8
-0.9
QAD, ppmC
Figure 4-31. Audit bias, Radian Channel D vs.EPA-QAD.
-------
AUDIT BIAS
ASRL VS. QAD
2.00
1.50 -
1.00 -
0.50 -
0.00
-0.50 -
-1.00
-1.50 -
-2.00
QAD, ppmC
Figure 4-32. Audit bias, EPA-ASRL vs.EPA-QAD.
-------
2. The calibration form was examined to verify that the calcula-
tions had been correctly made.
3. Each datum on the disk was compared to the corresponding datum
on the calibration sheet for accuracy.
B. Analysis data were checked.
1. Area counts were verified from the appropriate strip chart.
2. Calculations were reverified on the analysis forms.
3. Each datum on the disk was compared to the corresponding item on
the analysis form.
C. Field sheet data were checked.
1. Each datum on the disk was compared to the corresponding datum
on the field data sheet.
The error rate calculated in terms of the number of items transferred from the
original data sources. For each NMOC value in the 1987 data set, 54 items
were transferred from original sources to the magnetic disks. In the Data
Validation study each item on the disk was compared with the corresponding
value on the original source of data. Three errors were found (and corrected)
for an expected error percentage of 0.017.
Each time the data file was opened and a suspected error found, it was
checked against the original archived documents, and corrected where
appropriate.
4.3. QUALITY ASSURANCE RECORDS
The quality assurance records developed by Radian for this project are
extensive and will be preserved as archives. One of the most important objec-
tives of the study was to develop a data base that was well planned and docu-
mented, and contained NMOC data of known and verifiable quality. Achieving
that objective has involved keeping and preserving a number of records that
trace the project from planning through reporting.
4.3.1 Archives
In order to keep detailed records which document the quality of the
measurements made, Radian developed the following original material:
4-96
-------
• Quality Assurance Project Plan;
• Notebooks;
• Field Data Sheets;
• Laboratory Calibration Sheets;
• Laboratory Analysis Sheets;
• Chromatographic Strip Charts;
• EPA-ASRL & EPA-QAD NMOC Results;
t Bi-weekly, Monthly Reports to EPA;
• Memoranda and Correspondence; and
• Final Report.
In addition to the above items, several papers to be presented at
technical meetings and symposia and published in technical journals will be
added to the archives.
The QAPP was the Quality Assurance Project Plan and the workplan. It was
designed according to the EPA Quality Assurance Guidelines, and set the
pattern of steps necessary to document and control the quality of the data
obtained throughout the study.
Several notebooks were necessary to maintain day-to-day records of the
project. Field and laboratory data sheets were designed in advance, so that
the data recorded appeared in a logical sequence and filled in blanks on the
sheet. Additional space was provided for other comments. Each NMOC analysis
was assigned a unique Radian Identification Number. Field data sheets and
shipping records accompanied the canisters in transit.
4.3.2 Magnetic Disks
In order to manage the data base for report generation and data analysis,
pertinent data from the various data sheets and notebooks were transferred to
R R
20 megabyte magnetic disks. Lotus 1-2-3 and PFS software were used in the
construction of the data base. Statistical calculations were done using
D
SYSTAT software. The data access is rapid and in a convenient form. The
primary 20 megabyte magnetic disk has three backup disks.
4-97
-------
5.0 NMOC DATA ANALYSIS AND CHARACTERIZATION
The summary NMOC data for the 32 sites of the 1987 study are given iri
Tables 2-5 through 2-27. The purpose of this section is to characterize the
NMOC data qualitatively as well as quantitatively. The NMOC data are shown to
fit a two-parameter lognormal distribution better than a normal Gaussian
distribution.
Figure 5-1 gives a stem-and-leaf plot of the 1987 NMOC data along with
statistics for NMOC, injection standard deviation, and logarithms of the NMOC
values. The "injection standard deviation" is the standard deviation of the
two or three NMOC injections performed for each determination of a measured
NMOC value. The stem-and-leaf plots show the actual NMOC concentrations
truncated to two decimal points. The digits to the left of the vertical open
space are called stems and the digits to the right of the open space are the
leaves. The data are sorted from the smallest at the top of the graph to the
largest at the bottom of the graph. The minimum NMOC value measured was
0.045 ppmC and is shown as "0 4" on the first row at the top of the plot.
The maximum NMOC concentration measured was 10.767, shown as "107 6" at the
bottom row of the chart. The plot shows 2,746 leaves, one for each NMOC site
datum in the 1987 Program. The H's in the open vertical space locate the stem
and leaf for the upper and lower hinges, and the M locates the stem and leaf
for the median. The median separates the sorted data into two equal halves,
the hinges (or quartiles) separate each half into two equal halves. The
"H spread" or inter-quartile range is the difference between the NMOC values
of the two hinges.
Statistics shown for NMOC and injection standard deviation are number of
cases, minimum, maximum, mean, standard deviation, standard error, skewness,
and kurtosis. Each NMOC determination is the average of two or three
injections of the site sample. Injection standard deviation is the standard
deviation of the injections for each NMOC measurement.
5-1
-------
0
0
0
1
1
1
1
1
2
2
2
2
2
3
3 H
3
3
3
4
4
4
4
4
5
5
5
5 M
5
6
6
455
67777 777
OQQQQ QAA
OJjWJ 999
00000 11111 111
22222 22222 22223 33333 33333 33333
44444 44444 44445 55556 55555 55555
66666 66666 66666 66666 66667 77777
88888 Aftftrt 88888 38888 88888 89999
00000 00000 COOOO 00000 ooooo ooooo
22222 22222 22222 22222 22223 33333
ooooo ooooo ooooo ooooo ooooo ooooo
88888 88888 88888 88888 88888 88888
ooooo ooooo ooooo ooooo ooooo ooooo
?333? 22222 22222 22222 22222
ftatii ggfgn uteee 8«nm
ooooo ooooo ooooo ooooo
68888
00000 00000
22222 22222
ooooo ooooo
22222 22222
eeggfl
ooooo ooooo ooooo ooooo
00000
22222
ooooo
22222
ooooo ooooo
79373 3393?
ooooo
22222
ooooo
22222
ooooo ooooo
88888 flWfl
00000 00000
33333 33333
66666
88888
ooooo
22222
oooooc
22222 ;
egnofl /inaaii aanin
OOOOO OOOOO OOOOO
*88888 88889
>00000 00001
! 22222 22233
l 44444 44455
66666 66666 66667 77777
aqaao QOQOO
» OOOOO 99999
>00111 11111
> ?3333 22333
OOOOO ooooo
3 88889
) ooooo
J 33333
9
9
ooooo
22222
oooooc
22222:
oooooc
33333;
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
43
44
52
53
82
89
93
94
99
107
ooooo
88888
ooooo
22222
66667
88868
ooooo
22223
66666
88869
ooooo
22222
66677
88888
ooooo
22223
66677
ooooo
22233
44445
66667
999
22223
45555
66677
66666 77777
MAM
99999 99999
00000 00111
22233 33333
44555 55555
77777 77777
ivwwwi
99999 99999
00001 11111
3333
45555 55
777
WrtlMWl (MA
99999 99V
00000 11111
22333 33333
55555
77777 7
AA
_ _ 99999 99
Q1U1 11
3333
44555 55555 55
77777
99999 99
11111 11
22222
44555
87777
66666 66666
88868 88889
00000 00000
22222 22223
44444 44445
66666 67777
88888 88888
11111 11111
33333 22333
44444 55555
naaam ennetn
OOOOO ooooo
OOOOO 99999
00111 11111
22333 33333
44455 55555
OOOOO ooooo
(MWW1
99999 99999
11111 11111
33333 33333
55555 55555
77777 77777
AiVMVl QQAM
99999 99999
111
3^13 33333
45555 55555
77777 777
99999 999
11111 11111
33333 xyY)
5
77777 777
999
11111
111
33333
55555 5555
77777 77777 77777
99999 99999 99999
00111 11111 11111
33333 33333 33333
44444 44444 44555
66666 66668 87777
88888 88889 99999
11111 11111 11111
?3333 33333 22333
44444 45555 55555
uttaa
Figure 5-1. Stem-and-leaf plot of the 1987 NMOC data.
5-2
-------
The standard error is the standard deviation divided by the square root
of the number of cases. Positive skewness is a third moment about the mean
value, and characterizes a tail to the right of the mean value. A normal
Gaussian distribution has a skewness of zero. The skewness of 5.5 for the
1987 NMOC data suggests a lognormal frequency distribution; that is supported
by the fact that for In(NMOC) (see Figure 5-2), skewness equals 0.128, which
is close to zero. Kurtosis is the fourth moment about the mean and relates to
the pointedness of the distribution. A distribution more pointed than a
normal distribution, having the same standard deviation, has a kurtosis
greater than 3.0.
In Figure 5-1 there is a small node in the region of NMOC concentration
from 1.8 to 2.5 ppmC. This occurrence was not seen in previous years of the
NMOC Monitoring Program (1984, 1985, or 1986). Detailed investigation of the
data in this region showed them to be primarily from BACA, LICA, S1UT, and
SLMO. There were a number of recorded values of NMOC between 2.0 and 9.9
ppmC, especially at FRCA, during the time that forest fires were widespread in
California, but these NMOC concentrations did not contribute significantly to
the node cited above.
Figure 5-2 is a stem-and-leaf plot of the 1987 1n(NMOC) data. The plot
shows an approximately symmetrical distribution (skewness = 0.128). The
kurtosis equal to 0.175 indicates the 1n(NMOC) distribution to be less pointed
than a normal distribution. The node seen on Figure 5-1 is not apparent in
Figure 5-2.
The shape of the stem-and-leaf plots suggests a lognormal distribution.
Figures 5-3 and 5-2 support the lognormal distribution hypothesis for NMOC.
