AN EVALUATION OF PHYSICAL, CHEMICAL AND BIOLOGICAL
ASPECTS OF CANALS AND ASSOCIATED WATERWAYS AT
MARCO ISLAND, FLORIDA
AUGUST 1975
ENVIRONMENTAL PROTECTION AGENCY
Surveillance and Analysis Division
Athens, Georgia
-------
TABLE OF CONTENTS
Page
List of Tables ii
List of Figures iv
Introduction 1
Summary 3
Study Area 5
Discussion 10
Methodology and Results 15
Water Quality 15
Dye Studies 32
Sediment Characteristics . 49
Mass Exchange 57
Biology 58
References 73
Project Personnel 75
APPENDICES
Appendix A - Sediment Characteristics for Natural and
Developed Areas 76
Appendix B - Biological Data Tables 84
Appendix C - Water Quality Data Sheets Ill
Appendix D - OSTD Profiles 132
-------
LIST OF TABLES
Page
Table 1 - Salinity Concentrations for tidal creeks and
developed canals, Marco Island, FL 17
Table 2 - Water temperatures, estreme and means, Tidal
Creeks and developed canals, Marco
Island, FL 18
Table 3 - Vertical extremes for dissolved oxygen con-
centrations (mg/H) at canals and tidal creeks,
Marco Island, FL 23
Table 4 - Average nutrient concentrations (mg/£) for
canals and tidal creek stations, Marco
Island, FL 25
Table 5 - Mean TOC concentrations in canals, canals
H through M 29
Table 6 - Bacteriological results (fecal and total
coliform) for canals and tidal creeks,
Marco Island, FL 31
Table 7 - Dispersion coefficients for selected water
courses, Marco Island and vicinity, FL . . . . 48
Table 8 - Metal content of sediment (mg/kg) in canals
and tidal creeks,Marco Island, FL 51
Table 9 - Particle size of sediments in canals and
tidal creeks, Marco Island, FL 52
Table 10- Tidal exchange study, average concentration
of tidal phase, canals and tidal creeks ... 60
Table 11- Net mass exchange for 24-hour tidal cycle,
finger-fill canals 61
-ii-
-------
LIST OF TABLES
(Continued)
Page
Table B-l - Macroinvertebrate species collected by
quantitative sampling at canals and natural
systems, Marco Island, Florida 85
Table B-2 - Macroinvertebrate species collected by
qualitative sampling at canals and natural
systems, Marco Island, Florida 99
Table B-3 - Marco Island meroplankton 102
Table B-4 - Marco Island meroplankton; ebb and flood
tide sampling 104
Table B-5 - Checklist of Marco Island ichthyoplankton
species 107
Table B-6 - Larvae and juveniles of fishes collected in
canals and tidal creeks at Marco Island,
Florida 109
-iii-
-------
LIST OF FIGURES
Page
Figure 1 - Station locations, Canals H, I, J, K, L, M,
N, and Bar field Bay 6
Figure 2 - Station locations, John Stevens Creek 7
Figure 3 - Station locations, unnamed tidal creek T 8
Figure 4 - Cross section, Canal L, Station 4 9
Figure 5 - Fluctuations of species total, dissolved oxygen,
percent volatile solids from the side to the
center trough, canal Stations L-3 and L-4 12
Figure 6 - Vertical ranges over a diel period for dissolved
oxygen concentration, canals K and J, Marco
Island, FL 21
Figure 7 - Vertical ranges over a diel period for dissolved
oxygen concentrations in John Stevens Qreek (P),
Marco Island, FL 22
Figure 8 - Mean TOC concentrations in Marco R., Stations
H-l through M-l 28
Figure 9 - Tidal stage, Canals H and J and Tidal Creek T . . . 33
Figure 10 - Dye studies, Canal H, Marco Island, FL 34
Figure 11 - Dye studies, Canal H, Marco Island, FL 37
Figure 12 - Dye studies, Canal L, Marco Island, FL 38
Figure 13 - Dye studies, Canal L, llarco Island, FL 39
Figure 14 - Dye studies, Canal K, Marco Island, FL 40
Figure 15 - Dye studies, Canal K, Marco Island, FL 40
Figure 16 - Dye studies, Canal J, Marco Island, FL 42
Figure 17 - Dye studies, Canal J, Marco Island, FL 43
-iv-
-------
LIST OF FIGURES
(Continued)
Page
Figure 18 - Salinity and dye isopleths, Canal J,
Marco Island, FL 45
Figure 19 - Dye studies, Canal P, Marco Island, FL 46
Figure 20 - Dye studies, Canal T, Marco Island, FL 47
Figure 21 - Chlorophyll a_, Canals H and I 67
Figure 22 - Chlorophyll a., Canals J, K, and L 68
Figure 23 - Chlorophyll a_, Canal M 69
Figure 24 - Chlorophyll a_, Canal N 70
Figure 25 - Chlorophyll a^, John Stevens Creek 71
Figure 26 - Chlorophyll _a, Tidal Creek T 72
-v-
-------
INTRODUCTION
The primary impetus for this study was the application by Deltona
Corporation for dredge and fill permits to convert 2,039 acres of man-
grove swamp in the Marco Island area to a finger-fill-canal waterfront
development. The adverse environmental consequences of such actions
are two-fold. Initially, an estuarine asset of proven value—the
vegetated wetland—is destroyed. It is, furthermore, replaced by a
housing development and associated artificial waterways which have
often proved to be a substantial ecological liability (U.S. EPA, 1975;
Taylor and Salomon, 1968; Sykes and Hall, 1970), taking important pro-
ductivity components from the aquatic system and consuming organics
produced in adjacent aquatic systems.
Such activities have already threatened estuarine environments in
portions of coastal Florida as well as other areas through poor environ-
mental planning and design brought about by a general disregard for, or
knowledge of, essential environmental amenities. Coastal estuaries
are of economic importance to the Gulf fisheries, serving as nursery
grounds for shellfish and fish. Wetland vegetation is extremely
important to these animals, providing habitat and a place to hide from
prey species. This vegetation also serves as a filter for runoff from
upland areas and also provides detrital material to the estuarine system.
The mangroves themselves are an omnipotent source of nutrients and
detritus for the estuarine environment. Litter fall is acted on by
microbial organisms, reducing the leaf litter to smaller detrital
particles which are utilized by the detritivores. These detrital
-------
consumers provide food for organisms at the higher trophic levels.
Removal of large stands of mangroves, therefore, can result in a
catastrophic effect on the estuarine system. However, the adverse
consequences of wetland development, such as contemplated in the sub-
ject permits, does not end with wetland elimination. Poorly constructed
canals (excessive depths and length) result in a system that is poorly
flushed and generally low in dissolved oxygen but with elevated levels
of potentially toxic ammonia and hydrogen sulfide, all resulting in
poor aquatic habitat and violation of water quality standards.
Such a development and associated canal system already exist in
the Marco Island area contiguous to the new area proposed for water-
front development. Examination of the water chemistry, sediment
characteristics, circulation patterns, and biological features of this
development, along with that of unaltered natural waterways, would
provide a useful barometer in predicting the water quality consequences
of the proposed permits. Accordingly, the following study was designed
to examine the above parameters.
-2-
-------
SUMMARY
Studies at Marco Island resulted in several findings of detri-
mental attributes of canal systems:
1. Poor circulation, a result of excessive depth in the dead
e/fjtfffSseW
end systems, led to dissolved oxygen dep±e1ri©n and, in some
cases, to water quality standard violations.
2. Ammonia nitrogen (NH3) concentrations were elevated, indicating
anaerobic conditions.
3. Canals, in general, were importing carbon.
k. The center troughs of canal systems act as a trap for silt
and organic detritus. The accumulation of this material,
attributed to lack of flushing, affected the bottom-dwelling
biota and water quality.
5. Macroinvertebrates exhibited a longitudinal decline in numbers
and species progressing from the mouth to the landward end of
the canal.
6. Elevated levels of total coliform bacteria exceeded shellfish
growing standards in three of the developed canals.
In the contrast to the canals, tidal creeks have several advantageous
aspects:
1. Good circulation and flushing resulted in adequate dissolved
oxygen assets. No measurements of actual dissolved oxygen
depletion occurred in the tidal creeks.
2. Ammonia nitrogen (NH3) concentrations were not elevated in
the tidal creeks.
-3-
-------
3. Although the tidal creeks in this study were open-end systems
which precluded quantification of mass exchange, previous
extensive studies on Fahkahatchee Bay (Carter, et al., 1973)
have shown that these type natural systems export carbon.
4. The mid-channel of the tidal creeks was able to assimilate
any accumulation of silt and organic detritus but generally
accumulation was minimal. Flushing not only restricted this
buildup but prevented dissolved oxygen depletion.
5. The tidal creeks had a greater number of species and individuals
than the developed canal systems. There was no pronounced
decline in numbers and species longitudinally in the creeks.
6. Low counts of total coliform bacteria were found in natural
systems P and T.
-4-
-------
STUDY AREA
Marco Island, Florida, is located approximately 30 miles south
of Naples, Florida, proximate to Everglades National Park. Marco
Island lies in extreme southwest Florida in an area that has been ex-
tensively developed for waterfront homesites. A number of finger-fill
canals with waterfront homes are already in existence, while certain
areas are still planned for development.
Developed canals studies were designated by the letters H, J, K,
L, M, and N are are shown on the location map (Figure 1). Natural
systems studies were John Stevens Creek (P) (Figure 2), an unnamed
tidal creek (T) (Figure 3), and a natural bay, Barfield Bay, (BB)
(Figure 1).
-5-
-------
y
, $,<>
V ' OfM
\ ' of ^
J v,^
FIGURE 1
STATION LOCATIONS, CANALS H, I, J, K, L, M, N, AND BARFIELD BAY
-6-
-------
FIGURE 2
STATION LOCATIONS
JOHN STEVENS CREEK
-7-
-------
FIGURE 3
STATION LOCATIONS
UNNAMED TIDAL CREEK (T)
-------
FIGURE 4
CROSS SECTION OF CANAL STATION L-4
-9-
-------
DISCUSSION
As W. E. Odum (1970) points out in his classic study, mangroves
provide a principal source of food affecting the whole food chain.
This food is chiefly organic carbon in the form of detritus from man-
grove litter. Bacteria and fungi decompose this fallen leaf litter
into finer particles with corresponding increases in nutritional value
(proteins). The next link in the food chain are omnivorous detritus
consumers that receive nutrition primarily from the microorganisms
inhabiting the decaying leaves. Odum (1970) suggests the omnivorous
detrital consumers to be the link between detritus production and pro-
duction of higher consumers. The tidal creeks studied were typical
heterotrophic systems with detrital-based food chains similar to the
above. Canals.were also existing as heterotrophic systems (Carpenter
and Van de Kreeke, 1975) but loss of allochthonous input (mangroves)
and lack of the grazer component in the food web severely limited
productivity.
Pratt (1953) suggested that soft sediments and increased organic
content are chief factors limiting macroinvertebrate populations. Pre-
vious studies on developed canal systems (Taylor and Salomon, 1968;
Sykes and Hall, 1970) have shown that the finer bottom sediments support
a less diverse fauna than natural areas. Such is the case in canal
systems at Marco Island. Consumers were limited to deposit-feeders,
with grazers (omnivorous detrital consumers) present only at the first
one or two stations near the seaward end of the canal. Craig and Jones
(1966) found that deposit-feeders prefer a mud and fine sand which is
-10-
-------
exemplified by the canals. Obviously, poor sediment and water quality
limit the distribution of the grazers throughout the canal systems.
Due to poor flushing and lack of the grazers, organic carbon in the
form of detritus builds up in the canals and the increase of micro-
organisms acting upon the buildup of organic carbon leads to elevated
levels of organic and ammonia nitrogen. Evidence of food-chain break-
down and associated organic carbon accumulation is not as great at the
side slopes, which can be seen by examination of the macroinvertebrate
data. On the side slopes organic matter was much lower than in the
center troughs (Figure 5). This can be attributed to utilization by
the grazer component; and also, deposition of finer sediments was
not as great at the side slopes. Although the side slopes occupied
only approximately 30 percent of the total available habitat, as opposed
to 70 percent provided by the center trough (Figure 4), the greatest
numbers and species occurred on the sides (Figure 5).
The grazers, according to Odum (1970), are the link between
detritus production and production of higher consumers. Without a
viable community of grazers productivity severely declines. The tidal
creeks were not restricted to dominance by one consumer type, as were .
the canals. The grazers, which were scarce in the canals, were
abundant at both tidal creeks and included Melita dentata, Corophium,
and Leptognathia.
Mass exchange data indicated that the canals were importing car-
bon. As a result of this mass import, organic carbon in the form of
detrital particles is trapped in the sediments of the center troughs
-11-
-------
3
center
4
side
4
center
Canal Stations L-3 & L-4
FIGURE 5 - Fluctuations of
species total, dissolved
oxygen, % volatile solids
from the side to the center
trough.
-------
of the canals, exhibiting a longitudinal increase landward. As one
progresses landward to the dead end of the canals, the oxygen assets
become depleted due to the increased metabolic activity of the microbes,
lack of mixing, and oxygen demands by existing bottom fauna. Minimal
oxygen input from phytoplankton occurred since levels were low and
below the average phytoplankton concentration of 17 mg/m3 in Gulf in-
shore waters (Steidinger, 1973).
Dye study data from the developed canals reveal minimal flushing.
A lack of flushing contributes to organic carbon accumulation and re-
sultant dissolved oxygen depletion.
The dissolved oxygen data from the tidal creeks indicated good
vertical mixing throughout the water column. Organic carbon in many
of the tidal-creek stations was high, but due to an adequate dissolved
oxygen supply and a diverse invertebrate community the carbonaceous
material was being utilized. Data from tidal creek P provides a good
example of dissolved oxygen as a factor in macroinvertebrate distri-
bution. Substrate at tidal creek P was similar to the canals with a
high organic content, in some cases exceeding organic content found
in the center troughs of the canals. This creek supported a rich,
diverse fauna probably attributed to the good vertical mixing of
dissolved oxygen.
Extensive studies at Fahkahatchee Bay (Carter, et al., 1973)
revealed that tidal rivers export carbon. The tidal creeks at Marco
Island were open-end systems which made a quantitative mass exchange
study impossible. However, the tidal creeks are mangrove-lined
-13-
-------
systems providing a large source for carbon production as opposed to
the canals which had no appreciable allochthonous source of carbon.
Dye study data revealed rapid flushing times at the tidal creeks.
Although some detrital buildup occurred in tidal creek P, flushing
assured some exchange of material and contributed to mixing.
-14-
-------
METHODOLOGY AND RESULTS
WATER QUALITY
Previous EPA studies have revealed a number of interrelated water
quality adversities associated with finger-fill canals of various de-
sign. With the awareness that much of the Marco Island canal system
exhibited many of the design deficiencies precipitous to suppression
of water quality values, a program was designed and initiated that
would obtain the data necessary for interrelating all major parameters
affecting environmental quality and aquatic habitat value within the
canals and natural tidal creeks. Violations of assigned water quality
standards would also be detected by the sampling program. Acquisition
of such information is essential in evaluating proposals for develop-
ment of future but similar canal systems.
Methods
Data from each canal or natural tidal creek was collected over a
full 25-hour tidal cycle, with water chemistry samples taken at each
slack tide along with vertical oxygen, salinity, temperature, and
depth (OSTD) profiles. Additional OSTD samples were taken at mid-flood
and mid-ebb tides. Parameters were measured at 1-foot increments from
surface to bottom (Appendix D). Dissolved oxygen concentrations were
obtained with a DO meter standardized with Winkler calibrations before
and after each run. Salinity and temperature measurements were made
with a salinometer/temperature probe.
Generally, all water chemistry samples were obtained with a Van
Dorn sampler from mid-channel at mid-depth, except when the water
-15-
-------
column was stratified. A stratified water column dictated that samples
be pulled from each respective stratum. Bacteriological samples were
obtained from the surface (1-foot depth) and 1 foot above bottom.
Surface samples were hand-dipped, while bottom samples involved the
use of a JZ depth sampler.
All samples for chemical analyses received appropriate preserva-
tion at the time of collection and were returned to EPA's laboratory
in Athens, Georgia, where they were processed analytically using EPA-
approved methods. Analysis included the following constituents: total
organic carbon, nitrogen (TKN, NH3, N02-N03), and total phosphorus.
Results
Salinity and Temperature - Salinity concentrations in the canal
systems and tidal creeks were nearly equivalent during the study period,
ranging from near 33 to 38 ppt (Table 1).
Vertical salinity gradients were gradual, with a slight increase
in concentration from surface to bottom (Appendix D). Station M-6 was
an exception, however, as it exhibited a range from 33.2 to 38.1 ppt,
with a marked increase at the 11- to 12-foot depth, resulting in sig-
nificant density stratification (Table 1).
Overall, temperatures of the canals were similar and exhibited an
approximate 2° decline from surface to bottom. Mean temperatures
were generally in the 30 to 31° range, with Barfield Bay and portions
of Tidal Creek T being 2 to 3° warmer. Inasmuch as these areas are
considerably shallower, such variations can be expected due to solar
influence. No marked thermal stratification was evident at any of
the stations (Table 2).
-16-
-------
:ati
H-l
2
3
4
5
1-1
2
3
4
J-l
2
3
4
K-l
2
3
L-l
2
3
4
M-l
2
3
4
5
6
N-l
L
2
3
4
5
6
7
8
9
Table 1
5ALINITY concentrations for tidal creeks and canals,
MARCO ISLAND, FLORIDA
Canals
Max.
Min.
Mean
37.1
35.0
36.3
36.5
35.1
35.9
36.5
34.8
35.9
36.4
34.8
36.0
36.6
34.4
36.0
38.1
36.2
36.5
37.6
35.4
36.7
37.1
35.5
36.2
37.1
35.6
36.2
37.0
35.7
36.4
36.6
35.7
36.1
36.7
35.3
36.1
36.8
35.4
36.0
36.8
35.1
36.2
36.7
35.0
36.1
36.6
34.7
35.9
36.9
35.0
35.9
36.3
34.7
35.7
36.4
34.7
35.7
36.4
34.5
35.6
36.8
35.1
35.9
36.5
34.6
35.7
35.8
34.0
35.2
35.5
33.3
34.9
35.2
33.5
34.6
38.1
33.2
34.6
36.0
35.1
35.6
36.4
35.0
35.9
35.9
34.6
35.2
36.3
34.6
35.5
35.9
34.5
35.2
35.7
34.0
35.2
35.6
33.5
34.7
35.4
33.6
34.7
35.2
32.7
34.3
35.0
34.5
34.8
Stations
Canals
Max.
Min.
Mean
39.8*
35.4
36.0
36.1
35.1
35.9
36.3
34.9
35.9
36.5
35.5
36.1
36.8
36.1
36.4
36.9
35.3
36.1
36.4
34.3
35.6
36.2
34.2
35.3
36.0
34.1
34.9
35.9
33.9
34.6
35.3
33.4
34.6
P-l
1A
2
3
4
5
T-l
2
3
4
5
*This was only an instantaneous
isolated reading and was not
indicative of stratification.
Possibly instrument interference.
-17-
-------
Table 2
WATER TEMPERATURES, EXTREMES AND MEANS
TIDAL CREEKS AND CANALS
MARCO ISLAND, FLORIDA
Canals
Canals
Stations
Max.
Min.
Mean
Stations
Max.
Min.
Mean
H-l
31.2
30.2
30.6
P-l
32.3
30.2
31.2
2
32.4
30.2
30.6
1A
31.7
29.8
30.8
3
32.3
30.1
30.7
2
31.7
29.7
30.9
4
32.4
30.1
30.6
3
31.7
29.3
30.8
5
32.8
30.1
30.8
4
32.0
28.5
30.5
5
31.3
28.5
30.3
H
1
M
31.0
30.0
30.5
6
31.8
29.5
30.6
2
30.9
30.4
30.7
3
31.6
29.9
30.6
T-l
33,2
30.3
32.1
4
31.4
29.8
30.5
2
33.2
30.1
31.9
3
33.3
30.5
32.0
J-l
31.4
30.1
30.8
4
33.4
30.4
31.6
2
31.4
30.2
30.7
5
34.0
30.1
31.6
3
31.4
29.9
30.6
4
31.8
29.8
30.5
BB-2
-
-
35.0
3
34.0
31.0
32.5
K-l
32.1
30.2
30.6
4
32.5
30.5
31.5
2
32.2
30.2
30.6
5
32.5
30.5
31.5
3
31.1
30.1
30.6
L-l
32.0
30.4
31.0
2
32.0
30.5
31.1
3
32.0
30.0
30.9
4
32.0
29.9
30.7
M-l
32.3
29.8
31.1
2
32.0
30.0
31.0
3
33.0
30.5
31.2
4
32.5
30.5
31.2
5
32.8
30.5
31.2
6
33.0
29.0
30.9
N-l
31.1
29.2
30.3
1A
31.0
29.2
30.1
2
31.4
29.9
30.6
3
31.5
30.0
30.6
4
31.5
29.9
30.4
5
31.8
30.1
30.9
6
32.4
30.2
31.0
7
32.0
30.4
31.0
8
32.2
30.2
31.1
9
32.5
31.1
31.8
-18-
-------
Dissolved Oxygen - DO profiles (Appendix C) revealed a marked
contrast between the DO regimes of the canal systems and the tidal
creeks and Marco River stations. With few exceptions, both artificial
and natural systems exhibited diel DO variations due to photoperiodic
changes in plant photosynthesis and respiration. Minimum DO concentra-
tions occurred at mid (0600) to late (0900) morning, with maximum con-
centrations experienced in late afternoon. At those stations exhibiting
DO stratification, the thickness of the lower stratum increased during
early to mid morning. DO concentration in this stratum was consistent-
ly below Florida water quality standards.
Exclusive of Barfield Bay, which is not geometrically analagous
to the creeks and canals, the systems studied can be divided into
three categories:
© Canals experiencing a broad range of diel and vertical DO
concentrations with acute DO suppression and depletion
(Canals H, K, L, M, and N).
• Canals with a narrow diel and vertical DO range, with only
slight DO suppression nocturnally (Canals I and J).
e Natural tidal creeks with nocturnal DO suppression, without
depletion, but a relatively narrow DO range both dielly and
vertically.
Excepting Canals I and J, the most notable contrast between the
artificial waterways and tidal creeks was the average vertical DO
ranges as well as vertical and longitudinal extremes.
-19-
-------
The average vertical DO concentration ranges over a diel period
for tidal creeks was very narrow, as illustrated by only a 1.3 mg/X,
maximum separation for Tidal Creek P. Such ranges for the various
canals surveyed were more divergent, with those of Canals I and J
being narrower and without violation of standards; while Canals H,
K, L, and M were considerably broader, with minimums far below
standards (Figures 6 and 7).
Vertical extremes at interior stations in the canal systems were
substantially more divergent than tidal-creek extremes, as illustrated
by maximum surface readings in Canals L and M approaching 10 mg/Z with
minimum bottom concentrations of 0 mg/H. This vertical DO stratifica-
tion became most pronounced with progression toward the head of Canals
H, L, M, and N and throughout Canal K. Surface-to-bottom concentrations
in the natural areas usually varied less than 1 mg/£, thus excluding
stratification (Table 3).
The primary effector of the DO variations between the artificial
and natural systems appears to be inhibited mixing due to excessive
depth and longitudinal distance from canal mouth. Inhibited mixing,
likewise, results in salinity stratification which contributes even
further to restricted vertical movement of water. Hydrographic and
dye tracer studies, presented elsewhere in this report, for the natural
and artificial systems illustrate and support this view. Dye injected
into the surface water of Canal H and 1 foot from the bottom of Canal
K remained in these strata without vertical diffusion; and movement
toward downstream stations was extremely sluggish, taking as much as
-20-
-------
FIGURE 6
VERTICAL RANGES OVER A DIEL PERIOD OF DISSOLVED OXYGEN
CONCENTRATION AT CANALS J AND K,
Marco Island, Florida
-------
6,
5.
Maximum (Surface)
- 4J
o>
e
— Minimum (Bottom)
03.
Q
~ \
' \
o
o
o
o
o
CO
o
o
o
o
o
o
~1—
o
o
o
o
KJ
o
o
Ul
o
o
00
o
o
NO
o
o
y
t«
Canal K
-21-
-------
John Stevens Creek
(Tidal Creek P)
FIGURE 7
VERTICAL RANGES OVER A DIEL PERIOD FOR DISSOLVED OXYGEN
CONCENTRATION IN TIDAL CREEK P,
Marco Island, Florida
-22-
-------
ti<
-1
72
3
4
5
-1
2
r-3
i J
4
-1
2
4
-T
2
3
-1
2
y 3
4
-1
2
r?
i J
4
5
6
-1
L
2
3
4
5
6
> 7
8
9
Table 3
:AL EXTREMES FOR DISSOLVED OXYGEN CONCENTRATIONS IN MG/l
CANAL AND TIDAL CREEK STATIONS,
MARCO ISLAND, FLORIDA
Canals
Creek
Station
Creeks
(surface)
Mill, (bottom)
Max (surface)
Min (bottom)
7.0
3.8
qP-1
7.6
3.9
8.0
3.8
10 1A
6.6
2.7
7.8
0.2
2
6.2
2.4
6.9
0
6 3
5.5
2.3
7.0
0
/ 4
5.2
2.3
i© 5
5.7
2.1
6.0
4.4
6
7.1
3.6
6.2
4.3
6.8
4.0
§ T-l
7.4
3.4
7.2
2.4
fe 2
6.6
3.6
5 3
6.2
3.4
6.8
4.3
4
6.3
3.3
6.7
4.2
J 5
7.0
3.0
6.7
4.0
6.2
3.7
7.5
2.8
7.5
0
6.1
0
*Within
each canal, larger numbers
are further toward interior of
7.7
4.5
the system.
9.9
4.6
9.0
0
8.6
0.2
9.6
4.2
7.7
4.0
9.0
4.3
9.8
3.6
9.8
3.2
9.0
0
6.4
4.4
6.2
4.3
6.1
4.0
5.8
2.8
6.4
2.4
5.6
2.9
8.6
3.2
6.3
2.9
6.6
0.4
5.7
1.0
— L. J —
-------
22 hours to move only 400 feet in Canal K. Canal J, while maintain-
ing a suprastandard DO regime, also exhibited a two-stage flushing
action, with the upper stratum flushing rapidly (within 25 hours)
but mixing and flushing of the bottom waters remaining inhibited.
While the above canals exhibited obvious hydrographic deficiencies,
dye injected into Tidal Creeks P and T was expelled in 25 hours or
faster. A more detailed discussion of the above phenomena is found
in the Dye Studies section of this report.
The above lends insight to explain the differences between the
DO regimes of the tidal creeks and canal systems. Phytoplankton and
benthic respiration, along with the bacterial metabolization of car-
bonaceous material all exert an oxygen demand the effect of which
becomes most pronounced nocturnally in both the natural and artificial
systems. The natural system efficiently copes with the demand through
optimization of physical reaeration capabilities (exchange and verti-
cal mixing) while such hydrographic functions are depressed in the
canal systems. Not only does depression reduce physical aeration by
stratifying the water column, but also increases the oxygen demand
of the system by retention of nutrients contributory to higher phyto-
plankton populations, and retention of carbon which supports a
strongly oxygen-demanding benthic microbe community. This oxygen
requirements unfortunately, cannot be sustained in the absence of
physical reaeration; and the system inevitably breaks down due to
oxygen depletion.
Nitrogen and Phosphorus - Throughout the study area, nitrite-nitrate
(NO2-NO3) concentrations remained constant at 0.01 mg/j£ for every
station in both natural and artificial waterways (Table 4).
-24-
-------
ion
1*
2
3
4
5
1*
2
3
4
1*
2
3
4
1
2
3
1*
2
3
4
1*
2
3
4
5
6
1
1A
2
3
4
5
6
7
8
9
Table 4
AVERAGE NUTRIENT CONC. IN MG/Jl FOR
CANAL AND TIDAL CREEK STATIONS
MARCO ISLAND, FLORIDA
Avft.
Canals
Nutrient Concentrations
Canal/
NH3
no2-no3
Total
.026
.01
.088
.032
.01
.092
.05
.01
.107
.108
.01
.15
.084
.01
.168
.024
.01
.08
.017
.01
.082
.022
.01
.087
.03
.01
.085
.023
.01
.08
.023
.01
.077
.02
.01
.08
.03
.01
.082
.03
.01
.09
.06
.01
.11
.043
.01
.145
.02
.01
.092
.012
.01
.092
.026
.01
.10
.038
.01
.102
.012
.01
.085
.02
.01
.086
.012
.01
.09
.03
.01
.096
.032
.01
.01
.319
.01
.229
.017
.01
.10
.01
.01
.095
.017
.01
.09
.031
.01
.094
.02
.01
.08
.02
.01
.085
.016
.01
.085
.03
.01
.088
.048
.01
.09
.025
.01
.085
Creeks
tation
TKN
nh3
NO 2-NO3
Total
P-l
.35
.04
.01
.082
1A
.34
.025
.01
.09
2
.37
.03
.01
.107
3
.42
.033
.01
.097
4
.42
.027
.01
.11
5
.40
.032
.01
.115
6*
.35
.03
.01
.09
T-l
.38
.025
.01
.077
2
.31
.03
.01
.075
3
.34
.022
.01
.07
4
.27
.037
.01
.072
5
.32
.015
.01
.072
BB-2
.40
.03
.01
.08
3
.33
.03
.01
.10
4
.20
.01
.01
.08
5
.30
.01
.01
.08
^Background (ambient) stations location
in the Marco River
-25-
-------
Mean TKN values for Marco River stations and tidal creek systems,
tfith the exception of the intermost segment of John Stevens Creek (P-3,
P-4, and P-5), ranged between 0.25 and 0.35 mg/&. With progression
from the mouth to the head of the canals, TKN values increased with
the higher concentrations detected at those stations experiencing
the most severe DO perturbations. Station M-6, a distinctly strati-
fied (chemically and physically) station experienced a three-fold
increase above background in TKN values (0.25 versus 0.91 mg/fl,). In-
creases at other stations were not nearly so enormous, although
Station H-5 TKN values did increase about lh times average background
concentrations (0.30 versus 0.53 mg/£) (Table 4).
As TKN values increased, ammonia (NH3) values, likewise, showed
a corresponding increase with progression toward canal headwaters.
ks can be expected, greatest NK3 concentrations were detected at
Station M-6 (0.319 mg/5.) and Stations H-4 and H-5 (0.108 and 0.084
mg/& respectively), all consistent with previously expressed DO con-
centrations at these sites typifying symptoms associated with benthic
anaerobic metabolism. As previously discussed, these stations were
devoid of oxygen in the lower stratum throughout the day.
Ambient Marco River (background) NH3 values were in the 0.01 to
0.03 range. Unlike the NH3 increase at many of the dead-end canal
stations, Marco River stations with slight DO suppression and tidal
creeks maintained NH 3 concentrations within or very near this range
(Table 4) .
-26-
-------
Total phosphorus values normally ranged from 0.074 mg/& to
0.09 mg/& in background or non-stressed canal stations. In those
stations experiencing water quality perturbations, phosphorus mimicked
ammonia, showing a correspondent increase with the severity of the
perturbation. Consequently, Stations M-6 (0.229 mg/£) and H-4 and
H-5 (0.15 and 0.168 mg/£) manifested the highest total P concentra-
tions (Table 4).
Total Organic Carbon - As the study area is situated amongst
thousands of acres of wetlands composed principally of intertidal
mangrove forest, the principal constituent of suspended organic car-
bon in the study area is plant detritus. Much of the material origi-
nating in mangrove areas remote from the canal system is transported
into the study area via the Marco River. Analysis of TOC concentra-
tions in the Marco River (Stations M-l, L-l, J-l, 1-1, and H-l)
reveal a gradient in this parameter with an increase in river water
TOC concentrations with progression upstream from Station H-l to
Station M-l (Figure 8).
Within each individual canal (H-M), gradients in TOC concentra-
tions are also established with an increase in concentrations from the
mouth to the head of the canal (Table 5). The suspended carbonaceous
material is transported into the canal where settlement is enhanced
due to poor flushing increasing the retention time. Elevated TOC
concentrations at the deadend stations in the canals are likewise
accompanied by elevated organic nitrogen levels. These levels are
a natural consequence of active bacterial colonization of the finer
-27-
-------
10
H
M
FIGURE 8
MEAN TOTAL ORGANIC CARBON (TOC) CONCENTRATIONS IN
MARCO RIVER, STATIONS H-l THROUGH M-l
-28-
-------
Table 5
MEM TOC CONCENTRATIONS IN CANALS H THROUGH M
MARCO ISLAND, FLORIDA
Canal
Station
H
I
J
K
L
M
2
5.7
4.2*
5.6*
5.8
6.3*
6.4*
3
6.5
5.5
5.2
5.5
6.0
6.6
4
7.2
5.2
6.1
5.9
6.6
6.9
5
7.6
7.2
6
8.6
•k
Stations
located at
or just beyond mouth of canal
and not
considered true canal stations.
-29-
-------
detrital particles. This colonization leads to an increase in organic
nitrogen as animal protein. Such a sequence as it relates to detrital
decomposition and associated DO depletion resulting from microbial
metabolism has been previously established by Odum and de la Cruz
(1967).
