DCN No.:
Radian No.:
EPA No.:
87-203-061-20-07
203-061-20-01
68-02-3889
Work Assignment No.: 120
DEVELOPMENT AND EVALUATION
OF A PROTOTYPE ANALYTICAL SYSTEM
FOR MEASURING AIR TOXICS
FINAL REPORT
Prepared for:
Environmental Monitoring Systems Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
Radian Corporation
P.O. Box 13000
Progress Center
Research Triangle Park, NC 27709
Prepared by:
November 13, 1987

-------

TABLE OF CONTENTS
Page
1.0 SUMMARY AND CONCLUSIONS		1
2.0 EQUIPMENT DESCRIPTION		5
2.1	Air Toxics Samples		5
2.2	Sample Interface System		7
Contamination		10
Memory		11
Repeatability		12
Functional Use		12
2.3	Air Toxics Analytical System		13
2.4	Peak Identification and Compound Identification		15
2.5	Data Transfer		17
3.0 RESULTS		21
4.0 CONCLUSIONS		51
5.0 RECOMMENDATIONS		55
5.0 ACKNOWLEDGEMENT		57
7.0 REFERENCES		59
APPENDIX A - Standard Operating Procedure for the Sample Interface..	A-l
APPENDIX B - Preliminary Calibration Curves For The GC/MS
Analytical System		B-l

-------
LIST OF FIGURES
Page
2-1 24-Hour air toxics sampler		6
2-2 Air toxics sample handling, analytical, and data base
management system		8
2-3 8-Port gas sampling valve configuration		9
2-4 Air toxics three-detector system		14
2-5	Detection response data for air toxics sample BNY 3585		19
3-1	FID calibration results for 1,1,1-trichloroethane		29
3-2 FID calibration results for tetrachloroethylene		30
3-3 FID calibration results for o-dichlorobenzene		31
3-4 PID calibration results for 1,1,1-trichloroethane		32
3-5 PID calibration results for tetrachloroethylene		33
3-6 PID calibration results for o-dichlorobenzene		34
3-7 ECD calibration results for 1,1,1-trichloroethane		35
3-8 ECD calibration results for tetrachloroethylene		36
3-9 ECD calibration results for o-dichlorobenzene		37
3-10 Retention time variability of the flame ionization detector		52
3-11 Retention time variability of the photoionization detector		53
3-12 Retention time variability of the election capture detector		54

-------
LIST OF TABLES
Page
2-1 Proposed Air Toxics Target Compounds		16
2-2	Response Ratios For Target Compounds		18
3-1	Air Toxics FID Calibration Span 09/09/87-09/19/87		22
3-2 Air Toxics FID Calibration Span, 09/21/87-10/06/87		23
3-3 Air Toxics PID Calibration Span 09/09/87-09/19/87		24
3-4 Air Toxics PID Calibration Span, 09/21/87-10/06/87		25
3-5 Air Toxics ECD Calibration Span 09/09/87-09/19/87		26
3-6 Air Toxics ECD Calibration Span, 09/21/87-10/06/87		27
3-7 Orthogonal Regression of Calibration Data		38
3-8 PID/FID Calibration Area Count Ratios, 09/09/87-09/19/87		40
3-9 PID/FID Calibration Area Count Ratios, 09/21/87-10/06/87		41
3-10 ECD/FID Calibration Area Count Ratios, 09/09/87-09/19/87		42
3-11 ECD/FID Calibration Area Count Ratios, 09/21/87-10/06/87		43
3-12 FID Retention Times, 09/09/87-09/19/87		44
3-13 FID Retention Times, 09/21/87-10/06/87		45
3-14 PID Retention Times, 09/09/87-09/19/87		46
3-15 PID Retention Time, 09/21/87-10/06/87		47
3-16 ECD Retention Time, 09/09/87-09/19/87		48
3-17 ECD Retention Time, 09/21/87-10/06/87		49

