NONMETHANE ORGANIC COMPOUNDS MONITORING

ASSISTANCE FOR CERTAIN STATES
IN EPA REGIONS III, IV, V, VI, AND VII
PHASE II

Final Project Report

CORPORATION

-------


DCN No. 85-203-024-12-01
Radian No. 203-024-12
EPA No. 68-02-3513

NONMETHANE ORGANIC COMPOUNDS MONITORING

ASSISTANCE FOR CERTAIN STATES
IN EPA REGIONS III, IV, V, VI, AND VII
PHASE II

Final Project Report

Prepared by:

Radian Corporation
3200 East Chapel Hill Road/Nelson Highway
Post Office Box 13000
Research Triangle Park, North Carolina 27709

Property of U S. Environmental
Protection Agency Library MD-108

JUN 03 1987

1200 Sixth Avenue/Seattle, WA 98101

February, 1985

-------
TABLE OF CONTENTS

List of Figures				iv

List of Tables.				vi

1.0 SUMMARY		1-1

1.1	INTRODUCTION		1-1

1.2	DESCRIPTION OF OVERALL DATA QUALITY		1-3

1.2.1	Completeness		1-3

1.2.2	Calibration				1-3

1.2.3	Analytical Precision		1-3

1.2.4	Overall Precision		1-5

1.2.5	Accuracy		1-8

1.3	CONCLUSIONS		1-11

2.0 NMOC DATA SUMMARY		2-1

3 .0 ANALYTICAL TECHNICAL NOTES		3-1

3.1	INSTRUCTIONS FOR OPERATION OF NMOC SAMPLERS		3-1

3.1.1	Installation		3-1

3.1.2	Operation - Presampling					3-2

3.1.3	Operation - Post samp ling		3-3

3.1.4	Troubleshooting Instructions			3-4

3.2	ANALYTICAL		3-5

3.2.1	Instrumentation				3-5

3.2.2	Hewlett-Packard 5880 Gas Chromatograph Operation.	3-5
3 .2.3 NMOC Analytical T6choiQU€........................	3—7

3 .3 CALCULATIONS		3-7

3.3.1	Daily Calibration.				3-7

3.3.2	NMOC Sample Concentrations		3-8

ii

-------
TABLE OF CONTENTS (Continued)

4.0 QUALITY ASSURANCE/QUALITY CONTROL DATA ANALYSIS		4-1

4.1	INTRODUCTION		4-1

4.2	QA/QC DATA		4-1

4.2.1	Calibration and Drift		4-1

4.2.2	Preliminary Multiple Analyses		4-22

4.2.3	Repeated Analyses		4-29

4.2.3.1	All Sites		4-30

4.2.3.2	Local Ambient Samples		4-81

4.2.4	Duplicate Samples		4-86

4.2.5	QC Samples		4-104

4.2.5.1	Radian In-House QC Samples		4-104

4.2.5.2	Other QC Samples		4-131

5.0 NMOC DATA ANALYSIS		5-1

6.0 RECOMMENDATIONS		6-1

6.1	EQUIPMENT DESIGN AND RECOMMENDATIONS		6-1

6.2	SAMPLE STABILITY., 			6-2

6.3	REPEATED ANALYSES		6-2

6.4	NMOC SPECIATION BY GC/MS		6-4

6.5	ADDITIONAL 1984 NMOC DATA ANALYSIS		6-5

APPENDIX A: DETERMINATION OF ATMOSPHERIC NONMETHANE ORGANIC		A-l

COMPOUNDS (NMOC) BY CRYOGENIC PRECONCENTRATION
AND DIRECT FLAME IONIZATION DETECTION, Quality
Assurance Division, Environmental Monitoring

Systems Laboratory, U.S. Environmental Protection
Agency, Research Triangle Park, NC, December 1983.

APPENDIX B: OUTLINE OF NMOC DATA ANALYSIS	 B-l

ill

-------
LIST OF FIGURES

Fittere		Title		El&e

1-1	Comparison of Radian Analysis of Repeated Samples		1-6

1-2	Comparison of EPA Analysis of Repeated Samples		1-7

2-1	Plot of NMOC Data for Akron, Ohio	.		2-10

2-2	Plot of NMOC Data for Atlanta, Georgia		2-14

2-3	Plot of NMOC Data for Beaumont, Texas.				2-18

2-4	Plot of NMOC Data for Birmingham, Alabama		2-22

2-5	Plot of NMOC Data for Charlotte, North Carolina..		2-26

2-6	Plot of NMOC Data for Chattanooga, Tennessee		2-30

2-7	Plot of NMOC Data for Cincinnati, Ohio		2-34

2-8	Plot of NMOC Data for Clute, Texas		2-38

2-9	Plot of NMOC Data for Dallas, Texas		2-42

2-10	Plot of NMOC Data for El Paso, Texas				2-46

2-11	Plot of NMOC Data for Fort Worth, Texas.				2-50

2-12	Plot of NMOC Data for Indianapolis, Indiana		2-54

2-13	Plot of NMOC Data for Kansas City, Missouri			2-58

2-14	Plot of NMOC Data for Memphis, Tennessee				2-62

2-15	Plot of NMOC Data for Miami, Florida				2-66

2-16	Plot of NMOC Data for Philadelphia, Pennsylvania		2-68

2-17	Plot of NMOC Data for Richmond, Virginia........		2-72

2-18	Plot of NMOC Data for Texas City, Texas		2-76

2-19	Plot of NMOC Data for Washington, D.C		2-80

2-20	Plot of NMOC Data for West Orange, Texas		2-84

2-21	Plot of NMOC Data for West Palm Beach, Florida					2-88

2-22	Plot of NMOC Data for Wilkes-Barre/Scranton, Pennsylvania		2-92

4-1	Daily Propane Span Calibration, NMOC Instrument A		4-2

4-2	Daily Propane Span Calibration, NMOC Instrument B			4-4

4-3	Daily Propane Span Calibration, NMOC Instrument C		4-6

4-4	Daily Propane Span Calibration, NMOC Instrumetn D		4-8

4-5	Daily Zero Calibration, NMOC Instrument A		4-10

4-6	Daily Zero Calibration, NMOC Instrument B		4-11

4-7	Daily Zero Calibration, NMOC Instrument C		4-12

4-8	Daily Zero Calibration, NMOC Instrument D		4-13

4-9	Frequency Diagram of Calibration Drift Data.		4-20

4-10	Frequency Diagram of Drift Data				4-21

4-11	Frequency Diagram of Repeated Difference Data		4-41

4-12	Comparisons of Repeated Analyses, Grouped by the Channel of

the Second Analysis			*	.			4-59

4-13	Comparisons of Repeated Analyses, Grouped by the Channel of

the First Analysis					4-60

4-14	Differences of Repeated Analyses as a Function of Mean NMOC...	4-62

4-15	Duplicate Sample Differences Histogram		4-96

4-16	Stem and Leaf Plot of Duplicate Differences		4-97

4-17	01, Mean Difference in NMOC for Duplicate Sample Analyses.....	4-103

4-18	In-House QC Sample Differences, Histogram				4-118

4-19	In-House QC Sample Differences, Stem and Leaf Plot		4-119

iv

-------
LIST OF FIGURES (continued)

Figure		Title				1&&2.

5-1	Complete NMOC Data		5-2

5-2	NMOC Data Analyzed by EPA Channel E.		5-6

5-3	NMOC Data Analyzed by EPA Channel GC		5-8

5-4	Stem and Leaf Plot of the Standard Deviation of Radian NMOC

Measurements			.	5-10

5-5	Time Series Analysis Plot, First-Order Autoregression for

Dallas, Texas Data.............				5-14

5-6	Time Series Analysis Plot, First-Order Autoregression for

Clute, Texas Data					5-16

5-7	Time Series Analysis Plot, First-Order Autoregression for

Philadelphia, Pennsylvania Data		5-18

5-8	Time Series Analysis Plot, First-Order Autoregression for

Akron, Ohio Data		5-20

5-9	Akron, Ohio NMOC Data		5-22

5-10	Atlanta, Georgia NMOC Data....				5-23

5-11	Birmingham, Alabama NMOC Data			5-24

5-12	Beaumont, Texas NMOC Data		5-25

5-13	Charlotte, North Carolina NMOC Data		5-26

5-14	Chattanooga, Tennessee NMOC Data...		5-27

5-15	Clute, Texas NMOC Data				5-28

5-16	Dallas, Texas NMOC Data				5-29

5-17	El Paso, Texas NMOC Data					5-30

5-18	Cincinnati, Ohio NMOC Data					5-31

5-19	Fort Worth, Texas NMOC Data		5-32

5-20 Indianapolis, Indiana NMOC Data		5-33

5-21	Kansas City, Missouri NMOC Data		5-34

5-22	Miami, Florida NMOC Data		5-35

5-23	Memphis, Tennessee NMOC Data		5-36

5-24	Orange, Texas NMOC Data		5-37

5-25	Philadelphia, Pennsylvania NMOC Data......		5-38

5-26 Richmond, Virginia NMOC Data				5-39

5-27	Texas City, Texas NMOC Data		5-40

5-28 Wilkes-Barre, Pennsylvania NMOC Data	 5-41

5-29 Washington, District of Columbia NMOC Data	 5-42

5-30 West Palm Beach, Florida NMOC Data	 5-43

v

-------
LIST OF TABLES

Table		Title		Page

1-1	Project Site Summary		1-2

1-2	Measures of Precision for Channel Pairs		1-4

1-3	Precision for Duplicate Samples			1-8

1-4	Accuracy Relative to Internal Standards		1-9

1-5	Accuracy Relative to External Audit		1-10

2-1	NMOC Site Data Summary		2-2

2-2	Invalidated and Missing Samples		2-3

2-3	Data Listing for Akron, Ohio		2-11

2-4	Data Listing for Atlanta, Georgia		2-15

2-5	Data Listing for Beaumont, Texas				2-19

2-6	Data Listing for Birmingham, Alabama		2-23

2-7	Data Listing for Charlotte, North Carolina		2-27

2-8	Data Listing for Chattanooga, Tennessee..			2-31

2-9	Data Listing for Cincinnati, Ohio		2-35

2-10	Data Listing for Clute, Texas				2-39

2-11	Data Listing for Dallas, Texas		2-43

2-12	Data Listing for El Paso, Texas				2-47

2-13	Data Listing for Fort Worth, Texas		2-51

2-14	Data Listing for Indianapolis, Indiana		2-55

2-15	Data Listing for Kansas City, Missouri		2-59

2-16	Data Listing for Memphis, Tennessee					2-63

2-17	Data Listing for Miami, Florida		2-67

2-18	Data Listing for Philadelphia, Pennsylvania		2-69

2-19	Data Listing for Richmond, Virginia		2-73

2-20	Data Listing for Texas City, Texas		2-77

2-21	Data Listing for Washington, D.C		2-81

2-22	Data Listing for West Orange, Texas			2-85

2-23	Data Listing for West Palm Beach, Florida		2-89

2-24	Data Listing for Wilkes'Barre/Scranton, Pennsylvania		2-93

4-1	Calibration and Drift Data for Radian Channel A		4-3

4-2	Calibration and Drift Data for Radian Channel B..........	4-5

4-3	Calibration and Drift Data for Radian Channel C		4-7

4-4	Calibration and Drift Data for Radian Channel D		4-9

4-5	Statistics for Calibration and Drift for All Radian

Channels		4-15

4-6	Statistics for Calibration and Drift for Radian

Channel A					4-16

4-7	Statistics for Calibration and Drift for Radian

Channel B		4-17

4-8	Statistics for Calibration and Drift for Radian

Channel C		4-18

4-9	Statistics for Calibration and Drift for Radian

Channel D				4-19

vi

-------
LIST OF TABLES (continued)

Table 	Title		 Page

4-10 Preliminary Multiple Analyses of Ambient Samples		4-23

4-11 Statistics for Preliminary Ambient Samples		4-24

4-12 Analysis of Variance for Preliminary Ambient Data		4-28

4-13 Mean NMOC Value and Differences of Repeated Analyses		4-31

4-14 Statistics for Repeated Analyses, Mean NMOC, and

NMOC Differences	.	4-40

4-15 Statistics for Repeated Analyses, Two Possible

Outliers Removed		4-43

4-16 Statistics for Repeated Analyses with the Absolute

Magnitude of NMOC Differences				4-44

4-17 Statistics for Repeated Analyses, Tabulated by

Instrument Channel Pairs....						4-45

4-18 Summary Statistics for Repeated Analyses, Precision

Estimates				4-53

4-19 Statistics for Repeated Analyses. Confidence Intervals

for Pairs and Groups of Channels		4-56

4-20 Differences of Repeated Analyses as a Function of

Mean NMOC		4-69

4-21 Summary Statistics for Linear Regression, DI Versus

NMOCBAR		4-80

4-22 Repeated Analyses on the Same Channel		4-79

4-23 Repeated Analysis Precision Radian vs. EPA GC Channels...	4-82
4-24 Analysis of Variance of Repeated Analyses of Local

Ambient Samples		4-84

4-25 Repeated Analyses, Effect of Channel of First Analysis...	4-85

4-26 Duplicate Samples Summary		4-87

4-27 Differences of Duplicate NMOC Analyses		4-93

4-28 Duplicate Sample Differences		4-95

4-29 Analysis of Duplicate Sample Difference by Site..			4-99

4-30 Duplicate Sample Statistics		4-102

4-31 Comparison of Duplicate Sample Differences.....		4-105

4-32 Comparison of Duplicate Sample Differences...		4-106

4-33 In-House QC Samples		4-107

4-34 In-House QC Sample Differences, Sorted by Channel		4-113

4-35 In-House QC Sample Differences, Sorted by Radian ID		4-115

4-36 In-House QC Sample Differences		4-117

4-37 In-House QC Sample Differences, by Channel			4-120

4-38 Tests of Hypotheses In-House QC Sample Differences,

by Channel		4-121

4-39 In-House QC Sample Differences		4-123

4-40 In-House QC Sample Differences, ID 16 Through 35		4-124

4-41 In-House QC Sample Differences, by ID Number		4-125

4-42 In-House QC Sample Differences, Ranked by Mean

Difference of ID Number		4-130

vii

-------
LIST OF TABLES (continued)

Table		Title		Page

5-1	Statistics for Complete NMOC Data		5-3

5-2	NMOC Data Analyzed by EPA Channel E				5-7

5-3	NMOC Data Analyzed by EPA Channel GC		5-9

5-4	Standard Deviations of Radian NMOC Analyses		5-11

5-5	First-Order Autoregression for Dallas, Texas Data		5-15

5-6	First-Order Autoregression for Clute, Texas Data		5-17

5-7	First-Order Autoregression for Philadelphia Data			5-19

5-8	First-Order Autoregression for Akron, Ohio Data		5-21

5-9	Tests of the Maximum (X ) and Minimum (X) NMOC Values

as Outliers		5-44

6-1 NMOC Sampling and Analysis Stability Study	 6-3

6-2 Proposed Sites for Speciation by GC/MS	 6-4

6-3 Peak NMOC Values	 6-7

viii

-------
1.0 SUMMARY

1.1 INTRODUCTION

An average of 62 ambient air samples were collected in stainless steel
canisters at each of 22 sites between June and September, 1984. These
samples were analyzed for nonmethane organic compounds by the Radian
Corporation under EFA contract. Analysis was made with a cryogenic precon-
centration, direct flame ionization detection (FID) method,* using one of
four identical analytical systems operated simultaneously. Table 1-1
identifies the sampling sites, sampling dates, and the mean and maximum
NMOC concentration for each site.

Section 2.0 presents the complete validated NMOC and sample data in
tabular and graphical form. Information on invalidated data and missing
samples are given at each site. Section 3.0 gives technical notes on the
operation of the NMOC sampling and analysis equipment as well as specific
equations for making daily calibration and analysis calculations.

Section 4.0 provides the details of the quality assurance/quality
control data analysis and summarizes data quality. Topics covered in
Section 4 include the quality of the instrument calibration and drift
measurements, the NMOC completeness measurements, and NMOC precision and
accuracy measures.

Section 5.0 presents the NMOC frequency analysis data graphically for
all the sites combined and for each site separately. The NMOC data analysis
includes investigating the nature of its potential autocorrelation.

Section 6..0 presents recommendations for additional study of the 1985
NMOC data. For future studies recommendations are also given for changes
in the sampling equipment design, in the experimental design, and in the
data analysis.

Method description available from the Measurement Standardization Branch,
Quality Assurance Division, (MD-77), EFA, Research Triangle Park, NC 27711.

1-1

-------
Table 1-1. Project Site Summary

First Pinal	Total No.

Possible	Possible	Possible	Mo. 1H0C. pnmC

Site Sampling	Sampling	Sampling Total Mo.	Valid Percent

Site Location Code Date Date	Days Duplicatca Samples Complete	Mean Max

Akrnn. Ohio

AKOH

6/27/84

9/28/84

*8

3

68

96

0.79

2.95

Atlanta. Georeia

ATGA

7/11/84

9/28/84

58

3

55

90

0.79

*.?7

Beaumont. Texaa

BMTX

6/18/84

9/28/84

75

2

66

86

0.89

3.W

Birmingham. Alabama

BAL

7/11/84

9/28/84

58

1

56

95

0.99



Charlotte. North Carolina

CHMC

7/11/84

9/28/84

58

*

60

97

0.54

2.52

Chattanooaa. Tennessee

CHTM

7/11/84

9/28/84

58

2

*6

77

1.34

4.08

Cincinnati. Ohio

CMOH

6/27/84

9/28/84

68

1

65

94

0.93

3,??

Clute. Texas

CLTX

6/18/84

9/28/84

75

5

72

90

0.82

4f31

Dallaa. Texas

DLTX

6/18/84

9/28/84

75

*

74

94

0.97

2.57

B1 Paao. Texas

ELTX

6/18/84

9/28/84

75

*

69

87

0.93

2,*?

Port Worth. Texaa

FWTX

6/18/84

9/28/84

75

3

69

88

0.97

3,81

Indiananolis. Indiana

1NIN

7/11/84

9/28/84

58

3

59

97

0.80

2.50

Kansas City. Missouri

KCMO

6/27/84

9/28/84

68

2

68

97

0.79

2.76

Meamhis. Tennessee

MTM

7/11/84

9/28/84

58

1

52

88

1.43

4.75

Miami. Florida

MIFL

8/13/84

9/28/84

35

3

31

82

1.32

3.70

Philadelphia. Pennsylvania

PHPA

6/27/84

9/28/84

68

2

63

90

1.02

3.10

Richmond. Virginia

RVA

6/27/84

9/28/84

68

1

64

93

0.53

1.22

Texaa City. Texaa

TCTX

6/18/84

9/28/84

75

4

69

87

0.92

4.74

Uashincton. D.C.

WDC

6/27/84

9/28/84

68

3

63

89

0.81

2.93

West Orante. Texas

ORTX

6/16/84

9/28/84

75

3

71

91

0.69

3.35

West Palm Beach. Florida

WPFL

6/18/84

9/28/84

75

2

72

94

0.54

2.63

Wilkes-Barre/Scranton. PA

WBPA

6/27/84

9/28/84

68

2

63

90

0.45

0.96



TOTAL:

OVERALL AVERAGE:



1459

58

1375
62.5

90.6

0.853



-------
1.2 DESCRIPTION OF OVERALL DATA QUALITY

1.2.1	Completeness

The completeness of sampling at the various sites ranged from 77Z to
97Z. Valid samples numbering 1,375 (including 58 duplicate samples) were
analyzed, for an overall completeness of 90.6Z. Completeness was defined
as the number of valid samples divided by the total number of projected or
planned samples at a given site. Table 1-1 itemizes the completeness data
for each site, and for the overall project.

1.2.2	Calibration

Each analytical system was calibrated each day before samples were
analyzed, using propane standards referenced to NBS propane SRM No. 1665b.

An instrument zero was determined with cleaned, dry air at the begin-
ning of the day and at the end of the day. The zero drift, defined as the
final zero reading minus the initial zero reading, ranged from -0.016 ppmC
to +0.013 ppmC averaging -0.0002 ppmC. The operator's limit of estimation
of ppmC for the instrument was about 0.001 ppmC.

A daily calibration check following completion of the day's sample
analyses was used to monitor calibration drift during the day. Calibration
drift was calculated as the daily calibration check minus the initial daily
calibration value, and was calculated in terms of percent of the initial
calibration reading. The percent drift of the calibration reading ranged
from -10Z to 14Z, averaging about 1.5Z of the initial calibration span.

1*2.3 Analytical Precision

Analytical precision was assessed from the differences obtained from
531 repeated analyses. For a given channel pair, several measures of
precision are given in Table 1-2. The table also gives the pooled results
for all 24 channel pairs.

1-3

-------
Table 1-2. Measures of Precision for Channel Pairs





Min.

Max.

Pooled
Mean

Mean Difference, ppmC

-0.1904

0.2600

0.0398

Z Mean Difference

-21.0

14.4

8.48«

Standard Deviation of
Differences, ppmC

0.0000

0.2114

0.1605

Z CV (Z RSD)

0.00

22.2

16.5

sPooled Z mean difference of the absolute magnitude of Z mean difference
for each pair of channels.

The mean difference in the NMOC reading for repeated analyses for a
given channel pair ranged from -0.1904 ppmC to +0.2600 ppmC, with a pooled
average of 0.0398 ppmC. The Z mean difference for a given channel pair
ranged from -21.0Z to 14.4Z. The pooled average of the absolute magnitude
of the mean difference equaled 8.48Z of the pooled mean NMOC value. The
standard deviations of the differences for the repeated analyses are given
in ppmC for the channel pairs and an overall pooled standard deviation for
all 24 pairs of channels, the percent coefficient of variation, Z CV (or Z
RSD, the percent relative standard deviation) was taken to be the standard
deviation of the differences (of repeated analyses) divided by mean NMOC
measurement.

Thus the average difference expected for analytical error between two
repeated analyses of the same sample for a given channel pair was about
+8.5Z of the mean NMOC reading.

There appeared to be a significant difference between the NMOC value
determined on the first analysis and the value determined on the second
analysis, when the second analysis was done on a subsequent day. The
differences reported in this section, DI, are the differences between the

1-4

-------
first analytical determination and a subsequent determination. When
analyses were first done on a Radian channelf followed by an analysis on
the EPA Quality Assurance Division channel (Channel E), or vice versa, the
mean difference, DT, was consistently negative, indicating an increase in
measured NMOC value for the second analysis. In separate repeated analyses,
the mean difference (pooled) was equal to -0.1293 ppmC or -10.9Z. Figure
1-1 shows a comparison of the Radian analysis of repeated samples versus
the EPA QAD Channel E. An orthogonal linear regression of 120 samples
resulted in a slope of 1.032 and an intercept of -0.1891.

Based on 330 repeated NMOC analyses for which the first analysis was
done on a Radian channel and a subsequent analysis was done on EPA ESRL
channel, designated as EPA GC channel, a positive difference resulted. On
the average the Radian channel measured a higher NMOC value by +0.0374
ppmC, or about 4.1Z of the overall mean NMOC reading. The mean difference,
DT, was significantly different from zero at the 5Z level of significance.
The pooled Z coefficient of variation equaled 18.5Z. The positive mean
difference might be attributed to the fact that heavier NMOC components did
not completely elute from the regular GC column, whereas when the sample
was analyzed by the cryogenic preconcentration direct FID method, the
heavier components were measured.

Figure 1-2 shows an orthogonal linear regression of 336 repeated
analysis on the EPA GC channel versus Radian channels. The slope was 1.081
and the intercept was 0.015.

1.2.4 Overall Precision

Overall precision, including analytical variability and any variabi-
lity contributed by collection and storage of the air samples in the
canisters, wan assessed from analysis of 59 duplicate samples collected
simultaneously in duplicate canisters. One of the 59 differences (absolute
value) was substantially larger than the other 58 differences and was
identified as an outlier. The results are shown in Table 1-3.

1-5

-------
COMPARISON TO QRD (orthogonal regression)

~

' ~ ~

!~

~

i	i

-L

I	I

0

1	2	3

QflO analysis, ppinC

Figure 1-1

-------
COMPARISON TO GC (orthogonal regression)

5 			7—

4 -

~~



0

1	2	3

GC Speciat ion, ppmC

Figure 1-2

-------
Table 1-3. Precision for Duplicate Samples.

All Duplicate Excluding



Data

Outlier

N, Number of Duplicate Sample Pairs

59

58

Mean Difference, ppmC

-0.043

-0.028

Std. Deviation of Differences, ppmC

0.166

0.117

Overall Mean NMOC, ppmC

0.83576

0.8358

Percent Difference

-5.14Z

-3 .35%

No significant concentration dependence of the differences was apparent.
These results were roughly one-half the overall analytical precision of 531
repeated analyses and indicate that the component of overall variability
contributed by canisters was small relative to the variability of the
repeated analyses between instruments and between laboratories.

1.2.5 Accuracy

Because the NMOC measurements encompass an unspecified mixture of
various compounds, absolute accuracy was undefined. Some relative indi-
cators of accurace are as follows:

Accuracy relative to propane standards was assessed with internal and
external audits. Table 1-4 gives the slopes and intercepts when plotting
measured ppmC for internal propane standards (in-house Radian QC standards)
(y) as a function of calculated standards (x). The calculated in-house
standard was computed from a propane standard referenced to NBS propane SRM
No. 1665b fed through a flow meter and diluted with a measured amount of
dried, cleaned air to the sample point. The 95Z confidence intervals are
given on the slope and intercept values. The combined data suggest that
the slope was slightly greater than 1.0000, i.e., the 95% confidence
intervals were 1.04446 and 1.01256 which indicates that there was a
positive bias in the accuracy data. The 95Z confidence intervals on the
intercept values all spanned zero, except for Channel B.

1-8

-------
Table 1-4. Accuracy Relative to Internal Standards.





8 lope

Intercept



MNOC

Mean

Error

Z

Channe1

N

(95Z Coot. Interval)

(95Z Coot. Interval)

CoefC.

Keen

Error

Std. Dev.

Error

A

21

1.02329 (±0.02474)

0.01461 (±0.02585)

0.9987

0.7629

0.0324

0.0413

4.2

B

21

1.01689 (±0.01540)

0.02045 (±0.01610)

0.9995

0.7629

0.0333

0.0265

3.5

C

15

1.02905 (±0.04208)

0.04442 (±0.07158)

0.9977

1.4313

0.0860

0.0724

5.1

D

16

1.02331 (±0.05264)

0.03655 (±0.08711)

0.9960

1.3813

0.0688

0.0892

6.5

E

9

1.02428 (±0.04173)

0.01491 (±0.06691)

0.9989

1.3533

0.0478

0.0497

3.7

Coabined

82

1.02851 (±0.01595)

0.02070 (±0.02201)

0.9981

1.0706

0.0512

0.0607

5.7

* X Error ~ (Mean Error/MNOC Mean) x 100.

-------
Table 1-4 gives further evidence that there was a positive bias in the
in-house propane QC data. Column 7 shows mean error which was positive for
all five channels (Radian Channels, A, B, C, and D and EPA Channel E) and
for the combined channel results. The percent error for the combined
results (all channels) was 5.7 which was less than for the precision
of NMOC measurements of repeated analyses.

Table 1-5 gives the data from the accuracy estimates relative to
external audits prepared by EPA Quality Assurance Division using samples
referenced to NBS propane SRM No. 1665b. The average of the absolute
magnitude of percent error was 5.8, which compared favorably with the
Radian in-house QC samples. The reference NMOC measurement was analyzed on
EPA/QAS Channel E.

Table 1-5. Accuracy Relative to External Propane Audit

RADID

Radian
Channe1

Propane
Reference
ppmC

Measured
ppmC

Error
ppmC

X Error

1722

A

0.91

0.91

0.00

0.00

1094

B

1.73

1.78

0.05

2.89

1722

B

0.91

0.93

0.02

2.20

1096

C

1.71

1.67

-0.04

-2.34

1722

C

0.91

1.01

0.10

10.99

1096

D

1.71

1.59

-0.12

-7.02

1722

D

0.91

1.05

0.14

15.38

NOTE: Average of the absolute magnitude Z error * 5.83.

1-10

-------
1.3 CONCLUSIONS

The following preliminary conclusions may be reached from this study:

•	1,375 NMOC measurements ranging from 0.06 ppmC to 4.75 ppmC,
averaging 0.853 ppmC were taken at 22 sites.

•	90.62 overall completeness of sampling was achieved.

•	NMOC measurements appeared to be approximately logarithmic
normally distributed.

•	NMOC measurements at Birmingham, Alabama; El Paso, Texas; Miami,
Florida; Richmond, Virginia; and Wilkes-Barre, Pennsylvania
appeared to be distributed differently than the NMOC data from
the other 17 sites.

•	An overall repeatability among 4 Radian channels and 2 EPA
channels Cone of which contained a gas chromatographic column)
was 8.52. The overall coefficient of variation for the same
comparisons averaged 17Z.

•	The NMOC measurements from an instrument containing a gas chroma-
tographic column averaged about 6.5Z lower than measurements with
cryogenic preconcentration and direct FID.

•	NMOC measurements on 50 duplicate samples taken simultaneously
differed from one another by about 3.52, but the differences were
not significantly different from zero at the 5% level of signifi-
cance .

•	Using a propane standard referenced to NBS propane SRM No. 1665b,
a combined accuracy for internal and external audits averaged
5 .82.

•	For analyses made on successive days from the same sample, the
NMOC measurement appeared to increase by about 10.92.

•	NMOC measurements did not appear to be first order autocorre-
lated.

1-11

-------
2.0 NMOC DATA SUMMARY

This section presents the NMOC Data Summaries. Table 2-1 presents
various statistics by site. The table repeats some of the data of Table

1-1,	and provides additional information. The first six columns of Table

2-1	are self explanatory. The "percent complete" column is the ratio of
the number of valid samples divided by the total number of possible samples
(¦ the number of duplicates plus the number of possible sampling days)
multiplied by 100. The last 5 columns of the table present various statis-
tics of the NMOC data in ppmC units for a particular site* The mean
represents the arithmetic mean. The skewness indicates whether the distri-
bution has a longer right-handed tail (skewness > 0.0) or left-handed tail
(skewness <0.0). SD is the standard deviation for the site data. "Max",
"Min", and "Range" represent the maximum value, the minimum value, and the
difference between them respectively. Table 2-2 summarizes the missing or
invalid data results. Figures 2-1 through 2-22 plot the NMOC determina-
tions by site.

Tables 2-3 through 2-24 summarize the NMOC data for the 22 sites. The
data summarized in the tables include:

1.

The

site;

2.

The

calendar sample dates;

3.

The

Julian sample dates;

4.

The

weekday of the sample;

5.

The

Radian laboratory sample number;

6.

The

sample canister number;

7.

The

reported sample pressure;

8.

The

as-received sample pressure;

9.

The

Radian analysis date;

10.

The

Radian instrument (channel) code

11.

The

EPA analysis date;

12.

The

Radian NMOC value, ppmC;

13.

The

EPA, Channel E NMOC value; and

14.

The

EPA, ESRL-GC NMOC value.

2-1

-------
Table 2-1. NMOC Site Data Summary



First
Possible

Final
Possible

Total No.
Possible



No.







NMOC. oomC





Site
Code

Sampling
Date

Samp1ing
Date

Samp1ing
Days

Total No.
Duplicates

Valid
Samples

Percent
Complete

Mean

Skewness

SD

Max

Min

Range

AKOH

6/27/84

9/28/84

68

3

68

96

0.79

2.254

0.56

2.95

0.23

2.72

ATGA

7/11/84

9/28/84

58

3

55

90

0.79

2.982

0.71

4.27

0.21

4.06

BAL

7/ll/fe4

9/28/84

58

1

56

95

0.99

1.177

0.67

2.91

0.19

2.72

BMTX

6/18/84

9/28/84

75

2

66

86

0.89

1.968

0.67

3.84

0.11

3.73

CHNC

7/11/84

9/28/84

58

4

60

97

0.54

2.564

0.43

2.52

0.18

2.34

CHTN

7/11/84

9/28/84

58

2

46

77

1.34

2.015

0.70

4.08

0.52

3.56

CLTX

6/18/84

9/28/84

75

5

72

90

0.82

3.161

0.59

4.31

0.20

4.11

CNOH

6/27/84

9/28/84

68

1

65

94

0.93

2.481

0.70

3.93

0.12

3.81

DLTX

6/18/84

9/28/84

75

4

74

94

0.97

1.212

0.43

2.57

0.28

2.29

ELTX

6/18/84

9/28/84

75

4

69

87

0.93

0.983

0.45

2.45

0.28

2.17

FWTX

6/18/84

9/28/84

75

3

69

88

0.97

2.245

0.55

3.81

0.39

3.42

ININ

7/11/84

9/28/84

58

3

59

97

0.80

2.253

0.42

2.50

0.22

2.28

KCMO

6/27/84

9/28/84

68

2

68

97

0.79

2.104

0.53

2.76

0.29

2.47

MIFL

8/13/84

9/28/84

35

3

31

82

1.32

0.779

0.81

3.70

0.31

3.39

MTN

7/11/84

9/28/84

58

1

52

88

1.43

1.033

0.84

4.75

0.14

4.61

ORTX

6/18/84

9/28/84

75

3

71

91

0.69

2.764

0.46

3.35

0.13

3.22

PHPA

6/27/84

9/28/84

68

2

63

90

1.02

1.554

0.52

3.10

0.27

2.83

RVA

6/27/84

9/28/84

68

1

64

93

0.53

0.813

0.24

1.22

0.06

1.16

TCTX

6/18/84

9/28/84

75

4

69

87

0.92

3.078

0.78

4.74

0.14

4.60

WBPA

6/27/84

9/28/84

68

2

63

90

0.45

0.511

0.23

0.96

0.11

0.85

WDC

6/27/84

9/28/84

68

3

63

89

0.81

2.637

0.40

2.93

0.34

2.59

WPFL

6/18/84

9/28/84

75

2

72

94

0.54

3.392

0.34

2.63

0.17

2.46

TOTAL:





1459

58

1375















OVERALL

AVERAGE:







62.5

90.6

0.853









3.022

-------
Table 2-2. Invalidated and Missing Samples.

1) Akron, Ohio -

Sample Date

08/07/84
09/03/84

Reason Hissing

No sample received,
Holiday.

2) Altanta, Georgia -

Sample Datg

08/09/84
09/07/84
09/14/84
09/17/84
09/18/84
09/20/84

Reason Missing

Zero sample pressure*

No sample received.

Invalidated (Low sample pressure).

Zero sample pressure.

Zero sample pressure.

No sample received.

3) Birmingham, Alabama

Samole Date

07/11/84
08/23/84
09/03/84

Reason Missing

Zero sample pressure.
Zero sample pressure.
Holiday.

4) Beaumont, Texas -

Sample Date

06/18/84
06/20/84
07/04/84
07/05/84
07/06/84
07/10/84
08/27/84
09/03/84
09/04/84
09/05/84

Reason Missing

Zero sample pressure.

Zero sample pressure.

Zero sample pressure (Sampler problem)

No sample received.

No sample received.

No sample taken (Vandalism).

Zero sample pressure.

No sample taken (Power failure).

No sample received.

No sample received.

2-3

-------
Table 2-2. Invalidated and Missing Samples, (cont.)

5) Charlotte, North Carolina -
Sample Date

09/03/84
09/13/84

Reason Missing
Holiday.

Invalidated (Low sample pressure).

6)Chattanooga, Tennessee -

Sample Date

07/11/84
07/12/84
07/13/84
07/16/84
07/30/84
08/15/84
08/27/84
08/28/84
08/29/84
08/31/84
09/03/84
09/04/84
09/27/84
09/28/84

Reason Missing

No sample taken (Late starting).
No sample taken (Late starting).
No sample taken (Late starting).

Zero sample pressure.

Zero sample pressure.

Invalidated (Suspect contamination).
No sample taken.

Zero sample pressure (Sampler problem).
Invalidated (Low sample pressure).

Zero sample pressure (Sampler problem).
Holiday.

No sample received.

No sample taken (Power failure).

Zero sample pressure.

7)Clute, Texas -

Sample Date

06/18/84
06/26/84
07/05/84
07/06/84
07/09/84
08/24/84
09/05/84
09/06/84
09/24/84

Reason Missing

Zero sample pressure.

Zero sample pressure.

No sample received.

No sample received.

No sample received.

Invalidated (Sampling problem).
Invalidated (Sampling problem).
Invalidated (Sampling problem).
Invalidated (Low sample pressure).

2-4

-------
Table 2-2. Invalidated and Missing Samples, (cont.)

8) Cincinnati, Ohio -

Sample Date

07/11/84
07/18/84
09/03/84
09/05/84

Reason Missing

Zero sample pressure.
Zero sample pressure.
Holiday.

No sample taken.

9) Dallas, Texas -

Sample Date

07/04/84
07/06/84
07/07/84
09/05/84
09/14/84
09/24/84

Reason Missing

No sample collected.
No sample collected.
No sample received.
No sample received.
No sample received.
No sample received.

10)	El Paso, Texas -

Sample Date

06/28/84
07/09/84
07/16/84
07/27/84
07/31/84
08/03/84
08/31/84
09/06/84
09/14/84
09/18/84

11)	Fort Worth, Texas -

Sample Date

06/18/84
06/19/84
06/21/84
07/04/84
08/13/84
08/22/84
08/23/84
09/03/84
09/20/84

Reason Missing

No sample collected (Late start).

Zero sample pressure (Sampler problem)

Zero sample pressure.

Zero sample pressure.

Zero sample pressure.

Invalidated (Low sample pressure).

Zero sample pressure.

Invalidated (Low sample pressure).

No sample received.

No sample taken (Can failure).

Reason Missing

No sample taken (Late start).
No sample taken (Late start).
Zero sample pressure.

No sample received.

Zero sample pressure .

No sample taken (power failure).
No sample taken.

Holiday.

Zero sample pressure.

2-5

-------
Table 2-2. Invalidated and Missing Samples, (cont.)

12) Indianapolis, Indiana -

Sample Date	Reason Missing

07/11/84	No sample taken (Late start).

08/14/84	Invalidated (Low sample pressure).

13) Kansas City, Missouri

Sample Date

07/04/84
09/03/84

Reason Missing

No sample received.
Holiday.

14) Miami, Florida -

Sample Date

08/13/84
08/14/84
08/15/84
08/31/84
09/03/84
09/20/84
09/27/84
09/28/84

Reason Missing

Invalidated (Low sample pressure).

No sample received.

No sample received.

Low sample pressure (Can problem).

Holiday.

Zero sample pressure (Can problem)
No sample received.

No sample received.

15) Memphis, Tennessee
Sample Date

Reason Missing

07/11/84
07/12/84
07/13/84
07/16/84
08/02/84
08/15/84
08/17/84
09/03/84

No sample received.

Zero sample pressure.

Zero sample pressure.

Zero sample pressure.

Zero sample pressure.

Invalidated (Suspect contamination)

Zero sample pressure.

Holiday.

2-6

-------
Table 2-2. Invalidated and Missing Samples, (cont.)

16) West Orange, Texas -

Sample Date

06/18/84
06/25/84
07/03/84
07/05/84
07/10/84
09/03/84
09/04/84
09/12/84

Reason Missine

Zero sample pressure.

No sample received.

Zero sample pressure.

No sample received.

No sample received.

Zero sample pressure (Sampling problem)
No sample received.

Zero sample pressure.

17) Philadelphia, Pennsylvania -

Sample Date	Reason Missing

06/27/84
07/04/84
08/23/84
09/03/84
09/07/84
09/11/84
09/18/84

No sample taken (Late start).
No sample received.

Invalidated (Low sample pressure)
Holiday.

No sample taken (Can problem).
No sample taken (Sampler problem)
Zero sample pressure.

18) Richmond, Virginia -

Sample Date

06/28/84
07/11/84
09/03/84
09/10/84
09/27/84

Reason Missing

No sample taken (Late start).
Invalidated (Sampling error).
Holiday.

No sample taken (Can problem)
No sample received.

2-7

-------
Table 2-2. Invalidated and Missing Samples, (cont.)

19) Texas City, Texas -

Sample Date

06/18/84
06/19/84
07/05/84
07/06/84
07/09/84
07/25/84
08/30/84
09/05/84
09/06/84
09/12/84
09/26/84

Reason Missing

Zero sample pressure.

Zero sample pressure.

No sample received.

Zero sample pressure (Sampler problem).
No sample received.

No sample received.

Invalidated (Sampler problem).
Invalidated (Low sample pressure).

Zero sample pressure.

Zero sample pressure (Sampling problem)
Zero sample pressure.

20) Wilkes-Barre, Pennsylvania -

Sample Date

07/04/84
07/09/84
07/24/84
08/31/84
09/03/84
09/13/84
09/26/84

Reason Missing

No sample received.

No sample received.

No sample received.

Invalidated (Can problem).
Holiday.

No sample taken (Can problem).
Invalidated (Low sample pressure)

21) Washington, D.C. -

Sample Date

06/27/84
07/05/84
$8/16/84
08/17/84
09/03/84
09/25/84
09/28/84

Reason Missing

Zero sample pressure.

No sample received.

Invalidated (Low sample pressure)
Invalidated (Low sample pressure),
Holiday.

Zero sample pressure.

Zero sample pressure.

2-8

-------
Table 2-2. Invalidated and Missing Samples, (cont.)

22) West Palm Beach, Florida -

Samp1p Date	Reason Missing

06/22/84	No sample received.

06/29/84	Zero sample pressure.

07/04/84	No sample received.

09/03/84	Holiday.

09/26/84	Zero sample pressure.

2-9

-------
AKRON, OHIO

1984 SUMMER NMOC STUDY

Figure 2-1. Plot of NMOC Data for Akron, Ohio.

-------
Table 2-3. Data Listing for Akron, Ohio.

1984 SUMNER NHOC STUDY - AKRON

, OHIO























JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



EPA

RADIAN

NHOC

NHOC

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NHOC



ANALYSIS

PPMC

PPMC

PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NHOC

QAD

ESRL-GC

SBSSCBS8 SSSSSSS3

BBSBBSSS SSS:

=«=====

: = = =

SSCSS SSSSSSSSSS BSBSSBBS SSSSSSSSS

sees s:

ESS SSSSSSSS

SSBBBESS sssssssss ksssssbss

06/27/84

179

WEDNESDAY

1074



72

18.0

18.0

07/02/84



B



0.51





06/28/84

180

THURSDAY

1073



74

11.0

10.5

07/02/84



c

07/10/84

0.72



0.72

06/29/84

181

PREPAY

1090



101

15.8

15.5

07/03/84



B



0.84





07/02/84

184

MONDAY

1113



123

12.8

12.5

07/05/84



B

07/10/84

1.94



1.80

07/03/84

185

TUESDAY

1116



37

12.5

12.5

07/06/84



D

07/10/84

0.83



0.85

07/05/84

187

THURSDAY

1135



12

10.5

10.0

07/09/84



B

07/10/84

0.63

1.12



07/06/84

188

FRIDAY

1153



19

14.8

14.5

07/10/84



D

07/13/84

0.29



0.38

07/09/84

191

MONDAY

1175



26

12.0

11.8

07/11/84



A



0.60





07/10/84

192

TUESDAY

1184



60

13.0

13.5

07/12/84



A

07/13/84

0.66

0.76



07/11/84

193

WEDNESDAY

1209



46

13.0

12.9

07/13/84



A

07/17/B4

0.47



0.43

07/12/84

194

THURSDAY

1226



115

12.0

12.0

07/16/84



c



0.56





07/13/84

195

PRIDAY

1246



173

14.5

14.5

07/17/84



c



1.02





07/16/84

198

MONDAY

1261



139

12.5

12.0

07/18/84



B



0.63





07/17/84

199

TUESDAY

1295



162

16.0

16.0

07/19/84



B



0.76





07/18/84

200

WEDNESDAY

1324



18

15.5

15.0

07/21/84



c

07/24/84

0.43



0.38

07/19/84

201

THURSDAY

1337



100

16.0

16.5

07/23/84



c



0.71





07/20/84

202

FRIDAY

1349



40

15.5

16.5

07/24/84



B



0.47





07/23/84

205

MONDAY

1388



30

16.2

15.9

07/25/84



A



0.74





07/24/84

206

TUESDAY

1402



50

15.5

15.0

07/26/84



A

07/27/84

0.44



0.40

07/25/84

207

WEDNESDAY

1425



170

16.5

17.2

07/27/84



B



0.34





07/26/84

208

THURSDAY

1448



64

17.5

17.0

07/30/84



A



1.06





07/26/84

208

THURSDAY

1447



102

17.5

16.9

07/30/84



c

07/31/84

1.11

1.35



07/27/84

209

PRIDAY

1472



169

15.5

16.0

07/31/84



D



0.43





07/30/84

212

MONDAY

1488



197

16.5

16.8

08/01/84



A



1.41





07/31/84

213

TUESDAY

1513



98

16.0

16.1

08/02/84



c



1.43





08/01/84

214

WEDNESDAY

1555



27

16.5

16.4

08/06/84



c



0.98





08/02/84

215

THURSDAY

1563



77

16.0

16.0

08/06/84



A



0.60





08/03/84

216

FRIDAY

1593



139

15.5

15.5

08/08/84



c

08/08/84

0.52



0.45

08/06/84

219

MONDAY

1618



97

16.0

15.8

08/08/84



A

08/09/84

0.70



0.59

08/08/84

221

WEDNESDAY

1652



106

16.0

16.0

08/13/84



c



0.68



08/09/84

222

THURSDAY

1683



162

16.0

16.0

08/13/84



B



0.53





08/10/84

223

FRIDAY

1697



78

15.5

14.9

08/15/84



A



0.62





08/13/84

226

MONDAY

1723



65

16.0

15.0

08/15/84



D

08/20/84

0.62



0.47

08/14/84

227

TUESDAY

1749



70

15.5

15.5

08/16/84



D

0.94



08/15/84

228

WEDNESDAY

1775



63

17.0

17.0

08/17/84



D



2.45





08/16/84

229

THURSDAY

1793



189

16.0

16.2

08/20/84



D



0.83





08/17/84

230

PRIDAY

1816



151

16.0

15.2

08/21/84



C



1.61





08/20/84

233

MONDAY

1839



178

17.0

17.1

08/22/84



A



0.56





08/21/84

234

TUESDAY

1863



198

16.5

17.5

08/24/84



D

08/24/84

0.88

1.25



08/22/84

235

WEDNESDAY

1894



197

16.5

16.8

08/27/84



C

0.60





08/23/84

236

THURSDAY

1918



15

16.0

16.0

08/28/84



B

08/29/84

0.53



0.49

-------
Table 2-3. Data Listing for Akron, Ohio, (cont.)

19ft4 SUMMER NMOC STUDY - AKRON, OHIO

to
I

i->

to



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN 1

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC i

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAKPLED

SAMPLED

RECEIVED

DATE

INST I

CPCBSECB BCPSBCBS BSBSKBeB BSSSSSSS XCC

sssbecsv kskkkssk kck=hcce

08/24/84

237

FRIDAY

1938



40

16.0

16.5

08/28/84

C

08/27/84

240

MONDAY

1953



188

18.0

16.3

08/29/84

C

08/28/84

241

TUESDAY

1986



82

16.0

16.0

08/30/84

A

08/29/84

242

WEDNEfjpAY

2008



24

16.0

16.2

08/31/84

B

08/30/84

243

THURSDAY

2014



138

16.0

16.1

09/04/84

B

08/31/84

244

PRIDAY

2035



157

0.0

16.5

09/05/84

B

09/04/84

248

TUESDAY

2066



73

17.0

16.9

09/06/84

C

09/05/84

249

WEDNESDAY

2096



94

16.5

16.5

09/07/84

D

09/06/84

250

THURSDAY

2120



79

18.0

18.0

09/10/84

C

09/06/84

250

THURSDAY

2119



9

18.0

19.5

09/10/84

C

09/07/84

251

PRIDAY

2159



149

16.5

17.5

09/11/84

D

09/10/84

254

MONDAY

2178



97

17.0

17.6

09/12/84

D

09/11/84

255

TUESDAY

2201



83

16.5

17.0

09/13/84

C

09/12/84

256

WEDNESDAY

2226



28

16.0

17.0

09/14/84

A

09/13/84

257

THURSDAY

2230



65

16.5

17.0

09/17/84

C

09/14/84

258

PRIDAY

2258



101

16.0

16.1

09/18/84

B

09/17/84

261

MONDAY

2289



6

17.5

18.0

09/19/84

D

09/18/84

262

TUESDAY

2299



149

16.5

17.0

09/20/84

C

09/18/84

262

TUESDAY

2298



18

16.5

17.5

09/20/84

B i

09/19/84

263

WEDNESDAY

2322



82

16.0

16.5

09/21/84

A

09/20/84

264

THURSDAY

2348



26

16.5

16.6

09/24/84

B

09/21/84

265

PRIDAY

2382



158

16.5

14.9

09/26/84

D

09/24/84

268

MONDAY

2408



28

16.5

16.5

09/27/84

A

09/25/84

269.

TUESDAY

2429



101

14.5

14.5

09/28/84

A

09/26/84

270

WEDNESDAY

2439



27

16.0

16.1

10/01/84

B

09/27/84

271

THURSDAY

2467



139

17.0

17.0

10/01/84

C

09/28/84

272

FRIDAY

2489



91

16.0

16.1

10/02/84

D

EPA	RADIAN NMOC

ANALYSIS PPMC PPMC
DATE NMOC QAD

NMOC
PPMC
ESRL-GC

0.35
1.13
0.61
0.25

09/05/84 0.42
0.51
0.50
0.66
2.95
2.77

09/12/84 0155
0.30
0.42

09/15/84 0.50
0.50
0.35
2.?5
0.79

09/21/84 0.77
0.65
0.55
1.24
0.46
0.28

0.23 0.32
0.41
0.38

10/01/84
10/03/84

0.42

0.45
0.52

0.71

0.29

-------
2-13

-------
I\J
I

Q

2E

fi:

o
o

5.U

4.0

3.0

,U

1 .0

U.O

1 70

ATLANTA, GEORGIA

1984- SUMMER NMOC STUDY



]





t





? *

f 1 1 w

'I

1



"Mil ^ y k n \
Lj \ik Js v i

I

dP

1 9 G

210	2-30

JULIAN DATE

250

270

Figure 2-2. Plot of NMOC Data for Atlanta, Georgia.

-------
Table 2-4. Data Listing for Atlanta, Georgia.

1984 SUMMER NHOC STUDY - ATLANTA, GEORIGA

N
I

U1



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NHOC



SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



kkbkcxss cccsksea «c«MKeB mi

BCCS.ZC BKC

Kwsia BaccaBBt: bbbkscbb cbbcccce kxkcki

*8*1

07/11/84

193

WEDNESDAY

1194



141

11.5

11.5

07/12/84



C

07/12/84

194

THURSDAY

1213



113

12.0

12.0

07/13/84



D

07/13/84

195

FRIDAY

1231



172

12.5

12.5

07/16/84



A

07/16/84

198

MONDAY

1256



10

12.0

12.0

07/17/84



B

07/17/84

199

TUESDAY

1277



175

12.0

12.0

07/18/84



D

07/18/84

200

WEDNESDAY

1310



195

11.5

12.0

07/20/84



A

07/19/84

201

THURSDAY

1357



31

13.0

12.8

07/24/84



D

07/20/84

202

PRIDAY

1355



47

12.5

12.5

07/24/84



A

07/23/84

205

MONDAY

1369



71

12.5

13.0

07/25/84



B

07/24/84

206

TUESDAY

1395



70

12.0

12.5

07/26/84



B

07/25/84

207

WEDNESDAY

1430



133

11.5

11.5

07/27/84



A

07/26/84

208

THURSDAY

1473



158

13.0

12.9

08/01/84



A

07/27/84

209

PRIDAY

1455



32

14.0

13.5

07/31/84



C

07/27/84

209

PRIDAY

1456



91

14.0

13.9

07/31/84



B

07/30/84

212

MOM)AY

1494



12

12.0

12.5

08/01/84



B

07/31/84

213

TUESDAY

1505



11

12.0

11.5

08/02/84



A

08/01/84

214

WEDNESDAY

1544



60

11.5

11.5

08/06/84



C

08/02/84

215

THURSDAY

1574



189

12.5

12.2

08/07/84



C

08/03/84

216

PRIDAY

1586



50

12.5

12.9

08/07/84



D

08/06/84

219

NONDAY

1613



170

12.5

13.5

08/08/84



C

08/07/84

220

TUESDAY

1624



94

12.0

12.2

08/09/84



C

08/08/84

221

WEDNESDAY

1656



10

12.0

11.5

08/13/84



A

08/10/84

223

PRIDAY

1699



9

12.5

12.5

08/15/84



A

08/13/84

226

MONDAY

1757



33

12.5

12.0

08/17/84



C

08/14/84

227

TUESDAY

1753



168

12.5

12.0

08/17/84



c

08/15/84

228

WEDNESDAY

1766



139

12.0

11.5

08/17/84



E

08/16/84

229

THURSDAY

1787



82

12.5

13.6

08/20/84



D

08/17/84

230

PRIDAY

1818



35

12.5

12.2

08/21/84



D

08/20/84

233

MONDAY

1834



32

12.5

12.1

08/22/84



B

08/21/84

234

TUESDAY

1856



174

12.0

12.0

08/24/84



C

08/22/84

235

WEDNESDAY

1879



101

12.5

12.1

08/27/84



B

08/23/84

236

THURSDAY

1906



89

14.0

14.0

08/28/84



A

08/23/84

236

THURSDAY

1905



21

14.0

13.8

08/28/84



C

08/24/84

237

FRIDAY

1924



159

12.5

12.6

08/28/84



A

08/27/84

240

MONDAY

1964



149

12.5

12.0

08/29/84



B

08/28/84

241

TUESDAY

1978



141

12.0

12.5

08/30/84



C

08/29/84

242

WEDNESDAY

2007



19

12.0

11.8

08/31/84



A

08/30/84

243

THURSDAY

2024



185

13.0

12.5

09/04/84



D

08/31/84

244

PRIDAY

2054



51

12.5

11.5

09/06/84



C

09/03/84

247

MONDAY

2078



45

12.5

12.4

09/06/84



D

09/04/84

248

TUESDAY

2079



27

12.5

12.0

09/07/84



C

EPA	RADIAN NHOC

ANALYSIS PPMC PPHC
DATE NHOC QAD

07/19/84

07/24/84
07/25/84

08/03/84
08/01/84

08/10/84
08/13/84

08/20/84
08/20/84

08/25/84

09/07/84

0.78
0.77
0.73
0.66
0.78
0.66
0.95
0.35
0.23
0.37
0.70
1.42
0.66
0.58
0.33
0.32
0.87
0.3^
0.71
1.34
0.37
0.76
0.39
0.60
0.60
1.64
0.58
0.53
0.50
0.35
0.54
0.40
0.51
0.93
0.45
0.73
0.68
0.26
0.60
0.36
0.33

NIIOC
PPMC
ESRL-GC

0.61
0.69

1.12

0.70

0.84

1.48

0.28

0.37

0.76
1.42

0.35
0.51

0.48

-------
Table 2-4. Data Listing for Atlanta, Georgia. (cont.)

1984 SUMMER NMOC STUDY - ATLANTA, GEORIGA

JULIAN	CAN	(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN NMOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPMC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC CAD

sacessss ssssesss sbbbsecsb ¦cbsb&cb sscsfbbs Hccesse eebibbcb	sssssssss ¦cbbbbbb bbbbbbbs asfcss

09/C5/84

249

WEDNESDAY

2102

144

12.5

13.1

09/07/84

B

09/10/84

0.38

09/06/84

250

THURSDAY

2135

113

13.0

13.0

09/10/84

D



1.86

09/10/84

254

MONDAY

2171

155

15.0

15.0

09/12/84

B



0.50

09/10/84

254

MdNDAY'

2170

67

15.0

15.0

09/12/84

D



0.48

09/11/84

255

TUESDAY

2196

43

12.5

13.0

09/13/84

D



1.45

09/12/84

256

WEDNESDAY

2214

138

12.5

13.2

09/14/84

D



0.47

09/13/84

257

THURSDAY

2243

186

13.0

12.9

09/18/84

B



2.25

09/19/84

263

WEDNESDAY

2328

185

12.5

12.5

09/21/84

B



0.37

09/21/84

265

FRIDAY

2363

56

13.5

11.5

09/25/84

A

09/26/84

3.09

09/24/84

268

MONDAY

2397

114

0.0

12.1

09/27/84

B



0.65

09/25/84

269

TUESDAY

2421

111

12.5

12.5

09/28/84

A



1.44

09/26/84

270

WEDNESDAY

2448

81

13.5

11.5

10/01/84

D

10/01/84

4.27

09/27/84

271

THURSDAY

2468

9

13.5

13.4

10/01/84

C

10/02/84

0.21

09/28/84

272

FRIDAY

2500

95

13.0

10.5

10/03/84

C



0.24

-------
2-17

-------
BEAUMONT, TEXAS

1984 SUMMER NMOC STUDY

¦JULIAN DATE

Figure 2—3. Plot of NMOC Data for Beaumont, Texas.

-------
Table 2-5. Data Listing for Beaumont, Texas.

1984 SUMNER NMOC STUDY - BEAUMONT, TEXAS

ro
I

VP



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

EPA

RADIAN

NMOC

NMOC

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC

ANALYSIS

PPMC

PPMC

PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

DATE

NMOC

QAD

ESRL-GC

BBBBBSBS cecccccc sceccpsc cc;

=====:

C CCS

===~

S BSSBBSSi

= ========

s Bsssssss: &V9SS:

BSC CSSSSCSS KBSSSCS& SBSSSSBBS

ECSCECC:

06/19/84

171

TUESDAY

1011



8

17.5

17.0

06/22/84



D 06/25/84

1.67

1.89



06/21/84

173

THURSDAY

1031



31

20.5

20.5

06/25/84



D 06/26/84

1.01

1.14



06/22/84

174

FRIDAY

1046



40

16.5

16.5

06/27/84



C 06/28/84

1.12



0.80

06/25/84

177

MQND^Y,

1052



51

18.5

18.0

06/28/84



D 06/29/84

2.75



2.37

06/26/84

178

TUESDAY

1050



56

18.5

17.0

06/28/84



C 06/29/84

1.47



1.13

06/27/84

179

WEDNESDAY

1061



71

16.0

15.5

06/29/81



A 07/02/84

0.66

0.75

06/28/84

180

THURSDAY

1076



88

19.0

18.5

07/02/84



B

0.65





06/29/84

181

FRIDAY

1108



105

16.5

17 .5

07/05/84



D

2.86





07/02/84

184

MONDAY

1102



109

20.0

20.0

07/05/84



D

1.02





07/03/84

185

TUESDAY

1121



139

17.5

17.2

07/06/84



C

1.41





07/09/84

191

MONDAY

1191



48

19.0

18.5

07/12/84



B

0.67





07/11/84

193

WEDNESDAY

1216



90

20.5

20.0

07/16/84



B 07/17/84

0.61



0.63

07/12/84

194

THURSDAY

1264



91

19.5

20.0

07/18/84



B 07/23/84

0.62



0.59

07/13/84

195

PRIDAY

1278



159

18.5

18.0

07/18/84



B

0.74



07/16/84

198

MONDAY

1274



102

23.0

22.9

07/18/84



C 07/23/84

0.46



0.41

07/17/84

199

TUESDAY

1303



176

24.0

23.5

07/19/84



B

0.49





07/18/84

200

WEDNESDAY

1327



19

19.0

22.5

07/21/84



D

0.30





07/19/84

201

THURSDAY

1346



7

19.8

19.5

07/24/84



A

1.36





07/20/84

202

FRIDAY

1358



60

21.0

16.7

07/24/84



D

0.51





07/23/84

205

MONDAY

1413



168

23.0

22.0

07/26/84



B

0.76





07/24/84

206

TUESDAY

1399



157

22.0

22.0

07/26/84



C

0.99





07/25/84

207

WEDNESDAY

1444



187

24.0

23.5

07/30/84



B

0.82





07/26/84

208

THURSDAY

1458



106

19.0

18.0

08/01/84



B 08/03/84

1.17



1.15

07/27/84

209

FRIDAY

1478



92

24.0

23.0

08/01/84



C

0.91



07/30/81

212

MONDAY

1498



100

18.5

18.0

08/01/84



D

0.51





07/31/84

213

TUESDAY

1531



76

18.5

18.2

08/06/84



D

0.87





08/01/84

214

WEDNESDAY

1535



127

24.0

23.9

08/06/84



A

0.40





08/01/84

214

WEDNESDAY

1534



109

24.5

24.8

08/06/84



C

0.51





08/02/84

215

THURSDAY

1568



1

19.0

13.0

08/07/84



C

2.20





08/03/84

216

PRIDAY

1616



110

17.0

17.0

08/08/84



B 08/09/84

1.13



1.00

08/06/84

219

MONDAY

1639



61

23.5

23.5

08/09/84



C

0.88



08/07/84

220

TUESDAY

1638



62

25.0

24.1

08/09/84



D

1.35





08/08/84

221

WEDNESDAY

1671



183

18.0

17.7

08/13/84



D 08/14/84

1.73



1.60

08/09/84

222

THURSDAY

1677



29

25.0

23.5

08/13/84



B

1.31



08/10/84

223

FRIDAY

1717



14

0.0

16.5

08/15/84



B

0.99





08/13/84

226

MONDAY

1710



42

0.0

17.8

08/15/84



D

1.40





08/14/84

227

TUESDAY

1747



30

19.0

18.5

08/16/84



D

1.14





08/16/84

229

THURSDAY

1783



129

29.0

17.0

08/20/84



D

0.80





08/17/84

230

FRIDAY

1813



22

25.0

23.5

08/21/84



B

0.67





08/20/84

233

MONDAY

1866



195

18.0

17.5

08/24/84



D

0.28





08/21/84

234

TUESDAY

1872



180

18.5

18.5

08/24/84



B 08/25/84

3.84



3.75

-------
Table 2-5. Data Listing for Beaumont, Texas. (cont.)
1984 SUMMER WKOC STUDY - DEAUMONT, TEXAS

JULIAN	CAN	(PSIC) (PSIG) RADIAN RADIAN EPA	RADIAN NNOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPMC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE	INST DATE NMOC QAD



08/22/84

235

WEDNESDAY

1882

66

17.5

17.0

08/27/84

A



1.26

08/23/84

236

THURSDAY

1932

124

18.5

18.0

08/28/84

C



0.76

08/24/84

237

FRIDAY

1934

189

24.0

23.9

08/29/84

D



0.39

08/28/84

241

TUESDAY

2050

69

24.0

23.5

09/06/84

A

09/07/84

0.69

08/29/84

242

WEDNESDAY

2046

104

17.0

16.8

09/06/84

C

0.52

08/30/84

243

THURSDAY

2058

93

25.5

24.4

09/06/84

C



0.76

08/31/84

244

FRIDAY

2056

17

24.0

23.5

09/05/84

B



0.49

09/06/84

250

THURSDAY

2115

143

18.5

18.0

09/10/84

A

09/11/84

0.52

09/07/84

251

FRIDAY

2157

195

17.5

17.5

09/11/84

D



0.47

09/10/84

254

MONDAY

2216

123

23.0

23.5

09/14/84

A



0.22

09/11/84

255

TUESDAY

2225

55

21.0

15.0

09/14/84

A



1.18

09/12/84

256

WEDNESDAY

2275

93

18.0

17.0

09/19/84

A



0.35

09/13/84

257

THURSDAY

2292

182

21.5

21.5

09/19/84

D



1.39

09/13/84

257

THURSDAY

2291

173

21.5

18.0

09/19/84

C



1.67

09/14/84

258

FRIDAY

2278

139

21.5

19.5

09/19/84

D

09/20/84

0.11

09/17/84

261

MONDAY

22S4

9

20.0

19.0

09/19/84

B

09/20/84

0.11

09/18/84

262

TUESDAY

2341

147

20.5

20.9

09/21/84

C



0.50

09/19/84

263

WEDNESDAY

2336

91

21.0

21.0

09/21/84

e



0.26

09/20/84

264

THURSDAY

2370

21

20.0

17.6

09/26/84

C



0.?7

09/21/84

265

FRIDAY

2377

135

21.0

18.0

09/25/84

D



0.21

09/24/84

268

MONDAY

2411

172

20.5

17.9

09/27/84

E



0.19

09/25/84

269

TUESDAY

2449

182

21.0

18.0

10/01/84

C

10/01/84

0.32

09/26/84

270

WEDNESDAY

2476

185

22.5

22.1

10/02/84

D



0.47

09/27/84

271

THURSDAY

2471

8

21.0

20.5

10/02/84

A

10/03/84

0.48

09/28/84

272

FRIDAY

2485

174

21.0

19.6

10/02/84

D



0.19

-------
2-21

-------
BIRMINGHAM, ALABAMA

198+ SUMMER NMOC STUDY

Figure 2-4. Plot of NMOG Data for Birmingham, Alabama.

-------
Table 2-6. Data Listing for Birmingham, Alabama.

1964 SUMMER NMOC STUDY - BIRMINGHAM, ALABAMA

to

to

u>



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



EPA

RADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

PPMC ;

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NMOC i

csss&sss bsbsccb:

B CKBSCBSS BS;

======

= rce

= = = = ;

E KSSSSSSS

= ========

= =====:

SSI

C BBBSSesS SSSSSSSZSS

07/12/84

194

THURSDAY

1212



82

18.0

18.5

07/13/84



A

07/17/84

0.54

07/13/84

195

FRIDAY

1249



151

11.9

12.0

07/17/84



A 07/19/84

0.94

07/16/84

198

MONDAY

1238



140

12.2

12.5

07/17/84



D



1.34

07/17/84

199

TUESDAY '

1280



120

12.1

12.5

07/18/84



A



1.05

07/18/84

200

WEDNESDAY

1315



156

12.2

12.5

07/20/84



A

07/24/84

1.14

07/19/84

201

THURSDAY

1333



51

13.0

13.0

07/23/84



D

1.86

07/20/84

202

FRIDAY

1362



89

13.0

13.0

07/24/84



B



1.09

07/23/84

205

MONDAY

1379



131

13.2

13.0

07/25/84



D



0.61

07/24/84

206

TUESDAY

1392



172

12.8

13.5

07/26/84



C



0.68

07/25/84

207

WEDNESDAY

1418



152

12.7

13.0

07/27/84



B



1.46

07/26/84

208

THURSDAY

1434



10

12.8

12.0

07/30/84



A

07/31/84

1.23

07/27/84

209

FRIDAY

1453



132

11.9

12.0

07/31/84



B

0.68

07/30/84

212

MONDAY

1493



137

13.0

13.1

08/01/84



D



0.53

07/31/84

213

TUESDAY

1523



4

12.8

12.5

08/02/84



C

08/03/84

0.79

08/01/84

214

WEDNESDAY

1541



59

12.8

12.5

08/06/84



D

0.40

08/02/84

215

THURSDAY

1572



99

13.1

12.5

08/07/84



D



0.65

08/03/84

216

FRIDAY

1643



35

9.8

9.5

08/09/84



B



0.50

08/03/84

216

FRIDAY

1642



188

9.8

9.5

08/09/84



B



0.56

08/06/84

219

MONDAY

1610



82

12.8

13.0

08/08/84



C

08/09/84

0.55

08/07/84

220

TUESDAY

1628



184

8.2

9.0

08/09/84



A

0.43

08/08/84

221

WEDNESDAY

1651



92

12.1

12.0

08/13/84



B



0.19

08/09/84

222

THURSDAY

1680



12

12.9

11.5

08/13/84



A



0.48

08/10/84

223

FRIDAY

1707



4

13.1

11.8

08/14/84



D



1.86

08/13/84

226

MONDAY

1728



53

12.5

13.7

08/15/84



C



0.46

08/14/84

227

TUESDAY

1750



144

12.5

12.9

08/16/84



A



0.67

08/15/84

228

WEDNESDAY

1758



95

12.2

12.5

08/17/84



B



0.43

08/16/84

229

THURSDAY

1801



123

13.0

13.1

08/20/84



D



2.49

08/17/84

230

FRIDAY

1819



193

11.8

11.9

08/21/84



C

08/22/84

0.74

08/20/84

233

MONDAY

1831



92

12.2

13.0

08/22/84



C

1.42

08/21/84

234

TUESDAY

1870



157

13.2

13.5

08/24/84



D

08/25/84

0.41

08/22/84

235

WEDNESDAY

1878



4

13.2

10.5

08/27/84



D

08/28/84

1.83

08/24/84

237

FRIDAY

1939



127

11 .5

11.5

08/28/84



D

0.93

08/27/84

240

MONDAY

1951



18

11.8

11.7

08/29/84



D



0.38

08/28/84

241

TUESDAY

1974



80

13.0

13.6

08/30/84



C



0.30

08/29/84

242

WEDNESDAY

2011



25

12.3

12.5

08/31/84



A



0.53

08/30/84

243

THURSDAY

2018



26

13.0

13.0

09/04/84



C



0.58

08/31/84

244

FRIDAY

2039



20

11.6

11.5

09/06/84



D

09/06/84

1.16

09/04/84

248

TUESDAY

2088



88

13.0

13.0

09/06/84



C

0.50

09/05/84

249

WEDNESDAY

2104



84

15.2

13.5

09/07/84



C



1.30

09/06/84

250

THURSDAY

2128



64

13.6

14.0

09/10/84



A

09/11/84

0.91

09/07/84

251

FRIDAY

2153



82

12.3

13.1

09/11/84



A

0.66

NMOC
PPHC
QAD

NMOC
PPHC

ESRL-GC

0.52
1.63

0.94

1.50

0.59

0.53

1.82

1.12

0.68
0.43

1.96

-------
Table 2-6. Data Listing for Birmingham, Alabama. (cont.)

