United States Region 4 EPA 904/9-78-019
Environmental Protection 345 Cowtland Street, NE OCTOBER 1978
Agency Atla ita GA 30308
Holston River
Study
Appendix A thru D
-------
R
-------
HOLSTON RIVER APPENDICES A - D
-------
APPENDIX A
Page
METHODS A-l thru A-22
TABLES
FIGURES
-------
A-l WASTEWATER DISCHARGERS
There are five facilities which have significant waste-
water discharges in the study area. They are Tennessee Eastman
Corporation, Mead Paper Company, The City of Kingsport's Waste-
water Treatment Plant, Holliston Mills and The Holston Army
Ammunition Plant's Areas A and B. Each discharge point was
sampled on a twenty-four hour composite basis for three-four
days during the period of July 19-23, 1977.
A-2 WATER QUALITY
The time of travel and concomitant water quality study
of the Holston River encompassed the South Fork Holston River
(SFHR) downstream of the Ft. Patrick Henry Dam, the lower
0.6 miles of the North Fork Holston River (NFHR) and thence
from their confluence to Holston River mile (HRM) 118.4 located
at Surgoinsville, TN. In order to study the South Fork of
the Holston River and the Holston River at low and relatively
constant flow conditions, the Tennessee Valley Authority (TVA)
was asked to maintain minimum flow from the Ft. Patrick Henry
Dam located at SFHRM 8.2. The plan was to maintain low flow
for 12 hours prior to commencement of the river study (6 a.m.
on July 23) and then for an additional 36 hours so that a
-------
A-2
slug of water could be traced as it moved through the study
area. The planned low flow regime consisted of a release
of approximately 3000 cfs for a one hour period followed by
no release for the following three-hour period. This flow
regime allows the Tennessee Eastman Company to impound suf-
ficient water to maintain a 21.3 m /s (750 cfs) raw water
requirement. As shown on Figure A-2.2, the releases from
the Ft. Patrick Henry Dam followed the low flow conditions
from 8:00 p.m. on July 21 until 1:00 p.m. on July 24. This
schedule provided nearly 34 hours of low flow conditions prior
to the commencement of the river study at 6:00 a.m. on July
23. However, major dam releases (Figure A-2.2) beginning
at 1:00 p.m. on July 24 occurred only 30 hours into the river
study. These early releases caused some shifts in the sampling
schedule at the extremities of the river segment. That is,
some of the river sampling, schedule at periods up to 24 hours
after the slug passage, had to be curtailed due to water level
rises and concomitant water quality shifts.
In order to describe the movement and the physical-
chemical rections of a slug of river water as it passed through
the study area a dye tracer (Rhodamine B) was released at
SFHRM 1.2. Eleven sampling stations were selected to
-------
A-3
accomplish this task. The location of these river water
quality and tracer sampling stations, as well as the wastewater
discharges which were investigated during the study are shown
on Figure A-2.1. As the dye peak moved pass each station,
a grab sample for biochemical oxygen demand (BOD), total
Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3), nitrite-
nitrate nitrogen (NO2-NO3), total phosphorus (TP), dissolved
oxygen (DO), pH and temperature analyses were collected by
field personnel. Additional water quality samples were col-
lected at each river station at six, twelve and twenty-four
hours after passage of the dye peak.
Stream Flow Measurement
Stream flow was measured at least once at each river
sampling station (except at Station SFHRM 5.6 where dam re-
leases precluded flow measurement) using classical stream
gaging techniques during the two days prior to the water
quality sampling effort. In order to measure the river stage
during the study, staff gages were installed at all river
stations except SFHRM 5.6 and 1.2, and HRM 139.2. A continuous
stage recorder was installed at HRM 141.3. Only those stations
which experienced an appreciable change in stage after com-
mencement of the sampling program were subjected to a second
-------
A-4
flow measurement. The river cross sections measured during
low flow conditions as well as the continuous stage recording
at HRM 141.3 are given in Figures A-2.3 to A-2.13. Also in-
cluded is Figure A-2.14, an illustration of water stages in
feet sea level datum (SLD), including the EPA continuous re-
cording at HRM 141.3 and partial record of the USGS gaging
station at HRM 118.4.
Tracer Study
The dye tracer (Rhodamine B) was released as a slug at
mid channel at 6:30 a.m. on July 23 at SFHRM 1.2. Dye cloud
monitoring was conducted at successive downstream river
stations by means of a flow-through micro-fluorometer. Results
of the time of travel study are illustrated on Figures A-2.15
and A-2.16. A second dye release illustrated on Figure A-
2.16) was made at 8:15 p.m. on July 23 at HRM 136.2 to re-
inforce the peak dye concentration. The velocity of the water
slug as described by the dye peak (Figure A-2.15) ranged from
0.43 to 0.83 miles/hour and averaged 0.59 miles/hour. Total
time of travel (SFHR mile 1.2 to HRM 118.4) was 1.9 days.
A-3. MACROINVERTEBRATES AND PERIPHYTON
Invertebrate sampling in the North Fork, South Fork,
and Holston Rivers consisted of both qualitative and
-------
A—5
quantitative methods with one exception, South Fork River
Mile 5.75 which was not sampled qualitatively.
Qualitative sampling involved hand sorting from available
substrates (rocks, vegetation, and logs) and sweeping the
bottom with a standard dip net. Two man hours of effort were
extended for qualitative sampling.
On July 17, 1977 four rock-filled cones were suspended
at each station to quantitatively sample the invertebrate
community. These artificial substrate samplers were left
at the stations for six weeks (until August 31, 1977) to allow
colonization by the invertebrates. Specimens collected by
both qualitative and quantitative methods were preserved in
90% alcohol.
Locations for the invertebrate sampling stations are
shown on the station location map (Fig. A-3.1). As part of
the biological evaluation to assess the suitability of the
Holston River to support diverse and productive aquatic biota,
floating diatometers were placed on the two Forks and main
stem of the Holston River along with macrobenthos artificial
substrates.
-------
A-6
On July 17, 1977 diatometers containing glass slides
were placed at appropriate locations (Figure A-3.1) and re-
mained in the water until August 31, 1977, 45 days. At each
station four randomly selected slides were collected for
chlorphyll a analyses and ash-free-dry weight analyses. Slides
extracted from the diatometers were processed according to
EPA Biological Field and Laboratory Methods (1973a).
A-4 VASCULAR PLANTS
Aerial photography coupled with ground truth and sub-
sequent quantitative sampling was the method used to estimate
the amount of plant biomass and coverage contained within
the Holston River and its forks.
Aerial photography using Kodak aerochrome Infrared 2443
film, and multispectral scans were obtained on July 23-24,
1977 by EPA Environmental Monitoring and Support Laboratory-
Las Vegas personnel. With the assistance of TVA and state
personnel, eight vegetation beds were selected for ground
truth mapping. Weed bed sampling locations (Figure A-4.1)
were as follows:
-------
A-7
HRM 117.6 near Cox Island and Surgoinsville
HRM 119.4 near Phipps Bend
HRM 119.7 near Phipps Bend
HRM 120.6 near Phipps Bend
HRM 134.2 at Smiths Bend
SFHRM 1.2 near Ridgefield Bridge
SFHRM 139.6 near ^Riverside
NFHRM 4.8 near Cloud Ford
Concurrently and after the remote sensing operations,
a field crew mapped the vegetation beds using methods described
in the Macrophyte section of the 2nd edition of EPA's methods
manual (EPA, 1978, In Press). After mapping the eight weed
beds, four quadrats within the beds were selected randomly
and samples were collected at low flow with a 0.25 m P &
D sampler (Figure 5.4-2, text) by EPA personnel. Samples
were labeled, bagged, and refrigerated in the field and sub-
sequently sent to Region IV's Ecology Branch Laboratory for
further processing. Voucher specimens were also collected,
identified and pressed in the field. In the Athens Laboratory,
plants were identified, separated by species, cleaned of
periphyton, and divided into chlorophyllous (primarily leaves
and stems) and non-chlorophyllous (primarily roots, rhizomes,
-------
A-8
corms, tubers) parts and the two separate components were
dried overnight at 105°C, then ground with a Waring blender.
Samples were again dried according to EPA (1973a) procedures
and four subsamples were obtained and processed for ash-free
dry weight analyses (EPA, 1973a) and four other subsamples
were processed for nitrogen and phosphorus analyses (EPA,
1969).
Association of ground truth data and aerial photographic
imagery was accomplished with the assistance of Region IV
and Tennessee Valley Authority (TVA) personnel. Photographic
image characteristics, i.e., tone and texture, were used to
determine signatures or qualities unique to an aquatic com-
munity. A drawdown of the river was accomplished at time
of aerial photography. This proved very benefical for the
identification and delineation of submergent species. In
areas of deep water and turbid zones, however, interpretation
of the varous species was not possible due to the attenuating
effect of the water upon the signatures of the communities.
Accompanying this written report are 87 color infrared prints
with interpretive overlays and an aerial photo index depicting
the locations of these prints (Appendix D). Estimates of
-------
A-9
sample replicate biomass were provided to EMSL-Las Vegas so
total biomass in various segments of the Holston River System
could be estimated.
Unplanned comparisons among ground truth sites were made
using Duncan's Multiple Range Test (Duncan, 1955; Harter,
1960). A significant difference was found between the site
at Smiths Bend (HRM 134.2), which was predominantly mosses,
and the other 7 sites; therefore, data for the other seven
sites was averaged separately from the moss data to estimate
plant biomass in separate river segments.
To obtain a leaf area index (LAI), leaf surface area
was found by planimetry of 10 xeroxed leaves randomly selected
from each of the four predominant weeds in the Holston system.
These species were Potamogeton nodosus, Potamogeton pectinatus,
Heteranthera dubia and Vallisneria americana. The ten
randomly selected leaves from each species were dried at 105°C
for 24-hours (EPA, 1973a) to determine dry weight. The re-
maining leaves and stems of the selected plants were also
dried separately and the leaf surface area per gram dry weight
was determined. This determination was then used to calculate
the average leaf area index for each site.
-------
A-10
Where possible, approximately 2-5 grams of dried
chlorophyllous and non-chlorophyllous subsamples of usually
1 or 2 of the predominant species by dry weight from each
sample were sent to the Laboratory Services Branch, Region
IV, Athens for nitrogen and phosphorus analyses. Total
nitrogen and total phosphorus in mg per kilogram dry weight
were determined for each species. Once the average nutrient
content for each species was determined, then the average
total nitrogen and phosphorus in kg/ha was calculated for
each of the eight weed bed sites for use in determining the
total amount of nutrient "bound-up" in various river segments.
A-5 NUTRIENT BUDGET
Automatic water samplers were placed at various stations
within the study area for a twenty-four hour period. Stations
were located at NFHRM 0.6, SFHRM 7.2, HRM 136, HRM 126 and
HRM 120. The water samples collected were analyzed for Total
Kjeldahl Nitrogen (TKN), Ammonia nitrogen (NH3-N) and Nitrite-
Nitrate Nitrogen (NO2-NO3) Dissolved Phosphorus, and Total
Phosphorus. Because of the extreme daily fluctuation of the
Holston River within the study area caused by intermittent
releases from the TVA operated Fort Patrick Henry Reservoir,
-------
A-ll
TVA was asked to release water in such a way that a relatively
steady state condition would exist during the study period.
TVA agreed to regulate the flow in the required manner for
a period of 30 hours, but due to unforeseen problems it was
necessary to revert to the original flow pattern before the
study was completed. As a result of the early curtailment
of controlled flow only about 12 hours of steady state
condition existed. For the remaining 12 hours the flow
fluctuated drastically. To further disrupt the study, rain
began falling during the period of sample collection. In
order to obtain as much information as possible from the
samples collected, the data have b£en analyzed in two ways.
The first analysis took into consideration only the 12 hours
of steady state condition. The second analysis utilized the
entire 24 hours of data.
To determine the mass balance of the various fractions
of nitrogen mentioned above, several sources of input and
loss had to be considered. A list of such input sources would
include: (1) influent (background concentrations in the
inflowing rivers), (2) industrial discharge, (3) groundwater,
(4) surface runoff, and (5) nitrogen fixation in the river
and sediments. Possible losses from the area would include:
-------
A-12
(1) effluent (concentrations in the outflowing river), (2)
uptake by organisms, (3) loss to the sediment, and (4) nitri-
fication .
jj-j this study only municipal and industrial input and
inflowing loads from the rivers were considered as inputs.
Surface runoff certainly contributed to the input of nitrogen
within the study area due to local heavy rain within the
watershed but measuring the input was beyond the scope of
the study. Groundwater too may well account for some of the
surplus shown at the downstream station.
As were the nitrogen samples, the phosphorus samples
were influenced by the interruption of the steady state
conditions and rainfall. Unlike the nitrogen data, the
phosphorus data is muddled by a massive increase in con-
centration in the middle of the sampling period at two of
the five sampling stations with the result that the data could
not be analyzed in two ways (steady state and fluctuating)
as were the nitrogen data.
A-6 production and demand
To assess the waste assimilative capacity of a stream,
considerations must be given to the effects of photosynthesis
-------
A-13
and biological respiration on the dissolved oxygen resource
of the stream. In the case of the Holston River, the effects
of plant metabolism becomes extremely important because of
the growths of vascular and periphytic plants in the system.
Aside from providing habitat for aquatic life, the plants
contribute to and draw upon the river's dissolved oxygen
resources. Other sources of oxygen demand include the
metabolic activity of the aerobic microbial community and
chemical oxidation.
Collectively, oxygen production and demand of these
processes can be assessed by a method reported by Odum (1956).
This procedure calls for a graphical analysis of dissolved
oxygen changes over a diel period. The method assumes with
appropriate corrections that the rise and fall in dissolved
oxygen concentrations remains proportional to activities of
photosynthesis and respiration of the plant and animals
residing in the stream. Any chemical oxidation would be
treated as biological respiration.
The analytical basis for the method can be seen in the
following expression with units of measurements given as
g 02/m2/hr:
-------
A-14
Q = P-R + D + A
where:
Q = net rate of change in dissolved oxygen
p = rate of change in gross primary productivity
R = rate of change in respiration
D = rate of change in atmospheric diffusion of oxygen
A = rate change in oxygen due to accrural of drainage.
The terms "P" and "R" are determined with the procedures
described by Odum (1956) with D determined with a method
reported by Hall (1970). In the latter case, the procedure
is commonly referred to as the "dome" method for measuring
the oxygen diffusion coefficient.
Two studies were conducted to determine community gross
primary productivity and respiration. The first involved
sampling for diel changes of DO at the location on the river.
Station locations were chosen following a reconnaissance of
the river via an airboat. The reconnaissance served to
determine if the study reach remained generally uniform in
terms of plant distribution and gradient. Based on the re-
connaissance, the assumption was established that the general
-------
A-15
history of the flowing water would remain relatively unchanged
as it passed through the study reach. With this assumption,
the graphical analyses for determining gross primary production
and respiration could be applied to single station data.
At each station, diel sampling for dissolved oxygen and
temperature values was conducted. Sampling was performed
every three hours at quarter and midpoints along a cross
sectional transect of the river. Mean values were calculated
and used in the graphical analyses. Concurrently with the
diel sampling, a total solar radiation record was made with
a pyrheliometer.
The second productivity and respiration study was con-
ducted during the course of the time of travel study when
dye was traced the length of the study area. As the dye peak
passed given points on the river, the DO and temperature of
the river water was determined. Tracking the dye peak spanned
two days, thus, two estimates of gross primary production
and respiration could be determined for two reaches of the
river. In this case, the upper reach extended from HRM 141.3
downstream to HRM 126.6. The second reach was from HRM 131.7
downstream to HRM 118.0.
-------
A-16
Essential to the graphical analyses (Figures A-6.1 to
A-6.4) are estimates of diffusion coefficients for oxygen
exchange between the atmosphere and water surface (Table A-
6.1). Reported here is field method employed.
To obtain an average diffusion coefficient for a reach
of river, the domes were floated from HRM 136.2 downstream
to HRM 134.2., Two domes were attached to booms extending
three to four feet from a jonboat. At one-half hour intervals
appropriate readings were made.
The float procedure was repeated for the reach of river
from HRM 121.6 downstream to HRM 120.1. At the latter river
mile, the domes were anchored and readings were made at different
times in the day.
Oxygen Production and Demand
An important part of any stream productivity determination
is the contribution and requisition made by the benthic environ-
ment to the oxygen budget of the stream. In order to account
for the debits and credits to the oxygen budget attributable
to benthic respiration and photosynthesis, respectively, benthic
respirometers were deployed and monitored over the three day
period of July 27, 28, and 29, 1977.
-------
A—17
Respiration and production rates were determined using
clear and opaque plexiglass domes to measure exchange rates
of dissolved oxygen between the water column and benthic
community. Metabolic functions of both the biotic and abiotic
elements are represented in the rates obtained.
The plexiglass domes were identical in construction and
O
dimension, each having an area of 0.64 m^ and a volume of
381.7 liters.. Dome configuration (as opposed to some other
design) was utilized so as to maximize the ratio of water
volume to surface area, thus reducing rate perturbations
attributable to sediment resuspension and allowing for
observation of respiration or production rates over an extended
time period. Located within and mounted to the side of each
chamber was a 12 volt DC submersible pump with a diffuser
used to circulate water within the chamber. Orientation of
the pump was such so as not to create a sediment resuspension
problem. Electrical power was supplied by a 12 volt DC battery
located at the surface. The bottom of each chamber was
equipped with a flange and cutuing edge to facilitate sealing
of the chamber against the substrate.
-------
A-18
Prior to deployment of the chambers, a reconnaissance
of the river bottom at the specific study site was accomplished
by divers. Various types and combinations of benthic habitat
were identified for chamber placement. Each chamber was
deployed and situated by SCUBA divers. Relocation of chambers
from one habitat type to another was accomplished in the same
manner.
Once each chamber was in place and sufficent time had
passed for settlement of any material that might have been
suspended during deployment, monitoring probes were then placed
into each dome by SCUBA divers. Monitoring equipment consists
of Martek, Model SQM water quality analyzers equipped with
temperature, conductivity, and dissolve oxygen probes connected
to a Submersible Data Logger and Submersible Battery Pack
which, respectively, controls and powers the system. During
operation, the system was programmed for 16 minute repetitious
cycling consisting of an 8 minute monitoring phase followed
by an 8 minute shut down. Prior to deployment, each water
quality analyzer was accurately calibrated for ambient stream
dissolved oxygen and temperature via the Winkler method and
a hand-held centigrade thermometer and observed for stability.
-------
A—19
To test the dome to substrate seal during operation of the
system, a salt solution was injected via a tube through the
wall of the dome directly into the diffuser. The solution
raises the conductivity inside the dome above the ambient
stream conductivity and maintenance of an increased conductance
level indicates the lack of intrusion of water from outside
the domes. Intermittent, or continuous, monitoring of probe
operation is facilitated by use of a Martek, Model DAR, Data
Reader which was connected to the Submersible Data Logger
and located at the surface.
During the course of the study total solar radiation
was measured by a pyrheliometer. Additionally, visible light
penetration at the chamber depth was measured with a marine
photometer equipped with a deck and sea cell.
Data analysis was first accomplished thru a linear
regression model of time vs. DO consumption for the course
of each individual replicate. Analyses of this type, yield
a curve (time vs DO) with the slope expressed in milligrams
oxygen, per liter, per minute. This information is then
incorporated into the following equation:
-------
A-20
B °^06V= g 02/m2/hr
B = slope of curve as rng 02/L/min
V = chamber volume in liters
9
A = chamber area as m
In those runs where respiration was greater than
photosynthesis (dark chamber), linear regression
yields negative slope values. Positive values
indicate net production which was obtained with
the clear domes in daylight hours. Gross primary
production is obtained by the addition of respiration
and net primary production values for the same run.
A-7 CHEROKEE RESERVOIR
A water quality survey of Cherokee Reservoir was conducted
from July 27 to August 4, 1977 at selected stations (Figure
A-7.1). Station sites were selected to duplicate some of
FPA's 1973 National Eutrophication Lake Survey Stations.
One other station was added (Figure A-7.1) to obtain samples
from an area not sampled during the National Eutrophication
Survey. Station locations were designated by Holston River
-------
A-21
miles (Figure A-7.1) and include Stations 55, 59-60, 67, 75,
86 and 92. Physical sampling was undertaken at quarter points
of the transect. Temperature and dissolved oxygen measurements
were taken with a YSI model 51A oxygen meter. The dissolved
oxygen meter was calibrated against levels obtained using
the modified Winkler technique. The temperature meter was
calibrated against a standard mercury thermometer. Temperature
and dissolved oxygen measurements were made at the surface
and at intervals the full depth of the lake. Light extinction
was determined with a Hydro-Products model 620 submarine
photometer calibrated by the National Oceanic and Atmospheric
Administration at Bay St. Louis, Mississippi. Secchi disk
measurements, of transparency were taken at all stations in
conjunction with light extinction measurements.
In order to determine chlorophyll a phaeophytin a levels,
it was necessary to collect discrete water samples. Samples
of water from varied depths were collected and filtered on
a 45 micron membrane filter. Filtered samples were numbered,
iced down and returned to Athens EPA laboratory for processing
of extracted chlorophyll a, according to EPA Methods (EPA,
1973a). Filters were macerated with a tissue grinder in
-------
A-22
90% acetone, eluted overnight in a refrigerator, and
fluorescence determined with a Turner Design fluorometer.
Euphotic zone water samples for algal assays were col-
lected and integrated from Stations 55, 59-60, 75, 86 and
92 and returned to Athens laboratory in a clean polyethylene
container. Samples were processed according to EPA algal
assay procedures (EPA, 1971) which included autoclaving the
samples at 250°F at 15 psi to solubilize all available organic
material. Samples were copied to room temperature, restored
to the original pH with C02, and filtered through a 45 micron
membrane filter.
Chemical analyses of the raw and autoclaved water samples
were conducted for total phosphorus, dissolved phosphorus
and nitrogen including nitrate-nitrite, ammonia and Kjeldahl
nitrogen.
-------
TABLES - APPENDIX A
-------
T!ABLE A—1.1
INDUSTRIAL WASTEWATER DISCHARGES
TO THE HOLSTON RIVER
KINGSPORT, TN
JULY, 1977
Facility
Station
No.
Mile
Point
Type of
Sample
bod5
Average Concentration mg/L
TSS COD TKN NH3-
-N N0->
f»3
TP
TOC
Tennessee Eastman
TE002
SFHRM 4.5
Composite
16.7
36.0
96 |!
8.41
4.73
0.06
3.870
34.5
Corporation
Holston Army
HA001A
SFHRM 4.3
Composite
6.1
8.0
<40-66
18.40
15.50
0.58
0.053
7.9
Ammunition Plant
HA001B
SFHRM 4.3
Composite
3.2
6.0
<40
0.19
0.11
0.61
0.033
2.2
Area A
HA014
SFHRM 4.0
Composite
32.7
105.0
78
9.96
7.52
0.58
11.300
21.2
Mead Paper
ME001
SFHRM 2.4
Composite
39.5
104.0
286
4.07
0.37
<0.01
0.660
71.3
Kingsport STP
KS001E
SFHRM 2.3
Composite
22.7
31.0
106
9.97
8.37
0.48
6.100
40.2
Holston Army
HB005P
HRM 139.6
Composite
122.3
104
142
2.06
0.22
0.70
0.300
34.3
Ammunition Plant
HB005W
HRM 139.6
Composite
<4.0
8.0
40
0.56
0.34
0.61
0.160
3.2
Area B
HB006
HRM 139.1
Composite
>12.0
16.0
<40
0.64
0.30
0.69
0.160
8.3
HB008
HRM 139.1
Composite
3.7
12.0
<40
0.54
0.21
3.62
0.120
3.0
Holliston Mills
HM001
HRM 128.6
Composite
327.0
140
608
8.14
1.37
<0.01
3.533
325.0
HM002
HRM 128.4
Grab
<2.0
3.0
<40
0.33
0.01
0.57
1.000
2.0
-------
TAriLE A-1.1 (Continued)
Facility
Station
No.
Mile
Point
Type of
bod5
TSS
Average Load lb/day
COD TKN NH3-N
NO?
no3
TP
TOC
Tennessee Eastman
TE002
SFHRM 4.5
Composite
2240.0
4980
13500
1180.00
639.00
8.50
545.00
4810.0
Corporation
Holston Army
HA001A
SFHRM 4.3
Composite
157.0
214
<1035-1700
477.00
401.00
15.00
1.36
204.0
Anmunition Plant
HA001B
SFHRM 4.3
Composite
135.0
250
<1670
7.83
4.70
25.50
1.36
93.9
Area A
HA014
SFHRM 4.0
Composite
90.0
291
216
27.40
20.70
1.60
31.10
58.5
Mead Paper
ME001
SFHRM 2.4
Composite
4089.0
9950
27500
392.00
34.90
<1.0
64.20
6880.0
Kingsport WTP
KS001E
SFHRM 2.3
Composite
1250.0
1760
6010
565.00
468.00
27.30
337.00
2270.0
Holston Army
HB005P
HEM 139.6
Composite
1330.0
1130
1540
22.40
2.44
7.65
3.31
373.0
Ammunition Plant
HB005W
HEM 139.6
Composite
313.0
895
<4470
63.20
37.70
68.80
17.90
363.0
Area B
HB006
HRM 139.1
Composite >1400.0
1930
<4670
74.80
35.10
81.20
18.10
970.0
HB008
HRm 139.1
Conposite
551.0
1750
<6010
81.60
32.10
544.00
18.00
451.0
Holliston Mills
HM001
HRM 128.4
Conposite
1150.0
523
2270
30.40
5.14
<0.04
13.30
1220.0
HM002
HRM 128.4
Grab
<0.1
0
<2
0.02
0.00
0.03
0.05
0.1
-------
Facility Station
No.
Mile
Point
Tennessee Eastman
TE002
SFHRM 4.5
Corporation
Holston Army
HA001A
SFHRM 4.3
Ammunition Plant
HA001B
SFHRM
Area A
HA014
SFHRM 4.0
Mead Paper
ME001
SFHRM 2.4
Kingsport WTP
KS001E
SFHRM 2.3
Holston Army
HB005P
HRM 139.6
Ammunition Plant
HB005W
HRM 139.6
Area B
HB006
HRM 139.1
HB008
HRM 139.1
Holliston Mills
HMO 01
HRM 128.4
TABLE A-1.2
INDUSTRIAL WASTEWATER DISCHARGES
TO THE HOLSTON RIVER
KINGSPORT, TN
JULY, 1977
Average Concentration mg/L
Type of BOD5 TKN NH3-N N02 TP
Sample NO3
Composite
15.1
8.26
4.
71
-
3.
84
Composite
9.5
18.25
15.
48
0.
02
Composite
1.6
0.04
0.
09
0.02
Compos ite
31.1
9.81
7.
50
—
11.
¦ 27
Composite
37.9
3.92
0.
35
-
<0.
63
Composite
21.1
9.82
8.
35
-
6.
07
Composite
120.7
1.79
0.
16
0.60
0.
27
Composite
2.0
0.29
0.
28
0.51
0.
13
Composite
14.4
0.37
0.
24
0.59
0.
13
Composite
2.1
0.27
0.
15
3.52
0.
09
Composite
325.6
7.74
1.
05
—
3.
40
-------
TABLE A-1.2 (Continued)
Facility
Station
No.
Mile
Point
Type of
Sample
bod5
Average
TKN
Load
nh3-
lb/dav
¦n no;
NO3
TP
Tennessee Eastman
TE002
SFHRM
4.5
Composite
2025
1159
636
541
Corporation
Holston Army
HA001A
SFHRM
4.3
Composite
116
473
400
1
Ammunition Plant
HA001B
SFHRM
4.3
Composite
68
4
4
1
-
Area A
HA014
SFHRM
4.0
Composite
86
27
21
"""
31
Mead Paper
ME001
SFHRM
2.4
Composite
3925
378
33
-
<61
Kingsport WTP
KS001E
SFHRM
2.3
Composite
1162
556
467
-
335
Holston Army
HB005P
HRM 139.6
Composite
1313
19
2
7
3
Ammunition Plant
HB005W
HRM 139.6
Composite
224
33
31
58
15
Area B
HB006
HRM 139.1
Composite
1683
43
28
69
15
HB008
HRM 139.1
Composite
313
41
23
529
j.4
Holliston Mills
HM001
HRM 128.4
Composite
1145
28
4
-
13
(a^Effluent concentration less raw river water with intake concentration
-------
TABLE A-1.3
LONG TERM BOD (mg/L)
INDUSTRIAL-MUNICIPAL CONTRIBUTORS
HOLSTON RIVER STUDY, KINGSPORT, TN
JULY 1977
Facility
Station
Date-Time
Days
1
BOD
11 13 15 17 19 21
Tennessee Eastman
TE-002 7/22-23/77
0930-0915
ii a ii
2
2
6 11 26 3957 lost in analysis
5 8 11 13 14 14 16 20 21 20
HAAP Area A
HA-001A, HA-001B and HA-014 lost in analysis
HAAP Area B
HB-006 and HB-005 lost in analysis
HA-005W 7/22-23/77
1115-0915 1.4 1.9 2.1 3.6 5.7 7.5 9.7 10.6 12.7 12.9 13.4 13.5
Mead Paper
ME-001 7/22-23/77
0800-0800 6.4 13.2 18 24.4 33.2 38.4 46.8 52.5 58.0 64.8 69.2 72
8.0 13.6 19.6 24.8 28.8 37.2 42.4 47.6 52.8 54.8 58.4 61.2
7/23/77
0810 3.6 7.6 11.2 25.6 36.8 41.2 46 49.2 53.2 58.4 68 76.4
3.6 6.0 10.8 24 35.6 38.8 43.6 46.8 51.2 53.2 56.8 60.4
Holliston
-------
Holliston Mill
HM-001 7/22-23/77
1500-1345 200 250
Kingsport WPP
KS-001E 7/22-23/77
1330-1230 10 18
KS-001I 7/23-23/77
1400-1300 70 90
Note
Suppressed nitrification
ihdLE A-1.3 (continued)
310 380 390
44 50 54
100 160 150
410 420 470
62 70 104
180 220 310
450 520 510
108 114 120
-------
TABLE A-2.1
SAMPLING LOCATION
HOLSTON RIVER STUDY
KINGSPORT, TN
JULY, 1977
NFHRM 0.6*
River station
SFHRM 5.6*
River station
SFHRM 4.5
Tennessee Eastman
SFHRM 4.3
Holston Army Ammunition,
Area
A
SFHRM 4.0
Holston Army Ammunition,
Area
B
SFHRM 2.4
Mead Corporation
SFHRM 2.3
Kingsport WTP
SFHRM 1.2*
River station
HRM 141.3*
River station
HRM HRM 139.6
Holston Army Ammunition,
Area
B
HRM 139.2*
River station
HRM 139.1
Holston Army Ammunition,
Area
B
HRM 136.2*
River station
HRM 131.7*
River station
HRM 128.5*
River station
HRM 128.4
Holston Mills
HRM 126.6*
River station
HRM 121.6*
River station
HRM 118.9*
River station
*Sampling stations used for tracer and
water quality study.
-------
WATER Ql'ALTTY DATA
110LST0N RIVER
KrNmroRT, tn
JU1.V 1977
Pk iK
6 HKb Lflb
12 HPS LAfc.
N02
N02
N02
l>ATt
T 1 MP
STATION
TN
T l\N
NnS
(jU3
TP
TN
TKN
NH3
NO 3
TP
TN
TKN
NH3
N03
TP
7 7 0 723
Of) 4 0
rJ h h 0.6
>0.27
0 . it 7
0 .04
0.35
0.23
0.01
0. 12
0.03
0.3b
0.30
0.10
0.08
0.02
7/0/2 3
0 7 1 b
r>F b • 6
0 . 7t)
0.20
0.01
O.bb
0 . Ob
0 • 6 1
0.06
0.6-*
0.10
0.01
0.S9
0.02
7 7 0/23
0'i20
HP 1.2
1 . <•«
0.9*
0 . 8 J
0.b4
0.17
i •
0.82
0.68
0.34
0.17
1-.63
1 .OB
0.83
O.bb
0.20
7 70 /d i
J 1 00
«N 14 1.3
1 • 63
1. l
11. 8 3
0 . 3b
u . 1 7
1.67
1 . Otf
0. 7b
O.b'y
0. lb
1 .SO
0.46
0 . 90
0.S4
0.24
17u72J
1 J *5
13^,2
0 .99
0.b7
0. 76
0.4?
