"Delta, -Suitut 'Say Sc&ia^ccaC Studies
A REPORT OF WATER QUALITY IN THE
SACRAMENTO-SAN JOAQUIN ESTUARY
DURING THE LOW FLOW YEAR, 1976




-------
DELTA-SUISUN BAY ECOLOGICAL STUDIES
A REPORT OF WATER QUALITY IN THE
SACRAMENTO-SAN JOAQUIN ESTUARY
DURING THE LOW FLOW YEAR, 1976
DECEMBER 1976
INTERAGENCY AGREEMENT BETWEEN THE
U.S. BUREAU OF RECLAMATION
and the
ENVIRONMENTAL PROTECTION AGENCY
Contract No. EPA-IAQ-D8-F078
Prepared by
Tomas L. Macy
In collaboration with
JaMi F. Arthur	John R. Bochmkt
Molvin D. Ball	Ma thaw C. Rumboltz
A cooperative study for the
Environmental Protection Agency, Region IX
UNITED STATES DEPARTMENT OF THE INTERIOR
Bureau of Reclamation - Mid-Pacific Region
Water Quality Branch - Sacramento, California

-------
INTRODUCTION
C (	1
anSlrifftea»i»g^4«»a»-bej-plaiui^tt "fui in-the-future
The Environmental Protection Agency entered into an agreement with
the Bureau of Reclamation to document certain effects of low-flow
conditions by augmenting the present water monitoring network. Data
obtained and its interpretations will be useful to evaluate low-flow
effects on the estuary's beneficial water uses.
Scope of Work
In addition to expanding coverage at existing water quality
monitoring sites, new sites were established to obtain the necessary
information. Two crucial areas monitored were:
(1) The San Joaquin River in the southeastern Delta, including
Kiddle and Old River portions and adjacent sloughs, in the region
below Vemalir and above the influence of the cross-Delta flows from
the Sacramento River. Of particular intftteat here were the measure-
ments of phytoplankton populations represented by chlorophyll a,
dissolved oxygen, and salinity > represented by specific conductivity*

-------
Introduction
(2) The Suisun Bay and western Delta portion of the estuary west
of the cross-Delta flows from the Sacramento River. Of particular
interest here were the measurements of suspended materials, nutrients,
phytoplankton populations, and zooplankton populations as related
to their becoming concentrated in the area of the ocean-river waters
interface (called the entrapment zone).
Previous Studies
The Bureau in previous reports (California Department of Fish
and Game, et al., 1973; California Department of Fish and Game, et al.,
1975; Arthur, et al., unpublished; Rumboltz, 1976) and evaluations
characterized the accumulation of suspended materials in the entrap-
ment zone and estimated its location based on salinity. The entrap-
ment zone was found to be generally centered at an EC (electrical
conductivity) of between 4,000 micromho/cm and 10,000 micromho/cm.
"The location is related to the magnitude, the duration, and the
pattern of freshwater outflow, as well as tidal phase. Reductions in
Delta outflow resulted in the upstream movement of the entrapment
zone." (Arthur, et al., unpublished.) The quantity of suspended
materials in the entrapment zone was observed to be related to the
magnitude of riverflow and type of tide, while other factors such as
river sediment discharge, turbulence, season, flocculation, and
location to shallow embayments were suspected of influence. The
quantity of suspended organic materials was also affected by seasonal
growth factors, while circulation patterns and residence time were
suspected of influence.

-------
Introduction
The California State Departments of Water Resources and Fish and
Game (DWR and DFG) published a report (Department of Water Resources,
1972) which characterized the diurnal and seasonal levels of dissolved
oxygen in the estuary; and since 1968 the Bureau of Reclamation and
DWR have conducted a coordinated monitoring program which routinely
measured a wide variety of water quality parameters in the estuary
(USBR, August 1974, Reports A, B, C, D, E, and F; USBR, July 1975;
USBR, April 1976). These reports and data provide a base to relate
phytoplankton populations, dissolved oxygen, salinity, and flow.
Time variable water quality models (Department of Water
Resources, August 1974; Hydroscience, Inc., October 1974) are being
developed for Suisun Bay which will include the effects of water
clarity on phytoplankton populations and the impact of phytoplankton
on dissolved oxygen. It is also proposed to develop a time variable
model for the Delta. The ability to model the low-flow condition will
be an important factor in developing these tools for estimating the
Impacts of reduced outflows. Projections made using the models in
development indicated that reduced river sediment discharge associated
with reduced flows will increase the magnitude and duration of
phytoplankton populations.
Scone of Report
The results and	their discussion are in two sections. Included
in the first section	is the' characterization of the water quality in
the entrapment zone,	and the entrapment zone location during the low

-------
Introduction
Delta outflow summer of 1976, and a comparison to results of previous
studies at other outflows. Included in the second section is the
evaluation of the effects of flow on phytoplankton populations,
dissolved oxygen, and salinity.

-------
METHODS
There were three Suisun Bay - Western Delta entrapment zone studies
conducted during the summer of 1976. The first study was conducted on
July 8 and 9, and the second on August 5 and 6, and the third on August
18 and 19* Several monitoring runs were made during different tidal
phases on each study. The parameters collected, dates collected, tidal
phases and station numbers for the summer of 1976 are listed in Tables
1- H:	.
•HSaf, (figure /	 of Entrapment Zones Sites).
The studies were coordinated with the California Department of Fish
and Game (DFG) Neomysis - zooplankton monitoring program and the University
of California at Davis' (UCD) Estuarine Studies Program.
Samples were collected primarily at channel sites (figure 1) and
as close as possible to the particular tidal phase selected; however, in
order to collect the extensive number of samples required on each run,
it was necessary to start approximately 1 hour before the tidal phase and
end about I hour late at the last site.
The water quality samples were collected by lowering a weighted hose
to the desired depth and then pumping the sample on board using a self-
priming marine utility pump. The samples were generally collected at
3', IS', 25', and bottom (0.9, , and \ m) intervals, depending on
the parameter, with adequate time allowed between samples to flush the
hose. A rod was attached to the intake to keep the hose rigid and more
accurately maintain collection of the bottom samples at approximately
3 feet (0.9 m) off the bottom. The sample depths were determined by
marked calibrations on the hose.

-------
Surface water temperature, turbidity, and electrical conductivity
were measured in the field. Samples for the other parameters were pre-
treated, preserved and/or stored in the field and analyzed in the USBR
laboratory (certified by the California State Department of Health)
using the indicated methods.
Four sites were routinely visited by the Bureau, July 1976 then
September 1976, on a semimonthly basis (San Joaquin River at Rough and
Ready Island railroad bridge, D82; Whiskey Slough near Holt, P9;
Middle River at William Bridge and Howard Road, Pll; San Joaquin River
at Brandt Bridge, C6) (figure I of map). Parameters of specific
conductance, dissolved oxygen, chlorophyll, turbidity, secchi disc,
and water temperature were collected at the top and bottom in the water
column, on high slack tide (+ 1 hour).
Diurnal studies were conducted to measure the daily dissolved
oxygen variation. The studies are indicated in table 1	The
parameters measured on the diurmal studies were specific conductance,
dissolved oxygen, temperature, turbidity and chlorophyll.
table I
SITE
D
V.TE 1976

7/22-23
7/26
8/16-17
8/19-20
9/16-17
P12

X
X

X
D82

X
X

X
Pll

X
X

X
C7


X

X
D14A
X


X


-------
P12, Old River at Tracy Road
C7, San Joaquin River at Mossdale Bridge
D14a, Big Break
The methods used for collection and analysis of water quality data
in the summer of 1976 were consistant with those used in past entrapment
zone studies (Artur el al., unpublished; California Department of Fish
and Game, 1973; Arthur et al., 1975; Rumboltz, 1976) and past routine
monitoring studies (USBR, August 1974 Reports A,B,C,D,; USBR, July 1975;
USBR, April 1976; USBR, February 1973; USBR, July 1974) so that meaningful
comparisons and correlations could be made. The analysis methods for
the 1976 data are:
Turbidity - Turbidity was measured in the field on a 2100A turbidimeter
standardized against formazine standards using the manufacturers
instructions.
Secchic Disc - An eight-inch-diameter Secchi disc with alternate black
and white quadrants was used to measure water transparency. Measurements
were made in the shade. (USBR 1976, p. 4)
Suspended Solids - Whole samples were iced in the field. The suspended
materials were collected by vacuum filtration on 0.45-micron pore size
silver filters, dried at 105®c, combusted at 550°c, and weighed on an
analytical balance.
Temperature - Water and air temperatures were neasured using a Yellow
Springs Instrument's electrical thermister thermometer at the time of
collection,
Specific Conductance - The Beckman RC-19 model instrument was used according
to manufacturer's instructions to obtain specific conductance readings.
3

-------
Dissolved Oxygen - Dissolved oxygen was determined using the PAO
modification of the Winkler method. "Chemicals in powdered pillow form
(prepared by Hach Chenical Company) were used in place of liquid chemicals.
(USBR 1976)
Nitrate plus nitrite - Vacuum filtration was used in collecting samples.
Filtrate was then frozen. Analysis was done with the cadmium reduction
method (Technicon AAII Methodology, Industrial Method 108-71W).
Dissolved silica - Vacuum filtration was used in collecting samples. The
7
filtrate was thew analyzed using the silica automated method (Technicon
AAII Methodology, Industrial method 105-71W).
Chlorophyll - Measured volume samples were vacuum filtered in the field
through Gelman Type A glass fiber filters, that had been pretreated with
a magnesium carbonate suspension and immediately frozen* Analysis
followed the fluorometric or the spectrophotometry methods for chloro-
phyll a and pheo-pigments. Procedures were taken from Strickland and
Parson "A Practical Handbook of Seawater Analysis," Fisheries Research
Board of Canada Bulletin 167, 1968. In the western Delta a Turner
model 111, calibrated with a Perkin - Elmer 402 scanning spectrophotometer,
was used for analysis (Strickland and Parson 1968 p. 203, 193). In the
southeast Delta a Perkin-Elmer 402 was used for analysis (Procedure
by Strickland and Parson 1968, p. 193). The equations for chlorophyll a
and pheo-pigments were changed to allow greater ease and increased
precision in reducing the spectrophotometer charts (USBR April 1976).
Chlorophyll a ug/1 m
(24,7 (E663 - E665 acid) (ml extract) (1,000)
(ml sample) (cm cell)
and pheo-pigments ug/1 ¦
4

-------
(24,7)(1.75E665 acid - E663)(ml extract)(1,000)
(ml sample) (cm cell)
Phytoplankton - Identification and enumeration samples were preserved
with Lugols solution. They were placed in 3.18 mm deep settling
chambers and allowed to settle. Specific samples were selected for
analysis and were enumerated to the genus level, using a Unitrom inverted
microscope.
Neomysis and zooplankton - Samples were collected by the DFG using a
diagonal tow method. A different size net was used for Neomysis than
for zooplankton. The nets were lowered to the bottom and towed at
constant speed while gradually being raised to the surface. The tow
time was about 10 minutes and covered about 0.25 mile (0.4 km) distance.
The nets had meters attached to determine the volume of water filtered.
Neither velocity nor direction of flow measurements were made during this
study. Samples were preserved in 10% formulin and rose bengal dye.
w '
Neomysis and zooplankton were analysised by direct counting of samples.
Flowmeter readings were used to calculate catch per cubic meter of water
sampled.
Delta outflow - The Delta outflow index as calculated daily by the USBR
was used as the measurement of Delta outflow in this report, unless it
is defined otherwise. The Delta outflow index "consists of the Sacramento
River discharge at Sacramento, the San Joaquin River discharge at Vernalis,
less the Delta exports and the estimated Delta consumptive use. There are
more accurate measurements of Delta outflow (variance is during the
winter high period of runoff) but the data was not available at the time
of the report.
5

-------
'	(W ' k '/f; A' n/); r~,i((<-{ SKtf^r-Jjri.'.Arij *t Js/ jor/i. Cr , •»• , #**! 6oHci. «
<

RUN
R
B V
—~""c'
Z)
B
DAT £
"7 P /?4
• / /f h*
7 /f/7i
-//¦>'/?£

rmi PMPse
r P

irs.s—'M.$ ^
s~-rt


¦ 2r'i
<2 O - J /?
—
*//
j ope/Fie coos.
r- n
/' x? '
? - /J>
A-/?
	ie?.C ' -J 1
/-?$ ;
? -/)
;
) - J & 1
I
i

2OSftAAiK70V-&' *
•
r-i ?, is"-rg
i ' «
t
1
1
: i 1
.
I ZOo PJrtM TTJ/l/ -U£&
•



		 1

-------
r //**/£* J i/yr\'{«:¦' wj {* f*v//fp 	,
_//?£ ' ff^^Vy'C'r | J,3<;5 .yft-'S'Fi.		 !

i
Dft>7¥
» Stvir¦fo." c *j"~/ 3 f j j Bc-t-+o>r< /•/.'a /Jo^hmj 1
-ii'' t/e ft~t ceJln i*ji~£t-^rt*cl+4 • i/ ^C*r/z. {*¦ ,+*•*!($< , 6oHO'H t
RUN
R
, B
C
D
£
DATE
FA/ ~7<*
r/f/?Q
2 Uf 7^
' f/i/it.
S /-, ///
T/dflL f>M£E
. !h f)K FJOOf)
/// jV.Vv
^ - .
iK.jK r
Jj. /o
^ - » •" : ;
pfiSfirrET5R

STAr/oM-S


±J
TUfQtbtry
r-t , r
s--?t \
r-/?
r-; '& t lo - 'sP
70 - v .'
dtsc ^
r- b, °r -
' r-~i% ;
r- /£ :
*>.-/?, -•'••„.•.? :
5o j
TS.S—t/.£.S ^
V- 6 , -?- rt'T
J-\2P \
:
Sr-/f.\ ?* J?2
J\
^ -t* c? !
1
1
< p p'e/Fsc coo^J^
r-l, si-t* f
¦S-Jl 1
jT '2
r~
J^t.7
rftif>r-un«>?L
r (>, 9-/'-r
^6-^c' ;
'. r-'.f
i
J2-C> ~ xt
; i
2)/i OXV^sV^
J 		 i
ri-;
! 	 :
1
> T~ i
So :.??;
PO-t^
! ¦ :
! ¦ 1
! ! 1
: . l
i - .
i :
i
; J/ + ;'V'|
SiO^ M
I
r~^.'<' !

i ; i ¦
; 1
' s/ -3y
i . v
CtflDfiGPWll
S~~ i^~ ' ,
' - - • i
• . i
: ' ;
—- /.?. :
t^'S* , J o - J ?
'So - 3? .
i
pHVT# %J,VtVA^
i
!
1 '		
i _i ;
J 0 ' •"
Ju
Z&J?jAAjf70V-C>-^

«.-* ¦ ;
i •
• %
• ( '
i ;

ZooZ/)MT7ja/ -uai

; ;

1 :
T ¦ '
*DFG Hif,'n

-------
/ Z^OdJi-JL.
(////¦(>/.{ ;<
//7£
, w * ' w	/	* mr
, J70VF
+.00* m*-m
fTf
Sfit^F^S $Ff>7¥-e *j~/ 3 / * 5 ' AJjg Bo-f-tair* j ^ J ', /J"
¦J7' (/e rh eaJln ifiJ'farJifu'A+I. « -£/ sarJu er , *• i/*cft< , **>d t>ortO"\ «	
RUN
DfiTE
T/d»L PHftZS
P# Aujx
'W
jj
rfMPrfWtCL
	 jy
Z)/i.
a/

NQ»-**3Cjj k)Hj j P&(
Jc 0x
v/
PMTd
	^
Zop'V/tMrrJAJ -uao
Ofnk
B
'1sh' ff 7 £
C
-Z/ -2,9, ^oy
3-3L-^0_ :
2,/'^-jr , r«,c>,
¦^"2- - *~*o
•J Z - VO
2 !-?-&>•5 °/
-3-z. - 4 D
5W.
rZ./- 'TJ^f-bO ,
-'^O.
thy/} ;V,V
sf/tr/oMS
'/-'/
!\-(%5
'/-^ 7,
/-i^S" 7; -? //.
J V
/
I
'/?J5

i i
•^jp' {j» ft/** Ori y?.'.#

-------

-------
ENTRAPMENT ZONE
Data Analysis
The data for the various parameters were plotted by depth and
station on a vertical-longitudinal figure of the Sacramento River
Ship Channel. Isocontour lines were constructed to illustrate con-
tours of equal concentration with depth and geographical location.
In some cases, isoconductivity lines were included with isocontours
of other parameters to illustrate their relationship.
Results
Outflow - Water year 1976 (October 1975 thru September 1976) had
one of the lowest winter-spring Delta outflows recorded in recent
years. The Delta outflow index between January and May of 1976
averaged near 7,200 ft"^/sec. Summer Delta outflow index (June
thru September) during the year averaged about 3,800 ft /sec as
the result of project water releases for salinity control and
operation of the Federal and State water projects. The outflow
index in August may be underestimated due to rainfall in that month.
This level of summer outflow may be fairly typical of post project
releases, although of a somewhat longer duration than expected for
most future years.
Salinity - Salinity in this study was measured as specific con-
ductivity (EC) in micromho/cm. An EC value of 50,000 micromho/cm
(approximately that of seawater) equals a salinity value of approxi-
mately 33°/00, or a TDS value of about 33,000 mg/1.

