OXYGEN DYNAMICS
OF RAUITAU RIVER
BASIN
1970

-------
TA2LE OF CONTENTS
Introduction 				1
Kethods.	2
Standard Light and Dark Eottle Technique:. ......... 2
Phytoplsnktoa	2
Teriphyton.	3
Higher Plants	4
24 HourOxygen Study.	7
Physical Stream Description	8
Chlorophyll A ........ ......... 	 » 8
Benthie Uptake Study. ...................11
Light Extinction .......... •....*•*••*•13
Results. .............. 	 . 	 1^
Photosynthetic Oxygen •.......•-.......••14
Raritfm River			..14
Millstone River. ............*......16
North Branch Raritan River ..............17
Lasington River. ........ ..•¦*...••• 17
24 Hour Oxygen Curves ...................19
Physic-el Streaa Descriptions. ...... ........ .19
Chlorophyll A Correlation .................19
Benthic Uptake Study, ... 	 ...........20
Light Extinction 		............ 20
Recosmendcd Additional Studies .................21

-------
A.	Photc.cynthp.tic Tiald Data. ..............	23
B.	Csyf;en Production.	24
C.	24 Hour Corrected D.O. and
.Temperature Data ...... 	 ...	25
D.	2^ itOuT D.O. Curves.	2d
E.	Chlorophyll A Correlations ..............	27
P.	Chlorophyll A Correlation Plot ............	23
G.	Li^bt .....	29
a.	LiSht ExteneO.cn Curve. ................	30

-------
The Biology Section during the sus:-nser and early fall of 1970
conducted a study of the oxygen dyasraica of the najor stressa in
the Raritan Hiver Basin. The information gathered is to be used in
refining the Mathematical model of the Basin.
Originally the study wao to investigate:
1.	Kenthic oxygen uptake,
2.	Photosynthetic oxygen, and
3.	Strcaia biology.
The biology phase was dropped early in the study when it became appar -
ent that additional tiree was needed to refine the higher plant and
periphyton oxygen production techniques, and to increase the frequency
of the light and dark bottle study.
The following projects were undertaken:
1.	Planktonic oxygen studies,
2.	Techniques for determining oxygen production for higher
plants and periphyton,
3.	Twenty-four hour oxygen curves,
4.	Benthic oxygen uptake, to determine if a correlation exists
between planktonic oxygen production and chlorophyll A,
5.	Physical strean survey.
The methods used and results are presented for each study.
A total of 24 stations were selected throughout the basin for
phytoplanktonic oxygen studies, Fig. 1 and Table 1. From these, rep-
resentative stations were chosen for 24 hour oxygen curves, benthic
uptake studies, and periphyton and higher plant oxygen production,
Table 1.

-------
206
mtJS Lf
F

RARITAN BASIN STUDY AREA
SAMPLING 5TAIIONS
5W7A

202-206
*SS 4 h

n~
PERTH
•..'4MB ay
BRUNSWICK
31-203
PftlHCHi; : 'i
*mnt
IS39 f, »' f
r :i c.
"EO BAMK
* FsrcHOio
5col« in milti
0	S
fWPCA 6-30-60

-------
Table 1.
Sampling Stations and Investigated Parameters
^Station
River
Plankton
Chlorophyll
Benthic,
24 Hour
Peri-
llighc
No.
Illlea



0
2
phyton
Plant
KT2
4.5
A
V




RT5.
10.3
X
X




RT9
16 .-3
X
X

X


1:710
W.l
A
X




Rr 123
21.0
::
X




S.F13
2 A. 5
X
X



X
RF15
30.7
X
X


X
X
S33A
43.0
X
X

X
X
X
SB4A
52.0
X
X

X
X
X
SB7A
66.7
X
X
X
X
X
X
E122
4.1
X
X




m?.5
9.9
X
X
X


X
K126
13.9
X
X



X
TH27
15.9
X
X


X

R127A
16.3
X
X
X



T!I28
20.6
X
X
X
X
X

FM28A
23.4
X
X
X



NB1A
3.7

X
X

X
X
TJ153A
9.1
X
X


X
X
NB7
19.9
X
X

X
X

HEL1A
1.7
X
X


X
X
1IBL2
6.0
X
X


X
X
IiBL3A
16.1
X
X


X

UBL5
23.5
X
X
X
X

X
HBL6
25.0


X



Leaf
*ItT-Tidal Section Raritan River, RF-Nontidal Lower Raritan R., SB-Upper Raritan R.
(South Branch), Ki-Millstone R., NB-Horth Branch R., HSL-Laraingtoa R.

-------
Standard Llpht. and fork Bottle Technique
The quantitative measurement of photosynthetic oxygen production
was determined by using the standard "light and dark bottle" technique.
This consists of paired B.O.D. bottles, one coEpletely covered
(alisaimoa foil) to eliminate lis'nt and the other uncovered. The
bottles are filled with the test water of a known B,0. (dissolved
oxygen) in such a manner that no air bubbles are trapped inside when
the stoppers are in place. They are then placed under water side by
side at aidstreaa within the euphotic zone. If the zone exceeds the
height of the water column, the bottles are placed on the hotten.
In deeper or more turbid waters a "X" rod is driven into the bottoa
and the bottles suspended from the crossiaeaber. At the end of 24
hours the bottles are removed and analyzed for D.O.
The difference between light and dark bottle D.O.s are inter-
preted as gross oxygen production. Ket oxygen production is that
produced in excess of the 24 hour uptake. This is determined by
subtracting the initial D.O, fron the light bottle D.O. at the end
of 24 hours.
Pliy t oplank ton
Phytoplanktonie oxygen production was determined using the
standard "light and dark bottle" technique. Table 1,
In order to determine production reproducibility, a aeriea of
light and dark bottles were run from the saae water source at Station
NB3A, Five L and D aeries were filled from a three gallon water

-------
3
sample and placed simultaneously in the 3treaa for 24 hours. Light
bottle production had.a range of 0.2 eg/1. Dark bottle uptake was
extremely uniform with four of the five bottles having the same uptnke
and the fifth deviating by only 0.1 ng/1.
This te3t indicates that phytoplonkton production end uptake
ore extrenely uniform within a specific water source.
Periphyton
A quantitative determination of oxygen production by periphyton
was conducted using a modification of the standard "Light and Dark
Bottle" technique, Table 1.
For the purpose of this work perlpuyton wixl be defined as
attached predominantly microscopic organisms growing on the bottoa
or other submersed nubatratea.
Studies were raada using distilled, filtered, and unfiltered
river water. The unfiltered river water was found to be superior and
was used in conjunction with standard "Light and Dark Bottles."
Small flat rocks of known surface area were taken from the stream
bed in the immediate study area. They were placed in wide mouth mason
jars containing 920 ml of unfiltered river water frora the same area.
The bottles were capped with rubber stoppers into which had been in-
serted a glass rod to allow for water displacement and eliminate the
trapping air bubbles. One bottle wa3 covered with aluminum foil (dark
bottle) and the other left clear (light bottle). In addition, a
standard "Light and Dark Bottle" was run froa the same stock water.

-------
4
All of the bottles were submersed in the stream so as to perpetuate
the noraal temperature and light cycles of the area.
At the cad of 24 hra. all bottles were removed and titrated
for dissolved oxy£en. The gross oicygen production in the standard
light and dark bottle was attributed to phytoplaakton. Therefore,
the difference in gro38 oxygen production between these bottles and
the ones containing the rocks were attributed to the periphyton.
Illaher Plants
A modification of the standard "Liftht and Dark Bottle" technique
was employed to determine quantitative oxygen production by higher
plants, Table 1.
Preliminary tests wera run using distilled water and filtered
river water with various amounts of plant aaterial. Distilled water
was found to inhabit photosynthesis resulting in only minimal oxygen
production* Filtered river water proved too cumbersome and time con-
sisting in a field situation. Initial tests were run using froa 4 to
6 inches of plant material in a one quart bottle. This quantity
produced an excess of oxygen with supersaturated water and air bubbles
accumulating in the bottles. The amount of plants was reduced to an
oxygen producing level below saturation over a 24 hr. period. The
quart bottles were later replaced with BOD bottles to sinplify DO cal-
culations and to eliminate the need for the scaewhat elaborate equip-
ment used in locating these bottles in the streaa. It was therefore
necessary to reduce the plant material to an even lesser amount in the
smaller EOD bottles.

-------
5
A plant eocrjon to the study area, Elo<'?rn. was used in all the
tests. Experimentation revealed that a 1" section froa the tip of
the plant minimized the problem of D.O. depletion in the dark bottle
and supersatiiration (bubbles) in the light bottle and at the same tine
allowed enough production for a proper evaluation. In situations where:
the initial stream 1)0 was near or above saturation, nitrogen was bubbled
into the water to lover it to a sore acceptable level.
Two pairs of liglit and dark bottles were used in each test. One
pair contained a 1" tip of Etodea in unfiltered river water from the
study area. The other pair contained only the unfiltered river water.
All of the bottlers were submersed in the stream so as to perpetuate
the normal temperature and light cycles of the area.
At the end of 24 hrs., the bottles were removed and titrated
for D.O. The difference between gross oxygen production in the bottles-
without plants and those with plants were attributed to the higher
plant production.
To determine the production stratification of a strand of the
test plant, Eloiica, one inch sections were taken at various locations
along the strand (tip, 1", 2", 6s', 10", and 14"). Each section was
then placed in a light bottle with a duplicate froa the same location
on another strand of equal length placed in a dark bottle. The bottle3
were then filled with unfiltered river water fron the immediate area.
In conjunction, light and dark bottles with only unfiltered river water
were run so that oxygen production attributed to phytoplankton could
be measured and subtracted from the production in the bottles with

-------
6
Hlcdaa. All bottles were placed in the 3trean within the euphotlc zone
for 24 hours.
A net oxygon production was found only in the apical two inches
of the plait. The remainder of the plant back to the base exhibited
an increasing deficit. The results were as follows: tip + 0.-4 ppm,
1" + 0.4 ppa, 2" 0.0 ppa, 6" - 0.2 ppm, It)'1 - 0.4 ppia, 14" - 0.6 ppm.
After the production rata for a given- anonnt of plant material
at a given location on the strand was determined, the next step was to
apply this figure on a quantitative basis to a specific section of the
basin.
Station N;;I,-5 on the upper Laaington River was chosen as the
study area because of the large lu3h mats of J^qdea in the area. A
one .cubic foot section was -cut fron the apical portion of a large mat.
A subsa:uple was taken and each strand measured to the nearest inch,
then weighed to determine the percentage of the total 3anple. A pro-
jection was then e:ade of the total nurcber of strands at each length
for the entire sanplc.
The total number of strands were divided into the total inches
to determine the average length per strand. Of the 966 strands in the
sample, the average length per strand was 4.05 inches. Previous work
had established a positive net oxygen production, 0.4 ppra/inch, only
in the apical too inches of the strand* with a zero net production for
the next two inches. Therefore, net oxygen production for each strand
(4.05" average) was 0.8 ppni/24 hours. By applying this figure to the