0.11
1 .24
o ,b4
0 .bO
0.40
0. 12
0 .bb
0.b3
0.43
0.32
0.16
77u 723
20 <30
hw i:ii.t?
1.83
1 .26
0. b2
0.57
0.70
7 70 /24
Uj 3b
H-i 1J1.7
1 .46
0.72
0.40
0 . 7<.
0.11
1 .'42
0.7 0
0. bb
o. 12
0. 11
1.12
O.bO
0.23
0.62
0.19
7 70 724
Ofitb
128 . 3
1.37
0.6b
0.3d
0. 72
0 . 1 (<
1 .3b
Ok 6b
0.3d
0.7 0
0,11
1 .2b
0.37
0.27
0 ,6b
0.1b
7 70 724
I 300
HM 126.6
1 .J*
0 .02
0.32
0. 7 7
11.10
1 • tb
0.70
0.30
0.7 b
0.12
7 70724
224b
121.6
1 .37
0.37
U.JIJ
0 . MO
0.11
77072b
0340
HP 118.4
1 .33
0. 70
0.30
0 .63
0.10
PE Ai\
6 HRS LAG
12 HHS LAG
BoO
B'ju
HOD
bA 11
TIME
S T A T I ON
PH
TEMP
uo
3
ALK
PH
Tt"Mp
DO
b
ALK
PH
TtMP
00
b
ALK
770 /23
0640
T4F (J .6
6.2
S>0
o. 0
2 7
7.1
1 .2
Vl
8.3
29
8.0
8 7
7 7 0 7 2 J
0 7 1 b
SF hV? b . 6
7.3
16
6.-?
62
/.4
21
7.2
6.4
63
7 . b
21
b.O
62
770723
0620
SFhk 1.2
7.1
23
3.4
71
7.7
26
7.1
3.2
73
7.8
28
7.8
74
7/0 723
1 100
14 1.3
6.9
24
4 .3
76
6. 1
27
2.3
76
7.8
27
74
7 lot
1 34b
H| i
13 V. 2
6.8
2b
b . 6
nl)
7.9
2b
8.
2.0
7v
7.8
28
b. 4
2.2
83
770723
2ob0
H4
136.2
7 . b
27.b
7.2
77
7.6
2b
4. d
2.0
/ 4
7.4
2b
3.9
2.1
86
7/0724
033b
131.7
7. t
2b
4. 3
2.1
7 4
7.2
2b . 6
4.6
2.3
73
7 70 724
OC14S
IK
l2d.b
7.1
23
b. 1
2. u
77
7.4
27
7.4
1 .o
71
7 70 12"
1 30 0
r1^
126.6
7.H)
2.7
fa • 6
1 . 7
73
7.4
2 7. b
b. 0
1.7
70
770724
224b
H
121.6
7.4
2e . b
b. 1
1 .4
71
71072b
03*0
118.4
7 . <~
27
4 . V
1 .d
71
-------
f <
-------
tasleA-2.4
holston river long term boo concentrations
KINGSPORT. TN
JULY. 1977
SAMPLING
80D
BOO
BOD
800
BOO
BOD
BOO
BOD
BOD
BOO
BOD
BOD
800
BOD
BOD
BOD
BOD
BOD
faOD
BOO
BOD
TIME
station
1
2
3
4
5
b
7
8
9
10
i 1
12
13
14
15
16
17
18
19
20
21
770724
0650
NFHR 0.6
0.5
0.9
0.9
1.3
-
1.8
1 .8
2. 1
2.2
2.3
—
2.8
3.0
2.8
770724
0630
SFHR 1.2
0.9
2.0
2.5
3.5
4.5
4.8
5.0
5.3
5.5
6.1
6.2
6.2
770724
0610
SFHR 5.6
0.6
0.8
0.9
1.6
l.a
1.8
2.0
-—
1.9
2.0
2.5
2.6
2.6
770724
0210
HUM 139.2
0.5
1.0
1.0
1.7
1.9
1.9
2.2
2.9
2.2
3.2
3.4
3.4
770724
0845
HRM 128.5
0.5
0.8
0.9
1.5
1.8
1.9
2.2
—-
2.4
2.4
2.9
3.2
3.2
770724
1040
SFHR14 1.3
0.4
0.9
1.3
1.8
2.2
2.3
—-
2.0
2.8
2.8
3.6
3.8
3.9
770724
0915
HRM 136.2
0.3
0.5
0.6
-—
1.5
1.6
1.9
___
2.5
—-
2.7
2.8
3.1
3.2
3.3
770725
0240
HRM 11U.1
0.6
0.8
1.5
2.0
2.2
-—
2.4
2.8
-
2.7
3.6
3.8
3.9
770724
1400
HRm 139.2
0.7
0.7
1.6
1.7
1.8
2.1
2.2
2.2
3.1
3.2
3.2
770724
1300
HRM 126.6
0.4
0.5
1.2
-—
1.6
1.7
¦1.8
2.0
2.0
2.7
2.9
2.9
770724
2245
HRM 121.6
0.6
0.4
1.2
---
1.7
1 .8
2.2
-—
2.3
2.8
—-
3.2
3.4
3.3
770725
0 350
HRM 118.4
0.6
0.7
-—
1.5
1.9
2.1
_—
2.6
2.9
3.1
-
3.5
3.7
3.8
770724
2045
HRM 12a.5
0.9
0.5
1.3
-—
1.7
1.8
2.0
—-
2.1
-
2.4
-—
2.8
3.0
3.0
770724
1500
HRM 131.7
0.7
0.6
—-
1.3
-—
1.6
1.8
2.1
2.7
2.5
-—
3.1
3.4
—
3.4
770724
1930
HRM 12b.6
0.8
0.8
1.3
---
2.0
2.0
2.4
2.6
2.8
3.2
3.5
3.5
770724
1445
HRM 128.5
0.5
0.4
1.0
1.4
1.6
2.0
—«-
2.3
2.4
3-0
-------
TABLE A-3.1
MASTER LIST OF ORGANISMS COLLECTED BY ARTIFICIAL SUBSTRATE
SAMPLING AND QUALITATIVE SAMPLING
HOLSTON RIVER, JULY, 1977
Porifera
Spongillidae
Spongilla
Bryozoa
Gymnolaemata
Paludlcella articulata
Annelida
Oligochaeta
Tubificidae
Limnodrilus hoffmeisteri
Peloscolex ferox
Peloscolex sp.
Naldidae
Nais pardalls
Ophldonals serpentina
Hirudinea
Glosslphonidae
Helobdella llneata
Batrocobdella phalera
Erpobdellidae
Dina lateralis
Crustacea
Isopoda
Asellidae
Asellus Intermedins
Phipps
Bend
QUALITATIVE
NFHRM
Smith
4.2
Bend
1
1
3
1
2
2
2
2
SFHRM
1.2
Phipps Bend
ARTIFICIAL SUBSTRA:
Smith Bend
m
•a-
m
l
SFHR 1.2
VD
en
I
CO
VO
E SAMPLERS
NFHR
-------
QUALITATIVE
Phipps
NFHRM
Smith
SFHRM
Bend
4.2
Bend
1.2
Amphipoda
Talitridae
Hyalella azteca
2
Gaim&aridae
CranKorvyx gracilis
4
6
3
Decapods
Astacfidae
1
4
Pacifastacus leniusculus
Orconectes putnami
1
1
Insecta
Plecoptera
Perlidae
Acroneuria sp.
5
Ephemeroptera
Siphlonuridae
Isonvchia sp.
2
Baetidae
Baetis sp.
1
1
1
Callibaetis sp.
1
Centroptilum sp.
1
Heptagenid'ae
Heptagenia sp.
2
Stenonema ^i-grpimffat-i»
4
6
group
S. exiguum
2
Tricorythidae
Tricorythodes sp.
7
9
4
1
Ephemeridae
Ephemera sp.
Hexasenla sp.
TABLE A-3.1 Continued
ARTIFICIAL SUBSTRATE SAMPLERS
Phipps Bend
sr
i
C»1
-3"
Smit
i Bend
SFHR 1.2
10
1
17
2
15
VO
-3-
1
17
CO
.vO
i
62
36
10
37
44
15
NFHR 4.2
&
v£>
rO
I
r^
-------
QUALITATIVE
Phipps
NFHRM
Smith
Bend
4.2
Bend
Po tamanthidae
Potamanthus sp.
2
Odonata
Zygoptera
Coenagfrionidae
Enallasma sp.
4
1
Ischnura sp.
1
1
Argia sp.
4
2
Anisoptera
Gontphidae
Gomphus sp.
1
1
Aeshnidae
Boveria vlnosa
2
2
4
Macromiidae
Didvmops transversa
1
Cordulldoe
Epicordulia princepa
Hemlptera
Veleiidae
Khagovella sp.
2
Nepidae
Banatra sp.
1
Megaloptera
Corydalidae
Corydalus cornutus
2
Sialidae
Sialis sp.
TABLE A-3.1 Continued
Phipps Bend
CO
i
r-.
ARTIFICIAL SUBSTRATE SAMPLERS
Smith Bend
CO
I
SFHR 1.2
\C>
co
i
r-
CO
\o
-------
TABLE A-3.1 Continued
Phipps
Bend
QUALITATIVE
NFHRM
4.2
Smith
Bend
SFHRM
1.2
ARTIFICIAL SUBSTRATE SAMPLERS
Phipps Bend
Smith Bend
-a*
en
I
SFHR 1.2
\o
co
I
r>.
oo
\D
en
I
NFHR 4.2
I
Trichoptera
Psychomyiidae
Neurecllpsis crepuscularis
Hydropsychidae
Cheumatopsyche sp.
Hy^ropsyghe be~ttenx
H. bifida group
H5feiiilSesp.
Helicopsyche sp.
Lepidoptera
Pyralididae
Nvmphuia sp.
Coleoptera
Psejfhenidae
Psephenus sp.
Haliplidae
Haliplus sp.
Elmidae
Stenelmis sp.
Macronychus gldbratus
Dubir*frhia vittata
Microcylloepus pusillus
Optioservus sp.
1
3
12
12
2
11
3
-------
Hydrophilidae
Hydrochus sp.
Berosus sp.
Dytiscidae
Laccodytes sp.
Dipteraf
Chironomidae
Ablabesmyla paraianta
A. mallochl
Conchapelopla gonlodes
0« sp •
Procladius bellus
Clinotanypua pinguls
Thienemannlella sp.
Eukiefferiella sp.l (Roback
TP)
Nanocladius distinctus
Synbrthocladius semlvirens
Cardiocladius sp.
Cricotloys bicinctus
£. exilis
C,. sp.2 Roback '57
slossonae
.C. iunus
_C. ceris-aratus
C^. flavipes
£. (trifasciatus) group
Chironomus attenuatus
C. crassicandatus
-------
TABLE A-3.1 Continued
Phipps
Bend
QUALITATIVE
NFHRM
4.2
Smith
Bend
SFHRM
1.2
ARTIFICIAL SUBSTRATE SAMPLERS
Phipps Bend
Smith Bend
vC
^r
e>
I
SFHR 1.2
CO
\o
CI
i
NJHR
o
4.2
I
-------
Tipulidae
Antocha sp.
Empididae
Hemerodromla rogatoris
H. sp.
Rhagronidae
Atherlx variegata
Mollusca
Gastropoda
Physidae
Phvsa sp.
Planorbidae
Helisoma Bp.
Ancylidae
Ferrissia sp.
Bulimldae
Gillia sp.
Pleuroceridae
Goniobasls sp.
Pelecypoda
Sphaeriidae
Sphaerlum sp.
Corbiculidae
Corbicula manllensis
TOTAL # IND.
TOTAL # SPP.
QUALITATIVE
Phipps
Bend
NFHRM
4.2
Smith
Bend
2
1
3
2
3
1
3
8
3
2
2
1
1
2
2
115
112
98
39
40
37
TABLE A-3.1 Continued
ARTIFICIAL SUBSTRATE SAMPLERS
Phipps Bend
357
448
12
L79
285
16
59
L35
15
10
18
1-24
16
Smith Bend
14
68
18
e>
I
10
66
14
SFHR 1.2
n
i
60
16
CD
n
i
120
18
NFHR 4.2
o
6
58
110
15
1
48
97
21
10
55
2
154
128
19
199
11
SFfIR 5.75
o
115
10
392
19
ei
i
C-4
321
16
170
15
-------
TABLE A-3.2
PERIPHYTON, HOLSTON RIVER. JULY - AUGUST, 1977
Chlorophyll a Ash-Free Autotrophic
Station Replicate (g/nr) Dry Weight Index
(g/m2)
SFHRM
1
0.074
4.063
54.91
1.2
2
0.054
3.149
58.32
Ridgefields
3
0.071
3.156
44.45
Bridge
x =
0.066
3.46
52.56
NFHR
1
0.152
4.951
32.57
Pal 4.2
2
0.144
5.965
41.42
Clouds
3
0.129
4.922
38.14
Ford
X =
0.142
5.28
37.37
SFHRM
1
0.145
9.329
64.34
5.6
2
0.122
6.976
48.11
3
0.1
5.592
55.92
4
0.174
6.707
38.55
X =
0.135
7.15
51.73
Phipps
1
0.05
6.522
130.44
Bend
2
0.061
9.535
156.31
HPM 122.8
3
0.075
9.361
124.81
X =
0.062
8.47
137.19
Smiths
1
0.142
9.191
64.73
Bend
2
0.106
4.689
44.24
HFM 134.0
3
0.066
2.044
30.97
X =
0.105
5.31
46.65
-------
TABLE A-4.1
HOLSTON RIVER AQUATIC PLANT SAMPLING LOCATIONS
General Location
River Mile
Ridgefield Br.
SHRM 1.2
Phipps Bend
HRM 119.4
Phipps Bend
HRM 119.7
Phipps Bend
HRM 120.6
Cox Island
HRM 117.6
Smiths Bend
HRM 134.2
Riverside
SFHRM 39.6
Cloud Ford
NFHM 4.8
-------
TABLE A-4.2
HOLSTON RIVER AQUATIC PLANT BIOMASS IN GRAMS/0.25m2.
JULY - AUGUST, 1977
Dry Weight
Ash-Free Dry We
sight
Location3
Replicate
Species
Chloro-
phyllous6
Non-Chloro-
phyllous
Total
Chloro-
phyllous
Non-Chloro-
phyllous
Total
SFHRM 39.6
Riverside
1
Anacharis
canadensis
83.247
7.625
90.872
53.276
4.895
58.171
2
Anacharis
canadensis
54.377
2.851
57.228
35.744
1.729
37.473
3
Moss 8
16.322
0
16.322
8.730
0
8.730
Potamogeton
pectinatus
0.228
0.248
0.476
0.199
0.152
0.351
3
Anacharis
canadensis
37.192
2.194
39.386
28.266
1.185
29.451
Mixc
2.437
0
2.437
1.823
0
1.823
4
Anacharis
canadensis
70.674
1.495
72.169
55.832
1.106
56.938
Mix
1.906
0
1.906
1.811
0
1.811
Total
266.38
14.41
280.80
185.68
9.07
194.75
Xd
66.60
3.60
70.20
46.42
2.27
48.69
a. In River Miles and general location.
b. 0.251& quadrat sampled per replicate.
c. Mix contains living plant material other than
Anacharis canadensis.
d. Arithmetic mean for 3, 4 or 8 replicate
0.25nt^ quadrats.
e. Chlorophyllous includes above ground portion
of the plants like leaves and stems.
f. Non-Chlorophyllous includes subterranean and over-
wintering portion of aquatic plants such as tubers,
stolens, rhizomes, corms, and roots.
an§SLep^oclicfyum^^OW^12® species complex Fissidens
h. Sample lost during collection.
-------
TABLE A-4.2 Continued
Dry Weight
Ash-Free Dry Weif
;ht
Chloro-
Non-Chloro-
Chloro-
Non-Chloro-
Location3
Replicate #
Species
phyllouse
phyllousf
Total
phyllous
phyllous
Total
SFHRM 39.6
1
Chara-Nitella
37.361
0
37.361
12.037
0
12.037
Riverside
2
Chara-Nitella
228.782
0
228.782
73.708
0
73.708
3
Chara-Nitella
68.823
0
68.823
22.173
0
22.173
4
Chara-Nitella
73.690
0
73.690
23.741
0
23.741
Total
408.66
0
408.66
131.66
0
131.66
102.16
0
102.16
32.92
0
32.92
Total1
675.04
14.41
689.46
317.34
9.07
326.41
xdj
84.38
1.80
86.18
39,67
1.13
40,80
SFHRM 1.2
1
Potamogeton
39.905
4.169
44.074
24.427
3.094
27.521
Ridgefield
pectinatus
Bridge
Potamogeton
1.643
0.400
2.043
1.310
0.295
1.605
nodosus
2
Potamogeton
35.101
7.514
42.615
24.697
4.744
29.441
pectinatus
3
Potamogeton
44.100
4.533
48.633
28.134
3.186
31.320
pectinatus
Potamogeton
4.157
0.143
4.300
3.115
0.109
3.224
nodosus
Moss
0.044
0
0.044
0.031
0
0.031
4
Potamogeton
44.176
9.910
54.086
27.609
5.309
32.918
pectinatus
Total
169.13
26.67
195.80
109.32
16.74
126.06
X
42.28
6.67
48.95
27.33
4.18
31.51
-------
TABLE A-4.2 Continued.
Dry Weight
Ash-Free Dry Weight
Chloro-
Non-Chloro-
Chloro-
Non-Chloro-
Location3
Replicate
Species
phyllouse
phyllous ^
Total
phyllous
phyllous
Total
NFHRM 4.8
1
Potamogeton
9.189
0
9.189
6.234
0
6.234
pectinatus
Heterantha
2.483
0.163
2.646
1.770
0.116
1.886
dubia
Vallisneria
0.434
0
0.434
0.331
0
0.331
americana
Potamogeton
17.820
1.901
19.721
12.040
1.445
13.485
nodosus
2
Potamogeton
42.505
3.427
45.932
26.210
2.536
28.746
nodosus
Heterantha
1.543
0
1.543
1.014
0
1.014
dubia
Potamogeton
0.630
0
0.630
0.457
0
0.457
pectinatus
Vallisneria
0.724
0.150
0.874
0.521
0.080
0.601
americana
3
Potamogeton
2.095
0.550
2.645
1.610
0.422
2.032
nodosus
Heterantha
17.365
1.007
18.372
10.196
0.803
10.999
dubia
Potamogeton
1.280
0
1.280
0.972
0
0.972
pectinatus
4
Potamogeton
15.760
0.115
15.875
10.401
0.088
10.489
pectinatus
Potamogeton
4.009
0.584
4.593
2.939
0.446
3.385
nodosus
Heterantha.
3.558
0.037
3.595
2.325
0.030
2.355
dubia
Valisrieria
0.453
0
0 .453
0.263
0
0.263
ameri cana
Moss
0.022
0
0.022
0.018
0
0.018
Total
119.87
7.93
127.80
77.30
5.97
83.27
X
29.97
1.98
31.95
19.32
1.49
20.82
-------
TABLE A-4.2 Continued.
Dry Weight
Ash-Free Dry Weight
Chloro-
Non-Chloro-
Chloro-
Non-Chloro-
Location3
Replication
Species
phyllouse
phyllous^
Total
phyllous
phyllous
Total
HRM 134.2
1
Moss
29.661
0
29.661
6.288
0
6.288
Smiths
Potamogeton
6.389
1.838
8.227
4.674
1.490
6.164
Bend
pectinatus
2
Moss
6.807
0
6.807
2.273
0
2.270
3
Moss
5.298
0
5.298
2.168
0
2.168
Total
48.16
1.838
49.99
15.40
1.49
16.89
X
16.05
0.613
16.66
5.13
0.50
5.63
HRM 120.6
Phipps Bend
1
Potamogeton
nodosus
32.877
4.121
36.998
21.170
3.212
24.382
Vallisneria
americana
3.798
3.426
7.224
2.905
2.173
5.078
Potamogeton
pectinatus
0.251
0
0.251
0.194
0
0.194
2
Potamogeton
nodosus
43.547
4.407
47.954
32.656
3.761
36.417
Heteranthera
dubia
0.527
0
0.527
0.426
0
0.426
Potamogeton
pectinatus
0.759
0.088
0.847
0.606
0.075
0.681
Vallisneria
americana
0.321
0
0.321
0.266
0
0.266
Moss
0.289
0
0.289
0.181
0
0.181
-------
TABLE A-4.2 Continued.
Dry Weight
Ash
-Free Dry Weight
Chloro-
Non-Chloro-
Chloro-
Non-Chloro-
Location3
Replication
Species
phyllouse
phyllous^
Total
phyllous
phyllous
Total
HRM 120.6
3
Potamogeton
48.580
13.497
62.077
32.216
8.861
41.077
Phipps Bend
nodosus
Anacharis
canadensis
0.025
0
0.025
0.014
0
0.014
Moss
0.206
0
0.206
0.133
0
0.133
4
Potamogeton
27.201
2.375
29.576
18.313
0.546
18.859
nodosus
Moss
0.349
0
0.349
Lost
Lost
Lost
Vallisneria
0.095
0
0.095
0.075
0
0.075
americana
Potamogeton
0.186
0
0.186
0.140
0
0.140
pectinatus
Total
159.01
27.91
186.92
109.30
18.63
127.92
X
39.75
6.98
46.73
27.32
4.66
31.98
1RM 119.7
1
Vallisneria
77.859
19.661
97.520
53.991
10.798
64.789
Phipps Bend
americana
2
Vallisneria
36.177
7.456
43.633
19.171
5.571
24.742
americana
3
Vallisneria
118.224
19.099
137.323
74.570
8.767
83.337
americana
Moss
0.124
0
0.124
0.055
0
0.055
Anacharis
0.008
0
0.008
0.006
0
0.006
canadensis
4
Vallisneria
78.115
31.849
109.964
49.446
14.035
63.481
americana
Anacharis
1.240
0
1.240
0. 780
0
0.780
Total
311.75
78.06
3Hy.81
198.02
39.17
237.19
X
77.94
19.52
97.45
49.50
9.79
59.29
-------
TABLE A-4.2 Continued.
Locationa
Replication
Species
Chloro-
phyllouse
Dry Weight
Non-Chloro-
phyllous^
Total
Chloro-
phyllous
Ash-Free Dry Weight
Non-Chloro-
phyllous
Total
HEM 119.4
Phipps
Bend
Heteranthera
dubia
Potamogeton
pectinatus
Moss
Vallisneria
americana
Heteranthera
dubia
Anacharis
canadensis
Vallisneria
americana
Vallisneria
americana
Potamogeton
pectinatus
Moss
Potamogeton
pectinatus
Vallisneria
americana
Moss
Total
X
129.283
0.192
0.215
0.338
44.623
19.451
0.664
8.203
7.561
0.250
13.796
2.121
0.088
226.78
56.70
11.665
0
0
0.092
2.725
1,051
0.120
1.218
0.133
0
1.207
0.590
0
18.80
4.70
140.948
0.192
0.215
0.430
47.348
20.502
0.784
9.421
7.694
0.250
15.003
2.711
0.088
245.59
61.40
79.260
0.145
0.134
0.251
28.005
13.383
0.55J
5.781
4.636
0.149
10.184
1.829
0.051
144.36
36.09
6.950
0
0
0.049
2.015
0.826
0.086
0.603
0.097
0
1.055
0.460
_0
12.14
3.04
86.210
0.145
0.134
0.300
30.020
14.209
6.384
4.733
0.149
11.239
2.289
0.051
156.50
39.13
-------
TABLE A-A.2 Continued.
Dry Weight
Ash-Free Dry Weight
Replication
Chloro-
Non-Chloro-
Chloro-
Non-Chloro-
Locationa
Species
phyllouse
phyll ous
Total
phyllous
phyllous
Total
HEM 117.6
1
Heteranthera
110.597
10.680
121.277
54.496
4.697
59.193
Surgoins-
dubia
ville
Vallisneria
2.492
0.984
3.476
1.850
0.599
2.449
americana
Anacharis
0.268
0
0.268
0.194
0
0.194
canadensis
2
Heteranthera
121.218
8.565
129.783
66.009
5.905
71.914
dubia
Anacharis
1.219
0
1.219
0.871
0
0.871
•canadensis
Potamogeton
0.046
0
0.046
0.046
0
0.046
nodosus
Potamogeton
0.026
0
0.026
0.026
0
0.026
crispus
Potamogeton
0.074
0
0.074
0.061
0
0.061
pectinatus
3
Heteranthera
58.999
3.310
62.309
34.136
2.360
36.496
dubia
Potamogeton
0.103
0
0.103
0.093
0
0.093
pectinatus
Vallisneria
0.283
0.167
0.450
0.218
0.086
0.304
americana
Anacharis
0.471
0
0.471
0.351
0
0.351
canadensis
4
Heteranthera
23.486
3.244
26.730
13.870
1.842
15.712
dubia
Vallisneria
51.779
17.205
68.984
33.823
6.599
40.422
americana
Moss
0.035
0
0.035
0.018
0
0.018
Anacharis
0.280
0
0.280
0.185
0
0.185
Total
371.38
44.15
415.54
206.25
22.09
228.34
X
92.84
11.04
103.88
51.56
5.52
57.08
-------
TABLE A-4.3
CHLOROPHYLLOUS BIOMASS ESTIMATE FOR MOSSES (SMITHS BEND).
HOLSTON RIVER. JULY - AUGUST, 1977
Spemenr
DescriDtion
River Miles
Total Weed
Area in
Hectares
Ave. D.W.
EeAa
Ave. AFDW
Kg/ha
Total D.W.
in Metric
Tons
Total AFDW
in Metric
Tons
Total Rivei
Area in
Hectares
Ave. D.W. in
Metric Tons Per
Hectare of River
Ave. AFDW in
Metric Tons Per
Hectare of River
1
Holston River Mile
(HRM) 109.1 - HRM
141.2 (Interplant
RR Bridge)
32.1
2.82
642
205
1.81
0.58
497.20
3.64xl0~3
1.17xl0~3
2
HRM 141.2 - South
Fork Holston River
Mile (SFHRM) 5.6
6.6
0
642
205
0
0
69.36
0
0
3
North Fork Holston
River Mile (NFHRM)
0.3 (Rotherwood
Bridge) - NFHRM
39.1
38.8
3.68
642
205
2.36
0.75
341.1
6.92x10"3
2.19xl0-3
4
SFHRM 5.6 - SFHRM
8.2 (Ft. Patrick
Henry Dam)
2.6
0
642
205
0
0
16.83
0
0
5
SFHRM 8.3 - SFHRM
49.9 (South Holston
Dam)
41.6
0.13
642
205
0.08
0.03
185.92
4.30x10"4
1.61xl0~4
a. Compressed area or area containing 100% plants.
b. One metric ton = 1000 kg = 2205 lbs.
-------
TABLE A-4.4
TOTAL BIOMASS ESTIMATE FOR MOSSES (SMITHS BEND).
HOLSTON RIVER. JULY - AUGUST, 1977
Segment
_ Description
River Miles
Total Weed
Area in ,
Hectares®
Ave. D.W.
JcR/iia
Ave. AFDW
¦leg/ha
Total D.W.
in Metric
Tons^1
Total AFDVi
in- Metric
Tons
Total River
Area in
Hectares
Ave. D.W. in
Metric Tons Per
Hectare of River
Ave. AFDW in
Metric Tons Per
Hectare of Riva:
1
HoIston River Mile
(HRM) 109.1 - HRM
141.2 (Interplant
RR Bridge)
32.1
2.82
666
225
1.88
0.63
497.2
3.78xl0-3
1.27xl0~3
2
HRM 141.2 - South
Fork (Holston)
River Mile (SFHRM)
5.6
6.6
0
666
225
0
0
69.36
0
0
3
North Fork River
Mile (NFHFM) 0.3
(Rotherwood Bridge)
- NFHRM 39.1
38.8
3.68
666
225
'2.45
0.83
341.1
7.18xl0-3
2.43xl0~3
4
SFHRM 5.6 - SFHRM
8.2 (Ft. Patrick
Henry Dam)
2.6
0
666
225
0
0
16.83
0
0
5
SFHRM 8.3 - SFHRM
49.9 (South
Hols ton Dam)
41.6
0.13
666
225
0.09
0.03
185.92
4.84xl0~4
1.61x10"4
a. Compressed areaor area containing 100% plants.
b. One metric ton = 1000 kg = 2205 lbs.
-------
TABLE A-4.5
HOLSTON RIVER SYSTEM AQUATIC PLANT BIOMASS IN kg/ha.
JULY - AUGUST, 1977
Chlor ophyllous
All sites combined minus moss site
Total
All sites combined minus moss site
Location
Ave.
D.W.
Ave.
AFDW
Ave.
D.W.
Ave.
AFDW
HRM 117.6
Surgoinsville
3714
2062
4155
2283
HRM 119.4
Phipps Bend
2268
1444
2456
1565
HRM 119.7
Phipps Bend
3118
1980
3897
2372
HRM 120.6
Phipps Bend
1590
1093
1869"
1279
NFHRM 4.8
Cloud Ford
1199
773
1278
833
SFHRM 1.2
Ridgefield Br.
1691
1093
1958
1260
SFHRH 39.6
Riverside
3376
1587
3448
1632
X
2422
1433
2723
1603
S2
968304
230914
1238063
311928
S
984
480
1113
558
% C.V.
40.6
33.5
40.9
34.8
S = Standard deviation
C.V. = Coefficient of variation
-------
TABLE A-4.6
HOLSTON RIVER SYSTEM AQUATIC MOSS BIOMASS IN kg/ha. JULY - AUGUST, 1977
>70% HRM 134.2
Moss, Smiths
Bend
Chlorophyllous Plant Biomass
Total Plant
Biomass
Ave.
D.W.
S.D.
%
C.V.
Ave. AFDW
kg/ba
S.D.
%
C.V.
Ave.
D.W.
S.D.
%
C.V.
Ave. AFDW
k.g/ha
S.D.
%
C.V.
642
693
108
205
202
99
666
736
Ill
225
236
105
-------
TABLE A-4.7
TOTAL BIOMASS ESTIMATES FOR MOSSES (SMITHS BEND)
HOLSTON RIVER
JULY - AUGUST, 1977
Segment Description River Total Vieed Ave. D.W. Ave. AFDW Total D.Vv. Total AFD\v
Miles Area in Kg/ha kq/ha in Metric in Metric
Hectares Tons Tons
1A HRM 127.0 to HRM 141.3 14.3 1.2 666 225 0.80 0.27
IB HRM 134.2 to HRM 136.2 2.0 0.3 666 225 0.20 0.07
1C HRM 118.4 to HRM 131.7 13.3 0.7 666 225 0.47 0.16
aCompressed area or area containing 100% plants
b _
One metric ton = 1000 kg = 2205 lbs.
-------
TABLE A-4.8
CHLOROPHYLLOUS BIOMASS ESTIMATES FOR MOSSES (SMITHS BEND).
HOLSTON RIVER
JULY - AUGUST, 1977
Segment Description River Total Weed Ave. D.W. Ave. AFDW Total D.w. Total AFDW
Miles Area in Jsg/Ka kg/ha in Mgtric in Metric
Hectares3 ; Tons Tons
1A RRM 127.0 to HRM 141.3 14.3 1.2 642 205 0.77 0.25
IE HRM 134.2 to HRM 136.2 2.0 0.3 642 205 0.19 0.06
1C fifth 118.4 to HRM 131. 7 13 .3 0 . 7 642 205 0 .50 0.14
a
Compressed area or area containing 100% plants
^One metric ton = 1000 kg = 2205 lbs.
-------
TABLE A-4.9
AVERAGE AQUATIC PLANT BIOMASS. HOLSTON RIVER.