-------
The isoconductivity contours for each of the three high slack
sample runs in July and August are illustrated in Fig. 3. Iso-
conductivity contours for the other tides are illustrated on figure
and 5 . The contours for the 2,000 to 10,000 raicromho/cm EC,
the general area of maximum accumulation of suspended solids, has
been shaded to demonstrate salinity intrusion during this period.
The period of greatest salinity intrusion occurred during the
July 8, high slack run (Fig. 3). The 2,000 EC isoconductivity
contour profile at this time was approximately 2 miles further up-
stream than the August 5 high slack run and 4 miles further upstream
than the August 19, high slack run. Some of the difference in degree
of salinity intrusion between the July and August 19 run is attri-
buted to tidal height. The July 8 run was conducted during a Spring
tide, while the August 19 run was conducted on a Neap tide. The
tidal height between flood and Ebb tide in July was approximately
twice that of the August 19 run.
The electrical conductivity (EC) data also indicates a tidal
excursion of about 4 miles (6 km) and a vertical salinity stratifi-
cation at surface EC's over 2,000 micromho/cm.
Suspended Solids
Turbidity - Areas of relative high turbidities occurred where
specific conductance ranged from 2,000 to 10,000 micromho/cm, with
the peaks of relative high turbidities usually being centered in
the 5,000 to 8,000 micromho/cm range. These areas were also related
to estuarine topography. Isoturbidity contours at the various tidal

-------
stages during the July and August runs are presented in Fig. 6-8.
In addition, the 10,000 micromho/cm isoconductivity line is included
in these graphs to illustrate the relationship of conductivity to
the concentration of suspended solids. There appeared to be only
minor differences in concentration between studies; e.g., the peaks
averaging between 30 and 40 FTU1s in all of the high slack tide runs.
There were significant differences in maximum concentrations, how-
ever, between tidal phases. The maximum concentration of turbidity
measured occurred in the two low slack runs where surface to bottom
turbidities were 60 FTU's. The next highest concentrations occurred
in the maximum flood runs, where surface to bottom turbidities ran
40 to 60 FTU's, while the lowest turbidities occurred on the high
slack runs.
Total and Volatile Suspended - Total and volatile solids (TSS
and VSS) were collected on the July 8-9 and August runs. Compared
to the distribution pattern of turbidity, the suspended solids dis-
tribution was erratic, particularly during the July runs. This
erratic pattern was largely attributed to the relatively low con-
centration of suspended solids and the lack of precision in the
analysis. Consequently, the multiple depth samples were averaged
for each site and the results plotted in Fig. 9, 10.
As illustrated in Fig. 9 and 10 there was a general increase
in total suspended solids in water of specific conductance of 2,000
to 10,000 micromho/cm. As with the turbidity data, the highest
concentrations were measured on low slack tide, the lowest on high

-------
slack tide. The average percent volatile suspended solids were
calculated for the July 8-9 and August 5-6 runs, Fig. 11 and 12.
Generally, the lowest percent volatile suspend solids were measured
in the areas of highest turbidity and highest total suspended solids.
Secchi disc - Secchi disc measurements for all runs are illus-
trated in Fig. 13-15. The secchi disc measurements were inversely
related to turbidity and total suspended solids measurements. The
lowest transparencies occurred in the 2,000-10,000 micromho/cm range,
while the greatest transparencies occurred downstream of this area.
Nutrients
Nutrients were sampled throughout the study area at varying
depths on high slack tide during the August 1976 sampling runs.
Samples were analyzed for the following forms: nitrate plus nitrate,
ammonia, orthophosphate, and dissolved silica. The nutrient con-
centration contours for each of the above constituents are illustrated
in Fig. 16 through 19.
Nitrogen - Nitrate plus nitrite and ammonia, as N, for the
two August studies are illustrated in Fig. 16 and 17. The maximum
concentration of nitrate plus nitrite, in both runs, was downstream
of the maximum concentration of constituents. The maximum concentra-
tion of nitrate plus nitrite occurred between stations 10 and 12 at
about Chipps Island.
Ammonia - Ammonia concentrations in 1976 increased appreciably
downstream of the area of maximum accumulation of suspended materials
(Fig. 16-17). Unlike nitrate plus nitrite concentrations, ammonia

-------
concentrations didn't peak just below the area of maximum concentra-
tion but continued to increase further downstream. This increase
could be attributed to effluent discharges in the area and/or decom-
position of organic material in the area.
Orthophosphate - The dissolved orthophosphate concentrations
generally increased with distance downstream in both runs (Fig. 18).
Dissolved silica - Dissolved silica decreased in concentration
with increasing salinity (Fig. 19). Maximum concentrations of dis-
solved silica in the western Delta were found where salinity was less
than 2,000 micromho/cm.
Dissolved Oxygen - The dissolved oxygen (DO) concentrations in
the western Delta were near saturation at all times. The bottom
samples averaged approximately 3-4 mg/1 lower in DO than the surface
samples. The slight increase in DO concentration, proceeding up-
stream was believed to be the result of higher DO saturation levels
for freshwater.
Biota
Phytoplankton - Isochlorophyll contours for the various studies
conducted in July and August are illustrated in Fig. 23-25. Chlorophyll
levels throughout the study area were extremely low for this time of
the year. The maximum concentration observed was about 10 ug/1 how-
ever, in most areas chlorophyll levels were 5 ug/1 or lower.
Furthermore, the chlorophyll levels were on the decline between the
July and August 19 studies.

-------
The areas of maximum chlorophyll concentration during each run
were located in areas with specific conductances of 2,000 to 10,000
micromho/cm. Additionally, the distribution pattern at various tidal
stages was similar to that of the other suspended constituents.
The highest levels of percent chlorophyll a, (Fig. 26-28),
observed in the various runs were generally located near the surface,
downstream from the area of maximum chlorophyll concentration.
Phytoplankton samples for identification and enumeration were col-
lected on the high slack runs. Identification and enumeration of
random phytoplankton samples indicates a similar distribution pattern
as that observed with the chlorophyll. The predominant genera ob-
served were Skeletonema and Coscinodiscus.
Neomysis and zooplankton - Both the California Department of
Fish and Game (DFG) and the University of California at Davis (UCD)
took part in the collection of Neomysis and zooplankton samples.
UCD is not expected to have their data and analysis available until
after the first of the year (1977).
The distribution of Neomysis mercedis for the July and August
runs on high slack tide, have been plotted logarithmically in Fig. 29.
The maximum concentration of Neomysis. 205 organism/m , occurred on
the July 8 run at station 13 (Collinsville). The August runs showed
the peak to be at station 14, however, there was a decrease in maxi-
mum concentration from 205 to 72 organisms/m . The distribution
pattern was similar to that of the suspended constituents collected
during the study.

-------
The distribution of two species of copepods, Eurytemera hirun-
doides and Acartia clausi, throughout the study area is illustrated
in Fig. 30.
The maximum concentration of Eurytemera in July and August
occurred in the area of maximum suspended solids concentration,
while Acartia's maximum concentration occurred approximately 10 miles
downstream.

-------
\ \ I	¦	\
• \-\\ S"TOf?ve	OuCTFtOvO —4
I ' ! . ':
O ^ACTtr». "fe. CE ;SAC?Vt>.
SPr«M
F~lJ or
-------
f'icjutc Z

-------
^ HI STOfttC.	OWTFCC-O ~i
I : i	i ¦ i •
o Sacto. "fc. 
-------


.MS
5 ?..« fi f - . 8
|m ;;
iiri.i.X j_i .11 J_
'II:
, !i
i!': • i: I ;
FJfjL^c. Z

-------
Fjjv&z.

-------
18 ,9~195
11 ^
SAN JOAQUIN RIVER
I	I	I	I
30	40	90
RIVER MILES FROM GOLDEN GATE
IstxonJuthvAy contours , jl«ek 4«J* . 2000 ~» Z3,000 mitrom^o/cm EC
•wtar m*M i« ah«4«(.

-------
19 19.5
tu
iu
u.
£
Sj 50-
Q
J 75"
<
>100
^ Aug. 5, 1976
Delta Outflow 3,800 ft^'a
SAN JOAOUIN RIVER
i	l—:	r-
30	40	iu
RIVER MILES FROM GOLDEN GATE
•	» l i
SACRAMENTO RIVER
I I I. I
Aug. 6, 1976
Slta Outflow 3600 ft^'s
H25
SAN JOAQUIN RIVER
T	 I	1	" "T"		 I 	
«W	40	50	60
RIVER MILES FROM GOLDEN GATt
Figure 4. Specific conductance during maximum flood tide, 1976.
The 2 to 10 tailUmho/cm E.C, water mass was shaded to demonstrate
similarities between studies.

-------
\9 19.5
\ \ \ "<
! W 8 6 1. 2 I. OS
! i' r \ n > I
SACRAMENTO RIVER
J	I, I I	I
(-25
July 8, 1976
Delta Outflow 5,100 ft^'s" 
o
2 75
<
*iooH
20
SACRAMENTO RIVER
-I	1 I I
h2S
Aug. 5, 1976
elta Outflow 3,800 ft /s
S3
o
M5
-I	1	1	r	1—
30-	40	50
„ RIVER MILES FIOM GOLDEN GATE
SAN JOAQUIN RIVER
h50
60
Figure 5. Specific Conductance (milllmho/cm) during low slack tide
1976. The 2 to 10 millimho'cm E.C. water mass was shaded to
demonstrate similarities between studies.

-------
19 »9.3
Sacramento river 2 (EC)
_t—a_lj	¦ 1 |
Aug. 5, 1976
VM
\ I
Delta Outflow 3,800 ft^/s $an joaquin river
' ' ' ¦ t~ t t
^	Aug. 19, 1976 		
Delta Outflow 3600 ft 's san joaquin river
I 111 1 i	'i 'i 	r—
30	40	50
RIVER MILES FROM GOLDEN GATE
Figure 6. Turbidity (FTU's) during high slack tide 1976.
h2S
so
0
r 25
•50
h25
1-50
0
h25

-------
19 '9.5
18^-t	sr
X 254
£ m-
o
S 75-
¦<
*
100H
—T-
JJO
'l,'<\'w,w' I'
SACRAMENTO RIVER
	1,1(1—L
Jelta
Aug. 5, 1976
•Outflow 3800 ft /s
J	I	L
SAN JOAQUIN RIVER
I	i	«	I :	r
30	40	50
t -MU.ES FROM -GOLDEN GATE
U50
0
-25
f-30
60
Figure 7. Turbidity (FTU's) during low slack tide 1976

-------
(c)	Residues from pesticides, fertilizers, and other soil amendments
picked up and carried to groundwater by water passing through the
soil profile.
(d)	Other constituents added to and carried by return flows from agri-
cultural, industrial,or municipal water uses.
(e)	The addition of constituents released by soil weathering or erosion
and picked up by water from irrigation or other sources as it passes
over or through the soil, subsoil, and substrata.
Concurrently with Phase I, the U. S. Geological Survey conducted a two-year
intensive survey in the Santa Maria Valley to delineate, existing groundwater
quality and relate the deterioration of water quality so far as possible to
waste sources. One major product of the investigation is a coordinated water
quality sampling network, including surface water, groundwater, and waste
discharges.

-------
SAN JOAQUIN RIVER
40	SO
RIVER MILES FROM GOLDEN GATE
Figure 8. Turbidity (CTU's) during maixmum flood tide 1976
/. fkJ*

-------

-------
1
V
5
\
\
Hit I


. 		 1 I „.		1 I ¦ , | ,
adtejrj-. \ ;:'j::;:
.ililliii :ii liil iiiiJiiil!	i
Jj |i;H j!| }jj.jj; i;ii|'ii:!
-------

-------
t* 1»
f


A?
4




I

V
V

s.

3
V


si


j?
 2 .-rrrrr !-:::
Tl. . »	,	- I ¥' t -• •

-------
W t*1

-------
It <~ t .

-------
I e/zjc	a?i"
0r>	/r <*"<*/?, /??6

-------
\9 5

"/OOry+A/tC. UtK'ye*/	4rjj(

-------
19 19.5

/'SKt €m Auj«~tfK /?7&,

-------


-------
, StcAAXPora"?,
S/0o
f/^U^tT /%-y -ft &x **€«Mtre*ie#j£r vf"
f/ctc¥^	rfujusiLyj /fff

-------


rm J W««, H.*K #U*h W«, SkMWiWiwfe JCto«r

-------
rt e?	p-
¦i ¦' ,# ri1! ¦"- * "
, *-rt U L *•
		*Vv'v*
>* •1 . ;
;!
.J— I- — • I.
A-/o

SACfifimmo hwsj
•	i	< a 1

tes
'¦I -.v: -..mmcm am
V' 		 ^ • « 		I.-.—.. ... —k-"!!~-. —•.--11
\ ^iL 5i . w !
7 A I
stMmt/m tvvs/f
i;:|: 1 1	;
ij, » ^ Q*s-I
tes
150
0
; smjmhiu mm
r	~~
-2?
•50
" 0
jp	-	fV
• *•	' 'J* •
• • . .• •:•¦¦• mumes mumumeps :, , . ;
• , • • • • ..•
jzj Xto ch/errppiM* lf0 'C3Yr?Or*rtt	t c/>r^y
/ /'ftfa/	wcc
-------
t
!
,7 Vtfc'
S>—€—T~^—'^7—-.;	—£«¦
7 * 1 1° H ,1% 91 *lZ3 2flS '
'• fOJ*«Miw>WGm
	»» '
':¦': J_m-di^i_
"""S^ ~' "' - '- » ^..1-r-A til tic rj
fiVit, ttoobtVuly 9
to	•--.;	30-
..; ... -40 ¦ ' 	 	 S° •¦ •
¦mutnm m.6NW&&¦:.*.'¦•
¦ t
jm*' *"' "" "'"> ¦'

-------
0-
Zf.
'60,
o-t
25
50-
75-
too.
,* ^v<
II V,—•-• -
-

/n _
=V1r1rr^rrti^i;
/Oj WiWl'wta/cM ££ , , , , .
^0;'7	r^/£r/	" -to/-**' —vS'¦*,/*>£>

-------
!—. i • ; ¦ : ii» tf T--'V
„ . i 1/0 II '*• al it 13 2t|
¦* '	(0 i*HII»«h»/e»
¦ ¦ ^—>-¦ '¦, -*«—1—1 —-*• r1"'—t—'—
w"'° M l
	1 / 1,
s7S
100
A'-: I
sAc'/tmwro Rim .
«rW	L y
J . • /£» \®L^L_Jj-i	L-i——	L
s/ifjjomwJ rum
fe
i
-25
A0-50

mfimwro ME# ,
. ¦ ¦¦ 111 1 1IV. f 1
i!
_ /ftV// S44CC . JW" f 1 . "
i		—i—tJt	1	•
•2fc
'.M "
,i.
-r-'	 "F
s£> 'wexmiss m&MeNms
* * « - »
yTy^g- -3 6. *¦"*»+
».<*»**« **"&
A'c/r-/ S/afJ 
-------
rt rf
«st.^g-rQL.-
		—-x */ _ o^o n° 1~J~?—•¦; ^-y\ ?~^ >1	(r~»s
'jT^£ £ 7 « «j /& II 'V at Jl23 2^ 15 -
•' ' . fO ^^';A°/cn?_.	.	,	
id irv'MHf»w/w'"
T7 L>X~" S I
	 		40		.
-JUWMM m&UB» MT* ' ''
<*V6UMS £7. *rrr<»J tyf**?*?"*- S"'"'
:,-cc™6<"t -"'J
1*1(1*/ fJejet. . ¦" •~~'*L
-------

It "i	—-r "
-2'
^ ^ ? i i /* // a ,<, ^nrs —••-*
10 tnilli frho/cm
_1 . _¦¦ II* HI ¦ *-.- 1 ¦ ' ¦•	y l .-.•J # « I . ^1 -• I * A y«M>V>* t *Ti ¦¦¦ ii
i <,4-SV>	yS®;
^ mes 7m mws em
jT/Lote />srte»f ^'evepJy'Yji, />Suj
/>/>e o/0,f<»* 'sece****" a/ ^ •r&zA-
•>*¦'{/£ 0T\ fiujut^ "*"*

