-------
v\t* Cf\\_ENC5 K)
cH ° At • w
t = -t +dt
T* - T*+&t
<^°l ( T*
j > .qqq
T*»T*-I
^\g.c(r \ ^\es
4 februVy WL-
vvo
ID- L
10.
IM
~~T
TM = 1
¦ t -
ir?^r+i
¥12-
ro-rtii-i
IM = J_M + |
£eA(
IMTV\
-16-
-------
s(a\>ix4"'n2- ^L'N Hut
-------
Fm.no"f!oit &MAT
-18-
-------
¦Fu.cA~i o vi AM/VT
(i, It,**)
-19-
-------
Users' Manual
-20-
-------
The Use of the Digital Program
The program has been written in FORTRAN IV for use on the IBM 7094 coupled
with IBM 1401 printer ( or any other printer capable of recognizing the standard
carriage controls). NAMELIST has been chosen as the input mode, providing the
user with an extremely flexible input format.
Figure 1. A Typical Deck Make-up
-21-
-------
The deck, when submitted, consists of 6 groups of cards, under the IBSYS
System, Version 12, as used at the National Bureau of Standards Installation
in Washington, D.C. Their description is as follows (see also the sketch):
1. The first card must be a $JOB card of the form
$ JOB
16
22
21
22_
TASK
TYPE
NAME
TIME OUTPUT
where:
NAME
is a 5 digit task number
is a 2 character symbol which is PR for Production runs,
AS for Assembly or Compilation (i.e., when the source
deck is present).
is 6 characters of user's last name. 6 characters must
be used; blanks, of course, are considered as characters.
TIME is approximate time in minutes that the run is expected
to take, Allow approximately ISO time cycles per minute
of machine time + 1 minute for loading, etc.
OUTPUT is an estimate of number of lines of output expected
to be printed. Total number of lines is evaluated
from;
OUTPUT
(Ns + 4)° Ki + 4N£
where Days denotes the total number of days at which
th6 problem is evaluated; Ns denotes the number of
estuary sections; and is print control at day i
( 0 if no print, 1 if answers only, 2 if inputs and
answers are requested for the output).
2. The second card of a run is a $EXECUTE card of the form (assuming the
standard subsystem):
1 16
$EXECUTE IBJOB
-22-
-------
3. The third card of a run is a tape assignment card. Since no scratch
tapes are used, the cards assumes the form:
1 16
$IBJOB MAP
4. The next group of cards consists of the program cards, either the
source deck or the object deck:
a) The source deck consists of the Fortran statements, which will
be compiled and an object deck punched at the time of execution.
Care must be taken that the TYPE on the $JOB card was specified
as AS if the source deck is used.
b) The object deck (binary cafds), which have been punched previously.
A numerical sequencing of these cards is found in columns 73-80
for easy identification. A $IBREL card preceding the object deck
speeds up the production but does not otherwise alter the program
flow; it is strictly optional.
5. Following the source or object deck is a $DATA card of the form:
$DATA
6. All data, consisting of 1 title card and 3 NAMELIST groups, follows
the $DATA card. The actual input parameters as well as the formats
used will be discussed in detail.
Compilation of Data
Four cards ( and their continuations) are used to initialize each run; there-
after, each day ( or other chosen unit of time interval) is defined with one card
( and its continuation). The four cards are:
1; Title card, consisting of up to 72 alphameric characters, including
blanks. This card, although it may be left blank, must always be
physically present.
2. Namelist RIVER,
3. Namelist INITL, and
-23-
-------
4. Namelist TIMEF.
Namelist RIVER contains all parameters defining the estuary itself. The input
symbols are defined:
NSECTS
VINV(i)
CQO(i)
CQl(i)
CQ2(i)
CQ3(i)
KR
CR(j)
KC
CC(j)
KD
CD (j )
KL0,KL31
= C
= C
= C
= C
1
Vi
QOi
Qk
Q2i
Q3i
= Total number of the estuary segments (for the Delaware
Estuary problem this value is prestored as 30, and need
not be specified).
= Inverse of the total mean volume of section i, assumed
to be zero unless otherwise specified (see Eq. 3),
= Coefficient of the constant term in the flow polynomial
in section i, assumed zero unless specified. CQO is
equally acceptable as input.
<= Coefficient of the first degree term in the flow poly-
nomial, at section i„ Zero unless specified.
= Coefficient of the quadratic term in the flow polynomial,
at section i, assumed zero unless specified.
= Coefficient of the cubic term in the flow polynomial,
at section i, assumed zero unless specified.
= Order of the polynomial defining Cr as a function of T,
assumed one unless specified.
Polynomial coefficient of the T^ ^ term in the polynomial
expression defining Cr, all assumed zero unless specified.
= Order of the polynomial defining C , assumed one unless
specified.
J-l
Coefficient of the TJ term in the Cs, polynomial * All
coefficients are assumed zero unless specified.
Order of the polynomial defining C , assumed one unless
specified.
Coefficient of the T
unless specified.
j = l
term in the polynomial; zero
Order of the polynomials defining the boundary conditions
of D„0„, at the upper and lower boundaries of the estuary,
respectively; both assumed to be one unless specified.
-24-
-------
CLO(j),CL31 (j) = Coefficients of the term in the D.O. boundary
conditions' polynomial, all zero unless specified.
KC0,KC31 = Order of the polynomials defining the boundary
conditions of B.O.D., at the upper and lower bound-
aries of the estuary, respectively, both assumed
to be one unless specified.
CCO(j),CC31(j) = Coefficients of the ^ term in the B.O„D, bound-
ary conditions' polynomial, all zero unless specified.
It is to be noted that certain keypunch errors have been anticipated and a
remedy pre-programmed. For example, KLO.or KL0 are equally acceptable. Further-
more, unless specified, the polynomials defining the f(Q) and f(T) are always
assummed to be 0.
Namelist INITL defines the initial condition parameters as follows:
C(i) = C^ = D.O. (dissolved oxygen content) in section i.
L(i) = ^ = Bt0.Da (bacteriological oxygen demand) in estuary
segment 1,
DATE
MONTH )
YEAR V
DAV J
INTRVL
Date at the start of the study, i.e., the initial time.
The date is entered as three consecutive integers,
separated by commas. For example, March 12, 1965 is
entered as DATE = 3,12,1965, (or, in lieu of 1965, 65
may be used). This entry is strictly optional and its
absence will not alter the computations in any way.
No decimal points are used.
Optional initial date input. The above example would
be inputed as: MONTH = 3, YEAR = 65, DAY = 12, ( No
decimal points are permitted).
Integer, controlling the printing interval. Unless other-
wise specified, the input parameters as well as the final
answers are printed out at the end of each chosen time
interval. This printing can be suppressed or modified with
each set of time-dependent parameters, or, if so desired,
INTRVL may be used for the automatic print control as
follows; it is to be noted that this entry, if specified,
takes precedence over all future entries of print control.
-25-
-------
1) An integer (i) signifies the answers and the input
parameters will be printed every i days;
2) A negative integer (-1) omitts the input parameters
but prints the answers every i days.
Unless specified, this entry is pre-set to 1. No decimal
points may be used.
Namelist TIMEF defines the time dependent parameters of the estuary at the
initial time tQ, as well as at the end of each time interval. These namelists
constitute the bulk of the input data. It is to be noted, however, that certain
parameters may remain constant for a given number of time intervals, in which case
there is no need to repeat those parameters that have not changed - the computer
is instructed to retain all time-dependent parameters until they are specifically
changed, after which, the new values are retained. The variables are defined as
follows:
TIME = t = Time, in days, not necessarily an integer. Unless other-
wise instructed, the time interval is automatically set
to 1 day. However, if changed, the new value remains
in effect.
NSTEPS = Number of integrating steps within each time interval.
Maximum number of steps permitted is 40. No decimal
points may be used. Unless otherwise specified, this
value is taken as 10.
TC = T(°C) = Temperature, in degrees centigrade.
TF = T(°F) = Temperature, in degrees Fahreneit. It is to be noted,
that only one of the above entries needs to be defined.
Q(i) = ^ = Flow (discharge) of the estuary between segments i and
i+1, expressed in second-feet. Total number of entries
must equal to (NSECTS+1), However, the computer is in-
structed to sense if the number of entries equals the
total number of sections in which case it assumes the
flow to be constant in segment i.
ALPHA(i) = = Advection factor between sections i-1 and i.
PHI(i) = = Advection factor between sections i-1 and i.
E(i) = = Eddy exchange coefficient between sections i-1 and i.
J (i) Ji = Forcing function in section i.
P(i) = P = Other sources and/or sinks of dissolved oxygen in section
i.
-26-
-------
PRINT = An integer controlling the printing of the answers at
the end of the time interval, defined:
0 ~ No printing of any kind;
1 ~ Printing of input parameters and final answers;
-1 Printing of final answers ofily.
TIME = t = Time, in days or fractions of days (therefore not necess-
arily an integer), at which the time-dependent functions
are specified. Unless otherwise specified, the computer
is instructed to increment in full days.
DTIME = At = Time increment, in days or fractions of days. Unless this
value is specified, the computer is instructed to do one
of the two possibilities:
1) If TIME has been specified, DTIME is calculated
from the current and previous values of TIME;
2) If TIME has not been specified, the time increment
is assumed to be 1 full day.