Fecal and total coliform bacteria - Bacteriological parameters
were investigated in conjunction with the general water quality data
acquisition program. Analysis of bacteriological samples were limited
to fecal and total coliform counts. Table 6 presents a summary of
the coliform results.
From Table 6 it is apparent that the natural areas (systems P
and T) remain free of fecal indicators and contain low counts of
total coliforms. In contrast 3 of the investigated artificial water-
ways had total coliform counts exceeding shellfish growing standards.
System M, a system which employs septic tanks and also receives run-
off from the wastewater spray irrigation area, had maximum fecal and
total coliform counts of 220 and 900/100 mJi, respectively. These
counts do not represent a bacterial safe environment.
-30-
-------
Table 6
BACTERIOLOGICAL RESULTS (FECAL AND TOTAL COLIFORM) FOR CANALS AND TIDAL CREEKS
MARCO ISLAND, FLORIDA
Fecal Coliform
Total Coliform
System
No. of
Samples
Max
Min
Log
Mean
No. of
Samples
Max
Min
Log
Mean
No. of Samples
Exceeding 70/100 m£
- H
4
16
6
<10
4
104
36
68
2
I
1
<10
<10
<10
1
16
16
16
0
J
5
10
5
<10
5
24
4
<10
0
i
CO
i
K
5
20
4
<10
5
32
<4
<10
0
L
11
10
}2
<10
11
68
<4
10
0
<«»
>
-------
DYE STUDIES
Hydrographic and dye-tracer studies were used to investigate the
circulation and flushing characteristics of several existing canals
as well as natural tidal creeks in the areas proposed for development.
Investigations were aimed at answering the following questions
pertinent to existing natural and artificial waterways.
1. Do the systems vertically mix?
a. Upper layer to lower layer.
b. Lower layer to upper layer.
2. Do the systems (artificial waterways) mimic the salinity
fluctuations in the contiguous ambient waters?
3. What are the water residence times in the systems?
4. What are the flowpatterns in the systems?
?.»•>%
Systems H, J, K, L, P,*and T were subjected to dye-tracer studies
in order to investigate the above-stated objectives. These tracer
studies were accomplished by injecting Rhodamine WT dye and following
the dye cloud configuration with a boat-mounted flow-through micro-
fluorometer. Tide stage recorders were installed at Systems H, J, and
T to record the tidal phase and stage throughout the study area
(Figure 8). In addition, a recording fathometer was used to describe
the bottom elevations in the subject areas.
System H (Rose Fern Canal)
This branching system (Figures 9 and 10) is approximately 4,000
feet long with widths of 100 to 150 feet. Depths at mean stage are
on the order of 9 to 14 feet with irregular patterns. Fifteen
stations (Figure 9) were established to monitor to the spatial and
-32-
-------
0-IW5 0-U-7S
DATE - TIME
Figure 9
Tide Stage, Canal H and J and
Unnamed Tidal Creek (T)
-33-
-------
-34-
-------
vertical distribution of a tracer dye. The dye tracer (750 ml)
was injected at mid-depth to Station 2 during high slack tide
occurring at 1600 hours on August 7, 1975. Subsequent monitoring
was carried out for 140 hours (i.e., until 1200 on August 13, 1975).
The spatial monitoring was accomplished by positioning the
fluorometer intake line at mid-depth (4 to 5 feet) and mid-channel.
The monitoring boat was simply periodically idled past the 15
stations, with readings of dye concentration taken at each station.
Monitoring for vertical mixing was accomplished by periodically
anchoring the boat at Station 2 and at Station 7 and recording dye
concentrations at 1-foot increments from a 1-foot depth to a foot
from the bottom.
Figure 9 presents the dye cloud configuration of the spatial
monitoring. A planimeter was used to measure the area under each
of the periodic curves and with adjustments for photochemical decay
of the dye tracer (assumed to be 0.01/hour, i.e., dye concentration
X e^'^*") the flushing times were plotted on Figure 9. From Figure
9 it is seen that the 50-percent and 90-percent levels were accomplished
in 92 and 285 hours respectively.
Figure 10 describes the tracer vertical mixing at Stations 2
and 7. From these figures it is readily apparent that the tracer
material was predominantly located in the upper 5 feet of the canal
waters. This is particularly evident at Station 7 at elapsed times
of 24.5 and 30 hours. Station 7 is approximately 2,000 feet from
the dye injection point (Station 2).
-35-
-------
The absence of a completely vertically mixed system means that
the observed flushing times were not representative of the system.
System L
System L (Figure 11) is approximately 2,000 feet long with
centerline widths of 100 to 500 feet. Depths at mean stage are on
the order of 7 to 16 feet.
Apparent flushing times for this system (dye injected at Station
1) were 37 and 88 hours for the 50-percent and 90-percent level
respectively (Figure 12). However, the vertical mixing of the tracer
material was extremely poor. Figure 12 of periodic vertical profiles
at Stations 1 and 5 reveals the extreme restrictions experienced
in vertical mixing.
System K
System K'(Figure 13) is approximately 2,500 feet long with
centerline widths of 100 to 150 feet and depths of 13 to 16 feet
at mean stage.
At this canal, the sampling program was varied to evaluate the
vertical mixing and flushing characteristics following an injection:
of tracer material in the lower part of the water column. Thus,
750 m£ of dye was injected at Station 1 at 1 foot from the bottom.
Resulting vertical profiles at Stations 1 and 2 are given on Figures
13 and 14 respectively. From these figures it is seen that the dye
remained in the lower stratum and was not observed at Station 2 for
over 22 hours. Station 2 was located only 400 feet from Station 1.
Even after 43 hours, the maximum dye concentration at Station 1 was
43 ppb; while at Station 2, the maximum dye concentration was 3 ppb.
-36-
-------
'"tortus or trrs concentration ,
cakal *rm ;
HAMCo HUM), FL
AUGUJT J * 75
-37-
-------
DYL SAMPLING STATIONS
CANAL 'L"
MARCO ISLAND
FIGURE 12
DYE STUDIES
CANAL L
MARCO ISLAND, FLA
-38-
-------
m
FIGIJUK 13
DYE STUDIES
CANAL L
MARCO ISLAND, FLA
40.
±-h
rirT^G
"LrJ3z
, I
_ Bottoo ] _
; profiles of dye concentration
CANAL "L" ST A. 5
i MARCO ISLAND, FL
AUGUST 1975
DYE COXRtrt RATIO'. (PPII)
-39-
-------
J
n
K SMTUXG fTATlOn f
CAMALS^jT " _ I
HULOO ISUXD, jTUMUU ^
FIGURES 14
DYE STUDIES
CANAL K
MARCO ISLAND, FLA
& 15
PROFILES OF DfE COVCEKyRATlOU
CANAL K STA 1
KARCO ISLAND
AUGUST 1975
Et - 21.5 Hr.
I
/
\
40 80
Et ¦ 24 Hr.
X.
Et o 43 Hr
40 80
Concentration (ppb)
PROFILES OF DYE CONCENTRATION
CANAL "K" STA 2
MARCO ISLAND
rftfGttST 1975
Et - 22 Hrs,
"To ft
Et - 43. Hrs.
Coriccnira-tton (ppb)
-40-
-------
Canal J (Martinique)
The Martinique canal is one of the shortest in the existing develop-
ment, being 1,600 feet long and 100 feet wide with a centerline depth
of 7 to 8 feet at mean stage. There are no "fingers" branching from
this canal (Figure 15).
Tracer dye (750 m£) was injected at a depth of 3 feet at Station
1 during high slack tide.
Figure 16 depicts the results of the flushing studies on Canal
"J." Apparent in the figures is an extremely rapid removal of tracer
dye in the first 25 hours and then a much more gradual removal rate
after 25 hours. The two-stage flushing characteristics appear to be
a result of incomplete mixing, evidenced by the following discussion
of vertical mixing.
Subsequent vertical profiles are shown in Figure 14 for Stations
2 and 4. Similar to other systems investigated, the dye tracer was
subject to poor mixing conditions. Figure (dye and salinity
isopleth's during high tides) further depicts the mixing conditions
present in this canal system. The salinity and tracer isopleths
form concomitant patterns of incomplete mixing.
The above example graphically relates to the reader a basic short-
coming—i.e., lack of mixing associated with deadend canal systems in
intertidal regions. Simply stated—in the estuarine environment,
natural water courses assume physical dimensions responsive to the
natural hydrographic conditions. In doing so, the ambient tidal
creeks are quite shallow at their heads, which in turn results in good
mixing of overland-aquifer flows with oceanic waters.
-41-
-------
PROFILES OK DYE CONCENTRATION
CAMl 'J' STA 2
HARCO ISLAND
AUGUST 1975
1 Et - 18.5 Hr
20 30
Et - 24 Ur.
10 20 30
FIGURE 16
DYE STUDIES
CANAL J
MARCO ISLAND, FLA
Et - 48 5 Hr.
20 30 0
COviCFNTftATIOS (pph)
DYE SAKTLfV; STATIONS 1
CALAIS J \,
MAHCO ISLAND, FLORIDA I
ps~- C^n.l "j"
u <0 6)
~Tt5 ®7S T)
0 £15
PROFIL£S OF DYE CONCENTRATION
CANAL "J" STA 4
I1ARCQ ISLAND
AUGUST 1975
Et - 18 5 Hr
20 30
10 20 jo
10 20 :io
Et - 48.5 Br
10 20 20
CONCENTRATION (ppb)
-42-
-------
FIGURE 17
DYE STUDIES
CANAL J
MARCO ISLAND, FLA
100
flushing UROPKRTY
CANAL J
'10 eO 80
f.liipsnd Tfmr? fhrn )
-43-
-------
Tidal Creek P
Tidal Creek P (John Stevens Creek) is a narrow, meandering water
course which is open at both ends and has a centerline depth of approxi-
mately 5 feet (Figure 18). Dye injected at high slack tide to Station
8 was diminished to detection limits within 22.5 hours (Figure 18).
The extremely fast flushing time is attributed to its physical
properties--i.e., shallow and open-ended.
Tidal Creek T
This system exists as a typical mangrove swamp/tidal creek com-
plex with numerous side channels and shallow bays (Figure 19). Dye
injected at Station 5 at high slack tide was found to peak at Station
3 in 16 minutes and to peak at Station 1 in 57 minutes. The peak
traveled with a velocity of 0.85 to 1.3 fps in its course from Station
5 to Station 1. Thus, in less than one-sixth of the ebb tide period
(57 minutes/6 hours), the tracer cloud was expelled from the system.
Dispersion
In order to provide the reader with an additional measure of
mixing/flushing characteristics of natural and canal waterways, a
discussion of dispersive values is provided.
Techniques of calculating dispersion coefficients from dye-cloud
configurations as described in "Finger-Fill Canal Studies - Florida
and North Carolina" (May 1975) were employed to produce Table 6. As
shown by this table are the vast differences in dispersive factors
between the man-made canals and natural water courses—i.e., 0.01 to
2 ?
8 feet /second and 100 to 170 feet /second respectively.
-44-
-------
FIGURE 18
SALINITY & DYE ISOPLETHS
CANAL J
MARCO ISLAND, FLA
SALINITY (ppt)
10-
15
id
a
di.;i'a;:cl" from iu:ad i:\m> ( )
-45-
-------
FIGURE 19
DYE STUDIES
CANAL P
MARCO ISLAND, FLA
©
DYE SAMPLING STATIONS
CANAL "P"
UARCO ISLAND, FL
©
©
J9
\
DYE TRACING
CANAL MP"
-------
FIGURE20
DYE STUDIES
CANAL T
MARJCO ISLAND, FT.A
DYE TRACING
STATION T-
NG \
" 1
DYE SA'IPLI N'fi STATin.vs
CANAL ' TM
MARCO ISLAND, FL
0930 0940 0950 1000 1010 1020
TLmti (lira. ) 12 Aug.
1030 1040 1050
DYE TRACING
STATION T-3
NOTE Dye Injection made at
Sto T-5 at 0915 12 Auff.
noon nmo oimo m>*m noio rmr.o men ioio in?o
TIiim- ( l»rs ) \2 Auk.
-47-
-------
Table 7
DISPERSION COEFFICIENTS
SELECTED WATER COURSES
MARCO ISLAND AND VICINITY, FL
AUGUST, 1975
DISPERSION COEFFICIENT
CANAL IN FT /SEC
H 0.01
J 8
L 0.8
P 100
T 170
Readily apparent from the above table is the vast differences
in dispersive factors between the man-made canals and natural water
courses, i.e. (0.01-8 ft^/sec) and 100-170 ft^/sec) , respectively.
-48-
-------
SEDIMENT CHARACTERISTICS
Sediment cores were taken in the first 10 centimeters of bottom
for metal (Cu, Pb, Ni, Zn, Cr, Cd) and particle-size analyses. Cores
for metal analyses were a composite of the sides and center of the canal
or creek. Cores for particle-size analyses were taken separately.
Metals
The highest concentrations for all metals were recorded from
Canal System H, specifically at Station H-l (Table 7). Comparable, but
slightly lower values were obtained from most stations in Tidal Creek
P especially Stations 1 and 4. Canal System L had the next highest
concentrations for chromium, nickel, lead, and zinc. Canal System K
had lowest values for chromium, nickel, lead, and zinc. The unnamed
tidal creek (T) had values intermediate between the other canal systems.
Comparison of data with that from Fahka Union Bay, a "disturbed"
or "man-influenced" environment, and Fahkahatchee Bay, a "relatively
undisturbed estuary," (EPA, 1973) located approximately 15 to 20 miles
east of Marco Island, showed that values at many stations on Marco
Island were near to or exceeded those data from the "disturbed" area.
Sediment Particle Size
Silt is the major constituent in the center troughs (percent
total weight) of the developed canals, with organic matter, fine sand,
and clay of about equal content (Table 8). A summarized discussion
of sediment characteristics in the natural and canal systems is pre-
sented in the appendix. The side slopes of the canals were generally
characterized by a coarser substrate, with medium sand as the major
-49-
-------
component (percent total weight). Organics and silt were much less
at the side slopes than in the center troughs.
The two natural tidal creeks studied, P and T, had different
substrate compositions. Tidal Creek P had a bottom substrate with
silt generally the major component at both the sides and center.
Organic content along the sides was greater than that of the developed
canals (5 to 21 percent). Organic content at mid-channel of the
creek was slightly higher than the sides (4 to 33 percent). The un-
named tidal creek (T) had a coarser substrate at both the sides and
center than did Tidal Creek P. Silt, a dominant component in Tidal
Creek P had a range of only 0.6 to 6.0 percent in the middle and 4.3
to 4.5 percent at the sides of Tidal Creek T. Medium sand was generally
the major component in T, making up 47 to 73 percent of the substratum
at the sides and approximately 75 percent at mid-channel. Organic
content along the sides was similar to John Stevens Creek, ranging
from 3 to 20 percent. The mid-channel of T had an organic content
ranging from 0.9 to 4.0 percent.
Barfield Bay, a shallow undisturbed bay, had primarily silt and
medium sand as major sediment types. Station 5 had a coarser substrate
(medium sand) which can probably be attributed to the station's proximity
to the ocean.
-SO-
-------
Table 8
METAL CONTENT OF SEDIMENTS IN mg/kg
3anal/
C<
3
Cr
Cu
Pb
Ni
Zr
Zreek
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max. '
Min.
Max.
H
0.97
3.30
8.00
54.40
1.50
11.10
6.50
42.60
3.90
34.50
2.00
17.60
J
0.96
0.99
7.90
18.40
0.99
2.70
7.90
9.60
4.00
9.60
3.10
4.90
K
0.97
1.00
7.80
8.00
1.80
6.00
7.80
9.30
3.90
5.90
2.50
4.00
L
0.99
1.40
8.00
29.10
1.80
4.40
8.00
28.20
4.00
13.50
2.50
9.50
M
0.96
1.00
7.70
18.90
0.96
2.80
6.40K
9.90
3.80
6.60
1.40
6.60
N
0.99
1.40
6.90K
13.20
0.99
3.50
6.50
28.50
3.40K
11.50
1.70
5.00
P
0.99
3.00
10.00
53.50
2.10
9.00
7.50
34.90
4.00
25.20
5.70
15.40
T
0.93K
1.90
7.40
8.40
0.93K
3.30
7.40
18.00
3.70
13.10
0.93K
4.30
-51-
-------
Table 9
'ARTICLE SIZE OF SEDIMENTS IN CANALS AND NATURAL SYSTEMS, MARCO ISLAND, FLORIDA
Location
Station
Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium
Gravel
Fine
Gravel
Coarse
Sand
Medium
Sand
Fine
Sand
Silt '
Clay
Totals
anal System H
1
—
1.8
0.6
1.4
0.6
3.4
1.2
5.0
1.0
61.4
8.2
11.0
4.3
84.0
15.9
2L
—
2.3
0.6
1.1
0.7
73.2
1.0
6.0
0.3
7.7
1.6
3.6
' 1.8
93.9
6.0
2M
—
0.4
0.4
0.9
1.3
21.8
2.4
11.9
1.1
39.5
4.7
11.2
4.4
85. 7
14.3
2R
—
1.2
0.3
0.6
0.1
86.6
0.2
4.6
0.1
3.2
0.5
1.7
0.8
97.9
2.0
3S
—
0.9
0.3
1.3
0.9
64.2
1.4
8.7
0.7
11.7
2.0
5.9
1.9
92.7
7.2
3M
—
0.1
0.2
1.2
1.6
5.7
2.6
5.4
1.9
54.9
7.5
14.4
4.5
81 .7
18.3
4S
—
0.5
0.1
1.3
0.3
86.1
0.3
5.8
0.1
1.9
0.5
2.2
0.9
97.8
2.2
4M
—
0.1
0.0
0.6
0.1
85.1
0.3
3.8
0.1
4.8
1.0
2.8
1.2
97.2
2.7
anal System J
1
—
2.0
0.1
2.0
0.1
56.2
0.5
19.7
0.3
14.6
1.6
2.6
0.3
97.1
2.9
2
—
2.6
0.4
1.7
0.8
44.9
0.7
31.6
0.4
11.3
1.3
3.6
0.5
95.7
4.1
anal System K
1M
—
—
—
2.0
0.8
2.7
0.7
66.7
11.2
11.8
4.0
83.2
16.7
IS
0.0
0.1
0.6
0.4
0.7
0.5
84.1
0.5
7.4
0.1
2.6
0.6
1.7
0.7
97. 1
2.9
2M
—
—
—
3.9
0.5
2.5
0.9
61.7
14.6
12.0
3.7
80.1
19.7
2
—
2.4
0.3
1.6
0.3
86.6
0.3
4.7
0.1
1.4
0.4
1.3
0.6
98.0
2.0
3M
—
0.1
0.3
1.0
0.8
64.9
1.5
7.2
0.9
12.7
3.1
6.0
1.5
91.9
8.1
3S
—
3.1
1.4
2.4
0.5
-52-
85.3
0.3
4.5
0.1
0.6
0.3
1.0
0.5
96.9
3. 1
-------
Table 3
Location
Station
Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium
Gravel
1 Fine
Gravel
Coarse
Sand
Medium
Sand
Fine
Sand
Silt
Clay
Totals
Canal System L
1
__
2.9
1.8
43.5
31. 7
12.8
2.7
95.4
0.6
0.4
0.6
0.4
1.5
0.9
4.4
2
0.3
0.6
24.9
29.2
31.5
5.1
91.6
0.1
0.6
1.5
1.1
3.2
1.9
8.4
3M*
3.6
67.4
11.9
82.9
—
—
—
0.9
11.9
' 4.2
17.0
3S
1.0
2.1
2.2
83.7
7.1
1.0
1.2
98.3
0.2
0.2
0.1
0.2
0.1
0.0
0.6
1.4
4M
—
0.3
0.4
30.6
6.5
41.7
9.5
89.0
—
0.0
0.3
0.6
0.6
6.6
2.8
10.9
4S
—
2.0
1.4
81.2
6.8
3. 1
2.1
96.6
—
1.0
0.4
0.4
0.1
0.6
0.8
3.3
Canal System M
1
—
1.5
1.6
50.7
35.1
5.5
2.9
97.3
—
0.3
0.2
0.7
0.2
0.9
0.5
2.8
2
0.9
0.7
62.6
21.5
8.5
3.2
97.1
—
0.2
0.2
0.6
0.2
0.8
0.8
2.8
3M
—
—
0.6
1.0
8.7
59.8
13.3
83.4
—
—
0.5
1.4
3.4
8.0
3.2
16.5
3S
—
0.5
0.9
83.5
4.5
5.2
2.4
97.0
—
0.2
0.2
0.4
0.1
1.1
1.1
3.1
4M
—
0.1
0.3
83.6
9.7
2.8
1.9
98.4
—
0.1
0.1
0.2
0.1
0.5
0.6
1.6
4S
—
2.0
1.6
88.5
4.1
1.3
1.3
98.8
—
0.3
0.1
0.2
0.0
0.3
0.3
1.2
5M
—
0.0
1.0
1.9
3.6
57.7
16.6
80.8
—
0.0
0.9
1.8
1.2
9.6
5.6
19.1
5S
—
0.6
1.1
91.8
3.5
0.7
1.0
98.7
—
0.2
0.2
0.2
0.0
0.2
0.4
1.2
6M
—
0.9
3.9
4.3
46.8
21.0
76.9
—
—
0.7
1.6
1.7
12.8
6.1
22.9
6S
0.2
0.7
89.4
7.1
0.7
0.8
98.9
0.1
0.2
0.2
0.0
0.2
0.2
0.9
*Percent figured excluding fine sand fraction.
-------
Table 9
Location
S tation
Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium
Gravel
Fine
Gravel
Coarse
Sand
Medium
Sand
Fine
Sand
Silt
Clay
Totals
Canal System N
1
0.6
0.4
67.8
10.3
14.2
3.4
95.7
—
0.1
0.0
0.4
0.1
1.7
1.0
4.3
1A
2.6
2.1
23. 7
47.1
14.7
3.7
93.9
0.8
0.5
1.6
0.9
1.6
0.7
6.1
2
5.3
18.6
6.8
47.2
9.0
4.5
1.6
93.0
1.2
2.4
1.1
0.6
0.3
0.9
¦0.5
7.0
3
1.7
2.0
59.0
11.1
17.4
3.7
94.9
—
0.1
0.2
1.0
0.5
2.7
0.5
5.0
4L
—
7.4
3.9
74.5
3.8
4.5
2.1
96.2
—
0.9
0.5
0.5
0.1
1.1
0.5
3.6
4M
—
0.2
0.9
20.8
6.7
42.4
10.5
81.7
—
0.2
1.6
4.2
2.0
8.3
2.0
] 8. 3
4R
—
0.9
1.3
84.6
6.1
1.6
2.1
96.6
—
0.4
0.8
0.9
0.2
0. 7
0.4
3.4
5S
—
2.6
2.1
62.6
9.4
8.4
5.6
90.7
—
1.3
2.2
2.2
0.6
2.3
0.8
9.4
5M
—
2.6
5.0
27.1
18.8
18.2
9.5
81.2
—
2.9
4.3
4.1
1.4
4.4
1.7
18.8
6S
—
0.4
0.4
83.9
9.7
2.6
1.6
98.6
—
0.0
0.1
0.1
0.1
0.6
0.5
1.4
6M
—
0.1
0.4
6.1
4.5
61.7
10. 1
82.9
—
0.1
0.4
1.6
2.1
10.0
2.9
17.1
7L
—
0.8
1.3
91.7
3.2
0.8
1.2
99.0
—
0.1
0.1
0.1
0.0
0.3
0.2
0.8
7M
—
0.0
0.3
16.5
6.9
49.5
10.7
83.9
—
0.0
0.4
2.6
1.3
9.8
1.8
15.9
7R
—
4.9
3.0
75.1
6.8
5.2
2.4
97.4
—
0.2
0.3
0.5
0. 1
1.1
0.4
2.6
8S
—
1.6
1.7
85.0
6.8
1.6
1.2
97.9
—
0.3
0.3
0.5
0.1
0.4
0.5
2.1
8M
—
0.7
0.8
57.6
8.2
21.2
5.6
94.1
—
0.2
0.1
0.2
0.6
3.5
1.4
6.0
9S
0.1
6.8
4.2
71.8
5.6
3.5
2.4
94.4
0.3
1.0
1.0
1.1
0.2
1.0
0.8
5.4
9M
—
2.0
3.2
27.8
8.4
29. 1
10.4
80.9
—
1.0
2.0
2.4
1.4
10.1
2.4
19.3
-5.4-
-------
Table 9
Location
Station
1 Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium
Gravel
Fine
Gravel
Coarse
Sand
Medium
Sand
Fine
Sand
Silt
Clay
Totals
Natural bay
1
2.3
1.5
11.2
10.5
55.6
8. 1
89.2
(Barfield Bay)
—
0.2
0.4
2.3
1.2
5.4
1.1
10.6
2
—
0.6
0.8
6.1
8.1
65.1
8.7
89.4
—
0.0
0.1
1.0
1.2
6.1
2.0
10.4
3
—
0.4
0.5
5.0
4.2
70.2
8.8
89.1
—
0.1
0.0
0.0
0.3
8.0
2.4
10.8
4
—
3.0
2.2
25.2
28.9
29.8
4.2
93.3
—
0.4
0.2
0.3
1.1
3.9
0.8
6.7
5
—
1.1
2.0
77.2
15.0
1.6
1.1
98.0
—
0.3
0.3
0.3
0.2
0.2
0.6
1.9
Natural Sys. P
1
—
0.4
0.6
17.7
9.4
39.8
6.2
74.0
(John Stevens
—
0.4
0.3
0.4
0.6
22.6
1.4
25.8
Creek)
2
73.0
8..6
12.5
3.0
97.1
0.3
0T. 1
1.5
0.9
2.8
3S
—
0.8
1.3
7.0
7.2
56.6
13.3
86.2
—
0.1
1.0
1.4
0.5
7.1
3.6
13.7
3M
—
0.3
0.2
1.0
1.6
59.4
9.4
71.9
—
0.0
0.0
0.3
0.3
25.3
2.1
28.0
4S
—
0.3
0.5
21.0
6.4
40.5
9.8
78.5
—
0.2
0.5
1.2
0.6
15.7
3.2
21.4
4M
0.7
2.7
53.2
10.4
67.1
0.4
1.3
28.9
2.3
32.9
5M
—
4.9
6.3
64.2
7.7
9.7
2.8
95.6
—
0.8
0.8
0.8
0.2
1.4
0.3
4.3
5S
—
,
64.2
7.8
17.8
5.1
94.9
—
1.4
0.5
2.4
0.9
5.2
6M
3.0
18.0
16.8
21.2
9.5
17.0
3.8
90.7
1.4
1.7
1.7
1.7
1.2
2.5
0.5
9.3
6S
—
3.8
3.7
17.5
27.6
28.4
6.0
87.C
—
1.1
2.1
3.0
2.0
4.2
0.6
13.C
7
—
2.3
3.0
26.6
6.8
43.9
7.3
89. <
0.6
0.5
0.6
0.4
6.1
1.8
10.C
-55-
-------
Table 9
Location
Station
Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium
Gravel
Fine
Gravel
Coarse
Sand
Medium 1
Sand
Fine
Sand
Silt '
Clay
Totals
Natural Sys. T
(Tidal Creek)
1
0.7
0.0
0.6
0.1
80.4
0.2
11.5
0.1
3.7
0.7
1.6
0.4
98.5
1.5
2S
—
11.1
1.3
8.9
0.2
47.9
0.5
5.2
0. 1
4.3
18.0
1.7
0.7
79.1
20.8
2M
78.1
0.7
5.2
0.3
6.1
1.6
6.7
1.3
96. 1
3.9
3S
—
0.6
0.4
1.0
0.4
73.7
0.5
14.7
0.2
4.5
1.1
2.0
0.8
96.5
3.4
3M
—
1.2
0.6
0.8
0.4
71.6
0.5
15.0
0.2
5.3
1.2
2.4
0.7
96.3
3.6
4S
—
0.3
0.1
0.6
0.0
92.0
0.2
4.5
0.0
0.6
0.2
1.0
0.3
99.0
0.8
4M
—
0.5
0.1
2.0
0.3
91.8
0.2
2.9
0.0
0.6
0.1
1.1
0.2
98.9
0.9
5
—
0.2
0.1
1.2
0.1
75.1
0.6
12.2
0.2
6.1
1.3
2.3
0.6
97.1
2.9
Legend: L = left side upon entering system.
R = right side upon entering system
M = Middle or center trough
S = side (both sides had similar substrates)
-56-
-------
MASS EXCHANGE
Mass exchange studies were conducted to determine the net ex-
change of suspended nutrients between deadend canals and ambient systems.
Nutrients of interest were organic carbon, total nitrogen, and phos-
phorus. This type of information would aid evaluating deadend
canal systems as point sources and sinks for nutrients.
Automatic sequential samplers were installed at the mouths of
selected canal systems. Water samples were taken at mid-channel
from mid-depth every hour during the course of a 25-hour tidal period.
All samples were preserved and returned to EPA's laboratory in Athens,
Georgia, for analysis. Tidal recorders were operated at two of the
selected canals during the sampling period.
Table 10 presents results of the tidal exchange in terms of
average concentrations for the combined tidal phases (ebb and flood)
over each 25-hour sampling period. Table 11 presents results of the
tidal exchange studies in terms of mass (kg) of nutrients and organic
carbon imported or exported from the respective system over the 25-hour
tidal cycle. These calculations were based on the average concentra-
tion reported for the combined tidal phase and the total volume of
the tidal prism exchanged for the combined phase.
With the exception of Canal N, all systems studies revealed a
net import of organic carbon during the sampling period (Table 12).
Results of sampling of Canal N indicated a net export of 103.7 kg/day
of particulate and dissolved organic carbon. The export value probably
reflects the detrital contributions of the numerous stands of fringing
mangroves along much of the waterway.
-57-
-------
Table 10* Tidal exchange study, average concentration of tidal phase, finger-
fill canals and tidal creeks.
Location
Station
'Tidal
Phase
Exchange
Volume
Average ^
(mg/1)
(cu. ft.)
TOC
NHq-N
no2-no3
TKN
Total £
Developed Canal
H-20
Ebb
Flood
7,266,448
7,071,811
6.0
7.6
0.023
0.025
0.01
0.01
0.298
0.287
0.15
0. 18'
J-20
Ebb
Flood
750,809
683,905
5.65
6.48
0.018
0.030
<0.01
<0.01
0.31
0.27
0.12
0.12
L-20
Ebb
Flood
372,735
372,735
6.6
6.8
0.016
0.012
0.01
0.01
0.24
0.26
0.075
0.077
M-20
Ebb
Flood
Ebb
Flood
25,593,200
23,949,600
25,828,000
25,123,600
6.2
6.6
6.1
6.0
0.012
0.013
0.022
0.026
<0.01
0.01
<0.01
<0.01
0.26
0.28
0.30
0.29
0.084
0.089
0.085
0.094
N-20
Ebb
Flood
36,616,125
35,956,375
8.5
8.4
0.020
0.027
<0.01
<0.01
0.31
0.32
0.09
0.09
John Stevens Creek
P-20
Ebb
Flood
7.72
12.49
0.030
0.031
<0.01
<0.01
0.41
0.48
0.129
0.176
Unnamed tidal creek
T-20
Ebb
Flood
6.65
7.40
0.030
0.045
0.01
0.01
0.31
0.31
0.11
0.10
*Average of water sampled/at mid-channel from mid-depth.
-58-
-------
Table 11.Net mass exchange for 24-hour tidal cycle, finger-fill canals,
Marco Island, Florida. (Flow volume based upon ebb-cycle flow.)
Location
Station
Mass (kg/day)*
TOC
Total N
Total P
Developed canal H-20
-330.0
+2.26
-6.18
J-20
-17.6
+0.85
0
—
L-20
-21.1
-2.11
-0.21
M-20
-108.4
-3.59
-5.11
<
N-20
+103.7 '
-10.37
0
*+ = export, - = import
-59-
-------
Depending on the particular canal, organic nitrogen was subject
to net import or export. For example, Canals H and J both demonstrated
an exporting mode despite their dissimilarity in configuration. Also,
Canal J was served by a centralized sewage collection system; whereas,
residential units fronting Canal H were using septic tanks for sewage
treatment. The other canals studied revealed a tendency to import
nitrogen.
BIOLOGY
Benthic Macroinvertebrates
Macroinvertebrate sampling of natural systems (tidal creeks and
bays) and developed canal systems involved both quantitative and
qualitative methods. Tables B-l and B-2 list invertebrates collected
by quantitative and qualitative methods respectively. Quantitative
samples were taken with a Ponar dredge. Three replicate samples were
taken at each sampling site. Ponar samples were washed through a U.S.
Standard No. 30 sieve and the strained material stored in 95-percent
alcohol. Qualitative sampling involved the use of dip nets and SCUBA
divers to collect specimens. Dip nets were utilized along the shore-
line, with the divers assisting in the collecting of samples. Approxi-
mately 30 minutes of sampling effort was carried out at each sampling
site. Samples were stored in 95-percent alcohol after collection.
Polychaetes of the family Cirratulidae were found at the sides and
center of both tidal creeks.