1984 SUMMER NMOC

STUDY - BIRMINGHAM

, ALABAMA





















JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



EPA

RADIAN

NMOC

NMOC

DATE

DATE

SAMPLED

RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

PPMC

PPMC

PPMC

SAMPLED

SAMPLED

WEEKDAY

LAB ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NMOC

QAD

ESRL-GC

=======:

s csesess,

S SBMBCBC

sesssss:

s = = =

ccc=:

1 BSBCSB&:

S CCSBSSSB SSCSSSSS

= SSSS SSS2

= ssssess:

= =======

= svsssssss

09/10/84

254

MONDAY

2172



130

12.8

13.0

09/12/84



A



0.46





09/11/84

255

TUESDAY

2204



185

13.2

14.0

09/13/84



D



2.30





09/12/84

256

WEDNESDAY

2216



175

12.7

13.5

09/14/84



B



1.99





09/13/84

257

THURSDAY

2241



124

13.1

13.0

09/18/84



C

09/19/84

2.21



2.03

09/14/84

258

PRIDAY

2255



63

12.0

12.0

09/18/84



C

2.91





09/17/84

261

MONDAY

2281



4

13.0

13.2

09/19/84



C

09/20/84

0.73



0.53

09/18/84

262

TUESDAY

2302



11

13.8

14.0

09/20/84



A



0.39





09/19/84

263

WEDNESDAY

2321



152

13.5

13.3

09/21/84



B



0.83





09/20/84

264

THURSDAY

2359



142

13.2

13.1

09/24/84



A



2.44





09/21/84

265

FRIDAY

2372



23

12.8

13.5

09/25/84



C



1.48





09/24/84

268

MONDAY

2405



126

13.7

13.0

09/26/84



B

09/27/84

0.25

0.76



09/25/84

269

TUESDAY

2415



92

13.2

13.0

09/27/84



D

0.41





09/26/84

270

WEDNESDAY

2435



93

12.4

12.0

09/28/84



A



2.50





09/27/84

271

THURSDAY

2462



96

13.2

13.0

10/02/84



A

10/02/84

0.75

0.90



09/28/84

272

FRIDAY

2491



51

12.1

12.0

10/02/84



B



0.64





to
I

-------
2-25

-------
Is>
I

CT>

u

2

8:

O

o

5.0

4-.0

3.0

2.0

1 .0

0.0

170

CHARLOTTE, NORTH CAROLINA

1984 SUMMER NMOC STUDY









1 1



i



I

P

1 90

210	230

JULIAN DATE

250

270

titer* 2-5. Not tl IHOC Itti for Cktrlotti, forth Ctttlini.

-------
Table 2-7. Data Listing for Charlotte, Worth Carolina.

1*84 SOWER NNOC STUDY - CHARLOTTE, NORTB CAROLINA

DATE

JULIAN

DATE

SAMPLED

SAMPLED
WEEKDAY

RADIAN
LAB ID

CAN	(PSIG) (PSIG) RADIAN RADIAN

NO.	PRESSORS PRESSORS ANALYSIS NNOC

SAMPLED SAMPLED RECEIVED DATS INST

EPA	RADIAN NNOC NNOC

ANALYSIS PPNC PPMC PPNC
DATE NNOC QAD	ESRL-GC

I

M
-»4

07/11/94
•7/12/<4
•7/13/94
07/19/94
97/19/94
97/17/94
97/1V94
97/19/94
97/29/94
07/23/94
07/24/94
97/25/94
07/29/94
07/27/94
M

M/ll/M
*4/9 V*4

09/01/94
oo/otm

•9/17/94
09/98/94

99/19/94
99/13/84
08/iV»4

838

0M/22/94
09/23/94
09/24/94
99/27/94
09/39/94
99/29/94
09/39/94
09/31/94

193	WEDNESDAY

194	TNORSDAY

195	PRIDAY
199 HOMDAY
199 MOMMY'
199 tVUMY
209 WEDNESDAY

291	TNOBflMY

292	PRIDAY
205 MOMMY
209 TUESDAY
297 WEDNESDAY
209 THUR8DAY
209 FRIDAY

212	NOWAY

83 TOESMY
4 WMHOAY

213	nmumna

213 THURSDAY
219 PRIDAY
219 MONDAY

229 muui

221	MMHDftl

222	TWMSDAY

223	PRIMY
229 NOWAY
227 fSMDAf
229 WtOMBfiDAY
229 THURSDAY

229	THURSDAY

230	PRIMY

233	MONDAY

234	*UBSDAY

235	WSDNESDAY
239 THURSDAY
237 PRIDAY
249 MONDAY

241	TUESDAY

242	NUMKSMY

243	TNDR8DAY

244	PRIMY

1254

1255
1253

1251

1252
1291
1299
1323
1339
1345
1394
1411
1432
1442
1491
149S
1521
1533
1532
1579
1591
1917
1959
1993
1979
1721
1715
1745
1795
17(4
1993
1847
1841
1913
1999
1912
1929
1991
1999
2912
2027

170
199
157
194
199
32
192
189
24
107
43
115
97
105
194
21
43
2

159
117
133
192
99
23
29
127
139
197
195
189
113
151
137
81
20
74
1

112
134
77
95

16.5
19.5
17.5
19.9
19.0
10.5
17.0
17.0
16.9

14.8
16.5
16.5

16.0
14.5

17.1
19.5

15.9
15.9

15.0

19.1
16.5
19.3
17.0
19.5
25.0
19.5
16.5
19.9
15.5
15.5

19.7
17.5
16.5
17.0
16.2

19.8
2*.5
19.5
19.5
19.5

16.9

16.5 97/17/84
19.5 07/17/94
17.5 97/17/94
19.0 07/17/94
19.5 07/17/94
10.0 07/18/94
17.0 07/19/94
17.0 07/21/94
17.9 07/23/94

19.7	97/24/94
16.5 07/25/94
17.0 07/26/94
16.5 07/27/94
16.5 07/39/94
17.9 97/31/94
19.5 99/91/94
19.9 99/92/94
15.0 09/96/94

14.8	08/09/94
19.0 09/94/94
15.0 09/99/94
19.5 98/09/94

17.9	09/13/94

19.2	09/13/94

13.3	09/13/04

19.4	0«/15/84
17.0 OC/15/94
17.0 09/17/84
15.0 09/17/94
14.9 09/17/94

19.5	99/20/94
IS.3 99/22/94
17.9 09/22/94

13.0	09/29/94
15.5 09/27/94
14.7 09/29/94
19.5 09/29/94
16.5 09/29/94
14.9 09/30/94

14.1	09/31/94

14.2	99/04/94

C 07/19/94

A 07/19/94

D 07/19/94

D

C

A

A

D 07/24/84
B
C
C

B 07/27/94
B

C 08/03/94
C

D 09/03/9*

A

C
A

C

D 09/09/94
D 09/09/94

C 08/14/84
D 08/14/84
D 08/14/84
C 08/20/84
C

c

A
D
A
A

D 08/23/84

D

D

B

D

A

D

C

A 09/05/94

0.69

0.49

0.57

0.45

0.56

0.29

0.33

0.35

0.29

0.23

0.25

0.18

0.32

0.19

0.49

0.23

0.25

0.19

0.21

0.29

0.66

0.81

0.82

1.35

0.36

9.26

0.26

0.S6

0.69

0.69

0.65

0.79

0.39

0.79

0.64

0.25

0.39

0.31

0.27

0.21

0.49

0.79
0.75

0.S1

0.40

0.35
0.18
0.22

0.52
0.71
0.71
1.16
0.34
0.29

0.34

0.43

-------
Table 2-7. Data Listing for Charlotte^ Horth Carolina, (cont.)

1984 SUMMER NMOC STUDY - CHARLOTTE, NORTH CAROLINA



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

EPA

RADIAN

NMOC

NMOC

DATS

DATE

SAMPLED

RADIAN

HO.



PRESSURE

PRESSURE

ANALYSIS

NMOC

ANALYSIS

PPMC

PPHC

PPHC

SAMPLED

SAMPLED

WEEKDAY

LAB ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

DATE

NMOC

QAD

ESRL-GC

09/04/84

248

TUESDAY

2073



163

16.0

15.9

09/06/84

BMBS WMt

D



E ISMtSHI

0.42

8 RECCEISI



09/05/84

249

WEDNESDAY

2087



182

17.3

17.2

09/06/84

D

09/07/84

0.28

0.37



09/06/84

250

THURSDAY

2106



105

17.2

17.0

09/10/84

D

0.59





09/07/84

251

FRIDAY

2121



77

17.0

17.0

09/10/84

C



0.71





09/10/84

254

MOMMY

2155



108

16.5

17.0

09/11/84

c

09/13/84

0.29

0.33



09/11/84

255

TUESDAY

2193



32

16.8

17.0

09/13/84

B



0.27





09/12/84

256

WEDNESDAY

2191



49

17.5

17.4

09/13/84

B



0.45





09/14/84

258

FRIDAY

2240



114

16.9

16.5

09/18/84

D



0.58





09/17/84

261

MONDAY

2264



163

17.5

18.0

09/18/84

D



0.46





09/18/84

262

TUESDAY

2267



20

17.5

17.3

09/19/84

B



0.32





09/19/84

263

WEDNESDAY

2301



80

17.3

18.0

09/20/84

D

09/21/84

0.82



0.82

09/20/84

264

THURSDAY

2319



95

17.2

17.0

09/21/84

B



2.52





09/21/84

265

FRIDAY

2352



190

17.7

18.0

09/24/84

c



1.88





09/24/84

268

KOMkAY

2410



89

17.5

17.4

09/27/84

B

09/28/84

0.79



0.75

09/25/84

269

TUESDAY

2409



106

17.5

17.1

09/27/84

A

09/28/84

1.06



0.91

09/2C/84

270

WEDNESDAY

2423



196

17.0

17.2

09/28/84

c

09/29/84

1.82



1*67

09/27/84

271

THURSDAY

2474



112

16.0

15.5

10/02/84

B

10/02/84

0.18

0.23

0.15

09/27/84

271

THURSDAY

2473



146

16.0

15.7

10/01/84

C

0.19





09/28/84

272

FRIDAY

2472



32

17.5

17.3

10/02/84

C

10/03/84

0.21



0.21

ro
I

N>
00

-------
2-29

-------
5.0

U
2

ft

o

N)
I

CO

o

1 .0

0.0

CHATTANOOGA, TENNESSEE

1984 SUMMER NMOC STUDY

1 70

1 90

210	230

JULIAN DATE

250

270

Figure 2-6. Plot of IM0C Data for Chattanooga* Tcontnee*

-------
Table 2-8. Data Listing for Chattanooga, Tennessee.

1984 SUMMER NHOC STUDY - CHATTANOOGA, TBNNBSSEE

DATE

JULIAN
DATE

SAMPLED RADIAN

CAN	(PSIG) (PSIG) RADIAN RADIAN

MO.	PRESSURE PRESSURE ANALYSIS NHOC

1

EPA

RADIAN



ANALYSIS

PPNC



DATE

NHOC

A

07/27/84

4.08

D



0.95

B

07/27/84

1.23

C



1.85

c

07/27/84

2.60

B

07/30/04

1.44

D



1.17

A



1.20

D

08/03/84

1.19

D



0.52

D



0.72

B



0.69

A



0.69

D



1.16

B

08/13/84

1.60

c

08/11/84

0.99

B



1.09

A



1.11

A



3.35

B



1.43

C



1.31

c



0.93

D



1.08

D

08/24/84

1.04

A

08/27/84

1.06

A

08/29/84

0.81

A



1.02

A

00/30/04

0.99

c

09/06/84

0.67

c



0.50

D



0.85

C



1.59

A



0.79

C



1.33

D



1.20

B



1.68

D



1.68

C

09/20/84

1.16

A



1.22

A

09/24/84

0.84

D



1.88

NHOC
PPNC
QAD

NHOC
PPMC
BSRL-GC

07/17/84
07/18/84
07/19/84
07/20/84
07/23/84
07/24/84
07/25/84
07/26/84
07/27/84
07/31/84
08/01/84
88/02/84
00/02/84
08/03/84
88/08/84
08/87/84
08/08/84
08/89/84
88/10/84
01/13/04
08/14/84
08/16/84
88/17/84
08/20/04
08/21/84
08/22/84
08/23/84
08/24/84
8«/30/*4
08/05/84
09/08/84
09/07/84
09/10/84
09/11/84
09/11/04
09/12/04
09/13/84
09/14/04
09/17/04
09/18/84
09/19/84

see

199	TUESDAY

200	WEDNESDAY

201	THURSDAY

202
205

208 TUESDAY

207	WEDNESDAY

208	THURSDAY

209	FRIDAY

213	TUESDAY

214	NEDNE8DAY

215	THURSDAY
215 THURSDAY

218	FRIDAY

219	MONDAY

220	TUESDAY

221	WEDNESDAY

222	THURSDAY

223	FRIDAY
22C NOWAY
227 TUESDAY

229	THURSDAY

230	FRIDAY

233	MONDAY

234	TUESDAY

235	WEDNESDAY
238 THUR8DAY
237 FRIDAY
243 THURSDAY

249	WEDNESDAY

250	THURSDAY

251	FRIDAY

254	MONDAY

255	TUESDAY
255 TUESDAY
258 WB0NE8DAY

257	THURSDAY

258	FRIDAY

281	MONDAY

282	TUESDAY
2C3 WEDNESDAY

1371
1388
1380
1370
1408
1420
1438
1482
1490
1537
1567

1587

1588
1688
1666
1646
1688
1691
1740
1738
1778
1824
1835
1853
1887
1907
1937
1958
2042
2125
2150
2165
2194
2211
2210
2263
2254
2283
2318
2335
2350

44

33
123
191

48
23
184
118
108
147
71

104
143
155

68
87

105

90
160

18
128
112
150
1S8

69
14
30

177
48

91
177
147
150

34
41

92
2

45
51

153
176

25.2

22.3

15.7
15.5

14.8
15.8
15.0
15.2
16.0
16.0
16.0
14.0
14.0
15.0
14.0
16.0
15.0
1S.0
15.0
14.5
16.0
16.2
16.5
15.5
23.0
15.0
14.5
15.8
14.0
15.0
15.5
16.0
16.0
15.5
15.5
15.5
14.8
16.0
16.5
16.0
16.0

14.5
15.5

15.4
16.0
15.0
16.0

14.5
15.0

15.6

15.6
14.9
14.0
14.5
15.0
14.0
15.0
12.5
14.0
13.0

13.4
14.9

14.7
16.0

15.0

15.5

14.6

14.1
16.0
13.5
15.0
16.5

17.0

16.2

16.1
16.0

15.2
15.0
16.0
16.0
16.5
14.5

07/25/04
07/25/04
07/25/84
07/25/84
07/26/04
07/27/04
07/30/84
07/31/84
08/01/84
08/06/84
00/07/84
00/08/84
00/07/84
08/08/84
08/13/84
08/10/84
00/13/84
08/14/84
08/16/84
08/16/84
00/20/84
08/21/84
08/22/84
08/24/84
00/27/84
08/28/84
00/28/84
08/29/84
09/06/84
00/10/84
OS/11/84
09/12/84
09/13/84
09/14/04
09/14/84
09/18/84
09/18/84
09/19/84
09/21/84
89/21/84
09/24/84

1.61

3.94
1.13
2.21

1.19

1.49

0.81

1.23
1.07

0.90
0.72

0.73

0.99

0.94

-------






Table 2-8. Data Listing for Chattanooga, Tennessee.

(cont.)





1984 SUMMER NNOC

STUDY - CHATTANOOGA, TENNESSEE















JULIAN



CAN

(PSIG)

(PSIC) RADIAN RADIAN



EPA

RADIAN

NMOC

NNOC

DATE

DATE

SAMPLED

RADIAN NO.

PRESSURE

PRESSURE ANALYSIS NMOC



ANALYSIS

PPNC

PPHC

PPHC

SAMPLED

SAMPLED

WEEKDAT

LAB ID SAMPLED

SAMPLED

RECEIVED DATE INST



DATE

NNOC

QAD

ESRL-GC

09/20/84

284

THURSDAY

2387 59

14.7

14.5 09/25/84

B

09/26/84

1.22



1.10

09/21/84

285

FRIDAY

2393 7

18.2

18.0 09/28/84

C

09/27/84

2.68



2.32

09/24/84

2C8

MONDAY

2418 29

15.8

15.5 09/27/84

C

09/28/84

1.44



1.31

09/25/84

289

TUESDAY

2450 55

16.0

14.0 10/01/84

D

10/02/84

2.62



2.52

09/26/84

270

NEDMtibAY

2459 2

14.5

14.5 10/01/84

C

10/02/84

1.15



0.98

K)
I

U

ro

-------
2-33

-------
CINCINNATI, OHIO

1984- SUMMER NMOC STUDY

JULIAN DATE

2-7, flat MJtPb 1>$s>t	Ohio.

-------
Table 2-9. Data Listing lot Oincintiati, Ohio.

19B4 SUMMER NHOC STUDY - CINCINNATI, OHIO

JULIAN

DATE DATS SAMPLED
SAMPLED SAMPLED WEEKDAY



CAN



(PSIC)

(PSIG)

RADIAN RADIAN



IAN

NO.



PRESSURE PRESSURE ANALYSIS NHOC



ID

SAMPLED

SAMPLED

RECEIVED

DATE INST



1062



67

14.4

14.5

06/29/84

B

1078



70

14.9

15.0

07/02/84

C

1084



103

14.3

14.0

07/03/84

B

1106



122

15.0

15.2

07/05/84

A

1128



138

14.5

14.8

07/06/84

D

1133



18

14.3

14.0

07/09/84

A

1146



21

14.2

14.5

07/09/84

D

1154



27

14.3

14.5

07/10/84

A

1161



58

15.1

15.5

07/11/84

C

1179



S6

14.5

13.5

07/12/84

B

1224



168

15.0

15.0

07/16/84

C

1247



20

14.0

14.5

07/17/84

A

1260



167

15.0

15.0

07/18/84

A

1217



24

14.0

14.0

07/19/84

B

1341



73

16.8

15.5

07/23/84

B

1353



3

14.0

14.5

07/24/84

A

1383



59

15.0

15.2

0V2S/84

B

1410



188

14.0

14.0

07/26/84

A

1419



103

15.0

15.0

07/27/84

A

1449



126

16.0

14.9

07/30/84

D

1467



93

15.0

14.9

07/31/84

A

1484



13

15.0

15.1

08/01/84

C

1520



78

14.0

20.0

08/02/84

B

1542



74

14.0

14.5

08/06/84

D

1573



152

16.0

15.5

08/07/84

C

1598



125

14.0

15.0

08/07/84

A

1607



196

15.0

15.0

88/00/84

C

1627



24

15.0

15.0

•8/09/84

D

1650



22

15.0

15.0

08/10/84

C

1684



145

14.0

14.0

08/13/84

A

1696



7

15.0

13.9

08/15/84

B

1732



154

15.0

15.0

88/15/84

B

1773



135

14.0

14.5

08/20/84

A

1771



172

0.0

15.3

08/17/84

D

1785



182

15.0

15.8

08/28/84

D

1826



108

15.0

14.8

08/21/84

D

1838



68

15.0

14.5

08/22/84

A

1992



122

15.0

14.5

08/24/84

B

1890



57

15.0

14.5

08/27/84

B

1909



156

16.0

15.3

08/27/84

D

1929



102

15.0

14.9

08/28/84

C

EPA	RADIAN NHOC NMOC

ANALYSIS PPNC PPHC PPMC
DATE NHOC QAD	ESRL-GC

06/27/84
06/28/84
06/29/84
•7/02/84
07/03/84
07/04/84
07/05/84
07/06/84
07/09/84
07/10/84
07/12/84
07/13/84
07/16/84
07/17/84
07/19/84
07/20/84
07/23/84
07/24/84
07/2S/84
07/26/84
07/27/84
07/30/84
07/31/84
08/01/84
08/02/84
04/03/84
08/06/84
01/07/84
08/08/84
08/09/84
08/10/84
08/13/84
08/14/84
08/15/84
08/16/84
08/17/84
08/20/84
08/21/84
08/22/84
08/23/84
08/24/84

179	WEDNESDAY

180	TBUMDAY

181	PRIDAY
104 NOWAY

185	TOfiUY'

186	WEDNESDAY

187	THURSDAY

188	PRIDAY

191	MONDAY

192	TUB8DAY

194	THURSDAY

195	PRIDAY

198	MONDAY

199	TOB0DAY
281 THURSDAY
202 FRIDAY

205	MONDAY

206	TORSDAY

207	KEDMRSDAY

208	THURSDAY

209	PNIOAY

212	HMDAT

213	THURSDAY

214	NRDNMDAY

215	THURSDAY

216	PRIDAY

219	MONDAY

220	TORSDAY

221	NEDMBDAY

222	THURSDAY

223	PRIDAY

226	MOMMY

227	TUESDAY

228	WEDNESDAY

229	THURSDAY

230	PRIDAY

233	MONDAY

234	TUESDAY

235	WEDNESDAY

236	THURSDAY

237	PRIDAY

07/10/84
07/10/84
07/06/84

07/10/84

07/16/84

07/23/84

07/27/84
07/31/84
08/01/84

08/08/84

08/13/84

08/22/84

08/28/84

0.60

1.94

1.03

1.42

0.75

0.33

0.65

0.48

0.75

0.55

1.20

1.15

0.83

0.74

1.05

0.80

1.14

0.9?

0.56

0.70

0.35

0.55

0.82

0.73

0.49

0.48

0.40

0.37

0.69

0.37

0.98

0.81

1.90

1.82

1.67

1.07

0.54

0.79

0.67

0.58

0.75

1.55

1.43

0.94
0.59

1.65
0.87

0.32

0.64

0.66

0.86

0.44

0.65

0.94

0.59

-------
kU U*tia« CiminmmtU «*i». (cort.>

1984 SUMMER NMOC STUDY - CINCINNATI, OHIO

JULIAN
DATE MR
SAMPLED SAMPLED

SAMPLED RADIAN

CAN

NO.

(PSIG) (PSIG) RADIAN RADIAN
PRESSURE PRESSORS ANALYSIS NMOC

EPA	RADIAN

ANALYSIS PPHC

WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST

NMOC
PPHC
OAD

NMOC
PPHC

ESRL-GC

240	MONDAY	1962	71	15.0	15.0 ®®/**/®*

241	TUESDAY	1976	110	15.0	14.9 ®®/*®/®*

242	WEDNESDAY 2009	195	15.0	14.9 ®f/"/®*

243	THURSDAY	2032	9®	15.0	14.9 09/04/04

244	PIUDAY'	2052	15	15.0	15.0 ®*/®*/®j
248 TUESDAY	2095	54	15.0	14.5 09/07/84
250 THURSDAY	2123	121	17.0	17.0 ®*/}®/®«

250	THURSDAY	2124	71	17.0	15.5 ®*/J®'®*

251	PRIDAY	2101	141	14.0	14.0 09/12/84
254 MOfOAY	2174	129	22.0	23.1 09/12/04
Hi tSSSy	2205	26	14.0	".5 09/13/S4

256	WEDNESDAY	2222	158	16.0	15.0

257	THURSDAY	2230	75	17.0	16.7 09/17/84

258	PRIDAY	2252	84	18.0	13.8 09/1B/94
141 nOMPftt	22(9	30	ll»0	16.5 09/19/04
III TUESDAY	2309	159	13.0	13.5 09/20/84

263	WEDNESDAY	2317	42	14.0	14.2 09/21/84

264	THURSDAY	2356	189	14.0	14.0 09/24/84

265	PRIDAY	2366	76	13.0	14.0 09/25/84
III MONDAY	2404	169	15.0	15.1 09/26/84

269	TUESDAY	2416	156	14.0	14.0 09/27/84

270	WEDNESDAY	2451	107	15.0	15.0 J®'®*'®*

271	THURSDAY	2461	4	20.0	16.0

272	FRIDAY	2483	109	15.0	14.5 10/02/84

09/13/84
09/13/04

D

D 08/31/84
A

e

D
C
D
D
C
C
C
D
D
A

A 09/20/84

C

C

C 09/25/84
B 09/26/84
D
C
C

D 10/02/84
A

0.63

0.46

0.41

0.74

0.99

0.45

0.86

1.00

2.94

0.59

0.62

0.96

2.07

3.61

0.34

0.98

1.41

0.00

0*91

0.47

0.33

0.31

3.93

0.12

0.42

2.28
0.59

0.34

0.81
1.17

3.51

-------
2-37

-------
to
I

u
00

u

ft

o
o
2
z

5.0

4-.0

3.0

2.0

1 .0

0.0

1 70

1 90

CLUTE, TEXAS

1984 SUMMER NMOC STUDY

230
JULIAN DATE

250

270

Figure 2-8. Plot of Im6c Data for Clute, Texas.

-------
Table 2-10. Data Listing for Clute, Texas.

1984 SUMMER NHOC STUDY - CLUTE, TEXAS

JULIAN	CAM

DATE DATE SAMPLED RADIAN MO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIG) RADIAN
PRESSURE PRESSURE AMALYSI
SAMPLED RECEIVED DATE

RADIAN

EPA

RADIAN

NMOC

NMOC

NHOC

ANALYSIS

PPMC

PPMC

PPMC

INST

DATE

NMOC

QAD

ESRL-GC

D

06/22/84

1.09



1.22

B



0.45





D

06/25/84

0.88



0.08

D



1.10





C



0.68





A

06/29/04

4.31



4.03

D

07/10/04

0.53



0.45

B

07/10/04

0.46



0.45

D



0.59





D

07/05/84

1.10

1.24



B



0.98





C



1.30





B



1.56





A



0.99





B

07/13/84

1.14

1.15



A



0.50





D

07/19/04

0.57



0.58

D

07/19/04

0.47



0.49

C



0,44





C



0.31





A



1.19





D



0.50





B

07/27/04

0.45



0.46

D



0.91



C



0.44





A



0.61





C



1.10





A



0.49





C



0.61





C



0.76





B

00/08/84

0.54



0.46

A



0.56





D



0.90





A



1.74





D

08/14/04

1.73



1.95

C



1.20





C



1.69





D



0.05





A



0.58





C

00/20/04

0.51



0.51

C



1.47



06/19/84
06/20/84
06/21/84
06/22/84
06/25/84
06/27/84
06/28/84
06/26/84
06/29/84
07/02/84
07/03/84
07/04/04
07/04/04
07/10/04
07/11/04
07/12/04
07/13/04
•7/16/04
07/17/04
07/10/04
07/19/04
07/20/04
07/23/04
07/24/04
*7/25/04
07/26/04
07/27/04
07/30/04
07/31/04
00/01/04
00/02/04
00/03/04
00/06/04
00/07/04
00/00/04
00/09/04
00/10/04
00/13/04
08/14/04
00/14/84
00/15/84

171	TUESDAY

172	WEDNESDAY

173	THURSDAY

174	FRIDAY
177 MbMAY

179	WEDNESDAY

100	THURSDAY

180	THURSDAY

101	FRIDAY

104	MMIAI

105	TUESDAY

106	WEDNESDAY
106 WEDNESDAY

192	TUESDAY

193	WEDNESDAY

194	THURSDAY

195	FRIDAY
190 NOWAY

199	TUESDAY

200	WEDNESDAY

201	THURSDAY

202	FRIDAY

205	MOMMY

206	TUESDAY

207	KE0MB80AY
200 THURSDAY
209 FRIDAY

212	MONDAY

213	TUESDAY

214	NEDMESDAY

215	THURSDAY

216	FRIDAY

219	MONDAY

220	TUESDAY

221	WEDNESDAY

222	THURSDAY

223	FRIDAY

226	MONDAY

227	TUESDAY

227	T0E8DAY

228	WEDNESDAY

1006

19

17.5

1009

24

17.5

1010

35

10.5

1035

47

10.0

1036

52

17.5

1053

04

17.9

1069

99

17.1

1068

96

17.1

1071

107

15.8

1007

127

20.0

1109

142

17.1

1131

17

5.1

1139

44

10.1

1160

41

17.0

1195

75

17.3

1203

101

18.0

1234

124

18.1

1250

105

23.0

1271

116

16.0

1320

145

10.0

1331

34

19.0

1352

147

17.0

1377

50

20.0

1396

25

16.0

1414

139

17 .0

1476

165

17.5

1401

174

16.4

1510

145

20.5

1527

29

18 .0

1547

14

18.0

1562

111

10.0

1594

30

17.0

1606

161

21.0

1636

193

17.5

1661

174

18.0

1673

26

17.0

1702

21

17.0

1727

153

19.0

1736

04

16.5

1735

164

16.5

1763

124

10.0

18.0
18.5
19.5
18.3
18.0
17.5
17.5
17.3
17.3
20.0
17.9
0.0
16.2
17.5
18.5
10.9
10.5
24.0
17.0
10.0
19.5
17.5
20.5
17.5
19.0
17.2
16.5
21.0
17.7
17.9
10.5
17.2
21.0
17.5
17.5
17.2
17.9
19.0

16.5
17.0

18.6

06/21/84
06/21/84
06/22/84
06/26/04
06/26/84
06/20/04
06/29/84
06/29/84
07/02/84
07/03/84
87/05/84
07/06/84
07/09/04
07/11/04
07/12/04
07/13/04
07/16/04
07/17/04
07/10/04
07/20/04
07/23/04
07/24/04
07/25/04
07/16/04
•7/27/04
00/01/04
08/01/84
00/02/04
00/02/84
00/06/04
00/07/04
00/00/04
08/00/04
00/09/04
00/13/04
00/13/84
00/15/04
08/15/84
00/16/84
00/16/04
08/17/84

-------
Table 2-10. Data Listing for Clute, Texas, (cont.)
1964 SUMMER NNOC STUDY - CLUTE, TEXAS

JULIAN	CAN	(PSIG) (PSZG) RADIAN RADIAN EPA	RADIAN NMOC NNOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NNOC ANALYSIS PPMC PPMC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC QAD	ESRL-GC





229

THURSDAY

1794

61

18.0

18.0

08/20/84

A



0.71





230

FRIDAY

1812

83

18.0

18.0

08/21/84

C



0.51





233

MONDAY

1842

19

18.0

17.9

08/22/84

A



0.23





234

TUESDAY

1868

29

17.5

18.0

08/24/84

C



2.22





235

WEDMKDAY

1889

100

18.0

18.2

08/27/84

A

08/27/84

0.50





23C

THURSDAY

1900

165

16.0

16.5

08/23/84

D



0.42





236

THURSDAY

1901

172

16.0

16.5

08/27/84

B



0.51





240

, MONDAY

1965

115

18.0

18.0

08/29/84

A



1.84





241

TUESDAY

1980

155

17.5

18.1

08/30/84

C



0.88





242

WEDNESDAY

2002

150

18.0

18.1

08/31/84

c



1.02





243

THURSDAY

2025

108

18.0

17.0

09/04/84

c



1.06





244

FRIDAY

2038

136

18.0

18.0

09/06/84

B

09/07/84

0.48





247

MONDAY

2084

74

18.0

18.0

09/06/84

6



0.70





248

TUESDAY

2069

75

17.0

17.2

09/06/84

D



0.63





251

FRIDAY

2149

58

17.8

18.5

09/11/84

D

09/12/84

0.32





254

MONDAY

2180

189

18.0

18.0

09/13/64

C

09/14/84

1.17





255

TUESDAY

2187

77

18.0

18.0

09/13/84

D



0.20





256

WEDNESDAY

2206

126

18.0

18.3

09/14/84

C



1.02





257

THURSDAY

2233

17

18.0

18.0

09/17/84

B



0.4$





258

FRIDAY

2245

3

18.0

18.5

09/18/84

D



0.47





261

MONDAY

2296

180

19.0

19.5

09/19/64

D



0.22





262

TUESDAY

2312

44

17.0

19.1

09/20/84

B



0.65





263

WEDNESDAY

2339

171

16.0

1R.2

09/21/84

D



0.55





264

THURSDAY

2346

110

18.0

18.6

09/24/84

B



0.49





265

FRIDAY

2392

39

17.3

17.9

09/26/84

D

09/27/84

0.31





268

MONDAY

2395

157

18.0

18.5

09/26/84

C



0.54





268

MONDAY

2394

62

18.0

16.5

09/26/84

B



0.75





269

TUESDAY

2431

119

17.5

18.0

09/28/84

A



0.37





270

WEDNESDAY

2445

74

18.0

18.4

10/01/84

A

10/02/84

0.45





271

THURSDAY

2463

164

19.0

19.5

10/01/84

D



0.32





272

FRIDAY

2490

192

20.0

20.1

10/02/84

C



0.62

1.16

0.47

0.31
1.05

1.00

0.43

0.34

0.54

-------
2-41

-------
ro
I

•c*
to

u

2

8:

U

o

5.0

4-.0

3.0

2.0

1 .0

0.0

1 70

DALLAS, TEXAS

1984 SUMMER NMOC STUDY





'



J\I[ o XlA hi

H Ik k I

\r S

i i i i i i

I 1 1 I

1 90

210	230

JULIAN DATE

250

270

Figure 2-9. Plot of BMt>C J>sts for	Texs*

-------
Table 2-11. Data Listing for Dallas, Texas.

1984 SUMMER NNOC STUDY - DALLAS, TEXAS

JULIAN	CAN	(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN NNOC NNOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NNOC ANALYSIS PPNC PPHC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NNOC QAD	BSRL-GC

06/18/84

170

MONDAY

1000

14

17.5

06/19/84

171

T0E8DAY

1001

15

19.0

06/20/84

172

WEDNESDAY

1007

26

19.0

06/21/84

173

THURSDAY

1017

33

17.5

06/22/84

174

FRIDAY

1029

44

16.0

06/22/04

174

FRIDAY

1020

42

16.0

06/25/04

177

MONDAY

1033

53

16.0

06/26/04

170

TUE8MY

1044

61

10.0

06/27/04

179

WEDNESDAY

1049

77

16.0

06/20/04

100

THURSDAY

1070

90

10.0

06/20/04

101

FRIDAY

1002

110

17.5

07/02/04

104

MONDAY

1006

120

10.5

07/83/84

105

TUE8DAY

1110

143

10.0

07/05/04

107

THURSDAY

1145

20

10.0

07/00/04

191

MOMMY

1155

31

16.5

07/10/04

192

TUESDAY

1174

47

17.0

*7/11/84

193

msdmnbday

1193

73

11.0

07/12/04
07/13/04

104

TMSMY

1201

96

17.5

195

FRIDAY

1236

125

11.0

07/16/04

190

MONDAY

1267

64

13.0

07/17/04

199

TUESDAY

1305

170

19.0

07/10/04

200

WEDNESDAY

1325

171

11.5

07/10/04

201

THURSDAY

1335

42

17.5

07/20/04

202

FRIDAY

1365

141

12.5

07/23/04

205

MONDAY

1304

75

10.5

07/24/04

206

TUESDAY

1401

109

12.0

07/25/04

207

WEDNESDAY

1415

140

15.5

07/26/04

200

TMMSDAY

1441

114

17.5

07/27/04

209

FRIDAY

1465

150

10.0

07/30/04

212

MOMMY

1499

19

13.0

07/30/04

212

MOMMY

1500

106

10.6

07/31/04

213

TOESMY

1525

52

10.5

00/01/04

214

WEDNESDAY

1545

67

19.0

00/02/04

215

THUR8DAY

1566

154

17.5

00/03/04

216

FRIDAY

1509

123

17.5

00/06/04

219

MOMMY

1611

06

19.0

00/07/04

220

TOB8DAY

1625

142

19.0

00/00/04

221

WEDNESDAY

1648

150

16.0

00/09/04

222

TBURSMY

1687

173

17.5

00/10/04

223

FRIMY

1693

34

17.5

00/13/04

226

MOMMY

1716

31

10.5

11.5

06/20/04

C

06/21/84

0.88



0.90

19.0

06/20/04

B

06/21/04

1.01

1.63



10.5

06/21/04

B

06/22/04

0.08



1.00

17.0

06/22/04

C



1.03





13.0

06/25/04

A

06/26/04

1.42



1.60

16.5

06/25/04

C

06/26/04

1.61



1.61

16.0

06/26/04

A

06/27/04

0.09



0.56

10.0

06/27/04

D

06/28/84

1.50

1.77



16.0

06/20/04

A

06/29/04

1.70



1.53

10.0

06/29/04

C

07/10/04

1.00



0.97

17.2

07/03/04

A



1.03





10.0

07/03/04

C



0.09





17.5

07/05/04

C



0.77





17.0

07/09/04

B



0.61





16.0

07/10/04

B

07/13/84

0.74



0.62

16.5

07/11/04

C

07/16/04

0.49



0.43

11.0

07/12/04

A



0.4*

o.or





17.5

07/13/04

C







15.5

07/16/04

C



0.09





13.0

07/10/04

D

07/23/84

0.61



0.61

19.0

07/19/04

C



0.71





10.5

07/21/04

C

07/23/84

1.07

1.30



17.3

07/23/04

B

07/24/84

0.00

1.16



12.0

07/24/04

B

07/27/04

0.01

0.75

10.5

07/25/04

D



1.29



12.2

07/16/04

D



0.94





16.5

07/27/04

D



1.31





17.0

07/30/04

D

00/03/84

1.03



0.97

17.2

00/01/04

B



0.92





16.0

00/01/04

C



1.22





16.0

08/01/04

D



1.16





17.2

00/02/04

C



1.14





18.5

00/06/04

D



1.13





17.5

00/06/04

C

00/03/04

1.42



1.19

17.9

00/07/04

C



1.05





13.0

08/00/04

D



0.65





19.0

00/09/04

D



0.75





16.0

00/10/04

B



0.44





17.1

00/13/04

C



0.56





17.5

00/14/04

B



1.63





18.9

00/15/04

D



1.20





-------
Table 2-11. Data Listing for Dallas, Texas, (cont.)

1984 SUMMER NNOC STUDY - DALLAS, TEXAS



JULIAN



CAN



(PSIG)

(PSIG) RADIAN

RADIAN EPA

RADIAN

DATE

DATE SAMPLED

RADIAN

NO.



PRESSURE

PRESSURE ANALYSIS

NMOC

ANALYSIS

PPMC

SAMPLED

SAMPLED WEEKDAY

LAB ID

SAMPLED

SAMPLED

RECEIVED DATE

INST

DATE

NMOC

08/14/84

227 TUESDAY

1748



177

18.5

18.1 08/17/84



D 08/20/84

0.85

08/1S/84

228 WEDNESDAY

1760



125

19.0

19.0 08/17/84



D

1.04

08/16/84

229 THURSDAY

1804



120

17.5

17.1 08/20/84



C

1.23

08/17/84

230 FRIDAY

1808



141

17.5

17.5 08/21/84



A

0.96

08/20/84

233 MONDAY'

1830



130

IE.5

19.0 08/22/84



D

0.76

08/21/84

234 TUESDAY

1852



169

19.5

19.0 08/24/84



C 08/25/84

0.39

08/22/84

235 WEDNESDAY

1876



78

19.5

15.9 08/27/84



A

2.57

08/23/84

236 THURSDAY

1910



105

18.0

16.0 08/28/84



C

2.46

08/24/84

237 FRIDAY

1936



77

17.5

17.1 08/29/84



C 08/30/84

0.98

08/27/84

240 NOWAY

1968



132

18.5

18.5 08/29/84



B

0.56

08/28/84

241 TUESDAY

1987



86

20.0

16.6 08/30/84



D

1.42

08/29/84

242 WEDNESDAY

2006



92

13.5

13.0 08/31/84



6 09/03/84

0.57

08/30/84

243 THURSDAY

2016



193

16.0

16.0 09/04/84



D

0.60

08/31/84

244 FRIDAY

2036



174

17.5

17.5 09/05/84



D

1.68

09/03/84

247 MOIDAY

2085



156

18.0

17.5 09/06/84



A

0.35

09/04/84

248 TUESDAY

2086



99

19.5

18.9 09/06/84



C

0.74

09/06/84

250 THURSDAY

2117



6

16.5

15.5 09/10/84



D

1.28

09/06/84

250 THURSDAY

2118



188

16.5

14.5 09/10/84



C

1.2S

09/07/84

251 FRIDAY

2152



152

18.5

18.0 09/11/84



C 09/12/84

0 ,7B

09/10/84

254 MONDAY

2169



85

17.5

18.0 09/12/84



C

0.39

09/11/84

255 TUESDAY

2203



104

15.5

16.0 09/13/84



C 09/14/84

0.51

09/12/84

256 WEDNESDAY

2229



56

19.0

17.2 09/14/84



C

1.51

09/13/84

257 THURSDAY

2259



18

18.0

18.0 09/18/84



c

0.66

09/17/84

261 MONDAY

2287



106

17.0

17.0 09/19/84



c

1.06

09/17/84

261 MONDAY

2288



71

17.0

16.5 09/19/84



D

1.16

09/18/84

262 TUESDAY

2311



164

15.0

14.9 09/20/84



B

0.76

09/19/84

263 WEDNESDAY

2330



195

10.3

10.5 09/21/84



B 09/22/84

0.94

09/20/84

264 THURSDAY

2357



37

17.0

17.9 09/24/84



A

1.09

09/21/84

265 FRIDAY

2385



49

17.5

16.5 09/25/84



A

0.87

09/2S/84

269 TUESDAY

2430



133

10.0

10.0 09/28/84



B

0.65

09/26/84

270 WEDNESDAY

2457



14

15.5

15.5 10/01/84



c

0.28

09/27/84

271 THURSDAY

2475



33

18.0

17.5 10/02/84



A

0.40

09/28/84

272 FRIDAY

2498



24

19.0

15.5 10/03/84



D 10/03/84

0.28

NMOC
PPMC
QAD

NMOC
PPMC
ESRL-GC

1.06
0.37

0.94 0.93
0.52

0.68
0.46

0.96

0.26

-------
2-45

-------
EL PASO TEXAS

1984 SUMMER NMOC STUDY

JULIAN DATE

Figure 2-10. Plot of KMOC Hits for El Pao, Tem.

-------
Table 2-12. Data Listing for El Paso, Texas.
1984 SUMMER NMOC STUDY - EL PASO, TEXAS

JULIAN	CAN	(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN NMOC NMOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPMC PPMC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC QAD	ESRL-GC

06/19/84

171

TUESDAY

1002

06/20/84

172

WEDNESDAY

1021

06/21/84

173

THURSDAY

1027

06/22/84

174

FRIDAY

1034

06/25/84

177

MONDAY'

1051

06/26/84

178

TUESDAY

1060

06/27/84

179

WEDNESDAY

1065

•6/28/84

180

THURSDAY

1075

06/29/84

181

FRIDAY

1092

07/02/84

184

MOMMY

1104

07/03/84

185

TUESDAY

1122

07/04/84

186

WEDNESDAY

1137

07/05/84

187

THURSDAY

1136

07/06/84

188

FRIDAY

1156

07/10/84

192

TUESDAY

1180

•7/11/84

193

WEDNESDAY

1207

07/12/84

194

THURSDAY

1223

•7/12/84

194

THURSDAY

1222

07/13/84

195

FRIDAY

1250

•7/17/84

199

TUESDAY

1301

07/18/84

200

WEDNESDAY

1322

•7/19/84

201

THURSDAY

1354

•7/20/84

202

FRIDAY

1361

07/23/84

205

MONDAY

1390

07/24/84

206

TUESDAY

1408

07/25/84

207

WEDNESDAY

1421

07/25/84

207

WEDNESDAY

1422

07/26/84

208 THURSDAY

1450

•7/3#/84

212

MONDAY

1491

08/01/84

214

WEDNESDAY

1538

•8/02/84

215

THURSDAY

1560

08/06/84

219

MONDAY

1620

08/07/84

220

TUESDAY

1641

08/08/84

221

WEDNESDAY

1654

08/09/84

222

THURSDAY

1685

08/10/84

223

FRIDAY

1706

08/13/84

226

MONDAY

1731

08/14/84

227

TUESDAY

1751

08/15/84

228

WEDNESDAY

1770

08/16/84

229 THURSDAY

1796

08/17/84

230

FRIDAY

1B21

10

21.5

18.0

06/21/84

11

21.5

18.0

06/25/84

25

20.0

16.0

06/25/84

34

12.8

9.5

06/26/84

46

13.0

9.8

06/28/84

58

13.0

9.5

06/29/84

12

12.0

9.5

06/29/84

92

13.0

10.0

07/02/84

83

21.5

18.0

07/03/84

113

13.0

9.0

07/05/84

126

13.0

9.8

07/06/84

146

13.0

9.5

07/09/84

10

13.0

9.0

07/09/84

4

13.0

10.0

07/10/84

57

12.5

9.5

07/12/84

67

20.0

18.0

07/13/84

17

13.0

13.0

07/16/84

127

13.0

10.5

07/16/84

83

13.0

10.5

07/17/84

179

13.*

9.5

07/19/84

190

13.0

10.5

07/21/84

65

13.0

10.0

07/24/84

99

12.0

9.5

07/24/84

149

13.0

10.0

07/25/84

128

13.0

10.0

07/26/84

49

12.5

9.5

07/27/84

97

13.5

10.3

07/27/84

129

13.5

10.9

07/30/84

51

13.0

10.2

08/01/84

112

13.0

10.0

08/06/84

168

13.0

11.0

08/06/84

95

13.0

10.0

08/08/84

126

13.0

11.0

08/09/84

190

13.0

10.5

08/13/84

51

13.0

10.0

08/14/84

192

13.0

10.6

08/15/84

89

13.0

10.5

08/15/85

99

13.0

10.5

08/16/84

149

13.0

11.0

08/17/84

62

13.0

10.5

08/20/84

3

13.0

11.1

08/21/84

C

1.62





D 06/26/84

0.69



0.56

B 06/26/84

1.74



1.88

B 06/27/84

1.41



1.53

D

1.27





A

0.66





D

0.58





E 07/03/84

0.85

1.04



A

0.93





A

0.82





D

1.76





A

0.56





A

1.38





B

0.78





C 07/16/84

1.21



1.07

A

0.51





B

0.68





B

0.60





A

0.83





A

0.49





C

0.84





D

0.70





B 07/27/84

0.33



0.32

D

0.66





C 07/27/84

1.47

1.56



B

0.67





B

0.68





C 08/03/84

0.84



0.72

B 08/03/84

0.89



0.85

B

1.56





C

0.39





D

0.47





C

1.39





D

1.17





D

0.88





D

0.61





A 08/20/84

0.59



0.57

D

0.76





C 08/20/84

0.63

0.99



A

0.84





C

1.44





-------
Table 2-12. Data Listing for El Paso, Texas, (cont.)

1984 SUMMER NHOC STUDY - EL PASO, TEXAS

I

¦>
00



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

EPA

RADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC

ANALYSIS

PPNC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

DATE

NMOC

II

a

R

i

ii
«
ii
¦

1 ItBRSCRt

K •VCMBS8 KKEBECri



SSSBC OBKKBKC CBSKSBKB SBBBBBBS

EBSBCCCB KECEBBCB EC8BBKKE

08/20/84

233

MONDAY

1836



10

13.0

10.0

08/22/84

C



1.53

08/21/84

234

TUESDAY

1859



183

13.0

10.5

08/24/84

D



1.00

08/22/84

235

WEDNESDAY

1877



31

13.0

10.5

08/27/84

C

08/28/84

0.84

08/23/84

236

THURSDAY

1914



45

13.0

10.5

08/28/84

D



0.75

08/24/84

237

FRIDAY

1941



161

13.0

10.5

08/28/84

A



0.38

08/27/84

240

MONDAY

1955



125

13.0

10.8

08/29/84

D

08/30/84

0.47

08/28/84

241

TUESDAY

1979



190

13.0

11.0

08/30/84

A

08/31/84

0.48

08/29/84

242

WEDNESDAY

2004



32

13.0

10.7

08/31/84

D



0.68

08/30/84

243

THURSDAY

2023



5

13.0

10.0

09/04/84

B



0.28

09/03/84

247

MONDAY

2076



118

13.0

10.0

09/06/84

A



0.33

09/04/84

248

TUESDAY

2077



165

14.0

11.0

09/06/84

D



0.38

09/05/84

249

WEDNESDAY

2099



14

13.0

11.0

09/07/84

D



1.05

09/07/84

251

FRIDAY

2146



106

14.0

12.0

09/11/84

C



1.21

09/07/84

251

FRIDAY

2145



19

14.0

11.5

09/11/84

C



1.25

09/10/84

254

MONDAY

2173



46

12.0

11.0

09/12/84

D

09/13/84

0.50

09/11/84

255

TUESDAY

2189



57

12.0

10.8

09/13/84

B



0.61

09/12/84

256

WEDNESDAY

2223



165

12.0

10.0

09/14/84

C



1.06

09/13/84

257

THURSDAY

2244



169

13.0

11.0

09/18/84

C



1.34-

09/17/84

261

MONDAY

2280



88

13.0

10.5

09/19/84

C



0.68

09/19/84

263

WEDNESDAY

2332



54

13.0

11.5

09/21/84

C



2.45

09/20/84

264

THURSDAY

2361



181

13.0

11.5

09/24/84

C

09/25/84

1.78

09/20/84

264

THURSDAY

2360



43

13.0

11.2

09/24/84

B

09/25/84

1.84

09/21/84

265

FRIDAY

2373



120

13.0

10.5

09/25/84

C



1.10

09/24/84

268

MOMMY

2390



65

12.0

10.9

09/26/84

C



0.67

09/25/84

269

TUESDAY

2428



137

12.0

10.4

09/28/84

C

09/29/84

1.81

09/26/84

270

WEDNESDAY

2454



20

12.0

10.8

10/01/84

B



0.96

09/27/84

271

THURSDAY

2460



18

11.0

9.0

10/01/84

C



0.60

09/28/84

272

FRIDAY

2497



144

12.0

11.0

10/03/84

c



0.69

NHOC
PPNC
QAD

MMOC
PPMC
ESRL-GC

0.79

0.54
0.45

0.49

1.74

1.00

1.65
1.80

-------
2-49

-------
ro
I

ui
o

u

fc

(J

o

5.0

4-.0

3.0

2.0

1 .0

0.0

1 70

FORT WORTH, TEXAS

1984 SUMMER NMOC STUDY

1 90



[

]



I

44, fl

H A

"4 \iVJ* * \J 'w



210	230

JULIAN DATE

250

270

Figure 2-11. Plot of VMO'c Data for Fort Worth, Tex*t.

-------
Table 2-13.

Data Listing for Fort Worth, Texas.

1984 SUMMER NHOC STUDY - FORT NORTH, TEXAS



JULIAN





CAN



(PS1G)

(PSIG)

RADIAN

RADIAN

1 EPA

RADIAN

NHOC

NHOC

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NHOC

ANALYSIS

PPHC

PPHC

PPHC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

DATE

NHOC

QAD

ESRL-GC

06/20/84

172

WEDNESDAY

1023



3

18.0

17.7

06/25/84



A

1.18





06/20/84

172

WEDNESDAY

1022



4

18.0

17.7

06/25/84



B

1.11





06/22/84

174

FRIDAY

1040



43

16.0

15.5

06/26/84



A 06/27/84

0.88

1.22



06/25/84

177

MOMMY .

1039



45

16.0

16.0

06/26/84



D 06/27/84

1.61



1.59

06/26/84

178

TUESDAY

1042



55

20.0

19.5

06/27/84



C 07/28/84

0.85



0.60

06/27/84

179

WEDNESDAY

1047



62

17.0

17.5

06/28/84



B 06/29/84

1.29



1.19

06/28/84

180

THURSDAY

1063



78

15.0

15.5

06/29/84



C

0.81





06/29/84

181

FRIDAY

1081



94

15.0

15.0

07/02/84



A 07/10/84

1.12



1.05

07/02/84

184

MONDAY

1089



125

15.0

15.5

07/03/84



C

1.68





07/03/84

185

TUESDAY

1107



112

10.0

10.5

07/05/84



D

0.76





07/85/84

187

THURSDAY

1127



2

17.0

16.5

07/06/84



D

0.49





07/06/84

188

FRIDAY

1144



144

15.0

15.0

07/09/84



A

0.87





07/06/84

188

FRIDAY

1143



145

15.0

15.0

07/09/84



C

1.02





07/09/84

191

MONDAY

1152



52

15.0

15.0

07/10/84



C 07/11/84

0.63

0.82



•7/10/84

192

TUESDAY

1169



65

16.5

10.0

07/11/84



D

0.39





•7/11/84

193

MBDMESDAY

1197



111

15.0

15.5

07/12/84



B

0.72





07/12/84

194 THURSDAY

1200



2

15.0

14.5

07/13/84



D 07/17/84

0.6Q



0.65

07/13/84

195

FRIDAY

1227



23

12.0

12.0

07/16/84



B

0.77





07/16/M

198

MONDAY

1239



95

17.0

17.0

07/17/84



C 07/19/84

0.47



0.54

07/17/84

199

TUESDAY

1276



108

20.0

21.0

07/18/84



C

0.48





07/18/84

200

WEDNESDAY

1294



92

16.0

17.0

07/19/84



A 07/23/84

0.79



0.74

07/19/84

201

THURSDAY

1314



135

15.0

15.5

07/20/84



B

1.25





07/20/84

202

FRIDAY

1334



53

15.0

15.5

07/23/84



C 07/25/84

0.69



0.57

07/23/84

205

MONDAY

1376



55

17.0

15.5

07/25/84



A 07/27/84

1.35



1.24

07/24/84

206

TUESDAY

1404



63

17.0

16.0

07/26/84



C

1.09





07/24/84

206

TUESDAY

1403



96

17.0

17.0

07/26/84



B

1.04





07/25/84

287

WEDNESDAY

1423



95

13.0

13.0

07/27/84



A 07/30/84

1.35



1.78

07/26/84

208 THURSDAY

1437



166

16.0

15.5

07/30/84



C

0.89





07/27/84

209

FRIDAY

1462



182

15.0

15.0

08/01/84



D

0.71





07/30/84

212

MONDAY

1487



185

17.0

16.9

08/01/84



B

1.35





07/31/84

213

TUESDAY

1526



9

17.0

16.1

08/02/84



D

1.63





•8/01/84

214

WEDNESDAY

1536



66

17.0

16.6

08/06/84



C

1.13





08/02/84

215

THURSDAY

1565



161

16.0

16.0

08/06/84



D 08/03/84

1.29



1.09

08/03/84

216

FRIDAY

1582



58

15.0

16.0

08/07/84



B

0.95





08/06/84

219

MONDAY

1614



181

16.0

15.5

08/08/84



B

0.56





08/07/84

220

TUESDAY

1630



129

17.0

17.5

08/09/84



C 08/10/84

0.49



0.46

08/08/84

221

WEDNESDAY

1689



116

17.0

16.5

08/13/84



C

0.43





08/09/84

222

THURSDAY

1676



195

15.0

15.5

08/13/84



D

0.45





08/10/84

223

FRIDAY

1698



109

15.0

15.1

08/15/84



C

1.52





08/14/84

227

TUESDAY

1739



77

17.0

17.5

08/16/84



B 08/20/84

2.09



1.96

08/15/84

228

WEDNESDAY

1761



142

16.5

16.9

08/17/84



C 08/20/84

0.77

1.04



-------
Table 2-13. Data Listing for Fort Worth, Texas, (cont.)

1984 SUMMER NMOC STUDY - PORT NORTH, TEXAS



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



EPA

RADIAN

NMOC

NMOC

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

PPMC

PPMC

PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NMOC

QAD

BSRL-GC

08/16/84

229

THURSDAY

1802



25

16.0

16.1

08/20/84



C

08/21/84

1.27



1.13

08/17/84

230

FRIDAY

1817



64

15.0

15.8

08/21/84



D



1.15





08/20/84

233

MONDAY

1854



167

15.0

15.5

08/24/84



C



0.96





08/21/84

234

TUESDAY

1864



136

17.0

17.5

08/24/84



C



0.56





08/24/84

237

PRlb&Y '

1944



58

15.0

15.5

08/29/84



B

08/30/84

0.83



0.79

08/27/84

240

MONDAY

1947



121

16.0

15.9

08/29/84



C



0.61





08/28/84

241

TUESDAY

1988



6

16.0

16.7

08/30/84



C



0.47





08/29/84

242

WEDNESDAY

1994



59

16.0

16.8

08/31/84



B



0.55





08/30/84

243

THURSDAY

2015



55

18.0

14.9

09/04/84



A



3.81





08/31/84

244

FRIDAY

2062



53

15.0

15.2

09/06/84



D

09/07/84

1.64



1.36

09/04/84

248

TUESDAY

2064



60

18.0

18.0

09/06/84



A

09/07/84

1.35



1.30

09/05/84

249

WEDNESDAY

2107



198

17.0

17.0

09/07/84



C



2.18





09/06/84

250

THURSDAY

2133



66

16.0

16.0

09/10/84



B

09/11/84

0.85

0.86



09/07/84

251

FRIDAY

2142



11

25.0

26.2

09/11/84



B

0.51





09/10/84

254

MONDAY

2167



50

16.5

17.0

09/12/84



D



0.47





09/11/84

255

TUBSDAY

2195



95

17.0

17.8

09/13/84



A



0.43





09/12/84

256

WEDNESDAY

2215



68

15.5

17.1

09/14/84



C



0.55





09/13/84

257

THURSDAY

2266



196

15.5

16.0

09/18/84



D



O.SS'





09/14/84

258

FRIDAY

2260



172

15.0

16.0

09/18/84



A



0.60





09/17/84

261

MONDAY

2271



198

15.0

16.4

09/19/84



D



0.74





09/18/84

262

TUESDAY

2314



8

17.0

17.5

09/20/84



B



1.46





09/19/84

263

WEDNESDAY

2333



35

16.0

16.5

09/21/84



C

09/22/84

1.62



1.59

09/21/84

265

FRIDAY

2383



123

15.0

14.9

09/26/84



D



1.69





09/24/84

268

NOWAY

2407



102

17.0

17.0

09/26/84



A

09/27/84

0.50

0.63



09/25/84

269

TUESDAY

2422



90

17.0

16.5

09/28/84



B

0.56





09/26/84

270

WEDNESDAY

2456



5

17.0

16.5

10/01/84



D



0.42





09/27/84

271

THURSDAY

2484



85

16.0

15.5

10/02/84



C

10/03/84

0.75



0.72

09/28/84

272

FRIDAY

2486



190

16.0

16.1

10/02/84



D



0.52





-------
2-53

-------
NJ
I

KJ\

U
2

ft

U
O

5.0

4.0

3.0

.0

1 .0

0.0

1 70

INDIANAPOLIS, INDIANA

1984 SUMMER NMOC STUDY

1 90

210	230

JULIAN DATE

250

270

figure 2-12. Plot of HM0C foata for Indianapolis, Indiana.

-------
Table 2-14. Data Listing for Indianapolis, Indiana.

1984 SUMMER NMOC STUDY - INDIANAPOLIS, INDIANA

JULIAN	CAN

DATE DATE SAMPLED RADIAN NO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIG) RADIAN RADIAN
PRESSURE PRESSURE ANALYSIS NMOC
SAMPLED RECEIVED DATE INST

EPA	RADIAN NMOC NMOC

ANALYSIS PPMC PPNC PPNC
DATE NMOC QAD	ESRL-GC

to
I

w

07/12/04	194 THURSDAY	1218	50

07/13/84	195 FRIDAY	1245	85

07/16/84	198 MONDAY	1266	160

07/17/84	199 TUS8MY	1300	182

07/18/84	200 WEDNB6DAY	1309	122

07/19/84	201 THURSDAY	1342	9

07/20/84	202 FRIDAY	1343	14

07/23/84	205 MONDAY	1387	79

07/24/84	206 TUESDAY	1394	74

07/25/84	207 WEDNESDAY	1424	17

07/26/84	208 THURSDAY	1446	35

07/27/84	209 FRIDAY	1454	151

07/30/84	212 MONDAY	1492	20

07/31/84	213 TUESDAY	1504	180

•8/01/84	214 WEDNESDAY	1553	153

08/81/84	214 WEDNESDAY	1554	131

•8/02/84	215 THURSDAY	1576	121

08/03/84	216 FRIDAY	1590	124

08/06/84	219 MONDAY	1602	79

08/07/84	228 TUESDAY	1634	49

08/08/84	221 WEDNESDAY	1649	175

08/09/84	222 THURSDAY	1675	167

•8/10/84	223 FRIDAY	1695	180

08/13/84	226 MONDAY	1754	138

08/15/84	228 WEDNESDAY	1772	191

•8/16/84	229 THURSDAY	1800	152

08/17/84	230 FRIDAY	1807	181

04/20/M	233 MONDAY	1833	94

08/21/84	234 TUESDAY	1860	96

08/22/84	235 WEDNESDAY	1892	90

08/23/84	236 THURSDAY	1917	39

08/24/84	237 FRIDAY	1942	99

08/27/84	240 MONDAY	I960	147

08/29/84	241 TUESDAY	1982	76

08/29/84	242 WEDNESDAY	1995	106

08/29/84	242 WEDNBSDAY	1996	152

08/30/84	243 THURSDAY	2063	183

08/31/84	244 FRIDAY	2051	7

09/03/84	247 MONDAY	2060	89

09/04/84	248 TUESDAY	2061	40

13.0

13.0 07/16/84

A 07/19/84

1.30



1.28

13.0

13.0 07/17/84

A

1.21





12.5

12.2 07/18/84

A

0.73





14.5

13.5 07/19/84

B

0.91





14.0

14.0 07/20/84

C

0.55





11.5

11.5 07/23/84

A 07/25/84

2.SO



2.46

14.0

13.5 07/24/84

A 07/27/84

0.67



0.67

15.0

15.0 07/25/84

D 07/27/84

1.41



1.36

13.5

13.5 07/26/84

A

0.67





14.2

14.5 07/27/84

D 07/30/84

0.68



0.54

14.0

14.0 07/30/84

B

0.55





14.5

13.9 07/31/84

A

0.34





16.5

16.8 08/01/84

A 08/03/84

0.51



0.55

14.0

13.5 08/02/84

B

0.74





13.1

12.9 08/06/84

A

1.14





13.1

12.5 08/06/84

C

1.3+





14.1

14.2 08/06/84

B

0.69





14.1

13.5 08/07/84

B

0.56





13.5

13.2 08/08/84

A

0.63





13.1

12.0 08/09/84

C 08/13/84

1.09

1.23



14.0

14.8 08/10/84

A

0.78





13.1

13.1 08/13/84

C 08/14/84

0.98

0.86

0.64

13.5

13.3 08/15/84

B

0.90



13.5

13.5 08/16/84

C 08/22/84

1.01

1.10



11.0

11.0 08/20/84

B

2.50





14.0

14.2 08/20/84

D

0.86





13.5

13.5 08/21/84

B

1.12





14.0

13.5 08/22/84

C 08/23/84

0.68



0.42

13.5

13.5 08/24/84

D 08/27/84

0.57

0.64

0.49

10.0

9.5 08/27/84

D

0.97

13.5

13.8 08/28/84

A

0.64





14.0

13.8 08/28/84

B

0.76





24.0

23.3 08/29/84

C

0.27





13.5

13.2 08/29/84

D

0.38





14.3

14.0 08/31/84

A

0.52





14.3

14.0 08/31/84

A

0.52





14.0

13.2 09/06/84

C

0.82





14.5

14.1 09/05/84

D 09/06/84

0.78



0.70

13.5

13.5 09/05/84

A

0.22



13.0

12.8 09/06/84

D 09/07/84

0.58



0.49

-------
Table 2-14. Data Listing for Indianapolis, Indiana. (cont.)

1984 SUMMER NMOC STUDY - INDIANAPOLIS, INDIANA



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

EPA

RADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC

ANALYSIS

PPNC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

DATE

NMOC



tt mmmmmmmm tBCcieti

SKK

SBBBB BBSBSCBB BBSBBSSS BB8BSSCB KBSBSCBS BCKSBEBi

KSKCBCEE

09/05/84

249

NEDMESDAY

2097



167

14.2

14.5

09/10/84

B

09/10/84

0.49

09/06/84

250

THURSDAY

2154



112

13.0

13.5

09/11/84

D

09/12/84

0.65

09/07/84

251

FRIDAY

2160



184

13.5

13.5

09/12/84

D

0.58

09/10/84

254

MOMMY

2166



110

11.5

11.0

09/12/84

A



0.64

09/11/84

255

TUESDAY

2185



35

12.9

12.5

09/13/84

C



0.70

09/12/84

256

WEDNESDAY

2212



29

13.0

13.0

09/14/84

A



0.92

09/13/84

257

THURSDAY

2235



69

13.0

12.8

09/17/84

C



0.68

09/14/84

258

FRIDAY

2250



40

13.5

13.1

09/18/84

B

09/19/84

0.40

09/17/84

261

MONDAY

2282



167

13.5

13.5

09/19/84

A

0.75

09/18/84

262

TUESDAY

2327



15

14.0

13.0

09/21/84

A

09/22/84

1.27

09/19/84

263

WEDNESDAY

2325



112

15.5

15.1

09/21/84

D

0.92

09/20/84

264

THURSDAY

2351



32

16.0

16.0

09/24/84

C



0.75

09/21/84

265

FRIDAY

2380



46

14.0

13.8

09/26/84

D



0.99

09/21/84

265

FRIDAY

2381



155

14.0

13.3

09/26/84

C



0.98

09/24/84

268

MONDAY

2406



161

12.5

12.0

09/26/84

A



0.81

09/25/84

269

TUESDAY

2424



63

13.0

12.1

09/24/84

D



0.63

09/26/84

270

WEDNESDAY

2440



113

12.0

12.1

10/01/84

A

10/02/84

0.43-

09/27/84

271

THURSDAY

2479



64

13.0

12.8

10/02/84

D

0.35

09/28/84

272

FRIDAY

2493



15

13.0

12.5

10/02/84

A



0.41

NMOC
PPNC
QAD

NMOC
PPNC
BSRL-OC

0.62
0.71

0.47

0.41
1.14

0.37

-------
2-57

-------
IO
I

Cn
00

o
o

O

5.0

4.0

3.0

2.0

1 .0

0.0

1 70

KANSAS CITY, MISSOURI

1984 SUMMER NMOC STUDY

1 90

210	230

JULIAN DATE

250

270

Figure 2-13. Plot of HMOC D.t. for KCity, His.ouri.

-------
Table 2-15. Data Listing for Kansas City, Missouri.

