A STREAM CONDITION INDEX FOR
WEST VIRGINIA WADEABLE STREAMS
Preparedfor:
U.S. EPA Region 3 Environmental Services
Division, and U.S. EPA Office of Science and
Technology, Office of Water
Work Assignment Managers:
James Green (Region 3) and William Swietlik (OST)
Prepared by:
TetraTech. Inc.
10045 Red Run Boulevard
Suite 110
Owings Mills, MD 21117
March 28. 2000
J

-------
Development and Testing of a Biological Index for West Virginia Streams
ACKNOWLEDGMENTS
This report was prepared under 3 work assignments of EPA contract #68-C7-0014 to Tetra Tech, Inc.
Authors of this report are Jeroen Gerrifsen, June Burton, and Michael T. Barbour. We thank Maggie
Passmore and Jim Green of EPA Region 3 for helpful guidance, discussions and review. The biological
index was made possible by the intensive data collection efforts and discussion of West Virginia DEP; in
particular, Janice Smithson, Jeff Bailey, Pat Campbell, and John Wirts. This report was prepared with
the assistance of Jeffrey White, Erik Leppo, and Brenda Fowler.
Tetra Tech. Inc.
Hi
Mun-h 28. J'lOl!

-------
Development and Testing of a Biological Index for West Virginia Streams
TABLE OF CONTENTS
ACKNOWLEDGMENT	,	 				iii
LIST OF FIGURES 						 vii
LIST OF TABLES		 				 viii
ACRONYMS AND ABBREVIATIONS 		 	ix
1.0	EXECUTIVE SUMMARY	 1
2.0	THE APPLICATION OF STREAM BIOASSESSMENT IN WEST VIRGINIA	 3
3.0	ESTABLISHING BIOREGIONS AS A BASIS FOR BIOASSESSMENT	 5
4.0	TRANSFORMING BIOLOGICAL ATTRIBUTES INTO METRICS	 13
5.0	AGGREGATING METRICS INTO A BIOLOGICAL INDEX 	 18
6.0	TESTING AND REFINING THE INDEX USING INDEPENDENT DATA	 20
7.0 CONCLUSIONS AND RECOMMENDATIONS 	 	. 22
7.1	Rating System	 22
7.2	Refining the index 	 	 22
73 Maintaining the index	 24
APPENDICES
A ANALYTICAL METHODS AND STEP-BY-STEP PROCESS
B LITERATURE CITED
C METRICS AND METRIC SCORES
D SUPPORTING GRAPHS
Terra Tech.
Inc.
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
LIST OF FIGURES
Figure	Page
3-1 Geographic distribution of benthic macroinvertebrate sampling sites by data source
and ecoregion 		 6
3-2 Ordination (NMDS) of EMAP (a) and West Virginia (b) reference site macroinvertebrate
data by 3 ecoregions: Ridge and Valley (67), Central Appalachians (69) and Western
Allegheny Plateau (70)	 9
3-3 Ordination (NMDS) of West Virginia reference site macroinvertebrate data by month
of sampling					 10
3-4 Metric values in 67 West Virginia reference sites plotted by Julian day			 12
5-1 Working SCI discriminates between West Virginia reference and impaired sites in the
1996-1997 calibration data			 18
5-2	Effect of sampling season on working West Virginia stream index (SCI)	 19
6-1	Working SCI discriminates between West Virginia reference and stressed sites in the new
independent data (b) as well as in the original data set (a)...		 20
7-1	Reference and stressed sites, combined 1996-1998 data, and possible rating categories 	23
Tetra Fccti. Inc.
vii
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
LIST OF TABLES
Table	Page
3-1 Strength of alternative classifications of macroinvertebrate assemblages in
reference sites	1		10
3-2	Frequency and relative abundance of top 20 taxa in West Virginia reference sites,
by ecoregion				11
4-1	Candidate metrics: expected response to stress, discrimination ability, and final
recommendation for WV stream condition index 			16
4-2 Pearson Correlation Coefficients among 15 Candidate Metrics 		17
6-1 West Virginia final SCI: Metric standard values and standardization formulas			21
6-2	Percentile distribution of Index (SCI) values in all 1996-1998 reference samples		21
7-1	Example rating system for West Virginia SCI scores 		22
Terra Tec):. Inc.
March 2S. 2001)

-------
Development and Testing of a Biological Index for West Virginia Streams

ACRONYMS AND ABBREVIATIONS
ATV
All terrain vehicle
B-EBI
Benthic Index of Biotic Integrity
BPJ
Best professional judgement
DE
Discrimination efficiency
DEP
Division of Environmental Protection (West Virginia); also WVDEP
EDAS
Ecological Data Application System
EMAP
Environmental Monitoring and Assessment Program (USEPA); also EMAP-

MAHA
EMAP-MAHA
Environmental Monitoring and Assessment Program—Mid-Atlantic Highlands

Assessment (USEPA)
EPA
Environmental Protection Agency (U.S.); also USEPA
EBI
Index of Biotic Integrity
ICI
Invertebrate Condition Index
IQR
Interquartile range
NMDS
Non-metric multidimensional scaling
OWR
Office of Water Resources (West Virginia)
RBP
Rapid Bioassessment Protocol
SCI
Stream Condition Index
SWRB
State Water Resources Board (West Virginia)
TMDL
Total Maximum Daily Load
USEPA
U.S. Environmental Protection Agency; also EPA
WAP
Watershed Assessment Program (West Virginia)
WVDEP
West Virginia Division of Environmental Protection; also DEP
Terra Tech. Inc.
March 2S. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
1 . EXECUTIVE SUMMARY
Over the past century, land use activities such as mining, agriculture, urbanization, and industrialization
have seriously threatened the quality of surface waters by contributing to nonpoint-source pollution. In
West Virginia, the investigation of these nonpoint sources of water pollution has become a priority. It is
the responsibility of West Virginia Division of Environmental Protection (DEP) to maintain and protect
the ecosystem health of the state's waters. In keeping with the Clean Water Act and technical guidance
from USEPA, DEP developed water quality standards for the protection of ecosystem health. In support
of the state's water quality standards, which mandate the implementation of biological and chemical
criteria and a strict antidegradation policy, the ambient monitoring program has established an
assessment "toolbox" that includes physical, chemical, and biological techniques.
West Virginia DEP uses a rotating basin network of monitoring, scheduled on a 5-year rotation. A core
team of biologists, naturalists, and chemists provides the technical resources to conduct the monitoring.
Biological data (e.g., the diversity of organisms) are necessary to assess the health of West Virginia's
surface waters and to measure the attainment of biological integrity goals as directed by USEPA and
characterized by the state of West Virginia. DEP established a Biological Assessment Program patterned
after the Rapid Bioassessment Protocols of EPA (Plafkin et al. 1989). The results presented in this report
establish a framework for the assessment and monitoring of West Virginia's streams using rapid
bioassessment procedures.
Bioassessment consists of comparing the
biological condition of a stream to a reference
condition, which is an aggregate of conditions in
unimpaired streams of a region. Reference
conditions are "best available" conditions where
biological potential is at its highest for the
particular region or area. These reference
conditions are representative of sustainable
ecosystem health. For West Virginia, the
Mountain State, a single region appears sufficient
for statewide and rotating basin assessments.
Partitioning the streams and watersheds into Leve
3 ecoregions does not appear to improve biological assessment. The information derived from a survey
is aggregated into a Stream Condition Index (SCI) for West Virginia. This SCI is used as a primary
indicator of ecosystem health and can identify impairment with respect to the reference (or natural)
Biocriteria: under the Clean Water Act,
numerical values or narrative statements that
define a desired biological condition for a
waterbody and are part of the WQ standards.
Bioassessments: evaluations of the biological
condition of a waterbody that use biological
surveys of the resident biota.
Biosurveys: the collection, processing, and
analysis of representative portions of a resident
biotic community or assemblage.
Tetra Tech. Inc.
March :$. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
condition. The index includes six biological attributes, called metrics, that represent elements of the
structure and function of the bottom-dwelling macroinvertebrate assemblage. Metrics are specific
measures of diversity, composition, and tolerance to pollution, that include ecological information.
The SCI is to be used as the basis for bioassessment in
West Virginia and has been calibrated for a long-term
biological index period, which extends from April
through October. A data analysis application has been
developed to ensure consistency in data management
and analysis throughout the state as DEP biologists
conduct biological monitoring.
Benefits expected from the implementation of the WV
SCI will apply to a broad spectrum of management
programs, including:
•	characterizing the existence and severity of point and nonpoint source impairment;
•	targeting and prioritizing watersheds and ecosystem management areas for remedial or
preventive programs;
•	evaluating the effectiveness of nonpoint source best management programs;
•	screening ecosystems for use attainability; and
•	developing a basis for establishing biocriteria that relate to regional water quality goals,
an EPA priority.
The West Virginia SCI was tested with independent data collected in 1998 and was able to correctly
identify the majority of the stream sites stressed in some way by human disturbance or pollution (more
than 90% assessment efficiency). Index scores were divided into 5 proposed assessment categories for
reporting on the condition of West Virginia streams.
CORE METRICS
~	EPT taxa
~	Total taxa
~	% EPT
~	% Chironomidae
~	% Top 2 Dominant Taxa
~	HBI (Family biotic index)
See definitions in Table A-2.
Terra Tech. Inc.
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
2. THE APPLICATION OF STREAM BIOASSESSMENT IN WEST VIRGINIA
The West Virginia Division of Environmental Protection (DEP) is developing biological criteria for use
in assessing the quality of streams as part of the state's Watershed Assessment Program. Through the
303(d) and Total Maximum Daily Load (TMDL) framework outlined in the Clean Water Act of 1972
(and revisions of 1977,1987), those waters considered to be impaired and threatened must be identified
and improved to meet their designated uses. The definition of impairment by natural resource
management or regulatory agencies is typically based on attainment or non-attainment of numerical
water quality standards associated with a waterbody's designated use. If those standards are not met (or
attained), then the waterbody is considered to be impaired. Resident biota in a watershed function as
continual natural monitors of environmental quality, responding to the effects of both episodic as well as
cumulative pollution and habitat alteration. Conducting ambient biological surveys is one of the primary
approaches to biomonitoring. These surveys, in turn, are used to measure the attainment of biological
integrity. The assessment of ecosystem health cannot be done without measuring the attainment of
biological integrity goals as directed by USEPA and characterized by the state of West Virginia.
The Clean Water Act of 1972 (PL-92-500) has as
one of its primary goals the maintenance and
restoration of biological integrity, which
incorporates biological, physical, and chemical
quality. This concept refers to the natural
assemblage of indigenous organisms that would
inhabit a particular area if it had not been affected
by human activities. This integrity or naturally
occurring structure and function of the aquatic
community becomes the primary reference condition used to measure and assess waterbodies in a
particular region.
Careful measurement of the natural aquatic ecosystem and its constituent biological communities can
determine the condition of biological integrity. Several key attributes are measured to indicate the
quality of the aquatic resources. Biological surveys establish the attributes or measures used to
summarize several community characteristics, such as taxa richness, number of individuals, sensitive or
insensitive species, observed pathologies, and the presence or absence of essential habitat elements.
Multimetric, invertebrate indices of biotic integrity, variously called RBP (Rapid Bioassessment
Protocol; Plafkin et al. 1989; Barbour et al. 1999), ICI (Invertebrate Condition Index; Ohio EPA 1989),
						
Biological integrity is commonly defined as "the
capability of supporting and maintaining a
balanced, integrated, adaptive community of
organisms having a species composition, diversity
and functional organization comparable to that of
the natural habitat of the regions" (Karr and
Dudley 1981, Gibson et al. 1996).
Tctra Tech. hic.
March 2$. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams 	
B-IBI (Benthic IBI; Kerans and Karr 1994), and SCI (Stream Condition Index; Barbour et al. 1996). have
been developed for many regions of North America and are generally accepted for biological assessment
of aquatic resource quality (e.g., Gibson et al. 1996, Southerland and Stribling 1995, Karr 1991). The
framework of bioassessment consists of characterizing reference conditions upon which comparisons can
be made and identifying appropriate biological attributes with which to measure the condition.
Reference conditions are "best available" conditions where biological potential is at its highest for the
particular region or area. These reference conditions are representative of sustainable ecosystem health.
Biological measurements, called metrics, represent elements of the structure and function of the bottom-
dwelling macroinvertebrate assemblage. Metrics change in some predictable way with increased human
influence (Barbour et al. 1996). They include specific measures of diversity, composition, and functional
feeding group representation and include ecological information on tolerance to pollution. Multimetric
indices, such as the IBI, incorporate multiple biological community characteristics and measure the
overall response of the community to environmental stressors (Karr et al. 1986, Barbour et al. 1995).
Such a measure of the structure and function of the biota (using a regionally-calibrated multimetric
index) is an appropriate indicator of ecological quality, reflecting biological responses to changes in
physical habitat quality, the integrity of soil and water chemistry, geologic processes, and land use
changes (to the degree that they affect the sampled habitat).
The purpose of this study was to develop a multimetric
biological index for West Virginia streams. State
Watershed Assessment Program (WAP) stream
assessment data from 1996 and 1997 were used for
developing an index, and 1998 data were used to test
and validate the index. Results of the analysis were
used to make recommendations for improving the
state's biological sampling program to achieve more
reliable assessments of West Virginia streams.
	
This study was designed to address the following
questions:
•	What is the most appropriate site classification
for assessment of ecosystem health?
•	What are the seasonal differences in
biological metrics? (Are two index periods
required for monitoring?)
•	What are the appropriate metrics for a West
Virginia Stream Condition Index (SCI)?
•	What are thresholds that indicate the degree of
comparability of West Virginia streams to
reference condition?
Terra Tech. Inc.
March :$. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
3 • ESTABLISHING BIOREGIONS AS A BASIS FOR BIOASSESSMENT
Biological systems naturally vary in composition and diversity of the fauna, depending on the physical
characteristics and geomorphology of the waterbodies (in this case, streams) in which they reside.
Partitioning this natural variability into relatively homogenous classes, or bioregions, can aid in
establishing reference conditions, or benchmarks, from which to assess biological condition. The
purpose of this classification analysis is to evaluate Level 3 ecoregions as a means of establishing
bioregions for West Virginia streams. Sites sampled in 1996-1997 were located in 3 Level 3 ecoregions:
the Ridge and Valley (No. 67), Central Appalachians (No. 69), and Western Allegheny Plateau (No. 70).
Identification of reference sites (i.e., those having the expected composition and diversity of biota for a
region or class of sites) provides the basis for evaluating bioregions. Out of 720 sites sampled by West
Virginia DEP in 1996-1997, there were 67 identified as
reference (see Appendix A, Table A-l, for criteria). The
relative geographic clustering of the benthic data from
the West Virginia dataset suggested that testing an
ecoregional classification might not be reliable with this
dataset alone. Therefore, similar benthic data were
obtained from EPA's Environmental Monitoring and
Assessment Program (EMAP) in the Mid-Atlantic
Highlands for this analysis. From the EMAP database,
79 reference sites (using same criteria as for West
Virginia) were identified that were geographically
distributed within the same 3 ecoregions and
encompassed a broader pattern than the clustered
distribution of the West Virginia database (Figure 3-1).
	—
Methods of Analysis
•	Non-metric Multidimensional Scaling
(NMDS) Ordination — Display of sites
based on similarity/difference of
benthic species composition and
abundance.
•	Similarity Analysis — Tests for
statistical significance and the strength
of the classification.
•	Box-and- Whisker Plots — Display of
ranges of values for the biological data
oriented by spatial and temporal
groupings.
•	Scatterplots by date — Tests for
correlation of biological attributes
(metrics) with sampling date.
See Appendix A for full discussion of
methods.
Tetra Tech. Inc.

-------
Development and Testing of a Biological Index for West Virginia Streams
flit/
• J
*
Sampling Locations
¦ EMAP
• WVDEP
Eco regions
I	145 Piedmont
PvH M North esstenvHiQhJsn (to
m M Norttiem Appalachian PMnu md Uplands
^ tl ErlefOntarto Drift md Lata Plains
-h-^-y IS2 North Central Appalachian*
ggl O Middle Atlantic Coastal Plain
II	$4 North em Piedmont
§IS Southeastern Plains
St Blue Ridoe Mountains
•7 Ridge and Valley
Hn Central Appalachians
71 Western Allegheny Plateau
Figure 1. Geographic distribution of benthic macroinvertebrate sampling sites by data source and ecoregion.
lerra Tech. Inc.	6	March JS. 20HO

-------
Development and Testing of a Biological Index for West Virginia Streams	
The development of an appropriate classification for bioassessment was confounded by a broad temporal
range of collections (May - September). The issue of seasonal differences in the benthic
macroinvertebrate assemblage might require grouping the data by narrower date ranges for classification.
Therefore, analyses were performed to evaluate both ecoregions and date.
Conclusion for Classification into Bioregions	I
• Use of ecoregions to serve as bioregions for benthic assessments of cobble habitat in streams of I
West Virginia is not necessary.	1
While the broad collection timeframe of West Virginia DEP introduces variability into the	H
dataset, no clear differentiation of sampling periods was discernable.	1
Documentation for results are as follows:
Ordination of the benthic data by ecoregion indicated that a spatial classification was not
distinct (Figure 3-2). Neither the EMAP data (based on genus-level taxonomy) nor the
West Virginia data (based on family-level taxonomy) were able to distinguish
ecoregions adequately to serve as bioregions.
Ordination of the West Virginia benthic data by date was not distinct enough to partition
into separate sampling periods (Figure 3-3). There was a slight indication that the early
sampling dates May - June would provide less variability for assessments. The EMAP
data were primarily restricted to a July - August time period, and thus not tested for date
differences in this analysis.
The classification into ecoregions did not explain differences among sites (0% difference
explained) for EMAP data, and only a weak explanation (6.5% difference explained) for
the West Virginia data (Table 3-1).
By grouping the benthic data into individual months, classification was improved over
ecoregions (9.7% difference explained), but still inconsequential to explaining variability
(Table 3-1).
Tara Tech. Inc.
March 28. 21)00

-------
Development and Testing of a Biological Index for West Virginia Streams		
Comparisons of frequencies and relative abundance of taxa did not reveal distinct
differences among sites in the 3 ecoregions (Table 3-2).
• Correlation of various biological attributes or metrics with day of the year sampled
illustrated a weak relationship only with abundance of Chironomids (Figure 3-4).
Box-and-whisker plots performed on various benthic attributes illustrated only weak
distinction among ecoregions and sampling periods (Appendix D, Figures D1-D2). The
lack of distinction supports using a single class structure for assessment of West Virginia
streams.
				—_
Recommendations From this Analysis
Classification by some regional physiographic structure (e.g., ecoregions) was not supported by
this analysis of the benthic assemblage from cobble substrate in wadeable streams within the
Appalachian Mountains. The issue of using bioregions to stratify or partition the aquatic
community may still be valid if collecting methods change, level of taxonomy changes, and/or
non-cobble habitats are sampled.
• A narrower sampling window of late spring to early summer would improve the assessments by
, reducing variability.	'
Teira Tech. Inc.
S
March 28. 2000

-------
Development and Testing of a Biological Index for IVest Virginia Streams
(a) Ordination of EMAP reference sites
Axis 3
A .
~
° OOO
A ^ oo O
O O/s
O A° °
A 0
o
Eebregion
o 67
A 69
O 70

A



Axis 1



(b) Ordination of WV reference sites
Axis 2
# o0
ao a oo
o 0
0 A O
0 A 4 A0
o OOA H. o 0
¦W Aii <, 0
V4 1
A
A A
Ecoregion
0 67
A 69
0 70

Axis 1


Figure 3-2. Ordination (NMDS) of EMAP (a) and West Virginia (b) reference site macroinvertebrate
data by 3 ecoregions: Ridge and Valley (67), Central Appalachians (69) and Western Allegheny Plateau
(70). The ordination plots allow sites to be visualized in "ordination space, " such that sites that are
similar to each other (i.e.. they share a similar species composition) are close together in the plot, while
sites that are highly dissimilar are plotted far apart. Ordination of the EMAP macroinvertebrate data
(79 sites) from the 3 ecoregions revealed no clear ecoregional pattern, as seen by the overlapping
locations of points (Figure a). West Virginia benthic data (67 sites) show a weak but discernible
pattern associated with ecoregion (Figure b). Ridge and Valley sites (No. 67) are more abundant in the
top half of the plot. Central Appalachian sites (No. 69) are more abundant in the bottom half of the plot,
and the 3 Allegheny Plateau sites (No. 70) occur close together in the upper right area. Further
similarity analysis is reported in Table 3-1.
Temi Tech. inc.
'¦)
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Ordination of WV reference sites

'a
Month
o 5'
A 6

° o
0 7
~ 8
Axis 3
~ ~ O A
\oag> oA
.
~ *
~ 9

Axis 1

Figure 3-3. Ordination (NMDS) of West Virginia
reference site macroinvertebrate data by month of
sampling. The plot shows a slight effect due to time-
of-sampling, but as with ordination by ecoregion, there
is considerable overlap of data points among the
different sampling months.
Table 3-1. Strength of alternative classifications of macroinvertebrate assemblages in reference sites.
Similarity analysis revealed that the ecoregional classification for West Virginia data accounted
for approximately 6.5% of the dissimilarity among sites, (Table 3-1). Similarly, month of
sampling accountedfor approximately 9.7% of the total dissimilarity. We found that the effects
of ecoregion and date were confounded, but that neither gave a particularly strong
classification: both were less than 10% of the total average dissimilarity.
Data Source
Classification
Percent Differences


Explained
EMAP data
ecoregions (n=79)
0
WV data
ecoregions (n=67)
6.5%
WV data
month (n=67)
9.7%
Teira Tech. Inc.
March 28. 2000

-------
Development and Tasting of a Biological Index for ll'est Virginia Streams
Table 3-2. Frequency and relative abundance of top 20 taxa in West Virginia reference sites, by
ecoregion. Frequencies of top 10 taxa in each ecoregion are in bold. Differences among sites in this
analysis are caused by differences in taxa composition. Overall, these were relatively minor at the
family level, as shown in Table 3-2. Four families were at least 25% more common and abundant in the
Ridge and Valley ecoregion than in the Central Appalachians: the Chloroperlidae, Ephemerellidae,
Peltoperlidae, and Gammaridae. Taxa more common in the Central•Appalachians were the Tipulidae,
Rhyacophilidae, and Cambaridae. There were only 3 sites in the Western Appalachians, so estimates of
frequency of occurrence are unreliable (not shown).
Ridge and Valley Central Appalachians
	(Region 67) n=32	(Region 69) n=32	

frequency
mean rel. abund.
frequency
mean rel.
abund.
Chironomidae
94%
6.0%
97%
93%
Heptageniidae
91%
12.6%
97%
9.0%
Baetidae
94%
18.0%
88%
9.1%
Capniidae
97%
9.8%
84%
20.2%
Hydropsychidae
100%
10.4%
81%
21.2%
Philopotamidae
84%
5.1%
81%
6.1%
Chloroperlidae
91%
5.1%
66%
6.9%
Tipulidae
63%
2.5%
91%
4.6%
Perlidae
66%
4.4%
69%
3.7%
Perlodidae
72%
3.5%
50%
3.2%
Leptophlebiidae
63%
5.1%
56%
4.3%
Rhyacophilidae
34%
2.1%
81%
2.6%
Pteronarcydae
69%
3.8%
47%
1.8%
Ephemerellidae
63%
2.3%
38%
4.0%
Peltoperlidae
75%
6.7%
28%
3.2%
Simuliidae
47%
2.5%
41%
2.7%
Cambaridae
31%
2.6%
56%
1.4%
Elmidae
25%
1.8%
47%
2.8%
Oligochaeta
25%
3.1%
44%
3.7%
Nemouridae
31%
5.2%
19%
17.9%
Terra Tech. Inc.
II
March 28. 2000

-------
Developi'teii; curl Tearing of a Biological Index for IVest Virginia Streams
50
40
X3
g 30
O
c
o
a 20
v?
10
0
120


j : : : O :


O
O


O
O

,
: • : i 0 :
\ 0 \ j j o i
: O • 	-
• i 0 : ^		
%
__0_^
.
? § !° § ! !
% j ® P % 0 ? % ! n j
% : 0 : 0 0 : # :
140
160
180
200
220
240
260
280
Julian day
24
20
16
TO
X
ro
o
H-
12
0
120


0 : i j
: ! i 0
6 i j :

o
o
	
	<
Ci : O :
CD \ ~O
o S 00 : ©	"0:	0-	
6 0 • 0 : O
O O b 0 O : O
o ;
oo j
	O :
o 	7	
O O i


	C
<
o
o o <
o j








140 160 180 200 220
	Julian day
240
260
280
Figure 3-4. Metric values in 67 West Virginia reference sites plotted by Julian day. This analysis
showed a weak relationship in the %Chironomid metric (top), but other candidate metrics, such as Total
taxa (bottom), showed no discernible relationship:
Tetra Tech, Inc.
12
March 28, 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
4. TRANSFORMING BIOLOGICAL ATTRIBUTES INTO METRICS
Various attributes of the benthic macroinvertebrate community have
been characterized in the form of quantitative measures called
metrics. The attributes of the community that are measured by these
metrics fall into several categories of benthic community
characteristics, and the specific metrics within those categories can
indicate different aspects of the community condition. For example,
metrics dealing with species richness or diversity, such as Total Taxa, can be used as indicators of
community health because an ecologically healthy system is generally expected to support a more
diverse community of fauna than can be supported in an ecologically impaired area. Multiple metrics
evaluated together can give an overall indication of ecological integrity.
West Virginia's benthic macroinvertebrate samples
collected in the 1996-1997 seasons were identified to the
family taxonomic level, and 100 organisms were counted
for each sample. Within each 100-organism sample, the
number of individuals of each family were tallied. The
identifications and counts of organisms collected at each
site provide the information used to calculate a suite of
metrics for each benthic sample.
Metrics evaluated for use with the West Virginia 1996-
1997 benthic macroinvertebrate data represented four
categories: taxonomic richness, taxonomic composition,
feeding groups, and tolerance (see metric categories
box). Habit metrics were not calculated because they are
not useful with family level taxa identification. Since
classification analysis did not demonstrate the need for
partitioning West Virginia data collection sites into
separate bioregions or index periods (Chapter 3), all 720
sampling sites were considered as one site class.
Candidate metrics were calculated for each of the 720
benthic samples. Selection of specific metrics for use in
a stream condition index was based on several evaluation
criteria (see metric evaluation box).
A metric is a characteristic of
the biota that changes in some
predictable way with increased
human influence.
" 	
Metric Categories
•	Taxonomic richness — counts of distinct
taxa within selected taxonomic groups.
•	Taxonomic composition — proportions
of individuals belonging to specific
selected taxonomic groups.
Functional feeding group — dominant
mode of feeding, though not the specific
nutritional source or benefits (e.g.,
suspension feeder, predator, etc.).
•	Habit — dominant behavior of an
animal for moving and maintaining
physical position in its habitat (e.g.,
sprawling, clinging, etc.).
Degree of tolerance — counts,
proportions, or weighted scores of taxa
based on ability to survive exposure to
pollutants.
See Appendix A, A.4.1 for full discussion.
Tetra Tech. Inc.
13
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Criteria for identifying stressed sites were
established using parameters similar to those
used by West Virginia DEP for 1'dentifymg
' reference sites (see stressed site criteria box
below). To be categorized as stressed, a site
needed to meet only one of the listed
conditions. Out of the 720 benthic samples
used in this analysis, there were 69 sites
identified as meeting at least one of the
criteria for stress.
		—				
Metric Evaluation. Metrics were included if they:
are able to differentiate between reference and
impaired sites (methods: box plots, discrimination
efficiencies [DE]);
•	represent at least some different aspects of the
community (taxa composition, richness, tolerance,
and the like); and
•	minimize redundancy among individual component
metrics (method: Pearson correlations).
Stressed Site Criteria. 69 sites were deemed stressed by meeting at least one of these criteria:
•	Dissolved oxygen < 4.0 mg/1
•	pH < 4.0
•	Conductivity > 1000 jimhos
•	Epifaunal substrate score < 7 and Total habitat score <120
•	Channel alteration score < 7 and Total habitat score <120
•	Sediment deposition score < 7 and Total habitat score <120
•	Bank disruptive pressure score < 7 and Total habitat score <120
•	Riparian vegetation zone width score < 4 and Total habitat score <120
•	Discrimination of site impairment
Box-and-whisker plots for 24 candidate metrics, comparing the distribution of values in the 67 reference
sites with the distribution of values in the 69 impaired sites, are presented in Appendix D (Figures D3-
D6). The distributions displayed in these plots were evaluated as described in Appendix A (section
A.4.2; Figures A-l - A-2). Eleven candidate metrics exhibited discrimination efficiencies (as described
in Appendix A.4.2) above 60% (Table 4-1).
•	Representation of different community attributes
Discriminatory metrics, on the basis of boxplots and discrimination efficiencies, represent three different
categories of benthic community attributes: taxonomic richness, taxonomic composition, and tolerance
to environmental stress (Table 4-1).
Tetra Tech. Inc.
14
March 2S. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
• Minimized redundancy
Pearson correlation coefficients (Table 4-2) identified that EPT taxa and Intolerant taxa had a correlation
of 0.92, and that %Chironomidae was highly correlated with %Diptera'(0.91) and with %Tolerant (0.88).
In addition, with the family-level West Virginia data, individual component metrics involving
Ephemeroptera, Plecoptera, and Trichoptera were eliminated in favor of the more highly discriminatory
composite metrics of %EPT and EPT taxa.
The process of metric selection is iterative, with the areas of consideration being revisited and weighed
throughout the process. Table 4-1 reports the final recommended metrics for use in a stream condition
index, along with reasons for including or excluding each metric.
. .
Recommendation for Use of Metrics to Measure Biological Attributes
For scoring West Virginia stream condition based on 1996-1997 data collected in riffle habitats, six
recommended metrics are: EPT taxa, Total taxa, %EPT, %Chironomidae, HBI (family level), and %
2 Dominant taxa.
Terra Tech, Inc.
15
March 28, 2000

-------
Development and Testing of a Biological Index for IVest Virginia Streams
Table 4-1. Candidate metrics: Expected response to stress, discrimination ability, and final
recommendation for WV stream condition index

Expected
efficiency'



-response.
Used


» increase

in final

Metric
v decrease
(DE)
index
Reason for including or excluding metric in the final index
Taxonomic Richness




Total taxa
7
71.0%
~
Good DE in this category
EPT taxa
V
82.6%
~
Good DE in this category
Ephemeroptera taxa
V
58.0%

Included in EPT taxa with family-level data
Plecoptera taxa
V
59.4%

Included in EPT taxa with family-level data
Trichoptera taxa
V
65.2%

Included in EPT taxa with family-level data
Diptera taxa
V
—

Poor discrimination
Chironomidae taxa
V
—

Poor discrimination
Taxonomic Composition



%EPT
V
78.3%
~
Good DE in this category
% Ephemeroptera
V
58.0%

Included in %EPT with family-level data
% Plecoptera
V
62.3%

Included in %EPT with family-level data
% Trichoptera
V
68.1%

Included in %EPT with family-level data
% Diptera
A
72.5%

91 % pirrelated with %Chironomidae
% Chironomidae
A
73.9%
~
Good DE in this category
% Oligochaeta
A
—

Poor discrimination
% Dominant taxon
A
49.3%

Poor discrimination
% 2 Dominant taxa
A
55.1%
~
Acceptable DE: included after ruling out.%tolerant and




%diptera
Feeding groups




% Filterers
A
na

Trend opposite from expected; interpretation unclear
% Scrapers

—

Poor discrimination
% Collectors

na

Trend opposite from expected; interpretation unclear
% Predators
7
—

Poor discrimination
% Shredders
"7
55.1%

Skewed distribution, high variance; marginal discrimination
Tolerance/Intolerance




Intolerant taxa

79.7%

92% correlated with EPT taxa
% Tolerant
*
73.9%

88% correlated with %Chironomidae
HBI (family level)
A
68.1%
~
Acceptable DE in this category, after ruling out other




tolerance metrics
1 See Appendix A, section A.4.2
Terra Tech. Inc.
16
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Table 4-2. Pearson Correlation Coefficients among 15 Candidate Metrics. Metrics for all samples (n=720) were included in the
correlation. Hold R values are greater than 0.85.

