UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
|	WASHINGTON, D.C. 20460
OFFICE OF
December 7,1995	research and development
MEMORANDUM
SUBJECT: Additional Documents for HWIR Review
i i \ \y I
FROM: Joseph Greenblott, Regulatory Support Staff
Office of Research and Science Integration (8104)
TO:	Addressees
Please find attached two addendum to the HWIR Multipathway risk analysis,
together with copies of April 26 - 27f 1995 SAB Meeting Minutes and a June 20,1995
memorandum on the OMB Review. We are still awaiting the final SAB review
report.
S7& Recycled/Recvciable
7"\	Prinuid wrltrt Soy Cone ia in* or* {joper
Vir/ contalrt* at k»a»t 75% recycled fiber

-------
Addressees:
Ben Blaney, Assistant Director
U.S. EPA/ORD/NRMRL
26 West Martin Luther King Drive
Room 235
Cincinnati, OH 45268
Steve Schmelling, Director of Research
Subsurface Processes and Systems Division
U.S. EPA/ORD/NRMRL
P.O.Box 1198
919 Kerr Research Drive
Ada, OK 74820
Mike Waters, Assistant Director
National Health and Environmental Effects Research Laboratory
U.S. EPA/ORD
Research Triangle Park, NC
Bob Swank, Deputy Director
Ecosystem Research Division
U.S. EPA/ORD/NERL
College Station Road
Athens, GA 30613
John Moore, Deputy Director
Characterization Research Division
U.S. EPA / ORD / NERL / CRD
944 East Harmon Avenue
Box 93478
Las Vegas, NV 89193
Kevin Garrahan, Assistant Director
National Center for Environmental Assessment (6602)
EPA/ORD
Room 3817
Washington, DC 20460
Stephen Nesnow, Chief
Biochemistry and Pathobiology Branch
U.S. EPA/ORD/NHEERL/ECD
Room K 322 (MD 68)
Research Triangle Park. NC 27711
2

-------
EXECUTIVE CFFiCS OF THE PRESIDENT
OFF1CS OF MANAGEMENT AND BUDGET
WASHINGTON. Q.C. 20603
MEMORANDUM FOR'SALLY KATZEN
JUN 20 1995
THROUGH:
FROM;
SUBJECT:
\ - ^
James B. MacRae, Jr.
Arthur G. Fraas A*L
Jonathan Gledhill^"
Limited Review of EPA's Risk Assessment for the
Hazardous Waste Identification Rule (HWIR)
Summary
We have given a quick look at EPA's draft 2,000 page (albeit
incomplete) risk assessment methodology supporting the Hazardous
Waste Identification Rule (HWIR) and have a variety of concerns
with EPA's approach. In addition, the analysis submitted by EPA
is incomplete/ contains errors, and apparently is undergoing
continous revision. As a result, we do not know whether (or to
what extant) EPA is addressing our concerns and those identified
in the Science Advisory Board review of EPA's methodology. What
we do know is that in some instances EPA's estimate of a "safe"
level for a chemical is hundreds or millions of times lower than
that chemical's concentration in unpolluted soils. Adopting the
draft nv:Tiber3 as regulatory levels will release only a small
fraction of the low ri3k wastes currently regulated under
extremely expensive RCRA hazardous waste standards. We are very
concerned that both we and EPA will not have enough time to
review these issues before the August 15 judicial deadline for
the HWIR proposal.
Liziita to a Full Raviaw of	Draft Methodology
Three constraints preclude our ability to undertake a
comprehensive review at this *30 int. First, EPA has not ~ivan U3
i ^ C	V 2 JT .3 ~	0 ""	V. "*•	t	"*-•	"A "* " o ~ 7 _r; " i ' arj-a ' j
~n cs.— ~i.cm — ^t t	ii i.o i'i 'I"1*'*	— —
tr.a groundwater methcdolcgy ar.a ra^uits -- of its risk assessment
methodology. Second, EPA is currently revising parts of the
draft methodology it has already provided us. Third, EPA staff
told the SAB that the current version of the methodology contains
numerous arithmetic errors. Based on EPA's expected schedule to
complete the risk assessment, we do not expect to have an
opportunity to review a complete methodology and results before
the judicial deadline.
-71 i. 3G 2 C iC 3, COITYw 2T ^	o	• -a -> ; - -• — 2
~ z „ 12 * t1! ."?».% "riC '1C , *) 7"^ :J	'«¦ - ^ 7 ~	- ¦> ? ' —• • ^ ~ j -
.ie	jrv-.-j.	ercci srr.s "r.ac -٦?A .nay
-r r.ay :.o: :o.rr fZ'z f	; tret-: : = - = ""v. s* •:;

-------
- 2 -
three principal.concerns with EPA'3 rulemaking schedule:
(1) there is no time for an external review of the complete
methodology; (2) there is no time for validation of the
methodology with actual site data; and (3) there is no time to
characterize the degree of conservatism imbedded in the "safe"
levels. In its recent public hearing on the HWI3. risk
assessment, EPA's Science Advisory 3oard (SAB) raised similar
questions. The SAB is unlikely to complete its formal report on
this risk assessment package before the end of the summer.
The HWIR Methodology'• General Approach
The analysis assumes that industry manages solid waste in three
different ways. For each of these management methods, EPA
evaluates 43 different ways waste could migrate from the dumps to
humans or wildlife. The analysis back-calculates the waste
concentration that will ensure the human or environmental
receptor does not face a risk above EPA's risk goals (for
example, a one-in-a-million increase in cancer risk over a
lifetime). For all 129 waste unit/exposure pathway combinations,
EPA- sets the lowest back-calculated waste concentration as the
draft "safe" level for that chemical.
Concerns with "Results"
The analysis list3 draft "3afa" levels for each chemical in the
analysis. As the table below indicates, some calculated "safe"
levels are lower than the concentration typically found in
uncontaminated soils. If wastes with concentrations lower than
these "safe" levels are the only wastes that would exit hazardous
waste regulation, hazardous wasts wi^ld have to be "cleaner" than
background soils.
Charaieal
^vqrage
Cancan tznti on
SWia Draft
Hai";
*atio j
i
Arsenic
5
0.02
250
Barium
430
200
2
Benzo(a)pyrene
rural > 0.002
urban > 0.1
0.0000002
> 20,000
> 1,000,000
Beryllium
6
0.002
300
| Vanadium j 10 0 ; 50 J 1,1
)
7-.:zz. i 7-i j : ^ j J3Jja, 1353.

-------
- 3 -
In addition, the exit values for three other metals — nickel,
mercury, and copper — are within the range of natural
concentrations in U.S. soils.1 People are also exposed to
chemicals in other settings. For example, benzo(a)pyrene is
found in burnt meat and other roasted food. The benzo(a)pyrene
concentration In a cup of coffee i3 often 100,000 times greater
than EPA's draft exit level. As stated above, these numbers may
or may not be the proposed exit levels, because EPA staff will be
trying to correct arithmetic errors and other analytic problems
in the risk assessment.
Methodology Problems
To calculate a "safe" level, EPA makes six explicit conservative
assumptions in each of the 43 different risk assessment pathways.
The methodology includes two conservative "assumptions for the
source contamination in the tank, ash pile, or other waste
management unit, two conservative assumptions for the migration
of contaminant from the waste unit to the human receptor, and two
conservative assumptions for the human or animal intake. The
analysis does not calculate the cumulative level of conservatism
— e.g./ 99.999 percent of the population would be exposed to
lower risks — of these six conservative assumptions. In
addition, since one pathway uses one set of six conservative
assumptions and another pathway uses a different set, it is very
hard to compare the level of conservatism across the 43 pathways.
It is even more troubling to find/ though, that the analysis
contains a number of additional implicit conservative assumptions
in methodologies or input data. A few of these implicit
assumptions or problematic methodologies are discussed below:
» Slo Siodagradatisa. SPA stiff state that, for over 70
percent of chemicals, the calculated "safe" pathway assumes
waste is managed in land treatment units (LTUs). In LTUs,
operators spread contaminated sludges onto a field and till
J .1 — C.CT2—	3 O _11 ^	^ 2.1 -"d3 3 i.	1 s
imZL	30Xlm	~ /*: •""} T" "7-a r ~Z -"i -JT7.\ ^
Although r.cdarn LTJz rsiy	on ciclcgical
degradation, EPA conservatively assumes that no
biodegradation occurs. In effect, SPA assumes 40 years open
waste dumping.
Mo Chemical Degradation. Some chemicals Immediately break
apart if exposed to water. However, since the analysis
conservatively assumes this chemical degradation.does not
occur, seme 3i:it	cawed zt chsm* ^ v implausible*
scenarios. ?cr enamels, s chemical with a. half-life of 9c
hours z.n vatir u ~° ~'• **a^ i—	ovsr 40 v-sar3
1 r?k O i- wz	^	^ ** *

-------
•	Soil Runoff Mathodology. SPA fundament a 11 y misapplies an
empirical equation to predict how much of eroded soil
reaches an adjacent stream or agricultural field.3 Thirty-
two percent of the draft exit levels depend on. this
erroneous approach.
•	No Othar Snvironmantal Regulations. Certain exposure
pathways are barred or substantially reduced by non-RCRA
environmental regulation. For example, EPA stormwater
control regulations limit contaminated soil runoff.4 Wind-
blown dust is constrained by EPA's particulate matter
standards. EPA's BACT, MACT, and other air emission
standards control volatile organic emissions from tanks.
The analysis appears to assume that other regulatory
controls do not exist or that practices violate other EPA
regulations for decades.
*	Equilibrium Analyiis. The analysis assumes that
contaminants bound to 3oils and sediments disperse
throughout a water body or field as soon as they reach it.
In a very recent SAB review of this approach in another risk
assessment document, the SAB found that these equilibrium
assumptions are unsuitable for regulatory purposes due to
the substantial scientific uncertainties in the models.5 In
general, equilibrium models overpredict off-site
contamination.
*	OŁf-Sito Wind Conditions. In many key pathways, an off-site
agricultural field is contaminated by wind-blown dust from a
LTU. The local winds are curious; in EPA's methodology,
Wind blows across the LTU and scatters contaminated dust
onto the farmer's field, but does not blow any dust off of
the farmer's field.4 It is also unclear whether EPA even
assumes that soil erodes from the farmer's field.7 By
allowing contaminants to enter the field and restricting the
ways to exit, the analysis overstates the likely
jbryc.-aura Scana-io
The calculated "safe" levels for the pathways are derived from
some physically impossible scenarios of human exposure. In
addition, some exposure scenarios, while not physically
impossible, are highly improbable. The analysis provides little
information for the public to ascertain how probable (and thus
protective) the exposure scenarios are.
Location Unisa. In -iach sxcosurs scenario, EPA locates

-------
- 5 -
subsistence farmer's field in the area downwind from a la'rge
LTU that has the maximum dust deposition. Although there is
some small possibility that these scenarios could occur,
without an estimate of the probability, policy officials and
the public can not determine whether EPA's draft levels are
protective in 90, 99, or 99.999999 percent of actual LTU
conditions.
Human Residency Immediately After Waate Placemant. For
sixty percent of the chemicals, the calculated "safe" levels
assume an adult or child takes up residence on the waste
unit immediately after it closes (assumed to be 40 years
after waste placement). It is hard to imagine this scenario
unless.local zoning officials and private developers
conspire to mask the property's past use. Residential
construction would generally place additional soil on the
waste layers to block exposure. Although there is a very
small possibility that this scenario could occur, the
analysis does not estimate the likelihood.
Subsistence Fisher. Nine percent of the exit levels are
designed to be protective of a fisher using a small stream
for subsistence fish consumption. In these situations,
contaminated soil erodes from a large LTU, reaches the
stream, and either settles to the bottom or flows suspended
in the water. However, EPA constrains the maximum amount of
sediment in stream flow to levels tolerable to fish.
Therefore, because EPA's methodologies overpredict the
amount of sediment that reaches this stream, a large amount
— four inches of sediment -r settles on the bottom of the
stream channel each year.® Since the stream channel is only
on average seven inches deep, this extreme sedimentation
would likely fill up the entire channel within a few year3.
Real streams do not silt up so quickly.'
To predict exit levels, the analysis is based on the
consumption.'*15 I^A	ccr.juzptier, rirss for -his
2ubsiscancs fiahar :har. =ra aerived from a study of Native
Americans fishing on the Columbia River.11 The Columbia
River is 250 times longer and has a flow rate 1*7, 000 times
greater than the small stream in the analysis.12 Fish are
certainly less plentiful and smaller in a smaller stream of
the sort modelled by EPA. A subsistence fisher would have
to expend a much greater effott to catch the same amount of
food a3 the Columbia River fishers. Despite the poor
fishing prospects,- tha subsistanca fisher catches ail of his
or her fish (140 lbs of ecibia filat aach vear) in this

-------
- 6 -
Fruit aiid Vogotabl* Crop Yields. EPA*s assumed subsistence
farmer grows ninety percent of his or her yearly consumption
fruit, leafy vegetables, fruiting vegetables (e.g.,
tomatoes, cucumbers), and legumes on a 75-acre field.
However, given EPA's consumption and crop yield assumptions,
the farmer needs over 480 acres of land to grow enough food
that EPA assumes he or she eat3.14 The risk assessment's
values must be erroneous. For example/ the analysis assumes
an eleven square-foot patch yields only 20¦milligrams of
edible fruit.15

-------
- 7 -
end notes
1.	Average concentrations in U.S. soils from Report to Congress
on Cement Kiln Dust, Office of Solid Waste, USEPA/ December 1993.
Draft exit levels ^rom. Review Draft, Table 0-1.
2.	An EPA report calculates the neutral (pS = 7) hydrolysis
half-life for phorate to be 96 hours. (See Jackson, J. et al.,
"Measurement of Hydrolysis Rate Constants for Evaluation of
Hazardous Waste Land Disposal: Volume 3. Data on 70 Chemicals,"
Environmental Research Laboratory, Office of Research and
Development, EPA, 1900.) The lowest exit level for phorate is
exposure pathway 9 for a land treatment unit, assuming a
subsistence farmer consumes root crops grown directly on top of
the closed unit. (See Review Draft, Table 8-1).
3.	EPA used an empirical equation to estimate sediment delivery
ratio from Vanoni, V.A., Sediment Engineering, American Society
of Civil Engineering, 197T! Although researchers generally
estimate watershed-specific sediment delivery ratios, Vanoni
formed a general relationship from the work of many authors. In
Vanoni's empirical equation, a basin's sediment delivery ratio is
proportional to the -1/8 power of the drainage area. However,
Vanoni's derived hi3 empirical relationship from sediment
measurements of complete drainage basins, not incomplete
watersheds like a waste'management unit. In these empirical
models, mobilized soil either travels to a channel or settles
inside the drainage basin. Across the waste management unit,
mobilized soil either travels to a channel or settles on
adjoining land outside the waste management unit. Since eroded
soil from the waste management unit could come to rest on land
elsewhere in the watershed, the percentage reaching water bodies
is likely to be far less than EPA's value. As a further
illustration of this problem, EPA oftan uses another empirical
model to estimate sediment delivery ratios.
Further, Z?A predict:*	cities as niu ch ^adisent daiivery from
the vasca management unii — ajaum^d to be on relatively fiat
land next to the stream — than from the more steeply-sloped land
in the rest of watershed. Thij raiaiicr.ship la exactly the
opposite of what is observed in most watershed studies. See
Johnson, R.R., Putting Soil Movement in Pessoective, J. Prod.
Agric. 1:5-12, 1980.
4.	Storm-water run-off discharges from industrial activity is
regulated under 4 0 CFR 122.2 5-. Pollution prevention plans and
best management practices are raquired to reduce pollutants
(defined as she Toxic Release Inventory list) in stormwater
discharges*

-------
- 8 -
5.	USEPA Science Advisory Board, Review of Draft "Addendum, to
the Methodology for Assessing Health Risks Associated with
Indirect Exposure to Cotnbustor Emissions," 1994.
6.	The constant to account for soil losses in the off-site
agricultural field includes a leaching constant, a degradation
constant (set to zero), a volatilization constant, a surface run-
off constant, a soil erosion constant, but riot a soil loss
constant to account for particulate erosion. See equation 6-102
on page 6-167 of the Review Draft, for example.
7.	In the example calculations presented to the Science Advisory
Board's subcommittee, there is no value for the soil loss
constant due to soil erosion. However, as discussed in the
previous note, the analysis explicitly includes this loss
mechanism.
8.	In the example calculations presented to the Science'Advisory
Board's subcommittee, the" rate of burial in the stream (Equation
6-397) is 0.1 meters, or approximately four inches per year.
9.	If a watershed really had such high levels of erosion, much
more sediment would likely stay suspended in the water and thus
preclude extensive aquatic life.
10.	See Review Draft, page 6-640.
11.	See Review Draft, page 5-146.
12.	• In the analysis the small stream is 3.5 km long and has a
flow rate of 10,000,000 liters psr year. The Columbia-Snake
river system is 2,120 km in length with a flow rate of
169,000,000,000,000 liters per year. See Showers, Victor. World
Facts and Ficmrsa, Wiley & Sons, Inc., New York: 1979.
13.	See Review Draft, page 5-146.
14.	Calculated 'rem daily ir.-aka Tsu33 =nd annual crop yields
given in Table o-lo on page 6-534 or the Review Draft.
15.	The fruit crop yiald u 2.5x10"' i
-------
RESEARCH TRIANGLE INSTITUTE
center for Environmental Analysis
November 1995
Supplemental Technical Support Document
for the Hazardous Waste Identification Rule:
Risk Assessment for
Human and Ecological Receptors
Volume 1
Prepared for
U.S. Environmental Protection Agency
Office of Solid Waste
401 M St NW
Washington, DC 20460
EPA Contract Number 68-W3-0028
RTI Project Number 35U-5819-214
3040 Cornwallis Road • Post Office Box 12194 • Research Inangle Park. North Carolina 2rrG9-2'9- USA
Telephone 919 541-7406 • Fax 919 541-7155	1

-------
TABLE OF CONTENTS
TABLE OF CONTENTS
Section	Page
List of Tables	:		 ii
1.0 Introduction		1-1
1.1	Changes in Methods			1-1
1.2	Changes in Input Values 	1-4
1.3	Document Errata 	1-4
2.0 Description of Changes 	2-1
2.1	Biodegradation and Hydrolysis in the Land Application Unit 	 		 2-1
2.2	Biodegradation, Hydrolysis, Erosion, and Runoff Losses in Off-site Field .. 2-10
2.3	Biodegradation, Hydrolysis, and Volatilization Losses from Surface Water . 2-16
2.4	Surface Water Loss Processes for Surface Impoundment Spills	2-22
2.5	Correction to Account for Soil Eroded to Off-site Fields and Adjustment to
Sediment Delivery Ratio	2-27
2.6	Elimination of Erosion Pathwyas with Source Much Smaller than
Receiving Field 	2-32
2.7	Correction to Erosion Pathways with Source Much Larger than
Receiving Field 	2-32
2.8	Ten-year Period of Non-Use Before On-site Exposures on Closed Land
Application Unit	2-33
2.9	Revised Ecological Benchmarks	2-34
2.10	Stream Order/Waterbody Characterization	2-70
2.11	Land Application Unit USLE Length Slope Factor	2-72
2.12	USLE Cover Factor	2-72
2.13	Errata: Fish Concentration Units	2-74
2.14	Errata: Fish Intake Units 	2-74
2.15	Errata: Water Exposure Values	2-74
2.16	Errata: Addition of Silver to Appendix A	2-74
3.0 References	3-1
Revised Appendices
A Summary of Physical/Chemical Properties (complete)	Volume 1
D Central Tendency Results (complete) 				Volume 2
Revised Results Tables 		Volume 2
mii	TTTTmrmmT—H———TITWTW-~ni 11 lllfll •
November 1995	i

-------
LIST OF TABLES
LIST OF TABLES
Table	Page
S-l	Index of Sections, Equations, and Tables Affected by Changes 	 1-2
S-2	Equations Affected by Revision to the Soil Loss Constant	2-11
S-3	Equations Affected by Revisions to the Surface Water Dissipation Rate 	2-17
S-4	Equations Affected by Revisions to Surface Impoundment Spills	2-22
S-5	Equations Affected by Revisions to Surface Waterbody Characterization ...... 2-70
S-6	Equations Affected by Revisions to USLE Input Parameters 	2-73
November I99S	ii

-------
1.0 INTRODUCTION
anaHMMBBaMBMi
1.0	INTRODUCTION
This document is a supplement to the Technical Support Document for the Hazardous
Waste Identification Rule: Risk Assessment for Human and Ecological Receptors, dated August
1995. It describes changes in methods and inputs since the August 1995 document, and corrects
a few errors in the August 1995 document.
This document is organized into 5 sections. This introductory section provides an
overview of the changes and document corrections, and provides an index to sections, tables, and
equations in the August 1995 document affected by the changes and corrections. Section 2 of
this document describes each of the changes or corrections in more detail, and includes revised
equations or tables as necessary. Section 3 provides references. Following the references are
updated Appendices A (chemical properties data, updated to include silver), B (new ecological
toxicological profiles for several chemicals), and D (revised central tendency results) and new
results (as revised tables for Section 8 of the August 1995 document; bound separately).
Many of the changes apply to more than one section of the August 1995 document, and
some sections are affected by more than one change. To assist the reader in locating changes.
Table S-l lists sections, tables, and equations in the August 1995 document affected by the
changes described in this document, and shows which changes apply to each affected section.
The changes are identified in the table by the number used below.
1.1	Changes in Methods
Many of the changes in the methods used in the analysis involved adding additional loss
mechanisms in soil or water throughout many of the pathways. These include:
1.	Biadegradation (corrected) and hydrolysis (added) in the land application unit
2.	Biodegradation, hydrolysis, erosion, and runoff losses from the off-site field
3.	Biodegradation, hydrolysis, and volatilization losses from surface water
4.	Burial and volatile losses in surface water for surface impoundment spills
In addition, several changes were made to pathways involving soil erosion to an,off-site field,
including:
5.	Correction to account for soil eroding onto the off-site field and adjustment to the
sediment delivery ratio to account for sources that are significantly larger than the
receiving field
November 1995
czra
r"4S*fc..rcXBa
1-1

-------
Table S-1. Index of Sections, Equations, and Tables Affected by Changes
Section
What Affected
1 2
3
4
5 6 7
8 9
10 11
12
13 14 15 16
1.7.4
Table 1-8



X




4.3.2
Table 4-4




X




Table 4-5




X



5.2.4
Table 5-3







X
5-2-7
Table 5-6







X

Eqn 5-64







X

Eqn 5-67







X
5.3.2
Table 5-15




X




Table 5-16




X



6.3.2.2
discussion
X


X

X


6.3.2.3
Eqn 6-2, 2a-c
X








Eqn 2c





X
X


Eqn 6-10





X
X

6.5.2.1
Eqn 6-13

X







Eqn 6-15





X
X


all Eqns





X


6.5.2.2
Eqn 6-21 a&b


X






Eqn 6-23

X







Eqn 6-25





X
X


all Eqns





X


6.5.2.3
Eqn 6-32

X







Eqn 6-34





X
X


Eqn 6-38
X








all Eqns





X


6.6.1.2.1
Eqn 6-49
X







6.6.1.2.4
discussion
X


X

X


6.6.2.2.1
Eqn 6-74
X







6.6.2.2.4
discussion
X


X

X


6.6.2.2.5
Eqn 6-90

X







Eqn 6-92





X
X


all Eqns





X


6.6.2.2.6
Eqn 6-99a


X






Eqn 6-100

X







Eqn 6-102





X
X


all Eqns





X


6.6.2.2.7
Eqn 6-109

X







Eqn 6-111





X
X


Eqn 6-115
X








all Eqns





X


6.6.3.2.1
Eqn 6-131

X







Eqn 6-133





X
X


all Eqns





X


6.6.3.2.2
Eqn 6-142 a&b


X






Eqn 6-143a


X






Eqn 6-144a


X






Eqn 6-145

X







Eqn 6-147





X
X


all Eqns





X



-------
Table S-1. Index of Sections, Equations, and Tables Affected by Changes
Section
What Affected
1
2
3
4
5
6
7
8
9
10
11
12 13 14 15 16
6.6.3.2.3
Eqn 6-158


X










Eqn 6-160










X
X

Eqn 6-164

X











all Eqns









X


6.7.5.1
Table 6-20









X


7.1.6
Table 7-5





X






7.3.1.2
discussion







X




7.3.5.3
Eqn 7-12




X

X






Eqn 7-14




X

X






Ecfn 7-15

X










7.3.6
Eqn 7-21. 7-21 a-d
X












Eqn 7-38
X












discussion







X




7.4.5.3
Eqn 7-50




X








Eqn 7-51




X








Eqn 7-53

X










7.5.5.2
Eqn 7-69



X








7.7.6.2
Table 7-45









X


8.0
all
X
X
X
X
X
X
X
X
X
X
X
X
Appendix A
Table A-6
X
X
X










all tables











X
Appendix B
selected profiles








X



Appendix D
all
X
X
X
X
X
X
X
X
X
X
X
X

-------
1.0 INTRODUCTION
6.	Elimination of the soil erosion pathway for waste piles when the receiving field is large
relative to the waste pile (i.e., for ecological receptors and cattle)
7.	Elimination of high end parameter combinations for the land application unit to eliminate
situations where the receiving field is significantly larger than the source
Finally, one change in the scenario for closed land application units was made:
8.	A 10 year period of non-use between closure and the start of any activities leading to on-
site exposures was added
1.2 Changes in Input Values
The input values for the following parameters were changed:
9.	Several ecological benchmarks were revised
10.	The stream order used to determine inputs for the high end waterbody was changed to
reflect a larger stream
11.	The Universal Soil Loss Equation (USLE) length slope factor for land application units
was changed to reflect 2 percent slope for consistency with the groundwater analysis
12.	The USLE cover factor was changed to reflect a greater degree of ground cover
13 Document Errata
The following reflect corrections to the documentation, not changes in the methods or
inputs:
13.	Fish concentration units for Table 5-6 have been changed to mg/g from mg/kg in the
August 1995 document
14.	Fish intake units in Equations 5-64 and 5-67 have been changed to mg/kg/d from |ig/kg/d
in the August 1995 document
15.	Water concentrations in Table 5-3 for chemicals after lead have been changed to reflect
an exposure duration of 30 years instead of 9 years
16.	Appendix A has been revised to include silver
November 1995	1-4

-------
2.0 DESCRIPTION OF CHANGES
2.1
2.0	DESCRIPTION OF CHANGES AND CORRECTIONS
This section describes each of the changes or corrections and provides revised equations
and tables where necessary. For each change, the original approach documented in the August
1995 document is described, followed by a description of the revised approach. Section numbers
refer to the August 1995 document unless explicitly identified as referring to this document.
Revised tables and equations are provided at the end of each subsection, following any
discussion, and retain the table or equation number from the August 1995 document. New
equations, where necessary, are given the number of the equation they should follow, plus a
letter. For example, equations inserted between original equations 6-1 and 6-2 would be
numbered 6-la, 6-lb, etc.
2.1	Biodegradation and Hydrolysis in the Land Application Unit
Original approach: Releases from the land application unit were partitioned among
volatilization, runoff, leaching, and biodegradation. Using a small time step (l/50th of a year, or
about 1 week), each loss was calculated sequentially for the time step. Biodegradation rates were
based on half-life data from Howard (1991), and were assumed to include transport losses such
as volatilization. Therefore, to estimate biodegradation losses, calculated losses for
volatilization, runoff, and leaching were subtracted from the total loss implied by the half-life
(see Equation 7-38). If these losses exceeded the total loss, biodegradation losses were set to
zero. Checks were made to ensure that the sum of all losses did not exceed the total mass of
contaminant available.
Revised approach: Further review of the biodegradation data suggest that these values should be
taken to exclude transport losses, and therefore used directly to calculate biodegradation losses.
In addition, hydrolysis half-life data from Howard (1991) were also used. For hydrolysis half-
lives less than one year, the half-life was converted to a rate and used. Where hydrolysis half-life
was longer than a year, hydrolysis was not considered to be an important loss mechanism, and
was not included. The biodegradation and hydrolysis half-life data and corresponding rates are
shown in Table A-6 (new table; provided at the end of this document as part of a complete
Appendix A).
All of the loss processes modeled in the partitioning are assumed to be first-order (see, for
example, U.S. EPA, 1993a, in which volatilization, leaching, runoff, and biodegradation losses
from soil are assumed to be first-order). A first order rate constant was calculated for
volatilization, leaching, and runoff losses and added to the first order biodegradation and
hydrolysis rate constants from Howard (1991) to determine an overall loss constant. This overall
loss constant is then applied to the initial mass of contaminant for a particular time step, and the
tsmammmmmamammamtm
November 1995

2-1

-------
2.0 DESCRIPTION OF CHANGES
2.1
total loss calculated. This change typically has little effect on the results, but ensures that in
situations where the different loss processes must compete for a limited quantity of contaminant,
that actual fosses to each mechanism accurately reflect that. Equation 7-27 has been revised to
reflect this change, and several new equations (7-27a, 7-27b, 7-27c, and 7-27d) have been added.
Equation 7-38 should be deleted.
The use of a single biodegradation or hydrolysis half life introduces some uncertainty to
the analysis. It is widely recognized that half-life data is a function of both the inherent physical
and chemical properties of the constituent, as well as the physical and chemical properties of the
contaminated media (Mackay et al. (1992)). In addition, there very often is a wide range of half-
life values Sir a given chemical in the literature. However, many studies and respected references
which contan compilations of literature data, such as Howard et al. (1991) (henceforth referred
to as "Howard'), do not include a complete description of the physical and chemical properties
that exist is the contaminated media under study. Therefore, the selection of a single half-life
value for use in the model implies that the environmental conditions ttiat existed in the selected
study are approximately the same as the environmental conditions simulated in the model.
Howard w* used as the primary reference for half-life data even though it may be somewhat
limited witk respect to the level of detail it includes concerning the physical and chemical
characteristics of the contaminated media. In addition, there also exists some question as to
whether thehalf-life values cited in Howard reflect the effects of not only degradation but also of
abiotic transport processes such as leaching and volatilization. However, the Howard reference
specifically states that the degradation half-life data do not include the effects of transport
processes. Also, the half-life data for a given media are coupled with a brief description of the
type of degndation process which corresponds to that data. Therefore, the data obtained from the
Howard reference appear to represent a single degradation process, and thus can be used in the
model withoot any adjustments. In addition, Howard is presented as a "...valuable source of
...half-lives-" in Mackay et al. (1992), another respected source of physical and chemical
property compilations for organic constituents.
Effects of Physical and Chemical Characteristics of Soil on Degradation Half-Lives
The physical and chemical characteristics of soil affect both the microbial populations in
soil and the subsequent aerobic biodegradation potential of soil. Some of these same physical and
chemical characteristics can also affect hydrolysis rates. There are a number of properties that
are believed to affect degradation rates in soil, such as:
(1) Jle oxygen level
Molecular oxygen serves two different functions during aerobic biodegradation of organic
compounds: I) it acts as a final electron acceptor for those electrons liberated during the
November 1995

-------
2.0 DESCRIPTION OF CHANGES	2.1
degradation of organic compounds; and 2) oxygen may also function as the reactant
during the initial steps of organic compound biodegradation. The supply of available
molecular oxygen often limits the extent of biodegradation in contaminated media.
(2)	pH
The pH of a system may also affect the biodegradation rates in a media. Studies have
been conducted that indicate microbial growth and subsequent biodegradation will be at a
maximum if the soil/microbe environment is maintained within a certain pH range.
Certain microorganisms may only be viable or may only be capable of metabolizing
organic compounds if their environment is maintained at a certain pH range. Therefore,
there may be differences in biodegradation rates of similar organic compounds if the pH
is different in the environments containing the compounds. For example, the
biodegradation rate of a given compound in soil with a pH of 3 may be smaller than the
biodegradation rate of that same compound in a soil with a pH of 6.5. This pH difference
may indicate that different types of microbial populations are present in the contaminated
media and thus the potential for biodegradation may also be different in the media.
The pH of an aquatic system also affects the hydrolysis rate. Surface waters with a
typical aquatic pH range of 5
-------
2.0 DESCRIPTION OF CHANGES
increase in the oxygen available to the microorganisms.
(5)	mineral nutrients
The addition of organic carbon contaminants to a system also necessitates an additional
increase in the amount of essential nutrients (e.g., inorganic nitrogen and phosphorous) if
the nutritional balance is to be maintained in the system. Otherwise, the microorganisms
involved with biodegradation will not have the resources necessary to conduct this
process.
(6)	moisture content of soil
The amount of water present in the soil pore spaces affects the rate at which oxygen can
diffuse into the soil; oxygen diffuses through air faster than through water. Higher
oxygen contents in soils serve to stimulate aerobic biodegradation. However, soil
moisture also transports nutrients and organic substrate to the microorganisms in the soil.
Whereas, too little soil moisture would inhibit both transport and subsequent
biodegradation processes..
As discussed above, there are several factors which can affect soil degradation half-lives.
Therefore, it is not unusual to see significant variationsin published half-life data given the
heterogeneous nature of soil from different locations. As a result, uncertainty is introduced when
half-life data from the literature is used in the model without there being more information on the
specific chemical and physical characteristics that existed in the media when the data was
collected. This analysis assumes neutral pH, a constant temperature of 25 C, and fairly moist soil
conditions. Applying these biodegradation rates using these steady state assumptions does not
account for the environmental variability relevant to biodegradation. A more correct approach
would be to use kinetic models that account for the above factors. For most situations, the
approach used is not conservative, and will tend to overestimate biodegradation for many
environmental conditions across the country. For example, winter temperatures in much of the
country would probably preclude significant degradation during the winter months.
As the discussion and examples presented above demonstrate, there are several factors
associated with the degradation half-life data that introduce uncertainty to this analysis.
JMtSMOB
November 1995
m
2-4

-------
2.0 DESCRIPTION OF CHANGES
2.1
	Partitioning Model: Mass Remaining at Time t	
Active Land Application Unit.
M, = (A*,., + V (1 " e'V)	<7"27)
Closed Land Application Unit
M, = M(_j • (1 - ek-')
Parameter
Definition
Central
tendency High-end
value value
Refer to
M.
Mass remaining at time t (g)
Calculated

M„
Mass at time 0 (g)
0

M-rr
Mass contaminant applied in time step (g)
3.8e+6 8.2e+8
7.3.2
k.
Overall loss constant (yr'1)
See Equation 7-27a

t
Time step (yr)
0.02
7.3.6
Source: Mass balance.
rmttmmmmmmmmammmamm
November 1995
2-5

-------
2.0 DESCRIPTION OF CHANGES
2.1
Partitioning Model: Overall Loss Constant
k, = Koi + ki + kr + Ko + K	(7-27a)
Parameter
Definition
Central
tendency High-end
value value
Refer to
k.
Overall loss constant (yr"')
Calculated

kvnl
Volatilization loss constant (yr')
See Equation 7-27b

k,
Leaching loss constant (yr'1)
See Equation 7-27c

K
Runoff loss constant (yr'1)
See Equation 7-27d

kh.n
Biodegradation loss constant (yr1)'
Chemical-specific

kn
Hydrolysis loss constant (yr1)
Chemical-specific

Source: Mass balance.
November 1995	2-6

-------
2.0 DESCRIPTION OF CHANGES
2.1
	Partitioning Model: Calculated Volatilization Loss Constant
= 	Mvol • lOOOmg/g	
vo' C,At-AZ-BD-106 cm 3/m3 • 10"3 kg/g
Parameter
Definition
Central
tendency High-end
value value
Refer to
kvn,
Volatilization loss constant (yr')
Calculated

M„„,
Mass volatilized (j?)
See Equation 7-28

C,
Soil concentration at time t-1 (mg/kg)
See Equation 7-26

t
Time step (yr)
0.02
7.3.6
A
Land application unit area (m:)
61,000 900,000
7.3.2
Z
Depth of contamination (m)
0.2
7.3.2
BD
Sludge/soil bulk density (g/cm3)
1.5
7.3.3
Source: Mass balance.

November 1995
rTinrrmmr**' 1 1
2-7

-------
2.0 DESCRIPTION OF CHANGES
2.1
Partitioning Model: Calculated Leaching Loss Constant
v=
M, • 1000mg/g

(7-27c)
Ct_x-fA-Z-BD• 106cm3/m3-10 'lkg!g

Parameter
Definition
Central
tendency High-end
value value
Refer to
k,
Leaching loss constant (yr'1)
Calculated

M,
Mass leached (?)
See Equation 7-33

c„
Soil concentration at time t-1 (mg/kj?)
See Equation 7-26

t
Time step (yr)
0.02
7.3.6
A
Land application unit area (rrr)
61,000 900,000
7.3.2
Z
Depth of contamination (m)
0.2
7.3.2
BD
Sludj?e/soil bulk density («/cmJ)
1.5
7.3.3
Source: Mass balance.
vaanniwnnnBMBB
November 1995
2-8

-------
2.0 DESCRIPTION OF CHANGES
2.1
	Partitioning Model: Calculated Runoff Loss Constant
Mr • [OOOmg/g
r	BD' 106cm3/m3' \0'3kg/g
Parameter
Definition
Central
tendency High-end
value value
Refer to
k.
Runoff loss constant (yrl)
Calculated

M.
Mass lost to runoff (g)
See Equation 7-34

C,
Soil concentration at time t-1 (mg/kg)
See Equation 7-26

t
Time step (yr)
0.02
7.3.6
A
Land application unit area (m2)
61,000 900,000
7.3.2
Z
Depth of contamination (m)
0.2
7.3.2
BD
Sludge/soil bulk density (j?/cm3)
1.5
7.3.3
Source: Mass balance.
November 1995
2-9

-------
2.0 DESCRIPTION OF CHANGES
2.2
2.2 Biodegradation, Hydrolysis, Erosion, and Runoff Losses in Off-site Field
Original Approach: Pathways involving contamination of an off-site field include a loss term
that accounts for loss of contaminant from the soil by volatilization, leaching, and erosion/runoff.
The pathways incorporating this term include pathways involving soil erosion to an off-site field,
air deposition to off-site field, and deposition to watershed. For soil erosion and deposition to an
off-site field, this loss term included only volatilization and leaching, while for deposition to
watersheds, it included volatilization, leaching, erosion, and runoff.
Revised approach: This loss term has been modified to include losses to biodegradation and
hydrolysis for both off-site fields and watersheds, and to add erosion and runoff for off-site
fields. The original approach allowed for a balance in the amount of soil eroded onto and off of a
field, but allowed contaminant to be eroded or deposited onto the field but not lost by erosion,
leading to an accumulation of contaminant.
Because this loss term appears in several pathways, the affected equation appears several
times in the original document. Equation 6-2 has been revised to reflect the correct equation for
all instances of the soil loss constant; in some instances, only biodegradation and hydrolysis were
added, while in others, erosion and runoff were added as well. The revised soil loss constant
equation applies to the pathways, sections, and equations from the August 1995 document listed
in Table S-2.
The discussion of uncertainty regarding soil degradation and hydrolysis found in Section
2.1 of this document applies here as well.