1984 SUMMER NMOC STUDY - KANSAS CITY, MISSOURI

JULIAN	CAN	(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN NMOC NMOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPNC PPMC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC QAD	ESRL-OC

06/27/84

179

WEDNESDAY

1172

06/28/84

180

THURSDAY

1165

86/29/84

181

FRIDAY

1163

07/02/84

184

MONDAY'

1185

07/03/84

185

TUESDAY

1177

07/05/84

187

THURSDAY

1189

07/06/84

188

FRIDAY

1187

07/09/84

191

MONDAY

1178

07/10/84

192

TUESDAY

1229

87/11/84

193

MEDNB8DAY

1230

07/12/84

194

THURSDAY

1293

07/13/84

195

FRIDAY

1290

87/16/84

198

MONDAY

1296

07/17/84

199

TUESDAY

1292

07/18/84

200

WEDNESDAY

1471

87/18/84

201

THURSDAY

1469

07/20/84

202

FRIDAY

1457

07/23/84

205

MONDAY

1479

07/24/84

206

TUESDAY

1468

07/25/84

207

WEDNESDAY

1506

07/26/84

288

TUMMY

1507

07/27/84

209

FRIDAY

1514

07/38/84

212

MONDAY

1511

07/31/84

213

TUESDAY

1540

08/01/84

214

WEDNESDAY

1551

08/02/84

215

THURSDAY

1575

08/03/84

216

FRIDAY

1599

08/06/84

219

MO WAY

1609

08/07/84

220

TUESDAY

1633

88/08/84

221

WEDNESDAY

1657

08/09/84

222

THURSDAY

1681

08/10/84

223

FRIDAY

1694

08/13/84

226

MONDAY

1714

08/14/84

227

TUESDAY

1755

08/15/84

228

WEDNESDAY

1777

08/16/84

229

THURSDAY

1797

88/17/84

230

FRIDAY

1823

08/17/84

230

FRIDAY

1822

08/20/84

233

MONDAY

1845

08/21/84

234

TUESDAY

1857

08/22/84

235

WEDNESDAY

1884

117

12.5

11.0

07/11/84

117

10.5

12.5

07/11/84

121

12.0

12.5

07/11/84

76

13.5

14.0

07/12/84

79

13.0

13.0

07/12/84

131

12.0

12.5

07/12/84

147

12.0

12.5

07/12/84

3

13.0

13.5

07/12/84

25

12.5

12.5

07/16/84

38

12.5

12.5

07/16/84

93

12.0

12.0

07/19/84

106

16.5

17.0

07/19/84

177

13.0

13.5

07/19/84

126

12.5

13.0

07/19/84

183

13.0

12.5

08/01/84

193

14.0

15.5

07/31/84

15

12.5

12.5

07/31/84

45

13.5

13.8

08/01/84

61

14.0

14.5

07/31/84

159

13.5

12.5

08/02/84

90

12.0

11.6

08/02/84

136

12.5

13.0

08/02/84

69

14.0

14.1

08/02/84

73

13.0

13.1

08/06/84

89

12.8

12.9

08/06/84

135

12.5

13.0

08/06/84

81

13.0

13.0

08/07/84

44

15.5

14.5

08/08/84

72

13.0

13.0

08/09/84

108

12.5

12.0

08/13/84

137

12.5

12.6

08/13/84

93

12.5

12.5

08/15/84

159

13.5

14.2

08/15/84

156

13.5

14.1

08/16/84

107

13.0

13.1

08/20/84

59

14.0

14.9

08/20/84

190

14.0

14.1

08/21/84

106

14.0

14.8

08/21/84

194

14.0

14.3

08/22/84

173

13.5

13.5

08/24/84

166

13.0

13.2

08/27/84

A 07/16/84	2.04	1.71

B	0.77

D 07/16/84	1.56	1.23

A	1.28

A	0.67

C	1.35

B	0.99

A 07/16/84	0.58	0.53

A	0.51

A	0.44

D 07/23/84	2.71	2.48

D	0.66

D	0.77

C	0.63

B 08/03/84	1.46	1.76

D	0.74

D 08/01/84	0.5$ 0.82

A 08/03/84	1.44	1.23

B	0.56

B 08/03/84	1.72	1.54

D	0.46

B	0.62

C	0.45

B	0.64

D	0.74

B	0.56

B 08/08/84	0.50	0.43

D	1.21

B 08/10/84	0.46	0.44

A	0.42

C	0.58

A 08/15/84	0.44 0.54

C	0.54

A	0.75

D	0.72

D 08/21/84	0.72	0.74

B	0.64

C 08/22/84	0.64	0.60

C 08/23/84	0.44 0.56

B	0.46

C	0.71

-------
Table 2-15. Data Listing for Kansas City, Missouri, (cont.)

1984 SUMMER NMOC STUDY - KANSAS CITY, MISSOURI



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



EPA

RADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NMOC

08/23/84

236

THURSDAY

1902



163

13.5

14.0

08/27/84



D

08/28/84

0.38

08/24/84

237

FRIDAY

1943



192

14.5

14.7

08/29/84



C

0.53

08/27/84

240

MONDAY

1957



151

13.5

13.3

08/29/84



A



0.57

08/27/84

240

MONDAY

1956



64

13.5

13.4

08/29/84



C



0.35

08/28/84

241

TUESDAY '

1984



22

13.5

14.0

08/30/84



B

08/31/84

0.66

08/29/84

242

WEDNESDAY

1993



120

13.0

13.2

08/31/84



A

0.70

08/30/84

243

THURSDAY

2021



187

22.0

22.1

09/04/84



A

09/05/84

0.61

08/31/84

244

FRIDAY

2053



49

11.5

11.0

09/05/84



C

2.76

09/04/84

248

TUESDAY

2082



168

14.5

14.9

09/06/84



C



0.36

09/05/84

249

WEDNESDAY

2109



4

17.0

16.5

09/10/84



C



2.04

09/06/84

250

THURSDAY

2126



31

13.0

13.0

09/10/84



C

09/11/84

0.47

09/07/84

251

FRIDAY

2143



127

13.0

13.7

09/11/84



A

0.30

09/10/84

254

MONDAY

2181



142

15.0

15.5

09/12/84



B

09/13/84

0.66

09/11/84

255

TUESDAY

2186



181

13.5

14.0

09/13/84



D

0.35

09/12/84

256

WEDNESDAY

2208



131

16.0

15.9

09/14/84



D



1.99

09/13/84

257

THURSDAY

2234



98

13.0

13.0

09/19/84



A



0.52

09/14/84

258

FRIDAY

2261



156

13.5

13.9

09/18/84



A



0.57

09/17/84

261

MONDAY

2285



33

13.5

13.5

09/19/84



A



0.37,

09/18/84

262

TUESDAY

2297



48

15.0

15.6

09/20/84



A

09/21/84

0.79

09/19/84

263

WEDNESDAY

2329



85

15.0

15.0

09/19/84



A

0.60

09/20/84

264

THURSDAY

2343



174

12.5

13.5

09/24/84



C



0.71

09/21/84

265

FRIDAY

2365



10

13.0

12.0

09/25/84



C



0.75

09/24/84

268

MONDAY

2402



186

14.5

14.5

09/27/84



C



0.56

09/25/84

269

TUESDAY

2425



1

17.0

10.6

09/28/84



C



0.78

09/26/84

270

WEDNESDAY

2441



140

11.0

11.5

10/01/84



D



0.33

09/27/84

271

THURSDAY

2494



167

16.0

16.1

10/02/84



D



0.29

09/28/84

272

FRIDAY

2487



82

16.0

16.1

10/02/84



C

10/03/84

0.37

NMOC
PPMC
QAD

NMOC
PPMC
ESRL-GC

ro
I

a>
o

0.74

0.44

0.58

0.38
0.58

0.73

0.55

-------
2-61

-------
N>
I

O*
N)

u

k

u
o

5.0

4-.0

3.0

2.0

1 .0

0.0

1 70

MEMPHIS, TENNESSEE

1584 SUMMER NMOC STUDY

1 90

Figure 2-14.

210	230	250

JULIAN DATE

Plot of MMOC Data for Meaphis, Tennessee

270

-------
Table 2-16.

Data Listing for Meaphis, Tennessee.

1984 SUMMER NMOC STUDY - MEMPHIS, TENNESSEE

DATE

JULIAN
DATE



CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

EFA

IAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

1210



128

0.0

11.0

07/13/84



C

07/16/84

1297



138

18.0

18.0

07/19/84



A

1317



166

18.0

17.5

07/20/84



D



1363



41

17.0

17.9

07/24/84



C



1351



112

16.0

16.7

07/24/84



C

07/27/84

1374



111

18.5

18.8

07/25/84



B

1393



124

19.5

20.5

07/26/84



D



1429



86

19.0

19.0

07/25/84



e

07/30/84

1440



110

18.0

18.0

07/30/84



C

1475



54

16.5

17.0

07/31/84



D



1489



122

18.0

18.5

08/01/84



A

08/03/84

1510



195

19.8

19.9

08/02/84



A

1549



191

18.5

18.5

08/06/84



A



1600



113

21.0

21.5

08/07/84



C



1603



38

19.5

18.5

08/08/84



D

08/09/84

1629



85

18.5

16.0

08/09/84



D

1655



114

18.5

17.0

08/13/84



D



1674



185

24.5

23.4

08/13/84



D

08/14/84

1704



171

15.5

16.1

08/15/84



D

1724



27

15.5

17.5

08/15/84



t

08/16/84

1737



40

18.8

19.5

08/16/84



D

1791



133

25.5

25.5

08/16/84



B

08/21/84

1832



175

24.5

24.9

08/22/84



B

1855



145

18.5

19.0

08/24/84



A



1875



154

18.5

19.1

08/27/84



A

08/28/84

1908



65

18.9

18.0

08/27/84



C

1920



33

30.0

29.5

08/28/84



D



1963



43

18.5

18.5

08/29/84



B



1999



135

19.0

19.0

08/31/84



A

09/04/84

2029



38

19.5

15.0

09/04/84



D

2022



116

20.5

20.0

09/04/84



A

09/05/84

2047



57

17.5

17.7

09/05/84



C

2071



81

21.3

IS.9

09/06/84



C

09/07/84

2105



90

20.0

18.5

09/10/84



C

2132



134

20.5

20.0

09/10/84



A



2131



18

20.5

20.5

09/10/84



B



2144



132

18.5

19.0

09/11/84



D

09/12/84

2176



109

18.0

18.6

09/12/84



C

2200



178

18.5

19.5

09/13/84



C



2220



23

19.0

19.5

09/14/84



A



2239



136

18.5

18.5

09/17/84



B



RADIAN

NMOC
PPMC

NMOC
PPMC

07/10/84
07/17/84
07/18/84
07/19/84
07/20/84
07/23/84
07/24/84
07/25/84
07/26/84
07/27/84
07/30/84
07/31/84
08/01/84
08/03/84
08/96/84
08/87/84
08/08/84
08/09/84
08/10/84
08/13/84
08/14/84
08/14/84
08/20/84
08/21/84
08/22/84
08/23/84
08/24/84
08/27/84
08/28/84
08/29/84
08/30/84
08/31/84
09/04/84
09/05/84
09/06/84
09/06/84
09/07/84
09/10/84
09/11/84
09/12/84
09/13/84

192 TUESDAY

199	TUESDAY

200	WEDNESDAY

201	THURSDAY

202	FRIDAY

205	NOIDAY

206	TUESDAY

207	WEDNESDAY

208	THURSDAY

209	FRIDAY

212	MONDAY

213	TUESDAY

214	WEDNESDAY
216 FRIDAY

219	MONDAY

220	TUESDAY

221	WEDNESDAY

222	THURSDAY

223	FRIDAY

226	MONDAY

227	TUESDAY
229 THURSDAY

233	MONDAY

234	TUESDAY

235	NEDMB8BAY

236	TBORSDAY

237	FRIDAY

240	MONDAY

241	TUESDAY

242	WEDNESDAY

243	TBORSDAY

244	FRIDAY

248	TUESDAY

249	WEDNESDAY

250	THURSDAY

250	THURSDAY

251	FRIDAY

254	MONDAY

255	TUESDAY

256	WEDNESDAY

257	THURSDAY

0.74

1.26
0.40
1.70
1.59
0.99
1.14
1.64
1.19
1.09
0.80
0.75
1.55
0.97
2.07
1.22
1.12
0.93

1.27
1.11

1.29
2.46
1.80
1.45
1.43
0.58
0.14
2.33
1.09

2.57
1.90
2.78
0.77
1.77
0.36

1.30

1.58
1.41
0.74
4.03
4.75

1.03

1.53
1.57
0.60

1.83
0.76

1.33
2.27

1.12

0.69

1.33

1.90

1.41
0.70

-------
Table 2-16. Data Listing for Menphis, Tennessee, (cont.)
1984 SUMMER NMOC STUDY - MEMPHIS, TENNESSEE

JULIAN	CAN	(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN NMOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPMC PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC QAD

¦ CCKKSC BBSCBOB

09/J4/84

258

FRIDAY

2249

105

18.0

15.5

09/18/84

C



2.41

09/17/84

261

MONDAY

2270

90

19.0

18.8

09/19/84

C



0.92

09/18/84

262

TUESDAY

2303

24

19.0

19.5

09/20/84

D



1.00

09/19/84

263

WEDNESDAY

2326

108

20.0

18.5

09/21/84

C



1.71

09/20/84

264

THURSDAY'

2355

129

20.5

19.0

09/24/84

D



2.09

09/21/84

265

FRIDAY

2364

187

18.5

18.0

09/25/84

A

09/26/84

1.92

09/24/84

268

MONDAY

2434

103

17.5

17.6

09/28/84

D

09/29/84

1.19

09/25/84

269

TUESDAY

2433

124

16.0

18.3

09/28/84

C

1.36

09/26/84

270

WEDNESDAY

2455

45

20.0

20.1

10/01/84

A



0.19

09/27/84

271

THURSDAY

2504

188

25.0

18.0

10/05/84

C



1.28

09/28/84

272

PRIDAY

2482

6

13.9

12.5

10/02/84

A



0.33

-------
2-65

-------
5.0

MIAMI, FLORIDA

1984 SUMMER NMOC STUDY

4.0

KJ
I

O*
o\

u

ft

O

o

3.0

2.0

1 .0

0.0

1 70

1 90

j \ B
M

T

T

10

230
JULIAN DATE

250

27D

Figure 2-15. Plot of IM0C' Data for Miaai, Florida.

-------
Table 2-17. Data Listing for Miaai, Florida.
1984 SUMMER NHOC STUDY - MIAMI, FLORIDA

JULIAN	CAN

DATE DATE SAMPLED RADIAN NO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIG) RADIAN RADIAN EPA
PRESSURE PRESSURE ANALYSIS NHOC ANALYSIS
SAMPLED RECEIVED DATE INST DATE

RADIAN NHOC
PPHC PPMC
NHOC QAO

NHOC
PPMC
ESRL-GC

08/14/84	229 TBORSDAY	1782	37	25.0

08/17/84	230 FRIDAY	1809	5	16.0

08/17/84	230 FRIDAY	1810	6	16.0

08/20/84	233 MONDAY	1846	87	16.0

08/21/84	234 TUESDAY	1862	28	24.0

08/22/84	23S WEDNESDAY	1865	109	16.5

08/23/84	236 THURSDAY	1898	34	24.5

08/24/84	237 FRIDAY	1927	143	17.0

08/27/84	240 MONDAY	1969	184	16.0

08/28/84	241 TUESDAY	1985	3	16.5

08/29/84	242 WEDNESDAY	2033	175	17.0

08/30/84	243 THURSDAY	2019	126	18.0

08/31/84	244 FRIDAY	2040	145	17.0

09/84/84	248 TUESDAY	2070	154	16.0

09/05/84	249 WEDNESDAY	2093	52	18.0

09/85/84	249 WEDNESDAY	2094	176	18.0

09/06/84	250 THUR8DAY	2122	192	18.5

09/87/84	251 FRIDAY	2147	42	24.0

89/18/84	254 MONDAY	2175	25	23.0

09/11/84	255 TUESDAY	2190	10	16.0

09/12/84	256 WEDNESDAY	2213	103	22.5

09/13/84	257 THURSDAY	2262	78	18.0

09/14/84	258 FRIDAY	2257	111	15.5

09/17/84	261 MONDAY	2290	122	24.0

09/18/84	262 TUESDAY	2305	64	23.5

09/19/84	263 WEDNESDAY	2323	128	17.0

09/21/84	265 FRIDAY	2386	104	16.0

09/24/84	268 MONDAY	2413	136	17.0

09/25/84	269 TUESDAY	2398	163	17.5

09/26/84	270 WEDNESDAY	2438	118	18.5

09/26/84	270 WEDNESDAY	2437	121	18.5

25.0	08/20/84
16.5 08/21/84

16.1	08/21/84
17.0 08/22/84

24.0	08/24/84

16.7	08/27/84
24.5 08/28/84

17.8	08/28/84
16.7 08/29/84

17.2	08/30/84

17.1	09/04/84
17.0 09/04/84
18.0 09/05/84
16.0 09/06/84
18.5 09/10/84
16.0 09/10/84
19.0 09/10/84
22.0 09/11/84

23.9	09/12/84

16.2	09/13/84
23.5 09/14/84
18.5 09/18/84
16.0 09/18/84
22.5 09/19/84
24.0 09/20/84
17.2 09/21/84
16.0 09/25/84
17.9 09/26/84
18.0 09/26/84
21.5 09/28/84
18.4 10/01/84

C 08/21/84
B 08/22/84
A

D 08/23/84

D

B

D 08/29/84
C 08/29/84
C 08/30/84
B 08/31/84
A 09/05/84
C
A

B 09/07/84
D
D
D
D
D
A
B
D
A
C
C

c

B

c

A
B
A

09/13/84

09/22/84

09/27/84

1.65
1.90
1.93
0.68
1.06
2.21
0.64
3.70
1.01
0.63
1.86
2.20
2.14
2.24
1.62
1.61
2.60
1.74
0.82
1.99
1.17
0.47
0.51
0.49
0.31
0.50
0.89
0.34
0.65
0.40
0.81

3.64
1.36
0.73
1.93

1.12
1.69

0.54

0.64

3.35

0.61
1.76

2.07

0.88

0.49

0.66

-------
N>
I

Ov
00

u

B:

u
o

5.0

4-.0

3.0

2.0

1 .0

0.0

1 70

PHILADELPHIA, PENNSYLVANIA

1984- SUMMER NMOC STUDY



c

2

If l ¥



r i\

	S---_

c
~
A

4

JSr up»

IP y X ir

1 90

210	230

JULIAN DATE

250

270

Figure 2-16. Plot of HM0C Data tor Philadelphia, Pennsylvania.

-------
Table 2-18. Data Listing for Philadelphia, Pennsylvania.

1984 SUMMER MMOC STUDY - PHILADELPHIA, PENNSYLVANIA

to
I

cr>



JULIAN





CAti



(PSIG)

(PSIG)

RADIAN

RADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

06/28/94

180

THURSDAY

1091



95

16.0

16.5

07/03/84

B

06/29/84

181

FRIDAY

1112



97

12.0

12.5

07/05/84

C

07/02/84

184

MONDAY

1124



102

17.8

18.5

07/06/84

D

07/03/84

185

TUESDAY

1138



119

16.0

16.8

07/09/84

A

07/05/84

187

THURSDAY

1158



149

16.4

16.5

07/10/84

A

07/06/84

188

FRIDAY

1164



33

15.0

15.0

07/11/84

B

07/09/84

191

MONDAY

1192



133

17.8

18.0

07/12/84

D

07/10/84

192

TUESDAY

1208



35

16.0

16.5

07/13/84

D

07/11/84

193

WEDNESDAY

1225



49

16.0

16.5

07/16/84

D

07/12/84

194

THURSDAY

1240



88

16.0

16.7

07/17/84

B

07/13/84

195

FRIDAY

1265



54

15.5

16.0

07/18/84

B

07/16/84

198

MONDAY

1302



130

17.0

17.5

07/19/84

C

07/17/84

199

TUESDAY

1321



98

16.0

16.5

07/21/84

D

07/18/84

200

WEDNESDAY

1340



185

16.3

16.2

07/23/84

A

07/19/84

201

THURSDAY

1356



80

17.0

18.0

07/24/84

A

07/20/84

202

FRIDAY

1375



27

14.9

15.5

07/25/84

B

07/23/84

205

MONDAY

1409



2

17.0

17.6

07/26/04

D

07/24/84

206

TUESDAY

1417



68

16.0

15.0

07/27/84

B

07/25/84

207

WEDNESDAY

1433



94

16.0

17.9

07/27/04

A

•7/26/84

208

THURSDAY

1451



175

16.7

17.2

07/30/04

D

07/27/84

209

FRIDAY

1459



24

16.0

15.8

08/01/84

A

07/30/84

212

MONDAY

1508



192

17.6

18.2

0e/02/04

A

07/31/84

213

TUESDAY

1539



3

16.5

17.0

08/06/04

D

08/01/84

214

WEDNESDAY

1579



47

15.5

16.0

00/06/04

D

00/02/84

215

THURSDAY

1592



119

15.0

16.0

00/08/84

D

00/03/84

216

FRIDAY

1621



115

15.0

15.5

00/00/84

C

00/06/84

219

MONDAY

1622



25

16.0

18.0

08/09/84

A

00/07/04

220

TUESDAY

1664



169

20.0

20.0

08/13/84

D

00/00/84

221

WEDNESDAY

1665



32

20.0

20.0

08/13/84

A

00/09/04

222

THURSDAY

1669



158

17.0

17.0

08/13/84

A

00/10/84

223

FRIDAY

1719



13

15.0

15.0

08/16/84

C

00/13/84

226

MONDAY

1752



67

17.2

17.8

08/17/84

D

08/14/84

227

TUESDAY

1768



121

16.5

17.2

08/17/84

A

08/15/04

228

WEDNESDAY

1790



119

16.5

16.8

08/20/84

B

00/16/84

229

THURSDAY

1799



170

15.8

16.1

08/20/84

B

08/16/84

229

THURSDAY

1798



184

15.0

16.1

08/20/84

C

08/17/84

230

FRIDAY

1849



38

15.0

14.8

08/22/84

B

08/20/84

233

MONDAY

1871



118

16.2

17.0

08/24/84

A

08/21/84

234

TUESDAY

1880



98

17.0

17.2

08/27/84

C

00/22/84

235

WEDNESDAY

1931



74

16.0

17.0

08/28/84

D

08/24/84

237

FRIDAY

1954



9

15.6

15.9

08/29/84

D

EPA	RADIAN MHOC NMOC

ANALYSIS PPHC PPHC PPNC
DATE NMOC QAD	ESRL-GC

07/09/84
07/10/84

07/16/84
07/16/84
07/19/84

07/24/84
077/24/84

07/27/84

08/09/84
08/14/84

08/21/84

08/25/84

0.80
1.08
0.89
0.80

1.00
1.03
2.19
0.95
1.26
0.53
0.96
0.90
0.73
0.92
0.43
2.16
1.36
0.62
0.51
1.35
0.85
1.16
1.18
1.57
1.48
0.72
0.58
0.59
0.60

1.01
1.14
1.05
0.94
0.85
0.62
0.57
0.53
0.30
0.74
1.07
0.45

1.50
1.33

1.35

1.27
1.46
1.54

0.85

0.73
1.61

0.79

0.77
0.53

0.64

0.58

-------
Table 2-18. Data Listing for Philadelphia, Pennsylvania, (cont.)

1984 SUMMER NMOC STUDY - PHILADELPHIA, PENNSYLVANIA

K)
I

O



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

DATE

DATE

SAMPLED

RADIAN

WO.



PRESSURE

PRESSURE

ANALYSIS

NMOC

SAMPLED

SAMPLED

WEEKDAY

LAB ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

•••vctsi

B BIIIBKC;

m mmmmmmmm

¦CCCSSCB KEK

KBBMBWK SIBBHftt XSBBBBK

08/27/84

240

MONDAY

1983



62

16.8

17.6

08/30/84

C

08/28/84

241

TUESDAY

2010



142

17.0

17.8

08/31/64

B

08/29/84

242

WEDNESDAY

2028



83

16.3

16.5

09/04/84

C

08/30/84

243

THURSDAY

2044



137

15.8

16.0

09/05/84

A

08/30/84

243

THURSDAY

2043



87

15.8

16.0

09/05/84

B

08/31/84

244

FRIDAY

2080



60

15.0

14.0

09/07/84

D

09/04/84

248

TUESDAY

2098



63

17.5

17.5

09/07/84

C

09/05/84

249

WEDNESDAY

2116



44

16.3

17.0

09/10/84

D

09/06/84

250

THURSDAY

2162



171

16.5

17.8

09/11/84

B

09/10/84

254

MONDAY

2192



120

17.0

18.5

09/13/84

C

09/12/84

256

WEDNESDAY

2231



157

13.5

14.1

09/17/84

D

09/13/84

257

THURSDAY

2273



73

16.5

17.2

09/19/84

C

09/14/84

258

FRIDAY

2272



154

15.0

15.5

09/19/84

B

09/17/84

261

MONDAY

2304



86

18.0

13.5

09/20/84

C

09/19/84

263

WEDNESDAY

2358



132

16.9

17.5

09/24/84

E

09/20/84

264

THURSDAY

2368



13

16.8

17.0

09/25/84

D

09/21/84

265

FRIDAY

2399



68

15.0

16.0

09/26/84

B

09/24/84

268

MONDAY

2419



131

17.8

17.0

09/28/84

A

09/25/84

269

TUESDAY

2444



84

16.8

16.6

10/01/84

B

09/26/84

270

WEDNESDAY

2469



98

16.0

16.5

10/02/84

B

09/27/84

271

THURSDAY

2496



154

16.8

17.0

10/02/84

B

09/28/84

272

FRIDAY

2502



61

15.5

16.5

10/03/84

C

EPA	RADIAN NMOC

ANALYSIS PPMC PPMC
DATE NMOC QAD

08/31/84

09/H/84

09/26/84

2.20
0.58
0.94
0.95
0.84
0.53
1.02
0.65
0.27
1.29
0.77
1.96
0.89
1.66
1.55
2.04
0.63
1.38
3.10
1.04
0.59
0.83

NMOC
PPMC
ESRL-GC

2.05

0.65

0.81
1.95

0.50

-------
2-71

-------
5.0

RICHMOND, VIRGINIA

1984 SUMMER NMOC STUDY

4.0

ro
I

ho

s

k

u
o

3.0

.0

1 .0

0.0

1 70

1 90

230
JULIAN DATE

250

270

figure 2-17. Plot of NMOC Data for Richaond, Virginia.

-------
Table 2-19. Data Listing for Richaond, Virginia.
1984 SUMMER NMOC STUDY - RICHMOND, VIRGIHIA

DATE

EPA

RADIAN

JULIAN	CAN	(PSIG) (PSIG) RADIAN RADIAN

DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPMC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC

NMOC
PPMC
QAD

NMOC
PPMC
ESRL-GC

¦ UBMCM

N>

I

U>

06/27/84	179 WEDNESDAY	1056

06/29/84	181 PRIDAY	1083

07/02/84	184 MONDAY	1093

07/03/84	185 TUESDAY	1099

07/04/84	186 WEDNESDAY	1120

07/05/84	187 THURSDAY	1115

07/06/84	188 PRIDAY	1140

07/09/84	191 MONDAY	1147

07/10/84	192 TOESDAY	1162

07/12/84	194 THURSDAY	1206

07/13/84	195 PRIDAY	1219

07/16/84	198 MONDAY	1248

07/17/84	199 TUESDAY	1262

07/18/84	200 NEONESDAY	1288

07/19/84	201 THURSDAY	1313

07/20/84	202 PRIDAY	1330

87/23/84	205 MONDAY	1350

07/24/84	206 TUESDAY	1385

07/25/84	207 WEDNESDAY	1400

07/27/84	209 PRIDAY	1435

07/30/84	212 MOMMY	147C

07/31/84	213 TUESDAY	1501

08/01/84	214 WEDNESDAY	1516

08/01/84	214 WEDNESDAY	1515

08/02/84	215 THURSDAY	1556

08/03/84	216 PRIDAY	1561

08/06/84	219 MONDAY	1583

08/07/84	220 TUESDAY	1612

00/08/84	221 KEDNE8DAY	1632

08/09/84	222 THURSDAY	1653

08/10/84	223 PRIDAY	1682

08/13/84	226 MONDAY	1700

08/14/84	227 TUESDAY	1730

08/15/84	228 WEDNESDAY	1743

08/16/84	231 THURSDAY	1767

08/17/84	230 PRIDAY	1805

08/20/84	233 MONDAY	1820

08/21/84	234 TUESDAY	1840

08/22/84	235 WEDNESDAY	1658

08/23/84	236 THURSDAY	1893

08/24/84	237 PRIDAY	1897

86
85
98
114

150
24

134
22
51
63

62
165
114
198
163
137

11

1

46
120
178

34
157
96
65
80
48

63

151
15
96

186

2

47
46

132
24
162
114
153
139

13.5

22.5

22.0

14.5

21.5

14.0

14.5

22.0

14.5

21.5

14.0

14.0

14.5

22.5

14.0

14.0

13.8

17.0

22.5

13.8

22.5

22.5

16.0

16.0

14.0

13.8

21.8

22.0

22.5

14.2

14.2

21.5

15.0

16.5

13.5

14.0

14.0

24.5

16.0

13.5

15.0

13.5

22.3

22.0

15.0

22.0

14.0

14.5

22.8

15.0

21.0

14.5

14.0

15.0

23.0

14.0

15.0

14.0

15.0

23.5

13.5

22.0
22.8

16.1
16.1
14.5
15.0
22.5
20.5
22.0
15.0
15.0

22.0

15.1
16.1
14.0
14.0
14.0
24.5
16.5

14.0

15.1

06/29/84

07/03/84

07/03/84

07/05/84

07/06/84

07/06/84

07/09/84

07/10/84

07/11/84

07/13/84

07/16/84

07/17/84

07/18/84

07/19/84

07/20/84

07/23/84

07/24/84

07/25/84

07/26/84

07/30/84

08/01/84

08/01/84

08/02/84

08/02/84

08/06/84

08/06/84

08/07/84

08/08/84

08/09/84

08/10/84

08/13/84

08/15/84

08/16/84

08/16/84

08/17/84

08/20/84

08/21/84

08/22/84

08/24/84

08/27/84

08/28/84

D 07/02/84

0.63



0.69

A

1.07



D

0.89





A 07/10/84

0.64



0.58

B

0.58



A

0.33





B 07/10/84

0.44



0.44

D

0.54



B

0.43





B 07/17/84

0.60



0.54

B 07/17/84

0.59

0.84

B 07/19/84

0.37



0.47

B 07/19/84

0.27

0.53

D

0.47





D 07/23/84

0.77

1.13



B

0.56





C

0.51





A 07/26/84

1.18

1.53



B 07/27/84

0.41



0.36

B

0.35



D

0.39





C

0.73





D

0.32





D

0.32





C

0.34





D 08/03/84

0.42



0.37

A

0.57



C

0.75





D

0.83





D 08/11/84

1.22



1.05

D

0.52





B 08/16/84

0.59



0.52

D

0.71





B

0.52





A

0.50





B

0.55





A 08/22/84

0.20



0.18
0.35
0.49
0.40

C 08/23/84

0.64



A 08/25/84

0.49



D 08/28/84

0.38



C

0.44





-------
Table 2-19. Data Listing for Richmond, Virginia, (cont.)
1984 SUMNER NMOC STUDY - RICHMOND, VIRGINIA

JULIAN	CAM

DATE DATE SAMPLED RADIAN NO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIG) RADIAN RADIAN
PRESSURE PRESSURE ANALYSIS NMOC
SAMPLED RECEIVED DATE INST

08/24/B4	237 FRIDAY	1896

08/27/84	240 MONDAY	1923

08/28/84	241 TUESDAY	1967

08/29/84	242 WEDNESDAY	1975

08/30/84	243 THURSDAY	1997

08/31/84	244 FRIDAY	2020

09/04/84	248 TUESDAY	2089

09/05/84	249 WEDNESDAY	2065

09/06/84	250 THURSDAY	2101

09/07/84	251 FRIDAY	2112

09/11/84	255 TUESDAY	2177

09/12/84	256 WEDNESDAY	2197

09/13/84	257 THURSDAY	2209

09/14/84	258 PRIDAY	2242

09/17/84	261 MOMOAY	2265

09/18/84	262 TUESDAY	2274

09/19/84	263 WEDNESDAY	2300

09/20/84	264 THURSDAY	2324

09/21/84	265 FRIDAY	2347

09/24/84	268 MONDAY	2371

09/25/84	269 TUESDAY	2403

09/26/84	270 WEDNESDAY	2427

09/28/84	272 FRIDAY	2478

EPA	RADIAN NMOC

ANALYSIS PPMC PPHC
DATE NMOC QAD

UI8BCB1

176	15.0	14.8 08/27/84	B 08/28/84

171	14.5	15.1 08/28/84	D 08/29/84
144	25.4	27.0 08/29/84	D

113	15.5	15.9 08/30/84	D

130	13.5	14.8 08/31/84	B

85	13.5	13.5 09/04/84	D

78	14.5	14.2 09/06/84	D

172	14.5	15.0 09/06/84	B
186	13.5	14.2 09/07/84	A

159	14.5	15.5 09/10/84	D 09/11/84

59	14.5	15.6 09/12/84	C 09/13/84

70	15.0	16.0 09/13/84	D

87	14.5	14.5 09/14/84	C

161	13.5	13.6 09/18/84	A

14	14.5	14.0 09/18/84	C

107	14.5	14.9 09/19/84	D

146	14.5	15.1 09/20/84	B

192	16.0	16.9 09/21/84	D 09/22/84

150	14.0	14.0 09/24/84	A

138	14.0	14.5 09/25/84	D 09/26/84

25	14.2	14.5 09/27/84	D

180	21.2	21.1 09/28/84	D

94	14.3	14.3 10/02/84	C

0.49
0.39
0.06
0.21
0.38
0.71
0.50
0.39
0.19
0.95
0.39
0.56
0.16
0.42
0.32
0.67
0.97
0.48
0.81
0.32
0.49
0.67
0.27

KMOC
PPMC
ESRL-GC

0.41
0.35

0.61
0.40

0.44

0.59

-------
2-75

-------
TEXAS CITY, TEXAS

1984- SUMMER NMOC STUDY

JULIAN DATE

Figure 2-18. Plot of HMOC Data for Te*a» City, Te*a».

-------
Figure 4-14 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 4.00
BETA • 6.00

01

.000 1.000
- ~			~	

1.500 ~

2.000

3.000

4.000
~

1.000 ~

.500 ~

.000 ~

-.500 ~

I 1

14 1 2 1 211 l 2 1

1 125144 41111
1341232214

I 1

1 1

11
1

------

.000

1.000	2.000

NMOCBAR

THE FOLLOWING RESULTS ARK	POR:

ALPHA ¦	9.00

BETA ¦	I.00

01

.000	1.000
-~

2.000

-.250 ~

1.000	2.000

NMOCBAR

THE FOLLOWINC RESULTS ARE POR:

ALPHA - 9.00
BETA ¦ 2.00

01

.000	1.000

...........

.090 ~

S

.000 ~ 1

2.000

3.000

4.000

3.000

3.000

3.000

4.000
+

-.050 ~

1 1

-.100 ~

t

-.150 ~

4

«
I

-.200 ~

-.290 ~

.000

1.000

2.000

4-67

3.000

~

4.000

-------
Figure 4-14 (cont.)

NHOCBAR

THE FOLLOWING RESULTS ARE FOR:

ALPHA ¦ 3.00
BETA	*	3.00

DI

.000	1.000

-~

.100 +

.000

-. 100

.200

-.300

2.000

1.000	2.000

NHOCBAR

3.000

3.000

4.000

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 5.00
BETA ¦ 4.00

01

.000	.500 1.000 1.500 2.000 2.500 3.000

-+	~	+	~	f	~			~-

.100 ~	~

:	i

.000 +

-.100 ~

.200 *

-.300 ~

.000

1 1

.500

1.000
NHOCBAR

1.500 2.000 2.500

3.000

4-68

-------
Table 2-20.

1984 SUMMER NHOC STUDY - TEXAS CITY, TEXAS

Data Listing for Texas City, Texas.

JULIAN	CAN

DATE DATE SAMPLED RADIAN NO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIG) RADIAN RADIAN
PRESSURE PRESSURE ANALYSIS NHOC

EPA

RADIAN NMOC

			— •	nnnuiaio IWfUC	ANALYSIS PPNT	PDUT*

SAMPLED RECEIVED DATE INST DATE NMOC

QAD

NMOC
PPMC
ESRL-GC

06/20/84
06/21/84
06/22/84
06/25/84
06/26/84
06/26/84
06/27/84
06/28/84
06/29/84
07/02/84
07/03/84
07/04/84
07/10/84
07/11/84
07/12/84
07/13/84
07/16/84
07/17/84
07/18/82
07/18/84
07/19/84
07/20/84
07/23/84
07/24/84
07/26/84
87/27/84
07/30/84
07/31/84
08/01/84
08/02/84
08/03/84
08/06/84
08/07/84
08/08/84
08/09/84
08/10/84
08/13/84
08/14/84
08/15/84
08/16/84
08/17/84

172	WEDNESDAY

173	THURSDAY

174	FRIDAY

177	MONDAY

178	TUESDAY

178	TUESDAY

179	WEDNESDAY

180	THURSDAY
161 FRIDAY

184	MONDAY

185	TUESDAY

186	WEDNESDAY

192	TUESDAY

193	WEDNESDAY

194	THURSDAY

195	FRIDAY

198	MONDAY

199	TUESDAY

200	WEDNESDAY

200	WEDNESDAY

201	THURSDAY

202	FRIDAY

205	MONDAY

206	TUESDAY

208	THURSDAY

209	FRIDAY

212	MOVOAY

213	TUESDAY

214	WEDNESDAY

215	THURSDAY

216	FRIDAY

219	MONDAY

220	TUESDAY

221	WEDNESDAY

222	THURSDAY

223	FRIDAY

226	MONDAY

227	TUESDAY

228	WEDNESDAY

229	THURSDAY

230	FRIDAY

1008

27

0.0

1019

36

17.5

1024

48

16.0

1038

60

17.8

1054

66

18.0

1055

73

18.0

1048

75

16.0

1064

93

15.8

1072

106

1E.0

1088

124

17.8

1111

141

16.8

1130

7

10.1

1176

34

17.5

1196

78

21.9

1202

70

18.0

1235

94

17.0

1257

110

19.0

1272

118

16.8

1312

12

25.0

1311

52

25.0

1332

4

17.8

1344

56

17.0

1378

144

17.5

1397

127

17.0

1474

160

25.0

1483

198

16.0

1517

162

17.5

1528

171

17.0

1548

56

19.0

1558

177

18.0

1595

59

17.0

1604

187

17.5

1635

54

17.0

1660

178

18.0

1672

179

18.0

1703

8

17.0

1726

74

17.0

1744

161

17.0

1762

143

17.5

1795

110

18.0

1811

50

16.0



16.5

18.0

16.5

18.0

18.0

18.0

16.0

16.0

15.5

18.0

17.0

11.0

18.0

22.0

18.0

17.0

20.0

17.0

25.0

24.0

17.5

17.5

18.0

18.0

25.0

16.0

17.2

17.5

11.7
18.2
16.5

17.8
17.5
17.5

18.0
16.5

17.5

17.6

18.1

18.7

16.9

06/21/84

06/22/84

06/25/84

06/26/84

06/28/84

06/28/84

06/28/84

06/29/84

07/02/84

07/03/84

07/05/84

07/06/84

07/11/84

07/12/84

07/13/84

07/16/84

07/17/84

07/18/84

07/20/84

07/20/84

07/23/84

07/24/84

07/25/84

07/26/84

07/31/84

08/01/84

08/02/84

08/02/84

08/06/84

08/06/84

08/08/84

08/08/84

08/09/84

08/13/84

08/13/84

08/15/84

08/15/84

08/17/84

08/17/84

08/20/84

08/21/84

A 06/22/84
B 06/25/84
C 06/26/84
B 06/27/84
C 06/26/84

06/29/84

07/03/84
07/05/84

C
D
C
C
A
A

C 07/10/84
B 07/12/84
D
C

D 07/19/84

B 07/19/84

D

C

B

C

B 07/27/84
A

C
C

C 08/03/84

D

C

B 08/03/84
A
A
B

A 08/10/84

B

D

D

A

D

D

C 08/21/84
D

1.01
1.29
1.10
0.66
0.96
1.01
0.37
0.81
0.73
1.59

1.89
0.89
0.99
0.65
0.82
0.74
0.79
0.82
0.81
1.07
1.05
0.57
1.28
0.29

1.90
2.35
0.28
0.40
4.74
1.23
0.63
1.96
0.82
0.35
0.90
0.76
1.17
0.95
1.82
0.92
0.75

1.22

1.00

0.49

0.84
1.60

1 .15

1.13
1.26

0.58

0.79

0.71
0.87

1.17

2.09
4.70

0.76

0.97

-------
Table 2-20. Data Listing for Texas City, Texas, (cont.)

1984 SUMMER NHOC

STUDY - TEXAS

CITY

, TEXAS



















JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN



EPA

RADIAN

NMOC NHOC

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

PPMC

PPMC PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NMOC

QAD ESRL-GC

CSSCESCg BCEEBFEI

u mmmmommm imcsccc kkc

SCS6I

¦lESStBt: BECU*II

I taatttH ctusi

(BB SS BKKK8K

cc^srccc kcsbcbsscss

08/20/84

233

MONDAY

1843



85

17.5

16.5

08/22/84



C

08/23/84

0.32

0.32

08/21/84

234

TUESDAY

1867



26

17.5

17.5

08/24/84



C



0.47



08/22/84

235

WEDNESDAY

1888



7

18.0

17.5

08/27/84



B



0.86



08/23/84

236

THURSDAY

1895



63

18.0

18.2

08/27/84



A

08/29/84

0.73



08/24/84

237

PRIDAY

1930



13

16.0

16.2

08/28/84



D

0.78

0.74

08/27/84

240

NOWAY

1966



61

18.0

18.0

08/29/84



B



0.44



08/28/84

241

TUESDAY

1981



119

17.0

18.1

08/30/84



D

08/31/84

0.46

0.41

08/29/84

242

WEDNESDAY

2005



56

20.0

17.8

08/31/84



A

09/03/84

4.36

4.28 3.72

08/30/84

243

THURSDAY

2026



123

18.0

18.0

09/04/84



B



0.43



08/31/84

244

PRIDAY

2037



21

16.0

16.4

09/05/84



C



0.48



09/03/84

247

MONDAY

2083



161

17.5

17.5

09/06/84



B



0.25



09/04/84

248

TUESDAY

2075



96

18.0

17.9

09/06/84



D



0.60



09/04/84

248

TUESDAY

2074



65

18.0

17.9

09/06/84



C



0.60



09/07/84

251

PRIDAY

2148



102

16.0

17.5

09/11/84



C



0.40



09/10/84

254

MONDAY

2179



125

17.5

18.5

09/12/84



A



0.83



09/11/84

255

TUESDAY

2188



119

17.0

18.0

09/13/84



C

09/14/84

0.73

0.72

09/13/84

257

THURSDAY

2232



21

18.0

18.5

09/17/84



A



1.43



09/14/84

258

PRIDAY

2248



22

16.0

16.5

09/18/84



D



1.32



09/17/84

261

MONDAY

2295



27

19.0

18.9

09/19/84



D



0.14



09/18/84

262

TUESDAY

2313



66

17.0

17.9

09/20/84



A



0.45



09/19/84

263

WEDNESDAY

2338



31

17.0

18.0

09/21/84



B



0.20



09/20/84

264

THURSDAY

2354



77

19.0

19.5

09/24/84



D



0.32



09/20/84

264

THURSDAY

2353



130

19.0

20.0

09/24/84



D

09/25/84

0.31

0.33

09/21/84

265

PRIDAY

2391



141

15.5

16.0

09/26/84



D



0.35



09/24/84

268

MONDAY

2389



148

18.0

18.9

09/26/84



D



0.94



09/25/84

269

TUESDAY

2432



17

17.0

17.5

09/28/84



B

09/29/84

0.58

0.54

09/27/84

271

THURSDAY

2458



79

18.0

17.0

10/01/84



D



0.60



09/28/84

272

PRIDAY

2488



143

16.0

15.5

10/02/84



B



0.23



-------
2-79

-------
5.0

WASHINGTON, D.C.

1984 SUMMER NMOC STUDY

4.0

M
I

00
O

Q
2

B:

U
O
2

3.0

2.0

1 .0

0.0

1 70

230
JULIAN DATE

Figure 2-19.

Plot of MM0C Data for Washington, D.C.

-------
Table 2-21. Data Listing for Washington, D.C.

1984 SUMNER NMOC STUDY - WASHINGTON, D.C.

JULIAH	CAN	(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN NMOC NMOC

DATE DATE SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NHOC ANALYSIS PPMC PPHC PPNC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC QAD	ESRL-GC

eseckcc:

06/2e/84

180

THURSDAY

1119

87

16.0

06/29/84

181

FRIDAY

1118

100

16.0

07/02/84

184

MONDAY

1114

118

16.0

07/03/84

185

TUESDAY

1141

136

15.0

07/04/84

186

WEDNESDAY

1151

13

17.5

07/06/84

188

FRIDAY

1182

55

17.0

07/06/84

188

FRIDAY

1183

53

17.0

07/09/84

191

nOWAY

1186

1

18.5

07/10/84

192

TUESDAY

1221

8

16.0

07/11/84

193

WEDNESDAY

1220

81

15.0

07/12/84

194

THURSDAY

1243

86

16.5

07/13/84

195

FRIDAY

1270

142

17.0

07/16/84

198

MONDAY

1291

174

16.0

07/17/84

199

TUESDAY

1316

154

16.0

07/18/84

200

WEDNESDAY

1339

153

0.0

07/19/84

201

THURSDAY

1364

36

19.0

07/20/84

202

FRIDAY

1386

119

17.0

07/23/84

205

MON)AY

1405

121

16.0

07/24/84

206

TUESDAY

1416

57

16.0

•7/2S/84

207

WEDNESDAY

1445

82

16.0

07/27/84

209

FRIDAY

1464

101

20.0

07/27/84

209

FRIDAY

1496

164

17.0

07/30/84

212

MONDAY

1512

179

16.0

07/31/84

213

TUESDAY

1559

176

12.0

08/01/84

214

WEDNESDAY

1571

107

18.0

08/02/84

215

THURSDAY

1597

36

18.0

08/03/84

216

FRIDAY

1605

141

18.0

08/06/84

219

MONDAY

1623

57

17.0

08/07/84

220

TUESDAY

1662

88

16.0

08/08/84

221

WEDNESDAY

1690

91

16.0

08/09/84

222

THURSDAY

1708

101

17.3

08/10/84

223

FRIDAY

1712

11

17.0

08/13/84

226

MONDAY

1756

43

15.8

08/14/84

227

TUESDAY

1780

73

16.0

08/14/84

227

TUESDAY

1781

76

16.0

08/15/84

228

WEDNESDAY

1786

196

16.2

08/20/84

233

MONDAY

1899

44

17.2

08/21/84

234

TUESDAY

1916

88

16.5

08/22/84

235

WEDNESDAY

1911

91

16.3

08/23/84

236

THURSDAY

1921

52

20.0

08/24/84

237

FRIDAY

1922

11

18.0

16.2 07/06/84

C 07/09/84

0.94

1.77



17.0 07/06/84

B 07/10/84

0.58



0.54

16.0 07/06/84

A

0.66





15.5 07/09/84

C

1.02





18.0 07/10/84

C 07/13/84

0.49



0.42

17.0 07/12/84

B

0.55





17.5 07/12/84

C

0.56





13.0 07/12/84

D 07/16/84

1.75



1.54

16.5 07/16/84

D

0.81



1.34

16.0 07/16/84

A 07/19/84

1.35



17.0 07/17/84

D

0.46





17.5 07/18/84

D

0.34





16.0 07/19/84

C

0.86





16.5 07/20/84

D 07/24/04

0.98



0.86

16.0 07/23/84

D

0.91





16.8 07/24/84

D

0.84





10.0 07/25/84

C

0.71





16.9 07/26/84

D

0.71





17.0 07/27/84

A

0.72





16.5 07/30/84

A

0.43





20.5 08/01/84

B 08/03/84

0.68



0.56

17.8 08/01/84

C

0.56





16.6 08/02/84

C

0.53





12.1 08/06/84

B

1.30





18.8 08/07/84

D

0.68





10.0 08/07/84

D

1.47





18.5 08/08/84

C 08/09/84

0.80



0.69

17.0 08/09/84

B 08/13/84

0.51

1.02



16.0 08/13/84

A

0.76





16.1 08/13/84

C

0.57





17.2 08/14/84

B 08/15/84

0.84



0.76

17.0 08/15/84

B 08/16/84

1.09

1.30



15.6 08/17/84

C 08/20/84

0.71



0.67

16.0 08/20/84

C

0.68





16.0 08/20/84

D

0.65





16.5 08/20/84

B

0.50





15.2 08/20/84

C

0.96





17.0 08/28/84

C

0.55





17.0 08/28/84

D

0.45





12.5 08/28/84

C

2.93





18.7 08/28/84

A

0.47





-------
Table 2-21. Data Listing for Washington,
1984 SUMMER NMOC STUD* - WASHINGTON, D.C.

D.C. (cont.)

EPA

RADIAN

N>
I

00
N>

£?!£ H „	CAN	(PSIG) (PSIG) RADIAN RADIAN

!L„	SAMPLED RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC ANALYSIS PPHC

SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED SAMPLED RECEIVED DATE INST DATE NMOC

NMOC
PPHC
QAD

NMOC
PPMC
ESRL-GC

08/27/84	240 MONDAY	1990	70

08/28/84	241 TUESDAY	2003	46

08/29/84	242 WEDNESDAY	2030	196

08/30/84	243 THURSDAY	2059	103

08/31/84	244 FRIDAY	2090	162

09/04/84	248 TUESDAY	2100	114

09/05/84	249 WEDNESDAY	2136	39

09/06/84	250 TH0R8DAY	2163	100

09/07/84	251 PRIDAY	2182	61

09/10/84	254 MONDAY	2198	140

09/11/84	255 TUESDAY	2217	190

09/12/84	256 WEDNESDAY	2238	62

09/13/84	257 THURSDAY	2253	137

09/14/84	258 PRIDAY	2284	96

09/17/84	261 MONDAY	2306	188

09/18/84	262 TUESDAY	2334	94

09/19/84	263 WEDNESDAY	2345	199

09/20/84	264 THURSDAY	2379	100

09/21/84	265 FRIDAY	2396	57

09/24/84	268 MOMMY	2420	116

09/26/84	270 WEDNESDAY	2464	78

09/27/84	271 THUR8DAY	2481	88

17.0	17.1 08/30/84

16.2	17.0 08/31/84
15.9	16.4 09/04/84

17.4	15.0 09/05/84

17.0	17.5 09/06/84

17.1	17.5 09/07/84

16.3	17.0 09/10/84

17.8	18.5 09/12/84

17.9	19.0 09/12/84
17.0	17.5 09/13/84

16.5	17.9 09/14/84
16.3	15.5 09/17/84
18.0	19.1 09/18/84

17.3	17.5 09/19/84

19.7	18.5 09/20/84

17.0	18.0 09/21/84
16.9	17.9 09/24/84

17.8	18.1 09/26/84
17.5	17.2 09/26/84

18.1	18.0 09/28/84
16.7	16.5 10/01/84

18.4	19.5 10/02/84

C 08/31/84
B 09/04/84
B
A
A

D 09/10/84
C
D
B
C
D
A
A
E
D
A
A
C
D
B
D
B

09/20/84

09/24/84
09/25/84

10/02/84

0.65
0.56
0.52
0.66
0.43
0.53
0.40
0.53
1.10
0.83
0.80
0.69
0.76
0.57
0.99
1.27
1.59
1.33
0.98
0.93
0.89
0.39

0.60

0.62

0.58

0.90

1.34

0.52
1.45

0.87

-------
2-83

-------
5.0

ORANGE, TEXAS

1984 SUMMER NMOC STUDY

4.0

•JULIAN DATE

Figure 2-20. Plot of NMOC Data for West Orange, Texas.

-------
Table 2-22.

1984 SUMMER NMOC STUDY - ORANGE, TEXAS

JULIAN	CAN

DATE DATE SAMPLED RADIAN NO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

06/19/84

06/20/84

06/21/84

06/22/84

06/26/84

06/27/84

06/28/84

06/29/84

07/02/84

87/04/84

07/06/84

07/06/84

07/09/84

07/11/84

•7/12/84

•7/13/84

•7/16/04

07/17/84

07/18/84

07/19/84

•7/20/84

07/23/84

07/24/84

07/2S/84

07/26/84

07/27/84

07/30/84

•7/31/84

08/01/84

08/02/84

08/03/84

08/06/84

08/07/84

08/08/84

08/09/84

08/09/64

08/10/84

08/13/04

08/14/84

08/15/84

08/16/84

171	TUESDAY

172	WEDNESDAY

173	THURSDAY

174	FRIDAY

178	TUESDAY

179	WEDNESDAY

180	THURSDAY

181	FRIDAY
184 MONDAY
186 WEDNESDAY
188 FRIDAY
188 FRIDAY
191 MONDAY

193	WEDNESDAY

194	THURSDAY

195	FRIDAY

198	MONDAY

199	TUESDAY

200	WEDNESDAY

201	THURSDAY

202	FRIDAY

205	MONDAY

206	TUESDAY

207	WEDNESDAY

208	THURSDAY

209	FRIDAY

212	MOMMY

213	TUESDAY

214	WEDNESDAY

215	THURSDAY

216	FRIDAY

219	MOTOAY

220	TUESDAY

221	WEDNESDAY

222	THURSDAY

222	THURSDAY

223	FRIDAY

226	MONDAY

227	TUESDAY

228	WEDNESDAY

229	THURSDAY

1012

1032

1030

1045

1059

1066

1077

1097

1125

1157

1171

1170

1190

1215

1263

1279

1275

1304

1326

1347

1359

1412

1398

1443

1460

1466

1497

1552

1550

1569

1615

1640

1637

1670

1667

1668
1718
1711
1746
1774
1784

17
22
32

41
65
81
89

104
130
29
32

42
45

68

69
164

87
132

29

76
67

77

88
83

173
167
163
31
7

144

83
118
182
98
157
19
147
197
81
102
115

Data Listing for West Orange, Texas.

(PSIG) (PSIG) RADIAN RADIAN EPA	RADIAN

PRESSURE PRESSURE ANALYSIS NNOC ANALYSIS PPNC
SAMPLED RECEIVED DATE INST DATE NMOC

NUOC
PPNC

QAD

NMOC
PPNC

ESRL-GC

25.5 23.5 06/25/84
13.0 11.5 06/25/84
19.0 17.0 06/25/84
19.0 17.5 06/27/84

21.5	19.5 06/29/84

19.0	17.0 06/29/84

19.0	17.3 07/02/84

20.0	18.0 07/05/84

19.5	17.5 07/06/84

19.0	17.3 07/10/84

18.8	16.5 07/11/84

18.8	16.5 07/11/84

30.0	28.5 07/12/84

16.0	13.0 07/16/84

22.0	19.0 07/18/84

16.0	13.0 07/18/84

20.0	17.5 07/18/84

19.0	16.5 07/19/84

19.0	16.5 07/21/84

19.0	17.0 07/24/84

17.0	14.7 07/24/84

20.0	18.0 07/26/84

26.0	24.5 07/26/84

19.5	17.0 07/30/84

19.5	17.2 07/31/84

19.5	17.0 08/01/81

20.0	18.0 08/01/84

26.0	23.7 08/06/84

19.5	16.5 08/06/84

19.0	17.0 08/07/84

26.0	24.3 08/08/84

26.5	24.5 08/09/84

19.4	17.1 08/09/84

19.5	17.0 08/13/84
18.0	15.7 08/13/84
18.0	15.3 08/13/84

0.0	17.1 08/16/84

20.0	18.1 08/15/84

26.0	23.1 08/16/84

16.0	14.8 08/17/84

29.0	29.5 08/20/84





= S EBESCBB

C 06/26/84

0.88

0.85

C 06/26/84

1.11

1.06

A 06/26/84

0.76

0.85

D 06/28/84

1.03

1.17

C 06/29/84

1.47

1.18

E 07/02/84

0.68

0.82

D

0.76



C

0.78



A

0.80



D 06/11/84

0.21

0.33

A

1.28



C 07/12/84

1.25

1 .33

A 07/16/84

0.82

0.70

A

1.52



A 07/19/84

0.77

0.90

D

0.52



C

0.49



D

0.50



D

0.72



C 07/25/84

0.66

0.74

C 07/27/84

0.48

0.54

A

0.44

A

0.52



D

0.48



B 08/03/84

0.80

0.66

D

0.96

A 08/03/84

0.29

0.28

B

0.32

D

0.81



D

0.41



A

0.70



C 08/10/84

0.81

0.71

D

0.35

C 08/14/84

0.30

0.42 0.29

C

0.38

D

0.33



C

0.94



C

0.85



B

1.38



C 08/20/84

0.67

0.67

A

0.68



-------
Table 2-22.
1964 SUMNER NMOC STUDY - ORANGE, TEXAS

Data Listing for West Orange, Texas, (cont.)

to
i

oo





JULIAN





CAN



(PSIG)

DATE

DATE

SAMPLED RADIAN

110.



PRESSURE

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

08/17/84

230

FRIDAY

1814



140

¦ KWCVBI

20.0

08/20/84

233

MOMMY

1665



116

21.8

08/21/84

234

TUESDAY

1873



21

19.5

08/22/84

235

WEDNESDAY

1883



51

18.5

08/23/84

236

THURSDAY

1933



164

19.8

08/24/84

237

FRIDAY

1935



107

20.0

08/27/84

240

MONDAY

1971



181

19.0

08/27/84

240

MOM>AY

1972



140

19.0

08/28/84

241

TUESDAY

2049



68

19.8

08/29/84

242

WEDNESDAY

2045



131

20.5

08/30/84

243

THURSDAY

2057



169

13.0

08/31/84

244

FRIDAY

2055



23

17.0

09/05/84

249

WEDNESDAY

2130



30

21.0

09/06/84

250

THURSDAY

2114



107

18.0

09/07/84

251

FRIDAY

2158



80

16.0

09/10/84

254

MONDAY

2219



89

20.0

09/11/84

255

TUESDAY

2224



187

19.5

09/13/84

257

THURSDAY

2277



81

19.0

09/14/84

258

FRIDAY

2279



1133

17.5

09/17/84

261

MONDAY

2293



19

18.0

09/18/84

262

TUESDAY

2340



67

17.5

09/19/84

263

WEDNESDAY

2337



61

17.0

09/20/84

264

THURSDAY

2369



69

17.0

09/21/84

265

FRIDAY

2378



178

17.5

09/24/84

268

NOWAY

2412



105

16.5

09/25/84

269

TUESDAY

2442



40

23.5

09/25/84

269

TUESDAY

2243



19

23.5

09/26/84

270

WEDNESDAY

2477



128

17.0

09/27/84

271

THURSDAY

2470



134

16.0

09/28/84

272

FRIDAY

2480



153

16.0

(PSIG) RADIAN RADIAN
PRESSURE ANALYSIS NMOC
RECEIVED DATE INST

EPA	RADIAN NMOC NKOC

ANALYSIS PPHC PPMC PPMC
DATE NMOC QAD	ESRL-GC

ceccccsr.

BSBStres

17.5 08/21/84	A	0.63

19.5	08/24/84	C	0.33

17.0	08/24/84	A	0.65

16.6	08/27/84	B	1.41

17.4	08/29/84	D	0.94

17.8	08/29/84	C 08/30/64	0.57

17.1	08/29/84	C	0.89
17.0 08/30/84	D	0.90

17.5	09/06/84	D	1.00

12.0	09/05/84	D	3.35

11.1	09/06/84	A 09/07/84	0.96
18.0 09/05/84	B	0.52
20.0 09/10/84	C	0.33
18.0 09/10/84	B	0.50
16.5 09/11/84	C 09/12/84	0.55
20.5 09/14/84	B	0.25

20.0	09/14/84	B	1.37

15.9	09/19/84	C	0.50
15.5 09/19/84	D 09/20/64	0.33
16.5 09/19/84	C	0.13

18.1	09/21/84	D 09/22/84	0.34
17.5 09/21/84	A	0.26
15.0 09/25/84	A	0.25
15.5 09/25/84	C	0.21
12.9 09/27/84	A 09/28/84	0.71
20.5 10/01/84	D	0.33
10.0 10/01/84	C	0.32
1C.8 10/02/84	D	0.22
15.5 10/02/84	B	0.49
14.5 10/02/84	B	0.16

0.61

0.39

1.06

0.51

0.30
0.49

0.67

-------
2-87

-------
1.0

WEST PALM BEACH, FLORIDA

1984 SUMMER NMOC STUDY

4.0

K>

I

00
00

2

B:

a
o

.3.0

2.0

1 .0

0.0

1 70



1 90

210	230

JULIAN DATE

250

270

Figure 2-21. Plot of BM0C Data for Ve»t Pain Beach, Florida.

-------
Table 2-23. Data Listing for West Pal* Beach, Florida.

1984 SUMMER NMOC STUDY - NEST PALM BEACH, PLOR IDA

to
I

OS



JULIAN





CAN



(PS1G)

(PSIG)

RADIAN

RADIAN



EPA

P.ADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NMOC



ANALYSIS

PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NMOC

06/18/84

170

MOMMY

1016



1

19.5

11.5

06/25/84



D

06/26/84

2.63

06/19/84

171

TUESDAY

1015



2

16.0

15.5

06/22/84



A

06/25/84

0.96

06/20/84

172

WEDNESDAY

1010



23

15.8

16.0

06/22/84



C

06/25/84

0.72

06/21/84

173

THURSDAY

1037



30

14.5

14.5

06/26/84



A

06/27/84

0.72

06/25/84

177

MONDAY

1058



38

15.0

15.0

06/29/84



D

0.64

06/26/84

178

TUESDAY

1057



49

15.0

15.0

06/29/84



B



0.53

06/27/84

179

WEDNESDAY

1067



54

15.2

15.0

06/29/84



A



0.86

06/28/84

180

THURSDAY

1080



69

15.0

15.0

07/02/84



A

07/10/84

0.28

•6/28/84

180

THURSDAY

1079



68

15.0

15.0

07/02/84



A

07/10/84

0.45

#7/02/84

184

MONDAY

1105



82

16.0

16.0

07/05/84



B

0.51

•7/03/84

185

TUESDAY

1129



108

15.5

15.8

07/06/84



C



0.52

07/05/84

187

THURSDAY

1132



135

15.7

15.5

07/09/84



B



0.55

07/06/84

188

FRIDAY

1148



15

14.5

14.5

07/10/84



A



0.73

07/09/84

191

MONDAY

1166



14

16.4

16.8

07/11/84



B



0.49

07/10/84

192

TUESDAY

1188



43

15.3

15.5

07/12/84



C

07/16/84

0.40

•7/11/84

193

WEDNESDAY

1211



77

16.2

16.5

07/13/84



B

0.61

07/12/84

194

THURSDAY

1233



107

15.8

15.5

07/16/84



A

07/17/84

0.61

07/13/84

195

FRIDAY

1241



72

14.9

15.0

07/17/84



B

0.63

07/16/84

198

MONDAY

1268



158

16.2

16.0

07/18/84



C



0.67

07/17/04

199

TUESDAY

1289



103

15.6

15.5

07/19/84



A



0.42

07/10/84

200

WEDNESDAY

1308



136

15.5

16.0

07/20/84



D



0.39

07/10/84

201

THURSDAY

1336



13

15.0

15.0

07/23/84



D



0.39

07/20/84

202

FRIDAY

1360



189

14.9

15.0

07/24/84



B

07/27/84

0.43

07/23/04

205

MONDAY

1372



113

16.2

16.5

07/25/84



C

07/27/84

0.44

07/23/84

205

MONDAY

1373



78

16.2

16.5

07/25/84



A

0.41

07/24/84

206

TUESDAY

1407



81

15.9

16.2

07/2C/84



D



0.19

07/25/84

207

WEDNESDAY

1420



125

15.2

15.5

07/27/84



A



0.28

07/26/84

208

THURSDAY

1438



85

16.0

16.0

07/30/84



A



0.50

07/27/04

209

FRIDAY

1463



130

15.0

15.3

07/31/84



A



0.25

07/30/84

212

MONDAY

1485



190

17.0

16.9

08/01/84



B



0.29

07/31/84

213

TUESDAY

1524



26

14.0

15.8

08/02/84



D



0.35

08/01/84

214

WEDNESDAY

1543



33

15.4

15.5

08/06/84



C



0.28

00/02/84

215

THURSDAY

1564



172

15.6

16.0

08/07/84



C

08/08/84

0.22

08/03/84

216

FRIDAY

1596



46

15.1

15.2

08/08/84



B

0.17

08/06/84

219

MONDAY

1619



103

16.9

17.0

08/00/84



C

08/09/84

0.54

00/07/84

220

TUESDAY

1631



194

16.0

16.5

08/09/84



B

0.52

08/08/84

221

WEDNESDAY

1647



165

16.0

16.8

08/10/84



D



0.55

00/09/04

222

THURSDAY

1679



198

15.9

16.1

08/13/84



D



0.47

08/10/84

223

FRIDAY

1705



52

15.0

15.0

08/15/84



A

08/16/84

0.57

08/13/84

226

MONDAY

1720



66

16.0

16.5

08/15/84



A

0.97

08/14/84

227

TUESDAY

1742



80

15.9

15.9

08/16/84



C

08/20/84

0.45

NMOC
PPMC

QAD

KSCCSC

1 .15

NMOC
PPMC
F.SRL-GC

KECCt;

2.38

0.69
0.59

0.31
0.37

0.63

0.32

0.46
0.39

0.21
0.33

0.52
0.56

-------
Table 2-23. Data Listing for West Palm Beach, Florida, (cont.)
1984 SUMMER NMOC STUDY - WEST PALM BEACH, FLORIDA

JULIAN	CAN

DATE DATE SAMPLED RADIAN NO.
SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIG) RADIAN RADIAN
PRESSURE PRESSURE ANALYSIS NMOC
SAMPLED RECEIVED DATE INST

t buisammm bbbbbkhb vbkckbbk ckseki

EPA	RADIAN NMOC NMOC

ANALYSIS PPMC PPMC PPMC
DATE NMOC QAD	KSRL-GC



NJ

I

vO

o

08/15/84	228 WEDNESDAY	1779	176

08/16/84	229 THURSDAY	1792	97

08/17/84	230 PRIDAY	1825	79

08/20/84	233 MONDAY	1850	17

08/21/84	234 TUESDAY	1861	134

08/22/84	235 WEDNESDAY	1891	8

08/23/84	236 THUR8DAY	1904	179

08/24/84	237 PRIDAY	1925	125

08/27/84	240 MONDAY	1950	182

08/28/84	241 TUESDAY	1977	79

08/29/84	242 WEDNESDAY	2000	178

08/30/84	243 THURSDAY	2017	10

08/31/84	244 PRIDAY	2041	29

09/04/84	248 TUESDAY	2081	180

09/05/84	249 WEDNESDAY	2108	153

09/06/84	250 THURSDAY	2111	164

09/07/84	251 PRIDAY	2156	13

09/10/84	254 MONDAY	2183	128

09/11/84	255 TUESDAY	2199	135

09/12/84	256 WEDNESDAY	2221	116

09/13/84	257 THURSDAY	2246	74

09/14/84	258 PRIDAY	2247	53

09/17/84	261 MONDAY	2286	179

09/18/84	262 TUESDAY	2308	79

09/19/84	263 WEDNESDAY	2331	109

09/20/84	264 THURSDAY	2344	125

09/21/84	265 FRIDAY	2375	34

09/24/84	268 MONDAY	2388	75

09/25/84	269 TUESDAY	2417	162

09/27/84	271 THURSDAY	2466	11

09/28/84	272 FRIDAY	2495	147

16.5
15.8
15.0
17.0

15.8
16.0

15.6
15.0

15.9

15.7
16.0
21.0
16.0

16.7

16.2

15.8

15.3

15.9
15.9
15.9

15.8

16.0

16.9
15.9

16.1
15.5
16.0
17.5
15.9
15.0
15.9

13.0

15.8

15.1
15.5
13.0

15.2
16.0

15.2

16.9

16.5

16.3

20.6
15.5
16.5
16.5
16.5
15.9
16.0
16.5

16.4

16.0

16.1

16.5
15.5
16.0
16.0
16.0
IS.9
15.5
15.0
15.5

08/20/84
08/20/84
08/21/84
08/22/84
08/24/84
08/27/84
08/27/84
08/28/84
08/29/84
08/30/84
08/31/84
09/04/84
09/05/84
09/07/84
09/10/84
09/10/84
09/11/84
09/12/84
09/13/84
09/14/84
09/18/84
09/18/84
09/19/84
09/20/84
09/21/84
09/24/84
09/25/84
09/26/84
09/27/84
10/01/84
10/02/84

A

C
D
B
D

C 08/28/84
C 08/28/84
B
C
D

D 09/03/e4
B
C
A

A 09/11/84
D
A
B

D 09/14/84

C

C

B

C

D

B

D

B 09/26/84
C 09/27/84
D

D 10/02/84
A

0.87
0.79
0.37
0.59
0.39
0.48
0.74
0.75
0.73
0.54
0.81
0.78
0.64
0.66
1.38
0.21
0.38
0.30
0.29
0.42
0.44
0.26
0.28
0.38
0.32
0.18
0.17
1.17
0.34
0.19
0.51

0.57
0.91

0.64

0.80

1.69

0.30

0.16
1.06

0.31

-------
2-91

-------
WILKES -BARRE, PENNSY LV AIIIA

1984 SUMMER NMOC STUDY

JULIAN DATE

Figure 2-22. Plot of MMOC Data for Vilkaa-Barre/Scranton, Pennsylvania.

-------
Table 2-24. Data Listing for Wilkes-Barre/Scranton, Pennsylvania.