RECYCL = A logical constant (specified as either T or F, meaning
true or false, respectively), whose primary purpose is
to enable the user to stack more than one run back to
back. If only one particular problem is being run, this
entry may be omitted entirely, as it will not alter the
program flow; however, if more than one problem is to be
run on the same deck, a simple namelist input containing
only the RECYCL specification of T is necessary between
the problems. An illustration (see Fig. 2) will best
describe the deck-make-up in that case.
The input in the form of a NAMELIST provides the user with extreme flexibility
without undue emphasis on format requirements. For full description of the NAME-
LIST usage, the reader is referred to the IBM manuals (IBM 7090/7094 Programming
Systems or IBM 7090/7094 IBSYS Operating Systems). However, the following hints
may prove to be sufficient to successfully run the program:
1. Certain format requirements must be satisfied, as follows:
a) Only columns 2-72 may be used; columns 1 and 73-80 are best to be left
blank. However, if desired, columns 73-80 may be used for card identi-
fication or sorting purposes - they will be ignored by the computer.
b) Each namelist begins with a dollar sign ($) in column 2, followed
by the namelist name, and followed by at least 1 blank.
c)
The namelist is terminated by a dollar sign ($) in any column 2-27.
-------
d) All entries are separated by commas; any order is acceptable.
When more than 1 card is used, the last entry on the card must
be a constant, followed by a comma.
e) Blanks may be used at will - they are ignored by the computer.
However, blanks must not be embedded in a constant or repeat
constant field - e.g., 17..E6 or 31* 12.0 are not permitted.
f) Exponential notation may be used for large or small numbers,
i.e., E6 or E-6 denote 10^ or 10"^ respectively.
g) If the decimal point is omitted, it is assumed to be at the
extreme right.
h) No decimal point may be used in the integer entries (NSECTS,KR,KC,
NSTEPS, DATE etc.).
f) Either T and F or .TRUE, and .FALSE, may be used to specify the
logical constants.
Subscripts are not necessary in the input if the information flow begins
with the first item in the array. The following two examples will pro-
duce identical results:
T = 33.,34.,35.,37.,
T(l) = 33. ,T(2)=34. ,T(4)=37. ,T(3)=35. ,
For repetitious input, K number of constants may be entered as K * C;
for example
T - 37.,38.,38.,38.,38.,39.,
may be represented
T = 37.,4*38.,39.,
Whenever any entry is omitted, the computer is instructed to retain the
previously defined value of the parameter. This feature can be utilized
advantageously in preparing the time-dependent properties.
The title card and the three namelists must be in the order specified.
A sketch below will illustrate the complete data deck-makeup.
-28-
-------
Figure 2. Typical Data Compilation
-29-
-------
Appendix I
Program Listing
-------
i or r - D jd 2 i 1 o I i i-<; c. r~
Olvl:*tVvi / Cv-O n! I ^/ I I T" | lZ_ C 12) />lo i , M CD — Q
0 i * i M O N / 3rjl^i-'j/V I C 16-) i ic L t ^^^ )
COMMON /iiPGLYo/KK ( 7 ) ,CC(77)
COMMON 00(15908)
initialization and clearing of core
KiSTEpS = 10
1 DO 5 1=1,160
3 V I ( I ) = 0 •
DO 10 I = i » 7
1 C •
h^UlN - 0
yJR I Tc. TH; GcNtRAL 1 1 T|_E
;-P. I TE I 6 , S- )
CALL PRELIM
A1 1 v-YCLc I iUN )
GO ' 0 1
5-0 rO^iwV ( 1 t-i i /'///////////<-2>. i 1 6 ( 2ri*&)//53X , 1 4nD ECS I I//42X»36
1 riDi^i-A t'. ^.IjToAS; COr'iPriiin^Nj) 1 VE STUD V/42X , 36HD 1 G 1 TAL COMPUThri S I M
2DLAT I ^.sj PROGr?A;".';/42X , 1 'JHi-JfV i S I ON 2 , i 5X , 1 1 HAUGU5T 1 965//42X , 1 S ( 2ri--*-)
3/// )
END
-------
J r
i
""
- r% "J. r
r Ji\v i i v/iN
L_)
- A ^
T
C 2 i
*
*_ 2 n c_
3 i i i >.
j j i i * v-.j
0 i C3 ( L J ) , -J J ¦»
i ^ 4_) i 1 ^ i X
L_
< X
L_
( l ^ )
*
Y t_ ^ •
l ; l ^
) * ,\LkJ < XL (
1
)
• YC
J -» YC
( ; ~ )
v 01"»;v (v_>» i ni /
5r
f < ^
r-'
^ ~ V l
\
32 ) ~
w v.* \ —J
ci ) ~ C Q i \ 32
)
*
c
G2 (
—>2 ) *
CLj — ( 32 )
~ FL C -ic- » j ) i
1 C ( 32 ) i 2:_
C 32 )
*
< 3
) * Z4
C 32 >
— /
jr
ON
Li /' « <
i
'. jj i
3 ) * T i
ez. ( % J> '/ i i
T
'J
<
j-j »
j
vji
( J
Cl 1
s-
i )
«
A L P H A ( 3 2 <
Lt 1 « 2 ) » r- n I
(
2
1 —t :
- 3 ) i
d ( -^2 » ¦- i
i i _ J i 3 2 * - i *
i a ) t r' { J c »
H i
~ 2
)
* T I M
V
4 1 , 2
) r" ( h
i • 2 )
1
I =
J =
X =
M =
I I -1
K.v
!F
;
M M.L
T • 3 ; iv*i
= -
i r
i • o i
• i ; 1 r
t : :3- I )
Z 1
-
X^_ J
JC
i
^ •_ --
i ~' :< A L-
i £
^ i
=
•~
Xl_ \ U- ^ 1
\ J * .*v ) -X- Vr
3 N_/
L - i
% Kl)
-
¦j + '-l) I L ) a i (3
, K ) L
GO
r
u 30
25
3
=
YLo
30
2
7 L =
i 1 KVL
27
Z o
-
23 +
N"L ( L. ) *T
\ j *X)
3v_.
I r
V
|V|,Y| «
! • ^ ) VJnJ
TO 33
v_w v:
-
^ \ I
1 J » IV. )
v' —
i • / ¦.'
i( i ) +
3 < I ; rC.
r t i
i i --1 )
-= «ALr?
H A { I « 3 ^
O -w/
1"
\ h
1 ~ 33 ) *
:^i03r, 0
3 i
i i d
;
I * i'i )
- i i rn
i \, i • J »i\
i i wJ
v
I i :¦¦)
- ( c_ ( I
¦+* 1 * J 1 IV. )
3 0
3 L3
3 3
i 'i' 4^
\
i » i'i i
- i ( Pn
I ( i 1 J « .V
i
.<) -
( I -r 1
• J t X ) ) /
V
~t "i" 3
C
1 ii*')
= ( K i
¦+* 1 4 *J « K )
3 b
3 y. A
SET
i
L-
—; i s
3 ^ i » J > X
> + I I i. ( I
I ) * -1- C L.2 i I ) " ( G... 2 ) +Cc»3 ( I ) ( Ovj":> """2 ) *GiCv
'> Lw ^ i * J $ K ) ( I i J i < ) ) / v
wL.i-'ri'-i ( 1 + 1 ( JiM ) •'¦<• jO-d I i t J i !\ ) -c. I 1 + 1 * J < ¦< ) ) / V
t-i 1 { I r 1 , J , i< ) i- ^ J j / V
vj.! I i « ) \ ) - AlPHa ! 1+1 « J «i^. } "-'v* ( 1 + 1 i J i X ; ; -l: l I i J i
Hi ( 1+1 ( ( 1 t 1 ( J i is ) ) / v M
» m ) i. 1 ¦; , , 2 i I t '•.) 'D ) *¦/_£.+ I i 3 i I < i»'i) *Zj 1
N>
-------
1 »—*H1 i \ rti'lA i L I o i , REr-
~ O'N L- I I i M M A [ lZl,Z^*^l~>*il*0>J,l^i^l,!*1M)
C Oi'iMOiN /'3COi^ T 3/ r I TL E ( 12) »ivl i , i\S,H»i
-------
S I BF-" 1" C CYCLE LIST* REr
SU3R0UT I Nc. CYCLc (NRUN)
C OMMON Sd. C ON TB / T I T|_t. ( 12) i NoT < NSlv, I o i H i KPR INT , MODEQ
COMMON _/2HR0PB/\/ 1(32), COO ( 32 ) , CO I ( 32 ) , CQ2 ( 32 ) , 003 ( 32 ) ,FL(32,3) ,
1C(32),lL(32),G4(32),Z4(32)
COMMON /o^-ALUo/ I ijATiz ( 3 ) , i t\T r^VL i KON i DT I M
COMMON 00 i 32i41t2) iAA(32 , 41 * 2) , PH(32i41 <2) ,EE(32 , 41 i2) , RJ(32 , 41 i2 I
I iPPI 32i41 i2) ,TIM(41 ,2) , T T ( 4 1 ,2)
INTLGER PRINT , Pr RE 0
LOGICAL RECyCL
REAL J
IMdisli I ON PR ( 32 , 6 ) , 1 ( 32 * 6 ) , ZZ2 ( 32, 6 ) , DZ2 (32,6) , 0 ( -'2 ) , ALPHA ( 3-1G) GO To 55
Ir < MOD ( NR'JN- 1 , I Aui ( PFREO ) ) • EG • 0 ) KPR I NT = PFREO
55 Ir (TC•GT•— cjC'_ > ) TEMPC = TG
I*~ ( T r . GT ) rE,.;PC — ( T r ~ 3 2 • ) /' i »3
T I MdC — T I MPS + LicLT I M
TEMPR = TEMPC
T I MPR = TIMclG
TC — — i
-------
TF = -2 wv
56
58
60
65
75
56 » 58
• ) MODEQ =
N S 2 = N S c. C T ', + 2
IF (NPUN-2) 92
IF (Q(N31)tcQ.