The vertical scales in Figures 5-2 and 5-3 are arranged so that if the
cumulative frequency of occurrence of NMOC is normally distributed, the
numbers would plot into a straight line. The line in Figure 5-3 has a
noticeable concave downward trend, indicating that the data do not fit a
normal distribution well. Figure 5-4 plots the logarithm of NMOC on the same
vertical scale. The fact that the digits on the graph plot into approximately
a straight line supports the hypothesis that the NMOC data are approximately
lognormally distributed. The asterisks on the graph indicate the location of
a single datum. Integers, such as 2, 6, or 9, show the location of the
corresponding number of data points. The number 999 shows the approximate
location of either 27 data points or 99 + 9 data points. The results,
5-3
-------
-31
•30
•29
-20
•26
•25
-25
•24
24
-23
•23
22
-22
-21
•21
20
•20
!9
19
10
•18
•17
•16
•J6
-15
•15
• U
•14
•13
•13
¦12
-12
•11
•11
3
61
1
99765 5
1
97765 5
755
320
975
43331 11
99677 6655
44443 22000
99866 88776 65555
33332 220
99999 99687 77776 66655 5
33333 33222 10000 0000
98868 77777 77655 555
99999 88888 77766 66655 555
44*33 33332 22222 11110 00000 00
99998 66667 77777 77777 66666 66666 66555 55555 555
44444 33333 32222 22211 11100 00000 00
99998 68888 77766 66666 66655 55
V-H- 44444 •nw) 22211 11111 11111 11000 00000
99999 99999 99888 88888 88887 77777 77777 66666 66655 55555 55559 5
44444 *3333 yvyn irm vyryy 22221 11111 11111 10000 00000 0
99999 99999 99688 88888 88777 77777 77777 77766 66665 55555 55556 5555
44444 44444 44333 "wre vrrn 11110 0000
99996 99999 88888 SfHWft 88777 77777 77766 66666 66665 55555 5555
99999 99999 S8888 88888 88777 77777 77766 66666 66665 55555 5555
In(NMOC)
Cases
2746
Minimum
-3.101
Maximum
2.376
Mean
¦0.583
Standard Deviation
0.601
Standard Error
0.014
Skewness
0.128
Kurtosis
0.175
Lower Hinge (H)
-1.100
Median (M)
-0.576
Upper Hinge (H)
-0.084
•10 H 99999 99909 99996 88888 88887 77777 77777 77777 76666 66665 55555 55555
10 4444* 44444 44444 44333 33333 33333 32222 22211 11111 11111 11111 11100
•9 99999 99999 99996 88688 88887 77777 77777 77777 77776 66666 66666 65555
.9 44444 44444 44444 44333 33333 33333 33322 22222 22222 21-111 11111 11000
-8 99999 99999 99988 88888 88888 77777 77777 77777 66666 66666 66666 66655
-8 41444 44444 44444 44333 33333 33333 33322 22222 22211 11111 111M 00000
•7 99999 99998 86888 87777 77777 77777 76666 66666 65555 55555 555
.7 111-1 44444 44443 ^7 im* rrm -prm 22221 11111 MJIt 11110 00000
<6 99999 99999 98888 88777 77777 77666 66666 66665 55555 55555 55555 555
4 4444-4 aaaa.1 33333 3333** *$999 22222 21111 11111 11100 00000 00000
•5 M 99999 99999 99886 68688 88868 77777 77777 77777 77777 66666 66666 66666
.5 44444 mi4 urn *3333 33333 vera 99m 11 11111 nm 11111
-4 99999 99999 99999 98688 88868 88688 68777 77777 77766 66666 66666 55555
-4 iw *3333 13333 33333 -rym m921T3Tl 22211 11111
3 99999 99999 99988 88888 88888 88777 77777 77777 7M66 66666 55556 55555
.3 4-t-m 4444* 4*443 33333 3333** 33*m vrm vryn 22221 11111 11111 11111
•2 99999 99999 99999 WWW 38888 77777 77777 77777 66666 65566 55556 5555
.2 nm 14114 44444 **333 33333 TP?? 22222 22222 22111 11111 11000 00000
• 1 99QQ9 99999 99688 88888 38867 77777 77777 77666 66666 66666 66655 55566
.1 4414* 44m 33333 33333 ^7999 Win 11111 11111 110000000000000
¦0 H 99999 99999 99996 88888 88888 87777 77777 77766 66666 66666 66555 55555
-0 4**41 3333-^ y"** "*** nm nm him iqooq qoooq OOP
0 00000 00000 00000 011T1 11111 12222 22222 33333 34444 44444 4
0 55555 56666 66666 67778 88888 68899 99999 99999 9999
1 00000 00000 11111 11111 11111 12222 22222 22222 33333 33333 44444
1 55555 56566 66666 66666 67777 77777 77888 88889 99999 9
00000 01111 11122 22222 22233 33333 44444 44444 44
55555 55556 66666 66667 77777 77788 88888 99999
00001 11111 11111 22233 33333 44444 4
55555 55666 66677 77777 88888 99999 999
00000 00011 11111 12222 22223 34444 4
55555 66666 77777 77868 88888 88899 99
0000011122 23344
55556 66666 66677 7888S 889
00001 11222 33333 444
55557 78889 999
01112 22223 333a 4
55567 77778 88999
00012 22223 444
55568 899
01223 334
67768 8
00034
5689
00001 11344
00000 00000 0000
5555
00000 0000
55555 5
00000 00000'
00000 00000
00
66656 55555 556
11000 00000 00000
11111 11111 10000 00000 00000 00000
56
10000 00000 00000 00
2
2
3
3
4
4
5
5
8
6
7
7
8
a
s
9
10
10
11
11
12
12
14
16
20
21
22
23
3344
69
68999
56
Ifl
34
07
CC
s
Figure 5-2. Stem-and-leaf plot for the 1987 In(NMOC) data.
5-4
-------
Normal Probability Plot, N = 2752
a>
>
at
>
TJ
®
O
®
a.
•4«
•9?j*
NMOC (ppmC)
Figure 5-3. Cumulative frequency distribution for 1987 NMOC data.
-------
Normal Probability Plot, N = 2752
4-1
I) I"
»
9
»
I o
*
3
D
1
5 -i
-2
-3
-4-
•
¦
2
• •
• 2
•
•2 4
21
IT
*•••
OA
VI
••4
tit
•ft
•t
ttt
•tt
tt
ttt
ttt
tt
ttt
ttt
ttt
•tt
tt
ttt
4tt
tt
ttt
tt
Stt
tt
4tt
•t
tl
3)4
4
• •
•
•
-2 -1 0
In(NMOC)
Figure 5-4. Cumulative frequency distribution for In(NMOC) data.
-------
although qualitative, show a dramatic difference between the normal and
lognormal hypotheses, and suggest that the latter more nearly describes the
NMOC data. Figure 5-4 is labeled a "Normal Probability Plot," but since the
independent variable is the logarithm (to the base e) of NMOC, if the relation
between the EXPECTED VALUE and ln(NMOC) is linear, a lognormal distribution
obtains.
Table 5-1 partitions the NMOC data for the summer of 1987 into groups
which correspond to monthly intervals. The time interval for June corresponds
to Julian Dates 151 to 181; for July to 182 to 212; for August to 213 to 243;
for September to 244 to 273; for October to 274 to 304.
The data for September are higher than for June, July, or August, but no
clear trend is seen for the summer of 1987. Some of the September data fall
in the node discussed above in reference to Figure 5-1, but the majority of
the data in the node did not include data in September. The high NMOC mean
concentration in October is not representative of an overall average
concentration because only two California sites supplied samples (BACA and
PICA).
Figures 5-5 through 5-9 give the stem-and-leaf plots of the NMOC data for
June, July, August, September, and October 1987, respectively. All the plots
show the genieral shape of lognormal distribution with the exception of Figure
5-9 for October. The October 1987 data are for only two California sites,
BACA and PICA, and should not be considered comparable to the other monthly
graphs. The data for June, July, August, and September may be considered
typical of the 32 sites tested during the indicated time period. Monthly mean
NMOC emissions are plotted in Figure 5-10 for 1984, 1985, 1986, and 1987. No
general trends are evident for the years shown. For three of the four years,
September means are higher than August means, and for three of the four years
July means are less than June means. At present, however, it must be
concluded that random behavior is responsible for apparent month-to-month
changes.
5-7
-------
TABLE 5-1. SUMMARY STATISTICS FOR NMOC, BY MONTH
Sample
Minimum
Median
Mean
Maximum
Standard Deviation
Month,
NMOC
NMOC
NMOC
NMOC
NMOC
1987
(ppmC)
(ppmC)
(ppmC)
(ppmC)
(ppmC) Cases
June
0.057
0.538
0.670
4.448
0.544
625
July
0.045
0.520
0.708
9.420
0.682
702
August
0.078
0.531
0.699
9.984
0.773
666
September
0.047
0.625
0.833
10.767
0.818
667
October3
0.319
1.284
1.308
2.733
0.611
56
Only two sites participated in October NMOC monitoring, BACA, PICA. The data .from BACA averaged
0.424 ppmC for the entire sampling period (June through October), which was significantly higher
than other sites. The average NMOC concentration for PICA was 0.629 ppmC.
-------
M
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8 H
8
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
17
10
19
21
22
23
27
28
29
30
32
34
35
36
44
57779
01122 23333
55555 55556
00000 00000
55555 55555
00000 00011
55555 55566
00000 00000
55555 55666
00001 11112
55555 56666
00000 00111
55555 55555
00000 01111
55555 66677
01222 22334
55556 66777
00223 3344
55679 9999
00122 44
56699 999
00000 12223
56778 89
12334
57888 9
00012 2334
56777 9
00123
5789
00113 4
79
13367
45
17
7
02
3
026
3
9
6
02
9
4
4
6
4
444
66666 67777
01111 11111
66666 66666
11111 22222
66667 77777
01111 11222
66666 66777
22222 22222
67777 78888
11111 22222
66666 66777
11222 22333
78888 9999
77777 88838
11222 33333
67777 77777
22223 33333
77888 88889
22223 33333
77778 88888
33344 4444
99999 9
22233 33333
78888 88999
33334 44444
8899
77778
33344
99999
34444
99999
44444
88888 88999 9
44444 444
99999 9
4
99999
4
QQQQQ QQflfl
O9990 9999
33344
NMOC, ppmC
Cases
625
Minimum
0.057
Maximum
4.448
Mean
0.670
Standard Deviation
0.544
Standard Error
0.022
Skewness
2.678
Kurtosis
10.428
Lower Hinge (H)
0.324
Median (M)
0.538
Upper Hinge (H)
0.822
Figure 5-5. Stem-and-leaf plot of the NMOC data for June, 1987.
5-9
-------
0
4
0
7778
1
01222
22223
33333
33444 4444
1
55556
66666
77777
77777 88888
2
00000
00001
11111
12222 22223
2
55555
55555
55556
66666 66666
3 H
OOOOO
00111
11111
22222 22222
3
55555
55556
66666
66666 66667
4
00000
01111
11111
11112 22233
4
55566
66677
77777
77888 88999
5 M
00000
11111
11222
22233 33444
5
55556
66666
66677
77788 88889
6
00000
11111
11222
23333 334
6
55555
55556
66666
67777 77889
7
01112
22333
33334
4
7
55555
56677
77778
39999 99
8
00000
01111
11223
33444 444
8
55566
67888
99979
9 H
00000
11122
22334
9
55677
77777
88899
10
00000
11112
22234
44
10
56777
9
11
00001
12223
33344
4
11
55677
88
12
00112
2244
12
55577
7789
13
0124
13
5677
14
01133
33
14
5668
15
01233
4
15
55667
79
16
00113
4
16
6889
17
17
56
17
89
18
02258
99
19
15
20
0689
21
06
22
188
23
4
24
8
25
3
26
56
31
2
32
7
34
36
43
2
44
7
52
4
53
0
94
2
NMOC, ppmC
Cases
702
Minimum
0.045
Maximum
9.420
Mean
0.708
Standard Deviation
0.682
Standard Error
0.026
Skewness
4.956
Kurtosis
45.374
Lower Hinge (H)
0.323
Median (M)
0.520
Upper Hinge (H)
0.902
igure 5-6. Stem-and-leaf plot of the NMOC data for July, 1987.
5-10
-------
0
7999
1
00011
23334 44
1
55555
66666 66677 77788 88888 88999
2
00000
00001 11111 11111 11112 22233
2
55555
55555 55566 66666 67777 77777
3 H
00000
00000 01111 11111 11111 12222
3
55555
55666 66666 66677 77777 77788
4
00001
11111 11222 22223 33333 33334
4
56666
67777 77778 88889 99999
5 M
00001
11112 22333 33344 44444
5
55555
55556 66666 66667 77777 78888
6
00001
11123 33333 44444 44444 4
6
55555
56666 66666 66777 77888 88899
7
00000
01111 ????? 23344
7
55556
67778 88888 889
8
01222
22333 33344 4
8 H
55666
67777 88899 99
9
00001
11111 23344 4
9
56677
77778 8889
10
00001
11224 444
10
55666
99
11
01112
2233
11
55667
77888 9999
12
00134
44
12
55566
77889 9
13
01113
33
13
57799
14
00224
14
89
15
02222
3
15
7
16.
234
16
5
17
01
17
66668
18
77
19
01267
20
00
21
799
22
1489
24
4
25
345
26
7
28
7
33
0
44
2
89
1
93
5
99
8
NMOC, ppmC
Cases
666
Minimum
0.078
Maximum
9.984
Mean
0.699
Standard Deviation
0.773
Standard Error
0.030
Skewness
7.037
Kurtosis
72.869
Lower Hinge (H)
0.310
Median (M)
0.531
Upper Hinge (H)
0.871
Figure 5-7. Stem-and-leaf plot of the NMOC data for August, 1987
5-11
-------
0
1
1
2
2
3
3 H
4
4
5
5
6 M
6
7
7
8
a
9
9 I
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
44
82
107
5699
11122 2334
55555 55666
00011 11111
55555 56666
00001 11111
55555 55555
00000 00001
55555 55666
00000 01111
55556 66666
00000 01111
55555 55666
00000 01111
55666 66667
00001 11222
66667 77778
00000 01111
55556 66677
00011 12333
55666 77889
00001 22233
55566 77889
00113 4
55568 8999
00011 1344
6677
11233
55555 77888
12
6899
01122 222
569
244
56789
0224
55
39
35568
12356 78
237
357
238
37
247
3
23
9
23566
35
1
1
7
67
8
6
77788 88999
22222 22223
66667 77777
11222 22222
55666 66666
11111 22222
66677 77777
11111 22222
66677 77788
11222 22222
66677 77788
11122 22333
77777 88899
23333 33444
899
11122 22223
77880 99999
34
9999
344
99
999
33344 44444 44444 4
77778 88888 88999 99
23333 33334 4444
66667 77777 77778 88888 99999
22222 23333 33444 4
88888 88888 88888 88999 999
22333 33344 44
88889 99999 9999
33444 44
88899 9
33333 44444 44
99
33333 34
NMOC, ppmC
Cases
667
Minimum
0.053
Maximum
10.767
Mean
0.833
Standard Deviation
0.818
Standard Error
0.031
Skewness
5.324
Kurtosis
43.493
Lower Hinge (H)
0.378
Median (M)
0.625
Upper Hinge (H)
0.999
IT
o
r-
co
Figure 5-8. Stem-and-leaf plot of the NMOC data for September, 1987.
