-------
FlaO MTK
,*9t t Of '
Plaat_
hu
Saa»ie Lo«ti«»PcP gfTC^J
'««
la W«*t -O^
Imh>» CT. rto c-^a.
T—irHrlt hwwn tVlV
Static Nun, (NjO)_
Ftlttr !¦>»(»)
2
Ink Check; taltlal it /Sr • M». -ft** CFH
Final at HO • Nf. ./PCTHI
laolmer foluaei
Initial
(ffV
/&>
-jCUL
Flnal
li o
Silica tel
2£V
+no
- r~
* z
¦:o.7 "~r. *- -2Z.1
21-1
Probe Length art Typt jf£
ftuzel 1.0. (Wo.)
toned Noliture
Molecular tiel^it, Dry, (N^)
Meter lo« imttr C ft.
Meter Caeff Iclewt y .. L1V
« Factor ."i^C *
K •
r
MW)
AH ¦ *(«,
'/(«)
*( r
(&p)
Tranne
Staler
\ Clack Tkaa
\ IM-*r)
NJ Clack
Saa»tl«t
T1m, da \
Sat Mttor
¦earflag
(*¦). « »
Velocity
Head
fe't).
la. HjO
Orifice Pressare
Vlffereatlal
*N). la. HjO
Taaperatire °F
f f
*¦*
Vacaua
la. N«
Stack
Profce
lounger
OrfMlc
IMale
Ovea
fiat Meter
AlT.loz
On 1 red
Actaal
la
Out
a/A
Z-
ai'i.ero
.2.
IT
62
V/
So
•562.VffO
f
'f 1
*o
Od
lO
le>
305-. SS~
\
**
Li~
U,i»co
TX
fc O
t:
ao
/Z
2/H . u (. o
I
1+
h 0
!>/
a3>
'J.?* J--'
sn- rr3
kC
42
2©
30
i >Sr*i*/
ft.srt
.2
•F.'S
it
5T
-------
field oat*
hft of
riMt
hit 9-gy S o
tee«tlwjfc6£_££3E£3_
S»»1« Ti— >At-Z
J- V\gui^
rturt
S»
i
M
o
cn
tofctwt T«
•mMtrlc
SUtlc FrtiMrt, (Ijl)
riltar kMkar(i)
laak Clock; lnttUI at Q&~' >4. P-CJCF*
Flml at f.-> ' m. iTP^ffW
Illnoer tolms
l»ltt«l UmI
tev ijll
>gp - "
A>r
snic* 6»»
;r0-t S1?. 7
Probe Lcnfth aad Tim> "TPS fff,CT
la« \
TIh, ata \
¦g yjTt
*»wtm,
(*.). n J
falactty
N?W
b't).
In. $0
Orlftca htuart
Dlffarantlil
M). la. HjO
tanratara °F
>«*
>«w
In. Nf
&
Stack
Proka
lantngar
Oraaalc
Noiila
Oven
Sat Nttar
Z7f702>
Datlrad
Actual
I*
Oat
n
O
o.t-
£7
«Z>
1.
714.nsO
o. t.
/o'1.
a
71
•v.-,
bf.
3d
(3l
fi. ;
7f
-
lr'
<#,
r>> .
4 -'7.5:5
r
^+-
Z',
tc
1 H'/
i^"
it*:
^-1f&r,; -
r-
-------
ISOKINETIC PERFORMANCE WORKSHEET
Plant Performed by \
Date
Sample Location Pc n C.c- '.7
Test Mo./Type
«T . 17.33 (T, ~ 460)(Vw ttd ~ V„ it6)
5 7% fl
where: *1 ¦ Percent Isokinetic
Temperature stack gas, average (OF)
TS
1' •-
Meter volume (std), 17.64^)^ *
(^3\h^ * i—-1\
i?-wwU*
v
m std
ZuiZ
Volume of liquid collected (grams)
vie
a- r>
Volume of liquid at standard condition (scf)
Vlc x 0.04707
*w std
/.Vi*
Total sample time (minutes)
e
Stack gas proportion of water vapor
vw std . CLi_i)
Vw std * \ std
®wo
.cyo y
Molecular weight, stack gas dry
(lb/lb-mole)
Md
A-106
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, stack gas wet
(lb/1b-»ole)
Mdd-B^) ~ ) ~ 18( )
"s
2.1 ! Z.
Absolute stack pressure (1n. Hg)
r , '.uck ('»• V> , <-£_>
b 1S.6 ' * 13.6
Ps
Z*fA +
Stack velocity (fps)
/T avg ~ 460
85.49 (Cp> (>, „,)V\ H,
/ / ( ) ~ «0 Y
vs
Nozzle diameter, actual (Inches)
Nd
17.33 ( ~ 460)(( ) ~ ( ))
( )( )( )( >z
XI
A-107
-------
ACUREX CORPORATION
Run Pc-P gCT0^7
Acurex Project No. -2e-->^ -1> a /)
Field Dates g-g?_. 2L-fcD
Plant_
Sampling Location Pf P gg/tt-gT
Sampling Date
FIELD CREW
Crew Chief: JS
Testing Engineer: 1_. TWm m
Engr. Technician: 1_
Lab Technician: 1 /Rf -th mnw.1
2
Process Engineer: 1_
2_
Other: 1
A-108
-------
FIELD MTA
IT
Hart.
Ml
Sa^li Lacatlew fcf
Twt > Kjy
Rm
r*-/^
atara
Aakteat Ti
¦nMlrlt Nww 3WO
i
t—•
O
to
Static Pmm, (MjO)_
flltar iMtar(l)
iMk Check;
intttai at.nia • n«. I) cm
fim! at • 015 • M|. i( em
la>lnwr >olwn
Islilsl
t
Slllci tal
2S3LS- 3±L>
s:\ +>>&.
Probe length and Typc_
Noucl 1.0. (Ha.)
>iwl Notttere
Mslacalv Mal^it, Dry,
Meter lot lwt> O /•'.,
Meter Coefficient 1: t.'if-
° Factor . 91 r
K •
T?
*(•«)'
< r
aH.K(«/(^) UP)
Travaraa
Paint
\ Clack Ttaa
\ (M-+)
Vo«rt
Tlw, ab \
fiat Meter
(%). « *
Velaclty
Nee*
(aM.
la.
Orifice Nttat
•tffereatlat
M). la. HjO
Taaperjt«re *F
&
Stack
Praka
laplafer
Organic
Modula
0«ea
(•
,o
Caenenti:
-------
ISOKINETIC PERFORMANCE WORKSHEET
Plant Performed by
Date
Sample Location Pr.P gfffl-er
Test No./Type ? / x*N ?
«T ¦ 17.33 (Tt ~ 460)(VW ttd ~ V, ,td)
e Ts pI S7~
where: tl ¦ Percent Isokinetic
Temperature stack gas, average (OF)
Ts
-
Meter volume (std), 17'6*(t) (t* I
/(^W,+ UJ\
"•"ySSy\li24* M 1
*m std
Volume of liquid collected (grams)
Vic
5".'
Volume of liquid at standard condition (scf)
VIc x 0.04707
V* std
.2«+
Total sample time (minutes)
0
/<.o
Stack gas proportion of water vapor
Vw std .
\ std * \ std * feuJ
Bwo
o.oi
Molecular weight, sfack gas dry
(lb/lb-mole)
"d
A-110
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, stack gas wet
(lb/lb-Bole)
Hdd-B^) 4 lBCB^), (;, ,-)(!- n ) ~ 18( -- )
"s
1
n.nz
Absolute stack pressure (1n. Hg)
r Pstack (1n* h20) A <-JL)
pb + 13.6 • <2129 4 1TT
%
Stack velocity (fos)
— /T.avg ~ 460
«5.« (C„) (>, K,
M ( ) * 460 \
«s.« (—KV )
Vs
Nozzle diameter, actual (Inches)
Nd
17.33 ( ~ 460)(( ) ~ ( ))
*1
( )( )( )( )z
A-lll
-------
ACUREX CORPORATION
Run /-f.&ga fiercer
Acurex Project No. ta'lkt/? .
Field Dates at-
Plant
Sampling Location rrcn Pg-nrcf
Sampling Date
Crew Chief:
FIELD CREk'
-^>CLtH.C,—C .
Testing Engineer: 1 vfot+w;
2
Engr. Technician:
Lab Technician: 1 ^cta
2
Process Engineer: 1_
2_
Other: 1_
2
A-112
-------
HELO MT«
fife «r
n«*.
Sa«lt LaeaUaa tttfO. Qmi**-r
$«»>• im vtAt>-7
"r—*- -r tfrJa — —
MINI T—r<71 Sii:
-2-t ?
Proka laaftk wi Tjpe_ JZ£fc.
itozwt I.I. (¦».) AS 4
AiMMtf Iktilart
NglKvlar try. (N^)
Netar In
| .
ft»). n »
aK
A
^rlflM NlHTt
•MTarantlal
M>. la. MjO
Taparatara «F
*¦»
lafTJ
*
Stack
Prafta
laplaiar
0r«M ic
Nadala
Ovaa
•as
Watarj
u,t- 34z 0So
DatlrH
tetaat
la
E
E
Q
p
34*.?
-T7
57
46
41
htA
4
IM.**?
0*7-
-TV
4>*
V
A[
43
m
! / *
10
M-
44-
El
»
i
Ci— uitt:
-------
~•9*
a»
Travorto
P*1nt
\ Clack T1m
\ Clack
TIm, Bin
6M NMr
Rcallnf
(«W. « 3
Velocity
Head
<&M.
la. AjO
Orlflot Prcssarc
Differential
(AH), «». «^»
Temperature of
i1
P-
/
Z>. £
*¦»
Vkm
<«. Hi
Date fifty,
sa*iinq Location Q£gO. (2.eTae-r.
Counts:
-------
ISOKINETIC PERFORMANCE WORKSHEET
Plant ___ Performed by \\-
Date a-? H-33 (T$ ~ 460)(VW ttd 4 vB ^d)
wtiere: XI ¦ Percent Isokinetic
Temperature stack gas, average (»F)
Ts
6>1rI
Heter volume (std), 17
/**)/<*&*
Volume of liquid at standard condition (scf)
Vlc x 0.04707
std
£r
Total sample time (minutes)
e
2!
Stack gas proportion of water vapor
». ,td .
K ,td *». ,« • lss<2>
0
Molecular Might, stack gas dry
(16/ lb-mole)
Md
w .y**-
A-1I5
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular Might, stack fas wet
(lb/lb-mole)
Mda-B^) ~ ib(6w)i ~ uijbO
"s
1
jn.n-
Absolute stack pressure (In. Hg)
Pstack <1n' H20) a (—11
' ia.t ' • <2* ~ tjt
Ps
Stack velocity (fps)
/ /T,a*g ~ 460
8S.« (C„) (>C, M,
/ / ( ) ~ 460 \
Vs
Nozzle diameter, actual (Inches)
Nd
17.33 ( ~ 460)(( ) * ( ))
XI
( )( )( )( )Z
A-116
-------
Section A-3
RAW DATA: TOTAL HYDROCARBON AND SPECIFIC LOW-MOLECULAR-WEIGHT DETERMINATION
A-117
-------
DATA COLLECTED: 9/23/80
A-118
-------
-------
-------
J»
I
H
r»
(^TiC wC«wt) Ur*£ )
r^at—' X/°>TCc-r: |H3<> ^-2S"«*>
f--y-• sn* 'o
/*• PCTCcrifl^
V/<*e.a^-vV)ewr b»u{**««€
»qfc-T.I*T»
- --I- :- .. . .
•:-.-±- -.. .-. !••
--•i- t ---! •¦
" t--vi==:H
.r p. J
¦ ~_
_.j. _| h-I
CHUUUitPioMon
WWHI) ¦ MA
-------
ro
ro
%.D c-t, Aie tveA.
TececTC<-T- 'S"25 9-25-8-0
^re/ooATie^' tiir*,cr'0
I I
H
H f
CWMTW.UC WW MB wkiiU
-------
-------
-------
1
I
IN)
tn
-------
DATA COLLECTED: 9/24/80
A-126
-------
-------
I
M
ro
00
-------
-------
-------
-------
A-132
-------
-------
-------
-------
&
-------
DATA COLLECTED: 9/25/80
A-137
-------
-------
-------
-------
I
I IMi
ItViBVi
IWfl
v
;
i
rn
—tt
- \
1
¦
~ ¦'i
A
g-
-fl
y
y
M
m
-------
I
I—•
ro
HE
-------
>
I
CO
-------
-------
/fT7/T+J ZZL'/y'"
qg=
ac
1
E
-------
-------
-------
3»
l
00
-------
-------
3»
l
M
tn
o
-------
I
H
ai
-------
APPENDIX B
CHARACTERIZATION OF MULTIMEDIA EMISSIONS FROM
SPRAY EVAPORATION OF WOOD PRESERVING WASTEWATERS
CONTENTS
B-l Program Description and Results
B-2 Raw Data ~ Sample Identification and Field Data
B-l
-------
SECTION B-l
PROGRAM DESCRIPTION AND RESULTS
This field test program was conducted at a wood treating plant
utilizing a spray pond evaporation device to reduce its generated wastewater
volume. The program was designed to determine the organic emissions from the
spray pond and the resulting sludge layer, as well as the input wastewater.
Each stream was qualitatively and semiquantitatively analyzed for organic
compounds, including volatile organics, chlorinated dibenzo-p-dioxins,
chlorinated dibenzofurans, chlorinated phenolic compounds, and polynuclear
aromatic hydrocarbons (PNA's).
A cryogenic sampling system developed by the University of Arkansas was
used to collect samples of the spray pond emissions. The sampling system
collected six simultaneous samples at a single location at different heights
above the pond surface. This program was focused on determining if organic
emissions were discharged to the air during evaporation and on attempts to
determine if the transport mechanism could be established: possible
mechanisms were simple evaporation or aerosol drift. In addition, a
comparison between the cryogenic sampling system and resin trapping methods
was conducted.
B-3
-------
B.l TEST SITE
The wood treating facility selected for field sampling employs two
treating cylinders utilizing the closed steaming process. Both cylinders can
treat wood using pentachlorophenol (penta) formulations, and one cylinder is
designed to use either penta or creosote. Table B-l presents a summary of the
treating production matrix for the field test period. Wood products treated
at the plant consist almost entirely of Southern yellow pine in the form of
utility poles and lumber.
Wastewater and byproducts generated as a result of the treating process
are discharged into discrete oil/water separators. Each separator has a
capacity of 10,000 gal. Primary separation is carried out as a batch process
with an average retention time for separation of 18 hrs. The tanks are
operated manually, and the recovered treating formulation is returned to the
appropriate bulk storage tank. Creosote wastewater is discharged directly
into the spray pond. Wastewater from the penta primary oil/water separator is
further treated by a three-zone gravity separator employing a skimming device
to recover any remaining penta residue; after treatment the wastewater is
discharged into the spray pond.
Figure B-l presents a diagram of the spray pond showing its dimensions
and the placement of spray nozzles. Pond water is recirculated to the spray
nozzles by a pump situated in the northeast corner of the pond. The spray
pond is operated 24 hrs/day unless local wind conditions cause excessive
drifting of the generated spray. Figure B-2 presents a photograph of the pond
in operation.
B-4
-------
TABLE B-l. PRODUCTION MATRIX (ft3)
Period 11-18-80 to 11-20-80
Creosote Penta
11-18 1,403 2,721
11-19 3,013 2,749
11-20 1,432 3,039
Total 5,848 8,509
Southern yellow pine — utility poles
B-5
-------
Figure B-l. Diagram of spray pond layout.
B-6
-------
Figure B-2. Photograph of spray pond.
B-7
-------
B .2 FIELD TEST PROGRAM
The sampling program conducted included each of the tests described
below:
• Determination of atmospheric characteristics at the spray pond
• Fugitive emission sampling at the spray pond using University of
Arkansas concentration profile apparatus (CPA) in conjunction with:
— Cryogenic U-tubes
-- Tenax traps
-- XAD-2 cartridges
• Liquid grab samples of spray pond wastewater
• Solid samples of spray pond sludge and soil samples in areas near
to spray pond
Table B-2 presents a summary of the field test matrix for the sampling
period. The following subsections describe the methods and procedures
employed during sampling.
B.2.1 Fugitive Emission Sampling at the Spray Pond
Sampling of fugitive emissions from the spray pond was conducted using
the concentration profile apparatus (CPA) developed by the University of
Arkansas, College of Engineering, Fayetteville, Arkansas. The CPA used during
the field test program consists of three devices and some auxiliary support
equipment described as follows.
Wind Velocity Profile and Direction Indicator
This device consists of a mast with cup anemometers positioned at 20
cm, 40 cm, 80 cm, 160 cm, 240 cm, and 320 cm and a wind direction vane mounted
on top. Anemometer rotation speed and wind direction is transmitted to
appropriate recorders operated by a 12-volt (lead/acid) battery. The unit was
B-9
-------
TABLE B-2. SUMMARY OF SAMPLES COLLECTED
Sample
Air samples —
spray pond non-
isokinetic sampling
Liquid samples --
composited grab
sampling
Solid samples --
composited sludge
sampl ing
1
4-XAD2, cryogenics
and field volatiles
using Tenax
1-composite
1-composite
2
4-XAD2, cryogenics
and field volatiles
using Tenax
1-composite
1-composite
3
4-XAD2, cryogenics
and field volatiles
using Tenax
1-composite
1-composite
B-10
-------
obtained from C. W. Thorntwaite Associates (Model 106). Figure B-3 presents a
diagram of the device as assembled for field use.
Pry Bulb Temperature Device
This device consists of a small metal cup filled with modeling clay,
centered in a short section of white PVC pipe to shield the clay from radiant
energy. These units are mounted on the mast with the cup anemometers using
the same spatial arrangement described for the wind velocity profile mast.
The temperature of the clay is measured periodically using a hand-held Doric
digital temperature indicator and a small RTD thermocouple. Figure B-3 also
presents a diagram of the dry bulb temperature devices as they were used in
the field.
Air Sampling Device
This assembly is not an off-the-shelf item but was designed and
constructed by the University of Arkansas College of Engineering. The device
consists of a 2m mast equipped with holders at six positions for small
(300 ml) Dewar flasks and U-tube cryogenic traps. Tube extenders, upstream of
the traps, allow precise sample heights to be chosen and maintained. The
downstream side of the U-tube traps are connected to Matheson No. 602 air
rotometers. Flow is maintained by a portable hand-evacuated vacuum tank which
was modified during the course of testing to operate from a Thomas Teflon
diaphragm vacuum pump. Figure B-4 presents a diagram of the construction
details for this device. Figure B-5 presents a detailed construction view of
the Dewar flask bracket assembly. Figure B-6 presents a photograph of the CPA
in sampling position.
Sampling fugitive emissions from the spray ponds was performed using
the CPA in conjunction with three different sample collection methods. These
B—11
-------
Figure B-3. Diagram of wind velocity profile and direction indicator
and dry bulb temperature devices.
B-12
-------
Figure B-4. Construction details of air sampling device.
B-13
-------
Figure B-5. Detailed construction view of the Dewar flask bracket assembly,
B-14
-------
Figure B-6. Photograph of CPA in sampling position.