TEM1 = TEM2
T1Ml = TIM2
DO 60 I = 1 »i\J 3 2
C( I ) = U4( I + l )
-L ( I ) = Z4- ( I + i )
DO 60 L-1<6
Z21(I.L) - ZZ2(I,L)
0c.l = i • /Float i n^TcPS j
7 EM2 — TLi'iPC
T 1 'AZ = T 1 MEC
DO 75 I -i « NS2
00 7 0 L=1i6
ZZ2 (Iil_) = PR(liL)
i r ( L • c.Q • 1
DZZ C I
GO ( I
AA ( I
HH( I
EEC I
rc O C 1
PPC I ,
T I .V] C 1
) ZZ2(IiL) =
rL) = (ZZ2C i ,L)-Z;
1 » 1 ) = ZZ1(I»1)
1) = ZZ1cI,2)
1 ) = ZZl C I 15)
l ) = ZZl ( I .4 )
1 ) = ZZl ( I to)
1) = ZZlCI,6)
1 ) = T I \A 1
i T ( i i i ) - T ci. 1
L^T I ,-i — ( t I K2— i I .m 1 ) JnL
0 1 — I T.',2 — Tw.'-'i 1
H = OT I ;a
N ~i - N j i
N TP = NT+ i
DO 90 N= 2» N TP
TIMCNi1) = TIM1N-1,1l+DTI
T T(N t 1 ) = TT(N-lil)+OT
T I M ( N - 1 i 2 ) = T 11"'* (N — 1 ^ 1 ) + •
T T : N— 1 id.) — T T C N — 1 * 1 ) + • o
. NS2
^ GOC 1
Z^_2( I iL) '}o64>
i ( I i L ) ) -»-DEL
i -
j i 1
m « 1
O0 SZj
lo(Q ( I <
AA < 1 ,
PHI I « i\i » 1
EEC I «N « 1
Kjl I I iM 1 1
N » i
90
PP ( I
O C I
i-y A C I
Pn ( I
dc( I
Pj ( I
PP ( I
* i — 1
< IM — L
% ~ i
1 i M 1
i: J -1 .2)
1 i si 1 1 2 )
. 2 )
»c. )
* 2 )
i 2 )
AA ( I
PH C I
EE ( I
PJ C 1
PP C I
— VjWV>
,iM- 1
* n- i
* i\i— i
«iM - 1
* i
1 1
( i * N —
^^ ( 1 1 in —
r^H ( I • t\-
i— c. ( I * t\ —
< I * I -J"" 1
PP ( I * iM- 1
-------
IF (NRUN.EQ.2) CALL RUNKuT (.TRUE.)
CALL RUNKUT (.FALSE.)
GO T O 50
calculation of FIRST CyClE
92 NSl = NSECTS+1
TEi'12 - TEMPC
TIM2 = T1MEC
DO 95 1=1«NS2
DO 9rs L= 1 i 6
ZZ2
-------
SI orTc runkut list.ref
S'JoROUT I Nc. RUNKUT ( PREL )
COMMON /BCONTb/TI TLE (12) . NSTEPS . N5 . H . KPR I NT . MODE'J
COMMON /BPROPb/VI (32) iCOO(32) .CQ1 (32) .C02(32) iCQ3(32) .FL(32.3) .
1C(32).EL(32).U4(32).Z4(32)
COMMON Q(32 >41 . 2 ) .ALPHA(32.41 . 2 ) .PHI (32.41 .2) «E(32.41 .2) .EJ(32.41.
12).P(32.41.2) .TIM(41.2) .T(41 » 2)
DIMENSION VOL(3C)
DI MENS I ON UO(32) .ZO(32) .UPO(32) .ZPO(32) ,U1 ( 32) .Z1 (32) .UP 1 (32) .ZP1 (
132).U2(32).Z2(32),UP2(3^).ZP2(32),U3(32).Z3(32).UP3(32).ZP3(32)
LOG I lAL PRz.L
NS1 = NS+1
C RUMSE-KUTTA INTEGRATION - SET-UP B
NT = NSTEPS+1
IF (PREL) NT = 2
H2 = .5*H
HSIXTH = H / 6 •
DO 250 J=2.NT
N = J— 1
IF (PREL) GO TO 202
IF (J.GT.2) GO TO 70
JO 65 1=1.NS
UO(I+1) = C(I)
FL(I»1) = EL(I)
65 ZO( I + 1 ) = EL( I )
GO TO 30
70 DO 75 1=2.NSl
FL( 1-1 .1 ) = FL( I- 1 .3)
UO(I) = U4(I)
75 ZO(I) = Z4(I)
80 DO 85 1=2.NSl
85 ZPO(I) = 3MAT(Z0(I-1),Z0(I),ZO(1 + 1).I,N,1.1)
DO 90 I=2.NSl
90 Z1(I) = ZO(I)+H2*ZP0(I)
DO 95 1=2.NSl
95 ZP1(1) = SMAT(Z1 ( I-1 ) ,Z1 ( I ) .Z1 ( 1 + 1 ) . I .N.2.2)
DO 100 I=2.NSl
IOC Z2(I) = ZO(I)+H2*ZP1(I>
DO 105 I=2,NS1
105 ZP2( I ) = BMAT(Z2( I - 1 ) .Z2( I ) .Z2( I+1 ), I .N.2,-2)
DO i10 I=2,NS1
110 Z3(I) = ZO(I)+H*ZP2(I)
DO 115 I=2.NSl
115 ZP3( I ) = £MAT(Z3( 1-1 ) ,Z3( I ) ,Z3< 1 + 1 ) , I ,J, 1 ,3)
DO 120 I=2,NS1
Z4(I) = Z0(I)+HSIXTH*(ZP0(I)+2.*
-------
125
DO 130
I = 1 , NS
130
F L ( I i 2 )
= .5-"-(FL( I * 1 )+FL( I
,
3 ) )
SET-UP
a - runge-kutta P-:T
E
c-rat
I ON
DO 16J:
I = 2 « \'S 1
16 5
UP-(I)
= AMAT (UO( I - 1 ) ,UO( I
)
, u: (
I + 1 )
,
I
»*1^1)
DO 1 70
I = 2,NS1
170
U1 ( 1 ) =
UO(I)+H2*UP0(I)
DO 175
1=2,NS1
175
UP1(I)
= AVIAT ( U1 ( I - 1 ) , J 1 ( I
)
, U 1 (
I +1 )
,
< N i 2 t 2 )
DO 1 80
I=2,N S1
180
U2(I) =
UO ( I ) +H2-:<-UP 1(1)
DO 185
I =2,NS1
1 85
UP2 ( I )
= AMAT ( U2 ( I - 1 ) , 'J2 ( I
)
, U2 (
1 + 1)
,
I
, N , 2 , 2 )
DO 192
I=2,N S1
190
U3(I) =
UO ( I ) +H-*UP2 < I )
DO 195
I =2»NS1
195
UP3(I)
= AMAT(U 3( I - 1 ) , U 3 ( I
)
, U3 (
1 + 1 )
,
I
, J , 1 , 3 )
DO 20C
I = 2,MS1
2C0
U4( I ) =
UO(I)+HSIXTH*(UPO(
I
) +2.
