EPA-420-R-86-101
SOUTHWEST RESEARCH INSTITUTE
POST OFFICE DRAWER 28510 • 6220 CULEBRA ROAO • SAN ANTONIO, TEXAS, USA 78284 • (S12) 684-5111'TELEX 76-7357
September 29, 1986
TO:	Mr. Craig A. Harvey, Project Officer
Emission Control Technology Division
Environmental Protection Agency
2565 Plymouth Road
Ann Arbor, Michigan 48105
FROM: E. Robert Fanick and Charles T. Hare
Department of Emissions Research
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
SUB3ECT: Final Report for Work Assignment No. 20, Contract 68-03-3192,
"Catalyst Evaluation," SwRI Project 03-7774-020.
This Work Assignment has been intended to evaluate the condition of
catalysts and oxygen sensors removed from in-use vehicles. The catalysts and
oxygen sensors were removed from In-Use Technology Assessment program
vehicles by EPA. The converters represented monolith technologies and both
single and multiple beds. Catalysts used by several different manufacturers
were included in the evaluation, and they included both oxidation and/or three-
way catalyst types.
This letter report, along with the included data, is intended to be the final
report of the results from the catalyst and oxygen sensor evaluation testing. It
includes all the results from the "on-engine" evaluations (including converter
light-off times and converter efficiencies); and all results from the laboratory
analyses by whole converter x-ray, B.E.T. surface area, x-ray fluorescence,
proton induced x-ray emission (PIXE), x-ray diffraction, and scanning electron
microscopy (SEM). Twelve oxygen sensors (8 whole and 4 partial tips) were
evaluated for leakage rate, voltage output, sensor response time, cold light-off
time, B.E.T. surface area, and electron spectroscopy for chemical analysis
(ESCA) of exterior elements. Only a brief discussion of the analytical
procedure, and no discussion of the trends observed in the evaluation of each
catalyst, is included. A total of 42 converters (29 whole and 11 partial samples)
were examined. A list of the converters evaluated in the program is presented
in Table 1. Of the 42 converters, 9 were evaluated "on-engine" only, 7 received
laboratory analysis only, 7 were quality assurance samples for the laboratory, 2
were quality assurance for the engine, and 17 were examined using all of the
analytical procedures. A detailed description of the laboratory analytical
procedure is presented in the final reports for Work Assignments No. 10 and 17
of Contract 68-03-3162 (with the exception of PIXE and ESCA) and the
parameters for the "on-engine" evaluations are presented in Table 2.
SAN ANTONIO, TEXAS
WITH OFFICES IN HOUSTON TEXAS AND WASHINGTON 0 C

-------
2
TABLE 1. LIST OF CATALYSTS FOR EVALUATION
Converter or

Engine


Biscuit Number
Make
Family
Type of Catalyst
A3/1037-A
Ford
1.6AP/EAC
dual biscuit 3-way +
Ox
A81/0270-1
Ford
3.3GQ/EAC
single biscuit 3-way

A87/0479-2-A
Chrsyler
BCR1.7V2H31
dual biscuit Ox + Ox

A154/0392-A
Ford
CFM1.6V2GKC2
dual biscuit 3-way +
Ox
A155/0979-1 -A
Chrysler
CCR2.2V2HFL1
dual biscuit 3-way +
Ox
A160/0656-1
Ford
CFM3.3V1GXF9
single biscuit 3-way

A180/0094
Nissan
CNS2.8V5FAF4
single biscuit 3-way

A193/0908
Chrysler
DCR2.2V2HAC3
dual biscuit 3-way +
Ox
A214/0681-A
Ford
CFM5.0V2HDF8
dual biscuit 3-way +
Ox
A218/0045
Nissan
CNS2.8V5FAF1
single biscuit 3-way

A218/0045X
Nissan
CNS2.8V5FAF1
single biscuit 3-way

A218/0068
Nissan
CNS2.8V5FAF1
single biscuit 3-way

A220/0392
CM
D4G3.8V2NEA3
dual biscuit 3-way +
Ox
A220/0810
CM
D4G3.8V2NEA3
dual biscuit 3-way +
Ox
A221/0152
Chrysler
DCR2.2V2HAC3
dual biscuit 3-way +
Ox
A221/0198
Chrysler
DCR2.2V2HAC3
dual biscuit 3-way +
Ox
A221/0204
Chrysler
DCR2.2V2HAC3
dual biscuit 3-way +
Ox
A221/0310
Chrysler
DCR2.2V2HAC3
dual biscuit 3-way +
Ox
A221/0447
Chrysler
DCR2.2V2HAC3
dual biscuit 3-way +
Ox
A230/0177X
GM
D1G2.0V5XAJ4
dual biscuit 3-way +
3-way
A230/0636X
GM
D1G2.0V5XA34
dual biscuit 3-way +
3-way
A240/0016L
Ford
DFM1.6V2GDK6
dual biscuit 3-way +
Ox
A240/0102
Ford
DFM1.6V2GDK6
dual biscuit 3-way +
Ox
A240/0141L
Ford
DFM1.6V2GDK6
dual biscuit 3-way +
Ox
A240/0153
Ford
DFM1.6V2GDK6
dual biscuit 3-way +
Ox
A240/0334L
Ford
DFM1.6V2GDK6
dual biscuit 3-way +
Ox
A249/0169-1
Chrysler
DCR5.2V2HAP9
single biscuit 3-way

A249/0169-2
Chrysler
DCR5.2V2HAP9
single biscuit 3-way

A249/0169-3
Chrysler
DCR5.2V2HAP9
dual biscuit 3-way +
Ox
A249/0486-1
Chrysler
DCR5.2V2HAP9
single biscuit 3-way

A249/0486-2
Chrysler
DCR5.2V2HAP9
single biscuit 3-way

A249/04&6-3
Chrysler
DCR5.2V2HAP9
dual biscuit 3-way +
Ox
A254/0031
Toyota
DTY2.4V5FBB2
dual biscuit 3-way

A254/0037
T oyota
DTY2.4V5FBB2
dual biscuit 3-way

A254/0191
T oyota
DTY2.4V5FBB2
dual biscuit 3-way

A254/0275
T oyota
DTY2.4V5FBB2
dual biscuit 3-way

A280/0001L
Chrysler
ECR2.2V2HAC4
dual biscuit 3-way +
Ox
A155/0941-1
Chrysler
CCR2.2V2HFL1
dual biscuit 3-way +
Ox
A155/0941-2
Chrysler
CCR2.2V2HFL1
dual biscuit Ox + Ox

A207/0101
Chrysler
CCR1.7V2HBF7
triple biscuit 3-way
+ 3-way + Ox
A215/0201R
Ford
CFM5.OV5HEF0
dual biscuit 3-way +
Ox
EPA 1174R
GM
D1G2.8H2NNA9
dual biscuit 3-way +
OX

-------
3
TABLE 2. PARAMETERS FOR CONVERSION EFFICIENCY AND LIGHT-OFF TIMES
I. Light-Off times
1.	Engine speed = 1S00 + 20 rpm
2.	Purge catalyst before starting - cool to 100-110°F
3.	Exhaust flow rate through catalyst - Engine Family Displacement
4.	Air injected upstream
5.	Temperature of exhaust at catalyst face = 730 + 30°F
6.	Exhaust concentration settings
7. Sample for 600 seconds
II. Conversion Efficiency
1.	Engine speed = 1800 + 20 rpm
2.	Temperature of exhaust at catalyst face = 730 + 30°F
(controlled by engine load)
3.	Engine Exhaust Emission levels at 1^.7 A/F ratio: HC = 1500 + 200
ppm and NOx = 1600 + 200 ppm
4.	Exhaust flow rate through catalyst - Dependent on Engine Family
Displacement
5.	Air/Fuel ratio increments of 0.2 from 14.1 to 15.3
6.	Injected O2 - set at 10% dilution of exhaust (Carbon in _ [j)
5.0 + 0.1% 02
2.0 + 0.1% CO
Carbon out
a.	3-way (no air injected)
b.	3-way + Ox (air injected to Ox catalyst
III. Gaseous Emission Instrumentation
Inlet
HC FID
CO NDIR
NOx CI
o2
C02 NDIR
Gas Temp.
0-5000 ppm
0-3 and 0-6%
0-1000 and 0-2500 ppm
0-25%
0-6 and 0-16%
0-500°C Strip, -100 to +1595°F Digital
Outlet
HC
CO (low)
CO (high)
NOx
Gas Temp.
0-500, 0-100 and 0-5000 ppm
0-500 ppm
0-3 and 0-6%
0-1000 and 0-2500 ppm
0-500°C Strip, -100 to +1595°F Digital

-------
Number of Cylinders Required for "On-Engine" Evaluation
Converter Number Number of Cylinders
A193/0908	4
A220/0392	5
A220/0810	5
A221/0152	4
A221/0198	4
A221/0204	4
A221/0310	4
A221/0447	4
A230/0177X	3
A230/0636X	3
A240/0016L	3
A240/0102	3
A240/0141L	3
A240/0153	3
A240/0334L	3
A249/0169-1	4
A249/0169-2	4
A249/0169-3	8
A249/0486-1	4
A249/0486-2	4
A249/0486-3	8
A254/0031	4
A254/0037	4
A254/0191	4
A254/0275	4
A254/0001L	4
Engine Displacement by Cylinders
Cylinders Used	Engine size, liters (CID)
8	5.7 (350)
7	5.0 (305)
6	4.3 (262)
5	3.6 (220)
4	2.9 (177)
3	2.1 (128)
2	1.4 ( 85)

-------
5
I.	Converter Efficiency and Light-Off Times
Before testing each converter for converter efficiency and light-off
times, a whole converter x-ray radiograph was obtained. The radiographs
served three major purposes: 1) to determine internal structural damage from
overheating and external shock or impact, 2) shadowing due to the presence of
lead or other deposits, and 3) to assist in the opening of the container without
damaging the biscuits. In general, the radiographs did not provide a significant
amount of quantitative data. A negative image was obtained for each
radiograph, and there was less film exposure where the density of the material
was greatest. These negatives were transformed to positives for clarity, and
they are shown in Appendix A.
The converter efficiency data for hydrocarbons, carbon monoxide, and
oxides of nitrogen are summarized in Tables 3 through 5. The data for each
individual test are included as Appendix B. All converters were tested at
air/fuel ratios from 14.1 to 15.3 in 0.2 increments. Three-way only catalysts
were tested with no injected air, and three-way + Ox catalysts were tested with
the air injected to the oxidation catalyst. The injected air flow was set to
simulate a 10 percent dilution of the total exhaust flow.
After the converter efficiency tests were completed, each converter was
cooled by injecting air upstream of the converter with the exhaust bypassing
the converter. The exhaust concentration was then set to 2.0±0.1% CO and
5.0±0.1% 02' The oxygen concentration was obtained in the exhaust by
injecting air. A specially-designed diverter valve was activated to switch the
exhaust flow to the converter. The light-off times were monitored for each
converter and are presented in Tables 6 through 8. The data for the individual
tests are presented in Appendix B.
Converter A240/0204 was tested with the flow going in the opposite
direction from the converter design (i.e., oxidation biscuit as inlet and air going
to 3-way biscuit). The error was not discovered until after the converter had
been cut open. For this reason, the converter could not be retested with the
proper flow. It should be noted that even with the incorrect direction of
exhaust flow, the percent reductions for hydrocarbons and carbon monoxide
were only slightly lower than similar converters, and the percent reduction for
the oxides of nitrogen was about half. The light-off times were longer than all
of the other converters except A240/0102 and A193/0908, which were both
determined to be overheated. The data are included in the summary table and
Appendix B, but the emission results cannot be used for correlation with the
"on-vehicle" emission tests.
II.	Laboratory Analysis
The laboratory analysis of the catalyst samples consisted of whole
converter x-ray, BET surface area, x-ray fluorescence, PIXE, x-ray diffraction,
and SEM. The catalyst samples were examined as follows:
1. Only whole converters were examined by whole converter x-ray
radiographs.

-------
6
TABLE 3. STEADY-STATE CONVERTER EFFICIENCY SUMMARY
HYDROCARBONS
Converter


Percent Reduction at Nominal A/F Ratio
Number
Make
Type
14.1
14.3
14.5
14.7
14.9
15.1
15.3
A193/0908
Chrysler
DCR2.2V2HAC3
36.6
39.2
47.1
88.8
89.4
88.9
89.1
A220/0392
GM
D4G3.8V2NEA3
89.4
90.3
89.6
92.0
92.0
90.9
91.7
A220/08I0
GM
D4G3.8V2NEA3
87.4
87.5
87.1
90.0
88.4
87.5
85.7
A221/0152
Chrysler
DCR2.2V2HAC3
68.2
87.2
89.2
91.2
91.7
91.4
90.6
A221/0198
Chrysler
DCR2.2V2HAC3
73.3
67.4
90.0
90.0
91.4
91.8
91.7
A221/0204*
Chrysler
DCR2.2V2HAC3
66.6
65.5
65.8
75.0
87.5
89.6
90.4
A221/0310
Chrysler
DCR2.2V2HAC3
57.6
75.6
65.4
89.7
91.2
92.2
91.1
A221/0447
Chrysler
DCR2.2V2HAC3
90.3
90.7
91.2
91.2
90.8
91.7
92.3
A230/0I77X
GM
D1G2.0V5XAJ4
54.5
95.0
94.6
93.5
95.3
94.9
93.8
A230/0636X
GM
D1G2.0V5XAJ4
47.0
93.8
92.6
94.4
95.6
94.7
93.8
A240/0016L
Ford
DFM1.6V2GDK6
81.9
89.5
92.0
92.8
92.0
91.8
93.0
A240/0102
Ford
DFM1.6V2GDK6
27.6
27.1
25.4
24.5
32.0
36.1
42.4
A240/0141L
Ford
DFM1.6V2GDK6
83.1
85.7
87.3
89.5
88.0
87.2
87.8
A240/0153
Ford
DFM1.6V2GDK6
77.6
86.6
87.9
89.1
90.0
88.6
88.9
A240/0334L
Ford
DFM1.6V2GDK6
75.7
90.2
92.6
94.0
93.5
92.7
93.8
A249/0169-1
Chrysler
DCR5.2V2HAP9
51.8
89.0
91.4
90.9
90.0
89.6
88.7
A249/0169-2
Chrysler
DCR5.2V2HAP9
42.1
75.7
86.2
85.7
86.2
87.9
85.2
A249/0169-3
Chrysler
DCR5.2V2HAP9
63.6
76.2
86.5
91.2
90.6
88.9
89.1
A249/0486-1
Chrysler
DCR5.2V2HAP9
51.0
71.8
81.3
82.8
84.8
83.9
82.1
A249/0486-2
Chrysler
DCR5.2V2HAP9
44.4
64.7
82.5
82.8
84.0
82.8
82.1
A249/0486-3
Chrysler
DCR5.2V2HAP9
84.7
92.2
91.8
92.6
92.6
90.0
90.3
A254/0031
T oyota
DTY2.4V5FBB2
95.2
80.5
94.9
97.1
97.0
96.0
96.2
A254/0037
Toyota
DTY2.4V5FBB2
46.2
94.0
96.5
97.4
95.7
94.9
94.8
A254/0191
T oyota
DTY2.4V5FBB2
96.5
80.2
97.2
97.1
95.4
95.7
95.4
A254/0275
Toyota
DTY2.4V5FBB2
73.7
98.7
95.8
96.1
97.0
95.0
55.2
A280/000IL
Chrysler
ECR2.2V2HAC4
66.0
66.3
62.8
88.0
88.4
90.6
90.3
* Tested with exhaust flow in opposite direction from converter design

-------
7
TABLE 4. STEADY-STATE CONVERTER EFFICIENCY SUMMARY
CARBON MONOXIDE
Converter


Percent Reduction at Nominal A/F Ratio
Number
Make
Type
14.1
14.3
14.5
14.7
14.9
15.1
15.3
A193/0908
Chrysler
DCR2.2V2HAC3
34.3
37.4
44.1
98.0
98.8
99.4
99.6
A220/0392
CM
D4G3.8V2NEA3
98.3
98.2
99.0
99.6
99.5
99.6
99.4
A220/0810
GM
D4G3.8V2NEA3
94.3
98.2
99.0
98.8
99.5
99.6
99.5
A221/0152
Chrysler
DCR2.2V2HAC3
81.3
94.8
98.2
98.6
99.4
99.5
99.4
A221/0198
Chrysler
DCR2.2V2HAC3
84.6
83.6
94.1
93.3
98.6
98.2
99.4
A221/0204*
Chrysler
DCR2.2V2HAC3
84.1
82.9
84.6
90.5
96.2
99.0
98.9
A221/0310
Chrysler
DCR2.2V2HAC3
82.8
92.2
88.5
96.9
98.7
96.7
98.2
A221/0447
Chrysler
DCR2.2V2HAC3
95.0
98.4
98.9
99.7
99.6
99.5
99.4
A230/0177X
GM
D1G2.0V5XAJ4
51.3
96.1
99.6
99.3
99.4
99.4
99.3
A230/0636X
GM
D1G2.0V5XAJ4
44.2
99.0
99.5
99.5
99.5
99.3
99.3
A240/0016L
Ford
DFM1.6V2GDK6
94.3
99.4
99.6
99.5
99.4
99.4
99.3
A240/0102
Ford
DFM1.6V2GDK6
19.0
18.5
13.1
23.5
30.8
42.9
56.0
A240/0141L
Ford
DFM1.6V2GDK6
93.1
98.8
99.2
99.2
98.9
99.1
98.8
A240/0153
Ford
DFM1.6V2GDK6
91.4
98.8
98.7
99.2
99.2
99.3
99.5
A240/0334L
Ford
DFM1.6V2GDK6
90.1
99.3
99.5
99.6
99.5
99.3
98.9
A249/0169-1
Chrysler
DCR5.2V2HAP9
42.4
95.4
94.0
98.0
98.6
98.3
98.2
A249/0169-2
Chrysler
DCR5.2V2HAP9
29.3
58.0
87.6
85.4
92.2
95.0
98.9
A249/0169-3
Chrysler
DCR5.2V2HAP9
76.2
81.0
91.4
93.2
95.0
95.2
94.3
A249/0486-1
Chrysler
DCR5.2V2HAP9
42.5
62.1
79.5
93.9
94.0
97.3
96.7
A249/0486-2
Chrysler
DCR5.2V2HAP9
44.3
57.7
91.8
93.7
96.6
93.8
94.7
A249/0486-3
Chrysler
DCR5.2V2HAP9
84.1
93.5
91.6
94.6
97.4
96.4
99.1
A254/0031
Toyota
DTY2.4V5FBB2
89.4
55.6
86.7
99.8
99.7
99.7
99.6
A254/0037
Toyota
DTY2.4V5FBB2
42.5
81.8
99.8
99.8
99.7
99.6
99.6
A254/0191
Toyota
DTY2.4V5FBB2
87.9
57.1
99.8
99.8
99.7
99.7
99.7
A254/0275
Toyota
DTY2.4V5FBB2
49.6
99.3
99.8
99.9
99.7
99.7
99.8
A280/000IL
Chrysler
ECR2.2V2HAC4
86.9
87.9
85.9
96.7
97.9
98.6
98.4
~Tested with exhaust How in opposite direction from converter design

-------
s
TABLE 5. STEADY-STATE CONVERTER EFFICIENCY SUMMARY
OXIDES OF NITROGEN
Converter	Percent Reduction at Nominal A/F Ratio
Number
Make
Type
14.1
14.3
14.5
14.7
14.9
15.1
15.3
A193/0908
Chrysler
DCR2.2V2HAC3
29.1
29.7
33.4
40.0
35.2
25.6
23.4
A220/0392
GM
D4G3.8V2NEA3
57.4
63.8
56.6
38.8
36.1
35.9
34.0
A220/0810
GM
D4G3.8V2NEA3
32.9
36.5
38.9
41.4
33.4
26.1
28.0
A221/0152
Chrysler
DCR2.2V2HAC3
41.2
64.3
53.0
34.5
25.4
16.7
14.0
A221/0198
Chrysler
DCR2.2V2HAC3
28.2
22.9
55.8
57.6
33.9
33.4
25.5
A221/0204*
Chrysler
DCR2.2V2HAC3
13.5
13.3
14.4
19.3
23.4
20.4
15.9
A221/0310
Chrysler
DCR2.2V2HAC3
19.8
37.7
37.6
37.5
31.0
35.9
25.0
A221/0447
Chrysler
DCR2.2V2HAC3
43.9
34.1
22.0
16.0
13.3
13.3
12.7
A230/0177X
GM
D1G2.0V5XAJ4
78.8
92.9
57.1
23.3
14.5
13.2
14.8
A230/0636X
GM
D1G2.0V5XA34
78.1
98.5
60.5
33.4
16.8
12.9
15.0
A240/0016L
Ford
DFM1.6V2GDK6
73.6
85.7
77.9
51.0
33.9
28.2
29.0
A240/0102
Ford
DFM1.6V2GDK6
24.3
23.2
22.9
22.6
22.1
21.7
20.4
A240/0141L
Ford
DFM1.6V2GDK6
62.0
68.4
50.0
30.3
28.7
22.1
20.0
A240/0153
Ford
DFM1.6V2GDK6
65.0
60.2
73.1
46.8
34.5
25.6
22.1
A240/0334L
Ford
DFM1.6V2GDK6
88.1
88.5
57.4
35.5
29.3
22.8
19.6
A249/0169-1
Chrysler
DCR5.2C2HAP9
91.0
69.8
43.6
18.5
11.1
11.5
8.3
A249/0169-2
Chrysler
DCR5.2C2HAP9
89.4
89.5
76.8
39.7
25.8
18.9
11.7
A249/0169-3
Chrysler
DCR5.2C2HAP9
45.4
69.0
58.0
38.2
27.0
20.9
17.9
A249/0486-1
Chrysler
DCR5.2C2HAP9
85.9
84.3
68.7
26.6
18.5
17.8
13.3
A249/0486-2
Chrysler
DCR5.2C2HAP9
83.3
84.6
41.6
25.4
21.9
19.5
13.8
A249/0486-3
Chrysler
DCR5.2C2HAP9
82.9
74.4
77.5
64.4
45.3
33.4
27.6
A254/0031
Toyota
DTY2.4V5FBB2
96.1
97.1
99.1
57.7
40.2
20.9
11.2
A254/0037
Toyota
DTY2.4V5FBB2
92.0
99.1
44.8
60.2
41.0
19.2
10.2
A254/0191
Toyota
DTY2.4V5FBB2
95.0
99.0
48.0
52.8
18.4
17.7
10.0
A254/0275
Toyota
DTY2.4V5FBB2
97.4
87.4
57.9
26.1
39.3
14.6
14.4
A280/0001L
Chrysler
ECR2.2V2HAC4
20.4
19.3
17.9
33.2
24.6
20.2
18.2
*Tested with exhaust flow in opposite direction from converter design

-------
9
TABLE 6. SUMMARY OF LIGHT-OFF TIMES FOR CONVERTER RESPONSE
HYDROCARBONS
Time to Reach %
Converter


Reduction,
sec.
% Reduction After
Number
Make
Type
20
50
80
205 sec
600 sec
A193/0908
Chrysler
DCR2.2V2HAC3
87
108
132
86.7
86.7
A220/0392
GM
D4G3.8V2NEA3
36
47
68
91.2
90.3
A220/0810
GM
D4G3.8V2NEA3
41
56
338
84.4
89.7
A221/0152
Chrysler
DCR2.2V2HAC3
84
96
131
87.0
88.0
A221/0198
Chrysler
DCR2.2V2HAC3
71
86
121
86.8
89.1
A221/0204*
Chrysler
DCR2.2V2HAC3
86
113
182
85.0
88.3
A221/0310
Chrysler
DCR2.2V2HAC3
68
80
96
87.8
88.4
A221/0447
Chrysler
DCR2.2V2HAC3
25
38
63
90.6
90.3
A230/0177X
GM
D1G2.0V5XAJ4
20
24
42
93.0
93.1
A230/0636X
GM
D1G2.0V5XAJ4
16
28
43
91.1
91.4
A240/0016L
Ford
DFM1.6V2GDK6
31
38
50
88.3
88.7
A240/0102
Ford
DFM1.6V2GDK6
141
172
NA
69.7
75.7
A240/0141L
Ford
DFM1.6V2GDK6
33
43
64
85.7
87.1
A240/0153
Ford
DFM1.6V2GDK6
28
48
70
89.9
90.9
A240/0334L
Ford
DFM1.6V2GDK6
33
39
50
89.8
90.3
A249/0169-1
Chrysler
DCR5.2V2HAP9
22
30
67
80.0
83.0
A249/0169-2
Chrysler
DCR5.2V2HAP9
42
55
NA
74.6
77.3
A249/0169-3
Chrysler
DCR5.2V2HAP9
20
28
54
88.1
89.0
A249/0486-1
Chrysler
DCR5.2V2HAP9
22
43
NA
62.5
73.0
A249/0486-2
Chrysler
DCR5.2V2HAP9
28
46
128
81.1
83.0
A249/0486-3
Chrysler
DCR5.2V2HAP9
18
30
46
93.3
92.0
A254/0031
Toyota
DTY2.4V5FBB2
27
32
45
94.3
95.4
A254/0037
Toyota
DTY2.4V5FBB2
34
40
54
93.5
94.7
A254/0191
Toyota
DTY2.4V5FBB2
27
34
48
94.8
94.7
A254/0275
Toyota
DTY2.4V5FBB2
22
36
51
95.5
96.2
A280/0001L
Chrysler
ECR2.2V2HAC4
57
72
110
89.6
89.1
~Tested with exhaust flow in opposite direction from converter design

-------
10
TABLE 7. SUMMARY OF LIGHT-OFF TIMES FOR CONVERTER RESPONSE
CARBON MONOXIDE
Time to Reach %
Converter


Reduction,
sec.
% Reduction After
Number
Make
Type
20
50
80
205 sec
600 sec
A193/0908
Chrysler
DCR2.2V2HAC3
90
105
123
99.0
99.0
A220/0392
GM
D4G3.8V2NEA3
34
42
58
99.8
99.9
A220/0810
GM
D3G3.8V2NEA3
45
50
54
99.9
99.9
A221/0152
Chrysler
DCR2.2V2HAC3
77
86
102
99.0
99.5
A221/0198
Chrysler
DCR2.2V2HAC3
66
76
92
99.7
99.9
A221/0204*
Chrysler
DCR2.2V2HAC3
82
100
130
99.0
99.5
A221/0310
Chrysler
DCR2.2V2HAC3
65
74
82
99.5
99.6
A221/0447
Chrysler
DCR2.2V2HAC3
20
29
42
99.6
99.5
A230/0177X
GM
D2G2.0V5XA34
16
20
28
99.9
99.9
A230/0636X
GM
D2G2.0V5XAJ4
26
32
38
99.9
99.9
A240/00I6L
Ford
DFM1.6V2GDK6
28
42
48
99.9
99.9
A240/0102
Ford
DFM1.6V2GDK6
117
156
182
94.5
98.6
A240/0141L
Ford
DFM1.6V2GDK6
30
40
46
99.8
100
Mm/0153
Ford
DFM1.6V2GDK6
35
44
55
99.8
99.9
A240/0334L
Ford
DFM1.6V2GDK6
35
40
48
99.8
99.9
A249/0169-1
Chrysler
DCR5.2V2HAP9
20
25
35
96.5
96.5
A249/0169-2
Chrysler
DCR5.2V2HAP9
38
45
60
94.9
94.3
A249/0169-3
Chrysler
DCR5.2V2HAP9
18
26
40
99.6
99.8
A249/0486-1
Chrysler
DCR5.2V2HAP9
22
30
47
94.4
94.4
A249/0486-2
Chrysler
DCR5.2V2HAP9
30
40
55
95.4
96.0
A249/0486-3
Chrysler
DCR5.2V2HAP9
16
26
35
99.8
99.9
A254/0031
Toyota
DTY2.4V5FBB2
25
30
39
99.9
99.9
A254/0037
Toyota
DTY2.4V5FBB2
32
38
49
99.9
99.9
A254/0191
T oyota
DTY2.4V5FBB2
29
34
48
99.9
99.9
A254/0275
Toyota
DTY2.4V5FBB2
21
32
46
99.9
99.9
A280/0001L
Chrysler
ECR2.2V2HAC4
57
78
93
98.5
99.0
~Tested with exhaust flow in opposite direction from converter design

-------
11
TABLE 8. SUMMARY OF LIGHT-OFF TIMES FOR CONVERTER RESPONSE
OXIDES OF NITROGEN
Time to Reach %
Converter


Reduction,
sec.
% Reduction After
Number
Make
Type
20
50
80
205 sec
600 sec
A193/0908
Chrysler
DCR2.2V2HAC3
NA
NA
NA
2.6
3.4
A220/0392
GM
D4G3.8V2NEA3
ND
ND
ND
ND
ND
A220/0810
GM
D4G3.8V2NEA3
NA
NA
NA
6.8
1.4
A221/0152
Chrysler
DCR2.2V2HAC3
82
NA
NA
6.0
1.2
A22I/0198
Chrysler
DCR2.2V2HAC3
60
NA
NA
7.5
5.3
A221/0204*
Chrysler
DCR2.2V2HAC3
NA
NA
NA
10.3
5.0
A221/0310
Chrysler
DCR2.2V2HAC3
70
NA
NA
4.2
4.4
A221/0447
Chrysler
DCR2.2V2HAC3
NA
NA
NA
2.2
0.4
A230/0177X
GM
D1G2.0V5XA:J4
18
NA
NA
8.3
7.5
A230/0636X
GM
D1G2.0V5XAJ4
NA
NA
NA
5.1
3.3
A240/0016L
Ford
DFM1.6V2GDK6
24
NA
NA
8.5
6.8
A240/0102
Ford
DFM1.6V2GDK6
NA
NA
NA
9.7
7.0
A240/0141L
Ford
DFM1.6V2GDK6
26
NA
NA
8.8
7.1
A240/0153
Ford
DFM1.6V2GDK6
29
NA
NA
10.7
7.6
A240/0334L
Ford
DFM1.6V2GDK6
40
NA
NA
5.9
4.0
A249/0169-1
Chrysler
DCR5.2V2HAP9
NA
NA
NA
0.5
0.9
A249/0169-2
Chrysler
DCR5.2V2HAP9
35
NA
NA
8.7
4.0
A249/0169-3
Chrysler
DCR5.2V2HAP9
NA
NA
NA
6.9
3.6
A249/0486-1
Chrysler
DCR5.2V2HAP9
26
NA
NA
5.3
2.5
A249/0486-2
Chrysler
DCR5.2V2HAP9
27
NA
NA
6.4
5.4
A249/0486-3
Chrysler
DCR5.2V2HAP9
NA
NA
NA
1.7
0.6
A254/0031
Toyota
DTY2.4V5FBB2
24
NA
NA
2.2
3.7
A254/0037
T oyota
DTY2.4V5FBB2
30
NA
NA
6.7
4.0
A254/0191
Toyota
DTY2.4V5FBB2
28
NA
NA
3.3
3.5
A254/0275
Toyota
DTY2.4V5FBB2
30
NA
NA
3.8
0.9
A280/0001L
Chrysler
ECR2.2V2HAC4
NA
NA
NA
6.8
7.5
NA - Not Achieved
ND - Not Determined
~Tested with exhaust flow in opposite direction from converter design

-------
12
2.	The whole converters were weighed with and without any heat
shields, photographed, and then carefully cut to expose the catalyst
material. All catalyst samples were visually inspected, weighed,
and photographed. Photographs of the front face of each biscuit
were taken.
3.	The sectioning procedure for monolith catalyst samples is shown in
Figure 1.
a.	Each biscuit was cut in half along a row of cells from the front
face to the rear face.
b.	Two strips were then cut from the entire length of the center
of the biscuit. These samples were the bulk samples for x-ray
diffraction and surface area.
c.	The two halves were then cut in half again to form quarters.
Opposite quarters were ground to 400 mesh to prepare samples
for x-ray fluorescence and PIXE.
d.	From the upstream quarter, about one half inch of the entire
front face was removed. This sample was cut into small cubes
to prepare samples for x-ray diffraction, surface area, and
SEM. The remainder was ground to 400 mesh for PIXE.
e.	About one half inch of the entire rear face was removed from
the downstream quarter to prepare samples for surface area
and SEM. Small cubes were cut for each of these samples.
The remainder was ground to 400 mesh for PIXE.
f.	A total of ten samples were taken from the upstream biscuit
and five from the downstream biscuit. The sample
identification code is presented in Table 9; and a detailed
description of the sample selection and preparation criteria is
shown in Table 10. Partial biscuits for laboratory analysis only
were treated in a similar manner.
For the purpose of identifying the converters analyzed in this program,
each converter was designated with the seven or eight digit EPA identification
code. In the event of a dual-converter vehicle (example A155/0941), the
converters were also identified -1 and -2 after the EPA identification code.
The upstream converter was labeled "-1," and the downstream converter "-2."
In the case of the A249 class converters, one of the three-way converters was
labeled "-1" and the other was labeled "-2." The downstream three-way + Ox
converter was labeled "-3." Once the converters were opened, the upstream
biscuit was labeled "A," and the downstream biscuit was labeled "B." The term
"biscuit" is used to refer to each individual piece of ceramic honeycomb
material in a converter.
The weights of the various samples were determined in several stages.
All of the whole converters were weighed whole (both with and without the heat
shield if present), and each biscuit was weighed after opening. All of the

-------
13
Section G, Rear Face
surface area, PIXE,
and SEM samples,
(one half inch long)
Section F, Bulk
Surface Area
Sample
Section E, Front Face
surface area, PIXE,
and SEM samples,
(one half inch long)
Section A, Bulk
X-ray Diffraction Sample
(runs length of catalyst
like surface area sample)
Section D> Front Face
X-ray Diffraction Sample
(one-half inch long)
Sections B and C are combined and ground to a powder for
elemental analysis
Figure 1. Sectioning Procedure for Monolith Catalyst Samples

-------
TABLE 9. SUMMARY OF SAMPLE IDENTIFICATION CODE
Front	Front	Second
Test
Procedures5
Substrate Substrate Substrate Monolith
Front	Rear	Front	Bulk
Face	Face	Face Sample*3
BET
Surface
Area
E
G
E
F
X-Ray
Diffraction
(conversion
of gamma- to
alpha-alumina)
D
A
Proton Induced
X-Ray Emission
H
C
(total noble
metal and
poison con-
centrations)
Scanning Electron
Microscopy,	E	G
Dot-Mapping, and
the SEM-EDX Spectrum
X-Ray Fluorescence	C
aLetters indicate sample identification for analysis from Figure 1.
^One bulk sample shall be taken from each biscuit in each can.

-------
TABLE 10. DETAILED SAMPLE SELECTION AND PREPARATION CRITERIA FOR VARIOUS
ANALYTICAL PROCEDURES
Number of Sample
Section3
Sample*5
Front
Biscuit
Rear
Biscuit
Location
Type
Size
Analysis
A
A
1
1
Bulk
whole length (strip)
l/4"xl/4"x length
X-ray Diffraction
B&C
C
2
2
Bulk
ground to ^00 mesh
10 g
P1XE and XRF
D
D
1
0
Front Face
cube
l/tf"xl/4"xl/2"
X-ray Diffraction
E
E
2
1
Front Face
cube
I/V'xi/4"xl/2"
Surface Area ic SEM
F
F
1
1
Bulk
whole length (strip)
l/Vxl/Vx length
Surface Area
G
G
2C
0
Rear Face
cube
lA,,xlM"xl/2"
Surface Area &; SEM
E
H
1
0
Front Face
ground to ^00 mesh
entire front 1/2"
PIXE
G
I
1
0
Rear Face
ground to ^00 mesh
entire rear 1/2"
PIXE
aSection refers to section on Figure 1
^Sample letters indicate sample identification for analysis
cSampIe to be conducted on selected samples (A218/0CM5X, A220/0392, A221/04^7,
A230/0177X, A2W/0016L, and A2«*9/0169-l)
V-n

-------
16
partial samples were weighed, but these weights are only a determination of the
amount of sample received. In order to do additional calculations on these
converters, the weights of the biscuits before the samples were taken must be
known or estimated. All of the weights are presented in Table 11.
The specific surface areas of the whole length for each biscuit were
measured with a Micromeritics Flowsorb II dynamic surface area analyzer using
the multipoint analysis technique. This analysis was conducted "in-house"
during this Work Assignment. The advantages for "in-house" analysis include a
stricter control of the analytical procedures, ease of repeating questionable
samples, and assurance that the analysis is performed on a sample that
represents the entire length of the biscuit. Losses in surface area are due to
thermal degradation and/or plugging of the sub-microscopic pores with metals
and other deposits. A loss in the active surface area results in the reduction of
contact between exhaust gases and the catalyst material. A low surface area
generally indicates converter overheating. Conversely, a normal surface area
does not necessarily indicate a normal catalyst, because the deposits can
increase the apparent surface area while covering the surface and preventing
contact with the exhaust gases. The specific surface areas are presented in
Table 12. The plots for the BET equation versus the relative pressure for each
converter are included in Appendix C.
X-ray diffraction analysis of the samples was used to determine the
crystal structure of the alumina. Gamma-alumina and several other very
similar alumina structures are the original crystal structures used in the
alumina washcoat. When a catalyst containing these types of alumina is
overheated (temperatures greater than 1000°C), the crystal structure changes
to the alpha-alumina form. This conversion in crystal structure can trap the
active metals and change the active surface area of the catalyst. The Debye-
Scherrer powder x-ray diffraction technique was used to determine the alumina
crystal structure. This technique is well suited for the analysis of monolith
catalysts because of the small quantities of sample required. In the case of
monolith catalysts, the alumina is deposited as a thin wash-coat on the surface
of the ceramic substrate. The alumina can be scraped off carefully and
analyzed. The x-rays are diffracted by the various crystalline compounds
within the sample. Each crystalline compound has a characteristic diffraction
pattern. Amorphous compounds do not result in a diffraction pattern. These
patterns are compared to known compounds in a Powder Data File for
identification. Table 13 lists the alumina crystal structure of each sample and
any other crystalline compounds observed in the samples.
A section of the front face portion of each converter was examined with
an SEM at 500X, 2500X, and 5000X magnification. A spectrum was recorded at
2500X. The surface concentrations of silicon, phosphorous, sulfur, lead,
calcium, and manganese were normalized to aluminum and presented in Table
1*J. At 5000X magnification, dot maps of aluminum, silicon, phosphorous,
sulfur, zinc and lead were taken and included in Appendix D with individual
spectra. In the cases where the concentration of the element was less than
twice the background, no dot map was taken.
One sample from the rear face of a representative catalyst for six of the
engine families was taken for comparison purposes with the SEM and dot
mapping. The specific catalyst was selected on the basis of three criteria:

-------
17
TABLE 11. CONVERTER WEIGHTS
	Whole Converters, lbs	
Converter	With Heat Without 	Biscuit Weights, g
Number	Shield Heat Shield Upstream (A) Downstream (B)
A16Q/0656-1
—
—
528.6^
—
A180/0094
—
—
NDa
—
A193/0908
—
9.41
1074.2
427.8
A214/0681-A
—
—
373.8b
—
A218/0045
—
—
388.0
—
A218/0045X
—
—
405.1
—
A218/0068
—
—
370.0
—
A220/0392
11.42
10.38
923.0
608.1
A220/0810
11.85
10.86
901.7
628.3
A221/0152
9.96
9.50
1071.5
452.6
A221/0198
~
9.65


A221/0204
—
9.70
1143.7
480.9
A221/0310
—
9.53


A221/0447
—
9.68
1095.0
472.7
A230/0177X
—
9.47
801.2
655.6
A230/0636X
11.37
9.53
799.5
648.3
A240/0016L
—
8.20
353.9
512.9
A240/0102
—
8.27
393.5
537.2
A240/0141L
9.71
8.13
392.1
504.6
A240/0153
—
8.26
428.0
550.8
A240/0334L
9.78
8.23
399.8
580.5
A24 9/0169-1
—
6.57
804.6
—
A249/0169-2
—
7.14
832.0
—
A249/0169-3
—
12.41
740.9
1366.3
A249/0486-1
—
6.60


A249/0486-2
—
6.78


A249/0486-3
—
12.59


A254/0031
—
12.82


A254/0037
—
9.65


A254/0191
—
11.58


A254/0275
—
9.66


A280/0001L
9.69
9.21
1120.5
443.1
A155/0941-1
11.00c
10.52c
ND
ND
A155/0941-2
7.19C
5.7 ic
ND
ND
A207/0101
11.69C
11.09c
ND
ND
aNo Data
^Partial sample, total biscuit weight not available
cConverter weights obtained in Work Assignment 31, Contract 68-03-3162

-------
18
TABLE 12. CATALYST SPECIFIC SURFACE AREA

Specific, m^/g


Front
Rear



Face
Face
Bulk
Total for
Biscuit Number

-------
19
TABLE 12 (CONPD). CATALYST SPECIFIC SURFACE AREA
Specific, m^/g
Biscuit Number
Front
Face
(E)
Rear
Face
(G)
Bulk
(F)
Total for
Bulk Sample,
A240/0153-A
26.6
8.4
20.1
8,600
A240/0153-B
13.7
—
13.6
7,500
A240/0334L-A
22.9
19.4
19.9
8,000
A240/0334L-B
18.8
—
8.6
5,000
A249/0169-1
7.8
10.2
6.8
5,500
A249/0169-2
13.4
8.9
2.2
1,800
A249/0169-3-A
7.9
6.6
4.8
3,600
A249/0169-3-B
3.8
—
1.5
2,000
A280/0001L-A
7.5
9.2
5.1
5,700
A280/0001L-B
18.8
—
7.0
3,100
A155/0941-1-A
7.6
6.0
3.6
4,500b
A155/0941-1-B
8.8
—
6.9
4,100b
A155/0941-2-A
4.4
6.5
3.1
1,500b
A155/0941-2-B
7.3
—
4.1
2,100b
A207/0101-A
5.2
9.4
6.2
3,900c
A207/0101-B
7.8
—
2.7
2,000c
A207/0101-C
11.0
—
2.1
1,300c
aPartial biscuit, no total weight available
bTotal surface area based on biscuit weights of converter A155/0926.
cTotal surface area based on biscuit weights of converter average
of A207/0025 and A207/0054.

-------
Biscuit Number
A180/0094
A193/09Q8-A
A193/0908-B
A218/0045
A218/0045X
A218/0068
A220/0392-A
A220/0392-B
A220/0810-A
A220/0810-B
A221/0152-A
A22L/0152-B
A221/Q204-A
A221/0204-B
TABLE 13. ALUMINA CRYSTAL STRUCTURE
	Alumina Crystal Structure
Bulk Sample
Front Face
mostly Y/9 alumina and/or spinel cubic Ni or
MgAl20
o

-------
TABLE 13 (CONPD). ALUMINA CRYSTAL STRUCTURE
	Alumina Crystal Structure	
Biscuit Number
A240/0334L-A
A240/0334L-B
A249/0169-1
A24-9/0169-2
A249/0169-3-A
A249/0169-3-B
A280/0001L-A
A280/0016L-B
A155/0941-1-A
A155/Q941-1-B
A155/0941-2-A
A155/0941-2-B
A207/0101-A
A207/0101-B
A207/0I01-C
Bulk Sample
Front Face
mostly Y alumina and/or spinel cubic Ni or MgA^Cty
with NiO and Ce02
mostly a with some 0 alumina and Ce02
mostly 8 alumina
mostly 9 alumina and possible CeC»2
mostly Y alumina with CeC>2
mostly a alumina with trace of Y/0 alumina
mostly 0 alumina with Ce02 and possible Spinel
MgA^O^
mostly Y/0 alumina with possible Spinel MgA^O^
mostly Y/0 alumina with CeC>2
mostly Y/6 alumina
mostly Y/0 alumina
mostly Y/0 alumina
mostly Y/0 alumina with AlPO^ and Ce02
mostly Y/0 alumina
mostly Y/0 alumina with possible CeC>2
mostly Y alumina NiO and possible CeC>2, Ni or
MgA10(j. arid AlPO^
mostly 0 alumina with AlPO^ and possible Ce<>2
mostly 9 alumina with CeC>2 and possible unknown
phosphates
mostly Y alumina with CeC>2 and PbSO^
mostly Y/0 alumina with CeC>2 and possible AlPO^ or
other unknown phosphates
mostly Y/0 alumina with AlPO^ and CeC>2
mostly Y/0 alumina with Fe2C>3 and possible FePO^
and AIPO4
mostly Y/0 alumina with CeC>2

-------
Bistuit Number
A221/0W-A
A22l/(m7-B
A230/0I77X-A
A230/0177X-B
A230/0636X-A
A230/0636X-B
A240/0016L-A
A2^0/0016L-B
A2W/0102-A
A2^0/0102-B
A2i»0/01<*1L-A
A240/01^1L-B
A240/0153-A
TABLE 13 (CONT'D). ALUMINA CRYSTAL STRUCTURE
	Alumina Crystal Structure	
Bulk Sample
Front Face
mostly 9 alumina with Ce02
mostly 0 alumina with possible PbSO^
mostly Y /0 alumina with CeC>2 or ZnS
mostly Y /8 alumina with CeC>2
mostly Y /0 alumina with AlPO^
mostly Y/0 alumina with CeC>2
mostly Y alumina with NiO and possible CeC>2 or ZnS
and spinel cubic Ni or MgA^O^
mostly Y alumina with CeC>2 or ZnS and possible Ni
or MgA^O^
mostly a alumina and trace of Y/0 alumina with
Mullite (Al6Si20i3), NiO, AlPO^ spinel cubic Ni or
or MgA^Otj and possible Ce02 or ZnS
mostly a alumina with Mullite (AlgS^O^), Spinel
(MgA^Ofj), and possible Ce02 or ZnS
mostly Y/0 alumina with NiO and possible spinel
cubic Ni or Mg A^O^-aijd Ce02 or ZnS
mostly Y/0 alumina with Ce02
mostly Y alumina and/or spinel cubic Ni or MgA^Oif
with NiO and Ce02 or ZnS and possible trace of AlPO^
mostly 0 alumina with Ce02
mostly Y/0 alumina with AlPO^
mostly Y/0 alumina with AlPO^
mostly Y alumina with possible Ce02 and A1PO*, or
other unknown phosphates
trace of Y/0 alumina with spinel cubic Ni or Mg
AI2O4, NiO, AlPO^ and possible trace of Ce02
mostly Y/0 alumina with NiO
mostly Y alumina and Ce02
Is)
A240/0153-B
mostly Y alumina and possible trace of AIPO4

-------
23
TABLE 1*. SURFACE ATOMIC RATIO OF ELEMENTS NORMALIZED
TO ALUMINUM
Normalized Atomic Ratios
Sample Number
P
S
Ca
Mn
Pb
Si
A180/0094
17.40
0.21
3.61
1.24
82.64
0.25
A193/0908
3.09
2.80
0.54
0.36
1.55
2.84
A218/0045
15.06
2.04
4.08
0.91
42.56
2.26
A218/0045X
11.44
15.65
2.48
0.75
34.38
10.17
A218/0045X*
0.20
0.01
0.04
—
0.09
0.02
A218/0068
49.54
2.89
11.04
1.23
155.73
3.42
A220/0392
3.34
2.09
0.77
0.08
5.17
2.23
A220/0392*
0.12
0.02
0.01
—
0.03
0.02
A220/0810
11.45
0.68
2.95
0.10
8.15
0.80
A221/0152
10.90
24.96
2.58
5.20
19.51
24.36
A221/0204
12.6^
1.55
2.41
0.24
14.88
1.94
A221/0447
2.08
3.01
0.28
0.12
13.07
3.22
A221/0447*
0.03
0.04
0.003
—
0.02
0.06
A230/0177X
0.56
0.37
0.09
0.05
0.27
0.42
A230/0177X*
0.05
0.03
0.01
—
0.02
0.05
A230/0636X
1.68
0.23
0.23
0.08
3.09
0.27
A240/0016L
2.40
0.61
0.35
—
8.58
0.72
A240/0016L*
0.45
1.00
0.04
—
0.87
0.12
A240/0102
3.47
1.20
1.01
0.08
3.42
1.33
A240/0141L
6.12
37.62
0.85
4.03
6.20
30.63
A240/0152
1.71
0.10
0.13
0.27
1.15
0.11
A240/0334L
0.74
0.41
0.03
0.03
1.46
0.45
A249/0169-1
1.48
0.58
0.08
0.05
1.08
0.54
A249/0169-1*
0.05
0.01
0.01
—
0.04
0.02
A249/0169-2
1.76
4.04
0.10
0.12
1.83
3.56
A249/0169-3
1.29
0.41
0.87
—
14.60
0.56
A280/0001L
9.04
2.19
2.27
1.68
3.60
2.49
A155/0941-1
2.64
0.60
0.67
0.51
0.70
0.64
A155/0941-2
0.72
0.52
0.21
0.07
2.26
0.62
A207/0101
0.35
0.07
0.01
0.07
0.03
0.08
*Rear Face of A biscuit for comparison within each engine family

-------
24
1.	condition of the converter as observed with the whole converter
x-ray
2.	visual integrity of the biscuits upon removal from the container
(i.e., no melting, plugging, or excess discoloration)
3.	results of the converter efficiency and light-off times
These criteria were used because the results from the surface area, P1XE, x-ray
fluorescence, and x-ray diffraction were not available before the samples had
to be submitted for SEM analysis. The best samples for each of the six engine
families selected on the basis of these criteria were:
A218/0C)45X A220/0392 A221/0447
A230/0177X A240/0016L A249/0169-1
The six rear face samples were submitted for SEM at three magnifications
(500X, 2500X, 500OX), normalized surface concentrations for Si, P, S, Pb, Ca,
and Mn, and dot mapping at 5000X. These data are also included in Table 14
and Appendix D.
Proton induced x-ray emission (PIXE) was used to determine the
concentrations of noble metals and the accumulation of poisons. The elements
of concern were phosphorus (P), sulfur (S), calcium (Ca), manganese (Mn), zinc
(Zn), lead (Pb), platinum (Pt), palladium (Pd), rhodium (Rh), and nickel (Ni). The
elements P, S, Ca, Mn, Zn, and Pb are poisons or contaminants. They are
derived from engine wear, dirt deposits, oil, fuel, and other sources. The noble
metals are Pt, Pd, and Rh, and they perform the function of "cleaning up" the
exhaust. Nickel was found in some converters, and is reportedly present to
enhance the catalytic activity. Aluminum and silicon are major constituents of
the support material and were not quantitatively determined. The weight
percentages of each element are included in Table 15. Where the concentration
of an element was at the detection limit of the analytical procedure, the word
"trace" was used, and an asterisk (*) was used to identify those elements with
concentrations below the detection limit.
In addition to PIXE, a sample from the bulk of each biscuit was analyzed
by x-ray fluorescence. This technique uses x-rays as the incident radiation
rather than protons to cause the characteristic x-rays to fluoresce for each
element. This was the technique used in all previous work assignments. This
analysis was included as a means of comparing the two analytical techniques
and as a comparison to previous work assignments. The correlation between the
two procedures will be discussed in a subsequent section. The data are
summarized in Table 16 and the individual results are included in Appendix E.
in. Oxygen Sensor Evaluation
In addition to catalyst evaluation, oxygen sensors were also examined in
this work assignment. A total of 12 oxygen sensors were evaluated in this
program (8 "on-engine" and 4 partial tips plus one reference for laboratory
analysis). A list of oxygen sensors evaluated is presented in Table 17, and a list
of evaluations and test parameters is included in Table 18. All "on-engine"
tests were compared to a new Ford sensor, which served as a reference.

-------
TABLE 15. ELEMENTAL ANALYSIS OF NOBLE METALS AND POISONS BY P1XE
Biscuit	Sample 	Ve Ight Pe reent
.Huiber

Local; Ion

p


s


Ca
hn


HI

In
Eh

Pd


Pt

pb



Cithers



A10Q/OC94

Bulk

0,
54*0,
DJ

ih

0.
U10.01
0.021ft.
002
J.
5610.

0, IJlO.DOJ
fl,1310.01

£ trac
:e
D,
591:0. 01
0,
5G±0.
,01
Kg,
M.
SI.
K.
Tl,
Fe,
Ce



Fran t
Face
I.
24±0.
05

ft

0.
21*0.01
0.0410.
002
4.
3J±0.
04
O-.6U0.O1
o.orto.-oi

*

0.
3410.01
1.
ftiiO.
02

M.
SI.
*¦
11,
Fe ,
Ce



El-ear
Face
0.
Q710.
02
a.
LJ±0.
01

1Q+CLQ1
O.Olltt.
cot
4.
ma.
05
(MttKKOQL
0. imojrt

trace
a.
17-0*01
0.

003
Na,
Kfev

tl

> k*
Tl *
Fe,
A193/090S-
A
Bulk

1h
i5B±0,
,05
0.
15iQ.
02
0.
2010.01
0.0310.
001
0,
02±0,
,0004
0.2710.003
0.0310.003



o.
.2410.003
0.
1610.
.002
H&,
Al,
£11
K,
riT
Fe ,
Ce



Front
Face
3.
7410.
,07

ft

0.
3010.01
0.0910.
002
0,
0210,
.001
0.8210.01
0.0210.003

*

0.
.1810.003
0.
6510.
.01
Hg,
A1,
51,
K,
n.
Fe,
Ce



Rear
Face
0.
3910.
,03
0.
L910.
02
0.
1910.01
O.QliO.
001
0,
02±0.
.005
0.1710-002
0.0210.003



o.
.2210.003
0.
0410.
.001
Ha,
Hg,
M,
51
, Jt,
Tl,
Fe,
Ce
A19 3/G908-
¦B
Bulk

0,
1910.
.02
0.
1910.
02
0.
1510.0L
0.0110.
0003
0.
OHO.
.0001
0.1510.001
*
0.
3&10*
01
o.
.0110.0004
0.
1710.
.002
Ha,
Mg.
Al,
SI
- K,
Ti,
Fe,
Ce
A216^0045

Bulk.

a.
J0±0.
,03
0.
2310.
02
0.
1010.01
trace
6.
0410.
.06
0.0810.002
0.1110.01

t race
o.
.4510.01
0.
1710.
.01
Na,
Mg.
Mh
SI
. K,
Ti ,
Fe,
Ce


Fro-nt
Face
2.
1010.
,06

•

0.
2510.01
0.0210.
002
3,
66±0.
,04
0.6710.01
0.0610.01

*

o.
,2810.01
1.
2 310.
.02
Hg,
Al,
£1.
K,
ti,
Fe,
Ce



Rear
Face
0.
1510.
,03
0.
1810.
02
0.
1310.01
0.0110.
001
4.
6L10.
,05
0.0810-02
0.0710.01

trace
o.
,3410.01
0.
1010.
.003
Ha,
Mg.
,M,
SI
, K.,
Tl,
Fe,
Ce
A213/Q045X
Bulk

0H
< 63±0.
,04

*

0.
0810.01
trace
5,
0710,
,05
0.1010.002
0.09+0.01

*

o.
.4110.01
0.
3310.
.01
Na,
Mg.
Al,
SI
* Kh
Tl,
Fe,
Ce


Front
Face
2.
9210.
,07

ft

0.
2710.01
0.0210.
002
3.
5310.
,04
1.0210.01
0.0710.01

*

o.
,2910.01
2.
3210.
.03
Mg,
Al,
>1.
K,
Tih
Fe,
Ce



Rear
Face
0.
2510,
04
0.
1710.
02
0,
1210.01
trace
3.
15±0,
,03
0.0710.001
0.0710.01



o.
,2510.004
0.
1010.
.002
Na,
Mg,
Al.
SI
. ^
Tip
Fe,
Ce
A21S/0068

Bulk

0.
4810,
,03

ft

0.
1110.01
0.0110.
002
6.
5310,
,07
0.1910.003
0.0810.01

*

a.
,5110.01
0.
6810.
.01
Mg,
Al,

K,

Fe,
Ce



Front
Face
1.
38+0,
,04

*

0.
1710.01
0.0110.
001
2,
3010,
,02
0.4510-01
0.0310.01

trace
o.
,1810.003
1.
3710,
.02
Ma,
Al,
5 ii

ri v
Fe,
Ce



Rea r
Face
0,
.1810,
.02
0.
241Q,
,02
0.
.07+0.01
trace
4,
,7510,
.05
0.0510.001
0.0710.01

trace
0
.3810.01
0,
.1110
.003
Na,
MB.
Al,
SI
. KP
Tl,
Fe,
Ce
A2 20/0392-
¦A
bulk

1,
.4010.
.05
0.
6010.
.03
0.
.1010,01
*

5.
,1410.
.05
0.1910.003
0.0410.01
0.
12±0.
01
0
.1010.003
0.
2210.
.01
Mg,
Al,
si.
Kp
Tl,
Fe ,
Ba,
Ce


Front
Face
2,
.9210.
.07
0.
4510.
,03
0.
.2010.01
0.0210.
,002
3,
,9710,
.04
0.6010.01
0.03*0*01
0.
09*0.
01
o,
.0710.004
0.
6410,
.01
Hg«
Al.
si,
K.
T1,
Fe ,
Ba,
Ce


Rear
Face
0,
.2110,
.03
0.
7210,
,03
0.
,0410.01
*

4.
.2710,
.04
0.0410-001
0.0410,01
0.
1010.
01
0
.1010.003
0.
0410,
.002
Na,
Mg,
Al,
SI
, K,
Tl,
Fe,
Ba,
A2 20/0392-
-B
Bulk

u,
.1210,
.79
0.
7910.
.03
0,
.1010.01
ft

0.
.0210.
.003
0.08*0.001
*
0.
1510,
,004
0
.3910.004
0.
0510,
.001
»b.
Al,
si,
K,
Tl,
Fe,
Ce

A220/0810-
¦A
Bulk

2,
,00±0.
. Q&
0.
,46±0.
.02
0.
.2510.01
o.ono.
.002
3,
,93+0
.04
0.6110.01
0.04*0.01
0.
1210.
,01
0-
.1010,004
0.
.3810
.01
Mg,
Al,
si.