November 1995	2-10

-------
2.0 DESCRIPTION OF CHANGES	2.2
Table S-2. Equations Affected by Revisions to the Soil Loss Constant
Pathway
Section
Equation
Biodeg &
Hydrolysis
Erosion
& Runoff
3, 5, Terr H
(offsite)
6.3.2.2	(discussion)
7.3.5.3	(equation for LAU)
7.4.5.3 (equation for wastepile)
7-15 (LAU)
7-53 (wastepile)
added
added
added
added
4, 6, Terr HI
6.3.2.3
6-2
added
added
8, Terr V
6.6.1.2.1
6-49
added
added
9 (off-site)
6.6.1.2.4 (discussion)
7.3.5.3 (equation for LAU)
7.4.5.3 (equation for wastepile)
7-15 (LAU)
7-53 (wastepile)
added
added
added
added
10
6.6.2.2.1
6-74
added
added
11 (off-site)
6.6.2.2.4 (discussion)
7.3.5.3 (equation for LAU)
7.4.5.3 (equation for wastepile)
7-15 (LAU)
7-53 (wastepile)
added
added
added
added
20, 38, Aq H
6.5.2.3
6-38
added
already
included
24
6.6.3.2.3
6-164
added
already
included
36
6.6.2.2.7
6-115
added
already
included
November 1995
2-11

-------
2.0 DESCRIPTION OF CHANGES

2.2
Soil Loss Constant

k,=ksl+ksg+ks*+ksr+kse+k,h

(6-2)
Parameter
Definition
Central
tendency High-end
value value
Refer to
K
Soil loss constant (yr"1)
Calculated

K,
Soil loss constant due to leaching (yr"1)
See Equation 6-3


Soil loss constant due to degradation (yr"1)
Chemical-specific

K,
Soil loss constant due to volatilization (yr'1)
See Equation 6-5

K
Soil loss constant due to surface runoff (yr'1)
See Equation 6-2a


Soil loss constant due to soil erosion (yr1)
See Equation 6-2b


Soil loss constant due to hydrolysis (yr')
Chemical-specific

Source: IEM (U.S. EPA, 1990e; 1993a).
¦ -»	... 		¦. - -M—>.*, '	afaJUMMLSB I IIIWHII I - " xr/rrw*
November 1995	2-12

-------
2.0 DESCRIPTION OF CHANGES
2.2
Soil Loss Constant Due to Runoff
K,-

(9 -2)j I 1 iKd.BDIB)J
(6-2a)
Parameter
Definition
Central
tendency High-end
value value
Refer to
k„
Soil loss constant due to surface runoff (yr l)
Calculated

R,
Average annual runoff (cm/yr)
WMU-specific

0
Soil volumetric water content (mL/cm3)
From Equation 6-4

Z
Soil mixing depth (cm)
2.5 (unfilled) 1 (untilled)
6.7.3.3
BD
Soil bulk density (g/cmJ)
1.5 1.2
6.7.3.1
Kd,
Soil-water partition coefficient (mL/g)
Chemical-specific.
6.7.6.1
Source: IEM (U.S. EPA. 1990e; 1993a).
wuBamaenmmm
November 1995	2-13

-------
2.0 DESCRIPTION OF CHANGES
2.2
Soil Loss Constant Due to Erosion
Kr-
l w
o.i
BD'Z
Kds»BD
0 + Kd*BD
(6-2b)
Central
tendency High-end
Parameter	Definition	value	value	Refer to
k.
Soil loss constant due to soil erosion (yr'')
Calculated

X,
Unit soil loss (kg/mVyr)
From Equation 6-2c

0
Soil volumetric water content (mL/cm3)
From Equation 6-4

z
Soil mixing depth (cm)
2.5 (untilled) 1 (untilled)
6.7.3.3
BD
Soil bulk density (g/cm3)
1.5 1.2
6.7.3.1
Kd,
Soil-water partition coefficient (mL/g)
Chemical-specific
6.7.6.1
Source: IEM (U.S. EPA. IWOc; 1993a).
November 1995

2-14

-------
2.0 DESCRIPTION OF CHANGES
2.2
Universal Soil Loss Equation
X = R»K*LS*C»P*907.18 kg/ton»245Jacre/km2 •
10 6 Jkn
(6-2c)
Parameter Definition
Central
tendency High-end
value value
Refer to
X. Unit soil loss (kg/mVyr)
Calculated

R USLE rainfall factor (yr1)
WMU-specific
6.7.3.2
K USLE credibility factor (ton/acre)
0.25
6.7.3.2
LS USLE length-slope factor (unitless)
1 3
6.7.3.2
C USLE covfcr factor (unitless)
0,1 0.5
6.7.3.2
P USLE erosion control practice factor
(unitless)
1
6.7.3.2
Source: IEM (U.S. EPA, 1990e; 1993a).
November 1995

2-15

-------
2.0DESCRIPTION OF CHANGES	2.3
2.3Riodegradation, Hydrolysis, and Volatilization Losses from Surface Water
Original Approach: Pathways involving contamination of surface water include a dissipation
tern that accounts for loss of contaminant from the water column by volatilization and burial in
sediment. The pathways incorporating this term include pathways involving diffusion from air
diroctly to surface water, soil erosion to surface water, and deposition to watershed. For soil
eroson to surface water and deposition to a watershed, this loss term included only burial in
secfinent, while for diffusion from air directly to surface water, it included volatilization and
bural in sediment. Volatilization losses were omitted for overland pathways because
cofl&minants that have a tendency to volatilize would likely do so before reaching the waterbody.
Reused, approach: This dissipation term has been modified to include losses to biodegradation in
the »ater column, hydrolysis in the water column and sediment, and volatilization where it had
beei omitted. Volatilization losses, though not likely to be significant for the overland pathways,
havt been included in the overland pathways for completeness.
Because this dissipation term appears in several pathways, the affected equation appears
sevoal times in the original document. Equation 6-13 has been revised to reflect the correct
equaion for all instances of the dissipation rate; in some instances, only biodegradation and
hydnlysis were added, while in others, volatilization was added as well. The equations for
caladating inputs to the volatilization term (overall transfer rate and dissolved fraction) appear in
the August 1995 document in several places (for example. Equations 6-17 and 6-19) and are not
repoted here. The dissipation equation in the August 1995 document contained two
typographical errors; these are also corrected in the revised equation. The revised dissipation rate
equ«ion applies to the pathways, sections, and equations from the August 1995 document listed
in Tile S-3,
The discussion of uncertainty regarding soil degradation and hydrolysis found in Section
2.1 of this document applies to degradation in water as well.

Novimber 1995	2-16

-------
2.0 DESCRIPTION OF CHANGES
2.3
Table S-3. Equations Affected by Revisions to the Surface Water Dissipation Rate
Pathway
Section
Equation
Biodeg &
Hydrolysis
Volatilization
17, 37, Aq I
6.5.2.1
6-13
added
already included
19,42, Aq ffl
6.5.2.2
6-23
added
added
20, 38, Aq II
6.5.2.3
6-32
added
added
21
6.6.3.2.1
6-131
added
already included
23
6.6.3.2.2
6-145
added
added
24
6.6.3.2.3
6-158
added
added
33
6.6.2.2.5
6-90
added
already included
35
6.6.2.2.6
6-100
added
added
36
6.6.2.2.7
6-109
added
added
November 1995
2-17

-------
2.0 DESCRIPTION OF CHANGES
2.3
Water Concentration Dissipation Rate with Volatilization

k = k,+k, + k. + k.
wt b v bio h

(6-13)
Parameter
Definition
Central
tendency High-end
value value
Refer to
K
Overall total water concentration
dissipation rate (yr l)
Calculated

K
Burial rate (yr'')
See Equation 6- 13a

K
Volatilization rate (yr1)
See Equation 6-13b

'Kn
Biodegradation rate (yr1)
See Equation 6-13c

K
Hydrolysis rate (yr1)
Chemical-specific

Source: IEM (U.S. EPA. I990e; 1993a).
i«3—pawwjMJt.tiM.in jj.iinuiw
November 1995
2-18

-------
2.0 DESCRIPTION OF CHANGES
2.3
HH
Burial Rate
0. + BS• Kd. • 10 "6 kg/mg
1 + Kd *TSS» [0'6kg/mg
(6-13a)
Parameter
Definition
Central
tendency High-end
value value
Refer to

Burial rate (yr1)
Calculated

0K.
Bed sediment porosity (unitless)
0.6
6.7.5.2
BS
Bed sediment concentration (mg
sediment/L)
106
6.7.5.2
Kd*
Bed sediment/sediment pore water
partition coefficient (L/kg)
Chemical-specific
6.7.6.1
Kd„
Suspended sediment/surface water
partition coefficient (Ukj?)
Chemical-specific
6.7.6.1
TSS
Total suspended solids (mg/L)
5
i
00
o
6.7.5.2
wh
Rate of burial (m/yr)
See Equation 6-14

D»
Depth of bed sediments (m)
0.03
6.7.5.1
Source: EM (U.S. EPA. 1990e; 1993a).
November 1995	2-19

-------
2.0 DESCRIPTION OF CHANGES

2.3
¦m'wa, ^rrt "'-i
Volatilization Rate

K 'f -f
1 v J water J d
' >>,

(6-13b)
Parameter
Definition
Central
tendency High-end
value value
Refer to
kv
Volatilization rate (yr1)
Calculated

Kv
Overall transfer rate (m/yr)
See Equation 6-17


Fraction in water column (unitless)
See Equation 6-20

f„
Dissolved fraction (unitless)
See Equation 6-19

D,
Depth of waterbodv (m)
0.67 0.18
6.7.5.1
Source: EM (U.S. EPA, 1990e; 1993a).
November ,1995	2-20

-------
2.0 DESCRIPTION OF CHANGES	2.3
Biodegradation Rate

f( = f • k ¦+• f • fa
but J water yw J benth gs

(6-13c)
Parameter
Definition
Central
tendency High-end
value value
Refer to

Biodegradation rate (yr'')
Calculated


Fraction in water column (unitless)
See Equation 6-20


Fraction in sediments (unitless)
= 1 - f.~


Biodegradation rate in water (yr'1)
Chemical-specific

K
Biodegradation rate in sediment (Yr"1)
0 (Data unavailable)

Source: IEM (U.S. EPA, 1990c; 1993a).
wa«as«ffiMi
November 1995	2-21

-------
2.0 DESCRIPTION OF CHANGES
WiTfci ^ jtfiULMWMM———8B——ii^———
2.4
2.4 Surface Water Loss Processes for Surface Impoundment Spills
Original approach: Pathways involving contamination of surface water include a loss term that
accounts for loss of contaminant from the waterbody by several different mechanisms, including'
volatilization and burial in bed sediment. These loss terms were inadvertently omitted from the
surface impoundment spill pathways
Revised approach: Losses due to volatilization, burial, biodegradation, and hydrolysis have been
added for surface impoundment spills. Table S-4 shows the pathways, sections, and equations
affected by this change. Equations 6-142a, 6-143a, 6-144a, and 6-144b have been added to
illustrate this calculation for surface impoundments. In addition, Equation 7-69 has been revised.
Table S-4. Equations Affected by Revisions to Surface Impoundment Spills
Pathway
Section
Equation Added
Description of Equation Added
19, 42, Aq EH
6.5.2.2
6-2la (see 6-142a)
6-2lb (see 6-142b)
6-22a (see 6-144a)
Load from dissolved water conc.
Fraction dissolved
Load from bed sediment conc.
23
6.6.3.2.2
6-142a
6-142b
6-143a
6-144a
Load from dissolved water conc.
Fraction dissolved
Load from total water conc.
Load from bed sediment conc.
35
6.6.2.2.6
6-99a (see 6-143a)
Load from total water conc.
November 1995	2-22

-------
2.0 DESCRIPTION OF CHANGES
2.4
Surface Impoundment Spill Load: from Dissolved Water Concentration
,	10'V% . 4,
f-f	* A
Lsptll
fwater fd
. •
dt
(6-142a)
Parameter
Definition
Central
tendency High-end
value value
Refer to
L,p.n
Load from surface impoundment spill (g/yr)
Calculated

C.
Dissolved water concentration (mg/L)
From Equation 6-139

Vf.-
Waterbpdy flow volume (L/yr)
3e+l 1 1.3e+10
6.7.5.1

Fraction of total waterbody contamination in
water column (unitless)
See Equation 6-151

K
Overall total water concentration dissipation
rate (yrl)
See Equation 6-145

V
Flow-independent mixing volume (L)
6.7e+8 8.3e+6
6.7.5.1
fd
Fraction of contaminant dissolved in water
column (unitless)
See Equation 6-142b

d.
Depth of water column (m)
0.64 . 0.15
6.7.5.1
d,
Total depth of waterbody (water column and
sediment) (m)
0.67 0.18
6.7.5.1
Source: IEM (U.S. EPA. 1990c: 1993a).
November 1995
fWIBMB
2-23

-------
2.0 DESCRIPTION OF CHANGES
¦nBBMnnnHflDtrUltSIBBSMHMMMHiMMHHMI
Rsam«Tt?.'*ee
2.4
¦etoa.s^xi-"
Dissolved Fraction

/ ~ 1
d l+Kd^TSS'lO'Hg/mg

(6-142b)
Parameter
Definition
Central
tendency High-end
value value
Refer to
f.
Dissolved fraction (unitless)
Calculated

Kd„
Suspended sediment/surface water
partition coefficient (L/kg)
Chemical-specific
6.7.6.1
TSS
Total suspended solids (mg/L)
10 80
6.7.5.2
Source: IEM (U.S. EPA. I990e; 1993a).
November 1995

2-24

-------
2.0 DESCRIPTION OF CHANGES
2.4
Surface Impoundment Spill Load: from Total Water Column Concentration
L -C"
•lyfx'LauSK,' V)*103ZVm3' lO'V™*
dw

(6-143a)
'-'spill
fvoter


Parameter
Definition
Central
tendency
value
High-end
value
Refer to

Load from Surface Impoundment spill (g/yr)
Calculated

c„
Total water column concentration (mg/L)
From Equation 6-140

Vf.
Waterbodv flow volume (L/yr)
3e+l 1
I.3e+10
6.7.5.1

Fraction of total waterbody contamination in
water column (unitless)
See Equation 6-151

K
Overall total water concentration dissipation
rate (yrl)
See Equation 6-145

V
Flow-independent mixing volume (L)
6.7e+8
8.3e+6
6.7.5.1
d~
Depth of water column (m)
0.64
0.15
6.7.5.1
d,
Total depth of waterbody (water column and
sediment) (m)
0.67
0.18
6.7.5.1
Source: IEM (U.S. EPA. 1990e; 1993a).
November 1995	2-25

-------
2.0 DESCRIPTION OF CHANGES
nn<*
2.4
Surface Impoundment Spill Load: from Bottom Sediment Concentration	
This algorithm was used for dioxins and PCBs. 		
Cbi'frfx'fwaur + Ksty l&Um^lO^g/mg db
'Spa, =	}	 * -J	(6- 144a)
Jbemh
Central
tendency	High-end
Parameter	Definition	value	value	Refer to
Up.ii
Load from surface impoundment spill (pjyr)
Calculated

C*
Contaminant concentration in bottom
sediment (mg/kj?)
From Equation 6-141

vf.
Waterbody flow volume (L/yr)
3e+ll 1.3e+l0
6.7.5.1
f
•water
Fraction of total waterbody contamination in
water column (unitless)
See Equation 6-151

K
Overall total water concentration dissipation
rate (yr1)
See Equation 6-145

V
Flow-independent mixing volume (L)
6.7e+8 8.3e+6
6.7.5.1
^benth
Fraction of contaminant in bed sediments
(unitless)
— 1 " f*atr

dh
Depth of bed sediments (m)
0.03
6.7.5.1
d,
Total depth of waterbody (water column and
sediment) (m)
0.67 0.18
6.7.5.1
Source: IEM (U.S. EPA. 1990e: 1993a).
November 1995	2-26

-------
2.0 DESCRIPTION OF CHANGES
2.5
2.5 Correction to Account for Soil Eroded to Off-site Fields and Adjustment to
Sediment Delivery Ratio
Original approach: The equation for backcalculating the soil concentration in a waste
management unit from the soil concentration in an off-site field contaminated by erosion from
the source did not account for the mass of soil added to the Field via erosion.
In addition, the sediment delivery ratio, a term that describes how much of the soil eroded
from the source reaches the off-site field, did not adequately account for differences in area
between the source and receiving field. The sediment delivery ratio was adjusted using a ratio of
the two areas if the receiving field was smaller than the source.
Revised approach: The equation for backcalculating on-site soil concentration from off-site soil
concentration has been revised to include a term to account for the soil eroded onto the off-site
field (Equation 7-12 for land application units and 7-50 for wastepiles). In addition, the equation
for sediment delivery ratio (Equation 7-14 for land application units and 7-51 for wastepiles) has
also been revised to use a ratio of the square root of the areas of the source and receiving field, as
suggested by the Dioxin document (U.S. EPA, 1994a). While these equations appear in Section
7 (7.3.5.3 and 7.4.5.3), they are also discussed in Sections 6.3.2.2, 6.6.1.2.4, and 6.6.2.2.4.
November 1995
2-27

-------
2.5
•ica
Land Application Unit: Soil Erosion: Soil Concentration
C , ff*[k •BD»A*Z + X -A
^ _ wil.off \ J / e
soil, on
Xe*As*SD»ER»( 1 -e
s-SD-ER)
V)
(7-12)
Parameter
Definition
Central
tendency value High-end
value
Refer to
r
Concentration in soil on site (mg/kg)
Calculated

^jod. off
Concentration in soil off site (mg/kg)
From Equations 5-5, 5-6, 5-12, 5-
22.6-70, 6-71.6-86; 6-87

x.
Unit soil loss (kg/m:/yr)
See Equation 7-13

A,
Area of land application unit (m:)
61,000 900,000
7.3.2
SD
Sediment delivery ratio (unitless)
See Equation 7-14

ER
Soil enrichment ratio (unitless)
3 (organics)
1 (metals)
7.7.4.1
K
Soil loss constant (yr"')
See Equation 7-15

BD
Soil bulk density (kg/m3)
1.5 1.2
7.7.2
A,
Area of off-site field Garden
(m:) Field
5.100 2,024
2.000.000 300,000
7.7:4.2
Z
Field soil mixing depth (m)
0.2 (tilled) 0.1 (tilled)
0.025 (unfilled) 0.01 (untilled)
7.7.4.3
t
Time period of erosion (yr)
20 (farmer) 40 (farmer)
9 (other) 30 (others)
7.7.6.1
Source: By analogy to IEM (U.S. EPA, 1990e: 1993a).
2.0 DESCRIPTION OF CHANGES
November 1995

2-28

-------
2.0 DESCRIPTION OF CHANGES
2.5
Land Application Unit: Sediment Delivery Ratio
If Af < As
SD=a • (As)'°125•
(7-14)
If Af>As;
SD=a • (A,)
-0125
Parameter
Definition
Central
tendency
value
High-end
value
Refer to
SD
Sediment delivery ratio (unitless)
Calculated

a
Empirical intercept coefficient (unitless)
2.1
1.9
7.7.4.5
A.
Area of land application unit (m2)
61,000
900,000
7.3.2
A,
Area of field (m2) garden
field
5,100
2,000,000
2,024
300,000
7.7.4.2
Source: Modified from EM (U.S. EPA, 1990c; 1993a) using Dioxin document (U.S. EPA, 1994a).
AOMMnaiaHipnNi
November 1995



-------
2.0 DESCRIPTION OF CHANGES
2.5
Wastepile: Soil Erosion: Soil Concentration
C , •(k*BD»Af*Z + X -A
q ¦ _ sou. off \ t / e s
sotl.on _j,
Xe»As»SD»ER'( l-e
SD-ER)
'¦)
(7-50)
Parameter
Definition
Central
tendency value High-end
value
Refer to
r
Concentration in soil on site (mg/kg)
Calculated

c
off
Concentration in soil off site (mg/kg)
From Equations 5-5, 5-6. 5-12. 5-
22, 6-70, 6-71,6-86, 6-87

X.
Unit soil loss (kg/m:/yr)
See Equation 7-52

A.
Area of wastepile (m:)
120 5.300
7.4.2
SD
Sediment delivery ratio (unitless)
See Equation 7-51

ER
Soil enrichment ratio (unitless)
3 (organics)
1 (metals)
7.7.4.1
K
Soil loss constant (yr'1)
See Equation 7-53

BD
Soil bulk density (kg/m3)
1.5 1.2
7.7.2
Af
Area of off-site field Garden
(m2)
5,100 2.024
7.7.4.2
Z
Field soil mixing depth (m)
0.2 (tilled) 0.1 (tilled)
0.025 (untilled) 0.01 (unfilled)
7.7.4.3
t
Time period of erosion (yr)
20 (farmer) 40 (farmer)
9 (other) 30 (others)
7.7.6.1
Source: By analogy to LEM (U.S. EPA, 1990e; 1993a).
BL?, 'T-<- ¦J.Ta-JLJl ¦».!. JUB
November 1995	2-30

-------
2.0 DESCRIPTION OF CHANGES
2.5
Wastepile: Sediment Delivery Ratio
If \ < As
5D=a • (A,)*0125-
(7-51)
If Af> As:
SD = a • (A,)
-0.125
Parameter
Definition
Central
tendency
value
High-end
value
Refer to
SD
Sediment delivery ratio (unitless)
Calculated

a
Empirical intercept coefficient (unitless)
2.1
2.1
7.7.4.5
A.
Area of wastepile (m2)
120
5,300
7.4.2
A,
Area of field (m2) garden
5,100 .
2,024
7.7.4.2
Source: Modified from IEM (U.S. EPA, 1990e; 1993a) using Dioxin document (U.S. EPA, 1994a).
November 1995
2-31

-------
2.0 DESCRIPTION OF CHANGES	2.6-2.7
2.6	Elimination of Erosion Pathways with Source Much Smaller than Receiving Field
Original approach: Several modeled scenarios for soil erosion involved a situation where the
source is much smaller than the receiving field. This occurs for the wastepile .when the receiving
field is an agricultural field for beef/milk pathways (pathway 11 off-site) or an ecological habitat
for ecological pathways (pathway Terr II). The area of the agricultural field is 2,000,000 nr for
central tendency, and 300,000 nr for high end; the area of the ecological habitat is 2,000,000 nr.
The wastepile area, by contrast is 120 m2 for central tendency and 5,300 m2 for high end.
Revised approach: The correction to the sediment delivery ratio used for erosion pathways
described in section 2.5 accounts for situations where the receiving field is smaller than the.
source. In this case, where the receiving field is much larger than the source, even using the
larger wastepile and the smaller field, it seems unlikely that this will be an important pathway
given the disparity in areas. Therefore, pathways 11 (off-site) and Terr II were dropped for
wastepiles.
2.7	Correction to Erosion Pathways with Source Much Larger than Receiving Field
Original approach: Pathway Terr II, soil erosion to an ecological habitat, uses an ecological
habitat area of 2,000,000 nr. When the land application unit area is set to its central tendency
value (61,000 m2), this combination of parameters results in a scenario unlikely to be of concern
as only a small portion of the 2,000,000 m2 is likely to be contaminated.
Revised approach: The sediment delivery ratio adjustment for erosion to an off-site field
described in section 2.5 is an adequate adjustment when the source area is somewhat larger than
the receiving field. In this case, the difference is greater. Therefore, the land application unit
parameters are always set to high end values for the Terr II pathway. Only one other fate and
transport/waste management unit characterization parameter is set to high end values, to maintain
two of these parameters set to high end values.
November 1995
2-32

-------
2.0 DESCRIPTION OF CHANGES
2.8
2.8 Ten-year Period of Non-Use Before On-site Exposures on Closed Land Application Unit
Original approach: In the original approach, exposures to residential receptors on a closed land
application unit were assumed to start immediately upon closure of the unit, with no period of
non-use for changes in land use or residential construction. This was not considered to be a
realistic scenario.
Revised approach: The model has been revised to allow a 10-year period of non-use between
land application unit closure and the start of any on-site residential exposures. This more
realistic scenario allows time for zoning changes and residential development. However,
because the chemicals of concern in the on-site closed land application unit pathways are highly
persistent, the change has little effect on the exit criteria backcalculated.
kxtauu; -a
November 1995	2-33

-------
2.0 DESCRIPTION OF CHANGES
DO
2.9
2.9 Revised Ecological Benchmarks
Since the release of the August 1995 document, some of the ecological benchmarks have
been changed to incorporate new data/analyses and several preliminary comments. In particular,
the toxicological profiles presented in Appendix B have been expanded to provide detail on the
calculation of soil fauna benchmarks and aquatic community benchmarks. The sediment
community benchmarks have also been revised to reflect changes in input data (e.g., log K^.) and
assumptions (e.g., organic fraction or f^) used in the multiple pathway model. In preparing
additional materials for the profiles, it was discovered that some of the benchmarks for fish.and
aquatic invertebrates were incorrectly reported in ^g/L instead of mg/L in Table 4-4 in Section
4.3.2. These values have been corrected and are presented in Table 4-4 below. It should be
noted that these benchmarks are. the values that were used in the most recent model calculations.
The following sections present supporting calculations and data for the revised soil fauna
benchmarks (see Section 4.3.4, revised sediment community benchmarks, and the aquatic
benchmarks (see Section 4.3.5) derived using Tier II methods described in the August 1995
document (i.e., secondary chronic values). The expanded materials for the ecological toxicity
profiles will result in this reorganization of the tables:
•	Table 1. Toxicological Benchmarks for Representative Mammals and Birds
Associated with the Freshwater Ecosystem
•	Table 2. Toxicological Benchmarks for Aquatic Organisms Associated with
the Freshwater Ecosystem
•	Table 3. SCV Calculation for Constituent (new)
•	Table 4. Toxicological Benchmarks for Wildlife Associated with the
Terrestrial Ecosystem
•	Table 5. Calculation of Soil Fauna Benchmark for Constituent (new)
•	Table 6. Data Set Used to Derive Soil Fauna Benchmark for Constituent
(new)
•	Table 7. Biological Uptake Values
November 1995	2-34

-------
2.0 DESCRIPTION OF CHANGES
B9
2.9
2.9.1 Soil Fauna Benchmarks
For soil fauna, soil ecological toxicity benchmarks were developed using methods
analogous to those used in deriving the National Ambient Water Quality Criteria (AWQC). In
brief, the soil fauna benchmarks were estimated to protect 95% of the species found in a
"typical" soil community, including earthworms, insects, and other various soil.fauna.
Microflora were not included in the soil community primarily because of the difficulty in
assigning ecological significance to effects levels for soil microorganisms, especially with
respect to adaptation and recovery of microbial populations. It should be noted, however, that
microflora make up approximately 80-90% of the biomass and biological activity in soil.1 As
described in Section 3.3.3.2 of the August 1995 document, eight taxa of soil fauna we're
identified to capture the key structural (e.g., trophic elements) and functional (e.g., decomposers)
components of the soil ecosystem. The methodology presumes that protecting 95% of the soil
species with a 50th percentile level of confidence will ensure long-term sustainability of a
functioning soil community and, therefore, allow for multiple uses (e.g., residential, agricultural)
of the "contaminated" area.
The toxicity data on soil fauna were gleaned from several major compendia and
supplemented with additional studies identified in the open literature. Generally, studies were
not eliminated from the data set unless: (1) the statistical quality of the study data were deemed
inadequate, (2) the endpoint was considered inappropriate to develop benchmarks (e.g., LC^
values), or (3) the study species did not fit in any of the eight taxonomic categories. In short,
acceptable toxicity data were limited to soil studies (vs. aqueous studies) on measurement
endpoints believed to be relevant to population survival (e.g., growth, reproduction). Insufficient
data were identified within the time frame for this analysis to delineate the relationship between
toxicity and, the form of the metal applied to soil (i.e., sulfate, chloride). However, it seems
apparent that metal salts are both more mobile and more toxic in the soil community.
The approach to calculating benchmarks for the soil community was based on efforts by
Dutch scientists (i.e., the RTVM methodology) to develop hazardous concentrations (HC) at
specified levels of protection (primarily 95%) at both a 95th percentile and a 50th percentile level
of confidence. For the soil fauna benchmarks, the 50th percentile level of confidence was
selected because the 95th percentile appeared to be overly conservative for a "no effects"
approach. The key assumptions in the Dutch methodology are that: (1) NOEC and LOEC data
are distributed logistically, and (2) the 95% level of protection is ecologically significant. The
' Preliminary comparisons of toxicity data between soil fauna and microflora suggest that benchmarks for
soil fauna will likely be protective of microflora.
m. ul •immmammmmmmmmm
November 1995
2-35

-------
2.0 DESCRIPTION OF CHANGES	2.9
followiig formula was used to calculate soil fauna benchmarks:
H(-5% ~ \.xm • ~ Jm]	(4-7)
where	HCS%	= soil concentration protecting 95% of the soil species
xm	= sample mean of the log NOEC and LOEC data
k,	= extrapolation constant for calculating the one-side leftmost
confidence limit for a 95% protection level
sm	= sample standard deviation of the log NOEC and LOEC data
b is important to note that only one value for k, is calculated for the 50th and 95th
percerttk confidence limits, respectively, for each sample size (m). Consequently, it is assumed
that: (1) there is just one extrapolation constant with the required confidence property for each
species sample size, and (2) extrapolation factors may be determined through Monte Carlo
simulation by generating random sample averages and deviations for the standard logistic
distribslion and adjusting for a specified confidence level (i.e., 50th or 95th). Like the AWQC,
the me»s to verify protection of a true field community at the 95% level of protection are
currently unavailable or prohibited by cost.
The August 1995 document contained soil fauna benchmarks for five metals: cadmium,
copper,lead, mercury, and zinc. A reevaluation of the data on mercury indicated that toxicity
data woe available on an insufficient number of taxa to represent the soil community (i.e., less
than fow categories). As a result, the soil fauna benchmark for mercury has been withdrawn
pending the identification of additional data. The benchmarks for the other metals have been
revisedbased on an analysis of the appropriateness of the toxicity data with respect to the study
selectioi criteria described in Section 4.3.4. For example, a feeding study conducted in an
agar/fiagi matrix for nematodes (Aphelenchus avenae) was considered inappropriate for
benchnark development because the lead cation is highly available to the worms in this food
source. The study value of 0.082 mg/kg was omitted from the data set, resulting in an increase in
the soil fauna benchmark from the original value of 0.25 mg/kg to 28 mg/kg. In addition, the
data set for zinc has been expanded to include several lowest observed effects concentrations
(LOEG) to augment the species-specific data. Based on an analysis of all available data on zinc
toxicity to soil organisms, it was felt that the interim soil fauna benchmark of 0.036 mg/kg (based
on four studies) was inappropriately conservative and indicative of the importance of considering
as many of the eight taxonomic groupings as possible. A soil benchmark of 23 mg/kg was
derived from the expanded data set on zinc toxicity to soil organisms. The soil fauna
Novernfcr 1995
2-36

-------
2.0 DESCRIPTION OF CHANGES	2.9
benchmarks for lead and copper have also been revised and are now 28 mg/kg and 21 mg/kg,
respectively.
Although background concentrations were evaluated with respect to the soil fauna
benchmarks (see Elements in North American Soils by Dragun and Chiasson, 1991), background
concentrations per se were not presumed to be appropriate target levels to protect the soil
community. Whereas background concentrations include naturally occurring metals that are
relatively immobile, hazardous waste streams contain a variety of metals species that may be
both mobile and, because of their bioavailability, highly toxic to soil fauna. In addition,
adaptation to background metals by indigenous soil communities may not be relevant to soils in
which metal-containing wastes are introduced over a much shorter time scale.
A series of tables is introduced in this section as a supplement to the toxicological
profiles in Appendix B. For each of the remaining metals - cadmium, copper, lead, and zinc -
two tables are presented that describe the calculation of the soil fauna benchmarks (Table 5) and
the data set upon which the benchmark was based (Table 6). Table 5 presents the calculation of
the soil fauna benchmark, including the equation (4-7) and all of the inputs (e.g., toxicity values,
standard deviation) required by the methods. Table 6 presents the complete data set from which
the soil fauna benchmark was derived and includes the SDecies. taxonomic erouDines. endDoints.
and references.
November 1995

-------
Table 4-4. Toxicological Benchmarks for Ecological Receptors in the Freshwater Ecosystem
1
Mammals
(mq/ka-d)

Birds (mg/kg-d)




I










Spotted


Fish/

Sediment

Aquatic

Constituent name

river

Bald

Great blue

Lesser
King-
Sand-
Herring

Daphnids

community

Plants
I

mink
otter

eaale
Osorev
heron
Mallard
Scaup
fisher
piper
Gull

("irt

(mg/kg)

fuQ/1)

ODT
3.7E-01
2 0E-01
a*
2 0E-02
2 0E-02
2.0E-02
2.0E-02
2.0E-02
4.0E-02
5.0E-02
2.0E-02
P
1.3E-05
i
1 7E+00
i
3 0E-01
1
Benzo(a)pyrene
4.4E-01
2 6E-01
P
ID
ID
ID
ID
ID
ID
ID
ID

1.3E-05
i
6.5E-01
I
ID

Parathion
4.4E-01
2 7E-01
a"
1 2Et-0C
V5E+00
1.5E-*00
1 7E+00
1.9E+00
2.9E+00
3.8E+00
1.8E+00
1
1.3E-05
a
3 8E-03
a
ID

Benz(a)anthracene (1.2-)
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

2.5E-05
i
5.0E-01
i
ID

jChlordane
1.9E+00
1.1E+00
a*
ID
ID
ID
ID
ID
ID
ID
ID

1.7E-04
a
1 4E+01
a
ID

IHexachlorocyclohexane, gamma-


















j(Lindane)
ID
ID

5 4E-01
6 8E-01
6.5E-01
7.7E-01
8.5E-01
1.3E+00
1.7E+00
7.9E-01
a
8.0E-05
a
1 9E-02
a
5.OE+02
1
jDieklnn
1.0E-02
6.0E-03
a
4.0E-02
4.0E-02
4.0E-02
5.0E-02
5.0E-02
8.0E-02
1 1E-01
5 OE-02
a
6.3E-05
a
5.9E-01
a
ID

JHexachlorophene
1.4E+00
7.5E-01
a*
ID
ID
ID
ID
ID
ID
ID
ID

ID

ID

ID

jEndnn
2.3E-01
1 3E-01
a
2.0E 02
3.0E-02
2.0E-02
3.0E-02
3.0E-02
5.0E-02
6.0E-02
3 0E-02
a
6.1E-05
a
2.9E-01
a
ID

IMelhoxychtor
7.2E+01
4.0E+01
a
ID
ID
ID
ID
ID
ID
ID
ID

3 OE-05
a
1.5E-01
a
ID

Heplachlor
3.3E-01
2.0E-01
a
ID
ID
ID
ID
ID
ID
ID
ID

6.9E-06
i
4.9E 01
i
2.7E+01
11
Hexachlorocydopenladiene
3 9E+01
2.2E+01
a"
ID
ID
ID
ID
ID
ID
ID
ID

7.5E-04
1
7.5E+00
i
ID

Acenaphlhene
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

2 3E-02
a
8.2E+00
a
5.2E+02
1
Diethyl phlhalale
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

2 2E-01
i
3 2E-t00
i
8.6E+04
1
SButytbenzyl phthalate
1.7E+02
9 2E+01
a
ID
ID
ID
ID
ID
ID
ID
ID

1 6E-02
i
4.6E+01
I
ID

BPentachlorophenot
3.0E+00
1 8E+00
a
1.6E+00
4.1E+01
3.7E+01
4 4E+01
4.9E+01
7.4E+01
1 OE+02
4.5E+01
i
1 3E-02
a*
ID

ID

ITrichlorophenoxyacetic acid,

















1
I2'4,5"
2.8E+01
1.5E+01
a
ID
ID
ID
ID
ID
ID
ID
ID

1 0E-02
i
9 0E-01
i
ID
I
[Endosullan
2.9E+00
1.8E+00
a*
ID
ID
ID
¦P
ID
ID
ID
ID

5 6E-05
a
3.OE-02
a
ID
j
|8is(2-ethylhexyl)phthalate (also


















IDEHP)
3 2E+01
1.8E+01
a
|D
ID
ID
ID
ID
ID
ID
ID

5.5E-03
r
4.1E+03
i
ID

JDi-n-octyl phlhalale
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

ID

ID

ID

nHexachlorobenzene
1 2E+00
7.1E-01
a*
2 6E-01
3 2E-01
2.9E-01
3 4E-01
3 8E-01
5.8E-01
7 9E-01
3.5E-01
1
6 0E-03
a
1.9E+02
a
ID

DOimethyl phlhalale
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

1.4E-01
i
2.5E-01
i
ID

RKopone
6.0E-01
3.6E 01
a
4.1E+00
5 0E+00
4.6E+00
5.4E+00
6.1E+00
91E+00
1.2E+01
5 7E+00
a
3.6E-04
i
2.9E+00
i
ID

aFluoidnlhene
ID
ID

ID
ID
ID
ID
ID
10
ID
ID

6 2E-03
a
3.6E+01
a
5 4E+04
1
gChrysene
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

ID

ID

ID

BMethyl parathion
1 7E+00
1.0E+00
a
3 5E-01
4 3E-01
3 9E-01
4.6E-01
5 2E-01
7.8E-01
1.1E+00
4.7E-01
a
3.2E-05
i
1 1E-03
i
ID

lAldrin
5 2E-02
31E-02
P
4 0E-03
5 0E-03
5.0E-03
6.0E-03
6.0E-03
9.0E-03
1 3E-02
6 0E-03
P'
1.8E-05
i
2.2E+00
i
ID

gPentachlorobenzene
3 6E+00
2 OE+OO
P
ID
ID
ID
ID
ID
ID
ID
ID

1 6E-03
i
1 2E+01
i
ID

IHeptachlor epoxide
ID
ID

ID
ID
ID
ID
ID
ID
ID
ID

5 1E-04
i
2.1EtOO
i
ID

BPolychlonnated biphenyls


















|(Aroclor-1254)
1 6E-01
9.0E-02
a
1.2E-01
1.6E-01
1.5E-01
1.8E-01
1 9E-01
2.9E-01
3 9E-01
1.8E-01

6.1E-05
i
4 7E+00
i
1.0E-01
1
§TCDD, 2.3,7,8-
4.3E-07
2 6E-07
a
1 4E-05
1.2E-05
1.IE-OS
1.3E-05
1.5E-05
2.2E-05
2.9E-05
1.4E-05
i
ID

ID

ID

ILead
3 2E-03
9 0E-03
a*
5 9E-03
7 5E-03
7.1E-03
8.4E-03
9 4E-03
1.4E-02
1.9E-02
8.7E-03
J>
3.2E-03
a
ID

5 0E+02
1
(Mercury
3.0E-01
1 7E-01
a*
5.0E-03
6.0E-03
5.0E-03
6.0E-03
7.0E-03
ME-02
t 5E-02
7.0E-03
a
1.3E-03
i"
ID

5 OE+OO
1
¦Molybdenum
7.5E-02
4 1E-02
a
ID
ID
ID
ID
ID
ID
ID
ID

2.4E-01
i
ID

ID

iNickel
3 3E+01
2 0E+01

ID
ID

ID
ID
ID
ID
_12_



ID

ASLSS.
1

-------
Table 4-4. Toxicological Benchmarks lor exorugicai Receptors in the Freshwater Ecosystem
r
Mammals
fma/kq-d)

Birds (mg/kg-d)





i









Spotted


Fish/

Sediment

Aquatic

| Constituent name

rtvor

Bald

Great bluo

Lesser
King-
Sand-
Herring

Daphnlds

community

Plants

B
mink
oner

eaale
OsDrev
heron
Mallard
ScauD
fisher
Dioer
Gull

(ma/I)

(fngftg)

(uq/l)

^Silver
ID
ID

ID
ID
ID
|D
ID
ID
ID
ID

3.6E-04
I
ID

3 OE+01
I
SAnlimony
1 3E-01
7.0E-02
a
ID
ID
ID
ID
ID
ID
ID
ID

3 0E-02
a
ID

61E+02
i |
gArsemc V
3.9E+00
2 4E+00
a*
3 9E-»00
5 OE+OO
4.7E.00
5.5E+00
6 2E+00
9.2E+00
1 2E+01
5 8E+00
a
8 1E-03
a
ID

