FP!\. t.rirj/.-i-Ri -j3G
! '.i v 19o 1
u T ! -¦ 2 J
a l ihap. POiARfMCiiJK rtnii!  tori nq Systc-nir. Di -.'i ? i on
Er.vi rnnir.eiical 'lonitorintj Systems I ah oratory
Las Vegas, ilevada 3911 ^
MNV l U ONMEI IT AL M0,i'. TOP T i'IG SYSLM?. '..AKVAIOIIY
¦ji-'Ficr. or i'F'.rAuci< and im vr.Lfipf-.Ni
u.s. fiiViRflf;!i::-iAL PRQ7L'Crioi-j r.Kir\
LAS VLT-.AS, iii;VADA £;9: i
NaTiON,v. T£CMM:C'M
iNrot^'AriO."! SEKVlO.
li. '	t» UYVit1",'

-------
¦SISCLAInES
This report has been reviewed by the Environmental
Monitoring Systems Laboratory, U.S. Environmental
Protection Agency. and approved for publication.
Approval does not signify that the contents necessarily
reflect the views and policies of the U.S. Environmental
Protection Agency, nor does Mention of trade names or
commercial products constitute endorsement or
recommendation for use.

-------
"T,fi-:N'CA.. i-LPOri ij A : ;>
/*'¦/»* **<»;..* * > {. ..."-I "/• i n i •• >,•' >'i	i • d'.' "'i i,1
-* *!"
i 'it-'onr no j: r«* l *.• s *l:	v-nci*. f'n
.__CP/V60G/'1-8L-036.__	 ! .... . .	7		
i i >tl4 ai\l» '*uy I' n 1	m^' or : oa : 5-
A LID1R POL.ARIMETKR TFCIiiiiQUif l:0R	MEASURING SUSPENDED j ,.u,y lgBl
SOLIDS IN WATEIi	;e " " =viiu«"i,>:u o7k;.Wi\:AnZ)7-j"ciM.H-"
/ AUi t'or-lbl	jj "I.KI OtiMIMO UMGANi^A I ION IfO'OI-i 1 Nl"
D. W. P--esloy  i 1 n T ~ 4. '	ASji-.NCN CUHP
Office of Research and Development
ES^SI^BJ "891 \?""9 5VSt-"S Lsbor»t!""»	EPA/600/07
I U SUff'LciOr-.N! 1 A'	^
CO' A11 I u'l.i.iir»n-p
i

-------
ABSTRACT
The ability to r.easure tilt; quality of water in U.S. lakes, reservoirs
and rivers to detect deterioration due to contlnied industrial growth ana
urban development has become increasingly importjnl: in the past decade.
The lack of efficient cost-effective measurement techniques hampers measure-
ment of the parameters that qualitatively describe the (iqu?ous onvironmant.
Hiis study i r.vestioafes the capfD111 ty of the 1 :>i.ir polcnmei.ei to measure
the concf.iit.iat.ion of suspended solids in -!.itor fnr a variety of measurement
condi tions¦
The lidar pclarimptsr is tin it1 situ iisst.niT/ml that mearures two
orthogonal ly no 1 a n zed coirrontnts nf laser Gri^'v hacKsrattered from a
scene. In this study the s:.one is sedimeri t-1 aden witer. nrevious laboratory
cir.d ¦field measurements ha>.p demonstrated the pcLi.ntia! of the j'olarimeter
to measure turiiidit/j t.-\ir;si,ntu-r.ce, end susp^ndoc solids under field
conditions.
Backsc."i1.iT-ssurements were made from water a-, a function of concen-
tration of sediment fro:',! throe different soil-related particles to examine
the effects of particle characteristics, water surface roughness and tho
presence of organic suspended su'nds or. tha Vikt-paiarized and cross-
polarized backscatterod lidor energy. The siz?, siiaoe and color of the
scattering particles weie varied during the experiment.
Results confirmed fiat lidar polarimetry can be used to measure suspended
solids concentrations in water. 2acl'scatLereu energy is directly depended on
particle concentrations for a wide range of soil colors and particle size.
However, particle characteristics do have an effect on the backscattered
energy at both hi ohm' and lower particle concentrations. Irregular particle
shape affects sensitivity at very low concentrations. Size does not greatlv
affect the depolarization ratio. Color effects zre particularly evident at
higher particle concentrations, reaching a -joint whori: the backscatterc-d
energy does not increase for Additional increases in the article concentra.-
ticn. Small scale water surface roughness and the presence of a low concen-
tration of organic (algal) suspended solids do not directly affect the
backscattering process.
Further laboratory ueasuremirrcs and field experiments a:-: needed to
better determine particular vwticlc effects.
i ¦ i

-------
Tnr.LL OF COCTFt-nS
Abstract	iii
List of Figure;	vii
lMTMDIJCTIOiJ			1
In Situ ,'!easiirer.,.ents		1
Historical Review		?
Lidar Pol an"meter Development at TAI'.LI		2
Summary of Results		5
Report Objectives		5
Scope of Report		6
BACKGROUNC		7
Water Quality		7
Remote Sensing I'f^sur&nonts		7
Massive i"eciimr|UGs		3
Active Techniques			<3
Turbidity	11
Suspended Solids				12
In Situ Measurement	12
Sedimentation	13
Pollutant Transfer 		13
EXPERIMENTS	.16
Dichromatic Lidar Pol a ri meter	16
Transceiver	16
Signal Processor			IS
Measurement Configuration	IS
Concentration Measurements 		18
Sanple Description 		20
Particle Size llistrihution	24
i-'easure^ient Procedure	28
Algae Msas undents	2D
Surface Rou^hitc-sr, /-eosiire^ents		30
Oepth of Measurement	31
DATA REDUCTION	32
Cross Section Calculation	32
White Target Calibration 		33
Optica! Alignment	33
Unite Target Cros'* Section	33
v

-------
TABLE CF CONTENT''. (Cor,I'd)
RESULTS	37
Scdttcn'nc; Phntio^na		37
Oiscusi.1 on of Mf.'cisurenonti			43
Sediment Concentretion 		43
Particle Shape			44
Particle Color	49
txtinction OhptJi of Measurement	53
Size Distribution	62
Algae Measurements	62
Surface Sounhricss	71
Instrument! 1 and l^ojsnromor,t Artifacts	76
Clear Water Off sots	76
Effects, of Tank Sottcn	31
Particle Settling	81
CONCLUSIONS AND IIECOMENUATIOHS	92
Conclusion1;	92
Recommendations	93
Lahoratoty HcflSL'renient:	93
Scattering Measurements	94
Scattei ing Model	90
Measure ment Proceciurf	96
Field Measurements	97
Location	97
Ground Truth Information 		97
Lidar Design Rctionalo			9^
REFERENCES	99
APPENDIX A	1.02
APPEIIfjI X B	132
APPEliOIX C 		133
AP PL NT) IX D	150
APPENDIX E	155
v i

-------
LILT OF FIGURES
Figure	Page
1	Dichromatic	i. iildr Pol an.-netor System	17
2	Measurement	Taiv.s	IP
3	Micrograph.;	of Wnite Sard Particles			21
£	Mi croqraphs	of White- Si! [-./Clay Particles	22
5	Micrographs of Vi'nito Clay Particles	23
6	Micrograph; of Red Silt Particles	25
7	Micrographs of 3rown Silt Particle:	26
b	Particle Size Distributions for Each Sediment Type 	27
9	Scattering from Sediment Laden water	29
10	White Target and Transi'ii ti.od Power Mens:jrcs	36
11	Approximate ".elative Size 'jistribution for Liow Plaslic Pioment
722 (after Shelves [5])	.39
12	Photomicrograph of Dov/ Plastic Piqmenx. 72'' (after Shelves [?]) .3H
13	Comparison of Ocpol anzation Ratio as a riinction of Field of
Viev/ and Latex Particle Concentration (jfIcShelves [o]). . .40
14	-..;proxii.iate Relative Si zn i)i stri^ution for CiJpont Tf'L 30
(after Sheiks [;i])	41
15	Photomicrograph of Cupon-: TFL 30 (afte:' Sneu'es [c])	41
16	Graph of Uopol >n iz«i tion ''atio as a Function ;:f Teflon Particle
Concentration (after Shelves [5',)	42
17	Oepolenzation Ratio Versus Sediment Concentration for '.-'hite
Silt Measured at 632 nn	45
13 Depolarization ratio Versys Sediment Concentration for V'hite
Silt Measured at -M? nr.i	46
IS Depolarization Ratio Versus Sediment Concentration for Red
Silt Measured at 0'i2 nn 			47
20	Depolarization Ratio Versus Sedvnent Concentration lor fled
Silt Measured at 44? nm	48
21	Depolarization 'Xdtio Verms Sediment Concentration for Brown
Sill Measured at 632 nui	50
22	Depolan zatien Patio Versus Sediment Concentration for Brown
Silt Measured at 442 nf	51
23	Cross Section Versus Sc-Iinent Concentration for Red Silt
Measured a'. S3? nm	54
24	Cross Section Versus Sediment Concentration for Roe1 Silt
Measured at '442 n.n	55
25	Cross Section Versus Sediment Conrentration for Prown Silt
Measured at 632 nm		 . .56
26	C'"oss Section Versus Sediment Concentration for Hrrn-.n Silt
Measured at 44?. nsn	57
vii

-------
• yL
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
4G
47
48
49
'50
LIb.T OK FIGi'RF-S (Continu wi)
Pa no
Measurement !)ept."n as .1 H.nction of Vihite Sit Souvncnfc
Concentratio'".	59
MeasureiiionC Deptn as a ,-unctiun of fieri Silt Sei ¦ 1 ^ i 1 t- ''.otic on tra t i on
tloasur'jo dt 63? nu	G3
¦'.'epolarization Ratio Versus White Cloy and Silt Conrcntration
Measured at. 442 nm	64
Cross Section Versus Unite Silt and Clay Concentration Measured
at 632 nm	65
Cross Section Versus '.j'nte Silt and Clay Concentration Measured
at 442 nn	66
Depolarization Ratio Versus Algae and Sediment Concentration
Measured at 632 niu	67
Depolarization Ratio Versus Algae and Sod merit Concentration
Measured at 44.? nm	68
Cross Section Versus Algae and Scdinienf. Concentration Measured
at G32 nm	69
Cross Section Versus Algae and Sediment Concent-ration Measured
at 442 nm	70
Depolarization Ratio Versus White Silt/Clay Sediment Concen-
tration and Surface "toughness Measured at 632 nm	72
Depolarization Ratio Versus White Silt/Clay Sediment Concen-
tration and Surface Roughness Me as urea ar. 442 nm	73
Cross Section Versus Sediment Concentration and Surface Roughness
for White Silt/Clay Measured at 632 mn	74
Cross Section Versus Sediment Concentration and Surface Roughness
For White Silt/Clay Measured at 442 nm	73
Cross Section Versus white CI ov Sediment Concentration Measured
at 632 nm			77
Cross Section Versus l.'hi te Clay Sediment Concentration Measured
at 442 nm	78
Cross Section Versus White Silt/Clay Sediment Concentration
Measured at 6?? nm	79
Cross .Section Versus '..'inte Silt/Ciay Sediment Concentration
Measured at 4?2 nm	80
Depolarization P.atio Vcsus '.-iii1 te Silt/Clay Sediment Concen-
tration Measured -it hi2 nm	82
Depolarization !!atio Versus White Silt/Clay Sediment Concen-
tration Measured at 442 nm	83
Cross Section Versus !.in te Sand Sediment Concentration Measured
at 632 nm	85
Cross Section Versus Vihite Sand Sediment Concentration Measured
at 442 nm	86
Cross Section Versus White Silt Sediment Concentration Measured
at 632 nni	8,7
vii i

-------
LIM' OF Fii",URES (Cont.inutvi)
Fi cili r-e
Page
51	Cross Section Versus White Silt Sediment. CjiK-.-i-.ration Measured
at 4 nro	
52	Cross Section V-.vius WhiT.e Silt, and Clay
'¦leasiired at 6.'!2 rm		 . .
53	Cross Section Vr>s-^sjs White Silt arid Clay
Measured at '14? wr.	
	08
e«ii :-.ent Concentration
	89
»:ri"!'.".pnt Concentration
	90

-------
CHAPTER I
INTROOUCTI Ofi
The lakes, rivers tine! coastal regions of the United States Make up a
very comple<, dynamic ecosystem. This aqueous environment can be
described in quant¦t£>tive terms by water quality parameters, which
describe the physical, chemical and biolon-.cal characteristics of the
water environment. The gradual deterioration of" the water quality in the
United States has boon .'..ju
-------
sensors will help to lower the (.ost of tne pqu if".ieni., increase the rugged-
ness of the ¦settlors for fieio app! ications and "n;i 'ho n.;mber o f param-
eters that can tic measured.
To better develop this particular Of or. of Wijlo-r t -ill ty uieasurrmenf s,
the U.S. F_:ivi ronmenta 1 Protection Agency (i-.P.-V cospursored the Automated
In Situ Water Ouaiity ^'nsor Workshop in Fehrii.T-y of J?7."> [i]. The FPA
cosponsored tnis workshop v.'1 th the National Oceanic arm Atmct-pheric Admin-
istration (t:QAA) and Uv interagency Working h o-jp on Satellite Hat a Col -
lection Systems. The Port :c i pants represented all of the federal agencies
and organizations currently involved with in situ water quality sensors.
Ihe workshop ostab I i shed communication between the many agencies involved
in this area. It was .ilsn umphasi zed that the actual water quality sensor
was tne least developed of the largo number o: systems needed to collect
water quality data.
The rosponsibl l ties of the workshop iric.luil-.vl a review cf the current
applications of sensors in the research and de/el opment activities repre-
sented. Si i;n I ari 1 ies and overlaps, as well as gays, in the sensor
requirements and rfeveIopment activities wer" oxtinined w11h the possibility
of cooperative efforts also being identified. The technological
capabilities of the electrocnemical, elcctronhyskal, optical and
automated wet chemical ar:-as were reviewed i.j identify tne measurement
parameters that can currently be measured a no the areas where research
would be of best benefit. The need for automated in situ -ister quality
sensors was emnhasi zed by the wine r.inge of purposes and requirements of
the many agencies represented. The wcrkshoo jero'^eruKitiens were of
particular benefit in pointing out 1) the benefit, uf cooperation between
agencies, 2) the common problem areas and 3) the high potential
technological areas. The development of the lidar pol-'.rimeter for
automated measurement of sediment, concentratioi was identified as o high
potential, high technology area. This study is a direct result of the
workshop recommendations to further- pursue this particular area of
automated, in situ water quality measurements.
HISTORICAL
The liaar polarimeter is a remote sensing o-j'.'i ce that has high poten-
tial for use as an airborne or 
-------
ASM University vTAMi)! hav*. examined the poie.uia! of the lifter no!arimeter
in the riiiv.siirei'.'t-rtt of water quality.
Lidar Pol cir lmet'jr 0 "/eloign t at TANU
The depolarization of laser light •.«:< i nves ti iia tec) in a study hy
ililhelnn, liayo and ^puse Lj]. A lidar pou." ¦hitter using :i 5 pw he-f.'c (032
nm) laser was cons h"u<; tel. Measuroiyn.-nt.s ware nad'; of the polarized return
from laboratory siruiat'ors of turbid water usino, spherical Teflon parti-
cles as scatter;rs. The notivation for the-:c- measurements was to test the
hypotheses that. 1) the depolarization of the incident laser energy was
due to the particulate 1'iatPrial in the water and 2) the amount of depclar-
ization*>oul cl indicate the relative concentration of scattering particles.
The laboratory measurements supported both hypotheses and established the
potential of measuring suspended solids, turbidity and transmissivity
using a lidar polanmeter.
A subsequent investigation by Mayo, Wi'Mielini arid Rouse [4] using this
same device examined finite; beam effects in laboratory and daylight mea-
surements of tut bid water, again using Teflon particles as the scattering
material. The results of this study indicated tnat a lidar polanmetor
can measure true volume reflectance from a target with negligible inter-
ference fron sunlight and sky reflectance. "I h e depolarized hack scattered
component was fount* to bo more sensitive thin the 11 ke-po! ari zed component
to the concentration of both scattering avJ absorbing Materials in the
water.
In this study also it was detemined Unit the depolarization ratio
was less affected by surface wave? than either the like- or cross-
polarized returns and that the depol ari z?. u'cii ratio is independent of
transmitted power and other system constant1:. Those t.vo advantages indi-
cated the depolarization ratio cculd prove more useful for water oualit.y
measurements than either the like- or c.-oss-ool arizsd returns alone.
A theoretical development hy Wi 1 he!mi l"5j related the polarized and
depolarized bai.kscattered energy from both a rough surface and a smooth
surface to single scatter surface and multiple scatter subsurface
effects. Laboratory tests to vtrify the validity of this model included
ineasurewents from both cast cio':ectric targets wi t;i known surface rough-
ness characteristics ana laboratory simulations of turbid water (a diluted
casein solution). The returns predicted by the model and the measured
results haa correl ation coefficients greater than 0.90. Tlrs higii corre-
lation confirmed the ;mu 1 tip:e volume seaLceriikj niecliams.ii assumed in the
model development.
The rrodol w?s farther extended by 5he:ves [6] to include a single
scattering from the subsurface. Shelves also modeled oil on water as a
lossy dielectric over a turbid water background. Laboratory measurements
confirmed that single sc.itt"rinn should not be ignored, except at very
high concentrar.ious of scattering particles. The scattering narticles
used in tiiis experiment './ere polystyrene latex spheres and a Teflon resin
dispersion, [jotii particles have v/el 1 defined snape and size distribution
3

-------
character!sties.
Measurements of different types of oil floating on simulations of
turbid water were al i.o	!(¦]. The results c<" the oil film experiments
con finned the oil on wau'r Muriel, showed tr-at the depei arization ratio was
not significantly chained by a homogeneous oil fiiiii. and showed that the
attentuaticn due to the oil was a function of oil tvee, filn thickness and
transmitted wavelen.jlh. Cased on the last rtsult, a technique using two
wavelengths was reco vended vhich could not oiV detect oil on water, but
also indicate the type of oil and estimate the thickness of the film.
Sheives [6] also conducted field measure?.cits from a Drirlge over the
Brazos River and from a boat in the Houston Snip Channel and lower Hr.vos
River. The validity of the proposed .node! s nas confirmed for conditions
encountered in the field experiments. The like- and cross-pol an zed
returns were found co vary directly with "turbidity" and suspended solids
and inversely with transmittance. The field tests supported the use of
the lidar polarimeter in measuring these water r.uality parameters.
In subsequent 1 nvestinations, a dual wavelength lidar polarimeter was
constructed by the l-euote Sensing Center [/'] using a He-Ne laser (63? nm)
and a lle-Cd laser	run) to support a Coast Guard-funded effort to
develop an oil spill detection device. Several system modifications
improved the operation and djfca quality of thij dichromatic system over
the previous single wavelength lid«r polarhseter. An mterffce to a mim-
computer provided real ti:;
-------
he! iurii-cadmi tin source tj fc:" a near ideal v..„ ve": c ?i for the mom'toeing of
"turbuiit.v" unfi tiie detection of oil sp'1;s
An Active S; ¦ 11 "i Selection System ' A!il;rJ was designed and constructor!
based on the p^rfoimanco ":1 uat.ion of ti-i- o-tic system [9]. A
single Mol iui:i-c.ii".m.,i: 1 ac. v was use.! in tno AS";5 as th? trans'in tter [.A42
r.m vjcivp1, smith) . In 15 system was designed to automatically monitor a bay or
harbor are.i for oil spiii;;, d^lt on exte'd.-;!! period or 6 months to a year
with little maintenance. Scan capability wds included to increase the
noni tori rig area. The blue wavelenyth war. -c! ".o -live via/,iram sensitivity
to thin oil filns. liowevcr, the environmental constraints required to
properly house the d-.-licate He-Cd laser '_:-?3tiy increased the complexity
of the system. A micro-processor pcrfome-d th? necessary data reduction
and system management for automatic suill detection which included control
of the scar feature. Several problems were uicoimtered durinn field tests
of the system due primarily to subsystem failur." and the lack of a
hardened blue laser. !-!o,vc-ver, the field tests confi med the oil detection
capability arid the versatility of the nicroT-occssor-iiasec!, algorithm
imp! c-men tat ion.
Summary of ilesul u
The la.iordtorv ffleiurorient studies citel above- have con tribiited great-
ly to on understanding of the back scatter i no chennpiena at visible wave-
lengths. Tno significant results of these studies are s^pmorized below.
Back scat l.ored energy is a result of both single and multiple scat-
tering by the particulate material in the uater. I he depolarized
component o.' the return is cue to only multiple scattering in thr> water
vol urtie.
Measurements have shown that the riopol eri zatvon ratio (defined as the
:ross-pol an zed return divided nv the 1 i pol ?»-»zed return) is less
iffocted by surface waves than either of the incivisual terms. Any output
lower fluctuations do not -if feet the ratio since both cross arid like terns
ire equally affected. These results indicate that the depolarization
•atio is possibly the best ceisurement |ws typ'- of gas-discharge
jser make it a less than optimum device for fiein opol ications. The
ivironmental constraints 'if tr.e blue laser maK' ?• hardenon blue source
)cessary for field aopl i cat ions of tins particular wavelength.
The field experiments have verified so-i.e of th? results of the labor-

-------
atory Measure-merits ror field conditions and proven the 1 i dar pol arimeter
to be a viab 1 2 methoo of making in situ water quality measurements-
REPORT OBJECTIVES
Most of the 1 ^or.jlory measurements described above have boon made
usuici Teflon i)iirLk!vs jnd polystyrene spheres. Thc-sc scatterers have 0
very uniform, "well behaved" shaye arnl a narrow si.io distriLuitior.. The
particles encountered in field measurements lire more variable in shape ar.
-------
flllAr'Ttfl II
BACKGROUND
WATER QUALITY
Water quality is the condition of the water in a lake, reservoir or
waterway. Tin's condition is usually associated with soue use such as
recreation, a source for drinkinq water or r.av irjotion. Water quality
parameters are a quantitative description of trie characteristics of the
water. Typically, these parameters can be separated into physical, chemi-
cal, and biological groups. Physical water quality parameters include
clarity, color, and tne acoustic properties uf the water. Rioloqical
parameters are related to the organisms in tne water, such os the concen-
tration of phytopl arkton. chlorophyll or culifor.ns. Chemical water
quality parameters include the concentration ol pollutants or dissolved
suDstances and the salinity ot tne water. Often the qroups are
dependent. For example, the color of water is affected by the concentra-
tion of different types of alciae.
Physical water quality parameters are often the Most convenient "v;-a-
suroments to make using in >itu or remote sensino 'I'etnods. Tne dependence
of the physical properties on other parameters allcws these measurements
to be used to estimate a wide range of useful warer aiolity measurements.
REMOTE SEi-iSIi.'Ci MEASUIiE'-iCNTS
The field of remote sensincj has shown considerable prtinise in the
measurement ef many water quality parameters. Remote sensing techniques
are used to measure the character!sties of water at visible, infrared, or
microwave frequencies. The spectral characteristics of reflected light or
the scattering of microwave energy can be rela'°rl directly or indirectly
to many water quality parameters, including the concentration of phyto-
plankton, chlorophyll or suspended solids in the water, or the presence of
a contaminant such as oil on water. These techniques are especially use-
ful for measurements that are to be made over a large area. Few methods
of measurements giv-5 the synoptic view available 1"ro:n remote sensing mea-
surements. Some techniques, such as the airborne fluorosens'ir or remote
lidar bathymeter allow a large number of point samples to be recorded
rapidly [10].
Two riisaJvantanes limit the usefulness of remote sensinq measure-
ments. First., so.i'e techniques require a largo amount of post-processing
7

-------
which proveni'.s. real t ii.io oh5.cry.Hi0n:; of so.nc	<|ii'.1 1 ty ;:.irCiiv,otors.
Second, the indu'ei.;'. natm-p 0! some moa surf-iron .b oer.iins only qual 1 tative
ineesuromer;ts to he .node. .'-at! i t.i onal measurer r.ts fro often neccssiiry to
provide the req>nror. in;orn.-'cion needed to in.:)".>as& tin; accuracy of the
measurements.
Passive Techniques
Passive Method* of rcmoL-j sensing measure the backscattered sol3r en-
ergy from a scene. fins tyre of remote sensiincludes photog>-anhy, and
radiometric and spectrorodionetnc measurements.
Photography is the simplest method of remo'..p sensing. The advantages
of photugraphv, which include large ground coverage, good spatial resolu-
tion, and the flexibility of aeing able to use different filters and typos
of film, make this method very versatile in measuring .later quality.
One of the f^rst appl ications of photography t.'as the mappinn of tur-
bid ity plumes caused by both industrial wastes and tr.e natural influx of
rivers into lakes and bays. Ore study of the San r-rcncism Pay using a UV
filter and co"'ot film examined a turbidity p'liirce for rfpproMma tely a year
[13]. Aerial 0bserv.1l i 0 ; s from light aircraft recorded the extent and
movement of sediment laden water discharged into the Sen Francisco i?av bv
the Sacramento San Joaouin Hiver system. During some seasons, the
suspended sediment pattern was visible only from the ,jir. Thermal radio-
meter measurements for aircraft were also used to ma.-i isothermal regions
in the bay. These temperature character! sties rc-prc-sented 3 more integra-
ted record of the thermal pli;;;-;- caused by the i:ifl ¦¦ of w^tor. The aerial
measurements enabled an effective tie term"r.aticm o< the s::n50na 1 changes in
the flow rates of the water discharged into the bay mvi the circulation of
the water ir. the estuary. L'oth factors are iivportant when developing
physical or chemical models of the estuary system and surrounding coastal
wa te r s.
Another type of passive rpi.iote sensing is thr- measurement of ocean
color usinil spectrorad ione teThe spectral response of energy from below
the surface of the ocean is measured as a function of wavelenoth. The in-
put energy into the ocean is both direct sunliuht and sky reflectance.
The transfer function of the ocean as a function of -/avcltnnth can then be
computed frcrn the input and output measurements. fhis tcc.hmoue deter-
mines the scattering and absorbing properties of the ocean flue to the par-
ticulate and dissolved material in the water. A ratio of the transfer
function at two particular wave!ongths can be used as a measure of the
chlorophyll concentration in the ocean. Curran [I.*!j c-xciniinfd the transfer
function model:., the effects of atuosphono scattering and the accuracy of
the spc-ctroradiometric measurements required to assure iiioaniiioful measure-
ments of ocean eoler from a satellite. Preliminary mea"jremenIs from air-
craft at two altitudes showe'l good currei at ion will- the iin.dicted values
of ocean color.
Another theoretical study by Katfawor and bupphreyr, [13] determined
the effect of chlorophyll on the ratio of upwellinn to downwelling
8

-------
radiance and irredi jrcr. '"run an aUnosphere-cce.'irs r„y	A Ifonte Carlo
simulation program cv.-piitci: the desirc-ri output para fetors ar. a function of
wavelength, altitude .V,ovr' 1.1:e O'.ean, depth v.'it-nr: ti.r ocean, chlorophyll
concentration, turbidi ty. asolar 7.0m th airjle. "Hip progran user,
several cross section pd'-a^et-ers which describe t'0 bC^tiorinq and absorp-
tion character 1 sties, u; both the atmosphc-ro and cctan mediums for both
Raylevoh and i'me particles, as well as absorption by ozonj in the atmos-
phere. Tne effect of c'-il orophy 11 was included in the program by introduc-
ing the absorption of chlorophyll in the cross section parameters. The
it-radiance and radiar.ee ratios can then he computed ar any position in the
system for a oiven sot of ¦ uridi tions. Hi f1>rnit height1". or particular
waveleng.h ratios can then bo observed to determine the characteristic
behavior of the system. This study concluded that: 11 the absorption
characteristics should allow chlorophyll to be measured by both remote and
in situ systems, thouoh turbici water could mask lower concentrations of
chlorophyll, ?J a tl.ree filter system at appropriate wavelengths could
distinguish the chlorophyll when turbidity was d-je to other substances,
and 3) an airborne system should be flown as close to the water surface as
possible, to decrease the noise from reflected sky I ight.
Ritchie, Schiebe and ichenry [ 14J utilized a soectroradiemeter to
measure the incident and reflected solar radiation from six reserviors in
northern Mississippi. Tnese measurements were made fr im a height of 20 to
50 cm above the water surface fron a boat. The :oncentratinn of suspended
sediment was also measure.-! from collected surfat.c- voter samples. The sun
angle was calculated for each set of measurements. Data eouivalent to
that recorded by LAUDSAT as calculated by intecra nq the area linger the
reflected solar radiat'on spectra between the regions of 500 to (i00 nm,
600 to 700 nm, 700 to f'00 rin and ROQ to 1100 nm. A linear l?ast squares
routine was used to determine tne. cor-elat-on coefficients between the
spectral measurements and the concentration cf suspended sediments. The
best spectral region to determine the ccncentrai.i cn of suspended solids
from measurements of the reflected solar radiation was found to be 700 to
GOO nm. Sun angles within 40° of solar noon wire also found to improve
tne correlation coefficients. This study indicated fiat it should be pos-
sible to quantitatively dote mine suspended sediments in surface waters
from remote platforms.
Merry [15] reported a study oF Lake Powell, ljfih, in 1075, which cor-
related airborne snectrorao'iwc-ter measurements with surface water charac-
teristics. Field nejsurements included percentaye of light transmittanco,
surface temperature. p!l, and Secchi disk depth. i-'ater samples taken at
four locations were analyzed to determine the composition and concentra-
tion of the suspended particulate material. The mwltispectral data for
the airborne spectroradioneter wtre analyzed for the four water sampling
locations. The comparison of the mul Li spectral data and the viator sample
characteristics showed that: I) as the pore on tone cf light transmi ttar.ee
of the water samples decreased, the reflected radia-ce increased and, 2)
as the suspenned sediment concentrations (nWl) increased, the reflected
radiance i creased in the 1 -itk;/1 to AG-mo/1 range. The reflected radiance
measured at a wavelength of 0.5G ,iin was directly correlated to the
suspended sediment concentraLion. From the lesults of Lhis study, the
9

-------
airborne mul:¦spectral n:c?risuro.iGii1 s were shov/n to relate valuable qualita-
tive infonikitioii on t'v surface turbidinv uf L-.k,.1 PowcM.
Active Techniques
Active methods of remote go;::, i ikj transmit energy toward a target a no
measure :ne amount yf energy that is reflet too or scattered back toward a
receiver. These types of techniques include laser f1ouorosensor, radar
and lidar (1 riser radar) measurements.
The development of the laser greatly influe^ced the field of reirote
sensing. Several applica7ions of the laser v. Liie a^ea of water quality
measurements have urovc-n the ability of those system*, to incjke in situ and
remote water quality measuregents. These measi-retner.+ s include temperature
and sea state netermi iij cion, the detection of oil spills and the
concentration of algae of suspended solids in water [10].
The property of fluorescence exhibited by chloropliyl 1-a has provided
an effective inatnod of measuring the concent rati on of phytoplanKton in
natural water, The laser marie possible these types of measurements from
airborne platforms. The tr'/\ has been involved in airborne measurements
using a fl uorosensor systt-m for several years [1(5]. This system uses a
flashlair.p pumped dye laser and a telescope receiver. The recurn signals
are detected using a gated photonul tipl ler tube, digitized and recorded on
a nine-track tcipe. The pho tom-.il tipl ic-r signal is also displayed on an
oscilloscope to measure aircraft altitude. ;"hc system is mounted in a
helicopter for convenient airborne measurement."..
Field tests have been conducted with tlii¦= system over Lake Mead,
lievacia. Las Vegas 'r'ash which (lows in to lake fiead, receives both treated
and untreated sewage frop' Las Vegas, resulting i'-; a reasonable variation
in algae concentration for airborne measurements. Buoys mark the fliqht
l^nc as well as ground truth sample localions. Surface water samples
taken in an area around each buoy were mixed Lr> remove patchiness in the
algae concentration. The concentration of chloropr.yl 1-a in live different
subsamples of each mixed surface water sample was determined using
spectroscopic or fluorometric methods. The airborne fluorescence signals
were corrected for slight variations in aircraft altitude and laser power
level. Linear correl ition coefficients between the normalized
fluorosensor measure->:.c-nts and the mean chl orophy 11 -a concentration of the
surface water samples ranged <"rom 0.77 to 0.°5 for five different flights.
A major factor that directly affects fluorosensor measurements is the
volume of water that is illuminated by the las-)!-. This volume varies due
to scattering arid absorption by suspended solids and high concentrations
of algae in the water. Ore -ictiicd of remotely Conner.ting for variations
in the volume of water illuminated by the laser is to measure the Uamari
emission concurrently with the fluorescence sKnol. "ihe Ranun emission is
only a function of the water illuminated by t^e laser. -\s the volume
decreases due to scattering, the Kaman emission also decreases. The FPA
system lias boon modilicd by the addition of another photomul tipl ier
channel filteren at the proper wavelength to ineasire the Paman signal.
10

-------
Preliminary m^su regents have ?h»v/n th.it the : 1 iiore;.cc-nce signa1 can bo
corrected for varieru.-i in sa:.,,)lo volume by :,3irip it.'.- rcnen returns.
Another 11 uorosc-iii?r sy:-.tc.'i dcvelcore: h/ WSA Lsngley [17] further
utilizes the proper'y that -J i sti net color ¦iroues of alyoe exhibit
different spectral ren'Onse to the irij.u!, energy which causes
fluorescence. Particular inpu', wavelengths r-.n thus be chosen to maximize
the fiiOre-jcei'ce of a pnrt.icul ar cclur group. A unique four-color dye-
laser is unc r! to iiiour. energy at the roccired wavelengths. The
fluorescence at 685 nm iv.used by each input wa^vl r-ncjth is then measured.
A matrix inversion 1.ochnii|.ie then relates rhe fluorescence and
correspondintj concentration of chlorophyl:-a associated with each
different color group of algae. in situ and airborne measurements have
been made with good corrc-laticri to ground truth data.
TURblJITY
One of the water quality parameters that i; often measured is turbid-
ity. This parameter is an indication cf the clarity of the water: Tur-
bidity is related to the extinction length of light m water. Attempt? to
correlate turoid'ty measurements with the cuncentration of suspended
solids have met with limited success.
Transmis;ometers, ncpholoveters, or a combination cf the two, are
used to measure turbidity. Trjnsmissometers measure the attenuation of
11cjht through the water between a light, source and a det.'-clor a particular
distance apcirt. Ihese instrmentr. are usually submersed in the water to
be measured and often give a profile of trem-mi^sivity as a function of
depth. Ihey are particularly sensitive to organic dyes that absorb light
[18].
Nephelometers or scatter!ng meters measure the amount of light that
is scattered from the participate Material in water for one or more
angles. Labcalory models of scattering meters measure the light scat-
tered (usually av 50°) fron a small sample or a flow of water through the
instrument. Otner instruments are submersible in the water to be mea-
sured. Different configurations of these meters 'Measure the scattering
for a wide range of angles. Some models measure only one angle which
could be 45°, or a ve"y small angle, less than 10°. Other meters
measuring the scattering at a set of angles, for example 45°, 90°, and
UiO'\ Still other models are adjustable, to be set deoendlng on the
conditions to be measured. T'ie advantage of multiple angles or a variable
angle is related to the size oistribution of the- nart'cles to be measured
[18].
Some instruments are j combination of both the Iransmissonieter and
nephelumeter configurations. These meters, winch are usually submersible,
simultaneously measure both the scattering ancJ attenuation of light by
material in the wjter. This type of instrument can be used to correct the
measurement of scattering tor the absorption by the water or the effects
oi deposits on the decector and source windows LIS].
11

