SOUTHWEST RESEARCH INSTITUTE
POST OFFICE DRAWER 28510 » 6320 CULEBRA ROAD • SAN ANTONIO. TEXAS. USA 78284 • 1512) 884-511 1 • TELEX 244846
SUBJECT: Fincil Report for Work Assignment No. B-8, Contract 68-03-3353,
"Catalyst Evaluation (Cert. FY 87)," SwRI Project 03-1193-008
This work assignment was intended to evaluate the condition of catalysts
removed from in-uue vehicles. The catalysts were removed by EPA from 1983
Model Year In-Use Technology Assessment (IUTA) vehicles, and one low-mileage in-
use vehicle. Eleven catalysts were analyzed under this work assignment. The
catalysts represented monolith technology. Catalysts used by several different
manufacturers were included in the evaluation. The catalysts were either three-way
or three-way plus oxidation catalysts, with dual biscuits.
This letter report, along with the included data, is intended to be the final
report of the results from the catalyst evaluation testing. It includes all the results
from the laboratory analyses by whole converter x-ray, BET surface area, x-ray
fluorescence (XRF). proton induced x-ray emission (PIXE), and x-ray diffraction
(XRD). Only a brief discussion of the analytical procedure, and no discussion of the
trends observed in the evaluation of each catalyst, is included. A total of 11
converters (4 whole and 7 partial samples) were examined. A list of the converters
evaluated in the program is presented in Table 1. Only two of the converters
underwent whole catalyst x-ray; two had been x-rayed in a previous work assignment
(A254/0037 and A254/0191). Of the eleven converters, two underwent XRF, XRD,
and PIXE of the re.ir biscuit, and nine received all of the analytical procedures.
Only the rear biscaits were analyzed by XRF. A detailed description of the
laboratory analytic.il procedures is presented in the final reports for Work
Assignments No. 10 and 17 of Contract 68-03-3162, with the exception of PIXE.
L Laboratory Aiuilysis
The laboratory analysis of the catalyst samples consisted of whole converter
x-ray, BET surface area, x-ray fluorescence (XRF) , PIXE, and x-ray diffraction
(XRD). The catalyst samples were examined as follows:
1. Only whole converters were examined by whole converter x-ray
August 15, 1987
TO:
Mr. Craig A. Harvey, Project Officer
Emission Control Technology Division
Environmental Protection Agency
2565 Plymouth Road
Ann Arbor, Michigan 48105
FROM: E. Robert Fanick and Charles T. Hare
Depaitment of Emissions Research
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
radiographs.
SAN ANTONIO, TEXAS
DALI.AS. TEXAS • DETROIT, MICHIGAN • HOUSTON. TEXAS • WASHINGTON, DC
-------
2
TABLE 1. LIST OF CATALYSTS FOR EVALUATION
Converter
Number Manufacturer Engine Faraily Type of Catalyst
A221/0198
Clirysler
DCR2.2V2HAC3
Dual
biscuit
3W-OX
A221/0310
Clirysler
DCR2.2V2HAC3
Dual
biscuit
3W-OX
A280/0005L
Clirysler
ECR2.2V2HAC4
Dual
biscuit
3W-OX
A220/0400
GM
D4G3.8V2NEA3
Dual
biscuit
3W-OX
A230/0649
GM
D1G2.0V2XAJ4
Dual
biscuit
3W
A230/0734
GM
D1G2.0V2XAJ4
Dual
biscuit
3W
A246/0092
GM
D1G3.8V2NDA4
Dual
biscuit
3W-OX
A240/0007
Ford
DFM1.6V2GDK6
Dual
biscuit
3W-OX
A240/0270
Ford
DFM1.6V2GDK6
Dual
biscuit
3W-OX
A254/0037
Toyota
DTY2.4V5FBB2
Dual
biscuit
3W-0X
A254/0191
Toyota
DTY2.4V5FBB2
Dual
biscuit
3W-OX
-------
3
2. The whole converters were visually inspected, weighed with and without
any heat shields, and then carefully cut to expose the catalyst material.
All cat ilyst samples were visually inspected and weighed.
3. Each converter was disassembled in a manner to expose the catalyst
materiid with a minimum of disturbance.
a. In step one, the catalyst was sectioned into quarter pieces. The
upstream biscuit of the catalytic converter was sectioned as
pictured in Figure 1. Each quarter has a length "L" the same as the
length of the original uncut biscuit, but a height and width half of
tie original height and width (1/2H and 1/2W).
b. In step two, one of the quarter sections was further sectioned into
three pieces as shown in Figure 1. The front piece had a length of
0.5 inch, the rear piece had a length of 1.0 inch, and the middle
piece had a length of "L - 1.5 inches." From the center of the
middle piece, a 0.5-inch sample was taken. Each of these three
0.5-inch samples underwent surface area analysis. The opposite
quarter was submitted in its entirety for (XRD) analysis. Samples
wure scraped from an area no larger than 0.25 cubic inches along
the center line of the catalyst. One sample each was taken 1 inch
from the front and rear faces, and the third sample was taken at
the midpoint of the length of the substrate and 0.5 inch from the
outside surface.
c. Tv/o of the quarter sections shown in Figure 1 were not subjected
to any immediate analysis when a whole catalyst was supplied.
These samples were kept as additional material for future analysis.
Partial catalyst samples were sectioned starting with step two.
d. The downstream biscuit was sectioned by cutting the substrate into
quarters similar to the upstream substrate. One sample each was
taken 0.5 inch from the front face and the rear face as shown in
Figure 2. Each of these two pieces underwent BET surface area
analysis. The remaining middle section was submitted for XRD.
The XRD samples from the B biscuit were scraped from an area
no: larger than 0.25 cubic inch along the center line and 1.0 inch
frc>m the front face. This was the only sample for XRD from the B
biscuit. The entire quarter section positioned diagonally from the
section used for BET surface area analysis was used for PIXE
an.dysis. The remaining two quarter sections from the four whole
converters (when provided) did not undergo analysis at this time,
bul were saved for future work.
A. Sample Identification
For the purpose of identifying the converters analyzed in this program, each
converter was designated with the seven or eight digit EPA identification code.
Once the converters were opened, the upstream biscuit was labeled "A," and the
downstream biscuit was labeled "B." Each quarter section from the A biscuit was
designated according to its location within the can (UL-upper left, UR-upper right,
LL-lower left, LR-lower right). The samples for BET surface area and PIXE were
-------
Rear Face
LL3
Lower Left
Front Face
Lower Right*
FIGURE 1. SAMPLE SECTIONS AND SAMPLE LOCATION FOR UPSTREAM (A) BISCUIT
*Sample location for XRD shown on lower
right quarter for clarity. Actual
sample location from upper right quarter.
-------
Rear I'ace
Upper Right*
Front Face
FIGURE 2. SAMPLE SECTIONS AND SAMPLE LOCATIONS FOR DOWNSTREAM (B) BISCUIT
*Saraple location for XRD shown on
lower right quarter for clarity.
Actual sample location from upper
right quarter.
-------
6
also designated with respect to their locations in the biscuit. The location along
the length of the quarter section was labeled 1, 2, or 3, respectively, for the
upstream, middle, or downstream position. The exception to this rule was for the B
biscuit; no middle :>ample was taken for the BET surface area analysis. In this case,
"2" indicated the downstream location. The labeling designations are listed in Table
2. The term "biscuit" is used to refer to each individual piece of ceramic
honeycomb materi.il in a converter.
B. Whole Catalyst X-Ray
Two of the converters were examined by whole catalyst x-ray (A280/0005L
and A246/0092)- The other two whole converters in this work assignment
(A254/0037 and A254/0191) were examined by whole catalyst x-ray in Work
Assignment No. 20 of EPA Contract 68-03-3192. The radiographs taken in this work
assignment are included in Appendix A. Both converters appear normal. Converter
A246/0092 had several couplings welded to the outside of the case with
thermocouple connectors. Upon careful examination, the positions of the holes
drilled for the thermocouples cam be observed in the radiographs.
C. Sample Weighing
The weights of the various samples were determined in several stages. All of
the whole convertsrs were weighed whole, and each biscuit was weighed after
opening. All of the partial samples were weighed, but these weights are only a
determination of the amount of sample received. In order to do additional
calculations on th«»se converters, the weights of the biscuits before the samples
were taken must bt- known or estimated. All of the weights are presented in Table
3.
D. Visual Inspection
Each whole converter and biscuit was inspected for visual signs of overheating
or damage. Catalyst A230/0734-A was severely melted. A large void had developed
about two inches from the front face. This was the only visible example of melting
in this work assignment. Several samples had developed cracks. They were:
A221/0310-A, A220/0400-B, A230/0649-A&B, A230/0734-B, A246/0092-A&B, and
A240/0270. Catcilyst A246/0092 had been drilled in an effort to place
thermocouples into the center of the biscuit. All of the catalysts showed typical
signs of usage (dark front faces with rust on outer surfaces).
E. Specific Surface Area
The specific surface areas of the whole length of all biscuits were measured
with a Micromeritics Flowsorb II dynamic surface area analyzer using the multipoint
analysis technique. This analysis was conducted "in-house" during this Work
Assignment. The advantages for "in-house" analysis include a stricter control of the
analytical procedures, ease of repeating questionable samples, and assurance that
the analysis is performed on a sample that represents the entire length of the
biscuit. Losses in surface area are due to thermal degradation and/or plugging of
the sub-microscopic pores with metals and other deposits. A loss in the active
surface area results in the reduction of contact between exhaust gases and the
catcilyst material. A low surface area generally indicates converter overheating.
-------
TABLE 2.
Code
LABELING PROCEDURE CODE
Description
A
Upstream biscuit
B
Downstream biscuit
UL
Upper left portion of biscuit
UR
Upper right portion of biscuit
LI.
Lower left portion of biscuit
LR
Lower right portion of biscuit
1
Upstream piece of section
2
Middle piece of section or downstream
when no middle piece taken
3
Downstream piece of section
-------
TABLE 3.
CONVERTER WEIGHTS
Converter
Whole
Biscuit Weights, g
Number
Coiverter, lbs.
Upstream (A)
Downstream (B)
A221/0198
—
264.4/277.8
112.4/108.3
A221/0310
—
257.3/229.0
116.3/110.4
A280/0005L
10.00
1121.6
463.1
A220/0400
—
216.3/237.7
155.6/149.0
A230/0649
—
188.4/197.5
145.5/144.0
A230/0734
—
189.0/192.2
138.5/155.5
A246/0092
11.37
865.7
731.0
A240/0007
—
106.9/104.9
144.6/144.5
A240/0270
—
99.9/103.5
135.4/152.0
A254/0037
9.65
797.5
838.6
A254/0191
11.58
794.0
790.00
Note: Converters A280/0005L, A246/0092, A254/0037, and A254/0191 where
whole converters. All others represent lengthwise quarters. The first listed
weight represents the lower left portion and the second weight represents the
upper right portion.
-------
9
Conversely, a normal surface area does not necessarily indicate a normal catalyst,
because the depos ts can increase the apparent surface area while covering the
surface and preventing contact with the exhaust gases. In this work assignment, the
surface area of O.'i inch pieces from the front, middle, and rear of the upstream
biscuit and the surface area from the front and rear pieces of the downstream
biscuit were analyzed. These large wedges were placed in a large sample tube and
analyzed whole. The sample tube consisted of a large tube with a ground glass joint
in the middle, or the sample was entirely sealed in glass. Either method was equally
effective, except the tube with the ground glass joint experienced a problem with
breakage. In order to eliminate this problem, all subsequent samples were sealed in
glass.
Upon completion of the analysis of the LL1 piece, the sample was ground to a
coarse powder (approximately 100 mesh). This sample was also analyzed for surface
area. The results for the specific surface areas are presented in Table 4. The plots
for the BET equation versus the relative pressure for each converter are included in
Appendix B.
F. X-Ray Diffraction
X-ray diffraction analysis of the samples was used to determine the crystal
structure of the alumina. Gamma-alumina and several other very similar alumina
structures are the original crystal structures used in the alumina washcoat. When a
catalyst containing these types of alumina is overheated (temperatures greater than
1000°C), the crystal structure changes to the alpha-alumina form. This conversion
in crystal structure can trap the active metals and change the active surface area of
the catalyst. The Debye-Scherrer powder x-ray diffraction technique was used to
determine the alumina crystal structure. This technique is well suited for the
analysis of monolith catalysts because of the small quantities of sample required. In
the case of monolith catalysts, the alumina is deposited as a thin wash-coat on the
surface of the cereimic substrate. The alumina can be scraped off carefully and
analyzed. The x-ra^s are diffracted by the various crystalline compounds within the
sample. Each crystalline compound has a characteristic diffraction pattern.
Amorphous compounds do not result in a diffraction pattern. These patterns are
compared to known compounds in a Powder Data File for identification. Table 5
lists the alumina crystal structure of each sample and any other crystalline
compounds observed in the samples.
G. Proton Induced X-Ray Emission
Proton induced x-ray emission (PIXE) was used to determine the
concentrations of noble metals and the accumulation of poisons. This technique
utilized protons to "knock" electrons from the inner orbital shells. The electron
removed causes the element to fluoresce x-rays at characteristic wavelengths.
These fluoresced x-rays are detected, and they represent the quantity of each
element present in the sample.
The elements of concern were phosphorus (P), sulfur (S), calcium (Ca),
manganese (Mn), zirc (Zn), lead (Pb), platinum (Pt), palladium (Pd), rhodium (Rh),
and nickel (Ni). The elements P, S, Ca, Mn, Zn, and Pb are poisons or contaminants.
They are derived from engine wear, dirt deposits, oil, fuel, and other sources. The
noble metals are Pt, Pd, and Rh, and they perform the function of "deeming up" the
exhaust. Nickel was found in some converters, and is reportedly present to enhance
-------
10
T \BLE 4. CATALYST SPECIFIC SURFACE AREA
Total Surface
Specific Surface Area, m^/g Area for Whole
Front Biscuit(A)
Rear Biscuit(B)
Biscuit,
*
Biscuit No.
LL1
LL2
LL3
Powder
UR1
UR2
Front
Rear
A221/0310
2.3
2.7
3.5
3.8
4.9
5.1
2800
2300
A280/0005L
6.6
3.6
3.0
7.8
5.1
6.6
4900
2700
A220/0400
10.5
15.4
9.2
12.0
7.0
7.1
10600
4300
A230/0649
5.0
12.4
12.5
8.6
9.8
9.1
7700
5500
A246/0092
7.8
15.4
15.7
8.9
10.6
7.9
11200
6800
A240/0007
15.2
14.2
22.8
17.0
3.9
5.8
7400
2800
A240/0270
5.9
8.1
10.9
8.7
5.0
5.7
3400
3100
A254/0037
6.4
7.4
6.5
7.7
7.4
7.0
5400
6000
A254/0191
9.7
8.5
10.1
11.3
8.1
8.8
7500
6700
*Total biscuit surface area based on average of surface area and total weight of biscuit.