4.8E+01
' I
IBanum
ID
ID

41E+01
5 2E+01
4.9E+01
5 8E+01
6.4E+01
9.6E+01
1.3E+02
6 0E+01
a
1 OE+OO
i
ID

ID

HBeryllium
ID
ID

ID
ID
ID
ID
!P
ID
ID
ID

5.1E-03
i
ID

1 0E+O5
I
gCadmium
8 2E01
4.9E-01
a
1.4E+00
1.7E+00
1.6E+00
1 9E+00
21E+00
3.2E+00
4.3E+00
1 9E+00
a
1.1E-03
a'
ID

2 OE+OO
i
jchromium VI
1.2E+00
7.4E-01
P'
ID
ID
ID
ID
ID
ID
ID
ID

1.1E-02
a'
ID

2OE+OO
I
BCopper
1 8E+00
1 OE+OO
a
ID
ID
ID
ID
ID
ID
ID
ID

1.2E-02
a"
ID

1 OE+OO
i
IjVanadium
3.5E-01
2 2E-01
P
t.1E+00
1 3E+00
1.1E+00
1 3E+00
1 5E+00
2.3E+00
3.2E+00
1.3E+00
a
1.9E-02
i
'D

ID
|
gZinc
1.4E+02
8 0E+01
a
ID
ID
ID
ID
ID
ID
ID
ID

1.1E-01
a"
ID

3.0E+01
i I
1 Selenium
3.0E-02
2 0E-02
a
7.3E-01
9.0E-01
8.2E-01
9.8E-01
1.1E+00
1.6E+00
2.2E+00
9.9E-01
a
5.0E-03
a
ID

1.0E+02
i |

1.2E+00
6.9E-01
ML

JL2L2L


4.0E-02
MHZ
8.0E-02
4 0E-02

JMSL

m
o

ID


-------
Table 5.
Calculation of Soil Fauna Benchmark for Cadmium
Panagrellus silusiae
Platynothrus peltifer 1
0.97
-0.03
Orchesella cincta 1
18.7
2.93
\Lumbricus cubeltus 1
135
2.60
I Eisenia foetida 1
13.8
2.62
iPorcellio scaber 1
3.33
1.20
I Helix aspersa 1
3.63
1.29
j arithmetic mean
11.4
2.09
j geometric mean
8.0

standard deviation
6.6
1.20


Equation to calculate soil benchmark


HC(5) = exp (Xm - K1 * Sm)

!

p = percentage of species not to be protected

5
Sm = stdev of the In(NOEC)

1.20
Xm = mean of the In(NOEC) values

2.09
Kl = stdev correction factor ,m=7,q 1 =.05 at 95% CL

3.59
|KI = stdev correction factor ,m=7,ql =.05 at 50% CL

1.78 I
gm = number of species categories
HC(p) = Hazardous Concentration to p% of species. 95% CL
iHC(p) = Hazardous Concentration to p% of species. 50% CL
0.1070
1
.2-40

-------
Table 6. Data Set Used to Derive Soil Fauna Benchmark for Cadmium
species
LOEC/NOEC
endpoint
soil
concentration
(mg/kg)
taxonomic
grouping
reference
Panagrellus Silusiae
NOEC
growth
10
group 1
Haightetal., 1982
| Platynothrus peltifer
NOEC
growth &
reproduction
0.97
group 2
van Straalen et al„ 1989 j
lOrchesella clncta
NOEC
growth &
reproduction
18.7
group 4
van Straalen et al., 1989 j
Lumbricus rubellus
NOEC
reproduction
13.5
group 5
van de Meent et al., 1990 1
Eisenia foetida
NOEC
growth &
reproduction
13.8
group 6
Malecki et al„ 1982
Porcellio scaber
NOEC
reproduction &
sexual development
3.33
group 7
van de Meent et al., 1990
1 Helix aspersa
NOEC
reproduction
3.63
group 8
Russel et al., 1981

-------
Table 5. Calculation of Soil Fauna Benchmark for Copper
species/category
data points
NOEC (mg/kg)
In(NOEC)
Nematodes
1
143
496
Platynothrus peltifer
1
84
4.43
Onychiurus armafus
1
1304
7.17
Lumbricus rubellus
3
122
4.81
Eisenia andrei
2
70
4.25
Porcellio scaber
1
28.5
3,35
Arion ater
1
12.5
2.53

arithmetic mean
345
5.12

geometric mean
168


standard deviation
537
1.18


Equation to calculate soil benchmark
HC(5) = exp (Xm - K1 * Sm )	
p = percentage of species not to be protected	
Sm = stdev of the In(NOEC)	
Xm = mean of the In(NOEC) values	
K1 = stdev correction factor ,m=7.ql =.05 at 95% CL	
K1 = stdev correction factor ,m=7,ql=.Q5 at 50% CL	
m = numberoof(SŁecies[categories_>^i__B|M__Mirara
HC(p) = Hazardous Concentration to p% of species, 95% CL

-------
Table 6. Data Set Used to Derive Soil Fauna Benchmark for Copper
species/category
LOEC/NOEC
endpolnt
soil
concentration
(mg/kg)
geometric
mean
(mg/kg)
taxonomic
grouping
reference I
Nematodes
NOEC
abundance
143

group 1
Parmelee et al., 1993 8
Platynothrus pel titer
NOEC
reproduction
84

group 2
Denneman and van Straalen, 1991 8
Onychiurus ormatus
NOEC
NOEC
growth &
reproduction
1304

group 4
Bengtsson et al., 1983 8
Lumbricus rubellus
NOEC
NOEC
NOEC
reproduction
litter breakdown
growth
40
83
493
122
group 5
van de Meent et al., 1990 |
Eisenia andrei
NOEC
reproduction
growth
72
68
70
group 6
van Gestel et al., 1989 8
van de Meent et al., 1990 |

NOEC
survival
28.5

group 7
Hopkin and Hames, 1994 8
lArion ater
NOEC
litter breakdown
12.5

group 8
Marigomez et al., 1986 B

-------
Table 5. Calculation of Soil Fauna Benchmark for Lead
Species data points NOEC (mg/kg)
In(NOEC)
Ptatynothrus peltifer' 1
.252 .
5.53
Onychiurus armatus 1
643
6,47
lumbricus rubellus 2
523
6.26
Dendrobanea ribida 2
800
6.68
Porcellio scaber 1
23.4
3.15
Mon ater 1
586
6.37
arithmetic mean
471
5.74
geometric mean
312

standard deviation
284
1.33


Equation to calculate soil benchmark
HCf5") = exD f Xm - Ki * Sm')
p = percentage of species not to be protected

5
Sm = stdev of the In(NOEC)

1:33
Xm = mean of the In(NOEC) values

5.74
KI = stdev correction factor ,m=6,q 1 =.05 at 95% CL

3.93
Kl = stdev correction factor ,m=6,ql =.05 at 50% CL

1,81
m = number of species categories

6
HC(p) = Hazardous Concentration to p% of species, 95% CL
HC(p) = Hazardous Concentration to p% of species, 50% CL
1.69
28 |

-------
Table 6. Data Set Used to DeriTe'Soil Fauna Benchmark for Lead
1
1 species S LOEC/NOEC
endpoint
soil
concentration
(mg/kg)
geometric
mean
(mg/kg)
taxonomic
grouping
reference |
Platynothrus peltifer
NOEC
reproduction
252

group 2
Denneman and van Straalen. 199ll
Onychiurus armatus
NOEC
growth &
reproduction
643

group 4
Bengtsson et al.. 1985 E
Lumbricus rubellus
NOEC
NOEC
reproduction
growth
241
1133
523
group 5
van de Meentet al., 1990 1
van de Meent et al.. 1990 |
Dendrobanea ribida
NOEC
NOEC
reproduction
reproduction
797
803
800
group 6
Bengtsson et al., 1986
Bengtsson et al.. 1986
jPorcellio scaber B NOEC
reproduction
23.4

group 7
van de Meent et al.. 1990
\Arion ater S NOEC
litter breakdown
586

group 8
Marigomez et al.; 1986
no
u»

-------
Table 5. Calculation of Soil Fauna Benchmark for Zinc
Species
data points
NOEC/LOEC
(mg/kg)
|
In (NOEC/LOEC)
Mites (group 2 soil mite)
1
__
9.59
Collembola (group 3 insect)
2
4088
8.32
Enchytreids (group 5 annelid)
3
894
6.80
Earthworms (group 6 annelid)
5
145
4.97
Porcellio scaber (group 7 arthropod)
4
607
6.41
Arion ater (group 8 mollusc)
1
73
4.29

arithmetic mean
3401
6.73

geometric mean
836

| standard deviation
5686
1.99
Equation to calculate soil benchmark
HC(5) = exp (Xm - Kl * Sm)	
p = percentage of species not to be protected
5
Sm = stdev of the In(NOEC)
1.99
Xm = mean of the In(NQEC) values
6.73
Kl = stdev correction factor ,m=6,ql =.05 at 95% CL
3.93
Kl = stdev correction factor ,m=6,ql=.05 at 50% CL
1.81
|m = number of species categories	
|HC(p) = Hazardous Concentration to p% of species, 95% CL
|HC(p) = Hazardous Concentration to p% of species, 50% CL
6
0.33
23
2.-46

-------
Table 6. Data Set Used to Derive Soil Fauna Benchmark Tor Zinc
species/category
LOEC/NOEC
endpofnt
soil
concentration
(mg/kg)
geometric
mean
(mg/kg)
taxonomic
grouping
reference |
Mites
LOEC
diversity indices
14600
14600
group 2
Tyler et at., 1989 |
Collembola
LOEC
density
649
4088
group 3
Tyler et al., 1989 I
Collembola
LOEC
vert, distribution
25750


Tyler et al.. 1989 |
lEnchytreids
LOEC
density
171
894
group 5
Tyler et al„ 1989 j
Enchytreids
LOEC
vert, distribution
2023


Tyler etal., 1989 |
Enchytreids
LOEC
species number
2068


Tyler etal., 1989 |
Earthworms
LOEC
density
171
145
group 6
Tyler etal., 1989 j
Earthworms
LOEC
density
2023


Tyler etal., 1989
Eisenia fetida
NOEC
coccoon prod.
0.22


Spurgeon et al., 1994
JEisenia foetida
NOEC
growth
741


Neuhauser et al„ 1985
\Eisenia foetida
NOEC
growth
1120 .


Malecki et al.. 1982
\Porcellio scaber
NOEC
growth
444
607
group 7
Hopkln & Hames, 1994
Porcelllo scaber
NOEC
growth
289


van de Meent et al., 1990
Porcellio scaber
NOEC
litter breakdown
727


van de Meent et al., 1990
Porcellio scaber
NOEC
reproduction
1455


van de Meent et al., 1990
Arion ater 1
NOEC
litter breakdown
73

group 8
Marigomez et al., 1986
tN>
I
t -

-------
2.0 DESCRIPTION OF CHANGES
umfimwrmmaumwmtammmmrnri*Trt*T^vrmnmmnmKrmi*\mMU
2.9
2.9.2 Revisions to Aquatic Benchmarks
This section presents updated secondary chronic values (SCVs) and sediment community
benchmarks to the August 1995 document. A number of aquatic benchmarks were based on
SCVs as described in Section 4.3.5 of the August 1995 document. In the appendix to the August
1995 document, the units on some SCVs were entered incorrectly in the ecological toxicity
profiles, although the correct values and units were used in the models. For the chemicals listed
below in Table 2.9-1, the SCVs have been updated to correspond to the model inputs.
Table 2.9-1. Updated Secondary Chronic Values (SCVs)
chemical
August 1995
document SCV
Updated SCV
bepz(a)anthracene
2.5E-02
2.5E-05
butyl benzyl phthalate
1.6E+01
1.6E-02
bis(2-ethylhexyl)phthalate
5.5E+0
5.5E-03
dimethyl phthalate
1.4E+2
1.4E-01
heptachlor
6.9E-03
6.9E-06
heptachlor epoxide
5.1E-01
5.1E-04
kepone.
3.2E-04
3.6E-04
pentachlorobenzene
1.6E+0
1.6E-03
polychlorinated biphenyls
1.9E-04
6.1E-05
In addition to these revisons, the following typographical errors have been corrected from the
August 1995 document:
•	Hexachlorobenzene profile, Table 2, fish and aquatic invertebrates should be reported
as 6.0E-03, not 3.68E-03.
•	Hexachlorocyclopentadiene profile, Fish and aquatic invertebrates text, the SCV
reported in the text should be 7.5E-04, not 6.9E-03.
•	Mercury profile, Fish and aquatic invertebrates text and Table 2, the SCV of 1.3E-03
should be reported as a FCV of 1.3E-03.
November 1995	2-48

-------
2.0 DESCRIPTION OF CHANGES	2.9
—WWW—WII irjr.-r?.
As a result of updated SCVs, as well as revised K^. values, many of the sediment
benchmarks have also changed. As discussed in Section 4.3.6 of the August 1995 document, the
equilibrium partitioning (EqP) method was used to calculate the sediment benchmarks which are
equivalent to sediment quality criteria (SQC). For this analysis, the sediment f^ was assumed to
be 0.05, the mean value of the range suggested in the Addendum: Methodology for Assessing
Health Risks Associated with Indirect Exposure to Combustor Emissions (U.S. EPA, 1993a).
In the August 1995 document, the specific data used to calculate SCVs were
inadvertently omitted from the ecological toxicity profiles. The Tier II values were generally
taken from three sources in order of priority:
•	Great Lakes Water Quality Initiative
•	Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects
on Aquatic Biota: 1994 Revision (Suter and Mabrey, 1994)
•	derived from AQUatic Toxicity Information REtrieval System (AQUIRE), 1994.
For a few chemicals, data available in AQUIRE were more recent than data presented in Suter
and Mabrey (1994). For these chemicals, an AQUIRE-derived SCV was preferred over the SCV
listed by Suter and Mabrey (1994). The sources of data for the SCVs calculated in Suter and
Mabrey (1994) and derived from AQUIRE are listed, by chemical, in the following tables. As
explained above, these tables may be inserted as Table 3 in the ecological toxity profiles in
Appendix B. The reader may refer to Section 4.3.6 in the August 1995 document for a full
explanation of the calculation procedures for SCVs.

November 1995
2-49

-------
Table 2.9-2. Updated Sediment Benchmarks
CHEMICAL
Koc
SEDIMENT (mg/kg sediment)
Basis
Reference
old value
new value
acenapthene
7139
9
8.2
FCV
U.S. EPA. 1993i
aldrin
2453466
2.19
2.21
SCV
GLI. 1992c
benz(a)anthracene
401218
0.49
0.5
SCV
AQUIRE, 1995
benzo(a)pyrene
1014869
0.67
0.65
SCV
AQUIRE. 1995
Bis(2-ethylhexyl)phthalate
15003065
5.800
4,126
SCV
AQUIRE. 1995
butyl benzyl phthalate
57280
17.4
45.8
SCV
AQUIRE, 1995
chlordane
1632450
0.517
13.9
FCV
U.S.EPA. 1980
DDT
2625851
4.1
1.7
SCV
GLI, 1992c
dieldrin
190103
0.072
0.59
FCV
U.S.EPA, 1993c
diethyl phthalate
287
2.2
3.2
SCV
AQUIRE, 1995
dimethyl phthalate
35
0.29
0.245
SCV
AQUIRE, 1995
endosulfan
10730
0.0074
0.03
FCV
U.S.EPA, 1980
endrln
94245
0.39
0.29
FCV
U.S.EPA, 1993m
heptachlor
1425148
0.029
0.49
SCV
GLI, 1992c
heptachlor epoxide
82277
1.2
2.1
SCV
AQUIRE. 1995
hexachlorobenzene
616808
76.5
185
FCV *
U.S.EPA, 1980
hexachlorcyclopentadiene
198907
2.5
7.45
SCV
AQUIRE. 1995
kepone
162248
0.483
2.9
SCV
AQUIRE, 1995
lindane
4644
0.017
0.019
FCV
U.S.EPA, 1986
methoxychlor
98610
0.043
0.15
FCV
U.S.EPA, 1980
methyl parathion
710
1.04E-03
0.0011
SCV
AQUIRE, 1995
parathion
5823
3.62E-03
0.0038
FCV
51 FR 43667
pentachlorobenzene
148204
8.06
11.8
SCV
AQUIRE, 1995
polychlorinated blphenyls
1542642
14.5
4.7
SCV
AQUIRE, 1995
toxaphene
255141
0.0535
0.17
FCV
U.S.EPA, 1980
245-Trichlorophenoxyacetic acid
1795
0.62
0.9
SCV
AQUIRE. 1995
" = The AWQC document states: "the available data indicate that HCB does not cause significant adverse effects on freshwater aquatic life at or below 6 ug/l"
IV)
I .
Ul
o

-------
Table 3. SCV Calculation for Arsenic (Suter Mabrey, 1994)
Chemical/Data Typ«
Value (ug/i)
Species
Source
Arsenic V



acute values
<8100
Daphnia magna
EPA, 1985b

7400
Daphnia magna
Biesingerand Christensen, 1972

3600
Daphnia pulex
EPA, 1985b

49,600
Daphnia pulex
ibid.

850
Bosmina iongirostris
ibid

10,800
Rainbow trout
ibid.

25,600
Fathead minnow
DeFoe, 1982

49,000
Mosquitofish
EPA, 1985b

SAV
170.00


A-C ratios:
28.7
Fathead minnow
Defoe, 1982
SACR
20 9






SCV=SAV/SACR
8.133971292


2-51

-------
Chemical/Data Type
barium 7440-39-3
acute values
SAV
SACR
Value (ug/1)
410000
18721 46
18
Species
Daphnia magna (d)
GMAV=410000 n=1. SVAF=21 9
Family
Cladocera (Suborder)
GMAV Source
410000 AQuiRE
SCV=SAV/SACR 1040 081177
Dataset Requirements
(a)	thejamily Salmonidae in the class Osteichthyes	_
(b)	one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g^ bfuegill. channel catfish.etc)
(c)	a third family in the phylum Chordata (e g , fish, amphibian, etc )
(d)	a planktonic crustacean (e.g. a cladoceran. cope pod, etc.)	
(e)	a benthic crustacean (e g . ostracod. isopod, amphipod. crayfish, etc.)
(f)	an insect (e.g.. mayfly, dragonfly, damselfiy. stonefly, caddisfty, mosquito, midge, etc.)	
(g)	a family in a phylum other than Arthropoda or Chordataje.g ^ Rotifera. Annelida. Mollusca, etc )
(h)	a family in any order of insect or any phylum not already represented	

-------
Table 3. SCV Calculation for Benzo(a)anthracene
Chemical/Data Type 	 Value (ug/1)	Species	_	Family	GMAV	Source
benzo(a)anthracene
56-55-3			
acu'e values	10	Daphnia pulex (d)	 Cladocera (Suborder)	10	AQUIRE
SAV 0.46	GMAV=10, n=1, SVAF=21.9
SACR	18
SCV=SAV/SACR; 0.025367834
Dataset Requirements
(a) the family Salmonidae in the class Osteichthyes
(b)	one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c)	a third family in the phylum Chordata (e.g., fish, amphibian, etc.)	
(d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)
(e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
(f)	an insect (e.g., mayfly, dragonfly, damselfly, stoneHy, caddisfly, mosquito, midge, etc.)
(g)	a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
(h)	a family in any order of insect or any phylum not already represented	

-------
Table 3. SCV Calculation for Benzo(a)pyrene
Chemical/Data Type	Value (ug/1)	Species	Family	GMAV	Source
benzo(a)pyrene 50-32-8			
.acute values ' 5	Daphnia pulex (d)	_Cladocera (Suborder)	5	A(J
SAV 0 23	GMAV=5, n=1, SVAF=21.9
SACR	18
SCV=SAV/SACR 0.012683917
Dataset Requirements			
: (a) the family Salmonidae in the class Osteichthyes '	
; (b) one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c) a third family in the phylum Chordata (e g., fish, amphibian, etc.)			
' (d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)	
¦(e) a beqthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)	
(f)	an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)	
(g)	a family in a phylum other than Arthropoda or Chordata (e g., Rotifera, Annelida, Mollusca, eta.)
(h)	a family in any order of insect or any phylum not already represented	
2-54

-------
Table 3. SCV Calculation for Beryllium (Suter Mabrey, 1994)
Chemical/Data Type
Value (ug/l)
Species
Source
Beryllium



acute values
7900
Daphnia magna
EPA, 1980f

2500
Daphnia magna
Kimball, n.d.

4800
Goldfish
ibid.

3250
Fathead minnow
ibid

200
Fathead minnow
ibid.

150
Fathead minnow
ibid.

150
Fathead minnow
ibid.

11,000
Fathead minnow
ibid.

20,000
Fathead minnow
ibid.

15,000
Fathead minnow
ibid.

18,000
Fathead minnow
Kimball, n.d.

4,400
Flagfish
EPA, 1980f

3,530
Flagfish
ibid.

3530
Flagfish
ibid.

32,000
Guppy
ibid.

28,000
• Guppy
ibid.

32,000
Guppy
¦ ibid.

24,000
Guppy
ibid.

160
Guppy
ibid.

19,000
Guppy
. ibid.

450
Guppy .
I ibid.

130
Guppy
ibid.

200
Guppy
i ibid.

20,000
Guppy
ibid.

13,700
Guppy
¦ ibid.

6100
Guppy
ibid.

160
Guppy
ibid.

12,000
Bluegill
, ibid.

1,300
Bluegill
ibid.

SAV
271.00


A-C ratios:
472
Daphnia magna
Kimball, n.d.
SACR
53 3



SCV=SAV/SACR
5.084427767


2-55

-------
Table 3. SCV Calculation for Bis(2-ethylhexyl)phthalate
Chemical/Data Type
Value (ug/l)
Species
Family
GMAV
Source
Bis(2-ethylhexyl)phthalate
117-81-7





acute values!
11,000
Daphnia magna (d)
, Cladocera (suborder)
11,000
AQUIRE

690
Channel catfish (b)
Ictalundae
690
AQUIRE

42,100
Largemouth bass (c)
Centrarchidae
37,217
AQUIRE

32,900
Largemouth bass


AQUIRE

139,500
Rainbow trout (a)
Salmonidae
144,268
AQUIRE

149,200
Rainbow trout


AQUIRE



SAV
98.57
GMAV=690, n=4. SVAF=7



SACR 18
SCV = SAV/SACR 5.476190476
Dataset Requirements	
,(a) the family Salmonidae in the class Osteichthyes	
(b) one other family (preferably a commercially, or recreationally important, warmwater species)
I in the class Osteichthyes (e.g.. bluegill, channel catfish,etc.)	
|(c) a third family in the phylum Chordata (e.g.. fish, amphibian, etc.)	
: (d) a planktonic crustacean (e.g. a cladoceran, cope pod, etc.)	
(e) a benthic crustacean (e.g.. ostracod, isopod, amphipod, crayfish, etc.)	
;(f) an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
i (g) a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida. Mollusca, etc.)
' (h) a family in any order of insect or any phylum not already represented	
2-

-------
Table 3. SCV Calculation for Butylbenzyl phthalate
Chemical/Data Type
Value (ug/l)
Species
Family
GMAV
Source
Butylbenzyl phthalate 85-68-7





acute values
92000
Daphnia magna (d)
Cladocera (suborder)
12869
AQUIRE

1800
Daphnia magna
Cladocera (suborder)

AQUIRE

43,000
bluegill (b)
Centrarchidae
43,000
AQUIRE

2,320
fathead minnow (c)
Cyprinidae
2,320
AQUIRE






SAV
290.00
GMAV=2320, n=3, SVAF=8









SACR
18





SCV = SAV/SACR
16.11111111




Dataset Requirements		
(a)	the family Salmonidae in the class Osteichthyes	
(b)	one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c)	a third family in the phylum Chordata (e.g., fish, amphibian, etc.)	
(d)	a planktonic crustacean (e.g. a cladoceran. copepod, etc.)	
(e)	a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)	
(f)	an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.) j
(g)	a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
(h)	a family in any order of insect or any phylum not already represented	
2-57

-------
Table 3. SCV Calculation for Diethyl phthalate
Chemical/Data Type
Value (ugA)
Species
Family
GMAV
Source
diethyl phthalate 84-66-2
acute values
52,000
Daphnia magna (d)
Cladocera (Suborder)
52,000
AQlT
¦ce 1
id
31,800
Fathead minnow (c)
Cyprinidae
31,800
AQUIRtr
98,200
Bluegill (b)
Centrarchidae
98,200
AQUIRE
SAV 3975 00 GMAV=31,800, n=3, SVAF=8
SACR
18
SCV=SAV/SACR 220 8333333
Dataset Requirements		
(a)	the family Salmonidae in the class Osteichthyes	
(b)	one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)	
(c)	a third family in the phylum Chordata (e.g., fish, amphibian, etc)		
(d)	a planktonic crustacean (e.g. a cladoceran, copepod, etc.)	
(e)	a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)	
(f)	an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
(g)	a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
I(h) a family in any order of insect or any phylum not already represented	'
2-58

-------
Table 3. SCV Calculation for Dimethyl phthalate
Chemical/Data Type	Value (ug/1)	Species	 Family 	GMAV Source
Dimethyl phthalate
131-11-3
acute values 33,000	Daphnia magna (d)	Cladocera (Suborder) 33,000 AQUIRE
121,000	Fathead minnow (c)	 Cyprimdae	121,000 AQUIRE
SAV 2538.46	GMAV=33,000, n=2, SVAF=13
SACR
SCV=SAV/SACR' 141.025641
Dataset Requirements
(a) the family Salmonidae in the class Osteichthyes
(b) one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)
, (d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)
(e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
(f) an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
(g) a family in a phylum other than Arthropoda or Chordata (e.g , Robfera, Annelida, Mollusca, etc.)
(h) a family in any order of insect or any phylum not already represented
2-59

-------
Table 3. SCV Calculation for Heptachlor Epoxide
Chemical/Data Type	Value (ug/1)	Species	Family	GMAVSource j
heptachlor epoxide
	1024-57-3		r
	acute values _ 240*	Daphnia magna (d)	Cladocera (suborder) 240	AQUiRt
	120 •	Guppy (c) Poeciliidae 120	AQUIRE~
SAV 9 23 	GMAV=120, n=2, SAVF=13
SACR	18
SCV=SAV/SACR 0.512820513
Dataset Requirements		
(a)	the family Salmonidae in the class Osteichthyes	
(b)	one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)		'
(c)	a third family in the phylum Chordata (e.g., fish, amphibian, etc.)		
(d)	a planktonic crustacean (e.g. a cladoceran, copepod, etc.)		
(e)	a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)		
(() an insect (e.g., mayfly, dragonfly, damsetfly. stonefly, caddisfly. mosquito, midge, etc.)	
(g)	a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca. etc.)
(h)	a family in any order of insect or any phylum not already represented	
• = chemical conc. was initially reported as some form of the chemical, thus the conc. was re-calculated
2-60

-------
Table 3. SCV Calculation for Hexachlorocyclopentadiene
Chemical/Data Type
Value (ug/1) Species
Family GMAV
Source
Hexachlorocyclopentadiene
77-47-4



acute values
39** Daphnia magna (d)
Cladocera (suborder) 45
EG&G Bionomics, 1977 as
cited in U S EPA, 1980

52" Daphnia magna

Union Carbide Env. Services,
1977 as cited in U.S. EPA,
1980

¦ 7 Fathead minnow (c)
Cyprinidae 57
Spehar et al., 1979

180 Fathead minnow

EG&G Bionomics, 1977 as
cited in U.S.EPA, 1980

104 Fathead minnow

Henderson, 1956 as cited in
U.S.EPA, 1994

78 Fathead minnow

Henderson, 1956 as cited in
U S.EPA, 1994

59 Fathead minnow

Henderson, 1956 as cited in
U.S.EPA, 1994

97 Channel catfish
Ictaluridae 97
EG&G Bionomics, 1977 as
cited in U.S.EPA, 1980

130 Bluegill (b)
Centrarchidae 130
EG&G Bionomics, 1977 as
cited in U.S.EPA, 1980

• SAV
5.63 GMAV=45, n=3, SVAF=8



SACR
SACR=geomean
7\49599786 (18+18+1.3)
ACR=1.3 (Spehar et a!.,
1979)


SCV = SAV/SACR
0.75040043




Dataset Requirements
(a) the family Salmonidae in the class Osteichthyes
(b) one other family (preferably a commercially, or recreationally important, warmwater species)

in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)


(c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)


(d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)


(e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)


(f) an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
(g) a family in a phylum other than Arthropods or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
; (h) a family in any order of insect or any phylum not already represented

'** = 50% effect levels as sited in AWQC document. Exposure'duration was not specified
2-61

-------
Table 3. SCV Calculation for Kepone
Chemical/Data Type
Value (ug/l)
Species (mln. r.eq.)
Family
GMAV
Source I
kepone 143-50-0




1
acute values
260
Daphnia magna
Cla'docera (suborder)
260
AQUIRE

230
Chironomus tentans (midge) (0
Diptera (order)
211
AQUIRE

230
Chironomus tentans (midge)




220
Chironomus tentans (midge)




170
Chironomus tentans (midge)




40
Calanoid copepod (d)
Calanoida (order)
40
AQUIRE

180
Scud
Amphipoda
180
AQUIRE

512
Channel Catfish (c)
Ictaluridae
465
AQUIRE

422
Channel Catfish


AQUIRE

30
Bluegill (b)
Centrarchidae
57
AQUIRE

50
Bluegill


AQUIRE

66
Bluegill


AQUIRE

62
Bluegill


AQUIRE

50
Bluegill


AQUIRE

140
Redear Sunfish


AQUIRE

96
Redear Sunfish


AQUIRE

64
Redear Sunfish


AQUIRE

44
Redear Sunfish


AQUIRE

29
Redear Sunfish


AQUIRE

420
Fathead Minnow
Cypinidae
378
AQUIRE

340
Fathead Minnow


AQUIRE

120.9
Daggerblade grass shrimp (g)
Caridea (section)
120
AQUIRE

120
Daggerblade grass shnmp


AQUIRE

SAV
6.56
GMAV = 40, n=5, SAVF = 6.1




SACR
18





SCV=SAV/SACR
0.364298725






Dataset Requirements
(a) the family Salmonidae in the class Osteichthyes
(b) one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)
! (d) a planktonic crustacean (e.g. a cladoceran, cope pod, etc.)
'(e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
,(f) an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
' (g) a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
j (h) a family in any order of insect or any phytum not already represented
2-62

-------
Table 3. FCV Calculation for Mercury (Suter Mabrey, 1994)
Chemical/Data Type
Value (ug/1)
Species
Source

Mercury, inorganic




Final acute value
4.86

EPA. 1985g






Final ACR
3 73

ibid.






Final CV
1.3

ibid.

2-63

-------
Table 3. SCV Calculation for Methyl Parathion
Chemical/Data Type Value (ug/l)
Species
Family
SMAV
GMAV
Source
methyl parathion
298-00-0





acute values 3.5
Cenodaphnia dubia (water flea)
Cladocera (suborder)
3.5
35
acT
9.1
Daphnia magna (d)
Cladocera (suborder)
8.34
8.34
AQUIRE
8.5
Daphnia magna



AQUIRE
8
Daphnia magna



AQUIRE
7.8
Daphnia magna



AQUIRE
5
Mosquito fish
Poecilidae
5
5
AQUIRE
3600
Pumpkinseed
Centrarchidae
3600
2656 04
AQUIRE
1600
Bluegill (b)
Centrarchidae
1959.59

AQUIRE
2400*
Bluegill




14000
White perch
Percichthyidae
14000
7457
AQUIRE
790
Striped bass (c)
Percichthyidae
3972

AQUIRE
5000
Striped bass



AQUIRE
4500
Striped bass



AQUIRE
14000
Striped bass



AQUIRE
14800
Carp
Cyprinidae
14800
14800
AQUIRE
5900
Catfish
Ictaluridae
5900
5900
AQUIRE
2800
Rainbow trout (a)
. Salmonidae
2800
2800
AQUIRE
7850
Fathead minnow
Cypinidae
7073
7073
AQUIRE
4460
Fathead minnow



AQUIRE
8170
Fathead minnow



AQUIRE
5360
Fathead minnow



AQUIRE
6910
Fathead minnow



AQUIRE
9500*
Fathead minnow




8300*
Fathead minnow




7500*
Fathead minnow




6200
Guppy
Poecilidae
7795
7795
AQUIRf
9800*
Guppy
Poecilidae


AQJ
3
White river crayfish (e)
Macrura (Section)
3
3
AQ
4200 **
Dugesia dororocephala - flatworm (g)
Turbellaria (class)
2372
2372
AQUlHfc
2000"
Dugesia dororocephala - flatworm



AQUIRE
2900 **
Ougesia dororocephala - flatworm



AQUIRE
1300**
Dugesia dororocephala - flatworm



AQUIRE

SAV 0.58
GMAV=3, n=6, SAVF=5.2




SACR 18
SCV = SAV/SACR 0.032051282


; Data set Requirements
(a) the family SaJmonidae in the class Osteichthyes
! (b) one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)
(d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)
; (e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
(f) an insect (e.g., mayfly, dragonfly, damselfiy, stonefly, caddisfly. mosquito, midge, etc.)
(g) a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
(h) a family in any order of insect or any phylum not already represented

' = chemical conc. was initially reported as some form of the chemical, thus the cone, was re-calculated
** = 7-day LC50 study
2-64

-------
Table 3. SCV Calculation for Molybdenum (Suter Mabrey, 1994)
Chemical/Data Type
Value (ug/1)
Species
Source
Molybdenum
acute values
206,800
Daphnia magna
Kimball, n d.

SAV
10087.00


A-C ratios:
235
Daphnia magna
Kimball, n.d.
SACR
42.2


SCV=SA V/S ACR
239.028436
	 	
	.	
2-65

-------
Table 3. SCV Calculation for PCB Aroclor-1254
Chemical/Data Type Value (ug/l)
Species
Family
GMAV
Sou tea. I
Aroclor-1254 11097-69-1 	
acute values 19*
Daphnia magna (d)
Cladocera (Suborder)
11.80*
AQ
1.1 *
Daphnia magna
Cladocera (Suborder)

AQUIRE
19 *
Daphnia magna
Cladocera (Suborder)

AQUIRE
23*
Daphnia magna
Cladocera (Suborder)

AQUIRE
25*
Daphnia magna
Cladocera (Suborder)

AQUIRE
9
Corophium insidiosum - scud
Amphipoda
9
AQUIRE
2400
Gammarus fasciatus - scud
Amphipoda
2400
AQUIRE
2400
Gammarus pseudolimnaeus-scud
Amphipoda

AQUIRE
12000
channel catfish
Ictaluridae
145
AQUIRE
1.76
channel catfish
Ictaluridae

AQUIRE
200
damselfly (f)
Odonata
200
AQUIRE
200
damselfly
Odonata

AQUIRE
2740
bluegill (b)
Centrarchidae
38
AQUIRE
0.53
redear sunfish
Centrarchidae

AQUIRE
42500
cutthroat trout
Salmonidae
116
AQUIRE
42000
cutthroat trout
Salmonidae

AQUIRE
0.32
rainbow trout (a)
Salmonidae

AQUIRE
7.7
fathead minnow (c)
Cyprinidae
7.7
AQUIRE
100
crayfish
Macrura (section)
93
AQUIRE
100
crayfish
Macrura (section)

AQUIRE
80
crayfish
Macrura (section)

AQUIRE
3"
grass shrimp
Coridea (section)
3"
AQUIRE
3"
grass shrimp


AQUIRE


SAV' 0.58
GMAV=3, n=6, SVAF=5.2




SACR 9.510496247
=geomean(18,18,2.655)
Suter& Mabrey, 1994



SCV=SAV/SACn' 0.060661722


Dataset Requirements
(a) the family Salmomdae in the class Osteichthyes
(b) one other family (preferably a commercially, or recreationally important, warmwater species)
; in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
(c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)
i (d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)
(e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
i(f) an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
(g) a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
. (h) a family in any order of insect or any phylum not already represented


¦ * = daphnid studies were 14-day reproductive EC50s
** = 7-day LC50 value
2-66

-------
Table 3. SCV Calculation for Pentachlorobenzene
Chemical/Data Type
pentachlorobenzene
608-93-5
Value (ug/l)
Species
Family
acute values:
300 4
300.4
Daphnia magna (d)
Cladocera (Suborder)
GMAV
446
Source
Daphnia magna
350.4
Daphnia magna
1252
Daphnia magna
230
280 *
Chironomus ripanus (midge) (f)
Rainbow trout (a)
Diptera (order)
Salmonidae
230
280
AQUIRE
AQUIRE
AQUIRE'
AQUIRE
AQUIRE
AQUIRE
SAV
28.75
GMAV=230, n=3, SVAF=8
SACR
18
SCV=SAV/SACR 1.597222222
Dataset Requirements
(a) the family Salmonidae in the class Osteichthyes
(b) one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish,etc.)
i (c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)
(d) a planktonic crustacean (e.g. a cladoceran, cope pod, etc.)
(e) a benthic crustacean (e.g., ostracod, isopod. amphipod, crayfish, etc.)
(f)	an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc )	
(g)	a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
(h) a family in any order of insect or any phylum not already represented
' = 8-day LC50 study
2-67

-------
Table 3. SCV Calculation for Silver (Suter Mabrey, 1994)
Chemical/Data Type
Value (ug/l) -
Species
Source
Silver
Final Acute Value
4.1

EPA, 1980y


A-C ratios:
2
Daphnia magna
Kimball, n.d.

54
Rainbow trout
' ibid.

14
Mysid shrimp
ibid.
SACR
11.5



SCV=SAV/SACR, 0.356521739
2-68

-------
Table 3. SCV Calculation for (2,4,5-Trichlorophenoxy) acetic acid
Chemical/Data Type
Value (ug/1)
Species
Family
SMAV
GMAV
Source
trichlorophenoxyacetic
acid 93-76-5






acute values
19800
Ceriodaphnia dubia (d)
Cladocera (suborder)
18931
18931
AQUIRE

18100
Ceriodaphnia dubia
Cladocera (suborder)


AQUIRE

41100
carp
Cyprinidae
41100
41100
AQUIRE

17400
banded killifish
Cyprinodontidae
17400
17400
AQUIRE

109300
rotifer (g)
Monogonta (class)
109300
109300
AQUIRE

20000
pumpkinseed (c)
Centrarchidae
20000
20000
AQUIRE

150*
rainbow trout (a)
Salmonidae
1142
1142
AQUIRE

8700*
rainbow trout
Salmonidae


AQUIRE

16400
white perch
Percichthyidae
16400
15474
AQUIRE

14600
stnped bass (b)
Percichthyidae
14600

AQUIRE

28100
guppy
Poecilidae
28100
28100
AQUIRE
SAV
187.21
GMAV=1142, n=5,SVAF=6 1
SACR
18
SCV=SAV/SACR
10.4007286
Dataset Requirements
(a) the (amily Salmonidae in the class Osteichthyes
(b) one other family (preferably a commercially, or recreationally important, warmwater species)
in the class Osteichthyes (e.g., bluegill, channel catfish.etc.)
(c) a third family in the phylum Chordata (e.g., fish, amphibian, etc.)
(d) a planktonic crustacean (e.g. a cladoceran, copepod, etc.)
(e) a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
(f) an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
(g) a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
1 (h) a family in any order of insect or any phylum not already represented
= chemical conc. was initially reported as some form of the chemical, thus the conc. was re-calculated
2-69

-------
Table 3. SCV Calculation for Vanadium (Suter Mabrey, 1994)
Chemical/Data Type
Value (ug/I)
Species
Source
Vanadium
acute values
1520
Daphnia magna
Kimball, n.d.