-------
••i
1%'1' ^

>7
y f
/»$
kKL^a
r—h—n .	— .
**i5 z't is.
i
1 /"•' /!
•V • '/
_Sl-4-
iLM'.tlj..	-J,
	rfr-d m g	)1jl_*J.t
£z——-—		-r—i	j— . 1,11"1—•
1	--		 	iA ,
k -rL'	' ¦ SO • •*
'• j. ••.' h . f '• ¦/ftmmus m&oLW gate	"
I 0
/
;
«t
f
c
o
A
o
Si
*
c
2
~~~—.W	/7->±
 s'jtK i>^	_
*r w. *> '** ***¦ 6/i/ e)

-------
100,000
20
Figur* 30
Rjpula^ion 0tj4nk«f»or»»
3d	-	50	60
RIVIR MLtS PROM GOLD?rt GATE
nmi* «f W *{>**>** cef*r*4* , ^ *1**^ "M* i Sacra rofnfo

-------
DISCUSSION
Comparison of 1973-74 and 1976 Entrapment Zone Studies
The primary objective of this section of the report is to
characterize the distribution of suspended materials in the Western
^Ita during the summer of 1976, a low flow year, as it is related
to data collected in the 1973-74 entrapment zone studies. A
detailed description of the 1973-74 studies is in the report as
Arthur et al (unpublished) Delta Outflow.
Delta outflow throughout water year 1976 was considerably lower
'ban In water year 1974 (Fig. 2). Historical Delta outflow between
the end of October 1973 through March 1974 ran between 60,000 and
140,000 ft3/s. Conversely, during the same period In 1975-76 Delta
outflow ran from 14,000 to 26,000 ft3/s. In 1974 (May through
September) during the period of the spring and summer algal blooms
In the western Delta, Delta outflows were approximately 7,000 ft3/s
to 2,500 ft3/s. Conversely, in the same period during 1976 Delta
outflows ranged from 3,000 ft3/s to 4,000 ft3/s. Data collected in
the western Delta during 1976 demonstrated two low Delta outflow
conditions:
1)	A decreased quantity of suspended materials observed in
the zone and
2)	an upstream shift in the location of the zone.
Salinity intrusion and low winter and spring Delta outflows in
1976 resulted in a much earlier than normal increase in salinities
throughout the study area. For example, E.C.'s at Gollinsville in
April 1976 averaged 2,640 micromho/cm as compared to an average 393

-------
micromho/cm from 1968 to 1975. Hie increased salinity intrusion
is readily observed in comparing high slack tide isoconductivity
contours, boserved in 1974 with those observed in 1976 (Fig. 3 ,
t0 Fig. j/ ). In figures 3 and ?! the 2,000 to 25,000 micro-
iriho/cm EC water mass at high slack tide was shaded to demonstrate
the degree of salinity intrusion between years. As illustrated,
farther
salinity Intrusion was approximately 10 miles (urthe. upstream in
August of 1976 as compared to August 1974.
Suspended materials-turbidities, total suspended solids and
secch disc readings are all indicators of the quantity of suspended
materials .XX All of these parameters followed the same general
pattern of distribution#
Comparison of turbidity data at high slack tide for 1976
(Fig. C- ) and 1974 (Fig-li.) demonstrates that turbidities in
July and August 1976 were approximately half of that observed
during the same period in 1974. mis decrease in suspended
materials may be a result of:
1)	Less suspended load entering the estuary during the
winter-spring of 1976, and
2)	the location of the entrapment zone, being above the
^ ,, * „ ,	«h*re wind or tidal caused resuspension
shallows of Suisun Bay where winu
of materials is more intense#
Although the area of m"*"® wrtld1^ w" le" 1'ronouriced ia
the 1976 studies, compared to 1974, a definite zone of m*mm

-------
concentration is apparent. Furthermore, the area of maximum con-
centration in 1976 was approximately 5-10 miles farther upstream
than in 1974.
As with the 1974 data, turbidity concentrations and the loca-
tion of maximum concentration varied with tidal phase.
Nutrients. Particulate nitrogen and phosphorus measurements
were taken at varying depths and tidal phases in the 1973-74
studies. This data demonstrated that the distribution pattern of
particulate nutrients was similar to the other suspended consti-
tuents measured during the studies. Consequently, only soluble
inorganic nitrogen and phosphorus (which are required for algal
growth) measurements were mad. at the 3-foot-sample depth at high
slack tide during the 1976 studies. Hie 1976 data (Fig. 16-18),
demonstrates an area of maximum nitrate plu^fttrite nitrogen
(N03+t»2 ) accumulation in the general area "here the other
suspended constituents accumulate, tti. differed from the August
study of 1974 where the No3+H02 was lowest in the area of mudmum
suspended material, accumulation,	decrease of concentrations
in 1974 was attributed to uptake by the higher concentration of
algae in the area. The August 1976 concentrations, of soluble in-
organic nitrogen and phosphorus in the son. of material, concentra-
tion were about 25 percent of the concentration, in Augu.t of
1974 (Pig 43 ).
As in 1973-74, ortho-phosphate concentration, were not at 1ml.
that would limit algal growth. In both the 1973-74 and the 1976
studies the phosphorus level, generally incr.a».d downstream of the
null zone.

-------
Ammonia concentrations in 1973-74 (Fig. 2±_) and 1976 studies
increased through the area of maximum materials concentration and
continued to increase below the area of maximum concentration, (Fig.
JL and n In 1976 the increase started further upstream than
in 1973-74.
Dissolved silica in 1973-74 and 1976 decreased downstream through
the study area as a result of seawater dilution, (Fig J± and __£>•
In 1976 the decrease occurred further upstream than in 1973-74.
Dissolved Oxygen. Dissolved oxygen (D.O.) measurements were
not taken in the 1973-74 studies. However, in the report of these
Studies (Arthur, et al unpublished) it was suggested that fish kills
which have occurred almost every year in the study area during the
spring-summer period might be the result of decomposition of the
organic matter that accumulated in the entrapment zone. Consequently,
nn the high slack runs of 1976. Surface
D.O. measurements were made on cne
f
. .	20•*&. indicate that D.O. concentra-
and bottom measurements, Fig.	»
tlons were at or near saturation level.. Whether this was the
tesuit of a lack of algal bloom in the area this summer is unknown,
and the cause of the fish kills remains unanswered.
Phveonlankton. Isochlorophyll profiles for the 1973-74 studies
is indicated, chlorophyll accummulated
are illustrated in figure **
in the entrapment .one, .long with the other suspended constituents,
at concentration, ft exceeding the upstream and downstream
«a«.«Hne run of September 26, 1973, followed
concentrations. The sampling run r
.		in Ctiisun Bay by several weeks. The
the peak of the algal bloom in suisun	y
of 60 ug/1) of chlorophyll had
high concentrations (in excess or

-------
accumulated in the lower layers. This buildup was attributed to the
same forces, which cause the accumulation of other materials in the
entrapment zone. Chlorophyll levels throughout the western Delta
were unusually low during the spring and summer of 1976. Chloro-
phyll concentrations were generally well under 10 ug/1 in the
channel areas and under 20 ug/1 in- the shallows, ttiese low
chlorophyll levels are contrary to the results expected for a
low-flow year, based on chlorophyll concentrations during other
low-flow summers in the period 1968-75. Several parameters
studied do not appear to be causes for the unusually low
chlorophyll levels during 1976.
Evaluation of light transparency data in Suisun Bay during
the summer, 1976, indicated that the"one percent light level was
about that of recent years and, therefore should not be limiting
the algal growth rate. Major algal nutrient concentrations were
also high, relative to the last few years, and also should not
have limited algal growth.
One suggestion was that the algal growth in Sui.un Bay was
affected by the possible precipitation of micro-nutrients, such a.
Mg, Fe, etc., resulting from eeawater intrusion. However, algal
growth potential test, condicted by the Bureau laboratory in 1973
(Arthur, 1975) indicated that micro-nutrient limitation, probably
do not occur at the salinities observed in Sui.un Bay during the
summer of 1976.

-------
Zooplankton or benthic grazing of algae in the shallow bay
systems was another suggestion of a limiting mechanism* Data
obtained from DFG however, indicates that Neomysis concentrations
were low this summer, again suggesting that some other factor or
factors may be influencing phytoplankton levels in the western
Delta. The chlorophylla levels were significantly different (lower)
in August 1976 than in previous lowflow August months* There was
rain, cloud cover and lower temperatures in August 1976.
Review of temperature data collected in August 1976 indicated
that water temperatures were somewhat lower than in July 1976,
However,
but not significantly different than in the last few years, /the
quantity of solar radiation reaching the water surface was below
that observed over the last few years (due to the unusual cloud
cover). Mean monthly solar radiation records from the University
of California at Davis were compared as to monthly averages
(Langeys/perday) since 1968. These records indicate that the July-
August monthly averages in 1976 were approximately 10 percent
below that observed from 1968-75. However, since water transpar-
encies in the summer of 1976 were double that of 1968-75, the
effect of cloud cover will be reduced. Another suggestion is that
the lowflow conditions, observed this year, affected the conditions
required for an algal bloom in some additional manner. The 1973-74
studies suggest that the location of the entrapment zone, relative
to the shallows of Suisun Bay, is a factor that may have a bearing
on production in the estuary. The location of the zone, above the
direct influence of Suisun Bay, may have caused the 1976 reduction

-------
in algal growth in the western Delta. An additional point in favor
of this suggestion is that production in the southern Delta was
not reduced in August of 1976.
In addition it is postulated that phytoplankton concentrations
could decrease under lowflow conditions. Based on the fact that
San Pablo Bay has lower levels ofphytoplankton than Suisun Bay; and
whatever conditions that cause lower production in San Pablo Bay
could be transferred upstream to Suisun Bay under lowflow conditions.
In addition to any effects of the location of the entrapment
zone on phytoplankton production, a decrease in freshwater inflow
greatly influences hydraulics throughout the mixing zone. Theoret-
ically, reduced inflow decreases the upstream bottom flow, thus
the quantity of material recirculated within the mixing zone.
We must bear in mind that we do not know if the production
in 1976 was a predictable result of long duration lowflow through
ft spring and summer and we are not certain whether the phytoplankton
standing crop would go up of down under extended periods (several
consecutive years) of low Delta outflow during the summers. We do
know that in one lowflow spring-summer condition (1976):
1)	the area of	concentration was farther upstream
than in previous years, and
2)	the maximum concentration of chlorophyll was less than in
previous years (in 1976 the maximum was lets than 10 ug/1 chloro-
phyll as opposed to over 30 ug/1 in 1974 and over 60 ug/1 in 1973,
and over	in 1972, also a lowflow year..

-------
Zooplankton. Comparison of the distribution patterns of
Neomvsls mercedis and two copepods, Eurytemora hirudoides and
Acartia clausi, in August 1974 and 1976 indicate they were similar,
(Fig. H & 38). As in 1974, Neomysis and Eurytemora in 1976 largely
accumulated in the entrapment zone at concentrations exceeding
upstream and downstream concentrations. As with the suspended
constituents the area of maximum accumulation was farther upstream
in 1976 than in 1974. There was also a reduction in the total
numbers of organisms measured in 1976.
is considered a more haline organism than Eurytemora.
This is thought to be the mechanism influencing their distribution.
Acartia was located further dowstream than Eurytemora in both the
1973-74 and 1976 studies.
Strloed Bass. Although striped bass were not collected in the
1976 studies the distribution pattern of Juvenile bass (50 mm size)
in 1974 was similar to that of the suspended constituents. Fig. 39.

-------
STATIONS 41
RIVER MILES 80
FROM GOLDEN 6ATE
, w.^tii/it* contour a throughout the study area during high -stack
Figure 31 Isoconduct ^ (q 25)Oo0-mlcroroho/cm EC water mass was shaded
to demonstrate the degree of salinity Intrusion during the different
sampling runs 1973-74

-------
I					
STATIONS 41 41/42 42
3 5.3 67 612 2/6 8 0/10 10 10/4
I
26 'm
400-600
ZOO-400
5 B100-200
100-150
so-ioo 3 too J
u.
~
<90
AIVER MlLtS 20
FROM GOLDEN »TC
Plgur» ™ Relationshlpbetween the accumulation of turbidity (shaded areas) and
salinity (dashed EC contour lines) during high slack tide for each
sampling run 1973-74

-------
>-25
STATIONS 41
L
RIVER MILES 20
FROM GOLDEN GATE
Figure 33 Relationship between the concentration of nitrate plus nitrite | shaded areas
and salinity | dashed EC corttour lines ) during high slack tide for each
sampling run, 1 974

-------
SAN PABLO
0AY	\ CAROUJNE Z	
STATIONS 4)
$
&
£
!T
>08
LU
05-08 *
02-05
< 02
STATIONS 41^ 41/42 42
RIVER MILES
from golden gate
Figure 34 Relationship between the concentration of ammonia ( shaded areas )
and salinity ( dashed EC contour lines ) during high slack tide for each
sampling ru n , 1 974

-------
o>
E
<
U
s
O
«/>
to

MWtf! //
l6_l7 STATIONS 41 41/42 42
14-16
12-14
10-12 uj
Wi a-io
6-8
4-6
~
3-4
T	"T
STATIONS 41 41/42 42
L
T
20
!—
30
	1	1	1	1	1	r
2	2/8 8 8/10 10 10/4
I	j
40
RIVER MILES
