WASTE SOURCE AND WATER QUALITY STUDIES
MOBILE RIVER AND TRIBUTARIES
MOBILE, ALABAMA
EPA-904/9-74-005
February 1974
Environmental Protection Agency
Surveillance and Analysis Division
Athens, Georgio

-------
APPENDIX D
EXCERPTS FROM ALABAMA WATER QUALITY CRITERIA

-------
APPENDIX D
EXCERPTS FROM ALABAMA WATER QUALITY CRITERIA
Fish and Wildlife
Best Usage of Waters: Fishing, propagation of fish,
aquatic life and wildlife and any other usage except for
swimming and water-contact sports or as a source of water
supply for drinking or food - processing purposes.
Conditions Related to Best Usage: The waters will be
suitable for fish, aquatic life and wildlife propagation.
The quality of salt and estuarine waters to which this
classification is assigned will also be suitable for the
propagation of shrimp and crabs.
Items	Specifications
1.	Sewage, industrial wastes or None which are not effectively
other wastes	treated in accordance with
Section VI of these criteria.
2.	pH	Sewage, industrial wastes or other
wastes shall not cause the pH to
deviate more than one unit from the
normal or natural pH nor be less than
6.0 nor greater than 8.5. For salt
waters and estuarine waters to which
this classification is assigned,
wastes as herein described shall not
cause the pH to deviate more than one
unit from the normal or natural pH nor
be less than 6.5 nor greater than 8.5.
3.	Temperature	The maximum temperature rise above
natural temperatures before the addition of
artificial heat shall not exceed 5F in
streams, lakes, and reservoirs nor shall
the maximum water temperature exceed
90F, except that in the Tennessee River
Basin and portions of the Tallapoosa
River Basin which have been designated
by the Alabama Department of Conservation
as supporting smallmouth bass, sauger, and
walleye, the temperature shall not exceed
86F. In lakes and reservoirs, there
shall be no withdrawals from or discharge
of heated waters to the hypolimnion
unless it can be shown that such discharge
D-l

-------
3. Temperature (continued)
4. Dissolved Oxygen
will be beneficial to water quality. In
all waters the normal daily and seasonal
temperature variations that were present
before the addition of artificial heat
shall be maintained.
The discharge of any heated wastes
into any coastal or estuarine waters
shall not raise water temperatures more
than 4F above natural during the
period October through May nor more than
1.5F above natural for the months June
through September. There shall be no
thermal block to the migration of
aquatic organisms.
In the application of temperature criteria
referred to above, temperature shall be
measured at a depth of 5 feet in wateirs
10 feet or greater in depth; and for
those waters less than 10 feet in depth,
temperature criteria will be applied at
mid-depth.
For a diversified warm water biota,
including game fish, daily dissolved oxygen
concentrations shall not be less than
5 mg/1 at all times, except under
extreme conditions due to natural causes
it may range between 5 mg/1 and 4 mg/1 ,
provided that the water quality is favorable
in all other parameters. The normal
seasonal and daily fluctuations shall
be maintained above these levels. In
no event shall the dissolved oxygen
level be less than 4 mg/1 due to discharges
from existing impoundments. All new
impoundments shall be designed so th^t
the discharge will contain at least 5 mg/1
dissolved oxygen where practicable and
technologically possible. The Environ-
mental Protection Agency in cooperation
with the State of Alabama and parties
responsible for impoundments, shall
develop a program to improve the design of
existing facilities.
In coastal waters surface dissolved
oxygen concentrations shall not be less
than 5 mg/1 except where natural
phenomena cause the value to be depressed.
D-2

-------
Dissolved Oxygen (continued)
Toxic substances
attributable to sewage,
industrial wastes, or
other wastes.
Taste, odor and color
producing substances
attributable to sewage,
industrial waste, and
other wastes
In estuaries and tidal tributaries
dissolved oxygen concentrations shall not
be less than 5 mg/1 except in dystrophic
waters or where natural conditions cause
the value to be depressed.
Only such amounts, whether alone or in
combination with other substances as will
not be injurious to fish and aquatic life
including shrimp and crabs in estuarine
and salt waters or adversely affect the
propagation thereof; impair the
palatability or marketability of fish
and wildlife or shrimp and crabs in
estuarine and salt waters; unreasonably
affect the aesthetic value of waters for
any use under this classification.
Only such amounts, whether alone or in
combination with other substances as will
not be injurious to fish and aquatic life
including shrimp and crabs in estuarine
and salt waters or adversely affect the
propagation thereof; impair the
palatability or marketability of fish
and wildlife or shrimp and crabs in
estuarine and salt waters; unreasonably
affect the aesthetic value of waters for
any use under this classification.
Bacteria
Bacteria of the fecal coliform group
shall not exceed a geometric mean of
1,000/100 ml on a monthly average value;
nor exceed a maximum of 2,000/100 ml
in any sample.
Radioactivity
The geometric mean shall be calculated
from no less than five samples collected
at a given station over a 30-day period
at intervals not less than 24 hours.
The membrane filter counting procedure
will be preferred, but the multiple
tube technique (five-tube) is acceptable.
The concentrations of radioactive
materials present shall not exceed the
radiation protection guides recommended
by the Criteria and Standards Division,
Office of Radiation Protection, EPA
(formerly Federal Radiation Council).
D-3

-------
9. Turbidity	There shall be no turbidity of other
than natural origin that will cause
substantial visible contrast with the
natural appearance of waters or inter-
fere with any beneficial uses which they
serve. Furthermore, in no case shall
turbidity exceed 50 Jackson units above
background. Background will be
interpreted as the natural condition
of the receiving waters without the influence
of manmade or man induced causes. Turbidity
levels caused by natural runoff will be
included in establishing background levels.
Agricultural and Industrial Water Supply
Best Usage of Waters: Agricultural irrigation, livestock
watering, industrial cooling and process water supplies, fish
survival and any other usage, except fishing, bathing recreational
activities including water-contact sports or as source of water
supply for drinking or food-processing purposes.
Conditions Related to Best Usage: The waters, except for
natural impurities which may be present therein, will be suitable
for agricultural irrigation, and livestock watering, industrial
cooling waters and fish survival. The waters will be usable after
special treatment, as may be needed under each particular circumstance,
for industrial process water supplies. The waters will also be
suitable for other uses for which waters of lower quality will be
satisfactory.
Items	Specifications
1.	Sewage, industrial wastes or None which are not effectively
other wastes..	treated or controlled in accordance
with Section VI of these criteria.
2.	pH	Sewage, industrial waste or other
wastes shall not cause the pH to
deviate more than one unit from the
normal or natural pH nor be less
than 6.0 nor greater than 8.5.
3.	Temperature	The maximum temperature rise above
natural temperatures before the
addition of artificial heat shall not
exceed 5F in streams, lakes, and
reservoirs nor shall the maximum water
temperature exceed 90F, except that in
the Tennessee River Basin and portions of
D-4

-------
3. Temperature (continued)
4. Dissolved Oxygen
5. Color, odor and taste
producing substances, toxic
substances, and other
deleterious substances,
including chemical compounds,
attributable to sewage,
industrial wastes and
other wastes.
the Tallapoosa River Basin which have
been designated by the Alabama Department
of Conservation as supporting smallmouth
bass, sauger, and walleye, the temperature
shall not exceed 86F. In lakes and
reservoirs, there shall be no with-
drawals from or discharge of heated
waters to the hypolimnion unless it
can be shown that such discharge will
be beneficial to water quality. In all
waters the normal daily and seasonal
temperature variations that were present
before the addition of artificial heat
shall be maintained.
The discharge of any heated wastes into
any coastal or estuarine waters shall
not raise water temperatures more than
4F above natural during the period
October through May nor more than 1.5F
above natural for the months June through
September. There shall be no thermal
block to the migration of aquatic
organisms.
In the application of temperature
criteria referred to above, temperature
shall be measured at a depth of 5 feet in
waters 10 feet or greater in depth; and
for those waters less than 10 feet in
depth temperature criteria will be applied
at mid-depth.
Sewage, industrial waste or other wastes
shall not cause the dissolved oxygen to
be less than 2.0 parts per million as
measured at a depth of five feet in waters
ten feet or greater in depth and at mid-depth
in waters less than ten feet in depth.
Only such amounts as will not
render the waters unsuitable for
agricultural irrigation, livestock
watering, industrial cooling,
industrial process water supply
purposes and fish survival.
D-5

-------
6. Radioactivity
7. Turbidity
The concentrations of radioactive
materials present shall not exceed
the radiation protection guides
recommended by the Criteria and
Standards Division, Office of
Radiation Protection, EPA (formerly
Federal Radiation Council).
There shall be no turbidity of
other than natural origin that will
cause substantial visible contrast
with the natural appearance of waters
or interfere with any beneficial uses
which they serve. Furthermore, in no
case shall turbidity exceed 50 Jackson
units above background. Background
will be interpreted as the natural
condition of the receiving waters
without the influence of manmade or
man induced causes. Turbidity levels
caused by natural runoff will be
included in establishing background
levels.
D-6

-------
Navigation
Best Usage of Waters: Navigation
Conditions Related to Best Usage: Waters will be of a quality
suitable for navigation and any other uses except agricultural
irrigation, livestock watering, industrial cooling, industrial
process, water supply, fish and wildlife propagation, recreational
activities including swimming and skiing, or source of water supply
for drinking or food-processing purposes.
1.
Items
Sewage, industrial wastes
or other wastes.
Specifications
None which are not effectively treated
or controlled to the best practicable
degree.
2. pH
Sewage, industrial wastes or other
wastes shall not cause the normal
or natural pH to be lower than 5.0
nor greater than 9.5.
3. Dissolved oxygen
Sufficient to prevent the development
of an offensive condition.
4. Odor producing substances
Only in such amounts as will not
create an offensive condition.
5. Radioactivity
The concentrations of radioactive materials
present shall not exceed the radiation
protection guides recommended by the
Criteria and Standards Division, Office
of Radiation Protection, EPA (formerly
Federal Radiation Council).
6. Turbidity
There shall be no turbidity of other
than natural origin that will cause
substantial visible contrast with
the natural appearance of waters of
interfere with any beneficial uses
which they serve. Furthermore, in
no case shall turbidity exceed 50
Jackson units above background.
Background will be interpreted as
the natural condition of the receiving
waters without the influence of manmade
or man induced causes. Turbidity
levels caused by natural runoff will
be included in establishing
background levels.
D-7

-------
APPENDIX E
WASTE SOURCE DATA

-------
APPENDIX E-I
MUNICIPAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES

-------
APPENDIX E-I
MUNICIPAL WASTE SOURCE DATA
MOdlLE RIVER AND TRIBUTARIES
agency
1113S000
primary
S T A T I UN SECONDARY
STATION LOCATION

STATE
MINOR
BASIN

0
15540
C-EFF
Chickasaw cr-chick.
LAGOON EFF
ALABAMA
MOBILE
RIVER
BASIN
u
lbbJO
C-INF
CHICKASAW CR-CHICK.
LAGOON INF
ALAdAMA
MOBILE
RIVER
BASIN
0
lbbbO
tM-EFF
11GHTmile cr stp eff
-PRITCHARU
ALAdAMA
MOBILE
RIVER
BASIN
0
1 bb5U
EM-INF
EIGhTMILE CR SIP INF
-PRITCHARU
ALAbAMA
MOBILE
RIVER
BASIN
u
lbbOU
GS-EFF
T HRt EM ILE CR-GROVER
ST. STP EFF
ALABAMA
MOBILE
RIVER
BASIN
1)
lb4'=iu
OS-INF
THREEMILE cr-gruver
ST. STP INF
ALAdAMA
MOBILE
RIVER
BASIN
u
1
mi-eff
MOb1LE BAY-MCUUF FIE
IS. STP EFF
ALABAMA
MOBILE
RIVER
BASIN
0
lb<70
MI - INF
MOMILE BAY-MCDUFFIE
IS. STP INF
ALABAMA
MOBILE
RIVER
BASIN
0
1 bb20
TM-EFF
SPRING HR-THRtEMILE
CK STP EFF
ALAbAMA
MOBILE
RIVER
BASIN
u
lbblO
T M-INF
SPRlNb dR-THRtEMILE
CK STP INF
ALABAMA
MOBILE
RIVER
BASIN

-------
APPENDIX E-I
MUNICIPAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
PARAMETER
DESCRIPTION

00010
TEMPERATURE ~ WATER (DEGREES CENTIGRADE)

00310
BIOCHEMICAL OXYGEN DEMAND (MG/L. 5 DAY -
20DEG C)
00340
CHEMICAL OXYGEN DEMAND. .25N i\2CR207 (MG/L)
00400
Pi-t (STANDARD UNITS)

0 04 U 3
Ph (STANDARD UNITS) LAB

00410
ALKALINITY. TOTAL (MG/L AS CAC03)

00435
ACIDITY. TOTAL (MG/L AS CAC03)

00500
RESIDUE. TOTAL (MG/L)

00505
RESIDUE. TOTAL VOLATILE (MG/L)

00515
RESIDUE. TOTAL FILTRAbLE (DRIED AT 10iC)
.MG/L
00520
RESIDUE. VOLATILE FILTRABLE (MG/L)

00t>30
RESIDUE. TOTAL NONFILTRABLE (MG/L)

005 35
RESIDUE. VOLATILE NONFILTRABLE (MG/L)

00545
RESIDUE. SETTLEABLE (ML/L)

00610
NITRObFN. AMMONIA. TOTAL (MG/L AS N)

00630
NITRITE PLUS NITRATE. TOTAL 1 DET. (MG/L
AS N)
00635
NITROGEN. AMMONIAi.ORG.. TOTAL 1 DET (MG/L
AS N)
00665
PHOSPHORUS. TOTAL (MG/L AS P)

00680
CARBON, TOTAL ORGANIC (MG/L Ai> C)

009*0
chloride (mg/l as cl>

31505
COLIFORM.TOT.MPN.CONFIRMEU TEST 35C (TUBE
31506)
31615
FECAL COLIFORM.MPN.EC MED4<+ . 5C (TUBE 316
14)
50050
flow in conduit or thru a treatment plant
(MGD)
50051
Flow nATE INSTANTANEOUS (MGU)

50060
chlorine, total residual img/d

0 0b5U
OIL 6. GREASE (SOXHLET EXTRACTION) TOTAL.REC..MG/L
00720
CYANIDE. TOTAL (MG/L AS CN)

010 2 7
CADMIUM, TOTAL (UG/L AS CD)

0 1 034
CHROMIUM. TOTAL (UG/L AS CR)

0104^
COPPER, TOTAL (UG/L AS CU)

01051
LtAD, TOTAL (UG/L AS PB)

01067
NICKEL, TOTAL (UG/L AS NI)

0 1 092
LINC, TOTAL (UG/L AS ZN)

327?u
PnENOLICS. TOTAL. RECOVERABLE (UG/L)

/lSiOO
MERCUnY. TOTAL (UG/L AS HG)


-------
APPENDIX E-I




MUNICIPAL WASTE SOURCE
DATA







MOBILE RIVER
AND TRIBUTARIES



STATION - c-
INF

CHICKASAW
CR-ChICiv. LAGOON INF MOBILE RIVER
BASIN
MOBILE
STUDY



0 0 0 1 0
00310
003*0
00*00
00*03
00*10
00*3b



WATER
BOD
COU
PH
LAB
T ALK
T ACDITY



TE IP
5 DAY
HI LEVEL

PH
CAC03
CAC03
DATE TIME
date
TIME
CENT
MG/L
MG/L
SU
SU
MG/L
MG/L

7 30b 18
11*0
^5.0


6.7




730618
1**0
?*.b


b.2




730618
lBlO
2*.5


6. b




730619
0810
2*.0


7.*



730618 1000
(C)730619
1000

1*0.0
721

6.3
86
300

730619
1100
25.5


7.5




730619
1*10
b . 5


6.7




730620
1 0*5
2*. 5


6.0



7 3 Oo19 llOO
(C)7306^0
1100

137.0
7*3

6.5
85
30
7 3 0 o 1 b









MUMrtt"


7
2
2
7
2
2
2
MAX I Mi .M


2b. 5
1*0.0
7*3
7 . b
6.5
86
300
MINI MUM


2* . 0
137.0
721
6.0
6.3
85
30
LOG MEAN


2*.8
1 38  b
732
6.7
6 . *
85
95
730620












00^00
OObOb
0 Ob 1 b
00520
00530
00535
005*5



RESIDUE
KtSlOUE
RESIDUE
RESIDUE
RESIDUE
RESIDUE
RESIDUE



total
TOT VOL
UlSS-lOb
VOL FLT
TOT NFLT
VOL NFLT
SETTLBLE
IJATE TIME
Oa TE
T 1 ME
MG/L
MG/L
C MG/L
MG/L
MG/L
MG/L
ML/L
7 306 18 1O00
(C)730619
1000
878
6*7
*0*
233
*7*
* 1 4
7.0
730619 1100
(C)730620
1 100
319
1*2
lba
0
161
1*2
5.0
730618









NU'lrjErV


.
2
2
2
2
2
2
^ A X I lllJM


878
6*7
*0*
233
* 7 *
*1*
7.0
i'INIMUM


314
1*2
158
0
161
1*2
5.0
1.0G I'll. AN


529
303
^b3
0
276
2*2
b . 9
730:d20












00610
00630
0063b
00665
00680
009*0
50050



NH3-N
N02&N03
NH3t.ORG
PHOS-TOT
T ORG C
CHLORIDE
CONOUIT



TOTAL
N-TOT AL
N-TOTAL

C
CL
FLOW
DATl TIME
DATE
T I ME
Mb/L
MG/L
MO/L
MG/L P
MG/L
MG/L
MGO
/ 30o18 1000
(C)730619
1000
*.90
0.02
9.60
9.00
81.0
39.0
0 .860
7 3 0 o 1 9 1100
(C)730620
1 100
11.00
0.01\
11.80
8.00
38. 0
3*. 0
0 .860
730 n18












2
2
2
2
2
2
2
MAX IMUM


11.00
0. 02
11.80
9.00
81.0
39.0
0.860
M I N I MUM


*.90
0.01*
9.60
8.00
38.0
3*.U
0.860
LOG MEAN


7.3*
0 . 0 1
10.6*
8 . *9
Db . 3
36.*
0.860
730o20

-------
APPEND IX E-1




MUNICIPAL WASTE
SOURCE DATA








MOBILE
RIVER AND
TRIBUTARIES




STATION - C-
EFF

CHICKASAW
CR-CHICK. LAGOON EFF
MOBILE RIVER
BASIN
MOBILE
STUDY




0001 0
00310
00340
00400
00403
00410
00435
00500



WATER
bOD
COD
PH
LAB
T ALK
T ACDITY
RESIDUE



TEMP
b DAY
HI LEVEL

PH
CAC03
CAC03
TOTAL
DuTh TIME
DA Tt
T I ME
CENT
MG/L
MG/L
SU
SU
MG/L
MG/L
MG/L

7 30618
1 0 30
30.0


8.7





730618
1430
33.5


9.9





730618
1 80 0
33.0


10.3





730619
0800
29. 0


9.9




730618 1030
(C)730619
10 30

12.0
163

9.5
4b
0
238

730619
1 loO
29.b


8.6





/3 0619
1400
31.0


9.1





730620
1030
28.0


7.1




730019 1100
(C)t30620
1100

16.0
79

9.8
51
0

73 o 61 a










NUMnEW


7
2
2
7
2
2
2
2
MAX I MUM


33.5
16.0
163
10.3
9.8
51
0
238
MINIMJM


28.0
12.0
79*
7.1
9.5
4b
0
222
LOG MEAN


30.5
13.9
113
9.0
9.6
48
0
230
r J0beo










L/a Tt
TIME
ua rt
TIME.
OODUb
RESIDUE
TOT VOL
MG/L
OOr^lb
RESIDUE
L' I SS- 1 Ot
C MG/L
0 0520
RESIDUE
VOL FLT
MG/L
00b30
RESIDUE
TOT NFL T
MG/L
00535
RESIDUE
VOL NFLT
MG/L
0054b
RESIDUE
SETTLtJLE
ML/L
00610
NH3-N
TOTAL
MG/L
00630
N02&N03
N-TOTAL
MG/L
7 3 0 o 1 6 1030 10 730619 1030
7 30619 1100 (CWJ0620 110U
86
b9
123
1 09
86
3b
15
33
IK
24
O.bK
0 .5K
4.60
<>.0b
0.01
0.01K
7j'ir>lb
I MlJM
I (M I Mi M
I.OG
7 3 (J otU
2
bb
b9
71
2
189
123
lb2
2
bb
35
bb
2
33
15
22
d
24
IK
5
2
O.bK
0 .bK
O.b
2
. bO
,05
,3 d
d
0.01
0.01K
0.01
u.. Tt
r i me
UaTE
T I Mt
0063b
NriJfcORG
N-TOTAL
MG/L
0 06ob
PHOS-TO T
MG/L P
00680
T ORG C
C
MG/L
00940
CHLORIDE
CL
MG/L
315U5
TOT COL I
MPN CONF
/1U0ML
31615
FEC COL I
MPNECMED
/1OOML
b0050
CONDUIT
FLO*
MGD
7 3 ij 0 1 b
1 0 3iJ




490000
330000

7 3ob18
1 <~ 3i)




1 3000
3300

7 3 o o 1 8
1 8 0 IJ




1 1000
900

73 0619
0800




110000
7400

(C)730619
1 0 3 U
6.0b
<~  60
31.0
34.0


0 . 860
7 30619
1 10 0




54 0 0 0 0
79000

730619
1*00




140000
20000

730620
1030




170000
79000

(C)730620
1 loo
5.0b
1 .'~O
26.0
50 .0


0 .860
7306 18
MU'-I 'tl<
MAX 1 MUM
"! I N I MUM
LOG MEAN
730o20
2
6.0b
5.Ob
b.o3
d
t.bO
1 ,<0
2. 54
d
31 .0
26. 0
d 8.4
2
50.0
34 .0
41.2
7
540000
1 1000
99665
330000
900
19034
2
0.860
0 .860
0 .860

-------
APPfc.NL) I X E- I
MUNICIPAL WASTE SOURCE DATA
MObILE RIVER AND TRIBUTARIES
STAT ION - tM-INF
tIGHTMILE CR SIP INF-PR IFCHARD MOBILE RIVER BASIN
MOBILE STUDY



00010
00310
0 0 340
00400
00403
00410
00435
00500



WATER
BOD
COD
PH
LAB
T ALK
T ACDITY
RESIDUE



IEMP
5 DAY
HI LEVEL

PH
CAC03
CAC03
TOTAL
DaTE TIME
date
T I ME
CENT
MG/L
Mb/L
SU
SU
MG/L
MG/L
MG/L

7 Jo61d
1300
26.0


7.3





7 306 18
164 0
26.5


7.0





7 3Ub19
0740
25.0


7.1




7 JOo1d 130U
(C) 7 30619
1300

135.0
710

7.0
134
32
488

730619
1500
26. 0


6.7




730619 1 SO 0
(C) 7 30b^0
1500

13d.0
3^7

6.9
107
28
442

7 30620
1 b 0 0
2b . 0


6.0




7 J (Jo 1 6










NJM4ER


5
2
2
5
2
2
2
2
MAXIMUM


26.5
13d. 0
710
7.3
7.0
1 34
32
488
minimum


23. 0
135.0
347
6.0
6.9
107
28
442
log mean


25.9
136.5
496
b.d
6.9
120
30
464
7 30*-20













0050^
00515
00520
00530
00535
00545
00610




RESIDUE
RESIDUE
hESIDUE
RES IDUL
RESIDUE
RESIDUE
NH3-N




TOT VOL
DISS-105
VOL FLT
TOT NFL T
VOL NFL T
SETTLBLE
TOTAL

UA Tt TI ME
DA IE
T I ME
Mb/L
C MG/L
MG/L
MG/L
MG/L
ML/L
MG/L

73Ubld 1300
(L)7 306 19
1 300
225
3 1 d
92
1 70
133
5.0
21.70

730619 1300
(C)7306^0
1500
116
350
61
92
55
4.0
16.80

7 3061d










NUMdER


2
2
2
2
2
2
2

MAX I Ml IM


225
350
92
170
133
5.0
21.70

MINIMUM


1 lb
3 1 d
61
92
55
4.0
16.80

LOG Mt '>N


lb2
334
75
125
Bb
4.5
19.09

730t>20













00b30
00b3z>
0 0bb5
006d0
00940
50050
50051




N02S.N03
NH3&ORG
"hOS-Tof
T ORG C
CHLORIDE
CONDUIr
FLOW




N-TOT AL
N-TOTAL

C
CL
FLOW
RATE

DATE TIME
date
T I ME
Mb/L
MG/L
MG/L P
Mb/L
Mb/L
MGD
INST MGD


7 30b 1 8
1 3u0






1.4 70


73061b
1640






2.030


730619
0 7*0






1 .330

730b 1 d 1300
(C)730619
1300
0.1b
21 .30
16.70
94 .0
42.0
1 .340



730619
1 5u 0






2.030

7 3 Ob 19 1500
(C)730620
1500
0.01
lb.bO
10.70
d4 . 0
100.OK
1 .920


7 30 h 1 d










NUMi; E R


2
2
2
2
2
2
4

MUM


0.1b
21.30
1 b . 70
94.0
12.0
1 .920
2.030

MINI MUM


0.01
16.60
10.70
d4 . 0
42. OK
1 .34 0
1 .330

1 OG Mr! AN
7 j r. ^ , i


c
c
*
1 d . d u
13.37
Hd.9
b4 . d
1 .6lit
1.685


-------
MUNICIPAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STftTION - EM
-EFF

EIGHTMILE cr
STP EFF-
PRITCHARD
MOBILE RIVER
BASIN
MOBILE
STUDY





0001 0
00310
00340
00400
00403
00410
00435
00500
00505



WATEk
BOU
COD
PH
LAB
T ALK
T ACUITY
RESIDUE
RESIDUE



TEMP
b DAY
HI LEVEL

PH
CAC03
CAC03
TOTAL
TOT VOL
LmTE TIME
UA r l
T I ME
CENT
Mb/L
MG/L
SU
SU
MG/L
MG/L
MG/L
MG/L

7 3(l'-> 1 8
1310
27.0


6. 7






73(1618
1650
28. 0


7.0






730619
0730
25.0


3.3





7 3Ub1 a 1 J 10
(O 730619
1300

30 . 0
140

4.2
72
21
337
133

730619
1 bOO
27.5


6.9






730620
1 4 4 u
26.5


6.2





7 30 b19 lbOO
(C)730620
loOO

64.0
158

6.9
B4
22
366
160
7 3ub18
(M Uh) t,
';#* inuM
MINI M'jM
LOG MfiN
730b20
b
28. 0
2b.o
2b.8
2
64.0
30.0
43.a
2
lbB
140
149
b
7.0
3.3
5.a
2
6.9
4.2
b . 4
2
84
72
70
2
22
21
21
2
366
337
351
2
160
133
146
DATt
TIME
OA It
T I ME
00515
RESIDUE
uISS-1Oo
C MG/L
0 0 b 2 0
wESIuUE
VOL (-LT
MG/L
0 Ob 3 0
RESIDUE
ruT nflt
Mb/L
00b3b
RESIDUE
VOL NKLT
Mb/L
0 Obtb
RESIDUE
SETTLBLE
ML/L
00610
NH3-N
TOTAL
Mb/L
00630
N02&N03
N-TOTAL
MG/L
00635
NH3tORG
N-TOTAL
MG/L
730618
7 30 b 1 9
1 J10
1 buO
(0730619 lJJU
( C ) 7 JUbdO 1 o(j U
31-
329
110
137
2	3
3	7
23
23
0.5K
0.6
1 b  b 0
13.00
1.10
2.6b
16.bO
14 .ao
7 j()o 1 a
l'4 U '-5  E K
M A A IMi;M
11 1 N I M U .A
LOb 11 u i j
73ufa^0
2
329
314
321
2
137
1 1 0
123
2
37
23
29
i.
23
23
23
2
0.6
0.5*
O.b
2
lb.60
13.00
14.24
2
S. 10
2.6b
3.68
2
16.50
14.80
lb.63
u<. Tl
r i me
0 066^
PHOb-TOT
73(it 1 b
N i )' 5 iKk
r-1 A A I '*11JM
I 1 1NI MUM
LOG ME-N
7 3 0 o d 0
U 0 6 b 0
T l.wij C
L
00940
ChLOkluE
CL
3 1 bo b
ror col I
MPN COUF
31615
FEC COL I
MPNECMED
bOObO
CONUUIT
FLOW
bOOb 1
FLO*
RATE
50060
CHLORINE
TUT RESO
0 4 rt
T 1 ML
MG/L H
Mb/L
MG/L
/1OOML
/1OOML
MbO
INST MGL)
MG/L
7 jub 1 b
1310



1100
200*

1.470
3.0 0
13 o b 1 a
1 DUO



bOO
200*

1 . 330

7 30b1d
1 bbo



1100
200

2.030
3. bO
73Ubl9
0 730



2 0 K
20*

1 .330
30.00
7 311 b 1 9
0930



23 J
50

1 .900
2.00
/ 3 U o 1 9
1 1 Jil



790
bO

1 .540
2.00L
(C)/3Ub19
1300
13.80
*2.0
DM . 0


1 . 34 0


7 3 0 6 19
1 bUO






2. 030
1 .bO
7 3Ub^U
UVJU



24000
<;auo

3.400
2.00
7 3 u 6 d 0
1 1 3 u



79 OU
80

2.200
2.00
7 3 U 6 21)
1 330



3b 0 0 u
1 80 0

2.600
1 . bO
/ JObdO
1 4tU



4900
4bO


1 .bO
(C) / 3Ub^0
1 bOO
1 1 .90
o 1 . 0
38. 0


1 .920




c
2
2
1 u
10
2
10
10


13  a o
61.0
r>8 . 0
35000
2800
1 .920
3.400
30.00L


1 1 .90
42 . J
3b. U
 0 K
2U*
1 . 3 4 u
1 .330
1 .bO


12.81
bO .6
<+b . 9
1533
1 9^
1.604
1 .099


-------
ENDIX E-I
MUNICIPAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATIUN - GS-INF
ThREEMILE CR-GROVER ST. STP INF MOBILE RIVER BASIN
MOBILE STUDY
OaTE
time
DATE
TIME
730618 084b
73u618 1 b35
73u618 1830
73U619 0900
7 30620 0400
7 30 o19 0900 20 0900
730621 084b
7 30620 0900 (CI730621 0900
730621	1330
730622	0800
730621 0900 (0730622 0900
00010
WATER
TEMP
CENT
25.5
26.5
26.b
26.0
25.b
2b.5
27.0
25.5
00310
BOD
b DAY
Mo/L
290.0
185.U
00340
COD
HI LEVEL
MG/L
490
276
442
00400
PH
SU
7.4
7.1
6.9
7 . b
6.5
7.2
9.6
7.0
00403
LAB
PH
SU
7.0
7.2
7.2
00410
T ALK
CAC03
MG/L
158
142
1 70
00435
T ACOITY
CAC03
MG/L
30
19
25
00500
RESIDUE
TOTAL
MG/L
461
452
536
7 30 6 18
NUMrct R
MAX I MUM
M I N I Mi)M
LOG
73U622
8
27.0
25.5
26. 0
2
290.0
185.0
231 .6
3
490
276
391
8
9.6
6.5
7.4
3
7.2
7.0
7.1
3
170
142
156
3
30
19
24
3
536
452
482



0050b
00515
00520
00530
00535
00545
00610



RESIDUE
RES 1 DUE
RESIDUE
RESIDUE
RESIDUE
RESIDUE
NH3-N



TOT VUl
DISS-lOb
VOL FLT
TOT NFLT
VOL NFL T
SETTLBLE
total
DATE TIME
DATE
TIME
MG/L
C MG/L
MG/L
MG/L
MG/L
ML/L
MG/L
730619 0 9 0 0
(C)730620
0900
1 e>2
402
119
59
43
11.0
23.50
7 30b20 0900
(C) 7 306c: 1
0900
207
380
169
72
38
6.0
22.50
730621 0900
(C)730622
0900
196
424
129
112
67
8.0
22.00
730olb









NUMnt K


3
J
3
3
3
3
3
hAX 1 M' iM


207
424
169
1 12
67
11.0
23.50
MINI MUM


162
380
119
59
38
6.0
22.00
LOG MKuN


187
402
137
7 
48
8.1
22.66
730622












00630
00635
00665
00680
00940
50050
50051



N026.N03
NH3&0RG
PHOS-TOT
T ORG C
CHLORIDE
CONDUIT
FLOW



N-TOTAL
N-TOTAL

C
CL
FLOW
RATE
DuTE TIit
DATE
T I ME
MG/L
MG/L
MG/L P
MG/L
MG/L
MGD
INST MGC

730619
0900






1 .500

730620
0900






1 .bOO
7 30o19 0900
(C)730620
0900
0.01*
23.30
O
o
n
115.0
53.0
1 .420


730621
0845






1 .dOO
7 30620 0900
(C)730621
0900
O.OlK
22.00
13.00
75.0
44 .0
1.470


7J0b<-l
1330






1 . f 00

730622
0800






1 .000
7 3 01) 2 1 0900
(C)730622
0900
O.OlK
26.00
12.20

56.0
1 . 340

7 3u t> 1 8









NlJMbEK


J
3
3
2
3
3
5
MA KI MUM


O.OlK
26.00
15.00
115.0
56.0
1 .470
1 .700
MINIMUM


O.OlK
22.00
12.20
75.0
44.0
1 .340
1.000
LOG MEAN


0.01
23.71
13.35
92.9
50. 7
1 .409
1.418
730622

-------
APPENDIX E-I
SI A TI ON - GS-EFF




MUNICIPAL
WASTE SOURCE
DATA








MObiLt' RIVEH AND TRIBUTARIES




i-EFF

THHEEMILE cr
-GROvER
ST. STP EFF
MOBILE RIVER
BASIN
MOBILE
STUDY




0U01 0
0031 0
00340
004U0
00403
0041 0
00435
00500
00505


WATER
ttUU
CUL)
PH
LAH
T ALK
T ACUITY
RESIDUE
RESIDUE


TEMP
o DAY
n 1 LEVEL

PH
CAC03
CAC03
TOTAL
TOT VOL
date
TIME
CENT
MG/L
MG/L
SU
SU
MG/L
MG/L
MG/L
MG/L
73U618
0840
27.0


6.1





7 30b18
lbOO
29.0


6.4





7 306 18
1 840
28.b


6.3





73 Ob 19
0700
26.0


5.5





7 3 Ob 14
0850
26.5


7.3





73 Ob 19
1800
28.0


5.8





7 3 0b2 0
0800
26.0


6.6





730b20
0900
25.b


6.3





((.) 730b20
0 4 0 0

27.0
107

6.8
44
13
380
105
730b20
1730
28.0


5.9





7 3Ubd1
082b
25.5


6.5





(C) 7 30621
0 90 0

33.0
91

6. /
39
16
390
124
7 3u621
131b
28.U


6.6





730621 0900
73(Jbl8
1J U 4 r? E
f AX I m.jM
MINI r-1, ,H
LOG HUM
7 30
UATL
MOO 14
730b^0
730"j21
T I ME
UoiO
09uu
040 0
7 3u ti l a
ni liiatn
.".UK I '-HJM
 i I M I MUf
L UO Mr Am
73 0b^2

-------
APPENDIX E-I
sta rion
GS-EFF
MUNICIPAL WASTE SOURCE DATA
MOtULE RIVER AND TRIBUTARIES
THREEMILE CR-GROVER ST. STP EFF MOBILE RIVER BASIN
MOBILE STUDY
DATE
T I ME
DATE
730618
7 30618
7 3 0618
7 306 18
7 30b18
730618
7 30b19
7JU6I9
7 30619
730b19
7 30b19
730b20
730r>20
730b20
730619 OabO (0730620
730620
7 306^0
73Ob20
7 3 0 b 2 1
7 3 0 b 2 1
7 30b0 0900 (C1730621
7 30b21
730622
730621 0900 (C)730622
T I ME
oa4o
1100
1400
1 600
I 700
1040
0 7 0 0
UO50
1100
1300
1800
0	7u0
OaOO
0900
0900
1	1 00
1 300
1 730
0700
08^5
0900
131b
0o30
0900
00680
T ORG C
C
MG/L
33.0
34.0
00940
CHLORIDE
CL
MG/L
57 . 0
51 .0
62.0
3150b
TOT COL I
MPN conf
/1OOML
200K
230000
7900
200
33000
130000
23000
4900
1300
330
490
2300
80
3161b
FEC COL I
MPNECMED
/10 OML
200K
33000
800
200K
3300
28000
20 0900
(C)730621
0900

20k
bOK
20k
100K
50K
136


7306^1
131b
0.027






5
730621 0900
(C)7 30 6^2
0900

20k
62
d 3
1 00K
bOK
140

7 3 0 b 1 8







3


I'lU 'bER


4
3
3
3
3
3
4
MAX 1 M' M


0.027
20k
b2
2b
1 00K
bOK
19 =
102
MINIMuM


0.001K
20k
bOK
20K
1 O0K
bOK
136
5
LOG Me. AN


0.009
20
bb
23
100
bO
15b
14

-------
APPENDIX E-I




MUNICIPAL WASTE
SOURCE DATA








MOBILE
RIVER AND
TRIBUTARIES




STATION - T
-INH

SPRING BR-
THWEEMILE CK
S TP INF
MOBILE RIVER
BASIN
MOBILE
STUDY




OUU 1 o
00340
0O400
0 0 40 3
004 1 U
00435
00500
OOSoS



W I EH
COD
PH
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE



TEMP
HI LEVEL

PH
CAC03
CAC03
TOTAL
TOT VOL
DATE TIME
OATE
T I ME
CENT
MG/L
su
SU
MG/L
MG/L
MG/L
MG/L

730620
1330
2 7.0

6.4






730622
1300
27.0

6.4





730621 1300
(C)730622
1300

1290

6.7
128
52
832
504

730622
1400
27.b

6 . 5





7j0622 1300
(C)730623
1 300

fbOO

6.8
144
68
1436
1064

7 30624
1300
27.0

6.8





730623 13O0
(C) f30624
1300

I 190

6.6
29
30
826
484
7 30620










NUMBER


4
3
4
3
3
3
3
3
MAX I yijM


27.b
2 SOU
6.0
6.a
144
68
1436
1 064
MINI HUM


2 7.0
1 190
6.4
6.6
29
30
826
4tJ4
LOG Mb AN


27.1
1 b66
6.5
6. 7
81
47
996
638
731b 24













U 0 b 1 b
0 0^2 0
0ob3O
00b3b
00b4b
006 1 0
0 063U




HE SIUOE
WESIDUE
RESIDUE
RESIDUE
residue
NH3-N
N02&N03




DlSS-lOb
VOL flt
I 0T NFLT
VOL NFLT
settlble
TOTAL
N-TOTAL

OfiTt TlMfc.
Liu Jt
T 1 ME
C MG/L
MO/L
MO/L
MG/L
ML/L
MO/L
MG/L

7 3 0 1 1300
(C ) ?30t>!
1 3U0
292
BO
54 0
424
di). u
lb. 50
0.01K

730o22 lJOO
(C ) 73062 3
1 JOO
14 6
0
1 290
1 0b4
18.0
18.bO
0.03

7J0o23 1JO0
(C; 730624
131/0
342
9b
484
389
Id.u
8.50
0.01*

7.10 o d 0










rtUMhtn


J
3
3
3
3
3
3

4b \ J -1< vM


342
9t>
1^90
1 0b<+
20.0
18.50
0.03

m I N 1 r-11J M


1 4 b
0
464
3t)9
18.0
8.50
0.01K

log mean


244
0
096
bb 0
18.6
13.46
0.01

7 Jil'jii













0 0 b 3b
00b6b
0 064 0
009f0
D U 0 b 0
do 051
7 1900




NH3SORG
hhos-to r
r org c
CHLORIDE
CUNUUi T
KLOw
MERCUR r




N-TGT AL

c
CL
FLO*
RATE
Hb * TOTAL

IJA I t: TIME
DATE
I I ME
MO/L
M(j/L P
MO/L
MG/L
MbD
INST MGD
UG/L


/3Ub^l)
1 3 30





8 . 8 0 0



7 J0622
1 30 0





9 . 0 0 0
0.2K

7 30O2 1 130 0
(C)730622
1 300
18.90
1290.00
404.0
b<. 0
b. 7 0 0




7 30odd
1-+O0





6.000


7 3 0b22 13O0
(C) 730b23
1 3 JO
2o . 00
2r>00 . 00
3ob  0
6 / . 0
6.000



7 30623 1 3o0
( C ) 7 3 0 b d 4
1300
10.60
I 190.00
3d5 . 0
42.0
6.000



730i<;()










NU'-'HdR


3
3
3
3
3
3
1

f'lrtX I MuH


20.00
daOO.OO
404.0
67.0
b. roo
9.000


MINI M, ;M


1 U . bO
1190.00
3ab  0
4 2.0
6.000
6.000


LOG MEAN


17.33
1 bob.b4
3 7li.t>
bb . d
o  22b
7 . 81) 4


7 JOoii











-------
APPENDIX E-I
MUNICIPAL rfASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
ST A T1 ON - Tn-EFF	SPRING dR-THREtMILE CK STP EFF MOBILE RIVER tJASIN	MOBILE STUDY



oooio
00340
00400
00403
004 1 0
0043b
OObOO
OObOb



w A 1 ER
Cud
PH
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE



1 tMP
Hi LEVEL

PH
CAC03
CAC03
TOTAL
TOT VOL
date riME
oa rt
T 1 ME
CtNT"
MG/L
SU
SU
Mb/L
MG/L
MG/L
MG/L

r jub
Id
12
()  b
id. 12
0.1b

7 3:iodl*













0 0b 3b
Olibbb
OObbO
00940
3 1 50b
3161b
bOObO




Nri3-.ORG
PmOS-roI
f ORG C
CHLORIDE
TOT COL I
FtC COL I
CONDUIt




'i- ru r al

c
CL
MPN CONF
MPNtC'iED
FLO*

D ' T r_ II r-' t
Uu 1 L
T 1 ME
Mb/L
MG/L P
MG/L
MG/L
/1OOML
/1OOML
MbD


7 3Ub''U
1 * o o




24 0 0 0 OL
24UOOOL



7 3UbdU
1 /'do




24 u 0 0 OL
24U000L



7 30b21
ObOO




d30 00
1400



7 30bdl
1 OOO




130000
1700



7 3ub2 1
1 <:uo




2 3000
790 0



730621
1 ^00




b4 0 0 0 0 0
*40000



7 J U h dd
0 /uo




23000
rt 0 0



-------
APPENDIX E-I




MUNICIPAL WASTE
SOURCE DATA







MOBILE
RIVER AND
TRIBUTARIES



STaTION - T-
-tFE

SPRING BR-
ThREEMILE ck
STP EFK
MOBILE RIVER
BaSIN
MOBILE
STUDY



00635
00665
OObbO
00940
31505
31615
5005O



NHj\OR6
PHOS-ToT
T ORG C
CHLORIDE
TOT COL I
FEC COL I
CONDUIT



N-TOTAL

C
CL
MPN CONF
MPNECMED
FLOW
L)i. T t T I tit
UaTE
TIMt
MG/L
MG/L P
MG/L
MG/L
/1OOML
/1OOML
MGU

7 30622
0900




13000
500


730622
1 100




230000
13000


730622
1300




230000
23000

7 3 0 b21 130 0
(C) 730b22
1300
lb.4o
b.00
30.0
4S . 0


6.700

7 3 0 b 2 3
0 700




2600
bO


7 30b23
0-00




110000
1100


7 J0623
1100




1000000
20000


7 30623
1300




240000
13000

730O22 1300
(C) 730b23
1 300
16.20
B.bO
44.0
49.0


6.000
7 30b^3 1 J 0 U
< C ) 730O24
130 0
6.40
10.70
id. 0
44.0


6.000
7JUO^U









I'JlIM- tr"


3
3
3
3
14
1 4
3
M K 1 M1 / M


10.4(1
10.70
44.0
49.0
5400000L
4 90 0 0 OL
6.700
nlNlMu"


a .40
a.00
30 . 0
**4.0
2b00
bO
b.000
LUu IN


13.brt
9. 1U
34 . b
47.3
106 766
7391
b.225
7 1^624












boobl
bOObU
00550
0 0 7^0
0 1034
32730
7 1 900



FlOw
CHLORINE
OIL-GPSE
CYANIDE
CHKOMlUM
PHENOLS
MERCURY



KATE
TOT PESl)
I 0 I-SAL T
cn-t o r
CR TOT
TOTAL
H G  total
I1 A T L. 11 Mr,
im rE
1 iMt
INST MGU
MG/L
MG/L
MG/L
UG/L
UG/L
UG/L

7 3062 0
1^00
a . b o o
1.40






7 3 0 o 2 0
1 720
a. 4 o o
1 .30






730b21
ObOO
4 . duo
1 .20






! J 0 o 2 1
loOO
7.000
0.90






7 3ub2 1
1200
1.6 0 0
1 .20






7 3ob21
1 24b
9.000







7 3ob2 1
1 300


5 . OK
0.00 IK

52


730b21
1 b 0 0
9.500
1 .30






7 30b22
0 7 00
3 . H 0 0







7 3 0 b 2 2
0900
o . 9 0 0







730O22
1 100
7.200







7 J0b22
13 0 0
o. 000
1 .50
b . OK
O.OOlrv

22

7JUO:l 13 0 0
(C) 7 30022
1 3U0






U . 4

7 3 0 o 2 2
144b
b . bOO
0 .70






7 3 0 b d 3
U 700
3 . bOO
1.20






7 3 0b2 3
0 4 00
4 . bO 0
0 .90






730623
1 100
b . 1 UO
o .so






7300^3
1 3 U U
b . 000
2 . 00
b . OK
0.033

1 2

7 3ub
-------
APPENDIX e-i
MUNICIPAL WASTE SOURCE DATA
MOBILE RIVEK AND TkIbUTARIES
STATION - Ml
- I Nf-

MOBILt BAY
-MCUUFFIE IS.
STP INF
MUBILE RIVER
BASIN
MOBILE
STUDY




0001 0
00310
00340
00400
00403
00410
00435
00500



WA TEH
BOO
CUD
PH
LAB
T ALK
T ACUITY
RESIDUE



TEMP
b DAY
rll LEVEL

PH
CAC03
CAC03
TOTAL
DATE TIME
UATt"
T I ME
CENT
MG/L
MG/L
SU
SU
MG/L
MG/L
MG/L
7 306^0 1000
(C)730b.il
1000

194.0
39b

6.6
124
2d
2592

730621
1100
29.0


7.6





7306^2
0940
28. 0


6.7





73i)b22
1 u2=>
2d.b


6.9




7 JO 0^1 11 1)0
(C ) 730b<;2
1 100


694

6.8
40
42
8 72
730b<;2 1UOO
(C ) 7 30b23
1 UOO


174

6.9
139
41
858

7 3 u b^3
1 u b5
2d.b


6.9




7 30b20










NUMcEM


4
1
3
4
3
3
3
3
MAX 1 MUM


29.1'

694
7.6
6.9
139
42
2592
MINI MUM


2d. 0

174
6. 7
6.6
40
2d
8b8
LOb Mt UN


2b . b

363
7 . 0
6 . B
d8
3b
1247
730b23













00505
00b 1 6
00520
00330
00535
0054b
00610




PES I DUE
PtSIUUE
hESIUUE
RESIDUE
RESIDUE
RESIDUE
NH3-N




TOT VOL
|(ISS-10t
VOL FLT
TOT NFLT
VOL NFLT
SETTLHLE
TOTAL

UATt TIME
DrtTt
T I ML
Mb/L
C Mb/L
MG/L
Mb/L
MG/L
ML/L
MG/L

730b^0 100O
(C> 7 30bil
1000
204
2b04
1 b9
del
45
7.0
17.BO

7 JOb^r 1 11O0
t C ) 7 SSbdd
1 100
2bd
bO 7
lu2
269
166
24 . 0
23. 00

730b^()










Inn n't-)


J
J
J
J
J
J
-j

l-U> I M. M


0 . 30
24.30
b *4.0 0
1 0 0 . 0
110.0
b . "J 0 0
7 . u '> I>

M J II 1 Mi JM


0  0 1 K
lb. 0 0
9. 4U
eo.u
Vrl . 0
^ . o U 0
.10 0

LOb Mt^N


0.03
22.02
<3.01
14 J. J
1 u t . 2
5. 1 So
b  D 2 3

7

-------
APPENDIX E-1
MUNICIPAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - MI
-EFF

MOBILE BAY
-MCDUFFIE IS.
STP EFF
MOBILE RIVER
BASIN
MOBILE
STUDY





00010
00310
00340
00400
00403
00410
00435
00500
00505



WATER
BOD
COD
PH
LAB
T ALK
T ACUITY
RESIDUE
RESIDUE



IEMP
5 DAY
HI LEVEL

PH
CAC03
CAC03
TOTAL
TOT VOL
Da T t TIME
DttTE
T 1 ME
CENT
MG/L
MG/L
SU
SU
MG/L
MG/L
MG/L
MG/L
7 30b2 0 1000
(L)730 b21
1000

53.0
158

7.2
118
12
520
84

730621
1100
29.0


7.1






730622
0930
28.5


6.8






730622
1030
28.5


6.8





730b21 1100
(C)730b22
1100


229

7.2
138
18
424
100

73u622
1 1 15
28.5


6.7






730623
1 040
29.0


6.9





7 30b22 1100
(C)730b23
1 100


142

7.3
98
9
412
118
730o20











NUMbt"


5
1
3
5
3
3
3
3
3
MAXIMUM


29.0

229
7.1
7.3
138
18
520
118
MINIMUM


28.5

142
6.7
7.2
98
9
412
84
LOG Mtflij


28.7

173
b . 9
7.2
117
12
450
100
730023
U a TE riMt DuTE TIME
7 306^0 1 0 0 0 ( C ) 730b2 1 loUO
7 3 062 1 1100 { C ) 7 30 bc!2 110U
730022	1100 (C)730b23 1100
730o20
bUM'Jtw
(4X 1 MUM
il 1 N 1 Ml IM
I OG itiv
730023
00515	00b20	00530
RESIUUt	ritSIUUE	WESIUUE
UlSS-lOb	VOL FLT	TOT NFL T
C MG/L	MG/L	MG/L
559	52	61
387	80	37
391	111 7	21
3	3	3
559	107	bl
3b/	-3d	c 1
439	76	36
0 0535	00545	00610
RESIDUE	RESIDUE	NH3-N
VOL NFL T SETTLBLE	TOTAL
MG/L	ML/L	MG/L
32	0.5K	16.50
20	0.5k	15.50
11	0.5K	15.30
3	3	3
3d	0.5K	lb.50
11	0.5K	15.30
19	0.5	15.76
00630	00635	00665
N02&N03 NH3&0RG	PHOS-TOT
N-TOTAL	N-TOTAL
MG/L	MG/L	MG/L P
0.02	18.20	7.80
0.02	23.90	7.30
0.01	16.00	b.00
3	3	3
0.02	23.90	7.80
0.01	16.00	6.00
0.02	19.09	6.99
UATt
I ["It
DAT t
T I ME
GUbaO
T O^G C
C
MG/L
0 0 94 0
CHL OR 1Ot
CL
MG/L
31505
TOT COL I
MPN CONF
/1OOML
31615
FEC COL I
MPNECMED
/ 1 OOML
50050
CONDUIT
FLOW
MGl)
50051
FLOW
rate
INST MGO
50060
CHLORINE
TOT RESD
MG/L
00550
OIL-GRSE
TOT-SXLT
MG/L
00720
CYANIDE
CN-TOT
MG/L
7 3 0 62 0	1OUU
7J0O20	1200
7 3 0b - 0	14 0 0
7 J0b20	lbOO
73oo20 1000 (0 730621	1000
7 30b21	1030
7 30b21	1100
730o2l	12J0
7 30621	14 30
54 . 0
1 1 0 . 0
790
1 7 0 0 U 0
490
130
1100
1300
do
3 JO
110000
bO
20
130
230
20
5.130
6.200
b.tJOO
7.500
7 .000
7.000
7.000
0. 7b
0 . 7b
O.bO
0.70
0.10
0.00
11.0
0.088