-------
A field stiidy condix te.1 bv \ he LISOA [19 J d„>1 pcuved the accuracy of a
turbidimeter in mr-'isur i n; suspended sediment. eon'ionvraticn. This turbidi-
meter using i p'.iotor.r"11 iiieasurvs the amount oi light which passes through
a thin falling stream of water. A pumping-type sedinent sampler provided
water during a runoff event fur both the turbidimeter and sediment
samples, besides nonivl rlc./ 1 'ejsurements, saiiii/es were al so measured as
a function of partie'e sire. Several difforcnr sqi^d 105. were fractionated
by sedimentation ana do cm tat "inn (using Stokes L ¦: w) at six arbitrarily
selected sizes. iiach decanted traction was. measured with the
turt'dimeter. After the successive fractionation was comoleted, the
samples were recombined and analyzed for size 
-------
sunlight is further reduced [21].
In Situ i-teasuropienl
Suspended solids are usually measured by nravinieLric methods. The
suspendoo solids are fi Itemed o L; t of a water virnplc? and then dried. The
sediment ir, a sample con til i»n be flocculated to ouicMy settle the
suspended material and then decanted to ivrnovc I ho excess water. The
remaining sediment is then dried. In both case; the dried sample is care-
fully weighed. For a known volume of water. the concentration of
suspended solids is then computed in milligrams p-.'." liter (ng/1).
Less direct Methods of measuring suspended solids have been used with
limited success. The optical attenuation and scattering methods previous-
ly described generally report the measurements in opt'eal units such as
Jackson Turbidity Units (jTU) or Mephelometer Turbidity Units (IITUi. The
transfer functions needed to convert these optical units into concentra-
tions of suspended solids in mg/I are not available. The qualitative
nature of thesi? methods limits their usefulness m measuring the actual
concentration ofsuspended sol ids.
Sedimentation
The concentration of sediment ir. rivers is important for several rea-
sons. A hinh concentration of sediment in rivers can be used as a tracer
for nonpoint sources of pollution such as sow gcoloov.jl formations or
larc;e clear cut areas. Since soil erosion is one of the main sources of
sediment in rivers, the study and control of soil erosion and surface
runoff can be directly a.'sisted by the measurement of sediment in rivers.
Monitoring the sedimentation of reservoirs and navigational channels as
well as the effects of dredging operations can also be assisted by the
liieasur-merit of sediment, winch is relocated by rivers.
Pollutant Transfer
The measurement of suspended solids is also an important means of
determining the potential pollutant transfer capabilities of a river.
Several studies nave indicated that pollutant transfer downstream is
dependent on the sediment content of the river as a transportation
medium. The transport mechanism of hydrocarbons, trace meta's and heavy
metals, particularly mercury, have been examined. In eacn case, the
transportation by different mechanisms were all associated directly with
the suspended solids in the water u?j-[2'\l-
Heavy metals are a serious pollution problem due to th.?ir tendency to
accumulate. These pollutants are toxic to fish and accumulate not only in
the aquatic food chain but also bottom sedimenv.s. Even for very low
effluent concentrations, the elevated levels which can accunu'iate on sus-
pended particles or n. botlorr sediment are a potential hea'th hazard [22].
Cranston and Lkickiey [23j evaluated a method to an.ilyze the total
mercury in solut'on, suspended particulate material and bottom sediments
13

-------
for nonindustrial ri/c-r arid estuary sysNn (LalMve Siver, liova Scotiu) .
Water samples, sjspundod sol ids filtered h-un \,.3h^r, a r,d grab samples of
bottom set!inicnt v.ure l-iK1;! at several locat1 ens in the river and estuary.
One sample was r.rj.oratx-d ir.io four size r.mc.ci, three of w hi ch wore less
than 01' :,in. 1 )ie highest concen!.ra ti on of nieicu1"/ in the bottom sednrent
was associate'! witn the very Fi"Fit- clay fraction 'loss th».n 4 ;:m). Hore
than tJ07i or" the total concentration of uercury was associated with ttie two
size ranges of particle; 1ess than 20 ;.m in size. The mercury content of
each size range wa:. foun! to increase linearly with the log of the mean
specific surface area for the three size racers ltss than 60 n>n. This
result confirmed chc- hypotnesis that the absorption of mercury was related
to the specific surface area of the particles.
The concentration of lead, mercury, zinc, copper, nickel, cobalt,
iron, manganese, and clirumiu~ in the bottom sediment of the Ottawa and
Rideau Rivers was examined by Oliver in 197> [22]. A large number of
samples was take at £ vi^e intervals along particular stretches of both
rivers. The purpose of the study was to locate heavy metal discharges into
the river using the accumulation in the bottom sediment as a long term
record of continued discharge. In the analysis of the samples, the
average concentrationof heavy metals in the silt fractions (less than 62
urn! was found to he significantly higher than the average for the samples
with particles from FjOO • in to 2000 ,.m. To compare different locations,
the specific area of the sample was taken into consideration to determine
if a particular sample had an unusually high concentration of
contaminants. A high correlation between surface area and metal
concentration for all metals except mercury was explained by the larger
surface area and associated increase -mi the adsorptive capacity of the
finer fractions. Industrial wastes, municipal sewage and snow
contaminated by automobile exhaust were mentioned as the sources of the
po!lutants.
A study to determine the mechanisms of transport for the trace
metals, iron, nickel, copper, chromium, cobalt and wanqanese in the Yul*on
and /mazon Rivers was reported by Gibbs in .'973 [24j. The mechanisms
examined were: 1) in solution, 2) by adsorption, 3) in solid organic
material, <1) as metallic coatines, and in detrital crystalline
material. The results of this study showed that 70% to SO?; of the time
these trace metals were transported by a co-iib nation of metallic coatings
and incorporation in the crystalline structur? of the particles. Only
chromium and manganese had significant proportions transported by
solution. Ninety-five percent (95^) of each of tne other metals was
transported by the mechanisms associated with the suspenned solids in the
river.
The effluents of a municipal wastewater secondary treatment plant on
the Providence River were sampled over a or.o year period by Van Vleet and
Quinn [2rjJ. Surface water and bottom sediment were also sampled once
durmg the sa.iie year at four locations along {he river. Samples were
analysed for the presence of hydrocarbons in solution or for those
associated with suspended solids. !ht susoended sclids were further
separated into the hydrocarbons associated with the organic materials.
14

-------
hu.iiic and fulvic ac.io ond lastly the res"id;¦-? 1 hydrocarbons. The test
showed that appropriate!'/ O'Cl uf the hyd"dc
-------
CHAPTER III

Several exDoriinentr. i.?re necessary tc examine the effects of
different measurement cr.ndif.ions on the lir'ar return from sediment I arte n
water. The conditions that were exa.uined wore the concentration, size
distribution, and colo'- of the seaiment particle*.-, fis well as surface
roughness and the presence of organic siisponc.c-1 ¦•laterial. The depth of
watt-" that contributed to the backscatteriag war. also determined for most
of the above conditions. The laboratory uotsurpments were designed to
isolate the different conditions and determine their effect on the lidar
return. The measurc-ncnt configuration was •'•lso designer! to simulate
realistic measurement conditions as closely as possible. This section
describes tl.ose experiments.
01 CHROMATIC I.1DAR POLAftiMLTC";
The instrument in tni s investigation is 1 dual wavt-lr	dual
polarized laser hacks,cottnr system [7J al:.o ci^lcd a dichrc.: - r.i c Iidcir
pol ar i meter (Figure 1). Two laser bea,ns -ire mo'Ui 1 a toil and transmitted
toward a target. A receiver collects tnc- backscuttered energy, separates
the polarization components for both wavel en-jths and detects their
magnitudes. A signal processor demodulates -md scales the signals,
converts the data to a digital representation, and combines the data .vith
identification information to be serially trrmsnii Lted to a mini- or
micro-computer [271.
Transceiver
The twe lasers used m this system are a j n?*, nelium-noon laser at
632 nr.: (red) arid a 15 iiu, hel lir.i-cadniiun laser at nni (h'lue). Hue to
long tern aging effects, the t^ans'in tted poizes were approximately 4.75 mw
for the roc! laser and 1.5 n\/ fot the blue lase". I'oih of these lasers are
linearly polarized with vertical pol .in zatusn being tra>':si:i' tted. Tuning
rork choppers modulate the red laser at k'JU "z and the blue laser at -'
-------
u
h-
\
I
¦),

f <
i *
%
, js,i
* ... 			....—ana	
*	V
\. I
Iw	. .. V-t.'
(a) Optical Head
Figure 1
(b) Power Supply
Dichromatic lidar polarization system

-------
precision mounting of the o\<:,i cal component;. P. ?->3 nn telephoto Ions
collects the energy buck scattered toward the receiver. A pinhole Mount
directly behind the telephoto lens permits the field of view of the
receiver to be decrease;! it desired. A sna"> 1 recoil una ting lens directs
the energy froM the telephoto lens throveh l-p"i loser line filters to
re.nove background 1 nte'-feroncc. A polarization splitting cube (calcite
crystal) separates r.he energy into cross- and like-polarisation
components. Photomultiplier "tubes (PMTs) detect these returns for
processing.
Signal Processor
The signals v-orn the two photoinul ti pi ier tubts pre preampl i fied and
then multiplexed together. Two electronic 'vindpass filters centered at
the chopper frequencies separate the red and blue returns. The signals
corresponding to each v.avelength are demodulated individually to separate
the vertical and horizontal polarizations. i\ reference signal fron the
chopper driver is used tc detect the peak of the returns. A synchronous
sample arid hold circuit converts the signal to a DC voltage proportional
to the return energy. The two channels (red and blue) are then
multiplexed back together and converted to a  micro-conputer for further processing.
A controller produced the timing signals for the proper operation of the
multiplexors, digital integrator and fo.'malter circuits. The total
iiittgration time of the s~gnal processor is i'3 milliseconds for the red
channel and 15 millisecond.-, for the blue channel.
MEASUREMENT CCMF ICURA'n Of.'
Most of the measurements described in this section were wade using a
large fiberglass tank, Figure 2a. The dimensions of the tank (120 cm x
105 cm x 60 cm, 7i)C liters) were as large as available space would
permit. Tne large size of the tank allowed extinction lengths of five
feet (1/5 meters) to be me--jsurcd for very low concentrations of scattering
particles. The inside of the tank was painted with grey epoxy paint to
prevent any contamination of the water by fiberglass particle^. The
inside, bottom, back, and sides of the tank wore given a second coat of
black epoxy paint to decrease any reflections insine the tank, Figure 2b.
Black fur absorbers were used to decrease tne reflections of the
unscattered Taser beans at the button of the tank and the water surface
reflected boacs behind and above the tank. The range of the measurements
were 3.8 m at an incident angle of 72° from nadir. Thr high incident
angle was necessary uue to the largo tank and the area available for the
cea su reined ts.
Two sots of measurements (the high concentration of the red and brown
particles) were made in j 1(>0 liter settling tank. The raiige for these
measurements was 4.1 m at an incidence angle of 72°. For roth of those
1r«

-------
(a) Measurement and settling tanks
,—, rriMtiMyyiMgjr	1?
ii.	y^..	\


* ¦ '
'*
'
\	"v
t>

i i
¦\'A- it#**
'4
(b) Inside of Measurement tank painted with
epcxy paint
Figure 2. Measurement tanks
19

-------
tanks a circulation pur.v. -kIs used to keep the particles in suspension
throughout the ineasutv'er'ts.
COMCiirJIRAl I Or.' MCASIJRKMU.'TS
To determ, ne the ill j - .v •- e:' t or fee Is ol particle characteristics on the
back scattered return, vi".s. ¦-ji p.t. ¦ jnic I er ^ were ¦¦¦.'vie:!, flisse included: 1)
varying the concentration of the suspended p-3tic1 over a very wide
range, 2) chjng;r.g the panicle *,i ze di str ibut ir,n. ciiiij 'i) using different
types of sedimoi t. As mentioned <''0rl 1 er, tl:e e.y-orT'icnl:". wet.? designed to
isolate the separate effects as much as poss;,,:1 o
bample Description
To examine the effects of different types of particles, throe
different soi1-rel ated particle; were used as scatterers in this
experiment. These three lOi! tvpes were a white ceramic clay from South
Texas, a red clayey soil from IVrrJi Central Texas, and a lirow clayey soil
from the Brazos Siver flood plain. Many of the previous backsc'ittcr
experiments had used polystyrene or Teflon particles for scattering
measurements. These soil particles were chosen to hotter simulate actual
sediment particles encountered mi field measuresenr.s.
The definition of cloy in the above description is with respect to
the actual composi 1 ion c<' the particles, i.e., -mneral silicates of the
smectite and chlorite grcupr.. The word cla> will also he used ir
conjuncion with "sand" end "silt" to describe tne size of the particles.
All of the particles are actually of a clay composition, with sand, silt,
and clay size ranges.
The white day sair.pic was a commercially available ceramic clay
(ben ton i te} consisting largely of smectite. The size of these particles
ranged froi-' approx imate o ;>n: down to less than 1 :.:n. To determine the
effect of different particle sizes, this particular soil type was
separated into three different size ranges. The different settling rates
for particles of different sizes were used to separate the particles into
the different size ranges. The size ranges were sand (75 to 30 urn), silt
(30 to 5 in), and clay (5 to ] "i). These ranges correspond closely to
the very fine sand (Lf'i? to C-O ,:m). silt {V) to 2 in), and clay (less thin
Z i.m) size ranges used by the l.'.sHA. The slight differences were due to
the available sample ar ze ot tin; particles in the micrographs was
chosen to r>e as representscive of the samples as possible.
20

-------
t
ro t

'f -'•»

-
• I
1

" W^4 Wi
11	lOOy-—I J ••
tii. •¦--»,iikT 'i-r ¦»&*¦ ..^.>
(a) 300x
fl
•i
- * »
A jT* _ *«V
.jh£
>'•-, /.
fc /-
. •
t ".
,-u*-V.
. ^ ..
$*" . :i
|gjppwjSM^ v j
. fV. V'
vv. T-0
:	-h
ra
4
-J
-30;:	j f

(b) lOOOx
Figure 3. Micrographs of White Sand Size Particles

-------
f
(a) lOOOx	(b) 3Q00x
Figure 4: Micrographs of white silt clay size particles


-------
r
(a) 2000x
7 - <"—?—	r—;—•
i	•• '	*y	t \	' *§	> .
...
>r '	» 3
-
-«. - . -	J
.
'
¦
i ,
• r	¦ ii.
1
.
8
1 J1- "V-< '
k
r ' X. r- /••• •	;'¦*•"*-< I
V'	-V '%¦ >.	*
f '	I I	10u	! >
- f . a Iv A' / ^ , *' V
:«„ 	- - ^
(b) 3000x
Figure 5. Micrographs of white clay particles
I

-------
The red particles used in this exponr, W't were from a red clayey sand
obtained in the northern Central Texas ar.M. The size distribution of
this sample was restrictec! to approximated' Iho same distribution as tne
silt si/e range of t''e white sample. The ;"i crographs of this sample are
shown in Figure fi. The larcier cubic crvstilr in the micrographs arc
calcite crystals. The large irregular partii. les ore quart? crystals. A
soil survey map of :;he area whore this soil sample was collected indicated
that, the much smaller clay fraction is a widr.- mix of kaolin">te, smectite,
mica, chlorite, and vcrsTHciu 11 e. These sn^'il^r particles r-jn be seen in
the inert highly magnified micrograph. Figure 6b, ll.c very sharp cdnes of
the calcite crystals indicate a lack of erosion for these particles. The
red color of the ssimple is coated on the par-tides and indicates a high
degree of oxidation in the sou [28].
The brown soil used in this experiment, :'nown in the micrographs of
Figure 7, was Miller clay from the Crazos River flood plain. The larger
particles of this sample are made of quartz, feldspar find calcite. The
smaller sized particles ar:- largely smectite and kaolimte. The eroded
edges of the few calcite crystals in the micrographs "indicate that this
particle closely simulates actual sediment particles [2P>].
Particle Size Distribution
The size distributions of all the samples were determined using
pipette analysis. This analysis is based on the differential rettlmg
times for particles of different sizes in a column of water [?y]. The
sediment sample is first filtered and mixed witn water in a graduated
cylinder. After waituiq a specified time based on the particles size and
density, a pipetter is used to remove a measured volume of water at a
particular depth. Since all particles of a larger size have settled past
the point that is sampled, the pipette contains only particles smaller
than the particular size for that sample. A sequence of suc'-i samples is
taken to give the density of the water column as a function o,r tine. Each
pipette sarr.ple is evaporated ro dryness and very accurately weighed. The
difference in consecutive weights represents the weight for particles of a
particular size. These series of weights can then bo related to a weight
distribution of the original sediment sample cis a function of particle
size. The size distributions for the samples are shown in Figure fi.
A similar settling technique was used to sroa>\ite the size ranges for
trie sand, silt, and clay size distributions described previously. For all
of the white, ret!, and brown samples, a large amount of soil was mixed
with water in a 160 liter settling tank, and allowed to soak over night.
The sediment was then mixed again and allowed to ~2ttle For a particular
period based on the size range and water depth. The unsettled particles
were then siphoned off and, depending on the size range, discarded or
saved for further settling. By repeating this procedure and using
different settling ti">es, ar;y unwanted particle sizes could be removed
from the different samples.
Ihc- smaller particles were particularly difficult to remove from the
white samples. f.ven after repeated settling and removal of the smaller
24

-------
1
Figure 6. Micrographs of red silt particles
*•

-------
J
Figure 7. Micrographs of brown silt particles
I

-------
20
GJ
CD
c:
P i r
: b
o
r-si
10
gj 5
L)
S-
QJ
C_
A i-'lntc Sill/Clrr/
-> While Clay
yA'
/ y\ ^
.0' A. \
A o-.

62
15 3 4 2
Particle Size (i-'m)
(fO

-A
O Brown Silt
A Red Silt
.-~An
v
Ss
o—
"0-
¦-A
—~o
G2 31 15 3 4 2
Particle Size (um)
(t>)
Figure 8. Particle Size Distributions for floch Sediment Type
27

-------
particles, some uf trie- sn.tller clay-sizc-i uc< "tic! os pcrr.ir.ted, When the
size di stri.mtion of ir.o w'm !c silt sample was analyzed, the distribution
was found to be sl; ev/c- n considerably toward the- filler clay d^stribution,
Figure 8a. This sample will bo referred Lo .-s Lh(.' white si 1 t/cl ay-si zed
sample. Another whi ce f i v sample was pv-eoa>-'?d. The smaller particles
were more completely removed by repeated settlim of this si. liinety percent of the
sample was larger tnan C ,m. From the settle ihj of !;his sample, the size
distribution appeared to he very close to the desired size range for the
silt classification 30 to "i i.). Figure 8b. Ihir. sample will be referred
to as the white silt sa^le. Though no Micrographs were taken of this
sanrple, the irregular shape of all three of the other white samples indi-
cate a similar shape for ti.i^ sample.
Pipette analysis cou'M not be used to deL?rnine in detail the size
range distribution of the white sand-sized sample. However, 51 percent of
the sample was larger than 6J rm. A pipette analysis of the smaller par-
ticles indicated tlv.t most of the small particles ./ore less than .5 ,m in
size (23"M . The remainder of the sample was between 32 :,m and 1 j:m in
si ze.
Measurement Procedure
Each of these different soil samples was used as scattering particles
in the backscatter measurements (Figure 9a). These mfasurenents were made
as a function of sediment concentration. Due to the size separation pro-
cess. the soil samples wire in the fo-m of a concentrated suspension.
Measured amounts of this slurry were poured into the measurement tank
(Figure 9b) to vary the concentration of sediment from a very low level to
a level high enough to "saturate" the scattering process. The concentra-
tion of the suspended particles was computed from the volumes of the added
sample and the measurement tank along with the concentration of the
slurry. The measurement sequence included measuring the backscattering
from a white calibration target. This measurement allowed the optical
alignment of trie system to he checked and served as a power rieas-jremont to
normalize the sediment return. Da to were taken for 55 seco.ids and aver-
aged to give the indicated measurements. The data from these measurements
are tabulated in Appendix A.
ALGAE MEASUREMENTS
A simple, algal specie was used as a scattering particle to determine
the effect of organic suspended particles on the backseat tenng measure-
ments. Measurements were also made from a mixture of the algae and sedi-
ment particles over a wide range of sediircnt concentration.
The algae used in t'vs experiment was a green flagellated specie,
Chiomycomonas. I ho cell size of this algae is Approximately 3U ;.m. Pre-
liminary measurements sliowe'J that a high concentration of t.^e algee would
2K

-------
(a) Test tank with high sediment concentration
(b) Increasing the sediment concentration
Figure 9. Scattering from sediment-laden water.
29

-------
be needed to make i.iea.^ji'eiiioni'.s in the largo r-easure-nent tank. Twn cul-
tures were grown in a iO liter carboys for Liu experiment. The culture;,
were allowed to ¦]'ow io ¦> bloom conditio" 01 iiprirfv.iinoi.ely i?.0 x 10''
cells, liter.
Cackscatter n.oasuroi'it/r.ts were first iMile f>-Ont only "he algae. lhe
concentration of the a 1 -jao ranged from 1.W x !0' eel 1v I i t;.-r to a wq
concentration of 'i.'lt x 10' ce' 1 s/1 l tcr. Wnon the riaxiiTiui conoer.trat ion
of algae !iad been »eachud. sediment was then added for further
moasurcMents.
The- sediment used in this exper mient ,-/-is thr- second white silt
particle desmpec! pi eviosiuly. The concentration of sediment ranged from
21. '6 ng/liter to 5-U1 i::q/l i rc-r. These results are teim I a ted in Appendix B.
SURFACE R0Ur,H:;Er.S I rr-\SURuM::Ml 5
Measuremtr.ts of backsco ttermg from sediment laden water were also
iiiacie for different levels of water surface roughness. A small fan was
used to disturb the surface of the wate<" close 10 the entry point of the
lasers for three different wave heights. Veosurc-ments w^re mace for the
red and brown silt samples, as well as the white silt/cloy fraction. The
depth of water tnat contributed to the lidar backseat ten ng was also
determined for several different concentration and surface roughness
co.'id1r ions.
Heck scatter ."'easureinePts ..ere made for three surf-ice roughness levels
using Lhe three silt sediment samples as scattering partuJes. Kor each
particle type, the cnnce.iLration \/c» s varied similar to the previous
measurements, but at wider intervals. At each concent^dtion level,
backscatter measurements we^o made for a11 ih.-ee levels of surface
roughness.
The reflection of the lasers from the water surface could he seen on
the black absorbing material behind the measurement tank. When the fan
was used to disturb the water surface, the pat corn of the reflected laser
beaiiis on the absorbing material could ne i.sed as an indication of the
level and pattern characteristics of the surface waves. 1y repeating the
.-eflectori pattern, thr- lov?l and pattern of the surface- waves could be
repeated between the different sediment typos. reflected pattern was
gene-rated which i i:r, icated that no longitudinal or traverse wavf structure
was present. The paitc-;n was rnu^hly a circle with very little symmetry,
indicating a "random" surface function i/as being generated.
lhe charaeIon stirs of the surface waves are difficult to quantify
arid as a result tl;ese descriptions are somewhat subject i ve in nature. The
circulation pum,> used to keep the particles m suspension produced some
ripples on the surface. At the on try pm'nt of thf lasers, '.hese ripples
were insignificant, causing no deflection of the reflected laser beams.
Estimations of the surface wave charactenst1':;. cause'.! hy the far, were
difficult to measure because of their extremely small si/.c. lhe calm
3U

-------
surface roughness was a '-.-ive height of rVJ.jrnxi.-'atelv 1 in?i, wi Lh a penod
of 10 cm. The laser rieflocLion 1 ndicat'.-d d change in reflected angle of
only 3°. 'Flic mednr.i surface roughness i\.rt an >.-cproxii:iiite wave height of '?
wave conditions. C'ms.'guently, the? las?"" were reflected completely out.
of the water for short litnods during the ¦¦ e.i-ur-o:?w-.v!t:s. The high incident
angle ai.d small surface ar•?.=. uthe zcrV ;sen[.ed these surface wave
characteristics fro:.1, being :iore representative of actual fielo measurement
condiLions.
The results 01' the experiment are tabu1a tea in Appendix C.
depth or KLASij itr-;i:;iT
The repth of water th.it contributed >.0 the backscattering was also
determined during the surface roughness experiment. This measurement was
made for the sowe set of conditions as t^c- surface roughness mesurenieiits
(i.e., each concentration of sediment for all r.hreo silt fractions at each
surface roughness level). To nake these iieasureconts, a black absorber
was moved up the laser path until a decrease was discernible in the return
from the tank. Willi one person watching the system output, and another
moving the absorber, the measurement was repeated several times to give an
accurate indication of the greatest depth of water that contributed to tne
measured backscatt':ri<>g. The deaths given are along the laser path in the
water, ".ppendix C contains the laser measurement depths and So cc hi depths
for these measurements.
31

-------
CHAPTER IV
DATA RERiJCTI ON
The back scatter iiiuasiimucins wore reduced to lioar cross section. The
lidar crass section is a target parameter v-l" ch relates the incident and
backscattcrod uower density levels at the ' ircjf.t. Reduction of the data
measurements to 3 liiU-r cross section format >emoves characteristics of the
measurement system and perr.nts meaningful inti-pretanon of the measurement
in terms of target phenomena.
To calculate the cross section, the system nain and optical efficien-
cies are used to reduce the raw measurements to actual backscattercd power
measurements. For a known transmitted power, the target power densities an
cross section tan then hp calculated. A white calibration target. was used
as the reference cross section for thc-se measurements to measure the trans-
mitted power.
CROSS SEC 11 ON CALCULATION
One fom of the lioar cross section pqyatio.i (assuming no path loss)
[30] is given Dy:
P /A
2 P. P.
.« ^ 4.R ""	(1)
i	P /A
T T
where
R = flange to target
"ft t deceived power
!:>T = Power transmi ttc-d
'\a = Area of receiver
^¦T = Area illuminated at target.
The i and j relate to the t: ansini t.ted and received polarization, respecti-
vely. The range and areos arc- easily measured or calculated frott system
character.sues and cue measurement configuration The received power is
calculated frcn the I'leasuroironts by incluuino s,yst?m iiains and optical effi
ciencies. Specifically, the received power is niv 1? 11 by:
32

-------
V
!' = C	(2)
;)	2
where
!ji- oan: constant of the 'v-stern which defends on
tr-c optical	of the filto'rc and
pi'oVoniultipl ier tubes o--„ the loser wavelengths
and the preO'iipl i r ic-r importance
V i-'rc-anpl 1 f ier output.
S - f'ho ccnul tipl ier sensi ti / i ty
The system gam, C|, and the photowul t." ol ior sensitivity, S. are
explained in Append* 7>. lh? preompl ifier output is scaled by Lhe system
electronics and convettod to a digital word to h3 sent to the comouter for
further processing. A MXimum of 10 millivolts at the outDut of the
preanipl i f it1 r is converted to an integer of ''095 for use by the computer.
The conversion constant for lhe digitization process is 2.44 x 10"
volts/bit, e.g.,
V = Digital word x Z 44 x volts/bit (3)
The photonuil ti j. 1 er tube sensitivity is related to the PMT supply voltage
(Vy;.ij) uy
S - exp(8.L5 lnVpvj - 57.1} amps/lumen. (4)
The constants S.15 and 57.1 were determined fron measurements of a constant
hackscatter at different p!iV sensitivities and from the PMT sensitivity
specifications for these navicular photomuH'pl ier tubes (Aopendix D).
The same sensitivity cavitations were used for both photo™! tipl ier
tubes.
The remaining term, th® transim'Ited power (Pj), was initially
measured using a Jodon optical power meter. Suosecuent transmitted power
fluctuations were measured us. no a white target as described helow.
WHITE TARCiLT CAl.IBRATiC,.'.'
A white cnl ibri'tioM target was used to optically aliqn the lidar
system and to monitor the transin t ted power for us-1 in equation (1). This
white target is a shoot of opariue plexiglass that is white in color. The
scattering characteristics of the white plexiglass coi.ipltloly depolarize
the incident laser beams. .¦he constant scattering cross section of the
white target also permitted -;tr. use as a known cross-section r;a! ibration
target.
Optical Alignment
The lidar system must be prouerly aligned to detect the backscsttered
energy from a target. The reiver alignment is important to the proper
33

-------
transwission of the Dacks<-'.)"tored energy through the filters and polarisa-
tion splitting cube in order to be detected by the r-"!~s. The scatter:ng
from the white target is used as a reference rotjm wich has equal like-
and cross-pol ari ,:ed components. With tlie rod las^r ci the white target" at
ttie proper measurement range. the receiver view ar.ple "is scanned in azimuth
(without moving the red laser oos i ti on) until IrjLn tne rod horizontal and
vertical signals are equal. The two mirrors which shift the blue laser out
put are then used to properly position the blue fceesn .it the tarnet for
equal horizontal and vertiCf1.' returns. When the a"; lonipcit is completed,
tiie dc-pol ari zatii r, ratio is unu/ for both the rod and iilue wavc-1 cngths.
This system must y-3 r-'i.il igned whenever the measurement range is changed.
White Target Cross Section
The white target was also used as a calibration target to correct the
sediment laden water measurements for laser pov.er fluctuations (Figure
10a). The power meter used fc" the white target calibration was a Jodun
optical power meter (Figure lt)M. During one series of tests, laser power
measurements were made concurrently with back scatter ir-easurei.ients from the
white target. The cross section of the white plexiglass was computed for
each backscatter measurement. Tnese cross sections were then averaged to
give a more accurate measurement of the white target cross section.
During the experimental measurement sequence (escribed in Chapter III,
a white target measurement was made concurrently with e£Ch sediment measure
ment. Since the cross section of the white target v.as k:',ot,n. the cross sec-
tion of the sediment in water could be computed without directly measuring
the power of the lasers. The cross sections of the white target and sedi-
ment laden water are given bv:
wr Z
o = < 7: P.
ij
S
P /A
S 2 _P. R
o - fivR	(6)
ij	P /A
T T
where t^o supercripts WT refer to whim target cross section and S refers
to water/sediment cross sections. Tor a constant measurement
configuration the range and respective areas also remain constant. Assuming
the transituttod power also reu-iirs constant between the water an.d white
target measurement, the white target cross section can bo solved for
transmitted power and substituted into the water/sediment enss section
equation, which yields:
t;r
P /A
P R
P /A
T T
(5)

-------
Ps
S R Mi
" p^Mj
R	• >
Since xhc system nain corstan Is. defined nrr-'-no'.'sV/ for ?n are also
consent, the aoove e;iUJ.t"ion sviuces to.
'.T S
_ S 1 DU WT
!Ji- - ~c r('f"; „¦	(a)
1J S DW1 1 !
S, the sensitivity of the pholorultipler tubes, -ins different for the
white target and sediment measurements. In final form, the cross section
for the seciiment-1 ocien water is given by:
= PXo[ll. lb! ^nVppT - inVpMT)] —jrjj "o^j	(3)
As show:; by this i-ouation. th? cross section of ;he s¦=;di-nent-1 .iden water
was computed by 1) normalizing the sediment, return cy the white farqet
return, 2) correcting for Fv'7 sensitivity, and 3; multiplying by the white
target cross section. Since the return from the white target .or both the
horizontal and vertical tetirns wore used, this procedure also corrected
for any system mi salcjnmcnt. Cue to the averaging of the white target
cross section, this method also orovided a more c.ccir'ate and .acre conven-
ient measurement of laser power T,han that using vho onticai power meter
during the sediment mer.sii^emr.nts.
it should be not.-.'d chat this procedure was recuirec! to measure the
transmitted power for the cross spction calculations. A power monitor
could dp used to normalize the returns for field measurements. Power
measurements are not necessary for measuring the depolarization ratio since
both returns are equally affected by laser power fluctuations.
35

-------
-1 .••»« f-T vs
.! , /


> BUM* JWffWIFiii***11 '•
rjfc
(a) White calibration target
\
K-W.V-
t-A»>Wist
fefr
. v
V""-
L-j:	.it	w -
(b) Laser power measurement
"1
3
\
i
* >u -i-4
Figure 10. White target and transmitted power measurements
36

-------
CHAPTER V
RESULTS
The objective of this research was to examine the capability of a 'iidar
polariinotsr to measure the rcnTcn^-ytion of suspended sol ids in water under
different measurement cone.-'rions. Chapter I.I describes the experiments
which were performed to determine the effect on the lidar hackscattering
caused by sediment concentration, shape, color, and size distributions. The
effects of water surface roughness and organic suspended solids (living
algal) were examined and the c-?pth of the scsttirinc volume which contribut-
ed to the backscattered energy was also determined. Chapter IV eyplainr. the
data analysis methods used to reduce the data to permit meaningful compar-
ison of the different conditions. This chapter is a discussion of the mea-
surement results and some of the problems encountered in the experiments. To
better explain these results, 't is advantageois to discuss the scattering
character!sties shown iri previous e*Teri;i'onts. Tne additional effects caus-
ed by the scattering from sediment particles cat: then he better understood.
SCATTERING PHENOMENA
Previous experiments by Sheives [6] have compared backscatter measure-
ments with returns predicted by a mathematical description of the scattering
process. The Model includes contributions from both single and multiple
scattering processes. The excellent correlation between the predicted and
measured returns (correlation coefficients of 0.95) hrve verified the valid-
ity of the Nortel and the associated hypothesis that both single and muHiple
scattering must be cnnr,ide»od '-'hen predicting the rpturn from different con-
centration levels of scattering particles.
Multiple scattering occurs when the incident energy strikes more than
one particle before being .caUereJ back toward the receiver. This becomes
significant when the concentration of scattering particles lias reached a
high enough concentration to scatter the incident energy out of the laser
path and into the water volume around the incident beam. Multiple scacter-
ing depolarizes the incident energy due to the scattering caused by more
than one reflection from the scattering particles. As a result of this lack
of polarization, multiple scattering contributes equally to both the like-
arid cross-polarized backscattcecl returns detect':! by the lidar system.
Single scattering is the beckscatterod oncroy reflected from a single
interaction between the incident radiation and the scattering particles.
Single scattering occurs in the water volume only along the laser pa::h.
37

-------
Tin's type of scattering fror. spherical p	[> ' j 4. fpJ I	I 1J /
1 VV VVJ k VV •'
The results of oici'scat.tor measurements from turbid water made by
Sheives [6] are an excellent example of the backscattering process as a
function of particle concentration. The scattering particles used in this
experiment were latex particles. Figure 11 show; the size distribution of
these particles and Figure 32 shows their individual shape. Hie levels of
particle concentration at which single and multiple scattering contribute to
the returns are evident in the graph of the depolarination ratio shown in
Figure 13. At the low concentration 'evels where only single scatter is
present, the depolarization ratio remains constant at very close to zero.
At higher concentrations, multiple scattering begins to increase the cross-
polarized return and the depolarization ratio increases rapidly.
Hackscattir measurements were also made from turbid water usinq Teflon
resin as the scattering particles. The size distribution of these particles
is shown in Figure 14 and their shapes are indicated in Figure 15. Tho plot
of the depolarization ratio as a function of particle concentration is shown
in Figure 16. At low concentrations of scattering particles, the de-
polarization raiio remains constant at a value cf approximately 0.1. The
higher ratio at the low concentration levels for this particle compared to
the previous sample type is a result of- the difference in shape of the two
particles. The micrographs for the two particles (Figures 12 and 15) show
the greater sphericity of the latex particle than that of the Teflon
particle. The non-spherical Teflon particle sligtitly depolarizes the
incident radiation. Since this depolarizaiten is proportional to the single
scattering, and only single scattering is present at low particle
38

-------
Figure 11. Approximate Relative Size Distribution for Dow Plastic
Pigment 722 (after Sheives [6])
CIo o
O ro
o o
ft
°_CD	°
O ° ^ CC.< n o
1-1	" 3 ^
J
CO Q
O O
.1 inn
fl
o i
oo o
S
° 3
O o
Figure 12. Photomicrograph of Dow Plastic Piqmeni 722 (after Sheives
[6])
39

-------
.8.
.41
<= FOV = .32
•'* FOV = .64
o FOV = 1.07
.01
1 g, f8 ?
.1	1 .	L0
-5-
100	1000
Pji"Ci.clc Conc.untr.u jon (xl0° njrticlos/mL)
:igurp 13. Comparison oF PiL'pol arization Ratios as a Funci'ion of
Field of View and Latex Partic. 1 c Concentration
(after Shelves [6])
/j r\

-------
¦+	1	
. i	-i
I'.irt n lu Ui .ii'ieU'r U "0
Figure 14. Approximate relative size distr bution for Dupont TFE 30
(after Shei ve.s [6]).
Figure 15. Photomicrograph of Dupont TFE 30 (after Sheivcs |"6]),
41

-------
.5
° .4
0 . j _ _
n .?
rj
rH
o
c.
Q . L
.01.
©
o
o© ©o© © © 0 ©o © ®
©
©
	1—
¦ 1
1..
10.
10
,1,0. ' ' 'tot
1.000.
l'.ii L i c Kv Coin.i'n 1.1".11. ioil (:¦¦ U) |i,!i i u.li'"./cil.)
F i tin rc 16. Graph of Dfnoinn^i'iLion Hnlio ,is ^ Tunc Lion of Teflon
Panicle ConcenrratK'n (nfLor Shc.vcr. [0])
<\2

-------
concentrations, the dopoiannation rf.tio remans constant.
The results of the ii'odei corrola tions and the experiments by Sheives
have dutonmnc'i several characteristics of the scattering process. Multiple
scattering, which dominates the scattering at ;ngh concentrations, contri-
butes to both the crosc.- c.no 1 ike-polarized components of the backscatte-'ed
energy. Single scattering, which cannot be ignored at lo* concentrations of
scattering particles, contributes to only the 1 ike-polarizeci return for
scattering f-rcii spherical particles. For single scattering from non-
spherical particles, trie incident energy is ciepoi ar i zed by the particle
shape.
The measurements made by Shelves [6] represent excellent examples of
scattering frori "well-behaved" ^articles. The regions where single and mul-
tiple scattering occur are clearly defined. Tne concentration level at
which multiple scattering he-gins is also very ovident. For the irregular
sediment particles used in t>,e '.'resent study, these concentration levels a'o
not as easily determined. However, the results of the experiments using the
latex and Teflon particles are a useful guide ;n estimating the concentra-
tion levels at which single and multiple scattering occur for the backscat-
tering from sediment particles of the type useci in the present study.
DISCUSSION OF MEASUREDUTS
The many experiments in this study were designed to isolate different
measurement parameters and to cetannine tneir effects on the capability of a
lidar palarimeter to measure tne concentration of suspended solids. To
accomplish tins, the lidar rot'J'"ns were recorded as a function of concentra-
tion for a wide range of r.io.'isurement conditions and particle types. The
results of these experiments ar;i discussed in tins section.
Sediment Concentration
Many different measurement conditions were examined for a wide range of
sediment concentrations. A direct dependence of the backscattered returns
on sediment concentration was evident for all of tin1 different particle
types of approximately the same size range, ana for different size ranges of
the same particle type.
The depolarization ratio graphs for the white silt sized sample shown in
Figures 17 and 18 are representative of the iany (Measurement results. The
direct dependence of the dfpolanzation ratio on the sediment concentration
shown in these graphs represents an excellent statistical correlation be-
tween the two variables.
As evident from Shelves [6] work, the concentration region where single
scattering dominates the returns is characterized by a constant
depolarization ratio at low concentrations of scattering particles. Unen
multiple scattering begins, th-; depolarization ratio begins to increase
rapidly.SimiIar characteristics are evident in the depolarization ratio
graphs for the white silc particles. Though the depolarization ratio is not
¦1J

-------
constant at lev/ conccnf.riii.ioii levels. the rat? a I which the depo": -inzation
ratio increases is larger ror thf hi oner concentration levels. This more
rapid increase in too depolarization ratio indicates that "iiltiple
scattering begins to occit ¦•opro/.iiTv.tr-ly :0 »:g/1. The fret that the
deaolarizc!tion ratio does 'Jiange »"jr an mcriase in the concentration at
concentration levels '.ihe'-e t*.. !y single scattering should bo present,
indicates that the particle shape ;- SMigie scatterino "eturM. This effect causes
tne depolarization ratio to increase as the particle concentration increases
for concentration levels beliv.. 5fi nig/1. These effects are most apparent m
the returns from the irregular shaped brov/n anci red silt samoles.
The depol ari za ti on ratio plots for red silt particles are shown in ri cj-
ures 19 and 20. If. should be noted tiiat tne re are t\.o sets of data shown in
tnese figures. The set indicates by crosses w..s aegmred iate 'n the rxpe-
lnent in a small test tank in order to achieve very high concentrations.
The difference in the two mc-fisnrc-'uont sets is believed 1.0 be in the concen-
tration estimate and not the lidar measurement. This is discussed later.
Figures 19 and ?0 show slight increases mi "he rate at which the >*azi0
increases ahovt a conccnf'-ation 'ovel oT apivox iniately 50 ing/1, which
indicates significant multiple scattering above t'ns level. fhe fact that
the nepola>-izaI1on ratio does increase below this region indicates th.it
nultiple scattering is present at low concentrations also. The high
depolarization ratios for the red silt panic:, at levels o.c concentration
below 10b r.iq/1 show that significant depolarization is present even when
single scattering is the dominant scattering process.