-------
¦ 7
total sample, net oxygen production for the cubic foot of Slodea was
772.8 ppm/24 hoar:?.
It would be ejected that this figure is a bit hijh for the ,
J&ode* mats in this area because the ssraple was taken froa the iscre
productive apical r, act! on thereby eliminating' a part of the basal, less
productive section of the strand. Also, when oxygen'is produced at
too great a rate to fca absorbed by the surrounding water, the excess
is lost to the atmosphere. This would often be the case in areas of
lush plant''growth.such as that examined in this study.
24 hear Oxygen Study
A Delta Modal 192 non-.te»peroture compensating oxygen analyzer
and .temperature recorder with a. remote stirrer was used in obtaining
the 24 hour stream oxygen profiles, Table 1.
The field procedure was as follows;
1.	Initial probe error, due to drift, was deterained by compar-
ing probe to actual (Winkler) oxygen values.
2.	The probe was placed in the main flow of the stream by at-
taching it to a rod thnt was driven into its substrate.
3.	After 24 hours of recording temperature and oxygen concen-
tration, the analyzer was removed.
A. Final probe error was again determined as explained in 1.
In the laboratory, at half hour Intervals oxyj3en and temperature values
were obtained froa the recorder chart. This information plus any oxy-
gen probe error, which was assumed to be a straight line function,

-------
8
temperature and oxygen probe correction curves were cutned over to
the Data Analysis Section for calculating the correct oxygen values.
Physical Stream Description
As a preliminary to the study, a detailed survey was' Hade of the
four, hajor streans in the basin. Where possible the streams wore
drifted by boat, otherwise observations were made at areas accessible
by autonobile. Data were obtained relative to streaa x-;idth, depth,
flow, bottom type, nacrophyte and periphyton concentrations, plua any
other relevant information.
Chlorophyll A
The chlorophyll A determinations were made for two reasons. The
first, was to determine if there was any correlation between the con-
centration of -chlorophyll A and gross oxygen production. The second,
was to determine if an estimation of gross oxygen production by phyto-
plankton could be predicted from the concentration of chlorophyll A.
The following field and laboratory procedures were used in the
chlorophyll A studies.
I. Sample Preparation
A.	Water samples were collected in 1 quart cubatalner plastic
containers containing one railligraa of MgCO^.
B.	Hie collected water samples were kept in a covered ice chest
containing ice.
C.	Measured water samples were filtered through a 0.8^ raillipore
filter as soon as possible after returning from the field.

-------
9
D.	The oillipore filters were placed cn. a filter narked separ-
ator. The separator and filter were foldedin half and held
in place with a paper clip.
E.	The filters» which were not analyzed for several days, wore
grouped together covered with aluainuxa and placed in a jar
(containing de3iccant) and stored in the dark at -20®£.
F.	The filters, v;hicH vere analyzed within a day, were placed
in a desiccator (containing desiccant) under vacuum and
stored in a refrigerator in trie darl:.
G.	The first several runs were analyzed -according to the nathod
recensionded by the Analytical Quality Control Laboratory.
In later analyses this method vag modified.
1)	A.O.C.L. method
a.	The filter was placed in a tissue grinder, covered
with two or three nilliliters of 90% aqueous acetone,
and macerated.
b.	The sample was transferred to a stoppered centri-
fuge tube, and sufficient 90% acetone added to
bring the voluae to 5 al.
2)	Modification
a.	Hie filtar v;aa placed in a stoppered centrifuge
tube and 5 ml of 90% acetone was added.
b.	The stoppered centrifuge tube was placed on a vor-
tex nixer and spun for about 30 oeconda.

-------
10
H.	The stoppered centrifuge tuhes were.then placed in a refrig-
erator at 4aC for 24 hours.
I.	The stoppered centrifuge tubes were contrifurred for 10 iain.
at- 500G.
J. The extract waa then decanted into n clean- /cuvette and placed
in the spectrophotometer.
Analysis: Spectrophotometry Method
A,	The optical density (0D) of the extract was determined at
wave lengths of 750, 665, 645, and 630 nanometers (ntn) usin?,
a 90% iicetone blank.
B.	The chlorophyll A concentrations "in the extract was determined
by inserting the one-centimeter O.D.'s into the following
equation;
Ca =» 11.6 h,,e - 0.14a -
665	630	645
Ivhere Ca is the concentration, in rtiliigra«3 per liter of
chlorophyll a in the extract, and D,T),,-* and D,„„
665 645	630
are the one-centimeter optical densities at the respective
wave lengths, after subtracting the 750 nm blank.
G. The concentration of pigments in the phytop 1 ankton grab
sample is expressed as ug/liter and is calculated as follows:
ug/1 « CA	x Volume of extract (liters
volume of grab aaiuple (liters)
D. The data were given to the Data Analysis Section for analysis.

-------
11
Benthic t'r.gnkc Stn--?v
The benthic uptake study was undertaken to determine the rate of
oxygon consumption at different teaparaturos for varioua hcttsxi types.
Sec Tabic 1 for stations sasnled.
The following procedure vas used in determining bemthic uptake.
1.	aive.r Gotten mud was collected froa various rivers in the
Puritan basin.
A.	In shallow water a garden spade was UBod.
B.	In deep water a Peterson dredge was used.
2.	The bottcra raid was ¦placed in a xaarked plastic bag. A little
water was added to prevent the mud froa drying out.
3.	The plastic bag containing the satrple was then stored in an
ice chest until processed,
4.	The river tiud was added (carefully) to two quart mason jars
to a height of about two inches.
5.	For sanples with a high oxygen deaand, the aud uas placed in
two 100 cil beakers and the beakera were then placed in the
napan jars.
6.	A known volune of filtered river water (O.Su nillipore filter)
was added to the mason jars. It was added slowly by holding
a funnel stess against the side of the jar to prevent disrup-
tion of the bottom ctud.
7.	The dissolved oxygen content of the water in the jars was
deteruined using a fellow Springs Instrument Co. Model 54
Oxygen Meter. Trie results were recorded.

-------
8.	A xtuzabcr 12 rubber stopper, vith a aactiog of glass tuning
through its center and extending n' out t^-'o cencinetera helou
the hottaa side, was used to - seal • Jar'i-'vCar© was taken
to remove an;.' air bubbles that sight 321 trapped.
9.	A glast; container holding ei.-.ht liters of distilled water
vsa placed in the Incubator- This water usts used to calibrate
the oxygen probe each day j«st prior to deteraioitif, tha oxygen
cevisinu of the nud3.
10.	Four 3.0.1). bottles were put into the incubator containing
filtered river, vnter. These vere used to determine the oxy-
pen denanu cf the filtered river water, "XeaditiRS vere taken
every tuo or three days..
11.	The season jars -/ere given several days to equilibrate at the
Delected temperature. Trie dissolved oicygen va3 tsonitorsd
during this tine to wake sure the D.O. never dropped to a
ei-itical level (3.0 ppra). These results were not recorded.
12.	The oxygen uptake of the benthic muds and the water temper-
ature vere monitored each day from Monday thru Friday and
the results recorded.
A. The	jar wag placed next to a ring stand containing
the prche and a small plastic jar with holes cut out o£
the aides end botton. This prevents the stirrer oa the
oxygen probe from disturbing the bottoa yuids.
13.	After determining the oxygen uptake of the rauds and recording

-------
13
tha results, purs ony^cn uaa bubbled into the water using a
fine bubbler. The bubbler vaa held at a point about 1/4 of
the distance froa tho water surface to the surface ,of the
cud to prevent disturbins; tha nuds.
14.	The new D.O. value vaa recorded and the jar sealed again and
placed back into the incubator*
15.	To set through the veekends, on Friday the sanplca vara bubbled
up to a state of supersaturation (15-20 ppa D.O.) In most
cases, this prevented the D.O. frora dropping below 3.0 ppa.
Nevertheless, for one or tvo of the samples it was necessary
to case in cn the tfefkends and it oxygenate these samples.
The daily weekend uptake values were computed averages for
the three day period.
16.	Initially the sasples were run at 25#C for 20 to 30 days
after steady state conditions becaae evident.
17.	Uptake values were determined frosa 5eC to 30*C» in five
degree increments.
lA^ht LxtfncS.cn
The purpose of this portion of the study was to determine the
depth at vhich 1% of the surface intensity of sunlight regained.
1.	A standardised C. M. Mfg. & Instrument Corp. Model No. 268WA310
Submarine Photometer was used in asking all readings.
2.	The deck and sea cells of the photosater were placed side by
aide on the dock so that they had an unobstructed view of the
sky. Readings for both cells were taken to check, for instru-
ment calibration.

-------
3. The sea all ves levered at six. inch incrsaeats to different
depths. At ench. L-vo 1 re.-tdi^s vere ta!:cn at aa nar.y sensi-
tivity settings as possible •
4« ¦ .'it c-;.c': .k\pth, c. dad: call rasdinv was also tii!:en»
•.The result.;; of data collected during the 1970 Raritaa River Una la
study wars combined aa<3 prs?aented ia -the following cutre^oriaa:
1.	Fhotoaynthctic o::y;:en -production by phytoplaaliton» perlphy-
toa, and Mgber plants. Certain chlorophyll A result!) are
also included in e!iis aectlon, Appendix A cud ».
2.	24 hour c"y;-t2ii curves*, .ftppeadix £ arsd-ii.
3.	Physical	descripfcioa
4.	Chlorophyll A correlations.,. Appendix K and -F,
5» J:entUic U£take Study
6. Li&ht Extinction, Appendix C sad 11.
For fc'ifs purpose of thia report, the rivers Uaovn as the South
Branch end Raritaa have l>sen combined and vill ha referred to aa the
Raritasi Rivsr. Thit: td.ll bs considered the rain stea of the Raritan
S as in end the Killatone, north Branch, and Lsnin^tca tributaries.
Photoayn tr.c tJ.c Qr.vswi
thirlfe-in giver
Stre^i D.O. ir» the noatidal portion of the F-ivar derm to Bound
Brook *?as found to be near or abova nsturdtioit. Depressed DO's were
found bolov.' Bound Brook at Stations KF-123 raid IlX-10. The DO's were
at ttaeo au siuch ao 6 ppa below thfi Irssedlate upstresa and downstream

-------
15
stations.
In the tidal section belov? RT-10 D.O. decreased moving downstream
with no observed seasonal influence. Appendix A.
Net oxygen production attributed to phytoplankton was insij-ni-
flcant in the upper roaches. Below the junction of the North Branch
D.O. production increased, with a slight sajj at Bound Brook, and con-
tinued in a progressive raanner to the couth of the River. A definite
seasonal trend was evident. Photosynthesis vrs -greatest during the
months of July 2nd August. With the exception of the last two stations
near the mouth, production decreased sharply at the end of August.
These two lever stations, RT-2 and FJT-5, decreased but retained a
significant net production through the early part of Septeaber,
Appendix B.
Chlorophyll A .concsntrationa were quite low in the upper reaches
of the River. The level began to increase at Station K.F-15 and con-
tinued into the tidal area where the highest readings were taken.
Chlorophyll A, during the tirae of this study, did not undergo a
seasonal influence, Appendix A.
Dark bottle uptake v/G3 low upstrean of Bound Brook, increased
immediately beley and maintained these values to the confluence with
the Bay, Appendix B.
Lush beds of higher aquatic plantu were ccrraon in the upper
readies. A general decrease began balov? the confluence of the North
Branch and continued to the tidal area at which point they had about
disappeared.
Periphytoo was widespread in taost areas throughout the: nontidal
section. The tidal reach, 03 the other hand, produced only a limited