-------
PENDIX E-I
MUNICIPAL WASTE SOURCE DATA
mobile river and tributaries
station - MI-EFF
mobile BaY-MCDUFFIE IS. STP EFF MOBILE RIVER BASIN
MOBILE STUDY



oobao
00440
3150b
31615
50050
50051
50060
00550
00720



1 ORG C
CHLORIDE
TOT COL 1
FEC COL I
CONOUIT
FLOW
CHLORINE
OIL-GRSE
CYANIDE



c
CL
mPn CONF
MPNECMED
FLOW
RATE
TOT RESD
TOT-SXL T
CN-TOT
DATE TIME
U A TE
TIME
MG/L
MG/L
/100ML
/10 OML
MOD
INST MGD
MG/L
MG/L
MG/L

7 3U621
1620


20 OK
200K






7 30622
0930


46000
1 1 000

6.300
0.85



730622
1 030





6.100



7 30621 1100
(C)730622
1 100
32.0
105.0


5.500





7 3 \j 6 2 2
111b


3b0 0 0
2300

6.200
0.10
5.OK
0.336

73U622
14 15


1 3000
3300

7.200




7 30622
1530


790
20

7.200




7 3 u 6 2 3
1 040


330
do


3.50
5.OK
0.040
730o22 lloO
(C) 7 30623
1 100
42.0
100.0


4.800




730620











NUMot K


3
3
13
1 3
3
1 1
9
3
3
raxIMuM


54 . 0
110.0
17 0 0 0 0
110000
5.500
7.500
3.50
11.0
0.336
MINIMuM


32. 0
100.0
dOK
20K
4. dOO
6.100
0.00
5 . OK
0.040
LOG ML AN


41.7
104.9
1710
331
5.135
6.757
0.00
6.5
0. 106
7 3(j623














01 027
0 1 034
01042
01051
0 1 067
01092
32730
71900




CADMIUM
LmRumIUM
COPPER
LEAD
NICKEL
<:inc
PHENOLS
MERCURY




CD.TOT
ck.tot
CU.TOT
PB.TOT
NI.TOTAL
ZN.TOT
TOTAL
HG.TOTAL

DA Tt T I ME
DA TL
TIME
UC-/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L

730620 1U 0 0

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES

-------
APPENDIX E-11
INDUSTRIAL WASTE SOURCE DATA


MOBILE RIVER AND TRIBUTARIES




AGENCY PRIMARY
STATION SECONDARY
STATION LOCATION
STATE
MINOR 1
BASIN

111 3SOOO 015230
A-001
MOBILE R-ALCOA PLANT EFFLUENT
ALABAMA
MOBILE
RIVER
BASIN
015231
A-001A
MOBILE R-ALCOA PUMP C DISCHARGE
ALABAMA
MOBILE
RIVER
BASIN
015233
A-001B
MOBILE R-ALCOA PRESS LEAF DISCH.
ALABAMA
MOBILE
RIVER
BASIN
015233
A-001C
MOBILE R-ALCOA PUMP B DISCHARGE.
ALABAMA
MOBILE
RIVER
BASIN
015234
A-001D
MOBILE R-ALCOA POWER HOUSE DISCH
ALABAMA
MOBILE
RIVER
BASIN
015235
A-001E
MOBILE R-ALCOA HEATER ACID DISCH
ALABAMA
MOBILE
RIVER
BASIN
015236
A-001F
MOBILE R-ALCOA PUMP A DISCHARGE
ALABAMA
MOBILE
RIVER
BASIN
015180
AW-001
MOBILE BAY-ALA. WOOD PRE. RE.SYS
ALABAMA
MOPILE
RIVER
BASIN
015190
AW-002
MOBILE BAY-ALA. WOOD COND. WATER
ALABAMA
MOBILE
RIVER
BASIN
015200
C 4-00 1
MOBILE R-CHEVRON ASPHALT COMPANY
ALABAMA
MOBILE
RIVER
BASIN
015445
DS-R
HOG BAYOU-DIAMOND SHAMRK RAW H20
ALABAMA
MOBILE
RIVER
BASIN
015430
DS-001
HOG BAYOU-DIAMOND SHAMRCK TR. EF
ALABAMA
MOBILE
RIVER
BASIN
015440
OS-002
HOG BAYOU-DIAMONG SHAMRCK H20 EF
ALABAMA
MOBILE
RIVER
BASIN
015280
EC-001
IND. CANAL-EAGLE CHEMICAL CO.
ALABAMA
MOBILE
RIVER
BASIN
015240
GC-001
THREEMILE CK-GULFPORT CREOSOTING
ALABAMA
MOBILE
RIVER
BASIN
015210
IC-001
MOBILE R-IDEAL CEM. PRO. WSTS.SEW
ALABAMA
MOBILE
RIVER
BASIN
015220
IC-002
MOBILE R-IDEAL CEMENT PROC. WST.
ALABAMA
MOBILE
RIVER
BASIN
015350
IP-IB
CHICKASAW CK-IP IMPOUNDMNT BASIN
ALABAMA
MOBILE
RIVER
BASIN
015410
IP-002
HOG BAYOU-IP BOILER ASH PIT
ALABAMA
MOBILE
RIVER
BASIN
015420
IP-003
HOG BAYOU-IP POWER PLT FLOOR URN
ALABAMA
MOBILE
RIVER
BASIN
015360
IP-0 12
CHICKASAW CK-IP PRIMARY TRT. PLT
ALABAMA
MOBILE
RIVER
BASIN
0 15380
1^-015-E
CHICKASAW CK-IP rflDYD. LOG FLM EF
ALABAMA
MOBILE
RIVER
BASIN
015370
IP-015-I
CHICKASAW CK-IP ttDYD. LOG FLM IN
ALABAMA
MOBILE
RIVER
BASIN
015400
IP-018-E
CHICKASAW CK-IP COOLING H20 EFF
ALABAMA
MOBILE
RIVER
BASIN
015390
IP-018-I
CHICKASAW CK-IP COOLING H20 INF
ALABAMA
MOBILE
RIVER
BASIN
015250
MR-001
THKEEMILE CK-MOBILE ROSIN OIL
ALABAMA
MOBILE
RIVER
BASIN
015170
NG-001
MOBILE BAY-NATIONAL GYPSUM
ALABAMA
MOBILE
RIVER
BASIN
015290
S-00 1
CHICKASAW CK-SCOTT WASTE TRT SYS
ALABAMA
MOBILE
RIVER
BASIN
015300
S-002
CHICKASAW CK-SCOTT BLEACH PLANT
ALABAMA
MOBILE
RIVER
BASIN
015310
S-003
CHICKASAW CK-SCO IT PULP MILL
ALABAMA
MOBILE
RIVER
BASIN
015320
S-004
CHICKASAW CK-SCOTT WTP STORM SEW
ALABAMA
MOBILE
RIVER
BASIN
015330
S-005
CHICKASAW CK-SCOTT W MILL STM ON
ALABAMA
MOBILE
RIVER
BASIN
015340
S-007
CHICKASAW CK-SCOTT CEN. MILL URN
ALABAMA
MOBILE
RIVER
BASIN
015260
SC-001
THREEMILE CK-STONE CONTAINER WTS
ALABAMA
MOBILE
RIVER
BASIN
015270
SC-002
THREEMILE CT-STONE CONT COOL H20
ALABAMA
MOBILE
RIVER
BASIN
015450
UCC-00 1
HOG BAYOU-UNION CARBIDE CAU. EFF
ALABAMA
MOBILE
RIVER
BASIN
015460
UCC-002
HOG BAYOU-UNION CARBIDE SALT EFF
ALABAMA
MOBILE
RIVER
BASIN

-------
0000008
LAB
0000310
BOO
0000 340
COD
0000403
LAB
0000410
T ALK
0000435
T ACDITY
0000500
RESIDUE
0000505
RESIDUE
0000515
RESIDUE
0000520
RESIDUE
0000530
RESIDUE
0000535
RESIDUE
0000545
RESIDUE
0000680
T ORG C
0001027
CADMIUM
0001034
CHROMIUM
000 1042
COPPER
0001051
LEAD
000 1067
NICKEL
0001092
ZINC
0050050
CONDUIT
0000010
WATER
0000400
PH
0050051
flow
0000550
OIL-GRSE
0032730
PHENOLS
0000610
NH3-N
0000630
N02S.N03
0000635
NH3J.ORG
0000665
PHOS-TflT
0071900
MERCURY
0000080
COLOR
00 3150 5
TOT COL I
0031615
FEC COL I
0000940
CHLORIDE
IDENT .
NUMBER
5 DAY
MG/L
HI LEVEL
MG/L
PH
SU
CAC03
MG/L
CAC03
MG/L
total
MG/L
TOT VOL
MG/L
DISS-105
C MG/L
VOL FLT
MG/L
TOT NFlT
MG/L
VOL NFLT
MG/L
SETTLBLE
ML/L
C
MG/L
CD.TOT
UG/L
CR.TOT
UG/L
CU.TOT
UG/L
PB.TOT
UG/L
NI.TOTAL
UG/L
ZN.TOT
UG/L
flow
MGD
TEMP
CENT

SU
RATE
INST MGD
TOT-SXLT
MG/L
TOTAL
UG/L
TOTAL
MG/L
N-TOTAL
MG/L
N-TOTAL
MG/L

MG/L P
HG.TOTAL
UG/L
PT-CO
UNITS
MPN CONF
/100ML
MPNECMEO
/10 OML
CL
MG/L
NUMBER USED IN SAMPLE ACCOUNTING PROCEDURE
BIOCHEMICAL OXYGEN DEMAND (MG/L 5 DAY - 20DEG C)
CHEMICAL OXYGEN DEMAND. .25N K2CR207 (MG/L)
PH (STANDARD UNITS) LAB
ALKALINITY. TOTAL (MG/L AS CAC03)
ACIDITY, TOTAL (MG/L AS CAC03)
RESIDUE. TOTAL (MG/L)
RESIDUE. TOTAL VOLATILE (MG/L)
RESIDUE. TOTAL FILTRABLE (DRIED AT 105C).MG/L
RESIDUE. VOLATILE FILTRABLE (MG/L)
RESIDUE. TOTAL NONFILTRABLE (MG/L)
RESIDUE. VOLATILE NONFILTRABLE (MG/L)
RESIDUE. SETTLEABLE (ML/L)
CARBON. TOTAL ORGANIC (MG/L AS C)
CADMIUM. TOTAL (UG/L AS CD)
CHROMIUM. TOTAL (UG/L AS CR)
COPPER. TOTAL (UG/L AS CU)
LEAD- TOTAL (UG/L AS PB)
NICKEL. IOTAL (UG/L AS NI)
ZINC. TOTAL (UG/L AS ZN)
FLOW IN CONDUIT OR THRU A TREATMENT PLANT (MGD)
TEMPERATURE. WATER (DEGREES CENTIGRADE)
PH (STANDARD UNITS)
FLOW RATE INSTANTANEOUS (MGD)
OIL & GREASE (SOXHLET EXTRACTION) TOTAL.REC..MG/L
PHENOL ICS. TOTAL. RECOVERABLE (UG/L)
NITROGEN. AMMONIA. TOTAL (MG/L AS N)
NITRITE PLUS NITRATE. TOTAL 1 OET. (MG/L AS N)
NITROGEN. AMMONIAS.ORG.. TOTAL 1 DET (MG/L AS N)
PHOSPHORUS. TOTAL (MG/L AS P)
MERCURY. TOTAL (UG/L AS HG)
COLOR (PLATINUM-COBALT UNITS)
COLIFORM.TOT.MPN.CONFIRMED TEST.35C (TUBE 31506)
FECAL COL IFORM.MPN.EC MED.44.5C (TUBE 31614)
CHLORIDE (MG/L AS CL)

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - UCC-001	HOG BAYOU-UNION CARBIDE CAU. EFF



00310
00340
00403
00410
00435
00500
00505
00515
00520



BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
VOL FLT
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L
730618 1000
(C)730619
1100
6.0
113
13.5
8200
0
14330
2484
14030
2459
730619 1100
(C)730620
1 115
8.OK
67
12.7
10300
0
66680
13340
66490
13310
730620 1100
(C)730621
10^5
8.OK
44
12.8
8968
0
17260
3206
16910
3139
730618











NUMBER


3
3
3
3
3
3
3
3
3
MAXIMUM


6.0
113
13.5
10300
0
66680
13340
66490
13310
MINIMUM


6.OK
44
12.7
8200
0
14330
2484
14030
2459
MEAN



75
13.0
9156
0
32757
6343
32477
6303
730621














00530
00535
00545
00660
0 1027
0 1034
01042
0 1051
01067



RESIOUE
RESIDUE
RESIDUE
T ORG C
CADMIUM
CHROMIUM
COPPER
LEAD
NICKEL



TOT NFLT
VOL NFLT
SETTLBLE
C
CD.TOT
CR.TOT
CU.TOT
PB.TOT
NI.TOTAL
DATE TIME
DATE
TIME
MG/L
MG/L
ML/L
MG/L
UG/L
UG/L
UG/L
UG/L
UG/L
730618 1000
(C)730619
1100
300
25
40
125.0





730619 1100
(C)730620
1115
186
22
21
128.0





730620 1100
(C)730621
1045
353
67
27
98.0





730618 1001
(C)730621
1 046




25
40
45
300
160
730618











number


3
3
3
3
1
1
1
1
1
MAXIMUM


353
67
40
128.0





MINIMUM


186
22
21
98.0





MEAN


280
38
29
117.0





730621














01092
50050
00010
00400
00610
00630
00635
0 0 665
00940



ZINC
CONDUIT
WATER
PH
NH3-N
N025.N03
NH3&ORG
PHOS-TOT
CHLORIOE



ZNt TO I
FLOW
TtMP

TOTAL
N-TOTAL
N-TOTAL

CL
DATE TIME
GATE
T I ME
UG/L
MGD
CENT
SU
MG/L
MG/L
MG/L
MG/L P
MG/L

730619
1 100


38.0
10.0





730618 1000
(C)730619
1 100

0 .620


14.30
1 .030
1 1 .80
0.85
350.0

730620
1115


35.0
10 . 7





730619 1100
(C)730620
1115

0.450



o
o
0.960
7.50
0.60
350.0

730621
1 0 *+5


36.0






730620 1100
 730621
1045

0 .440


4.90
0.820
2.54
0.70
400.0
730618 1001
(C)730621
1046
60








730618











NUMBER


1
3
3
2
3
3
3
3
3
MAXIMUM



0.620
38.0
10.7
14.30
1.030
11.80
0.85
400.0
MINIMUM



0.440
35.0
10.0
4.90
0.820
2.54
0.60
350.0
mean



0.503
36. 3
10.3
8.07
0.937
7.28
0.72
366.7
730621












-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - UCC-002	HOG BAYOU-UNION CARBIDE SALT EFF



00310
00340
00403
00410
00435
00500
00505
00515
00520



BOO
COD
LAB
T ALK
T ACOITY
RESIDUE
RESIDUE
RESIDUE
RESIDUE



5 DAY
Ml LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
OISS-105
VOL FLT
DATE THE
OATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L
730618 1000
(C)730619
1100
8.OK
25 3
9.8
175
0
6813
382
6531
380
730619 1100
(C)730620
1 120
8.OK
182
9.8
150
0
798
208
741
208
730620 1100
(C)730621
I 100
8.OK
20 2
9.6
462
0
481 1
144
4772
125
7 JO 6 18











NUMBER


3
3
3
3
3
3
3
3
3
MAXIMUM


8.OK
253
9.8
462
0
6813
382
6531
380
MINIMUM


8.OK
182
9.6
150
0
798
144
741
125
MEAN



212
9.7
262
0
4141
245
4015
238
730621














O0530
0 0 535
00545
00680
0 1027
0 1034
01042
01051
0 1067



RESIDUE
RESIDUE
RESIDUE
T ORG C
CAOMIUM
CHROMIUM
COPPER
LEAO
NICKEL



TOT NFlT
VOL NFL T
SETT LBLE
C
CD.TOT
CR* TOT
CU.TOT
P8.T0T
NI .TOTAL
OATE TIME
OATE
TIME
MG/L
MG/L
ML/L
MG/L
UG/L
UG/L
UG/L
UG/L
UG/L
730618 1000
(C)730619
1100
33
2
IK
6.0





730619 1100
(C)730620
1 120
7
IK
IK
6.0





730620 1100
(CI 730621
1 100
39
1 9
IK
6.0





730618 1001
(C> 730621
110 1




20K
40K
20
100
60
730618











NUMBER


3
J
3
3
1
1
1
1
1
MAX I MUM


39
19
IK
6.0





MINIMUM


7
IK
IK
6.0





MEAN


26


6.0





730621














0109?
50050
00010
00400
00610
00630
00635
00665
00940



ZINC
cunuuir
WATER
PH
NH3-N
N02&N03
NH3&ORG
PHOS-TOT
CHLORIOf



ZN,TOT
FLO'*'
TEMP

TOTAL
N-TOTAL
N-TOTAL

CL
DATE TIME
DATE
TIME
UG/L
MGD
CENT
SU
MG/L
MG/L
MG/L
MG/L P
MG/L

730619
1100


32.5
9.9





730618 1000
(C)730619
1 100

0.420


1 1 .90
0.360
11 .30
0.21
2900.0

730620
1 120


33.0
8.9





730619 1100
(CI730620
1 120

0.500


27.00
0.280
25.00
0.16
3400.0

730621
1100


34.0






730620 1100
(CI 730621
1 100

0.500


90.00
0.280
86.00
0.18
3000.0
730618 1001
(CI 730621
1101
20








730618











NUMBER


1
3
3
2
3
3
3
3
3
MAXIMUM



0.500
34.0
9.9
90.00
0.360
86.00
0.21
3400.0
MINIMUM



0 .420
J2.5
8.9
1 1 .90
0.240
1 1. 30
0.16
2900.0
n;EAn



0.473
33.2
9.4
42.97
0 . 30 I
40. 77
0. 18
3100.0
730621












-------
APPENDIX Ef  I I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - OS-R
HOG HAYOU-DIAMONo ShAMRK RAW H20
DATE
f I ME
DATE
T I ME
730619	103f1
730620	10 IS
7 30 62 1 1000
000 1 0
W a T ER
TE MP
CENT
30 .0
29.0
00^00
Ph
SU
6.6
6.0
S005I
flow
rate
INST MGL)
0 .600
0 .600
0.600
730619
NUMBER
MAX[MUM
MINIMUM
MEAN
730621
P
30.0
29.0
29.5
2
6.6
6.0
6. 3
3
0.600
0.600
0.600

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER ANO TRIBUTARIES
STATION - DS-00I
NOG HAYOU-DIAMOND SrtAMRCK TR. EF
DATE
TIME
DATE
T I ME
00310
BOD
5 DAY
MG/L
0 0 340
COD
Hi LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L
730620 1030
730619	1045	46.0
730620	1030	28.0
(C)730 621 1000 22.0
1306
915
416
9.8
9.6
9.5
500
500
500
6198
16430
16850
233
320
210
6187
16390
16770
730619
NUMBER
MAX IMIJM
MINIMUM
MEAN
730621
3
46.0
22.0
32.(1
3
1306
416
879
3
9.8
9.5
9.6
3
500
500
500
3
16850
6198
13159
3
320
210
254
3
16770
6187
13116
DATE
T I ME
DATE TIME
00520
RES I DUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFL1
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
ORG C
C
MG/L
01027
CADMIUM
CO,TOT
UG/L
0 1034
CHROMIUM
CR.TOT
UG/L
01042
COPPER
CU.TOT
UG/L
730619	1045
730620	1030
730620 1030 (0 730621	1000
730619 10 **6 <0 730621	1001
222
283
168
11
44
79
1 1
37
42
IK
IK
IK
108.0
360.0
121.0
20
40K
25
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
283
168
224
3
79
1 1
45
3
42
1 1
30
3
IK
IK
3
360.0
108.0
196.3
DATE
T [ME
DATE
T I ME
01051
LEAD
PB,TOT
UG/L
0 1067
NICKEL
NI.TOTAL
UG/L
01092
/INC
ZN.TOT
UG/L
50050
CONDUIT
FLOW
MGD
000 10
WATER
TEMP
CENT
00400
PH
SU
50051
FLOW
RATE
INST MGD
7 1 900
MERCURY
H6.TOTAL
UG/L
730619	1045
730620	1030
730621	1000
730620 1030 (0 730621 1000
730619 1046 (C)7 30 621 1001
165
150
25
0.090
30.0
28.0
31.0
8.9
5.8
9.6
0.070
0.090
0.090
61.0
13.3
14.8
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
31.0
28.0
29.7
3
9.6
5.8
8.1
3
0.090
0.070
0.083
3
61.0
13.3
29.7

-------
APPENDIX E-II
INDUS TP IA( WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - OS-002
HOO BAYOLI-OIAMOMD SHAMRCK H20 EF
DATE
TIME
DATE
TIME
00310
BOD
5 DAY
MG/L
00 340
CnD
hi LEVEL
MG/L
00403
LA8
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
PESI DUE
DISS-105
C MG/L
730619 1055
730 620 1040
7 30 621 1025
d.OK
d.OK
8.OK
10
8
9
4.7
6.8
3.5
2
14
450
47
78
102
35
24
441
47
66
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
8. OK
8.OK
3
10
8
9
3
6.8
3.5
5.0
2
14
2
8
3
450
47
192
3
102
24
54
3
441
47
185
DATE
T I ME
DATE
T [ME
00520
PES I DUE
VOL ELI
MG/L
00530
PES I DUE
TOT NFLT
MG/L
00535
WE SI DUE
VOL NFLT
MG/L
005<*5
RESIDUE
SETTLHLE
ML/L
00660
ORG C
C
MG/L
01027
CAOMIUM
CO.TOT
UG/L
01034
CHROMIUM
CR t TOT
UG/L
01042
COPPER
CU.TOT
UG/L
730619	1055
730620	1040
730621	1025
7 30b 19 1056 (0 730621	1026
93
35
24
9
IK
12
9
IK
IK
IK
IK
IK
4.0
4.0
3.0
20K
AIJK
20
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
93
24
51
3
12
IK
3
9
IK
3
IK
IK
3
4.0
3.0
3.7
DATE
T I me
U A TE
TIME
0 10^1
LEAD
PH.TOT
UG/L
01067
NICKEL
M I . TO TAL
Ub/L
0 1 092
/. 1 NC
L\, .TOT
Uu/L
000 10
WA TER
TEMP
CENT
00400
OH
SU
SU05 1
FLOW
KATE
11' i j T 1: G 0
/I ^-0 0
"ESCUrJY
r IG  f 'J T A (.
uo/L
730619	1055
730620	1040
730621	102S
730619 105o iC)730621	1026
100"
40r\
hO
31.0
-IU.0
5.6
3 .
0 . 530
0 . 600
0.610
2 . \
1 .3
0.6
730619
NUM3EW
MAXIMUM
MINIMUM
'IE AN
730621
2
31.0
30.0
3G.1:.
2
5.6
3.6
4.6
3
0.610
0 .5^0
0.59 7
>
2.3
0.6
1 .4

-------
appendix e-ii
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-IB
CHICKASAW CK-IP IMPOUNDMNT BASIN
DATE TIME
DATE
TIME
00310
BOD
5 DAY
MG/L
00340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T AC0ITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS- 105
C MG/L

730619
730620
730621
1445
1340
1320
175.0
355.0
100.0
556
1663
515
6.9
7.2
7.2
950
1250
1000

73
70
100
2077
3520
2182
560
1214
558
1818
3597
1904
730619
NUMBER
MAX IMUM
MINIMUM
MEAN
730621


3
355.0
100.0
210.0
3
1663
515
911
3
7.2
6.9
7.1
3
1250
950
1067

3
100
70
81
3
3520
2077
2593
3
1214
558
777
3
3597
1818
2440
DATE TIME
DATE
T I ME
00520
RESIDUE
VOL FLT
MG/L
00530
RtSIDUE
TOT NFLT
MG/L
00535
WES I DUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
T
00690
ORG C
C
MG/L
01027
CADMIUM
CD.TOT
UG/L
01034
CHROMIUM
CR.TOT
UG/L


730619
730620
730621
1445
1340
1 320
433
774
*~20
259
923
274
127
440
138
22
40L
16

169.0
700 .0
170.0
20K
20K
20K
50k;
57
20K

730619
NUMBER
MAX[MUM
MINIMUM
MEAN
730621


3
774
420
542
3
923
259
487
3
440
127
235
3
4QL
16

3
700.0
169.0
346  3
3
20K
20K
3
57
20K

DATE T T ME
DATE
T I ME
0 1 042
COPPER
CU.TOT
UG/L
0 1051
LEAD
PB.I0T
UG/t.
01067
N1CKEL
NI,TOTAL
UG/L
01092
I I NC
ZN.T0T
UG/L
50050
CONDUIr
flow
MGO
00010
WATER
TEMP
CENT
00 400
;' m
SU


730619
730620
7 30 62 1
14"5
1 340
1320
29K
97
30
100*
1 0 0 r\
1 00i\
50
108
60
1 1 !
763
203

1.0 10
I .010
I .0 10
38.0
40 .0
39.0
6. 9
6.7

730619
NUMBER


3
3
3
3

3
3
2

MAX rMUM
MINIMUM
MEAN
7 30 621
97
20*
1 0 0 <
1 0 OK
108
SO
73
76 3
117
3b 1
1.0 10
1.0 10
1.010
40.0
33.0
39.0
6. V
6.7
6 . a

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-002
HOG BAYOU-IP BOILER ASH PIT
DATE
T I ME
DATE
TIME
00310
BOD
5 DAY
MG/L
00140
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L
730619
730620
730 621
1415
1355
1335
20 .OK
20. OK
8.OK
14
17
10
8.1
7.3
6.8
75
29
34
1500
17
17
358
510
660
147
12
152
350
502
636
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
20.OK
8.OK
3
17
10
14
3
d. 1
6.8
7.4
3
75
29
46
3
1500
. 17
511
3
660
358
509
3
152
12
104
3
636
350
496
DATE
TIME
DATE
TIME
00520
RESIDUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
ORG C
C
MG/L
50050
CONDUIT
FLOW
MGD
000 10
WATER
TEMP
CENT
00400
PH
SU
730619
730620
730621
1415
1355
1335
1 44
1 1
149
a
8
24
IK
IK
IK
5.0
5.0
8.0
0.430
0.430
0.430
34.0
33.0
34.0
6.7
6.5
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
149
1 1
101
3
24
8
13
3
IK
IK
3
8.0
5.0
6.0
3
0.430
0 .430
0.430
3
34.0
33.0
33.7
2
6.7
6.5
6.6

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-003
HOG BAYOU-IP POWER PLT FLOOR DRN
DATE
TIME
DATE
TIME
730619	1425
730620	1400
730 62 J 1340
00310
HOD
5 DAY
MG/L
20.OK
20.0K
20.OK
0 0 340
COD
HI LEVEL
MG/L
78
107
71
00403
LAB
PH
SU
5.4
6.7
4.4
00410
T ALK
CAC03
MG/L
15
52
1
00435
T ACDITY
CAC03
MG/L
13
20
62
00500
RESIDUE
TOTAL
MG/L
513
630
716
00505
RESIDUE
TOT VOL
MG/L
27
35
148
00515
RESIDUE
DISS-105
C MG/L
472
614
604
730619
NUMBER
MAX I MUM
MINIMUM
MEAN
730621
3
20.OK
20.OK
3
107
71
85
3
6.7
4.4
5.5
3
52
1
23
3
62
13
32
3
716
513
620
3
148
27
70
3
614
472
563
DATE TIME
DATE
time
730619	1^25
730620	1400
730621	1340
00520
RESIDUE
VOL FLT
MG/L
22
26
106
00530
RESIDUE
TOT NFLT
MG/L
41
16
112
00535
RESIDUE
VOL NFLT
MG/L
5
9
42
00545
RESIDUE
SETTLBLE
ML/L
IK
IK
7
00680
ORG C
C
MG/L
15.0
32.0
10.0
50050
CONDUIT
FLOW
MOD
0.360
0.360
0.360
00010
WATER
TEMP
CENT
39.0
40.0
44.0
00400
PH
SU
5.2
6.3
7 30 b 19
NlJMbER
MAX IMIJM
MINIMUM
MEAN
730621
3
106
22
51
3
112
16
56
3
42
5
19
3
7
IK
3
32.0
10.0
19.0
3
0.360
0.360
0.360
3
44.0
39.0
41.0
2
6.3
5.2
5.7

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-012	CHICKASAW CK-IP PRIMARY TRT. PLT



00310
00340
00403
00410
00435
00500
00505
00515



BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-10!
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
730618 1600
(C)730619
1510
200.0
944
6.6
135
9
1138
339
978
730619 1510
(C)730620
1500
180.0
964
7.3
154
14
1554
356
1547
730620 1500
(C)730621
1425
245.0
948
9.8
300
0
1772
502
1628
730618










NUMBER


J
3
3
3
3
3
3
3
MAXIMUM


245.0
964
9.8
300
14
1772
502
1628
MINIMUM


180.0
944
6.6
135
0
1138
339
978
MEAN


203.3
952
7.9
196
8
1488
399
1384
730621













00520
00530
00535
00545
00680
01027
0 1034
0 1042



RESIDUE
RESIDUE
RESIDUE
RESIDUE
T ORG C
CADMIUM
CHROMIUM
COPPER



VOL FLT
TOT NFLT
VOL NFLT
SETTLBLE
C
CD.TOT
CRiTOT
CU  TOT
DATE TIME
DATE
T [ME
MG/L
MG/L
Mb/L
ML/L
MG/L
UG/L
UG/L
UG/L
730618 1600
(C)730619
1510
249
160
90
IK
290.0
20K
50K
33
730619 1510
(C)730620
1500
349
7
7
IK
340.0
20K
50K
32

730621
1030




115.0



730620 1500
(C)730621
1425
398
144
104
IK
344.0
20K
20K
38
730618










NUMBER


3
3
3
3
4
3
3
3
MAXIMUM


39
160
104
IK
344.0
20K
50K
38
MINIMUM


249
7
7
IK
115.0
20K
20K
32
MEAN


332
104
67

272.3


34
730621





01051
01067
01092
50050
000 10
00400
32730





LEAD
NICKEL
ZINC
CONDUIT
WATER
PH
PHFNOLS





PB.T0T
NI TOTAL
/?N IOT
FLOW
TEMP

TOTAL
DATE
time

DATE
T I ME
UG/L
UG/L
UG/L
MGD
CENT
SU
UG/L



730618
1600




50.0
7.0
2690



730619
1510




50.0
6.9
1900
730618
1600
(C)
i 730619
1510
100K
SOK
137
36.400






730620
1500




48.0
9.3
1900
730619
1510
(C)
730620
1500
100K
50K
150
36.400






730621
1425




46.0

3080
730620
1500
(CI
730621
1425
100K
50k
160
36.400



730618
NUMBER
3
3
3
3
4
3
4
MAXIMUM
100K
50K
160
36.400
50.0
9.3
3080
MINIMUM
100K
SOK
137
36.400
46.0
6.9
1900
MEAN


149
16.400
h8 .5
/ . 7
2393
730621

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-012
CHICKASAW CK-IP PRIMARY TRT. PLT
DATE TIME
DATE TIME
00610
NH3-N
TOTAL
MG/L
00630
N02f.N03
N-TOTAL
MG/L
730618	1600
730619	0730
730619	1030
730619	1315
730619	1510
730t>18 1600 (C) 730 619	1510	0.35	0.040
730620	0730
730620	1030
730620	1330
730620	1500
730619	1510 (C)730620	1500	0.25	0.010
730621	0730
730621	1030
730621	1425
730620	1500 (C)730 621	1425	0.46	0.050
00635
NH3&ORG
N-TOTAL
MG/L
2.60
1.75
2.41
00665
PHOS-TOT
MG/L P
0.54
0.60
0.68
00080
COLOR
PT-CO
UNITS
1850
3000
1750
31505
TOT COL I
MPN CONF
/100ML
200K
20K
20K
20K
20K
230
20
490
20K
20K
20K
20K
31615
FEC COL I
MPNECMED
/1OOML
200K
20K
20K
20K
20K
20K
20K
20K
20K
20K
20K
20K
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
0.46
0.25
0.35
3
0.050
0.010
0 .033
3
2.60
1.75
2.25
3
0.68
0.54
0.61
3
3000
1750
2200
12
490
20K
12
200K
20K

-------
APPENDIX E-11
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER ANO TRIBUTARIES
STATION - IP-015-I
CHICKASAW CK-IP WDYD. LOG FLM IN
DATE
TIME
DATE
TIME
730619	1330
730620	1440
730621	1420
00310
BOD
S DAY
MG/L
63.0
35.0
18.0
0 0340
COD
HI LEVEL
MG/L
152
154
142
00403
LAB
PH
SU
6.5
7.1
7.0
00410
T ALK
CAC03
MG/L
72
80
77
00435
T ACDITY
CAC03
MG/L
10
13
9
00500
RESIDUE
TOTAL
MG/L
577
676
806
00505
RESIDUE
TOT VOL
MG/L
114
88
132
00515
RESIDUE
DISS-105
C MG/L
547
676
756
730 b19
NUMBER
MAX I MUM
MINIMUM
MEAN
730621
3
63.0
18.0
38. 7
3
154
142
149
3
7.1
6.5
6.9
3
80
72
76
3
13
9
11
3
806
577
686
3
132
88
1 1 1
3
756
547
660
DATE
T I ME
DATE
TIME
00520
RESIDUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
ORG C
C
MG/L
50050
CONDUIT
FLOW
MGD
000 10
WATER
TEMP
CENT
00400
PH
SU
730619	1330
730620	1440
730621	1420
95
88
112
30
IK
50
19
IK
20
IK
IK
IK
57.0
51.0
60.0
34.530
34.530
34.530
37.0
33.5
36.5
6.6
6.7
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
112
88
98
3
50
IK
3
20
IK
3
IK
IK
3
60.0
51.0
56.0
3
34.530
34.530
34.530
3
37.0
33.5
35.7
2
6.7
6.6
6.6

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-015-E	CHICKASAW CK-IP WOYD. LOG FLM EE
DATE
T I ME


00310


BOO


5 DAY
DATE
TIME
MG/L
730619
1340
30.0
730620
1420
25.0
730621
1405
44.0
00340
COD
HI LEVEL
MG/L
144
110
150
00403
LAH
PH
SU
6.3
7.2
7.0
00410
T ALK
CAC03
MG/L
65
66
71
00435
T ACDITY
CAC03
MG/L
6
10
6
00500
RESIDUE
TOTAL
MG/L
557
630
8518
00505
RESIDUE
TOT VOL
MG/L
111
82
828
00515
RESIDUE
DISS-105
C MG/L
498
594
8410
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
44.0
25.0
33.0
3
150
110
135
3
7.2
6.3
6.8
3
71
65
67
3
10
6
7
3
8518
557
3235
3
828
82
340
3
8410
498
3167



00520
0 0 530
00535
00545
00680
50050
000 10
00400



RES I DUE
RESIDUE
RESIDUE
RESIDUE
T ORG C
CONDUIT
WATER
PH



VOL FLT
TOT NFLT
VOL NFLT
SETTLBLE
C
FLOW
TEMP

TIME
DATE
T IME
MG/L
MG/L
MG/L
ML/L
MG/L
MGD
CENT
SU

730619
1340
96
59
15
IK
53.0
34.530
34.5
6.9

730620
1420
80
36
2
IK
36.0
34.530
31.0
6.8

730621
1405
782
108
46
2
55.0
34.530
32.5

>19
NUMBER


3
3
3
3
3
3
3
2
MAX[MUM


782
108
46
2
55.0
34.530
34.5
6.9
MINIMUM


80
3b
2
IK
36.0
34.530
31.0
6.8
MF.AN


319
66
21

48.0
34.530
32.7
6.8
730621

-------
APPENDIX E-I I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-
0 18-E

CHICKASAW CK
-IP COOLING
H20 EFF








00310
00340
00403
00410
00435
00500
00505
00515



ROD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-101
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L

730619
1345
40.OK
46
5.9
32
8
409
90
463

730620
1410
20 .OK
42
6.9
44
1 1
488
14
484

730621
1400
8.OK
47
6.7
46
13
644
126
605
730619










NUMBER


3
3
3
3
3
3
3
3
MAXIMUM


40.OK
<4 7
6.9
46
13
644
126
605
MINIMUM


8. OK
42
5.9
32
8
488
14
463
MEAN



45
6.5
41
11
540
77
517
730621













00520
0 0 530
00535
00545
00680
0 1027
01034




RESIDUE
RESIDUE
RESIDUE
RESIDUE
T ORG C
CADMIUM
CHROMIUM




VOL FLT
TOT NFL T
VOL NFLT
SETTLBLE
C
CD.TOT
CR.TOT

DATE TIME
DATE
T I ME
MG/L
MG/L
MG/L
ML/L
MG/L
UG/L
UG/L


730619
1345
80
26
10
IK
10.0
20K
50K


730620
1410
14
4
IK
IK
15.0
20K
50K


730621
1400
120
39
6
IK
20.0
20K
20K

730619










NUMBER


3
3
3
3
3
3
3

MAX IMIJM


120
J9
10
IK
20.0
20K
50K

MINIMUM


14
4
IK
IK
10.0
20K
20K

MEAN


71
23


15.0



730621













01042
01051
01067
01092
50050
000 10
00400




COPPER
LEAD
NICKEL
ZINC
CONDUIr
WATER
PH




CU.TOT
PH.TOT
NI.TOTAL
ZN,IOT
FLOW
TEMP


DATE TIME
DATE
T I ME
UG/L
UG/L
UG/L
UG/L
MGD
CENT
SU


730619
1345
20K
100K
50K
30
60.4 30
36.0
6.3


730620
1410
20 K
100K
50K
33
60.430
36.5
6.4


730621
1400
20K
100K
50K
42
60.430
37.5


730619










NUMBEP


3
3
3
3
3
3
2

MAX IM1JM


20K
100K
50K
42
60.430
37.5
6.4

MINIMUM


20K
100K
50K
30
60.430
36.0
6.3

MEAN





35
60.430
36. 1
6.3

730621

-------
APPENDIX E-1 I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IP-01H-I
CHICKASAW CKIP COOLING H20 INF
DATE
TIME
DATE
TIME
00310
BOD
5 DAY
MG/L
00340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00 A 10
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L
730619	1400
730620	1425
730621	1410
20.OK
20 .OK
5.0
58
51
59
6.7
32
45
48
4
12
10
515
574
642
98
52
1 10
460
554
556
730619
NUMBER
MAX IMUM
MINIMUM
MEAN
730621
3
20.0
5. OK
3
59
51
56
3
7.0
5.9
6.5
3
48
32
42
3
12
4
9
3
642
515
577
3
110
52
87
3
556
460
523
DATE
T I ME
DATE
TIME
00520
RESIDUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
ORG C
C
MG/L
0 1027
CADMIUM
CD.TOT
UG/L
0 1034
CHROMIUM
CR.TOT
UG/L
730619
730620
730621
1400
1425
1410
82
52
87
55
20
86
16
IK
23
IK
IK
IK
14.0
16.0
20.0
20K
20K
20K
50K
50K
20K
730619
NUMBEP
MAXIMUM
MINIMUM
MEAN
730621
3
87
52
74
3
86
20
54
3
23
IK
3
IK
IK
3
20.0
14.0
16.7
3
20K
20K
3
50K
20K
DATE
TIME
DATE
01042
COPPER
CU.TOT
TIME	UG/L
0 1051
Lt AD
PB.TOT
UG/L
01067
NICKEL
NI .TOTAL
UG/L
01092
Z INC
ZN,TOT
UG/L
50050
CONDUIT
FLOW
MGD
00010
WATER
TEMP
CENT
00400
PH
SU
730619
730620
730621
1400
1425
1410
524
432
800
100K
100K
100K
50K
50K
50K
87
63
108
60.4 30
60.430
60.430
33.0
31.0
31.0
6.5
6.7
730619
NUMBER
MAX[MUM
MINIMUM
MEAN
730621
3
800
432
585
3
100K
100K
3
50K
SOK
3
108
63
86
3
60.430
60.430
60.*30
3
33.0
31.0
31.7
2
6.7
6.5
6.6

-------
APPENDIX E-1 I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - S-001	CHICKASAW CK-SCOTT WASTE TRT SYS




00310
00340
00403
00410
00435
00500
00505
00515




BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE




5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
DATE TIME

DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
730618 1145
(CI
I 730619
0830
43.0
264
7.1
128
7
685
206
592
730619 0830
(CI
I 730620
0815
37.0

7.2
102
6
641
199
549
730620 0815
(C)
i 730621
0730
24.0
218
7.2
94
10
2942
748
2901
730618











NUMBER



3
2
3
3
3
3
3
3
MAX IMUM



43.0
264
7.2
128
10
2942
748
2901
MINIMUM



24.0
218
7.1
94
6
641
199
549
MEAN



34.7
241
7.2
108
8
1423
384
1347
730621















00520
00530
00535
00545
00680
0 1027
0 1034
01042




RESIDUE
RESIDUE
RESIDUE
RESIDUE
T ORG C
CADMIUM
CHROMIUM
COPPER




VOL EL T
TOT NFLT
VOL NFLT
SETTLBLE
C
CD.TOT
CR.TOT
CU  TOT
DATE TIME

DATE
TIME
MG/L
MG/L
MG/L
ML/L
MG/L
UG/L
UG/L
UG/L
730618 1145
(C)
730619
0830
140
93
66
40
115.0
20K
50K
28
730619 0330
(C)
730620
0815
137
92
62
18

20K
50K
24
730620 0815
(CI
730621
0730
725
41
23
IK
10.0
20K
50K
20
730618











NUM0EP



3
3
3
3
?
3
3
3
MAXIMUM



725
93
66
40
1 15.0
20K
50K
28
MINIMUM



137
41
23
IK
10.0
20K
50K
20
MEAN



334
75
50

62.5


24
730621















01051
0 1067
01092
50050
00010
00400
32730





I EAD
NICKEL
ZINC
CONDUIT
WATER
PH
PHENOLS





PB.TOT
NI tTOTAL
ZN t TOT
ELOw
TEMP

TOTAL

DATE TIME

DATE
T I ME
UG/L
UG/L
UG/L
MGD
CENT
SU
UG/L



730618
0900




40.0
9.3
400



730619
0 8 30




40.5
7.0
25

730618 1145
(C)730619
0830
100K
50 K
56
54.330






730619
1015




40.5
6.8




730620
0815




40.5
6.8


730619 0 8 30
(C> 730620
0815
100K
50K
405
51.090


42

730620 0815
(C)730621
0730
147
50K
33
55.830






730621
0830




38.5

13

730618











NUMBER



3
3
3
3
5
4
4

MAXIMUM



147
50K
405
55.830
40.5
9.3
400

MINIMUM



100K
50 K
33
51.090
38.5
6.8
13

MEAN





165
53.750
40.0
7.5
1 2r>

730621












-------
APPENOIX E-2I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - S-001	CHICKASAW CK-SCOTT WASTE TRT SYS




00610
00630
00635
00665
00080
31505
31615




NH3-N
NO2&N03
NH3&ORG
PHOS-TOT
COLOR
TOT COL I
FEC COL I




TOTAL
N-TOTAL
N-TOTAL

PT-CO
MPN CONF
MPNECMED
DATE TIME

DATE
TIME
MG/L
MG/L
MG/L
MG/L P
UNITS
/ 100ML
/1OOML


730618
0 90 0





700
400


730618
1 130





400
200K


730618
1315





200K
20 OK


730619
1515





3300
1300


730619
0830





17000
11000
730618 1145
(C)
i 730619
0830
1 .63
0.010
2.68
5. 10





730619
1015





14000
7000


730619
1230





2300
2300


730619
1500





7900
1700


730620
0815





7000
2800
730619 0830
(C)
i 730620
0815




1000




730620
10 30





33000
110


730620
1230





17000
7000


730620
1430





130000
2200
730620 0815
(C)
730621
0730
0.48
0.010K
4.05
3.40
700


730618










NUMBER



2
2
2
2
2
12
12
MAXIMUM



1 .63
0.010
4.05
5.10
1000
130000
11000
MINIMUM



0.48
0.010K
2.68
3.40
700
200K
1 10K
MEAN



1.05

3.36
4.25
850


730621











-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - S-002
CHICKASAW CK-SCOTT BLEACH PLANT




00310
00340
00403
00410
00435
00500
00505




BOO
COO
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE




5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DATE TIME

DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
730619 1050
(CI
l730620
0840
90.0
321
2.4
0
300
1358
558
730620 0040
(CI
l 730621
0845
62.0
265
2.4
0
300
1266
624


730622
0840

297
2.4
0
300
1788
980
730619










NUMBER



2
3
3
3
3
3
3
MAX IMIJM



90.0
321
2.4
0
300
1788
980
MINIMUM



b2 . 0
265
2.4
0
300
1266
558
MEAN



76.0
294
2.4
0
300
1471
721
730622














00515
00520
00530
00535
00545
00680
01027




RESIDUE
RESIDUE
RESIDUE
RESIDUE
RESIDUE
T ORG C
CADMIUM




DISS-105
VOL ELT
TOT NELT
VOL NELT
SETTLBLE
C
CD.TOT
DATE TIME

DATE
T I ME
C MG/L
MG/L
MG/L
MG/L
ML/L
MG/L
UG/L
730619 1050
(C)
i 730620
080
1340
540
18
18
IK
121.0

730620 0840
(C)
730621
0845
1234
602
32
22
IK
112.0
20K


730622
0840
1770
967
18
13
IK
146.0

730619










number



3
3
3
3
3
3
1
MAXIMUM



1 770
967
32
22
IK
146.0

MINIMUM



1234
540
18
13
IK
1 12.0

MEAN



1 448
703
23
18

126.3

73062?














01034
0 1042
01051
0 1067
01092
50 0 50
000 10




CHROMIUM
COPPER
LEAD
NICKEL
ZINC
CONDUIT
WATER




CR.TOT
CU.TOT
PB.TOT
NI.TOTAL
ZNTOT
ELO *
TEMP
DATE TIME

DATE
T I ME
UG/L
UG/L
UG/L
UG/L
UG/L
MGD
CENT


730620
0840






35.0
730619 1050
(C)
730620
0840





6.050



730621
0845






36.0
730620 0840
(C)
730621
0845
50K
20*
100K
50 K
65
5.830



730622
0840
20 K




5.920
37.5
730621 0845
(C)
730622
0840





5.920

730619










NUMBER



2
1
1
1
1
4
3
MAXIMUM



50t\




6.050
37.5
MINIMUM



20K




5. 330
35.0
mean
7 30 62?
5.930
3b. ?