-------
-e»
on
0.900
0.800
0.700
.600
S
(J
0 .400
0 .300
0.200
o»ico
0.000
10U
10l	10-
sroirsMf cofiC£riTHfinaM 

10
Figure 17. Depolarization Ratio Versus Sediment Concentration for White Silt Measured at 632

-------
I
0.900
0 .800
0 .7t10
0 .600
I
| ....
.'jQO
5 0.300
£
0.200
I '
0.1PB
0.000
10
10-*
10 '
SEDIrEMT COrCEMrRqTICH (HO/L)
Figure 18. Depolarization Ratio Versus Sediment Concentration for While Silt Measured at 44? nm

-------
0.900
0 .SQG
0 .7C0
0.600
^ 0.5CO
0.400
a
a
^ o.aoo
s
8
0.200
3.100
0.030
Pat a <
Data i
CP/:
CC1U
">/
i I
10U	10*	10^	10"	iO
SEDIrtEUT CQrCEMTRftTlCIt <.nG/L>
Figure? 19. Depolarization Ratio Versus Sediment Concentration for Red Silt Measured at 63.? nm

-------
0,900
o.eoo
0 .700
0 .600
a
N
5
X
a
s
s
~-
c
0.000 4-
Mta ac
i CI 
figure 20. Repolarization Ratio Versus Sediment. Concentration for Red Silt i'eosured at inn

-------
1 he micrographs of the white sand, silt a"l clay particles in Figures
3. 4 
-------
0 ,900
0.900
0.700
0 .too
0 300
... 0.400
B
<5
0 .300
5
o.sco
o.jco -
0 .000
10J
X 13
a
1 °
)ata ac
lata ac
quit
iuu
75
i
Figure 21.
101	ioE
SECi!iiE;tr cc,vT.-trw,T oig/l>
Depoldrization Ratio Versus Sediment Concentration for
:
-------
s
S
a
O.'SCO
G.COO
0 .AID
0 .GCO
0.50a
0 .100
0 .300
0 .£>00
0..0C
0 .OC'O
L
r\
G
t
ita acr
jta acr
ui rt
ui rcjd

-H-
10	1c1	10-	ioJ	io'
SEOIftEMT CCIKEHTRfiTIDN <«/L>
Figure 22. Depolarization Ratio Versus Sediment Concentration for Crovm Silt Measured at 442 nni

-------
tin? two different wavel cnothi the effects of t'u:- 5ro.1L rcf'l ccfi v i ty ore
easily observed. At the low levels of concentration where multiple
scattering does not contribute greatly to the returns, the rate at which the
depolarization ratio increases is very similar. However, when multiple
scattering begins, thv rate at winch the depolarization r.itie increases for
the red laser is considerably n-orc rapid than thai for the blue l.-ser. The
higher reflectivity of I lie Drown silt particles at the red wavelength has
increased the efficiency of The multiple scattering process. As 3 result,
the depolarization of the incident radiation is also greatly increased. The
depolarization ratio plots for the red silt particles shown m Figures 19
dnd 20 also exhibit this characteristic.
To further examine this topic, measurements were made to determine the
difference ii1 reflectivity ftv the different particle colors at the
wavelengths 01" the two lasers. Using the Achromatic lidar system,
backscatter measurements were made from dry samples of the soil particles
(Appendix l). The results or these measurements, shown in Table 1, arc the
measured return from the dry sediment sample dividied by the corresponding
return from the white target. Those values indie iti-.- t^at the rea and brown
silt particles are norv efficient scatterers at the red wavelength than the
blue wavelength. These measurements also show ch.it the reflectivity of the
red silt particles at the red wavelength is hicher Than the reflectivity of
the brown sample at the same wavelength. The -e< lectivity of the white
particles is approximately equal at the two wavelengths and considerably
greater than the reflectivity of the rea and brown particles.
The high reflectivity of the white silt particles can also be seen in the
curves of the depolarization ratios for this particle type shown in Figures
17 ard 18. L1:1 c e the reflectivities for this particle at the two
wavelengths are approximately equal, the depolarization ratios increase at
roughly tno same rate for the higher concentrations where multiple
scattering is present. At the blue wavelength, the hicher reflectivity of
the white silt particles over the brown or rod pariicles "is evident by the
much more rapid increase in the depolarization ratio for the white silt
particles.
Another interesting effect car. be observed in tne depolarization ratio
curves for the red and brown particle types shown in Tigures 19-22. At
approximately 800 mg/1 the depolarization ratio noes riot continue to
increase for an increase in the particle concentration. Mot only does the
depolarization ratio roll off. but the cross sec^on measurements for these
two particles shown in Figures 23, 24, 25, and 2b show that no additional
energy is back scattered from the water beyond the saturation point. The
value of the depolarization ratio at which the scattering from tiio different
particles saturates for the particular wavelengths indicates that the
a'jsorbance of the particles contributes to this effect. At some level of
scattering, the absorbance and scattering efficiencies of the particles
prevent any further increase in the backscattered returns for an increase in
the partiUe concentration. When this condition *s reached, a higher
concentration of particles causes more scattering but also more absorption.
The higher absorption cancels the additional scattering, causing no change
in the backscattered energy.
T>?.

-------
TABLE i. Soil Reflectance Test Results
Sediment. (Silt)
¦.'svelenqth
Polarization
20° Incidence
Reflectance
Ratio
40° incidence
Reflectance Ratio
Red
Rod
Blue
Vert
iior
Vert
Hor
0.722
0.533
0.419
0.217
0.7^5
0.513
0.9-i 3
Q.fi^
0.455
0.2;'-7
•j .o;,i
G.5^1
crown
Red
Glue
Vert
Iior
Vet t
Hor
0.594
0.509
0.296
0.235
0.857
0.792
0 .".<33
0.571
0.503
0.209
0. £35
0.540
Whi te
Red
Blue
Vert
Iior
Vert
Hor
M 06
1.179
1.039
l'09l
"1. 0C5
1 .000
1.230
1.206
1 .U\
1.073
0.930
0.n55
Reflectance = Sci1 Return
Ratio =
Unite target Return
Hor Soil Refelctance
Vert Soil Reflectance

-------
























e
I
e o ® ®
o























So3
„CO B
•J
C
a
>
»
Q


»





-

-








s °
"vv
a c 4
Q O

O
,
o
c
IS
j
a
T
'
J
i
j 1
V so
a
c
c-i
c
1 n













-


o



J

Q
G
o ° ®

v i		r	— ^	
ia°	10'	io"	w	is*
SEOIMEMT C3CCH7RATIBH D
Figure 23. Cross Section Versus Sedniicnt Concentration for Red Silt Measured at 032 tun

-------




-






































0
"vv,

%
t
0
o
9
3
J
o°o°
HI00
- 8
e 1
K°°°
a <
i n °
o <
G C
\
e
tr



e
c
e» w v e
n a o
o ES
6
5









©



-

o • °
0 o v
(
P
a
a
a
Q
D

U3 0 C"
o
"VH
i"

















D



3


a
o
a
U D *"





(














I
i
1
i
¦



















































Dark S.<
Open S_-
iilhO
:ntio
s
s
-
'd
L i
Lt







-































































1
i
i
i
10°	IB1	10s	If3
SEQlrEHT COKCEMTRATIEM 
Figure 24, Cross Section Versus Sediment Concentration for Red Silt Measured 4<5? ni:i

-------


























a























"v v

„ i
a "
so1
c&J
«p
*
o
>
(J
>
i

e o o
« ¦ -
e 0
a «
0
a
a
a
0
a
i
i












»
S
t
,
i


JO0'
J^°
i
B|j^
-c°C
t
s> a
i













i
*


r



<
-
* * 
Figure 25. Cross Suction Versus Sediment. CcjMconi.rat.ion for Brown Sill Measured at G32 n;;i

-------













<































9



(

"vv
t,0°0 ° ' '
OOo
* o
V
fl ,
a
0
0
'9
©
o
1

• 0 o
0 D a
o
o g
0
o
,
3





c



c

1—
I 0
! °
I
O o


i
J

, {

a _ d i
^D0°
l"'VH

'















\



1

a
c
! D
a °
3


























f

















































IXirk :
Open 1
Vlliln
VI'KU
u.
Is

il>
i).
{
I
I
>1


qui red
i ] i j I rod
l/>
r./"-
0
9






	

















































			1

















3°	io1	:o3	io3	io*
SL'DINCHT airlCEMrp.'illBI 's nG/L >
rir;ure 26. Cross Suction Versus Sediment Conrpntrot ion for I'.rown Silt Monburori ot ¦'}<'
-------
The- depolarization ratir- at which the sc.itLe "i no saturates is determined
partly by tne absorivmce of the particle at the meflsu'cd wavelength. (For
those very high concentrations of sCdtterini papules '.-/iiere Multiple
scattering is present, the depolarization ratio is cirectly related to the
relative uitjuhL of p!ul tii'le scattering. ) The hi^n absorbance of both the
red and brown silt > .:i r- ti c i es at the blue wavel e; q t>. i' indicated by the low
value of the depolarization ratio in which the scattering process
saturates. The low absorbance at. the red w.v/elengft pcrmits a higher
depolarization ratio at the saturation point tor both the brown and rea
particles.
Tup depoIarization ratio curve for the white silt particles shows that the
scattering from the sampic* does not reach a saturation point, even though
the concentration of scattering particles has o:.cec-ded J lie saturation level
for the red aid brown parades. Due to the /ecy low absorbance and toe
high scattering efficiency ot this particle, a iiiucli Inqher particle
concentration is required to saturate the scattering process at both the red
and i)iue wavelengths.
Extinction Oept'n c,f Measuremicnt
The results of the extinction deptn measurement experiments shown in
Figures 27, 28, and 20 confirm the relative absorbance indicated by the
value of the depolarization r.ntui ot which the scattering process saturates
for Lne red anc. brown silt samples. If the n'e.isiiro.nent of the depth of
water that contributes to the ;iac'
-------












































-


»






a Sei
a Rei
0 Bli
c!n
(iT
e (<
2
42
in;
IT
<)



_








-
1









1
















	
—

....
-
-
-
-















-
-
-




















a


8













































10°	10l	10a	JO3	104
SEOJWJiT CUI'CilMTRATIQM (KG/LI
Figure 27. Mc-asureuient Depth as 0 function of White Silt Sediment Concent rat ion

-------
120.
I GO -
83.
60.
40.
CO.

-------




































1
1






3










» Sec
~ Ret
O Bli
clii
(6:
2
42
Nil
111
' /













H	
1
r—-








a



































a o

a
i








-












'













>





s
o





















•








d
t
c
6
















io1	loe	in3	in'*
SED!,"\i.
Figure 29. Measurement Depth as a Function of Brown Silt Sediment Concentration

-------
equal response fo'~ the rca and blue wavt! cnnt'is *.j.nd nid not saturate -it
concentration levels well above the saturation level for ino brown and red
silt, samples. !lie ciepH anzation uiii') -it. v/hich t.h'j hiue wavelength
saturated was considerably loss than the saturation ratio fur the red
wavelength 1'or both the brovin anil red silt s;:iipi£s. The difference between
the depolarization n.'Jo at winch the blue and r^-i wavelengths Daturale is
creator for the t'P-.i si 1 v than it is tor the brown rilf. fhouoh the
scattering efficiencies flnd reflectivities of t'-e different partic^s at
both wavelengths no doubt contribute to the saturation level of trie
scat ten fit! p roc-3 sr., these icsults strongly suggrst that the absorhance of
t!ic pa r 11 c 1 ¦: s a;	Measurement wave! ninths also contributes to the
depol an zstion ratio at the saturation point of the- scattering process.
Sj_2e 0_i_s_t_ri_biiti_on
The vjili te clay and silt seciinent samples used in these measurements
represent particles that range in size from 'ill .-i down to less that 1 ;.m.
Comparison of the depolarization ratio graphs for these two size ranges
indicates that the di-polanzation ratio if not ureatly affected by the
different particle si/es for some concentration level?. Figures 30 and 31
are the composite depolarization ratios for both of these particles. At the
higher concentration levels wherp multiple scatter is present, the
depolarization ratio is almost independent of nze distribution for both the
red and blue wivelonnths- At the lower concerlrntions where single scatter
is predominant, the particle size does affect ?»e depolarization ratio.
Since tms occurs at concentration levels vhere sinale scatter largely
dominates the returns, this effect is si-inlar 10 the shape effects. Similar
to the effects on the hacl.scatterinn caused by the particle shaoe, the size
of the particles also affects the degree of depolarization of the incident
radiation when single scatter dominates the returns.
The cross section curves shown in Figures 32 and 33 show that the actual
backscattered energy is, greater for the sua Her clay particles at the higher
concentration levels. The concentration of the sediment particles is
graphed in rn 11lgrams per liter (mg/1). Since the smaller particles reuuire
more particles to equal a similar mass of the larger particles, the actual
number of scattering particles is higher for 1he smaller size range at the
some concentration level nn these graphs. Tnouoh this Inyh particle
concentration causes more increased scattering, the like- and
cross-polarized returns are equally affected so that the depolarization
ratio remains unaffected.
Algae l-ipnsurenoiits
The results of the back scatter nieasurenents fro.'i algae wi rh and without
sedn.ient are shown in t'np depolarization ratio nraohs of Finurts 34 and 25.
The scattering from clear water and the tan'<, he lore any sediment or aloae
was introduced, is shown .is the returns at a concentration of 1.0 r.ig/1. The
depolarization ratio for iust the algae alone chanced very little from the
value for the clear water sample. The cross section cuivos for this
experiment given in Figures ,'vo and 37 shew that the max mum concentration of
algae decreased the scatrenr.g fro-n the measurement tank at both the red and
(52

-------




























*


































a
a















J

Wh i to
Vihi to
Sil
CI tV













n


a







-






















a
3
s


1



























D
1
a

































a
p°
0
~9

































(
c
0 «k
k a
^ n
a











-
















i
<
11—

u
*
}'*
a



















c

a
Q


r;

a a '









L_










SEDir-ErtT ajICEHTRATIGM (HG/L>
Figure 30. Depolarization Ratio Versus White Clay and Silt Concentration Measured at 632

-------
CT»
-P»
0 .900
0 .800
C .600
g 0.500 -p
0 .400
$
t
a
0.200
0-100 4-
0 .OGC
I ou
Whi te
Whi te
Si 1
Claf
r
0 3
Fitjurc 31
io	io2	ioJ	in
SEOlnChT CENCEHTRA1 I DM CMG/L)
Denolarization Ratio Versus White Clay and Silt Concentration Measured at 
-------
OI
on
-55.0
-*0 .0
-70 .0
-80.0
-6S.0
-90.C
-95.0
10
C
White
Whi te
c °
Sil
CI a

Section Versus White Silt and Clay Concentration Measured at 632 n:n
so

-------



























a
^ „ q ,
•a°













L
c

j
Wh i te
Whi te
Si 1
CI a.







°vv
0
o o
o
o
r
3
a
<
0
L
«
•>
c
•-
0
a

j
















'
~
n
Uot
o
o

o
-I
o

6
c
p
0
o
0
a
a
o
>



-










1
0

~
o


O
o i u





>«
o
0
•
0
*¦ e .
0 *
°VH
•













|
j
i









O
oO
, o
0
o
0






















c


9


a














~



















































































-i
10°	I0l	IB2	!03	104
SEDIrtJJiT CGICEflTRftTIBi 
-------
o
o.soo
0 .800 --
0 .700
0 .faflO
0 .400
0 ,?.0Q
0.100
0 .000
0
~
th
1 X
lit
t; in:
fjcie co
eas
r. e n
nccntr
rcns i n
tic
Sf:
(
\
hiii
.1
ill1
0 eel 1
nfrs:. it
10"	'Ol
filC-f'E CDMCE.HTRATIGN 
10-	103
SEDIMEMT CIUCEMHATIU'I
/ 1 1
n
j
l(T
Fnjuru 3-'i. Depolarization Ratio Versus Alijae ami Sed uncut foncen teat ion Measured at G3L1 nm

-------

10J
: tv
"D
Figure 3f>. Ocpoiorization Ratio Versus Alyae and Sediment Concentration Measured at 4<'2 nm

-------





































~ t^
o,e
11,
<
xi
c-
1:1
h
Hi
ii
1
t
.; inct
iae cor.
sas 1
;ent
ny
ra!
a!
U
9'
n
*
1
:

^centra
'easifuj
LlOl
se:'
(:
'! I'K
C(
nl
1-
c
1
\\
j
)
.
coll 5
itratio
/I ii
w
er
at
d-
¦d
\
)




















°VV
e
O

0




















O

O

_
_
0
»

c

O

0













a
~u a
a
0
2C.









0
CVH
Q















-
. .
—
—
.J




	
«

0















...
.






























































BLGhE COICEHTRQi :Ii1 <1000 CFLS.S/LITER)	SEGiHEMT CIKCEnTfiTini
Figure 36. Cross Section Versus Alrjae and Sodment Concentration Measured at 632 nni

-------



—



































—


...
-
-







_
tt
-

•''w



o
c









-









O
...

o
0
e









o
c ,
a
a








e
c'Vi!
<0










\
1
i
>



r
-
-

0

o




—-

"
_

-
	

—
















i
i
1
o,
~I" «'l
'•>. O
c
a i i
'(!
'Jl
ill
i ¦
J
i i
L
I ]

i ncreas
concci:
i ng
(ra t
alt
J

1
.<¦
n
r


itratu:
, inn sc
n (i
rj i flic
C'l
nt
0
C(
I
II
if
0
.1
;
-
¦Ils/li
it inn
Ler
Cl(j(
Oi
\
J










1
!



























H
ioc	101	id2	io3	id*
ftLGPE CUT1CEN7R.1TIDN (100.J CELL S*t ITER)	SEDIMEHT CCSCENrRAT IC.1 
Figure 37. Cross SeeLion Versus Alfj-ie and SodimeiiL Concentration Measured at 
-------
blur. wavelenjihs. 11,is decrease in the scatteri.-icj mi;ic files that this typo
of green alg.'C has <•] hvj'i fjhsorhance and a very r.iw scattering efficiency.
The sediment used in thes= mea.sure'i'encs was ihe white silt sample.
Figures 17 and 1: shorn provi .jsjsl.y' arc the d" t/i ai-u.u ion ratio results for
this particle type. A caiHM1"; ten of" these ri-v.il ts nc* the pe.isure-iients uarfe
with algae indica 1 e very little di ffe-rc in i.'ig scattermn frorc the
sediment with and 1,1 thou t alsjae. 1 fie dcro1 ¦:><¦ i vst i o.i for tho bine returns is
slightly lower 'Jijr nut sunn ficanfy so. Tin- returns for the red laser
show ric effects f'Cii the presence of the- a J fj/if-.
The algae u-cd in this exj?rirr.ent wore obtained f'-or. n ?0-liter culture of
Chiamydoiuoiias grcn to a tjloom conclition of -"opro*inately 2.0 x 10s cells/
liter. When this aigac- concentration was ¦ ir.riVucc-d into tho Measure-rue it
tank, the final concentrjtion of alqao wfs -i.7 xIO-^ Veils/liter or
approximately 3« of the maximum concent ra f.on of tho al -pac at a bloom
condition. lhour,n this is net a hign concentration of organic suspended
solids, the water was tinted grern by ttie alg-ie even at the highest
concentration of sediment ineasi,--od. Sinco the growth of 31gae is geometric,
a concentration uf jlgae which is 31 of « bloom concentration would he
indicative of a reasonable: algae concentfntnn encountered in ponds and
lakes where algae is present, but not m a bloci condition.
The effect of higher concentrations of il (j.-rs cr.a he estimated by
considering the sc.;: Ltaring properties four-.'! to of fee t the- bac'r scattering
froiii sediment pamcle,=.. The measurer'erts jf the efferent colors of
sediment particles have shown that the reflectivity, ansorb-mce and
scatter-in-) efficiencies of the particles at the ".eas'.tred wavelengths cause
consideraile venation in the scattering ch.>r.icier-sties oi sediment laden
water.	7ne complete Ic'Ck of any bnc1' ".'.a tt-?ri ny from these ornan 1 c
suspended solids nas shown that the reflectivity y>\o scattering efficiencies
for the algae cells are very lew. The .ihr.orb.ince of organic suspended
solids appears to rje the dormant loss noch-.im Sm. as wcuid he exr-ected.
hince aLsorbance affects the backscatterino fron sediment particles by
causing the scattering to appear to saturate, Epc- additional ahrorbance
introduced by the presence of organic suspended solicis would probably lower
the concentration level as which the scatter?"9 fron suspended 0di m e 'i t s
saturate. Very m^r: concor,tration of algae could Tasi- the detection of
suspended sediment in th^s roficantly dffoct ton sediiient sc.itttriny.
The depolarization ratio and co-,^ section graphs shown ti l-inurcs 2CK
4U and 4i for the surface rnj'jhness iPeasurcrients from the villii.e c.-i 11;c 1 ay
71

-------
0.900
0 .600
» i
° Rou* ii
o riciij'jr.i
• Cal.
ii
0 .503
0 .4CC
0 .300
0 .SCO
0 .003 t—
.,0
' I 1
! I
—r
i
i i
SEDlrEMT CGtlCEMTSATIQit (IWO
F inure 3C Depalarizatici Ratio Versus l-'n; ce Silt/Cloy Sodi!,;cnt Concentration on.-l Surface
i'.ou'jiiiiess Mciisui oil oi 632 nin

-------
0.900
o.>
9 ./CO
0 .bC'O
g 0 .500
Z o.4oo
8
*, o.roo
0.109
0 .cco
•nO
~ RoiJO-i
q mC KJi'li
„ CjIiii
101
J	L
i 0*
SCDIITF.MT COTiCCflTPATICN 
-------
"•"•J
-53.0
-6G .0
-63.0
-75.0
-SO .0
-90.0
-95.0
10'
Co. I
Mcf
Roi
i urn
ch
I I »
! {
! i
10	JO*	:
Figure 40. Cross Section Versus S&cnram Concentration and Surface Roughness for White Silt/Clay
ncasuied at 632 nm

-------
CP
-55.0
-60 .0
-65.0
-70 .0
-7Z*
-33.P J~
-90.0 —¦
-95.0
Fui-jro 41,
i—r
- Ca
~ Uz»
X Ro
! I
m
1 Li,"'
i I i
T-r-
-r*
I I
io1	ioa	:o3	io«
SEDirENT cD'«xriTRflr:ai (-.g/o
Cross Section Vet $ us Sediment Concentration and Surfo.ce Roughness for Whits Si'it/Cloy
at 4^2 run

-------
particles are ry;no->! of the result.-; (ro.-< the earlier (c?lm surfoC")
measurements. Tim nepoi- i.-.'at":on ratio mi-- toe u: f fr-^cnt levels of surface
roughness di ffers hy 2i t-) iu-.
One effect that was iontioned in previous studies is also evident in
these measurements. The c.epoldrizritiof, r.itio is less affected by surface
roucj nnc s s than nther iri'.'i/iduai component of t>v.- back sea tee red returns.
These measuremenis were .'i: r>. at an liicidenre angle beyond the firewster
angle. At this incidence angle, the tr.myiii ssior. coefficients are fairly
small and prevent jn efHr-ent transfer ol the incident energy across tne
air-witer interface, ror the rough surface, tne angles at. winch the laser
beam striies the dir-wace- 1 'i+e> «vice iric^icie a wide ranoe of angles. ihe
lower angies of incidence he "e consider,3oly more efficient transnii ssioneB
coefficients. As a '-esu.i.. more energy is available to he scattered in the
volune. This increase in efficiency causes an increase in Sot!: the lile-
arni cross-polarizKi backscatteri ng. in -.i wanner similar to a power
increase. However, both terms of the dei-ol anzatior, ratio are similarly
affected and the net effect, on the depolarization ratio is less than tKit on
either individual coirpcnent. This sel f--;orrec tun characteristic of the
depolarization ratio is therefore a significant advantage when nornalizng
the liciar returns.
IHSTI-Iij!iCMTAL AiiL; MEASUREMENT ARTIFACTS
several unusual character¦ sties in the results of the measurements are
related to problems encountered during the c.ata acquisition. This section
explains some of these prooiems and how T.neir effects may he pre/entPu in
subsequent experiments.
Clear Water Offsets
The backscotterino from the measurement tank was usually measured before
any scattering particles were introduced into the water. Those returns
which are the scattering from only the water and the black absorber m the
bottom of the tank, are shown in the plots of both the cross sections and
depolarization ratios at the nominal concentation level of 1.0 mn/1 (i.e.,
at the left axis of the grid). A comparison of the many measurements shows
that this backscattenng from the measurement tank nefore sediment was added
is not consistent for all of the measurements. For ex ample, the cross
section measurements for tne while clay sa.rple are given in Figures &?. and
43. The cross section measurements for the rer: silt particles are shown in
figures 23 and 24. For both the blue and rc-d wavelengths at both the like-
and cross-poljrized returns, the cross sections of just the measurement tank
before the red silt particles were added (-"'0.3, -'30.1, -7?.3, and -82.7,
respectively) is greater titan the cross sections for the measurement tank
Defnre the white clay (.articles were added (-7!.0. -/Vi.?, -79.3. and -93.3,
respectively}. The measurement sequence using the white calibration target
corrected the measurements tor both loser power fluctuations and any system
gain changes. Any offset in the instrument electronics was checked prior to
each measurement series due to previous problems with data transmission
errors. Therefore, these offsets arc due to scne difference in the initial
/G

-------















-








0































































cvv
O "
0
o°
o
o
a
>
c
o
3
=





















n00
O
0
o
C
><
o
D
o
o
G
a
~
a
D















1
-


o


c









3
0
a
CVH



























~ a
D
/
3
1
c
J
























L'


a

c
Q
~






























































102	103	io*
SEOIKENT CCMCEMTSfiTICM CnG/D
Figure 42. Cross Sect.ion Versus White Clay Sediment Concentration Measured at 632 nro

-------























































0
o
o
1
0
0
C
)
r
o
o
in u
0
~




















JV V
,n°6
0
o
o
o
»c
o
D
o
o
o
c
a
o
a
3
D
i












i
!
i
\

c


u


7

O O-"'






3
2
Q
0
o
a


























~
~ E
: 0
~

t























c


~


u

°VH




























¦



































¦




1
1
i
!






















I0c	I01	to2	103	io''
SED!!",E!lT CCNCENTRftTSZ'H (HQA.1
Figure 43. Cross Section Versus White Clay Sediment Concentration Measured at ^42 nni

-------
-55.0
-60.0
-<>5.0
-ro .o
ci -GO .0

-90-0 •
-95.0
10
Solid - et
Open - Of
P • o
« 0 O
e OO^Ow
B e a la p
reel
i I z
a I

; bottc
r.;nk
i'l pqiv:
ttc."
'\iv
gVH
o«1
30 nig,
! !
ir
Finure 44.
iol	io£	iu	:
-------
CO
o
-ss.o
-*0.0
-65.0
_ -75.0
d -80.0
I0W
8 s
o a
„ a
Solid
Open
(1 of
- P(
:cct
el"-'

. H-.

¦'vv
cs
si „ ;
°V H
k bottc
u-3nk be
nc
LlCi"
ti
e
-------
scattering from the "clear" I'atvi- and the hi rick absorber.
Because of tf e large amount; of water usee! in those measurements. it was
necessary to use tar.' water for all of the measurements. 51nee these
measurement? were made over a period of several months, inconsistencies in
the purity of the tan water couVi easily have contributed to these returns.
Failure to completely remove the residual set'iirent particles f rosii the
measurement tan!' and black absorber between measurement series was no doubt
anotner contributing factor.
This effect can be mimi-.rizod by careful cleaning and fillmu of the
measurement tank and black absorber between picas j-onent series. Tap water
should be filtered to remove any suspended oorticles. An analysis of water
sample taken before any suspended particles is introduced could ne helpful
in determining the chemical content arid the presence of residual suspended
solids in the tcp water. ",he cause of the offsets from the measurement tank
could be better identified and ni 1 ni an .~ed in this manner.
It should be noted that the difference between most initial measurem?nts
was not significant. The close agreement between the brown silt cross
section curves shown in Figures 25 and 26 and between the white silt/clay
cross section plots shown in Figures 44 ana 45, which are both actually tne
results of two different measurement series combined, ',hcvs tha^ the offsets
did not greatly affect the measurements.
Effects of Tank Bottom
The depolarization ratio curves for the scatter i ng from the white
silt/clay sample are shown in i-'mires *16 and 47. Those nioasui ements are
the result of two different series of 'Measurements using this particle
type. m the first measurement series, the concentration was increased m
very small increments and the maxiniuit concentration reached in these
measurements was not very high. A second series of measurements were made
using an increasing increment in the concentration levels to more quickly
reach a higher concentration.
In the second series of measurements, it appears that the black cbscrber
was not in the proper position to absorb the unscattered laser beam and the
scattering from trie bottom of the tank contributed to the backscattering at
low concentration levels. As the concentration of the sediment particles
was increased, less energy reached the bottom of the tank decreasing the
scattered returns. When the particle concentrations became high enough, the
laser no longer reaches the bottom of the tank and only scattering from the
sediment particles was present. The measurement depth plot for the white
silt particles given in figure Z7 shows a slightly lower moosui ement depth
than the maximum doth of the tan1: foi the concentration where scattering
from the tank ceased. A slightly higher concentration of sediment particles
is needed to extmguisn the scattering from the box torn of the tn.ik than the
correspond!ng measurement depth, duo to thy greater scattering from the
bottom of the tank. These measurements were the only series made in the
large '"'easuremeni. tank which indicated any effects from scattering by the
bottom of the tank.