Crustaceans were more abundant in the tidal creeks than the
canals. Lembos, an abundant amphipod, was found at both creeks in
-60-
-------
both. the. center and sides. No information was found on the feeding
habits of this genus, but it is believed to be a detrital-feeder since
most of the Aoridae are detrital-feeders. Leptognathea, a tanaidacean,
was the dominant crustacean at the sides and center of the creeks.
Members of this genus were found to graze off the leaves of mangroves
and are responsible for leaf fragmentation (Odum and Heald, 1972).
Corophium, an amphipod, was found at both creeks hut was abundant at
John Stevens Creek (P). The abundance of Corophium is probably related
to sediments since it prefers fine sediments that are used for tube con-
struction (Kaestner, 1970). Barnes (1968) reports Corophium to be a filter-
feeder; but according to Kaestner (1970), it feeds to a greater extent by
particle selection. The decapod Petrolisthes galathinus was present in
both tidal creeks. Petrolisthes is a filter-feeder according to Kaestner
(1970).
The polychaete family Syllidae was represented in both tidal creeks,
and its occurrence is probably related to the sponges and ascidians that
occurred there also. Gosner (1971) reports these worms to be carnivorous
and are found on sponges, hydroids, and ascidians.
Developed Canal Systems L and M shared common features which facili-
tated comparison. Both canal systems were deadend, finger-fill canals.
Canal configuration for both is characterized by side slopes which rapid-
ly drop off into a center trough of much greater depth than the sides.
The side slopes had greater numbers and species of macroinvertebrates than
did the center troughs. Generally, numbers and species exhibited a
longitudinal decline from the canal mouth to the dead end. A change in
-61-
-------
species composition occurred from the canal mouth to the dead end. The
side slopes were dominated by crustaceans beginning at the mouth but
gradually declining in number until polychaetes became dominant as
Dne neared the dead end. Crustaceans also dominated the center troughs
except for the deadend stations.
The Tidal Creeks P and T had a greater number of species and indivi-
duals than the developed canal systems. There was no apparent decline
in numbers and species longitudinally in the creeks. Crustaceans were
the dominant constituent of both creeks. Polychaetes and mollusks were
abundant in both creeks. There were nine species of invertebrates com-
mon to the sides of both creeks and five species common to the center.
Barfield Bay had a typical soft-bottomed bay community at all stations
except five where tidal effects resulted in deposition of a coarser sub-
strate and a different benthic community. Stations 1 through 4 were
dominated by mollusks and polychaete worms; while Station 5 had crusta-
ceans, polychaetes, and mollusks.
Common Species in Canals - Two mollusks, Laevicardium and Prunum
apicinum, were present at the side slopes. Laevicardium, as reported by
McNulty (1966), prefers medium (0.31- to 0.47-mm) to coarse (0.48- to
0.86-mm) sediments where it occurs as a suspension feeder. Prunum apicinum
is a detrital feeder.
Cirratulidae and Maldanidae, polychaete worms, were common at the
side slopes. Cirratulids are mud-dwellers (Gosner, 1971) and deposit-
feeders (Barnes, 1968). Also a deposit-feeder, Maldanids live in soft
cases of sand and mud (Gosner, 1971).
-62-
-------
Crustaceans common to the side slopes of both canals were Ampelisca
and Tanaidacea. The amphipod Ampelisca prefers muddy sand (Kinne, 1972)
where it exists as a deposit feeder (Nicol, 1967). Kaestner (1970) re-
ports that Tanaidacea burrow in mud and are detrital-feeders.
Common Species in Tidal Creeks - Seila adamsi was found at the sides
of both tidal creeks. Anachis, another gastropod usually associated with
Thalassia and Diplanthera beds (Dragovich and Kelly, 1964), was a common
inhabitant of the sides. This snail is characterized by McNulty (1966)
as a member of the "hard bottom" community.
Sabellidae, the most common polychaete family in the tidal creeks,
occurred at both the center and sides. Kinne (1971) reports this family
to be filter-feeders using their branchial crowns as a filtering device.
Sabellids depend on finely suspended detritus for food (Nicol, 1967).
The orbiniids'(Orbiniidae) were present in both creeks from both the
center and sides. These polychaetes are burrowers (Gosner, 1971) and
deposit-feeders.
Meroplankton
Meroplankton samples were taken by means of a 1-meter-diameter, 1:5,
505-y mesh net. Four oblique tows were made during day and night tidal
cycles at the canals. No net tows were made at tidal creek T due to
its narrow width and meandering nature of the creek.
The net was towed behind the boat in a manner to prevent prop wash
from being a contributing factor in volume of water filtered through the
net. The net was maintained at an angle of 70 + 3° below the surface.
The net was set under the surface (70° angle) for 5; 5 minutes, with
-63-
-------
irgamsms Demg swept: 11110 tne moucn Dy ctie current. mow meters were
lsed to determine the volume of water filtered through the plankton nets,
lowever upon close scrutinization of flow meter data it was concluded
:hat the flow meters were malfunctioning. In order to use the plankton
lata the results were calculated on a per minute basis for quantative
mrposes as indicated by Table B-4.
Net damage and resultant time-loss restricted sampling to the mouths
)f the canals and tidal creeks. Crustacea data, therefore, did not
Indicate any striking differences (Table B-3). Tidal Creek T, however,
lid exhibit some migration patterns. Meroplankton appears to be moving
3ut at ebb tide both at night and day. Almost twice as many organisms
^ere caught at ebb night than at ebb day (Table B-4). Twelve times
nore organisms were caught at ebb night than flood night, while four
times more were caught at ebb day than at flood day.
A total of 33 species of fish comprising 20 families in seven orders
vere collected (Table B-5). One, the pigfish, was collected in the egg
stage only. The smallest (youngest) herrings were unidentifiable to
jenus but were probably Opisthonema and/or Sardinella, as none of the
larvae inspected were Harengula. Some, or all, of the Sardinella tenta-
tively identified as anchovia may also be brasilensis. The undetermined
carangid was probably not one of the species listed. The unknown sciaenid
could be one of the three species listed.
Several of the fish collected (the lizzardfish, the sheepshead
ninnow, the two silversides, one of the puffers, the mojarra, and the
unknown jack) were found only in the natural systems (Table B-5). Only
-64-
-------
the sea bass arid the cowfish were found exclusively in the canals. The
dragonet, the pipefishes, the bumper, the searobins, and the tonguefish
were present in the canals but were more abundant in the streams. The
blenny was represented by only one specimen each in Stephens Creek and
Marco River but was more numerous in the canals. The more common fish—
herrings, anchovies, drums, gobies, and soles—were found in all systems
but—with the exception of the anchovies, which were about equally dis-
tributed, and a high number of soles in Canal L—were more numerous in
the streams, especially in Marco River.
Marco River had more species and greater numbers of fish than any
of the other systems. Canal K and the tidal creek had almost as many
kinds of fish as did Marco River but only one-third to one-half the
numbers. The other three canals and Stephens Creek had similar numbers
and species of fish, with Canal M having the fewest individuals and
Canal L having the least number of species.
The natural systems and Canal J contained more fish of greater
variety at night than during the day. The other canals had more species
in the daytime but only one-fourth to one-half as many individuals as
at night (Table B-6).
Phytoplankton Chlorophyll a - Phytoplankton sampling coincided with
water chemistry sampling. Samples were composited from three depths
(surface, mid-depth, and bottom). A Van Dorn sampler was used in sample
collection.
Chlorophyll a. concentrations were not significantly different (at
95 percent confidence level) among the Stations in each canal. Tidal
-65-
-------
creeks P and T had no significant differences in chlorophyll a concen-
trations. Mean chlorophyll a. concentrations in the canals were sig-
nificantly higher than tidal creek T and P with one exception. Canal
system I was not significantly different in chlorophyll a. concentrations
from tidal creek P. Canal I is a short canal similar in length to canal
J. Dye dispersion data from J (no data from I) indicate it to have
better flushing properties than the other canal systems. As a result
of better flushing, phytoplankton abundance and productivity is not as
great as in the other canal systems.
Chlorophyll ja concentrations in both canals and tidal creeks were
generally lower than the average concentration of 17 mg/m found in Gulf
inshore waters (Steidinger, 1973).
-66-
-------
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
-2
-4.
FIGURE 21
_L
Canal H
2 3
Canal I
-67-
-------
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
-2
4
&
FIGURE 22
onltj I Sample
$
j i i i i i i i i i 1 i
234 1 l 3 1234
C a n a I J Canal K Canal i.
-68-
-------
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
-2
-4,
FIGURE 23
3 4
Canal M
-69-
-------
FIGURE 24
28.
26
24 _
22 _
only 1 sample
J I 1 L
J 1 I
1A I
2 3 4
Canal N
-70-
-------
24
22.
20
18
16
14
12
10
8
6
4
2
0
-2
-4
-6
-8
-10
-12
14
FIGURE .25
J L
'only 1 sample
i
_J L
J L
1A 1 2 3 4
John Stevens Creek
5 6
-71-
-------
IS
16
14
12
10
S
6
4
2
0
-2
-4
-6
-8
¦10
12
FIGURE 26
Unnamed tidal creek T
-72-
-------
REFERENCES
1. Barnes, Robert D. 1968. Invertebrate Zoology. W. B. Saunders Co.
743 pp.
2. Carpenter, James H. and J. van de Kreeke. 1975. Forecasts of water
quality in the Barfield Bay, Blue Hill Bay, Collier Bay, and Big
Key areas of Marco Island, Florida. Rosenstiel School of Marine
and Atmospheric Sciences, Univ. of Miami, Fla.
3. Carter, M. R., et al. 1973. Ecosystems analysis of the Big Cypress
Swamp and estuaries. Surveillance & Analysis Div., Region IV,
U.S. EPA.
4. Craig, G. Y. and N. S. Jones. 1966. Marine benthos, substrate, and
paleocology. Paleont. 9(l):30-38.
5. Dragovich, Alexander and John A. Kelly, Jr. 1964. Ecological
observations of macroinvertebrates in Tampa Bay, Florida. Bull.
Mar. Sci. 14:74-102.
6. Gosner, Kenneth L. 1971. Guide to the Identification of Marine
and Estuarine Invertebrates. Wiley-Interscience. 693 pp.
7. Kaestner, Alfred. 1970. Invertebrate Zoology. Vol. 3, Crustacea.
Interscience Publishers, New York, N.Y. 523 pp.
8. Kinne, Otto. 1971. Marine Ecology. Vol. 1, Part 1. Wiley-
Interscience.
9. . 1972. Marine Ecology, Vol. 1, Part 2. Wiley-
Interscience .
10. McNulty, J. K. 1966. Recovery of Biscayne Bay from pollution.
Ph.D. dissertation, Univ. Miami, Fla. 191 pp.
11. Nicol, J. A. Colin. 1967. The Biology of Marine Animals. Sir
Isaac Pitman and Sons. 699 pp.
12. Odum, E. P. and Armando A. de la Cruz. 1967. Particulate organic
detritus in a Georgia salt marsh-estuarine ecosystem. In:
Estuaries. Amer. Assn. Advancement Sci., Washington, D.C.
pp. 383-388.
13. Odum, W. E. 1970. Pathways of energy flow in a south Florida
estuary. Sea Grant Tech. Bull., No. 7. 1962 pp.
14. Odum, William E. and Eric Heald. 1972. Trophic analyses of an
estuarine mangrove community. Bull. Mar. Sci., Gulf and Carib.
22(3):671-738.
-73 -
-------
15. Pratt, D. M. 1953. Abundance and growth of Venus mercenaria and
Callocardia morrhauna in relation to character of bottom sedi-
ments. J. Mar. Res. 12:60-74.
16. Steidinger, Karen A. 1973. Phytoplankton. In: A Summary of
Knowledge of the Eastern Gulf of Mexico. Institute of Ocean-
ography, State Univ. Sys. Fla., St. Petersburg, Fla. pp. IIIE-1
- IIIE-13.
^"lT. Sykes, J. E. and J. R. Hall. 1970. Comparative distribution of
mollusks in dredged and undredged portions of an estuary, with
a systematic list of species. Fish. Bull. 68:229-306.
l^^"18. Taylor, John L. and Carl H. Salomon. 1968. Some effects of
hydraulic dredging and coastal development in Boca Ciega Bay,
Florida. Fish. Bull. 67(2):213-241.
19. U. S. Environmental Protection Agency. Surveillance and Analysis
Division, Athens, Georgia. 1975. Finger-fill canal studies—
Florida and North Carolina.
-74-
-------
PROJECT PERSONNEL
EPA, Surveillance & Analysis Division, Athens, Georgia
Mike Boyd, Engineering Technician
Thomas Cavinder, Sanitary Engineer (Project Engineer)
Joseph Compton, Fishery Biologist
Paul Frey, Aquatic Biologist
Thomas Hall, Biological Technician
Delbert Hicks, Aquatic Biologist (Project Biologist)
Hoke Howard, Aquatic Biologist
Philip Murphy, Ecologist
Fritz Owen, Engineering Technician
Ronald Raschke, Aquatic Biologist
Donald Schultz, Aquatic Biologist
David Smith, Biologist
Mark Thompson, Aquatic Biologist
Theodore Vaughan, Engineering Technician
U.S. Fish & Wildlife Service, Vero Beach, Florida
Dennis Creamer, Fishery Biologist
U.S. Fish & Wildlife Service, LaFayette, Louisiana
Grant Gunderson, Fishery Biologist
-75-
-------
Appendix A
SEDIMENT CHARACTERISTICS FOR
NATURAL AND DEVELOPED AREAS
-76-
-------
SEDIMENT CHARACTERISTICS FOR NATURAL AND DEVELOPED AREAS
Natural Areas
Barfield Bay
The sbustrate of Barfield Bay was composed primarily of silt and
clay at Stations 1, 2, and 3. Coarse, medium, and fine sand were prevalent
at Stations 4 and 5. The silt and clay content increased from Station 1
to Station 3 (63.7 percent, 73.8 percent, and 79.0 percent for Stations
1, 2, and 3 respectively), the sand content decreased (22.2 percent,
15.0 percent, and 917 percent respectively); and as the silt and clay
content decreased from Station 4 to Station 5 (34.0 percent and 2.7
percent respectively), the sand content increased (56.3 percent and
94.2 percent respectively). (Table 4)
Organic content followed essentially the same composition pattern
as silt and clay. At Stations 1, 2, and 3 approximately 10 percent (by
dry weight) of the sediment was composed of organic debris; whereas
about 2 percent of the sediment at Station 4 and 5 represented organic
matter (Table 3).
Gravel (actually calcareus material, not stone) made up 3 percent
or less of the total substrate (Table 9).
Stevens Creek, P
The stations outside the main creek channel (Stations 1, 6, and
7) were fairly comparable, except that Station 1 had about twice as
much organic matter and Station 6 had about half as much silt and clay
as the other stations (Table 9).
-77-
-------
Station 2, which was located near the narrowest portion of the
creek channel, had sediment composed mostly of sand (greater than 80
percent) with some silt and clay (about 15 percent (Table 9).
Station 5 was also located in a narrow portion of the channel,
though not as narrow as Station 2. The two stations were very similar,
with Station 5 having only about 10 percent less sand, about 3 percent
more silt and clay, and 2 percent more organic material (Table 9).
Stations 3 and 4 at both the edges and midchannel were greater
than 50 percent silt and clay (slightly greater at 3 than at 4). Organic
content is greatest at these two stations which are located in the widest
portions of the creek channel (Table 9).
Tidal Creek T
Sand composed greater than 80 percent of the bottom material at
all stations, with fine sand making up 10 to 15 percent at Stations 1,
3, and 5 and about 5 percent at Stations 2 and 4. The edge of Station 2
had the least sand (approximately 50 percent), while Station 4 had the
greatest (more than 90 percent at both midchannel and edge). Silt and
clay were approximately 10 percent (or less) at all stations. Organic
content of the substrate was 20 percent at the edge of Station 2 but
less than 4 percent at the other stations (less than 1 percent at Station
4). At Stations 1, 3, and 5, the water was shallow (depth approximately
1 meter) and the channel fairly wide; while at Stations 2 and 4, the
water was deeper (2 to 4 meters) and the channel narrower than at the
other stations (Table 9).
-78-
-------
Collier Bay and Smokehouse Bay
For discussion of substrate characteristics, See Canal System N
below.
Developed Areas
Canal System H
The bottom material of Marco Bay near the canal mouth (station 1)
was composed of greater than 70 percent silt and clay and less than 10
percent sand. The midchannel areas of canal Stations 2 and 3 were also
mostly silt and clay (50 percent at Station 2 and 70 percent at Station
3), while sand content was approximately 30 percent and 10 percent re-
spectively. The canal edges at all stations and Station 4 midchannel
were more than 70 percent sand (Station 2 right side and Station 4 mid-
channel were approximately 90 percent sand). Organic content was 14 to
18 percent at Station 1 and midchannel at Stations 2 and 3 but only 2
to 7 percent at all other areas sampled (Table 9).
Canal System J
The two stations sampled (actually located outside the canal)
were greater than 70 percent medium and fine sand. There was more fine
sand at Station 2 than at Station 1 (31.6 percent and 19.7 percent
respectively). There was slightly more silt at Station 1 than at Station
2 (14.6 percent and 11.3 percent respectively). Organic content was
slightly greater at Station 2 (4.1 percent) than at Station 1 (2.9
percent) (Table 9).
-79-
-------
Canal System K
The substrate along the canal edges at all three stations was
approximately 85 percent medium sand (6 percent to 10 percent coarse
and fine sand) and less than 3 percent silt. Midchannel areas of Stations
1 and 2 were mostly silt and clay (78.5 percent and 73.7 percent re-
spectively), while Station 3 midchannel was 72.1 percent medium and
fine sand and only 18.7 percent silt and clay. The amount of sand,
therefore, remained fairly constant for Stations 1 to 3, while silt and
clay content dropped (Table 9).
Organic content at midchannel areas of Stations 1 through 3
was 16.7 percent, 19.7 percent, and 8.1 percent respectively. The canal
edges contained 2 to 3 percent organics (Table 9).
Canal System L
The substrate at Station 1 was predominantly coarser material
(gravel and coarse sand, 4.7 percent; medium sand, 43.5 percent; fine
sand, 3.17 percent; and silt and clay 15.5 percent), while that at
Station 2 was mostly finer material (gravel and coarse sand, 0.9 percent;
medium sand, 24.9 percent; fine sand, 29.2 percent; and silt and clay,
36.6 percent). Station 3 had more than 90 percent sand at the edge
and approximately 70 percent silt at midchannel. Station 4 was almost
the opposite of Station 3—that is, the edge was almost 90 percent sand,
while the midchannel area was slightly greater than 50 percent silt.
Organic content almost doubled from Station 1 to Station 2 (4.4 percent
to 8.4 percent respectively), was greatest at Station 3 (17.0 percent
at the canal edge), dropped to 10.9 percent at Station 4 midchannel area,
and was least at Station 3 midchannel (1.4 percent (Table 9).
-80-
-------
Canal System M
The canal edges at all stations were greater than 80 percent
medium sand; and except for Station 3, which had 7.6 percent, silt and
clay composed less than 3 percent of the bottom material. Stations 1
and 2 were very similar. Medium and fine sand was approximately equal
for both stations (85.8 percent and 84.1 percent respec tively), while
silt and clay was only slightly greater at Station 2 than at Station 1
(11.4 percent and 8.4 percent respectively). Organic content was the
same at both stations (2.8 percent). The midchannel area of the canal
bottom at Stations 3, 5, and 6 was composed of more than 65 percent
silt and clay, while Station 4 was over 90 percent sand and only about
5 percent silt and clay (Table 3).
The organic matter in the sediment along the canal edge was
approximately 3 percent or less; while in midchannel, the percentage
went from 16.5 at Station 3 to 19.1 percent at Station 5 and to 22.9
percent at Station 6. Station 4 had less than 2 percent organic content
at both midchannel and the edge (Table 9).
Canal System N
Generally the canal edge substrate was 60 to 80 percent medium
sand, while the midchannel areas were only 25 to 50 percent medium sand.
Fine sand was approximately 10 percent overall; silt and clay was less
than 15 percent along the edge and 25 to 70 percent at midchannel; and
organic content 5 percent at the edge and 20 percent in midchannel
(Table 9).
The substrate in Collier Bay was greater than 70 percent medium
and fine sand. The "shallow" station (1A, depth 2 feet) was mostly fine
-81-
-------
sand (47 percent), while the "deep" station (1, depth 5 feet) was approx-
imately 64 percent medium sand. Silt and clay content was about 20
percent at both stations (Table 9).
The Smokehouse Bay substrate was similar to that of Collier Bay,
except that Station 2 (the "shallow" station, depth 3 feet) had about
25 percent more coarse material and 15 percent less silt and clay (Table 9).
The bottom material at all canal edges contained more than 70
percent medium and fine sand. The edges of the lateral canals (Station
4, 6, and 8) were almost identical in their substrate composition (85
to 90 percent sand, 5 percent silt and clay, and less than 5 percent
organic) (Table 9).
The midchannel areas of the lateral canals showed more variation.
The I-shaped lateral canal (Station 6) had the most silt and clay (72
percent) and the least medium and fine sand (10 percent). The Y-shaped
lateral canal (Station 8) was mostly sand (66 percent) with some silt
(28 percent) and little organic (6 percent) (Table 9).
The canal off Smokehouse Bay (Station 4) was somewhat intermediate
between the two laterals in that the substrate was composed of 52 percent
silt and clay and 28 percent sand. The organic content was 18 percent,
or approximately the same as at Station 6 (17.5 percent) (Table 9).
The midcanal stations followed essentially the same pattern as
the lateral canal stations—that is, the edges were mostly sand (70 to
90 percent) with little silt and clay (less than 15 percent) or organic
(Less than 10 percent), while the midchannel areas were usually greater
than 50 percent silt and clay. Station 9 (uppermost station) and
-82-
-------
Station 5 (lowermost station) actually have less than 50 percent silt
and clay. However, both still have much more silt and clay in mid-
channel than at the edge (39 percent versus 6 percent for Station 9 and
28 versus 14 percent for Station 5) (Table 9).
-83-
-------
Appendix B
BIOLOGICAL DATA TABLES
-84-
-------
Table B.-l
jPECIES COLLECTED BY QUANTITATIVE SAMPLING AT CANAL L
•iOLLUSCA
Gastropoda
Turritellidae
Turitella exoleta*
Calyptraeidae
Crepidula ftlauca
Nassaridae
Nassarius vibex
Marginellidae
Prunum apicinum
Bullidae
Bulla occidentalis
Pelecypoda
Nuculanidae
Nuculana acuta*
Nuculidae
Nucula proxima*
Anomiidae
Anomia simplex
Cardiidae
Trachycardlum murlcatum
Laevlcardium sp.
Veneridae
Chlone cancellata
Tellinidae
Telllna sp.**
Corbulidae
Corbula caribea**
Lyonsiidae
Lyonsia hyalina**
RHYNCHOCOELA
Anopla*
ANNELIDA
Polychaeta
Syllidae
Hesionidae*
Nereidae
Arenicolidae*
Maldanidae
Opheliidae
Spionidae**
Paraonidae**
Lumbr iner idae
Arabellidae**
Dorveilleidae*
Orbiniidae**
Cirratulidae
Arapharetidae
Terebellidae*
Sabellidae**
-85-
*Found outside canal only.
**Found inside and outside canal.
All others found only in canal
system.
-------
Table B-l (Continued) B-2
SIPUNCULIDA*
ARTHROPODA
Crustacea
Mysidacea
Mysidae
Mysidopsis bigelowi
Tanaidacea**
Isopoda
Anthuridae
Apanthura magnlfica
Idoteidae
Erichsonella attenuata
Amphlppda
Ampeliscidae
Ampelisca verilli**
Aoridae**
Bateidae
Carlnobatea sp.
Corophiidae
Corophium sp.
Caprellidea
Natantia
Penaeidae
Penaeus sp.
Palaemonidae
Pericliiaene8 amerlcanus**
P\ longlcaudatus
Reptantia
Xahthldae
Panopeus sp.**
Neopanope sp.*
Eurytium sp.**
ECHINODERMATA
Ophiuroidea**
CHORDATA
Cephalochorta
Branchiostoma caribaeum*
-86-
-------
B-3
Table B-l
SPECIES COLLECTED BY QUANTITATIVE SAMPLING AT CANAL "M"
WDLLUSCA
Gastropoda
Cerithidae
Cerithium'ilteratum
C. eburneum
Qalyptraeidae
Crepidula tornicata*
C, aculeata*
Naticidae
Natica canrena
Columbellidae
Anachls sp.*
Nasaaridae
Nassarius vibex**
Marginellidae
Pirunum apicinum**
Bullidae
Bulla occidentalis*
Atyidae
Hamlnoea sp.*
Pelecypoda
Nuculanldae
Nuculana acuta
Nuculidae
Nucula proxiroa**
Arcidae
Barbatla sp.
Mytillidae
Muacuius lataralis*
Anomiidae
Anomia simplex
Cardidae
Trachycardium muricatum
Laevlcardium sp.
Veneridae
Antlflofia listeri*
Chione cancellata*
C. latillrata
Tellinldae
Telllna sp.**
Tellidora crlstata
Ma coma tenta
Semelidae
Abra aequalia
Mactridae
Mullnla lateralis
Corbulidae
Corbula carlbea**
Lyonslidae
Lyonsla hyalina**
*Found outside canal only.
**Found inside and outside canal.
All others found only in canal.
-87-
-------
Table B-l (Continued)
HYNCHOCOELA
Anopla
.NNELIDA
Polychaeta
Syllidae
Nereidae
Capitellidae
Maldanidae**
Spionidae
Paraonidae
Lumbrineridae**
Arabellidae**
Orbiniidae**
Cirratulidae
Terebellidae**
Sabellidae**
Glyceridae**
5IPUNCULIDA
^RTHROPODA
Crustacea
Mysidacea
Mysidae
Mysidopsis sp.
Tanaidacea*
Isopoda
Anthuridae
Apanthura magnifica**
Amphipoda
Ampeliscidae
Ampeli8ca sp.
Aoridae
Lembos sp.
Corophiidae*
Corophium sp.
Erichthonius sp.
Melltidae
Melita dentata*
Lysianassidae
Lysianopsis alba*
Caprellidea*
Penaeidae
Penaeus sp.**
Parapenaeus longirostrls*
Palaemonidae**
Periclimenes americanus
Potonia sp.
Alpheidae
Alpheus sp.
Parthenopidae
Heterocrypta sp.*
-88-
-------
B-5
Table B- 1 (Continued)
Reptantia
Portunidae
Portunus sp.
Xanthidae
Panopeus sp.**
Neopanope sp.**
Hexapanopeus sp.**
Micropanope sp.
Eurypanopeus sp.
Eurytium sp.**
Pinnotheridae
Pinnixa sp.
2CHIN0DERMATA
Ophiuroldea
Ophiolepididae
Ophiolepis elegans
-89-
-------
B-6
Table H-l. (Continued)
SPECIES COLLECTED BY QUANTITATIVE SAMPLING AT BARFIELD BAY, A NATURAL BAY
MOLLUSCA
Gastropoda
Olividae
Olivella mutica
Marginellidae
Prunum aplcinum
Bullidae
Bulla occidentalis
Atyidae
Haminoea sp.
Pelecypoda
Veneridae
Anomalocardia cuneimerls
Tellinidae
Tellina sp.
Semelldae
Abra aequalis
Corbulidae
Corbula caribea
RHYNCHOCOELA
Anopla
ANNELIDA
Polychaeta
Sigalionidae
Goniadidae
Syllidae
Nereidae
Maldanidae
Opheliidae
Spionidae
Eunicldae
Lumbrinerldae
Arabellidae
Orblnildae
Cirratulidae
Sabellldae
SIPUNCULIDA
ARTHROPODA
Crustacea
Amphipoda
Ampeliscidae
Ampelisca sp.
Aoridae
Lembos sp.
Gammaridae
Gammarus mucronatus
Haustoriidae
-90-
-------
B-7
Table B~l (Continued)
Lysianassidae
Lysianopsis alba
Oedicerotidae
Monoculodes sp.
Phoxocephalidae
Trichophoxus sp.
Natantia
Palaemonidae
Ogyrididae
Ogyrides limlcola
Reptantla
Xanthidae
Hexapanopeus sp.
Eurytlum sp.
ECHINODERMATA
Ophiuroidea
CHORDATA
Asidiacea
-91-
-------
B-8
Table B-'l (Continued)
SPECIES COLLECTED BY QUANTITATIVE SAMPLING AT JOHN STEVENS CREEK ("P")
PORIFERA *Found outside creek only.
Calcarea
Demospongia **Found inside and outside creek.
MOLLUSCA All others found only in creek.
Gastropoda
Hydrobiidae
Truncatella sp.*
Turitellidae
Turitella exoleta**
Cerithidae
Sella adamsi
Muricidae
Urosalpinx sp.**
Columbellidae
Anachis sp.
Buccinidae
Phos candei
Nassaridae
Nassarius vibex
Olividae
Olivella mutica*
Marginellidae
Prunum apicinum**
Conidae
Conus stearnsi*
Turridae
Crassispira leucocyma
Amphineura
Chiton sp.
Pelecypoda
Nuculanidae
Nuculana acuta
Nuculidae
Nucula proxima**
Ostreidae
Ostrea frons
Arcidae
Barbatia sp.
Lucinidae
Anodontia sp.
Veneridae
Chione cancellata*
latilirata*
Tellinidae
Tellina sp.
Mactridae
Mulinia lateralLs
Corbulidae
Corbula caribea**
-92-
-------
Table B- 1 (Continued)
B-9
ANNELIDA
Polychaeta
Sigalionidae
Syllidae**
Nereidae
Opheliidae
Spionidae
Eunicidae*
Lumbrineridae
Arabellidae**
Dorveilleidae
Orbiniidae**
Cirratulidae
Terebellidae**
Flabelligeridae
Sabellidae**
SIPUNCULIDA
ARTHROPODA
Meroatomata
Limulua polyphemus
Crustacea
Tanaidacca**
Isopoda
Anthuridae
Apanthura magniflea**
Cirolanidae
Cirolana sp.
Sphaeromatidae
Paracerceis caudata
Idoteidae
Erichsonella sp.
Amphipoda
Ampeliscidae
Ampellsca verrilll*
Ampelisca sp.**
Aoridae
Lembos sp.**
Bateidae
Carinobatea sp.*
Corophiidae
Corophium sp.**
Erichthonius sp.**
Gammaridae
Elastnopus sp.
Crangonycidae
Melitidae
Melita dentata**
Lysianassidae
Lysianopsls alba**
Phoxocephalidae
Trichophoxus sp.
"93-
-------
Table B-1 (Continued)
B-10
Caprellidea
Penaeidae
Penaeus sp.**
Palaemonidae
Periclimenes americanus
P^. longicaudatus
Periclimenes sp.
Alpheidae
Alpheus sp.
Reptantia
Majiidae
Portunidae
Callinectes sapidus
Xanthidae
Panopeus sp.**
Neopanope sp.**
Hexapanopeus sp.
Eurypanopeus sp.
Eurytium sp.
Anomura
Porcellanidae
Euceramus praelongus**
ECHINODERMATA
Ophiuroidea
-94-
-------
Table B- 1 (Continued)
SPECIES COLLECTED BY QUANTITATIVE SAMPLING AT TIDAL CREEK "T"
B-ll
PORIFERA
Demospongia
MOLLUSCA
Gastropoda
Hydrobiidae
Truncatella sp.
Turitellidae
Turltella exoleta
Vermicularia fargoi
Modulidae
Modulus modulus
Cerlthidae
Cerithium muacarum
Uteratum
C. eburneum
Cerlthiopsis emersoni
Sella adamai
Trlphoridae
Triphora sp.
Calyptraeidae
Crepldula aculeata
C. glauca
Murlcidae
Murex sp.
Columbellldae
Anachls sp.
Mltrella lunata
Buccinidae
Cantharus tlnctus
Nassaridae
Nassarius vibex
Olividae
Ollvella mutlca
0. pusilla
0. .jaspldea
Marglnellidae
Prunum aplclnum
Conidae
Conus stearnsl
Turridae
Crassispira leucocyma
Bullidae
Bulla occldentalis
_B. striata
Pyramidellidae
Turbonilla sp.
Odostomia sp.
Amphineura
Ischnochiton sp.
-95-
-------
Table B-l (Continued)
B-12
Pelecypoda
Ostreidae
Ostrea frons
Arcidae
Barbatia sp.
Lucinidae
Lucina sp.
Codakia sp.
Cardiidae
Trachycardlum muricatum
Veneridae
Macrocallista maculata
Mercenaria campechiensis
Anomalocardia cuneimerls
Chione cancellata
C. latilirata
Tellinidae
Tellina sp.**
Macoma tenta
Semelldae
Semele sp.
Astartidae
A8tarte sp.
RHYNCHOCOELA
Anopla
ANNELIDA
Polychaeta
Phyllodocidae
Syllidae
Nereidae
Maldanidae
Spionidae*
Paraonidae
Lumbr iner idae
Arabellidae
Dorveilleidae
Orbiniidae
Cirratulidae
Pisionidae
Terebellidae
Sabellidae
Glyceridae
ARTHROPODA
Crustacea
Tanaidacea**
Leptochelia sp.