Total
EPT
Ephem
Plecop
Trichop
%
%
%
%
%
%top
Intol..
• %

taxa
taxa
taxa
taxa
taxa
EPT
Ephem
Plecop
Dip
Chiro
2 dom
taxa
Tolerant
Total taxa
1.00












EPT taxa
0.85
1.00











Ephemeroptera
0.72
0.76
1.00










Plecoptera taxa
0.55
0.78
0.35
1.00









Trichoptera taxa
0.64
0.66
0.36
0.25
1.00








% EPT
0.35
0.57
0.34
0.54
0.36
1.00







% Ephemeroptera
0.33
0.45
0.58
0.29
0.12
0.47
1.00






% Plecoptera
0.02
0.19
-0.11
0.46
-0.02
0.47
-0.21
1.00





% Trichoptera
0.07
0.03
-0.08
' -0.13
0.38
0.27
-0.27
-0.28





% Diptera
-0.32
-0.45
-0.26
-0.42
-0.30
-0.79
-0.37
-0.36
1.00




% Chironomidae
-0.29
-0.39
-0.20
-0.36
-0.30
-0.72
-0.31
-0.35
0.91
1.00



% top 2 dominant
-0.67
-0.66
-0.56
-0.47
-0.43
-0.33
-0.33
-0.05
0.34
0.37
1.00


Intolerant taxa
0.82
0.92
0.62
0.82
0.57
0.55
0.35
0.28
-0.45
-0.41
-0.60
1.00

% Tolerant
-0.35
-0.46
-0.27
-0.40
-0.35
-0.80
-0.36
-0.36
0.80
0.88
0.39
-0.47.
1.00
I1131 (family)
-0.34
-0.50
-0.22
-0.56
-0.29
-0.76
-0.18
-0.71
0.65
0.67
0.38
-0.56
0.82
Tetra Tech, Inc.
17
March 28, 2000

-------
Dewlopmcn! / ex.'mi; uj n Biulo^icui hsckw for ll-'cs/ Virginia Stra:/!:s
5.
AGGREGATING METRICS INTO A BIOLOGICAL INDEX
Using the final six selected -metrics (Chapter 4), a
working index for scoring West Virginia stream
condition was determined following the steps
summarized in the box to the right. Appendix A
describes the entire procedure in detail. The range
of reference site values for the working West
Virginia stream condition index was compared
with the range of values in the impaired sites by
means of box-and-whisker plots (Figure 5-1), and
these boxplots confirmed that the working index is
able to discriminate between reference and
stressed sites.

100

90

80
o
70


4>

C
C
60

50
O

o

F

CO
40


(O

o>
c
30


o

<


20

10

0
	..Ill	I	r

¦




«

o












reference
impaired
Metrics and Scoring
Select metrics -
Total taxa
EPT taxa
% EPT
% Chironomidae
% 2 dominant taxa
HBI (Family)
•	Calculate metrics — Calculate values for the 6
selected metrics for all 720 sampling sites.
•	Standardize scores — Convert all metric values
to a standard 0-100 point scale.
•	Calculate index — Average the 6 standardized
metric scores for each benthic sampling site.
See Appendix A, A.5 for fall discussion.
Though classification analysis (Chapter 3) did not
indicate distinct partitioning of sampling into separate
index periods, the possible variability of a long sampling
period was examined again in the working index. Figure
5-2, showing boxplots of the working index by sampling
period and a scatterplot of reference site index scores by
Julian day, demonstrates that though the degree of
discrimination is slightly better in the May-June period
(Figure 5-2[a]), the working index does discriminate
between reference and impaired sites in both sampling
periods.
Figure 5-1. Working SCI discriminates between
West Virginia reference and impaired sites in the
1996-1997 calibration data.
Terra Tech, Inc.
JS
March 28, 2000

-------
Developing!! ami Tesiin» of a Biological Index for H'esr I'lrgima Streams
May-June
July-Sept
-d?
-3-4:	
a>
c
J*
5
5
ref	impaired	ref	impaired
(a) Performance of working index score by index period.
100
90
co 80
©
o
£ 70
60
50
40
c
o
to
	
o
30
120
&
j


-------
6. TESTING AND REFINING THE INDEX USING INDEPENDENT DATA
New data provided by WV DEP were used (as described in Appendix A.6) to test the discrimination
efficiency of the recommended West Virginia multimetric index, A comparison of the working .index
values in the original data with those in the independent test data shows good agreement (Figure 6-1).
Discrimination efficiencies of the test data set were also good: 85% of the 40 test reference sites scored
higher than the 25th percentile of the original reference sites. Stressed sites in the test data also were very
similar to the original sites: 92% scored below the 25,h percentile of the original reference sites.
o
CO
o
o
reference
stressed
o

-------
Development and Testing of a Biological Index for H'esr Virginia Streams
Final Recommended West Virginia Stream Condition Index (SCI):
To refine the working index by making* use of the entire set of data provided by WVDEP (1996-1998),
all reference sites were combined. Percentile distributions of each metric's values were determined for
the entire set of 107 reference samples. The revised, final Stream Condition Index (SCI) makes use of
the 95 th or 5th percentile (depending on the metric) standard values determined from this combined set
of all reference samples. Table 6-1 presents metric standard values and standardization formulas for the
six metrics that compose the final recommended West Virginia multimetric SCI. Individual metrics in
exceptionally high quality streams may score higher than 100, but a maximum metric score of 100 is
used when averaging the six metrics to determine the final SCI score; this assures that each metric
contributes equally to the multimetric index. Percentile distributions of the final SCI in the combined set
of 107 reference samples are reported in Table 6-2. Metric values, metric standardized scores, and SCI
scores for all sites in the original and new data sets are provided in Appendix C.
Table 6-1. West Virginia final SCI: Metric standard values and standardization formulas
Metrics that decrease with stress
Standard (best value)
X™
Standardization formula
(Appendix A.5, Equation 2; X=metric value)
Total taxa
21
0
score = 100*(X/21)
EPT taxa
13
0
score = 100*(X/13)
%EPT
91.9
0
score = 100*(X/91.9)
Metrics that increase with stress
Standard (best value)
*5
X™,
Standardization formula
(Appendix A.5, Equation 3; X=metric value)
%Chironomidae
0.98
100
score = 100*[(100-X)/(100-0.98)]
% 2 dominant
36.0
100
score = 100*[( 100-X)/( 100-36.0)]
HB1 (family)
2.9
10
score = 100*[( 10-X)/( 10-2.9)]
Final index score (SCI) for a site is determined by averaging the site's 6 standardized metric scores, using a
maximum metric score of 100 for any metric whose individual score at a site may have exceeded 100.
Table 6-2. Percentile distribution of Index (SCI) values in all 1996-1998 Reference samples.	
N minimum 5 th	L0 th 25th median 75_th 9.0 th 95th maximum
107	49	68	74	78	86	90	93	94	96
Terra Tech. Inc.
21
March 28, 2000

-------
Development and Testing ol a Biological Index for Il'es7 I 'i/qi/iui Stream
7. CONCLUSIONS AND RECOMMENDATIONS
7.1 Rating System
The macroinvertebrate Stream Condition Index (SCI) for West Virginia streams is robust and repeatable
and can be used to assess the biological condition of West Virginia streams. The relatively low
variability of scores in the reference sites suggests that at least 5 rating classes can be used. A rating of
"highly comparable to reference sites" could apply to sites that score greater than the 25,h percentile of
reference sites. A "comparable" to below-average reference sites could apply to sites scoring greater
than the 5th percentile of reference sites (Table 7-1, Figure 7-1). Scores below the 5,h percentile of
reference sites are increasingly different from the reference condition. Alternatively, the range of scores
from 0 to 100 could be divided into 5-eqGal categories (80-100, 60-80, etc.).
Table 7-1. Example rating system for West Virginia SCI scores.
SCI score	Rating
>	78 - 100	Highly comparable to reference sites (above 25,h %ile)
>	68 - 78	Comparable to below-average reference sites (between 5,h - 25th
percentiles)
>45-68
>22-45
0-22
7.2 Refining the index
The preliminary breakdown of site scores in Table 7-1 could be refined and narrowed by reducing the
index period and by examination of outliers:
• The length of the sampling index period (spring to fall) was shown to contribute to index
variability, although not fatally. This variability could be reduced by restricting sampling to a
smaller window in spring and early summer, for example, May and June.
\ Increasingly different from reference condition
Terra Tech. Inc.
22
March 28, 2000

-------
Develop/nan and Testing of a Biological Index for li-'esr l-'ir^inia Streams
Several reference sites scored low (less than 68) in the original data (and one in the test data).
These outliers should be examined in more detail to determine if they were misidentified as
reference sites, or if they are not representative of reference sites. They should not be excluded
simply because of a low SCI score, but should be excluded if previously undetected human-
caused stress or pollution is found at the sites (unknown discharges, erosion, non-point source
pollution, habitat disruption).

100

90

80
o




40
CO

(0

c

n>
30


>

V)


-------
Development and Testing of a Biological Index for ll-'est Virginia Screams
identified as special cases and removed from the list of reference sites, yet they should not be listed
impaired in an assessment only because the (natural) habitat is impaired.
7.3 Maintaining the index
In West Virginia's sampling program, new reference sites will be sampled each year. Confidence in the
index will be enhanced if new data are incorporated into the index, especially as more watersheds are
sampled and a more representative coverage is obtained of the entire state.
New reference sites can be added to the reference data set, and both the metric standard values (Table 6-
1) as well as the distribution of reference scores (Table 6-2) can be recalculated on an annual basis. As
the database becomes more representative of the entire state, both the standard values and the
distribution should become quite stable.
A larger reference site database will allow WVDEP to revisit the issue of classification, especially with
respect to under-represented ecoregions in the current database (e.g., valley streams of the Ridge and
Valley; Greenbrier Karst streams). Limestone valley streams are thought to be different from ridge
streams, but there were not sufficient reference sites from the valley subregions to make this
determination in the current database.
Tetra Tech, Inc.
24
March 28, 2000

-------
APPENDIX A
ANALYTICAL METHODS AND
STEP-BY-STEP PROCESS
A.1 Database development
A.2 Reference site criteria
A3 Site classification
A.4 Testing of candidate metrics
A.4.1 Metric categories
A.4.2 Metric discrimination ability
A.5 Index development
A.5.1 Scoring for metrics whose values are expected to decrease with
site degradation
A.5.2 Scoring for metrics whose values are expected to increase with
site degradation
A.5.3 Combining scores into an index
A.6 Index validation and refinement

-------
Development ami Testing of a Biological Index tor U'cst Virginia Streams
ANALYTICAL METHODS
The analytical framework used in site classification, final metric selection, biological index development,
and development of scoring criteria follows that used in other states and regions (e.g., Barbour et al.
1996, Maxted et al. in press, Stribling et al. 1998), with application to West Virginia's biological
sampling and monitoring program. The approach used for development of a regionally-calibrated
multimetric biotic index for West Virginia streams (a Stream Condition Index, or SCI) followed these
basic steps:
1)	Develop database
2)	Identify criteria for stream reference sites
3)	Determine site classification strata
4)	Compile and test candidate metrics
5)	Combine metrics into an index
6)	Test and validate the index (SCI)
A.1 Database development
Biological, habitat, and water quality data from 1996 and 1997 were received from West Virginia DEP
as FoxPro® data files and were transferred into EDAS (Ecological Data Application System, version
1.1c) (Tetra Tech, 1999), for ongoing data management and analysis. In EDAS (a custom application
developed for use with Microsoft Access97®), data, metadata, and other information reside in a series of
relational tables, including: stations, samples, benthic taxa, chemistry, habitat, and related information.
Use of a relational database such as EDAS allows for data elements to be stored in a compact, efficient
manner that reduces the redundancy of spreadsheet-style data management systems. EDAS also
incorporates pre-designed queries that can be used to calculate and export metrics and other needed
information.
West Virginia's 1996-1997 data were collected during the months of May through September from 720
stream sampling sites. Each sample consisted of 100 macroinvertebrates identified to the family
taxonomic level. In West Virginia's monitoring program, streams state-wide are sampled on a five-year
cycle, with each year's sampling sites consisting of a subset of the entire state. In the 1996-1997
sampling seasons, sample sites were concentrated in an area across the central portion of the state (Figure
3-1).
A.2 Reference site criteria
Reference site selection criteria were developed by West Virginia DEP Watershed Assessment Program
personnel to obtain reference conditions for streams that were assessed in the 1996 and 1997 field
seasons. Generally, no effort was made to select candidate reference sites before assessments began.
Reference site selection criteria are reported in Table A-l. To be classified as reference, a site must have
met all of the listed conditions. Based on these criteria. West Virginia DEP identified 67 reference sites
out of the 720 benthic sites sampled during the 1996-97 field seasons. Tetra Tech used the 67 reference
sites identified by West Virginia to characterize reference conditions.
Tetra Tech. Inc.
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Table A-l. Reference criteria for West Virginia 1996-1997 Stream Assessment'
Parameter
Criterion
Explanation
2
3
4
6
7
11
12
13
Dissolved
oxygen
PH
Conductivity
Fecal coliform
. > 6.0 mg/1	Taken from "WV Water Quality Standards'' as developed by the
State Water Resources Board (SWRB)
2 6.0 and s 9.0 Conductivity and pH are based on observations of WAP and
<500 umhos/cm OWR. data and from BPJ of experienced OWR field personnel
<800 colonies/ This limit is double the maximum set by the SWRB (where the
100 ml	standard is no more than 400 colonies/100 ml in more than 10%
of all samples taken during the month. Reference criterion value
was raised to 800/100ml due to the lengthy holding time of fecal
samples (24 hours in many cases). In addition, experienced field
personnel have encountered fecal levels exceeding the standard
in some streams where no human impacts were possible
(possibly due to wildlife populations), so the higher level of
800/100ml would reduce the possibility of excluding some
anthropogenically undisturbed streams from reference
consideration.
No obvious sources of non-point-source pollution (NPS)
Epifaunal
substrate score
Channel
alteration score
8 Sediment
deposition score
*11
;>ll
kll
9	Bank disruptive ^ 11
pressure score
10	Riparian	>6 (variable
vegetation zone	depending on
width score
Total habitat
score
Evaluation of
anthropogenic
activities and
disturbances
Criteria 6-11 are adapted from RBP habitat assessment modified
for use in the USEPA/EMAP program. These criteria were
selected because they are presumably most indicative of
anthropogenic perturbation. A value z 11 indicates that stream
habitat is at least sub-optimal for that particular parameter. The
WV WAP sampling strategy dictates that assessments be
conducted at or near the mouths of streams. This strategy tends
to bias the habitat scores (many sites are. roadside-accessible or
below bridges) and in many cases results in relatively low scores
for those parameters which are most indicative of human
disturbance. It is for this reason that the minimum values are set
to 11 (#6-9) and 6 (#10). Otherwise, few streams (if any) would
meet the selection criteria.
watershed)
65% of maximum 240 (% is variable depending on watershed)
Best professional judgement is employed to make reference site inclusions based on
the number and type of disturbance. For example, a surface mine site would generally
be considered a greater disturbance than the combination of an ATV trail and a small
road and would exclude the site from reference condition consideration. However,
impacts from the ATV trail and/or road may be considered so minor that they do not
exclude the site from reference consideration.
No known point source discharges
upstream of assessment site
(completed after 1-12 are met)
As provided in "WVDEP Watershed Assessment Program Reference Site Selection Guidance for
Riffle/Run Streams" memo'dated 2/4/98.
Tetra Tech. Inc.
A-2
March 28. 2000

-------
Development and Testing of" Biological Index for IVest hiyinui Streams
A.3 Site classification
Detection of changes in the biological assemblage due to human effects must take into account inherent
differences due to natural factors. Natural variability in the macroinvertebrate assemblage may result
from natural variability in the physical and chemical site characteristics across a geographic range.
Much of the natural variability can often be accounted for by dividing the area into ecological regions
(ecoregions; Omemik 1987). Level 3 ecoregions (Omemik 1987) have been used as an accepted
geographic framework for delineating regions of relatively homogeneous natural conditions (e.g.,
Barbour et al. 1996). West Virginia data in this analysis were collected from sites in three Level 3
ecoregions: Ridge and Valley (No. 67), Western Allegheny Plateau (No. 70), and Central Appalachians
(No. 69). We examined whether the Level 3 ecoregions accounted for variability of biota among sites,
and whether additional physical and chemical information could account for the variability.
The geographic distribution of West Virginia sampling sites for 1996-1997 was not sufficiently broad to
fully address site classification based on ecoregions (see Figure 3-1). Tetra Tech obtained data from
EPA's Mid-Atlantic Highlands Assessment of the Environmental Monitoring and Assessment program
(EMAP-MAHA) from 1993-1994 to expand the data set to achieve a sufficient geographic distribution of
reference sites for analyzing possible site classification. Because of the use of different field collection
methods in the two programs, EMAP and West Virginia data were not combined. Instead, West
Virginia's reference site criteria (Table A-l) were applied as closely as possible to the EMAP data in
order to select substitute reference sites for use in classification analysis. Water chemistry (criteria 1-3;
Table A-l) and habitat (criteria 6-11; Table A-l) could b e applied to the EMAP data. Using this
procedure, 80 EMAP sites (all riffles) were selected from the three ecoregions of Ridge and Valley (67),
Western Allegheny Plateau (70), and Central Appalachians (69). The EMAP reference sites were not
required to be located in West Virginia as long as they were located in an ecoregion that extended from
an adjacent state into West Virginia. Locations of West Virginia sampling sites, EMAP sites, and EMAP
reference sites are shown in Figure 3-1.
Alternative classification schemes were examined with multivariate ordination of the sampling sites
based on their species composition, following methods outlined in Jongman et al. (1987) and Ludwig and
Reynolds (1988). Ordination is a family of methods for reducing the dimensionality of multivariate
information (many species in many sites), by placing sites or species in an order. The ordination method
we use is non-metric multidimensional scaling (NMDS) using the Bray-Curtis dissimilarity coefficient.
This method has been shown to be robust for ordination of species composition (e.g., Kenkel and Orloci
1986, Ludwig and Reynolds 1988) and has been used successfully for classification of stream
communities (e.g., Barbour et al. 1996; Reynoldson et al. 1997).
NMDS is a nonlinear ordination that attempts to place sites in a spatial orientation that agrees with some
distance measure between the sites. It is analogous to creating a map using only the distances between
cities. In the case of our ordination of biological samples, the "distance" between two samples is their
percent similarity, as measured by one of several similarity indexes. The Bray-Curtis index is the
percent that two assemblages are similar to each other.
A matrix of Bray-Curtis similarities was calculated from the species-relative abundance data. This '
matrix was then used in the NMDS procedure. The NMDS ordination (McCune and Mefford 1995)
Terra Tech. Inc.	A-3	March 28. 2000

-------
Dcwiopment and Texiinij of a Biological Index tor ll'csr hrizwui S:rc:;n:s
follows the procedure of Kruskal (1964). The final ordination was required to have a stress coefficient (a
measure of goodness-of-fit of the ordination to the original data) of less than 20%. This usually required
3 ordination axes. The final NMDS configuration was plotted (as a scatterplot) to determine any obvious
groupings and to evaluate alternative classes (Figures 3-2 and 3-3). Candidate classifications were tested
with similarity analysis (Van Sickle 1997) to determine the strength of the classification. This procedure
calculates the mean similarity of sites within classes, and the mean similarity of sites among classes.
The difference between the two is the % of dissimilarity that is explained or accounted for by the
classification. Thus, a value of 10% indicates that the classification (say, ecoregions) explains 10% of
the total dissimilarity (difference) among all sites (Table 3-1).
A.4 Testing of Candidate Metrics
Various attributes of the benthic macroinvertebrate community have been proposed as metrics to
quantitatively characterize aspects of the community condition (e.g., Gibson et al. 1996, Stribling et al.
1998). Twenty-four candidate measures were considered for use with the West Virginia benthic
macroinvertebrate data. These metrics were selected based upon their known or suspected ability to
discriminate impairment. The 24 candidate metrics fall into five categories of community attributes:
taxonomic composition, taxonomic richness or abundance, feeding or trophic groups, life habit, and
degree of tolerance to stress in the environment.
*
A.4.1 Metric Categories
Taxonomic richness. Metrics in this category are counts of the distinct number of taxa within selected
taxonomic groups. "Total taxa" and "EPT taxa" are widely used metrics that provide information on
overall and group-specific taxonomic variety. "EPT taxa" measures richness in three insect orders
known to be generally sensitive to disturbance (Ephemeroptera [mayflies], Plecoptera [stoneflies], and
Trichoptera [caddisflies]), thereby conferring information both on variety and community tolerance.
Other candidate metrics of this category are focused on different orders, families, or non-insect groups of
ecological importance.
Taxonomic composition. These metrics are based on the proportion of individuals in a sample
belonging to a specified taxonomic group. They are expressed as percentages and reveal the relative
abundance of insect and non-insect groups, each of which may respond differently to environmental
conditions and community dynamics.
Feeding group. The functional feeding group designation for an organism reflects the dominant mode
of feeding, not the specific nutritional source or benefits (Cummins and Klug 1979, Merritt and
Cummins 1984, Wallace and Webster 1996). Designations for each taxon include filterers, scrapers,
collector-gatherers, predators, shredders, and others. Scrapers are those organisms that remove
periphyton or other algal material and the associated microbes from mineral or vegetable substrates.
Predators engulf or actively capture living animal tissue or prey. Collector-gatherers feed on organic
materials that are deposited or trapped within episubstrate layers of fine sediments or detritus. Filterers
trap, engulf, or strain suspended particulates from the water column that may be plant or animal in
origin. Shredders chew and break up woody materials, cqarse organic particulates, or living macrophyte
tissue.
Tara Tech. Inc.
A-4
March 2S. 2000

-------
Development and Testing of a Biological Index for iVest Virginia Streams
Habit. The habit description categorizes a benthic organism's behavior with regard to how it maintains
its location or moves. Designations for a taxon include skaters, swimmers, divers, climbers, dingers,
burrowers, and others. Although habit metrics have been used successfully, they are considered
unreliable for family-level data, because there is no assurance that all genera in a family have the same
habit. Because of this, habit metrics were not tested.
Tolerance/Intolerance. Tolerance of a taxon is based on its ability to survive short- and long-term
exposure to organic pollution. The Hilsenhoff Biotic Index (HBI) weights each taxon in a sample by its
proportion of individuals and the taxon's tolerance value. Following the basic framework established by
Hilsenhoff (1982), tolerance values were assigned to individual taxa on a scale of 0-10, with 0
identifying those taxa least tolerant (most sensitive) to stressors, and 10 identifying those taxa most
tolerant (least sensitive) to stressors. Tolerance values compiled by USEPA (USEPA1990) and Merritt
and Cummins (1984) were used for this analysis.
Specific metrics tested with West Virginia benthic macroinvertebrate data, grouped by the five
categories described above, are presented in Table A-2 , along with the expected response of each metric
to increasing impairment of the waterbody.
A.4.2 Metric discrimination ability
Metrics are selected for use in the multimetric index on the basis of their ability to differentiate between
unimpaired, or reference, sites and sites whose physical and/or chemical quality is impaired. As '
previously noted, West Virginia DEP identified 67 reference sites according to physical and chemical
parameters reported in Table A-1. Tetra Tech used the following criteria, using parameters- similar to
those used by WVDEP for identifying reference sites, to identify likely impaired sites. To be categorized
as impaired, a site needed to meet only one of the listed conditions. Using these criteria, 69 sites were
identified.
Dissolved oxygen < 4.0 mg/1
pH<4.0
* Conductivity > 1000 (imhos
Epifaunal substrate score <7 and Total habitat score <120
Channel alteration score <7 and Total habitat score <120
Sediment deposition score <7 and Total habitat score <120
Bank disruptive pressure score <7 and Total habitat score <120
Riparian vegetation zone width score <4 and Total habitat score <120
Terra Tech. Inc.
A-5
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Table A-2. Attributes of Benthic Macroinvertebrates used as Candidate Metrics, and Expected Response
of Metric to Increasing Disturbance.
Category
Specific Metrics
Definition
Expected
response
•» = increase
? = decrease
Taxonomic richness:
Number of taxa:

Total taxa
in the entire sample; measures the overall variety of the
v

macroinvertebrate assemblage

EPT taxa
that is the sum of taxa in the insect orders Ephemeroptera,
V

Plecoptera, and Trichoptera

Ephemeroptera taxa
in the order Ephemeroptera (mayfly nymphs)
V
Plecopteia taxa
in the order Plecoptera (stonefly naiads)
V
Trichoptera taxa
in the order Trichoptera (caddisfly larvae)
V
Diptera taxa
in the order Diptera ("true" flies)
V
Chironomidae taxa
in the family Chironomidae (midge larvae)
V
Taxonomic composition:
Percent abundance (of individuals in the sample) of:

% Dominant taxon
the single most abundant taxon
A
% 2 Dominant taxa
the 2 most abundant taxa
A .
%EPT
Ephemeroptera (mayfly nymphs), Plecoptera (stonefly naiads), and
v

Trichoptera (caddisfly larvae)

% Ephemeroptera
mayfly nymphs (order Ephemeroptera)
V
% Plecoptera
stonefly naiads (order Plecoptera)
V
% Trichoptera
caddisfly larvae (order Trichoptera)
V
% Diptera
"true" fly larvae and pupae
A
% Chironomidae
chironomid (midge) larvae pupae
A
% Oligochaeta
- aquatic worms
A
Feeding groups
Percent abundance of individuals belonging to the functionalfeeding


group:

% Filterers ,
filterers
A
% Scrapers
scrapers
V
% Collectors
collectors
V
% Predators
predators
V
% Shredders
shredders
V
Tolerance/Intolerance


Intolerant taxa
Number of taxa with a Tolerance Value s3
V
% Tolerant
Percent abundance of organisms with a Tolerance value >7'
~
Hilsenhoff Biotic Index
Abundance-weighted average tolerance of assemblage of organisms
~
(HBI)