1984 SUMMER NMOC STUDY - WILKES-BARRE, PENNSYLVANIA

N>

I

vO
U



JULIAN





CAN



(PSIG)

(PSIG)

RADIAN

RADIAN

1 EPA

RADIAN

DATE

DATE

SAMPLED RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

NHOC

ANALYSIS

PPMC

SAMPLED

SAMPLED

WEEKDAY LAB

ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST

DATE

NMOC

06/27/84

179

WEDNESDAY

1100



116

16.5

16.5

07/05/84



B 07/10/84

0.92

06/28/84

180

THURSDAY

1101



115

15.0

15.5

07/05/84



C

0.63

06/29/84

181

FRIDAY

1098



64

16.0

16.0

07/05/84



D 07/06/84

0.74

07/02/84

184

MONDAY

1103



120

15.0

15.0

07/05/84



A 07/10/84

0.58

07/03/84

185

TUESDAY

1134



132

15.5

16.0

07/09/84



D

0.56

07/05/84

187

THURSDAY

1149



148

11.0

10.5

07/10/84



C

0.74

07/06/84

188

PRIDAY

1167



11

16.5

14.5

07/11/84



D 07/16/84

0.26

07/10/84

192

TUESDAY

1181



30

24.0

24.8

07/12/84



D

0.52

07/11/84

193

WEDNESDAY

1217



99

24.0

24.0

07/16/84



A

0.64

07/12/84

194

THURSDAY

1228



59

11.5

11.0

07/16/84



B

0.37

07/13/84

195

PRIDAY

1244



129

17.0

17.5

07/17/84



C 07/19/84

0.89

07/16/84

198

MONDAY

1269



181

17.0

17.9

07/18/84



C

0.94

07/17/84

199

TUESDAY

1286



187

17.0

17.5

07/19/84



C

0.62

07/17/84

199

TUESDAY

1285



180

17.0

17.4

07/19/84



B 07/23/84

0.46

07/18/84

200

WEDNESDAY

1319



196

16.0

16.5

07/20/84



C

0.45

07/19/84

201

THURSDAY

1329



22

16.0

16.2

07/23/84



A

0.59

07/20/84

202

FRIDAY

1348



117

16.5

16.7

07/24/84



D

0.46

07/23/84

205

MOMMY

1382



66

0.0

24.0

07/25/84



C

0.41

07/25/84

207

WEDNESDAY

1431



38

24.0

23.5

07/25/84



A

0.32

07/26/84

208

THURSDAY

1439



8

24.0

24.0

07/30/84



B 08/03/84

0.43

07/27/84

209

FRIDAY

1480



142

15.5

15.5

07/31/84



C

0.13

07/30/84

212

MONDAY

1486



116

23.5

24.2

08/01/84



A

0.43

07/31/84

213

TUESDAY

1509



138

16.0

16.0

08/02/84



B

0.52

08/01/84

214

WEDNESDAY

1546



18

16.0

16.0

08/06/84



D

0.67

08/02/84

215

THURSDAY

1577



40

17.0

17.0

08/07/84



A

0.44

08/03/84

216

FRIDAY

1585



149

16.0

15.5

08/08/84



C 08/08/84

0.45

08/06/84

219

MOMMY

1645



120

22.0

22.0

08/09/84



A

0.26

08/06/84

219

MOMMY

1644



64

22.0

21.5

08/09/84



A 08/10/84

0.24

08/07/84

220

TUESDAY

1626



140

16.0

15.5

08/09/84



B

0.27

08/08/84

221

WEDNESDAY

1658



130

16.0

15.5

08/13/84



C

0.39

08/09/84

222

THURSDAY

1686



100

18.0

16.7

08/14/84



C 08/15/84

0.67

08/10/84

223

FRIDAY

1692



122

16.0

14.0

08/14/84



C 08/15/84

0.23

08/13/84

226

MONDAY

1713



163

15.5

16.0

08/15/84



A

0.44

08/14/84

227

TUESDAY

1741



60

23.0

23.0

08/16/84



C

0.48

08/15/84

228

WEDNESDAY

1769



71

16.0

16.0

08/17/84



B

0.30

08/16/84

229

THURSDAY

1788



104

24.5

24.5

08/20/84



A 08/21/84

0.41

08/17/84

230

FRIDAY

1815



155

23.5

24.0

08/21/84



A

0.34

08/20/84

233

MOMMY

1844



126

16.0

15.2

08/22/84



D

0.32

08/21/84

234

TUBSDAY

1869



185

24.5

25.0

08/24/84



C

0.2S

08/22/84

235

WEDNESDAY

1881



54

24.0

21.8

08/27/84



D 08/28/84

0.88

08/23/84

236

THURSDAY

1903



186

17.0

17.1

08/27/84



A 08/28/84

0.25

NMOC
PPHC
QAD

K SSS6BSS

1.12

0.45

0.41

tIMOC
PPMC
ESRL-GC

0.84

0.52
0.21

0.66
0.47

0.42

0.41

0.20

0.69

0.33
0.88

-------
Table 2-24. Data Listing for Wilkes-Barre/Scranton, Pennsylvania, (cont.)
1984 SUMMER NMOC STUDY - WILKES-BARRE, PENNSYLVANIA

JULIAN

DATE DATE SAMPLED
SAMPLED SAMPLED WEEKDAY

CAN	(PSIG) (PSIG) RADIAN RADIAN

RADIAN NO.	PRESSURE PRESSURE ANALYSIS NMOC

LAB ID SAMPLED SAMPLED RECEIVED DATE INST

EPA	RADIAN NMOC

ANALYSIS PPMC PPMC
DATE NMOC QAD

OB/24/84
08/27/84
08/28/84
08/29/84
08/30/84
09/04/84
09/05/84
09/06/84
09/07/84
09/10/84
09/11/84
09/12/84
09/14/84
09/17/84
09/18/84
09/19/84
09/20/84
09/21/84
09/24/84
09/25/84
09/27/84
09/28/84

237 FRIDAY

240	MONDAY

241	TUE8DAY

242	WEDNESDAY

243	THURSDAY

248	TUESDAY

249	WEDNESDAY

250	THURSDAY

251	FRIDAY

254	MONDAY

255	TUESDAY

256	WEDNESDAY
258 FRIDAY

261	HOM>AY

262	TUESDAY

263	WEDNESDAY

264	THURSDAY

265	FRIDAY

268	MONDAY

269	TUESDAY

271	THURSDAY

272	FRIDAY

1928	27	16.0

1948	67	16.0

1973	97	16.5

1998	37	24.0

2013	35	24.5

2072	122	23.0

2103	101	16.0

2127	179	19.0

2151	15	16.5

2168	76	17.0

2202	37	24.0

2227	133	16.0

2256	162	16.5

2269	60	25.0

2307	134	17.0

2316	143	16.0

2384	70	23.0

2374	97	16.0

2400	87	16.0

2426	22	16.0

2465	44	17.0

2492	41	24.0

ICKBB IRBBEIKC



s&Li:eses

16.1

08/28/84

B



0.14

16.4

08/29/84

D



0.30

17.0

08/30/84

C

08/31/84

0.88

24.0

08/31/84

t



0.39

24.7

09/04/84

A



0.18

22.9

09/06/84

C

09/07/84

0.19

16.5

09/07/84

D

0.28

19.0

09/10/84

B

09/11/84

0.35

17.1

09/11/84

B

0.11

17.5

09/12/84

C

09/13/84

0.15

24.0

09/13/84

D

0.53

17.0

09/14/84

B



0.14

16.9

09/18/84

B



0.24

2S.0

09/19/84

B

09/20/84

0.12

17.3

09/20/84

A



0.59

16.4

09/21/84

D



0.67

23.6

09/26/84

D



0.62

16.0

09/25/84

D



0.96

16.8

09/27/84

A

09/27/84

0.39

16.4

09/28/84

D

09/29/84

0.66

17.5

10/01/84

C

0.21

23.8

10/02/84

C



0.15

NMOC
PPMC
ESRL-GC

0.8

0.39
0.28

0.1

0.1
0.4

0.45

0.

-------
3.0 ANALYTICAL TECHNICAL MOTES

3.1 INSTRUCTIONS FOR OPERATION OF NMOC SAMPLERS

3.1.1 Installation

1.	Locate the sampler in a convenient place close to the sample
inlet point* The location should be in an air conditioned (70-85* F) area
vitb suitable space and electrical power.

2.	Make sure that the electrical solenoid valve is installed on the
puatp outlet. The valve should have a tee fitting on top, one leg of which
is plugged.

3.	Verify that the inlet to the pump has a floir-control needle/filter
assembly mounted on it. The needle assembly should be marked with an "S .

4.	Connect a 1/8-inch stainless steel inlet line from the top on the
needle/filter assembly to the inlet manifold* This should be the same
manifold used for the NO^ nonitor. If there is no inlet manifold, install
a suitable inlet line of 1/8-inch stainless steel to the sampling point.
If possible• avoid using any plaatic parts, such as plastic line or fit-
ting* in the sample inlet* The sample inlet should be kept as short as
possible and installed so that it will not collect water. If it is
necessary to use a long sample inlet line (over 10-12 feet from the pump to
the manifold or sample point), a small vacuum pump should be connected to
the pump end of the inlet line to keep the inlet purged during ssmpling.
The local agency will be asked to supply such a pump and any other inci-
dental itema needed to connect the ssmpler to the sample inlet point.

5* Connect the pump and the solenoid valve to the timer, and connect
the timer to an electrical power outlet. Set the timer to the correct
local time by turning the large dial in a clockwise direction.

6. Verify that the pump is operational by turning the timer switch
ON and OFF. NOTE: The solenoid vslve is s special latching valve with a
time-delay power circuit. It may not operate properly if the timer switch
is turned OH and OFF too fast. The switch must be left in the OH or OFF
position at least 20 seconds before it is switched to the other position to
operate the valve properly*

3-1

-------
7.	Disconnect the sample inlet from the top of the filter assembly
and connect the rotameter to the filter assembly, holding or mounting the
rotameter in a vertical position. Start the pump and record the flowmeter
reading* Remove the "S" needle assembly, install the "D" needle assembly,
and record the flowmeter reading* Turn the timer switch OFF* After 20
seconds, unplug the solenoid valve, then turn the timer switch ON and
verify that the valve is closed and that there is no flow. Turn the timer
switch OFF and reconnect the solenoid valve. Disconnect the rotameter,
reinstall the "S" needle assemb1y, and reconnect the sample inlet to the
filter assembly.

8.	Operator familiarization:

1.	Demonstrate installation of canister(s).

2.	Delay in turning solenoid valve on and off.

3.	Measuring flow with rotameter.

4.	Change needle assemblies.

5.	Change filter element.

6.	Correct tightening of Swagelock* fittings.

7.	Set timer and OR/OFF dogs.

8.	Fill out sample form.

9.	Go through sampling procedure.

10.	Go through troubleshooting instructions,

11.	Know whom to call if problems are encountered.

3.1.2 Operation - Preaamnlina

1.	Set the timer to the correct day and time, or to verify that the
timer is correctly set. Verify that the ON/OFF dogs are correctly in-
stalled on the timer disk.

2.	With no canisters connected to the sampling system, turn the
timer switch to the OFF position.

3.	Disconnect the sample inlet from the top of the needle/filter
assembly mounted on the pump inlet. Connect the rotameter to the top of
the needle/filter assembly* Hold or mount the rotameter vertically.

3-2

-------
4.	If the timer switch has been OFF less than 20 seconds, wait until
the switch has been OFF at least 20 seconds. Then turn the timer switch
ON. The pump should run and the valve should open. Verify that the
rotameter reading is approximately the same (+/- 15Z) as the reading
obtained during installation. If the rotameter reading is not correct, see
the troubleshooting instructions.

5.	Allow the pump to run for at least 20 seconds, then turn the
timer switch OFF.

6.	Connect a cleaned, evacuated canister to the sampling system.
HOTB: If duplicate samples are to be collected, remove the plug from the
second leg of the tee and connect a second canister to the sampling system.
Remove the needle assembly marked with an "S" (do not remove the filter
assembly), end install the needle assembly marked with a "D" in its place.
Replace the plug and the "8" needle assembly to return to collection of
•ingle samples.

7 • Open the valve (wide open) on the canister (or on one of the
canisters if two are connected) and verify that no flow is registered on
the rotameter with the pump off. If any flow is detected by the rotameter,
immediately close the canister valve and see the troubleshooting instruc-
t ions.

If no flow is detected, disconnect the rotameter and reconnect
the sample inlet to the filter assembly, if two canisters are connected,
open the valve on the second canister.

9. Reverify that the canister valve(s) is(are) open and the timer is
properly set for sampling from 6 to 9 AM the next weekday.

3,I»3 PPWtion - Post 8—ylfof

Close the canister valve(s) firmly. Disconnect the canister(s)
from the sampling system.

2.	Connect the preaaure gauge to the canister and open the canister
valve. Record the canister pressure. Close the canister valve and remove
the pressure gauge. Do the same if there is a second canister. If the
pressure reading is not at least 11 p.i, >et th8 troubleshooting instruc-
t ions.

3.	Fill in the required information on the sample form(s).

3-3

-------
4.	Verify that the timer still shows the correct time setting. If
not, note that fact on the sample form along with any information
pertaining to the possible cause. Reset the timer to the correct time.

5.	Verify that the canister valves are closed firmly, but do not
overtighten them. Put the protective cap(s) on the valve(s) and prepare
the canister(s) for shipment to RTF.

3.1.4 Troubleshooting Instructions

The following checks and test should be carried out in the order given
unless there is reason to alter the order.

Rotameter flow too low

1.	Make sure pump is running.

2.	Valve may not be open. Turn timer
switch OFF, wait 20 seconds, then turn
the switch OH.

3.	Disconnect the solenoid valve from pump.
If flow is then correct, solenoid valve
may be defective. Consult RTF.

Rotameter flow too high

4. Needle may be clogged. Replace needle
assembly (not filter) with spare "S"
needle assembly. If flow is correct,
return defective needle to RTP for re-
placement .

1. Check for leaks.

Flow is detected with
canister valve open and
puap off

Try spare needle assembly. If flow is
correct, return defective needle assembly
to RTF for replacement.

Solenoid valve not. closed. Turn off
canister valve. Turn timer switch ON,
wait 20 seconds, then turn timer switch
OFF. Open canister valve and check again.
If flow is still detected, call for
assistance.

3-4

-------
Canister pressure over
15 psi after sampling

1.

2.

Check flow rate.

Check for leaks; tighten all fittings.

3.	Check timer for correct positions of
ON/OFF dogs.

4,	Canister may have leaked or may not have
been evacuated. Note on sample form and
collect the next scheduled sample. If
the next sample also has excessive
pressure, call for assistance.

3.2 ANALYTICAL
3.2.1 Instrumental; i?n

Two gas chromatographs were used by Radian in this study• Each was a
dual-channel Hewlett-Packard 5880 using flame ionisation detection (FID).
NMOC instrument Channels A and B were on a single unit, and Channels C and
D were on the other 5880 unit. These chromatographs were modified
similarly to the prototype unit (NMOC instrument K), which is described in
the attached Appendix. Instrument E (also called Channel E in subsequent
sections of this report) was used as a quality assurance check during this
program. Also a glass-capillary gas chromatographic instrument (called
Channel GC) was used as the gas speciation method shown in the quality
assurance data.

3*2.2 Hewlett-Packard 5880 Gas Chrp»*to»r*Ph Ooerstipp

3.2.2.1 Sample Trap -

30 cm of 1/8-inch 00 stainless steel
packed with 60/80 mesh glass beads

3.2.2.2 Support Gas -

mtnawt fumtt

.*

Carrier Gas Helium	30 psig	31 seem

FID Air Purified Air	30 psig	385 seem

FID Fuel Hydrogen	32 psig	30 seem

^Controller set point 30.0 ccm

3-5

-------
3.2.2.3 Operating Temperatures -

FID 250°C
Oven Programmed up to 90°C
Aux. Area 90°C

Oven Program -

Initial Value	30°C

Initial Time	0.20 min.

Rate	30°C/min.

Final Value	90°C

Final Time	4.00 min.

3.2.2.4 Integration Parameters -

Signal Attenuation

24

Peak Area Threshold 1
Min. Peak Width	0.04

Integrator Analysis Program -

Program

List.	Activity	CPMUPtf

20	VALVE 5 OFF

25	LIST VALVE 5

30	OVER TEMP INITIAL VALUE 30

35	OVEN TEMP OFF

40	WAIT 2

60	START

70	OVEN TEMP 90

80	VALVE 5 ON

Integrator Run Table

Activity

0.01	INTG OFF

0.01	VALVE 5 ON

0.01	PAGE

0.02	LIST ATTN 2

0.04	OVEN TEMP ON

0.20	VALVE 2 ON

0.21	VALVE 2 OFF

0.22	INTG ON

0.23	SET BL

0.23	LIST INTG

1.87	SET BL

1.88	INTG OFF

1.89	LIST INTG

1.90	CHART SPEED 1.5
3.50	STOP

Comments

Beeper signal to remove cryogen
and close oven door

Set integration baseline point

3-6

-------
3.2.3 NMOC Analytical Technique

The modified HP5880, dual-FID chromatographs were operated in a manner
very similar to the method described in Section 7 .3 of the document attached
as Appendix A. Further description is given to help explain the analytical
apparatus and procedure.

The 6-port valve shown in Figure 1 of Appendix A was installed in the
auxiliary heated cone of the HP5880 and was pneumatically actuated using
the chromatographic valve control signals to apply either compressed air or
vacuum to the valve. The sample trap itself was located inside the chro-
matography column oven. A length of one-sixteenth-inch OD tubing was
trimmed to a length which prevented pressure and flow surges from extin-
guishing the FID flame. This length has to be determined experimentally
and is expected to differ between chromatography. This length of tubing
effectively substitutes for the restriction caused by a chromatographic
column.

During sample trapping, a rotameter was used to assure excess sample
gas flow (instead of the bubbles shown in the Figure). A flow control
valve was used, instead of the canister shutoff valve, to maintain a slight
excess of sample gas flow during trapping.

A pressure change of 80 mm in a 1.7 liter vacuum reservoir was uaed to
gauge the volume of sample gas cryogenically trapped. After trapping was
complete, the HP5880 program shown in Section 3.2.2 was initiated. When
the program produced an audible beep, the cryogen was removed from the trap
and the oven door closed. The chromatographic program then took control
raising the oven temperature to release the trapped sample to the FID,
well as setting up the integration parameters.

3.3 CALCULATIONS
3.3.1 Daily Calibration

3.3.1.1	Zero Response - Peak area	Average ^ two analyses

of Clean Air from Clean Air System

3.3.1.2	Blank (ppmC) ¦ Zero response peak area x calibration factor

3.3.1.3	Calibration Factor -

aiMMtfitif (nnmV) of Propane Standard x 3 PMttC/pppV
Factor ¦	(Propane Response - Zero Response)

3-7

-------
3.3.2 HMOC Sample Concentrations

NMOC (ppmC) - /Sample Response \ x Calibration Factor

\ Peak Area J

3-8

-------
4.0 QUALITY ASSURANCE/QUALITY CONTROL DATA ANALYSIS

4.1	INTRODUCTION

The quality assurance and quality control (QA/QC) procedures were
given in the Quality Assurance Project Plan. The proposed outline of the
NMOC data analysis and the QA/QC data analysis are given in Appendix B.
Several features of the data analysis not originally proposed are included
below, along with essentially the analysis outlined in Appendix B. Section

4.2	focuses on QA/QC data and its interpretation. Calibration and drift

data are given in Section 4.2.1.

Section 4.2.3 presents the data on repeated analyses on the sane

sample, and the analysis and some possible interpretations of the results.

Two types of repeated analyses are described in Sections 4.2.3.1 and

4.2.3.2. The first type of repeated analyses were done on the samples

drawn from the 22 sample sites, while the other type of repeated analyses

were done on local ambient samples.

Section 4.2.4 presents the results and analyses for the duplicate
samples taken at the 22 designated test sites. Section 4.2.5 presents the
data and analyses for Radian In-House QC samples and other types of QC
samples.

4.2 QA/QC DATA

4.2.1 Calibration and Drift

Calibration and drift data for the Radian Channels A, B, C, and D, are

given in Table 4-1 through 4-4. These data are also plotted m Figures 4-1

through 4-8, and relate the daily sero and span determinations to the 1984

Julian Date on which the determination was made. Table 4-1 lists five

4-1

-------
Figure 4-1

i

N>

4-00

350

jrt 300

w•

o

u

a
$

Q 150

u-
2
d
H

2d Li

!UU

100
50
0

— 50

DAILY PROPANE SPAN CALIBRATION

NMOC INSTRUMENT A



T

T

T

160	180	200

~ initial daily spam

220

240

—I—
260

Om

80

JULIAN DATE

+ 8-HR SPAN DRIFT

-------
Table 4-1. Calibration and Drift Data for Radian Channel A.





ZER01

ZCFT

CASE

1

0.003

0

CASE

2

0.007

-0

CASE

3

0.007

-0

CASE

4

0.00P

-0

CASE

5

0.008

0

CASE

6

0.005

0

CASE

7

0.005

0

CASE

8

0.005

0

CASE

9

0.004

-0

CASE

10

0.005

0

CASE

1 1

0.006

-0

CASE

12

0.003

0

CASE

13

0.005

0

CASE

14

0. 002

0

CASE

13

0.003

0

CASE

16

0.004

0

CASE

17

0.004

-0

CASE

18

0.005

0

CASE

19

0.004

-0

CASE

20

0.003

0

CASE

21

0.005

-0

CASE

22

0.004

-0

CASE

23

0.003

-0

CASE

24

0.002

0

CASE

25

0.004

-0

CASE

26

0.002

0

CASE

27

0.0C4

0

CASE

28

0.003

0

CASE

29

0.019

-0

CASE

30

0.005

0

CASE

31

0.003

0

CASE

32

0.005

-0

CASE

33

0.004

-0

CASE

34

0.001

0

CASE

33

0.004

-0

CASE

36

0.005

0

CASE

37

0.005

-0

CASE

38

0.002

0

CASE

39

0.003

-0

CASE

40

0.003

-0

CASE

41

0.002

0

CASE

42

0.001

0

CASE

43

0.002

-0

CASE

44

0.002

-0

CASE

45

0.003

-0

CASE

46

0.003

-0

CASE

47

0.004

-0

CASE

48

0.003

-0

CASE

49

0.003

-0

CASE

50

0.004

0

CASE

51

0.002

0

CASE

52

0.001

0

CASE

53

0.002

0

CASE

54

0.002

0

CASE

55

0.002

0

CASE

56

0.002

-0

CASE

57

0.001

0

CASE

58

0.001

0

CASE

59

0.002

0

CASE

60

0.002

0

CASE

61

0.002

-0

CASE

62

0.002

-0

CASE

63

0.003

0

SPAM	CALDFT	PCPFT

299.00C

9.000

3.010

294.000

3.000

1 .02n

314.COO

-6.000

-1.911

317.COO

-19.000

-5.994

309.OOC

-2.COO

-0.6*7

316.000

-24.000

-7.5P5

295.000

22.OOC

7.4?e

317.000

-22.000

-6.94C

31 1.000

-8.000

-2.572

323.000

-4.000

-1.236

306.000

26.000

8. 497

326.000

2.000

0.613

315.000

14.000

4.444

306.000

13.000

4.24C

323.000

-4.000

-1.236

321.000

4.000

1 .246

302.000

12.000

3.974

302.000

1.000

0.331

302.000

17.000

5.629

312.000

-9.000

-2.885

303.000

25.000

8.251

301.000

11.000

3.654

303.OCO

5.000

1.650

297.000

3.000

1.010

305.000

19.000

6.23C

327.000

14.000

4.281

312.000

12.000

3.846

311.000

-7.000

-2.251

305.000

39.000

12.787

299.000

26.000

8.696

311.000

4.000

1 .286

316.000

-13.000

-4.114

323.000

-9.000

-2.706

300.000

1C.000

3.333

299.000

9.000

3.010

297.000

8.000

2.694

326.000

-8.OOC

-2.454

305.000

-4.000

-1.31 1

307.000

11.000

3.583

313.OCO

-4.000

-1.278

305.000

2.OOC

0.656

322.OCO

-17.000

-5.28C

314.000

-2.000

-0.637

310.000

-1C.000

-3.226

307.000

1.000

0.326

306.000

-1.000

-0.327

306.000

17.000

5.556

313.000

-8.000

-2.556

297.000

5.000

1.684

308.000

6.000

1.94E

295.000

9.000

3.051

300.000

12.000

4.000

306.OOC

1.000

0.327

305.000

8.000

2.623

304.000

3.000

0.987

293.000

10.000

3.413

297.000

4.000

1.347

308.000

-10.000

-3.247

302.000

-2.000

-0.662

298.OOC

4.000

1.342

297.000

6.000

2.020

305.000

-1.000

-0.328

313.000

11.000

3.514

C01

002

001

006

001

002

001

001

003

001

001

001

002

002

001

005

001

001

001

001

003

016

002

002

002

002

002

003

002

001

001

001

001

001

002

001

002

001

001

002

001

002

001

001

001

001

006

001

001

001

4-3

-------
Figure 4-2

DAILY PROPANE SPAN CALIBRATION

NMOC INSTRUMENT 6

JULIAN L'mTE

~ INITIAL DAILY SPAM	+ Q-hR SPAN DRIFT

-------
Table 4-2.

Calibration and Drift Data for Radian Channel B.

ZER01	ZOFT

CASE

1

o.oic

-0.006

CASE

2

0.015

-0.006

CASE

3

0.020

-0.012

CASE

4

0.010

-0.005

CASE

5

0.013

-0.007

CASE

6

0.003

0.005

CASE

7

0.009

0.004

CASE

8

0.009

0.005

CASE

9

0.011

-0.005

CASE

10

0.006

0.004

CASE

1 1

0. 007

0.002

CASE

12

0.006

-0.001

CASE

13

0. 009

0.

CASE

14

0.006

-0.002

CASE

15

0.006

0.001

CASE

16

0.005

-0.002

CASE

17

0.006

0.002

CASE

18

0.006

-0.004

CASE

19

0.007

-0.004

CASE

20

0.004

-0.003

CASE

21

0.003

0.001

CASE

22

0.003

-0.002

CASE

23

0.003

0.

CASE

24

0.003

-0.003

CASE

25

0.003

0.001

CASE

26

0.003

-0.001

CASE

27

0.

0.002

CASE

28

0.004

-0.003

CASE

29

0.001

0.001

CASE

30

0.004

0.

CASE

31

0.003

0.001

CASE

32

0.004

0.001

CASE

33

0.003

0.001

CASE

34

0.003

0.002

CASE

35

0.006

-0.003

CASE

36

0.001

0.001

CASE

37

0.001

0.

CASE

38

0.002

-0.0C1

CASE

39

0.004

-0.002

CASE

40

0.002

-0.001

CASE

41

0.001

0.

CASE

42

0.001

0.001

CASE

43

0.002

0.

CASE

44

0.001

0.001

CASE

45

0.002

0.

CASE

46

0.001

0.001

CASE

47

0.002

-0.001

CASE

48

0.001

0.

CASE

49

0.001

0.

CASE

50

0.002

-0.C01

CASE

51

0.002

-0.001

CASE

52

0.002

0.

CASE

53

0.002

-0.001

CASE

54

0.002

-0.001

CASE

55

0.002

0.

CASE

56

0.003

0.

CASE

57

0.001

0.001

CASE

58

C.001

0.

CASE

59

0.001

0.

CASE

60

0.002

-0.001

CASE

61

0.001

0.

CASE

62

0.001

0.

CASE

63

0.002

-0.001

CASE

64

0.002

-0.001

CASE

65

0.001

0.

CASE

66

0.001

0.

CASE

67

0.0C1

0.

CASE

68

0.002

0.

SPAM	CALCFT	PCOFT

305.000

1 .oco

0.328

304.000

10.C0C

3.289

304.000

4.coo

1.316

3C6.000

2.000

0.654

316.000

-10.000

-3.165

312.000

1 .000

0.321

321.000

-27.000

-8.411

307.000

9.000

2. 932

322.000

-14.000

-4.34e

316.000

-7.000

-2.2C1

324.000

-1.000

-0.309

320.000

18.000

5.625

322.000

14.000

4.346

330.000

-C.000

-1 .818

322.000

13.000

4. 037

324.000

7.000

2. 160

320.000

5.000

1 . 562

312.000

4.000

1 . 2 C 2

325.000

2.000

0.615

308.000

15.000

4.870

310.000

1.000

0.323

311.000

24.000

7.717

318.000

-10.000

-3.145

309.000

21.000

6.796

306.000

10.000

3.268

309.000

19.000

6.149

304.000

4.000

1.316

311.000

22.000

7.074

332.000

-5.000

-1.506

319.000

7.000

2.194

318.000

-7.000

-2.201

312.000

40.000

12.821

306.000

21.000

6.363

318.000

8.000

2.516

315.000

-6.000

-1.905

330.000

-6.000

-1.818

308.000

11.000

3.571

309.000

24.000

7.767

307.000

7.000

2.260

337.000

-14.000

-4. 154

328.000

-4.0CC

-1.220

333.000

7.COO

2.1C2

313.000

-2.000

-0.630

319.000

14.000

4.369

318.000

-2.000

-0.629

315.000

2.000

0.635

313.000

4.000

1 .278

333.000

-17.000

-5.105

323.000

-1.000

-0.310

322.000

-1C.00C

-3.1C6

314.000

13.000

4.140

315.000

16.000

5.079

319.000

-4.000

-1.254

305.000

9.000

2.951

311.000 .

10.000

3.215

304.000

8.000

2.632

312.000

7.000

2.244

315.000

5.000

1.587

312.000

3.000

0.962

303.000

10.000

3.300

302.000

6.000

1.987

306.000

3.000

0.960

310.000

-1.000

-0.323

308.000

3.000

0.974

304.000

9.000

2.961

312.000

-3.000

-0.962

311.000

3.000

0.965

317.000

14.000

4.416

4-5

-------
¦p»
I

ON

e

D

Q
O

a

o

o

CL

Cl

4-00

350

300

250

200
1 50
1 00
50

Figure 4-3

DAILY PROPANE SPAN CALIBRATION

NMOC INSTRUMENT C

-50





T

T

160	180

~ INITIAL DAILY SPAN

1	1	1	1—

200	220

:+o

i	1—

26u

ISO

JULIAN DATE

+ 8-HR SPAN DRIFT

-------
1

2

3

4

5

6

7

B

9

10

1 1

1 2

13

14

15

16

17

16

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Calibration and Drift Data for Radian Channel C.

ZER01

ZDFT	SPANt	CALCFT	PCDFT

0.001	o.

0.002	C.

0.001	0.003

0.001	0.

0.001	0.003

0.002	0.

0.002	0.

0.002	-0.001

0.003	0.

0.002	0.

0.001	0.

0.001	0.004

o.	o. _

0.001	0.001

0.002	-0.001

o.	0.001

0.	°*

0.001	o.

0.

0.
0.
0.
0.

0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0

0.
0.
0.
0.
0.
0.
0.
0.
0.

0.

0.

°-001

o	0.001

0.*	0.001

O-00'

0.002	-0.001

o.	0.001

0.
0.
0.
0.

0.001	0.

0.

0.001	-0.001

0.	0>

0.	0.

o.	o*

0;

0.	0.001

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.002	-0.002

0.
0.
0.
0.
0.
0.
0.
0.
0.

0.002	-0.002

0.

o*.	0.002

o.	0.

0.001	0.

0.001	o.

0.001	o.

0.	°*

0.002	-0.001

o.	0.001

0.003	-0.003

o.	0.003

4-7

325.000

4.0C0

1 .231

341.00C

-19.000

-5.572

313.000

30.00C

9. 565

341.00C

-24.000

-7.038

33e.000

5.000

1.479

340.000

-20.000

-5.882

338.000

6.000

1 .775

322.000

1 .000

0.311

347.000

-2.000

-0.576

32?.000

21.000

6.383

326.000

-5.COO

-1.534

353.000

5.000

1.416

330.000

7.000

2.121

349.000

3.000

o.eec

322.000

18.000

5.590

335.000

1 .000

0.299

321.000

14.000

4.361

338.000

8.000

2.367

339.000

-1.000

-0.295

344.000

1.000

0.291

325.000

4.000

1 .231

344.000

-20.000

-5.814

343.000

-17.000

-4.956

341.000

-3.000

-0.880

319.000

17.000

5.329

340.000

3.000

0.882

316.000

16.000

5.063

316.000

11.000

3.481

323.000

9.000

2.786

338.000

-7.000

-2.071

328.000

10.000

3.045

340.000

10.000

2.941

330.000

-11.000

-3.333

321.000

6.000

1.869

321.000

-1.000

-0.312

339.000

-22.000

-6.490

317.000

11.000

3.470

315.000

11.000

3.492

316.000

13.000

4.114

320.000

18.000

5.625

338.000

-15.000

-4.438

317.000

1.000

0.315

316.000

16.000

5.063

323.000

4.000

1.230

342.000

-1.000

-0.292

330.000

2.000

0.606

329.000

4.00C

1.216

328.000

8.000

2.439

331.000

24.000

7.251

327.000

4.000

1.223

357.000

-12.000

-3.361

332.000

-1.000

-0.301

332.000

12.000

3.614

353.000

-14.000

-3.966

321.000

8.000

2.492

341.000

5.000

1 .466

328.000

16.000

4.878

329.000

7.000

2. 128

330.000

5.000

1.515

329.000

4.000

1.216

320.000

2.000

0.625

316.000

8.000

2.532

322.000

-1.000

-0.311

323.00C

24.000

7.430

322.000

3.000

0.932

324.000

7.000

2. 16C

329.000

-2.000

-0.608

336.000

-4.000

-1 . 1S0

329.000

19.000

5.775

329.000

-5.000

-1.520

-------
Figure 4-4

DAILY PROPANE SPAN CALIBRATION

NMOC INSTRUMENT D

300

iAJ4





	1	1	1	1	1	1	1	1	I	1	1	

160	180	200	220	24-0	260	280

JULIAN DATE

~ INITIAL DAILY SPAN	+ 8-Hft SPAN DRIFT

-------
Table 4-4.

Calibration and Drift Data for Radian Channel D.

ZERO

ZDFT	SPAM	CAIDFT	PCDFT

CASE

1

CASE

2

CASE

3

CASE

4

CASE

5

CASE

6

CASE

7

CASE

8

CASE

9

CASE

10

CASE

1 1

CASE

1 2

CASE

13

CASE

14

CASE

15

CASE

16

CASE

17

CASE

18

CASE

19

CASE

20

CASE

21

CASE

22

CASE

23

CASE

24

CASE

25

CASE

26

CASE

27

CASE

28

CASE

29

CASE

30

CASE

31

CASE

37

CASE

33

CASE

34

CASE

35

CASE

36

CASE

37

CASE

38

CASE

39

CASE

40

CASE

4 1

CASE

42

CASE

43

CASE

44

CASE

45

CASE

46

CASE

47

CASE

48

CASE

49

CASE

50

CASE

51

CASE

52

CASE

53

CASE

54

CASE

55

CASE

56

CASE

57

CASE

58

CASE

59

CASE

60

CASE

61

CASE

62

CASE

63

CASE

64

CASE

65

CASE

66

CASE

67

CASE

68

CASE

69

0.003	0.

0.001	0.002

0.008	0.

0.007	-0.002

0.004	-0.001

0.006	-0.001

0.007	-0.002

0.004	-0.001

0.005	0.

0.004	0.

0.004	-O.OCI

0.004	0.001

o.oo:	0.002

0.002	0.001

0.002	0.

0.004	-0.001

0.003	-0.001

0.001	-0.001

0.001	0.

0.001	o.

0.001	0.001

0.002	-0.001

0.001	0.001

0.001	0.001

0.001	0.

0.002	"0,0°?

0.001	0.001

0.001	o.

0.001	0.013

0.001	0.

0.001	0.

0.001	0.

0.001	0.

0.003	-0.002

0.001	0.

0.001	o.

0.001	-0.001

0.001	0.001

0.001	-0.001

0.

0

0.

0*001	-0.001

0.001

0.

0.'001

0.001	O.OCI

°-00'

0.001	"0,°«

0.001	0.001

°-00'

0.C01	0.00
0.001

0.001	0,00i

o.	°-002

01001	0.

0-001

0.001	-0.001

o.	°«001

0 r 002	0.001

0.	0.002

oiooi	0.

0.00 J	0.

°-001	S'aa.

0.001	0.001

0.002	0.C01

O.OCI	0.

0.001	0.001

0.002	0.

0.001	0.001

0.001	o.

4-9

327.000

2.000

C . 6 t 2

329.000

-4.000

-1.216

322.000

31.000

9.627

353.000

-26.0CC

-7.365

354.000

5.000

1.412

35).000

-25.000

-7.123

325.000

10.000

3.077

320.000

-6.000

-1 .675

339.000

5.COO

1.475

319.000

33.000

10.345

326.000

-4.000

-1 .227

359.000

10.000

2.736

326.000

17.000

5.215

364.000

-5.000

-1.374

359.000

-2.000

-C.557

319.000

33.000

10.345

343.000

2.000

0.583

322.000

1.000

0.311

338.000

27.000

7 . 9£ 8

357.000

2.000

0.560

353.000

5.000

1.416

352.000

4.000

1 . 136

326.000

15.000

4.601

347.000

-21.000

-6.052

358.000

-27.000

-7.542

356.000

-6.000

-1.685

319.000

45.000

14. 107

355.000

3.000

0.845

319.000

28.000

8.777

317.000

18.000

5.678

335.000

19.000

5.672

349.000

-10.000

-2.865

342.000

12.000

3.509

359.000

2.000

0.557

341.000

-25.000

-7.331

324.000

13.000

4.012

330.000

-6.00C

-1.818

357.000

-36.000

-10.084

318.000

16.000

5.031

301.000

37.000

1 2.292

318.000

31.000

9.748

323.000

28.000

8.669

364.000

-28.000

-7.692

318.000

25.000

7.662

329.000

24.000

7.295

320.000

3.000

0.937

322.000

8.000

2.484

321.000

20.000

6.231

316.000

10.000

3.165

332.000

26.000

7.831

354.000

9.000

2.542

322.000

2.000

0.621

330.000

19.000

5.75e

344.000

-2.000

-0.561

311.000

15.000

4.823

319.000

24.000

7.524

321.000

6.000

1 .869

322.000

5.000

1.553

319.000

9.COO

2.021

311.000

2.000

0.643

311.000

-17.000

-5.466

317.000

-1.000

-C.315

318.000

-2.000

-0.629

321.000

21.000

6.542

323.000

-1.000

-0.310

321.000

-1.000

-C.312

338.000

-7.000

-2.071

320.000

29.000

9.063

325.000

-9.000

-2.769

-------
¦p-
I

0.03

U.U2

0.01

c

2
H
Cl

0.00

-0.01

-u.u:

-0.03

Figure 4-5

DAILY ZERO CALIBRATION

NMOC INSTRUMENT A



I

i

If



" "ysw 1 *\J * \

' ii



i



1 80

1 60

~ initial daily zero

200

JULIAN DATE

240	260

+ 8-HR ZERO DRIFT

:so

-------
0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

Figure 4-6

DAILY ZERO CALIBRATION

NMOC INSTRUMENT B

~ INITIAL DAILY ZERO

JULIAN DATE

+ 8-HR ZERO DRIFT

-------
0.03

Figure 4-7

DAILY ZERO CALIBRATION

NMOC INSTRUMENT C

f—«

ho

0.02

0.U1

O
O
2
Z

o
s
n
n

0.00

-0.01

-0.02

-0.03

T

T

T

T

T

T

T

T

T

T

160	180	200

~ INITIAL DAILY ZERO

220
JULIAN DATE

24-0	260

+ 8-HR ZERO DRIFT

280

-------
0.03

0.02

U.U1

0.00

-0.01

-0.02

-0.03

Figure 4-8

DAILY ZERO CALIBRATION

NMOC INSTRUMENT D

m Miff v

	1	1	1	1	1	1	1	1	r-~i	1	r

160	160	200	220	240

~ INITIAL DAILY ZERO

JULIAN DATE

+ 8-HR ZERO DRIFT

260	280

-------
variables ZEROl, ZDFT, SPANl, CALDFT, and PCDFT. ZEROl, in ppmC, was the
initial instrument "zero," determined from cleaned, dry air at the be-
ginning of the day. ZDFT was the zero drift for the day. At the end of
the day a second "zero" determination (ZER02) was made and ZDFT was calcu-
lated from ZER02 minus ZEROl.

SPANl is reported in Tables 4-1 through 4-4 in units of ppmC per area
count and was done at the beginning of the day. It was the initial
instrument span determination. A second span determination, SPAN2 was made
at the close of the day. The calibration drift, CALDFT, was calculated
equal to SPAN2 minus SPANl. Variable PCDFT is the percent CALDFT was of
the initial span, or:

PCDFT - (CALDFT/SPANl) x 100.	(4-1)

Gases used for the span determinations used propane standards referenced to
NBS propane, SBM No. 1665b. Statistics for all four Radian instrument
channels combined are given in Table 4—5. The zero drift ranged from
-0.016 ppmC to 0.013 ppmC averaging -0.00016 which was about 6.5Z of the
mean zero reading.

The percent drift of the calibration reading ranged from -10Z to +14Z,
averaging about 1.5Z of the initial calibration span. For the Radian
Channels A, B, C, and D, average percent calibration drifts were 1.2Z,
1.5Z, 1.1Z and 2.1Z, respectively as shown in Tables 4-6, 4-7, 4-8, and 4-9
respectively. The statistical test of hypothesis for equal population
means at the 0.05 level of significance (giving a 95Z probability that the
assertion is correct) indicates that the mean percent calibration drifts
were essentially equal for all Radian channels.

Additional character of the calibration and drift data can be seen in
Figures 4-9 and 4-10 which show a stem and leaf plot of variables CALDFT
and ZDFT respectively. The numbers on the left of the diagram are the
stems and represent equal incremental distances from the smallest value,
given at the top of the plot to the largest value at the bottom of the plot
(given as a maximum figure in Table 4-5). The leaves are the numbers on
the right of the diagram and the length of each leaf is proportional to the
number of data points falling into each stem interval. The letters "M"

4-14

-------
TABLE 4-5. Statistics for Calibration and Drift for AM Radian Channels.

TOTAL OBSERVATIONS: 270

N OF CASES
MINI MUM
MAX I MUM
RANGE
MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS

kurtosis

ZER01

270

0.

0.02000
0.02000
0.00246
0.00001
0.00280
0.00017
2.73246
11.10380

ZDFT

270
-0.01600
0.01300
0.02900
-0.00016
0.00000
0.00219
0.00013
-1.39021
17.35084

SPAN1

270

293.00000
364.00000
7 1 .00000
321.61111
234.74411
15.32136
0.93243
0.64171
0.00037

CALDFT

270

-36.00000
45.00000
81 .00000
4.50370
172.35500
13.12840
0.79897
-0.03179
0.56515

PCDFT

270

-1 C. C o 4 03
1 4 . 1 T656
24 . 19062
1.4-5974
1 « . 52047
4.06454
0.24736
0.09102
0.4f760

4-15

-------
TABLE 4-6. Statistics for Calibration and Drift of Radian Channel A.

TOTAL OBSERVATIONS: 63

N OF CASES
MlNlMUM
MAXIMUM
RANGE
MEAN
VARIANCE
STANDARD DEV
STO. ERROR
SKEWNESS
KURTOSIS

ZERO 1

63

0.00100
0.01900
0.01800
0.00370
0.00001
0.00256
0.00032
3.54339
18.34753

ZDFT

63

-0*01600
0.00600
0.02200
-0.00046
0.00001
0.00270
0.00034
-3.00599
16.14156

SPAN1

63

293.00000
327.00000
34.00000
307.63492
76.78392
8.76264
1.10399
0.47247
-0.55452

CALDFT

63

-24.00000
39.00000
63.00000
3.55556
143.08961
1 1 .96201
1.50707
0. 17860
0.45991

PCDFT

63

-7.59494

12.78689
20.38182
1.20791
15.06184
3.88096
0.48895
0.23378
0.46404

4-16

-------
TABLE 4-7. Statistics for Calibration and Drift for Radian Channel B.

TOTAL OBSERVATIONS: 68

ZER01	ZDFT	SPANI	CALOFT	PCDFT

N OF CASES

68

68

68

68

68

MlNIMUM

0.

-0.01200

302.00000

-27.00000

-8.41121

MAXIMUM

0.02000

0.00500

337.00000

40.00000

12.82051

RANGE

0.02000

0.01700

35.00000

67.00000

21.23173

MEAN

0.00393

-0.00063

314.82353

4.60294

1.50388

VARIANCE

0.00001

0.00001

70.83406

120.89969

12.14230

STANDARD DEV

0.00375

0.00271

8.41630

10.99544

3.48458

STD. ERROR

0.00045

0.00033

1.02063

1.33339

0.42257

SKEWNESS

1.99246

-1.24521

0.62921

0.13026

0.18693

kurtosiS

4.51519

3.78811

-0.26579

1.07134

1 .07389-

4-17

-------
TABLE 4-8. Statistics for Calibration and Drift for Radian Channel C.

TOTAL OBSERVATIONS: 70

ZER01	ZDFT	SPAN J	CALDFT	PCDFT

N OF CASES

70

70

70

70

70

Ml NIMUM

0.

-0.00300

313.00000

-24.00000

-7.0381$

MAX 1 MUM

0.00300

0.00400

357.00000

30.00000

9.58465

RANGE

0.00300

0.00700

44.00000

54.00000

16.62279

MEAN

0.00059

0.00014

330.37143

3.41429

1.09681

VARIANCE

0.00000

0.00000

108.38178

129.55052

11.86151

STANDARD DEV

0.00084

0.00104

10.41066

1 1.38203

3.44405

STD. ERROR

0.00010

0.00012

1.24431

1.36041

0.41 164

SKEWNESS

1.19233

1.03727

0.43018

-0.38565

-0.29032

KURTOSIS

0.30980

4.36667

-0.53375

0.15612

0.1396J

4-18

-------
TABLE 4-9. Statistics for Calibration and Drift for Radian Channel D.

TOTAL OBSERVATIONS: 69



ZER01

ZDFT

SPAN1

CALDFT

PCDFT

N OF CASES

69

69

69

69

69

MINI MUM

0.

-0.00200

301.00000

-36.00000

-10.CS403

MAXIMUM

0.00800

0.01300

364.00000

45.00000

14. 1 C 6 58

RANGE

0.00800

0.01500

63.00000

8 1 .00000

24 . 19062

MEAN

0.00180

0.00026

332.17391

6.37681

2.05349

VARIANCE

0.00000

0.00000

259.58696

295.15004

27.06687

STANDARD DEV

0.00170

0.00184

16.11170

17.17993

5.20258

STD. ERROR

0.00020

0.00022

1.93962

2.06822

0.62632

SKEWNESS

1.94010

4.78339

0.52123

-0.20955

-0.06096

kurtosis

3.35464

31.21183

-1.01342

-0.18583

-0.27960

4-19

-------
Figure 4-9. Frequency Diagram of Calibration Drift Data.

STEM AND LEAF PLOT OF VARIABLE: CALDFT

EST VALUE AT TOP OF PLOT IS: -36.00000
-3 6

-2 87765544
***0UTSI 0E VALUES***

-2 22100
-1 9977775
-1 444321000000
-0 9998887777766666665555
-0 H 4444444443322222222221111111111111
0 M 111111111112222222222222333333333333444444444444444

0	555555 55 555566666677777777888888888999999999

1	H 0000000000011111112222233333444444

1	555666667777888899999

2	0111122444444

2	556667889

3	01133
***0UTSIDE VALUES***

3	79

4	05

4-20

-------
Figure 4-10. Frequency Diagram of Drift Data

STEM AND LEAF PLOT OF VARIABLE:	ZDFT

SMALLEST VALUE AT TOP OF PLOT IS: -.1600000E-01

-16	0

-12	0

-7	0

-6	000

-5	000
•••OUTSIDE VALUES***

-4	00

-3	0000000

-2	000000000000000000

-1	H 0000000000000000000000000000000000000000000000

0	M ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo*

1	H oooooooooooooooooooooooooooooooooooooooooooooooooo

2	0000000000000000

3	0000

4	000
***0UTSIDE VALUES***

5	00

6	0
13	0

4-21

-------
and "H" in the space between the steams and leaves denote the locations of
the median, and hinges respectively. The median divides the data sorted by
size into two halves, and the hinges divide the upper and lower halves into
halves again. The "H-spread" is the difference between the values of the
two hinges. The "inner fences" are defined as follows:

Any values outside the inner fences are printed on separate lines and
separated from the inner values by a line of text, "***OOTSIDE VALUES***."

Additional insight into hov the daily initial zero calibrations and
drifts changed during the course of the project can be seen especially in
Figures 4-6, 4-7, 4-8, and 4-9. The plotted data indicate a rather large
scatter (up to ±0.010 ppmC) for the first 30 days or so of the project,
after which time the scatter decreases to a considerably lover value. This
may indicate that there was an initial period of time to learn hov to
operate the instrument and to obtain consistent and precise results. The
first 20 days for Channel B, for example, taking absolute magnitudes,
average ZDFT ¦ 0.00375 (standard deviation * 0.0028), vhile the last 20
days average 0.00035 (standard deviation - 0.0005). No such trend is as
readily apparent in the daily propane span calibration graphs, Figures 4-1,
4-2, 4-3, or 4-4.

4.2.2 Preliminary Multiple Analyses

Before NMOC data vere obtained from the 22 designated sample sites
ambient samples vere obtained on each of four days in four canisters and
analyzed for NMOC on four Radian channels. The purposes of the runs were
to verify that the sampling and analysis equipment vas working properly and
to investigate possible differences among the Radian instrument channels.
Four sets of samples vere taken on June 14, 15, 18, and 19, 1984 and are
identified as DAT 1.000, 2.000, 3.000, and 4.000 respectively in Table
4-10. Four canisters vere used to obtain samples and are labeled CAN
1.000, 2.000, 3.000, and 4.000. Channels 1.000 through 4.000 in the table

lower fence ¦ lower hinge - (1.5 x H-spread),
upper fence • upper hinge + (1.5 x H-spread).

(4-2)
(4-3)

4-22

-------
TABLE 4-

10. Preliminary Multiple Analyses of Ambient Samples.

DAY	CAN CHANNEL	NMOC

CASE

1

1 .000

1 .000

1 .000

0.213

CASE

2

1 .000

1 .000

2.000

0.221

CASE

3

1.000

1.000

3.000

0. 167

CASE

4

1 .000

1.000

4.000

0.202

CASE

5

1.000

2.000

1.000

0. 198

CASE

6

1 .000

2.000

2.000

0.204

CASE

7

1 .000

2.000

3.000

0.161

CASE

8

1 .000

2.000

4.000

0.1,71

CASE

9

1.000

3.000

1.000

0.216

CASE

10

1 .000

3.000

2.000

0.206

CASE

1 1

1.000

3.000

3.000

0.182

CASE

12

1 .010

3.000

4.000

0.209

CASE

13

1.000

4.000

1. ooc

0. 189

CASE

14

1 .000

4.000

2.000

0.181

CASE

1 5

1 .000

4.000

3.000

0. 168

CASE

16

1.000

4.000

4.000

0.173

CASE

17

2.000

1.000

1.000

0.326

CASE

18

2.000

1.000

2.000

0.247

CASE

19

2.000

1.000

3.000

0.274

CASE

20

2.000

1.000

4.000

0.275

CASE

21

2.000

2.000

1.000

0.312

CASE

22

2.000

2.000

2.000

0.353

CASE

23

2.000

2.000

3.000

0.358

CASE

24

2.000

2.000

4.000

0.305

CASE

23

2.000

3.00C

1.000

0.315

CASE

26

2.000

3.000

2.000

0.260

CASE

27

2.000

3.000

3.000

0.262

CASE

28

2.000

3.000

4.000

0.254

CASE

29

2.000

4.000

1.000

0.274

CASE

30

2.000

4.000

2.000

0.250

CASE

31

2.000

4.000

3.000

0.257

CASE

32

2.000

4.000

4.000

0.252

CASE

33

3.000

1.000

1.000

•

CASE

34

3.000

1.000

2.000

•

CASE

35

3.000

1.000

3.000

0.212

CASE

36

3.000

1.000

4.000

0.212

CASE

37

3.000

2.000

1.000

•

CASE

38

3.000

2.000

2.000

•

CASE

39

3.000

2.000

3.000

0. 209

CASE

40

3.000

2.000

4.000

0.262

CASE

41

3.000

3.000

1 .000

0.252

CASE

42

3.000

3.000

2.000

0.185

CASE

43

3.000

3.000

3.000

0.142

CASE

44

3.000

3.000

4.000

0.170

CASE

45

3.000

4.000

1.000

0.221

CASE

46

3.000

4.000

2.000

0.173

CASE

47

3.000

4.000

3.000

0.155

CASE

48

3.000

4.000

4.000

0.160

CASE

49

4.000

1.000

1.000

1.207

CASE

50

4.000

1.000

2.000

1.249

CASE

51

4.000

1.000

3.000

1.116

CASE

52

4.000

1.000

4.000

1.121

CASE

53

4.000

2.000

1.000

1.127

CASE

54

4.000

2.000

2.000

1.242

CASE

55

4.000

2.000

3.000

1 .085

CASE

56

4.000

2.000

4.000

1.072

CASE

57

4.000

3.000

1.000

0.838

CASE

58

4.000

3.000

2.000

0.851

CASE

59

4.000

3.000

3.000

0.764

CASE

60

4.000

3.000

4.000

0.761

CASE

61

4.000

4.000

1.000

0.867

CASE

62

4.000

4.000

2.000

0.834

CASE

63

4.000

4.000

3.000

0.770

CASE

64

4.000

4.000

4.000

0.722

4-23

-------
Table 4-11. Statistics for Preliminary Ambient Samples.

THE FOLLOWING RESULTS ARE F0":

DAY
CAW

1 .00
) . 00

TOTAL OBSERVATIONS:

NMOC

N OF CASES
Ml NI MUM
MAX I MUM
MEAN

VARIANCE
STANDARD

OEV

STD. ERROR

4

0. 1 670
0.2210
0.2007
0.0006
0.0238
0.0119

THE FOLLOWING RESULTS ARE FOR:

DAY

CAM

TOTAL OBSERVATIONS:

1 .00
2.00

NMOC

N OF CASES
Ml NI MUM
MAX I MUM
MEAN
VARIANCE
STANDARD

DEV

STD. ERROP

4

0. 1610
0.2040
0.1835
0.0004
0.0208
0.0104

THE FOLLOWING RESULTS ARE FOR:

DAY
CAN

TOTAL OBSERVATIONS:

1.00
3.00

NMOC

M OF CASES
Ml KI i"Uf:
MAXIMUM
MEAN

VARIANCE
STANDARD

OEV

STD. ERROR

0.1820
0.2160
0.2032
0.0002
0.0148
0.0074

THE FOLLOWING RESULTS ARE FOR:

DAY
CAN

TOTAL OBSERVATIONS:

1 .00
4.00

NMOC

N OF CASES
MlNI MUM
MAXIMUM
MEAN

VARIANCE
STANDARD

DEV

STD. ERROR

4

0.1680
0.1890
0.1778
0.0001
0.0092
0.0046

4-24

(Cont.)

-------
Table 4-11. (cont.)

THE FOLLOWING RESULTS APf FOR:

DAY	¦	2.00

CAK »	1.00

TOTAL OBSERVATIONS: 4

Mf'OC

N OF CASES	1

MINIMUf	flirt

MAXIMUM

VARIANCE

STANDARD DEV	J>

STD. ERROR	0.0165

THE FOLLOWING RESULTS ARE	FOR:

OAY	-	2.00

CAN	¦	2.00

TOTAL OBSERVATIONS:	4

NMOC

N OF CASES

MINIMUM	2*3580

MAXIMUM	0 1120

..	S 0007

VARIANCE	J'5574

STANDARD OEV

STD. ERROR	O.Oi^'

THE FOLLOWING RESULTS ARE	FOR:

DAY -	2.00

CAN '	3.00

TOTAL OBSERVATIONS: 4

Nt'CC

N OF CASES	0.2540

MIMt'UM	« 3150
MAXIMUM

MEAN	0.0008

VARIANCE	0 0284
STAHOARD OEV

STD. ERROR	0,0

THE FOLLOWING RESULTS ARE FOR:

DAY ¦ 2.00
CAN - 4.00

TOTAL OBSERVATIONS: 4

NMOC

N OF CASES	*

MINIMUM	0.2500

MAXIMUM	0.2740

MEAN	0.2583

VARIANCE	0.0001

STANDARD DEV	0.0109

STD. ERROR	0.0055

4-25

(Cont.)

-------
Table 4-11. (cont.)

THE FOLLOWING RESULTS	ARE	FOR s

DAY	.	3.00

CAN	*	2.00

TOTAL OBSERVATIONS:	4

NMOC

N OF CASES	2

MINIMUM	0.2090

MAXIMUM	0.2620

MEAN	0.2355

VARIANCE	0.0014

STANDARD DEV	0.0375

STD. ERROR	0.0265

THE FOLLOWING RESULTS	ARE FORs

DAY	« 3.00

CAN	- 3.00

TOTAL OBSERVATIONS: 4

NMOC

N OF CASES	d

MINIMUM	0 u?0
MAXIMUM

«*»	S:?KJ

VARIANCE	0.0022

STANDARD DEV	n

STD. ERROR

THE FOLLOWING RESULTS ARE FOR:

DAY * 3.00
CAN

4.00

TOTAL OBSERVATIONS:

NMOC

N OF CASES	4

MINIMUM	0.1550

MAXIMUM	0.2210

MEAN	0.1772

VARIANCE	0.0009

STANDARD DEV	0.0301

STD. ERROR	0.0151

THE FOLLOWING RESULTS ARE FOR;

DAY »
CAN ¦

TOTAL OBSERVATIONS: 4

4.00
1.00

NMOC

N OF CASES	4

MINIMUM	)>n#0

MAXIMUM	y 2490

MEAN

1.1733
0.0043
0.0655

STD. ERROR	0.0326

VARIANCE	0.0043

STANDARD DEV	0.0„^

^	rnnAn	vv'«'

o r

(Cont.)

-------
Table 4-11. (cont.)

THE FOLLOWING RESULTS are FOR:

DAY	¦	4.00

CAN	«	2.00

TOTAL OBSERVATIONS: 4

NMOC

N OF CASES	4

MINIMUM	1.0720

MAXIMUM	1.2420

MEAN	1.1315

VARIANCE	0.0060

STANDARD DEV	0.0773

STD. ERROR	0.0387

THE FOLLOWING RESULTS ARE FOR:

DAY •	4.00

CAN •	3.00

TOTAL OBSERVATIONS: 4

NMOC

N OF CASES	4

MINIMUM	0.7610

MAXIMUM	0.6510

MEAN	0.8035

VARIANCE	0.0023

STANDARD DEV	0.0477

STD. ERROR	0.0238

THE FOLLOWING RESULTS ARE FOR:

DAY	¦	4.00

CAN " 4.00

TOTAL OBSERVATIONS: 4

NMOC

N OF CASES	4

MINIMUM	0.7220

MAXIMUM	0.8670

MEAN	0.7982

VARIANCE	0.0042

STANDARD OEV	0.0649

STD. ERROR	0.0324

4-27

-------
Table 4-12. Analysis of Variance for Preliminary Ambient Data.

MODEL: NMOC - u + DAY + CAN + CHANNEL + ERROR
OBSERVATION 33 HAS BEEN DELETED DUE TO VISSIN6 DATA.

OBSERVATION 34 HAS BEEN DELETED	DUE	TO	MISSING DATA.

OBSERVATION 37 HAS BEEN DELETED	DUE	TO	MISSING DATA.

OBSERVATION 38 HAS BEEN DELETED	DUE	TC	MISSING DATA.

NUMBER OF CASES PROCESSED: 60

DEPENDENT VARIABLE MEAN:	0.427

MULTIPLE CORRELATION: .975
SQUARED MULTIPLE CORRELATION: .951

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE	F-RATIO P

DAY	6.506 3	2.169	304.504 .000

CAN	0.210 3	0.070	9.819 .000

CHANNEL	0.039 3	0.013	1.826 .154

ERROR	0.356 50	0.007

4-28

-------
are Radian instrument Channels A, B, C, and 0, respectively. Table 4-11
shows statistics for NMOC values of the DAT-CAN combinations given in Table
4-10. The first set of statistics are for DAT"1.00 and CAN1" 1.00 and shows
a maximum NMOC value of 0.221 ppmC and a minimum of 0.167 with a mean of
0.2007 ppmC. The other statistics given in Table 4-11 for DAY«1.00,
CAN-1.00, are the variance, the standard deviation, and the standard error.
The table summarizes similar statistics for the several DAT-CAN
combinations. The number of cases cited refer to the number of analyses
done on Radian Channels.

Table 4-12 shows the analysis of variance (ANOVA) to assess the
potential of the variables DAT, CAN, and CHANNEL to have significant
effects in characterizing the NMOC variance. Observations 33, 34, 37, and
38 were deleted because of missing data. The program used to calculate the
ANOVA was able to handle the calculations for the unbalanced design and the
results are shown in Table 4-12. The analysis of variance indicated that
the collection day (variable DAT), and the canister (CAN) to be highly
significant (nPH in the ANOVA table<0.01), but that the variable CHANNEL
was not aignficant at the 0.05 level ("P" in the ANOVA table>0.05). The
preliminary analysis of the four ambient samples indicated that the NMOC
values did not differ significantly among the Radian channels.

These results can be misleading, however, because pairs of canisters
were sampled consecutively on each of the four days. If sampling is
introduced as a factor, then CANS no longer is a factor, but Sampling
Procedure does become significant. Because these were preliminary tests
designed primarily to check out the instrumentation operability, little
weight was given these preliminary results. Tests on duplicate samples
(see Section 4.2.4 below) shows that the "CAN" effect is not a significant
factor.

4.2.3 Repeated Analvin

Several ambient samples were analyzed more than once, either by the
same channel, or by a different channel. The purposes of repeating the
analyses were to obtain the overall precision of the determination for a
particular channel, and also to obtain the between-channel variability. It
was also possible to determine if there were significant differences
between the various channels.

4-29

-------
The samples from the 22 designated sites were all sent to the Radian
Research Triangle Park Laboratory where they were first analyzed. Two
types of repeated analyses were done. The first type involved reanalysis
of a sample from one of the designated 22 sites. Repeated analyzes of
these samples were done either by one of the Radian Channels, A, B, C, or
D, and/or by one or both of the EPA Channels, E or GC. The selection of
these samples for the repeated ana lyes was done on a random basis as
described in the Quality Assurance Project Plan, and the selection of the
channel(s) for the repeated analyses was also done by random selection.

For the second type of repeated analysis ambient samples were collected
locally in the Raleigh-Durham-Chapel Hill-Research Triangle Park area by
the Quality Assurance Division (QAD) of the U.S. EPA's Environmental
Monitoring System Laboratory at Research Triangle Park. These samples were
first analyzed by EPA's Channel E (QAD Instrument) followed by reanalyses
on the four Radian Channels* This series of repeated analyses are con-
sidered separately below in Section 4.2.3.2 Local Ambient Samples.

4.2.3.1 All Sites Table 4-13 presents the data for the repeated
analyses from all sampling sites including the local ambient samples
discussed above. Cases 485 through 531 summarise the results of the
repeated analyses from the local ambient samples. All the rest of the
cases given in Table 4-13 are results from the 22 designated sites. As
seen from Table 4-13, the Radian identification number, the mean NHOC value
(in ppmC), the difference between the NMOC values for analyses, and the
channels of the first and subsequent analysis. Negative values of D1
indicate that the initial analysis had a lower value than the subsequent
analysis. Mean NMOC values for the repeated analyses (NMOCBAR) are given
to explore if the NMOC level had any effect on the results.

Table 4-14 and Figure 4-11 give additional statistics and information
on the character of the repeated analyais data. A striking statistic given
in Table 4-14 is the kurtosis of the difference data, Dl, which equals
11.03264. This may indicate an unusually sharp peak in the frequency
distribution data, or the preaence of outliers among the DI data. Examina-
tion of Tables 4-13 and 4-14 indicate that the maximum DI value of 1.46
(Case 356) and the minimum DI value of —1.05 (Case 77 of Table 4—13) are

4-30

-------
Table 4-13. Mean NMOC Value and Differences of Repeated Analyses.

RADIO	Red I an San-ple Identification Number

ALPHA	Channel for the First Analysis

BETA	Channel for a Subsequent Analysis

NMOCBAR	Mean NMOC for Repeated Analyses (¦(NM0C1+NV0C2>/2>

01	Difference of Repeated Analyses (* NMOC 1 -Nf'0C2 )

CHANNEL	IDENTIFICATION:

1.000	Radian Channel	A

2.000	Radian Channel	B

3.000	Radian Channel	C

4.000 Radian Channel D
5.000 EPA OAD Channel
6.000 EPA ESRl Channel

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
16

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

RAD ID

1 175.000
2172.000
1082.000
2307.000
1684.000
1665.OOv
1 1 58.000
1 184.000
1656.000
1434.OCO
2462.000
1061.000
1877.000
1958.000
2335.000
1889.000
1106.000
1040.000
2407.000
1694.000
2021.000
2033.000
2398.000
1999.000
1263.000
1138.000
1340.000
1385.000
1088.000
2005.000
1903.000
2400.000
2334.000
1015.000
1233.000
1209.000
1402.000
1618.000
2226.000
1231.000
1310.000
1473.000
2363.000
1212.000
1249.000
1315.000
2128.000
2050.000
2115.000
2471.000
1255.000
2027.000
2409.000
1371.000
1907.000
1053.000
2445.000
1133.000
1260.000
1410.000
2268.000
1029.000
1033.000

ALPHA

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

BETA

NMOCBAR

1.000

0.580

0.04C

1.000

0.475

-0.030

1 .000

1 .000

0.060

1 .000

0. 585

0.01C

2.000

0.400

-0.060

2.000

0.605

-0.010

4.000

0.945

0.110

5.000

0.710

-0.100

5.000

0.800

-0.080

5.000

1.365

-0.270

5.000

0.825

-0.150

5.000

0.705

-0.090

5.000

1.065

-0.010

5.000

0.945

0.090

5.000

0.890

-0.100

5.000

0.830

-0.660

5.000

1.485

-0.130

5.000

1.050

-0.340

5.000

0.565

-0.130

5.000

0.490

-0.100

5.000

0.675

-0.130

5.000

1.895

-0.070

5.000

0.655

-0.010

5.000

1.105

-0.030

5.000

0.835

-0.130

5.000

1.065

-0.530

5.000

1.095

-0.350

5.000

1.355

-0.350

5.000

1.595

-0.010

5.000

4.320

0.080

5.000

0.330

-0.160

5.000

0.420

-0.060

5.000

1.305

-0.070

5.000

1.055

-0.190

5.000

0.620

-0.020

6.000

0.450

0.040

6.000

0.420

0.040

6.000

0.645

0. 1 10

6.000

0.510

-0.020

6.000

0.670

0.120

6.000

0.675

-0.030

6.000

1.450

-0.060

6.000

2.930

0.320

6.000

0.530

0.020

6.000

1.285

-0.690

6.000

1.040

0.200

6.000

1.435

-1.050

6.000

0.660

0.060

6.000

0.495

0.050

6.000

0.455

0.050

6.000

0.495

-0.030

6.000

0.455

0.050

6.000

0.985

0. 150

6.000

4.010

0.140

6.000

0.770

0.080

6.000

4.170

0.280

6.000

0.495

-0.090

6.000

0.325

0.010

6.000

0.745

0.170

6.000

0.895

0.070

6.000

0.340

0.

6.000

1.510

-0.180

6.000

0.725

0.330

-------
Table 4-13

(cont.)

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

64

65

66

67
66

69

70
7 1

72

73

74

75

76

77

78

79
60

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

ioe

109

110
1 11
112
1 13

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

'049.000
"31. 000
1979.000
1081.000
1294.000
'376.000
1423.000
2064.000
1216.000
'342.000
1343.000
1492.000
2327.000
2440.000
1 "2.000
1 "8.000
1479.000
2297.000
2033.000
1489.000
1875.000
2022.000
2364.000
1030.000
1190.000
1497.000
2057.000
2412.000
1871.000
1099.000
1820.000
1858.000
1008.000
1635.000
2005.000
1103.000
1644.000
1788.000
1220.000
234 5.000
1037.000
1080.000
1079.000
"05.000
2108.000
2469.000
1344.000
1559.000
1494.000
1651.000
1084.000
1113.000
1135.000
2439.000
2102.000
2405.000
2474.000
1428.000
1666.000
1195.000
1383.000
2366.000
1001.000
1335.000
1075.000
2133.000
2097.000
1985.000
"24.000
"91.000
1066.000
1219.000
1262.000
' "6.000
2127.000

.000
.000
.0 oc
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000
2.000

4-32

6.000
6.000
6. 000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
1 .000
1 .000
1 .000
2.000
2.000
2.000
3.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000

1.615
0. 580
0.465
1 .085
0.765
1 . 295
1 .565
1 .325
1 .290
2.460
0.670
0.530

,205
,400
.875
,555
,335
.760
1.810
0.700
1 .380
1.900
1 .835
0.805
0.760
0.285
1 .010
0.690
0.440
0.610
0.190
0.490
1.070
0.790
4.040
0.550
0.220
0.370
1 .345
1.520
0.655
0.295
0.410
0.545
1.535
1 .1 00
0.620
1 .27 5
0.330
0.235
1 .055
1.810
0.875
0.275
0.450
0.505
0.205
1.525
1.545
1 .145
1 .285
1.040
1.320
0.980
0.945
0.855
0.555
0.680
1 .220
2.365
0.750
0.715
0.400
1.070
0.370

0.170
0.0 20
0.030
0.070
0.050
0.110
-0.430
0. 050
0.020
0.040
0.
-0.040
0. 130
0.060
0.330
0.050
0.210
0.060
0.1 00
0.200
0. 1 00
0.