-------
1G
growth.
The Raritan Fdver is divided into two sections: tidal and nontid
The aajor D.O. contributors in the nontidal section were reanration,
higher aquatic plants, and periphyton. The tidal section was depend-
ent on phytoplankton and reaeration with higher plants end periphyton
playing only a minor role.
Millstone Rivgr
The atreaa D.O. above Carnegie Lake vere generally low reaching
near critical levels at night. Within and iarasdiately below the Lake
levels increased to the highest found in the river. A D.O. sag devel
oped belcf.7 Carnegie Lake vhich bottomed out in the area of Rocky Hi 11
Frca here, to the confluence with the Haritaa River, there was a pro-
gressive increase in ctrenta D.O., Appendix A#
Phytoplanktonic oxygen production, "dark bottle" uptake, and
chlorophyll A concentrations followed the sase general pattern a3
the stream D.O., Appendix A and E.
Production by periphyton was very liaited in the upper reaches
with a slight increase but still no significant contribution in the
lower end.
The occurrence of higher plants was never found in sufficient
abundance to justify their consideration in the oxygen producing
potential of the stream.
The major oxygen contributing elements in the River were phyto-
plankton and, to a linited extent, reaeration.

-------
"orEh Branch
D.O. was-found to be at or near saturation throughout the streaa
with ao noticeable patterns-.evident* - Appendix A.
Net phytoplanktouic dxysea production -in the upper end or the
River was slight and often operated at a deficit. The remainder of
the atreaa was highly productive during the first survey run but by
the latter part of Aureust had decreased to and regained at an unpro-
ductive level comparable with the upper readies, Appendix B.
The highest dark bottle uptake occurred at all stations during
trie first survey run. The levels later decreased fluctuating randoa-
ly in mo apparent pattern, Appendix B.
Chlorophyll A concentrations were Iw throughout the River with
the higher readings at the lower stations, Appendix A.
The stream wan conducive to the growth of psriphyton only in
isolated areas where siltation was aproblea did periphyton cease to
be a significant oxygen contributor.
The growth of higher plants was sparse iu the upper reaches
increasing only slightly downstream.
The taajor D.O. contributions for the North Branch were reaeration
and periphyton with phy toplanktou and higher plants p'laylns a ninor
role.
Lreniiy.-.ton -
The daytime stream D.O.'s revealed acceptable levels at all
stations. The general trend was for lower readings to occur in the
upper reache3 with a gradual increase through the lower section of
the stream. Ho seasonal pattern was evident except at Station NSL-S
where D.O, appeared to decrease during the latter stages of the

-------
18
survey, Appendix A.
Net and gross phytoplanktonic oxygen production was negative in
the upper reaches. The auacinun production occurred in tlsa IwRr' Ira-
ington where, at best, it was still only slightly greAfter than.thnfc
needed for respiration, Appendix B.
A low dark bottle uptake was found throughout the stream, Appen-
dix 3.
Chlorophyll A concentrations were quite lev with only--an occasional
increase, Appendix A.
With the exception of Station- KBL-5, higher aquatic plants v;ere
not particularly abundant. - IHjL-5 beins atypical of the noraal stress
environment was wide, nodcrately deep, and slew moving."with profuse
growths of attached and floating weeds. This plant f.rcr.Jth in conjunc-
tion with the highly organic bottom and limited reaeration result in
low' P.O. sag3 at night.
The upper reaches vera not conducive to the growth of periphyton
but downstream shallow water and rocky bottons were store co;srson and
periphyton was a moderate contributor to the stream's cccygen pool.
The nain source or csygen for the Laaincjton River was reaeration
with periphyton increasing in importance at NBL-3A and continuing down
to the confluence.. Higher plants were significant producers in speci-
fic area3 but wore not inportant in the overall oxygen production of
the stress*.

-------
19
24 Hour Oxygen Cnrve3
It was hoped to have a 24 hour oxygen profile for each sampling
station. The instrument failed after nine runs (.-.even stations). It
was returned for repairs, but d,ue to slow servicing additional runs
were Impossible* All nine runs shc.red a diurnal fluctuation in the
dissolved oxygen concentration of the Gtresra. The highest values
were in the afternoon and the lowest generally nftcr sic!Right. An
Interesting pattern was noted; all runs had a levelling out (steady
state condition) of the lovest values of the sa*. This condition
ranged froa about six to nine hours in length, Appendix C and Q.
Frea the linited data, it appears that there are critical sags
in the tidal portion of the Raritan, Millstone and Lsaingtcn Rivers.
The North Branch of the Raritan River and the Uaritan above this trib-
utary showed no such problen.
No conclusions could be nada for the non-tidal Raritan River,
below the confluence of the North Branch, because no data were obtained
for this section.
Physical Stream Description
The results of this study have been presented to the Simulation
and Forecasting Section in a previous report.
Chlorophyll A-Correlation with Oxvaen Production
There was a good correlation (0.5) between chlorophyll A concen-
tration and gross oxygon production by the phytoplankton, Appendix E.
Graphically, the spread of the results waa ao great that no curve
could be fitted to the data, Appendix F.

-------
. Froea the data collected in the 1970 study, it is impossible to
estimate gross oxygen' production ca the basis of chlorophyll A con-
centration.
3anthic Unt-^r.e Study
The benthic uptake study at this tins has not been completed.
When finished a separate report vill ho. prepared.
Since the study is not over and-the dati 'fully analyzed, only
two general statements that can be raad® at this tie®
1.	As the teaperature decreases- the rate of oxygen consumption
also docreasess.
2.	Hie higher the organic content of the benthic sample the
greater the rate of oxygen consumption.
Lifrht Extgr-eli.cn
Penetration of light, through water is a function of the light
intensity, angle of incidence, decree of cloud cover, transparency
of the water, and other factors. Our readings were taken at the
boat dock k Carnegie Lake. The sky was clear and the tine was 1200
hours. At the ti.ie of the study the lake was experiencing an algal
blooa, Appendix G.
We could only reach a depth of 30" with the apparatus v?e were
using. Therefore, it was necessary to extrapolate the data to find
at vhat depth 1% of the surface intensity of sunlight remained. We
found that at a depth of approximately 55 inches 12 of the surface
intensity sunlight remained, Appendix II.

-------
21
EECOEHETJDKD ADDITIONAL STUDIES ..
The following studies arc recommended to-complete those • th.it
.were started tut not completed. Their completion would contribute a
great deal of information to better uad^rasanding the oxy?:.en dynamics
of the Karitan Basin and any other that nay be studied.
1)	A ccaplete evaluation of the net oxygen producir.fi dynamics
of thfi nore cordon aquatic r.ncrcphytcs in the ha-tin.
2)	A more precise Method of quantifying perlphyton used in oxygen
production studies,
3)	A detemiiiation of the csseimt of photosynthetie 05ty«en
produced, especially by periphyton and r.acrophytes, that is
incorporated into the .stream's .o^ytjan ..budget, .rand,.-not -lost to
atmosphere.
4)	The United data obtained on the 24 hour oxygen profiles
indicate that a curve for each station could give valuable
information on the oxygen dynamics of the streans in the
baa in.
3) An evaluation of the potential of 24 hour streara oxygen
curves in determining total net oxygen production or uptake.

-------
<>9

-------
Appendix A - Photosynthetic Field	23

-------
APPEW
01A
A
e
8
PT2
r-TZ
r,T7
ST7
&•
33
Oft. 3
04.5
S
a
.072979
Cfll?79
.CO03 70
CeI8 7«
RFl ?f»
rri ?.i
P.r ! ti
J 73
"11
-!rli
=t:i
_p.r 13
. PXti
er15
pr!5
i>ri5
S!<3»
f r» ¦) •
*-->3A
_ T.
_ S!".A
594A
STiA
SP.A*
f.<> 7 A
. sr. 7 a
5r7A
&B7A
71.0
71.o
ri.o.
n.')
r'..5
74.5
7 <*.5
-"0.7
T.7
-!9.7
*0.7
4 3.0
t:t.c
A3.0
,_S7.0._
lO
57.0
* •"'.'I
ftf>,7
66.7-
6f .7
At. 7
077170
9!'l7 7n
?P7C70.
0«:,»7n
07 'M 7r.
OM 270
i.:^379
•:9.->a7:..
072770
0»1779
0? *173
00?*70
C77179
0?1779
op?r,79
0771 TO
c.7777;:
o'i:>ro
or ?«vr
017170
07??79
091070
0"76 79
cr-,?i 70 .
o.
a
1«.35
1571!
1510
10.50
2B.0 03.1
?7.i:	7o
1*?.n
23.9
. RT5
1C.8
097»>7C
1179
77.5
__ET9...
lfc.R-
.D77J79
1V51
7 4.6
."TO
1',."
or T 7 70
175-9
7-7.9
r:T9.«
?¦'.?
74.8
?f..O
?'.l
73.5
77.3
7:>.f>
71. 4
29.0
70. «
?1.9
»0.?
C'B.9
0".*
0?.?.
¦:i.7
99.*
0».4
0».l
10.1
C'0.4
0 *i . 4
'¦'7.6
C9.o
19.0	OO.R
19.R	09.7
If.7	0».0
1«.9	11.2
s
«JS
#> +¦
-5
3
h

09.1
V1 • 2
i/'l .4
04.1
15.0
07.3
C3.3
OR. 3
02.1
0 '.5
03.7
00.9
Ot.fr
21.0
03. »
05.3

t-3.C
05.1
19.5
07.e
Ot .7
03.4
01.1
09.6
l'.,7
0 7.6
00.1
17.4
9 f . 9
0'..4
04.9
91.9
Of-.7
Of .7
0 5.3
01.7
10.0
00,f.
05.1
09.7
.?.8
Of.4
07."
0'..fc
0';.1
Of..Ci
05.2
0",9
11. »
. 5
9? .4
1'-.'
9 4.9
07.9
ya.t
'->5.3
n«
¦->r-.7
0". .^,
09.3
15.4
on.7
09. 7
1^.0
OP.9
H .•>
li".<
0«.'S
0°.5
09.6
09.1
OP. 9
13.6
op. 4
07.3
1 ? . 9
0 r . 2
On. 3
09.6
OB.3
'.**» • 1
L'4.0
i'3 .4
r.",%
11.9
. 9
on.4
C9.7
C«.3
0?.9
09.J
OR.2
9A.C
OA.O
04.5
0<>.*
0 •--.!>
0«.»
0«»4
09.6
UP.7
0 7 . 6
>«.9
">7.9
0*' .7
0-».7
03.3
0".P
10.5
07.2
0«.9
19.<>
09.8
C9.0
••;9.4
09.0
05.7
<;! . 5
05.3
?7.*',
PI.51
«
$
9 S 3
8 9 ** *1 u
cs s s
• i a
s - 1
*»
£
SB
Jfa
» •
M W
IT. 99
5«>.3$
75.53
3 
-------
APPENDIX A
CCi^jp