Tetra Tech. Inc.
A-6
March 28. 2000

-------
Development and Testing of a Biological Index for IVest Virginia Streams
Box-and-whisker plots were used to display differences
in ranges of values of the metrics between stream-quality
categories (reference and impaired sites). This type of
plot displays the statistics of median value, minimum
value, maximum value, and 25th and 75th percentile
values of a population of sites. Figure A-1 illustrates
how the statistical values are displayed by the box-and-
whisker plots employed in this report (after Statsoft
1998). The box shows the range from the 25th percentile
to the 75th percentile of the metric values (the
interquartile range, or IQR), and whiskers show the range
from the non-outlier minimum (often 0) to non-outlier
maximum value. The non-outlier maximum limit is
equal to the 75th percentile value plus 1.5 times the
interquartile range, and the non-outlier minimum limit is
equal to the 25th percentile value minus 1.5 times the
interquartile range. The whiskers show the range of data
values that are within these limits, not necessarily the
actual 1.5* limits. Extremes are values that are either (1)
greater than the 75th percentile value plus 3 times the
interquartile range, or (2) less than the 25th percentile
Extreme values
Outliers
*
o
o
s
s
z
Outliers
O.
O
Ex lr eme values
-3-IQR
~1.5*IQR
IQR
-1.5-IQR
-3-IQR
Figure A-l. Ranges of outliers and extremes in
box-and-whisker plots (after Statsoft 1998). IQR
is the interquartile range.
Figure A-2. Use of boxplots to discriminate between West
Virginia reference and impaired sites. EPT taxa (top)
shows better discrimination ability than does Percent
Scrapers (bottom).
value minus 3 times the interquartile range
(Figure A-l). Outliers are values falling
between the 1.5* IQR whisker threshold and the
3*IQR Extremes threshold.
Boxplots of the metrics "EPT taxa" and
"Percent Scrapers" may be examined to
illustrate differences in the ability of the metrics
to discriminate between reference and impaired
sites. Figure A-2 illustrates these metric values
calculated from the 1996-1997 West Virginia
data. For the Percent Scrapers metric (Figure
A-2, bottom), there is substantial overlap
between the interquartile ranges of the reference
and impaired populations of sampling sites.
This metric does not differentiate well between
the two populations of sites. In contrast, the
EPT taxa metric (Figure A-2, top) shows no
overlap between the interquartile ranges of the
reference and impaired sites. This metric
differentiates clearly between the two
populations of sites.
Terra Tech. Inc.
A-7
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
For quantitative comparison of the discrimination ability of a metric, each metric's discrimination
efficiency (DE) was examined. The DE of a particular metric measures the agreement between metric
values and the reference status of a site. The DE is a numerical description of the degree of separation
between metric value distributions of reference and impaired sites and is calculated as a percentage
according to Equation 1:
(Eq. 1)	DE = 100 »-
b
For metrics that are expected to decrease in value with increasing site impairment, such as Total taxa or
%EPT, the values for a and b are:
a = the number of stressed samples scoring below the 25,h percentile of the reference
distribution
b = the total number of stressed samples
For metrics that are expected to increase in value with increasing site impairment, such as HBI or
%Diptera, the values for a is:
a= the number of stressed samples'scoring above the 75,h percentile of the reference
distribution
A higher DE indicated bitter performance of a metric, or a better ability to distinguish between
unstressed and stressed conditions.
A.5 Index development
A multimetric index is a simple additive approach for combining metric value information from different
types of biological metrics into a single numeric assessment value. Each metric, as described in Section
A.4, is a quantitative measure of some specific attribute of the benthic community structure or
composition. In developing a multimetric index, care is taken to include metrics that
are most able to differentiate between reference and impaired sites,
represent at least some different aspects of the community (species composition, richness,
tolerance, feeding groups, and the like), and
• minimize redundancy among individual component metrics.
The process of multimetric index development involved first scoring the selected metrics and then
averaging these scores into a single numerical index value. To score the metrics, the range of values for
each metric was standardized on a 100-point scale, assigning all metric values a score ranging from 0
(worst) to 100 (best). The specific scoring procedure used for achieving the 100-point scoring range
differed depending on the direction of expected response by the metric value to disturbance or
impairment. For those metrics in which higher values are considered a "better" condition and lower
Tetra Tech, Inc.
AS
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Screams	
values are considered "worse"(such as, %EPT in Table A-2, where the expected response to increasing
perturbation is a decrease in %EPT individuals), the scoring procedure is described in section A.5.1
below. Conversely, for those metrics in which higher values are considered "worse," such as %Diptera
in Table A-2, whose expected response to increasing perturbation is for the metric value to increase, the
scoring procedure is described in section A.5.2 below. Note: in exceptionally high quality streams, one
or more of a site's individual metrics may score greater than 100. The effect of such cases on the site
index is addressed in Section A.5.3.
A.5.1 Scoring for metrics whose values are expected to decrease with site degradation
For metrics such as Total Taxa or %EPT, which are expected to decrease in value with increasing site
impairment (i.e., higher values represent "better" sites), the 95th percentile metric value was assigned a
score of 100. By choosing the 95th percentile value rather than the 100th percentile as the "best" score,
we reduce the effect of unusual outlier values that might otherwise skew the ultimate index (Section
A.5.3). Values between the minimum ("worst," usually 0) and the 95th percentile value (standard, or
best value) were scored proportionally from 0 ("worst") to 100 ("best") according to Equation 2:
A3.2 Scoring for metrics whose values are expected to increase with site degradation
For metrics such as HBI or %Diptera, which are.expected to increase in value with increasing site
impairment (higher values represent "worse" sites), the 5th percentile metric value was assigned the
"best" score of 100. Again, by choosing the 5th percentile value rather than the minimum value as the
"best" score, we reduce the effect of unusual outlier values that might skew the ultimate index (Section
A.5.3). For these metrics, values between the maximum ("worst") value in the range and the 5th
percentile ("best") value were scored proportionally between 0 ("worst") and 100 ("best") according to
Equation 3:
where,
x = the metric value
= the 95th percentile value
x^ = die minimum possible value, usually 0.
where,
x = the metric value
xs = the 5th percentile value
x^ = the maximum possible value; e.g., 100% for
percentage metrics; 10 for HBI.
Tetra Tech. Inc.
A-9
March 28. 2000

-------
Development and Testing of a Biological Index for IVest Virginia Streams
A.5.3 Combining scores into an index
By standardizing the metric values to a common 100-point scale, each of the metrics contributes to the
combined index with equal weighting, and all of the metric scores represent' increasingly "better'' site
conditions as scores increase toward 1.00. Once all metric values for sites were converted to scores on
the 100-point scale, a single multimetric site index value was calculated by simply averaging the
individual metric values for the site. To assure that each metric did indeed contribute equally to the final
index, any individual metrics that may have scored greater than 100 in any exceptionally high quality
stream sites were converted to a maximum score of 100 when averaging to calculate the index. An
example of metric standardization, showing raw metric values, score standardization, and index scoring
is given in Table A-3.
Table A-3. Metric standardization example for site WVMC-60-K (Glady Fork), based on 1996-1997
calibration data
Metric
Change with
impairment
Percentile for
"best" value
Standard
(best value)
Measured
metric value
Standardized
metric score
%EPT
decrease
95th
92.6
83.0
89.7
%Chironomidae
increase
5th
0.72
9.8
90.8
Total taxa
decrease
95th
20
16
80.0
EPT taxa
decrease
95th
13
10
76.9
% 2 dominant taxa
increase
5th
35.3
42.9
88.5
HBI
increase
5th
2.7
4
82.0
Working (calibration) index value for the site:	84.7
A.6 Index validation and refinement
New data were received from West Virginia DEP in August 1999 for use in validating the working
index. These data consisted of sampling and taxonomic results from 549 sites, sampled from four major
basins during the 1998 field season and from one basin (Coal) during fall 1997 and not included with the
previously analyzed data. For the working index to be valid, it should separate reference from stressed
sites in the new data just as with the original data used to develop the index.
Reference and stressed sites in the new data set were identified using non-biological criteria as in the
original data set. The same parameters used for identifying reference and stressed sites in the original
1996-1997 data were used where possible to identify the new data set's reference and stressed sites.
WVDEP habitat data collection procedures differed somewhat in 1998 from earlier years, so that the
selection criteria for reference and impaired sites were slightly modified for analysis of the 1998
validation data set. West Virginia DEP personnel identified 40 reference sites in the new data set using
criteria similar to those used for the 1996-1997 calibration data set (Table A-l). To identify stressed
sites in the new data, Tetra Tech used parameters similar to those used to identify the original data set's
Tetra Tech. Inc.
A-10
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
stressed sites, modified according to revised data collection procedures. Table A-4 lists selection criteria
that were used to identify 102 stressed sites in the validation data.
To test the effectiveness of the working index, the six recommended metrics (Chapter 4) were calculated
for the new data set. These metric values were standardized, and index values were calculated, as
described in section A.5. The degree to which the recommended index correctly classified these new test
data was examined by calculating the discrimination efficiency (DE) of the working index as applied to
the new data. The DE of the working index for classifying the new data's reference sites was found
according to Equation 1 (Section A.4.2), where:
a = the number of reference sites from the test data (1998) scoring above the 25"' percentile of
the original data's reference sites, and,
b = the total number of test data reference sites (n=40).
The DE of the working index for classifying the new data's stressed sites was found according to
Equation 1 (Section A.4.2), where:
a = the number of stressed sites from the test data scoring below the 25th percentile of the
original data's reference sites, and,
b = the total number of test data stressed sites (n=102).
Table A-4. Selection criteria for stressed sites in the new data set A site was identified as stressed if it
met at least one of the listed criteria.
Stressed (sites meet at
least one of the criteria)
n=102
Dissolved oxygen (mg/L)
pH
Conductivity (umbos)
Fecal coliform (colonies/1 OOmL)
Channel alteration score
<4
<4
>1000
~ot used
<7 and total
habitat score <120
<7 and total
habitat score <120
Sediment deposition score
Riparian vegetation zone width:
• Coal basin (1997); one combined score for both
banks (as in original 1996-97 data)
	• 1998 basins: reported separately for each bank
<4 and total
habitat score <120
<2 for each bank, and total habitat score <120
Terra Tech. Inc.
A-11
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Table A-4 (cont'd). Selection criteria for stressed sites in the new data set
met at least one of the listed criteria.	
A site was identified as stressed if it
Stressed (sites meet at
least one of the criteria)
n=102
Bank disruptive pressure:
•	Coal basin (1997); one combined score for both
banks (as in original 1996-97 data)
•	1998 basins; data not report; substituted Bank
Stability scores, reported separately for each bank
Epifaunal substrate score:
•	Coal basin (1997)
	* 1998 basins, data not reported; no substitute parameter used
<7 and total
habitat score <120
<4 for each bank and
total habitat score <120
<7 and total
habitat score <120
Refinement of standard "best" values
Once the discrimination efficiency of the working index was found to be acceptable, the standard, or
"best" values (section A.5) for each metric were re-determined by combining the 67 reference samples
from the original 1996-1997 data with the 40 reference samples from the 1998 data. Percentile
distributions of each metric's values were determined for the combined set of 107 reference samples.
The standard, or "best" values, for each metric were revised to the 95th or 5th percentile (depending on
the metric) of the distribution of this combined data set of 107 reference samples, rather than only the
original 67 reference samples.
Consideration of the effect of different organism sub-sample sizes
Because WVDEP's benthic macroinvertebrates were sub-sampled to 200 organisms in the 1998 data,
rather than 100 organisms as in the earlier data set, there was some concern over whether the difference
would cause taxa richness metrics to be over-estimated in the new data (higher numbers of taxa simply
because more organisms were counted and identified). Tetra Tech examined the correlation between the
number of organisms and number of taxai (Total and EPT) in the reference sites of both data sets (Figure
A-3) in order to determine whether it might be appropriate to apply a statistical procedure called
rarefaction to the 200-organism data. This procedure would examine the distribution of metric values
against sample size and adjust the two taxa richness metrics in larger-sized samples to what the expected
values would be at the smaller 100-organism sample size. Although there does appear to be some effect
between sample size (number of organisms) and taxa richness (wherein the number of taxa is greater in
part simply because more organisms are counted and identified), the effect is not great with the family-
level identifications of West Virginia's data. It was decided among Tetra Tech, EPA Region 3, and
WVDEP that rarefaction would not be applied to the data, since WVDEP plans to continue the 200-
organism subsampling protocol in their future biological monitoring, so that any effect from different
sample sizes will be diminished as the bioassessment program progresses. The adjustment to the index.
Ti'ira Tech. Inc.
A-12
March 28. 2000

-------
Development and Testing of a Biological Index for lVest Virginia Streams
described above, of using distributions from all 1996-1998 data to determine each metric's standard/best
value also will help to reduce possible effects from the different sub-sample sizes in the data.
a. Total Taxa vs. Individuals
28
24
<0
I 20
0
4)
.O
E
1	16
ro
o
h-
12
a
	.j	j-U-—A*	
° i a
¦OA
O A j A
	j-O-	i-	-A	
O :	O iliil Ck
GOO O CD M Ia a
O OOO OAAA* A O
	O-	i—j	»
o P
o 6 o
	O"
100	200	300
Number of individuals
400
o 96-97 ref sites
a 98 ref sites
b. EPT Taxa vs. Individuals
18
16
14
12
10
8
6
4
2
O


4MJk, Jk

jOO 
O
o o
o
O o AQU( O O O O
o u j
	

j j


: i

o


100
200	300
Number of individuals
400
O 96-97 rof sites
98 rof sites
Figure A-3. Number of taxa (Total and EPT) vs. number of individual organisms
in West Virginia benthic sampling reference sites.
Tetra Tech, Inc.
A-13
March 28. 2000

-------
APPENDIX B
LITERATURE CITED

-------
Development and Testing of a Biological Index for West Virginia Streams
LITERATURE CITED
Barbour, M.T., J. Gerritsen, G.E. Griffith, R. Frydenborg, E. McCarron, J.S. White, and M.L. Bastian.
1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates.
J. N. Am. Benthol. Soc. 15(2): 185-211.
Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for
Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second
Edition.. EPA/84 l-B-99-002. U.S. EPA, Office of Water, Washington, D.C.
Barbour, M.T., J.B. Stribling, and J.R. Karr. 1995. The multimetric approach for establishing biocriteria
and measuring biological condition. Pp. 63-76. In W.S. Davis and T.P. Simon, editors.
Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making.
Lewis Publishers, Ann Arbor, Michigan.
Cummins, K.W. and M.J. Klug. 1979. Feeding ecology of stream invertebrates. Ann. Rev. Ecol. Syst.
10:147-172.
Gibson, G.A., M.T. Barbour, J.B. Stribling, J. Gerritsen, and J.R. Karr. 1996. Biological criteria:
Technical guidance for streams and rivers. EPA/822-B-94-001. U.S. Environmental Protection
Agency (US EPA), Office of Science and Technology, Washington, D.C.
Hilsenhoff, W.L. 1982. Using a Biotic Index to Evaluate Water Quality in Streams. Wisconsin
Department of Natural Resources, Madison, Wisconsin. Technical Bulletin No. 132.
Jongman, R.H.G., C.J.F. ter Braak, and O.F.R. van Tongeren, editors. 1987. Data Analysis in
Community and Landscape Ecology. Pudoc Wageningen, The Netherlands.
Karr, J.R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecol.
Applic. 1:66-84.
Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. Assessment of biological
integrity in running waters: A method and its rationale. Illinois Natural History Survey,
Champaign, Illinois. Special Publication 5.
Karr, J.R., and D.R. Dudley. 1981. Ecological perspectives on water quality goals. Environ. Manage.
5:55-68.
Tetra Tech, Inc.
3-1
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams	
Kenkel, N.C. and L. Orloci. 1986. Applying metric and nonmetric multidimensional scaling to
ecological studies: some new results. Ecology 67:919-928.
Kerans, B.L., and J.R. Karr. 1994. Development and testing of a benthic index of biotic integrity (B-
IBI) for rivers of the Tennessee Valley. Ecol. Applic. 4(4):768-785.
Kruskal, J.B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115-
129.
Ludwig, J.A. and J.F. Reynolds. 1988. Statistical Ecology: A Primer on Methods and Computing. John
Wiley & Sons, New York.
Maxted, J., M.T. Barbour, J. Gemtsen, V. Poretti, N. Primrose, A. Silvia, D. Penrose, and R. Renfrow.
2000. Stream classification and biological metrics for the Mid-Atlantic Coastal Plain Ecoregion.
J. N. Am. Benthol. Soc. In Press.
McCune, B., and M.J. Mefford. 1995. PC-ORD. Multivariate Analysis of Ecological Data, Version 2.0.
MjM Software Design, Gleneden Beach, Oregon, USA.
Merritt, R.W., and K.W. Cummins, editors. 1984. An Introduction to the Aquatic Insects of North
America, 2nd edition. Kendall/Hunt Publishing Company, Dubuque, Iowa.
Ohio Environmental Protection Agency (EPA). 1989. Addendum to biological criteria for the protection
of aquatic life, volume II: users manual for biological field assessment of Ohio surface water.
Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Assessment Section,
Columbus, Ohio.
Omemik,J.M. 1987. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 77(1):
118-125.
Plafkin, J.L, M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment
Protocols for Use in Streams and Rivers: Benthic macroinvertebrates and fish. EPA/440/4-89-
001. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
Reynoldson, T.B., R.H. Norris, V.H. Resh, K.E. Day, and D.M. Rosenberg. 1997. The reference
condition: A comparison of multimetric and multivariate approaches to assess water-quality
impairment using benthic macroinvertebrates. J. /V. Am. Benthol. Soc. 16:833-852.
Tt'tra Tech, Inc.
March 28. 2000

-------
Development and Testing of a Biological Index for West Virginia Streams
Southerland, M.T., and J.B. Stribling. 1995. Status of biological criteria development and
implementation. Pages 81-96 in W.S. Davis and T.P. Simon (editors). Biological assessment
and criteria: Tools for water resource planning and decision making. Lewis Publishers, Boca
Raton, Florida.
Statsoft, Inc.. 1998. Statistica for Windows, Volume II, Graphics. 2nd edition. Tulsa, Oklahoma.
Stribling, JJB., B.K. Jessup, J.S. White, D. Boward, and M. Hurd. 1998. Development of a Benthic
Index ofBiotic Integrity for Maryland Streams. CBW-MANTA-EA-98-3. Maryland
Department of Natural Resources, Chesapeake Bay and Watershed Programs. Monitoring and
Non-Tidal Assessment Division.
Tetra Tech, Inc. 1999. Ecological Data Application System (EDAS), A User's Manual. Prepared by
Tetra Tech, Inc., Owings Mills, Maryland.
U.S. Environmental Protection Agency (US EPA). 1990 (DRAFT). Freshwater Macroinvertebrate
Species List Including Tolerance Values and Functional Feeding Group Designations for Use in
Rapid Bioassessment Protocols. EA Report No. 11075.05. Prepared by EA Engineering,
Science, and Technology for US EPA, Office of Water, Washington, D.C.
t
Van Sickle, J. 1997. Using mean similarity dendrograms to evaluate classifications. J. Ag. Biol.
Environ. Stat. 2:370-388.
Wallace, J.B. and J.R. Webster. 1996. The role of macroinvertebrates in stream ecosystem function.
Ann. Rev. Entomol. 41: 115-139.
Tetra Tech. Inc.
B-3
March 23. 2000

-------
APPENDIX C
SITE METRICS AND METRIC
SCORES

-------
Appendix c	Site metrics and metric scores
•us jre yrouped Dy data set (l» 1996-1997 calibration data; 2* 1997*1998 validation data). Within each data sel, stations are listed by site type (reference, unlabeled, stressed), then within type by ascending Station ifj.

Stream Name
Sit*
Benthlc
Collect
Total
Tot. Iiu
EPT
EPT Uxi
%
% EPT
%
V.Chlro
% Top 2
% Top 2

HBI
INDEX
i S1a lion 10
Type
Ssmntft ID
Oate
text
•core
Uil
ecore
EPT
•core
Chiro.
•core
dominant
scoro
MRI
SCOru
tscu
WVK -13
LITTLE SIXTEENMILE CREEK
referonco
LOKAN BS
0000M00
IS
71
9
69
91
99
6
95
96
65
55
4
as
/'J
0 2
"!(,
WVKE -7G-U(0 «)
JOHNSON BRANCH
reference
ELK B21
0000000
13
62
9
69
78
83

98
62
59

oo
0
WVKE-08-C-1-0 5A
WILSON RUN
reference
ELK 8136
7/7/1997
13
62
8
62
64
91
6
95 .
64
50

«J0
7 ?
V/VKE a(J C-M-(t 4)
FALL RUN
reference
ELK 820
0000000
16
66
12
92
90
96
S
96
73
43

85
b'j
WVKE-O0-C- lS|t 0}
BIG RUN/ LEFT FORK MOLLY
reforence
ELK 8141
7/6/1997
15
71
11
6S
90
96
3
96
46
04

03
yd
V/VMC-12-A-{0'J)
LAUREL RN/8IG SANDY CK ABOVE PATTERSON R
reference
CHEAT 8100
0000000
IS
71
11
65
81
68
5
96
54
71

05
64
WVMC-2-A
OARNELL HOLLOW
reference
CHEAT 8170
0000000
16
66
12
92
79
86
7
94
42
90

85
uo
WVMC-52-A
ROARING RUN
reference
CHEAT 8165
0000000
18
66
12
92
91
99
4
97
* 52
75

105
0^
WVWC-54 • A
MIKE RUN
reference'
CHEAT B213
6/7/1996
13
62
9
69
93
102
2
99
57
67

00
K 1
WVMC-54-C
MAXWELL RUN
reference
CHEAT 8204
0000000
14
67
11
65
95
103
2
99
56
66

85
04
WVMC-60C
ELKLICK RUN Q FERNOW EXP. FOREST
reference
CHEAT 617
0000000
16
66
14
106
93
101
2
99
39
95

95
0 6
WVMC-60-C-3
JOHN B. HOLLOW
reference
CHEAT 823
0000000
14
67
13
100
99
108

101
42
91

104
03
WVMC00C-4
HICKMAN SLIDE HOLLOW
reference
CHEAT 822
0000000
23
no
14
106
57
62

95
36
100

U7
0 1
WVMC-60.-E
LAUREL RUN/ORY FORK
refurenco
CHEAT 825
0000000
12
57
6
62
00
08
0
lot
76
35

lot)
1 fj
WVMC-60-F ;
OTTER CREEK
reforence
CHEAT 827
0000000
17
61
11
65
76
83
4
97
45
66

85
06
WVMC-60-l
MILL RUN/ORY FORK
reference
CHEAT 826
0000000
21
100
13
100
74
81
3
98
31
107

04

VVVMC-00-K
GLADY FORK
reference
CHEAT 850
0000000
16
76
10
77
63
00
10
91
43
69

84
85
8 7
WVMC-60-K-2-A
HOG RUN/ PANTHER CAMP RUN
reference
CHEAT 6160
0000000
ts
71
11
65
74
61
6
95
37
99

93
WVMC-60-N-8 5
TINGLER RUN/LAUREL FK
reforence
CHEAT 847
0000000
16
76
13
100
97
106
1
100
46
61

.103
03
WVWC-60-T-1
LOWER TWO SPRING RUN
reference
CHEAT 86
0000000
19
90
14
106
79
86
4
97
73
42
i
84
03
WVMCGO-T-2
UPPER TWO SPRING RUN
releronce
CHEAT BIS
0000000
16
76
14
106
70
77
6
93
59
04

80
U3
. WVMC-60-T-3
SWALLOW ROCK RUN
reference
CHEAT 8207
0000000
15
71
6
62
57
62
22
76
38
97

69
76
WVMC-60-T-8
BIG RUN/ GANDY CK NEAR LEAOING RIDGE MTN
reference
CHEAT 82
0000000
17
61
12
92
90
96

99
SO
77

97
0 1
WVMC-7
SCOTT RUN/CHEAT RIVER
reference
CHEAT 8147
0000000
10
46
1
6
35
36
7
94
71
46

64
4 0
WVWCS-12
LITTLE LAUREL RUN/SHAVERS FORK
releronce
CHEAT 8162
0000000
13
62
11
65
94
103
6
96
48
82

00
91
(Mi
WVMCS-H
CLIFTON RUN
reference
CHEAT B36
0000000
16
66
14
106
69
97
4
97
42
90

04
WVMCS-2Q
UPPER PONDLICK RUN
reference
CHEAT 814
0000000
17
61
12
92
92
100
1
100
38
96

105
05
WVMCS-53
BEAVER CREEK/SHAVERS FORK
reference
CHEAT 8160
0000000
10
90
11
65
64
92
2
99
39
96

07
03
WVMCS-54
SECOND FORK
reference
CHEAT 811
0000000
13
62
6
62
76
62
12
69
61
61

103
/6
WVMCS-8
LAUREL RUN/SHAVERS FK
reference
CHEAT 8220
6/6/1996
16
71
11
65
90
98
6
95
37
09

101
81
0 1
WVMT.64-(0 7)
MILL CREEK
reference
TYVAR 6377
0001000
16
76
11
65
76
65
19
82
44
67

03
tifj
WVMT-64-C
GLADE RUN/MILL CREEK
reference
TYVAR 6371
0000000
19
90
12
92
63
90
9
92
47
63
4
03
WVMTB-31
RIGHT FORK BUCKHANNON RIVER
reference
TYVAR 6363
9/9/1997
15
71
9
69
73
80
13
68
63
56 -

72
73
WVMTQ-320
BEAR CAMPJlUN
reference
TYVAR 6360
0000000
13
62
7
54
50
65
32
69
66
53

67
62
WVM TM-1
HANGING RUN
reference
TYVAR 6267
0000000
17
61
7
54
66
72
12
89
47
82
4
06
7 7
W V M T M • 1 t.<7 0)
RIGHT FORK OF MlDOLE FORK
reference
TYVAR 6350
9/6/1997
16
66
10
77
77
64

93
42
91

83
FiG
WVM fM-1 1-E
JENKSRUN
reference
TYVAR 8296
0000000
16
76
10
77
85
93

91
64
56

77
70
WVMTM-25-0 5)
SCOOLCRAFTRUN
reference
TYVAR 8320
0000000
13
62
10
77
66
93
7
94
45
65

03
H4
WVMTM-25-A
BIRCH FORK
reference
TYVAR 8311
0000000
17
61
13
100
96
104

100
65
55

87
U'
WVWTM-26-0
ROCKY RUN
reference
TYVAR 8364
9/9/1997
10
46
6
46
54
59
41
60
72
44

• GO
4
W VP NO-1 8
OIFFICULT CREEK
reference
NBRPO 6264
0000000
16
76
11
65
78
64
$
90
30
100


WVPSB-28-EE-3A
HEMLOCK RUN
reference
SBRPO 6246
0000000
11
62
6
62
90
97
6
95
57
67
4
B2
WVPSO-28-EE3U
LEONARO SPRING RUN
reference
SBRPO 8251
0000000
11
52
10
77
49
54

101
58
05

04
I
WVPSB-28-EE-3-C
MIOOLE RIOGE HOLLOW
reference
S6RPO 8253
0000000
10
46
6
62
43
46

98
66
53
4
HO
C.6
WVPSB-28-EE-3D
BUO HOLLOW
reforence
SBRPO 6241
0000000
14
67
9
69
S3
56
4
97
48
62
4
ea
77
Appendix C, page C-1

-------
Appendix C
Site metrics and metric scores
..ns J.c yroupcu i.y uoia sel <1> 1996-1997 calibration dala: 2» 1997-1998 validalion data). Within each data set. Xationi are listed by site type (reference, unlabeled, stressed), then
within lype by ascending Sioiton 10.
i Suilon 10
Stream Nam*
SU«
Typ*
Benthie
S»mnt< 10
Collect
Date
Total
Tot. taxa
EPT
EPT taxi
%
% EPT
%
SChlro
% Top 2
% Top 2
score
Mill
INDE
1010
score
11X0
•core
EPT
score
Chlro.
score
dominant
Hill SCOIO
(SCi)
18
86
12
92
91
99 :
2
99
54
73
-J 94
90
14
67
10
77
61
88
10
91
43
69
4 b8
(3 j
10
76
10
77
66
93
2
89
53
73
4 8?
83
13
62
9
69
78
84
14
67
39
96
4 91
02
16
76
11
85
91
99

100
59
64
4 BS
05
16
76
9
69
42
46
34
66
46
65
5 08
'5 b
15
71
9
69
69
75
21
79
46
62
4 BO
7'3
15
71
9
69
72
79
16
65
44
. 68
4 70
7b
10
48
6
46
70
77
11
89
54
7 t
3 92

20
95

54
24
26
18
82
46
84
G 50
67
13
62
6
62
06
74
23
78
45
86
A HI
7S
16
76
5
38
50
61
10
91
50
O'J
4 ur
/()
17
61
10
71
69
97

97
50
76
4. 90
(J I
10
48

31
70'
77

80
77
36
'J 07
ti 1
12
57
8
62
63
69
17
84
69
46
:i ub
GO
17
61
10
77
72
76
22
70
65
54
J 'Jli
/1
13
62
5
36
54
59
24
76
51
76
4 tt 1
13
62
6
62
42
46
54
40
72
44
ti 02
bi
11
52

23
23
25

34
62
28


16
76
9
69
03
101
3
96
61
62
:j " 'jo
u:i
7 2
10
48
7
54
60
87
IS
86
S5
71
4 Oil
18
66
12
92
69
75
4
97
56
66
5 7 0
U 1
12
57

91
29
31
47
53
69
49
6 55

15
71
6
46
34
37
48
53
65
55
5 67
55
10
48
4
31
56
61
35
66
58
66
5 7 S
5 u
9
43
2
15
4
4
79
21
68
20
7 4 >1
20
6
36
3
23
1
2
67
33
93
10
7 4ti
21)
13
62
8
62
88
95

100
58
65
4 92
7 9
13
62
8
62
66
74
26
75
74
» 41
4 66
6 7
12
57
6
62
79
66
13
88
62
59
4' 89
73
7
33

6
5
5
43
58
63
26
0 32
2 /
17
61
10
77
66
74
10
91
48
62
4 00
Q2
11
52
6
46
9
9
81
19
69
17
7 45
3 1
7
33
2
15
2
2
93
7
95
8
7 44
1 H
17
61
12
92
73
79
19
61
51
77
4 eu
b :i
4
19

6
3
3
85
15
93
12
7 42
iii
2
10
0
0
0
, 0
96
2
100
0
7 44
s)
7
33
3
23
10
11
66
14
91
14
7 47

7
33
2
15
1
1
44
57
86
21
a 2?
2f-
14
67

54
30
33
51
49
62
59
6 59
511
7
33

8
2
2
22
79
95
7
9 13
24
13
62
8
62
3
4
16
85
96
6
9 1 1
JU
? 4
12
57
7
54
76
65
10
91
54
72
4 86
S
24


2
2
95
5
97
5
7 42
I 4
14
67

54
75
82

100
47
64
0 7 5
77
19
90
13
100
86
95
3
96
46
65
4 6ti
16
76
10
77
65
92

100
66
53
i 94
a"'
14
67-
7
54
64
70
9
92
52
74
4 82
7 'j
20
95
11
85
82
89

100
45
86
4 84

10
48
6
46
92
100
5
96
76
38 '
5 7 J
—57""
10
46
4
31
60
66
22
78
71
46
5 60
Cu
15
71
10
77
58
63
36
65
56
66
5 71
ii'J
17
81
13
100
61
67
23
78
45
85
¦i ao