5-12
-------
NMOC, ppmC
Cases
56
Minimum
0.319
Maximum
2.733
Mean
1.308
Standard Deviation
0.611
Standard Error
0.082
Skewness
0.226
Kurtosis
-0.905
Lower Hinge (H)
0.771
Median (M)
1.284
Upper Hinge (H)
1.773
0 333
0 45S55
0 H 66666 7
0 88999 9
1 00011 1
1 M 22233 3
1 44455
1 H 66677
1 889
2 00000 01
2 233
2
2 7
Figure 5-9. Stem-and-leaf plot of the NMOC data for October, 1987.
5-13
-------
NMOC MONITORING PROGRAM
1.05 -
1.00 -
0.95 -
0.90 -
0.85 -
0.80 -
0.75 -
0.70 -
0.65
T
5 7 9
Month
~ 1984 + 1985 O 1986 A 1987
Figure 5-10. Monthly mean NMOC emissions for 1984, 1985, 1986, and 1987.
-------
.6.0 RECOMMENDATIONS
Based on the experiences and results of the 1987 NMOC Monitoring Study ,
certain recommendations redound with respect to equipment design and
validation procedures.
6.1 EQUIPMENT DESIGN CHANGES
During the 1987 study and after testing several of the NMOC sampling
timers, it was determined that several of the timers were not accurate in
their initial and final operating time settings. It is recommended that the
present NMOC mechanical sampling timers be tested for accuracy and precision.
The task should include evaluation of cost effective timer alternatives.
Several of the 2-micron stainless steel filter holders installed in the
NMOC sampling trains have failed by cracking at the attachment stem during the
1987 study. It is recommended to replace the present 1/8-inch stem filter
holder in the NMOC sampling train with 1/4-inch stem filter holders.
A recommended analytical equipment design change is to replace the 6-port
sample injection valves used in the HP-5880 gas chromatographs with similar
valves of higher temperature rating. The valves could then be maintained at
130°C, which would facilitate their more reliable use with wet air samples.
6.2 OPERATING PROCEDURE CHANGES
At present all site samples contain some moisture. All zero air
determinations use cleaned, dried air followed by two determinations using
cleaned, dried air that has been humidified. Canister cleanup procedures also
use cleaned, dried air that has been humidified. It is recommended that a
wel1-designed study be conducted to determine whether moisture in a sample
affects calibration and audit results, using propane standards. Current
operating procedures call for the use of dry propane standards and external
audit samples. The experimental design recommended would cover the present
NMOC span of 0 to 9 ppmC, and at least 3 levels of humidity, zero, low (-10%)
relative humidity and medium (-30%) relative humidity. The effect of humidity
on propane calibration (and audit) results is currently unknown.
6-1
-------
It is recommended to develop a procedure to certify the 3-hour NMOC
sampling train for possible air toxics artifact addition. The NMOC sampling
train was used in 1987 to collect ambient air samples for NMOC analysis, and
for air toxics speciated analyses. A study has not been made to determine if
the NMOC air sampling system itself contributes any target compounds for the
air toxics determinations. The certification of the 3-hour sampling train
should be similar to the certification performed on the 24-hour Urban Toxics
Monitoring Program sampling train.
It is recommended to develop and conduct a preseason NMOC performance
audit for all analytical systems including Radian (4-PDFID channels), EPA-QAD
(PDFID channel), and EPA-ASRL (GC speciation system). Performance
acceptability should be determined prior to site sample collection and
analysis.
It is recommended to schedule and perform NMOC field audits for each NMOC
site for 1988. The field audit would be scheduled at random among the sites,
within the limits of a cost effective routing of the person sent to conduct
the audit. It would indicate the use of a standard of known NMOC
concentration connected to the site sampling system and require a duplicate
sample plus a trip blank for each site.
5.3 MULTILEVEL NMOC STUDY
In 1987 ambient air samples were taken at ground level (10 meters) and at
the 1197-feet (364.9 m) level. It is recommended that the study continue at
these two sampling altitudes and that at least one more level (at 100 m or
some other appropriate height above ground level) be sampled at the same site
location. At the same time site barometric pressure and site wind velocity
and direction data should be obtained. The samples obtained should be
analyzed for NMOC content as well as for the air toxics compound
concentrations. The information gained from such a study would be useful in
validating various atmospheric model prediction methods.
6.4 SEASONAL NMOC STUDIES
Data derived in a study qualifying NMOC and N0X in seasons other than
summer could be useful in understanding the relationship of NMOC to NOx and
meteorological conditions. Currently a year-round study for 24-hour air
toxics ambient air samples is being conducted. No study is currently being
done which determines seasonal NMOC concentration changes.
6-2
-------
7.0 REFERENCES
1. Radian Corporation. 1987 Nonmethane Organic Compound and Air Toxics
Program, Work Plan and Quality Assurance Project Plan. Prepared for the
U.S. Environmental Protection Agency, Research Triangle Park, NC, EPA No.
68-02-3889, WA 121, May 27, 1987.
2. McAllister, Robert A., Robert F. Jongleux, Dave-Paul Dayton,
Phyllis L. O'Hara, and Denny Wagoner (Radian Corporation). Nonmethane
Organic Compound Monitoring. Final Report. Prepared for U.S.
Environmental Protection Agency, Research Triangle Park, NC, EPA No.
68-02-3889, July 1987.
3. McAllister, Robert A., Dave-Paul Dayton and Denny Wagoner (Radian
Corporation). Nonmethane Organic Compound Monitoring. Final Project
Report prepared for U.S. Environmental Protection Agency, Research
Triangle Park, NC, EPA No. 68-02-3889, January 1986.
4. Radian Corporation. Nonmethane Organic Compounds Monitoring Assistance
for Certain States in EPA Regions III, IV, V, VI, and VII, Phase II,
Final Project Report. Prepared for the U.S. Environmental Protection
Agency, Research Triangle Park, NC, EPA No. 38-02-3513, February 1985.
7-1
-------
APPENDIX A
CYROGENIC PRECONCENTRATION AND
DIRECT FLAME IONIZATION DETECTION
(PDFID) METHOD
-------
CRYOGENIC PRECONCENTRATION AND DIRECT
FLAME IONIZATION DETECTION (PDFID) METHOD
FOR MEASUREMENT OF ATMOSPHERIC CONCENTRATIONS
OF NON-METHANE ORGANIC COMPOUNDS (NMOC)
W
August 1985
Quality Assurance Division
Environmental Monitoring Systems Laboratory
Office of Research and Development
U. S. ENVIRONMENTAL PROTECTION AGENCY
Research Triangle Park, North Carolina 27711
A-l
-------
CONTENTS
Page
INTRODUCTION 37
1. APPLICABILITY 40
2. PRINCIPLE 40
3. PRECISION AND ACCURACY 41
4. APPARATUS 42
4.1 Air Sampling 42
4.2 Sample Collection in Pressurized Canisters 42
4.3 Sample Canister Cleaning 43
4.4 Analytical System 44
4.5 Other Materials 46
5. SUPPLIES 46
5.1 Helium ........ 46
5.2 Combustion Air 46
5.3 Hydrogen 46
5.4 Propane Calibration Standard 47
5.5 Zero Air 47
5.6 Cryogen 47
6. SYSTEM DESCRIPTION 47
6.1 Direct Sampling 47
6.2 Sample Collection in Pressurized Canisters 47
6.3 Analytical System 51
A-2
-------
CONTENTS (continued)
Pa^e
7. PROCEDURE 58
7.1 Recommended Procedure for Canister Cleaning 58
7.2 Procedure for Collection of Samples in Canisters ... 59
7.3 Analysis Procedure 60
8. CALIBRATION 54
8.1 Calibration Frequency 64
8.2 Calibration Standards 64
8.3 Calibration Procedure 64
9. METHOD MODIFICATIONS 65
9.1 Sample Metering System 65
9.2 FID Detector System 55
9.3 Range 56
10. REFERENCES 57
APPENDIX 75
A-3
-------
FIGURES
Figure Page
1 Schematic of Analysis System Showing Three Sampling
Modes 68
2 Sample System for Collection of Integrated Field
Samples 69
3 Canister Cleaning System 70
4 Cryogenic Sample Trap Dimensions 71
5 Construction of Operational Baseline and Corresponding
Correction of Peak Area 72
6 Suggested filter-hypodermic needle assembly for
canister sampling system 73
7 Electrical pulse circuit for driving Skinner
Magnelatch solenoid valves with a conventional
mechanical timer 74
Mention of trade names or commercial products does not constitute
endorsement or recommendation for use.
A-4
-------
INTRODUCTION
A variety of photochemical dispersion models have been developed to
describe the quantitative relationships between ambient concentrations of
precursor organic compounds and subsequent downwind concentrations of
ozone.* An important application of such models is to determine the degree
of control of such organic compounds that is necessary in a particular area
to achieve compliance with applicable ambient air quality standards for
ozone.For this purpose, the models require measurements of atmospheric
concentrations of non-methane organic compounds (NMOC).
The more elaborate theoretical models generally require detailed
organic species data.2»3 Such species data must be obtained by multi-
component gas chromatographic (GC) analysis of air samples.2.3 Simpler
empirical models such as the Empirical Kinetic Modeling Approach (EKMA)
require only total NMOC concentration data, specifically the average total
NMOC concentrations from 6 AM to 9 AM daily.2
For many EKMA applications, NMOC measurements are required at urban,
center-city-type sites.2 The NMOC concentrations typically found at such
urban sites may range up to 5-7 ppmC* or higher. If transport of precur-
sors into an area is to be considered, then NMOC measurements upwind of the
area are necessary.1 Upwind NMOC concentrations are likely to be very low,
(less than a few tenths of 1 ppm). Continuous commercially available NMOC
analyzers have been used to measure NMOC for EKMA applications, but the
*By convention, concentrations of NMOC are reported in units of parts per
million carbon (ppmC), which for a specific compound is the concentration
by volume (ppmV) multiplied by the number of carbon atoms in the compound.
A-5
-------
measurements have generally been only marginally adequate for urban sites
and unacceptable for upwind sites.^ NMOC GC species measurements can be
used by summing the various components to obtain a total NMOC concentra-
tion. 2 But for EKMA, the species data are not needed, and the cost and
complexity of species analysis is very high.
The method described herein can be used to obtain both the requisite
urban, as well as upwind, NMOC measurements,6.7.8 j^is method is a simpli-
fication of the GC speciation method mentioned above. It combines the cryo-
genic concentration technique used in the GC method for high sensitivity
with the simple flame ionization detector (FID) for total NMOC measurements,
without the GC columns and complex procedures necessary for species separa-
tion. And because of the use of helium carrier gas, the FID has less res-
ponse variation to various organic compounds than a conventional NMOC
analyzer with air carrier or direct sample injection into the FID.4'8
This method can be used either for direct, in situ ambient measure-
ments or for analysis of integrated samples contained in metal canisters.
Making direct measurements at the monitoring site avoids the need for
collection of air samples in canisters. However, the analyst must be
present during the 6 AM to 9 AM period, and repeated measurements
(approximately six per hour) must be taken to obtain the 6 AM to 9 AM
average NMOC concentration. A separate analytical system and analyst is
needed for each monitoring site. (Further development of the method may
eventually allow for automatic operation, for on-line semi-continuous
analysis in the future.)