NHirt
09.1
072170
1 J>4
73.5
09.5
09.5
It.7
oe.7
11.*7

-— -	 NF.3A
09.1
OP. 7 0 70
1540
23.C
XI.2
11.?
12.3
10.4
03.45

NT.Ifl
09.!
OP SI7C
1470
?3.5
0*.l
OP.l
05.1
1)7.1
< n.L}

—	 f;ri3A
09.1 -
..o«2i7C
1545
19.9
39.7
03.9
03.fl
03.3
on.3ft
.....
	?Jfi7_.
_,!¦).9 .
...07.7070
143?
21.4 .
09.7.
09.7
09. 4
on.o
C9.00

r.o.7
19.9
csir 7o
1505
71.0
09.9
09.9
10.2
09.5
02.77

-			 K°7
19. ?
0S3)70
12,^0
? 0.0
OS.ft
on. *
0 ?! . a
op.5
0^.7 0

t'.fT
19.9
C9??70
1300
19.7
'•,9.5
c?.a
0'!.6
09.3
Ol.AO

NO LI A
01.7
0770 70
. 1176
74.0
11.2
11.2
14.3
OP.9
IB.*3

¦:ei_lA...
-Q1.7.
2 79 .
.1 J55
2ft. 1
. 11.4
11.4
11.9
11.5
- -

NPL1A
01.7
()»2f,70
lti.0
74.9
05. J
05.J
o«.o
04.6
01.6c
...
	 N5L1A .
01.7
0? 2170
15:\5
21.4
13.5
03.0
03.8
0 7. J
02.5ft

				 Ncl2
.'J6 . 0
072170
140?
2't .5
11.3
11.3
It. 3
10.7
03.45

MP 1.2
06. 0
Off 1 ".7?
1605
73.7
10.7
10.7
11.0
10.5
03.15

H5L2-
...0 . 0. .
. Oa.il 70.
.. 1 J") 0
-2'i.C..
09.<¦
09.fl
01. fl
09.5
2.2«r

>;PI.7
nft.c
09?^70
140.-)
75«7
17.0
17.0
11.5
11.2
f.J.41

!!nt_5A
lf>.l
07 7070
13!.'6
?2.5
;>7.4
07.4
Oft.l
'.7.1
¦Vj.55

		 N?L :ja .
16.]
OP 1770.
11-5
2 .2
07.5
07.5
Oft.9
07.1
02.14

5 A
Tft.1
01.H1 70
1J 00
21.0
07.3
07.3
')«.!
OS.4
'J2.46

	MfiL'"A_
.1^.1,
..097:370,
1225
20.7
.53.1 .
. PP.1
07.9
0 7.0
01.32

... fi'LS .
2 1.5
. .0720 70
I'M 5
74.0
Oft. 5
Ot.5
04. ft
07.3
•11.75

,V!L5
.VU5
OrJOVO
1415
2 j . 0
07.3
07.3
Oft. 5
Oft.fc
00. 9 n
	
. 			Nr»L5
23.5
Op 17 70. .
1 1 55 .
24.5
06.0
CO..O
'5.9
0 5. 5
01 .47

~ -1L5
73.1
op :*i 7o
1140
27.5
04.7
04.7
04.7
04.0
i ¦ -

»;f!L3..
.23.1 S_
..S?Z1T0_.
_1V50._
21.6
..v4»4.
04.4
03.4
03.4
17.54
04.4 03.0 920 05.0 2.T 03.9

07.4
<1.4 920 Oft.2 1.5 01.7
12** 10.3 920 14.1 ?.0 Ge.4
920 07.9 1.7 Ofc.l
10.j oi.e

-------
APPENDIX A
- - - r-'?l
04.1
0A1070
1400
24.?
GR.l
Ofl.l
18.0
06.7
54.95
¦-		*^2?
04. 1
- 0fl2f>70
1525
75.0
07.9
07.9
18.6
04.6
r:-.6o
FM?z
r<4«!
090770
l*ro
27.0
Oft.3
06.3
12.5
04.7
24.*3
	FMJ2
-04.1
-..C971 73-
3 510
21.0
. 04.C
. 04.0
Of.. 4
0 3.3
07.5 2
r«3z
0* . 1
1?1970
141)6
02.7
11.6
11.6
11.3'
11.3
CO.00
rv?5
09.9
072770
1505
2'..6
05.5
05.5
f'6.7
04.1
55.07
	 FM75
09.9
nrio73
liiO
24. «
0 3.4
0 J.4
OS .4
02.2
12.73
F''25
09.9
0*24713
1400
75.5
05.2
05.2
17.2
02.S
71.72
_ F.:.:?5
. 1)7.9
-090270..
1 440
77.5
03.7
03.7
05.7
03.0
OH,if,
FV?5
09.9
0*21 7 0
14'.0
27.0
03.4
03.'.

7.9
05.5?
	 r:.'7?
OC.9
0 0 :0 70
133 J
17.1
03.5
03.5
'>7.4
3.2
	
F'75
09.9
i ?9 .77
	 F';?f,
13.9
-000770 -
141*
27.C
01.4
01.4
t'l.c
00. c
15.44
rv? i
1J.9
00.71 70
1410
22.0
02.7
02.2
; 6.7
05.3
•',<). r:'.
	rv.jfi
. 13. -7
09'-'i:7 3
1 Soo
1R.S
03.4
03.4
07. s
02.!


13.9
1709 70
1330
02.7
14.9
' 14.9
14.B
14.5
01.:-?
FM77
15.9
077770
1725
tP.f.
,0
0?. .0
1J.7
02. f
*5.37
	 r.v.77
. 15.9
.081073
1200
75.5
07.4
07.4
10.9
05.1
32.41
F"2 7
15.9
0 n 7 f, 7 0
1 7 5
0
09.1
09.1
19.7
OA.3
95.75
	-.. 	 • r:?7
15.1
. 0902 70
1-?2'J
24.3
09.0
09.0
1 '< . *•
05.1
96. 5 s
rv.i?
If
09.71 70
: -• <• 5
23.5
C. 5
CP.5

Of .5
57.34
-F.U27..
— 15.3
_.G.930 73_
120a.
. 1 fi . J
08.0
.. 08. 'J
>. ? • I
0 7.1

FV>/
15.9
120970
1745

13.4
15.4
13.7
13.1
1)1.35
FM27^
16.3
072770
1 749
29.9
13.2
13.2
14. f.
OB.7
57.9(.
	;	. fm?7a
26.3
. Ofi107C
1215
27.6
10.7
10.7
14.0
08.7
25.42
FV57A
1 . >
0f>25 70
1 J55
26. C
13.2
IK.2
2;-'.o
It.4
87.Bf
ru?.7i-
_1 i.A.
_.C'JC-27C-
1 j5
. 24.C
12.3-
12.3
	

B0.5«.
Fm?7A
1. 2
097170

24. V
10. 9
10.9
15.7
0«.3
50.71
	FV7 7A
1 f.. 3
120970
lJ>00.
0--.1
1 7.5
12.5
17.7
17.4
04. f-0
	 r>\?e.
20.6.
-072 773
1 119
- 24. J
03.9
L'3.9
ir.c
03.2
14,69
f-'li
?r>.6
f p 1 r»7o
1175
7 i. J
OS.7
03.7
05.7
03.1
04.91
-- Et'.'J
- -20. 6
.-.0826 70.-.
.12 J .
...2 - . C .
,04.7
..., 04.7 .
'.'5 . 3
04.2
05.40
F"23
20.6
0oo?7';
1} 'in
20.5
04 .5
04.5
•14.9
03.7
05.31
	 F
20.6
.0121 7-J -
1145
20.0
03.6
03.6
03.7
03.2
07.32
fv?"
?o.;.
09:1070
1 4 5
15.3
0 ? • 3
03.3
07.3
03.7
1 -
	 _ ri'?n
.. 2c.&
120 9 70
1215
02.6
11.4
11.4
11.4
11.1
00.00
. . FV2SA
.-23.-4-
-072770-
-1120-
-24.5-
-04.2
. 04.2
ce.s
04.3
15.95
Fv?SA
^3.4
r>»loro
1U55
2J.4
01.ft
01.A
Ot.T
1)1.7
05.6 7
		 FM2BA
"3.4
0P2570
114 5
23.0
CA.7
04.2
04. 5
0 3.7
C.AJ
ry?9A
7 3.4
09"? ro
1137
7C.5
02. V
02. 9
02.5
02.1
04.n«
	 FV7RA
2 3.4
CI9.'17:
1 I JO .
2:. 0
i:?.p
02.R
•-2.9
>7.(.
Of:. 01
FV? ft
2».4
120970
1 200
r?.7
11.5
11.5
11.4
11.4
00.00
^nu
03.7
072070
1J51
75.1
OR.4
OR.4
15.0
06.9
17.76
			 -NllA
C 3.7
QM270
U15
25.0
10.3
10.3
11.7
10. 3

1»
03.7
0 U.6 i, 7 05

-------
dix 3 — OAV^en Production

-------
¦PPEIN)DR6
u
9
05
a
s
I
RT«?
_.S T 2
f?T2
r?T2_
33
A.5 077970	1435 2H.0
-4.5-081 270	152Q.:?7,C
'.*5 090570	1510
-/,.5C92B79	1030 .??