1850
Fathead minnow
ibid.

7000
Brook trout
Ernst and Garside, 1987

11,200
Flagfish
Holdway and Sprague, 1979

4060
Daphnia magna
Beusen and Neven, 1987

SAV
284 00


A-C ratios:
10.88
Fathead minnow
Kimball, n.d.

140
Flagfish
Holdway and Spague, 1979

2.137
Daphnia magna
Beusen and Neven, 1987
Final ACR
14.8



SCV=SAV/SACR
19.18918919


2-69a

-------
2.0 DESCRIPTION OF CHANGES
2.10
¦-¦'¦mi iii ii i iiiirrnr-nm	, * •-Y7i^^1^~.^-^7rtr?f'iTT «r' t	^ •Xb-vc""', ---
2.10 Stream Order/Waterbody Characterization
Original approach: The waterbody used in the modeling was characterized using average values
for a selected stream order. For the original approach, the central tendency stream order was
stream order 5 and the high end stream order was stream order 3, a smaller stream providing less
dilution, and therefore higher chemical concentrations. However, there was some question as to
whether a stream order 3 stream was large enough to support a subsistence fisher, as was implied
by one of the scenarios modeled. (The characteristics of streams of various order are shown in
Tables 6-19 and 7-44 in the August 1995 document, and are not repeated here).
Revised approach: Because there is some controversy around the size of the high end stream
with respect to the scenarios modeled, the Agency decided to perform a second set of runs using
a larger, stream order 4 stream as the high end stream. Results for both stream order 3 and
stream order 4 as the high end stream are provided in the new results included with the present
document. The additional parameter values are shown below in a revised Table 6-20 (this
revised table should also be substituted for Table 7-45). This change affects inputs for most
equations associated with the sections and pathways noted in Table S-5.
Table S-5. Equations Affected by Change in Surface Waterbody Characterization
Pathway
Section
Equations
17, 37, Aq I
6.5.2.1
all
19, 42, Aq IE
6.5.2.2
all
20, 38, Aq II
6.5.2.3
all
21
6.6.3.2.1
all
23
6.6.3.2.2
all
24
6.6.3.2.3
all
33
6.6.2.2.5
all
35
6.6.2.2.6
all
36
6.6.2.2.7
all
•.zp&ttssm&s* re- r*'
November 1995	2-70

-------
2.0 DESCRIPTION OF CHANGES	2.10
Table 6-20. Characterization of Central Tendency and High End Waterbodies
Parameter
Central tendency
Alternate High
End
High end
Stream order
5
4
3
Watershed area
1.3e+9 m:
2.8e+8 m:
6e+7 m:
Flow
3e+8 m3/yr
(3e+l 1 L/yr)
6.3e+7 m3/yr
(6.3e+l0 L/vr)
T.3e+7 m'/yr
(1.3e+10 L/yr)
Velocity
0.7 m/s
0.55 m/s
0.5 m/s
Depth
0.67 m
0.34 m
0.18 m
Width
23 m
11 m
5.5 m
Length
45,000 m
19.000 m
8.500 m
Waterbody area
(length x width)
le+6 m:
2.2e+5 m2
4.6e+4 m2
Flow independent mixing volume
(length x width x depth)
6.7e+5 m3
(6.7e+8 L)
7.3e+4 m3
(7.3e+7 L)
8.3e+3 m3
(8.3e+6 L)
Depth (bed sediment)
0.03 m
0.03 m
0.03 m
Depth (water column)
0.64 m
0.31 m
0 15 m

November 1995
^ -<
2-71

-------
2.0 DESCRIPTION OF CHANGES
2.11	Land Application Unit USLE Length Slope Factor
Original approach: The Universal Soil Loss Equation (USLE) uses a factor called the Length-
Slope factor (LS) as one input to determine the amount of soil eroded from a particular area. The
model uses the USLE in three different contexts: for erosion from a land application unit, erosion
from a wastepile, and erosion from a watershed, a single set of central tendency and high end
values were used for LS; these were 1 and 3, respectively, and were used for all three situations
in which the USLE is used. These reflect a range of possible slopes and distances that were felt
to be applicable to all three situations.
Revised approach: In order to be consistent with the groundwater analysis, which used a source
slope of 2 percent for the land application unit, LS was changed for the land application unit (but
not the wastepile) to reflect a 2 percent slope. The revised LS values for land application units
are 0.3 for central tendency and 0.5 for high end. These lower values will result in less erosion
off the land application unit. These revised values were also applied to the watershed in which
the land application unit is located, as this is likely to have a similar slope to the unit. This
change affects the pathways and sections noted in Table S-6.
2.12	USLE Cover Factor
Original approach: The Universal Soil Loss Equation (USLE) uses a factor called the Cover
factor as one input to determine the amount of soil eroded from a particular area. This factor was
set to values of 0.1 (central tendency) and 0.5 (high end), reflecting an average of values for
weeds and grasses assuming no canopy and 50 percent and 0 percent groundcover, respectively.
Revised approach: The USLE Cover factor values used were appropriate to a waste management
unit with no ground cover, but were considered unrealistic for off-site fields and watersheds,
especially since off-site fields were modeled as growing forage or vegetables. Therefore, the
USLE cover factor for off-site fields and watersheds was changed to reflect 80 percent and 40
percent groundcover, averaging values for weeds and grasses, and no appreciable canopy. The
new central tendency and high end values are, respectively, 0.03 and 0.1. This change affects the
pathways and sections noted in Table S-6.
iiTiTT" r.'-i"-- r.Tmrrrv~r~r	trr"-w- ~	^ ^	—
November 1995	2-72

-------
2.0 DESCRIPTION OF CHANGES	2.11-2.12
Table S-6. Equations Affected by Revisions to USLE Input Parameters
Pathway
Section
Equation
LS
Cover
3, 5, Terr II
6.3.2.2	(discussion)
7.3.5.3	(LAU equation)
7-13
yes
no
4,6, Terr ID
6.3.2.3
6-10
yes
yes
8, Terr V
6.6.1.2.1
6-2c (new)
yes
yes
9 off
6.6.1.2.4 (discussion)
7.3.5.3 (LAU equation)
7-13
yes
no
10
6.6.2.2.1
6-2c (new)
yes
yes
11 off
6.6.2.2.4 (discussion)
7.3.5.3 (LAU equation)
7-13
yes
no
17, 37, Aql
6.5.2.1
6-15
yes
yes
19, 42, Aq m
6.5.2.2
6-25
yes
yes
20, 38, Aq 0
6.5.2.3
6-34
yes
yes
21
6.6.3.2.1
6-133
yes
yes
23
6.6.3.2.2
6-147
yes
yes
24
6.6.3.2.3
6-160
yes
yes
33
6.6.2.2.5
6-92
yes
yes
35
6.6.2.2.6
6-102
yes
yes
36
6.6.2.2.7
6-111
yes
yes
November 1995	2-73

-------
I
2.0 DESCRIPTION OF CHANGES	2.13-2.16
. 			 .in..|i m wimn i ii a |			 M	,*cjr>-- - r r*r
2.13	Errata: Fish Concentration Units
The units for fish concentration in Table 5-6 should be mg/g, not mg/kg..
2.14	Errata: Fish Intake Units
The units for fish intake in Equations 5-64 and 5-67 should be mg/kg/d, not (jg/kg/d.
2.15	Errata: Water Exposure Values
The values for water concentration by ingestion in Table 5-3 for chemicals after lead
inadvertently reflected an exposure duration of 9 years instead of 30 years, a corrected version of
Table 5-3 is attached.
2.16	Errata: Silver Added to Appendix A
Appendix A has been revised to include physical-chemical properties data for silver.
November 1995	2-74

-------
5.0 EXPOSURE
i wwjiiiiiUi
5.2 Concentrations for Human Receptors
¦1 w.—a-	fUffi	'
: ^«tx3aast^o3cscr< rx
Table 5-3. Exposure Media Concentrations for Water (mg/L)
Ingestion
Dermal






Adult
Adult
Child
Cheaacal
CAS
resident
resident
resident
Acenaphthene
83329
, 2e+00
Ie+00
7e0L
Acetone
67641
4e+00
le+03
6e+02
Acetonitrile
75058
2e-01
7e+01
4e+01
Aceiophenone
98862
4e+00
7e+01
4e+01
Acrolein
107028
7e-01
le+02
8e+01
Acryfamide
79061
2e-05
2e-02
5e-02
Acr\tonitrile
107131
2e-04
2e-02
5e-02
Aldrin
309002
5e-06
2e-07
5e-07
Allyl chloride
107051
NA.
NA
NA
Aniliae
62533
le-02
7e-01
2e+00
Antimony
7440360
le-02
6e+00
3e+00
Arsesk
7440382
6e-05
2e-02
5e-02
Barium
7440393
3e+00
le+03
5e+02 .
Ben4a)anthracene
56553
8e-05
4e-06
le-05
Benzene
71432
3e-03
2e-02
5e-02
Benzidine
92875
4e-07
le-05
3e-05
BenatfcOpvrene
50328
le-05
4e-07
le-06
Benzo(ft)fluoranthene
205992
7e-05
2e-06
6e-06
Benzil alcohol
100516
le+01
5e+02
3e+02
Benztl chloride
100447
5e-04
4e-03
le-02
BeryBium
7440417
2e-05
8e-03
2e-02
Bis(2-chloroisopropyl) ether
39638329
le-03
8e-03
2e-02
Bis(2-chlorethyl)ether
111444
8e-05
4e-03
le-02
Bis(2-ethylhexyl)phthalate
117817
6e-03
8e-05
2e-04
Broraodichloromethane
75274
le-03
2e-02
5e-02
Broraoform (tribromomethane)
75252
le-02
2e-01
5e-01
Butanol
71363
4e+00
2e+02
le+02
Butyl-4.6-d!nitrophenol, 2-sec- (dinoseb)
88857
4e-02
le-01
8e-02
Butylbenzylphthalate
85687
7e+00
3e+00
2e+00
(continued)
zzjrrsssrvz*. '¦xzz.z.
August 1995
5-56

-------
5.0 EXPOSURE	3.2 Concentrations for Human Receptors
Table 5-3 (continued)
Ingestion		Dermal
Bathing


Adult
Adult
Child
Chemical
CAS
resident
resident
resident
Cadmium
7440439
4e-02
le+01
_ V9°
Carbon disulfide
"5150
4e+00
3e-0l
le-Ol
Carbon tetrachloride
56235
7e-04
3e-03
8e-03
Chlordane
57749
7e-05
5e-06
le-05
Chloro-1,3-butadiene. 2- uhloroprene)	
126998
NA
NA _
NA
Chloroaniline. p-
106478
le-01
_2e+_00__
	le-00
Chlorobenzene
__108907
7e:0)
2e+00
	le-00
Chlorobenzilate
510156
3e-04
3e-04
Se-04
Chlorodibromomethane
124481
le-03
2e-02
4e-02
Chloroform
67663
le-02
2eL01
5e-01_
Chlorophenol. 2-
95578
2e-0l
2e~00
9e-0l
Chromium VI
7440473
2e-01
7e+01
3e+01
Chrysene
218019
3e-03
2e-04
4e-04
Copper
7440504
le+00
5e+02
3e+02
Cresol. Tri-
108394
2e+00
2e+01
le-01
cresol, 0-
95487
2e+00
2e+01
le+01
Cresol. p-
106445
2e:01
2e+00
_ Je+00
Cumene
98828
	 !e+00
le+00
7e-01
DDD
72548
4e-04
2e-05
5e-05
DDE
72559
3e-04
	5e-06
; le-05^
DDT
50293
3e:04
9e-06
2e-05
Di-n-butv. 1 phthalate
84742
4e+00
2e+00
le+00
Di-n-octvl phthalate
117840
7e-0l
3e-03
le-03
Diallate
2303164
le-03
8e-04
2e-03
Dibenzla h(anthracene
53703
le-05
" 2e-07
5e-07
Dibromo-?-chloroŁropane. 1,2:	
	96J_2S_
6e-05
9e-04_
2e-03
Dichlorobenzene. 1.2-
95501
3e+00
4e-no
	2e+00
Dichlorobenzene. 1.4-
106467
4e-03
5e-03
_._Je-02
Dichlorobenzidine. 3 3 -
91941
2e-04
5e-04
le-03
' cor.iinued i
MMW ttMBMtf'att:
August 1995
5-57

-------
5.0 EXPOSURE	5.2 Concentrations for Human Receptors
wjmmiwnmiBca i mi	 mluwi—hiuh., ii. hui.mih 			
Table 5-3 (continued)
Ingestion		Dermal
Bathing
Chemical
CAS
Adult
resident
Adult
resident
Child
resident
Dichlorodifluoromethane
75718
7e+00
6e+0l
3e+01
Dichloroethane. 1,1-
75343
9e-04
le-02
3e-02
Dichloroethane, 1,2-
107062
9e-04
2e-02
6e-02
Dichloroethylene, 1,1-
75354
le-04
le-03
3e-03
. Dichloroethylene, cis-1,2-
156592
4e-01
4e+00
2e+00
Dichloroethylene, trans-1,2-
156605
7e-01
6e+00
3e+00
Dichlorophenol, 2,4-
120832
le-01
3e-01
2e-01
Dichlorophenoxyacetic acid, 2,4- (2,4-D)
94757
4e-01
3e+00
le+00
Dichloropropane, 1,2-
78875
le-03
le-02
4e-02
Dichloropropene, 1.3-
542756
5e-04
5e-03
le-02
Dichloropropene, cis-1,3-
10061015
5e-04
5e-03
le-02
Dichloropropene, trans-1,3-
10061026
5e-04
5e-03
le-02
Dieldrin
60571
5e-06
2e-06
4e-06
Diethyl phthalate
84662
3e+01
3e+02
2e+02
Diethylstilbestrol
56531
2e-08
4e-09
le-08
Dimethoate
60515
7e-03
2e+00
8e-01
Dimethyl phthalate
131113
4e+02
le+04
8e+03
Dimethylbenz(a)anthracene, 7,12-
57976
3e-06
5e-08
le-07
Dimethylbenzidine, 3,3'-
119937
9e-06
7e-05
2e-04
Dimethylphenol, 2,4-
105679
7e-01
5e+00
3e+00
Dimethyoxvbenzidine, 3,3'-
119904
6e-03
2e-01
6e-01
Dinitrobenzene, 1,3-
99650
4e-03
le-01
7e-02
Dinitrophenol, 2,4-
51285
7e-02
3e+00
le+00
Dinitrotoluene, 2,4-
121142
7e-02
.le+00
7e-01
Dinitrotoluene, 2,6-
606202
4e-02
8e-01
4e-01
Dioxane, 1,4-
123911
8e-03
3e+00
9e+00
Diphenylamine
122394
9e-01
le+00
7e-01
Disulfoton
298044
le-03
2e-03
le-03
Endosulfan
115297
2e-01
6e-0I
3e-01
(continued)
August 1995

-------
5.0 EXPOSURE	5.2 Concentrations for Human Receptors
¦»-	r.'-yrtj—~ i -r-x.1 CTifflmBBc-. >ar/i3BtacssaraBBnBK«waammcczrsewrv^x^j(««aH^ass*vT''-5
Table 5-3 (continued)
Ingestion		Dermal
Bathing
Chemical
CAS
Adult
resident
Adult
resident
Child
resident
Endrin
72208
le-02
5e-03
3e-03
Epichlorohydrin
106898
9e-03
le+00
4e+00
Ethoxvethanol, 2-
Ethyl acetate
110805
141786
le+01
3e+0l
	 4e+03
3e+03
2e+03
le+03
Ethyl ether
60297
7e+00
4e+02
2e+02
Ethyl methacrylate
97632
3e+00
7e+01
4e+01
Ethyl methanesulfonate
62500
3e-07
8e-05
2e-04
Ethvlbenzene
100414
4e+00
6e+00
3e+00
Ethylene dibromide
106934
le-06
3e-05
7e-05
Ethylene thiourea
96457
le-04
le-01
3e-01
Fluoranthene
206440
le+00
2e-01
le-01
Fluorene
86737
le+00
6e-01
3e-01
Formaldehyde
50000
7e+00
le+03
7e+02
Formic acid
64186
7e+01
3e+04
2e+04
Furan
110009
4e-02
8e-01
5e-01
Heptachlor
76448
2e-05
le-06
3e-06
Heptachlor epoxide
1024573
9e-06
5e-06
le-05
Hexachloro-1,3-butadiene
87683
le-03
3e-04
9e-04
Hexachlorobenzene
118741
5e-05 •
3e-06
9e-06
Hexachlorocyclohexane, a- (a-BHC)
319846
le-05
3e-05
7e-05
Hexachlorocyclohexane, (3- (p-BHC)
319857
5e-05
9e-05
2e-04
Hexachlorocyclohexane, y- (lindane)
58899
7e-05
le-04
4e-04
Hexachlorocyclopentadiene
77474
3e-01
3e-02
2e-02
Hexachloroe thane
67721
6e-03
6e-03
2e-02
Hexachlorophene
70304
le-02
le-04
6e-05
Indeno( 1,23-c.d) pyrene
193395
2e-04
4e-06
le-05
Isobutyl alcohol
Isophorone
78831
le+01
7e+02
4e+02
78591
9e-02
2e+00
5e+00
Kepone
143500
2e-06
le-06
3e-06
Lead
7439921
1,5e-02
NA
¦ NA




(continued)
August 1995



5-59

-------
5.0 EXPOSURE	5.2 Concentrations for Human Receptors
Table 5-3 (continued)
Ingestion	Dermal
Bathing
Chemical
CAS
Adult
resident*
Adult
resident
Child
resident
Mercury
7439976
le-02
4e+00
2e+00
Methacrylonitrile
126987
4e-03
3e-0l
2e-01
Methanol
Methoxychlor
67561	
72435
	2e+01
2e-01
9e+03
7e-02
5e+03
4e-02
Methyl bromide (bromomethane)
74839
5e-02
2e+00
le+00
Methyl chloride (chloromethane)
74873
NA
NA
NA
Methyl ethyl ketone
78933
2e+01
3e+03
2e+03
Methyl isobutyl ketone
108101
2e+00
7e+01
4e+01
Methyl methacrylate
80626
3e+00
8e+01
4e+0l
Methyl parathion
298000
9e-03
6e-02
4e-02
Methylcholanthrene, 3-
56495
3e-06
8e-08-
2e-07
Methylene bromide
74953
4e-01
le+01
6e+00
Methylene chloride
75092
le-02
3e-01
9e-01
Molybdenum
7439987
2e-01
7e+01
3e+01
/V-Nitrosodi-n-propylamine
621647
le-05
4e-04
le-03
/V-Nitrosodiphenylamine
86306
2e-02
5e-02
le-01
/V-Nitrosopiperidine
100754
2e-06
2e-04
6e-04
/V-Nitrosopyrrolidine
930552
4e-05
le-02
4e-02
Naphthalene
91203
1C+00
2e+00
le+00
Na'phthylamine
91598
NA
NA
NA
Nickel
7440020
7e-01
3e+02
le+02
Nitrobenzene
98953
2e-02
3e-01
le-01
Nitropropane, 2-
79469
NA
NA
NA
Nitrosodi-n-butylamine
924163
2e-05
le-04
3e-04
Nitrosodiethylamine
55185
6e-07
7e-05
2e-04
Nitrosodimethylamine
62759
2e-06
9e-04
2e-03
Nitrosomethylethylamine.
10595956
4e-06
le-03
3e-03
Octamethylpyrophosphoramide
152169
7e-02
2e+02
9e+01
Parathion
56382
2e-01
4e-01
2e-01
Pentachlorobenzene
608935
3e-02
4e-03 ,
2e-03




(continued)
August 1995


5-60

-------
;>.u c.A.i'USLKt.	5.2 Concentrations^. .1. Receptors
-	ii—»— I.—.- r.-r.mNMMHMWw —nwHwmwMMiiMM^wagHHutx..
Table 5-3 (continued)
Ingestion		Dermal
Bathing


Adult
Adult
Child
Chemical
CAS
resident
resident
resident
Pentachloronitrobenzene i PCNB >
82688
3e-04
2e-04
5e-04
Pentachlorophenol
87865
7e-04
le-04
4e-04
Phenol
108952
2e+01
5e+02
3e+02
Phenyl mercuric acetate
62384
3e-03
le-01
6e-02
Phenvlenediamine, m-
!08452
2e-0l•
6e+01
3e+0J_
Phorate
298022
7e-03
le-02
6e-03
PoKchlonnated biphen>Is
1336363
le-05
_ 	3eJJ7_.___
7e-07
Pronamide
23950585
3e+00
7e+00
4e+00
Pyrenc
129000
le+00
le-01
7e-02
Pyridine
110861
4e-02
3e+00
le+00
Safrole
94597
5e-04
2e-03
7e-03
Selenium
7782492
2e-01
7e+01
3e+01
Strvchnine
57249
le-02
6e-01
3e-0l
Stryene
100425
7e+00
2e+01
9e+00
TCDD. 2.3.7,8-
1746016
5e-10
le-11
3e-11
Tetrachlorobenzene, 1.2,4.5-
95943
le-02
3e-03
2e-03
Tetrachloroethane. 1.1.1.2-
630206
3e-03
2e-02
5e-02
Tetrachloroethane. 1.1.2.2-
79345
4e-04
4e-03
le-02
Tetrachloroethylene
127184
4e-01
2e+00
le+00
Tetrachlorophenol. 2.3.4.6-
58902		
	le+00
6e-01
3ej;PJ	
Tetraeth^ldithiopyrophosphate
3689245
2e-02
4e-02
2e-02
Tha|hum (I)
7440280	
-^-03 _
le+00
5e-01
Toluene
108883
7e+00
2e+01
le+01
Toluenediamine, 2.4-
95807
3e-05
4e-03
le-02
Toluidine. o-
95534
4e-04
le-02
3e-02
Toluidine. p-
106490	
	4e-04
le-02
3e-02 _
Toxaphene
8001352
Se-05
2e-05
6e-05
Tnchloro-1,2.2-trifluoroethane. 1.1.2-
•76131
le+03
3e+03
2e-03
Trichlorobenzene. 1.2.4-
120821
4e-01
2e-01
le-01
T_nchl°roethane. 1.1,1-
71556
N'A
N'A
	NA




(continued i
August 1995
5-61

-------
5.0 EXPOSURE
5.2 Concentrations for Human Receptors
Table 5-3 (continued)
Ingestion		Dermal
Bathing
Chemical
CAS
Adult
resident
Adult
resident
Child
resident
Trichloroethane. 1.1.2-
79005
le-03
2e-02
5e-02
Trichloroethylene
79016
8e-03
le-02
3e-02
Trichlorofluoromethane
75694
le+01
6e+01
3e+01
Trichlorophenol. 2.4.5-
95954
4e+00
3e+00
2e+00
Trichlorophenol. 2.4.6-
88062
8e-03
9e-03
3e-02
Tnchlorophenoxyacetic acid.
2,4,5-(245-T)
93765
4e-01
le+00 •
7e-01
Trichlorophenoxypropionic acid. 2,4,5-
(silvex)
93721
3e-0I
9e-01
5e-0l
Trichloropropane, 1.2.3-
96184
2e-01
2e+00
le+00
Trinitrobenzene, sym-
99354
2e-03
2e-0l
8e-02
Tris (2.3-dibromopropvl) phosphate
126727
9e-06
5e-04
le-03
Vanadium
7440622
3e-01
le+02
5e+01
Vinyl chloride
75014
4e-05
8e-04
2e-03 .
Xylenes (total)
1330207
7e+01
le+02
6e+0l
Zinc
7440666
le+01
4e+03
2e+03
NA = Not applicable.
August 1995
5-62

-------
3.0 REFERENCES
3.0 References
Bengtsson, G., T. Gunnarsson, and S. Rundgren. 1983. Growth changes caused by metal uptake
in a population of Onchyrius armatus feeding on metal polluted fungi. Oikos, 40: 216-
221.
Bengtsson, G., T. Gunnarsson, and S. Rundgren. 1985. Influence of metals on reproduction,
mortality, and population growth in Onchyrius armatus (Collembola). Journal of
Applied Ecology, 22: 967-978.
Bengtsson, G., T. Gunnarsson, and S. Rundgren. 1986. Effects of metal pollution on the
earthworm Dendrobaena rubida (SAV.) in acidified soils. Water, Air, and Soil
Pollution, 28: 361-383.
Denneman C.A.J, and N.M. van Straalen. 1991. The toxicity of lead and copper in reproduction
toxicity tests using the oribatid mite Platynothruspeltifer. Pedobiologia, 35: 305-310.
Dragun, J. and A. Chiasson. 1991. Elements in North American Soils. Hazardous Materials
Control Resources Institute, Greenbelt, MD.
Haight, M., T. Mudry, and J. Pasternak. 1982. Toxicity of Seven Heavy Metals on Panagrellus
silusiae: the efficacy of the free-living nematode as an in vivo toxicological bioassay.
Nematologica, 28: 1-11.
Hopkin S.P. and C.A.C. Hames. 1994. Zinc, among a 'cocktail' of metal pollutants, is
responsible for the absence of the terrestrial isopod Porcellio scaber from the vicinity of a
primary smelting works. Ecotoxicology, 2: 68-78.
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M.. 1991.
Handbook of Environmental Degradation Rates. Lewis Publishers, Inc., Chelsea,
Michigan.
Mackay, D., Shiu, W.Y., Ma, K.C, 1992. Illustrated Handbook of Physical-Chemical Properties
and Environmental Fate for Organic Chemicals. Lewis Publishers, Chelsea, Michigan.
Malecki, M.R., E.F. Neuhauser, and R.C. Loehr. 1982. 7Tie effect of metals on the growth and
reproduction of Eiseniafoetida (Oligochaeta, Lumbricidae). Pedobiologia, 24: 129-137.

November 1995	3-1

-------
3.0 REFERENCES
awu> tf? zzz&xs&zi
Marigomez, J.A., E. Angulo, and V. Saez. 1986. Feeding and growth responses to copper, zinc,
mercury, and lead in the terrestrial gastropod Arion ater (Linne). Journal of Mollusccin
Studies, 52: 68-78.
Neuhauser, E.F., R.C. Loehr, D.L. Milligan, and M.R. Malecki. 1985. Toxicity of metals to the
earthworm Eisenia fetida. Biology and Fertility of Soils, 1: 149-152.
Parmelee, R.W., R.S. Wentsel, C.T. Phillips, M. Simini, and R.T. Checkai. 1993. Soil
microcosm for testing the effects of chemical pollutants on soil fauna communities and
trophic structure. Environmental Toxicology and Chemistry, 12: 1477-1486.
Russel, L.K., J.I. Dehaven, and R-P- Botts. 1981. Toxic effects of cadmium on the garden snail
(Helix aspersa). Bulletin of Environmental Contamination and Toxicology, 26: 634-640.
Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. 1994. Effects of cadmium, copper, lead, and zinc
on growth, reproduction and survival of the earthworm Eisenia fetida (SAVIGNY):
assessing the environmental impact of point-source metal contamination in terrestrial
ecosystems. Environmental Pollution, 84: 123-140.
Tyler, G., M.B. Pahlsson, G. Bengtsson, R. Ba&tii, and L. Tranvik. 1989. Heavy-metal ecology
of terrestrial plants, microorganisms and invertebrates. Water, Air, and Soil Pollution,
47: 189-215.
U.S. EPA (Environmental Protection Agency). 1990e. Methodology for Assessing Health Risks
Associated with Indirect Exposure to Combustor Emissions. Interim Final. Office of
Health and Environmental Assessment, Washington, DC. January.
U.S. EPA (Environmental Protection Agency). 1993a. Addendum: Methodology for Assessing
Health Risks Associated with Indirect Exposure to Combustor Emissions. Working
Group Recommendations. Office of Solid Waste and Office of Research and
Development, Washington, DC. November 10.
U.S. EPA (Environmental Protection Agency). 1994a. Estimating Exposure to Dioxin-Like
Compounds. Volumes /-///: Site-Specific Assessment Procedures. EPA/600/6-88/005C.
Office of Research and Development, Washington, DC. June.
van Gestel, C.A.M., W.A. van Dis, E.M. van Breemen, and P.M. Sparenburg. 1989.
November 1995
¦jussaa
3-2

-------
3.0 REFERENCES
~	4, V» .,	»MiM»iJibsm!mtBBt*&*ftggggi'ii.a'Ai.t-Tutttk* >»w 1	*w-^
Development of a standardized reproduction toxicity test with the earthworm species
Eisenia fetida andrei using copper, pentachlorophenol, and 2,4-dichloroaniline.
Ecotoxicology and Environmental Safety, 18: 305-312.
van de Meent, D., T. Aldenberg, J.H. Canton, C.A.M. van Gestel, and W. Sloof. 1990. Desire
for levels: background study for the policy document "Setting Environmental Quality
Standards for Water and Soil." National Institute of Public Health and Environmental
Protection. RIVM report no. 670101 002.
van Straalen, N.M., J.H.M. Schobben, and R.G.M. de Goede. 1989. Population consequences of
cadmium toxicity in soil microarthropods. Ecotoxicology and Environmental Safety, 17
190-204.
van Straalen, N.M.. 1993. Soil and sediment quality criteria derived from invertebrate toxicity
data. Chapter 2lin: M.H. Donker, H. Eijsackers, and R Heimbach (eds.) Ecotoxicology
of Soil Organisms, Lewis Publishers, Ann Arbor, MI.
November 1995	3-3

-------
Appendix A
Summary of Physical/Chemical Properties

-------
APPENDIX A
LIST OF TABLES
Table
A-1	Physical Chemical Properties Data for HWIR Chemicals
A-2	Biotransfer Factors for Plants for HWIR Chemicals
A-3	Biotransfer Factors for Cattle and Fish for HWIR Chemicals
A-4	Health Benchmarks for HWIR Chemicals
A-5	Dermal Parameters for HWIR Chemicals
A-6	Degradation Half-life and Rate Data for HWIR Chemicals
November 1995
A-i

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties
Vapor	Molecular Henry's Law Diffusivity in Diffusivity in
CAS
Number Chemical Name
Chemical
Type
Koc
(mUq)
Kd
(mUq)
Kow
(unitless)
pressure
(atm)
Solubility
(mq/L)
weight
(q/mol)
constant
(atm-m3/mol)
water
(cm2/s)
air
(cm2/s)
83-32-9 Acenaphthene
Organic
7.1E+03
varies
8.3E+03
3.0E-06
4.1E+00
154.21
1.1E-04
8.0E-06
8.0E-02
67-64-1 Acetone
Organic
5.8E-01
varies
5.8E-01
3.0E-01
6.0E+05
58.08
2.9E-05
1.1E-05
1.2E-01
75-05-8 Acetonitnle
Organic
4.6E-01
varies
4.6E-01
1.2E-01
2.0E+05
41.05
2 4E-05
1.7E-05
1.3E-01
98-86-2 Acetophenone
Organic
4.1E+01
varies
4.4E+01
5.2E-04
6.1E+03
120.16
1.0E-05
8.0E-06
8.0E-02
107-02-8 Acrolein
Organic
9.8E-01
varies
9.8E-01
3.5E-01
2.1E+05
56.06
9.4E-05
1.2E-05
1.1E-01
79-06-1 Acrylamide
Organic
1.1E-01
varies
1.1E-01
9.2E-06
2.2E+06
71.08
3.0E-10
1 1E-05
9.7E-02
107-13-1 Acrylonitrile
Organic
1.8E+00
varies
1.8E+00
1.4E-01
7.5E+04
53.06
1.0E-04
1.3E-05
1.2E-01
309-00-2 Aldrin
Organic
2.5E+06
varies
3.2E+06
2.2E-08
7.8E-02
364.93
1.0E-04
8.0E-06
8.0E-02
107-05-1 Allyl chloride
Organic
2.7E+01
varies
2.8E+01
4.8E-01
3 4E+03
76.53
1.1E-02
8 0E-06
8.0E-02
62-53-3 Aniline
Organic
9.2E+00
varies
9.5E+00
8.8E-04
3.6E+04
93.10
2.3E-06
8.3E-06
7.0E-02
7440-36-0 Antimony
Metal
NA
2.0E+00
NA
NA
NA
NA
NA
NA
NA
7440-38-2 Arsenic
Metal
NA
2.9E+01
NA
NA
NA
NA
NA
NA
NA
7440-39-3 Barium
Metal
NA
5.3E+02
NA
NA
NA
NA
NA
NA
NA
56-55-3 Benz(a)anthracene
Organic
4.0E+05
varies
5.0E+05
2.0E-10
1.3E-02
228.28
3.6E-06
9.0E-06
6.1E-02
71-43-2 Benzene
Organic
1.2E+02
varies
1.3E+02
1.2E-01
1.8E+03
78.00
5.5E-03
9.8E-06
8.8E-02
92-87-5 Benzidine*
Organic
4.3E+01
varies
4.6E+01
1.1E-10
5.2E+02
184.23
3.9E-11
1.5E-05
8.0E-02
50-32-8 Benzo(a)pyrene
Organic
1 0E+06
vanes
1.3E+06
6.4E-12
1.9E-03
252.00
8.4E-07
9.0E-06
4.3E-02
205-99-2 Benzo(b)(luoranthene
Organic
1.2E+06
vanes
1.6E+06
4.9E-10
4.3E-03.
252.00
2.9E-05
8.0E-06
8.0E-02
100-51-6 Benzyl alcohol
Organic
1.2E+01
varies
1.3E+01
1.4E-04
4.0E+04
108.10
3 9E-07
8.0E-06
8.0E-02
100-44-7 Benzyl chloride
Organic
1.8E+02
varies
2.0E+02
1 6E-03
4.9E+02
126.58
4.0E-04
7.8E-06
7.5E-02
7440-41-7 Beryllium
Metal
NA
7.0E+01
NA
NA
NA
NA
NA
NA
NA
39638-32-9 Bis (2-chloroisopropyl) ether
Organic
3.4E+02
varies
3.8E+02
1.0E-03
1.7E+03
171.07
1 0E-04
6.4E-06
6.0E-02
111 -44-4 Bis(2-chlorethyl)ether
Organic
1.5E+01
varies
1.6E+01
1.8E-03
1.2E+04
143.02
2.1E-05
7.5E-06
6.9E-02
117-81-7 Bis(2-ethylhexyl)phthalate
Organic
1.5E+07
varies
2.0E+07
8 5E-09
4.0E-01
390.54
8.3E-06
3.7E-06
3.5E-02
75-27-4 Bromodichloromethane
Organic
1.2E+02
varies
1.3E+02
7.7E-02
4.0E+03
163.80
3.2E-03
8.0E-06
8.0E-02
75-25-2 Bromoform (Tribromomethane)
Organic
2.0E+02
varies
2.2E+02
7.8E-03
3.2E+03
252.77
6 1E-04
8.0E-06
8.0E-02
71-36-3 Butanol
Organic
6.1E+00
varies
6.3E+00
8.6E-03
7.5E+04
74.12
8 5E-06
9.3E-06
8.0E-02
88-85-7 Butyl-4,6-dinitrophenol, 2-sec- (Dinos«
Organic
1.2E+03
varies
1.4E+03
9.9E-05
5.2E+01
240.20
4 6E-04
8 0E-06
8 0E-02
85-68-7 Butylbenzylphthalate
Organic
5.7E+04
varies
6.9E+04
1.6E-08
2.6E+00
312.40
1.9E-06
8.0E-06
8.0E-02
Known to Innl/o unriiir onvlmnninnliil conditions
' Completely mlsclble; solubility estimated Irom Henry's Law Constant and Vapor Pressure.