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - S-002	CHICKASAW CK-SCOTT BLEACH PLANT



00400
32730
00610
00630
00635
00665
00080



PH
PHENOLS
NH3-N
N02&N03
NH3&ORG
PHOS-TOT
COLOR




TOTAL
TOTAL
N-TOTAL
N-TOTAL

PT-CO
DATE TIME
DATE
TIME
SU
U6/L
MG/L
MG/L
MG/L
MG/L P
UNITS

730620
0 840
2.5






730619 1050
(C)730620
0840

22
0.43
0.090
0.25
0.60
75

730621
0845

57





730620 0840
(C)730621
0845


0.22
0.0 70
0.40
0.70
65

730622
0840
2.b
24
0.16
0.080
4,64
0.50
60
730619









NUMBER


2
3
3
3
3
3
3
MAXIMUM


2.6
57
0.43
0.090
4.64
0.70
75
MINIMUM


2.5
22
0.16
0.070
0.25
0.50
60
MEAN


2.5
34
0.27
0.080
1.76
0.60
67
730622










-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA





MOBILE RIVER
AND TRIBUTARIES




STATION - S-
004

CHICKASAW CK
-SCOTT WTP
SIORM SEW










00310
00340
00403
00410
00435
00500
00505
00515
00520




BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIOUE
RESIDUE
RESIDUE




5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
VOL FLT
DATE TIME

DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L
730618 0945
(c:
1730619
0945
23.0
625
6.6
59
10
1401
481
225
98
730619 0945
(c:
1 730620
0925
20 .OK

6.0
14
24
748
344


730620 0925
ic:
1 730621
0931
40.OK
40 7
6.5
16
27
1380
464
282
75
730618












NUMBER



3
2
3
3
3
3
3
2
2
MAX IMUM



23.0
625
6.6
59
27
1401
481
282
98
MINIMUM



20.OK
407
6.0
14
10
748
344
225
75
MEAN




516
6.4
30
20
1 176
430
254
87
730621
















00530
00535
00545
00680
01027
0 1034
0 104?
0 1051
0 1067




RESIDUE
RESIDUE
RESIDUE
T ORG C
CADMIUM
CHROMIUM
COPPER
LEAD
NICKEL




TOT NFLT
VOL NFLT
settlble
C
CO,TOT
CR.TOT
CU.TOT
PB,TOT
NI.TOTAL
DATE TIME

DATE
TIME
MG/L
MG/L
ML/L
MG/L
UG/L
UG/L
UG/L
UG/L
UG/L
7 301 8 0 945
(C)
730619
0945
1 176
383
40L
190.0
20K
217
190
10 0 K
50K
730619 0945
(C)
730620
0925
928
312
40L

20K
50K
105
100K
50K
730620 0925
(C)
730621
0931
1098
389
40L
170.0
20K
100
93
100K
50 K
730618












NUMBER



3
3
3
2
3
3
3
3
3
MAX I MUM



1 176
389
40L
190 .0
20K
217
190
100K
50K
MINIMUM



928
312
40L
170 .0
20K
50K
93
100K
50K
mean



1067
361

180.0


129


730621
















0 1092
50 050
000 10
00^00
0 0 6 1 0
00 630
00635
00665





Z INC
CONDUIT
WATER
PH
NH3-N
N025.N03
NH3&ORG
PHOS-TOT





ZN.TOT
FLUW
TEMP

TOTAL
N-TOT Al
N-TOT AL


OATE time

DATE
T I ME
UG/L
MGD
CENT
SU
MG/L
MG/L
MG/L
MG/L P



730618
0945


27.0
7.8







730619
0945


31.0
5.6





7J0618 0 94 5
(C)
730619
0945
180
2.880


1.81
0.080
5.28
5.60



730620
0925


o
OJ
6.4





730619 0945
(C)
730620
0925
80
2. 790









730621
0931


26.5






730620 0925
(C)
730621
0931
88
2.750


1 .30
0.080
4.89
0.71

730618












NUMBER



3
3
4
3
2
2
2
2

MAXIMUM



180
2. 880
31.0
7.8
1.81
0.080
5.28
5.80

MIN [MIjH



80
2. 750
24.0
5.6
1 .30
0 . 080
4 .89
0.71

Mf an



I 16
2.807
2 7.1
6.6
l t - :
J. ?a0
5.oa
J. 25

730621













-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - S-003
CHICKASAW CK-SCOTT PULP MILL
DATE
TIME
DATE
T I ME
00310
BOD
5 DAr
MG/L
00 340
COO
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACQ[T Y
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L
730618	1210 (C)730619 0930	66.0
730619	0930 (C)730620 0915	71.0
730620	0915 (CI730621 1010	44.0
183
336
249
8.3
10.2
9.8
58
156
60
249
694
400
188
326
190
176
672
325
730618
NUMBER
MAX I Ml JM
MINIMUM
MEAN
730621
3
71.0
44.0
60.3
3
336
183
256
3
10.2
8.3
9.4
3
156
58
91
3
694
249
448
3
326
188
235
3
672
176
391
DATE
TIME
DATE
T I ME
00520
RESIDUE
VOL FlT
MG/L
00530
RESIDUE
TOT NFL I
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
T ORG C
C
MG/L
50050
CONDUIT
FLOW
MGD
000 10
WATER
TEMP
CENT
00400
PH
SU
730618	1040
730619	0930
730618	1210 (C)730619 0930
730620	0915
730619	0930 (C)730620 0915
730621	1010
730620	0915 (0 730621 1010
115
306
121
73
22
75
73
20
69
8
5
11
66.0
180 .0
70.0
0. 160
0.400
0.230
29.5
29.5
28.0
29.5
8.7
9.5
9.7
730618
NUMBER
MAXI MUM
MINIMUM
MEAN
730621
3
306
115
181
3
75
22
57
3
73
20
54
3
1 1
5
8
3
180.0
.66.0
105.3
3
0 .400
0 . 160
0 . 263
4
29.5
2H.0
29. 1
3
9.7
8. 7
9.3

-------
APPENDIX E-1 I
INDUSTRIAL WASTE SOURCE DATA
MOBILE HIV EH AND TRIBUTARIES
STATION - S-007
CHICKASAW CK-SCOTT CEN. MILL DRN
DATE
TIME
DATE
TIME
00310
BOD
5 DAY
MG/L
00340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
O0410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L
730619	0905
730620	0B55
730621	0910
13.0
8.OK
8.OK
23
16
17
6.6
7.0
6.9
10
24
10
77
170
140
26
36
56
74
167
130
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
13.0
8.OK
3
23
16
19
3
7.0
6.6
6.8
3
24
10
15
3
170
77
129
3
56
26
39
3
167
74
124
DATE TIME
DATE
TIME
00520
RESIDUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFL T
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00660
ORG C
C
MG/L
50050
CONDUIT
FLOW
MGD
00010
WATER
TEMP
CENT
00400
PH
SU
730619	0905
730620	0855
730621	0910
25
35
55
3
3
10
IK
IK
IK
8.0
6.0
10.0
0.810
0.810
0.810
35.0
35.0
35.0
7.3
6.9
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730621
3
55
25
38
3
10
3
5
3
IK
IK
3
10.0
6.0
8.0
3
0.810
0.610
0.810
3
35.0
35.0
35.0
2
7.3
6.9
7. 1

-------
APPENDIX E-11
INDUSTRIAL WASTE SOURCE DATA
MOBILE river and tributaries
STATION - S-005	CHICKASAW CK-SCOTT W MILL STM DN




00310
00340
00403
00410

00435
00500
00505
00515




BOD
COD
LAB
T ALK
T
ACDITY
RESIDUE
RESIDUE
RESIDUE




5 DA*
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-101
DATE TIME

DATE
TIME
MG/L
MG/L
SU
MG/L

MG/L
MG/L
MG/L
C MG/L
73061a 1015
(C)
' 730619
1000
127.0
330
4.7
10

38
842
418
740
730619 1000
(C)
730620
0 945
134.0
387
3.2
0

108
1106
534
1040
730621 0945
(C)
730622
0900

321
3.2
0

125
1076
311
946
730618












NUMBER



2
3
3
3

3
3
3
3
MAXIMUM



134.0
387
4.7
10

125
1 106
534
1040
MINIMUM



127.0
321
3.2
0

38
842
31 1
740
MEAN



130.5
346
3.7
3

90
1008
421
909
730622
















00520
00530
00535
00545

00680
50050
000 10
00400




RESIDUE
RESIDUE
RESIDUE
RESIDUE
T
ORG C
CONDUIT
rfATER
PH




VOL ELT
TOT NFLT
VOL NFLT
SETTLBLE

C
flow
TEMP

DATE TIME

DATE
T I ME
MG/L
MG/L
MG/L
ML/L

MG/L
MGD
CENT
SU


730618
10 15







30.0
4. 1


730619
1000







35.5
3. 1
730618 1015
(C)
730619
1000
336
102
82
IK

108.0
1.070




730620
0945







32.0
2.3
730619 1000
(C)
730620
0945
475
66
59
22

125.0
0.760




730621
0 945







32.0



730622
0900







32.0
4.5
730621 0945
(C)
730622
0900
190
130
121
18

180.0
1 . 160


730618












KJMbE->



3
3
3
3

3
3
5
4
MAXIMUM



475
130
121
22

180 .0
1. 160
35.5
4.5
MINIMUM



190
66
59
IK

108.0
0.760
30.0
2.3
MEAN



334
99
87


137. 7
0.997
32.3
3.5
730622













-------
APPENDIX E-I I
INDUSTRIAL WASTE SOURCE DATA
MOBILE klVER AND TRIBUTARIES
STATION - SC-001	THREEMILE CK-STONE CONTAINER WTS




0 0 3 1U
00340
UO403
00410

00435
00500
00505
00515




BOD
COD
LAB
T ALK
T
ACDITY
RESIDUE
RESIDUE
RESIDUE




5 DAV
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
DATE
TIME
DATE
T I ME
MG/L
MG/L
SU
MG/L

MG/L
MG/L
MG/L
C MG/L
730619
1200
(C)730620
10 30
525.0
1193
6.2
122

38
1397
553
739
730620
1030
(C)730621
1045
540.0
1010
6.3
132

31
1458
644
1313
730621
1030
(C)730622
1015

538
6.5
150

32
1362
584
1150
730619












NUMBER


2
3
3
3

3
3
3
3
MAXIMUM


540.0
1 193
6.5
150

38
1458
644
1313
MINIMUM


525.0
538
6.2
122

31
1362
553
739
MEAN


532.5
914
6.3
135

34
1406
594
1067
730622
















00520
00530
00535
00545

00680
0 1027
0 1034





RESIDUE
RESIDUE
RESIDUE
RESIDUE
T
ORG C
CADMIUM
CHROMIUM





VOL FLT
TOT NFLT
VOL NFLT
SETTLBLE

C
CD.TOT
CR t TOT

DATE
T I me
DATE
TIME
MG/L
MG/L
MG/L
ML/L

MG/L
UG/L
UG/L

730619
1200
(C)730620
10 30
227
658
326
IK

410.0
20K
50K

730620
1030
(C)730621
1045
536
145
108
IK

38.0
20K
50K

730621
1030
(C)730622
10 15
<~46
212
13B
IK

400.0

25

730619












NUMBER


3
3
3
3

3
2
3

MAXIMUM


536
658
326
IK

410.0
20K
50

MINIMUM


227
145
108
IK

38.0
20K
25K

ME AN


403
330
191


282.7



730682



0 1042
01051
0 1067
01092
50050
000 10
00400



COPPER
LEAD
NICKEL
ZINC
CONDUIT
WATER
PH



CU.TOT
Pd.TOT
NJ.TOTAL
ZN.TOT
FLOW
TEMP

DATE TIME
DATE
T I ME
UG/L
UG/L
UG/L
UG/L
MG0
CENT
SU

730619
1230





31.0
5.6

730620
1030





27.0
6.2
730619 1200
(C)730620
1030
48
173
50*
639
0.003



730621
1 0^5





30.0
6. 1
730620 1030
(C)730621
1045
4 J
1 79
50K
595
0.003



730622
10 15





28.5
6.3
730621 1030
(C)730622
10 15




0.003


730619









NUMBER


2
2
2
2
3
4
4
MAX IMOM


48
179
50K
639
0.003
31.0
6.3
MINIMUM


43
173
50K
595
0.003
27.0
5.6
MEAN


46
176

617
0.003
29. 1
6.0
730622










-------
STATION - SC-001
THREEMILE
DATE
TIME
DATE
T I ME
32730
PHENOLS
TOTAL
UG/L
730619	1230
730620	1030
730619	120 0 (C)7 30 620	1030
730620	1300
730620	1 SO 0
730621	0730
730621	1045
730620	1030 (C)730621	1045
730621	1100
730621	1300
730621	1500
7J0622	0730
730622	1015
730621	1030 (C)7 30 622	1015
184
245
224
235
7 301 9
NUMHt-J
MAX 1MjM
MINIMUM
MEAN
7 30 0 22
245
184
222
APPENDIX E-11
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STONE CONTAINER TS
00610	0O630
NH3-N	N025.N03
TOTAL	N-TOTAL
MG/L	MG/L
00635	00665
NH36.ORG	PHOS-TOT
N-TOTAL
MG/L	MG/L P
31505	31615
TOT COL I	EEC COLI
MPN CONF MPNECMED
/100ML	/1OOML
0.18	0.050
9.15	0.64
170000	79000
220000	7000
220000	11000
170000	7900
170000	49000
C.24	0.010	9.30
0.10	0.010K	4.38
3 3	3
0.24	0.050	9.30
(1.10	0.010K	4.3d
0.17	7.61
0.60
350000	46000
350000	11000
350000	22000
540000	79000
350000	79000
0.40
3 10	10
0.64 540000	79000
0.40 170000	7000
0.55 269000	39090

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION
sc-002
THREEMILE CT-STONE CONT COOL H20



00310
00340
00403
00410
00435
00500
00505
00515
00520



BOD
COD
LAH
T ALK
T ACD1TY
RESIDUE
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
VOL FLT
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L

730619
1 145
5.0
15
5.4
25
12
121
170
56
150

730620
1030
6.0
22
6 . 4
26
12
118
49
117
48

730621
1040
a.OK
5
6.5
25
17
192
60
187
59

730622
1000

4K
6.7
29
24
82
20
82
20
730619











NUMBER


3
4
4
4
4
4
4
4
4
MAXIMUM


6.(1
22
6.7
29
24
192
170
187
150
MINIMUM


5.OK
4K
5.4
25
12
82
20
56
20
MEAN




6.2
26
16
128
75
11 1
69
7 30 622














0053U
00535
005h5
00680
00010
00400
50051
00080




RES[DUE
RESIDUE
RESIDUE
T ORG C
WATER
PH
FLOW
COLOR




TOT NFLT
VOL NFLT
SET TLHLE
C
TEMP

RATE
PT-CO

DATE TI^F
DATE
T IMF
MG/L
MG/L
ml/L
MG/L
CENT
SU
INST MGD
UNITS


730619
1 145
65
20
IK
6.0
49.0
6.3
0. 100
55


730620
1030
1
1
IK
4.0
52.0
6.4
0.100



730621
1 040
5
1
IK
4.0
50.0
6.1
0.100



730622
1000
1 r\
IK
IK
2.0
45.0
6. 1
0.100


730619











NUMtiEW


4
4
4
4
4
4
4
1

MAX I MUM


65
20
IK
6.0
52.0
6.4
0. 100


MINI -1UM


lr<
IK
IK
2.0
*<5. 0
6. 1
0.100


MEAN





4.0
49.0
6.2
0.100


73un22

-------
APPENDIX E-1 I
INDUSTRIAL HASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - MR-001
THREEMILE CK-MOBILE ROSIN OIL
DATE
TIME
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
73C618
DATE TIME
730618 1400
00310
HOD
5 DAY
MG/L
200.0
1
00340
COD
HI LEVEL
MG/L
351
00403
LAB
PH
SU
7.0
1
00410
T ALK
CAC03
MG/L
132
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
391
00505
RESIDUE
TOT VOL
MG/L
111
00515
RESIDUE
DISS-105
C MG/L
189
00520
RESIDUE
VOL FLT
MG/L
58
DATE
T I ME
DATE
T I ME
73061b 1400
00530
RESIDUE
TOT NFLT
MG/L
202
00535
RESIDUE
VOL NFLT
MG/L
53
00545
RESIDUE
SETTLBLE
ML/L
I
00680
ORG C
C
MG/L
y8.o
00010
WATER
TEMP
CENT
40.0
00400
PH
SU
6.9
50051
FLOW
RATE
INST MGD
0.001K
00550
OIL-GRSE
TOT-SXLT
MG/L
21.0
32730
PHENOLS
TOTAL
UG/L
65
730618
number
MAXIMUM
MINIMUM
MEAN
730618
1

-------
APPENDIX E- 11
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - EC-001	IND. CANAL-EAGLE CHEMICAL CO.
DATE TIME
DATE
TIME
00340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L

730625
730626
1415
1055
4 K
3.6
9.4
0
98
120
0
836
23990
750
204
423
23690
730625
NUMBER
MAXIMUM
MINIMUM
MEAN
730627


2
4K
4K
2
9.4
3.6
6.5
2
98
0
49
2
120
0
60
2
23990
836
12413
2
750
204
477
2
23690
423
12057
DATE TIME
DATE
TIME
00520
RESIDUE
VOL ELT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00 535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
T ORG C
C
MG/L
0 1027
CADMIUM
CO.TOT
UG/L
01034
CHROMIUM
CR.TOT
UG/L
730625 1M6
730625
730626
(C)730626
14 15
1055
10 56
106
172
413
298
44
32
IK
IK
1 .OK
1.0
30
40K
7 301>25
number
MAXIMUM
MINIMUM
MEAN
730 627


2
172
106
139
2
413
298
35b
2
<+4
32
38
2
IK
IK
2
1.0
1 .OK
1
1
DAT E TIME
DATE
T I ME
01042
COPPER
CU. TOT
UG/L
01051
LEAD
PH.TOT
UG/L
0 1067
N rCKEL
NI,TOTAL
UG/L
01092
L INC
ZN.TOT
IJG/L
50050
CONDUIT
FLOW
MG D
00010
WATER
TEMP
CENT
00400
PH
SU
730625 1416
730625
730626
(C)7 30to26
730627
1415
10 55
1056
0820
70
290
130
170
0.010
0.010
0.0 10
41.0
42.0
39.0
3.6
9.2
9.2
730625
NUMBER
MAX IMUM
MINIMUM
ME AN
730627


1
1
1
1
3
0.0 10
0.0 10
0.010
3
42.0
39.0
40.7
3
9.2
3.6
7.3

-------
APPENDIX E.-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND T PI8UIARIES
STAT ION - GC-001
THREEMILE CK-GULEPORT CREOSOTING
date
T I ME
DATE
T I ME
003 1 0
BOO
5 DAY
MG/L
0 0 340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDlTf
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
UES I DUE
TOT VOL
MG/L
730618	0755
730619	0755
730620	0755
2115.0
1700.0
1750 .0
3220
3330
3524
4.8
4.7
4.7
162
137
116
394
725
425
1227
1 377
1 309
832
947
884
730618
NIJMHEP
MAX I MUM
MINIMUM
E A N
730620
3
21)5.0
1 700 .0
1855.0
3
3524
3228
3377
3
4.8
4.7
4.7
3
162
1 16
138
3
725
394
515
3
1377
1227
1304
3
947
832
888
DATE
T I ME
DATE
T IMt
005 1 5
RESIDUE
DISS-105
C MG/L
00520
RESI DUE
VOL ELT
MG/L
00530
PES!DUE
TOT MELT
MG/L
00535
RESIDUE
VOL NELT
MG/L
00545
RES IDUE
SET TLBLE
ML/L
00680
T ORG C
C
MG/L
7 3061H 0755
7 30 6 19 0755
730620 0755
966
1216
1171
70 4
a 20
752
2b 1
161
1 38
128
127
1 32
1
IK
IK
1265.0
1290.0
1280.0
7 30 1 8
NUMBER
MAX 1MUM
M[NI MUM
MEAN
7301>20
3
1216
966
1118
3
H20
/ 0 4
759
3
261
1 38
187
3
132
127
129
3
1
IK
3
1290.0
1265.0
1278.3
da T t
T IVE
DATE
T IMt
0 0 0 1 0
WATER
TEMP
CENT
0 0 4 0 0
PH
su
50051
ELOW
PATE
if'isr mod
00 550
OIL-GRSE
I0T-S*LI
MG/L
32730
PHENOLS
TOTAL
UG/L
00080
COLOR
PI - CO
un i rs
730ol8 0 755
730619	0755
730620	0755
28.0
29.5
29.5
^ , b
4.5
0.005
0.005
0.005
10.0
! 2.0
5,0k
39300
31000
375
730618
NUM3ER
MAX I MUM
MINIMUM
ME AN
730620
3
29.5
28 .0
29.0
3
4.6
'..5
4.5
3
0.005
0 .005
0.005
3
12.0
5. OK
2
39300
31000
35150

-------
APPENIjIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVEP AMD TRIBUTARIES
STATION - A-001	MOBILE R-ALCOA PLANT EFFLUENT
DATE
TIME
DATE
T IMF
0031 0
BOD
5 DAY
MG/L
00 340
COD
HI LEVEL
MG/L
00*03
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITr
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
730618
730619
730620
0950
0831
0820
(C)730618
(C)730619
(C)730620
10 35
0915
0915
44.0
34.0
124
156
124
11.2
5.9
8.8
625
84
206
0
92
0
1248
2290
1395
301
316
128
730618
number
MAXIMUM
MINIMUM
mean
730620


2
44.0
34.0
39.0
3
156
124
135
3
11.2
5.9
8.6 '
3
625
84
305
3
92
0
31
3
2290
1248
1644
3
316
128
248
DATE
T I ME
DATE
T [ME
00515
RES I DUE
DISS-105
C MG/L
C 0 520
RES I DUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
T ORG C
C
MG/L
0 1027
CADMIUM
CD.TOT
UG/L
73061B
730619
7 30 620
7 30 b 1 8
0 950
0831
0 820
0 9b 1
(C)730616
(C)730619
(C)730620
(C)730620
1035
0915
0915
0916
1 196
1 756
1 141
290
264
36
52
53*
25*
1 1
152
92
IK
40L
54.0
60.0
42.0
20 K
730618
NUMBER
MAXIMUM
MINIMUM
"FAN
730620


3
1 756
1 141
136^*
3
290
3b
197
3
534
52
280
3
152
1 1
h5
2
40L
IK
3
60.0
42.0
52.0
1
DATE
TIME
DATE
T 1 ME
0 10 3*
CHROMIUM
CR.TOT
UG/L
0 1 0*2
COPPER
CU.TOT
UC-/L
0 10^1
LEAD
PH.TOT
wG/L
0 1067
NICKEL
NI.TOTAL
UG/L
0 1092
ZINC
ZN.TOT
UG/L
50050
CONDUIT
flow
mgr

730618
730619
730620
730618
0 950
0831
0820
0951
(C) 7306 1 S
(C)730619
(C) 7301>20
(C)730620
10 35
0915
0915
0916
100
20
LOOK
90
20
0 . 800
0.900
0.800

730618
NUMBEP
MAXIMUM
MINIMUM
MEAN
730620


1
1
1
1
1
3
0.800
0 . 800
0.80 0


-------
APPENDIX f- I I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVFR AND TRIBUTARIES
STATION - A-001A
mohile r-alcoa PUMP c discharge
OA ft
T IMF
fiATE
7 I ME
000 10
WATER
TEMP
CENT
OO'iOO
PH
su
S00S1
flow
RATE
INST MGD
730MR 1010
7 30 61') 0859
730620 0 820
30 .0
27.0
26.0
11.2
11.7
11 .a
0.230
0.230
0.230
730618
NtJMHEP
MAX IMIJM
MINIMUM
MEAN
730620
3
30.0
?6.y
27. I
3
11.8
11.2
11.6
3
0.230
0.230
0.230

-------
APPENDIX E-I I
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - A-001B
MOBILE R-ALCOA PRESS LEAF DISCH.
DATE TIME
DATE
TIME
OOOlO
WATER
TEMP
CENT
OO^OO
PH
SU
50051
flow
RATE
INST MGO
730618	0950
730619	0845
28.0
39.0
2. 1
0.9
0.014
0.014
730618
number
MAX I MUM
MINIMUM
MEAN
730619
2
39.0
28.0
33.5
2
2. 1
0.9
1.5
2
0.014
0.014
0.014

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - A-001C
MOBILE R-ALCOA PUMP B DISCHARGE.
DATE
T I ME
DATE
T I ME
000 10
WATER
temp
CENT
00^00
PH
SU
50051
FLOW
RATE
INST MGD
730618	1015
730619	0900
730620	0835
31 .0
29.0
29.0
9.6
9.7
9.3
0 .200
0 .200
0 .200
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
3
31.0
28.0
29.3
3
9.7
9.3
9.5
3
0 .200
0 .200
0 .200

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - A-001D
MOBILE R-ALCOA POWER HOUSE OISCH
DATE
TIME
DATE
TIME
00010
WATER
TEMP
CENT
00400
PH
SU
50051
FLOW
RATE
INST MGU
730618	1025
730619	0915
730620	0845
65.5
53.0
51.0
6.4
8.2
8.6
0.500
0.500
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
3
65.5
51.0
56.5
3
8.6
8.2
8.4
2
0.500
0.500
0.500

-------
APPENDIX E-ll
INDUSTRIAL WASTE SOUWCE DATA
MOBILE RIVER ANO TRIBUTARIES
STATION - A-001E
MOBILE R-ALCOA HEATEH ACID DISCH
DATE
TIME
OATE
TIME
00010
WATER
TEMP
CENT
00400
PH
SU
S0051
FLOW
RATE
INST MGO
730619	0831
730620	0050
41 .0
39.0
1.6
1.0
0 .002
730619
NUMBER
MAXIMUM
MINIMUM
MEAN
730630
2
41.0
39. 0
40.0
Z
1.6
1.0
1.3

-------
APPENDIX E-11
STATION - IC-
001

INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
MOBILE R-1 DEAL CEM. PRO. WST&.SEW







00310
00340
00403
00410
00435
00500
00505
00515
00520



BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
VOL FLT
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L

730618
0900
20.OK
22
9.0
124
0
812
95
812
95

730619
0935
8.OK
31
8.8
1 70
0
893
182
815
174

730620
0930
20.OK
46
8.9
104
0
683
66
651
60
730618











NUMBER


3
3
3
3
3
3
3
3
3
MAXIMUM


20.OK
46
9.0
170
0
893
182
815
174
MINIMUM


8.OK
22
8.8
104
0
683
66
651
60
MEAN



33
8.9
133
0
796
114
759
110
730620














00530
00S35
00545
00680
50050
00010
00400
31505



RESIDUE
RESIDUE
RES IDUE
T ORG C
CONDUIT
WATER
PH
TOT COL I



TOT NFLT
VOL NFLT
SETTLBLE
c
FLOW
TEMP

MPN CONF
DATE TIME
DATE
T I ME
MG/L
MG/L
ML/L
MG/L
MGD
CENT
SU
/100ML

730618
0900
IK
IK
1
7.0
0.830
32.0
8.8
350000

730619
0935
78
8
IK
10.0
0.830
32.0
8.9
700000

730620
0930
32
6
IK
6.0
0.830
28.0
8.6
70000
730618










NUMBER


3
3
3
3
3
3
3
3
MAXIMUM


78
8
1
10.0
0.830
32.0
8.9
700000
MINIMUM


IK
IK
IK
6.0
0.830
28.0
8.6
70000
MEAN





7.7
0.830
30.7
8.8
373333
31615
FEC COL I
MPNECMED
/100ML
17000
79000
17000
3
79000
17000
37667
730620

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - A-001F
MOBILE R-ALCOA PUMP A DISCHARGE
DATE TIME
DATE
TIME
730618	1035
730619	0905
730620	0915
00010
WATER
TEMP
CENT
30.0
28.0
27.0
00400
PH
SU
11.8
12.2
12.4
50051
FLOW
RATE
INST MGO
0.057
0.057
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
3
30.0
27.0
28.3
3
12.4
11.8
12.1
2
0.057
0.057
0.057

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - IC-002
MOBILE R-IDEAL CEMENT PROC. WST.
DATE
TIME
DATE
TIME
00310
BOD
5 DAY
MG/L
00340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS- 105
C MG/L
730618	0915
730619	0930
730620	0925
8.OK
8.OK
20.OK
108
58
85
12.9
12.2
12.5
1050
825
6580
7097
6138
72
337
243
6280
6643
5695
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
3
20.OK
8.OK
3
108
58
84
3
12.9
12.2
12.5
2
1050
825
938
3
7097
6138
6605
3
337
72
217
3
6643
5695
6206
DATE
TIME
DATE
TIME
00520
RESIDUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
ORG C
C
MG/L
00010
WATER
TEMP
CENT
00400
PH
SU
50051
FLOW
RATE
INST MGD
730618	0915
730619	0930
730620	0925
57
322
200
300
454
453
15
15
43
7
15
35
4.0
4.0
24.0
26.0
26.0
26.0
12.0
11.2
12.2
0.260
0.080
0.080
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
3
322
57
193
3
454
300
402
3
43
15
24
3
35
7
19
3
24.0
4.0
10.7
3
26.0
26.0
26.0
3
12.2
11.2
11.8
3
0.260
0.080
0.140

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - CA-001
MOBILE R-CHEVRON ASPHALT COMPANY
DATE
TIME
DATE
TIME
00310
BOD
5 DAY
MG/L
00340
COD
HI LEVEL
MG/L
00403
LAB
PH
SU
00410
T ALK
CAC03
MG/L
00435
T ACDITY
CAC03
MG/L
00500
RESIDUE
TOTAL
MG/L
00505
RESIDUE
TOT VOL
MG/L
00515
RESIDUE
DISS-105
C MG/L
730618 1300
730620 1000
20.0
20.OK
17
23
6.5
7.1
34
36
12
2
261
311
63
74
201
284
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
2
20.0
20.OK
2
23
17
20
2
7.1
6.5
6.8
2
36
34
35
2
12
2
7
2
311
261
286
2
74
63
69
2
284
201
243
DATE
TIME
DATE
TIME
00520
RESIDUE
VOL FLT
MG/L
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00545
RESIDUE
SETTLBLE
ML/L
00680
T ORG C
C
MG/L
00010
WATER
TEMP
CENT
00400
PH
SU
730618	1300
730619	1000
730620	1000
27
54
60
27
36
20
IK
IK
10.0
10.0
29.0
28.0
27.0
7.2
6.6
6.8
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
2
54
27
41
2
60
27
44
2
36
20
28
2
IK
IK
2
10.0
10.0
10.0
3
29.0
27.0
28.0
3
7.2
6.6
6.9
DATE
TIME
730618
NUMBER
MAXIMUM
MINIMUM
MEAN
730620
DATE
TIME
730618	1300
730619	1000
730620	1000
50051
FLOW
RATE
INST MGD
1.310
1.310
1.310
3
1.310
1.310
1.310
00550
OIL-GRSE
TOT-SXLT
MG/L
5.OK
5.OK
9.0
3
9.0
5.OK
32730
PHENOLS
TOTAL
UG/L
5K
20
133
3
133
5K
00610
NH3-N
TOTAL
MG/L
0.03
0.10
2
0.10
0.03
0.06
00630
N02&N03
N-TOTAL
MG/L
0.260
0.270
2
0.270
0.260
0.265
00635
NH3S.ORG
N-TOTAL
MG/L
0.36
0.40
2
0.40
0.36
0.38
00665
PHOS-TOT
MG/L P
0.11
0.11
2
0.11
0.11
0.11

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - AW-001	MOBILE BAY-ALA. WOOD PRE. RE.SYS



00310
00340
00403
00410
00435
00500
00505
00515
00520



BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
VOL FLT
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L

730619
1420
1132.0
936
4.9
48
40
1011
786
599
578

730621
0830
1216.0
3059
4.8
46
125
1168
802
876
547
730619











NUMBER


2
2
2
2
2
2
2
2
2
MAXIMUM


1216.0
3059
4.9
48
125
1168
802
876
578
MINIMUM


1132.0
936
4.0
46
40
1011
786
599
547
MEAN


1174.0
1998
4.8
47
83
1090
794
738
563
730621














00530
00535
00545
00680
00010
00400
50051
00550
32730



RESIDUE
RESIDUE
RESIDUE
T ORG C
WATER
PH
FLOW
OIL-GRSE
PHENOLS



TOT NFLT
VOL NFLT
SETTLBLE
C
TEMP

RATE
TOT-SXLT
TOTAL
DATE TIME
DATE
TIME
MG/L
MG/L
ml/l
MG/L
CENT
SU
INST MGD
MG/L
UG/L

730619
1420
412
208
40L
956.0
34.0
4.3
0.010
370.0
148000

730621
0830
292
255
IK
1120.0


0.010
322.0
122000
730619











NUMBER


2
2
2
2
1
1
2
2
2
MAXIMUM


412
255
AOL
1120.0


0.010
370.0
148000
MINIMUM


292
208
IK
956.0


0.010
322.0
122000
MEAN


352
232

1038.0


0.010
346.0
135000
730621

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - AW-002	MOBILE BAY-ALA. WOOD COND. WATER



00310
00340
00403
00410
00435
00500
00505
00515
00520



BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
VOL FLT
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
MG/L

730618
0800
15.0
8
8.8
30
0
152
66
149
66

730619
1430
8.OK
4
7.6
14
1
128
14
73
3

730620
1330
1 1.0
14
7.3
15
1
164
34
164
34
730610











NUMBER


3
3
3
3
3
3
3
3
3
MAX IMUM


15.0
14
8.8
30
1
164
66
164
66
MINIMUM


8.OK
4
7.3
14
0
128
14
73
3
MEAN



9
7.9
20
1
148
38
129
34
730620














00530
00535
00545
00680
00010
00400
50051
00550
32730



RESIDUE
RESIDUE
RESIDUE
T ORG C
WATER
PH
FLOW
OIL-GRSE
PHENOLS



TOT NFLT
VOL NFLT
SETTLBLE
C
TEMP

RATE
TOT-SXLT
TOTAL
DATE TIME
DATE
TIME
MG/L
MG/L
ml/l
MG/L
CENT
SU
INST MGD
MG/L
UG/L

730618
0800
3
IK
IK
1.0
29.0
6.8
0. 130
5.OK
565

730619
1430
55
1 1
IK
3.0
30.0
7.4
0. 130
5.OK
51

730620
1330
IK
IK
IK
6.0
32.0
6.9
0.130
5.OK
95
730618











NUMBER


3
3
3
3
3
3
3
3
3
MAXIMUM


55
] 1
IK
6.0
32.0
7.4
0. 130
5.OK
565
MINIMUM


IK
IK
IK
1.0
29.0
6.8
0. 130
5.OK
51
MEAN





3.3
30.3
7.0
0.130

237
730620












-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - NG-00I
MOBILE BAY-NATIONAL GYPSUM



00610
00630
0063S
00665
00060
31505
31615



NH3-N
N021N03
NH3&0R6
PHOS-TOT
COLOR
TOT COL I
FEC COL I



TOTAL
N-TOTAL
N-TOTAL

PT-CO
MPN CONF
MPNECMEO
DATE TIME
DATE
TIME
MG/L
MG/L
MG/L
MG/L P
UNITS
/100ML
/100ML

730618
0730





9200000
110000

730616
1000





16000000
79000

730618
1300





24000000L
130000

730618
1500





24000000L
130000

730619
0 740





24000000L
220000
730618 0700
(C)730619
0 740
3.80
0.010
15.10
2.00
747



730619
1000





17000000
130000

730619
1300





4600000
130000

730619
1500





7900000
70000

730620
0730





7900000
33000
730619 0730
(C)730620
0730
4.50
0.010
17.20
2.80




730620
1000





2800000
15000

730620
1300





4600000
14000

730620
1530





3300000
2000
730618









NUMBER


2
2
2
2
1
12
12
MAXIMUM


4.50
0.010
17.20
2.80

24000000L
220000
MINIMUM


3.80
0.010
15.10
2.00

2800000
2000
MEAN


4.15
0.010
16.15
2.40


88583
730620

-------
APPENDIX E-II
INDUSTRIAL WASTE SOURCE DATA
MOBILE RIVER AND TRIBUTARIES
STATION - NG-001	MOBILE BAY-NATIONAL GYPSUM



00310
00340
00403
00410
00435
00500
00505
00515



BOD
COD
LAB
T ALK
T ACDITY
RESIDUE
RESIDUE
RESIDUE



5 DAY
HI LEVEL
PH
CAC03
CAC03
TOTAL
TOT VOL
DISS-105
DATE TIME
DATE
TIME
MG/L
MG/L
SU
MG/L
MG/L
MG/L
MG/L
C MG/L
730618 0700

-------
APPENDIX E-III
SPARK SOURCE SCAN

-------
APPENDIX E-III
SPARK SOURCE SCAN METAL ANALYSIS
ALUMINUM COMPANY OF AMERICA
COMPOSITE
DISCHARGE
Element

Uranium
<1
Thorium
5
Lead
22
Tungsten
24
Praseodymium
1
Neodymium
4
Cerium
9
Lanthanum
3
Barium
30
Molybdenum
780
Niobium
4
Antimony
<1
Silver
<1
Zirconium
53
Strontium
103
Rub id ium
4
Bromine
18
Selenium
<19
Arsenic
107
Gallium
417
Zinc
<83
Copper
31
Nickel
<1000
Cobalt
15
Iron
Off Scale
Manganese
44
Chromium
164
Vanadium
168
Titanium
494
Scandium
50
Calcium
Off Scale
Potassium
II
Chlorine
II
Sulfur
II
Silicon
II
Aluminum
II
Sodium
II
Fluorine
It
Boron
62
*Beryllium
18
*Lithium
4
* - Not Confirmed


-------
APPENDIX E-IV
ORGANIC COMPOUNDS IDENTIFIED

-------
APPENDIX E-IV
ORGANIC COMPOUNDS IDENTIFIED IN
INDUSTRIAL WASTE DISCHARGES
Industry or Source
Organic Compound
Cone.
Found
mR/L
Solubility
Toxicity Data
mg/kg of
Body Weight

Fish
Toxicity
mg/L
Tas te
&
Odor
National Gypsum Co. (NG-001)
,,
di-isopropyl ether
estimated
0.025
miscible^
toxici/
unknown

similar to ethyl ether

n-propanol
estimated
1.1
miscible
oral - human LD^
8 mg/kg
unknown

detection by odor in
water 9 ppm

dehydroabietic acid

insoluble
unknown
unknown

no odor



,,
palmitic acid
estimated
0.13
insoluble
y
practically non-toxic
unknown

no odor
,,
stearic acid
estimated
<0.1
insoluble
practically non-toxic
unknown

no odor
,,
oleic acid
estimated
0.1
insoluble
practically non-toxic
unknown

no odor
International Paper Co. (IP-12)
di-isooctyl phthalate
estimated
0.36
insoluble
unknown
unknown

unknown

camphor

insoluble
1/
moderately toxic
unknown

y
minimum detectable cone
that can be tasted 1.9 mg/L




-------
ORGANIC COMPOUNDS IDENTIFIED AND ENVIRONMENTAL
EFFECTS OF EACH
Cone. Toxicity Data Fish Taste
Found g/kg of Toxicity &
Industry or Source	Organic Compound mg/L Solubility 	Body Weight	mg/L	 	Odor
International Paper Co.(IP-12) pimaric acid
est.
0.640
insoluble
unknown
unknown

no odor
" iso-pimaric acid
est.
0.29
insoluble
unknown
unknown

no odor
" dehydroabietic acid
2.7
insoluble
unknown
unknown

no odor
" Vanillin
est.
1.6
slightly
soluble
1/
low toxicity
unknown

U
odor threshold for water is
0.15 mg/L
" acetovanillon
es t.
0.49
soluble
unknown
unknown

similar to vanillin
" acetosyringone
est.
0.14
soluble in
hot water
unknown
unknown

slight odor




2/

4/
" methyl ethyl ketone
es t.
2.2
soluble
It
oral LD 50 for rats 3.98 gjn
per kg
Bluegill
affected
in cap water @
at 3380 mg/L
3/ 4/
20C visibly detection by odor in water
50 ppm
" methyl propyl ketone 
1/
slightly
soluble
1/
moderately toxic
unknown

unknown

-------
ORGANIC COMPOUNDS IDENTIFIED AND ENVIRONMENTAL
EFFECTS OF EACH
Cone. Toxicity Data Fish
Found mg/kg of Toxicity
	Industry or Source	 Organic Compound	mg/L Solubility 	Body Weight	mg/L	
IS
slightly very toxic - probable lethal dose for
International Paper Co. (IP-12) borneol		soluble humans 50-500 mg/kg	 unknown	
estimated	1/
	"	 diethyl phthalate 0.018	 insoluble moderately toxic by ingestion	 unknown	
estimated
	"	 dibenzyl amine 0.007	 insoluble	unknown	 unknown	
slightly
	"	 fenchyl alcohol 	soluble	unknown	 unknown	
1600 mg/L of colloidal sulfur
in tap water fatal to goldfish 3.5
	" 	 octa sulfur		insoluble relatively non toxic	 to 5.25 hrg^	
practically non toxic - probable
'	palmitic acid 0.17	insoluble lethal dose >15 gm/kg	 unknown
estimated highly toxic by ingestion and
	"	 methyl benzoate 0 . 016	insoluble inhalation^-'	 unknown	
slightly moderately toxic - probable lethal
	"	 Alpha terpineol 0. 30	 soluble dose for humans: 500 mg-5g/kg/2	 unknown	
moderately very toxic - probably lethal dose for killing strength for perch
	"	 o-methoxy phenol 1.4	 soluble humans 50-500 mg/kgi'	 70-80 me/Li/	
	[1	 stearic acid	 015	 insoluble practically non toxic	 unknown	
Taste
&
Odor
unknown
unknown
unknown
unknown
unknown
no odor
1/
fragrant odor
odor detection in water 350
parts per billion^	
odor threshold for water 30C
is 0.002 mg/L	
no odor

-------



ORGANIC COMPOUNDS IDENTIFIED AND ENVIRONMENTAL
EFFECTS OF EACH


Industry or Source
Organic Compound
Cone.
Found
ihr/L
Solubility
Toxicity Data
mg/kg of
Body Weight
Fish
Toxicity
mg/1.
Taste
&
Odor

chloroform

slightly
soluble
1/
Prolonged ingestion may be fatal
unknown
sweet taste 1/
characteristic odor

2-ethvl-l-hexanol
est.
0.067
insoluble
1/
low toxicity
unknown
unknown

Tp.rDinene-4-01
est.
0.02
insoluble
unknown
unknown
No data

HImethyl d1sulfide
est.
0.2
insoluble
unknown
unknown
stench

dimethvltrisulfide 	
unknown
unknown
unknown
stench
Scott Paoer Co. fS-002)







rhloroform
est.
0.27
slightly
soluble
1/
Prolonged ingestion may be fatal
unknown
sweet taste 1/
characteristic odor

methanol
est.
A.8
miscible
If
Very toxic to man - small
amounts lead to blindness;10ml has
caused death
Trout can withstand 10,000 ppm in
tap water 2 hours without apparent
in-jury No data
Scott Paper Co. (S-001)
chloroform
est. slightly	1/
1.7 soluble Prolonged ingestion may be fatal unknown
sweet taste	1/
characteristic odor

-------
ORGANIC COMPOUNDS IDENTIFIED AND ENVIRONMENTAL
EFFECTS OF EACH
Cone. Toxicity Data Fish Taste
Found mg/kg of Toxicity &
Industry or Source Organic Compound mg/L Solubility 	Body Weight	mg/L	 	Odor
Scott
S-001
Paper
dimethyl disulfide
est.
0.028
insoluble
unknown
unknown
stench


dimethvl trisulfide


unknown
unknown
stench





,
camphor
est.
0.015
insoluble
11
moderately toxic
unknown
y
minimal detectable cone that
can be tasted in water 1.9 mg/L


terpineol
est.
0.023
slightly
soluble
u
moderately toxic - probable lethal
dose for humans: 500 mg-5g/kg
unknown
A/
odor detection in water 350
parts per billion


dibenzylamine
es t.
0.008
insoluble
unknown
unknown
unknown
S tone
SC-1
Container
acetaldehyde
est.
0.68
miscible
1/
oral LD 50 for rats 1.93 grams per
kg body weight
2/
Bluegill in salt water 18-20 C -
96 hr TLM 53 mg/L
y
taste detection in water 130
ppm; odor detection limit in
water 4X10 ppm
3/	4/
3/ 3/ JT
oral LD 50 for rats 3.98 gm per Bluegill in tap water @ 20C visibly detection by odor in water
methyl ethyl ketone	soluble kg			 affected at 3380 mg/L	 50 ppm	
lsopropyl alcohol 	soluble unknown	 unknown	 unknown

-------
ORGANIC COMPOUNDS IDENTIFIED AND ENVIRONMENTAL
EFFECTS OF EACH
Cone.
Found
Industry or Source Organic Compound rog/L	Solubility
est.
Stone Container SC-1 n-propyl alcohol 0.75 miscible	
diethyl phthalate 0.11 insoluble
est. soluble in
meta or para cresol 0.079 hot water
hydrocinnamlc acid
soluble
Toxicity Data
mg/kg of
Body Weight
Fish
Toxicity
ng/L
5/
oral; man LP 8 ma/kg
1/
moderately toxic by ingestion
unknown
unknown
Taste
&
Odor
y	u
very toxic; probable lethal dose 68 hr TLM for flathead minnows
to man 50-500 mg/kg	 is 24 rng/L	
y
detection by odor in water
9.0 p pm	
unknown	
y
detection by odor in water
for meta cresol is 0.68 ppm
1/
hyacinth - rose odor
1/
The Condensed Chemical Dictionary, Van Nostrand Reinhold Co.,
News York, New York 8th Ed., 1971.
2/
Gleason, Gosselin, Hodge & Smith, Clinical Toxicology of Commercial
Products, The Williams & Wilkins Co., Baltimore, Maryland 3rd Ed.,
1969.
V
California Water Quality Criteria, California Water Resources Control
Board, Publ. 2-A, 2nd Ed. 1963.
y
Compilation of Odor and Taste Threshold Values Data, American Society
for Testing and Materials, Philadelphia, PA, 1973.
5/
Toxic Substances List, 1972 Ed., US Dept of Health, Education and Welfare,
National Institute for Occupational Safety and Health, Rockville, Maryland,
June., 1972.

-------
APPENDIX F
WATER QUALITY DATA

-------
WATER QUALITY DATA
MOBILE RIVER AND TRIBUTARIES
AGENCY
1113S000
PRIMARY STATION SECONDARY
STATION LOCATION
STATE
0 15070
01
015060
0 2
015050
03
(l 15040
04
U150.10
05
0 15020
Ob
015010
0 7
015000
OH
0 15160
09
015150
10
015140
1 1
015130
12
015120
13
0 15110
14
015100
15
015090
16
015080
1 7
MOBILE R
MOBILE R
MOBILE R
MOBILE R
MOBILE R
MOBILE R
MOBILE R
MOBILE BA
CHICKASAW
CHICKASAW
CHICKASAW
CHICKASAW
CHICKASAW
THREEMILE
THREEMILE
THREEMILE
THREEMILE
AT L".N RAILROAD BRIDGE
AT LOWER END 12 Ml. IS.
BTWN CHICK. CKkSPAIN. R
AT BAY BRIDGE
AT ALABAMA STATE DOCKS
AT BANKHEAO TUNNEL
AT CHOCTAW POINT
Y NAVIGATION CHANNEL
CK AT SHELTON BEACH HY
CK AT US HwY 43 BRIDGE
CK AT END OF SHIPYARD
CK BELOW HOG BAYOU
CK AT MOUTH-L&N RR BHD
CK-RR BRIDGE AT MI 6.4
CK AT US HWY 45' BRIDGE
CK AT US HWY 4.3 BRIDGE
CK AT L&N RR BRIDGE

MINOR 1
BASIN

ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN
ALABAMA
MOBILE
RIVER
BASIN

-------
water quality data
MOBILE RIVER AND TRIBUTARIES
PARAMETER	DESCRIPTION
00003	SAMPLING STATION LOCATION, VERTICAL (FEET)
00002	X-SEC. LOC.1 HORIZ <% FROM R BANK LOOK UPSTR.)
70211	TIDE, HIGH OR LOW.BEFORE OR AFTER . HOUR.MINUTE*
00010	TEMPERATURE. WATER (DEGREES CENTIGRADE)
00070	TURBIDITY. (JACKSON CANDLE UNITS)
00300	OXYGEN. DISSOLVED (MG/L)
OOJIO	BIOCHEMICAL OXYGEN DEMAND (MG/L. S DAY - 20DEG C)
00403	Ph (STANDARD UNITS) LAB
00610	NITROGEN. AMMONIA. TOTAL (MG/L AS N)
00630	NI TWITE PLUS NITRATE. TOTAL I GET. (MG/L AS H)
00635	NITROGEN. AMMONIANORG.. TOTAL 1 DET (MG/L AS N)
00665	PHOSPHORUS. TOTAL (MG/L AS P)
006BO	CARBON. TOTAL ORGANIC (MG/L AS C)
O0"y40	CHLORIDE (MG/L AS CL)
31 bub	COLlFORM.TOT.MPN.CuNFIRMEu TEST.3bC (TUBE 31506)
31615	FECAL COL IFOHM.MPN.EC MED.44.5C (TUBE 31614)
00003	OEPTh IN FEET
00400	Ph (STANUARO UNITS)
* First Digit
Second Digit
1	 highwater slack
2	= low water slack
0
=
t
3 hours
1
=

2 hours
2
=

I hour
3
=

40 minutes
4
=

20 minutes
5
=

10 minutes
6
=

5 minutes
Third Digit - 0 = no remark
Fourth Digit - 0 a no remark

-------
HATER (JUALITY DATA
MOBILE RIVER AND TRIBUTARIES
STATION - Ui	MOBILE R AT L&N RAILROAD BRIDGE MOBILE RIVER BASIN	MOBILE STUOY
DATE
T I ME
DATE
TIME
00003
UEPTrl
FEET
00002
nSAMPLOC
i FROM
RT BANK
7021 1
TIDE
STAGE
00010
WATER
TEMP
CENT
00070
TURB
JKSN
JTU
00300
UO
MG/L
00310
BOO
5 DAY
MG/L
00403
LAB
PH
SU
730624 10 28
730*24 d155
730e>25 0925
730&2S 1955
730b26 1018
7 3 0 o 2 6 1*54
730627 1113
730O27 730624
7 30624
7 30624
7306^4
(C ) 730t>24
7 30 62b
7 iOt>25'
730625
 730625
730623
7 3 0 6 5
7 3u625
(C) 730625
730626
7 30626
73062b

-------
WATER QUALITY DATA
MOBILE RIVER AND TRIBUTARIES
STATION - 01


MOBILE R AT
L&N RAILROAD
BRIDGE
MOBILE HI\



00003
00002
7021 1
0061 0



DEPTH
HSAMPLOC
TIDE
NH3-N




4 FROM
STAGt
TOTAL
DATE TIME
DATE
TIME
FEET
HT BANK

MG/L
730o24 1028
(C)730624
1030


11110
0.10
730624 2155
(C)730624
2157


2000
0.06
730625^0925
(C)730625
0927


1200
0.03
730625 1955
(C)73062b
1957


2600
0.06
730626 1018
(C)730626
1020


1400
0.03
730O26 1954
(C)730626
1956


2200
0.07
730627 1113
(C)730627
1 115


1200
0.02
730627 2000
(C)730627
2002


2100
0.01
730b24
NUMBER
MAXIMUM
MINIMUM
LOG Mb AN
73Uo^ 7
8
0.10
0.01
0.U4




00003
00002
7021 1
006B0




depth
hsamploc
TIDE
T ORG C





s from
STAGE
C
DATt
TIME
DATE
T i ME
FEET
KT BANK

MG/L


730624
1 U28
1
50
1 100



7J0b^4
1 u29
12
50
1100



7 J0624
1030
24
50
1100

730024
1028
(C) 7 306^4
1030


1100
6 . U


730624
2155
1
SO
2000



73u6^4
2 1 5b
17
50
2000



730624
2157
34
50
2000

7 30 624
2 1 bb
(C)7306^4
2 1 b 7


2000
4.0


73ub^b
0925
1
50
1200



730625
0926
12
50
1200



730625
0927
23
50
1200

7 30 b25
09^5
(C)730625
0927


1200
3.0


7 3u625
1955
1
50
2b 0 0



7Ju625
1 9b6

5u
2600



7 3730626
10^0


14U0
4.0


7 3u t>26
19d4
1
50
2200



730626
1955
8
50
2200



-73 0626
I9b6
15
50
2200

7 30 b26
1*54
(C) 7301>26
1 9bb


2200
4.0


7 3lib27
1113
1
50
1200



730627
1 1 14
15
50
1200



73062 7
1 1 lb
3u
50
1200

730627
1113
(C) 7 30 b2 7
1115


1200
4.0


730627
2000
1
50
2100



7 3 Ob^ 7
2001
13
50
2100



730627
2002
2b
50
2100

730b
-------
HATER QUALITY DATA
MOBILE RIVER AND TRIBUTARIES
station
02
MOBILE R AT LOWER END 12 MI. IS.
MOBILE RIVER BASIN
MOBILE STUDY
DATE
TIME
730624 1010
730624 2130
730^25 U905
730525 1936
730^26 1000
730626 1936
7 3 Gg27 1110
730t>27 2255
DATE
7 3u^24
7 30624
730624
(C)730624
730624
730624
730624
<0730624
73U625
730625
730625
(C)730625
73U625
73U625
730625
730625
730626
730626
730626
(C> 730626
7 30626
730626
730626
(C)730626
730627
730627
73U627
(C)730627
730627
730627
730627
<0730627
T I ME
1010
lull
1012
1012
2130
2131
2132
.2132
0905
QSQ6
0907
0907
1936
1*3 7
1.936
1936
1 000
1001
1002
1002
1936
1937
1936
1 938
1110
1111
1112
1112
2255
2256
2257
2257
00003
DEPTH
FEET
I
16
36
1
lb
29
1
16
35
1
16
31
1
19
36
1
14
2tt
1
16
3b
1
14
27
00002
HSAMPLOC
* FROM
RT aANK
50
50
50
50
50
50
-50
50
50
50
50
50
50
50
bO
bO
bO
bO
50
bO
bO
50
50
50
70211
TIDE
STAGE
1100
1100
1100
1100
20 00
-2000
2000
2000
1200
L2UQ
1200
1200
2500
2500
2500
2500
1600
1600
1600
1600
2200
2200
2200
2200
1200
1200
1200
1200
2200
2200
2200
2200
00010
WATER
TEMP
CENT
26.0
28*0
26.0
26.0
26*0
26.0
28.0
26*U
26.0
26.5
2tt .5
26 .5
26.5
26*0
20 * U
28.5
26.5
26 * b
30-0
29.0
26.0
26.0
26*0
26.0
00070
TURB
JKSN
JTU
30
31
30
26
26
32
18
48
00300
DO
MG/L
6*7
6.4
6*6
5.7
6.0
5.6
6.5
6.3
6.3
6.3
6.4
6.4
5.9
6.3
6.1
5.9
6.0
6.1
6.6
6.1
1.0
5.6
5.5
5.6
00310
BOD
5 DAY
MG/L
00403
LAB
PH
SU
6.8
6.8
6.9
0.7
0.7
7.0
7.1
6.8
7.1
6.6
730624
NUMbt M
MAX I HUM
minimum
LOG MEAN
730b27
24
30*0
28*0
28*3
8
48
18
30
24
6*7
1.0
5.7
2
0.7
0.7
0.7
8
7.1
6.8
6.9

-------
WATER QUALITY DATA
MOBILE RIVER AND TRIBUTARIES
STATION - 02


MOBILE R AT LOwER ENO
12 MI. IS.
mobile r:




00003 00002
70211
00610




oepth HSAMPLOC
TIDE
NH3-N




& FROM
STAGE
total
DATE
TIME
DATE
TIME
FEET RT BANK

MG/L
730624
1010
(C)730624
1012

1100
0.03
730624
2130
(C )730624
2132

2000
0.05
7 3 0625
0905
(C)730625
0907

1200
0.02
730625
1936
(C)730625
1938

2500
0.02
730t>^6
1000
(C >730626
1002

1600
0.02
7 30b26
1936
(C)730026
1938

2200
0.02
7 30o2 7
1110
(C)730627
1112

1200
0.12
730627
2255
(C)730627
2257

2200
0.01
7 30624
NUMBER
MAX I MUM
MINIMUM
LOG Mc AN
730b27
6
0.12
0*01
0.03




00003
00002
7021 1
00680




DEPTH
HSAMPLOC
TIDE
T ORG C





* FROM
ST AGE
C
DA TtL
T I ME
DATE
T 1 ME
FEET
RT BANK

MG/L


7 3 0624
1010
1
50
1100



730t>2*
10 11
18
50
1100



730624
1012
3b
50
1100

730t>^4
1010
(C)7J0624
1 0 1 2


1100
6.0


730624
2130
I
50
2000



730624
2131
15
50
2000



730624
2132
29
50
2000

7 joc>2^
2130
(C >730624
21 32


2000
3.0


730b:5
090b
1
5 0
1200



730625
0906
Id
50
1200



730625
0907
3b
50
1200

730o^b
0905
(C)73062b
090 7


1200
2.0


7J0625
1936
1
50
2500



730625
1937
16
bO
2500



730625
1938
31
50
2500

730625
1936
< C) 730625
1938


2500
3.0


730b26
1000
1
50
1600



730626
1001
19
50
1600



730626
1002
38
50
lbOO

730626
1000
(C)730626
1002


1600
3.0


730to2t>
193b
1
50
2200



7 30626
1937
14
50
2200



730626
1938
2d
50
2200

730b26
1936

-------
juali rr oata
MUrilLt HlVt^ 4fJ|i T P I rtU T AW I L b
Si a II (Ji j -
' "
1

lUiUL*- P
iT w'J LmICK.
C>nspIn. *
MUblLt WlVLk
o ft b I N
MOB



UUU03
UUUUtf
7 0d\ 1
i)0U 1 0
0 U 0 7 0
U 0 30 0



I it-. H* Th
Hb^'^Kl UC
T lot
wu [fc*
TUkd
IM)




*> f- KUM
b TM^e
11 MP
jKbivl

' t
I'A I L
f I ''L
h ttT
'I oArM

CtNl
J 7 u
Mu/L

/ J D d 4
|W5
1
ct v)
1 1 UO
ti . vi

bml

f J (1 o d <*
'i-cfO
o
dO
1HJ0
dl o

b.l

/JND,>
il -<<~ [
1 i
do
1 1 I)U
dl ml

b mO

I J )0(Tt
u'ou
1
bD
1 1 (10
do  0

6. b


1
1 1
b u
1 i O0
d i ,o

6.6

/ ji so
J
dl
Dl)
1 1 u 0
dim 0

^ .d

/J 1 D;>
''-too
1
fill
U uu
cro  u

6.6

/ J I ' 6 ^ H
U ^ Db
1 ^
rtu
i 1 1)0
dl .O

6.4

^ JUb:'4
ii-yo /
d**
tw
i 1 00
d 6 . ->

1
',1(1
I
U /


I 1 I'U

d*


f .ti; C3 -u
^ 1 :it>
1
^ ij
^ 1 ou
. D

b.b

/ JL'Of''*
d I yjo
1 u

dl U0
d^O  ^

b. 7

! J'J o  1
dn,o
. b

b.tt

I J>. Od<*
^111
11
D 1
d lDU
<^a  o

b. d

1 J-'bd-*
^ 1 1 ^
dl
D 1
c 1 -i 0
^3.-3

b. b

I J .1 *) d 4
dlb
1
rtf
d 1 'i0
dO m D

b.S

I j-i bd**
d\ lo
1 J
^0
d 1 uO
<^C3 . O

b. 7

t j ' bd <*
dl l f
d o
(3 'J
d\o\)
^ / . 0

1 .9
ll
('.) y j 'j o d <*
dill


d \ 0 0

db


/ S'ibdO
u *> *~ o
I
dO
i J ) r>
l~>H ?
1 -
do
1 JUO

1 J U 0
dti. 'i

6.1

/ JI>DcO
U " D IJ
c J
bo
1 JuO
C? f m 'J

1


0 <-s b *~
1
a 'J
l^.JU
da m o

6 . d

{ job do
u ^
1 j
o u
1 fu 0
r. d . u

b . i

f JUbdO
0 bb
dO
n 0
1 CUU
dt mO

1 . 7
1 - O
< L ) f Jilbdo
jnDb


1 J0U

d H



1
I
d u
d H IJ 0
d 1 m J

6.4

/
1 >tdl
/
C 0
^ H u U
^ V . u

b . b

f J JOCD
\'*dd
1 <*
d (J
d^0 0
'J

6.4

/" j <> b d o
1 -t do
i
D U
cTh J U
do m O

6.3

7 jub^r
1 ^b
1 >1
~) iJ
^ 0 0
do m O

6.3

/ J 'J b  D
1 ^ I
1sy
U
c^bUO
dO m O

b. b

7 Jl/OC D
1 ^di
1
f5 J
^bUO
da, o

6.4

f JOOdO
1 ^ J J
I ^
rta
^bu 0
da mo

6. 1

J J obdo
1^31
d J
rtU
fbwO
dd mO

6 . 3
'^U
(C) f job do
i'yJl




db


/ JU6db
U ^h u
1

1 H u 0
dri  o

6 m d

'! 3oodb
0 t* 1
1 0

1^00
dd mO

6.3

tJUbdb
0 -i^'d
1 i
c: o
1 <~ 'J 0
dim b

2.6

/ J 
U >4t>
1 
D U
I ** u 0
dOmO

6.0

7 Ji)6df6
u ^4 b
dd
bu
lbuu
dl mO

3.4

1 JObdb
U -^H /
1
bu
1 t)U0
da.-o

6 . 4
MuBiit: sTuDr
i ]
7 J'j'
7 J i
7 3'
00310
bOD
b DAY
MG/L
00403
L AB
PH
5U
7  L
7.0
7.1

-------
WATEW DUALITY DATA
MOBILE H I VE* AND TR I bU T AH IES
STATION - 03


MOBILE H BTWN
CHICK.
CK^SPAlN. rt
MOBILE H!