B-15
-------
included cryogenic U-tube traps, and Tenax and XAD-2 microreticular
adsorbents. In all cases the sampled gas/aerosol was routed through a
specially modified midget impinger prior to entry into the appropriate sample
trap. The midget impingers modified the Smith-Greenburg design by shortening
the impinger stem which raised the impaction plate above the liquid collection
area. The purpose of this modification was to separate and collect the
aerosol fraction of the sampled stream, ultimately extending the effective
sampling time of the cryogenic U-tube traps by limiting the amount of
freezable material entering the trap. Figure B-7 presents a diagram of the
modified Smith-Greenburg midget impinger. The modified impingers were used in
conjunction with all three sampling methods for the purpose of uniformity.
Cryogenic U-tube traps were constructed from 316 stainless steel
tubing, 1/4-inch O.D. by .020-inch wall thickness. Each tube was packed with
glass beads ranging in size from 1.00 to 1.05 mm, purchased from B. Braun
Melsungen, AKTIENGESELLSCHAFT, W. Germany. A small pyrex glass wool plug was
inserted into each end of the packed U-tubes to retain the beads. Figure B-8
presents a diagram of the completed sampling device. Prior to use in the
field the tubes were analytically cleaned.
To effect sampling with the cryogenic U-tubes, the CPA was positioned
at the optimum downwind location of the spray pond. The sample devices then
were affixed to the CPA at the appropriate heights, with the body of the trap
immersed in a liquid oxygen (LOX) bath. After sealing the sample inlet end of
the U-tube, a leak test was performed by applying at least 10 inches of
Mercury vacuum to the system and checking the rotometers for flow indication.
If flow was noted, appropriate measures were taken to correct the leak.
B—17
-------
Figure B-7. Diagram of modified Smith-Greenburg midget impinger.
B-18
-------
316 Stainless steel
fmgtlok nut
Pyrex glass wool
&
A
ol
316 Stainless steel tube
V O.D. x .020" wall
1.00 to 1.05mri
Glass bead packing
Fi-
gure B-8. Cryogenic l)-tube construction.
B-19
-------
After completion of a successful leak check, the specially modified
midget impingers were connected and the actual sampling was begun. During the
sampling period, the flow through each sample was maintained at 100 cc/min by
adjusting the fine flow control valve mounted at the inlet of the rotometer.
Figure B-9 presents a photograph of the cryogenic U-tube sampling device in
sampling position (immersed in LOX bath).
The sample run was terminated when two or more sample U-tubes became so
restricted with frozen material it was no longer possible to maintain the
desired flow rate.
At the completion of sampling, the midget impinger and sample U-tubes
were removed from the CPA and sealed. The U-tubes were placed on dry ice and
maintained under dry ice conditions during their transport to the Mountain
View, California laboratory. The modified Smith-Greenburg midget impingers
were rinsed with methylene chloride in the field analytical laboratory. All
rinses were collected and stored in precleaned 50 ml Wheaton glass sample
vials with Teflon-lined septum caps. Rinses with methylene chloride prior to
the next sample run were retained as blank solvent samples for that run.
The second type of trap for sampling in conjunction with the CPA
utilized Tenax-GC microreticular adsorbent resin. The Tenax traps were
constructed from 1/4-inch O.D. 2-rrm bore pyrex tubing cut to 4-inch lengths.
Prior to packing with Tenax, the tubes were muffled at 400°C for 4 hrs. The
tubes were packed with Tenax GC, 80/100 mesh, using a small swatch of pyrex
glass wool (also muffled) in each end to hold the adsorbent in place. The
tubes were attached to the CPA with 316 stainless steel Swagelok nuts and
Teflon ferrules to ensure a leakfree seal. Figure B-10 presents a diagram of
the completed Tenax trap sampling device.
B-20
-------
Figure B-9. Photograph of cryogenic U-tube sampling device in sampling
position (immersed in LOX).
-------
Teflon ferrolf
316 stainless steel Swagelok nut
Pyrex glass wool insert
Pyrex glass capillary tube
Tenax GC adsorbent
i >ttd
4"
Figure B-10. Diagram of Tenax trap sampling devi
-------
Sampling with the Tenax traps was conducted in the same manner as
described for the cryogenic U-tube traps, except the Tenax traps were operated
at ambient temperatures. Also, the sampling duration was increased to
approximately 120 min since the Tenax traps are not prone to flow restrictions
caused by a buildup of frozen material. Figure B-ll presents a photograph of
the Tenax trap sampling device and Smith-Greenburg midget impinger in sampling
position.
The XAD-2 sampling device utilized XAD-2 adsorbent resin. The traps
were constructed from 5-inch lengths of 1/2-inch O.D. 316 stainless steel
tubing. Each end of the tubing was fitted with 1/2-inch to 1/4-inch Swagelok
reducing tube unions to connect the trap to the the CPA. Prior to packing the
tubes with XAD-2 resin, the entire unit was muffled at 400°C for 4 hrs. The
traps were then packed with XAD-2 resin, 80/100 mesh, using a small swatch of
pyrex glass wool (also muffled) inserted in each end to retain the packing.
Figure B-12 presents a diagram of the completed XAD-2 sampling device.
Sampling with the XAD-2 traps was conducted in the same manner as
described for the Tenax sampling devices. Figure B-13 presents a photograph
of the XAD-2 sampling device and modified Smith-Greenburg midget impinger in
sampling position.
B.3 ANALYTICAL METHODS AND RESULTS
Samples from the spray pond test site were received on November 25,
1980. The samples were assigned consecutive laboratory identification numbers
and stored at 4°C until analyzed.
Analyses were conducted for volatile and semivolatile organics.
Volatile organics analyses were based on variations to EPA Method 624.
B-24
-------
Figure B-11 - Photograph of Tenax trap sampling device and modified
Smith-Greenburg midget impinger in sampling position.
-------
316 stainless steel 1/2" O.D. x 0.035"
wall tubing
XAD-2 adsorbent
K-
5"
Figure B-12. Diagram of XAD-2 trap sampling device.
-------
Figure B-13. Photograph of XAD-2 sampling device and modified
Smith-Greenburg midget impinger in sampling position.
B- 29
k
-------
Semivolatile organics (phenols and polynuclear aromatics) analyses were based
on sample preparation variation to EPA Method 625 in conjunction with fused
silica capillary column GC/MS.
B.3.1 Analysis of Volatile Organics
The analytes of interest were benzene, toluene, and ethylbenzene. The
sludge wastewater and Tenax trap samples were analyzed for these components.
SIudge
A l.Og aliquot of the mixed sludge was weighed into a 15-ml crimp top
vial. Pentane (9 ml) and l-brom-2-chlorpropane (10 yg) were added as internal
standards. A 1-ul aliquot of this diluted sample was injected in a
0.2-percent Carbowax 1500 on a Carbopack C packed GC column in a Finnegan 1020
GC/MS instrument. Analysis and quantitation were conducted per EPA Method 624
using the internal standard method.
Quality control for the volatiles analysis entailed the analysis of a
method blank and a method standard spiked at 10 yg/g of sludge.
Water Samples
Water samples were analyzed for volatile organics using EPA Method 624
and 1- to 5-ml samples. The surrogate compounds dg-benzene and dg-toluene
were added to each sample.
Tenax Traps
Traps were prepared from Tenax GC (Applied Science) in 1/4 x 4 inch
glass tubes. Prior to sampling, every trap was spiked with d^-benzene
(100 ng) to assure recovery of the trapped samples.
The exposed Tenax trap contents were transferred to the laboratory in
the 12 x 1/8 inch stainless steel tubes used in the Tekmar LSC2 purge and trap
B-31
-------
device. The reassembled traps were purged with helium to remove air and then
thermally desorbed for analysis per EPA Method 624.
B.3.2 Analysis of Semivolatile Organics
Semivolatile organics analyzed are listed in table B-3. These analyses
were conducted by variations to EPA Method 625 in the sample preparation and
use of fused silica capillary column GC/MS to determine these compounds.
Sample Preparation
Sludge
The following procedure was used to prepare sludge samples:
1. Place 10.Og of the sludge in a clean 250-ml brown bottle. Add
10.Og of anhydrous sodium sulfate and 100 ml of pesticide grade
dichloromethane. Shake occasionally and allow to sit overnight at
room temperature.
2. Take 1.0 ml of each extract for GC/FID screening. Store the
remaining extract at 4°C.
3. As required by the GC/FID screening, filter the extract into a
Kuderna-Danish concentrator and concentrate to 1.0 ml.
The GC/FID screening stage was necessary due to the wide variability of
sample concentrations. Figure B-14 summarizes the semivolatile extraction
scheme for sludge samples.
XAD-2 Cartridges
The XAD-2 cartridge was carefully opened, any silicone stopcock grease
removed with a CH^C^ wetted towel, and the contents transferred to a
preextracted Soxhlet thimble. The XAD-2 material in the Soxhlet was spiked
with surrogate mix and extracted overnight with CH^ C^. The extract was
B-32
-------
TABLE B-3. SEMIVOLATILE ORGANICS ANALYZED IN WOOD PRESERVING SAMPLES
Compound
Name
1
Phenol
2
2-Nitrophenol
3
2,4, Dichlorophehol
4
2,4,6 Trichlorophenol
5
4-Ni trophenol
6
4,6-Dinitro-0-cresol
7
Pentachlorophenol
8
Acenaphthene
9
Fluoranthene
10
Naphthalene
11
1,2-Benz(a)anthracene
12
Chrysene
13
Acenaphthylene
14
Phenanthrene
15
F1uorene
16
Pyrene
17
Benzof1uoranthenes
18
Benzo(a)pyrene
B-33
-------
Figure B-14. Proposed analysis scheme for phenols/PAH's in
wood preserving sludges.
B-34
-------
concentrated to 1 to 100 ml based on the amount of extractable material
present.
Quality control for XAD-2 samples consisted of the analysis of
surrogate spikes, field blanks, and spiked method blanks.
Impinger Catches
Midget impinger catches were composited for analysis in the
laboratory. Each composite water sample was extracted per EPA Method 625.
The extracts were concentrated to 0.5 ml for analysis.
U-Tubes
U-tubes were rinsed into a 0.40-ml vial with dechloromethane.
Anhydrous sodium sulfate was added to each vial and the vials shaken. The
extract was concentrated to 0.5 ml for analysis.
Soils
Soil samples were extracted as follows:
1. Weigh a 50g aliquot into a 250-ml centrifuge bottle. Add surrogate
standards.
2. Adjust the pH of the sample to 12.0 with 6N NaOH
3. Add approximately 30 ml of water and homogenize for a few seconds.
Add 60 ml of methylene chloride, homogenize briefly again, withdraw
the homogenizer, and rinse it into the sample with water then with
5 to 10 ml of methylene chloride.
4. Centrifuge the sample aliquot at 1,400 rpm for 5 min to reduce
formation of an emulsion layer at the water/methylene chloride
interface. Withdraw the extract using a 25-ml Mohr pipet.
5. Perform an additional two extractions by adding 60 ml methylene
chloride, homogenizing, and centrifuging as indicated above
B-35
-------
6. Acidify the sample to a pH less than 2 using 6N HC1. Add the acid
drop-by-drop with constant mixing to prevent foaming.
7. Extract the sample again as described in sections 1.3 to 1.6,
keeping the addition of water to a minimum
8. Combine and dry the extracts by passing through a drying column
packed with 10 cm of anhydrous Na2S0^. Concentrate to a final
volume of 1 ml using a K. D. apparatus equipped with a calibrated
receiver.
Extract Analysis
Each of the extracts obtained as described in the previous section was
analyzed for the compounds listed in table B-4 using fused silica capillary
column GC/MS. The instrument operating conditions are listed in table B-4.
The quality control requirements listed in EPA Method 625 were
followed, including analytical calibration, mass spectrometer tuning to meet
decafluorotriphenylphosphine (DFTPP) criteria, and the use of the multiple
internal standard quantitation method. The internal standards used were
dg-naphthalene, d^Q-anthracene, and d^-chrysene.
B.3.3 Analytical Results and Discussion
The qualitative results from the spray pond test program are shown
below. The sample log which corresponds to this discussion is presented in
table B-5.
U-tubes
Samples A8, A10, A12, A16, A18, A20, A22, A24, and A7 were analyzed for
volatiles. Sample A20 contained benzene at 12 ng, toluene at 19 ng, and
ethylbenzene at 9 ng. All the others were not detected or less than 5 ng was
collected.
B- 36
-------
TABLE B-4. FUSED SILICA CAPILLARY COLUMN PARAMETERS
Column:
30m x 0.25m SE-54 WCOT (J & W Scientific)
Split!ess Injection Parameters:
Injection mode: Splitless
Sweep initiation: 30 sec
Sweep flow: +12 ml/min
Column flow (He)
measured at
atmospheric: 1.0 ml/min
Interface:
Temperature: 300°C
Column directly coupled to source (no transfer lines)
Temperature Program:
Initial: 30°C for 2 min
Program: Ramp to 300°C at 10°C/min
Hold: 300°C, 15 min
Mass Spectral Parameters:
Ionization mode/energy: Electron impact /70 eV
Total scan time: 1.0 sec
Mass range: 35 to 475 AMU
B-37
-------
TABLE B-5. SAMPLE LOG
Sample No.
1
Impinger No.
2
Impinger No.
3
Impinger No.
4
Impinger No.
5
Impinger No.
6
Impinger No.
7
Mell blank
1A
2A
3A
L0X test No.
4A
5A
6A
7A
Blank U-tube
8
Impinger No.
9
Impinger No.
10
Impinger No.
11
Impinger No.
12
Impinger No.
13
Impinger No.
B-l
B-2
XAD-2 cartri
B-3
C-l
C-2
Tenax Trap,
C-3
C-4
(Bottom)
C-5
C-6
Tenax Trap,
1A
2A
3A
4A
5A
6A
1, 1335 to 1358, 11-18-80
1A (XAD-2 B-l)
2A (Tenax C-l)
3A (XAD-2 B-2)
4A (Tenax C-2)
5A (XAD-2 B-3)
6A (Tenax C-3)
dge, Run No. 1, 11-18-80
1502 to 1717
Run No. 1, 11-18-80
Run No. 3, 11-19-80
B-38
-------
TABLE B-5. Continued
Sample No.
C-7
C-8
C-9
(Top)
14
Impinger rinse 1A
15
Impinger rinse 2A
16
Impinger rinse 3A
Impinger contents, test
17
Impinger rinse 4A
11-19-80 (Tenax)
18
Impinger rinse 5A
19
Impinger rinse 6A
20
Mell blank
11-19-80
21
Impinger rinse 2B
22
Impinger rinse 2B
23
Impinger rinse 3B
Impinger contents, test
24
Impinger rinse 4B
11-19-80 (Tenax)
25
Impinger rinse 5B
26
Impinger rinse 6B
A8
U-tube (Bottom)
A9
U-tube
A10
U-tube
Test No. 4, 11-19-80
All
U-tube
1147 to 1317
A12
U-tube
A13
U-tube (Top)
A14
U-tube (Bottom)
A15
U-tube
A16
U-tube
Test No. 5, 11-19-80
A17
U-tube
1425 to 1508
A18
U-tube
A19
U-tube (Top)
27
Impinger rinse IB
(Bottom)
B- 39
-------
le
28
29
30
31
32
33
34
35
36
37
38
B4
B5
B6
B7
B8
B9
39
40
41
42
43
44
45
TABLE B-5. Continued
Impinger rinse
2B
Impinger rinse
3B
Impinger contents, test
Impinger rinse
4B
11-19-80
Impinger rinse
5B
Impinger rinse
6B
(Top)
Impinger rinse
IB (Bottom)
Impinger rinse
2B
Impinger rinse
3B
Impinger contents, test
Impinger rinse
4B
11-19-80
Impinger rinse
5B
Impinger rinse
6B
(Top)
XAD-2 (Bottom)
XAD-2
XAD-2
Test No. 6, 11-19-80
XAD-2
1536 to 1645
XAD-2
XAD-2 (Top)
Impinger rinse
IB
Impinger rinse
2B
Impinger rinse
3B
Impinger contents, test
Impinger rinse
4B
Impinger rinse
5B
Impinger rinse
6B
No sample
XAD-2 (Bottom)
XAD-2
XAD-2
Test No. 8, 11-20-80
XAD-2
0811 to 1111
XAD-2
B-40
-------
TABLE B-5. Continued
Sample No.
45
Impinger rinse B1
46
Impinger rinse B2
47
Impinger rinse B3
Test
No. 8, 11-20-80
48
Impinger rinse B4
49
Impinger rinse B5
50
Impinger rinse B6
B16
XAD-2 (Top)
B17
XAD-2 (Bottom)
B18
XAD-2
B19
XAD-2
Test
No. 9, 11-20-80
B20
XAD-2
1037
to 1237
B21
XAD-2
B22
XAD-2 (Top)
51
Impinger rinse IB
52
Impinger rinse 2B
53
Impinger rinse 3B
Test
No. 9, 11-20-80
54
Impinger rinse 4B
55
Impinger rinse 5B
56
Impinger rinse 6B
CIO
Tenax Trap (Bottom)
Cll
Tenax Trap
C12
Tenax Trap
Test
No. 10, 11-20-80
C13
Tenax Trap
1319
to 1521
C14
Tenax Trap
C15
Tenax Trap (Top)
57
Impinger rinse (Bottom)
58
Impinger rinse
59
Impinger rinse
Test
No. 10, 11-20-80
60
Impinger rinse
61
Impinger rinse
B-41
-------
TABLE B-5. Continued
Sample No.
62 Impinger rinse (Top)
63 Impinger rinse (Bottom)
64 Impinger rinse
65 Impinger rinse Test No_ u> n.20.80
66 Impinger rinse
67 Impinger rinse
68 Impinger rinse (Top)
C16 Tenax Trap (Bottom)
C17 Tenax Trap
C18 Tenax Trap Test No. 11, 11-20-80
C19 Tenax Trap 1544 to 1744
C20 Tenax Trap
C21 Tenax Trap (Top)
C22 Tenax blank
C23 Tenax blank
B26 XAD-2 blank
B29 XAD-2 blank
Sample Log — Wastewater and Sludge
100 Pond sludge 11-2-80 (0830)
101 Pond sludge 11-2-80 (0830)
102 Pond sludge 11-2-80 (0830)
103 Pond wastewater (pump discharge) 11-2-80 (0830)
104 Pond wastewater (pump discharge) 11-2-80 (0830)
105 Pond wastewater (pump discharge) 11-2-80 (0830)
106 Sludge spray pond 11-19-80 (1215)
107 Pond grab sample (surface) 11-19-80 (1015)
108 Pond wastewater (pump discharge) 11-19-80 (1045)
109 Pond sludge (5 ft from edge) 11-19-80 (1215)
B-42
-------
mple I
110
111
112
x 113
x 114
x 115
116
117
118
119
120
121
x 122
x 123
TABLE B-5. Concluded
Farmers pond (bottom core sample) 11-19-80 (1000)
Farmers pond (behind RR tracks) 11-19-80 (0145)
Farmers field (3-part core soil sample) 11-19-80 (1050)
Farmers pond V0A
Pond V0A (pump discharge) 11-19-80 (1045)
Pond V0A (surface water) 11-20-80 (0820)
Flor tank sludge to drying bed — CZ 1-19-80
Aeration tank after flor tank -- CZ 1-19-80
Condenser pond flock tank -- CZ 1-19-80
Condenser pond VOA
Aeration tank VOA
Sludge VOA
Wastewater from separator 11-20-80 (0930)
Wastewater before pond 11-20-80 (0910)
B-43
-------
Samples A9, All, A13, A17, A19, Al, A6, A21, A23, and A25 were analyzed
for phenols and polynuclear aromatics. All results except the following were
negative. The detection limit was 1 ug collected for all samples.