Leptognathia sp.
Isopoda
Anthuridae
Apanthura magniflea**
Sphaeromatidae
Cymodoce faxonl
Cymodoce sp.
-96-
-------
B-13
Table B-1 (Continued)
Idoteidae
Erichsonella sp.
Amphipoda
Acanthonotozomatidae
Ampeliscidae
Ampelisca agassizi
A. verrilli
Ampithoidae
Cymadusa filosa
Cymadusa sp.
AmpJLthoe sp.
Aoridae
Lembos sp.
Bateidae
Carinobatea sp.**
Corophiidae
Corophium simile
Erichthonius brasiliense
Erichthonius sp.**
Gannnaridae
Elasmopus levis
Elasmopus sp.
Crangonycidae
Crangonyx pseudogracilis
Crangonyx sp.
Melitidae
Melita dentata
Melita sp.
Haustoriidae
Leucothoidae
Leucothoe sp.
Lysianassidae
Lysianopsis alba**
Photidae
Leptocheirus sp.
Podoceridae
Dulichia sp.
Coloraastigidae
Colomastix sp.
Stenothoidae
Stenothoe sp.
Phoxocephalidae
Trichophoxus floridanus
Caprellidea
Penaeidae
Penaeus setiferus
Penaeus sp.**
Pasiphaeidae
Leptochela sp.
Palaemonidae
Periclimenes americanus**
P_. longicaudatus**
Periclimenes sp.
Palaemonetes sp.
-97-
-------
Table B-1 (Continued)
Alpheidae
Alpheus formosus
A. normanni*
Reptantia
Majiidae
Pella sp.
Portunldae
Carcinus maenas
Xanthidae
Panopeus sp.
Hexapanopeus sp.
Mlcropanope sp.
Pilumus sp.
Eurypanopeus sp.*
Eurytium sp.
Anomura
Porcellanidae
Petrolisthes galathinus
Paguridae
Pagurus annulipes
ECHINODERMATA
Ophiuroidea
CHORDATA
Cephalochordata
Branchlostoma caribaeum
-98-
-------
B-15
Table B-2
SPECIES COLLECTED BY QUALITATIVE SAMPLING OF NATURAL AREA P (JOHN STEVENS
CREEK)
MOLLUSCA
Turitella exoleta
Vermicularia fargoi
Crepidula plana
Ischnochiton sp.
Ostrea frons
POLYCHAETA
Lumbrineridae
Dorveillidae
Sabellidae
CRUSTACEA
Bal'anus sp.
Tanaidacea
Sphaeroma destructor
Paracerceis caudata
Corophium sp.
Erichthonius sp.
Elasmopus sp.
Melita dentata
Leucothoe sp.
Alpheus armillatus
Panopeus sp.
Eurypanopeus sp.
Sesarma sp.
Petrolisthes galatalnus
MOLLUSCA
Laucaplna sowerbli
Cerlthiopsis emersoni
Sella adamsl
Triphora sp.
Crepidula fomicata
jC. plana
C. glauca
Nassarlus vibex
Bulla occidentalis
Odostomla sp.
-99-
-------
Table B-2 (Continued)
B-16
SPECIES COLLECTED BY QUALITATIVE SAMPLING OF NATURAL AREA T (UNNAMED TIDAL
CREEK
POLYCHAETA
Syllidae
Sabellidae
CRUSTACEA
Ampithoe sp.
Lembos sp.
Corophium sp.
Erlchthonlus brasiliense
Euceramus sp.
Erlchthonlus sp.
Elasmopus sp.
Melita dentata
Penaeus setlferus
Alpheus normanni
Panopeus sp.
Micropanope sp.
Pilumus sp.
Menippe sp.
ECHINODERMATA
Pedicellaster typicus
Ophluroidea
Arbacla punctata
SPECIES COLLECTED BY QUALITATIVE SAMPLING OF NATURAL AREA BB (BARFIELD BAY)
MOLLUSCA
Cantharus tinctus
Melongena corona
Mytilus recurvus
Anomalocardia cunelmeris
POLYCHAETA
Cirratulldae
Sabellidae
CRUSTACEA
Panopeus sp.
Neopanope sp.
Petrolisthes galathinus
-100-
-------
B— 17
Table B-2 (Continued)
SPECIES COLLECTED BY QUALITATIVE SAMPLING AT DEVELOPED CANAL L
POLYCHAETA
Maldanidae
Orbiniidae
Sabellidae
CRUSTACEA
Neopanope sp.
Hexapanopeus sp.
Micropanope sp.
SPECIES COLLECTED BY QUALITATIVE SAMPLING AT DEVELOPED CANAL M
MOLLUSCA
Cerithium sp.
Thais floridana
Cantharus tinctus
Nassarius vibex
Fasciolaria hunteria
Latirus sp.
Haminoea sp.
Ostrea virginica
Mytilus recurvus
POLYCHAETA
Eunicidae
Cirratulidae
Sabellidae
CRUSTACEA
Lembos sp.
Corophium sp.
Lysianopsis alba
Periclimenes longicaudatus
Alpheus sp.
Callinectes sapidus
Panopeus sp.
Neopanope sp.
Hexapanopeus sp.
Eurypanopeus sp.
Menippe sp.
Petrolisthes galathinus
ECHPNODERMATA
Pedicellaster typicus
CHORDATA
Ascidacea
-101-
-------
B-18
Table R-3. Marco Island meroplankton.
Taxa
Station
J
L
M
p
MR
K
T
MEROSTOMATA
Limulus polyphemus
X
X
X
X
CRUSTACEA
Branchiopoda
Diplostraca
Cladocera
X
X
X
X
X
X
Ostracoda
X
X
X
X
X
Copepoda
X
X
X
X
X
X
Calanoida
X
X
X
X
X
X
X
Malacostraca
Stomatopoda
Squillidae
X
X
X
X
Mysidacea
X
X
X
X
X
Cumacea
X
X
X
X
X
Tanaidacea
X
X
X
X
X
Isopoda
Anthuridae
Apanthura magnifies
X
Sphaeromatidae
X
Cymothoidae
Aegathoa sp.
X
X
X
X
X
Amphipoda
Ampeliscidae
Ampelisca sp.
X
X
X
X
X
X
Ampithoidae
X
Bateidae
Corophium sp.
X
X
X
X
X
X
X
Erichthonius sp.
X
Melita
Melita dentata
X
X
Aoridae
Lembos sp.
X
Lysianassidae
Lyslanopsis alba
X
X
Decapoda
Penaeidea
Penaeidae*
X
X
X
X
X
Sergestinae
Lucifer faxoni
X
X
X
X
X
X
X
Caridea
X
X
X
X
X
X
X
Palaemonidae*
X
Alpheidae*
Alpheus sp.*
X
X
Hippolytidae
Tozeuma sp.
X
X
X
X 1 /l 4 C J A M A— —T A a* « 1 A « M A— A J .
*Identification uncertain
-102-
-------
B-19
Table B,<-3. Continued.
Taxa
Station
J
L
M
P
MR
K
T
CRUSTACEA
Malacostraca
Decapoda
Anomura
Porcellanidae
X
Polyonyx gibbesi
X
X
X
X
X
X
X
Paguridae*
X
X
X
X
X
X
Brachyura
Xanthidae*
X
X
X
X
X
X
X
Ocypodidae
Uca sp.
X
Total taxa
15
18
17
16
18
16
21
*Identification uncertain MR = Marco River
-103-
-------
Table B-4. Marco Island mercplankton; Ebb and Flood Tide Sampling
Number of Organisms per 1-Minute Tow
Taxa - Day Sampling
Station J
Station L
Station M
Station P
Marco
River
Station K
Station T
Ebb
Flood
Ebb
Flood
Ebb
Flood
Ebb
Flood
Ebb
'Flood
Ebb
Flood
Ebb
Flood
CRUSTACEA
Branchiopoda
Diplostraca
Cladocera
Copepoda
Calanoida
33
4
38
212
102
32
1
3
90
13
64
21
2
54
51
26
19
6
Malacostraca
Stomatopoda
Squillidae
Mysidacea
Amphipoda
Ampeliscidae
13
6
1
3
13
Ampelisca sp.
Corophiidae
Corophium sp.
Decopoda
Penaeidea
10
6
16
50
2
3
6
Penaeidae*
3
3
Sergestinae
Lucifer faxoni
1
38
51
6
2
20
50
13
102
26
6
Caridea
8
224
848
666
64
4
33
101
204
3
45
Hippolytidae
Tozeuma sp.
13
Anomura
Porcellanidae
Polyonvx gibbesi
774
4,198
1
271,183
18,330
973
17
143
10,173
1,997
29
5,497
8,653
2,048
378
Paguridae*
3
13
Erachyura
Xanthidae*
52
1,894
12,076
4,966
512
54
707
353
1,574
28
3,988
4,506
1,434
422
Total
885
6,418
284,319
24,115
1,599
79
928
10,727
3,981
91
9,539
13,312
3,534
882
Total
7,
303
308
,434
1,
648
11,
655
4,
072
22,851
4,416
*1 uncertain flmmobile - appeared dead
-lUt-
-------
Table B-4. Continued.
Taxa - Night Sampling
Number
of Organisms per ]
-Minute Tow
Station J
Station L
Station M
Station P
Marco
River
Station K
Station T
Ebb
Flood
Ebb
Flood
Ebb
Flood
Ebb
'Flood 1
Ebb
Flood'
Ebb
Flood 1
Ebb
Flood
CRUSTACEA
Branchiopoda
Diplostraca
Cladocera
8
789
6
73
1,779
2,168
64
263
102
Os tracoda
21
Copepoda
3
Calanoida
41
149
29
23
1
59
47
33
794
30
179
15
230
Malacostraca
Mysidacea
64
51
45
64
6
26
6
Cumacea
3
3
13
Tanaidacea
11
10
29
Amphipoda
Ampeliscidae
Ampelisca sp.
107
10
12
72
3
230
150
Ampithoidae
6
Bateidae
Carinobatea sp.
26
6
Corophiidae
Corophium sp.
8
10
16
5
47
42
13
Erichthonius sp.
5
Lysianassidae
Lysianopsis alba
5
Decapoda
Penaeidea
Penaeidae*
42
27
16
30
Sergestinae
589
102
Lucifer ^xoni
1,552
3,115
806
329
881
939
47
439
819
1,160
2,931
291
Caridea
123
278
166
64
158
166
373
13
167
120
141
34
230
165
Anomura
Porcellanidae
Polyonyx gibbesi
400
64
385
88
497
101
721
16
563
1,536
602
56
4,224
32
*Identification uncertain
-------
Table B-4. Continued.
Number of Organisms per 1-Minute Tow
Taxa - Night Sampling
Station J
Station L
Station M
Station P
Marco River
Station K
Station T
Ebb
'Flood
Ebb
1 Flood
Ebb
'Flood
' Ebb
' Flood
Ebb
Flood
Ebb
Flood
Ebb
Flood
CRUSTACEA
Malacostraca
Decapoda
Anomura
Paguridae*
Brachyura
Xanthidae*
8
449
21
896
237
156
252
640
12
500
10
26
435
151
538
130
51
947
6
Total
2,589
5,483
1,680
692
1,889
1,968
1,759
674
4,634
5,210
4,545
1,098
6,655
496
Total
8,072
2,372
3,857
2,433
9,844
5,643
6,151
*Identification uncertain
-106-
-------
B-23
Table Br-5. Checklist of Marco Island Ichthyoplankton
species.
Clupeiformes
Clupetdae
Harengula jaguana (scaled sardine)
Opisthonema oglinum (Atlantic thread herring)
Sardinella (anchovia?) (Spanish sardine)
Engraulidae
'Anchoa mitchilli (bay anchovy)
Myctophlformes
Synodontidae
Synodus foetens (inshore lizardfish)
Atheriniformes
Cyprinodontidae
Cyprinodon variegatus (sheepshead minnow)
Atherinidae
Membras martinica (rough silverside)
Menidla beryllina (tidewater silverside)
Gasterosteiformes
Syngnathidae
Syngnathus louislanae (chain pipefish)
Syngnathus scovelli (Gulf pipefish)
Perciformes
Serranidae
Centropristis(?) sp. (sea bass)
Carangidae
Chloroscombrus chrysurus (Atlantic bumper)
Oligoplites saurus (leatherjacket)
Gerreidae
Eucinostomus (argenteus?) (spotfin mojarra)
Pomadasydae*
Orthopristis(?) sp. (pigfish)
Sciaenidae
Bairdiella chrysura (silver perch)
Cynoscion nebulosus (spotted seatrout)
Menticirrhus americanus (southern kingfish)
Ephippidae
Chaetodipterus faber (Atlantic spadefish)
Blenniidae
Hypsoblennius hentzi (feather blenny)
Callionyraidae
Callionymus (pauciradiatus?) (spotted dragonet)
Gobiidae
Gobiosoma (ginsburgi?) (seaboard goby)
Microgobius gulosus (clown goby)
Microgobius thallasinus (green goby)
Microgobius (?) sp.
-107-
-------
Table B-5. Continued
Perciformes
Triglidae
Prionotus scitulus (leopard searobin)
Prionotus tribulus (bighead searobin)
Pleuronectiformes
Soleidae
'Achirus llneatus (lined sole)
Cynoglossidae
Symphurus plagiusa (blackcheek tonguefish)
Tetraodontiformes
Ostraciidae
Lactophrys (quadricornis?) (scrawled cowfish)
Tetraodontidae
Lagocephalus laevigatus (smooth puffer)
Sphoeroides sp. (puffer)
*From eggs only.
-108-
-------
Table B-6. Larvae and juveniles of fishes collected in canals and tidal creeks at Marco Island, Florida.
I
I-1
0
VO
1
Organism
Clupeidae
Harengula iaguana
Opisthonema oglinum
Sardinella (anchovia?)
Undetermined sp.J
Engraulidae
Anchoa mi tchilli
Synodontidae
Synodus foetens
Cyprinodontidae
Cyprinodon variegatus
Atherinidae
Membras martinica
Menidia beryllina
Syngnathidae
Syngnathus louislanae
Syngnathus scovelll
Serranidae
Centropristls sp. (?)
Carrangidae
Chloroscombrus cbrvsurus
Ollgoplites saurus
Undetermined sp.
Gerreidae
Euclnostomus (argenteus?")
Sciaenidae
Bairdiella chrysura
Cynoscion nebulosus
Mentlclrrhus americanus
Undetermined sp.
Ephippidae
Chaetodlpterua faber
E = ebb tide, F ~ flood tide
Station J
Station K
Station L
Station M
Station P
Station R
Station T
Day
Night
Day
Night
Day
Night
Day
Night
Day
Night
Day
Night
Day
Night
E
F
E
F
E
F
E
F
E
F
E *
F
E
F
E
F
E
F2
E
F
E
F
E
F
Ea
F
E
F
2
7
1
2
5
3
1
2
1
1
1
2
18
2
12
1
2
1
2
3
4
2
1
135
85
11
17
38
8
70
8
1
60
2
12
18
12
17
10
55
31
76
20
14
6
39
43
12
1
1
1
1
1
1
1
2
1
1
1
2
1
1
1
6
3
1
1
2
2
1
2
2
1
16
1
5
1
2
21
2
1
2
1
1
1
1
1
1
1
1
1
4
4
1
1
1
1
34
7
2
5
3
1
2
3
2
2
6
2
3
1
3
1
3
2
3
10
4
9
38
2
14
20
15
8
2
2
2
4
4
2
5
1
4
1
1
1
7
1
4
26
2
5
8
1
2
2
1
'Analyzed 1/16 of total sample
2Analyzed 1/4 of total sample
3Probably Opisthonema and/or Sardinella
-------
Table B-6. Continued
Station J
Station K
Station L
Station M
Station P
Station R
Station T
Organism
Day
Night
Day
Night
Day
Night
Day
NiRht
Day
Night
Day
Night
Day
Night
E
F
E
F
E
F
E
F
E
F
E1
F
E
F
E
F
E
F'
E
F
E
F
E
F
E
F
E
F
Blenniidae
Hvpsoblennius hentzi
2
3
2
1
1
1
1
I
1
Callionymidae
Callionymus (pauciradiatus?)
2
1
2
5
28
39
Gobiidae
Gobiosoma (ginsburgi?)
8
1
2
Microgobius gulosus
3
2
52
2
15
2
1
5
28
9
16
1
1
6
8
9
12
101
Microgobius thallasinus
30
1
12
6
2
8
2
2
J
20
25
1
Microgobius sp. (?)
1
1
1
1
1
1
2
2
3
Triglidae
Prionotus scitulus
2
7
1
2
1
60
I
Prionotus tribulus
3
1
2
1
1
16
1
Soleidae
Achirus lineatus
9
1
10
4
6
6
2
3
124
1
4
5
2
16
8
3
5
6
4
4
13
25
12
5
Cynoglossidae
Symphurus plapiusa
4
2
1
2
1
2
b
20
92
6
1
12
Ostraciidae
Lactophrys (quadricornis?)
1
1
Tetraodontidae
Lagocephalus laevigatus
2
1
1
1
Sphoeroides sp.
1
6
4
Total number of species
2
9
3
13
12
9
13
8
11
8
2
9
7
13
8
6
6
3
9
13
11
7
17
19
6
14
15
9
Total number of individuals
39
37
4
146
40
17
178
25
40
12
142
31
11
45
24
92
22
28
56
141
31
10
294
441
22
115
138
142
Total number of species
0
5
7
5
L4
9
L5
10
7
15
14
23
16
18
Total number of individuals
76
150
57
203
52
173
56
117
50
197
41
735
137
280
Total number of species
8
3
L5
17
16
24
22
Total number of individuals
226
260
225
173
247
776
417
E 23 ebb tide, F 31 flood tide *Analyzed 1/16 of total sample ^Analyzed 1/4 of total sample
-------
Appendix C
WATER QUALITY DATA SHEETS
-111-
-------
H-C\
o w o
r <1. LU*.-h h,_U. 1-A AKcA
l I'Jvt,. ^ 111
H i
Ouuu i
i»K ^ I M
H-.tT
IM'IHI*
I UH
1 OLl* \ .
NlMut H
0 i) U I u
* a T h -i
re
Or NT
Ol)c?99
HO
Mii/L
uutdu
bAl.lNi T Y
PP Th
OOO I 0
Nh j-i\
f U I mL
mo/l
OOoc'd
r r ^jkl
N
mG/l
OUb JO
^J^SNO 3
fur al
MG/l
N
Oooob
r»HOS- T U I
u o on u
I C
L
Mli/l
V b 0 • u; •-»
J'M I H
I .a > 1 M jm
1 NiMUM
>0'-
bO.
¦ t AN
v Ak I A ivlC t"
> f 0 . Ut V.
"> T i) . E WW ,
IUl F VAW
i Oti Mr AN
/bO-UM
I hU
1 rt
I
1^ /b
I 4»f>6
9
~ b
b
0
b6
7
I *~ H
1 ** -*
1^
b
J 1 . <
/.u
J /. 1
0 . UH u
SK) *d
J • 0
J b. o
0 . u^u
<~ *4 0 / . u
I Vb. u
b J J u . v
0 . 1 Ju
1JnrtHO.i
4«»r>b. 7
I VU04O.4
0 .004
JO .o
b. 'j
Jo. J
u. o
Jb. J
o. o^b
b
u. j /
0 • <^4
1 .HO
0.4b
O.JO
o.oo
0.0b
o.o
l o • j 1
0.^9
b
'J . 0 1 ft
0 . U 1 K
U . Od
0,00
u. 0 1
u. uu
u.uu
O.JJO
0.0b
O.Ol
b
0 . 0'*0
0 . OdO
U . H H Ij
o. u 39
0 . Orto
o. ooo
o.oo*
0. UUd
b. Ob j
0 • Obo
b
•* • 9
*. U
cd • /
104.0
** • b
0 . ^
0 .b
U • d
1U.9
4.5
UUOu J
UtPfH
FttT
70*; 11
T 1 06.
bT AOt
00n9b
*> HO I b T .
bLOlMtNl
SAMHlt
U 1 OCO
CD .-iuu
UHY Wbl
M6/fttt-CU
u 1 \)d.i
LW MUU
liKT In o T
Mo/ftG-CK
0 i U4 J
Cu mud
O^Y *ul
•*O/f\0~LU
olObc:
Ph MUD
OHf wo I
Mu/rtb-Hrs
0 1 Obo
Nl MUD
OrtY W(j r
MO/ftb-N I
0 1 09 J
ZN MUD
jky wor
MO/RO-/N
/ b 0U b
S'UMMK «
.«£ X [ (Ml /M
M I N I Hi iM
au.4
bUM b i.
'It AN
vI A' JCt
Slil.OtV.
sTt i • K ^ •
i.Ot r
I Ob Mr AN
/bOoO^
siniion - H-o2
1 **4
Id
1
idlb
l<*bo6
s
cS
b
0
*)6
7
1
bb. JU
ob • JO
bb. J»»
• U V
tib • Jo
I
J. jJ
J.JO
j • J a
1 o .*>*
J .JO
1
bn.ti)
b4 « 4 U
J 4 . 4 \J
dVb^.Jrt
b4.4t)
1
I J . J l>
11.10
1 I . 1 U
l^J.^1
1 i . i J
1
•* d • 0 0
*» c: • hO
ou
i o 1 ** • 7 b
h^.60
MAhCU ibl -r>OvM l-H.'i CAhAL MuU UMt r h L UK 11) A A»< t A
i
jH.bO
J4.bO
Jh,oO
1 l^O.^b
Jh .bu
1 I
I t
1 I
J 0 ^
1 /
1
» uO
. oO
. r>0
. / 6
11>0
1 /. t)U
h luocK h 1 LI. b fuor
UUUu J
OtH I H
KttT
UOOO 8
LAB
1UtNI•
WUM»jf ^
uoo l o
w <« r £. ft
1 t-lH
Ck n r
i)()
PKlJbt
Mo/L
U 04 a U
bALINITY
PPIH
Oun 1 0
OH j-n
I U 1 AL
Mu/L
UOOCD
f . 0
Jo » Ti
0 . u«« 0
U . 3 J
0 . 0 1 r\
0 . 1 00
0.4
' • i Ji MUM
1
J11. ti
3 . n
3d . 1
0 . (t^O
0.^7
0 . 0
0 .0^0
D . 4
4 ud
c 4' ^ . t
<•4 / « t
i). 1 oU
1.4/
0 • Ob
0 . 4r,0
C6 . 3
lO'i S'j .
/bof)
7b/m
c . d
I 0 J J<* 1 . ^
0 . DOo
0.44
0.00
0. 0<^
1 b 0 . V
' I «N
b
JO. o
b •
3b. y
0 . 0 J d
y. c:v
0.01
0 . 0Vd
b. /
v I A,>^C^
?
0.^
1 . u
0 . 1
0 • 0 0 U
0.00
o.uo
0 . ooo
0 . ^
^ lo.jJkV.
3
O.b
1 .0
O.J
U.00O
11.03
0.0 0
0.004
O.H
s. I i i # ,
0
0. 1
0.1
0.0
0 . u04
u. o 1
0.0 0
0 . 00^
0.^
i )ct Vi.1
b4
1 . o
It ./
0 • *
dtj . ] HO
11.1 o
O.Ob
h . bbi
/. 3
i (Hi Mr rtN
4
JO.h
b. -)
ib.V
O.o il
o.^v
0 . 0 1
0.0 Vd
b. b
U U U i) J
Or >* I h
M k T
7 u ^ 1 1 U0n*b UiOcO 0 i 0 d V U10 4 J OiUo^ UlOoo 01UVJ
1 I UK % ¦iul->i, I!) >4UO L^ MUU CU MOO i«J 1 MUD
bT/^OL btl-'l'^tNl jh/Y WO 1 ilWt aOI Uh C ah] urJ 1 *0 1 L/H T ^oT u^Y HOT
SAM^lh MIj/KO-Cw MO/ino-CU hu/Mi-Hn Mu/iui-Nl MU/fVO-^N
/'itO.U-j
'iO -i.'h •/
•« . > i Mi iS
• j 1 M • i M
'"'J -i
-.(• * Su.
"I M4
•/<••' | A i. ( h
-. \ 0 »Ut V .
K./.
L "t ~ V <• /
{ «>i. Mr «'i
si ji iuim - H-S3
"I
11
1
* Ut<
b
I
j
u
b4
I
lo. 1 u
Ml . i 0
i (> • 1 0
VU<"> .
• U u
nw . 0-J
o . U U
I
1 « oO
1 • *u
i . nU
J . <^4
1 • ou
0,JU
r> • ^0
t». DO
,C,T>
o.^u
¦*rtl'LU 1 bl -c'bUOM \ -(\f> L4NA1. MU'J LU«tn r L OH 1 U A AHlA
1
• 0 0^
s . (.OK
^ .tlU
lo.\»U
** • 00
1
C .30
d .bO
d • bO
to . U 1
0
C / * J . b
3ob. 1
JdO 1 .0
J . -500
J.ob
0.10
1 . 0 /b
Ob. ^
^0 1 bw.
Jb7^
bb 7 7b.1
Mb/. 3
1 1 7 J*d« . 0
0 . u 3 3
I • bv
0.00
0. 1 id
4 3 j.b
* r
b
30. /
4 . J
3b. V
0 . U\>0
o. Jb
0.01
0.10/
b. b
l/i\* I AWCK
0.^
.4
0. 1
0 . o 0 1
0.01
0.00
0.000
0 . 9
' • T u . Ot V .
3
0.4
1 . D
0 . 4
o.
0.11
o.OU
0 . 0 1 /
1 .0
S 1 1 ' . C KK .
0
0.0
0.^
0 . 0
0. o u L>
0.0 J
u.0 0
0 . 0 0 b
0 . J
i.iij F sOvW
d4
J . J
Jb . 0
1 . 0
jb. H v
d ( . 9b
0 . i d
1 b.3bo
1 •+ • a
i it., UN
Inn
b
jO. i
J . -V
3b. 'i
0 . 0 4 <~
0.3 7
0.01
0 . 1 06
b. b
00003
/O^l 1
00«*^D
01 O^o
0 1 \Jd-i
0 1 OH J
0 1 \)->d
o 1 oob
0 1 0 ^ J
DtPTM
TlDfc
•b woiST.
CD MUD
tH MUU
OU MUU
Ko MUD
Ni MUD
MUD
btAOt
bfcUl ^LNl
UrtY Wol
L»K Y «»0 I
UhY rtljT
Iiri Y «0 1
UHY WOT
UHY «^OT
FtKT
SAMPLk
M(j/KG"*CD
mo/kG-Cw
MO/KO-Cu
MO/^0-Hr^
MO/KG-NI
MO/K.0-ZN
7b 0 m ii t)
i, i»»; h y *•
t 1/1 a J mum
M i*I MOM
'•>u^.
So^, b'i.
it AO
v Aw I A Kb
"j 1 U .UL V .
S I O .h ,
L O h F "i A r*
I (jb Mt AN
7bO-iOV
V 1
1
bl 0
3 of?.
b
J
0
34
&
I
7 . J u
£?/. JO
^ 7 . J 0
74b.
^.7. Ju
2 / , J u
1
1 . U0^
1 . UOK
1.00
1.00
1.00
1 .00
1
ti. u 0^
d. 00*
b .00
64.00
d.uo
i
1.^0
I .bo
1 .bO
d idl
1 .30
1 .bO
1
o.Oots
h.uOK
o. 00
. 00
D.UO
o.OU
1
4.oon
U.OOK
4.00
lb.00
H . 00
4 ,00
i
. 00
, 00
.00
,00
,00
d .00
!-11 2-
-------
- H-M
-Kv.0 lbL I * K»-» LAICAL MoU LU«Lr< t-LbniU^ A.«fc>
r i Not i< t I i_L ^ • Ui, r
U U 0 0 \
Dt f|M
t rr'T
0 uiiO^
1 r 1
1 i/t I-J I •
NU'-Mh W
uOO 1 U
m A I I. i*
[ I '-UJ
O M
OudvS"
l>0
MALIN ITV
HHTh.
UOn 1 U
«JH )-W
i U f ML
Mb/L
OUOc'D
rwT
Mb/L
uOb jO
N(; I U . Ut V .
sTu . •
vJ'frF V AW
lOh MbAN
7b0ous
1»1
13
I
49J4
O
1 1
3
0
b4
\ 00
1 uO
1 UO
1 c
lu
1 U
I 0
I 0
b . V
3u . *
U.^flU
(i.*7
U . 0 1 r
U. J Ju
v • u
30 . 1
0.0
34.0
0. 0^0
U • 0 1 *
0 . 0 n u
b • j
JUb \ « 1
^DU.D
3bW . /
I • Jo^
h * b I
u . 1 0
1 .DO')
f (?, J
91U**. i
de>6. l
ld^^43.H
o. l ur
^.43
U.UO
U.^/b
D . (J
3U . o
d. b
36 . U
0 • i UO
0 .**?
0.01
U. IDO
f. d
0 • c
0. 1
0 • u 0e>
U • 0 J
U.00
u . 0 0 b
1. 5
0 . o
1«o
0.3
0. u f<+
U . 1 /
0.00
0.0/^
1.1
o. a
0.^
O.0
u. vd*
0 . Ub
U .00
0 .D^u
0.*
Kb
0 1 . V
0,1
Ob. *H.hNW. 0
luLf Vh« b*+
1.00 Mr! AN b
SI A I i,0^
3D.30
3b . 3 d
i
u
u. s> /n
o • * /
0.**
wi • * /
0.*/
1
*. /u
/0
V. / 0
»uv
v. /o
•*. / u
1
J.40
3.40
J.4U
1 1 . DO
J.4U
I
I • oiM
MOK
O0
oU.jW
/ .*0
/.ou
•¦lAKCU lbl -4UOUM j-rt.1 LAi-AL Mini LUrftH rL\J» u
K I Hlith »¦ I LL b I UU f
oOUo 3
OEHTH
f EtT
OOOOH
t Aft
I Ut.Nl .
NUHBtW
u u u J u
»A ftw
Tt rlH
CtUT
0
ou
HHOftC.
Mb/L
0u<* iu
b AL I <¦* I I r
HH f H
J Ou i 0
Nri j-N
I U I 4L
MO/L
uOO^b
f'Jf KJLL
M'j/L
U 0 o J 0
3
¦i- ful AL
Mb/L
OUoob
HMUS- (0 f
M«j/L H
U U
f UW(j
L
MU/L
m' »'4ne ^
-<1
w 1
•M
i 0
10
1 0
1 U
I
I-'O K 1 MtJM
U
Jd.')
/. u
i(». ^
U . 1 Hll
U • / J
u . u 1 r\
U . d'fii
ti.
*- 1 N I MUM
I
¦JO. i
U . ('
J4* . 4
U. u 1 0
0 .JO
0.0 l^
0 . 1 0 u
b •
SJJ
. 3
l^d* /
J . fl '* *J
¦J. do
w. 1 0
1 . baO
/-J.
SiJM S.'J.
37 JS
H *~ 4 d . *~
7u«. 1
1 1 J^.O
0 • O'fJ
d.^J
0.00
0.311
5 .
if ufi
<5
3 0 . r>
1
i'> . U
U « I'Ot
0 . D.J
u . u 1
\J . 1 OH
/ .
7/\^ 1 A i\|0
0.3
3, J
u. 1
u.uO^
0.0^
0.00
0 . OuD
U .
u.»)V V.
j
U • f»
J . o
o.4
U • u '» cJ
0 . 1^
U . u U
0.0 M
0 .
- ^ i'. h ^ u #
0
0.1
<1 . c
U . U
U . II i J
U . (14
0 .00
0.0^3
0 .
i irh VhH
b«*
1
rib . d
1 . 0
4 * . 7
£ 3 .0 /
U . 1 K
** J . o ^ J
1.
t ll«» MF AN
) \'i•(
S
30 ,m
U . 0
JO . 0
0 . US')
U.Dl
0.01
0. lbb
/.
i fi-i - tt-ZQ
MAKCiJ
i bL -Al ^AiiAL i lUU 1 n
L, -i
•• i ^
'.\X 1MIJV
¦I M i ~ IM
i >
w u<• b1 ^.
•f .<(i
ANCh
'1J.ULV.
I -J .t H'W .
('i h Vup
' im Mk uN
r>
i
6 /n
'j
U
0
0
a
•3
Si
U . U'jO
U . o 1 u
w,o:u
0.01"
u . Ot'H
U • uuu
• uo-^
u.Oo/
J o » V U J
U.O^J
d /
df
df
0 « \J J
V • ijd
0 . J' * u
i *' . c'
0 . ^ 1
0 . J 1 f\
0 . il rt J
3 . b
/. b t
0 . d o
4 . i f'b
1MU.£?
d.J*
U . 00
O.n? )
IJOc.l
u • £* •/
0.0 1
U . 1 b-»
b. /
u,uu
o. oo
0 . 0 (ID
3 .b
u.Ob
0 . 0
-------
I-Ot
uouu i
Ut Kin
KtU
U i) 0 I) r»
I AH
1 uh.N I ¦
NUMHKh
jL * ><> J
UO0 1 0
w A 1 K «
I LmH
CM!
r ' ¦•!