0000 3
00002
7 U2 1 1
OOOIO


DtPTH
HSAMPLOC
TIDE
WATEW



' FkUrt
STAbE
TEMP
UttTt
T 1 ME
f-ee r
KT bANK

CtNT
73u b2b
U9fb
12
60
lbOO
2b. 0
730b26
09 730o2b
1^26


dlOO

730b27
1 Ob 5
1
2U
1 2 0 U
29.b
73u62 7
1 U3b
1 U
20
1 20 0
26 .b
7 30o2 7
1 Ub f
19
2 it
1200
28.b
73ub2 I
1 03^
1
bU
1200
29.b
7 l\)bd7
1 1 00
1 1
bo
1200
29.0
7 j u b 2 7
i 1 u 1
22
bu
1200
2 7.0
/ JUb2 /
1 1 0 J
1
HO
1200
29.0
7 3U b2 7
11 IK
1*
au
1200
20.3
73Ub27
1 1 u 3
27
00
1 2 0 U
27.b
(C)7J0&27
1 lob


1200

73'i62 7
22bl
o
2 0
2200
28.5
/ Jwb27
22b2
14
2 0
22uo
2b.3
( C ) 7 3 0 b 2 7
22b2


220 0

DA Tt
T I 4E
7 3(J b2b 0^40
7 3Un2b 1^19
7J0b27 103b
7 Juo*: J 22 36
73:
7 30
o2+
 i , X 1 M  i M
f" 1 iNJ I MUM
LOb MCAfj
n2 7
Id.
29.3
26.b
28.2
BmSIN
MOBILE STUDY
00070
TUWB
JKSN
JTU
00300
UO
MG/L
00310
HOD
5 DAY
MG/L
00403
LAB
PH
SU
23
24
6.0
1.8
6.2
b  1
b.8
6.0
6.0
0.7
b. 1
b.8
4.0
6.7
6.1
3.9
6.6
6.1
1.3
6.4
6.1
1 .5
b.b
5. b
2.5
5.8
b.4
b.5
b . 7
5.6
b . 4
u . b
7.3
7.2
7.3
dl
O.b
7.0
d
dl
20
d 4
72
6.7
0.7
4 . 9
d
O.b
O.b
0.5
8
7.3
6.9
7.1

-------
rtA 1 tP (JUAL I r r UATA
MUblLE RIVE* flNu rklhJUTAWltS
ST a r 10'; - .,J
MQrtiLt H oTwN ChICk. CK\SPAlfg. k MOHlLE PlVER BASIN
MOBIlt" STUDY
f>ft Tt
7 J 0 o 24
7 3 0 o 2 **
730o2d
7 306<;o
7 j () o c b
730^26
7 3 'J o c I
7 3d '.->2 7
T T-t"
0^30
210b
0^<*b
1 ^20
1 -* 1 ^
1 UDb
223b
Uo It
(C ) /3J624
(0)7 JOG**
(G) 7_>0O2d
(C ) 73L)02d
(C ) 7 Jijb2t>
(C) f 3i>026
(C) 73(J 02/
(C > 7 3 J 02 7
1 i-iL
uyo/
211 7
OODtJ
1^31
u S"4 -V
1 V2t
1 1 OD
22d2
OUOU3
OfcVTht
*EET
00002
HSamMlOC
-o Fhum
kT duNK
f o21 I
T IDE
ST ACjc.
1 1U0
^ L 0 0
1300
2b00
lbuO
21U0
120 0
22u0
OOblO
NH3-N
TOTAL
MG/L
0 . OH
U. 1U
0. 1 1
0 . U3
0.21
0 . 0 7
U ~ 1 4
0.06
0U63Q
N02kN03
N-TUTAL
MG/L
0.30
U.32
0 . 2d
0.32
o .27
0.30
0 .24
U .3 L
0063b
NH3&ORG
N-TOTAL
M(3/L
0.31
0.26
0.27
0.40
0  36
0.25
U .33
0,20
00665
PHOS-TOT
M6/L P
0.06
0.12
0.1b
0.04
0.30
0.1*
0.0b
0.0b
7 3" c: 2 ~
MJ" -it ~
INI MOM
LOb
73'^2(
3
0.21
U. u3
o.. o^
d
0.32
U .24
0.29
ti
0.40
0.20
0.29
a
0.30
0.04
0.09

T Imc
7 3 0 o 4
7 3 0 o c 4 0 j 0
7 3 0o24 210b
7 30 024 210b


0 0 0 0 3
0 0 0 0 2
/ -J 2 1 I
00ed0
0 04A o


'J t ^ 1 r
H^AMrM.UC
T JUL
T U^ ij C
CHLU* 1 ut



s F rJOM
S f AL>t
C
cl
Uu I L
1 I ml
(LEI
r< I h At^r,

NRi/L
f^"j/L
I Jvod<4
'i 9<* b
1
2u
1 1 UO

2H . 0
7 3 u 0 2 ~
i.l 4 4 0
d
2 U
1 100

26.0
7 j o o 2 4
UV4 /
1 1
20
1 1 00

4 1.0
/ 30O24
O'VDU
1
bO
1 100

10.0
7 3"024
OVb I
1 1
DO
I 1 00

4* . 0
f 3 0624
0^D2
21
DO
1 1 00

<**b0 . 0
7 30024
09DD
1
on
1 1 uO

10.0
(CI f 3U6*ru
O^bb
1

I 1 uO


7 3 U 0 2 4
u Vbb
1 2
i1
11 UO

o5 . 0
7 3 0 6 2 4
j 9 b f
2^
do
1 1 00

12000.0
( C ) 7 JO 02^
09b f


I 100
o.u

! 3002*
2 1 JD
1
2 0
2 1 00

1 b. o
/ JU624
2 1 ob
1 0
20
2 1 UO

2t . 0
7 3 0 0 2 4
2l0f
2 ij
2 u
2 1 ou

100.0
/30624
2110
1
bO
2 1 O0

11.0
/ J0O24
2111
1 1
bO
2 1 00

26.0
f 3 0 6 2 4
21 12
21
bu
2 1 ou

do  o
7 j u e>2 ^
21 ID
1
0 0
2100

16.0
( C)7 30024
21 Id
1

2 1 UO


7 j v to 2 4
21 lb
1 3
ttO
2 100

04 . 0
73"624
21 if
2b
60
2 1 O0

12000.0
(C)730624
2117


21 UO
3.0

7 3062b
U64b
1
20
1 300

16.0
730625
0d46
7
20
1300

34 . 0
7 3 0o2b
0o4 7
14
20
1 30U

3r>0 . 0
I Ju62^
064O
1
DO
1 300

14.0
31 Sob	3161b
TOT COLl	FEC COLI
MHN CONF	MPnECMEO
/100ML	/100ML
330
700
20

-------
STATION - 03
MOBILE RIVER AND TRIBUTARIES
MOBILE R B T WN CHICK. CKkSPAlN. R MOBILE HIVI




00003
00002
7021 1




depth
HSAMPL0C
TIOE





% FROM
STaGE
OATd
TImF.
ImTE
T I ML
FEtT
K T OANK



7 Job25
0d49
12
bO
1 J00


7Jub25
UODU
23
5U
1 300


7 JO b2b
Obb<*
1
tJU
1200
7 3 0 o 2 5
U d <~ 5
( C ) 730o2d
j dit
1

1300


/3uo2d
urtSD
1 3
au
12UU


73ob2D
Udbb
25
do
1200
7 30 o2b
0d**5
(L ) 730b25
Ubbb


1 JO0


73u62b
1 920
1
2 U
2^00


7 Ju62b
19^1
7
2 0
24u0


7jub25
1 9^2
1 ~
2 0
2400


7 Jubc'D
I 92D
1
bU
24U0


7Job2D
1 92b
lu
5 0
2d 0 0


/ Jub2b
1 92 7
19
r>u
2500


7J0 625
1 9 2 9
1
HO
2 D 0 0


7 30b^o
1 4 JO
12
80
2b o 0


7 J u btrb
1 931
23
MO
2b o 0
7 J'J *~>d D
1 92 0
( C ) 7 3 u o d d
i^Jl


2bu0


/ 30^O
04^0
1
20
1 hOO


7 J06db
1
m
20
1400


7 J0o2b
0 VH2
i -i
2 U
1 H Ul)


7 J0b2b
ii Vhh
i
5 0
lauO


/jubcio
U 44 7
i
ou
1 D00
7 3 U h 2 6
0 9 4 0
( C ) 7 3 0 b ^ b
0 V** 7
i

1 DUO


7 J' t O i; b
U^4t)
i -
Ijl)
1 DUO


7 jub2b
U ^
2 C
on
1500
7 30ofb
U9**0
( C > 7 3 0 > 2 b
(J S4 ^


1 b ii 0


7 3"bdb
) v 1 4
1
2 0
21UU


7 3 o b 2 b
1 ^2 U
V
2 0
2 1 00


7 Jub2b
I V2 1
i 7
20
dlVO


7 J U b 2 6
1 ^22
1
5 U
21 00


7 J Jb2b
1 -* 2 3
1 u
b(
2 100


f Jl Dc'D
1 /2H
2 U
bo
2 100


7 J'jb2b
1 V2b
1
O >)
2 1 UO
7 3o
1^19
( C) fJ0b2b
1 -V2b
1

2 1 L'O


7 3-.b^6
i vc 7
I'd
Oil
210 0


7 ji.'Oc'b
1^2^
2 J
do
21 00
7 3 u -> 2
i -i 1 9
( C ) 7 3 U f> 2 ft
1-^20


2 100


7 Jobc 7
1 ODD
1
2 ii
1 2 U 0


7 j0 0 2 /
1 Obr>
1 o
2 0
1 200


7 J0b2 7
1 'Jo 7
19
2 0
1 2 0 0


7 jobc 7
1 ioV
1
52 7
1 1 U J
I
HO
1200
7 3 U o 2 7
I UDb
(C) 730b*; 7
1 10 J
1

120 0


7 JOG2 7
1 1 u **
1 <~
t<0
1200


7JUb2/
I 1 UD
27
mt
IdUO
7 3or> 7
1 U 5d
( C) 7Juoc/
1 1 Ub


1 2 0 0


7 j.Jt>2 7
22
1

220 0


73-.7
22 J"
1 2
rtd
2200


7 J'JOd 7
22*+ u
2h
dO
2200


7 J 027
2i"+D
1
^ J
2200


fJno27
22^ o
1 1
DO
22 U 0


7 J'JG2 7
22^7
21
DO
2200


7 30027
22dU
1
2 0
2 200


7 J'jb2 7
22 7l
o
20
2 2 0 U


7 J,^7
C2D2
14
2 0
2200
7JUb27
223d
( C ) 7 3')b2 7
2252


2200
006B0
T OWO C
C
MG/L
2.0
3.0
7 3>>o24
Ivj, ir-VJC-H
-r.XMUM
kj NIMIJM
lOG MLaN
fdl
BASIN
MOBILE STUDY
00940
CHLORIUE
CL
MG/L
31505
TOT COL I
MPN CONF
/100ML
31615
FEC COL I
MPNECMEO
/1OOML
b<*  0
1 1 7 0 U  0
30. o
1 (JO. 0
1J/bO.U
92.0
1U0.U
1 bU . (J
db . 0
1000.0
1 2  0
bS.G
IdO.O
13.U
29 .0
d2u0.0
41 .0
1 4 , U
lo.u
1 uuO. o
10 0.0
100.u
250 . 0
32.0
7n. o
1 JUOO . 0
32.0
12d. 0
Dd5. u
7. u
21 .0
3 1 DO.0
2U. u
32. u
1 2 bu . 0
1 4 . 0
IdO.O
1 22do  u
7ti
wb
o3do
61
200
0	0 0  U
1	DO . 0
2	0 0. U
2do . 0
220
20
1 70
4900
20K
330
7u	b	b
I 3 7 DO.J	4900	50
7.0	1 7 0	2 U r\
1 s	1	2b

-------
Wart- P uUAL Mr DATA
N'OrilLt" HIVE:* AND TMlriUfAHltS
S 1 A I [ON - oa
MUdiLt K AT riAf okIUoE ^OrtlLt HlVtR bttSIN
(a 11
ri-K
UttTt
T i nt
U 0 U 0 3
\)t PTn
f-tEl
OUUOi?
MbAMPLUC
*, FROM
H T 84NK
7 0 if 1 1
T I L)L
SfAGh
OOU 1 o
w A T t k
Tlmp
CtNT
/o v u b
/ JjOd.e*	u^ j /
7jwb^4	0 v jd
7 J u b if	Uviu
1 Jo->d<*	0*1 1
/juoct	u^l<:
7 3 u b hd<* US'Ob ( C ) / JVOdb	U V 1 /
7 jobc:^	i *3u
/ j.ib^4	1 ^ J1
1 J >Od^	I  ~id
1 JVOd*	l^Jo
/J itJc:"	1 ^ Jb
I J>OOC+	1 ** J 7
7 3 If Od1*
7 j io6	lv|
I	i d
730b** l-OO (( ) fjubi?^	l^*/f
/ J\)ldo	U /hk
f JUb^D	J /4 1
/ iJ'Ddo	\j7t*d
1 JOodo	'j f** J
I JuDdo	'J 7 <* h
7 3 0 b  b	11 / b
/ J,ib('b	u / ~ o
7 J J b i*-)do	1 O *~ b
7jubo	In^-i
7 J.itjcro	1 o4 7
7 J,>b^b	1 o**o
7j.io b	lo<*v
7jjbb	lobu
7 joboefb Id^b (C)73ubifb	lobb
7jubTb	Odtfb
7 JUbifb	U 8
1
1 b
3 1
1
1 7
33
1 b
1
1 7
3 J
1
1 o
3n
1
1 ^
c>
1
1 7
1
1 b
3o
1
1 7
1
1 7
34
I
2 0
^ i)
if'J
bu
bu
bu
on
80
bu
^u
b'i
b'l
b o
o0
b>)
oU
dU
bO
bo
b)
a J
oo
8 u
t^O
d<)
d \j
bu
b 0
bi
8 u
8-J
d o
if'J
ifO
u
if 3UU
if JU(J
d 3U{)
, b
<^o  D
dt>. 0
d b  b
. b
5.0
dl
dl .b
if 7 , 11
i^d. /
dl .'
dO . t)
 u
df .o
do, b
^o  D
d 1 0
do. b
^d. b
<^b . b
.b
Tb . u
^ b. d
do ,n
~dd  0
db.b
^d. 0
if 7 , u
^b. U
do ~ 0
MObiLt STuor
0007U
ruh(b
JKblv
JlU
U030U
DO
Mb/L
00310
riOU
b DAY
MG/L
00^03
LAB
PH
SU

6.6
6  b
b.l
6.8
1  1
?.U
3. b
1.1
1 .b
b.l
b.d
6.0
6 . U
b.l
O.b
3.9
3.7
U .9
b.d
6. U
b . if
6.3
1 . 7
1 .b
4 . U
1.4
1 . b
6.4
6.0
0.7
6. <~
0.0
1 .3
b . <~
7.3
7.2
7.4
7.4

-------
waur 'jual I ry data
MUrilLE &lVt~K AND TRIdUTAMES
STaT |Ofj
MOblLh K AT bAY oklDOE MOHlLt rtlVE.^ bAbIN
T I Mt
7	0d2S
7 3 u vcb 1 0*+ 3
7 3 0oc ? 0< 1 9
7 3(io^/ 22 i-5


00003
0U002
7021 1
000 1 0


iJt-FTh
Hb^MPLOC
TlUt
*ATfchi



*> f- MOM
S T aGt
TtMP
OA T L
T 1 Mt
httT
nT HANK

ctN r
7 joe>?t>
0 83b
20
80
1200
2b.b
7 3 0b2b
uoJb
4 0
O0
12 UO
2b.b
(C)730b2b
0 o 3 b


1 2U0

7 3ti2b
lb<+3
1
do
^100
28.D
7 J11 b 2 o
I a***
1 1
2 0
c: loo
29. o
7 31' b 2 6
1 04d
<*2
du
dloo
27.0
7 3"02b
I ti<*9
1
bO
21 O0
2b.d
^ J ob2o
1 rtb'J
lb
D 0
C 1 00
d& 3
7 3 u to2b
1 OD 1
3i-
DO
C\00
2b . d
vjiO^e
1 UDO
1
t<0
21 UU
29.b
7 3 ' b2b
1 DD /
lb
80
^ 1 uO
28 . b
7 j->b2b
I tfDrt
3o
H'i
21 00
2b.b
(C) /3062b
1 050


c: 1 uo

7 jobc: J
0S 1 9
1
do
1 3u 0
^9 . D
7JOOd 1

n
dU
1 JO0
dd, 0
( mod 7
092 1
lb
d 0
1 JOO
^ 7.D
7 3 o o d I
0 9c 2
1
DO
1 300
^9 . 0
f J-J02 (
0 id J
1 b
bu
1300
do  u
f JUb2f
l) VcTH
3c*
bu
1300
^b.b
7 jood7
0vd*3
1
on
1 JO 0
29. 1/
Muoc' /
overo
2 1
<3 0
1300
.0
/jobd /
d>*2 /
<~ 1
HU
1 JU 0
fiTO . D
( C ) f JUb2 7
u s 2 /


1 30 0

7 3 J b 2 /
C^lD
1
20
^O0
CO  b
f J.ityd /
22 i o
1 O
20
2200
^0.5

2l /
1 *
2U
cduO
. d
/ 3ub2 /
222 0
1
DU
dcuo
28. b
f 30b2 f
cdd I
1 3
b->
Cd 00
28.b
f 3 o b 2 I
2222
2'l
D(J
2200
2 / . 0
f JliOd J
cdd.b
i

200
dti. o
/ Jub2 7
2^2o
1 b
-30
C^OO
20 . D
7 3ub2 /
Cdd. 1
31
o 0
^2uo
2 f . u
{ C ) 7 J u b d f
dec l


ccou

7
hvJ^rit **
 t I >'LM
" [''J I -Ujr;
I ')(7	-.1 
71 f/.7
id
29 . o
2D . 0
2/.3
MObUE STUDY
(J00 70	00300
TUWb DO
JKSN
JTU	Mb/L
1.1
1 . 1
lb
b. 1
b,2
o. u
b . 9
b.9
0 . 0
5. b
4.8
0	.b
d 0
b . t*
b. 1
2.3
b . t*
4 ,4
1	. ^
b,9
1 .8
1.0
1*
b. f
b . b
4. y
b. 7
o. b
0 . 0
b.b
o. 1
0.0
cl
b	7 d
Co	b. d
lb	0.0
2l	0.0
00310	00403
BOD	LAB
b DAY	PH
MG/L	SU
7.7
7.3
1.1	7 . b
0.7	7.3
2	8
1.1	7.7
0.7	7.2
0.*	7.4

-------
WATER QUALITY DATA
-lOrilLE WlVtK ANU THlrtUTAHiES
ST A\ 1 0N - 0*
'^OrtlLL H AT our rt^lObE MOrtiLt HIVE* rtASjN
DTt
T 1ME
DATE
T IMC.
U 0 0 0 i
UC.P 1 n
Ftt r
00002
*i">AMPLOC
i. FK(M
KT nhK
7\)dl 1
T 10c.
ST bE
00610
nm3-n
TOTAL
Mb/L
7 3 0 o2
7 30 Di't
73 0b2b
7 30bcb
7 3 0 r>2b
7 3 0 b 2 b
730b27
730b27
U -*0b
1 ^ iU
0 7*0
loo
0 s2b
lb*3
Jv 1 9
221b
( l J 73Ut>2<
( C 1 7 30b24
{ L ) 7 J0b2b
(C ) / 3 -j b 2 b
(C)73062b
(C)7JUb2b
{L) /3Ub2 /
( C ) 7 j vj b 2 7
U9l 7
1942
U 7*o
lbD!3
0	d 36
1	dDO
U 92 7
222/
1 1 00
2300
lbuO
2JO0
i2uo
21 oO
1 3U0
2200
0.1*
U.L3
0.1*
0 . i 7
U  1 b
0.1b
U . 1 *
U . 1 *
73un2*
f ..,
 L K I 1.
MM -
1 OG iJ"-t I ,
,f f
a
0. If
0 . 1 3
0  l!D
7 j U tj d * 0 J b
7 3 0 o UVUf)
730b24 1930
7 30 b2* 1930


U 0 0 U 3
0 0 J 0 2
f 1 1


ULP Th
Hb/.MHLUC
I luE



h f" K 0'^
b T .. bE
uM t
I ! Mt
( Et I
k I ri

7 3ub2*
u^ur>
1
2 if
11 ru
/3062*
(IH'J /
c,
e>
11 uu
7JUb2*
uvurt
lb
d 0
1 1 00
7 30 b2*
U V 1 u
1
DO
1 1 lU
7J0b2*
u^l 1
1 b
-0
1 1 I'O
7 Jood**
,'912
33
bu
1 1 (10
7 J vi bd *
09 1 D
1
ho
1 1 00
( C ) 7 3 0 b 2 *
09 15
1

1 1 UO
/30b2*
uvlb
1 h
n i)
1 1 UO
/ jooc!'*
1)91 7
3 b
rtl)
1100
( C ) 7 3 U b 2 *
U V I /


1100
7 jub^**
1 9 Jn
1
20
23uU
7 3"bc*
1 * 3 1
b
CM
230 0
7 3 ibd<*
19J2
Is
2U
2300
7 6->bd<*
1 93b
1
bO
2300
7 3b c *
1 ^ 3b
1 b
bu
2300
73 _>b2*
193 f
31
bO
2J00
(Jjb^t
1 9< U
1
nu
23 u 0
3b0  0
J 1 5 U  0
2b . 0
93^0 . 0
13 7bO  0
11)3. 0
b9U0 . U
1 32=>U . 0
00635
NH3&0RG
n-total
MG/L
0. 24
0.20
0.33
0.33
0.*0
0.33
0.28
0.28
8
0.*0
0.20
0.29
31 bOb
TUT COLl
MPN CUNF
/1 OOML
2*+ U 0 0 OL
0066b
PMUS-TOT
Mb/L P
0.0b
0.13
0.0b
0.0b
0.0b
0.07
0.03
0.0=>
b
0.13
0.03
0.06
3161b
FEC COL I
mpnecmeo
/1OOML
230
1 2b. 0
200.0
*00 . U
1 00 . U
1 UOO.0
1 3 f bO.0
12b. 0
1 1 00	bO
2b00 . U
1 3 7 s 0 . 0
7 3 . U
1 00 . 0
o900 .0
*4 . 0

-------
WAIC.K UUML1IT UHIM
MOBILE HIVEK AND TRIBUTARIES
STAT 1 ON
- 04



MOBILE R AT
BAY bRIOGE
MOBILE RIVER
BASIN
mobile
STUDY





0 0 0 0 3
00002
7021 1
OObfctO
00940
31505





DEPTH
HSAMPL0C
TIDE T
ORG C
CHLORIDE
TOT COLI






% FROM
STaGE
C
CL
MPN CONF
DA TL
TIME

>ATE
T 1 ME
FEET
RT bANK

MG/L
M(j/L
/100ML



730b25
0744
1 7
SO
1400

1 07b0.0




7 Jub2b
0 74b
33
SO
1400

lt>2b0.0




7 J (7 b 2 5
0 /4t>
i
dO
lbOO

d4.0

730^2b
0 740
(C)
7 30b2b
074b
1

1 boO


1700



7 3 0 b 2 b
U f 4 I
lb
00
lbOO

4000.0




73<>b2b
0 74b
3b
dO
1 bO 0

14 7b0.0

730b2b
0 7<0
tC)
7 30 b2b
0 74b


lbOO
3.0





73ub2b
1 84b
1
2 0
23u0

125.0




732~>
1 b3
1
80
2300

17b.0

7 3'ib2b
1 t*4b
(C)
7J0b2b
1 ob3
1

23U0


3300



7j\jb2b
1 db4
lh
do
2300

bloO.O




/ J>jb2b
W,bt>
3 b
nU
2300

14 7b0.0

7 3 (in 2*3
1 tt*b
(L)
7 j o 6 2 b
1 Obb


2300
3.0





7 J ub2b
Urt2b
<*
20
1 100

crbO . 0




/ J0t>2b
Urt27
1 7
20
1 1 00

13700.0




7 30b2b
0o3o
1
bO
I 200

b3 . 0




7 3 0 b2o
0 d 3 1
1 7
bO
1 200

BbOO.O




/3Ub2o
\)n3d
3<
bO
1 20u

lbOOO.O




7 JUb2b
U 0 34
1
du
1200

7 U . 0

7 J0o2b
0d2b
(C)
730c2b
Jo3h
1

1 2 0 0


230



7J0b2b
Uc3d
20
0
1200

13700.0




7 Jub2b
0o3b
lj
o U
1 200

lbbUU.0

7 30^^^
0 d^b
(C )
7J0b2b
0o3b


1 2U0
2.0





7 J xj b 2 b
1 H4 J
1
20
2 1 UO

210.0




7 j >>b2b
1 0*4
1 1
2 U
2 1 00

4 U 0 . 0




7 J Joe? 6
lo<+D
22
20
2 100

1 1buO.0




7jjb^b
1 o* v
1
bD
2 1 00

V2.0




/ J.)b2b
lODO
1 b
bO
21 00

3b0 . 0




7juo^b
lobl
3o
bO
21 00

1 b2b0.0




7jhb2t>
L rt 5 0
1
eO
2 1 00

1 bb. 0

730-2b
1^4 3
(L )
^ J 'j b 2 6
1 031
1

2 1 UO


1100



/ J . i b 2 b
1 I
14
till
2 1 00

19^U.0




7 J 'j b 2 b
1 bbrt
3b
nO
21 00

1 6dbU.0

7
1 r0
( L )
7 3 u b 2 b
1 05f)


21 OU
y. 0





/ J J b 2 /
0*1^
1
du
1 3U0

4 1.0




f30b27
0 V2U
o
d u
1 3 U U

1 2b  0




/ JUbc1
0^2 1
lh
dO
1 JUO

11200.0




7 J u b 2 7
Wdd
1
bU
1 300

40.0




7 3ub2 7
0 *2 J
lb
b o
1 300

22bU.0




/ J u b 2 7
0^2*
J2
b U
1 300

1 b 0 0 0 . 0




7 Jub27
U^2b
1
nU
1 juU

44.0

7 J0')2 7
U*l<*
(C)
7 JOb^ 7
0^2b
1

1 JUO


1300



73Ub2 /
U*2t>
21
CH
1 J00

13UOO0




7 J 0 b 2 7
u v2 /
4 1
dO
1 J00

lbbOO.O

7 JO b2 7
0<* ] <*
< C)
7 J0b2 7
0 V2 /


1 JOO
3.0





7 3-/b2 7
22lb
1
2u
2200

2b'J . 0




f 3Ub7
221b
1 D
2D
22U0

'~bO . 0




/3ob2 /
21 7
1*
21)
22U0

1 bbl). 0




7 3ob2f
222u
1
bO
2200

1 lb.O




M-b2 ^
222 1
1 3
b v)
22 OU

1 bOO0




7 3 u o 2 7
dddd
2b
bO
22ou

14000.0




7 3'(be: 7
222 b
1
du
22u0

237 .0




7 Jub27
222b
1 b
dO
2200

yoo.o




7 J"b27
cf227
31
du
220 0

14JOO.O

7 31o2f
221b
((.)
7 jooc: 7
222 /


2200
J. 0


31615
FEC COL I
MPNECMED
/100ML
200
170
50
20
1 10
 J Ur" t ^
'.AX 1M..M
/'INI MUM
LOG Mt a:J
i
3.b
/1
17500 .0
2b . U
1lbb.1
24O000L
230
2421
1
230
20
9b

-------
waIi-k wUAL I T 1 uATA




MOti I  
*1 V* AinL
TRIBUTARIES




b I M I . O'J - s


MOn I Lr w A r
ALAqAMA ^TaTl U'JCnS
MOblLL *IVE>
ri a b IN
MOH1LE
STUDY




0 0 0 U 3
0 IJ 0 u ^
70c? 1 1
OUO 1 U
U00 7U
0 0 3 0 U
0031 0
00403



Ut p T >-
nbAi-PLUC
T 1 UL
WATtw
T Ukb
DU
dOD
LAB




* Fhum
S I A Oh
f  MP
Ji^bN

b DAY
PH
[Ji ft T I -1
r c.
T 1
F tt I
k I ti-fgr,

CLu T
j r u
MG/L
MG/L
SU

7
un^u
1
bu
I uu
1
bu
^bOO
^7.U





7 3uo^h
1 *0 1
1 7
bu
tfb 0 0
db  o

3  d



7 jiio^
1 *vd
3^
bu
<^bu 0
c^b  b

1 .1


7 3 0 ,{<* l^uu
( C ) 7 3u&cf4
l^Od


cT'.UU

la


7.3

7 Jo b^b
lit Ik
1
bU
1 JUO
dl ,-d

b. 1



7 3vibt>
U 7 1 J
1*
bo
I 3 U U
d 7.u

d.b



7 J o f? cT D
u/K
J 1
bo
1 JuO
 b

1 .9


7J0h^o 0 l\d
( C ) / ^0od^>
o /]<*


1 JuU

d-yj


7.7

7 J 1( Od"D
1 rt 1 0
1
t3U
dd U0
 u

6.4



7 3 'J "> r S
1 (M 1
1*
r>u
ddOO
<^0 . 3

4 . 7



7 J11 n d D
lol^
3s

ddvU
Tb . b

1 -b


f luido lain
( C ) f J U b t)
1 O i "


dduO

1 a


7.6

/ J 'J b c* b
0 7 Jo
1
bti
1 1 L U
<^a  j

6 . 



/ jjficb
;j v j ->
IS"
bU
11 UU
^6 . D

1 .H



/ J J*)dO
IJ i ** U
37
bU
I loo
!b . d

0


7 jn o/jh
( C ) 7 3 U (jdo
0 7-u


1 1 u 'J

1 3


7.9

7 .J i > b d b
l'.lb
1
b ti
d 0 u u
. 0

b. 1



"7 j u ucr b
lolo
1 7
o u
c'UUU
db . U

4 .3



7 3 . b^o
1 o 1 7
3*.
D U
?UU0
^b. d

1


7 J (16 ^ b 1 b 1 b
1 C ) 7 jubc'b
1 o 1 7


d0b0
1 1 UU
da. "=

o  i



/JUOr'7
Uoc'b
1 h
o a
11 OU
c'7.u





7 J 0 -> ^ 7
ur>d 7
3b
bO
1 1 L 0
db. b

1 .*


7 H'0^7 l>r)fO
{ C ) V J j r /
Unt; 7


I 1 'JO

lb

0. b
7.6

7 juo

O.b


VJu^d? cVUb
( C > 7 JUnc? 7
^^0 7


dd uo

1 c>

U  7
7.4
7 I'lad*










J J- 1 vl ,t ^






d

d
6
, 'i * I 4|JM





u
dO
b .4
o .d

'  I r j i !.'





<^6  0
U
O.b
u. 7
7.3
LUu 4,1 c " ni





dl * d
I 1
d>V
0.7
7.6
7 J'i.,^7











-------
MHICK UUML1 I I UHtM
MOblLE RIVER AND TkIoUTARIES
STATION - <'->
MOBILE W AT ALABAMA STATE DOCKS MOBILE WIVE* BASIN
MOBILE STUDY
U" Tl
TIME
DttTt
T I ME
0 0 0 0 3
OEPTh
H EE T
00002
tibAMPL OC
X> FR(JM
Hi buNK
7021 1
T JDE
STAuE
0061 0
NH3-rv
TOTAL
MG/L
006 JO
N02t>N03
N-TOT AL
MG/L
0063b
NH3&0Wb
N-TOT AL
MG/L
0066b
PHOS-TOT
MG/L P
7 30o24
7 30t>24
7 30 62b
7JUb2b
7 J0-.26
7 J i) fr2b
7 30^2 7
7 30 ?2 7
OrtdO
1 ^00
07 Id
1 a I 0
0	7 Jo
1	*lb
od2b
22 us
{ C  7 J0624
( C J 7 3 u to 2 4
(C) /J0b2b
(C)7 3062b
73ub2b
{:) 7Jub26
(C)7JU627
( C ) 7 J U o 2 7
u d22
1 *02
0 71^
ldl2
07^0
lol 7
0d2 ?
220 7
1200
2600
1	JuU
2200
1100
2	U 0 0
1 100
22 00
U.lO
0. 1 J
U ~ 1 6
0.12
U . 1 6
0.1 b
o. 1 d
U.ld
0.17
0.21
U. 1 7
0 .20
0 . 1 J
U. 22
. 1 b
i 2 1
0.26
0.33
O.JO
u . 33
0.30
0.43
0.28
0 . 34
,0b
.04
0.05
0 .Ob
03
03
0.03
0.04
7 30 o/f 4
') j> x I
"'INI mum
i UG -ir.
7 June:?
n
o. J i
0.12
U . 1 6
6
0.22
0.13
0 . Id
0.43
0.26
0 . 32
O.Od
0.03
0.04





'j 0 0 U J
0 U 0 0 2
7 U 2 I 1
0 0od 0
UU^4U
3 I b 0 b
3161b





i;e h Th
n^uMpLOC
T I Ut
T C
CHLOW/Dt
TOT COL 1
f-EC COL I






4i r kUM
S T  b t.
C
CL
mPN COnF
mpnecmeo
DM::
t i

Ua IL
T 1 Mt
f- EET
H [ ^Nr\

Mjj/L
Mb/L
/100ML
/100ML



7 j 0 o 2 4
J n 2 0
1
b0
1 20 0

03. 0
330
130



7 J >j b c 4
0o2 1
1 ^
bO
I 20 0

114b0.u





/ J 'iOc't
0^22
J 7
b u
1 dUO

13 7b0 . 0


7 Jiik:4
'J 3 2 O
((. )
C JUb2<*
0 D22


120 0
b . 0






7 j o b 2 4
1 '# i; U
1
bit
2buU

i y l. u
7w0
50



7 J u b 2 ^
1 t-j 1
1 7
b 0
dovO

J1bu . 0





7 J-jD2<*
1 W'j c
Jh
b-J
2 00 J

1bJUO . 0


7 J'mc u
I 3 'J 0
( C) 7 JDOc 4
I ^ j!ld
i
b V
J JVJ

76.0
j300
bO



7 J 'j o c b
u 7 1 J
1 w
D i)
1 J0 0

^bu . o





7 Jvj02b
iWN
J 7
bo
I luO

1 o2bti . U


7 Jimd b
0 712
(<_)
7JUb2D
U 7 ] 4


1 JOO
2.






7 Ju'jcd
loin
I
bo
2 20 U

1/0.0
4 *0
50



7 J oct)
Mil
In
bt)
2200

2 1 U0 . 0





7 J  a. u


730t;2b
lblO
(CI
7 J. J neb
1 b i c


22 o 0
2 . <'






7
ij/Jo
1
b o
1 1 i'U

iDU.U
2 J 0
2U



7J jOc-6
.< 7 J V
1 '<
b')
1 1 v; u

14JUO.U





7
U 74U
J /
r>0
1 I 00

1 odou0


7 Jin^^
'J 7 jH

7 J 'J o 2 b
U7**u


1 100
2 . o






7 J"b2b
]lb
1
bU
2UU0

2b<;. o
4600
20K



7 j 62b
1 o 1 b
1 7
bu
2 0 U 0

2 7 DO.0





7 j  j o 2 6
1 ol 7

-)U
2 0 0 0

1obu 0.0


7 J 0o2*>
M ib
< C l
/Jubcb
lol 7


dUUO
J. >






7 3 u 0 2 7
uo2d
1
Ol>
1 1 no

170.0
740
230



7 Juo2 7
u b2 b
In
*>0
I 1 0 0

1 U U U 0 . u





fj'uldt
U2 7
Jb
b o
1100

1D00U.U


730^2 7
J ^ 2 b
(C )
7 J0o2 7
U o 2 7


1 I O0
J. 






7 JO0 27
22UO
1
b0
2200

J0U . u





7 J-jod 7
220t
i o
bU
2200

l^bO.U





7jjbc7
2 2 U 7
Jb
bU
22u 0

1 bOuO.0


7 JOotf 7
22ut)
( L )
7 3 ub2 7
2207


2200
2 . C



7 3tl r>2 4
r IUM-* t n 3	ft	7	7
b. U	Ib2b0.u	4600	230
! IN[mom 2.0	7b. 0	2 J J	20K
1 <)G iitKN 2  n	2033.0	ob2	bb
73 r2 7

-------
WATEk UUALIIY data
HUoILE KIVtK ANj T hIHU r AK11 S
STaTIUM - 11*1	MOBILE K At bAivkhlAl) TUNUcL MOolLt *IVErf rlAblN	MOnILt STUOY



uuou J
0 0 0 0  ^
Dtil3
1
bo
1 juO
d 7 .0

b, 1



/ J 'J O d. <~
0 b 1 o
1o d<*
unit

so
1 JUO
db  U

1 .8


7JI1-** Odlb
( C ) 7
UtiW


1 Jou




7.b

7 3v
1
dO
e?b 0 U
t'b. u

5.6



/ J jOd1*
1 OD 1
1<*
b'>
c^buU
^b,D

2.1



7 j. i o d **
I dot:
J 7
5 O
d^ouO
db  d

1 .7


lS\'~d^ IdbO
{{.) 7 JHOit<+
l'HC


<^bOU

1 o


7.6

7 Jooe:o
0 7 ij U
1
r> o
1 ^uo
^ O  'J

b.y



7 J u o./ r>
U 70l
1 ^
r>u
1 ^00
b . d

3.0



/ JHUfD
u t ud
J 7
bj
1 00
do * d

?. 7


7 3 u f {'j
I C ) '/ juod-j
u 7[}d


1^00

lb


7.B

7 J iDCD
i tOD
\
Dll
d 1 oO
C V . 0

b.b



/
1 7 d b
dd
bo
^ 1
i bs

0



7j'io^d
I to 7
H A
SU
^ 1 00
b  o

1 .7


7 J't *i^b 1 /dd
(L ) / jU^c'd
1 1^7


^ 1 00

\d


7.6

7 J u b d o
'J ( \~i
1
DU
1 JOU
. 0

**  h



/ 3obc?b
u / 1 b
1>>
D ')
i uuo
i . 0

d.l




u 7 1 /
Jt>
DM
1 uoo
. o

'd.d


'7 J\)ndb 0 7 1 r>
(<_) 7 JOb^b
U 7 1 7


1 0 0 0

I 7


7.a

/ J.ib^b
1 cv>-
1
b 'J
dTlluU
d^. o

<* . 9



7 30o^b
1 hiis
1 *
D'J
tfUOU
. j

^  D



7 J'jOC"5
1 rtut)
3 7
-,.j
ciluu
 ->

1 . O


7 j o t>   b
lrub


<^OU0

11>


7.6

7 Adod7
\>ri 1 1
1
T) iJ
1 1 n o
co.i

b. 1



7 Jvod 7
Uol^
t>u
t);J
1 1 0 0
<^7.0

c!  b



7 3ubd 7
UO 1 J
J ^
DU
1 1 UK
c!b. i

^ . U


7 1u -> c 7 U ^ 1 1
( L ) 7 J 0 n d 7
0 O 1 j


1 1 JO

<* 1

1 . 1
7. 7

7 S^bd 7
cfl W
1
bO
^ JO0
db.o

D. 1



'7 J'lb d 7
 1 < a
 J
DU


3. <~



7 j..t>r 7
d 1 <~ v

D U
d JdO
c^b . o

1 . 1


f JU rtd'f d I ** 7
(C) 7 Ji/Od 7
^ 1 < V


^ JUU

lb

0  *
7 . b
7 <










i' i -mh






o
J
< 1
b. 1
1.1
7.8
. I rj I





. U
1 d
1 . 1
u  ^
7.5
I 0(5 Mr.





d 7 , d
1 a
3.0
U . 7
7 . 7
7 J(i^d 7











-------
WATER uuALITY DATA
Mud IlE KlVErf AND TRIBUTARIES
STATION - n	MOBILE K AT HANfvHEAO TUNNEL MOBILE *IVEK BASIN	MObILE STUOr




00003
00002
7 01? 1 1
0 0 b 1 0
00b30
0063b
0066b




UtPTh
HbAKPLOC
TIUE
NH3-N
w0^fcN03
NHJibOkG
PHOS-TOT





fc FROM
STAGE
total
N-TOTAL
N-TOTAL

i)6 Tc. T I '1 

L>a T L
TIME
f- LET
kT b ANK.

Mb/L
MO/L
MG/L
MG/L P
730' -24 0l*i
{ l ) 73uc>2t*
Odl 7


1300
0.1b
0.14
0.24
0.07
730624 IHdO
('.)
7 3 06^4
1 b b2


^bUU
0. 14
U. 17
0.24
0.1 1
7jOndb 0 7o 0
(C)
7 Jo bdo
0 70^


l?O0
u. 1 <*
0. 14
0.21
0.12
7 JObr'b 1 7bb
(C 
73062d
1 tof


^1 00
0.1^
0.12
0.33
0.03
7 30626 0 7 1 b
(C)
fjObdb
0 7 17


1000
u, 1^
0.13
0.33
0.07
7ji)o^b 104
U. >
f 3()bdb
1 dUt>


c^OOO
0.11
0. 1 *9
0.31
0.03
7306^7 Ott11
(C)
?M)be:7
Odl J


1 100
O.c-O
0 . 1 b
0 . 3tt
0.10
7 3om27 214/
(L)
73062/
d I 4V


^3U0
U.lb
u.^o
0.2b
0.09
7 j' i r2 4










r ilJ1 tEH






b
d
a
8
( A X i '1 1 M






0 . ^U
U.iTO
0. Jtt
0.12
M I N I MUM






0.11
0.12
0.21
0.03
I v)b Mr. iN






0.1b
U. Id
U.26
0.07
7 j " n ^ 7














u0003
0&002
70d\ 1
OOboO
00^40
3 1 bob
3161b




UEPTh
Mb/-MKLOC
T 1 ut
r umg c
CmLOk1DE
TUT COLI
FEC COLI





* hKUM
bT  t> d <*
0 0 1 o
1 9
bU
1 300

1 
cbOO

t /uO . 0




f JObd<+
!o^
3 ?
bU
db tiO

14/bO.O


/juoi" 1 *bo
( C )
'jUO!t
1 bod


^DO 0
 u





1J 0 o d o
u /uo
i
bo
i^OO

J 2b . 0
23o
5o


tJUO^D
0 V u 1
1
bo
1 <^UU

1 J / z> 0 . 0




7 JOO^D
0 fOcT
3 (
bo
1 ^OU

1 7 o u U . 0


730b2b 0 7 o 0
1 C )
7 J U O d D
U 7 02


1 duij
1.0





7 j tj b d d
1 / DD
1
bo
d\v(j

H DU . 0




7 job^D
1 7 Db
22
bo
d\ 0 0

1 J 7 b U . 0




f J 'Jbdo
17b/
<~ J
b'J
d 1 uO

1b2 0 0.0


7 Juo2b i 7bb
(C )
f jyjbdo
1 7b7


cTl 0 0
1.0





f jnbdo
1 VDb
1
bu



^200
^0


'( j u t> d b
0 7 i b
1
t)0
1 u 0 U

6'db . 0
330
bu


fJ0o2b
0 7 1b
Is
DO
1 000

1JOUO . 0




I S>)bdb
0/17
3h
b0
1 UUO

1D2U00


7 JDo^b o / 1b
(C)
1 b0b2b
07 1/


1 OO0
J . u





fJObdb
1 n(j<4
1
DO
C1 U 0 0

+00 . U
4^00
<~0


7 j o 62b
1 bob

bo
COUO

12o0.0




7 J 0 6^6
1 dOb
J 7
bw
UUU

1bUUO.0


7 JU'jcb Hut
(C)
7 JUbdb
I 0i)


2 7 2 1 4 7
(t)
7 3ub






b
c*
r
/
MuA IMi.iM






4.0
1 ^DUU . 0
4 V 0 U
130
MINI MUM






1  0
J2b. 0
230
>* o
LOG ME 1..4






c;. 1
3b3 3.b
r*2
7d












-------
WATKW UUALlIr UfllA




hohIlE
kJVt* NU
TRIBUTARIES




st a \ i n -  i


M<)ts I t. i H A T
ChOCTA* r^OlNT MOolLfc.
HlVEK riASlN

mobile stooy





U 0 0 0 J
00002
7021 1
000 1 0
0U0 70
00300
00310
00403



Ut^Trl
MbaMHLOC
T lUt
WATt*
TUKd
DO
80D
LAB




* f ^OM
s r AGt
Tlmp
JKbN

S OAY
PH
ijfttt u<-t
Uu Tc.
I {-it
fr'ttT
T crn^r-

CtM
JT^4
uo 1 o
1
bo
1 3 0 U
dl  0

b.4



7 3 u t)^4
uhl 1
dl
brJ
1 3u 0
do  b

3.b



7 3ooe:4
0 ri 1 2
43
b 0
1 J00
d b . b

J.d


7 3 II 0O 1 0
( C ) 7 3ut>24
0 o 1 d.