-------
1.0	SUMMARY AND CONCLUSIONS
Radian Corporation under contract to the Environmental Monitoring
Systems Laboratory (EMSL) of the U.S. Environmental Protection Agency (EPA),
Research Triangle Park, NC has developed and evaluated a prototype sampling
and analytical system for measuring air toxics compounds in ambient air. The
prototype system included a 24-hour sampler which collected ambient air into
an evacuated 6-liter electropolished stainless steel canister at a controlled
rate. The 24-hour sampler was designed for field use. The sampler was tested
in the laboratory for proper operation and for contamination. It was
conditioned with humidified zero air to flush out contaminants in the samples
before being certified for field use. The 24-hour sampler was developed by
EMSL and was not part of the development project reported here. It was,
however, designed to be used with the air toxics interface/analytical system.
A sample interface system was designed to take an accurate volume of
air from the sample canister, preconcentrate the sample cryogenically, and
D
deliver the concentrated sample in a helium carrier gas to the Megabore DB624
fused silica capillary column for analysis. The sample interface can prepare
an ambient air sample for analysis whether the sample canister is under
pressure or vacuum.
Analysis was performed on a VARIAN 3700 Gas Chromatograph equipped
with three detectors, a photoionization detector (PID), a flame ionization
detector (FID), and an electon capture detector (ECD). Outputs from the
chromatograph's integrator recorded the area counts and retention times for
peaks from each of the detectors. In addition, the data were transferred by
D
Lotus Measure to an IBM-AT microcomputer system for permanent storage and
further processing.
l

-------
The multidetector chromatograph was calibrated with standards made
up of 37 target components, primarily halocarbons, benzene, and its
derivatives. Compounds that coelute on the analytical column are benzene and
1,2-dichloroethane, styrene and o-xylene, m-xylene and p-xylene, and n-octane
and cis-1,3-dichloropropylene. Precision was measured by repeated analysis of
two in-house standard mixtures.
Variability, or precision, of the FID responses (area counts) for
compounds having retention times greater than chloroethane averaged 7.6%,
expressed as coefficients of variation (CV). PID response variability
averaged 19.8% CV, while ECD response variability averaged 3.5% CV.
Five of the target compounds-acetylene, 1,3-butadiene, vinyl
chloride, chloromethane, and chloroethane-displayed large values of percent
coefficients of variation in recorded area counts (See Figures 3-10, 3-11, and
3-12). These compounds all had retention times less than 6.0 minutes and
would also show lower boiling points than the other target compounds. It was
thought that the high variability at low retention times, i.e. < 6 minutes,
was related to a pressure surge caused by the combined effects of rapid
heating of the cryogen trap after preconcentration and variability of the
water content from sample to sample.
Acetylene retention times averaged 3.071% CV for the time period
from 9/7/87 to 9/19/87 and 4.78%CV from 9/21/87 to 10/6/87. 1,3-Butadiene,
vinyl chloride, chloromethane, and chloroethane retention time variabilities
ranged from 3.99 to 0.465%CV.
Retention times were very precise, averaging less than 0.2% CV for
each detector and compound having a retention time greater than chloroethane,
i.e. >6 minutes.
2

-------
Identification of compounds in an unknown sample will be done by
comparing the retention times and the PID/FID and the ECD/FID retention time
ratios with those of the daily calibration standards. These identifications
will be confirmed by running at least 25% of the samples on a gas
chromatograph gas spectrometer (GC/MS). The sample interface system designed
for the air toxics program was used to inject calibration samples of 39
compounds into the GC/MS. The preliminary GC/MS calibration curves, acquired
by a Finigan quadrupole mass spectrometer, are given in Appendix B and show
linear correlation coefficients from 0.983 to 1.000, averaging 0.998.
The precision with which a sample was delivered by the sample
interface from a canister to the analytical system was less than 3.4% CV.
3