Tl,
Fe,
Ba,
Ce


Front
Face
4.
.7710,
.09

*

0.
.6110.02
0.0210.
.002
3.
,9410
.04
2.1510*02
trace
0.
0810.
01
0.
.0810.004
1.
2510
.02
Mg,
Al,
si,
K,
Tl,
Fe,
Ba,
Ce


Rear
Face
0.
. 6810.
.04
0.
,9310.
.03
0,
,29*0.01
*

4.
.4210.
.05
0.4510.01
0.03±0.01
0.
11±0.
01
0
. LI10,004
0.
1310
.004
Kg,
Al,
51,
K,
Tl,
Fe,
Ba,
Ce
A220/0810-
-B
Bulk

0.
. 5910
.04
0.
.9910.
.03
0.
.2110.01
0.0110,
.0003
0.
,0110
.0002
0.2010.002
*
0.
1210.
,004
0
.3210.003
0.
1410
.002
*8.
Al.
SI,

Tl,
Fe ,
Ce

A221/0152-
-A
Bulk

1.
.8510
.05

*

0.
.1710.01
0.1410.
.002
0.
.oi±a
.001
0.4210.004
0.0410.01



0
.3410,01
0.
.5210
.01
Mb.
Al,
51,
K,
Tl,
Fe,
Ce



Front
Face
3.
.3110
.06

*

0.
.2810.01
0.2810,
.003
0.
,0210
.001
1.0710.01
0.0210.004

*

0
.1910.003
1.
.1310
.01
"8.
Al,
SI,
K,
Tl,
Fe,
Ce



Rear
Face
0.
.3510
.03
0,
,29±0,
.02
0.
.1210.01
0.0310,
.001
0.
,0110
.003
0.1210.001
0.0310.00 3

*

0
. 30 4 0,004
0.
,1610
.002
Mg,
Al,
Si,
K,
Tl,
Fe,
Ce

A221/0152
-B
Bulk

0
.1610
.02
0.
.2510
.02
0
.1510.01
0.04+0
.D01

*

0.1410,001
*
0.
.3910,
.01
0
,0L10.0004
a.
. 3210
.003
Mg.
Al,
Si,
K,
Tl,
Fe ,
Ce

<\J

-------
TABLE 15 (CONT'D), ELEMENTAL ANALYSIS OF NOBLE METALS AND POISONS BY PIXE
Biscuit	Sample		Weight Percent
Nuater
Loca
tlon
P
S
Ca
Hn
Ni
Zn
Rh
Pd
Ft
Fb

Othe r&



A221/G204-A
Built
Frcn t
fie a r
Face
Face
3.3410.08
5.2310.09
0.7010.<04
*
0.0310.01
0.1410.02
0.4010.01
0.78*0.02
0.1710.01
o.ono.noi
0.0110.002
A
0.0110.0004
0.0210.001
0.0110.0002
1.1510.01
3.11+0.03
0.2110.002
0.0110.003
0.OLIO.004
0,02tO.003
A
*
A
0.2110.003
0.1610.004
0.2010.002
0.3310.004
0.9210,01
0.0610.002
Kg, Al, St
Hg, Al, SI
Hg, Al, Si
K.
K,
*11,
Tl,
Ti.
Fe,
Fe,
Fe,
Ce
Ce
Ce

A221/0204-B
Bulk

0.03111.04
0.4310.02
0.4010.01
0.0110.003
0.0110.0002
0.6610.01
*
0.5410.01
0.0410,001
0.3810.004
Hg, Al, SI
fcC,
TI,
Fe,
Ce

A221/0447-A
Bulk
Front
Rear
Face
Face

-------
TABLE 15 (CONT'D). ELEMENTAL ANALYSIS OF NOBLE METALS AND POISONS BY PIXE
Biscuit	Sample 	Weight Percent
Numbe r
LocatIon

p


s

Ca

Hn


HI


Zn


Rh


Pd


Pt


Pb




Others


A240/0334L-A
Bulk

0
3810
03
0.
5310
-02
0.0310,01

trace
7.
8310
08
0.
0410
002
0
0510
01

ft

0
2110
.01
0
1710
.01
Na,
Mg.
Al
Si
K,
TI,
Fe,
Ce

Front
Face
0
7310,
05
0.
5910
.03
0.0410.01
0.
0110.
002
7.
0810.
07
0.
0810
002
0
0410.
01

A

0
1910
01
0.
3110
01
Na,
Mg.
Al
si.
K,
Ti,
Fe,
Ce

Rear
Face
0
1510.
02
0.
3710
.02
0.0410.01

trace
5.
9110
06
0.
0210
001
0
0310,
01

trace
0
1610
004
0.
0810
003
Na,
Mg.
Al
Si,
K,
Tl,
Fe,
Ce
A24Q/0334L-B
Bulk


it

0.
3510
.02
0.0910,01

*

0.
1210
001
Q
0210
0004

*

0.
1010
.004
0
1410
.001
Q
0510
.001
Ha,
Mg,
Al
SI
K,
TI,
Fe,
Ce
A249/0169-1
Bulk

0
5610
03

*

0.12±0.01
0
0210.
001
0.
0410
001
0.
0910
001
0
0810.
004

trace
0
5210
01
0
3110
.003
Na,
Mg,
Al
Si
K,
Ti,
Fe,
Ce

Front
Face
1
4310,
04

*

0.1310.01
0
0410
01
0.
0410
001
0.
2010
002
0
05±0
004

t race
0
3810
004
0.
5910
.01
Na,
Mg.
Al
SI
K,
Ti,
Fe,
Ce

Rear
Face
0
13±0.
02

*

0.0110.001
0.
0110.
001
0.
0410
001
0.
OHO,
001
0.
0510.
003

trace
0.
3510
004
0.
2410
03
Na.
Kg.
Al
Si
K,
Ti,
Fe,
Ce
A249/0169-2
Bulk

0
65±0,
02

*

0.1010.004
0.
0210.
001
0.
0110
0003
0.
0110
001
0
0610
003

t race
0.
3 7±0
004
0.
1610
002
Na.
Mg,
Al
Si
K,
Ti,
Fe,
Ce

Front
Face
1
7810.
04

*

0.1310.01
0.
0510.
001
0.
0110
0004
0.
2110
002
0
04±0.
004

A

0
3310
004
0.
8510
.01
Mg»
Alp
SI
k,
Ti,
Fe,
Ce


Re a r
Face
0
1010.
02

*

0.1010.01

*

0.
0110
0003
0.
0210
0005
0
0410.
004

A

0.
3010
003
0.
0310
001
Na,
Mg,
Al
SI,
K,
Ti,
Fe,
Ce
A249/0169-3
Bulk

0
1110
02
0.
4810
.02
0.1410.01
0
0110
001
0.
OHO
0003
0
0810
001
0
0610
004

trace
0
3710
004
0.
5310
.01
Na
Mg,
Al
Si
K,
Ti,
Fe,
Ce

Front
Face
0
2310,
03

*

0.2110.01
0.
0310,
002
0.
0310
001
0.
3110
003
0.
05-0
01

A

0
4010
01
1.
8810
.02
Na,
Mg,
Al
si.
K,
Ti,
Fe,
Ce

Rear
Face

*

0.
3710
.02
0.1410.01

*

0.
0110
0003
0.
0410
001
0
0610
004

A

0
4110
01
0.
1410
.002
Na,
Mg,
Al
Si,
K,
Ti,
Fe,
Ce
A249/0169-3-B
Bulk


ft

0.
2 7±0
.02
0.0110.001
0
0110
0003
0,
0110
0002
0
0210
0004

ft

0.
9010
.01

t race
0,
0910
.001
Na,
Mg,
Al
Si,
K,
Ti,
Fe,
Ce
A280/0Q01L-A
Bulk

1
6210.
05

*

0.2310.01
0.
1910.
002
0.
0110.
0003
6.
5510
01
0
0210.
003

*

0
2310
003
0.
2510
.003
Mg,
Al,
Si
K,
Ti,
Fe,
Ce


Front
Face
4
2010.
08

*

0.4810.02
0.
4410.
01
0.
0210.
001
1.
6710
02
0
02*0
004

*

0
1910
004
0.
7210
.01

Al,
Si
K,
Ti,
Fe,
Ce


Rear
Face
0
2810
03
0.
1610
.02
0.0910,01
0.
04+0
001
0.
0110
0002
0.
0910
001
0
0210
002

A

0
21±0
002
0
0710
.001
Na,
Mg,
Al
SI,
K,
Ti,
Fe,
Ce
A2fl0/0001L-B
Bulk

0
2210,
03
0.
2810
.02
0.1510.01
0.
©
+1
VI
O
001

trace
0.
1910
002

*

0.
4510
.01
0
0110
001
0
2210
.002
Na,
Mg,
Al
Si,
K,
Ti,
Fe,
Ce
A155/0941-1-A
BuLk

1
3610
05

*

0.17-0.01
0
0610
002
0.
0110
0004
0.
2410
002
0
0310
004

A

0
2 710
.003
0
2310
.003
"6.
Al,
Si
K,
Ti,
Fe ,
Ce


Front
Face
3
5610
08

*

0.37*0.01
0
1410
002
0.
0210
0004
0.
7910
01
0
0210
003

A

0
2310
003
0
7710
.01
Mg,
Al,
SI
K,
Ti,
Fe,
Ce


Rear
Face
0
2310
03

ft

0.1210.01
0.
0110
001
0.
0110
0003
0.
0810
001
0
0210
003

A

0
2610
.003
0
0710
.002
Mg,
Al,
Si
k,
Ti,
Fe,
Ce

A155/09G1-1-B
Bulk

0
1610
03

*

0.15-0.01
0
0210
0003

*

0
1310
001

*


A

c
ia±o
.002
0
1810
.002
Kg,
M,
SI

11.
Fe


A155/09G1-2-A
Bulk

0
4310.
03
G.
9210
.03
0.4810.01
0.
04±0
001
0.
OHO
0002
0.
4110
001

*


ft

0
1710
002
0
4210
.004
Mg.
Al,
SI
K,
TI.
Fe,
Ce


Front
Face
0
5310,
04
0.
5210
.03
0.3110.01
0.
04±0
001

A

0.
2910
003

A


A

0
1710
002
0
6710
.01

Al,
Si
Rh
Ti.
Fe,
Ce


Rear
Face
0
1710.
03
0.
571D
.02
0.1010.01
0.
01±0
0003

*

0.
0510
001

A


A

0
1410
001
0.
1310
.001
Na,
Ma-,
Al
Si
K*
Ti,
Fe
Ce
A155/0941-2-B
Bulk

0
1610
03
0.
3410
.02
0,1310.01
0.
0110
0003
0.
0110
0002
0.
1010
001

A


A

0
1410
001
0.
0610
.001
Mg.
Al,
Si
K,
TI,
Fe


A207/0101-A
Bulk

1
0410
05

a

0.0810.01
0.
1810
002
0.
0110.
0004
0.
2210
002
0
0410.
004

A

0
3710
004
0.
4010
.01
Mg,
Al,
Si
K,
Ti,
Fe,
Ce


Front
Face
1
8310
05

a

0.1210.01
0
3410
00 it
0
0210
001
0.
5610
01
0
03±0
004

A

0
3610
01
0
9910
.01
Mg,
Al,
SI
K,
Ti,
Fe,
Ce


Rear
Face
0
4310
03

A

0.0710.01
0
0810
002
0
0110
0004
0.
06±0
001
0
0410
004

ft

0
3510
004
0
0810
.002
Mg,
Al,
Si
K,
Ti,
Fe,
Ce

A207/0101-B
Bulk

0
10±0
03
0.
2210
.02
0.0510.01
0
0110
0(Jl)3
0.
OHO
0002
0.
0310
0005

*

0.
3210
.01

A

0.
0610
.001
Na,
Mg.
Al
51,
K,
ri,
Fe,
Ce
A207/0101-C
Bulk

0
29±0
03

*

0.0910.01
0
0810
001
0.
0110
0003
0.
0510
001
0
0310.
003

a

0
3310
004
0
0410
.001
Mg,
Al,
Si
K,
Ti,
Fe,
Ce

N>
VI

-------
TABLE 16. ELEMENTAL ANALYSIS OF NOBLE METALS AND POISONS BY X-RAY FLUORESCENCE
Weight Percent of Elements
Biscuit Number
P
S
Ca
Mn
Ni
Zn
Pt
Pb



Others


A180/0094
0.65+0.03
0.2610.01
0.13+0.01
0.01+0.001
6.6510.33
0.1610.01
0.56+0.03
0.5310.03
MS, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A193/0908-A
1.5410.08
0.2110.01
0.2310.01
0.0310.002
0.0110.001
0.31+0.02
0.2510.01
0.18+0.01
Mg, Al,
Si,
K,
Ti.
Fe,
Ce


A193/0908-B
0.1 M0.01
0.2210.01
0.1610.01
0.01+0.001
-*
0.1510.01
0.0110.001
0.19+0.01
Na, Mg,
Al,
,Sl
. K,
~ Ti.
Fe,
Ce

A218/00 45
0.2710.01
0.29+0.02
0.1010.01
ft
5.3210.27
0.0710.004
0.43+0.02
0.1510.01
Mg, Al,
Si.
K,
Ti,
Fe,
Ba,
Ce

A218/0045X
0.57+0.03
0.16+0.01
0.10+0.005
*
4.5010.023
0.0910.005
0.38+0.02
0.3010.02
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A218/0068
0.7810.0a
0.3410.02
0.1710.01
0.0110.001
6.2410.31
0.2510.01
0.5210.03
0.7710.04
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A220/0392-A
1.3910.07
0.7710.04
0.1110.01
*
4.6710.23
0.19+0.01
0.1010.01
0.2410.01
Mg, Al,
Si.
K,
Ti,
Fe,
Ba,
Ce

A220/0392-B
0.1010.01
0.89+0.04
0.1710.01
0.0110.001
0.0210.001
0.0810.004
0.3510.02
0.0410.002
Na, Mg,
, Al
, Si
. K,
,Ti,
Fe,
Ba,
Ce
A220/0810-A
2.0310.10
0.54+0.03
0.30+0.02
0.0110.001
3.63+0.18
0.6410.03
0.10+0.01
0.4410.02
Na, Mg,
, Al
,Si
, K,
, Ti,
Fe,
Ba,
Ce
A220/0810-B
0.(18+0.02
1.1510.06
0.2010.01
0.0110.001
0.0210.001
0.2510.01
0.3710.02
0.1710.01
Na, Mg,
Al,
, Si
, *,
> Tl,
Fe,
Ba,
Ce
A22I/OI52-A
1.6810.08
0.2310.01
0.1610.01
0.1210.01
0.0110.001
0.40+0.02
0.3110.002
0.51+0.03
Mg, Al,
Si,
K,
Ti,
Fe,
Ce


A22I/0152-B
0.16+0.01
0.2710.01
0.1310.01
0.0310.002
«
0.1310.01
-ft
0.2910.01
Na, Mg,
, Al
,Si
, K
, Ti,
Fe,
Ba,
Ce
A22I/0204-A
2.7810.14
0.1110.01
0.4110.02
0.01+0.001
0.0110.001
0.16+0.06
0.2010.01
0.3510.02
Na, Mg,
, Al
,S.
, K,
, Ti,
Fe,
Ba,
Ce
A221/0204-B
0.37+0.02
0.2910.01
0.2410.01
*
•
0.3610.02
0.02+0.001
0.2410.01
Na, Mg,
, Al
, Si
, K,
, Ti,
Fe,
Ba,
Ce
A221/0447-A
0.9310.05
0.3810.02
O.lliO.Ol
0.0210.001
0.0110.001
0.2010.01
0.3210.02
0.7210.04
Mg, Al,
Si,
K,
Tl,
Fe,
Ce


A221/0447-B
0.0910.01
0.2910.01
0.1010.005
0.0110.001
*
0.0710.003
0.0110.001
0.5610.03
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A 230/0177 X-A
0.92+0.05
0.3310.02
0.1810.01
0.0410.003
0.0110.001
0.241.01
0.2810.01
0.3610.02
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A 230/0177X-B
0.06+0.004
0.38+0.02
0.0910.005
0.0 LiO.OO 1
0.0 110.001
0.0510.003
0.3010.02
0.0410.002
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A230/0636X-A
0.8710.04
0.21+0.01
0.1410.01
0.0110.001
0.0210.001
0.2210.01
0.2810.01
0.4810.02
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A230/0636X-B
0.0810.005
0.3710.02
0.0810.004
#
0.0110.001
O.O 810.004
0.33+0.02
0.0710.004
Mg, Al,
Si,
K,
Ti,
Fe,
Ce


A240/0016L-A
0.7210.04
0.6610.03
0.0810.004
#
7.3910.37
0.1910.01
0.2310.01
0.8110.04
Mg, Al,
Si,
K,
Ti,
Fe,
Ba,
Ce

A240-0016L-B
0.2610.01
0.9610.05
0.1010.01
0.01+0.001
0.1310.01
0.1410.01
0.17+0.01
0.4110.02
Mg, Al,
S.,
K,
Ti,
Fe,
Ba,
Ce

l-O
oo

-------
TABLE 16 (CONT'D). ELEMENTAL ANALYSIS OF NOBLE METALS AND POISONS BY X-RAY FLUORESCENCE
Weight Percent of Elements
Biscuit Number
P
S
Ca
Mn
Ni
Zn
Pt
Pb



Others


A240/0102-A
2.3310.12
0.1510.01
0.1810.01
0.0110.001
3.5710.18
0.4910.02
0.1110.01
0.2510.01
Na, Mg,
A
, Si
, K
Ti, Fe,
Ba,
Ce
A240/0102-B
0.63+0.03
0.2910.01
0.2210.01
0.0110.001
0.0410.002
0.4010.02
0.1410.01
0.1610.01
Na, Mg,
A
,s.
, K
Ti, Fe,
Ba,
Ce
A240/0141L-A
0.4310.02
0.2610.01
0.0810.004
0.0310.002
5.9210.30
0.1010.01
0.1810.01
0.1510.01
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A240/014 LL-B
0.1810.01
0.4810.02
0.0710.004
0.0410.002
0.0310.001
0.0610.003
0.1610.01
0.0710.004
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A240/0153-A
1.4010.07
0.4410.02
0.0810.004
0.0410.002
0.0110.001
0.2110.01
0.1910.01
0.5910.03
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A240/0153-B
0.2810.01
0.6310.03
0.1010.01
0.0410.003
0.6810.03
0.1510.01
0.1710.01
0.1710.01
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A240/0334L-A
0.3310.02
0.6110.03
0.0510.003
*
0.0110.01
0.0510.002
0.2210.01
0.1910.01
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A240/0334L-B
0.0610.003
0.4610.02
0.0710.004
#
0.1310.01
0.0210.001
0.1610.01
0.0510.003
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A249/0169-1
0.5010.03
0.1310.01
0.1010.01
0.0210.002
0.0410.002
0.0910.005
0.5010.03
0.3110.02
Mg, Al,
Si
K,
Ti,
Fe, Ce


A249/0169-2
0.5310.03
0.0410.002
0.1110.01
0.0210.001
0.0110.001
0.0610.003
0.3610.02
0.1710.01
Mg, Al,
Si
K,
Ti,
Fe, Ce


A249/0169-3-A
0.1010.01
0.6510.03
0.1510.01
0.0210.001
0.0110.001
0.1010.01
0.4710.02
0.6810.03
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A249/0169-3-B
0.0<(10.002
0.3410.02
0.0910.005
0.0110.001
0.0110.001
0.0310.001
*
0.1010.01
Na, Mg
A
, Si
, K
Ti, Fe,
Ce

A280/0001L-A
1.5510.08
0.1510.01
0.2510.01
0.1410.01
0.0110.001
0.6110.03
0.2310.01
0.2810.01
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A280/0001L-B
0.1810.01
0.2710.01
0.1410.01
0.0410.003
»
0.1810.01
0.0110.001
0.2210.01
Na, Mg,
A
,Si
, K
Ti, Fe,
Ba,
Ce
A155/0941-1-A
1.1410.06
0.0610.004
0.2010.01
0.0610.004
0.0110.001
0.2810.01
0.2810.01
0.2610.01
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A155/0941-1 -B
0.1210.01
0.1110.01
0.1810.01
0.0210.001
*
0.1610.01
0.2110.01
0.2110.01
Mg, Al,
Si
K,
Ti,
Fe, Ce


A155/09^1-2-A
0.2610.01
0.7810.04
0.4110.02
0.0310.002
0.0110.0004
0.3910.02
0.1510.01
0.4110.02
Na, Mg,
A
i S i
, K
Ti, Fe,
Ce

A155-0941-2-B
0.0910.01
0.3910.02
0.1710.01
0.0110.001
0.0110.001
0.1210.01
0.1710.01
0.0710.004
Na, Mg
A
, Si
, K
Ti, Fe,
Ba,
Ce
A207/0101-A
0.8810.04
0.1010.01
0.1010.01
0.1810.01
0.0110.001
0.2610.01
0.3910.02
0.4510.02
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A207/0101-B
0.1610.01
0.0510.004
0.1110.01
0.0810.004
0.0110.001
0.0610.003
0.3610.02
0.0310.002
Mg, Al,
Si
K,
Ti,
Fe, Ba,
Ce

A207/0101-C
0.0410.003
0.2410.01
0.0710.004
0.0110.001
0.0110.0004
0.0410.02
»
0.0710.004
Mg, Al,
Si
K,
Ti,
Fe, Ce


* below the detection limit
K>
\D

-------
30
TABLE 17. LIST OF OXYGEN SENSORS FOR EVALUATION
Sensor
Number
Make
Engine
Family
Condition
A220/0660
A220/0810
GM
GM
D4G3.8V2NEA3
D4G3.8V2NEA3
whole sensor element
whole sensor element
A221/0146
A22I/0310
Chrysler
Chrysler
DCR2.2V2HAC3
DCR2.2V2HAC3
whole sensor element
whole sensor element
A230/0177
A230/0649X
GM
GM
D1G2.0V5XA34
D1G2.0V5HAJ4
whole sensor element
whole sensor element
A249/0064
Chrysler
DCR5.2V2HAP9
whole sensor element
A251/0467
GM
D2G1.8V5TDGX
whole sensor element
A180/0094
A218/0045
A218/0045X
A218/0068
Nissan
Nissan
Nissan
Nissan
CNS2.8V5FAF4
CNS2.8V5FAF1
CNS2.8V5FAF1
CNS2.8V5FAF1
partial tip only
partial tip only
partial tip only
partial tip only

-------
31
TABLE 18. C>2 SENSOR EVALUATION
1.	Leak-Down Check
a.	Prepare leak-down chamber
b.	Attach O2 sensor
c.	Pressurize with air to 10" Hg
d.	Monitor the leak-down rate on a strip chart recorder
2.	Engine Evaluation
a.	Light-Off
(1)	Mount O2 sensor onto exhaust generator (370°C)
(2)	Warm engine to set temperature and switch exhaust to sensor
(3)	Determine "light-off" time by recording the sensor voltage
b.	Voltage Output
(1)	Monitor voltage output on strip chart as A/F ratio stepwise
changes from to 16 at 370°C
(2)	Repeat at another exhaust temperature (590°C)
c.	Repsonse Time
(1)	Measure response time for instananeous shift in A/F ratio
from to 16 and then 16 to 14 (change from 200 millivolts to
600 millivolts) at 370°C.
(2)	Repeat at another exhaust temperature (_590°C).
3.	Laboratory Analysis
a.	Disassemble
b.	Conduct surface area analysis
c.	Submit for ESCA of exterior metals and poisons

-------
32
A leak-down rate chamber was prepared to determine the leakage rate of
each of the sensors. The internal volume of the chamber was measured at 3220
ml. A pressure transducer mounted on one end was connected to a strip chart
recorder. The chamber was pressurized to an internal pressure of 10"Hg and
the leakage rate was determined after 15 minutes. The leakage rate for each
sensor is reported in Table 19.
Cold "light-off" times for all the oxygen sensors were determined using
exhaust gas from an engine mounted on a dynamometer test stand. The sensors
initially started at room temperature and were heated by the exhaust gases to
approximately 370°C. The times for the sensors to begin to respond and the
exhaust temperatures are presented in Table 20.
The response times of all the sensors were determined at 370°C and
590°C. The response times were measured following an instantaneous switch
from a rich to a lean air/fuel ratio and again from lean to rich. The response
times for each sensor are recorded in Tables 21 and 22.
The voltage outputs at various air/fuel ratios and two exhaust
temperatures (370°C and 590°C) were also determined. These data are
presented in Tables 23 and 24. The air/fuel ratio was slowly changed from rich
to lean in a stepwise manner. The voltage output of each sensor was recorded
as a function of the air/fuel ratio. These data can be used to determine the
air/fuel ratio at which the sensor will send a signal to change from rich to lean.
The specific surface area of each sensor tip was determined with the
same technique used for the catalyst samples. The results are included in Table
25. One important note is that the results for surface areas of sensor tips using
the multipoint technique are about 4 to 6 times greater than with the
singlepoint technique which was used in previous work assignments. The cause
of the lower values is the result of a negative peak which follows the desorption
peak. The negative peak is probably due to the larger thermal mass of the
sensor tips. The area under the negative peak was not accounted for in the
singlepoint analysis in the previous work assignments and resulted in lower
reported values. The plots for the BET equation versus the relative pressure for
each sensor tip are included in Appendix F.
The exterior surfaces of the oxygen sensor tips were examined with
ESCA. This is a quantitative technique capable of determining the
concentration of all elements except hydrogen and helium above about 0.1 atom
percent in the sample. The depth of penetration is about 100 A into the sample.
The elements detected included carbon (C), oxygen (O), aluminum (Al),
magnesium (Mg), calcium (Ca), silicon (Si), chlorine (CI), sulfur (S), phosphorous
(P), lead (Pb), nitrogen (N), zinc (Zn), sodium (Na), chromium (Cr), and iron (Fe).
The sensor tip consists of a yttrium impregnated zirconium dioxide ceramic
with a thin platinum coating covered by an exterior spinel coating. The spinel
coating is composed of magnesium, aluminum, and oxygen. The exteriors of the
sensor tips contained many of the same elements that are found in the catalysts
as poisons. The weight percentages of the various elements detected are
presented in Table 26. The individual spectra are included in Appendix G. It
should be noted that a significant amount of carbon and oxygen was found on
the surface and that very little magnesium and aluminum were detected. This

-------
33
TABLE 19. LEAKAGE RATE FOR OXYGEN SENSORS
Sensor
Number
Temperature. °F
Pressure,
"Hfi
Leakage Rate
SCIM*
Initial
Final
Initial
Final
A220/0660
76
76
10.18
10.14
0.02
A220/0810
76
76
10.20
10.12
0.04
A221/0146
76
75
10.20
10.11
0.03
A221/0310
76
75
10.20
10.14
0.02
A230/0177
75
75
10.1*
9.44
0.30
A230/0649X
76
76
10.20
9.84
0.16
A249/0064
76
76
10.18
10.00
0.08
A251/0467
76
75
10.18
8.12
0.88
Reference
75
75
10.18
10.12
0.03
*SCIM - Standard cubic inches per minute

-------
34
TABLE 20. O2 SENSOR EVALUATION - LIGHT-OFF TIMES AT 370°C
Sensor
Number
A/F
Ratio
Final
Voltage, mV
T emperature, °F
Initial* Final**
Light-Off Times, Sec.
Initial* Final**
A220/0660
14.04
620
512
642
26
244
A220/0810
14.04
645
547
665
52
341
A221/0146
14.02
690
543
670
34
274
A221/0310
14.02
855
555
695
46
386
A230/017 7
14.04
565
512
645
26
260
A230/0649
14.02
73 5
570
713
60
476
A249/0064
14.02
770
555
704
46
437
A271/0467
14.04
315
547
660
50
311
Referencea
14.02
780
515
650
20
204
Reference'5
14.04
775
512
655
25
306
~Initial temperature is temperature where sensor begins to respond.
Initial time is time when sensor begins to respond.
**Final temperature is temperature where sensor reached 90% of final response.
Final time is time to reach 90% of final response

-------
35
TABLE 21. 02 SENSOR EVALUATION - RESPONSE TIME AT 370°C
Response Time
to Maximum
Response, sec.
Response Time
Between
600-200 mV, sec.
Limiting
Voltages
Sensor Number
Rich to
Lean
Lean to
Rich
Rich to
Lean
Lean to
Rich
Rich
mV
Lean
A221/0146
7
16
2.1
2.8
880
35
A249/0064
3
11
0.2
0.2
850
30
A221/Q310
37
37
2.2
16.6
870
35
A230/0649X
1
3
0.2
0.2
780
45
Reference Test la
1
3
0.2
0.6
800
35
A230/0177
1
1
„c
__c
460
0
A251/Q467
23
13
__c
__c
430
60
A220/0660
7
1
0.5
0.2
730
0
A220/0810
1
2
0.6
0.2
660
0
Reference Test 2^
12
1
0.8
0.2
920
70
aTest 1 with sensors A221/0I46, A249/0064, A221/0310, A230/0649X
bTest 2 with sensors A230/0177, A251/0467, A220/0660. A220/0810
c600 mV not achieved

-------
36
TABLE 22. 02 SENSOR EVALUATION - RESPONSE TIME AT 590°C
Response Tlme
to Maximum
Response, sec.
Response Time
Between
600-200 mV. sec.
Limiting
Voltages
Sensor Number
Rich to
Lean
Lean to
Rich
Rich to
Lean
Lean to
Rich
Rich
mV
Lean
A221/01^6
1
2
—
0.2
570
0
A249/0064
23
17
7.7
6.0
810
10
A221/0310
9
4
1.6
2.6
820
90
A230/0649X
10
27
2.9
8.S
800
55
Relerence Test la
9
1
0.6
0.2
910
80
A230/0177
1
6
0.2
0.3
810
45
A251/0467
29
46
4.1
34.2
630
80
A220/0660
5
2
0.2
0.2
SOO
40
A220/0S10
1
6
0.2
0.2
880
45
Reference Test 2^
0.5
2
0.2
0.2
830
40
aTest 1 with sensors A221/0146, A249/0064, A221/0310, A230/0649X
bTest 2 with sensors A230/0177, A251/0467, A220/0660. A220/0810

-------
37
TABLE 23. C>2 SENSOR EVALUATION - VOLTAGE OUTPUT VERSUS
AIR/FUEL RATIO AT 370°C
A/F

Voltage Output,
mV


Ratio
A221/0146
A249/0064
A221/0310
A230/0649X
Reference
14.21
880
870
890

820
800
14.51
700
600
600

500
600
14.56
700
600
600

500
600
14.66
130
170
180

150
250
14.75
90
80
100

90
100
14.98
70
60
80

70
90
15.48
45
40
40

65
70
16.47
35
30
35

45
35
A/F

Voltage Output,
mV


Ratio
A230/0177
A251/0467
A220/0660
A220/0810
Reference
13.98
410
425
670

635
940
14.49
370
410
670

630
920
14.61
370
370
680

620
915
14.68
370
330
670

550
910
14.81
250
200
500

350
900
14.92
120
140
400

240
885
15.48
20
60
100

80
190
16.23
0
25
70

70
90

-------
38
TABLE 24. O2 SENSOR EVALUATION - VOLTAGE OUTPUT VERSUS
AIR/FUEL RATIO AT 590°C
A/F 		 Voltage Output, mV
Ratio
A221/0146
A249/0064
A221/0310
A230/0649X
Reference
14.16
550
810
810
780
925
14.54
510
740
760
680
910
14.63
480
670
700
600
890
14.73
250
270
220
250
870
14.83
180
60
160
130
730
14.98
150
60
140
120
650
15.43
100
20
100
55
250
16.07
20
10
75
40
20
A/F

Voltage Output,
mV

Ratio
A230/0177
A251/0467
A220/0660
A220/0810
Reference
14.18
820
700
820
820
850
14.45
650
580
—
500
700
14.57
550
540
500
450
500
14.81
150
180
140
100
180
14.73
220
250
210
160
250
14.98
140
130
120
90
150
15.41
60
90
75
60
60
16.26
30
65
45
50
40

-------
39
TABLE 25. SPECIFIC SERVICE AREA OF OXYGEN SENSORS
Sensor	Specific Surface
Number	Area, m^/g	Surface Area,
A220/0660
1.8
7.4
A220/0810
0.7
2.5
A221/0146
1.3
3.9
A221/0310
1.8
5.4
A230/0177
1.2
4.7
A230/0649X
1.5
5.7
A249/0064
1.8
5.1
A251/0467
1.0
4.2
A180/0094
3.5
*
A218/0045
4.5
*
A218/0045X
3.6
*
A218/0068
3.1
*
New Chrysler
3.0
8.7
* - partial sample, no total weight available

-------
40
TABLE 26. ELEMENTAL ANALYSIS OF EXTERIOR SURFACE OF OXYGEN SENSORS BY ESCA
Sensor 	Weight Percent of Element	
Number	C O A1 Mr Ca Si CI S P Pb N Zn Na Cr Fe
A220/0660	66 21 — 1.6 0.8 2.9 — ~ 2.5 0.3 1.6 — 2.5
A220/0810	61 24- -- 3.1 0.8 1.4 -- 1.4 2.6 0,1 0.9 — 4.6 — --
A221/Q146	67 21 — 5.1 — 2.8 - -- 2.3 0.5 0.7 - 0.7 — —
A221/0310	60 22 — 3.1 — 9.2 -- -- 2.4 0.6 1.7 -- 0.8 — --
A230/0177	56 27 — 2.0 1.6 4.8 -- 0.8 4.0 0.5 -- 1.5 2.7 — —
A230/0649X	56 26 — 2.0 0.8 9.0 — -- 2.2 0.6 — -- 2.8 0.2 0.2
A249/0064 77 18 	 2.1 -- 0.7 0.5 0.2 1.4 	- —
A251/0467	51 26 — 4.0 — 12 — — 2.7 0.4 — — 3.3 — —
A180/0094 34 41 	- 2.2 5.1 7.6 — 4.7 5.6
A218/0045 84 13 — -- 	 -- — 0.4 — — 2.1 — --
A218/0045X	42 35 2.0 5.0 — 2.6 — — 6.8 2.6 — — 4.4 — —
A218/0068 82 15 	- 1.5 0.8 — — 1.3 — --
New Chrysler 13 39 27 14 2.0 2.4 0.6 1.2 	

-------
41
indicates that each tip was covered with a layer at least 100A thick of exhaust
products. The new Chrysler sensor tip was mostly magnesium, aluminum, and
oxygen, with a smaller amount of carbon and detectable levels of calcium,
silicon, chlorine, and sulfur. A correlation between the exterior elements and
the operation of the sensors was not performed.
IV. Quality Assurance and Correlation
In an effort to assure the quality of the experimental results for the "on-
engine" evaluation, a number of steps were taken. Two converters were
selected to undergo three repeat tests each for converter efficiency and light-
off times. These converters were A215/0201R and EPA 1174R. The test
results for the quality assurance program are summarized in Tables 27 through
32, and the data for the individual quality assurance tests are included with the
individual results for all of the converters in Appendix H. An average range and
percent range were calculated for each converter. In general, the repeatability
of the engine and analytical system was good except at rich air/fuel ratios. A
plot of the time versus percent reduction in the exhaust concentration for the
three repeat tests from each converter is shown in Figures 2 through 6 for the
light-off tests. The average value for the test results was calculated and is also
included on each plot.
The Micromeritics Flowsorb II dynamic surface area analyzer was set up
to analyze the catalyst samples "in-house." Two NBS Standard Reference
Materials and seven standards from Duke Scientific Corporation were used to
establish the instrument operating range, linearity, and confidence in the
analytical procedure. In this work assignment, the surface areas were
determined with a multipoint technique. The standards were analyzed using
this technique, and the results are presented in Table 33. In general, the
standards repeated within the published confidence limits for the entire range
of standards (0.62 m^/g to 265 m^/g).
In this work assignment, a new analytical technique was applied to
catalyst samples. This technique was PIXE. In an attempt to correlate the
results from previous work assignment with this work assignment, several steps
were taken. They included a comparison of SwRI x-ray fluorescence, EPA/RTP
x-ray fluorescence, x-ray fluorescence at Surface Science Laboratories (SSL),
and PIXE by Elemental Analysis Corp. The ten samples were selected to
undergo a multitude of correlation tests which included:
1.	submission of five samples to all laboratories
2.	submission of samples previously analyzed by Ford to EPA/RTP and
PIXE
3.	Independent analysis of ail samples by wet chemistry (WC)/direct
coupled plasma (DCP)
4.	submission of SwRI standards to EPA/RTP, SSL, and PIXE.
The data for each of the correlation samples are included in Table 34. Samples
A3/1037-A, A81/0270-1, A87/0479-2-A, A154/0392-A, and A155/0979-1-A were

-------
42
TABLE 27. STEADY-STATE CONVERTER EFFICIENCY SUMMARY
FOR QUALITY ASSURANCE
HYDROCARBONS
Converter
Number
TVPe
A215/0201R 3-Way + Ox
Percent Reduction at Nominal A/F Ratio
EPA 1174R 3-Way + Ox
Test
14.1
14.3
14.5
14.7
14.9
15.1
15.3
1
88.2
91.9
92.6
91.9
92.3
92.2
91.1
2
84.9
86.1
90.9
90.3
93.1
92.3
91.3
3
86.6
87.3
91.7
93.3
92.4
91.3
92.8
Avg.
86.8
88.4
91.7
91.8
92.6
91.9
91.7
Range
3.3
5.8
1.7
3.0
0.8
1.0
1.7
% Range
3.8
6.6
1.9
3.3
0.9
1.1
1.9
1
86.0
89.2
92.2
92.8
91.9
90.9
89.5
2
85.7
86.7
89.8
90.5
92.8
91.5
90.0
3
84.8
87.7
91.0
91.4
90.6
91.3
90.7
Avg.
85.5
87.9
91.0
91.6
91.8
91.2
90.1
Range
1.2
2.5
2.4
2.3
2.2
0.6
1.2
% Range
1.4
2.8
2.6
2.5
2.4
0.7
1.3
TABLE 28. STEADY-STATE CONVERTER EFFICIENCY SUMMARY
FOR QUALITY ASSURANCE
CARBON MONOXIDE
Converter
Number
Type
A215/0201R 3-Way + Ox
Percent Reduction at Nominal A/F Ratio
EPA 1174R 3-Way + Ox
Test
14.1
14.3
14.5
14.7
14.9
15.1
15.3
1
98.0
99.6
99.5
99.5
99.4
99.4
99.2
2
98.4
98.9
99.6
99.6
99.5
99.4
99.3
3
99.2
99.2
99.6
99.8
99.7
99.6
99.6
Avg.
98.5
99.2
99.6
99.6
99.5
99.5
99.4
Range
1.2
0.7
0.1
0.3
0.3
0.2
0.4
% Range
1.2
0.7
0.1
0.3
0.3
0.2
0.4
1
96.4
99.6
99.5
99.6
99.4
99.2
99.1
2
98.5
99.1
99.7
99.7
99.6
99.5
99.6
3 "
94.8
99.5
99.7
99.7
99.6
99.5
99.7
Avg.
96.6
99.4
99.6
99.7
99.5
99.4
99.5
Range
3.7
0.5
0.2
0.1
0.2
0.3
0.6
% Range
3.8
0.5
0.2
0.1
0.2
0.3
0.6

-------
TABLE 29. STEADY-STATE CONVERTER EFFICIENCY SUMMARY
FOR QUALITY ASSURANCE
OXIDES OF NITROGEN
Converter		Percent Reduction at Nominal A/F Ratio
Number Type
Test
14.1
14.3
14.5
14.7
14.9
15.1
15.3
A215/0201R 3-Way + Ox
1
75.6
71.6
71.6
48.0
28.2
21.8
19.9

2
57 .4
68.8
77.9
47.5
34.4
29.0
24.9

3
73.1
72.0
44.2
32.9
28.8
26.6
25.1

Avg.
68.7
70.8
62.7
42.8
30.5
25.8
23.3

Range
18.2
3.2
33.7
15.1
6.2
7.2
5.2

% Range
26
4.5
53
35
20
28
22
EPA1174R 3-Way + Ox
1
63.8
78.6
63.2
50.3
32.9
23.7
21.3

2
47.0
71.7
67.3
42.9
31.6
24.1
24.7

3
49.0
73.1
71.0
43.0
29.6
23.9
20.4

M)
>
<
53.3
74.5
67.2
45.4
31.4
23.9
22.1

Range
16.8
6.9
7.8
7.4
3.3
0.4
4.3

% Range
32
9.3
12
16
10
1.7
20
TABLE 30. LIGHT-OFF TIMES FOR QUALITY ASSURANCE
OF CONVERTER RESPONSE
HYDROCARBONS


Time to Reach
Percent Reduction
Converter

% Reduction,
Sec.
After
Number Type
Test
20
50
80
205 sec
600 sec
A215/0201R 3-Way + Ox
1
26
36
54
88.7
88.0

2
27
30
52
86.8
88.7

3
28
35
52
87.3
88.5

Avg.
27
34
53
87.6
88.4

Range
2
6
2
1.9
0.7

% Range
7.4
1.8
3.8
2.2
0.8
EPA 1174R 3-Way + Ox
1
55
63
89
91.0
88.7

2
40
48
66
92.0
91.5

3
48
54
75
91.2
91.2

Avg.
48
55
77
91.4
90.5

Range
15
15
23
1.0
2.8

% Range
31
27
30
1.1
3.1

-------
44
TABLE 31. LIGHT-OFF TIMES FOR QUALITY ASSURANCE
OF CONVERTER RESPONSE
CARBON MONOXIDE
Time to Reach Percent Reduction
Converter		% Reduction, Sec. 	After	
Number
Type
Test
20
50
80
205 sec
600 sec
A215/0201R
3-Way + Ox
1
21
30
38
99.8
99.8


2
20
30
37
99.8
99.8


3
22
30
36
99.8
99.8


Avg.
21
30
37
99.8
99.8


Range
2
0
2
0
0


% Range3
9.5
0
5.4
0
0
EPA 1174R
3-Way + Ox
1
48
57
66
99.8
99.9

2
38
42
50
99.0
100.0


3
41
48
55
99.8
99.9


Avg.
42
49
57
99.5
99.9


Range
10
15
16
0.8
0.1


% Range3
24
31
28
0.8
0.1
a% Range = (max - min/avg)xlOO
TABLE 32. LIGHT-OFF TIMES FOR QUALITY ASSURANCE
OF CONVERTER RESPONSE
OXIDES OF NITROGEN
Time to Reach Percent Reduction
Converter	% Reduction, Sec. 	After
Number
Type
Test
20
50
80
205 sec
600 sec
A215/0201R
3-Way + Ox
1
25
NA
NA
4.2
5.2


2
24
NA
NA
8.4
6.9


3
30
NA
NA
7.0
5.2


Avg.
26
	
—
6.5
5.8


Range
6
—
—
4.2
1.7


% Range
23
	
—
65
29
EPA 1174R
3-Way + Ox
1
32
50
NA
6.8
5.8

2
25
40
NA
7.4
8.3


3
29
45
NA
3.3
0.5


Avg.
29
45
—
5.8
4.9


Range
7
10
™
4.1
7.8


% Range
24
22
—
71
159

-------
CATALYST A215/0201R
- HC
TEST 1
40	60
PERCENT REDUCTION
X TEST 2
* TEST 3	0 AVERAGE
Figure 2. Percent reduction of HC from the light-off test for Converter A215/0201R

-------
CATALYST A215/0201R -
CO
TEST 1
PERCENT REDUCTION
X TEST 2
* TEST 3	0 AVERAGE
Figure 3. Percent reduction of CO from the light-off test for Converter A215/0201R

-------
CATALYST EPA 1174R - HC
TEST 1
PERCENT REDUCTION
X TEST 2
-P-
* TEST 3	0 AVERAGE
Figure Percent reduction of HC from the light-off test for Converter EPA 1174R

-------
CATALYST EPA 1174R - CO
TEST 1
PERCENT REDUCTION
X TEST 2
* TEST 3	0 AVERAGE
Figure 5. Percent reduction of CO from the light-off test for Converter EPA 117^R

-------
CATALYST EPA 1174R - NOX
40	60	80
PERCENT REDUCTION
TEST 1	X TEST 2
TEST 3	0 AVERAGE
Figure 6. Percent reduction of NOx from the light-off test for Converter EPA 1174R

-------
50
TABLE 33. QUALITY ASSURANCE OF SURFACE AREA STANDARDS
Standard
Composition
Standard Surface
Area, m^/g
Measured Surface
Area, td^/r
Percent
Difference
Zinc oxide
0.62±0.04
0.84
35.5
Alpha alumina
0.78 NBS
1.07
37.2
Alumina
3.04+0.25
3.41
12.2


3.56
17.1


3.58
17.8
Titanium dioxide
7.0510.7
7.28
3.3


8.05
14.2
Alumina
14.0+0.6
16.2
15.7


14.4
2.9


13.2
-5.7
Graphitized Carbon
71.3 NBS
80.4
12.8
Black

78.7
10.4
Alumina
81.416.2
85.6
5.2
Alumina
265111
260
-1.9

-------
TABLE 3<*. CORRELATION OF SEVERAL SAMPLES BY DIFFERENT ANALYTICAL TECHNIQUES AND LABORATORIES
Weight Percent ol Elements
Technique
PIXE
SwRI-XRF
EPA/RTP-
XRF
Number
P
S
Ca
Mn
Ni
Zn
Pb
Pt
Pd
Rh
Others

A3/I037-A
0.9610.01
*
0.0910.01
0.0110.001
3.1310.03
0.1210.001
0.0110.003
0.1210.002
0.0110.003
0.0210.004
Mg, Al, Si, K, Ti, Fe, Ce

A81/02 70-1
0.5310.03
ft
0.1310.01
0.0610.002
1.2110.01
0.2810.003
1.6210.02
0.3210.01
0.0110.005
0.0510.01
Mg, Al, Si, K, Ti, Fe, Ba, Ce

A87/0179-2-A
•
0.1510.02
0.1610.01
0.0210.001
0.0110.001
0.0910.001
0.2310.003
*
0.4310.01
trace
Na, Mg, Al, Si, K, Ti, Fe, Ce

A154/0392-A
1.0510.05
0.2110.02
0.0810.001
0.0210.002
1.1310.05
0.1110.002
0.5310.01
0.1310.003
0.0110.004
0.0410.01
Mg, Al, Si, K, Ti, Fe, Ba, Ce

A155/0979-I-A
0.
-------
TABLE 34 (CONT'D). CORRELATION OF SEVERAL SAMPLES BY DIFFERENT ANALYTICAL TECHNIQUES AND LABORATORIES
Technique
LEDOUX
Sample
Number
Weight Percent of Elements
Ca
Mn
Ni

Pb
Pt
Pd
Rh
Others
A3/L037-A
A81/0270-1
A87/0479-2-A
A154/0392-A
A155/0979-I-A
A160/0656-I-A
A160/0656-1-C
A160/0656-1-B
A214-0681-A-A
A214/068I-A-C
A214/068I-A-B
0.69
0.61
0.04
0.64
0.19
1.87
0.18
0.08
0.66
0.33
0.09
0.02
0.10
0.09
0.21
0.02
0.01
0.01
0.01
0.01
0.01
0.01
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.11
0.31
0.11
0.10
0.04
0.61
0.03
0.02
0.16
0.02
0.01
0.09
1.64
0.13
0.36
0.12
I.S4
0.05
0.05
0.32
0.03
0.02
0.11
0.24
»
0.10
0.10
0.07
0.05
0.06
0.05
0.04
0.01
0.23
0.02
0.02
*
0.02
0.01
trace
trace
trace
0.01
0.01
moisture 0.56%
moisture 0.51%
moisture 0.14%
moisture 0.91%
moisture 0.0996
SSL-XRF
A3/1037-A
A81/0270-I
A87/0479-2-A
AL54/039S-A
A 155/0979-1-A
ND
ND
ND
ND
ND
0.16
0.83
1.	IS
1.13
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
8.87
10.07
0.12
10.02
0.04
0.27
0.49
0.13
0.27
0.20
0.22
2.65
0.40
0.84
0.61
0.05
0.26
0.26
ND
ND
ND
ND
ND
ND
ND
ND
NO
ND
Ce
Ce
Ce
Ce
Ce
aFord prepared pellet
bSwRI prepared powder sample from same location in biscuit as Ford pellet
ND - not determined with this analytical procedure
* - below the detection limit
trace - at the detection limit
Oi
IsJ

-------
53
analyzed in Work Assignment No. 26, EPA Contract 68-03-3162, by x-ray
fluorescence at SwRI. A silver tube was employed to analyze all of the
elements except palladium (Pd) and rhodium (Rh). A gold tube was used for
these two elements. Additional samples were taken from each biscuit and
submitted for analysis by x-ray fluorescence (EPA/RTP and SSL), PIXE, and
WX/DCP. The EPA/RTP x-ray fluorescence unit used a chromium tube. Two
more catalysts which were analyzed by Ford were also submitted to each of
these laboratories except SSL because adequate sample was not available.
These catalysts were A160/0656-1 and A214/0681. With these two catalysts,
Ford took core samples from the front face, middle, and rear face of the
biscuit. The additional samples were taken from the same location used by
Ford. As another comparison, the actual pellet samples prepared by Ford were
also submitted for PIXE. No data were available for the Ford analyzed pellets.
The standards prepared by SwRI in previous work assignments were
submitted to EPA/RTP, SSL, and PIXE. The concentrations of the SwRI
standards are included in Table 35. Standards it 1 through itk were submitted to
EPA/RTP for analysis as unknowns. The actual versus measured values for the
four SwRI standards analyzed by EPA/RTP are presented in Table 36. The
standards submitted to SSL were used to establish the fundamental parameters
program. In this case the program was called EXACT. Standard HB was used
for fundamental parameters calibration and then analyzed as an unknown along
with HA, HC, and HD. Standard //5 was used for fundamental parameters
calibration and then analyzed as an unknown along with Al, Bl, and #6. The
results are included in Table 37. With PIXE, standards it I through it3 were
submitted as unknowns to determine the precision and accuracy of the
technique. The results by PIXE are included in Table 38. All standards were
not submitted to all laboratories because of the limited time available to
complete the analyses and return the standards.
In Work Assignment Nos. 26 and 31, EPA Contract 68-03-3162, the
exterior surfaces of the oxygen sensor tips were analyzed by x-ray
fluorescence. This technique resulted in relative concentrations with no means
of determining actual concentrations due to the lack of appropriate standards.
In this work assignment, ESCA was employed to examine the exterior surface
concentrations on the sensor tips. ESCA is a standardless technique. The only
limitation is the depth of penetration (about 100A), The depth of penetration
for x-ray fluorescence is between 2 and 200 microns, depending on the element.
Heavier atomic weight elements have larger penetration. This limitation is
reduced by the fact that the majority of the elements of concern should be
located near the exterior surface of the sample. A limitation for x-ray
fluorescence is that only elements with atomic weights above sodium can be
detected. Elements such as carbon, nitrogen, and oxygen cannot be detected
with x-ray fluorescence. ESCA is capable of detecting all elements except
hydrogen and helium. Another question that needed to be answered was
presence of uneven distribution of the elements on the sensor tip. This question
could only be answered by ESCA because very small sampling areas on the
surface are used. Sensor tip A218/0045 was examined at nine different
locations to determine if the elements were evenly distributed. It should be
noted that A218/0045 was a partial sensor tip (one side only). The tip was
examined at five locations down the axis of the tip from the rounded (closed)
end to the cut (open) end of the sensor tip and at four locations around the

-------
TABLE 35. WEIGHT PERCENTAGES OF ELEMENTS IN SwRI STANDARDS
	Weight Percent of Elements in Standard	
Honeycomb
Element
#1
in
// 3
m
//5
#6
A1
B1
HA
HB
HC
HD
Blank
A1
15.89
L5.87
15.8Q
21.09
15.89
10.60
15.86
15.88
—
—
—
~
—
Si
0.03
0.05
0.09
—
0.95
5.51
13.99
14.01
--
—
—
--
—
Fe
—
—
—
--
—
—
0.31
0.17
—
--
—
—
--
P
0.12
—
0.27
—
0.54
--
—
—
—
—
—
—
—
S
1.01
—
0.31
—
—
1.91
—
—
0.35
0.63
—
1.01
—
Ni
0.16
0.09
0.25
—
3.18
0.88
—
0.47
0.19
1.03
—
—
—
Zn
0.17
0.03
0.08
—
—
—
0.38
0.12
0.20
0.11
0.14
0.02
--
Mn
0.04
0.14
0.38
—
—
—
—
—
--
—
—
—
--
Ca
0.02
0.08
0.05
—
—
—
—
—
--
—
—
—
--
Ce
—
0.17
—
—
—
—
—
0.58
1.15
1.10
—
—
--
Ti
—
—
—
--
—
—
0.13
—
—
—
0.27
0.10
—
Pt
0.12
0.20
0.30
"
0.80
--
—
—
0.02
0.05
0.04
0.03
—
Pb
0.92
0.05
0.18
—
2.72
—
—
—
0.09
0.14
0.49
—
—
Honeycomb
—
—
—
—
—
—
—
—
80
80
80
80
90

-------
55
TABLE 36. CORRELATION OF 5wRJ STANDARD EPA/RTP
Weight Percentages of Elements in Standards
Element

#1
#2
n
n
A1
Actual
15.89
15.37
15.80
21.09

Measured
15.65+0.73
I6.3410.S1
16.1810.S1
21.0211.05
Si
Actual
0.03
0.05
0.09
*

Measured
*
trace
0.0110.003
*
P
Actual
0.12
*
0.27
*

Measured
0.1010.01
trace
0.2410.01
trace
5
Actual
1.01
*
0.31
*

Measured
1.0610.05
trace
0.331Q.Q2
trace
Ca
Actual
0.02
0.08
0.05
+

Measured
0.0310.002
0.1010.01
0.0610.003
0.0110.001
Mn
Actual
0.04
0.14
0.38
*

Measured
0.0310.002
0.1210.01
0.3110.02
trace
Ni
Actual
0.16
0.09
0.25
*

Measured
0.1210.01
0.0710.004
0.2110.01
*
7-
¦¦B -
Actual
0.17
0.{J2
O.PS
*

Measured
0.171:.: i
t.£-3±a.3:s
ojBlC'.ou:
act
P"
Actual
¦0-12
C-.20
ojo
+

Measured
0.Q3Z0.002
C-.C-3±0.q;2
¦a.os^o.001
*
Pb
Actual
0.92
0.0 5
0.18
*

Measured
0.6910.03
0.0410.002
0.1510.01
*
* - below the detection limit
trace - at detection limit

-------
56
TABLE 37. CORRELATION OF SwRI STANDARD BY SSL
Weight Percent of Elements in Standards
Element

HA
HBa
HC
HD
A1
B1
//5
US
S
Actual
0.35
0.63
*
1.01
*
*
*
1.91

Measured
0.30
0.63
*
0.69
0.43
0.41
*
1.97
Ti
Actual
*b
*
0.27
0.10
0.13
*
*
*

Measured
*
*
0.27
0.10
0.15
*
*
*
Ni
Actula
0.19
1.03
*
*
*
0.47
3.18
0.88

Measured
0.16
1.03
*
*
*
0.66
3.18
0.74
Zn
Actual
0.20
0.11
0.14
0.02
0.38
0.12
*
*

Measured
0.18
0.11
0.07
*
0.36
0.15
*
*
Ce
Actual
1.15
1.10
*
*
*
0.58
*
*

Measured
0.96
1.10
*
*
#
0.32
+
*
Pt
Actual
0.02
0.05
0.04
0.03
*
*
0.80
*

Measured
0.05
0.05
0.03
0.02
0.02
0.01
0.80
*
Pb
Actual
0.09
0.14
0.49
*
*
*
2.72
*

Measured
0.09
0.14
0.27
*
*
*
2.72
*
A1
Actual
*
*
*
*
15.89
10.60
15.86
15.88

Measured
*
+
*
*
15.89
10.45
9.18
9.78
Si
Actual
*
*
*
*
0.95
5.51
13.99
14.01

Measured
*
*
*
*
0.95
2.40
45.37
45.08
P
Actual
*
*
*
*
0.54
#
*
*

Measured
*
*
*
*
0.54
0.09
•0.07
0.02
aStandard HB was used to establish fundamental parameters
^None present and none detected

-------
57
TABLE 38. CORRELATION OF SwRI STANDARD BY P1XE
Weight Percentages of Elements in Standards
Element

in
//2
#3
//4
A1
Actual
15.89
15.87
15.80
21.09

Measured
16.0+0.19
17.010.21
17.410.21
22.110.27
Si
Actual
0.03
0.05
0.09
*

Measured
trace
trace
0.0310.01
trace
P
Actual
0.12
*
0.27
*

Measured
0.1110.01
*
0.2610.01
*
S
Actual
1.01
*
0.31
*

Measured
0.5810.01
*
0.1510.01
*
Ca
Actual
0.02
0.08
0.05
*

Measured
0.0310.002
0.1010.003
0.0710.004
0.0110.001
Mn
Actual
0.04
0.14
0.38
*

Measured
0.0410.0005
0.1310.001
0.4310.004
*
Ni
Actual
0.16
0.09
0.25
*

Measured
0.1410.001
0.0910.001
0.2510.002
*
Zn
Actual
0.17
0.03
0.08
*

Measured
0.1610.001
0.0310.0004
0.0810.001
*
Pt
Actual
0,12
0.20
0.30
*

Measured
0.0610.001
0.0810.001
0.1410.002
*
Pb
Actual
0.92
0.05
0.18
*

Measured
0.7110.01
0.0410.001
0.1610.002
*
* - below the detection limit
trace - at detection limit

-------
58
circumference of the mid point of the sensor tip. The locations are illustrated
in Figure 7 and the elemental concentrations are shown in Table 39. In general,
there was an even distribution of elements over the entire surface except near
the rounded or closed end of the sensor tip, Visually, the sensor tip was black
near the cut or open end, indicating carbonaceous deposits, and changes to a
light brown at the rounded end, indicating the spinel coating. Carbon and
oxygen are the major components with trace amounts of other elements
scattered across the tip. Magnesium was detected in two of the three locations
with the carbon concentration less than 80%. The presence of magnesium
indicates that the carbon layer was much thinner at this location (less than
100A), and the depth of penetration was into the spinel coating. The sampling
location for all of the remaining sensor tips was near the mid point of the long
axis and at a typical location around the circumference. The ESCA spectra of
each location are presented in Appendix I.
V. Summary
In summary, a total of <*2 catalysts were examined for converter
efficiency and light-off times, whole converter x-ray, x-ray fluorescence, x-ray
diffraction, 5EM with dot mapping, PIXE, and B.E.T. surface area analysis. Of
these V2 catalysts, 29 were whole converters and 11 were partial catalyst
samples. Nine converters were evaluated "on-engine" only, 7 received
laboratory analysis only, and 17 were examined "on-engine" and by laboratory
analysis. In addition, 12 oxygen sensors were evaluated for one or more of the
following: screening tests (light-off, voltage response, and voltage output),
surface area analysis, and ESCA for elements on the sensor exterior.
This letter report is a compilation of all of the data available at the time
of submittal, and is intended to serve as the final report of the results for the
program. We hope that the results from these catalyst evaluations will help to
answer some of the EPA questions about relationships between catalyst
efficiency and catalyst condition. Please contact us if there are additional
questions, or if we can be of further assistance.
Prepared by:	Reviewed by:
r.	GiUwjuit . 	
E. Robert Fanick	Charles T. Hare
Research Scientist	Director
Department of Emissions Research	Department of Emissions Research

-------
Figure 7. Sample location for Sensor Tip A218/G045

-------
60
TABLE 39. ELEMENTAL CONCENTRATION AT SEVERAL LOCATIONS ON
SENSOR TIP A2I8/00W
	Weight Percent of Elements
Location	C
1	86
2	87
3	84
4	74
5	78
6	86
7	84
8	73
9	83
1	- closest to cut end (open) of sensor tip
2	- 75% of total length from closed end of sensor tip
3	- halfway between cut end and closed end of sensor tip
4	- 25% of total length from closed end of sensor tip
5	- closest to closed end of sensor tip
6	- far right of location 3
7	- right center of location 3
8	- left center of location 3
9	- far left of location 3
0_
Na
Pb
Mk
P
Ca B N S
11
1.1
0.4
1.0
—

13
—
0.4



13
2.1
0.4



16
—
1.0
3.3
--
-- 5.3
17
1.4
1.0
—
1.8
0.2
13
—
0.4
--
0.6
— 0.4
14
—
0.7
--
1.2
	0.5
18
1.4
1.5
3.8
2.3

15
0.7
0.7
• •
0.9


-------
APPENDIX A
WHOLE CATALYST X-RAY RADIOGRAPHS

-------
INLET
193 0908
OUTLET
Figure A-l. X-Ray Radiograph of A193/0908
A-2

-------
INLET
OUTLET
Figure A-2. X-Ray Radiograph of A220/0392
A-3

-------
INLET

"'III
		4M. I! 11 ¦ "~i ¦¦[;>;	- •' -j
''''wAw',-yr'-'
!i li:i::: •;
aOCTHB
SWRI72966
4220 0010
*• W'H.ItH ,.;j]|

f (:||j

,l 1 >.• Vl ill

. IV¦»« Mil
111 Nil'

'1 !'

Hi
OUTLET
Figure A-3. X-Ray Radiograph of A220/0810
A-4

-------
INLET
OUTLET
Figure A-4. X-Ray Radiograph of A221/0152
A-5

-------
INLET
BBslB
ms
OUTLET
Figure A-5. X-Ray Radiograph of A221/0198
A-6

-------
INLET
r
72^86
C pi
IxBf
OUTLET
Figure A-6. X-Ray Radiograph of A221/0204
A-7

-------
INLET
OUTLET
Figure A-7. X-Ray Radiograph of A221/0310

-------
INLET
OUTLET
Figure A-8. X-Ray Radiograph of A221/04
-------
INLET
OUTLET
Figure A-9. X-Ray Radiograph of A230/0177X
A-10

-------
INLET
OUTLET
Figure A-10. X-Ray Radiograph of A230/0636X
A-ll

-------
INLET
OUTLET
Figure A-ll. X-Ray Radiograph of A240/0016L
A-12

-------
INLET
SWRI'H 86
OUTLET
Figure A-12. X-Ray Radiograph of A240/0102
A-13

-------
INLET
OUTLET
Figure A-13. X-Ray Radiograph of A240/0141L
A-14

-------
INLET
te40 Ot 5 3
AM
-x-SRI

si|fR|7H86
OUTLET
Figure A-l^. X-Ray Radiograph of A240/0153
A-15

-------
INLET
OUTLET
Figure A-15. X-Ray Radiograph of A240/0334L
A-16

-------
INLET
OUTLET
Figure A-16. X-Ray Radiograph of A249/0169-1
A-17

-------
INLET
L
> >
OUTLET
Figure A-17. X-Ray Radiograph of A2^9/0169-2
A-18

-------
INLET
r/ V
98H/ia*S
OUTLET
Figure A-18. X-Ray Radiograph of A249/0169-3
A-19

-------
INLET
OUTLET
Figure A-19. X-Ray Radiograph of A249/0486-1
A-20

-------
INLET
OUTLET
Figure A-20. X-Ray Radiograph of A249/0^86-2
A-21

-------
INLET
OUTLET
Figure A-21. X-Ray Radiograph of A249/0486-3
A-22

-------
INLET
OUTLET
42^ 003/
\
Figure A-22. X-Ray Radiograph of A254/0031
A-23

-------
INLET
OUTLET
Figure A-23. X-Ray Radiograph of A254/0037
A-24

-------
INLET
OUTLET
Figure A-24. X-Ray Radiograph of A254/0191
A-25

-------
INLET
OUTLET
Figure A-25. X-Ray Radiograph of A254/0275
A-26

-------
INLET
OUTLET
Figure A-26. X-Ray Radiograph of A280/0001L
A-27

-------
APPENDIX B
ON-ENGINE CONVERTER EFFICIENCIES AND
LIGHT-OFF TIMES

-------
TABLE B-l. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A193/0908
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
PPm
%
PPtn
%
%
°F
14.08
Inlet
2524
2.10
1270
1.08
12.89
740

Outlet
1600
1.38
900


682

CE %
36.6
34.3
29.1



14.29
Inlet
2424
1.74
1370
1.13
13.02
746

Outlet
1475
1.09
963


661

CE %
39.2
37.4
29.7



14.47
Inlet
2174
1.43
1446
1.18
13.02
748

Outlet
1150
0.80
963


665

CE %
47.1
44.1
33.4



14.72*
Inlet
1774
0.98
1395
1.28
13.29
748

Outlet
200
0.02
837


706

CE %
88.8
98.0
40.0



14.94
Inlet
1649
0.84
1446
1.38
13.43
743

Outlet
175
0.01
973


712

CE %
89.4
98.3
35.2



15.10
Inlet
1349
0.73
1446
1.58
13.43
747

Outlet
-150
0.004
1076


688

CE %
88.9
99.4
25.6



15.29
Inlet
1149
0.66
1471
1.63
13.29
749

Outlet
125
0.003
1126


668

CE Z
89.1
99.6
23.4



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hr
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.08
1810
16.6
21.1
46.8
2.49
97
0.7
961
5.5
29.17
14.29
1809
16.6
21.0
46.6
2.48
99
0.7
969
5.5
29.16
14.47
1809
16.6
20.8
46.5
2.47
99
0.7
973
5.5
29.15
14.72
1806
16.8
19.6
45.5
2.47
99
0.65
977
5.5
29.15
14.94
1807
16.8
19.6
45.4
2.42
99
0.65
977
5.5
29.14
15.10
1804
16.8
19.5
45.0
2.41
100
0.65
9i30
5.5
29.12
15.29
1804
16.8
19.2
45.0
2.41
100
0.65
981
5.5
29.11
* - HC and NOx not within tolerances at 14.7 air fuel ratio
B-2

-------
TABLE B-2. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT AI93/09O8
No.