130 0

lti


7.8

/3i-5^
1 ~*2
1
bU
24U0
2b.b

4  t>



73wb^4
1 o<* J
dd
bu
d<*\)0
26.b

a.3



7
1 0*4
4 4
bu
d**{)0
26 . U

2.0


7 jii o^4 1 o* 2
(C) 73ob^4
1 CJH4


24 00

16


7#d

7 Juodb
Oob j
1
bo
12U0
2 7 . D

5  b



7 3 u o d b
Obbl
dd
bO
1 dbO

0 7 Ob
dd
bO
I 000
^ 7  0

2.9



/JUDCb
U 7 u 7
** J
bJ
i UO0
db.b

1 .9


7 3 0 o c 6 0 7 u b
( C ) 7 3 u o ^ b
U 70 7


1 ooo

34


7.9

7Joodo
1 7^b
1
bo
c^OOO
dlU

4.b



Mub^t>
1 7 bo
20
bO
  b

2.0


7j intro 1 /dd
( C ) 7 J 0 o d b
1 7 b 7


dOv 0

1 b


7.7

7 J uo^7
Oo)
1 1 o 0
. b

6.1



7 3ubn27











-------
water duality data
MUrillE HIVE* AND TRIbUTAKlES
STA T I ON
MOBILE K AT CmUCTAW POINT MOblLE HIVtH bAblN
OOUU3
OtPTn
00002
rSAMHLOC
4> FWOM
^UmHi -
^ AX]VUM
 INI M\ M
LOG '^k 'iN
7 3o r  7
7021 1
TIDE
ST ttGt
006 1 0
NHj-'v
total
laTc
T I mE
liA T L
T I ME
FEET
hT bANK

MG/L
730'} 4
0 d 1 0
(C) 730624
0 a 1 2


1 300
0.14
73u^24
1 r*4 
(C)73064
lc+4


400
0. 14
7 30 o2d
06b0
(C)73ood
0ob2


1 200
0 . 1 0
730D2b
174-3
(c) 73oob
1 7 4 r


21 00
O.0
7 3 Ofi 2 6
0 7 u b
(C ) 73ot>26
0707


1 OOO
u . 1 2
73066
I7b5
(C> 7 3u 626
i for


0 uO
U . i 6
73(>c7
OtiOo
(C)7JOOcr
OHO 7


1100
0. 16
7 30t>7
2140
( L ) 7 3 0 o 2 7
214^


300
0. 16
7 31  D 4







U.^U
0 . 12
0  1 d




00 u 0 3
0uu02
7 u 2 1 1
006d0




Uh P T m
nbttHPLOC
1 luE
T OWG C






5 T AOL
C
0*4 T E
T I r-'h
1 c.
T I Mt
(-HE!
-V j

Mb/L


7 \ 0 3 2 4
u o 11>
1
b U
1 100



7 3uo*
o n 1 1
 L
50
l JO0



7 J')o4
W rt 1 
43
bU
l 3 0 0

7 .hi -> c <*
U d 1 0
(C > 7 ju n4
Dole


1 3u o
3 . u


7 3 > 0  4
1 4^
1
bu
4u0



73'-o4
1 d4 J
2
50
d** U 0



7 3\io24
1 M* 4
4 ^
b'i
2-400

7 j 0 o  ~
1 0** 
('. ) 7 3'o  *~
lutt


d** uO
d * \>


7 3 0 o  t>
'JODU
1
bw
1 d U 0



7 jvoc?5
litbl
d'd
bu
\dub



7 3 o o 2 ^
0OO
4 J
DO
1 200

7
U^DO
( C ) 7 3 0 D c: T>
uto<;


1 00
d . V


7 J ' i O d 'D
1 7 * b
1
bo
 1 0 0



f J !>D->
1 7^o
 t
^0
 1 OO



7 J r>
1
IlI 7JI/025
1 74 7


 1 0 0
1 . ii


7 30oO
07un
1
DO
1 UUO



7 J 
0 7 0 o
dd
DO
I UUU



7jnodo
U 70 f
4 J
DO
1 000

7 3 0 ? b
0 7u->
( C ) 7JOo'^
0 70 f


1 0 u 0
3  ii


7 J 11 t3  o
1
I
DO
2uoo



7
1 7 b 6
2u
bo
 U 0 0



/ j'iaG
i lot
4 ;
DO
dUUQ

7 jdtjdt>
1 7^
(L ) Muo6
1 fo 7


C U 0 0
3.0


7 3 0 o d 7
O^'i-D
1
DO
1 1 00



7 J () o d 7
(JOUfJ
22
DO
11 oo



fJHo 7
0 o o 7
 J
bo
I 1 00

7j'ms (
0 '>u ->
\C> 7 JOod 7
UrtO 7


1 1 u u
2 . 0


7 3 U o  7
l **0
1
bo
230 0



7 3 wo27
2 i 4 1
2i'
bO
2 3 U 0



7 3u6 7
d I 4C
4 u
50
300

7 3o o r 7
2 1 h 0
( C ) 7 J 0 o 2 7
l4cr


300
2 . U
73>)hdU
I J 0 M " t
1- X 1.11JI*
[M-iUM
1
3 . U
1	 0
2	. 1
MOblLE STUDY
00630	0063b	00665
N0eN03	Nn3sOWb	PnOS-TOT
N-TuTAL	n-total
MG/L	MG/L	MG/L P
0 . 1 b	0 .  7	0 . 1 J
0.14	0.21	0  03
0.13	0.32	0.06
U.12	0.40	0.03
U. 14	U.43	0.07
U. 16	0.37	0.03
0.13	0,25	0.0b
0. 19	0.25	0.03
o	a	a
0. 19	0.43	0. 13
0. 1*	0.21	U.0 J
0. U	0.30	0.05
0 0 94 0
CHLUW1DE
CL
Mo/L
3150b
TOT COLl
MPN CONF
/100ML
3161b
FtC CULl
MPnECMED
/1OOML
1 ObO . U
1 U 7b0.0
1 4d0. 0
22000
230
1 jdo.u
13/b0.0
11> 7b0 . 0
*~900
50
vu 0
1 4 / bU
1 6 /bO
200*
VOO. 0
14/dU.0
1 o /bO.u
1 700
b 0 0  0
Idouu.0
1 DttDO . U
20
7 o 0  U
1 1 / sUiil
162r>u.u
1 3 0 0 0
1 7o
7uu . 0
122d0.U
IddoO.O
14 00
130
7d0.0
000.U
1 60 U 00
 h	7	7
1 6 7b0  0	22U00	23(J
b 0 0 . 0	4 v 0	2 0 K
b20.0	3241	9/

-------
wATtK 'JUALlTf DATA
MUblLt WIVE* AND IHIHUTAKIES
STATION -	^CmLLfc- ttA Y NAVIGATION CnAN^tL MUttlLE KI ^ R tJASlN	MOblLE STUDY



0 0 U 0 J
u 0 0 02
7 U 2 1 1
000 10
0 0 0 7 0
00300
0031 0
00403



Lfh ^Th
nbAMPLUC
I ILtt
WAT ErV
ruHb
00
BOD
LAB




4 F HOM
5 T aGE
TEMP
JKSN

5 DAY
PH
l.uTc. T I 'iL
mi ft
T Ml
ftitT
r-"T dANrt

CtNT
J TU
Mb/L
MG/L
SU

7 lub^
<) 7dd
1
DU
1 400
26 . b

4.8



7 J y o ^
u 7Db
^ J
bU
1 400
db .b

3.3



7 J jb4
l) 7b 7
tb
b u
1 4u0
2b . U

2.7


7 30^4 U 7bi
((, ) 7 J0*>*4
u 7d 7


1 4u0

db


7.8

7
1 o Ju
1
bU
^4U0
2b-b

b. b



/ Jub^4
1 ri J i
lb
Vi
dH uO
2b.b





/ Jiibd**
1 o Jd
ji.
b"
2*U0
2b*D

2.3


7 J0r>^4 1 "JJu
((.) yjub^'t
lo32


24u0

1 b


7.8

7jub^D
l)Ol3
1
bo
l^OU
2b. 0

b. 4



7 j u 6 d b
Ij 0 * o
1 v
DO
1 2uu
2 7 . u

4.0



7Juo^b
ijo'* 7
J7
b )
i 2u0
2b . b

2.9


7jU'>^D Uti^D
(C ) 7 juo^d
uoh 7


1 d\)U

lb


8*0

7j jti^S
1 7 jd
1
do
d iuu
dt)5

t>. 3



7 ji/h^n
1 7 Jo
^2
t0
2 1 UU
2 7.0

3.3



7 J il O^T)
1 7 J 7
4 J
bu
d 1 OU
27.u

2.3


7j'i-Jf. d 1 7 J
( C ) 7 Jub^D
1 7 J 7


c iuU

c?b


7.9

7 JUbdb
j6d4
1
bU
1 UOU
28  u

b. 1



7 J u be: b
0b3D
dd
D'J
1 U00
^ 7  u

2.8



7 j'jb^o
UODO
4 3
D ' J
1 U 'J U
 t>

1 .8


7 JUO'-'b 0f>b4
(C) 7Joocb
0 Odo


1 uuu

"b


7.8

7juD^b
] 743
1
bU
2(J u 0


b. 0



7 jiiotro
1 7^fD

bu
crouu
^ 7 . u

2.7



7 j ic^b
1 7 4 7

b u
c 0 U 0
^b . d

1 .7


7 1 7 m
( C > 7juo^b
1 74 7


2uuu

Id


7.8

7 J u b d 7
v) 7 D J
1
bO
I IuU
<^b. D

b . 4



7JUb^7
-j 7dh
  D

1 . 1


73(J"W 2l?ti
d" ) 7 J0fir7
d idJ


24i)U

Id

U . b
7.6
7 J't










fv' 1 ' C -1






d
c'4
d
8
'-XI "I'M







6.4
1.1
8.0
; INI "VM





c'b.b

L.l
u  b
7.6
I NG \f





^7.1

3.2
U.b
7.8
7 J'j-^7











-------
*ATER DUALITY DATA
MOW ILE RIVER AND TRIBUTARIES
MObll.e: BM NAVIGATION ChANNLL MOd I LE K I VLR
Da It
T I "it
un T L
T I Mfc.
UUOO J
UERTh
0UUU2
HbAMRLUC
^ F w 0 M
hT bANK
70211
T IDE
STAGE
OOblo
NHj-N
total
Mb/L
7.iib24
7 jU*->24
7JUh2b
V J u h d b
7 J 0 o 2 b
7 Ju b
7 JUb27
7 j i)-) ^ 7
U 7bS
1 o Jo
Ob** o
1 7 jo
0bb<4
1 7 *~ b
0 7o J
2120
I C ) VjUDtJ4*
( C ) 7 j'j b2<*
( C ) 7 ju b2b
( C ) 7 Jub2b
( 0 ) 7 JUb2b
( C ) 7 o2b
< C) 7JUb2 7
( C) 7 J 0 b 2 7
0	/o7
LuJd
Ub4 7
17 3/
uobo
1	7 4 7
0 7 DO
212J
1400
2400
1200
2 I U0
l uou
20UO
1 1 00
2400
0  I 0
0.17
U . 1 1
0.17
0.1*
U.lb
0.1b
0 . lo
7 J>o2*
k'l )'/,
' t*[Mum
M N I "U'4
 U(3 if-
7 jn rid 7
O
0 . 1 ~>
0. i 1
O.lD




U 00 0 J
OU002
7 02 1 1
0 Obo 0




Ut PFh
M^cMPLUl
r lut
T OkG C





v, |-0M
b I ^ bL
c
f) < T1
T 1
L1A 11
T I
h Eh I
u \ hhNU

Mb/L


7 JUb24
it 73b
1
5U
1 4 u 0



/ J0b24
u 7bb
2 J
bO
1 4 u 0



7 j o be: *
U 7b/
40
OU
i *~ U 0

7 j 'i n d *
o 7bb
(i. ) 7 J 0 b24
U 757


1 4 u U
J. u


7 J 0 O 2 4
1 c JO
1
bo
2<*00



/ J<024
1 d Ji
11>
bo
24 u 0



/ J j b 2 *
1 o J d
Ju
bu
2 4 u 0

I j u('**
1'- J!>
(C) /mod**
I b 3d


2h u 0
J. 0


7 job2D
uo1*^
1
bU
1 2 U U



7 J u b 2 o
Ubnb
1^
oU
1 2U0



V j o b 2 o
-Jb4 7
J f
bu
1 20 J

I
UO'tT
( C) 7 j u b^b
0b" /


i 2 U 0
1 .0


7 J j o ^ b
1 7Jb
1
OU
2 1 UO



7J u br o
1 7 jo
dd
0 0
2 1 00



7 SvtDd-)
1 7 J/
~ J
oo
2 100

7 Ju->2o
i / jo
( L ) 7 J u b c d
1 / it


2 1 UU
2. 0


7 Jub^b
JO04
1
bu
1 U U U



fJub^b
Ooob
dd
DO
I 0 0 U



/ J'lOcTb
(;tbo

oi'
1 o u u

7 J U t>f b
OOOm
(C) 7Ju o^b
0 bob


10 00
J.u


7 j  i b d b
1 7hd
t
b.J
20 UO



7 j.)o^b
1 7^o
20
oo
2 UOU



/J'lb^b
1 7h /
Jv
O J
2 0 0 U

7
1 7 t* O
{ (. ) / JubiO
1 /u 7


2 0 0 0
J.O


/ J0b2 7
U / D J
1
OU
1 1 00



7jub27
0 7oh
22
bu
1 1 OU



7iwb^7
0 7bb
4 a
DO
1 100

7 J0n2 7
U 7b J
(C)7 3 U b2 7
u 7t)D


1 1 UU
1 . U


7 J0b27
2 1 dU
1
OO
24 U 0



7 j-.o27
2U2
2 1
bo
24 UO



7 jib^7
2 1 2 J
4 1
bU
2 4 0 U

7 JO o2 7
2 120
(C)7 JU7
2 1 2 J


24U0
2.0
7 3 (J <->dt+
-jijvttfty	8
J.o
mKHmum	l. u
( O b f-" ri t> N	2 . 1
Afep27
MOblLE STUDY
0 0b JO
NOcJe.NO J
N-To T AL
MO/L
0. 12
0.1b
U. 1 J
0.11
0.13
0.1b
0.11
0.1b
d
0 . lb
0.11
0.13
00635
NHJ&URG
N-TOTAL
MG/l
0.46
0.33
0.30
0.37
0.3b
0.38
0  3b
0.25
b
0.46
0.2b
0.3b
00b6b
PhOS-TOT
MO/L R
0.07
0.04
0.20
o.so
0.06
0.37
0.03
0.03
b
0 .b0
0.03
0.10
0 0 94u
CHLOWlOt
CL
Mu/L
31 bOb
TOT COL I
MRN CONF
/100ML
31 bl 5
FEC COLI
MPNECMED
/1OuML
2odu . 0
132bu.O
lbUOO.O
330
SO
19 0 0.0
920UU
1 b2b iJ . U
1100
130
1 J D 0 . 0
14/oU.O
1 7^00.0
1 UOU ,
142bu,
1 b 7b0,
330
1 1 7d.
12/o0.
1 e> 7oU ,
230
-bu . u
i 22oo. U
1 b-ibu . 0
bO
12ou0.0
lbdOO.O
1 100
110
,
b9 u 0.
1bO OU.
2J	7	7
I 7oU0.0	4 40 0	230
9b0.0	330	20
obub.9	759	7b

-------
WATEW UUALITY L)ATA
MOttlLL KlV&H AND T K1 OUT Ak 1 E S
bT.lT ION - -w
CrilC^ASArt CK at bHELfON riEACH HY MOBILE RIVER BAblN
MOBILE STUOr
UTfc
T I 'L
u a r e
r i .-it
0	0 U 0 J
1	>E P T H
i- tt r
00002
nbAMPLOC
* KrtUM
kr rfANrt
0001 0
WA TEW
T t MP
CtM
GOO 70
TUWti
JKSlN
JTU
00300
DO
00310
BOO
5 DAY
MG/L
00403
LAH
PH
SU
00610
NH3-N
TOTAL
MG/L
00630
N02&N03
N-TOTAL
MG/L
7 30t>2t*
7 Ji;62b
7 J'ibdb
73j627
>) -* 1 b
1 2bU
1
Libbo
DO
bU
bO
bU
*?3 . U
2b.
.
24 .
b
i 1
b
7.8
7.4
f . 7
7.2
1.3
5.7
b.9
6.8
b.9
0.01
0.16
0.05
O.OlK
0.05
0.15
0.05
0.06
7 3  I '.5 d 4
UU
73 j
nE-
i X I M'  M
* 1 N I '-HIM
LUG -Mc
t
2b. S
2 3.0
1 1
b
4
7.8
7.2
7 . b
6.8
5.7
6. I
4
0. 16
0 . 0 IK
0.03
4
0.15
0.05
0.07
' A T r_
T Ht
U A I L
T I Mc
U U U 0 J
UE p T n
f EE T
0 U  b
PhUS- 1 UT
00b8U
T OPG C
C
MG/L
0 0 94 U
CHLORIDE
CL
MG/L
31 bOb
TOT COL I
MPN CUNF
/100ML
31615
FEC COL I
MPNECMEU
/10 OML
U 04 0 0
PH
SU
7 3062 4	iD
1 J-jbdb	1 d'D'i
7 Jubdb	1 1 41)
f 3 0 6 < 7	ObDb
*50
D U
3U
bO
0.33
u  2y
j . J 7
u  3 1
0 . OUK
0 . 1 3
U . U u*
U . UOK
10.0
4 . 0
4 . U
3.0
2.0
2.0
2.0
3.0
4b00
1 100
330
2300
70
80
130
20
5.2
5.2
6.2
6.3
7 31 n^4
NUM. tr."
iX 1 *HM
M NI MUM
LOG *E&.J
73on^ I
0 .37
u. 28
0 . 32
U . 1 J
U.U0f\
U .U 1
10.0
3  u
4.7
3.0
2.0
2.2
4
4600
330
.1400
4
130
20
b2
4
6.3
5.2
5.7

-------
wATEH QUALITY DATA
ST A T[UN - IU

Cm IC K A aA w ck
MOts ILE
AT US HWY
rtlVEK AND
4j BWIUOE
THIKJUTAPIES
mobile KIVEK
BASIN
MOBILE
STUDY



0 0 0 0 J
00002
7 0^11
00010
0 0 0 7 0
00300
00310
00403


ufc PTri
HSAMPLOC
TIDE
wATEk
TUHb
00
BOD
LAB



* FnOm
ST AUL
TEMP
JKSN

b DAY
PH
UM t I I !"E. Um T L
r I ml
FEE 1
r*T bANK

CENT
JTU
Mu/L
MG/L
SU
7 JUbd<*
1 Id'j
1
bO
1000
d 7. u

6.7


7 J';bd4
1 Idl
1;;
bO
J 000
25.0

b . 1


7 J<,bd4
1 ld2
1 V
so
1 0U0
25.0

5.8


7j0od4 1 ldU (C) 7J'jbd4
1 ld2


1 ooO

a


6.2
7 J u b 2 4
d(j 1 ^
1
b 0
ddOO
db  o

6. 


7J0od4
du lb
7
bO
d200
db.b

5.3


7 JUbd.4
dull
14
bO
2200
2b.b

4.8


730bd4 2olb (C) 7J0bd4
dUll


ddOO

8


b.8
7 JUbdb
u-id 1
1
bU
1400
db. b

6.4


7 JUDC"D
uodd
Id
bO
1400
2b . 0

4.1


7JUbdb
Olid J
d<*
bO
1400
2b. 0

b . 1


7j(Jbdb 08dl (C>7JUbdb
0 fid J


1 4 I) 0

10


6.1
7 JUbdb
d'J35
1
bU
2200
d9. b

-8.0


7 JObdo
d l bb
b
bO
ddOO
7.0

4.6


7 Jub^b
2i>b7
Id
do
d20 0
2b . 0

4.8


7JQo^b 2Ubb (C) 7jubdb
dub 7


ddOO

8


6.4
7 JObdb
0^d4
1
by
1 JOO
d7.b

5.8


/JUbcb
O^dD
lo
bU
1 JOO
26.0

4.7


7 J;b<"b
wvdt>
du
bO
1 JOO
db . 0

4.7


7 j 0 o d b 0 ^ d *~ (C) 7 3 0 b d 6
()s'db


I JOO

a


b.O
7 J-)bdb
d 1 uU
1
bO
dbU 0
dti . U

7.2


7 Juodb
^101
o
bu
dbUO
db  d

5. b


7 j'jbc b
d 1 {Id
I'D
bO
dbuO
d6 . U

4. 7


7 3 0 o d f"> d 1 0 0 ( C ) 7 J U b c b
d 1 Ud


dbOO

8


b.9
7 J'i6d 7
lolb
I
bo
1 *+00
JO . 0

1 .4


7 J 'j o d 7
H-1 b
O
bo
1400
db . u

2.5


7 Jobd 7
1 Hi 7
1 6
bu
] 4U0
db.b

4,2


7Jvbd7 IuId (C)7jUbd7
10 17


14(10

*

2 . o
6.3
7J"Od7
dJiO 7
1
bO
du U 0
d 7 . 0

b. 0


/iwo^7
^ ibo
G
bu
duuo
d 7 . u

4


/ Jv&d 7
dJb *
Id
bu
duuo
db  o

4 . 4


7J'Jod7 dJb7 (L)7jubd7



dooo

7

1.4
b.9
7 J' -,4














dw
8
d 4
d
8
f  ;j A I I*' 'M




JO  0
10
b.o
2.8
b . 4
f.l J (\j J Mi iM




db . 'J
7
1 .4
1 .4
5.8
I 00 "t_. ' J




db.b
a
4.9
d.O
6.1
7 Jir>d 7










-------
KArtk duality oa r a
HOb II.E *IVtP AND TRlbUTAKlES
b Tn F1 UN - 1'



Chickasaw c* at ub h^Y
4 J riPlUbt
MOBILE U.





0000-1 00002
7021 1
0061 0





l)fr PI m HSAMPLOt.
nut
NH3-N





h Khum
STAUt
total
OATt
M*fc

ua r l
T I Mt
F tt T f DANK

MU/L
7 J u o  <~
1 120
(CI
7 3uo^4
1 122

1000
0.03
7 3 U o 2 *
20 1b
(C )
7 30b24
20 1 r

2200
0.09
730b2b
0b2 1
(L )
7J0b2b
0o2 J

1400
0.29
7 30b2b
20bb
(C)
7 30b2D
20D /

2200
0.1b
7 J U 02b
0 924
(C)
7J062b
092b

1300
0.07
7 30tj2b
2 100
(C )
7 Jl/b26
21 02

2b00
0.06
7 JO o27
1') lb
(L )
730b2 7
lui 7

1 4 U 0
0. 10
7 30 02 7
2 Jd 7

7 3 0 6  7
23bS<

20 0 0
0 . Od
7 3i'od<*
l.'l) rt-.rJ
y.*A Iil.JM
m I ru 'i '1
l.O<> <4 r. -1
7 J ii ?>2 7
8
u. 29
0 . 0 J
o .09




"000 J
o o o o 2
/o2l 1
OObiiu




ut p r n
rib  MHi UC
T iut
T (jhu C





.a l-cUM
SI abt
C
u*- r l
T 1 i-i t
1 H\ I t
I 1 Mt
f- C.L I
k | oANK

Mo/L


U
c
C
"V.
f
1 1 2U
1
: 0
10 00



7 J*; D^4
1 1 2 1
1 0
bO
1 0 00



7 J'' 62 4
I 122
L'y
bi
I UUO

7 Jinii"
1 1 20
( C ) I J 0 O  4
1 1*2


1 000
b . 0


/ 3'jbc4
2-Jib
1
DO
2200



f J'jo 2^
2i 1 b
7
bu
2200



7 3 C b 2 4
2 0 17
1 4
bO
2200

7 3 00^4
2>j1d
{ C) 7Juo24
2o l i


2200
6 . 0


7 J o b 2 d
Otf 2 1
1
bO
1400



7 J u o 2b
0o22
1 2
bo
1 4O0



7 j u & 2 b
0a2 J
2*
DO
1 4 u 0

7 3oo2r>
0H2 1
(C)7J062d
0o2 J


1 4 UO
6 . 0


/ J0b2b
2wbD
1
DO
2200




2 0 bb
b
bO
2200



7J0b2b
2 U D /
1 2
DO
22O0

7 J0b2b
2ud5
((_ > 7 3uo:b
^0-3/


2200
7 . 0


7 Jub2b
0924
1
b 0
13oo



7 Juo26
0 9 2 b
1 o
DU
1 JOO



7 Jo o 26
OV20
2 U
bo
1300

7 J 0 026
0924
(C)7J0b26
0 V2b


1300
9. 0


f Juo2<5
2 100
1
DO
2b00



7 Ji)o2t>
2 1 u J
a
bO
2b0 0



7 J0b2b
21 02
lb
bo
2600

7Juo26
2 1 u 0
{C ) 7 j u o 2 b
2102


2 O 0 0
7.0


7 3 0 b 2 7
lulb
1
bO
1 ** 0 0



7 30b27
1 0 1 b

bO
14U0



7 3ub2 7
1 o 1 /
lb
bO
1 4 uO

7 3 0 o 2 7
1 0 lb
(C) 7J0b27
1 u L 7


14 00
13.0


7 Jij b2 7
2Jb /
1
bO
2000



73>627
2J58
6
bO
2 U 0 0



73l-b2 7
2 Jb9
lb
bO
2000

7 3 (' oc 4
NU.'^tH	7
MAXIMUM	13.0
MINlMUM	6.U
LOG MEAN	7.4
730627
BASIN
MOBILE STUDY
00630
N02&NU3
n-total
mG/L
IKOd
0.09
u. oa
0.07
O.Ob
0 . ov
u.04
U . 1 u
6
U . 1 u
u. 04
0.07
00635
NH3t0PG
N-TOTAL
Mb/L
0.22
0.24
0 . 42
0.20
0.40
0 .25
0.36
0.45
8
0.4b
0.2 0
0 .31
0066b
PHOS-TOT
MG/L P
0*06
0.04
O.OB
0.10
0.06
0.06
0.07
0.0b
B
0. 10
0.04
0.06
00940
CrlL Oh I DE
CL
MU/L
31505
TUT COL 1
MPN CONF
/1UOML
3161b
FEC COL I
MPNECMEO
/100ML
11.0
9.0
12.0
790
130
12.0	940	50
11.0
14.0
17.0	3300	bO
1 b . 0
2* . J
11.0	2100	80
lrt.O
16.0
32.U	790	330
21 .0
22.0
12.0	3S00	290
10.0
16.0
2D0.0	4900	220
1 Ob . 0
31.0
30 . U
20 . 0
lrt.O

-------
WATtP QUALITY OATA
mom ill kivtK qni) tributaries
SU1 ION - 11


Cm I CKASAW Crt
AT END OF
SmIP f ahO
MOBILE kIvEH
BASIN
MOBILE
STUDY




0 0 U 0 3
00002
7021 1
oooio
00070
00300
00310
00403



ULKTh
HbAMPLOC
T IOL
WATEW
TUKb
DO
BOD
LAB




* F HOM
ST AGE
TEMP
JKSN

5 DAY
PH
HA T t T 11 0
1400
30 . 0

0.9



73Ub2D
Ort 1 b
1 1
bO
I4o0
27.0

4.5



7JUb^b
ool 7
21
bO
14U0
26. b

0.0


730b^b Ottlb
(C) 730b2s
Ubl 7


1 4 0 0

lb


6.8

7 Jubc'b
 0
dd oo
27.0

2.5



7 3uo2t>

21
50
dd UO
2b. b

0.0


7 3 0 o ^ d 20 4 o
(C > 7 JOb^o
2042


2200

16


6.7

7 3obe!b
09W4
1
bO
1200
31 .3

0.0



7 30bc?b
U-#UD
1 0
120 0
2 7.0

0.0


7 JO t>Cb 090*
( C ) 7 Jl)b2b
090o


1 2u0

db


7.0

7 3ub^6
d 0 3b
1
bO
^hOO
31.0

4.4



7 3 0bcb
d(iJo
1 1
D j
d** oo
2d.0

4.b



7 Jub^b
cTH 37
dd
^JO
24 oo
27.U

0 . 0


7 3Uo^b d')Jb
(C) 7 JUb^b
duJ 7


24UO

9


b.8

7 J UOC* 7
lulu
1
DO
1 DU 0
32 . 0

0.0



7 Job<^7
loll
1 ^
bo
1 DUO
dO. 0

1.3



7 3Ubd 7
1 i' 1 2
d J
bo
1 boo
2 7.0

0.0


7 JDnd f 1 
-------
WATE* UUALlTY UATA
MOHlLE NIVE^ AND TklbUlAKlES
STa T [ Of J - 11


ChICKASAw Cr
aT END OF
SHIPYARD
MOBILE HIVEU
BASIN
MOBILE
STUDY




0 0 0 0 3
00002
7 0 21 1
OObl 0
0U6 JO
00635
00665
00680



DEPTH
nbAMHLuC
TIDE
NM3-N
NO^fcNOJ
NH3fcORG
PHOS-TOT
T ORG C




% fhom
s r a&l
TOTAL
N-TOTAL
N-TOTAL

C
[iATt TIN'E
Unit
T iMt
KEE I
HT bANK

MG/L
MG/L
MG/L
MG/L P
MG/L
7jijn^4 1 1 U 5
{(. ) 7 30bt?4
110/


1 000
0 .2^
0.03
0.62
0.06
9.0
2U2b
{ C > 7 306^4
d {J d ?


2200
0.4 1
0 .03
0.52
0.10
8.0
7 306^-3 Oo 1 5
IC ) 730625
Odl 7


UuO
0.3b
0.01
0 .60
0.12
8.0
730bdb 2U*U
(C)73Ub^7
1 U 1 4^


lbuo
0.37
0.01K
0.50
0.07
14.0
7 30b2 7 2 J4b
(C) 730b^7
^34 7


i!UU0
0 . Ub
0.01K
0 .45
0.09
6.0
7 Jdo^










111 j M - fc.





d
d
tJ
6
8
  1 "hm





0.41
0.03
0 . d5
0.12
14.0
- I rg l -Mj-i





0.0b
0.01K
0.45
0 .06
6.0
L OG Mr >\





0 . 2 7
0.0^
0.63
0.09
Si.7
1 M>~>c 1













ouOO 3
-00002
702 11
00940
Jl-)0b
3 1 b 1 5
00400




Ut P T n
nSuMPLUC
T IUE
CMLOkluE
TOT COL I
EEC COL I
PH





- hKU'-i
ST^bt
CL
MkN CONF
MPNECMED


I'tTt. f 1 nh
I a I L
r iml
KtE 1
K T .huNK

M(j/L
/1OOML
/IOOML
SU


-7 j  i b  <
1 1 UD
1
50
i 000
1 17.0
700
30



7 JL'b24
1 1 Ob

bO
louo
96.0





7 jjb^4
1 lu 7
22
bO
1 U U 0
12b50.U





7 "J'b  <
2llC=>
1
bO
ddOO
bb. 0
^i?00
490



7
dV dt>
12
b U
2200
3d0 . 0





7
dV(
24
bu
dd UO
lul00.0




7 iu 4 du dt>
( I ) 7 JUb<^4
\)d.t


220U



7.1


7 Jub^D
Oo 1 5
1
b 0
1400
4 U U . 0
7900
1 3 U



7 JUb^tj
J ei 1 b
1 1
5u
1 *~ l) u
d 0 0 . 0





7jub^o
wb 1 7
d\
bu
1 4 U 0
13000.U





7 Jub^5
du** U
\
bu
ddUO
l^b.U
ifOUU
9b



7 J u b d D
2v* 1
1 1
bu
dd 0 0
JdO.D





7 3Ub25

d\
b'J
ddO 0
1 3^bU.u





7 JUbdb
u^o**
1
bu
1 2u0
7 0 0 . u
7 9u 0
330



7 ji;o?b
U^OD
1 
DU
1 20 0
4 b 0 . 0





/ 3 U b ^ b
U^Oo
2J
bO
1 200
137^0.U





7 3ub^b
d\j io
I
bO
2400
7b. 0
7900
230



7 3'Jb^b
c 0 3o
I 1
bO
<;^00
1 dO . U





7 30b^b
titJJ 7
d'd
bo
24
-------
WATtR (JUALl TY DATA
MUdlLE HiVtH AND TRIHUTAKlES
ST A f 1 urj - 1/	ChlOASAW CK rftLOw HOb dAYOU MOdlLE KjVER B



0 0 0U3
00002
7021 1
oooio



Oh P T H
MbAMPLOC
4 FrtOM
T iUt
S T Aut
HATE*
TEMP
L'ATc Tl"t
ufl I C.
T [ Ml
f-LET
tfANK

CENT

7 3 u t>2 4
1 100
1
bO
1000
3 1 . b

7 J0b2<+
1 101
1 2
bO
1 UOO
30.0

7 30O24
1 102
2b
bO
1 uoo
30 .b
7 3 U o 2 4 lloo
(C)7JU024
1 1 02


1 0U0


7 J0O24
2o3b
1
bO
2100
33.b

7 Ju oc 4
2t< 3o
1 2
bO
2100
jo . o

7 3 o o 2 *
2o3/
2u
b 0
2100
2b . b
7ju<->2<* 2o Jb
{1. ) f 30G24
20 J /


2100


f Ju02b
Onoo
1
DO
IbOO
32.0

7 j u b 2 b
odu /
1 3
bO
1 6 0 0
24.0

7 Joo2d
OoOo
2b
bO
lbOU
2b.b
7 3 0 02b 0 0 ^
(C)7Job2b
Oouo


1 O00


7 3 U b 2 b
2 U 3 u
1
bu
22U0
J2.0

7 J u b 2 d
2 u 3 1
1 3
bO
220 U
JU.b

7 30b2D
2 u 32
2b
DO
2200
27 . 0
7J0o2b 20J0
{C ) 7 Job2D
20 32


22 0 0


7 Jub2b
Osoo
1
bO
1200
32.0

7 3ob26
0*Ol
1 J
DO
1 200
JO.O

7 J2b
2 U 3 O
1
DO
24 u 0
J4 . 0

f JUb2b
2: 3 1
1 2
DO
2400
Jl . 0

/ J u ti2b
2u J 2
2**
bo
2** U 0
26 . b
7 J 0 2 o 2 o J 0
( L ) / Ju b2b
20 J2


2*00


7 Jond7
uyb'V
1
bO
1 6u0
.3 4. )

7Jub^7
1 UOO
1 3
bu
lbOU
29.b

7 J u o 2 7
1 UU 1
2b
DO
lb 0 0
27.b
7 JOt>2 I 0 Jo'-f
( L ) 7 j u b 2 f
1 u u 1


1 bOO


I J u c. 7
234,1
1
bO
20 0 0
32.d

7 J o b 2 7
2 JH 1
I 2
b o
2000
30 .D

7 J vi o 2 7
2 34 2
2 J
bO
2000
2 . 0
7J!io27 2 34 0
it) I jut>27
2 ^2


2000

7 3l> b 24












2**
' - A I '..,'-1





34 . Ii
' 1 n! -i





2b . b
l uij Mt *1.,





JO . 0
7 J ii > 2 7
MObiLE STUDY
0 U 0 7 0
TURtJ
JKSN
JTU
00300
DO
MG/L
00310
HOD
5 DAY
HG/L
00403
LAb
Pn
SU
10
0.0
0.0
0.0
0.0
0.0
0.0
7.0
23
0 . u
O.b
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 . u
0.0
0.0
o. u
34 . U
25. 0
7.1
7.0
7.2
7.2
J.4
7.4
d
3b
1 d
2b
24
0 .D
0. 0
0.0
2
34 . 0
25.0
29.2
7
a.4
7.0
7.3

-------
WATER OUALIFY 0^^
MOblLE RIVER AND TRIBUTARIES
ST a I 1 ON - |
CHICKASAW Cr\ BtLUw rtuG dAYOU MOdlLE RIVER tiA
i i ii r t
7 J [)nd<*
7 3 <) b c **
7JOOci
7 30bD
7 3 0 o  b
73u bb
730b7
7 30b 7
1 ]ME
1 ] UO
2o3b
OOOb
u JO
0 *oo
20J0
0 vd9
234 0
LA Tl
( C ) 7 JUb4
(C ) fJ\)bd<*
(C)7ju65
< C ) 7 JUbcrb
(l> 7 J0b6
(l.) 7306b
(C)7 J0b7
( C J 7 3 0 b  7
T 1 Ml
1 1 Kid
o37
OdOb
 0 32
OvOt;
032
100 1
234
OU00 i
uEPTn
FEtT
00002
nSAMPLUC
b FkOM
m I i ANK
7021 1
TIDE
SI AGE
1 0U0
210 0
1 boo
2200
1200
2400
1 bOO
2000
00b 1 0
NHJ-N
TOTAL
MG/L
03
It
06
0.10
0 . 25
7 3'>">e%
U i ] '4 - t r-
\.A
,y> I f J I -"l U'^
l UG Mr ..
7 3 (i ->2 7
b
0 . 2 5
0 . 03
0  1 U
UAI:
1 I
f I ml
u 0 0 0 3
ukh r  <
00002
MS..MPLOC
t- r^UM
< { rlaN*
7 0 dVl
t.iul
S T Aijt
00940
CMLUR 1L)
LL
MG/L
730o4 t^'U5
-7 30b4
f i A I MUM
MINI MUM
I 00 .MtAtj
7J0o7
7 Jub4
11 'JO
1
5o
1 OUO
55 . 0
/Jub*
1 l'jl
12
bU
10 0 0
6d0 .0
7 31' b d **
1 1 ud
b
bO
1 000
700 .0
7 Jut>4
d u JD
1
DO
 100
3/5.0
/3'Jb d*
2o Jb
1 
5o
100
7 U U .0
73 0 6  <~
03 /
4
5o
d~l 0.0
12iU0 . 0
/JUOf4
0 3 f


2 1 0 0

7JUbdS
OdOb
1
DO
1 bOO
525.0
7 JUbcS
ObO 7
1 3
50
1 b 0 0
950 . 0
7 junk's
Un Ob
2d
DO
1 DO0
1bOOO . 0
7 Jub->
d 0 30
1
50
2 00
d5U . U
/ 30bb
2u31
1 J
DO
2200
1 000 . 0
7 j u b d b
duJd
C 0
5 u
200
13750.0
7 3ob6
U^UU
1
^0
1200
bUO . 0
7 3obb
090 1
1J
50
1 200
2d00 .0
7 3 u 6  b
OVU
2o
DU
1  0 0
15000 .0
/ 3 Obb
20 JO
1
50
2400
55 . 0
/ 3 0bb
20 31
1 
-5 J
2*00
vdO . 0
7JObb
diUd
c u
5 o
2400
15000.0
I 3Ub 7
ij9"d9
1
50
16U0
37d .u
-/JOb7
100 0
1 3
50
1 bOO
1 700 . 0
7 3'Jb 7
1 UO 1
dt
50
1 b 0 0
14300.0
I Job/
2 34 0
\
DO
000
5 7b . 0
7 A-ibd /
2341
1 ^
50
000
900 .0
/ 30 b 7
dJd
23
50
2000
95000





24





lbOOO.O





3 7 d  0





17 11.0
MOblLE STUDY
006b0
T ORG C
C
MG/L
22.0
29.0
22.0
25.0
16.0
18.0
44.0
36.0
b
44.0
16.0
25.2
31 SOS	31615 00400
TOT CULI	FEC COL I PH
MPN LUNF	MPNETmEU
/lOOML	/100ML SU
24000	1700
lbUOOO	4b00
7.2
D4000	1700
11UUO	700
2200	130
It U 0	110
J300	230
7	7 1
lbOOOO	4 o 0 0
1700	110
11407	611
00630	00635	0066b
N02fcN03	NH3&ORG	PHOS-TOT
N-TOTAL	N-TUTAL
MG/L	MG/L	MG/L P
0.01K	0.56	0.30
0.01K	0.6b	0.10
0.01K	0.50	0.06
I).OIK	0.63	0.95
0.01K	1.13	0.06
0.01K	0.b5	0.50
0.02	0.2b	0.50
0.01K	0.6b	0.07
b	b	6
0.02	1.13	0.95
0.01K	0.2b	0.06
0.01	0.62	0.20

-------
wA rtw OUALITY DATA
MUblLt WIVLW AND TRIBUTARIES
btuI ION
1 J


C hIC K AbA # Crt
AT mOUTh
-L^N bkL>
MOBILE klVEW
BAblN
MOB 1


00003
OOOU3
70^1 1
0001 0
00070
00300


uEPTh
HbAMFLOC
TIDE
m A T Eh
TUPti
DO



* KHOM
b T nGt
TEMP
JKbN

U A I L
T I
fee r
bANK

CENT
J ru
Mb/L
7 3iib4

1
30
1 100
34 .0

0.0
7 JUb4
1 9
1 U
30
11 u 0
30.0

0.0
/3ob^t
u v  b

0.7
7 Juod1*
i)vj4
(*
o0
1 100


0.0
tC)7J0b^4
0 V J <4


1 100

34



1
3 0
dl 00
33.b

o .a
f J U b 3<
3 J <~ b
1 J
d')
d I uO


0.0

3l><* /
3b
dii
d loO
db, b

0.0
7 3(>b^<*
3<. <*d
1
bi>
di uO
33.b

O.o
7
d\\*-i
1 J
bO
11 U0
JU  0

0.0
I 30b3<*
crObu
3b
bo
e: 1 [JU
?b  b

o.u
7 J 'J t> ^
^ibb
u
bO
c: 1 oo
33.b

0 . 0
{> ) / JO^4*
^UDb


c 1 0 0

3s

7 Ju63b
U / bO
-1
dU
1 buO


O.o
/ Juo^b
i; / 3 1
1*.
du
lbuO
dv  u

0.0
/ jv.'b^o
O fOd
3 /
3 0
lbuu
c'b . D

O.b
7 J 0 b d b
r f o*
I
D >1
1 b U 0
Jdf . b

0 . 0
/ J w o C b
i. fbb
1 <~
bu
1 bO 0
. u

0.7
7 J 0 6  r>
11 I ~)C>
3 f
Mj
I b 0 0
c^b . ->

0.7
/ 3 b3b
Uou 1
<+
b i<
1 6 0 0
3d. 0

0 . 0
( L) 7 JjodD
U ^ u 1


i b w 0

33

7 J.IO"5
1 ** tj u
1
3>J
d** U 0
33.b

0.0
/3ub^b
1 1
1 1
d J
d* uO


0 . 0
7 J U D "D
i V')d
di
d ii
d* uO
J 0 . 0

0 . 0
/ JUt>^D
1 ^ub
1
b U
<^4U0
3^.b

0.0
/ j y o d. b
1 *W 7
i j
b'j
C<* U 0
dl * 0

0 . 0
/ J 0 b^D
1 Suo
3b
bU
d**0U
dt>. b

0.0
( Joodb
1-yiu
t*
n')
d<* 0 0
3c. . 0

0.0
( L ) 7 Juot'b
1 ^ Hi


d<*M 0

3b

7jco^&
u o*+ U
1
d u
1 du 0
J 3 , u

0.0
I JUbcb
HO" 1
U
d^\
1 ^ 00


1.1
7 3ubdb

3 f
dV
1^00
3b , b

1 .3
7 j u b o
'in1*1*
1
b >'i
l^oo
. u

0 . 0
7 Jub^rto
Ub^b
1' j
b o
1 d UO
3^.0

0.0
7 jub^6
un*b
3^
bu
lc'UU
3b . b

0 . y
7 j u b d b
l/O^O
H
b u
lc:oo
3 . U

0.0
(C) 7 iu o^b
u o1* o


1 ^uO

3b

7 J u b < b
1 ^03
1
r'O
iloo
J J . b

0.0
(juo^b
1 ^ u **
1 J
r:u
^ 1 uO
30 . U

0.0
7 jub^rb
1 VOb
3b
c^U
1 UO
dl .b

0.0
7 3 0 b d b
_1 *u f
1
bU

JJ.b

0.0
7 3 U 6 ^ b
-i ^U'j
i -
bU
/^l ou
JO . b

0.0
7 J u o d b
1 susy
dl
bU
1 00
37.b

0.0
? JUbc!b
1 ild
*
ctO
d 1 uu
3^ . u

0.0
l>u Th
T I iE
Ovlb
730b^<* 3o^b
7 JUb 3 b 0 /bW
7 jiib^"D 1 "^nO
/ jij'j^o U d<*0
00310
BOD
5 DAY
MG/L
00403
LAB
PH
SU
to.9
6,7

-------
wA \tH wliALl I Y DATA
muhIlE Hlvt* Aigu TRIBUTARIES
ST u T I <) n - I J
OlOAbA* C* aT M0urri-L.w f ^ ^ / u -* < iC
7ju'W 2320


0 0 0 0 J
0 0 0 0 2
/ U2 1 1
0 0 0 10


IJt r-1 I M
I^AMHLOl.
T iUL
W A T t *



- l-HOM
b ^ al>L
TtMP
I'ATL
r I ml
FcLT
^ r rft,NK

CENT
730b2b
1 v i ^


2100

f 30b<^ /
0V4d
1
20
1 bO O
32  D
/ 3 w o ^ /

lb
2 U
1 DO 0
2b. b
7 3tib2 7
OS"* 7
2c
TO
1500
27.0
7 J u o 2 7
US"4rt
.1

1DU0
32 .b
/ 3 uo27
0 Vh*
1 -
DO
i D00
2* .0
I J.>b2 /
0 VDi-
2 7
DO
1 DO 0
2b ,d
/ Jib2 7
O ^ bD
a
do
-looo
30 . 0
/ 30bc 7
0 -*b:>


1 DOO

f 3UD2 t
2.J20
1
2U
2100
33.0
7 J:m2 I
2321
1 1
d"
21 00
31.0
7 3.-b27
2322
21
20
2 1 U 0
30 . 0
7 .1 d
34 . U
erb . b
30 . 1
Jd
-22
dd
[iMt
r I *e
OA T L
T 1 .*t.
UOOO J
ut p r m
f-c.LT
0 U 0 o 2
bttMHLOL
"o r hOM
T ttANr.
7021 1
T IlL
b 1 auc
0 0 b 1 0
r * nJ-n
TOTAL
Mb/L
U 0 6 J 0
b U 2 \ h L) J
N - T u T A L
Mtj/L
7 joocr<*
7 3 o o 2 *~
73ub2b
73uo2D
7 _JUr>2b
7 30626
7 30^2 7
730oc7
U V 1 o
2u 0
1 -v U 0
0d40
1^03
0 V<*5
a.id o
( C ) 7 j u o 2 h
(C ) 7JU624
(L)YJUS^"5
(( ) 7 Jub 2 D
( C ) 7 JOb^o
(C)73ub26

-------
WAILK UUAlITT DATA
MOBILE HlVt* ANU fklbUTAklES
ChlCKASA
CK A f MUUTn-Lt.lN WM oWU MQHlLt *lVfcW bASlN


UOUOJ
U0002
7U
uv 1 V
lu
dti
1 1 uu
yOO . o
/ JUO<
u^cu

dO
1 100
12600.U
7 juO^<
'JVJU
1
oO
1 luu
2b0  U
t SWtid'*
IWJ 1
1J
bv)
1 1 li u
2UUU . II
7 J \J "3 d <

dl
3 0
1 1 u 0
1 jibu. u
/ j u be:1"
US-J J
\

1 1 UO

t JUO. *
U" J1*

O0
11 u o
JUU . It
/ J line-

1
dU
d 1 u u
J /t>. u
7 J u o 
d i/<*0
1 j
d'i
d luu
7UQ.U
/ J (1'*
>
dl uO
1 J IbO . 0
/

1
M>
1 uu
jDU.y
/ Juf5>

1 J
5U
d I UU
TO u. u
(v bd**
^iou

Oil
dl UO
I't^by.
i J U 0  <~
 IOH
1

d I UU

t JuOd*
^103

0\
 1 UU
Juu. u
/ J Ut)^-
C003


d 1 UU

/ jijnso
u /do
1
dl'
1 -5UI)
i /D.'l
/ }>jnet)
u fi>l
1 H
 J
U7t)0.o
/ J i. ^ o
.) / D 
1
3.1
1 OU U
^->U . J
f jl 111 d T
')
11,
T-l
1 '.)D II
.iOQU . i-
/ juocrr
u /do
d f
Dil
1 1UU
U /50 . u
/ jud^t
UnUO
1

1 t)^ u

/ JU'xTD
Uou 1

ni.
t Oil I;
'dd-D . U
/ J HOf'T)

1
rlJ
d* 00
fUO.U
/
i *MJ 1
11
>'
j U
S3U.!J
/ j i  'j do
I -yu J
1 j
DO
U U
1 0 uu.
/ JK'
1 '~w O

">>i
dy >U
i jc'tU . If
/ J '. 0 ^ ?
1 -tUl
1

d-'.U

l j'.-iert)
1 ^ 1 "

-il/
d-\> 0
D5U.U
/j.i-it"'
(1 -f 4
1
d'-
l^UO
^tU . U
l .5 < ' 'i ^ fJ
' -1- I
J -
c <

1 ? 0 U . U
/ J M T JT -5
H "1-> C
r i
d 
l U u
lxoyo.y
!
 j >
i
do
koi>
-tjf.u
^ J J'j1
ui"n
It
D'j
t  j. u
/ Jlitji-'O
1-1 1
1

r i kid

/ J - '0 * ~3
1
* 1
It
d>'
1 DU U
f"DTO . ')
11 <^d /
V- ^

tri
1 DUO
1J3UU.0
(ivid. f
'< n
i

1 TWO
I fO.'l
! J ' /
-ISj-t
U
D'I
1 TUU
1 '-'U u . u
7JUOC1'
('y^O
 f
T U
1 ouo
1 < O 'J u . u
/ juo^ /

1

1 Til il

/ J /
U ''D=>

o.J
J O!) U
" ,1
/ Jvor" /
d Jd.j
1
T j
dl OU
DUU . .
/ J .o* f
d j U . t!
/

dl
dO
d iuo
iouu. -j
/ i.'Od t
dT JC'n
1
b-
^ 1 'JO
"D U U . l<
I j 7
/
1 J
D i
d 1 I'll
fDU.'J
/ J >0f f
i; Jdrt
dS
*5 )
 /
dJ Jii
A
* J
^ 1 uu
Dc'S . v'
7 Ji)') r. U l> ] H IL'
? Jt)V>d'* ^ U ^ iC)
/ j'jtjr: i	(L )
J 1 bUb
7UI CULI
MPN conf
/1uOml
J 1 6 1 b
FtC COL J
mPnC>.D
/1UOML
^ t I	!
'.M'ii'm I bbt>0 . u 1<*u0uU	* u
JjuQ	*-#U
1 UO T I -J4* 1 . <~ d j l** I	io Id
00400
1