For partial samples, the total weight of the biscuit was estimated based on the amount
of sample received. The partial samples were A221/0310, A220/0400, A240/0007, and
A240/0270.
-------
TABLE 5. ALUMINA CRYSTAL STRUCTURE BY X-RAY DIFFRACTION
Biscuit
Numbers
AZZ1/0198-A
AZZ1/0198-B
A221/0310-A
A2Z1/0310-B
A280/0005L-A
AZ80/000SL-B
AZZO/0400-A
A2Z0/0400-B
AZ30/0649-A
AZ30/0649-B
AZ30/0734-A
AZ30/0734-B
AZ46/009Z-A
AZ46/009Z-B
AZ40/0007-A
A240/0007-B
A240/0270-A
A240/0270-B
AZ54/0037-A
A254/0037-B
A254/0191-A
Alumina Crystal Structure and Other Crystalline Structures Found
Front Face (UR1)
Middle Outer Edge (UR2)
Rear Face (UR3)
Intermediate alumina (gamma, delta, or theta) with intermediate alumina (gamma, delta, or theta) with intermediate alumina (gamma, delta, or thetaj with
trace of CeOj or ZnS and AIPO4 CeOj or ZnS CeOj or ZnS
intermediate alumina (gamma, delta, or theta)
mostly alpha alumina with some theta, possible
unidentified phosphate phases and CeOj or ZnS
intermediate alumina (probably theta)
mostly theta alumina with CeO^
intermediate alumina (gamma or delta)
intermediate alumina (probably gamma) with NIO
and CeC>2 or ZnS, trace of AIPO4 and Ni,
possible spinel cubic NiAljC^
intermediate alumina (prrobably theta)
intermediate alumina (probably gamma or mixture
of gamma and delta)
intermediate alumina (gamma) with CeOj
mostly gamma alumina with possible AIPO4
mostly alpha alumina
mostly gamma alumina with NiO
mostly theta alumina
intermediate alumina (gamma, delta, or theta) with
NiO and possible Ni
intermediate alumina (gamma, delta, or theta) with
possible CeOj
intermediate alumina with spinel cubic N1A1204,
possible NiO and trace of AIPO4
intermediate alumina with CeOj
intermediate alumina (probably theta) with CeOj intermediate alumina (probably theta) with CeOj
mostly theta alumina with trace of alpha with
CeO?
intermediate alumina (gamma or delta) with CeO^
intermediate alumina (probably gamma) with NiO and intermediate alumina (probably gamma) with NiO
CeOz, possible spinel cubic NIAI2O4
Intermediate alumina (probably gamma or mixture
of gamma and delta)
mostly alpha alumina
mostly gamma alumina with NiO
and CeOj, possible spinel cubic N1A1204
Intermediate alumina (probably gamma or mixture
of gamma and delta)
mostly alpha alumina
mostly gamma alumina with NiO
intermediate alumina (gamma, delta, or theta) with intermediate alumina (gamma, delta, or theta) with
NIO and possible Ni
intermediate alumina with spinel cubic NIAI2O4,
possible NiO and Ce02 or ZnS
mostly delta alumina with Ce02 or ZnS, possible NIO mostly delta alumina with Ce02, possible NiO
and CeAlOj
mostly delta alumina with Ce02
mostly delta alumina with Ce02 or ZnS
mostly delta alumina with Ce02, possible NiO
and CeAlOj
NIO and possible Ni
intermediate alumina with spinel cubic N1AI2O4,
possible NiO and Ce02
mostly delta alumina with Ce02, possible NiO
and CeAlOj
mostly delta alumina with Ce02, possible NiO
and CeAlOj
AZS4/0191-B mostly delta alumina with Ce02, possible CeAlOj
-------
12
the catalytic activity. Aluminum (Al), silicon (Si), and magnesium (Mg) are major
constituents of the support material, and were not quantitatively determined. The
minor constituents such as sodium (Na), potassium (K), titanium (Ti), iron (Fe),
cerium (Ce), and b irium (Ba) were also not quantified. The elements Na, K, and Ti
are present in small amounts from the clays used to make the cordierite ceramic.
Titanium is also probably present in the converters as a whitening agent for the
ceramic substrate. Cerium was added to inhibit the conversion of gamma-alumina
with a higher surface area to alpha alumina with a lower surface area at the
elevated temperatures experienced within the converters, and also to increase the
catalytic activity of the converter when present in concentrations of one percent or
more. Iron was probably from the engine, as a wear product, the exhaust system
due to rust, or as
-------
TABLE 6. ELEMENTAL ANALYSIS OF NOBLE METALS AND POISONS BY PIXE
Biscuit Sample Weight Percent of Element
Number
Location
P
S
Ca
Mn
Ni
Zn
Rh
Pd
Pt
Pb
Others
A221/0198-B
LL
•
0.0710.02
0.0610.01
0.0110.0004
trace
0.0210.0002
•
0.1710.002
.
0.0210.001
Na,Mg,Al,St,Ti,Fe
A221/0310-A
LL1
1.7*0.5
*
0.1310.01
0.0710.003
0.0410.001
0.4610.001
trace
0.0210.01
0.1110.01
4.1510.01
Mg.Al.Sl.K.Tl.Fe.Ce
LL2
0.4410.04
0.0610.03
0.0610.01
0.0210.002
0.0210.0003
0.0710.0003
0.0110.003
*
0.1310.004
0.4410.002
Na,Mg,AlvSi,Tl,FefCe
LL3
O.UlO.05
0.0810.02
0.0610.01
0.0110.002
0.0110.0003
0.0310.0003
0.0110.003
•
0.1010.003
0.1910.002
Na,Mg,Al,SI,Tl,Fe,Ce
A221/0310-B
LL
•
0.0610.02
0.0410.01
0.0110.0005
trace
0.0210.0002
«
0.1510.004
*
0.7410.002
Na,Mg,Al,SI,Ti,Fe
A280/0005L-A
LL1
2.0110.05
0.1310.03
0.0310.01
0.1310.003
0.0210.0004
0.6310.001
0.0110.004
•
0.0810.01
0.3110.003
Na,Mg,Al,Si,K,TlfFe,Ce
LL2
0.4110.06
0.0610.03
0.0810.01
0.0210.001
0.0110.0003
0.0710.0004
0.0110.002
•
0.0810.003
0.0410.001
Na,Mg,Al,Sl,K,Tl,Fe,Ce
LL3
0.1910.05
0.1710.02
0.0710.02
0.0210.002
trace
0.0510.0003
0.0110.0003
*
0.1410.003
0.0110.001
Na,Mg,Al,Sl,KlTl,Fe,Ba,Ce
A280/0005L-B
LL
trace
0.1610.02
0.1310.01
*
*
0.1110.0002
*
0.3910.002
0.0110.003
0.2010.001
Na,Mg,Al,Sl,K,Tl,Fe
A220/0400-A
11 1
i *i+n 04
n intn w
n nn+n ni
A At nnt
l.jOiC.CCi
0.3 7_u.0u6
0.02^ai.ui
U.UbXU.UUi
U. 04X0.01
2.3810.01
Na,Mg,Al,Si,K,TI,Fe,Ba,Ce
LL2
0.6610.04
0.2310.03
0.0310.02
0.0110.003
2.0210.001
0.0410.001
0.0210.01
0.0510.01
0.0410.01
0.3610.003
Na,Mg,Al,Sl,K,Tl,Fe,Ba,Ce
LL3
0.1410.05
0.2210.02
0.0610.02
trace
1.6110.001
0.0410.001
0.0210.01
0.0510.01
0.0410.004
0.1110.002
NafMgfAlfSlfK^ipFe^afCe
AZZ0/0400-B
LL
0.1410.03
0.1510.02
0.1010.01
0.0110.0004
0.0110.0002
0.0110.0002
*
0.0110.001
0.1710.002
0.1810.001
Na,Mg,Al,Sl,Tl,Fe
AZ30/0649-A
LL1
1.6110.04
0.1810.04
0.2410.02
0.0210.002
0.0510.0004
0.5210.001
trace
0.0510.001
0.1110.01
0.6110.003
Na.Mg.Al.SI.K.Tl.Fe.Ce
LL2
0.4710.05
0.0710.03
0.0710.02
trace
0.0210.0003
0.0310.0003
0.0110.003
0.0510.003
0.1110.003
0.0310.002
Na,Mg,Al,Si,K,Ti,Fe,Ce
LL3
0.1310.05
0.1210.03
0.0510.02
#
0.0310.0003
0.0210.0003
0.0210.003
0.0510.004
0.1110.002
0.0310.002
Na,Mg,Al,Sl,K,Ti,Fe,Ce
AZ30/0649-B
LL
trace
0.1710.03
0.0810.02
•
0.0110.0003
0.0210.0004
0.0210.002
0.0610.003
0.1610.003
0.0410.002
Na,Mg,Al,Sl,Ti,Fe,Ce
A230/0734-B
LL
0.1410.04
0.1710.02
0.1010.02
*
0.0110.0004
0.0310.0004
0.0310.001
0.0910.004
0.2010.003
0.0110.002
Na,Mg,Al,Sl,Ti,Fe,Ce
A246/0092-A
LL1
1.4510.04
0.4610.03
0.0610.01
0.0310.003
1.9610.001
0.1210.001
0.0210.004
0.0410.004
0.0810.01
0.7310.01
NafMg,AltSl,K,Tl,Fe,BatCe
LL2
0.3610.04
0.5810.02
0.0410.01
trace
2.8010.001
0.0210.001
0.0310.001
0.0510.002
0.1110.004
0.1410.001
Na,Mg,Al,Sl,K,Ti,Fe,Ba,Ce
LL3
0.12*0.04
0.6610.02
0.0510.01
*
3.1310.002
0.0210.001
0.0310.01
0.0610.003
0.1310.005
0.0610.003
Na,Mg,AlfSi,K,Ti,FefBafCe
A246/0092-B
LL
trace
0.7410.02
0.0610.01
0.0110.001
0.0210.0003
0.0110.0003
*
0.0410.002
0.2910.002
0.0410.001
Na,Mg,AltSi,TitFe,Ba
A240/0007-A
LL1
Z.3 310.05
0.5710.03
0.0510.02
0.0510.003
2.1110.001
0.2810.001
0.0310.01
.
0.1110.01
0.3810.004
Na,Mg,Al,Si,K,Tl,Fe,Ba,Ce
LL2
0.8710.05
0.4910.03
0.0410.01
0.0210.002
1.7510.001
0.0610.001
0.021 0.01
.