Sample A9 Al 1 Al
Pentachlorophenol 41 5.2 4.0
Fluoranthene 1.4 1 1
Pyrene 1.1 1 1
Phenanthrene 1.7 1 1
Figure B-15 is a reprensentative chromatogram from a U-tube extract.
XAD Cartridges
Samples Bl, B2, B3, B5, B7, B9, Bll, B14, B16, B18, B20, B22, B26, and
B29 were extracted and analyzed for phenols and polynuclear aromatics. No
compounds were detected to a detection limit of 1 yg. The detection limit for
naphthalene in these samples is 10 yg due to a minor contamination of the
XAD-2. Figures B-16 and B-17 compare the chromatograms from an XAD-2 blank
and a sample.
Tenax Traps
All Tenax traps CI through C23 were analyzed for benzene, toluene, and
ethyl benzene. These compounds were not detected in any samples. Due to a low
level of Tenax contamination, the detection limits were O.t ug for each of
these compounds.
Waters, Sludges, and Soils
These samples were analyzed for volatile aromatics, phenols, and
polynuclear aromatics as listed in tables B-6 and B-7. Figure B-18 is a
typical chromatogram for a volatiles analysis. Figure B-19 is a chromatogram
from a pond sludge extract.
B-44
-------
TABLE B-6.
WOOD PRESERVING TEST RESULTS
TEST SITE:
TEST Spray Pond Samples
TEST DATE
COMPOUND Acurex I.D. #
A80-11-043
100-102+lpo
103-105
107 [
-87 I
5P Pond bla+dv*
108
Description
B»nfAtVSPSKArlAl r
Composite slu
ge Comp.Wa
-88
renwcn luropneno 1
Ib.OOO
15
2.2 ]
H>na At Pum
16
Phenol
<50
<0.1
<0.1 I
<0.1
Fluoranthene
5800
3.0
5.7 1
2.7
Naphthalene
1500
4.0
6.3 1
2.3
Benzo(a)anthracene
Benzo(a)pyrene
2600
20
0.4
<0.1
1.4 I
o.i 1
4.5
<0.1
Benzof1uoranthenes
87
0.1
0.5 I
0.1
Chrysene
2000
0.6
1.6 J
6.2
Acenaphthylene
230
0.1
0.3 I
0.1
Anthracene
1700
0.7
1.6 I
0.7
Benzo(gh1)perylene
67
<0.1
<0.1 I
<0.1
Fluorene
5600
1.7
3.7 J
2.0
Phenanthrene
9000
6.4
12 j
7.4
D1benzo(a,H)anthracene
<50
<0.1
<0.1 1
<0.1
Indeno(1,2p3-cd)pyrene
85
<0.1
<0.1 1
<0.1
Pyrene
4400
1.6
2.9 1
1.1
Benzene
NA
NA
NA |
NA
Toluene
NA
NA
NA 1
NA
Ethylbenzene
NA
NA
NA 1
NA
All concentrations In units of micrograms per gram except for XAD collections
which are total milligrams collected.
B-45
-------
WOOD PRESERVING TEST RESULTS
TEST SITE:A1gbam2r
p-jgld I.D.
COMPOUND Acurex I.O. #
A80-11-043
Phenol
Fluoranthene
Naphthalene
Benzo(a)anthracene
Benzo(a)pyrene
Benzof1uoranthenes
Chrysene
Acenaphthylene
Anthracene
Benzo(ghi)perylene
Fluorene
Phenanthrene
Indeno(l,2,3-cd)pyrene
Pyrene
Benzene
Toluene
Ethylbenzene
TABLE B-7.
TEST
Spray Pond
TEST DATE
JL2Z.
114
-97
-98
-100
Wastewater
750
17
41
66
<10
<10
<10
<10
<10
<10
<10
58
24
D1benzo(a,h)anthracene
<10
<10
21
NA
NA
NA
I Wastewater lSpray PomT
1160 fto
48
23
120
<10
<10
<10
<10
<10
17
<10
22
67
<10
<10
15
NA
NA
NA
0.015
<0.005
<0.005
115
-101
Pond Pump
NA
0.015
0.040
<0.005
All concentrations 1n units of micrograms per gram except for XAD
which are total milligrams collected.
collections
B-46
-------
RIC DATA: BNA4314 il SCANS 100 TO 2200
01/06/81 15:10:00 CALI: C010381B il
SAMPLE: A80-11-043-H A-2 IU=TOTAL FU=.5 1UL=20NG D8,10,12
RANGE: G J,2200 LABEL: N 0, 4.0 QUAN: A 0, 1.0 BASE: U 20, 3
100.01 1862970.
00
1
-Pi
--j
RIC
I
500
8:20
4-
1
yl
AjUW.Uk.
—[ i r——I—
1000
16:40
1500
25:00
2000
33:20
SCAN
TIME
Figure B-15. Total ion current chromatogram U-tube extract.
-------
RIC
01/10/81 15:29:06
SAMPLE: A8G-11-043-34 B9 1UL=20NG 08,10,12
RANGE: G 1.2200 LABEL: N 0, 4.0 QUAN: A
DATA:
CALI:
BNA4334 «1
C0110818 12
SCANS 100 TO 2200
0/ 1.0 BASE: U 20, 3
100.0-1
2015230.
RIC
oo
CD
-W±L L
1
A -. -^i - ^ f
I860
16:40
1500
25:u0
2000
35:2€"
SC UN
TH1F
Figure B-16. Chrcmatogram from XAD-2 sample.
-------
RIC DATA: BNA4347B #1 SCANS 106 TO 2200
01/12/81 17153:00 CALI: C611281A #3
SAMPLE: A80-11-043-47 B26 BLANK 1UL=20NG 08,10,12
RANGE: G 1,2200 LABEL: N 0, 4.0 QUAN: A 0, 1.0 BASE: U 20, 3
875520.
Ldt
I i
500
ft: 2d
1000
16:40
y i
-i ¦ 1 r-
2000
33:20
SCAN
TIME
Figure B-17. Chromatogram from an XAD-2 blank.
B-49
-------
PIC
12 li:21:06
SAMPLE I PONB Wjh N0115 lHL»130i». •j'JPP.is
ftMGE: C 1. 680 Lh6£Li H a, 4.0 WhN: m 9.
31? 3h3
161
Benzene
dg-Benzene
206 ,
AJL
256
AJV
237
JL
0«Trt: MHO115 (1
CHLI: FC43 «i
.e bhses ij ;y
<53
SChNS 58 To 6
-------
100.8-1
01/14/81 12:28:00 SJJl J[146
SAMPLE: A08-11-843-88 0UPL,0F=18 1UL=28NG 08,18,12 """"H «
RANGE: G 1,2280 LABEL: N 8, 4.8 QUAN: A 8, 1.8 BASE: U 28, 3
SCANS 188 TO 2288
RIC
50?
8:20
1888
16:48
1 r
1588
25:80
2880
33:20
1589248
SCAN
TIME
Figure B-19. Total ion current trace of pond sludge extract.
B- 51
-------
The composite pond water sample (Field I.D. 103+104+105 and Lab I.D.
80-11-043-83) was also analyzed for oil and grease by standard methods. The
measured value was 160 mg/1.
Impinger Catches
Impinger catch samples were composited as follows:
o Sample 1 - Sample 6
o Sample 7 + Sample 20
o Sample 8 - Sample 13
o Sample 14 - Sample 19
o Sample 21 - Sample 26
Each of these composite samples was concentrated and analyzed for phenols and
semi volatiles. No compounds were detected to a detection limit of 1 yg.
Figure B-20 is a chromatogram of a typical impinger extract.
B-52
-------
RIC DATA: BNA3125 *1136
01/13/81 15t58:00 CALI: C0U381A «3
SAMPLE! A80-11-043-125 COMP ANAL PROCI FU=0.5ML 1UL=20NG [18,10,12
RANGE: G 1,2200 LABEL: N 0, 4.0 QUAN: A 0, 1.0 BASE: U 20, 3
SCANS 100 TO 2200
76672.
JljJ
JJ
1000
16:40
1500
25:00
2000
33:28
SCAN
TIME
Figure B-20. Typical chromatogram of an impiriger extract.
B-53
-------
SECTION B-2
RAW DATA — SPRAY POND
B-55
-------
£.c.
COs*l*Sl *
H- Ms-to
"O'^JUt.
j . v*>~P
y— no^zi
r- T7 5~o">
firo/ fir4!
JTMl't
-70*1 ^l
7%l*iV
zii* n
Ppw4" A*D I (br>TO—") Srr
2 *3
3 *-
-5 -
p«^-^r v —-
\-5^r $*?p ) fzv
, 0 K*.'«»«-fcs»
J)£t v>t
u>£T H-Z *F
c*xu3U^_
F"^*~o bnwx. t*£? ^u*ro^ ^*"fc""*
17.0
n.r
*H.r
c?^«o
»oZ.C
111 «"r€^ i3>y
?t&l?2Sf *Q,\T*-\ Je(fc I3V2
t^o'L tA*We^u. L»a.
Ac ¥• A-*r$T
B-57
-------
&.C
(jU A"*«^v ^ |Vfc«-«& „Sfeo& I ? t> *2 '"^ I
l?,OU*
/- V-^pV-S- £"¥2*1
2- £ ST") 5"o ^Crf^n. / 3/^ /uoT. Ti Viposr
f- 70 12.V Tossu $t^>S t
S" 1$!^* S fc"i^Cr
6.- Sll.n 7to(*Z~l
"J"yoSiaqu- (jc^ lUOH" T¦- >. I "7 OH"
2>st Hr#F
to\gr ^
^n>*^ f^o ( (jI>»*$5v Tc^y 0~'Z
£~ ><*-D~£ <2-"3 S"A
6? T*-^c<^ C-T Cp*«
FA*w UiM. §EcvU*-Q & (o\fi CP-A.
B-58
-------
5r~^ 5m C^oV- £Crp II oV
gfi^VA4-c$( Cl^< JKk. o.Or^\
j Qr + zli (0(10%
Z. Ce?l(*o TJi^Z
5 &-?!*»$" ")^Z3l
y- io^-z.s ion i
5" fct'n*!
(, <70 Vt*it9
<&0°i ID
CSx ;o/o
<2- /^rs*
<•. 2
/o*S~
<©."%
->•<7
/o. z
(+A
~7.<*
/o,sr
U.O
TV
in
**?
3.2-
\)»SGL.
u>&r
£>£7~
y\
W
^a£^c$Lto*«sft Xu-L.
Ta^*~
C>*tlO
to I o V-/ >6
n
tjuAx p^c^Cj,—„
f «f<^ /A
a 5~c- 2A
5 fcc
* 7 C *-A
^ o 4r4
B-59
-------
^uuwx, h~>0 H"
L/J
/
H
Cp<.VV- 0
e
13 \ VL
l°izol
J5
")TZZ\
2i^\
y-
->0*12.1
no^zs
$r
°U* Of*?
6 2."} i V'
(p
oCeTl"?
d? ,C .
11-lVfo wu"TuS^
S&4 ay-) $Gf nn
tcJL*. //o» 3o.o
? »S~£~ <&, ,?ev
/ /3.2 /?.<.
2 //. r 13.1
3 n-r
f "•' /2.1
.T /2.k
« *-s-
TU-v. i^n.T OZT
//rr* y-jr
-c* TlAx-
7cr0*-*~
irrf^v—
A*
Si
z
Oz.
3
PrtO
$3
V-
A-K
KY
r
firtZ.
0
-------
ST ,/-rt-fre "O-TuX^.
jaj^ cir $c? ,9'oV
£i[&-fL*A-0^ t> • ¦«-.'<. ^ 2. A\ ,* A^
/ fe«t ^ *\
Pgn-^S^
t+lo
tS"C>^
!
/*.£-
/0 +
?
i2.l
//.*
3
il. 3
//. 7
*
/a. 3
/2.0
< 3
n. -z
P¦« ' I ^
/ °^^T~ Y J m p
0 &T~ s~o yr
" V" TtJtU.
~TZ*s~^o /O,
/ s^cq^ Afr /*
2. */r~ 24
J /* /£>
y- /w? ^
-*"" /W$r £-£
C» A /5 6 (£
B-61
-------
COa--»c^
' ^ ff(,$~
^ 91^71
3 sv-S")^
V- ?£> 1% I
? 0(c 32 *9
6* / ©*+ "? ST
£•? Sr< 4
OO^I
(yo^(
5tb^ /Ocp /4.V-X
1 ^ . I.O/w^
p^A-Jr >,r*o
I to. 0 7,3
z /^.s 7-r
^ n.z 7.^7
^ ;/, < 7. 7
*""" //-3 7.7
\^5CcL
TX~~A~ u*QT OCT
9° rf<*
"oh TJix- P+iuZL^
"TaAk... 'hio» M*•
/ Aao #/°
2 All 02.
3 z fil — ^ V $*C-&J?
^ A 2.3 /3 V" — dyw f/nJ JCS* '^*1^-
y Psr
6 £ 6.
B-62
-------
B.C.
No"? |\- *A$-2.
CxJji^cS{ S S>tiu$: nio sts-p
v 5-z
iT" J.S
L"H T~ W7
i 2rS"& 34. 3 8
XAD-2. 7VJ>«-
A. i^v(u«^/Jo
/ G7¥- Cf
2 oy r c-z-
^ c/r o
V G0 i a-
y
-------
NJ o
li-go ~2o
xaD-2-
-***¦* oa-u «*»¦
gJlc*|vu-5^Xl*L*-*, ^ ir^v^ c> ,0
/ 72*5*2 1190%
z *s"?l° ^om
^ m*r ^3^32-
f "?^ai to«x2-(
£T 'OZfej
6, f*3")V fVtOl
P»^Jt og/^jr /tor
/ 3T.7 *2.o
2 0- I
a G h /?z.
3 P/2. ffj
*- Gv-
^ 6»r sr
<» #/k ££
o"?
A'^L: R 15-13. VA-b-Z- T^-
B-64
-------
£ .C_ .
fOo ^ \K-Q,C>-hQ X^D-Z,
io*aa*Q 3tsu^- )oyi Srf& lazy
:l: A ry 1 £$1*^*^ SKvj. o.6^;^
FvVJ
/
tjstost
/
&2?3/
z.
a
t7ZS%
3
3
O oS?/
*
7o°i^ l
?
~?o9A)
/ ST
) 3, Z $ ts.o
1^<§CL
tuij r~ j>&t*
Mw m-7 /*/
X**b'2» TvJb«-
W*dCN* TJUAJo.
I £ n Gi
L £ ft Bz
? 8 r S3
v /?«
-------
10
//-20-Sro
6u^«R Sp^A
/ *r?3f
2
e>*n +z
5 do &<*/
V- *70^21
lOIKi
5" *17»7
Soil?
(* *fr//V
XSTfOS
?A^JU
p^jr
/3 ro
irtz
1
/7, 4-
<3X
z
17' 1
14.^
z
17- O
1 5T.3
>
17. 6
'Ci3
r
{<* -1
/r.s
£m~<
/3*o
,?i Z
t+>&
*7
J>£t~
60
6>o
S*& iyn S^f*
£Q*.p*et^tui^C. A^ 4.o
7ju*+*j TtJLx
flttJ'/Ue TJU, A'. ip*f*Ly*- fie ¦
I C'lO »!
^ C u £*¦
i c.{Z-
*-
-------
/ ;M '
/ S*?+S2. <\0U I
2, ay/V-Z 0W-6
J e>"?y-vi 0««3 3 70 tfj
SXtKo
tt-2o-9o T/Uxfi^ (ACl^
5Cm^ /£"ff- iTTrp /7V-V-
flfov/Hfg'tulK.
I TW
Z 7.*
J r.o
>- ?.*-
Bv3
X^eS^e*
CuQT~ £BT"
pro ^3 97
Tin* t( TcJkb-*—
Ak^T
/ ci(»
*<
*. «7 7
*2.
J a'/
03
V ci?
av-
i" c?p
er
<> Ct»
B-67
-------
ggatheson
FLOWMETER CALIBRATION- Scale Reading vs.
Flow Rate
AIR
tube WO. 602
SER. HO. TYPICAL
CD
I
o>
00
150
125
ac
Ui
100
at
a
o
ui
oc
u
I/)
50 100
FLOW RATE
CC
150 200
/MIN. AT 760 mm.
250 300 350 400
Hg. ft 21'C. GLASS FLOAT
Rtpf
M602-IA
-------
CONVERSION TABLE - SENSITIVE ANEMOMETER
(For Cup Assemblies with Serial Nos. above 92)
34.48
59.98
85.47
June 1959
Counts per Minute to Centimeters per Second After N.B.S. Calibration
Counts 0 1 2 3 4 5 6 7 8 9
0 -11.5« 14.09 16.64 19.19 21.74 24.29 26.83 29 38 31 93
10 37.03 39.58 42.13 44.68 47.23 49.78 52.33 54.88 57*43
20 62.53 65.07 67.62 70.17 72.72 75.27 77.82 80.37 82.*92
30 88.02 90.56 93.11 95.66 98.21 100.76 103.30 105.85 108*40 110*95
AO 113.50 116.05 118.60 121.15 123.70 126.25 128.80 131.35 133 90 136*45
50 138.99 141.54 144.09 146.64 149.19 151.74 154.29 156.84 159.39 16l!94
60 166.59 166.98 169.49 171.98 174.49 176.99 179.49 181.99 184 49 186 99
70 189.49 192.00 194.49 197.00 199.49 202.00 204.50 207.00 209*50 212*01
80 214.50 217.00 219.51 222.00 224.51 227.00 229.51 232.01 234 51 237*01
90 239.52 242.01 244.52 247.01 249.51 252.02 254.51 257.02 259.52 262!o2
100 264.52 267.03 269.52 272.03 274.52 277.03 279.53 282.02 284 53 287 03
110 289.53 292.03 294.53 297.03 299.54 302.03 304.54 307.04 309 54 312 04
120 314.53 317.02 319.54 322.04 324.54 327.05 329.54 332.05 334.55 337 05
130 339.55 342.00 344.45 346.91 349.36 351.81 354.27 356.72 359.17 361 62
140 364.08 366.53 368.98 371.44 373.89 376.34 378.79 381.25 383.70 386 15
150 388.61 391.06 393.51 395.97 398.42 400.87 403.32 405.78 408.23 410.68
160 413.14 415.59 418.04 420.49 422.95 425.40 427.85 430.31 432 76 435 21
170 437.67 440.12 442.57 445.02 447.48 449.93 452.38 454.84 457 29 459 74
180 462.19 464.65 467.10 469.55 472.01 474.46 476.91 479.37 481.82 484 27
19 0 4 86.72 4 89.18 491.63 494.08 496.54 498.99 501.43 503.88 506.34 508.79
200 511.24 513.65 516.05 518.46 520.87 523.27 525.68 528.08 530.49 532.89
210 535.30 537.70 540.11 542.51 544.92 547.32 549.73 552.12 554.53 556.93
220 559.34 561.74 564.15 566.55 568.96 571.36 573.77 576.18 578.58 580.99
230 583.39 585.80 588.20 590.61 593.01 595.42 597.82 600.23 602.62 605.03
240 607.43 609.84 612.24 614.65 617.05 619.46 621.86 624.27 626.67 629.08
250 631.48 633.89 636.30 638.70 641.11 643.51 645.92 648.32 650.73 653.13
260 655.54 657.93 660.34 662.74 665.15 667.55 669.96 672.36 674.77 677.17
270 679.58 681.98 684.39 686.79 689.20 691.60 694.01 696.42 698 82 701.23
280 703.63 706.04 708.43 710.84 713.24 715.65 718.05 720.46 722.86 725.27
290 727.67 730.08 732.48 734.89 737.29 739.70 742.10 744.51 746.91 749.32
B-69
-------
top. I c » Jj—fr';?-
b*T€.'>//-/?