a 5
0.4 37#96
2«3	
2.1 17.99
0.9 54.33
Q) 0>
..RT5	.10.3 07?770 .14 45	28.5 .6~ 6_.6*6 .21 »0.
RT5 10.S 0RJ770 U35	27.0 5.3 5.3 14.0
J?T3	10.5-090370 1430	73.9 ... 5. 1 .-.5.1 10.5
PT3 10.« 092*70 11 r»0	72.5 7.7 2.7 3.4
RT9 H>»3 077?70 1451	24.6 9.6 9.6 14.2
J1.T.9	16.E .CR1?70 1250	27.0.._. 9.3.. 9.3 . 17.A
PT9 16. f? 0B2670 1675	2K.A 4.4 A. A A.9
-R.T9	16.8-092370 .1250	19»JJ._ fi.7_„fc.7	 6,7.
JUlO	1J..1 072170 .10.55 25.2	3. f 4.7 10.0
PT10 19.1 061270 1010 75.f) 5.1 5.1 9.7
_ST.1Q	19.1_Q?2&70.1600 2 5. 3„i._.6. A	6. A	7.5
PT10 I'J.l 0*2370 1230 19. P 6.1 6.1 6.0
2.B 75.55.-17,2	14,4
3.0		—	11.0	8.7
ae 28.59	7.7	5.A
1.1	34.11	2.3	0.6
7.6 12.>51	6.6	4.6
6.9 ——	10.5	8.1
1.9 16.22	3.0	0.5
5.3 A').2ft	1,4	O.C
26.27
RP170 21.0 072170 1135 2<>»0 8.(J fi.3 U.P
-RF12B__?1,0 081270- 1 OA5 ?5,0_ 6.A 6.A 10.6
PF125 21.0 0n?670 1530 ?5.1 7.9 7.9 3.6
-5F_17Fi___2.1. a._0.92 S 7.0 _1320. 20.3	_6»5	6.5..,. 6.7 .
25.39
30.36
17.75
-RF13—.24,5 072170	1202	25.5 9.3 9.3	15.A
PF11 2'-.5 0=11270	1135	2A.3 9.7 9.7	16.0
-RF13	2A~ 5,-0?0370	1100	21.5. 10.0 .10.0	10.fi
Rr 13 ?4.5 09?f?70	1A00	20.7 9.'; 9.5	9.6
>1.21
2.5 8.
.<3.2 16.51
»F1? 20.7 072770 1550 o 8.9 6.9 13.6
-EF15	30».T_OK127O.UA5 25. «	-9..3- 9.3 12.0
RF15 30.7 OP.3170 1530 76.0 9.3 9,3 9.6
-RF15—30.7. 092370. 1500 76.1	9.7 A.l A.O.
03. '.3
1(1.05
0'<.*7
9.4	6.3
6 . B	4 . 6
3.1	1.1
O.B	-0.0
5.3	3.0
5.6	A.l
3.2	0.6
1.1	0.1
7.2	ft.l
7,1	6.3
1.0	0.5
0.5	0.0
A. 6
3,6
0.2
0.6 -0.0
2,3
2.2
2.3
1.6
1,9
2.4
2.5
1.4
3.1
2.3
2.0	.
0.0
2.2
1.5
2.6
0.9
1.1
0.7
0.5
0.4
0.5
1.1
1.0
0.6

._sa3A...
S°- 3 A
	f,p..3A-
SB'1\
SI AA
	SO AA...
£ PA A
—sa^.i
A3.a 077170	14*37 22.5	V.5	9.511.0
43.0 OR 1770	1710 72.3 P.4 P.4 9.7
„A3.C_ftft?670	1315	7-3.6-. fl.O —fl.9 - 9.2.
43.0 007170	1330	?0.4 10.1 A.f 4.9
57.0 072770	1200 73.0 9.4 9.4 9.8
.57. 0.. .Oft 1770	1110 .20 . 3 .._ 6 .4	 H .4 9 .6 .
52.0 032570	1130 21.3 7.6 7,6 «.0
,8.7 Of.15
n.3
fl.2 02.4?
A.5 03.97
05. H 5
2.1 . 1.5 - 0.6
1.3	1.2 0.1
1.0	0.2 0.7
0.3	0.0 0.3
1.0	0.? 0.6
O.S	1.1-0.2
1.0	0.A 0.5
0.4	0.0 0.4

-------
APPEND*
—4SF17A — 66.-7 -072270 1137 1«.0 -9.3—-9.8 10.9 —7.2	07.*2 9.3	0.7
S°7A 66.7 0H3O7O 1130 I'i.j? 9.9 9.9 10.4 9»a	03.45 9.6	0.5
S0.7A	C6.7_-0676.70~.1Q00 ,1«*7 9«0-..-9.4 ... 9.0	04.37 : 0.3	0.3
ST7A 6*.7 C921?9 1100 16.9 11.? 5.7 5.5 5*3	0;'.13 0.?	-0.1
FM22 4.1 07,-770 1544 2"?. 7 30.0 10.0 ?0.7 6.5	f.l. 92 14.1	10.6
FM22	4.1 0S1079 140C 24.? fi.l 3.1 18.0. ft.?	9'».93 11.8	9.9
rt 0JU.070 133 0 24.1? 3.4 3.4 5.4 7.?	12.73 3.2	?.0
E«?.S	-9.9.-0R267O- 3450 .25.5.-5.,? -5.2 -17.7 ?.3	71.32 .14.8	13.9
FM25 9.9 09C?70 1440 2'i.5 3.7 3.7 5.2 3.0	Ofl.5f. 2.2	1.5
.-PM25....... 9.9. 092170 1 'f40 2,3.Q . 3.4 .. 3.4 4.4 2.9	05.52 1.3	1.0
r»'?5 9.9 ] 29*570 1415 3.5 3 1.A 31. J. 11.S 11.7	00.00 0.1	0.?
F?.'26 13.9 077770 3 335 ?7.3 1.5 1.5 4.S 0.0	27.71 U.9	3.2
EM2S	1.2,9—Oei Q7C..1.31.0 ..25 »5..,...2» ?	2,3 . 2«4. 0.9	11-34 J .4	0,0
FM?6 13.9 0*2670 14 30 ?
-------
"APPEWBkX'.B ccro
-EM28A	23.4 072770 1120 74.5 4.2 4.2 8.8 4.3 13.95 4.5 4.6-0.0
FM28A 23.4 0 B10 7 0 1055 23.4 1.8 I.ft
- F-M 2 8 A	23 » 4-0 A J h TO . .1-1 4 5-2 3 . Q„. Ai2.„...A»2..
PM?BA 23.4 O9O?70 1137 ?0.5 2.9 2.9
..r»28A—23.4-.092170 11C0 ?0.D- 2,.?1 — 2.8
2.7	1.7 05.67
A.5	3.7 03.83
J.5	2.1	04.06
2.9	2.6	Oft.01
1.0	O.fi 0.1
0.3 0.3 0.5
0.4 -0.3 0.7
9.2	0.0 _ 0.1
PM28A 23.4' 120970 1?00 2.7 11.5 11.5 11.4 11.4 OP.00 ' 0.0 -0.1	0.1
WUA 3.7 077070 1051 25.1 5.4 fi.4 13.0 6.9 17.76 3.1 fc.fc	1.5
—NftlA	3 . 7-..081270. ..1 315 - 25 . 3....1 0.3 .10,3.11.2..10.3 —— . 'i.B . 0.6	0.0
N7	7.9 6.6	1.3
N*3A 9.1 001070 lf>40 73.0 11.2 11.2 12.3 10.4 03.4?	1.8	1.1	0.7
-KR3A	_9.1- 0ft 1170 142^ 73.5	5.1	fl.l	8.1—.7.1 07.42	0.9 0.0. 0.9
N?33A 9.1 092170 1*45 19.9 9.7 3.9 3»8 3.3 0*!1.36	C.5 -0.0	0.6
NT!7 19.9 07?r,70 1432	21.4
-MR.7 —19.9 .081070. 1505	21.0.
VP7 19.9 OJHl'O i??0	2T.C
-JiiBT— 1-9 .-9-092"70 . 1 ?.!)('	10. 7...
9.7 9.7 9.4	5.0 09.00	1.3
5.9 ...9.9.-10.2	9.5 02.72	0.6
(J.« 8.9 8.»	f»»5 G3.70	0.2
.-9.8-.9.8 -9.6	-.9.3 01.49	0.2
-NSclA	1.7 077170 3126 24.0 11.2 11.2	14.3	.8.9	10.6?
H3U1A 1.7 031270 1353 26.1 11.4 11.4	11.9	11.5		
-N8.C1A.	1.7	082670 1445 24.9 5.3- 5.8	5.0	4.6	01.68
Nnu'.A 1.7	097170 1?.05 25.4 13.5 2.0	3.8	2.3	02..5ft
Nf*L2 6.0 077170 1402	24.5 11.3 11.3	11 .0 10.7 03.65
-!>JriL? 	6. C 0 9 1 0 7 0.. 1.6 0 5	23.2 10.7 10.7	U.O 10.5	03*18
N«L2 f .0 083170 1730	?/..0 9.!> 9.8	9.8 9.5	2.288
-NP-L2	6.0-097370 1400	25.7- 12.0 12.0	11.5 11.2	03.41
JJHL3A	It. 1-0.7 2 07 0.. 1306 22.5	.77.A
Nf?t.3A 10.1 0 ?, ] 7 7 0 1135 73.2 7.5 7.5
-JJHL.3A	16. 1 -Oft 3) 70 1100	21.0 ...7.3.. .7.3
."!f1t3A J6.1 092370 1775	20.7 fr.l 0.1
Mr!t,5 23.5 077070 n45 74.0 6.5 6.5
:«P. L 5—7-3 . £—08.1.070. .1415—2.3 . 0—7 • 3.	7. 3..
NRL5 73.5 f.f!»170 ! 140 27.5 4.7 4.7
-NRL3-—23.5 092370 .1050-21.6—4.4	4.4.
,8.1 -7.1- 03.55.
6.9 7.1 02.14
6.16.'. 02.46
7.9 7.0 Ol.J?
5.4
0.3
0.4
1.5
0.3
0.5
0.2
0.3
0.9
~0.1
-0.3
0.8
4.6 2.3 01.25 2.3
.6.8—6.6 00.93-0.1
4.2 4.0 —— 0.1
-3.4 S.4 12.54 -0.0
-0.2	l.t,
0.2	0.3
O.o	0.2
-0.2	0.5
3.1	2.if
0.5	-n.l
-P.?	0.6
0.7	0.7
-0.2	0.6
0.3	0.1
0.0	0.2
-0.5	0.8
0.6	. 0.5
-0.6	0.4
-1.2	0.8
•0.1	1.0
-l.V	4.2
-0.5	-0.6
-0.5	0.6
•1.0	1.0

-------
Appendix C - 24 Hour Corrected D.O. and Temperature Data

-------
	 Bit
			


3

til
a

. .... RT9 .
Of! 1270
-27
RT.9
0«1270
2R
- PT9
	081270 --
7B
RT9
0 8 1 ? 70
29
F?T9	
— OP 12 70 —
29
RT9
0317 70
30
STA-
0!U270
30
RT'S
OP 1270
30
- - - 	RTO —
_ OS 1270 -
30
R TO
onl?70
29
OJ9
01177"
"'9
RT9
OB 1270
29
	RT9 ¦¦
08 1270
29
RT9
0«1270
?n
. - - -	R T
		03) 770 -
28
r?T9
On 270
27
RT9
	OH 1270
27
RT3
OP 1270
27
RTO
0«1270
27
P.T9
OS 1270
2 6
r?T9
031? 70...
26
RT9
0 n 17 7 0
2 6
	R.T.9—
. 		OP. 12 70...
25
R T 9
OP. l.?70
25
RTC)
OP. 1">70
2.5
RT9
0"1770
'/ 5
RT9
		- 06 12 70	
2 5
RT=»
OB 1270
75
PT5
	0?1270 .
24
' RT9
Of 1270
24
mo
		 0 312 70 .
2.4
RTO
Of! 12 70
.74
RT7
0 51?70
24
RT9
OR 12 70
24
RT9
	031270. ...
2 5
RT9
0 fi 12 70
75