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties
Vapor	Molecular Henry's Law Diflusivity in Diffusivity in
CAS
Number Chemical Name
Chemical
Type
Koc
(mUg)
Kd
(mUq)
Kow
(unitless)
pressure
(atm)
Solubility
(mg/L)
weight
(g/mot)
constant
(atm-m3/mol)
water
(cm2/s)
air
(cm2/s)
7440-43-9 Cadmium
Metal
NA
1.6E+02
NA
NA
NA
NA
NA
NA
NA
75-15-0 Carbon disulfide
Organic
9.3E+01
varies
1 OE+02
4.5E-01
2.7E+03
76.14
1.3E-02
1.0E-05
1 0E-01
56-23-5 Carbon tetrachloride
Organic
4 8E+02
varies
5.4E+02
1.5E-01
7.9E+02
154.00
2.9E-02
8.8E-06
7.8E-02
57-74-9 Chlordane
Organic
1.6E+06
varies
2.1E+06
3.5E-08
2.2E-01
409.80
6.7E-05
8 0E-06
8.0E-02
126-99-8 Chloro-1,3-butadiene, 2- (Chloroprene
Organic
1.1E+02
varies
1 2E+02
2.8E-01
6.3E+02
88.54
3.9E-02
1.0E-05
1.0E-01
106-47-8 Chloroaniline, p-
Organic
6.6E+01
varies
7.1E+01
2.8E-03
3.4E+03
127.57
1.1E-04
8.0E-06
8 0E-02
108-90-7 Chlorobenzene
Organic
6.5E+02
varies
7.2E+02
1.6E-02
4.1E+02
112.56
4.4E-03
8.7E-06
7.3E-02
510-15-6 Chlorobenzilate
Organic
2.0E+04
varies
2.4E+04
4.8E-09
1.3E+01
325.20
1.2E-07
8.0E-06
8.0E-02
124-48-1 Chlorodibromomethane
Organic
1.4E+02
varies
1.5E+02
4.1E-02
3.4E+03
208.30
2.5E-03
8.QE-06
8.0E-02
67-66-3 Chloroform
Organic
7.7E+01
varies
8.3E+01
2.7E-01
8.0E+03
119.00
4.0E-03
1.0E-05
1.0E-01
95-57-8 Chlorophenol. 2-
Organic
1.3E+02
varies
1.4E+02
2.8E-03
2.1E+04
128.56
1.7E-05
8 0E-06
8.0E-02
7440-47-3 Chromium VI
Metal
NA"
1.8E+01
NA
NA
NA
NA
NA
NA
NA
218-01-9 Chrysene
Organic
4.0E+05
varies
5.0E+05
1.0E-11
1 9E-03
228.30
1.2E-06
8.0E-06
8.0E-02
7440-50-8 Copper
Metal
NA
5.2E+01
NA
NA
NA
NA
NA
NA
NA
108-39-4 Cresol. m-
Organic
8.6E+01
varies
9.3E+01
1.9E-04
2.3E+04
108.15
8.8E-07
1 0E-05
7.4E-02
95-48-7 Cresol, o-
Organic
9.0E+01
varies
9.8E+01
4.2E-04
2.8E+04
108.15
1.6E-06
8.3E-06
7.4E-02
106-44-5 Cresol, p-
Organic
8.3E+01
varies
8.9E+01
1.7E-04
2.3E+04
108.13
8.2E-07
1.0E-05
7.4E-02
98-82-8 Cumene
Organic
3.3E+03
varies
3.8E+03
6.0E-03
5.6E+01
120.20
1.3E-02
7.1E-06
8.6E-02
72-54-8 DDD
Organic
9.9E+05
varies
1.3E+06
1.1E-09
7.3E-02
320.05
5.0E-06
8.0E-06
8.0E-02
72-55-9 DDE
Organic
4.4E+06
varies
5.8E+06
7.5E-09
1 9E-02
318.03
1.2E-04
8.0E-06
8.0E-02
50-29-3 DDT
Organic
2.6E+06
vanes
3.4E+06
5.2E-10
3.4E-03
354.49
5.4E-05
8 0E-06
8.0E-02
84-74-2 Di-n-butyl phthalate
Organic
3.4E+04
varies
4.1E+04
5.6E-08
1.1E+01
278.34
1.4E-06
7.9E-06
4.4E-02
117-84-0 Di-n-octyl phthalate
Organic
8.4E+07
varies
1.1E+08
5.9E-09
4.0E-02
390.54
5.7E-05
8.0E-06
8.0E-02
2303-16-4 Diallate
Organic
2.6E+04
varies
3.1E+04
2.0E-07
1.4E+01
270.24
3.8E-06
8.0E-06
8.0E-02
53-70-3 Dibenz(a,h)anthracene
Organic
3.8E+06
varies
4.9E+06
2.7E-14
6.7E-04
278.33
1.1E-08
8.0E-06
8.0E-02
96-12-8 Dibromo-3-chloropropane, 1,2-
Organic
2.0E+02
varies
2.2E+02
1.0E-03
1.2E+03
236.36
2.0E-04
8.0E-06
8.0E-02
95-50-1 Dichlorobenzene, 1,2-
Organic
2.4E+03
varies
2.7E+03
1.8E-03
1.3E+02
147.01
2.1E-03
7.9E-06
6.9E-02
106-46-7 Dichlorobenzene, 1,4-
Organic
2.3E+03
varies
2.6E+03
1.4E-03
7.3E+01
147.01
2.8E-03
7.9E-06
6.9E-02
91-94-1 Dichlorobenzidme, 3,3'-
Organic
2.8E+03
varies
3.2E+03
2.9E-10
3.5E+00
253.13
2.1E-08
8.0E-06
8.0E-02
" Knc	nize under environmental conditions
r misclble; solubility estimated from Henry's Law Constant and Vapor Pressuq
A-2

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties
Vapor	Molecular Henry's Law Diftusivity in Diflusivity in
CAS
Number Chemical Name
Chemical
Type
Koc
(mUg)
Kd
(mL/q)
Kow
(unitless)
pressure
(atm)
Solubility
(mg/L)
weight
(q/mol)
constant
(atm-m3/mol)
water
(cm2/s)
air '
(cm2/s)
75-71-8
Dichlorodifluoromethane
Organic
1.3E+02
vanes
1.4E+02
6.4E+00
3.0E+02
120.90
2.6E+00
8.0E-06
8.0E-02
75-34-3
Dichloroethane, 1,1-
Organic
5.8E+01
varies
6.2E+01
3.0E-01
5.2E+03
98.96
5.8E-03
8.0E-06
8 0E-02
107-06-2
Dichloroethane. 1.2-
Organic
2.8E+01
varies
3.0E+01
1.1E-01
8.3E+03
98.96
1.3E-03
9.9E-06
1 0E-01
75-35-4
~ichloroethylene, 1,1-
Organic
1.2E+02
varies
1.3E+02
7.9E-01
3.0E+03
96.94
2.5E-02
8.0E-06
8.0E-02
156-59-2
Dichloroethylene, cis-1,2-
Organic
6.7E+01
varies
7.2E+01
2.3E-01
4.9E+03
96.95
4 5E-03
8 0E-06
8.0E-02
156-60-5
Dichloroethylene, trans-1,2-
Organic
1.1E+02
varies
1.2E+02
4.6E-01
8.0E+03
96.95
5.6E-03
8.0E-06
8.0E-02
120-83-2
Dichlorophenol, 2,4-
Organic
1.1E+03
varies
1.2E+03
7.2E-06
4.9E+03
163.01
2.4E-07
8.0E-06
8.0E-02
94-75-7
Dichlorophenoxyacetic acid, 2,4- (2,4-
Organic
4.5E+02
varies
5.0E+02
1.4E-05
6.8E+02
221.04
4.5E-06
6.5E-06
5.9E-02
78-87-5
Dichloropropane, 1.2-
Organic
8.6E+01
varies
9.3E+01
6.7E-02
2.7E+03
112.99
2.8E-03
8.7E-06
7.8E-02
542-75-6
Dichloropropene, 1,3-
Organic
9.3E+01
varies
1.0E+02
4.1E-02
1.5E+03
110.98
2.9E-03
8.0E-06
8.0E-02
10061-01-5
Dichloropropene, cis-1,3-
Organic
9.3E+01
varies
1.0E+02
4.9E-02
2.7E+03
110.97
2.0E-03
8.0E-06
8.0E-02
10061-02-6
Dichloropropene, trans-1,3-
Organic
9.3E+01
varies
1 0E+02
4.0E-02
2.8E+03
110.97
1.6E-03
8.0E-06
8.0E-02
60-57-1
Dieldnn
Organic
1.9E+05
varies
2.3E+05
1.3E-09
1.9E-01
380.95
2.7E-06
8.0E-06
8.0E-02
84-66-2
Diethyl phthalate
Organic
2.9E+02
varies
3.2E+02
2.2E-06
8.8E+02
222.20
5.5E-07
8.0E-06
8.0E-02
56-53-1
Diethylstilbestrol
Organic
9.6E+04
varies
1.2E+05
1.4E-12
1.3E+04
268.34
3.0E-14
8.0E-06
8.0E-02
60-51-5
Dimethoate
Organic
4.8E+00
varies
4.9E+00
6.7E-09
2.5E+04
229.28
6.2E-11
8.0E-06
8.0E-02
131-11-3
Dimethyl phthalate
Organic
3.5E+01
varies
3.7E+01
1.2E-05
4.2E+03
194.19
5.8E-07
6.3E-06
6.7E-02
57-97-6
Dimethylbenz(a)anthracene, 7,12-
Organic
3.2E+06
varies
4.2E+06
3.8E-12
5.0E-02
256 35
1.9E-08
8.0E-06
8.0E-02
119-93-7
Dimethylbenzidine, 3,3'- *
Organic
4.3E+02
varies
4.8E+02
4.9E-10
1.2E+03
212 28
8 6E-11
8.0E-06
8.0E-02
105-67-9
Dimethylphenol, 2,4- *
Organic
2.1E+02
varies
2.3E+02
1.7E-04
6.2E+03
122.16
3.3E-06
8.0E-06
8.0E-02
119-90-4
Dimethyoxybenzidine, 3,3'- *
Organic
6.0E+01
varies
6.5E+01
3.3E-10
2.4E+02
244.32
3.3E-10
8.0E-06
8.0E-02
99-65-0
Dimtrobenzene, 1,3-
Organic
3.0E+01
vanes
3.2E+01
4.0E-07
5.4E+02
168.10
1.2E-07
7.6E-06
2 8E-01
51-28-5
Dinitrophenol, 2,4-
Organic
3.3E+01
varies
3.5E+01
1.5E-07
5.8E+03
184.11
4.8E-09
8.0E-06
8.0E-02
121-14-2
Dinitrotoluene, 2,4-
Organic
9.5E+01
varies
1.0E+02
2.3E-07
2.8E+02
182.13
1.5E-07
7.1E-06
2.0E-01
606-20-2
Dinitrotoluane, 2,6-
Organic
6.9E+01
varies
7.4E+01
7.5E-07
1.1E+03
182 14
1 3E-07
8.0E-06
8.0E-02
123-91-1
Dioxane, 1,4- **
Organic
4.1E-01
varies
4.1E-01
5.0E-02
9.0E+05
88.10
4.9E-06
1.0E-05
2.3E-01
122-39-4
Diphenylamine"
Organic
2.6E+03
varies
3.0E+03
5.6E-06
3.0E+02
169.23
3.2E-06
6.3E-06
6.8E-02
298-04-4
Disulfoton
Organic
8.2E+03
varies
9.5E+03
3.7E-07
1.6E+01
274.38
6.2E-06
8.0E-06
8.0E-02
115-29-7
Endosulfan
Organic
1.1E+04
varies.
1.3E+04
1.3E-08
2.3E-01
406.95
2.3E-05
8.0E-06
8.0E-02
" Known to ionize under environmental conditions
" Completely mlsclble, solubility estimated trom Henry's Law Constant and Vapor Pressure.
A-3

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties
Vapor	Molecular Henry's Law Diffusivity in Diffusivity in
CAS
Number Chemical Name
Chemical
Type
Koc
(mUg)
Kd
(mUq)
Kow
(unitless)
pressure
(atm)
Solubility
(mg/L)
weight
(q/mol)
constant
(atm-m3/mol)
water
(cm2/s)
air
(cm2/s)
72-20-0 Endrin
Organic
9.4E+04
varies
1.1E+05
7.7E-10
2.5E-01
380.93
1.2E-06
8.0E-06
8.0E-02
106-89-8. Epichlorohydrin
Organic
1.8E+00
varies
1.8E+00
2.2E-02
6.6E+04
92 53
3.0E-05
9.8E-06
8.6E-02
110-80-5 Ethoxyethanol, 2- "
Organic
8.0E-01
varies
7.9E-01
7.0E-03
1.2E+01
90.12
5.1E-02
8 0E-06
8.0E-02
141-78-6 Ethyl acetate
Organic
4.8E+00
varies
4.9E+00
1.2E-01
6.4E+04
88 10
1.7E-04
9 7E-06
7.3E-02
60-29-7 Ethyl ether
Organic
6.5E+00
varies
6.8E+00
7.1E-01
6.1E+04
74.12
8.7E-04
9.3E-06
7.4E-02
97-63-2 Ethyl methacrylate
Organic
3.7E+01
varies
3.9E+01
2.3E-02
1.9E+04
114.14
1.4E-04
8.0E-06
8.0E-02
62-50-0 Ethyl methanesulfonate
Organic
1.1E+00
varies
1.1E+00
3.5E-04
4.9E+05
124.15
8.8E-08
8.0E-06
8.0E-02
100-41-4 Ethylbenzene
Organic
1.2E+03
varies
1.4E+03
1.3E-02
1.7E+02
106.17
7.7E-03
7.8E-06
7.5E-02
106-93-4 Ethylene Dibromide
Organic
5.3E+01
vanes
5.6E+01
1.0E-02
4.2E+03
187.88
4.6E-04
8.0E-06
8.0E-02
96-45-7 Ethylene thiourea
Organic
2.2E-01
varies
2.2E-01
1.1E-04
1.2E+04
102.20
9.1E-07
8.0E-06
8.0E-02
206-44-0 Fluoranthene
Organic
1.1E+05
varies
1.3E+05
1.1E-08
2.3E-01
202.00
9.3E-06
8.0E-06
8.0E-02
86-73-7 Fluorene
Organic
1.4E+04
varies
1.6E+04
8.2E-07
1.9E+00
166.21
7.3E-05
8.0E-06
8.0E-02
50-00-0 Formaldehyde
Organic
8.9E-01
varies
8.9E-01
5.1E+00
5.5E+05
30.03
2.8E-04
2.0E-05
1.8E-01
64-18-6 Formic Acid"
Organic
2.9E-01
varies
2.9E-01
5.4E-02
1.0E+06
46.03
2 5E-06
1.4E-06
7.9E-02
110-00-9 Furan
Organic
2.1E+01
varies
2.2E+01
7.9E-01
1 .OE+04
68.08
5.4E-03
1.2E-05
1 .OE-01
76-44-8 Heptachlor
Organic
1.4E+06
varies
1.8E+06
4.3E-07
2.7E-01
373.35
5.9E-04
8.0E-06
8.0E-02
1024-57-3 Heptachlor epoxide
urganlc
8.2E+04
varies
1.0E+05
5.7E'09
2.7E-01
389.20
8.3E-06
8.0E-06
8.0E-02
87-68-3 Hexachloro-1,3-butadiene
Organic
5.4E+04
varies
6.5E+04
2.3E-04
2.5E+00
260.76
2.4E-02
6.2E-06
5.6E-02
118-74-1 Hexachlorobenzene
Organic
6.2E+05
varies
7.8E+05
2 3E-08
8.6E-03
284.80
7.5E-04
5.9E-06
6.4E-02
319-84-6 Hexachlorocyclohexane, alpha- (alpha
Organic
5.4E+03
varies
6.3E+03
5.6E-08
2.4E+00
290.83
6.8E-06
8 0E-06
8.0E-02
319-85-7 Hexachlorocyclohexane, beta- (beta-B
Organic
5.6E+03
varies
6.5E+03
6.5E-10
5.4E-01
290.83
3.5E-07
8.0E-06
8.0E-02
58-89-9 Hexachlorocyclohexane, gamma- (Lin.
Organic
4.6E+03
varies
5.4E+03
4.9E-08
4 2E+00
290.85
3.4E-06
8.0E-06
8.0E-02
77-47-4 Hexachlorocyclopentadiene
Organic
2.0E+05
varies
2.5E+05
9.6E-05
1.5E+00
273.00
1.7E-02
6.2E-06
5.6E-02
67-72-1 Hexachloroethane
Organic
8.6E+03
varies
1.0E+04
6.2E-04
4.1E+01
236.74
3.6E-03
6.8E-06
2.5E-03
70-30-4 Hexachlorophene"
Organic
2.6E+07
varies
3.5E+07
3.6E-15
3 0E-03
406.91
4 9E-10
8.0E-06
8.0E-02
193-39-5 lndeno(1.2,3-cd) pyrene
Organic
3.4E+06
varies
4.5E+06
1.9E-13
2.2E-05
276 34
2.4E-06
8 0E-06
8.0E-02
78-83-1 Isobutyl alcohol
Organic
5 5E+00
varies
5.6E+00
1.4E-02
7.6E+04
74.14
1 3E-05
8 0E-06
8.0E-02
78-59-1 Isophorone
Organic
4.7E+01
vanes
5.0E+01
5.4E-04
1.2E+04
138.20
6.2E-06
6.8E-06
6.2E-02
143-50-0 Kepone
Organic
1.6E+05
varies
2.0E+05
3.9E-10
7.6E+00
490.68
2.5E-08
8.0E-06
8.0E-02
' KnowaJ^jnlze under environmental conditions
'• Coq	miscible; solubility estimated trom Henry's Law Constant and Vapor Press1	A-4

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties
Vapor	Molecular Henry's Law Diffusivity in Diffusivity in
CAS
Number Chemical Name
Chemical
Type
Koc
(mL/g)
Kd
(mL/g)
Kow
(unitless)
pressure
(atm)
Solubility
(mg/L)
weight
(g/mol)
constant
(atm-m3/mol)
water
(cm2/s)
air
(cm2/s)
7439-92-1 Lead
Metal
NA
2.8E+05
NA
NA
NA
NA
NA
NA
NA
7439-97-6 Mercury
Mercury
NA
9.5E+04
NA
2.6E-06
5.6E-02
201.00
7.1E-10
8.0E-06
8.0E-02
126-98-7 Methacrylonitrile
Organic
3.4E+00
varies
3.5E+00
8.9E-02
2.5E+04
67.09
2.3E-04
8.0E-06
8.0E-02
67-56-1 Methanol
Organic
2.0E-01
varies
1.9E-01
1.6E-01
2.9E+04
32.04
1.7E-04
1.6E-05
1.5E-01
72-43-5 Methoxychlor
Organic
9.9E+04
varies
1.2E+05
1.6E-09
8.8E-02
345.65
6.3E-06
8.0E-06
8.0E-02
74-83-9 Methyl bromide (Bromomethane)
Organic
1.5E+01
varies
1.5E+01
2.2E+00
1.4E+04
94.95
1.4E-02
8.0E-06
8.0E-02
74-87-3 Methyl chloride (Chloromethanel
Organic
7.8E+00
varies
8.1E+00
5.7E+00
6.3E+03
50.49
4.5E-02
6.5E-06
1.3E-01
78-93-3 Methyl ethyl ketone
Organic
1.9E+00
varies
1.9E+00
1.2E-01
2.4E+05
72.10
3.6E-05
9.8E-06
8.1E-02
108-10-1 Methyl isobutyl ketone
Organic
1.5E+01
varies
1.5E+01
2.5E-02
2.0E+04
100.16
1 2E-04
7.8E-06
7.5E-02
80-62-6 Methyl methacrylate
Organic
2.3E+01
varies
2.4E+01
5.1E-02
1.6E+04
100.13
3.2E-04
8.6E-06
7.7E-02
298-00-0 Methyl parathlon
Organic
7.1E+02
varies
7.9E+02
2.0E-08
5.0E+01
263.23
1.1E-07
8.0E-06
8.0E-02
56-49-5 Methylcholanthrene, 3-
Organic
2.0E+06
varies
2.6E+06
1.0E-11
1.9E-03
268.40
1.4E-06
8.0E-06
8.0E-02
74-95-3 Methylene bromide
Organic
3.9E+01
varies
4.2E+01
6.0E-02
1.1E+04
173.86
9.0E-04
8.0E-06
8.0E-02
75-09-2 Methylene chloride
Organic
1.7E+01
varies
1.8E+01
4.9E-01
1.7E+04
84.93
2.4E-03
1.2E-05
1.0E-01
7439-98-7 Molybdenum
Metal
NA
2.0E+01
NA
NA
NA
NA
NA
NA
NA
621-64-7 N-Nitrosodi-n-propylamine
Organic
2.4E+01
varies
2.5E+01
4.6E-03
1.5E+04
130.19
4.1E-05
8.0E-06
8.0E-02
86-30-6 N-Nltrosodiphenylamine
Organic
1.3E+03
varies
1.4E+03
1.3E-04
3.7E+01
198.23
7.0E-04
8.0E-06
8.0E-02
100-75-4 N-Nitrosopiperidine
Organic
4.2E+00
varies
4.3E+00
1.9E-04
1.56:+05
114.50
1 4E-07
8.0E-06
8.0E-02
930-55-2 N-Nitrosopyrrolidine
Organic
6.5E-01
varies
6.5E-01
2.3E-04
7.8E+05
100.11
2.9E-08
8.0E-06
8.0E-02
91-20-3 Naphthalene
Organic
2.0E+03
varies
2.3E+03
1.2E-04
3.1E+01
128.16
4 8E-04
7.5E-06
5 9E-02
91-59-8 Naphthylamlne*
Organic
1.7E+02
vanes
1.9E+02
2.8E-05
1.3E+03
143.19
3.1E-06
8.0E-06
8.0E-02
7440-02-0 Nickel
Metal
NA
8.2E+01
NA
NA
NA
NA
NA
NA
NA
98-95-3 Nitrobenzene
Organic
6.4E+01
varies
6.9E+01
3.2E-04
1.9E+03
123.11
2 1E-05
8.6E-06
7.6E-02
79-46-9 Nitropropane, 2- *
Organic
7.2E+00
varies
7.4E+00
2.4E-02
1.7E+05
89.09
1.2E-05
8.0E-06
8.0E-02
924-16-3 Nitrosodi-n-butylamine
Organic
2.3E+02
varies
2.6E+02
3.8E-04
1.1E+03
158.20
5.4E-05
8.0E-06
8.0E-02
55-18-5 Nitrosodiethylamine
Organic
3.0E+00
varies
3.0E+00
2.6E-03
2.0E+05
102.14
1.3E-06
8.0E-06
8 0E-02
62-75-9 Nitrosodimethylamine
Organic
2.8E-01
varies
2.7E-01
7.1E-03
1.0E+06
74.08
5.3E-07
8 0E-06
8.0E-02
10595-95-6 Nitrosomethylethylamine
Organic
7 6E-01
varies
7.6E-01
3.0E-03
3.0E+05
88
8.9E-07
8.0E-06
8.0E-02
152-16-9 Octamethylpyrophosphoramide
Organic
3.1E-01
varies
3.0E-01
1.3E-06
1.0E+06
286.26
3.8E-10
8.0E-06
8.0E-02
* Known to ionize under environmental condmons
" Completely miscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-5

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties
Vapor	Molecular Henry's Law Diffusivity in Diffusivity in
CAS
Number Chemical Name
Chemical
Type
Koc
(mL/g)
Kd
(mL/g)
Kow
(unitless)
pressure
(atm)
Solubility
(mg/L)
weight
(q/mol)
constant
(atm-m3/mol)
water
(cm2/s)
air
(cm2/s)
56-38-2 Parathion
Organic
5.8E+03
varies
6.8E+03
1.3E-08
6.5E+00
291.27
5.7E-07
8 0E-06
8.0E-02
608-93-5 Pentachlorobenzene
Organic
1.5E+05
varies
1.8E+05
2.2E-06
6.5E-01
250.30
8.4E-04
6.3E-06
6.7E-02
82-68-8 Pentachloronitrobenzene (PCNB)
Organic
3.6E+04
varies
4.4E+04
3.1E-06
3.2E-02
295.36
2.9E-02
8 0E-06
8.0E-02
87-86-5 Pentachlorophenol*
Organic
1.0E+05
varies
1.2E+05
7.1E-07
1.3E+01
266.00
1.4E-05
6 1E-06
5.6E-02
108-95-2 Phenol
Organic
2.9E+01
varies
3.0E+01
5.7E-04
9.1E+04
94.11
6.0E-07
9.1E-06
8.2E-02
62-38-4 Phenyl mercuric acetate
Organic
1.6E+02
varies
1.7E+02
4.0E-09
4.4E+03
336.75
3.1E-10
8.0E-06
8.0E-02
108-45-2 Phenylenediamine. m- *
Organic
1.1E+00
varies
1.1E+00
3.0E-05
3.5E+05
108.60
9.2E-09
8.0E-06
8.0E-02
298-02-2 Phorate
Organic
5.6E+03
varies
6.5E+03
1.7E-06
3.8E+01
260.40
1.2E-05
8.0E-06
8.0E-02
1336-36-3 Polychlorinated biphenyls
Organic
1.5E+06
varies
2.0E+06
1.0E-07
8.0E-02
328.00
4.1E-04
1.0E-05
8.0E-02
23950-58-5 Pronamide
Organic
2.8E+03
varies
3.2E+03
5.3E-07
1.5E+01
256.13
9.0E-06
8.0E-06
8.0E-02
129-00-0 Pyrene
Organic
1.1E+05
varies
1.3E+05
5.6E-09
1.4E-01
202.24
8.3E-06
8.0E-06
8.0E-02
110-86-1 Pyridine"
Organic
4.6E+00
varies
4.7E+00
2.6E-02
3.0E+02
79.10
7.0E-03
7.6E-06
9.1E-02
94-59-7 Safrole
Organic
4.1E+02
varies
4.6E+02
1.1E-04
1.5E+03
162.19
1.2E-05
8.0E-06
8.0E-02
7782-49-2 Selenium
Metal
NA
4.3E+00
NA
NA
NA
NA
NA
NA
NA
7440-22-4 Silver
Metal
NA
4.0E-01
NA
NA
NA
NA
NA
NA
NA
57-24-9 Strychnine*
Organic
7.9E+01
varies
8.5E+01
2.2E-13
1.5E+02
334.40
4.9E-13
8.0E-06
8.0E-02
100-42-5 Stryene
Organic
7.8E+02
varies
8.7E+02
8.2E-03
2.6E+02
104.14
3.3E-03
8.0E-06
7.1E-02
1746-01-6 TCDD, 2,3,7,8-
Organic
1.4E+07
varies
1.1E+07
9.7E-13
1.9E-05
322.00
9.2E-06
8.0E-06
4.7E-02
95-94-3 Tetrachlorobenzene, 1,2,4,5-
Organic
3.6E+04
varies
4.4E+04
7.1E-06
1.3E+00
215.89
1.2E-03
8.0E-06
8.0E-02
630-20-6 Tetrachloroethane, 1,1,1,2-
Organic
3.9E+02
varies
4.3E+02
1.6E-02
1.1E+03
167.85
2.4E-03
7.9E-06
7.1E-02
79-34-5 Tetrachloroethane, 1,1,2,2-
Organic
2.2E+02
varies
2.5E+02
6.8E-03
3.1E+03
167.86
3.7E-04
7.9E-06
7.1E-02
127-18-4 Tetrachloroethylene
Organic
4.2E+02
vanes
4.7E+02
2.4E-02
2.3E+02
165.85
1.7E-02
8.2E-06
7.2E-02
58-90-2 Tetrachlorophenol, 2,3,4,6-
Organic
1.7E+04
varies
2.0E+04
6.6E-06
1.0E+02
231.89
1.5E-05
8.0E-06
8.0E-02
3689-24-5 Tetraethyldithiopyrophosphate
Organic
5.8E+03
varies
6.8E+03
3.3E-07
2.5E+01
322.31
4.2E-06
8.0E-06
8.0E-02
7440-28-0 Thallium (I)
Metal
NA
7.4E+01
NA
NA
NA
NA
NA
NA
NA
108-88-3 Toluene
Organic
5.1E+02
varies
5.6E+02
3.7E-02
5.6E+02
92.15
6.1E-03
8.6E-06
8.7E-02
95-80-7 Toluenediamtne, 2,4-
Organic
2.5E+00
varies
2.5E+00
1.1E-07
7.5E+03
122.17
1.8E-09
8.0E-06
8.0E-02
95-53-4 Toluidine, o-'
Organic
2.1E+01
varies
2.2E+01
3.9E-04
1.7E+04
107.15
2.6E-06
8.0E-06
8.0E-02
106-49-0 Toluidine, p-"
Organic
2.4E+01
varies
2.5E+01
4.3E-04
7.6E+03
107.15
6.1E-06
8 0E-06
8.0E-02
Knov	Ize under environmental conditions
Co'	miscible; solubility estimated from Henry's Law Constant and Vapor Pressui,
A-6

-------
Table A-1. Physical Chemical Properties Data for HWIR Chemicals
Physical-Chemical Properties





Vapor

Molecular
Henry's Law
Diffusivity in Diftusivity in
CAS
Chemical
Koc
Kd
Kow
pressure
Solubility
weight
constant
water
air
Number Chemical Name
Type
(mL/q)
(mL/q)
(unitless)
(atm)
(mq/L)
(g/mol)
(atm-m3/mol)
(cm2/s)
(cm2/s)
8001-35-2 Toxaphene
Organic
2.6E+05
vanes
3.2E+05
5.5E-09
6.79E-01
414
3.4E-06
8.0E-06
8.0E-02
76-13-1 T richloro-1,2,2-tritluoroethane, 1,1,2-
Organic
1.3E+03
varies
1.4E+03
4.8E-01
1.7E+02
187.38
5.3E-01
8 2E-06
7.8E-02
120-82-1 Tiichlorobenzene, 1,2,4-
Organic
8.8E+03
varies
1.0E+04
4.4E-04
3.1E+01
181.45
2.6E-03
8.0E-06
8.0E-02
71-55-6 Trichloroethane, 1,1,1-
Organic
2.7E+02
varies
3.0E+02
1.6E-01
1.2E+03

1.9E-02
8.8E-06
7.8E-02
79-00-5 Trichloroethane. 1,1,2-
Organic
1.0E+02
varies
1.1E+02
3.3E-02
4.4E+03
133.42
1.0E-03
8 8E-06
7 8E-02
79-01-6 Trichloroethylene
Organic
4.6E+02
varies
5.1E+02
9.5E-02
1.2E+03

1.1E-02
9.1E-06
7.9E-02
75-69-4 Trichlorofluoromethane
Organic
3.1E+02
varies
3.4E+02
1.1E+00
1.1E+03
137.38
1.3E-01
9.7E-06
8.7E-02
95-95-4 Trichlorophenol, 2,4,5-
Organic
6.8E+03
varies
7.9E+03
2.1E-05
9.7E+02
197.46
4.4E-06
8.0E-06
8.0E-02
88-06-2 Trichlorophenol, 2,4.6-
Organic
4.3E+03
varies
5 0E+03
1.5E-05
7.5E+02
197.46
4.1E-06
8 0E-06
8.0E-02
93-76-5 Trichlorophenoxyacetlc acid, 2,4,5- (2
Organic
1.8E+03
varies
2.0E+03
9.9E-10
2 8E+02
255.49
9.1E-10
8 0E-06
8.0E-02
93-72-1 Trichlorophenoxypropionic acid, 2,4,5-
Organic
2.3E+03
varies
2.6E+03
6.8E-09
1.4E+02
269.51
1.3E-08
8.0E-06
8.0E-02
96-18-4 Trichloropropane, 1,2,3-
Organic
1.6E+02
varies
1.8E+02
4.9E-03
1.9E+03
147.40
3.8E-04
7.9E-06
7.1E-02
99-35-4 Trinitrobenzene, sym-
Organic
1.4E+01
varies
1.5E+01
1.3E-07
3.2E+02
213.11
8.6E-08
8.0E-06
8.0E-02
126-72-7 Tris (2,3-dibromopropyl) phosphate
Organic
2.8E+03
varies
3.2E+03
2.0E-07
4.7E+00
697.70
3.0E-05
8.0E-06
8.0E-02
7440-62-2 Vanadium
Metal
NA
5.0E+01
NA
NA
NA
NA
NA
NA
NA
75-01-4 Vinyl chloride
Organic
3.0E+01
varies
3.2E+01
3.7E+00
2.7E+03
62.50
8.4E-02
1 2E-05
1.1E-01
1330-20-7 Xylenes (total)
Organic
1.3E+03
varies
1.5E+03
1.1E-02
1.9E+02
106.17
6.0E-03
8.0E-06
8.0E-02
7440-66-6 Zinc
Metal
NA
4.0E+01
NA
NA
NA
NA
NA
NA
NA
' Known to ionize under environmental conditions
" Completely miscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-7

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals
Biotransfer Factors for Plants

RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
plant)/(ug/g soil)
plant)/(uq/g soil)
plant)/(uq/q air)
plant)/(uo/q air)
83-32-9 Acenaphthene
3.2E+01
NA
2.1E-01
2.1E-01
7.6E+02
7 6E+02
67-64-1 Acetone
8.4E-01
NA
5.3E+01
5.3E+01
1.1E-01
1.1E-01
75-05-8 Acetonitrile
8.4E-01
NA
6.1E+01
6.1E+01
1.0E-01
1.0E-01
98-86-2 Acetophenone
1.4E+00
NA
4.4E+00
4.4E+00
3 0E+01
3.0E+01
107-02-8 Acrolein
8.5E-01
NA
3.9E+01
3.9E+01
5.8E-02
5.8E-02
79-06-1 Acrylamide
8.3E-01
NA
1.4E+02
1.4E+02
1.7E+03
1 7E+03
107-13-1 Acrylonitrile
8.7E-01
NA
2.8E+01
2.8E+01
1 0E-01
1.0E-01
309-00-2 Aldrln
3.1E+03
NA
6.8E-03
6.8E-03
4.6E+05
4.6E+05
107-05-1 Altyl chloride
1.2E+00
NA
5.6E+00
5.6E+00
1.8E-02
1.8E-02
62-53-3 Aniline
9.9E-01
NA
1.1E+01
1.1E+01
2.7E+01
2.7E+01
7440-36-0 Antimony
NA
3.0E-02
2.0E-01
2.0E-01
NA
NA
7440-38-2 Arsenic
NA
8.0E-03
3.6E-02
6.0E-02
NA
NA
7440-39-3 Barium
NA
1 5E-02
1.5E-01
1.5E-01
NA
NA
56-55-3 Benz(a)anthracene
7.4E+02
NA
2.0E-02
2 0E-02
2.7E+04
2.7E+04
71-43-2 Benzene
2.1E+00
NA
2.3E+00
2.3E+00
1.9E-01
1.9E-01
92-87-5 Benzidine*
1.4E+00
NA
4.3E+00
4.3E+00
8.4E+06
8.4E+06
50-32-8 Benzo(a)pyrene
1.5E+03
NA
1.1E-02
1.1E-02
4.7E+04
4 7E+04
205-99-2 Benzo(b)fluoranthene
1.8E+03
NA
1.0E-02
1.0E-02
2.0E+04
2.0E+04
100-51-6 Benzyl alcohol
1.0E+00
NA
8.8E+00
8.8E+00
2.2E+02
2.2E+02
100-44-7 Benzyl chloride
2.6E+00
NA
1.8E+00
1.8E+00
3.9E+00
3.9E+00
7440-41-7 Beryllium
NA
1.5E-03
1.0E-02
1.0E-02
NA
NA
39638-32-9 Bis (2-chloroisopropyl) ether
3.7E+00
NA
1.2E+00
1.2E+00
3.0E+01
3.0E+01
111-44-4 Bls(2-chlorethyl)ether
1.1E+00
NA
7.7E+00
7.7E+00
5.1E+00
5.1E+00
117-81 -7 Bis(2-ethylhexyl)phthalate
1.3E+04
NA
2.3E-03
2.3E-03
1.0E+06
1.0E+06
75-27-4 Bromodichloromethane
2.1E+00
NA
2.4E+00
2.4E+00
3.0E-01
3.0E-01
75-25-2 Bromoform (Tnbromomethane)
2.8E+00
NA
1.7E+00
1.7E+00
2.9E+00
2.9E+00
71-36-3 Butanol
9.4E-01
NA
1.3E+01
1.3E+01
4.7E+00
4.7E+00
88-85-7 Butyl-4,6-dimtrophenol, 2-sec- (Dinost
8.7E+00
NA
5.9E-01
5.9E-01
2.7E+01
2.7E+01
85-68-7 Butylbenzylphthalate
1.6E+02
NA
6 2E-02
6 2E-02
4.2E+05
4 2E+05
' Knowt; aize under environmental conditions
" Con-	niscible; solubility estimated from Henry's Law Constant and Vapor Pressur
A-8

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals
Biotransfer Factors for Plants

RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
plant)/(uq/q soil)
plant)/(ug/g soil)
plant)/(ug/g air)
plant)/(ug/g air)
7440-43-9 Cadmium
NA
6.4E-02
3.6E-01
1.4E-01
NA
NA
75-15-0 Carbon disulfide
1.9E+00
NA
2.7E+00
2.7E+00
5.9E-02
5.9E-02
56-23-5 Carbon tetrachloride
4.6E+00
NA
1.0E+00
1.0E+00
1.6E-01
1.6E-01
57-74-9 Chlordane
2.2E+03
NA
8.6E-03
8.6E-03
4.5E+05
4.5E+05
126-99-8 Chloro-1,3-butadiene, 2- (Chloroprene
2.0E+00
NA
2.4E+00
2.4E+00
2.3E-02
2.3E-02
106-47-8 Chloroanillne, p-
1.6E+00
NA
3.3E+00
3.3E+00
4.9E+00
4.9E+00
108-90-7 Chlorobenzene
5.6E+00
NA
8.6E-01
8.6E-01
1.4E+00
1.4E+00
510-15-6 Chlorobenzilate
7.2E+01
NA
1.1E-01
1.1E-01
2.1E+06
2.1E+06
124-48-1 Chlorodibromomethane
2.2E+00
NA
2.2E+00
2.2E+00
4.6E-01
4.6E-01
67-66-3 Chloroform
1 7E+00
NA
3.0E+00
3.0E+00
1.5E-01
1.5E-01
95-57-8 Chlorophenol. 2-
2.2E+00
NA
2.2E+00
2.2E+00
6.6E+01
6.6E+01
7440-47-3 Chromium VI
NA
4.5E-03
7.5E-03
7.5E-03
NA
NA
218-01-9 Chrysene
7.4E+02
NA
2.0E-02
2.0E-02
2.5E+04
2.5E+04
7440-50-8 Copper
NA
2.5E-01
4.0E-01
2.4E-02
NA
NA
108-39-4 Cresol, m-
1.8E+00
NA
2.8E+00
2.8E+00
7.9E+02
7.9E+02
95-48-7 Cresol. o-
1.8E+00
NA
2.7E+00
2.7E+00
4.5E+02
4.5E+02
106-44-5 Cresol, p-
1.8E+00
NA
2.9E+00
2.9E+00
8.2E+02
8.2E+02
98-82-8 Cumene
1.8E+01
NA
3.3E-01
3.3E-01
2.8E+00
2.8E+00
72-54-8 DDD
1.5E+03
NA
1.2E-02
1.2E-02
3.5E+06
3.5E+06
72-55-9 DDE
4.8E+03
NA
4.8E-03
4.8E-03
7.2E+05
7.2E+05
50-29-3-DDT
3.2E+03
NA
6.5E-03
6.5E-03
9.4E+05
9.4E+05
84-74-2 Dl-n-butyl phthalate
1.1E+02
NA
8.4E-02
8.4E-02
3.2E+05
3.2E+05
117-84-0 Di-n-octyl phthalate
4.9E+04
NA
8.5E-04
8.5E-04
9.3E+05
9.3E+05
2303-16-4 Diallate
8.7E+01
NA
9.8E-02
9.8E-02
8.9E+04
8.9E+04
53-70-3 Dibenz(a,h)anthracene
4.3E+03
NA
5.3E-03
5.3E-03
1.7E+08
1.7E+08
96-12-8 Dibromo-3-chloroproparte, 1,2-
2.7E+00
NA
1.7E+00
1.7E+00
8.7E+00
8.7E+00
95-50-1 Dichlorobenzene, 1,2-
1.4E+01
NA
4.0E-01
4 OE-01
1.2E+01
1 2E+01
106-46-7 Dichlorobenzene, 1.4-
1.4E+01
NA
4.1E-01
4 IE-01
8.7E+00
8.7E+00
91-94-1 Dichlorobenzidine, 3,2
1.6E+01
NA
3.6E-01
3 6E-01
1.5E+06
1.5E+06
" Known to ionize under environmental conditions
" Completely mlscible, solubility estimated (torn Henry's Law Constant and Vapor Pressure.	A-9

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals
Biotransfer Factors for Plants

RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
plant)/(ug/g soil)
p!ant)/(ug/g soil)
plant)/(ug/q air)
plant)/(uq/q air)
75-71-8 Dichlorodifluoromethane
2.2E+00
NA
2.2E+00
2.2E+00
4.3E-04
4.3E-04
75-34-3 Dichloroethane, 1,1-
1.5E+00
NA
3.6E+00
3.6E+00
7.8E-02
7.8E-02
107-06-2 Dichloroethane, 1,2-
1.2E+00
NA
5.5E+00
5.5E+00
1 6E-01
1.6E-01
75-35-4 Dichloroethylene, 1,1-
2.1E+00
NA
2.3E+00
2.3E+00
4.1E-02
4.1E-02
156-59-2 Dichloroethylene, cis-1,2-
1.6E+00
NA
3.3E+00
3.3E+00
1.2E-01
1.2E-01
156-60-5 Dichloroethylene, trans-1,2-
2.0E+00
NA
2.5€+00
2.5E+00
1.6E-01
1.6E-01
120-83-2 Dlchlorophenol, 2,4-
7.9E+00
NA
6.4E-01
6.4E-01
4.5E+04
4.5E+04
94-75-7 Dichlorophenoxyacetic acid, 2,4- (2,4-
4.4E+00
NA
1.1E+00
1.1E+00
9.4E+02
9.4E+02
7B-87-5 Dichloropropane, 1,2-
1.8E+00
NA
2.8E+00
2.8E+00
2.5E-01
2.5E-01
542-75-6 Dicnioropropene, 1.3-
1.9E+00
NA
2.7E+00
2.7E+00
2.6E-01
2.6E-01
10061-01-5 Dichloropropene, cis-1.3-
1.9E+00
NA
2.7E+00
2.7E+00
3.8E-01
3.8E-01
10061-02-6 Dichloropropene. trans-1,3-
1.9E+00
NA
2.7E+00
2.7E+00
4.8E-01
4.8E-01
60-57-1 Dieldrin
4.1E+02
NA
3.0E-02
3.0E-02
1.1E+06
1.1E+06
84-66-2 Diethyl phthalate
3.4E+00
NA
1.4E+00
1.4E+-00
4.7E+03
4.7E+03
56-53-1 Diethvlstilbestrol
2.4E+02
NA
4.5E-02
4.5E-02
4.7E+13
4.7E+13
60-51-5 Dlmetho'ate
9.2E-01
NA
1.5E+01
1.5E+01
4.9E+05
4.9E+05
131-11-3 Dimethyl phthalate
1.3E+00
NA
4.8E+00
4.8E+00
4.5E+02
4.5E+02
57-97-6 Dimethyfbenz(a)anthracene. 7,12-
3.8E+03
NA
5.8E-03
5.8E-03
8.1E+07
8.1E+07
119-93-7 Dimethylbenzidine, 3,3'-'
4.3E+00
NA
1.1E+00
1.1E+00
4 7E+07
4.7E+07
105-67-9 Dimethylphenol, 2,4- *
2 8E+00
^A
1.7E+00
1.7E+00
5.6E+02
5.6E+02
119-90-4 Dimethyoxybenzidlne, 3,3'- *
1.6E+00
NA
3.5E+00
3.5E+00
1 4E+06
1.4E+06
99-65-0 Dlnitrobenzene, 1,3-
1.3E+00
NA
5.3E+00
5.3E+00
1.BE+03
1.8E+03
51-28-5 Dinitrophenol, 2,4-
1.3E+00
NA
4.9E+00
4.9E+00
5.2E+04
5.2E+04
121-14-2 Dinitrotoluene, 2,4-
1.9E+00
NA
2.7E+00
2.7E+00
5 3E+03
5.3E+03
606-20-2 Dinitrotoluene. 2,6-
1.7E+00
NA
3.2E+00
3.2E+00
4.2E+03
4.2E+03
123-91-1 Dioxane, 1,4- "
8.4E-01
NA
6.5E+01
6.5E+01
4.4E-01
4.4E-01
122-39-4 Diphenylamine*
1.5E+01
NA
3.8E-01
3.8E-01
9 0E+03
9.0E+03
298-04-4 Disulfoton
3 6E+01
NA
1.9E-01
1.9E-01
1.6E+04
1.6E+04
115-29-7 Endosulfan
4.4E+01
NA
1.7E-01
1.7E-01
5.6E+03
5.6E+03
Knnize under environmental conditions
C'	miscible; solubility estimated from Henry's Law Constant and Vapor Pressi
A-10