FROM GOLDEN GATE
Figure 35 Relationship between Ibe concentration of dissolved silica | shaded areas ]
and salinity \ dashed EC contour lines ) during high slack fide for each
50
sompJing ran , 1974.

-------
0
25
50
75
(00
0
25
50
75
100
0
25
50
75
100
0
25
50
75
100
NS
MIL
60L
36
:n gate
Relationship between the distribution of chlorophyll a (shaded area)
and salinity (dashed EC contour lines) during high slack tide for
each sampling run 1973-74

-------
FROM GOLDEN GATE
Figure 37 Isochlorophyll contours, measured on three consecutive days during
different tidal phases, demonstrating changes with tidal excursion.
Delta outflow index - 11,600 to 12,900 ft3/s 1974

-------
y.
- i• : • |• ¦ "!	j* , r 1.•.
/7 •••-. •• •	•. I.. ..: ' • —v**	1 •' • |	i'
•; * '• I V^^TrTV.-.-i •' .J ttf if-	y*
*Jf V£A^7)],!
4 1,000
t*
<° ,?
A
,.* 1 (/'
• iJ-p.
". ' • 30 "• " 	-—AO	- '5(5
' • • (ammm wetmb&> sAff
n
c
t
o
0»
Kl
c
Z 1
T--r-	 , ^	} u 8 fc t/iO *5'	4
6 5 3 ' 1 •	.
Otiuar/?,
ti : rL
izzx
IkJL
(UTlOM 41 4i^t? 42
I			
J 1 J S'
-T							r-	-i	I-
Z Zt fl 4 8/10 13 l>.V4 *
»ivt» Mud :o
i mom coior* »*tt
so
—I—
40
1000
100
10
-1
-0 1
JO
jure3& Relationship cl the population distribution o( Ncomysio sp_.
(i^rcontovrtf) during high slack tidesj Htfr-wo.ir.mowmUG i» .V.afeU
woro  AU&US7 of ^7? /97&.
Sc
-------
!—f—[i—f]—!i—Q. £, l.A	L-I	
i '1 li jiTfl '! '-i '¦ MM

5" £ 7 « 7 '•> 1/ »i- U '1 l-T H H

n

In . i? 'l u 'i 17
T
•"Zb - • —•• * ' v 30-' 	40 "
' - - ; " ' nmti miles km c-cLbM 6f\TL
so
Aixio. H,7i
6 —trrr 1
' \ N 'A
I' C |mi< iomho/1 m * 1000)
Aug 19. 1974
High Slock lid*
n\\

U
f u»y)f m Of o f
hiiun< i
)00,000
10,000
1.000
.00
1 ionJ 41 41 4J 4 2
I			
b i J w
fx uiits
M COlOtH OATC
ia
I i 2/« # d.'iO 10 10/4
	I	
—r~
40
»0
jurc.&f. Relationship of Uif population distributions of hvo rwcios of coprpods
tO-Mlrn^ly ^ <; e*ntrw+l (luring	f}. /?
^ Ui.44ft-ctrtftow-imiPY - i| nno |,h I'^no^ f,JlV
10.000
1,000 .
.00-
100,000
10,000
-- 1,000
I. 100
E
m
(
«»
c
o

i

t
vV
*

ry

-------
6 < /cpedbass catch/tow and
NEOMYSIS CATCH/M3 IFOR OCTOBER 1971 J^yE'M,nwATER TRAWL STATIONS
NEomysis stations have been realigned withI midwater trawl stations
ACCORDING TO SIMILAR EC VALUES (PRELIMINARY DATA-CALIF FISH AND
Game, bay-delta fishery project)
-250
-200
L- ISO
NEOMYSIS
PER TOW
-100
- SO
<10 412
Maitinez
i
509
CHIPPS ISLAND
MIDWATER TRAWL STATIONS
3 701 70!
~
COLLINSVlllE
-1000
r- (000
ELECTRICAL
CONDUCTANCE
I^MHO/CM)
-4000
r 2000

-------
Summary
(Entrapment Zone)
In the low Delta outflow year of 1976, it was observed that
there was: (1) a zone of materials concentration located in the
estuary but the location of this entrapment zone was higher in the
estuary, (2) lower amounts of suspended materials within the entrap-
ment zone, (3) increased transparencies within the entrapment zone,
<4) lower but not limiting amounts of nutrients within the entrap-
ment zone and, (5) a decrease in the amounts of phytoplankton and
2°oplankton within the entrapment zone, as compared to the results
data collected in 1973 and 1974 which were years of higher Delta
outflow and shorter duration of low Delta outflow.
It is also observed, that this year (1976), in the area of the
entrapment zone, (Suisun Bay and western Delta) that the productivity
°f the estuary was not like it had been in previous low flow periods.
There are many suggested hypotheses as to why this is so but it will
"quire a duplication of outflow conditions to confirm these hypotheses.

-------
DISSOLVED OXYGEN vs. CHLOROPHYLL
AND ELECTRICAL CONDUCTIVITY vs.
CHLOROPHYLL RELATIONSHIPS
Dissolved oxygen, electrical conductivity (salts), and chlorophyll
(algal population) are three major parameters which influence the
ecology of the Sacramento-San Joaquin Delta. This section of the
report will attempt to bring together data from the last 9 years
(1968 - 1976), and show several areas of correlation which may be
useful.
Chlorophyll and the dissolved oxygen concentration of the
surrounding waters are interrelated biologically through the photo-
synthetic and respiratory processes taking place within the resident
Phytoplankton and its surrounding environment. These interrelation-
ships are very complex, being effected by the amount of sunlight,
the availability of nutrients, the phytoplankton residence time,
zooplankton grazing rates, presence of toxic substances, species of
phytoplankton present, benthic respiration, salinity, and the
temperature of the water.
Electrical conductivity is a measure of the salts that are
Present in the water. These salts may be derived from the ocean,
or from the land via runoff and agricultural, municipal, and
industrial discharges.
data analysis
For this evaluation six sites were chosen. Three of the sites,
07, Grizzly Bay; 06, Suisun Bay; snd Dl4a, Big Break are in the
Western Delta-Suisun Bay Area.

-------
The three remaining sites ?B, Stockton; P12, Old River at Tracy
Road; and C7, San Joaquin at the Mossdale Bridge, are located in
the southeastern Delta. The sites were selected from these two
areas due to their environmental differences and the possible
areas. The western Delta is being more
impact of low flow on these areas.
.	, ,		Kiver and the tides, while the south-
influenced by the Sacramento Kxver
east Delta is -ore affected by the San Joaquin Siver, agricultural
runoff and export pumping for the CVP and SWE.
The parameters selected for these evaluations were dysoWed
oxygen (mg/1), electrical conductivity CWcrn), ChlorophyU a
coT^Trt/l), temperature <»*C>. and mean monthly Delta outflow
(ft3/s>. The percentage of dissolved oxygen saturation was calcu-
, a	value, taking into account the
lated from the dissolved oxygen vatw,
. of the water. All the data
temperature and electrical conductivity		
used was collected during dayUgtoJjjg^
r	~~				 ~	- uaiv looked at for evaluation.
nine different data groups were fc»M«
* i- +*1*+ area groupings (total sites, western
These consisted of the three
, . -o1l.a sites) crossed with three
Delta sites, and southeast Delta site
ft-rttal years, high flow summers, and low
different year groupings (total year
' ,	The hiah vs. low flow criteria was based
flow summers) Table	Th
, „„	July, and August) Delta outflow index,
on an average 3-month \June,
ioco 1971 1974, and 1975 averaged approxi-
The high flow years 1969, »
nelta outflow as the low flow years
®ately three times the stJfflffl
1968, 1970, 1973, 1972, snd 1976.

-------
For each site, dissolved oxygen, chlorophyll a corrected, electri
cal conductivity and percent DO saturation were plotted versus time
to show their ranges and seasonal variations. Chlorophyll a corrected
vs. percent DO saturation, and electrical conductivity were plotted
for each of the nine data groupings in a correlation analysis.
The correlation - regression analysis of the nine data groupings,
obtained means and standard deviations of the variables, a variance/
covariance matrix, and a correlation matrix for each grouping
Tables £ and 7 •
RESULTS
The results of'the evaluation are summarized in graphs in
Appendix A .
DISCUSSION
A. Dissolved Oxygen vs. Chlorophyll
In handling these many data points, a good method of making
a determination of what the data means is through the use of a
statistical approach. By comparing the means and standard devia-
tions, an idea of time relative values and ranges can be seen
(Table £ .)
In these evaluations, the percent dissolved oxygen
••turation value will be used, instead of the actual dissolved
oxygen value. This eliminates the overriding effects of temperature
and salinity on the DO value. The effect of temperature and salinity
cen beat be illustrated by looking at year 1971 in the 1970 - 1971
chlorophyll and dissolved oxygen curve, for Gri«ly Bay (Fig. £>.

-------
Here, there is observed a slight negative correlation, which is
substantiated by lata Group 3's (western Delta, total years) dis-
solved oxygen correlation coefficient from Table III. The same
Group J percent DO saturation correlation coefficient shows a
fair positive correction. ">» is due to the high summertime
\eater temperatures and increased salinities being taken into
effect in the percent DO saturation calculations. The DO in the
vater vill decrease with *.«««* Matures and salinity.
deviation values from Table II,
Using the mean and stanoara mvwh
¦	na BBtjcflCic-n can be seen, tfner. the
certain trends -n toe perc:«t jj
, . a t-Vi® western Deles h$s the highest sean
total years are looked ats the vemeia
, a lowest standard deviation (compare
percent DO saturation and the iowe»t	^
.	t rjA saturation Tdbl^ JSC) • What this
Group 2 and Group 3 percent DO saturation
• , . • L • .*- astern Delta the DO is at a hi'gfcer, more
implies is that in the western
.	in the southeast Delta where the values can
constant value than 10 trie
__ . 	rfunt noint here i* not the mean
fluctuate gteatly- The impo
^ a, larste difference in standard
percent DO saturation, but Che large
deviation.
- i-ha trend is about the same. Here
flaring high tie* «um«s, the trenc
i to ii 3 in the southeast Delta,
the standard deviation dropped
¦ «- net-cent DO saturation CcMpare Group 2 to
along with a rise m percent
m.hia Hi The western Delta remained
Group 5 for percent 00 
-------
deviation has risen to 35.1 mg/1- At the .ame time, the western
Delta has also increased its mean percent DO saturation, but by only
5 mg/1. The western Delta standard deviation now has dropped to 7.5
mg/1. Here the implication is that during low flow periods, the
southeast Delta is more greatly affected, presumably by large phyto-
plankton blooms, which increase the DO and its fluctuations.
The chlorophyll follow, a similar pattern to that of the percent
DO saturation. Looking at the summer Chlorophyll a corrected values
(Groups 5,8 and 6,9) from Table W, « substantial increase in both
mean (70 - 109) and standard deviation (44 - 92) in the southeast
-m. ..-flfpm Delta also shows an increase in mean
Delta can be seen. The western ueit«
• „ 21) and standard deviation (11 - 18),
Chlorphyll a corrected (20 -	anu •
but not as great.	y
in Table fil are a numerical
The correlation coefficients m i-m
expression of how well two variable, correlate to on. another. The
most meaningful graph. «nd coefficient, again deal with the
summer month, and divided .it.. (Croup. 5,6 and 8,9).
In Table Mi for high flow southea.t Delta .ite. (Group 5) the
f£, , . ftQ09 while in the high flow western Delta sites
DO coefficient is	wnxo.
. fc is only .2793. This simply means that
(Group 6) the DO coefficient is on y
n0 saturation vs. chlorophyll correlation
there is a better percent DO satu*««-
in the southea.t Delta. Thi. I» *» to the higher phytopLnkton
concentration and corre.pondi.tf	daytime dis.olved oxygen
concentration found in the gouthe®»t

-------
In the low flow summers, the correlation coefficient in the south-
east Delta is again higher than in the western Delta, but the difference
is slight, .6207 vs. .6032. This is certainly not a significant
difference for the sample size.
B. Electrical Conductivity vs. Chlorophyll
The electrical conductivity means for the different data groupings
showed what was expected. Low E.C. in high flow years, high E.C. in low
flow years, and higher E.C. in the western Delta than in the southeast
Delta. These values can be seen in Table
The chlorophyll means and standard deviations were discussed in
the previous section. The values followed a similar pattern as the E.C.,
with the low flow years chlorophyll values exceeding the high flow years
chlorophyll values, and the southeast Delta having the higher chloro-
phyll values.	y
in looking at the correlation coefficients (Table »»), the nega-
tive values under electrical conductivity can be di.reg.r4ed. All
three of them were for total .it. ev.lu.tion. (Group. 1, 4 and 7), and
reflect the Jiffereac.a in the wo different Delta .re... Thi. c.n be
..en on the E.C. v.. chlorophyll plot, for the., data group. (Appendix
_L>-
The high correlation, (chlorophyll v.. E.C.) for the .oothea.t
Delta (.6857, .7507, .8065) could be indicative of .ever.l thing..
0f the water increases, a salt
First, as the E.C. or salinity
.	chlorophyll content may become domi-
tolerant species with a higher cruoropnj'
. mum' ^Vilorophyll value correspondingly. This
nant, and thus raise the chioropny*
fken the correlation coefficients in the
may be true* but if it were then toe e
ahov a high «rrel«tion» which tfcey don't
western Delta should al»o 8 0i*"
(.3408, ,3776, .3700).

-------
A second theory could be that the E.C. alone does not produce
the high southeast Delta correlation, but rather it is only an
indication of another parameter. In the southeast Delta when the
,	derived, may also be accompanied
E.C. increases, the salts, ir lana aerxv , 3
-1. •„ mav aoain be true, but the area is
by a raise in nutrients. This may again
an increase should not increase phyto-
not nutrient limiting, so an incr
plankton production.
A third alternative is that since the E.C. varies with flow,
it may be the flow directly that effects phytoplankton production,
lower flows in the southeast Delta have a greater lengthening
effect on the residence time of tha phytoplankton than . corres-
ponding low flow would have in the larger embayments of the
western Delta. This higher residence tfae «ay increase the
*».«¦ nroducing the high positive
phytoplankton production, thus P
correlation with E.C.
SUMMARY
• „f DO and Chlorophyll, »ean and .tandard
In comparisons 01 sn
- variation in the southeastern
deviation values, we find more