Converter
Efficiency Data
Time to


Test 1
Test 2

Reach %

Converter Time
Converter
Time
Reduction
Emission^)
Inlet
Sec.
Inlet
Sec.
20
HC

2224
37



CO

1.99
90



N0X

1760
NA


50
HC

2224
108



CO

1.99
105



NOx

1760
NA


80
HC

2224
132



CO

1.99
123



N0X

1760
NA





Converter
Response




Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In
Out
%
In Out
%
at 203 sec
HC
2249
300
86.7



CO
2.02
0.02
99.0



NOx
1760
1714
2.6


at 600 sec
HC
2249
300
86.7



CO
2.04
0.02
99.0



N0X
1735
1676
3.4



Engine Operation
Data


Speed Man Vac
Power Air
Flow,
SCFM
Intake
Air Exhaust
rpm in Hg
Hp obs Engii
tie Injected
°F in
H20 Vac °F
in H?0

2%
CO, 5% 02



1800 12.6
36.6 65.
6
9.61
106
1.1 1036
14.3
Bar.
29.09
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-3

-------
TABLE B-3. CATALYTIC CONVESTER EFFICIENCY - STEADY-STATE
UNIT A220/0392
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
CO2
Temp.
Ratio
Location
PP"»
%
ppm
%
%
°F
14.14
Inlet
1649
1.19
1257
0.68
14.12
700

Outlet
175
0.02
535


756

CE %
89.4
98.3
57.4



14.35
Inlet
1549
1.13
1408
0.68
14.12
704

Outlet
150
0.02
510


736

CE %
90.3
98.2
63.8



14.52
Inlet
1449
0.95
1408
0.83
13.98
705

Outlet
150
0.01
fall


710

CE %
89.6
99.0
56.6



14.68*
Inlet
1249
0.68
1408
0.98
14.12
709

Outlet
100
0.003
862


680

CE %
92.0
99.6
38.8



14.88
Inlet
1249
0.57
1408
1.13
14.12
710

Outlet
100
0.003
900


660

CE %
92.0
99.5
36.1



15.18
Inlet
1099
0.47
1383
1.28
14.12
711

Outlet
100
0.002
887


643

CE %
90.9
99.6
35.9



15.26
Inlet
900
0.35
1307
1.48
14.12
710

Outlet
75
0.002
862


623

CE %
91.7
99.4
34.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air

Exhaust
Bar.
in. Hg
Engine
Injected
°F
in. H2O Vac
°F
in. H?0
14.14
1796
16.8
20.3
46.3
2.51
98
0.7
ND
6
29.05
14.35
1794
16.7
20.1
46.3
2.51
97
0.7
ND
6
29.05
14.52
1796
16.7
19.8
46.1
2.50
98
0.7
ND
6
29.06
14.68
1795
16.7
19.6
46.1
2.51
97
0.7
ND
6
29.06
14.88
1793
16.7
19.1
46.3
2.52
97
0.7
ND
6
29.06
15.08
1796
16.8
19.0
46.3
2.54
97
0.65
ND
6
29.07
"" 26
1793
16.8
18.5
46.3
2.56
9b
0.65
ND
6
29.07
*HC not wxthin tolerance at 14.7 air/fuel ratio
B-4

-------
TABLE B-4. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A220/0392
Converter Efficiency Data
Time to	Test 1	Test 2
Reach Z	Converter	Time Converter Time
Reduction Emlssion(l-)	Inlet	Sec.	Inlet Sec.
20 HC	16A9	36
CO	2.02	34
N0X	1383	ND
50 HC	16Z(9	47
CO	2.02	^2
N0X	1383	ND
80 HC	1649	68
CO
2.02 58
N0„	1383	ND
Converter Response
Test 1	Test 2
Efficiency %
Emission
Converter
CE
%
Converter CE
In
Out
In Out %
at 205 sec
HC
1699
150
91.2


CO
2.02
.003
99.8


N0X
1408
ND
ND

at 600 sec
HC
1549
150
90.3


CO
1.99
.002
99.9


N0X
1408
ND
ND

Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM	Intake Air Exhaust Bar.
No. rpm in Hg Hp obs Engine Injected	°F in H2O Vac °F in H?0 in Hg
2% CO, 5% 02
1 1807 13.2 35.1 64.8 9.06	98 1.07 ND 15 29.06
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
ND: No Data
B -5

-------
TABLE B-5. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A220/0810
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
CO2
Temp,
Ratio
Location
PPm
Z
ppm
%
%
°F
14.08
Inlet
1749
1.57
1509
0.63
13.84
•
728

Outlet
220
0.09
1013


821

CE %
87.4
94.3
32.9



14.32
Inlet
1599
1.13
1634
0.78
13.84
731

Outlet
200
0.02
1038


758

C&Z
87.5
98.2
36.5



14.50
Inlet
1549
0.98
1659
0.88
14.12
721

Outlet
200
0.01
1013


729

CE %
87.1
99.0
38.9



14.65
Inlet
1499
0.84
1685
0.98
14.12
730

Outlet
150
0.01
988


712

CE %
90.0
98.8
41.4



14.85
Inlet
1299
0.65
1710
1.18
14.12
735

Outlet
150
0.003
1138


693

CE %
88.4
99.5
33.4



15.07
Inlet
1199
0.47
1710
1.38
13.84
733

Outlet
150
0.002
1264


665

CE %
87.5
99.6
26.1



15.26
Inlet
1049
0.42
1685
1.48
13.98
733

Outlet
150
0.002
1214


655

CE %
85.7
99.5
28.0



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio rpm in. Hg Hp obs Engine Injected "F in. H2O Vac °F in. H?0 in. Hg
14.08
1805
16.2
23.0
49.3
2.79
93
0.7
ND
3
29.15
14.32
1805
16.2
22.7
49.6
2.79
93
0.7
ND
8
29.15
14.50
1805
16.2
22.6
49.3
2.79
93
0.7
ND
8
29.16
14.65
1804
16.2
22.4
49.3
2.79
93
0.7
ND
8
29.16
14.85
1803
16.25
22.2
49.3
2.79
93
0.7
ND
8
29.16
15.07
1802
16.25
21.8
49.2
2.79
92
0.7
ND
8
29.17
1.26
1802
16.25
21.6
49.2
2.79
92
0.7
ND
3
29.17
B-6

-------
TABLE B-6. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A220/0810
Time to
Reach %
Reduction
Emission^!)
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
Time
Sec.
Converter
Inlet
Time
Sec.
50
HC
CO
NO,
1599
2.10
1307
34
21
38
80
HC
CO
NO,
1599
2.10
1307
41
37
NA
90
HC
CO
NO,
1599
2.10
1307
56
43
NA
Converter Response
Test 1	Test 2
Converter
CE
Converter
CE
No,
Efficiency %
Emission
In
Out
% In
Out %
at 205 sec
HC
CO
N0X

1599
1.99
1383
250
0.002
1289
84.4
99.9
6.8

at 600 sec
HC
CO
NOx

1699
1.99
1333
175
0.002
1314
89.7
99.9
1.4



Engine Operation
Data

Speed Man Vac
Power
Air
Flow,
SCFM
Intake Air
Exhaus t
rpm in Hg
Hp obs
Engine Injected
°F in H?0 Vac
°F in H?0


2%
CO, 5% 02


1801 12.7
37.7
67.7
11,
.46
93 1.12
ND 16
Bar.
29.12
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-7

-------
TABLE B-7. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A221/0152
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
•14 .Q6
Inlet
2199
1.55
1295
0.73
13.56
742

Outlet
700
0.29
762


785

CE %
68.2
81.3
41.2



14.30
Inlet
1949
1.36
1358
0.83
13.70
743

Outlet
250
0.07
485


772

CE %
87.2
94.8
64.3



14.45
Inlet
1849
1.08
1458
0.88
13.84
743

Outlet
200
0.02
686


723

CE %
89.2
98.2
53.0



14.67
Inlet
1699
0.73
1471
1.03
13.98
745

Outlet
150
0.01
963


710

CE %
91.2
98.6
34.5



14.90
Inlet
1499
0.56
1458
1.18
13.98
745

Outlet
125
0.003
1088


680

CE %
91.7
99.4
25.4



15 .Ob
Inlet
1449
0.42
1458
1.33
13.98
745

Outlet
125
0.002
1214


665

CE %
91.4
99.5
16.7



15.2b
Inlet
1324
0.37
1383
1.43
13.98
744

Outlet
125
0.002
1189


649

CE %
90.6
99.4
14.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM

Intake Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.06
1800
16.6
20.9
45.9
3.17
96
0.65
964
4.5
29.22
14.30
1800
16.6
20.8
45.9
3.17
95
0.65
966
4.5
29.22
14.45
1800
16.6
20.7
46.1
3.17
95
0.65
971
4.5
29.23
14.67
1800
16.6
20.7
46.1
3.17
95
0.65
9 76
4.5
29.23
14.90
1800
16.6
20.5
46.1
3.17
95
0.65
979
4.5
29.24
15.0b
1800
16.6
20.2
46.2
3.17
94
0.65
981
4.5
29.24
15.26
1800
16.6
19.8
46.2
3.17
94
0.65
980
4.5
29.25
B-8

-------
TABLE B-8. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A221/0152
Converter Efficiency Data
Time to		Test	1 730" 	Test 2	
Reach %	Converter	Time Converter Time
Reduction Emission^)	Inlet	Sec. Inlet Sec.
20 HC	2499	84
CO	2.06	77
N0X	1634	82
50 HC	2499	96
CO	2.06	86
N0X	1634	NA
80 HC	2499	131
CO	2.06	102
N0„	1634	NA
Converter Response
Test 1	Test 2


Converter
CE
Efficiency %
Emission
In
Out
Z
at 205 sec
HC
2499
325
87.0

CO
1.99
0.02
99.0

NOx
1584
1489
6.0
at 600 sec
HC
2499
300
88.0

CO
2.06
0.01
99.5

N0V
1609
1589
1.2
Converter
CE
In Out
%
Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFH Intake Air	Exhaust	Bar.
No. rpm in Hg Hp obs Engine Injected °F in H?0 Vac °F in H?0 in Hg
2% CO, 5% 02
1 1800 12.8 37.5 66.7 9.45 95	1.1	1052 9.7 29.18
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-9

-------
TABLE B-9. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A221/0198
Converter Efficiency Data
A/F
Ratio
Sample
Location
HC
PPm
CO
%
N0X
PPm
02
I
C02
%
Temp
°F
14.08
Inlet
2349
1.62
1584
0.73
13.56
723

Outlet
625
0.25
1138


847

CE %
73.3
84.6
28.2



14.32
Inlet
2149
1.28
1672
0.88
13.56
716

Outlet
700
0.21
1289


776

CE %
67.4
83.6
22.9



14.52
Inlet
1999
1.01
1722
1.03
13.56
714

Outlet
200
0.06
762


793

CE %
90.0
94.1
55.8



14.68
Inlet
1999
0.89
1735
1.08
13.84
725

Ou


736


785

CE


57.6



14.89
In


1760
1.23
13.84
703

Ou


1163


719

CE


33.9



15.10
In


1710
1.48
13.56
740

Ou


1138


709

CE


33.4



15.25
In


1697
1.63
13.56
704

Ou


1264


678

CE


25.5



Ltion Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM

Intake Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.08
1808
14.5
31.3
57.9
3.4
87
0.95
1020
9.0
29.33
14.32
1809
14.4
31.2
57.9
3.4
88
0.95
1020
9.0
29.33
14.52
1810
14.5
31.1
57.7
3.4
89
0.95
1025
9.0
29.33
14.68
1808
14.5
30.4
57.2
3.4
89
0.95
1028
9.0
29.33
14.89
1809
14.4
30.6
57.7
3.4
88
1.0
1024
9.0
29.33
15.10
1807
14.5
29.9
57.6
3.5
88
1.0
1041
9.0
29.34
15.25
1807
14.5
30.0
57.6
3.5
89
1.0
1028
9.0
29.34
C not within tolerance at 14.7 air/fuel ratio
B-10

-------
TABLE B-10. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A221/OI98



Converter Efficiency Data
Time to


Test
1
Test 2
Reach %


Converter
Time
Converter Time
Reduction
Emission(l)
Inlet
Sec.
Inlet Sec.
20
HC

1799
71


CO

1.91
66


N0X

1219
60

50
HC

1799
86


CO

1.91
76


NOx

1219
NA

80
HC

1799
121


CO

1.91
92


N0X

1219
NA




Converter
Response



Test 1

Test 2


Converter
CE
Converter CE
Efficiency %
Emission
In
Out
Z
In Out %
at 205 sec
HC
1899
250
86.8


CO
1.88
.005
99.7


NOx
1257
1163
7.5

at 600 sec
HC
1924
210
89.1


CO
1.86
.002
99.9


N0X
1282
1214
5.3

Test
No.
Speed
rpm
Man Vac
in Hg
Power
Hp obs
Engine Operation Data
Air Flow, SCFM Intake Air
Engine Injected 	F_ in H2O Vac
2% CO, 5% O2
Exhaus t
Bar.
F in H9O in Hg
1810
12.95 40.7
67.2
9.4
84
1.1
1071
14
29.32
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-ll

-------
TABLE B-ll. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A221/0204
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
PPm
%
PPm
%
%
°F
14.14
Inlet
2324
1.45
1244
0.73
13.43
743

Outlet
775
0.23
1076


781

CE %
66.6
84.1
13.5



14.29
Inlet
2249
1.17
1299
0.78
13.70
745

Outlet
775
0.20
1126


754

CE %
65.5
82.9
13.3



14.47
Inlet
2049
0.91
1345
0.88
13.70
747

Outlet
700
0.14
1151


719

CE %
65.8
84.6
14.4



14.75*
Inlet
1799
0.63
1333
1.13
13.70
749

Outlet
450
0.06
1076


695

CE %
75.0
90.5
19.3



14.91
Inlet
1599
0.53
1320
1.13
13.84
749

Outlet
200
0.02
1013


689

CE %
07.5
96.2
23.4



15.08
Inlet
1449
0.41
1320
1.28
13.70
749

Outlet
150
0.004
1050


671

CE %
89.6
99.0
20.4



15.28
Inlet
1299
0.36
1219
1.43
13.70
750

Outlet
125
0.004
1025


661

CE %
90.4
98.9
15.9





Engine Operation Data



A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio rpm in. Hg Hp obs Engine Injected °F in. H2O Vac "F in. H?0 in. Hg
14.14
1800
17.0
18.6
42.9
2.52
105
0.6
956
4.5
29.11
14.29
1800
17.0
18.4
42.7
2.52
105
0.6
957
4.5
29.11
14.47
1800
17.0
18.2
43.0
2.52
106
0.6
963
4.5
29.10
14.75
1800
17.0
18.1
43.0
2.52
106
0.6
968
4.5
29.10
14.91
1800
17.0
17.7
43.0
2.52
106
0.6
969
4.5
29.10
15.08
1800
17.0
17.6
42.8
2.52
106
0.6
971
4.5
29.10
15.28
1800
17.0
17.3
42.8
2.52
106
0.6
975
4.5
29.10
*HC +
N0X not
within
tolerances
at 14.7
air/fuel
ratio




B-12

-------
TABLE B-12. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A221/0204
Converter Efficiency Data
Time to	Test 1	Test 2
Reach %	Converter	Time Converter Time
Reduction F.mi ssion(l)	Inlet	Sec.	Inlet Sec.
20	HC	2349	86
CO	2.01	82
N0X	1609	NA
50	HC	2349	113
CO	2.01	100
N0X	1609	NA
80	HC	2349	182
CO	2.01	130
N0V	1609	NA
Converter Response
	Test 1	 	Test 2	
Converter CE	Converter CE
Efficiency % KnHssion In Out %	In Out 	%_
at 205 sec
HC
2399
360
85.0

CO
2.06
0.02
99.0

NOx
1647
1477
10.3
at 600 sec
HC
2349
275
88.3

CO
2.06
0.01
99.5

NOx
1634
1552
5.0
Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
No. rpm in Hg Hp obs Engine Injected °F in H?0 Vac °F in H?0 in Hg
2% CO, 5% 02
1 1809 12.8 37.8 67.8 9.88 97	1.15 1042 10.3 29.19
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-13

-------
TABLE B-13. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A221/0310
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
C02
Temp.
Ratio
Location
ppm
%
PPm
%
Z
°F
14.07
Inlet
2474
1.74
1295
0.73
13.84
701

Outlet
1050
0.30
1038


744

CE %
57.6
82.8
19.8



14.30
Inlet
2049
1.28
1383
0.83
13.84
746

Outlet
500
0.10
862


777

CE %
75.6
92.2
37.7



14.49
Inlet
1949
1.13
142L
0.98
13.84
709

Outlet
675
0.13
887


703

CE %
65.4
88.5
37.6



14.69*
Inlet
1949
0.98
1421
1.03
13.98
720

Outlet
200
0.03
887


714

CE %
89.7
96.9
37.6



14.86
Inlet
1699
0.76
1395
1.23
13.84
724

Outlet
150
0.01
963


694

CE %
91.2
98.7
31.0



15.07
Inlet
1599
0.60
1383
1.48
13.84
728

Outlet
125
0.02
887


685

CE %
92.2
96.7
35.9



15.25
Inlet
1399
0.55
1383
1.58
13.84
730

Outlet
125
0.01
1038


672

CE %
91.1
98.2
25.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM

Intake Air
Exhaus t
Bar.
in. Hg
Engine
Injected
°F
in. H2O Vac
aF
in. H?0
14.07
1805
15.2
28.5
53.6
2.8
91
0.9
1008
8.0
29.33
14.30
1804
15.3
28.0
53.0
2.8
92
0.8
1030
8.0
29.33
14.49
1805
15.2
28.3
52.9
2.8
92
0.8
1010
8.0
29.33
14.69
1804
15.2
27.7
53.1
2.8
93
0.9
1034
8.0
29.33
14.86
1806
15.2
27.3
53.2
2.8
94
0.9
1037
8.0
29.32
15.07
1801
15.2
27.0
53.0
2.8
95
0.9
1037
8.0
29.32
15.25
1797
15.2
26.6
53.0
2.8
95
0.9
1037
8.0
29.31
C not
: within
tolerances at 14.7 air/fuel ratio





B-l*

-------
TABLE B-14. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A221/0310
Time to
Reach Z
Reduction
20
Emission (3-)
HC
CO
NO.,
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
2199
1.99
1370
Time
See.
68
65
70
Converter
Inlet
Time
Sec.
50
HC
CO
NO.
2199
1.99
1370
80
74
NA
80
HC
CO
NO,
2199
1.99
1370
96
82
NA
Efficiency
Emission
Converter Response
Test 1	Test 2
Converter
In
Out
CE
%
Converter
In
Out
CE
%

at
205 sec
HC
CO
NOx
2249 275
2.01 0.01
1345 1289
87.8
99.5
4.2


at
600 sec
HC
CO
NOx
2149 250
2.02 0.01
1282 1226
88.4
99.6
4.4

Test
Speed
Man Vac
Power
Engine Operation
Air Flow, SCFM
Data
Intake Air
Exhaust
No.
rpm
in Hg
Hp obs
Engine Injected
°F in H20 Vac
°F in H9O




2% CO, 5% 02


1
1809
12.9
39.2
67.1 9.1
86 1.15
1067 13
Bar.
29.33
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-15

-------
TABLE B-15. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A221/0447
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
C02
Temp.
Ratio
Location
PPm
%
PPm
%
%
8F
14.07
Inlet
2324
1.60
1358
0.63
13.70
738

Outlet
225
0.08
762


855

CE %
90.3
95.0
43.9



14.27
Inlet
2149
1.25
1421
1.23
13.84
748

Outlet
200
0.02
937


796

CE %
90.7
98.4
34.1



14.46
Inlet
1999
0.92
1458
0.88
13.98
727

Outlet
175
0.01
1138


737

CE %
91.2
98.9
22.0



14.70
Inlet
1699
0.66
1446
1.08
13.98
749

Outlet
150
0.002
1214


720

CE %
91.2
99.7
16.0



14.87
Inlet
1624
0.47
1458
1.18
14.12
718

Outlet
150
0.002
1264


705

CE %
90.8
99.6
13.3



15.08
Inlet
1499
0.40
1471
1.38
13.98
743

Outlet
125
0.002
1276


695

CE %
91.7
99.5
13.3



15.28
Inlet
1299
0.35
1433
1.53
13.84
756

Outlet
100
0.002
1251


685

CE %
92.3
99.4
12.7



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM

Intake Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.07
1800
16.5
21.4
47.1
3.21
94
0.7
950
6
29.24
14.27
1800
16.6
21.3
47.0
3.21
95
0.7
962
6
29.24
14.46
1799
16.6
21.0
47.0
3.22
95
0.7
933
6
29.24
14.70
1799
16.5
20.5
46.8
3.21
96
0.7
967
6
29.23
14.87
1800
16.6
20.4
46.8
3.22
96
0.7
931
6
29.23
15.08
1797
16.6
19.9
46.8
3.21
97
0.7
963
6
29.23
15.28
1798
16.6
19.6
46.6
3.21
97
0.7
971
6
29.23
B-16

-------
TABLE B-16. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A221/0447
Converter Efficiency Data
Time to	Test 1	Test 2
Reach %	Converter Time Converter Time
Reduction Rnrf ssiond)	Inlet	Sec.	Inlet Sec.
20 HC	1999	25
CO	1.97	20
NOx	1446	NA
50 HC	1999	38
CO	1.97	29
N0X	1446	NA
80 HC	1999	63
CO	1.97	42
N0„	1446	NA
Converter Response
Test 1	Test 2


Converter
CE
Converter
CE
Efficiency %
Emission
In
Out
%
In Out
%
at 205 sec
HC
CO
NOx
2399
2.28(2)
1421
225
0.01
1389
90.6
99.6
2.2


at 600 sec
HC
CO
N0V
2574
2.18(2)
1408
250
0.01
1402
90.3
99.5
0.4


Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
No. rpm in Hg Hp obs Engine Injected °F in H2O Vac °F in H?0 in Hg
2% CO, 5% 02
1 1812 13.5 35.4 65.6 9.13 86	1.1 1026 10.2 29.23
NA: Not Achieved
(1)	HC and NOx are PPm» c0 is %
(2)	After 167 sec CO not maintained within 2.0 * 0.1%
B-17

-------
TABLE B-17. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A230/0177X
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
CO2
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.11
Inlet
1649
1.13
1571
0.44
13.34
715

Outlet
750
0.55
333


658

CE %
54.5
51.3
78.8



14.33
Inlet
1499
0.77
1634
0.53
13.98
716

Outlet
75
0.03
116


685

CE %
95.0
96.1
92.9



14.50
Inlet
1399
0.69
1659
0.63
13.98
717

Outlet
75
0.003
711


695

CE %
94.6
99.6
57.1



14.75*
Inlet
1149
0.42
1697
0.88
13.98
719

Outlet
75
0.003
1302


659

CE %
93.5
99.3
23.3



14.89
Inlet
1074
0.35
1684
0.98
13.84
719

Outlet
50
0.002
1439


646

CE %
95.3
99.4
14.5



15.07
Inlet
974
0.31
1672
1.13
13.98
718

Outlet
50
0.002
1452


639

CE %
94.9
99.4
13.2



15.27
Inlet
800
0.28
1571
1.48
13.84
716

Outlet
50
0.002
1339


629

CE %
93.8
99.3
14.8



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM

Intake Air
Exhaust
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H9O
14.11
1807
16.35
23.9
51.2
	
90
0.8
969
4.5
29.18
14.33
1807
16.35
23.8
51.0
—
91
0.8
974
4.5
29.18
14.50
1804
16.35
23.6
50.8
—
92
0.8
976
4.5
29.18
14.75
1806
16.35
23.1
50.6
—
93
0.8
978
4.5
29.17
14.89
1806
16.35
22.7
50.6
—
93
0.8
980
4.5
29.17
15.07
1807
16.35
22.5
50.4
—
94
0.8
980
4.5
29.16
15.27
1810
16.35
22.3
50.3
—
94
0.8
977
4.5
29.16
*HC not within tolerance at 14.7 air/fuelgc^gio

-------
TABLE B-18.
CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A230/ 0177X
Time to "
Reach %
Reduction
20
50
80
Emission^)
HC
CO
N0X
HC
CO
NOx
HC
CO
NO„
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
1424
1.99
1307
1424
1.99
1307
1424
1.99
1307
Time
Sec.
20
16
18
24
20
NA
42
28
NA
Converter
Inlet
Time
Sec.
Efficiency %,
at 205 sec
at 600 sec
Emission
HC
CO
N0X
HC
CO
N0„
Converter Response
Test 1	Test 2
Converter
In
Out
1424 100
2.08 .002
1282 1176
1449 100
2.10 .0008
1244 1151
CE
%
93.0
99.9
8.3
93.1
100
7.5
Converter
CE
In
Out
Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
No. rpm in Hg Hp obs Engine Injected °F in H2O Vac °F in H?0 in Hg
2% CO, 5% 02
1 1800 10.15 51.1 85.0 11.13 83	1.5 1086 14.2 29.18
NA: Not Achieved
(1) HC and NOx are PPm> CO is %
B-19

-------
TABLE B-19. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A230/0636X
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
PPP
%
ppm
%
%
°F
14,15
Inlet
1699
1.13
1634
0.28
13.84
710

Outlet
900
0.63
358


639

CE %
47.0
44.2
78.1



14.35
Inlet
1599
0.95
1710
0.35
13.84
714

Outlet
100
0.01
26


702

CE Z
93.8
99.0
98.5



14.49
Inlet
1349
0.65
1735
0.50
13.84
714

Outlet
100
0.003
686


701

CE %
92.6
99.5
60.5



14.66
Inlet
1349
0.55
1760
0.58
13.84
716

Outlet
75
0.003
1189


681

CE 1
94.4
99.5
33.4



14.89
Inlet
1149
0.40
1760
0.74
13.56
717

Outlet
50
0.002
1464


662

CE %
95.6
99.5
16*. B



15.15
Inlet
*50
0.30
1710
1.15
13.29
717

Outlet
50
0. 002"
1489


653

CE %
94.7
99.3
12.9



15.33
Inlet
800
0.25
1634
1.15
13.29
716

Outlet
50
0.002
1389


638

CE Z
93.8
99.3
15.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM

Intake Air
Exhaus t
Bar.
in. Hg
Engine
Injected
°F
in. H2O Vac
°F
in. H?0
14.15
1800
16.3
23.7
50.0

99
0.75
965
4.9
29.11
14.35
1800
16.3
23.5
49.3
	
100
0.75
969
4.9
29.11
14.49
1800
16.35
23.1
49.8
	
100
0.75
970
4.9
29.11
14.66
1800
16.35
23.0
49.8
	
100
0.75
970
4.9
29.11
14.89
1800
16.35
22.4
49.7
	
101
0.75
971
4.9
29.11
15.15
1800
16.35
22.2
49.5
	
102
0.75
971
4.5
29.11
1 ^ 33
1800
16.35
21.7
49.5
	
102
0.75
969
4.5
29.11
B-20

-------
TABLE B-20. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A230/0636X
Time to
Reach %
Reduction
20
50
F.in13sion(l)
HC
CO
NO„
HC
CO
NO.
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
1449
1.99
1383
1449
1.99
1383
Time
Sec.
16
26
NA
28
32
NA
Converter
Inlet
Time
Sec.
80
HC
CO
NO.
1449
1.99
1383
43
38
NA
Converter Response
Test 1	Test 2
Efficiency % Emlssion In
Converter
Out
CE
%
Converter
In
Out
CE
%

at
205 sec
HC
1399 125
91.1





CO
2.06 0.002
99.9





N0X
1358 1289
5.1



at
600 sec
HC
1449 125
91.4





CO
1.99 0.002
99.9





N°x
1333 1289
3.3






Engine Operation
Data


Test
Speed
Man Vac
Power
Air Flow, SCFM
Intake Air
Exhaust
Bar.
No.
rpm
in Hg
Hp obs
Engine Injected
°F in H?0 Vac
°F in H?0
in Hg




2% CO, 5% 02



1
1808
9.5
52.0
84.7 11.20
94 1.5
1093 16.0
29.13
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-21

-------
TABLE B-21. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A240/0016L
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp
Ratio
Location
PPm
%
PPP
%
%
°F
14.17
Inlet
1799
1.22
1596
0.48
14.41
701

Outlet
325
0.07
422


671

CE %
81.9
94.3
73.6



14.30
Inlet
1674
0.92
1710
0.58
14.41
701

Outlet
175
0.005
244


652

CE %
89.5
99.4
85.7



14.48
Inlet
1574
0.81
1735
0.68
14.56
702

Outlet
125
0.003
384


626

CE Z
92.0
99.6
77.9



14.66
Inlet
1399
0.60
1710
0.78
14.41
701

Outlet
100
0.003
837


597

CE %
92.8
99.5
51.0



14.88
Inlet
1249
0.47
1685
1.08
14.27
702

Outlet
100
0.003
1113


580

CE %
92.0
99.4
33.9



15.05
Inlet
1099
0.35
1672
1.23
14.12
701

Outlet
90
0.002
1201


565

CE %
91.8
99.4
28.2



15.28
Inlet
1074
0.29
1622
1.38
14.12
702

Outlet
75
0.002
1151


556

CE %
93.0
99.3
29.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaus t
Bar
in.
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.07
1807
16.45
23.1
49.1
2.45
103
0.8
953
5
29.1
14.30
lt!09
16.45
23.0
49.0
2.47
105
0.8
955
5
29.1
14.48
1808
16.45
22.8
49.0
2.47
104
0.8
957
5
29.1
14.66
1805
16.5
22.5
49.0
2.50
105
0.8
960
5
29.1
14.88
1806
16.5
22.2
49.1
2.53
104
0.8
960
5
29.1
15.05
1806
16.5
21.7
49.1
2.52
106
0.8
956
5
29.1
"".28
1808
16.5
21.0
49.0
2.54
107
0.8
956
5
29.1
B-22

-------
TABLE B-22. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A240/0016L
Time to
Reach %
Reduction
20
50
80
Emission(1)
HC
CO
NOx
HC
CO
NOx
HC
CO
NOv
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
1549
1.95
1395
1549
1.95
1395
1549
1.95
1395
Time
Sec.
31
28
24
38
42
NA
50
48
NA
Converter
Inlet
Time
Sec.
Converter Response
Test 1	Test 2
Efficiency % F.mi ssion In
Converter
Out
CE
%
at
205 sec
HC
1624
190
88.3


CO
1.99
0.001
99.9


NOx
1395
1276
8.5
at
600 sec
HC
1549
175
88.7


CO
2.02
0.001
99.9


NOx
1383
1289
6.8
Converter
In
Out
CE
%
Test Speed Man Vac
No. rpm
Engine Operation Data
Power Air Flow, SCFM Intake Air
1800 10.22
49.9
81.5
10.71 104
1.45
Exhaust
in Hg Hp obs Engine Injected 	F_ in H2O Vac
2% CO, 5% 02
Bar.
F in H?0 in Hg
1082 14.0
29.19
NA: Not Achieved
(1) HC and NOx are PPm> CO is %
B-23

-------
TABLE B-23. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A240/0102
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp
Ratio
Location
ppm
%
ppm
%
%
8F
14.14
Inlet
1899
1.16
1521
0.48
14.12
701

Outlet
1375
0.94
1151


509

CE %
27.6
19.0
24.3



14.32
Inlet
1749
0.31
1597
0.63
14.12
701

Outlet
1275
0.66
1226


504

CE %
27.1
18.5
23.2



14.54
Inlet
1574
0.61
1622
0.78
14.12
704

Outlet
1175
0.53
1251


506

CE %
25.4
13.1
22.9



14.72
Inlet
1424
0.51
1634
0.88
14.12
705

Outlet
1075
0.39
1264


508

CE %
24.5
23.5
22.6



14.80
Inlet
1249
0.39
1622
1.03
14.12
705

Outlet
850
0.27
1264 <


511

CE %
32.0
30.8
22.1



15.07
Inlet
1174
0.35
1597
1.18
13.98
706

Outlet
750
0.20
1251


516

CE %
36.1
42.9
21.7



15.28
Inlet
999
0.25
1509
1.48
13.98
706

Outlet
575
0.11
1201


517

CE %
42.4
56.0
20.4



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaus t
Bar,
in. Hg
Engine
Inj ected
°F in.
H2O Vac
°F
in. H?0
14.14
1802
16.5
22.2
47.8
2.53
106
0.8
946
5
29.06
14.32
1798
16.5
21.8
47.8
2.53
106
0.75
951
5
29.06
14.54
1802
16.5
21.7
48.0
2.53
106
0.8
953
5
29.06
14.72
1800
16.5
21.6
48.0
2.53
106
0.8
955
5
29.06
14.88
1801
16.55
21.2
47.7
2.53
106
0.75
954
5
29.06
15.07
1803
16.55
20.9
47.9
2.53
105
0.75
954
5
29.06
1 *5.28
1800
16.55
20.6
47.6
2.53
104
0.75
954
5
29.06
B-24

-------
TABLE B-24. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A240/0102
No.


Converter
Efficiency Dat
a
Time to

Test 1
Test 2

Reach %
Emission^!)
Converter Time
Converter
Time
Reduction
Inlet
Sec.
Inlet
Sec.
20
HC
1574
141



CO
1.97
117



N0X
1370
NA


50
HC
1574
172



CO
1.97
156



N0X
1370
NA


80
HC
1574
NA



CO
1.97
182



NOx
1370
NA




Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out -
%
at 205 sec
HC
1649 500
69.7



CO
2.01 0.11
94.5



NOx
1358 1226
9.7


at 600 sec
HC
1649 400
75.7



CO
2.08 0.03
98.6



NOx
1345 1251
7.0



Engine Operation
Data


Speed Man Vac
Power Air
Flow, SCFM
Intake
Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in
H20 Vac °F
in H?0

2%
CO, 5% 02



1807 10.2
50.5 81.9
10.64
104
1.5 1067
15
Bar.
29.06
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-25

-------
TABLE B-25. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A240/0141L
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.13
Inlet
1924
1.16
1509
0.48
14.12
702

Outlet
325
0.08
573


674

CE %
83.1
93.1
62.0



14.31
Inlet
1749
0.87
1571
0.58
14.12
702

Outlet
250
0.01
497


648

CE %
85.7
98.8
68.4



14.53
Inlet
1574
0.60
1597
0.73
14.27
704

Outlet
200
0.005
799


613

CE %
87.3
99.2
50.0



14.70
Inlet
1424
0.47
1597
0.83
14.12
705

Outlet
150
0.004
1113


596

CE %
89.5
79.2
30.3



14.90
Inlet
1249
0.36
1597
1.08
14.12
705

Outlet
150
0.004
1138


5 72

CE %
88.0
98.9
28.7



15.10
Inlet
1174
0.32
1509
1.28
14.12
704

Outlet
150
0.003
1176


563

CE %
87.2
99.1
22.1



15.25
Inlet
1024
0.26
1471
1.43
13.84
703

Outlet
125
0.003
1176


554

CE %
87.8
98.8
20.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake
Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F in.
H2O Vac
°F
in. H?0
14.13
1806
16.6
22.2
48.2
2.05
102
0.8
949
5.5
29.12
14.31
1804
16.6
22.0
47.9
2.07
103
0.8
953
5.5
29.12
14.53
1805
16.6
21.7
47.9
2.09
103
0.7
954
5.5
29.13
14.70
1805
16.6
21.5
47.8
2.08
102
0.7
955
5.5
29.13
14.90
1804
16.6
21.1
48.0
2.11
102
0.7
955
5.5
29.13
15.10
1806
16.6
20.9
48.0
2.14
102
0.7
953
5.5
29.13
-.25
1805
16.6
20.4
48.0
2.14
102
0.7
952
5.5
29.13
B-26

-------
TABLE B-26.
CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A240/0141L
Time to
Reach %
Reduction
Emission^-)
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
Time
Sec.
Converter
Inlet
Time
Sec.
20
HC
CO
NO.
1574
2.04
1345
33
30
26
50
HC
CO
NO„
1574
2.04
1345
43
40
NA
80
HC
CO
NO,
1574
2.04
1345
64
46
NA
Converter Response
Test 1	Test 2
Efficiency % Em"fssion In
Converter
Out
CE
%
at 205 sec
HC
1574
225
85.7

CO
2.08
0.005
99.8

NOx
1345
1226
8.8
at 600 sec
HC
1549
200
87.1

CO
2.10
0.004
99.8

N0V
1320
1226
7.1
Converter
CE
In Out
%
Engine Operation	Data
Test Speed Man Vac Power Air Flow, SCFM	Intake Air Exhaust Bar.
No. rpm in Hg Hp obs Engine Injected	°F in H2O Vac "F in H?0 in Hg
2% CO, 5% O2
1 1801 9.2 54.5 86.7 11.19	100 1.6 1102 16 29.10
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-27

-------
TABLE B-27. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT- A240/0153
Converter Efficiency Data
A/F
Ratio
Sample
Location
EC
ppm
CO
%
N0X
ppm
02
%
CO2
%
Temp.
°F
14.10
Inlet
1899
1.17
1458
0.44
13.98
700

Outlet
425
0.10
510


666

CE %
77.6
91.4
65.0



14.29
Inlet
1674
0.81
1534
0.58
13.98
700

Outlet
225
0.01
611


633

CE %
86.6
98.8
60.2



14.45
Inlet
1649
0.70
1571
0.63
13.98
701

Outlet
200
0.009
422


616

CE %
87.9
98.7
73.1



14.70
Inlet
1374
0.50
1597
0.83
13.98
701

Outlet
150
0.004
850


586

CE X
89.1
99.2
46.8



14.85
Inlet
1249
0.37
1546
1.13
13.98
702

Outlet
125
0.003
1013


574

CE %
90.0
99.2
34.5



15.07
Inlet
1099
0.29
1496
1.18
13.98
704

Outlet
125
0.002
1113


558

CE Z
88.6
99.3
25.6



15.33
Inlet
900
0.22
1446
1.48
13.84
702

Outlet
100
0.001
1126


546

CE Z
88.9
99.5
22.1



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air

Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.10
1804
16.6
22.4
48.6
1.84
103
0.7
950
4.5
29.11
14.29
1804
16.6
22.0
48.3
1.85
104
0.7
953
4.5
29.11
14.45
1804
16.6
21.9
48.3
1.84
104
0.7
956
4.5
29.11
14.70
1805
16.6
21.4
48.2
1.85
104
0.7
957
4.5
29.10
14.85
1804
16.7
21.1
48.2
1.85
104
0.7
959
4.5
29.10
15.07
1803
16.7
20.9
48.2
1.85
103
0.7
961
4.2
29.09
".33
1803
16.7
20.4
48.2
1.84
104
0.7
958
4.2
29.09
B-28

-------
TABLE B-28. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A240/0153
No.


Converter Efficiency Data
Time to

Test 1
Test 2
Reach Z

Converter Time
Converter Time
Reduction
Emission^!)
Inlet
Sec.
Inlet Sec.
20
HC
1924
28


CO
1.99
35


N0X
1345
29

50
HC
1924
48


CO
1.99
44


NOx
1345
NA

80
HC
1924
70


CO
1.99
55


N0X
1345
NA



Converter
Response


Test 1

Test 2


Converter
CE
Converter CE
Efficiency %
Emission
In Out
%
In Out - %
at 205 sec
HC
1974 200
89.9


CO
1.99 0.003
99.8


NOx
1358 1213
10.7

at 600 sec
HC
1924 175
90.9


CO
1.99 0.002
99.9


NOx
1395 1289
7.6


Engine Operation
Data

Speed Man Vac
Power Air
Flow, SCFM
Intake
Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in H?0 Vac °F in H?0

2%
CO, 5% 02


1800 10.5
49.6 81.9 10.77
96
1.5 1074 40.0
Bar.
29.13
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-29

-------
TABLE B-29. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A240/0334L
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
PPm
Z
ppm
%
%
°F
14.14
Inlet
1649
1.01
1509
0.44
14.12
700

Outlet
400
0.10
180


627

CE %
75.7
90.1
88.1



14.35
Inlet
1524
0.74
1571
0.58
14.27
701

Outlet
150
0.005
180


618

CE %
90.2
99.3
88.5



14.54
Inlet
1349
0.56
1609
0.68
14.27
700

Outlet
100
0.003
686


597

CE %
92.6
99.5
57.4



14.70*
Inlet
1249
0.47
1609
0.83
14.27
703

Outlet
75
0.002
1038


584

CE %
94.0
99.6
35.5



14.86
Inlet
1149
0.39
1609
0.98
14.27
705

Outlet
75
0.002
1138


570

CE %
93.5
99.5
29.3



15.09
Inlet
1024
0.28
1571
1.18
14.12
705

Outlet
75
0.002
1213


559

CE %
92.7
99.3
22.8



15.28
Inlet
800
0.18
1446
1.63
13.84
704

Outlet
50
0.002
1163


550

CE %
93.8
98.9
19.6



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.14
1798
16.6
22.3
48.5
2.78
103
0.8
956
5
29.23
14.35
1797
16.6
22.0
48.4
2.77
102
0.8
960
5
29.23
14.54
1798
16.7
21.8
48.4
2.78
102
0.8
963
5
29.24
14.70
1799
16.6
21.8
48.4
2.78
102
0.8
964
5
29.24
14.86
1795
16.7
21.2
48.4
2.77
102
0.8
963
5
29.23
15.09
1792
16.7
21.0
48.4
2.78
102
0.8
963
5
29.23
1^.28
1793
16.7
20.7
48.4
2.77
102
0.8
961
5
29.23
*HC not within tolerance at 14.7 air/fuel ratio
B-30

-------
No.
TABLE B-
¦30. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF


UNIT A240/0334L





Converter
Efficiency Data
Time to

Test 1
Test 2

Reach %

Converter Time
Converter
Time
Reduction
Emission(l)
Inlet
Sec.
Inlet
Sec.
20
HC
1549
33



CO
1.91
35



N0X
1395
40


50
HC
1549
39



CO
1.91
40



N0X
1395
NA


80
HC
1549
50



CO
1.91
48



N0X
1395
NA




Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out -
%
at 205 sec
HC
1574 160
89.8



CO
1.99 0.003
99.8



N0X
1383 1302
5.9


at 600 sec
HC
1549 150
90.3



CO
2.02 0.002
99.9



N0X
1383 1327
4.0



Engine Operation
Data


Speed Man Vac
Power Air
Flow, SCFM
Intake
; Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in
H20 Vac °F
in H?0

2%
CO, 5% 02



1800 10.3
50.0 81.6
10.72
99
1.5 1080
15
Bar.
29.22
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-31

-------
TABLE B-31. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A 249/0169-1
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
C02
Temp
Ratio
Location
ppm
%
PPm
%
%
°F
14.07
Inlet
2074
2 J12
1571
0.93
13.70
730

Outlet
1000
1.22
142


785

CE %
51.8
42.4
91.0



14-..S3
Inlet
2049
1.75
1647
1.03
13.84
730

Outlet
225
0.08
497


795

CE %
89.0
95.4
69.8



14.47
Inlet
2024
1.34
1773
1.13
13.70
733

Outlet
175
0.08
1000


809

CE %
91.4
94.0
43.6



14.68
Inlet
1649
1.01
1597
1.28
14.12
716

Outlet
150
0.02
1302


744

CE %
90.9
98.0
18.5



14.91
Inlet
1499
0.70
1634
1.43
14.12
725

Outlet
150
0.01
1452


717

CE %
90.0
98.6
11.1



15.13
Inlet
1449
0.60
1597
1.53
13.84
730
Outlet
150
0.01
1414


697

CE %
89.6
98.3
11.5



15.25
Inlet
1324
0.55
159 7
1.63
13.98
728

Outlet
150
0.01
1464


688

CE %
88.7
98.2
8.3



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio
rpm
in. Hg
Hp obs
Engine
Injected °F
in. H2O Vac
°F in. H?0
in. Hg
14.07
1800
16.0
24.0
49.9
100
0.8
4.5
29.31
14.33
1800
16.0
23.9
49.5
100
0.8
4.5
29.30
14.47
1800
16.0
23.8
49.4
101
0.8
4.5
29.29
14.68
1800
16.4
21.8
49.4
100
0.7
— 4.0
29.29
14.91
1800
16.4
21.4
49.4
101
0.7
— 4.0
29.29
15.13
1800
16.5
21.1
49.4
101
0.6
4.0
29.29
15.25
1800
16.5
21.2
49.3
102
0.7
4.0
29.29
B-32

-------
TABLE B-32. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A 249/0169-1
Time to
Reach %
Reduction
20
50
Converter Efficiency Data
Test 1	Test 2
Emission^)
HC
CO
NOx
HC
Converter
Inlet
1799
1.99
1320
1799
Time
Sec.
22
20
N/A
30
Converter
Inlet
Time
Sec.

CO
NOx

1.99
1320
25
N/A

80
HC
CO
N0X

1799
1.99
67
35



1320
Test
N/A
Converter
1
Response
Test 2


Converter
CE
Converter
Efficiency %
Emission
In
Out
%
In Out
at 205 sec
HC
1749
350
80.0


CO
1.99
0.07
96.5


NOx
1345
1338
0.5

at 600 sec
HC
1799
306
83.0


CO
2.01
0.07
96.5


N0X
1345
1333
0.9

CE
%
Test
No.
Speed
rpm
1800
Man Vac
ln HS
13.3
Power
Hp obs
36.8
Engine Operation Data
Air Flow, SCFM Intake Air	Exhaust	Bar.
Engine Injected °F in H2O Vac °F in H?0 in Hg
2% CO, 5% 02
65.2 8.21
95
1.1
7.5 29.31
NA: Not Achieved
(1) HC and NOx are PPm> CO is %
B-33

-------
TABLE B-33. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A 249/0169-2
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.08
Inlet
1899
1.88
1333
0.83
13.16
723

Outlet
1100
1.33
142


732

CE %
42.1
29.3
89.4



14.27
Inlet
1749
1.57
1358
0.93
13.16
718

Outlet
425
0.66
142


764

CE %
75.7
58.0
89.5



14.47
Inlet
1624
1.29
1433
0.98
13.43
740

Outlet
225
0.16
333


761

CE %
86.2
87.6
76.8



14.65
Inlet
1574
1.10
1471
1.13
13.29
720

Outlet
225
0.16
887


727

CE Z
85.7
85.4
39.7



14.85
Inlet
1449
0.77
1534
1.33
13.29
732

Outlet
200
0.06
1138


733

CE %
86.2
92.2
25.8



15.13
Inlet
1449
0.60
1559
1.48
13.29
731

Outlet
175
0.03
1264


699

CE %
87.9
95.0
18.9



15.26
Inlet
1349
0.47
1559
1.58
13.43
742

Outlet
200
0.005
1377


708

CE %
85.2
98.9
11.7



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio
rpm
in. Hg
Hp obs
Engine
Inj ected
°F
in. H2O Vac °F
in. H?0
in. Hg
14.08
1801
15.7
25.0
51.4
	
102
0.8
5
29.13
14.27
1798
15.7
24.7
51.2
—
103
0.8
5
29.13
14.4 7
1799
15.75
24.5
51.0
—
104
0.8 —
5
29.12
14.65
1793
15.7
24.3
51.0
—
104
0.8 —
5
29.11
14.85
1795
15.7
24.2
51.0
—
104
0.8
5
29.10
15.13
1792
15.7
23.8
50.7
—
104
0.8
5
29.10
15.26
1791
15.7
23.6
50.7
—
104
0.8 —
5
29.10
B-34

-------
TABLE B-34. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A249/0169-2
Test
No.


Converter
Efficiency Data
Time to

Test
1
Test 2

Reach %

Converter
Time
Converter
Time
Reduction
Emission^)
Inlet
Sec.
Inlet
Sec.
20
HC
1599
42



CO
1.99
38



N0X
1219
35


50
HC
1599
55



CO
1.99
45



N0X
1219
NA


80
HC
1599
NA



CO
1.99
60



N0X
1219
NA




Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
Z
In Out
%
at 205 sec
HC
1674 425
74.6



CO
2.14 0.11
94.9



N0X
1219 1113
8.7


at 600 sec
HC
1650 375
77.3



CO
1.94 0.11
94.3



N0X
1264 1213
4.0



Engine Operation !
Data


Speed Man Vac
Power Air
Flow, SCFM
Intake
Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in H?0 Vac °F
in H?0

2%
CO, 5% O2



1800 13.37
36.3 64.6
8.77
98
1.07 —
9.8
Bar.
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-3 5

-------
TABLE B-35. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT 249/0169-3
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.06
Inlet
2199
1.81
1257
0.68
13.84
718

Outlet
800
0.43
686


831

CE %
63.6
76.2
45.4



14.32
Inlet
2099
1.47
1483
0.78
14.12
748

Outlet
500
0.28
459


856

CE %
76.2
81.0
69.0



14.50
Inlet
1849
1.04
1509
0.98
14.12
726

Outlet
250
0.09
634


796

CE X
86.5
91.4
58.0



14.67
Inlet
1699
0.73
1559
1.08
14.27
722

Outlet
150
0.05
963


760

CE %
91.2
93.2
38.2



14.89
Inlet
1599
0.60
1559
1.23
14.41
717

Outlet
150
0.03
1138


725

CE %
90.6
95.0
27.0



15.09
Inlet
1349
0.42
1534
1.38
14.12
716

Outlet
150
0.02
1214


703

CE %
88.9
95.2
20.9



15.31
Inlet
1149
0.35
1509
1.68
14.12
729

Outlet
125
0.02
1239


721

CE %
89.1
94.3
17.9



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaust
Bar.
in. Hg
Engine
Injected
°F
in. H2O Vac
°F in. H?0
14.06
1800
16.75
20.4
46.2
4.98
100
0.7
871
29.17
14.32
1802
16.75
20.3
46.1
4.97
102
0.75
931
29.17
14.50
1800
16.75
20.2
46.2
4.95
101
0.75
880
29.17
14.67
1801
16.8
20.1
46.4
5.09
101
0.7
878
29.17
14.89
1799
16.75
19.7
46.4
5.09
101
0.7
879
29.17
15.09
1797
16.8
19.2
46.4
5.09
101
0.7
878
29.17
15.31
1799
16.75
18.9
46.3
5.08
101
0.7
884
29.17
B-36

-------
TABLE B-36. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT 249/0169-3


Converter
Efficiency Data
Time to

Test
1
Test 2
Reach %

Converter
Time
Converter Time
Reduction
Emission^!)
Inlet
Sec.
Inlet Sec.
20
HC
2099
20


CO
2.06
18


N0X
1157
N/A

50
HC
2099
28


CO
2.06
26


N0X
1157
N/A

80
HC
2099
54


CO
2.06
40


NOx
1157
N/A



Converter
Response


Test 1

Test 2

Converter
CE
Converter CE
Efficiency %
Emission
In Out
%
In Out %
at 205 sec
HC 2099 250
88.1


CO 2
.06 0.008
99.6


NOx 1169 1088
6.9

at 600 sec
HC 2049 225
89.0


CO 2,
.06 0.005
99.8


NOx 1207 1163
3.6

Test
No.
Speed
rpm
Man Vac
in Hg
Power
Hp obs
Engine Operation Data
Air FloWj_ SCFM
Intake Air
Exhaust
Bar.
Engine Injected °F in H2O Vac °F in H?0 in Hg
1802
15.4
25.6
2% CO, 5% O2
54.1 14.15
102
0.8
939
29.19
NA: Not Achieved
(1) HC and NOx are pptn, CO is %
B-37

-------
TABLE B-37. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A249y0486-1
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp,
Ratio
Location
Ppm
%
ppm
%
%
°F
14.08
Inlet
2549
1.67
1458
0.78
13.84
728

Outlet
1250
0.96
206


678

CE %
51.0
42.5
85.9



14.35
Inlet
1949
1.40
1471
0.98
13.84
726

Outlet
550
0.53
231


691

CE %
71.8
62.1
84.3



14.53
Inlet
1874
1.22
1471
1.13
13.84
723

Outlet
350
0.25
460


691

CE %
81.3
79.5
68.7



14.69
Inlet
1749
0.99
1483
1.23
13.84
722

Outlet
300
0.06
1088


673

CE %
82.8
93.9
26.6



14.87
Inlet
1649
0.84
1521
1.38
13.70
724

Outlet
250
0.05
1239


652

CE I
84.8
94.0
18.5



15.10
Inlet
1524
0.73
1521
1.53
13.84
727

Outlet
250
0.02
1251


641

CE Z
83.6
97.3
17.8



15.26
Inlet
1399
0.60
1458
1.73
13.84
725

Outlet
250
0.02
1264


620

CE %
82.1
96.7
13.3



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air
Flow, SCFM
Intake Air
Exhaus t
Bar.
in. Hg
Engine Injected
°F
in. H2O Vac
"F in. H?0
14.08
1799
14.9
29.5
54.1

95
0.95
1020 7
29.25
14.35
1798
15.0
29.2
54.3
—
95
0.95
1017 7
29.25
14.53
1800
15.0
28.8
54.0
—
95
0.95
1018 7
29.24
14.69
1800
15.0
28.9
54.0
—
95
0.95
1022 7
29.24
14.87
1800
15.0
28.3
54.0
—
95
0.95
1027 7
29.24
15.10
1800
15.0
28.2
54.0
—
95
0.95
1028 7
29.24
".26
1800
15.0
27.8
54.0
—
95
0.95
1030 7
29.24
B-38

-------
TABLE B-38. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A249/0486-1
Converter Efficiency Data
Time to
Reach %
Reduction
20
50
Test 1
Test 2
80
Emission^)
HC
CO
NOx
HC
CO
NOx
HC
CO
NOv
Converter
Inlet
1849
1.95
1295
1849
1.95
1295
1849
1.95
1295
Time
Sec.
22
22
26
43
30
NA
NA
47
NA
Converter
Inlet
Time
Sec.
Converter Response
Test 1	Test 2
Efficiency % Emission In
Converter
Out
CE
at 205 sec
HC
1799
675
62.5

CO
1.95
0.11
94.4

NOx
1295
1226
5.3
at 600 sec
HC
1849
500
73.0

CO
1.97
0.11
94.4

NOx
1257
1226
2.5
Converter
In
Out -
CE
%
Engine Operation Data
Power Air Flow, SCFM Intake Air
Test Speed Man Vac Power A1r Flow, SCFM
No. rpm in Hg Hp obs Engine Injected
Exhaus t
Bar.
1809
12.8
39.2
2% CO, 5% 02
66.7 9.1
T_ in H2O Vac °F in H?0 in Hg
91
1.2
1068
13
29.26
NA: Not Achieved
(1) HC and NC^ are PPm» is ^
B-39

-------
TABLE B-39. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A249/0486-2
Converter Efficiency Data
A/F
Sample
HC
CO
N0X
02
C02
Temp.
Ratio
Location
ppo
%
PPm
%
%
°F
14.12
Inlet
2249
1.67
1383
0.83
13.84
727

Outlet
1250
0.93
231


588

CE %
44.4
44.3
83.3



14.30
Inlet
2124
1.42
1421
0.93
13.84
725

Outlet
750
0.60
219


605

CE %
64.7
57.7
84.6



14.48
Inlet
1999
1.22
1433
0.98
14.12
723

Outlet
850
0.10
837


621

CE %
82.5
91.8
41.6



14.68*
Inlet
1749
0.95
1458
1.18
14.12
727

Outlet
300
0.06
1088


597

CE %
82.8
93.7
25.4



14.85
Inlet
1724
0.87
1458
1.28
14.12
725

Outlet
275
0.03
1138


588

CE %
84.0
96.6
21.9



15.05
Inlet
1599
0.65
1509
1.48
14.12
726

Outlet
275
0.04
1214


566

CE %
82.8
93.8
19.5



15.25
Inlet
1399
0.57
1408
1.68
14.12
727

Outlet
250
0.03
1214


558

CE %
82.1
94.7
13.8



Engine Operation Data
A/F	Man Vac. Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio rpm
14.12	1800
14.30	1800
14.48	1800
14.68	1300
14.85	1800
15.05	1800
15.25	1800
C not within tolerance at 14.7 air/fuel ratio
in. Hg
15.3
Hp obs
Engine
Injected °F
in. H2O Vac
°F
in. H?0
in. Hg
28.4
51.8
92
0.9
1015
5.5
29.22
15.3
28.4
51.8
92
0.9
1017
5.5
29.22
15.3
28.1
51.8
92
0.9
1023
5.5
29.22
15.3
27.5
51.8
92
0.9
1027
5.5
29.22
15.3
27.6
51.8
92
0.9
1028
5.5
29.22
15.3
27.4
51.8
92
0.9
1028
5.5
29.22
15.3
26.9
51.8
92
0.9
1026
5.5
29.22
B-40

-------
TABLE B-
¦-40. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A249/0486-2


Converter
Efficiency Data
Time to

Test
1
Test 2
Reach %

Converter
Time
Converter Time
Reduction
Emission(1)
Inlet
Sec.
Inlet Sec.
20
HC
1974
28


CO
1.91
30


NOx
1270
27

50
HC
1974
46


CO
1.91
40


NOx
1270
NA

80
HC
1974
128


CO
1.91
55


N0X
1270
NA



Converter
Response


Test 1

Test 2


Converter
CE
Converter CE
Efficiency %
Emission
In Out
%
In Out %
at 205 sec
HC
2249 425
81.1


CO
1.95 0.09
95.4


NOx
1270 1189
6.4

at 600 sec
HC
2349 400
83.0


CO
1.99 0.08
96.0


NOx
1270 1201
5.4

Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM Intake Air
No. rpm in Hg Hp obs Engine Injected °F in H2O Vac
1800
13.6
36.0
2% CO, 5% 02
61.3 10.3
90
1.1
Exhaust
Bar.
'F in H?0 in Hg
1062
7.9
29.21
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-41

-------
TABLE B-41. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A249/0486-3
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
PPm
%
ppm
1
%
°F
14.13
Inlet
2124
1.45
1647
0.73
13.43
759

Outlet
325
0.23
282


896

CE %
84.7
84.1
82.9



14.30
Inlet
1924
1.23
1697
0.83
13.56
755

Outlet
150
0.03
434


893

CE Z
92.2
93.5
74.4



14.45
Inlet
1824
1.07
1710
0.93
13.56
756

Outlet
150
0.09
384


863

CE X
91.8
91.6
77.5



14.66
Inlet
1699
0.92
1785
1.03
13.56
752

Outlet
125
0.05
636


847

CE %
92.6
94.6
64.4



14.85
Inlet
1699
0.76
1848
1.23
13.56
747

Outlet
125
0.02
1013


837

CE %
92.6
97.4
45.2



15.13
Inlet
1499
0.55
1860
1.48
13.43
749

Outlet
150
0.02
1239


803

CE %
90.0
96.4
33.4



15.26
Inlet
1449
0.46
1835
1.63
13.43
749

Outlet
140
0.004
1339


785

CE %
90.3
99.1
27.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaust
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.13
1800
15.9
25.2
49.6
4.0
94
0.8
922
14.9
29.21
14.30
1800
15.9
25.2
49.6
4.0
94
0.8
925
14.7
29.21
14.45
1800
15.8
25.2
49.8
4.0
93
0.8
914
14.5
29.21
14.66
1800
15.8
25.2
49.8
4.0
93
0.8
908
14.5
29.21
14.85
1800
15.8
25.2
49.8
4.0
93
0.8
908
14.4
29.21
15.13
1800
15.8
25.2
49.8
4.0,
94
0.8
910
14.3
29.19
,<;.26
1800
15.8
25.1
49.8
4.0
94
0.8
910
14.4
29.19
B-42

-------
TABLE B-42. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
at 600 sec

UNIT
A249/0486-3





Converter
Efficiency Data
Time to


Test
1
Test 2
Reach £
Emission^)
Converter
Time
Converter Time
Reduction

Inlet
Sec.
Inlet Sec.
20
HC

1874
18


CO

1.95
16


N0X

1056
NA

50
HC

1874
30


CO

1.95
26


NOx

1056
NA

80
HC

1874
46


CO

1.95
35


NOx

1056
NA




Converter
Response



Test 1

Test 2


Converter
CE
Converter CE
Efficiency %
Emission
In
Out
%
In Out %
at 205 sec
HC
1874
125
93.3


CO
1.99
0.003
99.8


N0X
1081
1063
1.7

HC
CO
NO,.
1874 150
1.86 0.002
1095 1088
92.0
99.9
0.6
Engine Operation Data
Intake Air
Test Speed Man Vac Power
No. rpm in Hg Hp obs Engine Injected °F in H2O Vac
Air Flow^ SCFM
1800
16.0
29.6
2% CO, 5% 02
49.6 11.0
90
0.8
Exhaust
Bar.
'F in H?0 in Hg
969
17.9
29.24
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-43

-------
TABLE B-43. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A254/0031
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.14
Inlet
2099
1.70
1320
0.83
13.70
756

Outlet
100
0.18
52


951

CE %
95.2
89.4
96.1



14.33
Inlet
2049
1.53
1345
0.93
13.70
743

Outlet
400
0.68
39


843

CE %
80.5
55.6
97.1



14.48
Inlet
1949
1.28
1433
1.03
13.70
738

Outlet
100
0.17
13


827

CE %
94.9
86.7
99.1



14.63*
Inlet
1724
0.95
1446
1.18
13.84
748

Outlet
50
.002
611


810

CE %
97.1
99.8
57.7



14.95
Inlet
1649
0.77
1483
1.33
13.84
741

Outlet
50
.002
887


774

CE %
97.0
99.7
40.2



15.07
Inlet
1499
0.65
1471
1.43
13.98
738

Outlet
60
.002
1163


749

CE %
96.0
99.7
20.9



15.30
Inlet
1299
0.50
1395
1.68
13.84
743

Outlet
50
.002
1239


726

CE %
96.2
99.6
11.2



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio
rpm
in. Hg
Hp obs
Engine
Injected
11
in. H2O Vac
°F
in. H?0
in. Hg
14.14
1800
14.9
28.8
54.0
—
90
0.9
1040
9.0
29.14
14.33
1800
14.9
28.4
54.0
—
90
0.9
1041
9.0
29.14
14.48
1800
14.9
28.0
54.0
—
90
0.9
1044
9.0
29.14
14.68
1800
14.9
27.8
54.1
—
89
0.9
1051
9.0
29.12
14.95
1800
14.9
27.6
54.1
—
89
0.9
1049
9.0
29.12
15.07
1800
14.9
27.3
54.1
—
89
0.9
1049
9.0
29.12
15.30
1800
14.9
27.0
53.8
—
89
0.9
1049
9.0
29. 12
*HC not within tolerances at 14.7 air/fuel ratio
B-44

-------
TABLE B-44. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A254/0031
Time to
Reach Z
Reduction
20
50
80
Emlssion(^)
HC
CO
N0X
HC
CO
N0X
HC
CO
N0~
Converter Efficiency Data
Test 1	Test 2
Converter
Inlet
1749
1.93
1106
1749
1.93
1106
1749
1.93
1106
Time
Sec.
27
25
24
32
30
HA
45
39
NA
Converter
Inlet
Time
Sec.
Test
Converter Response
1	Test 2
Efficiency % Rmission In
Converter
Out
CE
%
at
205 sec
HC
1749
100
94.3


CO
1.88
.002
99.9


NOx
1383
1352
2.2
at
600 sec
HC
1849
85
95.4


CO
1.82
.001
99.9


NOx
1169
1126
3.7
Converter
In
Out
CE
%
Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM Intake Air
No. rpm in Hg
1800
Exhaust	Bar.
	 Hp obs Engine Injected °F in H2O Vac °F in H?0	in Hg
2% CO, 5% 02
13.5 36.8 61.4 8.4 89 1.1 1066 12.5	29.10
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-45

-------
TABLE B-45. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A254/0037
Converter Efficiency Data
A/F
Ratio
Sample
Location
HC
ppm
CO
%
N0X
ppm
02
%
CO2
%
Temp.
°F
14.09
Inlet
2324
1.81
1295
0.83
13.70
727

Outlet
1250
1.04
103


841

CE %
46.2
42.5
92.0



14.31
Inlet
2099
1.32
1395
1.03
13.84
732

Outlet
125
0.24
13


886

CE %
94.0
81.8
99.1



14.49
Inlet
2149
1.01
1471
1.03
13.98
744

Outlet
75
0.002
812


871

CE %
96.5
99.8
44.8



14.66*
Inlet
1949
0.95
1471
1.18
13.84
730

Outlet
50
0.002
586


873

CE %
97.4
99.8
60.2



14.89
Inlet
1749
0.74
1546
1.33
13.98
725

Outlet
75
0.002
912


825

CE %
95.7
99.7
41.0



15.13
Inlet
1475
0.55
1534
1.53
13.84
730

Outlet
75
0.002
1239


778

CE %
94.9
99.6
19.2



15.28
Inlet
1449
0.47
1534
1.68
13.84
731

Outlet
75
0.002
1377


767

CE %
94.8
99.6
10.2



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio
rpm
in. Hg
Hp obs
Engine
Injected
°F
in. H2O Vac
°F
in. H?0
in. Hg
14.09
1800
15.45
27.1
50.3

95
0.8
990
8.0
29.13
14.31
1800
15.45
27.0
50.4
	
93
0.8
1010
8.0
29.12
14.49
1800
15.45
26.8
50.6
_
93
0.8
1014
8.0
29.12
14.66
1800
15.45
26.6
50.6

93
0.8
1017
8.0
29.13
14.89
1800
15.45
26.3
50.6
	
93
0.8
995
8.0
29.13
15.13
1800
15.45
26.4
50.6
	
92
0.8
1014
8.0
29.14
15.28
1800
15.45
25.8
.50.6
	
92
0.8
1017
8.0
29.14
B-46

-------
TABLE B-46. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A254/0037
No.