Ou d'il
00
KKUUt
M(»/L
HJ L -jW*. « r l J» 1l>-
0 0 h 'J U
bAt J N I T Y
pp r ri
U U '3 i U
nh j-n
(Ol AL
Mij/L
U U O t"j
KM * Jt L
M()/l
U 0 6 JO
NU2&NU J
h-T u1AL
.1 .U
0066b
PnOS-TO f
mo/l P
a- 3u
UU60U
I UNO C
L
rWL
/ TUl i'O
i"«l r*
I h A I |-*.UM
1¦ I rJ I M- )M
>1' I
SIH Sw,
. ih AW
VAk1AuCk
11»• .
< M h VAH
i. or, .*t AN
/"DOOU*
lb
1
bVrt
60io
d
r'O
4
0
b»i
o
7*
Jl . u
j o. u
24 i j.o
7j/l4.rt
JO.5
0. 1 t>b . J
O.uuj
0.4c?
b. J
Jo • b
O.O^H
o.£?a
u. **
0 • o
0 . uuu
u. 0 1
0. 1
U. /
0 . UOv
0 . 06
0.1
0. i
0 . 00<+
0.04
ld*o
1
J (.dbq
dfi • I1*
JO ~ D
0 . K)dd
O.dl
b
o . 0 1 r\
0 . (J 1 *
u.Ob
0.0 0
O.01
0 .00
o.oO
0. 0 0
0.0b
o.oi
u . o^o
0.0/0
0 .400
0. 0 32
O.OtiO
0 . ooo
O.Olu
0 . 004
I2.b00
O.U 7V
blallUN - 1-OS HAHCU IbL H NH CANAL *UU LU«t* l-LOrflJA AntA FlNbLK f-lLL SlUuY
U 0 0 U 3
UEPIH'
FitT
UuOOrt
lah
IljKNT.
NUMmEW
ooolo
*ATEw
TcMP
Ct NT
002*V
00
PHJbL
MO/L
00 **60
SALlNlTY
PPTH
006 1 U
Nh J-N
fUTML
>Ui/L
OOO^o
TOT l\JEL
N
MO/L
006 JO
N02fc»NO J
>^-Tu I AL
MG/L
006bo
PHOb-TOI
MG/L P
0 .4
2 . *~
2 J.b
119.b
4 . 7
. j
1 . b
0.7
J2. 0
4.b
UOooO
I OkG C
C
MO/L
/nO^Urt
•JlMMhW
•* A X I MUM
•M N I MUM
»0'i
SUM SO.
" f AN
v A-v I anO
sTo.fcrfW.
Lwhf VAK
• ui» Mfc AN
s i a r ion - i-03
/o
20
I
t»^0
o7-h)
6
2b
b
1
bU
7
^0
70
7 0
H
4
4
4
«*
JO • v
6 *d
J 7 • o
O.UJO
O.J/
u . 0 In
0. OVU
"D . J
30. <*
h.J
Jb.4
O.Olu
0 . 1 b
0.01K
O.OdO
d.h
c!l«to« f
Jo6.^»
r rsjfcL
J
pHUi-ro r
r uhi, c
1OtNT•
rtMP
p^oht
fO 1 hL
N
N-1U!AL
c
NUH^tW
CKnT
Hu/L
HHTH
HJi/L
MG/L
MG/L
Mu/L P
Mo/L
UOOO J
OfcPTH
FE FT
jiU'Mh f
oO
bO
b(i
bO
»>
h
6
o
6
i !i« t, 1 MlJM
H
Jl .6
b • 0
J/. 1
0 . 0 jU
0 . 4 i
o.olrt
0. 1 ub
o. b
hINIMOM
1
d*. v
4.U
.1b. d
0 . 0 1 0
0. lb
U.0 1K
0 . OHO
4 . /
V Ml
dS /
1 O J / • J
J I 4 . o
e: i / J. 1
0. 1 JJ
1 • **0
V . 06
0.32b
J J. 1
MM Sw.
1 JVJ
bb^H4.U
1 b /4 .
/871b.4
0 . 0 0 J
o .6*
0.00
0 . O^b
1 ob . d
* t Uf4
4
Jo.o
b • d
J6.c|
o. \tdd
0 . J J
O.U I
0.0 0/
. t)
VM I AULL
s
0.^
0.4
0.2
O.uOO
o. 01
U.OO
0.000
0 .b
v I '>. Oh v .
u. «~
0 • b
0.4
U.UUO
0.0*
0 . UO
0.010
0 . d
k* 1 1 1 . t .
0
0.1
0. i
0. 1
0 . 0 0 J
0.04
0.00
0.004
0 . J
1 \»K F 'J UU
1.4
1 1 . o
1.2
J<4 . / i* H
d f .** 4
)J«UU
1 1 .2os
1 h . b
. Oh M}- AN
4
3u.o
s.ii
Jb.2
0.0^0
U . J2
0.01
O.Ott/
b.b
s U I IWN - i-04 MANCU lal. -luUhf *¦ w >» Lm^imL tM» LUwLr < rmiJ 1 r Y
FH I h
UU'j 1 0
N h j - im
I U f hL
l*1o/L
OUO^D
TO) * Jt L
N
M(?/L
U 0 6 J u
Nl>£?nNO J
f U f AL
Mb/L
(J 0 6b D
PHOb-Tt)T
MO/L P
0 0 or
r OHb
L
M(j/L
t jIImL'M
' II • Mf- *
b /
b7
b/
a
b
o
b
">4 * I MiJM
Jl .<~
t.d
J/.l
u . UbO
0 . t)b
0 . 0 11\
0 . 1 1 0
b.
* Hi | MiJM
T
^si.d
2.4
3S.b
0. o^u
0 . J 3
u . 0 1 f\
0 .060
4 .
-«u •
ji^
c'OmO.o
J2d. 4
^4^0 , U
o. 1 o u
2 . Jn
o . Ob
0 . t> 1 0
Jl.
s•>.
1 V4 f
tod 1 ? J . ^
16oS.0
o /d4V.4
0.00/
0 . l>b
U.OO
0 • 0 4 *~
166.
r A 4
D
JO.b
4 . ^
jb.«r
0 . U JU
u. jy
0.0Mb
•D .
1 ANCI-
(J. ^
o.«
0 . 1
0. UOU
0 . 0 1
o. oo
0 . 000
0 .
.10. Jc v/.
J
0 . 4
0. «>
O.J
0 . U 1 b
0 . 0 ti
U.OO
0 . 0 I 2
0 .
.11..|- kk.
0
0.1
0. 1
0.0
0 . 0 0 o
0 . 0 J
0.0 0
0.00b
0 .
v.'^ F vai.
b3
I .H
lo. /
o. >y
lJ 1 . O u
£0 .
-------
i b 1 . ¦ - J- 0 1
1SL -/UO ^
1 N"l CAwML
MOl* LUKtK rLUKlua
Ar»oC r( r (lL
D t uu 1
.1" J I
U.IUU 3
UJUun
U u 0 ) u
00 hoU
OOLi 1 0
UOO^b
0 u6 JU
OUt3C)S
Ou OD U
Ot- P I H
L an
»« A It- K
salinity
Nh i-N
fuT ^JtL wo£if.Nl n
Mb/L
MO/L
Mb/L
Mb/L P
vUj/L
1.'.
• .("-'nr '•
¦ >7
OO
^>r»
bo
J
J
J
J
j
uiA 1 -*W «
i h
Jl .<~
b . c5
J (• u
U.UJU
O.J /
u.uir.
0 . livO
O.J
• 1 rx 1 M\ IM
I
JO. 1
4 . J
,is.7
O.O^U
O.d'i
o. 0 1 *
0 . 0 !\)
J.b
'. I '.
«~
£?0 Jl> . D
Joti. 7
<-.^U 1 »J
U . 0 fu
0. v J
w. 0 J
O.d<*0
I 'j . j
SU'1 St'.
I
8737 J.a
O.OUdJ
O.JO
U.00
0 . 0 1V
m .d
• > M-J
i
JO .o
b • b
J-o ~ -~
0 • u ^ J
U . J 1
0.01
0 . UoO
o • i
viik i u' jLf-
0./
0 * ^
IW
0 « f» UU
0.01
0*00
O.UUO
1
> h> • Ijc v ,
<*
U .*»
U.7
O.H
u • uuo
0 .
0.00
U.O 10
l.«*
1
0.1
0. i
0. 1
0 . (/ 0 J
u. 0t>
0.00
0.006
u. d
i »'h K vak
OJ
l.H
1.1
d* • / HM
dr>* Id
u.ob
l^.bOO
c ti. J
1 Oi» Mh AN
S
30.^
b • 3
• 4
0 . u c" J
0 . JU
0.01
0. UrtO
^. V
/t»Un J 0
OUUo J
70<;1 i
UU4^t)
UiU^o
Oi ue:^
U IU«* J
U i Ubc
u i Oob
01 u 1 mLhT
UK*
UKY ,i^I
L)Kr riljf
iMt a(j 1 Ukf I^hl
Uhf fiol
J-fctT
S^MPtt
Mb/AG-CU
t?-Cw
Mo/Mj-PH M(j/KG-M
/*¦> Omuq
MM*(MUM
iNlHiiM
' > *_J M
SUM S>i.
' T M N
V#i"' I UmLf
*»1 U . 1 Jt- v.
Mu.tPM.
i itK v>*n
I (ll> Mf «M
f S«»* { u
i I <> I 1 U1 I
J-02
n7
i i
1
s /c
/
en
<4
I
O 1
b
I
<^D. OU
/tfs.oo
O.OO
*fb »U0
^ I) • 0 o
#">. oo
]
0 • V-yr,
0.
0 .
u.*«
O.^V
I
/ . *u^
/ .^Or
( . *U
o^.'* 1
/ .*0
7 . * <)
u . v *
u . -t>S
<<. W
i
/ • V*J1K
/ . ^ U K.
/ • ^U
6<;. 4 l
/.vO
/.vu
1
4 . O0rf
<~ • 00K
<~,110
1 O • U 0
*.<)0
I
J • 1 0
3. 10
J. IU
V. O 1
J. 1U
HftHLU ibL -\>U t- F t"K"i Lfm#»L Hull LU*t.P f'LUKlurt APLh
«~ • uO '3-10
t 11,ol ~< MIL > m>i> f
U0OO i
f)fcP tn
f fctf
UOOO"
t 4h
I L'LN I .
HllMHfr P
0 o u 1 u
n/A 11 H
rt mp
c> wr
0 0 V-*
»>u
PPUUC.
Mb/L
UUttlU
salluiir
pt-» fn
0 u u i U
(in J-N
1 0 I '>L
H (i / L
u U tj ^ "J
101 <\ Jt-, L
'J
Mi>/L
U J 0 J j
Ul/^NNU J
•N- 1 u 1 HL
M( i /1
U 1'003
PnOh-Tu r
OuottO
f UKu c
L
Mu/l
• A- ..**¦ P
«-l
~>1
ul
1
J
i
.1
3
)
w / . ^
t MVJ
0
Ji». /
b • d -•
Jo. 1
U . Of? J
0 . id
U . 0 1
0.0//
tJ . O
I ai'iCl-
IS
0. 1
u.«»
U.O
0 . U 0 0
0 . uu
u . 0 0
U . OuO
1
<*
O.^t
i). i>
U.C
U . 0 0 0
U . 04
a. ti u
0 . 0 0 o
} .4
. I ' ) .t HP .
I
o • u
o • t
0 . u
0 . u u J
U , Oc1
it. 0 0
U.OOJ
0 . h
< - t Vmk
ni
l.d
1 I . 0
0.0
d <* . / A «~
1 d , b 0
0 . 00
^.bJl
d* % 0
» ou AN
•-') t i u
b
.to . 7
5 • 5
JO. 1
J . O^J
0. Jd
1' . tl 1
0.0//
b.b
OOUU J
/ll^l 1
Uu**wt>
U 1 0c o
0 1 UC V
¦J I J'»J
V 1 U'Jf
U I UOM
0 1 OS J
OKPTm
Mijh
^ -10 f s r.
bt
LiJ nUiJ
CP ^tJiJ
( u Mlii)
Pn MUli
1^1 MUi)
ZH MUi)
b 1 «bt
UP T Wv„>l
u « \ 1
IN' f |
1
-------
- J- 04
•wimLU I bi - 1 U 0 H
r lan<«l tUU LOrttrt r-LdhlUA A»jPTh
Duo 1 0
Nri J-tNj
* f O f '«L
OOo^o
Tol ftJtL
Hh/l
UKO JO
NlV.NO J
N-TufAL
Mb/l.
OObbb
PhOS-lOI
MO/L P
uuoou
T 0*G C
C
MO/I
/r>U'
•(. K p
<*b
'~0
HO
4'J
J
J
J
i
J
, >ji * 1 M JM
•J
Jl .o
b.d-
Jo . o
O.uju
0. <~ i
U a 0 1 ft
0.03b
o. b
M I fJ I MOM
I
3. / -
3b.4
o. u jo
0 • 3 J
0.01K
0 • ObO
b.b
1 /v
NOC.v
dJl . J
lt>bf
o • us»o
1.11
O.OJ
0.24b
1 a. J
SU'" VJ.
HH9
4*7^3.V
11 ^.b
D*7U / . 3
O.OUJ
0.4 1
0.00
0.0^0
1 \d.d
I M4
4
JU.O
b. 0 -
Jo. 0
u . U JU
u. J?
0.01
0 . 0ot V .
d
0 •
U • o
0, J
0 . 0 u u
0 . 04
0.00
0.00 J
0 .b
S f •) . r hi ^ .
0
0.1
0* 1
u.u
0 . U 0 0
U . U d
0 . an
0.00*
0.3
L i' r K V A k
dJ
1 .H
i^.u
0 .s
U.1H
1 0 . d 1
0.06
J.b Jb
d • 1
l.iMi Mh AN
3
JO.5
b.u
J6 • (J
U.OJO
O.J 7
0.01
U.Qd
6.1
/bO'-* 1 0
ST a I ion - j-2(j
MArtCO IbL - AI LANAL MOuTn LUvitK KLOklUA akLA
u 0 0 0 3
oepth
OUUUo
LAP
OObl U
NH3-N
UUt»CD
TOT KJfcL
UOoJU
NO<^NO J
CObbb
PnOb-TOT
IUtNT.
TO! AL
"i
1^- ru r AL
C
Ftf T
NUM^fR
M«i/L
•
Mo/L
HG/L
MO/L M
M(,/L
/oOo1u
T t) • fc Wtv •
0
0 ,00^
o..0*
0.00
0 . Obb
l.
L11 f VAk
0
J4.b/J
J-» .bo
0. id
14t:.
b4 « y
1 01' «!¦ AN
4
\),Qdt
0. J1
0.01
0.1 Jd
^.a
V ilNlbLK r ILL *rui>r
OObdO
OPo C
/ >
-------
u I 11 'i» - K-oi
^1,^1.0 Ibl -^UU fl Frt.-j LAICAL MUU LOath FlUmIUA ttKt.A rlOGcH KiLL blUui
U'lUlJ >
»(»• r I *1
Kt T
U'JUUtt
t Ah
lot- u l .
o u o 1 o
71 VP
ce n r
oO<;*v
uu
PHUht
Mf,/L
0 OAttO
S M t IN/ TV
PPTd
u uo 1 u
r 0 I A L
M(,/L
OOb^b
fur *jtu
N
Mo/I.
00b JO
"rfOd^NO J
n-to r al
MO/L
UObbb
PHUa-TuT
OUbuO
I Oku C
C
Mlj/L
f 1 C t.
»*»
fw
f*0
J
1
J
i
»M X I Kl.M
lb
.3^. 1
t »T>
J g . rt
0 .0 JO
0 • Jb
o. o i*
0.0^0
i
iu . d
d.p>
Jb. 1
U.OJO
0 . J3
0 . 0 Lrt
0 . 0^0
•u ^
b i d
/
A 0 V • U
c' b V ^ , d
0 .uvo
1. Ob
0 . u J
o. d hi
SUM VJ.
A 3d'd
7A^r>0 ,tt
£?1as>.^
lUASbd.b
O.UOj
O.J/
0.00
O.OdA
• r au
b
JO.O
b.l
JO . d
U . 0 JO
Mm Jb
u. 0 1
0 . 0 V 0
V r4 1 M i C f-
13
0 . 1
0. ^
0 . 1
0 . 000
0.00
0 .00
U . ooo
'.iG.Ut V.
A
U.J
0 .*
U.J
0.000
0. 00
0.00
0.000
S f •) . t k K .
0
0.0
0.1
0,0
0 . OUO
O.00
U.00
0 .00 o
C dcF \Jkn
b 7
1.1
Ib.o
u. ^
0. 1 IV
o • 1 b
o • Ott
U.0UO
\ 0j>t<] D
i
o • J
b. b
17.j
1 o 0 .
b«b
0 . d
U.S
0 . J
fi . 0
b . b
oouo3
UfcPl H
h tfc'T
/u^l 1
r i of
bTAGt
jOAVb
* MOJ^T.
3tl>I it\f
SaHHLl
l)i 0w.
CULK V«»'
I Uli MJ- AN
/sunlU
rtO
ib
I
b i £
4J^
b
1 i
H
u
b7
b
I
Jcf. AO
3£.a<)
Jif. AO
lUA«rf. /b
J*.<»U
3^.hO
1
] . UO*
1 . uurv
1.00
l.Oo
I.00
1*U0
H
d
n
t>M
1
.UO*
, uo*
,00
.ou
b.UO
1
i . oO
1 . oO
i . oO
J. *r«*
1.0 0
1
1 • UOn;
o. oG*.
H.00
bA . 0 0
O.0U
1
h . UOK
A . 0 0 f\
4 »U 0
lb.00
A. 0 0
1
»t)0
.bO
, bo
,^b
,bU
si *t 1 | u i - K - 02
HAkCO ibl. -l^UUH h PtM tA^AL hUlJ LOWLH KL^kJUA AktA
Ll-lbc W y 11.1. b I UOY
UOUu J
UtHTH
KtfcT
0U006
L Ad
1 Or.N \ •
NUMM*W
uUO 1 0
NATtW
TtMP
Cf'NT
0 0 c^
L/0
p^Obt
rtG/L
OO^ou
Salinir y
ppth
OUo i u
fMh j-f<
lU I ML
0 Ubf'b
roT ^Jt L
N
uubjl)
J
f 4 -1 O r A L
HO/l
OUhbb
PrtOb-TO r
OOOdO
T UWtj C
L
Ho/L
«,< |l .Hf-
rtS)
bv
tiV
o V
e»
o
b
b
b
•..>* ]MO,4
1 A
7 .b
Jb. /
0 . 1 b 0
O.b^
o. 0 K
0. lbO
b.b
••» i ti i mi »m
1
30.?
0 • 0
Jb. 0
0 . 0 1 0
O.^J
w.O IK
0.070
b.b
<11 «
b 1 h
dldl.-*
JoV . t)
J
1 1 o0*3b • d
0 . 0 Jb
o •
u.00
0 . On J
1 * 1 .
1 «•>.
7
JO . G
A *d
Jb. 1
0 « OOO
U . Jb
u. o 1
0. 110
b.b
- iW' [ ft.-Jtt
I*
0. 1
A . 0
0 . 1
O.00J
0 . 0 J
0 . 00
o.ooa
o.O
1UK V .
A
0 • <*
d.U
0.4
0 . Ooa
0.1/
0.00
0.0^5
0 . 0
•>l'.,r •
0
0.0
Q.d
0.0
U.Udd
0.0 f
U.00
o.oib
o.O
i (u ¥ vh
DA
1
AO.0
1.1
?0 . 0 ft)
A J.SiA
o. 0 0
AO. Opb
O.U
i ui« Mh^N
b
30 .o
0.0
Jb. 1
0.0A1
o.Jd
U.01
0 . 1 0 J
b.b
OUUOJ
OtHln
^tT
/veil
T I Or
b r ^Gt
% mois r•
btulMk^f
SAM^Lt
CO MUU
UK 1 WbJ
MG/^G"CO
U]
CU MUt)
liril
U 1 \j<* i
LO MUU
0*7 wc» F
MG/Mi-LU
OlUb^
Pb Mou
u^y *«.? J
MG/M-I-Ph
U ] Ubo
Hi MUU
U^Y mHjJ
mg/kg-n1
0 1 OVJ
/N MUD
DP/ Wu!
MG/kg-Zn
/ ,U" <"
. .lit l'U -v
• (i A J "I'll
. \ IK1 MUM
0 1
SUM ^w.
/L
0 un 1U
Nu^nNuJ
w-ro)ai
Mo/l
00'>b^
PHOS-IOl
MG/L P
U 0 0 * U
T 0^0 C
C
Mu/L
f^O'"t
•>» «
•' 1 X I M t »
~ I N I rl. IM
¦•u ¦
SO ' S.^ ,
it >.H
v \ flNCr.
•I'J.utV,
<"'U h V AK
" Ol» MK AN
/'»U. 1 U
76
\d
\
A "JO
J A<»6
6
10
J
0
bb
S
ft
D
b
Jl.l
b. 1
Jb . b
U. 1^0
0 • O-D
JO . 1
0. o
3*. f
0 . 0 1 0
U . d"D
dcVO.d
cNo. J
c^bVb. b
0 . diiO
d.dd
7 o^a J.3
lObj.1
Vbbv U. -3
0 . 0 1 V
0 . VA
J0«o
J. t
JO . V
0 • Oh J
U.J?
0. 1
3. /
o. d
0 . 0 0 ^
0.0 d
O.^r
1 • y
0 . A
0. OhU
0 . i b
0.0
u • ^
0.1
0 . 0 1 b
U .Ob
0 • b
d1# . b
Vi ,-tdd
30. o
0. o
Jb • ^
U . UJd
U . Jb
U. OiK
U . 0 I K
0 • Ob
0.00
0 . 0 i
0 . UU
0 . U 0
o.uo
0 .00
O.ui
6
O.efJU
0.0^0
O.d/O
0. 1 A A
0. lA*>
0. 00**
0. OG0
0 . Od5
4l.bbl
0. 1 JA
b
b.b
b.b
eu / .b
u
0 .A
0
/.b
b. ^
OOOU J
U6.P1 H
Fttr
/u^l 1
1 IDF.
bUGfr
OGA^d
% MUl^T.
S£D 1 ilkNT
bAM^Lh'
0 i lc:o
CO muo
UriY wgT
MG/^G-CU
U 1 \)dV
CP MUU
UkY wol
MG/KG-Ck
U 1 Oh J
CU MUU
Ok 1 hG\
Mlj/Kij-CU
U 1 0 b d
Kb MUU
u^ y w*> i
MO/KG-Hrt
Ulobb
NI MUU
UKY Wo I
MG/KG-MI
OlO^J
ZN MUD
UPY wot
MG/^G-ZN
( .i (j -i 0 *5
i\,i 'ii-
\h A I M
lJ i 14 I MOM
•»» )!••
SUM SO.
i-«r an
V A ^IANCb
s T I). Uh V ,
sfO.tHP.
Cut K VAw
« U(» MK AN
MUm I ij
/f»
U
1
A "3 0
3AA6
0
lu
J
a
5
1
cJb.bO
/ .oOk
^ .dO
ou . Ha
7 .UU
7*80
-117-
i
H . 00
A.00
A .00
lb.00
A . 0 0
f .tiOK
7 . dOK
7 .«ll
bO .rtA
f 0
7 .do
1
J.vOr^
J. vok
J.VU
lb.^1
J.90
3.90
1
J . bU
J.bO
J.bO
1 d • £ b
J.bO
3.b0
-------
b I 1 h ¦ j - 0 I
MiivH) [bi. -_>uo t- 1 h km CAhaU MUU LOrftH hLOKiJA AHtA K INOtH KILL bTUUY
?->U '>v'>
N'-MHfcW
AX (MJM
MINI MUM
->IM
SWM b'J.
U AN
VHKT ANCt
S U)« Dfc. V «
¦b r r#, .
Cur. F vAn
i Olj Mt AN
/SIJQ 1 J
auuo J
UOOOcJ
ujo i u
UL»
Jb.u
U . U 1 u
0.^ ^
U. U IK
u. u /u
JUJJ.V
bjj.b
u. u a o
i • dn
U . UA
0 . 3 7 U
4055
V39A4.o
^Vbl.J
92bi
u. U 0 d
U*4d
0.00
0. 0 Jb
5
Ji . U
b^
3^. i
u.u^u
U.
u.ul
O.uv^
1*
O.t'
U.3
U.J
u. oou
0*00
0. uo
U.00O
<+
0 • b
0. /
0 . o
ll.ULid
0 . Ut>
0.0 0
U . U ] 7
0
0.0
u. 1
0. 1
U . OU A
U .0 J
o.uo
0.00V
n
1
1 d % o
i • H
Au•odb
1 o • ! J
u.uO
I b . 4 o j
<*
Jl.o
b • *
jb. v
U . 1 y
0.3^
0.01
o.ovt
OUUUJ
/ can
Uu^D
U 1
010^4
•J 1 U <» J
0 10b,d
0 1 Uf>ti
U 10
UtPTH
UOE
% M) 1 b 1 .
CO *uo
IK HUU
LU nui)
Ph MUU
N1 MUU
MOU
bT A(,t
StUlMtNf
UKY w(j]
ijkt w>r
jKf aOI
0«/f wor
UK f W<>f
Uw'Y «(jT
l^ttT
SAMPLE"
HO/^0-Ci;
rtO/AO""CH
MO/KO-NI
MG/KO-^N
aoobu
T UHO L
L
MO/L
I .?¦
• L
.1
1S7.C
7.1
U.t
0 .
0 .<
i I. I
r.<
7bU*utj
NiJMHfr.ri
MA A I IM
MINIMUM
-jUM
SU.* b>).
"t AN
V ArV I AUtt
STiJ.Ut- v.
sTu.t**.
COlK VAh
I (Hi Hi- an
/Silal 3
it
1
t*
*Obb
b
1*
<*
u
77
<~
i
J i . O U
31 .60
ji • o «j
99H,oto
Jl «OU
.11 . o o
1
o.^v
u
0 »yb
u. y H
i
i O • J u
1 O « 30
1 *) • J U
£?bb .D^
1 0 . .1 U
I
*0
r'.*0
^» a u
s. /o
r. *~ u
I
iMu
i 1. 1 u
11.10
IdJ.dl
11. IV
11.10
I
H . fQ
11 . /o
11-/0
1 J o • h
1 1. /u
1
b.uu
b.00
s. uo
<>b. uo
b.UO
S I m I ION - L-Cl
MAHCU IbL "b1 •" 1 r ctt tA.4*«l. i-HiO L Jr-L^ rLji'lJ** w»i 0
»*m j-rj
i o I al
VUOC5
TO I r^Jrl
Mb
I OkO
c
MG/L
lol
1 U*
1 u *~
Id
H
<*
A
. -A JM./M
10
Jd. 0
y • y
jh. J
u. a
0 . U 1 K
0 , 1 i I)
o,
I N 1 MijM
1
30.n
H «6
3^ . (
u.o i u^
0 • d'J
U.OlK
U . UnO
b,
i'<
Asr
31 5 o • i
Oii'» t
l j / y. i
u . OtlO
i • I **
U . ()<~
0 . _) / U
U. l/U 1
0,JJ
0. 00
0, 0 3*.;
160
¦ L AN
3
Jl. J
s. >
j-j. /
U . \J 1 d
b.
0 . 0 i
J . U ^ £
h
V 1 ANt>
h
O.i^
l./r
u. ^
u.uuo
0 . 00
0 . 00
0 , (J00
0
>1M . Ut V .
d
U.A
l • 1
u. H
J • U 0 "D
0. 04*
0 . 00
0 . U 1 J
0
WH.
0
0. u
0. 1
0 . 0
(1 , I> 0 )
U .0^
0.00
0 . 0 0 (.
0
( (if- f ^An
sb
io.y
i. 1
'~U.UUO
i b. DO
0 .uu
1 3 . 0 U J
b
» rut MF Arv
i')l i
m
ii. i
b.n
33. /
0 • IJ 1 S
u.sn
U. U I
O
u 0 01) 3
/U/l 1
iJNH^T
UJUcM
0 1 V d i
U 1 'J H 3
U I UtcT
U 1 Uom
U 1 U y J
IJk r»fn
t i r>#i
•fc h-.i i s r.
to r-i'K»
tw Ml ilJ
l.U MUli
•'(< MUii
1 4 i MUU
/N MUO
S f »»(:L
btu»ii'iLMl
l« «? J
1 >r< f rt 11 1
• /r*1 f tool
* j i < i r»' i > 1
i/K f Wti f
l)K / wo 1
SA^f-'Lf
/-»U "K,
iv
. •». * | *ijn
¦4JNJM.JN
Ml
MJM SO.
• I uN
v »H ( ft'lC »
• I < ' . M(. V .
. f->.» »-/W.
l.i I t- V
I 1)1, J. I
/'.•HO 1 J
Si i\ I IIM - l-03
Mi
il>
1
I
'J
l
'« /. J >
> / . 1 .J
•W , 1 u
cV 1 't • I
h/.IU
<~ / . 1 u
. * 0
• el U
^O.^U
(in • .r'O
i
i
]
1 J .'-IU
1 J.bU
1 J .
i
V.DU
V.'JU
^ .^dO
i-iAi'Lu ibl r I h «->M LrAiuL t-«*U I J-'> »")0
1*»/L
Uljfou
bALJj-ii fy
KHln
U U'» 1 0
HH J-t4
(U I hL
Mki/l
UU'J^V
fill Jt L
f,
/L
UDOJU
'MU^nUO J
N-f 6 I At
MO/L
UU'JC'J
hmos-rof
Mvj/L f
UUC
I Owl.
L
I ¦' r»»U ^
I ' A K J M'lM
Sk'.^
suv Sj,
• Af|
• I i)«ul V .
SlD.hHH,
V. 01.1- \J A K
I 1)11
f .'I'. ( J
l n
] n 0
1 hU
i 3 b
\h
. 0
V.O
3o.
\
H> • h
0.0
J4* • t
1 dbU
•JUtJ'3 .
¦4'jf.(
*rid J . 3
11 r>t*
1^133. *
si'U/.b
1 /^Jby.^
1
J 0 • 1
D . •*
jb. /
\h
\).f
. o
u. ^
H
0 .*
i . /
u . ^
u
o.o
0 . 1
o.o
•j 7
1
i 1 • c
1.1
r>
0 . 0
3b. /
M
*J . 0 *> u
l1 . 0 i or
U . ^ i U
u, uo /
U « 0 ^ 0
U • JO (J
ll . V I 4
0 • 0 U ¦•)
*> J • O J<«
U . «}<• J
U. id
\) .dt
J.Urt
1
U .JO
U.Ub
U . <{ d
o.uo
D/.
U. Jb
b
j . u irs
U . U IK
0 • f c<
t) . uu
\J . 0 1
l) . 00
u.uu
(I .uO
1/. 1J
I). 0 1
H
0 . I 0 'J
U • J rt 0
U . dUO
0 .
VJ . 1 UU
0.001
U.Udfc
U . UU V
d'D . O .¦»»
0. n l4 h
0 0 0 0 J
I>LVMh
Ftk T
I
i toe
s f ai^fc.
U I; A io
^ MU1ST.
•jLc liAti^T
brtM^Lr.
u i u cn
CO -iuo
ijm f touT
ulUi:v
Ck MiJII
Uf < f to m f
U1U4J
1.11 hUlj
i;n r hit {
Ml»/r\i>-LU
0 I 0^5^
H H MijU
UK i it
d* bU
-------
s I .. I I
- t-flf
'¦ui'Lu ibl -1 jo r I f- Hii L Mi'iAL lHU LU*tH *LU» I u
Nh J -1<<
I O I AL
Mo/1.
OUOcT')
>1 KJlL
fcG/L
OOoJO
NO^NU J
T u f nL
«(>/L
OObb^
HriO^-TOf
Mb/L ^
UOboU
uw^ C
c
Mij/L
7^' ->1.1
1 W
I -W
1 J 3
vo
o
l»ll
i \
«j
n • b
J'.l . H
u •» / u
I
0*4i
Jh . b
0 . O^U
•U"
/ 'J *3
Mlb.i
o^o •
J'» 11 • k>
OftC^JO
M. * ,
4Hh
1 ^66 i *~ ¦ J
. 7
l<~
1 . n
Jj.c?
i.£"
b0,bJU
i o'i Mh an
<*
JO • /
b • 1
Jb.6
0 . U34*
o.