i •. fhe southeastern Delta is more greatly
Delta. This implication is the
. ..	the western Delta, presumably
effected by low flow periods than tn
kinoma which increase DO and chlorophyll
by large phytoplankton blooms wn
. There is alio a better percent
values and their fluctuations.
«ii y.Afrelation in the southeast Delta.
Do saturation vs. chlorophyll
«viftF(johvll values had high
Electrical conductivity vs*
correlation coefficients,in the southeast D

-------
The high correlation of E.C. to chlorophyll may be an indication
that another parameter closely related to E.C. affects chlorophyll
growth. Since E.C. is closely related to outflow, it may be that
phytoplankton production in the southeast Delta is directly related
to outflow.
The positive relationship of percent DO saturation to chlorophyll
a points out the fact that low dissolved oxygen values are not related
to high chlorophyll a concentration (algal blooms). In fact, the
phytoplankton increased the amount of DO in saturation. The timing
of the major bloom and of the major dissolved oxygen depression are
about 3 months apart. The DO depression is in the fall and winter
period which would indicate that some other factor, are causing the
demand for oxygen. Waste discharge would be a prime possibility as
that continues all year-around while phytoplankton production is
seasonal.
diurnal STUDIES
The purpose of the diurnal measurements was to measure daily
no «	.	j. • jnated during times when phytoplankton popula-
DO fluctuations anticipated au* »
was that DO concentrations would
tions were high. The hypothesis was tna
. „ hish ohotosynthetic action, and
climb, in the afternoon, due to hign P™ r
j	hieh respiration. Samples were
decline in the darkness due to hign re»p
.	surface and 3 feet off the
taken at a depth of 3 feet beneath the surrac
bottom.
« •*.' five sites 
-------
(no more than 2 mg/1).. There was a larger DO fluctuation (3.7 mg/1
on the bottom on August 16-17) at site D82 at Rough and Ready
Island on the San Joaquin River but there was no pattern to the
fluctuations.
At site P12 (Old River at Tracy Road) there were large daily
DO fluctuations (5.2 mg for surface samples on August 16-17) and
they followed the hypothesized pattern. The DO measurements were
lowest in the early morning and gradually increased throughout the
daylight hours (Fig H)- Site P12, also, after having high chlorophyll
level8 throughout the season, showed a sudden decrease in chlorophyll
levels in late August. Anticipating a phytoplankton population
"crash" and subsequent severe BOD loading and DO demand, a 24-hour
survey was set up by the California Department of Water Resources
to measure the diurnal change in DO. Samples were gathered every
half hour over a 24-hour period. Samples were taken one meter
below the surface and one meter above the bottom. DO measurements
were made using Winkler titrations. The results are plotted on
figure . The sharp rises and drops iti DO are attributed
to tidal influence. The daytime peaks are probably partially
* result of photosynthetic action (by phytoplankton). The
e«rly morning low was probably due to a combination of tidal
««ion, phytoplankton respiration, and BOD loading. A 00
continuous monitor was operated at Site C7 at the Mossdaie
Bfidge on the San Joaquin	The results were similar to
those found at Site F12, Old Tracy Road. Tidal influence war

-------
the most important DO fluctuation factor. The daytime peak probably
increased due to photosynthetic action and early morning lows were
probably influenced by BOD loading and phytoplankton respiration.
Generally, the diurnal studies showed that there was
less diurnal DO fluctuation at most site, than was expected
from the previously published results of 1966 (DFG). In the
areas showing larger DO fluctuations tide probably ha. the moat
influence. DO peaks were also probably influenced by photosynthetic
« i	r.ot-A orobably influenced by phytoplankton
action and low DO levels were prooa" y
respiration arid BOD loading.

-------
"T?VSL£. 5".	GfSoup/rJCS

"Tbr^i.
V&4X23
bllGt-4 fioM j
(fr4!, 7/; 74> "7s)
fux^ Sn r-1 fAt!,XS
(70, "72, 73, 7&)
1 ^
V)
K)o. |
5~7H- cat*
PoibSiS
KJO. M-
\ 0 \ E>*TV»
POi NTT
Mo. ~7
0 G? ."bATv^
P0» MT.S
/n~v?
Pa no tj
Wo. S
3 ST lyrrvi
PO/nW
* s
£ °°N
~ A
? i°
. a
Mo. 3
'ZH'iff Ivrra
PointcS
kjo. G?
5~8 -DATW
POIMTS
NJo. 9
3 1 Xi»T77)
fbfNXT

-------
~T/hSl.E- » (WHAnjs
"b£\jwnoKi5 Frcofv\ the. CoiZ/Z£ri.A~r>o*j
tZ&QzQ&SS/Oh.J /WV/^V-S/^


T>ACtA*AETPSJ^-

T>Sot_U€J>
0 XV6&0
CH^ofJcirnyji-
/4 C0^2£0€J
0l£C7Y?1 cax.
CoNJU't^Cnuj'r^
~b.o.
Pt~T\A/2jr\7~)c O
SXP,
trt
o
2
¦5
o
£

1 .8©
°l I
42 31
<2o. |
Z
8. O
£"4% *Hp
0? 1 8
93.
2 • C? 3>
64.
A8I
5^. 1
3

I sr. s*f
t0 3°f
79. G>

It. I o
5~C"? 2
8/7
M-
Q - (o G?
4-2'.O |
( CfO(s>
H2.D
1 . 3*3
38.
208H-
1ST, 8
S"
9.^*2-
"70. foCo
sr~7Z.
9 7.Co
1 .92

a 7 /
22,3
u>
8. 83
ao. 77
3 3,'7i
48, 3.
. 7H"
11-18
«3 48 3»
S..5--
/
¦=?. «5S~
.5-7, S"4
5-88 (s>
/ 0~7. •4-
<3,0-3.
"74. / "7
Q> fpC^,
,2 3. 3
8
ef.STS
tO'T.&S-
80S
1 1 2. 4-
3, 0~7
92.^3
7/1^.3
3S". 1
T-
^,02.
a 1. 78

10 3.7
.fcB
II8.0Z
6»-S"77
1. s~

-------
TASlE. 7. CORfcE L-prnofO
c_0EJ-F lC10->V-S F^OtvA CcX2/ZBL-A-TloK>
jsj /kOAtySf s>,
( C.h(-o^o^m^a<. vs. PA^At^err^y


^/\-&Pw£rr£JZ-


\>SOtU-FJ>
ox. y
C-'toPoPwytt.
A COOS£CT6ii
6l£CTY2IO«K^
CoM-OvACTiurry
•fc>.~Exo.
£ WwOTl 6 ro

1
. 34-G?|
1
— 0o(psrij-
. S"3 2 0>

2.-
. S~.22.Cj
1
>(*8* 7
. &708
(4
vf>
2
3
—.0-78(0
I
.VfoS

§
if!
M-
.38^
r
— „/»8
.H-7SO
Oi
5T
.67?0?
1

.a^sr
(
--,3,77 6
.27

7
.6004-
i
-. 2,763
. sr99^

00
. 6>5"«^ o
i
.80 Cos
.G>ao7

£-
i
. 370O
„fe033.

-------
TTTTT * i?
I 1 :f J &
; 11; 11
1,11c
illiln
! I I ':}	.I - 1
» i ; - . L, i,i -« I I ' l 1	La-
\
' = j ! ' I : i H • 1
BAy (£>7^
Ficjure
y-i

-------
DIURNAL STUDY 1976
Page 1 of 2



Water
Specific
Dissolved

Water




Depth
Conductance
Oxygen
Turbidity
Temp
Chlorophyll
Site
Date
Time
ft
micromho/cm
mg/1
FTU
C
ug/1
PI 2
7/26
0700.
3

3.2

25.5
42


1000
3

4.2

26.5
66
PI 2
8/16
1700
2
1300
8.6

22


8/17
0630
2
1160
3.4

20



0900
2
1000
4.2

19



1030
2
1115
5.1

?0

P12
9/16
1300
3
973
11.8
18
22.8




Bottom
990
8.7
24
21.8



1730
3
969
12.5
18
22.8




Lottorn
979
11.3
19
22.2


9/17
0530
3
960
7.7
24




0900
3
923
7.3
22
20.4




Bottom
957
7.0
24
20.6

D82
7/26
0600
3

5.5

24.9
13


0900
3

4.5

25.6
19
D82
8/16
1600
2
834
6.7

23


8/17
0600
2
805
4.5

21



0830
2
823
4.4

21



1000
2
766
3.5

22

D82
9/16
1200
3
754
4.9
6
23.4




Bottom
770
1.1
8
22.6



1630
3
754
3.7
14
24




Bottom
755
3.8
10
24


9/17
0430
3
761
2.5
10




0800
3
748
2.0
16
21




Bottom
753
1.7
18
21

Pll
7/26
0700
3

6.6


6.1


0900
3

5.8


7.4

8/16
1630
2
352
7.3
32
22
4.8

8/17
0600
2
415
6.7

20



0900
2
551
6.6

20



1000
2
402
5.9

20

Pll
9/16
1230
3
330
7.3
25

21.8


1700
3
342
7.4
24

22.4

9/17
0500
3
336
7.0
22




0830
3
360
7.0
29

20
C7
8/16
1530
2
936
9.0
34

64

8/17
0530
2
879
7.2

21



0900
2
873
6.5

20



1100
2
877
6.8

21

ficjur
-------




DIURNAL
STUDY 1976

Page 2
of 2



Water
Specific
Dissolved

Water




Depth
Conductance
Oxygen
Turbidity
Temp
Chlorophyll
Site
Date
Time
ft
micromho/cm
ms/1
FTU
C
ug/1
C7
9/16
1330.
3
860
7.0
22





Bottom
870
7.0
18
22.4



1800
3
863
8.0
19
22.6




Bottom
851
7.9
19
22


9/17
0600
3
831
7.1
17
22



1000
3
831
6.2
24





Bottom
835
6.0
22
21

Dl4a
7/22
1900
3
1290
8.2
22
25
6.3

7/23
0530
3
1380
8.2
25
22
3.0


0630
3
1120
8.0
27
22
3.2


0730
3
1130
8.1
26
23
4.6


0830
3
1150
7.6
24
23
5.0
Dl4a
8/19
1800
3
913
8.2
20
21.1
3.9


1900
3
831
6.8
20
21.0
3.4


2000
3
1075
6.7
20
18.0
3.4

8/20
0600
3
948
7.7
23
17.2
3.2


0700
3
942
7.5
22
18.5
4.1


0800
3
933
8.2
23
18.8
4.1


0900
3
928
8.2
24
20.7
4.4


1000
3
901
7.6
28
21.8
3.9


1100
3
946
7.8
23
26.6
4.6


1200
3
966
7.7
25
26.4
5.9
c:.	 li~

-------
Fjv-r c.	f/x^7b	N.T",u rr.'.j-N	7/22/7it

-------
APPENDIX A
Dissolved Oxygen vs. Chlorophyll and Electrical Conductivity
vs. Chlorophyll Relationships

-------
¦k'uber or variables 4
•N-MB£R_OF__CASES	594	
TRanS GENERATOR CARDIS)
CARD NEh TRANS 0RI3» ORIS' VaROI
NO* VARIABLE CODE" VARtA > OR CONSTANT
¦I	5	1#	1	4.0000
•2 6 9 5 100<0000
-VARIABLE FORMAT CARD16)	
(13X«F4i1#2XjF5*1'2XjF5*0*2X/
«•
F3«l J





1
-REMAINJNQ SAMPLE SIZE" 694
SUHS
m
9493*0000 18902*2000
*
1650859*0000
5731*0000
571*9676
57196*7599


HfcANH
m
»
9*2479 31*8219
2610*8737
9*6481
• 9629
96*2908


[cross PRODUCT OEVIaTIOnS






° COL* COL*
COL*
COL*
COL*
COL*
COL *
COL*
i e
. 1 2101*7412 18124*4828
3
7139*6606
4
332*3822
6
195*7518
6
19575*184*


?~TS124.4S2S—r304706*l 155^7717291 *7586^
. 3 7139*6606 -7717291*7586»»4»#4»*»»4*»4
•9690*4859
-575113*3889
2981*?~
59119*0651
298158•7#2S
5911906*5146


	332*3822 ^9690*4859
, 5 195*7518 2981*5874
¦575113*3889
59119*0651
617*0230
-25*4281
•Z5•4281
24*0248
•2542*8134
2402**802


. A 19578*184% 298168*7425
<>
5912906*5146
-2542*8134
2402 • 4B02
240248*0202


.STANDARD DEVI A HUNS
1*8826 46*9061
4239*1107
1*0201
• 2013
20*1281


.VARIANCE-COVARIANCE matrix






m
COL* COL*
COL*
COL*
COL*
COL*
COL*
COL*
1 2
- 1 3*5443 30*5641
3
12*0399
4
• 5605
5
• 3301
6
33*010#


. 2 30*5641 2200*1789
- 3 12*0399 *13013*9827
-13013*9827
17970059*4461
-16*3415
-969*8371
5*0280
99*6949
502*7972
9969*4882


. 4 *9605 -16*3*15
- 6 *3301 5*0280
•969*8371
99*6949
1.0*05
-•0429
-.0425
• 0405
-4*2880
4 *0514


. i 33*0104 802*7972
9969*4882
•4*2880
4*05X4
405*1400


XORRELATION HATRIX-

-------
3	>0013	••0454	1*0000	*1168	>1168
A	l29Ju2		-«22»3	LlQQGLQ	-*2088	¦.308,';
S *8711 >5326 >1168 ->2088 1*0000 l>CCrC
J|	*8711	»5326	tll&S	¦igoaa	1 »OQOO	1 »OQ(?p

-------

20*000
100.OOP
iso.ooo
260.000
3 + 0 <¦ 000
• 19000*000 4







~ 19000
DOC
' 18600.000 «
• 18200.000 i







• 16600
( 18800
GOC
COO
' 17800(000 •
- 17*00.000 .
1
1 11






• 17800
. 17*00
COO
000
" 17000.000 4
" 16600.000 >
1 1 1
1






~ 17000
( 16600
000
000
" 16200<000 •
- 15800.000 (
1
12 1






. 16200
• 15000
000
000
•	15*00.000 *
*	15060.000 4
2 1
1 1 1






( 15400
4 15000
000
000
14600*000 *
« 14200«000 (
12 1 1
2 1






. 1*600
• 14200
000
000
• 13800(000 (
- 13400.000 •
1 1






( 13800
( 13*00
ooo
000
- 13000(000 4
* 12600.000 (
1 3
11211 1 1






~	13000
•	12600
000
000
- 12200*000 .
> 11800*000 •
11 1 1
1111






•	12200
•	11800
000
000
• 11400*000 *
- 11000*000 4
1 11 1 1
1






. 11*00
4 11000
coo
000
-	10600.000 *
-	10200*000 *
1 1 1






( 10600
( 10200
000
000
>| 9800(000 *
r»| 9400(000 (
1 1 11
1 1






( 9600
( 9*00
000
000
\J 9000(000 4
8600(000 (
1
1 1






4 9000
( 8600
000
000
H 8200*000 (
7*00(000 *
2 1 1
11 11 1






. 6200
• 7800
000
000
. 7400*000 •
> 7000*000 4
Sli
21 111






. 7400
4 7C00
coo
000
r 6600(000 •
• 6200.000 *
1
11 11 1






*	6600
•	6200
000
000
. 5800*000 *
« 8400*000 *
21 11
1121 1 12 1






*	5600
•	5400
000
000
-	SOOO.OOO 4
-	4600.000 .
1 l
2 11 1 1






4 5000
• 4600
000
000
-	4200.000 *
-	3800.000 *
11 11 1
133 21






•	*200
•	3800
000
000
• 3400.000 .
. 3000.000 ~
1
123 1 1






* 3400
4 3000
000
000
- 2600*000 *
. 2200*000 *
231 12
1 12 11






•	2600
*	2200
000
000
. 1800.000 *
• 1400*000 *
1121 1
12 1 1 1
i
1
1
1 i 1
1 1
1
• 1800
1 * 1400
000
000
~ 1000*000 4
- 600*000 •
8834433 2 4 1 121 31 11 2
20NADQ86876S94443S 11 11 2 2
15 3 1
1 2
3
2 I
2
1 1
1
1
~	1OO0
•	600
000
000
-	200*000 *
-	(*200*000 •
X-VK0SAB9252 211 11






*	200
*	-200
000
000
» *600*000 *
• -1000*000 ~







*	-600
~	*1000
000
000
- *20*000
60*000

140*000

220(000

300*000
380*000

110*000
2*0*000
to.000
IoO.OOO

-------
	
to»000

100*000


100.000

fefeO'feOO
26Q.0C0
300.060 Sao.ODD
3*0»000

267.000 ~









~
26 7•030
261.000 .
255.000 •









ff
»
26 J -000
255.000
249.000 •
2*3.000 •









•
•
2*9.003
2*3.000
237.000 ~
231.000 •









•
237.000
231.000
225.000 *
219.000 •







J

C
•
225.000
219.000
213.000 •
207.000 ~









•
213.000
207.000
201.000 *
195.000 .









1
•
201.000
195.000
189.000 •
183*000 .





1



•
•
169.000
183.000
177.000 ~
171.000 .




1
1
1

1
t
177.000
171.000
165.000 .
159.000 .

1
1


1


1
1
•
•
165.000
159.000
• 153.000 .
f 1*7.000 ~


1 1
1
1 1
1

1

t
1 ~
153.000
1%7.000
r i*i.ooo •
135.000 .

1 1
1

1

1


1 •
•
1*1.000
135.000
129.000 .
. 123.000 .
1
1 2
1 1 1
1
1
1 1
1

1
1
1
•
1 *
129.000
123.000
w. 117.000 ~
vjr ui.ooo .
1 61232 1
746321211
1	111 1 1
2	11 11

3





117.add
111.000
105.000 »
Is*! 99.000 .
28*2**D551321*1 1 13
3QJAAB2332052 2 1
11 1
2

1



1
*
*
105.000
99.000
93.000 .
*7,000 ~
FPRAA6*22123111 12
•L063O**5 211 2
1

1
1




.
93.000
87.000
IrV* 81.000 .
M \ 75.000 .
26857223311 1 1 1
1232131 11211 1
1






.
*
Si.000
75.000
• 69.000 .
. 63.000 .
213 111
12 1 1
11 1
1



1



.
.
69*000
63.000
57.000 ~
• 51*000 .
11111311 1
1 1
1
1







•
57.000
51.000
« 45.000 .
39.000 .
1 1 1
1








.
.
*5.000
39.000
33.000 .
27.000 ~
1




r"



.
33.0SC
27.000
21.000 .
• 15.000 .
I

1






*
.
21.000
15.000
» 9.000 .
3.000 .









.
.
9.000
3.000
• "3.000 ~
-9.000 .









.
•3.000
-9*000
- *15.000 .
¦21.000 .









.
.
-15*000
-21*000
• *27*000 .
•33*000 *









.
~
-27.000
*33*000
*20*000

60.000


140.000


220.000

300.000 380*000


1U.OSQ

IDU*000


180*000


260.U00
3»u.000

Ch o rnyiL

-------
•PROBLEM COOE *08102	
¦number or variables *
•NUMB£R_ OF CASES	2*8	
	-	trans oenErator carpi si	
card nek trans oriq* oriq* varibi
¦ no* variable c£)o£ varia) or constaW
-	1			 5	1*	1	*.0000
• 2	6	9	S iooiooao
-VARIABLE FORMAT C*RDt3)	
ll3Xi<2X^SiO»2X«r)ill
«~
.REHAlNINQ SAHPLi SIZE* 2*8
juris
tiot'dodo 19507*100$ 183201*0000 2388*2000	230*8635 23086*3*67