JULY - AUGUST, 1977
Avg. D.W.
Kg/ha
S.D. a
%C.V.b
Avg. AFDW
kg/ha
S.D.
%C.V.
Chlorophyllous Plant Biomass:
>70% Moss, Smiths Bend
642
693
108
205
202
99
Other sites combined
2422
984
40.6
i'
1433
480
33.5
Total Plant Biomass:
> 70% Moss, Smiths Bend
666
736
111
225
236
105
Other sites combined
2723
1113
40.9
1603
558
34.8
a Standard deviation
k Percent coefficient of variation
-------
TABLE A-4.10
HOLSTON RIVER LEAF SURFACE AREA IN cm2 PER GRAM ASH-FREE DRY WEIGHT
JULY - AUGUST, 1977
Ash-Free
Leaf Surface Area
Plant
Plant
Dry Weight
Leaf Surface
Percent
em^/Grams
Species
Part
in Grams
Area in cnt^
Composition
Ash Free Dry Weight
P. nodosus
10-leavesa
0.306
11.30
36.93f
P. nodosus
stern^
1.160
60.70d
P. nodosus
leaves0
0.445
39.30e
H. dub ia
10-leaves
0.015
0.84
56.00
H. dubia
stem
1.235
57.02
H. dubia
leaves
0.916
42.98
P. pectinatus
10-leaves
0.030
0.91
30.33
P. pectinatus
stem
0.129
22.05
P. pectinatus
leaves
0.426
77.95
V. americana
10-leaves
0.092
4.88
100.00
53.04
a. Ten randomly selected leaves used to determine leaf area,
b & c. The remaining stems and leaves from plants which ten random leaves were selected for areal measurement.
d. YrT^j St>pnn^i .¦-T.tT X 100 = % stem composition; Example: A v -i™
10 leaves AFDW + stem AFDW + leaves AFDW 0.306 + 1.160 + 0.445 X 100
60.70
Remaining leaves AFDW + 10 leaves AFDW „ r _ . ^
e* irt i - r TT ¦.—- , -- X 100 = % leaf composition
10 leaves AFDW + stem AFDW + leaves AFDW
1.160
f.
10 leaves surface area in cm^ _ gm2 . Example: 11.30cm^ = 36.93cm^/Gram.
g 0.306 Grams
10 leaves AFDW in g
-------
TABLE A-4.11
LEAF INDEX FOR PREDOMINANT AQUATIC PLANTS AT SELECTED LOCATIONS.
HOLSTON RIVER. JULY - AUGUST, 1977
Location
Species
Percent Compo-a
sition by chloro-
phyllous AFDW
Avg. Ash-Free-Dryb
Wt. Pgr Species
g/m. of
Chlorophyllous Part
Leaves %c
Composition
Avg. Ash-Free-Dry
Wt. of Leaves
in g/m*
Leaf Surface
Area cin / Gram
AFDW
Avg. Leaf Surface
Area
Avg. Leaf Index
rrf^/rrt^
HRM 117.6
Surgoins
ville
HRM 119.4
Phipps
Bend
HRM 119.7
Phipps
Bend
H.d
V.a
E.c
P.c
P.n
P.p
H.d
E.c
P.p
V.a
Moss
V.a
E.c
Moss
81.70
17.43
0.78
0.01
0.02
0.07
Total
74.30
9.27
10.37
5.83
0.23
Total
99.58
0.40
0.02
Total
168.51
35.95
1.61
0.02
0.02
0.14
206.25
107.26
13.38
14.97
8.42
0.33
144.36
197.19
0.79
0.04
198.02
42.98
100.00
72.42
35.95
39.30
0.01
77.95
0.11
108.49
42.98
46.10
77.95
11.67
100.00
8.42
66.19
100.00
197.19
197.19
56.00
53.04
36.93
30.33
56.00
30.33
53.04
53.04
4055.83
1906.79
0.29
3.31
5966.22
2581.62
353.92
446.60
3382.14
10458.96
10458.96
0.60
0.34
1.05
a&b jjata obtained from replicate saiqples at location See Table A.4-2.
c Data from Table A-4.10.
d / Avg. AFDW per Species
I of Chlorophyllous Part
\ln g/ri^
)C
Percent Compo- \
sition Leaves )
Avg t AFDW
of Leaves
e Data from Table A-4.10.
^JAvg. AFDW of \l Leave Surface Area in\ - Avg. Leaf Surface
I Leaves in m./'a H rf/Gram AFDW 1 Area m'^/i4^
Example:
Example: (168.51 g/i#2) (0.4298) - 72.42 g/n?
(72.42 grams/m ) (56.00 m£/gram) = 4055.83 mfVm^
H.d. - Heteranthera dubia
V.a. - Vallisineria amerieana
E.C. - Anacharis canadensis (Elodea)
P.n, - Potamogeton nodosus
P.p. - Potamogeton pectinatus
-------
Location
Species
Percent Compo-a
sition by chloro-
pbyllous AFDW
Avg. Ash-Free-Dryk
Wt. Per Species
S/^- o£
Chlorophyllous Part
Leaves %c
Composition
HRM 120.6
Phlpps
Bend
HRM 134.2
Smiths
Bend
SFHRM 1.2
Ridge-
field
Bridge
NFHBM 4.8
Cloud
Ford
P.n.
V.a.
Moss
P.p.
E.c.
H.d.
Moss
P.p.
P.p.
P.n.
Mo 8 8
P.n.
P.p.
H.d.
V.a.
MO88
95.48
2.97
0.29
0.86
0.01
0.39
Total
69.66
30.34
Total
95.92
4.05
0.03
Total
55.37
23.37
19.80
1.44
0.02
Total
104.36
3.25
0.32
0.94
0.01
0.43
109.30
14.31
6.23
20.54
104.86
4.43
0.03
109.32
42.80
18.06
15.31
1.11
0.02
77.30
39.30
100.00
77.95
42.98
77.95
77.95
39.30
39.30
77.95
42.98
100.00
TABLE A-4.11 Continued
Avg. Ash-Free-Dry^
Wt. of Leaves
ing / m-
Leaf Surfacee
Area m / Gram
AFDW
Avg. Lea£ Surface*
Area ni /iri^
Avg. Leaf Index
41.01
3.25
0.73
0.18
45.17
4.86
4.86
81.74
1.74
83.48
16.82
14.08
6.58
1.11
38.59
36.93
53.04
30.33
56.00
30.33
30.33
36.93
36.93
30.33
56.00
53.04
1514.63
172.38
22.22
10.35
1719.58
147.29
2479.12
64.29
2543.41
621.18
426.98
368.25
58.87
1475.28
0.17
0.01
0.25
0.15
-------
TABLE A-4.I'd
TU'i'AL BlOMAiSS ESTIMATES FOR ALL AQUATIC PLANTS EXCEPT THE MOSSES (SMITHS BEND SITE).
HOLSTON RIVER. JULY - AUGUST, 1977
Total
Segment
Description
Total Plant
Total D.W. Total AFDW
Area in Avg. D.W. Avg. AFDW in Metric in Metric
Kiver Miles Hectares Kg/ha kg/ha Tons Tons
1 tiolston Kiver Mile 32.1
(HRM) 109.1 - HRM
141.2 (Interplant
HR Bridge)
1A HKM 127.0 to 14.3
HRM 141.3
IB HRM 134.2 to 2.0
HRM 13b.2
10 HRM 118.4 to 13.3
HRM 131.7
2 HRM 141.2 - South 6.6
Fork Holston River
Mile (SFHRM) 5.6
2A SFHRM 0.0 to 4.5
SFHRM 4.5
ljy.4k!
75.4
4.0
89.6
27.84
24.9
2723
2723
2723
2723
2723
lbU3
1603
1603
1603
1603
1603
379.64
223.49
205.31
10.89
243.98
75.81
67.80
120.87
b.41
143.b3
44.63
39.91
-------
TABLE A-4.12 (Continued)
Total Plant
Segment
Description
Total Area in Avg. D.W. Avg. AFDW in Metric
River Miles Hectares kg/ha kg/ha Tons
Total D.W. Total AFDW
in Metric
Tons
3 North Fork Holston 38.8
River Mile (SFHRM)
0.3 (Rotherwood
Bridge - NFHRM
39.1
3A NFHRM 0.0 to 4.5
NFHRM 4.5
4 SFHRM 5.6 - SFHRM 2.6
8.2 (Ft. Patrick
Henry Dam)
5 SFHRM 8.3 - SFHRM 41.6
49.9 (South Holston
Dam)
28.53
2723
1603
77.69
45.73
13.8
1.6
40.00
2723
2723
2723
1603
1603
1603
37.58
4.36
108.92
22.12
2.56
64.12
aCompressed area or area containing 100% plants
^One metric ton = 1000 kg = 2205 lbs.
-------
TABLE A-4.13
UHLOHOPHYLLUUS BIOMASS ESTIMATES FOR ALL AQUATIC PLANTS EXCEPT THE MOSSES (SMITHS BEND SITE).
HOLSTON RIVER. JULY - AUGUST, 1977
Total Plant
Total D.W.
Segment
Description
Total
River Miles
Area in Avg. D.W. Avg. AFDW in Metric
Hectares3 kg/ha kg/ha Tons'3
Total AFDW
in Metric
Tons
1 Holston River Mile 32.1
(,HRM) 109.1 - HRM
141.2 (Interplant
RR Bridge)
1A HRM 127.0 to 14.3
HRM 141.3
IB HRM 134.2 to 2.0
HRM 136.2
1C HRM 118.4 to 13.3
HRM 131.7
2 HRM 141.2 - South b.b
Fork Holston River
Mile (SFHRM) 5.6
139.42 2422
75.4
4.0
89.6
27.84
2422
2422
2422
2422
1433
1433
1433
1433
1433
337.68
182.62
9.69
217.01
67.43
199.79
108.05
5.73
128.40
39.89
2A
SFHRM 0.0 to
4.5
24.9
2422
1433
60.31
35.68
-------
tablk a-4.13 (.Continued)
Segment
Description
l'otai
River Miles
Total Plant
Area in Avg. D.W. Avg. AFDW
Hectares
kg/ha
kg/ha
Total D.W.
in Metric
Tons
Total AFDW
in Metric
Tons
3 North Fork Holston 3a. a
River Mile (NFHRM)
0.3 (Rotherwood
Bridge; - nkhrm
39.1
3A NFHRM 0.0 to 4.5
NFHRM 4.5
4 SFHRM 5.6 - SFHRM 2.6
a.2 (Ft. Patrick
Henry Dam)
5 SFHRM «.3 - SFHRM 41.6
49.9 (South Holston
Dam)
2a. 53
13.8
1.60
40.00
2422
1433
2422
2422
2422
1433
1433
1433
69.10
33.42
3.8«
96. aa
40. aa
19.7a
2.29
57.32
Compressed area or area containing 100? plants
^One metric ton = 1000 kg = 2205 lbs.
-------
TABLE A-4.14
AQUATIC PLANT NUTRIENT DATA. HOLSTON RIVER. JULY-AUGUST, 1977
TOTAL
Non-Chlorophyllous
Chlorophyllous
(Chlorophyllous plus Nonchloxophyllou
Total N
Total ,P in
Total N
Total P in
Total N
Total P in
Replicate
in mg/kg
mg/feg
Ratio
in mg/kg
mg/kg
Ratio
in mg/kg
mg/kg
Ratio
Location
Number
Species
Dry Wt.
Dry Wt.
N:P
Dry Wt.
Dry Wt.
N:P
Dry Wt.
Dry Wt.
N:P
HRM 119.7
1
V.a
15,100
3080
22,400
2800
2
V.a
17,900
2620
22,800
2100
3
V.a
14,450
3480
24,050
4396
4
V.a
15,750
2640
20,600
2850
HRM 119.4
3
V.a
22,850
3130
28,250
3300
HRM 117.6
4
V.a
18,300
2910
21.800
2920
sx
104,350
17860
139,900
18360
244,250
36,220
X
17,392
2977
5.8:1
23,317
3060
8.0:1
20,354
3,018
6.7:1
s
3,081
326
2,670
758
4,139
558
c.v
17.7
11.0
11.45
18.2
20.3
18.5
HRM 119,4
1
H.d
12,800
2510
21,500
3510
2
H.d
14,750
3080
21,750
3090
HRM 117.6
1
H.d
11,200
2090
21,500
1980
2
H.d
13,550
1910
19,000
2210
3
H.d
15,000
2750
19,500
3590
4
H.d
—
—
23,200
2570
NFHRM 4.8
3
H.d
—
19.950
1290
ZX
67,300
12340
146,400
18240
213,700
30,580
X
13,460
2468
5.5:1
20,914
2606
8.0:1
17,808
2,548
6.8:1
S
1,548
476
1,483
846
4,099
691
c.v
11.5
19.3
7.1
32.5
23.0
27.1
-------
TABLE A-4.14
AQUATIC PLANT NUTRIENT DATA. HOLSTON RIVER. JULY-AUGUST, 1977
TOTAL
Non-Chlorophyllous
Chlorophyllous
(Chlorophyllous
plus Nonchlorophyllous)
Total N
Total P in
Total N
Total P in
Total N
Total P in
Replicate
in mg/kg
mg/kg
Ratio
in mg/fcg
. mg/kg
Ratio
in mg/kg
mg/kg
Ratio
Location
Nuaber
Species
Dry Wt.
Dry Wt.
N:P
Dry Wt.
Dry Wt.
N:P
Dry Wt.
Dry Wt.
N:P
HRM 119.4
4
P.p
20,250
1470
23,500
1960
SFHRM 1.2
1
P.p
18,850
1820
24,750
3820
2
P.P
20,500
2020
25,750
2220
3
P.p
—
—
26,250
3160
4
P.p
19,950
1930
29,750
2850
NFHRM 4.8
1
P.p
—
—
20,000
1540
4
P.p
—
—
19,850
1460
EX
79,550
7240
169,850
17010
249,400
24,250
X
19,888
1810
11.0:1
24,264
2430
10.0:1
22,673
2,205
10.5:1
S
727
240
3,529
879
3,536
761
C.V
3.7
13.3
14.5
36.2
15.6
34.5
HRM 120.6
1
P.n
23,650
2650
22,500
3610
2
P.n
18,200
1980
31,750
1720
3
P.n
17,400
1890
29,000
2350
4
P.n
18,000
2370
28,250
2790
NFHRM 4.8
1
P.n
—
—
18,500
1380
2
P.n
12,500
1240
18,150
1260
4
P.n
17.150
1110
18,900
1730
IX
106,900
11240
167,050
14840
273,950
26,080
X
17,817
1873
9.5:1
23,864
2120
11.3:1
21,073
2,006
10.4:1
s
3,552
607
5,711
848
5,604
728
C.V
19.9
32.4
23.9
40.0
26.6
32.3
-------
TABLE A-4.li
AQUATIC PLANT NUTRIENT DATA. HOLSTON RIVER. JULY-AUGUST, 1977
TOTAL
Non-Chlorophvllous
Chlorophyllous (Chlorophyllous plus Nonchlorophyllous
Total N
Total P in
Total N
Total P in
Total N
Total P in
Replicate
in mg/kg
rag/kg
Ratio
in mg/kg
mg/kg
Ratio
in mg/kg
mg/kg
Rat io
Location
Number
Species
Dry Wt.
Dry Wt.
N:P
Dry Wt.
Dry Wt.
N:P
Dry Wt.
Dry Wt.
N:P
SFHRM 39.2
1
A.C
19,600
2160
31,000
2970
2
A.C
15,650
2190
23,050
1880
3
A.C
, —
—
23.050
1880
EX
35,250
4350
77,100
6730
112,350
11,080
X
17,625
2175
8.1:1
25,700
2243
11.5:1
22,470
9.8:1
s
2,793
21
4,589
629
5,660
446
c.v
15.8
.97
17.9
28.0
25.2
20.2
HRM 134.2
1
Hoss
-
10,000
1540
2
Moss
—
—
17,850
2350
4
Moss
—
—
17,100
2500
SFHRM 39.2
2
Moss
—
—
16,750
929
IX
—
—
61,700
7319
61,700
7,319
X
—
—
15,425
1830
8.4:1
15,425
1,830
8.4:1
S
—
—
3,645
733
3,645
733
C.V
23.6
40.1
23.6
40.1
-------
TABLE A-4.15
TOTAL NITROGEN IN kg/ha. HOLSTON RIVER. JULY-AUGUST, 1977
Location
Species
Percent'
Compo-
sition
Avg. Dry
Wt. in
SZSL_
Chlorophyllous
Avg. Total0
N in g/kg
Dry Wt.
Avg. Total1*
N in g/ha
x 104
Avg. Total
N in kg/ha
Percent3
Compo-
sition
Non-Chlorophyllous
Avg. Dryb
Wt. in
g/m
Avg. Total
N in g/kg
Dry Wt.
Avg. Total
N in g/ha
x 104
Avg. Total
N in .k8/ha
TOTAL
HRM 117.6
Surgoins-
ville
HUM 119.4
Phipps
Send
HRM 119.7
Phipps
Bend
HRM 120.6
Phipps
Bend
H.d
V.a
A.c
P.c
P.n
P.p
H.d
A.c
P.p
V.a
Mass
V.a
A.c
Moss
P.n
V.a
Moss
P'P
A.c
H.d
84.80
14.68
0.60
0.01
0.01
0.05
Total
76.68
8.58
9.50
4.99
0.24
Total
99.56
• .40
0.04
Total
95.90
2.66
0.53
0.75
0.02
0.15
Total
314.93
54.52
2.23
0.04
0.04
0,18
0371.38
173.89
19.46
21.54
11.32
8.54
226.78
310.34
1.25
0.12
311.75
152.49
4.23
0.84
1.19
0.03
0.24
159.01
20.914
23.317
25.700
24.064e
23.864
24.264
20.914
25.700
24.264
23.317
15.425
23.317
25.700
15.425
23.864
23.317
15.425
24.264
25.700
20.914
6.586
1.271
0.057
0.001
0.001
0.004
7.920
3.637
0.500
0.523
0.264
0.008
4.932
7.236
0.032
0.002
7.270
3.639
0.099
0.013
0.029
0.001
0.005
3.784
65.86
12.71
0.57
0.01
0-01
0.04
79.20
36.37
5.00
5.23
2.64
U.U8
49.32
72.36
0.32
0.02
72.70
36.39
0.99
0.13
0.29
0.01
0.05
37.84
58.43
41.58
76.54
5.59
7.13
10.74
100
87.42
12.28
0.32
25.803
18.362
44.16
14.397
1.051
1.341
2.020
18.81
78.06
78.06
24.399
3.427
0.089
27.91
13.460
17.392
13.460
17.625
19.888
17.392
17.392
17.817
17.392
19.888
0.347
0.319
<57666
0.194
0.018
0.027
0.035
0.274
1.357
1.357
0.434
0.600
0.002
1.036
3.47
3.19
6.66
1.94
0.18
0.27
0.35
2.74
13.57
13.57
4.34
6.00
0.02
10.36
I
-------
TABLE A-4.15
TOTAL NITROGEN IN kg/ha. HOLSTON RIVER. JULY-AUGUST, 1977
Chlorophyllous Non-Chlorophyllous TOTAL
Percent
Avg. Dry
Avg. Total
Avg. Total
Percent
Avg. Dry
Avg. Total
Avg. Total
Compo-
Wt in
N in g/kg
N in g/ha
Avg. Total
Compo-
Wt.-in
N in g/*kg
N in g/ha
Avg. Total
Avg. Total
Location
Species
sition
g/n£
Dry Wt.
x 104
N in kg/ha
sition
g/W2
Dry Wt.
x 104
N in kg/ha
N in kg/ha
HRM 134.2
Moss
86.73
55.69
15.425
0.859
8.59
Smiths
P.p
13.27
8.52
24.264
0.207
2.07
100
2.45
19.888
0.049
0.49
Bend
Total
64.21
1.066
10.66
2.45
0.049
0.49
11.15
SFHRM 1.2
P.p
96.54
163.28
24.264
3.962
39.62
97.96
26.126
19.888
0.520
5.20
Ridgefield
P.n
3.43
5.80
23.864
0.138
1.38
2.04
0.554
17.817
0.010
0.10
Bridge
Moss
0.03
0.05
15.425
0.001
0.01
'
Total
169.13
4.101
41.01
26.67
0.530
5.30
46.31
SFHRM 39.6
C-N
60.53
204.325
10.250
2.094
20.94
A.c
36.36
122.737
25.700
3.154
31.54
98.30
7.078
17.625
0.124
1.24
Moss
2.42
8.169
15.425
0.126
1.26
P.c
0.04
0.135
24.064
0.003
0.03
1.72
0.124
18.852
0.002
0.02
Mix
0.64
2.160
—
—
—
Total
337.56
5.377
53.77
7.20
0.126
1.26
55.03
NFHRM 4.8
P.n
55.42
66.43
23.864
1.585
15.85
81.49
6.462
17.817
0.115
1.15
Cloud
P.p
22.41
26.86
24.264
0.652
6.52
1.45
0.n5
19.888
0.002
0.02
Ford
H.d
20.81
24.94
20.914
0.522
5.22
15.22
;1.207
13.460
0.016
0.16
V.a
1.34
1.61
23.317
0.038
0.38
1.89
0.150
17.392
0.003
0.03
Moss
0.02
0.02
15.425
0.000
0.00
Total
119.87
2.797
27.97
7.93
0.136
1.36
29.33
Total Z
372.47
Total E
41.74 Z
414.21
X
46.56
X
5.22 X
51.78
S
22.52
S
4.74 S
25.52
%C.
V. 48.36
%C.V
90.86 %C.V. 49.29
-------
TABLE A—4.15
TOTAL NITROGEN IN kg/ha. HOLSTON RIVER. JULY-AUGUST, 1977
Location
Species
Chlorophyll
ous Non-Chlorophyllous
TOTAL
Percent
Compo-
sition
Avg. Dry
Wt. in
a/n?
. Avg. Total
N in g'kg
Dry Wt.
Avg. Total
N in a
x 104
Avg. Total
N in kg/ha
Percent
Compo-
sition
Avg. Dry
Wt. in
e/ia2
Avg. Total
N in g/kg
Dry Wt.
Avg. Total
N in
x 104
Avg. Total
N in kg/h.a
Avg. Total
N in k.f?/h.a
I
X
S
xc.v.
Omitting
361.81
51.69
18.60
35.99
Smiths B
end
41.25
5.89
4.69
79.53
403.06
57.59
21.11
36.66
-------
TABLE A-4.16
TOTAL PHOSPHORUS IN kg/ha. HOLSTON RIVER. JULY-AUGUST, 1977
Chlorophyllou8
Non-Chlorophyllous
TOTAL
Percent
Avg. Dry
Avg. Total
Avg. Total
Percent
Avg. Dry
Avg. Total
Avg. Total
Compo-
Wt. in
P in g'kg
P in g/ha
Avg. Total
Compo-
Wt. in
P in ^g/kg
P in a/ha
Avg. Total
Avg. Total
Location
Species
sition
Dry Wt.
x 104
P in ks/ha
sition
a/in2
Dry Wt.
x lO4^
P in kft/ha
P in . kg/ha
HRM 117.6
H.d
84.80
314.93
2.606
0.8207
8.207
58.43
25.80
2.468
0.0637
6.37
Surgoins-
V.a
14.68
54.52
3.060
0.1668
1.668
41.58
18.36
2.977
0.0547
5.47
ville
A.c
0.60
2.23
2.243
0.0050
0.050
P.c
0.01
0.04
2.275
0.0001
0.001
P.n
0.01
0.04
2.120
0.0001
0.001
P.p
0-05
0.18
2.430
0.0004
0.004
Total
371.38
9.93
44.16
11.84
21.77
HRM 119.4
H.d
76.68
173.89
2.606
0.4532
4.532
76.54
14.40
2.468
0.0355
3.55
Phipps
A. c
8.58
19.46
2.243
0.0436
0.436
5.59
1.05
2.175
0.0023
0.023
Bend
P.p
9.50
21.54
2.430
0.0523
0.523
7.13
1.34
1.810
0.0024
0.024
V.a
4.99
11.32
3.060
0.0346
0.346
10.74
2.02
2.977
0 .0060
0.060
Moss
0.24
0.54
1.830
0.0010
0.010
Total
226.78
5.85
18.81
3.66
9.50
1RM 119.7
V.a
99.56
310.34
3.060
0.9496
9.496
100
78.06
2.977
0 .2324
2.324
Phipps
A.c
0.40
1.25
2.243
0.0028
0.028
Bend
Moss
0.04
0.12
1.830
0.0002
0.002
Total
311.75
9.53
78.06
2.32
11.85
HRM 120.6
P.n
95.90
152.49
2.120
0.3233
3.233
87.42
24.40
1.873
0.0457
0.457
Phipps
V.a
2.66
4.23
3.060
0.0129
0.129
12.28
3.43
2.977
0.0102
0 .102
Bend
Moss
a 53
0.84
1.830
0.0015
0.015
P.p
0.75
1.19
2.430
0.0029
0.029
0.32
0.09
1.810
0.0002
0 .002
A. c
0.02
0.03
2.243
0.0001
0.001
H.d
0.15
0.24
2.606
0.0006
0.006
Total
159.01
3.41
27.91
0.56
3.97
-------
TABLE A-4.16
TOTAL PHOSPHORUS IN kg/ha. HOLSTON RIVER. JULY-AUGUST, 1977
Chlorop
yllous
Non-Chlorophyllous
TOTAL
Location
Snecie
Percent
Compo-
3 sition
Avg. Dry
Wt. in
si n?
Avg. Total
P in g/kg
Drv Wt.
Avg. Total
P in g/ha
x 104
Avg. Total
P in ke/'ha
Percent
Compo-
sition
Avg. Dry
Wt. in
R/'m
Avg. Total
P in g/kg
Dry Wt.
Avg. Total
P in g/ha
x 10*
Avg. Total
P in kg/ha
Avg. Total
P in ke/ha
HEM 134.2
Moss
86.73
55.69
1.830
0.1019
1.019
Smiths
P.p.
13.27
8.52
2.430
0.0207
(J. 207
100
2.45
1.810
0.0044
0.044
Bend
Total
64.21
7.23
2.45
"U.044
1.27
SFHRM 1.2
P.p
96.54
163.28
2.430
0.3968
3.968
97.96
26.13
1.810
0.0473
0.473
Ridgefield
P.n.
3.43
5.80
2.120
0.0123
°.123
2.04
0.55
1.873
0.0010
0.010
Bridge
Moss
0.03
0.05
1.830
0.0001
°.001
Total
169.13
4.09
26.67
0.53
4.62
SFHSM 39.6
C-N
60.53
204.32
A.c.
36.36
122.74
2.243
0.2753
2.753
98.30
7.08
2.175
0.0154
0.154
Moss
2.42
8.17
1.830
0.0150
0.150
P.c.
0.04
0.14
2.275
0.0003
0.003
1.72
0.12
1.842
0.0002
0.002
Mix
0.64
2.16
—
Total
337.56
2.91
7.20
0.16
3.06
NfBRM 4.8
P.n.
55.42
66.43
2.120
0.1408
1.408
81.49
6.46
1.873
0.0121
0.121
P.p.
22.41
26.86
2.430
0.0653
0.653
1.45
0.12
1.810
0.0002
0.002
H.d.
20.81
24.94
2.606
0.0650
0.650
15.22
1.21
2.468
0.0030
0.030
V.a.
1.34
1.61
3.060
0.0049
0.049
1.89
0.15
2.977
0.0004
0.004
Moss
0.02
°. 02
1.830
0.00003
0.0003
Total
119.87
2.76
7.93
0.16
2.92
Z
39.70
19.27
58.97
X
4.96
2.41
7.37
s
3.22
4.02
6.83
%c.v.
64.85
166.98
92.68
-------
TABLE A-4.16
TOTAL PHOSPHORUS IN kg/ha. HOLSTON RIVER. JULY-AUGUST, 1977
ocation
Species
Percent
Compo-
sition
Avg. Dry
Wt. in
Avg. Total
P in g/kg
Dry Wt.
Chlorophyllous
Avg. Total
P in g/ha
x 104
Avg. Total
P in kg/ha
Percent
Compo-
sition
Avg. Dry
Wt. in
_S^S
Non-Chlorophyllous
Avg. Total
P in g'kg
Drv-Wt.
Avg. Total
P in g/ha
x 104
TOTAT.
Avg. Total
P in kg/ha
Avg. Total
P in kg/h a
OMITTING SMITHS
BEND
C.V.
38.48
5.50
3.07
55.85
19.22
2.75
4.22
153.65
57.70
8.24
6.88
83.50
-------
TABLE A-6.1
OXYGEN DIFFUSION COEFFICIENTS.
HOLSTON RIVER, TENNESSEE. JULY - AUGUST, 1977.
Date
H.R.M.
Kti/
K20°i
23 July
136.1
0.28
0.23
0.21
0.17
0.69
0.56
136.3
0.48
0.39
136.0
0.47
0.39
0.84
0.71
1.24
1.05
0.65
0.55
U.48
0.41
134.0
0.52
0.44
134.2
1.41
1.19
134.2
0.90
0.76
24 July
121.6
0.87
0.74
0.39
0.33
0.92
0.78
120.1
0.47
0.40
28 July
120.1
0.57
0.51
120.1
0.56
0.50
120.1
0.78
0.71
29 July
120.1
0.58
0.55
120.1
0.64
0.60
i^Riffle area.
~/g °2/m2/hr.
-------
TABLE A-7.1
CHEMICAL ANALYSES OF CHEROKEE RESERVOIR WATER SAMPLES (mg/L) AND NITROGEN:PHOSPHORUS RATIOS
iiGLSTON RIVER. JULY - AUGUST, 1977
Dissolved
Inorganic
Total
Depth
Total
Inorganic
Total
Total
nitrogen
nitrogen
Station
(meters)
TKN-N
N0?-N0^-N
nitrogen
nitrogen
Phosphorus:
phosphorus
N:P
N:P
55
0.1
.23
.03
.04
.27
.07
.01
7
1
27
1
7
.23
.02
.05
.28
.07
<.01
7
1
28
1
6
.23
.01
.04
.27
.05
<.01
<.01
5
1
27
1
59-60
0.1
.25
.12
.06
.31
.18
<•01
18
1
31
1
7
.15
.01
.06
.21
.07
<.01
7
1
21
1
20
.40
.21
.46
.86
.67
.01
67
1
86
1
67
0.1
.23
<.01
.13
.36
.14
<.01
.01
14
1
36
i
20
.5
.45
.29
.79
.74
.03
.05
14.8
1
15.8
1
GCE
0.1
.18
.03
<.01
.19
.04
<.01
.02
2
1
9.5
1
5
.2
.08
<.01
.21
.09
<.01
.02
4.5
1
10.5
1
10
.3
.3
<.01
.31
.31
<.01
<.01
31
1
31
1
75
0.1
.25
.06
.23
.48
.29
.01
.04
7.3
1
12
1
4
.3
.03
.24
.54
.27
.01
.05
5.4
1
10.8
1
X
10
.25
.06
.69
.94
.75
.04
.08
9.4
1
11.8
1
86
0.1
.37
.1
.32
.69
.42
.04
.07
6
1
9.9
1
3
.37
.15
.32
.69
.47
.04
.06
7.8
1
11.5
1
6
.37
.25
.32
.69
.57
.14
.12
4.8
i
5.8
1
92
0.1
.56
.15
.69
1.25
.84
.08
.11
7.6
1
11.4
1
2
.5
.21
.66
1.16
.95
.08
.13
7.?
1
8.9
1
-------
FIGURES - APPENDIX A
-------
FIGURE A-2.1
LOCATION OF MAJOR INDUSTRIAL AND MUNICIPAL DISCHARGERS
-------
SFHRM 8.2
FT. PATRICK HENRY DAM
SFHRM 5.6
Tennessee Eastman
SFHRM 4.5
Holston Army Ammunition, Area A,
SFHRM 4.3 and 4.0
Mead Corporation
SFHRM 2.4
Kingsport STP
SFHRM 2.3
/
NFHET"" HRM 141.3
0.6
Holston Army <8> HRM 139.2
Ammunition
Plant, Ai?ea B
HRM 139.6
HRM 139.1
VA
br.sto|
TN churchil
ToKingsport
i
]N
rogersville
ii°
Johnson city
HRM 131.7
HRM 128.5
Holiston Mills
HRM 128.4
IHRM 126.6
HRM 121.6
SIIRGOINSVILLE /\M HRM 118.4
-------
FIGURE A-2.2
DISCHARGE FROM FT. PATRICK HENRY DAM. JULY 1977
-------
10000 n
/-N
r .»