-------
CO
r-o
0.5*50
0 .800
0.700
& 0.5D0
0 .-»0C
G 300
p .£23
. icn
o .coo
EfTtxt
I'iO G f 1
O.
oct
at
.oL
DO I O.J
on
30 r,


Ul
[ I I
¦; >
, I
I 1
la1-
¦h
t i
¦ • ! i
S£Oi:«s«T	
-------
ro
LO
o.wo
0 .GCO
0 .700
0 .500
Z 0.400
fi 0.300
0.300
0 .100
G.000
.f feet
:o effc
a p
of
ct df
. ijoitjo
Larik!
i i
js	*_
ie 1 ov
y;i
0 nicj/1
10'	10c
SEO'.nENT cciicprrwrim cnG/L>
1DJ
10
Figure 47. Depolarization Ratio Versus White Silt/Clay Sediment Concentration Measured at 442 nm

-------
Particle Se '.tl iricj
The effects of sett! in', bv the sedimenc pat tides during the measurements
can be seor, in some of the returns. These s*ttli'g characteristics are
parti cul arly evident in the results of the n?as:irements from the white sand
particles aid the white silt samplr.
The cross section plot?, for the scattering from the white sancJ particles
are shown in Figures ly and '\3. The van<>!>11 ity in the cross sections, such
as trio lowered scattering from the highest cjnceriTrdtiun level, is one to
the rapid settling >v,U- or tins very "large particle.. The circulation pump
used to keep the particles mixed was not quite sufficient to mainlain the
largo sediment partic 1 o:- in susoensi on. Several tines durinn the
measurements of this particular particles type, the settled particles were
remixed and backscatter measurements were repeated. The concentration
levels where two returns are shown correspond to these double measurements.
Due to this rapid settling rate, a small fraction of the particles
continually settled out of the suspension. This settling decreased the
concentration especially at the higher concentration levels. The
concentration levels reported on the graphs were computed from the amount of
sediment added to the tank, and actual ly represent the liiaxiruw concentration
of sediment that could he achieved when all of the added particles were in
suspension. Due to this effect, tuc concentration reported for the white
sand particles is slightly higher than the actual concentration of particles
which contributed to the backscatter rceasurevents. From the dout^e
measurements where the backscatter measurement was repeated after mixing the
suspension, this error is probably less than 10'". of the reported particle
concentration.
After the backscatter seasurements had been iv.ade at the highest
concentration of the sand partic^s. the circulation pusr.p was turned off.
Backscatter measurements •,aj-ro taken at approximately one 'Minute intervals as
the particles settled out of the water. In less t-'ian ten minutes the
depolarization ratio at both wavelengths had decreased tc a value below
0.2. Only the settling of the large white sand particles presented such a
substantial problem over the time period required to make a series of
measurement?:'.
Another effect of parf'cle settling is evident in the cross section for
the scattering fro.n the white si 11 partides shown in Figures 50 and 51. The
dip in the returns at approximatlcy 200 mg/1 shows that the scattering
decreased for an increase in the concentrat'on of scattering particles.
Th'iS decrease in scattering was apoarently the result of a decrease in
particle concentration due to settling. During the measurement sequence,
data acquisition was halted at intervals to measure additional sanples tc be
added to the measurerent lank. The circulatim ;n:mn was always Toft running
during these periods. The dip in the white si't returns corresponds to one
of these instances. Due possibly to a slightly longer de1av than usual, a
certain amount of sediment settled oat of the water. When measurements were
continued, the next two samples replaced the settled particles and the
measurements continued withcii further settling. !(y comparing the slope of
a'i

-------
-55.0
-£0.0
-€5.0
-7C .0
-73.0
n -30.3
c I
o f>
i -\/u
I O o 30°
I o e

-a
,i		
T t
I I
-05.0
-95.0
I I
a y
i »
M I
v n
o
" I
I a
i I
Mi
i
i
)°	jo	10'-	10	10
SEDirEnr cCNCEhTRoTrur1 <,iG/T.>
Fmire d8. Cross Section Versus Wiite Sand Sediment Concentration iteasurcd at 632 nin

-------
-55.0
-60.0
-65.0
-7Z. 0
?js . eo .o
-85.0
-90 .0
-SS.C

-------
-55.0 -r
I
-63 .0
6
i
0
1
-£5.3
-70 .0
-713.0
;.o
-93.0
-M .0
; i
VV
"Hi
I
ou ~
Q
"t—
I
! i
I 1 i
j J
*f
i
i
i
l i
i !
i !
if
! i! I
rrn
j1'
I I !
10-
SEDiRPIT CXICENT^flTIEl
Figure E0. Cioss Section Versus While Silt Sediment
Concentration Measured at 532: nui

-------
-55.0
-6C.Q
3
o u c"
-65.0 •
'\J\I
-7C.0
! I
-75.C
ctvh
I .
CO
CO
~ -30.0
-85.0
-9& .0 •
-9Z.3
Ficure 51
to*	to	io-	iO
SEDlnCfT CCNCSNTSWTICM 
-------
-55.0
O.A
Q.fcl
wii tc
Whi te
Si I
CI a
°vv
tT-!
..Up a
'! I
, D'b
o °
o-e
JVJL
10
m3
-t—h
Fiyuro 52. Cro:>r. ?c-i
in'	!0-	10'
SHD:rtC'fT CITrrCNTKiHTnN <:1G/'L>
11on Versus White- bill and Clay Concentration Measured al 032
10
r»']i

-------



























a
,D°
A













I:

r
Wii i to
Whi te
Si 1
CI a;







°vv
o
O D
o
0
c
?
a
p
o
c
a
3
t
9
0
0

J
~ a *
















o
U°°
0
3
O

o
i
A

o
„ O
. «"
~
~
a
•
o
*
a
Q
0
»













.



c
o


o

0 o w




jq

O
0
o° -
°VM
*

























o
o&
, o
«
9
u




















e


o


9



























































-
-





























Figure 53. Cross Section Versus White Silt and Cloy Concentration Measured at '542 ntn

-------
he white silt cross sections .-nth the white clay < <-oss secticn in the
CiiT.Jos"!to graphs shown in f l.jur.1:, W.i ar,c! S3, the error in the: concentration
•in be verified.
Thi.-se settling effects con he corrected by several nethoi's. A larger
irculation pump or better ci rueiation flo'.v wo:ilr! l;ec->p the particles in
uspension better. A samling method to verify the concert ration of the
ediir.ent parnclss actually contributing to the backscaUerma would also be
suful. A quick, ovficier.t measurement sequence is always necessary to
rovicc- consistently higti quality data.

-------
CHAPTEk VI
COMCLUSKjfi AMD RECOMf'OOAl IOliS
This study describes a moasutement program to examine t;ie effect of
different measurement conditions on the backscattered laser energy from
sediment laden water. A uu.il wavelength, lidar pel an'meter was used to
concurrently measure orthogonally polarized components of the backscattered
return for both red (632 nn') and blue (442 nm) waveiencths. The measurement
conditions which were examined included particle color, size distribution and
concentration. The effects of wat.er surface roughness and the presence of
organic suspended solids (algae) were also examined. Trie volume of water
that, contributes to the lid.ir back scattering was determined for most of the
different combinations of the above measurement conditions. The daca were
reduced to lidar cross section and depolarization ratio values by using a
white- calibration target to normalize the measurements for laser power
fluctuations and slight optical misalignment of the system. The conclusions
of tms investigation are summarized below.
CONCLUSIONS
The cross- and like-polarized components of the backscattered energy from
sediment laden water are directly dependent on the concentration of the
suspended particles for a wide range of soil colors and particle size
ranges. This dependence sho.
-------
for the white sediment up to the maximum concentration measured,
approximately 251)0 ni|/K
The irrepular shape of tho scattering jjarLicle depolarizer, the incident
energy even for very low particle concentrations. As a result, the
sensitivity of a lidar system to very low concentrations of scattering
particles is affected by the particle shape. For a given maxurum sensitivity
the depolarization due to particle s'n.ipe could determine the lowest
detectable concentration. The measurements of this study indicate that
concentrations lower than ](J.O mg/1 should bo measurable with this type of
system.
The depolarization ratio is not greatly affected by the size range of the
particles for high concentrations of scattering particles. Although at a
given concentration in mg/1 the clay si?u sediment has wore scatterers within
the scattering volume than the larger size sedinient, the cross- and
"tike-polarized returns are equally affected which results in little change in
the depolarization r
-------
L a b o ra to ry !•& a 5 u rerne 111 s
Further laboratory measurement:. ar^ necessary to cunti>"!;e to develop a
thorough undet standing of the pic re subtle characteristics of scattering by
natural sediment particles. A more complete1 characterisation of the scatter-
ing process based on these additional laboratory measurements would pennit
the formulation of an analytical clevolopment to predict the amount or scat-
tering for the wide variety of conditions encountered in fio1d measurements.
Such an analytical tool would be extrcnt-ly useful in developing a sensor sys-
tem for field application. In addition, the quality of the data acquired in
subsequent examinations can be impruved by noting the problems encountered in
the experiments of the present study.
Scattering Measurements
Several particle characteristics directly affect the dependence of the
backscattering process on the concentration of scattering particles. These
particle character!stic.; influence the back scattering process for different
regions of particulate concentration. The shape, reflectivity and absorbance
of the particles should be further examined in experiments designed to isol-
ate the effects of fiese particular characteristics on the single and
multiple scattering processes. Specific measurements are also needed to ver-
ify some of the result1; shown in this study and in previous investigations
concerning the effects of partie'e size distribution and the incident angle
of trie measurements.
The shape of the scattering particle from spherical to non-spherical has
beer shown to affect the backscattered returns at low concentrations of scat-
tering particles. The amount, of depolarization of the incident energy and
the resulting dependency of the depolarization ratio on the particle concen-
tration at low concentration levels is determined by the shape characters-
tics of the scattering particles. Additional measurements are needed to
determine if the effect of particle shape between soil types and size ranges
on the depolarization measurement at low concentrations is significant. The
measurements should ue designed to permit a comparison of the actual amount
of cross-polan zed backicattenng for the different particle types, at con-
centration levels from E>0 mcj/1 down to less than 1.0 mg/1. Careful attention
to the scattering caused by the tap water and the measurement tank will be
necessary to permit the maximum benefit from these measurements.
Tne sensitivity of the lidar backscattering to particle concentration is
greatly affected by the reflectivity of the particle, especially at high con-
centration levels where multiple scattering is present. Spectrometer mea-
surements of dry or dampened soil samples would indicate the spectral re-
sponse of the particles. Higroiine dye or colored dyes could In: used to vary
this spectral response by actually dyMng the particles different colors. A
y/ide variety of sediment types could possibly ne simulated in this manner.
Unrealistic colors might also be useful in examining the response of the dif-
ferent wavelengths (for example, a blue p.irticle).
The absorbance and scattering officiencos of the particles affect the
saturation of the scattering process. This saturation level determines the
91

-------
maximum particle concentra ti on/ tnat c.in bo detected by a 1 idar system. The
effect of the particle absorbiinc.- or ilie presence of -in absorbing material
such as a'lOrfO on the saturation level ar.o very low pcrticle concentrations
should be fjrther examined. Vr.o actual absorbance of the scattering parti-
cles can be determined by r.easuring the attenuation causes by the particles
for transmission through a diluted suspension of the particles. An absorbing
material such as nigrosine dye should ba introduced to change the absorption
of the medium. These measurements would determine the limiting
case of how an absorbing material such as algae could nask the detection of
sediment particles from backscatter measurements.
The saturation point for both the brown and red silt particles occurred at
approximately the soi-ie concentration level for both the blue and red
wavelengths. A saturation was net observed for the white particles. The
saturation level should be further examined to deternnns the effects of both
particle characteristies and the measurement configurat.cn on the scattering
at high levels of particle concentration, since this effect limits the
hignest concentration of particles that can be measured.
The indication that the depolarization ratio is not affected by the size of
the particles reduces the number of variables that mast De considered for
estimating the concentration of suspended soli dr. from backscatter
measurements. This result is particularly useful since it is the silt and
clay size ranges and concentration levels above 10 mc/1 which exhibit this
characteristic which are tne most important measurement regions. However,
the measurements of the different size ranges were maae on only the wh „e
particles. This result should be verified for the brown and red soil samples
oy making measurements similar to those: made in this study for the white
particle type. The size separation ano measurement processes must be
performed carefully to ensure that the size ranges ore acquired accurately.
Also, the slight differences in the color anc'. shape of the particles for
different size ranges from the same soil type should ue documented.
The scattering model derived by Blanchard [31] calculates the scattering
from a rough surface as a function of incident angle. Backscatter
measurements from sediment laden water for a range of angles would permit the
verification of this model. A wide range of angles could then be simulated,
using the model, to determine the effects of incident '"Migle on the
measurement of suspended solids. The best range of incident angles for
sediment measurements could then be determined.
Seattering Model
Tne many variables that contribute to the different scattering
characteristics identified in tins study accentuate the need for an
analytical description of the scattering process. However, the large number
of variables also greatly increases the complexity of the mathematical model
to describe the many scattering characteristics. An accurate estimate of the
concentration of suspended solids from backscatter measurements depends on
the ability to distinguish the different effects of the many variables on the
scattering process. An analytical development which accurately predicts the
backscattered returns for a wide range of measurement conditions would
95

-------
necessarily include the effects of the many variable;. The ability to
include the effect* of the different measurement conditions on the
backscattered returns would be prcreti'jisite to the ability to correct the
Ddckscatter measurements for tnc effects of the measurement conditions and
thus isolate the effects of particle concentration. As a result, a complete
development of the scattering process would be helpful in developing a
technique of accurately predicting the concentration of suspended sediments
from backscatter measurements.
A simulation program of the scattering process would permit the examination
of different measurement effects without time consui.iinq laboratory
measurements. A wide range of conditions encountered in the field could then
be quickly simulated using the program, verified by limited laboratory
measurements and extended to accurately predict the bactcscattering under
field conditions. The optimum measurement configuration for a set of field
conditions can be determined from t'ne program simulation without having to
complete a wide range of laboratory measurements.
Measurement Procedures
The measurement pro< edure utilized for t'ne measurements of this study could
be improved in several areas. As mentioned previously, the measurement tank
and black absorber sh-juld be cleaned very thoroughly between measurements of
different particle types. Distilled water or filtered tap water should be
used to permit measurements from very low concentration of scattering
particles. A consistent and efficient [measurement procedure in both the
laboratory preparation and measurement execution will assure data of a high
quality.
The concentration of the suspended particles that actually contributes to
tne backscattered returns should be verified during the measurements.
However, the sampling methods usc-d in the field have certain disadvantages.
The volume of water that must be dried or filtered to obtain a measurable
amount of suspended particles con be restrictive, especially at low
concentration levels. A flocculant to rennve the particles from suspension
would be helpful. At higher concentration Tevels, where settling presented a
problem in the measurements of this study an independent verification of the
particle concentration would be very useful. The experience gained in '.he
area of the laboratory measurements would prove useful m later field
measurements.
Another consideration involving the use of tap water ">n these measurements
concerns the floccuiation of the sediment particles. A peptizer was used as
a deflocculant in the pipette analysis used to determine the size
distribution of the particles. Tne sediment, sample recovered after the
pipette analysis showed considerably different settling characteristics than
san-ples which aid not include the peptizer. This fact reveals two slight
problems. First, since no peptizer was present in the measurement tank, the
size distribution measured for the different particles does not accurately
indicate the size distribution of the scattering particles actually used for
the measurements. from the settling of tne sanpies with and without the
deflocculant, ;t is clear that th»> concentration of the smaller parti ties in
96

-------
the reported size distributions are slightly exaggerated. Since the win te
particles were more easily broken up into smaller particles, tne white clay
aiid silt/clay samples were the most susceptible to t'ni? problem. Secondly,
some floccu!ation during t-i? backscatter measurements was indicated by the
settling characteristics of the samples. In subsequent measurements, the use
of a very small amount of peptizer in the sample should be considered in
order to properly snr.ulate field conditions. In either case, determination
of the actual size distribution of the scattering particles encountered in
the backscatter measurements should only he done with distilled water.
Field Measurements
Field measurements are necessary tc relate the limited number of conditions
examined in the controlled laboratory measurements to the wide variety of
natural conditions that can be encountered in 'ield measurements. Initial
field measurements should resemble the conditions examined in the laboratory
as closely as possible so that the knowledge of the scattering urocess gained
from the laboratory measurements can Lie applied to the results of the field
measurements. Complete documentation of the ground truth information will
permit meaningful interpretation of the data.
Location
The location of the field measurements should be planned to closely
resemble the laboratory measurements. The characteristics of the aata that
have been observed in the laborator/ measurements can then be related to the
results of the field measurements wi tfi a minimum of additional variables.
The brown and red silt samples	in this study were remov2d from soil
samples that are characteristic of iv, different locations in Texas. The
brown silt sample was chosen to correspond to the suspended sediment
encountered in the Brazos Kuvr. The red silt sample used in these
measurements closely resembled the suspended solids found in the tributaries
and reservoirs of the Colorado River in West and Central Texas. Field
measurements in the lakes and rivers of these two areas would cover a wide
range of conditions for the same type of particles measured in the
1aboratory.
Additional measurement conditions can be examined by the ptoper choice of
different field measurement locations. The inability to properly Measure the
effects of olf,ae and water surface roughness in the laboratory can be
circumvented by making these measurement in the field. Different ponds could
be located oy aerial observation which represent a wide range of different
algae types and concentrations. A well protected pond would permit the
measurement of the effects caused by different amounts of water surface
roughness.
Ground Truth Information
"ihe actual conditions encountered encountered in the field which affect the
bacKscatter measurements inust i>e carefully "documented to permit complete
analysis of the data. Besides the measurement of the concentration of
97

-------
suspended solids, samples shew Id also bo taken to oetemin-? the shape and
possibly the size distribution of the scattenrg particles. The
concentration and type of algae will be difficult to e'e tor in i no. Large
samples of the water should be taken tc assure that a;1 accurate measurement
of the algae concern.-ation can be made. The water surface roughness
characteristics should be carefully documented, possioly by photographs which
include a reference me-asurc-ment grid. The depth of penetration by the laser
beam and the depth of the water1 wmch contributes to the hackscattering would
also be helpful in determining the absorbance of the particle. The ability
to properly determine the effects of the many variables on the backscatter
measurements depends on the careful documentation of tne actual conditions
encountered in the field.
Lidar Design Rationale
From the measurements of this	and the field !neasu>"e;ntns made in
previous investigations, several recjsuendations can oe made concerning the
design of a lidar system to measure suspended solids in waiter.
The sensitivity of the system to changes in suspended particle
concentration can be increased by several ir.ethods. The reflectivity and
absorbance characters sties indicates in the results of these measurements
show tnat the red laser is more sensitive to the concentration of suspended
sediment particles and less influenced ivy t.he presence of algae.
The effects of noise can be reduced by several methods. A chopped or
modulated continuous wave laser permits the effects of ambient light to be
removed by the detection electronics. Spatial and optical filters prevert
interference by unwanted water surface specular reflections. Innediau-i /
after being preampl i fied, the return signals can be bandpass filtered n the
beam modulation frequency to further reduce noise. A reference signal from
the beam chopper can also be used to synchronously demodulate the return
signals.
The environmental constraints of operating both the laser and any
electronics in field condition:, which include a wide range of temperatures
must be considered very carefully. Particular problems of power or laser
type must be considered for the particular application. The trade-offs
between component selection, ease of operation, cost, and measurement
capability must be well defined to produce an effective, usable sensor.
The proven versatility of micro-processors, especially in the
implementation of alyorithins fo~ field applications, would greatly aid in
data reduction for this type of in situ sensor to nrovide real time data
analysis.
Field measurements are also necessary to identify any other variables which
might have an effect rn the measureuent capabilities or operation of this
type of sensor. Particular rctjuirome:,ts to produce a rugged, dependable and
operational lidar system co be used to iionsuru the suspended solid*: in water
must, be identified in the actual ficKl oinr, tions which will be the normal
operational environment of tiiu sensor.
S3

-------
RF.FEREiJCLS
1.	Wrublu. D. P. . J. n. Koutsandreas and ?s. Pi.iar.owc.ki , (editors),
PrccepcMnns of t.'ie An tenia ted in Situ Water nudity Workshop, U. S.
fnviYonineiTtaT "P76To"cTr6"rT" Ag"ency7" In v i ToWeri'taT Mfnitory and" Support
Laboratory, La? Vegas, Nevada, February 1978.
2.	Mayo, Jr., W. T., G. J. W11 he 1 m i and J.	Rouse, Jr., "A Dual
Polarization Laser Sack scat tor System for	Wdtjr (juality Studies,"
Proceedings of Electro-optical Systems Design Conference, New York, New
York, pp. ?50-2'F)F, Sepetunber T97~2~
3.	Wilhelmi. G. J., W. T. >".ayo. Jr., and J. W. I-louso. Jr., "Remote L'ater
Quality Measurements wi th a Lidar Po1arimeter," Laser and Unconventional
Optics Journal , Vol. 43, pp. 3-16, January/f>brua~"y~ "T97X!
'1. Mayo, Jr., W. T.. C. J. Wilhelmi arid J.	W. Rouse. Jr., "Lidar
Polarimetcr: Lxpenmental Feasibility StudyTechnical Peport RSC-'iC,
Remote Sensing Center, Texas A&M Universty.	College Station, Texas,
September 1972.
5.	Wilhelmi, G. J., "An investigation of	the Depolarization of
Back - scattered Electromagnetic Haves Using	a Lidar Pol arimoter,"
Technical Report, rsc-45, Remote Sensing Center, Texas AW University,
College Station, Texas, August 1973.
6.	Shelves, T. C., "A Study of a Dual Dolarization Laser Rarkscatter System
for Remote Identification arid Measurement of Water Polli'tion," Technical
Report P.3C-53, Remote Sensing Center, Texas AiM University. College
Station, Texas, May )!)74.
7.	Rouse, Jr., J. W., W. C. iisilse, A. J. Planchard, and 'H. Molek,
"Development of a Lidar Polorimeter Sensor for ?.omote Detection and
Monitoring of Oil and Other Hazardous Materials in Water." Final Report
f;SC 98-1-1, Remote Sensing Center, Texas ASM Univeristy, College Station,
Texas, April 1075.
6. Blanchard, A. J., J. A. Scliell and S. Raws fiver, '' Pol iw'i zc*ci Li'Jar Cross
Section Measurements o!" l^.o Hitural Water Sdiup! t sTechnical it-i'ioranduip
RSC-125, Remote Sensing C^ter, Texas A&"! University, College Station,
Texas, November 10/5.
99

-------
9. Rouse. Jr., J. . "iJc'Clopiiient of an Active Sjj f! 1 Detection System
(ASt)S) For Remote Detection of Oil Spills," Final Report RSC 2233, Re^oU
Sensing Center, Texas .V.M University, College Sta'.io-i, Texas .iune 1978.
10.	Kim, H. H. an P. T. Ryan, (edi l-o^s) , "The Use of i.a-'.'-rs for Hyrtrociranhic
Studies" Symposim proceedings, Wallops Flifjht (c-nr.er, Wallopc island,
Viryinia, September 1973.
11.	Carlson, P. f!., and P. 3. f!cCi;iloch. "Aerial Cbssr.-vation of Suspended
Sediment Plumes in San Francisco day and the ad jacent Pacific Ocean,"
U.S. Geological Survey Research Journal , Vol. ?, ;.;o. 5, pp. 519-526,
Sep tomber/Oc tob er T57T. 	
12.	Curran. R. J.. "Ocean Color Oetermination Throinh a Scattering Atmos-
phere," Applied Optics, Vol. II, Uo. fi, pp. 1357-1SG6, August 19/2.
13.	Kattawar, C.. W. and T. J. Humphreys, "Remote Sensing of Chlorophyll in an
Atmosphere-Ocean Envit on.nent: A theoretical Stt'dv." Applied Optics,
Vol. 15, No. 1, pp. 273-282, January 1976.
14.	Ritchie, J. C., F. R. Schicl'e and J. P.. McHenry, ''Remote Sensing of Sus-
pended Sediments in Surface Water," Photoorawotric Engineering and Remote
Sonsinr;. Vol. '12. Uo. 12, pp. ]539-J541)7'IjeceRbeFT97b".
15.	rlerry, C. J., " fne Correlation and Quantification of Airborne Spectro-
radiometer Data to Turin rfity "easureinents. at Lake Powell, Utah," CRREl
Special Report 77-28. Cold Regions Research and Inqincering Laboratory.
Corps of Engineers, Hanover, Hew Hampshire, 197S.
16.	iVistow, M., D. Nielsen and R. Furtek, "A l.aser-Flunrosensnr Technique
for Water Quality Assessment.," in Proceeuinqs of the Thirteenth Inter-
national Symposium on Remote Sensing~~ ol'~LnvTroniiie^»~"AnrrArS^rr'lTi'cFrnanT
April 1979", "pp. 397-417."
17.	Crown, C. A., F. H. Farmer, Q. Jarrett and L. Staton, "Laboratory
Studies in In Vivo Fluorescence of Phytopi ankton Procoedi_ng_s _of Fojjrth
•]_ojrrt Conference on Sensing cf Cnvironmcnta 1 PolVu"tTiPt7~Hew~7F1?a"n'sT
Loui"sidna",~;'Jovei!iber 1977 " "p p. 7h"2-7oTj7	""""
18.	Kuo, C. Y. and R. Y. K. Ciienq, "Laboratory Reouirerr.er.ls for In Situ and
Remote Sensing of Suspended to tonal," Technical ".r-port 7G-CZ, School of
Engineering, Old Dominion Universtv, Morfolk, Virginia, "arch 1976.
19.	Allen, P.	"TurbidinieLer "easurcment cf Suspended Solids.," Agricul-
tural Research Results, Southern Series No. 4. Science and Education
Administration, 'J. S. Depar biioiit oT Agriculture, Chickasha. 0\1 aho.na,
lictober, 1979.
20.	Austin, R. W., "Instrumentation Used in Turbidity iiea^jcement," Proceed-
ings of the fiOAA "iurt'.i
-------
21.	iiflhn. II. h. and P. lOute,	"PolluLiondl Effects of Suspended. Sod ii'ientod
and Eroded Particulate Material in the Aqueous Envi ronmentinstitiii for
Si odl ungsi vasserwi r tschaft,	University of Karlsruhe, Kar'i sruh®, West
Germany. 1974.
22.	Oliver. 13. G.. "Heavy Metal	levels of Ottawa and t
-------
APf'CNDIX A
Sediment Concentration
!02

-------
REDUCED MEASUREMENTS
103

-------
S HOIK;ED DAT,-'. FOR WHITE CL-.Y
D
oscsNriumN
r.iDf.n C:
(OSS SECTION
0EP3L,\H rz.\
(MK/L»
LIKE ( V V„D D >
CROSS (7!!,[)Bl
RATED
0,0
7 9. 3 ?
93.32
.040
2. 9
77. h 3
r! 0 . 2 1
.055
5. 7
76 . 80
8 8.65
.0 65
8. 5
76. 42
88.09
.068
11.4
75.83
86.90
.0 80
14.3
75.63
86. 58
.081
17. 2
75. 2 1
85. 8J
.086
20. 3
7 4.96
85. 30
. 0 92
22.9
7u. 76
8 4.93
.096
25. 7
7 4. 35
34. 12
. 105
23. 6
74. 26
83. 94
. 108
28. 6
74. 26
84.05
. 105
28.6
74. 38
8 4. 04
.10 8
35. fJ
73.71
83. 72
. 0 9t»
12. 9
73. 72
83. 24
. 1 07
U 9. 9
73.09
8 2. 25
. 1 21
56. 9
72. 59
3 1,49
. 1 29
64. 1
72. 26
81.00
. 1 34
71.1
72. 12
80.61
. 18
78.2
71. 82
79. 98
. 1 54
85. 9
71. 66
79.57
.162
93. 1
71. 52
79. 22
. 1 70
121.7
70.77
77. 65
.205
137. 1
70. 50.
77. 03
.2 22
151. 14
70. 25
76.50
. 2 36
174. 3
69. 65
75. 75
. 2C6
195.8
69.37
74. 89
.28 1
224. 9
69.01
74.11
. 3 0^
253. 4
68,69
73. 52
. 3 ?0
282. 1
68, 24
72. 56
. 168
317.9
6 7.12
71.K4
. 387
353. 6
6 7. 36
7 1.22
.4 11
4 10. 3
66. 77
70:24
. 4U9
482.3
65. 99
69.03
.496
553. 8
65. 49
6 8. 18
,5 38
525. 3
6 4. 96
67. 46
. ^63
732. 5
64. 36
66.51
. 6 0 H

-------

SEDUCED DATA
FOR WHITE CLAY
BLUE

OHCESTRATIDV
LIDAR CHOSS SECTION
D EPL\ H iz,
{SfVL)
LIKE (v V, DP.)
crtos.i> (vnf oy)
RATIO
0.3
71. 9Q
04. 22
. 0.'9
2. 9
71.5?
0 3.10
.069
5. 7
71. 28
n i. ho
.0 09
8. 5
7 1. 05
8 1. 20
. 0 96
11.4
70. 55
79.93
. 1 16
1U. 3
70. 46
79.77
.113
17. 2
7 0.13
79. 18
. 1 25
20. )
69. 77
78. 62
.131
22. 9
6 9. 69
78.40
. 1 34
25. 7
6 9.42
77. 77
. 1 4 6
28.6
69.44
77.58
.153
28. 5
6 9. 40
77. 61
. 151
28. 1
6 9.5 6
77. 85
. 1 4fi
35.3
68. 91
77. 13
. 1 'j 1
42. 1
68. 74
76.57
. 1 65
49. 9
6 8 . 4 3'
75. 92
. 1 79
56. 9
63.06
75. 24
. 191
64. 1
67.32
74. 77
. 201
71. 1
67.52
74. 31
. 209
78. 2
67.11
7 4,04
. 2 02
85. 9
67. 23
73. 91
. 2 15
93. 1
57. 11
73. 55
.2 27
121. 7
66. 32
72. 12
.263
137. 1
56. 10
71.63
. 230
151.4
65.77
71. 05
.296
174. 3
65. 31
70. 51
. 302
195. a
65. 16
69. 97
. 3 30
224. 9
6 4.60
69. 12
. 354
253. 4
64. 48
68. 57
. 390
2 82. 1
6 4 „ 0 0
67. fi5
.4 13
3 17. 9
G 3 « 6 4
67.46
. 4 J4
353. 6
63.06
6 6. 58
. 4 44
4 10.8
6 2. 50
6 5.-6 9
.48
482. 3
6 1.96
6 4. 7 ft
.527
553. -3
6 1. 45
6 4.1 4
.5 39
625. 3
61.11'
6 3. 52
. 574
732.5
60. 47
62.60
.612

-------
B2D0"C£D D*r\ FC)T( WHrTT SILT/CL.\7 (S/I-3/7 9)
3 KL>
0H3EN r?.ATI D N
LIDAJi CP.O
3S SSZTTON
DSnOLA.TIZft
(MR/'u)
LIKE(VV,rVri}
CROSS (Vli, [MM
R \ ? 10
0. 3
76. 31
3 7. tij
.07 1
J. 0
75 . j7
35.00
. 1 09
6. 3
75.0 1
63. 67
. 1 36
9.0
74. 57
3 2.82
. 11.0
12. 1
74. 59
8 2.74
. 1 53
15. 1
74.17
82. 18
. 158
18. 2
74.04
3 1. 95
. 162
21.1
73. 93
8 1.83
. 164
24. 2
73. 55
8 1. 20
.171
27. 2
73. J9
80. 79
. 1 82
33. 2
73. 39
90. 53
. 193
39. 3
72. 94
79.59
. 2 16
45.3
72. 75
79. 35
.2 19
5a. 4
72.56
78. 89
. 2 3 3
63. 4
72.69
79. J6
. 23 I
72.5
72. 24
7^.12
. 2 15
31.5
7 2. 24
73. 83
.217
96. 6
71.7
73. 20
.2 23
111. fy
71.'!
77. 78
.231
127. 3
71. 16
77.54
.230
151.5
7i). an
76. 67
. 2 59
182. 3
70, 46
76. 15
. 270
198. 1
73.30
75. 55
. 279
i 06

-------

HEDUL'SD DA T A FOR
Hurr* 5l[.t/ci. u
b lij
(ft /I 9/79)
DNCSNTiUri J* L ID A P
cross secxrofi
UDPOL.M' 12 A
(HG/r.)
LrsE(vv,n3) cross (vn. r>3
) RATIO
0.0
71 . 30
=54. 76
.045
3. D
7 0. 30
02. 23
.0712
6. D
70.49
E?0. 57
. 0 9B
9. 3
5 9.97
7B. 97
. 126
12. 1
6 9.4 a
73. 30
. 1 30
15. 1
59.21
77. 67
. 1 "2
18. 2
69.96
77. 23
. 1 47
21. 1
59.21
77. 35
. 1 54
24. 2
6 8.81
76.93
. 159
27. 2
6 3. 3 3
75. 90
.175
33, 2
68.60
75.(30
. 1 87
39. 3
6-3.44
7 5.42
.200
15. J
68. 29
75. 33
. 2 12
54 . 4
55. 21
74.77
.221
6 3. 4
67.78
74.25
. 2 26
72.5
SB. 21
74. 32
.219
81.5
6 7.97
74.54
.223
96.5
67. 41
73. 67
.236
1 12. 6
67.22
73. 15
. 2 55
127. 3
66. OS
7 2.31
.254
151. 5
66. 30
71.84
. 279
192.3
66. 33
71.60
.295
198. 1
65. 39
70. 57
. 303
107

-------
RSJUCSO DUi FOB a;n'TE SII.T/CL.U {5/25/79}
3ET)
C0NCE!irn/vrt3:i	lidaf. cboss section	nr:nD;.-;E> r2'ipton
f 3G/L)
LIS 2 t V V c DBJ
CP 35 S ( V'1, 0 3)
•iino
3. 3
7 4.03
79. 26
. 301
6. 0
7 3.71
78. S3
. 307
9. 1
73.59
78. 88
. 295
12. 1
73. 42
78. 90
.233
15. 1
73. 22
78. 95
. 267
18. 1
73.43
7 9.05
. 274
21.1
73.02
79.0 1
. 252
24. 2
72. 92
7 9.01
. 246
30. 2
73. 47
79. 95
. 225
36. 2
73. -"3
79. 56
.223
44. a
72. 77
79. 10
. 233
59. 5
72, 54
7 9.04
. 224
60. 4
721. 20.
7 8. 5 9
. 2 30
68. 7
71.94'
78.61
.2 15
77.2
71.90.
78. 39
. 275
85. 5
7 I.62
77. 96
.233
93. 9
7 1. it if
77. 86
. 2 28
12:;. 7
70.52
7 6.58
. 2 48
156.3
70. 18
75. 79
.275
186. 3
59.6i;
74. 85
.301
217.0
5 9. 3 8
74.0S
. 341
247. 3
68.95
73. 40
. 359
278. 3
63. 55
72. 87
. 3 69
308. 3
63. 14
72. 20
. 389
338.0
6 -3. 34
7 1.8
.4 50
407.3
67. 49
70. 48
.503
181.0
55. 81
69. 69
.515
552.0
66. 13
69.03
.5 36
627.0
55. 66
68. 24
. 5 7r»
773. 3
55.31
67. 34
.6 27
826. 1
6'4. 3'*
6 6.03
.6 78
N3TE:
Effect: of tank be
ttoa: hsloa 30 u:j/l.


-------

SSnUCSD DATA FOR
»1
:!ITE SrLT/CLVf (fi/;
t/79}



:l L (J E

0NC3WTKA
711H LIDAR
r*
80 SS SE-TEOfi
DSPDL.UIZ
{ nCt/L)
[. IKS ( VV, D
n>
C30SS(VH,D3J
PAT TO
3. 3
7" . 7 J

77. 15
. i 39
6.0
& -1. 1 5

76. 07
. 7 0 a
9. 1
6 9. 10

76.25
. 1 BO
>2. 1
6 3.99

7 5. 8 2
.2 07
15. 1
63. 33

75.73
. 204
18. 1
6 8,81

75.61*
.207
21. 1
6 3. 56

75„ 33
. 1 89
24. 2
53.30

75. 5H
. 1 89
30. 2
69.24

77.71
. 1 42
36. 2
6 8.84

76. 38
. 157
44. 4
6H. HO

75. ao
. 1 82
59. 5
58. 14

7 5. 3 2
.19 1
60. 4
67. 70

74. 57
.206
68. 7
6 7. 90,

7 4. 89
. 200
77. 2
67. 5n

7 4. 28
. 2 12
85. 5
6 7.3-'*

74. 00
. 2 17
93- 9
6 7. 30.

7 3. 87
. 2?'j
124. 7
6 6 . 3 3

72. 1!*
.26 2
156. 3
66.0 3

7 1. 27
.219
186.0
65.69

70.56
.325
217.3
65. 44

69. 93
. 3 59
2f7. }
6U. 56

68.95
. 3 64
278. 3
64. 55

6 8.54
.400
308. f)
64. 19

67. 9'i
,4 21
3 30. 3
64. 15

67. 7j
. 4 J6
<407. 3
63. 29

6 6. 56
.471
131.3
62. 89

6 5. 80
. 5 12
552.0
62.56

65.28
.534
627. 3
61. 99

54. 42
. 57i
773. 3
61,66

6 3. HH
.601
825. 1
63. 76

6 2. 6 3
.651
S3TE:
Sffart of tank
i)Dt tos below 30 a:j/l

ID?