*
iriEAMS
m
»	8 V90 32	5 4 • 4 6*1	&17 • 7*60	9*6298	*9309	93.Q9Q1
[cross product deviations
I	£0t*	COL*	COL*	COL*	COL*	COL •	COL'	COL*
.	fl	2	3	If	5	£	
. 1 1712*797* 21821*6887 58812*8032	122*6661	176*3678 17636*7810
2~2tl21*6S87 "1017805*9506—3051583*9391	S7243*84«	30S7-.53T9	3097 53 7TB 71	
. 3 Sfai2*8032 3051583.9391 19*578*2*9960 -1*766*9202 7994*0950 799*03*4988
	'122*6661 -72*3.8***—-1*766*9202	298*3192	-15*1779	-1517.7**7	
. 5 176*3678 3097*5319	799**095C	-15*1779	20*9525 2095*2502
- i Pbit-7810	309753* 1871	795*fff7*m	-1517*79*7	2095*2502	525*0203	
JTAhDARO-OEVI ATtONS		:	
.	2*6333	6**1925	280*6719	1*0990	^*2913	29* 1252
".VARIANCE-COVARIANCE MATRIX

COL*
COL*
COL*
COL*
COL*
COL*
COL* COL*

1
2
3
*
5
f.

1
6*93**
88*3*69
238*1085
• *966
.71*0
71 .*0*0

£
88*3*69
4120*6719
12354*5908
-29*3273
12*5*06
1284*0615

3
238*1085
1235**5908
71776*6923
-59*7851
32*36*8
3236i*757

*
• *966
-29*3273
-59*7851
1*2078
-«06i*
-6*1449

S
• 71*0
12*5*06
32*36*8
-•061*
• 08*8
8**828

I
71**0*0
125* *0615
3234*4757
-6*1**9
1*4125
8*8*275%

XOMCLATIC* n*T*IX

-------
	2	*5226	1 »DDOD	.&B57 				 »V7t>*	»fc7©®
3	>3222	•6857	i.0000	-.1938	<3959 "	.3959
±	*1716	»*»157	¦» 1938	1*0000	-*1920	gg,"
5 *9310 *6708 *3959 -*1920 1*0000 i*000u
Jk	* 4310	AfclOl	• 3 9iS	-»19£Q	jjQ.QQO	HOOQJ
U

-------
»tsrTO6*r

wo>«oo
*20 .Dot)
20*000
100*000
lao.ooo
260.000
^Ob.OoO
340•OCO
780*000
_1515«00Q
1485*000
1455 • 000
1425*000
1395.000
1365.000
_1335 •000
1305.000
J275.000
12*5 * 000
1215.000
1185.000
_1155*000
1125.000
1095»000
1065*000
1035*000
1005*000
975*000
"545*000
¦ | 915*000
>| 885.000
VJ 855*000
a I 825*000
HI 795*000
*^^765*000
735*000
705*000
*75*000
~*45iOOO~
819*000
585*000
555*000
525.000
495*000
435*000
—405*000
375*000
"345.000
315*000
—2e5.006cr
ooo
ooo^
000
oocr
ooo
oocr
ooo
000"
ooo
000"
ooo
TOT
75
~"V5
18
cocr
000
"TOO"
000
19*000 ~
4...I
¦20.000
20*000
*0.000
io0*060
140.000
IflO.OOO
220*000
240.000
300.000
340.000
310*000
CHunaoewyn

-------
-so-ooo
JSO • 0 0 0
60.000
i*o>ooo
100*000
ezo-ooo
iSO.OOO
ato.ooc
JOO.OOO
3*0>000
380.000
267
2&i
.255
2*9
_2*3
237
-231
225
_219
213
jeoL
201
J95
189
183
"177
_171
165
159
153
•	1*7
-Lr**1
£ 135
V) 123
'"T117
O in
93
87
81
75
69
63
"57
51
*5
39
"33
27
21
15
9
3
-3
•9

000
000
OQO
000
000,
000
000
000
000
000
OOP
000
000
000
000
000
oo
-------
PJIOBlZh. COPE »89"i0a	
NUrtBER OF VARIABLES 4
NUMBER OP CASES 346
TRANS BEnERATOR CAHD(S)
card _ nEh trans
~no» "Variable ~cooe"~
1	5	14
2	6	9	5	100*0000
VARIABLE FORMAT CAR0I8)
(13X*F*7lV2XiF5»i#2X*F5*0#2X*F3.1)
ORIO^
V A R ( A )
1
ORIQ* Va«;&]
OR CONSTANT
#•0000
REfUINXNO SAMPLE SIZE* 346
suns
3285•0000 5395*1000 1397658*0000 3342*8000
341*1041	34110*4133
	 9*49*2 	 15*5928
CROSS PRODUCT DEVIATIONS

COL*
	T		
1 338*488*
~S~~-378*6145
-V— 207*0325
5 14*6928
~B 1469*2831"
COL*
	z	
•378*6145
48627*0119
>45059*18504
-2270*1368
192*6093
"T526tr*9Z6I-
4039*4740
COL-
3 "
9*6613
*9859
98*5850
-343798.8520
84*5059 * 1850"
^-575883*6486
23963*9068
"2396390.6767
COL*
COL.
COL*
COl *
COL*
4
207*0325
5
14*6928
fc
1463.2831


-2270*1366
-575883*6466
192*6093
23963 * 9068
19260-9266
2396390*6767


.10*4997
•T549 .9696"
2*6361
Z63*61?T
263.6125
"26361.2454
STANDARD DEVIATION#
• 9905
14*1039
5092*0347
*9609
*0874
8.7412
aVARI ANCE-CO V ARIANCE MATRIX
COL*
1
-_1	*9811
-	i -1 »097<»
-	3 >996*5184
4	*6001
-	5	*0426
6
iTiwr
COL*
2
COL*
3
•1*0974	-996*5184
198*9189 " 24478*432%
24478*4324 25928817*4095
"1669*2280
¦6*5801
*5583
TSTi2«r
69 * 4 606
"6946*0595
COL •
4
*6001
-6.5801
-1669*2280
*9234
-*0304
COL*
	5	—
*0426
"*5583"
69*4606
" -* 0304"
*0076
COL*
COL*
COL*
6
4.2588
55•82dfi
6946*0599
•7V0^3i"
.7641
-3.6434
*764«
76 * 405*

-------
1
2
3
s
6
1>0060
-.0786
-•1976
'6305
• *919
_'4919_
••0786
1•0000
•	3«0B
¦«*855
•	*528
•	%528
"•1976
•	3* OB
i <0000
¦ »3*>n
•	1561
	• *561
• 6309
-•4655
-•3#ii
_i»oooo_
—»3623
-•3623
•	491 9
•	*528
•	i56T
-'3623
1 • 0000
1-0000
•	*91 9
•	-»526
•	156i
J-J_362i_
i•0000
1« 0000

-------
7W•WWV
O. 000
20•OOO
40i000
60.000
sc.c/or.
- l
_19000.0CO
18600.000
18200.000
17800.000
_ 1 7»00•000
17000.000
_16600•000
16200. 000
15800.000
15*00.000
^5000.000
1*600.000
1*200•000
"13800.000
13*00*000
13000*000
12600.000
12200*000
11800*000
'11*00*000
11000*000
'10600*000
10200*000
9830.000
9*00*000
9000*000
• |=| 8600.000
ilttf 8200.000
7800.000
7*00*000
_ 7000.000
6600.000
6200.000
5800•000
5*00*000
5000.000"
*600.000
*200•OCO
3800.000
3*00•000
3000.000
~2600*000
-	2200*000
1100.000
. 1*00.000
< —1000*000
¦:	600.000
200.000
-	-200*000
» "400*000
-	*1000*000
'~it	» i. : 4 ¦¦ it i	* f r *
*










~ 19 0 0 0
0 0 0
~










•	18600
*	18 2 0 0
OCO
OOO
»
~

«
i
1
1






. 1 7 fi 0 0
. 17*00
C C 0
r ^ n
O w w
~
•
1
1
1







~	17000
*	16 6 00
000
000
«
.
1
2 1







1
•	16200
•	158O0
000
000
I
~
11
1
1


1




«
*
•	15*00
~	15000
000
000
.
•
12
11
1



1

1


•	1*600
•	1*200
000
000
.
•
1
1








•	13800
*	13*00
000
000
*
11
1
11 1 1
111


1




~	13C00
•	1?600
OOO
000
•
I
1
1 1
1
1

1


1

i
•	1?200
•	11800
coo
000
.
1
1
11
1


1




•	11*00
~	11000
000
000
•
•
1
1
1







•	10600
*	10200
000
000
•
•
1
1
1
1

1



1
•	9600
•	9*00
000
000
•
1
1
1








~	9000
•	8600
coo
coo
•
*
11
1 1
1 1



1
1



• 8200
. 7800
000
000
t
11
21
1

1

1

1
I

*	7*00
~	7000
000
000
•
*
1
1 1 1
1

1






•	6600
•	62 00
000
OOO
*
»
11
ill 2
1
1



1
1
2
1
i
•


•	5600
•	6*00
COS
000
•
1
1 1
1 1
1


1

i


~ * 5000
• *600
DflO"
000
•
*
11
121 1 11
1 1
11 1



1




•	*200
•	3800
003
000
•
1
21 2 1

1

1
r




•	3*00
~	3000
000
coo
*
•
11111 1
1 1
1 1 1
1 i 1
1







•	2600
•	2200
000
000
*
•
2 li
1 11
1 1
1 1

1






	 * 1800
• 1*00
000
000
•
1 223 32 1111 1 1 1
31 llllltll 2 1 31 3 1
1
1
21






~	1000
•	600
030
000
•
•
8IE8567634**31*53*115122213 12


12 1




200»000
• -200.000
*
~










•	"6UV
~	"1000
000
000
10*000
10*000

30.
000



50.000

70.000
90*000

S'.OOo
20*000	*0.000	60*000
C.Hto(zo?v\yLc
ic.ooe

-------
£
136 i
13 01
129.
121
120
118-500
117.000
115. SCO
11*.000
112.500
111*000
109.500
108.COO
106.500
105.000
rT103
VJ 102.000
»^?~ioo.5oo
99.000
97.500
O 96.000
9* .500"
93.000
"91>500
90.000
88.500
87.0CO
"85.500
8*.0C0
82.500
81.000
79.500
78.000
"76.500
75.000
"73.500
72.000
70.500
69.000
~t7.50CT
66.000
64.500
63*000

>10*000
10*000 30*000


50.000
70.CCC
90•OCC


-
0*000 20>J00
*0•QOC

60.000

8 0 ' 0 0 D


~





5 t i « s i i i t » c 4 m
138
OCC
«





t
5 36
SCC,
•





*
i35
Li u w
•
t





«
«
5 33
132
U W \J
+






; so
500
•





•
123
OCQ
•
1




*
127
500
•





.
126
oca
•
i




.
12*
123
500
000
«
I




i i
121
500
•
1 i i




•
120
coo
«
i


1

•
118
500
•
	, .... i i
1


1
.
117
000

I 2 1 1





i 15
500
•
11 1 21 1
1



•
11*
000
•
111 1 1




t
112
500
•
11
1



•
111
000
•
11 3 11 1 11 1




•
109
500

1 1111 11 2 1 1
1
1



108
coo
•
i 1 12 12
1

1

•
106
500
•
111 211 1 11


1
ii
*
105
000
•
11111 2112 111111 1 1
1 1

1
*
.
103
500
•
12 1 1
1



•
102
000

12 *12 12 1 21123 2 1
1 1

<


100
5o0
•
3311 11 1 31 11 1 1 1
1

1

r
99
000
•
22 113 311 1 1 ll 1 1

1


•
97
500
f
33212 2*111 112 1


1

»
96
ooo
•
3222213 11 1 1 1 11




.
9*
500

631 23 111 2 11 1 1 1
1
1



93
000
«
231 1 2212 2 1
1



•
91
500
•
12111111* 1 2 1 11




.
90
000
•
*12 1* 2




.
86
500
•
33*1 1 21 1 1 1 11




.
87
000

1 1 11 11 1





65
602
•
2 1




•
8*
000
•
•
1 3




.
•
82
81
500
000
•





1
79
500


r




78
000
•





.
76
500
•





.
75
000
•
•

1



.
.
73
72
5 C 0
coo







70
500
•





•
69
000
•





•
67
sou
•





•
66
000
•





•
6*
500
~





~
63
000









10*000
10.000 30.000


50.000
70*000
90.000


0.000"
"20.066
40.000
60.000
80*030

-------
gl' IWlllH IlillNlCl LUHPUI 1KB PIL-lllIT.ULLl
•|?«O0i.EM CODE *Q0HD*	
-number or variables 4
•NUMBER OF CASES 101			
TRANS GENERATOR CARD(S)
CARD NE*	TRANS ORIQi ORIS* VaR!B)
NO* VARIABLE CODE VARCA) or constant
• 1	5	I	1-.0000
¦ 2	6	9	5	lOO.OOOO"
•VARIABLE'FORMAT CARDISI
(i3XjT4*l/2X#F5.1»2X/J'5*0*2X*F3*iI
-REMAININQ SAMPLE SIZE" 101
.SUMS
874*2000
4243*1000 162198>0000
892•5000
98.9826
9898.2647"
HEINS
«_ 	8*6554	42*0109
'CROSS PRODUCT DEVIATIONS
COL.
	1	
. 1 189.2095
, ~2~2050*3790
. 3 *8863*7564
9.22*9
. 5 20*9391
COL.
2
1605•9206
CCL.
—3-—
8*3366
2050*3790 -8863.7564
151537.3580—1239392.1129
-1239392*1129434397725.366 3
-496*2903 6149.4931
293*9302 -1838*8790
¦8—2093*9139	2*393*0179—ST83887•905C
!*T*t»DA*D DEVIATIONS"—		
C0L<
— 4
9*2249
T".96*2903~
8149*4931
13*3345
-*4734
-47*3394
>9800
COL <
20.9391
293 • 9302"
•1838*8790
98*0026
COi,
-.4734"
2*4951
"249.5U92
2093.9133
~~29393.0179"
•183887.9020
i47*339«T
249.5092
CCL
COL'
24950*9165"
1*3755
38*9278
2084*2210
*3652
*1580
15*7959
.VARIANCE-COVARIANCE MATRIX

COL*
"
1
- 1
1*8921
- 2
~~ 20*5038
. 3
-88*6376
- ^
*0922
. 5
*2094
• 6
20*9391
COL*
2
20*5038
1515*3736
-12393*9211
	 -4.9629
2*9393
253*93CF
COL*
3
-88*6376
-12393.9211
4343977*2537
	81.49*9
-18.3866
iTa3s« 87sC~
COL*
• 0922
-4*9629
81*4949
	*1333"
-*0047
-*4734
COL*
5
• 2094
2>9393"
•18>38B8
~-VOOVr
*0250
COl>
20*9391
	593.930?"
-1838.8790
-•473%
2*4951
COL-
COL*
2.4951
249*5092
.CORRELATION"HATRIX

-------
_ 1 1 - 	 ni					 • S 	S			5'
l-OOCO	'38S9	-•0309	<1637	.9637
>3829	1.0000	->15?3	«.3fSI	•"780
-•0309	-«i5EB	ltOOOu	«107l	-»0!3£>9
» X 8 37	- • 3 % 91	!_10 71 ______ !• QOu 0	->08 ? 1
•9637 .*780 -.0559 -.0821 i.OOOO
—•9637			_ • 47B0	-.0552	082*	1»0000

-------
21000	42.000	-	8 2•000	122»OOC
	2?. 000	42. goo	108.000	us.000
162 . Ool
~202•000
lag.soo

• 9100
000
~






«• S10C
000
8900
000







. 890C
000
• ... 8700
000







. 8700
coo
8500
000







. 8500
CCD
¦ 830 0
000







« 8300
oco
810 0
coo

1





~ 8100
oco
7900
000







• 7900
000
" 7700
000







. 7700
000
• 7500
000
1
1





• 7500
000
• 7300
000







• 7300
000
¦ 71'00
000







~ 7100
000
6900
000
• 1
1





. 6900
000
- 6700
000







• 6700
000
- 6500
000







. 6500
000
- 6300
ooo







. 6300
coo
6100
000
~ I






~ blOO
000
¦ 5900
000
1
1





. 5900
000
» 5700
000







. 5700
000
- 5500
000
• 1






. 6500
000
• 5300
000

1





• 5300
coo
- 5100
000







~ 5100
coo
14900
000







• *900
000
« 1*700
000
11
1 1





• *700
000
V/4500
000







• *500
coo
III-000
if *100
000

1





• 4300
000
000

1





~ *100
000
« 3900
000







. 390 0
000
- 3 70 C
000
11 1 1






. 3700
000
- 3500
000







• 3500
000
. 3300
000







• 3300
000
- 3100
000

1





~ 3100
000
r 2900
000

1





• 29C0
000
. 2700
000







. 2700
000
• 2500
000
1 1
1





• 2500
coo
. 23C0
000

1





. 2300
coo
• 2100
000
~ 1






~ 2100
000
.. 1900
000







• 1900
000
1700
000
	 1






. 1700
000
- 1500
000
• 1
1





• 1500
000
. 1300
. 1100
000
000



r

i

•	1300
~	1100
coo
000
. "900
000

1
11
1 1

2 1 1
1
• suu
oco
700
000

11 1
1 111
1
1


1 . 700
000
500
000
• ~i r r
111 11 1
11




• 500
000
300
000
• 2* 3
222 1 11 1 1
1 1




t 300
000
100
- -100
000
000
~ "21311911 1
1





~	100
•	-100
000
000
- -300
~ -500
ooo
000







. -300
• -500
000
000
- -7oO
000







• -700
000
» -900
000
~






~ -900
000
~ ... I
2*000
#2.000
82.000
122.000
142.000
202*000
22.000
62.000102.0001*2.000
	dHLOftoPHyiL.—ex
182.000

-------
2*000
42 • 000
82.000
12?.000
162.00C
202.000
U
126
180*000
177.000
17*.000
171.000
168*000
165.000
162*000
159.000
156.000
153.000
150*000
147.000
li*.000
141 * 000
138*000
135*000
132 * 000
000
000
123*000
120*000
117.000
114.000
111.000
JoS.ooO
105*000
102*000
_ 99.000
96.000
93*000
90.000
87.000
" 84.000
81.000
78.000
75.000
"72.000 ~
69.000
66.000
63.000
60*000
57.000
~~54.000~
51*000
"48.000
45.000
* m
o
U
	2!*ooo_
_&e.opo.
102*000.
142*000
162.000
195*000 *
192*000
189. 000
1B6* 000
183*000
1
2 2
"		U	
1 2 11
_	i 1 1 1
1 11	11
iaif li i lit"
1211 1 111 i
i i
195
192
189
166
183
"180
177
174
171
168
65
162
159
156
153
150
JW
144
141
138
135
132
129
"126
123
120
117
in
108
105
10 2
99
96
93
90
87
""84
81
78
75
"72
69
66
63
"60
57
"54^
51
II
4S
000
000
000
coo"
000
000
000
000
000_
000
000
000
000
000
000_
000
000
000
000
000
000
ooiT
000
000 '
000
ooc"
000
oo5~
000
006 ~
000
00(5
000_
000
ooc
000 "
000
coa~
000
000"
000
000^
000
000"
000
oacr
000
ootr
000
~
2*
000
42*000
82.000
122*000
162*000
202*000
22*000'
62*000
102.000
1*2.000"
ClHLO^OPHycC
182*000"

-------
¦ «lfALfVyi»k*e±s cShWUYVNo factCttyVuci.a
problem code «ae*D5
NUMBER OF variables 4
•NUMBER OF CASES 43	_
TRANS GENERATOR CARD(S)
trans
CODE
9
VARIABLE format CARDIS)
113X* F* * 1 tZki'FS * 11 ZXTFS • Oi 2X# F3 • 11
CARD nEw
" NO* variable
¦' _l	s
2	6
QRXQ*
VARIA)
	1
5
OR 10• VaR(B)
OR CONSTANT
<••0000
100*0000
.REMAINING SAMPLE SIZE- #3
.suns
362*2000
3038•5000
,WEANS"
2461A•0000
371*2000
41.9735
4197.3486
-	8 * 4 233 	70*6628
.CROSS PRODUCT DEVIATIONS
COL*
	j	__
1	154*3167
2	"2*31*497 2
3	8191*181*
3*9574
5 17*6037
T
COL*
	2	
2431**972
82937**205
380347 * 1698
-40*9079
287*1769
ttso^:
igTANOAfW OEvUTIOh*-
S72*4lB6
COL*
-3 —
8*6326
8191*1814
~ "380347*1696
3094966*4651
-1107*0860"
1084*0240
r*39rr
COL*
*
3*9574
-40*9079"
-1107*0860
4*9744
-*1386
	-13*8555
*9761
97.6128
COL*
COL
17*6037
287 * 1769™
1084*0240
2*0829
208*2873
1760.3720
2S717»6937"
108*C2•3977
-13.8555"
208*2873
20828*7331
COL •
COL*
1*9168
44*4376
_VARIANCE-COVARIANCE matrix
271*4584
*3441
*2227
22•2693
COL*
COL<
COL*
~ 3
COL <
~~~V* •
COL*
~ 5	
COL'
COL*
COL*
- 1
3*67*2
57* 3928
195*0281
* 09*2
*4151
41.9136
• 2
57*8928
1974*7005
9055*8850
-*97*0
6*8375
683 <75*6
- 3
195*0281
9055*8850
73689*6777
-26*3592
25*8101
2581*0095
. 4
*0942
-*9740
-26*35*2
• 1184
-*0033
-<3299
- 5
*4191
6*8376
25*8101
-*0033
*0496
4*9592
. 6
41*9136
683*7546
2581*0095
-*3299
4*9592
495 < 922?
XORRELATIOH-TfATRJX