8000 "
W
o
<
3
u
6000 -
to
W
Q
O
CQ
g
4000 -
H
2000 "
0 4 •
00
06 12 18
7/23
W
t
06 12 18
7/24
00 06 12
7/25
-------
FIGURE A-2.3 to A-2.13
STREAM SECTIONS. HOLSTON RIVER. JULY 1977
-------
Figures A-2.3 and A-2.4
STREAM SECTIONS
HOLSTON RIVER
JULY,1977
NFHR 4.6
1:30 PM
July 25, 1977
FLOW: 209.5 cfs
AREA: 359.6 sf
AVG. DEPTH = 1.7 ft.
AVG» VELOCITY = 0.58 fps
NOTE: Gaged After Major Rainfall
r*
200
DISTANCE (Ft.)
NFHR 0.6
7:0 Q AM
July 23, 1977
FLOW =85.5 cfs
AREA = 264.25 sf
AVG. DEPTH= 1.06 ft.
AVG. VELOCITY" 0.323 fps
I
200
DISTANCE (fC.)
-------
Figures A-2.5 and A-2.6
STREAM SECTIONS
HOLSTON RIVER
JULY,1977
W
H
Pm
W
O
HRM 141.3
1:00 PM
July 20, 1977
FLOW = 1181.65 cfs
AREA = 1309.50 sf
AVG. DEPTH = 2.78 ft.
AVG. VELOCITY =0.90 fps
T
200
DISTANCE
PC
H
A*
W
P
HRM 139.2
12:00 PM
July 23, 1977
FLOW =764 cfs
AREA = 1257 sf
AVG DEPTHS = 2,
AVG VELOCITY -
2 ft.
0.61 fps
200
DISTANCE
(ft.)
-------
Figure A-2.7
STEAM SECTIONS
HOLSTON RT.VER
JULY, 1977
HRM 136.2
4:30 PM
July 22, 1977
FLOW = 777.26 cfs
AREA = 2143.59 sf
AVG. DEPTH = 5.57 ft.
AVG. VELOCITY =0.36 fps
-------
Figures A-2.8 and A-2.9
STREAM SECTIONS
HOLSTON RIVER
JULY, 1977
HRM 131.7
9:45 AM
July 20, 1977
FLOW - 1296.21 cfs
AREA * 762.63 sf
AVG DEPTH = 1.65 ft.
AVG VELOCITY =1.70 fps
100
1 r
200 300
DISTANCE (ft.)
1
500
HRM 128.5
12:30 PM
July 20, 1977
FLOW =1073.29 cfs
AREA = 763.40 fs
AVG. DEPTH » 1.96 ft.
AVG VELOCITY -1.41 fps
1 r
200 300
DISTANCE (ft.)
-------
0
1
2
3
4
5
6
7
8
9
Figure A-2.10
STREAM SECTIONS
HOLSTON RIVER
JULY, 1977
HRM 121.6
6:30 PM
July 24, 1977
FLOW = 1140.8 cfs
AREA = 2278.0 fs
AVG. DEPTH = 5.06 ft.
AVG. VELOCITY =0.50
fps
100
200 300
DISTANCE (ft.)
400
"I
500
-------
Figure A-2.11
STREAM SF.CTTONS
HOUSTON IMVI'.R
JULY, 1977
1-
HRM 120.1
4:00 PM
July 21, 1977
FLOW = 1333.6 cfs
AREA = 896.0 fs
AVG. DEPTH = 1.34 ft.
AVG. VELOCITY =1.49 fps
ss
(X
w
o
2-
T"
100
r
200
r~
300
I
400
—T
500
n—
600
670
DISTANCE (ft.)
-------
Figure A-2.12
STREAM SECTIONS
HOLSTON RIVER
JULY, 1977
HRM 126.6
2:30 PM
July 22, 1977
FLOW = 987.7 cfs
AREA = 668.8 sf
AVG. DEPTH = 1.49
AVG. VELOCITY = 1.
ft.
48 fps
DISTANCE (ft.)
-------
Figure A-2.13
STREAM SECTION
HOLSTON RIVER
JULY, 1977
DISTANCE (ft.)
-------
FIGURE A-2. 14
RIVER STAGE. HOLSTON RIVER MILE 141.3 JULY 1977
-------
Q
w
I
tH
c3
fcj
O
2
C/i
P3
e
§
1157.4-
1157.2"
1157.0"
1158.0-
1156.6-
1156.4"
1156.2*
1156.0"
1155.8-
1155.6*
1155.4"
1155.2"
1155.0-4-
1154.8-
1154.6*
1154.4*
1154.2"
1154.0"
RIVER STAGE
HOLSTON RIVER MILE 141.3
JULY 1977
III ^ ,! ^ ool)0 ^ riftOO ^ 1600 hfc ^ °^00
0800
1600
7/23/77
0800 1600
7/24/77
00 " 0800 " 1600
7/25/77
TIME IN HOURS
-------
FIGURE A-2.15
WATER SURFACE ELEVATIONS. HOLSTON RIVER. JULY 1977
-------
1158
HRM141.3 1156.
1154,
WATER SURFACE ELEVATIONS
HOLSTON RIVER
JULY, 1977
/
Denotes gaging period
A
/ \
y\/
1147,
HRM136.2 1145
11431
J
1128
HRM131.7 1126
11241 a.
1120
HRM128.5 HI?
Hid
/
HRM118.4
1094
1092
10 9Q
A
/\
/\
i \
\
J
i\j
-i—i—i—-—i—•—i—•—i—•—i—¦—i
12 00 12 00 1 2 00 12 00 12 00 12 00 1 2 00
7-20 7-21 7-22 7-23 7-24 7-25
DATE-TIME
-------
FIGURE A-2.16
TIME OF TRAVEL STUDY. HOLSTON RIVER. JULY 1977
-------
TIME OF TRAVEL STUDY
HOLSTON RIVER
DATE - TIME
-------
FIGURE A-2.17
TIME OF TRAVEL STUDY. HOLSTON RIVER. JULY 1977
-------
SFHR 1.
HRM 141.
HRM 139.
HSM 136.
HRM 131.
HRM 128.
HRM 126
HRM 121
REACH
2 - HRM 141.3
,3 - HRM 139,2
.2 - HRM 136.2
.2 - HRM 131.7
.7 - HRM 128.5
.5 - HRM 126.6
.6 - HRM 121.6
.6 - HRM 118.4
AVG
0-K-
0600
'HRM 118.4
0000
0600
DATE - TIME
12*00
7/24
¦HRM 121.6
•HRM 126.6
¦HRM 128.5
HRM 131.7
-HRM 136.2
HRM 139.2
HRM 141.3
-i ¦t-SFHR 1.2
1800 0000 0600
7/25
-------
FIGURE A-3.1
MACROINVERTEBRATE AND PERIPHYTON SAMPLING LOCATIONS
-------
Drainage Area = 9,780 sq. km. (3,776 sq. miles)
Mean Annual Flow = 132.8 m-fysec (4,691 cfs)
1976 Basin Population (Approx.) = 404,000
-------
FIGURE A-4.1
AQUATIC MACROPHYTE SAMPLING LOCATIONS
-------
YARDS
-------
FIGURES A-4.2 TO A-4.12
FLOW AND TURBULENCE NEAR SURGIONSVILLE. HOLSTON RIVER. 1967-1977.
DATA FROM STORET INPUTS BY TVA AND USGS.
-------
'.J
li.l
t.J
U.I
_.J
ID
en
or
:3
4(1
20
(!)
O
cr
-------
40
20
0 _
8.00 _
7 .00 _
6.00 _
5.00 .
4.00 _
CD
u.
° 3.00 _
2-00 _
1 .00
0 .00
-r-MflX- TURBUI.
-L HIN.
TURBUL
ENCt: ( JTU)
ENCE (JTU)
JflN
FEB
hflR
RPR
MAY
JUN JUL
1977
AUG
Sf.P
OCT
NOV
-------
3 .20
2.80 _
2 .40
2.00
1 .60
.20
0.H0
0.40
0.00 J.
-i- MAX.
J- MIN.
MAX. TURBULENC'fc (J7U)
TURBULENCE (JTU)
JflN
FEB
MHR
APR
MR Y
JUN JUL
1976
nuG
SEP
OCT
NOV
DEC
-------
20
10
0
16
14
li?
I
MRX. TURBULENCE". (JTU)
MIN. TURBULENCE (JTU)
10
?. _
JRN FEB MflR HPR MHY JUN JUL HUG SEP OCT NOV DEC
1976
-------
>
t—
Uj
Cj
ir
UJ
in
a:
i—
16
0
16
I
14
12
10
-T- MAX . TURBULENCE (JTU)
-LrifN. TURBULENCE (JTU)
JflN Ff8 MflR RPR tlRf JUN JUL AUG StP OCT NOV DEC
1975
-------
0
1C
14
12 _
10
-r-hflX. TURBULENCE CJTU)
-LttlN. TURBULENCE (JTUJ
JflN FEB MflR RPR MAY JUN JUL AUG SEP OCT NOV DEC
1975
-------
100
so
0 _
16 ..
14 .
12 .
in _
o ...
I
MAX. TURBULENCF (JTU)
M 1 N • TURBULENCE: (JTU)
JflN FEB MHK APR HFIY JUN JUL
1974
-------
OJ
o
.z
QJ
ZD
m
Ct'
:3
i--
100
50 _
0 .
16 .
to
o
:z
cr
CO
o
x:
14 _
12 _
10 _
I
MAX. TURBULENCE (JTU)
MINI. TURBULENCE (JTU)
CO
tJ_
CJ
8 _
LU
rhj
a:
or.
UJ
>
a'
-X
i
-------
UJ
o
IU
,_J
CD
ct:
t-
0
3.20
2.80 _
CO
O
£
(O
O
~=
I—
2 .40
2.00 _
-r-MflX. TURBULENCE UTU)
-L(1IN. TURBULENCE (JTU)
(O
li-
CJ
1 .60 ..
1 .20
Uj
O
CE
UJ
cc
0.80 _
0.40
CJ.00
JflN
FEB
MAR
(1PR
MAY
JUN JUL
1973
flUC
SEP
OCT
NOV
DEC
-------
2 .00
1 .00 _
0.00
6.00
7.00
6-00 _
T
hflX. 1UR8ULENCE (JTU)
-J— MIN. TURBULENCE CJTU)
5.00 _
4.00 _
3.00
2.00 _
1 .00
0.00 J J
JHN FEB MHK APR MAY JUN JUL AUG SEP OCT NOV OEC
1971
-------
I—
lij
(.J
Z2.
LlJ
I
Z)
CD
or
r>
i—
a)
a
?
cr
CO
o
i;
cn
u.
o
O
a:
ct
uj
;»
rr
fiO
40
fJ .
3.20 .
2.80 ...
2.40 _
2.00 ..
i .60 .
1 .21) ..
0.80 .
(1.4(J
I
0.00
I
MAX. TURBULENCE IJ1U)
MIN • TURBULENCE 1JTU)
JHN
FEB
MHR
RPR
MAY
JUN JUL
1967
RUG
SEP
ocr
NOV
DEC
-------
FIGURES A-4.13 TO A-4.23
FLOW AND TEMPERATURE NEAR SURGOINSVILLE. HOLSTON RIVER. 1967-1977.
DATA FROM STORET INPUTS BY TVA AND USGS
-------
o
UJ
n:
n
cr
ft:
ii_i
Q
s~
UJ
t-
40
20 ..
3.20
(n
o
z
cr
cn
ID
CD
X
I—
cn
Ll
u
UJ
ci>
cr
Qi
ijj
cr
.80
2-40 .
2 .00
1 .60 -
I .20 _
0.00 _
0.40 _
0.00
I
llflX. TEMPERATURE C
MIN. TEMPERATURE C
JRN
FEB
MAR
HPR
MAY
JUN JUL
1967
RUD
SEP
OCT
NOV
DEC
-------
20
10
0
8.00
7.00 _
6.00 _
S.00 ..
4 .00
3.00 _
LU
O
CE 2.00
OC
LU
1 .00
IrtftX. TEMPERATURE C
fllN. TEMPERATURE C
0.00 J
JflN FEB MfiR APR HflV JUN JUL AUG SEP OCT NOV DEC
1971
-------
CJ
UJ
ft:
n
i—
CJ"
or
I.U
a.
x
UJ
f-
cn
O
~z
cr
-------
o
UJ
(Y.
:o
i—
ex
QC
LiJ
Q.
n
IU
I-
to
o
zz
cr
CO
ZD
o
x
zo
10
0
16
14
12
10
8 -J
CO
Li_
<_>
C5
cr
a:
iij
>
a
4 J
2 J
0 J
T
MRX . TEMPERATURE C
—M IN . TEMPERATURE C
JHN FEB MAR «PR «HY JUN JUL AUG SEP OCT NOV DEC
1974
-------
(.J
U.J
oc
¦3
cr
cr
-------
40
20
0
16
14 _
12 _
10
I MAX. TEMPERATURE C
MIN. TEMPERATURE C
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV OEC
1975
-------
C J
UJ
Cd
:n
i-
cx
or
ui
Q
i~
UJ
h-
40
20
16
14 _
CO
a
~Z.
a:
CO
3
o
r
f-
12 _
10
MAX. TEMPERATURE C
-LfllN. IE
EMPERflTURE C
CO
U_
CJ
6 _
UJ
a
a:
QC
UJ
>
a:
a _
-------
UJ
or.
k~
cr
a:
UJ
Q.
x:
UJ
40
20 _1
0
16
m
o
•2.
cr
CO
ZJ
o
j-
H
14
12
10
I
MAX. TEMPERATURE C
MJN. TEMPERATURE C
CO
Ll_
O
8 _
UJ
Ct)
cr
Cf
UJ
>
cr
-------
<_>
LlJ
£f
O
r
to
u.
CJ
2.80 _
2.40 _
2.00 _
1 .60 _
1 .20
UJ
O
£ 0.80 J
UJ
>
cr
0.40 _
o.oo
MAX. TEMPERATURE C
-L-min.
TEMPERATURE C
JAN FEB MAR RPR
flHY
JUN JUL
1976
HUG
SEP
OCT
NOV
0EC
-------
o
UJ
a:
"3
i-
a:
Cd
iLl
a
*7
li.l
40
ZQ _
8.00
7.00 _
6.00 _
cn
o
z
cr
(/->
;_>
o
t 5-00
I MAX.
MIN.
TEMPERATURE C
TEMPERATURE C
4 .00
CO
li.
3-00
UJ
o
CC 2.00 _
or.
UJ
>
(X
I .00 J
0.00
JRN
FEB
HflR
RPR
fIRY
JUN JUL
1977
RUC
SEP
OCT
NOV
DEC
-------
16
8
0
8.00
7.00
6.00
5.00
4 .00
3.00
2.00
1 -00
0.00
I MAX. TEMPERATURE C
MIN. TEMPERATURE C
JflN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1977
-------
FIGURE A-6.1
SINGLE STATION ANALYSIS FOR DETERMINING COMMUNITY RESPIRATION AND GROSS PRIMARY
PRODUCTION RASED ON DIEL CHANGES IN DISSOLVED OXYGEN AND TEMPERATURE.
HOLSTON RIVER MILE 134.2.
JULY - AUGUST 1977
-------
9.0
7.0
o>
£
5.0
8
3.0
23July
24July
c
1.10
o
P
0.90
v»
3
O
0.70
CO
o
a
0.50
+ 0.80
£ +0.60
s
+0.40
js
+0.20
a>
o»
c
0.00
o
x:
U
-0.20
o
a>
-0.40
o
cr
-0.60
o
o
-0.80
1 1 1 1 1 r
0600 12001800 2400180012000600
Time
Pyrheliometer Chart
k = 0.98g 02/m /hr.
R = mean depth (0.65g 02/m3/
hr.)24hrs.
= 1.2m(0.65g 02/m3/hr.)24hrs.
R = 18.7g 02/rrr/day
GPPsmean depth(9.2g 02/m3/
day)
=1.2m(9.2g (Vm3/day)
GPPsUOg O^/mvday
V/A Equals 0.5g Og/m3
«•— Rs0.65g 02/m3/hr.
2400 0600 1200 1800 2400
Time (hrs.)
-------
FIGURE A-6.2
SINGLE STATION ANALYSIS FOR DETERMINING COMMUNITY RESPIRATION AND GROSS PRIMARY
PRODUCTION BASED ON DIEL CHANGES IN DISSOLVED OXYGEN AND TEMPERATURE.
HOLSTON RIVER MILE 136.1.
JULY - AUGUST 1977
-------
o>
E
O
Q
10.0
8.0
6.0
4.0
ao
1.20
c
o
1.00
o
3
0.80
o
c/)
0.60
O
Q
0.40
_
L!
JZ
+ 0.60
s
-J
+ 0.40
CP
E
+0.20
a>
o»
c
0.00
o
-0.20
o
«*-
o
a>
-0.40
o
CH
-0.60
O
Q
1800 24000600 1200 1800
Time (hrs.)
Pyrheliometer Chart
23July 24July
¦f r—i r
060012001000 2400 060012001800
Time
k = 0.28 g Og/m^/hr.
R = mean depth (0.44 g 02/m^
hr.)24hrs.
= 1.7m (044g 02/m^hr.)24hrs.
R = 18.0m 02/m2/day
GPP=1.7m(8.7g 02/m3/day)
GPP=14.8g Og/m^day
V/A Equals 0.5g O^/rri3
R = 0.44g (ym3/hr.
-------
FIGURE A- 6.3
GRAPHICAL ANALYSIS FOR DETERMINING RESPIRATION AND GROSS PRIMARY PRODUCTION FOR
FOR HOLSTON RIVER MILES 131.7 TO 118.4
JULY - AUGUST, 1977
-------
Pyrheliometer Chart
§ 4.0
0.90 r
23July
24 July
"i i i i i i
0600 1200 1800 2400 06001200 1600
Time
k = 0.48g/m3/hr.
R= mean depth(0.21 g Oj/m3/
hr.)24 hrs.
R=0.9m(0.21g (Vm3/hr.)24hrs.
R = 4.7g C^/ir^/day
GGP=mean depth (g Og/m3/
day
GGP = 0.9m (2.7g 02/m3/day
GGP=2.5g02/m2/day
\/ R»0.21g 02/m3/hr.
j L
0300 0900 1500 2100 0300
Time (hrs.)
Equals 0.5g 02/rrf
-------
FIGURE A- 6.4
GRAPHICAL ANALYSIS FOR DETERMINING COMMUNITY RESPIRATION AND GROSS PRIMARY PRODUCTION FOR
GROSS PRIMARY PRODUCTION FOR HOLSTON RIVER MILES 141.3 TO 126.6.
JULY - AUGUST 1977
-------
1.00
c
0.90
O
S
0.80
3
O
CO
0.70
o
a
0.60
0.50
+ 0.3
u
+ 0.2
-1
+ 0.1
S
o>
E
0.0
*¦—*
8>
-0.1
C
o
a
-0.2
»*-
w
4>
-0.3
o
oc.
-0.4
o
o
-0.5
Pyrheliometer Chart
23July 24July
i 1 i V—i 1
0600 12001800 24000600 1200 1800
Time
k = 0.48g 02 /m3/hr.
R= mean depth (0.50g 02/m3/
hr.)24hrs.
R = 0.8m (0.50g 02/m3/hr.)24hrs.
R = 9.6g 02/m2/day
GPP=mean depth (g 02 /m3/day
GPP=0.8m(9.6g 02/m3/day
GPP=7.7g 02/m?/day
Equals 0.5g02/m
R«0.50g 02/m3/hr.
1200 1800 2400 0600 1200
Time(hrs.)
-------
FIGURE A-7.1
CHEROKEE RESERVOIR SAMPLING STATIONS
-------
59-60
67
&
Si
<=M>
5?
vSS/
8
92/
-------
APPENDIX B
COMPLIANCE ASSURANCE SAMPLING INSPECTION REPORTS
-------
COMPLIANCE ASSURANCE SAMPLING INSPECTION
HOLLISTON MILLS, KINGSPORT, TENNESSEE
PERMIT NO. TN0002330
INTRODUCTION
During the period July 19-23, 1977, Messrs. William R. Davis and
George Hollerback of the United States Environmental Protection Agency
(US-EPA), Region IV, Surveillance and Analysis Division conducted a
compliance assurance sampling inspection at Holliston Mills near
Kingsport, Tennessee. Messrs. Robin Manning, Tennessee Division of
Water Quality Control (TN-DWQC) and Ben Scott and Dan Cochran of
Holliston Mills assisted with the inspection and answered questions
relating to the NPDES permit.
STUDY FINDINGS
The NPDES daily maximum permit limits for biochemical oxygen demand
(BOD5) was exceeded for the three composite samples collected during the
July 19-23 period. The total Kjeldahl nitrogen (TKN) daily maximum permit
limit was exceeded during the July 19-20 and 20-21 compositing periods.
It should be noted that the wastewater treatment plant was being expanded
with completion expected during the fall of 1977. A single grab sample
collected during the inspection confirmed that the plant's cooling water
was not contaminated. The company's monitoring program was acceptable.
MANUFACTURING PROCESS
The plant manufactures paper and textile materials for bookbinding and
associated trades. The cloth is finished and dyed, starched and cured.
Other textile materials and paper are filled with lacquer and cured.
The plant operates 252 days per year on a three shift per day schedule.
WASTEWATER TREATMENT
The treatment facility during the inspection consisted of primary
clarification, an activated sludge unit, secondary clarification and two
lagoons. The plant was overloaded and the lagoons were septic. The
wastewater was being measured with a 86® V—notch weir and a Stevens
Recorder. The following units were under construction: secondary
clarifier, conversion of existing secondary clarlfier to an aerobic
digester, sludge drying beds, chlorine contact chamber, and an equali-
zation basin. The flow will be directed through a Parshall flume into
the equalization basin, into the primary clarifier, followed by activated
sludge treatment. The excess sludge will be digested and landfilled after
drying. The clarified effluent will be chlorinated and discharged into
the Holston River via a drainage ditch.
-------
STUDY PROCEDURES
An ISCO model 1392 automatic sequential sampler was installed in
the weir box of the effluent. Aliquots of the wastewater were pumped
into a refrigerated glass container at hourly intervals for four
consecutive 24-hour periods, except for the July 21-22 period. A
malfunction in the sampling equipment necessitated the taking of a
grab sample. Flows were obtained from the company's flow measuring
equipment. An additional grab sample was collected from outfall 002
to verify a cooling water discharge.
Analytical Data and Permit Limitations
The daily maximum permit limitation for BOD5 was exceeded during
all three compositing periods. Daily maximum permit limitations for
TKN were exceeded during the first two compositing periods. The analytical
data are given in the attached table.
General Discussion
The plant's monitoring program is commensurate with the NPDES permit.
Analyses are performed in the plant laboratory by Mr. Dan Cochran, plant
operator, using approved methods listed in the Federal Register.
CONTACTS
W. R. Davis, US-EPA, Athens, Georgia, 404/546-3117
Robin Manning, TN-DWQC, Knoxville, Tennessee, 615/588-6537
Dan Cochran, Holliston Mills, Kingsport, Tennessee, 615/357-6141
-------
PERMIT LIMITATIONS
PARAMETERS
BOD5
TSS
TKN
Fecal Coliform
Settleable Solids
PH
DISCHARGE LIMITATIONS
kg/day (lbs/day)
Daily Avg.
Other Units
Daily Max. Daily Avg. Daily Max.
238 (525)
318 (700)
4.5 (10)
386 (850)
513 (1130)
6.8 (15)
1000/100 ml 2000/100 ml
1.0 ml/1
6.0 - 9.0 pH units
-------
1 1 . i 1 i
i . - 1 •. i
t "'
1 (i b L
• l 3 1 D'.'t.
1 \C«
M "«'
m I.KVtL
C
(U'i b-10^
4.AC03
«;t»t if'ii
• nit-.
n ¦>
O/WK
1 IMt
"<7i|
Mi/I*
ki;/!)
KG/D
KG/0
Kli/D
t- 0()l
intri^
I . Ki
m> i
tfl IS"
1- ,.|
(«.) 7/o//i
1 -31)1'
0
->.h4 .1
1 1 II'.
lAO''
t'Mll!1
(forts
jbti'i
II . ".S '»
1
t>m'i f*
I ;".r
1203
711
WIN'HII T
**(It*
HI-SUHIt
MJI KJEL
MH3-N
N021N03
KLO -
i«»\r
TO I 411
U
TOTAL
N-TOTAL
*>T "* 1 I'Vj
t:» It
1 1 -t.
I 1 I'T
i-'l.l!
*.i/L
HG/L
Mfa/L
MG/L
H O!-'.
7711 7->
^.o<
J
0.33
0.01
O.S7
fnMS-TOI
CO'J
I OfG C
HE5IUUE
T ALK
"I if-y/tL
c
OISS-IO^
CAC03
vt* ri'.N
I. a I F_
11 - t
..a IF
1 I t*F,
mi/,/1 p
l-./L
ii'i/L
C HG/L
M(i/L
r 3 » >
1 .11'JO
»o<
2. 0
*9
97
««9v<»9l)
!SflvvC303»5 vJ » 1>
¦2-5ft05fteww« -4- ¦::¦
CfI'll»U f I
~.i|l
HFSII.'Ut
lor KJEL
NH3-.M
N(J£&N03
FLOW
b i/^Y
for '.KLl
N
TO (AL
N-10TAL
'alt
T i »iF
OA fh
Tlrtt
MSI)
Li-i/D
L !•/!)
LH/l)
LW/0
LH/U
i- 0".-
77117^0
1 TJ 3 f!
'1. 'JO"
u.l<
U
0.02
0.00
0.03
L"I I T
t--.i,is-roi
oil*
r on (i c
KF.SIDUE
T ALK
HO*'
HI Lt Vt'L
c
UlSS-lOa
CAC03
<•! 1 T If) j
' ¦ It-.
T I *
!.-Mh
T I 'ih
V'.?n
Lr'/n
L'n
2<
0.1
3
5
l_:)li!iili 1
"(111
HtSlOUE
TO( KJEL
NHS-N
N02^N03
1 L"»>
¦a U»Y
TuT -IFLT
N
TO 1 AL
N-TOTAL
«TA11')N
r<. It
Ti i Th
T i ¦ ¦<(
:j.-. TF
TI^F
r i/u
KG/D
KG/0
KG/0
m- o;t<;
77O7P0
l«»3n
0.0U*
0.023
1<
0.0
2
2
-------
•"II L I '»(•>•( Mills
r I M<-V,h>( I.J I , (
"
•> i)Af
TO I NtLT
SETTLhLE
N
•u.| l"l
• - It
li t
»>F h
i nv
•ii.ij
CM - 1
bU
.it,/L
M.,/L
HL/L
M'o/L
- .0-1
f fuf
1 .»n
(i > 77J720
) T ill
« 4 <•>
^^li.O
lbi)
0.1<
•i.10
... 1
7/'i !<>••
.1 i • \>
•>. •>
(¦I -0'i 1
111172"
1 >_«0
(' ) 7 7<»7^l
l ^iiii
II . »S*
JJO.il
126
0 • 1 <
8.H2
nr. (p. j
7/ ') 721
1 'jHU
">."J
i <»•' 1
/ 7 >• 7 22
Si .«•
'J . 4
JbW.O
11»
0 .1 <
7.16
-¦ n,, j
7 T\> 7 7^.1
l }-»-i
144
0.1<
6.SO
•• '!• 1
77 -7.-> i
l j*»>
ll.<'
»'.'5
. im 4 — r.;
Mile' »'I3
C'lU
T Oilli C
KF.S I DUE
T ALK
[Ill ll.
ll-llil >1
-•1 Ltv£L
C
I) ISS— 1 Ob
CAC03
M \T '.•> i
it
r i ^
'j-.lf.
i i"t
j/l
M>/L
"¦¦¦>/{. w
1^/L
MC./L
C MG/L
Mf,/L
» 'O'i I
7 / 0 7 1 <•
i jo
(' ) 7/i'7/?u
ll .w /
0.lll<
'jibO
220.0
*«oo
4b2
»• 0 •» 1
77 W2'i
11 •• I
7 7'.i 720
l --jD
(O t 1)7 Si
1100
l.n
It . o 1 <
3.4 Jil
6«»i>
42U.0
820
"0 :• 1
i t >te1
11 J
7 7<'722
lbOC
(1. .i I <
J.CI'O
700
27b.0
H«tO
1
7 7ii rs?
l ->.i«>
K ) 7 7"72J
1 34-.
1
I'. <11 <
<~. IMJU
33b. 0
700
414
11 > 1S. h
1 if->
a coo-ace »%j»a»oao»<' JU 1 T
,.(ll>
S II'l»E
TOT KJEL
NH3-N
N02»kNn3
~ I.1'""
b l»«Y
T«>r "IFL 1
f|
TOt«L
M-TOTAL
'i'M f I •'"-1
.... 1F
r i - >-
Ml It
1 I
L^/'l
L"/U
LM/O
I.H/0
lh/o
K- I'.l
7 7 :i 71 '•>
1 JO
ICI / Y07/0
1-J.10
0 .» Jti
jj.ll
3,bJ
0.04<
r -IH'l
7 7 U 7iT>
l jo
(C> 77J721
1S0U
4
1/">I). J
477
j.<.4c;
4.M
O.I)4<
i.. J
/t»rss
laUO
0.-»b4
1 3*>4.ll
4 it
c/.l J
fl.26
0.04<
Th: Iss
l vitl
(1.) 77 I72J
1 J4->
II . 4-i4 f>
s.t •'i 3
7.3V
0 . 04 <
COMUlJI I
pios-ri)f
COiJ
r (iwij c
KtSlOUE
T ALK
FLO*
HI LtVEL
c
DISb-lOb
CAC03
•.T*T !"¦!
It
ll-t
HATE
1 IMt
MI4I,
LH/O
L"/n
Li/O
LH/O
LB/0
"•-•il .il
7 70 71^
1'JO
(C)7 70720
lbJH
V.* Jb
t\> J-i
ouu.^
2911
lf>4b
0 0 I
7 n< reo
l •> i>>
(O7707/1
lbOO
0.4b4
IZ.tUft
t>i.ii I
^ut)
^fiblOUt
101 KJEL
NH3-N
NU2^M03
t fity
TiiT '/FLI
il
TOTAL
N-TOTAL
srATio-i
>; i It
T. <1-
OA ft
TIMt-
Mil)
M>/l)
KU/ll
Mi/I)
Kfa/0
Kb/0
H'OOl
7 10/19
1 10
(0)7 70720
lb'ii)
(1.1 ih
-j 7. i
? 1 7
lb.16
2.0b
0 . 02<
»;i nlb. 7
lvlj
1^.30
3.7b
0.02<
w-
7 70 722
i -><•()
(O ll-USi
1 it >
II • '» S 4
^4 7
11.17
3. 3b
0 . 02<
-------
COMPTJAN'OK ASSURANCE SAMPLING INSPECTION
Tennessee eastkan company, Kn;c;sroRT, tennkssi'k
PERMIT NO, TN000.1640
INTF.ODUCjTON
Messrs. William Is. Davi» and George l!ol] erbnch of the United States
Envi ronmental Protection Agency (US -EPA), Region IV, Surveillance and
Analysis Division conducted a compliance assurance snnp.ling inspection
at: the Tennessee Eastman Company plant during July 19-23, 1977. Messrs,
Noil Sir.r.ons, Tennessee Eastman Company, and Robin Manning, Tennessee
Divisi on of Water Quality Control (TN--DKQC.) , assisted with the inspection.