Converter
Efficiency Data
Time to

Test 1
Test 2

Reach %

Converter Time
Converter
Time
Reduction
Emission(l)
1 Inlet
Sec.
Inlet
Sec.
20
HC
1849
34



CO
1.99
32



NOx
1383
30


50
HC
1849
40



CO
1.99
38



N0X
1383
NA


80
HC
1849
54



CO
1.99
49



N0X
1383
NA




Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out
%
at 205 sec
HC
1924 125
93.5



CO
1.91 0.002
99.9



NOx
1408 1314
6.7


at 600 sec
HC
1899 100
94.7



CO
1.90 0.002
99.9



N0X
1383 1327
4.0



Engine Operation
Data


Speed Man Vac
Power Air
Flow, SCFM
Intake
: Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in
H2O Vac °F
in H?0

2%
CO, 5% 02



1800 13.0
83.4 63.5
10.4
93
1.2 1059
13.6
Bar.
29.13
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-47

-------
TABLE B-47. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A254/0191
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
PPm
Z
PPm
Z
Z
°F
14.06
Inlet
2149
1.74
1307
0.83
13.29
728

Outlet
75
0.21
65


923

CE Z
96.5
87.9
95.0



14.30
Inlet
2024
1.47
1333
0.93
13.29
744

Outlet
400
0.63
13


853

CE Z
80.2
57.1
99.0



14.48
Inlet
1824
1.11
1345
1.08
13.43
733

Outlet
50
0.002
699


858

CE Z
97.2
99.8
48.0



14.74*
Inlet
1749
0.87
1395
1.23
13.43
744

Outlet
50
0.002
661


829

CE Z
97.1
99.8
52.6



14.87
Inlet
1649
0.74
1395
1.28
13.43
730

Outlet
75
0.002
1138


818

CE Z
95.4
99.7
18.4



15.07
Inlet
1524
0.65
1383
1.38
13.56
748

Outlet
65
0.002
1138


793

CE Z
95.7
99.7
17.7



15.26
Inlet
1099
0.66
1433
1.63
13.29
702

Outlet
50
0.002
1289


711

CE Z
95.4
99.7
10.0



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air
Flow,
SCFM
Intake Air
Exhaus t
Bar.
in. Hg
Engine Injected
°F in.
H2O Vac
°F
in. H?0
14.06
1800
15.0
28.8
51.9


100
0.9
1037
9.0
29.04
14.30
1800
15.0
28.6
51.9

—
100
0.9
1043
8.5
29.04
14.48
1800
15.0
27.9
52.1

—
100
0.9
1045
8.5
29.04
14.74
1800
15.0
27.7
52.1

—
99
0.9
1050
8.5
29.04
14.87
1800
15.0
27.7
52.3

—
99
0.9
1050
8.5
29.04
15.07
1800
15.0
27.4
52.4

—
99
0.9
1054
8.5
29.04
15.26
1800
15.0
27.0
52.4

—
97
0.9
1044
8.5
29.04
.C and NOx not within
tolerances at
14.7
air/fuel
. ratio




B-48

-------
TABLE B-48. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A254/0191
Converter Efficiency Data
Time to

Test
1 (2>
Test 2

Reach %
Emission^!)
Converter
Time
Converter
Time
Reduction
Inlet
Sec.
Inlet
Sec.
20
HC
1974
27



CO
1.81
29



N0X
1295
28


50
HC
1974
34



CO
1.81
34



N0X
1295
NA


80
HC
1974
48



CO
1.81
44



N0X
1295
NA




Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out
%
at 205 sec
HC
1924 100
94.8



CO
1.79 0.002
99.9



N0X
1307 1264
3.3


at 600 sec
HC
1899 100
94.7



CO
1.84 0.001
99.9



NOx
1270 1226
3.5


Test Speed Man Vac
No. rpm In Hg
1800
12.6
39.8
Engine Operation Data
Air Flow, SCFM Intake Air
Power
Hp obs Engine Inj ected
2% CO, 5% 02
65.6	8.1
	 Exhaust	Bar.
^F_ in H2O Vac °F in H?0 in Hg
100
1.2
1100
14.0 29.04
NA: Not Achieved
(1)	HC and NOx are ppm, CO is %
(2)	CO not within tolerances throughout test
B-49

-------
TABLE B-49. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A254/0275
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
ppm
%
PPm
%
%
°F
14.15
Inlet
1999
1.43
1496
0.83
12.89
727

Outlet
525
0.72
39


820

CE %
73.7
49.6
97.4



14.30
Inlet
1899
1.37
1534
0.93
13.02
737

Outlet
25
0.01
193


890

CE %
98.7
99.3
87.4



14.45
Inlet
1824
1.10
1571
0.98
13.02
711

Outlet
75
0.002
661


831

CE %
95.9
99.8
57.9



14.73
Inlet
1649
0.81
1710
1.18
13.02
743

Outlet
65
0.001
1264


853

CE %
96.1
99.9
26.1



14.87
Inlet
1649
0.73
1710
1.23
12.89
749

Outlet
50
0.002
1038


842

CE %
97.0
99.7
39.3



15.06
Inlet
1499
0.60
1509
1.38
12.63
702

Outlet
75
0.002
1289


754

CE %
95.0
99.7
14.6



15.26
Inlet
1324
0.50
1710
1.58
12.76
738

Outlet
60
0.001
1464


779

CE %
55.2
99.8
14.4



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio rpm in. Hg Hp obs Engine Injected °F in. H2O Vac °F in. H?0 in. Hg
14.15
1798
14.5
30.7
55.6
—
99
1.0
1040
8
29.09
14.30
1798
14.5
30.6
55.4
—
100
1.0
1047
8
29.08
14.45
1796
14.5
30.4
55.4
—
100
1.0
1028
8
29.08
14.73
1795
14.5
30.0
55.2
—
100
1.0
1040
8
29.07
14.87
1795
14.5
29.8
55.2
—
100
1.0
1066
8
29.07
15.06
1797
14.6
30.1
54.8
—
101
1.0
1027
8
29.06
15.26
1797
14.6
29.2
54.8
—
102
1.0
1054
8
29.06
B-50

-------
TABLE B-50. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A254/0275
No.



Converter
Efficiency Data
Tine to


Test
1
Test 2

Breach %
Emission(l)

Converter
Time
Converter
Time
Reduction

Inlet
Sec.
Inlet
Sec.
20
HC

1924
22



CO

2.01
21



N0X

1345
30


50
HC

1924
36



CO

2.01
32



NOx

1345
NA


80
HC

1924
51



CO

2.01
46



N0X

1345
NA





Converter
Response




Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In
Out
%
In Out
%
at 205 sec
HC
1999
90
95.5



CO
2.04
0.002
99.9



NOx
1320
1270
3.8


at 600 sec
HC
1974
75
96.2



CO
1.90
0.002
99.9



NOx
1370
1358
0.9



Engine Operation Data


Speed Man Vac
Power Air
Flow
, SCFM
Intake
Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in H2O Vac °F
in H?0 :

2%
CO, 5% 02



1800 12.9
38.2 64.4

8.9
88
1.1 1060
15.1
Bar.
29.19
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-51

-------
TABLE B-51. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT a 280/0001 L
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
Ppm
%
PPm
%
%
°F
14.13
Inlet
2424
1.53
1383
0.78
13.56
727

Outlet
825
0.20
1101


764

CE %
66.0
86.9
20.4



14.25
Inlet
2374
1.32
13^5
0.73
13.70
749

Outlet
800
0.16
1126


764

CE %
66.3
87.9
19.3



14.46
Inlet
2149
0.99
1433
0.83
13.84
737

Outlet
800
0.14
1176


705

CE %
62.8
85.9
17.9



14.70*
Inlet
1874
0.61
1685
0.98
13.98
753

Outlet
225
0.02
1126


694

CE %
88.0
96.7
33.2



14.87
Inlet
1724
0.48
1710
1.08
13.98
748

Outlet
200
0.01
1289


670

CE %
88.4
97.9
24.6



15.05
Inlet
1599
0.37
1710
1.25
13.98
756

Outlet
150
0.005
1364


664

CE %
90.6
98.6
20.2



15.25
Inlet
1549
0.31
1697
1.38
13.98
756

Outlet
150
0.005
1389


665

CE %
90.3
98.4
18.2



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow,
SCFM
Intake Air
Exhaust
Bar.
in. Hg
Engine Injected
°F
in. H2O Vac
°F
in. H9O
14.13
1798
17.2
17.6
41.7
2.25
112
0.6
940
4
29.12
14.25
1799
17.2
17.7
41.7
2.24
113
0.6
974
4
29.12
14.46
1799
17.2
17.5
41.6
2.28
114
0.6
961
4
29.12
14.70
1800
17.1
17.6
41.6
2.26
112
0.6
982
4
29.06
14.87
1800
17.1
17.6
41.5
2.26
113
0.6
979
4
29.06
15.05
1800
17.1
17.2
41.4
2.26
114
0.6
985
4
29.06
15.25
1800
17.1
17.1
41.*
2.26
114
0.6
985
4
29.06
.C not
within
tolerances at 14
.7 air/fuel
ratio





B-52

-------
TABLE B-52. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT a 280/0001 L
No.


Converter
Efficiency Data
Time to

Test
1
Test 2

Reach %

Converter
Time
Converter
Time
Reduction
Emission(1)
Inlet
Sec.
Inlet
Sec.
20
HC
2674
57



CO
1.99
57



N0X
1685
N/A


50
HC
2674
72



CO
1.99
78



N0X
1685
N/A


80
HC
2674
110



CO
1.99
93



NOx
1685
N/A




Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out
%
at 205 sec
HC
2899 300
89.6



CO
2.02 0.03
98.5



NOx
1685 1571
6.8


at 600 sec
HC
2749 300
89.1



CO
2.01 0.02
99.0



N0X
1685 1559
7.5



Engine Operation Data


Speed Man Vac
Power Air
Flow, SCFM
Intake
; Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in
H2O Vac °F
in H9O

2%
CO, 5% 02



1798 13.1
36.0 63.9
9.31
98
1.1 1066
10.5
Bar.
NA: Not Achieved
(1) HC and NOx are ppm, CO is %
B-53

-------
APPENDIX C
BET EQUATION VERSUS RELATIVE PRESSURE

-------
CONVERTER SURFACE AREA ANALYSIS A180/0094 SAMPLE F
.+.	+		+	+....+	+	+	-t-.
N= 4
COR= .9996
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08084 X= 5.1876*Y-.01363 893E-8
Y .02574 .01558 Y= ,19283»X+ .00264 357E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
CPU TIME USED	.970 SECONDS
SYMB0L=X
Figure C-l. Plot of BET equation versus relative pressure for
Converter A180/0094 - Bulk
C-2

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A180/0094 SAMPLE E
. + + .... + ...O *"....+ .... + .... + ....+.... + ....+.+....+.XY
.055
.050
.045
X/V(1-X]
.040
.035
.030
.025
.020
.045	.075 .105
.060 .090
N= 4
C0R= .9907
MEAN
X .11992
Y .03204
VARIABLE
.135
.120 .150
P/PO
.165	.195	.225
.180 .210	.240
ST.DEV. REGRESSION LINE RES.MS.
.08004 X= 4.5033 *Y-.02437 102E-6
.01778 Y= .21793*X+ .00591 882E-8
CPU TIME USED
1 P/PO VERSUS VARIABLE 2 X/V
.925 SECONDS
SYHB0L=X
Figure C-2. Plot of BET equation versus relative pressure for
Converter A180/0094 - Front Face
C-3

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A180/0094 SAMPLE G
...+
.060 +
+
Y
.054
.048
.042
X/V(1-X]
.036
.030
.024
.013
.012
.045	.075	.105
.060 .090
N= 4
COR= .9972
.135
.120 .150
P/PO
.+....+....+....+....+....+.•
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.NS.
X .11992 .08084 X= 4.3014«Y-.00313 540E-7
Y .02861 .01874 Y= .23120«X+ 881E-6 290E-8
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V	SYMB0L=X
CPU TIME USED	.967 SECONDS
Figure C-3. Plot of BET equation versus relative pressure for
Converter A180/009^ - Rear Face
C-H

-------
PAGE
CONVERTER SURFACE AREA AMALYSIS A133/O9O0-A SAI1PLE F
.+	+	+	+	.+	+.	+	+	.
.452
.420
.385
.350
X/V(1-X)
.315
• 2B0
.245
.210
.175
N= 3
COR= .9992
MEAN
X .13344
Y .30434
.045 .075 .105
.060 .090
.135
.120 .150
P/PO
.165 .125 .225
.180 .210 .240
ST,DEV. REGRESSION LINE RES.MS.
.09332 X= .65324«Y-.08537 283E-7
.14275 r= 1 .5203»X+ .10040 6S2E-7
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-4. Plot of BET equation versus relative pressure for
Converter A193/0908-A - Bulk
C-5

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A193/0908-A SAMPLE E
.+	+ ....+....+....-t-.... + .... + ....+....+..,.+.... + .... + ....+....+..Y
.117
.108
.099
X/V(1-X]
.090
.081
.072
.083
.054
.045 .075 .105
.050 .090
H= 3
COR= .9952
.135
.120 .150
P/PO
.155 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .13343 .09331 X= 2.3161*Y-.10451 168E-6
Y .08449 .03298 Y= .35168*X+ .03757 210E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYNBOL=X
Figure C-5. Plot of BET equation versus relative pressure for
Converter A193/0908-A - Front Face
C-6

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
A1 G3/0906-A SAMPLE G
.2125 +

.045	.075	.105
.060 .090
135	.165	.195	.225
.180	.210	.240
M= 3
C0B= 1.000
.120 .150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13342 . 09331 X= 2.1176»Y-.19443 721E-9
Y .15432 .C440S Y= .47220«X+ .00182 1615-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 W
SY!1B0L=X
Figure C-6. Plot of BET equation versus relative pressure for
Converter A193/0908-A - Rear Face
C-7

-------
PAGE
.09
H= 3
C0R= .9399
MEAN
X .13343
Y .20334
VARIABLE
CONVERTER SURFACE AREA ANALYSIS A193/0908-fl SAMPLE F
.+....+....+....+..Y
.045	.075 .105
.060 .090
.135
.120 .150
P/PO
.165 .195 .225
,1B0 .210 .240
ST.DEV. REGRESSION LINE
.09331 X= .79383*Y-.02799
RES.MS.
176E-B
saoE-a
.11754 Y= 1.2598*X+ .03527
1 P/PO VERSUS VARIABLE 2 X/V
SYMBOLS
Figure C-7. Plot of BET equation versus relative pressure for
Converter A193/Q908-B - Bulk
C-8

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A193/0908-6 SAMPLE E
.1225 + X
.045 .075 .105
.080 .080
N= 3
COR= .9981
~....+....+....+....+.
.165 .195 .225
.180 .210 . 240
MEAN	ST.DEV.	REGRESSION LINE	RES.MS.
X .13343	.09331	X= 1.2970*Y-.11578	138E-6
Y .19814	.07166	Y= .78437*X+ .09007 805E-7
VARIABLE	1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure C-8. Plot of BET equation versus relative pressure for
Converter A193/0908-B - Front Face
C-9

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A210/0045 SAMPLE F
.045
.osa
.075
N= 4
COfl= .9995
MEAN
X .11992
Y .03333
.105 .135 .165
.090 .120 .150 .180
P/PO
.195
ST.DEV. REGRESSION LINE RES.MS.
.06084 X= 3.B554'Y-.00B3fl 9B1E-8
.0E09B Y= .55912*X+ .002E0 S46E-9
.310
.240
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure C-9. Plot of BET equation versus relative pressure for
Converter A218/0G
-------
PAGE
.0750
.0875
.0600
x/vti-x)
„05ffi
CONVERTER SURFACE AREA ANALYSIS A219/0045 SAMPLE E
.+	+	
+..Y
M= 4
COR= .9999
MEAN
X .11992
Y .03900
.075	.105
.060 .090
ST.DEV. REGRESSION LINE RES.MS.
.08034 X= 3.2458*Y-.006S7 221E-8
.02490 Y= .30802*X+ .00206 210E-9
.165	.195	.225
.180 .210	.240
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
CPU TIME USED	.937 SECONDS
SYMBOL=X
Figure C-10. Plot of BET equation versus relative pressure for
Converter A218/00^5 - Front Face
C-ll

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A210/0045 SAMPLE G
	+			f	+.	+	+	+.
+ ..Y
.060
.054
.048
X/VM-X)
.042
.036
.030
.024
.018
.012
N= 4
COR= .3985
MEAN
X .11992
Y .03142
VARIABLE
.045 .075 .105
.080 .090
.135
.120 .150
P/PO
.185 .195 .225
.180 .210 .240
ST.DEV. REGRESSION LINE RES.MS.
.08084 X= 3.9B31®Y-.00524 289E-7
.02027 Y= .25032*X+ .00140 182E-8
CPU TIME USED
1 P/PO VERSUS VARIABLE 2 X/V
.925 SEC0f4DS
SYMBOL=X
Figure C-ll. PJot of BET equation versus relative pressure for
Converter A218/0045 - Rear Face
C-12

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A21B/0045-X F
.045	.075 .105
.060	.090 .121
H= 8
COR= .9956
MEAN ST.DEV.	REGRESSION LINE
X .11993 .07485	X= 3.9838»Y-.03648
Y .03927 .01871	Y= .24885»X+ .00942
VARIABLE 1 P/PO	VERSUS VARIABLE
CPU TIME USED	.944 SECONDS
.135 .165	.195	.225
1	.150 .180	.210 .240
P/PO
RES.MS.
50OE-7
363E-8
2	X/V	SYMBOL=X
Figure C-12. Plot of BET equation versus relative pressure for
Converter A218/0045X - Bulk
C-13

-------
PAGE
.0225 +
N= 4
C0R= .9984.
MEAN
X .11992
Y .04473
VARIABLE
CONVERTER SURFACE AREA ANALYSIS A21B/0045X SAMPLE E
X
.+.Y....+.
.045 .075 .105	.135
.060 .090 .120 .150
t,...+.,..+.
155 .195 .225
.180 .210 .240
ST.DEV. REGRESSION LINE
.08084 X= 2•9336°Y-.01129
.02751 Y= ,33976"X+ .00393
P/PO
RES.MS.
319E-7
37OE-0
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
CPU TIME USED
.935 SECONDS
Figure C-13. Plot of BET equation versus relative pressure for
Converter A218/0045X - Front Face
C-H

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A218/0045X-G
.068 +
.080
.054
.048
X/V(1-X)
.042
,03B
.030
.024
.018
M= 5
COR= .9967
MEAN 9T.0EV. REGRESSION LINE RES.HS.
X .14281 .08845 X= 4.2148«Y-.02824 847E-7
Y .04008 .02044 Y= ,23572*X+ .00645 382E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-14. Plot of BET equation versus relative pressure for
Converter A218/0045X - Rear Face
C-l 5

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A210/0063 SAMPLE P
.080
.054
.048
.042
X/VI1-X}
.036
.030
.024
.018
.012
N= 4
COR= .9990	P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11392 .08004 X= 4.2163*Y-.00453 397E-3
Y .02952 .01917 Y= ,23708»X+ .00109 223E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V	SYH90L=X
CPU TIME USED	.955 SECONDS
Figure C-15. Plot of BET equation versus relative pressure for
Converter A218/006S - Bulk
.045 .075 .105 .135 .165 .195 .225
.OBQ .090 .120 .150 .180 .210	.240
C-16

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A218/0066 SAMPLE E
.0750
.0675
.0600
X/V(1-X]
.0525
.0450
.0375
.0300
,0225
N= 4
Q3ft= .3S7S
MEAN ST.OEV.	REGRESSION LINE	PIES.MS.
X .11393 .08035	X= 3,14S2«Y-.00667	461E-7
Y .04020 .0SS1	Y= .31S05*X+ .00830 483E-B
variable 1 p/po	versus variable	s x/v
CPU TIME USED	.303 SECONDS
SYMBOLS
Figure C-16. Plot of BET equation versus relative pressure lor
Converter A218/0O6S - Front Face
C-17

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A218/0068 SAMPLE G
.060
.054
.048
.042
XAM-X]
.036
.030
.024
.018
.012
N= 4
COR= .9999	P/PO
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .11992 .08084 X= 4.2455«Y-.01331 184E-8
Y .03138 .01904 Y= ,23550«X+ .00314 102E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V	SYMB0L=X
CPU TIME USED	.955 SECONDS
Figure C-17. Plot of BET equation versus relative pressure for
Converter A218/0068 - Rear Face
+... .+....+.
x
x
X
X
.045	.075	.105	.135	.165	.195	.225
.080 .090 .120 .150 .180 .210	.240
C-18

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A220/0392-1 SAflPLE F
x/vn-x)
.042
N= 4
COR= .3996
MEAN
X .11992
Y .03156
.075	.105	.135	.165	.195
.060	.090	.120	.150 .180	.210
P/PO
ST.DEV. REGRESSION LINE RES.MS.
.08084 X= 3.9898»Y-,00601 768E-8
.02025 Y= .25045»X+ .00153 482E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 W
SYMB0L=X
Figure C-18. Plot of BET equation versus relative pressure for
Converter A220/0392-A - Bulk
C-19

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A220/0392-A SAMPLE E
.+	+	+	+	+	+	+	+	+¦	
+..Y
.060
.054
.048
W[1-X)
.042
.036
.030
.024
.018
.012 +
N= 4
COR= .9983
MEAN
X .11992
Y .03046
VARIABLE
.D45 .075 .105
.060 .030
ST.DEV.	REGRESSION LINE RES.(IS.
.08034	X= 3,8500*Y+ .00264 334E-7
.02096	Y= .25886»X-580E-6 225E-3
1 P/PO	VERSUS VARIABLE 2 X/V
165 .195
.180 .210
.240
SYMBOL=X
Figure C-19. Plot of BET equation versus relative pressure for
Converter A220/0392-A - Front Face
C-20

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A220/0392-A SAMPLE G
.055 +
.050
.045
.040
X/V[1-X]
.035
.030
.025
.020
.015
N= 4
COR= .9993
.045	.075	.105	.135	.165	.195 .225
.060 .030	.120	.150 .180	. 210	.240
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08064 X= 4.S012*Y-.01123 132E-7
Y .02914 .01795 Y= .22186«X+ .00253 651E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-20. Plot of BET equation versus relative pressure for
Converter A220/0392-A - Rear Face
C-21

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A220/0392-6 SAMPLE F
.0150 +
YY..+....+....+.+
.045 .075 .105
.060 .090
N= 4
COR= .9994
.165	.195 .225
.180 .210	.240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08094 X= 3.3348«Y-.00488 122E-7
Y .03742 .02423 Y= .29949»X+ .00151 109E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-21. Plot of BET equation versus relative pressure for
Converter A220/0392-B - Bulk
C-22

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A220/0392-0 SAMPLE E
.045
.042
.039
X/VH-X)
.036
.033
.030
.027
.024
X
+..Y.+.,..+.
042	.054 .066	.078
.048 .060	.072
N= 3
CQB= .9939
+...•+••••+....+....+.
.090	.102 .114 .126
.098 .108 .120
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .08214 .03517 X= 2.8273«Y-.01330 411E-9
Y .03376 .01244 Y= ,35364»X+ .00471 51E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure C-22. Plot of BET equation versus relative pressure for
Converter A220/0392-B - Front Face
C-23

-------
PAGE
.200
.175
W!1-X]
.150
.125
.100
.075
.05a
CONVERTED SURFACE AREA AJIALYSI3 A2S3/0310XX1-A SAMPLE F
+¦	*¦	A	J.	^	+•	4.	+	+	4-	+	+
.060
.090
.120
N= 3
COB= .9999
MEAN
X .13343
Y .13342
VARIABLE
ST.DEV. REGRESSION LINE
.09332 X= 1.O08B*Y-.Q1133
.08570 Y= .91632*X+ .01003
P/PO
RES.MS.
24SE-3
207 E-B
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure C-23. Plot of BET equation versus relative pressure for
Converter A220/0810-A - Bulk
C-2^

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A 220/081OXX1-A
.YX+....
.045	.075 .105
.050 .090
.+¦...+.
.165	.195 .225
.180 .210 .240
N= 3
COR= .9970
MEAN ST.DEV. REGRESSION LINE RES.MS.
X ,13a43 .09331 X= 3„1878»Y+ .00237 105E-6
Y .04111 .02918 Y= .3119Q»X-489E-6 1Q3E-7
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-2^. Plot of BET equation versus relative pressure for
Converter A220/0810-A - Front Face
C-25

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A220/0810XX1-A SAMPLE S
.099
.090
.081
X/V(1-X)
,072
.063
.054
.045
.038
N= 3
C0R= 1.000
.045 .075 .105 .135
.060 .090 .120 .150
P/PO
.165 .195 .225
.180	.210	.240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09331 X= 2.6912*Y-. 34122 154E-S
Y .05490 .03467 Y= ,37155*X+ .01532 213E-9
VARIABLE
1 P/PO
VERSUS VARIABLE £ X/V
SYMB0L=X
Figure C-25. Plot of BET equation versus relative pressure for
Converter A220/0S10-A - Rear Face
C-26

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A220/GB10 XX-B SAMPLE F
.045	.075	.105
.060	.090
.135
.120	.150
P/PO
.165	.195	.225
.160	.210	.240
COR= .9997
MEAN	ST.DEV.	REGRESSION LINE	RES.MS.
X .13343	.09332	X= 2.1820«Y-.01124	945E-8
Y .06630	.04276	Y= .45804*X+ .00518	198E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-26. Plot of BET equation versus relative pressure for
Converter A220/0810-B - Bulk
C-27

-------
CONVERTER SURFACE AREA ANALYSIS
	+	+	+	+	+
A220/0Q10XX1-B
.045 .075 .105
.060	.090
M= 3
COR= .9989
MEAN ST.DEV. REGRESSION LINE RES.HS.
X .13343 .09331 X= 3.1584»Y-.ai 891 3B7E-7
Y .04823 .02951 Y= .31592*X+ .00608 3B7E-9
.165	.195	.225
.180	.210	.240
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYII0OL=X
Figure C-27. Plot of BET equation versus relative pressure for
Converter A220/0810-B - Front Face
C-28

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0152-A SAMPLE F
.03 Y
COR= .9950
.045	.075	.105
.060 .030
.135
.120	.150
P/PO
.1S5	.195 .225
.130 .210	.240
MEAN ST.DEV. REGRESSION LI FIE RES.MS.
X .11994 .08085 X= 2.4564*Y-.03B72 977E-7
Y .06459 .03275 Y= .40305»X+ .01625 1S0E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-28. Plot of BET equation versus relative pressure for
Converter A221/0152-A - Bulk
C-29

-------
PAGE 4 CONVERTER SURFACE AF1EA ANALYSIS A2S1/0152-A SAHPLE E
.1250 +
.045 .075 .105
.OGO .090
.135
.120	.150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
.165	.195	.325
.100	.210	.240
N= 4
COR= .3393
X .11992 . 08084 X= 2.1556»Y-.01239 132E-7
Y .06139 .03743 Y= .4S329*X+ .00582 283E-0
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SY!IBOL=X
Figure C-29. Plot of BET equation versus relative pressure for
Converter A221/0152-A - Front Face
C-30

-------
PAGE 4
.090
.03ft
.072
.063
X/V[1-X]
.054
CONVERTER SURFACE AREA ANALYSIS A221/0152-A SAMPLE G
.+	+	+.. „+......+ .I..+ ....+ .
.045
.036
.027
.018
4
COR= .9946
MEAN
X .11992
Y .04922
VARIABLE .
.045	.075 .105
.060	.030
.135
.120 .150
P/PO
.165 .195 .225
.180	.210	.240
ST.DEV.	REGRESSION LI TIE	RES.MS.
.08064	X= 2.344£*Y-.02006	105E-6
.02627	Y= ,34763*X+ .00750	126E-7
1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-30. Plot oi BET equation versus relative pressure for
Converter A221/0I52-A - Rear Face
C-31

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A221/0152-3 SAMPLE F
.+	+	t	t	+	
4
CDR= 1.000
MEAN	ST.DEV. REGRESSION LINE RES.MS.
X .11992	.08084 X= 2.0145*Y-.Q1792 536E-9
Y .06842	.04013 Y= .49836*X+ .00890 157E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 3 X/V
SYMBOL=X
Figure C-31. Plot of BET equation versus relative pressure for
Converter A221/0152-B - Bulk
C-32

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0152-B SAMPLE E
.099 +
N= 4
COft= .9983
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .11993 .08085 X= 2.a636*Y-.a366g 33SE-7
Y .05469 .02019 Y= ,34802*X+ .01295 4O7E-0
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-32. Plot of BET equation versus relative pressure for
Converter A221/0152-B - Front Face
C-33

-------
PAGE
CONVERTER SURFACE AflEA ANALYSIS A321/0204-A SAMPLE F
.385
.350
.315
X/VM-X)
.280
.245
.210
.175
.1-40
.105
M= 4
COR= .9971
MEAN
X .11995
Y .2S9B6
.045	.075	.105
,060 .090
.135
.120 .150
P/PO
.165 .195 .225
.180 .210 .240
ST .DEV. REGRESSION LINE RES.MS.
.08084 X= ,71053*Y-.04340 570E-7
.11345 Y= T.3992*X+ .06207 112E-6
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-33. Plot of BET equation versus relative pressure for
Converter A221/0204-A - Bulk
C-3f

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0204-A SAMPLE E
.045	.075 .105 .135	.165	.195	.225
.060	.090 .120	.150 .130 .210	.240
N= 4
COR= .9994	P/PO
MEAN ST.DEV.	REGRESSION LINE RES.MS.
X .11992 .08084	X= 1.2628»Y-.01895 119E-7
Y .10998 .06399	Y= .79102»X+ .01512 747E-8
VARIABLE 1 P/PO	VERSUS VARIABLE 2 X/V	SYMBOL=X
CPU TIME USB)	.956 SECONDS
Figure C-3^. Plot of BET equation versus relative pressure for
Converter A221/0204-A - Front Face
C-35

-------
PAGE
CONVERTER SURFACE AREA AUALYSI
. + + + +	.+
A221/0204-A 3ANPLE G
+	
N= 3
COR= .9098
MEAN 3T.0EV. REGRESSION LINE RES.IIS.
X .13344 . 09333 X= 4.8750'*Y-.3159Q 354E-6
Y .21525 .01395 Y= .20096*X+ .13843 1 46E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-35. Plot of BET equation versus relative pressure for
Converter A221/0204-A - Rear Face
C-36

-------
PAGE
CONVERTER SURFACE AREA AflALYSIS A221/0204-B SAfPLE r
.+	+	+	+	+	t	-	+	.+... .+....+.
+-.Y
li= 3
COR= .9927
.~45 .075 .105
.060 .090
.135
.120 .150
P/PO
.165 .195 .225
.ISO .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13344 .09333 X= 1.4406»Y-.01047 S52E-6
Y .09989 .06431 Y= .6B41Q*X+ .00361 120E-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
sri-raoL=x
Figure C-36. Plot of BET equation versus relative pressure for
Converter A221/0204-B - Bulk
C-37

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0204-B SAMPLE E
	+	+		+	
.1375 +
Y..+,
.045 .075 .105
.080 .090
.135	.165	.195	.225
.180 .210 .240
M= 4
C0R= .9999
.120 .150
P/PQ
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08084 X= 1,9229»Y-.02114 113E-8
Y .07336 .04204 Y= ,52aOO»X+ .01100 305E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYHB0L=X
Figure C-37. Plot of BET equation versus relative pressure for
Converter A221/02Q
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A221/0447-A SAMPLE r
. +	+	+	+ + +
.045 .075	.105
.060 .090
U= 3
COR= 1.000
.135
.120 .150
P/PO
.165	.195 .225
.130	.210 ,240
MEAN ST,DEV. REGRESSION LIME RES.MS.
X .13343 . 09332 X= 1 .1l75«Y-.0149a 32E-1Q
Y .13281 .09351 Y= .S9
-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A221/0447-A
N= 4
COR= .9980
MEAN
X .11992
Y .05171
X
.045	.075	.105	.135
.OSO .090 .120	.150
P/PO
ST.DEV. REGRESSION LIME RES.MS.
.08084 X= 2.3321*Y~.02401 393E-7
.03459 Y= ,42705*X+ .01050 730E-8
165	.195	.225
.180	.210	.240
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYt1BQL=X
Figure C-39. Plot of BET equation versus relative pressure for
Converter A221/0447-A - Front Face
C-40

-------
PAGE
COilVERTER SURFACE AREA ANALYSIS A221/0447-A SAIIPLE G
..t.	.+..YY
.103
.102
.096
.090
X/V(1-X)
.034
.078
.072
.0G6
.060 +
YY.+....+.
.0073 .1125 .1375 .1825 .1075 .2125 . 2375
.0750 .1000 .1250 .1500 .1750 . 2000 . 2250
N= 3
P/PO
COR= 1.000
MEAN
X .1437G
Y .03105
ST.DEV. REGRESSION LINE RES.IIS.
.07997 X= 3.3471»Y-.12752 971E-9
.02389 Y= .29874*X+ .03810 87E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-^0. Plot of BET equation versus relative pressure for
Converter A221/04^7-A - Rear Face
C-fl

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A221/0447-B 5AI1PLE F
N= 4
COR= .9996
MEAN
:< .11992
Y .07452
VARIABLE
.Y+...
.045	.075	.105
.060 .090
13>i
.120 ' .150
P/PO
.165	.195 .225
.180	.210	.240
ST.DEV. REGRESSION LINE RES.MS.
.08084 X= 1.8812*Y-.02026 790E-8
.04296 Y= .5311S*X+ .01082 223E-8
1 P/PO
VERSUS VARIABLE 2 X/V
SY?1B0L=X
Figure C-41. Plot of BET equation versus relative pressure for
Converter A221/04^7-B - Bulk
C-42

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A221/0447-B SAMPLE c
.045
.075
.105
.135
.165
,060
.030
.120
.150
,130
.195
.225
.210
.240
H= 4
COR= .9933
MEAN
X .11992
Y .05453
P/PO
ST.OEV. REGRESSION LINE RES.WS.
.0BC34 X= 2.2481*Y-.02516 331E-7
.03590 Y= ,44332*X+ .01137 B53E-9
VARIASLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYf1S0L=X
Figure C-W. Plot of BET equation versus relative pressure for
Converter A221/0W7-B - Front Face
C-43

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A230/Q177X-A SAMPLE F
M= 3
COR= .9922
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .13342 .09331 X= 5.03Sa*Y-.03SS4 2S9E-S
Y .03439 .01840 Y= .19563°X+ .00329 105E-7
VARIABLE 1 P/PQ
VERSUS VARIABLE 2 X/V
SYI1B0L=X
Figure C-43. Plot of BET equation versus relative pressure for
Converter A230/0177X-A - Bulk
C-M

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0177X-A SAMPLE E
.+	+	+	+	+¦	+	+	+		+	
N= 4
C0R= .9993
MEAN
X .11992
Y .03313
.045 .075 .105
.060 .090
.135
.120 .150
P/PO
.165	.195	.225
.180 .210 .240
ST.DEV. REGRESSION LINE RES.MS.
.09084 X= 3.4277«Y-.01077 140E-7
.02357 Y= .29133*X+ .00319 119E-0
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-W. Plot of BET equation versus relative pressure for
Converter A230/0177X-A - Front Face
C-45

-------
PAGE 4
.060
C0HVERTER SURFACE AREA ANALYSIS A230/0177X-A SAMPLE G
.054
.04a
X/V(1-X)
.042
.036
.030
.024
.C1-8
.012
N= 4
COR= .9975
MEAN
X .11992
Y .03011
P/PO
ST.DEV. REGRESSION LINE RES.HS.
.08084 X= 3.90B8*Y+ .00230 496E-7
.02064 Y= .25467*X-434E-6 323E-0
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYHBQL=X
Figure C-45. Plot of BET equation versus relative pressure for
Converter A230/0177X-A - Rear Face
C-^6

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0177X-S SAT1PLE F
M= 4
cor= .ggga
.+....+....+....+
.045	.075 .105
.060 .090
a.+....+....+.
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LIME RES.MS,
X .11992 .00084 X= 3.3019*Y-.00847 403E-8
Y .03088 .02448 Y= .30273*X+ .00250 370E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-46. Plot of BET equation versus relative pressure for
Converter A230/Q177X-B - Bulk
C-^7

-------
PAGE 4
.060
CONVERTER SURFACE AREA ANALYSIS
.T-,.,+
A23O/O177:<-0 SAMPLE E
.054
.04a
.042
x/vn-x)
.036
.030
.024
.018
.012 y
H= 4
COB= .3396
MEAN ST.DEV. REGRESSION LINE RES.MS.
A .11992 . 08084 X= 4.34S3«Y-.0175a 475E-8
Y .03151 .01038 Y= .22979*°,i+ .00406 351E-9
VARIAOLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOLIC
Figure C-^7, Plot of BET equation versus relative pressure for
Converter A230/0177X-B - Front Face
C-48

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A23Q/0636X-A SAMPLE F
N= 4
COR= .9992
MEAN
X .11992
Y .05595
.045	.075 .105
.080 .090
ST.OEV. REGRESSION LINE RES.MS.
.08084 X= 2.4S79*Y-.01fl17 150E-7
.03273 Y= ,4C450«X+ .00743 245E-8
.165	.195 .225
.180 .210	.240
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-48. Plot of BET equation versus relative pressure for
Converter A230/0636X-A - Bulk
C-49

-------
PAGE 4 COHVERTER SURFACE AREA ANALYSIS A230/063SX-A SAMPLE E
.045 .075 .105
.060 .030
M= 4
COR= .9962
MEAN
X .11992
Y .04901
.135
.120 .150
P/PO
.165 .195 .225
.180 .210	.240
ST.DEV. REGRESSION LINE RES.MS.
.08084 X= 2.9814*Y-,02620 736E-7
.02701 Y= ,33290*X+ .00909 021E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure C-W. Plot oi BET equation versus relative pressure ior
Converter A230/0636X-A - Front Face
C-50

-------
PAGE 4 CONVERTER SURFACE AREA AflALYSIS A23D/0S3EX-A SAI-PLE G
.+•	+¦	+	+	.	+ .... +	+	Y.
.0325 +
N= 4
C0R= .9393
.~45 .075 .105
.080 .090
.135
.120 .150
P/PO
.165 .195 .225
.180 .210 .240
HEAfl ST.OEV. REGRESSION LINE RES .MS.
X .11992 .08084 X= 3.1035*r-.3205E 14SE-7
Y .04E2T .02503 Y= .32174*X+ .00569 150E-B
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLS
Figure C-50. Plot of BET equation versus relative pressure for
Converter A230/0636X-A - Rear Face
C-51

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A230/QB3SX-B SAMPLE F
.+•	+	+	+	+	+	+...
+.YY
.045 .075 .105
.060 .090
N= 3
COR= .9994
165 .195 .225
.180	.210	.240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .03331 X= 2.5834»Y-.00S05 19SE-7
Y .05515 .03610 Y= .3BS65»X+ .00356 293E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYHB0L=X
Figure C-51. Plot of BET equation versus relative pressure for
Converter A230/0636X-B - Bulk
C-52

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0636X-B SAMPLE E
.045 .075 .105	.135	.165	.195	.225
.060 .090 .120	.150	.180	.210	.240
N= 4
COR= .9996
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08084 X= 3.2140»Y-.Q2033 744E-8
Y .04363 .02514 Y= ,31090*X+ .00635 719E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-52. Plot of BET equation versus relative pressure for
Converter A230/0636X-B - Front Face
C-53

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0016L-A SAMPLE F
+	4.	-*¦	+•	+	*	+	4-	+
.050
.045
.040
.035
X/V(1-X)
.030
.025
.020
.015
.010
.045 .075	.105
.060 .090 .120	.150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
N= 3
C0R= .9399
.165	.135 .225
.100 .210	.240
X .13344 .09333 X= 5.3220*Y-.01621 490E-8
Y .02912 .01753 Y= .167859X+ .00305 173E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-53. Plot of BET equation versus relative pressure for
Converter A240/0016L-A - Bulk
C-54

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0016L-A SAMPLE E
.+	+	+	+	+	+	+•	+„	+....+	
.050
.045
.040
X/VH-X]
.035
.030
.025
.020
.015
.+•..+....+
.045	.075	.105
.060	.030
N= 3
COR= 1.000
MEAN
X .13344
Y .03024
.135
.120	.150
P/PO
.165 .195 .225
.180	.210	.240
ST.DEV. REGRESSION LINE RES.MS.
.09332 X= 5.0348'Y-. 01881 215E-9
.01854 Y= .19861*X+ .00374 85E-10
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure C-54. Plot of BET equation versus relative pressure for
Converter A2W/0016L-A - Front Face
C-55

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0016L-A SAMPLE G
....+....+....+....+....+.... + ....-t-....+....+....+....+.... + .... + .... + ..X
.055 +	Y
.050
.045
.040
X/V(1-X)
.035
.030
.025
.020
.015
N= 3
C0R= .9981
.045 .075	.105	.135	.165
.060	.090	.120	.150
P/PO
.195	.225
,100	.210	.240
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .13345 .09332 X= 5.0974«Y-.03400 673E-7
Y .03295 .01927 Y= .19542»X+ .00677 258E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-55. Plot of BET equation versus relative pressure for
Converter A240/0016L-A - Rear Face
C-56

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0aiSL-a SAMPLE P
	.+	+	+	.. + .... + .... + .... + .... + .... + .Y
.060
.054
.043
.042
X"V(1-X]
N= 3
COR= .9390
MEAN ST.DEV. REGRESSION LINE RES.US.
X .13345 .09332 X= 4.0447*Y-.012ia 766E-B
Y .03600 .05307 Y= .24713«X+ .00302 468E-9
VARIABLE
1 P/PO VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-56. Plot of BET equation versus relative pressure for
Converter A24Q/00I6L-B - Bulk
C-57

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0016 L-B SAMPLE E
.080
.054
.048
X/V[1-X]
.~42
.035
.030
.024
.~13


.045	.075	.105
.060	.090
M= 3
COR= .9992
MEAN
X .13345
Y .03744
.135
.120 .150
P/PO
.165 .195 .225
.130 .210	.240
ST.DEV. REGRESSION LINE RES.MS.
.09332 X= 4.0929»Y-.01979 293E-7
.02273 Y= ,24392*X+ .00489 175E-3
VARIABLE	P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-57. Plot of BET equation versus relative pressure for
Converter A240/0016L-B - Front Face
C-58

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A24Q/0102-A SAMPLE P
.68 +
N= 3
COR= .9913
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09331 X= .41316«Y-,03174 303E-6
Y .39976 .22388 Y= 2.3783*X+ .00243 .Q0174
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-58. Plot of BET equation versus relative pressure for
Converter A240/0102-A - Bulk
C-59

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A240/C102-A SAMPLE E
N= 3
COR= .9911
MEAN
X .13343
Y .10595
VARIABLE
.045 .075 .105
.080	.090
ST.DEV. REGRESSION LINE RES.MS.
.09331 X= 2.0333*Y-.08201 309E-6
.04548 Y= ,4a307'»X+ .04150 735E-7
.165 .195 .225
.180	.210	.240
1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-59. Plot of BET equation versus relative pressure for
Converter A240/0102-A - Front Face
C-60

-------
PAGE 4
.525
CONVERTER SURFACE AREA ANALYSIS
A240/0102-A SAMPLE G
+	-t-	+¦	+	+	+	+.
.490
.455
.420
X/VH-X]
.3B5
.350
.315
.280
.245
N= 3
COR= .9931
MEAN
X .13343
Y .36681
.045	.075 .105
.060	.030
ST.DEV. REGRESSION LINE RES.HS.
.09331 X= ,69963*Y- .12320 241E-6
.13245 Y= 1.4095*X+ .17874 486E-6
.165 .195 .225
.130 .210 .240
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-60. Plot of BET equation versus relative pressure for
Converter A240/0102-A - Rear Face
C-61

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
A240/0102-B
+...
N= 3
COR= .9985
MEAN
X .13343
Y .33220
.045 .075	.105	.135
.060 .090	.120 .150
.165	.195	.225
.180	.210	.240
ST.DEV. REGRESSION LINE
.09332 X= ,58450»Y-.06074
.15942 Y= 1,7058*X+ .10458
P/PO
RES.IIS.
512E-7
149E-G
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-61. Plot of BET equation versus relative pressure for
Converter A240/0102-B - Bulk
C-62

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS	A240/0102-B SAIIPLE E
.0975
.0900
.~825
X/V[1-X]
.0750
.0675
.0600
.0525
.0450
N= 3
COR= .9949
.080
.090
.120	.150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
.180
.210
.240
X .13342 .09331 X= 3.1814«Y-.08B10 17SE-6
Y .06900 .02918 Y= .31115»X+ .02749 172E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYM8QL=X
Figure C-62. Plot of BET equation versus relative pressure for
Converter A2^0/Q102-B - Front Face
C-63

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0141L-A SAMPLE F
¦ 012
M= 4
COR= .9999
MEAN ST.DEV. REGRESSION LINE flES.MS,
X .11992 .00084 X= 4.3451*Y-.01357 116E-B
Y .03072 .01860 Y= .23D12*X+ .00313 82E-9
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-63. Plot of BET equation versus relative pressure for
Converter A24Q/0141L-A - Bulk
C-64

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0141L-A SAJIPLE E
¦
.060
.054
.048
X/VM-X)
.042
.038
.030
.024
.018
.012
N= 4
COR= .9974
MEAN
X .11992
Y .03001
ST.DEV. REGRESSION LINE RES.MS.
.08084 X= 4.0616*Y-.00198 502E-7
.01985 Y= .24435#X+ S38E-6 303E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-64. Plot of BET equation versus relative pressure for
Converter A2^0/0141L-A - Front Face
C-65

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0141L-A SAMPLE G
	+	+....+	+	+	+	+....+.:	+.
.055 +
.045 .075 .105 .135
.080	.090
N= 4
COR= .990S
.120 .150
P/PO
+....+...+....+.
.165 .195 .225
.130 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08084 X= 4.6B37«Y-.02085 272E-7
Y .03008 .01724 Y= .21291*X+ .00452 1 24E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYIfBOL=X
Figure C-65. Plot of BET equation versus relative pressure for
Converter A240/01^1L-A - Rear Face
C-66

-------
PAGE 4 CQWEPTE3 SURFACE A.REA ANALYSIS te40/ai4H.-S SAMPLE F
.+	+....+,
.11 +

N= 4
COR= .3973
X
•. «+YX. ,+,...+.0».+.
,045 .075	.105
.060 .090
+ .	. ..+. ¦ a ,+,	,,V,
.135	.1S5 .195 .225
.130 . 210 .240
.120 .150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.HS.
X .11992 .08084 X= 2.22B7*Y-.003S8 523E-7
Y .05546 .03S18 Y= .44631*X+ .00194 105E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYH0OL=X
Figure C-66. Plot of BET equation versus relative pressure for
Converter A240/0H1L-B - Bulk
C-67

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0141L-B SAMPLE E
4.	+	+	+	4-	+	4- _ .+	_ 4.	+	*¦
.045	.075	.105
.060 .090
N= 4
COR= .9962
.135
.120 .150
P/PO
.165	.195	.225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08034 X= 2.8189*Y-.00245 749E-7
Y .04341 .02857 Y= .35203»X+ .00120 936E-8
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-67. Plot of BET equation versus relative pressure for
Converter A2^0/01i»lL-B - Front Face
C-68

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0153-A SAMPLE F
.050
+.Y
.045
.040
X/VI1-X)
.035
.030
.~25
.020
.015
.045	.075	.105
.060 .090
.135
.120 .150
P/PO
.165 .195 .225
.180	.210	.240
N= 3
COR= .9997
MEAN	ST.DEV. REGRESSION LINE RES.MS.
X .13342	. 09331 X= 4.6613»Y-.Q1147 924E-3
Y .03108	.02001 Y= ,21442*X+ .00247 4E5E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBQL=X
Figure C-68. Plot of BET equation versus relative pressure for
Converter A240/0153-A - Bulk
C-69

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A240/0153-A SAMPLE E
.040
.033
.032
.028
X/V[1-X)
.024
.020
.013
.012
.008
N= 3
COB= .9935
.045 .075 .105
.060 .090
.135
.120 .150
P/PO
.165 .195 .225
.100 . 210 .240
MEAN ST.OEV. REGRESSION LIME RES.MS.
X .13343 .09331 X= 6.1407* Y-.00574 50SE-7
Y .02253 .01517 Y= .16238»X+ .00100 134E-B
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-69. Plot of BET equation versus relative pressure for
Converter A240/0153-A - Front Face
C-70

-------
PAGE 4 CONVERTS) SURFACE AREA ANALYSIS A240/0153-A SAMPLE G
.0375 +
3
COR= ,9922
.043	.075	.105
.060 .090
.135
.120 .150
P/PO
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13344 .09332 X= 1.9494*Y-.02486 272E-6
Y .08120 .04750 Y= .50496*X+ .01382 704E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-70. Plot of BET equation versus relative pressure for
Converter A2W/0153-A - Rear Face
C-71

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0153-B SAflPLE F
.0150 +
rj= 3
COR= .9989
MEAN
X .13343
Y .04299
VARIABLE
.045 .075 .105
.060 .090
.135
.120 .150
P/PO
.165 .195	.235
.100 .210	.240
ST.DEV. REGRESSION LINE RES.MS.
.09331 X= 3.1224»Y-813E-3 389E-7
.02935 Y= .31955»X+ 356E-6 399E-8
1 P/PO
VERSUS VARIAGLE 2 X/V
SYflQ0L=X
Figure C-71. Plot of BET equation versus relative pressure for
Converter A2WJ/0153-B - Bulk
C-72

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0153-B SAHPLE £
M= 3
COR= .9995
MEAN ST.DEV. REGRESSION LINE RES.IIS.
X .13343 .09331 X= 3.2124«Y-. 01937 179E-7
Y .04757 .02903 Y= .31097«X+ .00507 173E-Q
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYtlBOL=X
Figure C-72. Plot of BET equation versus relative pressure for
Converter A240/01.53-B - Front Face
C-73

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0334L-A SAIFIE F
.050
.045
.040
.035
.030
.025
.020
.015
.045 .075 .105
.060 .090
!4= 3
COR= 1.000
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09331 X= 4.6215»Y-.01313 165E-3
Y .03171 .02019 Y= .21S36°X+ .00284 77E-9
.165	.195 .225
.180	.210	.240
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-73. Plot of BET equation versus relative pressure for
Converter A240/0334L-A - Bulk
C-74

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0334L-A SAMPLE E
.050 +

+
Y
N= 3
COR= ,3994
.045	.075	.105	.135
.060	.090
.120	.150
P/PO
.165	.195 .225
.180 .210	.240
MEAN ST.DEV. REGRESSION LIJIE RES.MS.
X .13343 .09331 X= 5.3153*Y-.01037 19SE-7
Y .02705 .01755 Y= .18792*X+ .0019B 694E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYflB0L=X
Figure C-74. Plot of BET equation versus relative pressure for
Converter A2^0/033^L-A - Front Face
C-75

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
*	-t-	¦+¦	+	+	+
1240/Q334L-A SAMPLE G
+	.T	+	T.. . . + .
.055
.050
.045
.040
X/V(1-X)
.035
.030
.025
.020
.015
N= 3
COR= .3996
MEAN
X .13343
Y .03371
.060
ST.DEV. REGRESSION LINE
.09331 X= 4.529S»Y-.01925
.02059 Y= .22059«X+ .00427
P/PO
RES.MS.
147E-7
717E-9
VARIAOLE
P/PO
VERSUS VARIABLE 2 )(/V
SY!180L=X
Figure C-75. Plot of BET equation versus relative pressure for
Converter A240/0334L-A - Rear Face
C-76

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A240/0334L-3 SAMPLE F
.1250
.1125
.1000
.0875
X/VM-X]
.0750
.0625
.0500
.0375
.0250
YY..+..
.045 .073 .105
.080 .090
3
CQR= 1.000
MEAN
X .13344
V .07216
VARIABLE
.185 .195 .225
.180 .210 .240
ST.DEV. REGRESSION LINE RES.KS.
.09332 X= 1.3867*Y-.00992 674E-9
,04697 Y= .50332*X+ .00500 171E-9
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-76. Plot of BET equation versus relative pressure for
Converter A240/033^L-B - Bulk
C-77

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A24O/0334L-B SAfPLE E
.060
.054
.048
.042
;(/V[X-1 ]
.036
.030
.024
.019
.012
M= 3
CQR= .9971
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13344 . 09332 X= 4.3664«Y-.02081 103E-6
Y .03533 .02131 Y= .22767*X+ .00495 535E-E
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBClL=X
Figure C-77. Plot of BET equation versus relative pressure for
Converter A240/0334L-B - Front Face
C-78

-------
PAGE 4
.150
CONVERTER SURFACE AREA ANALYSIS A249/Q169-1 F
.135
.120
X/V(1-X]
.105
.090
.075
.060
.045
w= a
COR= .9997
MEAN
X .11992
Y .08144
.045 .075 .105
.080 .090
ST.DEV. REGRESSION LINE RES.MS.
.07485 X= 1.5883*Y-.00943 346E-8
.04711 Y= .63926»X+ .00598 137E-8
.165 .195 .225
.180 .210 .240
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYKBOL=X
Figure C-78. Plot of BET equation versus relative pressure for
Converter A249/0169-1 - Bulk
C-79

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS
.+	+	
+.Y
N= 7
COR= .9994
.045 .075 .105
.060 .090
.165 .195 .225
.180 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13015 .07458	X= 1.0221 *Y-. 01457 840E-8
Y .07942 .04090	Y= ,54812»X+ .00809 253E-8
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
CPU TIME USED	.942 SECONDS
SYMBOL=X
Figure C-79. Plot of BET equation versus relative pressure for
Converter A2^9/0169-l - Front Face
C-80

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A249/0169-1 G
+....+.XY
N= 8
COR= .9967
MEAN
X .11993
Y .05929
.045 .075	.105	.135	.165 .195
.060 .090	.120	.150 .130 .210
P/PO
ST.DEV. REGRESSION LINE RES.MS.
.07485 X= 2.3736»Y-.01389 435E-7
.03143 Y= ,41B49*X+ .00610 767E-9
Figure C-80. Plot of BET equation versus relative pressure for
Converter A249/0169-1 - Rear Face
C-81

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A249/G169-S SAMPLE F
.50
.45
X
Y
.40
X/VI1-X]
.35
i.+.
.045
.075
i
.105
.135
.165
.195
>•+...
.225
N= 4
COR= .9981
MEAN
X .11994
Y .36143
VARIABLE
.060 .090 .120 .150
P/PO
ST.DEV. REGRESSION LINE
.080B5 X= .52890'Y-.02B91
RES.MS.
37BE-7
134E-3
.15250 Y= 1.8B35«X+ .05554
1 P/PO VEHSUS VARIABLE 2 X/V
.180
.210
.240
SYHBOL=X
Figure C-81. Plot of BET equation versus relative pressure for
Converter A249/0169-2 - Bulk
C-82

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A-249/0169-2 SAMPLE E
N= 4
COR= .9736
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08084 X= 3.3282»Y-.12926 511E-6
Y .07491 .02388 Y= .28497*X+ .04074 438E-7
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
CPU TIME USED 1.000 SECONDS
SYMBOL=X
Figure C-82. Plot of BET equation versus relative pressure for
Converter A249/0169-2 - Front Face
C-83

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A249/0169-2 SAMPLE G
<4.	4-	+	+¦ _ ¦+¦	 + . +
N= 5
COR= .9806
.045 .075 .105
.080 .090
.165 .195 .225
.100 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11986 .07002 X= 2.2234«Y-.11759 251E-6
Y .10670 .03088 Y= ,43246*X+ .05498 489E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-83. Plot of BET equation versus relative pressure for
Converter A249/0169-2 - Rear Face
C-84

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
A249/0169-3-A SAtiPUi F
+....+....+....+....+Y.
.05 + X
.045	.075 .105
.060	.090
3
COR= .9999
MEAN
X .13343
Y .13635
.155	.135	.225
.180 .210 .240
ST.DEV. REGRESSION LINE RES.MS.
.09332 X= 1.1308*Y-.02075 178E-8
.03252 Y= .88424°X+' .01337 1 3SE-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYt1B0L=X
Figure C-84. Plot of BET equation versus relative pressure for
Converter A2^9/0169-3-A - Bulk
C-85

-------
page 4 CONVERTER SURFACE AREA ANALYSIS A249/0169-5-A SAIPLE c
.+....+....+....+....+....+....+....+....+....+....+....+....+....+Y.
.045
.075
.060
.090
.105
.135
.135
.120
.150
N= 3
COR= .9996
MEAN
X .13343
Y .09159
P/PO
ST.DEV. REGRESSION LINE RES.MS.
.09331 X= 1.8810°Y-.03885 151E-7
.04959 Y= .53118«X+ .02071 425E-Q
.180
.135
.225
.210
.240
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMaOL=X
Figure C-85. Plot of BET equation versus relative pressure for
Converter A249/0169-3-A - Front Face
C-86