-------
a	l'OOOO	't>VV7	•1#2B	>9 to!9
2	>6797	i«0000	.7507	-.0637	.6909	.6903
3	~37*8	•7507	1.0000	••2832	.*270		»#270
Jt	1-1528	-jlQ&32	-1.2822-	liOQQQ	-»0*3Q	-»Q%3^
5 *9819 •6909 .#270 -.0430 1«00C0 i.OOOO
.6	*9819	'69Q2	.#270 . 	-.0*30	L'JJOOC	i «J20££-

-------


6 • 000

#6*000 86•000
126•OOC 166•0 00

206•OoO




26*000
66 iOOC
106*000 1*6*000
186.000











1090
000
~




~ 1090
000
1070
oco
•




. 1070
oco
• 1050
000
•




i C 5 C
GOO
• 1030
oco
•




• 1C 3 0
w J "J
" 1010
000
•




~ 10J0
coc
990
000


X


~ 990
0 0 0
970
000
•




• 970
00Q
950
000
•


1 I

• 950
000
930
coo
t


1 I

• 930
000
910
000
•




• 910
000
890
oco





~ 890
000
B70
000
•

X


870
000
850
000
•

1


» 8 5 0
000
830
000
•


2 1

. 830
000
810
000
t




• 810
000
790
000


1


1 ~ 790
000
770
000
•




» 770
000
» 750
000
•

1
1

750
000
730
000
•




• 730
000
710
000
•

r i
1

» 710
000
690
000





~ 690
coo
670
. « 650
000
000
•
•

1 1


•	670
•	650
000
coo
r 1""°
000
t

1


< 630
000
U 610
000
•




• 610
000
- * 590
000





~ 590
000
l=lk 570
000
•

1 1


. 570
000
^550
000
•

1


• 550
000
530
000
•




t 530
000
510
000
•




• 510
000
*90
000


1


«¦ *90
000
*70
000
•




. *-70
000
#50
000
•
i



• #50
coo
*30
000
•

1


• *30
000
#10
000
• 1




• *10
000
390
000





~ 390
000
370
000
•




• 370
000
350
000
•
	I"



• ' 350
000
330
000
• 1
1



• 330
000
310
290
000
000
*
1
11 1


•	310
~	290
000
000
270
000
•

1


• 270
000
250
000
•
1
1


• 250
OOC
. 230
oco
•

1


• 230
000
210
coo
•
X



• 210
000
190
ooo
~ 1




*¦ 190
000
170
000
•
X



» 170
000
150
000
• 1




150
000
- 130
000
•




» 130
000
110
000
•




• 110
000
»0
000
~




~ 90
000
~ •Ml
6« 000
#6*000
86«000
126«00C
166•000
206•000
26.000	fat.OOC	106.COC	U6.C00
	GHLOfiOfHVt-C 	
186.030

-------
fc.6o5
*6.000
Bb.OOO
IHfe.OOO
1&6.OO0
206*000
2*»000
66.00C
106.000
i#6.ooo
i86.SOP
195
192
189
1B6
_1B3
160
177
17*
171
168
165
162
159
156
153
150
I*7
1**
J*1
4 - 138
EL 135
132
V/) 129
. 126
o" 123
^ 120
117
11*
111
"^TOS
" 105
102
99
96
93
90
87
" 6*
81
7B
75
"72
69
66
63
60
57
~5*
51
48
*5

000 ~





~ 195
COO
000 *





• 192

000 *





« las
coo
000 *





• 186
ooo
000 .





« 183
occ
000 ~





~ 180
cco
000 •





* 177
000
000 .





* 17*
000
coo .





* 171
000
000 *





• 168
000
000 ~





~ 165
000
oco •





* 162
000
000 .





* 159
000
000 •
000 .





*	156
•	153
000
000
000 ~





~ 150
coo
000 *





• 1*7
000
000 .





• 1**
ooo
000 *





* 1*1
coo
000 *





1 * 138
000
000 ~


1


~ 135
000
000 .





• 132
000
000 *

1



• 129
000
000 *





• 126
000
000 *


1


• 123
000
000 ~
000 *

1 1



~	120
•	117
000
coo
000 •


1


11*
009
000 *

1
1


111
000
000 •
000 ~

1
1 1
1


* 1 OB
+ 105
000
000
oco •

1 1



• 102
000
000 *

1



* 99
ooc
000 .

1 1 1
1 1


• 96
000
000 *
1
1 111



• 93
000
000 ~





~ 90
000
000 *

1 1



8 7
000
ooo *
1
1
4


• 8*
cco
000 *

11 1



• 81
000
000 *
000 ~
1
1 2
1


78
~ 75
000
000
000 .

1



• /e
000
000 •





. 69
oco
000 *





• 66
000
ooo *

1



. 63
000
000 ~
000 *





*	60
*	57
000
000
000 *





» 5*
030
ooo *





51
000
000 .





• *8
000
000 ~





* *5
QOO
~ • • • i
6*000
*6.000
86*000
126.000
166*000
206*000
26.000
"bXrjs^n
106.000
146.000
186*000
Ckloboph yt l—

-------
WF1L TH SCIENCES COrlPUTIHQ F/«CUITr/UCL<
-PRQBLErL CODE «Q3f
-------
J	l rnOOOO	t?««5	-«3J6»	• 1 3t>2	#9175	»9175
2	.2*95	I.0000	.37/6	-.0*08	*2793 	 '2793
3	¦1336*	#3776	1.0000	-.1523	->2683	->2683
	4	Ll 3 5 2	-«O301	- ' i 5g3	1 .00 0 0_	•»2 6 67	¦¦2&aT
5	*9175 •2793 -.26 83 -.2687 1«000C i •0000
4 	*9179 		*2'9J 	 	• «26S3 _ .	-.2687	i.*_0000	1 >0000
JL

-------

3*000 I 3 9OOO
6*000 18*000
23*OOO
33.000
28.000
#310 0 0
38.000
•tfi.soo
53.000


000
~




~ 9100
000

000
oco
•
•




*	8900
•	R700
o o
o o
o o
1
1

000
000
•
t




. 8500
• 8300
oco
000

000
000
~
•
i



~	8100
•	7900
000
000

000
000
•
1


1

•	7700
•	7500
000
000

000
000
*




•	7300
~	7100
000
000

000
000
• 1
t

1


•	6900
•	fc700
coo
000

000
000
$
•




•	6500
•	6300
000
000

000
000
~ 1
1


t

~	6100
•	5900
000
000

ooo
000
•
• 1




•	5700
•	5500
000
000

000
coo
ooo
000
•



1
•	5300
~	5100
000
000

•
• 1 1

1

i
•	*900
•	*700
000
000

00©
000
•
•


i

•	*500
•	4300
o o
o o
o o

000
000
•
1



~	*100
•	3900
000
000

000
000
•	11 1
•
1



p 3700
• 3500
000
000

oocr
000
•

1


•	3300
~	3100
000
000

000
000
•
t

1


•	2SC0
•	2700
000
000

000
000
•	1 1 ^
•
1
1


•	2500
•	2300
000
000

000
000
~	1
•




~	2100
•	1900
000
000

oco
000
300
000
000'
000
000
000
000
000
•
•
i
1
i


•	1700
•	1500
000
000






•	1300
~	1100
000
coo

•
•




• 900
700
oco
000

• 1
1 112 1 11
1
11
I I


•	500
•	300
000
000

~	Z 111 1 1 131
•


1

~	100
•	-100
000
000

Cos
000
•
•




•	-300
•	-500
000
000

000
000
t
~




*	-700
~	-900
000
000

3*000
13*000
"T7WHT
1**000"
23*000 33.000 *3>000
	*6*060	58.CC0	
S3•000
48*000
Q.HLOfeOEK/
-------
3-000
%3.000
3 S<000	
% e_- ooo
53.000
.120 .8 00
120.000
119«200
118.400
_11 7 • 600
116.800
116.000
115.200
114.400
113.600
	112*800
112.000
111>200
ll0**00
109.600
108.800
=	108. 000_
107.200
106.400
- ~ 105(600
10*.800
|7* 104.000
JT 103.200
l3J~T02*400~
Y* 101.600
,	100.800
C5 100*000
* 99.200
M 98.400
. —sT.sotr
96.800
96.000
95.200
94.400
93.6C0
"92.800
92*000
91.200
90.400
89.600
88.800
*88.000
87.200
86.400"
85<6S0
84.800
84*000
"B3.20C
82*400
81*600
80*800

~








*
120
POO

•
•


2





!
.
120
US
000
2 0 0

»
t








*
.
lis
117
C C-
bZZ

+
•


1




i
.
116
116
830
000

•
*








•
*
115
114
200
400

f








•
113
11?
600
800

t
•








»
*
US
111
000
200

•
•
1
1

2





t
»
110
109
400
feCO

•




X
1



t
108
108
800
000

t
•







1 i
I
•
107
106
200
400

•

I


1
1
1 1


.
105
104
600
800

~
•
1


1 1

1

.
.
104
103
000
200

«
•








•
•
102
101
400
600

•
1



1


i
.
10U
100
800
COO

«
•
1





*

•
0
99
98
200
400

•
1
1 I

1

i



«
97
96
600
800

t
•
1 1
1


1


i

.
.
96
95
000
200

•
•
1
1 1


1
1
1

•
*
1
.
94
93
400
600

•
1







•
92
9?
800
000

•
•
1
1 1
1

1




.
.
91
90
200
400

•


1 1





•
89
ait
600
BOO

•
•
1 1




1


•
.
88
87
000
200

•
•


1





.
.
Kb
85
400
600

•








•
84
84
BOO
000

~
•
2







.
.
83
82
200
400

•
4








•
~
SI
80
600
800

3*000
13*000



23.000

33*000
43.000
53.000




4*0u0

IB *000


yts.ouo

38.UU0 48.000





-------
FACILITY,UCLA
• PROBLE"_ CODE *CaMD7	
•NUMBER of variables 4
i -number op Cases 86
TRANS GENERATOR CARDIS)
CARD
nE«
trans
ORia.
OR IG« VaR(B)
> NO •
VARIABLE
CODE
VAR(A )
OR CONSTANT
• 1
5
14
1
4.0000
2
6
9
5
100.0000
¦VARIABLE format CARO(S>
(13X^4.1/2X,F5*l<2X,F5*0,2X/f3.1)
,REMAINING SAMPLE SIZE-
.SUMS
86
9
ft
795*2000
4948*6000
506244*0000
740*3000
92*3379
9233*7856


"tANb







*
9.2*65
57.5419
5886*5581
s*60ei
1.0737
107.3696


r
.CROSS PRODUCT DEVIATIONS






,
COL'
COL*
C0L>
COL*
COL*
COL •
COL*
COL«
. 1
1
349*33*0
t
7673.0026
3
¦42078.2326
4
10*4274
b
39*7217
fc
3972 <1718


2
, 3-
7673•0026
42078*2326*
467591*9293-12416152.4093
12416152.*093»**»»*»*»»»»**
89*7007
23329*3093
881 *3122
-7*62.6155
Btil31>21B6
-7*6261.5510


. 4
- 5
10* *27*
39*7217
89.7007
881*3122
23329*3093
-7462*6156
6 * 9643
*3429
• 3*29
4*6267
3*'2855
*62*6689


6
3972"1718
88131"2186
¦746261*5SlO
34*2855
462*6669
*6266.BBbH


1







.STANDARD DEVIATIONS






_
2•0273
74.1693
6601*7518
*2862
* 2333
23*3306


.VARIANCE-COVARIANCE MATRIX






*








.
CCl*
COL*
COL*
COL*
COL*
COL*
COL*
COL.
- 1
1
*•1098
a
90*2706
3
-*95*03d0
4
*1227
5
*4673
6
*6.731*


-	2
-	3
90*2706
-495*0380
5501*0815
•14607 2*3813
*146072.3813
43983127*2613
1*0553
274 * *625
i 0« 3 68*
-87*7955
1036*8379
-8779.5477


V *
. 5
•	1227
•	4673
	 1*0553
10*3684
274 * 4625
-87.7955
•	0819
•	00*0
*0040
• 054*
• 403*
5.4*32


- 6
46*731*
1036*8379
-4779*5477
• 403*
5*4438
5**'SU3


¦COWHELATtON HarTtttX-

-------
paayiMiM			-¦ i 			 ¦ 		'" ' 1 y "	"		»—	 	+ 'x~" 							^	^ ^
~ jr ~ 1*0000 *600 +	m»037C	•SIX*	*9880	»9SSC>
2	1•OOOO	-'22*3 *0+97	•529S	*5992
> 3 m.0370	••2983	1*0000 'i+SS	-•057C	"-•057C~
' __4	»jj; 1*		'0*97 	.J 	i_.£JOOO	>0604	»S6Cf
5 •SflflO	<5992	»•05 72 «060*	1*000C	1.0000
•_* _ «safla . . .	• 5932	••0570 »Q60*	1»0000 	ii_0C.flQ__

-------
1	1*0000	.too*	"<03 70	•?1M	>9880	•9SS0
2	•6001	1.0000	»• 2 9 S 3	.0197	.5992	.5992
3	• •037 0 -•2983 1.0000 .1*52 -.0570 " "'-.0570
	«2 i Li	*0 * 9 7	._1 i 51		!_• 0000	. 0 6 0_<»	«_06 OJl
5 *9880 .5992 -.0570 .060-. 1.0000 1 *0000
* _ >9880 .	"5992	-.0570	#0604	1*0000 	_1_.J30.Q0.