STUDY FINDINGS
The wastewater treatment plant effluent exceeded the permitted daily
/orage loading for phosphorus for all 24*-hour compos i ting periods (July 20-23).
'jiic: da 3ly maximum permit limit: for manga'aose was c-Ke.ecdf.fi duri.nf, two 24-hour
compositing periods (July 19 -21) while the daily average was exceeded during
ali four compositing periods (July 19-23). The company's monitoring program
war acceptable.
l-L^luACTURIKG PROCESS
The Tennessee Eastman plant manufactures over 350 products which are
generally grouped as fibers, chemicals and plastics.
Included among the products made at: the plant are liodacrylic 'fiberr,
cellulose plastics and a wide variety of - chemicals for use in fibers,
photographic products and plastics by other Kodak entities, and for
t-o oth':r co-'pniv' e.s.
The plant employs appro--:finalely 13,000 persons ami operates 3G5 days/y«sor
producing some 30 million pounds/day of total product;
WASTrtfATHR TREATMENT
The. Tennessee East man Coupany employs a recovery system which recycles
choralcals where possible. In many cases the waste materials can not be
Vi-¦-ycl«:d but are incinerated. However, the waste chemicals that: are too
di lute to incinerate or recycle are routed to the wastewater treatment
sysLem.
-------
Four soparnto wastewater collection sy.«; terns are used. One. system
is for hign suspended solids wastes and those var.towntor s. received
neutralization nnd settling. The; second .system, collect:; the. ituijorily
of the dilute process waters and receivers neutralization. The* pre-
treated wastewaters from both these systems arc discharged into the
plant's wastewater treatment .system. The biological treatment
syst em$ consists of an aeration basin v;hieh has three cells 'covftrin^
If) acres and contain'; approximately 1.3G •- 75 hp aerators. Three 120
f#ol clarifiers clarify the polymerized effluents fro.v. the aeration
biv.in;-. with the sludge being recycled to the aeration basino. Wanted
.'Jie is treated in an aerobic digester and disposed of by spray
irrigation on a specially designed spray field. The clz-rifie..' discharge
Dc.v>i through a post~flc.-rr.tion basin before final discharge to the
SouI'l Fori: of the. llolston River through a 3 foot Parshall. f 1 uvon equipped
villi a recorder/total:Iv.or system. Samples are collected by the Company
on a tine composited basis into a refrigerated container.
The military waste col lection "system router, these wastewaters to
th : City of Kiugsport system. The fourth system handles the large
volcooling water used throughout, the. plant and is discharged
directly to the Soui.i Fork of th* Ilvlfton River.
STt;'>Y rnOCEJlUUiSS
The treatment system effluent (designated TE002) was sampled with
ai: IS CO model 1580 autom-.tic sequential sampler which van installed in
a nnnlnlc in the discharge line just, upstream from the. discharge pipe:.
AAiquotfi of the. wastewater were putapod into a refrigerated glass con-
tainer at no minute intervals for twTconsecutive 24~hour periods. The
raw water sample (desi..gnated TEUW) was collected by a grab technique
on July 20, and from the company's automatic sampler for 24-hour com-
po;;i tor. on July ?1, 7.2 and 23. Flows were obtained from company flow
)¦ *'.'j>y!r-jng devices. Choiiv--of—custody was maintained on all sampler..
'I .¦ i i l and I'ci i.:il Vi-i
The wastewater treat i:vnt pi ,.t effluent exceedrd the permitted daily
-go lo: ding for phosphorus i ov all 24-hour compositing per iods (duly 20-23).
The daily maximum pe;.p1t limit for manganese was exceeded during two 2/.--hour .
cn i.Mritj t ing periods (July 19-2.1) whi le, the daily average was exceeded during
a!I four compositing periods (July 19-23). The company's monitoring program
war. acceptable.
The analytical data and permit limitations are given in the attached
I:; b J. c*.
Cfii.-.iol F>j seussion
The plant's monitoring program is commensurate with the KPDES permit.
Analyse:} are performed in the plant laboratory by analysts using approved
ibods listed in the Register.
-------
The flow TOoa«uvinc recorder system v;af: inoperative. during tin'
study and flow;; were, obtained l>y influent, flow measurements obtained
from the sum of ran?,net:t.c flow meters Ins tailed in tlic aeration basin
inf.luent piper,.
CONTACTS
W. R. Davis, US--EPA, Athens, Georgi.-:, A0A/!>/(5-3117
Robin Manning, TN-D'TQC, Knc»xvi3.3.c, Tunnpssee, 63.5/588-6537
J. E. Edwards, Tennessee Eastman, 1CJngsport:, Tennesscee, 615/2^:6—2311
Neil Simmons, Tennefsoee Eastman, Kingsport, Tennessee, 615/246--2]11
-------
'.'.-/C-y (I'rr/dv.;-; Ct.Vr.its
• , -
Av-.- Dally X-r..' T-.:-ly Av^.~ 3r.ily rfar..-1 rrc-. -r."
ricv---/r^y (:.:or) r-'A ::/a ::/a
^5 (::-y 3"/ ir-14 c*:-cc) 3330 (C3.CC) ::/A ::/A
ZZ'Zr. CC=:. l-Arrril 3') r.7Ti CeCCD) 35>7 ;z:,030) X/A X/A
?s>tal Sttsrcs&r: ?2liis 7.7U (C-CC?) €JCi (13,00:) "/A ::/A
Toted dissolved :-.CiC.- 2* •.':^0!/;5C,OCCj=^'-»,CCOa,iOC,6CO}::/A X/A
Tetcl 5itrcser.-» \:S0 .(3000) 2721 (500?) X/A 8/A
?h;s->.oreu:, Tct:C3 135 (300) 272 (SCO) X/A X/A
Sir.c, Total 5"" '.125) 113 (25C) X/A X/A
~-.or.olr, 33 '5C; 2? ''3) X/A "/A
Iren, Total 125 (3C0) (1CC0) S/A X/A
v^rc-ncce, Jctil (ICO) 51 (SCO; X/A 5/A
EoV:lc--;lc Solids ::/A X/A X/A 0.5 =1/1
.Chr=r.ivr., Total "/A X/A 0-0; r-/l 0.1 sg/1
Ccrpgr, Total. "/A "/A C.C5 ~~/l C.l r^/l
Lead, Total X/A r/A O.CS "/I C.j? r^/l
Tcts.1 X/A X/A 0.5C5 =ss/l 0.c:T5'--/l
-------
J'.'L'- I'II f-'iut-'iT i>mj.
vr!Ci\! iima
C'J\
-^:"s
S I •? V j ^
;j-;s
rc:
r 1 ' ¦
S '1AV
r c ! <*i.
r*jr
Sf'TTV^i-K
N
Tor a'_
• * 7 • 7 ' • i»
y."
^<
7
0.1<
0.20
o.-;:
^ t'» .
r i
loin
V.> J. *•'•«.'
!.«•
r-'
s
0. 1<
0.1!3
o.
T\ j*.
7 y •.* 7 >* l
<:' y o
i/'Uw
(.i r •:
I. .c:
T w* -j ••
77D (/>;>
l; / •! 0
hs c
ZINC
C'JPP?=>
v.
Hi U.VtL
c
C^.TOT
ZfJ.TOT
C'J.TOT
«.? r
O.'.TT
T 1 IK
i.'A I>"
TI'-'K
* *! r / :
*S/L *
r.<}/1
5 +
7 71! /VC
1'JlS
¦:.—i
(J.O.l'j
r^l
;i 70 v
:r:.»<
4-C«
4Q»0
!).b<
103
~ ^ U'
7 iVi 7?Q
I'J IS
: 1-x
4*S 7
* • 0
C.5<
112
C-7
7; v
77"721
0 MiO
(( ) ni-.Tsj.
'j7';o
:
4 /> M
* 0
T1
7 ,*0/2?
:)' u o
<( ) 77.' 72J
yYrt>
i ^> ?<
9«>
4't v *J
f,4
-------
•:> C- x> i- o •> ¦? •& -.> .
- •> - .¦> ,*
- ¦ j r- • r 1 1.
O -T, -t <:¦ u- 'V O- 'V
•i ¦' o ¦:> ¦:
1 ¦> ,i ->-¦ -¦ ¦- (i -
MM)
rJMr
-tt •> r t: • ¦
;ur Kjix
? '.)3
'
^ •••¦;*
"Vi '>!
Till "W1
r-OTiu
\-T0T.v_
¦ :':n
r.
T : • »
i>.» r v
t ;
"•* • ;
L-'/t!
L'.V,)
lh/-;
T * W •;
tf-tr.-:
•) M;t
<<¦ ) / 7 J 7 r* 1
y;.o
f mr'*
.!¦' J ' . t
l'J<
7*> i.VJ
3-:;. <-'0
2^91 ,7tJ
7^i.
7 7 i 7,>i>
. -O-;
<* f i 7.
VI
^•sv-y
111^.
I3'». 79
;vbA.-»t:
y rc7f>\
0 ¦' *J«
(C:I
•.= 7u'-
^ - * ;? J
:< c j . 1 5
21.-62
kVl t . c'J
?•- w..
7 YJ //V
!; ' ¦.! 0
It 5 77 ;; (.¦:.>
0 / C 0
'i i.J 1 ^ ; 0II
1 '.'(*0
IIM.'jI
cS.^0<
*-.)7&.m3
: r
P':,5-'.-Tor
C'lO
r c
Pi ¦ :;tj J " i
/!: i-.'c
r '
w I L!" V S L
(J
Cw. r')t
ct;* :uT
CTfiTtO:-J
T l.-tF
T ; :'r.
¦ur/l!
•_^/n
L-s/O
L»-' / Ij
T'-v;
7 7')/?()
(i / 0 "
!C> I( 'ffl
'i 7 '¦()
#•;
1 .'j-iv
l'5d7r)V<
:vi<
371
1 'i3
Tl
7
L'v
a'j*, . ft i;
lt'i.
13»7v3<
Jt 'J . H
1 O '¦) <
3a<
7 /. <
7- •'.-
/ f
•;! -i <
ISA
Ibi)
T-
7 /!'7?r;
' ;• t-
<(.! n-ji-c-i
'iT'J'l
'*el i « •• • C :J
1 *» U . .1?.
1 ^b<
XC1
113
Cii-.-'-MT
t u. 'i!5
M/I'IC-NC.
KfcS¦WLt
T A'.i\
H:'t TtiT
r ii-.ll
" i:n
. r 'J T /VL
LllSb-iyb
CACJ3
S ** A T 1n \*
•JiTt
T 1 "c
[/-»fF
1 t
LH/l)
Lt-/0
Lw/'J
Ly/'J
* I ."/r<
77'; 7;><<
0 ' 'i J
(¦:> 7707?!
t: 71) ij
-^7,70C
1 "?
v' /<
1 "i 7 <*
1 A M . J
l.v<
37?A2i
rs.^n*
T-;<•.»
7/'.!?Jl
i) '3
i> 7 0')
*• C i » -•' •
j^>?<
_< j
I T '¦ . V
^.?5?-:3
Cc.*:--.-. : t
•i'>U
;A f£
7 !
OA T'r
T ! ¦••¦r
M
Ci./M
N'i/0
Kt>/ !
T ' O ',
77 *i 7r?t>
¦: 1-iZ
i. 1 7 7 'J 7 /; 1
i.' 7 o;;
4-3 7. -'OO
!w.J
v<
17.33
1
T t'f:
110I?1
i •.•: *>
••l;.1.
r1:
3 ?
i t; ^
6 I • i A
* s_ w '. ¦
7 7-7 1
1! / il 0
((.) TI>!'! v;
7707*0
101b
^ 0 ;J..
Ab.HSO
6:' i <
Is'*-.*
7o<
:?<
16<
T'-V.;
7707?1
o / 'jo
If. ) 77'lTii
t'7u j
»«,v. "* ; ;
•31 . '".iff
6^"' 1 <
7
t}3<
7 fj
6d
TK.PW
7 707?/?
0 ' 'JO
!'.) 7Vu7i» J
0 7 D 0
'»'t 1 . •' )
^3 . H7' 1
VI
51
• ; t
'
- ; •
VtSIOU'i
T AL<
i* -
K".ror
f-1 • 1 0 T
Tt^T •'* L
i)i SS- 1 t)b
t.«C0.5
5 7 A T J • :'i
{'fcT£
7
Oft ft.
TIS?
* t
f.l-Z'.f
Kfc>/I>
K'3/L!
K P./; >
T ; K
770/^0
a »vo
(C> 77o7/?l
(:7!)C
/:><)
1 7 3<
700
«A.V
U.'J<
1 7«AbA
Tr»w
77077?1
0 'VO
(t.) 7707??
(-• 71! •!
AAV, T\,0
I 'u<
I'M
«
7TMS
!! t\i 0
tC> / 7!) 7 / 3
!) 7 !> 1)
•>S\
l'>0<
\ '->3
1 '¦> ?!'«7
-------
* I 'tJ' • T¦ i
.• i«i'/ w;••••:* vi). rr<'.'!)«•«>«• o
YT f:/• l. OrtT.
v, ;i "
= .,j
HO 0
:. t - - ,j -j r
^ U'.; v
; v ~. ->
S t!AY
TOT/'.
'C,T
5'^TTLB.S
;T h.
i i
i;/ rt
T 1
V*l)
S'.J
MS/'_
«t-/L
UG/L
"0/1.
¦¦'L/'w
7 f ? ' ¦ o
1 ¦ • ¦; fj
(C> <'7o/;;o
j U u':
1S.C
4'j
/
U'' *• 'i
; o o
U
1ft. 0
42
0.1<
rv
7 7-m\
I'Jt'V
7.S
t>. 3
b2
rf :C'*f
?7V'?1
1 •! • 0
'.c:: ."
liV-'M
1 ^ '• J
IV.'J
3'3
0.1<
y-r'
i 7 .1 / i' 7 ? s
•• 1 -¦
i*. vw?
eft
T^
•: i ¦•¦ i i
.b
! . i
T 1T
r.. L
.Hi '.f.W,
C
C-.'OT
ZN-TCT
- T A r :
5 i'» ! "
1 i '
U.>T£
T : •'?.
W«/L
¦ WL
¦"-/<_
MS/'. =
yj/L
M'j/L
L'CVL
'JS/L
-v r-./
T7K- t'll
* ' - j5 r*
((.)7 70 W
1U 'K>
v.?y
^>.yo
0.03
10b
3ft. 0
50<
r; • r^
7 /'? c"J
o
" > r»; ^
7 7 V JVC
1¦::
.C
50<
SI
~ :- •' : t*
'! ' I'cV
T r. ~> m r
7 '??
0 » j!;;
to 7/'J -VJ
'Jr'.'l
0 . L> 7
8U
27.C
33
T- -- ,r-
n ' ¦>•?. i
t'v/f;)
Cui-> ¦ l-
L r. -'!
" .v . > \!
S'r
^F.PCU-!Y
*•' 5 I f < '«> FI
T fc'wr;
C J • 1 •••' 7"
¦->> ~ Tf.>T
F-.T'jr
'<:n
HI?. ' 7 /»!_
CAC03
sT:»: i w
e 7 £
T i ~
yo r=;
T I
U'.'/L
U
C >'G/L
M'.VL
"r V'.'/f
770MU
1 •'UC
7r-jrso
i.vJ;'
1 'J i) <
s;>2
] "3^7 . 0
0.'r-<
232C
197
T w V V /?
7 ^"vu
- - n f*
7
1 yj'j
(C> .'7,;7: yg?
0 ¦» JO
(L>770723
:ou<
=01
}i7:.o
22 r0
27b
T * V /"
7/07?3
-------
' t .V.:„ t. : '
'¦' ;^-vr« T-.
iu.v. iv»// •-•!•-•••:* wo. TNcy^o«»o
AMA>. Y'sCM. ' 'Al f.
V.: • • . ' "
« »r i v
i.'-.
IJ" V
HCU
" c. I ^ -
-is
;¦
! f
S 'JAY
TOTAL
TOT \F_*
Si'TLrrL^
?Tu r !,,!i
!t
1 i '-v.
l)<> TE T i C-.
fc.1- ¦
Ctnr
S:J
"Ivi/L
M-,/l
UG/L
YO/L
ML/L
Ti 0"2
7 to r,"
l-.JU
770720 luof;
1 . ¦- '! ;•
lb.0
4
-<• !!•!/
7 7'J 720 l)'/45
27 .v
7 . r>
6*
T- ?
770 7 20
i.-tl!)
<<.: 7 '•) 721 l'J'JC
1-*-. <•:¦•;
lf?.0
42
o.;<
0''2
77;72l iU'Jt.'
2?>.b
7'.1
t-.3'
b2
T -: ;• >? *
7?0 f?1
I -<10
!f>7 7(7x2 '.iVJ'j
1 •v.O
0.1<
T - l' •.: t
IT". Tit CVi'.i
26.0
7.7
6.^
60
7t-.0"2
/707?2
•) V
c.:<
T:-;2
77-J 723
24.b
7.7
r^*
W 3
^hos-tot
COO
T 0fG C
ZINC
1
\-Vj I AL
HI LCVE'u
C
ck.tot
2N't TOT
STAT in-i
1 >»»T
Ti ••?
U.Mt TI«t
:¦"¦/l
^i'/L
M'c/L
MG/L 3
M'o/L
LTVL
UG/L
Tf rv.>2
nCH'/
1-. OC
<0 770720 1000
v. ? y
O.Qb
10b
3ft. 0
S0<
49
T~ 2
770 7?'." tW4b
T f 0 >
7 7 0 7 2 P
! v w 0
(C) 7 7 o 7 21
V.v»
3.b0
O.U'j
*.oou
:c>
40.0
?>•;<
s:
T'.O'V
7 7 0721 i-JOO
770721
1 '00
(t:>7'j??^ ov3o
" • 2tf
4. 70
O.O'J
4 . 2 0 'J
9-»
3S.C
SI
~y. •¦<><:
7 7 0 722 O-iJO
Ti;'1 •J?
7/07??
0>JO
CO 770 72J BVl'->
o.3U
0.07
3.400
60
27. C
bC<
33
T-
77072J 0V2u
Ci;P-•>
Lfcai;
MAI*vi\ESE
*r.PC'_WY
HPStDVE
T ai_<
fH.T'JT
FK.'OT
MM
H'o, TOTAL
OlSS-iCb
CAC03
STii ; I ON
T TS
Tiff
'JATK T I Hf
J'j/L
U'j/L
UW/L
U'o/L
Ufi/L
C KP/U
V3/L
f V '.1 '12
770 71V
MOO
tt> 7 7!J 72(1 1000
bb
loo<
2 if 2
lbV/.O
O.S<
2320
197
7 "r OU*
7 T'Ma0 (IV4S
7!- VIS
: /
1 rjo
:c) 770721 10 0!)
bt>
10v<
I 01 *<
l^^v.o
0.b<
2140
T-UU'
7 71(721 iOO'J
Ti. V'.:?
770721
1 jOO
((.> 77')722 0M3-J
h*»
100<
161
131b.0
0.b<
21«0
T ~ <: j2
770722 093")
Th'J'.X
77072?
o*jo
(L)770723 0*lb
6C
1 co<
boi
1171.!)
22b0
275
T'"Oo2 7 70723 UV20
-------
c- *
-•il)
-*'£S IC'-"£
TOT
yimJ3—\
\C2 SNC 3.
:-
'j w
total
TOT N-L7
N
7'^:
n-'utal.
STA TI CM
!>it TH
: :
O.Vh
T ! M; .
L:i/M
Ln/D
Lh /J
LH/U
Lf/'J
-/ J
V-V)>
*';'. 'J
: '•:;>!
(c > 7
2 , v
!?'> 7'?
I2b9.14
T ''' T I C-
6 , r 4
~ f
7
{;:) 7
: 0 0
i': .2: v
2 . i
bb
- • I r
C » . i
Twfl, ^
7 .'!!'21
I
i:; >': 7 < <;
C'tj'ii
i 3 ' * V'
r. V 1 ¦•' . V
41- i B
i 'j v f) • *> 9
ri
7 • 9^
7 7(i;>V
U '31'
(O / 71' /V 1
C-17
v
«:2;j
121b.3b
ll.vv
^•OS-TOT
C'JU
T CWG C
ZINC
-
Hi Lt VF.L
r
C^tT'JT
£Nt"0T
cj-*-:*
ST.1T t-iaj
OaTF.
T i*'-:
0 A T F
7: vk
«¦"¦,'
f
!(.) 7 70720
i y u v
14.<71
<»y27.i
7<
7
w
ThOTV
7 rurso
1 v 1; U
('->770/21
loun
1 • r.W "¦)
b4 3,77-b
l-iil
U7.8
7<
7
0
Tt. 002
7/0721
i-'fl'
!'w) 77'J 722
'."von
Ic^s/
3
7<
7
7
Ttni'^
TT-Mr?
(<-J 7 7m /2 3
t,Jlb
1 i* • ¦> r)
b3'J.n2«;
l/b7H
''2 7^.9
b<
b
1 *'
cc:'k .: r
I-JOM
r-' '1 *' S;.'; Sc
f'iCPCU^r
T
F ¦'
i"«,TfT
fc .to:
iV'i"
hg•ro:Aw
DISS-105
CAC - 3
'¦>.
(.¦ ».*fj
IC) /?.*
(•¦ -j : t
i J ¦*-
!••><
hl>
lHb.b
Jbt-574
43^ v 1
Cwr.-.JlT
L!)
i KCt?
TUT KJ£L
"i'r j- ,
\'J2i\03
'
TUT^L
TUT N'FL*
\
T C " i
\-T0TA'»
"Tatio*;
D'J-.
Ti"F
¦JATE
T 1VF
Kii/l)
KG/D
< : / >
K'c/D
IfUV
7707*1,
1 Ml'J
(f.) 7/0720
r.)uo
1^. "00
9il
2<»>53
b7 1 , 14
3.10
T> 0>' . C->2
770'21
l'-'jJ
t> 7 7 •_• /22
C *3"
i b • "¦'iO
1 i . i
2: 04
492.91
3.61
T* ClUS
noTe?
0v3'J
CJ) 7 70 723
oylb
1 'J . VWO
1669
b96.'j4
5. v3
p:-.:.:;: r
PH'js-ror
Cup
T OHla C
F '.'td
hi Lt-.Vt.L
C
Ci'-Tor
iirjf TOT
StaT:<"N
Tr-'f
1> FF.
t :¦>
*G/'J
K0/1;
No/0
K'i/IJ
^t/u
* * / J
7K0«!yo
(C> '/"720
; uo'j
c-s:«
22J4.W
3<
3
2
T» U'.'^
7/u?2n
1 ••i\i'j
;•„> 7/J721
• 'JU'}
1 v .: •!
''b 00
2"b2.V
i<
J
>
lf>Jk
7;;.-7?:
: "uu
(C5ITiU'i
u-»3u
it-, 'rt.i
btr>0
21 'J j. 9
J<
3
3
TrO'l*
iTyt&
i) yj'j
(C> / /j>23
arc
T IriL
l.-ifE
TIHK
KO/C
^t>/U
XCi/C>
N3/"
1?Of^
7 /1' 7 1V
1 )U0
(C)77H720
l'J'K!
16.400
b<
1 J
V9. 1
Q.0<
144^25
:2230
rfuP2
7 7V /*-<>
1 'UO
(C! 7 7!) 7?1
lOO'l
1v.iuy
b<
C>2
91 .y
C.3<
131231
t k o <;
7 77 ? 1
l"';c
(..) 77J 722
0 v3'J
ib.n-JVJ
0<
10
7 9.0
0 . 0<
131(543
T»it< x
77'J 722
•j 1 JO
«'„> 77'.-723
O J \ ^
7<
«'0
H«t.2
It 1739
1 «
-------
INVESTIGATION OF WASTEWATER DISCHARGES
HOLSTON ARMY AMMUNITION PLANT
KINGSPORT, TENNESSEE
PERMIT NOS. TN0003671 and TN0002381
INTRODUCTION
From July 19-23, 1977, Steve Hall, Bill Cosgrove and Nan Kodras,
United States Environmental Protection Agency (US-EPA), Region IV,
Surveillance and Analysis Division, investigated the wastewater dis-
charges at the Holston Army Ammunition Plant's (HAAP) areas A and B.
Mr. Jim Hart, representing HAAP, answered questions pertaining to the
discharges and introduced the US-EPA personnel to Mr. Bob Hash, chemist,
and Mr. Dwayne Smith, technician, who showed US-EPA personnel the dis-
charges from areas A and B. HAAP personnel were not present during
any of the sampling. Mr. Joseph Vitalis, US-EPA, Effluent Guidelines
Division, Washington, accompanied US-EPA regional personnel one day
during the investigation. He was present as a representative of the
Effluent Guidelines Division since US-EPA was also conducting priority
pollutant data collection at each of the HAAP discharges along with the
compliance assurance samples.
STUDY FINDINGS
There is no wastewater treatment system for process wastewaters from
any of the HAAP except for a pilot plant in Area A. The NPDES permit
for Area A stipulates that only cooling water may be discharged with
process wastewaters to be transferred to Area B for treatment. The
permit for Area B stipulates that all wastewater, including th^t from
Area A, be treated prior to discharge. Since the NPDES permit limitations
are based on an existing treatment system, a comparison of the loads dis-
charged during the investigation and the permit was not undertaken.
MANUFACTURING PROCESSES AND WASTEWATER DISCHARGES
HAAP facilities are physically separate. Area A is within the city
limits of Kingsport on the South Fork Holston River. Area B is located
downstream from the confluence of the North and South Forks Holston River
and approximately 6 miles west of Kingsport. HAAP is the property of
the Department of the Defense, U.S. Army, but is operated under contract
by the Holston Defense Corporation, a Tennessee Eastman Corporation
subsidiary.
HAAP manufactures RDX-HMX explosives. They are mixed with TNT (TNT
purchased from outside sources) and various chemicals for pritaary use in
manufacturing military explosives. The manufacturing capability at HAAP
includes several RDX-HMX product variations of which composition B is the
most prominent. Composition B is made up of RDX, TNT and wax.
-------
Areas A and B are interconnected by railroad and series of pipelines
both of which convey materials and intermittent products between the two
manufacturing facilities.
The major processes at Area A include the manufacture and refining of
acetic anhydride and the concentrating and refining of acetic acid. Waste-
waters from Area A consist primarily of process wastewater from the gas
producing plant area where acetic anhydride is prepared. An aerated
lagoon (indicated to be a pilot program) discharges process wastewater
which has been diluted. A stream which flows through Area A property
allegedly does not receive any wastewater (including cooling water)
from Area A. Sanitary wastewater discharges into the City of Kingsport's
system.
The major processes at Area B include nitric acid and ammonium nitrate
production, preparation, manufacturing and packaging of various explosives,
and recovery of waste acetic acid to shipment to Area A.
The following Area B manufacturing process is typical for one RDX
production line. HMX process differs slightly. Acetic anhydride and
acetic acid from Area A (acetic acid is also purchased from coranerical
sources), nitric acid-ammonium nitrate solution and commercially produced
hexamine are assembled at the raw materials building. Hexamine is dissolved
in acetic acid which serves as a carrier. Raw materials are pumped continuously
to the nitration building where the hexamine is nitrated to form crude
RDX. RDX, in an acid slurry, is pumped to the washing building where spent
acid is removed by washing. A small amount of the diluted acid is returned
to the nitration building to be used as dilution liquor. Remaining recovered
dilute acid is pumped to primary distillation where any remaining explosives
are recovered and returned to the washing building. The recovered acid,
free of explosives, is pumped to Area A for reprocessing into glacial acetic
acid or acetic anhydride, both of which are returned to Area B as raw materials
to be used in production. The crude wash RDX, in the water slurry, is pumped
to the recrystalization building where it is dissolved in cyclohexanone,
simmered and recrystalized. Still in the water slurry, the recrystalized
RDX, is pumped into the dewatering building where it is dropped to stain-
less steel nutsches. Excess water is removed by vacuum, and the weight
of the contents of the nutsche is adjusted. The next operation occurs
at the incorporation building whre TNT is opened, inspected and charged
to melt kettles-; Here the RDX, wax, and TNT combine to form composition B.
The product is then packaged and may go either directly to loading docks
for shipment or to a magazine for temporary storage. HAAP Area B operates
10 production lines and has support facilities for each.
Wastewaters from Area B consist of domestic waste, process waste, and
cooling water. Production lines 6 and 7 discharge process wastewater
(approximately 1 mgd) through an outfall designated by HAAP as SN-005P
directly into the Holston River. Cooling water from production lines 6
and 7 is discharged in approximately the same location at designated out-
fall SN-005W. Cooling water and process wastewater from lines 1 through 5
discharge through an outfall designated by HAAP personnel as SN-006. Cool-
ing water and production wastewater from the acetic acid recovery lines
discharge through an outfall designated by Area B personnel as SN-008.
-------
Process wastewater treatment ia not provided at either facility
(Area A or B) with the exception of the "pilot plant" in Area A.
Flows at each wastewater and cooling water discharge are measured
by HAAP personnel with current meters twice each week.
RESULTS AND DISCUSSION
Study Procedures
Three outfalls in Area A and four outfalls in Area B were sampled for
four consecutive 24-hour composite periods with ISCO Model 1580 automatic
samplers which collected approximately 400 ml at 60 minute intervals into
respective refrigerated, three gallon, solvent rinsed, glass jugs. One
day during the study, samples were collected at each outfall for priority
pollutant data collection; samples for volatile organic, cyanide, and
phenol analyses were grab sampled at each location while a 1/2 gallon
container for metals, a pint glass bottle for mercury and three one
quart glass jars for organic analyses were collected during the 24-hour
composite sampling period. Grab samples for pH and temperature
determinations were collected each time the automatic samplers were
serviced. Composite samples were split with HAAP personnel on two of
the four days during the investigation. From acquisition until delivery
to the US-EPA mobile laboratory at the Kingsport Wastewater Treatment
Plant, the samples were refrigerated and chain-of-custody was maintained.
Analytical Data
US-EPA analytical results are shown in the attached table.
General Discussion
The permit for Area A indicates that only cooling water is allowed to
be discharged with all process wastewater to be transferred to Area B.
The permit for Area B indicates that all wastewater discharged should be
treated, including that from Area A. Since there is no treatment at
Area B, a comparison of permit limitations with the effluent data collected
during the investigation will not be possible.
HAAP personnel collect composite samples using Manning equipment on
a 'time composite basis. Grab sample collection methods are also used
for some of the outfalls. All analyses are conducted at Area B. Federal
Register methods are used where possible, however, some modifications have
been incorporated. HAAP personnel were not sure whether or not these
modifications had been cleared through EPA.
Compliance monitoring records are maintained for both the river and
discharges thereto from Areas A and B, and a computer printout can be
made available for any past monitoring.
-------
Flows during the investigation were provided by HAAP personnel
who conducted stream gaging at each of the outfalls during the
investigation. The reported flows are estimates of actual flows
since gaging methods were used. However, they are considered to be
representative of the 24 hour flows at each outfall.