-------
4

-------
2.0	EQUIPMENT DESCRIPTION
This section describes the equipment built and tested for the
24-hour air toxics analytical system. The equipment includes the 24-hour
sampler which collects ambient air in canisters, and the interface system
which takes an air sample from a canister, concentrates and injects it into
the gas chromatograph. A description of the gas chromatograph itself is given
along with its three-detector and data processing system. Data are
transferred from the chromatography data handling system to an IBM-AT
computer for permanent disk storage and further processing.
2.1	Air Toxics Sampler
The air toxics analytical system developed in this study is designed
to be used with samples stored in electropolished stainless steel canisters or
any other device that can deliver a known amount of sample to the analytical
system. The ambient air samples may be stored under pressure or under vacuum.
The sampling system developed for the NMOC monitoring program* may be used for
3-hour ambient air samples. A number of these samples were analyzed with the
3-detector air toxics gas chromatographic analytical system.
For 24-hour air toxics samples, the Environmental Monitoring Systems
Laboratory (EMSL) has developed a sampler which is shown in Figure 2-1. The
sampler was designed to sample ambient air through a heated inlet line to
prevent any condensation of water vapor or other liquid material drawn into
the inlet line. The 24-hour sampler differs from the 3-hour sampler in that
the 24-hour sampler has no pump. It therefore requires that the sample
canister be evacuated prior to sampling. In the cleanup procedure, the sample
canister is evacuated to 5 mm Hg absolute pressure (0.646kPa) before the
canister valve is closed and the canister is disconnected from the cleanup
device. The flow rate of air into the canisters was regulated to a constant
flow rate by electronic flow controllers. By regulating the sampling rate to
a constant value over the entire sampling period a sample representative of
the average concentration was obtained. The final pressure in the sample
canister was set for about 3 inches Hg of vacuum (91.166 k Pa
5

-------
Wall
\	i
i
Ns..x'	ง
O
Nป
Figure 2-1 . 24-Hour Air Toxics Sampling System	8
6

-------
absolute pressure). By having the air toxic ambient air samples collected by
partially filling previously cleaned and evacuated canisters, potential
contamination from a pump was avoided. If the sample canister arrived at the
analytical laboratory at atmospheric pressure absolute, it was considered to
be a void sample, because of the probability of a leak into the canister prior
to, or after completion of sampling.
The 24-hour air toxics sampler is designed for unattended sampling,
requiring a technician to visit the site the day before sampling begins, and
the day after sampling is completed to reset the equipment and to install a
new canister for the next sample. The technician also prepares the samples
for shipment to the analytical laboratory. The air toxic sampler was designed
for 24-hour samples, but may be set for other time intervals. The sampler is
also designed to take duplicate samples, when needed.
2.2	Sample Interface System
Figure 2-2 shows a diagram of the Sample Interface System, the
Analytical System, and the Data System for the Air Toxics prototype. The
sample interface system reliably delivers equal volumes of preconcentrated
ambient air samples to any analytical device. The interface can transfer
samples from canisters that are at absolute pressures above or below
atmospheric pressure. An air volume of 230 mL is drawn from the sample
canister through a cryogenic trap which is imbedded in a brass block, immersed
in liquid argon, and controlled at -171ฐC (-276ฐF) -276ฐF. Figure 2-3 shows
an 8-port gas sampling valve used in the sample interface system. The 8-port
valve can operate two traps at the same time. As seen in Figure 2-3, while
one trap is loading, the second trap is injecting into the analytical device.
The upper half of the figure shows the valve in the position to load Trap 1.
The sample gas from the canister enters the cryogenic trap where the organic
air toxics compounds and water are condensed in a bed of 60/80 mesh glass
beads contained in a 1/8-inch o.d. stainless steel tubing. When the 230 mL
has been sampled, the valve is switched to the position shown in the lower
part of Figure 2-3. At that time, cryogen is removed from the trap and the
7

-------
Sample Intedace System
Analytical System
Data System
Niliogcn
up -
Gtt
ComtMulion Ojwgi
IwnpMMtira Conlto
ป/ป• KitMm ftt*
TimซIซ Itni
A - Timilw Linซ lo Analytical Strtltm
0 ฆ fiinilti iinซ ftotn Sซm^M CtnuiM
C • Drogซiit Tiip
0 • Cm bo t > ftp
C • Varป* Or#o
f m Room
Figure 2- , 2. Air Toxics Sample Handling, Analytical, and Data Base
Management System