The use of sample canisters allows the collection of integrated air
samples over the 6 AM to 9 AM period by automated samplers at unattended
A-6
-------
monitoring sites. One analytical system can then be used to analyze the
samples from several monitoring sites. Degradation or contamination of the
air samples by the canister or sample collection system could be a potential
problem. However, tests indicate that the use of properly cleaned stainless
steel canisters, as described in the procedure, is practical and adds
relatively little additional variability to the method.® Although storage
of the air samples for several weeks in the stainless steel canisters appears
to result in no appreciable degradation of the sample,® good practice would
suggest that the samples be analyzed as soon after collection as practical.
A-7
-------
CRYOGENIC PRECONCENTRATION AND DIRECT FLAME IONIZATION DETECTION (PDFID)
METHOD FOR MEASUREMENT OF ATMOSPHERIC CONCENTRATIONS OF
NON-METHANE ORGANIC COMPOUNDS (NMOC)
1. APPLICABILITY
This method is applicable to measurement of concentrations of total
gaseous non-methane organic compounds (NMOC) in the atmosphere for use
with atmospheric photochemical models such as EKMA* or for other appropriate
applications. Measurements may be obtained either in situ, or by subsequent
analysis of integrated air samples collected over a fixed time period, such
as the 3-hour (6 AM to 9 AM) measurements specified for EKMA. Collection
of integrated samples also allows, for central analysis of samples from
multiple sites. The high sensitivity and low detection limit of the method
make it suitable for upwind measurements, while the wide dynamic range
allows analysis of urban air samples as well.
2. PRINCIPLE
An air sample is taken either directly from the ambient air at the moni-
toring site, where the analytical system is located, or from a special sample
canister filled previously at a remote sampling site. A fixed-volume portion
of the sample is drawn at a low flow rate through a glass beaded trap that is
cryogenically cooled to approximately -186* C (liquid argon temperature).
At this temperature, all organic compounds in the sample other than methane
are collected (either via condensation or adsorption) in the trap, while
methane, nitrogen, oxygen, etc., pass through. The system is dynamically
calibrated so that the volume of sample passing through the trap does not
have to be quantitatively measured, but must be precisely repeatable between
the calibration and analytical phases.
A-8
-------
After the fixed volume air sample has been drawn through the trap, a
helium carrier gas flow is diverted to pass through the trap, in the opposite
direction to the previous sample flow, and into a flame ionization detector
(FID). When the residual air and methane have been cleared from the trap
and the FID baseline becomes steady, the cryogen is removed and the tempera-
ture of the trap is raised to approximately 90* C. The organic compounds
previously collected in the trap revolatilize and are carried into the FID,
resulting in a response peak or peaks from the FID. The area of the peak
or peaks is integrated, and the integrated value is translated to concentra-
tion units via a previously obtained calibration curve relating integrated
peak areas with known concentrations of propane.
The cryogenically cooled trap simultaneously concentrates the non-
methane organic compounds while separating and removing the methane from
air samples. Thus the technique is direct reading for NMOC and, because of
the concentration step, is more sentitive than conventional NMOC analyzers.
Also, operation of the FID detector with a helium carrier results in less
response variation to different organic compounds^ than is observed with
conventional NMOC analyzers having air carriers or direct air injection.4
Quantitative trapping has been shown for most compounds tested.6'**
3. PRECISION ANO ACCURACY
The analytical precision, assessed in an actual field monitoring pro-
ject, was estimated to be 12.7%.® The overall precision estimate for the
method, including the effect of collecting and storing the ambient samples
in stainless steel canisters, was found to be about 0.12 ppmC (approximately
17.4%).8 Because of the number and variety of organic compounds included in
A-9
-------
the NMOC measurement, determination of absolute accuracy is not practical.
Based on comparison with manual GC speciation analysis—a technique regarded
as the best available for the measurement of atmospheric organic compounds--
the proportional (per cent) bias was determined to be +8.IX, with a neglig-
ible fixed bias (intercept).8 Although the 8.1% bias was statistically
significant, no correction factor is proposed for the method because this
bias is modest, and the speciation technique is not an absolute standard.
Experimental tests indicate some degree of FID baseline shift from
water vapor in ambient samples, which could result in positive bias,
variability, or both. These problems can be adequately minimized by careful
selection of the integration termination point and appropriate baseline
corrections, as described in Section 7.3.
4. APPARATUS
The following components and materials are required.or recommended.
Sources for the more specialized components are given in the Appendix. An
overall schematic diagram of the analytical system is shown in Figure 1,
and a suggested system for collecting ambient samples in canisters is shown
in Figure 2. A canister cleaning system is shown in Figure 3.
4.1 Air Samp!ing
4.1.1 Sample manifold or sample inlet line, to bring sample air into
the sampling or analytical system.
4.1.2 Vacuum pump or blower, if needed, to draw sample air through a
sample manifold or long inlet line to reduce inlet residence
time.
4.2 Sample Collection in Pressurized Canisters (See Figure 2)
4.2.1 Sample canisters. Stainless steel pressure vessels of 4 to 6 L
A-10
-------
volume, with one or two leak-free shut-off valves (see
Appendix). Interior surfaces of the canisters should be
passivated using the SUMMA process (Molectrics, Carson, CA).
Each canister should have a unique identification number.
4.2.2 Sample pump. Stainless steel, metal bellows type (Metal
Bellows model M8-151 or equivalent) capable of 2 atmospheres
(200 kPa, 30 psig) minimum output pressure. Pump must be free
of leaks, clean, and uncontaminated by oil or organic compounds.
4.2.3 Pressure gauge. 0-200 kPa (0 - 30 psig).
4.2.4 Shut-off valve, for gauge.
4.2.5 Stainless steel orifice or short capillary, capable of main-
taining a substantially constant flow over the sampling period
(see Section 6.2).
4.2.6 Particulate matter filter. (2 micron stainless steel
sintered in-1ine type)
4.2.7 Timer (for unattended sample collection). Capable of control-
ling pump(s) and solenoid valve (see Section 6.2).
4.2.8 Solenoid valve. Normally closed, bubbletight, electrically-
operated valve. A special bi-stable solenoid valve that requires
enerigizing only briefly for turn-on and turn-off (Skinner
Magnalatch or equivalent) is recommended to minimiie tempera-
ture rise in the valve (see Section 6.2).
4.2.9 Needle valve. Optional fine metering valve may be needed
to adjust flow rate of sample from canister during analysis.
A-ll
-------
4.3 Sample Canister Cleaning (See Figure 3)
4.3.1 Vacuum pump. Capable of evacuating the sample canisters to
an absolute pressure of <5 mm Hg.
4.3.2 Vacuum manifold. A metal manifold with connections for
several canisters to be simultaneously cleaned.
4.3.3 Shut-off valves (3), as shown.
4.3.4 Vacuum gauge. Capable of measuring the vacuum in the vacuum
manifold to an absolute pressure of 5 mm Hg or less.
4.3.5 Cryogenically cooled trap. U-shaped open tubular trap cooled
with liquid nitrogen or argon, to prevent contamination from
back diffusion of oil from the vacuum pump.
4.3.6 Pressure gauge. 0-50 psig (0-345 kPa), to monitor canister
pressure.
4.3.7 Flow control valve, to regulate flow of zero air into canisters.
4.4 Analytical System (See Figure 1)
4.4.1 FID detector system, including flow controls for the FID fuel
and air, temperature control for the FID, and signal processing
electronics.
4.4.2 Chart recorder, compatible with the FID output signal, to
record FID response signals for visual interpretation.
4.4.3 Integrator, electronic, compatible with the FID output signal
and capable of integrating the area of one or more FID response
peaks and calculating peak area corrected for baseline drift
(see Section 6.3.10).
NOTE: Items 4.4.1, 4.4.2, and 4.4.3 are conveniently provided
by a current model laboratory chromatograph (such as the
Hewlett-Packard model 5880 or similar). See also Sec-
A-12
-------
tions 6.3.7 and 6.3.10. A chromatograph may also provide
other convenient features such as an oven for warming
the trap and valve, automatic control of the valve and
integrator, pressure or flow regulators, etc. (see below).
4.4.4 Six-port chromatographic valve. Seiscor model VIII
(pneumatic), Valco 9110 (manual), or equivalent.
4.4.5 Trap (See Figure 4). Fabricated from 0.3175 cm (1/8") o.d.,
0.21 cm i.d. chromatographic grade stainless steel tubing
to the approximate dimensions shown. A 7 to 10 cm section
in the center of the trap is packed with 60/80 mesh glass beads,
held 1n place with dimethyldichlorosilane-treated glass wool
at both ends.
4.4.6 Cylinder pressure regulators. Standard, two-stage cylinder
pressure regulator, with pressure gauges, for helium, air
and hydrogen cylinders.
4.4.7 Low pressure regulators. Single stage, with pressure gauge,
if needed, to maintain constant helium carrier gas and
hydrogen flow rates (see Section 6.3.5).
4.4.8 Needle valve. Fine metering valve to adjust sample flow
rate through trap.
4.4.9 Cryogenic Oewar, to hold liquid cryogen sized to contain
submerged portion of trap.
4.4.10 Absolute pressure gauge. 0 - 400 mm Hg, Wallace & Tiernan
model 61C-ID-0410, or equivalent (see Section 6.3.1).
4.4.11 Vacuum reservoir. Vacuum tank of about 1 to 2 L capacity
(see Section 6.3.1).
4.4.12 Gas purifiers. Gas scrubbers containing Orierite or silica
A-13
-------
gel and 5A molecular sieve to remove moisture and organic
impurities in the helium carrier gas, air, and hydrogen.
4.4.13 Shut-off valves (2). Leak free, for vacuum valve and sample
valve.
4.4.14 Vacuum pump. General purpose laboratory pump capable of
evacuating the vacuum reservoir to an appropriate vacuum
that allows the desired sample volume to be drawn through
the trap.
4.4.15 Trap heating system. Chromatograph oven, hot water, or
other means to heat the trap to 80° to 90' C.
4.4.16 Vent, to keep the trap at atmospheric pressure during trapping
when using pressurized canisters, with means to detect and
verify positive vent flow, such as a rotameter or bubbler
(see Section 6.2).
4.5 Other Materials
4.5.1 Various connecting tubing and plumbing fittings. All such
items in contact with the sample, analyte, or support gases
prior to analysis should be stainless steel or other inert
metal. Do not use plastic or Teflon tubing or fittings.
4.5.2 Various mechanical mounting fixtures, as necessary.
5. SUPPLIES
5.1 Helium. Cylinder of high purity grade helium.
5.2 Combustion air. Cylinder of air containing less than
0.5 ppm hydrocarbons, or equivalent air source.
5.3 Hydrogen. Cylinder of ultra high purity grade hydrogen, or
equivalent hydrogen source.
A-14
-------
5.4 Propane calibration standard. Cylinder containing 1 to 100 ppm
(3 to 300 ppmC) propane in air. The cylinder assay should be
traceable to a National Bureau of Standards (NBS) propane in air
Standard Reference Material (SRM) or to a commercially available
Certified Reference Material (CRM).
5.5 Zero air, containing less than 0.01 ppmC hydrocarbons. Zero air may
be obtained from a cylinder of zero-grade compressed air scrubbed with
Orierite or silica gel and 5A molecular sieve or activated charcoal,
or by catalytic cleanup of ambient air. All zero air should be passed
through a cryogenic cold trap for final cleanup.
5.6 Cryogen. Liquid argon or liquid oxygen. (Observe appropriate
safety precautions with liquid oxygen.)
6. SYSTEM DESCRIPTION
6.1 Direct Sampling
For direct ambient sampling, the cryogenic trapping system draws the
air sample directly from a pump-ventilated distribution manifold or
sample line. The connecting line should be of small diameter
(1/8" o.d.) stainless steel and as short as possible to minimize its
dead volume. With direct sampling, multiple analyses will have to be
taken over the sampling period to establish hourly or 3-hour NMOC
concentration averages.