0.0810.004
0.0910.002
HafMg,AllSifKtTltFelBapCe
LL3
0.1710.05
0.2610.03
0.0410.01
0.0110.001
0.7010.0004
0.0110.0004
0.0110.002
•
0.0410.002
0.0110.001
Na,Mg,Al,Si,K,Tl,Fe,Ba,Ce
A240/0007-B
LL
0.2510.04
0.5610.02
0.0710.01
0.0110.002
0.2010.0003
0.0910.0004
*
0.0710.0007
0.1210.004
0.0810.002
Na,Mg,Al,Sl,TI,Fe,Ce
A240/0270-A
LL1
2.0210.05
0.2010.03
0.1310.02
0.0810.003
2.8110.001
0.5210.001
0.0210.005
*
0.0710.02
0.8410.01
Na,Mg,Al,Si,K,Ti,Fe,Ce
LL2
1.2510.04
0.1710.03
0.0810.02
0.0510.004
4.9210.002
0.1610.002
0.0310.004
*
0.1310.01
0.3210.01
Na,Mg,Al,Sl,K,Tl,Fe,Ce
LL3
0.4610.05
0.0910.03
0.0710.02
0.0210.002
2.0210.001
0.0510.001
0.0110.004
*
0.0510.01
0.1010.003
Na,Mg,Al,Sl,K,Ti,Fe,Ce
A240/0270-B
LL
0.1610.04
0.1410.02
0.0510.01
0.0110.001
0.0710.002
0.0310.0003
*
0.0410.002
0.0510.002
0.0510.001
Na, Mg,Al,Sl,TltFe,Ce
A2S4/0037-A
LL1
1.7510.04
0.3 510.03
0.1510.01
01210.004
0.0110.0004
0.2110.001
0.0510.004
*
0.2410.01
0.4110.003
Na,Mg,Al,St,K,Tl,Fe,Ba,Ce
LL2
0.3410.04
0.8610.03
0.0810.02
0.0110.005
0.0110.0004
0.0210.0004
0.0310.005
•
0.2410.004
0.0610.002
NaIMg,Al,Si,K,TI,Fe1Ba,Ce
LL3
0.1610.05
0.8310.03
0.0810.02
0.0110.004
0.0110.0004
0.0210.0004
0.0310.004
•
0.2210.004
0.0310.002
NatMg,Al,SifK,Tl,Fe,Ba,Ce
A254/0037-B
LL
trace
1.4910.03
0.1010.02
•
*
0.0310.0001
0.0710.01
~
0.4210.004
0.0410.002
Naf Mg, Al,SI,K,FefBa,Ce
A254/0191-A
LL1
1.4 510.04
1.0610.04
0.0910.02
0.0410.01
0.0210.001
0.2110.001
0.0310.01
*
0.2510.01
0.8710.01
Na,Mg,Al,Si,K,Tl,Fe,Ba,Ce
LL2
0.3410.05
0.8910.03
0.0710.02
*
trace
0.0310.005
0.0310.01
*
0.2210.004
0.1810.003
Na,Mg,AltSl,KfTi,Fe,BafCe
LL3
0.1210.05
1.0110.03
0.0710.02
«
trace
0.0110.0004
0.0210.004
*
0.2010.003
0.0610.002
Na,Mg,Al,Sl,K,Ti,Fe,Ba,Ce
A254/0191-B
LL
*
1.4010.03
0.0910.02
•
*
0.0410.0007
0.0510.007
*
0.5310.01
0.0910.003
Na, Mg,Al,Si,K,Fe,Ba,Ce
* - below the detection limit
trace - at the detection limit
-------
TABLE 7. ELEMENTAL ANALYSIS OF CATALYST POISONS BY X-RAY FLUORESCENCE
Biscuit Number
P
S
Ca
Mn
N1
Zn
Pb
Others
AZ<.i/G19o-d-LL
U. U-LU.U1
U. 151.0.01
0.2410.01
trace
trace
0.0210.001
0.0410.002
Mg.Al.Sl.K.Ti.Fe.Ce.Pt
A221/0310-B-LL
0.07+0.004
0.1610.01
0.0810.004
0.0110.001
trace
0.0310.002
1.2410.06
Mg,Al,Si,K,Ti,Fe,Ce,Pt
A280/0005L-B-LL
0.0810.005
0.1310.01
0.0910.005
0.0210.001
trace
0.0610.003
0.1310.01
Na,Mg, Al,Si,K,Tl,Fe,Ba,Ce,Pt
A220/0400-B-LL
0.06+0.004
0.0910.01
0.0810.004
trace
0.01+0.0004
0.0410.002
0.1110.01
Na^gjAljSi.K.Tl.FejBa.Ce.Pt
A230/0649-B-LL
0.0410.003
0.1310.01
0.0810.004
trace
0.01+0.001
0.0110.001
0.0210.001
Mg,Al,Si,K,Ti,Fe,Ba,Ce,Pt
A230/0734-B-LL
0.0510.003
0.1010.01
0.0910.004
trace
0.0110.0005
0.0210.001
0.0110.001
Mg,Al,Si,K,Ti,Fe,Ba,Ce,Pt
A246/0092-B-LL
0.02+0.002
0.5610.03
0.0510.003
0.0110.001
0.0110.001
0.0110.001
0.0210.001
Mg,Al,Sl,K,Ti,FetBa,Ce,Pt
A240/0007 -B-LL
0.1010.01
0.3610.02
0.07+0.004
0.0110.001
0.1010.001
0.0510.003
0.0410.002
Mg^l.Si.K.TijFe.Ba.Ce.Pt
A240/0270-B-LL
0.2210.01
0.3010.02
0.1010.005
0.0210.002
0.1310.01
0.0710.004
0.1410.01
Mg,Al,Si,K,Ti,Fe,Ba,Ce,Pt
A2 54/0037-B-LL
0.0310.002
1.0110.05
0.0710.004
0.0110.001
*
0.0110.001
0.0110.001
Mg, Al,SipK,Ti,Fe,Ce,Pt
A254/0191-B-LL
0.0310.002
0.9110.05
0.0510.003
trace
*
o.oiio.ooi
0.0210.001
Mg, Al,Sl,K,Ti,F e,Ce,Pt
trace - at detection limit
* - below detection limit
-------
15
TABLE 8. SURFACE WEIGHT PERCENT OF ELEMENTS
NORMALIZED TO ALUMINUM
Biscuit Normalized Weight Percent
Number
P
S
Ca
Mn
Pb
Si
Zn
A180/0094
17.40
0.21
3.61
1.24
82.64
0.25
26.13
A193/0908
3.09
2.80
0.54
0.36
1.55
2.84
3.75
A218/0045
15.06
2.04
4.08
0.91
42.56
2.26
26.03
A218/0045X
15.65
10.17
2.48
0.75
34.38
11.44
32.53
A218/0045X*
0.20
0.01
0.04
ND
0.09
0.02
0.07
A218/0068
49.54
2.89
11.04
1.23
155.73
3.42
97.31
A220/0392
3.34
2.09
0.77
0.08
5.17
2.23
3.80
A220/0392*
0.12
0.02
0.01
ND
0.03
0.02
0.02
A220/0810
11.45
0.68
2.95
0.10
8.15
0.80
18.44
A221/0152
10.90
24.96
2.58
5.20
19.51
24.36
20.65
A221/0204
12.64
1.55
2.41
0.24
14.88
1.94
37.71
A221/0447
2.03
2.94
0.28
0.12
13.07
3.14
2.82
A221/0447*
0.03
0.04
0.003
ND
0.02
0.06
0.002
A230/0177X
0.56
0.37
0.09
0.05
0.27
0.42
0.45
A230/0177X*
0.05
0.03
0.01
ND
0.02
0.05
0.03
A230/0636X
1.68
0.23
0.23
0.08
3.09
0.27
1.60
A240/0016L
£.40
0.61
0.35
ND
8.58
0.72
3.62
A240/0016L*
D.45
0.10
0.04
ND
0.87
0.12
0.14
A240/0102
3.47
1.20
1.01
0.08
3.42
1.33
3.93
A240/0141L
6.12
37.62
0.85
4.03
6.20
30.63
7.17
A240/0153
1.71
0.10
0.13
0.27
1.15
0.11
1.02
A240/0334L
0.74
0.41
0.03
0.03
1.46
0.45
0.31
A249/0169-1
1.48
0.58
0.08
0.05
1.08
0.54
0.18
A249/0169-1*
0.05
0.01
0.01
ND
0.04
0.02
0.02
A249/0169-2
1.76
4.04
0.10
0.12
1.83
3.56
0.39
A249/0169-3
1.29
0.41
0.87
ND
14.60
0.56
0.73
A280/0001L
<>.04
2.19
2.27
1.68
3.60
2.49
13.21
A155/0941-1
;:.64
0.60
0.67
0.51
0.70
0.64
2.15
A155/0941-2
0.72
0.52
0.21
0.07
2.26
0.52
1.32
A207/0101
(1.35
0.07
0.01
0.07
0.03
0.08
0.05
~Rear Face of A biscuit for comparison within each engine family
ND - none detected
-------
16
accuracy and precision of the results presented in this report. A listing of
precision, accuracy, and completeness is presented in Table 9. All measurements
are representative oi the catalyst properties and conditions being measured.
The Micromeritics Flowsorb II dynamic surface area analyzer was set up to
analyze the catalyst samples "in-house." Two NBS Standard Reference Materials
and seven standards from Duke Scientific Corporation were used to establish the
instrument operatiig range and linearity, as well as confidence in the analytical
procedure. In this work assignment, the surface areas were determined with a
multipoint technique. A curve was established for the various gas concentrations to
determine the calibration knob setting for the instrument (Figure 3). The standards
were analyzed using this technique, and the results are given in Table 10. A plot of
the BET equation versus the relative pressure for the standards is presented in
Appendix D. In general, the standards repeated within the published confidence
limits for the entire range of standards (0.62 m^/g to 265 m^/g).
In an effort :o correlate the data from this work assignment with previous
work assignments, an alternative procedure for preparing the samples for surface
area was used. The coarse powder (approximately 50 mesh) from ten samples was
analyzed for surface area and compared to the results for the bulk strips which were
cut from the center core of the biscuit and analyzed as a single sample. The results
for the two sampling techniques are-presented in Table 11, and the plots of the BET
equation versus the relative pressure are included in Appendix E. The surface areas
for the ground samples were lower in all cases except for A220/0810-A, A221/0447-
A, and A155/0941-1-A. All three of these samples were from the A biscuits. The
A220/0810-A was tie only sample from the group which contained alpha alumina.
The other two catalysts were from Chrysler vehicles. Ground catalyst samples from
the upstream biscu t apparently result in higher surface areas than the unground
samples. These results were also observed for front face samples listed in Table 4.
No conclusions can be drawn without additional work to confirm the sources of this
phenomenon.
In an effort to demonstrate the precision and accuracy for the XRF procedure,
a sample analyzed in Work Assignment No. 20 from EPA Contract 68-03-3192 was
selected at random and repeated during this work assignment. The results are listed
in Table 12 and Figure 4. In general, the current results agreed very well with the
previously published results. The largest error was for Ni, but the concentration was
so low that the error does not indicate a significant problem. When Ni is excluded,
the average percent difference is 0.3 i 3.8. Phosphorus and lead values were higher,
while sulfur and pla.inum were lower. The precision and accuracy for XRF depend
on the concentration of the elements, the elements present, the homogeneity of the
sample, and the size of the particles in the pellet.
V. Summary
In summary, a total of 11 catalysts were examined by whole converter x-ray,
x-ray fluorescence, x-ray diffraction, PIXE, and BET surface area analysis. Of
these 11 catalysts, 4 were whole converters and 7 were partial catalyst samples.
This letter report is a compilation of all of the data available at the time of
submittal, and is intsnded to serve as the final report of the results for the program.
-------
TABLE 9. PRECISION, ACCURACY, AND COMPLETENESS OBJECTIVES
Analytical Precision Coeff. Completeness
Procedures
of Variation, %
Accuracy
%
Whole catalyst X-iay
NAa
0.02b
2-2TC
> 95
X-ray fluorescence
1-3
115%
> 95
X-ray diffraction
5
±5%
>95
BET surface area
7
13%
> 95
PIXE
±5
15%
95
aNA = not applicable
^geometric unsharpness
csensitivity
-------
18
PAGE
CONVERTER SURFACE AREA ANALYSIS
. + ..XY
liquation for Line
y = A + BX + CX2
\rhere:
A = 83.4527
B = 0.649277
C = 0.051388
R2 = 0.999711
.+.Y.
N= 4
CQR= .9929
MEAN
X 12.425
Y 102.00
4.50 7.50 10.5- 13.5 16.5 19,5 22.5
6,,00 9.00 12.0 15.0 18.0 21.0 24.0
Carrier Gas Concentration, % Nitrogen
ST.DEV. REGRESSION LINE RES.MS.
8.12£I8 X= ,45073*Y-33.549 1.3976
17.9CI7 Y= 2.1874°X+ 74.822 6.7824
VARIABLE
1 P/fO
VERSUS VARIABLE 2 X/V
SYMBOLS
FIGURE 3. CALIBRATION KNOB SETTING FOR BET INSTRUMENT
-------
TABLE 10. QU/JLITY ASSURANCE OF SURFACE AREA STANDARDS
Standard
Composition
Standard Surface
Area, m^/g
Measured Surface
Area, m^/g
Percent
Difference
Zinc oxide
0.62±0.04
0.61
-1.6
Alpha alumina
0.78 NBS
0.73
-6.4
Alumina
1.3910.12
1.38
-0.7
Alumina
3.04+0.25
3.21
5.6
Titanium dioxide
7.05+0.7
6.97
-1.1
Alumina
14.010.6
14.00
0.0
Graphitized Carbon
Black
71.3 NBS
73.13
2.6
Alumina
81.416.2
82.37
1.2
Alumina
265111
220.5
Average
-16.8
-1.916.5
-------
TABLE 11. SPECIFIC SURFACE AREA OF SELECTED POWDER SAMPLES
Converter
Specific Surface
Area, ra^/s
Total Surface
Area,
Percent
Difference^3
C ore
Powder
Core
Powder
A221/0447-A
4.8
5.8
5300
6400
20.8
A221/0447-B
K.O
6.0
3800
2800
-25.0
A220/0810-A
4.7
9.4
4200
8500
100.0
A220/0810-B
9.4
7.4
5900
4600
-21.3
A230/0177X-A
21.4
14.9
17,100
11,900
-30.4
A230/0117X-B
14.3
12.0
9400
7900
-16.1
A155/0941-1A
-..6
6.0
4500a
7600a
66.7
A155/0941-2-A
: .1
2.3
1500a
1100a
-25.8
A240/0141L-B
9.7
8.8
4900
4400
-9.3
A240/0334L-A
19.9
12.7
8000
5100
-36.2
atotal surface area based on biscuit weights of converter A155/0926
^based on specific surface areas
-------
TABLE 12. QUALITY ASSURANCE FOR XRF (SAMPLE A220/0810-B)
Element
Work Assignment
20a 8"
Percent
Difference
P
0.48+0.02
0.5010.03
4.2
S
1.1510.06
1.0910.05
-5.2
Ca
0.2010.01
0.2010.01
0.0
Mn
0.01+0.001
0.0110.001
0.0
Ni
0.0210.001
0.0110.001
-50.0C
Zn
0.2510.01
0.2510.01
0.0
Pt
0.37+0.02
0.3610.02
-2.7
Pb
0.1710.01
0.1810.01
5.9
Others
Na,Mg,Al,Si,
K,Ti,Fe,Ba,Ce
Na,Mg,Al,Si,
K,Ti,Fe,Ce
aEPA Contract 68-03-3192, Work Assignment No. 20
^EPA Contract 68-03-33 53, Work Assignment No. 8
cLarge percent difference due to low value. Probably not
significEint
-------
22
RUN DESCRIPTI ON: AUCAT1 - AUTO C ATALYST SUIK'l
DATE OF XRAY ANALYSIS: 04/30/37
AMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: RE-RUN OF OLD SAMPLE AS OA CuNTRfiL
SAMPLE SEQUENCE NO.: 13
¦".AMPLE ID: A220/081 O-B
ELEMENT
DETN LIM
MA':.S V.
J — 'r- 1
NA
.J1u 384E-01
. 16 3845
t —
. J I
MC
. 1-^.61 3E-02
2. 3.-.064
(--
, 3 1
AL
.257523E-0I
31. 4 J.'.'"'
H-
• • 111 / j ¦
SI
. 34 3 54'r'E-02
°.64556
-h
.403362
P
. 2580,:)4E-03
. 4'-'3° 37
+• —-
. 2&'7':,5:=:E -01
. 168SS1E-02
1. 0&":/75
H —
.547063E-01
CL
X
. '384317E-03
-.11 317E-02
+ -
. lOS'-'SSG-OJ
.225832E-0 3
.144844
+ -
.726653E-02
CA
. l'r'1374E-03
. l'r'5,r'0 3
+ —
. '-"-"'362 3E-02
TI
.15757E-03
.138644
+ -
. 'ry5 30 1 2E—0 ?
V
. 5488c'8E-03
. 4 324,;'5E-02
H—
.64°13E -03
CR
. 'r'70063E-03
. 13000"'E-01
~i—
. 204/-.32E-02
MN
.450773E-03
. 612615 3E-02
4--
. 744'-"'5 LE-0
FE
.4 30 305E-03
. 4045'r'4
+ -
.204071E-01
CO
X
.306 313E-03
-. '->6'r>6 2,:5E-04
H—
.2375 32E-0 3
NI
.2534 37E-03
.384321E-02
-1—
.56 3457E-0 3
CU
.270'^25E-03
.167652E-02
H—
. 236644E-U":
JN
. 2'-'0046E-0 3
. 24'-"'47
-1—
. 3 25251F:-01
SE
X
. 305 7C'2E-Q 3
-. 372"502E-02
+ -
. ?.27'»56E-0::
BR
X
.215055E-02
367 313E-02
4.—
. 2158'r':-:F-02
SR
X
. 4,r' 3312E-02
12*41£-0 2
H—
, 004,;'4
MO
X
. 6':''3043E-02
100575E-02
+ -
, -:i O4E-0 2
CD
D
. l,:>,r''<>53E-0 3
. 31351 ¦-"'E-o ?
¦f--
. i 1 76E-0 ::
SN
D
. 117'>62E-02
.338133E-02
+ -
. 1 20<;.5t-0 2
SB
X
.561786E-0 3
. 71 1 ":E-05
H—
. 5
HA
D
.4°2747E-03
. 1121°5E-i>2
H
. Si 1 ,:S7:.:t£- 0 3
CE
. 1* 4678E-02
.106^51E-Ol
H
. 2J4 IE--02
PT
.7A3173E-03
.361267
i—
. I31:":t-"2IZ-'.>1
HO
X
. 7'r'2004E-0 3
47 3l/i'-'>E-02
. 75 ii>/: ::
F'B
.324246E-03
. 17707°
-h-
. 771 7E-02
TOTAL DETECTED BY XRF = 46.'r>60'r'
FIGURE 4. ELEMENTAL CONCENTRATIONS OF METALS AND POISONS FOR
BULK SAMPLE BY X-RAY FLUORESCENCE
-------
23
We hope that the i-esults from these catalyst evaluations will help to answer some of
the EPA questions about relationships concening the catalyst condition. Please
contact us if there are additional questions, or if we can be of further assistance.