OP 1270
.25
RT9
081270
24
9T<3
0*1270
24
RTO
0*112 70
24
9 T 9
OP 1270
24
RT9
on 12 70
24
RTO
om?70
.PA
RT9
0 F11 270
25
RTO
	051270	
7 5
RT9
Ofl17 70
76
PT9
0A1270
27
RT9
031270
28
I 11
u u
u CO
as
at
17.
00
37
10
56
07
07..
0?
02
93
74
29
01-
64
IS
e?
27
OS'.
53
35.
?f>
?9
t; p
43-
4	3
34
25
07
97
70
CO
51
r.o
43
34
>5
51
0 5..
05
05.
13
51.
25
39
53
2 7
64
- 9
f;
10
10
10
10
10
9
-9
9
9
q
....8
fl
.7
7
7
6
19
6.7
00
14
19
33
G7
99
90
76
54
31
5?
97 -
47
10 .
51
SO..
<,5
01	..
74
61
?';>
? o _
.7 0
22
,''3
le .
! 3
22 ...
14
05 .
14
31 _
73
74
15
44...
Of.
?7
92
5.9
19
9&
46
9?
4.9
~ I
H
—1300
1330
.1400
14 30
1500
15^0
-1600-
1610
1700
1730
.laeo-
1.330
- 1900
1°30
. 2.000
2030
.. 2100
2130
2200.
2230
. 230C
2330
2400
30
	100
1.30
200
230
300
330
	400.
430
500
530
... 600
630
	700
730
	 P. or,
R30
.... 9 CO..
930
	1000.
10S0
1100
1130
1Z00-
1230
AFTEMDlX c

-------
3A ' QP.2770 23.69 9.23 1630
S0.5A	 022770 23.73 .. 9.19 1700
?•!": V, 0P2770 23.-"7 9.16 1730
SB 3 A	Oft.? 7 70 	23.<37	 9.16 1800
SB 3 A 082770 23.69 'J.02 1830
-SB3A	OR2770	 23.59	-1900
SB. 3 A 0S2770 23.59 ?i.-?4 1930
SO 3 A	CP?770. - 23.59	5.73 20C0
5®.? A 032770 23.59 p. 73 2030
-S..H3A	0S2770 -23.60 .... 8.70 .-2100
SB 3 A 082770 ?3.7a 9.67 2130
-S8 3A—	0 8 2770 23.S7	6.64	2200
SB3A r>ar770 24.05 r«.47 2230
SO3A	 08 2.770. .. 24.15	 0.33 . 2300
SB3A 092770 24.4? *»1& 2330
SB 3A	 OB 2770 ....... 24..4 2 ... ».C4_„2400
S3 3 A 032770 24.51 7.2 730
SB3A	03 2770		 24.33	7.05 _ flC0
$B3A OP 2770 2«.33 7.15 .330
SR3A.		092770 __. 24.33	7,35 ... 900.
SB3A On 2770 24.05 7.54 930
SB i A- .08 2.7 70	23.59	7 ,79 ...... 10 00..
SB 3 A 0 ?• 2 7 7 0 23.59 P.CO 1030
S3 J A	 Of? 2770 ..._ 23 • 5'>	.^R.10 .1100
SB1A 032770 23.69 P.28 1130
S?3A	032770	23.07	fi.43 1200
SS3A 03 2770 24.15 8.54 1230
SS.1A	OB2I.7.Q	24 .3.3	S .7.8	1 300
CONT'D-

-------
S3.CA	-0 3257.0 —_21. 0 ?.
S34A 052570 21.7*
S34A	062570 	 22.22
SP4A 0«2 570 22.5P
<-,n4A	0K2570 - 22.6R
Sf-4 A 082570 ,">3.23
-SEAA	_.CJ!2570	-23.59
SB4A- C?2570 ?3«78
S..V*A	082570 2fc.l5
S34A 0325^0 24.:-:4
-S34A	032570 	24.33
5114 A 052570 24.'.?
-SB 4 A	032 = 70	2 4.42.
SB4A 0P2570 24.M
SCiA	0S257G --24.51
SS4A 092570 2<».5]
S!U4	 ..082570 .... 2^.42
oB4 A 082570 ?4.,?4.
-S54A	03257.0	24.05
S04A 05207fi 23.69
5S4A	052570 . .23.59
SB4A 0 8 2570 23.59
SB 4 A	 982570	23.59
S94A 08 25 70 23.69
50 4 A	0 3 2.5 70	2 3.5 9.
5«4A Of! 2 5 70 22.61:
SB'vA	 032570 _ 22.68
SH-'»A 0 fl 2 5 7 0 22 »S S
SO4A	 082570 .. 22.22
?f'-iA OP 2 570 21.^5
SB.'tA	052570	21 .76.
SP4A 0-52570 23 .67
SG4A	0S2570 ...21»5fl.
S3 ¦~A' OR 2570 21.12
S34A	..QC2570 .20.93
SG4A 082570 20.03
SS4A-	082570	20.34.
SB4A 082570 20.34
SB4A	062570 	20.84
5^
-------
S37A	£17-22 70	17.35
5»7A	072270 IP. 09
SP-7A	072270 -IP.55
Srl7A	07 2 270 IB.fc?
S67A	072270.. 18.91
SB7A	072270 19.10
Sfl7A	07?? 70 19.10
.SP7A	072270 19.5ft
SP7A	0727.70 . 19.92
SB7A	07?? 70 19.<>2
SB7A —:	 07 2270	19.9?
53 7A	0722 70 20.01
sr. 7 A	072 2 70	20.01
S^.7A	07227C 20.11
S37A	077270 ----- 20.01
SB7A	072270 70.CI
SR7A	072270---. 19.92
SiJ. 7A	072270 20.1 1
SR7A	07 22 70.— 19.19
S?7A	07 22 70 20.11
S07A	072270. . 19.19
SP7A	07 2 2 70 19.01
Sfl7A	0722 70 - 19.10
5R7A	072270 19.1C
SR-7V.	072 2 70	19.19
SB7A	072270 19.10
S'i7A	 072270 •.. 19.10
r,H7A	072270 19. «Jf>
SR7A	 072270 -. 19.46
S3 7A	072270 19.19
S3.7A	07 22 70	19.10
SR7A	072270 Jf>.10
-S8 7A	072270 -	 19.01
SP7A	072270 19.01
SP.7A	072270	 15.91
SB7A	072270 18.fi?
SB 7 A	072 270	18 . 5 5
S97A	072270 l$.3f>
SB7A	072270	18.IE
S?7A	072270 1R.18
5P7A	072i *30
0.05 900
	8 »41	930.
P.91 1000
	9.23 -1030
9.OS 1100
		10.07	1139
CscmVD*

-------
		-SB-7A	001070
^.SB7A	02 IOTP
		—$g?A	oeio^o
SF.7A	CP, 1C70
	.S" 74-	0 ft 10 70
S°"»A	081070
	„sp. 7 a—	on i o 70
5ri7A	0H1070
	557 A	0B1C-70
SF.7*	0*1070
	sr.74	0R1070
SP.7A	PP1970
	,c, 0 74	_0 U 10 7 0
Sf*7A	001070
	SP.7A	Oft 1 070
SP.7A	a? 1^70
		SE;7A	0." 10 70
SR-7A	OP-1070
	SC.7A	081070
SFI7A	OP I 070
	SB7A	C, K 10 7 0
SP7A	OF>1070
		SB7A	OS 1070-
S37A	031070
	:	SE.7A	CO 1070
SC7A	OS 10 70
	SR7A	OS 1070
SUVA	or 1070
—:	r> fi7A	fifticTO
sr-jf.	OP-1070
	_SP. .7 A	0 m 0 7 0.
SP.7A	Of? 1070
	S37A	OP 1070
ST7A	0«1070
		S9.7A	C.<] ] C 70
. SP7A	onio^c
	SH 7/	05? J c 70.
SP.7A	031070
	S37A	0 S1 .94 ¦- 1330		
19.01 10. 20 1400
	 19.10 	10.54 1430		
19.37 10.53 1500
	19.46 — 10.37 1530		
19.46 10.37 1600
19.74- 10.73 1620	-	—	
19.',6 10.61 1700
- - 19.37 10.53 - 1730 :		-	
19.19 ]0.6? 1«00
	19.1C.	1C.15 .- 1830			
19.10 0.77 1900
19.01 ... 0.4:> 1930 	 	
19.0! 9,03 7000
19.01 . ... l',Tf 2030	-		
18.91 P.?9 2100
		 19.01	 8.03 2130 . 			....
1«.0] 7./.« 2? 00
	19.C1_ ... 7.73 . 2230 	 	
39.10 6.91 2?cn
... 19.10. .. . 6.81 . 2330 		-	-
19.01 6.51 2'>00
	19.01-.:	fc.32 ..	-30	
IB.55 6.33 100
. 19.01 	 00
	17.17	-7.74	930	
17.17 8.30 100O
		 17.17 		*.96 K'30	
17.35 9.21 1100
CONT'D

-------
			FM2 8
.090 270.
	20
FV2l»
090770
•»*
C l-'
	^	FM2 ?	
— 090? 70
	-71
F"2f>
090 770
21
	fm?r	
__ C90770
.. 71
F"2 9
090? 70
21
FV R
-09 0770
	71
fk?b
090270
27

,_.090?70
77
F>-*7 3
09 0," 70
22
FJVd _
-.-090270
	72
Ff 12 S
0 9 0.? 7 0
71

0 0 0 7 7 0
- ?]
F"?B
o"? or 70
71
FM7R
- .090:'70
71
PM2 3
05 0?70
?.?
Ft'? f>
... 09 o? 70
	21
FV2 A
0 ¦"/' 0 ? 7 0
;n
r**-? r<
090770
	2 ?.
F?«2f)
0 9 C ? 7 0
70
	Fm?3
not) ?70
. 70
Ffi? J
090? 7 0
70
- 	 - ..F.M7 ?	
C9Or70
- 20
~f-'P.?
090 2 70
19
c-n i
	Q9 0 2 7.Q
... ...20
f v? b
090770
70
r- >> -> a
-C9Q770
.. 20
FM7.1
09C2 70
20
r>.o n.
_ 09'.! 2 70
_ 70
FM2R
09C?70
70
FM?H
090? 70.
	70
FM ?P
C9Q-770
20
	FM2B	
090270
... ..20
Fm?E
09CT.70
20
F'^E
...090? 70
	 7.0
FM2 3
090770
19
FMHS ...
_09 0?70.
	19
FM? fl
090770
19
FV,>q
09 0?70
19
FM7f>
090?7n
19
FM5 H
090770.
_... 19
FM2H
09 0?70
19
Fi^n
09 02 70
	19
r ,**n 3
C9C270
1?
	 FV2
-------
	O-720.ro	21.76	e.65-- 1530
Sif57	07?070 22.22 ' 3.70 1600
NOT	072070 22.31— (3.67-1630-
MB7	07207 0 22.58 f-.fR 1700
WP.7	072070 72.31	 -fi.67	1730.
mi 072070 22.f,* 0.31 1P0O
HSi	-	U.7207G	22«5a	 p»24 .__IG30.
MG7	072070 22 .77 8.06 1900
•NRI.	0725570 .... 72..?? 8«C2 - 1930
MP T	077070 22. ?2 £.0? 2O00
MB7	07ZQ7Q	22.31-	 7«S9 . .7030
f,'37	072070 21.S5 7.P.? 2100
	07 7070.	21.76	7.74 .2130
NR7	072070 21. SB 7.57 2200
M37	072070.... 2l.Se - 7.5-7 2.230
Nfl.7	072070 21.39 7.64 2300
-MB 7	 072070 21 .3C	.7.67 2330
MR7	072070 20.93 7«?6 2400
.H5X	072070	20,BA	7 . D 9 . 30
•it! 7	072070 2 0.0 ?3?	072070 19.02 7.17 500
fj37		0720 70 — 7 ¦¦}. ¦' 1 . 7.4 5 530
Mi37	072070 10.92 7,54 M'.o
t!B.7	J2.72Q70	IS.5.5	_7.65 _._.633
W7	072070 18.55 7.65 700
MB?-	 072070— IS. IS . . 7.7ft... . 730
MB 7	07 20 70 13.09 £.3 5 POO
war.	 072070	13.09 ....... 0.08...- B30.
\'*?7	072070 If!.09 S.22 900
i5	930
MB 7* 072070 10.77 fi.f.6 1COO
MB7	07 2070	18.64	5.9 3 . 1030
N87	077070 19.01 9.0-3 1100
N.87	072070.	19.10	 9.?? 1130
ml	072070 19,92 9.15 1200
NS_7	C72C70	20.3P.	9.20 . 1230.
N37	072070 21.*7 (3.9? 1300
HE7	072070.		21.76 9.22. 1330
wt 0720 70 22.22 9,15 1400
NB7	 072070 - 22.69	9.0a . 1430
MBT 072070 22.68 9.OS l?O0
Nfl T	07207"	86 . ?»"! ,1500
Cc/v/T' D.