CONTACTS
Hall, Cosgrove, Kodras, US-EPA, Athens, Georgia, 404/546-3341
Hart, Hash and Smith, HAAP, Kingsport, Tennessee, 615/247-9111
-------
HAAP WASTKWATi;?, OUTFALI.S
•' 1 \00 \ /. Ave. I A I'l k«-0:»s f. *•< <»ii
producing plant
HAOOIii Area A - Process wastewater from gas
producing plant
HA014 Area A ~ Pilot plant aerated lagoon
discharge
HB005P Area B - Process wastewater from 6-7
production lines
HB005W Area B - Cooling water from 6-7 pro-
duction lines
HB006 Area B - Process wastewater and cooling
water from 1-3 production lines
HB008 Area B - Process wastewater and cooling
water from acetic acid recovery
lines and nitric acid area
-------
HOUSTON ARMY AMMUNITION PLANT
KINGSPORT, TN
JULY. 1977 PERMIT NO. TN0002J81
ANALYTICAL DATA
CONDUIT
HATER
PH
DO
BOO
PHENOLS
RESIDUE
RESIDUE
FLOW
TEMP
5 DAY
TOTAL
TOT NFLT
StTTLBlE
STATION
DATE
TIME
DATE
TIME
MGO
CENT
su
MG/L
MG/L
UG/L
MG/L
ML/L
HA001A
770719
1J30
(C)770720
1130
3.100
3.0
4
0.1<
HA001A
770720
1130
<0770721
1000
3.100
6.8
11
0 . 1 <
HAOOlA
770720
1135
3.100
24.0
7.1
9
HAU01A
770721
1000
3.100
24.0
b.8
40
HA001A
170721
1000
(C)770722
0930
3.100
8.4
11
0. 1 <
HA001A
770722
0*30
(C)770723
0800
3.100
7
0. 1<
HAOOlA
770722
0935
3.100
23.S
7.5
6.4
HA001A
770723
0800
3.100
23.0
7.2
TOT KJEL
NH3-N
N02&N0J
PHOS-TOT
COO
CYANIDE
T ORG C
CHROMIUM
N
TOTAL
N-TOTAL
HI LEVEL
CN-TOT
C
tR«T0T
STATION
DATE
TIME
DATE
TIME
MG/L
MG/L
MG/L
MG/L P
MG/L
MG/L
MG/L
UG/L
HA001A
770719
1330
770723
0800
9.10
8.00
0.59
0.110
«0<
4.0
50<
HA001A
770722
0935
HAOOlA
770723
0800
ZINC
COPPER
LEAD
IRON
MANGNESE
MERCURY
RESIDUE
T ALK
ZNtTOT
CU.TOT
PB« TOT
Ffc.TOT
MN
HG»TOTAL
0ISS-105
CACOJ
STATION
DATE
TIME
DATE
TIME
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
C MG/L
MG/L
HAOOlA
7 70719
U30
(C)770720
1130
10<
10<
100<
518
53.0
0.5<
270
62
HAOOlA
770720
1130
(C)770721
1000
0.5<
117
HAOOlA
770720
1135
HAOOlA
770721
1000
HAOOlA
770721
1U00
(C)770722
0930
1*
10
100<
3552
79.0
169
HAOOlA
770722
0*30
(C)770723
0800
11
10<
100<
1087
59.0
61
HAOOlA
770722
0935
HAOOlA
770723
0800
-------
HOLSTON ARMY AMMUNITION PLANT
KINGSPORT• TN
JUL*. 1977 PERMIT NO. TN0002381
ANALYTICAL DATA
CONDUIT
DO
BOD
PHENOLS
RESIDUE
TOJ KJEL
NH3-N
N02&N03
FLO*
b DAY
TOTAL
TOT NFUT
N
TOTAL
n-total
STATION
DATE
TIME
DATE
TIME
MOD
LB/D
LB/D
LB/D
LB/D
LB/O
LB/D
IH/D
HAOOIA
770719
1330
(C)770720
1130
3.100
77.6
103
31 .0*
31.30
1*.*9
HAOOlA
770720
1130
770723
oaoo
3.100
181
235.42
206.96
15.26
HAOOIA
77U722
0935
3.100
165.6
HAOOIA
770723
0800
3.100
CONOUIT
PHOS-TOT
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPER
FLOW
HI LEVEL
CN-TOT
C
CRtTOT
ZNtTOT
CU.TOT
STATION
DATE
TIME
DATE
TIME
MOD
LB/0
LB/D
LB/D
LB/D
LB/0
LB/D
LB/D
HAOOIA
770719
1330
tC)770720
1130
3.100
0.776
1035<
90.5
1<
0<
0<
HAOOIA
770720
1130
770721
1000
3.100
0.776
1707
28* .6
HAOOIA
770720
1135
3.100
HAOOIA
770721
1000
3.100
" 2.9*9
HAOOIA
770721
1000
770722
0930
3.100
1.035
1035<
336.3
1<
0
0
HAOOIA
770722
0*30
770723
0800
3.100
2.846
103S<
103.5
1<
0
0<
HAOOIA
770722
093b
3.100
HAOOIA
770723
0800
3.100
CONDUIT
LEAD
I HON
MANGNESE
MERCURY
RESIDUE
T ALK
FLOW
PB.TOT
FE.TOT
MN
HG.TOTAL
OlSS-lOb
CAC03
STATION
DATE
7IME
DATE
TIME
MO D
LB/D
LB/0
LB/D
LB/D
LB/D
LB/D
HAOOIA
770719
1330
(C)770720
1130
3.100
3<
13
1.*
0.0<
6985
160*
HAOOIA
770720
1130
(C)770721
1000
3.100
0.0<
3027
HAOOlA
770720
1135
3.100
HAOOIA
770721
1000
3.100
HAOOIA
770721
1U00
(C)770722
0930
3.100
3<
92
2.0
4372
HAOOlA
770722
0930
(C)770723
0800
3.100
3<
28
1.5
1578
HAOOIA
770722
0935
3.100
HAOOIA
770723
0600
3.100
CONDUIT
DO
BOO
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N02&N03
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE
TIME
DATE
TIME
M60
KG/O
KG/0
K6/D
KG/0
KG/D
KG/0
KG/D
HAOOIA
770719
1330
(C)770720
1130
3.100
3S.2
*7
14.08
14.20
6.57
HAOOIA
770720
1130
(C)770721
1000
3.100
79.8
129
301.58
279.28
6.81
HAOOIA
770720
1135
3.100
0
HAOOIA
770721
1000
3.100
0
HAOOIA
770721
1000
<0 770722
0930
3.100
98.6
129
*42.39
3*0.30
6.92
HAOOIA
770722
0430
<0 770723
oaoo
3.100
82
106.79
93.88
6.92
HAOOlA
770722
0935
3.100
75.1
HAOOIA
770723
0800
3.100
-------
CONDUIT
PHOS-TOT
COO
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPER
FLOW
HI LEVEL
CN-TOF
C
CH.TOI
2Nt TOT
CUtTOT
STATION
OATE
TIME
OATE
TIME
MGO
KG/O
KG/O
KG/D
K6/0
KG/O
KG/O
KG/O
HA0014
770719
1330
CC>770720
1130
3.100
0.352
4b9<
41.1
1<
0<
0<
HAOOU
770720
1130
CC>770721
1000
3a 1 00
0.352
774
129.1
HAOOU
770720
1135
3.100
HAOOIA
770721
1000
3.100
1.338
HAOOU
770721
luOO
(C)770722
0930
3.100
0.469
469<
152.6
1<
0
0
HAOOIA
770722
0930
(C)770723
0800
3.100
1.291
469<
46.9
l<
0
0<
HAOOU
770722
0935
3.100
HAOOIA
770723
0800
3.100
CONDUIT
LEAD
I HON
MANGNESE
MERCURY
RESIDUE
T ALK
FLOW
PH.TOT
FE.TOT
MN
H6.TOTAL
0ISS-105
CACOJ
STATION.
DATE
TIME
DATE
TIME
MGO
KG/D
KG/D
KG/O
KG/D
KG/D
KG/D
HAOOIA
770719
1330
(C>770720
1130
3.100
1<
6
0.6
0.0<
3168
726
HAOOIA
770720
1130
(C)770721
1000
3.100
0.0<
1373
HA001A
770720
1135
3.100
HAOOIA
770721
1000
3.100
HAOOIA
770721
1OQ0
(C)770722
0930
3.100
1<
42
0.9
1983
HAOOIA
770722
0*30
(C)770723
0800
3.100
1<
13
0.7
716
HAOOIA
770722
0935
3.100
HAOOIA
770723
0800
3.100
-------
hOLSTON ARMY AMMUNITION PLANT
KINGSPORT. TN
JULY t 1977 PERMIT NO. TN0002381.
ANALYTICAL OATA
CONDUIT
WATER
PH
BOO
PHENOLS
RESIDUE
RESIDUE
TOT KJtL
FLOW
TEMP
5 OAY
TOTAL
TOT NFLT
SETTLBLE
N
STATION
DATE
TIME
OATE TIME
MGD
CENT
SU
MG/L
UG/L
MG/L
ML/L
Mb/L
HA0018
770719
1315
(C)770720 11*5
5.000
2.8
9
0.1<
0.20
HAOOIB
770720 11*5
5.000
22.0
7.1
6
HAOOIB
770720
has
(C)770721 1015
5.000
*.1
9
0.1<
0.23
HA001B
770721 1015
5.000
23.0
7.1
5
HAOOIB
770721
1015
(C)770722 09*5
5.000
2.8
2
0.1<
0.20
HAOOIB
770722
09*5
(C)770723 0815
5.000
*
0 .1 <
0.12
HAOOIB
770722 0950
5.000
22.0
6.9
HAOOIB
770723 0815
5.000
21.0
7.1
NH3-N
N02&N03
PHOS-TOT
COO
CYANIDE
T ORG C
CHROMIUM
ZINC
TOTAL
N-TOTAf?
HI LEVEL
CN-TOT
C
CR » TOT
ZN » TOT
STATION
OATE
TIME
OATE TIME
MG/L
MG/L
MG/L P
MG/L
MG/L
MG/L
UG/L
UG/L
HAOOIB
770719
1315
IC)770720 11*5
0.20
0.58
0.030
*0<
2.5
50<
11
HAOOIB
770720 11*5
HAOOIB
770720
11*5
(C)770721 1015
0.01
0.68
0.0*0
*0<
2.5
HAOOIB
770721 1015
0.002<
HAOOIB
770721
1015
(C)770722 09*5
0.12
0.57
0.030
*0<
2.0
50<
]0<
HAOOIB
770722
0**5
(C)770723 0815
0.12
0.61
0.030
*0<
2.0
55
14
HAOUlB
770722 09a0
HAOOIB
770723 0815
COPPER
LEAD
IRON
MANGNESE
MERCURY
RESIDUE
T ALK
CU.TOT
PB.TOT
FE.TOT
MN
HG,TOTAL
DISS-10S
CAC03
STATION
OATE
TIME
DATE TIME
UG/L
UG/L
UG/L
UG/L
UG/L
C MG/L
MG/L
HAOOIB
770719
1315
(C)770720 11*5
10<
100<
378
*1.0
0.5<
27
63
HAOOIB
770720 11*5
HAOOIB
770720
1U5
(C)770721 1015
0.5<
51
HAOOIB
770721 1015
HAOOIB
770721
1015
<0 770722 09*5
10<
100<
235
37.0
*8
HAOOIB
770722
09*5
(C> 770723 0815
10
100<
2*0
39.0
63
HAOOIB
770722 0950
HAOOIB
770723 0815
-------
HOUSTON ARMY AMMUNITION PLANT
KINGSPORT. TN
JULY* 1977 PERMIT NO. TN0002381
ANALYTICAL DATA
CONDUIT
BOO
PHENOLS
HESIUUE
TOT KJEL
NH3-N
N02&NQ3
PHGS-TOT
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
n-total
STATION
OATE
TIME
OATE
TIME
MGO
LB/0
LB/0
LB/0
LB/0
L6/0
LB/D
l«/C>
HAOOlB
770719
1315
IC)770720
1145
5.000
116.8
376
8.35
6.35
24.20
1.252
HA0016
770720
1145
5.000
0
HA0016
770720
1145
(C)770721
1015
5.000
171.1
376
9.60
0.42
28.37
1 .669
HAOOlB
770721
1015
5.000
0
HAOOlB
770721
1015
1 .252
HAOOlB
770722
0945
<0 770723
081S
5.000
167
5.01
5.01
25.45
1.252
HAOOlB
770722
0960
5.000
HAOOlB
770723
0815
5.000
CONDUIT
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPtR
FLOW
HI LEVEL
CN-TOT
C
CR.TOT
ZN.TOT
CU»TOT
STATION
OATE
TIME
OATE
TIME
MGO
LB/0
LB/0
LB/0
LB/D
LB/D
LB/D
HAOOlB
770719
1J15
770720
1145
5.000
1669<
104.3
2<
0
0<
HAOOlB
770720
1145
5.000
HAOOlB
770720
11#S
770721
1015
5.000
1669<
104.3
HAOOlB
770721
1015
5.000
0.083<
HAOOlB
770721
1«U5
(C)770722
0945
5.O00
1669<
83.5
2<
Q<
0<
HAOOlB
770722
0V45
<0 770723
0615
5.000
1669<
83.5
2
1
0
HAOOlB
770722
0950
5.000
HAOOlB
770723
0815
5.000
CONDUIT
LE AO
IRON
MANGNESE
MtRCURY
RtSIOUt
T ALK
FLOW
PB.TOT
FEiTOT
MN
HG.TOTAL
DISS-105
CAC03
STATION
DATE
TIME
OATE
TIME.
MGO
L8/D
LB/D
LB/D
LB/D
LB/D
LB/D
HAOOlB
770719
U15
<0 770720
1145
5.000
4<
16
1.7
0 . 0<
1127
2629
HAOOlB
770720
114b
5.000
HAOOlB
770720
1145
<0770721
1015
5.000
0.0<
2128
HAOOlB
770721
1015
5.000
HAOOlB
770721
1U15
<0 770722
0945
5.000
4<
10
1.5
2003
HA0018
770722
0945
-------
CONDUIT COO
FLOW
HI LEVEL
STATION
DATE
TIME
OATE
TIME
HGO
KG/0
HAOOlb
770719
1315
770720
1145
5.000
757<
HA001B
770720
1145
5.000
HA001B
770720
1145
(C)770721
1015
5.000
757<
HAOOIB
770721
1015
5.000
HAOOIB
770721
1015
<0 770722
094b
5.000
75 7<
HA001B
770722
0945
IC)770723
0615
5.000
757<
HAOOIB
770722
0950
5.000
HA001B
770723
0815
5.000
CONDUIT
LEAO
FLOW
PB.TOT
STATION
DATE
T1HE
OATE
TIME
HGO
KG/D
HAOOIB
770719
1315
770720
1145
5.000
2<
HAOOIB
770720
1145
5.000
HAO018
770720
1145
770722
0945
5.000
2<
HAOOIB
770722
0945
(C)770723
0815
5.000
2<
HAOOIB
770722
0950
5.000
HAOOIB
770723
0815
S.000
CYANIDE T ORG C CHkOMIUM ZINC COPPER
CN-TOT C CR.TOT ZN.TOT CU.TOT
KG/O KG/O KG/O KG/O K(i/D
47.3 1< 0 0<
47.3
0.038<
37.9 1< 0< 0<
37.9 I 0 0
IRON
FE.TOT
KG/O
MANGNESE
MN
KG/O
0.8
MERCURY
MG.TOTAL
KG/O
0.0<
0.0<
RESIDUE
OISS-105
KG/U
511
905
T ALK
CAC03
KG/D
1192
4
5
0.7
0.7
908
1192
-------
HOLSTON AWMY AMMUNI1 ION PLANT
KINGSPOUT, IN
JULY. 1977 PEHMIT NO. TN0002381
ANALYTICAL DATA
CONDUIT
MATEO
PH
00
800
PHENOLS
RtSIOUE
RESIDUE
FLO*
TEMP
5 OAT
TOTAL
TOT NFLT
SETTLOLE
STATION
DATE
TIME
UATE
TIME
H61)
CENT
SU
MG/L
MG/L
UG/L
MG/L
ML/L
HAOU
770719
UOO
(C» 770720
1200
0.330
29.0
100
HAOU
770720
1200
0.330
27.0
7.4
12
HAOU
770720
1200
(C» 7/0721
1030
0.330
22.0
64
0.1<
HAOU
770721
1030
770722
1000
0.330
47.0
128
1.2
MAO 14
770721
1040
0.330
23.0
7.2
6
HAOU
770722
1000
0.330
2b.0
7.0
6.8
HAOU
770722
1000
«C> 770723
0830
0.330
130
HAOU
770723
0830
0.330
23.0
7.4
TOT KjEL
NH3-N
N02S>N03
PH05-T0T
COD
CYANIDE
T URti C
CMHOMIUM
N
TOTAL
N-TOTAL
HI LEVEL
CN-TOT
C
CW»TOT
STATION
DATE
TIME
DATE
TIME
MG/L
MG/L
MG/L
MG/L P
MG/L
MG/L
MG/L
UG/L
HAOU
770719
UOO
<0770720
1200
10.20
o
«
0.40
12.300
68
18.0
50<
HAOU
770720
1200
HAOU
770720
1«T00
(C)770721
1030
10.60
8.SO
0.42
81
28.0
HAO1*
770721
1030
(CI 770722
1000
9.95
6.70
0.55
12.000
19.0
50<
HAOU
770721
1040
0.008
HAOU
770722
1000
HAOU
770722
1000
(C)770723
0830
9.10
5.20
0.95
9.600
86
20.0
b0<
HAOU
770723
0830
Z INC
COPPER
LEAD
I HON
MANGNESE
MEHCURY
HEMOUE
T &LK
ZN.TOT
CU.TOT
PB.TOT
FE.TOT
MN
HG» TOTAL
DISS-10S
CAC03
STATION
DATE
TIME
DATE
TIME
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
C MG/l
Mti/L
HAOU
770719
UOO
*C1770720
1200
22
140
100<
2396
67.0
©
•
I/*
A
17b
HAOU
770720
1200
HAOU
770720
1200
CC)770721
1030
0.5<
134
HAOU
770721
1030
(0 770722
1000
25
180
100<
3336
81.0
90
HAOU
770721
1040
HAOU
770722
1000
HAOU
770 722
1000
(0 770723
0830
33
174
100<
3277
84.0
76
83
HAOU
770723
0830
-------
MOLST0N ARMY AMMUNITION PLANT
KINGSFORT. TN
JULY. 19 77 PERMIT NO. TN0002381
ANALYTICAL DATA
CONDUIT
00
BOO
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N02&N03
FLOW
5 OAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
OATE
TiME
OATE
TIME
M 770723
0830
0.330
358
25.06
14.32
2.62
HA014
770723
0830
0.330
CONDUIT
PHOS-TOT
COO
CYANIDE
T 0R6 C
CHROMIUM
ZINC
COPPEM
FLOW
HI LEVEL
CN-TOT
C
CR»TOT
2N»TOT
CUtTOT
STATION
DATE
TIME
DATE
TIME
M6D
LB/D
LB/D
LH/D
LB/D
LB/D
LB/D
LB/D
MAO 14
770719
1400
770720
1200
0.330
33.874
187
49.6
0<
0
0
HA014
770720
1200
0.330
HAOW
770720
1200
770721
1030
0.330
223
77.1
HA014
770721
1030
(C)770722
1000
0.330
33.047
52.3
0<
0
0
HA014
770721
1040
0.330
0.022
HA014
770722
1000
0.330
HA014
770722
1000
(C)770723
0830
0.330
26.438
237
55.1
0<
0
0
HA014
770723
0830
0.330
CONDUIT
LEAO
IRON
MANGNESE
MERCURY
RESIDUE
T ALK
FLOW
PB.TOT
FE.TOT
MN
HG.TOTAL
DISS-105
CACOJ
STATION
DATE
TIME
OATE
TIME
MOD
LB/D
LB/D
LB/O
LB/D
LB/D
LB/D
HA014
770719
1400
(C)770720
1200
0.330
0<
7
0.2
0.0<
485
270
HA014
770720
1200
0.330
HAU14
770720
1200
(C)770721
1030
0.330
e
•
o
A
369
HA014
770721
1030
(C> 770722
1000
0.330
0<
9
0.2
248
HAO14
770721
1040
0.330
HA014
770722
1000
0.330
HA014
770722
1000
(C)770723
0830
0.330
0<
9
0.2
209
229
HA014
770723
0830
0.330
CONDUIT
DO
BOO
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N02&N03
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE
TIME
OATE
TIME
MGD
KG/D
KG/D
KG/D
KG/D
KG/D
KG/D
KG/D
HAO 14
770719
1400
(C)770720
1200
0.330
36.2
125
12.74
12.12
0.50
HAO 14
770720
1200
0.330
0
HA014
77Q720
1100
(C >770721
1030
0.330
27.5
80
13.24
10.62
0.52
HA014
770721
lu30
770722
1000
0.330
58.7
160
12.43
8.37
0.69
HA014
770721
1040
0.330
0
HA014
770722
1000
0.330
8.5
HA014
770722
1000
tC)770723
0830
0.330
162
11.37
6.50
1.19
HA014
770723
0830
0.330
-------
CONDUIT PHOS-TOT
FLOW
STATION
DATE
TiME
DATE
TIME
MGD
KG/D
HA014
770719
1400
(C)770720
1200
0.330
15.365
HA0J4
770720
1200
0.330
MA014
770720
1C00
(C> 770721
1030
0.330
HA014
770721
1U30
(C)770722
10U0
0.330
14.990
HA014
770721
1040
0. 330
HA014
770722
1000
0.330
HA014
770722
lUOO
(C)770723
0830
0.330
11.992
HA014
770723
0830
0.330
CONDUIT
IE4U
FLOW
PB.TOT
STATION
OATE
TIME
DATE
TIME
MOD
KG/O
HA014
770719
1400
(C> 770720
1200
0.330
0
HA014
770720
1200
0.330
HA014
770720
1200
(C)770721
1030
0.330
HA014
770721
1J30
-------
HOLSTON ARMY AMMUNITION PLANT
KINGSPORT. TN
JULY. 1977 PERMIT NO. TN0003671
ANALYTICAL DATA
CONDUIT
WATER
PH
00
•OD
PHENOLS
Rl
[iSIDUE
RESIDUE '
FLOW
TEMP
5 DAY
TOTAL
T<
n nflt
SETTLULt
STATION
DATE
TIME
DATE
TIME
MGD
CENT
SU
MG/L
MG/L
UG/L
MG/L
ML/L
HB005P
770719
1*45
(CI 770720
1345
1.300
147.0
166
4.5
HB005P
770720
1345
1.300
34.0
6.8
34
HB005P
770720
13*5
<0770721
1130
1.300
113.0
138
3.0
HB005P
770721
1130
1.300
34.0
6.8
14
HeQOSP
770721
1130
770722
1100
1.300
107.0
61
1.4
HHOObP
770722
1100
1.300
30.0
7.1
7.1
HHQOSP
770722
1100
(C> 770723
0900
1.300
SO
HB005P
770723
0900
1.300
33.0
7.1
TOT KJEL
NH3-N
N02&N03
PHOS-TOT
COD
CYANIDE
T
ORG C
CHROMIUM
N
TOTAL
N-TOTAL
HI LEVEL
CN-TOT
C
CR.TOT
STATION
DATE
TIME
DATE
TIME
MG/L
MG/L
MG/L
MG/L P
MG/L
MG/L
MG/L
UG/L
HB005P
770719
1*45
(C)770720
1345
2.35
0.05
0.68
0.340
50<
HB005P
770720
1345
HB005P
.770720
1345
(0)770721
1130
3.15
0.40
0.72
0.440
195
35.0
HB005P
770721
1130
0.038
H8005P
770721
1130
(C>770722
1100
1.97
0.20
0.85
0.240
127
38.0
50<
HB005P
770722
1100
HBOOSP
770722
1100
(C)770723
0900
0.79
0.25
0.57
0.200
104
30.0
S0<
HBOOSP
770723
0900
ZINC
COPPER
LEAD
IRON
MANGNESE
MERCURY
RESIDUE
T AL*
ZN.TOT
CU.TOT
PB.TOT
FE.TOT
MN
HG.TOTAL
DISS-10S
CAC03
STATION
DATE
TIME
OATE
TIME
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
C
MG/L
MG/L
hboosp
770719
1445
(C)770720
1345
73
26
100<
2288
106.0
0.5<
122
51
HBOOSP
770720
134S
HBOOSP
770720
1345
(C)770721
1130
Q.5<
234
HBOOSP
770721
1130
HBOOSP
770721
1130
(C >770722
1100
59
16
100<
1536
103.0
256
HBOOSP
770722
1100
HBOOSP
770722
1100
(C)770723
0900
22
12
100<
435
79.0
190
62
HBOOSP 770723 0900
-------
HOUSTON ARMY AMMUNITION PLANT
KIN6SP0WTi TN
JULY. 1977 PERMIT NO. TN000J671
ANALYTICAL DATA
CONDUIT
00
BOD
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N02&N03
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOT AL
STATION
DATE
TIME
date
TIME
MGD
LB/D
Lb/D
LB/D
LB/0
LB/0
LB/D
Lb/D
Hb005P
770719
1**5
(C)770720
13*5
1.300
159*.B
1801
25.49
0.54
7.3a
HHOUbP
770720
13*5
1.300
0
HH005P
770720
13*5
770723
0900
1.300
5*2
8.57
2.71
6.16
HhOObP
77U723
0900
1.300
CONDUIT
PHOS-TOT
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPER
FLOrf
HI LEVEL
CN-TOT
C
CP.TOT
ZN.TOT
CU.TOT
STATION
DATE
TIME
DATE
TIME
MGD
LB/0
Lb/D
LB/D
LB/D
LB/D
LB/D
Lb/0
HdOOSP
770719
1<»45
(C)770720
13*5
1.300
3.689
1<
1
0
HtiOOSP
770720
13*5
1.300
MHO 05P
770720
13*5
(C> 770721
1130
1.300
*.77*
2116
379.7
Hb005P
770721
1130
1.300
0.*12
HbOOSP
770721
1X30
tC)770722
1100
1.300
2.60*
1378
*12.3
1<
1
0
HtJOObP
770722
1100
1.300
HtiOObP
7 70722
1100
(C)770723
0900
1.300
2.170
1128
325.5
1<
0
0
HB005P
770723
0900
1.300
CONDUIT
LEAD
I HON
MANGNESE
MERCURY
RESIDUE
T ALK
FLOW
PB.TOT
FE.TOT
MN
HG.TOTAL
DISS-105
CAC03
STATION
DATE
TIME
DATE
TIME
MGD
L8/D
LB/D
L8/D
LB/D
LB/D
LB/D
HdOOSP
770719
1*45
(C)770720
13*5
1.300
1<
25
1.1
0.0<
132*
553
HBOU5P
770720
13*5
1.300
MtfOObP
770720
1345
<0770721
1130
1.300
0.0<
2539
HbOObP
770721
1130
1.300
H8005P
770721
1130
770722
1100
1.300
1<
17
1.1
2777
Hb005P
770722
1100
1.300
HbOOi>P
770722
1100
770720
13*5
1 .300
723.*
817
11.56
0.25
3.35
HB0U5P
770720
13*5
1.300
0
HbOt)5P
770720
13*5
(C)770721
1130
1.300
556.1
679
15.50
1.97
3.54
HB005P
770721
1130
1.300
0
HH005P
770721
1130
(CJ 770722
1100
1.300
526.5
300
9.69
0.98
4.lb
HBOObP
770722
1100
1.3U0
3*.9
HBOObP
770722
1100
(C»770723
OVOO
1 .300
2*6
3.69
1.23
2.80
Hd005P
770723
OVOO
1 .300
-------
CONDUIT
PHOS-TOT
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPER
FLOW
HI LEVEL
CN-TOT
C
CW•TOT
ZNtTOT
CU.TOT
STATION
DATE
TIME
DATE
TIME
MGO
KG/D
KG/D
KG/0
KG/D
KG/U
KG/D
KG/D
HU005P
770719
1*45
(C)770720
13*5
1.300
1.673
0<
0
C
HbOObP
770720
13*5
1.300
HB005P
770720
13*5
(C)770721
1130
1.300
2.165
960
172.2
HBOObP
770721
1130
1.300
0.187
HBOObP
770721
1130
CC)770722
1100
1.300
1.181
625
187.0
0<
0
0
HbOObP
770722
1100
1.300
HHOUbP
770722
1100
CC)770723
0900
1.300
0.98*
512
1*7.6
0<
0
0
HBOObP
770723
0900
1.300
CONDUIT
LEAD
IRON
MANGNESE
MERCURY
RESIDUE
T ALK
FLOW
PB« TOT
FE.TOT
MN
HG.TOTAL
DISS-105
CAC03
STATION
DATE
TIME
DATE
time
MGO
KG/D
KG/D
KG/D
KG/D
KG/D
KG/D
HB005P
770719
1*45
(C)770720
13*5
1.300
0<
11
0.5
V
o
•
o
600
251
HBOObP
770720
13*5
1.300
+1B005P
770720
13*5
(C > 770721
1130
1.300
o.o<
1152
HBOObP
770721
1130
1.300
HBOObP
770721
1130
(C)770722
1100
1.300
0<
8
0.5
1260
HBOObP
770722
1100
1.300
HbOObP
770722
1100
(C)770723
0900
1.300
0<
2
0.4
935
305
HBOObP
770723
0900
1.300
-------
H0LS70N ARMY AMMUNl HON PLANT
K1NGSPOKT. TN
JULY * 1977 PERMIT NO. TN0003671
ANALYTICAL DATA
CONDUIT
WATER
PH
FLOW
TEMP
STATION
OATE
TIME
DATE
TIME
MGD
CENT
SU
HBOOdW
770719
1SOO
(C)770720
1*00
13.400
HB005W
770720
1355
13.400
30.0
7.6
HBOOS*
770720
1*00
(CJ 770721
11 45
13.400
HrtU05W
770721
111b
13.400
25.0
7.6
HB005W
770721
1145
13.400
2B.0
7.7
HP005W
770721
1145
(C)770722
1115
13.400
HB005W
770722
111S
(C)770723
0915
13.400
H8005W
770723
0915
13.400
26.0
8.1
00
MG/L
7.4
BOO
5 DAY
MG/L
2.8
4. 0<
4.0<
PHENOLS
TOTAL
UG/L
RESIDUE
TOT NFLT
MG/L
8
6
10
RESIDUE
SETTlBLE
ml/l
0.1<
0 .1 <
0.i<
TOT KJEL
NH3-N
N02&.N03
PHOS-TOT
COO
CYANIOE
T ORG C
CHhQ^IUM
N
TOTAL
N-TOTAL
HI LEVEL
CN-TOT
C
C3.T0T
STATION
DATE
TIME
OATE
TIME
MG/L
MG/L
MG/L
MG/L P
MG/L
MG/L
MG/L
Uu/L
HBOOStt
770719
1500
770720
1400
0.36
0.12
0.55
50<
Hb005w
770720
1355
HBOOSW
770720
1400
«C)770721
1145
0.30
0.15
0.62
0.160
40<
3.5
HB005W
770721
1115
HB005W
770721
1145
0.023
HP005W
770721
1145
(C > 770722
1115
0.40
0.20
0.62
0.110
40<
3.0
50<
HbOOSw
770722
1115
(0 770723
0915
1.20
o.ea
0.67
0.210
40<
50<
HH005W
770723
0915
ZINC
COPPER
LEAD
IKON
MANGNESE
MERCURY
HE i>I DUE
T At. «•
2N.T0T
CU.TOT
PB.TOT
FE.TOT
MN
HG.TOTAL
DISS-105
CACOJ
STATION
OATE
TIME
OATE
TIME
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
C MG/L
Mb/L
HBOOSW
770719
1500
770721
1145
HB005W
770721
1115
Hft005w
770721
1145
0.5<
HH005W
770721
1145
tC> 770722
1115
10<
12
100<
263
56.0
144
8C005W
770722
1115
(CI 770723
0915
14
lu<
100<
214
64.0
75
HBOOSW
770723
0915
-------
HOUSTON AHMY AMMUNITION PLANT
KINGSPORT, TN
JULY. 1-977 PERMIT NO. TN0003671
ANALYTICAL DATA
CONDUIT
DO
BOO
PHENOLS
RESIDUE
TOT KJEL
NH3-M
N0?f»N03
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAl
STATION
DATE
TIME
DATE
TIME
MGO
LB/0
LB/0
LB/0
LB/D
LB/O
LH/D
LH/U
Ht<005W
770719
1^00
(C)7 70720
1400
13.400
313.1
895
40.2b
13.42
61 .50
HU005W
770720
1355
13.400
1
HH005*
770720
1400
(C)770721
1145
13.400
447.3<
33.55
16.77
69.33
H9005*
770721
1115
13.400
827.5
HB005M
770721
11*5
13.400
1
HB005W
770721
11*5
(C)770722
1115
13.400
447.3<
671
44.73
22.37
69.33
Hti005tf
770722
1115
IC> 770723
0915
13.400
1118
134.19
<58.*1
7-.92
HUOOSrt
770723
0915
13.400
CONDUIT
PHOS-TOT
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPER
FLOW
HI LEVEL
CN-TOT
C
CR.TOT
ZN.TOT
cutTor
STATION
DATE
TIME
DATE
time
MUD
Lb/O
LB/D
LB/D
L8/D
LB/0
LB/0
LB/D
HB005M
770719
lbOO
(C> 770720
1400
13.400
6<
2
1<
Hd005W
770720
1355
13.400
HB005W
770720
1400
IC)770721
1145
13.400
17.892
4473<
391.4
HB005M
770721
1115
13.400
Htl005tt
770721
1145
13.400
2.572
HB005W
770721
1145
tC)770722
1115
13.400
12.301
4473<
335.5
6<
1<
I
HHOOSW
770722
1115
770723
0915
13.400
23.484
4473<
6<
2
1<
HhOObW
770723
0915
13.400
CONOUIT
LEAD
IRON
MAN6NESE
MERCURY
RESIDUE
T ALK
FLOW
P8.T0T
FEiTOT
MN
HG.TOTAL
DISS-105
CAC03
STATION
OATE
TIME
DATE
TIME
MGO
LB/D
LB/D
LB/D
LB/D
LB/D
LB/0
HB005W
770719
1500
(C)770720
1400
13.400
11<
42
9.4
0.1<
9617
7381
HH005X
770720
1355
13.400
HH005W
770720
1400
<0 770721
1145
13.400
HrlOObW
770721
1115
13.400
HH005W
770721
1145
13.400
0.1<
H9005W
770721
1145
(C)770722
1115
13.400
11<
29
6.3
16103
HB005M
770722
1115
(C)770723
0915
13.400
11<
24
9.4
8387
HB005W
770723
0915
13.400
CONOUIT
DO
BOD
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N024M03
FLOW
5 OAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
OATE
TIME
DATE
TIME
MtiD
Ktt/D
KG/D
KG/D
KG/D
KG/D
KG/D
KG/0
HB005W
770719
1500
<0 770720
1400
13.400
142.0
406
18.26
6.09
27.V 0
HB005W
770720
1355
13.400
0
HH005W
770720
1400
<0 770721
1145
13.400
202.9<
15.22
7.61
31.45
HHOOSW
770721
1115
13.400
375.4
HH005W
770721
1145
13.400
0
HB005W
770721
1145
<0770722
1115
13.400
202.9<
304
20.29
10.14
31.45
HB005M
770722
U1S
<0 770723
0915
13.400
507
60.87
44.64
33.98
HB005W
770723
0915
13.400
-------
CONDUIT
PHOS-TOT
FLOW
STATION
DATE
TIME
OATE
TIME
MOD
KG/D
HBOObtf
770719
1500
tC)770720
1400
13.400
H'fOObW
770720
1355
13.400
HH005W
770720
1400
tC)770721
1143
13.400
6.116
H*O05«I
770721
ins
13.400
HttOOBw
770721
1145
13.400
Ht'005W
770721
1145
(C)770722
1115
13.400
5.580
HS005W
770722
1115
(C)770723
0915
13.400
10.652
HoOOSW
770723
0915
13.400
CONDUIT
LEAD
FLO*
PBtTOT
STATION
OATE
TIME
OATE
TIME
MGO
KG/O
HHOOSM
770719
IsOO
(C)770720
1400
13.400
S<
HtfOObW
770 720
1355
13.400
HtlOOSW
770720
1400
(C)770721
1145
13.400
HHOOSw
770721
1115
13.400
H&005W
770721
1145
13.*00
HMOObw
770721
114S
(C)770722
1115
13.400
5<
HtlOOSM
770722
1115
(C»770723
0915
13.400
5<
HfaOObW
770723
0915
13.400
cot)
Hi LEVEL
KG/D
CYANIDE
CN-TOt
KG/0
T ORG C
C
KG/D
CHROMIUM
CR.TOT
KG/O
ZINC
tfuTOT
KG/D
COPPf."