* ( UP
1
(
I)+UP2(
optional printout
K = NT
IF (J.EO.NT) GO TC 210
GO TO 250
202 K = 1
GO TO 220
210 CALL CALEND (J)
IF (KPSIMTj 230,250,220
220 DO 222 1=1,NS
QQ - G( i 1 J t 1 )
222 VOL(I) = 1 ./V I < I )+C00( I )+CQ1 < I )*OQ CQ2 ( I ) ( CG **2 ) +003 < I ) * ( 00**2 ) *C
1 Q
CALL CALEND (1)
WRITE (6,805) T (l< , 1 )
M = 0
,N = 1
22 o WRlTb (6,810)
WR I TE ( S , £ 1 1) VI i N , Q I 1 , !< , 1 ! t ALPHA ( 1 , K , 1 ) , PH I t 1 , < , 1 ) , E ( 1 , K , 1 )
DO 226 I =1 ,NS
N = I + 1
226 WRITE! (6,811) I , N , Q ( N , !< i 1 ) , ALPH A ( N , K , I ) , PH I ( M , X , 1 ) , E ( N , K , 1 )
1 » I , VOL ( I ) , E J ( I , , 1 ) . P ( I »'< , 1 )
IF (PREL) RETURN
230 CALL CALEND (2)
WRITE ( 6 , 300 ) (I,U4-(I + l),Z^l(I + l),I = l,NS)
250 continue
RZT'JR.s!
oo
-------
3CC ~OP;-i,A-T ( lH:t:^X<:5HFPi 1
1 7HwiCT I ON w.1 • w • * 1 ^^ * o• — • X/ ( * -i w * * r' — i i • "J < — ^ —- • — ) ) ^ _ ^
605 FORMAT ( 1 HO < c:2X i 1 6H I NP<^ : ,-jA^A;,l_ r[_K^//' -CX * i j.-, 1 Li!'!? -ir?H i !JRc. = F~ 3 • — * 2n ^
a l o Format ( i ho , i ?x« ihq ~ i i ;•; < 5Halpha , i ox* jhph MZXii '-ri•
1 1 2X * 1 HV* 2AX i lHJi 1 3X « lH.^// )
S 1 1 F O^N'iAT ( I 5 « i H— * I 2 i 2X * 1 P 4 E 1 ^ • 5 i 19* 2X i 3'n 1 s- • )
END
i
V0
-------
3FTC PRELIM L I 5 T i REF
SOSRO'JTINE PREL I y
COMMON /3C0NTE/T I T:_E ( 12) ,NT,NSECTS,H,KPRI NT,MODEO
COMMON /3P0LYB/KR , ; , CCO< I 1 ) ,C331 ( 1 1 )
COMMON /3PR0P3/VINV(32)iCOO(32),CQ1(32),CC2( 32 ) ,CQ3(32),FL(32,3),
1 C ( 32 ) , L ( 32 ) ,'Jh(32) , Z4 ( 32 )
COMMON /BCAl_D3/ DAT-( 3 ) , ! NTRVL . KCN , D T I M
COMMON Q(32 , 4 1 * 2} ,ALPHA(32i41 ,2) , CHI (32,4 i , 2) iE!32,«1 ,2) ,EJ < 32 , 41 ,
12) ,P;32,4 i , 2 ) ,TIM f 41 , 2 ) iT(41 ,2)
integer date,month,year,day
-QUI VALENCE (DATE,MONTH) , (DATE(2) ,DA r) , (DATE(3) ,YEAR >
REAL J,L,<
DIMENSION CLO ( 1 1 ) , CCO< 1 1 ) ,COO(30)
EQUIVALENCE KLO,KLO) , (ClO,CLO) , (KCO,KCO) , (CCO,CCO) , (CQ3,CGO)
NAMELIST /R I VER/CGiO , COO , CQ 1 , C32 , CQ3 , NSECTS,VINV, KR , KC , KD , KLO *
1KL0,KL31,KCO,KCO,KC31,CR,CC,CD,CLO,CLO,CL31,CCO,CCO,CC31
NAMEL I ST / IN 1 Tl_/C ,L , DATE , MONTH, veAR, DAY , I NTRVL
NSECTS = 33
INTRVL - -1000
READ (5,SCO) (TITLECI),I=1,12)
DO 5 1=1,3
5 DATE( I ) = 0
INTRVL = 1
KCN = O
READ IN POLYNOMIALS OF R, CS, D
READ IN POLYNOMIALS OF LO, L31, CO, C31
MODEG = 2
READ (5,RIVER)
8 NS1 = NSECTS+1
VjRITE ( 6 , S C 5 ) (TITLE( !), 1 = 1, 12)
DO 10 1=1,10
II = I -1
10 WRITE (6,307) I I ,CP; I ) ,CC( I ) ,CD( I )
.'1R I i E ( 6 , 3 3 1 )
DO 20 1=1,6
II = I-i
20 WRITE (6,832) M , C'_0 ( I ) , CL J 1 ( I ) * CC (I),CC31(I)
•A'R I Te (6,870) ( i I TLcl ( I ) , I = 1 , 1 2 ) , ( I , V I NV ( I ),C00( I ) » CO 1 ( I ) , C02( I ) , CG
13(I),I=1,NSECTS)
R M i N INI i I AL 11 T I jMw D • O • AND u • O • D •
READ (5,INITl)
CALL CAlEND (-1)
-------
AG WRITE !6iS:0)
-51 i c. i 6t 3i-9 i (I*C(I)iL(I!i!-liK-:3E0T£)
RETURN
SOC FORMAT (12A6)
305 FORMAT ( 1H1 ( 24Xi i 2A5///--9X * 23HP0LYN0M I AL COEFF I C I ENT5//46X » 1 HR » 1 6X
liiHC(S)il3>;,l HLV/ )
SOT F ORMAT ( 32x » 2HC ( « I 1 i 2H ) » i P5c. 1 7 • 6/ )
BOS FORMAT (1HG //5 1 X » 1 3H I N I T I A|_ CONDITI0N5//42X* 17HSECTI ON
1 D.O.«:CX»5H3.0•~.//)
309 FORMAT (146*1PE17.3»E15.5)
33 1 FORMAT ( 1H0///46/ , 2H!_0 , 1 5X ~ 2HL31 , 1 4X , 2HCC * 1 5X, 3HC3 1 // )
332 FORMAT (32Xi2HC( , I 1 »2ri) , 1P4E17.5/)
870 rOR^IAT ( 1 H 1 , 24X i 1 2 A6///3 i X i 1 7HV0L^ME PARAMETERS/// 1 3X i 7H » 9X
1 i3H!/Vd 1X<5HCQ( 3) , 1CX.5HCQ( i ) , 1 OX,5HCC t 2) * 1 OX,5HCQ(3)//( I23,3X» IP
23E15.5) )
END
-------
:o-TC GALEND LiGT-RE-
J NZ C AG EN 3 ( .ji'-CiJl» 30< 3 i * j 1 1
1 F (l<5R ) 1 C 1 33 , 1 1 0
1 C T I M = o ,
T C'N-ic_ — 0 .
1-" iI^ATE(2).^G.O) ;,n jN — ¦ ~ 1
IF < IDATEJ3) ,LT. 1CCG j I 3 A !" E ( 3 ) = i 3 " T E ( 3 ) f 1900
ID = I GATE;2)
IM = I DATE( 1 )
IV = I DATE ( 3 >
oG To i10
50 DTIMD = DT I MitFLCAT (\T )
I I !<"i = T I Vi + DT I MC
TONE = TC.NE+DTIfO
IF (TONE.LT..999) GO TO ICC
TONE = TONE-i.
IF t I D-NDAYS ( I M ) ) 32,35,41-
32 ID = ID+1
GO TO ICC
35 IF « MOD ( I Y , 4 ) . EO. 0 . AND. I M. c.0 . 2 ) GO TO 32
40 ID = i
IF (IM.EQ.i2) GO TO 50
IM = Iv+1
GO TO 100
50 IM = 1
IY = IY+I
100 RETURN
110 IF ( i15,120,120
115 '/jPITE ( 6 , 80 1 ) ( T I TLE (I), 1 = 1, 12), TIM
RETURN '
1 20 API Te ( 6 » SC"_' ) ( T I TLE (I). 1 = 1. 12), T I M , ( MONTH ( I , I ) , I ~ 1 , 2 ) , I D * I Y kj
RET'JRN
800 rORMAT ( lH1 ,24X, 12A6///4 4X« 3HOAY,F7. 2 , 4 h , •2A3 1 12, 1H, 15)
30 1 FORMAT i1H1,24X,12A6/// 56X,G^DAY,F7.2)
END
¦
-------
Appendix II
Sample Inputs
-------
3 3 A i
3£ LA
.-.¦ARE
ESTUARY £TXY
- r
"1 2 ^
- '-1
( 1
o
2 ,
:
_2,
TE
r-'
2 * A ^ 3 6
£K I
3£R
V I N
V -
/
~T •
1 323-
¦J? i 2
•
74 7Z-C9,
2
• • v—2
-
1.G60Z-09
4 ~ •
i "I
¦ - „
/ i
1
•
3 232 3 ^
ci •
i 9BE-
j9i :
•
S-B-iZ-Cv 4
1
• 3"?6cl
-
39 ,
* i 7 1 c^. ~~ •j'-zt
, 1 .
d 8 7'I
-• 0
9,
1
•
527E-C_i
i •
4 4 1 l-
: 91 i
•
22Z~~9 1
f
• 32C_
-
1 3 *
4.930Z-13
1 ^ •
iBOE
- i
- 1
•
i 7Ju* i-«
—j •
7 1 C-Z-
1 C i 3
•
4 1-2-1 0 1
.61 OZ
..
" .J •
6.3503-i 3
rr
» — •
a o
- 1
-w
•
— B C E — i C %
—• •
3 .£3 J* l_ ~
10, 5
•
2 Z — 1 0 «
4
• S7CZ
-
2 L %
4.4ZOE-I 3
p. CO ~ c
- i
^ •
•
36C2-13«
,s- 763 4 , 2* 772
5.333
z :7
i •
2
9 3!