U • JJ
. 0 1 r\ o. i ^ u
0. o I * u . 0 s« u
o•Ob U.bIu
O.UU O.Otjj
U . U 1 U . 1 [Id
u.0 0 U.000
U.uO O.Olt'
(J.00 O.Oui
U. 00 11.
o . I) I 0.101
n , M
<~ . d
^rbh, S
(}. <¦>
*. u
1 .<~
u . b
dl . /
6. **
U(J 00 J
UfcPtH
FttT
1
T I Ufc
b I '*Gt
UUh Vd
*> Mil! SI •
btt-'l'-'tN)
bMMH'Lt
OlOcb
(.U pHJO
Unr wi3 f
Hli/KO-ClJ
OlU^V
Ck mud
Ui' r no r
o i 0^ j
LU MUL)
U r-' f » O I
Mu/r,(j-CU
0 1
HM MUD
l»»\ y wii r
rtu/r»G-Kh
U 1 0 o a
Nl MUU
l/K i I
mu/Mj-n I
0 11WJ
IN MUU
UHY *<>r
MG/KG-lN
frni'.T
i
H . «~ k'
1 /*7.7b
• h JJ
^ • *~ i»
I
•J.
i>, V v
u.
o • Vb
u. vv
1
V.SU
"y.
u 1
1
H • ** U
A . u U
• *~ o
1 s • Jb
^ , h u
*~«*~ u
{
v • «~ v
*. <~ u
^.'~0
db • Jo
> • <» u
I
5 • - V
UU0U1
L AH
1 Lit" fit .
NUMHfr' W
UOni J
f-irt j-W
\ Ul AL
rt^/L
1UT KJC.L
.-J
rtu/L
OUb J J
'V^/c'^NU J
4- I U I AL
M(i/L
0U'jo"j
pr»u >- ru j
Mlj/L P
uuooU
UWl» C
L
<1b/L
1
7.10
7.10
/ • i 0
dO.hI
7,10
/ . lu
vi •/
¦1 < 1 N11 ¦*«
M 1 ^11 'MIM
• li \
-»U i •
~ AN
V/l1' 1 fi l'l( f
1 ( " • Uc >/ •
S I I I , h rf H .
Ll T f ^ A -y
< IH» HI JN
/'jO /
t!S
*3
U . U JO
0. Jr>
0 ~ 0
S
O • (i 1 l}(\
0.1 f
0 . 0 1 K
lcb
U • J-* o
o. ^ /
0.^0
6f*S
1) . U'H)
1 ,o<»
1/. 0 0
i
0 • U 1 ••
U . 0 1
it
0.0 0'J
0.0 u
0.00
0
U. Od*
u. on
u.oo
(•
0 • UI)
O . 0 I
U.uO
u
^ U . Ob
IV. dS
U . 0 \
U , ll»U
u . u /0
1 . *10
0, iw
L>« 0 /o
U . IIUU
U. uU /
0 « y U I
^ • 1 O '~
0 • O /rj
IU<>
->. o
I t>C » M
I V, ^
O. /
U • b
u . o
«),
11,/
b. I
-119-
-------
• 1 ¦ '¦ - I
Ijl -.J i
1 f I. 1 4K
_
^1. t< 1 L /r (i,
- n. H
1 JV. 1 1
¦ ¦
1J U J u (
Utui.Jn
•i li vi 1 J
OUdW
OO^nu
01; (j 1 U
u Uuc's
U i)b JO
OUOO^
uouoO
It 'Mm
I r.H
h«lf M
MO
S61 1NITY
T u r r jf-1
i^U^nND j
phos-roi
T o^o t
\ I'LU 1 •
\ t. iV
KKunt
! () riL
i.
o- TU 1 /\L
L
c L>- T
It IMT
Mti/L
kPIm
Mu/L
HO/L
Mo/l
Mv>/L k
MI,A
• .« • ,,*r •<
•• y
)
H J
^ /
H
H
);i * |M,;'|
Jd. .)
V.J
Jo. o
0 U
O.Jo
¦ U . U ] A
0 . 0 v 0
} j. U
*' 1 N I M|)M
I
r"T. o
*•. ^
J"5. 1
u () i 0
U . U 11\
0. Uou
'.vjr.
l>t)
1 t
f . 0
Vtd.V
0 u ^ u
1.0^
U . 1)4
0. J'»u
s / ! 0
lU'1 Vr.
<~ \ <**• 0
16\d. f
ju t7m , v
0 Oil I
0 .
0.00
(/ . 0 d v
1 dt i*j . b
¦» i.N
d
J] . 1
t> • o
• y
0 i; 1 d
o • do
o. 0 I
u.'Jor>
I * • cr
I AUCf-
1
U. 3
1 • ft
U./'
0 UWU
0. i)U
U . 0 0
O.Ooo
ir> /. /
' fu.'it V.
i
0. <
1 • J
U • 3
U.lilj'j
0. U«*
0 . 00
0 • OOo
1 £.' • o
•j 1 • •, r ,
0
0. 1
U.. 7
on , 1
1 tH, '-4F L.H
" 1 ^
e
J 1.0
Jt> . t
0. I» i d
0 . d*3
0 . 0 1
0 . Odb
1 I . J
UOUUJ
/ 0 T f > . t HIV ,
tor h vtw
i u<> Mr «f>/
Or,1 ,J
I on - W-A2
4*
b
t
I
1
U
•>o
<*
1
JO • ) v
JU. 1 w
30 • 1 u
Vy6.U i
JO.lo
1
O.Vb
0 .
0 .*t>
0 • *d
o ,yu
1
ll.OD
1 1 .'>0
i i .e>o
) J1*«bb
i I .t>0
j<>. 1 u 0 . «rf'j 1 i . rtU
Kfthlil l^L - Jll f I M'M LAU^L Mt/'J LuWLi
1
0D
d . u 0
OU
H • W U
^ ~ U 0
1
'> « t? U
S.OJ
i . o o
v . 1 r»
'#•00
r L' n< 1 iJ#, 'u^t M
1
o.*o
o • hO
0.40
4 V . Vf)
t) . 4 0
1
J. vO
J.^0
J.
Ib.^1
j .90
I- I «f f ILL b I Uu <
OOOO J
M I H
FfctT
OuOoo
) AH
I 11 C f i T •
NUMrifr *
UUO J 0
WftTrrt
I r.np
a nt
oo^*^
i>()
M(»/l
U 0 4 ci U
.-.ml 1 rj X f y
kP 1 n
u I/O 1 U
I U I '»|_
M'j/l.
ouot:^
fu \ NJfL
Ml»/L
UU(' JO
WU^MJO J
11/ r a*l
Mu/L
Ulibob
Pnus-T0 f
Mo/L P
0 0 '"j m 0
f Uml> C
(
Mo/L
• 'U' !'»K W
Id*
kft
1 dh
rt i
H
I*
i*
*
i |
li
J d . o
I. /
JO.'j
0 .IJhU
V) . J'J
. l' Ik
o. o vr>
o . i
¦'I'JlMllM
1
.Hi ~ o
4 • 0
J4* • o
o . ii i o
U .
u . 0 I K
0 . 0 « u
4 *d
M' '
Id<~
JV1
J v> • f
IJ . 'J ^ 0
0 . b
u. n 1
0. Uf)o
O . 4
v ..w j A./Ct-
1 I
0 . 1
o.^>
o.c'
U . 0 0 0
ii,()(j
0 • 00
0.000
J
. I'l.iK. V.
j
ii.
0 • 'J
U « 4
U.lll <1
¦' • Ob
u. 00
O.OUrt
1 • v
s T o.t *P «
0
IJ . o
(I. 1
0 . 0
U . 1' 0 /
0.0-3
0 . DO
0. OOt
I .0
. ' M V/.k.
S-3
i . ^
I d. V
i. i
t 11 « ^ 1 I
c'h . 0^
o.uo
li. b^o
r v . ^
t in- .41 .>0
> <\f
*3
Jl
S «<1
JD. f
0 . J i t
• d"J
0.01
0 • 0 o o
h.^
U"oil J
/o^n
I) l Ot 1
ij 1 U ^ /
0 i u 't J
0 1 Oon
01 UWJ
l>» P 1 H
1 lot
*• '4' j I ^ I .
f O '4Uf
(J-f MOI J
( O Mi J u
r"n ^!UL^
N I Ml 10
MUl>
kOt
0 1 -C N I
OmY wol
11 ri Y * 1 ' (
1 , 1 • < 'V I , J
Um f I'j f
in'T *<>!
l)P 1 Wti I
frU
VV' ^LL
M(t/M)*LD
^1h /IV 0 **<" K
f'"/»• m»LM
i1li/^*rn
M1.1 / Mj — i v 1
MO/Mi-Zh
,i W<> K
, • | 1iM
I * I'"1 if*
-/I v | .V.k ,
.1 ».i.|»rf.
* I 11 # M1 h i
' I ( V Mm
Mr M<(
1
'iTi'rt
I I
f ** % f y. J
'
ih') , l)i
J
ll . f IJN
.i ,vnr
1/ # V'i
u .
'» . IO
i
/./jr
/ . I \>t\
/.?>>
/
I » f \l
i . M
I
. 'Or.
, •> L-r
»
• 1' c'
. VO
i
/. for
f . / U^
/. /U
D-V. f-V
/. /u
t. /o
1
J • UiV
.) # MU
4.M.J
1
1 . *~ U
i .^0
J .*0
I . VD
1 .¦~U
1 .*0
- m-c>5
•v«a >
In - ) u t «»M I t< . «J\»L ;1''
• 1 u;*
t 1 U«.r f h 1 LL s fuu r
U J 0 0 J
I f rt
ftf 1
U'MJ Urt
I uM
I l JC U 1 •
ouuUi
Vi A It b
\ r HP
Cf f4 i
>J ii ft / '/
* Mi
HrV.J(»L
L I i«1 I '1
u'j'¦ t «y
l
l<">
(L4
'«
u
4
• U'i.'H
I
J J. J
J"'.' •'»
U.Ut 0
>) • Jb
0 . 0 1 f\
• l'.j|HOf^
JO .*•
**. J
^ . 0
0,0 1 UK
Ij . 0 IK
,! i i
/¦~.i
»«~ • >
7 Jo . .1
t'OVli /
I' . •¦> Kl
1 . 1 *
U . 'J 4
' so ,
f^d 11
1 d^OOH . H
4 H i^.d
W [ w M I , .1
0 . 0 l» I
0 . j J
<1.00
! .'J
n
Jl.l
b » -i
J 'J . d
0 . v' I d
0 . <^0
0 . 0 1
^ c ' | ii Jf»-
1 ^
0 . ->
0 • o
b*d
\j . U\KI
'1 . 0 0
0.00
'1 .'TV.
0 . /
u. s
o •
" 0 . 'iOb
'} • 0*
O.UO
J • I . t
0
0 . i
«>. I
ii . u
o . u o >
\),()d
o.uo
''if V «w
o J
d. /.
it).H
1.1
h u . o o o
1 b. bo
u • oo
1 Or- AN
s
J 1 . d
b.n
js • /¦-'
0 . U 1 d
0. df-
0 . 0 1
U . I UO
U , OrtO
0 . Jn0
O.OJi
U . J V 0
0 . OOU
0 . U U h
U . UU^
"•> . U ^
o.o-yu
cro.l
I M J . I
o • t
J. <
1. (
U .v
c'! .K
b •'
y.)00 > hi/11 Uim^n
UtPlH T[(U >> -ill | S f •
bl»kut bt-ul'^Lwl
F ct J S>* *JHl t
U 1 Ocd
L I» .41)1)
l/r^f * U I
"W/Mj-ClJ
U 1 Od!^
(,hV M*Jl)
oi' Y ftv_» }
Hu/Ku-lw
Uil/1 J
Ltl MUO
U < < H\! I
M / f\ k.7 - C O
0 1 II ""> £
MOI)
Ijf\ X rtO I
U I 0'>*i
.J I MUb
l>r> Will
^iu/M'-M
U I U^J
ZN Huu
[)U1 Wl)l
M(>/KO-/N
, i ^
;•».*! 'Hii*i
I | ' t j A' »At
,i (f
SUM
¦ • .'.fi
1 r»-»t t
s« U.1 • i >t v .
f 11 • h r < »¦/ ,
t'lfl- V«m
I ''7 . I
16. VU
ld.VU
i
d »r> u
. «0
^,nu
/.04
u
'T.S'O
. 0 )
V.VU
n • '>U
O . ^0
b • O 0
<~ ^. Srt
^ • f>0
I
c>. («0
O.'jO
b . ou
^ J • 'DO
O . 00
&.60
"120"-
-------
- b\-t>q •> JSLU IjL -CUl/'Jf I I I LA'lAu I'UU LOAt-it . L H j VJ«. AitL^ i -U. r< r i_L -LJc
t'll'JU-J
(> J (1 0 «
'JOU 1 u
U
u
UUO 1 U
U UO^'J
OUO i 0
0 ObOD
UUD^ly
Ur.^ 1 «-t
L •*»!
wAl cw
L'U
>At INI IY
H rl .5 - N
I o r njt l
w0^bN03
uHUs-rur
f l)»'U l
iUtN 1 .
11 Mi-1
pwubt
kH-rri
[ u I »*L
rj
i"J- I UT AL
r-ft r
NlJirtf- H
L> NT
M(i/l
M(,/L
MU/L
Mii/L
MU/L H
Mo/t
>/.«¦-»
• ,'r »-r u
/ 14
t)
^ JV
I
"D
')
,'i.A j :m.M
^1
.J*; . -)
V.O
U . U'tU
0 . ^ o
U • U 1 rv
0 .11 u
n •
.» 1 \ I i4i)M
I
i • o
Ji. 5
U.UJUI\
u.
" 0 . 0 1 K
0 . OoO
• I
Ml '
u
/ s(j . /
1 J d l3 • U
b J / u . v
u. 1 -j •;
1 .-3D
u • ut>
U . 4O0
Ji . o
^U'-i S j ,
£<4* 'H
71> ^ J . /
1 rt ^ J**b , ^
u. uu^
u.t>l
O.OO
0.04/
1
it >»N
10
JI.l
b
JH . ^
U.UJl)
0. Jl
U . 0 1
u . o s- d
O . S
V A.' I A.Jf.F
JO
0.^
0 • H
U • c!
1 0.00 I
o.ol
0.0 0
0 • 0 0 0
I .4
-< 1 U # l)t V .
b
U # s
U . ^
0 , s
O.iljD
O.Od
0 • u 0
0 • 0 1 J
1
0
O.u
0 . 1
0 . 0
0.U11-)
o . 04
U . 00
0.00b
U . b
LV'tJ- VaW
Db
1 »H
lb.^5
1 . i
1 Lo • *~ (u
c:^. v l
0.0b
1 J.v/'j
1
) fn» rth AN
M
il
t>.^
J4, V
U. 0 j v
0« ju
o. 0 1
O.O^b
b.ti
7 I 1
Ol/OU J
OtHT^
FttT
7Jdli
r iut
b T A 6 f-
UU4l/:j
4 MlJ I s f .
btDlKt^l
SAMHLt
UiO^o
CD MUU
Urti 4UI
MG/'vG-CU
UlU^v
O Ml)U
#ol
m(j/K(j-Ck
ulu^j
CD MUD
UHf Wul
'•IG/M»-CU
u l u id
Prt MUU
UKf Ml 1
MG/f\ G-r'rt
oiatitt
WI MUD
l)H Y rtb T
Mo/f\G~H I
u i 0 Ly J
IH MUD
UKf wuf
¦ ,1 1 -1HI- J
I ¦« X I MUlH
I' | NT MUM
- U *
SUM ^>0,
U **N
VAUIANCr
-> Til . Ut V .
sfu.&wn.
U l, L F V u k
I no Mf AN
1 3
s f u I j di<< -
J4
^ 1
I
ds*d
10
>0
0
^b
b
I
£ J • 00
3 • do
^ J • a -J
bb6 . 44
£!i«au
I
u
O.Wi\
u . s /
0 . ^4
U • -3" /
1
/ • «0r\
^.MO*
7.^0
bO .44
/. oU
7 .*30
I
U . ? / i\
0 . f (ft
u . w /
0 ,1>h
0 . s< /
u . -V I
I
/ .£50(\
^ • n Oft
/ . rtu
oO . b4
/.nu
/ .MU
1
J.nOK
J. riUK
j.no
14.44
j. rt 0
J.rio
t
I . 4 0
i • H 0
1.40
1. Vft
1 . 40
1 .40
•»m
*3
"3
b
b
-)
:*. 1 M M
J<^. o
J'J . J 1 I . o
u • l 0 U
] .f"4*
0 . Db
U.-»^U
Jb. b
Ml" V>,
.JUU^l
6<> JJ • 1
I f j<:*f>.b
0 • u 0 /
0 . bo
0 .00
U ,UT«
df ? .i)
t W<
1 0
31.^
b.o
J 4 . U
0 . u J>t
i'iJJ
0.0 1
0 . 1 04
1 .£
v /»•' I «"(;{.
JO
i>*S
1 • i
0.^
0. OOO
u.uu
U.OU
O.UU 1
b.<^
, I u . lH v ,
b
1
U . 4
0 • ^(-d
0 • oo
u. u u
O.O Jd
c'. 3
0
O.u
0.1
0.0
0 • 0 l 0
0 . 0 J
u. UO
0 . 0 1 4
1 .0
< «-t y v-t*,i
Db
i . "J
dd.-i
1 • 1
b ( • / 4 V
] *.uv
o. Ob
J o. w b v
ii . /
1 i ;i« UN
tt
31.^
4 . H
-34.b
0 • O^b
0. Jt'
o.ol
0 . 10 I
0 . c
/ 1 j 11 <-* 1 5
U JUU.t
futll
0 04
UiOcn
•I 1 U<^
0 i 0 4 J
U i ubc
OlUbb
OIUO
UJ- H 1 M
TlUh
* Ml) I s 1 .
CD MUU
C^ MUD
lu r.iji)
Prt MUD
NI MUu
MUU
s r
btUi *1lN1
u» o
4 . 0 0 K
4 . OU
1 fi i M »M
1
J«* • T>>)
1 . UO^
1 u ~ UU
l . rt U
rt»LiU
4 . 0 OK
4.^0
>1 /"
CJ 1 /
J4 ,1>U
1 . UU
j u . \j u
1 • n J
H.t>0
•* . 0 0
h . r>o
SU-, •
iOO^ \
1 l*J0. N
1 u
J4 ,3U
1 • UO
1 u • U 0
1 ,ou
0
» {)(» Mt '«N
oo
1 .00
I 1» • U \J
1 . rj U
n .bo
4 , U l»
4 . (j 0
( j
s 1 A 1 i " * - r*\-Qb
NAH( U
l^L -ouodI-
f f .y-M ua* ¦ al *'UU tUrtt
>< l-Lur I i>4
#* '< t ^
^ i j j ' > t. m » n
L ilUDY
0000 i
UF P l h
Ftfc T
OUOOrt
L»ift
intrn.
nu*hf ^
0 U U 1 I)
H A I K H
ft MM
CI-NT
UU dVv
1)0
PhUht
Mti/L
0 0 4 '1U
sAl IN I Tr
UUUlU
N h J - '^4
I U 1 h L
Mw/L
U iJ H/ '
I i)i rjhl.
N
*iO/L
0 0f> *0
"JUtTNNO J
N- I U f f.L
M(»/t
UOt'Ob
PHUb-U)f
uuort
T Ohu i
I
MO/L
/')IIM|C\
Jl" if it *
v.l ^ I MUM
'») v J Ml . r>
JOU J .4
d . b "j o
/. Ji
0 . Od
t . * 3')
1 b4e»Vrt. ^
Jo^ 1 . *
i ^bu^o
1 f* . h<^
0 . 00
0.70^
JU. v
J. n
J 4 . o
0 . .t 1 'i
u.vi
U . U I
O.ddV
0 . 7
b • r>
1.7
0 . cV J
U .OtJ
0.00
0 • 0*+ 1
0, t
^ . 4
1 . i
0.4
0.^4
0 .00
0 . C? tl 4
0. 1
. t
0.1
U . i 6 /
0. JJ
0.00
0.0/c?
c1. 0
DO . J
J. (
l1+ri.cU<'
1 U^ .Od
u.13
tJ ^ . 'J D 4
JO.**
0 . 0
J4 .b
0. Uv /
0. b4
0.01
0. lbb
l»UH'n
01 U £ 0
U 10 (L^i
0 1 U 4 J
u 1 ObC
U 1 UoH
0 1 0"y J
% moist.
CD ."IUU
Lk MUD
LU ~u)U
Pr« MUU
NI MUD
/N MUU
StDi MtNf
DKY nOl
DhY wur
UmY no(
uk r wu1
UWY wur
UKY ino?
SAMPLt
mu/kg-ld
.-^(,/KG-Ck
Mu/fVU-CU
MVP 1 J
in
17
1
U1 1
1 IhcM
7
lb
0
5b
6
1
»b>)
• ou
lObb.dJb
J
U • Vrt
u.yV
I
b • ~~ y
b«<* u
o • <~ u
Hi). Vb
b • ** U
b.40
1
4.U0K
^.'>0K
«».U0
lo • UU
<~ .UU
'~.UU
1
J. I u
J. 1 0
J. 1 0
*.bl
J. 10
3. 10
-121-
-------
I.I, .1 - KV-/0
. I'lsLU I Su -Al i*iOUln LOflLrt r LOH ll^rt r lubert hiLL S i Uu f
\ I- ;,m
•' I N ! «'
i»" I
S';.
• • aN
\ M »« | u Nj C f
y> 1 t'.Ur. v .
s\1).t .
1. >it f"
I (iii Mt ftN
J'H) v
If'.1 1 'J )
U'"1U"
U 'j o 1 'J
0 u ot t>
i) h H | m
I -n
r.n i-.J
rur KjtL
Jul «L
'i
i f (¦ 1
^uWr1h ^
*U/L
M'-j/L
•)0
t»U
'J • u t) L.
O.JO
S
'),Oii »iv
'J . dU
£" J u
J • V 11)
1 -+ • oo
0 • OC ]
* .0^
*)
U . 0 1 o
U
u
0. UOU
U. Ou
0
0« OIW
') . u*
0
0. Oul
0 . t» I
0
bo f
1 t> •
s
o. 01 t
U.^tt
OOoJO
iWMJOJ
h- 10 I -- Tu f
UUCiOU
C
Mb /1.
•5'J
SO
^11
u
• J 1 (\
U . 1 JO
J-J. 0
o
.0 IK
0 ,0 fu
<~ • *
u
. }'J
h • ** Jb.
Jh J • /
u
• OU
o • JVV
JdlJ.J
u
• U 1
U • 0 o ^
0
• o 0
U.OOo
) /.<»
I)
• 00
<) .u U
«• • ^
0
• uu
u .uu^
0 . to
u
• 1 H
hO.O
0
.0 1
U • (JOo
b.b
-122-
-------
- rt-Of
l'*iiLU iv>L -IN LULLlt'< rJAV LUWLH FLIMIum Ahclu
F 11 lut •< r ILL b »vJU <
¦j 0 yj j J
i) h K I 11
ff.r f
i> HO o a
i UtNl .
NUMhFx
U 0 U I 0
»hl|;rt
lr
Lk.ti I
0 0 d •> ^
m;
~•MUUt
rtb/L
OUhUU
b ALINI \ 1
hpTm
"i06 1 U
I'in J-N
r u r ml
Mlj/L
0 U 0£ o
>] KJH
»-M>/L
UO^ JO
NOd^.NO J
U-IU T AL
Hu/L
0 0t>t>b
r'MDS- t OT
uoooo
I CMb c,
f\ 1 l. IfSh H
•>; u * I
• I ' JI M.lM
Mi't Vi.
• <• N
v <»»«i AMt f
^ T •). t > r. v .
•» .
L-n f
| ./ (i *
I
-~ d
d
1
>)
bD
d\l
Jl . i
2^.d
O 0 b . 1
iHJlJ.b
JO. J
0 • -)
0 • b
0.1
1.*
JO* d
d 0
^0
3
J
J
3
1
o. ^
id * 0
0 . b c 0
O.J/
o . o i r\
0 . i i 0
/.o
A . <<
Jb . 1
0 . o 1 0
0 • c? A
0.0^
0.0^0
A . <~
1 i o . o
( i 1 . ci
u . o "J 0
0 .db
0.0J
0 • JO 0
1 d . 0
613. J
*!bJ3 J.b
ll.UOl
0 ,db
0 .00
O.OjO
1 1 i . V
d . b
Jb . b
0 . 0 1 /
0 ,dV
O.ol
0. loo
b. 0
0.**
0 . 0
0 • u 0 0
0 . 0 1
0 . 00
C.000
d, 0
o. f
0 . ^
O.ly'i
0.0/
0.0 0
0 . 0 I 0
1
0.1
0 . 0
U . 0 0 J
0 .OA
o.ou
0.00b
o. d
l^.o
0 • b
.OH 1
0 . Od
10 . 00 0
d J • J
b.b
Jb.6
0.016
O.db
0.0 1
0. luO
b. V
0000 J
OtPTrl
F'ttT
7o MUU
U Hf Mb 1
Mb/K(?-Cl>
U 1 y)C^i
O MUU
uh y *kj r
HO/Kb~CH
U 1 U 'O
LU MUD
li-< f *0 I
Ho/a(;*LU
0 1 0D£?
Ptl MUD
L/K Y ft vj I
fib/Kb-Hb
U 1 0bO
MUU
uwr wor
Mb/Kb-N1
0 1 0S» J
Muu
u^r wi, f
Mb / K G- £ N
f vOOOb
r.U'^fU k dO
M<« X J b
-MNjMlM 1
iij* **o
Si/'* b'^, lAb
i'f UN d
V M ^ 1 Ai ,(,f d
•» 1 '.) .''L V , 1
^ 1 ti, t Mh . i>
C v>f F v»"' ^>b
I *j»» Mr *!i d
/->0'10'1
s 11\ir,N - r/- o ( a
i
Jo. 1 o
JO. 1 o
JO . t u
VU6,0 i
JO. 1 o
JO. i 0
1
i .00*
1 . UOK
i .ou
i .00
i . wo
1 . UU
1
tJ » U 0
b » 0 0
O • U 'J
oa , oo
b . 0 0
-•lanCu Ibi. — ir-* LuLLIlk bwY
1
1 • t> 0
l.TU
i . DO
. d'o
i ,'ju
'>.i)li J
LU<»t r< F LOh 1U<«
1
O.D0
b • z»0
n. t>u
U.di
o.bu
1
«* . OOfv
^ . 00K
^ • 00
i o , 0 U
** • IIU
b.ou h.ihj
t If >^(Li< i- ILL **1 TUi> i
i
d .r>u
t ."jU
c: .bo
ouau i
Ut^lM
f fcr-T
0000b
L AH
h>trn.
Nijmheh
uuuli>
V. A 1 t H
TlW
/> Nl
0o^s» i
00
HHu«t
Hi>/L
uo**«iO
bAL 1 i 1 V
HK 1 n
U u ci I J
1*1 M 5-N
I 'J I ;>L
0 u b c j
Tul rvJrL
1^4
>1h/L
NO^Nf-lO J
H-TO IAL
Mo/L
0 0l»bD
t^hUb-TO I
OOboU
T U h u C
C
Mu/L
•l X { I'UM
' • J 1J i*U,M
' I > '
-Ki^ b^J.
r afi
4t |
-ln,|^ v.
. 11 •, r •'»-> •
I \ ^ ~ v * **
} !/<« Mf ubi
1^
b
1
'* I
\tH
j
S
I
I b
Ji.u
4 -11' . J
JU . I
u. **
0 . c>
iimti
d. o
JO • 1
I o
o • d
<4 . J
TJ.rf
H<»t> . 1
3 •
O.b
0. I
U . ^
I
b.r"
J b
Jb.H
Jr>. 0
/ <~. r
. b
J"». 'y
0 • ^
0 . 'j
0.1
1. J
Jb • ^
d
, u i U
ulu
0 . \J 00
0. 0 1 0
0. ooO
U . 0 0 0
0 . uou
o • o o o
o. o i o
d
U.tU
0.1/
0.')/
0.1*
o • d^
0 . 0 J
o . I b
U.[d
O / . 0 o
U.dO
d
o.u^
U . I) I fS
0 . I'd
0 , uo
0.0 J
o . o 0
0 . uO
0 . (i 0
0 . 00
o. u i
d
0 . 10 0
0 .0^0
0 . I >u
O.oib
0 .u-y^
0.000
0 . 00 /
0 • 00 D
/ . ^ J
o. o^b
£
b. i
J. b
I
* * b
1.1
1.1
0. /
^ J • J
^ . b
>11'
0 (J 0 0 J
f r.l- T
1
bl
U'lf
i Moibr.
bH i»J Mciil
bttMr»Lt
0 i o^o
U> MUU
i) H 1 i) O I
i46/«v(i-C>'
0 1 0*'*
Mt»U
Ijh i fit} 1
• ¦Hi / (j -1 >•
0 1 U J
LU i^l * 11)
T Wu I
Mb/fto-LU
0 i or>d
Hn MtJl>
K'< > Wti I
iHj/Mi-HtJ
0 1 Obb
.^1 "ItJiJ
lM > Hij I
Mlj/Nb-N I
0 1 0^ J
/.N Ml Jl J
Y Wl? [
Mlj/Kb-/N
* I N-
• I M
v rt '• V I A I ( f
- I I I . 1^1
>
I
• 1
1^
J
d
\
0
0 0 u v .i
Ut^ I H
Ht 1
i
J4* . 00
Jh , WO
is .00
i I ->t>. 0 o
J 4 • 0 0
I
i .**0
i .*0
l.sj
I .
X . <• 0
1 . *~ O
I
1 c'. bO
1 ^ . b 0
I ^ . b 0
I bo•dd
1 d 0
1 ^ . *>»!
1
c. o U
^ . »MJ
^.<'0
/,r'H
r-.Oli
I
I «~. vo
1 '~ .lA)
r C/^.O I
A *~ . >U
1 ^ 4 O
I
v , r> 0
* . bO
. b 0
| b
"i • O 0
1
b . U 0
b. 00
b. 00
^b.00
b . o 0
1 bl *"i/# bMUAMIUUbt tVi 1 + yL'/Khhl iiHL. M
r 1 Wot * FILL b I Uv r
0000B
J. #*H
lUt/ll .
H
U<>0 1 0
¥tu
Tt.'V
Ct -V7
00^^^
uu
WHv>nt".
M«j/L
0 0 ** 0 0
bAL !<«| fY
PK f rt
U 0 O I 0
I trl i-<\
I O I J-L
Mij/L
UUo^b
iuf njtL
u0(> JO
J
>^-Tul AL
Mb/L
u u bf>r>
phjs- r<; r
UObdo
O^u C
L
Mb/L
11 •' 'i -'
A j M: JM
' I -j j .•»' /M
¦Mi
1 •*. [ ~
• Iw.l'f V •
•1 l.t HW.
I • '» h V
i •/ » ^ir Aw
d*t
d A
<** H
J
J
J
j
Jl .*~
b . i
Jb.v
O.OJO
O.JO
0.0^
1
dV.^i
* . V
i«* . b
U • o 1 0r\
O.JO
0 • o 1 K
*>d
/ Jj. /
1 dn . b
bHb . o
0 . o b o
0.^0
U • OA
1 Wh
dd<* JA .o
bbb. o
/Vb . rj
0. 00 I
0 ,d(
U .00
J
JO.b
b. ^
Jb . d
u. 0 1 /
o. JO
u . u 1 ..
d
Ow'
0.4
0 . 1
0 . o o 0
0 . 00
0,00
1
0 • b
0 . b
u . J
o.vU
o. oo
0,01
0
0. 1
0 . 1
0. 1
0 . 0 u /
0 . 00
0 , UO
•>o
X.-j
1^.1
1 . 0
o9.enc
0.00
H J , JO
JO.n
b. 1
Jb.d
0. w 1 *~
O.JO
0,0 1
J
0 . ovo
0 . OWU
0.^/0
0.0^4
0 . 0Vo
o.ooo
0 . 0 0 0
o.ooo
o.ooo
0 . 0^0
(. 0
b . J
IV. i
i^J.}
o. *~
0 . ^
o.'*
0 . b
1 <~. b
6 . J
0 0 0 0
l>t.H I H
Fc> T
tOdl I OOh^d
T I UF. t» ^(Ubl .
bT u(?L btUi^LM
SAr.^LF
o i odn
(Aj "1UU
U'< Y + b 1
Mb/Mj-ClJ
0 1 O^V
Ck MUU
U Y vt.jl
Mi^/Mj-Lk
0 1 0 m J
Lii
iNf ,ii" I
M^J/^0-LU
0 i 0r>^
Pb MUU
U«f rfbl
Mb/Kb-Hh
0 i 0 b M
nJ muu
Y WnI
M(¦^/^C•.-N I
0 10-M
£N Mul)
I) H f W V.» I
Mb/KG-^N
/'JU-1'1?
-
•• .. » M'jH
!• I N I
bo,
~ ..N
v ji " i w' jL f
bIU.Uc v .
^ T 0 . K ^ ^ .
LUtF v.»m-
I C>'> Mf
7 'j U n 0 ^
st*
b
I
I *b
J
x
1
u
t? 0
3b • m o
1 .MO
1 J.^0
Jb.4 0
I . A 0
1 J . dU
Jb.Ati
I . •* 0
U.dO
ld$J.lb
I
1 7<*, d*
Jb.so
1 .<*0
i J. do
Jb.AO
1 .AO
1 J«^0
J.lU
j . <~ 0
1 1 .bb
J . "4 0
J.^0
1
1 d . D U
1 rt . bO
Id.bO
1 b. bo
Itt.bO
I
1 i .bO
I 1 .bO
II .50
1 J^.db
1J .bO
1 WbO
1
A . DO
h .bO
A ,DU
^O.^b
«~ • bo
A .50
-123-
-------
u-oi
AnLU I "" i i ^ bhOM.iijL»3t t)«T LOwCK HlO«1uA A, ».
c
Mu/l
7 .(»•••«>< {
I ' f' H f- ^
'
1 J
J1 . n
b . c
Ju. J
0 • 0 7 u
U ~ b 0
u . o i ft
0 . 1 'J u
9. U
1
30. o
H 4 . <3
0.010
o. ko
o. 01ft
0.090
b. 0
^0 3
i
Jbr>. i
£:O4^,0
0 . i bb
1 .9d
0. 0d
0 .4 !\)
J«*. u
40*1
7b037.^
I btt 7 . o
lOlOl^.b
0. uO 7
0. 79
0 .00
0 . 0 <~ 4
^'~U. /
6
3U «o
4 . D
3b • b
0 . U J i
0.39
0.01
0 .094
b.ti
\2
o.0
PPOflt
Hb/L
UUnbU
bALINI ft
PPTH
Uuoiu
NH j-N
Tu I AL
Mo/L
OOb^b
JOT KJhL
Mb/L
00b JO
NU A K I MUM
m|NIMUM
M)n
SUM s<),
. 'I- «*N
V u w I m N L t
^ 11' . l)t V »
Sll'.ewR.