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
.+	+	+	+
A249/016S-3-A SAMPLE G
+¦	.+....+....+....+Y.
.165 +
.045	.075 .105
.060 .090
rt= 3
COB= .9981
.135
.130	.150
P/PO
.165	.195	.225
.100	.210	.240
MEAN ST.OEV. REGRESSION LINE RES.HS.
X .13343 .09332 X= 1.5271»Y-.01353 652E-7
Y .09623 .06099 Y= .65237»X+ .00919 273E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBQL=X
Figure C-86. Plot of BET equation versus relative pressure for
Converter A249/0169-3-A - Rear Face
C-87

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A249/0119-3-B SAMPLE F
.+	+	+	+	+	+	+	+	+	+	
.525
X/VI1-X)
N= 3
COB= .9997
.045	.075 .105 .135 .185 .195 .225
.060 .090	.120	.150 .130 .210 .240
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13344 .09333 X= .36154«Y-.02791 103E-7
Y .44630 .25006 Y= 2.7643°X+ .07743 788E-7
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-87. Plot of BET equation versus relative pressure for
Converter A249/0169-3-B - Bulk
C-88

-------
PAGE 4
.325 +*
.300
.275
.250
X/V(1-X]
.225
CONVERTER SURFACE AREA ANALYSIS
A249/Q169-3-B SAMPLE E
...+.. o+.¦...Y+.
.200
.175 +
.150 +
.125 +
.045 .075 .105 .135 .155 .195
.225
N= 3
COft= .9S1S
.060 .090 .120	.150
P/PO
.1B0
.210
.240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13344 .09332 X= .S0445*Y-.06203 292E-6
Y .21612 .10231 Y= 1.0871«X+ .07105 351E-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-88. Plot of BET equation versus relative pressure for
Converter A2^9/Q169-3-B - Front Face
C-89

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A280/0001L-A SAMPLE F
.045 .075	.105
.060 .090
N= 3
COR= 1.000
.135
.120 .150
P/PO
.165	.195	.225
.100	.210	.240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 . 09332 X= 1.19S2»Y-.01343 444E-9
Y .12282 .07801 Y= .83539ttX+ .01127 310E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMDOL=X
Figure C-89. Plot of BET equation versus relative pressure for
Converter A280/0001L-A - Bulk
C-90

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
A230/001L-A SAMPLE E
N= 3
COR= .3958
.075	.105	.135	.165	.195	.225
.060	.090	.120	.150	.190	.210	.240
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09332 X= 1.7807»Y- .04626 148E-6
Y .10091 .05219 Y= .556S8»X+ .02681 457E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure C-90. Plot of BET equation versus relative pressure for
Converter A280/0001L-A - Front Face
C-91

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A280/0001L-A SAMPLE G
N= 3
COR= .9999
MEAN ST.DEV. REGRESSION LIME RES.IiS.
X .13343 . 09332 X= 2.1373«Y-. 03475 434E-8
Y ,07089 .04266 Y= .4570B»X+ .01590 907E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-91. Plot of BET equation versus relative pressure for
Converter A280/Q001L-A - Rear Face
C-92

-------
page 4 converter surface area analysis a2bo/qoil-b sample f
.150
.135
.120
X/V(1-X)
.105
.090
.075
.060
.045
N= 3
COR= .9990
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09332 X= 1.6227»Y-.01566 659E-3
Y .09188 .05750 Y= .61S02»X-t- .00968 250E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMDOL=X
Figure C-92. Plot of BET equation versus relative pressure for
Converter A280/0001L-B - Bulk
C-93

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A280/001L-B SAMPLE E
.055
.050
.045
.040
X/V(1-X]
.035
.030
.025
.020
.015
N= 3
COR= .9999
MEAN
X .13344
Y .03370
X
•+Y...+....+.
.045	.075	.105
.050 .090
ST.DEV. REGRESSION LINE
.09332 X= 4.3901"Y-.01449
.02125 Y= ,22772"X+ .00331
165	.195	.225
.180	.210	.240
RES.MS.
494E-B
256E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure C-93. Plot of BET equation versus relative pressure for
Converter A280/0001L-B - Front Face
c-n

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS
A155/0941-1-A
SAMPLE F
+..Y
.06 Y
.120	.150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
rt= 3
COR= 1.000
X .13343 . 09331 X= .34540»Y-.017S9 11SE-9
Y .17875 .11038 Y= 1.1829*X+ .02093 163E-9
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-9^. Plot of BET equation versus relative pressure for
Converter A155/09^1-l-A - Bulk
C-95

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS
+	+	
A155/0 9 41 -1-A
.. .+.... + .
.0375 +
N= 4
COR= .9993
MEAN
X .11992
Y .07653
ST.DEV. REGRESSION LI HE RES.MS.
.08084 X= 1.7S50»Y-.01515 736E-8
.04579 Y= .56614*X+ .00864 236E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-95. Plot of BET equation versus relative pressure for
Converter A155/0941-1-A - Front Face
C-96

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
A155/0S41-1-A SAItPLE G
+. + 	-»¦	+	+¦_ y v
'J— 3
COR= .9803
MEAN
X .13343
V .12598
ST.DEV. REGRESSION LINE RES.MS.
.09331 X= 1,3813«Y-.04055 681E-6
.Q6S22 Y= .S95S7*X+ .03314 343E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-96. Plot oi BET equation versus relative pressure for
Converter A155/0941-1-A - Rear Face
C-97

-------
PAGE 4
.150
CONVERTER SURFACE AREA ANALYSIS A230/0636X-B SAMPLE F
.135
.120
X/V[1-X]
.105
.090
.075
.060
.045
N= 4
COft= .9997
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 . 00084 X= 1.S064»Y-.01156 497E-B
Y .08185 .05031 Y= .62219»X+ .00724 193E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-97. Plot of BET equation versus relative pressure for
Converter A155/0941-1-B - Bulk
C-98

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A155/0941-1-B SAMPLE E
.+	+	+	+	+	+	+	+	
.0250 Y
N= 3
COR= .9385
.045	.075 .105
.060 .090
.155	.195	.225
.100	.210	.240
MEAN ST.DEV. REGRESSION LIME RES.MS.
X .13342 .09331 X= 2.0612»Y-.02057 524E-7
Y .07471 .04520 Y= .48370,»X+ .01017 123G-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-98. Plot of BET equation versus relative pressure for
Converter A155/0941-1-B - Front Face
C-99

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A155/0941-2-A SAMPLE F
.+		+.	f	+	
.245
X/V(1-X)
N= 4
CDR= .9991
MEAN ST.OEV. REGRESSION LINE RES.MS.
X .11992 .08064 X= .72320«Y-. 01324 1S1E-7
Y .18413 .11160 Y= 1.30O2»X+ .01852 345E-7
VARIABLE 1 P/P0
VERSUS VARIABLE 2 X/V
SYMSOL=X
Figure C-99. Plot of BET equation versus relative pressure for
Converter A155/0941-2-A - Bulk
C-100

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A155/0941 -2-A SAIPLE E
.045	.075 .105
.060 .090
.135	.165	.195 .225
.180	.210	.240
N= 3
COR= 1.000
.120	.150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X ,13343 .09331 X= 1.0755»Y-.058S3 62E-10
Y .17858 .08676 Y= . 92981 *X+ .05452 53E-10
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-100. Plot of BET equation versus relative pressure for
Converter A155/0941-2-A - Front Face
C-101

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A155/0941-2-A SAMPLE G
¦J.	4-	-4-	4-	+	4-	4»	+	+	i- yV +
.130
.045	.075	.105
.06Q	.090
N= 4
C0R= .9890
165	.195 .235
,1G0	.210	.240
(1EAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08084 X= 1.5330*Y-.04866 215E-6
Y .10997 .05215 Y= .63602">X+ .03346 895E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-101. Plot of BET equation versus relative pressure for
Converter A155/09M-2-A - Rear Face
C-102

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS
A155/0941-2-B
4-	+	+	 +¦
N= 4
COR= .9389
MEAN
X .11991
Y ,13095
VARIABLE
.045	.075 .105
.060 .090
.135
.120	.150
P/PO
.165 .195 .225
.180 .210 .240
ST.DEV. REGRESSION LINE RES.IIS.
.00083 X= .93768*Y—.00297 214E-7
.00611 Y= 1.0641 *X+ .00334 242E-7
1 P/PO
VERSUS VARIABLE 2 X/V
SYflBOL=X
Figure C-102. Plot of BET equation versus reiative pressure for
Converter A155/0941-2-B - Bulk
C-103

-------
PAGE
CONVERTER SURFACE AREA ANALYSIS A155/0941-2-B SAMPLE E
.165
.150
.135
X/VM-X)
.120
.105
.090
.075
.060
N= 4
COR= .9952
MEAN
X .11993
Y .10496
.045 .075 .105
.060 .090
,.+....+.
.135
.120	.150
P/PO
...+....+....T....+..
.165	.195	.225
.180	.210	.240
ST.DEV. REGRESSION LINE RES.MS.
. CI SOBS X= 1.7720*Y-.06606 931E-7
.04541 Y= .55896«X+ .03792 294E-7
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure C-103. Plot of BET equation versus relative pressure for
Converter A155/0941-2-B - Front Face
C-104

-------
PAGE 4
.1750
.1575
.1400
X/Vll-X]
.1225
.1050
.0075
.0700
.0525
CONVERTER SURFACE AREA ANALYSIS A207/0101-A SAMPLE F
.045	.075 .105
.060	.090
.135
.120 .150
P/PO
.165 .195	.225
.130 .210 .240
N= 3
COB= .9995
MEAN	ST.DEV.	DEGRESSION LINE RES.US.
X .13343	.09332	X= 1.4538*Y-.02150 169E-7
Y ,10357	.0641S	Y= .63717°X+ .01483 79SE-0
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBCL=X
Figure C-104. Plot of BET equation versus relative pressure for
Converter A207/Q101-A - Bulk
C-105

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS
.22 +
A2O7/01O1 -A SAfPLE E
	YY
PJ= 3
CQR= .9971
.045	.075	.105
.060 .090
.135
.120 .150
P/PO
.165 .195 .225
.130 .210 .240
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09332 X= 1.2313«Y-.02941 1C1E-6
Y .13225 .07557 Y= .B0744»X+ .02451 S65E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
3YHB0L=X
Figure C-105. Plot of BET equation versus relative pressure for
Converter A207/0101-A - Front Face
C-106

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS
A207/0101-A SAMPLE G
.045	.075	.105
.060 .090	.120	.150
P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
.165	.195	.225
.180	.210	.240
N= 3
COR= .9970
X .13343 .09332 X= 2.2249«Y-.03290 104E-6
Y .07471 .04182 Y= .44677«X+ .01510 209E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure C-106. Plot of BET equation versus relative pressure for
Converter A207/0101-A - Rear Face
C-107

-------
PAGE 4
CONVERTER SURFACE AREA ANALYSIS A207/0101-B SAMPLE F
.350
.315
.280
X/Vlt-X]
.245
.210
.175
.140
.105
N= 3
COR= .9969
MEAN
X .13343
Y .20767
VARIABLE
.045 .075 .105 .135 .165 .195 .225
.060 .030 .120 .150 .180 .210 .240
P/PO
ST.DEV. REGRESSION LIME RES.MS.
.09332 X= ,61963»Y+ .00475 106E-6
.15014 Y= 1.6040'X-.00638 275E-5
1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure C-107. Plot of BET equation versus relative pressure for
Converter A207/0101-B - Bulk
C-l 08

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A207/0101-B SAMPLE E
4--1.4.	+	4-4--I.-I.	+	+	+	+	+
N= 3
COR= 1.000
MEAN	ST.DEV. REGRESSION LINE RES.MS.
X .13343	.03332 X= 2.0053«Y-.12264 54E-9
Y .12770	.04654 Y= .4S369»X+ .06116 13E-9
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure C-108. Plot of BET equation versus relative pressure for
Converter A207/0101-B - Front Face
C-109

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A2D7/Q1Q1-C SAtPLE F
.+	+	+ . _+ 	+	+¦	+	+	+	4-	+	4- .+ _ +•
.120	.150
p/ro
MEAN ST.DEV. REGRESSION LINE RES.MS.
M= 4
.9933
X .11992 .08084 X= .4S443»Y-.01239 337E-7
Y .27313 .16650 Y= 2.0572»X+ .02643 143E-S
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOLIC
Figure C-109. Plot of BET equation versus relative pressure for
Converter A207/0101-C - Bulk
C-110

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A207/0101-C SAMPLE E
.+		+	+•	t	+	+	
.1875
.1800
.1725
X/V(1-X]
.1650
.1575
.1500
.1425
.1350
N= 3
C0B= .9932
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .13343 .09332 X= 3.5581»Y-.42564 237E-6
Y .15713 .02605 Y= ,27722*X-»- .12014 1 85E-7
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYI1B0L=
Figure C-llO. Plot of BET equation versus relative pressure for
Converter A207/01Q1-C - Front Face
C-lll

-------
APPENDIX D
SCANNING ELECTRON MICROSCOPE MICROGRAPHS AND DOT MAPS

-------
: "oe
Figure D-l. SEM/EDX Spectrum of Converter A180/0094-
Figure D-2. Scanning Electron Micrograph at X500 of Converter A180/0094
D-2

-------
MAG:
2580
5 MltPONS 3 	



l< * {



*
¦


r ¦
•! .'t
u|





r
•


t



X<.
V






¦




H 1 00'34-C

Figure D-3. Scanning Electron Micrograph at X2500 of Converter A180/009V
nflG: 5oee	? MiCP 'NS
K

J*
•«: ?o. 'OS?4-e
Figure D-^. Scanning Electron Micrograph at X5000 of Converter A180/009^
D-3

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-5. Aluminum Dot Map at X5000 of Converter A180/009^
HAG:	5000	2 MICRONS	I .
,	I "	i
;• 1 r- v ; • . i . •-
X-. p.	.
». j ¦ • . . i
ELEMENT: SI		P180/3094-E
Figure D-6. Silicon Dot Map at X5000 of Converter A180/0094
D-4

-------
Figure D-7. Lead Dot Map at X5000 of Converter A180/009
-------
• " • «* ¦*,
MRG: > 50ftU- •	-l' '¦ " 			• .
"•: """ i	' «.	' ;
i^.fv-yv-	fv,
»	«	_» », »	•	m	™*	M
«. - ' * v j : » .' :."¦•• « ¦ " - .-
>? »'; v > • • fcM7.^*4V-iV'* * • • -VXi\ L•>v
s . 1, . • | Li ¦ » i «u- if _	. *1 • %
" S v-T £T fc^S r* ¦; .• ? -V-V. •. - V.;*¦-?< X.XU5-
FirnrriT: 2»<
Figure D-9. Zinc Dot Map at X5000 of Converter A180/0094
Figure D-10. Phosphorus Dot Map at X5000 of Converter A180/0094

-------
Figure D-ll. SEM/EDX Spectrum of Converter A193/0908
Figure D-12. Scanning Electron Micrograph at X500 of Converter A193/0908
D-7

-------
Figure D-13. Scanning Electron Micrograph at X2500 of Converter A193/0908
Figure D-14. Scanning Electron Micrograph at X5000 of Converter A193/0908
D-8

-------
MAG: 3000	2 tttCRONS.
»'•

f-
b
•:
j
• 7 ¦' ¦
ELEMENT; flL	fll93/0908fi-E	• ,i<
Figure D-15. Aluminum Dot Map at X5000 of Converter A193/0908
Figure D-16. Silicon Dot Map at X5000 of Converter A193/0908
D-9

-------
MRG:	5000	2 MICRONS	
ELEMENT: PB	A193/0908A-E
Figure D-17. Lead Dot Map at X5000 of Converter A193/0908
MAG: 3000	2 MICRONS
ELEMENT: S	A193/0908A-E
Figure D-18. Sulfur Dot Map at X5000 of Converter A193/0908
D-10

-------
MAG: 5000	2 MICRONS
% ¦ |
ELEMENT." 2N	fil53/0988H-E
Figure D-19. Zinc Dot Map at X5000 of Converter A193/0908
Figure D-20. Phosphorus Dot Map at X5000 of Converter A193/0908
D-ll

-------
NO VISUAL REPRESENTATIVE OF SPECTRUM TAKEN
AT 2500X MAGNIFICATION
Figure D-21. SEM/EDX Spectrum of Converter A218/0045
Figure D-22. Scanning Electron Micrograph at X500 of Converter A218/0045
D-12

-------
Figure D-23. Scanning Electron Micrograph at X2500 of Converter A218/0045
Figure D-24. Scanning Electron Micrograph at X5000 of Converter A218/0045
D-13

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-25. Aluminum Dot Map at X5000 of Converter A218/0045
MSG:	5000	2 HICRQN'r
ELEMENT: SI
Figure D-26. Silicon Dot Map at X5000 of Converter A218/0045
D-14

-------
MflG: 5000	2 MICRONS
ELEMENT: PB
Figure D-27. Lead Dot Map at X5000 of Converter A218/0045
Figure D-28. Sulfur Dot Map at X5000 of Converter A218/00*f5
D-15

-------
MflG*.
GUI* f., : _ H
Figure D-29. Zinc Dot Map at X5000 of Converter A218/0045
mc-:	' v: ,:>•
«	' %t
i
¦' V J-

i	*	'»- •
CLfeflEfJT": .
Figure D-30. Phosphorus Dot Map at X500Q of Converter A218/0045
D-16

-------
NO VISUAL REPRESENTATIVE OF SPECTRUM TAKEN
AT 2500X MAGNIFICATION
Figure D-31. SEM/EDX Spectrum of Converter A218/0045X
Figure D-32. Scanning Electron Micrograph at X500 of Converter A218/0045X
D-17

-------
Figure D-33. Scanning Electron Micrograph at X2500 of Converter A218/00^5X
Figure D-34. Scanning Electron Micrograph at X5000 of Converter A218/0045X
D-18

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-35. Aluminum Dot Map at X5000 of Converter A218/0045X
, s V . ¦ " ' .	V '
HAi": .
< . ' ¦
•• •-. ,
v v" •,	. ¦ •
« » * «•
». »•
i
. . . - COj.	¦
' ¦ . * - , * .

1 • ...»	• -
„¦ • »	i «* ¦ •
•	• ? ¦ •. . v
•„r . • \a •
•T" •
V
« *
• *r

!^'V
. ¦>
.•£Kf1ENT{ <=>I	«j
J Ji	¦	•
Figure D-36. Silicon Dot Map at X5000 of Converter A218/0045X
D-19

-------
MflG:
50CU3
2 rffCRONS
• - a •
»,
•
• « ¦ 1 - ¦
MM «
I • • . ¦ *
1 * "
f

• r iv j mtt
k
ELEMENT:
PE
•
Figure D-37. Lead Dot Map at X5000 of Converter A218/0045X
MflG: .
- I "K' •
• r ¦ • . . . ;• • I* *
.
t* •
• » »¦ v »
-» ¦ *" * -J *;i. ."*• 4
¦j 1 y '¦ m bi . , • t ,
••
» • * i »
• .
~ * * i
%.
• ¦
•
. *
.
> : .
*	*. ' i¦» •
•	Jf * '• V
• * '•
• t( t» » « *
1 • j
ELEMENT:
. 1 " a * »
• "1 a o * *
su .
Figure D-38. Sulfur Dot Map at X5000 of Converter A21S/0045X
D-20

-------
Figure D-39. Zinc Dot Map at X5000 of Converter A218/00'f5X
Figure D-^0. Phosphorus Dot Map at X5000 of Converter A218/0045X
D-21

-------
NO VISUAL REPRESENTATIVE OF SPECTRUM TAKEN
AT 2500X MAGNIFICATION
Figure D-41. SEM/EDX Spectrum of Converter A218/0068
Figure D-^2. Scanning Electron Micrograph at X500 of Converter A218/0068
D-22

-------
Figure D-43. Scanning Electron Micrograph at X2500 of Converter A218/0068
Figure D-4^. Scanning Electron Micrograph at X5000 of Converter A218/0068
D-23

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-45. Aluminum Dot Map at X5000 of Converter A218/0068
element; si
Figure D-46. Silicon Dot Map at X5000 of Converter A218/0068
D-24

-------
mhg: 5«ee z hicrons
element': pb
Figure D-47. Lead Dot Map at X5000 of Converter A218/0068
tiac: -580(3
7 RON ? jl.

, »
i t'-'tv'
¦ •
" " * » i *


' • ' ¦» •
¦ «_ n •
% ¦ "i eT*** * *•
• r .*
. *T
« •
> f ' • *

t J • " ¦ w _»
\
- , t '«"] i w" *
• - " • ¦
-
<.''
.» *• •• ,| i**
* - *
* •
1 1
* jt! .f
i
• '4Lr p" * *""•»«
• 1 '
» *
» ; ¦ a S *t •

• .
Element: su #
.
'» "

Figure D-48. Sulfur Dot Map at X5000 of Converter A218/0068
D-25

-------
Figure D-49. Zinc Dot Map at X5000 of Converter A218/0068
'PWi . • MM, •- ' 5 HKRONS,
¦ >	VKStfiVr*
: 'r
\	' -w-
tLEMEN r:
•	1 »	;
Figure D-50. Phosphorus Dot Map at X5000 of Converter A218/0068
D-26

-------
Figure D-51. SEM/EDX Spectrum of Converter A220/0392
Figure D-52. Scanning Electron Micrograph at X500 of Converter A220/0392
D-27

-------
m«g:
2508
sr |
'T' P'l'i--;

:%>-



«s


&

#
*'~ . *
m

¦V
£



p22'0/0:23£-B -t
Figure D-53. Scanning Electron Micrograph at X2500 of Converter A220/0392
Figure D-54. Scanning Electron Micrograph at X5000 of Converter A220/0392
D-28

-------
MflG:	3000	2 MICRONS.
ELEMENT I flL
R220/0332-fl-E
Figure D-55. Aluminum Dot Map at X5000 of Converter A220/0392
Figure D-56. Silicon Dot Map at X5000 of Converter A220/0392
D-29

-------
5000	2 MICRONS
Figure D-57. Lead Dot Map at X5000 of Converter A220/0392
HflG" • "50?0
2 T1ICPONS..
1 • • '
, • ¦
* •.*" • ,
•
•".
*. ! * !• .• .
Y . i i
. »
¦ .
9. • .• ,
.
,
•• •
• -
m • • »
^ I •


' ^ . ' •
1 • *
¦
_^! » ,* J . ¦ —•wJM W ¦
	 m •
t. / "* ¦




, ( *
• " • ' •.
¦
" "li • ? ~ "

* •
*
¦
*
• ¦
• ft . "* _
• ¦ »
'
• ¦
element: s
* »
¦
¦
8220/0392-H-E
Figure D-58. Sulfur Dot Map at X5000 of Converter A220/0392
D-30

-------
Figure D-59. Zinc Dot Map at X5000 of Converter A220/0392
Figure D-60. Phosphorus Dot Map at X5000 of Converter A220/0392
D-31

-------
R? f P
:xf"-	i
RlJ j"./:
A*
AJ
	I
i
f
(
i
....ijl;
n
SB
\A
ifc
"K	A	S'"r	::
: H E
aim


\S*SL.
0 . 003
M
¦A
•*v 1*
:cr
Ie
\
-s . i
. a.-v*»" ¦ •:
Figure D-61. SEM/EDX Spectrum of Converter A220/0810
Figure D-62. Scanning Electron Micrograph at X500 of Converter A220/0810
D-32

-------
%
MAGI '4500	5 MICRONS	'¦
f
%¦
•. v
•	m f
fl220/081«XXl-fl-E
Figure D-63. Scanning Electron Micrograph at X2500 of Converter A220/0810
flftG: 5000	2 MICRONS
A220/0810XX1 -fl-E.
Figure D-64. Scanning Electron Micrograph at X5000 of Converter A220/0810
D-33

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-63. Aluminum Dot Map at X5000 of Converter A220/0810
flAG: 5000	2 MICRONS	

t.

¦	» '	• "	¦	¦ 		a	.	*.
•	• - •• '
' V- i	V ' ¦*
¦ *	'¦¦: . • ». •¦¦ y -s ¦ •
: - ' ¦ . ' ' ¦" u
j	«i . * ¦ »'
• •	. * • •
••	•	.	,	, ¦ .i	•»	•
» »	s- -J
LtJk •"
ELEMENT: SI	R220/0810XX1-FI-E
Figure D-66. Silicon Dot Map at X5000 of Converter A220/0810
D-34

-------

IWG: 3000
2 MICRONS	

t sj « '
» .



1 <*un
t * '¦ i

element: pi
R220/0810XX1-fl-E
Figure D-67. Lead Dot Map at X5000 of Converter A220/0810
nflG: 5800
' . * '
2 MICRONS
*' ..
»¦ '* : i

"K \ '
,-jt - 1 - , .
• •' ' '
r-,^v ; .
• '

.
¦
• • • .
" . "•
*,
• • • i i
* ' ** /¦' rv '
• '<
• ¦
i
"V * * x. A,, ,.J '* - , *
" "C Vik * *' •• T •
¦" .
, .r
• • i
*
•4 » •' 1
•' • . ;
ELEMENT: S
R220/0810XX1-A-E
Figure D-68. Sulfur Dot Map at X5000 of Converter A220/0810
D-35

-------
MfiG: 5000
ELEMENT: ZN
2 MICRONS
fl220/0810XXl-ft-E
Figure D-69. Zinc Dot Map at X5000 of Converter A220/0810

Figure D-70. Phosphorus Dot Map at X5000 of Converter A220/0810
D-36

-------
Figure D-71. SEM/EDX Spectrum of Converter A221/0152
IMf* ®T
Figure D-72. Scanning Electron Micrograph at X500 of Converter A221/0152
D-37

-------
^*4	J| '•*
*
*221/015*- *-E
Figure D-73. Scanning Electron Micrograph at X2500 of Converter A221/0152
MAG:	2 MICRONS
1/0152-1=1 z
Figure D-7^. Scanning Electron Micrograph at X5000 of Converter A221/0152
D-38

-------
MflG:	5000	2 MICRONS
ELEMENT: flL	R221/0152-R-E
Figure D-75. Aluminum Dot Map at X5000 of Converter A221/0152
Figure D-76. Silicon Dot Map at X5000 of Converter A221/0152
D-39

-------
mrg: 5000
ELEMENT: PB
2 MICRONS
A221/0152-R-E
Figure D-77. Lead Dot Map at X5000 of Converter A221/0152
MflG:	5000	2 MICRONS	
ELEMENT: S	R221/0152-R-E
Figure D-78. Sulfur Dot Map at X5000 of Converter A221/0152
D-40

-------
HOG: 5000
ELEMENT: ZN
2 MICRONS
fi221/0152-ft-E
Figure D-79. Zinc Dot Map at X5000 of Converter A221/0152
MAG: 5000	2 MICRONS
V *

: *
r. i"%- S r v5
. . „
CLCUCNT* P
B221/0l52-ft-£ •'
Figure D-80. Phosphorus Dot Map at X5000 of Converter A221/0152
D-41

-------
Figure D-81. SEM/EDX Spectrum of Converter A221/020.* ¦«
—i © i_» iv.«
2 4 k V
Figure D-82. Scanning Electron Micrograph at X500 of Converter A221/0204
D-42

-------
Figure D-83. Scanning Electron Micrograph at X2500 of Converter A221/0204
Figure D-84. Scanning Electron Micrograph at X5000 of Converter A221/0204
D-43

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-85. Aluminum Dot Map at X5000 of Converter A221/020^
^	Jpw
nftG: 5000	: micron 	
ELEMENT: . L
i
•	.. t.
Lai\ 11 r ••	*•••
i
Figure D-86. Silicon Dot Map at X5000 of Converter A221/0204
D-M

-------
MAG:
'50PG
2 IfiCROI
ELEMENT:
Figure D-87. Lead Dot Map at X5000 of Converter A221/02Q4
Figure D-88. Sulfur Dot Map at X5000 of Converter A221/02Ok
D-45

-------
Figure D-89. Zinc Dot Map at X5000 of Converter A221/0204
Figure D-90. Phosphorus Dot Map at X5000 of Converter A221/0204
D-46

-------
r
SE
a
a.
• L -f
• }: :V it >: : I
	
i
i-
*vi ; ; . i . ;
lV:;l	I	la	Si..
: \ ' A
i
t '
	r*' :
¦. : • : :
: i :
: ; :
•!t

:::::::
il
: i	:
M : U j i i ; .	i ;	: ;	i
:	! •	: •	!
.. . ¦ i...	,.a			
	Nj.	I	
:	:	:	:
1	i	1	!
!	i	i	i
:	:	:	:
:•	:	:	:
:	:	:	i
:	:	:	:
:	j	:	:
: : :
I I I
S3
r


'TT^hu'! : k>\ /\ ; »
: : : : I ! : • ¦ : : ?; • *—vy-J
: : :
: : :
! : :
: ;
::::::::::
MM!
Figure D-91. SEM/EDX Spectrum of Converter A221 /0447
Figure D-92. Scanning Electron Micrograph at X500 of Converter A221/0447
D-47

-------
HAG: 2500	r ICPONc;	
/
fl221/0<»4 '-fl-
Figure D-93. Scanning Electron Micrograph at X2500 of Converter A221/0447
mV. 3000	2 tllCPONS
C •
*221/044.--^
Figure D-94. Scanning Electron Micrograph at X5000 of Converter A221/0447
D-48

-------
hag:
5000
2 MICRONS


'"ill lr. ,


i*


• 1
ELEMENT:
flL
R221/0447-R-
Figure D-95. Aluminum Dot Map at X5000 of Converter A221/0^7
Figure D-96. Silicon Dot Map at X5000 of Converter A221/0447
D-49

-------
! 1
HfiG: 3000	2 MICRONS
'J • .
r ; V-r--."
,;;J ; J! JK
I jr gl «	* t
*it- c& M''V!
i ' " J ' I-.	^ • • * t
. > 4 «• ..	C. . \ V
'• ' . - ¦*	• . . '
V-	' i*
ij'.'.ti .	J	» *¦• * •
t
¦ - I.
1 vJl T)
Sj^-v" • FfT-
SggL*
1 ¦ — » i	¦ • *>
«_ >
BKs-Stf V ''W* ?,v.
?L "/I- "^TvPjj '•
-• »r-
S r:#
r • 3
-t
r

f • . 'V'-f" •. ' * •'
.	_ j-9. y*J> w	. f . ju - s-£•,
ELEMENT! PB	f*22i/044?-ft-
Figure D-97. Lead Dot Map at X5000 of Converter A221/04'f7
Figure D-98. Sulfur Dot Map at X.5000 of Converter A221/0^^7
D-50

-------
flflG: 3000	2 niCRONS.
element: zn
A221/0447-R-
Figure D-99. Zinc Dot Map at X5000 of Converter A221/0W
MAG:
.5900 2
• ,
. ft' .
i»
^ , c
MICRONS. .
1 • ^ » ¦ 'l b
«
«
k
I- » ,
1 •
• "5. . V
J * .
*/ ' >
S»* . ' " *ir •
• "'if
m i. ¦ * ?* j
• ' »
' .
¦ w * , *•»

;;V j
i V •
7

. .I'-1 -
i i

* . k
Tf*. .Vv \ * >
ELEMENT:
P
R221/0447-R-
Figure D-100. Phosphorus Dot Map at X5000 of Converter A221/0447
D-51

-------
Figure D-101. SEM/EDX Spectrum of Converter A230/0177X
Figure D-102. Scanning Electron Micrograph at X500 of Converter A230/0177X
D-52

-------
rifiG: 2560 5 microns
B230/01??X-ft-E
Figure D-103. Scanning Electron Micrograph at X2500 of Converter A230/0177X
nflG: 5000	2 MICRONS
H; :e. eirrx-fi-E
Figure D-10^. Scanning Electron Micrograph at X5000 of Converter A230/0177X
D-53

-------
Figure D-105. Aluminum Dot Map at X5000 of Converter A230/0177X
Figure D-106. Silicon Dot Map at X5000 of Converter A230/0177X
D-54

-------
MAC: sees
2 MICRONS
ELEMENT: PB	R230/0177X-R-E
Figure D-107. Lead Dot Map at X5000 of Converter A230/0177X
MAG: 5000	2 MICRONS
ELEMENT: S	P230/0177X-A-E
Figure D-108. Sulfur Dot Map at X5000 of Converter A230/0177X
D-55

-------
MftG: 5000	2 MICRONS
»	» » # f r ."s »
« •' *, f-	*•',
element: zn
0230/0177X-R-E
Figure D-109. Zinc Dot Map at X5000 of Converter A230/0177X
Figure D-110. Phosphorus Dot Map at X5000 of Converter A230/0177X
D-56

-------
? ¦
J
Figure D-lll. SEM/EDX Spectrum of Converter A230/0636X
Figure D-112. Scanning Electron Micrograph at X500 of Converter A230/0636X
D-57

-------
Figure D-113. Scanning Electron Micrograph at X2500 of Converter A230/0636X
Figure D-114. Scanning Electron Micrograph at X5000 of Converter A230/0636X
D-58

-------
MflG:
5000
2 MICRONS
¦ •


¦ ¦ a ¦ " r
n » » £ » ft1 t
. I «v- - , ¦ « • s
.* g wyf v • ¦ » * '


v*J{'-V *¦ > V





.
Hi r • '*»' ,«*' «. *
" "g , . C.
• . i • >.' ; -
ELEMENT;
KL
» r ¦ ' i|r
i I ¦ •
A2J0/0636X-R-E
Figure D-115. Aluminum Dot Map at X5000 of Converter A230/0636X
MRG: 5009	2 MICRONS
, i v ¦ ;	'
ELEMENT: SI	fi230/8636X-fi-E
Figure D-116. Silicon Dot Map at X5000 of Converter A230/0636X
D-59

-------
MAG:	5086 ,2 MICRONS_
!	j•
•f	• '¦Ji*v .• "
; j	 ¦ u •	¦ •
_ .	¦ * »•' r* •»¦•. • ; •
• . «' • '» ' *• '	i I I ¦	"	• k r
¦	-v.; h ¦'•¦ frrlzte ;
•» . ? .	•«¦ ¦, /-• »•
-	" • ¦ ! ¦ > .
V >	" « ! ;in. . • ¦«...
v.	¦ • v ,>
i * -4 *5: "»	'J - - - 1 , rr * •'
/"V jv,-: • .
ELEMENT: PB	fl230/0636X-fl-E
Figure D-117. Lead Dot Map at X5000 of Converter A230/0636X
Figure D-118. Sulfur Dot Map at X5000 of Converter A230/0636X
D-60

-------
NRG: 5000	2 h\CRONS,
• 1 . "9 >
: i. *	• ¦
' *" **
''
•l
¦ ' • I *
•• • • . ' f ,* 1	* • ¦ .
•r ,¦	¦- "»
•	• " ' »J- '.i	1 f. , i
i" * • ¦.
1	4
¦ n i
* i.
.t*
.
»•
1 \
i •
i
ELEMENT: 2N	p2Xa/0626X-ft-E
Figure D-119. Zinc Dot Map at X5000 of Converter A230/0636X
Figure D-120. Phosphorus Dot Map at X5000 of Converter A230/0636X
D-61

-------
Figure D-121. SEM/EDX Spectrum of Converter A240/0016L
Figure D-122. Scanning Electron Micrograph at X300 of Converter A240/0016L
D-62

-------
Figure D-123. Scanning Electron Micrograph at X2500 of Converter A240/0016L
rifle:
5008
2 MICRONS	








P240/0016L-R-E
Figure D-124. Scanning Electron Micrograph at X5000 of Converter A240/0016L
D-63

-------
n«G: 5000
.
«
•K i'
v Vf "f
¦ ' '.-J.
2 MICRONS
'
fc v.: -
•• _¦ ¦¦ • ¦.
-
• ¦
v
« f. S Wl-i '
¦ •; •*>> ;*
&v" —f' ,
_n, ^ * f
• • ' *
,•"» v- • •- ;•
•. . ¦¦¦ ¦ ¦
- * ' 1
•
• • • .
.' * 1 • -
. r
• .. * •.
j ¦ ." v ' .
¦ • •»-1® '* %
* ¦ * »*
ELEMENT: PL
f% 4;. »
f)240/0016L-fl-E
Figure D-125. Aluminum Dot Map at X5000 of Converter A240/0016L
Figure D-126. Silicon Dot Map at X5000 of Converter A240/0016L
D-6t

-------
riflG: 5000 2 tnqsoNS.
'	I-
f .
!i 1
» i
1
wm ¦¦ -
p ~ • ¦ j • ¦ >. •
rffc"' wm
? i*

¦ , i '
j..
'>A\
*¦ 5 i
' •: '• ' ¦ . • * f
ELEMENT: PB	fl240/0016l-f)-E
Figure D-127. Lead Dot Map at X5000 of Converter A240/0016L
Figure D-128. Sulfur Dot Map at X5000 of Converter A240/0016L
D-65

-------
Figure D-129. Zinc Dot Map at X5000 of Converter A240/0016L
Figure D-130. Phosphorus Dot Map at X5000 of Converter A240/0016L
D-66

-------
Figure D-131. SEM/EDX Spectrum of Converter A240/0102
Figure D-132. Scanning Electron Micrograph at X500 of Converter A2^0/0102
D-67

-------
Figure D-133. Scanning Electron Micrograph at X2500 of Converter A240/0102
Figure D-134. Scanning Electron Micrograph at X.5000 of Converter A240/0102
D-68

-------
riftG: 5000	2 MICRONS.
ELEMENT: fiL
ft240/0102-R-E
Figure D-135. Aluminum Dot Map at X5000 of Converter A240/0102
Figure D-136. Silicon Dot Map at X5000 of Converter A2^0/0102
D-69

-------
Figure D-137. Lead Dot Map at X5000 of Converter A240/0102
nflG: 5000	2 MICRONS	
. *r;; ;.r;	¦" •'
: •: ft* ¦+ ' ~	•
> ;* 4-^ v	»• "	'
• . •- • .\\yt >*3	• ¦ ' •'
• \ *	i /iV . *• '
t	, ,'i S* ~	'.I ' F
•y • V - "%,• *" » ' •. *
K'r>	-'V* v • Vp •' '
'• >	•• 7
. . •"V,:-* A' I " . ifc>rv* " W- KT '•' ¦
.. c i ¦"
% , », I" .. « • ». 'I 5 'It 5" I,. •
• ¦	t.	.
_ • * ' % ¦ ,
• n	. r r
• ' * »! V,i , . f S'm* »•
¦ »>*4r
ELEMENT: S	p240/8102-fi-E
Figure D-138. Sulfur Dot Map at X5000 of Converter A240/0102
D-70

-------
Figure D-139. Zinc Dot Map at X5000 of Converter A240/0102
Figure D-140. Phosphorus Dot Map at X5000 of Converter A2*f0/0102
D-71

-------
Figure D-141. SEM/EDX Spectrum of Converter A240/01ML
Figure D-142. Scanning Electron Micrograph at X500 of Converter A240/0141L
D-72

-------
Figure D-143. Scanning Electron Micrograph at X2500 of Converter A240/01V1L
Figure D-144. Scanning Electron Micrograph at X5000 of Converter A240/0141L
D-73

-------
flflG: 5006
2 MICRONS	
ELEMENT: Fit
Figure D-145. Aluminum Dot Map at X5000 of Converter A240/01*flL
Figure D-146. Silicon Dot Map at X5000 of Converter A240/0141L
D-7k

-------
MfiG: 5000	2 MICRONS
ELEMENT: PB
Figure D-K7. Lead Dot Map at X5000 of Converter A240/0141L
MRG:	5000	2 MICRONS
ELEMENT: su
Figure D-148. Sulfur Dot Map at X5000 of Converter A240/0141L
D-75

-------
hog: 5000
2 MICRONS	
ELEMENT: ZN
Figure D-149. Zinc Dot Map at X5000 of Converter A240/0141L
MfiG:	5000	2 MICRONS
ELEMENT: P
Figure D-150. Phosphorus Dot Map at X5000 of Converter A240/01ML
D-76

-------
Figure D-1M. SEM/EDX Spectrum of Converter A240/0153
Figure D-152. Scanning Electron Micrograph at X.500 of Converter A240/0153
D-77

-------
Figure D-153. Scanning Electron Micrograph at X2500 of Converter A240/0153
Figure D-154. Scanning Electron Micrograph at X5000 of Converter A2^f0/0153
D-78

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-155. Aluminum Dot Map at X5000 of Converter A240/0153
Figure D-156. Silicon Dot Map at X5000 of Converter A240/0153
D-79

-------
.
NRG: " • ?008	2 MICRONS
.	¦ «v, "
; iw .
¦ * ¦ • i i «*
• •
.
" - '
:: fv > X :&£2jfi: •>
EkEMENT: PB "	fl240/0153fl-E
Figure D-157. Lead Dot Map at X5000 of Converter A240/0153

TOjL'r
i* rvW?V11 iJifr* v 'l _	- vr s
" ELEMENTl' p\ ' '• ' • ¦'
Figure D-158. Sulfur Dot Map at X5000 of Converter A240/0153
D-80

-------
Figure D-159. Zinc Dot Map at X5000 of Converter A240/0153
Figure D-160. Phosphorus Dot Map at X5000 of Converter A240/0153
D-81

-------
Figure D-161. SEM/EDX Spectrum of Converter A240/0334L
,Y. n«G: sajs . 2a riicftONjfc ¦ . . ¦
- '¦ \ •' ¦ i
•
'• *


<
'V,
• * V v
/ V . :
t i
#
. > 1 . • « ' ; . ,
• \
* . • «
-
* •
A24040334l-fl-E

Figure D-162. Scanning Electron Micrograph at X500 of Converter A240/0334L
D-82

-------
mrg:
2300
, 1
ntcPONs
*
f
# •
v
/

*.

-------
Figure D-165. Aluminum Dot Map at X5000 of Converter A2*f0/0334L
Figure D-166. Silicon Dot Map at X5000 of Converter A240/033zfl_
D-81

-------
MflG:
5000
2 MICRONS







* •
% 1 V
.

•
¦ 1
I * f " rt
'.II t
• L«' f» ...
I I , , t


M • ¦

¦
.• , • /
1 1
. 1 m ' ' I
¦ * "
ELEMENT:
PB
R240/0324L-fi-E
Figure D-167. Lead Dot Map at X5000 of Converter A2*f0/0334L
Figure D-168. Sulfur Dot Map at X5000 of Converter A240/0334L
D-85

-------
mag:
5000
2 MICRONS
¦



l r
• • *¦ *
¦ »

ft
¦
l' » *
¦
•
• ; ,»
) 4
ELEMENT:
*
. ZN
R240/0334L-A-E
Figure D-169. Zinc Dot Map at X5000 of Converter A240/033^L
Figure D-170. Phosphorus Dot Map at X5000 of Converter A240/0334L
D-86

-------
¦^r
..ft-
! *
	iLi
/

VfVv

c
Q
..J-.;.
Aj

IU
	£i	yr
HI /
W./>
r	
N
I


N

	/s
V>-y : : *
7!:
/•: ¦;
:
i :
N ; I! M i!!
? =! 11! i!

¦ :
1 • f; i
i! : i ! I i I I i I i i I i I i 1 i ! i i I ! i i I i I I i ; !! I i! i i I i i i >: I •: i I : i ¦ i i i I I ! ; i i ! I i I
! I ! I i ; ; i i ; • : U i ; I! ! I: i! 1! i i i ! I ; ; ; i; I i i I! i I i I ! I !!; I i i! 11 I i ; i I !! ! !|
' ' ' ' ' i i! i • I!\\ I!!! !! 11 •;!! I i! I!; I i i!!; I! I I;! I ! 1! I! I i I! ; i! I! '¦ "
h ! • I i i 1111 I i !! 11 i I! I '• i! i 11 i i! H I i i I ! • i ; i ; ? •; 11 11 i ij 111
ii; :::::: j	i i	j	:j::: I ::: t • j : j	i j	j	•
i : j i s : | : j	; i : i : r	i	f t	i : t •! t ! : r i : i	i : i i •! j !
: :
r. ::
D3C
VFS
LOG 1
243
Figure D-171. SEM/EDX Spectrum of Converter A249/0169-1
¦5B0
MICP0N9.

(3249/0169-1 -
Figure D-172. Scanning Electron Micrograph at X500 of Converter A249/0169-1
D-87

-------
MAG: 2590
3 ftIc£0N3

Figure D-173. Scanning Electron Micrograph at X2500 of Converter A249/0169-1
	JJT	
MRG: 5000	2 MICRONS
i
»
Y<
>ii4 */016? - i"
Figure D-17^. Scanning Electron Micrograph at X5000 of Converter A249/0169-1
D-88

-------
Figure D-175. Aluminum Dot Map at X5000 of Converter A249/0169-1
Figure D-176. Silicon Dot Map at X5000 of Converter A249/0169-1
D-89

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-177. Lead Dot Map at X5000 of Converter A249/0169-1
HAG: * 3000
	1—¦—	
c '

• m '
«• . • > ,
'• . t j v Kv
»' *6 t *
|» •« " r * J*j'tL
* »*»
'' « s h -
'* . ' " • ~
i?
*
t
» ¦ | [Jf g m k _
•
* • i

t i •
' * "* %
»
¦

• • *it _lF ^

1 fid '/
" ^
t
r . i «; »"• ¦

element: s
B249/8169-1-
Figure D-178. Sulfur Dot Map at X5000 of Converter A249/0169-1
D-90

-------
5000
'"¦/ '.
2 MICRONS.
I ,1
. - . * * •
. ', m:
; '• ;\\i
'* ! l' *>'
• ¦ »	*	i . 4
•. . ¦ • V.*•• * . * *
KK-> *&&£$ ? 2.	¦
' ¦•.•¦% ?Kj n ¦ v	• \"v
• * •:; .....
ELEMENT: ZN
- »M ~. •
P249/0169-1-'-
Figure D-179. Zinc Dot Map at X5000 of Converter A2^9/0169-l
,v "vi*
.. - y4
'* ¦* ,
. a s:, -
¦&
>« ¦
V?
Figure D-180. Phosphorus Dot Map at X5000 of Converter A249/0169-1
D-91

-------
a *• o
I'M'.
Figure D-182. Scanning Electron Micrograph at X500 of Converter A249/0169-2
D-92

-------
Figure D-183. Scanning Electron Micrograph at X2500 of Converter A2*f9/0169-2
Figure D-184. Scanning Electron Micrograph at X5000 of Converter A2*f9/0169-2
D-93

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-185. Aluminum Dot Map at X5000 of Converter A249/0169-2
Figure D-186. Silicon Dot Map at X5000 of Converter A249/0169-2
D-94

-------
MAG: .5000	2 MICRONS
ELEMENT: PB
Figure D-187. Lead Dot Map at X5000 of Converter A2^9/0169-2
HflC: '5000 -2-t1ICR(JN8
• • •
• . ,
I	I
ELEMENT: SU
Figure D-188. Sulfur Dot Map at X5000 of Converter A249/0169-2
D-95

-------
MRG: 5000 2 micron;
ELEMENT: ZN
Figure D-189. Zinc Dot Map at X5000 of Converter A249/0169-2
Figure D-190. Phosphorus Dot Map at X5000 of Converter A249/0169-2
D-96

-------
Figure D-191. SEM/EDX Spectrum of Converter A249/0169-3
Figure D-192. Scanning Electron Micrograph at X500 of Converter A249/0169-3
D-97

-------
Figure D-193. Scanning Electron Micrograph at X2500 of Converter A249/0169-3
Figure D-194. Scanning Electron Micrograph at X5000 of Converter A249/0169-3
D-98

-------
MAG:	5000	2 MICRONS	
ELEMENT: HL	P249^0169-3fi-E
Figure D-195. Aluminum Dot Map at X5000 of Converter A249/0169-3
MftG:
•
5000
2 MICRONS
• . ' *r * «¦


•
l^i| " i'
• * ."-r y! ' • *•
•
¦
L"> i 9
.
"


Vl • ,


* * • t • • • t
. »" *
ELEMENT:
SI
R249/0169-3R-E
Figure D-196. Silicon Dot Map at X5000 of Converter A249/0169-3
D-99

-------
riflC: 5006 2 MICRONS

¦	1 '	• •
ELEMENT: PB	fl249/tfl
-------
MfiG: 5000
2 MICRONS
ELEflENT: :n
R249/0I69-3R-E
Figure D-199. Zinc Dot Map at X5000 of Converter A249/0169-3
ELEMENT: t-
Figure D-200. Phosphorus Dot Map at X5000 of Converter A249/0169-3
D-101

-------
0.000	VF5 = LOG 1 10.240
Figure D-201. SEM/EDX Spectrum of Converter A280/0001L
Figure D-202. Scanning Electron Micrograph at X500 of Converter A280/0001L
D-I02

-------
(IflG:	5 MICRONS
ft-E
Figure D-203. Scanning Electron Micrograph at X2500 of Converter A280/0001L
MAG: 5000	2 MICRONS
:
ft ?->:* 'OOdlL -A--E
Figure D-204. Scanning Electron Micrograph at X5000 of Converter A280/0001L
D-103

-------
rrnc: seee 2 microns
ELEMENT: flL	fl280/0001L-fl-E
Figure D-205. Aluminum Dot Map at X5000 of Converter A280/0001L
Figure D-206. Silicon Dot Map at X5000 of Converter A280/0001L
D-104

-------
hag: 5000	2 MICRONS
ELEMENT: PB	P280/0001L-FI-E
Figure D-207. Lead Dot Map at X5000 of Converter A280/0001L
t
MflG: 3000	2 MICRONS.
* at	mo ' • ¦ "
i1*
- j I ¦ ¦ mm |# gB;;' ¦ f
¦ v- f y *- W. ¦ » * >• • . 1 -i
" • ;<-T-
''.'i vJ.V •¦> • '
.V» ,*• V. „ * »
-./vjtt'.v W	' '. ..
. -.;	v .
.	• "¦ * m i f ** • • ¦ "	—i •
w	I t	• fc
" /:>-%• -
if «4» 1
V » V •. j i ;«f 7j<" *,
ELEMENT: S
fl280/0001L-fi-E
Figure D-208. Sulfur Dot Map at X5000 of Converter A280/0001L
D-105

-------
Figure D-209. Zinc Dot Map at X5000 of Converter A280/0001L
Figure D-210. Phosphorus Dot Map at X5000 of Converter A280/0001L
D-106

-------
0 . 000
VFS = LOG 1 10.240
Figure D-211. SEM/EDX Spectrum of Converter A155/0941-1
Figure D-212. Scanning Electron Micrograph at X500 of Converter A155/0941-1
D-107

-------
f MAC: ^ 2500 3 MICRONS


' "*1 K,


1 '• JL *' ¦ '

J
|P
J W!# "i
^ yp j§*;
jttk* s Jr
L V

W if a \
VP %
V •*
a. < - ,®
$ 4 H ;,j «* ft
- J! jf * . M „ TP
w % %¦ g
% ' * I
#

fll55/0941-
1-fl-E

Figure D-213. Scanning Electron Micrograph at X2500 of Converter A155/0941-1
Figure D-214. Scanning Electron Micrograph at X5000 of Converter A155/09^ 1-1
D-108

-------
MflG: 5000	2 MICRONS	
ELEMENT: RL	fil55/0941-l-fl-E
Figure D-215. Aluminum Dot Map at X5000 of Converter A155/09^1-l
E
Figure D-216. Silicon Dot Map at X5000 of Converter A155/0941-1
D-109

-------
flflG: 5000
2 MICRONS
ELEMENT: PE	f=U55/0941-l-fi-E
Figure D-217. Lead Dot Map at X5000 of Converter A 155/09^1-1
MftG:	5000	2 MICRONS	
ELEMENT: S	P155/0941-1-fl-E
Figure D-218. Sulfur Dot Map at X5000 of Converter A155/0941-1
D-110

-------
• tiflc:
5000 ' £«MICRONS.
f' " ir5v
«¦;. -'*•	. v'-*;
.... s"
.. v V
S*.J\
. a
1 •
• 1	•	i
¦ I 1 ,* .	1 fc
; •.»
ir.« :	» .7 s ¦
k;
ELEMENT: 2N	0155/0941-1-ft-E
* I
Figure D-219. Zinc Dot Map at X5000 of Converter A155/0%1-1
Figure D-220. Phosphorus Dot Map at X5000 of Converter A155/09^ 1-1
D-111

-------


: ns
Li P P


t i M : !\ ; i - i
	I	&		 	1	t	 	i	Z	1	
M i i J Ml i M i
1 Tmi i mrrrm^flWi^ i iL/K	1	M.J	a	1	
mm
J!
Jit!i!I!ili!l!tl!ll!
j |!! 1111 i! i i |! | j!! 111! i!! I i! I!! n i! 1;I '"rr^ri'T i i iV i
j | | j | j j j | \ j \ ! j i { j j j j j { j \\ 1 j i \ \ i 1 \\ ! i • : I ! 1 1 1 I j 1 I ! 1 j : s : 1 : |
i :!: i :!::!!!!:!::!! i j : i j ; ! :! i :! j i j ; i I I j i ; j ; !
! : » : : t : : : 1 : 1 : : 5 s j i | | | j j | j j j j | | j : j j j | t j j | | | | 1 j j j j j j j j j j | j j j j |
0.000	VFS = LOG 1 10.240
Figure D-221. SEM/EDX Spectrum of Converter A155/0941-2
Figure D-222. Scanning Electron Micrograph at X500 of Converter A155/0941-2
D-112

-------
Figure D-224. Scanning Electron Micrograph at X5000 of Converter A155/0941-2
D-113

-------
Figure D-225. Aluminum Dot Map at X5000 of Converter A155/0941-2
Figure D-226. Silicon Dot Map at X5000 of Converter A155/0941-2
D-114

-------
Figure D-227. Lead Dot Map at X5000 of Converter A155/0941-2
jihpf' 5000 • "¦£ "!: >•''
< :

•i' •: ,*
! k * •
"!:* ® *
m * * *
, »• *' •/" - *
V
. ..j
* ¦' 1. w- ...
. .V."
• . ¦

- . V
* " I
,	S


Figure D-228. Sulfur Dot Map at X5000 of Converter A155/0941-2
D-115

-------
Figure D-229. Zinc Dot Map at X5000 of Converter A155/0941-2
Figure D-230. Phosphorus Dot Map at X.5000 of Converter A155/0941 -2
D-116

-------
j R ! !
I !_ j |


^ p
1 C! j j

1 IjiVyllsg
i C Mi
g ^ JL j Eg N [ F
Im'fTIlm 1 In 1 Km iwT\ 1

1 A 11 | j | j pTtVi-r^-rr
	-	\ j
			=	 X*.
e:	=	 :	
-	-	yiZN
S	1	
jllllllllllllllllllllll
i i i i t i i t i j j i i i : t i j | t | j j j j
! 1 1 1 1 1
0.000	VFS = LOG 1 10.240
Figure D-231. SEM/EDX Spectrum of Converter A207/0101
Figure D-232. Scanning Electron Micrograph at X.500 of Converter A207/0101
D-117

-------

Mf»c: 2388 3 MICRONS.

-- 1 . J
! r
' -W

ihr :0V-
}

P207/0101-8-E
Figure D-233. Scanning Electron Micrograph at X2500 of Converter A207/0101


4-

HflG:
5006
? fimRflMR




J



V


f»207/0181-fl-E

Figure D-234. Scanning Electron Micrograph at X5000 of Converter A207/0101
D-118

-------
Figure D-236. Silicon Dot Map at X5000 of Converter A207/0101
D-119

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-237. Lead Dot Map at X5000 of Converter A207/0101
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-238. Sulfur Dot Map at X5000 of Converter A207/0101
D-120

-------
riRG: 5000	2 MICRONS
ELEMENT: ZN	A207/0101-H-E
Figure D-239. Zinc Dot Map at X5000 of Converter A207/0101
Figure D-240. Phosphorus Dot Map at X5000 of Converter A207/0101
D-121

-------
Figure D-241. SEM/EDX Spectrum of Converter A218/00^5X-Rear Face
Figure D-242. Scanning Electron Micrograph at X500 of Converter A218/0045X-Rear Face
D-122

-------
MRC: 2500	5 HI CROWS
H218/0Q43X-G
Figure D-243. Scanning Electron Micrograph at X2500 of Converter A218/0045X-Rear Face
HfiG: 5000	2 KICRONS		1
*
J
ft218/8045X-G
Figure D-244. Scanning Electron Micrograph at X5000 of Converter A218/0045X-Rear Face
D-123

-------
Figure D-245. Aluminum Dot Map at X5000 of Converter A218/0045X-Rear Face
riflG: 5000	2 MICRONS.
element: si
f!218/0045X-G
Figure D-246. Silicon Dot Map at X5000 of Converter A218/0045X-Rear Face
D-124

-------
ORG: 5000	2 (1ICR0NS.
ELEMENT: PB
A218/0045X-G
Figure D-247. Lead Dot Map at X5000 of Converter A218/0045X-Rear Face
MRG:	5000	2 MICRONS.
ELEMENT: S
B218/0045X-G
Figure D-248. Sulfur Dot Map at X5000 of Converter A218/0045X-Rear Face
D-125

-------
fiRG: 5000
2 MICRONS.
r* *	* i
' •• F- ' f
» Vf
v ;i • f
» • r j
*	Ft, * *
j • • V:
fi'si- i
•	• > , •
• a 
-------
Figure D-251. SEM/EDX Spectrum of Converter A220/0392-Rear Face
Figure D-252. Scanning Electron Micrograph at X500 of Converter A220/0392-Rear Face
D-127

-------
NAG:	2500
c. micron
Ir \ I
fl220/033i-H-G
Figure D-253. Scanning Electron Micrograph at X2500 of Converter A220/0392-Rear Face
nnc: 5000 2 micron?

R220/0392-R-C
Figure D-254. Scanning Electron Micrograph at X5000 of Converter A220/0392-Rear Face
D-128

-------
Figure D-255. Aluminum Dot Map at X5000 of Converter A220/0392-Rear Face
imc: 5000
•»
J
2 micrAns
" 4
) *
•
i
•
1
1
» ft "
. ' * i -
J ' "...
' •
* ¦ ¦
• *

»
* o*
«b. '• a« »
E
" ¦ '
• ¦
> t
.* 1 * *
* » f * >
; . •

•
• * *
ELEMENT: SI


Figure D-256. Silicon Dot Map at X5000 of Converter A220/0392-Rear Face
D-129

-------
Figure D-257. Lead Dot Map at X5000 of Converter A220/0392-Rear Face
Figure D-258. Sulfur Dot Map at X5000 of Converter A220/0392-Rear Face
D-130

-------
MflG: 5000
ELEMENT: J
2 MICRONS	
ft228/0392-ft-G
Figure D-259. Zinc Dot Map at X5000 of Converter A220/0392-Rear Face
Figure D-260. Phosphorus Dot Map at X5000 of Converter A220/0392-Rear Face
D-131

-------
Figure D-261. SEM/EDX Spectrum of Converter A221/0^7-Rear Face
Figure D-262. Scanning Electron Micrograph at X500 of Converter A22l/(Wf7-Rear Face
D-132

-------
#
>>
R221/0447-R-
Figure D-263. Scanning Electron Micrograph at X2500 of Converter A221/0W-Rear Face
MAG: 5000	2 MICRONS

Figure D-264. Scanning Electron Micrograph at X5000 of Converter A221/0447-R.ear Face
D-133

-------
Figure D-265. Aluminum Dot Map at X5000 of Converter A221/0<^7-Rear Face
: riJr^-Si. •
yV-.v n&J
. .	V • '	>L	•'o' '
. ¦ . • t •'%£ • ,••! * !• J
ELEMENT:	p224V^4#7-ft*
Figure D-266. Silicon Dot Map at X5000 of Converter A221/0447-Rear Face
D-134

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-267. Lead Dot Map at X5000 of Converter A221/04^7-Rear Face
MRG: 3000	2 MICRONS	
i • j	¦ to*? "¦=
ELEMENT: S	fl221/044?-fl-f
Figure D-268. Sulfur Dot Map at X5000 of Converter A221/0^7-Rear Face
D-135

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-269. Zinc Dot Map at X5000 of Converter A221/0W7-Rear Face
41RG: "3000
2 MICRONS
m •

•
¦*
¦
I
1 4
1
5 ,
1
• »
• • -
. '
m
m

ELEMENT; P
R221/0447-A-
Figure D-270. Phosphorus Dot Map at X5000 of Converter A221/0447-Rear Face
D-136

-------
2.000	VPS = LOG i 13.240
Figure D-271. SEM/EDX Spectrum of Converter A230/0177X-Rear Face
ri
n '
rg: see
WirJk
A230/01??X-fl-G
Figure D-272. Scanning Electron Micrograph at X500 of Converter A230/0177X-Rear Face
D-137

-------
n230/017?X-A-G
Figure D-273. Scanning Electron Micrograph at X2500 of Converter A230/0177X-Rear Face
ttflG: 5000	2 MICRONS	

Figure D-27^. Scanning Electron Micrograph at X5000 of Converter A230/0177X-Rear Face
D-138

-------
Figure D-275. Aluminum Dot Map at X5000 of Converter A230/0177X-Rear Face
Hflrr ¦ . ? MirRDNS
-r:J'
¦
. • • ¦
r ' V*'
• t\v .
k" l« '
i • • '' • • , , ' , i 'i .1 w" ! '•
"
.
1 * •*i •. «
-S
¦
I ^ t
1 "
r 1,
•. ••••• ¦ • : «
• . f '
¦ * "« * ¦ * * ¦
¦ ¦
; - V-;. f, .¦ • ¦ '•
• ¦ * . - .' _ . . 4 .* *
• ' r ' :
. •••'• . • _¦
* :=
ELEMENT: 91
*
Figure D-276. Silicon Dot Map at X5000 of Converter A230/0177X-Rear Face
D-139

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-277. Lead Dot Map at X.5000 of Converter A230/0177X-Rear Face
HRG: 5000
• •
* * >
e MICRONS
a
¦
•
• • *
, , f '•
'• •
¦
¦
•
¦ t J 0 . •
¦.. • ¦
•
ELEMENT: S
¦
• •
P230/0177X-H-G
Figure D-278. Sulfur Dot Map at X5000 of Converter A230/0177X-Rear Face
D-140

-------
MflG: 5000
2 MICRONS

f *
i
1 #
." •l
r
¦ « 8


. **
¦ ¦
•
* *,¦

ELEMENT: ZN
R230/0177X-8-G

•
Figure D-279. Zinc Dot Map at X5000 of Converter A230/0177X-Rear Face
Figure D-280. Phosphorus Dot Map at X5000 of Converter A230/0177X-Rear Face
D-141

-------
Figure D-281. SEM/EDX Spectrum of Converter A240/0016L-Rear Face
Figure D-282. Scanning Electron Micrograph at X500 of Converter A240/0016L-Rear Face
D-142

-------
MflG:
£500
" MtrBflNS




" ^\v






>



fl240/0016L-fl-G

Figure D-283. Scanning Electron Micrograph at X2500 of Converter A2W)/0016L-Rear Face
MAG:	5000	2 MICRON?
H24M/0016L-fl-G
Figure D-28^. Scanning Electron Micrograph at X5000 of Converter A240/0016L-Rear Face
D-143

-------
Figure D-285. Aluminum Dot Map at X5000 of Converter A240/0016L-Rear Face
¦nftG:
i 1 i
*500® ," 2 MICRONS	
. »*
L 11
='' 1 / **" ~ I
» ' " a
V-, '•v". "r
-1
" a ' 1 i • ,
• i ¦ ;• •» ¦ .¦ ••

k .*'» r*


* V " ,
. . .. !•

m i
i: »v . >



' • r.