4.770
'£ 08
4
C3 •
2
7' •
1.14 0
E 0 9,
. •
P
56;
1 .091
£ j9,
l •
2
33;
3 . 1 3c
e. ^9
1
3 •
2
— —r ;
2 . i 5 3
£ •-'9
4
= ju
-:{¦ 0 . ,
T _!;•!£ F"
TF =
7
?.6
4
= i . i ,
3 -"¦ 3 ,
• 3 4
= 6-^6 "7
3 J , ^
I
I 0 4
*6:
T I : 1EIF
Tp =
7
9 • 7
4
- 1 . ~b ,
3* ^ ,
• O 4
a
< ^
= 6 3 9
CJ -> *
3
n*G 4
-
*6'
T ! [CF
TP" =
7
9 • 7
4
-1.5,
3 ^ J •
w"
• 64
4
.1*
= 6-K-69
0 s • ~ o
2 3 •
ji
T IM£~
TF-"-
T
9 • 7
4
- Oe ,
3 •
_ . i •
9 , -i .
r\
2
•J
Q
4
2
•
1 ZOZ
r- 0
- <_j
4
, ~
•
-^702
r- -?
^ •_•
4
7
•
9^32
^ 0
v_>
4
Li
0
1*
/ ^
Q
4
9
•
3 7 0E
^ Q
4
1
•
r\ tr, p it
G 9
4
1
•
1 23E
09
4
1
~7
9
4
3
•
<^60E
OB
4
a
•
3 6 G Z
•-» 0
4
C;
•
7 O cr
^ R
4
j:
2
L_
z)
4
2
•
623E
G 9
4
ti
•
3 1 32
09
4
3
•
C53E
0
4
c
2
0
9
4
3
•
7C4 £
09
4
•
706E
r\ lj
4
£
•
1 9 0 E
09
4
— ^ * ¦. j j r/j i -* 6 0 9 •-< , 4 "3 - r. < ii Vb , 4 "'<¦ 5c 0 1 , £"70^7 , 6-«- 74 26 , ,
E
STii'/^F TF=79.7,
¦J - 1 m o * j «¦ 0 , J >6»4 ¦>'¦- * 1 • : t 2 ' ^ i 3 i 6 i ^ , 2 , 2 _'f'- , 1 i:ji6'C *
G = 6 •«- 6 9 0'. • i-iEBD • J <5C i -> * 4-:f 6223 , 561 3 , -¦':'"56vi i i-"-S930 i 3 >f ~ 1 99 , 2¦>*¦ 73 1 9 i
STTF-T9.7,
-------
= 1 • w < '-S 0 • 7 i 4'" 0 i i »n < f
Q = 6 « 5 b J'-' i 5ci J * 3 -•COS - * ^ -v ^ (9 c
s
$ r I ME r T \- -79 • 3 *
J = 3 • 0 * ^ * 'J • 0 « s *:'~ O * j • 2 ! i -'¦ v i 2
0 — 6 & 3 4 65 3 1 0 n 3 "* u. jh w * 4>,l:7wJ
S
3l I ViLF TF = 79* B»
sJ = v, #0 * 3 *- 0 ~ -j • 2 * 4 3 * o • <3 * 2 *«" 3 * £
G = 6 * 5 0 £ o « 3^ • 3*506 -¦ * 4 «"3755
3
I MLr i r- = 7 9 • 8 «
0 — 1 • O * 3 * .3 * 1 « 0 * — V"' ^ ^ • 5 n £L '-* • _j
0 = 6*-536 "3 * 5330 * 3*5 ! I 0 * •'-5 333
£
ST 1 ViliF TF = /9• 9 i
3 — i # l. i o * 3 ^ 1 # 1 ~ ^ 0 ^ j # * 2 * ^ • o
0=6*438^ 6 S 3 * 3* - -. 1 o i >» a « 625
STiM-h T r-3 v•0i
3 — 1 i5i j-'' - % i »£i * 4>'C < 2» 0 * -
Cm — l"*A w"7lu2C' * jvi+PO" • 4 -'<¦ 4 6 c
t>
3T I ,V|ElF TF = Qj»Ci
3-1 • c * 3"^' - i 1 • 3 * -'L* ^ * 4 • ci « 2 0 % 3
Q — 6J'* ^ 2 -' * 9 '•-' 3*3 *¦6- 3 - • -1' - .1 •_
3
-T3 i 1 ?*1l_ ;* T r _ 3 0 • 0 i
3-* • t ~ ^ < I i 4 -• * h • 1 • 2 "* < 4
0 = 6-* '-i 82 ^ * 3260 » 3-«- 3 ^ ! - « — •'-3 333
S
S TIM5r Tr=30»2i
J - j « j i 3 iw * 4* 1 2
0 = 6^4 "7 J ^ « *3 l 3 0 * o- • J 1 ^ '«' V- * 6
'j = o -a" 3 ^ 'z* • J * 3 '3 w w' ^ 3 '3o .i - » ^ "''* : ^ w
3 _
3 T I Mcl r T r ~ 3 ^-' • 3 <
J=1 t£i « 1
Q = 6 -):- 3 3 ^ i 3 2 53 * 2 »- ? c - • 4 3 I 73
3
1 • 0 • ^ '3 1 i w i 3'^G »
'j i i'-u i ¦'• ¦" 62 1 1 « ^ * 64 - 7 ~ 3 -« 6 3 ^ 3 * 3 -* 6 V66 «
3 i 0 * c « 3"'fr v-f • 1 • zj * 6~* 0 *
5663 i 3726 ~ 2 3963 ^ 3^-6422 t 2*6542 »
i * C » j » 2 :i- C « 1 • 3 * 6 -"¦ C ^
c7 1 r: * - - 37"T2 » 2->' 62. 33 * £•>633 1 » 2*65 1 1 *
3*3*^,3-- CJ * 1 0 • 3 * 2 * 3 « 1 • 4 < 6 0 *
3 Z 1 5 i 4-" 3 363 » 2->'i 30 3 * 8*5657 « 2*3770 *
* 3 1 jz. * 3 -''• J n l • * 6* 3 *
48-"5^*bi09 ^ 2-*f 5 - 3 * 3*594-3 < 2*6063 »
- i 2 » 2 ' 1 • 3 i 6 ¦"¦
'-<3330 1 2•''¦ 33
:6 » 8*5875 * 2*5995 <
6 i < 2 i 2 '¦'? ^ i 1 • 3 ^ o ¦'¦ 2 »
5 6 i 3 % ¦'- * 5 6 7 2 i 2 ^ 3 0 C 3 < 3 * 6263/ * 2 * 638 0 «
¦J i 1 • 3 « 6 * 3 *
;4 '."0, i*-5 72:5,
3 ¦"- £ 0 / S , 2 * 6 I 9 2 ,
1.2,!
: -<- J ,
:-: 69,
j722 , 2*5932 ,
^ ^ * ci •'«• J
-'• 6—'¦ w ^ *-T -'J ,'
1 • 2 < 6 * 3 «
• 0,2" •: 325,5^
S2^9.
3i w''C i 1 • J i 6 "¦ C *
^ * 4 * 3 7 79 * 2 * 4 2 14o «
i*433l. * 2*<^64l:
i
ro
* J i 2 i ii'-3 ~ 1 • .j * 6 -•'- 3 i
w-^ w5 < ^ * w60•;;• * -j3~ » 3*^4 1 3^- * 2*4 2 74 *
-------
STIMEIF TF=80.3«
>J — i • 5,3*0 , 2 »0 C i 4 i u * • j « ./ i v < 1 • 7 • d 2 •
G = 5-»i!930O320(343C b.J( 3ia^ i '-.36 ?", , £ "-3 3'3 3 , 3^-, 33 2- • 2-*4 3if v ,
s
STIHEF Tt-=3.J,3,
J - \ »'3 i 3'"^ 1 2 • 1 iJ i i < Oi 2« 5J:'3 i 1 » £>, 6 3 ?