L'jJ *¦ VAW
I 0»i Mr A N
/SO^'Jn
Si A I 1»M - //-05
44
44
44
44
<~
4
4
4
<4
9
J 1 . 3
b . h
Jb. v
0. uc"0
U.4 d
U.Olft
0 . OoO
f.d
1
^9. V
2.4
3<*.b
o.oIim
sU* SO.
t *N
V ak | A. ILK
'» I !J .Ot V .
I ' 'L ^ ^ AH
I 0<< M)- AN
4b
H
I
1 fd
87h
4
4
d
U
bj
J
4h
3 1 . o
JO. 1
l^.b
*3V9ri.<+
iO.'V
D. d
0 • o
0*1
l.D
JO • ^
^.6
£l. V
6Hb . d
«~. J
0, t
u.b
0. 1
19. 1
4 o
• 7
J*.0
loir./
Q.t
u. •»
0. 1
1.<;
Jb.
O.OJU
0.01U
U • UtW
0 . 0 I) ^
U • 0^0
0«uo0
0 . U0(j
U • 0 0 ^
* o • o<:d
o. u 1 s»
o.so
i). jO
1 .0 J
0 •
U . 4 1
0.01
0 •
0 . 0*
c^.u /
o.^u
u.ou
O.OlK
u. 0^
0 . Ou
0 . U 1
0,00
a. oO
0.00
O.00
0.0 1
0 . 0'>U
0 . OoO
0. J4U
0.0\j *i
w
'W.A I MuM
•M N ( MUM
• U ^
>U« S'<,
> *u
7< ih 1 a.JO
• 111 •OL V.
sIU*tHH .
{ i ' { f- ^ tin
I (M, MLAN
f'iU
MiJ 1 'JU - N-Qfr
I
I fb
Hih
**
it
d
0
•>3
U00O J
UtH fr»
~ h£ T
I
JV.OII
i Kt . r> i»
1 • u4*
3^.'Hi
1
u • "»v*r
0. WK
0 .
O.Vrt
u. vv
1
1 I . wu
11.90
1 1 . 9U
1M .61
ii. yu
1 i ,vu
1
U • Ki ^
0 .99
U .9V
u. 9d
0.99
1
7 . 9UK
f . 90^
/ . VO
b^.<* 1
/ .90
/ .90
MAkCU ISL -^^>00»- f f- *M LA14AL ''•OU LOWLW rLUrtjUA rtHr.A
1
o . ^>0
O . b 0
b.^o
"•i, Sb
b.OO
1
cJ.'jO
^.50
£* . 50
b . c!5
£?.*J0
r I^bLK ' ILL b rUUY
OuOOrt
L AH
1 UlNI.
NUHhtW
u 0 0 1 u
«M T tw
I t" MP
CtNT
UU^9V
I/O
PKUcit
Mb/L
U0*»MO
sal in Iry
PPIH
0 U tj 1 U
/vf' J-N
1 0 f >»L
Mu/L
Ouf>c"J
[Of ^JtL
N
Mb/L
NU^NNOi
1^- I VJ I *4 L
Mb/L
phos-ro r
Mb/L P
UUooU
T O^b L
C
Mb/L
7-»1) two
iiHi'nh w
'>/» * | MUM
•' j ' /I MUM
jU1 '
sU'« SU.
' ( \u
V a-v I AnO
'• I ). i)b V .
S I'l.tPW*
( (>r f vaw
i v)b Mr AN
/'¦>') c U tt
**r!
t
1
Id 1
brt 7
<»
0
3
4 d
4 d
4 d
H
4
4
Jd,H
d.b
Jb. o
0 . OtTD
0.4 i
0 . 0 1K
'JU.d
3. c
iJ.b
0 . 0 1 U
0 . do
0 . 0 1 ft
1 JOn. 1
^U J.J
lHD9.b
0 . 0O5
1 . 4 U
0.04
40b0b.^
10 7 7.9
bl )ldo.d
o.ool
0 . 3 1
0.00
3 I. u
4 . d
34. 7
U . 0 lb
0. Jb
O.01
0. J
d.t
O.J
0. UOO
o.ol
0.0 0
0. o
1.3
U. b
0 . OUd
0 .09
0 .00
0. 1
0.^
0.1
0.004
0 .04
0.00
1 . 9
JO . V
1 .b
4 0. 1 b4*
d b. 4 b
0.00
J 1 • 0
4 . 7
Jm . /
0 . 0 I b
0. J4
0.01
U 0 4 9 b
0 lO^d
0 10^9
0 I Dm j
U 1 0 b d
0 1 Obd
M(JfbT.
Co MUu
Lw MOO
L 0 MUD
Ptt MuO
NI mud
St l> 1 ML(J 1
UWY mbl
OWY Wb T
OK 1 *bI
L)WY Wb!
OP Y W(< T
Sample
Mb/rS(i-CIj
MG/Mj-CK
Hb/ftb-CO
Mlj/Kb-PH
Mb/Kb-NI
0 . 1 00
0 . Otto
0. J«*0
0.00' l
ibi
31.il/
u.ob
SUM SU.
bd 7
*67.dl
0. 74
i r r.N
4
Jl.lo
u. bo
0 JUO
1
6.^0
b ~ 90
b .90
/ . b 1
b . 9 U
b.90
1
1 . JU
1. Ju
1 . 30
1 . b9
1 .3u
1 .30
i
b • bo
b. b 0
b.DO
b.bU
6. bO
1
J.*0i\
J.^OK
3.^0
1 1 . ^b
J.hO
J.40
1
1 . / 0
1 . 70
1.70
t?.d9
1. 70
1 . 70
-124-
-------
- W 07
•Li) 1 bL t I I
^ , lAi.
iAU NuU LUrtt- i
< >• LUi' i Oh
li.< t»l
r ll.ot. ft i luL
biUu!
UIMOU
UUO 1 0
UU«.^^
OOo ^0
uubob
UOboU
«»o
bAL INI 1Y
rjH J-n
TO r ^.Jr L
'IOCm^O J
h»HUb- ro 1
1 U^» L
Moot".
f'jl -'IL
N
n-IuIAL
e
Mo/L
PMIH
m^>/l
Mi 1 / L
Mi»/L
Mi>/L H
Mij/L
-J»v
->rt
b
0.3
jb.'»
o. u t o
U • H J
~ . »~
S>b4 . /
^Vbb<* . 1
0 . 0 0 'o
u. f b
0 . uo
0.0 J v
JS / . £¦
<» . 0
J4. /
0 . U JU
«' . Jv
0 . (J I
U . Uoo
d .
0
0.^
0 . OOU
o. 00
O.OO
0 . 0 0 U
0. 7
U . 1
0.4
u. uo /
u. 0 J
u.UU
0.013
0 .s
0. 1
0. 1
0 . Ill) J
o.ol
l» . 0 U
0.00b
0 . «~
dd. 0
I. J
^j.d/1
o . (I
S (*dl
1 H . o 1 /
* . b
3 • ^
3^ . b
U . UrW
0 . JV
O.01
0 . Oo f
d.d
ll I'lM H •'
• .k A I ' IM
* I O I M» t»"
' . U • S11 .
~ r., j
1 A <* I A .«iC t
. i. j .«; t v •
^ 1 ,1, |- WW .
l.v. \ f V Arv
. ()ii Kr AN
f *»i) 'H' 3
' I M
t r
1 u
I
d /'~
1 Obd
o
b
J
0
OJ
4
O'llMlh
L A H
liUNl.
NUMHt r'
»MJ u I U
« A I C H
I t
(> 'J T
« u
3u • •«
1 / s> d • o
bb /*b. -5
J 1 • 0
0 . 1
0 • *«
0, 0
. !•
3 1 • o
0 0 0 U J
UU4^b
DiUdo
a lo^^
U I U J
U 1 Ubc'
0 i Obtt
OlU
Ot^TH
T I L)F
% muIST.
Cl) MUO
MOi>
CO MOO
MlJO
N1 MUD
Zn muu
bT AOL
btOlMt^T
OkY WOl
UK Y rtb T
*ol
Ok r wij I
OwY WOT
UKY *01
kklt
bAMh»Lt
i-IVj/KO-LO
M0/*»j-CN
M(i/N(i-CO
Mb/M»-Ph
I
MO/KO-ZN
f b i) mi. ^
"^h
fc 1
t
1
1
1
1
b . 0 0
J. 1 i
f-1A X I f-.OM
1 0
1
J /. 0 J
1 . 00r<
id, 1 U
u
o.OO
5.10
1U1'
d {**
J / .00
1 .00
10
i . OU
o . J 0
J. 10
SUM Sii,
I 6*>d
1 JoS> • u o
1 • U u
1 *~ b • 1
o . / b
b f j. d o
jo .00
^ . o 1
H^Jnc
1 0 1 ML
10 iAL
C
Ht T
NOHHFk
ChNl
MO/L
h>HTn
Mu/L
Ml>/L
M^/l.
Mo/L M
Mb/L
Mr H
'AX | MOM
I | ii j M IM
>0''
M»M s«^«
' i « i
Vi-»' I «»ivCL
. Im. ufrV ~
I » [ f1 V U*<
• i 'i, Mr i\n
» MIM
1
d H i
\dt^
d
o
b.1
bd
6d.d
JO • ^
1 MOb . O
b61 h£? • 1
Ji. i
0.*
U.H
0. J
1 • J
31*1
* (
b . o
0. <~
J'u'.ri
/ o 7 . 0
J.d
i • j
i).d
*~ *j . j
<>. V
brt
Jb.^
J<^. /
I vho • 'j
Ho 1^6•b
JH . J
U.J
O.b
U • 1
1 . 'J
J<* . J
0
U . U f U
U • U £.• u
•J.d^U
O.uio
U . U<»fi
0. DUO
u . u ^ 1
u. oo v
Ht.cl J
0 . U<»<*
o
U i DO
0 . JO
d . d*J
1 . JH
u. <~ /
0 . 00
U . U /
l> • U J
1 J. -^b
ll. ^ /
b
o . U 1 f\
0 • 0 IK
Li.UO
u.0 0
0 . U 1
0 . U0
o • 0 0
I'. I) (J
U • O 0
u. o l
b
0 . i uo
0 . U O 0
U . -J '~ u
0 . 0 n *
u . 0 -y'J
U . 00U
0 • 0 0 n
0 . 0 0 J
T .\)d f
0 . 0 V0
b
I i .0
n . I
b / . /
:>bd. I
^. o
U . b
u. M
u . J
V • o
0 0 0 u 1
Ijfc ^ 1 »i
tit T
/011
T 10L
b] AOt
U0**VD
^ 'U) IS \ .
bLl i
b^MHLt
o 1 Odn
( U -U)U
11H Y AO 1
M(i/r.b-l •»
0 I u dv
Ck moo
OHY rfbl
M(j/ K I > - C K
l'lU4 J
UJ 'UJO
i;.« 1 iso l
I IO/^0-«.0
01U-3d
r»n MJU
UH f rtO r
0 1 0 bM
0 1 MOD
Out Mb 1
r'b/nf'-Ol
0 1 0 -v J
/N MOO
OKY Wb\
Mb/*0-/O
/ Ml- "
¦ l' <«r ¦<
1 'l A ] < ",l ,'M
. , I J { 1-lH
»I ¦ 1
1 J.
1 A i »
" 1 . • . / • » .
-i
1
C-i J
1
U
i'
I
d I . JU
d'l. U
/ . Ju
dl . JU
i
1 . U 'J 1
l . our
1. uu
I . >' o
I . uu
1
y • o u
s> . oO
. CJ u
Id. lb
V . bU
1
d , o u
^ . u u
t . o 0
/ . f) H
. tiu
1
/. bO
/ .^0
/ . bO
bb . db
/.bO
1
H.ijOr.
»~ . IJOK
*~.00
li'.JU
H .00
I
H. lU
*• . 1 0
^.10
U-.dl
- .10
¦ I ' . ' •• .
, '•(. Mi
> i
4
^7. iu
I . uo
. o o
f . nil
/ . ">U
** . '* 0
**. 1 u
1|:l - N-Q9
'1A h L 0
1 ljL ~ / u 0 of
1 h ^ lai.aL
MOO LU«i
it r l u»' 1 Ua
A» i N'JL K h 1
tL b 1 * JO f
0000 *
lie H I n
MKT
UUOOd
L AH
1 OlNI •
NOMhf- P
JUU 1 0
f» A I t H'
I lmh
l f- n r
0 0
HKObL
M'>/L
U U r»U
brtL I'Ml I Y
l-V r rt
OU'< i 0
i^n j-w
lOl al
M(i/l
U b
HHOb-101
Hb/L P
OObOU
I 0Kb C
C
Mu/L
,i .1 IMt w
'I. A, I I'Uifl
> I I MUM
• I
M ''' b / .
• • U
iawCF
. I '.i/l.tf.
M '.Nh,
< \lM I/..H
I . »l, Ml-
I 'Ml /
/
I
\
n i
1^0
s
J
b«»
3
(
Jd. b
Jl . 1
CCL . J
7061
• Ji ,n
• H
o.t.
O.d
d . U
31 .n
(
b. /
1 » U
da, *
1 • o
J • M
4 • <'
^ . W
O.d
. /
J • d
I
3b. u
3<* • b
r'tj.i
«H ^ U . **
J4* .r>
0 • U
M.d
0.1
0 . '5
J4 . H
U . iJhU
0.U1 OK
o • o r> o
o. u o d ,
0 . Jd-J ,
0.oOO '
0. o<
Odl<
0 lb
o ¦* • 0 d J i
0.0?O '
d
U#b£
i). 3^
D. vl
u • <•«*
U . <»b
o.Ol
i). OS#
0 . Q6
U.^0
U,4i>
d
ij.uir
o.oln
0 • u<^
0 . 00
u.0 1
u • 0 0
0 . uo
0.00
U . DU
0.U1
d
0 .0*0
U . 0 6 0
0. j /o
0 . 0 1 *~
0 • uo-)
o.ouo
u. uu /
0.00a
d. >1^
0 . Oob
d
1 1 ~(»
^ . 0
dO.b
^io.o
10. J
3. «~
1 . u
1 .J
1
10.^
OUOOJ
DtP Th
f e t* t '
/u^U uo^yj
T 11j6 « *-u!bJ .
STnut. bt.UlMLNl
bAMHUt
U 1 U^ru
ll) t-tUU
L)kr u I
u I o c:
CK MOJ
Oht wo r
Mb/KO-C*
U 1 U 4 J
to MlJD '
UKY '^(j I '
. U lObc^
P-v MOO
U^T WV3I
M>p/KO-"fr'd
U 1 OoM
N1 MOJ
OhY wjl
Mij/Kb-Ni
0 1 0* J
Zn moo
UWY WOT
MG/K G —
('.0 MM'
Jl |Mnf
inA | <*, iM
A J I J { Ml IM
M (M S'J .
't /,fJ
\-u~ I Ar.Ce
MD.UC V .
>i lu.e
L C'f K V C ^
L UJ
5?.?d
•i'y. 7o
i
1 . uu*
1 . U UK
i. . 0 u
1.00
1 . 0(J
1.00
1
1 J . 1 0
1 J. 10
1 J. 10
1/1.ol
1 J. 10
13.10
1 1
J . DO
j. 50
3.SU
l.£b
JOU
3 • b,D
. 1
o. 00^
b.uOK
O.OU
6A.au
D . O.U
b.'oO
1
<• . UOK
*~ . 0 OK
».00
lo.uo
<» . UO
*.00
1
t .00
.60
<• . hO
21.16
-------
N I n 1 ! •I'.i - n-?Q
MA.au I'jl -A! t/v'^AL MOUln LUrfEK fLUHIUA A^ta rlNijtrt I" ILL bfOUY
ouuo i
Or '** Th
t r T
0'/0Ort
L Ah
1 ik rj I .
mjMhf *
UOb 1 c
UMJ-N
IuTal
-4b/L
oaoau
r om> c
L
M(,/L
7V>0-> i/
. I fJ i M«JM
*5 U** b«J.
• 'r uN
v AH IANCt
b f fJ , Ot «
SlD.ErtW.
UilK VA*
(,0(j MtrAN
/">0d0tt
Sh
1 JO
b^> 0
b
0
0
0
0
s
£Ltl
U.UhU
u. 01 u
0 • b Jr>
O.01 t
0.00*
u.oo^
3J.«^o
G.G^J
0.4 I
U . tL*
r\ . t>0
,bi
U. JJ
o.uo
O.UO
0.01
Id.M
0. Ji?
^>5
do
^6
0 . U 11\
u . 1 £TU
u.o
o.uu
u • u 7 0
b. J
U .^0
d.*oU
-------
-'CO I bL - J 0 u uh T
» J . ^ T f. V t'^b LK LU'*L'< t Hlh I uA onr.M
t- iNot-r i I Lu J 1 uH »
Oil 0 0 <
.) r- H In
I- f I
O')U0t
L -»n
I I' r. N I ,
0 00 1 VI
W A Tt ^
f lmh>
CcNl
0u«J*S
DO
K»<0U r.
Ml./L
UU^oU
b At. 1 N 1 r Y
00o 1 U
Nn J-ivJ
I u I nL
Mo/L
mint"?
IOI i\JlL
MU/L
0 0O JO
n-lul <*L
Mb/L
OOood
HHOb-roi
oObbU
1 Ortij L
L
m>/L
'/ i.Jr'i*
< i '
*¦ !¦* | M«M jM
MM
SUM Vrf.
' h Uf4
v a * I A11C Y
4- Ijj.OtV.
•< 111 • t P* •
U'tK VAP
I vji? Mfc AN
f ~>u<\ 1 d
~ 4
d h
d*
4
»~
~4
i*
4
•«
J
?,t>
Jv.n
u.ubU
u • ^
U . U lK
0 . Ovo
/ . b
1
JO.^
J. V
3b. h
U.O^U
0 • JO
0.01K
o.o/o
b . J
Id
('43,0
I jtt • J
Ob J. (
0 . 1 I3U
i .40
0.04
0 . J Jo
c b . b
i JM
d*0.4
Ji 0S>tt. v
0. OUo
O.bO
0.00
o.iidt
1 Ct / . V
d
Jl.c
b. o
Jb • U
0 . 0^0
0 . JS
0 . 0 1
0 . Uod
b . ^
1
o.
1 .s
0. /
0 . u 0 1
0 • 0 l
0 .00
0.000
I
0. ?
1.4
0.9
0. O^J
U.O ?
0 . 00
0 . 0 J 0
i! ^
0
0. 1
0. J
o.
U.oic'
0 .OA
0.00
0 . 00b
0 . b
d*d
d J.o
^.4
b 7./jb
^0 . £"0
0.00
11. o o b
1 o. 1
d
J l.d
5.0
Jb. o
0. OJb
(i. Jb
o • 01
0 . Ottc'
t». J
0000 J
UfcPTH
FEfcT
/Oct 1 1
nut
stal,E
004 rfb
% MO 1ST-
bt u I ¦itN I
SAMPLt
GiUdO
CO MUD
unr wol
Mli/KG-UJ
ui Ud^J
CH WUlJ
OH Y v«G I
Mb/Mi-CN
0 i 0 4 j
CU MUO
U h i ii b I
Mo/iVO-CU
y I ubc
fh M(JL)
u k i ft u r
MW/Ku-PH
0 i Obb
N I MUU
UKY *bT
Mo/KO~NI
010*J
ZN MUU
UHY W(,I
MO/r\0-/N
»0 'tuti
: iUMhfc>
i-'A A I MiJ' \
M i N I MUM
- 1 J,.
bUM V;.
• I- AN
VA" i AftO
IU.L>tV,
~ 4
4
I
*d
1.J6
d
1
I
1
ol.^u
bO .40
6 (J • 4 0
lb
t>U. h u
\
d* JO
. JU
t.JD
b.^1*
JU
1
bU.Ol)
bO .00
b&.OO
^boO.oo
DU • 0 J
1
b • VO
b • *0
b .40
W.ol
b • -^u
I
Jd.bU
id . bO
J^.b J
I Ob<^ • f o
j£. e>u
1
d<* . jO
d* . JO
£«~. JO
b ^ u • 4
dn . JO
1
1 4 . ij o
.00
1 <• . 00
I 9 o . 0 0
1 <~ • 0 0
1 o, .
( h I ^ ~v
i IJO Mf AN
/b')^
OObrtO
Ot^fH
L«rt
tV A I h H
uu
bALIN]TV
tin j-?g
Tor a Jt i_
PrtOS-IUJ
T (JHo C
lUtNf.
\ tMr-
KryunL
r 0 1 ml
N
N-1Uf AL
C
FFl- 1
numhj-m
Ct.NT
Mb/L
HP T H
Mt-./L
Mlj/L
Mo/L
Mb/L P
MO/L
^bi)» l 1
'.iJMPr h
i 19
I i*
i IS
1 \b
H
H
H
<~
WkA 1 'tuM
1*
1
Jl . /
6.f)
Jfj • i
0 . 0 m 0
0 . 4d
0.01K
0 . 1 1 u
I 0 . j
^1NImuw
d1*.
d. (
ib.l
0 . 0 1 0
0 . dn
0 . 0 lf\
0 . OMO
b. 0
.(' i
9nO
JObb . S#
bd J. o
<~ ^"0 . {J
0 • loo
I . Jb
0 . OH
0. JbO
JU . 0
Silfc. S'j.
1 U 7 J 0
1 1 *WbO . J
lbJ/80.b
0 . 0 0 J
0 . *~ rt
0 • 0 0
0 . 0 J J
^ Jb . J
M ,
rl
JU,o
* .V
Jb . V
'J « 0 d "J
0 . jh
0 . o 1
D.ItHI
7 . b
»».' 1 AiNLl-
0.^
0. /
0. i
0.000
0 • u i
o.uo
o. ooo
9. o
%fu.ufc V.
b
0.4
0 . V
0.£
0 . o 1 j
u . 0 o
o .oo
0 • 0 1 4
]T9-
0
0. o
O.i
0.0
U . 00^
ll . 0^
u.oo
0 . 00 f
1 . 0
* ' 11- f \juu
b 7
I .J
I 7 . b
u. 7
1> 1 . t» * 0
d J. bb
0 . 00
1 b . / 1 J
£?b.
1 Oh I-Ih AN
7
30,*
4 . b
3b. y
0.0 s.d
li. jj
0.0 I
0. 0b9
7. J
/
¦- 1 r4 I | ' II J * P-Ol
MAKCU
IbL ~ A 1 wuufri* J.bie Vt-'-Jb LK LU*t
h LOH I OA
MHt A
r iNoLL' h 11 L b 1 «;u 1
0 0 t
NUMMP^
UOUlvJ
w A T t ^
11 »'4H
Cti^T
oy«j w
0
1 j bn • -i
W/. 1
i J / V . 1
u . i d' 0
i .bO
U • 0 <*
o . 4 JO
*4 . b
i/*' yi.
ob^
4 1 V I o . J
^ JO . v
bbb 7b.0
o. o u m
0 . bo
o .oO
0.04b
b 74 . 1
1 MJ
JO.'i
^ .b
JO.^
U . 0 JU
O.J/
0 . o I
0.10/
11.1
'»« (u ict
3
O.c
I • U
0.1
0 . Ol'O
0 . 0 1
0.00
0 . 00 1
^trrx
I '.'jf. V.
d
0 . b
1 . J
O.J
0 . 0 1 4
o. ub
0 . \J 0
0 . 0 d 4
b . 1
0
0. 1
0 . ^
0 - 0
U . II u /
0 • 0 4
o .00
o . o i d
d . b
1 r * ^ Aw
b J
1 .b
»i<:. i
0 .d
<~ ( . 1 H 1
C 0 .
u. DO
d 1.1
'~b . 1
i M*- AN
1
10.^
4.<*
Jb. -y
0 . Udo
ti. J 7
0.0 I
0 . 1 Ob
10,3
UuUuJ
Ut ^Tm
~ £hT
/OCl 1
I
J U *~ '^b
|lufc -loibr*
CU "Hill
btulMLhi t_MT nJUl
SAMHLk. C«'
U I l) £ /
LH MUO
u^t" wul
MIi/iMj-C*
U 1 l> «4 J
CU HIJD
III" T Wl! I
Hb/Kb-CU
U i Ub£
Hh MUO
1»h t w(> I
MO/KO-Po
0 1 Oort
injI MUD
LMY
Mlj/r^G-N I
U i U J
£U MOD
u*i wuf
MG/Kij-^ig
/'iDri'f
IjD-imi- rV
:• A A i rMM
r | .41M0K
k>liA ^ I,
ft I j
v »* w I A»11 V
'¦ IiJ.iJLV,
) 1 I) »Mi' i
Ll't F ;¦»»<
t 0" Mr. AN
/*JU 1 1 d
44
I
1
I
1
1
f
^y. ou
1 . oO
1 0 . 00
/T.ly
/.SO
1
-------
P-0>
MaK LU IbL -Mlu L^b 1 M t J . b TL VtNb C LOWtK KlUKIUm MK tA
f INutP KILL bTUUY
U U U /L
41 ''H K K
M.lA I Mi jM
M I N! MijM
Mi »
SUM SO.
"r. AN
VAr^IANCt
s TO.JtV .
b T r> • L a w.
cue.K Vak
I OO Mt an
t ilin 1 d
31
0
1
(\a
314
J
£
1
0
31
31. /
24. i
9b i.o
293b 1.1
30.n
0.t>
0. I
0.1
^. 3
30 * n
Jl
il
J
J
J
b. *5
jo.b
0. 0*>U
u.**o
U. 0 lf\
d. j
3b.t>
U. Uy au
V Aw I A.H I-
'•>1 i) • u t v •
sT«».* kk.
Cot f V.\"
|
£!b»O0
4 /, tv 0 • vv «^o.
MAklU l^L -«*UUUM f-H* MAmLU Hlv
1
J . DU
J.bU
J. bU
J. DO
1
lo.vu
1 ft . ^ 0
la.s^u
iri.vu
j.lrt•vu
LOWtH f* L UK 1 U A akLA
I
lb. 10
Id. 10
Tj . 1 0
u]
1 5. I 0
1
^.10
10
J. 1 0
bu.4 1
/. 10
h 1 Nut H I- 1 LL j I UU 1
OOUO J
uepth
Ft tT
UDOOo
Ldfcj
1 UC.N I .
NUMPFR
U I' 0 1 U
wa rtK
TLMH
CF NT
0 0 c-i'i
f>0
kKUrtt
M(»/L
uo^fiu
SALINITY
Uuu 1 U
Nrl J-N
TO I aL
*b/L
UUOc"j
ror ^jll
N
Mb/L
UUb JU
UUd\NU3
N- T u ] t\L
Mb /1.
0 0 tj b L>
fhos-for
0 06o
r oku
L
Mb/L
f-j 0 o*»' i
f jl U
U\ K i A\)>4
M \ t4 \ "II )M
-.1) 1
Sli'.i su.
'» i-M
ji't- | awC^
> 1l».lit v •
i I. i # tww.
i 1 ir y v ay
i <>v. Mb AN
/•|l *r\ I f
db
b
ol
i?lv
3
('
/»
d^
J
J
J
s
Jc . 0
b.^
30 . d
U . 0 J 0
0.^5
O.OIK
U . 1 dU
lo.
2. J
JO. 1
0.1)^0
O.J/
0.01K
o. loo
10.
it j.kj
9d.O
^ U 9 . 9
0 . OoU
1 .dl
0 . 0 J
U . i >0
40 .
. o
4 i 4 . o
3J11/.4
O.oO^
0.^4
0.0 0
0 .0 Jb
b/b.
10.^
J • 9
JO . 4
u. /
0.4^
o.ol
U . 1 1 0
1 J.
I
1 . 1
0. 1
U • 000
O.UO
0.00
U . 0 0 0
£TU .
1.1
1 . 0
0 . c'
u. uoo
0 . Ot>
O.UO
U . 0 1 0
41 a
0.^
0. d
0.0
o.uu i
0 . 0 i
O.OO
0 . 0Or>
J.b
dt.d
U . n
d 1 . OD I
i u. ^ 1
o. urt
9.091
J J.
jO . b
3.6
JO. 4
0 .0^1
0
0.01
U . 1 1 0
\d.
Uii4 9 b
U 1 0^0
*1 1 0 ^ 9
UK"* i
0 i U*D«f
u i uoa
U 1 U* J
t «u\b r.
CO MUU
IK MUU
LU MUO
K<^ MlJlj
Nl MUU
IN Mol;
bt.l) I ml.4 1
JK t IflU 1
Uk Y «li 1
Uw T >«(I 1
OKI Hill
UK>f wur
UH Y noI
b«MHLt
Mb/i^ti-co
¦•JU / KG-C k
M()/iS'i-LU
NU/K b — PH
Mo/KG-N1
Mu / r U - (. N
0 U u 0 3
UtPTu
1-t* T
1
Tllit
b1Aufc.
/ S i<'' i»
> tl IMHh ¦*
.•»»>! '4ljM
' I ' J j Ml IM
>(j -I
>UM
> Wj
V «i' f Au(.f
" i iJ.ik v,
s T 11, r "fv .
L i1Y ¥ V b rV
i Ui. Mf .*N
1 /:
s I .U I > .'j - P-05
b
I
c7
J
tL
S3
r»
•)U .0 .£l0
i
J.uU
3, UU
J . I/O
s».uu
J. uu
1
o3 . *)U
*> $. li
r>.i. *>u
t> j • b o
1
. uu
#.00
•v.OU
H i . UU
^ . U 0
1
J 4 . V U
.iH .SM)
3«» .
l^lH.Ul
J4 • 9 0
* AhCU I bL -luOUKl I- KM Mm^CU I' IV Lu#li< AWi A
1
u . cT U
£ ~> •
d-t.d 0
U3b•Um
do • ^0
c?b • <-'0
1
1 b . *• 0
1 b. * U
1 k>. ** u
d J / . 1 b
l^.^U
~- 1 fjut k h ILL > 1110 Y
OUOO J
Ut H Th
I- fcH T
UDOOd
L Ah
lULUf.
NUMht K
UUO 1 0
waIIih
11 .1H
CK.NI
UU
PhUeL
MTi/L
U 0 *• o 0
bAL 1.41 f Y
I ri
U O i U
Nn i~N
I U I AL
Mvj/L
VOOd?
10 1 KjhL
Mb/L
If Ufj iu
NU^f.N03
NI U I AL
Mb/L
uootn
HmOS-(U1
Mb/L P
uoot
UKu
c
Mb/l
/bO«
/ *1 'J 1 1 /
¦ ,i» «Mh H
46
4 0
4 O
4
4
4
<>
• 'A Jk I MUM
lo
Jl . J
b. (
JO . ^
u.um)
0 . 4 o
W . 0 1 H
0 . 1 •« u
1 *,
» 1 \J 1 M1 i M
1
I fo
db . b
d. 1
ib. J
o. o j o
0.30
0 . U 11\
U . 1 II u
o.
' -l. 1
1 JvJ.n
1 ¦* 1.1
1 Oo J.9
0. 1 Ju
1.
0 . 04
J . H () 0
4 u .
stui S'j,
916
H^^bb.4
6 J4 . V
00 J V4 •4
0 . o 0 '~
0 • 0 r>
u • 00
0 . 0l>4
4v>u ,
.( i. u
<*
JO. J
4 . d
JO . C
li.uj^
U . 4 (1
u.ul
U.J
1 0,
V At. I Cf-
*D
o»b
0.9
0.^
U . UoO
O.UO
0 . 00
1) . 000
-rzr.
-» 1 '; . Ut V.
o. ^
1 . 0
0 .<~
0 . u u^
0.0^
0.00
U . 0 1 9
J,
^ 1 ' ' . f HK.
0
0. 1
0. 1
0. 1
U . 00 j
0 . 0 J
0. 00
0. 0 I o
1,
t i >r ~ V**K
-> l
C. H
d J • o
1 .C
1 b. J ft z>
t U . / 4
U . 00
10.0^1
JO ,
f 0.-. mKan
i
iO. J
4 . 0
Jb. ^
0.0 Jd
O.J 9
0.0 1
0.114
9.
uoOO j
()t H 1 n
fttr
7j^li U04^D
t ine. ^ mo i b r.
blAbE btUlMtNl
SAMPLt
U IVdn
CL> MUU
IJri Y WUl
Mb/f^(j-CO
V 1 UdV
UK MUO
J r! Y U I
mu/ku-Ck
U i U m j
CU MUU
LtH Y fiij f
Mb/KU-CO
0 1 \)~>d
PM MUU
U>'t tid r
mu/ku-ph
0 1 Uott
N 1 MUu
UK Y Wbl
MU/f^b-N I
0 1 0 VJ
ZN MUU
UkY wo!