-------
Valve viewed from handle
cr

-------
temperature is ramped quickly to +204ฐC (+400ฐF) and then controlled at 148ฐC
(300ฐF), as described below. Helium carrier gas takes the preconcentrated
organic (air toxics) compounds from Trap 1 to the analytical system.
Currently, Trap No. 2 is a blank loop of stainless steel which is
not used to trap a sample. It could, however, be activated to sample gas,
either with a cryogenic trap, described above, or it could be connected to a
p
Carbotrap/Carbosieve S-III trap, or other solid sorbent trap.
The system interface can readily transfer air samples to a multidetector
gas chromatograph (MD/GC) and conventional gas chromatography mass
spectrometry (GC/MS) measurement systems. The interface is a self-contained
mobile unit allowing movement from the MD/GC instrument to the GC/MS
instrument. The interface was developed considering the following:
•	contamination,
•	memory effects,
•	repeatability, and
•	functional use.
Contamination -- The potential for contamination in the analysis of air
toxic samples was minimized by the design and selection of construction
materials for the interface. The connecting tubing of the interface was
1/4-inch, 1/8-inch, and 1/16-inch o.d. chromatographic-grade stainless steel.
Each routing valve, shutoff valve, and fitting was made of 316 stainless
steel. The 8-port temperature controlled gas sampling valve was also
constructed of 316 stainless steel. The preconcentration trap assemblies were
constructed of chromatographic-grade stainless steel and filled with 60/80
mesh glass beads.
10

-------
Based on the initial verification of the system and the daily quality
control checks, the system design and construction resulted in a
contamination-free system. Each day the baseline check consists of sampling
and analyzing humidified zero-grade air immediately after calibration.
Memory -- The elimination of compound memory from previous samples was
achieved by the use of heat-traced temperature controlled components and the
use of wet, zero air to flush the system after high concentration calibration
samples were analyzed. Experience gained in canister cleanup in the NMOC
monitoring program showed that purging canisters with wet, zero air provides a
more efficient job of reducing carryover of organic compounds than dry air.
Each component of the interface which contacts the sample before and after the
analytical trap was temperature controlled. The 8-port gas sampling valve is
enclosed in an oven and maintained at 160ฐC with an active temperature
controller. The transfer lines are maintained at 160ฐC with a separate
temperature controller. The analytical traps were heated to 204ฐC during the
thermal desorption cycle to remove any residual compounds.
The interface during the development phase and in the analysis of over
150 toxic samples exhibited no compound memory effects. This has been
demonstrated by the sampling and analysis of humidified zero-grade air
immediately after the analysis of ambient air samples. The total NMOC as
measured by the Preconcentration and Direct Flame Ionization Detection
(PDFID) method of the toxic samples ranged from 0.153 ppmC to 93.1 ppmC. A
wet zero air sample was run through the sample interface and MD/GC analytical
system immediately after the daily 50 ppbv calibration check standard. The
calibration standard was the first sample run each day. The wet zero showed
no evidence of carryover.
11