-------
NBCS	a 31-7.70	2 5.8 0	6 ..75	1300.
PHI 770 25.*-1	1130
¦ Mt«L5	 OH 17.70		 6.05—1*C0
fIC'.r ' 0*1770 25.52 ¦ A.63 1430
fif-LS	OS 1770 - 75.43	 6.46 _1300
NBL5	0*1770 75.61 6.41 1530
URL9	-0 A 1770	76.0 T-—	6.40- 16 00
N?L5 0^1770 26.26 6.45 163"
-KSt5	<1*1770. ..26. 26 - 6.36 - 1700
MI?L5 0S1770 76.26 6.26 J7V>
'.MSH.2	0.-51770. - 26.16 6.00 - 1800-
fjPi.5	0*1770	5.5P IB 30
Atf*.5—	031 7 70	25.SO	 5.11 — 1900-
N9L5	0^1770 75.?0	1 30
f;OL*	0fl 1 770 25.61 .... ?.C3 2000
WL 5 081770 25.4 3 3.23 2030
-S'f;LS	031770 —J?¥i»JV3 . ...	2)00
URL 5 0°17?fi 25.43 ?»34 2133
.Si-ElL0	0817.70	25.25 	.2.16. ...2200
«Pt« anno ?«.?/ 2.09' i'?3o
>.iBL5	05 1770 ._. 2').70	 2.01.2300.
K3L5	501770 24.51 l.f-2 2330
HBL5	0(11770. . 24.M . l.R? 2400
f,'«L5	OS 17 70 24.^7 1.69 30
N3LS	0S1770	2S.,?	1.42 .200
f-.'?L5	0*1770 24.33 1.43 . ?30
.KGLS	 081770. -24.33 ... 1 .43 .. 300
N8L5	Ofl1770 Z3.78 1.35 330
JiSfLi	031770	23.4.1	1.37	400
hULB	Oft 1770 23.23 J.3S. 430
iJBL3	031770- . 22.95 	 1.40	500
N?LJ	0'.'1770 22.6? 1.4? 530
MEL5	03 1770 - . 22.49 		1.43	 600
N-fsL.5	Of! 1770 52.13 1.34 630
-SBL3	0 e 17 7 0	21.76	1.4R	7.00-
NPX5	Of 1770 21.76 1.70 730
filM.5	091770	21.76	2.39	SCO.
Nfil. 5	OP,1770 21.76 2.f?4 930
Nf'L 5	0® 1770	21.76 _ 3.41 900
N0L5	OT1770 21.3.97 *30
R6L£	_J5S 17.70	22 . 22.	_ 4.5.7. — 10 00
NElu5	0C1770 22.4V 5.2? .1030
N0L5 	OS 1770	22.49.	 5.401100
NBL 5	0H1770 22. f?6 5.97 1130
HSL5	Ofil77Q_.__2S.34	 6.?2__. 1200
NSL5 091770 23.50 t.55 1230
O (3Av>T'L>

-------
W5L5 -
-.0131970-
	21
MBL. tj.
0«1970
21
			^NPL 5	
-0!f-l
031970
21
_ . .. 	,\P.L5	
-031570
	 21
¦'JBL 5
Of? J 970
21
K3L 5 -
-Ofi 1^)70-
	21
NP.Lt
om?7o
21
	N8L5	
..01)1070
	21
f-iRL3
031070
21
	NP.L5	
0H197D
.._. 21
;au3
091':. 70
21
	 .NBL3
_.Cn 19 70
	21
MP-L 5
OP-10 70
21
	 -.NGL5.	
031070
21
NFL *3
0 510 70
2 1
MP 1.5 	
. .0!? 10 70
. 21
ML 5
CM070
21
&HL5-
-0=1070.
	21
MF-L 5
OB 1970
21
	M8LS	
03 3 070
P1
jy *»t r
OP 19 70
.?1
-f J R L 5	
OS 1 <5 70
- 21
rj r l 5
0*19 70
21
N3L*. .
.~C£ 1970.
	21
M?.L5
OS 1970
21
N3L5 -.
0 ? 19 7 0
21
'-:?l 5
OS 3 070
21
HF.L5 .
081070
. .21
NKL5
0M0 7O
?1
riB^.5	
-.0819 7.0.
	21
NBL5
CP 1970
.21
unt <4
.0510 70
¦>!
NBL5
031^70
73
NBL5_. __
OP 1070
	21
N°L5
0010 70
21
NBL5
...08 19 70..
	21
MPLS
O01V7O
21
-NBL5. —
.OS1970
- -21
NBL5
opl?70
31
NHI.%
.051070
.. 21
NBL5
OR1070
21
58-1.	X. 12—1403.
59 7.00 1630
67	 7.09 - -1*500
76 7.06 1530
76 . _ fi.tO. . 1600
67 ft.06 1630
76-	 «i .46 ,1700
76. C>.4f> 1730
76 - - 5.'.6 1000
76 0.31 1H30
76 		 4.09 1"00
76 4.55 1030
76	A.21 2000..
76 3^75 ZC30
76 _ 3.30 2100
55 ?.«54 ?nc
85 	-?.6C. 2200
3	5 2.49 2230
£$>.		2.26. -.2300 ..
65 2.15 2330
0	4	 2.03 ?.A00 .
94 ' 2 «03 30
94 ... . 1.80 _ .. ICO
94	) .?' •> 110
OA	1.6.9	200..
04 1.61) 230
04 .._ 1.69 ... 300
R5 1.70 330
!J5 ... 1.70 .. 400
K5 1.53 410
76		1.43	500 —
76 1.4" «¦ 10
76 ..... 1.43 .„_.60C
76 1.4'5 630
76 . 1 .4 51 ... 700 -.
76 l.Afl 730
76	1.50	BOO
76 1.70 R30
76 	1.91 SCO
76 2.05. «J3fl
7fi	2.62... lf>00	
76 2.05 1C'30
76	3.1 f)	J ICO.	
76 3.13 1130
76 . .... 3.53 ._ 1200._
76 3.75 I230
76	 4.10 .1300.
<55 4.31 13 30
A FPEMWi . C c C/W f [£)._

-------
Atmcndix D - 24 Hour B..0. Curves			26

-------
APff
RT9
D
—:	—
10.33-
10.13—-
	9.67-..
9.45-
	<3.22-
9.C1-
8.7?-
8.57-
f.3 5-
7.91-
	_7.47—..
7.25-
	,7.0-2-,
«
	6»f>9--
5.93-
	*.
g 5.49-
g	5.27-.
j? 5.05-
_	A.B1--
J A.fcl-
H	/t. 3 9 -=_
g *.17-
g	3,9 5-..
'*.73-
X
	X. . X —-X —	-
X XX
-X		X-
x					:	x.
XX XX XX XX	X
		 	 ... XX.. - 		
XX X
-0.00-
100.00 AGO.00
• . TIME 	

-------


-1J1.00--
SP3A
<5. ? 3-
9.01-
-s
8.57-
-8.35—-
8.13-
-7.91-
7.f.9-
-7 . 7—
7..? = -
_7.C3^_
6.P1-
		XX XX X 					'¦							 	:		
X XX	XX
—x	:	.	x xx x							 -	- . .. 			-	
X	X XX
XX	X
XX	X
					XX . XX 	....	.	X	
XX X	XX
XX XX
X	X
n
3
-0.00-
1300.00 1600.00 1900.00 2700.00 100.00
_ 		 	_		 	
<•00,00
700.00 1000.00 1S00.00 1600.00 1900.00

-------

		/IPPE^IX 0
SR4A
• '•
10.n-	xx		— 		. ....					_. 		
9.P9-	X XX	X
9.6?-	X	X
-.-0.23-	X				 X	X	_...		 . ... '	 		 				 X
9.01-	XX
- B.79-	 xx	:	-				x x 		 . 		. . 					.... x
P.13-	X	XX
7.69- XX X
7.'.?-						 	X XX 	 X
7.?r.-	x	x
—7..C3-								 	 _ _ X XX XX X	XX XX	X	
6.Cl-	X
1 :
a	•

30.00
* TIME

-------
		 			.. /VPPLIVDI^ D cc-hx'p		
SB7A
10.7R-	XX
10.55- 	:	X	X X					 	.... ..	.	
10.33-	XXX
10. n-	xxx			x				 .'	 	 . .... 						 		x
9.P9-	X	X
—9« f.7~.	:				_		......_	.				 					X
*>.45-	X
9. TO-						- .. ..._	 		. . . 	X
9.01-	X	X
fl.""?-			X--.-					 ... 		.	...		
•
-0 . 35-			-		XX												X	
n.n-	x	x
7.91-	X 	X		....				.		 . 		
7.69-	X
7.Z-7-		.... 		 X XX			 			
7.25-	X	X
-7.0.3-											X 					_	 X 			 ... '
6.ni—	x xx
.. 6.59-	L	.,. 		 X XX X X .X	.	 .
(..37—	X X
im
fl	•
1
i-4	*.