16
76
10
77
70
85
6
95
46
81
3 'Jli

15
71
10
77
67
95
5
OS
61
01
4 11/
;! 1
12
57
6
46
76
83
4
07
63
58
4 II 1
Ml
IS
71
11
85
63
00
10
91
42
uo
4 4I|1
l)<>
15
71
10
77
77
64
14
87
36
07
4 U7
IM
17
61
11
85
65
93

04
47
63.
J bl

20
95
14
108
79
66
5
06
42
91
4 00
0 3
9
43
6
40
85
92
0
101
57
67
4 7H
7 1
WVI'SU-i/O C.
vvvj'Stj i'fl-CG• i
wvl'SU-2fi-GG-i-A
WVPS0-28-J2
WVPSB-28-K-G-A
WVt>SU-9-{02 2}
VVVK-10-A
'.V V K • 1 0 • F
WVK-12-{20.7)	
VVVK-1 2-E (2 4}
ZEKE RUN
VANCE RUN
SAMS RUN /VANCE RUN
shuckleforo run
LOWER GULF RUN
MILL CREEK/SOUTH BR POT ® MOUTH
COOPER CREEK
BARNETT FORK
THIRTEEN MILE CREEK	
( FORK
W V K •
WVK'
VI7 K
WVK
WVK
WVK
WVK
WVK
WVK
WVK
WVK
WVK
WVK
WVK
WVK
WVK.
WVK.
WVK-
WVK-
0|
12-E-2 5-{-
I2-H5 V
12-J
U-{2 2}
14-A 5 <1 (j)
10 {12 11}
1UTJ3 D)
•1(5-1.
Hj-Q (l (J)
¦10-S
22(6.0)
22-B
29-{61.0)
32 0 1A
32-A
36-{2 A)
39 (03.6)
MUOIICK t
U T OF MUOIICK FORK
POPLAR FORK
GEE RUN
SIXTEENMILE CREEK
U.T OF SIXTEENMILE CREEK
EIGHTEEN MILE CREEK
EIGHTEEN MILE CREEK
JAKES BRANCH
SALTLICK CREEK	
SULUG CREEK
WVK-39-{12.2)
WVK-39-A
WVK-39-E-3-(Q 4)
WVK-39-F
WVK-39J
WVK-39-0
WVK-4 1
WVK-4 1-0.5
WVK-41-0 5-Q
WVK- 4 1-0-1
WVK-4
WVK-4
WVK-4
WVK-4
WVK-4
WVK-4
WVK-4
WVK-4
WVK-9
WVKE
HARRIS BRANCH
COTTRELL RUN
HURRICANE CREEK
POPLAR FORK
POCATALICO RIVER
VINTROUX HOLLOW
ROCKSTEP RUN
FINNEY BRANCH
DAVIS CREEK	
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE-
WVKE
WVKE
WVKE
WVKE
WVKE
1-E-1
1 -E -2-{0 1)
1-E-2-0 4)
1	-E-2-(1.7)
2
3-0-2}
3(63.0)
3-{87.4)
-C-{5 *>
102-t 14 6} __
. OAVIS CREEK
WARO HOLLOW
BAYS FORK
RAYS BRANCH
COAL HOLLOW
SHREWSBURY HOLLOW
TWOMILE CREEK
RICH FORK/TWO MILE
CRAICS BRANCH
U.T. OF LEFT FORK / KANAWHA TWO MILE
EOENS FORK
HOLMES BRANCH
HOLMES BRANCH
HOLMES BRANCH
JOPLIN BRANCH
ELK RIVER
ELK RIVER
ELK RIVER
LOWER N1NEWILE CREEK
•LAUREL CREEK	
02-{2 83)
102-C-1-(0 4}
111-102}
lll-K
I 11-K 2
111-0
115
117
lib
124	
128
1 3
LAUREL CREEK
UT OF BROOKS CREEK
. BACK FORK
SUGAR CREEK
LITTLE SUGAR CREEK
BIG RUN/ BACK FORK ELK
STEPS RUN
LEATHERWOOO CREEK
BERGOO CREEK
BIG RUN
HICKORYLlCK RUN
reference SBRPO
reference SBRPO
reference SBRPO
reference SBRPO
reference SBRPO
reference SBRPO
LOKAN
LOKAN
	LOKAN
6333
8279
8277
B330
8252
B300
B13
826
852
0000000
0000000
8000000
0000000
0000000
0000000
0000000
0000000
0000000
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
B84
090
B100
B47
BS8
8)7
BS0
897
B01
BI02
0000000
'0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
657
888
054
889
876
88S
843
842
887
814
0000000
00B0000
0000000
0000000
0000000
0090000
0000000
0000000
0000000
0000000
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
891
82S
81
83
812
821
822
B41
840
823
00*0000
#000000
5/8/1997
0000000
0000000
0000000
0000000
0000000
0000000
0000000
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
ELK
ELK
ELK
LOKAN
ELK
8S5
831
898
844
818
8238
8296
B237
880
8173
0000000
0000000
0010000
0000000
0000000
8/7/1997
8/5/1997
8/5/1907
8/9/1997
0000000
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8157
8161
8153
8180
0158
8154
8152
8144
8139
8140
7/9/1997
7/9/1997
7/9/1997
7/9/1997
7/9/1607
7/9/1997
7/8/1997
7/8/1997
7/8/1997
7/8/1997
NARROW BRANCH
ELK
ELK
8130
8110
7/7/1997
0000000
Appendix C, page C-2


-------
Appendix C
Site metrics and metric scores
.iJim"s arc groupea by data set (i= 1996-1997 calibration data: 2» 1997-1998 validation data). Within each data set, stations are listed by site type (reference, unlabeled, stressed), then within type by ascending station ID.
Slrom N*m«
Sill
Typ«
Btnlhlc
Samnta to
ColliCI
ToUl
Tot. Ijk*
EPT
EPT laxi
*
% EPT
%
ttChUo
% Top 2
V, Top 2
'
HOI
\UOE>.
Oil#
Ml*
•cor*
t»xa
iCOf#
EPT
•cor#
Chlro.
seort
dominant
score
HBI
SCOIO
(iCI)
0000000
IS
71
6
62
42
46
20
61
51
76
5
12
fjtl
7/7/1997
14
67
11
65
90
96
6
94
71
45
5
74
77
0000000
IT
61
12
92
72
76
15
66
57
67
4
78
b 0
0000000
12
67
6
46
64
92
4
97
76
36
3
102
72
0000000
5
24
3
23
94
102
0
101
92
12
2
107
eo
0000000
6
36
3
23
76
65
6
95
75
39
4
81
60
0000000
7
33
3
23
91
99
3
96
79
33

95
64
0000000
6
29
1
6
76
62
0
101
65
24
3
104
57
0000000
16
76
6
62
61
66
6
93
46
61
4
81
7 6
0000000
16
76
9
69
66
74
7
94
34
103
5
74
fl 1
7/1/1997
IS
71
9
69
64
70
6
95
30
09
4
79
8 1
719/1997
12
57
6
46
59
64
4
97
49
79
5
77
70
0000000
IS
71
6
02
30
33
26
73
66
so-

S9

0000000
13
62
6
46
57
62
4
97
51
76
4
64
7 1
0000000
12
S7
S
36
61
66

101
44
66
4
06
73
0000000
IS
71
6
62
64
70
10
91
36
07
4
79
/b
0000000
11
S2

31

6

35
79
34
1
40
:u
7/1/1997

33
0
0
0
0
34
66
65
23



0000000

33
3
23
OS
71
22
70
55
7
	
go

0000000
14
67

31
S4
56
34
07
CO
62

u t
j 11
0000000
IS
71
S
36
43
47
40
54
74
40

50
') I
0000000
12
S7

31
35
36
44
56
66
50

6 1
-1 ¦)
0000000
9
43
s
38
00
96
6
95
72
44
:i
IjU
!»')
0000000
IS
71
6
46
60
67
6
95
50
70
i
U2
! /
0000000
19
90
12
92
61
66
11
90
45
96
4
HQ
IJi)
00*0000
13
62
S
36
66
93
2
99
56
65
5
77
7 2
0000000
16
76
6
46
67
95
1
too
75
40
5
75
72
0000000
9
43

31
57
62
33
66
56
69
5
GG

0000000
19
02
S
38
64
69
4
97
50
70
5
71
09
0000000
IS
71

54
55
60
13
66
49
60

74
7 1
0000000
20
9S
11
65
75
61
4
97
54
72
3
98
88
0000000
13
62
7
54
61
66
11
90
56
68
4
05
7b
0000000
16
76
9
69
60
67
3
96
40
93
4
63
85
0000000
16
76
10
77
77
64
S
66
56
66
3
102
83
0000000
7
33
2
IS
SO
54
9
92
64
57
5
77

0000000
13
62
6
62
67
94
3
96
4B
79
4
07
UO
0000000
14
67
9
69
71
77
11
90
57
67
4
81
75
0000000
16
76
6
62
71
77
13
66
45
86
4
66
7'J
0000000
13
62
7
54
76
6S
1
100
30
109
3
92
b2
0000000
3
14
2
IS
95
104

101
95
7
5
69
5 1
0000000
16
76
6
62
64
70
7
94
43
69
4
65
7'J
0000000
2
10

6
SO
54
50
50
100
0
5
77
33

6
29
3
23
99
106

101
99
2
3
101
59
0000000
6
29
3
23
44
46
3
96
91
13
4
65
49
0000000
14
67
9
69
92
100
1
100
66
50
4
91
79
0000000
6
24

6
22
24
0
101
56
69
5
74
50
7/3/1997
14
67
6
46
39
42
3
96
49
79
4
61
69
0000000
13
62
6
46
69
66
7
94
74
40
4
70
70
0000000
19
90
11
6S
62
69

94
37
98
4
66
01
0000000
11
S2
S
36
69
75
6
93
S3
73
5
75
68
0000000
14
67
9
69
66
74
7
04
44
67
4
69
80
0000000
21
100
12
92
59
65
13
66
26
113
3
92
U'J
0000000
10
46
S
36
64
70
19
62
49
70
4
8 t

0000000
13
62
7
54
62
66
4
97
47
63
3
97
11
0000000
14
67
9
69
65
93
6
93
56
66
3
03
UO
0000000
IS
71
9
69
65
70
13
66
37
98

76
/•J
0000000
13
62
6
46
44
46
29
72
54
72
6
07
•i 1
0000000
13
62
0
69
76
64
6
95
47
64

80
1II
0000000
12
57
7
S4
90
96
2
99
75
38

II1
/ I
0000000
17
61
0
69
70
76
16
63
52
74

ro
/!>
0000000
20
05
10
77
67
95

100
46
.84

9(5
•J 1
wvr\fc-ub	eiG SPRING FORK
'.WKE-130	OLO FlELO FORK
wvKiM39-(i	CROOKEOFORK
WVKE- H-G-HO «j	RIGHT FORK OF SLACK BRANCH
WVKE • 14-G •?	WHITE OAK FORK
WVKE-U-K	JOE'S HOLLOW
'.VVKE • 1 4-M	MORRIS FORK
WVKg-H-M-2	MUDUCK BRANCH	
WVKE
WVKE-
WVKE-
WV K E •
WVKE-
WVKE ¦
WVKE-
WVKE-
WVKE'
WVKg_
WVKi:
WVKI:
«7VK I.
V/VKt
WVKE
WVKE
WVKli-
• Wi/KE-
WVKE-
WVKE-
14-0(5 2)
14-0-0 6
1U-6
10-M
i 1
23-(0 CJ|
23 F I
23 P-3 A
2-E
_3	
34
M H
3/ l;
4 I
4 1 -A
4 1-B-{0.2)
41-B-1 5
4t-C-i
MIDOLE FORK
MCBRlDE HOLLOW
TWO MILE FORK
PETES FORK
LEATHERWOOD CREEK
BIG SANOY CREEK
OOELICK RUN
HORSE RUN
GREEN BOTTOM
NEWHOUSE BRANCH
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8164
8134
BUt
8162
8111
819
8121
8110
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKt
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
_ WVKE-
"WVKE
WVKE
WVKE-
WVKE-
WVKE-
WVKE-
WVKE-
WVKE-
WVKE-
_ WVKE-
WVKE •
WVKE-
WVKE-
•4 i-B
46(1.2}
•49
-50-J0.2)
50-Q-{0 I)
50-8-1 {2 0)
50-B-7-(0 1)
50-B a
60 0 0
S0-F-I2 2)
50-1
S0-1-3
50-0
50-P
SOS
5 0 - T
56
59
6-(5 6)
64
CAMP CREEK
LAURELFOHK
SUMMERS FORK
COONSKIN BRANCH
LITTLE SYCAMORE CREEK
SYCAMORE CREEK
CHARLEY BRANCH
AQONIJAH FORK
LAUREL FORK
GRASSY FORK	
LICK BRANCH
LEATHERWOOO CREEK
PlSGAH RUN
BUFFALO CREEK
LILLY FORK
SlNNETT BRANCH
JIM YOUNG FORK
BEECH FORK
SYCAMORE RUN
SAND FORK	
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8174
BUS
B126
8160
8114
BIOS
810$
. B2S
B18
812$
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8161
8113
6120
817
827
6213
8170
B16S
8169
8167
ROCKCAMP RUN
HICKORY FORK
ROBINSON FORK
TAYLOR CREEK
OILLE RUN
PHEASANT RUN
SPR6AO RUN
TURKEY RUN
MILL CREEK
B»G OTTER CREEK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8216
B23S
8221
8234
B230
B233
8226
8222
8226
8232
69-15.6)
70-A
74 (10 4J
7<-F
76 (0 9}
76-A
76-C
7Q-D-1
7G-E (2 6)
78-E-5
GROVES CREEK
ROAOFORK
STRANGE CREEK
BIG RUN
BIRCH RIVER
LEATHERWOOO RUN
MIDOlE RUN
BUCKEYE FORK
LITTLE BIRCH RIVER
WINOY RUN	
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8231
8224
8227
6229
0223
B220
8212
6214
6127
6192
76-E-e-A
7G-E-7.5
?0-N-{? 4}
SENG RUN
FISHER RUN
ANTHONY CREEK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8166
6163
623
8196
6166
626
B197
6160
8162
6176
ELK
ELK
ELK
6176
6171
624
Appendix C( page C-3

-------
Appendix C
Site metrics arid metric scores
! (jroupctj I.y Ojta sei ( I« 1996-1997 calibration data; 2» I997-199B validation data). Within each data sel. slallons are listed by site type (reference, unlabeled, stressed), then
within lype by ascending Siaiion ID.
Strtam Nam*
Sil*
Type
Btnihlc
SafwnU 10
ColUct
0*1*
Total
tax*
Tot. taia
teert
EPT
tin
EPTtaxa
scor*
%
EPT
% EPT
icor*
%
Chlro.
WVKg .
WVKE-
W7K6-
WVKIf.
VVVKL
WVKK-
WV*Q_
WVKE
WVKf:
WVKG
WVKE
WVKli
VVVKE
V.'VKl":
WVKE
WVKl\
WVKE
WVKE
WVKE
WVKE
wv*E
WVKE
WVKE
WVKE
WVKE
WVKE
_ WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKE
WVKP
WVKl'-
' WVKP*
WVKP
WVKP
WVKP
WVKP
WVKP
'.VVKP
WVKP
WVKP
WVKP
WVKP
VVVKP
WVKP
WVKP
WVKP
WVK'H
WVKP
WVKP
WVKP
WVKP
70 N O
7G-0
70 S 3
?H W
/•E
1)4 'j
85	
07-0
uu
¦9-(1 5}
•9.(150}
9 1
•U I -A.1
•04
•9WA
UH li
» (i j u)
^o-b-uT
"JO D-1G 4
9U-U-3 (I) (3)
'jflb-o
•ao-c-{io o)
<06-C«{U 0>
90 C t
uac-i i
¦98C-11 C
98C-2
RICH FORK
POPLAR CREEK
OTTER HOLE
JACKS RUN
KAUFMAN BRANCH
BEAR RUN
LITTLE BUFFALO CREEK
"laurel fork
OlO WOMAN RUN
MTUE SANDY CREEK
'utile sanoyCREEK
wolf creek
SPRUCE FORK
• FLATWOOOS RUN
KANAWHA RUN
RIGHT FORK HOLLV RIVER
RlClfT FORK/HOLLY RIVER
DESERT FORK
UPPER MUOLICK
Fall HUN
wease run
LEFT FORK/HOLLY RIVER
LEFT FORK/HOLLY RIVER
LAURELPATCH RUN
LAUREL FORK
RIGHT FORK/LAUREL FORK
OLPLICK RUN
98-C-2-D
98CS
98 C-6
S-B-l
9 C (0 r>)
oe
¦9-G
9-1- l-A
IC <4 5)
ion
WVKP'
WVKP-
WVKP
WVKP
1CD
17-B-5
1 7-C-IA
1 7-C-4
17 • E -(2 6)
17-F-1
17 G
1-B
20
2t	
26
28
•28-A-1-|0 /}
28	U-i
ve e
29
32- 5A
32{ 1 0)
33 {S 0}
33 0(0.8)	
COtiGAR FORK
LONG RUN
BEAR RUN
BIG FORK
AARON S FORK
BULLSKIN branch
RUFFNER BRANCH {DOUGLAS BRANCH)
HARPER HOLLOW
GRAPEVINE CREEK
BRQAOTREE RUN
' VANCE HOLLOW
FIRST CREEK / MIDDLE PORK
OAN SLATER HOLLOW
RAILROAO HOLLOW
.OUDOENFORK
LOOM TREE HOLLOW
FABgR HOLLOW
BIGGER BRANCH
RACCOON CREEK
PERNEL BRANCH	
33-G
30 U
37 A
3d- HA
CAMP CREEK
GREEN CREEK(REFERENCE)
HUNT FORK
BEAR BRANCH
ANDERSON LtCK RUN
Straight creek
SUGAR CAMP HOLLOW
WOLF CREEK
TRACE FORK/FLAT FORK
COON RUN 	
CABBAGE FORK
BONER HOLLOW
SNAKE HOLLOW
GREATHOUSE HOLLOW
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8211
829
826
8172
BIS
B191
B196
0000000
0000000
0000000
0000000
0000000
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8217
8210
8147
8148
8170
8177
8210
8131
8168
B17S
20
IT
18
7
0
10
16
OS
ei
86
33
43
46
76
12
10
10
2
3
4
6
0000000
0*00000
7/8/1087
7/8/1967
MHM(
0000000
0000000 .
7/7/1087
0000000
0000000
02
77
77
IS
23
31
62
18
10
12
6
IS
12
10
12
20
10
76
48
S7
38
71
S7
76
S7
OS
00
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
8166
8160
6120
813S
BUS
8146
8133
8100
B22
B1S0
0
7
8
12
0
0000000
0000000
7/7/1007
7/7/1607
7/8/1007
7/8/1007
7/7/1007
0000000
0000000
7/8/1007
ELK
ELK
ELK
ELK
ELK
ELK
ELK
ELK
LOKAN
LOKAN
8165
8140
8136
8112
8137
8122
8116
B123
883
84	
10
13
20
14
15
16
17
15
11
13
76
62
OS
67
71
76
61
71
52
82
12
7
0
10
8
10
7
6
38
23
46
23
46
60
S4
62
02
60
77
60
02
54
60
77
62
77
54
46
0000000
7/8/1007
7/8/1007
0000000
7/8/1007
7/1/1997
0000000
7/1/1097
0000000
0000000
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
13
12
16
11
13
13
15
16
16
0
Bit
816
827
834
892
8t9
815
839
88
B7	
82
57
06
52
82
62
71
76
76
43
10
2
$
7
0
8
0
2
0000000
0000000
0000000 ¦
0000000
0000000
0000000
0000000
0000000
0000000
0000000
77
62
77
15
38
54
69
62
60
IS
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
LOKAN
85
874
894
872
871
80
B77
866
661
879
16
16
13
12
10
11
10
14
15
16
86
70
62
57
48
52
90
67
71
86
12
10
9
8
4
6
12
11
9
11
92
77
60
62
31
62
92
85
69
85
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
6/9/1997
6/9/1997
LOKAN
LOKAN
LOKAN
LOKAN
867
BOO
870
866
6
17
13
19
10
16
16
16
10
13
29
81
82
00
48
80
86
70
46
62
I
12
9
13
5
II
12
0
7
7
0000000
0000000
0000000
0000000
6
92
69
100
38
05
02
60
54
54
12
14
14
13
57
87
87
62
5
10
10
0
38
77
77
60
%Chlro %Top2 •/. Top 2
scort dominant scort
HOI
scum
INtJE *
(SCl)
75
62
5
95
45
86
' 4
91
00
02
101
2
09
63
58
J
95
05
72
76

05
37
08
4
90
b?
10
11
23
78
60
31
0
GO
•J(!
32
35
48
53
70
33
0
53
40
33
36
46
S3
65
55
0
62
4 7
63
60
27
74
72
44
5
74
g/
47
52
16
64
47
82

62
60
to
10
21
70
70
32

lb
3(i
46
S3
20
61
42
91
0
70
00
79
66
6
05
70
46
4
85
o2
64
70
15
86
36
too
4
0?
70
00
75
20
72
61
61

07
U/
38
41
4
97
43
69
4
00
/ 4
67
73
28
73
12
. 44
5
00
0 2
81
68
5
06
45
HO
4
85
00
69
75
19
62
4S
65
4
79
00
65
03
6
05
41
02
3
04
til)
66
03
10
01
70
4?
4
7'J
1 4
76
62
IS
86
58
66
3
92
tH">
62
80
4
07
66
53
4
80
73
74
60
21
80
45
65
S
76
7 ?
85
• 02
4
07
45
85
4
85
i)5
81
86
12
69
58
66
4
UU
fli
ti 1
62
67
10
91
41
92
4
UU
02
100
5
96
89
17
3
105 '
7 0
(.9
66
74
23
78
46
82
5
74
76
83
5
96
39
96
4
89
6-1
89
97
4
97
59
65
4
83
17
77
64

94
60
63
4
81
b 1
Yt
13
14
61
40
72
44

54
6$
71
2
99
54
72
5
7G
7 0
64
70
16
85
42
90
5
77
7 j
S3
57
38
63
64
56
5
08
0 •!
61
66
4
07
$3
74
4
b.'l
liii
55
2
60
2
12
75
. 68
25
44
87
68
1
4
7
U I
4 1
/ /
88
96
7
94
63
$7
4
03

83
91
6
95
58
69
3
93
M
76
63
18
63
64
57
4
80

64
92
13
86
60
62
4
7U
7 J
77
84
2
99
67
52
3
104

94
103
4
97
69
49
4
79
/ 3
89
97
9
92
47
63
3
9 7

66
74
31
69
63
.58
5
75
1 1
39
43
57
43
74
1
G
03

83
91
14
67
79
33


/(
4
4
92
6
06
6
7
4.1
li"
65
70

80
ss
70
4
UO
/'.i
71
78
17
64
38
97
4
U t
I...
74
61
11
90
48
62
4
7 'j
.-I/
30
33
61
40
72
43


•11
41
45
52
40
U?
St



87
95
6
03
56
60
4


60
66
10
82
40
65
4
U2
/H
68
96

101
74
4 1
i
10/
/ 1
67
73
12
80
44
87
.
	jjy
(i'j

70
76
13
68
77
30

•••: ; •
04
102
0
101
78
34

U2
/1
60
87
0
101
42
91

99
(i l
04
t02
3
98
57
68

93

Appendix C, page C-4

-------
Appendix c	Site metrics and metric scores
Stations are grouped by data set (1(= 1996-1997 calibration data; 2* 1997-1998 validation dais). Within each data set, stations are listed by site type (reference, unlabeled, stressed), then within type by ascending Station id
Oat j

Sit*
Banthlc
Colltcl Total
Tot. bit
EPT
EPT Uxa
%
% EPT
%
Y.Chlro
% Top 2
V. Top 2

HBI
IN 0 E X
S,l Sutton ID
Stream Nam*
Typa
SamnlA ID
Oau on
tcort
Uxa
•cor*
EPT
teora
Chlro.
•core
dominant
ccor*
HBI
score
(SCI)
" WVKP-30-0
HOLLYWOOD FORK

LOKAN 669
0000000 16
71
9
09
61
00
11
90
45
80
4
84
78
t WVKP-4
HARMONO CREEK

LOKAN 620
nfiim 6
29

6
4
4
12
89
05
54
5
77
44
1 WVKP-40
RpUNO KNOB RUN

LOKAN 662
0000000 14
07
9
09
64
91
13
60
50
77
4
86
00
1 WVKP-4 1A
SLAB FORK

LOKAN 803
0000000 15
71
9
69
00
00
33
00
46
01

83
?3
1 WVKP-43-A
SMITH RUN

LOKAN 604
0000000 15
71
10
77
70
04
1
100
56
68

US
B 1
1 WVKP-45 5
VINEYARO RUN

LOKAN BOS
0000000 21
100
13
100
58
03
27
74
50
77

74
01
1 WVKP-5
ROCKY FORK

LOKAN B46
0000000 7
33
3
23
13
14
76.
24
64
20

40
28
1 WVKP-fl
SCHOOLHOUSE BRANCH

LOKAN 649
0000000 6
39
5
36
02
09
6
93
77
30

101
66
t WVKP-9-A
SPRING BRANCH

LOKAN 650
0000000 6
24
3
23
19
21
26
74
01
30
8
32
34
1 WVM-27.|115.0)
TYGART VALLEY RIVER

TYVAR 6341
9/3/1997 19
90
6
02
30
33
10
90
49
79

75
n
1 WVM-27-{46.2)
TYGART VALLEY RIVER

TYVAR 6301
0000000 13
02
10
77
04
70
26
74
44
88

7 1
ri
1 V/VMC-10
BIG RUN NEAR PISGAH

CHEAT 6136
0000000 20
95
8
02
63
66
7
94
34
104

ao
to
l WVMC-1 »-0 { 10}
LEFT FORK BULL RUN ft HEADWATERS

CHEAT 6103
0000000 9
43
6
40
66
96
0
101
62
29

103
ij'j
> WVMC' 12 ¦ SA-(O)
SOVERN RUN ft MOUTH

CHEAT 669
0000000 3
14
1
6
70
66
18
02
97
4

100
40
I WVMC-12- 7A
PARKfcR RUN/BIG SANDY CREEK

CHEAT 6199
0000000 (0
70
6
02 .
57
02
'13
07
32
too

Uli
t\>
l WVMC -12( 10}	
BIG SANDY CREEK i>
1 WVMC-12-{ 14) ~
QIC SANDY CREEK ABOVE LITTLE SANDY CREEK

CHEAT 654
0000000 6
3B
4
31
S3
SO
29
71
47
83
5
70
r>»
1 WVMC-12 A-{02 5)
LAUREL RUN/BIG SANOY-CK NEAR MOUTH

CHEAT 6101
0000000 15
71
11
05
94
102
1
100
60
32

too

I WVMC 12-A t
LITTLE LAUREL RUN

CHEAT 610$
0000000 12
57
5
30
70
' 60
3
90
74
4 1

un

1 WVMC' 12-A-2
PATTERSON RUN

CHEAT 6100
0000000 0
38
3
23
58
63
0
101
77
30
S
04
!> 4
1 V/VMC-1 2 D-.S (00>
WEBSTER RUN ft MOUTH

CHEAT 609
0000000 3
14
2
IS
80
67
0
101
90
to
5
77
rj 2
i WVMC-12-8-5-{02)
WEBSTER RUN Q HEAOWATERS

CHEAT 606
0000000 13
02
6
62
70
76
2
99
30
too

61
B0
T) 4
1 WVMC-12-0-.5 A
UNNAMEO TRIB/WEBSTER RUN

CHEAT 607
0000000 3
14
2
15
50
54
0
101
75
39
3
102
I WVMC-12-B-(01J
LITTLE SANOY CREEK NEAR MOUTH

CHEAT 603
0000000 6
30
5
30
82
09
10
91
04
56

00
0/
1 WVMCI2-8-{02|
LITTLE SANDY CREEK BELOW BEAVER CREEK

CHEAT 6100
0000000 11
52
7
54
67
95
6
93
61
60

91
4
1 WVMC-I2-B-{0G)
LITTLE SANOY CREEK BELOW HOGG RUN

CHEAT 6107
0000000 0
29
3
23
20
21
76
25
63
27
6
49
29
i WVMC-12-8-(11]
LITTLE SANOY CREEK BELOW CHERRY RUN

CHEAT 602
0000000 0
29
2
15
80
67
6
93
66
20

103
57
i WVMC-12-8 -1 -(01)
BEAVER CREEK NEAR MOUTH

CHEAT 692
0000000 0
29
2
15
84
91
3
96
87
20

106
59
t WVMC-12-B-H04)
BEAVER CREEK NEAR HEAOWATERS

CHEAT 673
0000000 12
57
6
46
82
89
3
96
74
41

10t
72
I WVMC-12-8-3-{02) 1
HOGG RUN AT HEADWATERS

CHEAT 676
0000000 16
- 76
9
69
51
56
30
71
52
75

76

i WVMC-12-B-4-(02)
ELK RUN NEAR MOUTH

CHEAT 695
0000000 11
62
7
54
04
91
0
101
50
65

too
77
1 WVMC-l2-B-4(03)
ELK RUN ABOVE UNNAMED TRIBS

CHEAT 694
0000000 11
52
7
54
65
71
20
6!
75
40

90
CO
i W V M C - i 2 • 8 • 5 • C
THIRD UNNAMEO TRIB/CHERRY RUN NEAR HEAD

CHEAT 660
0000000 9
43
3
23
97
105
1
100
96
6

1 to
02
l WVMC-12-0-G
MILL RUN /LITTLE LAUREL RUN NEAR MOUTH

CHEAT 6100
0000000 0
36
4
31
05
93
3
98
62
28

96
S4
y wvmc-I2-C-(oi]
HAZEL RUN NEAR MOUTH

CHEAT 690
0000000 11
52
4
31
05
71
4
97
73
42

94
04
1 '.VVMC-120
GLADE RUN WEST OF BRUCETON MILLS

CHEAT 690
0000000 13
62
10
77
71
77
25
76
60
63

B?
74
i WVMC-12-e
GLADE RUN NORTH OF BRANDONVILLE

CHEAT 602
0000000 tt
52
7
54
90
96
0
95
61
29
3
96
7 1
I WVMC-12-E 1
U T /BIG SANDY CK NEAR CLIFTON MILLS

CHEAT 670
0000000 14
67
6
62
64
69
30
71
77
36
5
69
32
8 1
1 WVMC-12-f-{00 0}
LITTLE SANDY CREEK ft MOUTH

CHEAT 664
0000000 16
66
10
77
49
53
12
09
35
102
4
82
64
1 WVMC-12-f-(01 0)
LITTLE SANOY CREEK NEAR CLIFTON MILLS

CHEAT 6150
0000000 16
76
10
77
63
68
4
97
39
06
4
03
1 WVMC-)S-{01|
LAUREL RUN/CHEAT RIV, ABOVE HOGBACK RUN

CHEAT 6102
0000000 13
62
0
62
90
97
3
90
49
80
3
94
80
02
1 WVMC-15-A
LONG HOLLOW

CHEAT 6163
0000000 16
76
9
69
77
63
1
100
37
09
4
85
l WVMC-16-A(0 «}
SOUT-H FORK GREENS RUN ABOVE MIDDLE FORK

CHEAT 866
0000000 4
19
2
15
40
44
40
01
60
63
0
5fJ
43
» WVMC-17-6A
2ND UNNAMEO TRIB /MUDDY CREEK

CHEAT 852
0000000 10
46
7
54
94
102
2
99
80
to
2
10G
70
1 WVMC* 1 7- 7
CRAB ORCHARO CREEK Q MOUTH

CHEAT 657
0000000 9
43
4
31
3
3
6
96
90
6
4
82
43
I WVMC -17 - |10 2}
MUDDY CREEK ABOVE SUGARCAMP RUN

CHEAT 6109
0000000 20
95
14
100
61
68
7
94
40
01
4
82
90
1 WVMC-17-{14 4)
MUDDY CREEK NEAR HEADWATERS

CHEAT 6110
0000000 16
60

69
69
74
23
70
70
37
5
68

l WVMC-t7-{3.2)
MUDDY CREEK ABOVE MARTIN CREEK

CHEAT 666
0000000 11
62
7
54
04
70
\ 29
72
71
46
5
7 1
G t
1 WVMC-1 7-{6.8)
MUDDY CREEK ft BRANDONVILLE TURNPIKE

CHEAT 664
0000000 6
29
4
31
64
91
3
90
84
25
2
109
7 2
G2
1 WVMC-1 7-A.t
UNNAMED TR18/MU00Y CREEK ft MOUTH

CHEAT 666
0000000 13
02
7
54
72
79
19
02
58
65
5
?C
1 WVMC-I7-B
JUMP ROCK RUN AT MOUTH

CHEAT 699
0000000 9
43
4
31
87
94
2
99
03
60
27

Oij
06
WVMC-17C
SUGARCAMP RUN/MUOOY CREEK

CHEAT Bt03
000000V 16
71
7
54
07
95
5
96
49
J
lJ/
/ /
1 u
1 WVMC-IU-.1A
1ST UNNAMEO TRlB /ROARING CREEK ft MOUTH

CHEAT 691
0000000 15
71
7
54
74
01
14
80
67
52

/ /
I WVMC-1b-{0 0)
ROARING CREEK ft MOUTH

CHEAT 6112
0000000 12
57
7
54
58
63
4
97
40
65

III
/ :i
i WVMC- IB-{0 O)
ROARING CREEK ft HEAOWATERS

CHEAT 6111
0000000 24
. 114
17
131
84
01
5
00
51
77

I)';
/II

1 WVMC -1 0
DAUGHERTY RUN

CHEAT 075
0000000 17
61
10
77
02
60
7
04
54
72

M'•
1 WVMC-IO'A
OORITY RUN ft MOUTH

CHEAT 693
0000000 10
80
12
02
08
74
0
OS
30
M0
	;| '