-------
wATEtt DUALITY DATA
MUtJlLt wIVEH AND TRIBUTARIES
STtT|()\- 1 4
ImkEEMILE CK-*k riWlD-t AT MI 0.4 MOBILE klVER bASIN
MOBILE STUDY
T I*'f.
u* Tt
T I Mt
OOUU J
Ut^TM
f- EET
00002
HSAMHLOC
4> F WQM
VT dANK
0001 0
WA TEH
TEmP
ClnT
U 0 0 7 0
T uwb
Jl\SN
JTU
00300
UO
00310
bO0
b DAY
MG/L
00403
LAB
PH
SU
00610
NH3-N
TOTAL
MG/L
00630
N02&N03
N-TOTAL
MG/L
7_j<)fa^4	094b
7Jufa^D	Idiu
7 Ji t>^6	1c^4d
7 Jut>27	U 7<^u
bO
bU
b 0
bO
2b. 0
JO . u
J'J  d
4 .0
1 0
1 1
1 0
Hj
7.9
7.2
7.0
fa  6
6
6.0
6.8
fa.a
6.a
0.10
0.34
0.28
0.14
0.20
0 .24
0.22
0.20
oc*
"41 I ' "t*
. (4 A I 4l iM
" INI rll'M
LUb -1E"U
>s7
30.b
d. h . b
2 7.4
1 1
1 0
1i
U . JO
0.07
0 . U 7
9.0
3.0
3.0
2. U
fa . 0
6.0
6.0
fa . 0
35000
350000
130000
130000
7900
130000
49000
49000
6.9
6.6
fa. d
6.9
7 J)>^4
f vU 1 -E^
"..X Mum
f" J N I MiJM
L Ob i-ttui.
7
U . 7b
u.22
<) . J9
0 .30
U . 07
0.11
9.0
2.0
3.o
4
fa.O
6.0
6.0
360000
35000
1199bl
4
130000
7900
39627
4
6.9
6.6
6.3

-------
WATtW QUALITY DATA
MOBILfc KlVt'H ANU TRIBUTARIES
b Tfl TI ON - 11


threemile
CK AT US HrfT
4b dn I UGE
MOBILE WIVtR BASIN
M(JBIL
5TU0T




OU0U3
00002
7 02 1 1
0001 0
000 70
00300
00310
00403



Dfc P Th
HSAMPLOC
T IDE
W A TEk
TUke
00
BOO
LAB




 h'KOM
STAGt
TLMP
JKSN

5 DAY
PH
l>ATl Ti-'E
iMTt
T 1 hl
KLLT
*T BAN*

CLNT
JTU
MCs/L
MG/L
SU

7Ju6^4
lulu
d
bO
1 000
^4.0
1 1
5*1

fa. b

7 Joc7
0 f5v
1
bO
110 0
^b.b
1 1
1.3
4.6
6.4
7










I'j  1 '1 M t 





<~
4
4
1
4
1X I IM





26.b
22
1 .d

6.8
'4 I N I "lUM





24 . t)
11
1.3

6.4
I UG Mfc >N





db.d
u
3.9

6.6
7













u uoo3
0 0 0 0 2
7u2 i 1
U 0 6 11)
OUb JO
00b3b
OObbb
00660



UtHlH
rlbAMPLOL
r i ul
NH J-fM
N02e>N0 J
NH3iOHb
PHQ5-TOT
T OPG C




< F KUfl
b T -i G t
TOTAL
N-TOTAL
N-TUTAL

C
l^Th ri^.
LUlt
T i ML
Htt 1
k r 3 a n *

Md/L
MG/L
MG/L
MG/L P
MG/L

7 J u o c14
1U10
d
b<>
i 0 u u
0 . ^<2
0.40
0.tt8
0.13
10.0

Mub^b
1 14<,
1

1000
U . 70
0.3b
1 . i "->*?<*










4' -'. - r. -*





a
H
<+
4
4
 - A 1 i'





u. /u
li . 4U
I  db
O.bb
10.0
*-' ] i j 1 Uif-'





u .^4
0 . <^9
0.46
0.13
4.0
I 0 '.1 '*r ,





u . 4 7
U . JJ
O.d^
0 .2b
S.3
y













u 0 U U J
U U U U d
1 1
OO^^II
JlbOb
3 1 b 1 b
00^00




j M
M^.V-iPLGL
r lot
ChLUK1ut
TOT CULI
FtL COL I
Ph





c. H
^ r 'ibc
CL
MPn CONh
MPhtCMfcO


J i  I - T I
" i *i T t
r I Mt
f LL1
I  AN*

Mo/L
/1UOML
/1OOML
SU


7
1 o 1 u
d
5 u
1 0 U 0
9.U
C40000L
lbUOOO
O.J


y j u t> ^ t>
1 Ihu
1
bli
louo
11.0
<~90000
2JUOOO
O.J


7 Juo^b
1
d
b (J
1 0 0 0
8 . 0
l j a o u o
2rtOOO
b . b


/ JUv>d7
U 7t>u
1
""} U
1 1 uU
9. u
7S*UOOO
330000
b . b

7 J i) n d <+
















(4
it
4
h

 ,1 A ] -V M





ii.ll
0 0 u 0 L
330000
o . o

. > 1 M I ,*1M M





ri . 0
1 JUOUO
tfHOOO
b. J

L IJlj H r ui-i





9 . 
JJIbOH
1 Jb793
b . h

7 3 0^7











-------
WATtW DUALITY OATA
MOnliE KIVEK AND TPlHUfArtlES
S r U I 10m - I f>


1Hktfc'MlLL CK
A r US HaY
4J bNlUGE
mobile wj



00003
OuOOd
70dl 1
0001 0



Ut K T h
riS AMPLOC
r i ut
W A TK




- KMOH
5T AlE
TEmh
n.iTr T I E
Da 11
Tl'it
F EtT
Kf OANK

CENT

7 3 ii bd4
Un50
1
50
IdOO
d7. 0

7JOb-4
OOb 1
b
bO
IdOO
d7.0

7 J obd<*
0 Obd

50
1 dOO
db5
730od<* Oo50
(C)7J0bd4
Ot^bd


1 duO


7 J ii Od!4
1913
1
50
d<+\) U
d5. 5

7J 
DO
dd 00
30 . u

7 jood--
1 {> J 1
9
->0
ddOO
d/.b
7 Juo^rb iicw
{ > 7 3 " b d 5
1 ^31


ddoo


7 J u b d o
U / DD
1
o'i
l luo
^rcJ. o

7 J u b db
ii 7bb
b
_> u
1 1 uo
db. u

7 30bdb
U 7 W
1 U
-0
1 loo
do. u
0 7 b 5
IU 7 iObdb
0 7b7


I Loo


/ 3 w6db
1 o 3 o
1
b u
^100
JO . b

7 J .iodb
1*31
b
b')
C 1 00
d9. u

7 3 
1 o Jd
4
b u
d 1 oO
do. o
7 j \j '3^


d 1 uO


7 J U b d 7
Uobb
1
b 0
IdOO
d 9 . 0

7 3 G o d 7
U^bb

bu
1 dUU
d 9 . 0

7 Jobd7
Uob-/
1 U
bO
1 dOO
d 9 . 0
730bd7 uod5
{ C ) /30bd/
Odb I


IdOO


7 jjo^7
c'uJb
a
bu
d^oO
db  b
7 J u












ct
' jA 1 M'JNl





J 1 , b
N. I N I V,|M





d5. b
[ Ou Mf il i i





do . 0
7 J >% d 7






OAS I N
MOBILE STUDY
000 70
rukb
J*Sn
JTU
00300
DO
MG/L
00310
BOD
5 DAY
Mb/L
00403
LAB
PH
SU
13
0 .ti
0.0
0.5
5.3
5.7
0.0
0 . a
0.5
0.0
7.0
Id
1 u
lb
a
10.3
5.3
0 . 0
0 . 0
<~ .5
0 . 0
U . 0
3.4
3.1
2.3
0.0
d.9
<* . u
7.0
6.9
0.9
t  6
d5
6
Id
?d
10.3
0.0
0.0
d
<~.0
d.9
3.*
7
7.0
b . B
6.9

-------
M A TEH DUALITY DATA
MObILd WlvErf AND TP I HU T An IES
STA T J 0j
- 1 -


ThPEEmJLE
C* AT US nWY
^3 HHIUGL
mobile h:




00003
00002
7 U 2 1 1
00610




IjtPTn
nSAMPLOC
nut
NH3-N





is FwOM
STAGE
TOTAL
Ija. TE
T iMt
Ij a r L
1 I ML
f-EET
kT dan*

MU/L
7 3 0 o 2 4
ObbO
(C)7JUb24
0 052


1 200
3. ob
7 3 o <> 2 4
ls-ib
< C)730b24
141 7


2400
1.12
730o2b
u7 28
(C)730b2b
U 7 JO


13U0
3  20
7 30b2b
M29
( C) 7 30 b2b
loJl


2200
3.92
7 30t>2b
0 ?ob
(C)7 30b2b
0767


1 luo
2. bb
7 30 b2b
1 o 30
( C) 7 3u b2b
1 632


2100
b.du
7 30*->2 I
0*b5
( L > 7 3 o b 2 7
Ood f


1 2u 0
1.12


730b2 7
2 ii 3 b
i+
bu
2^0 0
b. bO
73ft'i24
MJi I it. -
I 24
unb2

b-j
l^UU
1 4b. 0
I JJb24
l9lb
1
bO
24 u 0
4 b . 0
7 3 .1 b 2 4
1 9 1 b
D
r> u
^*~00
42. 0
/ Jtb24
1 9 1 7
9
DM
2 *~ U 0
~2.0
(I) 7 30b24
1^1 7


24 u 0

7JUb2b
0
1
bO
1 JOO
2d0 . 0
7 J y o 2 D
0 729
b
bO
i JOO
12b.U
7 3Ub2b
U 7 30
1 n
bt)
130 0
200 . 0
73nb2r>
1029
1
bo

bl .0
7 3ob2b
1 o 3 u
b
bu
2200
bb. o
7 J i< b 2 b
1 ^31
h
bo
2 2 l> 0
^ 4 . 'i
f3ub2b
0 7dd
1
JdO
1 1 UU
JOO . 0
7 3 u b 2 b
0 7ob
D
bo
1 1 00
30 0 . 0
7 3uo2b
()7d7
1 0
bo
i 1 0 0
30 0 .0
7 3<"->2b
1 rt 3 J
1
1) 0
2 100
4b . 0
7 j',iO?b
1^31
b
DO
2100
40 . U
7 3 (rb2b
1 o32
9
bu
2 1 UO
4 2 . U
/ Jut>2 7
o aob
1
bO
I 2UO
3bU . 0
730b27
Onbo
-j
bO
i 2(i 0
3b0 . 0
7 3 0 b 2 7
Uoo /
lo
bu
I 2 U 0
3b0 . 0
7 J0b2 7
2. 0
6.0
10.b
JlbUS	3161b 00400
TOT COL I	FEC COL I HH
MPN LONF MPNtCMED
/1OOML	/lOO^L SU
24UOO	*000
1 1 UUU	1700
7.0
33U 0	1100
JJuO	330
<~900	1100
lbUOOO	7000
13U0	110
7	7 1
IdOOOO	24000
1300	110
bJ9l	1^*35
00b3G
N02&NU3
n-tutal
M(i/L
0 .00
0.2b
0.10
0.42
O.10
0.1b
0. 19
0.27
6
0.42
0 . 06
0.17
00635
NH3fcORG
N-TOTAL
MG/L
3.94
b.60
3.13
4.b2
2. 76
7.70
1 .32
b.10
b
7.70
1.32
3.bl
0066b
PHOS-TOT
MG/L P
2.00
3.70
1.7b
3.60
1 .70
3.50
0.70
3.00
8
3.70
0.70
2.22

-------
W A [ t K (jUAL Iff DATA
MUrtlLt wlVtR	TklbUTAhltS
ST A 1 I Qiv
1 i
THHttMlLL Cr at LnN kR okIDGE MOBILE RlvER h
i i ;i T t
T ME
ATl
T i Mt
u00u3
Jfc P I H
FEET
0 U 0 0 2
nSnMHLOC
l- K KOM
* I rt A N f\
7u2i l
T I L)L
b T Abt
OOblO
NH J-N
TOTAL
MG/L
7 J 0 t>4
7 jo Dr 4
730b2b
7 Jo* 2b
7 3 0 b 2 6
7 3<)b26
7 j t J o d ?
730n2 f
Oo4d
1 -i 1 u
0720
lo20
U In 0
ld2b
u d 3b
20 JO
{ci 7 juo
2M)U
1 . ub
J  2b
0  DO
2.7 b
U . 1 4
	lb
, 1 0
	U2
7 J i'i o d 4
1 M I I M  1 '
> -.A I i.i:
	MM'-"
	OG ''r
7 j:j-32 7
3.2d
0. 10
u  V4


0 0 0 0 3
0 0 0 0 2 -
7 0 2 11
.0 U 9 4 1


Dfcr>T-t
r-oaMMLUC
f iUL
ChLow I Dt



-o h ROM
S f UL
CL
i.'A r r.
I I ml
(- tt T
- i :5 A "J p

MO/L
f JUD24
U 0*0
1
bu
12U0
3b0. 0
\ Jub24
'1 -14 o
r.
OkJ
1 2U0
JbO . u
( J O d 4
ij04 r
1 1
D U
1 dOV
JdO . u
7 j u b 2 4
1^10
1
DU
2 D U U
227.0
7 Ji'b2<
1 vl 1
D
b 0
2 D 0 U
22U . 0
7 J u b 2 <~
N12
10
bO
2bUU
200 . U
( C ) 7 3 0 O 2 4
1 h 1 2


2 D 0 0

7 j ub2D
U / 2 0
1
b u
1 jOU
2 7b . u
7 j ub 2 d
0*/2l
n
DU
i JOU
300.0
f3 u b2D
0 ^22
1 1
DU
I 3 U 0
bOo . 0
7 3U62D
1 b^u
1
o u
ddvu
lbO.O
/j
1 OiT 1
t.
D >1
2 2 u U
2u0 . u
73ub2b
1 b2c:
1 1
DO
22 U U
buO.0
7 3 0 b 2 b
U 7bU
1
bu
1100
3 D 0 . tJ
? 3 0 e> 2 b
0 / 3 1
n
dO
i 1 OU
3 7 d . 0
7 j u o 26
U /
1 i J
DO
1100
D2D . 0
7 JUb2b
1
1
DU
20 O0
200.0
7 j :>o2b
1 M2b
b
bu
2 U 0 0
2D 0  0
7J u b2b
1 rt2 /
Sf
bO
2 0 U U
4 uo . 0
7 J u b 2 7
0ri3t)
1
D U
1200
200 . 0
7 3 U b 2 7
CO Jt)
b
bO
1 2 1) U
22b . 0
7 J u 6 2 7
UoJ ^
12
DO
1200
4 D 0 . 0
7 J u b 2 7
^0 3 U
1
bO
24 U 0
IdO.u
/ 3u b2 7
2u J 1
b
bO
2400
200 . 0
/ 3 (jo2 7
2U32
1 U
5o
2"400
bOO. 0
7 3 <  K,f. 4
<-u
-1 A I " 11JM	DUO . U
f. 1 N I M iH	IdO.O
I (JG 'N	2v3 . 0
7 3')f 2 7
MOHILE STUDY
00680
T ORG C
C
MG/L
7.0
9.0
10.0
9.0
11.0
4 . 0
11.0
4 . 0
7.9
JlbOb	Jib lb 00^00
TOT COL I	FEC COL 1 Prt
MHim CONF	MPNtCMED
/iUO^L	/10 0ML SU
23u0	110
7^uO	1 7 0 U
J. \
J 1 u 0	NO
<+9o0	4<,o
3301)	170
7 9 U 0	7v0
11UO	310
7	7 1
7900	1 7U 0
1100	110
Joub	J4*!
00b 30
NU2&N03
N-TOTAL
MG/L
0.18
0.09
0. 1 4
0.12
0.24
U . 1 1
0.29
0.1b
6
0 . 29
0 .U9
0 . i D
00635
NH3kORG
N-TOTAL
MG/L
1 .27
3.28
0.88
2.9b
0.D2
J.30
u . 37
3.30
d
3.30
0.37
1 .4d
00665
PHOS-TOT
MG/L P
0.60
1 .90
0.38
1 .tiO
0.19
2.00
0.10
2. iO

2. 10
0. 10
0.7 1

-------
wa rtH wualny dara
MUoIL E klVhH AND TRIBUTARIES
S T u f I On - \(	I mHEEmI Lt. C* T L&N r F HUM
ST flbt
TEMP
JKSN

5 DAY
PH
OoTt T 1 .-IF
(>i* J t
T 1 ml
f-LET
Hi Bt-NK

CtNT
J T U
MG/l
MG/L
SU


Ubt5
1
"=>0
1200
dl .b

d.Q



/.i Jb^4
0h*+O
b
bU
i2uo
27.d

Z. 1



/3Ub^*
llOH I
1 1
bO
i2uu
2 7. 0

3.0


7 Utf 4-3
< C ) 7 306^4
UtiW


1 
13uo
2 8  u

3.4



7 3 u b2b
0 fdd
1 1
r> t
13u0
dt$ . U

2.1


7 J U o <: S \j Idb
u'lld


1 Jui)




b.9

7 Jubt's
Id d it
i
DU
ddUO
JO . 0

3.3



7 Juodb
1 v>d i
b
D 1)
22 UU
?9.b





7 J P
1 ndd
1 1
bu
22UU
^9.u

1 .9


7 Jnr^b 1 i>'d\j
( C ) 7 j u b ? d
1 vd'd


d'd<>V

lb


7.0

/ Juoe^b
U 7 b u
1
DU
1 1 UU
t^d . U

2.6



/ JUb^b
u /b 1
b
bo
1 1 UU
<^0  u

d. b



/ JOo^d
U 7-=>d
1 u
DO
1 1 UU
da. u

2. 1


7JUoc'b 07d0
('_) 7 3Ubdb
U / -3d


1 loo

db


6.y

7-Ji-bc'b
1 neb
1
b u
duvU
^4.b

2.7



/ o .1 b^b
1 e2b
D
b
c'UUO


1 .b



/ J .b^b
1 od 7
*
bu
:0UU
d^i . 0

1 . 0


7 J ii 'i < t M2 r
( L) 7 3ub^b
1*2/


2uu0

1^


b.9

7 JUbt? /
') n Jd
1
"DO
1 t^UU
O . D

5.b



7 J j o >j
^ IJ tl
r. b

1  b



/ ji/oc: /
2 o 3d
1 '
di;
^41)0
fo.b

2.h


7 Jo'- < 7
( C ) 7jUO!/
duJd


fjtuu

1 1

b. 2
7.0
Vj.i ^ 4










 i  <  \r."





r <~
b
^4
d
7
- .1 A I'-'L.v.





ju.l/
cb
b. b
b .2
7. 1
- 1 1 il ' V v,





^b. z>
1 1
u . d
1 .t>
6.y
 
-------
The planning and operation of this project was carried
out under the supervision of Mr. B. II. Adams, Chief,
Engineering Services Branch.
Mr. M. D. Lair was project engineer and principal
author of this report.
All Environmental Protection Agency personnel are
assigned to the Surveillance and Analysis Division located
in Athens, Georgia. The Division is under the direction of
Mr. J. A. Little.

-------
TABLE OF CONTENTS
INTRODUCTION 		1
STUDY FINDINGS		2
STUDY AREA		9
GENERAL 		9
WATER USE AND STREAM CLASSIFICATIONS ....	12
HYDROLOGY		13
TIDAL EFFECTS		15
CLIMATOLOGY		15
STUDY RESULTS		16
INDUSTRIAL WASTE SOURCES 		16
Chickasaw Steam Plant 		16
Union Carbide Corporation 		19
Diamond Shamrock		20
International Paper Company 		22
Scott Paper Company		26
Stone Container Corporation 		29
Mobile Rosin Oil		31
Eagle Chemical Company 		31
Gulfport Creosoting Company 		32
Alcoa		33
Ideal Cement	 35
Chevron Asphalt Co.		36
Alabama Wood Treating	 37
National Gypsum 		38
i

-------
MUNICIPAL WASTE SOURCES		40
Chickasaw, Alabama 		40
Prichard, Alabama		43
Eightmile Creek STP		43
Grover Street STP		 .	44
Mobile# Alabama		45
Threemile Creek STP		45
McDuffie Island STP		46
WATER QUALITY STUDIES		48
Hydrology and Climatology 		49
Tidal Effects		51
Chickasaw Creek 		51
Chlorides		51
Temperature		54
S		56
Turbidity		59
Biochemical Oxygen Demand and
Dissolved Oxygen . I \ I T~. . .	59
Nitrogen and Phosphorus 		62
Microbiology 		64
Threemile Creek 		66
Chlorides		66
Temperature		68
pH		68
Turbidity		69
ii

-------
Biochemical Oxygen Demand and
Dissolved Oxygen . I I I T~		69
Nitrogen and Phosphorous 		73
Microbiology 		74
Mobile River 		76
Chlorides		76
Temperature		78
H		79
Biochemical Oxygen Demand and
Dissolved Oxygen . I I I T~		82
Nitrogen and Phosphorus 		86
Microbiology 		87
ASSIMILATIVE CAPACITY STUDIES 		90
General		90
Model Structure and Assumptions		90
Model Limitations		92
Stream Parameter and
Waste Load Assumptions		93
Model Results		94
Chickasaw Creek 		94
Threemile Creek		96
Discussion		100
REFERENCES		103
APPENDICES
A.	PROJECT PERSONNEL ROSTER 		A-l
B.	BACTERIOLOGICAL ANALYTICAL METHODS 		B-l
C.	CHEMICAL ANALYTICAL METHODS 		C-l
iii

-------
D.	EXCERPTS FROM ALABAMA
WATER QUALITY CRITERIA		D-l
E.	WASTE SOURCE DATA		E-l
P. WATER QUALITY DATA		F-l
iv

-------
LIST OF FIGURES
Figure No.	Title	Page No.
1	Study Area	 10
2	Mobile River and Chickasaw Creek 52
Tide Stage 	
3	Chickasaw Creek Chloride Profile 	 53
4	Chickasaw Creek Temperature Profile ... 55
5	Chickasaw Creek Biological 50
Oxygen Demand Profile 	
6	Chickasaw Creek Dissolved 61
Oxygen Profile 	
7	Threemile Creek Chloride Profile 	 67
8	Threemile Creek Dissolved Oxygen 72
Profile 	
9	Mobile River Chloride Profile 	 77
10	Mobile River Temperature Profile 	 80
11	Mobile River Dissolved 84
Oxygen Profile 	
12	Mathematical Model Network, Mobile	91
River, Chickasaw Creek and Threemile
Creek 	
13	Mathematical Model Dissolved Oxygen	97
Profiles, Chickasaw and Eightmile Creeks
(DO = 2 mg/1) 	
14	Mathematical Model Dissolved Oxygen	98
Profiles, Chickasaw and Eightmile Creeks
(DO = 4 mg/1) 	
15	Waste Assimilative Capacity Profile, 99
Chickasaw Creek 	
16	Mathematical Model Dissolved Oxygen 101
Profiles, Threemile Creek 	
v

-------
LIST OF TABLES
Table No.	Title	Page No.
I	Summary of Industrial Wastewater 17
Concentrations 	
II	Summary of Industrial Waste 18
Loads 	
III	Summary of Municipal Wastewater 41
Concentrations 	
IV	Summary of Municipal Waste Loads ...	42
V	Mobile River and Tributary 50
Freshwater Discharge 	
VI	Water Quality Summary, Chickasaw 57
Creek 	
VII	Water Quality Summary, 70
Threemile Creek 	
VIII	Water Quality Summary, Mobile River .	81
IX	Model Assumptions, Municipal and 95
Industrial Waste Loads 	
VI

-------
INTRODUCTION
The U. S. Environmental Protection Agency (EPA),
Surveillance and Analysis Division, conducted waste source
and water quality investigations of the Mobile River,
Alabama, during June 1973. These studies, specifically
requested by the Alabama Water Improvement Commission and
the EPA, Air and Water Division, were limited to the Mobile
River and tributaries between Mobile Bay and the confluence
of the Spanish River. Primary study objectives were to:
 Determine the feasibility of upgrading current
lower water use classifications of the Mobile
River, Chickasaw Creek, and Threemile Creek to the
Fish and Wildlife Use Classification;
 Generate industrial waste source data to permit
evaluation of National Pollutant Discharge
Elimination System Permits, and
 Conduct treatment efficiency studies at selected
municipal waste treatment plants designated by the
EPA Air and Water Division.
The cooperation of the Alabama Water Improvement
Commission, the City of Mobile, Alabama, as well as the
respective municipalities and industries is gratefully
acknowledaed.

-------
STUDY FINDINGS
1. Industrial and municipal wastewater sources discharged
the following pollutants and waste loads into Chickasaw
Creek during the study:
 International Paper Company (133.1 mgd) - including
wastewaters (38.2 mgd), 5-day biological oxygen
demand (65,100 lbs/day), suspended solids (40,700
lbs/day), ammonia (107 lbs/day), phenols (726
lbs/day); heated water from the primary clarifier
discharge (36.4 mgd at 48.5C); and cooling water
discharges (60.4 mgd at a temperature rise of 5C).
o Scott Paper Company (64.6 mgd) - 5-day biochemical
oxygen demand (20,500 lbs/day), suspended solids
(60,600 lbs/day), ammonia (531 lbs/day) and total
phosphorus (2,060 lbs/day); the wastewater
treatment system effluent (53.75 mgd) contained
total and fecal coliform densities of 5,220 and
1,330/100 ml, respectively, as well as high
temperature (40C) .
o Diamond Shamrock Company (0.69 mgd) - 5-day
biochemical oxygen demand (from 24 to <39 lbs/day),
suspended solids (<2 5 to 61 lbs/day) and mercury
(0.03 lbs/day).
-2-

-------
	Union Carbide Company (0.97 mgd) - 5-day
biochemical oxygen demand (<29.4 to <31.6 lbs/day) r
suspended solids (1,283 lbs/day), and ammonia (214
lbs/day) .
	Chickasaw Steam Plant, Alabama Power Company
Recirculated 157.1 to 212.5 mgd of once-through
cooling water at a temperature rise that ranged
from 4.9 to 10.6C.
	Chickasaw Municipal Lagoons (0.9 mgd) - 5-day
biochemical oxygen demand (100 lbs/day), ammonia
(31 lbs/day), suspended solids (172 lbs/day) and
effluent total and fecal coliform densities of
100,000 and 19,000/100 ml, respectively.
	Prichard Eightmile Creek sewage treatment plants
(STP) (1.63 mgd) - 5-day biochemical oxygen demand
(680 lbs/day), ammonia (191 lbs/day), suspended
solids (425 lbs/day)r and effluent total and fecal
coliform densities of from <1,500 to <190/100 ml,
respectively.
2. The results of the water quality studies disclosed that
the lower reaches of Chickasaw Creek downstream from
Shell Bayou would not have met the following water
quality criteria for the fish and wildlife use
classification in the following areas:
	Dissolved oxygen concentrations less than the
required 5.0 mg/1.
-3-

-------
 Increases in water temperature (temperature rise),
caused by heated discharges, in excess of the
permitted 5F (2.8C),and
 Fecal coliform densities in excess of the maximum
2,000/100 ml permitted for individual samples.
A mathematical model was used to predict the effects of
wastewater discharges on Chickasaw Creek for the 7-day,
10-year low flow condition. The model showed that
average daily dissolved oxygen concentrations asso-
ciated with the fish and wildlife use classification
could be met only if:
	The combined Scott and International Paper Company
5-day biochemical oxygen demand loadings are
removed from Chickasaw Creek. The application of
Best Available Technology (BAT) to both Scott Paper
Company and International Paper Company waste
treatment would elevate the dissolved oxygen in
lower Chickasaw Creek only to 2.0 mg/1;
	The Chickasaw lagoons and Eightmile Creek STP's are
upgraded to best practical treatment, and
	All wastewater effluents maintained minimum
effluent dissolved oxygen concentrations of 4.0
mg/1.
The respective Threemile Creek industrial and municipal
wastewater sources discharged the following pollutants
and waste loads during the study:

-------
	Mobile Rosin Oil Company - Insignificant;
	Stone Container Company (0.10 mgd) - 5-day
biochemical oxygen demand (18 lbs/day), lagoon
effluent total and fecal coliform densities of
270,000 and 26,000/100 ml, respectively;
	Gulfport Creosoting Company (0.005 mgd) - 5-day
biochemical oxygen demand (77 lbs/day) and phenols
(1.5 lbs/day);
	Eagle Chemical Company (0.01 mgd) - suspended
solids (30 lbs/day) .
	Mobile Threemile Creek STP (6.23 mgd) - chemical
oxygen demand (7,570 lbs/day), suspended solids
(1,050 lbs/day), ammonia (718 lbs/day), and
effluent total and fecal coliform densities of
110,000 and 7,400/100 ml, respectively.
	Prichard Grover Street STP (1.41 mgd) - 5-day
biochemical oxygen demand (362 lbs/day) , suspended
solids (241 lbs/day), ammonia (38 lbs/day),
nitrite-nitrate nitrogen (162 lbs/day) , and total
and fecal coliform densities of 3,000 and <550/100
ml, respectively.
Results of water quality studies disclosed that
Threemile Creek would not have met the following water
quality criteria for the fish and wildlife use
classification:

-------
	Dissolved oxygen concentrations less than the
required 5 mg/1 downstream from all major waste
discharges, and
	Fecal coliform densities exceeding the permitted
2,000/10 0 ml in individual samples.
6.	A mathematical model used to predict the effects of
wastewater discharges on Threemile Creek at the 7-day,
10-year low flow condition showed that the highest
attainable minimum average daily dissolved oxygen level
was 2.6 mg/1, and then only if:
	The Stone Container Corporation plant discharged
their NPDES permitted load;
	The Gulfport Creosoting Company facility discharged
their interim guideline NPDES permitted load;
	The Mobile Threemile Creek and Prichard Grover
Street STP's convert to best practical treatment,
and
	All discharges maintained minimum effluent
dissolved oxygen concentrations of 4 mg/1.
7.	Mobile River industrial wastewater sources discharged
the following pollutants and wasteloads during the
study;
 Alcoa (0.80 mgd) - 5-day biochemical oxygen demand
(260 lbs/day) and suspended solids (1,870 lbs/day);
	Ideal Cement Company (0.97 mgd) - suspended solids
(675 lbs/day) ;
-6

-------
	Chevron Asphalt Company (1.31 mgd) - 5-day
biochemical oxygen demand (<219 to 219 lbs/day),
suspended solids (476 lbs/day) and oil and grease
(<55 to 98 lbs/day), and
	Alabama Wood Treating (0.14 mgd) - 5-day
biochemical oxygen demand (98 to 114 lbs/day),
suspended solids (29 to 89 lbs/day), oil and grease
(29 lbs/day), and phenols (11.3 lbs/day).
The McDuffie Island STP and the National Gypsum Company
plant wastewaters discharge into Mobile Bay and the
Garrows Bend area of Mobile Bay, respectively. During
the study, these sources discharged the following
pollutants and waste loads:
	National Gypsum Company (1.01 mgd) - 5-day
biochemical oxygen demand (2,150 lbs/day) and
suspended solids (2,030 lbs/day) and effluent total
and fecal coliform densities of 9,300,000 and
53,000/100 ml, respectively, and
	McDuffie Island STP (5.14 mgd) - 5-day biochemical
oxygen demand (2,270 lbs/day), suspended solids
(1,720 lbs/day), ammonia (677 lbs/day), oil and
grease (<259 to 643 lbs/day), cyanide (11.3
lbs/day), and effluent total and fecal coliform
densities of 1,700 and 330/100 ml, respectively.
Mobile River dissolved oxygen concentrations less than
the 5.0 mg/1 which would be required by the water

-------
quality criteria associated with the fish and wildlife
use classification were detected during the study.
Almost all of the low dissolved oxygen concentrations
were found at mid-depth and bottom sampling locations,
particularly those located downstream from the Cochran
Bridge in the Mobile River Ship Channel.
10. A mathematical model capable of predicting the effects
of Chickasaw Creek, Threemile Creek and direct waste
discharges on the dissolved oxygen balance of the
Mobile River is not currently available. Therefore, no
predictions of Mobile River dissolved oxygen
concentrations at the 7-day, 10-year low flow condition
were made.
-8-

-------
STUDY AREA
GENERAL
The study area was confined to the reach of the Mobile
River Basin between the Louisville and Nashville (L and N)
Railroad bridge and Mobile Bay (Figure 1). Two major
tributaries of the Mobile River, Chickasaw and Threemile
Creeks, were of primary interest. The study area also
included portions of the cities of Mobile, Prichard and
Chickasaw, Alabama. These cities encompass most of the
Mobile County population of 317,000 (1970 census). The
Mobile metropolitan area is heavily industrialized with
almost all major industry located on the shores of the
Mobile River, Chickasaw Creek, and Threemile Creek, within
the confines of the study area. The port of Mobile is one
of the largest and most important seaports on the Gulf of
Mexico. The Alabama State Docks, located on the Mobile
River, provide port and auxiliary facilities for the
extensive waterborn traffic utilizing the port. The port
also provides extensive inland waterway transportation
facilities serving the Warrior, Tombigbee and Alabama River
systems.
The Mobile River is navigable from its mouth to St.
Louis Point (just upstream from Threemile Creek) for large
ships and along its entire length for barge traffic. The
authorized depth of the Mobile River channel to St. Louis
-9-

-------
figurf
STUDY AREA
MOBILE RIVER. JUNE, 1973
Tide Coge < E PA ) -
ALABAMA
LOCATION
Grand
Blohalty
Mobile
MOBILE CO
Sod Ulond ^
SCALE It VILCS
INDUSTRIAL WASTE SOURCE
1	Nationol Gyptum Co
2	Alabama Wood Treating Corp
3	Cr*ron Aiohfllt Co
4	Eogle Chemical Co, Inc
5	ideol Cement Co
6	Aluminum Compcny ot America
7	Gulfport Creoeoting Co
8	Scott Paper Co
9	International Paper Co
10	Diamond Shomroch Chemical Co
11	Union Carbide Co
12	Alobama Power Co, Chicoto*
Steam Ploni
13	Stone Coniamer Corp
14	Mobile Povn Oil
MUNICIPAL WASTE SOURCE
A	Mobile. McDuffie me S'p
8	Pnchofd, Eiqni - Mile r.rti StP
C	Chicoio, Seaage Trotmnt Loqoo'
D Priced G'Ove' St STfJ
f l-'t* Mile C'tefc STt-
6 *o'> Ouoiiij So"'pi>r q So'")'
t #0'" fuoi''r S a " C'1 >' 'J ''O'lOr1
Irciud-nq Sol^onello Determ.ootio'
AA MuiCipol *ose yO^t.l'ng
? ln(V,S"iO'	'.Tiling S'O'iT
"10"

-------
Point is UO feet. From St. Louis Point to Chickasaw Creek,
controlling depths are 25 feet. From Chickasaw Creek to the
confluence of the Alabama and Tombigbee Rivers, the control-
ling depth of the Mobile River is 14 feet. (1)
Major industries located on the Mobile River include
the Alcoa Corporation, the Ideal Cement Company, the Alabama
Wood Preserving Company and the Chevron Oil Company. All of
these industries discharge wastes into the study area. In
addition, the National Gypsum Company discharges waste into
the Garrows Bend area and the Mobile McDuffie Island sewage
treatment plant discharges into Mobile Bay just below the
mouth of the Mobile River.
Threemile Creek enters the Mobile River from the
western shore at River Mile (RM) 2.3. The creek provides
access to the industrial canal which is located off
Threemile Creek approximately one mile upstream from the
mouth and extends about one mile southward. Controlling
depth in Threemile Creek to and including the industrial
canal is 12 feet. Threemile Creek is navigable for only a
short distance upstream from the confluence of the
industrial canal where the creek becomes a small stream
providing drainage for a large area cf Mobile. The Eagle
Chemical Company discharges wastes into the industrial
canal; the Gulfport Creosoting Company discharges wastes
just downstream from the industrial canal, and the Stone
Container Company discharges wastes into Threemile Creek
-11-

-------
upstream at River Mile 6.4. Two sewage treatment plants,
the Mobile Threemile Creek and Prichard Grover Street
plants, also discharge wastes into Threemile Creek upstream
from 0. S. Highway 43 (Figure 1) .
Chickasaw Creek also enters the Mobile River from the
western shore at River Mile 3.2. The creek is navigable
from its mouth to a point just downstream from Shell Bayou
with a controlling depth of 25 feet. Several large
industries, including the Scott and International Paper
Companies, as well as the Diamond Shamrock and Union Carbide
Chemical Companies, are located on and discharge wastes into
the lower reaches of Chickasaw Creek. The Chickasaw steam
plant of the Alabama Power Company discharges once-through
cooling water into Chickasaw Creek just downstream from
Shell Bayou. Municipal wastes from the cities of Chickasaw
(Chickasaw Lagoons) and Prichard (Eight Mile Creek STP) are
discharged into Chickasaw Creek upstream from Shell Bayou
(Figure 1) .
WATER USE AND STREAM CLASSIFICATIONS
The primary water uses of the Mobile River within the
study area are for navigation, industrial water supply
(primarily cooling water) and disposal of municipal and
industrial wastewaters.
The current water use classifications for the Mobile
River, Chickasaw Creek and Threemile Creek are:
-12-

-------
Stream	Classification Limits	Classification
Mobile River	Spanish River to Mouth	Agricultural &
Industrial Water
Supply
Chickasaw Creek Mobile River to Shell Bayou Navigation
Chickasaw Creek Shell Bayou to the Limit of	Fish 5 Wildlife
Tidal Effects
Threemile Creek Mobile River to Conception	Navigation
Street Road
Threemile creek Conception Street Road to	Agricultural &
Mobile Street	Industrial Water
Supply
The water quality criteria associated with each of
these water use classifications is contained in Appendix D.
HYDROLOGY
The Mobile River discharge is influenced by natural
diversion into the Tensaw River below Mt. Vernon, Alabama.
It has been estimated that 60 percent of the flow in the
Mobile River is diverted to the Tensaw River during periods
of low to moderate flows and 50 percent is diverted during
high flows. (2) The Mobile River flow is also affected by
regulation of dams on the Alabama and Tombigbee Rivers.
The U. S. Geological Survey does not maintain a flow
measuring station on the main stem of the Mobile River.
However, gaging stations are located on the Tombigbee River
near Coffeeville, Alabama, and on the Alabama River near
Clairborn, Alabama. The combined drainage area above these
-13-

-------
two stations is 40,500 square miles or 95 percent of the
43,000 square mile drainage area of both rivers at their
confluence (RM 45). The maximum/minimum river discharge for
the period of record at these stations are 153,0 00/957 cfs
and 267,000/2,850 cfs for the Tombigbee and Alabama Rivers,
respectively. The 7-day, 10-year low flow at Mt. Vernon,
Alabama, (RM 42) has been estimated at 8,000 cfs. (2,3,4)
The entire Chickasaw Creek drainage basin
(approximately 185 square miles at the U. S. Highway 43
bridge) is within Mobile County. The U. S. Geological
Survey maintains a stream flow gaging station near Kushla,
Alabama (Approximate RM 12.6) . The drainage area above this
gage is 125 square miles or 68 percent of the entire
Chickasaw Creek drainage area. The 20-year average
discharge at this station is 258 cfs. The maximum/minimum
discharge for the period of record is 42,000/18 cfs. The 7-
day, 10-year low flow at the gaging station is estimated to
be 30.7 cfs. (4) The flow of Chickasaw Creek is affected by
the withdrawal of an average 38.7 cfs (25 mgd) by the Scott
Paper Company at the Shelton Beach Highway (RM 9.0) .
Considering the 38.7 cfs Scott Paper Company withdrawal at
the Shelton Beach road, the 7-day, 10-year low flow at the
U. S. Highway 4 3 bridge is estimated to be 47 cfs.
Data have not been published on the 7-day, 10-year low
flow for Threemile Creek. However, the U. S. Geological
Survey has estimated that the 7-day, 10-year low flow at
-14-

-------
River Mile 6.4 is 9.8 cfs (for a drainage area of 12.1;
square miles).(2) If the U. S. Geological survey estimate
were applied over the entire Threemile Creek drainage basin
(estimated at 26.6 square miles), the 7-day, 10-year low
flow at the mouth would be 21.5 cfs.
TIDAL EFFECTS
The Mobile River is influenced by the tides as far
upstream as Mt. Vernon, Alabama. Chickasaw Creek is tidal
to Interstate Highway 65, and Threemile Creek is tidal to
Stone Street in Mobile. The tides at Mobile are chiefly
diurnal with a tide cycle of approximately 25 hours. The
diurnal tide range (difference between high and low tide) is
1.5 feet for the Mobile River.
CLIMATOLOGY
The warm temperate climate of the Mobile area is
significantly influenced by the Gulf of Mexico resulting in
warm, humid summers and relatively mild winters. The
average normal daily maximum and minimum temperatures for
Mobile are 78.0 and 58.4F, respectively. Normal daily
maximum and minimum temperatures for June are 91.4 and
71.5F, respectively. (5)
The normal rainfall total for Mobile is 68.13 inches
which is uniformly distributed throughout the year. The
normal rainfall total for June is 6.23 inches.
-15-

-------
STUDY RESULTS
INDUSTRIAL WASTE SOURCES
Thirteen industrial sources that discharged directly
into the receiving waters in the study area were sampled. A
summary of waste concentrations and waste loads discharged
from each plant are presented in Tables I and II, respec-
tively. A complete listing of all industrial waste data
collected during the study is presented in Appendix E.
Industry locations are shown on Figure 1. Study results are
discussed for each plant in the following sections.
Chickasaw Steam Plant
The Chickasaw Steam Plant, owned and operated by the.
Alabama Power Company, is a small electrical generating
plant located on Chickasaw Creek. The plant is used
primarily to provide power for peak electrical loads. Once-
through cooling water is withdrawn from Chickasaw Creek
through a discharge canal that enters the creek at the mouth
of Hog Bayou.
During the study (June 24-27, 1973), cooling water
pumpage ranged from 157.1 mgd to 212.5 mgd. Temperature
rises through the plant ranged from 8.8F (U.9C) to 19.0F
(10.6c).
-16-

-------
TABLE 1
SllWlRj OF INDUSTRIAL WASTEWATER CONCCWTRAnONsi''
NDBILK, ALABAMA
JUKI 1973
Facility
im*U
Oaatcu
UAw Hbod
Tr*tlei
Aw-002y
Alcoa	A-OOli'
A-001A
A-001B
A-001C
A-OOLD
A-00 IE
A-OOlf
Chavron Aaphalt CA-00li/
Dlasond Shamrock DS-00l3./
0S-002-'
Kagla Cbnical EC-001
GulfftOTt
Craoaotlng
Sbb1 Location
Oil Sep Iff
CoedaaaaT
Compaaltad fro* *11 Dlach
Poiata
PuJ^i C Dlach
Praat Leaf Dlach
Puflp I Dlach
Power Uouaa Dlach
Heater Acid Dlach
Pip A Dlach
Efflueoc Ditch
Treatment System* Ditch
Cooling Uatar
Lagoon Effluent
Plant Effluent
lacelvlog
Str>
Hob11a Kl*ar
Hob 11m U*ar
Hobtla Blver
Bog Bayou to
CMckaav Cr
lodi*crll
Canal to Thr**'
11a Cre*k
Threemll* Cr
Plow
isa
S
BOD.
(/!)
o.oii7
0 lit'
34.0
30.3
1170
0.80
-
39.0
O.2 30&'
0.014*/
0.200*/
O.SOQ*/
0.002*/
0 0571/
27 7
- 33.5
*29.3
56.5
40.0
28.3
_
I Jl*/
28.0
<20-20
0.09
29.7
32.0
0.60^
M 5
<8.0
0.01
40.7
_
1040
3 3
Solids ("ft/l)
Total
Mm
SoP
1090
738
352
148
129
<1-55
1640
1360
280
-
jj
-
Nitrogenous Co^ounda
	(ma/1)	 Tot Pho*
TP KB> W02-W03 P (WD
04G
(*ID
3*6
<5 0
2_
4.8
8.6
11.6
Heavy llttals awl Toalc Compomda (vi/1)
3*^ Cd Ct Cu Pb	Zfl
10.0
196
3.7
*1-1.0
20 0	286
879	13200
9.0	192
<4 0	12410
243
13100
185 <1.0-12 0 -
12100	}V>
44 0.4 0 06 0.26
45.0  	
6.8 
9.6 29.7 20
5 0 J.4 <20
6.5
30
<100
290
4 7  
Phaaolm^
 <5-133
ldaal C*arat
IC-OOli'
Precaaa Waata 4 Saga
Mobil* Klvar
0.83 ,
30.7
<16-0
7.7
33.0
796
759
<1-78  --

_

a
.9 



_
...
--


IC-002i/
?roeeea naste
fob11* Xlvar
0.14*/
26.0
<12.0
10.7
84.0
6600
6210
402  



12
5 






~
international
IP-0021'
toiler Ash Pit
Bog Kay on
0.43
33 7
<16.0
6.0
14 0
509
496
13.0  
-
-
--
7
4 
_
-
-
-
-
_
-
Paoar
IP-OOll/
Pover Pit Floor Drains
Bog ftayou
0.36
41.0
<20.0
19.0
85.0
620
563
56.0  
	


5
5 








IP-012
Primary Trtmt Pit tft
Chlckaas* Cr
36.40
48 5
208
272
952
1490
1380
104 2 2 0 35
0.03
0 61

7
9 
*20

-------
TABLE 11
SUmAK OF INDUSTRIAL LOADS (LBS/DAY)!''