0. 170
-0.090
0. 1 20
0.010
-0.100
0.040
-0.280
0.060
0.020
0.
-0.120
0.060
0.640
0.060
0.040
0.080
0.010
0.140
0. 130
-0.030
0.080
0.050
-0.310
-0.020
-C.100
0.050
0.
-0.090
-0.050
0.260
-0.490
-0.090
-0.140
-0.510
-0.050
-0.170
0.110
-0.010
-0.290
-0.260
-0.620
-0.360
-0.190
-0.010
-0.130
-0.100
-0.220
0. 190
-0.140
-0.250
-0.260
-0.160
-0.C40

-------
Table 4-13

(cont.)

CASE 139
CASE WO
CASE 141
CASE 142
CASE 143
CASE 144
CASE 145
CASE 146
CASE 147
CASE 148
CASE 149
CASE 150
CASE 151
CASE 152
CASE 153
CASE 154
CASE 155
CASE 156
CASE 157
CASE 158
CASE 159
CASE 160
CASE 161
CASE 162
CASE 163
CASE 164
CASE 165
CASE 166
CASE 167
CASE 168
CASE 169
CASE 170
CASE 171
CASE 172
CASE 173
CASE 174
CASE 175
CASE 176
CASE 177
CASE 178
CASE 179
CASE 180
CASE 181
CASE 182
CASE 183
CASE 184
CASE 185
CASE 186
CASE 187
CASE 188
CASE 189
CASE 190
CASE 191
CASE 192
CASE 193
CASE 194
CASE 195
CASE 196
CASE 197
CASE 198
CASE 199
CASE 200
CASE 201
CASE 202
CASE 203
CASE 204
CASE 205
CASE 206
CASE 207
CASE 208
CASE 209
CASE 210

'623.COO
1712.000
2003.000
1 113.000
1918.000
2014.000
2298.000
1494.000
1766.000
1679.000
1216.000
1264.000
1458.000
1616.000
1872.000
2294.000
1411.000
2410.000
2474.000
1380.000
2367.000
1068.000
1377.000
1562.000
2038.000
1084,000
1007.000
1155.000
1365.000
2006.000
2330.000
1027.000
1034.000
1361.000
1491.000
2360.000
1047.000
1739.000
1944.000
2097.000
2250.000
1471.000
1 506.000
1599.000
1633.000
1984.000
2181.000
1809.000
1985.000
2070.000
1429.000
1460.000
1091.000
1790.000
2272.000
2496.000
1140.000
1206.000
1248.000
1400.000
1700.000
1696.000
1923.000
1019.000
1038.000
1257.000
1344.000
1548.000
2432.000
1100.000
1285.000
1439.000

2.000

5.000

C. 765

-0.51C

2.000

5.000

1. 195

-0.210
-0.040

2.000

5.000

0. 560

2.000

6.000

1 .670

0.140

2.000

6.000

0.110

0.C40

2.000

6.000

C.420

0.

2.COO

6.000

0.740

0. 060

2.000

6.000

0.305

0.050

2.000

6.000

1.530

0.220

2.000

6.000

0. 525

0. 030

2.000

6.000

0.620

-0.020

2.000

6.000

0.605

0.C30

2.000

6.000

1 .160

0.020

2.000

6.000

1 .065

0. 1 30

2.000

6.000

3.795

0.090

2.000

6.000

0.085

0.050

7.000

6.000

0.265

-0.170

2.000

6.000

0.770

0.040

2.000

6.000

0.165

0.030

2.000

6.000

1. 180

0. 100

2.000

6.000

1.160

0.120

2.000

6.000

0.455

0.01C

2.000

6.000

0.455

-0.010

2.000

6.000

0.500

0.080

2.000

6.000

0.475

O.CIO

2.000

6.000

0.950

0. 160

2.000

6.000

0.940

-0.120

2.000

6.000

0.680

0.120

2.000

6.000

0.780

0.060

2.000

6.000

0.545

0.050

2.000

6.000

0.950

-0.020

2.000

6.000

1.610

-0.140

2.000

6.000

1.470

-0.120

2.000

6.000

0.325

0.010

2.000

6.000

0.870

0.040

2.000

6.000

1.745

0. 190

2.000

6.000

1.240

0.100

2.000

6.000

2.025

0.130

2.000

6.000

0.810

0.040

2.000

6.000

0.480

0.020

2.000

6.000

0.405

-0.010

2.000

6.000

1.610

-0.300

2.000

6.000

1.630

0.100

2.000

6.000

0.465

0.070

2.000

6.000

0.450

0.020

2.000

6.000

0.620

0.080

2.000

6.000

0.620

0.080

2.000

6.000

1 .795

0.210

2.000

6.000

0.620

0.020

2.000

e.ooo

2.155

0.170

2.000

6.000

1.605

0.070

2.000

6.000

0.730

0. 140

2.000

6.000

0.825

-0.050

2.000

6.000

0.745

0.210

2.000

6.000

0.850

0.080

2.000

6.000

0.545

0.090

2.000

6.000

0.440

0.

2.000

6.000

0.570

0.060

2.000

6.000

0.420

-0.100

2.000

6.000

0.385

0.050

2.000

6.000

0.555

0.070

2.000

6.000

0.450

0.080

2.000

6.000

0.370

0.040

2.000

6.000

1 .275

0.030

2.000

6.000

0.620

0.080

2.000

6.000

0.830

-0.060

2.000

6.000

0.870

-0.600

2.000

6.000

4.720

0.040

2.000

6.000

0.560

C.C40

2.000

6.000

0.880

o.oec

2.000

6.000

0.465

-0.010

2.000

6.000

0.425

0.010

4-33

-------
Table 4-13 (cont.)

CASE

21 1

2227.000

2.000

CASE

212

2269.000

2. 000

CASE

213

1118.000

2.000

CASE

214

1464.000

2.000

CASE

215

1708.000

2.000

CASE

216

2284.000

2.000

CASE

217

1360.000

2. 000

CASE

218

2375.000

2.000

CASE

219

1202.000

3.000

CASE

220

1792.000

3.000

CASE

221

1236.000

3.000

CASE

222

1490.000

3.000

CASE

223

1812.000

3.000

CASE

224

1718.000

3.000

CASE

225

2273.000

3.000

CASE

226

1973.000

3.000

CASE

227

1447.000

3.000

CASE

228

1455.000

3.000

CASE

229

2449.000

3.000

CASE

230

1254.000

3.000

CASE

231

2155.000

3.000

CASE

232

2042.000

3.000

CASE

233

2206.000

3.000

CASE

234

1484.000

3.000

CASE

235

2356.000

3.000

CASE

236

1325.000

3.000

CASE

237

1936.000

3.000

CASE

238

1408.000

3.000

CASE

239

1770.000

3.000

CASE

240

2361.000

3.000

CASE

241

1 152.000

3.000

CASE

242

1761.000

3.000

CASE

243

1634.000

3.000

CASE

244

1675.000

3.000

CASE

245

1754.000

3.000

CASE

246

1645.000

3.000

CASE

247

1927.000

3.000

CASE

248

1969.000

3.000

CASE

249

1210.000

3.000

CASE

250

2071.000

3.000

CASE

251

1170.000

3.000

CASE

252

1347.000

3.000

CASE

253

1670.000

3.000

CASE

254

1935.000

3.000

CASE

255

1024.000

3.000

CASE

256

1054.000

3.000

CASE

257

1072.000

3.000

CASE

258

1692.000

3.000

CASE

259

2168.000

3.000

CASE

260

1119.000

3.000

CASE

261

1891.000

3.000

CASE

262

1904.000

3.000

CASE

263

1073.000

3.000

CASE

264

1324.000

3.000

CASE

265

1593.000

3.000

CASE

266

1624.000

3.000

CASE

267

1753.000

3.000

CASE

268

1856.000

3.000

CASE

269

2054.000

3.000

CASE

270

2468.000

3.000

CASE

271

1523.000

3.000

CASE

272

1610.000

3.000

CASE

273

1819.000

3.000

CASE

274

2241.000

3.000

CASE

275

2281.000

3.000

CASE

276

1046.000

3.000

CASE

277

1050.000

3.000

CASE

278

1274.000

3.000

CASE

279

1442.000

3.000

CASE

280

1659.000

3.000

CASE

281

1721.000

3.000

CASE

282

2423.000

3.000

CASE

2 83

2472.000

3.000

CASE

284

1406.000

3.000

6.000

6.CC0

6. 000

6.000

6. 000

6.000

6.000

6.0C0

1 .000

1 .000

3.000

4.000

4.000

4.000

4.000

4.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.000

5.COO

5.000

5.000

5.000

5.000

5. 000

5.000

5.000

5.000

5.000

5.000

5.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

6.000

0.13;

C.280
0.560
C.620
0.600
0.545
0.455
0.175
0.795
0.820
0.855
1 .325
0.525
0.81 5
1 .870
0.855
1 .230
0.680
0.315
0.740
0.310
0.695
1.010
0.570
0.805
1.185
0.960
1.515
0.810
1.760
0.725
0.905
1.160
0.920
1.055
0.500
3.670
1.185
0.885
0.730
1.290
0.700
0.360
0.590
1 .1 60
0.980
0.785
0.340
0.215
1 .355
0.525
0.825
0.720
0.405
0.485
0.370
0.680
0.350
0.540
0.230
0.690
0.540
0.710
2. 120
0.630
0.960
1 .300
0.435
0. 185
0.765
0.270
1 .745
0.210
2.405

0.C1 c
-0.32C
C.04C
0. 1 2C
C.08C
0.C50
-0.050
-0.010
0. 050
-0.060
0.C73
0.270
-0.030
0.250
0.180
0.050
-0.240
-0.040
0.010
-0.100
-0.040
-0.050
0.020
-0.040
-0.010
-0.230
0.040
-0.090
-0.360
0.040
-0.190
-0.270
-0.140
0.120
-0.090
-0.120
0.060
-0.350
-0.290
0.080
-0.080
-0.080
-0.120
-0.040
-0.120
-0.040
-0.110
-0.220
-0.130
-0.830
-0.090
-0.170
0.

0.050
0.070
0.
-0.160
0.

0.1 20
-0.040

0.200
0.020
0.06C
0. 180
0.200
0.320
0.340
0.050
0.010
0. 1 10
-0.020
C. 150
0.

0.390



-------
Table A—13 (cont.)

CASE

285

1646.000

3.000

6.000

0. 900

0. 1 8C

CASE

286

2283.000

3.000

6.000

1 . 075

0.170

CASE

287

2393.000

3.000

6.000

2. 490

0.340

CASE

288

2418.000

3.000

6.000

1 . 375

0. 1 30

CASE

289

2459.000

3.000

6.000

1 . 065

0.170

CASE

290

1735.000

3.000

6.000

0.510

0.

CASE

291

2180.000

3.000

6.000

1.110

0. 1 20

CASE

292

1078.000

3.000

6.000

1. 795

0. 290

CASE

293

1161.000

3.000

6.000

0.695

0.110

CASE

294

1573.000

3.000

6.000

0.465

0.050

CASE

295

1650.000

3.000

6.000

0.670

0.000

CASE

296

1929.000

3.000

6.000

0.670

0. 160

CASE

297

2161 .000

3.000

6.000

2.610

0.660

CASE

298

2174.000

3.000

6.000

0.590

0.

CASE

299

1000.000

3.000

6.000

0.890

C)
eg
o

0

1

CASE

300

1028.000

3.000

6.000

1.610

0.

CASE

301

1070.000

3.000

6.000

0.985

0.03C

CASE

302

1 174.000

3.000

6.000

0.460

0.060

CASE

303

1566.000

3.000

6.000

1 .305

0.230

CASE

304

1852.000

3.000

6.000

0.380

0.020

CASE

305

1936.000

3.000

6.000

0.955

0.050

CASE

306

2152.000

3.000

6.000

0.730

0. 1 CO

CASE

307

2203.000

3.000

6.000

0.485

0.050

CASE

306

1180.000

3.000

6.000

1 . 140

0. 140

CASE

309

1450.000

3.000

6.000

0.780

0. 120

CASE

310

1877.000

3.000

6.000

0.815

0.050

CASE

311

2223.000

3.000

6.000

1.030

0.060

CASE

312

2428.000

3.000

6.000

1.805

0.010

CASE

313

1042.000

3.000

6.000

0.725

0.250

CASE

314

1239.000

3.000

6.000

0.505

-0.070

CASE

315

1334.000

3.000

6.000

0.630

0.120

CASE

316

1630.000

3.000

6.000

0.475

0.030

CASE

317

1802.000

3.000

6.000

1.200

0.140

CASE

318

2333.000

3.000

6.000

1.605

0.030

CASE

319

2484.000

3.000

6.000

0.735

0.030

CASE

320

1675.000

3.000

6.000

0.810

0.340

CASE

321

1833.000

3.000

6.000

0.550

0. 260

CASE

322

1822.000

3.000

6.000

0.620

0.040

CASE

323

2126.000

3.000

6.000

0.425

0. 090

CASE

324

2487.000

3.000

6.000

0.460

-0.180

CASE

325

1782.000

3. COO

6.000

1 .385

0.530

CASE

326

1927.000

3.000

6.000

3.525

0.350

CASE

327

2323.000

3.000

6.000

0.495

0.010

CASE

328

1351.000

3.000

6.000

1.560

0.060

CASE

329

2200.000

3.000

6.000

0.720

0.040

CASE

330

1012.000

3.000

6.000

0.865

0.030

CASE

331

1032.000

3.000

6.000

1.085

0.05C

CASE

332

1059.000

3.000

6.000

1 .325

0.290

CASE

333

1359.000

3.000

6.0 00

0.510

-0.060

CASE

334

1640.000

3.000

6.000

0.760

0.1 00

CASE

335

1670.000

3.000

6.000

0.295

0.010

CASE

336

1774.000

3.000

6.000

0.670

0.

CASE

337

1935.000

3.000

6.000

0.480

0.180

CASE

338

2158.000

3.000

6.000

0.530

0.040

CASE

339

1621.000

3.000

6.000

0.745

-0.050

CASE

340

1963.000

3.000

6.000

2.125

0. 150

CASE

341

1840.000

3.000

6.000

0.495

0.290

CASE

342

2177.000

3.000

6.000

0.395

-0.010

CASE

343

1130.000

3.000

6.000

0.840

0.100

CASE

344

1483.000

3.000

6.000

2.220

0.260

CASE

345

1795.000

3.000

6.000

0.945

-0.050

CASE

346

1843.000

3.000

6.000

0.320

0.

CASE

347

2188.000

3.000

6.000

0.725

0.010

CASE

348

1244.000

3.000

6.000

0.785

0.210

CASE

349

1585.000

3.000

6.000

0.430

0.040

CASE

350

1686.000

3.000

6.000

0.680

-0.020

CASE

351

1973.000

3.000

6.000

0.840

0.080

CASE

352

2072.000

3.000

6.000

0.175

0.030

CASE

353

1151.000

3.000

6.000

0.455

0.070

4-35

-------
Table 4-13 (cont.)

CASE

354

1605.000

CASE

355

1756.000

CASE

356

1990.000

CASE

357

1010.000

CASE

358

1188.000

CASE

359

1372.000

CASE

360

1564.000

CASE

361

1619.000

CASE

362

1742.000

CASE

363

1691.000

CASE

364

2388.000

CASE

365

1797.000

CASE

366

1 169.000

CASE

367

1777.000

CASE

368

2147.000

CASE

369

2170.000

CASE

370

2325.000

CASE

371

1863.000

CASE

372

1357.000

CASE

373

2448.000

CASE

374

1878.000

CASE

37 5

2039.000

CASE

376

1011.000

CASE

377

1031.000

CASE

378

1253.000

CASE

379

2087.000

CASE

380

1853.000

CASE

381

1087.000

CASE

382

2392.000

CASE

383

1449.000

CASE

384

1044.000

CASE

385

2173.000

CASE

386

1860.000

CASE

387

2154.000

CASE

388

1457.000

CASE

389

1045.000

CASE

390

1157.000

CASE

391

1124.000

CASE

392

1206.000

CASE

393

1409.000

CASE

394

1451.000

CASE

395

1313.000

CASE

396

2371.000

CASE

397

1048.000

CASE

398

1098.000

CASE

399

2217.000

CASE

400

2466.000

CASE

401

1116.000

CASE

402

1153.000

CASE

403

1723.000

CASE

404

2159.000

CASE

405

2489.000

CASE

406

1870.000

CASE

407

1052.000

CASE

408

1671.000

CASE

409

2278.000

CASE

410

1323.000

CASE

411

1495.000

CASE

412

1591.000

CASE

413

1617.000

CASE

414

1663.000

CASE

415

1678.000

CASE

416

1841.000

CASE

417

2301.000

CASE

418

1490.000

CASE

419

2450.000

CASE

420

1006.000

CASE

421

1018.000

CASE

422

1069.000

CASE

423

1234.000

CASE

424

1258.000

CASE

425

1661.000

,000

6.000

0.745

000

6.000

0.69C

000

6.000

0.635

000

6.000

0.705

000

6. 000

0.360

,000

6.000

0.415

000

6.000

0.215

,000

6.000

0.435

000

6.000

0.505

,000

6.000

0. 560

000

6.00C

i. ii;

000

2.000

0.765

000

3.000

0.395

000

3.000

0.705

000

3.000

1.810

000

4.000

0.490

000

4.000

0.930

000

5.000

1 .065

000

5.000

1.035

000

5.000

4.260

000

5.000

1.825

000

5.000

1. 140

000

5.000

1.780

000

5.000

1.075

00 0

5.000

0.660

000

5.000

0.325

000

5.000

1.135

000

5.000

1.170

000

5.000

0.370

000

5.000

0.820

000

5.000

1.675

000

5.000

0.495

000

5.000

0.605

000

5.000

0.680

000

5.000

0.685

000

5.000

1 .100

000

5.000

0.270

000

5.000

1.195

000

5.000

1.150

000

5.000

1.410

000

5.000

1.445

000

5.000

0.950

000

5.000

0.455

000

5.000

0.430

000

5.000

0.930

000

5.000

0.850

000

5.000

0.250

000

6.000

0.840

000

6.000

0.335

000

6.000

0.545

000

6.000

0.500

000

6.000

0.335

000

6.000

0.420

000

6.000

2.560

000

6.000

1.665

000

6.000

0.095

000

6.000

0.375

000

6.000

0.225

000

6.000

0.590

000

6.000

0.760

000

6.000

1.255

000

6.000

0.350

000

6.000

0.360

000

6.000

0.820

000

6.000

1.190

000

6.000

2.570

000

6.000

1.155

000

6.000

0.880

000

6.000

0.490

000

6.000

0.575

000

6.000

0.480

000

6.000

1.840

o.no

0.040
0.030
0.030
0. C80
0.050
0.010
0.210
-0.110
-0.160
0.110
-0.090
-0.01C
0.03C
-0. UC
-0.020
-0.020
-0.370
-0.170
0.020
0.010
0.040
-0.220
-0.130
-0.180
-0.090
-0.190
-0.140
-0.120
-0.240
-0.190
0.010
-0.070
-0.060
-0.270
-0.140
-0.120
-0.610
-0.400
-0.100
-0.190
-0.360
-0.270
-0.120
-0.380
-0.100
-0.120
-0.020
-C.090
0.150
0.100
0.090
-0.020
0.380
0. 130
0.030
-0.050
0.010
0. 140
0. 100
0. 190
0.020
0.040
0.

0.

0.1 00
-0.130
0.

0.080
-0.010
-0.020
-0.220

4-36

-------
Table 4-13 (cont.)

CASE

426

2149.000

CASE

427

2392.000

CASE

426

1626.000

CASE

429

1976.000

CASE

430

2461.000

CASE

431

1267.000

CASE

432

1441 .000

CASE

433

1748.000

CASE

434

2498.000

CASE

435

1021.000

CASE

436

1955.000

CASE

437

1039.000

CASE

438

1200.000

CASE

439

1565.000

CASE

440

2062.000

CASE

441

1387.000

CASE

442

1424.000

CASE

443

1860.000

CASE

444

2051.000

CASE

445

2061.000

CASE

446

1163.000

CASE

447

1293.000

CASE

448

1797.000

CASE

449

1902.000

CASE

450

1846.000

CASE

451

1898.000

CASE

452

2175.000

CASE

453

1603.000

CASE

454

1674.000

CASE

455

2144.000

CASE

456

2434.000

CASE

457

2279.000

CASE

458

2340.000

CASE

459

1192.000

CASE

460

1225.000

CASE

461

1321.000

CASE

462

1664.000

CASE

463

2116.000

CASE

464

2368.000

CASE

465

1056.000

CASE

466

1561.000

CASE

467

1653.000

CASE

468

1893.000

CASE

469

2112.000

CASE

470

2324.000

CASE

471

1235.000

CASE

472

1930.000

CASE

473

1981.000

CASE

474

2353.000

CASE

475

1167.000

CASE

476

1681.000

CASE

477

2426.000

CASE

478

1186.000

CASE

479

1316.000

CASE

480

2100.000

CASE

481

2464.000

CASE

482

1016.000

CASE

483

2000.000

CASE

484

2199.000

CASE

485

1041.000

CASE

486

1095.000

CASE

487

1160.000

CASE

488

1282.000

CASE

489

1502.000

CASE

490

1529.000

CASE

491

1581.000

CASE

492

1733.000

CASE

493

1851.000

CASE

494

1946.000

CASE

495

2034.000

.000
.000
.000
.000
.000
.000

.oco

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.315
0.325
1.005
0.440
3.720
0.610
1 .000
0.955
0.270
0.625
0.505
1 .600
0.625
1.190
1 .500
1.385
0.610
0.530
0.740
0.535
1.395
2.595
0.730
0.410
0.610
0.640
0.850
1.950
0.845
1.495
120
315
415
1.460
1.435
760
560
650
1.995
760
395
135
390
880
460
725
760
435
3 20
235
880
800
j .645
920
555
880
505
805
295
1.610
760
220
1.405
1.410
1.535
1.525
1.560
0.245
1.190
0.630

1

0.
0.

0.
0.
0.

0.010
-0.030
0. 1 30
0.040
0.420
0.

0. 060
-0.210
0.020
0.13C
-0.070
0.020
-0.050
0.200
0.280
0.050
0. 140
0.080
0.080
0.090
0.330
0.230
-0.020
-0.060
0.140
0.
-0.060
0.240
0.170
0.170
0.140
0.030
-0.150
1.460
-0.350
-0.060
• 0.060
0.

0.090
0.140
0.050
0. 170
-0.020
0.140
0.040
0.030
0.040
0.050
-0.020
0.050
0.
-0.280
0.210
0.120
-0.050
0.020
0.250
0.010
-0.010

0.
-0.040
-0.180
-0.150
-0.140
-0.110
-0.010
0.040
-0.050
-0.120
-0.040

4-37

-------
Table 4-13 (cont.)

CASE 496	2387.000	5.

CASE 497	2499.000	5.

CASE 498	1041.000	5.

CASE 499	1095.000	5.

CASE 500	1160.000	5.

CASE 501	1282.000	5.

CASE 502	1502.000	5.

CASE 503	1 581 .000	5.

CASE 504	1733.000	5.

CASE 505	1851.000	5.

CASE 506	1946.000	5.

CASE 507	2034.030	5.

CASE 508	2387.000	5.

CASE 509	2499.000	5.

CASE 510	1041.000	5.

CASE 511	1095.000	5.

CASE 512	1160.000	5.

CASE 513	1282.000	5.

CASE 514	1502.000	5.

CASE 515	1581.000	5.

CASE 516	1851.000	5.

CASE 517	1946.000	5.

CASE 518	2034.000	5.

CASE 519	2387.000	5.

CASE 520	2499.000	5.

CASE 521	1041.000	5.

CASE 522	1095.000	5.

CASE 523	1160.000	5.

CASE 524	1282.000	3.

CASE 525	1502.000	5.

CASE 526	1581,000	5.

CASE 527	1851.000	5.

CASE 528	1946.000	5.

CASE 529	2034.000	5.

CASE 530	2387.000	5.

CASE 531	2499.000	5.

000

1 .000

2. 065

-0.110

000

1 .000

3.050

-0.18C

000

2.000

1 .620

-0.020

000

2.000

0.785

-0.090

000

2.000

2.180

-0.100

000

2.000

1 .360

-0.060

000

2.000

1 .400

-0.120

000

2.000

1 .550

-0.060

000

2.000

1 .580

0.

000

2.000

0.220

0.

000

2.000

1 .200

-C.140

000

2.000

0.620

-0.02C

000

2.000

2.075

-0.130

000

2.000

3.080

-0.240

000

3.000

1.660

-0.100

000

3.000

0.750

-0.020

000

3.000

2.230

-0.200

000

3.000

1 .325

0.010

000

3.000

1 .385

-0.090

000

3.000

1.490

0.060

000

3.000

0.220

C.

000

3.000

1.150

-0.C40

000

3.000

0.630

-0.040

000

3.000

2.040

-0.06C

000

3.000

3.030

-0.140

000

4.000

1.655

-0.090

000

4.000

0.735

0.010

000

4.000

2.240

-0.220

000

4.000

1.300

0.060

000

4.000

1.340

0.

000

4.000

1.510

0.020

000

4.000

0.225

-0.010

000

4.000

1.140

-0.020

000

4.000

0.625

-0.030

000

4.000

2.000

0.020

000

4.000

2.970

-0.020

-------
4-39

-------
Table 4-14. Statistics for Repeated Analyses,
Mean NMOC, and NMOC Differences.

TOTAL OBSERVATIONS: 531

N OF CASES
MINI MUM
MAXIMUM
RANGE
MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSIS

NM0C3AR

531
0.08500
4.72000
4.63500
0.97391
0.48021
0.69297
0.03007
2.13691
6.29178

D I

531

-1 . 05000
1.46000
2.51000
-0.00194
0.03377
0.18376
0.00797
0.06887
1 1 .03264

4-40

-------
Figure 4*11. Frequency Diagram of Repeated Difference Data.

STEM AND LEAF PLOT OF VARIABLE:	DI

SMALLEST VALUE AT	TOP OF PLOT IS: -1.050000

-10	5

-8	3

-6	96210

-5	311

-4	930

-3	8766655554
***OUTSIDE VALUES***

-3	2

-3	10

-2	9988

-2	777766

-2	5444

-2	322222

-2	110

-1	99999988888

-1	77776666

-1	5554444444444

-1	333333333222222222222

-1	1111000000000000

"0 H	999999999999998888

~0	77777666666666666

-0	555555555554444444444444

-0	33333333222222222222222222222

-0	11111111111111111

0 M	000000000000000000000000000011111111111111111111111

0	22222222222222222233333333333333333

0	4444444444444444444444444444555555555555555555555555555

0	666666666666666666677777777

0	H	8888888888888888889999999

1	0000000000111 111 11

1	2222222222233333333

1	4444444444445555

1	66777777777

1	88888999

2	00000111111
2	233

2	4555

2	6667

2	88999

3

3	22
***OUTSIDE VALUES***

3	333444589

4	2

5	3

6	46
14	6

-------
likely to be outliers. Recalculating the statistics for NMOCBAR and DI,
deleting Cases 77 and 356 from the data set results in the numbers given in
Table 4-15. The kurtosis number for DI in Table 4-15 is 3.608, a more
reasonable number. The standard deviation of the differences moves from
0.18376 for all the data points to 0.16664, considering two outliers in the
original set. This would give a percent coefficient of variation (ZCV) of
18.9Z for the mean NMOC measurement for repeated analyses for the entire
data set and a percent coefficient of variation of 17.1Z for the mean NMOC
measurement considering the maximum and minimum differences of the original
data set to be outliers. Because the presence of only 2 potential outliers
(out of 531) changes the ZCV about 1.8Z and the kurtosis from 11.0 to 3.6,
it could be argued that the two data points should be removed from the data
set. In the analysis that follows, however, Cases 77 and 356 of the
original data set were retained.

Precision of the repeated analyses may be characterised by either the
standard deviations of the differences, or the coefficient of variation
percentage. These numbers would be: (1) standard deviation " +, 0.184
ppmC, or (2) Z coefficient of variation ¦ 18.9Z.

An additional measure of precision may be calculated from the average
of the absolute magnitudes of the differences. Table 4-16 gives the
statistics for that calculation, showing an overall percent difference of
[(0.11896)/(0.97391)] x 100 which equals 12.2Z.

Table 4-13 and Figure 4-11 also indicate that the frequency distribu-
tion of the repeated difference data is approximately symmetrical about the
mean, median, and mode. Note also that the mean difference, DT - -0.00194,
is essentially zero.

Table 4-17 gives the statistics for the repeated analyses tabulated by
the channels pairs on which the repeated analyses were done. For example
the first data set shows results for ALPHA - 1.00 and BETA - 1.00, which
indicate that for 4 cases both the first analysis and the second analysis
was done on Channel A. The second data set indicates that the results are
for ALPHA " 1.00 and BETA ¦ 2.00, indicating that the first analysis was on
Radian Channel A and the second analysis was on Channel B.

4-42

-------
Table 4-15. Statistics for Repeated Analyses.

Two Possible Outliers Removed.

TOTAL OBSERVATIONS: 529

N OF CASES
MlNI MUM
MAX I f!UM
RANGE
MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSIS

NMOCBAR

529
0.08500
4.72000
4.63500
0.97212
0.48117
0.69367
0.03016
2.14510
6.31095

D I

529
-0.83000
0.66000
1.49000
-0.00272
0.02777
0.16664
0.00725
-0.70164
3.60832

4-43

-------
Table 4-16. Statistics for Repeated Analyses with

the Absolute Magnitude of NMOC Differences.

TOTAL OBSERVATIONS: 531

N OF CASES
MlNI HUM
MAX I MUM
RANGE
MEAN

VARIANCE
STANDARD OEV
STD. ERROR
SKEW MESS
KURTOSIS

NMOCBAR

531
0.08500
4.7 2000
4.63500
0.97391
0.48021
0.69297
0.03007
2.13691
6.29178

D I

531

0.

1 .46000
1 .46000
0. 11896
0.01959
0. 13998
0.00607
3.56047
21.69396

4-44

-------
Table 4-17. Statistics for Repeated Analyses, Tabulated by Instrument
Channel Pairs.

NMOCBAR

DI

Difference between Repeated Anayses. (NMOC1-NM0C2)

ALPHA

Channel of the

First

AnalysIs.

BETA

Channel of the

Second

Analys1s.

CHANNEL

IDENTIFICATION





1.000

Radian Channel

A

4.000 Radian Channel D

2.000

Radian Channel

B

5.000 EPA QAD Channel

3.000

Radian Channel

C

6.000 EPA ESRL Channel

THE FOLLOWING RESULTS ARE FOR:





ALPHA

1 .DO





BETA

1.00





TOTAL OBSERVATIONS:

4





NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

0.47500
1.00000
0.66000
0.05395
0.23227
0.11614

-0.03000
0.06000
0.02000
0.00153
0.03916
0.01958

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 1.00
BETA - 2.00

TOTAL OBSERVATIONS: 2

NMOCBAR

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

0.40000
0.60500
0.50250
0.02101
0.14496
0.10250

DI

-0.06000
-0.01000
-0.03500
0.00125
0.03536
0.02500

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 1•00
BETA « 4.00

TOTAL OBSERVATIONS:

1

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

1

0.94500

0.94500

0.94500

0.

0.

0.

1

0.11000
0.11000
0.11000
0.

0.

0.

4-45

-------
Table 4-17 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA »	1.00

BETA «	5.00

TOTAL OBSERVATIONS: 28

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

28

0.33000
4.32000
1.07321
0.53947
0.73448
0.13880

28

-0.66000
0.09000
-0.14643
0.02872
0. 16947
0.03203

THE FOLLOWING RESULTS ARE FOR:

ALPHA ¦	J.00

BETA - 6.00

TOTAL OBSERVATIONS: 73

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

73

0.19000
4.17000
1.03582
0.69262
0.83224
0.09741

73

-1.OSOOO
0.64000
0.03082
0.04467
0.21136
0.02474

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 2.00
BETA * 1.00

TOTAL OBSERVATIONS: 3

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

3

0.62000
1.27500
0.99833
0.11501
0.33913
0.19580

-0.10000
0.05000
-0.02333
0.00563
0.07506
0.04333

THE FOLLOWING RESULTS ARE FOR:

ALPHA > 2.00
BETA ¦ 2.00

TOTAL OBSERVATIONS: 3

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

0.23500
1.05500
0.54000
0.20118
0.44853
0.25896

-0.09000
0.

-0.04667
0.00203
0.04509
0.02603

-------
Table 4-17 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 2.00
BETA - 3.00

TOTAL OBSERVATIONS: 1

NMOCBAR	01

N OF CASES 1	1

MINIMUM	1.81000	0.26000

MAXIMUM	1.81000	0.26000

MEAN	1.81000	0.26000

VARIANCE	0.	0.

STANDARD DEV	0.	0.

STD. ERROR	0.	0.

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 2.00
BETA » 5.00

TOTAL OBSERVATIONS: 26

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

26

0.20500
2.36500
0.90827
0.22770
0.47718
0.09358

26

-0.62000
0.19000
-0.19038
0.03700
0.19236
0.03773

THE FOLLOWING RESULTS ARE FOR:

ALPHA ¦ 2.00
BETA - 6.00

TOTAL OBSERVATIONS: 77

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

77

0.08500
4.72000
0.87468
0.54024
0.73501
0.08376

77

-0.60000
0.22000
0.03039
0.01449
0.12036
0.01372

THE FOLLOWING RESULTS ARE FOR:

ALPHA • 3.00
BETA • 1.00

TOTAL OBSERVATIONS: 2

NMOCBAR

DI

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.79500
0.82000
0.80750
0.00031
0.01768
0.01250

-0.06000
0.05000
-0.00500
0.00605
0.07778
0.05500

4-47

-------
Table 4-17 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA	«	3.00

BETA	•	3.00

TOTAL OBSERVATIONS:

I

NMOCBAR

01

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

1

0.85500

0.85500

0.85500

0.

0.

0.

1

0.07000

0.07000

0.07000

0.

0.

0.

THE FOLLOWING RESULTS ARE FOR:

ALPHA	¦	3.00

BETA « 4.00

TOTAL OBSERVATIONS: 5

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

5

0.52500
1.87000
1.07800
0.27824
0.52749
0.23590

-0.03000
0.27000
0.14400
0.01688
0.12992
0.05810

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 3.00
BETA « 5.00

TOTAL OBSERVATIONS:

36

NMOCBAR

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

36

0.21500
3.67000
0.92903
0.34556
0.58785
0.09797

DI

36

-0.83000
0.12000
-0.11972
0.02810
0.16763
0.02794

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 3.00
BETA > 6.00

TOTAL OBSERVATIONS: 102

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

102
0.17500
3.52500
0.85917
0.34438
0.58684
0.05811

102
-0.18000
0.66000
0.09402
0.01805
0.13434
0.01330

4-48

-------
Table 4-17. (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA	«	4.00

BETA	2	2.00

TOTAL OBSERVATIONS:

1

NHOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

1

0.76500

0.76500

0.76500

0.

0.

0.

1

-0.09000
-0.09000
-0.09000
0.

0.

0.

THE FOLLOWING RESULTS	ARE	FOR:

ALPHA	-	4.00

BETA	-	3.00

TOTAL OBSERVATIONS:	3

NHOCBAR

DI

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.39500
1.81000
0.97000
0.95322
0.74379
0.42943

-0.14000
0.03000
-0.04000
0.00790
0.08888
0.05132

THE FOLLOWING RESULTS	ARE FOR:

ALPHA	-	4.00

BETA	¦	4.00

TOTAL OBSERVATIONS:	2

NHOCBAR

DI

N OF CASES
MINIHUH
HAXIHUH
HEAN
VARIANCE
STANDARD DEV
STD. ERROR

0.49000
0.93000
0.71000
0.09680
0.31I13
0.22000

-0.02000
-0.02000
-0.02000
0.00000
0.00000
0.00000

THE FOLLOWING RESULTS ARE	FOR:

ALPHA «	4.00

BETA »	5.00

TOTAL OBSERVATIONS: 30

NMOCBAR

N OF CASES
MINIHUH
HAXIHUH
HEAN

VARIANCE
STANDARD DEV
STD. ERROR

30

0.25000
4.26000
1.04117
0.55849
0.74732
0.13644

DI

30

-0.61000
0.04000
-0.17567
0.02038
0.14277
0.02607

4-49

-------
Table 4-17 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 4.00
BETA	* 6.00

TOTAL OBSERVATIONS:

84

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

84

0.09500
3.72000
0.90125
0.42S06
0.65196
0.07114

84

¦0.35000
1.46000
0.06774
0.03986
0. 19966
0.02178

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 5.00
BETA * 1.00

TOTAL OBSERVATIONS: 13

NMOCBAR

DI

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

13

0.24500
3.05000
1.47731
0.52031
0.72133
0.20006

13

-0.18000
0.04000
-0.08385
0.0051 3
0.07159
0.01986

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 5.00
BETA - 2.00

TOTAL OBSERVATIONS:

12

NMOCBAR

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

12

0.22000
3.08000
1.47250
0.57703
0.75962
0.21928

12

¦0.24000
0.

-0.08167
0.00496
0.07043
0.02033

4-50

-------
Table 4-17 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 5.00
BETA * 3.00

TOTAL OBSERVATIONS:

11

NMOCBAR

01

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

1 1

0.22000
3.03000
1.44636
0.62836
0.79269
0.23901

11

-0.20000
0.06000
-0.05636
0.00537
0.07325
0.02209

THE FOLLOWING RESULTS ARE FOR:

ALPHA « 5.00
BETA - 4.00

TOTAL OBSERVATIONS:

11

NMOCBAR

DI

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

11

0.22500
2.97000
1.43091
0.61018
0.78114
0.23552

11

-0.22000
0.06000
-0.02545
0.00557
0.07461
0.02250

4-51

-------
Table 4-18 summarizes certain statistics of Table 4-17 for the re-
peated analyses and adds values for percent difference (ZDIFF) and a
percent coefficient of variation (ZCV). Percent difference is defined as

and

ZDIFF - (MEAN Dl/MEAN NMOCBAR) x 100	(4-4)

ZCV - ((STANDARD DEV OF DI)/(MEAN NMOCBAR)) x 100 (4-5)

Pooled statistics belov the solid line are the weighted means of the
columns, and are estimates of the properly weighted averages for the data
set. For example:

Pooled NMOCBAR

N1 NMOCBAR} ~ N2 NM0CBAR2 + ... + Nn NMOCBARr

T

1 ~ Nj + ... + N,

(4-6)

Pooled H » I
i-1

531

(4-7)

Pooled Z DIFF

Hi ( ZDIFFi ))/(*1 »i)

(4-8)

Pooled SD,

DI

fl *1 * v2 «2 ~ ~ vn 8n
V1 + v2 + ... + vn

1/2

(4-9)

Pooled ZC? - (pooled SDDI/pooled HMOCBAR) x 100.

(4-10)

The numbers in Table 4-18 are statistics for the within-instrument
pairs. The standard deviation squared is the an estimate of the variance
for the within-instrument variability or error for a given instrument pair.
Within-instrument pair standard deviations range from 0.00Z to 21.2Z when
expressed in terms of a Z coefficient of variation for a given pair. A
pooled average error (or within-pair variability) is calculated to be 16.7Z

4-52

-------
Table 4-18. Summary Statistics for Repeated Analyses. Precision Estimates

Channel

N

NMOCBAR

DI

Percent
Difference

sddi

vb

Percent
CVc

A

A

4

0.6600

0.0200

3.03

0.03916

3

5.93

A

B

2

0.5025

-0.0350

-6.97

0.03536

1

7.04

A

D

1

0.9450

0.110C

11.6

-

-

-

A

E

28

1.0732

-0.1464

-13.6

0.16947

27

15.8

A

GC

73

1.0358

0.0308

2.79

0.21136

72

20.4

B

A

3

0.9983

-0.0233

-2.33

0.07506

2

7.52

B

B

3

0.5400

-0.0467

-8.65

0.04509

2

8.35

B

C

1

1.8100

0.2600

14.4

-

-

-

B

E

26

0.9083

-0.1904

-21.0

0.19236

25

21.2

B

GC

77

0.8747

0.0304

3.48

0.12036

76

13.8

C

A

2

0.8075

-0.005

-0.62

0.07778

1

9.62

C

C

1

0.8550

0.0700

8.19

-'

-

-

C

D

5

1.0780

0.1440

13.4

0.12992

4

12.1

C

E

36

0.9290

-0.1197

12.9

0.16763

35

18.0

C

GC

102

0.8592

0.0940

10.9

0.13434

101

15.6

D

B

1

0.7650

-0.090

11.8

-

-

-

D

C

3

0.9700

-0.0400

-4.12

0.08888

2

9.16

D

D

2

0.7100

-0.0200

-2.18

0.00000

1

0.00

D

E

30

1.0412

-0.1757

-16.9

0.14277

29

13.7

D

GC

84

0.9013

0.0677

7.51

0.19966

83

22.2

E

A

13

1.4773

-0.0839

-5.68

0.07159

12

4.85

E

B

12

1.4725

-0.0817

-5.55

0.07043

11

4.78

E

C

11

1.4464

-0.0564

-3.90

0.07325

10

5.06

E

D

11

1.4309

-0.0255

-1.78

0.07461

10

5.21

Pooled

531

0.9739

-0.00196

8.48d

0.1605

507

16.7

aPercent difference = (mean DI, Dl/mean NMOCBAR) x 100.

bv = N-l, degrees of freedom for the standard deviation of DI, SD^j.

""Percent CV - (standard deviation of Dl/mean NMOCBAR) x 100.

^Pooled mean difference of the absolute magnitude of percent difference for
each pair of channels.

4-53

-------
coefficient of variation. This is a measure of precision. A previous
measure of precision was calculated as 18.9Z CV from the data of Table
4-14. The latter figure is an overall precision which includes the between-
instrument pairs variability ("18.9Z CV) and the within-instrument pairs
(error for a given pair) variability ("16.7Z CV).

Table 4-18 also gives statistics for average percent difference of the
NMOC values determined from a pair of instruments. Percent differences of
NMOC determinations for a given pair of instruments range from -21.0% to
+14.4Z. A weighted average of the absolute magnitude of the difference is
8.48Z. It can be stated that the average percent difference of the NMOC
measurements for a pair of instruments tested in this study was about 8.5Z.
As noted above, the average percent difference of the NMOC measurements
including the between-pairs variability was about 12Z.

Table 4-19 again summarizes statistics from Table 4-17 for repeated
analyses for pairs of channels, adding 95% confidence intervals for each
data set and the t statistics necessary to test the hypothesis that the
population mean of each set of differences is zero. The second through the
sixth columns and the eighth and ninth columns of channel pairs 1 through
24 in Table 4-19 were taken directly from Table 4-17. Column 10 is the t
statistic testing the null hypothesis that the population mean difference
for a particular data set (channel pair involved in repeated analysis)
equals zero. Student's t statistic for the appropriate degrees of freedom
for a level of significance equal to 0.05 is given in column 11. If t is

greater than ^i-q/2, » then the null hypothesis is rejected. Note that
the null hypothesis is rejected for channel pairs No. 4, 9, 10, 14, 15, 19,
20, 21, 22 and 23 in the first group of data. Note also that in every
case, except for Channel Pair 24, involving EPA Channel E, the null hypo-
thesis is rejected, i.e., there is a mean difference significantly dif-
ferent from zero. In the case of pairs of channels involving EPA GC
channel the null hypotheses are rejected, except for Channel Pair No. 5.
For all the channel pairs involving two Radian Channels, the null hypo-
thesis was accepted, i.e., there was no significant difference between the
mean channel differences and zero. It is also to be noted that for the
channel pairs involving Radian channels, significantly fewer repeated

4-54

-------
4-55

-------
Table 4-19. Statistics for Repeated Analyses. Confidence Intervals

for Pairs and Groups of Channels

Chauel
fair

Cka

•Ml

nhocrar

Mean
01

¦

V

SO

SEE

t

ll-«/2,v

lo:
11*0.0

95 percwt C.I.

Alpha

Seta

Lower

Upper

I

A

A

0.6600

0.020

4

3

0.0392

0.0196

1.021

3.102

Accept

-0.0424

0.0024

2

A

a

0.5025

-0.035

2

1

0.0354

0.0250

-1.400

12.71

Accept

-0.353

0.2(3

3

A

D

0.9450

0.110

1

0

-

-

-

-

-

-

-

4

A

E

1.0732

-0.1464

20

27

0.1695

0.0320

-4.575

2.040

Reject

-0.212

-0.001

5

A

GC

1.C35S

0.0300

73

72

0.2114

0.0247

1.246

1.992

Accept

-0.010

0.000

6

a

A

0.9903

-0.0233

3

2

0.0751

0.0433

-0.530

4.303

Accept

-0.210

0.163

7

a

a

0.5400

-0.0467

3

2

0.0451

0.0260

-1.793

4.303

Accept

-0.159

0.065

>

a

c

i.aioo

0.260

1

0

-

-

-

-

-

-

-

9

a

E

0.9003

-0.1904

26

25

0.1924

0.0377

-5 046

2.060

Reject

-0.260

-0.113

10

a

GC

0.0747

0.0304

77

76

0.1204

0.0137

2.215

1.991

Reject

0.003

0.050

11

c

A

0.1075

-0.0050

2

1

0.0770

0.0550

-0.091

12.71

Accept

-0.704

0.694

12

c

C

0.0550

0.0700

1

0

-

-

-

-

-

-

-

13

c

0

1.0700

0.1440

5

4

0.1299

0.0501

2.470

2.776

Accept

-0.017

0.305

U

c

E

0.9290

-0.1197

36

35

0.1676

0.0279

-4.204

2.032

Reject

-0.176

-0.063

IS

c

GC

0.0592

0.0940

102

101

0.1343

0.0133

7.609

1.903

Reject

0.060

0.120

16

0

a

0.765

-0.090

1

0

-

-

-

-

-

-

-

17

0

c

0.9700

-0.0400

3

2

0.0009

0.0513

-0.779

4.303

Accept

-0.261

0.101

It

D

0

0.7100

-0.0200

2

1

0.0000

0.0000

-

12.71

-

0.020

0.020

19

D

K

1.0412

-0.1757

30

29

0.1420

0.0261

-6.730

2.045

Reject

-0.229

-0.1223

20

0

GC

0.9013

0.0677

S4

•3

0.1997

0.0210

3.110

1.989

Reject

0.024

0.111

21

E

A

1.4773

-0.0039

13

12

0.071S9

0.0199

-4.222

2.179

Beject

-0.127

-0.041

22

K

a

1.4725

-0.0017

12

11

0.0704

0.0203

-4.017

2.201

Reject

-0.127

-0.037

23

E

c

1.4464

-0.0564

11

10

0.0733

0.0221

-2.551

2.220

Reject

-0.106

-0.007

24

1

a

1.4309

-0.0255

11

10

0.0746

0.0225

-1.131

2.220

Accept

-0.076

0.0247

(continued)

-------
Table 4-19. Continued

Channel 	Ckygel		^	fc;	95 percent C.I.

Pair Alpha	Beta	MNOCBAR DI	H	v	SO	SB	t	li-o/2 v f^ O Lover	Upper

25

A.B.C.E

A

1.2025

-0.0496

22

18

0.0681

0.0145

-3.421

2.101

Bejectt

-0.0800

-0.0191

26

a.b.d.e

B

1.1700

-0.0711

17

14

0.0654

0.0159

-4.472

2.145

Reject

-0.1052

-0.0370

27

b.o.e

C

1.3443

-0.0529

14

12

0.0761

0.0203

-2.606

2.179

Reject

-0.0971

-0.0007

20

C.D.E

D

1.2528

0.0229

18

15

0.0906

0.0214

1.042

2.131

Accept

-0.0233

0.0679

29

A.B.C.O

E

0.9062

-0.1552

120

116

0.1600

0.0153

-10.14

1.982

Reject

-0.1855

-0.1249

-

A,B,C,D

GC

0.9116

0.0591

336

332

0.1687

0.0092

6.42

1.964

Reject

0.0410

0.0772

30

A

A.B.D.E.GC

1.021

-0.0160

100

107

0.2006

0.0200

-0.80

1.983

Accept

-0.0557

0.0237

31

B

*»B«C,1,0C

0.8053

-0.0233

110

109

0.1679

0.0160

-1.46

1.983

Accept

-0.0550

0.0084

32

C

A.C.D.E.flC

0.8832

0.0415

146

145

0.1693

0.0140

2.964

1.978

Reject

0.0138

0.0692

33

D

B,C,D,E,6C

0.9336

0.0014

120

119

0.2099

0.0192

0.073

1.982

Accept

-0.0367

0.0395

34

E

A,B,C,D

1.4500

-0.0632

47

46

0.0739

0.0100

-5.85

2.013

Reject

-0.0849

-0.0415

Alpha	Channel for firat analyaia.

Beta	Chanel for auhaequeat analyaia.

¦IOCIAI	Mean MNOC for repeated analyaia = (MM0C1 ~ WOC2)/2.

DI	Difference of repeated aaalysea = IM0C1 - M0C2.

DI	Mean dif fcreace of aeveral repeated aaalyaea.

¦	Banker of repeated aaalyaea.

SO	StBadard deviation of BNOC differencea.

SO	Staadard error of eatiaate = SD/^fl

t.	Student'* t atatiatic (2-tailed) for level of aignificance « (« 0.05 in thia coapariaon),
and degreea of freedon V (= B-l).

t	The t atatiatic = N/(8D//N) teatlag the hypatheaia (la: |U. « 0.0).

If t > t(_^j y, the* reject the hypotheaia that the mm difference ia aero.

C.I.	Confidence interval.

Channel! A,B,C,D	Radian chaanela.

Channel E	EPA ()AD channel.

Channel GC	EPA ESRL channel.

-------
analyses were accomplished. This reduces the robustness of the comparisons
involving the Radian channels. In any similar future study it is recom-
mended that the number of repeats for any channel pair be more nearly
balanced than was accomplished in the present study. The Quality Assurance
Project Flan for the present study called for the repeated analyses to be
selected on a random basis, which resulted in the unbalanced design.

These results are presented in an equivalent way in the last two
columns in Table 4-19, in which the 95Z confidence intervals for the mean
differences are tabulated. Note that for those cases in which the null
hypothesis is accepted, the upper and lower limits on the 95Z confidence
interval span zero. On the other hand, where the null hypothesis is
rejected, the upper and lower limits on the confidence interval do not span
zero.

Channel "pairs" 25 through 29 combine all the pairs for which a second
analysis was done on a particular channel* Likewise channel "pairs" 30
through 34 combine all the pairs for which the first analysis was done on a
particular channel. For example for channel "Pair" No. 25, all the data
were pooled for those pairs in which the second analysis was done on
Channel A. Conversely, all those cases in which the first analysis was
done on Channel A were pooled and are presented as Channel "Pair" No. 30.
Similar statistics as described above are presented which compares the mean
differences with zero for all the groups of data in which one of the
channels was the channel of the first analysis. For only two channel pairs
(No. 32 and No. 34) did the data justify the conclusion that the mean
difference was significantly different from zero.

Figures 4-12 and 4-13 display these relationships graphically, and in
addition show how one channel compares (approximately) to another. It is
reasonably clear in Figure 4-12 that Channel A, B, and C produce differ-
ences with other channels that are quite similar and that Channels E and GC
are quite different from each other and from Channels A, B, and C in the
mean differences produced with other channels. Channel E results are
significantly less than those of the other channels, while Channel GC is
greater than A, B, C, or E.

4-58

-------
o.io H

o

E 0.05

a

a

fk
«

A,

B,

C,
D

GC

C,
D r
E

0.0

e
<

o
o

•	-0.06

a

a
*¦
o

•	-0.10

o
e

A,

Bf.

C,
E

A,

B,

0,
E

¦l

0
E

B

. -0.15 H

-0.20 H

NOTE: Letters to the left of the vertical
lines signify the channels on which the
first analysis was done. The letters to
the right give the channel for the second
analysis. The heavy central line gives the
mean difference, DI, for each group of
comparisons. The vertical lines span the
95% confidence interval.

A,

B,

c,1

D

Figure 4-12. Comparisons of Repeated Analyses, Grouped by
the Channel of the Second Analysis.

-------
0.10 -

>»

<

V 0.05 -

OB

5 o.o

•

o
e
•

5 -0.06 -

A,
C,
0.
E,
QC

D,

E.
QC

A,

B,

¦S:

QC

S:

.0,
E,
QC

S;

c,

D

-0.10 -

NOTE: Letters to the left of the vertical lines signify the Channels
on which the first analysis was made. The letters to the right give
the channel for subsequent analyses. The heavy central line on each
vertical line gives the mean difference DI for each group of comparisons.
The vertical lines span the 95Z confidence Interval.

Figure 4-13. Comparisons of Repeated Analyses Grouped by the
Channel of the First Analysis.

4-60

-------
Channel D, on the other hand seems to bridge the difference between
Channel C (and A and B) and Channel GC. At the 5 percent level of signifi-
cance, however there is a significant difference in the mean between the
results from Channel C and Channel D.

Figures 4-13 shows similar, but not identical comparisons. The
results for Channel E are again less than the other Radian Channels A, B,
C, or D. Channels A, B, and D are indistinguishable. Testing the hypo-
thesis that the mean of Channel C equals the mean of Channel D leads to the
conclusion that they are equal, even though the mean of Channel C is tested
in Table 4-19 to be different from zero, while the mean of Channel D is
tasted equal to zero.

All the tests involving the repeated analyses (Figures 4-12, Figure
and Table 4-19) are approximate because none of the comparisons is
perfectly balanced. In Figure 4-12 comparing the results for Channel A and
Channel B (tee also Channel Pairs 25 and 26 in Table 4-19) shows that in
the first case, first analyses were on Channels A, B, C, and E, while for
Channel B (Channel "Pair" 26 in Table 4-19), the first analyses were on
Channels A, B, D, and E. The differences between the comparisons, however,
are small and should have negligible effect on the results.

For the cases in which the first analysis was on a Radian channel,
there appears to be little difference between the means of the differences
of the repeated analyses, and the means of the differences are not sigini-
ficantly different from zero with the exception of Channel C. Comparing
the differences among the channels when the second analysis was done on a
Radian channel indicates there to be a negligible differences between the
channels except for Channel D. These results indicate that the comparisons
were not sensitive to differences because the number of comparisons were
not sufficient balanced, i.e., the same number of comparisons with each
channel pair.

The repeated analyses showed Channels E and Channel GC to be signifi-
cantly different from the Radian Channels.

Figure 4-14 and Table 4-20 test relationship between the mean NMOC for
repeated analyses and the differences for a given channel pair. Figure
plots DI on the ordinate and NMOC BAR on the abscissa for each channel

4-61

-------
Figure 4-14. Differences of Repeated Analyses as a
Function of Mean NMOC.

THE FOLLOWING RESULTS ARE FOR:

ALPHA	=	1.00

BETA	*	1.00

01

.400	.600

.080 +
.060 ~
.040 +

.800

1 .000

1 . 200

.020 +
.000 +

t
I

-.020 ~
-.040 +

.400

.600

NMOCBAR

.800

1.000

4 .
•- + -
1 . 200

THE FOLLOWING RESULTS ARE FOR:

ALPHA -	1.00

BETA ¦ 2.00

01

.400	.450

-~

.000 +

.950

-.030

THE FOLLOWING RESULTS ARE	FOR:

ALPHA -	1.00

BETA •	5.00

01

.000	1.000

		- -

.200 ~

.500
NHOCBAR

2.000

550

.600

3.000

4.000

5.000

.000
-.200
-.400
-.600
-.800
-1.000 ~

1

1 11
112121

2 1
1 1

1 1

1

2 1

4-62

------—-	

-------
Figure 4-14 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA * 1.00
BETA • 6.00

01

.000 1.000
	+	

1.000 ~

2.000

3.000

4.000

5.000

.300 ~

I

.000 ~
-.500 ~
-1.000 ~
-1.500 ~

12 1 1111
1 2263555 1 1 1 1 131 1 1
2 5 2 111 1	1

1	2

1

>2.000 4

.000

1.000

2.000
NNOCBAR

THE FOLLOWING RESULTS ARE FOR;

ALPHA	- 2.00

BETA	• 1.00

01

.600	.800

				------

.100 +

3.000

1.000

4.000

1.200

5.000

1.400
¦- + -

.090 +

t

.000 +

I
I

-.050 ~
-.100 ~ 1

I

-.150 +

-.200 ~

- +¦	

.600

.800	1.000

NHOCBAR

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 2.00
BETA • 2.00

D!

.200	.400

	+	

.000 ~	1

.600

.800

1.200

1.000

1.400

1.200

-.020 ~

I
I

-.040 +

I

-.060 ~
<

-.080 +
-.100 ~

-.120 ~

.200

.400	.600	.800

NHOCBAR 4-63

1.000

1.200

-------
Figure

4-

14 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA	=	2.00

BETA	*	5.00

DI

.000	-500

-~	— *	

. 200 ~

1 .000

I .500

2.000

2 . 500

.000
-.200
-.400
-.600

111	11

1 1	1

1	111

1	1 12

I

I	1 1

-.800

-1.000 ~

.000

.900

THE FOLLOWING RESULTS ARE FOR:

ALPHA »	2.00

BETA • 6.00

01

.000	1.000

- +	+	

. 400 ~

.200
.000
-.200
-.400

1

1 1

1261 21 121
12 3447 32 11
1 911 11
1 1 1

1
1

1 .000
NMOCBAR

2.000

1

111 1
1

1.900

3.000

2.000

4.000

~

2.500

5.000
+

-.600

-.800 ~

¦ +	

.000

1.000

THE FOLLOWING RESULTS ARE FOR:

ALPHA	• 3.00

BETA	- 1.00

01

.790	.795

-~	~	

.060 ~

.040
.020
.000
-.020
-.040

.060 +

.790

2.000
NMOCBAR

.800

3.000

1

.809

.810

4.000

.799

.800
NMOCBAR

.809

4—64

.810

.819

.819

~

*-+-

5.000

.820
~-
~

1*

.820

-------
Figure 4-14 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA « 3.00
BETA • 4.00

or

.500	1.000

.300 +

.200 ~

. 100 +

.000 ~

-.100 ~

1

1 .500

2.000

2.500
¦ -+-

.500

1.000	1•

NMOCBAR

THE FOLLOWING RESULTS ARE FOR:

ALPHA ¦ 3.00
BETA ¦ 5.00

01

.000 1.000 2.000
—		

.200 f

1 1

1	11	1

1 22 1 1
1 1 2 21 II 1 1

.000
-.200
-.400

11

1

1

11

2.000

3.000

2.500

4.000
¦- + -

.600
.800

-1.000 +

.000

1.000	2.000

NMOCBAR

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 3.00
BETA ¦ 6.00

DI

.000	1.000	2.000

.800 ~

3.000

~

4.000

3.000

4.000
~

• 600 ~

*

.400 +	1	1

.200
.000
-.200

11

I	1

II	11

I	12 1 211
112111412 2

31 46213511121
2122 2122 11
2

II	1

11
1

-.400 ~

.000

1.000	2.000

NMOCBAR

3.000

~

4.000



-------
Figure 4-14 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ALPHA	«	4.00

BETA « 3.00

01

.000	.500

-~	~	

.050 ~

.000

1 .000

1 .500

2.000

-.050

-. 100

150

- +	

.000

.500	1.000

NHOCBAR

1.500

THE FOLLOWING RESULTS ARE FOR:

ALPHA - 4.00
BETA • 4.00

01

.400	.500

- +

.010 +

.000

.•00

-.010

-.020

-.030

.040

-.050 ~

.500

THE FOLLOWING RESULTS ARE TOR:

ALPHA - 4.00
BETA « 5.00

DI

.000	1.000

- ~	

.200 ~

.600	.700

NNOCBAR

.800

.900

.900

2.000

3.000

4.000

.000
-.200
-.400

1

1

221 1 1 1 1

1 112 1 1

1 1

2 1

2.000

5.000

.600
.800

-1.000 ~

.000

1.000

2.000
NHOCBAR

3.000

6

4.000

~

5.000

-------
Figure 4-14 (cont.)

THE FOLLOWING RESULTS ARE FOR:

01

ALPHA
BETA

.000

4.00
6.00

t .000

2.000

3.000

4.000













1.900

~

•

i





~

1.000

»
~
1







+

.900

~



1

1

1

4



;

i i









!

14 1 2 1 211 1 2 1

11



:



: l

129144 41111 1 1 1

1





.000

4

1341232214 1



,

~



t

1 11 1





«



<
•

t

1 1





•

-.900

•

4
«
t







<

4
•

•
•

.000

1.000	2.000

NHOCBAR

THE FOLLOWING RESULTS ARC FOR:

01

ALPHA
BETA

9.00
t.00

.000

-*		

.090 ~

.000 *

I
• -

.090 ~

I
I
•

. 100 ~
.190 ~

t
I
I

.200 ~

1.000
¦-+	

2.000

I

II

1 1

.290 ~

.000

1.000	2.000

NHOCBAR

1.000

THE FOLLOWING RESULTS ARE FOR:

ALPHA ¦ 9.00
BETA - 2.00

01

.000
------------

• 090 +

»

.000 + 1

:	t

-.050 i
«

-.100 ~

t

-.190 ~

I
«

-.200 +

2.000

1 1

.290 +

------

.000

1.000	2.000

NHOCBAR

4-67

3.000

4.000

3.000

4.000

3.000

¦ -+-
4.000

3.000

4.000
¦ -+-

3.000

4.000

-------
Figure 4-14 (cont.)

NMOCBAR

THE rOLLOWINC RESULTS ARE TOR:

ALPHA - 5.00
BETA - 3.00

01

. 000	1. 000

-~

.too ~

.000

2.000

3.000

100

-.200

-.300

NNOCBAR

THE FOLLOWING RESULTS	ARE FOR:

ALPHA	- 9.00

BETA	- 4.00

01

.000	.500

		~---	

. 100 ~

1.000

1.900

2.000

2.900

3.000
~

.000 ~

1 ~

100 ~

-.200 ~

-.300 ~

.000

3.000

.900

1.000
NMOCBAR

1.500

2.000

2.500

4-68

-------
Table 4-20. Differences of Repeated Analyses as a Function of Mean NMOC

MritK.1 « M >• * « t.tmncf'Af .

mi rni i (iu11jr. kshi if Ar-:C Ffii-i

Ml f'ltf:	¦	J.'"'

Ill Hi	«	1 . ' " '

Nunrithi or cash- ffoccsscpi a

DEF-ruriEIJI VAIInN F ME AM i	< i. t»;-c Km >

MHIUFLF COt-Ftl AT 101JI .BO«>
srniAf * • N-1 > T>F . WHFkl H* 4. A"" W*	•*71'

WI6M F CnFFFIClFNT SH>. F FfROF' Silt. COEF. TOl EPANTE	1	F '* TAl1 *

I A"

CONSTANT	..i.i^.cr i	*	<"'•	•	' ' "J	"to4

MMOrhAP-	0. \	i"i.o70!i2	0.00628 I. OOOOO	1 .?-•

ANAI YSIf C>r VAFilANCF

SOMFrCI SI MI-OF- SOI "APES T>r MEAN 50UARF	F -PATIO f

FFf.f.f Si-Jiill	ii.Tn'ifW	I	".'«i:«	".?!	H.74 •'«'	¦ >.i.i»1111	i..mi'h.ii

V69

-------
Table 4-20 (cone.)

ihi rciiowiN'- fTS-"i t Ar-r rfih:
I u..	.'

in j ) T>F. wnrr-f n«-	ami- k • /4r

vAr-iAMr cocfi iciemt su>. error stu. rntr. toifranc e i nr ™' 1

< ONM Mill	-	|	...	1"	'J'!"'

¦NMOCF'AF	• >. n7:T*'.	"i.opiiiQ".	ii. t	i.nuo""	. fl"*	• ~fi 1

AtJAI VSIfr Of '-'AR 1 Al-ir F

snitr rr sum-of sm iarfs of mf an -souarf f -rat io f-
RFf.j--tsF.iriu	ii. i i	«•>. i•:¦«»•> i	.7<;•*. . z& 1

RESIDUAL	''	74	l l.	1

IHT FCH LOI'UNI- Rrsui Tf. ARC F(IT.:

HI F 'It ¦	v	Z .""

rnA » t.'"'

Mi Ifll iF'K Of 'ASfV F P(irr!: ?.rPi

MF trnv.rwi '.'»!• !W:| I MEF'iff.	' >.

MMIllFlf I IIPI El i-iT lOUr .1*4
SOil^RFP ML'l Tlfl IT TORRE I ATI ON: .0??

"1

ftl'-il 1ST Mi F. » I « 1 -R > » (II-I >/DF. WHCRE 11» 77. AT IP r>F» 7?,! .>i)4

VAFIAMT coffficteni stp. error sm. coet. toi eraijce t F'-.. ml.

CPNf.lANT	1*1. I'M IA.J:*".	I I. 021 Tf.	>"i.	.	. 74Ji

NttOCfcAR	ii. n-hi- ]	O.41863	".164T-4 1. OOOOO	1.44	.If."

AIJAI VSJS OF VARIANCE

SOMFrCE 51IM-0F SOUAFE"^ DF ME AN-SOU AFC	F-RATIO	F

REi
-------
Table 4-20 (cont.)

11. • l i • ii i..i ; t f:

..int.. -
I If 1.'.	r

nnid.il Hi	i f-u: t ?,rri'i

f>FM Nr.rui vAf if.ni r mcani

Mill I li t f CCtf-M I M H».n i >/fir. wiitfct u»	aiu< pt» it

4.'«f 1 (\U, F rnFFr ir\f NT SID. fRROf- STt". CdEr . Tut pn-ANCE	1 r<7 TAJ I I

rdUMnNI	I'l.Of.'tP?	O.	- 4. t>f*	. 1

NfH irfiAl--	••i.rir.TP	0.0749P I ..Xi.y.,.	4. "J9	.14-

AI4AI VMS Of VAPlANi'C

SOlir-CE SUM-OF-PPHAFCS Dr MTAN-SOUAf-E	F-RAT Id	F

RFI.fctS&ION	|	.....lull	19.2~B . 14~.

RESITHW	'i.tVioS*	1	O.r**#*.	1

THE FOLI OW1MR RES" M Tf> ARF rOF4 :•

st'i u.PEr. n- it t j f- i.c co*r h • I - < J -(¦ > * tU- 1 » T»F, Wl IFRE N«- ~. ANH PF« It .. coff. tolerance t p.c«.r.f.4	<1.	¦

hmochat	o.siPf) ii. t >< »¦>•:> i j o-fiocw) _ .ore

RFMMIAI	O.tV.Jiifc " 'j" 1*1. nrii-'it-" " *	* *

4-71

-------
Table 4-20 (cont.)

Ill' I t i. I (k; J U;. M .1 1 *	I i

Hi

w. *

I <• << II i • '»!•». I

2,6

r>n n4r>c.r;i v^haiit mi an: — iit7:-

miii i in t cokf-ri ai inn:

"•".C'tlAREM Mill T IF L.E CORRCI ATIONi . 		