'HI
1 WVMC-2
morgan RUN

CHEAT 6145
0000000 19
90
10
77
01
66
IS
06
t
93

II

i WVMC-2 5
COLES RUN

CHEAT B139
0000000 11
S2
3
23
42
40
e
93
08
40

i;ii

i WVMC-2 5-A
BIRCH HOLLOW

CHEAT 6137
0000000 16
60
7
54
32
35
29
70
36
too
r,

M)
1 WVMC-2 1
KELLY RUN

CHEAT 6142
0000000 7
33
2
15
54
59
1
100
06


i>,i
•i /
Appendix C, page C-5

-------
Appendix C
Site metrics and metric scores
lion*; are grouped t>y J0I3 Sel U
= 1996-1997 calibration data; 2» 1997-1998 validaiion data). Within each data sel, stations are Usied by site type (reference, unlabeled, stressed), then
wilhin type by ascending Station ID.
Stream Nam*
Silt
Typa
Banlhlc
Simitli 10
Collect
Dale
Total
taxa
Tot. taxa
•core
EPT
EPT taxa
%
V. EPT
% .
%Chlro
% Top 2
V. Top 2

HOI
INOEX
taxa
scora
EPT
score
Chlfo.
tcora
dominant
scors
HQl
score
(SCI)
13
100
88
66
6
94
53
74

09
uu
6
69
46
so
33
67
59
65

76
Co
6
62
67
73
to
91
46
64

72

6
62
64
92
9
92
72
44

103
1 A
8
62
66
95
2
99
72
44

109

6
62
21
23
66
32
75
40

60
00
6
46
61
66
34
66
76
34

03
50

54
63
69
2
99
56
69

72
130
76
to
77
61
66
6
9S
49
80

09

6
31
34
13
68
56
68

76
52
9
69
65
92
14
87
54
72

EM
7 li
11
85
83
91
5
96
47
83

00
80
10
77
75
61
3
98
33
104

102
uO
11
85
87
95
6
95
44
88

66
80
10
77
76
65
10
91
57
67

74
7 0
12
92
67
73
26
74
42
00

62
03
9
69
83
90
4
97
48
61

103
ti-
12
92
66
72
25
76
SO
78

73
ll 1
13
100
74
80
13
87
43
80 '

81
b'j
11
85
63
91
10
91
34
103

02
80
11
8S
72
76
20
•61
49


97
03
12
92
76
85
6
95
36
101

85
90
10
77
77
83
12
89
44
68

66
82
78
7
54
82
89
12
89
42
91

a*
10
77
72
79
IS
86
41
92

61
83
9
69
67
73
6
93
54
72

62
7 7
15
its
66
72
19
61
36
100

87
89
9
80
71
76
14
67
35 .
101

91
03
10
77
6S
93
6
93
51
76

so
65
10
77
75
62
14
87
53
73

73
77
11
65
90
97

96
41
93

100
90
3
23
13
IS
10
90
69
49

65
47
9
69
77
63
12
69
50
77

74
75
11
85
86
95
6
93
48
81

07
85
10
77
89
97
4
97
49
60

04
8-)
11
65
79
85

92
41
92

01
35
6
62
88
96
4
97
65
54

80
74
9
69
68
74

92
36
97

77
7 0
11
6S
71
77
17
64
33
104

67
66
12
92
91
99
4
97
52
75

97
89
11
85
90
96
4
97
37
98

93
91
11
65
75
82
$
96
46
64

63
83
5
38
51
55
29
72
52
74
5
66
59
11
65
71
77
15
86
31
108

0Q
85
11
6S
78
85
5
96
47
63

82

12
92
81
89
It
90
30
110

05
92
9
69
64
92
9
92
63
57

70
7(3
10
77
79
66
7
94
36
98

97
07
12
92
71
76

92
35
102

89
00
9
69
91
99
3
98
45
86

105
00
9
69
95
103
2
99
63
56

03
7U
13
100
OS
02
4
96
30
100

09

10
77
84
91
10
91
57
6 U

ti 1
lb
9
69
82
90
3
98
55
7

U?
l\i
13
too
71
77
12
89
26
1 16


12
02
81
68
10
01
47
82

U7
(Hi
12
02
90
97
s
96
44
67

101
9 j
10
77
60
87
19
62
48
62

HU
71!
12
92
64
91

92
46
Ut

90
U 7
12
92
80
94
10
90
31
107

02
'JO
10
77
84
91
12
89
$1
76
4
78
7'j
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
kVVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
WVMC
wv mi;
WVMC
W V MC
WVMC
WVMC
WVMC
WVMC
34	.{0.0)
35
35.5 (0 0)
36-(0 0)
3
-------
Appendix c	Site metrics and metric scores
M.iiion'; ;>fc grouped t>y data set (1« 1996-1997 calibration data; 2« 1997-1998 validation data). Within each data sel, stations are listed by site type (reference, unlabeled, stressed), then within type by ascending station id
n.lU

Sit*
Bonthie
Cotltet
Total
Tot. taia
EPT
EPT taxa
%
% EPT
%
%Chlro
% Top 2
V. Top J

HUI
INDEX
6
-------
Appendix C
Site metrics and metric scores
lions qiq grouped by dala set (1x
1996-1997 calibration data: 2« 1997-1998 validation dala). Wilhtri each data set. stations are listed by site type (reference, unlabeled, stressed), then
within type Dy ascending Siuuon ID.
t Station 10
WVMT- te G-2
WVMT-22
WVMT-?3
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
36
37-{2 8)
39
4
40
40-A
43-(l3.2)
43.(15.0}
-43-F-1
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
WVMT
43-H
43-M
43-0
•45
4 0
-5
•50-A-l
•5O-0-3
57-{0.4J
61'(2.0)
WVMT-64-A.5
WVMT-Q4-E
WVMT-64-f
WVMr-6fl
WVMT-G0
WVMT-60-D
WVMT-69
WVMT -7
WVMT-7 4
WVMT-74-B'
WVMT-78
WVMT-8
WVMTB-10-A
WVMTB-1 1
WVMT0-11-0
WVMTU-ie-13
WVMT0tflB-3
WVMTQ.18-O-130I
WVMTB-19 (0 0)
WVMTD-20	
"WVMTU~24
WVM1U-20
WVMTU-20-A
WVMTO-27
WVMTH-3
WVM T (J - *40
WVMTU-3 IX
WVMTB-3 1-0
SlrtJtn Nam*
Sit*
Typ«
Btnthlc
Samnl> 10
Collect
0*1*
WVMT-23-8-1
WVMT-23-C-{5 6}
WVMT-23-F
WVMT •24-{0.03)
WVMT-24-A
WVMT-24-C
WVMT-24-C-3 5
WVMT-20 (0 4)
WVMT-20-0
WVMT.	
WVMT-33'{ 11 8)
U T OF LEFT FORK/LITTLE SANDY CREEK
CUNNINGHAM RUN
TETER CREEK	*
STONY RUN/RACOON
CREEK/TETER CREEK
BRUSHY FORK
MILL RUN /TETER CREEK
LAUREL CREEK
FROST RUN
SUGAR CREEK
HUNTER FORK
HACKERS CREEK
FOXGRAPE RUN
ANCLINS RUN
MID01E FORK RIVER
ISLAND RUN
BEAVER CREEK
LAUREL RUN
GOOSE CREEK
BIG LAUREL RUN
LITTLE LAUREL RUN
LEAOJNG CREEK
LEADING CREEK
. LOGLICK RUN	
DAVIS LICK
CAMP?IELO RUN
LAUREL RUN
CHENOWETH CREEK
KINGS RUN
LOST RUN
LIMEKILN RUN
HILL RUN
JOtiES RUN
SHAVERS RUN
BUCK RUN
MEATBOX RUN
POf ATOHOLE FORK
RIFFLE CREEK
BECKY CREEK
WAMSLEY RUN
POUNDMILL RUN
PLUM RUN
ELKWATER FORK
FQRTLtCK RUN
RALSTON RUN
.WICKWIRE RUN
§UGAR RUN
FINK RUN
MUOLlCK RUN
BULLKUN
MUOLlCK RUN
LAUREL FORK/FRENCH CREEK
TRUBI6 RUN
SAWMILL RUN
LAUREL RUN
TENM1LE CREEK
RIGHT FORK OF TENMILE CREEK
PANTHER FORK
BIG RUN
HEROLOS RUN
ALEC RUN
MILLSiTE RUN
TYVAR 6343
TYVAR esse
TYVAR 8366
TYVAR 6347
0/3/1907
0/9/1007
0/9/1997
TYVAR 6344
TYVAR 8359
TYVAR 8374
TYVAR 8370
TYVAR 8363
TYVAR 8373
TYVAR 8313
TYVAR 8390
TYVAR 8370
0/4/1907
0/4/1007
0/0/1007
11(1111
*000000
9/9/1997
IIIIMI
IMIVII
0000000
TYVAR 8317
TYVAR 838$
TYVAR 6383
TYVAR 8366
TYVAR 8266
TYVAR 8364
TYVAR 8367
TYVAR 8329
TYVAR 8316
TYVAR 6280
TYVAR 8360
0000000
llllfll
0000000
0000000
0/2/1007
0000000
0000000
TYVAR 8312
TYVAR B316
TYVAR 8203
TYVAR 8297
TYVAR B200
TYVAR 8200
TYVAR 620S
TYVAR 8314
TYVAR 8330
(IHIM
IIMIH
0000000
«(»«««!
IMMIf
0000000
0000000
MIIIM
0000000
0/3/1007
TYVAR B331
TYVAR 8376
TYVAR 8376
TYVAR 832S
TYVAR 8320
TYVAR 6367
TYVAR 8361
TYVAR 8303
TYVAR 8367
TYVAR B3S8
0/3/1007
lllflll
0/2/1007
0/3/1007
9/0/1007
0/9/1997
inimi
9/9/1997
9/9/1997
TYVAR 8362
TYVAR B306
TYVAR 6326
TYVAR 8322
TYVAR 8324
TYVAR 8332
TYVAR 8336
TYVAR B37S
TYVAR 8346
TYVAR 8346
9/9/1997
0000000
9/2/1997
9/2/1997
9/2/1997
9/3/1997
9/3/1997
0000000
9/4/1997
9/4/1997
TYVAR B34$
TYVAR B394
TYVAR 8393
TYVAR 8391
TYVAR 6392
TYVAR 8372
TYVAR 8354
TYVAR 8360
9/4/1997
000Jr«0N
0000000
0000000
0000000
0000000
9/9/1997
9/9/1997
Total
Tol. taxa
EPT
EPT taxa
%
% EPT
%
%Chlro
% Top 2
V. Top 2
sco r« il
uu
scoro
taxi
•Cor»
EPT
scoro
Chlro.
tcort
dominant
14
67
6
46
63
69
2*
09
51
77
13
62
7
54
63
68
10
91
33
105
16
76
9
60
59
65
1
100
44
67
12
57
5
36
34
.37
1
100
60
62
13
62
0
69
81
96
9
92
54
71
12
57
6
46
77
64
15
85
40
93
14
67
7
54
73
80
6
93
46
85
10
48
2
15
60
65
31
69
89
17
17
61
6
46
57
62
7
94
40
60
11
52
5
36
63
66
7
94
51 .
76
14
• 67
3
23
5$
60
27
74
75
38
9
43
2
15
2$
27
57
43
62
29
11
52
3
23
40
43
47
54
76
38
10
46
6
46
57
62
2
99
60
63
10
46
2
15
50
54
24
77
71
45
10
46

31
60
65

93
50
79
12
57
5
36
57
62
21
60
61
61
2
io

6
67
73

101
100
0
12
57

46
63
69
20
61
47
82
13
62
7
54
41
45
24
77
46
64
13
62
5
36
54
59
11
90
59
63
17
61

54
54
56
4
97
47
82
16
66
12
02
90
97
7
94
53
74
6
38
2
15
12
13

50
67
52
19
90
11
6$
77
64
11
90
53
74
15
71
6
46
40
43
40
61
73
43
19
90

69
65
71
7
94
56
68
16
76
5
38
42
46
21
79
55
71
16
76
6
62
50
54
7
94
42
81
IS
71
12
02
82
89
14
86
49
' 80
15
71
10
77
88
96
3
98
55
71
16
76
8
62
63
66
18
63
38
96
15
71
8
62
84
91
12
89
57
67
13
62
6
62
61
66
22
78
49
80
13
62
0
60
73
79
20
61
44
87
13
62
0
69
86
96
to
91
66
53
16
76
7
54
41
44
42
59
77
38
10
90
11
65
73
79
24
77 •
57
67
16
76
to
77
72
79
15
86
59
64
12
57

54
26
31
67
34
78
35
14
67
6
46
40
44
12
69
49
80
20
05
10
77
7S
61
7
94
56
68
20
95
11
85
64
70
4
97
46
04
15
71
6
62
60
65
16
83
47
83
13
62

40
24
26
14
67
64
56
8
36
2
15
14
15
74
26
87
20
10
46
2
15
35
38
38
63
71
45
4
19

0
0
0
10
62
93
1?
11
52
3
23
70
76

60
81
29
17
81
2
15
4
4
59
42
68
53
10
90
0
69
72
76
10
01
59
64
21
100
8
62
41
44
0
92
41
92
5
24
3
23
62
B0
7
04
91
»5
6
29

23
86
94
6
95
65
24
6
36
2
ts
70
76
21
80
88
19
16
76
0
60
58
63
26
74
45
86
13
62
6
46
58
03
36
65
71
45
11
$2

38
57
62

97
57
07
14
67
5
38
74
60
13
88
63
58
14
67
6
62
92
100
3
98
67
52
14
67
11
85
77
63
21
80
55
70
inoe x
(SCf)
54
53
74
GJ
oy
7 i
70
T2
64
76
05
I IC
56
76
73
9 I
UG
7 0
7 I
Appendix C,
page C-8

-------
Appendix C
Site metrics and metric scores
i.'jinin;, u>e grouped by da
to sei (1 * 1996*1997 caliboUon data; 2« 1997*1998 validation data). Within each data sol, stations are listed by site type (reference, unlabeled, stressed), then within type by ascendi
ng Station ID.
Namt
Sil*
Typ«
B«othlc
iiwfllo 10
'•vvurn¦ ;j i• k -1
;.vvm m.ji.f.y •
'\VVMTO-3»-F-5*
WVMTB-32-H
WVM1D-32-I-1
'.VVM I Q. 7 •{ t 0|
WVU I 0 - 7 • A-{0 5)
'A'VM T Q - 7 A-J2 0)
WVUIQ.7C{0 J'.')
•-VVMTU-B
WVMIM-O 6 (0 (3)
'•WMTM-1 1 -{0 J|
TROUT RUN
UPPER TROUT RUN
SALT BLOCK RUN
BEECH RUN
PHILLIPS CAMP RUN
SANO RUN
LAUREL FORK/SANO RUN
LAUREL FORK/SANO RUN
UT OF SANO RUN
BIG RUN
SWAMP RUN
RIGHT FORK MIOOLE FORK
VVVMTM-1 3
'•VVM T M. 17
WVM1M-2
'.VVUfM-21
WVMIM-27
WVMTM-3
VVVMTM -5
WVM1M-7
wvm y • 11
WVMY-2
WVMY-2-A
LONG RUN
THREE FORKS RUN
LAURELRUN
PLEASANT RUN
MITCHELL LICK FORK
HOOPPOLE RUN
SERVICE RUN
SHORT RUN
SOUTH BRANCH LAUREL RUN
SNOWY CREEK
WVMY-2-A-t
WVMY-2-1*. 1
WVMYO-A
WVMY-4
WVMY-9
WVP-20-{52.0)
WVP-2Q-{81 6)
WVP.20{82.6}
WVP-20-(88.t))
WVP-20{97.0}
NORTH BRANCH
WAROWELL RUN
PINE RUN
LITTLE LAUREL RUN
RHINE CREEK
BUFFALO RUN
NORTH BRANCH POTOMAC RIVER
NORTH BRANCH POTOMAC RIVER
NORTH BRANCH POTOMAC RIVER
NORTH BRANCH POTOMAC RIVER
WVPNB-1-{4.2)
WVPNB-15
WVPNB-16- 5A-{0 4}
WVPN8- 16 • (05.4)
'.VVPNB-10-(16 6).
wvpnq- i 6-A (o aj
'.VVPN0.16-8.5
WVPf4Q.l7.05 6)
WVPNB.17-S
WVPN8
WVPNQ
WVPNB
WVPNB
WVPNB
WVPN8
WVPNB
WVPNB
WVPNB-
WVPNB.
WVPNB-
WVPNB-
WVPNB-
WVPNB-
WVPNB-
WVPNQ-
WVPNQ-
WVPNB-
WVPNB-
17-C
17-E
19-{1 4}
10A
22
4-{04 (i)
4-{20 2}
4-{2tl 7)
4-{33 0)
4 (39 4}
NORTH BRANCH POTOMAC RIVER
GREEN SPRING RUN
OEEP RUN
U.T. OF ABRAMS CREEK
ABRAM CREEK
ABRAM CREEK
EMORY CREEK
LAUREL RUN
STONY RIVER
MILL RUN
FOURMILE RUN
HEMLICK RUN
BUFFALO CREEK
LITTLE BUFFALO CREEK
OEAKIN RUN
PATTERSON CREEK
PATTERSON CREEK
PATTERSON CREEK
PATTERSON CREEK
PATTERSON CREEK	
4 C5	HORSESHOE CREEK
4-CC	ROSSERRUN
4-DD-(2.0)	THORN CREEK
¦4-FF	MIOOLE FORK/PATTERSON CREEK
4-FF-5A -{0 0) UT OF UT OF MIOOLE FORK / PATTERSON
4-J-(i b)	CABIN RUN
4 j-1	PARGUTRUN
4 • S-{04.7)	MILLL CREEK
4-S'{5.6}	MILL CREEK
TYVAR 6352
TYVAR 8353
TYVAR B3S1
TYVAR 6355
TYVAR 8388
TYVAR 6337
TYVAR B333
TYVAR 6334
TYVAR 639$
TYVAR 6330
TYVAR 6291
TYVAR 6304
TYVAR 6149
TYVAR 6321
TYVAR 6299
TYVAR 6319
TYVAR 8396
TYVAR 6269
TYVAR 6305
TYVAR 6307
YOUGH 6117
YOUGH 6119
YOUGH 6115
YOUGH 6119
YOUGH 6121
YOUGH 6114
YOUGH 6122
YOUGH 6113
N6RPO 6319
NBRPO 6301
NBRPO 6302
NBRPO 6244
N6RPO 6290
NBRPO 6279
NBRPO 6293
NBRPO 6278
NBRPO 6273
NBRPO B309
NBRPO B274
NBRPO B292
NBRPO B294
NBRPO 8299
NBRPO B279
NBRPO 0290
NBRPO B239
NBRPO B241
NBRPO B292
NBRPO B269
N8RPO 029ft
NBRPO 6249
NBRPO 0270
NBRPO 6246
NBRPO 0291
NBRPO 0249
NBRPO 0257
NBRPO 0242
NBRPO 0290
NBRPO 6251
NBRPO B254
NBRPO 6243
NBRPO 0277
Collect
ToUl
Tot. taxa
EPT
EPT taxa
%
% EPT
%
ttChlro
% Top 2
% Top 2

HBI
INDEX
Oat«
Uxi
scor*
Uxi
•cor#
EPT
•cor*
Chlro.
score
dominant
• cor*
HBI
scoro
(SCl|
9/8/1997
15
71

69
64
60
24
76
63
56
5
72
UU
9/9/1997
18
69
11
85
79
86
14
87
58
65
4
82
8?
9/9/1997
15
71
11
85
85
03
9
91
63
58
4
00
dO
9/9/1997
14
97
9
69
61
66
24
77
44
86
t,
70
n
0000000
11
52

82
77
84
15
* ., 86
41
92
2
107
7
9/3/1997
17
91

69
72
78
5
, 96
44
87
4
80
82
9/3/1997
14
97
9
69
64
70
33
67
68
50
5
65
GS
9/3/t997
19
79

46
45
49
31
• 09
44
87
5
G'j
Ob
00*08*0
IS
71
8
62
67
73
7
94
42
91
4
a'J
7 9
9/9/1907
10
48

31
56
61
17
64
58
66
5
Gtj
:•&
*0*1000
18
88

54
33
36
12
^ 60
34
103
4
6j
Tj
**0*000
19
90
10
77
45
49
12
89
50
64
5
7?
73
9/8M997
19
89
10
77
85
93
5
06
74
41
4
73
7 fi
00****0
ts
71
6
46
9
10
55
45
70
46
6
(if)
A 0
000*000
22
105
13
100
46
50
16
85
37

4
0D
Uti
***««**
19
78
5
38
44
48
24
76
62

1)
Gy
6 1
0*0000*
1S
1\

69
64
69
29
72
52
75
4
79
73
0000000
3
14
2
15
67
73
39
67
78
35
5
70
4G
*00*000
19
62
7
64
73
79
14
87
51
76
J
'J 4
fj
0000000
19
99
9
69
79
86
11
90
59
64
4
0 1
i"J
7/8/1999
17
91
6
62
36
99
11
90
46
84
4
02
73
7/9/1999
9
43
3
23
63
66
5
95
75
40
6
GO

7/8/1999
13
92
7
54
69
97
2
99
73
42

71
7? '
7/9/1999
13
62

38
39
42
39
64
67
51
0
60
J
7/9/1999
19
86
13
100
85
92
4
97
51
78
3
95

7/8/1999
9
38
3
23
73
79
7
94
83
27
3
'J 5
f>&
7/9/1999
14
67

60
64
90
25
76
47
83
5
7 1
Vi
7/8/1999
9
43
4
31
72
79
t
100
78
34
4
86
i»2
0000000
7
33

8
16
t6 .
74
26
91
15
7
49
2 Li -
0000000
11
52

46 -
85
93
11
90
72
45
4
80
'ifj
0000000
10
48
5
36
64
92
It
90
73
43
4
8 \

0000000
10
48
5
38
66
74
24
77
68
16
5
e d
54
0000000
14
67
7
54
81
98
9
93
56

S
76
7 i
0*00000'
22
105
10
77
52
57
24
77
39
95
5
74
«(;
0000000
11
52

62
93
101
4
07
57
87
4
U4
7 ?
0000000
9
43

31
58
63
0
101
83
27
5
75
1
0**0000
9
14

6
71
77
25
76
98

5
65
A ¦
00*0000
9
29
3
23
63
91
6
05
78
35
5
7 1
11
0000000
9
29
3
23
79
86
9
02
81
29
5
7 J

00*00*0
7
33
3
23
76
65
11
90
86
2*
5
6?
!>4
0000000
10
49
5
38
47
52
47
53
63
26
(i
0t
•I (j
rt-1
0**0000
19
78
10
77
75
81
8
93
42
91
4
85
0000*00
5
24

8
17
18
33
67'
50
78 •
6
f>3
43
4 1
0000*00
9
43
3
23
15
17
33
68
78
35
6
60
00*0000
20
95
13
100
78
85
9
92
39
96
4
U7
¦)2
**00000
4
19
2
15
88
95
0
101
88
20
tj
73

0000000
9
43
3
23
49
53
23
78
57
57
5
73
?)6
0**««00
29
124
13
100
30
33
38
63
58
S6
6
til
/ 0
0000000
21
100
10
77
67
73
1
100
32
107
4
IS 4

00*0000
29
110
11
65
77
84
10
91
48
81
$
7 7
tsO
0000000
23
110
12
92
70
77
7
04
35
101
4
UJ
0000**0
23
110
13
too
82
99
7
04
57
(J7
4
1) 1
'HI
0000**0
22
105
11
85
88
96
5
96
66
54