-------
Repeatabi1itv -- The removal of a known sample volume from the air
canister for preconcentration and transfer to the analytical measurement
system must be both accurate and precise. With the need for repeatable
sampling and analysis of standards and ambient air samples, interface
components were selected under strict criteria. The absolute pressure gauge
in the interface was a two revolution combination pressure/vacuum unit which
gives high resolution in the pressure and vacuum modes. The trap temperature
controller was a digital programmable Ramp-And-Soak Unit with solid state
relays which were capable of delivering 25 amperes at 120 volts AC. This unit
was coupled with a 1,000-watt cartridge heater and a copper-constant, Type T,
thermocouple. The unit controls by delivering a selected percentage of the
120 VAC, proportional to the difference from the setpoint. The 1,000-watt
heater allows rapid attainment of the desired temperature during the thermal
desorption process. The copper-constantan thermocouple was selected for its
operating range (-230 to +394ฐC). This approximates the temperature range
(-185 to +250ฐC) of the thermal desorption process. These three units as a
system provided precise temperature control. A multichannel digital
thermometer was used to monitor crucial temperatures throughout the interface.
A pneumatic valve actuator was selected to provide repeatable sample
injections.
A trapping flow rate of 30 seem was selected based on repetitive
preconcentration of a calibration standard at different flow rates. A mass
flow controller is used to maintain 30 seem during the sample trapping
process. Additional testing has demonstrated that the efficiency of trapping
of the test compounds is equivalent at 60 seem.
Functional Use -- The assembled sample interface system was contained in
one chassis and mounted on a 4-wheel cart. The unit was designed for
portability and quick detachment from the MD/GC to allow its use to perform
confirmation analysis by GC/MS. The design of the interface allows
changeover between the two systems in approximately one hour.
12

-------
The control functions of the interface, the MD/GC, and chromatographic
data acquisition system can easily be performed by one operator. A
calibration check, humidified zero-air check, and six air samples can be
analyzed in an 8-hour period. Training an operator in the use of the
interface system takes about 16 hours. The standard operating procedure for
the sample interface system is given in Appendix A.
2.3	Air Toxics Analytical System
A VARIAN^ 3700 gas chromatograph, configured with a PID/FID and an ECD,
was used to perform the air toxics analyses. Figure 2-4 diagrams the air
toxics multiple detector system. Fused silica was used for the
detector-to-detector connections and has dimensions shown on Figure 2-4. The
D
gas chromatographic column is a 30 m x 0.53 mm, DB-624 Megabore column using
helium carrier gas. A flow controller is installed on the PID detector line
to maintain constant flow.
The sample enters the chromatography Megabore column directly from
the system interface described above. The sample then goes to a 10 to 1
splitter which sends approximately 9.1% of the sample through the ECD
detector, while the remainder of the sample goes through the PID detector and.
then to the FID detector.
Analytical precision was measured on each detector by repeated injections
of a standard sample containing over 30 of the target compounds as explained
below. Preparation of preliminary calibration curves of selected compounds
gave indications of the linearity of the responses on the three detectors.
These curves will be discussed below.
13

-------
Zero
J & W Megaboreฎ
DB624 Capillary Column
30m x 0.53mm
Figure 2-4. Air Toxics Mutiple Detector System
14

-------
2.4
Peak Identification and Compound Identification
In this program, selective detectors will be used for the identification
and quantitation of specific compounds. Table 2-1 gives a proposed list of
air toxics target compounds. Since the basic purpose of these analyses is the
detection and quantitation of a selected group of compounds, rather than the
identification of every organic vapor in the sample, this approach is more
appropriate and economical than total GC/MS identification and quantitation.
A selected number of samples will be analyzed by GC/MS for compound screening
and verification of the gas chromatography multidetector analyses. In the
certification of the three-detector analytical system, however, only an
ln-house standard was used. The mul tidetector method is not a substitute for
GC/MS analysis, but is a means of analyzing many samples with a high degree of
confidence while using GC/MS as a confirmatory tool on a fixed percentage of
the samples.
The retention time of the compounds is known from the analysis of
standard gaseous mixtures. These standard gaseous mixtures will include
standards generated at Radian and certified standards from Scott Specialty
Gases. In an air sample, there always exists the possibility that another
compound or compounds are co-eluting at the identical retention time of a
target compound. Simultaneous detection of a compound peak by more than one
detector can show when this is occurring. In the analytical system, the
column effluent is passed through three detectors which exhibit a difference
in their relative responses to a compound, and the ratio of these responses
is constant for that particular compound. A change in response ratio
indicates that a co-eluting compound is present.
The photoionization detector (PID) is especially responsive to aromatic
compounds and other highly unsaturated species. The electron capture
detector (ECD) is sensitive to most halogenated compounds, especially those
that have more than one halogen per single carbon. Since many of our target
compounds in this program are halocarbons and are electron capturing, this
15