G = 6* 3 2 5 -1' 366C , 3 "• J 3"5 - < 4¦>'-3 6C 3 , — r^c , 4 -> .n Q 3 3 • 2-»-427-'t, 34 5"73 • 3J;'4 £93 ,
s
:T!:-£P TF = 30.4,
J J • 0 ? 2" i 2 • 2 * ^ * 4 • 1 * ^ * 3 • 9 1 3 i 2 i 8"'* 0 i
0 — 6 ^ 3 ~ 1 — * 3 7 7 0 * 3 '' 3 3 3 - i ^ " 3 7 . 3 1 4 1 0 b • ^ - 1 3 1 • .i^i'-327i 3 "'471 o 1 i33 i
STlf.lEf" 7F=2C.b,
*J — 3 • 0 * 3"-''" 2 , 2 • 3 * 4 'J • 1 • 6 , ~ , 8 • d * '_ '/J i S''rOi 1 i ^ 1 6 -3 •
Nji — O"«"^"0 - '"-I^ 1 2 1 1„ '• - - t .*. *_ "ll ' - - ^0 )
iTi.MEF_TF = 3C.S,
3—1 • 5 i -5 '* 4 • 2 • 4 , ~ , ^. • o , 2-» - * 5 • 6 ¦ ^ t o 1 2 '• v < l » 3 • 6"-f j i
G- 6-W-4 2 4 ~ , 4 630 , 3 --4 33 -¦ • 4 « 3 1 33 , "¦ 33 4 , - 3563 , 38C4 • 332 3 3 , 3" 332 3 ,
S
ST IH£F iF-B j•5•
J— 1 •ji3^i-,i2ici^^C*^«7i2vCi"?(^^ j * , 3 ^ ^ , i • £i , o -'<¦ 3 ,
Q = 6 ><-4 £ 3 3 , 54- 70 , 3-•' 4 5 j v., • ^ 1 -j,, ~,4 3 3 « 4 ^- 3 , 2 " 3 359 • co6*J 3 , 2* 6723 ,
S
sTIME" TF-S^t 6<
J - i »5i2)(ji2i6('-";v(4i 1 t 2"-' J i9» 3 i 0 t 6? 3*0 i 1 • 1 ,6*0,
G - 6* 5 o 2 3 , 63 I C , 3*604 j , 4*623 it 664-jt 4 -< 669 3 , 2»6v34i 2* 730 9 < 2 :'r 7629,
3
oTIMEF TF=30«6,
3—1 • 5 » 3"^ « 2 • 7 * 4 ¦'* o * j • 6 * ^ f 9 • 9 * 0 i 5 i 2 ^ » 1 • • £'~ ^ ,
G = 6*6 I 43 , 6660 , 3*6392 , 4*6 535 , 3395 , 4*7094 , 2* 733C , 2*7734 , 2 *^254 ,
S
ST1MEF TF=90.7,
J= i §5i 3* ^•2»S«4-^w,3»7i2*>-:>3»6*0i4iS*0t 1 #4 i 5 *^C ^
Q - 6*5660 , 6 ; 70 , 3*590 ¦- , 4 #£, ; I 5 , 6504 , 4*6323 , 2 -"• 7362 , 3 :;- 7333 « 2* 7776 ,
S
5TIMEF TF=3^« 7 t
J~G#0»3«--;.2»9»4*_,-. 1 i 2""* ^ » 9 • 7 i C t 3 * 3 ;'"v i I « u 1 0 i
0=6*950^ • i 0 '.'i 3'«'9770 « 4 s 993; t 1 Ci73i 4 ;f i 6 7 3 , 2 * 1 0 9 C £ , S1 1 435 , 2 * 1 1525,
S
ST I ,v,£t- 7>=80.7«
— 3 i 'j * j v j ~ 3 • 'J ! -- * .. • 2 • 1 ,2*3,9 • i. • ^ t J ''0 i 1 » b i 6 "3 i
G = 6* 1 i 7^3 , 12 163,3*1 . 29 - i i 2 ; 3'- i 1 4 4 9 5 i 4 •:' 1272, 2"'129 33, 313321 ,2*13441 ,
s_ _ „ _ M
33 1 I iY HL t~ 7 — 3 3 • / , H
J - 1 »5 i 3^^ i 3 • i u(6,2ir-o<-i ^2 , 8 , 1 • 3 , 3 * 0 , i.*
Q-6* 1 23 3C , i 24 4 J , 3^-1 2 : 7 2 . 4-x ; 2332 , ; 2 773 • 4 * 1 2 ?6'4 , 2* ; 323 5 , 3* 1 3 557 » 2* 1 36.77 ,
ST i iViLLT 1 :- -33 .7,
3—1 • o ^ 3 *, 3 • a. , w • v , ^ o • 7z , - * 2 • 3 ^ 3 , 1 • 2 , 6 C •
31-0^-^2^ 1 1 l1 - 5 - * j-''9 ^ 3 , i. - . bo7i£;*i07'53(7"-31 1 3c ,2^1 l^i52^
-------
3ELA ,\'A
SQIV£S
;inv' =
•4 • 1 3 2 E - 'j ¦?¦ i
2 • 1 98E~ >-9i
I • 4 4 » ^ —19 ,
•J —71 ' — 1 -*
—> • f L ^ ~ ^ •
- • 38^11*" I C *
= 1 «
— c. % D -
KLU — 1 « CL -¦
Kl_3 1 - 1 1 Cl_3 I = i; • %
S
9 o ( « • 0
• %
C' -1 r~ ^ K
— V 'V
«1745-
•G76-—
J 9 *
• 3 C 'z. -
.670 E-
. 0 1
. _ *
293,.C
-4 66
.^729 3 ,
7
• -J'
• C 2 *-'i
'd 1 • C
^ 1 6 < £ •
79E -
FLO;-,'
4 J
: .saOz:-09
i .713E-39
4«Q 30 — - 1 0
6. 350E-- 1 'J
4 • 0 ^ 1 3
- — o;
?3,
1 . E97E -0 9,
i • d3 / E ~ o v *
-*- • OCjOlL 1 ^ ,
3 • 3 v v- u. 10 *
'4 .3S3E - 1 3 ,
1 • —.
' U
4 . 1 -'ZE-1 0
5•530E-13
3.563E-1C
C =
7 •
r>
*
7.
• 0 • 1
* 4
•
0
% 3.
9 ^
/•
•
3
%
3
-?
• ,
2.
9,2.
1,
1
• 4- *
1
•
i * 0 •
0 •
C • 71 0 • 5 *
S_- •
6 •
rn
•
0
1 •
i
•
(L.
• 4*3
• 1
3
• 6 *
4.
1
*
/.
• 6 *
c •
* 3
•
4,
5.3,
6.
1
* 6 •
6
*
7 • ^ <
L -
^ •
2
%
5.
7
i w • 4
»Lj
•
I
* ^ •
/ *
/
•
3
* >4 •
'O *
• X
5 •
4»5 •
3,
w
• 2 *
•
o» 7.
2 *
7 • 6 * 5 • 3 1
9.
9*
11.3,
1 1
«
9
• w
•
7 • 0 *
0 •
2
*
5*2
~ 3
•
A
•
w • «—
•
0 *
4
• 4
, 4 • 1
,3
•
6*2
•
C>
~ 2 • 4
*
STIMEF IF=79.6,
NSTEP3=40,
J= 1 .5, 3^
j — 6*61 ¦iOi 654 0 , 3-*62
14 *C(3i5i£»
• » J I J 1 C ': V 1 O i C rJ 1 ^ I 1 i • c * 6 0 *
b2"70 , 4*6435, 6375 . 4*5940 , 2*7 1 76, 3*7604 * 2*7724 .
PR INT = -1 ,
ALPHA — • 94 , • 73 , »6ii • ^.7 , 27*•o,
PHI — • 06,*^2,*~3i;,»43,2f*»o,
E_ =
5 • 3 0 o c. ^ 7 ,
4.77--E -3,
l • l 4 E 9 ,
1.09 1E -9.
3.132E 39 ,
2.193E ¦-9 ,
h = 3 0 * J • ,
s
2> T I M - F T F = 9 • o ,
J = I . 5 , 3-:0 , 0 . S • -
C = 6 -& 6 7 3 0 , ? l I 0 , 3
S
STIMEF T:r = 79»7,
J = I • 5 1 3
Q — 6 * 5 9 S
S
1.29-^E 08,
3.5 7CE CS,
1.256E 09,
1 •2 3 3 E 39,
-5 • 2 3* 4 'O 9 ,
8 5 0 E
33,
2.
1 20E
03,
2.
47GE
08,
2.
94 3E
03,
34 CE
33 ,
9.
570E
03,
1 .
^ -p cr
09,
1.
1 23E
09,
C 1 7E
39 ,
3.
460E
C 3,
9.
063E
03,
9.
790E
OS,
732:~-
09,
O
<_ •
623E
09,
2 •
31 3E
5?*
3.
C53E
09,
39 2E
C 9,
•
7C4E
09 ,
ti- •
73 0E
t_ •
1 S3E
09,
,4vf'_ , 2 • 1 ,ti
, ^ J ¦—'¦ , ¦—r
5;, 2" J , 7 . 6 , v. • 2 , 3*0 , 1 #3, 6* 0 ,
,4*7055 , 74.-5 , 4?. 73 1 0 ,2*774 3 , 3*3 134,2-:
, 7 • v- , '-1, 2 , S * C , 1 • 4,6*
:6 95 , 4*630 1
7C
3-7425, 2*7545'
1
¦P*
-------
Appendix III
Sample Outputs
-------
DECS II
DELAWARE ESTUARY COMPREHENSIVE STUCY
DIGITAL CCMPUTER SIMULATION PROGRAM
REVISION 2 AUGUST 1965
-------
SALINITY 30 DAY 7C9J650 II
POLYNOMIAL COEFFICIENTS
C( S)
C (0 )
C ( 1 )
C ( 2 )
C ( 3 )
c m
C ( 5 )
C ( 6 >
C (7 )
C ( 8 )
C (9 )
0.
0.
0.
0.
0.
0.
c.
C.
0.
0.
LG L31
C(0) C. 0.
cm o. i.ooooooe oo
C (2) <:. 0.
C ( 3) 0. 0.
C(4) 0. 0.
C(5) y. 0.
D
C
CO
c.
c.
c.
c.
c.
c.
C31
0.
0.
0.
0.
0.
0.
-------
SALINITY 30 DAY 709G650 II
VOLUME PARAMETERS
1/V CQ(C) CQ(1)
1 4.13200E-D9 L. 0.
2 2.74700E-09 o. 0.
3 2.17400E-09 u. 0.