Prepared by:
E. Robert Fanick
Research Scientist
Department of Em ssions Research
Reviewed by:
GoUa^jT
Charles T. Hare
Director
Department of Emissions Research
-------
APPENDIX A
WHOLE CATALYST X-RAY RADIOGRAPHS
-------
INLET
r
OUTLET
Figure A-l. X-Ray Radiograph of A280/0005L
-------
INLET
OUTLET
Figure A-2. X-Ray Radiograph of A246/0092
A-3
-------
APPENDIX A
WHOLE CATALYST X-RAY RADIOGRAPHS
-------
INLET
r
OUTLET
Figure A-l. X-Ray Radiograph of A280/0005L
-------
INLET
OUTLET
Figure A-2. X-Ray Radiograph of A246/0092
A-3
-------
APPENDIX B
BET EQUATION VERSUS RELATIVE PRESSURE
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A221/0310-A !LL-1.
N= 3
COR= .9996
.055 .055 .075 .085
.050 ,060 .070 .000
P/PO
.095 .105 .113
090 .100 .110
MEAM ST.OEV. REGRESSION LIME RES.JIS.
X .084S2 .03484 X= .52270*Y-.001G6 172E-6
Y .15545 .06663 Y= 1.911S«X+ .00330 531E-3
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
3YM30L=X
Figure B-l. Plot of BET equation versus relative pressure for
Converter A221/0310-A-LL1
B-2
-------
PAGE 4 C3WVEFITER SURFACE AREA ANALYSIS A221/031C-A (LL-2]
H= 3
COR= 1.000
.055 .0G5 .075 .0S5 .095 .105 .115
.050 .060 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .08432 .034(34 X= .53513»Y-.00752 179E-S
Y .14538 .05485 Y= 1.5742»X+ .01184 443E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=
Figure B-2. Plot of BET equation versus relative pressure for
Converter A221/0310-A-LL2
B-3
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0310-A (LL-3j
.+..., + ....+....¦1-....^....^.... + .... + .... + ....^..
.1625 +
.1500
.0750
.0525
M= 3
COR= .9393
.055 .365 .C75 .035 .095 .105 .115
.050 .080 .070 .350 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LIME RES.IIS.
X .00432 .03484 X= .79438»Y-.00251 332E-3
Y .10994 .04333 Y= 1.2571»X+ .00331 526E-a
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYt!B0L=X
Figure B-3. Plot of BET equation versus relative pressure for
Converter A221/0310-A-LL3
B-4
-------
PAGE 4 CONVERTER SURFACE AREA AfWLYSIS A221/0310-A f LL-1,100 flEffil)
+ + 4- *¦ + +• +• + + + + + +
!!= 4
COR= .0090
,06c'5 .0875 .1125 .1375 .1325 .1375 .2125
.0500 .0730 .1000 .1250 .1500 .1750 .2C00
P/PO
MEAN ST.DEV. REGRESSION LINE RES.IIS.
X .11752 .0713C X= .87828'Y-.01542 146E-7
Y .15130 .08111 Y= 1.13G4»X+ .01781 189E-7
VARIABLE 1 P/PCi VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-4. Plot of BET equation versus relative pressure for
Converter A221/0310-A-LL1 (Powder)
B-5
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0310-A (LL-2)
+ +.
YX
,+...mT,...+... . + .
.055 .065 .075 .005 .095 .105 .115
.050 .0G0 .070 .080 .000 .100 .110
iJ= 3
COR= .0990 P/PO
IlEAfl ST.DEV. REGRESSION LIIIc RES..'IS.
X .03432 .03484 X= 1.1320»Y-.00436 100E-8
Y .07073 .03077 Y= .30298*X+ .00339 S40E-3
VARIABLE 1 P/PO
VERSUS VARIA0LE 2 X/V
SY!1B0L=X
Figure B-5. Plot of BET equation versus relative pressure for
Converter A221/0310-B-UR1
B-6
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0310-9 [UR-2)
.0975
.0900
.0325
X/V(1-X]
.0750
.0675
.0600
.0525
.0450
.055 .065 .075 .085 .095 .105 .115
.050 .060 .070 .000 .030 .100 .110
:i= 3
COR= 1 .000 P/PO
MEAN ST.OEV. REGRESSION LINE RES.MS.
X .08482 .00484 X= 1.1699«Y+ 855E-6 12E-10
Y .07177 .02973 Y= .85475'»X-730E-6 36E-11
VARIABLE
1 P/Pl
VERSUS VARIABLE 2 JC/V
SYtBOL=X
Figure B-6. Plot of BET equation versus relative pressure for
Converter A221/0310-B-UR2
B-7
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A260/C005L-A (LL-1)
-I- + + + -r- 4- 4- -I- 4* J. + +
.034
.078
.072
.003
W[1-X]
.060
.054
.040
.042
.036
:i= 3
con= 1.000
.055 .065 .075 .035 .005 .105 .115
.050 .030 .070 ,u30 .090 .100 .110
P/PO
,lEAi'J ST.DEV. REGRESSION LINE RES.MS.
X .03482 .03484 X= 1.5195«Y-. 00692 21E-9
Y .06037 .02293 Y= .6581 O^X- .00455 33E-10
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=a
Figure B-7. Plot of BET equation versus relative pressure for
Converter A280/0005L-A-LL1
B-8
-------
PAGE 4 COH\fERTER SURFACE AREA ANALYSIS A2G0/0005L-A (LL-2)
.X
.0E.5 .065 .075 .0Q5 .295 .105 .115
.050 .060 .370 .030 .030 .100 .110
ts= 3
COR= .9989 P/PO
MEAN ST.DEV. REGRESSION LIME RES.US.
-< .08461 .034£I3 X= .33344«Y-.00937 523E-3
Y .11300 .34175 Y= 1.1972"X+ .01145 759E-B
VARIABLE 1 P/f'O
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-8. Plot of BET equation versus relative pressure for
Converter A280/0005L-A-LL2
B-9
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A280/005L-A-LL-3
X
.1875 +
.1750
.1625
X .1500
/
V
.1375
.1250
.1125
.1000
.0875
X
+ ..Y. + ....+.
042 .054 .06G
.048 .060
.078
N= 2
COR= 1.000
072 .004
P/PO
.090 .102 .114 .121
.098 .103 .120
MEAN ST.DEV. REGRESSION LINE RES.ftS.
X .08351 .04962 X= .S8716»Y-.01224 0.0000
Y .13933 .07222 Y= 1.4553»X+ .01781 0.0000
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure B-9. Plot of BET equation versus relative pressure for
Converter A280/0005L-A-LL3
B-10
-------
?AGE 4 COilVErlTI-R SURFACE AREA ANALYSIS A2S0/GC05L-A (LL-1,10D IIESH}
.0375
;(/V(1-V)
.0750
ri= 4
:oq= ,999a
.0325 .0375 .1125 .1375 .1625 .1S75 .212:
.0500 .0750 .1000 .1250 .1500 .17C0 .2000
P/PO
MEAN ST.DEV. REGRESSION LINE RES.IIS.
X .11752 .07132 X= 1.3041 »Y-. 00539 34SE-3
Y .03313 .03952 Y= .55403«X+ .00302 106E-3
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYIinOL=;<
Figure B-10. Plot of BET equation versus relative pressure for
Converter A280/0005L-A-LL1 (Powder)
B-ll
-------
IDLE
1PAGE 4 CONVERTER SURFACE AREA ANALYSIS A28Q/0005L-8 UB-1
..+....+....+....+....+....+....+....+....+....+....+...Y-
/
/
042 .054 .066
.048 .060
.078
N= 3
COR= .9998
MEAN
X .08483
.072 .084
P/PO
.090 .102 .114 .12
.096 .108 .120
ST.DEV. REGRESSION LINE RES.MS.
.03515 X= 1.2399«Y-.05198 106E-8
Y .11017 .02834 Y= .80818»X+ .04195 687E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-ll. Plot of BET equation versus relative pressure for
Converter A280/Q005L-B-UR1
B-12
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A280/0005L-B (UR-2]
.070
.072
.066
.060
X/V(1-X]
.054
.043
.042
.036
.030
N= 3
COR= .9987
.055 .065 .075 .385 .095 .105 .115
.050 .060 .070 .000 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LINE RES.IIS.
X .08482 .03484 X= 1.5223*Y+ 111E-S 355E-0
Y .05534 .02283 Y= .65513«X+ 773E-7 282E-8
VARIABLE
1 P/P3
VERSUS VARIABLE 2 X/V
SY:i30L=X
Figure B-12. Plot of BET equation versus relative pressure for
Converter A280/0005L-B-UR2
B-13
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A220/G4Q0-A [ LL-1 ]
N= 3
C03= .9999
.055 .065 .075 .085 .095 .105 .115
.050 .050 .070 .080 .090 .10Q .110
P/PO
MEAN ST.OEV. REGRESSION LINE RESJ1S.
X .08431 .03484 X= 2.4164»Y-.Q0129 579E-9
Y .03563 .01442 Y= ,41374»X+ 544E-6 99E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V SYtlB0L=X
Figure B-13. Plot of BET equation versus relative pressure for
Converter A220/0400-A-LL1
B-14
-------
PAGE 4 CONVEIITER SURFACE AREA ANALYSIS A220/0400-A (LL-2)
.0350 +
.0325
.0175
.0150
N= 3
COR= .3993
.055 .0S5 .075 .035 .095 .105 .115
.050 .0B0 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LIME RES.,'IS.
X .08481 .03484 X= 3.54071»Y-.00323 796E-9
Y .024S0 .00984 Y= ,23234«X+ 919E-8 63E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYIIB0L=X
Figure B-14. Plot of BET equation versus relative pressure for
Converter A220/0400-A-LL2
B-15
-------
PAGE 4 CONVEHTER SURFACE AREA ANALYSIS A220/0400-A-LL3
N= 3
COR= .3993
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08462 .03514 X= 1.2771"Y+ .00346 334E-6
Y .08355 .02750 Y= .78198*X-.00262 205E-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYKBOL=X
Figure B-15. Plot of BET equation versus relative pressure for
Converter A2Z0/0400-A-LL3
B-16
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A220/0400-A [LL-1,100 IIESH)
.0825 f
.3225 +
.
. /
.0625 .0075 .1125 .1375 .1325 .1875 .2125*
.0500 .£1750 .1000 .1250 .1500 .1750 .2000
11= 4
COH= .3930 P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11752 .07133 > = 2.7752»Y-.00308 14SE-7
Y .04454 .02583 \= .35964»X+ .00227 192E-8
VARIABLE 1 P/PO VERSUS VARIASLE 2 X/V
SYI10OL=X
Figure B-16. Plot of BET equation versus relative pressure for
Converter A220/0400-A-LL1 (Powder)
B-17
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A22Q/0400-B (UR-1)
+ +¦ +¦ +• .+
.078
.072
.066
.060
X/VM-X)
.054
.048
.042
.036
.030
N= 3
COfta .3997
.055 .085 .075 .085 .095 .105 .115
.050 .080 .070 .080 .090 .100 .110
P/PO
MEAN 3T.0EV. REGRESSION LINE RES.H8.
X .08482 .03484 X= 1.B170*Y-.00408 188E-8
Y .05497 .02154 Y= .81800*X+ .00255 641E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-17. Plot of BET equation versus relative pressure for
Converter A220/0400-B-UR1
-------
PAGE 4 CONVERTS) SURFACE AREA ANALYSIS A220/0400-8-UR2
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03514 X=- 1.8408*Y-.00527 1 47E-8
Y .05479 .02141 Y= .80919*X+ .00324 546E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V SYMBOLS
Figure B-18. Plot of BET equation versus relative pressure for
Converter A220/0400-B-UR2
B-19
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0649-A-LL1
N= 3
COB= .3907
MEAN
X .08482
Y .08654
VARIABLE
.090 .102 .114 .121
.036 .106 .120
ST.DEV. REGRESSION LINE RES.HS.
.03514 X= 1.1154"Y+ .01040 457E-7
.03121 Y= ,87S93*X-.00792 360E-7
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-19. Plot of BET equation versus relative pressure for
Converter A230/0649-A-LL1
B-20
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0649-A-LL2
.X.
.042 ,.054
.068 .070 .090 .102 .114 .126
.048
.060
N= 3
COR= .9709
.072 .084
P/PO
.096
.108
.120
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08481 .03514 X= 2.9115'*Y-.07527 142E-8
Y .05491 .01172 Y= .32375*X+ .02752 158E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure B-ZO. Plot of BET equation versus relative pressure for
Converter A230/0649-A-LL2
B-21
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0649-A-LL3
M= 3
COR= .9718
MEAN ST.DEV. REGRESSION LINE RES.Its.
X .08482 .03514 X= 2.8408«Y-.03767 137E-6
Y .04305 .01202 Y= .33247*X+ .01481 160E-7
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-21. Plot of BET equation versus relative pressure for
Converter A230/0649-A-LL3
B-22
-------
PAGE 4 CON\fEHTER SURFACE AREA ANALYSIS A230/084S-A [ LL-1)
+ + + + 4. + + +• + *. 4. V
./X
.0025 .0875 .1125 .1375 .1625 .1B75 .2125
.0500 .0750 .1000 .1250 .1500 .1750 .2000
N= 4
COft= .9976 P/PO
MEAN ST,DEV. REGRESSION LINE RES.MS.
X .11752 .07132 X= 1.9953"Y-.01739 381E-7
Y .06761 .03563 Y= . 48881«X+ .00899 901E-8
VARIABLE 1 P/P3
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-22. Plot of BET equation versus relative pressure for
Converter A230/0649-A-LL1 (Powder)
B-23
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A23Q/0S4SB (UR-1)
.056 +
.052
.048
.044
X/V(1-X)
.040
.036
.032
.028
.024 YX
K= 3
COR= .9884
.053 .065 .075 .085 .085 .105 .115
.050 .060 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03484 X=° 2.2495»Y-.00583 774E-8
Y .04021 .01548 Y= .44314»X+ .00262 152E-8
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-23. Plot of BET equation versus relative pressure for
Converter A230/0649-B-UR1
B-24
-------
PAGE 4
.060
.056
.052
vv(i-x)
.048
.044
.040
.036
.032
CONl/ERTER SURFACE AREA ANALYSIS A230/0649-R UR-2
.+ +....+....+....+....+....+....+..XY+....+
042 .054 .066
.04(1 .060
N= 3
COR= .9849
.090 .102 .114 .126
.096 .108 .120
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08462 .03514 X= 2.0512»Y-.01410 740E-7
Y .04789 .0167 9 Y= .47062»X+ .00807 169E-7
VARIABLE 1 P/FO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-24. Plot of BET equation versus relative pressure for
Converter A230/0649-B-UR2
B-25
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A246/0092-A-LL1
+ ....XY...+
.070
.065
.080
.055
X/V(1-X)
.050
.045
.040
.035
.030
N= 3
COR= .9903
MEAN
X .08462
Y .05204
.