T,V* '. 5TW^i^ ST»* /-MX
EcMur& rlwvC". tM»i»rcs
^nl»t€
f*lwt
fttitrtH
u>«*»2> jNC)
T»T*t CsmiO
WiWk IKC0
S*
CM /&CC,
IV H
ki
4JHML
**««*». c
U*uH*Cqe('c
ft.*—* fc**6-
a«V»*i«»
4«U<«C
£.iT«fci
l^^ll
em
1
<*6#
/o3-¥
/•J-
3 ."V6
2
£> c-
/<"¦
z. 3/6
3
/<%£
/zX.f
v>
*'/
/ >y'2.
*.
-—
•—
>f,-
. '! ¦£ CJ
r
/>?/
/>-**
-7 •"
/ - j/.
£ ->Vo
V
'/**?
/£ £>"~
w-C
C^\/y€<- ¦=»
-------
m: iMtr-ft
T.'c^E. % 5TW.T ./'Tft?, ST»t» n.i
r **»*€.: / (n'tMurcs
S/*t*9uf. Tyi»€. « j¦•"v 3 v a 6—2.
fA»*Pl£
fei»T
fwirtW
«-»'»»• 5 j«EJ
TfcTAt Coo«tS
W|«|) IFCCft
, *
OM^C&
aKw
fk®»*C CJtfftC
«M*M CM
*ieA*w c
CTMiMfa,
UfwmCTRic
re*#1
awV>i'i>»
VttOfwC.
SAmtCtb
9&>
,'<2.0
/, c-
<^
-------
SHr^PuG. RoP N> O. . -
i>*re. •• .
T»fv€. \ , STWCT STnf /''-l.
EcAfwrfc r"«^€l: £?3L- JX*\»»«>TCS
to
^AfoP«,£
P»'|«»T
fl»'iTt«t>
wW>) -SP*C*
T»TAt tfoo«TS
i j*--*
«n»W»% It® &
tl
OM/iCc-
Cl K
Mt*f
|MN
ii
[ CJtofeC
CM
fferrM»k*t*<
Utl»*>CTKit.
rc»«*> it**1®-
t«loM4
;^mf(.cb
^.i'tCRS.
I
£*77
/ ^
6 fc-
> o; '
/
/
2
73 *af z-
/^. 7
it,
f
1
I
3
/
£C-
/O J-
%
\
X
/c
1
/
4j A»tr\ - •k**"-"
-------
I^D. , S*n\*c€. Type. » t-/'
iwt •• //-/f-^°
T.Vfc \ STWLT
A/7 «;t>» /3/~?
ffc**urfe t'w€: ihimutcs
JS^*nC
r*aN«T
f»i'trt#»>
T»Wt CosvO
Wt^ SPCCf)
. ii
on^Cc
Ah ^
M»«{ CMC
**««*». e
ISfMlW fa,
(ItuMtCTKii.
rt»»> Rut
a«y»ii»»
4|UMft
9An«94-*b
^.iTClti
«*MM
QM
1
2
3
%
X
fe
5~73>2.
6065-
6Z.6O
66^f
/7¥.>~
/%Z.O
tWT
/W v
Q<°
1
jy
J >>
<
q.t?
If
j^ qJC. * pi ^ ^ c
Jfej-iMv * cj'O'^c iHJws * ¦
l-*l
-------
mo.. S~r -s*<**cc fvfrg « (7
IXVTC : /(-/<(-%& _
T.V»£. % 5TWS.T /Y?>. St®!* y
EiMtrf) ri«c : ninvres
f*Wr
f»t'irt'»»»
u»;«5 ^»se»
xotac e»»€
c*w
U«iww«lf<
££-».0 iVtfc,
U»«.«»^CtKic_
»»•>> fc***2-
b
^,'rcs.s.
1
2
3
*¦
X
u
33/^
3'3>^3
/S?.S-
>o"?. o
2. /^. O
6 ^
/ o 2-
J
££
1
2-2€«- a (^JCiiUiSSkM.
iu Aw — a»o vu*^Mr ^Tflv*—
-------
C. N>0 . _ ^ .
**T€. *•
T.Ve. "• Stmlt ziSzu ST»i» 92
PcA»srt> Ttwe '. IA»»0TCS
Type.
t u'
r*'iMT
f»l'iTi*»»
wi»>5 jficj
Totac ew»0
wi^ifcco
*««£.
C^Vmi
y«i»MC
$Am*bCb
^.iTCfcS.
00
1
«>nI
Ul
1
2
3
fc
X
(*
zy 3-2
ir?^&
2^Z-
o
33
/oj.%
//3.S-
/ /
/56.^T
/yt/.o
U o
J/
i/ C«H !$¦€.*- ¦= oJCJL^Gu*. pb«.4«c(v*^
ij £wv\ -
-------
O . ~7 .
i>wrs: •• //-/9-S-o
TC^E. \ 5TMS.T j7 T »«*»€.: V/ - (v\\»orcs
-SVh**c€. Ty pe. i A.
£
Fo5*»T
r»s"iTt'»*»
Wirtj
T6TAC Coo *>73
cj.imi>spccd
QM/iCO
& h
*eo«g «J(»C
A**AAfr.C
R*td*>\€iE<
ecMiMfai
UhumCtRi'v.
Fc»<^
4|t0MC
S^fbC b
^.iTCfci
INWt
C/Vt
Grtyn'it)
i
"2-Co.t
i"'
/ -
-r-< s/-
2
*«//
i
j
3
V.
2V. 5
1
X
?v>
^ k, 5*
i
i
1
3.3.?
i/.~?
i
i
|
/
/
y
f
J
/
C»*l !$>£*- -a
£j /^v\ - Xv> rfnw*-
-------
N>0 . y S**\*c€. Ty^e. « ^ "f P .ir
AKrC.'-
T»(*€. *• STWLT ^M. STo»» Ml
CcA>P^r^> t'k^C • tV.noT-fc
.PAptPiC
r*il»T
f«'in'o»>
wi»«5 iW)
T»TAC Coc*^S
wi<>t IPCC |>
il
Ci«v 1 *Co
ah ^
*••«£ «>*(*£
RmrtM(iC<
erptOiVtfcq
U»cv>m€t*i t.
rc»«» £***£¦
Q.f*P/ Mi <0
«tuiwC
^.ITCU
|MM
C/H
i
Z
3
%
X
(p.
<5&(~?
«5/V7
?W7
> ^7
-77.^2-
?Z^
%^y
9tf.d
Qo. >""
(i? £»
I
I
t
I
/
y
/o "*2-~
i
\
1/
/ ^ 3^=>
j
i
J
Jio »sih *
pM.»*-fcos »-*l
-------
jL.
ixvre *•
T."«*e *• 5"me.T STol» /y -y?
Cc#sfsr^> r ><*»€.: ^ - rV»*»*»Tcs
S*t*9L£. Type. »
.pArtPtC
felwT
f»iir«n
TttTAC eoo#»T5
M11M& iPCCD
tl
QM /&CC.
fi. K
*•#•6 Ct*0€
K«M CM
pKToweiK
fgf^Oi'raCm,
Z
3
%
y
GY13
~?t>V/
7V5?
S03Z
y-z/3
/*9.2~
/cz. o
/o?, y
L>(-
/Vz.o
/ ry. 3"
C.**/tCe. -a 0**- JG« »
Ak - -*«-» Vu*2j*-^~ 9&JW*— 3^^*—
SA"4bK b
^.i'tCRV
/ z. V
-------
N> O .
**TC'•
T,V*£ •. St**T ./^ ^. STol» / I
E"c#vPvrt> t«*\€. '• cv"> worts
Type I 7>*wf>r r:o^2^
«-»;••!> jMC)
TOTAC Cx>oHT?>
WnM( SPCC 0
QM ^iCO
a k ^
*B0«£ CttffrC
C/v\
Me«Avc
(IG^oir* l.llf>>CT|tl(.
FC»»J
flrt
VfCO
/WO
i*q-i
i 7C/- /
y s"
6 ^
-•/ C,**j£C<~ ¦= Co*-
Ll A lr\, — cW<^a. x^i Vnja^jAJ^" *—
z^
/2 r/y
¦>
&.C.X2»»rEoS /-frl
-------
l>M*e • '
T,v*t •. stmlt —l-
Cc^Pyrfc T^C "• —
£emfi-il. Type. >
STol»
r»\>Morcs
.JAtaPcG
p»!»T
P»i'lTl'# ^
«•»;*»<) .**<*9
t^tac co«,*>t5
ivrc&
ti
cm ( £6 c.
fi. h -1
*6o*£ CtlffeC
l»M>M CM
M««Ake
fifMiM <-1
z
3
v.
X
(p
? 7
/
/ /
/vr-~r
/7^~7
/V
>V. ^
/
y7 2-
j
JL/ c.a\ ¦= «¦«
iu P&rjrv*
~r~.
—^
OtbUMCrffic.
C«
yiui«&
SAHfb* b
17
Ai.-Y
fc.C.\2»r&S l~*t
-------
APPENDIX C
CHARACTERIZATION OF EMISSIONS FROM THE DISPOSAL
OF WOOD PRESERVING WASTES IN AN INDUSTRIAL BOILER
CONTENTS
C_1 Program Description and Results
C-2 Raw Data: Preliminary and Isokinetic Source Emission Sampling
C-3 Raw Data: Total Hydrocarbon Determination
C-4 Raw Data: Specific Low-Molecular-Weight Hydrocarbon Determination
C-l
-------
SECTION C-l
PROGRAM DESCRIPTION AND RESULTS
The Resource Conservation and Recovery Act (RCRA) is expected to cause
generators of hazardous wastes to dispose of their wastes within plant
boundaries. One disposal option is the thermal destruction of the waste in a
steam boiler. This field test program was conducted at a wood preserving
facility using a 40,000 lb/hr pile-burning watertube boiler cofiring a mixture
of wood waste and penta/creosote wastewater. The program was designed to
determine the destruction and removal efficiency of the organic compounds
contained in the wastewater. Input materials (including the wood waste and
sludge) and output materials (including mechanical collector ash, baghouse
hopper ash, and bottom ash) were analyzed, and pertinent data for a material
balance evaluation were collected. All samples were qualitatively and
semiquantitatively analyzed for organic compounds, including chlorinated
phenols, chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and
polynuclear aromatic hydrocarbons (PAH's) contained in each stream.
This program focused on the gaseous emissions discharged from the stack
and the ash streams which result during combustion and pollution control.
Making balance estimates was difficult since ash and fuel flowrates were not
metered by the operator. Estimates were made of each stream and of the
appropriate material balance evaluation of the destruction and removal
efficiency performed (see section 7).
C-3
-------
C.l TEST SITE
The wood treating facility selected for field sampling employs six
retorts using the steaming process to treat a variety of domestic and imported
wood products. The treating process can treat wood with penta, creosote, or
waterborne preservative formulations. Table C-l presents a summary of the
total production during the field test period.
TABLE C-l. SUMMARY OF TREATING PRODUCTION MATRIX FOR THE PERIOD
JULY 21 THROUGH JULY 25, 1980
Product Penta Penta Fire
treated (ft3) (heavy oil) (light oil) Creosote CCA* retardant**
Utility poles 7,962 — 2,712 37
Pilings 1,088 — 7,044 400 —
Lumber 440 1,860 1,753 6,583 1,717
Plywood — — — — 962
*CAA = copper chromate arsenate (waterborne)
**Waterborne formulation
Wastewater and byproducts generated as a result of the individual
treating processes are handled by discrete oil/water separators. The
recovered preservative fractions are returned to bulk storage tanks for reuse
in the process. Separated sludges and wastewater are routed to a storage
tank; eventually, when quantity is sufficient to ensure economic handling of
the waste, they are sent to the steam boiler for disposal. Figure C-l
presents a schematic of the plant wastewater/preservative recovery system.
Estimates of 5,000 to 8,000 gal/day of wastewater generation during normal
treating operations were made.
C-4
-------
-10,000 gallon ea.
settling tanks
Creosote
storage
tank
7.00C
gal.
To
boiler"
Boiler
make-up
water
Waterborne|__
and washdown
(Recovered creosote)
5-zone gravity
separator and
steam coil
heating
Sludge
tank (Sludge/waste)
(polish)
Sludge/waste
/vr v
PCP
storage
tank t
Sludge/waste
Storage
tank
Wastewater
Corregated plate
separator
PCP
./ v.
Water-
borne
Holding
tank
>15,000
gallons
Figure C-l. Schematic of plant wastewater/preservative recovery system.
C-5
-------
The boiler, manufactured by Wei Ions Company, was designed to produce
40,000 Ib/hr of steam used for space heat, the treating cycle, and other plant
process operations. The boiler unit which consists of both a cell and a
furnace can be fired using both cell and furnace or separately depending on
plant process demand.
The boiler fuel supply system consists of transfer and metering
conveyors, wet and dry fuel silos, two metering bins for cell and furnace, and
a constant running screw conveyor to charge the fuel to the cell and furnace
for burning. Both constant-feed screw conveyors have been modified to allow
the mixing of hog fuel with sludge and/or wastewater from the treating plant.
The furnace also is equipped with a ram charging device for loading
irregular-shaped and oversized wood scrap into the boiler.
The unit is equipped with a multicone and two baghouses to reduce
particulate emissions from the boiler. Figure C-2 presents a schematic of the
boiler plant. Figure C-3 presents a photograph of the boiler plant. The
plant estimates that it burns 20 unitsday of hog fuel during normal
operation. (One unit.« 200 ft^ = 200 lbs dry Douglas Fir = 4,000 lbs
Douglas Fir at 50 percent moisture - 16 MBtu at 50 percent moisture.)
C.2 FIELD TEST PROGRAM
The sampling program included each of the tests described as follows:
• Determination of preliminary flue gas stream characteristics
• Isokinetic source sampling of boiler flue gas
• Total hydrocarbon determination of boiler flue gas
• Specific low-molecular-weight hydrocarbon determination of flue gas
using gas chromatography (GC)
C-6
-------
Fuel oil tanks
Sludge tank
.Bunker Incline conveyor
Wet
fuel
o
Wastewater
tanks
Feedwater
pump
' "s Metering
Furnace convey°r
convevor
5r
Dropout
box
Cell
(below)
Boiler
furnace
(below)
Forced air
ducting
Ram
charger
Deaerator
feed water pumpI
.Multlcone
mechanical
collector
Deaerator tank
Heat
Exchanger
I.D. fans
Baghouse
no. 2
Baghouse
no. 1
Pit conveyor
Figure C-2. Schematic of boiler plant.
C-7
-------
• Composite sampling of:
— Boiler bottom ash
— Multicone hopper ash
— Wood waste fuel
— Sludge/wastewater fuel
• Grab sampling of:
— Baghouse hopper ash
— Bulk penta in aromatic treating oil
— Bulk creosote
The sample collection matrix is shown in table C-2. The following subsections
describe the equipment and techniques employed during sampling.
C.2.1 Preliminary Measurements
Preliminary gas characteristics were determined using EPA Methods 1
through 4 (Federal Register, Volume 42, No. 160, August 18, 1977). Using
these criteria, the required number of sampling points was established. W1th
the boiler operating under normal load conditions, two traverses were
conducted at right angles to one another on the south stack (No. 2).
TABLE C-2. SAMPLE COLLECTION MATRIX
Sample
number
Air samples
Outlet stock
Solid Samples
Wood waste
and sludge
Boiler
bottom ash
Mech. hopper
ash
Baghouse
ash __
1
1-XAD, GC
1-compos1te
1-Grab
1-composite
1-grab
2
1-XAD, GC
1-composite
1-grab
1-composite
1-grab
3
1-XAD, GC
1-compos i te
1-grab
1-composite
1-grab
4
1-XAD,GC
1-compos -fte
1-grab
1-composite
1-grab
C-8
-------
Figure C-3. Boiler plant.
m"'. -
1
C-9
-------
Figure C-4 presents a schematic of the stack cross section and traverse point
locations. Gas velocity measurements were taken using a calibrated 6-ft
S-type pitot tube connected to a 0- to 1-inch Magnehelic Series 200 gauge
manufactured by Dwyer Instruments Company, Michigan City, Indiana. Exit gas
temperatures were measured using a.Chromel-Alumel (Type K) thermocouple and a
digital thermal indicator manufactured by Doric Incorporated. Table C-3
presents a summary of the velocity/temperature profile data.
Preliminary gas moisture content was calculated using psychrometric
data. Successive moisture values, as determined during the actual test runs,
then were used to update the preliminary calculated values. Exit gas
molecular weight was determined by standard orsat analysis before and after
each test run. The raw data collected in the field are presented in
section C-2 of this appendix.
C.2.2 Isokinetic Source Sampling of Boiler Flue Gas
Sampling of high-molecular-weight organic emissions from the outlet
stack was performed using the EPA Method 5 isokinetic sampling train as shown
in figure C-5. The train consists of an in-stack filter, a heated glass-lined
probe, an XAD-2 polymer sorbent trap, and impingers. The first impinger, a
modified Greenburg-Smith (without an impaction plate), was empty, followed by
~
an XAD-2 polymer sorbent trap and a Greenburg-Smith impinger charged with
100 ml of 30-percent hydrogen peroxide. The third impinger was also an empty
modified Greenburg-Smith, followed by a silicon dioxide drying trap to protect
the vacuum pump and sampling module from moisture. Figure C-6 presents a
photograph of the sampling train in sampling position on the south stack.
For each isokinetic source test, a sample was drawn from the fan outlet
(at a predetermined constant velocity point) through a probe fitted with the
appropriately sized nozzle. Four complete sets of samples were collected.
C-ll
-------
Sampling Locations
Traverse Point Number
South Port East Port
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Location from Inside Stack Wall
3/4
2-7/6
4-3/16
6-3/4
10-1/4
19-3/4
23-3/16
25-5/8
27-1/2
29-3/16
North
Sampling
ports
5
N
30"
Figure C-4. Schematic of traverse point locations, south stack, no. 2.