--
. . : J.
0000000
20
95

69
60
65
19
62
53
73

/(>
/ /
0000000
17
91
9
69
62
89
9
92
56
68
3

-------
Appendix C
Site metrics and metric scores
Slyiions are grouped by dala sel (1
* 1996-1997 calibralion dala; 2« 1997-1998 validation data). Wllhin each dala sel. stations are listed by site lype (reference, unlabeled, stressed), then
wilhin lype by ascending Siulion ID
I Sljlion 10
Sirtam Nam*
SlU
Typ«
Btnthlc
SamnU ID
Colltct
Oat*
WVPNO
WVPNO
WVPNU
WVPNB
WVPNB
WVPNB
WVPNB
WVPSQ
WVPSO
WVPSO
wvpsb
WVPS0
WVPSB
WVPSO
WVPSO
WVPSU
WVPSO
WVPSO
WVPSD
WVPSO
wvpsb
WVPSB
WVPSB
WVPSB
wvpsb
wvpsb
WVPSB
WVPSB
WVPSO
vvvPSO
wvpso
WVPSB
WVPSB
WVPSB
WVPSB
WVPSO
WVPSB
WVPSB
WVPSB
WVPSB
wvpsb
WVPSO
WVPSQ
WVPSB
WVPSB
WVPSB
WVPSB
WVPSB
wvpsb
WVPSB
WVPSB
WVPSB
WVPSO
WVPSO
WVPSB
WVPSB
WVPSB
WVPSB
WVPSB
WVPSQ
WVPSO
4-v		ELLI06R RUN
< W.'i	WHIP RUN
7-iOJU]	New CREEK
7 (08 4)	NEW CREEK
7.(10 4}	newcreek
7-H0 6)	AS"H SPRING RUN
7-H	LINTON CREEK
0	S	1ST UNNAMED TRlB /SOUTH BR POTOMAC
1	STONEY RUN/SOUTH BR POTOMAC
18	ABERNATHYRUN
I*	2ND UNNAMEO TRlB /SOUTH BR POTOMAC
11	MCDOWELL RUN
13	Mill RUN
14	BUFFALO RUN
16	• DEVIL MOLE RUN
16-A	SAWMILL RUN
17	A	CLIFFORD HOLLOW
19	ANOERSONRUN
1	8 2	UNNAMEO TRIB/S BR POT SOUTH OP MCNEIL
18-A (1.0)	MUDLICK RUN AT MOUTH
18	A O 5	UNNAMEO TRIB/MUOUCK RUN
16-A-1	TURNMILL RUN/MUD LICK RUN
IB B	WALNUT BOTTOM RUN
10	WILLIAMS HOLLOW/GLEBE RUN
2	JOHN'S RUN
2 1 -{01 0}	SOUTH FK/SOUTH BR POT NEAR MOUTH
21-AA	MILLER RUN
21 F	'DUMPLING RUN/MOORE FIELD RUN
21 -F	OUMPLING RUN/MOOREFIELO RUN
21-GG	LITTLE FORK
21-HH	STONY RUN/MOOREFIELO RUN
2 I -I
2 1 11
21-K
ii-K-i
21N
2 I -O
21-Q
21-R
2 IT
23-A
23-A-1
26
26-A
26-B
26-C
28-D
2G0 2
26-D-3
20-E
20-E-2
20- 5A
20 (00 5)
28(18 U|
20 A-l
^8-A-2
20 8
20-CC
28 E
28 EE
28-EE-i
KETTLE CREEK
BRUSHY FORK
ROUGH RUN/MOOREFIELO RUN
LITTLE ROUGH RUN
OICE RUN /SOUTH FK/SOUTH BR POT
WAGNER RUN
DEAN GAP
STONY RUN
HIVELYGAP
OURGEON RUN
MITCHELL RUN/DURGEON RUN
LUNtCE CREEK
ROBINSON RUN
NORMAN RUN
BRUSHY RUN/LUNICE CK
SOUTH FORK/LUNICE CREEK
BIG STAR RUN
LITTLE STAR RUN
NORTH FK /LUNfCE CREEK
SALT BLOCK RUN	
NBRPO B240 0000000
NBRPO B272
NBRPO 8267
NBRPO 8252
NBRPO 8253
NBRPO B2S0
N8RPO 8265
SBRPO 8296
SBRPO 8285
SBRPO B280
SBRPO B286
iiiimii
IIIKIR
0000000
0000000
(ll«»|
0000000
iifim
0000000
0000000
SBRPO 6206
SBRPO 8301
SBRPO 8309
SBRPO 8311
SBRPO 8315
SBRPO 8310
SBRPO 8281
SBRPO 8332
SBRPO 8264
SBRPO 8287
0000000
0000000
0000000
0000«0«
0000000
0000000
0000000
0000000
0000000
000000#
SBRPO 8288
SBRPO 8317
SBRPO 8318
SBRPO 8297
SBRPO 8235
SBRPO 8271
SBRPO 8226
SBRPO B335
SBRPO B26B
SBRPO B276
SBRPO B246
SBRPO B26S
SBRPO B233
SBRPO B229
SBRPO B244
SBRPO 8262
SBRPO B243
SBRPO B2S8
SBRPO B287
SBRPO B323
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000100
0000000
0000000
POWERS HOLLOW
NORTH FK /SOUTH BR POT NEAR PETERSBURG
NORTH FK /SOUTH BR POT NEAR SENECA ROCKS
. BIG RUN/ JORDAN RUN
LAUREL RUN/JORDAN RUN
SAMUEL RUN
TETERGAP
HIGH RIOGE RUN
BIG RUN/NORTH FORK
COLO SPRING RUN	
SBRPO 8327
S8RPO 8231
SBRPO 8329
SBRPO 8328
SBRPO 8227
SBRPO 8238
SBRPO 8223
SBRPO 8230
SBRPO 8232
SBRPO B234
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
SBRPO B274
SBRPO 8273
SBRPO 8254
SBRPO 8230
SBRPO 0250
SBRPO 8321
SBRPO B237
SBRPO 8319
S8RPO B264
SBRPO B242
0000000
0000000
0100000
0000000
0000000
0000000
0000000
0000000
0100000
00000WW
0000000
0000000
0000000
0000000
0000000
0/0/1906
0000000
0/0/1096
0000000
0000000
ToUt
Tot. taia
EPT
EPT taxa
%
% EPT
•A
'/•Chlro
% Top 2
V. Top 2
score

HOI
INDEX
tan
•cor«
taxa
tcor*
EPT
•eoct
Chlro.
tCOTft
dominant
HDl
scoru
(SCI,
15
71
6
48
95
104
2
99
83
26
j
9!)
7 ¦>
15
71
9
60
65
93
13
88
46
64
4
0(J
0?
81'
14
87
6
62
66
72
13
68
35
101
4
7
-------
:i p e n d i x C
Site metrics and metric scores
on* jru grouped by cJaia sei (1= 1996*1997 calibration dala; 2* 1997-1998 validation data). Within each data sel. Stations are listed by site lype (reference, unlabeled, stressed), then within type by ascendin
g Station ID.
. to
v/vf'SU-28-Et 2
v;vp$D-28GG
\WPSU-28 MH
WVI' SU-28-K
vWPSB-ZB-K-1
¦•WP5U 20 K 2
V/VPGO-20-K-3
v; v P $ 0 • 2 8 • K • 4
••WPS8 28 K-5
¦VVPS6-28-K6	
w VP 513 • 28-P'
WVP5U26Q
'//VPSO-28-R
WVPSO 2H-S
WVPSD26U
. WVI'SU 28 V
WVPS028-?
WVPSO-JO
WVPSI3J0 f>
V/VI_'S 1).3?
WVPSU-33	
V/VPSB-34
WVPSB-4
WVPSB-40 •
77 V f' S U • 4 1
WVPS0-46
WVPSB-46-A
.WPSB-460
WVPS8-4 7
'¦V V P S B • 4 7 • B
" WVPSB-47-C
WVPS8S
WVPSB-50
WVPS8-53
WVPSB-O-flO 7)
WVPSB-9-6
WVPSB-98-2
WVPSB-9-F
WVPSB0F.5
WVPSB-9-G 	
WVK-11
WVK-12-{12 0>
WVK-12-A
WVK-12-F
WVK-12-H
WVK-1 4
WVK.1l3-(25.0)
WVK-16-G-1(0 4)
WVK- I9C
»WK-22'( 10.6) 	
~WK«22-( 14.4}
WVK-22-B-2
WVK-22-B-3
WVK-22 B-5 0
".VVK -22-J-( 1 J)
WVK 30
WVK-33
WVK -4 1 -A
WVK-U
WVKE-I4-G-2-A
""WVKE.23.H2 6)
SUt.mt Nam*
Sit*
Typ«
Bottihle
Simnl* 10
SAWMILL BRANCH/BIG RUN
LAUREL FORK/NORTH FK/SOUTH BR POTOMAC
STRAIGHT FORK/NORTH FK/SOUTH BR POT
SENECA CREEK
< BRUSHY RUN/SENECA CREEK
ROARING CREEK
HORSECAMPRUN
STRAQERRUN
GULF RUN
WHITES RUN
ROOT RUN
OICE RUN /NORTH FK/SOUTH BR POTOMAC
BLI2ZARO RUN
BRIERY GAP RUN
JUDY RUN
NELSON RUN
BOUSES RUN
LONG RUN /SOUTH BR POTOMAC
UNNAMED TRIB/SOUTH BR POTOMAC
OKlGGS RUN
SBRPO B2SS
SBRPO 8249
SBRPO 6260
SBRPO 6256
SBRPO 8240
SBRPO 8275
SBRPO 8247
SBRPO 8259
SBRPO 8245
SBRPO 8203
REEDS CREEK
MILL RUN /SOUTH BR POTOMAC
FOX RUN
PETERS RUN
TROUT RUN
SMITH CREEK
LITTLE CREEK
TWIN-RUN /SMITH CREEK
THORN CREEK
BLACKTHORN CREEK	
SBRPO 8276
SBRPO 8322
SBRPO 8224
SBRPO 8226
SBRPO 8266
SBRPO 8272
SBRPO 8225
SBRPO 8312
SBRPO 8316
SBRPO B306
WHITETHORN CREEK
BUFFALO CREEK
HAMMER RUN/SOUTH BR POTOMAC
EAST DRY RUN
MILL CREEK/SOUTH BR POT Q HEADWATERS
DUMPLING RUN/MILL CREEK
MAYHEW RUN
CAMP RUN/MILL CREEK
UNNAMEO TRlB/MllL CREEK
ElKLfCK RUN	•	
SBRPO B314
SBRPO 8313
SBRPO 8293
SBRPO 8302
SBRPO 8305
SBRPO 8303
SBRPO 8326
SBRPO 8331
SBRPO 8304
SBRPO 6289
SBRPO
SBRPO
SBRPO
SBRPO
SBRPO
SBRPO
SBRPO
SBRPO
SBRPO
SBRPO
6307
6262
6325
6324
8299
8291
6334
8290
8306
8292
PONO. BRANCH	stressed	LOKAN 620
THIRTEEN MILE CREEK	stressed	LOKAN BS1
ROCKY FORK	stressed	LOKAN B3S
POPLAR FORK	stressed	LOKAN B33
BAKER BRANCH	stressed	LOKAN 046
SIXTEENMILE CREEK	stressed	LOKAN B3«
EIGHTEEN MILE CREEK	stressed	LOKAN BOO '
LEFT FORK TURKEY BRANCH	stressed	LOKAN B9»
LEFT FORK FIVE AND TWENTY MILE CREEK	stressed	LOKAN BS«
HURRICANE CREEK	stressed	LOKAN B1Q3
HURRICANE CREEK	stressed	LOKAN B104
COW CREEK	stressed	LOKAN B7J
LONG BRANCH	stressed	LOKAN B7!
U T OF CROOKED CREEK	stressed	LOKAN B7S
RIDER CREEK	stressed	LOKAN 8101
ARMOUR CREEK	stressed	LOKAN B38
GALLATIN BRANCH	stressed	LOKAN B28
WOODWARO BRANCH	stressed	LOKAN B45
FIVE MILE CREEK	stressed	LOKAN BIT
SCHOOLHOUSE FORK	stressed	ELK Bt1»
BIG SANDY CREEK	stressed	ELK B163
Collect
Total
Tot. tana
EPT
EPT tax*
%
% EPT
%
%Chlro
% Top 2
•/. Top 2

Hill
INDO
Oat*
I4M
•core
laxa
•cor#
EPT
•COft
Chlro.
teor*
dominant
SCOfQ
HUI
scoru
(SCtj
tanaaan
13
62.
11
65
97
105
2
99
73
42
4
7H
77
0000000
13
62

54
79
86

92
5S
70
5
7 i
n
0000*00
14
67

62
50
55
34
67
51
76
5
07
G-3
0000000
12
57

54
60
66
25
76
66
53
&
66

0000000
12
57
10
77
59
65
35
66
53
73
5
73
68
0000100
13
62

S4
91
99
4
97
66
S3
4
b 1
t'j
0000000
14
67
11
85
71
78
26
75
66
53
5
70
1 1
0000000
16
76
10
77
66
94
5
96
53
73
4
85
d3
0000000
17
81
11
85
67
95
4
97
42
91
J
90
9 1
0000000
15
71
11
85
91
99
4
97
74
41
5
7(5
? b
.0000000
9
43
s
36
56
61
10
90
65
55
5
63
50
0000000
17
61
13
100
93
101
3
98
51
77
4
69
01
0000000
13
62
to
77
96
104
1
100
69
48
4
U!
7H
0000000
. 9
43
6
46
79
66
3
98
61
61
f,
7J,
'•-U
0000000
11
52

31
31
33

92
74
41
0
34
47
0000000
13
62
6
62
69
97
7
94
65
23
$
6CJ
Gil
0000000
10
48

46
94
f 02

99
68
19
5
72
iji
0000000
19
90
12
92
63
66
9
92
32
106
4
U6
0000000
13
62

$4
56
64
25
76
60
63

G 1
(j :j
0000000
13
62

69
93
101
3
96
79
33

76
73
0000000
14
67

54
62
68
28
73
80
31
5
65
60
0000000
10
48
5
38
32
35
56
44
69
48
6
5 l
44
0000000
12
57
6
46
56
61
23
78
40
95
4
78
69

19
90
11
85
75
82
7
94
49
79
4
82
85

16
76
9
69
81
88
10
91
56
69
4
86
00
0000000
12
57
8
62
26
26
71
29
64
25
6
55
43
0000000
19
90
13
100
86
94
7
94
63
59
4
79
06
0000000
16
76
11
85
89
97

95
63
57
4
79
81
0000000
16
76

69
51
56
16
82
51
76
5
76
73
74
0000000
13
62

S4
71
78
14
67
40
94
5
7 1
0000000
19
90
It
85
64
70
19
61
37
96
5
73
93
0000000
9
43

31
16
18
56
43
80
31
6
57
37
0000000
15
71
11
85
90
98

98
57
67
4
64
84
0000000
6
24

23
98
107
1
100
97
4
5
7 t

0000000
16
86
9
69
76
63
4
97
39
95
4
84
86

10
46
2
15
71
77
13
68
82
28
5
64
53
0000000
11
52
5
38
27
29
61
39
67
5.1
6
59
45
0000000
14
67
8
62
76
63
6
93
44
67
4
64
7 9
6 1
0000000
16
76

62
60
67
6
93
47
83
4
84
0000000
19
90
10
77
73
80
11
90
45
86
4
78
•83
0000000
14
67
8
62
38
42
52
49
68
50

65
56
0000000
14
67
8
62
71
77
16
65
55
70
3
92
75
0000000
17
61
9
69
61
67
27
74
53
73
5
74
73
0000000
14
67
9
69
36
39
56
45
78
34
5
60
54
0000000
17
Bt
10
77
83
91
9
92
45
65
3
93
{16
0000000
14
67

62
55
59
35
66
54
72
5
77
67
0000000
14
67
8
62
75
61
16
63
57
67
3
98
76
0000000
15
71
9
69
55
60
37
64
57
67
5
73
0 1
0000000
12
57

62
64
70
34
67
72
43
5
67
61
i 3
0000000
10
48

B
48
53
34
66
83
27
6
59
0000000
6
29

6
5
6
39
62
93
12
C

26
0000000
11
52
5
38
23
25
65
36
79
33
C
56
40
0000000
12
57

54
8
7
66
12
91
15
7
4/
3:'
0000000
8
38

23
4
4
45
56
72
44
/
Jr.
J J
0000000
10
48
5
36
57
62
20
60
61
CI
1
a
l
6 1
0000000
3
14
0
0
0
0
66
12
99
J 7
1 l
0000000
4
19
2
15
2
2
80
11
96
3
7
40
1 ?.
0000000
2
10
0
0
0
0
10
90
100
0
10
4
1 7
0000000
9
43

46
89 '
97
9
92
76
37
J
uy
CiU
0000000
7
33
4
31
67
95

95
66
22
2
10/
63
0000000
11
62
S
36
33
36
27
74
59
' 63
5
65

Appendix C, pageC-11

-------
Appendix C
Site metrics and metric scores
MS nr.; o.oupud by set (1 = I996-I997 caiibraiion data; 2- 1997-1998 validation data). Witnin each data set. stations are listed by site type (reference, unlabeled, stressed), Ihen
within lype by ascending Station ID.
¦ id
WVKl; VJ'U li
VKl; 2 J J»-J [1
VVVKt	II.)
WVKt/8
'•V V K t • 8 7 • C
V.'VKfc tf j
VVVK P - t
V/VKP-13 11.3)
'¦VVKP-13-13 0)	
'.VVKP-13 A-I A
WVKP-l-A
WVKP-O-(I.O)
VVVMC- I 1 D(00)
WVMC-12-C^04)
WVMC-13-{Ol}
WVMC-U-{02)
WVWC-l7-{2 0}
WVMC-17-A- 5(0)
WVMC-I7A. !, .[3) _
WVMC-17.A-(tHJ)'
WVMC-W-A-l-{0 U)
WVMC-I8-A
WVMC-23-A-(2 9)
WVWC-2G-{! 5}
VVVMC-51 -0-5
WVMC-CO-O-1
WVMC-GO-D-4 5
WVMCGOO-* 7
vwmCS-.S
WVMCS'6'C
WVMr- I t'A
WVMT. 18-|0 0)
W V M T • 2 4 • C • 2
WVMT-37-(0 0)
'.VVMT-42-Q.3 0»
VVVMT-43-A
WVM r-uo-B
WVWTD-1 1-0 5
WVMY 1 A 	
WVMY-2.D
WVMY-5
WVPNQ- tO
WVPNB ie {18 1)
WVPfJU-1 70
WVPNO-4-H5 2)
WVPN0-7-C J-MO 2)
WVPN0-?.H-2-(l 0)
WVPSO-10.A-I6 7)
Sl'«jni Name
Silt
Type
Benthle
S4
4
31
74
80
0
101
68
51 1
12 1
•J 7
7
54
66
71
24
77
55
70 4
85

3
23
89
06
2
09
61
20 % 2
100
tj3
8
62
93
101
0
101
82
60 2
1 10
(JO
10
77
89
75
5
96
46
64 4

2
IS
16
20
16
63
55
71 !>
7u

0
0
0
0
40
61
72
44 <>

12
4
31
too
too
0
10)
76
3*5 .)
'J'J

0
0
0
0
50
SO
100
0 D
7 1
I'J
0
0
0
0
64
16
91
15 7
44
1 7
s
38
67
73
11
90
74
41 3
92
i30
1
8
61
67
27
73
88
18 4
91
40
1
6
39
43
3
96
90
10 2
1 10
GO

77
77
64
S
96
53
73 4
80
87
r.i
7
54
92
too
5
96
73
43. 2
10(1
7
S4
76
83
7
94
57
67 4
85
12

46
93
101
4
97
72
44 3
94
12
3
23
62
67
19
82
56
66 5
7 3

12
92
78
85
1
100
36
• 90 .1
100
"J 4
4
31
50
54
3
96
74
4 » 5
7 1

4
31
6
7
63
38
87
21 7
49
25
5
38
34
37
23
77
47
83 S
7 1
CO

0
0
0
61
40
62
26 5
GG
27
3
23
18
. 10
59
41
77
36 0
62
J 5
3
23
15
16
36
65
57
I* 7
4 0
44
4
31
t6
. 20
76
22
86
19 6
40
29
2
15
4
4
66
34
65
24 7
37
27
7
54
57
62
3
98
44
87 3
94
75
9
69
74
81
9
91
45
66 4
09
~gT
7
54
29
31
40
61
56
69 G
03
58
6
46
45
49
21
79
46
85 S
f>5
G3
1
8
20
22
20
61
40
94 7
4 0
A (j
3
23
24
27
41
60
61
61 G
58
47
10
77
74
61
10
91
46
82 4
8 1
81
4 1
2
15
3
3
2
09
95
8 s
84
11
85
63
90
2
99
55
70 4
90
85
4
31
8
6
71
30
85
23 7
49
30
Appendix C, pageC-12

-------
Appendix C
Site metrics and metric scores
Sianons arc grouped by data set (1= 1996-199? calibration data; 2» 1997-1990 validation data). Within each data sel. stations are listed by sila type (reference, unlabeled, stressed), then
within type by ascending Station ID
Oala
Sot
Station 10
Slr*am Nam*
Site
Type
Benlhlc
SamoU 10
Colled
Date
Total
Tol. tax*
EPT
EPT taxa
%
% EPT
%
y«Chlro
% Top 2
V. Top 2
HBI
1N D E t,
tin
•core
taxa
•cor*
EPT
•cor*
Chlro.
•cor*
dominant
SCOr* HQI scoru
ISCI)
20
95
10
77
39
42
16
B5
46
84
75
/ Or-
19
90
11
85
90
86

100
69
48
87
el 0
19
90
11
65
86
95
2
99
54
73
tn
3/
19
90
13
100
90
98
4
97
66
53
99
00
21
too
14
106
87
94
3
98
64
56
103
y i
18
86
13
100
81
86
8
93
63
58
97
67
IS
71
9
69
90
98
5
96
63
58
96
81
17
81
9
69
71
77
15
86
35
102
'JO
(44
24
114
14
108
53
56
21
BO
38
08
b:i
8o
2$
119
11
85
71
77
6
93
42
91
i
Uli
17
61

100
92
100
1
100
34
104
t/lj

15
71
12
92
86
94

94
80
63
1 0?
ill)
13
62
8
62
91
99
5
98
SI
77
UL'
0 1
ts
71
11
65
90
96
8
93
51
77
101'
0?
23
110
15
115
82
90
9
92
60
63
9(1
yn
19
90
13
100
80
87
14
87
30
1 10
Uli
U 3
22
105
13
100
63
69
26
75
39
05
tl 1
«/
23
110
14
106
78
85
10
91
31
107
{1/

21
100
13
100
63
91
7
94
47
63
'J 2
o :i
20
95
15
115
92
100
4
97
47
.83
y i
9-1
19
90
8
62
83
66

85
46
64
85
75
17
81

69
80
67

91
60
62
95
81
16
76
10
77
63
90
8
93
63
56
90
b i
23
110
14
106
57
62
6
93
46
84
92
6 0
24
114
13
100
64
91

96
50
78
UU
92
18
66
12
92
74
81
7
93
52
74
91
b6
15
71
9
69
48
52
6
95
34
104
83
79
19
90
13
100
69
97
4
97
62
59
89
89
19
90
10
77
79
66
6
95
69
48
74
78
13
62
8
62
80
67
4
97
62
59
8 1
7 0
24
1U
1$
115
80
67

100
39
08
93
90
12
57
6
62
69
76
4
87
SO
78
8G
76
24
114
16
115
69
75
13
88
35
102
89
9^
17
81
6
62
63
69
28
72
69
49
00
09
16
86
10
77
61
66
17
84
44
88
Uli
8 I
16
76
11
65
57
61
36
63
S3
73
75
72
16
66

54
40
43
30
70
62
59
80
155
18
86
14
108
66
72
16
64
35
102
8tJ
08
25
119
15
115
64
70
20
81
31
' 107
80
90
17
81
12
92
81
68
16
85
48
81
93
67
15
71

54
64
69
13
88
49
79
72
72
17
61
6
46
73
79
4
97
54
72
77
76
9
43
3
23
29
32
29
72
52
76
64
51
15
71
4
31
38
41
46
94
76
30
55
48
10
48
5
38
41
45
53
48
77
36
60
46
16
71

54
70
76
2
99
63
58
75
72
13
62
6
62
62
67
30
71
60
31
66
60
4
18
2
IS
50
54
0
101
67
52
77
03
6
24
2
15
71
77

91
73
42
(>M
0 3
11
52
4
31
27
29
57
44
77
' 30
Otj
4 1
4
19
2
15
69
75
6
93
69
48
68
" oT"
11
52
3
23
30
33
13
88
56
69
7 0
'j 7
10
46 »
4
31
69
74
10
91
OS
54
r>:i
r.n
13
62
4
31
63
66
11
90
55
I 1
11

7
33
2
15
38
41
>2
69
58
• (10
/1
o;-
16
71
6
46
44
48
16
63
46
61
12
li /
17
81

69
74
60
12
88
SO
70
7
WVP 0-G-2-{0.0>
WVPC-0 0A-|O 2]
WVPC-1 -(0.2)
WVDS-(47.4)
WV0S-{5 1.6)
\VV0S-(7fl 4)
WVBST* 100
WVBST-103
WVBST • 104
WVBST-105
WV8ST-109-{0 OJ
WVDST-109(1 7 ]
WVBST-109-A
WVU5T-I00-D
WVUST-1 »0
WVDSt-1 1 I
WVUST-1 12
v/vii:; tii3
WWJSt-1 10
WVUCT-1 I 5-A
WVUST-1 15-U
WVUST-1 150
WVUST-1 15 1;
LAUREL CREEK
LEFT FORK/MILL CREEK
ROCKWELL RUN
U T. OF BACK CREEK
LITTLE BRUSH CREEK
MEAOOW BRANCH
MEAOOW BRANCH
SOUTH FORK/INOIAN CREEK
CONNOR HOLLOW
CONSTANT RUN	
TUG FORK RIVER
TUG FORK RlVER
TUG FORK RIVER
LITTLE INOIAN CREEK
ROCK NARROWS BRANCH
HARRIS BRANCH
MITCHELL BRANCH
SANOUCK CREEK
SANOLICK CREEK
RIGHT FORK / SANOLICK CREEK
LEFT FORK / SANOLICK CREEK
TUG98
TUG90
TUG98
TUG98
TUG98
TUG98
TUG98
LOK98
IOK90
LOK98
860
686
669
890
891
8110
8116
61
62
83	
7/7/1998
7/7/1998
7/7/1996
0000000
7/8/1998
7/1/1998
0000000
0140000
6/4/1996
6/4/1998
erence
erence
erence
erence
erence
erence
erence
erence
erence
etence
GAU96
GAU96
GAU96
GAU98
GAU98
GAU96
GAU98
GAU98
GAU98
GAU98
B43R
897
896
8100
8119
6120
8121
8182
6160
B181
0000000
6/3/1998
8/4/1996
8/3/1996
0000000
0000000
6/9/1996
6/6/1998
0000000
erence
erence
erence
erence
erence
erence
erence
erence
erence
orence
TUG 98
TUG98
TP096
TP096
LGU90
LGU98
LGU98
LGU98
LGU98
LGU98
8136
61
87
86
824
628
833
836
645
637
7/7/1998
7/7/1996
0000000
0000000
0000000
0000000
0000000
0000000
0000000
erence
(jreocu
erence
erence
erence
erence
erence
erence
erence
erence
LGU98
LQU98
POT98
POT98
POT96
POT96
POTB8
POT96
CAP98
CAP98
638
8135
868
642
664
821
685
666
670
689
0000000
5/3/1998
6/3/1U98
6/3/1996
6/2/1998
6/1/1996
6/3/1996
6/3/1996
6/3/1996
6/4/1998
TUG98
TUG96
TUG98
TUG98
TUG96
TUG96
TUG96
TUG96
TUG98
TUG98
66
67
69
611
613
814
615
620
82t
816
7/8/1996
7/8/1998
7/7/1996
0000000
0000000
0000000
7/1/1998
0000000
7/1/1996
7/1/1996
AOKIN BRANCH
BELCHER BRANCH
TURNHOLE BRANCH
HARMON ORANCH
SOUTH FORK
' TEA BRANCH
MCClURE BRANCH
JUMP BRANCH
SPICE CREEK	
WVUST-1 10-F
LAUREL BRANCH
TUG 98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG96
TUG96
TUG98
TUQ08
819
622
823
824
826R
627
826
829
630
831
7/1/1996
0000000
0000000
0000000
7/6/1998
7/1/1996
0000000
0000000
0000000
TUG96 832 7/6/1998
Appendix C, pageC-13

-------
Appendix C
Site metrics and metric scores
Stations are grouped by dola'sel (1 =
1996-1997 calibration data; 2« 1997-1990 validation data). Within each data set. stations are listed by site type (reference, unlabeled, stressed), then within type by ascending station id
Gjia
Sol StJllon 10
WVBST-
WVUST.
WVBST.
WVBST-
WVBST.
WVBST.
WVBST.
WVBST.
WVBST
WVOST.
17.(2.7}
24
24-{29 3}
31 8}
Q-7
25}
WVQST
wvesT
WVBST-
WVBST
WVBST
WVBST.
WVBST-
WVBST-
wvbst-
WVOST-
32
•34
•35
-40
•40-C
•4 0 H
41
42
42-A
42-B
WVOST
WVBST
WVBST
WVBST
WVBST
WVQST
WVOST
WVDST
WVOST
WVQST
43
60
C0-A-{2 0)
00-D
63-{l 2)
70-0 1)
70-06 4}
70-(?.41
70-C
70-F
WVOST
WVOST-
WVOST
WVOST-
WVOST
WVBST-
WVBST
WVOST
WVOST.
wvns t
'wvost'
wvos r-
WVQST-
WVOST-
WVUST-
WVOST•
WVOST-
WVUST.
«v v (J S T •
v.'vnsT-
wvust"
WVDST-
701
70-M-(1 a)
70M-1
70-M-3
70-N<2 /)
70-N{4 5)
70-0
70-T 2
70-U I
70-W(0 B)
Stream N*m«
Slt«
Typ*
Btnlhle
Samnlt 10
ColUet
0»U
TeUl
(»»
Tot. Oxa
tCOft
WVOSM 15-G	ROA6 FORK
WVOST-117	' LOOP BRANCH
WVBST-110	MILL BRANCH
WVBST-M9	ORYBRANCH
WVOST-120 (0 0}	LITTLE CREEK
WVBSM20-(2 0)	LITTLE CREEK
WVOST- 120-A	INOIAN GRAVE BRANCH
WVBST-121	MtLLSEAT BRANCH
WVBST-14-B	RIGHT FORK/BULL CREEK
JENNIE CREEK
PIGEON CREEK
PIGEON CREEK
. PIGEON CREEK
ELK CREEK
MILLBTONE BRANCH
PIGEONROOST CREEK
SPRING BRANCH
MILLER CREEK
SOUTH FORK /BUFFALO CREEK
SUGARTREE CREEK
SYCAMORE CREEK
LICKCREEK
MAT& CREEK
MITCHELL BRANCH
DOUBLE CAMP FORK
-SULPHUR CREEK
THACKER CREEK
SClSSORSVtlLE BRANCH
MAUCHINVILLE BRANCH
GRAPEVINE CREEK
PANTHER CREEK
GREENBRIER FORK
CUB BRANCH
HORSE CREEK
ORYFORK
ORYFORK
ORY FORK
MILE BRANCH
GRAPEVINE BRANCH
BEARTOWN BRANCH
BRAOSHAWCREEK
GROUNDHOG BRANCH
WOLFPEN BRANCH
LITTLE SLATE CREEK
LITTLE SLATE CREEK
BARTLEY CREEK
CLEAR FORK
DIG BRANCH/WAR CREEK
JACOB FORK	___
70-W-{7 B)
70-W-l-A-(0 £
70-Z(0 0}
7 I
>2
76 (OO)
70.(10 2)
7 0 - (5 15}
78-0
7B-E _
70-F
7B-H
JACOB FORK
MOUNTAIN FORK
VALL'CREEK
LICK BRANCH
HARMAN BRANCH
CLEAR FORK
CLEAR FORK
CLEAR FORK
HONEYCAMP BRANCH
COONTREE BRANCH
STONECOAL BRANCH
TUG98
TUG98
TUG98
TUG98
TUG98
TUG9B
TUG98
TUG98
TUG09
833
635
836
637
640
B41
B38
642
B44
IKIMI
mi««n
0000000
IflHIl
0000000
0000000
(IIMM
0 000000
0000000
IS
12
18
23
12
23
17
20
IS
71
S7 ,
88
110
87
110
81
05
71
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG96
TUG98
TUG98
TUG98
648
649
657
656
6139
6S4
68S
658
681
663
0000000
7/8/1998
0100000
6/3/1998
0000000
#100000
0000000
0000000
0100000
0000000
13
12
7
18
9
15
18
11
12
18
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
82
57
33
78
43
71
88
52
57
68
685
687
688
671
673
675
678
677
678
B70
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
TUG98
TUG 98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
7
18
9
9
8
18
4
7
8
4
33
78
43
43
38
78
19
33
29
19
680
684R
688
687
692
em
B112
6113
693
894
0000000
7/7/1998
7/7/1998
0000000
7/7/1998
7/7/1998
7/8/1998
7/7/1998
7/2/1998
7/2/1998
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
895
898
896
697
B101
699
6103
8104
8105
S107
7/2/1998
7/9/1998
7/9/1998
7/8/1998
7/8/1998
7/6/1998
7/9/1998
7/1/1998
7/0/1998
0000000
7
10
14
21
19
13
18
14
18
14
33
48
87
100
90
82
78
87
78
87
NEWSON BRANCH
TUG98
TUG90
TUG98
TUQ-98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG98
TUG 98
12
17
11
18
19
19
17
8
19
14
57
81
52
88
90
90
81
38
90
87
8108
8108
B109
8114
B115
B117R
B119
8120
B122
8123
7/1/1998
7/2/1998
7/1/1998
0000000
0000000
7/7/1998
0000000
0000000
7/9/1998
7/9/1998
15
10
17
10
18
13
(4
13
18
14
71
48
81
48
78
82
87
82
88
87
TUG98
8124
6128
0000000
0000000
19
11
90
52
EPTUi*
%
% EPT
%
UChlro
% Top 2
% Top 2
score