MG/KG-^N
' ii 'Mr1 fc. *
< ' « A J M U M
M | ', J M./M
sir-i S j .
. it -*ri
V 1 Ar.O
^ I U . 1J t V .
sfll.tH'W,
LOcf
L O'l Mr AN
/ r> u h 1 £
10
I
1 t o
^ 1 r»
<*
b
K
0
to\
3
1
J/.HU
J 7 » 4 u
37.-0
1 . 7r>
37,40
37.40
I
1.10
i . 10
1 . 1 \l
l.dl
1 . 1 0
1.10
1
i /. t»0
1 f.Hli
1 7.**0
30
-------
S f M lih
?-Q$
(•AnLU i^L - JUnL .Mi.rfC O K/blr.YtN C l.OWt'H F LOK ( L) A AM.H
KluOt:* FILL STUDY
f'>Vr
7m>c I irt
UOb i 0
NHj-rt
ru i al
Mu/L
UOU^'J
t 0 f L
UUO JU
N-TO IAL
MO/L
OUb6b
pnos-ror
OUU" 3
Ut^TN
t tt T
'iud\ l oiuvb
not * MuibT.
bTAGfc. bt.ulrttNl
SAM^Lt
Cl> «f< Y HO f
Mo/hG-CU
olob*
Hrt MijO
i/'^y *or
MO/ K 0 — Pta
U lOtort
ni mud
Ukt WOf
MG/KG-NI
OUOdU
T (Jko C
M
Vrt
v/
^ 7
^7
H
<*
4
4
t*
1 'i1 A | MUrt
CO
o i . ft
7 . 1
Jo."»
0.0^0
U • U d
o.ol^
u . 1 0 0
1 u ,c
1 rjl MUM
1
3.6
3b.3
0.0^0
O.ifD
0.01K
0 . 0(50
b. ^
Mr t
1 H J
1 0•^
k •> J . /
Jbo1.0
o. i 573.D
0 . 0 Oh
0.^1
0.00
O.OJJ
Jb3. 1
• r mN
d
Ju. ti
b. 1
Jo . 1
0 . 0 JO
0 . Jb
0.01
0 .0-v0
d.tt
J.\- I ANCfr
O./d
0.9
0. 1
U . OOO
0.0 1
0 . 00
0.000
1 j .b
->1 l».U^ V .
T
0 • b
0 . 9
0 . H
O.ui^
0.0/
0.00
0.00b
•—3*7i
11 / • f .
0
0.0
0. 1
0.0
u . 0 0 fj
0.04
0.00
0 .004
1 • h
(.Of- F ^ »kh
C>4
1.0
16.o
i.u
ju.^'/o
dO .<~ f
0.0 0
V . 0 ft
4 1 .t)
[ * h.> N K A N
6
30.6
t».u
Jt>. 1
0 . 3*
0.0 L
0 .090
d . <~
0 1 Ov J
IN MOU
uky Wot
MG/KO-^N
IflMlit.W
i'aaI Ml'M
• 1 J U J MOM
Min
SU.-* V).
AiJ
AUL*-
' • Iu*JE V .
sTn.fc^h).
L\'t^ vo^
i (jf> Mr ftfj
/~mim I /
b 1.41 I i>rt - P-2G
9*
J
/ H 3
7D
•fe KOIM.
Sfc L> i MLN T
bAMHLt"
• u/r '-1^ w
7
ti/
^ 7
dl
el
^ (
1
¦ . ^ * I •» i iM
3
0. ObO
O.t.b
0. v) i I-V
0 . c' / 0
d\J , 0
*~9. Ml)
: I INI MUM
3
0.010
0. J r *» -j
J
O.OJl
0 • *~ w
O.ul
0. 1 jO
9. b
4^.00
v A- I
0
0.000
O.ul
0 .JO
0,Ou J
k. ni.-itv.
0
0.01-
O.u^
0.00
0 .•)*>*
b . L
»
0
0. 00J
0. 0^
0.00
0 . 0 I 0
1.0
I (If (¦ VAh
0
4b.^|I
T
0 I UdH
CD HUt»
JjkY will
MG/KO-CU
01 O^1/
MUO
I^HI' «
U i 0 kJ ^
Pm moo
L/k 1 wO I
0 i UfiM
M MUO
l;ky nor
u L U V.J
/N MOti
t/ki' «o I
i^o/KO-/N
7 11)i .jt,
1 M if.nl ••<
l 1 il A | i li JM
<>iNl II *M
'.i)M ^U.
•| Li-*
v/\" r Ar,i t-
I'»~'»L V .
'- I'l , t_H J ,
L v h f V ti K
i CH" Mf- AM
/
J
i
* I
c*** i
i
0
0
i\
0
J
1
.*0
.41)
.40
.<0
i
-).£;o
*>• £"?
b.
-------
11 mi'j - T-tf 1
MAhLii IbL -al I Iual Ck MouTn LUdEK FLUkIda Artttt
I- iNutN F ILL bTUDr
001'.) 1
UtP fH
Ftt T
UuUOrt
L uh
iUtN [ .
NUMHtP
uoulu
vdATt*
I t.MP
Ct NT
OU^ 99
00
pkOuc.
Mu/L
u04tfO
b AL INITY
HP T H
00b I 0
Nn J-N
ru ! AL
Mo/l_
uot>OfOb
j 11 4 n K
(MUM
M i (4 1 MUM
NU *
SUM SO.
. it uN
V A^ I ANCf-
-» I u.utv.
s U' .Ekk .
Ct'LK VAk
I 00 MEAN
/KJMl *
a
I
Ih6
704
4
4
0
0
4 I
JJ.C
JO. 3
1 Jlf.u
4?3b7
j
0i o^s*
Ck MLIU
UPY WbT
MO/KO-Ck
UillHJ
CU MUt)
I'Ktf *bf
Mb/Kb-CU
0 1
h»H MUU
UkY *uf
Mh/K(j-Pb
0 1 Obd
N { MUU
llkY WOT
Mb/KO-N I
u i 0 V 3
IN MUU
UH Y WO I
MO/KO-/N
/bOoOh
utMHEH
MAXIMUM
MINIMUM
SUM
SUM SlK
•it AN
VA^IANCt
slii.DtV.
SlO.tkk.
LuEF VttH
LOO MEAN
hliH 1 J
43
d
1
iHd
?U 4
d
0
oO
3
1
0 . 99
1,. 9b
U . 99
1
/ . 9UK
/.91M
/ . VU
1
/.SO
/ .90
1
4.00K
** • 0 0 (s
4.00'
] f>. 00
4.00
4.00
1
1 . dU
1 .bO
1 .DO
^. ^b
i . bO
S I .4 1 i UN
T-03
Mu-rfCO IbL -1 0 U Oh I h I^M riUAL C MU LOfctS KU«10A a^la
f INoLf FILL SlUuY
000 1 0
00^9*
0 0 4 d o
uuo 1 U
OO'J^b
00b JO
OU'Jbb
0 0 bo
w A 1 Ek
1)0
Sal 1nity
rjn J-N
J 01 fVJtL
NO^^NOJ
PHOS-I 0 T
1 OkO
1 LHP
PkubL
f u 1 mL
W
u-To IAL
(.
CENT
Mb/L
PPTH
MU/L
M(? /L
MO/L
Mb/L P
Mb/L
i\i
30
30
i*
t*
4
j3.^r
o. b
Jb. d
0 . 0 J 0
0 . 4 0
0 . 0 1 K
0 . Uo(>
/ .
3u. 1
3.0
34.^
0.030
0.. 9
lb4. u
1 0b9.3
U • 1 c U
1.^3
0.04
0 . JUO
d\.
30bb4• i
Bit). J
37*» 1 j . ^
(J.UOs
0. 39
0 .00
0 . Wtf i
1 JO.
31.9
b. 1
3b. 3
0 . U JO
0. Jl
0 . 0 1
0.0 7b
'j .
1 . 1
1.0
0.3
0.000
0 . 00
0 .00
0 . 000
H .
1 • 1
1.0
O.b
o.ouo
0.0 f
0 . 0 0
0 . 0 0 b
^ .
0 .d
o.
0.1
0.000
0 . 0 J
0.00
0 . 0 0 J
1 .
3. j
19. 1
1 .o
0 ,L)(i J
^1.14
0.00
/. b 9 d
Jb.
il.9
b.O
3b. 3
0 . 0 iO
O.JO
0.0 I
0.07b
b.
0 0 4
Ol0
Mb/KU-Ck
Hb/Mi-Co
Mb/IMJ-Ph
Mb/Kb-N1
MO/^0-/0
1
JC,')U
1
1 .90
1
t .bO
1
J.30
1
i ^ . 00
1
i J. 10
1
t . JO
Jd . OIJ
1 .
t. bu
5.30
111 . OU
1 J . 1 0
4 . JO
. O
1 .90
/. bu
J • .10
1 rt . 0 0
1 J . ) 0
4 . JO
1 tl 6) ^ . / f5
J.bl
bb • ^3
1 0 . rt9
Jd<* . UO
1 / 1 .M
lb.49
.id . bU
1 .911
/. b 0
J.JO
1 M . 00
1 J . I 0
4 . JO
Jrf . bO
1 .90
/•bO
J.JO
1 y. o o
1 J. 10
* . JO
IbL -tfDOOfr T
t I 1UAL
L MU LOv*L« fLUklOA AkLA
UN t-
ILL SIUOY
0U0 1 0
00£?99
0 U fl 0
UUO 1 0
dOO^b
0 0 b J 0
OOobb
OObt
w A I t.w
00
Sal INIT Y
Nh 1-W
loT rJtL
NO^NNOJ
PHOb-TOT
T Uko
TLMP
PkuHl
f v 1 aL
N-T UI&L
c
Cr.NT
Mu/L
pp r h
Mb/L
MO/L
MO/L
Mu/L P
Mb/L
/-)0(vU b
.\j» |MMf »V
'li.X I MUM
'* 1 N j MUM
•»U'"
J ^ S»J •
• •*. AN
« AW I MlCh
SlD.ULV.
Nl-l.tWW.
i wrF VAk
• Oi.. M^ AN
/•'lir I 1
OOUO J
utHTrt
FEET
JO
6
1
m
^rtO
J
0000O
L Art
totN r•
NUM«E«
0
3l
w
MA < [ M,»M
I- 1 N I MUM
»l> "I
^um m;,
• I AN
V AH \ A <(. r
s I IMIL v .
'iln.hHK,
M)h F V AI<
\ (Hi Mt UN
/'i'ioJ j
M'.liON - T-03
0UO0J
Ot^Tn
frLtl
JO
b
J
/
1
<)
b 1
d
70^1 1
not
bT m(>E
OUVO J
OtH Th
f£ET
0 0 0 0 H
LAB
lutM.
NUMHfcK
'.U HHf k
'•l A X I MUM
M I • i I MUM
,11*'
sun bO.
i t ^
V .4'" I 4NCt
'• li'.utv.
Mu.fc.rfH.
I'Jtl' VAN
i <>(, mean
/M»n 1 1
17
lb
1 b
1 b
4
4
4
4
J
J3» J
o . C
3b. 0
0 . 0 JO
0 . bb
O.Olf^
o.o/o
1
JO .b
3.4
J 4 . i
0 . 0 1 U
O.^b
0 . 0 1 K
u . 0 /o
cf
Pm MUU
Urif rtOT
Mb/KO-kH
0 ] 0bb
hi MUO
l> KY wiiT
Mu/KO-Nl
0 1 09J
IN MUL)
uwr wof
MO/^b-^N
>y «0h
I* IU' M t k
MiU i MJM
^IN[MUM
.tU"1
bUV SO.
' if AN
VAW JUNCh
^Tu.UtV.
slU.tWrf.
CUtF VAk
1 U'3 Mt AN
1 /
J
1
d9
59
1
1
0
4b
2
1
Jl .bO
J1 .bu
Jl .bO
9V^.«fb
31 «b0
31 .bO
1
. U0r\
, U0r
,00
, UO
. UU
1.00
1
o. 00
(5.00
d • o 0
b4 .00
6 • U 0
d.00
1
J. 1 0
j. 1 0
J. 1 u
v. b 1
J. 10
J. 10
b
o
b
04
1
, UOr,
. OU*
,00
,00
d.00
d. 00
1
4.00K
^.00^
<~.00
lo. 00
4 .00
4.00
1
.00
.00
.00
.00
• ou
^.00
-130-
-------
- r-c4
"di11 i >' D
' Jl » -'nt -/
1.>A I Mi M
m I H I M«JM
b'J.
¦ r u\i
vAJ ! ANO'
«- ru.utv.
s I •'. k wH ,
r
i UO MEAN
hunl J
14
I
^7j1
o
13
4
0
b J
4
o 1
o I
Ml
<+
t*
Jjl"
o. J -
Jb.'y
0 . UOU
0. Jt>
3o.
J. J -
3J.4
0.1)30
0. 16
J
dot». d.
d11 J.4
0. Idu
l.lu
60tt3b.4»
IMd.d
/3£44.
O.OOb
0. 33
3 1.0
*~. / -
J«*. t?
0 • V J ^
0 .d?
1 . 1
1 . U
0.4
0.000
o.ol
1 . 1
1 .u
0. b
O.UiD
0 . uv
0 . 1
0. 1
0. 1
U . Ood
0. 04
J.**
1 . 0
h 0 . 0 0 0
J^.tjv
31 .b
«~ .o
34. o
0 . 0 Jt)
0 . <^b
u.U I
O.OlK
0,04
0.00
0 . 0 1
0.00
u. 00
0.00
0. U0
0.0 1
o.o^o
0 . o 7 0
U
U.0^1
u.o ^
U.000
O.OOb
U . 00^
o • d vb
U.0/
I. i)
4. /
Ci.'D
lSb.H
-Jj . lv-
r. o
i. j
u. /
^ i • o
b • 0
0U003
OtPTH
httr
;oI A0t
004Vb
% MOIST.
SEi) 1 mlNT
SAMHLt
o 1 o*a
LI) MUL)
uhy wor
MG/kG-CO
0 1 OcT'rf
CP MUIJ
UKY Wb f
Mb/Kb—Ck
0 1 U 4 J
( 0 nuu)
l)PY *b T
Hb /k o - L U
0 lOb^
PH MUO
L'H 1 wO I
Mij/ftb-Ptl
U 1 ObtJ
NI MUD
UKY Wi>T
Mb/Kb-N I
010^3
ZN MUL)
L)PY VI of
Mo/KG-^N
7 S I) n u h
MiMHtrt bd
m A X i Mill y 1 4
"MNlMUM 1
syy J4*y
S'J. d!S \
Mr AN 6
Vw*IA^( t- 1 J
bllJ.UtV. 4
"> T' i. t.« h # 0
1'itr jmm oj
L Ob tit MM 4
/ M| n I J
bU[ iOii - T-G5
1
c i • ?o
.t>l)
cl .bo
<*tid •
.30
d\ .TO
1
0. VJ
0.VJ
0 . SI J
0. bt)
U.^J
O.^J
¦ Ml u. ^VI>-
0.^3
r 1 NutN Y ILL bTUUY
0000 i
DtPlH
fttT
OOOOH
I AH
iOtUT.
NUHHtH
UOOiU
WATLW
IhMH
CtNl
OU^^y
DO
M(->/L
U U *~ O 0
^ALINI 1Y
0 Ou I 0
Nh j-n
[ u) uL
M'j/l.
OOu^b
TUT KJC.L
Hb/l
000 JO
NU^nNUJ
iJ- ( 0 I all
MO/L
U 0o6b
PHOb-TOT
Mii/L P
OUDbO
r out? c
L
MC./L
•W'Mlh
t\)MMh ^
A I MUM
M1NI MUM
iU1 i
1>I|M S'J.
r I tN
; I M»Ch
'< I if t ilt V •
si
H'*- t" V AK
I III' Ml AN
.<¦ ^J "»
1 3
i
1
£M
1
<*
I
1
0
H 1
1
lJ
1 i
1 J
4
4
4
4
H
J4.0
r.o
J3 . J
0 . U^U
0.40
U . 0 1 K
0 . UrtU
b. t»
JO. 1
J. a
j J . >4
0.0 I 0
\).d*D
0 . 0 1 K
o.o/o
D . 4
H \ 1 . 1
l)J, u
4 <« ^ . O
u. uou
I .ds
U . 04
O.^VO
c" 4 . 0
1 3 0 3 0 . *
J Jl. i
I.4
o.uol
11.4.1
O.U0
0.0^1
1*0.0
31 .o
4 . 'J
J** »b
U . U 1 J
J . J^
U.01
0.0 Id
b . U
U.J
0 . U 0 0
0 . 0 0
a. Ou
o. ouo
0 . J
1 .<>
l.t)
U.b
U.UllO
0.0 I
O.QU
O.OOb
0 . b
O.-
0.4
U. 1
0.U0 J
0 . U J
0 . Ou
0.00^
O.J
D.I
JU . 4
1 . ^
Jd.H'VU
£ 1 . b<*
u. uo
D . CJ^b
y.tt
Jl .b
4 . O
i4 • O
0 . 0 I *
0 . Ad
0.0 1
U.O Id
b • 0
0U'» Vkj
"J 1 U<^
u 1 U c">
0 1 I' *4 1
U 1 Ob^1
w 1 Don
0 1 U V J
i> "l(.' 1 3 1 •
Ct) i-nJU
Lk muu
cu MUU
Kn MUU
iJi Ml)U
^N MUU
bL'j 1
UP IT Hh 1
|)K f W\j 1
Urt f mi I
Ui-CU
Mo/Kb-PH
M.j/KG-iN 1
Mb/KG- i r-i• »;••
iiji I*ifi
-»«M S'J ,
I Mj
v /• I- | n J( y
- v.
II •. i «»«.
^ \ V . 'x
! ' ;.n
/*. »r i J
• I •« I 11 >'v - T-ZO
) 4
j
I
dl
<* 1
I
I
0
1
OUOO i
Ot P fH
ftr T
1
jo . 1 u
J 0 . 1 o
JU. 10
suo.ui
>0. lu
JO . 1 u
1
^ J-
U . * jr
I) . ^ I
0 . tto
U . V J
1
ti , '~ U
M • <* U
M . H 0
/ 0 • DO
I^A^LO lbL -10 0 t f h |<|4 I IuAl L MU LU^L-
1
1. *~ u
1. <~ u
1 . •+ l>
1 .
1 . *~ li
1 . *~ u
UOOOd
L AH
11) t N I .
NUHhI- y
OOolO
r««u-N
1 U \ AL
.-11>/L
0 Uh^r>
101 KJKL
Ho/L
UOb JO
•^Ur'SNU J
I 0 I ML
Mo/L
OUo'n
PhUb-IuI
Ml>/L H
1
/ .HOK
7.40K
/.'»0
b4*. /1>
! .40
i A«t. A
OOooU
I t
L
Mb/L
1
3.7uk
J. fOK
J . / 0
1 i.hV
j. /a
1
1 .<*0
1 .oO
l .ou
3.
i .dO
J • / U l .40
I- 1 Nut k HILL ^ 1 Uli i
f^t,
'¦ 1 1
•^
•u. *, 1 M,;M
.«» I fJ J MUM
- t j'i
~ SO.
I »,N
vii.. 1 AuLt
' I 1». Ut V .
> I .i. k Pk.
v ur t
I l»(. Mf AN
\f
dt
3
i
t#
dSk
J
u
0
0
0
3
0. 1 00
U . 0 1 u
0 . 4VU
0 • 0*W
U • 0 Jo
u. ooo
0 . Oc^l
0.0U4
So.04^
0.034
Sto
f'b
do
u. bb
o.ol
0 . 1 ^ u
1 J.'J
0 . «d4
0.0 Ik
0 . uhO
J.b
(i. U 1
O.do
d . t)l^O
1 ^ . J
t^.bO
o.oo
O.^'M
1JVd. 1
0 . J 1
o. u 1
0 . 1 0 J
/ .0
o.ol
0 .uu
0 . UU 1
4 . 6
0.0/
0 .00
U . u dJ
d. 1
0.U1
0.00
0 . (J U 4
O.H
-------
Appendix D
OSTD PROFILES
-132-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP. 0E6 C
s>
o—
o——o
o 36—o
O—e>
o—;e-o
<3>—o
o—se-o
o—>c-0
O—5
e
)(-
X
)(
)(
)S
X
*
H-01 RUG 7 S
-133-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP, DEG C
IS
<30.00
4.00
8.00
_l
12.00
_l
0.00 20.00 40.00 15.00
I I l I
25.00 35.
_J l
¥
*
H - 0 2 RUG 75
-134-
-------
~.0.. MG/L
SALINITY, PPTH
LLl
Ljj
U_
CL
LU
~
Si
G>0
IS
IS
IS
is
00"
IS
IS
(M
4.00
8.00
12.00 0.00
J
L
20.00 40.00
TEMP. DEG C
15.00 25.00 35.03
I l l
IS
IS
-------
D.0.. MG/L
SALINITY, PPT H
TEMP. DEG C
0 .
I
20.00 40.00
_J l
15.00 2S.00 3S.00
I i i
*
H-0 4 RUG 75
-136-
-------
D.0.. MG/L
SALINITY. PPT H
TEMP. DEG C
H- 0 5 RUG 75
-137-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP, DEG C
(SI
<==>0 . 0 0
4.00 8.00 12.00 0.00 20.00
_j i | | i
<2H#K>
<2HH>
<>*-0
O-f-O
3-£-0
40.00 15.00 25.00 35. 3 j
|
X
X
'Y\
-/<
L
_L
1-01 AUG 75
-138-
-------
D. 0. . MG/L
SALINITY. PPTH
TEMP. DEG C
®0 . 0 0
5S '
SI
u
UJ
Ll
X
t—
0.
LJ
Q
CD"
(Si
IS
OJ
<3
CD
ts
4.00
_J
0-^*0
O—>K>
O—)(-0
O—*K>
o—
o—*«>
<2>—>K>
O—5«>
O—
O—
O—
o—*o
O—5lk>
<^«>
o—)eo
12.
_J
0 0 0.00
I
20.00 40.00 15.00 25.0 0 35. 0
J
"1
x
X
¦k
¥
x
x
X
}i
X
X
X
X
X
X
X
X
X
X
X
*
¥
X
X
X
X
X
X
X
X
X
X
5(
X
¥
x
X
*
¦r
CM"
1-02 RUG 75
-139-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
68 0 . 0 0
4.00 8.00
_j i
12.00 0.00
_J I
20.00 40.00 15.00 25.00 35.00
_l I I l l
O X o
0-3 S—0
G-Jt—&
~0
G-tt-O
0-*-€>
*
1-03 AUG 75
-140-
-------
D.0.. MG/L
SRLINITY, PPTH
TEMP. DEG C
ts
rs0
00
4.00
_J
8.00
32.00
_j
0.00
20.00 40.00 15.00 25.00 3S.03
*
X
5(
*
*
1-04 RUG 75
_i /,i _
-------
D.0.. MG/L
SRLINITY. PPTH
TEMP. DEG C
15.00 25.00 35 . 0 C
I l I
¥
X
X
X
X
X
X
X
X
k
k
4
k
k
k
x
k
f
f\J
J-01 RUG 75
-142-
cs
^0 . 0 0
Si
U
UJ
U.
X
I—
Q.
U
Q
CD"
CSS
Si
00
IS
00
4.00
_l
O X o
O—
O X o
8.00
12.00 0.00
20.00 40.00
J
¥
X
X
X
X
x
x
3;
k
x
k
X
X
X
k
-------
D.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
es
. 0 0
4.00 8.00 12.00 0.00
_l l 1 I
20.00 40.00
_J i
15.00 25.00 35.00
I l I
¥
¥
X
7 (
; (
¥
*
J - 0 2 RUG 75
-143-
-------
<5J
s0 . 00
~.0.. MG/L
^ . 0 0 8.00
I I
O-*—O
C-
f
12.00 0.00
_l I
20.00 ^0.00
_l l
TEMP, DEG C
15.00 25.00 35.
! I I
¥
J -0 3 RUG 75
-144-
-------
o
-------
D.0.. MG/L
SALINITY, PPTH
TEMP. DEG C
s
=>0 . 0 0
4.00
8.00
12.00 0.00
20.00 40.00
_l I
15.00 25.00 3S.0 0
I l I
c\r
K-01 RUG 75
-146-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
IS. 0 0 25. 00 35. 0 0
I I I
¥
N f
7<;
K
)£
X
X
X
X
*
IS
<51
t
C\j
K - 0 2 RUG 75
-147-
-------
D.0.. MG/L
8.00
12.00
SALINITY, PPTH
0.00 20.00 40.00
T
5S
TEMP. DEG C
15.00 25.00
l I
35 . 0 J
K - 0 3 RUG 75
-148-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP. DEG C
o
53 0 . 0 0
UJ
U
I
(—
CL
LU
a
cs
CD"
d
(SI
CM
cs
s
00
<3
T
<\J'
1.00 8.00 12.00
_J l l
0.00 20.00 10.00 15.00 2S.00 3 5.02
I I l ! I I
¥
)(
K
)(
*
L-01 RUG 75
-149-
-------
ts
0 . 0 0
D.0.. MG/L
4.00
8.00
_j
-O
SALINITY, PPTH
12.00 0.00 20.00 40.00
_J I I I
TEMP. DEG _ C
15.00 25.00 35 . 0 E
L - 0 2 RUG 75
-150-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
C\!
L-0 3 RUG 75
-151-
-------
0.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
L-04 RUG 75
-152-
-------
==0 . 00
D.0.. MG/L
4.00 8.00
SRLINITY, PPTH
12.00 0.00
_J I
20.00 4 0.00
_l |
TEMP, DEG C
IS . 0 0
25 .
35 . e 0
M-01 RUG 75
-153-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP. DEG C
<5>
<=» 0 . 0 0
t . 0 0
_J
8.00
_i
O-
O—
-5J-
4
O
O-5f-
0-*K>
12.00
_J
0.00 20.00 ^0.00
I I I
Si
5k
15.00 25.00
! I
a
x
x
X
X
7 i
M- 0 2 AUG 75
-154-
-------
D.0.. MG/L
SRLINITY. PPTH
TEMP, DEG C
s
s0 . 0 0
4.00 8.00 22.00
_l I I
0.00
20.00 40.00
55
K
)i
s,i
*
15.00 25.00 35 . C
1 i i
¥
it
*
X
X
*
CM'
1-03 RUG 75
-155-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP, DEG C
Q 0 . 0 0
4.00 8.00 12.00 0.00
_l I I I
20.00 40.00
_I i
¥
X
X
}(.
X
X
)(
)£
X
15.00 25.00 35.P0
I l l
?(
)(
X
X
H
n
*
x
x
X
X
X
X
X
X
X
*
M- 0 ^ RUG 75
-156-
-------
D.0.¦ MG/L
SALINITY, PPTH
TEMP. DEG C
IS
ca|
00
4.00
8.00
12.00 0.00
_J I
20.00 40.00
_! I
¥
)(
)(
)(
)(
)(
)(
X
)(
)(
)(
)(
X
)(
)(
)(
)(
)(
X
15.00 25.00 35
I I I
¥
)(
)(
)(
)(
X
H
K
X
)i
X
K
X
X
X
H
X
m
M-0 5 RUG 75
-157-
-------
D.O. MG/L
SALINITY. PPTH
TEMP. DEG C
8.00
12.00 0.00
20.00 40.00 15.00 25
_J I I L_
0 0 35.20
I
IS
c\j "
M-0G AUG 75
-158-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP. DEG C
<3
¦ X -O
*
O—5K>
o-p>
*
N-01 RUG 75
_1 ^Q —
-------
<3
. 0 0
D.0.. MG/L
4.00 8.0 0
SALINITY. PPTH
12.00
0.00
I
20.00 40.00
_L
O X o
G-5t—o
J
TEMP. DEG C
15.00 2S.00 3 5.00
1 I 1
N-0 1 R RUG 75
-160-
-------
D . 0
MG/L
SALINITY, PPTH
TEMP. DEG C
IS>
-------
-------
cs
<30
00
D.0.. MG/L
4.00
_j
8.00
SRLINITY. PPTH
12.00 0.00
20.00 40.00
_l i
TEMP. DEG C
15.00 25.00 35.00
N-04 RUG 75
-163-
-------
^0 . 00
D.0.. MG/L
4.00 8.00
32
SALINITY. PPTH
0.00 20.00 40.00
I I I
TEMP. DEG C
IS- 00 25.00 35.00
I l l
-*—e>
-5 c—o
3—O
—o
o—*-
O—
m>
*
7
=L
N- 0 5 RUG 75
-164-
-------
D.0.. hG/L
SALINITY. PPTH
TEMP. DEG
ts
<30.0 0
f . 0 0 8.00
_j i
12.00 0.00
_j l
20.00 <*0.00 3S.00 25 .
N-0G RUG 75
-165-
-------
D.0.. MG/L
SALINITY, PPTH
TEMP. DEG C
.00
4.00
_j
8.00
12.00
_l
0.00
I
20.00 40.00
_J I
¥
H
K
X
15.00
25.00 35,00
¦k
1SJ
CSJ
CD
N- 0 7 RUG 75
-166-
-------
D.0.. MG/L
SALINITY, PPT H
TEMP, DEG C
N-0 8 RUG 75
15.00 25.00 3 5. 0 e
! I I
*
X
H
Vk
y<
-167-
-------
D.0., MG/L
SALINITY, PPT H
TEMP. DEG C
<51
13 0 . 0 0
1.00
I
8.00
12.00
0.00
20.00
40.00
I
15.00 25.
35 , 0 t
¥
*
N- 0 9 RUG 75
-168-
-------
D. 0
MG/L
SALINITY, PPTH
TEMP, DEG C
ca
CS> 0 . 0 0
1.00 8.00
_J I
12.00 0.00 20.00 40.00 15.00 25.00 3
L
_L
J
L
_L
J
O-
0-
1
P-01 AUG 7 S
-169-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
ts
ts>0
00
¦4.00 8.00
_! 1
32.00
_j
0.00 20.00 "10.00
1 I l
¥
X
X
X
X
X
X
X
y*
x
){
K
)S
)(.
¥
15.00 25.00 35.00
I I l
¥
X
X
X
¥
X
X
X
X
X
k
)(:
¥
*
C\J"
P-01fl AUG 75
-170-
-------
IS
s0 . 00
D.0.. MG/L
4.00 8.00
I l
SALINITY. PPTH
12.00 0.00
J
L
20.00 40.00
_j i
TEMP. DEG C
15.00 25.00 35
l I l
P - 02 fl'UG 75
-171-
-------
D. 0. , MG/L
SALINITY, HH I H
i c. nr
U L_ LJ
o
0 . 0 0
1.00
_J
8.00
_j
12.00
0.00 20.00 10.00
I I I
15.00
I
25.00 35.3 J
_j i
O-
*—o
*
)(
I
P-0 3 AUG 75
-172-
-------
IS
^0.00
D.0.. M6/L
4.00 8.0 0
l I
SALINITY, PPTH
*—O
o ^—0
¦o
0 *-€>
32.00 0.00
20.00
40.00
_l
TEMP. DEG C
15.00 25.00 35
*
P- 0 4 RUG 75
-173-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP, DEG C
ts
0
00
1.00
8.00
12.00
0.00
l
20 .00 10 . 00 15.00 25.00
j
u
3S . 00
_l
P-0 5 RUG 75
-174-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
si
== 0 . 0 0
8.00
12.00 0.00
20.00 40.00 15.00
J
L
25.00 35.00
_l l
¥
>5
X
X
H
K
K
*
P-0G nUG 75
-175-
-------
SJ
s 0 . 0 0
D.0.. MG/L
^.00 8.0 0
SRLINITY, PPTH
O-
o-
o-
o-
0-
o-
o-
-x—e>
o
e>
e>
t
12.00 0.00
20.00 ^0.00
_J I
*
>e
TEMP, OEG C
15.00 25.00 35.00
T-01 RUG 75
-176-
-------
IS
^>0 . 0 0
D.0.. MG/L
4.00 8.00
*—0
*—O
12.00
SALINITY, PPTH
0.00 20.00 40
I I I
15.00
I
TEMP. DEG C
25.00 35.0B
l
T-0 2 RUG 75
-177-
-------
~.0.. MG/L
SALINITY. PPTH
TEMP. DEG C
ts
S0 . 0 0
4.00
8.00
12.00 0.00
20.00 40.00
_J I
is.00 2s.00 3S. ce
l I l
-X—€>
i
*-0
T-0 3 RUG 75
-178-
-------
D.0.. MG/L
SALINITY. PPTH
TEMP, DEG C
ts
530
4 . 00
8.00
_j
12.00
0.00
I
20.00 40.00
J
X
X
*
15.00 25.0 0 35. JC
l I i
T - 0 ^ HUG 75
-179-
-------
-------
S->
/ /
-A
\ Nf!
¦\ \ M
J*r
>
'" t< . *
^ G
h
/
°\
\
c_
V
j*
A
':. 0
t>'
^0
c
,
.A?
A
------- | |