C—12
-------
TABLE C-3. SUMMARY OF VELOCITY/TEMPERATURE PROFILE DATA FOR SOUTH STACK
South port
East port
Location
(inches aP H20)
Temperature
(inches aP H20)
Tempegature
1
0.39
248
0.56
290
2
0.51
268
0.43
290
3
0.55
286
0.54
319
4
0.59
325
0.60
346
5
0.61
335
0.65
357
6
0.65
345
0.71
355
7
0.64
347
0.74
359
8
0.64
351
0.75
362
9
0.60
353
0.74
363
10
0.53
355
0.68
364
C—13
-------
Heated Teflon sampling line
Figure C-5. Schematic diagram of an XAD-2 high-molecular-weight mass
particulate sampling train.
C-14
-------
Figure C-6. Modified EPA Method 5 sampling train in sampling position
on south stack.
C—15
-------
All sampling was conducted during normal boiler operation. Table C-4 presents
a summary of the pertinent isokinetic source test parameters. The raw field
data are presented in Section C-2 of this appendix.
At the completion of source sampling, the sample train and probes were
transported to a field laboratory. Samples were transferred from the sample
trains to specially cleaned and labeled storage containers. The probe nozzle,
probe, and connecting lines were cleaned also and recovered samples were
transferred to the appropriate storage containers. Immediately following
sample recovery, all samples were iced in the field and maintained under those
conditions during transport to the analytical laboratory.
C.2.3 Total' Hydrocarbon Determination of Boiler Flue Gas
A Model 400 total hydrocarbon analyzer (THC) manufactured by Beckman
Instruments of Fullerton, California, was used to continuously monitor total
hydrocarbons in the sampled gas stream at the south stack. This analyzer uses
the flame ionization detection (FID) method. The analyzer output was recorded
using a Model 585 strip chart recorder manufactured by Linear Instruments
Corporation, Irvine, California.
The FID was operated using zero grade 1.0 hydrogen fuel and zero air
supplied by Airco Industrial Gases, Santa Clara, California. Hydrogen fuel
and zero air pressure were set at 207 kPa (30 psi) and 104 kPa (15 psi),
respectively, using internal differential pressure regulators in the analyzer.
Sampling was conducted using the system shown in figure C-7. The gas
sample was extracted from the stack via a 7-micron, sintered, stainless steel
Model No. SS-4 FE-7 filter manufactured by Nupro Valve Company of Willoughby,
Ohio. The filter removed fine particulates which, if allowed to pass into the
THC analyzer, could occlude the FID sample inlet capillary. A 0.006m 0.0.
C—17
-------
TABLE C-4. SUMMARY OF ISOKINETIC SOURCE TEST PARAMETERS
Test
No.
Date
Test period
(24-hr clock)
Sample
time
(min)
Barometric
pressure
(inches Hg)
Sample
volume
(scf)
Average
stack gas
temp (OF)
Molecular
weight
(lb/lb mole dry)
Percent
moisture
Percent
isokinetic
1
7/22/80
1000-1600
360
30.57
12.79
318.9
29.29
12
98.0
2
7/23/80
0850-1450
360
30.00
17.34
331.1
29.28
7.2
100.4
3
7/24/80
0850-1450
360
30.69
25.81
342.0
29.43
5.0
100.0
4
7/25/80
0800-1350
350
30.75
30.643
367.4
29.37
7.9
105.3
-------
7pm sintered stainless steel filter
¦ 0.006 cc stainless steel orobe
— — — To stack
'Three-way stainless steel solenoid valve
Heat traced Teflon sample line (3C.48m)
Heat traced Teflon connecting line
Teflon diaphragm vacuum pump
Unburned
hydrocarbon
Strip
chart
recorder!
Calibration
gases
2 ml injection
loop and
backflush valve
Gas
chromatoqraph
(FID)
Strip
chart
recorder
est
8
T
Figure C-7. Schematic of unburned hydrocarbon and gas chromatograph
sampling system.
C-19
-------
stainless steel probe connected the filter unit to the heated sampling line
via a three-way stainless steel solenoid valve. This valve allowed the
introduction of sample gas or calibration gas depending on which mode of
operation was desired. A 12.2m, heat-traced, 0.01m 0.0. Teflon sample line
manufactured by Technical Heaters, Inc. of San Fernando, California, was used
to transport the sample to the vacuum pump. Sample line temperature
controllers were supplied by the manufacturer. A Teflon-coated diaphragm
vacuum pump manufactured by Thomas Industries of Sheboygan, Wisconsin, was
used to pull the sample through the lines. From the gas vacuum pump exit, the
sample was split and routed to the analyzers via short lengths of heated
Teflon line.
Prior to operation and calibration, the completed sampling system was
operated at approximately 297°K above normal sampling and calibration
conditions, and was purged for several hours with zero nitrogen to remove any
traces of residual hydrocarbon contamination in the lines. During this
"bake-out" procedure, stainless steel tube unions, filters, and probes were
heated using a propane torch. Before and after each test, a leak test was
performed on the sampling system, followed by calibration of the THC analyzer
using zero nitrogen (0.5) and a mixture of 535 ppm methane in nitrogen.
During calibration, the three-way valve was positioned to block the sample
probe and filter, allowing the calibration gas to pass into the heat-traced
sample line. Introducing the calibration gases at this location ensured the
sample gases and calibrations gases were treated in the same manner,
nullifying possible undesirable effects due to absorption or wall loss in the
sampling line and system.
The raw data from this test sequence are contained in section C-3 of
this appendix.
C-20
-------
C.2.4 Specific Low-Molecular-Weight Hydrocarbon Determination of Flue Gas
Periodical ly, benzene, toluene, and ethylbenzene concentrations were
determined in the boiler flue gas. Small portions of the sampled gas routed
to the total hydrocarbon monitoring system were diverted and injected into a
Varian Model 3700 gas chromatograph (GC)fitted with an FIO. Figure C-7
depicts the sampling system. Using a sample valve fitted with a 2-cm3
injection loop, the sample was injected into a 6-ft x 1/8-in O.D. stainless
steel column packed with 1 percent SP100 on Carbopack (80/100) mesh.
Calibration standards for the compounds of interest were prepared
onsite using a 50L Teflon bag and the methods outlined in "Evaluation of
Emission Test Methods for Halogenated Hydrocarbons," (Vol. I>
EPA-600/4-79-025, March 1979). Table C-5 presents the results of the analysis
and a chronology of sampling/injection time during the field testing period.
Resultant chromatographs indicate that the components of interest were
not detected at concentrations less than 0.1 ppm in the sampled gas. These
data are in close agreement with previously presented data for the total
hydrocarbon analysis. The raw data from these tests are contained in
section C-4 of this appendix.
C.2.5 Composite Sampling
Composite samples of the multicone hopper ash, boiler bottom ash,
woodwaste fuel, and sludge/wastewater were collected during the field sampling
period. Sampling at these locations was performed at approximate 1-hr
Intervals during each test run. Samples were obtained by collecting and
transferring equal bulk aliquots of the material into precleaned sample
storage containers. Figure C-8 shows of each sampling location.
C-21
-------
TABLE C-5. SUMMARY OF SPECIFIC LOW-MOLECULAR-WEIGHT HYDROCARBON
DETERMINATIONS OF FLUE GAS
Date
Time
Procedure
Results*
7-21-80
1623
Inject
calibration standards
—
7-22-80
1044
Inject
flue gas sample
<0.1 ppm
1055
Inject
flue gas sample
<0.1 ppm
1110
Inject
zero gas
1548
Inject
flue gas sample
7-23-80
0944
Inject
flue gas sample
<0.01 ppm
1100
Inject
flue gas sample
<0.01 ppm
1304
Inject
flue gas sample
<0.01 ppm
1319
Inject
flue gas sample
<0.01 ppm
1336
Inject
calibration standards
1342
Inject
flue gas sample
<0.01 ppm
1349
Inject
flue gas sample
<0.01 ppm
1426
Inject
flue gas sample
<0.01 ppm
1507
Inject
flue gas sample
<0.01 ppm
7-24-80
1040
Inject
calibration standard
. T-
1113
Inject
calibration standard
1130
Inject
calibration standard
1240
Inject
flue gas sample
<0.1 ppm
1215
Inject
zero gas
1400
Inject
calibration standard
1415
Inject
calibration standard
„
1430
Inject
calibration standard
1449
Inject
flue gas sample
<0.01 ppm
7-25-80
0828
Inject
calibration standard
0845
Inject
calibration standard
0913
Inject
flue gas sample
<0.01 ppm
0940
Inject
zero gas
1000
Inject
flue gas sample
<0.01 ppm
1015
Inject
C]-Cg calibration standard
——
1125
Inject
Ci-Cg calibration standard
1201
Inject
flue gas sample
<0.01 ppm
1206
Inject
flue gas sample
<0.01 ppm
~Concentration of sought components
C-22
-------
Fuel oil tanks
Sludge tank
Bunkeir incline conveyor
Wet
fuel
ic
' Meteri no
Wastewater
tanks
Feedwater
pump
' "s Metering
Furnace conveV°r
convevor
Dropout
box
Fuel sample
Cel
(below)
Boiler
furnace
(below)
Forced air
ducting
Boiler bottom
ash sample
charger
Deaerator
feed water pumpI
.Multicone
mechanical
-j collector
Deaerator tank
Heat
Exchanger
Outlet
itaci'
Method 5
test
I.D. fans
Baghouse
hopper ash sample
Baghouse
no. 2
Baghouse
no. 1
Multiclone ash
sample
Pit conveyor
Figure C-8. Composite and grab sampling locations.
C-23
-------
C.2.6 Grab Sampling
Grab samples of the baghouse hopper ash, bulk penta in heavy aromatic
testing oil, and bulk creosote were collected during the field sampling.
Baghouse No. 2 hopper ash samples were collected at the end of each test run
when the hoppers were emptied. Grab samples of the penta and creosote
treating formulations were supplied by plant personnel.
C.3 ANALYTICAL METHODS AND RESULTS
Samples from the boiler test site were received on July 29, 1980. The
samples were assigned consective laboratory identification numbers and stored
at 4°C until analyzed.
C.3.1 Analytical Methods
Analyses were conducted for volatile organics, semi volatile organics
and metals. Volatile organics analyses were based on variations to EPA
Method 624. Semivolatile organics (phenols and polynuclear aromatics)
analyses were based on sample preparation variations to EPA Method 625 in
conjunction with fused silica capillary column GC/MS. Metals analyses were
conducted using standard atomic absorption techniques.
Analysis of Volatile Organics
The analytes of interest were benzene, toluene, and ethylbenzene. Only
the sludge samples were analyzed for these components.
A l.Og aliquot of the mixed sludge was weighed into a 15-ml crimp top
vial. Pentane (9 ml) and l-bromo-2-chloropropane (10 vg) were added as
internal standards. A 1-yl aliquot of this deluted sample was injected in a
0.2-percent Carbowax 1500 on a Carbopack C packed gas GC in a Finnegan 1020
GC/MS instrument. Analysis and quantitation were conducted per EPA Method 624
using the internal standard method.
C-24
-------
Quality control for the volatiles analysis entailed the analyses of a
method blank and a method standard spiked at 10 yg/g of sludge.
Analysis of Semivolatile Organics
Semi volatile organics analyzed are listed in table C-6. These analyses
were conducted by variations to EPA Method 625 in the sample preparation and
the use of fused silicon capillary column GC/MS to determine these compounds.
Sample Preparation
The sludge samples were prepared as follows:
1. Place 10.Og of the sludge in a clean 250-ml brown bottle. Add
10.Og of anhydrous sodium sulfate and 100 ml of pesticide grade
dichloromethane. Shake occassionally and allow to sit
overnight at room temperature.
2. Take 1.0 ml of each extract for GC/FID screening. Store the
remaining extract at 4°C.
3. As required by the GC/FID screening, filter the extract into a
Kuderna-Danish concentrator and concentrate to 1.0 ml.
The GC/FID screening stage was necessary due to the wide variability of
sample concentrations. Figure C-9 summarizes the semivolatile extraction
scheme for sludge samples.
The XAD-2 cartridge was carefully opened, any silicone stopcock grease
removed with a CH2cl2 wetted towel, and the contents transferred to a
preextracted Soxhlet thimble. The XAD-2 material in the Soxhlet was spiked
with surrogate mix and extracted overnight with CH2C12. The extract was
concentrated to 1 to 100 ml based on the amount of extractable material
present.
C-25
-------
TABLE C-6. SEMI VOLATILE ORGANICS ANALYZED IN WOOD PRESERVING SAMPLES
Compound Number
Compound Name
1
Phenol
2
2-Nitrophenol
3
2,4 Dichlorophehol
4
2,4,6 Trichlorophenol
5
4-Nitrophenol
6
4,6-Di n i tro-o-cresol
7
Pent a
8
Acenaphthene
9
Fluoranthene
10
Napthalene
11
Benz(a)anthracene
12
Chrysene
13
Acenaphthylene
14
Phenanthrene
15
Fluorene
16
Pyrene
17
Anthracene
C-26
-------
Figure C-9. Proposed analysis scheme for phenols/PAH's in wood
preserving sludges.
C-27
-------
Quality control for XAD-2 samples consisted of the analysis of
surrogate spikes, field blanks and spiked method blanks.
Ash Samples—
20.Og of the flyash were placed in a clean Soxhlet thimble then sp'k d
with surrogates at concentrations of 100 yg. Each sample was extracted with
CH2C12 overnight and concentrated to 1.0 ml. Quality control for ash
samples consisted of the use of surrogate spikes and the analysis of a method
blank and a spiked sample.
Extract Analysis—
Each of the extracts obtained as described in the previous sections
were analyzed for the compounds listed in table C-6 using fused silica
capillary column GC/MS. The instrumental operating conditions are listed in
table C-7.
The quality control requirements listed in EPA Method 625 were
followed, including analytical calibration, mass spectrometer tuning to meet
decafluorotuphenylphospline (DFTPP) criteria, and the use of the internal
standard quantitation method.
Analysis of Metal Species—
Metals were analyzed by standard methods. Sludge samples were
vigorously acid-digested prior to analysis for metals using atomic absoprtion
techniques.
C.3.2 Results and Discussion
The quantitative results for the incineration test are given in
tables C-8 to C-10. To summarize, the incineration process gives rise to very
low or undetectable levels of airborne volatile pollutants. The bottom ash
from this process does contain significant concentrations of uncombusted
material. Day 1 samples were not analyzed.
C-28
-------
TABLE C-7. FUSED SILICA CAPILLARY COLUMN PARAMETERS
Column:
30m x 0.25m SE-54 WCOT (J J
Sp1 it less Injection Parameters:
Injection mode:
Sweep initiation:
Sweep flow:
Column flow (He)
measured at
atmospheric:
Interface:
Temperature:
Column directly coupled to
Temperature Program:
Initial:
Program:
Hold:
Mass Spectral Parameters:
Ionization mode/energy:
Totoal scan time:
Mass range:
W Scientific)
Splitless
30 sec
>12 ml/min
1.0 ml/min
300°C
source (no transfer lines)
30°C for 2 min
Ramp to 300°C o 10°C/min
300°C, 15 min
Electron impact/70 eV
1.0 sec
35 to 475 AMU
C—29
-------
TABLE C-8. ANALYTICAL RESULTS FOR TEST DAY 2
Compound
Bottom
ash*
Baghouse
ash*
Mechanical
hopper ash*
Sludge*
CAI**
2-Nitrophenol
<0.5
<1.0
<0.5
<10
36
Penta
<0.5
<1.0
<0.5
740
<10
Phenol
<0.1
<0.5
<0.1
1200
2
Fluoranthene
92
0.7
0.5
2200
<1
Naphthalene
10
10
10
1300
280
Benzo(a)anthracene
7.6
<0.5
<0.1
160
<1
Benzo(a)pyrene
1.4
<0.5
<0.1
<20
<5
Benzof1uor anthene***
9.3
<0.5
<0.1
52
<5
Chrysene
1.2
<0.5
<0.1
180
<1
Achenaphthylene
4.4
<0.5
<0.1
130
<1
Anthracene
4.5
<0.5
<0.1
760
<1
Benzo(ghi)perylene
<0.5
<1.0
<0.5
<20
<5
Fluorene
0.6
<0.5
<0.1
1200
<1
Phenanthrene
24
6.9
0.6
1800
<1
D i benzo (a, h) an thr acene
<0.5
<1.0
<0.5
<20
<5
Indeno(l,2,3-cd)pyrene
<0.5
<1.0
<0.5
<20
<5
Pyrene
29
<0.5
<0.1
1200
<1
Benzene
NA****
NA
NA
1.9
Toluene
NA
NA
NA
12
Ethylbenzene
NA
NA
NA
17
* Concentration in units of ug per gram
** Total yg collected
*** Mixed isomers
**** Not analyzed
C-30
-------
TABLE C-9. ANALYTICAL RESULTS FOR TEST DAY 3
Compound
Bottom
ash*
Baghouse
ash*
Mechanical
hopper ash*
Sludge*
CAI**
2-Nitrophenol
<0.5
<1.0
<0.5
<10
74
Penta
<0.5
<1.0
<0.5
260
120
Phenol
<0.8
<0.2
<0.1
1000
<2
Fluoranthene
15
0.2
0.6
340
3
Naphthalene
18
3.9
6.5
1000
1100
Benzo(a)anthr acene
0.6
<0.2
<0.1
120
<1
Benzo(a)pyrene
0.1
<0.2
<0.1
<30
<5
Benzofluoranthene***
0.9
<0.2
<0.1
64
<5
Chrysene
0.7
<0.2
<0.1
120
<1
Achenaphthylene
3.0
<0.2
<0.1
68
<1
Anthracene
1.0
<0.2
<0.1
250
<1
Benzo(ghi)perylene
<0.5
<1.0
<0.5
<20
<5
Fluorene
0.8
<0.2
<0.1
420
<1
Phenanthrene
31
3.0
0.5
590
<1
Di benzo(a,h)anthracene
<0.5
<1.0
<0.5
<20
<5
Indeno(1,2,3-cd)pyrene
<0.5
<1.0
<0.5
<20
<5
Pyrene
7.9
<0.2
<0.1
310
<1
Benzene
NA****
NA
NA
<1.0
NA
Toluene
NA
NA
NA
3.7
NA
Ethylbenzene
NA
NA
NA
5.7
NA
* Concentration in units of pg per gram
** Total vg collected
*** Mixed isomers
**** Not analyzed
C-31
-------
TABLE C-10. ANALYTICAL RESULTS FOR TEST DAY 4
Bottom Baghouse Mechanical
Compound ash* ash* hopper ash* Sludge* CAI**
2-Nitrophenol
<0.5
<1.0
<0.5
<10
<10
Penta
<0.5
<1.0
<7.4
80
<10
Phenol
<0.6
<0.3
<0.1
1400
2
Fluoranthene
1.4
6.2
1.7
170
<1
Naphthalene
9.6
5.1
2.2
560
140
Benzo(a)anthracene
<0.1
<0.5
<0.1
27
<1
Benzo(a)pyrene
<0.1
<0.5
<0.1
<10
<5
Benzofluoranthene***
<0.1
<0.5
<0.1
14
<5
Chrysene
<0.1
<0.5
0.3
28
<1
Achenaphthylene
<0.1
<0.5
<0.1
24
<1
Anthracene
0.2
<0.5
0.2
92
<1
Benzo(ghi)perylene
<0.5
<2.5
<0.5
<20
<5
Fluorene
<0.1
<0.5
<0.1
180
<1
Phenanthrene
3.0
7.3
0.4
330
<1
Dibenzo(a,h)anthracene
<0.5
<2.5
<0.5
<20
<5
I n deno (1,2,3-cd) py r ene
<0.5
<2.5
<0.5
<20
<5
Pyrene
0.4
<0.5
<0.4
140
<1
Benzene
NA****
NA
NA
<1.0
NA
Toluene
NA
NA
NA
9.0
NA
Ethylbenzene
NA
NA
NA
10
NA
* Concentration in units of ug per gram
** Total ug collected
*** Mixed isomers
**** Not analyzed
C—32
-------
Volatile Organics—
Low levels of volatile aromatic hydrocarbons are present in creosote
(figure C-10). These levels are greatly reduced in the waste sludge. The
total hydrocarbon content of the stack gas was <0.01 ppm.