4 1•88000 E—09 o. 0.
5 1.59700 E-09 C. 0.
6 1.32300E-09 0.
7 2 • 19800E-09 ^. 0.
6 1.98400 E-09 0. 0.
9 1.87600E-09 C. 0.
10 1.7L800E-09 o. 0.
11 1.58700E-09 u. 0.
12 1.52700E-09 0. 0.
13 1.441C0E-09 0. 0.
14 1.24200E-09 C. 0.
15 5.38000E—?9 0.
16 4.93000 E-1C u. 0.
17 4.58000E-10 0. 0.
18 4.17000 E-10 u. 0.
19 3.71000 E-1G 0. 0.
2C 3.410G0E-1C (J. 0.
21 6.61000E-10 U. 0.
22 6.35000E-10 u. 0.
23 5.890C0E-1G J. 0.
24 5.58000E-10 C. 0.
25 5.38000E-10 Q. 0.
26 5.20000E-10 u. 0.
27 4.87000E-10 L. 0.
28 4.45000E-10 0. 0.
CQ(2) CQ(3)
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
c.
0.
c.
0.
c.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
W
-------
SALINITY 30 DAY 7090650 II
DAY C, JULY 3, 1965
INITIAL CONDITIONS
SECTION D.G. B.O.D.
1 0. -0.
2 0. -0.
3 0. -0.
4 0. -0.
5 G. 2.OOOOOE—C 3
6 0. 7.OOOOOE—C 3
7 C. 1.20O0CE-C2
8 0. 1.70000E—C 2
9 0. 2.20000E—C 2
lu 0. 3•OOOOOE—C 2
11 0. 3.90000E—C2
12 0. 4.90000E—C 2
13 0. 7.OOOOOE-C 2
14 0. 9.50000E—C 2
15 0. 1.OOOOOE-C1
16 0. 2•OOOOOE-C1
17 0. 3•10000E—01
18 0. 4.65000E—C1
19 0. 7.70C00E—01
20 0. 1.15000E CO
21 0. 1.46000E CO
22 0. 1.69000E CO
23 C. 1.96C00E CO
24 0. 2.27000E CO
25 0. 2.62000E CO
26 0. 2.96000E CO
27 G. 3.34000E CO
28 0. 3.72000E CO
-------
SALINITY 30 DAY 7C9C650 II
DAY 17,
JULY 25, 1965
INPUT PARAMETERS
TEMPERATURE = A.190 C
ALPHA
PHI
0- 1
1.5457CE
ce
9.40000E-01
6.CCGG0E-02
3.53600E
07
1- 2
1.5457TE
08
7.6000CE-01
2.20y:,QE-0l
8.59500E
07
1
2.42014E
08
0.
0.
2- 3
1.5457QE
C8
6.5 30G0E-01
3. 500C 0E-01
1.23200E
08
2
3.64033E
08
0.
0.
3- 4
1.5457GE
08
5.6 OOOOE-O1
4.30000E-01
1.4160CE
08
3
4.59982E
08
0.
0.
4- 5
1.54570E
c e
5.C 0OOOE-O 1
5.00000E-01
1.64100E
08
4
5.31915E
08
0.
0.
5- 6
1.54570E
Cfi
5 . COOOOE-O1
5.00000E-01
1.963006
08
5
6.26174E
08
0.
0.
6- 7
1.70294E
08
5.C OOOOE-O 1
5.00000E-01
3.17800E
08
6
7. 55858E
08
0.
0.
7- 8
1.49904E
ce
5.COOOOE-O1
5.00000E-01
5.71100E
08
7
4.54959E
08
0.
0.
8- 9
1.499C4E
ce
5.C OOOOE-O1
5•OOuOOE-O1
5.89800E
08
8
5.04032E
08
0.
0.
9-10
1 . 4 9 9 0 4 E
C8
5.C0000E-01
5.OOOOOE-Ol
6.37900E
08
9
5.33049E
08
0.
0.
10-11
1.71677E
C 8
5.C OOOOE-O1
5.C00G0E-01
8.76500E
08
10
5.82072E
08
0.
0.
11-12
1.71677E
ce
5.C0000E-01
5.OOOOOE-Ol
9.35500E
08
11
6.30120E
08
0.
0.
12-13
1.71677E
ce
5.C0000E-01
5.G000CE-01
9.4990CE
08
12
6.54879E
08
0.
0.
13-14
1.71677E
ce
5.COOOOE-O1
5.OOOOOE-Ol
1.04630E
09
13
6.93963E
08
0.
0.
1 A- 15
1.71677E
ce
5.C OOOOE-O1
5.COGG0E-O1
8.47200E
08
14
8.05153E
08
0.
0.
15-16
2.1358 IE
oe
5.C OOOOE-O 1
5.OOOGOE-O1
7.05200E
08
15
1.85874E
08
0.
0.
16-17
2.13581E
C 8
5.COOOOE-u 1
5.OOOOOE-Ol
7.54850E
08
16
2.02840E
09
0.
0.
17-18
2.29046E
08
5.COOOOE-O1
5.OOOOOE-Ol
8. 16000E
08
17
2.18341E
09
0.
0.
18-19
2.29046E
ce
5.COOOOE-O1
5.00^00E-01
9.08S00E
08
18
2.39808E
09
0.
0.
19-20
2.29046E
ce
5.C OOOOE-O1
5.OOOGOE-Ol
1.02760E
09
19
2.69542E
09
0.
0.
20-21
2.29046E
ce
5.COOOOE-O1
5.0000CE-G1
1.44300E
09
20
2.93255E
09
0.
0.
21-22
2.52806E
ce
5.COOOOE-:i
5.C0GCCE-G1
2. 18600E
09
21
1.51286E
09
0.
0.
22-23
2.528C6E
ce
5.COOOOE-O1
S.OOGOCE-Ol
2.3445GE
09
22
1.57480E
09
0.
0.
23-24
2.52806E
ce
5.C00G0E-01
5.OOOOOE-Ol
2.5540GE
09
23
1.69779E
09
0.
0.
24-25
2.528C6E
ce
5.C:)OOOE-Ol
5.OOOOCE-O 1
3.54600E
09
24
1.792 1 IE
09
0.
0.
25-26
2.52806E
0 8
5. COOOOE-O1
5.T0uC0E-01
3.67600E
C9
25
1.85874E
09
0.
0.
26-27
2.52806E
ce
5 . COOOOE-O1
5.0000CE-01
3.83200E
09
26
1.92308E
09
0.
0.
27-28
2.528C6E
ce
5.C OOOOE-O 1
5•COCCOE-O1
4.18600E
09
27
2.05339E
09
0.
0.
28-29
2.60842E
ce
5.C OOOOE-O1
5.OOOOOE-Ol
3.05880E
09
28
2.24719E
09
0.
0.
-------
SALINITY 30 DAY 7090650
DAY
SEC TIGN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
•
JULY 25, 1965
FINAL
ANSWERS
D.O.
•
O
•
o
•
CO
C.
1.65395E—C 5
0.
8.08717E-C5
0.
3.06194E-C4
0.
1. 11248E-C3
C.
3.65496E—C 3
0.
9.84504E—C 3
0.
1•93374E—C 2
0.
2.70631E-C 2
0.
3.79196E-C 2
0.
5.22533E—C 2
0.
6.81617E-C2
0.
8.81213E-C2
0.
1.14147E-C1
0.
1.45033E-C1
c.
1.95899E—C1
0.
2.90738E—C1
c.
4.33334E-C1
0.
6.48158E—C1
0.
9.36209E—CI
0.
1.30155E CO
0.
1.65154E CO
G.
1.94733E CO
0.
2.26675E CO
0.
2.60143E CO
0.
2.86975E CO
0.
3.15277E CO
0.
3.44845E CO
c.
3.74179E CO
-------
SALINITY 30 DAY 709C650 II
DAY 18, JULY 26, 1965
INPUT PARAMETERS
TEMPERATURE =
4.830
C
0
ALPHA
PHI
E
V
0- 1
1.54570E
ce
9.4 0000E-01
fc.OOOCOE-02
3.53600E
07
1- 2
1.54570E
08
7.6000CE-01
2.20000E-01
8.59500E
07
1
2.42014E
08
0.
0
2- 3
1.54570E
06
6.5 OOOOE-O1
3.50000E-01
1.23200E
C8
2
3.64033E
08
0.
0
3- 4
1.54570E
C8
5.eOOOOE-Ol
4 . 30000E-01
1.41600E
08
3
4.59982E
08
0.
c
4- 5
1.54570E
oe
5.CQOOOE-O1
5.00000E-01
1.64100E
08
4
5.31915E
08
0.
0
5- 6
1.54570E
ce
5.C OOOOE-31
5.00U00E-01
1.96300E
08
5
6.26174E
08
0.
0
6- 7
1.70294E
ce
5. COOOOE-O1
5.00uCOE-Sl
3.17800E
08
6
7.55858E
08
0.
0
7- 8
1 .49904E
ce
5.C OOOOE-O1
5 . OOOOCE-Ol
5.711OOE
08
7
4.54959E
08
0.
0
8- 9
1.4 9904 E
08
5.C OOOOE-O1
5.OOOCOE-Ol
5.89800E
08
8
5.04032E
08
0.