MOBILE,
JUNE
ALABAMA
1973






Sccple
Plow




Solid*

Mtrossnoua Cowouoda

Oil A
Graaael'
Heavy .Metals and Toxic Cooj\Jr^
Facility
Dealaa.
(d)
!1
TOC
COD
Total
Dleaolved
SueBended
TO
KHt
K0?-#0,
Total P
Alabaae Wood Treating
AH-OOli/
0.01V
98
86.6
167
91
62
29
-
-
-
-
29.0
pheoola:11.0

\V-002lf
0.
<.7-16.3
3.6
9
161
140
<1-60
-
-
-
~
<5.4
phenole:0.26
Alcoa
A-00lI/
0.80
260
347
99
11,000
9,110
1,870
-
"
"
-

Cd: <0.13;Cr:0.67;Cu:0.13;Pb.<0.6 7;Ni:0.60;Zd:C.13
Chevron Aaphalt
CA-001V
1. 31'
<219219
109
219
3,130
2,650
476
4.2
0.71
2.90
1.2
<54.7-98.4
phenola:<.05-1.45
Dlaaond Shearock
DS-0012-'
0.09*'
24
167
725
7,980
7,960
20
-
--
~
--
-
H|:0.02;Cd:.014; Cr:.028;Cu..017;Pb:.lli,Nl:.104;Zo-

DS-OOll^
0.60/
<>9 8
18.2
45
937
902
<5-61

-
-
-
-
Hg:0.007;Cd:<.l :Cr.<. J99.Cu:. 1 ;Pb:<.498.Ni :<. m.Zo.-
Eagle Chaalcal
ic-oo\^~
0.01
-
' l-.l
0
1,040
1,010
30
-
-
"
-
-
Cd: .002 ;Cr. < .003 .Cu: .006;Pb<30,N1.<15,Zn-45.phanola
Culfport Craoaotlng
CC-OOli.'
0.005*/
77
53
141
54
47
8


-
-
<.2-.5
phenola:1.5
Ideal Caaant
IC-OOli'
0.83
<111
53.1
229
5,510
5,260
<7-540
-
-



__

IC-0021/
0.1*^
<12.0
t.l
110
7,700
7,290
419

"

"
-
-
International Paper
IP-002^
0.43
<57.4
21.5
49
1,830
1,780
48

-
-

-
__

IP-00 if
0.36
<60.1
57.1
256
1,860
1,690
169
-
-
: --
-
- "


IP-012
IP-015lZ'
36.40
34.S3
63,300
11,100
98,600
16,100
289,000
43,000
452,000
198,000
421,000
190,000
3l.500 684
<288-14,400 
107
10.1
185
	
Cd:<10 ;Cr:<20 ,Cu 10;Pb:<30;N1:<15;Zn:45;phenola726

lP-015^
34. S3
9,510
13,800
38,800
932,000
913,000
19,500
-
-
-
~
-


IP-018I2/
60.43 2,
,520-<10,100
8,410
28,200
291,000
264,000
27,100
-
~
-
-
-
Cd-40;Cr:<10tCu:295;Pb:<50;Hl,<25;ln:43

lP-018*^
60.43
<11,400
7,560
22,700
272,000
261,000
11,600
-
-
-
-
-
Cd.40;Cr:<10;Cu:<10;Pb.< 50 ;H1:<25;Zn:18

IP-ll2/
1.01
1,770
2,920
7,680
21,900
20.600
4,100
"
-
--
-
-
Cd:0,Cr:0;Cu:0.33;Pb:00
28,600
111,000
652,000
618,000
33,500
1,550
481
'4.66
1,950

Cd:<9;Cr:<22;Cu'11,PS:<43-68;Ni:<22;Zn.71,phcola.18

S-OOi^
5.93
3,780
6,260
14,600
72,800
71,700
1,120
87.1
13.4
3.97
29. 7

Cd*< 1 ;Cr:<1.5,Cu:J> nd avaraga dally flm unleaa noted to the contrary.
2/	Id cm grab aaaple raaulta.
3/	kud on on* grab aad two co^oelte saaples.
4/	inatantaoeoua flow.
5/	<11 phanol, oil & grease, and mercury analyses froa *ri. o

-------
Union Carbide Corporation
The Union Carbide Corporation, located on U. S. Highway
43 near the Chickasaw city limits, manufactures synthetic
zeolite crystal products, commonly called molecular sieves.
Wastewater treatment practices include: segregation of
caustic and salt wastes into separate ponds; pH control in
the discharge canal by the addition of sulfuric acid to the
caustic effluent at the pond sump, and a landfill to
collect, hold and dry wet solids transferred from salt and
caustic settling ponds. Paper bags used to ship barium salt
are burned in a special incinerator. Ashes are washed down,
collected, treated to neutralize soluble barium, and
transferred to the salt pond. Spent solutions containing
metal salts are collected, precipitated, coagulated, and
filtered to recover the metals as a hydroxide. Ammonia is
recovered from spent solution by steam stripping and
absorption in fresh solution for recycle back to the
process. Wastewater is discharged into Chickasaw Creek via
%
the Alabama Power Company discharge canal through two
effluent lines designated UC-001 (caustic effluent) and UC-
002 (salt effluent).
The caustic effluent had an average flow of 0.5 mgd and
was characterized by high pH (13.0), a BOD5 range of less
than 6.0 to 8.0 mg/1 (less than 29 to 31.0 lbs/day), total
solids of 32,800 mg/1 (129,000 lbs/day) and suspended solids
of 280 mg/1 (1,180 lbs/day). The total dissolved solids
-19-

-------
concentration of 32,500 mg/1 (128,000 lbs/day) included 367
mg/1 (1,530 lbs/day) of chlorides. The BOD:COD ratio of
0.08 indicated a highly inorganic waste. The ammonia
nitrogen discharge was 8.07 mg/1 (36.9 lbs/day). Lead and
nickel concentrations were 300 yg/1 (1.16 lbs/day) and 160
yg/1 (0.67 lbs/day), respectively.
The salt effluent discharge (0.47 mgd) contained less
than 8 mg/1 (less than 31.6 lbs/day) of BOD5. However, the
inorganic salt content of this discharge was quite high.
The total solids were 4,140 mg/1 (15,800 lbs/day) of which
4,020 mg/1 (15,300 lbs/day) were dissolved solids. The
chlorides were the primary inorganic salt at 3,100 mg/1
(12,300 lbs/day). The ammonia nitrogen concentration was
significant, 43 mg/1 (177 lbs/day). The only metal of any
significance was lead, 100 yg/1 (0.39 lbs/day).
Diamond Shamrock
The Diamond Shamrock Chemical Company, located off U.
S.. Highway 43 near Hog Bayou, manufactures chlorine and
caustic soda by electrolysis of sodium chloride brine.
Wastewater which has been in direct contact with process
fluids is segregated from other wastewater streams in
separate drainage systems and recycled to the fullest extent
possible. The contaminated wastewater which cannot be
recycled is treated with sulfide to precipitate mercury.
The chemically treated wastewater then flows through a small
-20-

-------
settling basin and into a large retention basin where
suspended solids settle before discharge to an ionic mercury
adsorption bed. The flow is measured continuously, and the
mercury content of the final discharge stream is analyzed
routinely. This discharge, which is intermittent, flows
into a diked area. Drainage pumps, located adjacent to the
Gulf Warrior docking facilities, periodically pump water
from the diked area into Chickasaw Creek.
Wastewater from the treatment system was sampled at the
effluent weir (outfall DS-001) prior to discharge into the
diked area. The flow was 0.09 mgd. The mercury concen-
tration ranged from 13.3 to 61.0 yg/1 with an average of
29.7 yg/1 (.02 lbs/day). The discharge is primarily
inorganic as indicated by the BOD:COD ratio of 0.04. The
discharge had a dissolved solids concentration of 13,100
mg/1 (7,960 lbs/day), most of which were probably chlorides
used in the manufacturing process. The total solids
concentration was 13,200 mg/1 (7,980 lbs/day). The pH was
9.6.
The cooling water discharge (outfall DS-00 2) bypasses
the treatment system and flows into Chickasaw Creek via Hog
Bayou. The flow was 0.6 mgd and the mercury concentration
was 1.4 yg/1 (0.007 lbs/day). The pH ranged from 3.5 to
6.8; however, company personnel suspected a leak in the
sulfuric acid heat exchanger during the sampling period
which would explain the lower pH values.
-21-

-------
The total mercury discharged by Diamond Shamrock from
outfalls DS-001 and DS-002 during the sampling period was
.027 lbs/day.
International Paper Company
The International Paper Company's integrated kraft pulp
and paper mill is located adjacent to Chickasaw Creek
upstream from the Scott Paper Company and downstream from
Hog Bayou. The mill produces 1,015 tons per day of bleached
and unbleached sulphate pulp (420 tons per day are bleached)
and 300 tons per day of groundwood. Paper production
includes 1,295 tons per day of various grades of unbleached,
bleached and semi-bleached kraft wrapping and converting
papers; bleached kraft business papers and newsprint.
During the study, the International Paper Company was
discharging wastewater from the following outfalls and
sources:
1/
Outfall
Source
Receiving Stream
002
Cyclone boiler ash pit overflow	Hog Bayou to
Chickasaw Cr
003
Power plant floor drains & inter-
mittent surface drainage
Hog Bayou to
Chickasaw Cr.
1/ Outfall numbers are from the Refuse Act permit
application.
-22-

-------
List of outfalls and sources (continued)
004-011 Primary clarifier sludge impound-
ing basin overflow
Hog Bayou &
Chickasaw Ck.
012
Industrial waste primary clarifier Chickasaw Cr.
013
Roundwood spray storage area
Chickasaw Cr.
015
Woodyard log flume overflow
Chickasaw Cr.
016
Surface discharge and division
research process drainage
Shell Bayou
018
017
Car wash and research process drain Shell Bayou
Power house once-through cooling Chickasaw Cr.
water discharge
During the study, the roundwood spray was not operated,
and consequently, there was no discharge from outfall 013.
The discharge from outfalls 016 and 017 (surface drainage,
car wash, and research facilities) were not sampled because
they were intermittent and low in volume, 0.07 and 0.3 mgd,
respectively.
The cyclone boiler ash pit overflow (outfall 00 2) is
impounded and flows through the settled boiler ash.
Consequently, this small discharge, estimated at 0.43 mgd by
the company, did not contain significant amounts of
pollutants. Similarly, the power plant floor drain (outfall
003) effluent with an estimated flow of 0.36 mgd was not a
significant discharge, except for a slightly low pH (5.5)
and elevated temperature (41.0C) .
-23-

-------
The primary treatment plant effluent (outfall 012) was
the most significant discharge in the study area. The
treatment plant receives the bulk of the International Paper
Company's process waste discharges. This source discharged
63,300 lbs/day of BOD5, 31,500 lbs/day of suspended solids,
10 lbs/day of copper, 45 lbs/day of zinc and 726 lbs/day of
phenols. The effluent had an average temperature of 48.5C
2/
and pH of 7.9 during the study. Mean- coliform densities
were low with densities ranging from <20 to 490/100 ml for
total coliforms and from <20 to <200/100 ml for fecal
coliform. Low coliform densities may have been caused by
the high temperatures in the primary basin. This effluent
was subjected to gas chromatographic-mass spectrographic
analysis for identification of organic compounds. This
effluent contained a number of organic solvents (Appendix
E) .
Sludge underflow from the primary clarifier is
withdrawn and pumped into a diked area located adjacent to
Chickasaw Creek and downstream from Hog Bayou. The sludge
is allowed to settle within the confines of the impounded
area and the resultant effluent enters Hog Bayou and
Chickasaw Creek through a series of overflow pipes (outfalls
004-011). Only a portion of the outfalls are operational
2/ All bacterial means in this report are expressed as the
logarithmic mean.
-24-

-------
at any one time. Grab samples were collected from each of
the operating outfalls and composited into a single daily
sample for analysis. These outfalls (designated IP-IB) were
sampled for three days. Calculated loads, based on a
company estimate flow of 1.01 mgd, from these outfalls were
1,770 lbs/day of BOD^ and 4,100 lbs/day of suspended solids.
Water used in the plant log flume is withdrawn from
Chickasaw Creek upstream from the Scott Paper Company waste
discharges, pumped through the log flume, screened and
returned to Chickasaw Creek through outfall 015. Daily grab
samples of the pumped intake water and the effluent were
collected. The company estimated flow rate was 34.53 mgd.
Based on the grab sample results, approximately 5,100
lbs/day of suspended solids and 723,000 lbs/day of total
dissolved solids were added to the intake water by operation
of the log flume. The BOD5 concentrations in the effluent
were lower than thos^e found in the intake.
The effluent discharged through outfall 018 (60.4 mgd)
consisted of once-through cooling water from the mill
powerhouse. This discharge was sampled in exactly the same
way as the plant log flume. The effluent temperature
(36.7C) was 5C higher than the influent temperature.
Concentrations of other pollutants were less than those
found in the influent of the once-through cooling water.
-25-

-------
The combined total discharge of BOD5 by the Inter-
national Paper Company during the study was approximately
65,100 lbs/day.
The International Paper Company was in the process of
installing a new aerated lagoon at the time the study was
made. This lagoon will provide additional treatment for the
primary treatment plant effluent (outfall 012) , the power
plant floor drains (outfall 003), and the research and car
wash waste (outfalls 16 and 17). Current plans are to make
a closed loop system of the current woodyard log flume
(outfall 015) discharge. Sanitary wastes will be separated
from the process waste treatment system and routed to a new
treatment system which will be operated by the City of
Mobile Water and Sewer Commission.
Scott Paper Company
The Mobile plant of the Scott Paper Company is located
on Chickasaw Creek near its confluence with the Mobile
River. Scott*s manufacturing facilities include a sulphate
pulp mill and two paper mills producing 1,400 tons per day
of pulp and paper. Approximately 90 percent of the pulp is
bleached. The paper mills include a specialty mill
producing 600 tons/day of bleached and unbleached kraft
specialty papers and a tissue mill producing 800 tons/day of
bathroom tissue, towels and allied products. The facility
-26-

-------
discharges wastewaters through the eight outfalls listed
below:
Outfall	Source
001	Industrial Waste Treatment System
002	Bleach Plant Chlorine Sewer
00 3 Pulp Mill Storm Sewer
Receiving Stream
Chickasaw Creek
Chickasaw Creek
004	Water Treatment Plant Storm Sewer
00 5	West Mill Storm Drain
006	Tissue Mill Storm Drain
007	Central Mill Storm Sewer
008	Emergency Outfall
Sewer to Chickasaw
Creek
Sewer to Chickasaw
Creek
Sewer to Chickasaw
Creek
Sewer to Chickasaw
Creek
Sewer to Chickasaw
Creek
Sewer to Chickasaw
Creek
Effluents from outfalls 001-005 and 007 were sampled
during the study. The drainage from Outfall 006 was
insignificant and outfall 008 is used only during plant
emergencies when wastes cannot be pumped to the treatment
plant. The industrial waste treatment process consists of
neutralization, nutrient addition, primary settling and
activated sludge with secondary settling. Primary sludge is
vacuum filtered and hauled to a landfill by a private
contractor. Excess activated sludge was being impounded
during the study. The impounding basin used for excess
activated sludge disposal has since been filled to capacity,
and the company is currently allowing excess sludge to be
-27-

-------
discharged over -the effluent weir. Sanitary wastes are
currently discharged into the industrial waste treatment
system. Sanitary waste will be removed from the industrial
waste treatment system and routed to a new proposed waste
treatment system operated by the City of Mobile.
The average treatment plant discharge (outfall 001) was
53.75 mgd with the subsequent discharge of 15,500 lbs/day of
BOD5, 33,500 lbs/day of suspended solids, 481 lbs/day of
ammonia and 1,950 lbs/day of total phosphorus. Gas
chromatographic-mass spectrographic analysis (Appendix E)
showed this effluent contained high concentrations of
volatile organic solvents and other organic compounds.
Copper (11 lbs/day), lead (less than U3 to 68 lbs/day), zinc
(71 lbs/day) and phenols (18 lbs/day) were also discharged.
The effluent contained mean total and fecal coliform
densities of 5,220 and l,330/100ml, respectively.
The bleach plant chlorine sewer effluent (outfall-002)
also contained significant quantities of BOD5 (3,780
lbs/day) and suspended solids (1,120 lbs/day). Gas
chromatographic-mass spectrographic analysis (Appendix E) of
this effluent also showed the presence of volatile organic
solvents.
The pulp mill storm sewer effluent (outfall 003) was
lower in volume (0.26 mgd) and, consequently, lower
quantities of BOD5 (137 lbs/day) and suspended solids (105
lbs/day) were discharged. This was also true for the
-28-

-------
central mill storm drain discharge (outfall 007) which had
an estimated flow of 0.81 mgd and a BOD5 discharge that
ranged from less than 54 lbs/day to 88 lbs/day.
The discharge (2.81 mgd) from the water treatment plant
storm sewer (outfall-00 4) was high in suspended solids
resulting in the discharge of 1,070 mg/1 (25,000 lbs/day).
Most of the suspended solids were inorganic as evidenced by
the low BOD5:COD ratio of 0.13 for the waste discharge
during the study.
The west mill storm drain effluent (outfall-005) of 1.0
mgd had the highest BOD5 concentration (130 mg/1) of any
effluent sampled at the plant. An average of 992 lbs/day of
BOD,, and 9 63 lbs/day of suspended solids were discharged
from this source.
The combined discharges into Chickasaw Creek from the
facility during the study were approximately 20,500 lbs/day
of BOD5, 141,400 lbs/day of COD and 60,600 lbs/day of
suspended solids.
Stone Container Corporation
The Stone Container Corporation facility, located at
the upper end of Threemile Creek, produces paper board from
waste paper. Waste paper is trucked to the mill and
processed in a hydropulper where it is diluted with water
and steam. The resulting mixture is pumped through a
cleaning process to the cylinder formers on the paper
-29-

-------
machine. The boxboard is formed, dried and removed from the
end of the paper machine in the form of rolls or sheets.
The treatment system consists of a clarifier followed
by a 2.5 million gallon aeration basin and a 375,000 gallon
evaporation basin. The evaporation basin (outfall SC-001)
and untreated non-contact cooling water (outfall SC-00 2)
effluents are discharged separately into Threemile Creek.
Flow from the treatment system (0.003 mgd) was
estimated by the company from records because of a
malfunction in the company flow measuring device. The
effluent BOD5 concentration of 532 mg/1 was relatively high;
however, the resulting BOD,, load was only 13.3 lbs/day. The
mean total solids and suspended solids were 1,410 mg/1 (35
lbs/day) and 33 8 mg/1 (8 lbs/day), respectively. The
suspended solids ranged from 145 mg/1 (4 lbs/day) to 658
mg/1 (16 lbs/day). The effluent contained mean total and
fecal coliform densities of 270,000 and 26,000/100 ml,
respectively. The effluent was grey in color and imparted
this color to the receiving stream at the point of
discharge. The distance that the discoloration persisted
downstream was not determined.
The analytical results for the cooling water discharge
(outfall SC-002) were higher than would be expected for non-
contact cooling water obtained from a city water system.
The BOD^ was 5.5 mg/1 (4.6 lbs/day), total solids 128 mg/1
(107 lbs/day) and suspended solids ranged from less than 1.0
-30-

-------
to 65 mg/1 with an approximate average of 18 mg/1 (15
lbs/day). The cooling water flow was 0.1 mgd.
Mobile Rosin Oil
Mobile Rosin Oil, located just north of Threemile
Creek, manufactures tactifiers, plasticizers, rubber
reclaimed oils, rosin soaps and other rubber processing
aids. The discharge from this plant is primarily steam
condensate from boilers. The flow was too low for
measurement. Analytical results indicated that the effluent
contained no significant contaminants.
Eagle Chemical Company
The Eagle Chemical Company, located on the east bank of
the Industrial Canal, manufactures a silica dessicant. The
acidic wash water from the process is neutralized in a
mixing tank with sodium hydroxide and then flows to a 18,000
gallon pond with a theoretical detention time of three
hours. The pond discharge enters Threemile Creek via the
industrial canal.
The primary constituents in the 0.01 mgd discharge were
cadmium - 30yg/l, copper - 7 yg/1, lead - 290 yg/1, nickel -
130 Mg/1 and zinc - 170 yg/1. However, because of the small
flow, insignificant loads were discharged into the receiving
stream. The inorganic nature of the wastewater was evident
from the total solids concentration of 12,400 mg/1 (1,040
-31-

-------
lbs/day) of which only 477 mg/1 (40 lbs/day) was volatile.
The suspended solids concentration of 356 mg/1 (30 lbs/day)
was due to sluffing off of floe precipitated in the
neutralization process from the bottom of the impounding
basin.
Gulfport Creosoting Company
The Gulfport Creosoting Company facility, located on
the north bank of Threemile Creek near the confluence of the
Mobile River, treats poles, piling, posts and lumber with
creosote or penta chlorophenol for prevention of decay and
insect damage. The treatment consists of an oil recovery
system followed by two concrete ponds operated in series, a
flocculation tank and an aeration tank with subsequent
discharge to Threemile Creek. At the time of the study, an
evaporation-perculation lagoon was 75 percent complete.
Although the BOD^ concentration of 1,860 mg/1 and
suspended solids concentration of 187 mg/1 were excessive,
the small flow (0.005 mgd) accounted for small loadings of
77 and 8 lbs/day, respectively. The wastewater was acidic
with a pH of 4.7. The oil and grease concentration ranged
from less than 5.0 to 12 mg/1. The phenol concentration was
quite high (35,200 yg/1); however, only 1.5 lbs/day were
discharged due to the small flow.
-32-

-------
Alcoa
The Alcoa plant, located on the west bank of the Mobile
River at the Alabama State Docks, produces alumina (aluminum
oxide) from bauxite. Alumina tri-hydrate is extracted from
bauxite ore by dissolving in caustic solution in digesters.
The mud residue is removed from the caustic solution by
filtering and is discharged into the mud lakes on the east
bank of the Mobile River. Clarified water from the mud
lakes is re-used in the mud slurry wash cycle and discharges
back into the mud lakes in a closed loop. The alumina tri-
hydrate is then crystallized from the clarified solution,
washed and heated in rotary kilns to drive off the water of
crystallation. The resultant product is alumina.
The Alcoa plant is in the process of renewing the
floors in Building 35 (filtration) and Building 80
(calcination). The concrete floor slabs have deteriorated
and caustic plant liquor spilled on the slabs could leak
through the flooring and deteriorate the wood support
pilings. The preservation of the wood pilings requires
flushing of the pilings several times per week with river
water. New concrete slabs will be constructed such that any
spilled caustic liquor will be collected in sumps and pumped
back into the process. The EPA sampling took place (June
18-20) during the period when the original concrete slabs
were being replaced. Alcoa is also in the process of
-33-

-------
designing a closed circuit effluent system to keep all plant
wastewater from entering the Mobile River.
At present, the sanitary sewage is discharged into the
plant storm sewer system which discharges into the Mobile
River. However, a state-approved sewer main has been
designed for the Alabama State Docks and should alleviate
the sanitary waste disposal problem at Alcoa.
Samples from the press leaf wash, piling treatment
water (Building 45, Building 80 and Pump C) and the
powerhouse were composited proportional to flow into a
single sample. On June 19 and 20, the discharge from the
heater acid was added to the sample.
The average flow was 0.8 mgd which was obtained by
weighting the variable flows from the various unit
processes. The effect of the heater acid discharge is
reflected in the pH results below:
-Ell-
June 18	11.2*
June 19	5.9
June 20	8.6
* Does not contain heater acid discharge.
The average BOD5 discharged was relatively low, 39 mg/1
(260 lbs/day). The BOD:COD ratio of 0.29 indicated an
inorganic waste. The total solids concentration of 1,640
mg/1 (11,000 lbs/day) contained 1,360 mg/1 (9,110 lbs/day)
dissolved and 280 mg/1 (1,870 lbs/day) suspended solids.
-34-

-------
A spark source metal scan is presented in Appendix E.
Metals of significance were 780 yg/1 (5.2 lbs/day) of
molybdenum and 164 yg/1 (1.1 lbs/day) of total chromium.
Ideal Cement
The Ideal Cement plant, located on the Alabama State
Docks, manufactures Portland Cement by the wet process. The
primary source of waste is the classifier, which suspends
and flocculates dust particles in water. The classifier
overflow discharges into a recarbonation tank where the pH
is reduced from approximately 11 to 9. A settling agent is
added to the overflow from the recarbonation tank which
flows by gravity to a "lamella" thickener. Solids from the
recarbonation tank and the "lamella" thickener are returned
to the process. The two effluents from the plant, a storm
sewer containing process water and sanitary sewage (outfall
IC-001) and a ditch containing process wastewater only
(outfall IC-002), discharge into the Mobile River.
The flow of outfall IC-001 was 0.83 mgd during the
sampling period. The presence of sanitary sewage was
evident from the mean total and fecal coliform densities of
258,000 and 28,400/100 ml, respectively. The total solids
were 796 mg/1 (5,510 lbs/day) of which 759 mg/1 (5,260
lbs/day) were dissolved solids. The suspended solids ranged
from less than 1 to 78 mg/1 with an approximate mean of 37
-35-

-------
mg/1 (256 lbs/day). The wastewater was alkaline with a pH
range of 8.8 to 9.0 during the sampling period.
Outfall IC-002, which contained only process
wastewater, discharged 0.14 mgd. This effluent had a total
solids concentration of 6,600 mg/1 (7,700 lbs/day) and
suspended solids concentration of 402 mg/1 (419 lbs/day).
The total alkalinity was 93 8 mg/1 as CaCo3 which was
reflected in the pH which ranged from 12.2 to 12.9.
Chevron Asphalt Company
The Chevron Asphalt Company facility, located on the
east bank of the Mobile River on Blakely Island,
manufactures paving, roofing and industrial asphalts.
Products are produced from semi-finished materials in a
process requiring no distillation of crude petroleum. The
plant effluent consists of cooling water mixed with some
condensed steam and the discharge from an oil separator.
These streams combine in a common ditch, which also drains
the highway, and flows into the Mobile River. Sanitary
wastes are discharged into a septic tank.
The average discharge was 1.31 mgd. The BOD5 analyses
of grab samples ranged from less than 20 mg/1 to 20 mg/1
(219 lbs/day). The nitrogen compounds present were 0.4 mg/1
(4.2 lbs/day) of TKN and 0.26 mg/1 (2.9 lbs/day) of nitrite-
nitrate nitrogen. The oil and grease concentration ranged
from less than 5.0 to 9.0 mg/1 (less than 54.7 lbs/day to
-36-

-------
98.4 lbs/day). The phenol ranged from less than 5 to 133
ug/1 with an approximate mean concentration of 53 ug/1 (0.58
lbs/day).
Alabama Wood Treating
The Alabama Wood Treating Corporation facilities,
located on the west bank of the Mobile River at Choctaw
Pass, treats poles and cross-ties with creosote or a
pentachlorophenol (penta) solution to to protect against
decay and insects. Contaminated water from the creosoting
cylinders and water from the penta solution cylinders flow
into an oil separation system. The discharge from the
separation system flows through sand and gravel filters and
thence through a straw filter into a cooling water drain.
The cooling water and the oil separation system effluent
flow in a common ditch into the Mobile River at Choctaw
Pass. Both the penta and creosote are reclaimed. Sanitary
wastes are discharged into a septic tank.
The 0.01 mgd of effluent from the oil separator (AW-
001) contained BOD5 of 1,170 mg/1 (98 lbs/day) and dissolved
and suspended solids of 7 38 (62 lbs/day) and 352 mg/1 (29
lbs/day) , respectively. The pH of the wastewater stream was
acidic at U.8. Other significant constituents found in the
oil separator effluent were the concentrations of phenols -
135,000 pg/1 (11 lbs/day) and oil and grease - 346 mg/1 (29
lbs/day) .
-37-

-------
The cooling water discharge (AW-002) was 0.13 mgd. The
phenol concentrations ranged from 51 to 545 ug/1 with a mean
value of 237 yg/1 (0.26 lbs/day). The total solids were
148 mg/1 (162 lbs/day) of which 129 mg/1 (140 lbs/day) were
dissolved solids. The pH ranged between 7.3 and 8.8 units.
National Gypsum
The National Gypsum Company plant, located at Garrows
Bend on Mobile Bay, manufactures insulation board by
refining ground wood from wood chips. Water conservation
measures are employed throughout the plant, with fiber
recovery and water recycle. The treatment system consists
of a primary clarifier, aeration lagoon and secondary
clarifier from which the effluent flows down a 0.75 mile
ditch before flowing into Mobile Bay at Garrows Bend. All
sanitary wastes discharge into a septic tank. The effluent
from National Gypsum plant will be discharged to the Mobile
McDuffie Island STP in the near future.
Flow from the aeration lagoons to the final clarifier
was maintained at a constant rate of 1.01 mgd during the
study period. The analytical results indicate high total
solids in the effluent of 3,120 mg/1 (26,300 lbs/day), of
which, 2,880 mg/1 (24,300 lbs/day) was dissolved and
241 mg/1 (2,030 lbs/day) suspended solids. The BOD^ was 255
mg/1 (2,150 lbs/day). The effluent contained mean total and
-38-

-------
fecal coliform densities of 9,300,000 and 53,000/100 ml,
respectively.
Lead and zinc were the significant metals observed in
the discharge and could be detrimental to aquatic life in
the receiving stream due to their toxic nature. The lead
concentration ranged from less than 100 to 243 yg/1
(2 lbs/day). The mean zinc concentration was 718 ug/1
(6 lbs/day).
Gas chromatograph/mass spectrometric analysis (Appendix
E) of the treated wastewater showed organics typical of
paper manufacture.
-39-

-------
MUNICIPAL WASTE SOURCES
Efficiency of treatment studies were conducted at the
five Mobile area municipal wastewater treatment plants that
discharged directly into the study area. A summary of waste
concentrations detected and waste loads discharged from each
plant are shown in Tables III and IV, respectively. Study
results for each plant are discussed in the following
sections. , Municipal treatment plant locations are shown on
Figure 1. A complete municipal waste analytical data
listing is presented in Appendix E.
Chickasaw, Alabama
Municipal wastes from the City of Chickasaw are treated
in a two-cell lagoon system which is operated in parallel.
Each cell of the lagoon is 25 acres in size. The Chickasaw
sewer system is a separate system with no known significant
industrial waste connections. The lagoon serves a
population of 8,500 (1970 census was 8,147). The lagoon
system was designed for a hydraulic load of 1.5 mgd and a
BOD5 loading of 2,500 lbs/day. This BOD5 loading is
3/
equivalent to a population (PE) of 15,000 . The lagoon
treatment system does not have post chlorination facilities
nor an adequate flow measuring device. The lagoon
discharges directly into Chickasaw Creek.
3/ PE based on a BOD5 loading of 0.17 lbs. BOD5/capita/day.
-40-

-------
TABLE III
SUMMARY OF MUNICIPAL WASTEWATER CONCENTRATIONS"
MOBILE RIVER STUDY
June 1973
1/
Nitrogenous Compounds
Waste Source
Receiving
Stream
Source
Flow*/
(mgd)
Lab
e!L
Alkalinity
(mg/1)
Acidity
(mg/1)
BDc
(mg/1)
COD
(mg/1)
TOC
(mg/1)
Solids
Total
(r/1)
Susp
TKN
.(a'1?
nh3
BO2-NO3
Tot Phoe
P (njt/1)
Chickasaw Lagoon
Chickasaw
Inf
	
6.4
86
165
138
732
59.5
599
318
10. 7
7.95
<.01-.02
8.5

Creek
iff
0.86
9.6
48
0
14.0
121
28.5
230
24
5.55
4.32
<.01-.01
3.0
Prichard Eightmile
Eightmile
Inf

6.9
121
30
136
529
89.0
465
131
19.0
19.2
0.08
13.7
Creek STP
Creek
lit
1.63
5.5
78
22
47
149
51.5
352
30
15.6
14.3
3.86
12.8
Threemile Creek STP
SDring Br
Inf
	
6.7
100
50
	
1660
371.0
1030
771
18.5
14.2
<.01-.03
1660


ilf f
6.23
7.3
87
13
--
146
35.0
465
21
14.3
13.6
0.17
9.17
Grover Street STP
Threemile
Inf
	
7.1
157
25
238
403
95.0
4ft)
81
23.8
22.7
<.01
13.4

Creek
2ff
1.41
6. B
43
15
30
99
33.5
391
20
6.0
3.25
13.8
12.5
McDuffie Island
Mobile
Inf
	
6.8
101
37
194
421
151.0
1440
243
22.2
20.1
<.01-. 30
239
STP
Bay
2ff
5.14
7.2
118
13
53
176
42.7
452
40
19.4
15.8
0.02
7.03
3/	Heavy Metals and	Toxic Compounds (uk/I)		4/
0 & G 3/	_3/	Coliform Bacteria	Chlorine Residual
Waste Source Source (mg/1)	Phenols CD	CN	Cr	Cu	Hg	Pb N1 Zn	Tot/100 ml Fecal/100 ml (mg/l)
Chickasaw Lagoon Inf 					   
Eff 			--		   -- --	100,000 19,000
Prichard Eightmile Creek STP Inf 					    	 	
Eff 			--		~    	< 1,500 < 190	1.5 - 30
Threemile Creek STP	Inf
Eff <5.0	29		<1-33	<20	 0.4   	110,000 7,400	1.21
Grover Street STP	Inf
Eff <5-7.0	31.0	<20	<1-27	<50-62 <20-25  <100 <50 157	3,000	<550	1.87
McDuffie Island STP Inf 					    
Eff <5-11.0	23	<20	155	140	50 <0.2-.4 350 <50 385	1,700 330	0.82
1/	All data based on 24-hour composite samples unless noted to the contrary.
2/	Average daily flow.
2_/	Data from grab samples
4y	Logarithmic mean.

-------
TABLE IV
SUMMARY OF MUNICIPAL WASTE LOADS (LBS/DAY)^
MOBILE RIVER STUDY
JUNE 1973
Waste Source
Chickasaw Lagoon
Prichard Eight-
mile Creek
Threemlle Creek
STP
Grover Street STP
McDuffie Island
STP
Receiving Flow
Stream	mgd
Chickasaw 0.86
Creek
Eightmile 1.63
Creek
Spring
Branch
6.23
Threemile 1.41
Creek
BODc
100
COD
868
TOC
204
Solids
Total Susp
172
1650
680 2050 724 4820 425
75 70 1830 24200 1050
362 1160 404 4600 241
Nitrogenous Compounds
2/
TKN
39.8
211
754
70.9
Mobile Bay 5.14 2270 7654 1820 19400 1720 839
Total Oil & A'
NH3 NO2-NO3 Phos Grease
31.0 <.072-
.072
191
718
677
49.7
38.4 162
21.5
172
148
0.72 303
9.06 475 <33.4
Heavy Metala or.?/
Toxic Compounds
Hg:.02, CN:<.07-2.20,
Phenol8:1.0
<58.4- CN:<.013-.383, Cd:0.0,
70.9 Cr:<1-1.0, Cu:0.0,
Pb:<1.0, Ni:<1.0, Zn:2.0,
Phenols:0.0
<259- Hg:0.0, CN:11.3, Cd:<1.0,
643 Cr:6, Cu:2, Pb:15,
Ni:<2.0, Zn:16, Phenols: I.
1/ All loads based on 24-hour composite samples and average daily flow unless noted to the contrary.
2/ Oil and grease, phenol and cyanide data are based on grab samples.

-------
Accurate flow measurements were not obtained during the
study because the effluent weir of the lagoon system was
affected by high tides. The average daily flow was
estimated at 0.86 mgd, based on low tide measurements. The
BOD5 and suspended solids removals were 89.5 and 88.5
percent, respectively for the two-day study period. Because
of the lack of post chlorination, mean total and fecal
coliform densities were 100,000 and 19,000/100 ml,
respectively. The lagoon discharged 100 lbs/day of BOD^, 31
lbs/day of ammonia and 172 lbs/day of suspended solids.
Prichard, Alabama
Eightmile Creek STP
The Eightmile Creek sewage treatment plant (STP) serves
15,200 of Prichard's population of 41,578 (1970 census).
There are no known industrial wastes discharged into the
treatment plant. The treatment facility is a high rate
trickling filter with a hydraulic design capacity of 1.5 mgd
and a design BOD5 loading of 2,500 lbs/day (PE of 15,000).
Post chlorination of the plant effluent is provided. Plant
effluent is discharged into Eightmile Creek and subsequently
into Chickasaw Creek.
The plant did not have a standard flow measuring device
and flows were estimated from a suppressed sharp crested
weir formula. The estimated average flow for the two-day
sampling period was 1.63 mgd. During the study, the plant
-4 3-

-------
was not performing at secondary treatment levels with BODg
and suspended solids removals of 66 and 7 3 percent,
respectively. These low removals were caused by hydraulic
overloading of the plant. The average influent BOD5 of 136
mg/1 is much lower than expected for a typical domestic
waste, indicating that groundwater infiltration may have
contributed to the hydraulically overloaded condition. Mean
total and fecal coliform densities were low, from less than
1,500 to less than 190/100 ml, respectively. Low coliform
densities were due to total residual chlorine concentrations
which ranged from 1.5 to 30 mg/1. The 30 mg/1 of total
chlorine residual was caused by a sticking chlorine tank
valve.
During the study, the plant discharged 680 lbs/day of
BOD5, 4 25 lbs/day of suspended solids and 191 lbs/day of
ammonia into Eightmile Creek.
Grover Street STP
The Grover Street sewage treatment plant serves 20,500
of the residents of Prichard. Several industries including
a dairy, a small plating operation, a truck line terminal
and several small plastic manufacturing operations discharge
wastes into the sewerage system. The plant is a high-rate,
two-stage, trickling filter with a hydraulic design capacity
of 4.1 mgd and a design BOD5 loading of 7,000 lbs/day (PE of
41,000). The plant provides effluent post chlorination.
-44-

-------
The effluent is discharged into a small tributary of
Threemile Creek.
During the three-day study period, BOD5 and suspended
solids removals averaged 86.5 and 74.3 percent,
respectively. Mean total and fecal coliform densities were
3,000 and less than 550/100 ml, respectively. The average
total chlorine residual was 1.9 mg/1 and ranged from 0.60 to
10.0 mg/1. Comparison of the influent and effluent ammonia
and nitrite-nitrate nitrogen concentrations (Table III) show
that the plant is producing a highly nitrified effluent.
The plant discharged an average of 362 lbs/day of BOD^, 38
lbs/day of ammonia, 162 lbs/day of nitrite-nitrate nitrogen
and 241 lbs/day of suspended solids at a discharge rate of
1.41 mgd. The only significant metal or toxic compound
discharged was zinc at a rate of 2 lbs/day.
Mobile. Alabama
Threemile Creek STP
The Threemile Creek STP is one of two plants operated
by the City of Mobile which discharges into receiving waters
within the study area. The plant is a high rate trickling
filter process designed for a hydraulic load of 10.0 mgd and
a BOD5 load of 17,000 lbs/day (PE of 100,000). The plant
serves approximately 55,000 of the Mobile population of
190,000 (1970 census) . Some industrial wastes, including
those from the GAF Corporation (manufacturing roofing
-45-

-------
materials) discharge into the sewer system served by this
plant. The plant provides effluent post chlorination of the
effluent which is discharged into Spring Branch, a tributary
of Threemile Creek.
Because of a malfunction of laboratory equipment, all
BOD5 analyses were lost. The plant removed 90 percent of
suspended solids during the study. The plant discharged
mean total and fecal coliform densities of 110,000 and
7,400/100 ml, respectively. Total chlorine residuals ranged
from 0.7 to 2.0 mg/1 with an average of 1.21 mg/1. The high
coliform densities, undoubtedly, resulted because the plant
does not have a chlorine contact chamber and chlorine
contact time was inadequate at the point of collection.
Samples for coliform analyses were collected at a manhole as
the effluent leaves the plant. Coliform densities would
probably have been lower if samples had been collected at
the end of the effluent pipe or downstream from the plant.
The average daily discharge of 6.23 mgd contained 7,570 lbs.
of COD, 1,050 lbs. of suspended solids and 718 lbs. of
ammonia. Ttoe only significant quantities of toxic compounds
discharged were one lb/day of phenol and less than 0.07 to
2.20 lbs/day of cyanide.
McDuffie Island STP
The McDuffie Island STP, located on McDuffie Island,
discharges its effluent directly into Mobile Bay near the
46

-------
mouth of the Mobile River through a submerged outfall
located off the eastern shore of McDuffie's Island. The
plant is an activated sludge facility with effluent post
chlorination. The plant was designed for a hydraulic load
of 16.0 mgd and a BOD5 loading of 27,COO lbs/day (PE of
160,000). Several industrial sources discharge wastes into
the sewer served by the McDuffie Island STP, including those
from an aircraft motor repair operation, a paper bag
manufacturing company and a paint stripping operation. The
waste currently discharged from the National Gypsum Company
will be connected to the McDuffie island STP in the near
future.
During the study, the BOD5 and suspended solids
removals at the plant were 73 and 70.3 percent,
respectively. Because of a malfunction of laboratory
equipment, only one set of BOD5 data were available for the
three-day study period. Mean total and fecal coliform
densities were 1,700 and 330/100 ml, respectively. The
average total chlorine residual was 0.82 mg/1. The plant
discharged 2,270 lbs/day of BODj , 1,720 lbs/day of suspended
solids, 677 lbs/day of ammonia and less than 259 to 643
lbs/day of oil and grease at an average flow of 5.14 mgd.
Significant quantities of metals and toxic compounds were
also discharged, including 16 lbs/day of zinc, 2 lbs/day of
copper, 6 lbs/day of chromium, 15 lbs/day of lead, 1.3
lbs/day of phenols and 11.3 lbs/day of cyanide.
-47-

-------
WATER QUALITY STUDIES
Seventeen water quality sampling stations were used to
depict Mobile River and tributary water quality in the study
reach during the period June 24-27, 1973. Eight sampling
stations were located on the Mobile River, five on Chickasaw
Creek and four on Threemile Creek. The locations of these
sampling stations are shown on Figure 1.
Water quality samples were collected at consecutive
tidal sacks on tidal reaches. Samples were collected at
midstream at all stations. Additionally, quarter point
samples were collected at the mouth of Chickasaw Creek
(station number 13) and upstream and downstream from the
confluence of Chickasaw Creek with the Mobile River (station
numbers 3 and 4). Samples were collected as follows:
Water Depth
(Feet)		Sample Depth
<10	Mid-depth
<20	Surface (one foot depth) &
bottom (one foot from bottom)
<20	Surface, mid-depth & bottom
Dissolved oxygen, temperature and chloride analyses
were made at every sampling location and depth. The BOD5,
TOC, turbidity, pH and nutrient samples were composited from
each sampling station location and depth. Total and fecal
coliform samples were collected from surface locations and
were composited where quarter points were sampled. In
-48-

-------
addition -to total and fecal coliform determinations, special
samples were collected to detect members of the genus
Salmonella at selected stations. Methodology to enumerate
Salmonella density is presently inadequate and only the
presence or absence of Salmonella at stations was
determined. All water quality analytical data collected
during the survey are contained in Appendix F.
Hydrology and Climatology
The river flows for the Alabama River, Tombigbee River
and Chickasaw Creek for June 1973 are given in Table V.
Immediately preceeding and during the water quality study
period, June 24-27, 1973, the combined Alabama and Tombigbee
River discharges were substantially higher than the 7-day,
10-year low flow of 8,000 cfs reported for the Mobile River
at Mt. Vernon, Alabama. A similar hydraulic condition
existed in Chickasaw Creek where daily flows were much
higher than the reported 7-day, 10-year low flow of 30.8
cfs.
A total of 5.33 inches of rain was recorded during June
1973 at the Mobile airport. All rainfall occurred between
June 6 and June 21 with the heaviest rainfall occurring on
June 7 (3.17 inches) and during the period June 19-21 (0.97
inches). The daily maximum and minimum temperatures ranged
from 89-95F and 68-75F, respectively. (6)
-49-

-------
TABLE V
1/
MOBILE RIVER AND TRIBUTARY FRESHWATER DISCHARGE
June 1973

Alabama River At
Tombigbee River At
Chickasaw Creek Near

Clairborn, AL
Coffeeville, AL
Kushla, AL
Date
(cfs)
(cfs)
(cfs)
6/1
98,300
58,100
154
6/2
102,000
62,000
149
6/3
101,000
63,000
118
6/4
88,100
50,400
102
6/5
70,300
33,300
93
6/6
58,000
34,000
95
6/7
64,300
37,900
162
6/8
69,800
40,900
437
6/9
73,000
41,700
372
6/10
72,300
38,000
175
6/11
72,500
31,000
123
6/12
61,100
23,900
234
6/13
61,200
20,700
399
6/14
65,000
25,000
355
6/15
63,100
30,900
243
6/16
56,700
28,800
173
6/17
51,600
27,100
138
6/18
42,200
23,600
142
6/19
37,800
19,000
149
6/20
38,400
24,900
247
6/21
47,000
28,900
308
6/22
44,200
41,700
274
6/23
43,500
36,000
219
6/24^
34,800
34,600
126^
6/25
31,500
29,100
103 \
6/26
31,500
20,600
93
6/2 7^
30,400
.17,200
90i ^\J
6/28
30,000
17,100
364
176 X
6/29
39,300
17,300
6/30
19,700
14,500
113
1/ Provisional U.S. Geological Survey Data.
-50-

-------
Tidal Effects
Tide gages were established in Chickasaw Creek at
Ferguson's boat landing (RM 4.5) and in the Mobile River at
the L&N Railroad bridge (RM 13.3). The U. S. Army Corps of
Engineers tide gage located on Pier A of the Alabama State
Docks was also utilized. The tide stage for each of these
gages during the study is shown on Figure 2. The tidal
range for Pier A Corps of Engineers tide gage ranged from
1.15 to 2.18 feet during the study and was, for all
practical purposes, identical to that measured at the
Ferguson's boat landing gage. There was no significant time
difference in tidal stage measured between the Pier A and
Ferguson boat landing gages. The tidal range at the L&N
Railroad bridge gage varied from 0.8 to 1.96 feet while
tidal stage times were from zero to 1.5 hours later than
those at the Pier A gage. The 1.5-hour delay in tide stage
at the L&N Railroad bridge occurred at flood tide on the day
that the largest tidal range was noted.
Chickasaw Creek
Chlorides
Chickasaw Creek was vertically stratified with respect
to chlorides during the study (Figure 3). A saltwater wedge
extended from the mouth of the creek upstream as far as
Shell Bayou, the present limit of the dredged channel. The
upstream limit of saltwater intrusion appeared to be water
-51-

-------
FIGURE 2
MOBILE RIVER AND CHICKASAW CREEK TIDE STAGE
JUNE 21 - 23, 1973
PIER A, MOBILE RIVER
2
uj *
I I I I I I I I I I I
rzoo	(200	ItOO	ItOO	1200	1200
Li - Data Supplied by the U-S Army Corps
of Engineers, Mobile District.
I* - EPA Tide Goge Installed for this Study
FURGUSONS BOAT LANDING, CHICKASAW CREEK
i i i i i i i i i i i i i i i
1200	Itoo	IfOO	I20O	1200	1200
21	22	23	24	25	26
1200
27
1200
26
L8N RAILROAD BRIDGE, MOBILE RIVER
I I I I  I I  I  I I I I I
1200
21
1200
22
1200
23
itoo
24
itoo
25
itoo
26
1200
27
ItOO
28

-------
AVERAGE CHLORIDE CONCENTRATION (mg/l)
I
IA
W
t

O
c
J>
s
X
r
z
o
w
o
2
c/>
o
o
o
o
o
o
o
o
o
b
o
o
<6
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
*
o
o
o
o
o
o
23
<
m
x
2
>

|  L8N R.R. BR
	SCOTT PAPER S-OOt - S-005
QT'
INTERNATIONAL PAPER IP-0I2
("DIAMOND SHAMROCK
hog bayou  Z
= o
O0O
It:
m
-<
EIGHTMILE CREEK STP
0
1
o
X
>
U>
<-	(
c
z	G	-n
m	2	
m	a
ro	m	c
*	*	3)
1	_	m
rv)	Q
h -E w
- o
(0 9
2	5
fn
*0
9
O
r i a>  t/>
o r O - c
-i n o 2 R

-------
quality sampling station number 10 located at the U. S.
Highway 43 bridge. Chloride concentrations at this station
were less than 100 mg/1 throughout the vertical cross-
section at both high and low tide.
Temperature
Thermal stratification in Chickasaw Creek was also
readily apparent (Figure 4). High tide water temperatures,
as high as 34C (93.0F), were detected at the surface
sampling location downstream from the Alabama Power Company
discharge (sampling station number 12) and at the mouth of
Chickasaw Creek (near the north bank at station number 13).
Average high tide surface temperatures at center channel
sampling locations decreased less than 0.5C from station
number 12 to the mouth of Chickasaw Creek. These extremely
high water temperatures were attributed to once-through
cooling water discharges from the Alabama Power Company and
the International Paper Company facilities, as well as
wastewater discharges from International Paper and the Scott
Paper Company operations.
As shown by Figure 4, the highest average water
temperatures were measured at the surface with significant
(2-3C) temperature decreases at mid-depth and bottom
sampling locations. Average water temperatures were within
1C for high and low tide, for each sampling location, at
each sampling site.
-54-

-------
AVERAGE TEMPERATURE (C)
I
Ol
u
I
i
H
m
3)
0
1	I *
j o m
CO
J> 2
2	F
"0	m
r	co
z
o
i/>
H
X>
H
O	ff)
Z
CA

o t z
? = O
t/>
so
o W
J o
E *
J
m
r i  5
0
1
-	-*	H O 2 **
o	o	o	s -o m
>	m	m	h
i-	I
 o
OJ
Oi
	MOBILE R.
	LSN R R BR.
	SCOTT PAPER S-OOI-S-OOS
	INTERNATIONAL PAPER IP-012
(DIAMOND SHAMROCK
	HOG BAYOU-{CHICKASAW STEAM PLT.
\JJNI0N CARBIDE
MOUTH OF SHELL BAYOU	?
O
X
>
U)
>

CHICKASAW CREEK LAGOON	_
<- "
C *}
y n _
*3 S
N . C
"5*
_ 31
(O 
EIGHTMILE CREEK STP	
a
m
TJ
a
o

-------
Assuming that water temperatures measured at the U. S.
Highway U3 bridge are representative of background
conditions, it is evident that violations of the Alabama
water quality criteria for the fish and wildlife use
classification would have occurred during the study.
Average temperature rises exceeding the temperature criteria
of 5F (2.8C) would have occurred at the surface and mid-
depth sampling locations at sampling station numbers 12 and
13. Although the criteria specify that temperature is to be
measured at the 5-foot depth, it is evident that since the
criteria was exceeded for surface (1-foot depth) and mid-
depth (10-13 feet) samples, it would also have been exceeded
at the 5-foot depth.
PH
The lowest pH values were detected at the freshwater
background sampling location (station number 9 at RM 8.9)
where values ranged from 5.7 to 6.8. pH values increased
downstream and were highest in the lower reaches of
Chickasaw Creek. Downstream from Shell Bayou, at sampling
stations 11, 12, and 13, pH values ranged from 6.6 to 7.U.
No pH values below 6.0 or greater than 8.5, the pH range
specified by the Alabama water quality criteria for the fish
and wildlife use classification, were found in areas
directly affected by waste discharges.
-56-

-------
Station
9
10
11
12
13
Lab
Tide	pH
Non-	6.1
Tidal
High	6.2
Low	6.0
High	7.0
Low	6.7
High	7.A
Low	7.2
High	6.9
Low	7.0
bod5 TOC
(mg/1) (mg/1)
1.3	5.30
2.8	8.50
1.4	6.67
8.2	10.75
3.2	9.25
34.0	26.0
25.0	27.0
5.7	24.2
21.0	34.0
1/ Logarithmic mean
TABLE VI
WATER QUALITY SUMMARY
CHICKASAW CREEK
Nitrogenous Compounds
Turbidity	(mi '
JTU	TRS
0.32 <.01-.16
N02-h03
0.08
Total
Phos P
(mg/1)
0.04
Coliform
Bacteria^
/
Tot/100ml
1400
Fecal/lOOml
62
9
0.36
0.12
0.06
0.07
1800
150
8
0.28
0.10
0.09
0.06
1900
100
20
0.66
0.33
<.01-.03
0.08
3800
140
12
0.64
0.28
<.01-.03
0.29
3300
220
25
0.62
0.10
<.01-.02
0.24
9800
540
30
0.71
0.15
< 0.01
0.40
14000
720
26
0.62
0.05
<01-.13
0.21
10000
1400
32
0.70
0.08
<01-.01
0.28
50000
1900

-------
AVERAGE 5-DAY BIOLOGICAL OXYGEN DEMAND CONCENTRATION (mg/l)
MOBILE RIVER
LBN RR BRIDGE
SCOTT PAPER S-OOI-S-OOS
INTERNATIONAL PAPER IP - 012
(DIAMOND SHAMROCK
MOUTH of HOG 0AYOU K CHICKASAW STEAM PLT
(UNION CARBIDE
0
1
o
>
(/>
>
MOUTH OF SHELL BAYOU
CHICKASAW CR LAGOON
EIGHTMILE CR STP
o
30
C
z
ro
IN)
-J
W
o
 m
m
z
o
rn
S
r>
z
o
T)
JO
o

-------
Turbidity
Turbidity (Table VI) increased significantly from
relatively low values of 7 Jackson Turbidity Units (JTU) at
the freshwater control station to values ranging from 25 to
30 JTU in the lower reaches of Chickasaw Creek at stations
12 and 13. The higher turbidity in the lower reaches of
Chickasaw Creek are directly attributable to the major waste
discharges entering this reach.
Biochemical Oxygen Demand and Dissolved Oxygen
Because of a malfunction of laboratory equipment, only
one BOD5 analysis for each tidal condition was obtained at
each station. These data, shown by Figure 5, were highest
just downstream from Hog Bayou (station number 12) where
high and low tide concentrations of 34 mg/1 and 25 mg/1,
respectively, were observed. The BOD5 concentrations
decreased markedly at the mouth of Chickasaw Creek (station
number 13) and upstream from station number 12. These
excessive BOD5 concentrations were attributed to the high
waste discharges from the International Paper and Scott
Paper Company mills of approximately 65,100 lbs/day and
2 0,500 lbs/day, respectively. As shown by Figure 5, the
high tide BOD5 concentration of 5.7 mg/1 was much lower at
the mouth of Chickasaw Creek. Apparently, this is due to
dilution with lower BOE^ Mobile River water. The average
BOD^ concentration (1.3 mg/1) at the control sampling
-59-

-------
station (number 10 at RM 8.9) was representative of
background levels.
The dissolved oxygen (DO) profiles shown in Figure 6 is
almost the direct inverse of the BOD^ profile. Average DO
concentrations were lowest throughout the vertical cross-
section near Hog Bayou (station number 12) , where
concentrations were zero or nearly zero at both high and low
tide. Average bottom sampling location DO concentrations
were zero from the mouth of Chickasaw Creek (station number
13) to the mouth of Shell Bayou (station number 11 at RM
2.6). At surface and mid-depth sampling locations during
high tide, the DO concentrations at the mouth of Chickasaw
Creek improved slightly, increasing to approximately 1 mg/1.
However, high and low tide DO concentrations were zero, for
all practical purposes, in samples collected at quarter
point locations at all depths (Appendix F). Significant
improvement in surface and mid-depth oxygen concentrations
was noted upstream from the major industrial waste sources
at sampling station numbers 10 and 11. Low tide DO
concentrations were higher at these two upstream stations
due to the presence of relatively less polluted Chickasaw
Creek water flushed from upstream reaches at low tide. The
control sampling station had an average DO concentration of
7.5 mg/1 or 89 percent of DO saturation during the study.
It should be noted that only those waters upstream from
Shell Bayou would have been in compliance with the DO
-60-

-------
AVERAGE DISSOLVED OXYGEN CONCENTRATION (mg/l)
n	m	^	v	9

m
D
O
c
>
(/)
>
z
o
(/)
H
>
H
O
z
CO
s
o
CD .
X
<
m
ZD
Z
r"
m

MOBILE RIVER
LftN RR. BR
SCOTT PAPER S-00I-S-005
INTERNATIONAL PAPER IP-OI*
(OIAMOMO SHAMROCK
(CHICKASAW STEAM PLT
(UNION CARBIOE
MOUTH OF SHELL BAYOU
CHICKASAW CK LAGOON
EIGHTMILE CRESK STP
> Z
- o
H
o m
o
o
(/)
o
C
0
*
(A
1
O
9
HqTJ
2 5 i
 o *
n r ^
r1 < m
m m
5 o
o
w X
<
o
TP
o
9 O
w -
o **
3 ?
o


-------
criteria required for the fish and wildlife use classifi-
cation.
Nitrogen and Phosphorus
The concentrations of total Kjeldahl nitrogen (0.32
mg/1) and ammonia (<0.01 to 0.16 mg/1) measured at the
Chickasaw Creek control station were essentially the same
downstream to Shell Bayou (Table VI). The effect of
significant discharges of total Kjeldahl nitrogen and
ammonia, 211 and 171 lbs/day, respectively, from the
Prichard Eightmile Creek sewage treatment plant (enters
Chickasaw Creek at RM 5.4) was not apparent at the sampling
station located downstream from this discharge (station
number 10 at RM 4.2). The total Kjeldahl nitrogen and
ammonia increased to average values of 0.65 mg/1 and 0.30
mg/1, respectively, just downstream from Shell Bayou
(station number 11). The total Kjeldahl nitrogen
concentrations varied only slightly, but the ammonia
concentrations decreased downstream from Shell Bayou to the
mouth. The increase in total Kjeldahl nitrogen and ammonia
downstream from Shell Bayou is difficult to explain, since
the other major ammonia dischargers -Union Carbide (214
lbs/day), International Paper (107 lbs/day) and Scott Paper
Companies (531 lbs/day) are located downstream from Shell
Bayou. The increase in total Kjeldahl nitrogen and ammonia
concentrations may have been due to decomposing sediment
-62