6.2 Sample Collection in Pressurized Canisters
Collection of ambient air samples in pressurized canisters provides a
number of advantages, including (1) convenient integration of ambient
A-15
-------
samples over a specific time period, e.g., 1 or 3 hours; (2) remote
sampling and central analysis; (3) storage and shipping of samples, if
necessary; (4) unattended sample collection; (5) analysis of samples
from multiple sites with one analytical system; and (6) collection of
replicate samples for assessment of measurement precision. However,
great care must be exercised in selecting, cleaning, and handling the
sample canisters and sampling apparatus to avoid losses or contamination
of the samples.
Figure 2 shows a schematic diagram of a recommended sample col-
lection system. The small auxiliary vacuum pump purges the inlet
manifold or lines with a flow of several liters/minute to minimize the
sample residence time. The larger, metal bellows pump takes a small
portion of this sample to fill and pressurize the sample canister.
Both pumps should be shock-mounted, to minimize vibration.
A critical orifice or hypodermic needle connected to the inlet
of the metal bellows pump is used to maintain a substantially constant
flow into the canister(s) over the sample period and must be selected to
provide the desired flow rate. This flow rate is chosen so that the
canisters are pressurized to at least one atmosphere above ambient
pressure (2 atmospheres absolute pressure) over the desired sample
period. The flow rate can be calculated by
F = P V N
T x 60 (1)
where
A-16
-------
F = Flow rate, cm^/min,
P = Final canister pressure, atmospheres absolute*,
V = Volume of the canister, cm^,
N = Number of canisters connected together for simultaneous
sample collection,
T = Sample period, hours.
For example, if one 6 L canister is to be filled to 2 atmospheres
absolute pressure (15 psig) in 3 hours,
p = 2 x 6000 x 1 = 67 cm3/min
3 x 60
A 30 gauge hypodermic needle 2.5 cm long provides a flow of approxi-
mately 65 cm^/min with the Metal Bellows Model MB-151 pump. Such a
needle will maintain approximately constant flow up to a canister
pressure of about 10 psig, after which the flow drops with increasing
pressure. At 15 psig (2 atmospheres absolute pressure), the flow is
about 10% below the original flow.
The hypodermic needle is protected with a 2.0 pm stainless steel
in-line particulate filter, which also keeps particulate matter from
depositing in the pump, lines, and canister. A suggested filter-
hypodermic needle assembly can be fabricated as shown in Figure 6.
For automatic operation, the timer is wired to start and stop the
pump or pumps at the appropriate times for the intended sample period.
~Absolute pressure in atmospheres = Pq/Pa + where Pg = gauge pressure in
the canister, psig, and Pa = standara atmospheric pressure (14.7 psi).
A-17
-------
The timer must also control the solenoid valve. The Skinner
Magnelatch solenoid valve specified avoids the substantial tempera-
ture rise that would occur with a conventional normally closed- sole-
noid valve, which would have to be energized during the entire sample
period. This temperature rise in the valve could cause outgasing of
organics from the Viton valve seat material. The Magnelatch valve,
however, requires only brief electrical pulses to open and close at
the appropriate start and stop times and therefore experiences no
temperature increase. The pulses may be obtained with an electronic
timer that can be programmed for short (5 to 60 seconds) ON periods
or with a conventional mechanical timer and a pulse circuit such as
the one shown in Figure 7.
The canisters are originally evacuated. The connecting lines be-
tween the sample pump and the canister(s) should be as short as pos-
sible to minimize their volume. Check to see that the flow rate into
the canister remains relatively constant over the entire sampling
period. (As previously noted, some drop in the flow rate may occur
near the end of the sample period as the canister pressure approaches
two atmospheres absolute pressure.)
Simultaneous collection of duplicate samples decreases the possi-
bility of lost measurement data from samples lost due to leakage or
contamination in either of the canisters. Two (or more) canisters can
be filled simultaneously by connecting them in parallel (see Figure 2)
and selecting an appropriate flow rate to accommodate the number of
canisters (Equation 1). Duplicate (or replicate) samples also allow
assessment of measurement precision based on the differences between
A-18
-------
duplicate samples (or the standard deviation among replicate samples).
Prior to field use, each sampling system should be tested for pump
contamination (see Section 7.2), leaks, and proper flow rate. The
plumbing on the outlet side of the metal bellows pump can be checked
for leaks by shutting off the canister valves, pressurizing the system,
and checking fittings, etc. with a nonhydrocarbon-based leak detector
fluid. The metal bellows pump should also be leak-checked by plugging
its outlet and ensuring that there is no flow into its inlet side.
The canisters must be cleaned and checked for contamination before use
(see Section 7.1).
During analysis, a pressurized canister containing an air sample
is connected to the six-port valve with a vent, as shown in Figure 1.
The canister valve or an optional flow control valve installed between
the canister and the vent is used to reduce the canister pressure and
adjust the canister flow rate to a value slightly higher than the trap
flow rate set by sample metering valve. The excess flow exhausts
through the vent, which assures that the sample air flowing through
the trap is at atmospheric pressure. The vent is connected to a flow
indicator such as a rotameter or is submerged in water so that the
escaping bubbles provide a visual indication of vent flow to assist in
adjusting flow control valve.
Analytical System
6.3.1 Sample volume metering system. The vacuum reservoir and
pressure gauge (see Figure 1) are used to meter precisely
repeatable volmes of sample air through the cryogenically
A-19
-------
cooled trap. With the sample valve closed and the vacuum valve
open, the reservoir is first evacuated with the vacuum pump to
a predetermined pressure (e.g. 80 nm Hg). Then the vacuum valve
is closed and the sample valve is opened to allow sample air to
be drawn through the cryogenic trap and into the evacuated reser-
voir until a second predetermined reservoir pressure is reached
(e.g. 180 mm Hg). The (fixed) volume of air thus sampled is de-
termined by the pressure rise in the vacuum reservoir (difference
between the predetermined pressures) as measured by the absolute
pressure gauge. This volume can be calculated by
where
V$ = Volume of air sampled, standard cm^,
aP = Pressure difference measured by gauge, mm Hg,
Vr = Volume of vacuum reservoir,
Ps = Standard pressure (760 mm Hg).
For example, with a vacuum reservoir of 1700 cm-* and a pressure
change of 100 mm Hg (80 to 180 mm Hg), the volume sampled would
be 225 cm3.
The sensitivity of the method is proportional to the sample
volume. However, sample volumes over about 500 cm^ may lead to
loss of sample flow during trapping due to clogging of the trap
from ice. Sample volumes below about 100 - 150 cm^ may cause
increased measurement variability due to dead volume in lines
and valves. For most typical ambient NM0C concentrations,
sample volumes in the range of 200 - 500 cm^ appear to be
A-20
-------
appropriate. If a response peak obtained with a 500 crn^ sample
turns out to be off-scale or to exceed the calibration range, a
second analysis can' be carried out with a smaller volume. The
actual sample volume used need not be accurately known if it is
precisely repeatable during both calibration and analysis.
Similarly, the actual volume of the vacuum reservoir need
not be accurately known. But the reservoir volume should be
matched to the pressure range and resolution of the absolute
pressure gauge so that the measurement of the pressure change
in the reservoir--and hence the sample volume--is repeatable
within IX. A 1700 cm^ vacuum reservoir and pressure change of
20 to 200 mm Hg, measured with the specified pressure gauge,
has proven adequate. A smaller volume reservoir may be used
with a greater pressure change to accommodate absolute pressure
gauges with lower resolution, and vice versa.
6.3.2 Trap. The trap should be carefully constructed from a single
piece of tubing in the shape shown in Figure 4. The central
portion of the trap (7 to 10 cm) is packed with 60/80 mesh glass
beads with small glass wool plugs to retain the beads. The
trap must fit conveniently into the Dewar flask (Section 4.4.9),
and the arms must be of an appropriate length to allow the
beaded portion of the trap to be submerged below the level of
liquid cryogen in the Dewar. The trap should connect directly
to the six-port valve, if possible, to minimize line length
between the trap and the FID. It must be mounted to allow the
Dewar to be conveniently slipped on and off the trap and also
to facilitate heating of the trap (see Section 6.3.4).
A-21
-------
6.3.3 Liquid cryogen. Either liquid oxygen (bp -183.0* C) or liquid
argon (bp -185.7* C) may be used as the cryogen; experiments
have shown no difference in trapping efficiency between the two
cryogenic liquids.® However, appropriate safety precautions
must be taken if liquid oxygen is used. Liquid nitrogen
(bp -195° C) should not be used as it causes condensation of
oxygen and methane in the trap. It may be possible to use liquid
nitrogen in an automated system if an automatic temperature con-
troller is used to obtain an operational temperature in the range
of -180° to -185* C. The level of the cryogenic liquid should be
maintained constant with respect to the trap (see Section 7.3.11)
and should completely cover the beaded portion of the trap.
6.3.4 Heat source. To facilitate integration of the NMQC response
peak, a hot bath or other heating source is used to heat the
trap and volatilize the concentrated NMOC such that'the FID
produces one (or only a few) sharp and easily integrated peak
(or peaks). The trap should be heated to a temperature in the
range of 80* to 90* C. A simple heating source for the trap is
a beaker or Dewar filled with water maintained at 80° to 90° C.
Other types of heat sources include a temperature-programmed
chromatograph oven, electrical heating of the trap itself, or
any type heater that brings the temperature of the trap up to
80* to 90° C in 1 to 2 minutes. A uniform trap temperature rise
rate (above 0° C) may help to reduce variability and facilitate
more accurate correction for the moisture-shifted baseline
(see Section 6.3.10). If a programmable chromatograph oven is
used to heat the trap, the following parameters have been found
A-22
-------
to be acceptable: initial temperature, 30* C; initial time,
0.20 minutes (following start of the integrator); heat rate,
30°/min.; final temperature, 90° C.
6.3/5 Carrier gas. Helium is used to purge residual air and methane
from the trap at the conclusion of the sampling phase and to
carry the revolatilized NMOC from the trap into the FID. A
single-stage auxiliary regulator between the cylinder and the
analyzer may not be necessary but is recommended to regulate
helium pressure better than the two-stage cylinder regulator.
When an auxiliary regulator is used, the secondary stage of the
two-stage regulator must be set at a pressure higher than the
pressure setting of the single-stage regulator.
6.3.6 Construction. The six-port valve and as much of the inter-
connecting tubing as practical should be located inside an oven
or otherwise heated to 80* to 90* C to minimize wall losses or
adsorption/desorption in the connecting lines. All lines
should be kept as short as practical.
All tubing used for the system should be chromatographic
grade stainless steel connected with stainless steel fittings.
Pneumatic damping may be needed between the six-port valve and
the FID to dampen the effect of valve actuations, which may
otherwise cause upsets in the FID signal or extinguish the
flame. A stainless steel capillary may be used for damping,
but its length should be as short as possible to prevent
broadening of the peak.
After assembly, the system should be pressurized to about
80 psig (550 kPa) and checked for leaks. During this procedure,
A-23
-------
disconnect the absolute pressure gauge and cap the line to
prevent damage to the gauge. If the system is leak free,
depressurize the system and reconnect the gauge.
6.3.7 FID Detector. The FID burner air, hydrogen, and carrier helium
flow rates should be set according to the manufacturer's
instructions to obtain an adequate FID response while main-
taining as stable a flame as possible throughout all phases of
the analytical cycle. Typical flow rates are as follows:
hydrogen, 30 cm^/min; carrier (He), 30 cm^/min; burner air,
400 cm^/min.
6.3.8 Linearity. Response has been shown to be linear over a
wide range (0 to 10,000 ppb C).*>
6.3.9 Range. Some FID detector systems such as those associated with
laboratory chromatographs may have autoranging. Others may
provide a "range" (attenuator) control and internal full-scale
output voltage selectors. An appropriate combination should be
chosen so that an adequate output level for accurate integration
is obtained down to the detection limit, yet the electrometer or
integrator must not be driven into saturation at the upper end
of the calibration. Saturation of the electrometer may be
indicated by flattening of the calibration curve at high concen-
trations. Additional adjustment of range and sensitivity can
be provided by adjusting the sample volume used, as discussed
in Section 6.3.1.