CutluT
XG/O
3<
1
2029<
177.&
2029<
2029<
1.167
152.2
3<
3<
1<
1
1
1<
IRON
FE.TOT
KG/O
MANGNESE
HN
KG/O
MERCURY
HG.TOTAL
KG/O
RESIDUE
DISS-105
KG/O
T ALK
CAC03
KG/O
19
4.3
0.0<
4362
334b
13
11
2.8
4.3
0.0<
730*1
3004
-------
HOLSTON ARMY AMMUNITION PLANT
KINtiSPORT« TN
JULY * 1977 PERMIT NO. TN0003671
ANALYTICAL DATA
CONDUIT
WATER
PH
DO
BOO
PHENOLS
RESIDUE
RESIDUE
FLOW
TEMP
5 DAY
TOTAL
TOT NFLT
StTTLBt E
STATION
DATE
TIME
DATE
TIME
MGD
CENT
SU
MG/L
MG/L
UG/L
MG/L
ML/L
HBOOb
770719
1S45
770720
1430
14.000
24.0>
9
HBOOb
770720
1430
14.000
30.0
8.5
12
HbOOt.
770720
1*30
(C)770721
1200
14.000
12. 0>
10
0.1<
HBOOb
770721
1200
14.000
2b.0
7.2
8
HBOOb
770721
1200
770722
1130
14.000
12.0>
44
0.1<
HBOOb
770722
1130
14.000
23.0
7.b
6.6
Hb006
770722
1130
(C)770723
0915
14.000
3
0.1<
HB006
770723
091b
14.000
25.0
7.3
TOT KJEL
NH3-N
N02&N03
PHOS-TOT
COO
CYANIDE
T ORG C
CHROMIUM
N
TOTAL
N-TOTAL
HI LEVEL
CN-TOT
C
CR»TOT
STATION
DATE
TIME
OATE
TIME
MG/L
MG/L
MG/L
MG/L P
MG/L
MG/L
MG/L
UG/L
-HBOOb
770719
lb45
<0 770720
1430
0.65
0.10
0.6b
0.140
40<
12.0
bO<
HBOOb
770720
1430
HBOOb
770720
1*30
tC> 770721
1200
0.58
0.15
0.65
0.120
40<
6.0
HBOOb
770721
1200
0.026
HBOOb
770721
1200
(O 770722
1130
0.33
0.20
0.78
0.170
7.2
bO<
HBOOb
770722
1130
HHOOb
770722
1130
(0 770723
0915
1.00
0.75
0.70
0.190
40<
8.0
so<
HBOOb
770723
0915
ZINC
COPPER
LEAD
I PON
MANGNESE
MERCURY
RESIDUE
T ALK
ZN.TOT
CU.TOT
P8.T0T
FE.TOT
MN
HG.TOTAL
DISS-105
CAC03
STATION
OATE
TIME
OATE
TIME
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
C MG/L
MG/L
HBOOb
770719
1545
CC)770720
1430
17
10<
100<
1136
81.0
0.5<
171
b»
HBOOb
770720
1430
Hb006
770720
1*30
(0 770721
1200
0.5<
HBOOb
770721
1200
HBOOb
770721
1200
(0770722
1130
14
12
100<
569
75.0
12b
HB006
770722
1130
HBOOb
770722
1130
(0 770723
0915
17
14
100<
5b 1
96.0
219
74
HBOOb 770723 0915
-------
MOLSTON ARMY AMMUNIIION PLANf
KlNGSPORT. IN
JULY, 1977 PEHMIT NO. TN0003671
ANALYTICAL DATA
CONOUIr
00
BOD
PHENOLS
RESIDUE
TOT KJEL
NOdiNO 3
FLOW
S DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE
TIME
DATE
TIME
MGO
LB/0
Ltl/O
L0/O
LB/D
Lb/D
LB/D
lh/d
HbOOb
770719
13*5
770720
1*30
1*.000
2004.0>
1052
75.9*
11 .68
73.9*
HbOOb
770720
1*30
1*.000
1
HbOOb
770720
1*30
(C)770721
1200
14.000
1402.0>
1168
67.7b
17.53
75.9*
HbOOb
770721
1200
1*.000
1
HBOOb
770721
UOO
(C)770722
113U
14.000
1402.0>
5141
38.56
23.37
91.13
HB006
770722
1130
1*.000
771.1
HbOOb
770722
1130
770723
0915
14.000
22.196
4673<
934.7
6<
2
a
HBOOb
770723
0915
14.000
CONDUIT
LEAD
I HON
MANGNESE
MERCURY
RESIDUE
T AL*
FLOW
PB.TOT
FE»TOT
MN
HG.TOTAL
DISS-105
CAC03
STATION
DATE
TIME
DATE
TIME
MGO
LB/0
LB/D
LH/D
LB/D
LB/D
LB/D
HHOOb
770719
154S
(C) 770720
1*30
14.000
12<
133
'¦ 9.5
0 .1 <
19979
7*77
H0OO6
770720
1*30
14.000
HbOOb
770720
1*30
(C)770721
1200
14.000
0. 1<
HbOOb
770721
1200
14.000
HHOOb
770721
1200
CC» 770722
1130
14.000
I2<
bb
a.a
14721
HbOOb
770722
1130
14.000
HbOOb
7 70722
1130
770723
0915
14.000
12<
66
11.2
25587
8646
HHOOb
770723
0915
14.000
CONDUIT
DO
BOD
PHENOLS
RESIOUt
TOT KJtL
NH3-N
N02iN03
FLOW
5 OAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE
TIME
DATE
TIME
MOD
MS/D
KG/D
KG/D
KG/0
KG/D
KG/D
kG/u
hbOOb
770719
1S*5
(C)770720
1*30
14.000
1271.9>
477
34.4b
5.30
3*.*5
HBOOb
770720
1*30
14.000
1
HbOOb
770720
1*30
<0)770721
1200
I4.00U
b35.9>
530
30.74
7.95
J4.45
HHOUb
770721
1200
14.000
0
HHOOb
770721
1200
770722
1130
14.000
635.V>
2332
17.49
10.60
*1.34
HBOOb
770722
1130
14.000
34V. 8
HbOOb
770722
11 30
<0770723
0915
1*.000
159
53.00
39.75
37.10
HoOOb
770723
0W5
14.000
-------
CONDUIT PMOS-TOT
FLOW
STATION
DATE
TIME
DATE
TIME
MGD
KG/O
HB006
770719
1345
IC)770720
1430
14.000
7.419
Hb006
770720
1430
14.000
HBOOb
770720
1*30
IC> 770721
1200
14.000
6.359
HtiOOb
770721
1200
14.000
HH006
770721
ldOO
(C)770722
1130
14.000
V.009
HBOOb
770722
1130
14.000
HH006
770722
1130
(C)770723
0915
14.000
10.069
HBO Ob
770723
0915
14.000
CONDUIT
LEAD
FLOW
PB.TOT
STATION
DATE
TIME
DATE
TIME
MGD
KG/O
Ht>006
77071V
1345
<0770720
1430
14.000
5<
HB006
770720
1430
14.000
HbOOb
770720
14J0
(CI 770721
1200
14.000
H6006
770721
1200
14.000
Htf006
770721
UOO
(CJ770722
1130
14.000
5<
HbOOb
770722
1130
14.000
HBOOb
770722
1130
(07/0723
0915
14.000
5<
HBOOb
770723
0915
14.000
COD
HI LEVEL
KG/O
2120<
2120<
2120<
CYANIDE
CN-TOT
KG/O
1.378
T OHG C
C
KG/O
635.9
318.0
3B1.6
424.0
CHROMIUM
CW.TOT
KG/O
3<
3<
3<
ZINC
2N.T0T
KG/D
COPPER
CU.TOT
KG/O
1<
1
i
IRON
Ft.TOT
KG/O
60
MANGNESE
MM
KG/D
4.3
MERCURY
HG.TOTAL
KG/D
0.0<
0.0<
RESIDUE
DISS-105
KG/D
9062
T ALK
CAC03
KG/D
3392
30
30
4.0
5.1
6677
11606
392«!
-------
HOLSION ARMY AMMUNITION PLANI
KIN6SP0RT, IN
JULY, 1977 PERMIT NO. TN0003671
ANALYTICAL DATA
conduir
WATER
PH
DO
BOO
PHENOLS
RESIDUE
RESIDUE
FLOW
TEMP
b OAY
TOTAL
TOT NFLT
SETTLBle
STATION
OATE
TIME
OATE
TIME
MGO
CENT
SU
MG/L
MG/L
UG/L
MG/L
ML/L
HH008
770719
lblS
(C)770720
1500
18.000
4.6
24
HB008
770720
1455
18.000
31.0
8.0
8
HB008
770720
IbOO
(O 770721
1220
18.000
3.0
4
0.1<
HB008
770721
1220
18.000
29.0
7.6
9
HBOOB
770721
1220
<0770722
114b
1H.000
3.4
7
0.1<
HB008
770722
114b
18.000
26.0
7.7
7.0
HB008
770723
0930
18.000
26.0
7.7
TOT KJEL
NH3-N
N02&N03
PHOS-TOT
COO
CYANIDE
T ORG C
CHrtOMlUM
N
TOTAL
N-TOTAL
HI LEVEL
CN-TOT
C
CRfTOT
STATION
DATE
TIME
OATE
time
MG/L
MG/L
MG/L
mg/l p
MG/L
MG/L
MG/L
UG/L
HB008
770719
1 = 15
(C)770720
1500
0.70
0.36
3.00
0.120
40<
2.5
50<
HU008
770720
1455
HBOOB
770720
1*00
«C)770721
1220
0.36
0.12
2.87
0.050
HBOOB
770721
1220
0.014
HB008
770721
1220
(CI 770722
1145
0.57
0.16
5.00
0.190
40<
3.5
50<
HBOOB
770722
114b
HBOOB
770723
0930
21NC
COPPER
LEAD
IRON
MANGNESE
MERCURY
RESIDUE
T ALK
ZN.TOT
CU » TOT
PB.TOT
FE.TOT
MN
HG.TOTAL
DISS- 1 OS
C&COJ
STATION
DATE
TIME
OATE
time
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
C MG/L
MG/L
HB008
770719
lt>15
00
<0 770721
1220
0 .5<
l
HBOOB
770721
1220
HBOOB
770721
1220
<0770722
1145
14
18
100<
1250
67.0
263
HB008
770722
1145
Hbooa 770723 0930
-------
HOUSTON ARMY AMMUNITION PLANT
KIMGSPORT. TN
JULY. 1977 PERMIT NO. TN0003671
ANALYTICAL OATA
CONDUIT
DO
BOO
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N02*N03
FLOW
5 DAV
TOTAL
TOT NFLT
N
TOTAL
N-TOT At
STATION
DATE
TIME
OATE
TIME
MOD
LB/D
LB/D
LB/0
LB/D
LB/O
LB/D
LB/D
HH008
770719
1315
(C>770720
1500
18.000
691.0
3605
105.15
54.08
450.65
HbOOB
770720
1*55
18.000
1
Hb008
770720
1500
IC> 770721
1220
18.000
450.6
601
54.08
18.03
431.12
HBOOB
770721
1220
18.000
1
MBOoe
770721
1220
<0770722
11*5
18.000
510.7
1052
85.62
24.03
751.08
HBOUB
770722
1145
18.000
1051.5
Hbooe
770723
0930
18.000
CONDUIT
PMOS-TOT
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPIES
FLOW
HI LEVEL
CN-TOT
C
CR.TOT
ZN.TOT
Cu.TOT
STATION
OATE
TIME
DATE
TIME
MGD
LB/D
LB/D
LB/D
LB/D
LB/D
LB/D
LB/D
HBOOB
770719
1-515
(C1770720
1500
18.000
18.026
6009<
375.5
8<
3
2<
HB008
770720
1455
18.000
HbOOB
770720
1500
770722
1145
18.000
28.541
6009<
525.8
8<
2
J
HB008
770722
1145
18.000
HBOOB
770723
0930
18.000
CONDUIT
LEAD
IRON
MANGNESE
MERCURY
RESIDUE
T AL"
FLOW
PB.TOT
FE.TOT
MN
HG,TOTAL
DISS-105
CAC03
STATION
OATE
TIME
DATE
TIME
M6D
LB/D
LB/0
LB/D
LB/D
LB/0
LB/D
Hbooa
770719
1515
(C)770720
1500
18.000
15<
128
13.5
0.1<
10365
HdOOB
770720
1455
18.000
HB008
770720
1500
(C)770721
1220
18.000
0.1<
21631
HU008
770721
1220
18.000
Hbooa
770721
1
-------
CONtHJIT
PHOS-TOt
COD
CYANIDE
T ORG C
CHROMIUM
ZINC
COPPER
FLOW
Ml LEVEL
CN-TOT
C
CRfTOT
*N.ror
CU.TOT
STATION
DATE
TIME
OATE
TIME
MGO
KG/D
KG/0
KG/0
KG/D
KG/0
KG/0
KG/O
Ht«008
770719
lt>15
(C)770720
1500
18.000
8.176
2725<
170.3
3<
1
1<
HBO 00
770720
l*Sb
18.000
H800B
770720
1500
(0 770721
1220
18.004)
3.*07
HBOOB
770721
1220
1*.0««
0.95*
Heooa
770721
U20
(C)770722
11*5
18.000
12.9*6
2725<
238.5
3<
1
1
HB008
770722
1145
18.000
HHOOH
770723
0930
18.000
CONDUIT
LEAD
I HON
MANGNESE
MERCURY
RESIDUE
T ALK
FLOW
PR»TOT
FE.TOT
MN
HGtTOTAL
DISS-105
CACOJ
STATION
OA tE
TIME
OATE
time
MGD
KG/D
KG/D
KG/D
KG/D
KG/0
KG/0
B6008
770719
1*15
770722
11*5
18.000
7<
85
*.6
17920
HbOOt)
770722
11*5
18.000
HBOOb
770723
0930
16.000
-------
COMPLIANCE ASSURANCE SAMPLING INSPECTION
CITY Or KINGSPORT WASTEWATER TREATMENT PLANT
KINGSPORT, TENNESSEE
PERMIT NO. TN0020095
INTRODUCTION
During July 19-23, 1977, Messrs. William R. Davis and George
Hollerback of the Unites States Environmental Protection Agency (US-EPA),
Region IV, Surveillance and Analysis Division conducted a compliance
assurance sampling inspection at the Kingsport Wastewater Treatment
Plant (WTP), Kingsport, Tennessee. Messrs. R. L. Collins, Superintendent
of Water and Wastewater Treatment and Robin Manning, Tennessee Division
of Water Quality Control (TN-DWQC) assisted with sample collection and
answered questions relating to the NPDES permit.
STUDY FINDINGS
The WTP effluent exceeded both biochemical oxygen demand (BOD5) and
ammonia (NHg) monthly average permitted loadings and concentrations during
the July 19-22 compositing periods. The plant's monitoring program was
acceptable.
WASTEWATER TREATMENT
The treatment plant is a secondary biological process consisting of
screening, grit removal, primary clarification, two trickling filters,
final clarification and chlorination. Scum from the primary clarifiers
is diverted to the digesters and sludge is pumped into a sludge thickener
and subsequently into one of two anerobic digesters. The supernatant from
the thickener and digesters is recirculated to the raw water line. Digested
sludge is placed on drying beds or in a lagoon at the plant. Wastewater
flow is measured with a 24 inch Parshall flume and recorder. The flume
is located on the effluent line from the primary clarifiers and contains
supernatant and recirculated sludge which is metered and subtracted from
the measured total flow. Chicago automatic samplers are used to composite
aliquots of raw and finished samples into a refrigerated container on
a flow proportional basis.
STUDY PROCEDURES
ISCO model 1580 automatic sequential samplers were installed at-influent
and effluent locations. Aliquots were collected at 30 minute intervals for
four consecutive 24 hour periods into refrigerated glass containers. Flows
were obtained from the plant's flow measuring equipment. Samples were not
split. Chain-of-custody was maintained on all samples.
-------
Analytical Data and Permit Limitations
The effluent BOD5 and NH3 loadings and concentrations exceeded the
monthly loadings and concentrations during the July 19-22 compositing
periods. Although not a limited parameter, manganese concentrations
are nearly 5 times higher than those found in the South Fork River
upstream from Kingsport industries. The analytical data are given
in the attached table.
General Discussion
The plant's monitoring program is commensurate with the NPDES permit.
Analyses are performed in the plant laboratory by analysts using approved
methods listed in the Federal Register.
CONTACTS
W. R. Jtavis, US-EPA, Athens, Georgia, 404/546-3117
Robin Manning, TN-DWQC, Knoxville, Tennessee, 615/588-6537
R. L. Collins, Kingsport, Tennessee, 615/245-1671
-------
PARAMETERS
BOD 5
TSS
Fecal Coliforn,
Geometric Mean
Ammonia
PH
EFFLUENT LIMITATIONS
DISCHARGE LIMITATIONS
kg/day (lbs/day) Other Units
Monthly Avg. Weekly Avg. Monthly Avr. Weekly Avr.
227 kg/day Total 10 mg/1 15 mg/1
(500 lbs/day)
796 (1751) 1194 (2626) 30 mg/1 45 mg/1
60 kg/day Total 1.6 mg/1 2.4 mg/1
(133 lb/day)
6.0 - 9.0 pH units
-------
KINGSPORT STP - INFLUENT
KlNGSPOrtT~ TN
JULY9 1977 PERMIT NO. TN002009S
ANALYTICAL DATA
CONDUIT
WATER
PH
BOO
PHENOLS
RESIOUE
TOT KJEL
OaTE
FLOW
TEMP
5 DAY
TOTAL
TOT NFLT
N
STATION
TI*E
DATE
TIME
MHO
CENT
SU
MG/L
UG/L
MG/L
MG/L
KSOOII
770719
1*00
(CI 770720
1400
6.300
127.0
200
12.30
KSOOII
770720
1400
25.0
7.1
60
KSOOII
770720
l*uO
(C)770721
1400
6.800
140.0
190
9.25
KSOOII
77l>72l
26.0
7.6
KSOOII
770721
1400
(C)770722
1*00
7.160
123^0
172
11.50
KSOOII
77H722
24.S
6.9
KSOOII
770722
1*00
CO 770723
1300
6.800
172
9.25
KSOOII
770723
1300
24.5
7.0
NH3-N
N02S.N03
PHOS-TOT
COO
T ORG C
CHROMIUM
ZINC
TOTAL
N-TOTAL
HI LEVEL
C
CR.TOT
zn.tot
STATION
RATE
TIME
DATE
time
MG/L
MG/L
MG/L P
MG/L
MG/L
UG/L
UG/L
KSOOII
77171*
1*00
(C)770720
1*00
9.70
0.01<
6.200
272
40.0
122
273
KSOOII
770720
1*00
KSOOII
770720
l*t>0
{C> 770721
1*00
9.SO
0.12
6.400
323
44.0
63
233
KSOOII
770721
KSOOII
770721
1400
(C)770722
1*00
9.30
0.02
9.800
260
*4.0
50<
209
KSOOII
770722
KSOOII
770722
1*00
<0 770723
1300
a.oo
0.07
6.000
296
40.0
50<
357
KSOOII
770723
1300
COPPER
LEAD
IRON
MANGNESE
RESIOUE
T ALK
ClNTOT
PB»TOT
FEiTOT
MN
DISS-105
CAC03
STATION
DATE
T IME
DATE
TIME
UG/L
UG/L
UG/L
UG/L
C MG/L
MG/L
770720
1*00
96
100<
1600
160.0
142
182
KSOOII
770720
1*00
fcsoo I r
770720
1*00
(C>770721
1*00
76
100<
2050
183.0
164
KSOOII
770721
ksoon
770721
1*00
(C)770722
1*00
69
100<
1530
190.0
208
ksooii
K^OOIT
7707??
1*00
((.) nm? i
1 30 u
fb
100<
1550
21b.0
170
167
-------
if«r
CONDUIT
HOD
PHENOLS
HEbIDUE
TOT KJEL
MH3-N
N02&N03
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
OATE TIME
DATE
TIMf.
MGD
LB/D
LB/D
LB/D
LB/D
LB/D
LB/0
KSOUl!
770719 1*00
CC>770720
1*00
6.300
6677.1
10515
646.68
509.98
0.53<
KS001I
770720 1*00
(C)770721
1*00
6.600
79**.7
10762
524.92
539.11
6.81
KSOOII
770721 1*U0
(C)770722
1*00
7.180
7370.1
10306
689.07
557.25
1.20
KSOOII
770722 1*00
(C)770723
1300
6.800
9761
524.92
453.98
3.97
CONDUIT
PHOS-TOT
COD
T OHG C
CHROMIUM
ZINC
COPPER
FLOW
HI LEVEL
C
CR.TOT
ZN»TOT
CU«TOT
STATION
DATE TIME
OATE
TIME
MOO
LB/0
LB/D
LB/D
LB/0
LB/D
LB/D
KSOOII
770719 1*00
CO 770720
1*00
6.300
325.967
14301
2103.0
6
14
5
KSOOII
770720 1*00
(C)770721
1*00
6.BOO
363.187
16330
2496.9
4
13
4
KSOOII
770 721" 1*00
(C>770722
1*00
"" 7.100
507.206
15579
2636.4 "¦
3< "
13"
KSOOII
770722 1*00
(C>770723
1300
6.BOO
3*0.*88
16797
2269.9
3<
20
4
CONDUIT
LEAD
IRON
MANGNESE
RESIDUE
T ALK
FLOW
PB.TOT
FE»T0T
MN
OISS-105
CAC03
STATION
OATE TIME
OATE
TIME
MGD
LB/D
LB/D
LB/D
LB/D
LB/D
KSOOII
770719 1*00
<0770720
1*00
6.300
5<
e*
6.4
7466
9569
KSOOII
770720 1*00
(C)770721
1*00
6.BOO
6<
116
10.4
9307
KSOOII
770721 1»U0
tC»770722
1*00
7.1B0
&<
92
11.4
12463
KSOOII
770722 1*00
(C)770723
1300
6.800
6<
88
12.2
9647
9477
CONDUIT
BOD
PHENOLS
RESIDUE
TOT KJEL
NH3-N
N02&N03
FLOW
5 DAY
TOTAL
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE TIME
OATE
TIME
MGD
KO/D
KG/D
KG/0
KG/D
KG/D
KG/D
KSOOII
770719 1*00
CC>770720
1*00
6.300
3023.7
4770
293.33
231.32
0.24<
KSOOII
770720 1*00
JO 770721
1*00
6.800
3603.7
4891
238.10
24*.53
3.09
KSOOII
770721 1*00
(0)770722
1*00
7.180
3343.0
4675
312.56
252.76
0.54
KSOOII
770722 1*00
(C)770723
1300
6.600
4427
236.10
205.92
1.80
CONDUIT
PHOS-TOT
COD
T ORG C
CHROMIUM
ZINC
COPPER
FLOW
HI LEVEL
C
CR«TOT
ZN» TOT
CU.TOT
STATION
OATE TIME
OATE
TIME
MOO
KG/0
KG/D
KG/D
KG/0
K6/D
KG/D
KSOOII
770719 1*00
(0 770720
1*00
6.300
1*7.856
6*87
953.9
3
7
2
KSOOII
770720 1*00
(C)770721
1*00
6.800
164.739
8314
1132.6
2
6
2
KSOOII
770721 1*00
(C>770722
1*00
7.160
266.353
7067
1195.9
1<
6
2
KSOOII
770722 1*00
(C)770723
1300
6.800
154.4*3
7619
1029.6
1<
9
2
CONDUIT
LEAD
IRON
MANGNESE
RESIDUE
T ALK
FLOW
PB»T0T
FEtTOT
MN
DISS-105
CAC03
STATION
DATE TIME
DATE
TIME
MGD
KG/D
KG/0
KG/D
KG/D
KG/D
KSOOII
770719 1*00
CO 770720
1*00
6.300
2<
38
3.8
3386
4340
KSOOII
770720 1*00
(0 770721
1*00
6.600
3<
53
4.7
4221
KSOOII
770721 1*00
CC>770722
1*00
7.160
3<
42
5.2
5653
KSfl"U '
-(fU7flX?a
I iA"
. ^.,«O0
"*<¦
—to
5.S
437#w
-------
IUNGSPOOT STP - EFFLUENT
KlNGSPOWT, TN
JULY. 1977 PtrtMIT NO. TN0020095
ANALYTICAL DATA
CONDUIT
WATER
PH
1
1
I
1
*1 o
« o
1
1
•
1
1
BOO
PHENOLS
RESIOUE
RESIOUE
FLOW
temp
5 OAY
TOTAL
TOT NFLT
SETTLBLE
station
DATE
TIhE
DATE
TIME
MC'O
CENT
SU
MG/L
MG/L
UG/L
MG/L
ML/L
*sooif
770719
1315
(C)770720
131b
6.300
39.0
35
0.1<
KS041E
770 720
131b
27.0
7.1
22
KSOOlf
770720
UJO
(C)77U721
1330
6.600
15.0
28
ffSOOlF
770721
1330
26.0
6.9
4.7
20
Ksooit:
770721
1330
<0 7 70722
1330
7.1B0
14.0
33
fsaoifc
770722
1330
24.5
7.1
314
KSOOlf
77072?
1330
(C> 770723
1230
6.800
29
KSOniE
770723
12*3
24.5
7.1
TOT K JEL
NH3-N
N02NN03
PHOS-TOT
COO
T ORG C
CHROMIUM
N
TOTAL
N-TOTAL
HI LEVEL
C
Cft.TOT
STATION
PATE
T/ME
DATE
TIME
MG/L
MG/L
MG/L
MG/L P
MG/L
MG/L
UG/L
KS001E
77071Q
1-315
1C>7707?0
1315
10.20
9. 70
0.38
6.300
120
44.0
50<
KSOOlf
7TO720
131*5
Ksooie
770720
1 J30
(O7707?1
1330
J*.b7
ft.00
0 . 65
6.000
88
34.0
59
KSOOIF
770721
1330
icsooie
770721
1330
(C)770722
1330
12.00
8.50
0.53
113
40.0
50<
KS001E
770722
1330
Ksooie
770722
1330
«C>770723
1230
9.10
7.00
0.37
6.000
105
43.0
50<
«S001E
770723
1245
/INC
COPPf*
LEAO
I HON
MANGNESE
RESIOUE
T ALK
2N.T0T
CU'TOT
PH,TOT
FEtTOT
MKI
DISS-105
CAC03
STATION
DATE
TIME
DATE
TIME
U'j/L
UG/L
UG/L
UG/L
UG/L
C MG/L
MG/L
KS60JF
770719
1315
CC>770720
1315
105
bo
100<
663
130.0
253
181
KSOOlE
770720
131b
KSOOIF
770720
1330
(O770721
1330
105
34
100<
649
138.0
274
Ksooie
770721
1330
Ksooie
770721
1J30
JC > 770722
1330
61
38
100<
1500
149.0
270
rso«ne
770722
1330
267
KSOOIF
770722
1330
770723
1230
51
36
100<
b30
161.0
154
77,!7?:i
12*1
-------
— - - —————.
———————————
— ————— —
C OMUL) I I
'.>()
HIlO
PHtNOLS
RESIDUE
TOT KJEL
NH3-N
Fl OW
?> OAf
TOTAL
TOT NFLT
N
TOTAL
STATION
OATE
T l «E
OATE
TIME
MGO
Lf»/n
Lm/D
LB/D
L8/0
LB/0
LB/D
"S001E
77071*
U1S
(CI 770720
1315
6.300
2050.4
1840
536.27
509.98
ksooie
770720
1330
770721
1 3-jo
6.600
asi.a
1589
486.33
453.98
KSOOIE
770721
1^30
(C> 770722
1330
7. IbO
838.9
1977
719.03
509.31
KSOOIE
770722
1J30
770723
1230
6.000
1646
516.41
397.24
COMOOIT
N02&N03
P^OS-TOT
COO
T ORG C
CHROMIUM
ZINC
f LOW
N-TOTAL
HI LEVEL
C
CR.TOT
ZN » TOT
STATION
OATE
TJME
OATE
TIME
MGD
LB/0
LP/0
LB/0
LB/0
L8/0
L8/0
KSOOlE
770719
1315
<0 770720
1315
6.300
19.9»J
331.225
6309
2313.3
3<
6
KS001F
770720
1J30
LB/0
LH/O
LH/O
LH/O
LB/D
LB/0
KSOOIE
770719
1 315
(C)770720
1315
6.300
3
5<
35
6.8
13302
9516
KSOOlF
770 720
1 J JO
(C) 771)7X1
1330
6.WOO
2
6<
37
7.8
15549
KSOOlF
770721
1 Jjn
(C)770722
1 JJo
7.1H0
2
6<
"90
8.9
16178
KSOOIE
77072?