-------
deposits or swamp drainage. The decrease in ammonia
concentrations downstream from Shell Bayou at station
numbers 12 and 13, coupled with the relatively high ammonia
discharges in the reach between these two stations,
indicated that nitrification may have been occurring.
Nitrite-Nitrate nitrogen decreased from 0.08 mg/1 at the
control station to <0.01 to 0.1 mg/1 at the mouth of
Chickasaw Creek. The decrease in nitrite-nitrate
concentrations, particularly those in the oxygen depleted
lower reaches of Chickasaw Creek (downstream from Shell
Bayou), may have been due to bacterial denitrification.
The total phosphorus concentrations averaged 0.04 mg/1
at the control station. The high tide phosphorus
concentration downstream from Shell Bayou at station number
11 (0.08 mg/1) was slightly greater than that detected at
station number 10 (0.07 mg/1); the low tide phosphorus
concentration, 0.29 mg/1, was an order of magnitude higher.
The increase in total phosphorus concentration at station
number 10 and 11 could be explained by discharges of total
phosphorus from the Eightmile Creek STP (172 lbs/day) and
the Chickasaw Creek lagoons (21.5 lbs/day). The highest
concentration of total phosphorus (0.40 mg/1 at low tide)
was detected just downstream from Hog Bayou, at station
number 12. The most significant discharge of total
phosphorus in the lower reaches of Chickasaw Creek was from
the Scott Paper Company waste treatment system (1,950
-63-

-------
lbs/day) and from the International Paper Company facility
(185 lbs/day). The total phosphorus concentrations at high
tide (averaged 0.21 mg/1) at the mouth of Chickasaw Creek
were slighly lower than low tide concentrations (0.28 mg/1),
presumably due to an influx of Mobile River water.
Microbiology
The mean total and fecal coliform densities at the
background water quality sampling station (number 9 at RM
8.9) were 1,400 and 62/100 ml, respectively. Densities
increased slightly downstream at station number 10 to 1,800
and 130/100 ml total and fecal coliforms, respectively.
Density increases were due to a combination of the
discharges from the Eightmile Creek STP (discharged <1,500
total and <190 fecal coliform/100 ml), swamp drainage and
the discharge from Chickasaw lagoons (100,000 total and
19,000 fecal coliform/100 ml). The effects of the Chickasaw
lagoons (located just downstream from station number 10 at
RM 3.8) were detected at station number 10 at high tide
(Table VI) .
Surprisingly, coliform densities at station number 11,
downstream from the Chickasaw lagoons and Shell Bayou were
only slightly higher (3,500 total and 17 0 fecal
coliforms/100 ml) than those detected at station number 10.
High tide densities at station number 11 were greater than
-64-

-------
low tide densities, indicating a source of coliforms
downstream from this station.
The highest coliform densities were detected in the
lower reach of Chickasaw Creek, downstream from Hog Bayou,
where mean total and fecal coliform densities were 11,000
and 610/100 ml, respectively, and near the mouth of
Chickasaw Creek where total and fecal coliform densities
were 20,000 and 1,600/100 ml, respectively. Coliform
densities at both of these stations were significantly
higher at low tide (Table VI). The only known major source
of coliforms discharging into the lower reach was from the
Scott paper mill waste treatment system effluent (outfall S-
002) which contained total and fecal coliform densities of
5,200 and 1,300/100 ml, respectively. It is likely that
these high coliform densities were due to bacterial
aftergrowth in the nutrient rich and warm waters of the
lower reaches of Chickasaw Creek.
The Alabama water quality criteria for the fish and
wildlife classification specify that bacteria of the fecal
coliform group shall not exceed 1,000/100 ml as a monthly
logarithmic mean nor exceed a maximum of 2,000/100 ml in any
sample. Densities exceeding the 1,000/100 ml criteria were
found in the lower reaches of Chickasaw Creek.
Salmonella is a large serologically related genus
comprised of over 1,300 serotypes and is probably the
easiest enteric pathogen to isolate from surface waters.
-65-

-------
All Salmonella serotypes are considered pathogenic for
either man, animals, or both. Listed below are the Chicka-
saw Creek sampling stations where Salmonella isolation was
attempted, the fecal coliform densities measured at these
stations and the serotypes isolated.
Log Mean Fecal Salmonella enteriditis
Station Coliform/100 ml		Serotypes Isolated
9	62	None
11	610	Inverness, Anatum
13	1,600	Inverness
Threemile Creek
Chlorides
Chloride concentrations measured in Threemile Creek
(Figure 7) were much lower, particularly at bottom sampling
locations, than those measured for either Chickasaw Creek or
the Mobile River. Lower chloride concentrations were the
result of the shallow depths in the tidal reaches of
Threemile Creek (10 to 12 feet) which prevented the inflow
of higher salinity Mobile River water. As shown by Figure
7, only sampling station numbers 16 and 17 were
significantly affected by saltwater. At low tide, the water
at station number 16 was essentially fresh.
-66-

-------
AVERAGE CHLORIDE CONCENTRATION tmg/1)
industrial canal
PRICHARD GROVER ST. STP
MOBILE THREEMILE CR. STP

ooo
2 I- I
si
D { VI
o - c
i O X
_J O Tl
iiiSSs
o O o
 1 ro
X
X
STONE CONTAINER
f
C 
*3
m 2)
* * c
1 r> 
NtR
o
*o
X
O

-------
Temperature
Water temperatures ranged from 24C to 30.5C in the
shallow waters at control station number 14 (RM 6.4); the
temperature averaged 27.5C (Table VII). The lowest
temperatures were measured in the morning, the highest in
the afternoon. No source of heated water was known to exist
upstream of this station. Similar variations in water
temperature were noted downstream at sampling station number
15.
In the deeper, tidally affected waters found at station
numbers 16 and 17, average temperatures throughout the
vertical cross-section ranged from 27.0 to 27.9C and 27.9C
to 28.6C, respectively. Surface water temperatures were
approximately 1C higher at low tide at each of these
stations.
All water temperatures measured on Threemile Creek
would have been within the temperature criteria specified by
the Alabama wter quality criteria for the fish and wildlife
use classification.
EH
The pH values increased gradually downstream from 6.8
at the freshwater control stations to values ranging from
6.9 to 7.1 near the mouth of Threemile Creek. All pH
measurements on samples from Threemile Creek would have been
-68-

-------
within limits specified by the Alabama water quality
criteria for the fish and wildlife use classification.
Turbidity
The average turibidity at the freshwater control
station was 10 JTU. Turbidity concentrations increased
downstream at station numbers 15, 16 and 17 (Table VII).
The higher turbidity concentrations at downstream sampling
stations may have been due to algae blooms.
Biochemical Oxygen Demand and Dissolved Oxygen
The average BOD5 concentration of 2.6 mg/1 suggested a
source of pollution upstream of the control station.
However, no significant municipal or industrial waste
sources are known to exist upstream of this station. The
average BODkj concentration increased to 4.6 mg/1 at station
15. The only known source of BOD5 discharged upstream from
station 15 was from the Stone Container Corporation (18
lbs/day). The increase in BOD5 (2 mg/1) at station number 5
was probably primarily due to the downstream waste
discharges which were pushed upstream at high tide. (All of
the samples collected at sampling station number 15 were
collected at high tide.) At station number 16, located
downstream from the Mobile Threemile Creek and Grover Street
STPs, the BOD5 concentrations were 2.9 and 4.0 mg/1 at high
and low tide, respectively. Near the mouth of Threemile
-69-

-------
TABLE VII
WATER QUALITY SUMMARY
THREEMILE CREEK


Lab
BODc
(mg/l)
TOC
Turbidity
Nitrogenous Compounds
(mR/l)
Total
Phos P
Coliform
Bacteria^
Station
Tide
PH
(mg/l)
JTU
TKN
NH-,
NO2-NO3
(mg/l)
Tot/100ml
Fecal/lOOml
14
Non-
Tidal
6.8
2.6
4.30
10
0.43
0.21
0.22
0.13
120,000
40,000
15
High
Low
6.6
4.6
5.80
15
0.87
0.50
0.34
0.30
330,000
140,000
16
High
Low
6.9
6.9
2.9
4.0
8.25
15.0
12
14
2.79
5.73
2.66
4.16
0.12
0.28
1.54
3.45
4,700
18,000
1,300
1,600
17
High
Low
7.0
7.0
1.5
5.2
6.67
10.0
21
13
0.76
3.21
0.45
3.04
0.21
0.12
0.32
1.95
2,300
6,700
170
870
1/ Logarithmic mean

-------
Creek (station number 17), average concentrations were 1.5
and 5.2 mg/1, respectively, for the same tidal conditions.
These increased BOD5 concentrations at low tide were, in all
probability, due to BOD5 discharges from the Mobile
Threemile Creek STP (estimated at 2,500 lbs/day) and the
Prichard Grover Street sewage treatment plant (362 lbs/day).
The Gulfport Creosoting Company discharged 77 lbs/day of
BOD5 into the creek just upstream of station number 17. The
lower BOD5 concentrations measured at these two stations at
low tide indicate that these wastes may have been pushed
upstream at high tide.
Dissolved oxygen concentrations at the freshwater
control station ranged from 6.6 to 7.9 and averaged 7.2
mg/1. The DO varied widely at station number 15 from
concentrations of 1.3 mg/1 in the morning (7:50 a.m.) to 7.2
mg/1 in the early afternoon (1:20 p.m.) and averaged 4.6
mg/1. Wide fluctuations in DO concentrations were probably
caused by an algae bloom. The presence of such a bloom
would also account for the increased BOD5 concentrations
detected.
The DO concentrations at sampling stations downstream
of the two STP discharges (station numbers 16 and 17), were
significantly lower (Figure 8) than those found upstream.
At station number 16, average DO concentrations at high tide
were extremely low at surface (1.4 mg/1), mid-depth (0.9
mg/1) and bottom (0.7 mg/1) sampling locations. At low
-71-

-------
AVERAGE DISSOLVED OXYGEN CONCENTRATION (mg/l)
r\>	oj	(ji	a>

o
O
0
1
O

c
z
4
H
H
o
o
3)
H
H
H
O
2
i~
m
t>
O
o
t>
O
m
O
m

m
f-





X
J)
m
m
S
o
-a
is
m _
o ^
(A C
... O JO
<	m
 m 00
5
o
CM X
<
o
m
z
-o
J}
o
r~
m
J*
i
O
STONE CONTAINER

-------
tide, these concentrations increased to 6.7 and 2.8 mg/1 at
surface and mid-depth locations and decreased to 0.0 mg/1 at
the bottom. The increase in DO coupled with an increase in
BOD5 at low tide suggests the definite possibility of an
algal bloom. Low dissolved oxygen concentrations near the
mouth of Threemile Creek increased during high tides
reflecting the influence of higher DO Mobile River water.
Dissolved oxygen concentrations measured at sampling
station numbers 15, 16, and 17 would have been less than
those permitted by the Alabama water quality criteria for
the fish and wildlife classification.
Nitrogen and Phosphorus
Nitrogen and phosphorus concentrations at the control
station were significantly high (Table VII), particularly
the average ammonia (0.21 mg/1) and nitrite-nitrate (0.22
mg/1) nitrogen concentrations. These concentrations were
indicative of an upstream waste source.
Concentrations of nitrogen and phosphorus increased
downstream with the highest concentrations of total Kjeldahl
(5.73 mg/1), ammonia (4.16 mg/1) and total phosphorus (2.79
mg/1) measured downstream from the STP discharges (station
number 16) at low tide. Similarly, concentrations of these
parameters were also high near the mouth of the creek at low
tide. High tide nitrogen and phosphorus concentrations at
-73-

-------
station number 16 were reduced significantly, and at station
number 17 approached levels detected in the Mobile River.
The Mobile Threemile and Prichard Grover Street sewage
treatment plants were the principal sources of nitrogen and
phosphorus discharged into Threemile Creek. During the
study, the Mobile Threemile Creek; STP discharged 754 lbs/day
of total Kjeldahl (718 lbs/day as ammonia), 9.1 lbs/day of
nitrite-nitrate nitrogen and 475 lbs/day of total phospho-
rus, while the Prichard Grover Street STP discharged 70.9
lbs/day of total Kjeldahl (38 lbs/day as ammonia) , 162
lbs/day of nitrite-nitrate nitrogen, and 148 lbs/day of
total phosphorus. It is evident that these nutrient dis-
charges were responsible for the exceedingly high nitrogen
and total phosphorus concentration detected at downstream
sampling stations.
Waters at station number 16 were deep green in color.
The green color, the increase in DO and the exceedingly high
nitrogen and phosphorus concentrations detected at this
station strongly indicate the presence of high algae
concentrations.
Microbiology
The freshwater control station (number 14), presumably
located upstream from all identified major waste sources,
had mean total and fecal coliform densities of 120,000 and
40,000/100 ml, respectively. These coliform densities
-74-

-------
indicated a significant fecal waste source upstream from the
control station. The source of wastes is unknown.
Station number 15, located 2.6 miles downstream from
the control station, had elevated mean total and fecal
coliform densities of 33C,000 and 140,000/100 ml (Table
VII). Stone Container, immediately downstream from the
control station, discharged industrial wastes with mean
total and fecal coliform densities of 270,000 and 26,000/100
ml, respectively. Effluents from Threemile Creek sewage
treatment plant (mean total and fecal coliform densities of
110,000 and 7,400/100 ml, respectively) and Prichard Grover
Street sewage treatment plants (total and fecal coliform
densities of 3,000 and <550/100 ml, respectively) discharge
into the creek between station numbers 15 and 16.
Sampling station number 15, located immediately down-
stream from the Grover Street sewage treatment plant had
mean total and fecal coliform densities of 8,400 and
1,400/100 ml. A significant decrease in coliform densities
is apparent between station numbers 15 and 16. However,
mean total and fecal coliform densities were higher at low
tide at station numbers 16 and 17 suggesting that the high
coliform densities measured at station number 15 were caused
by the high tide pushing the wastes from the sewage
treatment plants (particularly Threemile Creek STP)
upstream.
-75-

-------
Threemile Creek contributed mean total and fecal
coliform densities of 3,600 and 340/100 ml, respectively, to
the Mobile River as measured near the mouth (station number
17) .
Salmonella isolation was attempted on Threemile Creek.
Listed below are the stations where Salmonella isolation was
attempted, the fecal coliform densities measured at these
stations and the serotypes isolated.
Logarithmic Mean Salmonella enteriditis
Station	Fecal Coliform/100 ml	Serotypes Isolated	
14	40,000	None
16	1,400	Infantis, Newport
17	340	Infantis
No Salmonella serotypes were isolated at station number
14 which had a mean fecal coliform density of 40,000/100 ml;
however, fecal coliform densities of this magnitude indicate
significant fecal pollution and the presence of enteric
pathogenic bacteria should be assumed.
Mobile River
Chlorides
The Mobile River chloride profile, Figure 9, shows that
the river was vertically stratified during the study. A
saltwater wedge was observed at high tide as far upstream as
the Twelvemile Island sampling station (number 2 at RM 7.0) .
Chloride concentrations at the freshwater control station
-76-

-------
<0 
FIGURE 9
MOBILE RIVER - CHLORIDE PROFILE
JUNE 24-27. 1973
 S
17,000
16,000
15,000
13,000
- \
12,000
z
o
<

<
8,000
7,000
5,000
3,000
\

\
\
\
\ <
\
NOTE
ALL DATA SHOWN IS FOR THE
CENTER CHANNEL SAMPLING LOCATION
2,000
1,000

\
\

6-.
UJ	L_i
T--U-
23456789
MOBILE RIVER MILES
5	4	3	2
WATER QUALITY SAMPLING STATIONS
10	I \ 12
-77

-------
(number 1) averaged 7.5 mg/1 during the study. Average
surface concentrations increased gradually downstream to
values of 1,790 mg/1 and 1,210 mg/1 for high and low tide
conditions, respectively, at sampling station number 8
located in Mobile Bay. Average mid-depth concentrations
remained low (less than 100 mg/1) downstream as far as
station number 3 located between Chickasaw Creek and Spanish
River. At the Cochran Bridge (sampling station number 4),
average mid-depth concentrations were 7,740 mg/1 and 1,240
mg/1 at high and low tide, respectively. Mid-depth
concentrations increased rapidly from this point downstream
to Mobile Bay where they were 13,300 mg/1 and 10,650 mg/1,
at high and low tide, respectively. Average bottom chloride
concentrations were as high as 2,060 mg/1 at station number
2 at high tide. These concentrations increased to
approximately 15,000 mg/1 at station number 4 at both high
and low tide. Bottom chloride concentrations were
relatively stable in the 15,000-16,000 mg/1 range from
station number 4 downstream to station number 8 at both high
and low tide. It should be noted that the area of highest
bottom chloride concentrations were in the main ship channel
which is maintained at a depth of 40 feet.
Temperature
Surface water temperatures decreased slightly from an
average of 28.4C at the freshwater control station to
-78-

-------
27.9C at the head of Mobile Bay. The heated discharges
from Chickasaw Creek did not influence the center channel
surface water temperatures plotted on Figure 10. An exami-
nation of surface temperatures from quarter point sampling
locations (downstream from Chickasaw Creek) similarly indi-
cated no effect from Chickasaw Creek (Appendix F). The
decrease in mid-depth and bottom water temperatures from
those found at the freshwater control station was greater
than that for surface temperatures. The largest decreases
were noted below the Cochran Bridge in the deeper waters of
the Mobile Ship Channel. These water temperatures would
have been within limits specified by the Alabama water
quality criteria for the fish and wildlife use classifica-
tion.
The pH values increased downstream from the freshwater
control station as salinity increased, reflecting the
influence of higher pH Mobile Bay waters (Table VIII). Only
a few pH values less than 6.0 were detected, and these did
not occur where waste discharges were present. There would
have been no pH violations of Alabama water quality criteria
for the fish and wildlife use classification.
Turbidity
Average turbidity concentrations decreased from
-79-

-------
o
2
FIGURE 10
MOBILE RIVER TEMPERATURE PROFILE
JUNE 24-27, 1973

b-
SURFACE
MIDDLE
BOTTOM
O	HIGH TIDE
6	LOW TIDE
NOTE
All Data Shown is for the Center
Channel Sompling
8 7
4	5	6	7	8
MOBILE RIVER MILES
4	3	2
WATER QUALITY SAMPLING STATIONS
14
-80-

-------
Station
1
2
3
4
5
6
7
8
Lab
Tide	pH
High	7.3
Low	6.8
High	7.0
Low	6.8
High	7.2
Low	7.0
High	7.5
Low	7.3
High	7.7
Low	7.4
High	7.8
Low	7.6
High	7.8
Low	7.7
High	7.8
Low	7.8
bod5	TOC
(mg/1)	(ms/l)
1.2	4.25
0.7	3.50
0.7	3.50
0.7	3.25
0.5	3.75
0.6	3.25
1.1	3.50
0.7	4.50
0.8	3.00
0.7	2.25
1.1	2.75
0.4	2.00
1.8	2.50
0.6	2.00
1.1	2.00
0.6	2.50
1/ Logarithmic mean
TABLE VIII
WATER QUALITY SUMMARY
MOBILE RIVER
1/
Nitrogenous	Compounds	Total
Turbidity 	(mg/1)		Phos P	Coll form Bacterif	
JTU	TKN	NH_2	N07-N0^	(mg/1)	Tot/lOOml Fecal/100ml
38	0.27	0.04	0.34	0.30	240	<61
41	0.36	0.05	0.33	0.08	480	<46
26	0.33	0.05	0.32	0.08	950	160
35	0.24	0.02	0.32	0.06	500	<43
23	0.32	0.14	0.27	0.14	250	<30
26	0.28	0.06	0.31	0.09	1800	<20
19	0.31	0.14	0.20	0.05	> 3300	130
22	0.28	0.15	0.22	0.08	1600	65
16	0.28	0.17	0.16	0.04	670	74
17	0.36	0.14	0.21	0.05	1200	<37
24	0.29	0.16	0.14	0.09	390	71
15	0.28	0.16	0.17	0.06	2600	73
20	0.32	0.14	0.14	0.08	2400	110
14	0.31	0.15	0.16	0.03	4800	88
21	0.38	0.15	0.12	0.09	540	71
18	0.33	0.16	0.14	0.24	1200	80

-------
control station values of 38 and 41 JTU at high and low
tide, respectively, to values of 21 and 18, respectively, at
the head of Mobile Bay (station number 8). Neither
Chickasaw Creek nor Threemile Creek discharges had any
noticeable affect on average turbidity concentrations.
However, a dark plume extending from the mouth of Chickasaw
Creek for several hundred feet out into the Mobile River,
was observed at low tide. This plume hugged the western
shore of the Mobile River and was observable for several
hundred feet downstream from Cochran Bridge.
Biochemical Oxygen Demand and Dissolved Oxygen
Because of laboratory equipment failure, only one BOD5
analysis per sampling station at each tidal condition was
available for interpretation. The BOD5 concentrations
(Table VIII) ranged from 0.4 mg/1 to 0.7 mg/1 at low tide.
Average high tide BOD5 concentrations were generally higher
at each station, ranging from 0.7 to 1.8 mg/1. The highest
BOD5 concentration was 1.8 mg/1 (high tide concentration)
which was detected at a station (number 7) located near the
mouth of Mobile River. While there was a slight increase in
BOD5 just downstream from Chickasaw Creek (station number
4), the data were too limited to make any general
assumptions.
-82-

-------
The low BOD,. concentrations measured in the Mobile
River undoubtedly resulted from the high Mobile River flows
during the study. The manner in which the samples were
composited may also have resulted in lower BOD5
concentrations reported. Since samples were composited
throughout the vertical (and horizontal at quarter point
sampling locations) cross sections, effects of freshwater
waste discharges may have been masked. The effects of these
discharges would have been exerted in the less saline
surface layers of the stratified Mobile River system.
The average surface dissolved oxygen concentrations
(Figure 11) remained relatively constant at approximately
6.5 mg/1 at high tide and 6.0 mg/1 at low tide from the
freshwater control station as far downstream as the Cochran
Bridge (station number 4) . Surface DO concentrations at the
Cochran Bridge western quarter point (20 percent) were
significantly lower than those detected at mid-channel (50
percent) or eastern quarter point sampling locations
(Appendix F). This condition was true for both high and low
tidal conditions. Lower DO concentrations were detected
within the plume from Chickasaw Creek previously noted.
Downstream from Cochran Bridge, surface DO concentrations
decreased to between 5.0 and approximately 6.0 mg/1 with
higher average concentrations occurring at high tide. This
decrease in DO concentration reflects the discharge from
Chickasaw Creek and Mobile River waste discharges.
-83-

-------
FIGURE I I
MOBILE RIVER DISSOLVED OXYGEN PROFILE
JUNE 24-27. 1973
SURFACE
MIDDLE
BOTTOM
HIGH TIDE
LOW TIDE
NOTE
All Dato Shown i for th#
Center Chonnel Sampling Location
3	4	5	6	7
MOBILE RIVER MILES
4	3	2
WATER QUALITY SAMPLING STATIONS
10	II
13	14

-------
Average mid-depth DO concentrations had a variation
similar to surface samples downstream from the freshwater
control station to station number 3, located midway between
Chickasaw Creek and the Mobile River. At the Cochran Bridge
sampling locations, high tide DO concentrations dropped off
abruptly to an average value of 1.8 mg/1 and increased
gradually downstream to approximately 3.0 mg/1 near the
mouth of the river. Low tide mid-depth DO concentrations
also declined but did not exhibit a "sag." The low tide mid-
depth DO concentrations declined from an average value of
5.5 mg/1 at Cochran Bridge, to 3.0 mg/1 at the head of
Mobile Bay. Bottom DO concentrations started declining at
Twlevemile Island at high tide; this was the most upstream
location of the salt wedge detected during the study.
Average bottom DO concentrations dropped to 1.5 mg/1 at
high tide and 0.3 mg/1 at low tide at Cochran Bridge and
increased to 2.3 and 1.8, respectively, for the same tidal
conditions at the head of Mobile Bay. The abrupt drop in
bottom DO concentrations at Cochran Bridge occurred at the
beginning of the deep Mobile Ship Channel (40 feet deep)
which extends into Mobile Bay.
The decrease in DO concentrations for surface samples
detected downstream from Cochran Bridge were probably
related to waste discharges. While some of the decline in
DO of mid-depth and bottom samples downstream of the Cochran
Bridge was due to waste discharges, the primary causes were
-85-

-------
probably due to higher chloride concentrations, lack of
reaeration due to chloride stratification and the presence
of oxygen demanding sediment deposits.
The Alabama water quality criteria specify a DO
concentration of 5.0 mg/1 for fish and wildlife use
classification. As shown by Figure 11, only surface samples
would have met these criteria throughout the study reach.
Nitrogen and Phosphorus
Average total Kjeldahl nitrogen varied only slightly in
the study reach ranging from 0.24 mg/1 at Twelvemile Island
(station number 2) at low tide to 0.38 mg/1 at the upper end
of Mobile Bay at high tide (Table VIII). At the background
station, located at the L6N Railroad bridge, average ammonia
concentrations were 0.04 mg/1 and 0.05 mg/1 at high and low
tide, respectively. These concentrations increased
significantly downstream from Chickasaw Creek where high and
low tide average ammonia concentrations in the stream reach
from Cochran Bridge to Mobile Bay ranged from 0.14 to 0.17
mg/1. Average nitrite-nitrate nitrogen concentrations
decreased gradually downstream from values of 0.34 mg/1 and
0.33 mg/1 at the LSN Railroad bridge, at high and low tide,
respectively, to 0.12 and 0.14 mg/1 for the same tidal
conditions at the upper end of Mobile Bay.
-86-

-------
Average total phosphorus concentrations ranged from
0.03 mg/1 at low tide near the mouth of the Mobile River to
0.30 mg/1 at high tide at the control station.
Microbiology
High tide and low tide coliform data were analyzed
separately in an effort to determine the effect of bacterial
densities contributed by tributaries on the bacterial water
quality of the Mobile River. These data are summarized in
Table VIII. However, high and low tide mean coliform
densities were not significantly different.
Background mean total and fecal coliform densities of
320 and <54/100 ml, respectively, at the control station
indicated insignificant fecal contamination. Downstream,
some 8.6 miles (station number 3), the mean total coliform
density increased to 490/100 ml while the mean fecal
coliform density decreased to <26/100 ml. Mean total and
fecal coliform densities increased to >2400 and 95/100 ml,
respectively, at the Cochran Bridge station as a result of
the coliform contribution from Chickasaw Creek which flows
into the Mobile River 0.3 mile upstream from Cochran Bridge.
Threemile Creek contributed mean total and fecal
coliform densities of 3,600 and 340/100 ml, respectively.
These densities had little effect on the bacterial quality
of the river as seen at station number 5, which is located
downstream from the confluence of Threemile Creek. Slightly
-87-

-------
decreased total and fecal coliform densities of 860 and
<55/100 ml, respectively were recorded at this station.
Downstream from station number 5, unidentified waste
sources, possibly raw sanitary waste discharges from the
Alabama State Docks, increased the mean total and fecal
coliform densities to 3,200 and 97/100 ml, respectively, as
measured at station number 7, located near the mouth of the
Mobile River.
The mean total coliform densities at the station
located in the upper portion of Mobile Bay decreased to
7 60/100 ml. The mean fecal coliform density at this station
remained at approximately the same level as densities near
the mouth of the river.
Total and fecal coliform densities measured in the same
reach of the Mobile River during a 1969 survey by the U. S.
Department of the Interior were significantly higher than
those measured during this survey. (6)
Salmonella isolation was attempted at seven Mobile
River sampling stations. A list of all stations where
Salmonella isolations were attempted, the fecal coliform
densities measured at this stations, and the serotypes
isolated follows:
Logarithmic Mean Fecal
Station 	Coliform/100 ml
Salmonella enteriditis
	Serotypes Isolated	
01
<54
Inverness
02
<91
Sampler not recovered
-88-

-------
03
<28
Tallahassee
04
95
Inverness
05
<55
Inverness, Pensacola
06
72
Inverness, Give, Anatum
07
97
Inverness
It should be noted that one Salmonella serotype,
Inverness, was quite prevalent during the study period. The
source or sources of this particular serotype was not known.
Salmonella was isolated at one station (number 3) where the
mean fecal coliform density was <28/100 ml, which indicates
that the presence of low fecal coliform densities alone do
not completely eliminate the possibilities of enteric
pathogens.
All Mobile River fecal coliform samples collected
during this study were within limits specified by the
Alabama water quality criteria for the fish and wildlife use
classification.
-89-

-------
ASSIMILATIVE CAPACITY STUDIES
General
A waste assimilative capacity study was made of the
Mobile River, Chickasaw Creek and Threemile Creek using the
"Receiving Waters Section" of the EPA "Storm Water
Management Model."(7) This mathematical model simulates the
physical and biological phenomenon related to the dissolved
oxygen balance in estuaries. A comprehensive description of
this model will not be attempted in the report; however, a
complete discussion of the model and instructions for its
use are given in the referenced EPA report.
Model Structure and Assumptions
The basic model structure used for these studies is
shown in schematic form on Figure 12. The limits of the
model were the Mobile River between Mobile Bay and the L & N
Railroad Bridge (RM 13.3) ; Chickasaw Creek from the Mobile
River to the Shelton Beach Highway (RM 7.1), and Threemile
Creek from the Mobile River to the GM&O Railroad bridge (RM
6.4). The 32 model data points (nodes) used to input data
and retrieve results are also shown on the schematic
diagram.
The model hydraulics were constructed using channel
cross-sections derived from field study results, U. S. Army
Corps of Engineers data, and estimates from U. S. Geological
-90-

-------
FIGURE 12
MATHEMATICAL MODEL NETWORK
MOBILE RIVER,CHICKASAW CREEK 8 THREEMILE CREEK
Mobllo Rlr Oltenorflt (4,000 eft,7010)
32
Scot! Popor Co. Main Oitehorgo (104.6 eft)
international Paper Co. Cooling Wafer Oitehorgo (93.4 cf)
Tentow Cutoff (470 cft,7QiO)
inttrnotlonai Popor Co. Cooling Woter Withdrawal (93 4 eft)
Alabama Power Co. Cooling Water Oitehorgo (330 eft)
International Poptr Co Main Oitehorgo (46 6 eft)
Union Corbldo Co.	(I.6left)
Oiamond Shomroeft Co.	(I 79 eft)
Alabama Power Co. Cooling Wattr Withdrawal ( 330 eft)
joyou Conot ( I eft, 7010)
30
Ch><
incremental Runoff ( 2.0 cft, 7010 )
Outflow - G3 Bolonco ( 0 eft out)
29
ElgMmlle Crook STP (t St eft)
Incromontol Runoff ( 29.0 eft, 7010)
27
28
29
Gulf port Crtotoflng Co (.02 eft)
Caglo Chtmleal Co (Oeft)
Orovtr St. 9TP (6.34 eft)
Incromontol Runoff (I 98 eft)
Threemlle Crook STP
47
incremental Runoff (3-90 eft)
Alcoa
26 eft)
Incromontol Runoff (6.66 eft)
Chevron Atphalt Co (0 446 eft)
Mobil* Rotin Oil Co. (Oeft)
Stono Contolnor Co (.26 eft)
incromontol Runoff (9 6cft)
Propoted Alobamo State Docht STP (Q.46 eft)
6>
75
0 0
KEY
7010- 7 Ooy 10 Yr Low Plow
tAtobomo Wood Treating Co, ( 0 19 eft)
NOTE
McOwffit Itlond STP ( 24 75 eft )
or Wlthdrovel from Indleotod
- 2 25
-91-

-------
Survey quadrangles. Stream flows were obtained from U. S.
Geological Survey gaging station records and estimates. The
stream flow data were discussed previously in the area and
water quality sections of this report. The stream flows for
the 7-day, 10-year low flow condition and wastewater flows
actually used for final model runs are shown on Figure 12.
Coefficients of the Manning open channel equation of 0.02
were assumed in the lower reaches of all three streams; a
value of 0.03 was used in the upper reaches. A tidal range
of slightly over two feet was input into the model at the
mouth of the Mobile River.
Model Limitations
Ordinarily, the first step taken after an estuarine
model has been constructed is to verify the model against
chloride profiles from field studies. In this case, it was
impossible, since the Mobile River and lower reach of
Chickasaw Creek were vertically stratified due to the higher
river flows during the study. The receiving waters model
assumes vertically and horizontally well-mixed conditions
and is not valid for stratified estuaries.
It was assumed that Chickasaw Creek would be well mixed
at low flows because of its relatively shallow depths and
large volumes of cooling waters recirculated in the lower
reaches. In all probability, the Mobile River would be
stratified even at low flows. Therefore, the model was used
-92-

-------
to estimate the waste assimilative capacities of Chickasaw
and Threemile Creeks but was not used to estimate the
assimilative capacities of the Mobile River.
Stream Parameter and Waste Load Assumptions
A uniform water temperature of 30C (based on field
study results) was assumed throughout the study reach. A
deoxygenation rate (K2) of 0.10 per day at 20 C (0.16 per
day at 30C) and a DO saturation of 7.4 mg/1 (corresponding
to a chloride concentration of 4,000 mg/1) were assumed for
the entire reach. Reaeration rates (K ) were calculated for
each model reach between nodes and were based on model
hydraulics using the O'Conner and Dobbins theory.
In general, industrial waste loads input into the model
were interim guideline values supplied by the EPA, Region
IV, Enforcement Division. Where guideline values were not
available, BOD5 waste loads reported on the National
Pollutant Discharge Elimination System (NPDES) permit
applications were reduced by 85 percent and input into the
model. Waste flows in all cases were obtained from the
NPDES permit applications. All waste loads were converted
to ultimate oxygen demand using appropriate deoxygenation
rate coefficients for BOD^ and by using an ammonia to
ultimate oxygen demand coefficient of 4.0 (8,9).
Municipal waste loadings were obtained by using design
flows and best practical treatment guidelines. (10) Best
-93-

-------
practical treatment for municipal wastes is defined as
follows:
Ultimate Oxygen Demand = 1.5 (BOD5) *4.5 (TKN) -
Effluent Dissolved Oxygen = 50 mg/1
The municipal waste loads were also obtained using secondary
treatment guidelines (BOE^ = 30 mg/1) and ammonia loads
discharged during the field study. (11)
Table IX contains the municipal and industrial waste
loadings input into the model and the various assumtions
used to convert to the ultimate demand loadings.
Model Results
Chickasaw Creek
During model runs, the guideline waste loads from the
Scott and International Paper Company facilities were varied
while the Union Carbide plant, Chickasaw Creek lagoons and
Eightmile Creek STP waste loads were held constant.
Effluent DO concentrations for municipal and industrial
dischargers of 2 and 4 mg/1 were used in separate model
runs. The DO of cooling water discharges was assumed to be
at the DO concentration of the intake cooling water. The
results of these model runs are shown on Figure 13 and 14.
Also shown on these figures are the effects of using best
practical and secondary treatment at the two municipal
treatment plants.
-94-

-------
TABLE IX
MODEL ASSUMPTIONS
MUNICIPAL AND INDUSTRIAL WASTE LOADS
Waste Loading^/
Flowi/ ' (lbs/day)			Ultimate Oxygen Demand
Source
(mgd)
BOD.;
Ammonia
Conversion Factors
Lbs/Day
Chickasaw Steam Plant
213
0
0

0
Union Carbide Co.
1.04
0
100
3/
Ammonia x 4 = UND
400
Diamond Shamrock Co.
1.14
0
0

0
International Paper Co.
31.4
16740
0
K1=0.10(20C)
30130
International Paper Co.
(Cooling)
60.4
0
0

0
Scott Paper Co.
67.6
12920
0
K1=0.10(20C)
23250
Stone Container Co.
0.17
50
0
K1-0.10(20C)
90
Mobile Rosin Oil
0
0
0

0
Gulfport Creosotlng Co.
0.01
76
0
K1-0.23(20C)
91
Alcoa
0.83
11
0
K1=0.23(20C)
14
Proposed AL State
Docks STP
0.30
77

K1=0.23(20C)
92
Chevron Asphalt Co.
0.29
23
4.8
Kl0.23(20C), Ammonia x 4 =
UND 47
AL Wood Treating Co.
0.12
72
0
K1=0.23(20C)
86
Ideal Cement Co.
1.02
2
3
K-^=0.23(20C) , Ammonia x 4 =
UND 15
Eightmile Cr STP
1.50
375
191
BPT-Effluent D0=2 mg/1
BPT-Effluent D0=4 mg/1
Sec Trt, K]=0.23(20C),
Ammonia x 4 = UND
600
575
1214
Chickasaw Lagoons
1.50
375
31
BPT-Effluent D0=2 mg/1
BPT-Effluent DO-4 mg/1
Sec Trt, K1=0.23(20C),
Ammonia x 4 = UND
600
575
574
Threemile Ck STP
10.0


BPT-Effluent D0=2 mg/1
BPT-Effluent D0-4 mg/1
4000
3840
Grover Street STP
4.1

~
BPT-Effluent D0=2 mg/1
BPT-Effluent D0=4 mg/1
1640
1570
McDuffie Isle STP
16.0
4000
1330
Sec Trt, K1=0.23(20C),
Ammonia x 4 = UND
10140
1/ Flow from respective NPDES Permit or STP design flow.
2/ Waste load based on NPDES interim guidelines or assumed at 85 percent (secondary treatment)
of load reported on NPDES Permit. Municipal loads based on best practical treatment (BPT)
guidelines or secondary treatment guidelines and design flow.
3^/ Ultimate nitrogen demand.
4/ For the purposes of this study ultimate oxygen demand is defined as the ultimate
carbonaceous BOD plus 4.0 times the ammonia concentration.
95-

-------
As shown by Figure 14, it would require the elimination
of the Scott Paper and International Paper Company facility
discharges before the minimum average daily 5.0 mg/1 DO
specified for the fish and wildlife classification could be
met. This condition would also be dependent on both the
Chickasaw lagoons and Eightmile Creek STP converting to best
practical treatment; the Union Carbide Plant discharging a
proposed 100 lbs/day of ammonia, and all waste discharges
maintaining a minimum effluent DO of 4 mg/1.
Figure 15 presents the data shown in Figures 13 and 14
in a more useful fashion. The amount of ultimate oxygen
demand that can be discharged for a given minimum average DO
concentration in Chickasaw Creek is shown. It should be
noted that a discontinuity in the curves shown in Figure 15
occur when the Scott Paper and International Paper Company
facility discharges are completely removed from the system.
This discontinuity is principally caused by the hydraulic
effects of removing these two discharges.
Threemile Creek
The results of Threemile Creek model runs are shown on
Figure 16. Best practical treatment was assumed for the
Mobile Threemile Creek and Grover Street STPs; permit
conditions were assumed for the Stone Container Company, and
interim guideline conditions were assumed for the Gulfport
Creosoting Company. Effluent DO concentrations were assumed
-96-

-------
FIGURE 13
MATHEMATICAL MODEL DISSOLVED OXYGEN PROFILES
CHICKASAW AND EIGHTMILE CREEKS
(WASTEWATER EFFLUENT CONTAINS 2mg/l D.O )
	 Best Proctical Treotment for Municipol Wastes
	Secondary Treatment for Municipal Wastes
G L - Sum of Scott and International Paper Compony
interim Guideline BODe Wostewoter Discharges
Eightmile Creek
Chickasaw Creek -
 III
71
24
23
4.5	3 8
RIVER MILES
22 21
MODEL NODE
2 8 2 3
20 19
I 3
18
66 .4 0
17 16 IS

-------
FIGURE 14
MATHEMATICAL MODEL DISSOLVED OXYGEN PROFILES
CHICKASAW AND EIGHTMILE CREEKS
(WASTEWATER EFFLUENT CONTAINS 4 mg/l D.O.)
a


Gi_
KEY
 Best Procticol Treatment for Municipal Wostes
	 Secondory Treotment for Muntcipol Wostes
G L. - Sum of Scott ond International Paper Compony
Interim Guideline BOD5 Wastewater Discharges
-Eightmile Creek		Chickasaw Creeh
7 1	5.4	4.5	3 8	2 8 2 3	I 3 66 .4 0
RIVER MILES
24	23	22	21	20 19	18 17 16 15
MODEL NODE

-------
r
FIGURE 15
WASTE ASSIMILATIVE CAPACITY PROFILE
CHICKASAW CREEK
No Scott or international Paper Co Discharges
and other Discharges with Effluent D 0. - 2 and 4 mg/l
18
-4 mg/l
-2 mg/l
ULTIMATE WASTE LOADS (lbs/day)
EFFLUENT D.O =
4 mg/l
EFFLUENT do.
2 mg/1
Chickasaw Lagoons
Eightmile Creek STP
Union Carbide Co.
Diamond Shamrock
Scott and International
Paper Companies
575
575
400
0
Fixed Percentage of
Interim Guideline Load
600
600
400
0
Effluent D.O. = 4 mg/l
NOTE- Projected Minimum Daily Dissolved Oxygen
Concentration is for the Sag Point'
Effluent
D.O. = 2 mg / I
12 14 16 18 20 22 24 26 28
ULTIMATE OXYGEN DEMAND, lbs/day (XIOOO)

-------
at 2 and 4 mg/1. As shown by Figure 16, even with best
practical treatment at both of the municipal STPs and
effluent DO concentrations of 4 mg/1 for all waste
discharges, the highest minimum average DO obtainable in
Threemile Creek was approximately 2.6 mg/1.
Discussion
Results of the waste assimilation studies on Chickasaw
and Threemile Creeks demonstrate that technology is not yet
available to reduce the loads to a level which would meet
the minimum DO concentration (5 mg/1) specified for the fish
and wildlife use classification. There is no appreciable
difference in DO concentrations in Chickasaw Creek when load
reductions derived from the application of secondary
treatment and best practical treatment guidelines are
applied to the discharges from the Eightmile Creek sewage
treatment plant and Chickasaw lagoons. Applying the best
available treatment technology to the loads discharged from
the Scott Paper and International Paper Company facilities
would only allow the daily average DO in Chickasaw Creek to
rise to approximately 2 mg/1. There is insufficient flow in
Threemile Creek to assimilate the waste from current sources
if they operate at design capacity.
It appears that the only feasible effluent disposal
alternative for wastewater from the Scott Paper and
International Paper Company facilities would be to discharge
-100-

-------
FIGURE 16
MATHEMATICAL MODEL DISSOLVED OXYGEN PROFILES
THREEMILE CREEK
z
o
z
o
u
z
UJ
o
<
a
< 2
cc
UJ
Efflu*M 00=2 mq/|
Effluent DO = 4 mq/l
2
3
s
? I
2
RIVER MILES
NODE NUMBER
.4 o
10 9

-------
into the Mobile River. Sources discharging into Threemile
Creek could either be routed to the McDuffie Island sewage
treatment plant and/or conveyed to the Mobile River. The
feasibility of these alternatives have not been
investigated. Unfortunately, a mathematical model which
would predict the effect of these waste discharges on the
Mobile River and Mobile Bay is not currently available.
However, the U. S. Army Corps of Engineers has a physical
model located at Vicksburg, Mississippi, which might be
useful in assessing the effects of these discharges. The
use of the model for this purpose should be actively pursued
by the U. S. Environmental Protection Agency and Alabama
Water Improvement Commission.
-102-

-------
REFERENCES
1.	United States Coastal Pilot, Gulf of Mexico, Puerto
Rico, and Virgin Islands, Sixth Edition, 1967. U. S.
Department of Commerce, National Oceanic and
Atmospheric Administration, National Ocean Survey.
2.	Personal Communication  data transmitted by letter
dated January 15, 1974, from Joe R. Harkins, Asst.
District Chief, Operations Section, U. S. Geological
Survey, University, Alabama, to M. D. Lair, EPA,
Surveillance and Analysis Division, Athens, Georgia.
3.	Personel Communication -- data transmitted by letter
dated August 23, 1973, from Allen W. Kerr, Chief,
Hydrology and Hydraulics Branch, U. S. Army Corps of
Engineers, Mobile District, Mobile, Alabama, to Howard
A. True, Surveillance and Analysis Division, EPA,
Athens, Georgia.
4.	Water Resources Data for Alabama. Part 1, Surface Water
Recor ds. United States Department of Interior,
Geological Survey, 1971.
5.	"Report on Gulf Coast Deep Water Port Facilities,
Texas, Louisiana, Mississippi, Alabama and Florida",
Appendix B, Environmental Guide for the U. S. Gulf
Coast. U. S. Army Corps of Engineers.
6.	"Pollution Affecting Shellfish Harvesting in Mobile
Bay, Alabama", Federal Water Pollution Control
Administration, U. S. Department of Interior, Southeast
Water Laboratory, Athens, Georgia, January 1970.
7.	"Storm Water Management Model", Volume 1, Final Report,
U. S. Environmental Protection Agency.
8.	Wezernak, C. T., and Gannon, J. J., "Oxygen-Nitrogen
Relationships in Autotrophic Nitrification", Applied
Microbiology. Vol. 15, No. 5, September 1967.
9.	"The Jackson Metro/Regional Water Quality Management
Plan", Pearl River Basin Development District, Jackson,
Mississippi, July 1973.
10.	"Information on Alternative Waste Management Techniques
and Systems to Achieve Best Practicable Waste
Treatment", EPA Internal Draft, October 3, 1973.
-103-

-------
11. "Secondary Treatment Fact Sheet", EPA Internal Draft,
Communication Services Division, OPA, August 30, 1973.
-104-

-------
APPENDICES

-------
APPENDIX A
PROJECT PERSONNEL ROSTER

-------
APPENDIX A
PROJECT PERSONNEL ROSTER
M. D. Lair, Project Engineer
R. L. Barrow, Sanitary Engineer
Microbiology Laboratory
B. J. Carroll, Chief, Microbiological Services
R. Gentry, Microbiologist:
H. Barden, Microbiologist;
M. McCreery, Microbiological Aid
Chemistry Laboratory
R. P. Lawless, Project Chemist
T. Sack, Physical Science Aid
Field Sampling Personnel
Ray Wilkerson, Hydraulic Engineering Technician
E. Shollenberger, Engineering Technician
H. Vick, Chemist
M. Cronic, Physical Science Aid
Data Handling
J. Burger - Engineering Aid

-------
APPENDIX B
BACTERIOLOGICAL ANALYTICAL METHODS

-------
APPENDIX B
BACTERIOLOGICAL ANALYTICAL METHODS
TOTAL COLIFORM ENUMERATION
The standard coliform procedure outlined in Standard Methods (1)
for the five-tube MPN multiple-tube dilution was used. The procedure
employs lauryl tryptose broth incubated at 35 - 0.5C for 24 and
48-3 hours followed by confirmation using brilliant green lactose
bile broth incubated at 35 - 0.5C for 24 and 48-3 hours.
FECAL COLIFORM ENUMERATION
The fecal coliform procedure outlined in Standard Methods (1)
for the five-tube MPN multiple-tube dilution was used. The procedure
employs the standard presumptive test using lauryl tryptose broth
followed by fecal coliform confirmation using EC medium at an elevated
temperature (44.5 - 0.2C water bath) for 24-2 hours.
SALMONELLA ISOLATION AND IDENTIFICATION: The inoculated enrich-
ment was incubated from 24 to 48 hours at 41.5C according to the
procedure of Spino (2). After either primary or sub-culture enrichment,
an inoculum for each enrichment was streaked onto Xylose Lysine
Desoxycholate Agar (XLD) and Hektoen Enteric Agar (HE) plates and
incubated at 36 - 0.5C for 18-24 hours. Suspected Salmonella
colonies were picked from the respective plates and subjected to the
identification scheme outlined in Table B-l.
The methods and media outlined in Table b-1 are described by
Ewing (3), with the exception of the Cytochrome Oxidase Method.
B-l

-------
Oxidase activity was determined using Patho-Tec-CQlV reagent impregnated
strips.
Definitive serological identification of Salmonella isolates was
made at the Southeast Environmental Research Laboratory, Athens, Georgia.
The methodology used was the Standard Serological procedure described
by Edwards and Ewing (4).
REFERENCES
1.	American Public Health Association, Standard Methods for the
Examination of Water and Wastewater, 13th Edition, 1971.
2.	Spino, D. F., "Elevated-Temperature Technique for the Isolation
of Salmonella from Streams." Appl. Microbiol., L4, No. 4, 1966.
3.	Edwards, P. R., and Ewing, W. H., Identification of Enterobacteriaceae,
Burgess Publication Company, Minneapolis, Minn., 1952.
4.	Ewing, W. H., "Enterobacteriaceae, Biochemical Methods for Group
Differentiation." Public Health Service Publication No. 734,
Revised 1962.
1/ Does not imply endorsement of the product.
B-2

-------
TABLE B-I
IDENTIFICATION SCHEME FOR SALMONELLA SUSPECTS
Suspect colony
I
Lysine Iron Agar (LIA)
Alkaline slont and alkaline or
Urease Production
Acid sloni and butt, Alkoline
slant and acid butt-DISCARD
Positive
DISCARD
Positive
DISCARD
Negative
I
Cytochrome Oxidase
Negative
I
Lactose,Sodium Malonate, Indole
Positive
DISCARD
Negative
Lysine decarbonylOM, Citrate, Motility, H2S
Positive
Negotive
DISCARD
Poly OjAntisero
Positive
Complete Serological Identification
I
Confirmation of identification by National
Center For Disease Control
Negative
DISCARD
B-3

-------
APPENDIX C
CHEMICAL ANALYTICAL METHODS

-------
APPENDIX C
CHEMICAL ANALYTICAL METHODS
PARAMETER	METHOD	REFERENCE
Acidity	NaOH Titration	1
Alkalinity	H2SO4 Titration	1
Ammonia Nitrogen	Automated Phenolate	2
BOD	Winkler - BOD Probe	1
COD	Potassium dichromate digestion	1
Cyanide	Manual distillation	4
Automated pyridine pyrazolane
DO	Winkler - BOD Probe	1
Hardness	EDTA Titration	1
Metals	Total Nitric (AA)	5
Metals, Trace	SS/MS
Nitrate Nitrogen	Automated (Cadmium Reduction)	2
Kjeldahl Nitrogen,	Automated (Digestion-Phenolate)	2
Total
Oil and Grease	Freon extraction	1
Phenol	Manual distillation	2
Automated 4AAP
Phosphorous	Automated (Single Reagent)	2
pH	Electrometric	1
Organics	GC/MS	3
Solids	Suspended (Glass Fiber 105C)	1
Volatile Suspended (550C)	1
Total (Gravimetric 105C)	1
Volatile Total (550C)	1
TOC	Instrumental	2
C-l

-------
REFERENCE
1/
Standard Methods for the Examination of Water and Wastewater,
13th Edition, 1971.
2/
Methods for Chemical Analysis of Water and Wastes, FWPCA, 1971.
1/
Region IV, Chemical Services Branch Method WO-11/72.
4/
American Society for Testing Materials, 1972, Part 23.
5/
Federal Register, Volume 38, No. 199.
C-2

-------