1\ J
1 » 1
> t ? "
* *i .. |
; • • *t
P f*. .
-' \ 1,1 *• •» ¦
* v.-
«
•A ». •• - • 1 '
*» . • . •
V •
^ - *v< j . .¦
v'..
*«_ •' i ^ • * •
K •
i
•
'.. . 1 ' • ¦ "

¦ '

. "• v
• ' m

' • . • •

_ ¦ *"tV ¦ • *•.
» ' V " ...


.
V; w •

,i .i >
1 v *
•
• ' »
. v"
• • a (»

V ¦ • -I1-,- ^
• • . •. i.
* ' a • » •
• * * k-
•


¦

•
PLEflBNT: SI {|240/Cy016L-n-G
Figure D-286. Silicon Dot Map at X5000 of Converter A2^0/0016L-Rear Face
D-m

-------
MflG: 5000
ELEMENT: PB
2 MICRONS.
B240/0016L-ft-G
Figure D-287. Lead Dot Map at X5000 of Converter A2*t0/0016L-Rear Face
mag: 5000 £ microns.
• . ¦ v' 0:3.	.
V, *. -	•
-¦>	ifr.V V--
: x. • • • v '¦ . iv' j.1	.. v'« *'¦" V,-
-• .	••• ^
a* Cats'.- "
' " 1 JL *
0-
- - •
ELEMENT: 'S
pl'
-------
nflG: 5000	2 MICRONS
Figure D-289. Zinc Dot Map at X5000 of Converter AZ'fO/OO^L-Rear Face
Figure D-280. Phosphorus Dot Map at X5000 of Converter A240/0016L-Rear Face
D-146

-------
Figure D-281. SEM/EDX Spectrum of Converter A249/0169-1-Rear Face
Figure D-282. Scanning Electron Micrograph at X500 of Converter A249/0169-1-Rear Face
D-147

-------
Figure D-283. Scanning Electron Micrograph at X2500 of Converter A249/0169-1-Rear Face
mrg: 51
10
i: 1ICP0NS
R249/0169-1-
Figure D-284. Scanning Electron Micrograph at X5000 of Converter A249/0169-1-Rear Face
D-148

-------
Figure D-285. Aluminum Dot Map at X5000 of Converter A249/0169-1-Rear Face
nHU! SUUU
*
2 MICRONS
•

¦ it

'•
|

, -u,
•
r
ELEMENT: SI
R249/0169-1-
Figure D-286. Silicon Dot Map at X5000 of Converter A249/0169-1-Rear Face
D-149

-------
NO DOT MAP BECAUSE ELEMENT CONCENTRATION IN SAMPLE
TO LOW FOR ADEQUATE MAPPING
Figure D-287. Lead Dot Map at X5000 of Converter A249/0169-1-Rear Face
MflG: 5000
»
2 MICRONS

I .
*
¦
. • • ¦¦ " *
¦
• V • •. " ¦
¦
•
,• *
• •
¦ . ** *
Ik* 1,
•







ELEMENT: S
A249/0169-1-

Figure D-288. Sulfur Dot Map at X5000 of Converter A249/0169-1-Rear Face
D-150

-------
MflG: 3000	2 MICRONS	
ELEMENT: ZN	P249/0169-1-
Figure D-289. Zinc Dot Map at X5000 of Converter A249/0169-1-Rear Face
.. \	j
• * , ¦ . • *
¦v..' -
1 . ¦
element: p
A249/0169-1-,
Figure D-290. Phosphorus Dot Map at X5000 of Converter A249/0169-1-Rear Face
D-151

-------
APPENDIX E
ELEMENTAL CONCENTRATIONS OF METALS AND POISONS
FOR BULK SAMPLE BY X-RAY FLUORESCENCE

-------
RUN DESCRIPTION: SWRIAC - CONTAMINATED AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 07/25/36
SAMPLE TYPE: BRIQUETTE
SITE ID: n/a
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE MO.: 7
SAMPLE ID: A3/1037-A
ELEMENT
DETN LIM
MASS 7.
2-SIGMA
NA
D
.023111
.463695E-01
+- .233433E-01
MG

.224739E-02
3.64507
+- .133239
AL

.329636E-01
21.7605
+- 1.03924
SI

.47SS1E-02
15.4452
+- .77329
P

.422422E-03
.970743
+- .493443E-01
S

.225447E-02
.507564E—01
+- .351364E-02
CL
X
.110531E-02
433473E-03
+- .27623E-04
K

.35356E-03
.543237E-01
+- .275754E-02
CA

.201325E-03
.092765
+- .477257E-02
TI

.135433E-03
.315391
+- .1589S7E-01
V
X
.562998E-03
492077E-02
+- .307396E-03
CR

.61334SE-03
.653S32E-02
+- .774751E-03
MN

.36633E-03
.306205E-02
+- .73523E-03
FE

.421514E-03
.130416
+- .916715E-02
CO

.43145E-03
.225633E-02
+- .397693E-03
NI

.56916SE-03
2.3533
+- .142765
CU

.4236E-03
.16194E-02
+- .420266E-03
ZN

.325708E-03
.115913
+- .536646E-02
SE
X
.33713E-03
131065E-02
+- .213346E-02
BR
X
.346S62E-02
-.233S34E-02
+- .117197E-03
SR
X
.522621E-02
—.311009E—02
+- .156062E—03
MO
X
.933197E-02
-.293445E-02
+- .149349E-03
CD

.1S2716E-03
.639604E—03
+- .145376E—03
SN
D
.144164E-02
.266032E—02
+- .933194E-03
SB
X ~
.64309SE—03
13639IE—04
+- .30709SE-04
BA

•513732E-03
.69333E-02
+- .61712SE-03
CE

.190713E-02
.373206
+- .044771
PT

.3S3359E—03
.119397
+- .613404E-02
PB

.3911E-03
.101251
+- .523334E-02
TOTAL DETECTED BY XRF = 46.6598
E-2

-------
RUN DESCRIPTION: SWRIAC - CONTAMINATED AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 07/25/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 3
SAMPLE ID: A31/0270-1-A
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
D
.372637E-01
.439457E-01
+—
.374036E-01
MG

.301901E-02
3.43254
+-
.172761
AL

.439037E-01
21.9392
+-
1.0936
SI

.532322E-02
14.4563
+-
.723394
P

.43503E-03
.632506
+-
.349337E-01
S

.259103E-02
.197654
+-
.104244E-01
CL
X
.131143E-02
624239E-04
H—
.339913E-05
K

.420917E-03
.573396E-01
+-
.294472E-02
CA

.213119E-03
.136233
H—
.695673E-02
TI

.241516E-03
.296354
+-
.149575E-01
V
X
.326312E-03
677051E-02
H—
.437197E-03
CR

.709373E-03
.62S039E-02
+-
.799916E-03
MN

.517524E-03
.393204E—01
+-
.237243E-02
FE

.4S5612E-03
.234229
H—
. US799E-01
CO

.495259E-03
.199022E-02
H—
.416106E-03
NI

.667116E-03
3.4353
H—
.171905
CU

.496353E-03
.433562E-02
H—
.561622E-03
ZN

.393089E-03
.269934
H—
•135753E-01
SE
X
.431703E-03
-.547095E-02
H—
.436607E-02
BR
X
.516787E-02
417361E-02
H—
.209176E-03
SR
X
.795027E-02
121193E-01
H—
.603369E-03
MO
X
.142591E-01
.1191S7E-03
H—
.142591E-01
CD
X
.213101E-03
323132E-03
H—
.376633E-04
SN

.155263E-02
.560191E-02
H—
.12S052E-02
SB
X
.637593E-03
.491175E-03
H—
.366033E-03
BA

.6S3349E-03
.344366
H—
.425433E-01
CE

.235613E-02
1.04436
H—
.532206E-01
PT

.112S42E-02
.292347
H—
.143193E-01
PB

.127567E-02
1.6033
H—
.305639E-01
TOTAL DETECTED BY XRF = 49.0315
E-3

-------
RUN DESCRIPTION: SWRIAC - CONTAMINATED AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 07/25/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 9
SAMPLE ID: AS7/0479-2-A
ELEMENT
DETN LIM
MASS '/.

2-SIGMA
NA

.234913E-01
.363077E-01
+-
.243941E-01
MG

.1S9003E-02
4.74012
+—
.237935
AL

.232132E-01
20.322
+-
1.01715
SI

.436612E-02
18.0195
H—
.901974
P

.4064E-03
.606109E-01
+ -
.00376
r-
._i

.213721E-02
.130174
H—
.947636E-02
CL
X
.105066E-02
-.226613E-02
¥-
.152953E-03
K

.337735E-03
.355647E-01
H—
.132746E-02
CA

.137277E-03
.16961
H—
.361447E-02
TI

.15S309E-03
.101374
H—
.519623E-02
V
X
.514094E-03
.239976E-03
H—
.249754E-04
CR

.71925E-03
.305622E—01
H—
.221553E-02
MN

.527999E-03
.172369E-01
H—
.001333
FE

.444S42E-03
.653063
+-
.328273E-01
CO
D
.309633E-03
.374511E-03
H—
.136625E-03
NI

.2740S4E-03
.424523E-01
H—
.221139E-02
CU

.257453E-03
.632336E-02
H—
.441243E-03
ZN

.25917E-03
.790631E-01
H—
.400609E-02
SE
X
.261117E-03
.632373E-04
H—
.41237E-02
BR
X
.271SS2E-02
—.4S5226E-03
+ -
.243044E-04
SR
X
.410016E-02
317563E-Q2
+ -
.15923E-03
MO
X
.76637SE-02
-.432342E-02
+ —
.216316E-03
CD

.174147E-03
.36143E-03
H—
.134452E-03
SN
X
.132399E-02
-.736997E-03
+ -
.546495E-03
SB
X
.532903E-03
.161232E-03
H—
.216919E-03
BA

.443133E-03
.228779E-02
+ -
.33S144E-03
CE

.139605E-02
.150967E-01
H—
.22601E-02
PT
D
.713619E-03
.102543E-02
¦i—
.257469E-03
PB

.713973E-03
.2193
H—
. 110339E-01
TOTAL DETECTED BY XRF = 44.7349
E-»

-------
RUN DESCRIPTION: SWRIAC - CONTAMINATED AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 07/25/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 10
SAMPLE ID: A154/0392-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.332301E-01
401736E-01
+-
.320326E-02
MG

.267606E-02
3.5352
+-
.177869
AL

.394413E-01
23.6118
H—
1.13202
SI

.542682E-02
13.6394
H—
• 683055
P

.455311E-03
1.07861
H—
.547461E-01
S

.24434E-02
.359869
+-
.183992E-01
CL
X
.12175E-02
173392E-02
H—
.116469E-03
K

.389174E-03
.496227E-01
H	
.253033E-02
CA

.217519E-03
.772937E-01
-t	
.400529E-02
TI

.237296E-03
.3335S4
H—
.167S95E-01
V
X
.816239E-03
—.369176E-02
H—
.603865E-03
CR

.662026E-03
.464034E—02
H—
.649799E-03
MN

.463533E-03
.119479E-01
H—
.972252E-03
FE

.448556E-03
.141838
H—
.725253E-02
CO

.509297E-03
.003025
H—
.503412E-03
NI

.726323E-03
4.11694
H—
.205966
CU
X
.520107E-03
910637E-03
H—
.455359E-04
ZN

.37S102E-03
.142387
H—
.720375E—02
SE
X
.411655E-03
147395E-02
H—
.197676E-02
BR
X
.442704E-02
22412SE-02
+ -
.11234SE-03
SR
X
.672532E-02
374683E-02
+-
.18804SE-03
MO
X
.119902E-01
.365S65E-02
+-
.119916E-01
CD
D
.201431E-03
.431437E-03
+-
.680639E-04
SN
D
.153018E-02
.319811E-02
H—
.116657E-02
SB
X
.65369E-03
.4312S5E—03
+—
.37163E-03
BA

.659966E-03
.969035
H—
.437691E-01
CE

.274423E-02
1.08568
H—
.552066E-01
PT

.105866E-02
.122243
¦1—
.634912E-02
PB

.110467E-02
.545111
H—
.274116E-01
TOTAL DETECTED BY XRF = 49.S319
E-5

-------
RUN DESCRIPTION: SWRIAC - CONTAMINATED AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 07/25/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 11
SAMPLE ID: A155/C979-1-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.230253E-01
.399937E—01
H—
.2S190«E-01
MG

.228131E-02
4.88277
+ -
.245134
AL

«336337E-01
19.3436
+—
.968456
SI

.4S6124E-02
IS.1095
+-
.906494
P

.441297E-03
.432202
+—
.224291E-01


.233934E-02
.364231E-01
+ -
.303848E-02
CL
X
. U5032E-02
265336E-02
+—
.179192E-03
K

.368942E-03
.022071
+-
.11802E-02
CA

.176706E-03
.784042E-01
+-
.405752E-02
TI

.1S1066E-03
.106434
+-
.542808E-02
V
X
.627205E-03
495725E—04
+ -
.464363E-05
CR

.105631E-02
.370789E-02
+-
.690441E-03
MN

.661593E-03
.891392E-02
H—
.10224E-02
FE

.649767E-03
.320952
+-
.162583E-01
CO
D
.347324E-03
.405977E-03
H—
.133492E-03
NI

«315247E-03
.S07585E—02
+—
.567648E-03
CU
D
.299434E—03
.307533E-03
+—
.294462E-03
ZN

.301332E-03
.700984E-01
+ -
.356976E-02
SE
X
.334413E—03
331394E-02
+-
.252432E-02
BR
X
.350486E—02
-.253965E—02
+-
.12723IE-03
SR
X
.529211E-02
-.229242E-02
H—
.11495E-03
MO
X
.947405E-02
329934E-03
H—
. 16508'v'E—04
CD
X
.190147E-03
640285E-04
+-
.26761°E-04
SN
D
.12487E-02
.175325E-02
H—
.779652E-03
SB
D
.544119E—03
.717976E-03
¦1—
.448734E-03
BA

.51374E-03
.224694E-02
H—
.417338E—03
CE

.222799E-02
1.79424
+-
.906904E-01
PT

.841566E-03
.214913
H—
.108913E-01
PB

.376344E-03
.214322
H—
.108333E-01
TOTAL DETECTED BY XRF = 45.6926
E-6

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 08/08/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A-
MI3CELLANEGUS INFO: NONE
SAMPLE SEQUENCE NO.: 5
SAMPLE ID: A160/0656-A-A
ELEMENT
DETN LIM
MASS '/.

2-SI&MA
NA

.333249E-01
.12193
¦i—
.392707E-01
MG

.312S15E-02
3.50157
+-
.176204
AL

.444242E—01
13.7491
H—
.93923
SI

.561527E-02
13.3479
+ -
.668382
P

.476937E-03
3.33039
+-
.167303
S
X
.263018E-02
-.7333S9E-03
+ -
.410373E-03
CL
X
.13503IE-02
.7S0535E-03
H—
.135116E-02
K

.433643E-03
.530458E-01
+—
.270737E-02
CA

.251653E-03
. 5520-95
H—
.27755SE-01
TI

.221969E-03
.277492
+—
.139941E-01
V
X
.61709E-03
-.387702E-02
-t—
.257032E-03
CR

.699903E-03
.100021E-01
+—
.106233E-02
MN

.5014S3E—03
.193972
H—
.100625E—01
FE

.453103E-03
.334672
+—
.16S^31E-01
CO

.400326E-03
.135502E-02
H—
.316414E-03
NI

.524059E—03
2.1683
+—
.108511
CU

.441039E—03
.943327E-02
H—
.631735E—03
ZN

.431576E-03
.982537
+—
.491967E-01
SE
X
.493997E—03
-.452525E-02
¦i—
.522376E-02
BR
X
.546769E-02
—.49918E-02
H—
.250148E—03
SR
X
.34303E-02
-.191869E-01
+ -
.963246E-03
MO
X
.152985E—01
426718E-02
H—
.213617E-03
CD
X
.226357E-03
-.411199E-04
+-
.323767E-05
SN

.17976E-02
.692957E-02
+-
. 103122E-02
SB
X
.80661E-03
.500733E-03
+-
.444732E-03
BA

.632828E-03
.467392E-02
+-
.5531S8E-03
CE

.219616E-02
.605405
H—
.312777E-01
PT

.L0863E-02
.221001
+—
.011232
PB

.134361E-02
2.75808
H	
.138057
TOTAL DETECTED BY XRF = 47.2304
E-7

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 08/08/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 6
SAMPLE ID: A160/0656-A-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.232432E-01
.362361E-01
H—
.233831E-01
MG

.226127E-02
4.06421
H—
.204244
AL

.332233E-01
21.3761
H—
1.07004
SI

.433151E-02
16.073
+ -
.80469
P

.425735E-03
.213455
H—
.114596E-01
S
X
.224785E-02
.470793E-03
+-
.136452E-02
CL
X
.110201E-02
210453E-02
H—
.140192E-03
K

.352927E-03
.616539E-01
+ -
.312148E-02
CA

.202607E-03
.121531
H—
.621251E-02
TI

.1S6394E-03
.347035
+-
.174553E-01
V
X
.573645E-03
536619E-02
H—
.360497E-03
CR

.56244E-03
.506523E-02
+—
.677319E-03
MN

.40504SE-03
.245114E-01
+-
.155339E-02
FE

.400935E-03
.258337
H—
.130589E-01
CO

.427681E-03
.192241E-02
H—
.356407E-03
NI

.569936E-03
2.S6703
+ -
.143451
CU
X
.415375E-03
-.110035E-02
H—
.550223E-04
ZN

.318071E-03
.430049E-01
+-
.247997E-02
SE
X
.360497E-03
-.379602E-02
H—
.246752E-02
BR
X
.350693E-02
-.299091E-02
+-
.149905E-03
SR
X
.529539E—02
—.326753E-02
H—
.163966E-03
MO
X
.945944E-02
-.2479S4E-02
+-
.124098E-03
CD
X
.182492E-03
-.102967E-03
-(—
.735137E-04
SN
D
.144937E—02
.39S373E-02
+-
.107985E-02
SB
X
.64904E-03
-.215739E-04
+-
.316229E-04
BA

.523842E-03
.387756E-02
+—
.41S541E-03
CE

.190974E—02
.680426
+-
.348842E-01
PT

.390935E-03
.250692
H—
.012699
PB

.913966E-03
.144286
¦i	
.736632E-02
TOTAL DETECTED BY XRF = 46.5814
E-8

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 03/03/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 7
SAMPLE ID: A160/0656-A-C
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.294302E-01
.537912E-01
4™
.297657E-01
MG

.235851E-02
3.62929
H—
.132522
AL

.343354E-01
22.9379
H—
1.14316
SI

.499993E-02
14.37
+-
.719553
P

.429234E-03
.614533
H—
.315307E-01
i?'
s_>
X
.22S235E-02
221775E-02
+-
.135139E-03
CL
X
.112094E-02
-.271333E-02
H—
.134417E-03
K

.35QS47E-03
.595393E-01
H—
.301965E-02
CA

.204273E-03
.174133
H—
.384118E-02
TI

.190666E-03
.313043
H—
.015757
V
X
.567627E-03
-.663372E-02
+—
.424097E-03
CR

.55749E-03
.596005E-02
H—
.70S515E-03
MN

.372915E-03
.474795E—01
H—
.26S363E-02
FE

.405471E-03
.225714
+-
.114251E-01
CO

.450326E-03
.211936E-02
H—
.392623E-03
NI

.623197E-03
3.46753
+—
.173431
CU
X
.444117E—03
—.361747E-03
H—
.430912E-04
ZN

.34278E-03
.104103
+-
.52S151E-02
SE
X
.330941E-03
-.337646E-02
H—
.224006E-02
BR
X
.372204E-02
-.2S95S4E-02
+-
.145151E-03
SR
X
.562921E-02
321361E-02
¦1—
.161532E-03
MO
X
.10042SE-01
132695E-02
H—
.914301E-04
CD
D
.135733E-03
.274266E-03
H—
.759901E-04
SN

.145475E-02
.552016E-02
+-
. U3779E-02
SB
X
.6455SSE-03
.414534E-03
H—
.311666E-03
BA

.5364E-03
.375052E-02
+ -
.424373E-03
CE

.1S5994E-02
.323457
H—
.422714E-01
FT

.940974E-03
.237375
+-
.145666E-01
PB

.973004E-03
.177511
H—
.903239E-02
TOTAL DETECTED BY XRF = 47.3036
E-9

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 03/03/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 4
SAMPLE ID: A1S0/0094
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.03571
125579E-01
H—
.970263E-03
MG

.235135E-02
1.02753
+-
.525301E-01
AL

.459163E—01
36.9361
H—
1.35076
SI

.641961E-02
4.25416
+-
.214023
P

.471393E-03
.65232
+—
.334523E-01
s

.253453E-02
.262393
+—
.136132E-01
CL
X
.126724E-02
365604E-03
+ -
.550556E-04
K

.406861E-03
.3SS166E-01
H—
.200141E-02
CA

.235399E-03
.130166
+-
.66517E-02
TI

.195361E-03
.127439
+—
.643241E-02
V
X
.59193E-03
327717E-02
+ -
.322476E-03
CR

.530143E-03
.362076E-02
+—
.434131E-03
MN

.332029E-03
.102313E-01
+-
.3163E-03
FE

.44157E-03
.693046E-01
+-
.364034E-02
CO

.5710S4E-03
.922746E-02
+ -
.791736E-03
NI

.S87534E-03
6.64603
+-
.332439
CU
X
.612056E-03
249957E-02
+-
.12499E-03
ZN

.42S523E-03
.16154
+-
.317511E-02
SE
X
.520259E-03
735117E-02
+-
.295013E-02
BR
X
.503349E-02
-.414475E-02
+-
.207331E-03
SR
X
.767701E-02
-.655166E-02
H—
.32903E-03
MO
X
.136697E-01
.225157E-04
+-
.136697E-01
CD

.210409E-03
.32492E-03
+ —
.107313E-03
SN

.167116E-02
.683305E-02
+ -
.146626E-02
SB
D
.735519E-03
.102333E-02
+ —
.577377E-0 3
BA

.541635E-03
.145919E-01
+ -
.108323E-02
CE

.13S233E-02
1.76707
+ —
.39190IE-01
PT

.121167E-02
.562526
H—
.023343
PB

.123903E-02
.531977
H—
.267331E-01
TOTAL DETECTED BY XRF = 53.2653
E-10

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: OS/29/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 9
SAMPLE ID: A193/0908-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.310353E-01
.464211E-0L
H—
.312283E-01
MG

.253648E-02
3.77225
H—
.139639
AL

.333335E-01
24.4371
+-
1.2257
SI

.540704E-02
14.2934
+-
.715754
P

.46142E—03
1.54264
H—
.77^671E-01
S

.2492SE-02
.209S02
H—
.110131E-01
CL
X
.123235E—02
175766E-02
H—
.114671E-03
K

.394399E—03
.27953SE-01
+—
.147034E—02
CA

.196147E-03
.225567
H—
.114213E-01
TI

.1S5589E-03
.108776
H—
.555051E-02
V
X
.641736E—03
.159696E-03
4—
.143632E-04
CR

.140209E-02
.346731E-02
H—
.127021E-02
MN

.736093E-03
.343003E-01
H—
.230546E-02
FE

.76S314E-03
.466191
H—
.235447E-01
CO
X
.339265E-03
.22603E-03
H—
.749133E-04
NI

.344028E-03
.145567E-01
H—
.3S3633E-03
CU

.346613E-03
.106296E-01
H—
.63764E-03
ZN

•37133E-03
.308553
H—
.154965E-01
SE
X
.337419E-03
—.396003E-02
+-
.29027IE-02
BR
X
.414553E-02
322673E-02
+-
.161696E-03
SR
X
.626471E-02
-.530305E-02
H—
.266043E-03
MO
X
.111976E-01
.425469E-02
H—
.111996E-01
CD
X
.204126E-03
22376E-04
H—
.110652E-04
SN
D
.139203E-02
.255531E-02
+ -
.673423E-03
SB
X
.6036E-03
.773417E-04
+—
.160*41E-03
BA
D
.52466E-03
.151307E-02
+ -
.3524E-03
CE

.233449E-02
3.13797
H—
.15793
PT

.956515E-03
.243135
H—
.125737E-01
PB

.10053E-02
.132233
-i—
.927041E-02
TOTAL DETECTED BY XRF = 49.1291
E-ll

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: OS/29/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 10
SAMPLE ID: A193/0903-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
IMA

.231039E-01
.991649E-01
H—
.242701E-01
MG

.1S6236E-02
4.56295
+-
.22906
AL

.232223E-01
22.0921
+-
1.10563
SI

.443152E-02
17.2391
H—
.362969
P

.406962E-03
.135377
+—
.756913E—02
S

.21446-6E-02
.221512
H—
.11507SE-01
CL
X
.001055
21"3222E-02
+ -
. 14 3249E-03
K

.339605E—03
¦539643E-G1
¦+ —
.273S04E-02
CA

.136063E-03
.156059
^—
.793791E-02
TI

.1661SSE-03
.127926
+-
.6499S7E-02
V
X
.515151E-03
235165E-03
H—
.226356E-04
CR

.112S92E-02
.112347E-01
+-
.173909E-Q2
MN

.546367E-03
.116603E-01
+-
.106732E-02
FE

.45398E-03
.53402^
H—
.263767E-01
CO
X
.312673E-03
163234E-03
+-
.566272E-04
NI

.263S4E-03
.453221E-02
+-
.3S4S22E—03
CU

.25730SE-03
.340546E-02
H	
.327297E-03
ZN

.26S527E-03
.152953
+-
.769742E-02
SE
X
.262475E-03
-.740961E-04
H—
.337953E—03
BR
X
.270S51E-02
-.617204E-03
H—
.30915SE-04
SR
X
.407074E-02
217161E-02
+-
.108379E-03
MO
X
.742619E-02
264292E-02
H—
.132233E-03
CD

.175025E-03
.667755E-03
+-
.122263E-03
SN
X
.133052E-02
.113247E-02
+ -
.453435E-03
SB
X
.599395E-03
.734764E-04
H—
.969674E—04
BA
D
.479999E-03
.S30399E-03
+-
.217235E-03
CE

.195099E—02
.220775E-01
H—
.256713E-02
PT

.713367E-03
.009354
+ -
.754293E-03
PB

.720735E-03
.137015
H—
.945317E-02
TOTAL DETECTED BY XRF = 45.6265
E-12

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 08/0S/S6
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 3
SAMPLE ID: A214/06S1-A-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.347651E-01
433592E-01
¦i—
.347262E-02
MG

.277321E-02
2.20424
+-
.111372
AL

.415036E-01
27.6342
H—
1.33315
SI

.563593E-02
3.64632
H—
.433445
P

.446722E-03
1.91546
H—
.965677E-01
,*i
o

•242137E-02
.025206
+-
.2659S2E-02
CL
X
.120643E-02
519103E—03
H—
.328734E-04
K

.3S5632E-03
.583692E-01
+ -
.296272E-02
CA

.224716E-03
.333637
H—
.170711E-01
TI

.190743E-03
.213566
H—
.110367E-01
V
X
.574771E-03
437725E-02
H—
.312665E-03
CR

.494719E-03
.493091E-02
-)—
.563337E-03
MN

.32S253E-03
.150424E-01
H—
.001025
FE

.397175E-03
.153739
H—
.30667E-02
CO

.532371E-03
.651733E-02
+—
.64592E-03
NI

.S099S1E-03
6.01593
H—
.30092
CU

.530801E-03
.105959E-01
H—
.311336E-03
ZN

.42S026E-03
.395065
H—
.193398E-01
SE
X
.447105E-03
307573E-02
+ -
.344561E-02
BR
X
.46353SE-02
291236E-02
+-
.146023E-03
SR
X
.707263E-02
739147E-02
+ -
.37122E-03
MO
X
.126241E-01
~.335396E-03
+-
.167SS2E-04
CD

.200567E-03
.65396E-03
+-
.752273E-04
SIM

.15905E-02
.352732E-02
+-
.126276E-02
SB
D
.697653E-03
.133021E-02
H—
.543393E-03
BA

.536236E-03
.423915E-02
+-
.503796E-03
CE

.132542E-02
1.13537
+-
.576145E-01
PT

. 112244E-02
.166756
+-
.357213E-02
PB

.116373E-02
.730717
+-
.392027E-01
TOTAL DETECTED BY XRF = 49.746
E-13

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 08/08/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 9
SAMPLE ID: A214/0631-A-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.304665E-01
193024E-01
+-
.156452E-02
MG

.242157E-02
3.22332
+-
.162519
AL

.353372E-01
24.4719
+-
1.22439
SI

.005125
12.5916
+—
.630663
P

.427432E-03
.503779
+-
.262347E-01
r—«
D
.226593E-02
.620431E-02
H—
.220449E-02
CL
X
. 111202E-02
-.970307E-03
+ —
.62507E-04
K

.355403E-03
.708133E-01
+—
.357719E-02
CA

.214005E-03
.12653
+ -
.645949E-02
TI

.192224E-03
.291234
+ —
.146647E-01
V
X
.536401E-03
-.509239E-02
+ —
.322535E-03
CR

.430538E-03
.442345E-02
+ -
.546515E-03
MN

.320973E-03
.343254E-02
+ -
.459442E-03
FE

.36773SE-03
.130537
+ -
.66556E-02
CO

.49403E-03
.559377E-02
+ -
.536713E-03
NI

.733759E-03
5.07354
+ -
.254042
CU
X
.516645E-03
130036E-02
H—
.650437E-04
ZN

.351981E-03
.603966E-01
+-
.310932E-02
SE
X
.374797E-03
204239E-02
+-
.236366E-02
BR
X
.3S039E-02
139154E-02
+-
.943296E-04
SR
X
.574364E-02
277313E-02
-I—
.139463E-02
MO
X
.010232
273368E-04
+-
.136311E-05
CD
X
.133969E-03
43733SE-04
+-
.303137E-04
SN
D
.152126E-02
.317193E-02
+-
.100159E-02
SB
D
.672363E-03
.966594E-03
H—
.445375E—03
DA

.53926SE-03
.413323E-02
+-
.462523E-03
CE

.173357E-02
.395063
H—
.455433E-01
PT

.9S4345E-03
.129652
+-
.670414E-02
PB

.973521E-03
.122939
H—
.633529E-02
TOTAL DETECTED BY XRF = 47.7344
E-14

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 03/08/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 10
SAMPLE ID: A214/0681-A-C
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X

.234537E-01
-.036704
H—
.303951E-02
MG


.226S36E-02
3.6526
+-
.133679
AL


.336479E-01
23.3293
+-
1.16769
SI


.439967E-02
14.1676
+-
.709442
P


.422243E-03
.793693
¦i—
.407399E-01
S
X

.224633E-02
19656E-02
H—
. U9999E-03
CL
X

.110042E-02
27235SE-02
H—
.135399E-03
K


.352017E-03
.637135E-01
¦i—
. 34726'r>E-02
CA


.20522E-03
.125516
H—
.640943E-02
TI


.1S4354E-03
.317365
H—
.015^72
V
X

.543397E-03
23799E-02
H—
.175236E-03
CR


.511297E-03
.539S69E-02
H—
.636334E-03
MN


.342133E-03
.415359E-02
+—
.515144E-03
FE


.332417E-03
.147771
+—
.7522S7E-02
CO


.456511E-03
.454433E-02
¦i—
.516761E-03
NI


.6463S3E-03
3.S90S3
H—
.194647
CU
X

.461676E-03
.160351E-03
H—
.436556E-03
ZN


.337905E-03
.507304E-01
H—
.262191E-02
SE
X

.34992E-03
16297E-02
+-
.229524E-02
BR
X

.353415E-02
15925SE-02
+-
.793271E-04
SR
X

.532393E-02
-.212413E-02
H—
.106602E-03
MO
X

.949722E-02
.37213SE-03
+-
.949724E-02
CD
D

.132039E-03
.363463E-03
H—
.113923E-03
SN
D

.145023E-02
.2S3474E-02
+ -
.919117E-03
SB
X

.634211E-03
.440771E-03
H—
.29542E-03
BA


.51487SE-03
.401907E-02
+ -
.433403E-03
CE


.133305E-02
.729337
H—
.373247E-01
FT


.920029E-03
.102544
+-
.534042E-02
PB


.913795E-03
.337953E-01
H—
.463015E-02
TOTAL
DETECTED BY XRF =
47.4921


E-15

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES-
DATE OF XRAY ANALYSIS: 08/08/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 1
SAMPLE ID: A213/0045
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
X
.323216E-01
133409E-01
H—
.145235E-02
MG

.25S195E-02
2.32517
+ -
.117355
AL

.400969E-01
30.9595
—
1.54931
SI

.574936E-02
9.19206
+-
.460792
P

.450396E-03
.263419
H—
.01422
o

.240201E-02
.29161
+-
.15012SE-01
CL
X
.113993E-02
.463601E-04
H—
. 118?c-'3E-02
K

.3S142E-03
.049022
H—
.249933E-02
CA

.21987SE-03
.104459
H—
.005362
TI

.194429E—03
.22156
H—
.111851E-01
V
X
.591322E-03
-.493653E-02
¦1—
.362264E-03
CR

.533189E-03
.484377E-02
H—
.556522E-03
MN

.343006E-03
.355073E-02
+ -
.43719SE-03
FE

.421431E-03
.115114
+-
.589704E-02
CO

.522974E-03
.70019E-02
+—
.665956E-03
NI

.774356E-03
5.31679
+-
.265962
CU
X
.54445SE-03
-.224602E-02
H—
.112311E-03
ZN

.333334E-03
.072639
+-
.373044E-02
SE
X
.454034E-03
-.636777E-02
H—
.323157E-02
BR
X
.432S74E-02
-.335317E-02
+-
.163116E-03
SR
X
.655947E-02
-.343211E-02
H—
.174333E-03
MO
X
.011679
-.433471E-03
+-
.21-5453E-04
CD
D
.19716E-03
.493602E-03
¦i—
.122713E-03
SN

.15621E-02
.646403E-02
H—
.141605E-02
SB
D
.63347E-03
.712334E-03
H—
.456216E-03
BA

.533744E-03
.172708E-01
+-
.119039E-02
CE

.131332E-02
1.43939
H—
.727997E-01
PT

.106691E-02
.430234
+-
.217109E-01
PB

.112653E-02
.143602
H—
.762332E-02
TOTAL DETECTED BY XRF = 50.975
E-16

-------
RUN DESCRIPTION: SUIRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: OS/OS/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 2
SAMPLE ID: A21S/0045X
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
X
.313631E-01
-.254503E-01
H—
.202315E-02
MG

.254776E-02
2.49736
H—
.125977
AL

.390445E-01
23.3406
H—
1.44336
SI

.557093E-02
10.2452
H—
.513409
P

.445S4E-03
.570153
H—
.293123E-01
C
•J

.23S003E-02
.160023
H—
.355794E-02
CL
X
.117S7E-02
-.697597E-03
H—
.44469E-04
K

.377949E-0.:
.050072
H—
.255063E-02
CA

.214541E-03
.''53493E-01
H—
.490564E-02
TI

.195032E-03
.233161
+-
.117646E-01
V
X
.579589E-03
401901E-02
H—
.277604E-03
CR

.57S3S7E-03
.446553E-02
H—
. 564305E-1.'
MN

.391015E-03
.310004E-02
H—
. 499189E-0 I:
!rE

.41S763E-03
.167473
+-
.S51501E-02
CO

.49671E-03
.605333E-02
H—
.603504E-03
NI

.716367E-03
4.50201
H—
.225216
CU
X
.506777E-03
909031E-03
H—
.454557E-04
ZN

.367755E-03
.9177SSE-01
H—
.467543E-02
SE
X
.43655SE-03
-.591169E-02
H—
.305747E-02
BR
X
.420543E-02
-.2S9904E-02
H—
. 145323E-J-3
SR
X
.633252E-02
390233E-02
H—
.195393b-03
MO
X
.113761E-01
-.913747E-04
H—
. 4':.9S23E-05
CD
D
.195325E-03
.500745E-03
H—
.915354E-04
SN

.151437E-02
.72336E-02
H—
.145706E-02
SB
X
.659269E-03
. 493314E-r 3
H—
.374567E-03
BA

.55214SE-03
.19164~E—01
H—
.123599E-02
CE

.19206E-02
1.^3732
H—
.652337E-01
PT

.104236E-02
.331946
H—
.019237
PB

.109308C-02
.297349
H—
.150543E-01
TOTAL DETECTED D" XRF = 49.4618
E-17

-------
RUN INSCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 08/08/86
SAMPLE TYPE: BRIQUETTE
'-•HE IDS N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 3
SAMPLE ID: A218/0068
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.360665E-01
199125E-01
+—
.154085E-02
MG

.23S735E-02
1.39778
—
.071037
AL

.456302E-01
34.5353
H—
1.72323
SI

.630715E-02
5.69224
H—
.285875
P

.472413E-03
.77*334
+-
.397733E-01
.¦s
D

.254194E-02
.341696
+—
.175107E-01
CL
X
.127655E-02
-.41565E-03
H—
,261355E-04
K

.409334E-03
.421752E-01
+-
.216694E-02
CA

.227625E-03
.166221
+-
.345473E-02
TI

.1S9062E-03
.156533
H—
.793792E-02
V
X
.598581E-03
-.470276E-02
+—
.430137E-03
CR

.561515E-03
.49072E-02
+ -
.556362E-03
MN

.36903E—03
.590272E-02
H—
.603463E—03
FE

.429754E-03
.100864
+-
.51S798E-02
CO

.553163E-03
.790509E-02
H—
.724355E-03
NI

.84S996E-03
6.24326
+-
.312294
CU
D
.604279E—03
.135191E-02
H—
.5S230SE-03
ZN

.434934E-03
.245869
+-
.123865E-01
SE
X
.521571E-03
-.330338E-02
H—
.375431E-02
BR
X
.5071S1E-02
367742E-02
H—
.134379E-03
SR
X
.775331E-02
-.3.37044E-02
+ -
.42044E-03
MO
X
.1333S1E-01
-.353705E-03
H—
.179553E-04
CD

.212145E-03
.734343E-03
H—
.900731E-04
SN

.160245E-02
.160656E-01
+-
.19362SE-02
SB
D
.693315E-03
.105963E-02
H—
.543735E-03
BA

.530522E-03
.175539E-01
+-
.122098E-02
CE

.193332E-02
1.61084
+ -
.313925E-01
PT

.119667E-02
.522473
+-
.263415E-01
PB

.130292E-02
.766144
H—
.334341E-01
TOTAL DETECTED BY XRF = 52.6563
E-18

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: C^/11/36
SAMPLE TYPE: BRIQUETTE
SITE ID: n/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 1
SAMPLE ID: A220/0392-A
ELEMENT
DETN LIM
MASS */.

2-SIOMA
NA
X
.347425E-01
.263253E-01
H—
.348017E-01
MG

.27S619E-02
2.02157
H—
.102209
AL

.430505E-01
31.6057
+-
1.53171
SI

.595349E-02
7.97121
+-
. 39'"<'754
P

.462339E-03
1.33936
+—
.703074E-01
3

.250552E-02
.766571
+ -
.336663E-01
CL
X
.125359E-02
.221522E-03
H—
.125367E—02
K

.400452E-03
.384239E-01
+ -
.198079E-02
CA

.219926E-03
,. 114249
H—
.585441E-02
TI

.257739E-03
.231109
+-
.116673E-01
V
X
.104774E-02
135684E-01
-f—
.209184E-02
CR

.100757E-02
.403047E-02
+-
.736701E-03
MN

.519735E-03
.370693E-02
H	
.636086E-03
FE

.474843E-03
.135961
+ -
.697338E-02
CO
X
.545391E-03
116273E-02
H—
.531441E-04
NI

.791722E-03
4.67625
+-
.233945
CU
X
.530956E-03
.474397E-03
+-
.551391E-03
ZN

.427585E-03
.191733
+-
.96S233E-02
SE
X
.43239E-03
15022E—02
H—
.261123E-02
BR
X
.471419E-02
207665E-02
+ —
. 104U2E-03
SR

.720503E-02
.471913E-01
S	
.746136E-02
MO
X
.12S071E-01
.537302E-02
H—
. 1280C'9E-01
CD

.207493E-03
.337646E-03
H—
. 143994E-03
SN
D
.155711E-02
.315535E-02
H—
.106501E-02
SB
D
.676652E-03
.924655E-03
H—
.522201E-03
BA

.723321E-03
1.72086
+-
.863713E-01
CE

.336343E-02
1.56335
H—
.79396IE-01
PT

.114762E—02
.979295E-01
+—
.518137E-02
PB

.113076E-02
.235572
H	
.119732E-01
TOTAL DETECTED BY XRF = 52.8258
E-19

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 0*/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 2
SAMPLE ID: A220/0392-B
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA

.227133E-01
.11301
+-
.241336E-01
MG

.131959E-02
2.36368
+-
.11*294
AL

.297771E-01
32.165°
+-
1.60923
SI

.489425E-02
9.9342
H—
.500321
P

.397599E-03
.9*76535-01
-t—
.57235*E-02
»-•
s.<

.212474E-02
•
+ -
.44V67SE-01
CL
D
.106057E-02
.155236E-02
+—
. 1064SSE-02
K

.343002E-03
.586465E-01
+-
.2*7106E-02
CA

.13514E-03
.166846
-i—
.347773E-02
TI

.169S35E-03
.203111
H—
.102602E-01
V
D
.512032E-03
.102047E-02
¦i—
.66S726E-04
CR

.111316E-02
.108545E-01
H—
.173234E-02
MN

.51041E-03
.60067E-02
+—
.77408E-03
FE

.434927E-03
.301673
+-
.15261*E-01
CO
X
.312679E-03
124101E-03
H—
.753364E-04
NI

.269385E-03
.150352E-01
+ -
.360663E-03
CU

.266131E-03
.224447E-02
H—
. 2*6SO*E-0 3
ZN

.269396E-03
.799349E-01
+ -
.405296E-02
SE
X
.310793E-03
564144E-02
H—
.277555E-02
BR
X
.281066E-02
-.221285E-02
+ -
.110845E-03
SR
X
.424221E-02
-.145048E-02
H	
.727276E-04
MO
X
.794395E-02
177624E-02
H—
.338716E-04
CD
D
.176704E-03
.434621E-03
-t—
.151731E-03
3N
X
.13244E-02
.306672E-03
H—
.3361S4E-03
SB
X
.596602E—03
.122509E-03
H	
. ^"^SSE-OS
BA

.473915E-03
.236466E-02
H—
.33335SE-03
CE

.191221E-02
.213393E-01
^	
.2520 31E-02
FT

.750397E-03
. 346*32
H—
.174612E-01
PB

.77447E-03
.3SS06oE-01
H—
.210316E-02
TOTAL DETECTED BY XRF = 46,8823
E-20

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAV ANALYSIS: 0'-'/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 9
SAMPLE ID: A220/0310-A
ELEMENT
DETN LIM
MASS V.

2-SIGMA
NA

.344263E-01
.225344
H—
.0377*3
MG

.278446E-02
2. 99"'23
H—
.151093
AL

.04152
26.3731
H—
1.32011
SI

.562479E-02
10.-5045
H—
.546335
P

.457594E-03
2. 026*6
H—
.10216
i
¦3

.249201E-02
.540226
+-
.273767E-01
CL
X
.12441SE-02
133531E-02
A—
.3o3°38E-04
K

.39S237E-03
i tiOO
^—
.6S0143E-02
CA

.217094E—03
.300151
H—
.151503E-01
TI

.253605E-03
.265147
H—
.13370*E-01
V
X
.96966E-03
-.966265E-02
-i—
.875404E-03
CR

.106325E-02
.430791E-02
+-
.868357E-03
MN

.555266E-03
.657991E-02
^—
. 78*7,:>5E-03
FE

.515253E-03
.498709
H—
.025108
CO

.497617E-03
.425246E-02
+-
.436708E-03
NI

.700694E-03
3.63124
H—
.181683
CU
D
.541315E-03
.371933E-03
H—
.519261E-03
ZN

.460533E-03
.639935
H—
.320S22E-01
SE
X
.426121E-03
-.143317E-02
H—
.24955E-02
BR
X
.467798E-02
-.230929E-02
+ -
.11577E-03
SR
D
.712195E-02
.174357E-01
H—
.658654E-02
MO
X
.126649E-01
.433948E-02
+ -
.126667E-01
CD

.207031E-03
.136156E-02
H—
.202081E-03
SN

.156483E-02
.563309E-02
+ -
.102376E-02
SB
X
.709798E-03
.547632E-03
¦i—
.257654E-03
BA

.72326E-03
1.35637
+ -
.681739E-01
CE

.31442E-02
1.41366
4—
.716437E-01
PT

.109733E-02
.c'66l516E-01
H—
.508242E-02
PB

.113645E-02
.437453
H—
.22044*E-01
TOTAL DETECTED BY XRF = 51.8356
E-21

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYST'S
DATE OF XRAY ANALYSIS: 0*/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 10
SAMPLE ID: A220/0S10-B
ELEMENT
DETN LIM
MASS 7.
2-SIGMA
NA

.235451E-01
.15119
+- .259191E-01
MG

.139292E-02
2.42243
+- . 1219-58
AL

.306695E-01
31.5269
+- 1.57735
SI

.491436E-02
9.3473
+- .493462
P

.399146E-03
.483975
+- .24*693E-01
i"

.215317E-02
1.1543
+- .530057E-01
CL
X
.10827SE—02
-.22795E-02
+- .153333E-03
K

.351131E-03
.153331
+- .769481E-02
CA

.1904S1E-03
19752
+- .010014
TI

.177147E-03
.202982
+- .102559E-01
V
D
.524451E-03
.113497E-02
+- .746431E-04
CR

.985007E-03
.206227E-01
+- . 220913E-02
MN

.473012E-03
.673064E-02
h— . 786401E—O'J
FE

.4470S7E-03
.42393
+- .213743E-01
CO
X
.306961E-03
.216605E-03
+- .621608E-04
NI

.269409E-03
.172825E-01
+- .969057E-03
CU

.27424E-03
.206903E-02
+¦- . 299136E-03
ZN

.290S03E-03
.254489
+- . 127757E-01
SE
X
.32706E-03
546041E-02
+- . 25,:>593E-02
BR
X
.298835E—02
—.21010IE—02
+- . 105248E-03
SR
X
.452539E—02
126596E-02
+- .634793E-04
MO
X
.008444
.217072E-03
+- .008444
CD

.13105£-03
.359531E-03
+- . 146307E-03
SN
D
.134197E-02
.389515E-02
+- .865346E-0 3
SB
X
.590305E-03
.660709E-04
+- .336461E-04
BA

.491502E-03
.626497E-02
+- .610431E-03
CE

.19637E-02
.133332E-01
+- .244313E-02
PT

.77336E-03
.36752
+- .184942E-01
PB

.329534E-03
.163971
+- .35619E-02
TOTAL DETECTED BY XRF = 47.4321
E-22

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAV ANALYSIS: 08/23/86
SAMPLE TYPE: BRIQUETTE
SITE IDS N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 5
SAMPLE ID: A221/0152-A
ELEMENT
DETN LIM
MASS '/.

2-SIGMA
NA
X
.342313E-01
.511719E-02
H—
.342339E-01
MG

.2S0263E-02
3.07629
+ -
.154377
AL

.4249S3E-01
25.7634
A—
1.23964
SI

.532147E-02
13.1466
+ -
.653443
P

.484247E-03
1.67373
H—
«347795E-01
S

.262358E-02
.226314
H—
.113726E-01
CL
X
.13063E-02
62672E-03
H—
.39646SE-04
K

.418632E-03
.311326E-01
+—
.163262E-02
CA

.133352E-03
.159619
H—
.31269SE-02
TI

.193616E-03
.7S9237E-01
H—
.406136E-02
V
D
.642059E-03
.173344E-02
H—
. 173727E-03
CR

.162337E—02
,601594E-02
H—
.102153E-02
MN

.769335E-03
.11534
H—
.637563E-02
FE

.373271E-03
.341605
H—
.173349E-01
CO
X
.416037E-03
-.675334E-04
H—
.429363E-04
NI

.363611E-03
.1136S1E-01
+ -
,743995E-03
CU

.365551E-03
.139922E-01
H—
.351653E-03
ZN

.39S741E-03
.402117
+-
.020179
SE
X
.434196E-03
-.513525E-02
-1—
.346913E-02
BR
X
.472537E-02
-.422995E-02
H—
.211973E-03
SR
X
.717993E-02
—.316904E—02
H—
.409902E-03
MO
X
.123477E-01
.47915E-02
4—
.01235
CD
D
.216461E-03
.336554E-03
H—
.545631E-04
SN

.133437E-02
.72045E-02
+—
.125797E-02
SB
D
.577062E-03
.909125E-03
H—
.473072E-03
BA
D
.543213E-03
.151922E-02
H—
.40257E-03
CE

.241493E—02
3.33954
H—
.195541
PT

.103567E-02
.313113
H—
.158345E-01
PB

.112523E-02
.509901
+-
.256404E-01
TOTAL DETECTED BY XRF = 49.7769
E-23

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
~ATE OF XRAY ANALYSIS: 03/23/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 6
SAMPLE ID: A221/0152-B
ELEMENT
DETN LIM
MASS ¦/.

2-SIGMA
NA

.23308SE-01
.301931E-01
+-
.240375E-01
MG

.1S7SS5E-02
4.33442
+-
.21763
AL

.236229E-01
22.3374
H—
1.1429
SI

.44943E-02
16.6139
+-
.331963
P

.403023E-03
.155333
+—
.354502E-02
S

.215317E-02
.269431
+-
.013374
CL
X
.106307E-02
129523E-02
+ —
.347654E-04
K

.342391E-03
,401691E-01
+ -
.205527E-02
CA

.192142E-03
.134115
+—
.634131E-02
TI

.163S39E-03
.104937
+-
.535077E-02
V
X
.50517E-03
333491E-03
4—
,340962E-04
CR

.106979E-02
.319073E-02
+-
.153442E-02
MN

.493443E-03
.291612E-01
H—
.192015E-02
FE

.4391S7E-03
.371763
+-
.137636E-01
CO
X
.314533E-03
533632E-04
H—
.234303E-04
NI

.264335E-03
.372736E-02
+-
.352195E-03
CU

.261334E-03
.3S2313E-02
H—
.344621E-03
ZN

.259541E-03
.125436
+—
.632367E-02
SE
X
.266005E-03
190557E—03
H—
.623561E-02
BR
X
.274931E-02
650955E—03
H—
.32605E-04
SR
X
.415039E—02
277333E—02
H	
.139046E—03
MO
X
.770322E-02
269289E-02
+—
.134734E-03
CD

.176339E-03
.116532E-02
-(	
.15193SE-03
SN
X
.134571E-02
.447009E-03
H—
.243765E-03
SB
X
.531465E-03
.105913E-03
+ -
.149767E-03
BA
D
.474902E-03
.904256E-03
+ -
.249391E-03
CE

.190435E-02
.266635E-01
+ —
.272416E-02
PT

.721136E-03
.496403E-02
+ -
.539302E-03
PB

.726956E-03
.2°!126
H—
. 1465O1E-0L
TOTAL DETECTED BY XRF = 45.4419
E-24

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/23/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO. : 1
SAMPLE ID: A221/0204-A
ELEMENT
DETN LIM
MASS V.

2-SIGMA
NA

.313375E-01
.136613
-i—
.323153E-01
MO

.257S74E-02
4.24317
+-
.213213
AL

.37808SE-01
20.3667
+-
1.04475
SI

.516045E-02
15.0455
+-
.753299
P

.452743E-03
2.78436
H—
.140066
S

.24S2S3E-02
.1074SS
H—
,610746E-02
CL
X
.122745E-02
.956558E-03
•I—
.122337E-02
K

.392045E-03
.029177
H—
.152S3SE-02
CA

.205492E-03
.403763
H—
.205322E-01
TI

.199841E-03
.137105
+-
,696309E-02
V
X
.606623E-03
432309E-03
+-
.400302E-04
CR

.129411E-02
.447693E—02
+—
.S45513E-03
MN

.62923E-03
.913935E-02
H—
. 9*=>S373E-03
FE

.697464E-03
.376966
H—
.190613E-01
CO
X
.351213E-03
179541E-03
+-
.103091E-03
NI

.307566E-03
.S59532E-02
+-
.536456E-03
CU

.3456E-03
.103643E-01
H—
.696433E-03
ZN

„447015E-03
1.16049
+-
,5S0935E-01
SE
X
.397396E-03
231319E-02
H—
.250361E-02
BR
X
.419652E-02
29S596E-02
H—
.14964E-03
SR
X
.635706E-02
-.52329E-02
H—
.262558E-03
MO
X
.113504E-01
.229591E-02
+-
.011351
CD
D
.203762E-03
.226429E-03
¦i—
.469722E-04
SN
D
.145321E-02
.211452E-02
H—
.441S33E-03
SB
X
.63S375E-03
.19333E-03
H—
. 293431E-0.3
BA

.565667E-03
.595263E-02
+-
.663092E-03
CE

.226273E-02
2.63474
+-
.132745
PT

.940828E-03
.200949
+ -
.102089E-01
PB

.103S4E-02
.353672
H	
.173273E-01
TOTAL DETECTED BY XRF = 48.5276
E-25

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/28/86
SAMPLE TYPE: BRIQUETTE
SITE IDs N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO. : 2
SAMPLE ID: A221/0204-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA

.234703E-01
.110924
H—
.243733E-01
MG

.18988E-02
4.71881
+ -
.236864
AL

.028478
20.9308
H—
1.04759
SI

.439878E-02
17.5959
H—
.880793
P

.407134E-03
.371161
•i—
.193571E-01
S

.215529E-02
.285053
H—
.146483E-01
CL
X
.106249E-02
166722E-02
+—
.110235E-03
K

.34147E-03
.313178E-01
H—
. 161'r'92E—02
CA

.137229E-03
.236181
H—
.119447E-01
TI

.172852E-03
.126759
H—
.644243E-02
V
X
.51092E-03
175542E-03
H—
.13944E-04
CR

.105647E-02
.71998E-02
+-
.145069E-02
MN

.432409E-03
.470966E-02
¦(—
.683358E-03
FE

.429179E-03
.3769SS
+-
.190206E—01
CO
X
.301151E-03
300629E—03
H—
.134315E-03
NI

.2529E-03
.431734E-02
H—
.365914E—03
CU

.265356E-03
.415525E-02
+-
.3597S9E-03
ZN

.293101E-03
.357015
H—
.178994E-01
SE
X
.272134E-03
293434E-03
^—
. 136339E-02
BR
X
.277796E-02
—.886804E-03
H—
.44421E-04
SR
X
.413414E-02
-.226709E-02
+ -
. 113669E—03
MO
X
.76759E-02
-.149039E-02
+-
.745694E-04
CD

.176329E-03
.765035E-03
+-
.123536E-03
SN
X
.133393E-02
.113421E-02
+ -
.35394E-03
SB
X
.000596
.71656E-04
+-
.137017E-03
BA

.483592E-03
.002314
H—
.3891E-03
CE

.190738E-02
.295341E-01
H—
.234395E-02
PT

.724833E-03
.197693E-01
+-
.119247E-02
PB

.743439E-03
.23779
H—
.119901E-01
TOTAL DETECTED BY XRF = 45.4515
E-26

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/2S/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 3
SAMPLE ID: A221/0447-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.343293E-01
-.669095E-01
H—
.524721E-02
MG

.2S1911E-02
3.44077
+—
.1730S3
AL

.433122E-01
26.6022
H—
1.33159
SI

.005976
13.4311
+-
. 6726=>4
P

.493295E-03
.92839
+—
.472657E-01
S

.265165E-02
.376323
H—
.192516E-01
CL
X
.132S77E-02
-.755075E-03
H	
.478481E-04
K

.426254E-03
.210339E-01
H—
.115181E-02
CA

.195251E-03
.105934
H—
.544467E-02
TI

.200247E-03
.S61717E-01
H—
.442509E-02
V

.64557E-03
.243156E-02
H—
.225643E-03
CR

.16262SE-02
.500153E-02
H—
.910327E-03
MN

.753444E-03
.131138E-01
H—
.154654E-02
FE

.867169E-03
.340497
¦4—
.172841E-01
CO
X
.421253E-03
133103E-03
H—
.100093E-03
NI

.374731E-03
.601982E-02
+-
.529459E-03
CU

.352016E-03
.516983E-02
+-
.463747E-03
ZN

.3S5263E-03
.195117
+-
.933031E-02
SE
X
.439454E-03
497212E-02
+-
.332071E-02
BR
X
.4S10S8E—02
—.384646E-02
H—
.192738E-03
SR
X
.73269SE-02
-.910863E-02
•i—
.457019E-03
MO
X
.131012E-01
.620276E-02
+-
.131049E-01
CD
X
.22011-5E-03
-.457771E-03
H—
.363214E-04
SN
D
.139193E-02
.242178E-02
+-
.S95312E-03
SB
X
.612972E-03
.519139E-03
H—
.466694E-03
BA
D
.572517E-03
.320727E-03
H—
.302202E-03
CE

.242256E-02
3.34643
¦f—
.193404
PT

.104952E-02
.321813
+-
.162706E-01
PB

.114028E-02
.72276
+-
.362773E-01
TOTAL DETECTED BY XRF = 50.4535
E-27

-------
RUN DESCRIPTION: 3WRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/28/84
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 4
SAMPLE ID: A221/0447-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.241154E-01
.599393E-01
+-
.245447E-01
MG

.194746E-02
4.13381
+-
.210347
AL

.293916E-01
23.7904
H—
1.19057
31

.465667E-02
16.0498
+-
.803527
P

.415796E-03
.919539E-01
+ -
.535435E-02
o

.21944SE-02
.28794
+—
.147956E-01
CL
X
.109062E-02
-.744663E-03
+-
.47944E-04
K

.351674E-03
.336043E-01
+-
.173436E-02
CA

.190139E-03
.969609E-01
+—
.493533E-02
TI

.17132E-03
.100948
+-
.515267E-02
V
X
.515949E-03
-.224386E-03
H—
.201135E-04
CR

.10SS11E-02
.775265E-02
+-
.152237E-02
MN

.511273E—03
.646101E-02
H—
.797015E-03
FE

.446544E-03
.384482
+—
.194022E-01
CO
X
.310032E-03
.163757E-03
+-
.535011E-04
NI

.27103SE-03
.388565E-02
+—
.36307E-03
CU

.253463E-03
.1413S9E-02
H—
.268302E-03
ZN

.254996E-03
.667468E-01
H—
.339012E-02
SE
X
.277229E-03
-.452423E-03
H—
.103541E-01
BR
X
.293117E-02
103894E-02
H—
.520362E-04
SR
X
.445115E-02
435325E-02
+-
.213264E-03
MO
X
.823074E-02
21896E-02
+—
.109557E—03
CD
D
.180996E-03
.533631E-03
H—
.704059E-04
SN
X
.13506E-02
.986738E-04
+-
.847995E-04
SB
X
.600568E-03
-.233293E-03
H—
.116715E-01
SA

.480056E-03
.149517E-02
+-
.333952E-03
CE

.192317E-02
.291995E-01
+ -
.00235
PT

.731749E-03
.379781E-02
+-
.727292E-03
PB

.77361E-03
.556157
+-
.273979E-01
TOTAL DETECTED BY XRF = 45.7673
E-28

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO. : 3
SAMPLE ID: A230/0177X-A
ELEMENT
DETN LIM
MASS 7.