A-24
-------
6.3.10 Integrator. The integrator must be electrically compatible
with the output signal of the FID detector so that sufficient
resolution is available at low concentrations without over-
ranging on high concentrations. If both an integrator and a
separate chart recorder are used, care must be exercised to
be sure that these components do not interfere with each other
electrically. Range selector controls on both the integrator
and the FID analyzer may not provide accurate range ratios,
so individual calibration curves should be prepared for each
range to be used.
The integrator should be capable of marking the beginning
and ending of peaks, constructing the appropriate baseline
between the start and end of the integration period, and
calculating the peak area accordingly (see Figure 5). This
capability is necessary because the moisture in the sample,
which is also concentrated in the trap, will cause a slight
positive baseline shift. This baseline shift starts as the
trap warms and continues until all of the moisture is swept
from the trap, at which time the baseline returns to its normal
level. The shift generally continues longer than the ambient
organic peaks. If possible, the integrator should be programmed
to correct for this shifted baseline. Alternatively, analyses
of humidified zero air should be used as blanks to correct the
ambient air concentration measurements accordingly.
A-25
-------
7. PROCEDURE
7.1 Recommended Procedure for Canister Cleaning
7.1.1 Leak-test all canisters by pressurizing them to about 40 psig
(275 kPa) with zero air and immersing them in water. Defective
canisters should be returned to the manufacturer for repair.
7.1.2 Connect canisters to the vacuum manifold as shown in Figure 3.
7.1.3 Open the vacuum shut-off valve and evacuate the canisters to
5.0 mm Hg or less for one hour or more, using a cryogenical1y-
cooled trap in the vacuum line to eliminate back diffusion of
hydrocarbons and oil from the vacuum pump.
7.1.4 Close the vacuum and vacuum gauge shut-off valves. Open the zero
air valve to pressurize the canisters with zero air to about 35
psig (240 kPa). If a zero gas generation system is used, the
rate of flow may need to be limited to maintain the zero air
quality.
7.1.5 Close the zero air valve and allow the canisters to vent down to
atmospheric pressure through the vent valve. Then close the
vent valve.
7.1.6 Repeat steps 7.1.3 to 7.1.5 two additional times.
7.1.7 Fill the canisters with zero air and analyze the contents as
a blank check of the canisters and of the cleanup system and
procedure. This step should be performed on 100% of the
canisters until the cleanup system and procedure are proven
to be reliable. The check can then be reduced to a lower
percentage unless problems arise. Any canister that does not
test clean (compared to direct analysis of zero air) after
repeated cleaning should not be used.
A-26
-------
7.1.8 Re-evacuate the canister after the analysis and leave it
evacuated until used.
7.1.9 Attach a paper tag to each canister for field notes. The
canister is now ready for collection of an air sample.
Procedure for Collection of Samples in Canisters
7.2.1 Clean and test the canisters according to the procedure in
Section 7.1.
7.2.2 Assemble a sample collection system such as the one shown in
Figure 2.
7.2.3 Check the pump for contamination by filling two evacuated,
cleaned canisters with zero air through the sampling system
and analyzing them.
7.2.4 Check the flow control orifice on each sampling system to
make sure the sample flow remains relatively constant up to
about 15 psig (2 atmospheres absolute pressure).
7.2.5 Install the pump at the site. If the inlet line is long
(over about 3 meters), use an auxiliary pump as shown in
Figure 2 to ventilate the line.
7.2.6 Verify that the timer, pump(s), and solenoid valve are
connected and operate properly.
7.2.7 Verify that the timer is correctly set for the desired sample
period, and that the solenoid valve is closed. Connect
the evacuated canister(s) to the solenoid valve.
7.2.8 Open the canister valve. A small rotameter temporarily connect
ed to the sample inlet can be used to verify that there is no
flow. (Flow detection would indicate a leaking solenoid valve.
A-27
-------
7.2.9 After the sample period, close the canister valve, disconnect
the canister from the sampling system and connect a pressure
gauge to the canister. Briefly open and close the canister
valve, and note the canister pressure. If the canister pressure
is not approximately 2 atmospheres absolute (15 psig), determine
and correct the cause of the low or high sample pressure before
the next sample.
7.2.10 Fill out the identification tag on the sample canisters as
necessary.. Take the canisters to the analytical system for
analysis.
7.2.11 Complete records of the sampling should be entered in a labora-
tory notebook. The sampling operator should be alerted to take
note of any activities or special conditions in the area (rain,
smoke, etc.) that may affect the sample contents.
Analysis Procedure
7.3.1 Assemble the analytical system as shown in Figure 1 and as
discussed in Section 6. Allow the FID detector to warm up
and stabilize for several hours before analysis.
7.3.2 Check and adjust the helium carrier pressure to provide the
correct carrier flow rate for the system (see Section 6.3.7).
Also check FID hydrogen and burner air flow rates.
7.3.3 Close the sample valve and open the vacuum valve to evacuate
the vacuum reservoir.
7.3.4 With the trap at room temperature, place the six-port valve
in the inject position.
A-28
-------
7.3.5 Open the sample valve and adjust the sample metering valve
for an approximate sample flow of 50 - 100 cm^/min. (The flow
will be lower later, when the trap is cold.)
7.3.6 Connect a sample canister or direct sample inlet to the six-
port valve as shown in Figure 1. For a canister, open the
canister valve and adjust the canister valve and/or the
sample metering valve to obtain a moderate vent flow as
indicated by the flow indicator or by constant bubbles.
Then close the sample valve.
CAUTION: Do not allow water to be drawn into the six-port
valve. The sample flow will be lower (and hence the
vent flow will be higher) when the trap is cold.
7.3.7 Open the vacuum valve (if not already open) to evacuate the
vacuum reservoir. With the six-por,t valve in the inject
position and the vacuum valve open, open the sample valve
for a few minutes to flush and condition the inlet lines. .
7.3.8 Close the vacuum valve and allow the reservoir pressure to
rise to the predetermined sample starting pressure on the
absolute pressure gauge (see Section 6.3.1). Then quickly
close the sample valve at the starting pressure reading.
7.3.9 Switch the six-port valve to the sample position.
7.3.10 Submerge the trap in the cryogen and allow a few minutes for
the trap to cool completely (indicated when the cryogen stops
boiling). Check and adjust the initial cryogen level to the
same level used during calibration (Section 8).
A-29
-------
7.3.11 Open the sample valve and observe the increasing pressure on
the pressure gauge. When it reaches the pressure representative
of the desired sample volume (see Section 6.3.1), close the
sample valve.
7.3.12 Add a little cryogen or elevate the Dewar to raise the liquid
level to a point slightly (1 to 5 mm) higher than the initial
level at the beginning of the trapping (see Section 7.3.8).
Then switch the 6-port valve to the inject position, keeping the
cryogenic liquid on the trap. Also close the canister valve to
conserve the remaining sample in the canister.
7.3.13 Start the chart recorder and wait until the FID response
baseline has stabilized (about 20 to 60 seconds). Do not wait
longer than one minute.
7.3.14 Start the integrator. Remove .^he liquid cryogenic bath from
the trap and smoothly but not too quickly replace it with a
Dewar of hot water (approximately 80* to 90* C) or, if the trap
is in an oven, start heating the oven. Use the same tempera-
ture and level of hot water or a consistent heating sequence
for both calibration and sample analyses. Heating the trap too
quickly may cause an initial negative-going response which
could hamper accurate integration. Some initial experimenta-
tion may be necessary to determine the optional heating proce-
dure for each system, but once established, the procedure
should be consistent for each analysis.
A-30
-------
7.3.15 Continue the integration only long enough to include all of
the organic compound peaks and to establish the end point
FID baseline, as shown in Figure 5 (probably 1 to 2 minutes,
depending on rate of trap heating). The end point baseline
will be shifted somewhat higher than the initial baseline due
to moisture in the sample. Construct an operational baseline
from the initial baseline at the beginning of the first peak to
the end point baseline as shown in Figure 5, and correct the
peak area reading according to this operational baseline.
Electronic integrators either do this automatically or they
should be programmed to do this correction.
NOTE: Be sure that the 6-port valve remains in the inject
position until all moisture has purged from the trap (3 minutes
or longer).
7.3.16 Use the calibration Gurve (Section 8.3) to convert the inte-
grated peak area reading into concentration units (ppmC). Note
that the NMOC peak shape may not be precisely reproducible due
to variations in heating the trap, but the total NMOC peak area
should be reproducible.
7.3.17 Duplicate Analysis - Analyze each canister sample at least two
times and report the average NMOC concentration. Problems
occasionally occur during an analysis that will cause improper
or inconsistent results. If the first two analyses do not agree
closely, additional analyses should be made to identify in-
accurate measurements and produce a more accurate average.
A-31
-------
8. CALIBRATION
8.1 Calibration Frequency
Initially, a complete dynamic calibration at five or more concen-
trations should be carried out on each range to define the calibration
curve. Subsequently, the calibration should be verified with two- or
three-point calibration checks (including zero) each time the analytical
system is used to analyze samples.
8.2 Calibration Standards
Propane calibration standards may be obtained directly from low con-
centration cylinder standards or by dilution of high concentration
cylinder standards with zero air. Dilution flow rates must be measured
accurately, and the combined gas stream must be mixed thoroughly.
Calibration standards should be sampled directly from a vented manifold
or tee. Remember that a propane NMOC concentration in ppmC is three
times the volumetric concentration in ppm.
8.3 Calibration Procedure
8.3.1 Select one or more combinations of FID attenuator setting, out-
put voltage setting, integrator resolution (if applicable), and
sample volume to provide the desired range or ranges (e.g.,
0 to 1.0 ppmC or 0 to 5.0 ppmC). Each such range should be
calibrated individually and have a separate calibration curve.
(Modern GC integrators may provide automatic ranging such that
several decades of concentration may be covered in a single
range.)
8.3.2 Analyze each calibration standard three times according to the
procedure in Section 7.3. Be sure that flow rates, pressure
gauge start and stop readings, initial cryogen liquid level in
A-32
-------
the Dewar, timing, heating and other variables are the same as
will be used during analysis of ambient samples.
8.3.3 Average the three analyses for each concentration standard and
plot the calibration curve(s) as integrated peak area reading
versus concentration in ppmC. The relative standard deviation
for the three analyses should be less than 3% (except for zero
concentration). Linearity should be expected; points that
appear to deviate abnormally should be repeated. If non-
linearity is observed, an effort should be made to identify ind
correct the problem. If the problem cannot be corrected,
additional points in the non-linear region may be needed to
adequately define the calibration curve.
9. METHOD MODIFICATIONS
9.1 Sample Metering System
Although the vacuum reservoir and absolute pressure gauge technique
for metering the sample volume during analysis is efficient and
convenient, other techniques should work also. For example, a constant
sample flow could be established with a vacuum pump and a critical
orifice, with the six-port valve being switched to the sample position
for a measured time period. Or a gas volume meter such as a wet test
meter could be used to measure the total volume of sample air drawn
through the trap. However, these alternate techniques have not been
tested or evaluated.
9.2 FID Detector System
FID detector systems other than the Hewlett-Packard Model 5840A may
A-33
-------
also be adaptable to the method. The specific flow rates and necessary
modifications for the helium carrier for any alternate FID instrument
would have to be worked out by the user.
Range
It may be possible to increase the sensitivity of the method by
increasing the sample volume. However, limitations are likely to
arise, such as plugging of the trap by ice; hence, any attempt to
increase the sensitivity should be tested carefully.
A-34
-------
REFERENCES
1. U. S. Environmental Protection Agency, "Uses, Limitations, and
Technical Basis of Procedures for Quantifying Relationships
Between Photochemical Oxidants and Precursors." EPA-450/2-77-021a
(Nov. 1977).
2. U. S. Environmental Protection Agency, "Guidance for Collection
of Anbient Non-methane organic Compound (NMOC) Data for Use in
1982 Ozone SIP Development." EPA-450-/4-80-011 (June 1980).
3. H. B. Singh, "Guidance for the collection and use of ambient
hydrocarbons species data in development of ozone control
strategies." U. S. Environmental Protection Agency,
EPA-450/480-008 (April 1980).