-------
DEDUCED DATA FOR WHir® SILT (1A';0)
CONCENTRATIDN
LIDAH C
SOSS SECTION
DEP3LAR IZA riOil
(Mr:/ L)
[.IKE ( VV„ I;f!)
CH03S(V!l,D3)
A T r 0
4. 5
76.8
HO. 1
.058
9.3
75 .6
87. 9
. n r- n
18. 1
74. 3
8 4.8
.080
27. 1
73. 9
8 3.8
.10 1
40. 7
73. 1
81.7
. 1 37
54. 2
72.8
3 1.6
. 1 33
76. 9
72.0
79. 5
. 180
101. 7
7 1.3
77. 9
.216
12a. 3
71.1
77.5
.221
1&9.5
71.9
78. 2
. 2 34
226. 3
71.4
77. 2
. 2 6 5
282. 5
70. 3
75. 1
. 3 35
339. 3
6 9.7
73.8
. 387
4S2. 0
6 7.6
7 1.4
. 4 1 P
565. 3
5 6.8
6 9.8
. "98
678. 3
66. 2
68. 8
. 5 4 7
904. 0
65. 5
67.8
. ^91
1130.3
64. 3
6 6. 0
c 5 <0
1356.0
6 4.2
66.0
.667
1582.0
63.7
65. 0
. 7 49
1008.3
62.9
64.0
. 7 so
2034.3
52. 7
63. 7
. 7 R-t
2260.0
62.4
63. 3
.8 10
2543.0
62.0
6 2. 8
.8 32

-------
aSOMCZO DATA FOR WHITE SI I.? ( 1 /U1)}
r- r. u y.
cojicsvrturr jn	lidas	sscTior!	onpoLAsizMTO'i"
(HG/L)
lies (v v. nsj
cr:>ss fvii, ?,d •
RATIO
4. 5
70.4
ao. 4
. 100
9.3
70. 1
7 9. 3
. 1 24
10. 1
G 9. 4
7 7.0
. 174
27. 1
6 a. 9
76. 2
.114
40.7
53.3
74.9
. ?08
54.2
5 7.9
7 4.2
.2.13
76.3
57. 4
7 2. 9
. Ill
101.7
65 . 7
7 1.8
. ?0*3
124.3
6 t'i. 5
7 1.6
.311
109.5
5''.2
7 1.9
.133
2 25. )
5 6.9
7 . 3
. 3 62
2 32. 5
55 . 9
6 9.6
. 4 27
339.0
55. 4
63. o
.473
452. 3
5 3. 2
6 6. '4
.477
565. 0
62. 5
65. 2
.541
6 78.1
61.9
64.2
.^77
9014.0
61.2
6 3.3
.621
11 JO.3
5 3.3
6 1.9
.617
7356.0
6 3.2
6 1.6
.7 27
1582.0
59.7
6 1.2
.7 13
1808.0
59.0
6 0. 3
. 7U9
2034.0
58.8
nO.O
. 760
2260.0
50. 3
5 9.4
. 771
2543.0
59. 1
5 3. 9
. R20
111

-------

' - '"i c i'n r
rr o -¦> ¦? r- j; : >
' : '1

J onc "•;:?}-id
: r. ? "¦

\ ' T7

r t. ?. r.
c.-uj
i: (¦
c.
7 M . •'

' ) r. '>
j. i
ii ,in
r. o 1
c 2
11. i
75. " )

.rt 7
17.0
*7 c ri
o c £ fl
x • 1 «.
.
22. n
7 5. r o
^ . 2^
.12 1
2-i. 1
7 5.00
* -10
.12'
2 1.
7 a . •' 3
S J. 7 J
. 1 ¦ 0
la. o
7 'i . 6 C
."3 "> > r*
•' ^ • j
. 1 ' 7
3 . ¦)
7 'I . 5 )
•T2. 70
. i c a
't5. 3
7 ¦;. 2 :
•t -> n\
.1=1
5'i. I
7 U . 10
0 2. 0 0
. 1 1
5 "i . 5
7 i . '¦ 0
1 1 . -* ^
. 1 *0
5n. r.
7 1. 0
'1 1. 50
. i <¦ 7
7 1. J
7 3. 5 J
') C. 10
.1.-2
>37. ^
7 3. 10
3 0. 10
. 1 f,2
10 1.
7 2 . r- 0
7 « . 7 0
• ^ ^
115.'
7 2.71
"7 !. f)
.211
1 J 1 . J
7 2 . 5 0
7 y. ?¦;
. ? TJ
131.1
1 1 . 'J 0
7 -i. '¦> 0
.212
1 -*5. 5
7 1 . S 0
7 J . u 0
] 2 ¦'
16 0. 0
7 1 . -1 )
7fj. 20
."•22
1 7 J. 1
7 ? . C 3
12. 10
. 2 ci 2
i n n. o
7 1 . KC
7 7.0 0
. 2
201.0
7 1. 1 C
7 7.00
n c z
2 J 1. 0
70. "0
7.S. -V0
. 272
2 o 0 . 'J
70.70
/¦;. to
. 27 J
2J7.0
70. oO
7 fi. 0 0
T - C
Jit--. )
7 0 . .'J C
"'5. }'.)
. 2- 1
i ui. 0
7 0.20
7*. -10
2 ..n
JU i. 1
70. iO
7 c-. "• 0
-> <- .j
u 17.o
fi'i. '10
7 r, "v /-\
. 1 c r->
5 6 u . 0
"'1. CO
7 1. i:.i
. ">7'.
5f,0. 0
o !. bO
7 2'. 00
. 'i f f.
5o0.0

7 2.70
. 1 c u
b 3 1. 1
6 1. 10
7 >. r- ¦">
. ic: 2
7 JC. 1
f> -i. 0 0
7 i . 'i n
. '1 0 !I
f} 7 1 . i
6 7 . i 0
7C . "'0
. >IC 1
9 7 1.-,
n "7 . .1 0
7 C . -10
. 'i r''>
11 1 J. 1
n7. 10
7 C . 50
r ^
1 225.«
;> 5.-0
b'-. JO
. r- ¦¦ 1
1 u 17.
nf,. 10

. 5 .? ^

-------

C L\"\ "
* , |T-; r ¦: ">


"i I.
1 1

C 0 "C " " ? D r 7 l4 .7
I. : r -1 ;¦ C " 1 :>
: S"CT'Cl.
:r cl.'-.-Iz
(¦V,i/L)
M< - |V V, CD
cross (v:,-. ;
\ ~ ! C
0. -1
'¦'2. CO
¦-I ^ > i ¦)
i- r \
» . J
5. 7
7^. fn

. 1 1-5
11.1
!.')0
7 ?. 'O
.17;
17.:)
70. 1C
7 7 . 'i ~
. 11-
2 2. ¦>
n r>. O
7'-. 10
. T J
2'?. 1
¦V. -'0
7 >_. c ¦;
1 t
2 'i. 3
11 -1. 7 1
7 r . r-,j
.: 12
"j«. 3
' ) ^ . :»0
7 '] . C

3«.'i
!i'l. CO
7C. 20
. "'tC
uG. i
r. •<. 7 o
7 .) . 7 0
. 2?C
50.
n
7'i. 6 0
.2 76

6 '3. i.1 c
7 U . n 0
'> .Z
. ~ /
j 6. b
ti 3. .-30
7 y . if j
-> c c
71. (
6 '3. '4 0
7 i. C J
7 1. «0
o c a
10 1.6
67. JO
7 3. 00
.2 07
115.7
6 7 . r- D
7 2.70
. 3 0
n i. j
67. <=o
7 2.70
. 'O^
1 J 1. 3
-j7. JO
72. 20
1 ? c
1 U 5. '6
6 7.20
7 2. OP
. 110
1 60. 3
0">. 10
7 1. 'J
. ill
173. -3
67. 10
7 1.
.1^2
1 ^.O
(if). 0 0
7 1. ->0
.3'! =
201. '1
(lfi. 6C
7 1.10
. ">6°
2J1.0
6 6 . U 0
7C. "50
. 1 *
260.0
6G . 2 0
70.20
. 1 c 2
281. )
6 G . 1 0
7 0. 20
. 3 Q 0
.316.0
tr-.. 'JO
7 C . 1p
.If!!
J a ..-j. o
brj. HO
r-iS'. 70
n (¦ Cl
3') '3 . 0
6ri . -30
7 0.20
. v,'(;
U 17.0
61. t3
6'!. <0
. U 1 '1
6 f, C . 0
1 i 1 . 0
6 7 . U"
. " 7 "
5rO. 3
on. 20
6 7"; 1 J
. c 12
6r,0. 0
6 u. n
67. 20
. ^ O'-

f; -..20
6 7. 00

7 30. 1
61.7 0
t-f: . 'iC
. r- i. 1
a 71. r,
6 3. 20
6 S . 6 "i
. ^ -3
971.6
61.50
6 <"• . 1 (1
. r- U U
10 13.1
6 1.20
6 rj. 7
. r r6
1 2 2 5. 'J
6 1 . UC
1. 60
„ r- c
1 u 3 7. i'i
t'2 . no
6 a. 2 0
.601
II;<

-------
:? T ' I ~ "J -
.¦ \ri 1 ¦¦"

¦- r: c •:)
wvrru.''
i: l \ !
;j sjv r:^
::" '¦')!. \ ~ r?
( :'-/l )
L : V .. ( V : , L" ¦¦ )
C( "j !:, 1 I
\ T T c
j .")
J , ;¦
•i !i . J
. 7 f (j
1 :i. ¦)

Vi . 0 o
) i .<
2
l) 7 . f) 0
7:--. ic
. 1 ~ 44
u-. u
•i-'i . )'">
7 •;. o
.•no
>
h . 1
- f). 2
. ! " 'J
7!*. )
:0 . r. )
T - . '1 0
.r- n
V o .
o
5 7 , T't
. c -:0
y^A,)
£. •: i
* 5 . 'i C
. <¦- <- •!
18 5.?
!':1.1 0
f>c.
. "7 20
2:^
5 1 . f 0
5 2. '1n
. 1
2 S 5. 0
6 1 . .J 0
5 2. 20
. c 1 2
4 '0 7 . o
6 0 . 6 3
¦¦ 1 . -i )
. 0 2'i
r- r: 5 . 0
50. 10
5::. or;
. = U0
7)3.0
5" .
5C . 7C
. 15
1 U. 0
5 <¦?. -O
¦: C . '1 0
. c M
5 2.0
r ¦>. -C
oC. 3"
.j <¦. i
1 1 1 C. 1
5 ¦>. 5 3
50. 10
. 5 7
1 2
-------
»=. j 'j c ~ r>
v.:
j in: f ! i ; < c
"" \ r r" •:)
conc a rrc\
1. T V A >
'¦ I. 'J ?
jtjss s::cr:o\-
¦) ? r c l *0: /.
(x ;/:.)
: ( V V , C : ¦)
c.vj-.is (v:-f c~ij
p \ t rc:
c. ¦;
n. 21)
3 c. c 0
. r> ?c
1 u.
L a . 51
6 9.
. ->1 r.
2 ). :
f: 3 . ¦} ¦)
6 J. 7 0
. i
U4 . 1
6 J . r 0
f'. 3 0
. '¦ 16
50. J
<• i. 2 3
f-7. 30
. 3C5
7a. j
f-. 2.70
. -'0
. n-j
f'd. -i
h 2 . aO
6c. :o
. a i o
1 a d. J
u 1 . C
« . 10
/j ~ '/
15. 0
(1 1 . 40
6a. 50
. a 5
2 2 2.3
'1 0 . 5 0
63. 20
.535
29o. :•
60. .n
6 2. 0
. - = a
a 0 7 . ¦:
6 0.60
6 1.00
. 5 r- ii
555.0
(jO. 30
62. 00
_ c: c u
703.0
n 0 . 6 ¦')
6 2. 10
. r' 5 7
•il'-i.j
60. 60
6 3. ?0
f; r 0 . 50
6 3. 00
. r- f: 2
nu,]
6 C . a 0
62. 30
. ¦= h«
1 2^5. 0
6 0. 10
h2. 50
. r- 7 2
l a ti 0 . )¦
'i 0. 10
6 2. ao
. q 77
1 -JSC. )
r,o. .10
5 3. 00
. r- 30
2?20.0
60 . 30
6?. 90
.c a 2
115

-------

r: l
z «

l'j k• ? ¦ ; r : r;) \
L I C \ ~ .

^ T- ; r -7

LTKZ^'V,:-)
nn.; ; (7;!,:\t)
r o

7S. !C
12. 7 0
.1=1
i. i
7 1.7 0
7 7. u
. ? ') s
7. 3
7 C , 'O
'? I" . 1 0
. > 7fi
11.0
60. -o
7 r: . ! 0
. 3 r 2
1J. -
c". 3 0
7 ii. n
1 1 1
13. <
h'f.
7 3. r.O
. f ^ S
2 2.-)
¦:• •*. s t
7 \ 'JO
. 3 f u
2 S.
f. d . 20
7 J. ;.0
.37?
2-'). J
3. C 0
7 J. 20
. 3 7 n
32. ¦)
6 7 . 7 J
7 1. -3C
. 3 i: 7
J h. <¦.
o7. 70
"T 1 ^
' I • 'MJ
. '! C S
IS. 5
f; . 3
7C. 3,3
.an
54. J
!3 '3 . fc "!
7 0. 2
. 'i >0
6^.1
b n . IJ 0
•V.I. »C
. i f 3
7 3. J
r'- '1.1")
') 9 , ! ^
. U T)
¦=2."»
M "3 . " 0
r>.J. '0
. r- 1 0
'3 1 . S
o:-. ic
it'. U0
. '! c 3
11" ¦'). 7
fcrj. 20
¦>y. io
. c 1 1
1C", 3
i 0
'.7, 7 0
. ^ 2 fi
11)..)
^ . o 0
?. 20
. ? 'J 7
12 a. i
f> u . b C
'i 7. 10
. ^ r- a

f:U. 10
r. f-. ri0
. r> c0
16H. 7
6 3. «G
K.
. - n
1 H 3 . ¦)
h3 .
S5, 50
. r- -1 2
20 1. J
6 3. a 0
f;c. 30
. •' c. 2
2 2 H
62.9.)
•jiJ. 70
. ¦¦¦ -'i
256. I
6 2.70
fi'». 10
. *3 c 7
7 33. 7
ft 2 . u')
¦> 3. "0
. 7 1<-
J20. 3
f 2. 1C
6 3. 'J 0
.7U0
3 'i 3 . S
ri 1 . 7')
h2. 30
. 0
116

-------

~ ¦: c i: c! r. <:\-
¦\ re? -1 :m:.t
, * ¦; ¦;

fv!C"£'< r?i riw1;
11 mr c -
.'Sri S"CTT'":;.
"# ? r 0 \ ~ T 7
{?">/-)
l:-." (vv,rr-)
cr-o-is (¦',r.'2)
-;>r rr
0. )
7 r.'}
¦to. 10
. 1 cft
J. 7
<> 7 . •: 0
T-i.
.2V
7.
i~ r- . '1,"j
7 1 . ° 0
. / -'i ft
11.0
61;. 3 0
7 2.10
. ? ¦; 1
Hi. ft
(> ft. 00
7 1. 7 ^
.27 2
VJ. .1
ft ft. 7.1
7 1. 10
. ?'! 1
22. n
ft ft. JO
7 C . r>0
. ¦ 1. ft
h 3. 10
ft 7. J'j
.
100. 7
u 3. 10
ft 7. 20
. !r; 1
TO. 1
ft J. 20
ft 7. 10
. -m
1 1') . 0
f2.ft0
ft ft • ft 0
.'i2H
123.1
52, ')0
ft ti.  . 4
ft 2 . •' ¦ 0
f-c. 50
. !1 2 0
Ift'i, 7
fa 2. a 0
ft ft. 00
. 'i 33
1HJ. 0
* 2 „ 2 0
6 ft. 70
. i i
201 . 3
6 2. n
ft 5. '40
.ue-7
22-3. 1
6 i. no
ft ft , 20
. '1 f- ry
256. 2
ftl . 70
r>«. ?o
. '1 ~ t"
2S3. 7
ft i. :>c
^ 'J.0
. U9 3
3 20. 3
6 1 . 30
ftU. 30
. 1 C 3
30 3. 5
G 1 . 10
ft'J. 00
1 i
117

-------

T -T| -
n\"> "T> "J »¦)-•?
-¦; r i.
' -: o
t ('i r ij. :. -> ¦;";;
¦j f, P r-i
7 VI' =¦
¦ir ¦> \ r r vi
i.np
) i". ^
S '• 7 " T 0 '!
^ * "0!. .1 - T 7
f 1 1 /
r.i
t.r-"? rvv, :n \

r%rj,
i) "T ¦;
"* i .
i
¦S ^5 « '1

7. T
.411
'' ") .
ti
SI. ;>


.  .

^ 5 . 'i


. U '4 1
' '1 ") .
*
r, s.

en, T

Ml.
7
r.s.

17.7
. 4
m.


. 7Hi
7"<1.
n
1 ?. rl

11.3
.711
=m.

r. 2. i

n 1. 1
,7Vj
1 tvi.

1 1. 7

r>7. n
.7^1
i 'n ¦<.

6 1. 'i

t"1. s
. 7r,S
17?1,

^1.1

=>?. i
. 7ii
ini.

n. ¦?

1?. u
. 770
2 o 'i ^ .

ri i.

S?. 3
. 7r> 1
^ "> *>.

<5 1. -1

'3.1
. 711
nil,

SO. 3

S ¦?. 2 t
. 7« "?
^•n.



S2. 1
.7US
- 1' .

*0.7

S7.0T
. 7'I 1
] ]H

-------

-m PO" ^ T J *: -;v
n 7 't
:: c r-;? ; n >,"¦>¦¦
: r n \ T \
hi 2 ¦* y" *r i! ? •'
' Lj J
i, r i\n cms

r> s^oi.a n rz
/'.i
1,'^ (v V , '.11)
(v i, o?,i
¦! \ T * '1
1 s. ^
'l 'J v S
71. i
. ^
7 ~.'»
'-1.5
*1.7
.512

S 1. "1
si. "n
. i-'O
TJ 1 .
¦r>.i
i'.¦>
. ? 7
211.?
S2. 3
SS . T
. V)7
?i 5. S
¦'> 1. 7
5 S. ->
. 4 'I '¦»
'1 ? -5 . '1
it,i
S'l. s
. u*9
i 2 1
S 1. ?
5*. ?
. U n "!
1~ 'l. •*
i1.i
5 u. 2
. ^=>'4
^1.1
1 1. 2"*
ST. 9
. SI 2
1 11 'J.
s n. -j
S?. ?
. S1£l
1 'I H .
SO. 3
5 ? . 1
. " 1 Q
ns\
5 3. 7
5?, s
. S2S
??'!].
SO.?
S?. 2
.SIS

sn.r-
5?. ?
. s 1 -¦.
i'2\
*0. 1
ST.?
.511
v: n. 1
so.:
S?. T
.Ml

5 ¦). 'J
i"». 1
. 5^
ilii.i
SI. 3
S2. q
. 'J 9 '1
L19

-------
"> :J 0


v; Ltv-1
:-vn s^';ti
'! ^ n n L ,\ ^

1
Lr<" (V'/, 1
3?TSS (v"), n;o



7 5. '¦ 5
7 ¦ . 7 s
.in

. "*
7 1. 7 "J
T "). '1 5
. 17 7


7 1.77
7 3 . '1 7
. 7 ? J
1

71.^
77.11
. 2 37
1
. s
7 ?¦. 5 >
7 5 . "11
. 25a
"1
, 'I
7 1, 2 t
75. ti
. 2 5 !1

. "*
'. <1. J ^
7 5 . U 1
. 2u
"> 7
2
5 T. 5 1
n. ¦> 1
. 232
11

^9. 1 7
7 i , 'i 3
.2^5
'11
. 7
ST. t J
7 1.5;
.3 11
" ¦>
„ 'J
5 T . ? 1
7? . TT
. 3 31
-» »
, \
5 7.35
7 2. 7 'J
.3 5*

. 3
57. 3't
71.7 +
. 35 -j
7 1
„ s
'> 7 „ ? 1
71.31
. 3q--3
1 1
-)
6 5. '> 1
71. H 7
,u^'i
i -J

6 5. ~> '¦>
7 0.-1
.U~")
1 ^ A
, "}
5 5. i 1
71 . 2^
.1117
1 1
1
6 5. 3 3
H q _ !} ci
. !» 3 1
1 ^ 7
m "1
^.11
65.57
. a u
1T»
. 7
5 5. 12
' 15 . '4
. 'J r. u
!"»">
„ 1
55.-3
S3, qn
. a 73
1 7 t
, S
J 5. 'i 3
5^.51
t (J .n
11 ^
T
6*5. 1 ">
5 <3. on
. 5 l!i
? T
. 1
sa. 7;
i7.11
.515
"> Vl
. 7
5 
, n
fi 14 . V
65.77
.5U3
1 > 1
. 1
5 3.57
65. V)
. 573
¦m
. 5
5 3. 3?
5 5.53
. 51H
'ia ^
. 1
; 3. n
6 . <3 7
. 5 7 r>
'i i r>
. 6
53. ">1
5 U . 73
. 5 •' a
T '1 5
. 1
5?. 3 7
5 U . 7 1
. 5 5 (j
") * .?
, 1
5 2. 9 7
5 3 2
. 5'17
7T)
. 1
5 2.37
5U. 51
. 6 75
]?.()

-------
T i,'J S
' v: t ^'! r ^ *,v r i v	l r ^ \ ? n; i =¦ r" r. iv;	'i r. r>^1. \» z z a t t vi
(

I. T "< " f V 7 , r'l!
~^~ fM, nnj
17 \ T T ~>

-1 >
71.-3
7 2. r.
."Hi
¦X
3
$ n. tj
75.32
. 1 'H7
7
1
5 7. 5 l
7 u . 2 3
. 2 1 '1
1 1
5
5 5.33
7 3.15
. 2 37
1 5
s
5 .^. 11
7 2.12
. 25 1
1 1
'1
* 5.'t1
7 2 . 3 4
. ->56
2 1

* c.. 3 2
7l.7i
. 2 c. 3
~> 7
">
s r'. 7 2
7 1.53
.
3 1
T
SS.il
7 1.14
. 27 3
•n
7
5 5.15
7^.5 1
. 2<3U
=o
4
5 U. VI
71.13
. 2"')

1
5 li. 5 3
5 3.57
.3 13
^ "1
3
5 a. ¦) i
5 1. I'-i
. 309
7 "J
">
5 ¦'!. 2 1
51. "M
.331
-3 )
1
5 3. 9 2
5 -1. 5 2
. 3 30
-> 1
0
r, i. 53
1 3 . v.
. 3Uf-,
1 T 3
5
5 3. 5 3
51.15
. *Urj
1 1 3
1
5 3.15
5 7. R 2
.3 57
i 7 *
¦)
S3. 1?
57.  I
. 4 5 ¦)
c. '1 7
1
il.V.
5 5-. 2 'i
.45 1
7 "P
1
5 1.37
5 5 . ? s
. in
)?]

-------
MhASUREMEriTS
122

-------
r o


S :• i)
T M — <| -
p--rrjr
'J
1
I ~"
; 7
\ "
, * '
-- ->
- "lj
'• \



7 V
(. c
0 1)
¦3 7


,,
(
0
•
30
11
i


¦3
i
1
r. 0/3 5 0
3. u :>
3 . ^ 'j
5. 7
5.4?
. 1
7 1
n
0 7

54'i
J
2 )
2.3*
1
5 0/:)50
. 2 *
. 0 i ;i
. 5 1 0
. 0 3 9
3.
— »
3.
14 h

. 1 4


5 . / 2
1
5 0 / ¦' 5 0
. 2 9 .3
. 02 0
. 0 5 3
. 0 5 3
i.
3 3
3.
4 5

. 1 4
*j .
¦«->
3.5?

50/150
. 3 2 J
, 0 2 '4
. 7 02
. 03
3.
3 4
3.
5 5
fy
. 33
n ,
¦ ¦
11.ua
1
5 V':'. 5 0
.37 3
.032
. 7.37
. 0 ) 4
).
U

5 5

.33
5.
•« u
1 u . 3 0
1
5 3/3 5 0
. 3 -
.0 3-i
u 70
.00 1
J.
3;:
3.
5d

. 5 )

1 1
T7.1t
1
5 0/550
. u 3 'v
¦ 0 3 <¦'
. P -i 'I
. 0 1 0
3 .
3.9
3.
5 <-
¦s
.51
•') •
1 1
20. :2
1
50/35 0
.-63
. 0 5
. 0 50
.117
i.
3 0
3.
5 3
n
. i: ri
^ .
0 3
2 2.1-3
1
5 0/350
. 4 0 5
. 0 <4 0
. 9 75
.12 3
).
3°
3.
5 J
n
.'i^
.
C.3
2 5 . 7 ii
1
5'V3 5 0
. 522
.051
1.05
.14)
).
3 2
3.
¦4 7
C)
.5 7
'1 (
C 7
7 -1 . o 0
1
5 0/95 0
. 5^9
.05)
1.11
. 1 5 0
i
u /
3.
5 5
0
.0 1

(i:?
2 3. h ¦)
1
5 3/3 50
. 5 a )
. 0 n 2
1.1?
. 157
3.
2
¦' .
n 5
'1
.!i 1
f.
;i 2
2 3. 60
1
5 0 / ':) 5 C
.543
. 0 <=. 0
1.07
. I4d
).
4 3
i
54

. 3 ^
r. #
n
35.75
1
50/350
.390
.ok 3
1.23
.17.-.
3.
"•
i. .
3.
5 4
n
. 7 ~i
^.

4 2 . °0
1
5 0 / rl 5 0
.5 52
.0711
1 . 34
.204
j.
1 4
7
5 3
7
. 1 1
r

4 i1
1
5 0/350
. 722
. 0 9 3
1 . '4 4
.23 7
•»
_J •
4 ::
3.
3
7
. 1 1


5 5 . 9 1
1
50/3 5 0
. 775
. 1 0 0
i. 5 a
. 2 7,3
i.
/ 0
3 t
5 9
7
. 1 7
n •
5-?
•J J . ¦ j 6
1
50/8 5 0
. -3 3 5
.122
1. r, 7
. 3 1 0
3.
-> r.
3.
5^
7
. 1 7
r->,
9
7 1.07
1
5 0 /8 5 0
..3 7.)
.135
1.5 9
. 3 2 5
3.
5C
3.
3
A
.75
6 .
2^:
7 3.22
1
50/.) 5 0
. 0 2 J
.15^
1 . "70
. 3 3 G
T
2 7
3.
5 '3
r\

c>.
J -»
.1 5.0 11
1
5 0 / (5 5 0
. ?6 9
. 1 7 U
1.71
.35 0
J
J •
3 2
3.
bO

, 4 r1
5 •
10
3.0-1
1
50/!) 50
1.02
.105
1.31
. 33 4
3.
j 0
3.
6 1
5
. ;-0
6.
1 7
1 0 7 . '4













12 1.7
1
50/)50
1.2)
. 2 f. t-
2. 2 3
.54 5
).
- 3
11
s 2

. ^7
c%
3 )
1 37. 1
1
5 0/350
1. 32
.311
2. ) 7
.*15
3.
1 5
3.
.. 1
5
v) M
*>.
3 ii
15 1.4
1
50/o 5 0
1.41
.3^5
2.5 3
. 7 0 n
7
J %
:i G
3.
7 1
<
• '3 1

3
1 7 (i. .3
1
5 0 /:) 5 0
1.3 3
. 14 1 i-
2. 74
.79 7
).
10
3.
'1 7
5
. 5 0
6.
35
1 95. 8
¦j
ri j/'i 5 0
1. -5 11
. 4 5 3
? . 3
.011
3.
¦4 2
3.
5 9

. 'i 1

4
22u. t
i
50/5 50
1 31.
1 • J ~
.597
3.3)
1.11
J •
j ?
"J
5 9
¦>
.1

^ ,>
2 5 3. 5
1
50/8 50
2. 0 3
. 7 Of.
3. 57
1. 2 f-.
!.
5 1
¦J
7 1
1
, n

•i i
2)2.1
1
50/,) 50
2. 24
. 3 )'>
'4.01
1.51
')
4'>
3.
5 3
7
. 1 'i

c 2
! 1 7. i
1
50/H50
2. 4_>
.57 3
U. H
1. *5
3.
)^
3.
47

• 1 f*
.
T' ">
35 3. 6
1
50/-) 5.j
2.53
1.15
4 . 74
1 . 'i 7
3.
4 1
?
j •
5

i:» ^
m •
3 {,
* 1 0 . 3
1
5 0/ H 5 0
3. C 7
1, 'i y
5. 3ci
2.42
)
j •
. 1
. •
> r-
—»
.
6.
} >-
<¦32.3
1
"j 0 / 3 5 0
3.5 0
1 . !!'.
5 . 14
2.'17
K
'! 3
1
a a

. ,J '*
S •
21
5 r 3 . -3
1
50/.) 5 0
a. 10
2.2 7
¦S . ^

3 •
n
3.
:
¦S
• V-
»».
'•) }
"2?. !
1
50/<50
a. 6 7
2. 7->
7. 02
'4 . 2 a
3.
4 2
3.
^ -i
"7
. J

7 J
7)2. -S
1
5 VH5 0
5. •* 'i
3. '4 0
2 0.5
5. M
3 ¦
4 5


7
• 'i
7 .
;
7 3 2. i's
1
f 0/550
3. 77
2. 3 .•)
5. 7 <4
3 .') 3
J.
4 5
*
ri ^
/
.
7 #
) i
1^3

-------

71.1 KAo
) ^ J w ~ '!
r
'i r
¦ i „
,
31 LT/'J
1.
{'*
/I
¦V7'.<)


P ¦!
:;.v>!
Vj
v' "
-j . 1
:?"j

)
i.
'T
p



1' J / L.)

P V

1 . 0
3 !;
i)
3 V

3:i

,r
(
3
' T
0 1)
37
3;i
DO .00
1 15 0 / '-J 5 0
.33.:

022
55
#
0 2 2
3.
3 3
3.
15
5. 1 7
4 . iJ
1.0 2
1 15 0/3 5 3
, a i u
.
0,4 3
¦') 1 2

0 3')
3.
3 3
i _
15
5.17
4 , ;i 4
5.04
1 150/35 J
.+50
•
05 3
¦5 5 1
,
0 5 7
i
J .1
'j
15
5.17
a , •') 'i
P.Cn
1 15 0/::! 50
. 4 9 3
.
07 i
7 (.j
.
1 3 3
3.
33
3 4
1 5
5, 17
4 . ¦!
1 2.0"i
1 15 9/350
.510
.
0,7 3
7 'JO
.
34 5
3.
4 2
3,
2 0,
4.01
4 . :¦ 0
15.10
1 1 5 J / 3 5 0
. 5 5"!
.
0,3 i
32 3

100
3.
3 7
3.
2 ?
4 . 3
4.52
1:3.1 2
1 150/;35j
.57 1
.
Crt-'
37 3
.
11 )
.>.
"J'J
3.
2 5
. -1 )
4.51
2 1 . 1 <4
115 0 /'j 5 0
.53'/
,
0 0 1
y rt 7

1 2 3
3.
4 2
3.
2 2
5.23
4 . "» 3
2^.15
1 15 0/5 50
. c 2 '¦!
.
10't
¦i 5 2
,
12 3
3.
3 2
5.
? ¦"»
4 . 5 4
4.34
27.11
1150/350
. 3 5
.
1 1 7
. 0 1
.
1 h li
3.
3-i
3.
?
4.-37
<4.52
10. 20
1 1 5 0 / 3 5 0
. 5 3 '4
.
124
0 2
.
17.;
3.
r, 4
3.
3 5
5 . 3 5
4.31
3 3.22
1 150/353
.on
.
1 2 r'
. 0 1
1
.72
3.
4 ;i
3.
i
5. n
'4.72
3 6 . 2'*
1153/3 5 3
. 7 io
.
1 7
01' 6
.
175
3.
"3 i.
3.
2 '3
4.27
J.HI
10 . 2 S
1 15 0/5 5 0
.753
.
1 5 ?
. 0 1
.
1 1 !
3 .
¦ i fi
1
J i
2 5
5.00
4.52
<4 2.20
1 150/550
.75 3
.
1 5n
. 0 1

1 t 7
3.

3.
3 1
4.04
U . 4 3
-15.30
115 0/550
.73*
.
1 n v.
. i 1
.
T 1 ^
3.
1
3.
3 U
5.3 1
4.7;
4 3,32
1 15 0/850
. S3 0 7
.
17 3
f.
• .. ¦ ;
.
2 3 0
3.
"> (i
3
3.3
5 . 3 i
4 . n 0
3 1. J4
1150/35 0
. .3 2 0
.
1 7S
. 13
.
23 1
3.
; -
3.
" '"J
5.2 5
4,7 J
-'i. 3-i
1 150/ 350
. 3 '4 0
.
1 -3 2
. 17
.
2 3 1
3.
(i
3.
2 1
5. u')
a. 1
5 7 . 3 3
1150/3^0
. 3 "t 0
„
178
. 1*
->
. ? 0
3.
5 2
3,
32
5. 1 3
4 . '¦ 5
5 0 . -4 0
1 15 0/-3 5 0
,35 1

1 3 1
> >
7
. 'i 1
3 .
4 9
3.
4 1
. 'i 1
5. 0 5
5 J . 4 7
1 15 0/35 0
.17'}
.
1 5 o
. 3 1
.
.Mo
3 .
;o
j i
50.
5.37
5.05
1 29.0
1 150/5 5 0
.30 3
.
IS a
. 3 3
.
2 7 1
3.
j '/
3.
3 !
5.4-)
5 : i
¦> 9 . 4 n
1 150/P. 5 3
.31)
.
1Gt">
, 2't
.
2 4 f3
3.
t' b
3.
4 5
5 . 3
5. "i •'»
7 2 . 4 3
1 150/3 50
.013
.
1 36
. 10
.
2 3 4
3.
57
T
•
30
=.. 5 i
5.0 3
7 2 . 4 -J
115 0/3 5 3
.013
.
1 3 fi
. T1
.
2 3 4-
3.
^ '
7
3 9
5 ,5 '<
5. 0 i
7 5.50
1 1 50/3 50
.032
.
104
. 2S
.
25 2
3.
5 b
T
J •
3 5
5.4'i
4.02
73.52
1150/350
.047

101
. 3 0
.
2 '>
3.
7 0
j p
'4.3
=..
5. 2 o
:30 . 39
1 7 50/3 5 J
."'33
.
207
. 3a
.
27 7
3.
¦3 5
n
i /
5 . •) 1
5 . 11 '4
a '> . o 4
1150/350
1.03
.
2 1 a
. 4 o
.
3 1 1
3 .
5 5
i.
- t
¦i . 0 1
5.4 4
1 }<4.6
II"# 0 / 3 0
.052

(00
0 '> n
,
300
"j.
5 7

; i
5.71
5. I j
112.6
1 150/35 0
1.13
.
2 3 5
. 50
•
3ii 2
! ,
5 7
3,
3 1
5. 5 0
S. C 0
12 0.0
1150/3 5 0
1.15
.
2 53
. 5 3
•
14C-,
3.
4 2
3.
30
4 . 3 3
4 . 4
127. J
115 0/350
1.15
.
2 52
. 5'i
•
3 * ,2
j
5 4
3.
j'i
5.37
4 . O j
M5.r)
115 0/350
1. 13
.
2li 0
. <5 3
,
3 37
> .
11 -1
7
30
5 . 3 3
4 . :l
14 2. ¦{
1 150/ 3 5 3
1.21
.
2 7 '!
. 57

.37 0
l ^
5 /
3.

5.14
4 . u 2
1 j 1. 5
17 50/350
1.2 7
,
.10*
. 7 0
,
-"2 7
3 .
5 ;
J.
3 2
5.1'.
4 . r 2
1 5 6 . 3
1150/3 5 0
1.32
,
3 30
. .3 2

4 7 5
3 .
5 t
3.
3 5
5 . 3 3
U . ¦} 0
1 3 2 . 3
1 150/3 0'.:
1.'4 0
,
3 5 5
. i
„
:• 1 7
3.
r'.
3.
4 2
5.3 i
5. ? J
TiJ. 1
I 150/350
1.5 1
.
a 11
, 14

1 1
J.
5 1
T
u 5
5. 2'J
!|. 
-------

:>; i z a
s u~ •-!
i? 0 "
K ; ; I' ^
; r l:v; l \
' 1
'* /'?
V7




c o :i -.
¦¦>«j<
¦j ZD
I 1E N 7
.5 ? ™" r J '3
v . t O 1
•is
; 7 —
1 V


¦j
. T u'
;1 ' 1
¦',0/^1


(v.O
0 1)


(
'C. 0
0 1)




?. 1
T)!i
J 7
•jw
iV
fl
'!

V


3.32
150/350
.551
. 1 5 )
.3 37
.0'.r> 3
2 ''3
3.
1 J

5 >
2.
'1 3
u . ou
15*3/55')
. 5 3 5
.17?!
. 'J 0 .3
. 0"> 5 !
>
?.
1 3

&

!- )
9.05
153/3 5'.)
. r> 2 2
.17'.
.4 05
. 37 2 1
i c
—' #
1 3

3 3
'3
1 5
1 2. 3.3
15 "/-J5 0
.5 20
.172
. a 3 1
. 0 30 3
I i
J
1 2

a 2
2.
1 7
15.
15C/3 '3D
. 5 5 '3
.170
. '4 il 7
. 0 3 2 3
'} \

11

a ~>
2
1 7
13.12
1 50 /:J 51-
.562
. 1 6 o
. in
.01)
U 1
»' «
1 2

5 •;
2.
a 0
2 1. 1 il
15 0/33?
.571
..165
. 3 5 3
. 0 '5 2 3
1 1:
¦J *
0 7

3 >
1.
5 3
2 '4. 1 G
1 5 3 ,"3 5 0
.535
.15 5
. 3:3 o
,05 5 3
1 a

J 7

3 2
1.
5
17.14
150/3 5 0
. 5 .3 3
. 1 'J 3
. 2 5 6
.03 1 5
4 0

35

5 3
1 .
a 4
27. 18
1-33/350
. £ 3 2
. I'll
. 2 fi :3
. 0 i 5 3
37

23

7r;
1.
5 9
3 0.23
15 0/35 0
.554
. 1 a >
. 2 9'.
.017 2
uQ

2.3

7
1.
j '.1
3 3.22
150/350
.7 33
. 1 j
. 3 313
. 0 !i .3 )
3 'l

19

3 1
1.
C 1
36. 2;;
150/550
.735
.15 1
. 3 3 '4
. 3 J 7 3
JO

19

d 1
1.
r-1
4 4. 3 9
15C/3 30
.755
. i b 3
.359
.060 3
j

19

'3 1
1.
1, 1
5 1.94
15 3/ -3 5 J
.793
. 1 7 (
. J 90
. 0 5 7 3
.1

2 0

3 3
1.
5 2
53.UO
15 0/ '3 5 0
. 3 5 j
.no
.4 11
.330 i
"i 5

2 0

3 0
1.
a ¦,
>< t
5 3. 7 1
15 3 / -I 5.3
.3 77
.19 1
. 4 2.3
. 0 7 '3 j
2 0

2 a

3 7
1.
7 1
7"7. If,
15 0/350
. 9 2.3
.201
.i53
.3^7 j
Jo

24

¦3 a
1.