Mii.nic.it r> r • i < i--F- >»(N-11 • i'i . witFRr n« "... ANr< nr» -.4: .ooo

variahi e rnrrriciCNT stu. error std. coet. tolerance

r riH'-.ii-.ui
Nfior b&r-

• >. i

O. 0061 1

i i. H4889

<">.01J4:% 1. 'X'0"0

-r. "4
. ir

n:' tail'

• 9'.» 1

ANAI VMS or 'OAF-1 ANr r

source si ih- of - r.ni iap-cs pr mcan-soi iart f-ratio

. 01 A>

REr.RES?-iriN
hbSlDHAl

ii.iii)i i4r,

1

~4

u. 0

Nl iMf:EF OF frtJ.rS RRfir.E4.SF I>s 1 EFEi4i»rnT varjawf' mean: ii.oq4m:

Mt li T 11 1 E f nRRfcl A I lOIJ: .W.-
S.fiilAREl"' MUITJRLE CflRREi AT ION: . Tf."

fel'-llic. 1Fi> F> » l-'l-R i»«N-l) PF. WHEr: . ANl' Of- HXn . ~44

VAPIARtF COEFFICIENT STD. ERROR STr. COEr. TOl.ERANCF

CCM4S-1AN1
NMCCHmR

- *V.*ti
0. 17f.4£<

O. i.i 1847-

o. 591 er i. 0"':>'X>

-1.17
7.34

F 1.7 TAIL >

. ZAt-
. *> »•">

ANAI VSIP OF VARIANCE
SOURCF SUH-0F SPIJARCS DF MF.AN-SOUARE	F-RAT 10

REGRESSION
RE 5I DUAl

1 . 1844'

1

1 <>1

0.6T.B4?.
.01) 84

•-T-. 9<.'>S

F

. 0'X>

4-74

-------
Table 4-20 (cont.)

lilt mm I fiu:)Ui- Mviiii'. »_r t Mil ¦ »

1.1 Ml..	".I" •

HI*,	*¦	1 .«>"

in >i it if j- fir rf F CUI'E N I WIAM f nr.AMI	.	I

Mill I HI I MiRREl UTIC'Nl

s-'1! IARC1' Mill 1 I ME COfiRtl AT I ONI l.'>iO

rnrrr iirjrm sin. emvc* Sin. rorf. TOitf.ANtF. i r <: t.mi >

TflN-SThNT	?.54B'i.i	r.CMM.iOO	O.	t.?v	1.'"'|"

NMtifRAF	- 4. 4iM>'i'<	"'i. i

Wlfi	«	4.0*

MUMPER Or CASES FROCFfj&CI.'i ;•

I'f »CMlil N1 V«KIAFi| t Ml nil!	O.I44«X'

ttUMUlE CORRELATION! .547

11 nn( iifi f r.nt-M t ,.i mm . :>«'<

Ah-mwEr. f.- «• j i] f.- i».|j. j > . r»r. wmerf n** Aur> r>F» ?i .<•#."

r COEFFICIFNT STP. ERROf.' STl>. C.OEX. TOI FRANf E	1	T^I( '

rnusiAui	-• i. <»«.:¦* I..I4--I4R	•**''

NMiirtiAd	o.i"?c 
-------
Table 4-20 (cont.)

lie < III I III-: 11|.. I I ' .1H I . • • I 11 :

hllH..	¦	1 . ' '•

tiM».

N> nr c A!>F- 5? F F-On. c'.'-t	-<>

M l[ NI4 111 Vnl'lhM I MF* AIJl	I"
Mill l IF'lf CORRFI.ATJ ON! .J-.'

&fiii,ii-r r> ri'n 7im f r rir-r fi #.i irirai	."i

aii.hi&tf r> r- - i - < i -r i»«n 11 t>f. wiiFPf n* ~<>, ani> t>F« ::bt .ivm

v/AFiiafm t cnrrp iriPNT std. err or. stp. rorF. toi.erance i f <: taji

rOM'jIAMT	-O.--OI .vi	.71	.4to-.

ANAI YSIS OF VAR1 ANC f

SOI t^-r r SI 111-OP -SC'I 'ARE - DF ME AN SOI l*RE"	F -RAT 10	F

RF PF •

Hi 'MHF-.R OF CASES PPOl FFSt I't 84

tiEFtWDENT VARJAMF HE At J i	o.O<.774

111II 7 1F i F CORV-Et AUfiUs . T-7&

Sfi KiF;Et' Ml U 7 I F'L E COkRElATION: .14:

ADJUSTED R * i - i J HiN-1 i /r>F. WHERE N>- 64. AMP pr» en . »Ti

variable coefficient stp. error stp. coef. tolerance t ft tah i

CONST Al 11	-.1.11-!,.'.!	I"i"4"f.	I I.	1 . Of.

NMOCFiAF	0.031T-1	O. 7-"*76^ 1. ( Il l' It'll I	3.6^	. I f II I

ANAI YEIS OF VARIANCE

SOUPCF SHM-OF-squares pr MEAN-SQUARE	f-ratio f-

REGRESSION	n.47|V}	]	0.4~1PQ	lj.644 .<"iCiO

RE:<«I Dl IAI	2. P"".fc+5?	'j. OT-4T>c

4-76

-------
Table 4-20 (cont.)

1 HI FTHlOwlNf. fct<.illl<- f,f-t Ff.»-:
I.I I H„	•	4.1

Fir l

IJIIIIItfF- Tir (	F'FTirf cic«t.I• J

rCr rNMtNT VAP1AIH E MFAN:	"4' H >"

Mill liri F- CCIKRFl M I OH I . "V. if.

E>('HAhE.r> MUtTIF'l.f COfr-fl AI TON: .811

Al'ltlbltf P • 1 -¦ < 1 -f.: it (II D/DF. WHCKf N" V At'IT'	11

v«r iAF. frphp stp. corr. TcuEfcANrc t f<- tail*

| 1• 4*^

rnNSTAIM	«i.	ft. -WB7	"•	,4	.-7f<

am g	i'a	J 111 H H ^	A • 1 *

NMOCHAr	-<>. jeer"1	11. ¦(".'!?<>	*•-¦

ANAI V&1S C*F •.'Af-IANCt

SOURCE &l«1-nF-S0llAftf«. 1>F MFAN- SPHAIVF	F -RAItO P

RFf.prs>=.iciN	o.ui:^	i	«>.>>ii<;^	4.*fw. • - p

KFsiniiAi	o.o'^s:	i	'-£r-

Tt-tt. FOl.lOWlHh PERMITS APE FPPl

Al PHA	*	4.'i"

F

NHMfifcp OF C.A5ES. PPCUFSSFI.:

DEPENDENT VAFJAM.F MEANi	-0.02-

Mill 1 lf'l.E COPPEI AT ION I I . ft'""'

SOUAKED Mill TIME CORREI ATIONi 1.¦><0

VARIAtU E COEFFICIE1J1 STt>. EftPM-: STri. COEF. TOI EPANC fc	T" F . T«H

_ 		-.mi	j.

CONSTANT	-O.Or	- -	'	"•	.	I

Ni-iui i1Mf.	ft.no.VM-.	...oW-B"	1	•'

4-75

-------
Table 4-20 (cont.)

lilt I Hi I OW1N.- I f '-II 1". (<< i F F" !
1,1 lilt.	-

wi».

NUMiiti- fi r «sr :• f m>' f i•!

Firf-ruiCNi vaf-iam r m hm-
Mill TIM r L'riRRFI Al li'lls

&(>u«f-Fr. Mm 11f-i f cnr,r ri ation:

Al'.H ISTF.I' R « J '1-R i»

rnnstAtn	".row?	•:». o--p?4	«>.	.	. ?4

NMOCF«AR	-II.	II.I"C<74	- it.t>Z?Z2 1 .On fitm> -r.4t<

AMAI VP 15 OF VAr iAfK T

SOURCE SIIM-OF-SPHARES Pr ME At l-SPl IAR[	F-RAT10	p

REfiRTSS.TCM4	i >.< >D7®	1	r».rci7' >

UHMl'tR fiF CASES- F-K'fil f SirP:	11

DEPENDENT VARIAW F MEANi	-n.'OMr.

MM1 TTFl E C/iRF . ?..'4
bOiiAREI' Mill TIF I F f ORRf I AT I ON > .!<>?•

Ap.HIS.ini R » 1-il-P i ~ (N- 1 > .T»F . WHERE N" 11. AMI' TiF * f'l .OH".

VAPIAPIE COEFFICIFNT STD. EPPOR STD. COEF. TOLERANCE	T	F <: 1A1L i

CONSTANT	
-------
Table 4-20 (cont.)

1 HI rt»•«

M f II.	*	' • •»

ItFlf.	»	I .<"¦

Hi II lull fit WiM-t-. F'l-'l <1 r !-Sf In '•

pi:rKNutNi v«»(-iawf nfwn -¦.•.wt.b*.
mhi i in r ccifif'f i ni inus .«*'•

SCMIftREI' Mill TIKE CORFU ATlONf . i'4^

mI/IIIRICP h m l-M-ft . »(N l>.nr. WUkk U* AN" "* ' 11 ! ¦17-"

VAFIAnif COFFFJCJFN1 STP. FPFTIF ETD. COFF. TOI EhANCE	t.	t-C tAJI >

nij'-iAin	-ii.oih'	•>.	•	^'EI	'Zl'i

Nl HIT Kftr	-0.04«0I	L.CCfc'ir "O.MtZft,	-I.P8

AlUil VS JS OF VAPIAN' P

SruiPCf Sllfl~OF-SP"ARE& DF IVAN-SO'tARC	F-PATIO f

WGW.&t.iriw	ii. o>¦.¦•»> i	u.-*.?t4e .«.»w

f4£.V'i i t	o. <>:<4?-.

T Hf FOLI OH IN'. RCS»I.15 AFP FOFj

Al TkW,	*	'-.'i"

M.TA	¦

WIHIHEP fif IAS.F?. PROCESSED

T'FF r MI1F MI VAF-: 1 AM F MC AM t	. OB I

HIM T J PIE COPFFI ATlONs .

SOMAPEr. Mill T!Pi.E C0F;hELAT10M» .48".

AJ/HIS7FI. f. m l-.t-P i » < W-1 • ''PF. WHERE N» S-'. ANI' PF» »¦'»« -4^4

VAt'IAPLE COFFFICIENT STP. FfiROF' STIi. COEF. TfJI.ERANCE

INSTANT
NMOCBAP

PC? TAII i

CONST AWT	T44	¦>.	. „„,w, -3*. 07	.0>?

-0.06459	0.0?1<->4	-0.**e>-® '• ¦ ¦'¦¦¦

ANA) VPJS Cff VARIANCE

SOI IPCF SIW-0F-9PIIARFF PF MF AN - SOI lAKf	F-PAT 10 F

PFRPE&Mnu	•	I	O.01'fr49	.012

RFsiPUAi	o.osiw i •¦>	o.

4-77

-------
Table 4-21. Summary Statistic* for Linear Regression, DI Versus NMOCBAR

Case

Alpha

Beta

Multiple
Correlation

AM0VA
F-Ratio

N

a

b

1

1.00

1.00

0.806

3.716

4

-0.0697

0.1359

2

1.00

2.00

1.000

-

2

-0.1576

0.2439

3

1.00

5.00

0.188

0.951

28

0.0274

0.7481

4

1.00

6.00

0.233

4.09

73

-0.0306

0.0593

5

2.00

1.00

0.975

19.238

3

-0.2388

0.2158

6

2.00

2.00

0.042

0.002

3

-0.0490

0.0042

7

2.00

5.00

0.179

0.796

26

-0.2560

0.0723

8

2.00

6.00

0.164

2.082

77

0.0069

0.0269

9

3.00

1.00

1.000

-

2

3.5480

4.4400

10

3.00

4.00

0.543

1.256

5

-0.0003

0.1338

11

3.00

5.00

0.021

0.016

36

-0.1254

0.0061

12

3.00

6.00

0.592

53.905

102

-0.0224

0.1355

13

4.00

3.00

0.906

4.586

3

0.0650

-0.1083

14

4.00

4.00

1.000

—

2

-0.0200

0.0000

15

4.00

5.00

0.132

0.497

30

0.01032

0.5808

16

4.00

6.00

0.378

13.644

84

-0.0365

0.1157

17

6.00

1.00

0.494

3.546

13

-0.01145

-0.0490

18

6.00

2.00

0.697

9.426

12

0.0134

-0.0646

19

6.00

3.00

0.637

6.156

11

0.0288

-0.0589

20

6.00

4.00

0.324

1.054

11

0.0188

-0.0309

Aloha/Beta



1.00

Radian A

2.00

Radian B

3.00

Radian C

4.00

Radian D

5.00

EPA QAD E

6.00

EPA ESRL GC

Model: DI - a ~ b* (NMOCBAR)

4-80

-------
pair. ALPHA - 1.00 and BETA - 1.00 signifies that the first analysis was
done on Channel A and the second analysis on Channel A. The data in Table
4-20 give the results of a linear regression between DI and NMOCBAR. Table
4-21 suHurises the data of Table 4-20 for the linear regression. Table
4-21, in addition to specifying the channels of the repeated analyses give
the correlation coefficient R and the F-Ratio in the analysis of variance
for the regression. II is the nuabar of data points for each case. The
last two coluans in the table, a and b are the intercept and slope respec-
tively in the linear aodel tested:

DI - a ~ b * HMOCBAR.

Discounting those cases having nuabers of data points less than four, the
aultiple correlation coefficient (R) ranges tram 0*021 to 0.806 vith five
cases out of 14 having R >0.500. Hote that the first 16 cases had a
positive slope (vith the exception of Cases 9 and 13) and the last 4 had a
negative slope. While this analysis shows only a weak relationship between
DI and ffifOCBAR, the results suggest that the potential relationship should
be investigated further. The analysis which follows in Section 4.2.3.2
suggests that there aay be a relationship between the difference of re-
peated analyses which is southing other than randoa.

If Table 4-18 is reexaained for the data in which both analyses were
performed on the same channel, the following suaaary aay be seen:

Table 4-22. Repeated Analyses on the Sane Channel

ALPHA

BETA

I

NM0CBAR

DI

ZD IFF

8D

ZCV

A

A

4

0.6600

0.020

3.03

0.0392

5.94

B

B

3

0.5400

-0.0467

-8.65

0.0451

8.35

C

C

1

0.8500

0.0700

8.24

-

-

D

D

2

0.7100

-0.0200

-2.82

0.000

0.00

Pooled



10

0.6530

-0.0030

5.20*

0.0380

5.81

'weighted absolute aagnitude.

4-79

-------
Table 4-23. Repeated Analysis Precision Radian vs. EPA GC Channels.

CHANNEL



Mean





sddi





ALPHA

BETA

N

NMOCBAR

DI

Z Diff.

*

X cv

A

GC

73

1.0358

0.0308

2.97

0.21136

72

20.4

B

GC

77

0.8747

0.0304

3.48

0.12036

76

13.8

C

GC

102

0.8592

0.0940

10.9

0.13434

101

15.6

D

GC

84

0.9013

0.0677

7.51

0.19966

83

22.2

336 0.9116 0.0591 6.49 0.1687 332 18.5

Test the hypothesis:	"

t - 1M2221	 - 6.383

0.1687/^32

'332,0.975 " l*970
reject Ho . The difference

0.0

with 332 degrees of freedom
is significantly different from zero.

4-82

-------
The statistic a calculated in Table 4-22 were calculated in the same
way as corresponding values in Table 4-18. The results suggest there was
less variability in repeated analyses when both repeated analyses were done
on the save instrument than when they were done on different instruments.
The pooled "within-instrument" X difference calculated in Table 4-22 was
5.20, compared to 8.49 for the "betveen-instrument" X difference calculated
in Table 4-18. The pooled X coefficient of variation in Table 4-22 was
5.81, compared to 16.7% calculated in Table 4-18. Although the number of
comparisons was small in this study (If • 10), the results suggest that the
mean differences of repeated analyses is significantly less when both
analyeea were done on the same channel than when they were done on different
channels. This postulate should be further investigated in any future
study.

Table 4-23 collects the repeated analysis data involving the four
Radian channels and the EPA Channel GC. The table shows that in each
channel pair, the mean value of the measured HMOC difference, 01 is posi?
tive, averaging 5.9X. The teat of hypothesis tests whether the pooled
differences between the channel pairs is sero. The test indicates that the
difference is significantly greater than sero. This result was not un-
expected becauae the EPA. GC channel replaced the cryogenic trap with a
capillary gas chromatographic column* Molecules with a large molecular
weight were not expected to be able to pass completely through the GC
column, but would be trapped in the cryogenic trap and give the latter
(measured on the Radian Channels) a higher HMOC measurement*

4.2.3.2 Local Ambient gamnlea—Four local ambient samples were
collected by the U.8. XPA Quality Assurance Division and analysed first on
Channel K, then the analysis was repeated on each Radian channel* The
reaults of these analyses are listed in Table 4-13, Caaes 485 through 531.
Table 4-19 alao lists statiatics resulting from the samplea as channel
pairs Ho. 21 through 24 (and Vo. 34).

4-81

-------
Table 4-24. Analysis of Variance of Repeated Analyses of
Local Ambient Samples.

MODEL: DI ¦ CONSTANT + BETA

NUMBER OF CASES PROCESSED: 47

DEPENDENT VARIABLE MEAN: -0.06319
MULTIPLE CORRELATION: .321
SQUARED MULTIPLE CORRELATION: .103

ANALYSIS OP VARIANCE
SOURCE SUM-OF-SQUARES DP MEAN-SQUARE	F-RATIO P

BETA	0.02582 3	0.00861	1.642 .194

ERROR	0.22540 43	0.00524

*******************************************************************

4-84

-------
Tabic 4-24 gives an analysis of variance for the repeated analyses of
local ambient samples, testing the model to see if BETA (the channel of the
second analysis) is a factor. The fact that the F-Ratio is 1.642 and that
P ¦ 0*194 (i.e. 0.05) indicate that BETA is not a factor, at the 5 percent
level of significance. It may be concluded that there vas no apparent
difference tnong the Radian channels performing the second analysis.

Table 4-25 presents the results of the repeated analyses for the
channel pairs involving EPA QAD Channel 8 and the Radian Channels A, B, C,
and D fro* still another perspective. The first rov in Table 4-25 sunu-
rises statistics when the first analysis vas done on Channel A and the
second analysis vas done on Channel E. The second rov shovs the statistics
for the case in vhich the first analysis vas done on Channel B and the
second analysis vas done on Channel A. Pairs of rovs vhich complete the
table follov the same pattern for Radian Channels B, C« and D and EPA
Channel E. The third column in the tabla gives the mean MMOC value deter-
mined from two repeated analyses. It is to be noted that in every case for
the local ambient samples (first analysis oa Channel E), the KMOCBAR values
sre from 38 to 62 percent higher than for the cases in vhich the samples
vere analysed first on the Radian channels. The fact that the HMOCBAR
'•lues for the local ambient samples vere higher than the HMOCBAR values
vhen Channel E vaa the channel of the second analysis may be important in
helping to explain why the variances of the differences in the comparisons
made belov are not equal.

The fourth column in the table gives the mean difference, 01, defined
11 the HMOC value from the first analysis (HM0C1) minus the HMOC value from
the second repeated analysis (IM0C2). The striking result displayed in
column 4 is that the mean differences are all negative. If one instrument

recording consistently higher values than the other, the mean differ-
ence 01 would be positive in one case and negative in the next ease. The
results reported in Table 4-25 for 01 suggest that the HMOC value from the
second analysis vas alvays greater than the IMOC value from the first
analysis. To explain such an occurrence, it a*y bepostulated that at the
higher pressure (before the first analysis) sufficient HMOC adsorbed on the
tank to reduce the HMOC concentration for the first analysis, regardless of
the channel on vhich the first analysis occurred. Then on the second (and

4-83

-------
possibly subsequent analyses) analysis, NMOC desorbed from the tank valla
to increase tbe concentration of the second analysis.

Column 5 gives the number of cases for a given pair of repeated
analyses. Columns 6t 7, and 8 tabulate the standard deviation, the F
statistic and Fisher's F for a 5 percent level of significance and the
appropriate degrees of freedom. The F statistic may be used to test the
Null Hypothesis that the population Variances are equal, i.e., Ho:	-

for the pairs of analyses on Channels A-E and E-A, respectively.
Column 9 notes that the data indicate that the variances of the differences
when the analysis is performed on the Radian channels first are not equal
to the variances of the differences when the analysis is done first on the
EPA QAD Channel E. A poasible explanation of this kind of phenomenon might
be that both UT and the standard deviation, SD, are functions of NMOC BAR
sueh that as MMOCBAR decreases, 8D increases. As pointed out above the
mean values of NMOCBAR for the local ambient samples was from 38 to 62
percent higher than for the cases in which Channel E was the channel of the
second analysis. This pbenonenon might be investigated in future studies.

The final three columns in Table 4-25 are uaed to test the hypotheses
that the mean differences are equal for the A-E channel pair compared to
the E-A, and so on for B-E/E-B, C-E/E-C, and D-E/E-D. The table indicatea
the result that, except for the first case (A-E/E-A) it cannot be concluded
that the mean differences are equal. This may suggest that the NMOC
differences for repeated analyses are a function of NMOC level. The
analyses done earlier in this section on a linear relationship between, DI,
and NMOCBAR, shoved only a weak functionality, but the comparisons made
here are strongly suggestive of at leaat a linear relationship. Future
studies should investigate this potential phenonenon further.

4.2.4 Duplicitt gUPltf

Duplicate samples were taken at various sites on a random schedule
that waa given in the Test Plan for the project. Table 4-26 summarizes
data for the duplicate samplea. It gives information on the site, tbe
sample date and the Radian NMOC value, along with NMOC determinations from
Channel E and the ESRL-GC determination. Table 4-27 gives the difference,
DI, between the analysis of the first duplicate and the second duplicate.

4—86

-------
Table 4-25. Repeated Aaalyset, Effect of Cfcaaael of First Analysis

First	SecMd		

Aaalytis Aul;iii WOCMR PI

Staadard

Deviation

r

Statistic

Fisher's
*1**2 9

Bo:

2 2

Statist ic

Students

*0.975.f *6!, "*15^

A
B

1.0732 -0.1464 2H
1.4773 -0.0839 13

0.9083
1.4725

0.9290
1.4464

-0.1904 26
-0.0817 12

-0.1197
-0.0564

36
II

0.169
0.071

0.192
0.070

0.167
0.073

5.604

7.469

5.228

2.97

3.16

3.28

Reject

Reject

Reject

-1.658

-2.536

-1 777

2.020

2.029

2.019

Accept

Reject

Reject

1.0412
1.4309

-0.1757 30
-0.0254 II

0.1428
0.0746

3.664

3.32

Reject

-4.365

2.027

Reject

Pooled:	1.1190 -0.1293

2 Difference - (-0.1293/1.1190) x 100 - 10.9*

-------
Table 4-26 (cont.)

1984 SUMMER NNOC STUDY

SAMPLING	JULJAM	CAN

SITE DATE DATE SAMPLED RADIAN NO.

CODE SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIG) (PSIC) RADIAN RADIAN
PRESSURE PRESSURE ANALYSIS HHOC
SAMPLED RECEIVED DATE INST

EPA	RADIAN NNOC NNOC

ANALYSIS PPMC PPMC PPMC
DATE NNOC QAD	ESRL-GC

CHNC 07/16/84

198

MONDAY

1251

184

19.0

19.0

07/17/84

D

0.45

CHNC 87/16/84

198

NOWAY

1252

188

19.0

19.5

07/17/84

C

0.56

CHNC 08/02/84

215

THURSDAY

1533

2

15.0

15.0

08/06/84

C

0.18

CHNC 08/02/84

215

THURSDAY

1532

156

15.0

14.8

08/06/84

A

0.21

CHNC 08/16/84

229

THURSDAY

1765

165

15.5

15.0

08/17/84

A

0.68

CHNC 08/16/84

229

THURSDAY

1764

188

15.5

14.9

08/17/84

C

0.69

CHNC 09/27/84

271

THURSDAY

2474

112

16.0

15.5

10/02/84

B 10/02/84

0.18

CHNC 09/27/84

271

THURSDAY

2473

146

16.0

15.7

10/01/84

C

0.19

0.23

0.1S

CIITN 08/02/84

215

THURSDAY

1587

104

14.0

14.0

08/08/84

B

0.69

CHTN 08/02/84

. 215

THURSDAY

1588

143

14.0

14.5

08/07/84

A

0.69

CHTN 09/11/84

255

TUESDAY

2211

34

15.5

16.1

09/14/84

C

1.33

CNTH 09/11/84

255

TUESDAY

2210

41

15.5

16.0

09/14/84

D

>.20

CLTX 06/28/84

180

THURSDAY

1069

99

17.1

17.5

06/29/84

D 07/10/84

0.53

0.45

CLTX 06/28/84

180

THURSDAY

1068

96

17.1

17.3

06/29/84

B 07/10/84

0.46

0.45

CLTX 07/04/84

186

WEDNESDAY

1131

17

5.1

8.0

07/06/84

C

1.30



CLTX 07/04/84

186

WEDNESDAY

1139

44

18.1

16.2

07/09/84

&

1.58



CLTX 08/14/84

227

TUESDAY

1736

84

16.5

16.5

08/16/84

A

0.58



CLTX 08/14/84

227

TUESDAY

1735

164

16.5

17.0

08/16/84

C 08/20/84

0.51

0.51

CLTX 08/23/84

236

THURSDAY

1900

165

16.0

16.5

08/23/84

D

0.42



CLTX 08/23/84

236

THURSDAY

1901

172

16.0

16.5

08/27/84

B

0.51



CLTX 09/24/84

268

MONDAY

2395

157

18.0

16.5

09/26/84

C

0.54



CLTX 09/24/84

268

MONDAY

2394

62

18.0

16.5

09/26/84

B

0.75



(continued)

-------
19M SUMNER NHOC STUDY

Table 4-26. Duplicate Samples Sumary.

SAflPLING



JULIAN





CAN



(PSIC)

(PSIC)

RADIAII

RADIAN



EPA

RADIAN

t»K)C

SITE

DATE

DATE

SAMPLED

RADIAN

NO.



PRESSURE

PRESSURE

ANALYSIS

woe



ANALYSIS

PPHC

PPflC

CODE

SAMPLED

SAMPLED

WEEKDAY

LAB ID

SAMPLED

SAMPLED

RECEIVED

DATE

INST



DATE

NHOC

QAD

AKOH

07/26/14

208

THURSDAY

1448



64

17.5

17.0

07/30/84



A



1.06



AKOH

07/26/84

208

THURSDAY

1447



102

17.5

16.9

07/30/84



C

07/31/84

1.11

1.35

AIOH

09/06/84

250

THURSDAY

2120



79

18.0

18.0

09/10/84



c



2.95



AKOH

09/06/84

250

THURSDAY

2119



9

18.0

19.5

09/10/84



c



2.77



ASOR

•9/M/M

262

mcofty

2299



149

16.5

17.0

09/20/84



c



0.79



Mtoa

09/18/84

2S2

TUESDAY

2298



18

16.5

17.5

09/20/84



E

09/21/84

0.77



MHOC
PPI1C
ESRL-GC

0.71



0T/}»/«4
A+GA 07/27/84

3/94

08/0V84
iw¥x 08/01/84

BNTX 09/13/94
am 09/13/84

29*

FRIDAY

1455

32

14.0

13.5

07/31/94

C 08/01/84

0.66

299

FRIDAY

1456

91

14.0

13.9

07/31/84

B

0.58

11C

THURSDAY

1906

89

14.0

14.0

08/29/84

A

0.40

236

THURSDAY

1905

21

14.0

13.S

08/29/84

C

0.51

254

HOBDAY

2171

155

15.0

15.0

09/12/84

B

0.50

254

MONDAY

2170

67

15.0

15.0

09/12/84

D

"0.4«



FKIOAY

1643

35

9.8

9.5

0R/09/94

B

0.50

216

FRIDAY

1642

188

9.8

9.5

09/09/84

&

0.56

iU

WEDNESDAY

1535

127

24.0

23v9

09/09/84

A

0.40

214

WEDNESDAY

1534

109

24.5

24.8

08/06/84

C

0.51

257

THURSDAY

2292

182

21.5

21.5

09/19/94

D

1.39

257

THURSDAY

2291

173

21.5

18.0

09/19/94

C

1.67

0.70

(continued)

-------
1984 SUHMER HMOC STUDY

Table 4-26 (cont.)

SAMPLING

JULIAN





CAM



(PSIG)

(PSIG) RADIAN

RADIAN



EPA

RADIAN

NKOC

tlftOC

SITE DATE

DATE

SAMPLED

RADIAN

NO.



PRESSURE

PRESSURE ANALYSIS

NMOC



ANALYSIS

PPMC

PPMC

PPMC

CODE SAMPLED

SAMPLED

WEEKDAY

LAI: ID

SAMPLED

SAMPLED

RECEIVED DATE

INST



DATE

Nnoc

QAD

ESRL

I BIN 08/01/84

214

HEDMESDAY

1553



153

13.1

12.9 08/06/84



A



1.14





ININ 08/01/84

214

WEDNESDAY

1554



131

13.1

12.5 08/06/84



C



1.34





IN1N 08/29/84

242

WEDNESDAY

1995



106

14.3

14.0 08/31/84



A



0.52





1NIH 08/29/84

242

WEDNESDAY

1996



152

14.3

14.0 08/31/84



A



0.52





IHIN 09/21/84

265

FRIDAY

2380



46

14.0

13.8 09/26/84



D



0.99





IKIN 09/21/84

265

PRIDAY

2381



155

14.0

13.3 09/26/84



C



0.98





KCMO 08/17/84

230

PRIDAY

1823

190

14.0

14.1 08/21/84

B

0.64

KCMO 08/17/84

230

PRIDAY

1822

106

14.0

14.8 08/21/84

C 08/22/84

0.64

KCMO 08/27/84

240

MONDAY

1957

151

13.5

13.3 08/29/84

A

0.57

KCMO 08/27/84

240

MONDAY

1956

64

13.5

13.4 08/29/84

C

0.35

f


-------
19H4 SUMMER NHOC STUDY

Table 4-26 (cont.)

SAMPLING
SITE DATS
CODE SAMPLED

JULIAN

DATE SAMPLED
SAMPLED WEEKDAY

CM)

RADIAN NO.
LAB ID SAMPLED

IPSIG) (PSIG)
PRESSURE PRESSURE
SAMPLED RECEIVED

RADIAN RADIAN
ANALYSIS NHOC
DATE INST

EPA	RADIAM

ANALYSIS PPHC
DATE NHOC

croc hmoc

PPHC	PPHC

GAD	ESRL-GC

CNOH 09/06/84

250

THURSDAY

2123

121

17.0

17.0 09/10/84

D

0.88



CMOH 09/06/84

250

THURSDAY

2124

71

17.0

15.5 09/10/84

D

1.00



DLTX 06/22/84

174

FRIDAY

1029

44

16.0

13.0 06/25/84

A 06/26/84

1.42

1.60

DLTX 06/22/84

174

FRIDAY

1028

42

16.0

16.5 06/25/84

C 06/26/84

1.61

1.61

DLTX 07/30/84

212

MONDAY

1499

19

13.0

16.0 08/01/84

C

1.22



DLTX 07/30/84

212

NOWAY

1500

186

18.6

16.0 08/01/84

D

1.16



DLTX 09/06/84

250

THURSDAY

2117

6

16.5

IS.5 09/10/84

D

1.28



DLTX 09/06/84

250

THURSDAY

2118

188

16.5

14.5 09/10/84

C

1.25



DLTX 09/17/84

261

MONDAY

2287

106

17.0

17.0 09/19/84

C

1.06



DLTX 09/17/84

261

MONDAY

2288

71

17.0

16.5 09/19/84

D

1.16



ELW 07/12/84

194

THURSDAY

1223

17

13.0

13.0 07/16/84

D

0.68

ELTX 07/12/84

194

THURSDAY

1222

127

13.0

10.5 07/16/84

D

0.60

ELTX 07/25/84

207

WEDNESDAY

1421

49

12.5

9.5 07/27/84

B

0.67

ELTX 87/25/84

207

WEDNESDAY

1422

97

13.5

10.3 07/27/64

B

0.68

ELTX 09/07/64

251

FRIDAY

2146

106

14.0

12.0 09/11/84

C

1.21

ELTX 09/07/84

251

FRIDAY

2145

19

14.0

11.5 09/11/84

C

1.25

ELTX 09/20/84

264

THURSDAY

2361

If 1

13.0

11.5 09/24/84

C 09/25/84

1.78

ELTX 09/20/84

264

THURSDAY

2360

43

13.0

11.2 09/24/84

B 09/25/84

1.84

FWTX 06/20/84

172

WEDNESDAY

1023

3

18.0

17.7 06/25/84

A

1.18

FMTX 06/20/84

172

WEDNESDAY

1022

4

18.0

17.7 06/25/84

B

1.11

FMTX 07/06/84

188

FRIDAY

1144

144

15.0

15.0 07/09/84

A

0.87

FWTX 07/06/84

188

FRIDAY

1143

145

15.0

15.0 07/09/84

C

1.02

FWTX 07/24/84

206

TUESDAY

1404

63

17.0

16.0 07/26/84

C

1.09

FWTX 07/24/84

206

TUESDAY

1403

96

17.0

17.0 07/26/84

B

1.04

(continued)

-------
Table 4-26

(cont.)

1984 SUMMER NMOC STUDY

SAMPLING
SITE DATE
CODE SAMPLED

JULIAN

DATE

SAMPLED

SAMPLED
KEEKDAT

RADIAN
LAB ID

CAM
N0«

SAMPLED

(PSIG)

PRESSURE

SAMPLED

(PSIG) RADIAN
PRESSURE ANALYSIS
RECEIVED DATE

RADIAN

NMOC

INST

EPA

ANALYSIS
DATE

RADIAN

PPNC

NMOC

NMOC
PPMC
0AD

NMOC
PPMC

ESRL-GC

¦ ¦tHUI

WBPA 07/17/84
WBPA 07/17/84

C IKBSKSEI

199
199

B

TUEFDAY
TUESDAY

1286
1285



167
180

17.0
17.0

17.5 07/19/84
17.4 07/19/84



C

B 07/23/84

0.62
0.46



0. <7

WBPA 08/06/84
WBPA 08/06/84

219
219

MONDAY
MONDAY

1645
1644



120
64

22.0
22.0

22.0 08/09/84
21.5 08/09/84



A

A 08/10/84

0.26
0.24



0.20

WDC 07/06/84

188

FRIDAY

1182

55

17.0

17.0 07/12/84

B

0.55



WDC 07/06/84

188

FRIDAY

1183

53

17.0

17.5 07/12/84

C

0.56



HDC 07/27/84

209

FRIDAY

1464

101

20.0

20.5 08/01/84

B 08/03/84

0.68

0.56

HDC 07/27/84

209

FRIDAY

1496

164

17.0

17.8 08/01/84

C

0.56



HDC 08/14/84

227

TUESDAY

1780

73

16.0

16.0 08/20/84

C

0.68



WDC 08/14/84

227

TUESDAY

1781

76

16.0

16.0 08/20/84

D

0.65



NPFL 06/28/84

180

THURSDAY

1080

69

15.0

15.0 07/02/84

A 07/10/84

0.28

0.31

MPPL 06/28/84

180

THURSDAY

1079

68

15.0

15.0 07/02/84

A 07/10/84

0.45

0.37

WPFI. 07/23/84

205

MONDAY

1372

113

16.2

16.5 07/25/84

C 07/27/84

0.44

0.39

NPPL 07/23/84

205

MONDAY

1373

78

16.2

16.5 07/25/84

A

0.41



-------
Table 4-26 (cont.)

1984 SUMMER NHOC STUDY

SAMPLING	JULIAN	CAN

SITE DATE DATE SAMPLED RADIAN NO.

CODE SAMPLED SAMPLED WEEKDAY LAB ID SAMPLED

(PSIC) (PSIG) RADIAN RADIAN
PRESSURE PRESSURE ANALYSIS W.OC
SAMPLED RECEIVED DATE INST

EPA	RADIAN NHOC

ANALYSIS PPHC PPNC
DATE NHOC GAD

PPHC

ESRL-GC

T
«©

ORTX 07/04/04
ORTX 07/06/04

188 PRIDAY
188 PRIDAY

1171
1170

32
42

18.8
18.8

16.5 07/11/84
16.5 07/11/04

A

C 07/12/84

1.28
1.25

ORTX 00/09/04
ORTS 00/09/04

222 THURSDAY
222 THURSDAY

1667

1668

157
19

18.0
18.0

15.7 08/13/84
15.3 08/13/84

C
D

0.30
0.33

ORTX 08/27/04
ORTX 08/27/84

240 MONDAY
240 MONDAY

1971

1972

181
140

19.0
19.0

17.1 08/29/P4
17.0 08/38/84

C
D

0.89
0.90

PUPA 88/18/84
PRPA 88/18/84

229 THURSDAY
229 THURSDAY

1799
1798

170
184

15.8
15.8

16.1 08/20/84
16.1 08/28/84

D
C

0.62
0.57

PUPA 08/38/84
PMPA 88/38/84

243 THURSDAY
243 THURSDAY

2044
2043

137
87

15.8
15.8

16.0 09/05/84
16.0 09/05/04

A
B

0.95
0.84

RVA 08/01/84
RVA 88/01/84

214 WEDNESDAY
214 WEDNESDAY

1516
1515

157
96

16.0
16.0

16.1 08/02/84
16.1 08/82/84

D
D

0.32
0.32

RVA 88/24/84

RVA 08/24/84

237 PRIDAY
237 PRIDAY

1097
1896

139
176

15.0
15.0

15.1 08/28/84
14.8 08/27/84

C

D 00/28/84

0.44
0.49

TCTX 06/28/04
TCTX 06/28/84

170 TUESDAY
178 TUESDAY

1054

1055

66

73

18.0
18.0

18.0 06/28/84
18.0 06/28/84

C 06/26/84
C

0.96
1.01

TCTX 87/18/82
TCTX 07/18/84

200 KEDNESDAY
200 WEDNESDAY

1312
1311

12
52

25.0
25.0

25.0 07/20/84
24.0 07/20/84

C
B

0.81
1.07

TCTX 09/04/84
TCTX 09/04/84

248 TUESDAY
248 TUESDAY

2075
2074

96
65

18.0
18.0

17.9 09/0C/84
17.9 09/08/84

D

C

0.60
0.60

TCTX 89/28/84
TCTX 89/20/84

264 THURSDAY
264 THURSDAY

2354
2353

77
130

19.0
19.0

19.5 09/24/84
20.0 09/24/84

D

D 09/25/84

0.32
0.31

1.33

0.41

1.00

0.33

(continued)

-------
No attempt vat made to differentiate between or to determine any effect of
the channel on the result. Table 4-27 gives the result in terms of the
site code name, e.g. for Case 1, the site is AKOH (Akron, Ohio) and DI -
-0.050 is the difference between the analysis of the first duplicate, 1.06,
and the analysis of the second duplicate, 1.11. The duplicate samples were
taken simultaneously in parallel in two stainless steel evacuated cylinders
through a teed sample line.

The upper set of statistics in Table 4-28 is for DI for duplicate
samples from all the sites (total observations 59). The akewness and
kurtosis statistics given in Table 4-28 are the third and fourth moments,
respectively about the sample mean and may be used to compare the frequency-
sise data with the normal distribution. Examination of the data in Tables
4-26 and 4-27 indicates that Case 41 for Memphis, Tennessee (KTN) is an
outlier. This case is discussed in more detail below. The lover set of
statistics in Table 4-28 reanalyzes the duplicate aample differences,
eliminating the outlier from the set of duplicate samples. Rote that the
range, the skevness, and the kurtosis all ara substantially reduced when
the one outlier is removed and the mean is significantly increased.

Figures 4-15 and 4-16 represent distribution diagrams for the com-
posite duplicate sample differences, not including Case 41 of Table 4-27.
Figure 4-15 shovs DI (duplicate sample HMOC difference values) ranging from
-0.41 and 0.22. The symbol "a" on the abscissa shovs the approximate
location of the mean of all the duplicate sample differences, vhile the
left and right parentheses shov the approximate location of one standard
drrittion (plus and minus) from the mean. All the values given in Figures
4-15 and 4-16 may be confirmed by comparing vith the statistics given in
Table 4-28 (minimum ¦ -0.410, maximum ¦ 0.220, mean ¦ -0.0277, standard
deviation ¦ 0.1174). Figure 4-15 is a histogram of the DI data for the
duplicate samples, and Figure 4-16 is a stem and leaf plot of variable DI.
Both are frequency diagrams and display the frequency distribution of DI
fi*st vith the magnitude DI on a horizontal scale and secondly in Figure
4-16 the magnitude of DI is on a vertical scale. The hinges (H) shovn in

4-94

-------
1

2

3

4

5

6

7

8

9

10

11

12

13

14

IS

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

33

36

37

38

39

40

41

42

43

44

43

46

47

48

49

30

31

32

33

34

33

36

37

38

39

Table 4-27. Differences of Duplicate NMOC Analyses.

SYTE*	SITE	DI

AKOH

1.000

-0.050

AKOH

1.000

0. 180

AKOH

I. ooo

0.020

ATGA

2.000

0.080

ATGA

2.000

-0.110

ATGA

2.000

0.020

BAL

3.000

-0.060

BMTX

4.000

-0. no

BMTX

4.000

-0.280

CHNC

5.000

-0.110

CHNC

5.000

-0.030

CHNC

5.000

-0.010

CHNC

5.000

-o.oto

CHTN

6.000

0.

CHTN

6. OOO

0.130

CLTX

7.000

0.070

CLTX

7. OOO

-0.280

CLTX

7.000

0.070

CLTX

7.000

-0.090

CLTX

7.000

-0.210

CNOH

8.000

-0.120

DLTX

9.000

-0.190

DLTX

9.000

0.060

DLTX

9.000

0.030

DLTX

9.000

-0.iOQ

ELTX

10.000

0.080

ELTX

10.000

-0.010

ELTX

10.000

-0.040

ELTX

10.000

-0.060

FWTX

11.000

0.070

FWTX

11.000

-0.150

FWTX

11.000

0.050

ININ

12.000

-0.200

ININ

12.000

0.

ININ

12.000

0.010

KCMO

13.000

0.

KCMO

13.000

0.220

MIFL

14.000

-0.030

MIFL

14.000

0.010

MIFL

14.000

-0.410

MTN

15.000

-0.940

ORTX

16.000

0.030

ORTX

16.000

0.050

ORTX

16.000

-o.oia

PHPA

17.000

0.050

PHPA

17.OOO

o. na

RVA

18.000

0.

RVA

18.000

-0.050

TCTX

19.OOO

-0.030

TCTX

19.OOO

-0.260

TCTX

19.000

0.

TCTX

19.000

0.010

WBPA

20.000

0.160

WBPA

20.000

0.020

WDC

21.000

-o.oto

WDC

21.000

0.012

WDC

21.000

0.030

WPFL

22.000

-0.170

WPFL

22.000

0.030



-------
Figure 4-15. Duplicate Sample Differences Histogram

PROPORTION PGR STANDARD UNIT	COUNT

1.0 +

.9 +

1





•

.8 ~
•





a

.7 +
•





•

.6 +





•
•



*****

.5 *



**********

1
•



**********

.4 ~



**********

1
1



**********

.3 +



**********

1

1



**********

.2 +



********************

I
•



******************************

.1 +

*****

******************************

J	*****	**************************************** !

-.41	<	A	)	.22

DI

4-96

-------
Table 4-28. Duplicate Sample Differences.

TOTAL.. OBSERVATIONS: '5^

N OF CASE'S
MINI Ml)M
MAX I Ml IM
FLANGE
MEAN

VARIANCE
STANDARD DEV
87D. ERROR

SKEWNESS
KURTOSIS

DI

-O.9*000
O.2200Q
1 . I 6<">' )< >
-O. 0431*?
O. 02766
O.16631
o - o 16r»
-2.88146
12."6**3

01 H I IER FROM MTN I IAS DEEM REMOVED FROM THE FOLLOWING DATA.
TOTAL OBSERVATIONS: SS

M t I I1 I'M 11*1
MA* I Ml. IN
RANGE
MEAN
V«RIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
t :.I.IR TOSIS

DI

•=;8

<"i. 4 1 000
0.22000
0.6300'")
-0.02772
0. 01 Z '71
O.11^44
0. 0154.2
O.3407I
1 . 1 821

4-95

-------
Figure 4-16 between the stems and the leaves split the upper half and the
lover half of the frequency data into halves again. The "H-spread" is the
difference between the values of the two hinges. The "inner fences" are
defined as follows:

lower fence ™ lower hinge - (1.5 x Hspread)
upper fence ¦ upper hinge ~ (1.5 x Hspread)

Any HMOC difference values outside the inner fences are printed on separate
lines and separated from the other lines by a line of text "***ODTSIDE
VALUES***."

Table 4-29 presents the duplicate difference statistics by sites.
These data are summarized in a sore compact tabular form in Table 4-30.
The first six columns summarize selected statistics of Table 4-29. The
last 5 columns are ranked by mean difference* DT. The penultimate column
shows the t statistic for the designated site iriiieh may be used to test the
hypothesis that . q#q. The	coiuan i# Student's t statistic which

gives tC( the critical t at the 5Z significance level and appropriate
degrees of freedom. If t is greater than te, then accept the hypothesis
that the mean difference between duplicate samples is not equal to zero.
Table 4-30 also indicates that the difference datum for Memphis, Tennessess
(MR) is apparently an outlier. This may be clearly seen also by
examination of Figure 4-17, which plots DI for all the sites in this study.
The fact that only one duplicate was measured for MTU (Site No. 15)
requires that a qualitative test be used to declare it to be an outlier.
The footnote in Table 4-30 indicates that there was an unusual circumstance
in the duplicate measurement for MTH in the cause of the analysis which
justified the declaration of the point to be an outlier.

* Tukey, J. W. Exploratory Data Analysis. Addison-Wesley, Reading, Mass.
(1977).

4-98

-------
Figure 4-16. Stem and Leaf Plot of Duplicate Differences.

STEM AND LEAF PLOT OF VARIABLE:	DI

SMALLEST VALUE AT TOP OF PLOT IS: -.4100000
-4 1

_ 2 gg

***0UTSIDE VALUES***

-2 6
-2 10
-I 973
-1 21110
-0 H 966555
-0 43311111
0 H 0000011112223333

0	555677788

1	13

1	68
***0UTSIDE VALUES***

2	2

4-97

-------
Table 4-29 (cont.)

THE FOLLOWING RESULTS ARE FOR J
SYTE* ¦ DLTX

TOTAL OBSERVATIONS* 4

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

4

-0.190
0.060
—O.050
0.014
0. 116
0.058

THE FOLLOWING RESULTS ARE FOR:
SYTE* - yCMO

TOTAL OBSERVATIONS: 2

N OF CASES
MINIMUM
MAXIMUM
MEAN
VARIANCE
STANDARD

DEV/

STD. ERROR

DI

<•>.

O. 220
O. 1 1 0
O. 024
0. 156
0. 1 10

THE FOLLOWING RESULTS ARE FORi
SYTE* - ELTX

TOTAL OBSERVATIONS! 4

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

4

-0.060
0.080
-0.007
0.004
O. 062
0.031

THE FOLLOWING RESULTS ARE FOR:
SYTE* ¦ MIFL

TOTAL OBSERVATIONS! 3

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

3

-0.410
0.010-
-O.143
0.054

O. 232
O. 134

THE FOLLOWING RESULTS ARE FORt
SYTE* - FWTX

TOTAL OBSERVATIONS! 3

THE FOLLOWING RESULTS ARE FOR:
SYTE* • MTN

TOTAL OBSERVATIONS! 1

DI

DI

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

-0.150

0.070
-0.010
0.015
0. 122
0.070

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

1

-0.940
-0.940
-0.940
0.

O.

O.

THE FOLLOWING RESULTS ARE FORi
SYTE* ¦ ININ

THE FOLLOWING RESULTS ARE FORi
SYTE* - ORTX

TOTAL OBSERVATIONS!

TOTAL OBSERVATIONS!

DI

DI

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

-0.200
0.010
-0.063
0.014
0. 118
0.068

(continued)

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

-0.010
0.050
0.023
0.001
0.031
0.018

-------
Table 4-29. Analysis of Duplicate Sample Difference by Site.

THE FOLLOWING RESULTS ARE FORi
SYTE* - AKOH

TOTAL OBSERVATIONS! 3

THE FOLLOWING RESULTS ARE FORl
SYTE* - CHNC

TOTAL OBSERVATIONS* 4

M OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

-0.03O
0. ISO
0.050
0.014
0.118
0.068

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

4

-O.110
-0.010
—O.040
0.002
0.04B
0.024

THE FOLLOWING RESULTS ARE FORi
SYTE* - ATGA

TOTAL OBSERVATIONS! 3

THE FOLLOWING RESULTS ARE FORi
SYTE# - CHTN

TOTAL OBSERVATIONS! 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

3

-O.110
0.080
-0.003
0.009
0.097
0.056

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

DI

2

O.

0.130
0.065
0.008
0.092
0.065

THE FOLLOWING RESULTS ARE FORi
SYTE* - BAL

TOTAL OBSERVATIONS! 1

THE FOLLOWING RESULTS ARE FORi
SYTE* - CLTX

TOTAL OBSERVATIONS! 5

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

-0.060
-0.060
-0.060
0.

0.

0.

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

5

-O.280
0.070
-0.088
0.025
0.159
0.071

THE FOLLOWING RESULTS ARE FORi
SYTE* - BMTX

TOTAL OBSERVATIONS! 2

THE FOLLOWING RESULTS ARE FORi
SYTE* " CNOH

TOTAL OBSERVATIONS! 1

DI

DI

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

2

-0.280
-0.110
-0.195
0.014
0.120
0.0*5

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

1

-O.120
-0.120
-O.120
0.

0.

0.

(continued)



-------
Table 4-30. Duplicate Sample Statistica

Duplicate Sample Statiatica

Ranked bv PI. DI

Site

Site



Std.

Std.

Site



Std.





No.

Code

DI

Dev. n

Error

Code

DI

Error

t

t

c

1

AKOH

0.050

0.118 3

0.068

KCMO

0.110

0.110

1.618

12.706

2

ATGA

-0.003

0.097 3

0.056

WBPA

0.090

0.070

1.286

12.706

3

BAL

-0.060

0.000 1

0.000

PHPA

0.080

0.030

2.667

12.706

4

BMTZ

-0.195

0.120 2

0.085

CHTN

0.065

0.065

1.000

12.706

5

CHNC

-0.040

0.048 4

0.024

AKOH

0.050

0.068

0.735

4.303

6

CHTH

0.065

0.092 2

0.065

ORTX

0.023

0.018

1.278

4.303

7

CLTX

-0.088

0.159 5

0.071

VDC

0.011

0.012

0.916

4.303

8

CNOH

-0.120

0.000 1

0.000

ATGA

-0.003

0.056

-0.054

4.303

9

DLTZ

-0.050

0.116 4

0.058

ELTZ

-0.007

0.062

-0.113

3.182

10

ELTZ

-0.007

0.06 2 4

0.031

FWTZ

-0.010

0.070

-0.143

4.303

11

FWTZ

-0.010

0.122 3

0.070

RVA

-0.025

0.025

-1.000

12.706

12

IHIN

-0.063

0.118 3

0.068

CHHC

-0.040

0.024

-1.667

3.182

13

KCMO

0.110

0.156 2

0.110

DLTZ

-0.050

0.058

-0.862

3.182

14

MIPL

-0.143

0.232 3

0.134

BAL

-0.060

0.000

—

_

15

MTH

-0.940*

0.000 1

0.000

IHIH

-0.063

0.068

-0.926

4.303

16

ORTX

0.023

0.031 3

0.018

HPFL

-0.070

0.100

-0.700

12.706

17

PHPA

0.080

0.042 2

0.030

TCTZ

-0.075

0.063

-1.190

3.182

18

RVA

-0.025

0.035 2

0.025

CLTZ

-0.088

0.071

1.239

2.776

19

TCTX

-0.075

0.126 4

0.063

CHOH

-0.120

0.000

_

—

20

WBPA

0.090

0.099 2

0.070

MIFL

-0.143

0.134

-1.067

4.303

21

WDC

0.011

0.020 3

0.012

BMTZ

-0.195

0.120

1.625

12.706

22

HPFL

-0.070

0.141 2

0.100

MTH

-0.940* 0.000





This sample ia apparently an outlier. Examination of the laboratory notebooka
•bowed the following for Radian Sample ID Ho. 2131 and Ho. 2132, the two IP
numbera for the duplicate samples from Memphis, Tennessee.

Analvaia Ho.

1

2

3

Sample Ho. 2H1

DI - 0.36 - 1.30 - -0.940

Area Count

ppmC

Area Count

ppmC

4336.10

1.38

1078.76

0.34



*»??

mmi

Uti

Average

- 1.30

1169.04

. 9.?7

Average " 0.36

Thia datum was discarded aa an outlier.

4-102

-------
Table 4-29 (cont.)

THE FOLLOWING RESULTS ARE FORi

SYTE*

- PHPA

THE FOLLOWING RESULTS ARE FOR:
SYTE* - WE"PA

TOTAL OBSERVATIONS!

TOTAL OBSERVATIONS!

01

01

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

2

0.050
0. 110
O. 080
0.002
0.042
0.030

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0. 02'1
0. 1 &<.'
0. 090
O.ol'j
0. 099
0.O70

THE FOLLOWING RESULTS ARE FORi

SYTE*

- RVA

THE FOLLOWING RESULTS ARE FOR:
SYTE* - WDC

TOTAL OBSERVATIONS!

TOTAL OBSERVATIONS!

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

2

-0.030
0.

-0.023

0.001
0.033
0.023

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DI

3

-0.010
O. 030
0.011

0.000
0. 020
0.012

THE FOLLOWING RESULTS ARE FOR»

SYTE*

TOTAL OBSERVATIONS!

- TCTX

THE FOLLOWING RESULTS ARE FORt
SYTE* ¦ WPFL

TOTAL OBSERVATIONS! 2

01

01

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

4

-O.260
0.010
-0.073
0.016
O. 126
0.063

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

-0.170

0. 030
-O.070
0.020
O. 141
O. 100

4-101

-------
Table 4-30 indicates that none of the sites had a mean duplicate
sample difference significantly different from zero. (Note that BAL and
MIN could not be tested, having only one measurement each.) This assertion
is supported by the analysis of variance calculations summarized in Tables
4-31 and 4-32. Table 4-31 includes all the duplicate sample difference
data including the MIN datum discussed above as an outlier. The analysis
of variance data in Table 4-32 indicates that SITE is an important factor
in describing the mean duplicate sample difference DT. The P statistic is
the probablity that the variable SITE is not a factor. That probability is
zero (to 3 decimal points) and therefore SITE must be considered a factor.
Because the datum for MTN is so far removed from the remaining data it is
not surprising that SITE is a factor.

If the datum for Memphis, Tennessee is removed and an analysis of
variance (ANOVA) performed again, the results are shovn in Table 4-32. For
this ANOVA the probability that SITE is not a factor is 0.442, which is
significantly high to lead to the conclusion that SITE is not a factor in
analyzing the duplicate sample data.

In summary the analysis of the duplicate sample data indicates that
there is no significant difference between the duplicate samples smong any
of the sites tested. Table 1-3 indicated the precision of duplicate
analyses to be -3.4Z, but this cannot be said to be different from zero.

4.2.5 QC Samples

4.2.5.1 Radian In-House QC Samples—Various statistics are given in
Table 4-33 for the in-houae QC samples. A Radian QC coordinator prepared
the samples by diluting dry propane samples with cleaned, dry air with
calibrated, proportional flow controllers according to the schedule shown
in the QA Project Plan and in the table. The dry propane was prepared and
certified by the EPA's EMSL-RTP facility. The error term reported in Table
4-33 is the difference between the measured ppmC value and the calculated
ppmC value. The Radian QC sample was inserted among the daily samples (see
QA Project Plan). The analyst did not know the composition of the QC
sample at the time of analysis.

4-104

-------
Figure A—17. DI, Mean Difference in NMOC for Duplicate Sample Analyses.

NOTE: Site numbers are circled at DI for site.

-------
Table 4-32

Comparison o-f Duplicate Sample Di-f-ferencem.

NUMBER OF CASES PROCESSED: 58 (Datum for Memphis, Tenn. Deleted

as an Outlier.)

DEPENDENT VARIABLE MEAN:	-0.028

MULTIPLE CORRELATION: .600

SQUARED MULTIPLE CORRELATION: .361

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE	F-RATIO	P

SITE	0.283 20	0.014	1.043	44:

ERROR	0.503 37	0.014

MODEL: DI ¦ M + (SITE) + ERROR

4-106

-------
Table 4-31

Comparison of Duplicate Sample Di * erenc

MODEL: D1 - y + (SITE) + (ERROR)

NUMBER OF CASES PROCESSED! 59

DEPENDENT VARIABLE MEANi	-0.043

MULTIPLE CORRELATION* .829
SQUARED MULTIPLE CORRELATION: .687

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE	F-RATIO P

SITE	1.102 21	0.032	3.861 .000

ERROR	0.303 37	0.014

4-105

-------
IN HOUSE QC SAMPLES -

NMOC INSTRUMENT

QC SAMPLE JULIAN
PREP. DAT DATE* •





07/12/04

194

07/17/04

199

07/19/04

201

07/20/04

202

07/23/04

205

07/23/04

205

07/25/04

207

07/25/04

207

07/31/04

213

00/02/04

215

00/03/04

210

00/07/04

220

00/09/04

222

00/15/04

220

00/21/04

234

00/23/04

230

00/24/04

237

00/31/04

244

09/13/04

257

09/24/04

200

10/01/04

275

WEEKDAY ANALYSIS
DATE

THURSDAY 07/12/04
TUESDAY 07/17/04
THURSDAY 07/19/04
FRIDAY 07/20/84
MONDAY 07/23/04
MONDAY 07/23/04
WEDNESDAY 07/24/04
MEDNE8DAY 07/25/04
TUE80AY 07/31/04
THURSDAY 00/02/04
FRIDAY 00/03/04
TUESDAY 00/07/04
THURSDAY 00/09/04
WEDNESDAY 00/15/04
TUESDAY 00/21/04
THURSDAY 00/23/04
FRIDAY 00/24/04
FRIDAY 00/31/04
THURSDAY 09/13/04
MONDAY 09/24/04
MONDAY 10/01/04

Table 4-33 (cont.)

HAN
ID •

NHOC
INST

CALC
PPNC

NBAS
PPNC

ERROR
PPNC

QC SAMPLE DESCRIPTION

1199
1259

1203

1204
1300
1307
1300
1307
1452
1503
1530
1500
1001
1709
1006
1020
1029
1991
2104
2342
2440

B
B
B
B
B
B
B
B
B
B
B
B
B
B

0.22
0.05
0.44
0.17
0.00
1.32
0.10
1.52
2.10
0.71
0.04
1.00
0.17
0.02
0.20
0.09
1.31
0.00
0.02
2.74
0.00

0.25
0.07
0.47
0.10
0.01
1.37
0.11
1.59
2.10
0.77
0.05
1.00
0.19
0.07
0.21
0.72
1.41
0.07
0.09
2.0
0.03

0.03
0.02
0.03
0.01
0.01
0.05
0.01
0.07
.00
0.00
0.01
0.02
0.02
0.05
0.01
0.03
0.10
0.01
0.07
0.00
0.03

DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED

PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD.

STD

STD

STD

STD

STD

STD

STD

STD

STD

STD

STD

NUMBER -
MEAN -

Sd -

21
0.762
0.731

21
0.796
0.744

21
0.033
0.027

(continued)

-------
Table 4-33.

In-House QC Samples.

IN BOUSE QC SAMPLES - NHOC INSTRUMENT A

QC SAMPLE JOLIAR ,

, WEEKDAY

ANALY8IS

RADIAN

NHOC

cam;

NBAS

ERROR

QC SAMPLE DESCRIPTION



m. OAT

DATE

DATE

ID •

INST

PMC

PPNC

PPNC











¦

s
¦
I
(
¦

•
•
•
•
•
•
•







¦
¦
¦
¦
¦
¦
¦

•
1

a
•
•
•
•

•
•
•

•
•
•
•

•
•
¦
•
¦
1
•
•
•
•
•
1
1
•
•
•



•7/12/14

1*4

TRUR80AY

07/12/04

1190

A

0.22

0.24

0.02

DRY

DILUTED

PROPANE

STD.

07/17/04

109

TUESDAY

07/17/04

1259

A

0.05

0.00

0.01

DRY

DILUTED

PROPANE

STD.

07/19/04

201

TMURSOAY

07/10/04

1203

A

0.44

0.40

0.04

DRY

DILUTED

PROPANE

STD.

07/20/04

202

FRIDAY

07/20/04

1204

A

0.17

0.10

0.01

DRY

DILUTED

PROPANE

STD.

07/13/14

205

MONDAY

07/23/04

1300

A

0.00

0.02

0.02

DRY

DILUTED

PROPANE

STD.

07/23/94

205

MONDAY

07/23/04

1307

A

1.32

1.34

0.02

DRY

DILUTED

PROPANE

STD.

07/25/04

207

WEDNESDAY

07/20/04

1300

A

0.10

0.11

0.01

DRY

DILUTED

PROPANE

STD.

07/25/04

207

WEDNESDAY

07/25/04

1307

A

1.52

1.53

0.01

DRY

DILUTED

PROPANE

STD.

07/31/04

213

TOE80AY

07/31/04

1452

A

2.10

2.15

-0.03

DRY

DILUTED

PROPANE

STD.

00/02/04

215

THURSDAY

00/02/04

1503

A

0.71

0.70

0.07

DRY

DILUTED

PROPANE

STD.

00/03/04

210

FRIDAY

00/03/04

1530

A

0.04

0.04

.00

DRY

DILUTED

PROPANE

STD.

00/07/04

220

TOEODAY

00/07/04

1500

A

1.00

1.05

-0.01

DRY

DILUTED

PROPANE

STD.

00/00/04

222

TCOaSDAY

00/00/04

1001

A

0.17

0.21

0.04

DRY

DILUTED

PROPANE

STD.

00/15/04

220

WEDNESDAY

00/15/04

1709

A

0.02

0.00

0.04

DRY

DILUTED

PROPANE

STD.

O0/21/M

234

TUESDAY

00/21/04

1000

A

0.20

0.22

0.02

DRV

DILUTED

PROPANE

STD.

00/23/04

230

THURSDAY

00/23/04

1020

A

0.C9

0.73

0.04

DRY

DILUTED

PROPANE

STD.

0*24/04

237

FRIDAY

00/24/04

1029

A

1.31

1.42

0.11

DRY

DILUTED

PROPANE

STD.

00/31/04

244

FRIDAY

00/31/04

1991

A

0.0«

0.07

0.01

DRY

DILUTED

PROPANE

STD.

00/13/04

257

THUR8DAY

00/13/04

2104

A

0.02

0.07

0.05

DRY

DILUTED

PROPANE

STD.

00/24/04

200

MONDAY

00/24/04

2342

A

2.74

2.9

0.10

DRY

DILUTED

PROPANE

STD.

10/01/04

275

MONDAY

10/01/04

2440

A

O.CO

0.04

0.04

DRY

DILUTED

PROPANE

STD.











NUMBER -

21

21

21



















KHAN -

0.762

0.795

0.032



















Sd -

0.731

0.749

0.041









(continued)

-------
IN HOUSE QC SAMPLES - NMOC INSTRUMENT D

QC SAMPLE JULIAN
PREP. OA* DATE1

WEEKDAY ANALYSIS
DATE

07/10/04
07/13/14
07/10/04
07/24/14
07/25/04
07/27/04
00/00/04
00/20/04
00/30/04
09/00/04
09/07/04
09/10/04
09/11/04
09/21/04
09/27/04
10/01/04

192
195
190

20C
207
209
219
241
243

250

251

254

255
205
271
275

TUESDAY
FRIDAY
NOWAY
TUESDAY
WEDNESDAY
FRIDAY
NOMDAY
TUESDAY
THURSDAY
THURSDAY
FRIDAY
MONDAY
TUESDAY
FRIDAY
THURSDAY
MOMMY

07/10/04
07/13/04
07/10/04
07/24/04
07/25/04
07/27/04
00/00/04
00/20/04
00/30/04
09/00/04
09/07/04
09/10/04
09/11/S4
09/21/04
09/27/04
10/01/04

Table 4-33 (cont.)

NNOC
INST

CALC
PPNC

NEAS
PPNC

ERROR
PPNC

QC SAMPLE DESCRIPTION

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

NUMBER -
MEAN -
Sd -

16
1.380
0.942

16
1.450
0.968

0.04
0.00
-0.01
-0.10
0.11
0.22
0.17
0.03
0.04
0.10
0.00
0.10
0.19
.00
0.09
0.04

16
0.069
0.089

DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTEO
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED

PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE
PROPANE

STD.
STD.
STD.
STD.
STD.
8TD.
STD.
STD.
STD.
STD.
STD.
STD.
STD.
STB.
STD.
STD.

(continued)

-------
IN BOUSE QC SMCHilS - NNOC IHSTRUWEMT C

QC SAMPLE JULIAN

mr. mt mm «

WEEKDAY AMALTSIS
DATE

97/13/94
97/19/94
97/24/94
97/25/94
97/27/94
99/99/94
•l/M/M
99/39/94
99/99/94
99/97/94
99/19/94
99/11/94
99/21/94
99/27/94
19/91/94

195	MIMT

191	NOEDAY

2M	TUESDAY

207	MBDNBSDAY

299	PMMT

219	NOWAY

241	TUESDAY

243	TNURSDAY

259	TIOMMT

2S1	rHIDAY

254	MOMMY

255	TOMMY
295	FRIDAY
271	THURSDAY
275	MONDAY

97/13/94
97/19/94
97/24/94
97/25/94
97/27/94
99/99/94
99/29/94
99/39/94
99/99/94
99/97/94
99/19/94
99/11/94
99/21/94
•9/27/94
19/91/94

Table 4-33 (cont.)

)IAM
ID •

1214
1237
1329
1397
1391
1557
1919
1945

2991

2992
2119
2139
2315
2414
2449

NHOC
INST

C
C
C
C
C
C
C
C

c
c
c
c
c
c
c

CALC
PPNC

NBAS
PFNC

ERROR
PPNC

QC SAMPLE DESCRIPTION

9.97
9.29
1.95

1.52
1.22

2.53
1.79
9.59
3.99
9.94
3.29
1.49
9.21
1.25
9.99

15
1.431
0.952

9.94
9.29
1.91

1.93
1.39

2.7
1.91
9.54
3.24
1.91
3.31
1.7
9.22
1.34

9.94

15
1.517
0.982

9.97
.99
-9.94
9.11
9.17
9.17
9.15

9.94
9.15
9.97

9.95
9.21
9.91
9.99
9.94

15
0.067
0.072

DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED
DRY DILUTED

dry diluted
dry diluted

DRY DILUTED

PROPANE STD.
FROPANE STD.
FNOPANE STD.
PROPANE STD.
FNOPANE STD.
FNOPANE STD.
PROPANE STD.
FROPANE STD.
FNOPANE STD.
FROPANE STD.
PROPANE STD.
PROPANE STD.
FROPANE STD.
FROPANE STD.
FNOPANE STD.

(continued)

-------
Mote that only 5 of 82 cases were negative. This suggests	there

is a positive bias between the measured and calculated conceni:	As

will ba shown below at	level of Big^r^r'*ince< th»» me* '""r ->t<"ps

for aach channel are g-r>at»r than zero. A p.^itive bi-i-s ; - *•* ¦ ;lts
shown hare might be a re3nlt of all or soue n* the following:

(a)	lot measuring and subtracting an analytical blank rea^.l-^,

(b)	lot measuring and correcting for a cm "blanks"

(c)	Calibration drift in flowmeters used to mix the QA	•J. nnd

(d)	Having a bias in the standard mixture used to make the Q* -^espies.
It is fait that the first two factors cause the primary differed - -»<»n in
tka in-houseQC data^

Tables 4-34 and 4-?5 include selected in-house QC sample ii' 1 ^rted
first by channel And then by Radian ID number. The variable	in

Tables 4-34 and 4-35 identifies Radian Chrmn^l* A, B, C, and T, « ul F.PA
Channel 1, utile the Rad' Sample Identifi ct loi Numbers (".Y"	also

identified in the tables by tha variable ID (see espe^'-tlly T " '35,
sortsd by ID Number). Tabl? 4-36 gives• seler.t-.M statistics or. vV • 5-i Vase
staple statistics. Hote that the skewness i<5 less than 1.000 j1 '
a Marly syMtrical distribution.

Tigvre 4-18 and 4-19 sbow a histogram and a stem and leaf plot of the
is*4ioase QC sample difference data* both of which suggest a nsir-normal
distribution of the sampl® differeucus.

Table 4-37 shows rt*j:i.stUs for the ii V.oujft samp* .• <\'.er~	by

channel* Channels 1 through 5 correspond t»> Channels A tT w* T' In
Tabla 4-38 the data of Table 4-37 are SUQmu r' ^«j4 alO'i£ w! V.' ~ ¦ -il t
statistics. In Table 4-38 Wt is the mean diff^.cence, SD is -^.-iidard
deviation, tSE is the standard error* K the cumber of samples, cu1 t the
statistic (• ffl/(SD//S)). The statistic t is used to test the hypothesis
that th* channel mean ¦ 0. fj^a final coltfstn in Table 4-38 is Stuart's t

*	v . rv-

statistic at the appropriate degrees of freedom and the 5 percen*- l^v.-l of
aigttificance* In every case the t statistic (penultimate	is

greater than the t in thfe, final coluan, therefore one must rrj^ct the
faiyyetfceaie that the channel aefui difference is zero. The lowr	of

4-112

-------
Table 4-33 (cont.)