4. F. W. Sexton, R. M. Michie, F. F. McElroy, V. L. Thompson,
"A Comparative Evaluation of Seven Automated Ambient Non-methane
Organic Compound Analyzers." U. S. Environmental Protection Agency,
EPA-600/54-82-046 (August 1982).
5. H. G. Richter, "Analysis of Organic Compound Data Gathered During
1980 in Northeast Corridor Cities." U. S. Environmental Protection
Agency, EPA-450/4-83-017 (August 1983).
6. R. K. M. Jayanty, A. Blackard, F. F. McElroy, W. A. McClenny,
"Laboratory Evaluation of Non-methane Organic Carbon Determination
in Ambient Air by Cryogenic Preconcentration and Flame Ionization
Detection." U. S. Environmental Protection Agency,
EPA-600/54-82-019 (July 1982).
7. R. D. Cox, M. A. McDevitt, K. W. Lee, G. K. Tannahill, "Determin-
ation of Low Levels of Total Non-methane.Hydrocarbon Content in
Ambient Air." Eniron. Sci. Technol. 16(1):57 (1982).
8. F. F. McElroy, V. L. Thompson, H. G. Richter, "A Cryogenic
Preconcentration - Direct FID (PDF ID) Method for Measurement
of NMOC in the Ambient Air." U. S. Environmental Protection
Agency, EPA-600/ (August 1985).
A-35
-------
ABSOLUTE
PRESSURE GAUGE
VACUUM SAMPLE
VALVE VALVE
VACUUM
PUMP
LOW
PRESSURE
REGULATOR
CANISTER
VALVE
SAMPLE
HX) METERING
VALVE
VACUUM
RESERVOIR
6-PORT
GAS
VALVE
SAMPLE
INJECT
DIRECT SAMPLING
HYDROGEN
AIR
PRESSURIZED
CANISTER
SAMPLING
INTEGRATOR-
RECORDER
GLASS
BEADS
CRYOGENIC
SAMPLE TRAP
(LIQUIO ARGON)
Figure 1. Schematic diagram of analysis system showing two
sampling modes.
A-36
-------
SAMPLE
IN
TIMER
PRESSURE
GAUGE
FILTER
CRITICAL
ORIFICE
SOLENOID
VALVE
VACUUM
PUMP
METAL
BELLOWS
PUMP
CANISTER(S)
ure 2. Sample system for automatic collection of 3-hour
integrated field air samples.
A-37
-------
VACUUM
PUMP
Q
Of
CRYOGENIC
Jf TRAP
/
VENT
SHUT-OFF
VALVE
V
» VACUUM
GAUGE
SHUT-OFF
VALVE
AAA
ZERO AIR
SUPPLY
V
- PRESSURE
GAUGE
SHUT-OFF
VALVE
FLOW
CONTROL
VALVE
VACUUM
MANIFOLD
SAMPLE CANISTERS
Figure 3. Canister cleaning system.
A-38
-------
TUBE LENGTH: -30 cm
0.0.: 0.32 cm
1.D.: 0J1 cm
13 cm
LIQUIO LEVEL
CLASS WOOL
60/80 MESH GLASS BEADS
4 em
(TO FIT OEWAR)
Figure 4. Cryogenic sample trap dimensions.
A-39
-------
1 END
NMOC
1 Integration
PEAK
'
\
WATER-SHIFTED
START
\
BASELINE
INTEGRATION
V
I
5
V
r j
OPERATIONAL BASELINE
t
NORMAL BASELINE
CONSTRUCTED BY INTEGRATOR
TO DETERMINE CORRECTED AREA
TIME
Figure 5. Construction of operational baseline and
corresponding correction of peak area.
A-40
-------
•F1 SERIES COMPACT. INLINE FILTER
W/2 nm SS SINTERED ELEMENT
FEMALE CONNECTOR. 0.25 in O.D. TUBE TO
0.25 in FEMALE NPT
HEX NIPPLE, 0.25 in MALE NPT BOTH ENDS
30 GAUGE x 1.0 in LONG HYPODERMIC
NEEDLE (ORIFICE)
e
FEMALE CONNECTOR. 0.25 in O.D. TUBE TO
0.25 in FEMALE NPT
THERMOGREEN LBI 6 mm (0.25 in)
SEPTUM (LOW BLEED)
0.25 in PORT CONNECTOR W/TWO 0.25 in NUTS
Figure 6. Suggested filter and hyopdermic needle assembly for
sample inlet flow control.
A-41
-------
100 K
TIMER
SWITCH
BLACK
40 «;fd. 450 V DC
100 K
On
115 V AC
RED
40 pfd, 450 V DC
PUMP
WHITE
MAGNELATCH SOLENOID VALVE
Figure 7. Electrical pulse circuit for driving Skinner Magnelatch
solenoid valve with a conventional mechanical timer.
A-42
-------
APPENDIX
ADDITIONAL INFORMATION CONCERNING SPECIAL PDFID METHOD COMPONENTS
COMPONENT
IDENTIFICATION
SUPPLIER
1. Sample canister 4-6 Liter
2. Absolute pressure
gauge
3. Six-port valve
Gas purifiers
5. Chromatographic
grade stainless
steel tubing
6. Laboratory gas
chromatograph,
with. FID, flow
controls, and
integrator/
recorder
Model 61C-ID-0410
(0-410 mm Hg),
6" Face
Seiscor Model VIII
Cat. #8125
Cat. #30101
(1/8" x 0.085")
HP Model 584OA or
equivalent
Scientific Instrumentation
Specialists, Inc.
P. 0. Box 8941
Moscow, ID 83843
(208) 882-3860
Wallace & Tiernam
Div. of Pennwalt Corp.
25 Main Street
8el1ev i11e, NJ 07109
Seismograph Service Corp.
Seiscor Division
P. 0. Box 1590
Tulsa, OK 74102
All tech Associates
Deerfield, IL
All tech Associates
Deerfield, IL
Hewlett-Packard Corp.
Avondale, PA 19311
7. Metal bellows
pump
8. Cryogenic Oewar
Model MB-151
8600 (285 mL)
9. Magnelatch
solenoid valve V5RAM49710
Metal Bellows Corp.
1075 Providence Highway
Sharon, MA 02067
Pope Scientific Inc.
Menomonee Falls, WI 53051
Skinner Valve
New Britain, CT
A-43
-------
APPENDIX B
INTEGRATOR PROGRAMMING INSTRUCTIONS
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS
Instructions for programming the integrators are as follows.
Be sure to press ENTER after each key sequence.
Control Integrator
Oven Temp 90
Oven Temp Limit 405
Oven Temp ON
Oven Temp OFF
List Oven Temp
(A listing should say OvenTemp XC Setpt 90 C Limit 405 C)
Oven Temp Initial Time 0.20
Oven Temp Initial Value 90
Oven Temp Pgrm Rate 30.00
Oven Temp Final Value 90.00
Oven Temp Final Time 4.00
Oven Temp Equil Time 1.00
Detector A ON
Signal A Chart speed 4.00
%Offset 10 Zero
Attn 2A 4
Run Time Annotation ON
Run Table Annotation ON
Clock Table Annotation OFF
Program Annotation OFF
Oven Temp Annotation OFF
Report Annotation OFF
Slave Integrator
Detector B ON
Signal B
Chart Speed 4.00
%0ffset 10
Zero
Attn 2A 4
B-l
-------
Run Time Annotation ON
Run Table Annotation ON
Clock Table Annotation OFF
Program Annotation OFF
Oven Temp Annotation OFF
(should say ***Warning***0ven Temp now owned by Chnl 2)
Report Annotation OFF
Control Integrator
Oven Temp Annotation OFF
(should say ***Warning***0ven Temp now owned by Chnl 1)
Run Time 0.01 Intg OFF
Run Time 0.01 Valve 5 ON
Run Time 0.01 Page
Run Time 0.02 List Attn2A
Run Time 0.04 Oven Temp ON
Run Time 0.20 Valve 2 ON
Run Time 0.21 Valve 2 OFF
Run Time 0.22 Intg ON Run Time 0.23 Set BL
Run Time 0.23 List Intg
Run Time 1.87 Set BL
Run Time 1.88 Intg OFF
Run Time 1.89 List Intg
Run Time 1.90 Chart Speed 1.5
Run Time 3.50 STOP
Slave Integrator
Run Time 0.01 Intg OFF
Run Time 0.01 Page
Run Time 0.02 List Attn2A
Run Time 0.22 Intg ON
Run Time 0.23 Set BL
Run Time 0.23 List Intg
Run Time 1.87 Set BL
Run Time 1.88 Intg OFF
Run Time 1.89 List Intg
Run Time 1.90 Chart Speed 1.5
Run Time 3.50 STOP
Control Integrator
Det 1 Temp 250
Det 1 Temp Limit 405
Inj 1 Temp 31
Inj 1 Temp Limit 405
Aux 1 Temp 90
Aux 1 Temp Limit 405
Flow A 30 Flow A Limit 500.0
B-2
-------
Slave Integrator
Flow B 30
Flow B Limit 500.0
Control Integrator
Valve 1 OFF
Valve 2 OFF
Valve 3 OFF
Valve 4 OFF
Valve 5 ON
Valve 6 OFF
Valve 7 OFF
Valve 8 OFF
Valve 9 OFF
Valve 10 OFF
Valve 11 OFF
Valve 12 OFF
Threshold 1
Peak Width 0.04
Slave Integrator
Threshold 1
Peak Width 0.04
Control Integrator
20 Valve 5 OFF
25 List Valve 5
30 Oven Temp
Initial Value 30
35 Oven Temp OFF
40 Wait 2
60 Start
70 Oven Temp 90
80 Valve 5 ON
Sync ON
-------
APPENDIX C
STANDARD OPERATING PROCEDURE
FOR PDFID SAMPLE ANALYSIS
-------
STANDARD OPERATING PROCEDURE FOR PDFID SAMPLE ANALYSES
Nonmethane Organic Compounds
1.0 PURPOSE
The purpose of this SOP is to outline the procedures involved
in the calibration and analyses of ambient air samples on a
PDFID GC system.
2.0 APPARATUS/MATERIALS
2.1 HP 5880 Gas Chromatograph
2.2 HP 5880-A Level 4 Integrators
2.3 Course Flow Control Valves
2.4 Fine Flow Control Valves
2.5 Toggle Valve - Pressure
2.6 Toggle Valve - Vacuum
2.7 Absolute Pressure Gauge
2.8 Rotameter
2.9 Vacuum Pumps
2.10 Sample Introduction Ports
2.11 Sample Loops
2.12 Audio Indicator
2.13 Dewar Flasks
2.14 Calibration Manifold
2.15 Zero Air Shut Off Valve
2.16 Calibration Standard
2.17 Zero Air Standard
2.18 Sample Canister
2.19 Grade 5.0 Helium Carrier Gas
2.20 0.1 Grade Compressed Air
2.21 Grade 5.0 Hydrocarbon-free Hydrogen
2.22 Cryogen (Liquid Argon)
3.0 PROCEDURE
3.1 Precalibration
3.1.1 Make sure that the Helium cylinder has not been
turned off
3.1.2 Turn the Hydrogen cylinder on and make sure
the gauges read approximately 32 psig
3.1.3 After two minutes, turn on Compressed Air cylinder
and make sure gauges read approximately 30 psig
C-l
-------
3.1.4 Ignite Flame Ionization Detector units (A,B,C,D)
(1isten for audible pop)
3.1.5 Label current date on all 4 integrator charts
3.1.6 On integrators A and C (master integrators),
press LIST ENTER
3.1.7 On integrators A and C press LIST PROGRAM ENTER
3.1.8 On all 4 integrators press
LIST RUNTBL ENTER
gold runtime
3.1.9 Turn on Vacuum Pumps
3.2 Calibration
3.2.1 Attach calibration manifold to Sample Introduction
Ports on each GC
3.2.2 Turn on Zero Air Shut Off Valve
3.2.3 Connect Zero Air to Manifold and set Vent Flow
at 150 (silver ball on rotameter) using the Course
Flow Control Valves
3.2.4 Label integrator paper with "Initial Calibration",
Current Date, Instrument Channel Indicator (Letter),
and "Zero Air"
3.2.5 To Perform Zero Air Calibration
a. Evacuate to 70mm by opening the Vacuum Toggle
Valves.
b. With Vent FLow at 150 open Pressure Toggle Valves
and adjust the Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0 on
rotameters.