HOI
IWDL *
•cor*
EPT
•cor*
Chlro.
tcort
dominant
MUI
scut*
•:scif
48
71
77
8
95
65
55
3
!J
8
54
59
4
97
92
13
4
85
7
15
75
. 82
2
99
92
13
5
70
52
31
51
55
40
61
77
36
G
62
49
23
2
2
79
21
86
23
7
44
30
92
77
84
13
66
48
8S
5
77
Uii
82
59
84
17
83
41
92
S
71
77
48
59
84
5
96
69
49
5
72
0 5
54
30
32
50
SO
63
57
(5
59
55
62
44
47
31
69
51
77
5
04
0-1
77
73
80
17
64
44
68
5
71
7 a
48
53
56
41
60
88
19
6
61
52
64
88
98
3
96
78
38
5
76
70
46
35
36
50
50
86
49
6
02
54
23
8
9
81
40
64
25
7
39
3 I
54
41
45
41
60
65
55
6
53
50
85
84
91

99
49
79.
4
83
f]H
100
74
60
14
67
44
87
4
63
O'J
54
48
52
33
68
80
63

74
f>5
15
4
5
68
35
67
20
6
54
2U
92
84
91
5
96
70
48
3
103
HO
38
66
72
22
79
49
80
5
71
G'i
48
30
43
32
<9
85
54

63
'.i'j
38
63
66
25
78
72
44
6
02
5'i
69
87
73
21
79
47
83
4
78
1 7
23
5
8
63
36
64
25
7
4 U
:iu
69
89
97
4
97
56
05
4
/;»
111
54
-.81
86
2
99
54
72
4
tit)
!b
38
10
10 ..
62
38
82
28
0
03
* 1
31
46
.60 ,
17
83
48
82
5
71
03
38
70
78
12
89
61
01
3
92
/ 4
36
25
27
42
59
83
* 58
0
55
1
62
76
82

88
64
57
5
72
)
15
1

89
11
93
11
7
4 3

Appendix C, page C-14

-------
Appendix C
Site metrics and metric scores
Stations are grouped by data set (la
1996*1997 calibration dala; 2» 1997*1998 validation dala). Within each data set, stations are listed by site type (reference, unlabeled, stressed), then within type by ascendi
iny Station ID.
0 jtj
Sol Stallon 10
Str«am Nim«
Sit*
Typ*
W V 0 S T • 7 8 • I
WVOST-65-A
WV0ST-85 A.(0 G)
WV8ST-04
WVBST-05
WVBST-98-A
WVBST-00-{0 0}
WVBST-69-(10.4)
MOOR6CAMP BRANCH
LEFT FORK /DAVY BRANCH
LEFT FORK /DAVY BRANCH
SHANNON BRANCH
UPPER SHANNON BRANCH
PUNCHEON CAMP BRANCH
6LKHORN CREEK
ELKHORN CREEK	
WVBST-99-L-(0 0)
WVBST*99'L-(6.2)
WVBST-99-l-l
WVK-34{23.8)
WVK-34-{58.4)
WVK-fl2-{18.6}
WVK-82-{55.2}
WVK-82-{61.6}
WVKB2{80.2>
WVKC-10-I-8-C
WVKC-10-L
NORTH FORK / ELKHORN CREEK
NORTH FORK /ELKHORN CREEK
BUZZARO BRANCH
810 COAL RIVER
COAL RIVER
GAULEY RIVER
GAULEY RIVER
GAULEY RIVER
. GAULEY RIVER
RATTLESNAKE HOtLOW	
WVKC-10-N-ja 0)
WVKC-I0-P-.5
WVKC-10-T-{ \ 7 4)
WVKC-10-T-P8 5)
WVKC-10T-11-I15 3}
WVKC-10-M 1-H 5-JO
WVKC* 10-T-2
WVKC-10-T-9
WVKC-10-T-9-0
CAMP CREEK
ROCK CREEK
LONG BRANCH
SPRUCE FORK
SPRUCE FORK
SPRUCE LAUREL FORK
3) TICKLE BRITCHES FORK
LAUREL BRANCH
HEWITT CREEK
MISSOURI FORK/HEWITT
2	WVKC-10-T-9-B 5	; ISOM BRANCH
2	WVKC JO-T.9-C-2	SYCAMORE BRANCH
2	WVKC tO U-13	GRAPEVINE BRANCH
?	WVKC- 10-lJ-17	JASPER WORKMAN BRANCH
2	WVKC' 1Q-U-21	LACEYBRANCH
2	WVKC-10-U-3-B	BENNETT FORK
2	WVKC 10-U-7-A	ROACH BRANCH
2	WVKC-1 I -(5.6)	ALUM CREEK
2	wvkC- I4	FORK CREEK
2	WVKC-16-A	LEFT FORK/BULL CREEK
2	WVKC-21	BRUSH CREEK
2	WVKC-21-C	R1DGEVIEW HOLLOW
2	WVKC-29	. JOES CREEK
2	WVKC-29 A	LEFT FORK JOES CREEK
2	WVKC-29-A-3	SPIC6LICK FORK
2	WVKC-31 -{0.4)	.LAURELCREEK
2	WVKC-31-B-{0.2)	HOPKINS FORK
2	WVKC-31-B-(10 9) HOPKINS FORK
2	WVKC-31-C	COLD FORK
2	WVKC-35 (3 01	WHITE OAK CREEK
2 WVKC-35-F	LEFT FORK OF WHITE OAK CREEK
2 WVKC-4 3-{0.0)	ELK RUN
2 WVKC-43-{2.8)	ELK RUN
2 WVKC-48-(0 0)	MARSH FORK
2 WVKC-46-{15.3)	MARSH FORK
2 WVKC-48 {20 2)	MARSH FORK
2 WVKC-46-(5 8)	MARSH FORK
WVKC-46 C	HAZY CREEK
WVKC-46-E	STINK RUN
WVKC-46-G	PEACHTREE CREEK		
2
2
2	
~2 WVKC
? WVKC-
2 WVKC-
46-G-l
48G-1- 5A
48-G-2
OREWS CREEK
CANTERBURY BRANCH
MARTIN FORK
Btnthle
Collfld
ToUl
Tot. Ux»
ePT
EPT tax*
%
% EPT
%
V.Chlro
% Top 2
V. Top 2

HBI
INDEa
Samnlt ID
OaU
tax*
•cor#
laia
tcoro
EPT
•cor*
Chlro.
SCOT*
dominant
scor«
HOI
SCO'O
ISC')
TUG98 6127

14
87
5
38
60
65
9
92
56
09
5
G?
GO
TUG98 6128
miMii
10
48
5
38
48
52
23
78
44
87
5
70
62
TUG06 6120
0000000
21
100
11
85
75
82

101
61
61
4
89
68
Gu
TUG96 6130
IIIMK
IS
71
9
89
60
87
5
96
59
64
4
7 9
TUG98 61)1
MINfllll
8
38
2
15
16
16
74
27
69
17
7
40
27
TUG98 6132
IKWII
11
52
4
31
94
102
3
98
93
1
5
70
60
TUG98 6136

11
52
2
15
34
37
36
64
62
60
c
50
48
TUG96 B137
0000000
8
38
4
31
46
50

98
51
76
6
57
5 a
TUG98 Bt34
MIHII
6
29
3
23
68
74
25
75
83
26
5
65
40
TUG98 BUS
IKHM
10
48
2
15
24
26
64
36
60
31
7
49
34
TUG66 6193
0000000
10 .
48
8
48
75
82
4
97
82
29
5
72
62
COAL97B15
0000000
18
88
10
77
82
89
2
99
68
50
4
70
82
80
COAL97618R
0000000
18
78
9
89
76
85
5
96
51
77
4
U 1
GAU98 62
0000000
10
48
4
31
20
21
61
40
72
43
(5
56
4 0
GAU08 84
0000000
1$
71
10
77
69
75
15
86
47
83
5
73
70
GAU98 BS
0000000
14
87
9
89
75
81
tl
90
55
70
5
lb
fb
GAU90 68
0/5/1098
18
78
10
77
87
94
5
98
44
87
4
U2
1)0
COAL97 66S
0000000
13
82
5
38
26
31
20
81
42
00
r>
70

COAL97B11
0000000
18
78
8
02
71
77
8
03
56
60
4
03
/ /
COAL97608
0000000
18
78
8
46
25
26
32
66
65
55
&
64

COAL97 648
0000000
18
78
5
38
27
29
17
64
46
85
s
7G
6'j
•>7
COAL97875
0000000
12
57
5
38
52
57
10
9!
45
88
5
74
COAL97678
0000000
10
48
5
36
27
29
10
90
74
40
5
7 1

COAL97 679
0000000
12
57
T
54
88
96

97
79
33
5
/ 2

COAL97 686
0000000
8
29
5
36
36
39

101
76
38
4
«c
81
1,5
COAL97 638
0000000
17
81
7
54
60
66
13
66
64
57
1
/ l
COAL97 630R
0000000
11
52
4
31
72
79
11
90
62
80
4
7
COAL97 BS4
0000000
15
71
8
46
60
67
6
96
47
83
A
02
/u
COAL97 B29
0000000
14
87
7
54
65
92
9
92
73
42*
5
72
/u
7 O
COAL97 881
0000000
17
81
8
46
52
57
10
91
50
79

CO
COAL97 BflO
0000000
17
81
8
62
79
66
5
96
66
53
4
70
/ li
COAL97 822
0000000
18
78

69
90
96
7
94
81
29

74
" / 'J
COAL97 612
0000000
2
10

6
SO
54
0
101
100
O '
2
90
COAL97 855
0000000
19
90
8
82
84
92
4
97
69
49
4
82

Appendix C, pageC-15

-------
Appendix C
Site metrics and metric scores
Siaiiuns are grouped by
daiasei (i» 1996*1997 calibration data; 2» 1997-1998 validation data). Within each daia set, stations are listed by site type (reference, unlabeled, stressed J. then
wllhin lype by ascending Slaiion ID.
Stream Nam*
S It*
Typ«
Banlhle
SamnU to
Colltci
Oat#
Total
laxa
WVKC-
VVVKC-
VVVKC-
VVVKC-
VVVKC-
VVVKC-
VVVKC -
WVKC
WVKC-
WVKC-
WVKC-
VVVKC-
VVVKC
WVKC-
WVKC-
VVVKC-
WVKC-
H
4|	MUDDLETY CREEK
26	(8 8)	MUDDLETY CREEK
20-0	CLEAR FORK
2G-0-2	FAILS RUN
¦2fi;P	LAUREL FORK
27	"" PERSINGER CREEK
3	BIG CREEK
30 (0 4)	BIG BEAVER CREEK
30 (3 8}	'BIG BEAVER CREEK
GAUOS BSO
GAUOS B60
GAUOS 854
GAUOS BS2
GAU08 ess
GAUOS 871
GAUOS 872
GAUOB 866
CAU98 BSO
GAU08 B70
0100000
00000*0
0000000
0000000
0000000
0000000
0000000
*000001
0800000
0000000
GAU06 B79
GAU06 874
GAU06 883
GAUOS 864
20
10
20
10
17
14
16
15
24
13
0000000
0000000
0000000
0000000
22
16
14
21
Appendix C, pageC-16

-------
A|jpt:nclix C
Site metrics and metric scores
.ifL1 grouped by daia sei (1 = 1996*1997 calibration data; 2* 1997-1998 validalion data). Wilhiri each data sel, stations are listed by site type (reference, unlabeled, stressed), then within type by ascend
mg Sialion 10.
1 ID
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG'
WVKG
VVVKG
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
Stream Nam*
Slle
Type
Btnihlc
to
30(4 3)	8lG BEAVER CREEK
J0 0 (O U)	WYATTRUN
30 E	LITTLE BEAVERCREEK
30-H	LEFT FORK/BEAVER CREEK
30-L	BEARPEN FORK/BEAVER CREEK
30-N	LOWER LAUREL RUN
30 P	UPPERLAURELRUN
32	PANTHER CREEK
34.(0.0!	CHERRY RIVER
34-{8 8>	CHERRY RIVER
34 0	COAL SIDING RUN
34 6	LAUREL CREEK
34-E-3	SPRING RUN
34 F-(1 8}	LITTLE LAUREL CREEK
34-G-(1.0)	SOUTH FORK/CHERRY RIVER
34 -G-{9 6)	/ SOUTH FORK/CHERRY RtVER
2 WVKG-34-G-0	BECKY RUN"
2 WVKG -34 -H-(0 3}	NORTH FORK/CHERRY RIVER
V WVKG 34 H (0 5)	NORTH FORK/CHERRY RIVER
2 WVKG 34-H-1 I 0	CARPENTER RUN
2 WVKG-34-H-8	WINDY RUN
2 WVKG-35-IO.O)	CRANBERRY RIVER
WVKG-35 { 17.5)	CRANBERRY RIVER
2 WVKG-35-{ 19 ] 7} .	CRANBERRY RIVER
¦l WVKG-35-123 1)	CRANBERRY RIVER
	1	WVKG-5-10 01	TWENTYMILE CREEK	
2	WVKG-5 (1S.C}	TWENTYMILE CREEK
2 W'VKG-5 1 -(0 2)	WILLIAMS RIVER
2 WVKG-5 1 •{' 2}	WILLIAMS RIVER
2 WVKG-5 WO 0)	WILLIAMS RIVER
2 WVKG-5 I -(20 0)	WILLIAMS RIVER
2 WVKG-5-A	BUCKLES BRANCH
2 WVKG-5-B-(1.3)	BELLSCREEK
2 - WVKG-5-B-1	OPEN FORK
2 WVKG-5B-2	' SMITH BRANCH
I	WVKG - 5 0- 7	CAMPBELL fORK	
GAU98
QAU98
GAU98
GAU98
GAU98
GAU98
BBS
ere
B77
676
B60
881
GAU96
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
QAU98
B62
B87
8109
BI04
689
690
691
692
69$
698
GAU98
GAU98
GAUM
GAU98
GAU98
GAU90
GAU98
GAU98
GAU98
QAU98
694
6101
B102
693
699
610S
6108
6107
6108
6128
Colltcl
Total
Tot. taia
EPT
EPT laxa
•/.
•A EPT
%
•AChlro
% Top 2
% Top 2

HOI
IN D t »
Dim
Ul«
•cor*
tail
•cor*
EPT
scon
Chlro.
•core
dominant
scoro
H 111
SCO'O
(SCI)
#000*00
19
90
10
77
67
. 73
9
91
39
95
4
03

0000000
18
88
10
77
9?
100
3
96
70
46

70

0000000
19
82
2
IS
61
66
7
94
79
33

66
56
0000000
17
81
5
98
23
25
36
64
49
60
6
52
57
0000000
8
38
2
15
52
56
6
95
64
57

6 t
54
0000000
10
48
2
IS
36
40
9
92
65
24
6
60
46
0000000
22
t05
6
98
9
10
25
75
41
92

52
61
8/5/1998
14
67
7
54
85
93
2
99
77
37

74
70
82
0000000
15
71
11
65
85
92
2
99
56
66

79
8/4/1998
17
81
8
82
52
57
38
6S
57
66

67
66
8/5/1998
17
81
12
92
86 ,
96
5
96
45
66

92
9 1
8/5/1998
20
95
14
108
81
88
7
94
32
106

89
94
8/5/1998
19
90
11
85
86
72
U
69
36
. At

69
07
8/4/1998
18
88
11
85
79
66
11
90
30
109

85
09
8/4/1998
20
9$
12
92
86
93
10
91
62
60

60
85
8/4/1998
18
88
13
100
91
99
4
97
57
' 66

83
oy
8/4/1998
15
71
12
92
95
104
3
98
65
55

84
U3
8/4/1998
18
89
11
65
73
60
10
91
46
•64

77
0J
8/4M996
14
67
12
92
94
102
6
95
56
68

8 1
86
04
8/5/1998
10
48

54
88
98
11
90
48
62

76
8/3/1998
10
48
6
82
92
too
0
101
59
64

92
76
0000000
17
81
11
85
81
88
6
93
44
67

64
06
0000000
17
81
12
92
92
101
2
99
55
70

66
00
0000000
19
90
13
100
91
99
4
97
54
71

yo

8
48
32
35
39
61
60
69

50
54
0000000
13
82

54
64
91
11
90
68
SI

75
70
0000000
»
43
2
15
11
12
81
19
91
14

47
25
0000000
7
39
2
15
70
76
15
86
70
47

69
56
7 1
8/4/1998
13
62

54
77
64
4
97
63
57
5
74
8/5/1998
17
61

54
39
42
32
88
50
76
5
66
05
6/5/1998
15
71
8
62
62
90
5
96
68
50
5
75
74
8/5/1998
17
61
10
77
62
67
24
77
50
76

84
77
90
6/5/1998
20
95
11
65
94
102
2
99
53
74

69
6/5/1098
22
105
15
115
63
90
4
97
48
81

69
93
8 7
0000000
20
95
12
92
80
87
10
91
58
66

03
0000000
17
61
9
69
61
68
2
99
61
61

89
6 1
8/4/1998
16
78
11
85
76
82
10
91
24
119

95
86
8/4/1998
18
86
12
92
< 90
98
3
96
32
106-

101
96
8/4/1998
16
71
10
77
24
26
2
99
68
50

90
69
8/8/1998
22
10$
14
108
65
71
9
92
37
99

02
92
8/6/1998
18
88
10
77
43
47
26
75
52
74

84
74
0000000
ts
71
10
77
85
92
10
90
40
93

09
67
0000000
13
62

62
62
67
4
97
51
77

83
7 3
0000000
19
62
10
77
61
66
3
98
60
62

103
II1
0000000
19
90
12
92
67
95
4
97
44
07
4
Ui>
b 1
0000000
21
100
13
100
62
89
6
95
38
07
4
8(j
9 5
0000000
13
62
9
89
77
63
7
94
40
04
J
103
64
0000000
16
' 78
12
92
91
99
4
97
49
79
2
1 1 1
9 I
0000000
19
90
12
92
92
100
2
99
51
76
3
100
93
8/4/1998
15
71
10
77
95
103
3
98
77
37
4
yo
7 9
0000000
21
100
12
92
90
98
4
97
52
75
i
04
9 J
0000000
17
81
12
92
74
60
20
60
53
74
4
00
0 1
2
WVKG-5F
WVKG-5-L
WVKG-6-{0.6)
WVKG-0-{4.BJ
WVKG -00
WVKG-60-A
WVKG -65
WVKG-6-B-0.6J
WVKG-6-D-(1 8)
WVKGC'14	
2	WVKGC-15
2	WVKGC-17 3
2	WVKGC-17.6
2	WVKGC-1 B
2	WVKGC-21
2	WVKGC-23-(3 6}
2	WVKGC-23-C
2	WVKGC-4-(0.4)
2	WVKGC-4 -A
2	WVKG W-10
2	WVKGW-10-C
2	WVKG W- 10-E
2	WVKG W-16.5
2	WVKG W-19
2	WVKGW-20
ROCKCAMP FORK
PEACH ORCHARD BRANCH
RICH CREEK
RICH CREEK
TURKEY CREEK
RIGHT FORK/TURKEY CREEK
WILLIAMS CAMP RUN
BRIOGE FORK
KELLY FORK
LICK BRANCH
HANGING ROCK BRANCH
LITTLE ROUGH RUN
PHEASANT HOLLOW
COLO RUN
6IRCHLOG RUN
NORTH FORK /CRANBERRY RIVER
LEFT FORK/NORTH FORK/CRANBERRY RIVER
6ARRENSHE RUN
LITTLE 6ARRENSHE RUN
MIDOLE FORK WILLIAMS RIVER	
GAU98
GAU98
GAU9Q
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU96
6127
6128
6129
6130
6131
6110
6115
6111
6113
em
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
6117
6122
8135
6138
6137
6138
6139
6133
6134
6146
BEECHYRUN
HEU-FOR-CERTAIN BRANCH
BRIDGE CREEK
U^PER BANNOCK SHOALS RUN
TEA CREEK
GAU98
GAU96
GAU98
GAU96
GAU98
GAU98
GAU96
GAU98
GAU98
GAU98
B7
6147
6148
6149
69
6153 <
610
6161
6180
6186
GAU98
GAU96
GAU98
GAU98
GAU98
6189
B171
6178
6177
6178R
Appendix C, pageC-17

-------
Appendix C
Site metrics and metric scores
I- ote yroupeo by djia sei (1= 1996-1997 calibration dala; 2« 1997-199B validation dala). Within each dala set, slalions are listed by slle type (reference, unlabeled, stressed), then
within lype by ascending Siotion ID.
S«H Station 10
•VVKGW-0
•.•.vo ;' H-2-D 5
V-VO-2H-3
VWOG-10
V.VOG-IO-A
'A'VOG-34
'A'VOG-34 A
V/VOG-34 fj
wvog-34-e- i
WVOG-35
717 O G • 3 0
V.'VOG -30• 0• (4 [>\
WVOGOd.G
VWOG
WVQG-3(i-K.7
V\VOG 2 (48 7)
'A'VOG-23.5
'.VVOG 21 A
WVOG -27 -H-{ I H|
WVOG-3-O 5a
W V O G • 3 0 • U
WHITE OAK RUN
U r Of MILLERS FORK
RUBENS8RANCH
MERRlTT CREEK
RIGHT PORK OP MERRlTT CREEK
SMITH CREEK
y.T. OF trace creek
MUO RIVER
MUD RIVER
MUO RIVER
STAIEY BRANCH
LOWGAP branch
FALLS BRANCH
EOENSBRANCH
STOUT CREEK	
FOURTEEN MILE CREEK
LICK BRANCH
EAST FORK/FOURTEENMILE CREEK
NELSON FORK
AARONS CREEK
HAMILTON CREEK
LAUREL CREEK
SULPHUR CREEK
LEFTHANO CREEK
LITTLE OEAOENING CREEK
PIGEONROOSTFORK
SAND CREEK .
ORY BRANCH
SHORT BEND
LAUREL FORK
MUDLlCK BRANCH
GARTIN FORK
WORKMAN FORK
MARSH FORK
CANEY BRANCH•
THOMPSON BRANCH
SMOKEHOUSE FORK
WOLFPEN BRANCH
AOAMS BR ANCH
BUCK FORK
HOOVER FORK
HENDERSON BRANCH
BULWORK BRANCH
LIMESTONE BRANCH
BIG CREEK
£0 STONE BRANCH
NORTH BRANCH/EO STONE BRANCH
CHAPMAN BRANCH
VICKERS BRANCH
OOC FORK
PERRYSBRANCH
LILY BRANCH
FOWLER BRANCH
CANOE FORK
GOOBY BRANCH	
MILL CREEK
BIG BRANCH
BUFFALOCREEK
UPP6 8. HEATH CREEK
BRUSH CREEK
FALLEN FORK
GAU98 6162
TP098 B4
TPO08 BS
LGU98 BIO
IGU98 Bit
IGU98 612
LGU98 813
LGU98 BIO
LGU98 617
LGU96 618
LGU98 B20
LGU98 822
LGU9Q 623
IGU96 626
IGU08 B27
8/4/1996
5/7/1998
0000000
0000000
000*000
IS
t4
12
8
13
71
87
57
36
62
0001000
•*000000
0000000
0000000
Hantaan
0000000
0000000
0000000
11
15
10
11
17
6
20
13
10
16
LGU08 029
LGU98 630
LGUC8 631
LGU98 632
LGU08 634
LGU08 635
LGU98 639
LGU98 640
IGU98 641
LGU96 643
LGU98 642
LGUOtf 646
LGU98 847
LGU66 648
LGU68 649
LGU98 6S0
LGU98 8S1
LGU98 653
IGU98 652
LGU98 654
LGU98 85$
LGU98 650
LGU98 657
LGU98 856
LGU90 859
LGU96 660
IGU9B 861
LGU98 862
LGU98 B83
LGU98 B73
LGU99 666
LGU98 B67
LGU98 B66
LGU98 669
LGU98 871
LGU98 B72
IGU98 874
LGU98 877
LGU98 675
LGU08 876
LGUSft 682
LGU98 864
LGU98 885
LGU08 680
LGU98 680
LGU98 691
5/0/1908
5/0/1998
5/8/1096
5/8/1998
0001000
0000000
000*000
000*000
aaaaaaa
aaaaaan
52
71
46
52
61
38
95
62
46
76
13
7
19
20
10
0
21
16
16
11
62
33
90
95
48
38
100
76
76
52
0000000
aaaaaaa
aaaaaaa
0000000
0000000
0000000
0000000
0000000
0000000
0000000
19
10
8
a
13
19
10
16
td
20
90
48
38
36
62
90
76
76
62
95
0000000
0000000
5/4/1996
5/4/1996
0000000
5/4/1996
5/4/1998
5/4/1998
5/6/1998
0000000
5/5/1998
5/5/1996
5/5/1998
5/5/1996
5/5/1998
5/6/1998
5/6/1996
0000000
5/6/1996
0000000
18
15
16
19
16
24
20
16
13
15
86
71
86
90
76
114
95
86
62
. 71
6
9
12
6
17
6
13
8
13
12
29
43
57
29
61
29
62
36
82
57
0000000
0000000
0000000
0000000
0000000
5/4/1996
18
17
13
14
16
23
88
61
62
07
86
110
EPT taxa
%
EPT
%
%Chlro
% Top 2
% Top 2

HUI
IN'OEX
scor«
EPT
«eor«
ChUo.
tear*
tiomlnam
scot*
HB1
SCO'O
(SCI)
69
95
104
2
99
52
74
3
06
f)fj
54
75
82
5
96
59
65
5
72
31
31
33
1
100
87
20 .
T
49
46
31
11
12
75
26
86
2
7
49
'2r-j
54
11
12
87
13
93
1

7
'13
31
14
15
57
43
70
47
6
55
4 1
8
26
29
41
60
67
$2
?
t
4 ')
38
19
21

54
71
4$
6
51
43
46
55
60
20
80
56
66
5
67
62
89
49
53
26
74
47
62
5
G7
7 !
23
6
6
63
37
83
27
7
43
29
69
55
60
27
74
48
82
5
70
1"j
62
93
101
3
98
58
66
4
91
bO
38
35
38
7
94
67
2
6
Si
•U\
62
87
95
3
98
84
SO


54
78
65
12
00
53
n
t~	
....
r.\ .
23
83
90
15
89
84
25
f,
7*

69
31
34
34
07
59
03
Ci
03
^>4
92
77
63
6
95
51
77
3
'J 3
M-j
38
44
48
35
68
65
54
•j
04

31
94
102
4
97
87
Jo'
'j
?[>
00
100
71
77
7
94
34
103
4
7
6
65
88
96
6
95
38
97
4
90
9 1
54
91
99

100
58
on
J
00
tin
02
45
46
36
03
01
01
(•
ii 1
l>()
00
27
29
0
05
71
45 "
(i
1
VI
115
60.
87
11
90
51
77
4
02
U'.J
Appendix C, page C-18

-------
Appendix C
Site metrics and metric scores
Sniions ate grouped by data set (1 = 1996-1997 calibration data; 2» 1997-1998 validation data). Within each data set, stations are listed by site type (reference, unlabeled, stressed), then within type by ascendm
g Station lO.
Dju
Sul
Slr«jm Nam*
Slit
Typa
8«nthlc
Collect
Tdlsl
Tol. tan*
EPT
EPT Uxa
%
% EPT
%
UChlro
% Top 2
*/VTop 2