.090 .102 .114 .126
.096 .108 .120
ST.DEV. REGRESSION LINE RES.US.
.03514 X= 1.7726«Y-.00763 476E-7
.01963 Y= ,55327*X+ .00522 149E-7
VARIABLE
P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-25. Plot of BET equation versus relative pressure for
Converter A246/0092-A-LL1
B-26
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A243/0D92-A (UL-2)
.055 .065 .075 .035 .033 .105 .115
.050 .330 .070 .030 .090 .100 .110
N= 3
COR= .0896 P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .00482 .03404 )<= 3.5302«Y-597E-6 204E-8
Y .02420 .00987 f= ,28303»X+ 109E-6 163E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBQL-X
Figure B-26. Plot of BET equation versus relative pressure for
Converter A246/0092-A-LL2
B-27
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A246/0092-A [LL-3)
.0375 +
.0350
.0200
.0175
N= 3
C0R= 1.000
.055 .065 .075 .005 .095 .105 .115
.050 .030 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .08402 . 03434 X= 3.6537'»Y-.01455 26E-10
Y .02720 .00954 Y= .27369*X+ .00338 1SE-11
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-27. Plot of BET equation versus relative pressure for
Converter A246/0092-A-LL3
B-28
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A248/0092-A
+ + + + + + + + f +.
.11
.10
.09
.08
X/V(1-X)
.07
.06
.05
.04
.03 +
.0825 .0875 .1125 .1375 .1625 .1875 .2125
.0500 .0750 .1000 .1250 .1500 .1750 .2000
N= 4
C0ft= .9999 P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11753 .07134 X= 2.0504»Y-.00910 156E-8
Y .08178 .03479 Y= . 48761 «X+ .00445 371E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-28. Plot of BET equation versus relative pressure for
Converter A246/0092-A-LL1 (Powder)
B-29
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A246/0092-8 (UR-1)
YX
.055 ,0B5 .073 .088 .095 .105 .115
.050 .060 .070 .080 .090 .100 .110
N= 3
C0R= .9984 P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03484 X= 2.4346»Y-.00474 782E-8
Y .03879 .01429 Y= .40942*X+ .00208 131E-8
VARIABLE 1 P/P0
VERSUS VARIABLE 2 X/V
SYMBOLIC
Figure B-29. Plot of BET equation versus relative pressure for
Converter A246/0092-B-UR1
B-30
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
A246/Q092-B [UR-2]
M= 3
COR= .9992
.055 .065 .075 .0B5 .095 .105 .115
.050 .0(10 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03434 X== 1.7999*Y+ .00244 383E-8
Y .04577 .01934 Y=' ,55471*X-.0012B 118E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-30. Plot of BET equation versus relative pressure for
Converter A246/0092-B-UR2
B-31
-------
IDLE
1PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/Q007-A LL-1
H= 3
COR= .3859
MEAN ST.DEV. REGRESSION LINE RES.MS.
X ,09463 .03515 X= 3.5148»Y-.03189 694E-7
Y .03315 .0098B Y= .27652«X+ .00975 548E-B
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYI1BQL=X
Figure B-31. Plot of BET equation versus relative pressure for
Converter A240/0007-A-LL1
B-32
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A24Q/0077-A LL2
N= 3
COR= .9597
.090 .102 .114 .126
.096 .108 .120
MEAN
ST.DEV. REGRESSION LINE RES.MS.
.00482 .03514 JC= 3.14B5»Y-.03915 195E-6
Y .03931 .01071 "= .29S54'»X+ .01455 1 81E-7
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-32. Plot of BET equation versus relative pressure for
Converter A240/0007-A-LL2
B-33
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
N= 2
COR= 1.000
MEAN
X .08351
Y .03026
VARIABLE
ST.DEV. REGRESSION LINE
.04962 X= 5.7103*Y-.08931
.00869 Y= ,17512*X+ .01534
1 P/PO
P/PO
RES.MS.
0.0000
0.0000
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-33. Plot of BET equation versus relative pressure for
Converter A240/0007-A-LL3
B-34
-------
PAGE 4 CONVIEHTER SURFACE AREA ANALYSIS A240/0007A, LL-1 (1QO MESH]
.0350
.0150 +
Y
X
.042 .054 .OSS
.048 .060
N= 3
C0R= .9336
.090 .102 .114 .126
.096 .108 .120
MEAN ST.DEV., REGRESSION LINE RES.MS.
X .08462 . 03514 X= 3.9137«Y-.0145B 315E-7
Y .02535 .0089c' Y= .25225*X+ .00400 203E-8
VARIABLE 1 P/PCI
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-34. Plot of BET equation versus relative pressure for
Converter A240/0007-A-LL1 (Powder)
B-35
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
.+ + + + + + + +
A240/0076 Uft-1
.+..Y.+
+..Y.+
042 .054 .066 .078
.048 .060 .072
N= 3
COR= .9997
MEAN
X .08462
Y .09402
ST.DEV. REGRESSION LINE
.03514 X= ,38857*Y+ .00107
.03954 Y= 1,1247*X-.00115
.090 .102 .114 .126
.096 .108 .120
163E-8
206E-8
VARIA8LE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-35. Plot of BET equation versus relative pressure for
Converter A240/0007-B-UR1
B-36
-------
PAGE 4 CONVIERTCT SURFACE AREA ANALYSIS A240/0007B UR-2
.1050
.0975
.0900
X/VM-X]
.0825
.0750
.0675
.OBOO
.0525
/
.042 .054 .088 .078 .090 .102 .114 .1!
.048
.080
N= 3
COR= .9951
.072 .084
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03514 X= 1.3492«Y-.02098 240E-7
Y .07827 .02592 Y= .73398»X+ .01616 131E-7
.096
.108
.120
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure B-36. P .ot of BET equation versus relative pressure for
Converter A240/0007-B-UR2
B-37
-------
1PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0270-A LL-1
+....+YX..+....+.
042 .054
N= 3
COR= .9873
MEAN
X .08483
Y .09083
.048
ST.DEV.
.080
.072
REGRESSION LINE
.03515 X= 1.3838»Y-.04078
.02508 Y= .70442*X+ .03101
.084
P/PO
RES.MS.
623E-7
317E-7
.090 .102 .114 .128
.098 .108 .120
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-37. Plot of BET equation versus relative pressure for
Converter A240/0270-A-LL1
B-38
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS 2240/Q270-A-LL (LL-2)
N= 3
COf*= .9939
042 .054 .088
.048 .060
.090 .103 .114 .126
.096 .108 .120
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 ,03514 X= 1,8608*Y-.01317 303E-7
Y .05255 .01877 Y= .53081 »X+ .007B3 883 E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-38. Plot of BET equation versus relative pressure for
Converter A240/0270-A-LL2
B-39
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0270-1-LL (LL-3)
+ + + + + + + + +.
+Y...+,
042 .054 .066
.048 .060
.078 .090 .102 .114 .126
.096 .108 .120
N= 2
COR= 1.000
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08351 .04962 X= 2.8177»Y-.04702 0.0000
Y .04888 .01898 Y= .38202*X+ .01796 0.0000
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure B-39. Plot of BET equation versus relative pressure for
Converter A240/0270-A-LL3
B-40
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A24Q/D27DA, LL-1 (100 HESH]
.042 ,,054 .006 .078
.048 .060
N= 3
COR= .9999
.072 .084
P/PO
.090 .102 .114 .126
.096 .108 .120
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08461 .03514 X= 2.0098"Y-.00915 563E-9
Y .04685 .01748 Y= ,49745*X+ .Q0456 139E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-40. Plot of BET equation versus relative pressure for
Converter A240/0270-A-LL1 (Powder)
B-41
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
A24Q/0270-B-UR UR-1
+...
N= 3
C0R= .9998
MEAN
X .08462
Y .07622
ST.DEV. REGRESSION LINE
.03514 X= 1.1453«Y-.00ES7
.03068 Y= ,87278*X+ .00237
P/PO
RES.MS.
102E-8
775E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-41. Plot of BET equation versus relative pressure for
Converter A240/0270-B-UR1
B-42
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A24Q/0270-B-UR Uft-2
,f....+....+.
.+ + + + t +.
N= 3
COR= .9950
MEAN
X .08462
Y .06249
Y,....+
042 .054 .066
.048 .060
.078
.072 .084
P/PO
.090 .102 .114 .121
.096 .108 .120
ST.DEV. REGRESSION LINE RES.MS.
.03514 X= 1.2998*Y+ .00339 246E-7
.02690 Y= .76170*X- .00196 144E-7
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-42. Plot of BET equation versus relative pressure for
Converter A240/0270-B-UR2
B-43
-------
PAGE 4 CONVERTS) SURFACE AREA ANALYSIS A254/0037A LL-1
. + . + + + +....+ + +.
N= 3
COF^ .9919
.ass .085 .075 .085 .095 .105 .115
.050 .060 .070 .080 .OSO .100 .110
P/PQ
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03484 X= 1.5055«Y-.03713 390E-7
Y .08100 .02296 Y= ,S9358*X> .02557 169E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL3*
Figure B-43. Plot of BET equation versus relative pressure for
Converter A254/0037-A-LL1
B-44
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
A254/0037-A (LL-2)
(~= 3
COfe> .9989
.055 .085 .075 .085 .099 .105 .115
.050 .060 .070 .080 .090 .100 .110
P/PO
MEAN
X ,08482
Y .05013
VARIABLE
ST.DEV. REGRESSION LINE RES.HS.
.03484 <= 1.6984*Y-315E-6 545E-8
.02049 Y= ,58747*X+ 297E-6 188E-8
1 P/PO
VERSUS VARIABLE 2 X/V
SYHB0L=X
Figure B-44. Plot of BET equation versus relative pressure for
Converter A254/0037-A-LL2
B-45
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A2S4/Q037A (LL-3)
.+ + + +
.084 +
N= 3
CORs .9884
.055 .085 .075 .085 .095 .105 .115
.050 .060 .070 .OS] .090 .100 .110
MEAN ST.DEV. REGRQSION LINE
X .08482 .03484 X= 1.5041*Y-.a0297
Y .03837 .02315 Y= .88398«X+ .00205
P/PO
RES.MS.
314E-8
1396-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-45. Plot of BET equation versus relative pressure for
Converter A254/0037-A-LL3
B-46
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS AS54/0037-A (LL~1)
.0500
N=» 4
COR= .9993
.0625 .0875 .1125 .1375 .1625 .1875 .2125
.0500 . 0731 .1000 .1250 .1500 .1750 .2000
P/PO
MEAN ST.OEV. REGRESSION LINE RES.MS.
X .11751 .07132 <= 1,793B*Y-.01359 111E-7
Y .07309 .03973 .556B8*X+ .00787 343E-0
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure B-46. Plot of BET equation versus relative pressure for
Converter A254/0037-A-LL1 (Powder)
B-47
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A254/0037-8 (UR-1]
_ + + + + + -*¦ *¦ *¦ + + *. * +
.070 +
N= 3
COB= .9998
MEAN
X .08482
Y .04902
.055 .085 .075 .085 .095 .105 .115
.050 .060 .070 .080 .090 .100 .110
P/PO
ST.DEV. REGRESSION LINE RES.MS.
.03484 X= 1.8950«Y+ .00173 762E-9
.02055 Y= ,58979*X- .00101 3B5E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-47. Plot of BET equation versus relative pressure for
Converter A254/0037-B-UR1
B-48
-------
PAGE 4 CONVERTS SURFACE AREA ANALYSIS A254/0037-8 (UR-2]
_4» . 4»_ . . + . 4. + . + 4- + + + . . 4» + .+ 4-
.070
.072
.088
.060
X/V(1-X]
.054
.048
.042
.038
.030
Na 3
COB= .9987
.058 .085 .075 .085 .085 .105 .115
.050 .(ISO .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. RE6RESS10N LINE RES.MS.
X .08482 .03484 X= 1.61B3»Y-.00504 126E-8
Y .05553 .02152 Y= .61783«X+ .00314 482E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOLS
Figure B-48. Plot of BET equation versus relative pressure for
Converter A254/0037-B-UR2
B-49
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A254/0191-A (LL-1)
+ + + + +.
N= 3
COR= .9980
.055 .065 .075 .035 .095 .105 .115
.050 .060 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08402 .03484 X= 2.2188»Y-.008S2 1SBE-7
Y .04207 .01564 Y= ,44706»X+ .00415 394E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure B-49. Plot of BET equation versus relative pressure for
Converter A254/0191-A-LL1
B-50
-------
PAGE
CONVEITTER SURFACE AREA ANALYSIS
A254 10181A LL-2
.066
.060
.055
X/V[1-X)
.050
.045
.040
.035
.030
N= 3
CO&a 1.000
.055 .085 .075 .OSS .095 .105 .115
.050 .060 .070 .080 .090 .100 .110
MEAN ST.DEV. REGRESSION LINE
X .08482 .03484 X= 1.9582*Y-.00723
Y .04898 .01778 Y= ,51040»X+ .00369
P/PO
RES.MS.
55E-9
14E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYK80L=X
Figure B-50. Plot of BET equation versus relative pressure for
Converter A254/0191-A-LL2
B-51
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A254/0191-A (LL-3)
•fc -fc 4> J. a, J. x 4. 4. ¦* -fc
.058
.052
.048
X/V(1-X)
.044
.040
.038
.032
.028
.055 .065 .075 .085 .095 .105 .115
.050 .060 .070 .080 .090 .100 .110
N= 3
COfr> .9998
MEAN
X .08481
Y .04134
VARIABLE
ST.DEV. REGRESSION LINE
.03484 X= 2.3359*Y-.0117B
.01481 Y= .42779»X+ .00508
P/PO
RES.MS.
173E-8
318E-9
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-51. Plot of BET equation versus relative pressure for
Converter A254/0191-LL3
B-52
-------
PA6E 4 CONVERTER SURFACE AREA ANALYSIS A254/0191-A [LL-1, 100 MESH)
.080
.081
.072
X/VM-X]
.083
.054
.045
.038
.037
N= 4
C0R= .8980
.0825 .0875 .1125 .1375 .1625 .1875 .2125
.0500 .11790 .1000 .1250 .1500 .1750 .2000
MEAN ST.OEV. REGRESSION LINE
X .11752 .07132 >= 2.84S1*Y-.02172
Y .05256 .02887 Y= .37588*X+ .00837
P/PO
RES.MS.