(DO NOT LET IT BOTTOM OUT!!!!!)
Once at exactly lOOmm, close Pressure Toggle
Valves.
c. Open GC door and place cryogen-filled Dewar
flask on sample loops (DO NOT CLOSE DOOR!!!).
Wait for cryogen to stop boiling.
d. On Master integrator press START PROGRAM ENTER
e. Open Pressure Toggle Valves and load to exactly
180mm by adjusting Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0. Once at
exactly 180nun, close Toggle Valves.
~~SAMPLE ALIQUOT IS DETERMINED BY POSITIVE
DISPLACEMENT. EXACT DISPLACEMENT FROM 100mm
TO 180mm IS CRUCIAL TO INSURE REPEATABILITY!**
f. When integrator prints "Ready for Injection"
lift cryogen Dewar to top of sample loops and
press STARTRUN on master integrator.
g. When the audio indicator sounds, QUICKLY remove
cryogen from sample loops and close GC door.
C-2
-------
3.2.6 Repeat 3.2.5 until good repeatability is reached
(i.e. as close to 0.00 (no peaks) as possible
or a standard deviation of less than 0.02 Area
Counts.)
Once attained, turn off Zero Air Shut Off Valve
and disconnect Zero Air from Calibration Manifold
and connect Calibration Standard to manifold.
3.2.7 To Perform Standard Calibration (Propane)
a. Evacuate to 70mm by opening the Vacuum Toggle
Valves.
b. With Vent Flow at 150 open Pressure Toggle Valves
and adjust the Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0 on
rotameters.
(DO NOT LET IT BOTTOM OUT!!!!!)
Once at exactly lOOmm, close pressure Toggle
Valves.
c. Open GC door and place cryogen filled Dewar
flask on sample loops (DO NOT CLOSE DOOR!!!).
Wait for cryogen to stop boiling.
d. On Master integrator press START PROGRAM ENTER
e. Open Pressure Toggle Valves and load to exactly
180mm by adjusting Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0. Once at
exactly 180mm, close Toggle Valves.
"SAMPLE ALIQUOT IS DETERMINED BY POSITIVE
DISPLACEMENT. EXACT DISPLACEMENT FROM 100mm
TO 180mm IS CRUCIAL TO INSURE REPEATABILITY!**
f. When integrator prints "Ready for Injection"
lift cryogen Dewar to top of sample loops and
press STARTRUN on master integrator.
g. When the audio indicator sounds, QUICKLY remove
cryogen from sample loops and close GC door.
3.2.8 a. Repeat 3.2.7 until good repeatability is reached
(i.e. There are two analyses with total area
counts within 100 of each other) and use these to
calculate mean span value.
Once reached, turn off Standard cylinder and
disconnect from manifold,
b. Remove calibration manifold from sample
introduction ports.
3.2.9 Calculate Mean Zero Air Area Counts and Mean Span
Area Counts and calculate the Calibration Factor for
each channel calibrated using the following
equation:
C-3
-------
[ppmC Propane]
Calibration Factor =
(Mean Propane AC - Mean Zero Air AC)
3.3 Analyses
3.3.1 Connect Sample Canister to Sample Introduction Port
3.3.2 Label integrator with Site Code and Radian ID#
3.3.3 Evacuate to approximately 70mm by opening the Vacuum
Toggle Valves.
3.3.4 To analyze a sample
a. Open Sample Canister Valve completely.
b. Set Vent FLow at 150, open Pressure Toggle Valves
and adjust the Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0 on
rotameters.
(DO NOT LET IT BOTTOM OUT!!!!!)
Once at exactly 100mm, close pressure Toggle
Valves.
c. Open GC door and place cryogen filled Dewar
flask on sample loops (DO NOT CLOSE DOOR!!!).
Wait for Cryogen to stop boiling.
d. On Master integrator press START PROGRAM ENTER
e. Open Pressure Toggle Valves and load to exactly
180mm by adjusting Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0. Once at
exactly 180mm, close Toggle Valves and CLOSE
CANISTER VALVES.
**SAMPLE ALIQUOT IS DETERMINED BY POSITIVE
DISPLACEMENT. EXACT DISPLACEMENT FROM 100mm
TO 180mm IS CRUCIAL TO INSURE REPEATABILITY!**
f. When integrator prints "Ready for Injection"
lift cryogen Dewar to top of sample loops and
press STARTRUN on master integrator.
g. When the audio indicator sounds, QUICKLY remove
cryogen from sample loops and close GC door.
3.3.5 Repeat 3.3.4 up to 3 times, until standard deviation
is less than 0.02 ppmC.
3.3.6 Calculate ppmC of sample by using the equation:
ppmC = (Mean Total AC) x (Calibration Factor)
Fill out the Sample Analysis Form completely.
C-4
-------
3.4 Postcalibration
3.4.1 To Perform Zero Air Calibration
a. Evacuate to 70mm by opening the Vacuum Toggle
Valves.
b. With Vent FLow at 150 open Pressure Toggle Valves
and adjust the Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0 on
rotameters.
(DO NOT LET IT BOTTOM OUT!!! M)
Once at exactly 100mm, close Pressure Toggle
Valves.
c. Open GC door and place cryogen-filled Dewar
flask on sample loops (DO NOT CLOSE DOOR!!!).
Wait for cryogen to stop boiling.
d. On Master integrator press START PROGRAM ENTER
e. Open Pressure Toggle Valves and load to exactly
180mm by adjusting Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0. Once at
exactly 180mm, close Toggle Valves.
**SAMPLE ALIQUOT IS DETERMINED BY POSITIVE
DISPLACEMENT. EXACT DISPLACEMENT FROM 100mm
TO 180mm IS CRUCIAL TO INSURE REPEATABILITY!**
f. When integrator prints "Ready for Injection"
lift cryogen Dewar to top of sample loops and
press STARTRUN on master integrator.
g. When the audio indicator sounds, QUICKLY remove
cryogen from sample loops and close GC door.
3.4.2 Repeat 3.4.1 until good repeatability is reached
(i.e. as close to 0.00 (no peaks) as possible
or a standard deviation of less than 0.02 Area
Counts).
Once attained, turn off Zero Air Shut Off Valve
and disconnect Zero Air from Calibration Manifold
and connect Calibration Standard to manifold.
3.4.3 To Perforin Standard Calibration (Propane)
a. Evacuate to 70mm by opening the Vacuum Toggle
Valves.
b. With Vent Flow at 150 open Pressure Toggle Valves
and adjust the Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0 on
rotameters.-
(DO NOT LET IT BOTTOM OUT!!!!!)
Once at exactly 100mm, close pressure Toggle
Valves.
c. Open GC door and place cryogen filled Dewar
flask on sample loops (DO NOT CLOSE DOOR!!!).
Wait for cryogen to stop boiling.
d. On Master integrator press START PROGRAM ENTER
C-5
-------
e. Open Pressure Toggle Valves and load to exactly
180mm by adjusting Fine Flow Control Valves to
maintain Vent Flow below 20 but above 0. Once at
exactly 180mm, close Toggle Valves.
"SAMPLE ALIQUOT IS DETERMINED BY POSITIVE
DISPLACEMENT. EXACT DISPLACEMENT FROM 100mm
TO 180mm IS CRUCIAL TO INSURE REPEATABILITY!**
f. When integrator prints "Ready for Injection"
lift cryogen Dewar to top of sample loops and
press STARTRUN on master integrator.
g. When the audio indicator sounds, QUICKLY remove
cryogen from sample loops and close GC door.
3.4.4 a. Repeat 3.4.3 until good repeatability is reached
(i.e. There are two analyses with total area
counts within 100 of each other) and use these to
calculate mean span value.
Once reached, turn off Standard cylinder and
disconnect from manifold,
b. Remove calibration manifold from sample
introduction ports.
3.4.5 Calculate Mean Zero Air Area Counts and Mean Span
Area Counts and calculate the Calibration Factor for
each channel calibrated using the following
equation:
[ppmC Propane]
Postcalibration Factor =
(Mean Propane AC - Mean Zero Air AC)
3.5 Shut-down
3.5.1 Evacuate to 70mm by opening the Vacuum Toggle Valves
3.5.2 Turn off Vacuum Pumps
3.5.3 Turn off Hydrogen cylinder
3.5.4 After Hydrogen gauge reads approximately 0 psig,
turn off Compressed Air cylinder.
3.5.5 IMPORTANT: DO NOT TURN OFF HELIUM CYLINDER!!!
C-6
-------
APPENDIX D
SAMPLING SITES FOR THE 1987
NMOC PROGRAM
-------
SITE
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
13
16
17
18
19
20
21
22
TABLE D-l. SAMPLING SITES FOR THE 1986 NMOC PROGRAM
SITE
LOCATION CODE
Boston, MA (Chelsea) B1MA
Boston, MA (E. Boston) B2MA
Hartford, CT HTCT
New York, NY (Bronx) BNY
New York, NY (Manhattan) MNY
Newark, NJ NWNJ
Atlanta, GA ATGA
Atlanta, GA (Decatur) DEGA
Birmingham, AL BHAL
Louisville, KY L1KY
Chicago, IL (State Office Building) CIIL
Chicago, IL (Sears Tower) C3IL
Cincinnati, OH CIOH
Baton Rouge, LA BRLA
Beaumont, TX BMTX
Dallas, TX DLTX
El Paso, TX ELTX
Ft.Worth, TX FWTX
Houston, TX H1TX
Longview, TX LVTX
St. Louis, MO SLMO
Salt Lake City, UT (North) S1UT
D-l
-------
TABLE D-l. SAMPLING SITES FOR THE 1986 NMOC PROGRAM (Continued)
SITE
SITE
NO.
LOCATION
CODE
23
Salt Lake City, UT (Central)
S2UT
24
El Cajon, CA
ELCA
25
Fresno, CA
FRCA
26
Livermore, CA
LICA
27
San Diego, CA
SDCA
28
San Francisco, CA
SFCA
29
Visalia, CA
VICA
30
Portland, OR
P10R
31
Bakersfield, CA
BACA
32
Pittsburg, CA
PICA
D-2
-------
TECHNICAL REPORT DATA
(Please rcjJ Instructions on the reverse before completing;
1. REPORT NO 2.
EPA-450/4-38-011
3. RECIPIENT'S ACCESSION NO.
t. title and subtitle
1987 Nonmethane Organic Compound Monitoring Program
Volume 1 - Hydrocarbons
5_REPORT DATE
August T988
6. PERFORMING ORGANIZATION CODE
7. AUTHORlS)
8. performing organization report l\Z
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. program element no.
11. contract/grant no.
12. SPONSORING AGENCY NAME AND ADDRESS
Office of Air Quality Planning and Standards (MD-14)
13. type op report and period covered
14. sponsoring AGENCY code
15. SUPPLEMENTARY NOTES
EPA Project Officer: Harold G. Richter
16. ABSTRACT
Samples of ambient air were collected at 32 sites in the U.S. during
June through September 1987 on week days from 0600 to 0900 hours. Analysis
for the NM0C concentration was by PDF ID. Data were used in the EKMA ozone model.
An extensive QA program carried out with the samples shows good precision and
accuracy of the method. Data from all the samples are tabulated together with
an extensive.discussion of the QA program.
17. KEY WOflOS AND DOCUMENT ANALYSIS
3. descriptors
b IDENTIFIERS/OPEN ENDED TERMS
l\ COSATI l-iclii'Croup
NM0C Data
15. DrSTRiB'jTiCN STATEMEVT
19. ScCi~ * V CLASS t This ktpon
21 NO. Of PAGES
378
20 StCUP.-.TY CLASS iThu pege;
22. PRICE
J I
E Pa Form 2270-1 (Rev. *-77)
PREVIOUS edition iS OBSOLETE
------- |