-------
TABLE 2-1. PROPOSED AIR TOXICS TARGET COMPOUNDS
Compound
CAS Number
Vinyl chloride
75-01-4
1,3-BjJtadiene
51-03-6
Benzene
71-43-2
Methylene chloride
75-09-2
Carbon tetrachloride
56-23-5
Ethlyene dichloride
107-06-2
Chioromethane
74-87-3
Trichloroethylene
79-01-6
Chioroform
67-66-3
Tetrachloroethylene
127-18-4
Chioroprene
126-99-8
p-Dichlorobenzene
106-46-7
Acetylene
74-86-2
Toluene
108-88-3
Xylenes (meta, ortho, and para)
1330-20-7
n-Octane
111-65-9
m-Dichlorobenzene
54-17-3
o-Dichlorobenzene
95-50-1
1,1,1-Trichloroethane
71-55-6
Propylene
115-07-1
1,1,2-Trichloroethane
79-00-5
1,1,2,2-Tetrachloroethane
79-34-5
Styrene
100-42-5
Bromomethane
74-83-9
Chlorobenzene
108-90-7
1,1-Dichloroethane
75-34-3
1,2-Dichloropropane
78-87-5
Dibromochloromethane
124-48-1
Bromodichloromethane
75-27-4
Chloroethane
75-00-3
trans-l,2-Dichloroethylene
540-59-0
Bromochloromethane
74-97-5
trans-1,3-Dichloropropene
542-75-6
cis-1,3-Dichloropropene
SEQ-55
Bromoform
75-25-2
16

-------
detector is very useful for confirmation and quantitation. Since the FID
responds to all organic compounds, it will be used with the PID and/or the
ECD, depending upon which compounds are being analyzed. Table 2-2 shows
response ratios for the target compounds used in this study. Target compounds
not listed respond only on the FID detector. Compounds that coelute on the
analytical column are benzene and 1,2-dichloroethane, styrene and o-xylene,
m-xylene and p-xylene, and n-octane and cis-l,3-dichloropropylene.
2.5 Data Transfer
The detector analog signals are acquired for each of the three
D
detectors using a VARIAN Vista 402 Data Station. Peak data are integrated by
the Vista 402 and peak area result files are generated for each chromatogram.
Air toxic standards are analyzed and calibration response factors are
generated by the Vista using the standard concentration information. The
calibration factors are stored in each detector's Vista Method file, and a
response factor is generated and stored for each target compound. Samples are
analyzed using these methods to generate ppbv concentration data for each
target peak as identified by retention time only. The Vista 402 output
consists of a chromatogram plus peak result report that contains the peak
name, concentration (ppbv), retention time, delta retention time (as compared
to the standard), area counts, and baseline separation code. The result files
are then automatically stored on the Vista 402 floppy disk drive. These
result files are then transferred to Lotus files on an IBM PC/AT,
D
sequentially, using Lotus Measure software. The result files are then
combined in a Lotus spreadsheet in order to calculate the ratios and reduce
the data for target compound identification. An example of the Lotus
spreadsheet for one sample is given in Figure 2-5.
17

-------
TABLE 2-2. RADIAN MD/GC RESPONSE RATIOS ON TARGET COMPOUNDS
Response	Response
Concentration	PID/FID	ECD/FID
Compound	-50 ppbv	(1:1)	(1:10)
Methylene chloride
trans-1,2-Dichloroethylene	2.9411
Chloroprene	1.2427
Bromochloromethane	--	32.7269
Chloroform	--	32.2659
1.1.1-Trichloroethane	--	28.8178
Carbon tetrachloride	--	87.9814
Benzene/1,2-Dichloroethane	0.7636
Trichloroethylene	2,8027	18.9271
1,2-Dichloropropane	0.0344	0.2035
Bromodichloromethane	--	74.9748
trans-1,3-Dichloropropene	0.6315	4.7879
Toluene	0.9244
cis-1,3-Dichloropropene	0.1809	0.5982
1.1.2-Trichloroethane	--	3.3516
Tetrachloroethylene	2.7035	37.3092
Dibromochloromethane	--	89.0726
Chlorobenzene	1.4323
m,p-Xylene	0.9958
Styrene/o-Xylene	1.0938"
1,1,2,2-Tetrachloroethane	--	27.9066
m-Dichlorobenene	1.6819	0.6864
p-Dichlorobenzene	1.6561	0.1362
o-Dichlorobenzene	1.4251	0.5640
18