3 5 .'4 7
15 3/l3 5 0
.-390
.22 2
„ 4 7 '1
. O'U 3
J fj

2-(

;i a
1.

9 1.9 2
150/553
1.32
.227
. a73
.39 1 3
u i.

2 4

j
1.
'S 3
1 2a. 7
15 3/350
1.23
.30:
. 5 9 'I
. 1 a 3 3
111

20

3 1
1.
f'i rS
135.7
150/3 5 3
1. 35
. 37 1
. 5 u a
.17 5 3
T '•

29

3 3
1.
:>7
1 :J6. 5
150/3 5 3
1. 5 1
. U 5 1
. 5 97
. 207 j
2 9

2)

8 3
1.
r, 7
2 17.0
15 0 /15 5 3
1.5'
. 5 'I 2
. 7 5a
. 2 a 0 i
! 3

22

S7
1.
'3 j}
? 4 7 , 5
13 3/353
i. a 1
.624
. '3 3 3
. 30 3 3
i 2
¦)
j •
19

7 9
1.
6 7
277.7
150/3 5 3
1 . 95
.711
.r; o 5
. i 2 3 3
! G
3.
") >

3 3
1.
/• -
1 ">
3 0 :5. 5
150/353
2.14
. 32 3
. 9 ? a
.37 5 1
26
3 •
2 2

3 3
1.
•">
3 J H . a
150/3 50
2. 25
. 9 1
1.01
. ) 9 3 3
5
3.
25

3 5
1.
0 ^
4 3 7.1
1 5 3 / 3 5 3
2. ¦"> 3
1.17
1. 35
. 53 J 3
i 1
•>
j »
0 5

w'
i
H 7
'j -n. i
150/353
2. 99
1 .47
1 . 40
.5-a'- J
i 5
3.
20

' 3
1.
7 a
5 52. 1
15 3/35 3
3. 27
1. 6 9
1 . 59
. 7 9 3
2 3
3.
16

3 3
1.
"1 a
•:> 2 5.
15 0/353
3.55
2.0 1
< . 76
.U2 i
1C
3.
1 J
1
l> 7
1.
7 5
7 7 3,3
150/3 50
•1.23
2.5 a
2. m
1.11 3

3.
2 2

1 2
1.
a ,
826.1
15 0/953
5.35
3.!. a
2.51
1. a 3 j
Jo
3.
1 2
T
1 a
1.
9 3
!?•-,

-------

0 \ -1 >1 L
ao ;' ¦;

V 0

; t 7
l> i;¦

1 / 10)




c n;; 'j.
PI r
S "!)
— M
i.
Z'JT
l :
7U3
'• w)
A L ' r
1» »
i

-
r n
i " !«





j 0 1)


(¦:. c
'j
)




:<7


¦
V
^ ::
/
3 J

i;


- . 52
1 1^0/700
. 1 d7

0 1 1
i.
7 r;
.15 5
. j 7 r.
. ; 1 2
p
D t

>> ¦%
¦-). 0 n
1 i o ;> / 7 o o
. 2 a 2

0 1 a
i.
')
.212
. 12 ">
.an
?
'il
•>
'T "•
1 i . 0 i
1 ISO '700
.3 27

J 2 3
•

.351
. a ?
. a 1 l

^ 1
')
f. *>
27. 12
1 1 5 0 / 7 0 j
. 3 >"> 1
,
0 3 5
2.
37
. « 2 0
.. ; )
. a o s
2
s


3 3.00
1 1:>C '7 0')
. a 2a
4
0 S 7
»_ *
1'J
.551
. '• 2 3
. a 0 5
?
.. -
;
: 5
S a . 2 -»
1 1 o 0 / 7 0 0
.¦17;'

0 f. 0

o 7
. (¦ 5 5
. a l
. a l 5
2
n n
2
3
7 . 1 :¦
1 15 0/7 00
« 5 j 3
¦» %
0 07
3.
33
. -37 1
. a b 1
.an
'I


> 'j
m. 7
1 1 S "5 / 7 0 0
. 5 "n

1.!
3.
01
1. 1 a
• r* "
.an
•)
•S i
2

12-1.1
1 15 J/7 0 0
. 7 3 0
#
1
a.
1 2
1.20
. as 1
.an
2
:
2
c •
1 C> 9 . 5
1 "10 0/70 0
.5'))

1 3 :
!
2 5
1,0a
. a a C
. a 17
•y
^ *)
2
1
U5.5
1 10 0/7jj
. 5 57

i r> 3
1.
U6
1. 1
. ; 3 5
. a iC
)
'I r'»
>
3 2
2 3''. 1
1 no/7oo
. 3a i

2 5 5
'¦I .
3 3
1. 7 a
. a 1
. a 10.

•; r»

\
3 q.i
1 100/7 0 0
.053

3 a :J
¦'1 .
1
.7. 1 a
. » : 1
. a 3 3
p
¦J 7
~>
") J
4:2.;
1 0 "j 0 / 7 00
.732

28 6
J .
'5 5
1.71
. a 2 j
.330

35
2
n
:¦ . 5. 0
105 0/700
.903

•i "l "i
-* 4
U .
!i >
2.3 0
. M
. t0c'
')


3 1
'•73.3
1 0 50/7 CO
1 . 0 ft

:i a
5 •
"> 3
2.37
. -i a 7
. a -i ;j
-
ij S
>
: 3
1} J. 3
1050/7 00
1.2-1

•> ''¦»
5.
¦' <4
1 1
J • ~ >
. J «
. a 25

3a

..
1 1 30.
1050/7 00
1. J
1
.03
7.
1 7
a. 3
. a a 7
. a 1 -i
2
3 ;
2

1 3 5-5.
105C/7 0 0
1.71
1
. 1 1
,
5
5.0 5
. .0 1
. a a i
2
; 1
2
" ;
1 5 <32.
1000/700
1.10

i«7
r;
•
5 2
3. l-\
. . 5

t
j 7

2 7
1 3 0 3.
1000/700
1. 5 j
1
. 1 2
5 •
5 a
a. s i
/
. -i 2 2
>
L.
3 7
->
T
/ /
2 3 3 u.
1000//00
1. 5 a
1
7 T
£.
7'1
a.0 5
. if-, 0
. 4 i::
2
J
2

2260.
1000/7 00
i. :> 2
1
. 3 3
7.
i", 1
5. 5 i
. 15 0
. -4
•>

n
) f-S
25
-------


¦ \ "i \
J
' J " *
r
'ITT
\ ;
" ]
; - r>






r >::c.
~> ¦ T*
o r

>!. *' '
7
r! r i:n
*
ft
i t i-
;
•
" T

- T* i





(" •"
o
u



(
t





D'l

; i;

't
?> ;l

.3 '
->
1
r:
\r

\
: o. 0'-;
1 15 !/."oD
.15'!

co:

'1»-i
. 0 2 1
.1
1.3
3.
" i
— t
^ ~
"? ¦'
Tj

3. ¦ 5
1
. 2 h
•
0 1'»

1 5
. 0 7 -S
)
) 1
3.
15
5 .
3 3

,"3 ^
n. j 2
1 1 5'1/,3 '3 O
. J > 3
•
02 1

7
. 12:

' i 1
3.
1 r,
i
r> .
3 !

14
1 5 . -3
1 150/4=0
. 372

Vi :

7'!')
. i •>
i
1 -1
3 .
'I 1
'i •
) 3

f
22.
1 15 )/3 5 0
. 4 4 0

0 5 5

1 !.-3
.13 3
.)
2 <1
3.
!J U
5 .
? !1

..
i. VI
1 1 50/.-3 5 o
. u a '3
,
0* 2

3 0 -5
.115
)
2-t
i .
J 7
- #

r:
: -
: 3. in
1 15 0/:? 5 0
. 1
•
3 'J

'! 1 O
.13 1
J
¦¦ 'i
3.
5 3

15
r,
l 2
3 i.
113 ;/35 3
. -J -! n

37 1

'j 1 '•>
. J 1 -
\
2 l_l
1.
5 3

1 5
r,
7 2
3 1. r, I
1 15'"/450
.515
•
0 a 2
1
. 0 3
. i:~>
-»
J
a 2
3.
5 5
""j .
<5

3'?
J 5. 2-1
1 1 5 r> /,3 5 o
. 5 5 2
a
0C 1
l
. 12
.25
J
y 2
3.
5 3

¦' 5

i 7
i'). 0 i
1 150/3-30
, 5 f; 5
•
0 5
1
. 1 •!
. o 0
1
-i 1
3.
0

r'5


5 5. - 0
1 1 3V:15 0
. 5 in

1 0 1
1
. 12
.277
:
•
3.
¦s 5
»;
O-?

3
5 " . 6 0
1 1 "ii." /!3 5 0
. 
1
<
. 1 3
. 3 •<

:i '1
3.
\u
.
3 0
5
'• 3
7 1.}'')
1 15 0/>i 30
. 5 5 3

1 3 3
1
I

. 3 2-
>
4 0
3.
5u

1 -3
-
"7 J
3 7 . -i 5
1 150/3 50
.70-)

1 !* C
l
. '41
.37 7
)
II .J*
.3.
5 0

-> 5
S
1 '}
10 1.
1 150/350
. 7 3
,
15 ?
1
. '4 '«
.HI )

'l j
3.
¦Jb

3 2
-
1 "l
115.7
1 13
. 7 -j 1

1 5 :
1
. 5')
• -* '*

U )
3.
'i 5


=,
> •
1 .3 1. .3
1 150/J5 0
.332

nr,
i 2
1
. 5 2
. ;i 7:
J
4
i.
50

>; i

\ n
1 3 1.3
1 150/ ! 5;)
. ;1G 3
#
2C "
1
. 75
. ;-'i i
;
2 -5
3.
"i _>

7 1
it
) ::
1 i">.S
1 r)')/>15 0
. <1 1 1

2 1 7
1
" ii
. 5 7 o
1
1 3
.3.
4 0

j =;
z.
4 3
1 5
1 1". 0/-'o0
. 9 .3 7
•
2 26
1
. 37
(5
3
3
3.
'¦ -3

2 5

1 3
17j. 1
1 15V3 5 0
. 0 o 0
A
2 3 a
1
M 1
» ' w
• rS (5 2

5 3
3.
5 5

0 3

T:
1^7.1
1 1SJ/350
. '-9 l
„
2 11 n
")
. 3 1
.5 15

5 5
3,
5 5

0 3

I r)
2 0 3. .2
1 15 V5 5 0
1.03

2 ft 0

. 07
• "3
j
5 2
'l.
'i 7

1 1
r
7 J
20 3. ?
1 lr>0/ii5:
1 . 1 0

30 3

. 1 V
. 70
i
3 1
3.
5 7
7.
»*\ ->
'5
7 4
2 11.2
1 V, 0/350
1.17
*
.3 .3 r-

. 31
.•330
;
•¦iO
1.
5 2
7 .
1 ^


2 ° . 5
1 150/^50
1.2 3

3 •' 0

. 'i2
. 2 1 5
;
i r
3.
5:3
7 .
'0
•S
'l
2 -J * . 0
1 1 5 0 /P. 5 0
1.23

3" a
•)

. °2 2
5
¦ i*
~ V
J ¦
50
7
1 -3

^ 1
3 1 5. r-
1 150/;350
1.32
.
3 c; 7

. -0
Tl 7
;
ii o
3.
5 '1
7.
li;

1
J - 7 . '3
1 15.1/'3 3 0
1. 3 -•

7 5
3 4 7. J
1 150/'-! 5 0
1.3 1

.17°

. 5 5
.112 7
>
*
21.
j _
5 1
-I
•
10

¦< 5
M 1 7. a
1 15 0/45 0
1.51
,
'I t)u

. 12
1. 1 ¦!
>
U )
J #
f. 1
7 .
j:
•i
i
'i d H. 2
1 150/3 30
1 . 5'/

j (1 #-
J
, 32
1. 'i 0
j
'» 3
3.
5 1
7 #
3 2
'3
• 3
' 6 0 . 3
1 1 50/<3 5 0
1. ;«.!

l?.1)
.1
. 5 11
1.5'?
\
a 'i
3.
:i2
7
> 1
{¦>
1 >
5-50. .3
1 150/.-I5 0
2.0 5

•3-0
3
. "5
1.-17
)
'.i o
:i.
5 2
7
(7
p)
- 3
r> 'i 0. 3
1 1 5 0 Ai 5 0
2. 0.3

3 2 0
]
. :3 2
1. ™
j
7
3.
5°
"7 .
0 3
r
i X
3 '1 3 . 1
' 150/.j5 0
2.1'

q 'i u
»•
. 00
1.01
>
U ''
3.
'' 3

-i 2
•5
"'5
7 3'"'. 1
1 15 0/.0 5 0
2. 3 5
1
1
. 0 3

. .i 3
1. '0

; 7
J.
?u
7.
¦>

"7
'375. 5
1 1 'iO/h 5 0
2.75
1
. 3 5
5
. 00
s. • J -
i
ii U
)
7!l

3 1
n
7
3 7 1.',
1 1.30/3 50
2. 6.3
1
. 3 1
-
. 11 2
2.57

i ,*>
3.
f,r-
" .
"t >
; __
T
-! 3
n 1 3.
1 150/>3 5 0
2 . (i 1
1
. 3"

. 10
2. 3

i:i
3.
5 2
7.
5 1


12 2 5.
1150/i50
3. '31
2
. n
'**
. :'7
a. :i 1
;

i
5
"7 •
.3 0

1 5
1 !i 37 .
1 1 riO /il 5 0
3. f i 5

r
• »/ -

. rtri
.3.76
.i
• U i>
J ,
7 5

3
1
0 3
127

-------

a : u .
\
0 r ¦¦

3 I
L7
. ;
1

L
C!)


oc'io.
r •! r
" 0
1 ;j. :: ¦::

" ^ i;
'¦">

. r -
? " 1 ;

" T
•"7
1
> / L)

.j ?r
(Y.
»l!
2 0
i)
jV
5 •'


( *' • 0
•-> ;
¦1
M
3 V


3
1 00 0/7-30
.3 15
.011

120
. 0 5 -!
. 7
->
. ~ ':7
')
. n 5
a
J
1 - .
10'~0/7 5 3
. 3 JO

t
1 to
. 5 0 1
. ;
L,
. •) 7 3
• J
. "7 2
11
n >
/_ 'j
2 ¦'!. -i
1 0.3 0/7 30
. 5 '¦>
. 1 '1 'j

. 50
, 7 v)
7
5
. T0q
(1
. 3 '

r. )
:i 11 . 1
1000/75 0
. 5 5 j
.231
)



u
. - '? )
3
^ -1
• C. •
=
1 1
5-3.2
1000/750
. 5 5 6
.311

. 1 3
1. 2 0
r 7
'1
.3

. 2 7
1
1
->u.n
1000/750
.75 3
. J m
>
'i '*
1 . 3 r<
7

. 5 '> 2

^ >
n
l >
i: a. i
1 00 } / 7 5 0
. ¦:> u >i
. ar- )

. 1 1
1 . 5 U
7

.'¦>3 2

. 2 3
r.
i \
s ¦.'.
1 000/750
1.0 r
. >or.

2 . 1
1 . 11
„ 7
3
. ¦'"
5
. 2 5
i

1 a.
1 0",,ri / 7 10
1.1"'
. 15
¦;
• :¦»
1. '-J
/
j
. *

"> "J
..
j 1
T-!5.
10 3 0/750
1.35
. 02:
fi
. 75
2.2 1
. 7
¦3
. '< 1

. ^2


1 -i 8.
1 CO 0/7 5 0
1. 5 -t
1.10
a
. 01
2. 'I 1
7
s
. 5 '' 1
r-)

ii
i *l
2? 2.
1 0O 0/7 5 0
¦1. -i a
1 . <-10

. a->
2 . 7 u
1
7
.715
'l
. S7

r. ti
2') .
100 0/7 50
2. 0 '3
1. Ml
5
• 'j ">
2. lM
1
<
.7 1.'-,
u
. ¦' 7

" 'i
'i07.
1 OC 0/750
uo
1. -1
3
. -15
3 .0 -i
7
1
. 70 7
1
.35

1 ')
5 " 5 r
1 no 5/750
2. 6 1
2. 0
h,
. ? 1
3.3 0
7
7
. 7 0 7

.
5
1
70 3.
1 ?0J/7 5 0
2.9 2
'2.3'


3. " 2
7
*>
.3 '-1

3 "•¦
5
1
>'U u.
1 0 '1 0/75 0
3. 0 2
2 . 5 2
r->.
•
3 . 'i - ¦
*»
/
•>
. 7 j j
rx
. T7

'J 1
0 5 2.
1000/750
3. 1 5
2. 1
3
. 1 7
3 . -1 1
;

. 7 3 a
5
. 7n

- 3
1110.
10°J/750
3.2 5
2. 7 .1
(S
• ^ ^
i. 5 1
7
5
. 7 JU

. 7 0
r
c 3
1 2 ? 5 .
10 0 0/750
3. .U
2. 7
->
. 3.-3
i. 'i 0
7
•:
.74..
t;
. 2 1
n
"
1 y-io.
100 0/7 50
3. 3.3
2. « 5
'¦>
. '1 5
3. u 5
7
1
. 7 a u
J
. 2 '
M
1 5
1 > 5 0 .
100 0/750
3.15
Z. '¦ 3
0
. 3 'I
3. a 0
>

.77 H
>
. 'i «

3')
2 2 20.
100 0/7 5 0
3. 5 3
2.10
r>
.
3. i. i
7
M
.7 7 £i
"
.3
5
i »
2 2 20 .
"30/75"
2. U
1 . ?
U
. 3 1
2.20

"7
/
. 5 1
r)
. 3 5
u
¦'¦'i
2223 .
'10 0/7 50
1 . 52
1.31

. 7U
1. a J
' •
37
7.---1

. 3 -i

"1

-------


?. \
V T1
\ .3 u 0
r •<""
o7 i\r.:>






"0 TJ.
?:! r
!¦>
>; ^
V. . .
ru
.? \' ;5
i. i r r
p
-\ !'

7
D j"


'j
1
i . o
0 1)
3 il
i»
(
73
fi
A 0
i -j
1)
DV
• j
3.0 0
1 o0/:<50
« 4
3!.i
. 0 7 5
. -5 1 ^
. 3 7 0
3.2a
3.
2 1
5
• 21
5.0 4
3. o fi
i i5o/-no
.332
,253
1. 25
.259
i. 1 9
3.
2 fi
cr;
. U 1
5. J fi
7.32
1 150/?5 0
1.
2 3
. 3 a 1
1. 51
. 3 M
J . 19
3.
2 fi
r>
. 'i 1
5.0 fi
10.9 3
1 150/J 5 0
1.
u 1
. a 3 a
1.7 7
. -i .3 "i
3.19
3.
2 K
s
. !| 1
5. 0 fi
1 '1 . t 4
115 0/350
I.
- •
^ J
.523
1.96
.493
3.13
3.
1 fi
3
. ^
5.21
13.30
1 130/P. 5 0
1 .
7 5
. 5 0 1
2.11
.57 4
> . 1 i
3.
11

«, ") 3
5.21
2i, n fi
1 150/!: 5 3
1 .
<3 '4
.70 1
2.3 2
. fi 5 5
3 . 1 .3
3.
1 fi
r)
.S--T
5.2 1
2 5.62
1 150/3 50
p m
or
.77 1
2. -5
. >09
3.17
3.
21
o
. *
5.33
2?. 2.1
1 15 3/3 5 0
")
11
. 3 3 a
2. fi 2
. 7 8 5
i. 17
3.
"> -1
•_>
.OU
5. .3 3
3 2.9 4
115 0/3 50
2.
2 3
.395
2.53
.79 7
J. 17
3.
2 1
6
. DU
5. 3 3
3 6.50
1150/35 0

3'3
.9 7 a
2.73
.343
3 . 2 -
3 .
23
6

5. ¦-> 2
a 5. 7 5
1150/350
"»
7 1
1.1?
3.21
1 . 0 a
3 ^
3.
3 0
5
,11
5.57
5 4.90
1150/350
1 #
97
1.35
3 . 3 3
1.13
1.15
3.
3a
n
.0 1
5.1
fi 4 , 0 5
1 150/35 J
3.
13
1.50
3. a 5
1.20
2 . 2 5
3.
3 9
T
.:,r>
5. « 5
7 3.20
1 1 5 O/ii 5 0
3.
a 1
1 . 7 C
3. fi 5
1.3 2
3. 2 fi
3.
39
h

5. '">5
3 1.50
1 150/350
3.
9 1
2.09
a. 10
1. 5
3.11
3.
3 3
5
. r;
5.70
130.7
115 0/350
'4 .
03
2.23
M
1.62
3.14
3.
3 6

. 1 4
5. 9 3
10?. .3
1 150/350
a.
3 4
2. a 2
a. 3 5
1 . fi i
3.16
3.
3 2
G
. 3 ^
5.13
119.0
1 1 50/ (3 5 0
4.
o 5
M
a. fi i
1 . fi ;i
3. 1 .fi
3 .
32
•S
. 3 'J
6.13
12-3.1
1 150/350
u .
75
2.76
a. 5 5
1. ¦) a
3.20
3.
3 0
j
• J ^
5.99
15 5. fi
1300/350
5.
2 2
3. 1 3
a. .5 0
2.0 1
3, 13
3.
30

.25
6.10
1 -5 a . 7
115 0/350
D ¦
53
J . 5 0
5.04
2.14
1. 2
3.
2 7
o
. 2 1
5.0 5
1 -3 .1. 0
1 150/350
6.
3 0
3. Q 1
5.23
2.32
i.2 3
3.
27

. 2 1
fi. 0 5
20 1. 3
1 150/350
r» ,
37
a. 2 'i
5.50
2.44
3 . 2 5
3.
.3 2
0
. 3 5
o» 0 2
2 2 3. 3
1 150/35 0
6.
95
a. 3a
5.^5
2. fi 0
3.2 0
3.
3 5
K
. 1 1
fi.-'M
2 5 5. 2
1150/350
7.
4-3
5. 30
5. 3 6
2.7 1
3.2 2
3.
32
0
. 10
5.30
2 5 3.7
1 150/3 5 0
' •
6 9
5. 77
05
2.34
3.24
2 r
2 3

.03
5.7,
3 20 . 3
1 1 5 O/'i 5 3
d.
-t '1
6.33
6. 25
3.0 3
1.2 c
3.
26

. 9 3
5.75
3 5 6. 9
1150/350
31
. 0
6. H 5
7. 05
3.4 1
3.3:'
">
_/ ¦
2 7
*
. 35
b. 1 0
393.5
1 1 30/3 50
3.
3 3
6.44
6.36
3.12
3 . 3 R
J •
2 9
n
.7 1
6.45
J29

-------

a «
• -1 :> n v
7 :> r\
¦•'! i
i¦- ( •"
* J t" x

' 7 ¦ • 7 ')
. -
¦)':

j r:-:.
;i m r
r; j ? i

• " T
...


'n T
\ T * 'i
<;?. t
it
r:ru ?m
! ->/L)



{¦'. 0
0 1)



n.
00 1)



T ,,r

'' •!
IV
;i
'• J

•v;

\r
3:1
v), r ¦"
1 IOC.'TV'
• ") ') ')

2 3 2
7 . 'i 7
.711
. 7 1

. 5 '1
0 .
0 3
5. 77
7 1.1-
1 1 ^ 0 / 7 r, '1
. 5 0

2 1
3 . , "> 5'
1.15

7 07
5.3*
2.25
~
•"j
.75 1
5.
33
5.0 5
¦ii ?. ^
1 1 00 . 7" •;
1. 3 5

3 5
1.71
2.11
„ 7 fi
1
.73 5
5.
10
5. >3 2
" »¦¦!. 3
7 r. ) / 7 ri ^
,nf

1 'V;
.552
. .!•' 1
. 7 5
3
.735
5 ,
10
5. ¦! 2
7 !'» . 0
1 1 0 ") / 7 r- 0
1.7 1
1
1 i
-'.32
2.04
. 7'j
.j
. 7 7^
5.
5'i
•S. 2 a
130.)
1 100/ 7riC>
i. -n
1
.
n . 5 !l
3.10
.!'•
o
.77'3
6.
5U
5. 2 >1
1 I'M .
1 10 0/7" 0
2. 0 1
1
. U'l
b. 0<">
3. U !
. 77

.75 0
5.
15
5.85
1 l"1 .
11^0/750
7.14
1
. 5'»
7. 25
1.51
.77

. 75 'J
5.
15
5. '25
11'-, ¦).
1 1fi;V7V,
2.13
1
. 5 2
^,'M
3. "5
. 77

. 75 1
5.
U5
6.13
vn\
1 10 0/750
2.2 1
1
< ' ^ '"J
7.13
3.52
.77
7
.75 1
:5.
12
5. 3ft

1 i 00/7f,n
¦\ IS
1
7 r
7. 20
3. 5 3
. 77
0
. 752
i;
3 3
.5 58
jiTi,
1 1 r 0 / 7 r-. 0
2. u 2
1
.
7 . ") 2
3. 5 3
. 77

. 75 2
. ")
n 3
.55.3
5 2 fn.
1 10 3/7^
?. £IU
1
. 70
7 . 4
1.55
. 77
*>
. inf,
5.
05
5.73
n 1 nO ,
i T"'0/7--,o
2.5 3
1
. fn
7. .3-3
J. 7 3
.77
£
.7^6
5.
0 5
5. 73
J 30

-------


3 \ .1 i l: \
5) ¦? -
"• ;
¦
.1:-~
P 10 a"!
~ r ¦ ' «
-» 1 ' .






o ¦; c
?r
L) L 0
:i 7t

'"¦J
>;;
j
w i i r.
-
\
-
7 7
:tj

"3/Ll

p v
(" • 0
0 1
)



i
^ r
'i
J
1)
n 7


3 3 . 0 J
1 50/4:: 3
.32 7
. 0 3 9
. S
¦¦I ¦

!. i 2
3.41
j .
4 5
5
.54
5.
1 1
3. FT
1 50/13': 3
.534
. 13 4
1 •
V
m
1 7 1
3.41
3.
;4
7
. 3 3
5.
4
7.76
15 3/250
.927
.2 11
1 .
4 2

2'>0
3 „ 4 1
3.
4 4
5
. 4 3
5.
4 4
11. 6 4
15 3/350
1.30
. 2 6 9
1 .
5 '•
#
3 3 1
3.24
3.
; ;
5
. 3 5
4.
1 ¦?
1 5 - S 2
150/353
1. 25
.332
1.
5 4
#
3 5 ;
3.34
.) •
4 7
5
. 3 5
4.
95
19.43
150/15 J
1.3 9
.313
1 .


¦1 0 9
3 . U i
3.
5 1
5
. 31
4.
G 7
2 3. 21
15 3/t3 5 0
1.50
.42 1
">
>. •
r 5

53 1
3.27
3.
4'3
5
.54
5.
3 6
2 7 . 1 t
1 5 0 /:i 5 0
1.M'
.4 73
* 1
i. •
7 i

5 4 3
3. lr
3.
5 3

.!: 6
5.
5
3 1.04
150/8 50
1.7 1
. 5 14
2.
3 <
#
7 0 2
3 . 3
3.
5 3,

. ;3 7
5.
5 4
4 3. 7 4
150/3 5 3
1. 3 6
.64 1
,i *
•' a
.
7 1 1
3 . 3 :>
3.
u ~

. 1 2
5.
33
5 3 . 4 4
15 3/353
2. 17
.753
2 •
7 7

7 u
3 . 3 v
3.
• j

. 1 2
5.
3 3
Vj.U
150/3 50
2.35
. 372
3.
0 6

;3 l 5
3.36
3.
4 9

. 1 5
5.
7 5
6 9 . .3 4
150/350
2. 55
.9 3?
3.
2 9

99 5
3 . 2 3
3.
15

. 9 1
5.
7 j
7?. 54
150/450
2. 7 3
1.11
3.
3 9
1
.07
3.35
7
5 1

.3 3
6.
0 4
3 9 . 211
150/35 3
2. <92
1.2 3
3.
6 2
1
. 1 7
3.35
3.
5 l

. 3 1
7.
0 4
">1.94
150/3:3
3.35
1 . 32
.3 •
7 a
1
-> n
3 . 3 7

: 7

.23
7.
9 4
1 3.4. 6
150/S53
3.20
1.42
1* •
1 T
1
. 3 5
3.3
3.
5 4

. 4 4
6.
2 3
113.3
1 5 3/H 5 3
3. 3 1
1. 50

2 3
1
. 4 5
3. 3
3 .
;!'

. 4 4
6.
j 2
12-1.:
15 0 /I 50
3.4 3
1 . 64
u.
39
1
. 5 3
3.32
->
•
4 ¦)

. 4 3
6.
7 7
137.7
15 3/150
3.50
1.72
4 *
5 4
1
. 6 0
3. 2
3.
5 4

. In
6.
5 2
1^7. 1
150/450
3.9 1
1 . 97
h •
10
1
.75
3.34
3.
~ 6

.7 1
6.
5 6
1 7 6. 5
15 0/353
U. 17
2.16
5 *
1 1
1
. '.i 9
3. ¦: C
¦>
U m
51

. -3 3
6.
5 6
195.3
150/350
4.4 a
2.30
5.
2 2
1
. 9 5
3.47
3.
59

.94
6.
5 7
2 15.3
150/3 50
4.7 3
2.51
5 r
35
2
.3-3
3.30
T
j *
4 9

.65
6.
5 .1
234. 7
150/850
4. 94
2.71
5.
5 3
2
. 1 1
3.3 =
3.
6 4
7
. 9 5
6.
-<0
254. 1
150/3 50
5. 2 2
3.0 0
s.
73
2
. 30
3.46
3.
5 0
7
. 3 4
7 #
0 5
3 0 2.5
1 5 0 / *3 5 0
5.73
3.4 3
5 •
7 1
2
. 3 2
3.42
3.
7 7
7
. 6 7
6.
4 :l
35 1.1
15 0/350
6. 22
3 . .14
c
_» •
7
2
. 4 6
3.3 3
3.
6 4
6
.79
6.
5 2
3 9 9.6
1 50/3 5 3
6.56
4.2 5
f; •
3 6
7
.69
3.33
3.
5 2
7
. 9 2
6.
y 4
^ 1
4 U 3. 1
1 50/-350
7.0 4
4 . 6 6
6 .
39
2
. 30
3. 4 :
3.
3 0
6
. 6 b
5.
4 5
'J96.6
150/B 5 0
7. 39
U . ci 5
n .
« 1
7
j
.0?
3. J5
3.
4 0
6
. .1 2
6.
5 5
5 4 5. 1
150/350
3. ?'J
3 . 6 2
7.
0 0

, ti 4
7.7;
5 .
2 4
S
.67
2.
¦' 7
-i 4 2. 1
150/45 3
7.12
4.0 0
6 &
} 7
2
.17
3.27
3.
5 4
6
.79

'K'
7 1-1.1
15 0/350
7.52
5. 3 3
'0 •
2 3
<¦.
.92
3.40
3.
57

. I 5
6.
6 4
131

-------
APPENDIX 13
Alcjae Measurements
132

-------
REUUCFU MEASUREMENTS
133

-------

?. S
dj:sd DAT*
FOR AI.GA2 S 3 HI 7 2
3 r l r
cohcssr
3ATIDH



ALGA 2
SILT
LID AH
C205S SHCTIOV
DSP3 LA=? 17.
(LITSBS)
{sr./L»
LIKE {V7„E
33 CROSS ( vf!, 3 31
r< tt n
;?A?ry
0.0
3.3
75. 30
Z Zj\J
32.50
. 192
5.0
3.3
75. 30
82. 90
. 1 75
8.0
3.0
75. 10
82.70
.173
10.0
3.3
75.00
32. 70
. 1 73
12.0
3.3
75. 20
82.70
- 1 79
15,0
3.3
75.-70
8 3. 20
. 173
18.0
3.3
75.40
83. 30
.151
20.0
3.3
75. '10,
83. 20
. 1 69
0.0
21.5
73.90
81.90
. 160
Q.O
U3. 2
73. 20
80. 70
. 1 75
0.0
86. IV
71.H0
78.50
. 197
0.0
129.6
71. 00
77. 30
.2M
Q.O
216.3
5 9.30.
75. 40
. 270
0.0
32'*. 3
69.00
7 (J. 10
. 3 10
0.0
543. 3
57. 30
71.00
. 4 25
>3"

-------
R2D'J:E!) D A £ K FOR AIXAE & '« H 11 2 3 T L T
CONCENTRATION
ALGAE SILT
(LITERS) (H3/LI
0.0
5.0
8„ 0
10.0
12.0
15.0
18.0
20. 0
0.0
0. 0
0.0
0. 0
Q. 0
0.0
a.o
0. 0
3. 3
0.3
3.3
3.. 3
3. 3
3.0
3. 3
21.6
43. 2
86. 4
129.5
215. 3
324. 3
540. 3
LID An C
LIKE (VV,D3)
70. 30
70. 80
70.	8Q
71.10
71.	50
7 1.,90
71.70
72.	00
70. iO
5 3. 10
67. HO
57.00
65.60
6a. 90
63. 20
KOSS SECTION
CROSS (VH#03)
SLUE
79. 10
7	9. f.O
79.63
79.	90
80.40
8	1.00
80.	50
8 0. 90
77. 30
75.90
73. 30
72.70
70.4 3
6 9. 30
6 6.40
depdla? rz^no'.'
PAT ro
1 3 2
1 31
1 3 1
1 31
1 30
123
131
1 29
1	9 0
? 0 5
2	54
272
334
3	61
a 79
135

-------
RAW MEASUREMENTS
136

-------


* ••
-,..
~ * — »•
r •>¦





V *»
*j ::oi.r
'i 7
V - '-JIJ
r;
>* - .
T * "?/"

;/i)


(V. o
* 1 <


> « <*«
(' • -j
01)



">V
) 1
;
n i
¦> 1
L>
ii v
:? :<•
¦) T . "> "
1 1 50)
¦J T 1
V • b. > «
)f.O
;. 2 fi
. i ">)
1. s ¦>
1
S. '-?5
5 . n r>
5.0 0
i ! S0/,"-.'">
3.32 .
"* c r.
\.'n
.15?
1 .0''
i . 5 a
5. ? '3
6. 3-¦/">">c
. 3 'J 1 .
f, t
'; . ?. J
. 1 J 5
1. -"j 7
us:
3 ^
««. 17'
n. o
1 1 ^.'} /1")
. ! 3« .
n 5 5
i. n
. 1 : i
1. l3 ¦:

'i. !i 'i
<"i. 25
110
1 is-*' / o :¦
.nr. .
Ofr.
1 . '¦ 5
. Til
i. =. '*
1. so
7. 0 -3
r) . 'j T
1 "i. T C
1 ^ c "1 y .1 "1 r*
.US .
01
1.13
.13 2
1.T7
1 .so
7 , Li T
7 . 25
1 -( "¦ "
11
.~n5 .
VjU
1 . 13
. Ti 5
1 . 7 ¦¦
1 . *> T
7. 2 2
7. 05
'V> ^ *N
• / 'J
11 s

0 =.">
1 . 7 3
. 13 0
1.71
1 . \
7. ¦)?
5.90



VI"
.. , . -
¦;::
' ?> ::
M "7


' "* '• J
?" r
'J " !) Iv
jl '¦ ?
••} 'j "• ¦;
i "j
W :i IT
p -p -> /¦
- -.¦* p
r i j 7i;



( nn ¦.)


f/.n
0 1)



?¦¦¦!