The detected levels of aromatic hydrocarbons in the sludge samples were
close to the detection limit. The reported levels have been corrected for
method blank contribution. The accuracy of the method at these low nanogram
levels is poor. Since the injection of organic extracts on the volatiles GC
column led to the accumulation of higher-molecular-weight aromatics. It was
necessary to bake out the column at 200°C after every few analyses.
Semivolatile Organics
The application of fused silica capillary column GC/MS to this project
allowed for greatly improved compound identification over that obtainable with
packed column methods. Polynuclear aromatic isomers such as phenanthrene/
anthracene and benz(a)anthracene/chrypene can be resolved by this method. But
the Finnegan 4000 capillary injection system is subject to a high degree of
front-to-back discrimination. In the split/splitless mode of injection, the
sample first is volatilized in the injection port then recondensed at the head
of the column. This process results in a substantial variation from injection
to injection in the fraction of a given component in the sample placed on the
column. An extra degree of random error is introduced into the determination
of early eluting compounds (phenol and maphthalene) by decreasing the
precision of the analysis. To correct for this effect, the early eluting
compound quantitations were corrected using the recovery of the surrogate
spike, dg-naphthalene.
Figure C—11 is a chromatogram from the analysis of semivolatile
organics in a sludge sample. The major identified peaks are labelled. There
C—33
-------
100.0-1
RIC
09/1040 20:59:06
SAMPLE: U0274 UOA 1UL INJ
gMGEi C I, 550 LABEL: N
DATA: U0274S «1
CALI: US0006 «1
0, 4.0 QUAH: A 0, 1.0 BASE: U 20, 3
SCANS 1 TO 550
0
1
GO
-P*
Peak 194 -
Peak B
Peak C
Peak 260 -
Peaks E -
- Benzene
- Toluene
- Ethylbenzone
- Internal standard
- Solvent Impurities
460992.
-------
nrr DATA* WP8818 ft
89/16/88 12ll3l88 CALIs C991580A *3
SMPUEs HP8018,07-827-27 S. 8.M--18NG 018
RMQEi G 1.2888 LMELt H 8. 4.8 (WANs A 0. 1.8 BASEs U 28, 3
SCANS 188 TO 2888
Peaks numbered as per
table X.
8:28
16:40
1508
25:08
2080 SCAN
33:20 TIME
Figure C-ll. Total ion current chromatogram of waste sludge extract.
-------
are clearly a large number of organics present in addition to those of
interest to this program. Figure C-12 is a chromatogram from a bottom ash
extract. Only the polynuclear aromatics were detected in ash samples; no
phenols were detectable.
Table C—11 compares the content of the raw creosote, the working penta
solution, the sludge wastewater, and the fuel (sludge and wood chips) for
representative compounds. From this data, it is apparent that the
incineration fuel is similar in relative proportion to the starting
preservative solutions. The major changes through the process are dilution,
first with water and then with wood chips.
As shown in the data tables, the ash samples contained ppm quantities
of polynuclear aromatics. Whether these arise from unburned fuel or by
partial combustion is not known. The absence of phenols in the bottom ash is
evidence in favor of the latter hypothesis. Only naphthalene and low levels
of phenols were detected in the XAD-2 cartridge samples; naphthalene was
consistently detected. Penta and 2-nitrophenol were detected at low but
significant levels only in the samples from days 2 and 3. There is no simple
explanation of the nitrophenol: this compound was never detected in a sludge
or ash sample. Figures C-13 and C—14 are chromatograms of the day 3 XAD-2
cartridge extract and an XAD-2 blank cartridge, respectively.
Metals
The results of the metals analyses are shown in table C-12. This
information will be used to evaluate ash partitioning effects and flowrates of
the ash streams.
C-36
-------
0
1
CO
180.0-1
RIC
RIC DATA: MP2711 »1
89/22/90 14i18:08 CALIs C091980A «3
SAMPLE: MP2711,07-027-llS,BN+A,R£RUN,0.5UL=10NG 010
RANGE: G 1.2000 LABEL: M 0. 4.0 OJANj A 0, 1.0 BASE; U 20, 3
ft"
SCANS 100 TO 2000
1353
war-
453632.
1656 l8.16 1914
1500
25:00
2000 SCAN
33:20 TIME
Figure C-12. Total ion current chromatogram of bottom ash extract.
-------
TABLE C-ll. SELECTED COMPONENTS IN WOOD PRESERVATIVE
SOLUTIONS AND INCINERATION FUEL
Concentration ng/q
Compound
Creosote Penta Sludge Fuel
Phenol
8000
4,000
1,200
12
Naphthalene
24,000
660
900
18
Penta
1,700
16,000
260
15
Phenanthrene
37,000
1,200
850
18
Toluene
1,400
NA
8
NA
C-38
-------
RIC DATA: HP2741 *1 SCANS 186 TO 2000
09/22/90 19:22:08 CALI: C831980A 13
SAMPLE: 07-827-41 BH+A 0.5UL=18NG Die
8:20 16:46 25:00 33:20 TIME
Figure C-13. Total ion current chromatogram of an XAD-2 extract.
-------
RIC DATA: HP22R »1 SCANS 100 TO 2860
09/18/90 16:04:00 CALI: C091580A *3
SAMPLE! MP0022 RERUN.9.5UL*10HG 018,08,027-038,XAO BLANK BN+*,FU=2.0ML
Figure C-14. Total Ion Current Chromatrograro From an XAD2 Blank Cartridge.
-------
TABLE C-12 METALS ANALYSIS
m.
As
Be
Cd
Zn
Cr
Cu
Pb
Mi
M
Sb
Hg
Se
T1
Bottom ash day 2
0.35
1.0
0.02
2.0
1.0
29.0
1.0
0.6
0.06
5.0
1.0
5.0
0.1
Bottom ash d s«y 3
40.5
0.7
0.02
5.0
0.6
57.0
1.0
0.5
0.06
5.0
2.0
10.0
0.1
Bottom ash day 4
73.0
1.0
0.02
8.0
1.1
29.0
1.0
0.4
0.06
5.0
0.9
10.0
0.1
Baghouse ash d«\y 2
0.53
0.4
0.3
750.0
2.9
230.0
1500.0
0.4
0.1
25.0
5.0
5.0
0.1
Baghouse ash day 3
11.4
0.4
0.4
750.0
4.4
305.0
1500.0
0.4
0.1
38.0
12.0
10.0
0.1
Baghouse ash d^y 4
49.0
0.2
0.3
500.0
3.4
225.0
1200.0
0.2
0.1
28.0
11.0
10.0
0.1
Ned. hopper ash day 2
0.02
2.0
0.1
90.0
1.9
85.0
100.0
0.3
0.06
5.0
3.0
10.0
0.1
Med. hopper ash day 3
6.5
0.9
0.02
40.0
2.0
120.0
10.0
0.3
0.06
5.0
4.0
5.0
0.1
Med. hopper ash day 4
0.88
0.9
0.02
30.0
1.8
70.0
10.0
0.2
0.06
5.0
2.0
5.0
0.1
Sludge day 2
6.8
0.001
0.02
10.0
2.7
36.0
1.0
0.2
0.06
0.05
0.01
0.05
0.001
Sludge day 3
3.5
0.0009
0.02
7.0
2.6
48.0
1.0
0.2
0.06
0.25
0.01
0.05
0.001
Sludge day 4
8.1
0.0009
0.02
3.0
2.0
19.0
1.0
0.2
0.06
0.16
0.02
0.10
0.001
-------
SECTION C-2
RAW DATA: PRELIMINARY AND ISOKINETIC SOURCE EMISSION SAMPLING
C-43
-------
ACUREX CORPORATION
Acurex Project Ho.
Field Dates -p-Sil
Run AJ« /
30Ibbl.
- Sro
Sampling Location^
Stac-k tot 7.
Sampling Date
-to
Crew Chief:
FIELD CREW
Testing Engineer:
1
M . K, On I fee
2
3
Engr. Technician:
1
B. C .
2
3
Lab Technician:
1
2
3
Process Engineer:
\
?
Other:
1
2
C-44
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
DATE . n - -a.) - 80
SAMPLING LOCATION „ g
INSIDE OF FAR WALL TO
OUTSIDE OF NIPPLE, (DISTANCE A) -33
INSIDE OF NEAR WALL TO
OUTSIDE OF NIPPLE,(DISTANCE B) 3
STACK 14)., (DISTANCE A • DISTANCE B) Jn in.
NEAREST UPSTREAM DISTURBANCE .
NEAREST DOWNSTREAM JKSTURBANCE
CALCULATOR SCHEMATIC OF SAMPLMG LOCATION
TRAVERSE
POINT
NUMBER
FRACTION
OF STACK I.D.
STACK 1.0.
PRODUCT OF
COUMBtANDS
(TO NEAREST I* INCH)
DISTANCE B
TRAVERSE POINT LOCATION
FROM OUTSIDE OF NIPPLE
(SUM OF COLUMNS* 15)
1
¦ 03 Co
3© M#
Z
.oiz
c
2 >u
J.
V-.20
M. W
*
r
ID
-------
PRELIMINARY VELOCITY TRAVERSE
imte -)-21-9G
LOCATION S ru.fL ul S
STACK IP SO'
BAROMETRIC PRESSURE, In. Hf 3P 3C
STACK GAUGE PRESSURE, in. ty •*. 3U
OPERATORS , STgPnf
SCHEMATIC OF TRAVERSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
VELOCITY
HEAD
toPjJ.ln.tyO
STACK
TEMPERATURE
<•
- »
AVERAGE
«36T*.
TRAVERSE
POINT
DUMBER
VELOCITY
HEAD
fept), to.H^O
STACK
TEMPERATURE
(ty, *r
AVERAGE
EPA (Oil) 233
4/72
C-46
-------
DRY MOLECULAR WEIGHT DETERMINATION
COMERTS:
mat 7-32
mnmvm&aMm^iiroo ^ ^ m ^
1—ftpg—6g»g
— r^g'.Tf g>»ge.ir
¦mi III 1*°* -PRT m*F **T.T
mmnm—^bbSaS
S. RUN
1
2
l
mmcE
¦MKKM^KRTOF
GAS
ACTUM.
«CT
nam.
KKM
KT
ACTtML
REABMG
1ST
BET
VOLMK
¦otTrtwr
STACK CM (DRV MSB)
co*
v>
*.*-
y>
V>
Y>
**/m
/.? su
QjgffETBACIIMLO}
KMM6MMI«CnML
€0^MEMMQ
n.z
tH.%
1*7.2.
/*.sr
l\Z
/V.v
/*.#
»/M
y.*7 5fc
COpcr bkhmlco
KAMK MB ACTUM.
9fKMmet
rt.Z
O
n.z
o
>XZ
c>
o
a/m
0
mffCTBMMM
laCTMbCORCMMQ
tro.
90.V
tern.
t n>
to>.%
»/w
TOTAL
era am m
4.7?
-------
ISOKINECTIC SAMPLING WORKSHEET
Reformed by
Date "7'22'iO
Sample Location Aj-7.
Test Wo./Type / /ifccz
K ¦ 782.687 (Cp)2 (1-B»0)2 Pt Hj
, . _ K 2 M Pm
<-)* (£L3J (J®1)
C-48
-------
ISOKINECTIC NOZZLE CALCULATION
AND
SAMPLIN6 RATE CALCULATION
Performed by
Date
Sample Location Cpx.* AJa?
Test No./Type ./
Nd -/ AH TS V25
V°^/
where: N4
C-49
-------
not MM
( of 3
0
1
s
nt« -i.22.-ac
>¦>11 LiutlM Oa2
s—»• MA ft-Z , tf£
Qw*w.Ifr»g«t t ^ttPwCmS
MM«nt -yr>»r
IwOrk Nmw i£»£l
Iwlnwr Www
IrttUI FImI
iSQaJL
/g°>A t2£.
/3£l —^oA
Probe Lenfth art Tin g"f t>vP6V
NmmI l.o. (Wo.1 .g»fg»
Asuacd Hoittare /d°7o
H»lac«1«r M«1*t. Dry, (H^l 3^2^
Static Praasw*.
WW* • ?.o?1
4"-MV4(n) toP)
Traavw
MW^
\. ClMkTto
\ (IWr)
Vcw
Sa^llaa >v
Tlaa, m \
ta Hctar
ImM) ,
(V.« J
Velocity
Hm<
(&V>
1*. lljO
OrIf1c* Ptmmtc
•IfFarcatlal
•*«). la. HjO
iWaratara °F
VacwM
In. Hf
SUck
Ml
hflqv
Orunlc
Mala
0*M
bas Meter
i«it. 330.-JT o
Batlratf
Actual
I*
»o
3*5t.ST«°
.5V
/.*(•
! /.2W
2£W
1
4?
csa
*o
3*2.*5^
I.2W
*•*>
25*f
-)0
»Sr
EES
SO
Tt-i.no
l.Zfc
SO
2STS
TO
»r
6.s-
•»o
I.-2U
3IS
851
fe>
in
B3
*
Jto
jwi.acs-
i.Zu
5'2
ZST*
E9
U
¦3*1.+*?
I. ?C,
?»2
*S~1
76
-------
»«ge 3 of 3
TlPMffl
\ Clack TIm
\ (IWr)
\ Clack
SavHaa \
!<¦, m \
ta Meter
Rc«H«9 _
(V. ft 3
Velocity
Head
Orifice Pi
•Ifferef
(AN), la.
«»w
Teaperatare °F
faciMi
In. N|
«*g.
*r
itlal
HjO
Stack
Prabe
Organic
IM*l«
0*m
Cat NeUr
JJM
talk.
(/*»),
to. M
•etlrat
Actail
la
Oat
ftro
752-/Vo
I-1S~
JrV-
XbO
*71
*$:
#r
*r
I/O
"3«*Sr.V
f.Sf*
*£l
fe
K
i
»*#
VoV .v&o
I.2&
"5to
11
t?
>7
/S®
vo.wr
I-**
25V-
n
«7
ft
1.2u
**»
V*
to
87
•1
to>
i.2»-
•>'7
a«ir
TO
91
*7
IfcO
ffh.no
/. X*
?'*
4*1
1«>
J*
Mr
no
*tZsr.teo
I.7H-
7to
TO
*
9tf
!
*¥f. J-i»
4.V+
3*
tSl
Jr1
IV>
¥V>.f5«
I.-Z+
*n
7r
*1
«n
•25"
Jjr
art
9o
mo
VS"7. no
tir
2??
->i
fo
7%o
>frfc.ors-
f.*S~
J«>
«n
71
to
Zto
~^11 .*T
I.zf
J.r
11
5/
two
mir.VSV"
t.ZjT
sn
71
tf
/. ir
VI
*>o
"•/
»
2fr0
Vro.fi*
'•25.'
3X0
z&
7V"
fb
t.S"
tm No. (_
7-12-to
Stapling Location » Aj/i?
-------
'vl.t'S.
TrmiM
V Clack Ttw
N. I**-**
n. Clack
SmtHm \
TIM. M \
6a» Meter
ReaMaf .
(*•>.«*
VeiacUy
Mead
Orifice fr
Olffcrw
(Alt), la.
Htare
Toveratare °F
tap
VtCWM
la, Hg
«r
tl*1
HjO
Stack
Probe
laplxfer
iNMtt
Nodal*
E« Meter
Mai
Utt.
la. fljo
Desired
Actatl
9m
la
o«t
MO
VlW.^V
hi?
J2®
?UV
»0
>1
(..IS
f.2t
?vr
V
t
<~->r
1.V*
¦J3")
fclS'
1*o
n c.str
f.2>
T?<.
¦>v
ft
?fr
^7«r
?»o
zzi-Tisr
t zr
pzr
77
*7
»7
fc»r
?*.
sn.no
IZf
ws
?2
?5T
F?
SJo
sr-j+.**r
r.2t
5*2
2 S*
71
*7
?7
7.0
Jya
rv° • **jr
/•2t
***
2a
70
??
77
7.0
?&
f-Zt-
**»
7o
f7
??
7.0
*eo\^ Jm)
SYl.l+Z
i'2U
"251
-70
77
V
7.D
22-z .n
».2C
3«M
25**C
?'-7
tl
3 *<
Pate >22~ZO SwoUmi loc.Ha. g/WoiK A>o 7.
CMMtrtt:
-------
ISOKINETIC PERFORMANCE WORKSHEET
Performed by \xA^ar
Oate ;
Sample Location Aj»2
test No./Type / J ^
*1 ¦ 17*» (T» * w"v» std ~ std>
i 7S i; ^F~
where: XI * Percent Isokinetic
Temperature stack gas, average (OF)
Ts
JtV.'i
Meter volume (std), 17^ + Ufl6^
/teaM/fcao) ~ (-ff£ \
"•"VSJ/Wj* ™ )
y
m std
Volume of liquid collected (gram)
*'c
Volume of liquid at standard condition (scf)
VIc x 0.04707
*w std
m.r?
Total sample time (minutes)
e
2UO
Stack gas proportion of water vapor
»..« . <22>
V. std * y. ,u ~ (4&»?
8WO
Molecular weight, stack gas dry
(lb/lb-mole)
"d
C-53
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, stack gas wet
(lb/lb-mole)
' Hdfl-B^) ~ 18(8^), e2£)(l-.£21) * 18(^t)
Ms
Absolute stack pressure (In. Hg)
-------
7-SZ-to Ta-JT I
SAMPLE HANDLING LOG ^ _
Task No. Recorded by ^ , CL mH
Run
No.
Sample
No.
Activity
Date
Time
Personnel
Remarks
/
5 UAy./W«S«.W
" I
r
Cr+~*P
COcSU.
HSO
1
0+p*ry oudi rJt.
t
#•
tfrv.
ftcu^fLx.
f
Wr
Itto
/
r.
ffVo
i
6»*nP
/CMS"
f
•»
IfcjfLJ*
mo
>
I
«.