1 JJO
(C>770723
1230
ft.(300
2
6<
36
9.1
15152
8739
CONOt 11T
00
ROD
PHENOLS
WESIDUE
TOT KJEL
NH3-N
FU>*
5 OA Y
TOTAL
TOT NFLT
N
TOTAL
STATION
OATE
TIME
OATE
TIME
M«0
KG/0
Ktf/O
KG/D
KG/0
KG/D
KG/D
KSOOIE
770719
1315
(C)770720
1315
6.300
930.1
835
243.25
231.32
KSOOIE
770720
1 330
(C> 770 721
1330
6.MOO
386.1
721
220.60
205.92
KSOOIE
770721
1330
tC)770722
1330
7.180
380.5
897
326.15
231.02
KSOOIE
770722
1330
(C)7 7 0 723
1230
6.BOO
746
234.24
180.18
CONDUIT
N02&N03
PHOS-TOT
COD
T ORG C
CHROMIUM
ZINC
FLOW
N-TOTAL
HI LEVEL
C
CRtTOT
ZN.TOT
STATION
OATE
TIME
OATE
TIME
MtiD
KG/0
K6/0
KG/D
KG/0
KG/D
KG/0
KSOOIE
770719
1315
(0 770720
1315
6.300
9.06
150.241
2862
1049.3
1<
3
KSOOIE
770720
1330
(C)770721
1330
6.aoo
16.73
154.443
2265
875.2
2
3
KSOOIE
.770721
1330
(C)770722
1330
7.180
14.40
3071
1087.2
1<
2
KSOOIE
770722
1330
(O 770723
1230
6.000
9.52
154.443
2703
1106.6
1<
1
CONOUIT
COPPEW
LEAO
IRON
MANGNESE
RESIDUE
T ALK
FLOW
CU»TUT
PH»TOT
FE.TOT
MN
DISS-105
CAC03
STATION
OATE
TIME
DATE
TIME
MGD
KG/0
KG/D
KG/0
KG/0
KG/0
KG/0
KSOOIE
77071*
1J15
(0770720
1315
6.300
I
2<
16
3.1
6033
4316
KSOOIE
770720
1 JJO
(O 770721
1330
6. WOO
1
3<
17
3.6
7053
KSOOIE
770721
1330
(0770722
1330
7.180
1
3<
41
4.0
7338
KSO"1r
770?^?
1 J }'i
(C)7707^3
123u
6.rt(ifl
1
3<
16
4.1
6873
3964
-------
COMPLIANCE ASSURANCE SAMPLING INSPECTION
MEAD PAPER COMPANY, KINGSPORT, TENNESSEE
PERMIT NO. TN0001643
INTRODUCTION
During the period July 19-23, 1977, Messrs. William R. Davis and
George Hollerbach of the United States Environmental Protection Agency
(US-EPA), Region IV, Surveillance and Analysis Division, conducted a
compliance assurance sampling inspection at the Mead Paper Company,
Kingsport, Tennessee. Messrs. Richard Self, Manager of Environmental
Controls, Mead Paper in Kingsport and Robin Manning, Tennessee Depart-
ment of Public Health, Division of Water Quality Control (TN-DWQC)
assisted with the sample collection and answered questions relating
to the NPDES permit.
STUDY FINDINGS
The plant's wastewater discharge was commensurate with the company's
NPDES permit limitations, however, the biochemical oxygen demand (BODr)
loadings were approaching the daily average limitations, because of oil
contamination in the company's automatic sampling system which was used
during the inspection. Subsequent conversations with plant personnel
indicate that the problems with the sampler have been corrected. The
company's self-monitoring program was acceptable.
MANUFACTURING PROCESS
The Kingsport Mill is a partially integrated bleached soda pulp and
paper mill manufacturing 270 tons of bleached pulp per day. The pulp
is used to manufacture publication and other fine papers, both coated
and uncoated.
WASTEWATER TREATMENT
The wastewater treatment system consists of a primary clarifier
equipped with dual trash screens, sludge concentration (centrifuge),
and a 23-acre aerated stabilization basin. The discharge passes through
a 3 foot Parshall flume equipped with a recorder and totalizer. Sludge
from the centrifuge is trucked to a landfill.
STUDY PROCEDURES
The company DeZurik sampler was used to composite 24-hour, flow
proportional samples from the effluent. Flows were obtained from the
company's flow measuring devices which were checked and found adequate.
Samples were split with the company. Chain-of-custody was maintained
on all samples.
-------
Analytical Data and Perniit Limitations
BOD5 daily averages were exceeded for each of the three 24-hour
compositing periods. The analytical data are given in the attached
table.
General Discussion
The plant's monitoring program is commensurate with the NPDES
permit. Analyses are performed in the plant laboratory by analysts
using approved methods listed in the Federal Register. The Mead
personnel have been experiencing higher BOD5 loadings in the composite
samples than in samples collected just upstream from the effluent from
the aeration basin. A possible cause for the higher BOD5 concentrations
could have been caused by oil leaking from the piston in the automatic
sampler. A follow-up with company personnel indicated that this was a
problem and had been corrected with a lowering of BOD^ concentrations.
CONTACTS
W. R. Davis, US-EPA, Athens, Georgia, 404/546-3117
Robin Manning, TN-DWQC, Knoxyille, Tennessee, 615/588-6537
Richard W. Self, Mead Corporation, Kingsport, Tennessee, 615-247-7111
-------
PERMIT LIMITATIONS
PARAMETER
Flow
BOD5 (May 1 - Sept. 30)
BOD5 (Oct. 1 - April 30)
TSS
Ammonia, As N
Phosphorus, Total
Total Dissolved Solids
Settleable Solids
pH
DISCHARGE LIMITATIONS
kg/day (lbs/day) Other Units
Daily Avgi Daily Maxi.
1588
(3500)
2722
(6000)
2180
(4800)
3266
(7200)
5897
(13,000)
11,790
(26,000)
63
(138)
63
(138)
68
(150)
136
(300)
90,720
(200,000)
90,720
(200,000)
6.0 - 9.0 pH units
jl Refers to net additions to
which is a gross limit).
intake water (except total
suspended solids,
-------
. ¦ . f' >•' . » * •
Jul r. 1W7 f»fcR'4IT NO. I.xj0l)lbf3
ANALYTICAL DATA
CONDUIT
HATE*
p«
BOO
RESIDUE
RESIDUE
TOT KJEL
FLOW
TEMP
5 DAY
TOT NFLT
SETTL6LE
N
station
DATE TIME
OATE TIME
MGO
CENT
su
MG/L
MG/L
ML/L
MG/L
MEOOl
770719 0400 (C)770720 OBOO
11.200
54.0
114
4.16
MEOOl
770720 OdOO <0770721 080b
11.200
39.0
96
4.45
MEOOl
770720 0630
32.0
7.3
ME 001
770721 0800 (CI 770722 0800
11.900
36.0
103
3.31
MEOOl
770721 0830
33.5
7.3
*E00l
770722 UttOO
.13.0
7.3
29.0
105
MEOOl
770722 OSOO <0770723 0900
12.000
O.K
4.35
ME 001
770723 0810
32.0
7.3
98
0.1<
4.10
NH3-N
N02KN03
PHOS-TOT
COO
T ORG C
RESIDUE
T ALK
total
N-TOTAL
HI LEVEL
C
DISS-105
CAC03
STATION
OATE TIME
DATE TIME
MG/L
MG/L
MG/L f
mg/l
MG/L
C MG/L
MG/L
MP001
770719
0800
(CI770720 0800
0 .55
0.0l<
0.640
358
74.0
1120
171
MEOOl
770720
OoUO
(C> 770721 0800
0.55
0.01<
0.700
284
68.0
970
Ml-001
770720 OUJO
MEOOl
770721
OabO
(C)770722 0800
0.20
0.01<
0.620
284
84.0
970
ME 0 ft 1
770721 0830
MEOOl
770722 0800
970
MEOOl
770722 OOOO
(C)770723 0800
0.17
U.OK
0.700
218
59.0
990
174
ME 001
770723 0810
0.20
0.01<
0.700
249
930
166
«•
CONDUIT
HOD
RESIDUE
TOT KJEL
NM3-N
N02&N03
FLO*
5 DAY
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE
TIME
OATE TIME
MOD
LB/0
L8/D
LB/0
LB/D
LB/0
ME001
770719
OBOO
(0 770720 0800
11.200
5047.2
1065S
388.82
51.41
0.93<
MEOOl
770720
OBOO
(Ct770771 0800
11.200
3645.2
8973
415.93
51.41
0.93<
MEOOl
770721
0400
(CI 770722 0800
11.900
3575.1
10229
328.71
19.86
0.99<
MEOOl
770722
OdOO
(CI 770723 0800
12.000
435.62
17.02
1.00<
CONDUIT
PHOS-TOT
COO
T ORG C
PESIOUE
T ALK
FLO*
MI LEVEL
C
DISS-105
CAC03
STATION
OATE
TIME
OATE TIME
MGO
LB/0
LB/0
L6/D
LB/0
LB/0
•MfOOl
770719
ObOO
tC>770720 0800
11.200
59.819
33461
6916.6
104683
15983
ME001
770720
OdOO
(0 770721 0800
11.200
65.427
26545
6355.8
90663
MEOOl
770721
Od03
(C)770722 0800
11.900
61.572
28204
8342.0
96330
ME 001
770722
0801
(0 770723 0800
12.000
70.101
21831
5908.5
99142
17425
CONOUIT
BOO
RESIDUE
TOT KJEL
NH3-N
N02&N03
FLOW
5 DAY
TOT NFLT
N
TOTAL
N-TOTAL
STATION
DATE
TIME
OATE TIME
MGO
KG/D
KG/0
kg/d
KG/D
KG/D
ME 001
770719
oaoo
(0 770720 0800
11.200
2289.4
4833
176.37
23.32
0.42<
ME001
770720
ObOO
(0 770721 0800
11.200
1653.4
4070
18H.66
23.32
0.42<
MEOOl
770721
0O00
(C)770722 0800
11.900
1621.6
4640
14V.10
9.01
0.45<
ME001
770722
ODUO
(0770723 0800
12.000
197.60
7.72
0.45<
CONOUIT
PMOWO(_
COO
T ORG C
RESIDUE
T ALK
flow
Mi" LEVEL
C
OlS5-10i>
' CaCM" 1 '
STATION
OATE
TIME
OATE TIME
MGO
KG/D
KG/D
KG/D
KG/0
KG/0
MEOOl
770719
OBOO
(C>770720 080V
11.200
27.133
15178
3137.3
47484
7250
.MEOOl
770720
OdOO
(0 770721 0800
11.200
29.677
12040
28M2.9
41124
MEOOl
770721
OBOO
(0 770722 080(1
11.900
27.920
12793
3783.8
43694
MEOOl
770722
OBOO
(C)770723 0800
12.000
31.797
9903
2680.0
44970
7904
-------
APPENDIX C
STATE OF TENNESSEE WATER QUALITY STANDARDS
-------
(c) Fish ar.d Acjuatic Life.
1. Dissolved Oxygen - The dissolved o::ygen shall
be a minimum cf. 5. C mg/1 except in limited
sections of stre&Miv where (i) present technology
cannot restore the water quality to the
desired minimum cf 5.0 mg/1 dissolved oxygen,
(ii) the cost of meeting the standards is
economically prohibitive when compared with
the expected benefits to be obtained, or
(iii) the natural qualities of the water are
less than the desired minimum of 5.0 mg/1.
Such exceptions shc.il be determined on an
individual basis but in no instance shall the
dissolved oxygen conesntration be less than
3.0 mg/1./'' The dissolved oxygen concentration
shall be measured at mid-depth in waters
having a total deptn of ten (10) feet or less
and at a depth of f:.ve (5) feet in waters
having a total depth of greater than ten (10)
feet. The dissolved oxygen concentration of
recognized trout streams shall not be less
than G.O mg/1.
-------
- 6 -
2. pH - The pH value shall lie within the range
of 6.50 to 8.5 and shall not fluctuate more
than 1.0 unit in this range over a period of
24 hours.
3. Solid3, Floating Materials and Deposits -
There shall be no distinctly visible solids,
scum, foam, oily sleek, or the formation of
slimes, bottom deposits or sludge banks of
such size or character that may be detrimental
to fish and aquatic life.
4. Turbidity or Color - There shall be no turbidity
or color added in such amounts or of such
character that will materially affect fish
and aquatic life.
5. Temperature - The maximum water temperature
change shall r.ct exceed 3C° relative to an
upstream control point. The temperature of
the water shall not exceed 3C.3°C ?.::d tne
maximum rate of change shall net e>:c;ed 2C°
per hour. The temperature of recognized
trout waters shall not exceed 20°C. There
shall be no abnormal temperature changes that
may affect aquatic life unless caused by
natural conditions. The temperature of
impoundments where stratification occurs will
be measured at a depth cf 5 feet, or mid-
depth whichever is less, and the temperature
in flowing streams shall be measured at mid-
depth.
6. Taste or Odor - There shall be no substances
added that will impart upalatable flavor to
fish or result in noticeable offensive eders
in the vicinity of the water or otherwise
interfere with fish or aquatic life.
7. Toxic Substances - There shall be no substances
added to the waters that will produce toxic
conditions that affect fish or aquatic life.
8. Other Pollutants - Other pollutants shall not
be added to the waters that will be detrimental
to fish or aquatic life.
-------
- 7 -
9. Coliform -The concentration of the fecal
coliform group shall not exceed 1,000 per
100 ml. as a geometric mean based on a minimum
of 10 samples collected from a given sampling
site over a period of not more than 30 consecutive
days with individual samples being collected
at intervals of not less than 12 hours. For
the purposes of determining the geometric
mean, individual samples having a fecal
coliform group concentration of less than
100 ml. shall be considered as having a
concentration of 1 per 100 ml. In addition,
the concentration of the fecal coliform group
in any individual sample shall not exceed
5,000 per 100 ml.
(d) Recreation.
1. Dissolved Oxygen - Thers shall always be
sufficient dissolved cxyg-^r. present to prevent
odors of decomposition and o^her offensive
conditions.
2. pH - The pH value shall lie within the range
of 6.0 to 9.0 and shall not fluctuate more
than 1.0 unit in this range over a period of
24 hours.
3. Solids, Floating Materials and Deposits -
There shall be no distinctly visible Solids,
scum, foam, oily sleek, or the formation of
slimes, bottom deposits or sludge banks of
such size or character that may be detrimental
to recreation.
4. Turbidity or Color - There shall be no turbidity
or color added ir. such amounts or character
that will result in any objectionable appearance
to the water.
5. Temperature - The maxinun water temperature
change shall not exceed 3C° relative to an
upstream control point. The temperature of
the water shall not exceed 30.5°C and the
maximum rate of change shall not exceed 2C°
per hour. The temperature of impoundments
where stratificaticn occurs will be measured
at a depth of 5 feet, or mid-depth whichever
is less, and the temperature in flowing
streams shall be measured at mid-depth.
-------
- 8 -
6. Coliform - The concentration of a fecal
coliform group shall not exceed 2 00 per
100 ral. as a geometric mean based on a minimum
of 10 samples collected from a given sampling
site over a period of not more than 30 consecutive
days with individual samples being collected
at intervals of not less than 12 hours.- For
the purposes of determining the geometric
mean, individual samples having a fecal
coliform group concentration of less than 1
per 100 ml. shall be considered as having a
concentration of 1 per 100 ml. In addition,
the concentration of the fecal coliform group
in any individual sample shall not exceed
1,000 per 100 ml. Water areas in the vicinity
of domestic wastewater treatment plane outfalls
are not considered suitable for bedy contact
recreational purposes.
7. Taste or Oder - T'nc-e shall be no substances
added that will result in objec.ticr.able uste
or odor.
8. Toxic Substances - There shall be r.o substances
added to the water that will produce toxic
conditions that affect man or animal.
9. Other Pollutants - Other pollutants shall not
be added to the water in quantities which-
may have a detrimental effect en recreation.
(e) Irrigation.
1. Dissolved Oxygen - There shall always be
sufficient dissolved oxygen present to prevent
odors of decomposition and other offensive
conditions.
2. pH - The pH value shall lie within the range
of 6.0 to 9.0 and.shall net fluctuate more
than 1,0 unit in this range over a period of
24 hours.
3. Hardness or Mineral Compounds - There shall
be no substances added to the water that will
increase the mineral content to such an
extent as to impair its use for irrigation.
4. Solids, Floating Materials and Deposits -
There shall be no distinctly visible solids,
scum, foam, oily sleek, or the formation of
slimes, bottom deposits or sludge banks of
such size or character as may impair the
usefulness of the water for irrigation purposes.
-------
- 9 -
5. Temperature - The temperature of the water
shall not be raised or lowered to such an
extent as to interfere with its use for
irrigation purposes.
6. Toxic Substances - There shall be no substances
added to water that will produce toxic conditions
that will affect the water for irrigation.
7. Other Pollutants - Other pollutants shall not
be added to the water in quantities which may
be detrimental to the waters used for irrigation..
(f) Livestock Watering and Wildlife.
1. Dissolved Oxygen - There shall always be
sufficient dissolved oxygen present to prever.c
odors of decomposition and other offensive
conditions.
2. pH - The pH value shall lie within the range
of 6.0 to 9.0 and shall net fluctuate more
than 1.0 unit in this range over & period of
24 hours.
3. Hardness or Mineral Compounds - There shall
be no substances added to water that will
increase the mineral content to such an
extent as to impair its use for livestock
watering and wildlife.
4. Solids, Floating Materials and Deposits -
There shall be no distinctly visible solids,
scum, foam, oily sleek, or the formation of
slimes, bottom deposits or sludge banks of
such size or character as to interfere with
livestock watering ar.d wildlife.
5. Temperature - The-temperature of the water
shall not be raised or lowered to such an
extent as to interfere with its use for
livestock watering and wildlife.
6. Toxic Substances - There shall be no substances
added to water that will produce toxic conditions
that will affect the water for livestock
watering and wildlife.
7 Other Pollutants - Other pollutants shall not
be added to the water in quantities which may
be detrimental to the water for livestock
watering and wildlife.
-------
-------
- 11 -
INTERPRETATION OF CRITERIA
(a) Interpretation of the above criteria shall conform
to any rules and regulations or policies adopted
by the Water Quality Control Board.
(b) Insofar as practicable, the effect of treated
sewage or waste discharges on the receiving waters
shall be considered after they are mixed with the
waters and beyond a reasonable zone of immediate
effect upon the qualities of the waters. The
extent to which this is practicable depends upon
local conditions and the proximity and'nature of
other uses of the waters.
(c) The technical and economical feasibility of waste
treatment, recovery, or adjustment of z'-.a ir.othod
of discharge to provide correction shall be considered
in determining tha tine y.o be allowed cor the
development of practicable methods and for the
specified corr%cc-on.
(d) The criteria set'forth shall be applied on the
basis of the following s-ream flov:s; unregulated
streams - stream flows equal to or exceeding the
3-day minimum, 20-year recurrence interval; regulated
streams - instantaneous minimum flow,
(e) In general, deviations from normal water conditions
may be undesirable, out the rate and ezctent of the
deviations should be considered in interpreting
the above criteria.
(f) The criteria and standards provide that all discharges
ox sewage, industrial waste, and other wastes will
receive the best practicable treatment (secondary
or the equivalent] or control according co the
policy ard Drocedure of the Tennessee Water Quality
Control Board. A degree of treatment greater
than secondary when necessary to protect the water
uses will be required for selected sewage ana
waste discharges.
TENNESSEE ANTIDEGRADATIOti STATEMENT
(a) The Standards and Plan adopted are designed to
provide for the Drotection of existing water
quality and/or the upgrading or -enhancement" of
water quality in all waters within Tennessee. It
is"recognized that some wafers may have existing
quality better than established standards.
-------
- 12 -
(b) The Criteria and Standards shall not be construed
as permitting the degradation of these higher
quality waters when such can be prevented by
reasonable pollution control measures. In this
regard, existing high quality water will be maintained
unless and until it is affirmatively demonstrated
to the Tennessee Water Quality Control Board that
a change is justifiable as a result of necessary
social and economic development.
(c) All discharges of sewage, industrial waste, or
other waste shall receive the best practicable
treatment (secondary or the equivalent) or control
according to the policy and procedure of the
Tennessee Water Quality Control Board. A degree
of treatment greater than secondary when necessary
to protect the water uses win be required fcr
selected sewage and waste discharges.
(d) In implementing the provisions of the above as
they relate to interstate streams, the Tennessee
Water Quality Control Board will cooperate with
the appropriate Federal Agency in order to assist
in carrying out responsibilities under the Federal
Water Pollution Control Act, as amended.
January, 1976
-------
AMI:NM:l> STKliAM IJSI: CI.ASS1I; ICATIONS
January 14, 1977
Obion-Forked Deer River Basin
llatchie River Basin
Mempliis /\rca River Basin
htu'k River Basin
Upper Tennessee River Basin
l-'rench Broad River Basin
Rule
No.
1200-4-4-.01
(3)
Rule
No.
1200-4-4-.01
(2)
Rule
No.
1200-4-4-.01
(1)
Rule
No.
1200-4--1- .01
(5)
Rule
No.
1200-4-4-.01
(»)
Rule
No.
1200-4-4-.01
(10)
-------
(11) Holston River Basin
STREAM
Holston River
Unnamed Branch
Unnamed Branch
Sand Branch
Swan Pond Creek
Pratt Branch
Pratt Branch
Pratt Branch
Woods Creek
Woods Creek
Unnamed Branch
Maccash Branch
Maccash Branch
Maccash Branch
Roseberry Creek
Unnamed Branch
Unnamed Branch
Big Flat Creek
Little Flat Creek
Unnamed Tributary
Unnamed Tributary
Unnamed. Tributary
Big Flat Creek
Lyon Creek
Lyon Creek
Unnamed Branch
Unnamed Branch
Unnamed Branch
DESCRIPTION
Mile 0.0 to 131.5 (Church Hill Bridge)
At Holston River (Mile 1.0); Mile 0.0 to 0.4
Mile 0.4 to Origin
Mile 0.0 (o Origin
Mile 0.0 to 5.0
Mile 0.0 to 0.5
Mile 0.5 to 0.7
Mile 0.7 to Origin
Mile 0.0 to 0.6
Mile 0.6 lo Origin
Ai Holston River (Mile 6,7); Mile 0.0 to Origin
At Holston River (Mile 10.8); Mile 0.0 to 0.8
Mile 0.8 lo I .0
Mile- 1 .0 lo Origin
Mile 0.0 to Origin
At Roseberry Creek (Mile 1.7); Mile 0.0 to 0.5
Mile 0.5 lo 0.7
Mile 0.0 to 8.0
Mile 0.0 to Origin
At L. Flat Creek (Mile 1.3); Mile 0.0 to 0.7
Mile 0.7 to 0.9
Mile 0.9 to Origin
Mile 8 .0 to Origin
Mile 0.0 to 0.3
Mile 0.3 to 1 .9
At Lyon Creek (Mile 1.9); Mile 0.0 to 0.3
Mile 0.3 to 0.5
Mile 0 . 5 to Origin
DOM IND
X
X
X
X
X
•ISH
REC
IRR
LW'lAV
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
V
X
X
X
X
X
X
X
X
X
X
X
NAV
- ft -
-------
(11) llolston River Basin
STREAM
DESCRIPTION
DOM IND
FISH
REC
IRR
LW&W
Lyon Creek
Mile 1.9 to 2.3
X
X
X
X
Lyon Creek
Mile 2.3 to 2.7
X
X
X
Unnamed Branch'
At Lyon Creek (Mile 2.7); Mile 0.0 to Origin
X
X
X
Lyon Creek
Mile 2.7 to Origin
X
X
X
X
Richland Creek
At llolston River (Mile 27.1); Mile 0.0 to 18.4
X
X
X
X
Richland Creek
Mile 18.4 to 18.6
X
X
X
Richland Creek
Mile 18.6 to Origin
X
X
X
X
Beaver Creek
At llolston River ("Mile 30,4); Mile 0.0 to Origin
X
X
X
X
Lost Creek at New Market
Sink at Mile 1.9 to 6,5
X
X
X
X
Lost Creek at New Market
Mile 6.5 to 6.B
X
X
X
Lost Creek at New Market
Mile 6.8 lo Origin
X
X
x
X
Mossy Creek
At llolston River (Mile 52.4); Mile 0.0 to 3.9
X
X
X
X
X
X
Mossy Creek
Mile 3.9 to Origin
X
X
X
X
X
Unnamed Branch
At Hols ton River (Mile 55,0); Mile 0.0 to 2.3
X
X
X
X
Unnamed Branch
Mile 2.3 to 2.5
X
X
X
Unnamed Branch
Mile 2 .5 to Origin
X
X
X
X
German Creek
At llolston River (Mile 70.2); Mile 0.0 to 8.1
X
X
X
X
X
X
German Creek
Mile 8.1 lo Origin
X
X
X
X
Turkey Creek
At llolston River (Mile 75.2); Mile 0.0 to 1 .2
X
X
X
X
X
X
Turkey Creek
Mile 1.2 lo Origin
X
A
X
X
Spring Creek
At llolston River (Mile 76.0); Mile 0.0 to 1.2
X
X
X
X
X
X
Spring Creek, •
Mile 1.2 to Origin
X
X
X
X
Thompson Creek
Mile 0.0 to Origin
X
X
X
X
Fall Creek
At llolston River (Mile 80.7); Mile 0.0 to 1.0
X
X
X
X
X
X
Fall Creek
Mile 1.0 to 4.0
X
X
X
X
Fall Creek
Mile 4.0 lo 4.2
X
X
X
Dry Tributary
At Fall Creek (Mile 4.2); Mile 0.0 lo Morrislown I.P.STP
X
X
Fall Creek
Mile 4 .2 lo Origin
X
X
X
X
-------
(11) Holston River Basin
STREAM
DESCRIPTION
DOM
1ND
1 1SH
RFC
1RR
LAV L
Poor Valley Creek
At Holston River (Mile 89.2); Mile 0.0 to 6.8
X
X
X
X
X
X
Mooreshurg Branch
Mile 0.0 to 1 .6
X
X
X
X
X
X
Mooreshurg Branch
Mile 1.6 to Origin
X
X
x
X
Poor Valley- Creek
M ile It. 8 to Origin
X
X
X
X
Beech Creek
At Holston River (Mile 108.8); Mile 0.0 to 5.')
¦sr
A.
X
X
X
Beech Creek
Mile 5.9 to 6.1
X
X
X
Big Creek
Holston River (Mile 109 .1); Mile 0 .0 to Origin
X
X
X
X
X
X
Forgey Creek
At Holston River (Mile 116.9); Mile 0.0 to 1.0
X
X
X
X
Forgey Creek
Mile 1.0 lo 1.1
X
X
X
Unnamed Branch
At Forgey Creek (Mile 1.1); Mile 0.0 to 1.0
X
X
Forgey Creek
Mile 1.1 to Origin
X
X
X
X
Stoney Point Creek
At Holston River (Mile 123.0); Mile 0.0 lo Origin
X
X
X
X
Unnamed Branch
At Stoney Point Creek (Mile 0 .2); Mile 0.0 to 0.8
X
X
Bradley Creek
At Holston River (Mile 128.8); Mile 0.(J to Origin
X
X
X
V
d t
Holston River
Mile 131.5 |o Origin (Mile 142.2)
X
X
X
X
Alexander Creek
At lloliiiun River (Mile 131.9); Mile 0.0 to 0.8
X
X
X
X
X
Alexander Creek
Mile 0.8 to 3.4
X
X
\ /
A
X
X
X
Unnamed Branch
At Alexander Creek (Mile 3.4); Mile 0.0 to 0.3
X
X
X
Unnamed Branch
Mile 0.3 to Origin
X
X
X
\ r
/.
Alexander Branch
Mile 3.4 to Origin
X
X
X
X
Smith Creek
At Holston River (Mile 135.5); Mile 0.0 to 1.7
X
X
X
X
Smith Creek
Mile 1.7 to 1.9
X
X
X
Smith Creek
Mile 1 .9 to Origin
X
X
\ '
.A.
X
Arnott Branch
At Holston River (Mile 137.9); Mile 0.0 lo 1.5
X
X
\ r
A
Arnott Branch
Mile 1.5 lo Origin
X
X
X
X
North Fork Holston River
Mile 0.0 to 5.2 (Tenn-Virginia Line)
X
X
X
South Fork Holston River
Mile 0.0 to 2.3
X
X
Reedy Creek
Mile 0.0 to 7.1
X
X
X
X
Reedy Creek
Mile 7.1 to Tenn-Virginia Line
X
X
X
X
X
-------
() ]) Holston River Basin
STREAM DESCRIPTION DOM IND FISH REC IRR LWiW NA\
South Fork Holston River
Mile 2.3 to 5.7
X"
X
llorse Creek
Mile 0.0 to 1.0
X
X
X
X
X
Horse Creek
Mile 1.0 to 1.3
X
X
X
X
llorse Creek
Mile 1.3 to 2.7
X
X
X
X
Horse Creek
Mile 2.7 to 2.9
X
X
X
Horse Creek
Mile 2.9 to 3,6
X
X
X
X
Little Horse Creek
At Horse Creek (Mile 3.6); Mile 0.0 to O.'l
X
X
X
Little Horse Creek
Mile 0.1 to 2.8
X
X
X
X
Dolan Branch
At Little Horse Creek (Mile 2 .8); Mile 0.0 to 1.3
X
X
* r
A
X
Dolan Branch
Mile 1.3 to 1.5
X
X
X
Dolan Branch
Mile 1.5 to Origin
X
X
X
V
Little Horse Creek
Mile 2.8 to Origin
X
X
A
X
Horse Creek
Mile 3.6 to 6.6
X
X
X
X
Horse Creek
Mile 6.6 to 6.8
X
X
X
Horse Creek
Mile 6.8 to Origin
X
X
X
X
Unnamed Branch
AtS.F. Holston River (Mile 4 .0); Mile 0.0 to Origin
X
X
X
X
South Fork Holston River
Mile 5.7 to 19.6 X
X
X
X
x
V
i V
Kendrick Creek
Mile 0.0 to 0.3
X
X
X
Kendrick Creek
Mile 0.3 to Origin
X
X
X
X
Fall Creek
Mile 0.0 to 4.8
X
•\r
A.
X
Fall Creek
Mile 4.8 to 5.0
X
X
X
Fall Creek
Mile 5.0 to Origin
X
X
X
X
Unnamed Branch
At S. 1*. Holston River (Mile 13.6); Mile 0.0 to 0.9
X
X
X
X
Unnamed Branch
Mile 0.9 U> 1.1
X
X
X
Unnamed Branch
Mile 1.1 to Origin
X
X
X
X
Sinking Creek
At S.F. Holston River (Mile 14.1); Mile 0.0 to 1.0
X
X
X
X
Sinking Creek
Mile 1.0 to. 1.2
X
X
X
Sinking Creek
Mile 1.2 to Origin
X
X
X
X
Ford Creek
Mile 0.0 to Origin
X
X
X
X
-------
APPENDIX D
AERIAL PHOTOGRAPHS OF AQUATIC PLANT BEDS
AND ACCOMPANYING PHOTOINTERPRETATION ARE, DEPOSITED WITH THE FOLLOWING AGENCIES
EPA, Ecology Branch, Region IV
Surveillance & Analysis Division
College Station Road
Athens, GA 30605
EPA, Enforcement Division
345 Courtland St., NE
Atlanta, GA 30308
TN Dept. of Public Health
Division of Water Quality
5616 Kingston Pike
Knoxville, TN 37919
Tennessee Valley Authority
Water Quality & Ecology Branch
E&D Building
Muscle Shoals, AL 35660
------- |