t :
!¦!
3 7
:*>
3 7
n j
1 ¦> 1 A
1 1 5 o / ^ r "
3. /; 1

1. 2r-
. 1 'i "I
1 . 5 o
1.5 1
¦j. 3^
5. 55
1 1 ¦> 'I .
1 i 5 n / p "> ^
3. r;
/5 5
1.27
. 1
1 . ^
1 . T> u
¦7. r* 3
¦j . 3 5
i m.
1 1 " r> / T" ^
. ">a 3
1 ri 7
i _ "• j
.Ti=i
; s 7
1 2
3 4
6.17
.»i r> i.
1150/i;:c
. UH
0 s '>
1.
. 1 'i
1 C. ix
l.JS
f> . 2
•i. 2 5
T-'vT.'.
1
. U5

1.15
. 1 i 1
1 . j 1
1 .1
7. ¦)')
. 55
' "n.
1 1r;0/":^
.33?
0 5 V
1 . 1 3
.132
U1
"l . ^ o
7.5'!
7 . 25
! -J -1 .
1 1 =.-, /.3~0
. ^ ii 5
or-'i
1 . 1 '¦
. 1 ') 'i
1.7 1
1 , ^
7. 2 2
7. 05
:i 3 ? '1.
1 lbo/noo
. 3 u 2
0 01
1.-) i
.13''
1.71
1 .T 3
7. OS
. 90
1.17

-------
APPENDIX C
Surface Roughness Measurements
133

-------
KEDUCED I1CASI
139

-------
CONCEKTRAT E3.W
(MG/L)
SiJ 3F ACS: CH,1
0. 3
30. 3
90. 3
151.5
.10 3. 3
U54. 5
SURFACE; SEO t'JM
0. 3
30. 3
90.9
151.5
303. 0
U54. 5
SQBFACH: 33'J3ii
0.0
30. 3
90. 9
151.5
303.0
<*54. 5
i S 3 'J C E 0 DATA .-OT! J :J I r 2 SILT
•: :-:d
LCD A R CROSS SnCTIO'J	.0 R P 3 i. > ^ IZ ¦> r 11
L IK £ (V V , D B) C30S.S (Vil#D3)	TATIO
7 3.79	9 7. 7 U	. 3 '[ 0
73.77	98.OH	.0 17
7 1,75	"0.4 J	. 1 16
70.64	77.75	.115
6 8.73	7 14. 0 S	.295
6 9. J 5	7 2. 5-3	. 1 
-------
coNCE.vraAmn
(MG/L)
SURFACE: C A!, .1
0. 3
.10, 3
90, 9
151.5
3	0 J. 0
HSU. 5
S U R ?AC £ ; 3 S3 US
0.0
30. 3
90. 9
151.5
303.0
4	54 . 5
SURFACK: i? 3:1
0.0
30. 3
90. 9
151.5
30 3.0
454. 5
DEDUCED DUTA "OP \HI7E SI LT
ULL'E
LID AR CROSS SECTION	Q E P 3 L A 3 17, A
LIKE ( V V , D 3) CROSS D3)	RATIO
f>3.71	7 5 . I-1	. 1 7 3
68. la	75.VS	.173
6 7. 02	7 2.39	. 2 59
05,90	71.00	.30')
64.30	68.25	.403
6	3.-9 2	6 7.21	. ti f» 13
68.60	76.27	.171
7	0. 32	76. 1.S	. 1 56
66. 82	72.b5	. 2 HI
65 . 70	7 0.'11	.301
6 U . 10	r, (j. 1 3	.398
6 3. 63	57. 06	. 454
6 8.29	76.01	.169
68.69	76.62	.161
66. 39	7 2. 3 1	. 255
65.46	70.40	.3 1(1
63.9 3	67,38	. 3 91»
6 3,30	56.73	.4U8
I'll

-------
roseenrRArr
(HG/L)
RSDJCED D A I' » FOR R L'D SILT
RED
LIDItR "S05S SECTION
SURFACE:
3. 2
i+0. i?
122. 3
2 03. 3
SURFACE:
1.3
0. 2
ao. 3
1	2 2. 3
2	0 3.3
SURFACE:
1.3
a. 2
ao. a
122. 3
203.3
SURFACE:
1.3
3. 2
40. 3
122. 3
203.3
C A L >:
CULM
XEDEUX
H D J 3 H
lrsn (vv, r>t3)
0 3.62
6 5.06
6?.. 2 b
6 0. 8 9
6 3. Ji 3
6 8.33
65.02
52. 20
50. 00
63. 47
68.21
65. 00
6 2.13
50. 80
6 3.63
5	3. 29
6	4. 63
0 1. R 3
60. 72
CROSS (Vi?,D3;
7 4.63
6 8.31
6	4.35
62. 32
7	4. 24
74.27
6 3. >3 1
6	4.32
62. 46
7	4. 33
7 4. 3 U
6 8. 71
54. 23
6	2.2 4
7	C . 6 1
7 4.3?
6 8. 53
6 4.07
62.2b
dul3o l\r< izk no?
P -\ T 10
. 2 50
. 4 22
.613
.7 10
.265
.255
.418
. 6 1 3
.6 83
.257
. 2'tu
. 4 1 8
.617
.7 01
. 2 50
. ? 4 1
.4 12
.507
.701
1-12

-------
1EUHCED DA T\ FOR R E!i SIL?
¦jJ,ue
C 0 N C 3 N r R AI" E 3 N	LID A R CH')SS SECTION"	D K ?0 I. A r< T ?. A r TO.'I
(«G/L)	LIKE ( V V , D B) CH0SS(VH,D3)	S A T T 0
SURFACE:	C.\L1
3-2	64.69	70.02	.211
«0-3	62.21	67.03	. 112
122. 3	60.53	61.23	.131
203. 1	59.36	6 3. 08	. U76
SU3FAC3:	CA LI
1.:	61.6 2	7 0.11	.213
8.2	64.51	70.73	.240
4 0.fi	52.:: 2	66. 93	.33U
122.3	6 0. SH	6 4.30	,4 25
203.3	59.93	63. 12	. U06
SURFACE:	M CD r rJ!1
1 • 3	64.55	70.71	.212
8-2	64.09	70.32	.241
<*0.fi	62. 05	66. 33	. 12^
122.3	60.15	61,10	.4 32
2 03.1	59.7 7	63.05	.170
SURFACE:	ROUr.d
1.0	6 4.40	70.37	.225
8» 2	61. 16	70o 39	. 2 3H
^0.3	5 1.62	6 6.58	.in
122.3	60.11	63.54	.454
203. a	59. bi	62. 69	.h'r2
l'i3

-------
aeoucl;o data for snown silt
RED
"ONCE.WrRATTDN	LIDAH CROSS 5SCTI0N	DEP3 LA." 12* T 10!!
(1G/LJ	LH 3 ( 7 V , D3) C 3 0 5 S ( 7 M P D U i	HATIO
SUS FACE:	CAi.,1
3.2>	69. 73	79.66	.101
24.5	67.57	74.50	.203
"1.3	65.43	72.45	.25?
57.U	55.75	7 1.10	.211
105.	7	6 if. 71	6 9. 35	.145
194.3	6 3 ."30	66. 72	,'i55
291.3	62.40	65.39	.503
5U2PACE:	MEDIUM
3.2	69.85	30.25	.091
24.5	67.42	74.36	.202
4 1.0	6 6.25	7 2.35	.246
57.4	65.72	7 1.35	.294
106.	7	64. 64	6 9. 30	. 345
194.0	63.20	66.57	.U60
291.3	62. 26	65. in	.5 16
SURFACE:	R0U3d
8.2	70.13	01,31	.07U
24.5	67.33	74.10	.2 10
41.0	66.07	71.96	.25S
57. 4	65. 3 1	70.9(3	.277
106.7	64.39	6 9.0ft	.3 39
194.0	61.02	66.37	.U63
291.3	62.00	65.04	.505
W\

-------
coNCEN'ra.iriaN
(flG/L)
SUSFACK: CAE..".
8. 2
24. S
41.0
57. '»
106. 7
194. 3
291.3
SUHFACZ: MSDIU3
8. 2
24. 5
1*1.3
57. 4
106.7
19K. 3
291.3
SURFACE: SOUGH
8. 2
24. &
41.3
57.4
106. 7
194. 3
291.0
3SDIJC3D 0 A ? \ FOR 3 OH N ;
H L U E
Li'OVrt CaOHS S'iCTTCN
LIK H (V V , 0 n)
65.81
6 rj. 54
6 n . 7 9
62. 28
6 1. 53
00. ,00.
60.5	3
65.47
63.39
62. 58
6 2.06
00.00.
30.00
6 3.01
61.	BQ
62.	83
61.	99
62.	26
00. 00
00. 30
59.6	1
CROSS (VH, 3i3)
7 3.37
70. 3 2
6 8. 5 H
6 7. 38
6 6. 75
00. 30
6 4.3 3
73. 20
6 9. 89
68,61
6 7. 97
0 0.00
00. 00
64. 19
72. 29
6 9.31
63.19
6 7. 37
00. 00
00.00
6 3.91
0 S P 3 L IZ,\:
RAT in
. 170
.225
.264
.275
. 3 04
.000
.4 17
. 1 69
.221
.249
. 2^7
.0 00
. 0 00
. 3 2
. 16?
.225
. 2 40
. 3C9
.0 00
. one
.17 1
ion
1-10

-------
RAW MEASUREMENTS
116

-------


R v *, "•
SUSE
M SNT 0
y WHIT







2 RO'nifj^s
5: C- CALM
i-'inur
rj'1
30'Jr.!:





CONC .
? .1T
5 CD LIE NT
R"TU^
'lli
if h r t
T A S G \T 3
?,? a


(MO/L)


(X.
00 1)


{¦< •
00 1)





?V
RH
B V
3 :t
R7
Pfi
3 7
n h

00.00
1150/800
.in
.013
1.77
. 2 0 u
1.47
1 . 4 l»
5. 1-5
5 .
07
R
00.0 0
1i50/aoo
.4 m
.013
1. 6 6
. 273
i . 5 ¦">
1.46
5.2 0
5.
09
?i
00.0 0
11 so/<100
. u u g
.0 m
1.63
. 2 '•! 2
. 5 ?
1.4 0
5.24
K
J e
10
C
JO. 10
1150/^00
, il 3 2
.0 15
1 « ft u
.257
1.52
1 . 4 <)
5.24
5.
10
i(
1 3 . J 0
1 1 50/'100
,(172
.0 17
1.72
.25 1
1.53
1.52
4 . ;i 3
u.
70
1
30. 10
1150/NOP
. U5 J
.on
1.58
. 267
1.54
1.55
a . u =,
a.
35
(J
00.9 0
1i50/aco
.798
-0 99
1.11
.77 1
1.5 2
1 .S2
5.35
c:
j •
63
T5
'>0. 'JO
1150/100
.750
. 100
2. 35
.7 02
1.54
1.5 1
5. 32
5.
H5

¦lo.oo
1 1S0/300
.7 25
. 0 lf 5
?. 79
.713
1.55
1.5 1
6. i
.
00
c
131.5
1 150/flOO
1.05
. 200
4. 1 1
1.24
1.50
1 .4 :1
^ . 24
r>.
10
n
15 1.5
11 so/ioo
.nun
. 1 4fl
1. c')9
1.15
1.52
1 .5 0
6.25
6 .
1 1

1 5 1. 5
1150/300
.918
. 179
3. 72
1. 13
1.5 5
1.52
6.26
6.
15
n
103. 7
1 150/800
1. 54
. 4 ^ h
*.0 2
2.32
1.5 1
1 . 0
6. 20
6 .
15
3
103. 0
11 so/aoo
1. U8
. 425
5. r, 3
2. 20
1.52
1.51
6. 26
6.
14
M
101. 0
1100/9 00,
1.43
.4 19
5. If.
2. 1 2
1.5-i
1 .53
6. 24
6 .
13
C
4 54.5
1 1 50/1-100
1.34
o 642
ft. 7-1
2.00
1.54
1.54
6.2 7
6.
1 c»
R
4 54. 5
1150/300
1,76
. 6 2H
ft. 55
2. '35
1.57
1.5 5
5. 5 4
6.
25
VI
4 5 4, 5
1150/3 00
1.72
. 6.04
6. 40
2.79
1.72
. 60 u
6. 40
2.
79
C
147

-------


.1




— , . r.
' I '
'' 5P>
r ¦ *





'i¦ \c:
: \'0l Vii
: 5
-

• 1
-¦-v

\ i-
A _ 4
j ¦ * *
7>r
;i ;.;



" r:~.
? '*. 7


J.
j:
-4 - \>
— . 1'
in *; >

«' 1 7
1 A '
^ -» 7* f«
> — T*

N'S
'TJ5/L)

-l



('¦-.
) i!
0 ? 1)
3 .

' V

"-'1)
3 /
!i


5 ). 0 ')
1 150/ -15 0
1
-v
"J

<
-<. -1 ¦?
« 7 a
7
1.^3
c 0 2
-. 3J
,
^2
C
5). 1 0
1 1 5 0 / "> 5 r<

n
fy

:¦'< i
'.. 7-1
. 7 n
S
1 . V'»
. 5 V
•) . 3 t
*") ,
05
*1
s). -n
1 150/3 5')




"> ;
3. 2'i
. 7 2
i

. 7 2
. :i C
•
Z '3

T ,1 ,
1 150/:3-i
1.
¦*
U

J £ ~
3. '> 5
. 7ri
* >
! . ¦; ;i
. 5 -i
•j . 1 "
^ •
10
r:
"> .1 . ^ 1
1 150/-! 5"1
1.

'J

¦>'7
7. u 2
¦j *\
T
1 . -• '4
.5 1
'-..2 2
^ .
1 3
•/
5 7 . } T
i 1 50/ •"5 5'''
1 .

j

2 5 i
<. ¦
. 7 j
1
1 . V •'
. 5 1
"> r
O •
15
C
ST. 1 J
1 1 5G/^5;i
¦)
»i


2r
7
. 71

7 . - 'i
, *> 7
•'>. 2 •'
l\ ,
15
3
r^. :•
115 0/»50

'-i
•)
1
. 1?
1; % '1

-
1 ."' 1
7 ^
5 . ¦: 3

51

2 5 ). 0
1 1 50/5^"'

j
1
<1
• 5
r,. 4 5
1.i

1.71
. ¦'-¦ ?
, 0 'J
h .
57
X
20 . 0
1 i 50/35 J
/ ,

'j
.

5 . 5 1
1 . 5
•>
1.7J
. -3
h. - i
O .
r" 1 j
'5 -»
r"
2i\ J
1 150/^0

">
7
.
¦iu 1
r>. 5 )
1. 3
3
'i 71"
. ^ i
¦>. 3
n •
-"a
Jj
7)1. 0
1 7 50/l3 5^
U .
7
•j
>
. " 2
7-4 . 7
'i . 1

1.7-5
. "o
- . '.30
n ,
G ^
P
->-¦>¦). 0
1150/^50
*1.
U
"1,

¦ 'i "
'? u . 5
3. i
S
1.77 1 . 7 a
j . 7 5
^ •
70
v
751. 0
110 0/3 50
a,
7

1
. If'
?1.')
¦'i. 2
1
1 . 1 7
.75
'i.75

70
¦?
75 1. 0
1 io:/riro
fi,
i
T
)

_ n
3.
3
1.7 7
. 7 'i
»S , ' »

70
u
7 5 a
1 100/ 3^
J.


1

. ¦ 0
2. ">

1 1 . ^
0 . 7 1
rf
70
O
7",^. 0
110 0/350
3.

»>
i
• i J
•'¦>. 0 2
2. 5

1 . 7 C
. ^

1
-> "7
M ^ '
1 2
1.5
1
1 . 7 J
.75
1 .
6.
IS
r*
1251.
1 1 CO/TO'"*

¦ j
'"l
1
. "?">
3. 25
1.5
p
1 "7 "J 1 "7 , ¦
1 • / 1 . ' -»
5 . 3
^.
ri ?
¦4
1 r>:i.
7TOC/T™

0
1
7
. uo
i.n
1.5

7.73
.7 2
¦) . 77
5 s
75

1251.
1 ioo/ao')
1
i •
'•/
3
1
. 1 !
3.
1.5
¦)
1.7 3
.7?
n. 7 7
6 •
7S
c:
i -i r.

-------


¦i \ V? 1 i \
j 'J ? 2
"1 1' 0
? T?OV'I
-> i. 'I






sij?.FAt:.=:
ROLIG'-iS";:
5S; C-CA
i,v:
ii
a-no
'Jilii






C' 3 S J -
VHT
5 F.DI
E "• t
p. 'rr u h
NS
w-ut:

t \ a
2 r
i.T']
r.-i

(¦1G/L)


('<-•
00 1)



("<•
00 l)





3 7
!3:!
13 V
3!!
R-l

m
3 7
::
u

3.20
11 50/350
. 6 'I 0
.0U7
2. -i u
. 3 76
1.50
1
.'»9
5. 27
5.
06
1
•*.2 0
1150/M50
.665
. 0*0
2. 2 1
. 35 3
1.50
1
, u
5.52
5.
2 3

:>. 20
1 1 5 0 / 0 5 0
.6 75
. 0 f)i
2. JO
.35 1
1. 5 0
1
'» r,
• '¦* mj
S.n7
5.
U 1
c
2 u. 6 o
1 1 'J 0 / 3 5 0
1.25
. 2 r' 1
5. U 6
i. n
1. 5 :3
1
. 5 1
7 . 't 3
7
1 U
3
so
1 1 50/3S0
1.21
. 2 37
u. J 3
1.03
l . 5 6
1
. =i 1
7. u7
7.
11'.
w»
2ti. 6 0
1150/350
1.16
.231
a. 5 7
. 97 7
1.55
1
. 5 2
7.3 1
7 .
10
£
ill. 0 0
1 150/'350
l. 6 6
„:i 17
6. o3
1.59
1.5 7
1
. 5 3
7. 65
7.
U2
2
u i. o o
1150/350
1.5*)
. 3'rlU
5. 95
1.U3
1.5 7
1
. 5 j
7. 6 '4
7.
3 6
M
11 !. o 0
1 1 50/350
1.51
. 375
5.66
1 . u 3
1.57
1
. :~>i4
7. 6 2
7.
30
r-
5 7. •'! 0
iiso/nso
1.98
. 5 33
r.. 57
1.91
1.57
1
,5U
7. 83
7.
6 9
:\
S7. UO
1150/35 0
1.3 1
.513
6. 0 1
1.73
1.58
1
.5ii
7. 3 7
7.
6-3

57. UO
l150/150
1. SO
. 50-J
6.59
1.76
1. 53
1
.53
7. OO
"7
•
6 6
L
3 0 0
H7.9
2. UO
1.60
1
. 5 8
7. 94
/.
30
l 2
00. 2 0
1 1 50/5150
2.29
.73 1
7. 76
2. 1 1
.59
1
.57
7. <51
7.
75
c
'i ''i u. 0
1 1 50/350
3.5 2
1 . 53
.0 10
3. 6 a
1.65
1
.55
7. 7U
7.
6 5
¦;
Ivt, 0
1 1 50/3 50
3.3;.
1. <47
. 1 25
3.4 3
1 . f. 2
1
. 5 '¦}
7 . h 9
7.
5-3
M
1 6 U . 0
1 1 50/350
3. 20
1. !i 3
2. HI
3. 37
1.60
1
. 57
7.6 a
7.
52
C
2 " 6. 0
i050/350
2.05
.990
5.6 1
2.0 1
1.5 2
1
,55
7. 6 2
7.
3 6
R
2U6. 0
1050/350
1.95
. c>81
5. 13
1. 1U
1.6 1
1
. 5 7
7.7 3
7.
5 7

2U6. 0
1 050/950
1. 3 9
. 933
5. 06
1.93
1.61
1
r 5 9
7.35
7.
73

I'19

-------
APPLIJDl X iJ
System Constants
150

-------
Tiiis appendix documents th.' cal ibratinn pi ocecure end eMuaLions
ne-t^ssary In convert iicasi.rumen Is '^ndo l.>y the L.dar VolarirocLt-r Syston
to absolute 1 i fK-i r cross sec 11 on s . "I ho ciiscussion is separated into
sever?1 calibration sections li'iLed below.
1. Documentation of ays!or.-, efficiencies
Analysis of PMT sonsi ti\ l ty versus po'..er '-upply voltage
3.	Determination of powor received
4.	Calculoiion .of the Lttlnt f.rncc ^ncrir.-
pfllMlilCLCrb .
The final reduction equation fur the red an! blue wavelength system
will allow calculation of measured lidac cross si-'d'Oii f ro"i the basic
system parameters; range, output power, PMT supply voltage and computer
readout.
DCU^'illTAriOil OF S)'^Z'A ETFICiThCIFS
Incoming energy which strikes the telescope rc-ceivino system is
not completely converted to an output voltage. There are some losses
assocaLed with the lenso system. the optical filter and the photo
multiplier. In addition, these particular efficiencies are functions
of the v.'avelength of tne incoming radiation. The table below gives
the optical efficiencies lor both blue and red wa/<; long; lis.
Optics
f i I Lt*'rr.
PUT i'.elative
Sens 11, i 11.j
r.l.UE
C'V-
'17 .
10/.
15]

-------
analysis or pmi snismvnv vlrsus powhk supcs y voiT'-r.:
The relat loiisinp I>gx.v.-et.-11 i'MF scmi Li vi ly and nower supoly voltatjo
can bo written as follows:
!nS = A Inf. + B
i.'SiGPG' S - Pi IT r.onr. 111 vi Lv in .nnps per lumen
L - po'.jcf Supply volLaqc
A iinc) l!. tire r.onr, taut.:; assoc.! a Led with tnc r.-.TLiculor
Lube of inLeres'L (in this ca^e, Ltie HC,'.
Trie conn inn Lr. A and B woro solved using the Lyrical doto from the
RCA 3645 da tit sheet. The oqu-ition for Pf IT sensitivity dgcpjrgs:
InS = 'A lnC - 56.03
Typical value*; ->r S (dinps/luiiicnj for various PrH su:~j;s 1 y vollartc; arc
shown below.
E (volts)
'J 50
1050
nnn
1250
1350
MOO
1500
S (minis/ 1 rs)
0.31
o.es
1.00
2.7/
5.1X
("i.b
n .m
15^

-------
dliiiiATiO'i or PEcnvcn povkp
The power detccton by I ho received PiiT is i Lt.en as foilc.:s:
¦W 5 pi.k:<">
where Pp,.y - power detected by the PM1
)
I
P,.,r - power incident on I lie receiver
;i; - cplic.il efficiency of ihe receiver (opt tc3

-------
CALCUl ATIdil or J-iSiASU:-Ln L ' DAft f!>OV, j!T.I 1 Oi! rno; 1 V5.7i".' PAJiAMHlIRS
The lidor cross socnon is c.ilriilutcd r.o l-.;¦
. o ..
;;5	P]f;C
/hero: r."	-	nui n-c 11 i';i;n- croos section
R	-	rfinijo of t'srcje',
A^	-	area oi tn'j am
"ici,.i.
Boom Pi vcr(|r:iiCG =	1.7 11 l1 ac!uiiiS
[Jean: Uiaii'.eler =	i .(; -.t-m
The cren of the ivcpivum:	Oi'licr, ir, - 2.r/.' 10~ 'i;.r. The calculauon
of A , for rcri anil nl'/o lui.v s>-•;Li/;•:, can bo ,'i.cr\.in! ¦ :,hcrj usir.n the
infori.i.T Li on above.

-------
APPEI1QIX E
Ren i?cti v i ty Measurerem Ls
155

-------
I r.?". V: A:\1~Z C u A i
r n
co f.'c zi'i r s a r io';
LIC.M- CRl
)ss srcri'Vi
D'TCM^r:'
('v. u / L)
LiK>:(vv,rr)
CTiOSS ( 12)
? \ T 10
1.0
11.12
¦>3. 5 2
. fuO
2. 9
n.ts
? : i
.055
5. 7
i>..-. ;j :
>'¦. »f.
.065
K. 6
7 o . u 2
v! _ |1 n
.0 69
1 1. a
7 5 . 6 J
36. 30
. OFO
la. 3
75 . f 3
¦""'S. ',3
. 0 3 1
17.2
7 5.21
<5. i>.9
, 0 db
20. 0
7 i) . 9 'S
¦3 5. 50
.092
2 2.1
7 a . 7 .j
" a. r; }
.CS^
2 5.7
7 U . J 5
9a. i2
. 1 C 5
2!3. 6
7 '4. 26
3.
. 1C9
23. 'S
7 4. 26
9 a. v5
.105
28.6
7 a . 3 8
3 a. u
. 1 <:

73.71
9 3.72
.099
<42. =?
73.72
9 3. : n
. K7
V-l. -
7 3. C 9
¦3 2.; ^
. 11
56.9
7 2.59
3 1 . u 9
. 12 9
6 a. 1
72. 2 6
3 1 . GO
. 1 3u
71.1
7 2. 32
30. 61
.1143
7B. 1
7 1 . fc 2
7 9 . 9.3
.15a
p. 5.')
7 1.66
70. S7
. 162
9 3.1
7 1 . 'j 2
7 0 n 2 ¦)
. 170
12 1.7
7 0 . 7 '
77. n5
. ? C
137. i
70.50
7 7.33
") n 1
« « t.
1 5 i. 11
70.25
76. 50
. 2 36
1 7 a. 3
6 9.65
7 5.75
. >US
1« 5. 3
69. 37
7!U 30
. 2 n 1
2 2 'i. 9
6 9. 0 1
7ii . 1 1
. 3C"
2 5 3. U
6 8 . .19
7 3.52
. 3 30
2-32.1
68. 2a
" 1. 56
. 3 6 !3
3 17.0
6 7. 12
7 1. r;
. 3?7
353 .6
b7. Jfi
7 1.22
. « 1 1
Lf 1 0 . -i
6 6.77
7?. 2'i
. u a 9
162. 3
6 5 . <; 9
5 9.0 5
. u
-------
;n 1 w t
1 ll
v- cl.v/
co:;c:-n rat ion
(HG/I.)
1 . 0
2.	y
5. 7
3.	6
11.4
14. j
17.2
20.0
2:. ¦!
25. 7
2	8.6
2S. 6
2.9. 6
3	5. H
4'2. 9
u y. 9
5t>. y
64. 1
71. 1
73. 2
6 5. 0
93. i
121.7
1.37, 1
151. u
17 4.3
195. 3
224. 9
25 3. 4
2	9 2. 1
3	17.9
35 3 .6
a i o. n
"32. 3
5	5 J . 3
6	2 5. J
7	3 2.6
i-TKn (
71
71
7 ;
7 1
7 C
T:
70
6 s
r. 3 1.
79.
7?.
70.
7 f?.
73.
77.
77.
7 7.61
7 7. 3 5
7 7.13
7 fi . 5 7
75
7 5
7 4
7.'J
7 4
7 3
73
7 2
7 1
7 1
70
(V!l,
. 10
. 30
TP,
0
. 77
. 1 •'
6 2
4 0
77
r>.-l
i 92
24
77
3	1
04
9 1
55
12
6 3
05
5 1
-> i
6 9. « 1
6 c . it
•t
6'3.
6 7 t
67.
66.
6 5.
6 4.
64.
57
:!5
4	6
5	9
6	9
74
14
6 3.5?
6 2. <>0
i E r C L ,n I 7 \ T 10 ¦:
if A T 10
C 50
06 9
r po
0	<: 6
1	16
1 13
1 2 5
1 2 1
1 -4
1 UA
153
15 1
1 (i f,
1 5 1
1	f- r;
179
1C1
2	C 1
? C 9
? 0 2
2 15
2.17
2 £3
2 ¦'? 0
2	96
3	C 2
3 30
35 4
3	0
4	1 3
4 1 u
4 a u
4 f
t; 77
r. -) i:
^74
ft 12
157

-------
* c
coNCcuTSATj-o:;	liu^p ctc.ss nscrrc;'.'	dn?cl\?rztrio::
(M 3 / L)
LIf.i (V V , Lis)
cna::--. (vl;, ;_v,
» T1 ¦)
1.0
7 6. 3 3
?7. i- 3
. C7 1
3.0
75. 37
•°5 . C C
. 109
6.0
75. Q 1
5 ). r"/
. 136
q. a
7« . 57

. 150
12.1
7 a. 5 E
>i 2 . 7 a
.15 3
15. 1
7a. 17
l? 2 . 1 P.
. 15:3
13. 2
7a. qu
e 1. V 5
.1*2
2 1. 1
73."
cl.n 3
. 16U
2-1.2
7 3.55
»i. ;:o
. 17 1
21.2
7 3.3 S
»C .7-1
. 18 2
33.2
7 3. IS
."0 . =».<
. IS 3
3'). 3
7 2 . <) u
7 n f; o
.2 16
15.3
7 2.7 '¦
7'i.3 5
.210
5U. !4
7 2.56
7°. »q
. 233
63. t.
7 2. 6
T-).0b
, 23 1
72. 5
72.2a
7 « . r: >
. 215
31.5
7 2. 2 0
73. -iC
.2 17
9 f) . 6
7 1.7
7'i. 2 0
. 223
11 2. o
7 1. i»
77. 7C
. 231
12 7.3
7 1 . 1 h
7 7.5 a
. 2 JO
15 1.5
7 C . c? C
75.6 7
. 2 5c*
18 2. 3
7 C . U 6
7'j . 15
. 27 j
19d. 1
70.GO
"5.55
.2 79
158

-------
2 1. w i
nc":-' r ? a no
LIE\F Cm
S3 5 ZTIC ''
0 F C L A >? I 7,
(''•VL)
Li.K 7. ( 7 ,
{T",
s r t c
1.0
7 1 • 3 C,
d U , 71>
. CU5
3. 0
7 0. SO
'i:1.2«
,071
6.0
7 0 . U 5
3 C. ---I
/Cp
9.0
6 0 . T7
7 .¦) . 9 7
, 1 2b
12. 1
6 9. :: H
7L5. id
. 1 ">.0
15.1
6°.2l
7 7.67
.152
16.2
6 S. 'J 6
7 7. «H
. 1 u 7
21.1
6°. 2 3
77. IS
. 1 5 u
2u. 2
£> 8 . ? 1
76. -3C
. 1 f:«
27. 2
6 8.33
76. -'0
.176
3 3.2
5 3.6 0
7 5. d -5
. U"7
33. 3
6 )i.
75.C2
. 2 C 0
U=>. 3
be. 29
-t q r ->
' - # U
.2 12
5^. U
5 li. 2 1
7 U . 7 7
. 2 :1
6 3. ^
67. 7a
7U. 25
.2 26
72. 5
6 8.21
7 'i. S 2
.219
SI. 5
6 7 . <3 7
7 M . ¦: a
" 2n
96.5
67. U 1
7 3.67
. 2 36
112.6
67.22
73.
. KC
127. 3
66. 36
72. ei
. 2 5U
15 1.5
66. 3Q
7 1. 3 ii
.279
132. 3
or-. 30
7 1.fi Q
.2??
19 3. 1
6*. 39
7 C. 67
.301

-------
?(.(

'"¦>.

7 .
y
1
7 '
' i
. *:7
) a

5.
1
'i
j

. 2^
17.

7 .
u
"5
7 -
)r
2 " 7
lr;.

7 .5 .
».

7 -
r.
. 2 "j 7
1 - .

7 1.
L
J
7 3
* ;
. T"'!
2 1 .

7 1.

>

.1 1
_-> = •}
2 i .

7
c
>
/
"7 'J
^ 1
. "> .!
¦) m

"M.
i
7
"7
j
. ? 2-;
2 < .

7 1.
1
>
"7 O
14-»
. 2 > -i
'i.

72.
'1
/
7
7 r-
K
. 2 < 1
5).

72.
c;
L,
i *'
C ~
. i2u
¦j 0.

72.

7 r
5 -i
. n j0
.

7 1 .
'7
«
t j:
r. 1
.2 1-
77.

7 1 .
¦i
»¦»
i
7 -J
t \
i
1 7 !S
r 'j .

7 1 .

/
7 "7
^ n
. 2 ' 3
'• > .

7 1 .
i
J
'• 7
•>
.2 2^
12".

7 C .

¦>
-7 ,
\ •*
. y -
1'5-3.

-1 -s
' ¦
]

» T
/ .
T-
.27^
l.-io .

on .
£
a
7 »•
f 5
. ^ 1
2 17.

:.
J
j
7
r ^
. U' 1
?jn.

D 7. •
c
r>
7 ^
-i'?
. 1"^
2 7-1.

.
5

-7 )
7
. -> t-
-------
¦¦ o : ¦:
t r: r;

r ¦,r ~ 1
; : , —

r •.\ * ~_
( '• ¦/

.: 7 < '¦>
: ,i-)
;¦

-. - * p
•
1
7:J .
7 !
" 7
l ¦
1 ; ¦">
'.1 •
1
c
1 "J
7 ¦
r* -1
"¦ " J

1
'j
1 f\
M-
t ,
. 1 "0
12.
1
f ,*
< 1
7 r.
: '
. : C 7
i ¦">.
1
r. j
'
7 r
7 i
. r ¦? 'i
l !.
1
-¦> .
f 1
"7 -
r •
. T 7
2 i.
1
j-. :
n
*7 ^

_ 1 •: r.
.¦>-».
->
•"»


'-'i
. 1 ¦"
i".
->
'*• •
^ •.
^ <4
?7
7 1
. 1 L "J
.
2
j j
a
-7
* ~
. 1 r-7
UU.
.1
f. -
no
»-
. j *\
.if:
v:.

r, 1 .
i a
"7 C
3 1
. /.
. 1 
•» ?
¦; 1 "i
12 a.
it,-,,
7
T
u h .
¦) i
c 1
7 ?
7 1
1.1
^ 7
. £ ' /-
p -If!
In'i.
0
C „
0
/

1 ~  ,
.'ill
U'M .
c c -7
0
;
(* /
c ^ •
¦V)
•s ^
•' >
> 1
. = 12
¦ "5 "
¦': 2 7 .
3
1 .
9 G
n U
M T
.'"71
77 J.
i
0 1 .

r. 1
: ¦!
.¦'11
C 2 rj .
i
(• 1 .
7;
*
C )
. ¦ ': c 1

NOTE: Effect
of tan
k ho L tciii
fcciow 30
1,'iq/ ]

- : WHIM "ILT/CLAY (6/26/
161

-------
v. p cJutcri from ( **
^1	ccpy. * y
:: i '" . : l: j j \ 'i i \ ~: i, ¦ ?]
) - ~
C '1C "
;?•'ATI'"':
I ]




{
"*>
'• - - ''
7 .
" r)
c" 1.; j
s l-
" ¦ , l" "¦> '
i '
¦ ' " T C
c **

J
7 'j .
r*
^ 7
-

1 •!
1
7 -J .
"i .'I
* '!

. -
?1
1
7 "< .
¦¦1
\"»

.10 1

7
73.
1
S 1

. 1:7
C |
->
-1 -»

, .





i
" '

1 3 "*
7 1

7-:.
\t
1 -
-
. 1 in
K i
f
v r.
}
"7 7
.
.: T-
1 2 -
3
7 1 .
1
1 1
.
."1
1 -i*

7 1 ,
1
i <¦;

. " .!'!
2 'j
J
7 1 .
a
7 '7
->
. " < ~
7. - I
r,
T).
3
T C
« ^
r.
u


7
7 1
A
. 3( 7

>
i7 .
r
7 1

. 'l I "
¦i^5
i
'V- .
;;

3
.'ir:c
; 7






l: C i:

" .
r
7
i
. ' H
1 1 i'-

1 .
j
r- f.

¦' "i
13S
;
-i.
T
c ;:

¦_ -1
1 = =2
T
r: 1 ,
7
f- r.

. 7 J ¦"¦
1 -iZ-i
/
6 2.
s
u
¦)
. i0
?. 0 3
,*>
0? .
7
A ]
7
. 7r"!
2 2(')0
)
o J .
il
b *
'i
.Mi)
1
'J
*2.
1)
7
i
-! " -;
162

-------
t'> •	
(. v-.. ^ - , )1;
:

» • ^ ' '
7 J
v .. i
• 1 - 7 1
r¦/.'.)
*. !. 1
v r =)
c -'i;r:
(*'*/- }

n \ "• - r
-i . >
7:
•'« r
* r


. KC

7
i
"7 r
> r,

. 1 2'4
1 ¦¦ . 1
r '1
a
"7 ->
< ?