«
JL
30.00 330.00 630.00 930.00 1230.00 1930.00 1030.00
....... TIME - - - 				- 	-	 	- ¦¦¦ -

-------
$ f PL KW 1 ){ -p ... CctvT' i>
_U.OO»-
10.78-*
]n.5V-
X xx
X X	XX X
SB7A
10.U--
9.P9-
_V5.6T-
	9 ».*' 3 —-
•J.01-
._ n.79-_
	X-.
X
- X
X	
-8.35^.-
-7.S1-.
7.69-
-7 . A7— -
7.35-
X
.. X
6.81-
fc. 37-
_6.15- .
f>.r'3-
_J.71-_
c 5..*?-
XX
X X
XX XX	X
	 XX X 	
X XX x
o
2
-0.00-
1230.00 1530.00 183fi#0G ZISU.U'O 30.00 330.00 630.00 930.00 . 1?30.00 1930.00 lfliO.OQ
	 				 jjjg	-				...-	 - 			 			¦ -

-------
D
<-C Ml' 0

-11.50--
7.25-
-7.02-—
6.^1-
-6.59- —
6. *J7-
— 	•	
5«93-
X
-X.__.XX-.
1
8

-------
-11.Q0-
5
o
-5.23-
9.01-
.8.79-.
8.57-
35--
ft.13-
-7.S1—~
7.69-
7.(-7-
7.25-
X	:	
X X XX
	x.~
X XX X X
XX X XX
XX X
	X X X
X X
X X
X	XX X X	XX	X XX
XX	X X XX XX XX
X
-0.C0-,
1 "5 3 0 . 0 0 1830.00 21?!).00
30.00 33C3.O0 630.00 93U.00 12S0.00 1530«fl<) 183u.UO *130.00
-		- 	 TIMS 				 ¦ - 		 		-	

-------
APftUDlXJ
CCK-VO.
-U*CQ-_
fxT'lf.
6.31- X X
	x		 .	„
6.37-	XX XX X
,_.6» 3 5—				 X ....	
5.93-	X
5.<.7-	X
.. & T..27-				. .
I			x
"2 «.*1-
.£		>
.95—_
X
X
X
X
a 3.7^-	x
x
2.55-	*
?.6'3-		X		.... 			
2.41- X	X
2.1"-	_		XX	... 				
1.07-	X
		 X XX	 	_.J	X —
1.6 3-	XX X X XX
.1.31-			 ,		 X	X XX X	
-0.00-	
1300,00 1AOO.OO 1900*00 2200.00 100.00 400.0»
	—						 tdb —	
..... •.,1,,.. # •...
700.OC lCf)f>.00 1300*00 1600.00 I900.no

-------
11.00-
20 0.00 ,500.00
TIME
r oo.oo nun.oo i«oo.oo

-------
Appendix E - Chlorophyll A Correlation

-------
a!.___ J	.... ii		A0E/JDIX £
1 •		ili_	sj-I 			
37.A6
0
79
-1
90
?.70
17.90
	*>
19
	5
no
	l.?0 					 ...	 . 			
54.33
?.
*0
0
19
?.ftO
... 75.55
	17
?A\ .
	14
40
		?.f'0 		 	_	 ....
?P.<59
7
70
5
4 0
?.30
34.11
p
30......
	0
6?.
			 l.^o _						...			_			 	 					 							
12.51
t
6 0
4
to
1.99
	16.21
	3
00_.._
		0
50
	?.r.o 	;. . .... 	¦ .. . . . 	_				 ...
'tO.26
1
4 0
0
no
1.40
26*/J
	9
4 >	
	6
30
	3.1')	 					 	 			 			_ .:							 .
25.3"
3
10
1
10
?.oo
30.36
-0
f <•	
	r.O
09.
	0 »f)9											 			
17.77
5
3 0
3
CO
2.79
..	 ..	51-20
3
?9 .....
...... 0
6 9
	2.60 ... ... 	 		 		 		 _			
23.59
1
10
0
19
0.90
16.51
	7
; 0	
	_. 6
10
	1.10 		_							_			_	¦. .
n. 5 3
1
09
fl
C.0
0.50
IP.05
0
?i;
tl
1')
	(.4 0	 	 			 . 				
9.30
5
19
4
69
P. 50
3.R6
- ..... 1
-39
_ CI
?n
1*00
4.14
0
60

09
0.69
6. 1^
_ 		 ?
1 0
	 1
50
0.60
2.43
l
oo
0
,39
0.70
3.96
_ . c
39
	 n
00.
0.39 -
5.P.4
l
no
0
39
0.60
4.?2
	3
00
0
4 0
	0.59 	_ _ 			 . 	
6.0-*
0
40
0
•DO
0.40
7.61
-a
30
0
70
2.59
3.44
0
6 0
0
50
0.10
•i.36
n
3 9
0
39
0.00 .
?..n
0
?0
-0
19
0.40
61.91
14
19
10
69
3.50
f 6.74
11
r
?0
1.59
7.5?
*<
1.0.
?
40
0.70 ... .
O.CP
C
CO
-0
?9
0.29
S5..0 7
	2
60.
	1
?0._
1.40
17.7?
3
70
?
CO
l.?0
71.31
14
.19
11
99
2.90
3.56
?
?C
1
50
0.69
<=..5?
1
r.O
... .1
r>n
0.50
0.00
C
10
0
"0
-0.10
27.70
	4
RC ...
3
r
-------

5
90
1
39
A
50
23.* 1
	—	5
30
	 3
30
	 ?
00
P7.P6
9
¦ 60
6
AO
?
79
50.70
		7
40
.... ... A
no
	 2
60
A. 60
0
?9
r\
19
0
lf>
.... it.te
.. 6
fiO ..
		6
10.
		 0
69
A.or*
?
10
1
*0
0
60
	6.40.
		 1
09....
r>
59
/>
00
5.30
1
2 0
0
39
0
SO
2.32
			 0
50.
0
99
		 (1
AO
0.00
0
10
r-
00
0
10
	1 5.95
. 4
50._
	A
60
	-0
09
5.67
1
00
0
f?0
o
10
3.P2
	 0
nc .
0
30
	_. c
50
'>.06
r
AO
-0
39
0
79
	 A.01
	 0
?9
		 0
C-9
	"0
1®
o.ao
0
00
-0
10
0
10
17.75
	e
10.
. 		 . 6
60
	 1
50
1.68
0
69
0
?0
0
A9
	 3.A4
		; 0
35
—o
19
. 	 0
59
11.67
7
09
6
69
1
30
J.*»h
	 1
*19
	 1
10
0
7->
7.61
0
09
0
on
0

. 3.^6
	0
50...

09
n
60
O.rtO
1
39
••<1
?9
1
69
.... ?.7?
	 0
69 .
0
79
r\
39
3.70
0
? 9
0
no
0
?9
l.'-9
c
29
-0
"0
0
50
in.6?
6
AO
3
10
?
?9
	_1.< »
	0
40
	~(i
29
		 0
6"?
?.06
)
60
0
79
n
70
3.65.
f;
'AO
—n
?9
. 0
60
3.1"
r
r>0
n
30
0
19
.... 3>">.f'*i
		 0
29
	 0
CO
0
29
3. AO
0
30
-0
so
0
no
		3.55.
	0
co_
rj
69.
		o
30
? . 1 '~
-0
19
-0
60
0
AO

—0
30
-)
?0
0
°9
1.3?
n
I'9

19
1
09
1.-75

30
			-1
90
A
20
3.9K
0
19
wrt
¦=•0
0
69
	KV5A
0
00...
-1
00.
	1
60
Correlation (r)	O.fCl 	0*713 	 0.717
-		-¦	3-	
4*	**	• -
«SI _ 8 8 8
	-ill	if
APPENDIX E

-------
Appendix F - Chlorophyll A Correlation Plot

-------
17.20-
JPFEmDJX	1
coaasuTiQN gross oxygen production
14.74-.
.1-4. 04-.
. X 				 X .
		X	

..10..54--
1
9.49-
§ :
•g 8.09-
|	7.7/,-
g 7.3°—
®	7.04-_
8 ft•6 9—
1	6. 34-_
fl 5.99-
5.64-.
$.29-
.4.9A--_.
4.59-
a
J-
X X
XX
3.19-
_2..2A—_
2.49-
-2.1*-
1.79-
-1.4 4-
1.09-
.0. 7
-------
14n40-»
	
j? mm f
CC'VL'P........
CQRREIATICM NET QnQHJ PRODUCTION
12.11-
_lQ.Bl-_
X X
10.4A-
9.SD-
-!
u
,.fc •-9.0-....
e..57-
_6.24-_-
x x
xx
•»»
o
5.27-
h • 6 1 —
3.96-
3.31-
_2...98-_
-2»?3-_
?.01-
l."J5-
-1.03-
0.70-
_C.33-
0.05-
-0.27-
-0.5?-
•0...SZ-
'1. ?'»-
...XX-
XX
X	X-
X X
XXX X
XXXXXX				___x	
XX XXX XX	X
XX XX	X	X	
XXX
		X	
XX
-1.90-

A...C0

10.
_2.v-.-QQ..
........ • i
3.1). 00	
a o. o y
50.0V
60. or. 	70.00
BO.00.
70.00 100,00
Chlorophyll A ugA

-------
PC
W F
-CC'AjIO

NST 0ZT02N OTTUE C0M2UTI0N
<>.<.6-
	._.
4.12-
.3.??-.
3.43-
— 3.26-.
3.0?-
?.?/.-
_r. s.7-_
2.23-
2.05-
1.71-
	l.li'i—_
1.37-
_ 1.19-
1.02-
o. r
n.*>p-
_J0.51-_
0.33-
. O.lf-
S* -o.oo-
-0.17.-_.
XX
J
xxx
	xxxx	
xxx/xx xx
. X* xxx	x
xxxx x
.. x x xx	
x
X
xx x
__ x	
X X
X X
X X
X X
X
X X
-3.10-	x	~ 		~			 T~	77""' 	 			"•	*	"
		..	•••~'. . . 1 * • • . ... ... 1 .......... * ...... . .	. . . . ® ....... . . ' ........ft'
	,0..00_	10..0Q	20.00	.3.0.00	AO.00	50.00 .... 60.00 		 70.00 ...80.00 ..	 90.00	 100.00.
Chlorophyll A ugA

-------
Appendix G - Li^ht ExtcucUoa Data

-------
photo; !ktt.r values for i,ic"T estisctkci sxiiorf
Submerged
Deck Cell	Cell	2 of Surface.
Depth Mill! Asps ' Micro Ar.ps 'Sensitivity Micro Araps • • Intensity
Surface 5.0,	13.5	ADO	5400
6" 5.0	7.0	400	2300	51.9
5.0' 3.7	300	2%'fiO :	34,9
:-12" 5.0 4.8'	400	1920	35.6
5.0	2.5	S00	2000	37.0
5.0	17. S	100	17 SO	33.0
18" 5.0	10.9	100	1090	20.2
5.0 2.9	400	1160	21.5
5,0 1.0	oOO	12 ilO	23.7
24" 5.0 5.4	100	540	10.0
5.0 1.3	400	720	13.3
5.0 1.0	...200	son	14.8
30!' 5.0 3.9	100	390	7.2
5.0 1.4	400	500	10.4
5.0 1.0	GOO	BOO	14.S

-------
Appendix H - Li::i:c
rva				30

-------
depth

-------