IN BOOSE QC SAMPLES - NHOC INSTRUMENT E

QC SAMPLE JULIAN

MEEKDAY

ANALYS18

RADIAN

MHOC

CALC

NBAS

BRNOR

QC SAMPLE DESCRIPTION



PREP. DAT

DATE



DATE

ID •

INST

PMC

PPNC

PPNC









mmmmmmm

•
•

!
fl
a

•
ft
1
•
ft
•
ft

——-

mmmmmmm

«
1
1
ft
¦
ft
•

mmmmmmm





• ••)







07/10/04

192

T0E8DAY

07/11/94

1159

E

0.C3

0.00

0.05

DRY

DILUTED

PROPANE

STD.

07/17/04

199

TUESDAY

07/10/04

1259

E

0.05

0.09

0.04

DRY

DILUTED

PNOPANE

STD.

07/24/04

2M

TUESDAY

07/25/04

1320

E

1.95

1.95

.00

DRY

DILUTED

PROPANE

STD.

•7/25 /04

207

HEDME8DAY

07/25/04

1307

E

1.52

1.52

0.00

DRY

DILUTED

PROPANE

STD.

07/31/04

213

TUESDAY

00/01/04

1452

E

2.10

2.34

0.10

DRY

DILUTED

PROPANE

STD.

00/15/04

220

WEDNESDAY

00/10/04

1709

E

0.02

O.Of

0.04

DRY

DILUTED

PROPANE

STD.

00/21/04

234

TUESDAY

00/22/04

1000

E

0.20

0.21

0.01

DRY

DILUTED

PROPANE

STD.

IVM/II

250

THURSDAY

09/07/04

2091

E

3.09

3.17

0.00

DRY

DILUTED

PROPANE

STD.

09/07/04

251

FRIDAY

09/10/04

2092

E

0.94

0.99

0.05

DRY

DILUTED

PROPANE

STD.











NUMBER -
MEAN -

9

1.353

9

1.401

9

0.048



















Sd •

0.911

0.934

0.050









-------
Table 4-34 (cont.)





RADID

CHANNEL//

DELTA

ID

CHANL

CASE

42

2446.000

B

0.030

21.000

2. OOI

CASE

43

1214.000

C

0.070

22.000

3. OO

CASE

44

1237.000

C

0.

23.000

3. i;>o|

CASE

43

1328.000

C

-0.040

24.000

3. Ot>

CASE

46

1367.000

C

0. 110

8.000

3. OO

CASE

47

1391.000

C

0. 170

25.000

3. OO

CASE

48

1357.000

C

0. 170

26.000

3. OCX

CASE

49

1919.000

C

0. 150

27.000

3. 00<

CASE

SO

1945.000

c

0.040

28.000

3. OCX

CASE

51

2091.000

c

0. 150

29.000

3. OCX

CASE

32

2092.000

c

0.070

30.000

3. OO*

CASE

33

2110.000

c

0.050

31.000

3. Ooi

CASE

34

2139.000

c

0.210

32.000

3. OCX

CASE

33

2315.000

c

0.010

33.000

3. 00<

CASE

36

2414.000

c

0.090

34.000

3.o3

CASE

37

2446.000

c

0.040

21.000

3.00<

CASE

58

1159.000

D

0.040

35.000

OOi

CASE

39

1214.OOO

D

0.080

22.000

4. OCX

CASE

60

1237.000

D

-0.010

23.000

4. OCX

CASE

61

1328.000

D

-0.160

24.000

4. OOC

CASE

62

1367.000

D

0. 110

8.000

OOC

CASE

63

1391.000

D

0.220

25.000

4. OOC

CASE

64

1557.000

D

0. 170

26.000

4 • OOO

CASE

65

1919.000

D

0.030

27.000

*•000

CASE

66

1945.000

D

0.040

28.000

4. OOO

CASE

67

2091.000

D

0. 100

29.000

OOO

CASE

68

2092.000

D

0.060

30.000

* • ooo

CASE

69

2110.000

D

0. 100

31.000

OOO

CASE

70

2139.000

D

0. 190

32.000

4. ooo

CASE

71

2315.000

D

0.

33.000

4- OOO

CASE

72

2414.000

D

0.090

34.000

* -OOO

CASE

73

2446.000

D

0.040

21.000

4. ooo

CASE

74

1159.000

E

0.050

35.000

5. ooo

CASE

75

1259.000

E

0.040

2.000

3. ooo

CASE

76

1328.000

E

0.

24.000

5. ooo

CASE

77

1367.000

E

0.

8.000

3. OOO

CASE

78

.1452.000

E

0. 160

9.000

5. OOO

CASE

79

-1709.000

E

0.040

14.000

3. OOO

CASE

80

1806.000

E

0.010

15.000

5. OOO

CASE

81

2091.000

E

0. 080

29.000

5. OOO

CASE

82

2092.000

E

0.050

30.000

5. OOO

82 CASES AND 5 VARIABLES PROCESSED.

4-114

-------
Table 4-34. In-House QC Sample Differences, Sorted by Channel.

RAD ID

CHANNEL*

DELTA

ID

CHANL

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

1

2

3

4
3

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

CASE 21



CASE
CASE
CASE
CASE
CASE
CASE 27
CASE 28
CASE
CASE
CASE
CASE
CASE
CASE 34
CASE 33
CASE
CASE
CASE
CASE
CASE

23

24

25

26

29

30

31

32

33

36

37

38

39

40

CASE 41

1199.000
1239.000
1283.000
1284.000
1306.000
1307.000
1366.000
1367.000
1432.000
1303.000
1330.000
1580.000
1601.000
1709.000
1806.000
1828.000
1829.000
1991.000
2184.000
2342.000
2446.000
1199.000
1239.000
1283.000
1284.000
1306.000
1307.000
1366.000
1367.000
1452.000
1503.000
1530.000
1580.000
-1601.000
1709.000
1806.000
1828.000
1829.000
1991.000
2184.000
2342.000

A

0.020

A

0.010

A

0.040

A

0.010

A

0.020

A

0.020

A

0.010

A

0.010

A

-0.030

A

0.070

A

0.

A

-0.010

A

0.040

A

0.040

A

0.020

A

0. 040

A

o. no

A

0. 010

A

0.050

A

0. 160

A

0.040

B

0.030

B

0.020

B

0.030

B

0.010

B

0.010

B

0.050

B

0.010

B

0.070

B

0.

B

0.060

B

0.010

B

0.020

B

0.020

B

0.050

B

0.010

B

0.030

B

0. 100

B

0.010

B

0.070

B

0.060

1.000

1.000

2.000

1.000

3.000

1.000

4.000

1.000

5.000

l.OOO

6.000

1.000

7.000

1.000

8.000

1.000

9.000

1.000

10.000

l.OOO

11.000

1.000

12.000

1.000

13.000

1.000

14.000

l.OOO

15.000

1.000

16.000

l.OOO

17.000

1.000

18.000

1.000

19.000

1.000

20.000

1. 000

21.000

1.000

1.000

2.000

2.000

2.000

3.000

2. 000

4.000

2.000

5.000

2.000

6.000

2.000

7.000

2. 000

8.000

2.000

9.000

2.000

10.000

2.000

11.000

2.000

12.000

2.000

13.000

2.000

14.000

2.000

15.000

2.000

16.000

2.000

17.000

2.000

18.000

2.000

19.000

2.000

20.000

2.000

(continued)

4-113

-------
Table 4-35 (cont.)

RADIO

CASE

42

1991.OOO

CASE

43

1991.000

CASE

44

2184.000

CASE

43

2184.000

CASE

46

2342.000

CASE

47

2342.000

CASE

48

2446.000

CASE

49

2446.000

CASE

50

2446.000

CASE

31

2446.000

CASE

32

1214.000

CASE

33

1214.000

CASE

34

1237.000

CASE

35

1237.000

CASE

56

1328.000

CASE

57

1328.000

CASE

58

1328.000

CASE

59

1391.000

CASE

60

1391.000

CASE

61

1557.000

CASE

62

1557.000

CASE

63

1919.000

CASE

64

1919.000

CASE

63

1943.000

CASE

66

1943.000

CASE

67

2091.000

CASE

68

2091.000

CASE

69

2091.000

CASE

70

2092.000

CASE

71

2092.000

CASE

72

2092.000

CASE

73

2110.000

CASE

74

2110.000

CASE

75

2139.000

CASE

76

2139.000

CASE

77

2315.000

CASE

78

2315.000

CASE

79

2414.000

CASE

80

2414.000

CASE

81

*1159.000

CASE

82

1159.000

B2 CASES AND

5 VARIABLES

CHANNEL/'

A
B
A
B
A
B
A
B
C
D
C
D
C
D
C
D
E
C
D
C
D
C
D
C
0

c

D
E
C
D
E
C
D
C
D
C
0
C
D
D
E

DELTA

ID

CHANL

0.010

18.000

1.000

0.010

18.000

2.000

0.050

19.000

1.000

0.070

19.000

2.000'

0. 160

20.000

1.000

0.060

20.000

2.000

0.040

21.000

1.000

0.030

21.000

2.000

0.040

21.000

3.000

0.040

21.000

4.000

0.070

22.000

3.000

0.080

22.000

4.000

0.

23.000

3.000

-0.010

23.000

4.000

-0.040

24.000

3.000

-0.160

24.000

4.000

0.

24.000

5.000

0. 170

25.000

3.000

0.220

25.000

4.000

0. 170

26.000

3.000

0. 170

26.000

4. 000

0. 130

27.000

3. OOO

0.030

27.000

4.000

0.040

28.000

3.000

0.040

28.000

4.000

0. 130

29.000

3.000

0. 100

29.000

4.000

0.080

29.000

5.000

0.070

30.000

3. 000

0.060

30.000

4.000

0. 050

30.000

5.000

0.050

31.000

3.000

0. 100

31.000

4.000

0. 210

32.000

3.000

0. 190

32.000

4.000

0. 010

33.OOO

3.000

0.

33.000

4. 000

0.090

34.000

3.000

0.090

34.000

4.000

0.040

35.000

4. 000

0. 050

35.000

5. 000

4-116

-------
Table 4-35. In-House QC Sample Differences, Sorted by Radian ID.

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE 28
CASE 29
CASE
CASE
CASE
CASE
CASE 34
CASE 35
CASE 36
CASE 37
CASE 38
CASE 39
CASE 40
CASE 41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
23

26

27

30

31

32

33

RAD ID

1199.000
1199.000
1259.000
1259.OOO
1259.000
1283.000
1283.000
1284.000
1284.000
1306.000
1306.000
1307.000
1307.000
1366.000
1366.000
1367.000
1367.000
1367.000
1367.000
1367.000
1452.000
1452.000
1452.000
1503.000
1503.000
1530.000
1530.000
1580.000
1580.000
1601.000
1601.000
1709.000
11709.000
•1709.000
1806
1806
1806
1828

1828

1829
1829

CHANNELS

DELTA

ID

CHANL

000
000
000
000
000
000
000

A

0.020

1.000

B

0.030

1.000

A

0.010

2.000

B

0.020

2. OOO

E

0.040

2.000

A

0.040

3.000

B

0.030

3.000

A

0.010

4.000

B

0.010

4.000

A

0.020

5.000

B

0.010

5.000

A

0.020

6.000

B

0.050

6.000

A

0.010

7.000

B

0.010

7.000

A

0.010

8.000

B

0.070

8.000

C

0. 110

8. 000

D

0. no

8. 000

E

0.

8.000

A

-0.030

9.000

B

0.

9.000

E

0. 160

9.000

A

0.070

10.000

B

0.060

10.000

A

0.

11.000

B

0.010

11.000

A

-0.010

12.000

B

0.020

I2.000

A

0.040

13.000

B

0.020

13.000

A

0.040

14.000

B

0.050

14.000

E

0.040

14.000

A

0.020

15.000

B

0.010

15.000

E

0.010

15.000

A

0.040

16.000

B

0.030

16.000

A

0. 110

17.000

B

0. 100

17.000

1.000
2.000
1.000
2. 000
5.000
1.000

2.	OOO
1.000
2.000
1.000
2.000
1.000
2.000
1.000
2.000
1.000
2.000

3.	000
4.000
5. 000
1.000
2.000
5. 000
1.000
2.000
1. 000
2.000
1. 000
2.000
1.000
2.000
1.000
2.000
5. 000
1.000
2.000
5.000
1.000
2.000
1.000
2.000

(continued)

4-115

-------
PROPORTION PER STANDARD UNIT
1.0 +

.9 ~

(

I

.8 +

I

l

.7 *

I
I

• 6 +

i

.5 +

»

I

.4 +

I
I

.3 +

l
l

.2 +

I
I

. 1 ~

COUNT

30

»•*»
****
*»**

-. 16

DELTA

Figure 4-18. In-House QC Sample Differences,
Histogram.

4-118

-------
Table 4-36
In-House QC Sample Differences.

TOTAL OBSERVATIONS: 82

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSIS

DELTA

82

-0.16000
0.22000
0.38000
0.05122
O.00368
0.06066
O.00670
0.30073
1.76487

4-117

-------
Table 4-37- In-House QC Sample Differences, by Channel.

THE FOLLOWING RESULTS ARE FORJ

CHANL	-	1.00

THE FOLLOWING RESULTS ARE FOR
CHANL	-	4

TOTAL OBSERVATIONS:

21

TOTAL OBSERVATIONS!

16

DELTA

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

21

-0.030
O. 160
O. 032
0.002
0. 041
0.009

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

16

-O.160
O. 220
O. 069
0. 008
0. 089
O. 022

THE FOLLOWING RESULTS ARE FOR:

CHANL

2. OU

THE FOLLOWING RESULTS ARE FORi
CHANL	-	3.

TOTAL OBSERVATIONS:

21

TOTAL OBSERVATIONS!

DELTA

DELTA

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

21

O.

0. 100
O. 033
0. 001
0.027
0. 006

N OF CASES
MINIMUM
MAX IMUM
MEAN
VARIANCE
STANDARD DEV
STD. ERROR

9

0.

0. 160
0. 048

0. 002
0. 050
0.017

THE FOLLOWING RESULTS ARE FOR:

CHANL

>. OO

TOTAL OBSERVATIONS:

DELTA

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

15

-0.040
0.210
0.086
0. 005
0. 072
0.019

4-120

-------
STEM AND LEAF PLOT OF VARIABLE: DELTA

SMALLEST VALUE AT TOP OF PLOT ISs -.1600000

-1 6
***OUTSIDE VALUES***

-O 4
-O 3
-0 11
0 H 0000001111111111111
0 222222233333
0 M 444444444444555555
O H 66677777

0	8899

1	000111
1

1 55
1 66
***OUTSIDE VALUES***

1	7779

2	12

Figure 4-19. In-House QC Sample Differences,
Stem and Leaf Plot.

4-119

-------
Table 4-38 tests the hypothesis that the means of Channel 1 (¦ Channel A)
and Channel 3 (¦ Channel C) are equal. The t statistic for this test is

^X1 ~ *3^

t -		

/ (W1 - O S? * (W2 ~ *> 8

V	+ N2 - 2

with + K2 - 2 degrees of freedom. The table shows that t ¦ 1.201,
whereas the Student's t statistic is * 2.042. Therefore it may be con-
cluded that there is no significant difference in these tests between the
four Radian channels and the EPA Channel E, and that there is a positive
bias in the results. In addition, as noted above, all channels tested
significantly greater than zero.

In doing the two-way analysis of variance for the in-house QC sample
difference data, it was discovered that the memory size of the computer
being used (an IBM PC computer with 256K memory), was insufficient to
analyze all the data in one pass. It was therefore decided to break the
data into 2 data sets with several overlapping ID numbers in the two sets.
For Table 4-39 the ID numbers are for ID numbers 1 through 20. For Table
4-40 the ID numbers range from 16 through 35. The purpose of the analysis
given in Tables 4-39 and 4-40 is to do an analysis of variance (ANOVA) to
determine whether the channel or the sample ID is a factor in determining
the difference DELTA. The model is

DELTA - )i + ID + CHANL + ERROR

As noted in the tables, neither ID nor CHANL is a factor at the 5X level of
significance (i.e., P>0.05) for the data of Table 4-39, whereas ID is a
strong factor in determining the variance of DELTA in Table 4-40.

Table 4-41 lists statistics for in-house QC sample differences by ID
Number. These data are used to investigate why the ID number is a signi-
ficant factor in the ANOVA given in Table 4-38. The results of the analysis
are given in Table 4-42.

V "1 "2

4-122

-------
Table 4-38. Tests of Hypotheses In-House QC Sample Differences, by Channel.



CHANNEL

DI

SD

SEE

H

t

0.975

1 - A

0.032

0.041

0.0089

21

3.596

2.086

2 - B

0.033

0.027

0.0059

21

5.593

2.086

3 - C

0.086

0.072

0.0186

15

4.624

2.145

4 - D

0.069

0.089

0.0223

16

3.094

2.131

5 ¦ E

0.048

0.050

0.0167

9

2.874

2.306

Compare Channel 3 with Channel 1 (largest with smallest)
t ¦ 1.201 with 34 degrees of freedom.

*34,0.975 " 2.042 There is no significant difference.
Conclusions

•	There were no significant differences between in-house QC samples
for Channels A, B, C, D, and E.

•	There was a significant difference from zero, or bias in the data.
The mean bias for all channels is +0.051 ppmc (Table 4-42).

•	All channels significantly greater than zero.

4-121

-------
Table 4-40

In-House QC Sample Differences.
ID 16 through 35.

NUMBER OF CASES PROCESSED!

43

DEPENDENT VARIABLE MEAN}	0.068

MULTIPLE CORRELATIONS .933
SQUARED MULTIPLE CORRELATION: .870

SOURCE SUM-OF-SQUARES

ID
CHANL

0. 186

0.003

ANALYSIS OF VARIANCE
DF MEAN-SQUARE	F-RATIO

19
4

O.OIO
0.001

7. 107
.396

•	OOO

•	670

ERROR

0.029

21

0.001

4-124

-------
Table 4-39
In-House QC Sample Differences.

ID * 1 through 20

NUMBER OF CASES PROCESSED:	47

DEPENDENT VARIABLE MEAN:	0.038
MULTIPLE CORRELATIONS .797

SQUARED MULTIPLE CORRELATION:	.636

SOURCE SUM-OF-SQUARES

ID
CHANL

0.037
0.011

ANALYSIS OF VARIANCE
DF MEAN-SQUARE	F-RATIO

19
4

0.002
0.003

1.585
2.335

. 146
.086

ERROR

0.028 23

0.001

4-123

-------
Table 4-41 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ID ¦	5.00

TOTAL OBSERVATIONS! 2

THE FOLLOWING RESULTS ARE FOR:

ID	¦	9.00

TOTAL OBSERVATIONS: 3

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.01000
0.02000
0.01500
O.00005
0.00707
0.00500

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

-0.03000
O.16000
0.04333
0.01043
0.10214
0.05B97

THE FOLLOWING RESULTS ARE FORi

ID ¦	6.00

TOTAL OBSERVATIONS: 2

THE FOLLOWING RESULTS ARE FORi

ID

TOTAL OBSERVATIONS:

10.0

DELTA

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.02000
0.05000
0.03500
0.00045
0.02121
0.01500

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

2

0.06000
0.07000
0.06500
0.00005
0.00707
O.00500

THE FOLLOWING RESULTS ARE FOR:

ID	»	7.00

TOTAL OBSERVATIONS! 2

THE FOLLOWING RESULTS ARE FOR:

ID	-	11.0

TOTAL OBSERVATIONS: 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

0.01000

0.01000

0.01000

0.

O.

0.

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

O.

0.01000
0.00500
0.00005
O.00707
O.00500

THE FOLLOWING RESULTS ARE FOR:

ID	¦	S.00

TOTAL OBSERVATIONS: 5

THE FOLLOWING RESULTS ARE FOR:

ID	-	12.0

TOTAL OBSERVATIONS: 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

5

0.

0.11ooo

O.06000
0.00280
0.05292
0.02366

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

2

-0.01000
0.02000
0.00500
0.00043
0.02121
0.01500

4-126

-------
Table 4-41. In-House QC Sample Differences, by ID Number.

THE FOLLOWING RESULTS ARE FOR;

ID

1.00

TOTAL OBSERVATIONS*

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.02000
O.03000
0.02500
O.00003
0.00707
0.00500

THE FOLLOWING RESULTS ARE FORi

ID « 2.00

TOTAL OBSERVATIONS! 3

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.01000
O.04000
0.02333
0.00023
0.01528
0.00882

THE FOLLOWING RESULTS ARE FOR*

ID	-	3.00

TOTAL OBSERVATIONS: 2

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.03000
0.04000
0.03500
0.00005
0.00707
0.00500

THE FOLLOWING RESULTS ARE FOR:

ID

4.00

TOTAL OBSERVATIONS:

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.01000

0.01000

0.01000

O.

O.

0.

4-125

-------
Table 4-41 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS:

21.0

THE FOLLOWING RESULTS ARE FOR:
ID	•	25

TOTAL OBSERVATIONS: 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

4

0.03000
0.04000
0.03750
O.00002
0.00500
O.00250

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

DELTA

O.17000
0.22000
O.19300
0.00125
0.03536
0.02500

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS!

22.0

THE FOLLOWING RESULTS ARE FOR:
ID -	26.

TOTAL OBSERVATIONS: 2

DELTA

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

O.07000
0.08000
0.07500
0.00005
0.00707
0.00500

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

0.17000
0.17000
O.17000
O.

0.
o.

THE FOLLOWING RESULTS ARE FOR:

ID - 23.0

TOTAL OBSERVATIONS: 2

THE FOLLOWING RESULTS ARE FOR:
ID	»	27.

TOTAL OBSERVATIONS: 2

DELTA

DELTA

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

-0.01000
o.

-0.00500
0.00005
0.00707
0.00500

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

O.03000
0.15000
0.09000
0.00720
0.08485
0.06000

THE FOLLOWING RESULTS ARE FOR:

ID - 24.0

TOTAL OBSERVATIONS: 3

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS:

28.

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

DELTA

3

-O.16000
O.

-0.06667
0.00693
0.08327
0.04807

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

DELTA

0.04000

0.04000

O.04000

O.

0.

0.

4-128

-------
Table 4-41 (cont.)

THE FOLLOWING RESULTS ARE FOR:

ID

13.0

THE FOLLOWING RESULTS ARE FOR:

ID	17.0

TOTAL OBSERVATIONS!

TOTAL OBSERVATIONS!

DELTA

DELTA

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

2

0.02000
0.04000
0.03000
0.00020
0.01414
0.01000

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.10000
O.11000
O.10300
0.00003
0.00707
0.00500

THE FOLLOWING RESULTS ARE FORi

ID

14.0

THE FOLLOWING RESULTS ARE FOR:

ID

16.0

TOTAL OBSERVATIONS:

TOTAL OBSERVATIONS:

DELTA

DELTA

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

3

0.04000
0.03000
0.04333
O.00003
0.00577
0.00333

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

2

0.01000
0.01000
0.01000

o.

0.
o.

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS:

15.0

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS:

19.0

DELTA

DELTA

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

3

0.01000
0.02000
0.01333
0.00003
0.00577
0.00333

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

0.05000
O.07000
0.06000
0.00020
0.01414
0.01000

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS:

16.0

THE FOLLOWING RESULTS ARE FOR:

ID

TOTAL OBSERVATIONS:

20.0

N OF CA8ES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

DELTA

2

0.03000
0.04000
0.03500
0.00005
0.00707
0.00500

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

2

0.06000
O.16000
0.11000
0.00500
0.07071
0.05000

4-127

-------
Table 4-42. In-House QC Sample Differences, Ranked by Mean Difference

of ID Number

Rank

ID

DELTA

H

Std. Dev.

Radian
ID

1

32

0.200

2

0.0141

2139

2

25

0.195

2

0.0354

1391

3

26

0.170

2

0.0000

1557

4

29

0.110

3

0.0361

2091

5

20

0.110

2

0.0071

2342

6

17

0.105

2

0.0071

1829

7

27

0.090

2

0.0899

1919

8

34

0.090

2

0.000

2414

9

31

0.095

2

0.0354

2110

10

22

0.075

2

0.0071

1214

11

10

0.065

2

0.0071

1503

12

19

0.060

2

0.0141

2184

13

30

0.060

3

0.0100

2092

14

8

0.060

5

0.0529

1367

15

35

0.045

2

0.007

1159

16

9

0.043

3

0.1021*

1452

17

14

0.043

3

0.0057

1709

18

28

0.040

2

0.0000

1945

19

21

0.038

4

0.0050

2446

20

3

0.035

2

0.0071

1283

21

6

0.035

2

0.0212

2446

22

16

0.035

2

0.0071

1828

23

13

0.030

2

0.0141

1601

24

1

0.025

2

0.0071

1199

25

2

0.023

3

0.0153

1259

26

5

0.015

2

0.0071

1306

27

15

0.013

3

0.0058

1806

28

7

0.010

2

0.0000

1366

29

4

0.010

2

0.0071

1284

30

18

0.010

2

0.0000

1991

31

11

0.005

2

0.0071

1530

32

33

0.005

2

0.0071

2315

33

12

0.005

2

0.0212

1580

34

23

-0.005

2

0.0071

2414

35

24

-0.067

2

0.0833

1159

^his standard deviation seems to be an outlier.

4-130

-------
Table 4-42 ranks the ID numbers by the sice of the difference (DELTA).
Note that ID numbers 20, 29, 26, 25, and 32 are the largest of all the ID
¦aana, •n^ number 24 is the smallest. These means are among the ID
numbers in the AKOVA done in Table 4—41 and explain why the ID factor is
highly significant in the analyses. The conclusions that may be drawn from
the comparisons made in Table 4-42 are the following:

•	The ID number with mean DELTA between 0.005 and 0.110 are in-
distinguishable from each other and from zero.

•	ID numbers 25, 26 and 32 are significantly greater than ID number
20 or 29 (means - 0.110).

•	ID numbers 23 and 24 are significantly less than ID number 29
(mean - 0.110).

Although the analysis done here on the in-house QC sample differences
•kow that the channel is not a factor in explaining the in—house QC
difference, it does indicate that the sample itself is a factor. Moreover
in the data presented here, only the samples in the second set of samples
analyzed show a significant relationship to DELTA. What the information
reveal is that the in-house QC samples in the second batch were not as
carefully prepared as in the first batch, resulting in some "outliers."
Insofar as the NMOC technique itself is concerned, it may be that one
should plot the propane in-house sample difference DELTA in a quality
control chart and whenever the reading goes outside the 20 limits of the QC
plot, then the cause of that kind of phenomenon should be sought, and the
appropriate corrective action taken.

Table 1-4 summarizes the In-House QC Standards data in terms of an
accuracy measurement. It shows the Z error measurement ranging from +3.5Z
to 6.5Z for the four Radian channels and the EPA Channel E. The average
for all channels was +5.72.

4.2.5.2 Other PC Sa«p^«—Three QC samples prepared by the U.S. EPA
Quality Assurance Divison (QAD) were analysed on the EPA Channel E (at QAD)
and several Radian channels. The samples were either pure dry propane or
propane blended with purified dried air. Table 1-5 summarizes the results
of the analyses on these samples. The samples were analyzed first on EPA

4-131

-------
Table 4-41 (cont.)

THE FOLLOWING RESULTS ARE FOR«

ID .	29.0

TOTAL OBSERVATIQNSt 3

THE FOLLOWING RESULTS ARE FOR:

ID	-	33.0

TOTAL OBSERVATIONS: 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

0.08000
O.15000
0.11000
0.00130
O.03606
0.02082

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

2

O.

0.01ooo

0.00500
O.00005
0.00707
O.00500

THE FOLLOWING RESULTS ARE FOR*

ID -	30.0

TOTAL OBSERVATIONS! 3

THE FOLLOWING RESULTS ARE FOR:

ID	-	34.0

TOTAL OBSERVATIONS! 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

3

0.05000
0.07000
0.06000
0.00010
0.01000
0.00577

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

2

0.09000

0.09000

0.09000

O.

0.

O.

THE FOLLOWING RESULTS ARE FOR:

ID -	31.0

TOTAL OBSERVATIONS! 2

THE FOLLOWING RESULTS ARE FORi

ID -	35.0

TOTAL OBSERVATIONS! 2

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

2

0.05000
O.10000
0.07500
0.00125
0.03536
0.02500

N OF CASES

MINIMUM

MAXIMUM

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

DELTA

0.04000
0.05000
0.04500
0.00005
0.00707
O.00500

THE FOLLOWING RESULTS ARE FOR:

ID - 32.0

TOTAL OBSERVATIONS! 2

DELTA

N OF CASES
MINIMUM
MAXIMUM
MEAN

VARIANCE
STANDARD DEV
STD. ERROR

2

O.19000
0.21000
0.20000
0.00020
0.01414
0.01000

4-129

-------
Channel E, followed by one or more analyses on Radian channels at indi-
cated* Table 1-5 does not imply the order in vhich analyses vere done and
that information is not available in the Table* Error is defined as the
NMDC value for the first NMOC analysis minus the RMOC value for the sub-
sequent analysis. The first analysis was always done on EPA Channel E.

The overall abaolute value of the error ranged from zero to 15.38Z,
averaging about 5.82. This is an .accuracy measure fox the measurement of
propane. Since the HMOC measurements made at the sites were of unknown
composition, no absolute measure of accuracy was possible.

4-132

-------
5.0 NMOC DATA ANALYSIS

The NMOC data for 22 sites are found in Tables 2-3 to 2-24. The
tables include the following information:

1.

The sample site identification;

2.

The sample dates;

3.

The Julian date;

4.

The week-day of the sample date;

5.

Radian laboratory identification number;

6.

The sample canister number;

7.

The pressure at the completion of sampling;

8.

The date the sample was analyzed;

9.

The Radian instrument on which the analysis took place;

10.

The NMOC value determined by Radian, ppmC;

11.

The NMOC value determined by EPA, Channel E, ppmC; and

12.

The NMOC value determined by EPA, ESRL by GC, ppmC.

The discussion that follows will first examine statistics for all 22 NMOC
sites, and then the discussion will focus on the several sites
individually.

Figure 5—1 gives a stem and leaf plot of the NMOC data. The plot is a
graph of the frequency of occurrence (horizontal scale) versus sice (ver-
tical scale), and is made according to Tukey®. The overall shape of the
NMOC distribution suggests that the data approximately fit a logarithmic
normal distribution. The stems for this plot are equally spaced and are
numbered from zero to 47 in the left hand column of the plot. For Figure
5-1 there are 60 stems. The leaves are plotted on the right hand side of
the diagram and represent the frequency of occurrence for a particular
stem. The median M and the hinges H are plotted in the vertical area
between the stems and the leaves. The median splits the ordered data in

*Tukey, J. W., Exploratory Data Analysis. Addison-Wesley, Reading, Mass.
(1977).

5-1

-------
Figure 5-1. Complete NMOC Data.

STEM A WD LEAF PLOT OP VARIABLE:

SMALLEST VALOE AT TOP OP PLOT IS:

.6000000E-01

•••on

111223 5 4444
556677888889999999999
0001111111111222221333333
5 55 5555555566666666777777
0000000001111112222222222
5555555555555555566667777
000000000000111UU111222
H 5555555555555555566666666
0000000000000000000000111
5555555555555555566666666
0 00000000000000000 1111111
M 5555555555555555666666666
000000001111111111111 1222
5 55 5555555 5 55 5 55666666666
0000000000011111111111111
5 555555556666777777 888888
0000111111222222 233 33333 4
5 555555666666666667 77 7 888
H 0000001111111222222223333
5555556666666777778899999
0000001111122223333444*44

5	556666667777777 88889999
0000011112222233334
55556667 777788888999999
000001112233444
5535555556667888899
01111112222223 3333 44444
556667777788

1223

556678889999

0111122233444

56777888899

001233444

5678

01222344
56666
IDE VALUES***

889

0000234466999

4447799

4689

000112455
035

1455669
000277
00236
15678

6

1345
9

0
55

1
0

14
3

38

7

16
45

9999

8888889999999999999««
333333333333336444aTi
8888888888999999999 a;
4444444

8888888888999999999 gi
99

99999999

5-2

-------
Table 5-1, Statistics for Complete NMOC Data.

TOTAL OBSERVATIONS: 1375

NMOC

N OF CASES

1575

Ml NIMUM
MAXIMUM
RANGE

0.06000
4.75000
4.69000
0.85284
0.36734
0.60608
0.01634
2.35013
8.13863

MEAN
VARIANCE
STANDARD DEV
STD. ERROR

SKEWNESS
KURTOSIS

For Stem and Leaf Plot

4.690 -r 60 - 0.07817 NMOC/Stem

Mean - 0.06 + itfO.07817) - 0.85284 ppmC

•x. ¦ 10.1 steins

Median « 13 stems, from initial value of 0.060
Median - 0.06 + 13(0.07817) - 1.076 ppmC

Mode - 0.06 + 9(0.07817) - 0.7635 ppmC

For a logarithmic normal distribution
mean ) median ^ mode.

For NMOC data (Figure 5-1)

median )> mean > mode

5-3

-------
half and the binges divide each half once more in equal quarters. The
"H-spread" is the difference between the values of the two hinges. The
"inner fences" are defined as follows:

lower fence ¦ lower hinge - (1.5*Hspread)
upper fence ¦ upper hinge + (1,5*Hspread)

Any values outside the inner fences are printed on separate lines and
separated from the inner values by line of test: ***OUTSIDE VALUES***.

In order to put the stem and leaf plot into additional perspective,
refer to Table 5-1 which gives the minimum and maximum and mean values for
the NMOC data. Table 5-1 also shows approximate calculations for the stem
and leaf plot and estimates numerical values for the mean, the median, and
the mode. The table also shows that the NMOC data does not fit the general
requirements of a logarithmic normal distribution because the NMOC estimated
median is apparently greater than the NMOC mean. The logarithmic normal
distribution requires that the mean is greater than the median. Neverthe-
less the expectation is that the data fit a logarithmic normal distribution
better than most other mathematically defined distributions.

Figure 5-2 gives a stem and leaf plot of the NMOC Data Analyzed by the
EPA Channel E, and Table 5-2 gives the statistics corresponding to those
data. The skewness is not as pronounced with the Channel E results as with
the Radian results in Figure 5-1, but only 120 cases are involved in the
construction of Figure 5-2. Figure 5-3 and Table 5-3 present the data
analyzed by EPA Channel GC and both the frequency distribution (Figure 5-3)
and the statistics (Table 5-3) appear to be similar to the results from all
the Radian measurements (Figure 5-1 and Table 5-1).

Figure 5-4 and Table 5-4 present the data of the standard deviations
of pairs of NMOC measurements made by Radian. Each of the Radian NMOC
measurements resulted from an average of two readings. The standard
deviations of «ach of 1372 pairs of readings on each sample are summarized
in Figure 5-4 and Table 5-4, and show a distribution highly skewed with a
very high peak. The asterisks at the right-hand edges of stems 0 through 4
indicate that the actual peak is higher than shown. The mean standard
deviation from Table 5-4 is 0.05425 ppmC, which is about 6.41 of the mean
NMOC reading of 0.85284 (given in Table 5-1). This is an indication of the
within-instrument precision.

5-4

-------
5-5

-------
Figure 5-2. NMOC Data Analyzed by EPA Channel E.

STEM AND LEAF PLOT OF VARIABLE: CHANLE
SMALLEST VALUE AT TOP OF PLOT IS: .2300000

2



38

3



1123379

4



1235599

5



2346799

6

H

01233469

7



01234455669

8



122244466

9

M

000014449

10



0023447

11



022222345556677

12



2233457

13

H

003334556

14



369

15



003456

16



013

17



477

18



29

19



3

***0UT SI

DE

: VALUES***

22



7

36



4

42



58

5-6

-------
Table 5-2. NMOC Data Analyzed by EPA Channel E.

N OF CASES
MlNIMUM
MAXIMUM
RANGE
MEAN

VARIANCE
STANDARO DEV
STD. ERROR
SKEWNESS
KURTOSIS

CHANLE

120
0.23000
4.28000
4.05000
1.06383
0.40721
0.63813
0.05823
2.63603
10.47658

5-7

-------
Figure 5-3. NMOC Data Analyzed by EPA GC.

STEM AND LEAF PLOT OF VARIABLE:	GC

SMALLEST VALUE AT TOP OF PLOT IS: .6000000E-01

0	68

1	356888

2	011125688899

3	001122223334444555567777788899

4	H 00001111122222333333444444555556666777777889999999

5	01111222222223333444444444556666778888888999999

6	M 00011122334444455566777788899999

7	00011111222233344455666679999

8	000111245555566777888

9	013444677789
10	H 0005555666679

1 1	02333345678999

12	233468

13	013466

14	1258

15	33344799

16	0011355799

17	15668

18	0038

19	05566
•••OUTSIDE VALUES***

20	3579

22	18

23	278

24	68

25	2
27	7
33	5
35	1
37	25

39	4

40	3
47	0

5-8

-------
Table 5-3. NMOC Data Analyzed by EPA Channel GC.

GC

N OF CASES

336

MlNIMUM

0.06000

MAXIMUM

4.70000

RANGE

4.64000

MEAN

0.88205

VARIANCE

0.45506

STANDARD DEV

0.67460

STD. ERROR

0.03680

SKENNESS

2.32995

KURTOSIS

7.18846

5-9

-------
Figure 5-4. Stem and Leaf Plot of the Standard Deviation of Radian
NMOC Measurements.

STEW m LEAF PLOT OF VARIABLE: 5WI

SMALLEST VALUE AT TOP OF PLOT IS: .ININI

i itHHiMtHtMimittttttHUMHHHtinnMttwMiHmMmmmmitMitMmmmmtwmmm*

1	H HIHNHIIWIHHHmiHMHnilNHNiniNIIHiNIIIIimilllHIINniWNIimimiltNINMlDISlINu

2	H ailNIIINNINNIItlllNNIMIIINIIINtlNIIIIINnNHIIHHHNIIHHItllllNtttllMI3MMtMmtM3l88M3»
! litNiiNiiinmiittNtimNMmHimiwKiifNiiiwiaNiiHnMNiiNEimtHKiMiiititoeeimesiJisiei*
~ IHNIIMHIINNNtlMHIIIINtHINt«IMINIIIINMNIIIHIIINHIINIlllNII3IIINIieiMNIIBMaMem232|gt

5	H INNItHHIHtNNMNtllllllMtNtNINMIMIIffMflHMMfttt

6	IIINIIIItlMIIHHNIIIHIMlllllllNNIIIMNIMIMNIinillNINMIINI

7	INMNMHMIMtttNNNMMNmNN

8	e»HNeill«IIHIIIIIIINNNNIIN»l»MN«lll*HI
1	itlMNNNHNMttMHNNIINN

11 IIIBianNMIMWN

3)



JTSIDE VALUES***

12

MIMfliHIMtt

13

MMMMM

14

INIIMM

13

llttl

U

INMM

17

mi

18

Nil

19

II

21

f

21

IN

22

INI

23

II

24

IN

23

II

Ik

HI

27

1

29

1

32

1

37

II

78

8

42

1

43

1

45

1

52

1

64

1

J CASES WITH MSSINB VALUES EXCLUDED FROU PLOT

5-10

-------
Table 5-4. Standard Deviations of Radian NMOC
Analyses.

N OF CASES
MlNIMUM
MAXIMUM
RANGE
MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSI S

SDNM

1372

0.

0.66000
0.66000
0.03995
0.00294
0.05425
0.00146
4.07394
27.24995

5-11

-------
Data from four sites (Dallas, Texas; Clute, Texas; Philadelphia,
Pennsylvania; and Akron, Ohio) were tested for first-order autocorrelation.
In order to test the data, one may plot NMOC on a given day (Y) versus the
NMOC value from the previous day (X). These plots are shown in Figures 5-5
through 5-8. Tables 5-5 through 5-8 are linear regressions of Y vs. X for
the four sites. Slopes of the lines are the first-order autocorrelation
coefficients and are given below:

First-Order
Autocorrelation
Site	Coefficient

Dallas	0.221

Clute	0.008

Philadelphia	0.114

Akron	0.103

The coefficients given above indicate that the data are not significantly
autocorrelated. Autocorrelation coefficients range from -1.000 to 1.000
and the closer they are to the terminal values, the more strongly are they
autocorrelated.

Figures 5-9 through 5-30 show histograms of the size distributions of
the NMOC data for each site. The figures also contain statistics for the
data from each site* The means for the individual sites ranged from 0.532
ppmC for Richmond, Virginia to 1.432 ppmC for Memphis, Tennessee. The
overall mean for the complete data set was 0.853 ppmC. The shapes of the
distribution diagrams were similar (skewness about 2., kurtosis greater
than 3.) with notable exceptions at Birmingham, El Paso, Miami, Richmond,
and Wilkes-Barre.

Table 5-9 tests the minimum and maximum data points from each site as
outliers. In no case were the minimum points considered to be outliers by
the Grubbs teat used in Table 5-9. All of the maximum values tested for
each site were declared outliers at the 1Z level of significance by the
Grubbs and Beck test used (see Table 5-9 for the reference), except those
in Birmingham, Miami, Richmond and Wilkes-Barre. The conclusions to be
reached in these tests is that the Grubbs test assumes a random error from
a normally distributed sample population and probably should not be used
with the HMOC data. The NMOC data gathered in the study are not random

5-12

-------
5-13

-------
Figure 5-5

Tim* S«n»s Analysis Plot, First-Order Autoregrvssion.
Dallas, T*;:as Data.

YD



. 000



. 500

1

.000 1.500

2.000

2.500

Z. Ov



















3.000

~

1













~



»

1
1

1











•

2.500

~

1
I











1

~

2.000

1
1

~













~



•



1



1





:



1
1



1

1

1 1





j

1.500

~



1



1









1





1

1





:



1
•



1

12

1 -21 1 1





, •

1.000

+



1 1

1

111111 i



1

+



1

1

11

1

1





j



t
1

11

1



1 1





•

. 500

~
1



1 3



1





~

•

. 000

»
1













i
~



















. 000	. 500	1. OOO	1. 300	2. OOO	2. 500	7-. OOO

XD

5-14

-------
Table 5-5

Fir«t-Ord»r Autor»gr«s«ion for Dallas, T»::«s Data.

NUMBER OF CASES PROCESSED! 48

DEPENDENT VARIABLE MEANi	1.036

MULTIPLE CORRELATION! .224
SQUARED MULTIPLE CORRELATION! .050

2	2

ADJUSTED R ¦ 1-(1-R >*/DF, WHERE N" 48, AND DF- 46i .029

VARIABLE COEFFICIENT STD. ERROR STD. COEF. TOLERANCE	T	F (2 TAIL)

CONSTANT	0.811	0.159	O.	.	5.09	.OOO

XD	0.221	0.142	0.224 1.00000	1.56	.127

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE	RATIO	P

REGRESSION	0.519	1	0.519	2.422 .127

RESIDUAL	9.857 46	0.214

5-15

-------
Figure 5-6

Tim* S»n»s Analysis Flot, First-Ordvr Autorcgrvssion.
Clut*, T»::«s D«t*.

YCL

—4.	

2.500 ~

1. OOO

2. 000

3. '.".".1

4.000

1. OOO

2.00U ~

1.500 ~

1.000 +

, 500 +

1 1
1

1

14 221

: 1: 1121
11	1

, 000

500 ~

1.000

000
XCL

:. 000

4. 000

j. '.'00

5-16

-------
Table 5-6

Fir»t-Ord»r Autor»gr»s«ion for Clut«, T»:/DF, WHERE N» 48, AND DF" 46> .OOO

VARIABLE COEFFICIENT STD. ERROR STD. COEF. TOLERANCE

CONSTANT
XCL

0.791

0.008

0.108
0.098

O.	.	7.30

0.012 1.00000	.08

P(2 TAIL)

. 000
.937

SOURCE SUM-OF-SQUARES

REGRESSION
RESIDUAL

0. 001
9.352

ANALYSIS OF VARIANCE
DF MEAN-SQUARE	F-RATIO P

.006 .937

1

46

0. 001
0.203

5-17

-------
Figure 5-7

Tim* 6»rt«s Analysis Plot, First-Order Autorvgrvssion.
Philadelphia, Pennsylvania Data.

YPH

. 000

4.000 ~

3.000

1.000

:.«.»oo

...ooo

4. OOi'i

2.000 ~

1

1.000 ~

1 1

2 i

l i

i i l
12 1 12 1
4 1211
11 21 1

1

11 1

1 1
1 1

, 000

, ouO

1. ooo

2.000

1.000

XPH

4. OOQ

5-18

-------
Table 5-7

Fir«t-Ord»r Autor«gr»*«ion for Philadelphia.

NUMBER OF CASES PROCESSED! 48

DEPENDENT VARIABLE MEANt	0.923

MULTIPLE CORRELATION. .152
SQUARED MULTIPLE CORRELATIONS .023

2	2

ADJUSTED R - 1-(1-R >#/DF. WHERE N- 48, AND DP- 46. .002

VARIABLE COEFFICIENT STD. ERROR STD. COEF. TOLERANCE T P(2 TAIL)

CONSTANT	0.777	0.160	0.	4 86

XPH	°-1"	C..3»	0.152 tioGOOO KM

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE	K-RAT10 P

REGRESSION	0.308 1	0.308	1.081 304

RESIDUAL	13.113 46	0.283

5-19

-------
Figure 5-8

Tim* S*ri«B Analysis Flot, First-Ordvr Autorvgression.
At:ron, Ohio D«t«.

YAK

• 000	.500	1.000	1.500	2.000	2.500

















3. OOO

~
t



1







~

2.500

t
1

~

1





1





~
•

2.000

1
~

<











•
~



»

•
<



1

1







1.500

~

i





1





~



I



1 1







»

1.000

~



11 1

1





~



«



11 1

1 1

1 1

1





i
•

1

11117 1 1

1 1 1





i ;

. 50«.»

¦+

11

1121 112

1





~



•



1 11







•

. 00«.»

1
~











~



















• 000



. 300

1.000 I.500

2 • 000

2. 50«.»

z. •>:









XAt







5-20

-------
Table 5-8

First-Ordvr Autor«gr»«»ion 4or Airon, Ohio Data.

NUMBER OF CASES PROCESSED« 48

DEPENDENT VARIABLE MEAN:	0.749

MULTIPLE CORRELATION* .114
SQUARED MULTIPLE CORRELATION! .013

* *

ADJUSTED R - 1-ll-R )#(N-1)/DF, WHERE N« 48, AND DP" 46» .000

VARIABLE COEFFICIENT STD. ERROR STD. COEP. TOLERANCE T P(2 TAIL>

CONSTANT	<•'.*65	o. 130	0.	5.12	.000

XA»	0.107	0.132	0.114 l.OOOOO	.78	.442

mNALVSIS OP VARIANCE

SOU! CE 5UM 'JF-SLHJARES DF MEAN-SOUARE	F-RATIO P

f--F.tjf Ft.&Ii.-N	1	0.153	.602 .442

F:fc 1 C-U.il.	1 I. 008 4t>	0.254

5-21

-------
Figure 5.9

Akron Ohio NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

.9 -

I
l

.8 *

I
I

.7 +

I
«

• 6 ~

»

¦

.5 ~
.4

t
«

.3 ~

<

1

.2 «¦

1

. 1 ~

*»**

~##»

COUNT

20

•»»»

.23

NMOC

Akron Ohio NMOC D«ta.

TOTAL OBSERVATIONS1 68

2..95

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

68
0.230
2.950
2.720
0.786
0.318
0.364
0.068
2.234
4.956

5-22

-------
Figure 5-10

Atlanta, Georgia NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

! •»»•••

.9 ~ •*«•••

COUNT

- 30

.8 ~

I

.7 +

«

• 6 ~

1

.4 ~

.3 +

. 1 «•

.2 + »••»»»*»*»•»

.21

4.27

NMOC

Atlanta Georgia NMOC Data.

TOTAL OBSERVATIONS1 55

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD OCV

STD. ERROR

SKEWNEM

KURT01I8

55
0.210
4.270
4.060
0.796
0.512
0.*13
0.09A
2.192
10*178

5-23

-------
Figure 5-ii

igham, Alabama NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

.9 +

.8 -

I
I

.7 ~

i

.6 ~

«

.5 ~

S

.4 ~

I
I

.3 ~

«

.2 ~

t
I

. 1 ~

*****
*****
*****
*****
*****

*****
**********

COUNT-

15



**»»*

*****

*****	**********	I

****##*****#*»*•*»***»*»« {

. 19 (

2.91

NMOC

Birmingham Alabama NMOC Data.

TOTAL OBSERVATIONS! 56

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSIS

56
0. 190
2.910
2.720
0.992
0.460
0.678
0.091
1.177
0.369

5-24

-------
Figure 5-12

Beaumont, Taxas NMOC Data.

PROPORTION PfeR STANDARD UNIT
1.0 +

.9 ~

I

.8 +
.7
.6
.3

COUNT

30

*•*#*
•*»*•*»***

.4 +

I

.3 *

.2 ~

«

I

. 1 ~

11 (

3.84

NMOC

Beaumont Taxas NMOC Data.

TOTAL OBSERVATIONS» 66

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

8KEWNES8

KURT08IS

66
0.110
3.840
3.7$0
0.89*
0.462
0.680
0.084
1.968
S. 063

3-23

-------
Figure 5-13
Ch«rlott», North Carolina NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

.9 -
.8
.7
.6
.3 ~

.3 ~

J

.2 ~

I
I

. 1 +

COUNy

3(;»

. 18

2.32

NMOC

Charlott« North Carolina NMOC Data.

TOTAL OBSERVATIONS! 60

NMOC

N OF CASES	60

MINIMUM	0.180

MAXIMUM	2.320

RANGE	2.340

MEAN	0.S37

VARIANCE	0.190

STANDARD DEV	0.436

STD. ERROR	0.056

SKEWNESS	2.S64

KURTOSIS	7.542

5-26

-------
Figure 5-14

Chattanooga, T»nn»*»«» NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

COUNT

.9 +

I

.9 +
.7
.6

.3 ~

I

,3 ~

!

I ~

4.06

NMOC

Chattanooga T«nn*ss«« NMOC Data.

TOTAL OBSERVATIONS! 46

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

8KEMNESS

KURT0S18

46

0.520
4.080
3.560
1.345
O.S05
0.7*0
0.1155
2,015
4.349

5-27

-------
Figure 5-15

Clut», T«x*« NMOC D«t«.

PROPORTION PER STANDARD UNIT
1.0 -

.9 «¦

I

.8 +

I

.7 ~

«

I

• 6 ~

i
i

.5 ~

3 ~
«

2 +
1

cou

- 1

.20

NMOC

Clut* T«k«« NMOC Data.

TOTAL OBSERVATIONS! 72

4.31

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

72
0.200
4.310
4.110
0.819
0.356
0.397
0.070
3.161
14.658

5-28

-------
Figure 5-16

Dallas, Texas NMOC Data.

PROPORTION PER STANDARD UNIT	COUNT

1.0 ~

~ zs

.9 «¦

I

I	J

.8 ~

.7 ~

*»•*

.6 ~

»***

.5 ~	••••

••••

.4 +	•**•••»•

.3

. 1 ~ •*•*••••••#«•»•»•••*»*•*•••»•••••»••	j

! #•»••#•~####~~######•#•##•###~#~##««#### **•*' {

.28	<	A	)	2.57

NMOC

Dallas Taxas NMOC Data.

TOTAL OBSERVATIONS: 74

NMOC

N OF CASES	74

MINIMUM	0.280

MAXIMUM	2.370

RANGE	2.290

MEAN	0.968

VARIANCE	0.188

STANDARD DEV	0.433

STD. ERROR	0.050

SKEWNES8	1.212

KURTOSIS	2.399

5-29

-------
Figure 5-17

Paso, T»x*« NMOC Data.

PROPORTION PER STANDARD UNIT	COIjmt

1.0 ~

9

«



8

1
~

*«-**



l

l

****

7

+

#~##



l
<

**»»

6

+

***«



1

l

«***

3

~
I

***«

4

(
+
1



3

»
•¥



.2 ~	##«#	«#••

! ####~#»##~#»~####»»# •»•»•»»»»»»• »»»»
. 1 * ##»¦»~##~»~~••#•~~••»*••»~~*##»#~###~#

! ~#•~•~~#»»~*•»»•»»»•»#»»*•~•••••••~• »•••

.28 <	'	>	2.43

NMOC

El Paso T»xa« NMOC Data.

TOTAL OBSERVATIONS! 69

NMOC

N OF CASES	69

MINIMUM	0.280

MAXIMUM	2.430

RANGE	2.170

MEAN	0.926

VARIANCE	0.206

STANDARD DEV	0.434

STD. ERROR	0.055

SKEWNESS	0.963

KURTOSIS	0.352

5-30

-------
Figure 5-18

Cincinnati, Ohio NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 -

.9

.8

.7

.6

.5

.4

.3

.2

. 1

COUNT

30

*•«#*

•••••

••••*
•»*•••«**•

12 (

3.93

NMOC

Cincinnati Ohio NMOC Data.

TOTAL OBSERVATIONS!

65

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

63
0.120
3.930
3.810
0.929
0.501
0.708
0.088
2.481
6.821

5-31

-------
Figure 5-19
Fort Worth,	NflOC D*ta.

PROPORTION PER STANDARD UNIT
l.O

.9
.8
.7
.6

COUNT

.4

.3

.2 ~

»

I

. 1 +





39

'3.81

NliOC

Ft. Worth	NMOC Data.

TOTAL OBSERVATIONS* 69

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

69
0.390
3.810
3.420
0.973
0.307
0.534
0.067
2.245
8.248

5-32

-------
Figure 5-20
Indianapol11, Indian* NMOC Data.

FROPORTION PER STANDARD UNIT
1.0 ~

I

.9 -

I
I

.8 ~

I

I

.7 ~

I
«

. 6 ~

i
i

.5 ~	•••#«#

wWWWWWWWWwWW

.4 ~	*•*#••#•••»*

WWWW«W#V#WW#

. 3 ~	*••••~•»»#••#»<

COUNT

50

>

NMOC

a. 30

Indianapolis Indiana NMOC Data.

TOTAL OBSERVATIONS! 39

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

39
0.220
2.300
2.280
0.804
0.174
0.419
0.053
2.233
6.887

5-33

-------
Figure 5-21
Kansas City, Missouri NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

*****

*****

*****

*****

*****

COUNT

.9 «•

I

.a +

i

.7

I
I

. 6 +

i

.3 ~

. 1



I

*#**#• {

2.76

.29

NMOC

Kansas City Missouri NMOC Data.

TOTAL OBSERVATIONS* 68

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

68
O. 290
2.760
2.470
0.787
0.286
0.534
0.065
2. 104
4.073

5-34

-------
Figure 5-22

Miami, Florid* NMQC Data.

PROPORTION PER STANDARD UNIT
1.0 ~

.9 ~

I
I

.8 ~

I
I

.7 ~

.6 +•

I

.3 *

I

.4 ~

.3 ~

. 1 +

«»**«

. 31 (

COUNT

10

NMOC

Miami, Florida NMOC Data.

3.-70

TOTAL OBSERVATIONS!

31

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSIS

31
0.310
3.700
3.390
1.315
0.685
0.827
0.149
0.779
0.200

5-35

-------
Figure 5-23

Memphis,	NMOC Data.

PROPORTION PER STANDARD UNIT

1.0

1



.9

*
+
1



.8

1
+
»



.7

1





1
1



.6

~

*#»»*



t

#»#~*

.3

~





1
1



.4

+¦

»•»***



•

1



.3

*



COI

. 14

4.-73

NMOC

Mew

NMOC Data.

TOTAL OBSERVATIONS:

52

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANSE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

52
0. 140
4.750
4.610
1.432
0.726
0.852
0. 118
1.633
4.049

5-36

-------
Figure 5-24

Orange, T«::a« NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 -

.9 ~

l

I

.a *

i

.7 ~

I
«

• 6 +

COUNT
- 100

.3 ~

)

.4 ~

2 ~

«

I

1 ~

13 (

3.-35

NMOC

Or j

NMOC Data.

TOTAL OBSERVATIONS!

71

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURT06I8

71
O. 130
3.330
3.220
0.693
0.219
0.468
0.036
2.764
12.736

5-37

-------
Figure 5-25

Philadalphia, P»nn«ylvama NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 *

I

.9 *

t
I

.8 ~

»

.7 ~

I

.6 ~	#»#~#

I	WWWWWWWWWW

. 3 4.

I	WWWWWWWWWW

.4 +	••»••••»••

I
I

.27 <	~	>	3.10

NI10C

COUNT

.3 ~

I

.2 ~

»

. 1 ~

Philadelphia Pennsylvania NMOC Data.

TOTAL OBSERVATIONS! 63

NMOC

N OF CASES	63

MINIMUM	0.270

MAXIMUM	3.100

RAN6E	2.830

MEAN	1.020

VARIANCE	0.277

STANDARD DEV	0.526

STD. ERROR	0.066

SKEWNESS	1.554

KURTOSIS	2.968

5-38

-------
Figure 5-26
Richmond, Virginia NMOC Data.

PROPORTION PER STANDARD UNIT
1.0 «¦

.9 ~

.8 +

I

.7 ~

!

.4 +

I

.3 «•

.4 ~

.2 ~

. 1 ~

COUNT

~ 23

!



•*»•* i

1.-22

,06

<

NMOC

Richmond Virginia NMOC Data.
TOTAL OBSERVATIONS! 64

NMOC

N OF CASES	64

MINIMUM	0.060

1 MAXIMUM	1.220

' RANGE	1.160

MEAN	0.532

VARIANCE	0.057

STANDARD DEV	0.230

STD. ERROR	0.030

SKEWNESS	0.815

KURTOSIS	0.663

5-39

-------
Figure 5-27

Texas City, T»xa« NHOC Data.

PROPORTION PER STANDARD UNIT
1.0 *

.9
.8
.7
.6 -
.5
.4
.3

COUNT

.2 +

i

.1 +

SO

. 14

*^74

NMOC

Tixai City Taxa* NMOC Data.

TOTAL OBSERVATIONS:

69

NMOC

N OF CASES

MINIMUM

MAXIMUM

RAN6E

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

o.

69
140
4.740
4.600
0.924
0.610
0.781
0.094
3.078
11.S40

5-40

-------
Figure 5-28
Wilk««-Barr», Pennsylvania NMOC Data.

PROPORTION PER STANDARD UNIT	COUNT

1.0 -	20

i	:

.9 ~

i	:

. 8 +

I	i

.7 ~	I

: :
.6 ~	I

:	i

.3 ~	~»»»»	j

I

.4 ~ »~##• ##•~#

i »#•••~•~••••••#	•••#*	••••«

. 3 ••»••»•*•«••#*••»•••••*»*	•••••

.2 ~ •••••*•»*••••*•»•*•••••••»»•••#••#*»»•••	»•••• |

. 11	(	~

NMOC

TOTAL OBSERVATIONS! 63

NMOC

STANDARD DEV	0.228

5-41

-------
Figure 5-29
Washington, District o-f Columbia NMOC Data.

PROPORTION PER STANDARD UNIT
i.O -

.9 ~

I
(

.a +

.7 ~

i

.6 *

.3 ~

,2 ~
I

, 1 ~

COUNT
40

i 34 (

NMOC

Washington DC NMOC Data.

TOTAL OBSERVATIONS* 63

2.-93

NMOC

N OF CASES

MINIMUM

MAXIMUM

RANGE

MEAN

VARIANCE

STANDARD DEV

STD. ERROR

SKEWNESS

KURTOSIS

63
0.340
2.930
2.390
0.806
0. 167
0.408
0.051
2.637
iO.157

5-42

-------
Figure 5-30

Mast Palm B»ach, Florida NMOC Data.

PROPORTION PER STANDARD UNIT
i.O ~

I

.9 ~

I

COUNT
~ lOO

.7
.6
.3
.4

.3

. 1

!
~

. 17

2.63

NMOC

M»st Palm Baach Florida NMOC Data.

TOTAL OBSERVATIONS*

72

NI10C

N OF CASES
MINIMUM
MAXIMUM
."RANGE
MEAN
VARIANCE
STANDARD DEV
STD. ERROR
SKEWNESS
KURTOSIS

72
0. 170
2.630
2.460
0.541
0. 118
0.344
0.041
3.392
17.344

5-43

-------
Table 5-9

Tests of the Maiiaoa (Z ) and Miaiaon (X) NMOC Values a* Outllarc

&

Site Code

a

T

T



T

P(T -0)

Pd^o)



a





c

a

a

AKOI

(8

3.837

-0.

86

3.071

<0.01

>0.05

ATGA

55

4.870

-0.

08

2.992

<0.01

>0.05

BAL

56

2.829

-1.

29

3.000

>0.05

>0.05

BMTX

66

4.278

-1.

49

3.061

<0.01

>0.05

CHNC

60

4.548

—0.

19

3.025

<0.01

>0.05

CBTN

46

3.852

-1.

62

2.923

<0.01

>0.05

CLTX

72

5.847

-1.

37

3.092

<0.01

>0.05

ELTX

69

3.357

-1.

23

3.076

<0.01

>0.05

CNOH

65

4.239

-1.

43

3.055

<0.01

>0.05

FWTX

69

5.121

-1.

52

3.076

<0.01

>0.05

ININ

59

4.048

-1.

94

3.019

<0.01

>0.05

NIFL

31

2.884

-1.

15

2.759

>0.05

>0.05

MTN

52

3.894

-1.

16

2.971

<0.01

>0.05

ORTX

71

5.673

-1.

07

3.087

<0.01

>0.05

PHPA

63

3.954

-1.

26

3.044

<0.01

>0.05

RVA

64

2.891

—1 ,

83

3.049

>0.05

>0.05

TCTX

69

4.886

-1.

04

3.076

<0.01

>0.05

VBPA

63

2.250

-1.

78

3.044

>0.05

>0.05

IDC

63

5.206

-1.

42

3.044

<0.01

>0.05

WPFL

72

6.073

-1.

78

3.092

<0.01

>0.05

DLTX

74

3.700

-1.

89

3.102

<0.01

>0.05

KCMO

68

3.695

-0.

31

3.017

<0.01

>0.05

X, < X, < I, ... . ( X , < I • Sorted NMOC Tallies.

I	2 3	1*1 II

T - (X - X) a
n	a

T1 « (X, - X) a

II	1

Tq « Critical Statistics, Grnbba, F.E., aad 6. Beck, ''Extension of Saaple
Sizes aad Percentage Points for Significance Teats of Outlying
Observations,'' T«chno»«triai. Vol. 14, No. 4, Not. 1972, pp. 847-854.

I' > Tfl. Xa is aa outlier at tbe tlw perceat lml of sigaificance,
i.e., P(T - 0) <0.05.

A

5-44

-------
data, in the sense that an assignable cause coald probably be found for
each large value of HMOC aeasured. Further as discussed above, the HMOC
data sppear to approximate a logarithaie noraal distribution froa which
large values would be expected, hence the right-handed "tail" in the
lognoraal distribution (large positive skevness). This is further sup-
ported by the fact that the saae .sites for which the aaxiaua value was not
found to be an outlier by the Grubbs and Beck test were those whose skew-
ness factors were less than 1.0. The conclusion may be reached that the
Grubbs and Beck test for outliers should not be applied to the HMOC data
set. Further the assertion may be Bade that none of the present HMOC data
points should be declared to be outliers.

The Grubbs and Beck test could be run on the logarithaie of the HMOC
values instead of the HMOC values theaselves. Unless there is a specific
reason, e.g., known or suspected aalfunction of the equipaent, to suspect
the aaiiaua or the ainiaua datua as an outlier, the datua should be re-
tained as a legitiaate part of the data set.

5-45

-------
6.0 RECOMMENDATIONS

Based on the experiences and results of the 1984 NMOC study,
certain recommendations redound. The general categories into which
these recomaendations fall are equipment design and recomaendations,
sample stability determinations, repeated analyses considerations, NMOC
speciation study, and additional treataent of the 1984 NMOC data. These
categories are discussed briefly below.

6.1 EQUIPMENT DESIGN AND RECOMMENDATIONS

The scheduling, shipping, analytical requireaents, and sample can
preparation requireaents dictate that a ainiaua of 10 cans per site be
available prior to, and during, the period of the study. Fewer than
10 cans per site will probably cause additional cost in personnel
overtime charges in order to keep the project on schedule or to perform
all the tasks required.

Two key equipment design changes are recomaended. First, weld the
sample tube into the sample can, rather than press fit the tube. An
additional sleeve could be welded around the tube itself and bonded to
the can, better to ensure a leak-free joint and to provide additional
structural strength to this connection. The second design change in the
equipment is to provide a sleeve which is permanently fixed to the
sample shipment container lid, similar to a round biscuit cutter that
fits down over the sample line and valve on the top of the sample can.
A foam and/or 1 rubber gasket should be attached to the sleeve to provide
a tight, cushioned seal between the sleeve and the can firmly holding
the can in one place during shipaent.

Additionally, it is recomaended that the 6-port sample injection
valves for the gas chromatograph be replaced with similar valves of
higher temperature rating. This is recomaended to allow the valve to be
maintained at a temperature above the boiling point of water (100°C).

6-1

-------
6.2	SAMPLE STABILITY

Prior to beginning a future NMOC study at various sites, a study of
sample stability should be conducted. The purposes of this series of
tests are two-fold: 1) to determine any potential difference in the
NMOC value that results from waiting several time intervals between the
initial sampling day and the day.^ on which the analysis is done, and
2) to see if there is a detectable difference in NMOC when the time
interval for the second and third analysis is different. A suggested
experimental design is presented in Table 6-1. Twelve simultaneous
ambient air samples are to be taken at a sample location suspected of
having a NMOC concentration >1.0 ppmC. Table 6-1 shows the days on
which can pressure readings are noted and NMOC analyses are performed.
It is recommended that the barometric pressure and temperature be
recorded on each day of the sampling and analysis program, and that all
the analyses be done on the same channel, preferably by the same
operator.

6.3	REPEATED ANALYSES

The 1984 NMOC study showed that the second NMOC analysis performed
on a sample produced a larger measured NMOC reading than the first NMOC
analysis. It is proposed that in future studies each sample is analyzed
three times, on three channels -- either two Radian channels and one EPA
channel (to get interlaboratory variance) or on three Radian channels.
It is further proposed that the experimental design assure a balance of
readings for each channel pair, e.g., A-A, A-B, A-C, A-D, B-A, B-B, B-C,
B-D, C-A, C-B, etc., for however many channel pairs are involved in the
study. The gxperimental design should also balance the number of
determinations that are the first, second, and third analyses out of the
sample can. These data from all the sample sites may be combined with
the sample stability data described above to help reach possible
conclusions from the study.

Care should be taken to record the date, the time of day, the
relative humidity, the temperature, the barometric and gauge pressure at
the sampling site, and the same information at the point of each
analysis from the sample can.

6-2

-------
Tabla 6-1. MMOC Saapliag and Aaalyaia Stability Study

ililfnw" '-^i- Caaniatara	—

Day #1 #2 #3 #* #S #6 #7 #« #9 #10 #U #12

1

8 P*

P P,Ab

P.A

P

P P P

P

P

P

P

2

T





P.A

P.A









3

V

P.A

P.A



P.A P,A









4

T









P.A

P.A





3

F

P.A

P.A

P.A

P.A





P,A

P.A

6

S

















7

s

















a

M





P»A,

P.A









9

T

















10

V

















11

T







P.A, P,A









12

r

















13

t

















14

s

















13

II













P.A

P.A

16

T

















17

V









P.A.

P.A.





IS

T

















19

r







P.A P,A









20

s

















21

s

















22

H

















23

T

















24

V

















25

T

















26

r

















27

s

















26

s

















29 II

30 T P,A P,A P P P P P P P.A P,A P.A P,A

S» ayabal P iadicatM tha day a barcaatric nt Maple-cm gaaga pmaur*
raadiag ia datataiaad.

*Tha ryabal A iadicataa tha day aa aaalyaia ia daaa. Praaaaca ia racardad
bafora tha aaalyaia ia doaa.

6-3

-------
Each NMOC determination in the 1984 study was the average of
two consecutive analyses. Only the mean of the two analyses was
recorded. It is recommended to tabulate both the first and second
analysis for each NMOC determination, so that a more definitive analysis
of the effect of can pressure on the measured NMOC reading may be
assessed. It is suggested that the NMOC determinations in future data
bases be recorded to three "significant" figures past the decimal point,
and that the standard deviations be recorded to three "significant"
figures. For reporting purposes, the final NMOC values will be recorded
to two figures past the decimal point.