2-SIOMA
NA
X
.330531E-01
230566E-01
H—
.219086E-02
MG

.267553E-02
2.64772
+-
.133453
AL

.411436E-01
28.3187
+-
1.41732
SI

.57486E-02
10.^917
H—
.550726
P

.463325E-03
.922453
+-
.469393E-01
c*

.248748E-02
.330564
+ -
.016954
CL
X
.123742E-02
.290373E-03
-f—
.123756E-02
K

.39643E-03
.367397E-01
+-
.437458E-02
CA

.194501E-03
173111
+—
.90464E-02
TI

.195013E-03
.210466
+-
.106339E-01
V
X
.601337E-03
.136304E—03
H—
.126566E-04
CR

.141401E-02
.515165E-02
+ -
. 90728'-">E-03
MN

.752963E-03
.422673E-01
+-
.271347E—02
FE

.359435E-03
2.15787
+-
.108136
CO
X
.420712E-03
121381E-02
+—
.179992E-03
NI

.369737E-03
.10S612E-01
+-
.733008E-03
CU

.36573E-03
.694119E-02
+—
.547017E-03
ZN

.392699E-03
.237423
H—
.119477E-01
SE
X
.42241SE-03
463102E-02
+-
. 3204-37E-02
BR
X
.445582E-02
-.258175E-02
H—
.129378E-03
SR
X
•675664E-02
301645E-02
-1—
.151332E-03
MO
X
.120734E-01
.504203E-02
+-
.120761E-01
CD

.20536E-03
.491115E-02
+ -
.39°636E-03
SN
X
.138104E-02
.12S62E-02
+ -
.47099E-03
SB
X
.605367E-03
.196733E-03
+—
.143092E-03
BA

.545163E-03
.210485E-02
+-
.342969E-03
CE

.223655E-02
3.06511
H—
.154235
PT

.102963E-02
.283213
H—
.143465E-01
PB

.10S583E-02
.363562
+-
. 13329'^E-01
TOTAL DETECTED BY XRF = 49.865*
E-29

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 0^/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 4
SAMPLE ID: A230/0177X-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.307949E-01
523962E-01
+-
.427004E-02
MG

.24S93E-02
2.32136
+-
.142121
AL

.3S9354E-01
29.4716
H—
1.47433
SI

.564132E-02
11.3203
+-
.567172
P

.454426E-03
.534375E-01
H—
.366113E-02


.241209E-02
.333714
+ -
.195S02E-01
CL
X
.119331E-02
.14079E—03
H—
. 119334E-02
K

.3S2909E-03
.392571E-01
+ -
.44989SE-02
CA

.192026E-03
'.395951E-01
H—
.461344E-02
TI

.13761SE-03
¦ <.'0^
+ -
.117373E-01
V
X
.606339E-03
.446535E-03
H—
.292744E-04
CR

.12335E-02
.463502E-02
+—
.817471E-03
MN

.775314E-03
.143339E-01
+ -
.139004E-02
FE

.30S4S2E-03
1.81516
+-
.909958E-01
CO
X
.411292E-03
-.926073E-03
+ -
.150835E-03
NI

. 362952E-03
.737249E-02
+-
.577094E-03
CU

.345315E-03
.213012E-02
+-
.36723E-03
ZN

.352016E—03
.494644E—01
+-
.256099E—02
SE
X
.393374E-03
413057E-02
+ -
.243437E-02
BR
X
.407416E-02
—.278066E-02
H—
.139346E-03
SR
X
.61464E-02
164622E-02
+ -
.325SE-04
MO
X
.110046E-01
. 3669-56 E-02
+ -
.110062E-01
CD

.197349E-03
.750612E-03
+ -
.1^1306E-03
SN
X
.138364E-02
504416E-03
+ -
.744624E-03
SB
X
.624063E-03
637936E-03
+ -
.544024E-04
BA

.535496E-03
.2619SE-02
+ -
.37253SE-03
CE

.226367E-02
2.37521
+ -
.144732
PT

.9S2379E-03
.302191
+ -
. 152343E-01
PB

.10079E-02
.363337E-01
+ -
.203533E-02
TOTAL DETECTED BY XRF = 4*.57?1
E-30

-------
RUN DESCRIPTION: 5WRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: U
SAMPLE ID: A230/0636X-A
ELEMENT
DETN LIM
MASS 7.
2-SIGMA
NA
X
.317732E-01
375334E-01
+- .296607E-02
MG

.257745E-02
3.14246
+- .153153
AL

.395207E—01
27.0945
+- 1.35607
SI

.559085E-02
12.4795
+- .625095
P

.460723E-03
.365923
+- .441173E-01
i-»

.24676E-02
.208613
+- .10«429E-01
CL
X
.122669E-02
123554E-02
+- . 7'55233E-04
K

.39363E-03
.363243E-01
+- .437903E-02
CA

.139966E—03
.136637
+- .697292E-02
TI

.203455E-03
. 24390c>
+- .125563E-01
V
D
.611964E-03
•619965E-03
+- .39977E-04
CR

.113673E-02
.672713E-02
+- .105516E-02
MN

.753979E-03
.103646E-01
+- .115733E-02
FE

.736654E-03
1.784S5
+- .894744E-01
CO
X
.399177E-03
-.100355E-02
+- .166143E-03
NI

.364533E-03
.161319E-01
+- .963443E-03
CU

.34341E-03
.33494E-02
¦<— . 612656E-03
ZN

.368992E-03
.217237
+- .109363E-01
SE
X
.409766E-03
425753E-02
+- .294343E-02
BR
X
.4232SE-02
267492E-02
+- .134033E-03
SR
X
.650353E—02
317157E-02
+- . 15*0*SE-Q3
MO
X
.116337E-01
.504614E-02
+- .116364E-01
CD
D
.20362SE-03
. 3,:>4345E-03
+- .621935E-04
SN
D
.135273E-02
.305635E-02
+- .880436E-03
SB
X
.597673E-03
.457449E-04
+- . 3,:>7969E-04
BA

.570526E-03
.136951E-02
+- .306695E-03
CE

.2237S4E-02
2.52219
+- .127093
PT

.999962E-03
.279404
+- .014146
PB

. 106661E-02
.477q94
+- .240335E-01
TOTAL DETECTED BY XRF = 4*.5931
E-31

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 12
SAMPLE ID: A230/0636X-B
ELEMENT
DETN LIM
MASS /.

2-SIGMA
NA
X
.303393E-01
561734E-01
H—
.454204E-02
MG

.249508E-02
2.55721
+ -
.128886
AL

.394345E-01
30.9501
+—
1.5433
SI

.573083E-02
10.2867
H—
.51551
P

.455141E-03
.332332E—01
H—
.492266E-02
i"1

.241819E-02
. 7 jo l a
+-
.190497E-01
CL
X
- 119302E-02
365369E-03
+—
.231337E-04
K

.384542E-03
.362335E-01
+ -
. 4 J4tf51 E-
-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/29/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 13
SAMPLE ID: A240/0016L-A
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
X
.362154E-01
639548E-01
+-
.556122E-02
MG

.28866E-02
1.3603
+-
.691902E-01
AL

.45105SE-01
33.8023
H—
1.69159
SI

.622234E-02
5.94593
+-
.29855
P

.467319E-03
.722296
H—
.369221E-01
S

.251365E-02
.663511
+-
.335217E-01
CL
X
.126S6E-02
115579E-02
H—
-740219E-04
K

.406493E-03
.552397E-01
+ -
.002811
CA

.234747E-03
.340002E-01
H—
.434453E-02
TI

.18319E-03
.181127
+ -
.91667E-02
V
X
.515317E-03
351608E-02
H—
.262467E-03
CR

.744393E-03
.448132E-02
+-
.685653E-03
MN

.35311E-03
.233541E-02
H—
.449022E-03
FE

.404376E-03
.767218E-01
+-
.397432E-02
CO

.5S49SE-03
.011551
H—
.392306E-03
NI

.930034E-03
7.38831
+-
.369554
CU
X
.643083E-03
-.271331E-02
+-
.135923E-0 3
ZN

.43576E-03
.185426
+-
.937025E-02
SE
X
.43721E-03
337646E-02
H—
.340534E-02
BR
X
.502466E-02
279548E-02
H—
. 140181E-03
SR
X
.767157E-02
7395SE-02
H—
.371503E-03
MO
X
.013678
-.719008E-03
H—
.359926E-04
CD

.210281E-03
.142315E-02
H—
.143392E-03
SN

.167099E-02
.820513E-02
+-
.165113E-02
SB
D
.74031E—03
.962741E-03
H—
.52346E-03
BA

.527661E-03
.364214E-02
H—
.476912E-03
CE

.17303E—02
1.52972
H—
.773049E-01
PT

.119213E-02
.227038
H—
.116024E-01
PB

.126712E-02
.311373
H—
.407516E-01
TOTAL DETECTED BY XRF = 53.0664
E-33

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/29/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 14
SAMPLE ID: A240/0016L-B
ELEMENT
DETN LIM
MASS */.
2-SIGMA
NA
D
.276754E-01
.492795E-01
+- .279205E-01
MG

.223904E-02
2.01405
-•— . 101636
AL

.366457E-01
33.7003
+- 1.63613
SI

.554S97E-02
3.56743
+- .42954
P

.434553E-03
.25315
+- .136333E-01
S

.232325E-02
.956494
+- .481338E-01
CL
X
.1173Q1E-02
179202E-02
+- .117574E-03
K

.377621E-03
.531379E-01
+- .270503E-02
CA

.135373E-03
.104363
+- .535305E-02
TI

.1S4519E-03
.255945
+- .129066E-01
V
X
.600415E-03
-.212042E-02
+- . 140364E-03
CR

.14116E-02
.100197E-01
+- .155529E-02
MN

.642583E-03
.507577E-02
+- .330153E-03
FE

.633204E-03
.237451
+- .120S98E-01
CO
X
.357S74E-03
.215077E-03
+- .107513E-03
NI

.337793E-03
.129461
+- .657116E-02
CU

.325563E-03
.116354E-02
+- .32502"E-03
ZN

.319281E-03
.14203
+- .716632E-02
SE
X
.351034E-03
233007E-02
+- .23977E-02
BR
X
.371112E-02
134532E-02
+- .924479E-04
SR
X
.562535E-02
-.233105E-02
+- .119402E-03
MO
X
.101736E-01
.339594E-02
+- .010175
CD

.194333E-03
.100077E-02
+- .130319E-03
SN
D
.132325E—02
.179447E-02
+- .735119E-03
SB
X
.5S3259E-03
-.642157E-04
+- .112749E-03
BA

.521913E-03
.362232E-02
+- .436612E-03
CE

.224 L95E-02
1.39594
+- .953026E-01
PT

.S99543E-03
.166944
+- .351061E-02
PB

.922293E-03
.413475
+- .207913E-01
TOTAL DETECTED BY XRF = 48.9672
E-34

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 7
SAMPLE IDs A240/0102-A
ELEMENT
DETN LIM
MASS '/.

2-SIGMA
NA

.295556E-01
.127397
+-
.30994*E-01
MG

.237422E-02
3.66031
+-
.134084
AL

.346301E-01
21.397
¦i—
1.09613
SI

.487884E-02
13.9577
+-
.698913
P

.425301E-03
2.33491
H—
.117551
o

.231335E-02
.151871
H—
.315079E-02
CL
X
.114307E-02
303185E-02
H	
. 207707E-0-3
K

.365125E-03
.504433E-01
H—
.256691E-02
CA

.203732E-03
¦. 183522
H—
.931305E-02
TI

.192719E-03
.331286
H—
.166713E-01
V
X
.51334E-03
-.369031E-02
^—
.223265E-0 3
CR

.810996E-03
.763741E-02
+ -
.103569E-02
MN

.377024E-03
.943073E—02
H—
. 7'56542E-03
FE

.404977E-03
.271503
+-
.137139E-01
CO

.436756E-03
.453127E-02
H—
.486038E-03
NI

.625512E-03
3.57151
H—
.178679
CU

.474543E-03
.20777E-02
+ -
.474635E-03
ZN

.391267E-03
.4940SS
+-
.247772E-01
SE
X
.363442E—03
-.16505E-02
H—
.224266E-02
BR
X
.373162E-02
-.242999E-02
H—
.121S17E-03
SR
X
.57162E-02
405502E-02
H	
.203547E-0 3
MO
X
.101395E-01
264427E-02
+ -
.132333E-03
CD

.139174E-03
.144667E-02
i—
.133594E-03
SN

.14559E-02
.530S22E-02
+ -
.110731E-02
SB
X
.649955E-03
.642161E-03
¦f—
, 41230"'E-03
BA

.538009E-03
.26785E-02
H—
.33522QE-03
CE

. 136253E-02
.854959
H—
.436052E-01
PT

.928524E-03
. 11
H—
. 5699'"/1 E-02
PB

.973502E-03
.253303
H—
. 128rr'4E-01
TOTAL DETECTED BY XRF = 48.2831
E-35

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 0*/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: n/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO. : 3
SAMPLE ID: A240/0102-B
ELEMENT
DETN LIM
MASS 7.
2-SIGMA
NA

.263934E-01
.100393
4~ . 2733,:>2E-01
MG

.2144S3E-02
2.56032
+- .128961
AL

.034339
32.5929
+- 1.63077
SI

.539142E-02
10.6664
+- .534475
P

.437336E-03
.625723
+- .321048E-01
s

.233416E-02
.28*647
+- .149076E-01
CL
X
. U5521E-02
31°075E-02
+- .2r3648E-03
K

.371149E-03
436372E-01
+- .223163E-02
CA

.20955E—03
.2213*3
+- .11209*E-01
TI

.203181E-03
.292976
+- .147591E-01
V
X
.601534E-03
.427191E-03
+- .264945E-04
C.R

.123644E-02
.011328
+- .15841E-02
MN

.609022E-03
.102705E-01
+- .105415E-02
FE

.630354E-03
.321769
+- .162996E-01
CO
X
.346162E-03
.10961E-03
+- .436073E-04
IMI

.322974E-03
.382741E-01
+- .20227E-02
CU

.313293E-03
.26672SE-02
+- .35572E-03
ZN

.346233E-03
.40156
+- .201339E-01
SE
X
.337102E-03
-.219316E-02
¦t— . 23410*E-02
BR
X
.354564E-02
177937E-02
+- .39151*E-04
SR
X
.534546E-02
-.3335IE-03
+- .4179*2E-04
MO
X
.956313E-02
.419264E-02
+- .956543E-02
CD

.192003E-03
.126093E-02
h— •lS6y6E—03
3N
X
.147116E-02
.277731E-03
+- .113632E-03
SB
X
.631536E-03
-.375296E-03
+- .137665E-04
BA

.564206E-03
.18237E-02
+- .279035E-03
CE

.227161E-02
1.76903
+- .394561E-01
FT

. 3S5-117E-03
.144086
+- .736734E-02
PB

.395071E-03
.159*29
+- .313751E-02
TOTAL DETECTED BY XRF = 50.255?
E-36

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: OW11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: n/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 5
SAMPLE ID: A240/0141L-A
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
X
.321022E-01
.263224E-01
H—
.321694E-01
MG

0254577E-02
1.78821
+ -
.905276E-01
AL

.379313E-01
27.3967
H—
1.37115
SI

.546117E-02
12.2148
H—
.611374
P

.443339E—03
.432741
H—
.224527E-01
S

.238364E-02
.25601
H—
.132543E-01
CL
D
.117745E-02
.25239«E-02
H—
.113728E-02
K

.376124E-03
.354044E-01
H—
.18276E-02
CA

.222543E-03
775172E-01
H—
.401504E—02
TI

.1S0077E—03
.207022
H—
.010457
V
X
.433675E-03
360233E-02
+ —
. 24'-'357E-03
CR

.734517E-03
.463918E-02
H	
.725075E-03
MN

.343777E—03
.2S5176E-01
+ -
.16979E-02
FE

.394171E-03
.152458
H—
.775307E-02
CO

.53404E-03
.795798E-02
H—
.705911E-03
NI

.S16153E-03
5.91828
+-
.296039
CU
X
.571703E-03
-.693513E-03
H—
.346738E-04
ZN

.39177SE-03
.099077
+ -
0 504772E-02
3E
X
.416366E-03
253994E-02
+ -
.237235E-02
BR
X
.420452E-02
239316E-02
+ -
.1199*SE-03
SR
X
.635557E-02
-.334643E-02
H—
.193154E-0 3
MO
X
.113095E-01
788653E-03
+ -
. 3"r'4728E-04
CD

.194444E-03
.622726E-03
H	
.135626E-03
SN
D
.159426E-02
.347571E-02
+ -
.124231E-02
SB
X
.713SSE-03
.251746E-03
H—
.340507E-0 3
BA

.511634E-03
.336039E-02
+ —
.432812E-03
CE

.173046E-02
1.32077
H—
.6634 35E-01
PT

.106923E-02
.179094
+ -
.91S4SSE-02
PB

.106564E-02
.149521
+ -
.767716E-02
TOTAL DETECTED BY XRF = 50.2787
E-37

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 6
SAMPLE ID: A240/0141L-B
ELEMENT
DETN LIM
MASS 7.
2-SIGMA
NA
D
.260451E-01
.759H4E-01
+- .266453E-01
MG

.21022E-02
1.31936
+- .91S72SE-01
AL

.343796E-01
33.593
+- 1.631
SI

.541524E-02
10.6523
+- .53373
P

.437359E-03
.177353
+- .966355E-02


.23252E-02
.432734
+- .244979E-01
CL
X
.115324E-02
-.23992SE-02
+- . 197529E-03
K

.3712E-03
.559513E-01
+- .234124E-02
CA

.193172E-03
674336E-01
+- .351217E-02
TI

.135616E-03
.246156
+- .124166E-01
V
X
.531563E-03
213552E-03
+- .133742E-04
CR

.143344E-02
.350255E-02
+- .144S62E-02
MN

.636424E-03
. 35-5205E-01
+- .23626,:>E-02
FE

.6S0417E-03
.234233
+- .119355E-01
CO
X
.363124E-03
.104904E-03
+- .640791E-04
NI

.325745E-03
,314352E-01
+- . 163,='17E-02
CU

.317613E-03
.1960QE-02
+- .335933E-03
ZN

.312109E-03
.605036E-01
+- .309493E-02
SE
X
.332107E-03
266461E-02
+- .260'=>51E-02
BR
X
.346249E-02
196S17E-02
+- .986066E-04
SR
X
.521174E-02
126345E-02
+- .633566E-04
MO
X
.937953E-02
.32344SE-02
+- . 'r/'380,:vSE-02
CD

.191304E-03
.900293E-03
+- .1323°IE—03
SN
X
.13695E-02
.175679E-03
+- . 19197«>E-03
SB
X
.60045SE-03
153677E-03
+- .34331E-03
BA

.535194E-03
.229539E-02
+- .337624E-0 3
CE

.217309E-02
1.92321
+- .971673E-01
PT

.371156E-03
.161434
+- .323611E-02
PB

.366367E-03
.692'r>13E-01
+- .364123E-02
TOTAL DETECTED BY XRF = 49.705
E-3S

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/29/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 15
SAMPLE ID: A240/0153-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.353802E-01
.163751E-02
4—
.353805E-01
MG

.2S14SE-02
1.92329
+-
.973433E-01
AL

.426562E—01
29.5794
H—
1.43043
SI

.530983E-02
7.23161
H—
.362755
P

.443861E-03
1.40016
-I—
.703025E-01
s

.242905E-02
.443406
H—
.225439E—01
CL
X
.121536E-02
-.512604E-03
H—
.324553E-04
K

.388614E-03
.390121E-01
H—
.200697E—02
CA

.227766E-03
.336411E-01
^—
.432172E-02
TI

.1S6402E-03
.202195
H—
.102164E-01
V
X
.526523E-03
-.376447E-02
+ -
.263275E-03
CR

.685544E-03
.004165
H—
.644315E—03
MN

.349945E-03
.413336E-01
H—
.235039E-02
FE

.394939E-03
.145077
-i—
.733139E-02
CO

.563726E-03
.761373E-02
H—
.713407E-03
NI

.S77454E-03
6.30499
H—
.340331
CU
X
.608327E-03
-.93549E-03
H—
.467737E-04
ZN

.425743E-03
.207731
-1—
. 104801E-01
SE
X
.45431E-03
333991E-02
H—
.323333E-02
BR
X
.469332E-02
-.260307E-02
+ —
.130527E-03
SR
X
.71451E-02
690437E-02
H—
.346308E-03
MO
X
.127253E-01
153063E-02
H—
.766199E-04
CD

.201112E-03
.73754E-03
H—
.975332E-04
SN

.162707E-02
.66845SE-02
H—
.152182E-02
SB
X
.724398E-03
.407202E-03
+-
.41539E-03
BA

.519356E-03
.43453E-02
+ -
.506162E-03
CE

.130673E-02
1.41369
¦f—
.714311E-01
PT

.113553E-02
.193217
H—
.990305E-02
PB

.117586E-02
.591177
H—
.297343E-01
TOTAL DETECTED BY XRF = 50.324
E-39

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/29/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 16
SAMPLE ID: A240/0153-B
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
D
.231179E-01
.029003
+—
.023206
MG

.226071E-02
1.32415
+—
.921849E-01
AL

.366219E-01
33.3133
+-
1.66713
SI

.549771E-02
7.34599
+-
.363472
P

.424192E-03
.279123
H—
.147259E-01
o

.22651E-02
.632321
+—
.319398E-01
CL
X
.112997E-02
-.232149E-02
+-
.155141E-03
K

.36309E-03
.455235E-01
¦i—
.232301E-02
CA

.192332E—03
.993751E-01
H—
.512866E-02
TI

.136045E-03
.208615
H—
.105357E-01
V
X
.5S349SE-03
.491407E-03
+ -
.329411E-04
CR

.1202S1E-02
.107739E-01
+-
.146S33E-02
MN

.575774E-03
.415234E-01
+-
.255343E-02
FE

.623857E-03
.295316
H—
.149633E-01
CO
D
.374993E-03
.755349E-03
H—
.2122E-03
NI

.40015E-03
.677452
H—
.339674E-01
CU

.34707QE-03
.273653E-02
+-
.331638E-03
ZN

.32973E-03
. 1496
+-
.754473E-02
SE
X
.343015E-03
-.25393E-02
H—
.235379E-02
BR
X
.361029E-02
-.200302E-02
+-
.100609E-03
SR
X
.545147E-02
290249E-02
H—
.145531E-03
MO
X
.9S4156E-02
.247733E—02
H—
.934234E-02
CD

.137424E-03
.350313E-03
H—
.147691E-03
SN
X
.135729E-02
.496449E-03
H—
.335526E-03
SB
X
.533316E-03
205034E-03
H—
.903997E-03
BA

.522387E-03
.425421E-02
H—
.493329E-03
CE

.214239E-02
1.94808
H—
.933474E-01
PT

.891454E-03
.169264
+-
.362865E-02
PB

.394409E-03
.174326
¦f—
.337961E-02
TOTAL DETECTED BY XRF = 47.2589
E-40

-------
RUN DESCRIPTION: 5WRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/2'V36
SAMPLE TYPE: BRIQUETTE
SITE IDs N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 17
SAMPLE ID: A240/0334L-A
ELEMENT
DETN LIM
MASS '/.
2-SIGMA
NA
X
.034432
214672E-01
+- .17097E-02
MG

.272758E-02
1.6022
+- .312375E-01
AL

.423176E-01
33.0431
+- 1.65332
SI

.596025E-02
6.30453
-i— . 316463
P

.44923E-03
.334413
-t~ .017514
S

.240023E-02
.61414
+- .3104S9E-01
CL
X
.119703E-02
21610SE-02
+- .14274E-03
K

.332507E-03
• 3-56065E-01
+- .203526E-02
CA

.216205E-03
.529636E-01
+- .273731E-02
TI

.132238E-03
.195933
+- .99022E-02
V
X
.497359E-03
373511E-02
+- .265514E-03
CR

.703S39E-03
.3S7345E-02
+- .610774E-03
MN

.304914E-03
.379032E-02
+- .453314E-03
FE

.379132E—03
.976253E-01
+- .500527E-02
CO

.590167E-03
.123262E-01
+- .945373E-03
NI

.949343E-03
7.S3637
+- .394453
CU
X
.640299E-03
-.404734E-02
+- .20241E-03
ZN

.413524E—03
.460237E-01
+- .242173E-02
SE
X
.451979E-03
34255E-02
+- .265262E-02
BR
X
.459275E-02
225691E-02
+- .1131SSE-03
SR
X
.695543E-02
-.250404E-02
+- .125763E-03
MO
X
.123379E-01
-.720525E-03
^— . 360665E—04
CD
X
.197779E-03
.122263E-03
+- .413307E-04
SN

.155472E-02
.73S493E-02
+- .161277E-02
SB
X
.700916E-03
.263023E-03
+- .326943E—03
BA

.502904E-03
.474117E-02
+- .5254S7E-03
CE

.172433E-02
1.44107
+- .723237E-01
PT

.117264E-Q2
OOOOOO
+- .114142E-01
PB

.115726E-02
.191413
+- .973525E-02
TOTAL DETECTED BY XRF = 52.1107
E-
-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/29/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 13
SAMPLE ID: A240/0334L-B
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA
X
.263131E-01
325434E-02
+-
.654374E-03
MG

.212161E-02
2.29566
+-
.115707
AL

.346763E-01
33.1308
+-
1.65766
SI

.539085E-02
9.66139
+-
.434234
P

.429227E-03
.550477E-01
H—
.347531E-02
S

.22774E-02
.45S267
+-
.02327
CL
X
.112878E-02
233206E-02
+-
.192902E-03
K

.362969E-03
.446449E-01
H—
.0022S
CA

.130532E-03
.743951E-01
+ -
.385623E-02
TI

.186241E-03
.266895
+-
.134513E-01
V

.59354SE-03
.258392E-02
+ -
. 160133E-03
CR

.1413S2E-02
.S25193E-02
+-
.140599E-02
MN

.630193E-03
.44555E-02
H—
.794723E-03
FE

.658007E-03
.236667
+-
.120501E-01
CO
X
.360376E-03
.227967E-03
H—
.113122E-03
NI

.331595E-03
.134837
+ -
.683947E-02
CU

.313553E-03
.99705E-03
+-
.310905E-03
ZN

.301205E-03
.227661E-01
+-
.122574E-02
SE
X
.324797E-03
210254E—02
+-
.199684E-02
BR
X
.34081E-02
167S59E-02
+-
.340953E-04
SR
X
.512942E-02
936347E-04
H—
.554669E-02
MO
X
.92337E-02
.231052E-02
H—
.923942E-02
CD
D
.137172E-03
.236506E-03
H—
.125463E-03
SN
X
.128865E-02
.962065E—03
+-
.595456E-03
SB
X
.571742E-03
101922E-03
H—
.250233E-03
BA

.514976E-03
.348308E-02
+-
.417033E-03
CE

.220441E-02
1.39333
H—
.956508E-01
PT

.862548E-03
.156383
H—
.S00568E-02
PB

.34929E-03
.497504E-01
i—
.26346*E-02
TOTAL DETECTED BY XRF = 48.5014
E-42

-------
RUN DESCRIPTION.* SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 03/08/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 11
SAMPLE ID: A249/0169-1
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.295027E-01
-.351393E-02
H—
.272333E-03
MG

.240209E-Q2
4.04499
+-
.203244
AL

.3621S7E—01
22.9335
+—
1.14796
SI

.521227E-02
15.6434
H—
.7S34S3
P

.451775E—03
.497334
H—
.025633
•J
«-»

.240979E-02
.134015
+-
.7323S3E-02
CL
X
.001192
193337E—02
H	
.127135E—03
K

.333333E-03
.252099E-01
H—
.133457E-02
CA

.195241E-03
.100061
H—
.514343E-02
TI

.1S4247E—03
.373391E-01
H—
.447592E-02
V
X
.645006E-03
-.453955E-03
4—
.505336E-04
CR

.95S299E-03
.330559E-02
H—
.101557E-02
MN

.63711IE—03
.202331E-01
+ -
.155693E-02
FE

.678945E-03
.414605
H—
.209434E-01
CO
X
.371753E-03
130249E-03
+-
.972512E-04
NI

.319658E-03
.397073E-01
+-
.209543E-02
CU

.303662E-03
.379951E-02
+-
.332932E-03
ZN

.319298E-03
.901104E-01
+-
s45716IE—02
SE
X
.393471E-03
-.774774E-02
+-
.331554E-02
BR
X
.3S4912E-02
3S5107E-02
+-
. 192946E-03
SR
X
.533657E-02
-.395722E-02
A—
.193474E-03
MO
X
.104596E-01
.137097E-02
H—
.10459SE-01
CD
D
.197572E-03
.267366E-03
H—
.57035E-04
SN
D
.137S74E-02
.231116E-02
+-
.960375E-03
SB
X
.6001SSE-03
.52146E-03
H—
.433432E-03
BA
D
.513169E-03
.121376E-02
+-
.333798E-03
CE

.215126E-02
1.915
+-
.967416E-01
PT

.905307E-03
.49332
H—
.250Q13E-01
PB

.977343E-03
.309794
¦t—
.156125E-01
TOTAL DETECTED BY XRF = 46.7756
E-«

-------
RUN DESCRIPTION: SWRIC2 - CATALYST SAMPLES
DATE OF XRAY ANALYSIS: 08/03/S6
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 12
SAMPLE ID: A249/0169-2
ELEMENT
DETN LIM
MASS '/.
2-SIGMA
NA
X
.023995
.771213E-02
+- .290011E-01
MG

.23635E-02
4.50135
+- .22606
AL

.351021E-01
20.4243
+- 1.02251
SI

.502565E-02
17.0335
+- .355206
P

.446751E-03
.532467
-t— . 274399E-01
S

.237632E-02
.3S6487E-01
+- .314713E-02
CL
X
.116954E-02
-.261152E-02
+- .17554SE-03
K

.37515E-03
.237312E-01
+~ .126129E-02
CA

.134394E-03
.109173
+- .559644E-02
TI

.133373E-03
. 101671
+- . 5i'r'055E-02
V
X
.640393E-03
525505E-03
+- .527796E—04
CR

.9S4647E-03
.634431E-02
+- .35141E-03
MN

.673091E-03
.211333E-01
+~ .162419E-02
FE

.719058E-03
.450S07
+- .022753
CO
X
.375652E-03
-.1691E-03
+- .322149E-04
NI

.32S40SE-03
.369044E-02
+- .604043E-03
CU

.306024E-03
.343433E-02
+- .371233E-03
2N

.319452E-03
.606177E-01
+- .31021E-02
SE
X
.363757E-03
490635E-02
+- .250234E-02
BR
X
.373513E-02
-.360052E-02
+- .130403E-03
SR
X
.564527E-02
357533E-02
+- .179349E-03
MO
X
.100916E-01
.17S798E-02
+- .010092
CD
X
.193514E-03
67301E-04
+- .3795E-04
SN
D
.131456E-02
.367754E-02
+- .100991E-02
SB
X
.5733I3E-03
.320332E-03
+- .367122E-03
BA
D
.516753E-03
.106004E-02
+- .295507E-03
CE

.22473SE-02
2.23324
+- .112395
PT

.384613E-03
.361121
+- .132011E-01
PB

.924467E-03
.167327
.352733E-02
TOTAL DETECTED BY XRF = 46.1373
E-W

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/29/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: U
SAMPLE ID: A249/0169-3-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.330337E-01
.322003E-01
H—
.33124SE-01
MG

„271105E-02
4.33353
H—
.217711
AL

.406151E-01
22.6114
¦i—
1.13204
SI

.564214E—02
16.2368
H—
.815424
P

.4S1574E-03
.100395
+ -
.530776E-02
S

.256959E-02
.645602
H—
.32639SE-01
CL
D
.129031E-02
.331542E-02
H—
. 130592E-02
K

.414526E-03
.337199E-01
H—
.175435E-02
CA

.202456E-03
.152923
H—
.779253E-02
TI

.192362E-03
.111983
H—
.57139E-02
V
X
.64769E-03
637653E-04
H—
.642096E-05
CR

.15544E-02
.16173SE-01
+ -
.195245E-02
MN

.740336E-03
.162607E-01
H—
.143553E-02
FE

.S00S53E-03
.648423
+ -
.326596E-01
CO
X
.417754E-03
141915E-03
H—
.497765E-04
NI

.35914SE-03
.10S295E-01
+—
.720497E-03
CU

.339115E-03
.252337E-02
H—
.371276E-03
ZN

.355273E-03
.101584
+-
.51537E-02
SE
X
.436412E-03
-.732343E-02
H—
.353995E-02
BR
X
.455339E-02
447346E-02
H—
.224142E-03
SR
X
.693714E-02
797286E-02
+-
.400003E-03
MO
X
.124114E-01
.462981E-02
H—
.124135E-01
CD

.214163E-03
.11423E-02
H—
.128511E-03
SN
D
.145166E-02
.177603E-02
+-
.670233E-03
SB
X
.643996E-03
.312403E-03
H—
.354125E-03
BA

.539347E-03
.165955E-02
H—
.372932E-03
CE

.243727E-02
2.91943
H—
.147026
PT

.994991E-03
.467812
H—
.235537E-01
PB

.1103S6E-02
.634394
H—
.343762E-01
TOTAL DETECTED BY XRF = 49.1522
E-45

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 03/29/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 12
SAMPLE ID: A249/0169-3-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA

.223005E-01
.363316E-01
H—
.237237E-01
MG

.18304IE—02
4.3429
H—
.218055
AL

.273311E-01
22.6219
+-
1.1321
SI

.440759E-02
16.7266
H—
.S37347
P

.4022E-03
.359697E-01
H—
.243372E-02
O

.211901E-02
.344979
+ -
.176161E-01
CL
X
.104312E-02
-.323902E-03
H—
.53333E-04
K

.335592E-03
.034649
H—
.173172E-02
CA

.134599E-03
.942342E-01
+-
.434554E-02
TI

.167774E-03
.134567
+-
.63307E-02
V
X
.50953E-03
749311E-03
+—
.590074E-04
CR

.111942E-02
.273351E-01
+-
.265036E-02
MN

.526032E-03
.733411E-02
+-
.372343E—0 3
FE

.449S96E-03
.596227
H—
.299831E-01
CO
D
.306451E-03
.310905E-03
H—
.6553SSE-04
NI

.263765E-03
.101378E-01
+-
.630293E-03
CU

.261066E-03
.376237E-03
H—
.259635E-03
ZN

.2497S4E-03
.025581
H—
.001344
SE
X
.254703E-03
-.116434E-03
H—
.203467E-01
BR
X
.261395E-02
.413604E-04
H—
.523663E-03
SR
X
.392941E-02
-.192944E-02
+-
. ,:>67333E-04
MO
X
.72575E-02
—.33451E-02
+-
.192379E-03
CD

.17272SE-03
.132363E-02
+ —
.223267E-03
SN
X
.132796E-02
-.213553E-03
+-
.230913E-03
SB
X
.603943E-03
291573E-03
+ -
.1458E-04
BA
D
.469246E-03
.105672E-02
+-
.242463E-03
CE

.191763E-02
.267609E-01
+-
.272908E-02
PT
D
.712S51E-03
.159292E-02
+ -
.487041E-03
PB

.701276E-03
.100521
H	
.514407E-02
TOTAL DETECTED BY XRF = 45.2227
E-46

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: OS/28/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 7
SAMPLE ID: A280/0001L-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.311697E-01
.373034E-01
+-
.313131E-01
MG

.255583E-02
4.04322
+-
.203201
AL

.332322E-01
23.0373
+—
1.15324
SI

.534597E-02
15.0164
+-
.751889
P

.461034E-03
1.55197
+-
.734328E-01
S

.24S845E-02
.147053
H—
.797379E-02
CL
X
.123031E-02
-.950421E-03
+-
.60S314E-04
K

.393712E-03
.309707E—01
+-
.161594E-02
CA

.203062E-03
.249857
H—
.126359E-01
TI

.186348E-03
.101445
+-
.513399E-02
V
X
.615699E-03
149376E-03
H—
.145097E-04
CR
D
.155792E-02
.424009E-02
+-
.379S65E-03
MN

.635269E-03
.135637
H—
.73121SE-02
FE

.742143E-03
.353271
+—
.173905E-01
CO
X
.37719E-03
320543E-03
+-
.235826E-03
NI

.328735E-03
.82383E—02
+—
.536415E-03
CU

.345461E-03
.352325E-01
+-
.136631E-02
ZN

.396866E-03
.60745S
+-
.304406E-01
SE
X
.339661E-03
-.316332E-02
+-
.246059E-02
BR
X
.416052E-02
-.293173E-02
+—
.146914E-03
SR
X
.629594E-02
567359E-02
H—
.234905E-03
MO
X
.112624E-01
.272031E-02
+-
.112632E-01
CD
X
.203375E—03
120637E-03
+ -
.449921E-04
SN
D
.144297E—02
.280469E-02
+-
.698302E-03
SB
X
.633443E-03
.733653E-04
+-
.156904E-03
BA

.536316E—03
.194181E-02
+ -
.410066E-03
CE

.227573E-02
2.90836
H—
.146436
PT

.956749E-03
.228477
+ -
.115908E-01
PB

.101697E-02
.276343
H—
.139622E-01
TOTAL DETECTED BY XRF = 48.3276
E-47

-------
RUN DESCRIPTION: SWRIC3 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 08/28/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 3
SAMPLE ID: A280/0001L-B
ELEMENT
DETN LIM
MASS */.

2-SIGMA
NA

.232169E-01
.732329E-01
i—
.239668E-01
MG

.187225E-02
4.43574
H—
.222699
AL

.234998E-01
22.7034
H—
1.1362
SI

.447396E-02
16.6729
H—
.334665
P

.406919E-03
.130121
H—
.973924E-02
o

.214807E-02
.274909
+ -
.141448E-01
CL
X
.105386E-02
16621E-03
H—
.105325E-04
K

.340814E-03
.384302E-01
H—
.196931E-02
CA

.132469E-03
.141327
H—
.72263E-02
TI

.164322E-03
.121674
+-
.618729E-02
V
X
.505576E-03
.399554E-03
H—
.314743E-04
CR

-120464E-02
.635058E-02
H—
.150162E-02
MN

.513004E-03
.425703E-01
H—
.253913E-02
FE

.441499E-03
.418348
H—
.210917E-01
CO
X
.303416E-03
-.2393E-03
H—
.150093E-03
NI

.26719SE-03
.263013E-02
H—
.316052E-03
CU

.261763E-03
.102692E-01
H—
.613372E-03
ZN

.2717E-03
.132703
H—
.91342E-02
SE
X
.267579E-03
544694E-03
H—
.772955E-02
BR
X
.273123E-02
-.397176E-03
H—
.19894E-04
SR
X
.41129E-02
—.241359E—02
H	
.121262E-03
MO
X
.759352E-02
218742E-02
+ —
.109443E-03
CD

.175537E-03
.731134E-03
H—
.12323E-03
SN
D
.130007E-02
.131279E-02
H—
.522025E-03
SB
X
.531124E-03
.270735E-03
H—
.27972E-03
BA

.463292E-03
.163066E-02
H—
.32547E-03
CE

.133213E—02
.440306E-01
H—
.346222E-02
PT

.715139E-03
.124412E-01
H—
.33215E-03
PB

.726696E—03
.216292
H—
.109143E-01
TOTAL DETECTED BY XRF = 45.5867
E-48

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 13
SAMPLE ID: A155/0941-1-A
ELEMENT
DETN LIM
MASS %

2-SIGMA
NA
X
.3102S4E-01
.197575E-01
+-
.310646E-01
MG

.253348E-02
4.15712
+-
c» o »¦»•"*»
AL

.379364E-01
22.4747
H—
1.12511
SI

.534703E-02
15.3372
+-
.795429
P

.464433E-03
1.14207
+-
.57*421E-01
c

.249158E-02
.639732E-01
H—
.419161E-02
CL
X
.12293SE-02
101903E-02
H—
.653143E-04
K

.393S36E-03
.244972E-01
+-
.130395E-02
CA

.183926E-03
.203541
+-
.103194E-01
TI

.190095E-03
.842137E-01
+-
.43224E-02
V
X
.632204E-03
.403775E-03
H—
.431052E-04
CR
X
.191753E-02
.832046E-03
H—
.23336E-03
MN

.305713E—03
.534477E-01
+ -
.35067E-02
FE

.323S16E-03
.270028
+ -
.137419E-01
CO
X
.392352E-03
.149036E-03
H—
.311901E-04
NI

.333454E-03
.106806E-01
+-
.700762E-03
CU

.332144E-03
.377453E-02
H—
.402951E-03
ZN

.364919E-03
.231697
H—
.141519E-01
SE
X
.335573E-03
426737E-02
+-
.275112E-02
BR
X
.41214E-02
375325E-02
+—
.188072E-03
SR
X
.623674E-02
-.33244E-02
-i—
.16674E-03
MO
X
.011154
.124377E-02
H—
.111541E-01
CD
X
. 20363':>E-03
.1509*7E-04
H—
.439224E-05
SN
D
.134096E-02
.15S71E-02
H—
.503028E-03
SB
D
.53704E-03
.805373E-03
H—
.4S5156E-03
BA

.541765E-03
.433007E-02
H—
.592411E-03
CE

.233323E-02
2. 9C)629
H—
.150844
PT

.940552E-03
.234814
H—
.144023E-01
PB

.100353E-02
.259524
H—
.013117
TOTAL DETECTED BY XRF = 48.2093
E-49

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 0*9/11/36
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 14
SAMPLE ID: A155/0941-1-B
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
D
.235675E-01
.595647E-01
H—
.240053E-01
NG

. 190422E-02
4.495
+ -
.225658
AL

.2S9634E-01
22.4703
H—
1.12455
SI

.4530S2E-02
17.1329
+-
.360166
P

.413704E-03
.121313
+—
.63404IE-02
«¦»'

.218317E-02
.110312
H—
.614853E-02
CL
X
.107335E-02
-.243626E-02
+ -
.16869E-03
K

.345S56E-03
.249214E—01
H—
.131017E-02
CA

.136132E-03
.173747
H—
.*07356E-02
TI

.160637E-03
.333713E-01
H—
.452313E-02
V
X
.503331E-03
.433001E-03
+-
.44637E-04
CR

.1Q3196E-02
.679712E-02
+-
.142806E-02
MN

.473137E-03
.191676E-01
H—
.141062E-02
FE

.43354E-03
.299023
+-
.015126
CO
X
.30313E-03
-.663162E-04
+-
.36059E-04
NI

.263158E-03
.333693E-02
+-
.356734E-03
CU

.262145E-03
.203171E-02
+-
.233792E-03
ZN

.272132E-03
.162294
+ -
.816395E-02
3E
X
.295125E-03
-.315175E-02
+-
.232033E-02
BR
X
.2S3243E—02
22324E-02
+ -
.111825E—03
SR
X
.427022E-02
292334E-02
H—
.146829E-0 3
MO
X
.773346E-02
-.210705E-02
H—
.105423E-03
CD
X
.173204E-03
407349E-04
H—
.15546E-04
SN
X
.131963E-02
392721E-03
H—
.233522E-03
SB
X
.534234E-03
.116534E-03
H—
^l'^OSE-OC
BA
D
.457216E-03
.116963E-02
+-
. 2982,:>3E-03
CE

.193901E-02
.117412E-01
+ -
.213159E-02
PT

.725046E-03
.207243
+ -
.104311E-01
PB

.767655E-03
.212137
H	
. 107073E-01
TOTAL DETECTED BY XRF = 45.6575
E-50

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 0=>/11/86
SAMPLE TYPE: BRIQUETTE
SITE IDs N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 15
SAMPLE ID: A155/0941-2-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA

.249309E-01
.094163
H—
.25°014E-01
MG

.201945E-02
4.88762
H—
.245326
AL

.297402E-01
19.1372
H—
.95798
SI

.443211E-02
18.0161
H—
.901731
P

.409595E-03
.260311
¦i—
.137943E-01
S

.218031E-02
.784225
H—
.395201E-01
CL
X
.103903E-02
-.296921E-02
¦1—
.204615E-0j
K

.349814E-03
.421656E-01
+-
.215497E-02
CA

.195302E-03
.412397
H—
.207331E-01
TI

.175164E-03
.121765
+-
.619503E-02
V
X
.522323E-03
-.31631E-03
+ -
.636537E-04
CR

.100762E-02
.167104E-01
+ -
.196736E-02
MN

.523906E-03
.233019E-01
H—
.13946E-02
FE

.443553E-03
.594816
+-
.29C'153E-01
CO
X
.301953E-03
.563971E-04
H—
.133323E-04
NI

.266331E-03
.550166E-02
+-
.42316E-03
CU

.271134E-03
.470417E—02
¦f—
.334854E-03
ZN

.307199E-03
.392356
H—
.196686E-01
SE
X
.309919E-03
221206E-02
H—
.225755E-02
BR
X
.304675E-02
197337E-02
+ -
. 93:331 <>E-04
SR
X
.461133E-02
-.357407E-02
H—
.17Q232E-0 3
MO
X
.332575E-02
-.172027E-02
-f—
.S60762E-04
CD

.131333E-03
.160563E-02
H—
.176599E-03
SN
X
.13894IE-02
.501939E-03
+ -
.119746E-0 3
SB
X
.616456E-03
.61311SE—03
H—
.409Q05E-0 3
BA
D
.49309SE-03
.999492E-03
H—
.255343E-03
CE

.196271E-02
.247223E-01
H—
.263629E-02
PT

.756673E-03
.149735
H—
.762026E-02
PB

•319673E-03
.413384
H	
.207692E-01
TOTAL DETECTED BY XRF - 45.3898
E-51

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 16
SAMPLE ID: A155/0941-2-B
ELEMENT
DETN LIM
MASS "/.

2-SIGMA
NA

.232025E-01
.115563
H—
.247333E-01
MG

.1S7147E-02
4.73361
+-
.237347
AL

.281533E-01
21.0017
+-
1.05112
SI

.43S144E-02
17.6636
H—
•3«41a4
P

.405537E-03
.373331E-01
H—
.51176E-02
'z»

.21434E-02
.333311
H—
.197743E-01
CL
X
.105556E-02
-.324357E-02
H—
.22776SE-03
K

.339572E-03
.223923E-01
H—
.118651E-02
CA

.17917E—03
.169974
H	
.363336E—02
TI

.167535E-03
.116169
+-
.591193E-02
V
X
.5016E-03
.152974E-03
H	
.123934E-04
CR

.115395E-02
.102234E-01
H—
.170S13E-02
MN

.43117SE-03
.14735SE-01
+ -
.119517E-02
FE

.432343E-03
.413595
H—
.20S539E-01
CO
X
.305179E-03
.932354E-04
+-
.303352E-04
NI

.263696E-03
.10S923E-01
H—
. 6615'7/E-03
CU

.255252E-03
.133032E-02
+-
.276501E-03
ZN

.262102E-03
.117506
+ -
.592557E-02
SE
X
.279047E-03
-.213553E-02
H—
.171739E-02
BR
X
.002712
197499E-02
1—
. ,:>S9326E-04
SR
X
.407307E-02
-.310013E-02
¦i—
.155453E-03
MO
X
.742237E-02
40225SE-02
H—
.201262E-03
CD
X
.174999E-03
163935E-04
H—
.176173E-04
SN
X
.12717SE-02
-.425244E-03
+-
.2626E-03
SB
D
.563312E-03
.621262E-03
¦i—
.445355E-03
BA

.466401E-03
.150096E-02
H—
.312713E-03
CE

.133146E-02
.110935E-01
H	
•211034E-02
PT

.714626E-03
.167971
H—
.352123E-02
PB

.727213E-03
.747622E-01
H—
.336773E-02
TOTAL DETECTED BY XRF = 45.1234
E-52

-------
RUN DESCRIPTION: SWR1C4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: 17
SAMPLE ID: A207/0101-A
ELEMENT
DETN LIM
MASS 7.

2-SIGMA
NA
X
.311566E-01
.197331E-01
H—
.311925E-01
NO

.2546S3E-02
3.36735
H—
. 194335
AL

.033499
23.3203
H—
1.19237
SI

.544441E-02
15.0122
H—
.7516-54
P

.465637E-03
. 3S24'-_>3
^—
. 44957c>E-01
S

.249425E-02
.098989
+ -
.571886E-02
CL
X
.123694E-02
13103E-02
+ -
.344929E-04
K

.397237E-03
.284127E-01
H—
.14923E-02
CA

.133309E-03
.10265
+ -
.527517E-02
TI

.195544E-03
.825962E-01
+ -
.424156E-02
V
X
•614515E-03
.204334E-03
+-
.213167E-04
CR

.146406E-02
.696112E-02
+ -
.121246E-02
MN

.752134E-03
.131423
+-
.961253E-02
FE

.742245E-03
.302197
H—
.153333E-01
CO
X
.334334E-03
.935153E-04
H—
.514932E-04
NI

.330231E-03
.137381E-01
H—
.333623E-03
CU

.323522E-03
.354324E-02
+-
.534253E-03
ZN

.355317E-03
- 255256
+-
d123233E-01
SE
X
.405307E-03
-.625232E—02
H—
.334374E-02
BR
X
.417133E-02
373264E-02
+-
.187024E-03
3R
X
.633506E-02
444499E-02
H—
.222954E-03
MO
X
.113367E-01
.16S971E-02
H—
.113371E—01
CD
D
.20493E-03
.371405E-03
+-
.6 L5591E-04
SN
X
.1333S7E-02
.977171E-03
+ -
.531728E-03
SB

.5Q9513E-03
.005395
+-
.7S3077E-03
BA

.54973E-03
.19975E-02
+ -
.443945E-03
CE

.230352E-02
2.57371
+ -
,129954
PT

.943466E-03
.33367
H—
.195S76E-01
PB

.103503E-02
.449044
+ —
.225307E-01
TOTAL DETECTED BY XRF = 48.037S
E-53

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: is
SAMPLE ID: A207/0101-B
ELEMENT
DETN LIM
MASS 7.

2-SIOMA
NA
X
•293243E-01
.639369E-03
+—
.293244E-01
MG

.239007E-02
4.19673
H—
.210342
AL

.362737E-01
23.5609
H—
1.17934
SI

.526034E—02
15.7774
+-
.739956
P

.454443E-03
.157427
+-
.36742E-02
o

.240535E-02
.47S499E-01
H—
.351231E-02
CL
X
.113193E-02
-.266331E-02
+—
.179S61E-03
K

.379201E-03
.263393E-01
+-
.139023E-02
CA

.17S547E-03
105073
H—
.539262E-02
TI

.136137E-03
.985592E-01
+ -
.503614E-02
V
X
.613003E-03
.419416E-03
+ -
.396125E-04
CR
D
.153039E-02
.411252E-02
+ -
.907572E-03
MN

.715564E-03
.731476E-01
+-
.446352E-02
FE

.760147E-03
.30033
+ -
.152735E-01
CO
X
.335493E-03
.36771E-03
+ -
.143062E-03
NI

.338233E-03
.946202E-02
H—
.644639E-03
CU

.320325E-03
.447174E-02
H—
.416692E-03
ZN

.322599E-03
.590753E-01
+ -
.302745E-02
SE
X
.363391E-03
-.566573E-02
+-
.239066E-02
BR
X
.37S706E—02
372054E-02
H—
0
1
111
H
CI
CO
H
•
SR
X
.571034E-02
34326E-02
H—
.172167E-03
MO
X
.102225E-01
123661E-03
+ -
.613735E-05
CD
X
.195565E-03
939703E-04
+ -
.109357E-04
SN
D
.127361E-02
.174561E-02
+ -
.706255E-03
SB

.563777E-03
.345745E-02
+—
.643965E-03
BA

.530SS9E-03
.229651E-02
+-
.439257E-03
CE

.231734E-02
2.56757
H—
. i2c>3V->
FT

.S94959E-03
.360^92
A—
.131983E-01
PB

.927784E-03
.03106
H—
.178313E-02
TOTAL DETECTED BY XRF = 47.3937
E-54

-------
RUN DESCRIPTION: SWRIC4 AUTO CATALYSTS
DATE OF XRAY ANALYSIS: 09/11/86
SAMPLE TYPE: BRIQUETTE
SITE ID: N/A
MISCELLANEOUS INFO: NONE
SAMPLE SEQUENCE NO.: l'->
SAMPLE ID: A207/0101-C
ELEMENT
DETN LIM
MASS %

2-SIGMA
NA
D
.225725E-01
.337057E-01
+-
.227302E-01
MG

.1S141SE-02
4.6390*
+-
.235361
AL

.273307E-01
21.2636
H—
1.06444
SI

.433565E-02
13.1533
+-
.908671
P

.40535SE-03
.425112E-01
H—
.2S326E-02
S

.213272E-02
.243353
+-
. 125845E-01
CL
X
.104662E-02
219Q13E-02
H—
.14S232E—03
K

.336707E-03
.274322E-01
+-
.143175E-02
CA

.17944E-03
¦.073335
+-
.380128E-02
TI

.162947E-03
.102104
H—
.520778E—02
V
D
.504456E—03
.595638E-03
+-
.501805E—04
CR

.100022E-02
.16S316E-01
+ -
.200567E-02
MN

.525776E—03
.637755E-02
+ -
.800917E-03
FE

.447S03E—03
.476382
+ -
.240199E—01
CO
X
.303061E-03
-.453031E-04
+-
.149346E—04
NI

.2677E-03
.53216E-02
+-
.4375G4E-03
CU

.252635E-03
.275611E-02
+-
.301732E-03
ZN

.255507E-03
.377591E-01
+ -
.194631E-02
SE
X
.253196E-03
132913E-03
+-
.425703E-02
BR
X
~258613E-02
-.759935E-03
+-
.380636E-04
SR
X
.337406E-02
197161E-02
+ -
.933457E-04
MO
X
.710396E-02
29436E-02
H—
.147273E-03
CD
D
. 173146E-03
.406135E-03
H—
.127437E-03
SN
X
.12655SE-02
-.940019E-04
+ -
.115166E-03
SB
X
.554165E-03
.3455E-03
+—
. 344478E-0 3
BA
D
.461715E-03
.11207SE-02
+-
.278162E-0 3
CE

.190321E-02
.203215E-01
H—
.246437E-02
FT

.695657E-03
.433693E-02
+ -
.630223E-03
PB

.695906E-03
.072412
H—
.375217E-02
TOTAL DETECTED BY XRF = 45.27*1
E-55

-------
APPENDIX F
BET EQUATION VERSUS RELATIVE PRESSURE FOR
OXYGEN SENSORS

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A220/06S0
4-	+	4.	4.	4>	4-	+	+	+
+ Y+
N= 3
COR= .9985
MEAN ST.DEV. REGRESSION LINE RES.HS.
X .13343 .09332 X= .63645«Y-.58704 121E-6
Y 1.1320 .14611 Y= 1,5603°X+ .92383 297E-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure F-l. Plot of BET equation versus relative pressure
for Oxygen Sensor A220/0660
F-2

-------
PAGE
SURFACE AREA ANALYSIS A220/Q810
.+	+	+	+.	+	t	
2.000 +
N= 4
COR= .9955
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .11992 .08094 X= .18571«Y-.12908 875E-7
Y 1.3354 .43334 Y= 5.33SB*X+ .69543 .00251
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYM80L=X
Figure F-2. Plot of BET equation versus relative pressure
for Oxygen Sensor A220/0810

-------
PAGE 4
SURFACE AREA ANALYSIS A221/014S OXYGEN SENSOR
1.000
.9750
.9500
.9250
X/V(1-X)
.9000
.8750
.9500
.8250
.8000
N= 3
COR= .9992
MEAN ST.OEV. REGRESSION LINE RES.MS.
X .00214 .03510 X= ,39220*Y-.2S754 405E-8
Y .89159 .06961 Y= 2.5455«X+ .58249 2B3E-7
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure F-3. Plot of BET equation versus relative pressure
for Oxygen Sensor A22I/0146
F-it

-------
PAGE 4	SURFACE AREA AflALYSIS A221/0310
1.085
1.050
1.015
X/V(1-X]
.9800
.9450
.9100
.8750
.8400 + X
N= 3
C0R= 1.000
.0875 .1125 .1375 .1625 .1875 .2125 .2375
.0750 .1000 ,1250 .1500 .1750 . 2000 .2250
P/PO
MEAN	ST.DEV.	REGRESSION LINE RES.MS.
X .14375	.0799S	X= .60524«Y-. 42859 704E-9
Y .94565	.13212	Y= 1.6522"X+ .70814 192E-8
VARIABLE	1 P/PO	VERSUS VARIABLE 2 X/V
SYMB0L=X
Figure F-4. Plot of BET equation versus relative pressure
for Oxygen Sensor A221/0310
F-5

-------
PAGE 4
SURFACE AREA ANALYSIS A230/0177



N= 3
COR= .9968
MEAN
X .12036
Y 1.2135
.043 .075 .105
.060 .090
.135
.120 .150
P/PO
.165 .1S5 .225
.130 .210 .240
ST.DEV. REGRESSION LINE RES.MS.
.09301 X= .37433*Y-.33383 126E-5
.26364 Y= 2.6542*X+ .39405 39SS-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure F-5. Plot of BET equation versus relative pressure
for Oxygen Sensor A23Q/0I77
F-6

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A230/0649X
.0875 .1125 .1375 .1625 .1875 .2125 .2375
.0750 .1000 .1250 .1500 .1750 .2000 .2250
N= 3
C0R= .9957
MEAN ST.OEV. REGRESSION LINE
X .14623 .07703 X= .45210»Y-.33272
Y 1.0594 .16S64 Y= S.192B»X+ .73075
P/PO
rss.ms.
102E-6
437E-8
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYHBOL=X
Figure F-6. Plot of BET equation versus relative pressure
for Oxygen Sensor A230/0649X
F-7

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS A249/00B4
.045
.060
.075
.105
.090
.120
.135
.165
.195
.225
.150
N= 3
COR= .9938
MEAN
X .12283
Y .84309
P/PO
ST.DEV. REGRESSION LINE RES.MS.
.09754 X= ,55242*Y-.34291 236E-6
.17546 Y= 1.7878*X+ .62349 783E-6
.180
.210
.240
VARIABLE 1 P/PQ
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure F-7. Plot of BET equation versus relative pressure
for Oxygen Sensor A2^9/0064
F-8

-------
PAGE 4
SURFACE AREA ANALYSIS A251/0467
N= 3
COB= .9930
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .12037 .09902 X= .31925*Y-.35540 772E-7
Y 1.4903 .30954 Y= 3.1200*X+ 1.1147 755E-6
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure F-8. Plot of BET equation versus relative pressure
for Oxygen Sensor A251/0467
F-9

-------
PAGE 4 CONVERTER SJRFACE AREA ANALYSIS	A180/0094
.705
.890
.675
.660
X
/
V
.645
.630
.615
.600
.585
.045	.075 .105
.060 .090
N= 3
COR= .9657
MEAN
X .13344
Y .62630
.135
.120	.150
P/PO
.165 .195 .225
.180 .210	.240
ST.DEV. REGRESSION LINE RES.MS.
.09333 X= 1.3429«Y-.70761 .00117
.06712 Y= .69448*X+ .53382 607E-6
VARIABLE
1 P/PO
VERSU8 VARIABLE 2 X/V
SYHBOL=X
Figure F-9. Plot of BET equation versus relative pressure
for Oxygen Sensor A180/0094
F-10

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS SAWLE A218/0045
.4750
.4625
.4500
.4375
X/VI1-X]
.4250
.4125
.4000
.3875
.3750
.0875 .1125 .1375 .1825 .1875 .2125 .2375
.0750 .1000 .1250 .1500 .1750 .2000 .2250
N= 3
COR= .9991	P/PO
MEAN	ST.DEV.	REGRESSION LINE RES.MS.
X .14624	.07703	X= 1.5174»Y-.48132 214E-7
Y .41357	.05072	Y= ,65782*X+ .31737 929E-8
VARIABLE	1 P/PO	VERSUS VARIABLE 2 X/V	SYMBOL=X
Figure F-10. Plot of BET equation versus relative pressure
for Oxygen Sensor A218/00^5
F-ll

-------
PAGE 4 CONVERTER SURFACE AREA ANALYSIS SAWLE A218/0045X
.4025 +	+
.0875 .1125 .1375 .1625 .1875 . 2125 .2375
.0750 .1000 .1250 .1500 .1750 .2000 .2250
N= 3
COB= .9943	P/PO
MEAN ST.DEV. REGRESSION LINE RES.MS.
X .14825 . 07703 X= 1.1557«Y-.39169 136E-6
Y .46548 .06827 Y= .85538*X+ .34038 101E-6
VARIABLE 1 P/PO
VERSUS VARIABLE 2 X/V
SYMBOL=X
Figure F-ll. Plot of BET equation versus relative pressure
for Oxygen Sensor A218/00^5X
F-12

-------
PAGE
SURFACE AREA ANALYSIS A21a/0053
.+.:cy
.57
.54
.51
.43
X/V[1-X]
.45
.42
.39
.35
.33
N= 3
COR= .9353
.045	.075	.105	.135
.0G0 .090 .120
P/PO
.155
.135
.225
.150
.130
.210
.240
.-lEA.'J ST.DEV. REGRESSION LI.'IE RcS.i'IS.
X .13344 .09333 X= ,870S3*Y-.2504S 428E-3
Y .45243 .10563 Y= 1,11S4'»X+ .3034t S23E-S
VARIABLE
1 P/PO
VERSUS VARIABLE 2 X/V
SYI I30L=X
Figure F-12. Plot of BET equation versus relative pressure
for Oxygen Sensor A218/0068
F-13