302E-7
429E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure B-52. Plot of BET equation versus relative pressure for
Converter A254/0191-A-LL1 (Powder)
B-53
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A254/0191B (UR-1)
M= 3
COR= .9990
.055 .085 .075 .085 .095 .105 .115
.050 .080 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03484 X= 1.8581*Y-.00521 678E-9
Y .04846 .01875 Y=> .53803»X+ .00288 198E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure B-53. Plot of BET equation versus relative pressure for
Converter A254/0191-B-UR1
B-54
-------
N= 3
COR= .9986
.055 .065 .075 .085 .095 .105 .115
.050 .080 .070 .080 .090 .100 .110
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03484 X= 3.0231«Y-.00224 19BE-8
Y .04303 .01721 Y= .48388*X+ .00114 479E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYKB0L=X
Figure B-54. Plot of BET equation versus relative pressure for
Converter A254/0191-B-UR2
B-55
-------
APPENDIX C
ELEMENTAL CONCENTRATIONS OF METALS AND POISONS
FOR REAR BISCUITS BY X-RAY FLUORESCENCE
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWF:I
DATE OF XRAY ANALYST:.: 04/30/87
SAMPLE TYPE: BRTC'UETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEOUEiMi' E iMO. : 1
':.AMPLE ID: A221 /O 1 i_L
ELEMENT
DE'IN L1M
r-iASb v;
j-'Z' I CM A
NA
D
. 20 I 577E -ol
, f) 4 j(
^ -
MO
. l y-'
4 . "f6 4':<"r''
i -
.J i>11°
AL
.228116E-01
20. W27
+-
1 . ",;+551-!-
SI
.730753E-02
3 7.7585
—
•I; 1
P
.J5874 3E-0 3
. 11501''
H—
. 'V'i'j j 37i-—0., '
.16524E-02
.147776
+ -
. 78:-":'74E-0:'
CL
X
.,:>36456E-0 3
164 22E-02
+ -
. '7l,-~'0 JS2E-0 :!
. 21 SO"5 3E-0 3
.221616E-01
+ -
. 1 14"-'5:3E-02
CA
. l754,:>4E-03
.242356
H—
.12254 2F-0 L
TI
. lSOl^SE-Oi
.110024
+ -
. 55,:>54E-02
V
. 4'3£078E-03
.248302E-02
H—
.54 3275E-0 3
CR
.107058E-02
.574011E-02
+ -
. 1 3':/2 38 E-0 2
MN
.487141E-03
.416485E-02
+ -
. 67232 3E-0
FE
.427653E-03
.368426
+ -
. 185,:j78E—0 1
CO
X
.302105E-03
. 248'-',:;'4E -0 3
-i—
. 28'-"'70 7E-0"!
NI
.252936E-03
.305474E-02
+ -
. 320243E-O 3
c u
.254 321E-03
. 34 15E-0 3
+ -
. I'5^'"' 36E—0 '
/IN
. 24411 '^E-O 3
. 24'r'725E-01
+ -
. ] :-:l272E-0J;
X
.253876E-0 3
637752E-U3
H—
. 2 >:o3l£-0 3
BR
X
.183108E-02
170802E-02
+ -
. 18 3 ~l6'-'E-0
SR
X
.416501E-02
1474 34E-02
-t—
. 4 1 66" ¦'6E-0,1
MO
X
.580382E—02
44001E-02
H—
. 580'r',08E - 02
CD
D
.188275E-0 3
. 5460 35E-i' 3
-1—
.3O7410E-0 J
SN
X
. 10755 3E-O1-
.S27267E-0 3
——
.104028E-0 2
SB
X
,504788E-0 3
64274,j£-05
i—
. a 71-", , =,k-I ) 3
PA
X
. 46,;>lS5E-0 3
. 3'r/1651E-0 3
I -
. 45T>7 j:r:E -0 3
CE
. 1 /'-'6 j7E-0j
.lo71OlE-Ol
+ -
, 20 ¦' 32.1"'£--0
PT
.6752^7E-03
. 41r-'372E-02
¦1—
, 7- i(>085E-0:'
HG
X
.70006E-0 3
-. 6':>04 35E-0 3
¦i—
. .'.V- :!4! "-0 3
PB
.707413E-0 3
.405042E-01
+ -
.220635E-0 2
TOTAL DETECTED BY XRF = 44.5613
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWRJ
DATE OF XRAY ANALYSIS: 04/30/37
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO". NONE
SAMPLE SEOlJENi E NO. : J
SAMPLE ID: A221/031 0-R-L.L
ELEMENT
DETN LIM
MASS ¦/:
2-SIGMA
NA
D
. 24355E-0 1
. ;'7046:::!~-i)t
+-
.32J454E-01
M6
.22:i:S57E-02
4.30155
-*•-
AL
.27IH51E-01
20.2535
H—
1,0!37
SI
.325424E-02
13.023 3
H
. c'0.i 1 ~;r-'
P
• 23J635E-*0 _•
. 65272,r''E-0i
H—
. 4U671 ie"-o.:
.IS]202E-02
.164057
+ -
.367205E-02
CL
X
.105726E-02
161345E-02
H—
. 11121 3E-0."-'
r
. 240956E-03
.230531E-01
+ —
.1200 34E-02
CA
. l*73*6E-0 3
. 7550'^E-O1
H—
. 3°21.)2 3E-02
TI
. 1597O6E-03
. 115*15
+ -
. 58c'542E-02
V
.545244E-03
. 227':)51E-02
H—
. 5734 77E-0
CR
. W^S'^E-OS
.522012E-02
+ —
.1305SE-02
MN
.51SSO^E-O3
. 71-5535E-02
+—
.3 3701E-03
FE
.447S21E-03
.343564
^—
. 1760'r'5E—01
CO
X
. 3131,=>lE-03
-. 129671E-03
+ -
. 2':'17 27E-0 ::
NI
.263355E-03
.220463E-02
+ —
. 304 ^"^E-0 3
CU
.257641E-03
. 116116E-02
H—
. 26260 3E-0
ZN
.245334E-0 3
.314127E-01
+ —
. 1 ¦,?.3054E—02
SE
X
.2Q6731E-03
247663E-02
H—
.2° 33 3E-03
BR
X
.247967E-02
-.658^1E-02
+ -
. 2501 'r-'5E-02
SR
X
.575535E-02
-.
H—
.57727E-02
MO
X
• 7y:-!t:17E-U2
—. 2 0236E—02
+ -
.73°0 3E-0 2
CD
X
.2113'-'7E-0 3
, 1 134 36E-U3
¦H-
. 3 225,:>5t:-0
SN
X
.12132SE-02
-. 48,r'36SE-03
+ -
. 1 1 251 '-E-0 2
SB
X
. 570'304E-0 3
141O'^^E—0 3
+ —
. r"i ~~ O i
BA
X
. 506 r'28E-0 3
. 238C/53E-0 3
¦+ —
. 4-'-!L"i36 1 E-O 3
CE
. r-n'->i7E-02
.21775 3E-01
H
. .:55! j I"-'E-0 .1
PT
X
.734 4-01 E-03
12475'r'E-02
+ -
.73 3046E-03
HG
X
.820311E-03
7,=>6048E-o2
H—
. 3 24 ».!-¦£ -0 -!
PB
.323066E-03
1 .2433 3
+ -
„062266
TOTAL DETECTED BY XRF = 45.2124
C-3
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWRI
DATE OF XRAY ANALYSIS: 04/30/37
'-•AMPLE TYPE: BRIQUETTE
SITE ID: M/rt
f*11 Si. ELLANEOUS INFij: NONE
SAMPLE SEUUENi.E Nu. : li'
SAMPLE ID: A230/OOO51 -B
ELEMENT
DETN L'ih
f A'-.C V.
2--S) i iMA
NA
. 2055°lL-i>t
. ixt -o i
H
2°5 235 £ -01
MG
. 001 35
4 . 1 ]
t --
, 2V. 7 4
AL
.231234E-oi
l''.3:::::7
-I---
¦
1.1
.7 34122E-02
J 3.4027
i...
. 3
P
.26240SE-0 3
. 3023 35E-t>l
H—
. 4-: '2 1 IE-0 2
s
.16745SE-02
. 1 'i22'">2
+ -
. 70,:>51/:.E-0 2
CL
X
. ,:>50765E-0 3
6 33776E-0 3
f-
. 10033E-O2
1
l
.216437E-03
.022252
. L
. 1 1 54^-02
CA
. 176364E-0 3
. 3'r'3373E-01
! -
. 4A 236,:;E -)2
TI
.143437E-03
. 116503
H—
. 5'"' 3 * 1E-02
V
.51224E-0 3
.26 3052E-02
+ -
. 55'-'5OSE-0 J
i R
. o704,:>2E-0 3
.563574E-02
+ -
. 1 31534E-02
MN
. 4'-'2134E-0 3
.155736E-01
H—
.124474E-02
FE
.4 32557E-0 3
.331433
H—
, 1Q24«V1 E-01
C 0
X
. 30 3°27E-0 3
. c>246'r''2E-04
H—
. 233 J 7 3E -0~:
NI
. 2476*^E-0 3
. 17'r'3'--'6E-02
H—
. 274,:'l 3E-0 3
CU
. 2533,:>7E-0 3
. 2,32,r''5,:jE-0 '
-1—
. 23"-"-'U 3E-0
7N
.250254E-0 3
.64611SE-01
+ -
. 323 32E-02
SE
X
.253036E-03
66334,->E—0 3
H—
. 240J1:
BR
X
.188014E-02
13635IE-02
+ -
. \ 33 7E-0 2
SR
X
.423264E-02
21573E-02
H
. 4 231"' 2 7E-0 '
MO
X
. 533':>':>E-02
4167^E-0 2
+ —
. 53'" 46OF-0 2
CD
X
. 1 'X^'^SE-O 3
442742F-04
+ -
. ?:::7 ISjy-O :
r.N
<
. 10,r'4c''5E-02
. 533,:'17F-0 3
4 -
. lO^'UVrr-Oj
SB
X
. 52i57 3 3E-0 3
. 6 7 3 364E-') 4
H
. 5>; I 1 '-'5r -O ;
13 A
.467232E-03
. 2251 24E-02
. 52 2,L"7E-0 3
CE
. 1:3 3 20 1E-0 2
.122344t-0t
I—
. : ;¦1 f.
FT
. /oS'^-i/o'^E-O3
. 4S36S7E-0 2
+ -
. ?21 E—0 -
HG
X
.71311SE-03
14c'141E-02
H—
. 666'-.4;::-0 3
PB
.71943E-03
. 126'-'' 14
+ -
. 1 64E-02
TOTAL DETECTED BY XRF = 44.34 2:1
C-4
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWRi
DATE OF XRAY ANALYSIS: 04/30/87
SAMPLE TYPE: BRIOUETTE
SITE ID: iM/A
MISCELLANEOUS INFO: NONE
SAMPLE SEOUENUE Nu. : 11
SAMPLE ID: A220/0400-B
ELEMENT
DETM LIM
MASS V.
2-SIGMA
NA
. 2o65':'<":5E-Ol
. 671 7 7 I
*• --
, 2C> ;:468E-0 1
MO
. l'^S'^E-OJ _
4, V-'f.A"
-h -
, 2 5 2
AL
.02 32^4
20. c'1
H—
L.04"36
SI
.74277E-02
17.':> 35'r/
+ —
.8"7752
P
> 26 1256E-03
.628733E-0L
^—
, J'-' 342"-'t "C 2
.167378E-02
.O34772E-01
+ -
. 523!-!0,:vi£-02
CL
X
. '=>4'->5S7E-03
224 375E-0 2
H—
. 100 224E-02
.21o317E-03
.700612E-01
H—
.35 3005E-02
CA
. 17O956E-03
.830352E-01
H—
. 4 23755E-02
TI
.16<)9 3E-03
.3633S4
H—
.182648E-01
V
.55O421E-03
. 5307''2E-02
H—
. 633777E-0 "J
CR
¦ "SOt'E-oj
.9^3665E-02
+ -
.155476E-02
MN
.47^581E-03
.476186E-02
i—
. 6'"',3823E-0 :i
FE
.424651E-03
. 348,r'4,:>
H—
. 3 76261E-01
C 0
X
.SOUl^SE-OS
.26313E-0 3
H
. 2° 1 (')/-,4E_0 J
NI
. 25':'071E-03
.552833E-02
H—
.420672E-03
CIJ
.260714E-03
. ,=>76886E-0 3
H—
.261576E-03
ZN
. 24°756E-0 3
.355787E-01
H—
.18 38*4E-02
SE
X
.268453E-03
147 185E-0 2
+ —
. OOo "'S6
BR
X
. l,r'3444E-02
-.271857E-02
H
. 1 '=> I-"81E-02
SR
X
.441203E-02
17 187,:>E-0 2
H—
. 441 4 i'"'E-02
MO
X
. 60'-663E-02
351426E-02
H—
. 610i>2°E-02
CD
X
. rr'
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWRl
DATE OF XRAY ANALYSIS: 04/30/87
SAMPLE TYPE: BRIOUETTE
¦MTE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 6
SAMPLE ID: A230/064^-B
ELEMENT
DETN LIM
hA'-o '/.
„.--S 1 OMA
NA
X
.226 321E-01
. 4145 1511-02
i—
. 3OJ0'-Ju.!:-
MG
.212052E-02
4 . 348 3
r -
¦ /.'-.5!:!
AL
.250857E-01
1 1
H --
j , '
i
.770482E-02
is. i6-?n
+ -
. ^0,:/42 3
p
. 26':)37'r<'E-03
. 375'r'82E-01
^—
. 2.':.44t IE —
.171S3SE-02
.128869
H—
. 6C'4037E-
CL
X
. C;7 jO'^'dE-OS
—. jJ600y7E—02
¦i—
. 102717£-
. 22115C/E-0 3
.6846 32E-01
H—
.345065E-
CA
.167548E-03
.80648 3E-01
H—
. 4 ] 6 y 01E -
TI
. 16.3828E—0 3
.375051
+ -
.188484E-
V
. 587353E-0.3
. 384,:>88E-02
H—
.66078C-0
CR
. lO^'SS^E-CC
.637283E-02
¦1—
.14 3616E-
MN
.535344E-03
.371275E-02
+¦ -
. 6'"'1471E-
FE
.570303E-03
. 82076
H—
.4123 3 ~yE-
CO
X
.34153IE—03
-.576 341E-04
H
. 3 2004&>e-
NI
.2S5544E-03
. 787Ocn E-02
H—
.5^ L 822E-
CU
D
.280466E-03
. 357'-'7E-0 3
-t--
.26°414E-
ZN
.274784E-03
. 144'r'7^E-01
+ —
. 816'r"~'3E-
SE
X
. 2,_/0537E—0 i
-. 1 26 Zj'^SE-O 2
+ »
. 2"74.:o IF —
BR
X
. 215534E-02
-.28475E-02
+ —
.21'.! I *7E-
SR
X
. 4,r',0 323E-02
146,5l,:,E-0 2
1—
. -i' '051 F-
MO
X
.668S65E-02
—. 211067E--<
H --
. 66'~'067E—
CD
X
. l'~5153E-03
23*7=,*£.->) 3
1 -
. 2 85 06 E ¦
'.-•N
X
. 10 354,r'lE-02
. 8822"~'2E-0
H—
. 10". 4 L '"'F.—
SB
X
.4°1484E—03
.206571E-03
+¦ -
. 47:.' :: :8'." -
BA
.51556E-03
. 312":v56E-0j
h -
. 5'"•"r 5 617 - )7 ,'2L- -
PB
. 7-57 367E-03
.221047E-01
+ —
,14 5 13E-0
TOTAL DETECTED BY XRF = 45.2*24
C-6
-------
RUN DESCRIPTION: AUCAT1 - AU TO CATALYST SWR1
DATE OF XRAV ANALYSIS: 04/H0/37
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 7
SAMPLE IDs A230/0734-B
ELEMENT
DETN LIM
MAsS */.