0
9-10
1 .49904E
ce
5.C OOOOE-O1
5.00000E-01
6.37900E
08
9
5.33049E
08
0.
0
10-11
1.71677E
ce
5.C3000E-01
5.OOOOOE-Ol
8.76500E
08
10
5.82072E
08
0.
0
11-12
1.71677E
oe
5.COOOOE-O1
5.00000E-01
9.35500E
08
11
6.30120E
08
0.
c
12-13
1.71677E
oe
5.C OOOOE-O1
5.OOOOOE-Ol
9.49900E
08
12
6.54879E
08
0.
0
13-14
1.71677E
ce
5.C0000E-01
5.OOOOOE-O1
1.04630E
09
13
6.93963E
08
0.
0
14-15
1.71677E
08
5.C OOOOE-O 1
5.C0C00E-01
8.47200E
08
14
8.05153E
08
0.
c
15-16
2.13581E
ce
5.C OOOOE-O1
5.OOOOOE-Ol
7.05200E
08
15
1.85874E
08
0.
0
16-17
2.13581E
ce
5.COOOOE-O1
5.OCOOOE-O1
7.5485CE
08
16
2.02840E
09
0.
0
17-18
2.29046E
08
5.COOOOE-O1
5.OOOOOE-Ol
8.16000E
08
17
2.18341E
09
0."
0
18-19
2.29046E
08
5.COOOOE-O1
5.00OCCE-Ol
9.08800E
08
18
2.39808E
09
0.
0
19-20
2.2 9046E
oe
5.COOOOE-O1
5.OOOOOE-Ol
1.02760E
09
19
2.69542E
09
0.
0
20-21
2.29046E
oe
5.C OOOOE-O1
5.OOOCOE-Ol
1.44300E
09
2C
2.93255E
09
0.
0
21-22
2.528C6E
ce
5.C0000E-01
5.OOOOOE-Ol
2.1 8600E
09
21
1.512B6E
09
0.
0
22-23
2.528T6E
G8
5.COOOOE-O1
5.00u00E-Cl
2.34450E
09
22
1.57480E
09
0.
0
23-24
2.52806E
ce
5.C OOOOE-O1
5.00J0CE-01
2.55400E
09
23
1.69779E
09
0.
0
24-25
2.52806E
ce
5.C OOOOE-O1
5.00000E-01
3.54600E
09
24
1. 792 HE
09
0.
0
25-26
2.52806E
ce
5.CO0OOE-O1
5.OOOCOE-Ol
3.67600E
Q9
25
1.85874E
09
0.
0
26-27
2.52806E
08
5 .COOOOE-O 1
5.OOOOOE-Ol
3.B3200E
09
26
1.92308E
09
0.
0
27-28
2.52806E
oe
5.COOOOE-O1
5.OOOCOE-Ol
4.18600E
09
27
2.05339E
09
0.
0
28-29
2.6U842E
oe
5.COOOOE-O1
5.OOOOOE-Ol
3.05880E
09
28
2.24719E
09
0.
0
-------
SALINITY 30 DAY 7C90650 II
DAY 181 JULY 26» 1965
FINAL ANSWERS
SECTION D.O. B.O.D.
1
C.
1.79819E-C5
2
G.
8.71855E—C 5
3
0.
3.27462E-C4
4
C.
1.18066E-C3
5
0.
3.85330E-G 3
6
0.
1.03280E-C 2
7
0.
2.02286E-C2
8
c.
2.82623E-C2
9
0.
3.95271E-C2
10
0.
5.43591E-C 2
11
0.
7•07828E-C 2
12
0.
9.13300E-C2
13
0.
1.18047E-C1
14
0.
1.49667E-C1
15
0.
2.01546E-C1
16
0.
2.98284E-C1
17
c.
4.42947E—C1
18
0.
6¦60130E-C1
19
0.
9.50464E-C1
20
0.
1.31746E CO
21
0.
1.66733E C3
22
0.
1.96240E CO
23
0.
2•28061E CO
24
0.
2.61502E CO
25
0.
2.88733E 00
26
0.
3.18689E CO
27
c.
3.53315E CO
28
0.
3.9 5421E CO
-------
SCOPE OF WORK
The Contractor will supply the necessary engineering and progransing
to modify and expand the computer program covered in the accompanying report
in the raanner described below. It is expected and necessary that the
Contractor have experience with the programming and use of the accompanying
report.
The following are the changes to be raade:
1) Automatic step-size capabilities are to be added to the
program.
The present cooputer program uses the Rvalue Kutta numerical
iatc^ration approximation which has the characteristic that
the accuracy of the approximation increases as the tiae
interval (step-Bice) decreases. However, the smaller the
step-size, the longer the tirae to calculate the solution.
There exists -in optiauci step-size for any individual problem
which Rives the best compromise solution given a aauiEUfln
allowable difference between solutions. The Contractor will
modify the program so that it uill start from a given step-size,
calculate the solution and compare it to the solution obtained
by using a step-siae half as large. If the difference in the
solutions is not within the allowable, the program will drop the*
step-olse by half and compare again. This process will continue
until the difference between successive solutions is les3 than or
equal to the allowable. Thi9 step-size will then be uaod as a
starting point for the nest tiiae interval.
-------
2.
If an allowable error ia not reached within the step-siae
limit of the progran, a statement to that effect will be
printed in the output and the allowable error will be
changed to a larger value, Provision shall be tnnde to
allow the input of three allowable errors to be used in
order of increasing size.
2) The Contractor will modify the prograia ao as to increase the
taaxiama nucbcr of spatial sections froo thirty (30) to the
maximum allowable within the capabilities of the computing
equipment without resorting to external auxiliary ractnory
equipment*
3) The prograra shall be expanded so that teisperature vill be
a function of the spatial section as veil as tisaa.
A) The program shall be expanded so that the restoration
coefficient iti any section J will be calculated as follows:
sj r.ioj (e>fTr201
r20j ** 1/2
n 3/2
hi
whera:
rj « reaeration coefficient in the Jtlj section
r20j ° reaeration coefficient at 20°C in the J1**1 section
0 => known constant
-------
3.
Tj <= the temperature In °C in the J®" section «= f(t)
D ® Oijygen Diffusivity Coefficient, a constant
Uj a Average tidal velocity in tke J**1 section » g(fc)
Sj « Average depth in the section = h(t)
5) The program ahall be expanded so that the decay coefficient
in any section will be calculated ae follows:
clj » d20j v
^20j " Kj^
where
dj « decay coefficient ia the j section
^20J 13 &*eay coefficient at 20cC in the section
v» c known constant
Tj = Temperature (°C) in the section » f(t)
AtB o Icnosm constants
Hj «= Average depth in the section « h(t)
k = ptr^er of flj
0) The prograa ahall be nodified so that the voluse terras for
cpatial sections way be inputted directly inoteod of as
an inverse.
7) The progrsa will be modified so that the eddy exchange
coefficient for the boundary of any two ndjacemt sections
(i and i-f-1) will be calculated as follows:
-------
2i,i+l " *1,1+1 Al.i+1
2 + Li+1^
x 27.G784 s 106
where
•i
» eddy excheage coefficient (ft /day)
*\l#i+l ra ®^dy diffusion coefficient Ctai'/dey)
Aj « croas-seetioaal area at boundary (sq.£t.)
Li = length of the ic^ section (ft.)
*1+1 m *enSth the i+l5t section (ft.)
G) The program shall bo Etodified to abort circuit calculations
4
which arc tiot necessary in the solution of a particular
profalcia, such as the calculation for tlio decay and
reaeration coefficients in a problem dealing with conservative
variables.
9) The program shall be expanded £o calculate phi and alpha
m folios:
j dh-hx * Ei,l+D
4- r,
"l-l.i
Qi,i+1
if ijf > .5 ths v^lufi will be set at 0,5
then $ «* *^1.1+1
^i ,i+l
a 15 1 •*
-------
5.
10) Several alterations shall be made in the inputs and printout.
a) The naoes of the output i.e., D.O., and D.O.D. will be
capable of being changed to other parameter names, e.g.
pH and Alkalinity.
b) Tho program shall be modified so that the flows printed
out under "Input Par®neters:l shall be given a cubic feet
par second (as input) rather than cubic feet per day.
e) Other changes in the printout of the input paracteters shall
be the deletion of "PHI" and "B'1 columns and in their place
diffusion coefficient "K" and ehe eroso-sectional area A»
Also to be included for each section the length, "Lj".
the tidal velocity, nUj% and the average depth, Hj.
PROCEDURE:
The Contractor will provide the facilities and personnel to prepare
and check out the program prior to use. Thereafter, trips will be eiade
to Washington, D. C. with tactnbara of the Delaware Estuary Coisprebensive
Study staff to assist in initial start up and debugging.
The Contractor will designate a Project Director with whon liaison
will be maintained by the DECS staff and who will be responsible for
the conduct of this contract.
REPORT:
The Contractor will supply one Multilith master together with any
charts, suitable for reproduction, of a report on the modified program.
-------
6.
The report will include the nsntheaatic^l raodelinr;, flow diagrams* User's
iiars.ua 1, prog ran liscingj and saisplG outputs and inputs.
-------