-------

OiOOO
30.000
60.000 120.000
90.JOQ
150*000
"ISO* aver
210.000
2*0.000
270.000
^~300.000

¦ 19000.000
~







~ 19000
000
' 18600 *000
• .18200.0Q0
«
«







. 1B60C
. 18 2 00
000
000
• 17800.000
_17*00.000
• 1
1 1







* 17600
. 17*00
000
000
17000.000
16600.000
~ 1 1
1







~	17000
•	16600
000
000
16200.000
• 15800.000
* 111

1





•	16200
*	15800
coo
000
¦ 15*00.000
• 15000.000
• 2
+ 1

1





•	15*00
~	15000
000
000
1*600.000
, ¦¦ 1*200.000
•	2
•	1
1
1





•	1*600
*	1*200
000
000
• 13800.000
- 13*00.000
•
•







. 13b00
• 13*00
000
000
13000.000
« 12600.000
~	11
•	1 1
1






~	13000
•	12600
ooo
000
-•= 12200.000
, 11800•000
• 1
«

1
1





. 12200
• 11800
ooa
000
.« 11*00*000
- uooo.ooo
•







•	11*00
~	11000
000
coo
•10600.000
£ hosoo-ooo
•	1 1
•







. 10600
* 10200
000
000
9800.000
«¦ •9*00.000
1 1
•







•	9800
*	9*00
000
000
II 9000.000
«J 8600.000
~	1
•







*	9000
•	6600
coo
000
8200.000
* 7800.000
•
• 1







. 8200
• 7800
000
000
. 7*00*000
. 7000.000
•







•	7*00
~	7000
o o
o o
lO o
1 6600.COO
. 6200*000
•
•







*	66C0
•	6200
000
000
, 5800.CC0
. 5*00.000
•
•







*	5800
•	5*00
000
000
. T3000*000
*600.000
•







~	5000
•	*600
000
000
. *220*000
. 3800*000
•
•







• *200
« 3800
000
000
. 3*03.000
. 3000.000
•







•	3*00
*	3000
0 00
000
.. 2600.000-
. 2200*000
•
. 1







*	2600
*	2200
000
000
. 1800.000
• 1*00.000
•
• 1 1

1
1
1
1
1
1
• 1 BOO
1 * 1*00
000
000
• 1000.000
600*000
~	23211
•	12 1 31
1
11 1 1
1 1 1
2
1 1

1
1
1 + 1000
• 600
000
000
200*000
- >200*000
•	11 1 11211
•
I
1





•	ZUO
•	-200
000
000
M -600 * 000
- >1000*000
•
~







•	>600
~	>1000
000
000

0.000

60*000 120.000

180*000

2*0.000

300.000

CHLQfeOEuyiC—

-------
Q'OOO
60*000
120.000
180.000
30•COO
2*0 •00C
300•000
9G.OOO
150.00C
210.000
2?G • 030
*
aA
189.000
186. 000
183.000
180.000
.177.000
17*.000
171.000
168.000
165.000
162.000
J59.000
156.000
153.000
150.000
1*7.000
1 **»000
1*1 #000
1 3 8 » 0 0 0
135.000
132.000
129.000
~V126.000
^ 123.000
120.000
f-4 117.000
114.000
111.000
~108.000
105* 000
102.005"
99.000
96.000
93.000
90.000
87.000
84«000"
81.000
" 78.000
75.000
~ 72.000
69.000
—66.005"
63*000
"60.000
57.000
" 5**000
51 .000
*8•000"
*5.000
~~42.000
39.000
~








~ 189
ooo
•
•








•	186
•	183
cco
000
•
•


i





•	180
•	177
cco
000
+
•




i


s
~	17*
•	1 7 i
000
000
t
t



i



4
' 168
• 165
coo
000
•








. 162
«¦ 159
000
000
•
•

i






• 156
. 153
000
000
•
•








1 • 150
. 1*7
000
000
•
i







~	1 **
•	1*1
000
000
•
•
i







. 138
. 135
000
000
•
i




i


•	132
~	129
000
coo
*
•







1
• 126
. 123
coo
000
•
• 1 11
i i
l
i
i





1 . 120
117
000
000
~	IT
•	1 1
i i







~ 114
111
000
000
•	1 till
•	11111 2 2
i i







> 108
• 105
OQO
000
•121 1 1
~ 21 22 2
i i i
u

i




1
•	102
*	99
000
000
. ill 11
. 31 1








96
• 93
000
000
1
1








. 90
i 87
000
000
~	1
•








~	B*
•	81
000
000
i 1 1
1








.' 76
. 75
000
000
•
~ 1



i




• 72
4 69
000
000
•	1
•








. 66
• 63
000
000
r~
•








. 60
• 57
000
000
•
i







*	54
•	81
000
000
•
•








» *8
• 45
000
000
•
~








•	42
*	39
000
000
» • 1^1 i • 14*1 • I *4* < • • ti M	t « » « l4« I « •~• • • I
0.000	60.000	120.000
" 30.000	9OT000"
180.000
(•••~tilt
240*000
•7irr?Trrr^Tn~» ~
300.000
150.000
2io.ooe
270.030

-------
"Vis,*^ciifrW/uci*—
PROatEfl C0DE_»<8eMD6	
number or variables *
number or cases 35
trans generator card(s i
CARD NEw trans ORIQ« ORIG• VaR(B)
NO• VARIABLE CODE VAR(A) OR CONSTANT
¦ 1	5	14	1	4.0000
2	6	"" 9	5 " 100*0300
¦•VARIABLE FORMAT CAR3ISJ
fT3XiP%» lV2x7T5«Ti2^jT5^i572)24ll
808*2857
COL •
3 —
18857*0286
1001726*91*3
5298843*1429
89*•17l4
2096*6216
8*5029
COL*
~4
10*1623
400*5551"
89**l7l*
3*5*97"
*7160
1«3B * 905B	5¥¥?Jr*n«3	209562.
,ST*nDAP»0" DEVIATIONS	
1*1239
112*3938
COL*
5
COL'
B
COL*
COL*
36*3891
_nB86*24ir
2096*6216
	.7160"
4*1991
""*19.9111
3638*9058
68624•114 3"
209662.1550
	7r»59 95~
*19.9111
- *1991*1132
3•0683	92*5325	394*7763	*3231	.3514	35*1430
¦	.					...	.IT						
VARIANCE-COVARIANCE MATRIX
COL*	COL»	COL•	COl*	COf	COL*	COL*	COL*
1	2	3	*•"	5	— 6
1
9*41*2
185*0985
554 *61o5
• 2989
1*07C3
107.0266
z
185*0985
8562*2637 "
^9462*5563
11*7810
20*1836
2018 *3563
3
554.6185
29462 >5563
155848*3277
26*2992
61•6653
6166*5340
4
*2989
11*7810
26*2992
• m*
• 0211
2*1059
5
1*0703
20*1836
61*6653
• 0211
• 1235
12*3503
6
107*0266
2018*3563
6166*5340
2*1059
12•3503
1235*0327
ctWREtrr Torr-n*T*ix

-------
j	f	J	*	5			6
1	l»0000 .6520 .<.579 0015 .S926	'392 6
2	*6520 1*0000 >806,5 .39*0 *fc2C7	«6?07
3	• *579 <8065 ItOOOO *2062 **
-------

///#/

90.000
MM MM urn
	 1S0.0D0	210.000
mM
270.000
	1590.000
1560.000
1530.000
1500.000
	1*70.000
1**0«Q00"
_1*10.000
1380.000
_ 1350.000
1323.000
__129Q«000
1260.000
	1230.000
1200.000
_ 1170.000
11*0.000
1110.000
1080.000
_1050 • 000
1020.000
	 990.000
960.000
930.000
•900.000
» 1 870.000
0*0.000
- 810.000
[J 780.000
U 750.000
720.000
_ 690.000
660.000
630.000
600.000
570.000
	5*0«00JT
510.000
*80.000
*50.000
*20.000
390.000
—	360.00CT
330.000
—	300.000
270.000
2*0.COO
210.000
180.000
150.000
120.000
90*000
r
1 1
2 1 1
i	r
_~	i
i
i
i
_i
i
i
i
„i
i
_i
i
i
i
_i
i
i
590
560
530
bOO
*70
**0
*10
380
350
320
290
260
230
EGO
170
1*0
no
080
050
020
990
960
930
900
870
8*0
810
780
750
720
690
660
630
600
570
5*0
510
480
*50
*20
390
360
330
300
270
2*0
210
T 80
150
120
90
000_
000
coo
coo
000
000
000
000 '
000
000
ooo_
000
000_
000
000
000
000
000
oco
000
000
000
000
coo
000
000'
coo
000
ooo_
000
000
000
000
oacr
000
oocr
oco
000 "
000
000
000
OOCT
000
000"
000
000"
000
e
-------
o • ooo
60•000
1?0>000
18C.0QC
2*01000
3Q0« 000
30.000
90.000
150.000
210.000
270.000
189.000
186.000
183.000
180.000
	177.000
17%.000
171.000
168.000
_ 165.000
162.000
159.000
156.000
153.000
150•000
1*7.000
1*4.000
-	, . 1*1.000
^tTl38.000
^ 135.000
•\y\ 132.000
-	1 129.000
«. 126.000
O 123.000
/^IgQ.QOO
fc-1 117.000
r 114.000
111.000
J>sr iob.ooo
* 105.000
~~ro2.oocr
99.000
96.000
93.000
90.000
87.000
B4.0C0
81>000
~" 78.000
75.000
~ 72.000
69.000
"66.000
63*000
" 60.000
57.000
~ 54.000
51*000
% 8 . 0 3 <
45.000
"42.000
39*000
~







+ IBS
000
*







» 1 66
0 0 0
I







. 183
coo
«


1




. 160
GOO
I







177
I*-, >"•
J w ^




1

*

~ 174
OOO
•







. 171
000
•






1
. 168
000
•



1



• 165
coo
•







~ 162
coo








~ 159
000
•







. 156
000
•

1





• 153
000
•







1 « 150
CCQ
•







147
000

1






* 144
occ
t







. 1 4 1
000
•
1






138
000
•







• 135
000
•




1


. 132
000

1






~ 129
coo
•







. 126
000
t





1

. 123
coo
•

1
1




i • 120
000
1







. 117
000

i






~ 114
000
«







. Ill
000
•







. 108
ooo
•
1 1






105
occ
•
1





1
r ' 102
ooo

11

1




~ 99
OOQ
•







• 96
OCQ
•
1






93
ooo
*







» 90
000
•
1






. 87
000

1






~ 6*
CftS
•







• 81
000
•
1 1






. 78
000
f
1






. 75
ooo
•







• 72
coo
~ 1


-
1



4 69
000
. 1







• 66
000
•







• 63
000
. 1 ~

- 			
... .



'
• 60
000
•







57
000








+ 54
000
•
1






. 51
000
•







• 48
000
•







. 45
000
•







* %2
ooo
~







4 39
ooo
0.000
60*000
120.000

180*000

240.000

300.000

30.000
90.000"
"15U.COO
Z10.000
i/u.uoo


-------
PROBLEM CODE WCB1O9
number of variables 4
•number of cases si
trans generator cardisi
CARO nE» trans ORIS. ORIQ. VaR(B)
•~NO* VARIABLE CODE VARIA) or CONSTANT
• i	S	1%	1	**0000
2	6	9	5 """"" 100*0000
-VARIABLE FORMAT CARDIS)
113 X < F * e l # 2 x # P 5 • 1 # 2 kTTsTCTaxTTyTT)
.REMAINING sample size- si
,-SUMS
460 • 0000	1110* 9000 *7795**0000 " #*2*7000 "	63•"0000 5300 •0019
HEANS		" "	" " -	- - ~ 	 	 	
9-0196	21•7824	9371*6*71	8*660*	1-0392	103*9216
.CROSS PRODUCT OEvUTIONS
COL*	COl»	COL•	COL•	COL•	COL«	COL*	COL»
,	1	1—				2	3		—		*	5	6	
. 1 22•800*	362-8576 38160.7529	2.3196	2.3522	235.22*7
, 2 362*85 76 16230.2741 2199*21•*82*	12-922*	*0-5603	*056-0337	
, 3 38160 • 7529 2199*21.#82*»»»»#»»«»»»»»» -9119.8529	6*99*2351 5*9923«5U9
m—j-~ 2.3196	 12-922* -9119.8529 	2-760*	"i-0609	-6V0949	
- 5	2*3522	*0-5603	5*99«2351	>.0609	>2786	27-8595
• ~~i 23 3^ 22*7 *S5S*~0557 5*S9?3. SI ^9	-6~. 0"545		2785*553*	
^STANDARD DEVIATIONS 	 	
•6753	1B*0168	6598*8167	*2350	r -07*6	7*46*5
.VARIANCE-COVARIANCE MATRIX
COL*	COL*	COL-	COL*	COL*	COL*	COL•	COL*
I	2	3	«T ——" 5	W
1
**560
7*2572
763*2151
• 0*6*
• 0*70
* * 70*5
2
7*2572
32**6055
*3988.*296
-25«*
*8112
81*1207
3
763*2151
*3988•*296
*35**382*2329
-182*3971
109*98*7
10998 * *7S3

• 0*6*
• 2SB4
•182*3971
*0552
¦*001e
• * 1 c i 5
S
• 0*70
*8112
109*98*7
••0012
*0056
*5572
6
*•70*5
81*1207
10998*4703
• * 1213
*5572
55*7191
^CORRELATION MATRIX

-------
0000	" 5965	•1713	>292*	*9333	.933J
5965	__1*0000	•3700	>0611	.6032		<6032
1713	•3700	1*0000	-*1176	*2233	*2233
2 9g*	*0611	¦ * 1176	1 .QOOO	¦ » 06 95	->0635
9333 *6032 >2233 -<0695 1*0000	1*0000
»3_33__	•6032	*2 233	fSGSJ	 	1*0000	1*0000

-------
•CVO0 igtooo 32.000 52»000 72.000 92*000
	8.!. 0.00	22.000			*2/000	62*000	82*000	
• 19000.000 ~




~
19000
000
18600.000 •
• 18200*000 .




1
•
18600
18200
coo
000
' 17800.000 •
17400.000 .
1
1
1


t
•
17800
17*00
000
000
17000.000 ~
1
1


~
17000
000
1 16603.000 •
1



»
16600
000
" 16200.000 •


1

•
16200
000
¦ 15800.000 •
1 1 1



•
15600
000
•	15*00.000 •
•	15C0Q.000 ~
11
1

1

•
~
15*00
15000
000
000
¦ 1*600.000 >
11
1 1


•
1*600
000
• 1*200.000 •
1



•
1 *200
coo
• 13800.000 •
- 13*00.000 •




•
•
13B00
13*00
000
000
13000.000 ~

U


~
13000
000
» 12600*000 •
1 1
1


•
12600
000
¦ 12200.000 .

1

i
•
12200
ooo
» 11800.000 •

1


•
11800
000
» 11*00.000 •




•
i 1*00
000
- 11000*000 ~




~
11000
000
10600.000 .
1
1


•
10600
000
-H0200.000 .




•
10200
000
P.J 9800*000 *
9*00.000 •

1 1


•
9800
ooo




•
9400
000
#f • 9000.000 ~
lli 8600.000 .
1



~
9000
000




•
8600
000
- 8200.000 . "




c
B200
000
- 7800.000 •
1



•
7800
000
. 7*00.000 •




•
7*00
000
- 7000.000 ~




~
7000
000
"6600.000 *""~ "




•
6600
000
> 6200*000 *




•
6200
00Q
. S800.000 *




•
5600
000
5400.000 •




•
5*00
ooo
• 5000.000 ~




~
5000
000
¦¦ 4600.000 •




•
4600
coo
- *200.000 •




I
4200
000
3800.000 •




•
3800
000
- 3*00.000 •*
. 3000.000 ~




•
~
3400
3000
000
000
. "2600.000 -i '




t
2600
uuu
. 2200.000 •
1



•
?2 QO
000
- " 1800.000 •




•
~ 18 00
000 ' "
- 1*00.000 •
1 1



t
1400
000
• 1000*000 ~
600.000 •
2 3 2 11
1 111



•
"1000
600
000
000
200.000 .
l 1



•
200
000
- >200*000 •




•
-200
000
•600*000 •




•
-600
000
« >1000<000 ~




~
-1000
000








>8*000
12*000
32.000 52.000
72*000

92*000

2.000	22.000	<>2.000	42*000	82.000
CtHiofra?

-------
'4~* ' -8*000
12*000 32*000
2*000 22.000
*2*000
52*000
62.000
72*000
82*000
92*000
125*200 4





4 123
12*.*00 .
123.600 *





• 12*
. 123
122.800 *
122*000 *





. 122
• 122
121.200 4
120.#00 *




1
4 121
* 120
119.600 *
118*800 «



1

•	119
•	118
118*000 *
117*200 ~

1
1



• 118
4 U7
116.*00 •
115*600 •




1
*	116
•	115
11*.800 *
tl**000 •

1



•	11*
*	11*
113.200 ~
* t «112«*00 •

1
1 1
1


~	113
•	112
3 rill*600 *
110*800 *





•	111
•	110
iio*ooo •
- 109*200 ~

1



• no
4 109
/-s. 1 OB * *00 •
KJ 107.600 *

1 1
1



•	1 OB
•	107
jf\' 106 • 800 *
106.000 •

1
1 11 1


1
•	106
•	106
» 105*200 ~
rsyi0***00 •

I
1 1 1



~ 105
10*
103*600 •
102*800 •

1 1

1

•	103
•	102
102*000 *
101*200 ~
i
1
1 1
1


•	102
~	101
100**00 *
99*600 *

11 11 2



*	100
•	99
98*800 *
98.000 *

1
1 1



*	98
•	98
97.200 ~
96**00 *

1 1 1



~	97
•	96
95*600 *
9*.800 *
1
1



•	95
•	9*
9**000 *
93.200 ~
\
1
11



•	9*
~	93
91.600
90.800
90>000
89*200
88**00
"87.600
86.800
86*000
85.200
91
90
90
89
88
"17
86
86
85
• »** + ****4****4***>4*.«.4**.>4>>>>4(«».4«>.*4". • * « 4•* » •~• * it 41 • .	4 » . a . 4 . * »	. »4i . . . 4 . . . . 4
000 12•000 32*000 32-000 72.000 92*000
	 —2.000	 	22. 0QCT			«.2«000	62.000	8"2~»00"0
^ROQRArt EXPECTED PROBLEM OR FINISH CARD INSTEAD REaO THE FQLLQmInQ
,T*NQEK>iaBn09			 	 " 	r~	

-------