2-S1 Gt1A
NA
D
. 022°33
. 17367' 'H-0 1
_i_ _
.311 2
MG
.002155
4.71153
+ -
. 23*501
AL
. 02551
20. 11:::3
4 -
1 .' lOt'-M
SI
. 730'r'63E-02
IS.1027
"T"
.°06107
P
.271822E-03
.475028E-01
1—
. j 1 5737E-0
~i
.173412E-02
.104401
H—
.577548E-02
CL
X
.33762E-0 3
36273E-0 3
H
. 104 221E-0,.
\
.223024E-03
.656881E-01
+ —
.331241E-U2
CA
. 1 7<»431E-03
.371227E-01
H—
. 44">262E-02
TI
.1S4748E-03
.361345
+ -
. 181635E-01
V
.5 77676E-03
, 4'"'5521E-o2
H—
. 6° 1 5'"'E-0 3
CR
. l':)5,r',24E-02
.717465E-0 3
4—
.146351E-02
MN
. 5 7I.J663E-0 J
.333883E-0 2
H—
. 700' 1 E~01
FE
. 5i3337'=>E-03
.324106
+ —
.041404
C 0
X
.345105E-0 3
-.*1711 IE—04
H—
. 32 ::687E-0 I
NI
.284254E-0 3
.60700SE-02
-i—
.464714E-02
C U
. 2:3 301E-0 3
.162352E-02
H—
. J°76'-'4E-0
ZN
.27O222E-0 3
.174804E-01
+ —
. 1 ^'"'SE-OI
bE
X
. 2,->6517E-0 3
-.104772E-02
+ -
. :736S:jE-0:
BR
X
.2::'0714E-02
2'r/5 3'-' 3E-02
H—
.22 3 272E-02
SR
X
.5O1332E-02
-.145 333E-0 2
H- —
. 50 20 -0
MO
X
. 6::: 1655E-02
-. 176142E-U2
+ —
.68103IE-02
CD
X
. l'"'6804E-0 3
1 3707E-0 3
¦1- -
. '"¦> I131-0
SN
D
.1 21'r'4E-02
. 141045E-0 2
+ -
.11144F-02
SB
X
.545716E-0 3
6-57'-773E-0 3
+¦ -
. 4:3'-' 7C- -o
PA
.5:4422E-0 3
. 16241°E-0:'
H—
, 53'723e'F-0 J
CE
, 2<)44,::'2E-0 2
. '-"'7S7 1 ?
H—
. 4''y"4 >" -01
PT
.7721S5E-0 3
. 1061 '•>
+ —
. 547 301~~'E-0J.
HO
X
.7°7036E-0 3
516532F-0 3
•I--
. 748 -:t.'7E-0
PB
.8]5 326E-0 3
.537414E—02
+ -
. 8560 i c-E-0 3
TOTAL DETECTED BY XRF = 45.5351
C-7
-------
RUN
DES
CRIFT I ON: AUCAT 1
- AiJTO CATALYST
SUIR
I
DATE
OF
XRAY ANALYSIS:
04/30/37
SAMPLE
TYPE: BRIQUETTE
SITE
ID
: N/A
MI SC
ELLANEOU';. INFU: NONF
SAMPLE
iEC'UENi" E NU. : 3
SAMF
LE
ID: A24A/00'->:'-B
ELEMENT
DETN L1M
MASS
-¦=. J Gt-IA
i\IA
D
. 2 I 277tr.-v 1
,^74,.^ r—1
i- -
. 01
Mb
.2057SE-02
. 85567
v --
. 1-.665
AL
.252O83E-01
24. -'26
+- -
! - 2 L557
SI
. 7'7'6Qc'3E-02
15.4731
i -
. 774cr'6
P
.266171E-03
.024438
+•-
, 1 °4:34
. 170'r'55E-02
. 5612
-1—
. JS 36' '4E —01
CL
X
.*80033E-03
224615E-02
H—
.10327E-02
1
.222385E—0 3
.404 317E-01
-1—
. 1:05471E-02
CA
.170727E-03
,51**32E-01
H—
. 2 v 3682E-0
ri
. l£:6Q17E-0 3
. 3271 'r'6
H—
.164575F-01
V
D
.322607E-03
. 13 3'7' 1 3E-02
H—
. 80'-'51 E-0 ::
CR
. 122'50 3E-02
. 744 35.3E-02
+ -
.161623E-02
MN
. SSO^SE-O 3
.64812ME--U2
+ —
. 840854:1-0 i
FE
.4517*5E-0 3
.478732
+ -
. 241 .'Q'-'E-01
CO
X
. 3 30303E-0 3
152142E-04
+ -
.3111 3 3E-0 3
NI
.276412E—0 3
. 'r'514QE—02
+ -
. 60':'4 35E-0 3
CIJ
X
.272276E-0 3
44800IE-03
H—
. 25216E--0 3
ZN
.268121E-0 3
.364035E-02
+ —
.54 I 331E-03
SE
X
. 2337,:>3E-0 3
204556E-02
^—
.280412E-0 '¦
BR
X
.212171E-02
3074 31E-02
H—
. 2127:r":,E-02
SR
.486705E-02
. 17 3'r'54E-01
+ -
. 4'"y4/,4C -02
MO
X
. 66'r'253E-02
131534E-02
¦+¦ —
. 66':'404f-I-02
CD
A
. 1 '-'64 12E-0 3
444O5E-04
4- -
. 2°50:j:3C -0 3
SN
D
. 1 0457'r'E-02
.17 3806E-02
+ -
, 1 0.-."! 1 2Lr-02
SB
A
. 4861 3E-0 3
. 25,r'8'-"; 1 l:"-0 J
-h --
, 46' ':-'i 1.3.7 --0 .¦
BA
. 53 325'r'E-0 3
. 772'"'34
„ 3S7G-("H
i:e
X
.267478E-02
1 l'r't27E-0 I
H—
. 2 3«i15o8r:-o;
l:'T
.752513E-0 3
.171704
-1—
. :_:72 35 3E-'J2
HG
X
.77528SE-0 3
—. 1 '-"'2556E -02
{—
. 724 2 7 1E -0
PB
.794207E-03
.013471
H—
,12565E-0-J
TOTAL DETECTED BY XRF = 46.177 .
C-8
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWR1
DATE OF XRAY ANALYSIS: 04/30/87
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE: NO. : 4
SAMPLE ID: A2'4<)/Q007-B-LL
ELEMENT
DETN LIM
. MASS V.
2-SIGMA
NA
D
.21*351E-01
. 0487S *j
i—
. 30 34 24E-01
NG
. 20571 3E-02
4.24024
j—
.212*04
AL
.243757E-01
a. J /
-t—
1 . 1 j 20'-'
I
.73027E-02
16.6323
+-
.835123
P
. 266':,2E-0 3
.1012*5
H
.537673E-02
c
.170':'83E-02
.353777
H—
.182314E-01
CL
X
. *75S>18E-0 3
23*701£-02
.1O2814E-02
I
. 221Z-E—03
.356563E-01
4—
.131744E-02
CA
. 1794 75E—0-3
.705113E-01
-i—
.366247E-02
TI
. 174'-'01E-03
.364354
+ -
.13 3141E-01
V
.534541E-03
.4480*2E-02
H—
.6W0503E-0 3
CR
.107355E-02
.320*18E-02
+ -
.154314E-02
MN
.527627E-03
.*06032E-02
+ -
.*473°E-0 3
FE
.53012SE-03
.392247
H—
. 1*802'6E-01
CO
D
. 32532E-03
.497531E-03
H
. 3170 36E-0
NI
.285013E-03
.104*35
+ -
.5 3364*E-02
CU
D
. 27*615E-03
.502605E-0 3
H
. .27074E—0 3
.273167E-03
.512*65E-01
H—
. 2627l'"'E-02
SE
X
.284*15E-03
-.10 3216E-02
H
. 267* 15E-0 ~'
BR
X
.210212E-02
-.26506E-02
H
.2l06*3E-02
SR
X
.47307E-02
-.142122E-02
H—
. 47:;:26 3E-0 2
MO
X
.65137*E-02
14127*E-02
H—
. 6515 35E-02
CD
X
. l*52'5E-0 3
.15473*E-04
H—
. 2*5774l£-0 'J
¦_.N
X
.111237E-02
64*678E-0 "•!
4—
. 1 0.:Z.'6.':.E-02
SB
X
. 5 3673*E-0 3
546713E-0 :•
H
. 43470UE -0 "i
BA
.535037E-03
.27 3366E-U2
-1—
. 5*64..'•¦'E—O3
CE
.20 34 25E-02
¦ 7 rJ 1
1—
. 36
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWRl
DATE OF XRAY ANALYSIS: 04/30/87
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO. : 2
'"-.AMPLE IDs A240/0;.'70-B-LL
ELEMENT
DETN LIM
MAS'i
2-'"..] GMA
NA
D
.2 30214E-01
. ' -L-I--0 l
i- --
. 31 34 38E-C :
MG
. 21 561C/E-02
3. 333 73
¦t -
. 3 .-•¦"-'-7
AL
. 270'5,5 2E-01
2 7.2414
i--
:C'S
SI
. 352':>6 i e-02
33.7747
_i
^ ./..OvT'"/,/-,
P
.275394E-03
.217241
^—
, 11701 41-: O I
¦z.
.176854E-02
.298602
H
. ()153
CL
X
.101325E-02
-.21 25-33E-02
H—
. 1066 37E—0 ..
.2 30041E-03
. 3404'~>5E-01
¦+¦—
. 1 7 3':/ 31 E-02
CA
.184^14E-0 3
. '-"'52361E-0]
H—
- 4'-''01 :• hE -0
TI
.16S115E-03
.311425
+ —
. 3 SAt.'-ME-Ol
V
.587886E-03
.510342E-02
H—
. 706'' 3E-03
CR
.11304E-02
. 66448<>E-02
H—
. 14'-'536E-02
MN
.571213E-0 3
.224734E-01
H—
. 1640 38E-02
FE
. 5'3,:>731E-03
.371922
•i—
. 1?7--'73E--01
C 0
X
.346125E-0 3
.172 31*E-0 3
H—
. -0 :
Z
1—1
.307705E-0 3
.127741
-1—
. 6A7Sc>2E-02
CU
.301287E-0 3
.242361E-02
i—
. 3 S-J-O'-V4E~0 ¦'
ZN
. 2'r',008':>E-f-i 3
.714769E-01
-t —
. 36 372,,r;E-,'V
SE
X
.30 3748E-0 3
-. 1 3'3'-' 38E—0 2
H—
. 28704'''E-0 1
BR
X
.2 32545E-02
-. 32'-'76IE-02
h —
. 2 3 3 13E-02
SR
X
.530237E-02
-. irr'5 35E-o::
"i—
. 5 J.1 -0 j
MO
X
.721172E-02
. 6765Q,:>E -0 3
.721305E-02
CD
X
. 20232c''E-03
, '"'85276E-04
+ -
. 30'"' ':r:5F-C) :
'-•N
X
.11568E-02
-. 315768£-0 3
-1- -
. 10 782':;E-,"12
SB
X
.562513E-0 3
-. 44 j36':/E-0 j
¦(--
. 5 I i'44'" !r—0 i
BA
.52216E-0 3
„260602E-02
-I- —
. f:-;,'320E-V:
CE
.206732E-02
1 . 1 '=>48
¦i"—
, ,.-,i i - jSiil-O !
l:'T
. 7'r;5836E-0 3
. ,:)40623E-01
+ -
.43735E-02
HG
X
.317101E-0 3
-.111342E-02
. 7645'"'."'E-0 :
PB
.334755E-03
.140446
+ -
. 7J t.307E-02
TOTAL DETECTED BY XRF = 47.4411
C-10
-------
RUN DESCRIPTIONS AUCAT1 - AUTO CATALYST 5WRI
DATE OF XRAY ANALYSIS! 04/30/87
SAMPLE TYPE: BRIQUETTE
SITE ID: ,M/A
MISCELLANEOUS "NFO: NONE
SAMPLE SEOUENCE: NO.: 1
SAMPLE ID: A254/0037-B
ELEMENT
DETN LIM
MASS "/.
2-S1GMA
NA
D
.2 32126E-01
. 56° /6':,r/E-02
MN
.686156E-0 3
. 61651,:>E-0 J:
H—
. 3'-v7412E-0 ::
FE
.744595E-03
. 11449-5
H—
.5Q 3*56E-02
CO
D
.233578E-03
.303914E-0 3
H—
.2741£-03
NI
D
.23S765E-03
•704516E-0 3
+-
.23*135E-03
CU
X
.232364E-03
-. 57,:>264E-04
-f-—*
. 2137'™£-03
ZN
.229735E-03
.105716E-01
H—
.612 3 28E-03
SE
X
.244432E-03
rr'4256E-0'2
H
. 2 3-54^7E-0"!
BR
X
. 203331E-02'
-. 681 3C/2E-02
+ —
.20626E-02
SR
X
.463334E-02
82 3245E-02
^—
. 4A531 1E--02
MO
X
.6407 5E-02
-.212357E-0J
+ -
.64*571E-02
CD
D
.185502E-03
. 280545E-0"-!
H—
. :,r'07-;2E-0 3
'-•N
X
. 1061':.3E-02
-. 210c<"r''E-0 3
+ -
. -^'U^E-OS
SB
X
. 500*5 75E-03
440857E-0 3
H—
. 4543:-::5i; -0 3
DA
X
.747265E—03
6607*lE-0 3
H—
.6°1OS*E-U3
CE
. 335Qc.4E-02
.33077
H—
.4 J5405E-0]
1-'T
.631103E-0 3
.14*615
+ -
. .7604,r";VE-02
HG
X
. 6481i3,:}E-0 3
-. 20330'-5E-02
^—
. £,(.>44"E-0 3
PB
.667627E-03
.'"'4707E-02
H—
.8 35755E-0 3
TOTAL DETECTED UY XRF = 40.2321
C-ll
-------
RUN DESCRIPTION: AUCAT1 - AUTO CATALYST SWF;I
DATE OF XRAY ANALYSIS: 04/30/37
3AMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEOUENi. E NO. : ''
SAMPLE ID: A ,7 5 4/!)]'¦'] -B
ELE
MENT
DEZ7N L1M
MA'-.3 */.