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals
Biotransfer Factors for Plants

RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
plant)/(ug/g soil)
plant)/(uQ/g soil)
plant)/(uq/q air)
plant)/(ug/q air)
72-20-8 Endrin
2.4E+02
NA
4.6E-02
4.6E-02
1.2E+06
1.2E+06
106-89-8 Eplchlorohydrin
8.7E-01
NA
2.8E+01
2.8E+01
3.4E-01
3.4E-01
110-80-5 Ethoxyethanol, 2- "
8.5E-01
NA
4.4E+01
4.4E+01
8 6E-05
8 6E-05
141-78-6 Ethyl acetate
9.2E-01
NA
1.5E+01
1.5E+01
1.8E-01
1.8E-01
60-29-7 Ethyl ether
9.5E-01
NA
1.3E+01
1.3E+01
4.9E-02
4.9E-02
97-63-2 Ethyl methacrylate
1.3E+00
NA
4.7E+00
4.7E+00
2.0E+00
2.0E+00
62-50-0 Ethyl methanesulfonate
8.5E-01
NA
3.6E+01
3.6E+01
7.2E+01
7.2E+01
100-41-4 Ethylbenzene
8.7E+00
NA
5.9E-01
5.9E-01
1.6E+00
1.6E+00
106-93-4 Ethylene Dibromide
1.5E+00
NA
3.8E+00
3.8E+00
8.8E-01
8.8E-01
96-45-7 Ethylene thiourea
8.3E-01
NA
9.3E+01
9.3E+01
1 2E+00
1.2E+00
206-44-0 Fluoranthene
2.7E+02
NA
4.3E-02
4.3E-02
3.5E+03
3.5E+03
86-73-7 Fluorene
5.4E+01
NA
1.4E-01
1.4E-01
2.3E+03
2.3E+03
50-00-0 Formaldehyde
8.5E-01
NA
4.1E+01
4.1E+01
1.8E-02
1.8E-02
64-18-6 Formic Acid*
8.3E-01
NA
7.9E+01
7.9E+01
5.9E-01
5.9E-01
110-00-9 Furan
1.1E+00
NA
6.5E+00
6.5E+00
2.8E-02
2.8E-02
76-44-8 Heptachlor
2.0E+03
NA
9.3E-03
9.3E-03
4.4E+04
4.4E+04
1024-57-3 Heptachlor epoxide
2.1E+02
NA
5.0E-02
5 OE-02
1.4E+05
1 4E+05
87-68-3 Hexachloro-1,3-butadiene
1.5E+02
NA
6.4E-02
6.4E-02
3.1E+01
3.1E+01
118-74-1 Hexachlorobenzene
1.0E+03
NA
1.5E-02
1.5E-02
3.5E+02
3.5E+02
319-84-6 Hexachlorocyclohexane, alpha- (alpha
2.6E+01
NA
2.5E-01
2.5E-01
9.2E+03
9.2E+03
319-85-7 Hexachlorocyclohexane, beta- (beta-B
2.7E+01
NA
2.'4E-01
2.4E-01
1.8E+05
1.8E+05
58-89-9 Hexachlorocyclohexane, gamma- (Uirv
2.3E+01
NA
2.7E-01
2.7E-01
1.5E+04
1.5E+04
77-47-4 Hexachlorocyclopentadiene
4.3E+02
NA
3.0E-02
3.0E-02
1.8E+02
1.8E+02
67-72-1 Hexachloroethane
3.7E+01
NA
1.9E-01
1.9E-01
2.8E+01
2.8E+01
70-30-4 Hexachlorophene"
1.9E+04
NA
1.7E-03
1.7E-03
1.2E+12
1.2E+12
193-39-5 lndeno(1,2,3-cd) pyrene
4.0E+03
NA
5.6E-03
5.6E-03
5.4E+04
5.4E+04
78-83-1 Isobutyl alcohol
9.3E-01
NA
1.4E+01
1.4E+01
2.6E+00
2.6E+00
78-59-1 Isophorone
1.4E+00
NA
4.0E+00
4.0E+00
5 8E+01
5.8E+01
143-50-0 Kepone
3.6E+02
NA
3.3E-02
3.3E-02
9.7E+07
97E+07
* Known to Ionize under environmental conditions
Completely mlscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-11

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals
Biotransfer Factors for Plants

RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
ptant)/(ug/q soil)
plant)/(ug/g soil)
plant)/(ug/q air)
plant)/(ug/g air)
7439-92-1 Lead
NA
9.0E-03
1.3E-05
1.3E-05
NA
NA
7439-97-6 Mercury
1.4E-02
NA
8.0E-03
2.0E-03
2.3E-04
2.3E-04
126-98-7 Methacrylonitrile
9.0E-01
NA
1.9E+01
1.9E+01
9.0E-02
9.0E-02
67-56-1 Methanol
8.3E-01
NA
1.0E+02
1.0E+02
5 6E-03
5.6E-03
.72-43-5 Methoxychlor
2.5E+02
NA
4.5E-02
4.5E-02
2.3E+05
2.3E+05
74-83-9 Methyl bromide (Bromomethane)
1.1E+00
NA
7.9E+00
7.9E+00
7.3E-03
7.3E-03
74-87-3 Methyl chloride (Chloromethane)
9.7E-01
NA
1.2E+01
1.2E+01
1.2E-03
1.2E-03
78-93-3 Methyl ethyl ketone
8.7E-01
NA
2.7E+01
2.7E+01
3.1E-01
3.1E-01
108-10-1 Methyl Isobutyl ketone
1.1E+00
NA
7.9E+00
7.9E+00
8.5E-01
8.5E-01
80-62-6 Methyl methacrylate
1.2E+00
NA
6.2E+00
6.2E+00
5.1E-01
5.1E-01
298-00-0 Methyl parathlon
6.0E+00
NA
B.2E-01
8.2E-01
6.4E+04
6.4E+04
56-49-5 Methyl cholanthrene, 3-
2.7E+03
NA
7.5E-03
7.5E-03
6.7E+05
6.7E+05
74-95-3 Methylene bromide
1.4E+00
NA
4.5E+00
4.5E+00
3 3E-01
3.3E-01
75-09-2 Methylene chloride
1.1E+00
NA
7.3E+00
7.3E+00
5.1E-02
5 1E-02
7439-98-7 Molybdenum
NA
6.0E-02
2.5E-01
8.5E-01
NA
NA
621-64-7 N-Nitrosodi-n-propylamine
1.2E+00
NA
6.0E+00
6.0E+00
4.2E+00
4 2E+00
86-30-6 N-Nitrosodiphenytamine
9.0E+00
NA
5.8E-01
5.8E-01
1.9E+01
1.9E+01
100-75-4 N-Nitrosopiperidine
9.1E-01
NA
1.7E+01
1.7E+01
1.8E+02
1.8E+02
930-55-2 N-Nitrosopyrrolidine
8.4E-01
NA
5.0E+01
5.0E+01
1 2E+02
1.2E+02
91-20-3 Naphthalene
1.2E+01
NA
4.4E-01
4.4E-01
4.4E+01
4 4E+01
91-59-8 Naphthylamine*
2.5E+00
NA
1.9E+00
1.9E+00
4.9E+02
4.9E+02
7440-02-0 Nickel
NA
8.0E-03
3.2E-02
1.1E-01
NA
NA
98-95-3 Nitrobenzene
1.6E+00
NA
3.3E+00
3.3E+00
2.5E+01
2.5E+01
79-46-9 Nitropropane, 2-'
9.6E-01
NA
1.2E+01
1.2E+01
3.8E+00
3.8E+00
924-16-3 Nitrosodi-n-butylamine
3.0E+00
NA
1.6E+00
1.6E+00
3.8E+01
3.8E+01
55-18-5 Nitrosodiethylamine
8.9E-01
NA
2.0E+01
2.0E+01
1.4E+01
1.4E+01
62-75-9 Nitrosodimethylamine
8.3E-01
NA
8.3E+01
8.3E+01
2.6E+00
2.6E+00
10595-95-6 Nitrosomethylethylamine
8.4E-01
NA
4.5E+01
4.5E+01
4.7E+00
4.7E+00
152-16-9 Octamethylpyrophosphoramide
8.3E-01
NA
7.7E+01
7.7E+01
4.1E+03
4.1E+03
' Kno	nlze under environmental conditions
" C-	mlscible; solubility estimated trom Henry's Law Constant and Vapor Pressti
A-12

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals



Biotransfer Factors for Plants



RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
plant)/(ug/q soil)
plant)/(ug/g soil)
plant)/(uq/q air)
plant)/(ug/g air)
56-38-2 Parathion
2.8E+01
NA
2.4E-01
2.4E-01
1.2E+05
1.2E+05
608-93-5 Pentachlorobenzene
3.4E+02
NA
3.5E-02
3.5E-02
2.7E+03
2.7E+03
82-68-8 Pentachloronitrobenzene (PCNB)
1.1E+02
NA
8.1E-02
8.1E-02
1.7E+01
1.7E+01
87-86-5 Pentachlorophenol*
2.5E+02
NA
4.4E-02
4.4E-02
2.6E+03
2.6E+03
108-95-2 Phenol
1.2E+00
NA
5.4E+00
5.4E+00
3.5E+02
3.5E+02
62-38-4 Phenyl mercuric acetate
2.4E+00
NA
2.0E+00
2.0E+00
4.3E+06
4.3E+06
108-45-2 Phenylenediamine, m-"
8.5E-01
NA
3.6E+01
3.6E+01
6.9E+02
6.9E+02
298-02-2 Phorate
2.7E+01
NA
2.4E-01
2.4E-01
5.5E+03
5.5E+03
1336-36-3 Polychlorinated biphenyls
2.1E+03
NA
8.9E-03
8.9E-03
1.7E+03
1.7E+03
23950-58-5 Pronamide
1.6E+01
NA
3.6E-01
3.6E-01
3.4E+03
3.4E+03
129-00-0 Pyrene
2.6E+02
NA
4.3E-02
4.3E-02
3.7E+03
3.7E+03
110-86-1 Pyridine"
9.2E-01
NA
1.6E+01
1.6E+01
4.1E-03
4.1E-03
94-59-7 Safrole
4.2E+00
NA
1.1E+00
1.1E+00
3.1E+02
3.1E+02
7782-49-2 Selenium
NA
2.2E-02
1.6E-02
6.0E-03
NA
NA
7440-22-4 Silver
NA
1.0E-01
4.0E-01
4.0E-01
NA
NA
57-24-9 Strychnine"
1.7E+00
NA
3.0E+00
3.0E+00
1.3E+09
1.3E+09
100-42-5 Stryene
6.4E+00
NA
7.7E-01
7.7E-01
2.3E+00
2.3E+00
1746-01-6 TCDD, 2,3,7,8-
1.2E+04
NA
3.3E-03
3.3E-03
4.6E+05
4.6E+05
95-94-3 Tetrachlorobenzene, 1,2,4,5-
1.1E+02
NA
8.1E-02
8.1E-02
4.0E+02
4 0E+02
630-20-6 Tetrachloroethane, 1,1,1,2-
4.0E+00
NA
1.2E+00
1.2E+00
1.5E+00
1.5E+00
79-34-5 Tetrachloroethane, 1,1,2,2-
2.9E+00
NA
1.6E+00
1.6E+00
5.3E+00
5.3E+00
127-18-4 Tetrachloroethylene
4.3E+00
NA
1.1E+00
1.1E+00
2.3E-01
2.3E-01
58-90-2 Tetrachlorophenol, 2,3,4,6-
6.3E+01
NA
1.3E-01
1.3E-01
3.4E+02
3.4E+02
3689-24-5 Tetraethyldithiopyrophosphate
2.8E+01
NA
2.4E-01
2.4E-01
1.6E+04
1.6E+04
7440-28-0 Thallium (I)
NA
4.0E-04
4.0E-03
4.0E-03
NA
NA
108-88-3 Toluene
4.8E+00
NA
1.0E+00
1 0E+0O
7.7E-01
7.7E-01
95-80-7 Toluenediamine, 2,4-
8.8E-01
NA
2.3E+01
2.3E+01
8.2E+03
8.2E+03
95-53-4 Toluidine, o- "
1.1E+00
NA
6.5E+00
6.5E+00
5.8E+01
5.8E+01
106-49-0 Toluidine, p- *
1.2E+00
NA
6.0E+00
6.0E+00
2.8E+01
2.8E+01
" Known to ionize under environmental conditions
"* Completely misclble; solubility estimated Irom Henry's Law Constant and Vapor Pressure.
A-13

-------
Table A-2. Biotransfer Factors for Plants for HWIR Chemicals
Biotransfer Factors for Plants

RCF
Br - root veg





(ug/g WW
(ug/g DW
Br - leafy veg
Br - forage
Bv - leafy veg
Bv - forage
CAS
plant)/(ug/mL soil
plant)/(ug/g
(ug/g DW
(ug/g DW
(ug/g DW
(ug/g DW
Number Chemical Name
water)
soil)
plant)/(ug/g soil)
plant)/(ug/g soil)
plant)/(uq/g air)
plant)/(ug/q air)
8001-35-2 Toxaphene
5.2E+02
NA
2.6E-02
2.6E-02
1.2E+06
1.2E+06
76-13-1 Trichloro-1,2,2-trifluoroethane, 1,1,2-
9.0E+00
NA
5.8E-01
5.8E-01
2.5E-02
2.5E-02
120-82-1 Trichlorobenzene, 1,2.4-
3.8E+01
NA
1.9E-01
1.9E-01
4.0E+01
4.0E+01
71-55-6 Trichloroethane, 1,1,1-
3.3E+00
NA
1.4E+00
1 4E+00
1.3E-01
1.3E-01
79-00-5 Trichloroethane, 1,1,2-
2.0E+00
NA
2.5E+00
2.5E+00
8.5E-01
8.5E-01
79-01-6 Trichloroethylene
4.5E+00
NA
1.1E+00
1.1E+00
4.1E-01
4.1E-01
75-69-4 Trichlorofluoromethane
3.5E+00
NA
1.3E+00
1.3E+00
2.1E-02
2.1E-02
95-95-4 Tnchlorophenol, 2.4,5-
3.1E+01
NA
2.2E-01
2.2E-01
1.8E+04
1.8E+04
88-06-2 Trichlorophenol. 2,4,6-
2.2E+01
NA
2.8E-01
2.8E-01
1.2E+04
1.2E+04
93-76-5 Trichlorophenoxyacetic acid, 2,4,5- (2
1.2E+01
NA
4.7E-01
4.7E-01
2.1E+07
2.1E+07
93-72-1 Trichlorophenoxypropionic acid, 2,4,5-
1.4E+01
NA
4.1E-01
4.1E-01
1.8E+06
1.8E+06
96-18-4 Trichloropropane, 1.2,3-
2.5E+00
NA
1.9E+00
1.9E+00
3.7E+00
3.7E+00
99-35-4 Tnnitrobenzene, sym-
1.1E+00
NA
8.1E+00
8.1E+00
1.2E+03
1.2E+03
126-72-7 Tris (2,3-dibromopropyl) phosphate
1.6E+01
NA
3.6E-01
3.6E-01
1.0E+03
1.0E+03
7440-62-2 Vanadium
NA
3 0E-03
5.5E-03
5.5E-03
NA
NA
75-01-4 Vinyl chloride
1.3E+00
NA
5.3E+00
5.3E+00
2.6E-03
2.6E-03
1330-20-7 Xylenes (total)
9.2E+00
NA
5.7E-01
5.7E-01
2.2E+00
2.2E+00
7440-66-6 Zinc
NA
4.4E-02
2.5E-01
9.6E-02
NA
NA
' Knov	ze under environmental conditions
" Co	miscible; solubility estimated Irom Henry's Law Constant and Vapor Pressui
A-14

-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Diolransfer Factors tor Cattle and Fish
CAS
Ba - beef
Ba - milk
BCF - beef
BCF - milk
BAF
BCF
BSAF
Number Chemical Name
(day/kg)
(dav/kq)
(unitless)
(unitless)
(L/kq)
(L/kq)
(unitless)
03-32-9 Acenaphthene
2.1E-04
6.6E-05
NA
NA
NA
2.9E+02
NA
67-64-1 Acetone
1.4E-08
4.6E-09
NA
NA
NA
1.7E-01
NA
75-05-8 Acetonitrile
1.1E-08
3.6E-09
NA
NA
NA
1 4E-01
NA
98-06-2 Acetophenone
1.1E-06
3.5E-07
NA
NA
NA
6.2E+00
NA
107-02-8 Acrolein
2.5E-08
7.8E-09
NA
NA
NA
3.3E-01
NA
79-06-1 Acrylamide
2.8E-09
8.7E-10
NA
NA
NA
7.7E-02
NA
107-13-1 Acrylonitrile
4.5E-08
1.4E-08
NA
NA
NA
6.0E-01
NA
309-00-2 Aldnn
7.9E-02
2.5E-02
NA
NA
2.1E+06
NA
NA
107-05-1 Allyl chloride
7.1E-07
2.2E-07
NA
NA
NA
3.7E+00
NA
62-53-3 Aniline
2.4E-07
7.6E-08
NA
NA
NA
1.6E+00
NA
7440-36-0 Antimony
1.0E-03
1.0E-04
NA
NA
NA
O.OE+OO
NA
7440-38-2 Arsenic
2 0E-03
6.0E-03
NA
NA
NA
1.8E+01
NA
7440-39-3 Barium
1.5E-04
3.5E-04
NA
NA
NA
NA
NA
56-55-3 Benz(a)anthracene
1.3E-02
4.0E-03
NA
NA
4.0E+01
NA
NA
71-43-2 Benzene
3.4E-06
1.1E-06
NA
NA
NA
4.3E+00
NA
92-87-5 Benzidine"
1.1E-06
3.6E-07
NA
NA
NA
3.0E+00
NA
50-32-8 Benzo(a)pyrene
3.2E-02
1.0E-02
NA
NA
1.0E+03
NA
NA
205-99-2 Benzo(b)tluorantnene
4.0E-02
1.3E-02
NA
NA
1.0E+03
NA
NA
100-51-6 Benzyl alcohol
3.2E-07
1.0E-07
NA
NA
NA
1.9E+00
NA
100-44-7 Benzyl chloride
5.0E-06
1 6E-06
NA
NA
NA
1.7E+01
NA
7440-41-7 Beryllium
1.0E-03
9.0E-07
NA
NA
NA
9.5E+01
NA
39638-32-9 Bis (2-chloroisopropyl) ether
9.5E-06
3.0E-06
NA
NA
NA
2 9E+01
NA
111 -44-4 Bis(2-chlorethyl)ether
4.1E-07
1.3E-07
NA
NA
NA
3.7E+00
NA
117-81-7 Bis(2-ethylhexyl)phthalate
5.0E-01
1.6E-01
NA
NA
1.2E+02
NA
NA
75-27-4 Bromodichloromethane
3.2E-06
1.0E-06
NA
NA
NA
1.0E+01
NA
75-25-2 Bromoform (Tribromomethane)
5.6E-06
1.8E-06
NA
NA
NA
1 9E+01
NA
71-36-3 Butanol
1.6E-07
5.0E-08
NA
NA
NA
1 2E+00
NA
88-85-7 Butyl-4,6-dinitrophenol, 2-sec- (Dinose
3.5E-05
1.1E-05
NA
NA
NA
8.0E+01
NA
85-68-7 Butylbenzylphthalate
1.7E-03
5.5E-04
NA
NA
1.4E+03
NA
NA
* Known to ionize under environmental conditions
" Completely misclble, solubility estimated Irom Henry's Law Constant and Vapor Pressure.
A-15

-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Biotransfer Factors for Cattle and Fish
CAS
Number Chemical Name
Ba - beef
(day/kg)
Ba - milk
(dgy/kq)
BCF - beef
(unitless)
BCF - milk
(unitless)
BAF
(LAq)
BCF
(L/kq)
BSAF
(unitless)
7440-43-9
Cadmium
1.6E-04
1.0E-05
NA
NA
NA
3.2E+01
NA
75-15-0
Carbon disulfide
2.5E-06
7.9E-07
NA
NA
NA
1.0E+01
NA
56-23-5
Carbon tetrachloride
1.3E-05
4.3E-06
NA
NA
NA
1.7E+01
NA
57-74-9
Chlordane
5.2E-02
1.7E-02
NA
NA
4.8E+05
NA
NA
126-99-8
Chloro-1,3-butadiene, 2- (Chloroprene
3.0E-06
9.5E-07
NA
NA
NA
1.1E+01
NA
106-47-8
Chloroaniline. p-
1.8E-06
5.6E-07
NA
NA
NA
7.9E+00
NA
108-90-7
Chlorobenzene
1.8E-05
5.8E-06
NA
NA
NA
1.9E+01
NA
510-15-6
Chlorobenzilate
6.0E-04
1.9E-04
NA
NA
1.3E+03
NA
NA
124-48-1
Chlorodibromomethane
3.7E-06
1.2E-06
NA
NA
NA
1.4E+01
NA
67-66-3
Chloroform
2.1E-06
6.6E-07
NA
NA
NA
2.8E+00
NA
95-57-8
Chlorophenol, 2-
3.5E-06
1.1E-06
NA
NA
NA
1.3E+01
NA
7440-47-3
Chromium VI
5.5E-03
1.5E-03
NA
NA
NA
3.0E+00
NA
218-01-9
Chrysene
1.3E-02
4.0E-03
NA
NA
4.0E+01
NA
NA
7440-50-8
Copper
1.0E-02
1.5E-03
NA
NA
NA
O.OE+OO
NA
108-39-4
Cresol, m-
2.3E-06
7.4E-07
NA
NA
NA
9.3E+00
NA
95-48-7
Cresol, o-
2 5E-06
7.8E-07
NA
NA
NA
1.0E+01
NA
106-44-5
Cresol, p-
2.2E-06
7.1E-07
NA
NA
NA
8.9E+00
NA
98-82-8
Cumene
9.5E-05
3.0E-05
NA
NA
NA
1.9E+02
NA
72-54-8
DDD
3.2E-02
1.0E-02
NA
NA
1.2E+06
NA
NA
72-55-9
DDE
1.4E-01
4.6E-02
NA
NA
7.6E+06
NA
NA
¦50-29-3
DDT
8 5E-02
2.7E-02
NA
NA
1.9E+06
NA
NA
84-74-2
Di-n-butyl phthalate
1.0E-03
3.2E-04
NA
NA
1.5E+03
NA
NA
117-84-0
Di-n-octyl phthalate
2.9E+00
9.1E-01
NA
NA
1.2E+02
NA
NA
2303-16-4
Diallate
7.8E-04
2.5E-04
NA
NA
1.8E+04
NA
NA
53-70-3
Dibenz(a,h)anthracene
1.2E-01
3.9E-02
NA
NA
1.0E+03
NA
NA
96-12-8
Dibromo-3-chloropropane, 1,2-
5.5E-06
1.7E-06
NA
NA
NA
1.6E+01
NA
95-50-1
Dichlorobenzene, 1,2-
6 8E-05
2.1E-05
NA
NA
NA
2.5E+02
NA
106-46-7
Dichlorobenzene, 1,4-
6.6E-05
2.1E-05
NA
NA
NA
2.2E+02
NA
91-94-1
Dichlorobenzidine, 3,3'-
8.1E-05
2.6E-05
NA
NA
NA
1.7E+02
NA
' Km	)lie under onvlrunmentnl conditions
'• Lu	miaclble; solubility estimated from Henry's Law Constant and Vupor Pressuj	A 16

-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Biotransfer Factors for Cattle and Fish
CAS
Ba - beef
Ba - milk
BCF - beef
BCF - milk
BAF
BCF
BSAF
Number Chemical Name
(day/kq)
(day/kq)
(unitless)
(unitless)
(LAfl)
(L/kg)
(unitless)
75-71-8 Dichlorodilluoromethane
3.6E-06
1.1E-06
NA
NA
NA
1.3E+01
NA
75-34-3 Dichloroethane, 1,1-
1.5E-06
4.9E-07
NA
NA
NA
6.8E+00
NA
107-06-2 Dichloroethane, 1,2-
7.4E-07
2.3E-07
NA
NA
NA
5.1E+00
NA
75-35-4 Dichloroethylene, 1,1-
3.4E-06
1.1E-06
NA
NA
NA
1.2E+01
NA
156-59-2 Dichloroethylene, cls-1,2-
1.8E-06
5.8E-07
NA
NA
NA
5.7E+00
NA
156-60-5 Dichloroethylene, trans-1,2-
3.0E-06
9.3E-07
NA
NA
NA
9 6E+00
NA
120-83-2 Dichlorophenol, 2,4-
3.0E-05
9.5E-06
NA
NA
NA
6.6E+01
NA
94-75-7 Dichlorophenoxyacetic acid, 2,4- (2,4-
1.3E-05
4.0E-06
NA
NA
NA
6.1E+01
NA
78-87-5 Dlchloropropane, 1,2-
2.3E-06
7.4E-07
NA
NA
NA
1.1E+01
NA
542-75-6 Dichloropropene, 1,3-
2.5E-06
7.9E-07
NA
NA
NA
6.3E+00
NA
10061-01-5 Dichloropropene, cls-1,3-
2.5E-06
7.9E-07
NA
NA
NA
5.3E+00
NA
10061-02-6 Dichloropropene, trans-1,3-
2.5E-06
7.9E-07
NA
NA
NA
5.3E+00
NA
60-57-1 Dieldrin
5.9E-03
1.9E-03
NA
NA
3.8E+04
NA
NA
84-66-2 Diethyl phthalate
7.9E-06
2.5E-06
NA
NA
NA
2.3E+01
NA
56-53-1 Diethylstilbestrol
3.0E-03
9.3E-04
NA
NA
6.8E+03
NA
NA
60-51-5 Dimethoate
1.2E-07
3.9E-08
NA
NA
NA
8.4E-01
NA
131-11-3 Dimethyl phthalate
9.3E-07
3.0E-07
NA
NA
NA
6.8E+00
NA
57-97-6 Dimethylbenz(a)anthracene, 7,12-
1.0E-01
3.3E-02
NA
NA
1.0E+03
NA
NA
119-93-7 Dimethylbenzidine, 3,3'- *
1.2E-05
3.8E-06
NA
NA
NA
1 8E+01
NA
105-67-9 Dimethylphenol, 2,4-*
5.8E-06
1.8E-06
NA
NA
NA
3.1E+01
NA
119-90-4 Dimethyoxybenzldlne, 3,3'- *
1.6E-06
5.1E-07
NA
NA
NA
7.0E+00
NA
99-65-0 Dinitrobenzene, 1.3-
7.9E-07
2.5E-07
NA
NA
NA
4.0E+00
NA
51-28-5 Dlnitrophenol, 2,4-
8.9E-07
2.8E-07
NA
NA
NA
4.2E+00
NA
121-14-2 Dinitrotoluene, 2,4-
2.6E-06
8.1E-07
NA
NA
NA
1.0E+01
NA
606-20-2 Dinitrotoluene, 2,6-
1.9E-06
5.9E-07
NA
NA
NA
8.1E+00
NA
123-91-1 Dioxane, 1,4-**
1 0E-08
3.2E-09
NA
NA
NA
1 6E-01
NA
122-39-4 Diphenylamine*
7 6E-05
2.4E-05
NA
NA
NA
8.3E+01
NA
298-04-4 DisuHoton
2.4E-04
7.6E-05
NA
NA
5.4E+02
NA
NA
115-29-7 Endosulfan
3.2E-04
1.0E-04
NA
NA
NA
1.5E+02
NA
* Known to ionize under environmental conditions
" Completely miscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-1 7

-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Biotransfer Factors for Cattle and Fish
CAS
Ba - beef
Ba - milk
BCF - beef
BCF - milk
BAF
BCF
BSAF
Number Chemical Name
(day/kq)
(day/kg)
(umtless)
(unitless)
(L/kg)
(Ukg)
(unitless)
72-20-8 Endrin
2.9E-03
9.1E-04
NA
NA
1.6E+04
NA
NA
106-89-8 Epichlorohydrin
4.5E-08
1 4E-08
NA
NA
NA
4.5E-01
NA
110-80-6 Ethoxyethanol, 2-*"
2.0E-08
6.3E-09
NA
NA
NA
2.2E-01
NA
141-78-6 Ethyl acetate
1.2E-07
3.9E-08
NA
NA
NA
9.9E-01
NA
60-29-7 Ethyl ether
1 7E-07
5.4E-08
NA
NA
NA
1.3E+00
NA
97-63-2 Ethyl methacrylate
9.8E-07
3.1E-07
NA
NA
NA
4.7E+00
NA
62-50-0 Ethyl methanesulfonate
2.8E-08
8.9E-09
NA
NA
NA
2.9E-01
NA
100-41-4 Ethylbenzene
3.5E-05
1.1E-05
NA
NA
NA
7.6E+01
NA
106-93-4 Ethylene Dibromide
1.4E-06
4.5E-07
NA
NA
NA
6.4E+00
NA
96-45-7 Ethylene thiourea
5.5E-09
1.7E-09
NA
NA
NA
7.9E-02
NA
206-44-0 Ftuoranthene
3.3E-03
1.0E-03
NA
NA
9.6E+01
NA
NA
86-73-7 Fluorene
4.1E-04
1.3E-04
NA
NA
8.9E+01
NA
NA
50-00-0 Formaldehyde
2.2E-08
7.1E-09
NA
NA
NA
4.9E-01
NA
64-18-6 Formic Acid*
7.2E-09
2.3E-09
NA
NA
NA
9.8E-02
NA
110-00-9 Furan
5 5E-07
1.7E-07
NA
NA
NA
3 0E+00
NA
76-44-8 Heptachlor
4.6E-02
1.4E-02
NA
NA
8.0E+03
NA
NA
1024-57-3 Heptachlor epoxide
2.5E-03
7.9E-04
NA
NA
3.5E+03
NA
NA
87-68-3 Hexachloro-1,3-butadiene
1.6E-03
5.1E-04
NA
NA
2.5E+03
NA
NA
118-74-1 Hexachlorobenzene
1.9E-02
6.2E-03
NA
NA
2.1E+05
NA
NA
319-84-6 Hexachlorocyclohexane, alpha- (alpha
1 6E-04
5.0E-05
NA
NA
1.6E+03
NA
NA
319-85-7 Hexachlorocyclohexane, beta- (beta-B
1.6E-04
5.1E-05
NA
NA
1.6E+03
NA
NA
58-89-9 Hexachlorocyclohexane, gamma- (Lirv
1.3E-04
4.3E-05
NA
NA
1.6E+03
NA
NA
77-47-4 Hexachlorocyclopentadiene
6.2E-03
1.9E-03
NA
NA
5.8E+03
NA
NA
67-72-1 Hexachloroethane
2.5E-04
7.9E-05
NA
NA
9.5E+02
NA
NA
70-30-4 Hexachlorophene"
8.7E-01
2.8E-01
NA
NA
NA
NA
NA
193-39-5' lndeno(1,2,3-cd) pyrene
1.1E-01
3.5E-02
NA
NA
1.0E+03
NA
NA
78-83-1 Isobutyl alcohol
1.4E-07
4.5E-08
NA
NA
NA
1 0E+00
NA
78-59-1 Isophorone
1.3E-06
4 0E-07
NA
NA
NA
7.6E+00
NA
143-50-0 Kepone
5.0E-03
1.6E-03
NA
NA
1.8E+03
NA
NA
' Know
" Cor
:e under environmental conditions
ilsclble, solubility estimated Irom Henry's Law Constant and Vapor Pressure!
\ 18

-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Biotransfer Factors for Cattle and Fish
CAS
Number Chemical Name
Ba - beef
(day/kg)
Ba - milk
(dav/kq)
BCF - beef
(unitless)
BCF - milk
(unitless)
BAF
(L/kq)
BCF
(L/k
-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Blotransfer Factors for Cattle and Fish
CAS
Number Chemical Name
Ba - beef
(day/kg)
Ba - milk
(day/kg)
BCF - beef
(unitless)
BCF - milk
(unitless)
BAF
(L/kg)
BCF
(LVkg)
BSAF
(unitless)
56-38-2 Parathion
1.7E-04
5.4E-05
NA
NA
NA
2.7E+02
NA
608-93-5 Pentachlorobenzene
4.6E-03
1.4E-03
NA
NA
1.1E+04
NA
NA
82-68-8 Pentachloronitrobenzene (PCNB)
1.1E-03
3.5E-04
NA
NA
8.0E+02
NA
NA
87-86-5 PentachlorophenoP
3.1E-03
9.8E-04
NA
NA
7.9E+03
NA
NA
108-95-2 Phenol
7.6E-07
2.4E-07
NA
NA
NA
3 9E+00
NA
62-38-4 Phenyl mercuric acetate
4.3E-06
1.3E-06
NA
NA
NA
1.5E+01
NA
108-45-2 Phenylenediamine, m- *
2.8E-08
8.9E-09
NA
NA
NA
2.9E-01
NA
298-02-2 Phorate
1.6E-04
5.1E-05
NA
NA
NA
2 7E+02
NA
1336-36-3 Polychlorinated biphenyls
NA
NA
4.8E+00
4.8E+00
NA
NA
1.0E+00
23950-58-5 .Pronamtde
8.1E-05
2.6E-05
NA
NA
NA
9.8E+01
NA
129-00-0 Pyrene
3.2E-03
1.0E-03
NA
NA
1.7E+01
NA
NA
110-86-1 Pyridine**
1.2E-07
3.7E-08
NA
NA
NA
8.5E-01
NA
94-59-7 Safrole
1.1E-05
3.6E-06
NA
NA
NA
3.3E+01
NA
7782-49-2 Selenium
3.0E-03
4.5E-03
NA
NA
NA
8.8E+01
NA
7440-22-4 Silver
3.0E-03
2.0E-02
NA
NA
NA
O.OE+OO
NA
57-24-9 Strychnine"
2.1E-06
6.8E-07
NA
NA
NA
8.8E+00
NA
100-42-5 Stryene
2.2E-05
6.9E-06
NA
NA
NA
5.4E+01
NA
1746-01-6 TCDD, 2,3,7,8-
NA
NA
2.7E+00
2.7E+00
NA
NA
6.7E-02
95-94-3 Tetrachlorobenzene, 1,2,4,5-
1.1E-03
3.5E-04
NA
NA
2.8E+03
NA
NA
630-20-6 Tetrachloroethane, 1,1,1,2-
1.1E-05
3.4E-06
NA
NA
NA
6.5E+01
NA
79-34-5 Tetrachloroethane, 1,1,2,2-
6.2E-06
1.9E-06
NA
NA
NA
7.7E+00
NA
127-18-4 Tetrachloroethylene
1.2E-05
3.7E-06
NA
NA
NA
3.4E+01
NA
58-90-2 Tetrachlorophenol, 2,3,4,6-
5.0E-04
1.6E-04
NA
NA
1.1E+03
NA
NA
3689-24-5 Tetraethyldithiopyrophosphate
1.7E-04
5.4E-05
NA
NA
NA
2.8E+02
NA
7440-28-0 Thallium (I)
4.0E-02
2.0E-03
NA
NA
NA
6.7E+01
NA
108-88-3 Toluene
1.4E-05
4.5E-06
NA
NA
NA
4 1E+01
NA
95-80-7 Toluenediamine, 2,4-
6.3E-08
2.0E-08
NA
NA
NA
4.6E+01
NA
95-53-4 Toluidine, o-"
5.5E-07
1.7E-07
NA
NA
NA
2.9E+00
NA
106-49-0 Toluidine, p- *
6.3E-07
2.0E-07
NA
NA
NA
3.5E+00
NA
* Know
•" Corr
e under environmental conditions
liscible; solubility estimated Irom Henry's Law Constant and Vapor Pressurel
k-20

-------
Table A-3. Biotransfer Factors for Cattle and Fish for HWIR Chemicals
Biotransfer Factors for Cattle and Fish
CAS

Ba - beef
Ba - milk
BCF - beef
BCF - milk
BAF
BCF
BSAF
Number Chemical Name
(day/kg)
(day/kg)
(unitless)
(unitless)
(LAq)
(Ukg)
(unitless)
8001-35-2
Toxaphene
7.9E-03
2.5E-03
NA
NA
2.1E+06
NA
NA
76-13-1
Trichloro-1,2,2-trifluoroethane, 1,1,2-
3.6E-05
1.1E-05
NA
NA
NA
8.2E+01
NA
120-82-1
Trichlorobenzene, 1,2,4-
2 6E-04
8.1E-05
NA
NA
NA
8.5E+02
NA
>71-55-6
Tnchloroethane, 1,1,1-
7.6E-06
2.4E-06
NA
NA
NA
2.1E+01
NA
79-00-5
Trichloroethane, 1,1,2-
2.8E-06
8.9E-07
NA
NA
NA
1.2E+01
NA
79-01-6
Trichloroethylene
1 3E-05
4.1E-06
NA
NA
NA
2.2E+01
NA
75-69-4
T rlchlorolluoromethane
8.5E-06
2.7E-06
NA
NA
NA
2.6E+01
NA
95-95-4
Trichlorophenol, 2,4,5-
2.0E-04
6.3E-05
NA
NA
NA
2 3E+02
NA
88-06-2
Trichlorophenol. 2,4,6-
1.3E-04
4.0E-05
NA
NA
NA
2.2E+02
NA
93-76-5
Trichlorophenoxyacetic acid, 2,4,5- (2
5.1E-05
1.6E-05
NA
NA
NA
7.8E+01
NA
93-72-1
Trichlorophenoxypropionic acid, 2,4,5-
6.5E-05
2.0E-05
NA
NA
NA
1.3E+02
NA
96-18-4
Trichloropropane, 1,2,3-
4.5E-06
1.4E-06
NA
NA
NA
3.1E+01
NA
99-35-4
Trinitrobenzene, sym-
3 8E-07
1.2E-07
NA
NA
NA
2.2E+00
NA
126-72-7
Tris (2,3-dibromopropyl) phosphate
8.1E-05
2.6E-05
NA
NA
NA
1.6E+02
NA
7440-62-2
Vanadium
2.5E-03
2.0E-03
NA
NA
NA
NA
NA
75-01-4
Vinyl chloride
7.9E-07
2.5E-07
NA
NA
NA
2.1E+00
NA
1330-20-7
Xylenes (total)
3.7E-05
1.2E-05
NA
NA
NA
7.5E+01
NA
7440-66-6
Zinc
1.2E-04
3.0E-05
NA
NA
4.4E+00
NA
NA
* Known to lonl/H undor envlronmonUil conditions
" Completely miscible, solubility estimated trom Henry's Law Constant and Vapor Pressure.
A-2 I