-------
PAGE 4	SURFACE AREA ANALYSIS HEW CHRYSLER
.045	.075 .105 .135 .165 .135 .225
.060	.030 .120 .150 .180	.210 .240
N= 3
C0R= .3070	P/PO
MEAN ST.DEV.	REGRESSION LINE RES.MS.
X .13343 .03331	X= 1.4303*Y-1.1307 449 E-S
Y .80380 .08433 Y= .88110»X+ .79232 214E-6
VARIABLE 1 P/PO VERSUS VARIABLE 2 X/V	SYMBOLIC
Figure F-13. PJot of BET equation versus reiative pressure
for New Chrysler
F-U

-------
APPENDIX G
ESCA SPECTRA OF OXYGEN SENSOR TIP EXTERIOR SURFACE

-------
X Ray Powaf	Rood Gun	MJA	SpOtSiZBt 600 U	Haaolutlon: 4
Vf ATlCAL SCALE	_ _ _
2000	ESC A SPECTRUM
COUNTS/INCH	CUMOHaiNOINOtNiliav

u
0
1
K>
£
©
z
I
D
1 «4
£k
0-Z
I I

V
*
Sl s*
° t « o
I J, ¦>
1000.0
SAMPLE
COMMENTS
Disc: X430
DATE
DATA FILE •
9/4/l966
1008F
-binding energy <«V)
0.0
um* ¦IHOINO iNlAUV I.VI
Ragion 1
OXYGEN SENSOR #A220/0660
CENTER SECTION OF SAMPLE AS RECEIVED
Raport •:
SURFACE SCIENCE LABORATORIES ISOfl Cnvlaalon Rd Mountain Vlaw California »4043 (416| #62-8787 Sp*ctrum • ^
LOWIH 1IHOINQ iNtaav |
-------
¦ Ray Power .
VSNTICAL tCALI
400
COUMTft/IWCH
3.0
OpMfttor*.
NJA
Spot 81ze: 600 u
I
ESCA SPECTRUM
Resolution: 4
CUMfoa
¦IMOtNOINSMV
251.0
SAMPLE: —
COMMENTS
Dtec: X430
	DATE:
DATA FILE #.
9/4/1886
looe
UPH* IIHOINO IMIKOI |«V)
Region 1

o1
I'
-binding anargy («V)
0.0
0XY6EN SENSOH »A220/0660 	
CENTER SECTION OF SAMPLE AS RECEIVED
LOWV ¦ BlNlMwa (Minor |»«)
1008-0986
— Report#:.
t,
SURFACE SCIENCE LABORATORIES 1306 Chwtottan Rd Mountain Vtaw CaOtixnl* W043 (4 IS) 002-6787 Spectrum •: 6
Figure G-2. ESCA Spectrum of Oxygen Sensor A220/0660 from 0 eV to eV 251 (Exterior Surface)

-------
	FioodGun 6 0	WJA	SpotSiw. 600 u	Raaclution.
ESCA SPECTRUM
COUNTt/IMCM	CUMO* SINDINO ftNKROV
VIMTtCAi ftCALI
2000
1
z
©
¦o
o
5
©
©
*
1000.0
SAMPLE
COMMENTS
Olac: X430
DATE.
DATA FILE •
UPMIIINOIHO f HERO* («V)
CZ3-
9/4/1B86
1008H
Region 1
0XY6EN SENSOR #A220/0810
CENTER SECTION OF SAMPLE AS RECEIVED
Rapart ¦
SURFACE SCIENCE LABORATORIES IK>6 CilmrtutOA fld Mountain VMw CdUofnll M043 (416)062 6707 8p«CtfUm #:
§5 J« '
tvJJL
binding enargy (sV)
0.0
LOWSII tINOINQ BMf OQV («tfj
1008-0906
i
Figure G-3. ESCA Spectrum of Oxygen Sensor A220/0810 from 0 eV to 1000 eV (Exterior Surface)

-------
0
1
Vj»
X RiyPoww	
VERTICAL BCA1K
s.o
Opiraloi
MJA
Spot Slza: 600 u
1!
o
T>
2
O
501.0
SAMPLE
COMMENTS.
ESCA SPECTRUM
Raaolutlon: A
C UK to II BIMMNQ C Nf MV

Disc: X430
DATE.
DATA FILE •
9/4/1986
1008H
-binding on orgy (oV)
0.0
UPPf A tlNDlNQ ENEftCV f«V)

Region 1
0XY6EN SENSOR #*220/0810
CENTER SECTION OF SAMPLE AS RECEIVED
Report»
8URFACE SCIENCE LABORATORIES 12Q6 Chailaalon Rd Mountain VMw CMItOfni* 84043 (416)862-8787 SpMlrum •: _f r "CMdOft
UMTfR WNOtMO (MM* |«V)
1008-0986
Figure G-U. ESCA Spectrum of Oxygen Sensor A220/0810 from 0 eV to 501 eV (Exterior Surface)

-------
HRarPawir	
VKfl»C*l BCALfc
2000
FlMdflun	^.0	 Opar«toi MJA	SpOt. 600 U
ESCA SPECTRUM
Resolution: 4
COUMTB/INCH
CUKtOlk BIMDtNQ tNEMH
1000.0
SAMPLE
COMMENTS
uprm aiHCHMa f Nrnav i«vi
0
1
3
W
o
u
I
«	d
o	o
*	* i
0	Ot!
a	a

9/4/1986
DATE.
OiBc: X430	DATA FILE # 100BC
-binding energy («V|
0.0
[ZZI-
Region l
OXYGEN SENSOR #A221/0146
CENTER SECTION OF SAMPLE AS RECEIVED
Rapoit »
SURFACE SCIENCE LABORATORIES 1208 ChariMlon Rd Mountain Vim Calllofnla M04S 14)6)8628767 flpMUum »¦ 3
LOWIR •IHDIHa INi«a> |.f)
1008-0S8B
L
Figure G-5. ESCA Spectrum of Oxygen Sensor A22L/0146 from 0 eV to 1000 eV (Exterior Surface)

-------
I HayPow«R .
f ioodOun. _
3.0
inanCAi bcui
1000
ft		 HJA	Spot: 800 U
ESCA SPECTRUM
Resolution: A
A*1
CUHpM
I	I
(•V)

OXY6EN SENSOR #A221/01-46
CENTER SECTION OF SAMPLE AS RECEIVED
U)na •INDWO IHIMT |.V)
1008-0806
lUport •:
CAitrofiua
BS (KHMOH
BUHFACS 8CIIKCE LABORATORIES 1200 Cftattulon Rd Mountain Vt*w CcUotnU #40*3 (416|M2-e7S7
Spectrum • :_?
i
Figure G-6. ESCA Spectrum of Oxygen Sensor A221/0146 from 0 eV to 501 eV (Exterior Surface)

-------
X fUyPow*#
VIMTlCAl ICAlf
2000
COUNTt/IMCp
FtofldQun; 3.0
OpMllOI. WJA
Spot: 600 u
ESCA SPECTRUM
Resolution; 4
tunton ¦ihmmo SNii^av
I
i i
1
s
o
5
©
1000.0
UPH* IINUMa CNEMOV l*V)
SAMPLE	
COMMENTS.	
OXYGEN SENSQB-iA221/Q3HL
CENTER SECTION OF SAMPLE AS RECEIVED
SURFACE SCIENCE LABORATORIES 1206 ClurtMlon Rd Mountain Vim CtWornla B4043 (41SJ 802-6787 Spaetrum •;
Figure G-7. ESCA Spectrum of Oxygen Sensor A221/0310 from 0 eV to 1000 eV (Exterior Surface)

-------
XRjy Powtr
VSRTlCAl ICAil
1000
MJA	Spot: 600 U
ESCA SPECTRUM
Resolution: 4
UN MHO INIMT
501.0
uma whoiho iNimrito
		Dlec: X430
OJtYBBl-SiNSQRlAggl/eiie		
CENTER SECTION OF SAMPLE A3 RECEIVED
	DATA FILE #. .-i00BE
DATE 3/Vl9t§__
00BE _ _
Region 1
binding anargy |aV)
0.0
SURFACE SCIENCE LABORATORIES 1208 OwrtMtoo R<1 UounUlnVtow Ctlllomlt S4043 («16lMi®7#T
LOWtll BIMtUNO 1MIHOV |*«l
100a-OBBB
8p*ctrum t:		
ta
•U«FM|
eoicMce
Figure G-8. ESCA Spectrum of Oxygen Sensor A221/0310 from 0 eV to 501 eV (Exterior Surface)

-------
X'RilfPowM. .
VINTlCAL tCALS
2000
fOUNT«/INCH
FtoodOun:_L®	 OpwHor.J^		Spot; 600 U
4
ESCA SPECTRUM
Raaolutlon: A
pIKfOR •IMWNO IN1ROV
0
1
1000.0
SAMPLE 	
COMMENTS
Disc: X430
umn aiNQiMO CNiftov i«v>
	DATE -9/4/Am
OATA FILE «.
*		Region 1
a ssa
2 «L
«• ^ « dL «» *	c
1 . 1 U «£
	binding energy («V)
0.0
BKY6EM SiHSOR *Ai3Q/Q177 ...
CENTER SECTION OF SAMPLE AS RECEIVED
towia tlNCHMO INftMV<«V)
Report
1008-0986
SURFACE SCIENCE LABORATORIES 1208 ChwtMtoo Rd Mountain «!•» CcUornta B4043 |4I6] 862 £707 Spactrum «. jL
t*
Figure G-9. ESCA Spectrum of Oxygen Sensor A230/0177 from 0 eV to 1000 eV (Exterior Surface)

-------
X RmyPvwmf. .
VENIICM. tCALC
1000
COWTt/lttCH
flood Quo..
o^.u>r WJA	Spot: 600 U
ESCA SPECTRUM
Resolution: 4
CUMOS *11101110 ININT
501.0
SAMPLE 	
COMMENTS
DIbc: X430
DATA FILE •
DATE. 8/4/198&
100B0
A
o
binding «n«rgy (aV)
0.0
lira IINOINQ (NIHOr 1«V)
OXYGEN .SENSOR 4423070177	
CENTER SECTION OF SAMPLE A3 RECEIVE!)
Rag Ion 1— u>w«« aiNouta inimyovi
HaMrta, 100B-09B6
1
SURFACE SCIENCE LABORATORIES 1206 Chartaatcxi Rd MounlalnVtow C*tttwnl» #4
Figure G-10. ESCA Spectrum of Oxygen Sensor A230/0177 from 0 eV to 501 eV (Exterior Surface)

-------
X-AayPow*r. .
Flood Quo*.
s.o
Op«l«IOR.
MJA
Spot Slzs: 600 U
Rasolutlon: 4
vimcAL toil
2000
ESCA SPECTRUM

IMtMV
umiitiitoitto iNrnovivwi
0XY6EN SENSOR #A230/0649X
CENTER SECTION OF SAMPLE A3 RECEIVED
UMTII ¦¦HDUta INlROrKV)
1000-0386
Report
GAUF0AM3
BSi •sooooa
SURFACE SCIENCE LABORATORIES 12Q4 CfmrtMlon Rd. Mountain M«w CtlUornU M043 |4IB|M2-6T«T 8p»ctru(n •: J_
Figure G-ll. ESCA Spectrum of Oxygen Sensor A230/0649X from 0 eV to 1000 eV (Exterior Surface)

-------
X FUy Power: .
s.o
Optnlon.
Spot Slza: 600 u
Resolution: 4
0
1
U>
ViaTICAt tCALM
400
ESGA SPECTRUM
fitfUMQ VNlMav
imi binding (nimv uvi
0XY6EN SEH30H #A230/0648X
CENTER SECTION OF SAMPLE A8 RECEIVED
	 towia*moutogNiitavi«v)
1008-0886
Rtpod 0;
CAUTOAMfl
UIII00M0M
SURFACE &CI1MC8 UkfiOAATODIBS 12Q6 ChwlMton Rd llounltlitVlM C«HlonilkM043 |416|MMT67 8p«Ctfum 0:!
Figure G-12. ESCA Spectrum of Oxygen Sensor A23O/0649X from 0 eV to 501 eV (Exterior Surface)

-------
M fUfPOWT. .
B.O
vimjiCAL mCAU
4000
(OUMTt/IHCH
I ,
on.M.M: MJA	Spot Size: 600 u
'	t
ESCA SPECTRUM
i
I I
I i
Resolution: 4
CUfl|oa •iHOtNO f m*ov
!	i
ti
t>
f ^
1000.0
SAMPLE . _
COMMENTS
Disc: X430
UFMK IINOIHO (NIRQT |»V)
	 DATE WW*
iooai
DATA FILE • — -7	
Roglon 1
- binding anargy (aV)
0.0
OXYGEN SENSOfl 4A249/0064
CENTER SECTION OF SAMPLE AS RECEIVED
to Win (INOIMO INIHOV («V)
100B-09B6
Report »..
BUAFACE SCIENCE LABORATORIES 12Qfl OuflMlan Bd Mountain Maw C«lJJornU 84043 (41 fi) 082-6707 Sp*ctnim«:^L
tm
Figure G-13. ESCA Spectrum of Oxygen Sensor A249/0064 from 0 eV to 1000 eV (Exterior Surface)

-------
ft IUyPo«ti,
Ploo4Qu*._
Qp«riton.
HJA
Spot Size: 600 u
501.0
SAMPLE.
COMMENTS. -
UHIR aiHOIMO IMIMV |»vi
ESCA SPECTRUM
Disc: X430
0XV6EN SENSOR IA2-S9/0064
atf
»

center section of aample as received
Raaolutlon: A
1 . ; 1 i
® 8 5
T T ?


Q JO
l I
DATE:
B/4/iaea
-binding anargy |oV)
100BI
DATA FILE * —_
flsgtm
0.0
uiwia UKatHo iNtaairuvi
100B-0BSS
Rapart#:.
3m
BURFUM KIIMCB lAaOMTORiea 120ecnaitai!o3iRd Mountain Viaw Ctlllaaiia MM3 Hiati&ie/or Bpaativim «: _i_£i£Wtlc£!— ScTiSc!
Figure G-14-, ESCA Spectrum of Oxygen Sensor A249/Q064 from 0 eV to 501 eV (Exterior Surface)

-------
l-RiyPow*!
FlopdOua:
ii 2.0
VSITlCALICIil
2000
Optrtlor.. HJA	spot: 600 U
ESCA SPECTRUM
Resolution: 4
1000.0
Liprm ¦iMouia iu<»av (»v)
SAMPLE
COMMENTS
OXYGEN SENSOH #A261/0467
CENTER SECTION OF SAMPLE AS RECEIVED
uwii aiNDMO (Hinar i«v>
1008-0906
fteport
SUHPACe SCItKCt LABORATORIES 1200 ClnrtMlon Ha Mountain Vim CalttafnU *4043 (4IS)M2-e7ST Spactotim «;_L
Figure G-15. ESCA Spectrum of Oxygen Sensor A251/0^67 from 0 eV to 1000 eV (Exterior Surface)

-------
JC-fUyPewsf.
2.0
OPWIM .		
Spat: 600 u
Resolution: 4
0
1
mtieiL LCM.M
1000
fouiirasittcn
501.0
SAMPLE.
COUUEMTS- -
um> •iHOiHO «m»o» i.v)
ESCA SPECTRUM
5!
(gUQO |LKMNB (MIMV
S

Olacj HARD
	 date. 5./4/1B8B
008A
*Ra(j ion 1
DATA FILE •. -00BA
IIR^M
0?Hf6EH S£NSOfl #A25t/0467 	
CENTEH SECTION OF SAMPLE AS RECEIVED
iowin ¦maud iwtn M
1008-0986
Raport
•URFkCt aCIEMCIUtaCMATOntt 1206 ChwtiMOftRd. Mountain Wtw CaU
-------
mu,pow.. 		FioodGun 8.0 o....u,r MJA SpotSlza: 600 u	Reaoluticn: 4
VERTICAL SCALE	_ ^ _
10QQ	ESC A SPECTRUM
COUMT&/INCM	CUfl&Ofl ftlNCHNG INSRGY
a
CO
I
©
o
A

1000.0
SAMPLE 	
COMMENTS.
DATE.
7/25/19B6
-binding energy (eV)
DUG: X410_	DATA FILE 4 7030F
UPPER BINDING ENERGY («V)
Ruflion 1
0.0
0XY6EN SENSOR **180/0094 HM-01-1
CENTER OF SAMPLE AS RECEIVED
LOWER 6INDLMQ CNEROVl*V)
7030—07B6Y
Report #:_
2ss
SURFACE SCIENCE LABORATORIES J 20B Ctmiteaton Rd MounUtnVlsw Calllcxrla B4043 |41&)S62-B767 Spectrum «. h	
Figure G-17. ESCA Spectrum of Oxygen Sensor A180/0094 from 0 eV to 1000 eV (Exterior Surface)

-------
B-R*yPow«r
Flood Ouo..
VERTICAL SCALE
400 S
COUNTS/INCH
a
a.
I
10
n
t
a
a.
op.Mior._jyA_	Spot 31": 600 "
ESCA SPECTRUM
Reaolution: 4
a
o.
CURSOR BINfMNO tNEMV


501.0
SAMPLE.	.
COMMENTS. -
oisc: X4io
DATA FILE •
UPPER B1NOINC ENEMY (*V)
DATE.JI/&/MS
7030F 	
Region 1
-binding energy (eV)
0.0
OXYGEN SENSOR »A1B0/0Q94 HH-01-1
CENTER OF SAMPLE AS RECEIVE!)
LOWER BINDING CNEMV |«V)
7030-0766
Report >:
CAL (FORMS
ssi «aooooo*4
SURFACE SCIENCE LABORATORIES 1208 Charladon Rd Mountain View California S4043 (416)962-8767 Spectrum #: L-£*fM2££ .
Figure G-18. ESCA Spectrum of Oxygen Sensor A180/0094 from 0 eV to 501 eV (Exterior Surface)

-------
X Ray Power 	 FioodCun 2.0	 Opataior MJA	Spot Size; 600 u	Resolution: A
VERTICAL 6CALC
2000
COUNTS/INCH	CURSOR BINDING CNEROV
ESCA SPECTRUM
a
N
(eV)
UPPER BINDING ENERGV |.V)
0XV6EN SEHSOR *Aia0/0Q94 HH-Q1-1
CENTER OF SAMPLE AS RECEIVED
LOWER 6INOINO fHERO* («V)
7030-0786
Report
SURFACE SCIENCE LABORATORIES 1206 OiutettonRil Mountain Vtew California 84043 (416)862 6707 Spectrum #:_6A_
Figure G-19. ESCA Spectrum of Oxygen Sensor A180/0094 from 90 eV to 210 eV (Exterior Surface)

-------
xr.,(x»m	 t^nun. 0.0 op«»ior_NJA_	Spat Size: 600 u	Resolution: 4
VERTICAL SCALt
1000	ESC A SPECTRUM
COUNTS/INCH	C4JJt&Oft6JKDMOftNEM2V
f*
u
I

5 D
2 ®
*	V
a	a
n.	a
»	1
0
1

%-
i
a
a
I
(avi
AREA #3 (HIOOLf AHEAl AS RECEIVED
UM« ¦ Bit. &NO ¦ HEHar4aW)
7030-0736
Kipail
L
SURFACfeSCIENCEUk6C*U.TC!U6& Otortti.cj.f.1. UeaMMn^mt CtfUunra'MMa IMyttM-trrer? Gsmclt«m •:
Figure G-20. ESCA Spectrum of Oxygen Sensor A218/00^5 from 0 eV to 1000 eV {Exterior Surface)

-------
X fUy Powar. .
Flood Gun .
o.o
VERTICAL SCALE
400
COUNTS/INCH
ot*,stor_MJA_	Spot 81ze: 600 u
ESCA SPECTRUM
u
I
Resolution: 4
CURSOR BIMOINQ ENEROV
m
a
«
a
a.
D
v
*
a
a
u
I
n
a
a
501.0
SAMPLE	
COMMENTS
Dlec: X410
DATE.
DATA FILE «.
7/84/1986
7030C
-binding energy (eV)
UPPCA BINDING ENCAOV «*V)
Rbflion 1
o.o
0XY6SN SHHSOfl »H21B/004S HH-02-1__
AREA #3 (MIDDLE AftEA) AS DECEIVED
LOWER BIHDIKO ENERGY («V)
7030-O7B6
Report #:_
SURFACE SCIENCE LABORATORIES 1208 Ctiulatlon Rd. MounUIn View California 94043 (416)962 8767 Specttum •: 3
Figure G-21. ESCA Spectrum of Oxygen Sensor A218/0045 from 0 eV to 501 eV (Exterior Surface)

-------
0.0	op.r.ten_iy*_	Spot Size: 600 u Resolution: 4
VERTICAL 6CAU	^ A
200	E 5 C A SPECTRUM
COUMTS/JMCH	CUKSOf) aJMOIHO CMf mv
210.0
SAMPLE.
COMMENTS.
Disc: X410
	DATE.
DATA FILE • -
WPfflBJNOIhG EMERGV(aV)
7/24/1986
703OC _
Raglon 2
-binding energy l«V)
90.0
3-
OXYEEN SENSOR <8216/0045 HH-OB-1 _
AREA #3 (MIDDLE AREA) AS RECEIVED
lowed aiHJMua c Niitai 1*V1
7030-0766
Report »:	
JLi
SURFACE SCIENCE LABORATORIES l2Dfi Chartastofl R
-------
A Ray Power
Flood Gun .
8,9
VEATtCAL SCAL£
1000
COUNV&/IKCH
Qpifalnr MJA	fipOfc SiZO« 600 U
ESCA SPECTRUM
Resolution: 4
CURSOR BINDING CNEftOV
B
*t
*-
*
a
o.
a
I

a
• a J	1
oj So	a	«
2	ai	.
< o ,	a	(
n	f
1000.0
SAMPLE	
COMMENTS
Disc: X410
DATE
DATA FILE •
UPPCH BINDING fcNEHCT l«tf)
7/25/1966
7030H _
Region 1
-binding energy (eV)
0.0
CI]-
OXYGEN SENSOR fAgl6/0)ftb2 6767 Spectrum •: 2.—
tunrtci
Figure G-23. ESCA Spectrum of Oxygen Sensor A218/0045X from 0 eV to 1000 eV (Exterior Surface)

-------
X HayPowar
FloodGun. _
2.0
VERTICAL &CAL£
400
COUNIb/IMCH
mJA	Spot Size: 600 u
ESCA SPECTRUM
Resolution: 4
CUASOA BINDIMQ IMIOaV
0
1
K>
•o
£*
L
Figure G-2^. ESCA Spectrum of Oxygen Sensor A218/00^5X from 0 eV to 501 eV (Exterior Surface)

-------
X RayPowM
VERTICAL SCALE
1000
COUMf S/IHCH
OpmtMLar. kJA	SpOt 91261 600 U
ESCA SPECTRUM
Resolution: 4
CURSOR BIHOIHQ ENCMY
210.0
SAMPLE.
COMMENTS
Dlac: X410
DATA FILE •
UP«R BINDING ENERGV («¥|
DATE. 7/25/1986
7Q30H	
Region 2
-binding energy (eV)
90.0
LOWER BINDING KH£RGY (•«)
7030-0786
CENTER OF SAMPLE AS RECEIVED		
SURFACE SCIENCE LABORATORIES 1206 CturieitM) Rd Mountain View California &4043 (41619626767 Spectrum »: ii^L_ .
Report
Figure G-25. ESCA Spectrum of Oxygen Sensor A218/00^5X from 90 eV to 210 eV (Exterior Surface)

-------
X Bay Pow«r
WfiHTlCAL ftCALC
1000
COUNT8/IHCH
FlottdCuil. 2.0	 ftflaitlflr MJA	8p0t SiZtf* 600 U
ESCA SPECTRUM
Resolution: 4
CUftSOa BINDING BMiftOV
"8
¦W*
U
9
tt
O
1
B	S
TJ	<
*	8
a	0-
a	i
I
y*

S
©
0
1000.0
8AMPLE 	
COMMENTS
Disc: X410
UPPER eiMOlwa ENERGY (»VJ
	DAT£. V25/I9a6
DATA FILE • -Z???-6-. —
Region 1
1
a
(L
(
a
c
I
- binding energy (eV)
0.0
OXY6EH SENSOR *A2lB/006B HM-02-2
CENTER OF SAMPLE AS RECEIVED
LOWED BINDINO iNERQV 
-------
X R*v Powei
VERTICAL bCALC
400
COUNT&IMCH
Flood Gun _ g.O	op«..mr HJA	Spot Size: 600 u
ES.CA SPECTRUM
Reaolutlon: 4
CURSOR BINDING CMEMtV
0
1
ls>
00

B
01
501.0
SAMPLE 	
COMMENTS
Disc: X410
DATE.
7/25/1086
-binding energy (QV)
DATA FILE •
UPPER SIH01N0 tNERCY !•¥>
70306
Region 1
0.0
0XV6EN SENSOR »A216/0066 HH-02-2 	
CENTER OF SAMPLE AS RECEIVED
	LOWER BINDING CNERGV (»V)
7030-0766
	 Report
SURFACE SCIENCE LABORATORIES 1i08 ChiulstlonRd Mountain View Calllwnla 440AJ (416)862-3787 Spectrum «. "7
Figure G-27. ESCA Spectrum of Oxygen Sensor A218/0068 from 0 eV to 501 eV (Exterior Surface)

-------
X RayPow#/.
Flood Quo: _
g.o
Opiralor.
-¦ MJA
Spot Slza: 600 u
Resolution: 4
VERTICAL 6CAU
400
COUNTS/INCH
ESCA SPECTRUM
CURSOR OINDINO f NiftQV
210.0
SAMPLE 	
COMMENTS
Olac: X410
DATE.
DATA FILE «
UPPER BIMDIHG EMCRQY
7/25/1966
70306
RBQlon 2"
-binding energy |eV)
90.0
0XY6EN SENSOR fA216/0068 HH-02-2
CENTER OF SAMPLE AS RECEIVES
LOWER BINDING iHSRfl¥
-------
K-RAyPowftfT
Woodflum 4*0
Operator KH3
o
o
Spot Size: 1000 u
TTT"
Resolution: 4
r* i ctipim
SURFACE SCIENCE LABORATORIES t206 Chartnlon Rd. MountitaVtew CaMunl*»4043 <4 <4)862 67 87 Spacttum •
Figure G-29. ESCA Spectrum of N'ew Chrysler Sensor 0 eV to 1000 eV (Exterior Surface)

-------
nuyPoww	 waadiiun, *•<> Qo.r.io^ KHS	Spot Size: 1000 U	Resolution: 4
250.0
SAMPLE.
COMMENT8:.
Disc: X401
	 OATE.
DATA FILE*.
IVflR IINMHO IN(MT|*V)
~"2~|
	I • SCAN!
7/10/1986
7015A
Region 1
-binding energy (eV)
0.0
CONTROL OXYGEN SENSOR
AS RECEIVED
umrtn unhno ¦nihoyuvj
0 _ 7015-0786
Raport
CALVORhlS
ui
-------
APPENDIX H
QUALITY ASSURANCE TESTING OF ON-ENGINE CONVERTER
EFFICIENCIES AND LIGHT-OFF TIMES

-------
TABLE H-l. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A215/0201 K/G
TEST 1
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.15
Inlet
1899
1.01
1571
0.58
14.27
707

Outlet
225
0.02
383


710

CE %
88.2
98.0
75.6



14.33
Inlet
1849
0.83
1622
0.58
14.27
708

Outlet
150
0.003
460


680

CE %
91.9
99.6
71.6



14.50
Inlet
1699
0.65
1622
0.73
14.27
705

Outlet
125
0.003
460


651

CE %
92.6
99.5
71.6



14.66
Inlet
1549
0.57
1609
0.83
14.41
705

Outlet
125
0.003
837


636

CE %
91.9
99.5
48.0



14.86
Inlet
1299
0.35
1584
1.03
14.12
705

Outlet
100
0.002
1138


613

CE %
92.3
99.4
28.2



15.05
Inlet
1274
0.34
1521
1.18
14.12
705

Outlet
100
0.002
1189


604

CE %
92.2
99.4
21.8



15.29
Inlet
1124
0.24
1421
1.43
13.98
705

Outlet
100
0.002
1138


583

CE %
91.1
99.2
19.9



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio
rpm
in. Hg
Hp obs
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
in. Hg
14.15
1800
16.35
23.2
48.7
3.06
96
0.7
956
5.0
29.13
14.33
1800
16.35
23.1
48.9
3.06
96
0.7
959
5.0
29.13
14.50
1800
16.35
22.8
48.9
3.06
96
0.7
962
5.0
29.13
14.66
1800
16.35
22.7
48.9
3.06
96
0.7
962
5.0
29.14
14.86
1800
16.35
22.5
48.9
3.20
95
0.7
962
5.0
29.14
15.05
1800
16.35
22.2
49.1
3.19
95
0.7
964
5.0
29.15
15.29
1800
16.4
21.4
49.1
3.19
95
0.7
963
5.0
29.15
H-2

-------
TABLE H-2. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A2I5/0201 K/G
TEST 2
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp.
Ratio
Location
PPm
%
ppm
%
%
°F
14.11
Inlet
1850
1.22
1609
0.39
13.84
706

Outlet
300
0.02
686


725

CE %
83.8
98.4
57.4



14.27
Inlet
1799
0.92
1634
0.58
13.84
708

Outlet
250
0.01
510


690

CE %
86.1
98.9
68.8



14.48
Inlet
1649
0.68
1735
0.68
14.12
710

Outlet
150
0.003
384


659

CE %
90.9
99.6
77.9



14.66
Inlet
1549
0.55
1785
0.78
13.84
710

Outlet
150
0.002
937


634

CE Z
90.3
99.6
47.5



14.86
Inlet
1449
0.42
1735
0.98
13.84
712

Outlet
150
0.002
1138


619

CE %
89.6
99.5
34.4



15.05
Inlet
1299
0.35
1710
1.18
13.56
712

Outlet
100
0.002
1214


603

CE Z
92.3
99.4
29.0



15.27
Inlet
1149
0.28
1584
1.43
13.56
711

Outlet
100
0.002
1189


590

CE %
91.3
99.3
24.9



Engine Operation Data
A/F Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
Ratio rpm in. Hg Hp obs Engine Injected "F in. H2O Vac °F in. H?0 in. Hg
14.11
1805
16.3
24.4
51.0
3.23
96
0.8
964
4.9
29.32
14.27
1805
16.3
24.3
50.8
3.23
96
0.8
966
4.9
29.32
14.48
1805
16.3
23.9
50.8
3.31
97
0.8
969
4.9
29.31
14.66
1805
16.3
23.8
50.9
3.31
97
0.8
970
4.9
29.31
14.86
1805
16.3
23.5
50.9
3.31
97
0.8
971
4.9
29.30
15.05
1805
16.3
23.2
50.9
3.31
97
0.8
971
4.9
29.30
1 q.27
1805
16.3
22.8
50.6
3.36
97
0.8
969
4.9
29.29
H-3

-------
TABLE H-3. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT A215/0201 K/G
TEST 3
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
ppm
%
PPm
%
%
°F
14.14
Inlet
1874
1.22
1521
0.48
14.12
702

Outlet
250
0.01
409


708

CE %
86.6
99.2
73.1



14.32
Inlet
1974
1.19
1509
0.48
14.12
702

Outlet
250
0.01
422


714

CE %
87.3
99.2
72.0



14.50
Inlet
1499
0.48
1672
0.73
14.12
702

Outlet
125
0.002
962


631

CE %
91.7
99.6
42.4



14.67
Inlet
1499
0.53
1622
0.83
14.12
701

Outlet
100
0.001
1088


628

CE %
93.3
99.8
32.9



14.87
Inlet
1324
0.39
1634
1.03
13.98
702

Outlet
100
0.001
1163


605

CE %
92.4
99.7
28.8



15.14
Inlet
1149
0.28
1584
1.33
13.98
702

Outlet
100
0.001
1163


578

CE %
91.3
99.6
26.6



15.27
Inlet
1049
0.22
1571
1.43
13.98
702

Outlet
75
0.001
1176


576

CE %
92.8
99.6
25.1



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaus t
Bar.
in. Hg
Engine
Inj ected
°F
in. H2O Vac
°F
in. H?0
14.14
1800
16.55
22.5
48.5
3.10
100
0.8
953
4.9
29.22
14.32
1800
16.55
22.6
48.4
3.10
101
0.8
955
4.9
29.22
14.50
1800
16.55
22.3
48.4
3.21
102
0.8
959
4.9
29.21
14.67
1800
16.55
22.0
48.2
3.20
102
0.8
959
4.9
29.21
14.87
1800
16.55
21.5
48.2
3.20
102
0.8
959
4.5
20.20
15.14-
1800
16.55
21.0
48.2
3.20
102
0.8
959
4.5
29.20
15.27
1800
16.55
21.1
48.3
3.20
102
0.8
959
4.5
29.19
H-4

-------
TABLE H-4.
Time to
CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A215/0201 K/Q
TESTS 1 AND 2
Converter Efficiency Data
Test 1	Test 2
Test
No.
1
2
Reach %

Converter Time
Converter
Time
Reduction
Emission^)
Inlet
Sec.
Inlet
Sec.
20
HC
1724
26
1699
27

CO
1.99
21
2.06
20

N0X
1307
25
1096
24
50
HC
1724
36
1699
30

CO
1.99
30
2.06
30

N0X
1307
NA
1096
NA
80
HC
1724
54
1699
52

CO
1.99
38
2.06
37

N0X
1307
NA
1096
NA


Converter
Response



Test 1

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out
%
at 205 sec
HC
1774 200
88.7
1699 225
86.8

CO
1.95 .003
99.8
2.06 0.003
99/8

N0X
1320 1264
4.2
1408 1289
8.4
at 600 sec
HC
1674 200
88.0
1775 200
88.7

CO
1.97 0.003
99.8
2.02 0.003
99.8

N0X
1320 1251
5.2
1370 1276
6.9

Engine Operation
Data


Speed Man Vac
Power Air
Flow, SCFM
Intake
Air Exhaust
rpm in Hg
Hp obs Engine Injected
°F in
H2O Vac °F
in H?0

2%
CO, 5% 02



1800 10.55
48.2 80.6
10.31
97
1.4 1083
14.2
1800 10.35
50.3 83.3
10.81
91
1.5 1087
14.2
Bar.
in Hg
29.10
29.34
NA: Not Achieved
.1) HC and NOx are ppm, CO is %
H-5

-------
TABLE H-5.
CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT A215/0201R
TEST 3
Converter Efficiency Data
Time to


Test
3
Test 2
Reach %
Reduction
Emission(1)
Converter
Inlet
Time
Sec.
Converter Time
Inlet Sec.
20
HC
CO
N0X

1549
2.04
1307
28
22
30

50
HC
CO
N0X

1549
2.04
1307
35
30
NA

80
HC
CO
N0X

1549
2.04
1307
52
36
NA




Converter
Response



Test 3

Test 2


Converter
CE
Converter CE
Efficiency %
Emission
In
Out
%
In Out %
at 205 sec
HC
CO
N0X
1574
2.01
1345
200
0.004
1251
87.3
99.8
7.0

at 600 sec
HC
CO
NOx
1524
1.99
1307
175
0.003
1234
88.5
99.8
5.2

Test Speed Man Vac
No. rpm in.Hg
1800
10.1
Power
Hp obs
51.1
Engine Operation Data
Air Flow, SCFM Intake Air	Exhaust	Bar.
Engine Injected °F in.H20 Vac °F in. H?0 in. Ha
2% CO, 5% 02
84.0 11.1
97
1.5
1083
14.5 29.25
NA: Not Achieved
(1) HC and NOjj are ppm, CO is %
H-6

-------
TABLE H-6. CATALYTIC CONVEBXER EFFICIENCY - STEADY-STATE
UNIT EPA 1174R
TEST 1
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
CO2
Temp.
Ratio
Location
ppm
%
ppm
%
%
°F
14.15
Inlet
2149
1.37
1546
0.63
13.70
714

Outlet
300
0.Q5
560


777

CE %
86.0
96.4
63.8



14.26
Inlet
2074
1.16
1609
0.68
13.84
715

Outlet
225
0.005
345


754

CE %
89.2
99.6
78.6



14.48
Inlet
1924
0.84
1659
0.83
13.98
717

Outlet
150
0.004
611


709

CE %
92.2
99.5
63.2



14.68*
Inlet
1724
0.70
1685
0.93
13.98
718

Outlet
125
0.003
837


683

CE %
92.8
99.6
50.3



14.85
Inlet
1549
0.55
1697
l.oa
13.98
719

Outlet
125
0.003
1138


660

CE %
91.9
99.4
32.9



15.05
Inlet
1374
0.40
1672
1.23
13.98
719

Outlet
125
0.003
1276


641

CE 1
90.9
99.2
23.7



15.25
Inlet
1300
0.35
1622
1.48
13.84
718

Outlet
137
0.003
1276


621

CE %
89.5
99.1
21.3



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air

Exhaus t
Bar.
in. Hg
Engine
Injected.
"F
in. H2O Vac
°F
in. H.?0
14.15
1800
16.1
24.3
50.1
1.88
100
0.7
957
5.0
29.18
14.26
1800
16.1
24.0
50.0
1.90
99
0.7
959
5.0
29.18
14.48
1800
16.1
23.6
50.0
1.90
99
0.7
961
5.0
29.19
14.68
1800
16.1
23.6
49.8
1.93
99
0.7
964
5.0
29.19
14.85
1800
16.15
23.2
49 .8
1.95
99
0.7
964
5.0
29.19
15.05
1800
16.15
23.0
49 .8
1.98
98
0.7
965
5.0
29.19
15.25
1800
16.15
22.8
49 .8
1.98
98
0.7
964
5.0
29.19
*dC not within tolerances at 14.7 air/fuel ratio
H-7

-------
TABLE H-7. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT EPA 1174R
TEST 2
Converter Efftciency Data
A/F
Sample
HC
CO
N0X
02
C02
Temp
Ratio
Location
ppm
%
ppm
%
%
°F
14.09
Inlet
2099
1.37
1295
0.63
14.12
701

Outlet
300
0.02
686


753

CE %
85.7
98.5
47.0



14.31
Inlet
1874
1.13
1358
0.73
14.27
702

Outlet
250
0.01
384


716

CE %
86.7
99.1
71.7



14.46
Inlet
1699
0.87
1408
0.83
14.41
704

Outlet
174
0.003
460


687

CE %
89.8
99.7
67.3



14.66
Inlet
1574
0.68
1421
0.93
14»4l
706

Outlet
150
0.002
812


659

CE %
90.5
99.7
42.9



14.91
Inlet
1399
0.51
1408
1.13
14.41
707

Outlet
100
0.002
963


633

CE %
92.8
99.6
42.9



15.06
Inlet
1174
0.37
1433
1.28
14.27
707

Outlet
100
0.002
1088


614

CE %
91.5
99.5
24.1



15.34
Inlet
999
0.25
1345
1.63
13.98
705

Outlet
100
0.001
1013


599

CE %
90.0
99.6
24.7



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaust
Bar.
in. Hg
Engine
Injected
°F
in. H2O Vac
°F
in. H?0
14.09
1799
16.6
21.9
47.1
1.69
104
0.75
949
5.0
29.21
14.31
1796
16.6
21.7
46.6
1.72
106
0.75
953
5.0
29.21
14.46
1796
16.6
21.5
46.8
1.72
105
0.75
956
5.0
29.20
14.66
1797
16.65
21.2
46.6
1.75
105
0.7
960
5.0
29.20
14.91
1794
16.65
20.7
46.6
1.77
106
0.7
962
5.0
29.20
15.06
1798
16.65
20.7
46.5
1.77
106
0.7
963
5.0
29.19
15.34
1793
16.65
20.0
46.5
1.77
106
0.7
962
5.0
29.1
H-8

-------
TABLE H-8. CATALYTIC CONVERTER EFFICIENCY - STEADY-STATE
UNIT EPA 1174R
TEST 3
Converter Efficiency Data
A/F
Sample
HC
CO
NOx
02
C02
Temp
Ratio
Location
ppm
£
ppm
%
%
°F
14.08
Inlet
1974
1.53
1395
0.63
13.70
700

Outlet
300
0.03
711


761

CE %
84.8
94.8
49.0



14.29
Inlet
1824
1.11
1471
0.73
13.84
701

Outlet
225
0.006
396


703

CE %
87.7
99.5
73.1



14.48
Inlet
1674
0.91
1496
0.83
13.98
703

Outlet
150
0.003
434


675

CE %
91.0
99.7
71.0



14.72
Inlet
1449
0.60
1534
0.98
14.12
703

Outlet
125
0.002
875


642

CE %
91.4
99.7
43.0



14.94
Inlet
1324
0.47
1546
1.13
14.12
703

Outlet
125
0.002
1088


618

CE %
90.6
99.6
29.6



15.09
Inlet
1149
0.37
1496
1.33
13.9B
704

Outlet
100
0.002
1138


599

CE %
91.3
99.5
23.9



15.27
Inlet
1074
0.30
1446
1.63
13.98
703

Outlet
100
0.001
1151


590

CE %
90.7
99.7
20.4



Engine Operation Data
A/F
Ratio
Speed
rpm
Man Vac
in. Hg
Power
Hp obs
Air Flow, SCFM
Intake Air
Exhaus t
Ear.
in. Hg
Engine
Injected
°F
in. H2O Vac
°F
in. H?Q
14.08
1799
16.55
22.1
47.0
1.96
109
0.75
94 3
5.0
29.13
14.29
1798
16.55
21.9
46.7
1.98
109
0.75
948
5.0
29.12
14.48
1795
H6.6
21.7
46.7
1.99
109
0.75
951
5.0
29.12
14.72
1794
16.6
21.3
46.7
2.00
109
0.75
952
5.0
29.12
14.94
1793
16.6
21.0
46.5
2.00
110
0.75
953
5.0
29.12
15.09
1791
16.6
20.6
46.5
2.00
110
0.75
953
5.0
29.11
<>7
1792
16.6
20.1
46.3
2.00
110
0.75
954
5.0
29.11
H-9

-------
TABLE H-9. CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT EPA 1174R
TESTS 1 AND 2
Converter Efficiency Data
Time to	Test 1	Test 2
Reach %	Converter	Time	Converter	Time
Reduction Fmi ssion(l)	Inlet	Sec.	Inlet	Sec.
20	HC	1649	55	1774	40
CO	1.91	48	2.01	38
NOx	1408	32	1320	25
50	HC	1649	63	1774	48
CO	1.91	57	2.01	42
NOx	1408	50	1320	40
80	HC	1649	89	1774	66
CO	1.91	66	2.01	50
NO„	1408	NA	1320	NA
Efficiency %
Emission
Test
Converter
1
Response
Test 2

Converter
CE
Converter
CE
%
In Out
%
In
Out
at 205 sec
HC
164 7 150
91.0
1899
150
92.1

CO
2.06 0.003
99.8
2.08
.002
99.0

N0X
1383 1289
6.8
12 70
1176
7.4
at 600 sec
HC
1549 175
88.7
1774
150
91.5

CO
1.99 0.001
99.9
2.12
.001
100.0

NOx
1408 1327
5.8
1282
1176
8.3
Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFM Intake Air	Exhaust	Bar.
No. rpm in. Hg Hp obs Engine Injected °F in. H2O Vac °F in.H?0 in. Hg
2% CO, 5% O2
1	1800 10.9 46.7 77.2 2.14 104 1.4	1071 12.2 29.06
2	1810 11.25 45.6 75.6 9.65 104 1.35 1069 12 29.22
NA: Not Achieved
(1) HC and NO* are ppm, CO is %
H-10

-------
TABLE H-10.
Time to
Reach %
CATALYTIC CONVERTER EFFICIENCY - LIGHT-OFF
UNIT EPA 1174R
TEST 3
Converter Efficiency Data
Test 3
Test 2
Converter Time Converter Time
Reduction
Emission^-)
Inlet
Sec.
Inlet
Sec.
20
HC
CO
N0X
1749
2.06
1358
48
41
40


50
HC
CO
N0X
1749
2.06
1358
54
48
45


80
HC
CO
N0X
1749
2.06
1358
75
55
NA




Converter Response



Test*.3

Test 2



Converter
CE
Converter
CE
Efficiency %
Emission
In Out
%
In Out
%
at 205 sec
HC
CO
NOx
1699 1500
1.95 0.003
1333 1289
91.2
99.8
3.3


at 600 sec
HC
CO
NOx
1699 150
2.18 0.002
1245 1239
91.2
99.9
0.5


Engine Operation Data
Test Speed Man Vac Power Air Flow, SCFH Intake Air	Exhaust	Bar.
No. rpm in Hg Hp obs Engine Injected aF in H2O Vac °F in H?0 in Hg
2% CO, 5% 02
3 1796 10.8 47.1 77.1 9.60 106 1.4 1070 12 29.17
NA: Not Achieved
'1) HC and NOx are ppm, CO is %
H-ll

-------
APPENDIX I
ESCA SPECTRA OF OXYGEN SENSOR TIPS AT VARIOUS LOCATIONS

-------
XRayPowar	 FloodQun 0 « 0	 Operator8fI0t S1 IB' 600 II	RftflOlUtlOlU 4
VEATICAL SCALE	_ _
1000	ESC A SPECTRUM
COUMTS/INCH	CUROOJI BINDING INIRfl*
«•
T
a
a.
I
ai
0
z
1
1000.0
SAMPLE 	
COMMENTS
Disc: X410
UPPER atHOlHQ EMEftQY t«V|
	 pftTE 7/24/1986
DATA FILE • ——9^	
Region 1
-binding energy (eV)
0.0
0XV6EN SENSOR #H218/Q043 HH-02-1	
AREA #1 (FARTHEST POINT FHQH TIP) AS-RECEIVED
IOWER BMDINO EHEAQf (>V)
7030-0786
Repoil #:_
8URFACE SCIENCE LABORATORIES 1206 Charioalon Rd MounHln View CoJUornla B4043 <415)962 8767 Spectrum
Figure 1-1. ESCA Spectrum of Oxygen Sensor A218/0045 from 0 eV to 1000 eV (Location 1)

-------
XRayPowti 	
VERTICAL ftCAiC
flood Gun .
0.0
400
Op.i.tor HJA	8pot Size: 600 u
ESCA SPECTRUM
COUNTS/INCH
u
Resolution: 4
cuuoa ei*wno cmeroy
I
u
e
e
"C
a
I
i
«
*
501.0
SAMPLE. ¦
COMMENTS
Disc; X410
UPPER BINDING ENERGITi«Vk
	 DATE. 7/24/1986,
DATA FILE#: -Z9i®*	
Raelon I
-binding energy (etf)
0.0
0XY6EN SEHSOB *H21B/004S HH-02-1	
AREA »1 (FARTHEST POINT FHOM TIP) AS-RECEIVED
LOWES BIHPWa «KSBtl»|»V)
7030-07B6
Report
i
SURFACE BCIENCC LABORATORIES 1206CluitulonM. Mountain Vtow CaWornla B4043 M1S|9S78rer SpacUum
Figure 1-2. ESCA. Spectrum of Oxygen Sensor A21&/0Q45 from 0 eV to 501 eV (Location L)

-------
XRayPowu,	FloodQun 0.0	 Oowior HJA	SpOfc SilOI 600 U	AflSOlUtlon* 4
VERTICAL SCALfi
1000
COUMT8/IMCM	CURBCH 0JMOINQ « Mi ROT
ESCA SPECTRUM
*
o

*
Q
1000.0
SAMPLE.	
COMMENTS
OIbc: X410
DATA FILE #
UPPER BINOINO ENERGf («V)
DATE 7/24/1AB6
70308	
Ragion 1
-binding energy (eV)
0.0
QXY6EN_§ENSPRJH2J8/QQ45_HH-e2-l	
AREA #2 (HIGH POINT CLDSE TO HIPPLE) A3 RECEIVED
LOWER BINDING ENEHOV |«V)
7030-0786
Report
JU
SURFACE SCIENCE LABORATORIES 1206 Charleston Ret Mountain Vim California 94043 (415)9628767 Spactrum
Figure 1-3. ESCA Spectrum of Oxygen Sensor A218/0045 irom 0 eV to 1000 eV (Location 2)

-------
X Hay Power .
Flood Oun .
VERTICAL SCALX
400
COUNr&INCH
0-0 _ cwtor MJA	Spot size: 600 u
ESCA SPECTRUM
0
1
Resolution: 4
CURSOJIOINOUM CMCMKV
u
I
Figure 1-4. ESC A Spectrum of Oxygen Sensor A2! 8/0045 from 0 eV to 501 eV (Location 2)

-------
x RayPoM«r	 Floodoun _£L0__ op.,.tor_MJA_	Spot Size: 600 u	Raaolutlon: 4
VERTICAL SCALK
1000	ESC A SPECTRUM
coumis/imch	cunsanamoiMaiHiiuM
<4
u
s °
5 '
I *
8 °
I I
a
I

u
V
A
a
—A_
UPPER BINDiNO CMEROV |«V>
0XY6EN SENSOR +H21B/0045 HH-02-1 _
AREA #3 (MIDDLE AREA) A3 RECEIVED
LOWER BINDING ENEMY |*V)
7030-07B6
Report #:.
1
SURFACE SCIENCE LABORATORIES 1206 Charleston Rd Mountain Maw California 84043 1416)962-6787 Spactrum*'.
Figure 1-5. ESCA Spectrum of Oxygen Sensor A218/00
-------
X RayPoM«n
Flood Qun .
0.0
VERTICAL SCALE
400
COUNTS/INCH
On.,.lar MJA	SpOt 81 MI 600 U
ESC A SPECTRUM
u
I
Resolution: 4
CURSOR BINDIMQ KNEROV
501.0
SAMPLE 	
COMMENTS
Olac: X410
	DATA FILE#
DATE. .7/84/IM6
7030C
-binding energy (eV)
UPPER BINDING ENEROV l«V)
Region 1
0.0
OXYSEN SEMSOH »H21B/004a HM-02-1
AREA #3 (MIDDLE Aft£A) AS RECEIVED
LOWER OJNDJNQ INIRO*|«V)
7030-0786
Rapoit
SURFACE SCIENCE LABORATORIES 1206 Chartulon «
-------
*H.,po«.r		HnodQun 0-0 op.,.tor_MJA_ Spot Size: 600 u	Resolution: 4
vcmtCAc acAtc	^
200	ESC A SPECTRUM
COUNTS/INCH	CURSOA BIN04MQ IMKAQY
UPPER BINDING ENERCV|«V|
Rejjlon 2
0XY6EN SENSOR »H218/0045 HH-02-1
AREA #3 (MIDDLE AREA) AS RECEIVEO
LOWCR BINDIMO CNEftOVUV)
7030-0766
Report
SURFACE SCIENCE LABORATORIES 1206 Chartoaton Rd Mountain Vtew California B4043 (416)962 8767 8p»clrum
Figure 1-7. ESCA Spectrum of Oxygen Sensor A218/0045 from 90 eV to 210 eV (Location 3)

-------
X RayPowar 	 tl^nun. 3.0	Opai.Iur KJA	Spot 81zai 600 U	RaBOlUtlOfi: 4
ESCA SPECTRUM
VERTICAL OCAie
1000
COUNTS/INCH	CURSOR BINDINO (HCROV
0
1
s
0
1

O
X3
2
O
u
9
©
u
W D
? 5
£ S
i i

*
a
a.
L_U
01
a
z
I
1000.0
SAMPLE 	
COMMENTS
Disc: X410
DATE:
DATA FILE •
UPPCH BIMDINQ ENERQV 4«V) 	
7/24/1986
7030D	
Region 1
-binding energy (eV)
0.0
0XY6EN SENSOR «H21B/0045 HX-Q2-1
AREA *4 (CLOSE TO TIP ON COLOR BORDER) AS RECEIVED
LOWER BINDING BNCRQT («V|
Report #:
7030-0766
1
SURFACE SCIENCE LABORATORIES 1206 Charieslon Rd Mountain (flow CaMwnla 64043 (416)082 6767 Sp«ctnim #: _?L
Figure 1-8. ESCA Spectrum of Oxygen Sensor A2I8/0045 from 0 eV to 1000 eV (Location 4)

-------
I
J—»
o
X Ray Power
Flood Own .
3.0
VERTICAL SCALf
400
COUNTS/INCH
0
C
o
£
©
*
501.0
SAMPLE 	
COMMENTS
UPPCA BINDING ENCAGV(*V)
QC„.lor MJA	Spot Size: 600 U
ESCA SPECTRUM
a
I
Disc: X410
DATE. -
Resolution: 4
cunsoii awn ho c ne rqv
~
a
a
OATA FILE #
7/24/1986
7030D	
Region 1
01
0
1
-binding energy (eV)
0.0
0XY6EN SENSOR #H2IB/0045 HM-02-1	
AREA #4 (CLOSE TO TIP ON COLOR BORDER) AS RECEIVEO
LOWER BINDING INE(H1T<«V1
7030-0786
Report •:

SURFACE SCIENCE LABORATORIES 1206 CfiartoAlon Rd. Mountain Vlaw California S4043 {416)862 6767 Spectrum #.
Figure 1-9. ESCA Spectrum of Oxygen Sensor A218/00
-------

-------
KFUrPowif
f I co d Qua .
a.o
VERTICAL SCALt
400
COUNTS/INCH
Qaanicf MJA	Spot Bile: 600 u
ESCA SPECTRUM
Resolution: 4
a
CURSOR BINDING KNEROV
n

a
¦
a
N
ji
a.
O
1
1
501.0
SAMPLE	
COMMENTS
Disc: X410
	DATE
DATA FILE •
UPPER BINDING EHCftOV |«V)
7/24/4906
7030E	
Region 1
—binding energy |eV)
0.0
0XY6EN SENSOR »H218/0045 HH-08-1
AREA #5 (TIP) AS RECEIVED
LOWER BIHOINO ENIRQV (*V)
7030-0766
Rspoil
SURFACE SCIEMCE LABORATORIES 1206 CharlAftton Rd Mountain View California 64043 (415)962-8767 Spectrum #: _£Vsj>
-------
* R*yP»W»r
rioodQitn..
a.o
Opaialor.
ILL
Spot Blza: GOO u
Raaolutlon: 4
VMT1CM. KAU
| 4000
COUNIillMCH
ESCA SPECTRUM
i i ; i
CUI^OH
•tUDtNQ INIMT
o
i-
- i
M
(L
v »
1
t
i
•A.
n
0
fi
1
CAirOMM
Isiiaoo&ioM
Figure 1-12. ESCA Spectrum of Oxygen Sensor A218/00
-------
X-Ray Power. .
floodQun:.
2.0
xmimcu Kin
1000
COUOTt/IMCH
D
O
* ft
£k *
1?

501.0
SAMPLE _
COMMENTS
Operator.
ILL
8pot Sizo: 600 u
Resolution: 4
ESCA SPECTRUM
umi aiNoiHo iNinai t*vi
OXYGEN SENSOR #A218/0045 CENTER SECTIONj
RI6HT HAND CIRCUMFERENCE (FACINB FRONT)
LOOT I aiMHMa lNi«0» «V)
1008-0B86
Report
OlVOAUS
»i«aa0Ma
•UBMCe SCICNCf UBOfMTOmia f2O0€ftut«ilonM MounUtn Vtow Cattfomta 04O43 (4lfl|M2-fi74; 8p#ct«jm •: fo CSo?bhS3
Figure 1-13. ESCA Spectrum of Oxygen Sensor A218/QCM.5 from 0 eV to 501 eV (Location 6)

-------
X Ri) Ponir	
milCAilUil
2000
COVNTI/tNCH
*
i
-a
*
*i
o'

FloodQun*.
8.0
Operator.
ILL
&pot«81zo: 600 u
1000.0
SAMPLE:	
COMMENTS. -
I
ESCA SPECTRUM
Resolution: 4
i ..i'l: ¦, !i
cwttpn swottta iMiftov
U
'!
f

Diac: X430
	OATfc
DATA FILE • -
limit ¦IHOII«l |MM1 |«V)
g/S/lBBS
iooax _
' Region 1
0XY6EN SENSOR »A2ia/0048CENTER SECTION
RIGHT HAND CIRCUMFERENCE (FACIKS FRONT) AREA #2
cowtaiiHiMNaiiiiitaTovi
1000-0886
Raport«:_
CAltfOftMS
ULfKKXKU
SURFACE 6CIKNCS LABORATORIES 1206 CfcixtMton Rd MounUIn Vm> CtOlwnteM043 |41«)M3-e7«r 8p«etium •: Jl_
Figure ESCA Spectrum of Oxygen Sensor A218/00^5 from 0 eV to 1000 eV (Location 7)

-------
X RayPow*r .
2.0
Operator.
MJA
Spot Size: 600 u
Resolution: 4
i
H—
o\
VIMTICAL tCALI
1000
COunii/inch
ESf A SPECTRUM
•luuiiQ Miliar
UPHII BIMMNO KNIHOT |«V)
]•
0XY6EN SENSOR fA2*B/004B CENTER SECTION^ 	
RI6HT HAND CIRCUMFERENCE [FACING FRONT) AREA #2
LOWIR *11101110 iNtOOV (*V)
1008-08B8
lUpart
CJlLKMa
Ut ilOaXDM
SURFACE SCIENCE LABORATORIES 1206 CtivtMlon Ad. Mountain Vl#w CaOloml* 94043 (41B> 963-6767 RiiTfcrum <; //	Sciimci
Figure 1-15. ESCA Spectrum of Oxygen Sensor A218/00U5 from 0 eV to 501 eV (Location 7)

-------
M RayPow** 	
VCimCAi ICALt
1000
COUNT t/IMCH
PloodQim:.
f
2.0
Optntor.
HJA
spot size: boo u
ESCA SPECTRUM
9
£
i i

1
©
n
e
e

1
•

•wi
! u
1
Resolution: 4
ciptsoji sinomo i mi nor
1000.0
SAMPLE. 		
COMMENTS.
Disc: X430
Will IINWNO IMIROV i.V)
I '
*
a
> a
i (
cl
I

n
£
	 DATE
DATA FILE #.
8/5/1888
1008L
Region i
-binding anergy (eV)
0.0
0XY6EH 3EN30R »A21B/004B CENTER 8ECTZ0N
LEFT HAND CIRCUMFERENCE (FACING FRONT) AREA «3
LOWlR whimim ¦mmr («vi
1008-0888
Rapait»:
I
SURFACE SCIENCE LABORATORIES 1206 Chutulon Rd Mountain Vtow CtUtornia 04043 (416) #62-8797 Bpactnim •; J1
Figure 1-16. ESCA Spectrum of Oxygen Sensor A218/0045 from 0 eV to 1000 eV (Location 8)

-------
ft fUyPowM
Hood Chin-
. a.o
Opcialoc.
MJA
i
oo
Spot Size: 600 u
501.0
SAMPLE..
COMMENTS. -
ESCA SPECTRUM

Dlac: X430
	DATE.
DATA FILE • -
urf» aiNcuMa inimy i.vi
9/5/1BBB
iooair
"RagIon 1
OXYGEN SENSOR #A2IB/0046 CENTER SECTION
LEFT HAND CIRCUMFERENCE (FACIN8 FROHTj AREA #3
Rasolutlon: 4
(UHM (INDINO IHIMV

Lowia WMnNa iNim* (•«>
100B-0986
fUpoit I;.
CAUFOAMa
isi «*ooooa
SURFACE SCIENCE LABORATORIES 1206 Charlaiton Hd. UounlalnVtow CftUiornU 04O43 (415)062-6707 HpOCtmm #i /*"	Sg***"
Figure 1-17. ESCA Spectrum of Oxygen Sensor A218/0045 from 0 eV to 501 eV (Location 8)

-------
X-RtyPowon .
flood 0 un:.
2.0
Op«ritOR.
HJA
Spot Size: 600 u
Resolution: 4
WHTICAL SCA1C
2000
fOUNTMMCfl
ESCA SPECTRUM
binding tntrgy (aV)
1000.0
UPHR BIMOINO INBMfcV |«V)
COMMENTS — 		 .	*430
0XY6EN SENSOR M218/0048 CENTER SECTION
DATA FILE *:
RagIon I
0.0
LOWIKINUHO INtmit <•«
LEFT HAND CIRCUMFERENCE (FACINB FRONT) AREA #4
Ha port f;
looa-osss
SURFACE SCIENCE LABORATORIES 1106 Ctartaiton Rd Mountain Maw CalVomla S4043 (4l&)MZ-0?ar 8p*ctrura «:^2_
Figure 1-18. ESCA Spectrum of Oxygen Sensor A218/0045 from 0 eV to 1000 eV (Location 9)

-------
I
ISJ
O
JL'ftay Powm 	
VERTICAL ICALC
2000
COCMTt/IMCH
2.0
Opwih
MJA
Spot Size: BOO u
ESCA SPECTRUM
Resolution: 4
(iNoutaiMiiiav
urn* BJHOINO IN1MOV l«Vl
OXYGEN SENSOR #A218/0048 CENTER SECTION
LEFT HAND CIRCUMFERENCE (FACINBFRONTj AREA #4
LOW1M UHDIHa IIIIK11 |«V)
1008-0086
fUpon •:
SURFACE SCIENCE LABORATORIES 1206 ChMuton Hi Mountain Vtew Calami* 04043 {4 IS) SSI-em toactfuin »: /* €A{MSiSQ
Figure 1-19. ESCA Spectrum of Oxygen Sensor A218/0045 from 0 eV to 510 eV (Location 9)

-------