-SIGMA
NA
Li
. J ?6185£-i>l
, 7,m -01
i- -
„ ::244,:)4E-0 I
MG
. 2lc'7c>E-02
J. .-:7741
i- -
. 1 i -'8 36
AL
-J60666E-U1
:i . 5 4'-'4
+¦--
i . i i7;:;4' i
I
. 77 334,:>E-02
12.550°
-
. 62851
P
. 248,:> 18E-C 3
. 311464£-t"' I
+—
. 1,..'4:J4 1 E-i) '
.160688E-02
. 08222
H—
. 45677" Ff-') 1
CL
X
. ,:>2872,:5E-0 3
221421E-02
+ —
. '-'7 777 JE-0
}
. 2106'7'7E-0 3
.4 32863E-01
H—
. 2l,7'3,7'-7'E-02
CA
.17076E-03
.051683
+ -
. 27 1 J r-7E-02
TI
•
. 27086E—0 3
.2 326
.117214E-01
V
X
.774827E-03
-.1128W8E-02
+ -
. 7 1480J3K-0 J
LR
.156335E-02
. 1586,:>4E-01*
. 2 2602':'E-02
MN
.707276E-0 3
.23845E-02
H—
.756 214E-0 :
FE
.77353E-03
.10747
+ -
. 55,r.'504E-02
CO
X
. 2':'3817E-03
-.54165 2E-04
+ —
. ^75,;/ 35E-0 :
NI
X
.244282E-0 3
.1135IE-03
H—
.2 32232E-0 3
CU
X
.2 3700 3E-0 3
. 31030'->E-04
+ —
. 2 3 386l£-0 3
ZN
.232074E-03
. ,r'7,r,'236E-02
+ —
. 5770'r' 1 E-03
SE
X
.244541E-03
1 78,:>41E-* >2
H—
. J^2 32E-0 :
BR
X
.207318E-02
-. 7246'=>3 E-O.J
+ —
. 2 J ;>504E-07
SR
X
.472368E-02
-. 'r' 1504E-02
+ -
. 47^.;.78E-02
MO
X
. 64c'25E-02
-.22126SE-01
H—
. 65.36S^r: -02
CD
X
.135612E-0 3
. 142C/,-'8E -0 3
H—
, .'35 3 :
'E.N
X
.105373E-02
707171E-03
. -V-.57' )7E-0 3
SB
X
. 4Q36':/ 3E-0 3
—, '-"'73856F—04
+ --
. 4.'..'.,:vlii-0 :
BA
X
.76784E-03
1648 34E-02
-h-
. 6':>5,",8.'-B--0 3
CE
.35 3422E-02
. in 3°6
1—
. .4.i
PT
. 642423E-03
.152587
+ -
. 775501 E-0 2
HG
X
. 6SO'56 3E-0 3
-.152 375E-02
-1—
. 6070 3 :il£-0
PB
.663348E-03
. 22062,:r-'E-01
—
.134083E-02
TOTAL DETECTED BY XRF = 40.071:1
C-12
-------
APPENDIX D
BET EQUATION VERSUS RELATIVE PRESSURE
FOR QUALITY ASSURANCE STANDARDS
-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS
4. 4. -fc
ZINC OXIDE 0.S2 + 0.04
t t + +.
.120 .150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.NS.
N= 4
COR3 .3994
X .12179 .07980 X= ,142B9*Y-.01097 120E-7
Y .97178 .55008 Y= 0.9994»X+ .11929 589E-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure D-l. Plot of BET equation versus relative pressure for
Zinc Oxide 0.62±0.04
D-l
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS - ALUMINA (0.780 M2/G)
,+ +
1.50
1.35
+..Y
1.20
1.05
X/V(1-X)
.300
.750
.300
.450
.300 Y
M= 4
CQR= .3984
.045 .075 .105
.063 .090
.135
.120 .150
P/PO
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12178 .07987 X= .17000»Y-.ai924 305E-7
Y .82955 .48792 Y= 5.8837*X+ .11548 .00105
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYK80L=X
Figure D-2. Plot of BET equation versus relative pressure for
Alpha Alumina 0.78 NBS
D-3
-------
.046 ,075 .105
.080 .090
.135
M= 4
cor= i.oao
MEAN
X .12178
r .42844
.120 .150
P/PO
ST.DEV. REGRESSION LINE RES.MS.
.07987 X= .32159*Y-.01600 249E-9
.24774 Y= 3.1095*X+ .04978 241E-8
.185 .195 .225
.180 .210 .240
VARIABLE 1 P/PO VERSUrf VARIABLE 2 X/V
SYMBOL=X
Figure D-3. Plot of BET equation versus relative pressure for
Alumina 1.39i0.12
D-4
-------
PAGE 4 CONVERTS! SURFACE AREA ANALYSIS ALUMINA PART. 3.04 + 0.25
.1750
.1625
.1500
X/V(1-X]
.1373
.1250
.1123
.1000
.0875
Y+....
.042 .054 .068
.040 .060
N= 3
COR=» .9979
MEAN ST.OEV. RECESSION LINE RES.MS.
X .08462 .03514 X= .74S54«Y-.01459 105E-7
Y .13308 .04704 Y= 1.3358»X+ .02008 187E-7
090 .102 .114 .126
.096 .108 .120
VARIABLE 1 P/P]
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure D-4. Plot of BET equation versus relative pressure for
Alumina 3.0410.25
D-5
-------
PAGE 4
.084 +
CONVERTER SURFACE AREA ANALYSIS TITANIUM DIOZIDE 7.05 * 0.7 M2/G
..+ + + +...+.
.078
.072
.066
X/V(1-X)
.080
.054.
.048
.042
.038
/
042 .054 .086 .078
.048 .080
N= 3
COR3 .3974
.072 .084
P/PO
.030 .102 .114 .1;
.098 .108 .120
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .08482 .03514 X= 1.8081«Y-.00884 128E-7
Y .05811 .02179 Y= .61881*X+ .00577 492E-0
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYHB0L=X
Figure D-5. Plot of BET equation versus relative pressure for
Titanium Dioxide 7.05±0.7
D-6
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS ALUMINA POWER 14.0 + .6
/
.045 .075 .105
.080 .090
N= 4
COR3 .9994
.135 .165 .195 .225
.180 .210 .240
.120 .150
P/PO
MEAN ST.DEV. RESRESSION LINE RES.MS.
X .12179 .07988 X= 3.2883*^-.01722 116E-7
Y .04253 .02437 Y=> .30S60«X+ .00531 108E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure D-6. Plot of BET equation versus relative pressure for
Alumina 14.0,10.6
D-7
-------
PAGE
.0135
.0030
CONVERTER SURFACE AREA ANALYSIS GRAPHITIZED CARBON BLACK 71.3 + 2.7
.+ + + + +
Y..+
.046 .075 .105 .135
.060 .090
N= 4
COF^ 1.000
.120 .150
P/PO
165 .195 .225
.130 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12178 .07987 X= 16.791»Y+ 509E-6 5B0E-9
Y .00722 .00474 Y= .05355"X-299E-7 21E-10
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure D-7. Plot of BET equation versus relative pressure for
Graphitized Carbon Black 71.3 NBS
D-8
-------
PAGE
C0HV1:HTER SURFACE AREA ANALYSIS ALUMINA PARTICLES (81.4 + 6.2 M2/G)
N= 4
COF*= .9999
MEAN
X .12177
Y .00872
.075 .105
.Q60 .090
ST.DEV. REGRESSION LINE
.07987 X= 19,036*^-.00819
.00410 Y= .0S252*X+ 327E-6
...+.
.165 .195 .225
.180 .210 .240
RES.MS.
192E-8
53E-10
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure D-8. Plot of BET equation versus relative pressure for
Alumina 81.416.2
D-9
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS ALUMINA PAHTICLES (2B5 + 11 fE/Gl
.+
.005
.005
.004
.004
X/V(1-X]
.003
.003
.002
.002
.001
N= 4
COR= .3997
.046 .075 .105
.OBO .090
.135
.120 .150
P/PO
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12179 .07988 X= 51.135»Y-.01Q14 8O2E-0
Y .00253 .00156 Y= .019S4«X+ 200E-Q 23E-10
VARIABLE 1 P/PO
VERSUS VARIA8LE 2 X/V
SYMBOLS
Figure D-9. Plot of BET equation versus relative pressure for
Alumina 265—11
D-10
-------
APPENDIX £
BET EQUATION VERSUS RELATIVE PRESSURE
FOR CORRELATION SAMPLES
-------
PAGE
CONVERTER 311W1 ACE AREA ANALYSIS
+....+ +
A221/0447-A B AND C
.1750
.1575
.1400
x/vh-x)
.1225
.1050
.0873 +
.0700
.0523
.043 .073 .105
.080 .090
N=> 4
GOR= 1.000
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12178 .07987 X= 1.3438*r-.00721 2036-9
Y .09558 .05902 Y= .74081«X+ .00334 112E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure E-l. Plot of BET Equation Versus Relative Pressure for
Converter A221/0447-A (Powder Sample)
-------
PAGE
CONVERT) ER SURFACE AREA ANALYSIS - A221/0447-3 B AND C
.+ + +¦ + + + +¦ + + + + +.
+..Y
.0350 +/
.048 .075 .105 .135
.080 .090 .120 .150
W= 4
COR= .3997 P/PQ
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12178 .07988 >= 1.3829«Y-.00833 588E-8
Y .09407 .05738 Y=> ,72287*X+ .00808 297E-8
+....+....+.
.185 .195 .225
.180 .210 .240
VARIA8LE 1 P/PQ
VERSUS VARIABLE 2 X/V
SYI-BOL=X
Figure E-2. Illot of BET Equation Versus Relative Pressure for
Converter A221/0447-B (Powder Sample)
E-3
-------
PAGE 4
CONVERTER SUfffACE AREA ANALYSIS-A220/'0810 - 1-A
n= 4
COft* .3982
P/PO
MEAN 3T.0EV. REGRESSION LINE BES.MS.
X .12178 .07987 X= 2.1B84«Y-.00790 342E-7
Y .03978 .03888 Y= .45831 .00384 725E-S
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure E-3. Plot of BET Equation Versus Relative Pressure for
Converter A220/0810-1-A (Powder Sample)
E-4
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS-A22Q/081C 1-8
.150 +
.139
.120
.105
X/VM-X)
.090
.075
.osa
.045
.030
.045 .075 .105
.080 .090
M= 4
CORs .3987
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12177 .07987 X= 1.8936«Y-.00117 2S0E-7
Y .07259 .04898 Y° .38890*X+ 8796-6 888E-8
+....+.... + .
.165 .195 .225
.180 .210 .240
VARIABLE 1 P/PO
VERSUS VARIA8LE 2 X/V
SYMBOLS
Figure E-4. Plot of BET Equation Versus Relative Pressure for
Converter A220/0810-1-B (Powder Sample)
E-5
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS-A23Q/0177X-A SAMPLE B
.0750
.0675
.0000
.0525
X/V(1-X)
.0450
.0375
.0300
.0225 +
.0150 +
Y
N= 4
COR= .3935
KEAN
X .12178
Y .03833
VARIABLE
.045 .075 .105 .133 .165 .195 .225
.080 . 090 .120 .150 .130 .210 .240
P/PO
ST.DEV. REGRESSION LINE RES.HS.
.07988 X= 3.4599*Y-.01082 102E-7
.02302 Y= .28872*X+ .00317 850E-9
1 P/PO VERSUS VARIABLE 2 X/V SYhfflOL^X
Figure E-5. Plot of BET Equation Versus Relative Pressure for
Converter A230/0177X-A (Powder Sample)
E-6
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS-A230/0177X-8 SAMPLE B
.090 +
,+
,04S .073 .105
.080 .080
Ms 4
COR* .9988
.168 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12178 .07987 X= 2.7S72»r-.Q0138 2S7E-7
Y .04488 .02888 Y= .38171*X+ 313E-8 337E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYVfflOL=X
Figure E-6. Plot of BET Equation Versus Relative Pressure for
Co.iverter A230/0177X-B (Powder Sample)
E-7
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
...+ + + + +
A155/0941-1-A SAWLE B
.045 .075 .105 .135 .165 .195
.080 .090 .120 .150 .180 .210 .240
W=> 4
COff .9977 P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X ,12177 .07987 X= 1.3907rr-.00850 434E-7
Y .09387 .05718 Y= .71581 «X+ .00851 223E-7
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V SYMBOLS
Figure E-7. Plot of BET Equation Versus Relative Pressure for
Converter A155/0941-1-A (Powder Sample)
E-8
-------
PAGE 4 CONVERT® SURFACE AREA ANALYSIS A155/0941-2-A SAMPLE 8
.~45 .073 .105
.080 .OSO
.165 .195 .225
.180 .210 .240
Ma 4
COR* .9998
MEAN ST.DEV. REGRESSION LINE RES.NS.
X .12179 .07908 X=» .53748»Y-.00B38 372E-8
Y .23848 .14823 Y= 1.3S9B«X+ .01198 129E-7
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
3Y(fflOL=X
Figure E-8. Plot of BET Equation Versus Relative Pressure for
Converter A155/0941-2-A (Powder Sample)
E-9
-------
CONVERTER SURFACE AREA ANALYSIS
A240/0141L-S 3 AM) C
.0373
.045 .075 .105
.060 .030
.133
.120 .150
P/PO
MEAN ST,DEV. REGRESSION LINE RES.MS.
.165 .195 .225
.180 .210 .240
Ha 4
CQRa .9991
X .12177 .07987 X= 2.Q347*Y-.OOS96 1B5E-7
Y .00387 .03312 Y= .48tJ61»X+ .00353 398E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL^*
Figure E-9. Plot of BET Equation Versus Relative Pressure for
Converter A240/0141L-B (Powder Sample)
E-10
-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS-A240/0334L-A SAMPI.E B & C
.Y.
.045 .075 .103
.080 .000
4
COR= .3995
.135 .165 .193 .225
.180 ' .210 .240
.120 .150
P/PO
HEAN ST.DEV. REGRESSION LINE RES.MS.
X .12178 .07987 X= 2.9101«Y+ .00137 981E-8
Y .04137 .02738 Y= .34328*X-430E-9 113E-9
VARIA8LE 1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure E-10. Plot q£ BET Equation Versus Relative Pressure for
Converter A240/0334L-A (Powder Sample)
E-ll
------- |