HOI
INDl:
SamnU 10
Oat*
U&»
tcort
Uxa
•COf*
EPT
teort
Chlro.
tcora
dominant
score
HBI
SCOM)
{SCi
LQU98
892
5/4/1998
16
78
10
77
67
72
10
91
54
72
4
Id
/<)
IGU98
893
8/4/1998
7
33
4
91
39
49
30
70
55
71
5
69

LGU98
B99
5/7/1998
17
81
10
77
86
96
9
97
57 •
68
4
64
(J J
LCU98
B102
000000ft
17
81
8
62
50
55
5
96
56
69 *

7
10
fit;
LGU08
0124
0000000
15
71
9
09
40
59
92
00
55
70

i,y
u/
LGU98
0127
0000000
16
.66
8
62
70
76
17
84
56
66
5
/O
74
Louee
B126
0000000
21
100
10
77
72
78

9$
53
73
4
eo
a-j
LGU98
BOO
0000000
14
6T
6
62
91
99
9
96
64
57
4
07
?u
LGU98
8131
0000000
17
61
9
69
79
86
4
97
55
71
4
Of)
U 1
LGU98
8132
0000000
23
110
14
108
84
92
9
98
46
85
3
no
0 L
LGU98
B133
5/9/1998
20
95
11
85
70
76
14
87
$1
77
4
H3

LGU98
8137
5/3/1998
16
76
10
77
49
46
15
86
44
'88
4
04
/t;
LOU98
B196
•000000
19
62
6
46
43
46
39
67
67
52
86
5
(iO

POT98
883
8/1/1998
15
71
6
62
66
72
19
88
45
4
03
7 !
POT08
887
8/4/1998
19
90
12
92
89
96
6.
95
50
78
3
(J4

POT98
829
6/2/1998
11
S2

31
15
16
20
80
63
58
5
0/
^ .
POT98
814
0000000
14
87
5
38
38
42
f7
84
55
70
4
01
fjj
4 7
POT98
827
8/2/1998
12
57
2
15
5
6
10
91
75
40
5
74
POT98
B28
6/9/1998
11
52
5
38
14
15
81
19
66
18
6
SO
:)¦/
POT98
031
8/9/1998
14
67
7
54
33
96
29
72
50
86
5
07
0 1
POT98
61
0000000 -
5
24

8
1
1
94

97

7
42
i -t
POT98
82
0000000
4
19

8
4
4
88
93
93
. 12
6
53
2 ^
POT98
832
6/2/1998
7
99

6
4
4
77
23
89
17
7
3fJ
? 1
POT98
882
6/1/1998
13
62
6
38
91
99
48
52
69
48
6
57
4'J
POT98 04
0000000
19
62
6
46
24
26
61
40
73 .
43
6
50
4 fj
POT98
85R
6/9/1996
11
62
6
46
25
27
66
34
80
32
6
54
4 1
POT98
87
6/9/1998
14
67
6
46
92
35
44
56
61
BO
'5
05
55
POT98
B99
6/8/1998
17
81
6
46
20
22
56
44
69
46
6
57
50
POT98
B94R
0000000
9
49
9
23
9
10
60
40
86
19
G
50
3 I
POT98
B11
8/8/1998
16
76
8
62
27
29

33
86
,21
6
54
4 G
POT96
89R
8/3/1998
7
93
2
15
1
1
61
40
79
33
7
47
26
POT98
BUR
6'4M998
19
62
9
29
14
16
59
41
79
32
6
54
30
POT98
BIS
0000000
12
57
5
38
34
97
19
82
60
62
6
03
57
POT98
B3S
0000000
15
71
6
48
40
43 ;
11
90
52
75
5
70
00
POT90
B98
6/2/1998
16
76
9
69 .
51
56
9
92
40
93
4
78
94
77
POT98
844
6/3/t998
18
86
9
69
76
63
5
95
57
67
3
02
POT98
B4B
6/9/1998
15
71
9
69
85
99
5
96
65
54
3
04
Hi;
POT98
040
6/8/1998
20
95
11
85
63
69
16
85
43
89
4
00
u»
POT96
818
6/2/1998
15
71
9
09
72
79
29
78
76
38
4
ill
/1
POT98
817
6/2/1998
15
71
8
62
32
94
10
01
46
8 t
4
H2
7U
POT98
838
6/9/1998
17
61
9
89
59
56
91
70
50
76
69
5
72
? \
POT98
839
6/9/1998
20
95
10
77
55
60
29
72
56

70
74
POT98
840
6/9/1996
17
81
10
77
77
89
5
96
38
96
:i
04
BH
POT98
B41
6/2/1096
15
71
9
09
80
67
15
86
81
. 30
3

WVP. 6(1 2)
WVP-6{17,3|
WVP6-(18 4}
WVP-6-{33 8)
WVP-U-A.i
TRACE CREEK
COON CREEK
LEFTHANDFORK
BRIDGE CREEK
FLINT HOLLOW
DONLEY FORK/HAYZLETT FORK
ROCKHOUS6 BRANCH
STRAIGHT FORK
MEADOW BRANCH
TRACE CREEK
tincture fork
SUGARTREE FORK
SAND FORK
sanolick branch
ORY FORK
BIG BRANCH
LAUREL FORK
LEFT FORK/MUO RIVER
LEFT FORK/MUO RIVER
FLAT CREEK
BIG CABELL CREEK
UPTON BRANCH
STONECOAL BRANCH
BERRY BRANCH	
LUKEY FORK
TONY BRANCH
MILL CREEK
RIGHT FORK/MILL CREEK
SIR JOHNS RUN
WlLLET RUN
UT POTOMAC RV (TEAGUE'S RUN)
JORDAN RUN
OPEQUON CREEK
OP6QUON CREEK	
OPEOUON CREEK
EAGLE RUN
TUSCARORA CREEK
TUSCARORA CREEK
TUSCARORA CREEK
EVANS RUN
HOPEWELL RUN
MIDDLE CREEK
GOOSE CREEK
MILL CREEK
SYLVAN RUN
TORYTOWN RUN
SILVER SPRING RUN
HARLAN RUN
TUlllS BRANCH (TULlSUS)
BACK CREEK
BACK CREEK
BACK CREEK
BACK CREEK
UT OF BACK CREEK 02
WVP.C-A 2	KATES RUN
WVP-Q-A-(0 5)	TILHANCE CREEK
WVP -8-A-{1.0)	TILHANCE CREEK
WVP-6-A-(9.4)	TILHANCE CREEK
WVP-G-A-1 •( I 0|	HIGGINS RUN
WVP-O-C 8 (0 01	U.T. OF BACK CREEK 0 GANOTOWN
WVP-6-0	SAWMILL RUN
Appendix C, page C-19

-------
Appendix C
Site metrics and metric scores
Si;i"ons are grajpud by Jala set (1= 1996-1997 calibration dala;2« 1997-1998 validation data). Wiihin each data set. slalloru are listed by site lype (reference, unlabeled, stressed), then
within type by ascenomg Station ID
SUIion ID
Sifiam Nam*
Sit*
Type
Benthle
gamote to
Coiled
Oaie
Total
tixa
Tot. Uxa
score
wvp-o
WVt'-U.|l 0)
WVP-Q-po 0)	
WVP 9 {12 2)"
WVP-0 {IS 2)
WVI>-9.(1H 2)
.WI' O |2I G)
wvi'.y.(23 t;)
WVH-0-{33.2)
WVP-0-J35 (i)
VVVH.JH3G H)
WVI'-O Q1A (0 1)
'.vyi'-U D B'(l) !<)	
wvp.'j'Mi fjj
wvp-o-e-t
'//VfJ -9 F
WVI'-U G (0 2\i)
WVP.'j-G-l
WVI'-9-G-3
WVIMj-l
V/ VI) S •{ 1 04 J\
wvttS I • 10
WVOST-tO?
BIG RUN
sleepy creek
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
SLEEPY CREEK
ROARING run
LICK RUN
POT98 820
POT98 647
POT98 848
0/2/1808
6/1/1088
8/1/1898
18
20
ti
88
08
71
M1DOLE PORK/SLEEPY CREEK
SOUTH FORK/SIEEPY CREEK
ROCK GAP RUN
INDIAN RUN
NORTH FORK RUN
MIOOLE FORK / INDIAN RUN
HANDS RUN
TUG FORK RIVER
DRAG CREEK
GRAPEVINE BRANCH 	
POT98 840
POT98 050
POTOS est
POT98 BS2
POT98 883
POTOS 857
POT08 859
POTOS B60
POTOS 871
PQT08 B54
8/2/1808
8/2/1898
8/3/1808
8/3/1008
8/3/1808
0000000
0000000
* nun nun
e/3/t008
6/3/1808
20
18
18
10
18
10
20
10
16
IS
WVDST-1 10
WV13SM20 U
WVCiSt-M
WVIJST-16
WV[J S T • 19-(0 0|
WVt3SM9(a 0)
WVOST24-(9 OJ
WVBST-24-E-2-tO 0
WVBST-24-K-6
wvnST-3	
WVOST.31-0 0)
WVDST-33
WVBST-38
W V13 S T • 3 6
WVBST-40B
WVBST-40D
WVBST-43-A
WVBST-57-{0 6)
WVBST-57-B
WVBST-70-N-(0.0)	
WVBST-70-0
VWBST-76-8
WVBST-78-G
WVKC-10-{03 6)
WVKC-10*{ 17 0)
WVKC-10• I-(0 0)
WVKC-101(12 5)
WVKC-10 -1 - {5 0)
WVKC-lO-J
WVKC_ IO-r-[(J 3| _
WVKC- IO-T-I4 (j|
WVKC-iO-Mu
WVKC• 10• T• I HO 2)
WVKC- 10-T -1 1 (4 1)
vVVKC- 10 T i* I
WVKC- 10-1-24 -(0 0)
W.VKC-10-T-3
WVKC• 10-U• (0 4}
BELCHER BRANCH
PUNCHEON CAMP BRANCH
BULL CREEK
SILVER CREEK
MARROWBONE CREEK
MARROWBONE CREEK
PIGEON CREEK
SPRUCE FORK
SIMMONS FORK
POWOSRMU.L BRANCH
BUFFALO CREEK
WILLIAMSON CREEK
DICK WILLIAMSON BRANCH
SPROUSE CREEK
RUTHERFORO BRANCH
CHAFIN BRANCH
LICK FORK/GRAPEVINE
BULL CREEK
LEFT FORK BULL CREEK
LITTLE SLATE CREEK	
ATWELL BRANCH
SHABBYROOM BRANCH
BADWAY BRANCH
LITTLE COAL RIVER
LITTLE COAL RIVER
BIG HORSE CREEK
BIG HORSE CREEK
BIG HORSE CREEK
LITTLE HORSE CREEK
SPRUCE FORK	
SPRUCE FORK
STOLLINGS BRANCH
SPRUCE LAUREL FORK
SPRUCE LAUREL FORK
AOKINS FORK
BRUSHY FORK
LOW GAP CREEK
PONOFORK
stressed
stressed
stressed
POT9B BSS
POTOB 822
POT98 824
POTOS BSS
POTOS B73R
POTOS B75
POT08 B74
TUG08 0 3
TUG06 610
TUG08 817
OS
88
86
00
76
90
OS
00
76
71
6/3/1808
6/4/1008
6/2/1888
0000000
6/1/1808
6/2/1808
0000000
7/6/1008
0000000
0000000
15
16
10
17
18
16
22
12
18
4
71
86
00
81
86
86
105
67
66
10
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
TUG98 834
TUG08 830
TUG96 843
TUG96 64S
TUG06 847
TUG08 848
TUG08 BSO
TUG08 851
TUG08 BS2
TUQ98 882
0000000
0000000
7/7/1908
0000000
7/7/1806
7/6/1898
0000000
0000000
0000000
0000000
6
18
9
12
10
20
13
8
11
14
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
TUG98 B84
TUG98 686
TUG06 869
TUG96 870
TUG08 872
TUG08 B?4
TUG98 881
TUG98 883
TUG98 882
TUG98 BlOO
29
76
43
57
46
95
62
38
52
67
0000000
0000000
0000000
7/1/1998
7/1/1998
0000000
0000000
7/7/1998
7/7/1998
7/8/1908
stressed
stressed
stressed
stressed
stressed
stressed
stressed
siressed
strossod
stressed
TUG98 8102
TUG98 8121
TUG96 8125
COAL97 843
COAL97 844
COAL97 85
COAL97 66
COA19787
COAL07 845
COALQ7B74
15
7
6
12
6
9
7
13
12
10
71
33
29
57
29
43
33
62
57
48
7/8/1908
7/8/1008
7/1/1998
0000000
0000000
0000000
0000000
0000000
0000000
0000000
21
14
12
16
12
14
19
9
13
14
100
67
57
76
57
67
62
43
62
67
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
COAL97 877
COAL97 882
COAL97 876
COAL97 860
COAL97 81
COAL07 BIO
COAL97B48
COAL07B61
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
16
15
12
9
II
13
7
18
76
71
57
43
52
62
33
86
PT laxa
%
% EPT
%
SChlro
V. Top 2
% Top 2

HHI
inoi;
score
EPT
score
Chlro.
score
dominant
scon
HBI
scoru
(SCi
77
51
55
32
68
48
82
5
74
74
77
63
88
28
73
52
75
4
01
76
62
63
69
6
93
52
76
3
96
70
77
51
56
25
75
45
87
4
83
79
77
76
63
7
93
50
-78
3
101)
flfi
69
47
51
33
68
48
60
0
G2
6CJ
77
67
73
20
81
48
81
4
H2
ii 1
77
86
96
6
95
4S
66
3
97
UU
85
54
59
38
62
SO
77
5
75
75
92
53
58
33
68
47
84
5
77
7 
65
70
76
7
04
54
72
4
1
u j
77
87
94
8
93
62
SO
3
U2
W3
85
63
90
13
66
61
30
3
too
uo
77
67
73
21
60
72
44
4
l

IU0
75
82
15
86
SO
7U

101
'J 1
31
17
10
80
41
74
4
0
5/
4 1
69
71
76
12
69
70
47
3
98
76
0
0
0

101
SO
78
4
B5
47
8
4
5
67
34
83
26
7
43
24
69
57
62

93
63
57
r,
74

31
74
61
9
92
4i
66
4
01
Li'J
31
51
56
16
65
66
50
5
76
59
31
54
58
21
60
51
76
5
61
GO
69
62
67
2
99
60
62
jy
72
7 7
31
16
18
4
97
83
26
5
72
5 1
15
34
37
3
98
76
34
5
7 !
49
15
12
13
62
38
76
36
7
46
34
23
7
8
69
32
74
40
6
54
37
46
30
33
11
90
59
64
5
65
61
15
18
19
16
63
S3
74
7
40
44
IS
9
10
19
82
78
34
6
25
3 3
23
46
50
25
75
70
47
6
57
52
8
68
73
6
93
85
23s
5
70
4 9
15
49
53
26
74
74
40
6
55
4 7
8
56
61
17
84
80
31
5
77
4 0
38
72
78
17
64
68
50
5
60
63
23
14
15
61
39
76
34
6
52
37
38
16
16
79
21
88
16
6
52
3 j
62
50
54
26
75
56
66
6
57
69
31
64
69
29
72
8t
30
6
Gi
55
31
38
41
41
60
64
57
6
59
51
74
46
62
89
8
95
83
57
4
8 1
36
80
87
2
99
78
34
5
76

23
24
26
26
73
65
54
6
G2
5 1
23
35
38
20
81
67
St
5
66

31
20
2f
30
71
76
37

G3
4 4
15
22
24
31
70
50
n
i)
<'>0

46
73
80
11
00
52
75

4
71'
54
51
55
8
93
48
eo
(-	
n~

40
CO
65
12
89
47
63
4
/n
/?
31
39
43
26
74
55
70
5
<>u
s /
23
67
73
14
67
62
60

r,«j
5U
30
02
OS
23
78
71
40
5
ijij
5 0
40
57
62
7
94
64
56
4
til
ii/
8
4
4
9
92
8i
30
c
511
:j n
46
59
64
9
92
52
75
5
74
fs
Appendix C, page C-20

-------
Appendix C
Site metrics and metric scores
Stations are grouped by data sei (1* 1996-1997 calibration data; 2« 1997-1998 validation data). Within each data set. stations are tlsled by site type (reference, unlabeled, stressed), then
within lype by ascending Slation 10.
Dju
Sul
$tr«iin Nam#
Silt
Type
Benlhlc
Sample tf)
Collect
Totil
Tot. tin
EPT
EPT lam
%
% EPT
%
ttChlro
% Top 2
% Top 2

HOI
IN [) I' /
Date
tut
•core
t!KJ
•core
EPT
•core
Chlro.
score
dominant
•cor*
Hill
SCQfQ
(SCi)
0000000
10
48

31
02
68
11
90
71
46

68
.6
0000000
19
02
5
38
72
79
7
94
74
41
5
7 1
6-t
0000000
19
90
8
46
47
51
18
69
49
60
G
50
61

18
78

46
44
46
33
67
69
48
0
62
50
0000000
to
48
4
31
73
79
16
85
77
35
s
07
5B

10
48

8
46
50
19
81
66
54
5
GG
51
0000000
10
48
9
23
61
67
19
82
77
37
5
64
53
0000000
17
81

54
41
44
38
62
64
57
G
63
GO
40
0000000
11
52

31
30
33
45
55
63
50
0
GO
0000000
19
82
5
36
17
19
63
38
76
30
0
in
4 'i
0000000
13
82

40
48
52
38
63
83
27

GO
5?
0000000
0
43
2
15
4
4
73
27
87
20
7
4
•
. 0000000
12
57
4
31
56
63
9
92
56
60 .

70
Oi
8/4/1998
19
00

48
04
70
10 •
01
57
07

GO
/'{
8/6/1998
12
57
7
54
81
86
9
92
54
73
4
05
/b
0000000
8
98
2
15
12
13
39
61
58
60
tj
50
4 1
0000000
10
48
4
31
62
07
14
67
56
06
4
U
O'j
0000000
8
98
9
23
29
31
21
79
50
78
7
" 48
Si)

29
110
11
65
45
40
44
56
6t
01
G
GO
G t)
0000000
19
82
9
23
30
33
49
51
78
34
l)

43
0000000
25
119

69
38
41
45
55
75
39

50
G 1
0*00000
20
95
7
54
35
38
16
65
44
06
4
04 - •
74
0000000
19
90
4
31
S1

17
84
40
93
4
04
73
0000000
28
199
12
92
47
52
25
76
56
08
5
76
77
8/6/1998
8
38
4
31
66
04
2
99
83
27
5
T
61

7
39
3
23
38
41
0
101
36
98
3
97
65
0000000
8
29

0
0
0
64
37
65
24
6
61
25

11
52
5
38
80
87
10
91
86
22
5
09
GG
8/5/1998
7
99

0
0

85
15
94
9
7
42
17
8/5/1998
19
82
10
77
92
100
6
95
72
44
3
64
7S
0000000
18
78
8
62
42
45
32
66
64
57
5
64
62
0000000 •
S
24
2
15
6
9
87
13
93
11
7
45
*9
0000000
11
52

48
48
52
9
92
52
74
4
79
GG
1 4
5/8/1998
4
19
2
15
2
2
98
2
99
2
7
43
0000000
7
99
2
15
5
6
49
58
94
to
0
19
30
0000000
8
29
2
15
10
11
79
27
86
22
6
50
2G
0000000
S
24

0
0

7S
25
96
3
8
33
H
0*00000
7
99
3
23
5
5
57
43
86
19
7
47
28
0000000
10
48
5
38
37
40
22
79
52
75
5
75
59
0000000
19
82
8
46
39
42
98
63
57
68
5
. 06
58
8/9/1998
17
81

54
60
65
18
63
56
69
5
74
7 I
0000000
15
71
7
54
44
46
12
69
60
63
4
S3
68
0000000
20
95
8
62
50

18
85
46
81
6
61
73
0000000
17
81
8
62
44
48
9
92
47
62
5
bO
72
S/8/1998
15
71
9
60
89

8
95
63
56

05
70
5/4/1998
12
57
9
00
82
69
11
90
40
94
3
96
83
0000000
19
82

54
50
54
20
61
43
90
5
73
GO
0000000
16
71
10
77
16
17
18
64
79
33
5
08
59
0000000
17
81
9
09
51
56
9
92
58
66
4
78
74
0000000
10
46
5
36
26
28
60
40
72
44

5G
42
0000000
14
87
8
62
69
75
7
94
58
06
4
80
U
H?
0000000
18
78
8
02
80
67
1
100
' 50
78
4
09
0000000
10
48
3
23
41
44
47
54
85
23


4 1
00000N0
24
114
11
OS
07
73
8
93
40
03
}
04
()
0000000
17
81
8
02
• 42
40
40
00
64
56
(1
Gl
ti 1
0/2/1098
10
48
4
31
9
10
31
69
60
03

G4
•((<
0/3/1998
19
90
10
77
40
44
40
60
54
71

O'J
G'J
8/3/1008
14
87
4
31
6

44
50
05
55

ii'j
•4 1)
0/9/1908
IS
71
8
C2
42
40
43
50
72
44

(/>
0
8/2/1998
17
81
9
00
83

8
03
03
57
3

OU
0000000
12
67
5
38
48
53
29
76
44
60
4
70
05
WVK C •
WVKC •
WVKC-
WVKC-
WVKC
WVKC-
WVKC-
WVKC-
WVKC-
WVKC-
WVKC-
WVKG
wvkg'
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
WVKG
to-u-u* •»)
10 U-{4 0)
POND FORK
PONOpork
1o-u (0 0)
I0-U-12-A
10 U-7 (0 0)
10-U-7 (4 3)
10-U-7-{7 9}
2-{20)
<•{2.5}
4G-<32 6}
< 7 L (U b)
• 1
POND FORK
TRACE FORK/COW CREEK
WEST FORK
WEST FORK OF PONO FORK
WEST FORK OF PONO FORK
BROWNS CREEK
SMITH CREEK
MARSH FORK
TONEY FORK
SCRABBLE CREEK
13 { 15 6)
U-L
ia-M
19V{1 uj
19-V-(0.O)
24-{12 4}
241
•2U-0-?
-20-F
20-K.1
WVKG-20-K-1-A
WVKG-30K
WVKG-3 I
WVKG-S-B-t-C
WVKG-5-F-I
WVKG-S-P
WVKG-G-A
WVKGW-I0-G
WVOG-2-{77.2)
WVOG-3
WVOG-38-40 0}
WVOG-49-C »
WVOG-5 »-G 5
WVOG-6-I0.1)
WVOGW-I 5
WVOGKM2
WVOGM-14-{7.2}
WVOGM-2CH2 1
WVOGM-20-((3.4|
VVVOGM-?Q.D-(4 G)
PETERS CREEK
ROCKCAMP BRANCH
MCCLUNG BRANCH
LITTLE CLEAR CREEK
LITTLE CLEAR CREEK
HOMINY CREEK
COLT BRANCH
JONES RUN **
TROUT RUN
LOWER SPRUCE RUN
SPRUCE RUN
PAOOY RUN
LITTLE LAUREL CREEK
SANGAMOR6 FORK
SPRING BRANCH
ROBINSON FORK
LICK BRANCH
MCCLINTOCK RUN
MUD RIVER
OAVIS CREEK	
1')
WVOGM-20-H
WVOGM-20-l-1 •{ 1 5}
wvOGM-20-K
'¦VVOGM>20-K-{0 I)
\7VOGM-2Q-T-(3 5)
\V V O G M • 2 5 • M • I
WVOGM-25-l-p 0}
WVOGM-3-|0.W
'.WOGW-35-{1 8}
VO G M-35-{4 .<)	
1.VVOGM-4-{0 2)
WVOOM-40 J• {2 2}
V/VOGU• /-(O -
WVP- I - A - ((J 0)
WVP-4.J 18.8}
WVfJ-4 - C- 1
',VVI'-4.W
WVI'-U-W 1J
wvp.o e-(7.oj
©IG VJGLY CBEEK
U T. OF BIG CREEK
SOUTH FORK/CRAWLEY CREEK
MILL CREEK
TANYARD BRANCH
INDIAN FORK
CHARLEY CREEK
TRACE FORK
TRACE FORK
BIG CREEK 	
<>
CLYMER creek
KELIYS CREEK-
MARTIN RUN
NELSON HOltOW
JOES CREEK
VALLEY FORK
SUGARTREE FORK
LIDTTLE CABELL CREEK
BIG CREEK
BIG CREEK	
BIG CABELL CREEK
UPTON BRANCH
LOWER CREEK
ELK URANCH
OPEQUON CREEK
DRY RUN
MILL CHEEK
[JACK CREEK
MIDDLE FORK/SLEEPY CREEK
stressed
pressed
COA191B62
COAL97 B83
itretsed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
COAL97B64
COA197B88
COA197689
COA197 690
COAL97 891
COAL97B0
C0A19) B72
C0ALU7 653
COA197 687
GAU08 All
stressed
stressed
stressod
stressed
siressed
strossed
stressed
stressod
ilrestod
stressed
GAU90
GAU98
GAU98
GAU98
GAU90
GAU98
GAU98
GAU06
GAU98
GAU98
BI9
BIO
617
645
847
858
BS7
B61
603
BOO
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
stressed
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
GAU98
LGU98
LGU96
607
679
888
8112
8118
812$
8132
8172
819
625
stressed
stressed
stressed
siressed
stressed
siressed
siressed
stressed
siressed
siressed
LCU98
LGU98
LGU98
LGU98
LGU98
LGU98
LGU98
CGU98
LGU98
LGU98
844
870
678
889
887
688
BOO
6100
8107
B94
siressed
stressed
stressed
siressed
siressed
siressed
sirossed
stressed
stressed
stressod
LGU98
LGU98
LGU98
LGU98
IGU98
LGU99
LGU98
LGU96
LGU98
LGU98
698
897
698
6100
Bt04
8112
611$
8118
8121"
6122
sirossed
»ir«ssod
strossod
siressed
siressod
stressed
sttussod
stressod
stressed
LGU98
LGUO0
LGuue
POT98
POT90
POT98
POTOB
POT08
POT98
8128
0129
6134
82*
630
63
08
B37
BSC
Appendix C, page C-21

-------
APPENDIX D
SUPPORTING GRAPHS
Figures D1-D2. Distributions of metric values in reference sites separated into
potential site classes by ecoregions and by index periods.
Figures D3-D6. Discriminatory ability of each candidate metric for West
Virginia streams using calibration data (1996-1997) reference
and impaired sites.

-------
Dii-don'Kcni ami Testing of a Biological index for It'cs: l-irgin:.! Sin-
CJ*p. BV*WA -
.JL
:i
.1
¦.id.


•

Oep. RV«WA
. »

0 	
o ...J...
o .J I.
X
9 .......
9 	
3 	
...r...
C Ap*. RV*WA
S
i 20
m
-T
X
OOP. ffHNA
j




•
_E
:tr
CJVO. RV*WA
OPP- RV»WA
CM RV^M
C>«a RV*WA
I
* <01
C>«I rv«vua
'X
3 «t
3
Oe* RV«WA

s
i 30

C>ee. RV-HMA
C>«P RV«WA
Figure D-l. Benthic attributes (candidate metrics) in 67 reference sites divided into 2 Ecoregion
groups. Three Western Allegheny Plateau reference sites combined with 32 Ridge and Valley
reference sites were compared with 32 Central Appalachian reference sites. The %Diptera metric
shows the most noteworthy difference in ranges of values between the two ecoregion groups, with
somewhat lesser separation also shown by % Chironomid and % Tolerants; these three metrics are
highly correlated (Table 4-2). In most of these candidate metrics, there is no clear difference in ranges
of values between the two ecoregion groups.
Terra Tech. Inc.
D-l
March 28. 2000

-------
Developing:: and Testing of a Biological Index tor ii \:s: (¦'trguiu: Streams
Figure D-2. Benthic attributes (metrics) in 67 reference sites divided into 2 sampling periods. Twenty
reference sites sampled in May and June were compared with 47 reference sites sampled in July
through September. Possible classification is exhibited by % Filterers, EPT taxa, and Intolerant taxa.
However, % Filterers was eliminated as a metric for use in the index because of its poor discrimination
of impairment (Chapter 4; Figure D-5). EPT taxa and Intolerant taxa measured essentially the same
thing in the WV family-level data (Table 4-2, 92% correlated). The distinction shown here by these
metrics most likely reflects the presence of more Ephemeroptera in the earlier sampling period and may
support possible improvement in the assessment program by concentrating sampling earlier in the
summer. However, combined with other analyses (Chapter 3), we did not conclude that classification
by index period was required.
Tetra Tech, Inc.	D-2	March 28. 2000

-------
Devc'iopnWit (iiu! Testing o] u Biological Index for IVest l-'irguini SiiVittns
Figure D-3. Discriminatory ability of candidate metrics for West Virginia streams using 1996-1197
calibration data reference and impaired sites: Total taxa, EPT taxa, Ephemeroptera taxa, Plecoptera taxa,
Tnchoptera taxa, and Diptera taxa.
Tetra Tech. Inc.
D-3
March 28. 2000

-------
Development and Testing of a Biological Index for IVest Virginia Streams
Figure D-4. Discriminatory ability of candidate metrics for West Virginia streams using 1996-1997
calibration data reference and impaired sites: Chironomidae taxa, % dominant, %2 dominant, %EPT,
%Ephemeroptera, and %Plecoptera.
Tetra Tech. Inc.
D-4
March 28. 2000

-------
Figure D-5. Discriminatory ability of candidate metrics for West Virginia streams using 1996-1997
calibration data reference and impaired sites: %Trichoptera. %Diptera, %Chironomidae, %01igochaeta,
%Filterers, and %Scrapers.
Terra Tech. Inc.
D-5
March 28. 2000

-------
Development and jesting of a Biological Index for West Virginia Streams
Figure D-6. Discriminatory ability of candidate metrics for West Virginia streams using 1996-1997
calibration data reference and impaired sites: %Collectors, %Predators, %Shredders, Intolerant taxa,
%Tolerants, and HBI (Family biotic index).
Tetra Tech. Inc.
D-6
March 28, 2000

-------