-------
Table A-4. Health Benchmarks for HWIR Chemicals
Health Benchmarks
CAS	Oral CSF	Inhal URF Inhal CSF
Number Chemical Name
RID (mg/kg/day)
(mg/kq/day)-1
RfC (mq/m3)
(ug/m3)-1
(mg/kg/day)
83-32-9
Acenaphthene
6.0E-02
NA
NA
NA
NA
67-64-1
Acetone
1.0E-01
NA
NA
NA
NA
75-05-8
Acetonitrile
6.0E-03
NA
5.0E-02
NA
NA
98-86-2
Acetophenone
1.0E-01
NA
NA
NA
NA
107-02-8
Acrolein
2.0E-02
NA
2.0E-05
NA
NA
79-06-1
Acrylamlde
2.0E-04
4.5E+00
NA
1.3E-03
4.6E+00
107-13-1
Acrylonitrile
NA
5.4E-01
2.0E-03
6.8E-05
2.4E-01
309-00-2
Aldrin
3.0E-05
1 7E+01
NA
4.9E-03
1.7E+01
107-05-1
Ally! chloride
NA
NA
1.0E-03
NA
NA
62-53-3
Aniline
NA
5.7E-03
1 0E-O3
NA
NA
7440-36-0
Antimony
4.0E-04
NA
NA
NA
NA
7440-38-2
Arsenic
3.0E-04
1.5E+00
NA
4.3E-03
1.5E+01
7440-39-3
Barium
7.0E-02
NA
5.0E-04
NA
NA
56-55-3
Benz(a)anthracene
NA
1.1E+00
NA
NA
NA
71-43-2
Benzene
NA
2.9E-02
NA
8.3E-06
2.9E-02
92-87-5
Benzidine*
3.0E-03
2.3E+02
NA
6.7E-02
2.3E+02
50-32-8
Benzo(a)pyrene
NA
7.3E+00
NA
1.7E-03
6.0E+00
205-99-2
Benzo(b)fluoranthene
NA
1.2E+00
NA
NA
NA
100-51-6
Benzyl alcohol
3.0E-01
NA
NA
NA
NA
100-44-7
Benzyl chloride
NA
1.7E-01
NA
NA
NA
7440-41-7
Beryllium
5.0E-03
4 3E+00
NA
2.4E-03
8.4E+00
39638-32-9
Bis (2-chloroisopropyl) ether
4.0E-02
7.0E-02
NA
NA
NA
111-44-4
Bis(2-chlorethyl)ether
NA
1.1E+00
NA
3.3E-04
1.2E+00
117-81-7
Bis(2-ethylhexyl)phthalate
2.0E-02
1.4E-02
NA
NA
NA
75-27-4
Bromodichloromethane
2.0E-02
6 2E-02
NA
NA
NA
75-25-2
Bromoform (Tribromomethane)
2.0E-02
7.9E-03
NA
1.1E-06
3.9E-03
71-36-3
Butanol
1.0E-01
NA
NA
NA
NA
88-85-7
Butyl-4,6-dinitrophenol, 2-sec- (Dinos«
1.0E-03
NA
NA
NA
NA
85-68-7
Butylbenzylphthalate
2.0E-01
NA
NA
NA
NA
' Know	o under environmental conditions
" Coi	nuaijible; solubility estimated Irom Henry's Law Constant and Vapor Pressurd	)\-22

-------
Table A-4. Health Benchmarks for HWIR Chemicals
Health Benchmarks
CAS

Oral CSF

Inhal URF
Inhal CSF
Number Chemical Name
RfD (mct/kg/day)
(mq/kg/day)-1
RfC (mq/m3)
(uq/m3)-1
(mq/kQ/day)
7440-43-9 Cadmium
i .ui- Jo ^uuu)
OP.rid. /motQr\ _
NA
NA
1.8E-03
6.3E+00
75-15-0 Carbon disulfide
1.0E-01
NA
1.0E-02
NA
NA
56-23-5 Carbon tetrachloride
7.0E-04
1.3E-01
NA
1.5E-05
5.3E-02
57-74-9 Chlordane
6.0E-05
1.3E+00
NA
3.7E-04
1.3E+00
126-99-8 Chloro-1,3-butadiene, 2- (Chloroprene
NA
NA
7.0E-03
NA
NA
106-47-8 Chloroaniline, p-
4.0E-03
NA
NA
NA
NA
108-90-7 Chlorobenzene
2.0E-02
NA
2.0E-02
NA
NA
510-15-6 Chlorobenzilate
2.0E-02
2.7E-01
NA
NA
NA
124-48-1 Chlorodlbromomethane
2.0E-02
8.4E-02
NA
NA
NA
67-66-3 Chloroform
1.0E-02
6.1E-03
NA
2.3E-05
8.1E-02
95-57-8 Chlorophenol, 2-
5.0E-03
NA
NA
NA
NA
7440-47-3 Chromium VI
5.0E-03
NA
NA
1.2E-02
4 2E+01
218-01-9 Chrysene
NA
3 2E-02
NA
NA
NA
7440-50-8 Copper
3.7E-02
NA
NA
NA
NA
108-39-4 Cresol, m-
5.0E-02-
NA
NA
NA
NA
95-48-7 Cresol, o-
5.0E-02
NA
NA
NA
NA
106-44-5 Cresol, p-
5.0E-03
NA
NA
NA
NA
98-82-8 Cumene
4.0E-02
NA
9.0E-03
NA
NA
72-54-8 DDD
NA
2.4E-01
NA
NA
NA
72-55-9 DDE
NA
3.4E-01
NA
NA
NA
50-29-3 DDT
5.0E-04
3.4E-01
NA
9.7E-05
3.4E-01
84-74-2 Dl-n-butyi phthalate
1.0E-01
NA
NA
NA
NA
117-84-0 Di-n-octyl phthalate
2.0E-02
NA
NA
NA
NA
2303-16-4 Diallate
NA
6.1E-02
NA
NA
NA
53-70-3 Dibenz(a,h)anthracene
NA
8.1E+00
NA
NA
NA
96-12-8 Dibromo-3-chloropropane, 1.2-
NA
1.4E+00
2.0E-04
NA
6.9E-07
95-50-1 Dlchlorobenzene, 1,2-
9.0E-02
NA
2.0E-01
NA
NA
106-46-7 Dichlorobenzene, 1,4-
NA
2.4E-02
8.0E-01
NA
NA
91-94-1 Dichlorobenzidlne, 3,3'-
NA
4.5E-01
NA
NA
NA
' Known to Ionize under environmental conditions
" Completely mlsclble; solubility estimated Irom Henry's Law Constant and Vapor Pressure.
A-23

-------
Table A-4. Health Benchmarks for HWIR Chemicals
Health Benchmarks
CAS
Number Chemical Name
RfD (mg/kq/day)
Oral CSF
(mg/kg/day)-1
RtC (mq/m3)
Inhal URF
(ug/m3)-l
Inhal CSF
(mg/kg/dav)-1
75-71-8 Dichlorodifluoromethane
2.0E-01
NA
2.0E-01
NA
NA
75-34-3 Dichloroethane, 1,1-
NA
9.1E-02
5.0E-01
NA
NA
107-06-2 Dichloroethane, 1,2-
NA
9.1E-02
NA
2.6E-05
9.1E-02
75-35-4 Dichloroejhylene, 1,1-
9.0E-03
6.0E-01
NA
5.0E-05
1.8E-01
156-59-2 Dlchloroethylene, cis-1,2-
1.0E-02
NA
NA
NA
NA
156-60-5 Dichloroethylene, trans-1.2-
2.0E-02
NA
NA
NA
NA
120-83-2 Dlchloroohenol. 2.4-
3.0E-03
NA
NA
NA
NA
94-75-7 Dichlorophenoxyacetic acid. 2,4- (2,4-
1.0E-02
NA
NA
NA
NA
78-87-5 Dichloropropane, 1,2-
NA
6.8E-02
4.0E-03
NA
NA
542-75-6 Dichloropropene, 1,3-
3.0E-04
1.8E-01
2.0E-02
NA
1.3E-01
10061-01-5 Dichloropropene, cls-1,3-
3.0E-04
1.8E-01
2.0E-02
3.7E-05
1.3E-01
10061-02-6 Dichloropropene, trans-1,3-
3.0E-04
1.8E-01
2.0E-02
3.7E-05
1.3E-01
60-57-1 Dieldrin
5.0E-05
1.6E+01
NA
4.6E-03
1.6E+01
84-66-2 Diethyl phthalate
8.0E-01
NA
NA
NA
NA
56-53-1 Diethylstilbestrol
NA
4.7E+03
NA
NA
NA
60-51-5 Dimethoate
2.0E-04
NA
NA
NA
NA
131-11-3 Dimethyl phthalate
1.0E+01
NA
NA
NA
NA
57-97-6 Dimethylbenz(a)anthracene, 7,12-
NA
2.5E+01
NA
NA
NA
119-93-7 Dimethylbenzidine, 3,3'- *
NA
9.2E+00
NA
NA
NA
105-67-9 Dimethylphenol, 2,4- *
2.0E-02
NA
NA
NA
NA
119-90-4 Dimethyoxybenzidine, 3,3'- *
NA
1.4E-02
NA
NA
NA
99-65-0 Dinitrobenzene, 1,3-
1.0E-04
NA
NA
NA
NA
51-28-5 Dlnitrophenol, 2,4-
2.0E-03
NA
NA
NA
NA
121-14-2 Dinitrotoluene, 2,4-
2.0E-03
NA
NA
NA
NA
606-20-2 Dinitrotoluene, 2,6-
1.0E-03
NA
NA
NA
NA
123-91-1 Dioxane. 1,4-"
NA
1.1E-02
NA
NA
NA
122-39-4 Diphenylamine*
2.5E-02
NA
NA
NA
NA
298-04-4 Dtsulfoton
4.0E-05
NA
NA
NA
NA
115-29-7 Endosulfan
6.0E-03
NA
NA
NA
NA
Knc-
• Cr
nize under environmental conditions
mlsclble; solubility estimated from Henry's Law Constant and Vapor Pressi

-------
Table A-4. Health Benchmarks for HWIR Chemicals
Health Benchmarks
CAS Oral CSF	Inhal URF Inhal CSF
Number Chemical Name	RID (mg/kq/day) (mg/Kg/day)-1 R1C (mg/m3) (ug/m3)-1 (mg/kt)/davH
72-20-8 Endnn
3.0E-04
NA
NA
NA
NA
106-89-8 Epichlorohydnn
2.0E-03
9.9E-03
1.0E-03
1.2E-06
4.2E-03
110-80-5 Ethoxyethanol, 2- "
4.0E-01
NA
2.0E-01
NA
NA
141-78-6 Ethyl acetate
9.0E-01
NA
NA
NA
NA
60-29-7 Ethyl ether
2.0E-01
NA
NA
NA
NA
97-63-2 Ethyl methacrylate
9.0E-02
NA
NA.
NA
NA
62-50-0 Ethyl methanesulfonate
NA
2.9E+02
NA
NA
NA
100-41-4 Ethylbenzene
1.0E-01
NA
1.0E+00
NA
NA
106-93-4 Ethylene Dibromlde
NA
8.5E+01
2.0E-04
2.2E-04
7.7E-01
96-45-7 Ethylene thiourea
8.0E-05
6.0E-01
NA
NA
NA
206-44-0 Fluoranthene
4.0E-02
NA
NA
NA
NA
86-73-7 Fluorene
4.0E-02
NA
NA
NA
NA
50-00-0 Formaldehyde
2.0E-01
NA
NA
1.3E-05
4.6E-02
64-18-6 Formic Acid*
2.0E+00
NA
NA
NA
NA
110-00-9 Furan
1.0E-03
NA
NA
NA
NA
76-44-8 Heptachlor
5.0E-04
4.5E+00
NA
1.3E-03
4.6E+00
1024-57-3 Heptachlor epoxide
1.3E-05
9.1E+00
NA
2.6E-03
9.1E+00
87-68-3 Hexachloro-1,3-butadiene
2.0E-04
7.8E-02
NA
2.2E-05
7.7E-02
118-74-1 Hexachlorobenzene
8.0E-04
1.6E+00
NA
4.6E-04
1.6E+00
319-84-6 Hexachlorocyclohexane, alpha- (alpha
NA
6.3E+00
NA
1.8E-03
6.3E+00
319-85-7 Hexachlorocyclohexane, beta- (bela-B
NA
1.8E+00
NA
5.3E-04
1.9E+00
58-89-9 Hexachlorocyclohexane, gamma- (Lln>
3.0E-04
1.3E+00
NA
NA
NA
77-47-4 Hexachlorocyclopentadiene
7.0E-03
NA
7.0E-05
NA
NA
67-72-1 Hexachloroethane
1.0E-03
1.4E-02
NA
4.0E-06
1.4E-02
70-30-4 Hexachlorophene*
3.0E-04
NA
NA
NA
NA
193-39-5 lndeno(1,2,3-cd) pyrene
NA
4.0E-01
NA
NA
NA
78-83-1 Isobutyl alcohol
3.0E-01
NA
NA
NA
NA
78-59-1 Isophorone
2.0E-01
9.5E-04
NA
NA
NA
143-50-0 Kepone
NA
4.8E+01
NA
NA
NA
" Known to Ionize under environmental conditions
" Completely mlsclble; solubility estimated Irom Henry's Law Constant and Vapor Pressure.	A-25

-------
Table A-4. Health Benchmarks for HWIR Chemicals
Health Benchmarks
CAS Oral CSF	Inhal URF Inhal CSF
Number Chemical Name	RfD (mg/kg/day) (mg/kg/day)-1 RfC (mg/m3) (ug/m3)-1 (mg/kg/day)-1
7439-92-1 Lead
7439-97-6 Mercury
126-98-7 Methacrylonitrile
NA
1 nF.ftd /MathuiM/il
1.0E-04
NA
NA
NA
NA
3.0E-04
7.0E-04
NA
NA
NA
NA
NA
NA
67-56-1 Methanol
5.0E-01
NA
NA
NA
NA
72-43-5 Methoxychlor
5.0E-03
NA
NA
NA
NA
74-83-9 Methyl bromide (Bromomethane)
1.4E-03
NA
5.0E-03
NA
NA
74-87-3 Methyl chloride (Chloromethane)
NA
NA
NA
1.8E-06
6.3E-03
78-93-3 Methyl ethyl ketone
6.0E-01
NA
1.0E+00
NA
NA
108-10-1 Methyl Isobutyl ketone
5.0E-02
NA
8.0E-02
NA
NA
80-62-6 Methyl methacrylate
8.0E-02
NA
NA
NA
NA
298-00-0 Methyl parathion
2.5E-04
NA
NA
NA
NA
56-49-5 Methylcholanthrene, 3-
NA
2.6E+01
NA
NA
NA
74-95-3 Methylene bromide
1.0E-02
NA
NA
NA
NA
75-09-2 Methylene chloride
6.0E-02
7.5E-03
3.0E+00
4.7E-07
1.6E-03
7439-98-7 Molybdenum
5.0E-03
NA
NA
NA
NA
621-64-7 N-Nitrosodi-n-oroovlamine
NA
7.0E+00
NA
NA
NA
86-30-6 N-NitrosodlDhenylamine
NA
4.9E-03
NA
NA
NA
100-75-4 N-NitrosoDiDeridine
NA
3.8E+01
NA
NA
NA
930-55-2 N-Nltrosopyrrolidine
NA
2.1E+00
NA
6.1E-04
2.1E+00
91-20-3 Naphthalene
4.0E-02
NA
NA
NA
NA
91-59-8 Naphthylamine*
NA
NA
NA
NA
NA
7440-02-0 Nickel
2.0E-02
NA
NA
NA
NA
98-95-3 Nitrobenzene
5.0E-04
NA
2.0E-03
NA
NA
79-46-9 Nltropropane, 2-"
NA
NA
2.0E-02
NA
9.4E+00
924-16-3 Nitrosodi-n-butylamine
NA
5.4E+00
NA
1.6E-03
5.6E+00
55-18-5 Nitrosodiethylamine
NA
1.5E+02
NA
4.3E-02
1.5E+02
62-75-9 Nitrosodimethylamine
NA
5.1E+01
NA
1.4E:02
4.9E+01
10595-95-6 Nitrosomethytethylamine
NA
2.2E+01
NA
NA
NA
152-16-9 Octamethylpyrophosphoramlde
2.0E-03
NA
NA
NA
NA
• Knoj
" Co
nlze under environmental conditions
miscible; solubility estimated Irom Henry's Law Constant and Vapor Pressu
A-26

-------
Table A-4. Health Benchmarks for HWIR Chemicals
Health Benchmarks
CAS Oral CSF	Inhal URF Inhal CSF
Number Chemical Name	RID (mg/kg/day) (mg/kg/day)-1 RtC (mg/m3) (ug/m3)-1 (mg/kg/day)-1
56-38-2 Parathion
6.0E-03
NA
NA
NA
NA
608-93-5 Pentachlorobenzene
8.0E-04
NA
NA
NA
NA
82-68-8 Pentachloronitrobenzene (PCNB)
3.0E-03
2.6E-01
NA
NA
NA
87-86-5 Pentachlorophenol"
3.0E-02
1.2E-01
NA
NA
NA
108-95-2 Phenol
6.0E-01
NA
NA
NA
NA
62-38-4 Phenyl mercuric acetate
8.0E-05
NA
NA
NA
NA
108-45-2 Phenylenedlamine. m- *
6.0E-03
NA
NA
NA
NA
298-02-2 Phorate
2.0E-04
NA
NA
NA
NA
1336-36-3 Polychlorinated blphenyls
NA
7.7E+00
NA
NA
NA
23950-58-5 Pronamide
7.5E-02
NA
NA
NA
NA
129-00-0 Pyrene
3.0E-02
NA
NA
NA
NA
110-86-1 Pyridine"
1.0E-03
NA
7.0E-03
NA
NA
94-59-7 Safrole
NA
1.8E-01
NA
NA
NA
7782-49-2 Selenium
5.0E-03
NA
NA
NA
NA
7440-22-4 Silver
NA
NA
NA
NA
NA
57-24-9 Strychnine*
3.0E-04
NA
NA
NA
NA
100-42-5 Stryene
2.0E-01
NA
1.0E+00
NA
NA
1746-01-6 TCDD, 2,3,7,8-
NA
1.6E+05
NA
NA
1.6E+05
95-94-3 Tetrachlorobenzene, 1,2,4,5-
3.0E-04
NA
NA
NA
NA
630-20-6 Tetrachloroethane, 1,1,1,2-
3.0E-02
2.6E-02
NA
7.4E-06
2.6E-02
79-34-5 Tetrachloroethane, 1,1,2,2-
NA
2.0E-01
NA
5.8E-05
2.0E-01
127-18-4 Tetrachloroethylene
1.0E-02
NA
NA
NA
NA
58-90-2 Tetrachlorophenol, 2,3,4,6-
3.0E-02
NA
NA
NA
NA
3689-24-5 Tetraethyldithiopyrophosphate
5.0E-04
NA
NA
NA
NA
7440-28-0 Thallium (I)
8.0E-05
NA
NA
NA
NA
108-88-3 Toluene
2.0E-01
NA
4.0E-01
NA
NA
95-80-7 Toluenediamine, 2,4-
NA
3.2E+00
NA
NA
NA
95-53-4 Toluidine, o- *
NA
2.4E-01
NA
NA
NA
106-49-0 Toluidine, p- *
NA
1.9E-01
NA
NA
NA
' Known to ionize under environmental conditions
"* Completely mlscible, solubility estimated from Henry's Law Constant and Vapor Pressure.	A-27

-------
Table A-4. .Health Benchmarks lor HWIR Chemicals
Health Benchmarks
CAS
Number Chemical Name
RfD (mg/kg/day)
Oral CSF
(mtj/kg/dav)-1
RfC (mq/m3)
Inhal URF
(ug/m3)-1
Inhal CSF
(mg/kg/dav)-1
8001-35-2 Toxaphene
NA
1.1E+00
NA
3.2E-04
1.1E+00
76-13-1 T richloro-1,2,2-tri(luoroethane ,1,1,2-
3.0E+01
NA
3.0E+01
NA
NA
120-82-1 Trichlorobenzene, 1,2,4-
1.0E-02
NA
9.0E-03
NA
NA
71-55-6 Trichloroethane, 1,1,1-
NA
NA
1.0E+00
NA
NA
79-00-5 Trichloroethane, 1,1,2-
4.0E-03
5.7E-02
NA
1.6E-05
5.6E-02
79-01-6 Trichloroethylene
NA
1.1E-02
NA
1.7E-06
NA
75-69-4 Trichlorofluoromethane
3.0E-01
NA
7.0E-01
NA
NA
95-95-4 Trichlorophenol, 2,4,5-
1.0E-01
NA
NA
NA
NA
88-06-2 Trichlorophenol. 2,4,6-
NA
1.1E-02
NA
3.1E-06
1.1E-02
93-76-5 Trichlorophenoxyacetlc acid, 2,4,5- (2
1.0E-02
NA
NA
NA
NA
93-72-1 Trichloropnenoxypropionic acid, 2,4,5-
8.0E-03
NA
NA
NA
NA
96-18-4 Trichloropropane, 1,2,3-
6.0E-03
NA
NA
NA
NA
99-35-4 Trinitrobenzene. svm-
5.0E-05
NA
NA
NA
NA
126-72-7 Tris (2,3-dibromopropyl) phosphate
NA
9.8E+00
NA
NA
NA
7440-62-2 Vanadium
7.0E-03
NA
NA
NA
NA
75-01-4 Vinyl chloride
NA
1.9E+00
NA
NA
3.0E-01
1330-20-7 Xylenes (total)
2.0E+00
NA
3.0E-01
NA
NA
7440-66-6 Zinc
3.0E-01
NA
NA
NA
NA
• Kno\;	nze under environmental conditions
" Co>	miscible; solubility estimated from Henry's Law Constant and Vapor Pressui	A-28

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters

Skin







permeability

Time to



Soil dermal

constant for
Bunge
steady state
Lag time


absorption
CAS
water
Constant B
t*
tau


fraction
Number Chemical Name
(cm/hr)
(unitless)
(hr)
(hr)
c (unitless) b (unitless)
(unitless)
03-32-9 Acenaphthene
1.3E-01
8.3E-01
6.0E+00
7.6E-01
1.2E+00
9.7E-01
NA
67-64-1 Acetone
5.7E-04
5.8E-05
4.7E-01
2.0E-01
3.3E-01
3.0E-01
NA
75-05-8 Acetonitrile
6.1E-04
4.6E-05
3.7E-01
1.6E-01
3.3E-01
3.0E-01
NA
98-86-2 Acetophenone
5.1E-03
4.4E-03
1.1E+00
4.7E-01
3.4E-01
3.0E-01
NA
107-02-8 Acrolein
8.5E-04
9.8E-05
4.6E-01
1.9E-01
3.3E-01
3.0E-01
NA
79-06-1 Acrylamide
1 5E-04
1.1E-05
5.7E-01
2.4E-01
3.3E-01
3.0E-01
NA
107-13-1 Acrylonitrile
1.4E-03
1.8E-04
4.4E-01
1.8E-01
3.3E-01
3.0E-01
NA
309-00-2 Aldrin
4.7E-01
3.2E+02
6.9E+01
1.5E+01
3.2E+02
6.4E+04
NA
107-05-1 Ally! chloride
7.0E-03
2.8E-03
6.2E-01
2.6E-01
3.4E-01
3.0E-01
NA
62-53-3 Aniline
2.6E-03
9.5E-04
7.8E-01
3.2E-01
3.3E-01
3.0E-01
NA
7440-36-0 Antimony
1.0E-03
NA
NA
NA
NA
NA
NA
7440-38-2 Arsenic
1.0E-03
NA
NA
NA
NA
NA
NA
7440-39-3 Barium
1.0E-03
NA
NA
NA
NA
NA
NA
56-55-3 Benz(a)anthracene
8.6E-01
5.0E+01
1.0E+01
2.2E+00
5.0E+01
1.6E+03
NA
71-43-2 Benzene
2.1E-02
1.3E-02
6.3E-01
2.6E-01
3.5E-01
3.1E-01
NA
92-87-5 Benzidine"
2.2E-03
4.6E-03
2.8E+00
1.2E+00
3.4E-01
3.0E-01
NA
50-32-8 Benzo(a)pyrene
1.2E+00
1.3E+02
1.4E+01
3.0E+00
1.3E+02
1.1E+04
NA
205-99-2 Benzo(b)fluoranthene
1.4E+00
1.6E+02
1.4E+01
3.0E+00
1.6E+02
1.6E+04
NA
100-51-6 Benzyl alcohol
2.6E-03
1.3E-03
9.6E-01
4.0E-01
3.3E-01
3.0E-01
NA
100-44-7 Benzyl chloride
1.4E-02
2.0E-02
1.2E+00
5.2E-01
3.5E-01
3.1E-01
NA
•7440-41-7 Beryllium
1.0E-03
NA
NA
NA
NA
NA
NA
39638-32-9 Bis (2-chloroisopropyl) ether
1 2E-02
3.8E-02
2.3E+00
9.7E-01
3.7E-01
3.1E-01
NA
111-44-4 Bis(2-chlorethyl)ether
1.8E-03
1.6E-03
1.6E+00
6.5E-01
3.3E-01
3.0E-01
NA
117-81-7 Bis(2-ethylhexyl)phthalate
1.2E+00
2.0E+03
9.9E+01
2.1E+01
2.0E+03
2.5E+06
NA
75-27-4 Bromodichloromethane
5.9E-03
1.3E-02
2.1E+00
8.7E-01
3.5E-01
3.1E-01
NA
75-25-2 Bromoform (Tribromomethane)
2.6E-03
2.2E-02
7.3E+00
3.0E+00
3.6E-01
3.1E-01
NA
71-36-3 Butanol
2.5E-03
6.3E-04
5.9E-01
2.5E-01
3.3E-01
3.0E-01
NA
88-85-7 Butyl-4,6-dmitrophenol, 2-sec- (Oinost
1.1E-02
1.4E-01
8.3E+00
2.6E+00
4.7E-01
3.5E-01
NA
85-68-7 Butylbenzylphthalate
6.5E-02
6.9E+00
3.4E+01
7.0E+00
7.3E+00
3.3E+01
NA
* Known to ionize under environmental conditions
" Completely miscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-29

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters


Skin








permeability

Time to



Soil dermal


constant for
Bunge
steady state
Lag lime


absorption
CAS

water
Constant B
t'
tau


fraction
Number Chemical Name
(cm/hr)
(unitless)
(hr)
(hr)
c (unitless) b (unitless)
(unitless)
7440-43-9
Cadmium
1.0E-03
NA
NA
NA
NA
NA
1.0E-02
75-15-0
Carbon disulfide
1.7E-02
1.0E-02
6.1E-01
2.5E-01
3.4E-01
3.1E-01
NA
56-23-5
Carbon tetrachloride
1.9E-02
5.4E-02
1.8E+00
7.6E-01
3.9E-01
3.2E-01
NA
57-74-9
Chlordane
1.9E-01
2.1E+02
1.3E+02
2.8E+01
2.1E+02
2.8E+04
NA
126-99-8
Chloro-1,3-butadiene, 2- (Chloroprene
1.6E-02
1.2E-02
7.3E-01
3.0E-01
3.5E-01
3.1E-01
NA
106-47-8
Chloroaniline, p-
6.5E-03
7.1E-03
1.3E+00
5.2E-01
3.4E-01
3.1E-01
NA
108-90-7
Chlorobenzene
4.2E-02
7.2t-02
I.Ob+00
4.3E-01
4.1E-01
3.3E-01
NA
510-15-6
Chlorobenzilate
2.5E-02
2.4E+00
4.5E+01
8.4E+00
2.7E+00
4.6E+00
NA
124-48-1
Chlorodibromomethane
3.5E-03
1.5E-02
3.9E+00
1.6E+00
3.5E-01
3.1E-01
NA
67-66-3
Chloroform
8.3E-03
8.3E-03
1.1E+00
4.7E-01
3.4E-01
3 1E-01
NA
95-57-8
Chlorophenol, 2-
1.1E-02
1.4E-02
1.3E+00
5.3E-01
3.5E-01
3.1E-01
NA
7440-47-3
Chromlum VI
1 .OE-03
NA
.slA
NA
NA
NA
NA
218-01-9
Chrysene
8.6E-01
5.0E+01
1.0E+01
2.2E+00
5.0E+01
1.6E+03
NA
7440-50-8
Copper
1.OE-03
NA
NA
NA
NA
NA
NA
10B-39-4
Cresol, m-
1.0E-02
9.3E-03
9.6E-01
4.0E-01
3.4E-01
3.1E-01
NA
95-48-7
Cresol. o-
1.1E-02
9.8E-03
9.6E-01
4.0E-01
3.4E-01
3.1E-01
NA
106-44-5
Cresol, p-
1.0E-02
8.9E-03
9.6E-01
4.0E-01
3.4E-01
3.1E-01
NA
98-82-8
Cumene
1.2E-01
3.8E-01
2.8E+00
4.7E-01
7.1E-01
5 0E-01
NA
72-54-8
DDD
4.6E-01
1.3E+02
3.7E+01
7.8E+00
1.3E+02
1.0E+04
NA
72-55-9
DDE
1.4E+00
5.8E+02
3.6E+01
7.6E+00
5.8E+02
2.1E+05
NA
50-29-3
DDT
5.7E-01
3.4E+02
6.0E+01
1.3E+01
3.4E+02
7.3E+04
NA
84-74-2
Di-n-butyl phthalate
7.2E-02
4.1E+00
2.2E+01
4.4E+00
4.4E+00
1.2E+01
NA
117-84-0
Di-n-octyl phthalate
4.2E+00
1.1E+04
9.9E+01
2.1E+01
1.1E+04
8.4E+07
NA
2303-16-4
Diallate
6.6E-02
3.1E+00
2.0E+01
3.9E+00
3.4E+00
7.2E+00
NA
53-70-3
Dibenz(a,h)anthracene
2.1E+00
4.9E+02
2.1E+01
4.4E+00
4.9E+02
1.5E+05
NA
96-12-8
Dibromo-3-chloropropane, 1,2-
3.2E-03
2.2E-02
5.8E+00
2.4E+00
3.6E-01
3.1E-01
NA
95-50-1
~ichlorobenzene, 1,2-
6.6E-02
2.7E-01
3.4E+00
6.9E-01
6.0E-01
4.2E-01
NA
106-46-7
Dichlorobenzene, 1,4-
6.5E-02
2.6E-01
3.4E+00
6.9E-01
6.0E-01
4.2E-01
NA
91-94-1
Dichlorobenzidine, 3,3'-
1.7E-02
3.2E-01
1.7E+01
3.1E+00
6.6E-01
4.6E-01
NA
Kii(
• r
jmzo undnr environmental conditions
y miscible, solubility estimated from Henry's Law Constant and Vapor Press
A-30

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters

Skin







permeability

Time to



Soil dermal

constant for
Bunge
steady state
Lag time


absorption
CAS
water
Constant B
t'
tau


fraction
Number Chemical Name
(cm/hr)
(unitless)
(hr)
(hr)
c (unitless) b (unitless)
(unitless)
75-71-8 Dlchlorodifluoromethane
1.2E-02
1.4E-02
1.1E+00
4.8E-01
3.5E-01
3.1E-01
NA
75-34-3 Dlchloroethnna 1,1-
8.9E-03
6.2E-03
8.4E-01
3.5E-01
3.4E-01
3.0E-01
NA
107-06-2 Dichloroethane, 1,2-
5.2E-03
3.0E-03
8.4E-01
3.5E-01
3.4E-01
3.0E-01
NA
75-35-4 Dichloroethylene, 1,1-
1.6E-02
1.3E-02
8.2E-01
3.4E-01
3.5E-01
3.1E-01
NA
156-59-2 Dichloroethylene, cls-1,2-
1.0E-02
7.2E-03
8.2E-01
3.4E-01
3.4E-01
3.1E-01
NA
156-60-5 Dichloroethylene. trans-1.2-
1 4E-02
1.2E-02
8.2E-01
3.4E-01
3.5E-01
3.1E-01
NA
120-83-2 Dichlorophertol, 2,4-
3.0E-02
1.2E-01
2.5E+00
8.6E-01
4.5E-01
3.5E-01
NA
94-75-7 Dlchlorophenoxyacetic acid. 2,4- (2,4-
7.1E-03
5.0E-02
4.7E+00
2.0E+00
3.8E-01
3.2E-01
NA
78-87-5 Dlchloropropane, 1,2-
9.8E-03
9.3E-03
1.0E+00
4.3E-01
3.4E-01
3.1E-01
NA
542-75-6 Dlchloropropene. 1,3-
1.1E-02
1.0E-02
1.0E+00
4.2E-01
3.4E-01
3.1E-01
NA
10061-01-5 Dlchloropropene, cis-1,3-
1.1E-02
1.0E-02
1.0E+00
4.2E-01
3.4E-01
3.1E-01
NA
10061-02-6 Dlchloropropene, trans-1,3-
1.1E-02
1.0E-02
1.0E+00
4.2E-01
3.4E-01
3.1E-01
NA
60-57-1 Dieldrin
5.9E-02
2.3E+01
8.8E+01
1.8E+01
2.4E+01
3.6E+02
NA
84-66-2 Diethyl phthalate
5.0E-03
3.2E-02
4.8E+00
2.0E+00
3 6E-01
3.1E-01
NA
56-53-1 Diethylstllbestrol
1.7E-01
1 2E+01
1.8E+01
3.8E+00
1.2E+01
9.1E+01
NA
60-51-5 Dimethoate
2.4E-04
4.9E-04
5.3E+00
2.2E+00
3:3E-01
3.0E-01
NA
131-11-3 Dimethyl phthalate
1.6E-03
3.7E-03
3.2E+00
1.3E+00
3.4E-01
3.0E-01
NA
57-97-6 Dimethylbenz(a)anthracene, 7,12-
2.6E+00
4.2E+02
1.5E+01
3.2E+00
4.2E+02
1.1E+05
NA
119-93-7 Dimethylbenzidine, 3,3'- *
7.7E-03
4.8E-02
4.1E+00
1.7E+00
3 8E-01
3 2E-01
NA
105-67-9 Dimethylphenol, 2,4- *
1 6E-02
2.3E-02
1.2E+00
4.9E-01
3.6E-01
3.1E-01
NA
119-90-4 Dimeinyoxybenzidine, 3,3'-"
1.2E-03
6.5E-03
6.5E+00
2.7E+00
3.4E-01
3.1E-01
NA
99-65-0 Dinitrobenzene, 1,3-
2.1E-03
3.2E-03
2.2E+00
9.3E-01
3.4E-01
3.0E-01
NA
51-28-5 Dinitrophenol, 2,4-
1.8E-03
3.5E-03
2.8E+00
1.2E+00
3.4E-01
3.0E-01
NA
121-14-2 Dinitrotoluene, 2,4-
3.9E-03
1.0E-02
2.7E+00
1.1E+00
3.4E-01
3.1E-01
NA
606-20-2 Dinitrotoluene, 2,6-
3.1E-03
7.4E-03
2.7E+00
1.1E+00
3.4E-01
3.1E-01
NA
123-91-1 Dioxane, 1,4-"
2.9E-04
4 1E-05
7.2E-01
3.0E-01
3.3E-01
3.0E-01
NA
122-39-4 Diphenylamine*
5.2E-02
3.0E-01
5.0E+00
9.4E-01
6 4E-01
4 4E-01
NA
298-04-4 Disulfoton
2.7E-02
9.5E-01
3.4E+01
4.1E+00'
1.3E+00
1 1E+00
NA
115-29-7 Endosullan
5.1E-03
1.3E+00
1.9E+02
2.7E+01
1.6E+00
1.7E+00
NA
' Known to ionize under environmental conditions
Completely miscible, solubility estimated from Henry's Law Constant and Vapor Pressure.
A-3 1

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters
CAS
Number Chemical Name
Skin
permeability
constant tor
water
(cm/hr)
Bunge
Constant B
(unitless)
Time to
steady state
f
(hr)
Lag time
tau
(hr)
c (unitless) b (unitless)
Soil dermal
absorption
fraction
(unitless)
72-20-8 Endrin
3.5E-02
1.1E+01
8.9E+01
1.8E+01
1.2E+01
8.7E+01
NA
106-89-8 Epichlorohydrin
7.8E-04
1.8E-04
7.7E-01
3.2E-01
3.3E-01
3.0E-01
NA
110-80-5 Ethoxyethanol, 2- "
4.6E-04
7.9E-05
7.4E-01
3.1E-01
3.3E-01
3.0E-01
NA
141-78-6 Ethyl acetate
1.7E-03
4.9E-04
7.2E-01
3.0E-01
3.3E-01
3.0E-01
NA
60-29-7 Ethyl ether
2.6E-03
6.8E-04
5.9E-01
2.5E-01
3.3E-01
3.0E-01
NA
97-63-2 Ethyl methacrylate
5.2E-03
3.9E-03
1.0E+00
4.3E-01
3.4E-01
3.0E-01
NA
62-50-0 Ethyl methanesultonate
3.6E-04
1.1E-04
1.2E+00
5.0E-01
3.3E-01
3.0E-01
NA
100-41-4 Ethylbenzene
7.3E-02
1.4E-01
1.3E+00
3.9E-01
4.7E-01
3.5E-01
NA
106-93-4 Ethylene Dibromide
2.4E-03
5.6E-03
2.9E+00
1.2E+00
3.4E-01
3.0E-01
NA
96-45-/ ttnyiene thiourea
1.5E-04
2.2E-05
8.8E-01
3.7E-01
3.3E-01
3.0E-01
NA
206-44-0 Fluoranthene
4.8E-01
1.3E+01
7.2E+00
1.5E+00
1.4E+01
1.1E+02
NA
86-73-7 Fluorene
1.8E-01
1.6E+00
5.4E+00
9.0E-01
2.0E+00
2.4E+00
NA
50-00-0 Formaldehyde
1.2E-03
8.9E-05
3.2E-01
1.3E-01
3.3E-01
3.0E-01
NA
64-18-6 Formic Acid*
4.1E-04
2.9E-05
4.0E-01
1.7E-01
3.3E-01
3.0E-01
NA
110-00-9 Furan
6.5E-03
2.2E-03
5.5E-01
2.3E-01
3.4E-01
3.0E-01
NA
76-44-8 Heptachlor
2.8E-01
1.8E+02
7.8E+01
1.7E+01
1.8E+02
2.1E+04
NA
1024-57-3 Heptachlor epoxide
2.9E-02
1.0E+01
1.0E+02
2.1E+01
1.0E+01
6.7E+01
NA
87-68-3 Hexachloro-1,3-butadiene
1.3E-01
6.5E+00
1.7E+01
3.4E+00
6.8E+00
2.9E+01
NA
118-74-1 Hexachlorobenzene
5.3E-01
7.8E+01
2.3E+01
4.8E+00
7.8E+01
3.9E+03
NA
319-84-6 Hexachlorocyclohexane, alpha- (alpha
1.6E-02
6.3E-01
3.7E+01
5.2E+00
9.6E-01
7.3E-01
NA
319-85-7 Hexachlorocyclohexane, beta- (beta-B
1.6E-02
6.5E-01
3.8E+01
5.2E+00
9.8E-01
7.5E-01
NA
58-89-9 Hexachlorocyclohexane, gamma- (Lin<
1.4E-02
5.4E-01
3.5E+01
5.2E+00
8.7E-01
6.3E-01
NA
77-47-4 Hexachlorocyclopentadiene
2.8E-01
2.5E+01
1.9E+01
4.0E+00
2.5E+01
3.9E+02
NA
67-72-1 Hexachloroethane
4.7E-02
1 0E+00
2.0E+01
2.4E+00
1.3E+00
1.2E+00
NA
70-30-4 Hexachlorophene*
1.4E+00
3.5E+03
1.3E+02
2.7E+01
3.5E+03
7.7E+06
NA
193-39-5 lndeno(1,2,3-cd) pyrene
2.1E+00
4.5E+02
2.0E+01
4.2E+00
4.5E+02
1.3E+05
NA
78-83-1 Isobutyl alcohol
2.3E-03
5.6E-04
5.9E-01
2.5E-01
3.3E-01
3.0E-01
NA
78-59-1 Isophorone
4.4E-03
5.0E-03
1.5E+00
6.1E-01
3.4E-01
3.0E-01
NA
143-50-0 Kepone
1.1E-02
2.0E+01
4.1E+02
8.6E+01
2.0E+01
2.6E+02
NA
Kiiqi Ionize undor onvlronmenlnl conditions
* u	i mlsclble, solubility estimated from Henry's Law Constant and Vapor Pressj
A-32