6.4 NMOC SPECIATION BY GC/MS

Identification of compounds that make up the NMOC readings is of
interest in several ways. There may be some effort to identify a source
of a component in an NMOC sample, or the presence of certain compounds
may affect such things as modeling NMOC composition at various locations
in a specific region. In particular identification, the aldehyde and
ketone composition of NMOC samples may be of interest. The presence of
certain components in NMOC may have an effect not only on smog or haze
potential, but also on the expected character (mean, standard deviation,
skewness, kurtosis, and frequency distribution of measured NMOC concen-
trations) of the NMOC readings at a specific location.

Ten sites have been selected for speciation analyses by GC/MS.
These sites are listed below and cover a wide range of mean NMOC value,
standard deviation, skewness, and kurtosis in the 1984 NMOC study.

Table 6-2. Proposed Sites for Speciation by GC/MS

Birmingham, Alabama
Charlotte, North Carolina
El Paso, Texas
Miami, Florida
Memphis, Tennessee

Philadelphia, Pennsylvania
Richmond, Virginia
Texas City, Texas
Wilkes-Barre, Pennsylvania
Washington, District of Columbia

6-4

-------
It is proposed that on the sane day in the first week of July, August,
and September 1985 duplicate saaples are taken at the 10 sites listed in
Table 6-2. One of the duplicates is analyzed on the GC/MS using a
capillary column coated with a polar Material, and the other duplicate
sample froa each of the 10 sites is analyzed on the GC/MS using a
nonpolar coating on a capillary colusui. Speciation and quantitation of
major components will be done. Following the GC/MS analysis, NMOC
determinations from the duplicate sample cans are made by the standard
procedure on at least two additional Radian channels.

These data will be compiled along with meteorological data of
temperature, humidity, barometric pressure, and average wind speed and
direction at the time of sampling.

6.5 ADDITIONAL 1984 NMOC DATA ANALYSIS

Additional analysis of the 1984 NMOC data should be made with the
speciation data. The results should be examined as a function of NMOC
concentration. For Wilkes-Barre, Pennsylvania, all the NMOC measure-
ments were found to be less than 1.0 ppmC. Several sites had NMOC
measurements between 1.0 ppmC and 2.0 ppmC, and some sites had readings
even higher. It would be instructive to see if the swasured NMOC level
relates to the composition of the organic components. Moreover, is
there any similarity in composition of all the readings over 3.0 ppmC,
or over 2.0 ppa£, or less than 1 ppmC?

Geographical location should be examined relative to the NMOC
speciation. Does the composition of NMOC, perhaps at several NMOC
levels at West Palm Beach, Florida relate to the NMOC composition at
Miami, Florida? Is the composition of the NMOC in the concentration
range <1.0 ppm£ independent of geographical location?

Additional analysis of the 1984 NMOC speciation data is needed in
order to get a better understanding of NMOC phenomna. Predictive
models to build atmospheric behavior of NMOC materials in the atmosphere
depend on the chemical and physical nature of the NMOC Itself. The 1984
NMOC speciation data should be analyzed as quickly as possible to allow

6-5

-------
a better understanding of the phenomena involved, and to permit the
design of more fruitful and efficient studies in the future in order to
understand NMOC behavior.

Additional data analysis of the 1984 NMOC data is possible and may
be fruitful. To investigate further the effect of a second analysis on
the measured NMOC data, it would be possible to return to the original
laboratory notebooks and data sheets and to record both NMOC determi-
nations from which each of the reported NMOC values were determined.
Moreover, on those analyses which were repeated, several were repeated
for a third time. It would be instructive to identify the channels and
the order of the analysis to see if the third analysis had resulted in a
signficantly different measured NMOC value than the second or first
analysis. Additional information on the effect of repeated analyses in
other pairs of channels, e.g., B-C, C-B; A-D, D-A; A-C, C-A; etc. can be
gleaned from the data base to supplement the analyses already done with
the combinations reported above in the section on repeated analyses,
Section 4.2.3.2.

Recommendations for further analysis of the 1984 NMOC data are
based on perceived utility of the data or potential for significantly
increasing understanding of the NMOC phenomenon in a cost effective way.
The highest priority for further analysis of the 1984 NMOC data should
be placed on the speciation results. Whatever information can be
gleaned from the 1984 study would be helpful in planning and conducting
the 1985 or future NMOC studies. The speciation information would also
aid in understanding the NMOC phenomenon.

Retrieving additional information on repeated analyses from the
1984 data should be the second priority item. Additional information
gained would not only assist in planning future studies, but would serve
as a better basis for making judgments on the precision and validity of
the current NMOC method.

Studying 1984 meteorological data relative to the 1984 NMOC data
would further aid in understanding the NMOC phenomenon.

There is some preliminary evidence that may indicate that NMOC
peaks occur very close together (i.e., near the same date) between
sample locations. Table 6-3 shows apparent peaks in the NMOC data near
Julian dates 228 and 251. The data strongly suggest that peak NMOC

6-6

-------
Table 6-3. Peak NMOC Values

Julian*



NMOC

Julian



NMOC

Date

Site

PP«C

Date

Site

ppmC

228

AKOH

2.45

250

AKOH

2.95

228

ATGA

1.64

250

ATGA

1.86

234

BMTX

3.84

255

BMTX

1.18

229

BAL

2.49

255

BAL

2.30

222

CHNC

1.35

264

CHNC

2.52

223

CHTN

3.35

254

CHTN

1.59

227

CNOH

1.90

251

CNOH

2.94

228

CLTX

1.47

254

CLTX

1.17

223

DLTX

1.63

250

DLTX

1.28

230

ELTX

1.44

251

ELTX

1.25

227

FVTTX

2.09

249

FWTX

2.18

228

ININ

2.50

250

ININ

N.A.P.

228

KCMO

N.A.P.b

249

KCMO

2.04

229

MTN

2.46

244

KCMO

2.76

230

MIFL

1.93

256

MTN

4.03

230

PHPA

N.A.P.

257

MTN

4.75

230

RVA

N.A.P.

250

MIFL

2.60

228

TCTX

1.82

250

PHPA

N.A.P.

228

WDC

N.A.P.

251

RVA

0.95

227

ORTX

1.38

242

TCTX

4.36

226

WPFL

0.97

251

WDC

1.10

228

WBPA

N.A.P.

242

ORTX

3.35







249

WPFL

1.30







250

WBPA

N.A.P.

aJulian date 230 = 8/17/84
250 « 9/06/84

bN.A.P. - no apparent peak ±5 days.

6-7

-------
values occur at several geographical locations on the same day, which is
probably related to temperature and wind conditions (and possibly
barometric pressure) at the site. A more detailed study of this
possible phenoswnon as a function of meteorological conditions warrants
further study. This recommendation is placed on a third priority level
because of the necessity to collect meteorological information (not
currently available in the 1984 NM0C data base).

6-8

-------
APPENDIX A
EPA Document

"Determination of Atmospheric Nonmethane Organic Compounds
(NMOC) by Cryogenic Preconcentration and Direct Flame
Ionization Detection"

-------
DETERMINATION OF ATMOSPHERIC
NONMETHANE ORGANIC COMPOUNDS
(NMOC) BY CRYOGENIC PRECONCENTRATION
AND DIRECT FLAME IONIZATION DETECTION

/ A \

im)

December 1983
QUALITY ASSURANCE DIVISION

ENVIRONMENTAL MONITORING SYSTEMS LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U. S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711

-------
DETERMINATION OF ATMOSPHERIC NONMETHANE ORGANIC
COMPOUNDS (NMOC) BY CRYOGENIC PRECONCENTRATION
AND DIRECT FLAME IONIZATION DETECTION

ENVIRONMENTAL MONITORING SYSTEMS LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711

DECEMBER 1983

-------
CONTENTS

Page

INTRODUCTION 	 		1

1.	APPLICABILITY 		4

2.	PRINCIPLE		4

3.	PRECISION AND ACCURACY			5

4.	APPARATUS		6

4.1	Direct Stapling 		6

4.2	Staple Collection In Pressurized Canisters ....	6

4.3	Saaple Canister Cleaning 		7

4.4	Analytical Systea 		8

4.5	Other Materials 		9

5.	SUPPLIES		9

5.1	Helium		9

5.2	Combustion Air		10

5.3	Hydrogen		10

5.4	Propane Calibration Standard 		10

5.5	Zero A1r		10

5.6	Cryogen		10

6.	SYSTEM DESCRIPTION 		10

6.1	Direct Sampling		10

6.2	Saaple Collection 1n Pressurized Canisters ....	10

6.3	Analytical Systea 		13

1

-------
CONTENTS

Page

7.	PROCEDURE	,		18

7.1	Recommended Procedure for Canister Cleaning ....	18

7.2	Procedure for Collection of Samples 1n Canisters. .	19

7.3	Analysis Procedure 		20

8.	CALIBRATION		23

8.1	Calibration Frequency 		23

8.2	Calibration Standards 		23

8.3	Calibration Procedure 		24

9.	METHOD MODIFICATIONS 		24

9.1	Sample Metering System 		24

9.2	TOC Analyzer		25

9.3	Range 		25

9.4	Alternate Carrier Gas		25

9.5	Trap Heating		25

10.	REFERENCES		26

APPENDIX		27

11

-------
FIGURES

Figure	Pag«

1	Schematic of Analysis System Showing Three Sampling

Modes		28

2	Sample System for Collection of Integrated Field

Samples	 		29

3	Cryogenic Sample Trap Dimensions 		30

4	Canister Cleaning System 		31

5	Construction of Operational Baseline and Corresponding
Correction of Peak Area		32

111

-------
INTRODUCTION

A variety of photochemical dispersion models have been developed to
describe the quant1tativa ralatlonshlps batwaan ambient concentrations of
pracursor organic compounds and subsaquant downwind concantrations of
ozona.1 An Important application of such models Is to datamlna tha
dagraa of control of such organic compounds that Is nacassary In a par*
tlcular araa to achlava compliance with applicable Mblent air quality
standards for ozona.1'2 For this purposa, tha models raqulra input of
data on aablent concantrations of nonaethane organic coapounds (NMOC).

Tha aora alaborata thaoratlcal aodals ganarally raqulra datallad
organic spaclas data.* Such spaclas data aust ba obtalnad by analyses of
air saaples with a sophisticated, siultlcomponent gas chroaatographjic
(GC) analysis systea.2'2 Slnplar empirical aodals such as tha Empirical
K1nat1c Modeling Approach (EKMA)1 require only total NMOC concentration
data, specifically tha average total NMOC concentrations from 6 a.m. to
9 a.m. dally.2

For aany EKMA applications, NMOC aeasureaents are required at urban,
center-city-type sites.2 The aoderately high NMOC concentrations typi-
cally found at such urban sites aay be adequately aeasured by commercially
available continuous (or sealcontinuous) NMOC analyzers.2'4 However, if
transport of precursors Into an area Is to be considered, then NMOC
aeasureaents upwind of the area are necessary.1 Upwind NMOC concentra-
tions are likely to be very low (less than a few tenths of 1 ppm) and
therefore aay not be accurately aeasured by conventional NMOC analyzers.2'4
NMOC GC species aeasureaents can be used by suaalng the various components

-------
to obtain a total NMOC concentration.2 But for EKMA, the species data
are not needed, and the cost and complexity of species analysis 1s very
high.

The method described herein can be used to obtain the requisite
upwind, as well as the urbany NMOC Measurements.8'6 This Method 1s a
compromise between the continuous and GC methods mentioned above. It
combines the cryogenic concentration technique used 1n the GC method for
high sensitivity with the simple flame Ionization detector (FID) for
total NMOC measurements without the complex GC columns necessary for
species separation. And because of the use of helium carrier gas, the
FID has less response variation to various organic compounds than a
conventional NMOC analyzer with air carrier or direct sample Injection
Into the FID.

This method can be used either for direct, 1n situ ambient measure-
ments or for analysis of Integrated samples contained 1n metal canisters.
Making direct measurements at the monitoring site avoids the potential
sample loss or contamination problems possible with the use of canisters.
However, the analyst must be present during the 6 to 9 a.m. period, and
repeated measurements (approximately six per hour) must be taken to obtain
the 6 to 9 a.m. average NMOC concentration. A separate analytical system
and analyst (or a conventional NMOC analyzer) 1s needed for each monitoring
site. (Further development of the method may allow for automatic operation
for on-line semi-continuous analysis in the future.)

The use of sample canisters allows the collection of integrated air
samples over the 6 to 9 a.m. period by automated samplers at unattended
monitoring sites. One analytical system can then analyze the samples
from several monitoring sites. Degradation or contamination of the air

2

-------
••*•1 Monitoring sites. Degradation or contamination of the air
•*P * by the canister may be a potential problem, but tests Indicate
the use of properly cleaned stainless steel canisters, as described
procedure, is viable and adds relatively little additional vari-
ability to the method.7

possible compromise for regional Monitoring Is to locate the
alytlcal system at the upwind site for direct MeasureMents of the low
upwind NMOC concentrations, while Integrated canister saMples are collected
the urban Monitoring sites. Direct MeasureMents may then be carried
out during the 6 to 9 a.m. period, after which the canister samples from
the urban sites a^y be brought to the upwind site for subsequent analysis.
The higher concentrations at the urban sites will Minimize the effect of
losses or contaMlnatlon of the canister saMples, while the low, upwind
concentrations are Measured directly. All MeasureMents can be Made with
• single analytical system. The canister saMples should be analyzed the
saMe day they are collected, although there 1s somo evidence that the sample
May be stable for several days In the stainless steel canisters when stored

at rooM temperature.

3

-------
DETERMINATION OF ATMOSPHERIC NONMETHANE ORGANIC COMPOUNDS (NMOC) BY
CRYOGENIC PRECONCENTRATION AND DIRECT FLAME IONIZATION DETECTION

1.	APPLICABILITY

This method Is applicable to measurement of concentrations of total
gaseous nonmethane organic compounds (NMOC) in the atmosphere, for use with
atmospheric photochemical Models such as EKMA.1 Measurements may be
obtained either In situ, or by subsequent analysis of Integrated air
samples collected over a fixed time period such as the 3-hour (6 to
9 a.m.) measurements specified for EKMA. Collection of Integrated samples
also allows for remote analysis of samples from multiple sites. The high
sensitivity and low detection limit of the method makes 1t suitable for
upwind measurements, while the wide dynamic range allows analysis of
urban air samples as well.

2.	PRINCIPLE

An air sample is taken either directly from the ambient air at the
monitoring site, where the analytical system 1s located, or from a sample
canister filled previously at a remote site. A fixed-volume portion of the
sample 1s drawn at a low flow rate through a glass beaded trap cooled to
approximately -186° C. This temperature 1s such that all organic compounds
in the sample other than methane are collect (either via condensation or
adsorption) In the trap, while methane, nitrogen, oxygen, etc., pass
through. The system 1s dynamically calibrated so that the volume of
sample passing through the trap does not have to be quantitatively measured,
but must be precisely repeatable between the calibration and analytical
phases.

4

-------
After the fixed volume air sample has been drawn through the trap,
the helium carrier gas Is diverted to pass through the trap In a
direction opposite to that of the saiiple flow and Into a flame Ionization
detector (FID). When the residual air and methane has been cleared from the
trap and the FID baseline becomes steady, the cryogen Is removed and the
temperature of the trap Is ralsetf to approximately 90° C. The organic
compounds collected In the trap revolatlllze and are carried Into the FIO,
resulting in a response peak or peaks from the FID. The area of the peak
or peaks Is Integrated, and the Integrated value 1s translated to concen-
tration units via a previously obtained calibration curve relating inte-
grated areas with known concentrations of propane.

The cryogenic trap simultaneously concentrates the nonmethane organic
compounds while separating and removing the methane from air samples. Thus
the technique Is direct reading for NMOC and, because of the concentration
step, Is more sensitive than conventional NMOC analyzers. Also, operation
of the FID detector with a helium carrier results In less response varia-
tion to different organic compounds than Is observed with conventional
NMOC analyzers having air carriers or direct air Injection. Quantitative
trapping has been shown for most compounds tested.8,7
3. PRECISION AND ACCURACY

The overall precision estimate for the method, Including the effect of
collecting and storing the ambient samples in stainless steel canisters,
was found to be 4.5%.7

Because of the number and variety of organic compounds Included in the
NMOC measurement, determination of absolute accuracy Is not practical.
Based on comparison with panual fiC speciation analysis—a technique re-
garded as the best available for measurement of atmospheric organic

5

-------
compounds--the proportional bias was determined to be *5.7%, with a neglig-
ible fixed bias.7 Although the 5.7% bias was statistically significant,
no correction factor 1s proposed for the method because this bias is
modest and the speciatlon techlque 1s not an absolute standard.

Experimental tests Indicate some degree of FID baseline shift from
water vapor 1n ambient samples, which could result 1n positive bias,
variability, or both. These problems can be adequately minimized by care-
ful selection of the Integration termination points and appropriate base-
line corrections, as described In Section 7.3.

4. APPARATUS

The following components and materials are required or recommended.
Sources for the more specialized components are given in the Appendix.. An
overall schematic diagram of the analytical system 1s shown In Figure 1,
and a suggested system for collecting ambient samples In canisters is shown
1n Figure 2. The cryogenic trap 1s specified 1n figure 3, and a canister
cleaning system 1s shown 1n Figure 4.

4.1	Direct Sampling

4.1.1	Sample manifold or sample inlet line, to bring air sample into
the analytical system.

4.1.2	Vacuum pump or blower to draw air sample through sample mani-
fold or Inlet line with a low residence time.

4.2	Sample Collection In Pressurized Canisters

4.2.1 Sample canisters. Stainless steel pressure vessels of 4 to
6-L volume having electropollshad interior and Integral, leak-
free shut-off valves (see Appendix). Each canister should have
a unique Identification number.

6

-------
4.2.2	Sample pump. Stalnltss steel, Metal Bellows (model MB-151 or
equivalent) capable of 2 atmospheres (200 kPa, 30 pslg) mini-
mum output pressure. Pump nust be clean and uncontaminated by
oil or organic compounds.

4.2.3	Auxiliary pump. Inexpensive vacuum pump to draw air sample
through Inlet line to sample pump with a low residence time.

4.2.4	Pressure gauge. 0-200 kPa (0-30 pslg).

4.2.5	Shut-off valve.

4.2.6	Stainless steel orifice or short capillary- Capable of main-
taining a substantially constant flow over the sampling period
(see Section 6.2).

4.2.7	Needle valve. Fine metering valve to adjust flow rate, of
sample from canister during analysis.

4.3 Sample Canister Cleaning

4.3.1	Vacuum pump. Capable of evacuating the sample canisters to
an absolute pressure of >5 mm Hg.

4.3.2	Vacuum manifold. A metal manifold with connections for several
canisters to be simultaneously cleaned.

4.3.3	Shut off valve. A low leakage vacuum valve placed in-line
between the vacuum pump and the vacuum manifold.

4.3.4	Vacuum gauge. Capable of measuring the vacuum In the vacuum
manifold to an absolute pressure of 1 mm Hg.

4.3.5	Cryogenic trap. U-shaped open tubular trap cooled with liquid
nitrogen or argon, to prevent contamination from back diffusion
of oil from the vacuum pump.

4.3.6	Pressure gauge. 0-50 pslg (0-345 kPa), to monitor canister
pressure.

7

-------
4.3.7 Flow Control valve, to regulate flow of zero air into canisters.

4.4 Analytical System

4.4.1	FID detector system, Including flow controls for the FIO fuel and
air, temperature control for the FIO block, and signal conditioning
electronics.

4.4.2	Chart recorder, compatible with the FIO output signal, to record

4.4.3	Integrator, electronic, compatible with the FID output signal and
capable of Integrating the area of one or more peaks and calculating
corrections for baseline drift.

NOTE: Items 4.4.1, 4.4.2 and 4.4.3 are conveniently provided by a
late-model laboratory chromatograph such as the Hewlett Packard
model 5840A or similar. See also sections 6.3.8 and 6.3.11.
The chromatograph may also provide other convenient features
such as an oven for warming the trap and valve, and automatic
control of the valve and Integrator (see below).

4.4.4	Six-port chromatographic valve. Selscor model VIII (pneumat-
ic), valco 9110 (manual), or equivalent.

4.4.5	Trap. Fabricated from a 30-cm length of 0.3175 cm (1/8 inch)
o.d., 0.21 cm l.d. chromatographic grade stainless steel tubing
to the dimensions shown In Figure 3. A 10 to 15-cm section in
the center of the trap 1s packed with 60/80 mesh glass beads,
held In place with dlmethyldlchlorosllane-treated glass wool at
both ends.

4.4.6	Cylinder pressure regulators. Standard, two-stage cylinder
pressure regulator, with pressure gauges, for helium, air and
hydrogen cylinders.

8

-------
4.4.7	Low pressure regulators. Single stage, with pressure gauge, to
Maintain constant helluM carrier gas and hydrogen flow rates.

4.4.8	Needle valve. Fine Mterlng valve to adjust saiiple flow rate
through trap.

4.4.9	Cryogenic Oewar, to hold liquid cryogen; sized to contain
subnerged portion of trap.

4.4.10	Absolute pressure gauge. 0-200 torr, Wallace-Tiernan nodel
61D-ID-0200, or equivalent.

4.4.11	VaccuM reservoir. Vacuun tank of about 2-L capacity.

4.4.12	Gas purifiers. Gas fcrubbers containing DrleHte or silica
gel and 5A Molecular sieve to remve Moisture and organic
Impurities In the helluM carrier gas, air, and hydrogen.

4.4.13	Shut-off valves (2). Leak free.

4.4.14	Vacuus pump. Capable of evacuating the vacuus reservoir to
an appropriate vacuum that allows the desired sanple volume
to be drawn through the trap.

4.4.15	Trap heating systesi. Chronatograph oven, hot water, or other
neans to heat trap to 70 - 90° C.

4.5 Other Materials

4.5.1	Various connecting tubing and plusibing fittings. All such
1teMS in contact with the saiiple, analyte, or support gases
prior to analysis should be stainless steel or other inert
Metal. Do not use a plastic or Teflon tubing or fittings.

4.5.2	Various Mechanical Mounting fixtures as necessary.

5. SUPPLIES

5.1 HelluM. Cylinder of high purity grade helluM.

9

-------
5.2	Combustion air. Cylinder of zero-grade air containing less than
0.5 ppm hydrocarbons, or equivalent air source.

5.3	Hydrogen. Cylinder of ultra high purity grade hydrogen, or equivalent
source.

5.4	Propane calibration standard. Cylinder containing 1 to 100 ppm pro-
pane In air. Cylinder assay Should be traceable to a National Bureau
of Standards (NBS) propane In air Standard Reference Material (SRM)
or a coomerclally available Certified Reference Material (CRM).

5.5	Zero a1rt containing less than 0.01 ppm C hydrocarbons, zero air may
be obtained from a cylinder of zero-grade compressed air scrubbed with
Drierlte or silica gel and 5A molecular sieve or activated charcoal,
or by catalytic cleanup of ambient air. All zero air should be passed
through a cryogenic cold trap for final clean up.

5.6	Cryogen. Liquid argon or liquid oxgen. (Observe appropriate safety
precautions with liquid oxgen).

6. SYSTEM DESCRIPTION

6.1	Direct Sampling

Allow the cryogenic trapping system to draw the air sample directly
from a pump-ventilated distribution manifold or sample line. The connect-
ing line should be kept as short as possible to minimize Its dead volume.
If this technique Is used, multiple analysis will have to be taken over
the sampling period to establish hourly or 3-hour averages. Direct sampling
avoids potential sample degradation or contamination from sample collection
containers.

6.2	Sample Collection in Pressurized Canisters

Collection of ambient air samples In pressurized canisters provides
a number of advantages, Including (1) Integration of ambient samples over

10

-------
tin* period, e.g., 1 or 3 hours; (2) remote sampling and central analysis;
(3) storage and shipping of samples; (4) unattended sample collection;
(5) analysis of samples from multiple sites with one analytical system;
and (6) collection of replicate samples for statistical analysis. However,
great care must be exercised 1n selecting, cleaning, and handling the
sample canisters and sampling apparatus to avoid losses or contamination
of the samples.

Figure 2 shows a schematic diagram of a recommended sample collection
system. The small auxiliary pump purges the inlet manifold or lines with
a flow of several liters/minute to minimize the sample residence time. The
larger Metal Bellows pump (MB*151) takes a small portion of this sample
to fill and pressurize the sample canisters. Both pumps should be shock-
mounted to minimize vibration.

A critical orifice connected to the Inlet of the Metal Bellows pump
Is used to maintain a substantially constant flow Into the canisters and
must be selected to provide the desired flow rate. This flow rate is
chosen so that the canisters are pressurized to at least 1 atmosphere
above ambient pressure (2 atmospheres absolute pressure) over the desired
sample period. The flow rate can be calculated by

F * LUL

T * 60	(1)

where

F » Flow rate, cm3/m1n

P * Final canister pressure, atmospheres absolute

V ¦ Volume of the canister, cm3

N » Number of canisters connected together for simultaneous sample
collection

T * Simple period, hours.

11

-------
For example, if two 4-1 canisters are to be filled to 2 atmospheres abso-
lute pressure (15 psig) in 3 hours,

F = 2 * 4000 x 2 = 89 cm3/min.

3 x 60

The canisters are originally evacuated, and once they are filled to above
atmospheric pressure (about half the sample period), then pressure can be
monitored with the pressure gauge. The connecting lines between the
sample pump and the canisters should be as short as possible to minimize
their volume. Be sure the flow rate Into the canister remains relatively
constant over the entire sampling period (some drop in the flow rate may
occur near the end of the sample period as the canister pressure approaches
2 atmospheres pressure).

Replicate samples provide useful quality control Information. They can
also decrease the possibility of lost samples due to leakage or contami-
nation in either of the canisters. If replicates are needed, two canisters
should be filled simultaneously.

Prior to field use, each sampling system should be tested for pump
contamination (see Section 7.2), leaks, and proper flow rate. The
plumbing on the outlet side of the Metal Bellows pump can be checked for
leaks by shutting off the canister valves, pressurizing the system, and
checking fittings, etc., with a nonhydrocarbon-based leak detector fluid.
The MB-151 pump should also be leak checked by plugging its outlet and
ensuring that there 1s no flow into its inlet side. The canisters must
be cleaned and checked for contamination before use (see Section 7.1).

During analysis, a pressurized canister is connected to the six-port
valve via a needle valve (V4) and vent as shown In Figure 1. The needle

12

-------
valve reduces the canister pressure and adjusts the canister flow rate to
a value slightly higher than the trap flow rate set by valve V3. The excess
flow exhausts through the vent, which assures that the sample air flowing
through the trap 1s at atmospheric pressure. The vent is connected to a
flow Indicator or 1s submerged In water so that the escaping bubbles provide
a visual Indication of vent flow and assist 1n adjusting valve V4.
6.3 Analytical System

6.3.1 Sample volume metering system. The vacuum reservoir and pres-
sure gauge (see Figure 1) are used to meter precisely repeatable
volumes of sample air through the cryogenic trap. With valve V2
closed and valve VI open, the reservoir 1s first evacuated with
the vacuum pump. Then VI Is closed and V2 1s opened to allow a
fixed volume of sample air to be drawn through the cryogenic trap
and Into the evacuated reservoir. The volume of air sampled 1s
determined by the pressure rise 1n the evacuated reservoir,
measured by the pressure gauge. This volume can be calculated by
V, » vr	(2)

%

where

V * Volume of air sampled, standard cm3
s

AP » Pnssur* difference measured by gauge, torr

y * Volume of vacuum reservoir

r

p « Standard pressure (760 torr).

For example, with a vacuum reservoir of 1700 cm3 and a pressure
change of 180 torr (20 to 200), the volume sampled would be
403 cm.3 The actual reservoir volume Is noncrltlcal, since it
be constant throughout calibration and sample analysis,

13

-------
but changing the volume of the sample (AP or Vr) will change
the sensitivity of the method. Sample volumes of 200 cm3 to
500 cm3 appear to be appropriate for typical ambient NMOC
concentrations. If the response peak obtained for a 500 cm3
sample turns out to be outside the calibration range or off
scale, a second analysis of a 250 cms sample can be carried
out.

6.3.2	Trap. The trap should be carefully constructed from a single
piece of tubing in the shape shown in Figure 3. The central
portion of the trap (10 to 15 centimeters) is packed with 60/80
mesh glass beads with glass wool filling the remainder to retain
the beads. The trap must fit conveniently into the Oewar f.lask
(Section 4.4.7), and the arms must be of an appropriate length
to allow the beaded portion of the trap to be submerged below
the level of liquid cryogen in the Oewar. The trap should connect
directly to the six-port valve, 1f possible, to minimize line
length between the trap and the FI0. It must be mounted to allow
the Dewar to be conveniently slipped on and off the trap and also
to facllHtate heating of the trap (see 6.3.4).

6.3.3	Liquid cryogen. Either liquid oxygen (bp -183.0° C) or liquid
argon (bp -185.7° C) may be used for the cryogen; experiments
have shown no difference in trapping efficiency between the two
cryogenic liquids.5 However, appropriate safety precautions must
be taken if liquid oxygen is used. Liquid nitrogen (bp -195° C)
should not be used as it causes condensation of oxygen and
methane 1n the trap. It may be possible to use liquid nitrogen
in an automated system if an automatic temperature controller

14

-------
1s used to obtain an operational temperature in the range of 180-
185° C. The level of the cryogenic liquid should be maintained
constant with respect to the trap and should completely cover
the beaded portion of the trap.

6.3.4	Heat source. To facilitate Integration of the NMOC response
peak, a hot bath or other heating source 1s used to heat the
trap and volatilize the concentrated NMOC such that the FID
produces one (or only a few) sharp and easily Integrated peaks.
The trap should be heated to a temperature In the range of 75° C
to 90° C. A simple heating source for the trap 1s a beaker or
Dewar filled with water maintained at 75° to 90° C. Other types
of heat sources Include a temperature-programmed chromatograph
oven, electrical heating of the trap itself, or any type heater
that brings the temperature of the trap up to 75° - 90° C in .7-
.9 minutes.

6.3.5	Carrier gas. Helium is used to purge residual air and methane
from the trap at the conclusion of the sampling phase and to
carry the revolatilized NMOC from the trap into the FID. A
single-stage auxiliary regulator between the cylinder and the
analyzer may not be necessary but Is recommended to regulate
helium pressure better than the two-stage cylinder regulator.
When an auxiliary regulator 1s used, the secondary stage of
the two-stage regulator must be set at a pressure higher than
the pressure setting of the single-stage regulator.

6.3.6	Construction. The 6 port valve and as much of the interconnect-
ing tubing as practical should be located Inside an oven or other-
wise heated to 40 - 90° C to minimize wall losses or adsorption/

15

-------
desorption in the connecting lines. All lines should be kept as
short as possible.

All tubing used for the system should be chromatographic grade
stainless steel connected with stainless steel fittings. Pneu-
matic damping may be needed between the 6 port valve and the FIO
to dampen the effect of valve actuations, which may otherwise
cause upsets 1n the FIO signal or extinguish the flame. A stain-
less steel capillary may be used for damping, but its length
should be as short as possible to prevent broadening of the peak.

After assembly, the system should be pressurized to about
80 ps1g (550 kPa) and checked for leaks. During this procedure,
disconnect the absolute pressure gauge and cap the line to prevent
damage to the gauge. If the system is leak free, depressuri'ze
the system and reconnect the gauge.

6.3.7	FID Detector. The NMOC Analyzer should be set up to accommodate
helium carrier gas so that the entire sample 1s directed to the
FID. The FID burner air, hydrogen, and carrier flow rates should
be set to obtain an adequate FID response while maintaining as
stable a flame as possible throughout all phases of the analytical
cycle. The flow rates that were used for the Hewlett Packard
model 5840A in the comparison study7 were as follows: hydrogen,
80 cm'/mln; carrier (He), 30 cm3/m1n; burner air, 400 cm3/min.

6.3.8	Linearity. Response has been shown to be Uner over a wide
range (0-10,000 ppb C).5'7

6.3.9	Range. Some FID detector systems such as laboratory chromato-
graphs may have autoranglng. Others, provide a front panel

16

-------
"range" (attenuator) control and internal full-scale output
voltage selectors. An appropriate combination should be chosen
so that an adequate output level for accurate integration is
obtained down to the detection limit, yet the electrometer or
integrator must not be driven into saturation at the upper end
of the calibration. Saturation of the electrometer may be
indicated by flattening of the calibration curve at high concen-
trations. Additional adjustment of range and sensitivity can be
provided by adjusting the sample volume used, as discussed in
Section 6.3.1.

6.3.10 Integrator. The integrator must be electrically compatible
with the output signal of the FIO detector so that sufficient
resolution is available at low concentrations without overrangirig
on high concentrations. If both an integrator and a separate chart
recorder are used, care must be exercised to be sure they don't
Interfere with each other electrically. Range selector controls
on both the Integrator and the FID analyzer may not provide
accurate range ratios, so individual calibration curves should
be prepared for each range to be used.

The Integrator should be capable of marking the beginning and
end of peaks, constructing the appropriate baseline between the
start and end of the integration period, and calculating the
peak area accordingly (see fig. 5). This is necessary because
the H*0 in the sample, which 1s also concentrated 1n the trap
will cause a slight positive baseline shift. This shift con-
tinues much longer than the organic peaks. If this shift is not
taken Into account by the Integrator, it can cause a substantial

17

-------
positive bias 1n the area as well as Increased measurement vari-
ability.

PROCEOURE

Recommended Procedure for Canister Cleaning

7.1.1	Leak-test all canisters by pressurizatlon to 40 psig (275 kPa)
with zero air and immersion 1n water.

7.1.2	Connect canisters +o the vacuum manifold as shown in Figure 4.

7.1.3	Open the canister shut-off valves and evacuate the canisters to
5.0 mm Hg or less, using a cryogenlcally-cooled trap in the vacuum
line to eliminate back-diffusion of hydrocarbons and oil from
the vacuum pump.

7.1.4	Close valve VS and shut-off valve V7. Open valve V6 to pressu-
rize the canisters with zero air to about 40 psig (300 kPa).
If a zero gas generation system is used the rate of flow may
need to be controlled.

7.1.5	Close valve V6 and allow the canisters to vent down to atmos-
pheric pressure through the vent valve V8.

7.1.6	Close valve V8, open valve V5 and evacuate the canisters to
<5.0 mm Hg. Open valve V7 only after the manifold pressure is
below ambient pressure to monitor the vacuum.

7.1.7	Evacuate the canisters for 10 to 15 minutes. Then close
valves V5 and V7.

7.1.8	Repeat steps 7.1.3 to 7.1.6 two additional times.

7.1.9	Fill the canisters with zero air and analyze the contents
as a blank check of the canisters and the cleanup system and
procedures. This step should be performed on 100% of the
canisters until the cleanup system and procedures are proven

18

-------
reliable. Th. check can th.n b. reduced to a lower percenter

unless problMS arise. Any canister that does not test clean

(compared to direct analysis of zero air) after repeated
cleaning should not be used.

7.1.10	Re-evacuate the canister after the analysis and leave evacuated

unt11 used.

7.1.11	Attach a paper tag to each canister for field notes.

The canister is now ready for collection of an air sample.

7-2 Procedure for Collection of Samples in Canist»»»s

7.2.1	Clean and test the canisters according to the procedure in
Section 7.1.

7.2.2	Assemble a sample collection system such as the one shown in
Figure 2.

7.2.3	Check the pump for contamination by filling two evacuated
cleaned canisters with zero air through the sampling system
and analyzing them.

7.2.4	Turn on pumps and allow them to warm up for 15 minutes
The orifice should be pre-checked on each sampling system to
make sure the sample flow remains relatively constant up to
about 15 psig (2 atmospheres absolute pressure). After warmina
up, loosely attach the fittings to the canisters to purge the
lines for at least 1 minute. Leave the canister valves and the
gauge shut-off valve closed.

7.2.5	Without turning off the pumps, tighten the fittings, then open
the canister shut-off valves.

7.2.6	The canisters will fill slowly over the selected p«riod at
the predetermined flow rate. At the end of the sample period

19

-------
Measure the canister pressure with the pressure gauge to ensure
that the canisters have been pressurized to about 2 atmospheres
(15 pslg).

7.2.7	Close canister valves and disconnect the canisters from the
pump setup. Then turn off the pumps.

7.2.8	The Identification tags on the sample canisters should be
filled out as necessary. Bring the canisters to the analytical
system for analysis.

7.2.9	Complete records of the sampling should be entered in a
laboratory notebook. The sampling operator should be alerted
to take note of any activities or special conditions in the area
(rain, smoke, etc.) that may affect the sample contents.

Analysis Procedure

7.3.1	Assemble the analysis system as shown 1n Figure 1 and as dis-
cussed in Section 6. Allow the FID detector to warm up and
stabilize for several hours before analysis.

7.3.2	Check and adjust the helium carrier pressure to provide the
correct carrier flow rate for the system. Also check FID hydro-
gen and burner air flow rates.

7.3.3	Close valve V2 and open valve VI to evacuate the vacuum
reservoir.

7.3.4	With the trap at room temperature, place the six-port valve
1n the Inject position.

7.3.5	Open valve V2 and adjust valve V3 for a sample flow of 50
to 100 cmVmin.

7.3.6	Connect a sample canister or direct sample Inlet to the
six-port valve as shown In Figure 1. For a canister, open the

20

-------
canister valve and adjust valve V4 to obtain	a slight vent flow

as Indicated by the flow Indicator or by	constant bubbles.

(CAUTION: Do not allow water to be drawn	Into the six-port
valve.) Then close valve V2.

7.3.7	Open valve VI (1f not already open) to evacuate the vacuum
reservoir. With the six-port valve in the Inject position and
valve VI open, open valve V2 for a few Minutes to flush and
condition the Inlet lines. Then close valve V2.

7.3.8	Submerge the trap In the cryogen and allow a few minutes for
the trap to cool completely (Indicated when the cryogen stops
boiling). Check and maintain the Initial cryogen level
to the same level used during calibration.

7.3.9	With the six-port valve still In the Inject position, close
valve VI and open valve V2.

7.3.10	Observe the Increasing pressure on the pressure gauge; when
it reaches an arbitrary point such as 20 mm Hg, quickly switch
the six-port valve to the sample position. (Alternatively,
valve V2 can be closed momentarily to allow more time while the
six-port valve is switched.)

7 3.11 Observe the Increasing pressure on the pressure gauge; when
it reaches a second arbitrary point, such as 200 mm Hg, close
valve V2. Then switch the valve to the inject position, keeping
the cryogenic bath on the trap. Also close valve V4 to conserve
the remaining sample in the canister.

7 3 12 Start the chart recorder, and wait until the FID response
baseline has stabilized (about 40 to 60 seconds). Do not wait
longer than 2 minutes.

21

-------
7.3.13	Start the integrator. Remove the liquid cryogenic bath from
the trap and smoothly but not too quickly replace it with a
Dewar of hot water (approximately 90° C) or an alternate heating
system. Use the same level of hot water or a consistent heating
procedure for both calibration and sample analyses. Heating the
trap too quickly may cause an initial negative-going response
which could hamper accurate Integration. Some initial experi-
mentation may be necessary to determine the optional heating pro-
cedure for each system, but once established, the procedure
should be consistent for each analysis.

7.3.14	Continue the integration only long enough to include all the
organic compound peaks and establish the end FID baseline, as
shown 1n Figure 5. The end baseline may be shifted somewhat
higher than the initial baseline due to moisture in the sample.
Construct an operational baseline from the Initial baseline at
the beginning of the first peak to the end baseline as shown in
Figure 5, and correct the peak area reading according to this
operational baseline. Electronic integrators either do this
automatically or they should be programmed to do this correction.

22

-------
7.3.15	Us* the calibration curve (section 8.3) to convert the peak
area reading Into concentration units (ppmC). Note that the
NMOC peak shape may not be precisely reproducible due to
variations 1n heating the trap, but the total NMOC peak area
should be reproducible.

7.3.16	Duplicate Analysis. Analyze each canister sample at least
two tiaos and raport tin .v.r.g. NMOC conc.ntr.tlon, Probl«ns
occasionally occur during an analysis that win causa lupropar
rtsults to occur. If th* first 2 analysas do not agraa clos.ly,
additional analysas should b. aada to Idantlfy InaccuraU aeasure-
stents and produce a more accurate average.

8. CALIBRATION

8.1	Calibration Frequency

Initially, a complete dynamic calibration of five or more points
should be carried out on each range to define the calibration curve.
Subsequently, the calibration should be verified with two- or three-point
calibration checks (including zero) each time the analytical system is
used to analyze samples.

8.2	Calibration Standards

PropMM calibration standards may be obtained directly from low
concentration cylinder standards or by dilution of high concentration
cylinder standards with zero air. Dilution flow rates must be measured
accurately, and the combined gas stream must be mixed thoroughly.
Calibration standards must be sampled directly from a vented manifold or
tee. Remember that a propane concentration in ppmC 1$ three times the
volumetric concentration in ppm.

23

-------
8.3 Calibration Procedure

8.3.1	Select one or more combinations of FID attenuator setting,
output voltage setting, Integrator resolution (1f applicable),
and sample volume to provide the desired range or ranges (e.g.,
0-1.0 ppm C or 0-5.0 ppm C). Each such range should be cali-
brated Individually and have a separate calibration curve.

8.3.2	Analyze each calibration standard three times according to
the procedure 1n Section 7.3. Be sure that flow rates,
initial cryogen liquid level 1n the dewar, timing, heating
and other variables are the sane as will be used during
analysis of ambient samples.

8.3.3	Average the three analyses for each concentration standard
and plot the calibration curve(s) as integrated peak area
reading versus concentration 1n ppm C. The relative standard
deviation for the three analyses should be less than 3 percent.
Linearity should be expected; points that appear to deviate
abnormally should be repeated. If nonlinearlty is observed,
an effort should be made to Identify and correct the problem.
If the problem cannot be corrected, additional points in the
non-linear region may be needed to adequately define the
calibration curve.

9. METHOD MODIFICATIONS
9.1 Sample Metering System

Although the vacuum reservoir and absolute pressure gauge technique
for metering the sample volume during analysis 1s efficient and convenient,
other techniques should work also. For example, a constant sample flow
could be established with a vacuum pump and a critical orifice, with the

24

-------
six-port valve being switched to the sample position for a Measured time
period. Or a gas volune Meter such as a wet test Meter could be used to
Measure the total volune of saMple air drawn through the trap. However,
these alternate techniques have not been tested or evaluated.

9.2	TOC Analvier

FID detector systems other than tht Hewlett Packard Model 5840A may
also be adaptable to the Method. The specific flow rates and necessary
Modifications for the helium carrier for any alternate FID instrument
would have to be worked out by the user.

9.3	Range

It M^y be possible to increase the sensitivity of the Method by
Increasing the sample voluMe. However, Imitations are likely to arise,
such as plugging of the trap by Ice; hence any atteMpts to Increase the
sensitivity should be tested carefully.

9.4	Alternate Carrier Gas

It may be possible to substitute nitrogen for the helium carrier, but
no tests using a nitrogen carrier have been carried out.

9.5	Trap Heating

Alternative techniques nay be used for heating the trap during analysis
For example, with a suitable temperature control, the trap could be heated
electrically by passing electrical current directly through the trap tubing,
using Its Internal resistance to heat 1t, or by using a trap wrapped around
an electrical heater.

25

-------
REFERENCES

1.	Uses, Limitations and Technical Basis of Procedures for Quanti-
fying Relationships Between Photochemical Oxidants and Precur-
sors. EPA-450/2-77-021a, U.S. Environmental Protection Agency,
Research Triangle Park, NC, November 1977.

2.	Guidance for Collection of Ambient Non-Methane Organic Compound
(NMOC) Data for Use in 1982 Ozone SIP Development, and Network
Design and Siting Criteria for the NMOC and NO Monitors. EPA-
450/4-80-011, U.S. Environmental Protection 'Agency, Research
Triangle Park, North Carolina, June 1980.

3.	Guidance for the Collection and Use of Ambient Hydrocarbon
Species Data 1n Development of Ozone Control Strategies. EPA-
450/4-80-008, U.S. Environmental Protection Agency, Research
Triangle Park, North Carolina, April 1980.

4.	Sexton, F.W., F.F. McElroy, R.A. Mlchie, Jr., and V.L. Thompson.
A Comparative Evaluation of Seven Automatic Ambient Non-Methane
Organic Compound Analyzers. EPA-600/S4-82-046, Environmental
Monitoring Systems Laboratory, U.S. Environmental Protection
Agency, Research Triangle Park, NC, August 1982.

5.	Jayanty, R.K.M., A. Blackard, F.F. McElroy, and VI.A. McClenny.
Laboratory Evaluation of Nonmethane Organic Carbon Determination
in Ambient Air by Cryogenic Preconcentratlon and Flame Ionization
Detection. EPA-600/54-82-019, July 1982.

6.	Collection and Analysis of Non-Methane Hydrocarbon Transport Data
from Upwind Ozone Monitoring Sites for Louisville, Kentucky and
Nashville, Tennessee. EPA-904/9-80-055, U.S. Environmental Pro-
tection Agency, Research Triangle Park, North Carolina, January
1981.

7.	McElroy, F.F., V.L. Thompson, D. Holland, W.A. Lonneman, R.L.
Sella. Cryogenic Preconcentratlon-Direct FID Method for Measure-
ment of Ambient NMOC: Refinement and Comparison with GC Specia-
tion. In press, October 1983.

26

-------
APPENOIX

MATERIAL
1. Sample Canister

MODEL/DIMENSIONS
4-6 Liter

2. Absolut* Pressure Model 610-10-0200
Gauge	(0-200 mm Hg),

2h in. Face

3. Six-Port Valve

5.	Chromatographic

Grade Stainless
Steel Tubing

6.	Integrating

Chart Recorder

8. FID TOC Analyzer

9. Metal Bellows
Pump

10.	Vacuum Gauge

11.	Cryoganlc Dewar

Seiscor Model VI11

Valco 9110

4. Gas Pur1f1«rs	c>t 08125

Cat #30101
(1/8 In. x
0.085 1n.)

Linear Model 252A

Beckman Model 400

HP Model 8440/8840

Model MB-151

0-10

,-3

Hg

10-196-10B
(30 as x 26 cm)

SUPPLIER

Oemaray Scientific
Instruments, Ltd.

N. 1218C Grand Ave.
Pullman, WA 99163
(509) 332-3684

Wallace & Tiernan
D1v. of Pennwalt Corp.
25 Main Street
Belleville, NJ 07109

Seismograph Service Corp.
Seiscor Division
P.O. Box 1590
Tulsa, OK 74102

Alltech Associates
606A Union Street
Kenneth Square, PA 19348

Alltech Associates

Alltech Associates

Cole-Parmer
7425 North Oak Avenue
Chicago, IL 60648

Beckman Instruments, Inc.
Process Instruments Div.
2500 Harbor Boulevard
Fullerton, CA 92634

Hewlett Packard Corp.
Avondale, PA

Metal Bellows Corp.
1075 Providence Highway
Sharon, MA 02067

Consolidated Vacuum Corp.

Fisher Scientific Co.

27

-------
ABSOLUTE
PRESURE 6AII8E

VACUUM	SAMPLE

VALVE VI V VALVE VI

LOW
PRESSURE

REGULATOR

VACUUM
PUMP

CARISTER
VALVE

VI

8LASS
IEAOS

Figure 1. Schematic of analysis syttam lowing two sampling modas.

28

-------
In

V«nt

1

Critical orific*

In Out

i

Auxiliary Piffp

III Out

MI151
total ItllMt tap

Stainless StMl
Samplt Cannl stars



29

-------
Figure 3. Cryogenic sample trap dimensions.

30

-------
Shut-•If

Vent *-i

Vbcvum
MartifoM



t

AAA

Swnpl* Canities





Figure 4. Cfenisttr *•!** **»**.

31

-------
*

w

B

Figure 5. Construction of operational baseline and corresponding
correction of peak area.

32

-------
APPENDIX B
OUTLINE OF NMOC DATA ANALYSIS

B-l

-------
OUTLINE OF NMOC DATA ANALYSIS

1. NMOC DATA

A.	A final list of sites needs to be tabulated, including location.

B.	For each site, the following will be listed to get some measure of
completeness: number of total samples, number of valid samples, and
percent complete. It is assumed that once a site began on the analysis
plan that the site was committed to five samples per week whether or not
there was a holiday. Further, each site was scheduled for duplicate
samples. These will be included in the talley of total samples.

Definitions:

-- Number of samples a site was scheduled to take,
including holidays and duplicate samples.

—	The number of samples which resulted in an
analyzable sample.

—	(Total Samples) - (Valid Samples). Invalid
sample includes no samples, or ones for which
sample was taken but lost.

-- A completeness parameter =

(No. Valid Samples) 100
Total Samples

For all the sites (throughout the country), an overall completeness will
be calculated from a ratio of overall valid samples to the total number

of samples.

Total Samples
Valid Samples
Invalid Sample

X Valid Sample

-------
C. For each site and for the entire 22 sites, the following statistics
will be recorded.

Mean	— An arithmetic mean of all the readings of

the valid samples, including any zeros
among the valid samples,
a

X = I X./n
i-1 1

Median	— The value of the valid NMOC readings such

that one-half of the values are larger than
the median, and one-half are below it. For
an even number of readings, the median will
be assumed to be the arithmetic mean of the
two middle data points, after the NMOC
values are sorted according to size.

Standard Deviation — The square root of the estimate of the

variance of the values.

High

Low

Range

s' = I l(X - X)2/(n-l)]
x i=l 1

- fix V •

(n-1)

—	The largest value of NMOC for a given data
set.

—	The smallest value of the valid NMOC readings
for a given data set.

The range will be calculated as
[(high)-(low)].

D. Testing for outliers. Rank the valid values of NMOC such that
Xj £ X2 S X3 . . . S xn_2 ^ *n-l ' ^us» * is the smallest value and
Xq is the largest value. The number of valid data points is n. Calculate
the following statistic

2

-------
Tn * «„ " '*>"•

where:

X = the sample mean, and

s = the sample standard deviation.

Compare the value of the Tq with ttte critical value given in Table 1 at
the upper 5 percent significance level. If Tq is greater than the
tabulated value, then Tq is an outlier at the 0.05 significance level.
Similarly, test X as an outlier with the following statistic:

Tt = (X - Xi)/s.

Continue testing	*n_2» ¦ • an<* *3 • • • until an outlier is

not found.

E. For two sets of data for which the percent completeness is high,
run either: (1) «n auto regress ion program such as the Box-Jenkins US ID
program (Box, George E. P., and Gwilym M Jenkins, "Time Series Analysis
Forecasting and Control," Holden-Day, San Francisco (1976); Program 1,
p. 496; or (2) construct plot as indicated below:

For the chronological (not ranked by size) NMOC data, plot

i-1

Y.

l

3

-------
Table 1. GRUBBS8 CRITERIA FOR OUTLIERS

Number of
observations
n

Upper 1%
significance
level

Upper 2.5%
significance
level

Upper 5%
significance
level

3

1.155

1.155

1.153

4

1.492

1.481

1.463

5

1.749

1.715

1.672

6

1.944

1.887

1.822

7

2.097

2.020

1.938

8

2.221

2.126

2.032

9

2.323

2.215

2.110

10

2.410

2.290

2.176

11

2.485

2.355

2.234

12

2.550

2.412

2.285

13

2.607

2.462

2.331

14

2.659

2.507

2.371

15

2.705

2.549

2.409

16

2.747

2.585

2.443

17

2.785

2.620

2.475

18

2.821

2.651

2.504

19

2.854

2.681

2.532

20

2.884

2.709

2.557

21

2.912

2.733

2.580

22

2.939

2.758

2.603

23

2.963

2.781

2.624

24

2.987

2.802

2.644

25

3.009

2.822

2.663

26

3.029

2.841

2.681

27

3.049

2.859

2.698

28

3.068

2.876

2.714

29

3.085

2.893

2.730

30

3.103

2.908

2.745

31

3.119

2.924

2.759

32

3.135

2.938

2.773

33

3.150

2.952

2.786

34

3.164

2.965

2.799

35

3.178

2.979

2.811

(continued)

4

-------
Table 1. Continued

Number of

Upper 1%

Upper 2.5%

Upper 5%

observations

significance

significance

significance

n

level

level

level

36

3.191

2.991

2.823

37

3.204

3.003

2.835

38

3.216

3.014

2.846

39

3.228

3.025

2.857

40

3.240

3.036

2.866

41

3.251

3.046

2.877

42

3.261

3.057

2.887

43

3.271

3.067

2.896

44

3.282

3.075

2.905

45

3.292

3.085

2.914

46

3.302

3.094

2.923

47

3.310

3.103

2.931

48

3.319

3.111

2.940

49

3.329

3.120

2.948

50

3.336

3.128

2.956

51

3.345

3.136

2.964

52

3.353

3.143

2.971

53

3.361

3.151

2.978

54

3.368

3.158

2.986

55

3.376

3.166

2.992

56

3.383

3.172

3.000

57

3.391

3.180

3.006

58

3.397

3.186

3.013

59

3.405

3.193

3.019

60

3.411

3.199

3.025

61

3.418

3.205

3.032

62

3.424

3.212

3.037

63

3.430

3.218

3.044

64

3.437

3.224

3.049

65

3.442

3.230

3.055

66

3.449

3.235

3.061

67

3.454

3.241

3.066

68

3.460

3.246

3.071

69

3.466

3.252

3.076

70

3.471

3.257

3.082

(continued)

5

-------
Table 1. Concluded

Number of	Upper 1%	Upper 2.5%	Upper 5%

observations	significance	significance	significance

n	level	level	level

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
200
500

a?d G> Beck» Extension of Sample Sizes and Percentage
5. ?ni^lcance Tests of Outlying Observations. Technometrics.
Vol. 14, No. 4, November 1972, pp. 847-854.		

3.476

3.262

3.087

3.482

3.267

3.092

3.487

3.272

3.098

3.492

3.278

3.102

3.496

3.282

3.107

3.502

3.287

3.111

3.507

3.291

3.117

3.511

3.297

3.121

3.516

3.301

3.125

3.521

3.305

3.130

3.525

3.309

3.134

3.529

3.315

3.139

3.534

3.319

3.143

3.539

3.323

3.147

3.543

3.327

3.151

3.547

3.331

3.155

3.551

3.335

3.160

3.555

3.339

3.163

3.559

3.343

3.167

3.563

3.347

3.171

3.567

3.350

3.174

3.570

3.355

3.179

3.575

3.358

3.182

3.579

3.362

3.186

3.582

3.365

3.189

3.586

3.369

3.193

3.589

3.372

3.196

3.593

3.377

3.201

3.597

3.380

3.204

3.600

3.383

3.207

3.570

3.369

3.193

3.553

3.359

3.184

6

-------
Data Point

First Week
#1

n
n

#4

Second Week

05
# 6

#7

m

Etc.

NMOC Reading

Tuesday
. Wednesday
Thursday
Friday

Tuesday
Wednesday
Thursday
Friday

li-l

Monday
Tuesday
Wednesday
Thursday

Monday
Tuesday
Wednesday
Thursday

and Y.' s Y. . for
i	i-l

How fit a linear regression line, using X. s Y

Yi' = • + • Coefficient b is the first
i	l	c	order autocorrelation

coefficient. If b 4 0.5, th. «Uu «y be *i„t.ord.t .utocorteUt,d,
»hicb «y have i^orunt con..,ue«ce.	My .t.tt,tleml COnclu.ioo..

e.g., tests of hypotheses or setting confidence intervals.

2. DUPLICATE SAMPLES

A. Tabulate completeness data as follows:

Site

No.
valid

No.
invalid

Total

X

X
•

#1

n
•

X
X

X

*
•

CM

•

X

•

X

•

X

Overall

X

X

X

% valid
(complete)

X
X

As indicated above, "Total Samples" includes all saaples for which the
site was scheduled in the original test plan to obtain duplicate samples

7

-------
data. For NMOC data, tabulate the following:

Duplicate	_ «

No.	Ll X* I II % RSD d

1

2

3

n	i

2

3

	^2j

h, Sd2

where:

(Yj)^. = NMOC reading of Duplicate Sample No. 1 (the sample with
the lowest Radian ID nuaber), or the mean of the readings
if a duplicate had repeated analyses at site i for sample
number j;

(Y2).. = NMOC reading of Duplicate Sample No. 2, or the mean of
the readings if a duplicate had repeated analyses at
site i for sample number j;

Y = (Yj + Y2)/2, or (2Yx + Y2)/3 if Yx was a mean of
two repeated analyses, or in general

n

Y = I Y /n;
i=l

S_ = the standard deviation of the duplicate samples =
l(Yx - Y2)A/2J;

% RSD = the relative standard deviation = (Sy/Y) x 100;

d.. = (Yx).. - (Y2).
ij	ij	ij

n.

1

dx = 2 (d.j/_ ) where subscript i refers to the site

j=l J/ i

number and j refers to the duplicate number at a given
site;

B. NMOC

Site

#1

8

-------
'ij = th' t°t*1 nu"b" of duplicate ,«ple., j, taken at site i;

^ ~	)i aaauaing 22 site. with valid duplicate; and

sa 'jl ^

C.	Teat dt for outlier, accordin, to Grubb., a. indicated above.
IdenUfy thoae outlier, but do not re*,ve the. fto. the calculated ~.n.
and standard deviations.

D.	Test the hypotheses that:

V ^di ~ as follows:

Calculate test statistic t - *** ** 0

' 1 ~ Sd.

x

^ < tni-l, 0/2	" S-1,	then Ho " rejected, i.e., d.

i. significantly different fro. zero at the a level of .ignificance.

Choose « - 0.05 (or 0.01) and t	fro. Table 2 for a

i-1, l-ct/2

97.S percent (or 99.5) probability, .here f i. the degree, of freedom

and equal to n. .. Note that t. = -t
i-l	1-p v

3. REPEATED ANALYSES

A. Several cases will be tabulated. Case 1 will include all the
analyses for which the first analysis was done on Channel #1, a Radian
channel on Instrument #1.

9

-------
Table 2. FRACTILES OF THE

t DISTRIBUTION

(t. = -t)
IP P

P

Probability in percent
97.5	99.5

1

12.71

63.66

2

4.303

9.925

3

3.182

5.841

4

2.776

4.604

5

2.571

4.032

6

2.447

3.707

7

2.365

3.499

8

2.306

3.355

9

2.262

3.250

10

2.228

3.169

11

2.201

3.106

12

2.179

3.055

13

2.160

3.012

14

2.145

2.977

15

2.131

2.947

16

2.120

2.921

17

2.110

2.898

18

2.101

2.878

19

2.093

2.861

20

2.086

2.845

21

2.080

2.831

22

2.074

2.819

23

2.069

2.807

24

2.064

2.797

25

2.060

2.787

26

2.056

2.779

27

2.052

2.771

28

2.048

2.763

29

2.045

2.756

30

2.042

2.750

40

2.021

2.704

50

2.009

2.678

60

2.000

2.660

80

1.990

2.639

100

1.984

2.626

200

1.972

2.601

500

1.965

2.586

00

1.960

2.576

10

-------
Case I.

First analysis on C1(

Second
analysis

#1

n

«u

#1

n

9

n12

#1

n

n13

#1

n

n16

where:

Cj = Radian Channel No. 1, Instrument #1;
Cj s Radian Channel No. 2, Instrument #1;
C3 = Radian Channel No. 3, Instrument #2;
C4 = Radian Channel No. 4, Instrument #2;

Cs = EPA Channel, Vince Thompson Laboratory; and
C6 = EPA Channel, William Lonneman Laboratory.

Case II. First analysis on C2. Similar table as Case I.

Case VI. First snalysis on C#. Similar table as Case I.

- the first of a repeated analysis.

Y2 = the second of a repeated analysis,
i = the channel on which the first analysis was done.

11

-------
j = the channel on which the second (or third, or higher)
analysis was done.

k = 1, 2, . . ., n.., the number of repeated analyses for
which channel iJwas the first analysis and channel j was
the second analysis.


-------
4.	Obtain the standard error of the mean for each treatment.

	Error mean square	

. of observations in d.. (= n.,)

ij ij

5.	Enter Duncan's table (see below) of significant ranges at the
a level desired, using n^ = degrees of freedom for the error
¦can square and p a 2, 3, . . . k, and list these k-1 ranges
(if there are six channels, k - 6).

6.	Multiply these ranges by Sd to form a group of k-1 least
significant ranges.

7.	Test the observed ranges between means, beginning with the
largest versus the smallest, which is compared with the least
significant range for p * k; then test the largest versus the
second smallest with the least significant range for p k-1;
etc. Continue this for the second largest versus smallest,
etc. until all k(k-l)/2 possible pairs have been tested. The
sole exception to the rule above is that no difference between
two means can be declared significant if two means concerned
are both contained in a subset with a nonsignificant range.

A numerical exasiple will be given once the first set of cases is
calculated. Significant Studentized Ranges for a 5-percent Level New
Multiple Range Test is shown in Table 3.

4. FOR THE RADIAN QA SAMPLES, THE FOLLOWING COMPARISONS WILL BE MADE

sa

°ij />J No

A. Tabulate the data as follows:

QA

OA-

, concentration	Analysis Difference

tMapU	C4.	Y.4	d..

no-	i-i		ij		vi

Channel No. 1

1	Clx	YX1	dxl

2	C12	Yja	dij

3	C13	Y13	d13

»	i	•	•

ai	Clnj	Ylnj	dlnj

dl> %

13

-------
Table 3. SIGNIFICANT STUDENTIZED RANGES FOR A
5-PERCENT LEVEL NEW* MULTIPLE RANGE TEST

1^

t

s

4

1

I

T

s

9

IS

It

u

IS

It

U

s»

ISS

1

IM

HI

HUS

IM

IM

ins

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

t

i

MS
US

US
US

US

us

US
US

US
US

US

us

US
US

MS
US

us
us

Ml
US

4M
US

US
US

411
US

MS
US

AM

US
US

iM

US
US

AM

4

s

US

Ml

4M
Ml

ut

m

44l
MS

us

Ml

us

MS

US

MS

US

MS

us

Ml

US

MS

US

Ul

US
ut

Ut

Ml

Ml

Ml

MS

us

4



US

Mt

US

MS

US

MS

MS

US

US

MS

us

Ml

Mt

US

MS

r

us

ur

M4

MS

MS

Ml

Ml

Ml

Ml

Ml

Ml

Ml

Ml

Ml

Ml

Ml

$

IM
US

us

mt

MS

US

US

MS

US

MS

Ml

US

US

US

US

MS

MS

9

MS



Mf

US

Ul

MS

US

US

Ml

Ul

US

Ml

Ut

Ml

Ul

is

S.U

MS

MT

MS

MS

mt

MT

Mr

MT

MT

Mr

mt

MT

Ml

MS

MS

u

111

ur

MS

MS-

Ml

MS

Ml

MS

MS

Ml

MS

MS

MT

MT

Ml

MS

Ml

lg

MS

Ml

MS

MI

Ml

MS

MA

Mt

MS

Mt

MS

MS

Ml

MS

MS

u

IM

Ml

MS

US

Ul

Ml

Ml

Mt

MS

Ml

MS

MS

MT

MT

MT

Mr

M

MS

US

IJT

US

ur

us

Ml

MS

MS

Ml

MS

MS

mt

mt

mt

mt

)t

Mi

S.M

MS

Ml

Ml

us

MS

MS

Ml

14*

MS

3.«S

Mr

ur

mt

mt

W

MS

Ml

MS

MS

Mt

ur

Ml

Ml

Ml

Mt

MS

MS

mt

mt

mt

Mr

17

IM

MS

Ml

MS

Ul

us

MS

MS

MS

its

MS

MS

Mf

mt

Mr

Mr

u

Iff

us

Ml

ur

Ml

Ul

UT

Ml

Ml

Ml

Ml

MS

MT

Mr

MT

MT

If

IM

&u

IIS

US

Ml

Ml

MT

US

Ml

Ml

MS

MS

Mr

Mr

Mr

Mr



MS

LIS
MS

MS

Ul

Ml

M4

IM

MS

MS

3.41

Ml

MS

Mr

Mr

Mr

mt

n

MS

MT
MS

MS

US

Ul

MS

ur

U»

141

Mt

MS

Ml

mt

Mr

mt

M

MS

mt

MS

Ml

Ml

Ul

M4

ur

US

1.41

Ml

Ml

MS

mt

mt

mt

jf

Ml

MS

Ml

ur

us

MS

us

US

Mt

MS

Ml

MS

mt

mt

MT

»

MS

IM

Ml

Ul

IM

Ul

IM

Ul

ur

Ml

Ml

Ml

MS

mt

ur

mt

m

MS
MS

IM

S.U

US

Ml

Ul

US

Ul

ur

Mt

Ml

Mt

MS

mt

MT

MT

4$

Ml

III

MT

Ml

ur

MS

Ul

us

Uf

Mt

Mt

MS

Mr

mt

MT

$$

MS

MS

MS

14*

Ml

ut

Ml

Ul

us

UT

MS

Ml

MS

Mr

Ml

MS

1ft

MS

MS

MS

Ul

Ml

Ul

Ml

Ul

Ml

Ut

MS

Ml

MS

Mr

Ml

Ul

•

irr

Mt

US

MS

Ml

us

Ml

Ul

US

Ut

MS

Ml

MS

mt

Ml

MT

Froa Dmm, D. B., "MoMpte Rug* and Muitipl# F T«ta." Btomdrict, 11. 19S6.
.rr-j-, (padai proUctfca Wv«fa faaaad oa dtgnm of frwdom.

14

-------
where:

OA	QA

. concentration	Analysis Difference

saapie c	y

no. ij		ii	ij

Channel No. 2

1	Cjj	Yji	dgi

2	C22	Y22	^22

3	C23	Y23	d23

' *	1	•

°2n1	4,	d2„2

Channel No. 3

S(12

1	C31	Yjx	d3j

2	C32	Y32	ds2

3	C33	Y33	d33

01	s	s	s

d3, S.A^

Channel No. 4

1	C41	Y41	d41

2	C42	Y42	d42

3	C43	Y43	d43

"*	C*b4	*4">4	4*»4

34' S"4

c.	. =• the coiaposition of the QA saapie, calculated by the QA
J ."coordinator;

Y^ = the analysis of the QA sample on Channel i for QA saapie j;

d.	= Y.. - C..
ij iJ iJ;

15

-------
a.
1

(L = the mean d„ for Channel i = 2 (d^./n^; and

Sd = the standard deviation of the difference for Channel i

i		

/(d.. - d.)2
T lj 1

(n. - 1)

B. Do a one-way analysis of variance with channels as treatments

where:

X. . = |J + T. + e. .

X.. = d.
ij ij

= Channels 1, 2, 3, and 4;
i = 1, . . . ., 4; and

j — 1> 2, . . ., n^.

C. Make the comparisons of the means using the Duncan Multiple

Range Test described

in 3C

above,

if T.
i

is significant.



5. FOR AMBIENT QA SAMPLES

, DATA

WILL BE TABULATED AS FOLLOWS

A.

Ambient
sample
no.

NMOC Analysis Channel No.
1 2 3 4 5

Ambient
sample
means

1

Xn

X21

X31

X41

X51

Ai

2

X12

X22

*32

X42

X52

a2

3."

X13

X23

X33

X43

X53

A3

4

X.H

x2«

•
t

X34

X44

X54



n

Xi
In

h*

in

X/
4n

X.
5n

A

n

Mean

Xi

x2

x3

X4

Xs

A

16

-------
B.	Do a two-way analysis of variances with A. as the ambient sample
effect, and as the channel effect

X.J = M	~ £ij

C.	Compare channel means according to the Duncan (Duncan, D. B.,
"Multiple Range and Multiple F Test," Biometrics, No. 11 (1956)) Multiple
Range Test given in 3C above, if channel effect is significant.

6. CALIBRATION DATA

A. Calibration data will be tabulated as follows:

Let	X - concentration calculated from the generator,

= area counts from calibration sample,

Y. 3 area counts from blank run,

J

«-»i - V

X/AY = calibration factor, and

d = (X/AY) a.m. reading - (X/AY) p.m. reading
CALIBRATION DATA

X/AY	X/AY

a.m. reading p.m. reading

d/(X/AY) • 100
percent of
a.m. reading

Channel #1;

Channel #2:

Channel #3:

dx, S

dl

d2, S

d2

d3, S

d3

17

-------
d/(X/AY) • 100
X/AY	X/&Y	percent of

a.m. reading p.m. reading	d	a.m. reading

Channel #4:

B. Test the hypotheses that Ho: =0.0.

1.	Calculate the statistics

t - ~ 0.0
i " S..

dx

2.	Determine critical values at the 5 percent level.

Vj-1, l-a/2 and V-l, a/2 with V1 de8ree« of freedom
See Table in Section 2C.

3.	If V-l, a/2 < ti < V-l, l-a/2' then accePt Ho» therc

is no significant difference between the mean differences d.

i

and zero.

18

-------