5/"*^ U?J» ¦>
II
fz?* -4 ct>,'rs
»
h
? lu /»f / v-ty *~4+Pf
II
f?Vo
tfiC/t c/t f**a >«•/»~•)
1
if
H /rUuVt/ r»//*c^»«"
f»
tt?0
r
W
M#J| Pw# /
If
5 L**/+sT •+cL^I
i
»/
y^rbr*-
;/
IftO
! Of / Cf <—*&* )
/
PWLlA*u«J? f
t
¦>
/S7o
/
lov°)o euK
t
(i
1ST,—
/
(Urpt
t
H
sHu&*k Juj*Jt gjo&l
/*« sr
\
t
A
Fw*JR.
tb"T
i
#
tu lO
/
Jbeiy
Rm+~>GuJL* -zst>*-& p-O'v-
IUI»
J
ywwwiyiii
-------
ACUREX CORPORATION
Run fi)0 2.
Acurex Project No.
-i en trt-2
Field Dates 1-2i
60
Samollna Location /0«*2
Samollno Date '•J-.J'Z-C'ft
FIELD CREW
Crew Chief:
R .c_. s
Testing Engineer:
Engr. Technician:
Lab Technician:
Process Engineer:
Other:
1
2
3
1
R. . L . CntPhrtL*sC
2
3
1
2
3
1
2
1
2
C-56
-------
DRY MOLECULAR WEIGHT DETERMINATION
CMCRIS:
mm
lltWifllhBIM /Q9C
IWUHTHI SOO 9
SMPIE TYPE (ME, MTEOMTER, CONTMNWS CMI)
— .lil ¦ l— OPt^T .--.tu. r-yg .TC C.rffLti
MMimnAMK
ffHolF
¦WW
N. RUN
1
i
1
AVEMCE
MUCULMVEIMTOF
CAS
ACTUM.
REMMNG
jcr
ACTUM.
REAM*
NET
ACTML
AEADMC
NET
MET
vm.uk
MLmiEff
STACK CAS (ORV MM
q,. ft/ft**
CO;
V>
v>
y.v
v.*
+M
««/M
if 51
Offers actmlo*
mmmmmnam.
C%«CMMG)
ifr.Sr
!*>
n.v
I*.*
~Sr.v-
/V.2.
lt.%
*/w
yr?c>
COocr is actum, co
wmmmmncnm.
9i*uamsi
-
—
-
o
a/M
o
PtMTBMHMB
| ACTMLOONCMMQ
Sri. 1
£/.C
9I-2Z
am
32.7 7
TOTAL
iriOMzm
417
-------
FIELD DATA
Ptga J of 3
¦ate "I - * -•»*>
K"
«¦*!• Ucet1*_Jd2tfJ6^rIL3L.
Sw»1« T— XHfV - A, H.
tai linker X
B>lrit«r
MMMkTfl
*?»\ . njUtS
' *71^
0
1
in
CD
hww 3Q ^ /"> •»"»
Static PrMMr*. (H-01 ~4*- Xl
Filter Unlitsl
iMk Chick;
JaltUI at A*
riMl at <*»
_• it* v>* cm
J *1. CFM
htlwtf Www
final
Initial
M
/•i-i
rn f
¦ts'S ...
H J k_.
Silica Gal
?-o n*> <\
Probe lenfth .and Type .!_¦>
Motzal I.D. (*».)_
ksswad Nolstara
C/.\sr
1\IT
Molecular Height, Dry, (B^)
Meter Soi lk*>er 0*4-
TTTT
W
Hater Coefficient
¦ Factor /("I'i
K ¦*
MMi* ¦ »t
to')
Tianana
Slwfear
\ Clack Ttae
N^Clack
5^«»l \
TIm, arta \
ta* Hrtar
Readlaj
<«¦>. ft 3
Velocity
Head
la. HjO
Orlflca fr
Dlffere*
M>. la.
•stare
Ta*aratart«F
lata*
la. Hf
itlat
"20
Stack
Ma
lapinfer
Or^wlc
Nodule
fiat Nctar
!»«• rj", iS >
Desired
Actual
Oven
la
Oat
lo
.s-r; S'-n
t.K
3Ao
XO
1?
74
74
4 o
XI
'J 6 -x 4 i"; 1»J >
i in
'Hi /
-J 7")
76
76
n
1 . 4£.^| |
1 Jl)
Wl
T< |
">c
-------
P»ge 2.
V ClKk T*h
\ flu*
S«»1lM \
Tlac, mm \
6as Meter
fteailnf .
<«b>. « 3
Velocity
Head
Orifice Pr
Differ**
(AH), In.
ess«re
Twperatare OF
r«p
Tacuwi
In. Hg
A«g.
Tr»
H
mrm
itlal
Hjfl
Stack
Profce
Iopliiger
Orgatlc
Nodule
(as Hater
l<*
tuft.
<*V»
4a. $0
Desired
Actual
Oven
In
Art
*3
I**
C-13 V- j
/-T">
*'*0
a**
¦n
77
H
4 »'.-
t
HI
<• !*• .j J1'
I.OO
.ij'
an
V*
V~
*"7
4 .OS
rf.v
i-aw 54 o
OI3
ii"«
"n
v<>
4 S
nr>
6-51 if s
1 A"i
¦/*»
A .s
I4*>
6 3 »• A
/.l-\
bv'1
-) »3
7«
n
4 .<»"
in
// A "3 c-c
1
3.i.J
i/5
11
~n
*?
4 s
it*
1-4'1 IV)
1 ^
iJt
11
/a
74
4 s*
no
T>
/T
V,
4 s
nn ii si
6C.» • 4*">>
/ A-K
«<-*!
70
n
74
4 S
;,(fl .mms
h%%
7'3
'/•
4 S
inrt
674 . •»'/
>,W
ij i
16H
»0
V)
4 s*
£< ">. »4*.
fZ-X
U~>
T>
it
'>/
As"
0.11
C»^C>. -Jt'O
IA *
HZ
*4
*)•
4 s
*
'".I
4 S
.34" li.y
£i< 4r;
1 0.3
'.'j-J. t
-W£
Vi
4 *5
J "><¦»
I'M *» IS
'¦01
."£m
16"?
nx
'A
4 .s
•it-'
¦) i ^ -t
/¦4U
541
7TJ
n
* 1
4-S
*¦* *°' ^ Mt I' ~J I Stapling Location S~ptvcm Kl nt.
Cu—uitv.
-------
3 * 1
0
1
at
o
Traverse
\ Clock TIm
\ (IWr)
N. Clock
Sm»1Ioi \
Ttac, BIO \
Cos Meter
tooling
(«¦>. n '
Velocity
Heed
Orifice Pn
Differed
(AH), I*.
Ktrt
Teaperature °f
Vochw
In. Hf
ftvg.
*r
Mil
IjO
Stock
Probe
hunger
Orgwlc
Nodolo
6m Motor
W*r
hit.
(*M.
i». ftjo
Desired
•etui
INom
In
Oot
c.ro
/ } J
JCr")
7 1
"•XI
34
4
.VJO
'-J j. ' '¦¦"¦'
i n
*r>
-a<5-«i
?4
V*
^1
4 5
.mo
\ y>, .ZZO
1 13
V-if-
J66
H
v/.
A '•
"Jon ns*
1
/ /*
ls*
-K*
10
"St
4 r;
"MO
14» 30O
/ ao
•3*i
7 1
St
4 0
3.^
~>4 7 L.OO
/¦ 3'*>
*4 6
•ITS
"7-i
¦st-
A
?3'->
1-3 Vjl4
/J/
V*o
13
4 . ':>
,w>
7''i *1 10
1. iO
Ms
14
3SO
V1 -5'
/ N
*«»-)
•3*4
74
V,r,
'ft
-------
ISOKINETIC PERFORMANCE WORKSHEET
Performed bv
0#te ~>-2'X-*n
Sample Location Aj*. ?
Test Wo./Type P / vAK-?f
tl - 17>33 (T» 4 460)(v" 'td + v» »t<0
i v; ^ Nd2
where: XI ¦ Percent Isokinetic
Temperature stack gas, average (°F)
T#
ZSl.(
Meter volume (std), 17.^ 4
/( A * (^f} \
i7-6HWWj +
Vm std
Volume of liquid collected (grams)
Vlc
J&Sr.Y
Volume of liquid at standard condition (scf)
Vlc x 0.04707
std
rw
Total sample time (minutes)
e
Suo
Stack gas proportion of water vapor
v. ltd . <£2»
>U *.td • ttiiJfc.
.67 2.
Molecular wight, stack gas dry
(lb/lb-mole)
V
C-61
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, stack gas wet
(lb/lb-mole)
. Md(l-Bw0) + lBCB^), * 18(ifi22.)
Ms
Absolute stack pressure (in. Hg)
P t k {1n. H.O) {£±)
pb + uac 15.6 - irnr
Stack mlorlty (fp«)
, /T.avg + 460
«•«» . V-
C-62
-------
SAMPLE HANDLING LOG _ 0
To* No. tmt.fm'? Recorded by JP*X\qs
Sun
No.
Sample
No.
Activity
Date
Time
Parsonnel
Remofki
SL
CcrtM^
(HUUe^A.
t-21-%
E>c3$k.
—
1
»•
OSriO
it
r
OSrfO
ft i*Sl ( /-I larJKs.
j
qlJL. ?ct>^
rt to
j
oHio
~~
I
#**. SL_
«1 sr
t^ArtSl
I
^JckJWii^oiftL^djfcu
Of 3ff-
7? A* / ^ Cr^SH
I
Airt- FmS^ j
/» /5~
1
SfO&A-J tn.fcr
/© I*
Ku^u I yn*
I
/HwAnnmc*^ (UfSmtSS^
fOtO
—
1
^FuaSL
fjvr
/cW^u
j
/«»vr
^ u*3tv / y*- r^R
1
/©S"o
j
*»s FuA
;*r^~
LbiMaiM /'"ll/jlA
1
Mir
fcun&L/ 'A. kX
{
i-1 r~Q
/m£-~
J
F-*\
/?'JT
i
3 tuJZ
-------
Teak No.
SAMPLE HANDUNG LOG
Recorded by CriPS
Run
No.
Sample
No.
Activity
Date
Time
Peisonnel
Remarks
w »l r^-Q
f> r&
,y.
-------
ACUREX CORPORATION
Run A*e> 3
Acurex Project No. 2o~)6>(a?
Field D'tes
Sampling »«v*tion 2.
Sampling Date •7-2V--gC»
FIELD CREW
Crew Chief:
Testing Engineer: 1 /»*. ft. C.h-,P<
2
Engr. Technician: 1 £ L . S-rfP^r/ug
2
Lab Technician: 1_
Process Engineer: 1_
2_
Other: 1_
C-65
-------
ISOKINETIC NOZZLE CALCULATION
AND
SAMPLING RATE CALCULATION
Performed by
Date 7-gf-frp
Sample Location Oth-<-( )/
Nd
ah - ic (Nd)4 i (AP)
s
where: AH » Pressure differential across the orifice meter (1n H2O)
Nozzel diameter, actual (inches)
"d
.3 1 2
Temperature of gas meter (°F)
Tm
10
Temperature of stack gas (°F)
Ts
SZO
Stack gas velocity pressure (in H2O)
AP
(<__> (_)' j&j ifji iia)
AH
j.fr
Na?1c number W2.iT l.Utsf4
MM4
t.w
C-66
-------
ISOKINETIC SAMPLING WORKSHEET
Peformed by
Date n-Zt-kO
Sample Location .S-nA-ci^
Test No./Tvoe 3 / XAftg - p-j
K ¦ 782.687 (Cp)g (1-8^)2 P5 Md
where: K * Content of fixed end assumed parameters (dlmenslonless)
Pltot coefficient (dlmenslonless)
Cp
.»i
Water vapor In the gas stream
(proportion by volume)
Bwo
.or
Absolute stack gas pressure (1n. Hg)
Ps
30.71.
Molecular weight, stack gas dry
Ob/lb-mole)
Hd
n.z
Orifice coefficient (dlmenslonless)
K0
Molecular weight, stack gas wet
(lb/lb-mole) Vl-B^) ~ ^(B^)
"s
*Sr-t1
Abolute meter pressure (1n. Hg)
pm
?D
782.687 (JV_)2 (l-^£)2 (3«.?2i (yj.)
(-JSk)2 (2Lil) (22*1)
K
C-67
-------
DRY MOLECULAR WEIGHT DETERMINATION
co—rwri:
mm -T-lY'g-Q
KWHJKfEgMtCLBOO lf-/Q
vmuminctm aj» Z
SMTU vm «AC, IKTEGMTCB. COaTMRMS CUM £./?* S
Hm.mm.mm gfoAn r.rifZ
a/m
0
K2PETSMMB
ACTUM. CD MENMO
/
-------
Date 1-2V-Z0
ISOKINETIC PERFORMANCE WORKSHEET
Performed byW\?^
Sample ' ?-
Test M" /Ty^P 9 / *-Ats-7 , ^
yT . 17.33 (Ts * 460)(Vw 8td * Vm Std^
- - ~ Mtf2
where: <1 • Percent isokinetic
Temperature stack gas, average (°F)
h
"SH7.0
Meter volume (std), 17 -64^-—^ ^t~V Hlg^
35t>.e*r" *©.*>1
/( )\/&Ml) * (T^) \
17-M W/WdJ^ir-/
y
*» std
Volume of liquid collected (grans)
Vie
Volume of liquid at standard condition (scf)
VIc x 0.04707
V* std
HZYI
Total sample time (minutes)
e
ZteO
Stack gas proportion of water vapor
std « ^^
V. ,t< (_)*(_)
®wo
.eO
Molecular weight, stack gas dry
Ob/lt»Mle)
Md
Fj.HZ
C-69
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, Stack gas wet
(lb/lb-mole)
Md(l-8W) + 18(8^), gMSH 1-.04.7) ~ m^l)
Ms
Absolute stack pressure (in. Hg)
pstack <1n* H2°> . , }
\ * ",ckiu '¦ ¦ laa ~ -ror
%
>.? 2.
Stark (fpt)
r.. IT avg + 460
8S.4S (Cp) (>, nt-
^ JL_ (I Q*z,) * 460 \
85,49 iiaso j
vs
M'j.S-O
Nozzle diameter, actual (Inches)
*d
.:r:r
¦? r-J>, OJf_?
17.33 (."H2.a4 460)(grg() + £ ))
(jfeo) mm co.n) (.use,*
XI
/ ^5. e 07
C-70
-------
nm m*
ftut ' of 1
IMK litlHO b'AcJe, »* A
*»•*« tl*» XAi> ^
>¦> —far ..!
fcurrfar :>Uf>ye-y» ... .
Mrtmw iO cn ft* ¦Ar
tatlt Num. ()U» "* ¦ »'<¦
MH» twnrfrl 'V^4
imnttmki l»»W*Aau***.aiX««
Ui&tM
*'2LJ '
1 o 1
frttai C«nfM «U Tie* S C> ? tj
*•»»; $.51. <*M
Atvmtf MtHurc
_G
/<
l%>Uc*t»r Mrtfkt, Ory, (#4)
Wotw ton HwAtr '>*> -'4
Wettr OKffictvrt_
V*i-
o ***»«•_
K • J .
'Hn
M4*.»
«/ r*w{iT
tour * _ .._
0 «Kf*,/ ({|) Im
Mbv*
\ €i«* r«w
\ taw*)
\CJ«ck
\
m, m* \
'•
fcfft***'
KuMoy.
<%>. « 1
MMtf
fw««
MfttNllttlt
*«}, <«. ITjO
7«9«r»
j ft*
V'i »
!««. na.^"
kKh
M. %P
Sttfrwi
Aetml
St**
In
IMA
«K«M»
It. %
r*
i •-« .TV*.
J *">
.ft.O
pi
ll
1-T
&
J4 >
if
TSU 11-1
> ?*•
ht.1
•".}') 4
Cl<
?*>
)4,i
i?
1*"> ii 10 j
> ?<
"SS'i
3<-<
i i
^4.5
4l
4i*i ./*?'> 1
V ?!
^
,r>i
IA
J4 -
c>
•* t > > ^
> ri
.54.5
If
74
n
i'l *»
< J *
V J ; •>-» .
37*
"?»
7v
iij
"« " A "
* %\ s n
'V* ^
V » J
:u^;
7<-
1 !
i4 '••
~. '
v-4 <
ah
*•> •»'.
it*
I,
>7
M
i'{•¦¦>
4« >
< » > i »"»
ti
A:?. ;
1 i
?'>
TT~~
CWNWtSi
-------
0
1
•vl
ro
Trmrn
Mar
\ Clock riM
\ (»-V]
\ Clod!
Sa^IlM \
TiM, m N.
te ftetcr
DetMif .
«W. ft *
¥»1ocUj
He«4
Or 1 flat Ntwi
Different)il
(AH). In. HjO
Tamper*ture *
•»»,
4T~
Prob*
laplaytr
(Mute
Moiil*
Own
6k Netci
*—
—
l»lt.
(AM.
In. njo
Onlred
Actual
Stack
In
0*
Ileum
1«. Mj
K>n
J
r>">
Hi
7 1
7v
%
J4 «
HO
'* ?<.-
i 1*'
?4*
*(*G
^ I
7,
7?
J4 V
tiT*
i ? ">
-{ .1''
*4S
Ms**
1 JL
7 *i
77
v4
»•>"' J
"*<16 vo-o
W>
?
7 7
-W-.
140
•> o
3 SO
?4I
2 LI
11
V >
7*
«J4
»Y>
'? «n" o is
^ ^ 3
ill
iOi
IX
j4>
iyn
<134 6T»
V^C
UM
Ui
1 <
*5o
J4 S
t ~rt
134 J>~>
* S'6-
>*o
-H-4
la
J4
lyl
fH»V*i7S
1 S *
"*v«*
at-fc
7 X
vw
'a >
Wo
CK 5 .voo
VS*
¦Iri
*0}
TJ
0«
loo
ro
U*i
164
T X
<*4
''>)
^4 >
.t\o
^nx.wt"?
5 •;%
J r)
UC-
1 <
*-io
mt< 6 n
? v.,
> jo
X,->
•) 1
V>
¦5 3
>4 '.
£ vo
r >r, > J
} v,
I H 't
1(4
"v-
• -
2.AO /??»
1 3'iji I'/l
% '>M
3H
IC1
T ?
.v4
JA
l<>" j jC.
*
?
^7
J4 i
ik-O
! ~jJ i S'-j o
J * f
Mo
26*
>•>
-------
0
1
*4
U>
y«t
\. Clack T*a
\ (IMr|
\ tlid
SapttM \
Ttat. no \
to Mcr
Reading ,
<«¦). ft J
ysiocttj
He*
Orifice Fmsnrt
Differential
(AN). I». NjO
Teap«r*t«re <*F
At).
^r~
Nti
OreMfc
Howie
Oeen
Set Mc
T
lull.
If«).
in. ffeO
Bntrctf
Acted
Stack
1*
Ov
factM*
In. Hf
/OJO i»#<»
Sr'*
ftA
7 »
'"i«
r»
J4 5
a*o
. 7*'>
.i Z.O
76
i5''
ii%
¦H rl
? i
*il
AJ.O
iio
o >o 'lOO
jf.fr-"J
Ha
75
'ii
V,
o
Sao
/>'< ) #,£C
.J ./•_>
**7
74
11
rIO
r,
*4T
3 v.
> 5 1
i*i j ">
¦Jin
}«l J.
Km 0
-------
To* No. JOHo\o"L
SAMPLE HANDLING LOG
Recofded by
Run
No.
Sample
No.