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters
CAS
Number Chemical Name
Skin
permeability
constant for
water
(cm/hr)
Bunge
Constant B
(unitless)
Time to
steady state
t*
(hr)
Lag time
tau
(hr)
c (unitless) b (unitless)
Soil dermal
absorption
fraction
(unitless)
7439-92-1 Lead	1.0E-03	NA NA	NA	NA	NA	NA
7439-97-6 Mercury	1.0E-03	NA NA	NA	NA	NA	NA
126-98-7 Methacrylonitrile	1.BE-03	3.5E-04	5.4E-01	2 2E-01	3.3E-01	3.0E-01	NA
67-56-1 Methanol	3.8E-04	1 9E-05	3.3E-01	1.4E-01	3.3E-01	3.0E-01	NA
72-43-5 Methoxychlor	6.0E-02	1.2E+01	5.4E+01	1.1E+01	1.2E+01	9.6E+01	NA
74-83-9 Methyl bromide (Bromomethane)	3.5E-03	1.5E-03	8.0E-01	3.3E-01	3.3E-01	3.0E-01	NA
74-87-3 Metnyl cniorlde (Chloromethane)	4.2E-03	8.1E-04	4.3E-01	1.8E-01	3.3E-01	3.0E-01	NA
78-93-3	Methyl ethyl ketone	1.1E-03	1.9E-04	5.8E-01	2.4E-01	3.3E-01	3.0E-01	NA
108-10-1 Methyl isobutyl ketone	3 3E-03	1.5E-03	8.6E-01	3.6E-01	3.3E-01	3.0E-01	NA
80-62-6 Methyl methacrylate	4.5E-03	2.4E-03	8.6E-01	3.6E-01	3.4E-01	3.0E-01	NA
298-00-0 Methyl parathion	5.4E-03	7.9E-02	8.5E+00	3.5E+00	4.1E-01	3.3E-01	NA
56-49-5 Methylcholanthrene, 3-	1.6E+00	2.6E+02	1.8E+01	3.8E+00	2.6E+02 4.4E+04	NA
74-95-3	Methylene bromide	2.3E-03	4.2E-03	2.4E+00	1.0E+00	3.4E-01	3.0E-01	NA
75-09-2	Methylene chloride	4.5E-03	1.8E-03	6.9E-01	2.9E-01	3.4E-01	3.0E-01	NA
7439-98-7	Molybdenum	1.0E-03	NA NA	NA	NA	NA	NA
621-64-7 N-Nitrosodl-n-propylamine	3.0E-03	2.5E-03	1.3E+00	5.4E-01	3.4E-01	3.0E-01	NA
86-30-6 N-Nitrosodiphenylamine	2.1E-02	1.4E-01	4.8E+00	1.4E+00	4.8E-01	3.6E-01	NA
100-75-4 N-Nitrosoplperidine	1.1E-03	4.3E-04	1.0E+00	4.4E-01	3.3E-01	3.0E-01	NA
930-55-2 N-Nitrosopyrrolidlne	3.4E-04	6.5E-05	8.6E-01	3.6E-01	3.3E-01	3.0E-01	NA
91-20-3 Naphthalene	7.7E-02	2.3E-01	2.4E+00	5.3E-01	5.6E-01	4.0E-01	NA
91-59-8 Naphthylamlne*	1.1E-02	1.9E-02	i.bt+oo	b.5t-01	3.5E-01	3.1E-01	NA
7440-0z-u	Nicxei	1.0E-03	NA NA	NA	NA	NA	NA
98-95-3 Nitrobenzene	6.8E-03	6.9E-03	1.2E+00	4.9E-01	3.4E-01	3 1E-01	NA
79-46-9	Nitropropane, 2-'	2.3E-03	7.4E-04	7.3E-01	3.1E-01	3.3E-01	3.0E-01	NA
924-16-3 Nitrosodl-n-butyiamme	1.1E-02	2.6E-02	1.9E+00	8.1E-01	3.6E-01	3.1E-01	NA
55-18-5 Nitrosodiethylamlne	9.9E-04	3.0E-04	8.8E-01	3.7E-01	3.3E-01	3.0E-01	NA
62-75-9 Nitrosodimethylamlne	2.7E-04	2.7E-05	5.9E-01	2.5E-01	3.3E-01	3.0E-01	NA
10595-95-6 Nitrosomethylethylamine	4.5E-04	7.6E-05	7.2E-01	3.0E-01	3.3E-01	3.0E-01	NA
152-16-9 Octamethylpyrophosphoramide	1.5E-05	3.0E-05	1.2E+01	4.9E+00	3.3E-01	3.0E-01	NA
" Known to ionise under envuonmental conditions
" Completely mlscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-33

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters

Skin







permeability

Time to



Soil dermal

constant tor
Bunge
steady state
Lag time


absorption
CAS
water
Constant B
t*
tau


fraction
Number Chemical Name
(cm/hr)
(unitless)
(hr)
(hr)
c (unitless) b (unitless)
(unitless)
56-38-2 Parathion
1.7E-02
6.8E-01
3.9E+01
5.2E+00
1.0E+00
7.8E-01
NA
608-93-5 Pentachlorobenzene
3.1E-01
1.8E+01
1.4E+01
2.9E+00
1.9E+01
2.2E+02
NA
82-68-8 Pentachloronitrobenzene (PCNB)
5.9E-02
4.4E+00
2.8E+01
5.5E+00
4.7E+00
1.4E+01
NA
87-86-5 Pentachlorophervol*
1.9E-01
1.2E+01
1.8E+01
3.7E+00
1.3E+01
1.0E+02
NA
108-95-2 Phenol
5.7E-03
3.0E-03
7.9E-01
3.3E-01
3.4E-01
3.0E-01
NA
62-38-4 Phenyl mercuric acetate
6.4E-04
1.7E-02
2.4E+01
9.9E+00
3.5E-01
3.1E-01
NA
108-45-2 Phenylenediamine, m-"
4.5E-04
1.1E-04
9.6E-01
4.0E-01
3.3E-01
3.0E-01
NA
298-02-2 Phorate
2 5E-02
6.5E-01
2.5E+01
3.4 E+00
9.8E-01
7.5E-01
NA
1336-36-3 Polychlorinated biphenyls
1.3E+00
3.2E+02
2.5E+01
5.3E+00
3.2E+02
6.5E+04
NA
23950-58-5 Pronamlde
1.6E-02
3.2E-01
1.7E+01
3.2E+00
6.6E-01
4.6E-01
NA
129-00-0 Pyrene
4.7E-01
1.3E+01
7.2E+00
1.5E+00
1.3E+01
1.1E+02
NA
110-86-1 Pyridine"
1.9E-03
4.7E-04
6.4E-01
2 7E-01
3.3E-01
3.0E-01
NA
94-59-7 Safrole
1.5E-02
4.6E-02
2.0E+00
8.5E-01
3.8E-01
3.2E-01
NA
7782-49-2 Selenium
1.0E-03
NA
NA
NA
NA
NA
NA
7440-22-4 Silver
1.0E-03
NA
NA
NA
NA
NA
NA
57-24-9 Strychnine*
4.1E-04
8.5E-03
2.3E+01
9 6E+00
3.4E-01
3.1E-01
NA
100-42-5 Stryene
5.4E-02
8.7E-02
9.1E-01
3.8E-01
4.2E-01
3.3E-01
NA
1746-01-6 TCDD, 2,3,7,8-
1.4E+00
6.3E+02
3.8E+01
8.1E+00
6.3E+02
2.5E+05
3.0E-02
95-94-3 Tetrachlorobenzene. 1.2.4.5-
1.8E-01
4.4E+00
9.1 E-t-00
1.8E+00
4.7E+00
1.4E+01
NA
630-20-6 Tetrachloroethane, 1,1,1,2-
1.3E-02
4.3E-02
2.2E+00
9.2E-01
3.8E-01
3.2E-01
NA
79-34-5 Tetrachloroethane, 1,1,2,2-
9.0E-03
2.5E-02
2.2E+00
9.2E-01
3.6E-01
3.1E-01
NA
127-18-4 Tetrachloroethylene
1.5E-02
4.7E-02
2.2E+00
9.0E-01
3.8E-01
3.2E-01
NA
58-90-2 Tetrachlorophenol, 2,3,4,6-
8.3E-02
2.0E+00
1.3E+01
2.3E+00
2.3E+00
3.4E+00
NA
3689-24-5 Tetraethyldlthtopyrophosphate
1.1E-02
6.8E-01
6.0E+01
8.1E+00
1.0E+00
7.8E-01
NA
7440-28-0 Thallium (I)
1.0E-03
NA
NA
NA
NA
NA
NA
108-88-3 Toluene
4.7E-02
5.6E-02
7.7E-01
3.2E-01
3.9E-01
3.2E-01
NA
95-80-7 Toluenediamine, 2,4-
6.6E-04
2.5E-04
1.2E+00
4.9E-01
3.3E-01
3.0E-01
NA
95-53-4 Toluidine, o- *
3.8E-03
2.2E-03
9.5E-01
3.9E-01
3.4E-01
3.0E-01
NA
106-49-0 Toluidine, p-'
4.2E-03
2.5E-03
9.5E-01
3.9E-01
3.4E-01
3.0E-01
NA
* Knew
" u
oni/H under environmental conditions
< misclble, solubility estimated from Henry's Law Constant and Vapor Press*
A-34

-------
Table A-5. Dermal Parameters for HWIR Chemicals
Dermal Parameters

Skin







permeability

Time to



Soil dermal

constant (or
Bunge
steady state
Lag time


absorption
CAS
water
Constant B
t*
tau


fraction
Number Chemical Name
(cm/hr)
(unitless)
(hr)
(hr)
c (unitless) b (unitless)
(unitless)
8001-35-2 Toxaphene
4.6E-02
3.2E+01
1.4E+02
2.9E+01
3.2E+01
6.5E+02
NA
76-13-1 Trlchloro-1,2,2-trifluoroethane, 1,1,2-
2.4E-02
1.4E-01
4.1E+00
1.2E+00
4.8E-01
3.6E-01
NA
120-82-1 Trichlorobenzene. 1,2,4-
1.0E-01
1 .OE+OO
9.5E+00
1.1E+00
1.4E+00
1.2E+00
NA
71-55-6 Trichloroethane, 1,1,1-
1.1E-01
3.0E-02
2.1E-01
8.7E-02
3.6E-01
3 1E-01
NA
79-00-5 Trichloroethane, 1,1,2-
8.3E-03
1.1E-02
1.4E+00
5.7E-01
3.4E-01
3.1E-01
NA
79-01-6 Trichloroethylene
1.6E-01
5.1E-02
2.1E-01
8.7E-02
3.8E-01
3.2E-01
NA
75-69-4 Trichlorofluoromettiane
1.7E-02
3.4E-02
1.4E+00
6.0E-01
3.7E-01
3.1E-01
NA
95-95-4 Trichlorophenol, 2,4,5-
7.0E-02
7.9E-01
1.1E+01
1.4E+00
1.1E+00
9.2E-01
NA
88-06-2 Trichlorophenol, 2,4,6-
5.0E-02
5.0E-01
9.2E+00
1.4E+00
8.3E-01
6.0E-01
NA
93-76-5 TrichloroDhenoxyacetic acid, 2,4.5- (2
1.2E-02
2.0E-01
1.3E+01
3.2E+00
5.4E-01
3.9E-01
NA
93-72-1 Trichlorophenoxypropionic acid, 2,4,5-
1.1E-02
2.6E-01
1.9E+01
3 9E+00
5.9E-01
4.2E-01
NA
96-18-4 Trichloropropane, 1,2,3-
9.5E-03
1.8E-02
1.7E+00
6.9E-01
3.5E-01
3.1E-01
NA
99-35-4 Trinitrobenzene, sym-
6.6E-04
1.5E-03
4.2E+00
1.7E+00
3.3E-01
3.0E-01
NA
126-72-7 Tris (2,3-dlbromopropyl) phosphate
3.3E-05
3.2E-01
8.6E+03
1.6E+03
6.6E-01
4.6E-01
NA
7440-62-2 Vanadium
1.0E-03
NA
NA
NA
NA
NA
NA
75-01-4 Vinyl chloride
9.2E-03
3.2E-03
5.1E-01
2.1E-01
3 4E-01
3.0E-01
NA
1330-20-7 Xylenes (total)
7.6E-02
1.5E-01
1.3E+00
3.9E-01
4.8E-01
3.6E-01
NA
7440-66-6 Zinc
1.0E-03
NA
NA
NA
NA
NA
NA
* Known to ionize under environmental conditions
Completely mlsclble; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-35

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Halt-Lives arid Rates
CAS
Number Chemical Name
Soil
half-life
(hours)
Soil
Degradation
Rate
(yr-1)
Aqueous
half-life
(hours)
Aqueous
Degradation
Rate
(yr-1)
Hydrolysis
half-life
(hours)
Hydrolysis
rate
(yr-1)
83-32-9
Acenaphthene
2.4E+03
2.5E+00
2.4E+03
2.5E+00
NH
O.OE+OO
67-64-1
Acetone
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
75-05-8
Acetonitrile
6.7E+02
9.0E+00
6.7E+02
9.0E+00
> 150,000 yrs
O.OE+OO
98-86-2
Acetophenone
NA
NA
NA
NA
NA
NA
107-02-8
Acrolein
6.7E+02
9.0E+00
6.7E+02
9.0E+00
ND
NA
79-06-1
Acrylamide
NA
NA
NA
NA
NA
NA
107-13-1
Acrylonitrile
5.5E+02
1.1E+01
5.5E+02
1.1E+01
1.1E+07
O.OE+OO
309-00-2
Aldnn
1.4E+04
4.3E-01
1.4E+04
4.3E-01
1.8E+04
O.OE+OO
107-05-1
Allyl chloride
3.4E+02
1.8E+01
6.7E+02
9.0E+00
3.4E+02
1.8E+01
62-53-3
Aniline
NA
NA
NA
NA
NA
NA
7440-36-0
Antimony
Metal
0.0E+00
Metal
O.OE+OO
Metal
O.OE+OO
7440-38-2
Arsenic
Metal
0.0E+0O
Metal
O.OE+OO
Metal
O.OE+OO
7440-39-3
Barium
Metal
O.OE+OO
Metal
O.OE+OO
Metal
O.OE+OO
56-55-3
Benz(a)anthracene
1.6E+04
3.7E-01
1.6E+04
3.7E-01
NH
O.OE+OO
71-43-2
Benzene
3.8E+02
1.6E+01
3.8E+02
1.6E+01
NH
O.OE+OO
92-87-5
Benzidine*
1.9E+02
3.2E+01
1.9E+02
3.2E+01
NH
O.OE+OO
50-32-8
Benzo(a)pyrene
1 3E+04
4.8E-01
1.3E+04
4.8E-01
NH
O.OE+OO
205-99-2
Benzo(b)fluoranthene
1.5E+04
4.1E-01
1.5E+04
4.1E-01
NH
O.OE+OO
100-51-6
Benzyl alcohol
NA
NA
NA
NA
NA
NA
100-44-7
Benzyl chloride
2.9E+02
2.1E+01
6.7E+02
9.0E+00
1.5E+01
4.0E+02
7440-41-7
Beryllium
Metal
O.OE+OO
Metal
O.OE+OO
Metal
O.OE+OO
39638-32-9
Bis (2-chlorolsopropyl) ether
NA
NA
NA
NA
NA
NA
111-44-4
Bis(2-chlorethyl)ether
4.3E+03
1.4E+00
4.3E+03
1.4E+00
1.9E+05
O.OE+OO
117-81-7
Bis(2-ethylhexyl)phthalate
5.5E+02
1.1E+01
5.5E+02
1.1E+01
ND
NA
75-27-4
Bromodichloromethane
NA
NA
NA
NA
NA
NA
75-25-2
Bromoform (Tribromomethane)
4.3E+03
1.4E+00
4.3E+03
1.4E+00
6.0E+06
O.OE+OO
71-36-3
Butanol
1 .7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
88-85-7
Butyl-4,6-dinitrophenol, 2-sec- (Dinosc
3.0E+03
2.1E+00
3.0E+03
2.1E+00
NH
0 0E+00
85-68-7
Butylbenzylphthalate
1.7E+02
3.6E+01
1.7E+02
3.6E+01
Nl
O.OE+OO
* Kr
i
anizo under environmental conditions
ny mlscible, solubility estimated from Henry's Law Constant and Vapor Pres:
A-36

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Halt-Lives and Rales
CAS
Number Chemical Name
Soil
half-life
(hours)
Soil
Degradation
Rate
(vr-1)
Aqueous
halt-life
(hours)
Aqueous
Degradation
Rate
(vr-1)
Hydrolysis
half-life
(hours)
Hydrolysis
rate
(vr-1)
7440-43-9 Cadmium
Metal
0.0E+00
Metal
O.OE+OO
Metal
0.0E+00
75-15-0 Carbon disulfide
NA
NA
NA
NA
NA
NA
56-23-5 Carbon tetrachloride
8.5E+03
7.2E-01
8.5E+03
7.2E-01
6.1E+07
O.OE+OO
57-74-9 Chlordane
3.3E+04
1.8E-01
3.3E+04
1.8E-01
> 197,000 years
0.0E+00
126-99-8 Chloro-1,3-butadlene, 2- (Chloroprene
4.3E+03
1.4E+00
4.3E+03
1.4E+00
ND
NA
106-47-8 Chloroanillne. p-
NA
NA
NA
NA
NA
NA
108-90-7 Chlorobenzene
3.6E+03
1.7E+00
3.6E+03
1.7E+00
> 879 years
0.0E+00
510-15-6 Chlorobenzilate
8.4E+02
7.2E+00
8.4E+02
7.2E+00
ND
NA
124-48-1 Chlorodibromomethane
4.3E+03
1.4E+00
4.3E+03
1.4E+00
2.4E+06
O.OE+OO
67-66-3 Chloroform
4.3E+03
1.4E+00
4.3E+03
1.4E+00
3.1E+07
O.OE+OO
95-57-8 Chlorophenol, 2-
NA
NA
NA
NA
NA
NA
7440-47-3 Chromium VI
Metal
0.0E+00
Metal
O.OE+OO
Metal
0.0E+00
218-01-9 Chrysene
2.4E+04
2.5E-01
2.4E+04
2.5E-01
NH
O.OE+OO
7440-50-8 Copper
Metal
O.OE+OO
Metal
O.OE+OO
Metal
O.OE+OO
108-39-4 Cresol, m-
7.0E+02
8.7E+00
7.0E+02
8.7E+00
NH
O.OE+OO
95-48-7 Cresol, o-
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
106-44-5 Cresol. p-
1.6E+01
3.8E+02
1.6E+01
3.8E+02
NH
O.OE+OO
98-82-8 Cumene
1.9E+02
3.2E+01
1.9E+02
3.2E+01
ND
NA
72-54-8 DDD
1.4E+05
4.3E-02
1.4E+05
4.3E-02
2.1E+05
O.OE+OO
72-55-9 DDE
1.4E+05
4.3E-02
1.4E+05
4.3E-02
NH
O.OE+OO
50-29-3 DDT
1.4E+05
4.3E-02
1.4E+05
4.3E-02
1.9E+05
O.OE+OO
84-74-2 Di-n-butyl phthalate
5.5E+02
1.1E+01
5.5E+02
1.1E+01
8.8E+04
O.OE+OO
117-84-0 Di-n-octyl phthalate
6.7E+02
9.0E+00
6.7E+02
9.0E+00
9.4E+05
O.OE+OO
2303-16-4 Diallate
2.2E+03
2.8E+00
2.2E+03
2.8E+00
5.8E+04
O.OE+OO
53-70-3 Dibenz(a,h)anthracene
2.3E+04
2.7E-01
2.3E+04
2.7E-01
NH
O.OE+OO
96-12-8 Dibromo-3-chloropropane, 1,2-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
3.4E+05
O.OE+OO
95-50-1 Dichlorobenzene. 1,2-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
>879 years
O.OE+OO
106-46-7 Dichlorobenzene, 1,4-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
>879 years
O.OE+OO
91-94-1 Dichlorobenzidine, 3,3'-
4.3E+03
1.4E+00
4.jt+ua
1.4E+00
NH
O.OE+OO
* Known to Ionize under environmental conditions
** Completely misclble; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-37

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Halt-Lives and Rates
CAS
Number Chemical Name
Soil
halt-life
(hours)
'Soil
Degradation
Rate
(vr-1)
Aqueous
half-life
(hours)
Aqueous
Degradation
Rate
(yr-1)
Hydrolysis
half-life
(hours)
Hydrolysis
rate
(vr-1)
75-71-8
Dichlorodifluoromethane
4 3E+03
1.4E+00
4.0E+03
1.5E+00
ND
NA
75-34-3
Dichloroethane, 1,1-
3.7E+03
1.6E+00
3.7E+03
1.6E+00
ND
NA
107-06-2
Dichloroethane, 1,2-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
9.6E+03
O.OE+OO
75-35-4
Dichloroethylene, 1,1-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
0.0E+00
156-59-2
Dichloroethylene, ds-1,2-
NA
NA
NA
NA
NA
NA
156-60-5
Dichloroethylene, trans-1.2-
NA
NA
NA
NA
NA
NA
120-83-2
Dichlorophenol, 2,4-
1.7E+03
3.6E+00
2.0E+02
3.1E+01
NH
0.0E+00
94-75-7
Dichlorophenoxyacetic acid, 2,4- (2,4-
1.2E+03
5.1E+00
1.2E+03
5.1E+00
NH
0.0E+00
78-87-5
Dichloropropane, 1,2-
3.1E+04
2.0E-01
3.1E+04
2.0E-01
1.4E+05
0.0E+00
542-75-6
Dichloropropene, 1,3-
2.7E+02
2.2E+01
6.7E+02
9.0E+00
2.7E+02
2.2E+01
10061-01-5
Dichloropropene, cis-1,3-
NA
NA
NA
NA
NA
NA
10061-02-6
Dichloropropene, trans-1,3-
NA
NA
NA
NA
NA
NA
60-57-1
Dieldrin
2.6E+04
2.3E-01
2.6E+04
2.3E-01
9.2E+04
0.0E+00
84-66-2
Diethyl phthalate
1.3E+03
4.5E+00
1.3E+03
4.5E+00
7.7E+04
O.OE+OO
56-53-1
Diethylstilbestrol
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
0.0E+00
60-51-5
Dimethoate
8.9E+02
6.8E+00
1.3E+03
4.5E+00
2.8E+03
2.2E+00
131-11-3
Dimethyl phthalate
1.7E+02
3.6E+01
1.7E+02
3.6E+01.
2.8E+04
O.OE+OO
57-97-6
Dimethylbenz(a)anthracene, 7,12-
6.7E+02
9.0E+00
6.7E+02
9.0E+00
NH
O.OE+OO
119-93-7
Dimethylbenzidine, 3,3'- *
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
105-67-9
Dimethylphenol, 2,4- *
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
119-90-4
Dimethyoxybenzidine, 3,3'-"
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
99-65-0
Dinitrobenzene, 1,3-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
51-28-5
Dinitrophertol, 2,4-
6.3E+03
9.6E-01
6.3E+03
9.6E-01
NH
O.OE+OO
121-14-2
Dinitrotoluene, 2,4-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
606-20-2
Dinitrotoluene, 2,6-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
123-91-1
Dioxane, 1,4-"
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
122-39-4
Diphenylamine*
6.7E+02
9.0E+00
6.7E+02
9.0E+00
NH
O.OE+OO
298-04-4
Disulfoton
5.0E+02
1.2E+01
5.0E+02
1.2E+01
2.5E+03
2.5E+00
115-29-7
Endosulfan
2.2E+02
2.8E+01
2.2E+02
2.8E+01
2.2E+02
2.8E+01
* Knoy
" Co
mze under environmental conditions
miscible; solubility estimated from Henry's Law Constant and Vapor Pressuj
A-38

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Half-Lives and Rales
CAS
Number Chemical Name
Soil
halt-life
(hours)
Soil
Degradation
Rate
(vr-1)
Aqueous
half-life
(hours)
Aqueous
Degradation
Rate
(vr-1)
Hydrolysis
half-life
(hours)
Hydrolysis
rate
(yr-1)
72-20-8 Endrin
NA
NA
NA
NA
NA
NA
106-89-8 Epichlorohydrln
6.7E+02
9.0E+00
6.7E+02
9 0E+00
2.0E+02
3.1E+01
110-80-5 Ethoxyethanol, 2- "
6.7E+02
9.0E+00
6.7E+02
9.0E+00
NH
0 0E+00
141-78-6 Ethyl acetate
1.7E+02
3.6E+01
1.7E+02
3.6E+01
1.8E+04
0.0E+0O
60-29-7 Ethyl ether
NA
NA
NA
NA
NA
NA
97-63-2 Ethyl methacrylate
NA
NA
NA
NA
NA
NA
62-50-0 Ethyl methanesulfonate
7.7E+01
7.9E+01
6.7E+02
9.0E+00
7.7E+01
7.9E+01
100-41-4 Ethylbenzene
2.4E+02
2 5E+01
2.4E+02
2.5E+01
NH
0.0E+00
106-93-4 Ethylene Dibromide
4.3E+03
1.4E+00
4.3E+03
1.4E+00
1.9E+04
0.0E+00
96-45-7 Ethylene thiourea
6.7E+02
9 0E+00
6.7E+02
9.0E+00
Nl
O.OE+OO
206-44-0 Fluoranthene
1.1E+04
5.7E-01
1.1E+04
5.7E-01
NH
O.OE+OO
86-73-7 Fluorene
1.4E+03
4.2E+00
1.4E+03
4.2E+00
NH
0.0E+00
50-00-0 Formaldehyde
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
64-18-6 Formic Acid"
1.7E+02
3 6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
110-00-9 Furan
6.7E+02
9.0E+00
6.7E+02
9 0E+00
NH
O.OE+OO
76-44-8 Heptachlor
1.3E+02
4.7E+01
1 6E+03
3.9E+00
2.3E+01
2.6E+02
1024-57-3 Heptachlor epoxide
1.3E+04
4.6E-01
1.3E+04
4.6E-01
Nl
0 0E+00
87-68-3 Hexachloro-1,3-butadiene
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
118-74-1 Hexachlorobenzene
5.0E+04
1.2E-01
5.0E+04
1.2E-01
Nl
O.OE+OO
319-84-6 Hexachlorocyclohexane, alpha- (alpha
3.2E+03
1.9E+00
3.2E+03
1 9E+00
5 0E+03
1 2E+00
319-85-7 Hexachlorocyclohexane, beta- (beta-B
3.0E+03
2.0E+00
3.0E+03
2.0E+00
5.0E+03
1.2E+00
58-89-9 Hexachlorocyclohexane, gamma- (Lin>
5.8E+03
1.1E+00
9.9E+03
6.1E-01
5.0E+03
1.2E+00
77-47-4 Hexachlorocydopentadiene
6.7E+02
9.0E+00
6.7E+02
9.0E+00
1.7E+02
3.5E+01
67-72-1 Hexachloroethane
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
O.OE+OO
70-30-4 Hexachlorophene*
7.9E+03
7.7E-01
7.9E+03
7.7E-01
ND
NA
193-39-5 lndeno(1,2,3-cd) pyrene
1.8E+04
3.5E-01
1.8E+04
3.5E-01
NH
O.OE+OO
78-83-1 Isobutyl alcohol
1.7E+02
3.5E+01
1.7E+02
3.5E+01
NH
O.OE+OO
7B-59-1 Isophorone
6.7E+02
9 0E+00
6.7E+02
9.0E+00
ND
NA
143-50-0 Kepone
1.7E+04
3 5E-01
1.7E+04
3.5E-01
NH
O.OE+OO
' Known to ionize under environmental conditions
" Completely miscible; solubility estimated from Henry's Law Constant and Vapor Pressure.
A-39

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Half-Lives and Rates
CAS
Number Chemical Name
Soil
half-life
(hours)
Soil
Degradation
Rate
(vr-1)
Aqueous
half-life
(hours)
Aqueous
Degradation
Rate
(vr-1)
Hydrolysis
half-life
(hours)
Hydrolysis
rate
(yr-1)
7439-92-1 Lead
Metal
0.0E+00
Metal
0.0E+00
Metal
O.OE+OO
7439-97-6 Mercury
Metal
0.0E+00
Metal
0.0E+00
Metal
0.0E+00
126-98-7 Methacrylonitrile
NA
NA
NA
NA
NA
NA
67-56-1 Methanol
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
72-43-5 Methoxychlor
8.8E+03
6.9E-01
8.8E+03
6.9E-01
9.2E+03
O.OE+OO
74-83-9 Methyl bromide (Bromomethane)
6.7E+02
9 0E+00
6.7E+02
9.0E+00
9.1E+02
6.7E+00
74-87-3 Methyl chloride (Chloromethane)
6.7E+02
9.0E+00
6.7E+02
9.0E+00
7.0E+03
8.7E-01
78-93-3 Methyl ethyl ketone
1.7E+02
3.6E+01
1.7E+02
3.6E+01
> 50 years
0.0E+00
108-10-1 Methyl isobutyl ketone
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
O.OE+OO
80r62-6 Methyl methacrytate
6.7E+02
9.0E+00
6.7E+02
9.0E+00
3.5E+04
0.0E+00
298-00-0 Methyl parathion
8.6E+03
7.0E-01
1.7E+03
3.6E+00
1.7E+03
3.5E+00
56-49-5 Methylcholanthrene, 3-
3.4E+04
1.8E-01
3.4E+04
1 8E-01
NH
O.OE+OO
74-95-3 Methylene bromide
6.7E+02
9.0E+00
6.7E+02
9.0E+00
1.6E+06
0.0E+00
75-09-2 Methylene chloride
6.7E+02
9.0E+00
6.7E+02
9.0E+00
6.2E+06
0.0E+00
7439-96-7 Molybdenum
Metal
0.0E+00
Metal
O.OE+OO
Metal
0.0E+00
621-64-7 N-Nitrosodi-n-propylamine
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
O.OE+OO
86-30-6 N-Nitrosodlphenytamlne
8.2E+02
7.4E+00
8.2E+02
7.4E+00
ND
NA
100-75-4 N-Nitrosopiperidlne
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
O.OE+OO
930-55-2 N-Nitrosopyrrolidlne
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
O.OE+OO
91-20-3 Naphthalene
1.2E+03
5.3E+00
4.8E+02
1.3E+01
NH
O.OE+OO
91-59-8 Naphthylamine"
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
7440-02-0 Nickel
Metal
0.0E+00
Metal
0.0E+00
Metal
O.OE+OO
98-95-3 Nitrobenzene
4.7E+03
1.3E+00
4.7E+03
1.3E+00
NH
O.OE+OO
79-46-9 Nitropropane, 2- *
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
924-16-3 Nitrosodi-n-butylamine
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
OOE+OO
55-18-5 Nitrosodiethylamine
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
O.OE+OO
62-75-9 Nitrosodlmethylamlne
4.3E+03
1.4E+00
4.3E+03
1.4E+00
Nl
O.OE+OO
10595-95-6 Nitrosomethylelhylamine
NA
NA
NA
NA
NA
NA
152-16-9 Octamethylpyrophosphoramlde
NA
NA
NA
NA
NA
NA
Knc
• O
jnize under environmental conditions
miscible; solubility estimated from Henry's Law Constant and Vapor Pressi	A-40

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Half-Lives and Rates
CAS
Number Chemical Name
Soil
halt-life
(hours)
Soil
Degradation
Rate
(VM)
Aqueous
half-life
(hours)
Aqueous
Degradation
Rate
(vr-D
Hydrolysis
half-life
(hours)
Hydrolysis
rate
(vr-D
56-38-2 Parathion
NA
NA
NA
NA
NA
NA
608-93-5 Pentachlorobenzene
8.3E+03
7.3E-01
8.3E+03
7.3E-01
>879 years
0.0E+00
82'68-8 Pentachloronitrobenzene (PCNB)
1.7E+04
3.6E-01
1.7E+04
3.6E-01
1.3E+04
O.OE+OO
87-86-5 Pentachlorophenol*
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
108-95-2 Phenol
2.4E+02
2.5E+01
8.4E+01
7.2E+01
NH
0.0E+00
62-38-4 Phenyl mercunc acetate
NA
NA
NA
NA
NA
NA
108-45-2 Phenytenediamine, m- *
6.7E+02
9.0E+00
6.7E+02
9.0E+00
ND
NA
298-02-2 Phorate
8.6E+03
7.0E-01
1.7E+03
3.6E+00
1.7E+03
3.5E+00
1336-36-3 Polychlonnated blphenyls
NA
NA
NA
NA
NA
NA
23950-58-5 Pronamide
NA
NA
NA
NA
NA
NA
129-00-0 Pyrene
4.6E+04
1.3E-01
4.6E+04
1.3E-01
NH
0.0E+00
110-86-1 Pyndine"
1.7E+02
3.6E+01
1.7E+02
3.6E+01
NH
0.0E+00
94-59-7 Salrole
6.7E+02
9.0E+00
6.7E+02
9.0E+00
Nl
OOE+OO
7782-49-2 Selenium
Metal
O.OE+OO
Metal
0.0E+00
Metal
0 0E+00
7440-22-4 Silver
Metal
0.0E+00
Metal
0.0E+00
Metal
O.OE+OO
57-24-9 Strychnine*
6.7E+02
9.0E+00
6.7E+02
9.0E+00
ND
NA
100-42-5 Stryene
6.7E+02
9.0E+00
6.7E+02
9.0E+00
NH
O.OE+OO
1746-01-6 TCDD, 2,3,7,8-
1.4E+04
4.3E-01
1.4E+04
4.3E-01
NH
O.OE+OO
95-94-3 Tetrachlorobenzene, 1.2.4,5-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
>879 years
O.OE+OO
630-20-6 Tetrachloroelhane, 1,1,1,2-
1.6E+03
3.8E+00
6.7E+02
9.0E+00
1.6E+03
3.8E+00
79-34-5 Tetrachloroethane, 1.1,2,2-
1.1E+03
5.7E+00
4.3E+03
1.4E+00
1.1E+03
5.7E+00
127-18-4 Tetrachloroethylene
8.6E+03
7.0E-01
8.6E+03
7.0E-01
NH
0 0E+00
58-90-2 Tetrachlorophenol, 2,3,4,6-
4.3E+03
1.4E+00
4.0E+03
1.5E+00
NH
O.OE+OO
3689-24-5 Tetraethyldithiopyrophosphate
NA
NA
NA
NA
NA
NA
7440-28-0 Thallium (I)
Metal
O.OE+OO
Metal
O.OE+OO
Metal
O.OE+OO
108-88-3 Toluene
5.3E+02
1.1E+01
5.3E+02
1.1E+01
NH
O.OE+OO
95-80-7 Toluenediamine, 2,4-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
95-53-4 Toluidme, o- *
1.7E+02
3.6E+01
1 7E+02
3.6E+01
NH
O.OE+OO
106-49-0 Toluidine, p- *
NA
NA
NA
NA
NA
NA
" Known to lonl/e under environmental conditions
"• Completely mlscible, solubility estimated from Henry's Law Constant and Vapor Pressure.
A-41

-------
Table A-6. Degradation Half-Life and Rate Data for HWIR Chemicals
Degradation Half-Lives and Rates
- ~\
- ^ Xj
\rs
V




Soil

Aqueous




Soil
Degradation
Aqueous
Degradation
Hydrolysis
Hydrolysis
CAS

half-lite
Rate
half-life
Rate
half-life
rate
Number Chemical Name
(hours)
(vr-1)
(hours)
(vr-1)
(hours)
(vr-1)
8001-35-2
Toxaphene
NA
NA
NA
NA
NA
NA
76-13-1
Trichloro-1,2,2-trifluoroethane, 1,1,2-
8.6E+03
7.0E-01
8.6E+03
7.0E-01
ND
NA
120-82-1
Trichlorobenzene, 1,2,4-
4.3E+03
1.4E+00
4.3E+03
1.4E+00
3.0E+04
O.OE+OO
71-55-6
Trichloroethane, 1,1,1-
6.6E+03
9.3E-01
6.6E+03
9.3E-01
Nl
0.0E+00
79-00-5
Tnchloroethane, 1,1,2-
8.8E+03
6.9E-01
8.8E+03
6.9E-01
3.3E+05
0.0E+00
79-01-6
Tnchloroethylene
8.6E+03
7.0E-01
8.6E+03
7.0E-01
7.7E+03
7.9E-01
75-69-4
T richlorofluoromethane
8.6E+03
7.0E-01
8.6E+03
7.0E-01
ND
NA
95-95-4
Trichlorophenol, 2,4,5-
1.7E+04
3.7E-01
1.7E+04
3.7E-01
>8E+6 years
O.OE+OO
88-06-2
Tnchlorophenol, 2,4,6-
1.7E+03
3.6E+00
1.7E+03
3.6E+00
>8E+6 years
0.0E+00
93-76 5
Trtchlorophenoxyacetic acid, 2,4,5- (2
4.8E+02
1.3E+01
4.8E+02
1.3E+01
Nl
0.0E+00
93-72-1
Trichlorophenoxypropionic acid, 2,4,5-
NA
NA
NA
NA
NA
NA
96-18-4
T nchloropropane, 1,2,3-
8.6E+03
7.0E-01
8.6E+03
7 0E-01
3.9E+05
0.0E+00
99-35-4
Trinitrobenzene, sym-
NA
NA
NA
NA
NA
NA
126-72-7
Tns (2,3-dibromopropyl) phosphate
1.7E+02
3.6E+01
1.7E+02
3.6E+01
ND
NA
7440-62-2
Vanadium
Metal
O.OE+OO
Metal
0.0E+00
Metal
O.OE+OO
75-01-4
Vinyl chloride
4.3E+03
1.4E+00
4.3E+03
1.4E+00
NH
O.OE+OO
1330-20-7
Xylenes (total)
6.7E+02
9.0E+00
6.7E+02
9.0E+00
NH
O.OE+OO
7440-66-6
Zinc
Metal
O.OE+OO
Metal
O.OE+OO
Metal
O.OE+OO
= "D
Ms
Ol
CO =
Oi
r>
So
o
" Knowr ze under environmental conditions
" Corr'	nscible; solubility estimated from Henry's Law Constant and Vapor Pressur^
\-42

-------