. 1 7 U
j"7. 1
t 1

7 A
;

. 1 c '1
Vl. 7
»- n
*
? J


^ c:
r - . '
1
• > /
r)
7 -4
)

-> T }
7., # 4
\l 1
'i
7
'»

. ^ 7 7
m. i
•\ A
7
7 1


j r
i:-i. i
¦ »J

/ t
">


1 n . 3
'"» 7

7 1


. ! j 3
2 2 ? . 3

(3
1
i

. 1P2
' iJ "5.
(¦> '
3



.'427
? V>. J
' 'l
t
"I


.47 3
'4=2. J
!: J
¦)

4

."•11
¦" ~ " . )
( 'J

f> -


. - 'J 1
'->7 j. 1
1

t y
>

. ^ 7 7
'3 C 4 - ,
o 1
2

I

. 'w 1
no.:
-- n
3
- ^
1

t f 7
1 J 5 •'. 3
'•> ~l

*, i
n

. "7 27
i -i. j
S )
i
'i i
)

."713
1 i C s. 5
f, (1

'¦C
J

. 7 HQ
2: Vi.:
V

^ c
")

. 7 .".,i

7)
3
V-
i

. 7 77
2 r: u 3. :
'"j '
1
S j
1

. ° 20
]C.'J

-------
j"R' L-i'Uin i d !rom	,
."i.iblc copy 1
:~r


T P 2


jr. r :¦ i')::
l ::: * - ,
";:;s f: re

r.r. ¦ c i a 01 ?.
(:*.•;/"-)
ur.-:- i v v ,l )
c.^r; -
•'i" ; \
¦ r 1 /
sat : -i
1. D
7 :2. n
J 'j
1
,r.Z2
5. !
7 7 .. C C
9 0
' I,
"1 C )
1 i. i
71. 9 J
'4 '•
") ;
. 0 B 7
1 V. J
7 " , 6 C
'¦2 5
'0
. 1 00
2 2. ij
"i. C "
'2 U
'0
.12 1
2-2. 5
"" i . 0 C
U "1
; -1
. i 2Q
?.'i. i
7 ii ^ 'i
;

.12 0
1U. «
7 -T. i,0
E }
in
. 1 37
1'1 ...
7 'I . c 0
n ?
7J
.15"
-irl. I
7 u . 2 0

.->0
.l-H
^ 0. i
7a. 10
.¦2;
:o
. 1 (¦ 1
5 •'), -1
7 j , « 0
2 1,
*•!
.1^0
~>0. • !
/ 3. 50
'! 1
r,
. 1 I-! 7
7 l.-l
7 3.50
o r
'
'! "*
. 1 ° 2
8"?. a
7 2.10
riC
j ]
. 1S2
1 'J 1. ¦)
7 2 . 9 C
"T r.
i
7 0
r*
1 15. 1
7 2.7C
7 -
3
.211
ni
7 2 . = C
7 n
3
. 2 ia
i j i. j
7 1 . 90
7-:
' ^
.2 12
1 <: 5.
7 1 . t 0
7 q

. 2 2'3
i 50. o
7 1 . 4 C
7 8
' 3
.222
1 7 i. ^
7 2 . C C
7 j
* j
. 2 'J 2
1 p 2.0
7 1. HO
*' 7
31
. 2 ti 6
2C 2. 0
'7 1 1 P
¦ I . I V
77
on
. 255
<>31.0
7 0.90
7 fi
¦I
.272
2r->0. f!
70. 7'J
7 C
i ^
.2 73
2"7 .
7 0. -,0
If-
C i
.2^5
J 1 0. )
7 0. U C
75
>o
. 2 '-3 1
J a '2. 0
70. .20
73
<0
. 2 a0
3 a -i. ¦)
7 0.30
7-5
( 0
.2 52
HI 7. 0
5". 0 0
7 5
30
.305
50. 0
6 ' . i, 0
7 3
5 "i
.37a
5<;0. 0
o-i.63
7 :
.0
. a C r
5 o 0 . 0
'i ¦». 5 0
7 J

. 3 ^ (i
n .n . 1
¦V.. 3 0
7 5

. 3^2
7.21
:2 . 0 1
7 1
i r
.ilia
•2 7 1.
¦37.30
7 C
7 0
. a c •
¦i 7 1 . "i
•j 7.3:
7 C
.1 ¦.
. a r
m 2. i
• > 7 . 1 )
7 0
"• J
, u >- 0
i. i
•i 5. 30
(; P
<0
. 1
la ! i.
n ^ . 1 )
n -i
< 3
. ^ 2 U
iCW

-------






¦; MIT?
(-¦(..
. i'r i».
¦ u .
.* \ ¦ :
[ ¦; ¦£
). i !'
: ;•
^ r : ¦;
( '< :/
M
; v
V r "• *
* * »
C i'OS
r." 1 f" r >
* r i r.
! .
)
/1.
O
¦; i;

. : r- o
^ .

C •
»} ^
"7 C

. 1 j 3
1 : .
3
n 7 .
fi3
¦7 7

.17 3
17.
')
? ).
JO
77

. 1<-'r-
1 1
. .
i
¦S • »
V}
7
^ \
.c -
• J "*¦
\
') *) •
c -
7 '¦>
r o
. < 2 J
2
j
^ 0 •
7 j
7 f;
"i ^
. :> i j
~ii.
1

tiC
7 t
/.
. ??2
¦* n
J m
• >
•i"4.
r
7?
> ^
. 2 'j 0
'i j .
>
i; < .
7 ">
Hi
/r
. ? r-c
SO.

'> i.
7 0
7U
'SO
. 2 c')
V>.

¦j ti
¦40
7 U

. / !• 7
"v..

r> :1 .
13 >")
7i,

Tr.;j
7 1.
i
o r.
•1 (j
7 U
"i r
. ? 7
¦'7.
j
fi -i.
00
7 <
~
. 2 >•
10 1.
j
o 7 ,
•JO
7 ">
"S s
¦>c 7
lli.
/
t^7 ,
r) J
7 2
1".
.30 3
13 1.
1
•3 7.
r; 0
72
~i r
' U
. 3C-
13 1.
i
(3 7.
J'J
7 2

. 35
1 -i r<.
>
f) 7 .
*> ^
V/
72
0 0
. 3 30
1 3 0 .

S7.
10
7 1

.'13
17 3.
.i
7 .
10
7 1
¦'0
. i y:
1L
m\
f>3.
9 0
7 1
•3 0
.
203.
*¦
O •'-> .
* .>
n ,
7 1
1C
. 3"
J 3 1.
*^i
•3 h .
¦t.:
7 C
^0
. 3 F 13
2f) J.
•j
< > '3 .
?o
7 C
2 3
. 3 '3;
2 c- 7.
,¦>
n b .

7 C
2 0
,3m
3 1 f>.
•_
.
'iO
7 0
10
.36-1
3 a -5.
.¦
6 5 .
d 0
G c
7 0
. ^ C l:
3 .'J 3.
j
6 *3 .
c (3
7 C
2U
. 3 7 ^
'117.
*
r
6''
u;
. •: 1"
5 i: 3 .
.
o j .
• 0
6 7
J.o
. d 7 P
rjoO.
j
C." .
2--;
<3 7
10
. 12
3 o 3.

o u .
i rt
( V/
^7
") "*
. .i cr
'Sll.
1
r.n.
2 C
¦i 7
00
.r''.b
¦'JO.
i
u 3 .
-7 r.
/ ^
J-
UC
. :l 1
''71.
*"!
6 3.
2 3

•) 3
, = r 3
¦17 1.
'i
6 i.


1C
. r e /i
10 1 i.

ft 3.
5

7.1
. " r- n
1 223.
-
M 1 .
3
6 i
,'•1^
. pi "• il
1 'i J 7 .

n2.
CO

-------
R.-Vicdijcod 'rem ( ^ \
h. i: ,•	ccpy V, J
- — ^ « - r - j »¦ •« '1 r* J" «i ' - >, T 'f y
: j i "i r " a ?: i •:
1
L, •* *'
cT c ~ .s :s "¦¦; -

;;¦ ¦ p r ¦ • - - '¦
(v J/:.)
i- - ^ f
/ ; i*
' r •
. ) c: ¦ j
v:
~ \ r r ~
i. ¦>
*5 t.
=
; 'j

. 7 c '-J
m. J
- ¦
c:
7 -i
•j
1 1 H
2 0 . n
L. ~7

7:
i o
. ¦ 7 !l
U :i . '(

r r\
' V
7 i.
c c
. 3 0
5'?. 2
. /;
VI


. u
1 i . • ¦
~
^ 2
; -3

. 17
j -
» r-
i >



- • J
") 7


¦» ^
^ ^ "J ^
1^3.)
).

r j
V?
(iC3
1 J 5 . J
(¦ >
1 ^
4
' fl


- 1

p
*5 0
. 7'2 1
2 '-.h.l
f. 1
20


. n 1 2
-107.')
•"iC

r 1
40
. 0 2C
?55.0
»s
n
¦v:
"] ^
. ;j ¦:
7 C 1. 0
c "5
c c
a "
7C
. :> 1 -b
-n U. o

:?0
h *2
¦i
.1«3
3 - 2 . )
V">
r ^
;
£ .1
10
n £ t
11:. n
c cj
z ¦>
^ J
n "
i:
. C;;7
2 j j . )
^''
tic
r <2
t o
. '-P ?
ii -!). T
¦:9
3C
» D
. j
. r U
i =. o
r. {3
T "
n T
¦» i*
¦j
.3i:-1
2 20. 3
V3
20
rt v*r
'¦'0
. Ju;
106

-------

(v.;/-)
i. :
i-.
; .i.
4 4.4
51.:
7j . o
j
1
/;
)
}
1

r> .
0
2

)
»- •
¦1
)
c
n .
'¦
L*
r
7.
r\
e;

5.
j
7
r»
1
<»
J
}
1
/¦
'~ •
')
ri
r
,
J
1 1
1

0
1 .2
¦i
j
'1
1 '!
"j
).

1'!
u
0.
T
i:
t.
0.

1
:r ¦¦ ¦ \"
' i
'! " ; !
~ , • . -« 7 » '
:;
,
^ \ Z {- c
'
..


*



. i

¦ ( ¦'
1
C " ' **.> ¦
¦• . f l ¦:
" • T
1 c
' / .
r-c
"

r.
2 c-
'1 .
~ "
" **
. ^
*>
c c
<• 3.
f; D

7 .
¦:

r '.
1
•; ~
i
}
J A
h j.
.:3
"i
i *
¦j
<* r
* 3
'• .
7 -

' *
¦)
" U
f:.

/
/
« '-i
1 "
V.
¦ < ^
") -

, »

(: 1 .
T

i1
# j
? ^
<"> ^ .
'.J
.* ">
* ^

T C
o 'J .
n
r'. "
:

n U
T f' .
¦i "!

-

Ll
.
j 1

:i -

c
n C .

¦?
1
, -
^ 7
or.
--0
r 3
/ r
-

¦3r.
") ^

¦

" <•_
ti I'.


\m

f. u
r,
1:


-
"7 'J
.
10

¦i"
r
77
fi.
11
r 7
,
p =
?n
' .
n

'' 3
. =
<¦ 2
]fi 7

-------
R'" rr jduced Ircwn
cc«»i .lvaJ.ibfo cor
{ '¦<
v I
7 5
1r J
1 -
7
1 1 ;

1.: ¦>

U'¦

1 >.y J
7
1 ¦< )
¦A
J
:: i

i
,}
/ 5-)

*' ¦

• i)
M 3
5
7
3
^ " {
7r>
•> 7
~ J
n L.
¦)
¦)
- _»
2
-?
{. ?
1
v, r)
¦*, .>
iz
7 J
¦n
1 "v
r, i
P r'N
1 *
: t t ::.
7 r
7 "
7 1
]
. ~>
7 *
11
r.
* .
) r
" 7 \
~ r-
1 1	<
? ->	2
1	i
1 •.
* f	'i
,; 7	->
7	-
1^7
7
^ 1
c.	c
a	. c
r.	f: 7
7	1
't
~	0
)G'.i

-------








- J
ti ¦;



~ J
1" '«
:. j :: c.



i
r
.V} C ~ C'
* w i "

-, - r- , , . ~
T
C
" /
-•)
-

(

•i
r n:)
p r r
•' r - ')
" T
T ^

1 .


7
p



> "k
1 ^
I '
1
r 7

' a
7




%

"" ^

[ -


/ •
5

¦>
r.



7 »
*•
j
'i 0
i
1.


r-
r,

5

7 "
1 i*
;
(• 5
1
*• •


>
•'

,¦*
n
1
7 1
7;

7 '?
A
1
c
*

r,
)

i

1
11

c 1
s
•
0


-

i
n

r. .-

"?

r;
')

-
S


r\
-
^ c

r ;'i
>
0
¦)

r



r
, N
"• ^


*-
7 •
'





V.


, '
1 1
>
)
¦M •


0
5

\

- .»
i
}
3 11
"i
'' .
•J

*»



o

»"
1
20
ti
3.
¦i

c
'i

0
/)

4
-!
n
r:



n


c
0
¦> **


ti 7
t:
«¦
1

f*

%
1
n


)
f- ''i
7
:,
->





'j
> -i

"?
•:
.)
2.
-


"i

r„

7


r
0
*i •
=




1

.. 7
>

•.
1 r
v *
7


-»

1
0
„ 7
1 "»
¦>

1 c
'>•
J

r:
3


'j
"k 7
1-'
(i
t t
^ ¦>
11

xJ




-



,
-v







'


t

j ¦;

1








. 'J

1 J

1

'

V


¦)"
1
I'l
1 C
n .
'-i

r»
p

r

r- »-

¦ J
;u
1 r-
j.
7

f


.1
¦>
"i *'

>i
? 7.
'*
¦»
> »
)

f-


-
0

7 0

c i
jr;
i.
3

0



J
^ 7
;
11
i: 7
n -
i.
-i.
T

r;
i

i?
0
, r
¦) f*
. 'i
* s
; c



r
1

7
J
'J
¦j*;

7l!
2-i
3.
7

»-x
i

c.
3
*i I
¦)

r i
¦; ¦>
J t
>
j

n
i

7
T
- :•
? >
^ -
»• "?
3 c;
J.
5

f)



1
*5 'I


1 1
lu'j

-------
rodm.1 '"! IroM ' t }
! l ¦. .t i.iM ¦



T ' - N *
: ' "C . 'f
\ ¦ • •
¦>, • ' » j - *
•/ 1
- r" i :* l ¦:

" j
«^: f:. _
r ¦'

I *' '¦>

i: v - (

C ¦ ¦, - -
\
r
¦; \ t ;
5
>

j
-» '*

. ¦- 11

• 1

{ ,
7 1
\
. JCr>
i ¦
11

::
•S :
)
. 'i i
i >-*
}
1 ;
r.

7
. -i "r 7:
2 i »



¦V/

• : :ii
2 1-
-1
')
1
r* •>
j
; £
*
. ' 1 ?
, : J
'i
i 3
j
r "

' -
C ) }
3
¦'- j
-i
•¦> »
-
. ~> '• -
¦» "S
' - ^
)
£ "*


:

« - *
o
4- ~j
¦i
"> 1
[
. ¦/ >¦'
1 1 :: 1

a i
7
m /


: j r ;

1

.

7 ~ k
1 7 - 0

•' 1
r. i
.3
*"\ j
-;
. ? .'
: v i

i
¦*
j; j
1
. ¦ v:
') i ^

- ^
f" i

^
>
. "> c 3
1: j ^

1

' 2
i
. t r »
'i i J ^
0


r. '
*, -
.it ]
r: * -

n "
«
*> '
•j
. T:5
¦i i ¦:¦
J
" -
•>
.'v )
n:.:

. '• u 1
^ -
J
^ ::
-
/:
1

(C 5
I
•)
r i
]
.¦j -j
7
. n j
. T no
1-:-:
J
¦) .2
7
7
> >\
. 1 7
; 1 i

c ::

r
(
5 c 7
2 "i • )
ijj
11
i-1
i
r" c
¦I I
¦>
. '! 0
. 1 f- >-

J
1

4
]
. i - jj
7 C i
)
'¦> "
1
'l 'i
•\
. 'i -;;
*« '* .
)
0 »
:)

!
. t
1 1 U.i
i -»'

'J ^
-jC
a
- \
I ?
t
/I-
. c 1
* v- )

*N ^
7

-

** > • >


•}
: "j
>
. " 1 ¦•
3 5 : '

<",r-
S
i !
. >
\
. ¦" 1 -
. " 1
j -ir:
J

"J

'
."11
r. > ., *

;i r
/v
. 1

, " " :j
1 J
c
~ o
1
:
J
. * '(
170

-------







' 7 0




_ '•
r: a
r ? rj

T T
L "* " C
c r s e - :
- ¦,
">; - ¦:: ¦¦


•3/L)

l r'j
f •'
V, r _-)
c •:
2)
r •


1 .
"0

7
^ ,
C
o ¦:
7 ¦:
. 1 1


)
)

7
1
? C

l n
. I <
"j

7 n
¦j

7
1 .
\ 7
7 ¦'
.1 '1
i ¦)
•»
1
1 .


7
1 .
C T
7 7
) i
.j 7
1
">,


7

c ^
7 <-'

') n:
'j
1
i
j

-1
1
n
ij
i c;
: 'I
. :"
-

J.
j

f-
" *•
7 J
7 c
j
.

?
j #


'•)
r
5 1
"7 I".
) 1
11-
0
J
1 .
0

>•>
n a
17
7 J
is
-¦> ,

J

7


O
f '~
7 3
1
. J 1

r
1.
:i

n
1 .
" •"*
7 ¦;
"10
.

h
r\
1


7.
i 5
7
r-i
. '[i
r
f>
)
3

0

3 a
7 1
7 '1
•r
1
7

"3

r
r\
7 .
JO
7 1
: i
. 13
"I
j
I
•
2


^ .
1
7 r
'' 7
. u ¦;

Q
#



r,
7t
7:
1
. 'i
¦-
1C
' •


f
" .
'i n
"> 'i
-) i
. 1.1
1
11
1.
i


^ .
!

c. .1
. ^ 3
1
1:



<>
.
1 1

3 i
!: ^

1 /;
/.
/

I'

i:
¦\r-
J '!
• • n
M
1 c
"7
•
1


r;
f 3
•S 'i

• -1 7

1 7
'S.
¦)

f;

'• 3
•' r
: i
•

1 V
^ •


r
C
r; ,
n
C. .1
: 3
. 1 1

; i

j


'4 ,
75
- 7
^ *
. = 1
r\
; j

7

6
>1
« »
>¦ 7
hi
4
• .. ^
}
; t:
u.
I


c 1
7
-1
')
}
J f>
2 •
rj

r
U .
C7
n f-
7 2
c M
3
lc.
1.
1

6
"J.
-> 7
¦if"
•> -i
c 7
•j
} c.
} •



i b
JO
^ c;

r

1: U
'<.
1

•:
T #
1";
r) U
¦I'J
~T

-------
j \>,proJuct,J from
I ' ''*i oViiil.ihlc copy I


...

.j _ j j
. p . - r.
av :
L
::: -> o :• c ^ r
: -

j ' \ ^
( V'/D
I.IK" f
V,r::)
t. '; f
• 1 . " 2 )
1 ^
1. GO
7 1
c .
¦"< ?
)
/¦n
i. ">
n
C:.
'r
T ¦»
» 1 ¦; 7
7, -3
¦S <
1- 1
7 'J
^ i

11. S
«, r
-JO
7 '
1 ^
.in
1 "i. "i
r
1 1
7 2
} j»
f*. i
1«. u
f. c
'* ?
i'}
i i
"> ~
2.1. 1
^r\
i; 2
7 1
? * i
. ,3'J
21.2
n J
7 2
7 1
r>«
J! ' 3
3 1. J
'¦ *;
5 C
7 1
i .j
. i 7"!
'n . '7

1 5
7 C
^ *
.: ° u
5 P. J
'5 -1
C,J
7 ^
i z

''0. 1
fc 'J
13
•)°
¦V?
.31!
6-1.1
•J ;J
2 ^
^ c
la
*r
7 5,5
" 'J
i 1
•SO
T 1
.33 1
}. 1
f 1
C 7
s ¦?
»; )w

? T . 5
('¦ 3

A -i
K
1 '• i".
1 r ¦] . n
( T
c. 3
.-N
v3
1 '* ^
1 1 -i. 3
3
3 5
•¦>7
j •>,
. 3;"1
123. )
¦5 3
1-3
',7
> *•
5 " 1
137. 7
<¦- .3
2'?
" 7
r, ^
. 37 1
157. 1
r, 2
S7
7
23
1 7 -
17 0.5
C- 2
Ti
& r
c.r
3 3 r'
1 9 5 . '<
f: 2
7 3
.)
77
. i1'
2 15. i

i: !•
^ C-
J 'i
. 1° J
2 J'i. 7
£ 2
u r
'
I :i
.*¦-"¦
2=u. 1
0 2
f :<
f> f-
Hi
.U1U
jr.?,.
6 2
17
c.
r. i
. •-?. 1
35 1. 1
6
1 1
r;
7 >
. i: 3r
JO.-.'i
-1
:i ^
r-
•*
. (i y >
UU:,1
f i
::
n?
12
J C 1
U S >' i. ^
6 1
r 0
K
\C
. ii "
5 >' 5 . 1
f 1
7 1
") 'i
0 0
• j *¦>':
; ii l: . 1
1
.. c;
f *
.J J
. j •'¦ 1
7 .31. 1
6 1
H 7
M .
~ ;1
. -1 -3
112

-------



.s
iv. :;*s r
c. nrrk



i! i:o


• ;:>.r
<\\ n (>•:




!. * A Li
¦; r i. r
!.:;•)::
c: !'.<)'¦,;•> :i
::: r r r;
d r;i'o!. a ;? r:-.
r r "P'i!
(.1" /[.)
!. ! K " {V V , i>
) C-B.
( V'i . 1) •!
H \ 7 l 0
1. 0
o. >
>0

It >.
. l'!2
rl. n
o. ^
/ -. 'i 1

'11. 'H
. 1 7 :"i
«. 0
3 . o
7 r.. 1 0

ii.».'? 'i
.17)
1 k o
0 .0
7 S. C 0

" 1 . 7 ">
. 17 .)
1. o
o. n
7 ri. :'"i

.'1 ? . 7 ')
. 17 0
1 r.. 0
0 . '1
/ r> , 7 o

HIJO
.17 1
1 t. ')
'KO
7 . :i 0

'1 1. 50
. 1 1
20. 0
). 0
7 r>. n 0

•H . 1 0
. 1 G')
0.1
2 1. r,
7 oo

n i. •> o
. 1 (i 0
0 . 0
m.;
7 i. :n

TO .70
. '(7 r>
1. 0
'!'> . 'i
7 1. 'J 0

7-1. r.O
. 1 0 7
0. 0
UK 'i
7 1.0 0

7 7 . >1 0
.211
0 . 0
2 1 . 0
>K)

/ r.. 'i 0
. .170
n. o
v;'t
•Vi.0 0

7U. 10
.no
0. 3
^'i 0 . ^
I* 7. .1 3
•31.1)
7 1 . O0
. ?r.
1. 0
0 . ^
7 0. T)

70.10
.112
ri. o
0 . i
"/ 0 . :? 3

/" 0 . 1
.111
•'). 0
0 . 0
7 0 . «! 0

7'! . 1
.111
10.0
0 . '1
7 1.10

7 '} . 'i 0
.111
1. 0
n _ (¦)
7 1. Vj

H<) .
. 1 n
1'-.. 0
0 . 'i
/ 1. 70

tl 1 .00
.KM
IT. 0
0."
7 1. 70

00 . so
.111
dl.O
o. o
1.1. il 0

H 0 . ') 0
. 19
0.0
i
7 o. n

7 7. 10
, 100
0. 0
M . ?
k  t>. i{ 0
. ;»7")
173

-------
SURF ACl': C.'.LM
.skdtuHN'T: uhitf silt
i; o
OKCEt.T:!
A"1 ro:s
l i r, >, p i: i
:'>V5 Sl'.TT ! 0\:
1) EI" 01. A R I 7, A T 10 N
(Kfl/I.)

l ikk (v v, i:nj
cno'-'.l ( VII , 13 H)
!! A T ) C
1.0

v i. i n
9 7 . 7 H
. 0"0
30. J

7 3 . 1 ¦:
ft 13. o n
.037
9 0 . 9
>9
¦; i. 7 tj
!* 0 . 11 1
. 1 36
151. r>

7 0. (¦')
7 7.7 0
.190
10 i. 0

h Si . 7 »
7 '1. 0 8

'iji. r>

6ft. 10
7 2. 0!<
. 360
1) RFACK :
ii e d r u ;i



1.0

"7 3. 7 rj
•'! 9 . 0 7
.0 30
10. 3

71. r, 7
H C {
.0 36
90. 9

71.r- n
110. ?6
. 1 16
151.0

7 0. 37
7 /. U >>
. 19-'i
303. 0

6d.r, H
7 3. 97
. ??)9
(4'5't.

r. 7 . S 3
7 2. 3 !i
.361
UliFAC5;:
HOlKil!



1.0

7 3.1.6
89.07
.031
30. 3

7 3 . <; 2
H . d 3
.0 ? 0
9 0. 0

7 1..'' f>
90. 3d
. 1 2H
151.0

70.C 1
7 7.10
.19 3
'¦ 0 1. o

6 fl. 3 /
7 3 . 7 3
.29?
u :• 4.5

6 7. t,9
7 2. 2 r,

17-1

-------
s u i? f a c::: calk
cc cr. ;i r;< at ton
(f.G /1.)
1 . 0
30. 1
90. '•)
1 5 1. r.i
3Q3.0
U'jU. '
si] 1(1-AC?:: !1 El) r li ;i
1. n
30. i
'JO.1)
1 r) 1 . r!
3 0 3 .0
u5u. :>
:;iJ8FACS: NOlUIil
1.0
3C. J
90. •)
1r) 1. r>
303 . 0
U L> <1. r>
;;•¦:!>imlnt: white :;ti.:
n! u L
i.ir.Ai? cuof.;; skpttu!;	d rr-o l a i? rz ¦vrTc
Lli. L /V V r !:) CPO'JI (Vii, n.3)	RATin
fi-9. 7 ' 7 f>. 1	. 1 7H
fin. l/j vc.yi,	,m
'M .02	. ?S'I
<>*>. "Q 7 1.CC	. T09
fa'l,. 3 0 6f'.;S	. (4 C 3
6 3 . <3 2 f> 7 . 1	. u f, n
f> . f> 0	7 6.27	.171
7 C . 3 L>	7 f . 1 f,	.15 6
h (j . H	7 2. (' r)	. ? U 1
(>5.70	7 0.91	. T n i
'"'".10	ftf'.lp	. V)H
0 3.63	t'i 7. 0 fj	. 5 4
76.01	. T r,o
f> *1 > 0 9	7h. h2	. 1 f- 1
vi	7:>.:n	. ? riS
(ir'. 'I 6	7 ( .'t ^	J11)
f> 3 . fi .i	G 7 . M'i	. I'm
f> *. 3 0	f, r>. 7H	. II !j g
175

-------
-SriKrACt: C A L1
co ::cE;.'Ti(/iTio
a. 2
4 0 , >!
122. i
a n i. n
s u n F AC!
1
ii
40
12^
20 i
5UHr ACV.:
.0
;
, ii
. i
1
H
4 0
1 2.1
20 J
-SO F'FAC:-::
1 . 0
ft.?
40. rt
12 2. <
20J. :i
C A!. 1
ho iir; ii
11 j-:mt
RFB .S T I.T
!. T i: A ii
Til
i;rmr; s
SL'CTI L.
l r k r (v v, c p.)
S :: 1) 1 U
(• ¦'.
f> "Ii .
(¦?.
f.C .
f:!T.
f. u.
6 5.
() y.
GO,
f> H.
f> 5.
f. 2 .
(-.0.
r>8.
6 .
6 <•.
0 1 .
f.C.
. I': 2
> C r i
. 2 f»
, t19
, u I',
, n
,02
, >iC.
47
, 2 1
on
. 1 ]
: HO
P I
'12
CROSS { '.Ml , r m,
7 4 . f; 1
b !!. '1 'I
r. 4. i'i
6	2. 3 2
7	4. ?4
74. 27
r. I<. ('• 1
f) » . .1 2
(i 2. ¦'( '¦>
7 4. in
7 4. 14
r, I!. 7 ''
G 4 .
f»2.
74.
74.
fi!-!.
2 !
T I
3 I
1
5 4. C 7
02. 2ft
:i'OU n T 7. AT TON
I'ATTn
?r>0
4 2 2
6	in
7	IS
176

-------
S U :? F AC : CALM
co'.icr.'iTiivriiri
(as/i.)
«o. ti
12 2. "J
20 5. '!
g u it r /. c : khium
1.0
ii. 2
u o. n
12 2.3
20 j. a
Si) HF *1Ci-:: [''Oiltill
1 . o
H. ?
U 0. >1
12 2. "5
20 j. a
flFUinF.NT: PHI .SILT
B! !J E
I.IMK nSCTlWJ	DFM'OLA". 17.KT [ON
MKp,(vv,ri]) ciuiss ( •;}',i;-;)	rattc
6 2.22 fill. Til	. T?'i
6 0 . r>« fi II. I o	. K 2 S
5q . c- .1 6 3.12	. (J H6
fi " •	70. 'M	.2 (J?
6'f.m	70.  0. a	fi n. i o	. u") ?
5	S . 7 7	6 t. 0 6	.'170
6'l.UQ	7C.H7	.?25
fi <1. 1 6	7 0 . '! '1	. ? 3 a
6	1.62	6. rs >i	.310
60.11	6 3. Tin	.
59.1- J	52.'»i	.d02
1 77

-------
SiJ HP \C.r:: r, m
co;j;..,	rri>;
(.1"/].)
ri. ft
dl.O
r,7. u
nr.. i
i n i. i
211.0
SI) RFACT: :'IKnriM
»3. i
2'J^
¦41.3
ft 7. H
n ft. 7
19 u. o
211.0
s i j p a c:n 31; i >
q . )
1 'i . (>
it 1 . ¦)
S 7. h
n ft. 7
1HI . 0
21 . J
•I !•;i) ir: ii ¦;o w'j r i. t
i( Mil
L t o *.!? cr'tr-::;
r; n r r in'
l v (vv,
7:!
ft 7.r, 7
ft ft . Ii
<> ft . /
«.7 I
r- 3. n
11 2: II 0
c;?ov; (vm, dim
7 •). r,
7 ti . T> 0
7 2 . <;:>
7 1.10
ft '1.3ft
ft ft . 7
ft ft. Vi
ui-.poi, art:', vrrn.-j
!' AT T '>
.10 1
. 20 1
. ?ft 1
.201
. )'lft
. 'Ift
. ftO 3
r» o. 'j =i	>30 . 2.001
fi 7 . 'I	7 '1 . i 5	.20 2
ft ft. 2 ft	7 2 . "!r.	. 214 ft
ftft.7 .i	71.0")	.;i'4
ftd.ft'-i	ftl.3")	. m
ft 1.20	ft r, . 7	. :j60
1*1 2. 2ft	60. 1U	. 5 1 ft
7 0.11	HI. 11	. 0 7 'J
1. 7.13	7 f| . 1 n	.210
or,. 07	71.'if,	.2r,a
ftft. 11	7 0.:t;i	.277
¦ft u. i ^	r>. n	.no
ft i. n 2	'> ft . 17	. /| 0 3
ft 2. 0 8	ftft.0'4	. so
178

-------
courr: *: r ¦» a r r n m
(;v;/u
3 u.
-*1.1
S7. ¦:
11<">. 7
n 'i. t
2'4 1. 0
sii'ii'AC?: :r--Diin
'3 . 1
¦> '-J.
U 1 . 0
r)7. 'i
Hi . 7
m. o
29 1 . 0
s ij :> r i\ L- ~: mm;;t
n. 2
2 '4. r.
ui. i
r> 7 . U
ns. ?
n 'i. j
2)1.1

S"IJ ¦
T :
ii 'i

iH.r; ¦:


r.rpAT ci
1 osr.z r ro.i
OEPOI.ARTz
fvv, o'"i)
crtiv.s (v!!,

H A T r 0
r>. :M
7 J . 1 1

. 17 S
fi ?. ¦') !l
7 0.0?

. ,V_S
r> 2 . 7 ')
6 !i. S :i

. 2 'j '»
¦)
i m n

. 27
>¦> i. r> n
<> '>. 7"i

. 10')
0 0.0 )
00 .00

. 00 0
f»n.v, .<
f. 'i. ;n

.'(17
6 r>. '1 7
7 3.20

. i r>')
f. J. .D
'>') . fi 'J

. 2211
2. 'M
f) 'i. r, i

. 2U'i
i'-. n
¦i 7. ') /

. 2 57
00.00
oo.o .¦)

. 00 0
0 0.00
0 0.00

. 000
f> 0. 0 1
6 u . 1 9

. 3ii 2
r,u.ao
7 2. ?1

. u>n
r, _i. n \
f) fi . } 1

. 22'>
6 1.')')
'"l li. 1 rl

. 24 0
1) ?. ? s
fi 7. 3 7

. 3 0 M
oo.o^
00 . 00

.00 0
0 0. 0 n
0 0.00

. 000
ri 0. £¦ 1
f-t 1. 01

. 17 1
5 79

-------
Let's face it. The input of new
technology is what keeps
businesses vital. And small and
medium-sized businesses are
hard pressed to find the
resources to conduct R&D
programs.
Now you can limit demands on
your resources and yet have a
healthy monthly input of proved,
and practical, applied technology.
Some of your general and
specialized technical information
needs can be met with a subscrip-
tion to Tech Notes, a product of
the National Technical Informa-
tion Service (NTIS).
13U
Return to:
National Technical Information
Service
U.S. DEPARTMENT OF COMMERCE
5285 Port Royal Road
Springfield, VA 22161
WHAT ARE TECH NOTES?
Tech Notes are single-page sum-
maries (often illustrated) of ap-
plied technology. The ideas are
tested, proved, and contributed
by a number of sources, including
NASA, DOE, NBS, NIH, NSF, U.S.
Army, Navy, and Air Force, U.S.
Bureau of Mines, and various cor-
poration and university labs.
Whatever your need for applied
technology, Tech Notes, with 11
categories from which to choose,
will probably help out significant-
ly. Packets of information in any
or all of these categories can
come to you each month:
Computers	Manufacturing
Electrotechnology Materials
Energy
Engineering
Life Sciences
Machinery
The cost for this unique service is
surprisingly low—only $50* for
one category (less per category if
you buy more.) For the lowest per
category cost, buy all 11
categories for only $250 per year;
an incredible savings.
So think about it. It makes good
common sense to save money,
research time, and staff hours. Try
Tech Notes. Order your detailed
information package tree of
charge, by mailing the coupon
back to NTIS right away.
'Prices listed apply to addresses
in the United States, Canada, and
Mexico. For prices to other ad-
dresses, please write to NTIS.
Ordnance
Physical Sciences
Testing and
Instrumentation
I'm interested in learning about applied technology developments
in my professional field of interest. Please send me PR-365 with
more details on this service.
Name.
Occupation.
Address	
City, State, ZIP.

-------
Let's face it. The input of new
technology is what keeps
businesses vital. And small and
medium-sized businesses are
hard pressed to find the
resources to conduct R&D
programs.
Now you can limit demands on
your resources and yet have a
healthy monthly input of proved,
and practical, applied technology.
Some of your general and
specialized technical information
needs can be met with a subscrip-
tion to Tech Notes, a product of
the National Technical Informa-
tion Service (NTIS).

Return to:
National Technical Information
Service
U.S. DEPARTMENT OF COMMERCE
5285 Port Royal Road
Springfield, VA 22161
WHAT ARE TECH NOTES?
Tech Notes are single-page sum-
maries (often illustrated) of ap-
plied technology. The ideas are
tested, proved, and contributed
by a number of sources, including
NASA, DOE, NBS, NIH, NSF, U.S.
Army, Navy, and Air Force, U.S.
Bureau of Mines, and various cor-
poration and university labs.
Whatever your need for applied
technology, Tech Notes, with 11
categories from which to choose,
will probably help out significant-
ly. Packets of information in any
or all of these categories can
come to you each month:
Computers	Manufacturing
Electrotechnology	Materials
Energy	Ordnance
Engineering	Physical Sciences
Life Sciences	Testing and
Machinery	Instrumentation
The cost for this unique service is
surprisingly low—only $50* for
one category (less per category if
you buy more.) For the lowest per
category cost, buy all 11
categories for only $250 per year;
an incredible savings.
So think about it. It makes good
common sense to save money,
research time, and staff hours. Try
Tech Notes. Order your detailed
information package free of
charge, by mailing the coupon
back to NTIS right away.
'Prices listed apply to addresses
in the United States, Canada, and
Mexico. For prices to other ad-
dresses, please write to NTIS.
I'm interested in learning about applied technology developments
in my professional field of interest. Please send me PR-365 with
more details on this service.
Name.
Occupation.
Address	
City, State, ZIP.

-------