Activity
Date
Tim«
Personnel
Re ma ties
Nxni
o'jero
CO CtjSt. or.^-» _
0*760
• } 'Z *¦'< ' ! ?, un>&C-
o
PVLtMe*. C#4Wg*^
S«8t
firynMg,- fnv^A.^r*^*^
fAu*SLyt,/t*JeJZZ
o"i. Celt.
tfio
yiotuS^
H"iO
tt-zo
rtpiMrt.ff
/
r j
-------
Twk No. lo-ttrnWi . WX*~ ' W *" Recorded by
Si
Sample
No.
Activity
Date
Time
Personnel
Remarks
.J
tS"io
• »
»*
W
>T'0
»*
t n ^»
%
M
M
's-tr
If
*
If
f#
(UrO(&
Co» ¦¦" .
7— '
Comments
-------
ACUREX CORPORATION
Run_J^jt_
Acurex Project No. .5blieUt
Field Dates ^-ap.ac^n
Sampling Location Crand ^Jo ?.
Sampling Date v9r-»a
FIELD CREW
Crew Chief: R.d .
Testing Engineer: I tA C,* >V ^
2
Engr. Technician: 1 P i.. '*tci»^p_/o<
Lab Technician:
Process Engineer: 1_
2_
Other: 1
C-76
-------
^>OoR,TH
DATE.
LOCATION.
HACK 1.0..
7- 2C-&P
¦S'lTrf'.r.
PRELIMINARY VELOCITY TRAVERSE
M2LL
jzr.
BAROMETRIC PRESSURE, In. H| TP-IT"
STACK GAUGE PRESSURE, ta. HjO +.-SJ
OPERATORS-^Rfii, SYgPrrg.(V.i
8C0F
'J (Si
TRAVERSE
POINT
NUMBER
VELOCITY
HEAD
(&pc>. ta^O
STACK
TEMPERATURE
(T,), *F
' F*vr
•S-fc
sno
z \
•Y3
3 (
•SH-
Xi*!
V (
• uo
3V-L,
r \
bS
2 sn
I
."><
Srr
7
ny
3sei
s-
¦ir
2tmZ
f
.-?*
S«» Z
/«> ^
• t-Y
/t $o*n£
! 3
*U
/¥
s:?
szr
/jr
<*i
tir
ji»
•«*-
21?
n
. c*
2*n
it
isri
/*
*r3
?o
• S3
AVERAGE
^TA»e-<
AJo. I
SCHEMATIC Of TRAVERSE POINT LAYOUT
TRAVERSE
POINT
NUMBER
VELOCITY
HEAD
inJ^O
STACK
TEMPERATURE
(Tt>. *F
AVERAGE
C-77
-------
ISOKINECTIC N0Z7LE CALCULATION
an:
SAMPLING RATE CALCULATION
Performed by.
Date .
Sample Location
Test No./Type
«„ ¦/1H T- VB
where: Kg ¦ Nozzel diameter (inches)
Average pressure differential across the
orifice meter <1n. H2O)
AH
Temperature stack gas, average (°F)
Ts
2L1- *
Temperature of gas meter, average (°F)
Tm
where: AH • Pressure differential across the orifice meter (in HgO)
Nozzel diameter, actual (Inches)
«d
Temperature of gas meter (°F)
Tm
Temperature of stack gas (°F)
h
Stack gas velocity pressure (in H2O)
AP
(i—> (_)~ iigj (_>)
AH
Magic number ( 1*
K(Nd)4
C-78
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, stack gas wet
(Ib/lb-mole)
Mdtl-B^) + 18(BW), ( )(1- } ~ I8( )
\
Absolute stack pressure (In. Hg)
WOr.H20) (__)
t> 13.S • 1 ' TJX
%
velocity (fps)
1 /T avg ~ 460
85.49
-------
DRY MOLECULAR tEtGHT OETERMNATKM
MDD;
Mil 7-ac->>o
MMWfllhH— iXlQ
C-me.*. IQoZ.
SMFU TTPC IMC. CTEOMTCB. COWTMOB CMB)
fMrncM wmtm S>*t^-T rr FvtWr r.+x.
iMUHwiff i*»r
orv*rm
N. RUN
GAS
1
i
i
MCMCC
KT
VOLWC
MLTVlKIt
mcauMcioiTOF
STACK CM (OUT BMOt
ACTVM.
KT
MINI
KT
aciMi
iknmc
m
CO2
$-.1
5". Z
5". 5
.T2M.
"rw
n
O^RCTBACTVN.0?
KMMCMWMTML
CO^NUMQ
'*.r
fJ.S
/y.$-
n.z
/?.(*
/s.s
*/»
COfKT B ACTUM. CO
tummmmtenm.
0,KMNQ
0
o
0
»/»
WET BM BOB
| ACTUM. CO KMMQ
9t-r
?/.?
n.r
¦/»
TOTAL
Vi.V?
CMAh|Z»
OI
-------
ISOKINETIC PERFORMANCE WORKSHEET
Performed tor 4 *<0)(Vw ltd ~ v» ttd^
i 5?"
where: SI • Percent Isokinetic
Temperature stack gas, average («F)
T«
161.4
Meter volume (std), 17^ ^
/(!S2lA/(£2f) 4
4w /
*¦ std
ssv.in
Volume of liquid collected (grew)
"c
6S).o
Volume of liquid at standard condition (tcf)
V1c x 0.04707
*w ltd
3O04&
Total simple time (minutes)
e
3 SO
Stack gu proportion of water vapor
v. „„ (S±S
l£J#»UOill
"wo
.07^
Molecular weight, stack gat dry
(lb/lb-mole)
"d
Tfi.Z!
C-81
-------
ISOKINETIC PERFORMANCE WORKSHEET (Concluded)
Molecular weight, stack gas net
(lb/lb-mole)
wa-B^) ~ i8(8w), mim-tri) ~ ui^j
Absolute stack pressure (In. Kg)
. %ttc, H". y> (Jr.)
pb ~ 13.{ ¦ . U22S.) ~ "inr
>s
30 ni
Stack velocity (fnO
r [T.avg ~ 460
km (cp) (>, „r
. . •7i+~}<» (\ (36.").^ ~ 460 \
85.49 (%l )(V M „ w„ I
\ teast)«3*2) /
v«
Sc>.%o
Nozzle diameter, actual (Inches)
"d
.3'3
17.33 4C0)(£M>r) ~ ( ))
*1
tos-.V
(2SL )(£»!) (2£^)(Jj2)z
(n.-n) (^->.*0 (tr\nsT)
C-82
-------
Fi&iwn
'•»» I &
Frrt« Laagtk mt £' fvtCH
InmI I.#. Ih.l S^il
tonMl Kilitan I
Nil«i1r try. (W^)
Nttcr Ms llir OCtY
IkUr twWklwt O.UYU
¦ F«t«r
K • '
KWO* » » < >* • fe-IST
*N-M%)4^) to')
riaai at /fc4_e i). -o#i cm
Star
\ ei«dtTiH
\%!
wx \
Mafia* _
(<•). « »
fttettjr
•rlftca fiHwit
T^«1wi«F
t*. «g
&
•w«
Ml. la.
¦Mil
Stack
Ml
see*
la 1
Mar
o
tan. ta*.«no
•Mlrrt
Actwl
la
M
g-e
to
tZ*>%
3. So
T>{
ar7
11
¦>o
/ir
So
J.m
JUr
It
to
~*.0
*>
isv.wr
¦ 3.7Z
Y">
10
fZ
7/
».o
Mo
3.3V
«ST>
10
*.
73
>7f.
J.3v
trs
-><
tim
7Y
lV.0
(Q 0?|W
it/.loo
J.SV-
37Z
arr
to
7fc
7f
f>.o
90
flO.^M)
X3V-
3?r
**7
7l
7?
7T
ff-r
*0
9CO.TS0
3-37
770
ctfrir
9l
Tfc
I+-ST
to
*to. bts"
3.?u
S7|
*«*
"71
7*
Tt.
/~.r
•?-a«r-*g
S^ltUclttM
AJ«2.
ta*i* Tm XAtr? j Hg
frnrrfiig
suttc
nttar
ei'F <& t**°
•. (VLJbklk
*) Ult>-u
lMl«nr Www
Ultm fl—I
MT ZlL
fn> 221}
Atr _aa
Sllte* ui~
,?#p
3fv
m.o
rsr.r
tie
s tan i«i «124? N.
6r/.o
-------
D *
IritmM
\. Clack T«m
\ (IMr)
\ Clack
sra. \
ta Mr
<«¦>. ft J
Vctactty
MM*
Ortflct ft
• Iff Ml
(J*). 1*.
MM
Tnpcritarc «F
i2?"5
A»f.
ftUI
"J#
SUck
Pr«te
iMptafBr
Oraatlc
**)!•
tai Nctar
jjm
lift.
(4*,).
In. M
Mft4
ActMt
•vWI
In
M
/O)
¦4-30 -o4 ">
J i~>
?G«H
Jr'i
la
1>
i i')
? 7"
~?3l
19
Yr
K" ~>
ao / ^
a ao . v>*j
Jl
?
17
IS i
2
IfJ
J ¦JO. JfrO
"i 4«
U>)
'J H
L-11
/J*
to
3 V) 160
3 4l
Jl-0
-}0
7<
ZO *7
nt
JC0 060
3 AO
¦k»*
j n
It.
»J S
1
J>6
11
'54
'Vj
oS
i
i'X» V.O
¦i r,
j n
V->
"<4
'¦j--'
»A*>
)nt
*(<* 1G0
j n
-)<
%
»J *'
J'->
i Aj
i *
'3 S
a so
JYl IMS
s *¦>
311
j<4
"¦>i
>a-5
av>
iA'* »2«"
Xio
3<,>>
^ W« 7' 1'* Swltm Lacitta.. ^ *3.
Cij C . - - f- , ., t / . .. C...\
-------
0
1
09
an
V Clack TIM
\
\ tw
S»H« \
T(m, wh \
fas IkUr
¦••Mat .
OW. »t J
lihcttf
•rifle* ft
•htm
taR>. <•.
•WW*
Tepe-etwi «F
la. M|
N»
itlal
•*
Suck
**•
h**af*r
•raaric
MfeSl*
inn.
ilflli
nb
fenlrvi
«CtMt
la
M
*
JTO
JSmJ 40O
T*
3**
, IS
<11
-fl
IJS
4io 4is
3M
3K>
Dl*
14
91
If*
.*>0
4ao
3 46
3Z,*
317
3
11
n.<
3«o
AZa.ioz
^ 46
0>5
-»a
HA
*1 5
M*
.^51
3 46
•3*6
13
V
no
yi
HO
4SO <«•¦>
3^
s«
13
/a *
W>
4lo !r -
3 4^
B<,Jk
2Kt
->a
9«
'ri
as
SkA
5SO
4 *«sa
Vo '<•« )
J 4rs
lO'
n«u
V»*
si it
K.«|
»1 J'l
*¦ *»• ^ MU 7-3s- S"> Sa^ltaf lac«tt«* SWw
-------
Tuy- 1 *£ I
SAMPLE HANDLING LOG 0 ^ rs
To* No. toluui Recorded by ftWvdi*?
Run
No.
* ¦
No.
Activity
Dot*
Tim*
Ptnonwl
HemoiVi
V-
ttrn. FoA
OSOT
DoJ^.
U> nr&
C
•1
• •
o**>r
?X% M*®*—
r-
•
mi t C-»fl 1>J»a
<•
OV< O
••
••
^ FuxR
»•
• «
#•
••
»vr
• •
p»
..
««WO
»•
•0
rt»i fujSl
••
ir>t>$r
f 1
H
-•
lO *>$r
P»
AC*-* ijL,
H
Au^Sa.
h
ft> tO
«•
S
Wu MlK d«fiv
%
/©IS~
• ,
)
#»
« *'S~
r«
V
%
tO^JL. StuiZyu/lOeSfcL
»~
n«r
li
iff* °)e oAf^
/
S
• •
II SL>
••
(A*h
S
•»
^ r«*JL
•.
tZ'°
• •
(
»
••
rz'O
«4£~wi? »£LX
(
*
•
»1 'T
• I
(
-
Mrj
• •
IJ'O
#•
•<
(jSSaSC^ / Loofc-^
..
n'°
•t
/r» wvfiX.
«
nts~
»»
yi | T_
N
»•
u/r
*
•«
'•
t+T
A
s.
t
>«
/v*^, GAS*3E-,
f.
(*lO
H
S*4o«^
y
to
/Ms
'(*>*)o U)^~v. 1
H Q10O »• *S'5> t&\
-------
SECTION C-3
RAW DATA: TOTAL HYDROCARBON DETERMINATION
C-87
-------
TOTAL HYDROCARBON DATA
7-22-80
C-89
-------
I...,
[
n
MW>»".p
-------
•» V'rf
""<1 W |» «
C-91
-------
-------
C-93
-------
TOTAL HYDROCARBON DATA
7-23-80
C-95
-------
{•
f f
1 '
-------
-------
-------
-------
TOTAL HYDROCARBON DATA
7-24-80
C-161
-------
001
I
r
i
C-102
I !
U
' I
II
-------
C-103
-------
n
¦L I j r-;= I jft
C-104
-------
C-105
-------
TOTAL HYDROCARBON DATA
7-25-80
C-107
-------
r
C-108
-------
C-109
-------
r
c-iio
M
-------
SECTION C-4
RAW DATA: SPECIFIC LOW-MOLECULAR-WEIGHT HYDROCARBON DETERMINATION
C-lll
-------
-------
SPECIATION DATA
7-22-80
C-113
-------
...
—-
---
—
—
—
—
! ! ! : : i
• ! ' ! 1
• ! !
2* ftO - oj>*l«n
MO
»
i
—-
—
-5
.. i
i
5
. i
T •
• "V, *<» ¦
l
<*
-
r ••
;
i
i
i
©
i ...
«• .
. , : t
%
*
•
: . 1 ' ••
.
m
£
¦M
% *
f «
.
— I * •
- --| -
-
o
i j
¥ '
ii.l i
- . ™! •
1 ; : 1 i
l i i
- -i
-
. *
Li
f 3
.
!
i
i.
i
-- -
-
© ; ;
.. .j-. ; —
i
i
1 I
_ _
! i
i :
i
i
1
¦ * i
!
t* "
t
-i i
...
i
i
¦
—
-
5 t ;
i ,
—
-i-L.
! |
! 1
ni-
JJ
i 1
i 1
:'
- j
-¦
j
! •
1
- "
"9"
i
¦ ! !
— 1--~i —
' j i
• r
1
___J i
. ¦!
- —
1
j *
• 1
;
-
r'-
-
-
1
—
—
1
i
i
t
i
! i •
1 1
1 ;
•!
. i
"
»
|
t '
1 1
i !
•j.--"!
-
i
1
-
i
1
€
—
O
«*
UU-
i ! i
' 1
i
! 1
1
_ l
i
1
i'
\
•
ivirjHr
!
1 ! .
-
i I
4-—; i—-
4—
i
a
1
..V
|MU
¦ |
o
t
1 ' ; !
, • j i
I- ! I
—i— -i—j—
1 1
1
1
_ i !
1 ' = j ¦ i
- : i
-------
- -
1 ! :
i
—
!¦:.! i 1
! ' 1
—! ! -
! i
¦ -
...
!
-rp-
i
—
—r
! i 1 '
; i : .
i
-
1
. Samhc - '
—
—-
i
—
—
-
o
i
r:
v.-r
—
t
T„
¦4
bii*tr S«7Ceri*l
**Wi J«4
taMMnM: ttucr*
i
i
.7
. 1
7TT".
' ~
'.ir
-r:
*
^ :
r^~
r—
- —
.
. i
i
:£.
i
* ¦#
t
~-U J
— I
•
-I
--T
~
-41
1
•J
"\
i 1
i 1.
—
-
t
— •
<
I _
i
¦ —
i
-\
-
1
1
i-
c
» -
-
"a
— 1 |
•
i
—
i*
r»
i
1
1
I
—
o
I
r£~
—
—•
¦=~
-- "
- •
•"
• i
. —
' i:
. —
N
-
-
-
"*o~
-
TZ
•~
"" 1
.
ir:
i.
"i
....
" *
r:
Tr.
-1
B
ir ;
r .:
--
...
"
; '. ¦
i:
: ~r
i
-
-
"V
r;
~
•
r
—....
— -
; f
.tI:
—
_r}~
v
4-
,.v
~:
. .«.! i
"
:
- r
_n ¦
• - t
Tr.
--
• —
•
—
-
—-
- \
-
".
•r
:
-
*
•
—
.¦ir*
1:
. i
r
I
-
~ 1
1
~ J
™.:
~ 1
t
-
.
1
- i
|
•. 1
-•
.! _
-------
SPECIATION OATA
7-23-80
C-117
-------
-------
$*•"»<.« fCl«A ¦
CNTiMMvS SM">-
Lm. U>~W -STHCK. WJ
ffeivN
C«uT*H)i«i DCMrfbSM)#.
(.* O^C ~ >7»*X «»• t
_ ¦¦ «ii#/?-n-io
S i»«ra
iT
i*
-------
l#»iTl>rc
t Cw.
-------
Stoc* IkAt S*wrct
ComthmwS Smu
CwC. -St»*K. A*d"Z.
SU>*K To>/V2j-*o
A**«Ju*t i»#>».'
-------
I
-------
SPEC I AT ION DATA
7-24-80
C-123
-------
r>
>
f
po
i
?
T1
1
it!
¦gj—i—{
eAuSftMTl'oM 91**»b«KD
iUTCt-T: iM
(WWWATiw; um-1
I gowtcwc
—;o
|«£
*£
¦n
-»p
f
- -4-
f*
"*%
f
u
>
•:
«• 1'
*-
! !
i i
.. I -
I
L- TiuitnC
i_Lt *
I
I
I
H—
I
f*o 5
-------
-------
r>
i
*-*
ir
•»»
44-
1-7
I
»
r
i—j—£-*-
! <*
4f
STACK. Out* FCtM H£«TCD
CotJtIajoooS JAnKt LWC
STHCJC. *®*
— JwjfcT: 3.o»A rXif/t-lA.yo
o
li^ .
-t J
r
>
+
I I
) Cwkkwh
T"
>
-------
0
1
M
fM
-------
C*CiSfc*.Tii»0
O
I
ro
00
-------
)
-------
SPECIATION DATA
7-25-80
C-131
-------
-------
-------
o
CO
-r*
-------
0
1
u>
tn
r
i.
4.
.-¦I-- i
—»- -1
i i ; 1
_L:
~4t] ' ' -• *
It!"
—
I
— >:!!•¦
! 1 1 1
i '
• ~ i
I
II • 1 r —r—1 i -
• V V--T : t-,"
-------
-------
-10
£TA*>1>A*-D
G. / —C-c*
rt->P«.OC^R«fwS lOPfl^CA
^ /+CATCD «.'/«€. CAL
Jajtccr: «<*4 iur/7-tr-r«
A"T€a)i>at/»*J : SXlfcltT'*
t§—
—t
8-
ST^CK. GaAS SI+~\P
CbvJTiUOOOS rtCtT«
»o 2.
: 1 Vr
X/uXCoT": 7.0^ /a
ATTCaW^'i *. M »
0
1
CO
-------
-------