-------
hIR TDIICS RATIO RESULT EST# FILE BNY 3585 10/7/B7
COMPOUND


SPAN
rPAH
= !D/F1D
ECD/FID



DELTA
DELTA
DELTA
HAKE
PID/FJD
ECO,'FID
PID/FID
ECD/FID
I OIFF.
I DIFF.
ppb*
jpbv
spb*
R.T.
R.T.
R.T.
ACETYLENE
ERR
ERR
ERR
ERR
ERR
ERR
30.522
ERR
ERR
-0.19
ERR
ERR
1/3-BUT
0.04428?
ERR
0.? 43591
ERR
-95.3063
ERR
69.2694
1.82835
ERR
-0.091
-0.077
ERR
VIN.CHLOR.
ERR
ERR
ERR
ERR
ERR
ERR
2.66557
ERR
ERR
0.007
ERR
ERR
:hl.reth.
ERR
-PR
ERR
ERR
ERR
ERR
47.1227
ERR
ERR
0.2B4
ERR
ERR
[HL.ETHANE
ERR
err
ERR
ERR
ERR
ERR
37.9522
ERR
ERR
0.573
ERR
ERR
.ethane
ERR
err
ERR
ERR
ERR
ERR
B.68359
:"R
ERR
-0.326
ERR
ERR
^ECL2
1.54470B
ERR
o.n::i7
ERR
1276.531
ERR
14.9617
237.971
ERR
0.016
-0.571
ERR
ฆ-1/2-DCEE
3.076996
ERR
3.243B73
ERR
-97.6163
ERR
10.77B9
O.:0637
ERR
).08
0.003
ERR
1/1-DCE
ERR
l RR
ERR
ERR
ERR
ERR
10.3437
ERR
ERR
-0.155
ERR
ERR
[HL.PRENE
ERR
ERR
1.546654
ERR
ERR
ERR
4.2
ERR
ERR
0.009
ERR
ERR
ปFB
0.230970
ERR
0.09*463
7.568144
144.5079
ERR
1.74761
4.3135
ERR
0.034
0.094
ERR
BCBETHANE
ERR
ERR
ERR
43.60417
ERR
ERR
1.57
ERR
ERR
-0.048
ERR
ERR
CHCL3
ERR
ERR
ERR
44.33422
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
i/l/l-TCE
ERR
6.442860
ERR
35.74415
ERR
-81.9750
5.55188
ERR
1.04989
-0.085
ERR
-0.024
CCL4
ERR
3.197591
ERR
120.1523
ERR
-97.3387
17.0018
ERR
0.5189
-0.061
ERR
-0.07
BEN/1/2DCE
0.134723
ERR
0.791083
ERR
-82.9497
ERR
5.00052
0.85779
ERR
-0.1
-0.057
ERR
PFT
0.049043
ERR
0.014451
27.01202
239.3692
ERR
3.40446
11.0919
ERR
0.159
0.194
ERR
TCEE
0.204892
i.::sii6
3.179071
23.66910
-93.554?
-94.3BBB
2.24325
0.16369
0.14977
-0.075
-0.0B7
-0.09
1/2-DCP
0.912679
ERR
0.045007
0.379745
1927.835
ERR
2.88705
65.8862
ERR
0.01B
0.014
ERR
BDCHETH.
ERR
ERR
ERR
106.9025
ERR
ERR
2.26082
ERR
ERR
-0.004
ERR
ERR
T-1/3-DCPE
0.690644
ERR
0.702451
6.028951
-3.07586
ERR
2.85227
2.55481
ERR
-0.023
-0.018
ERR
TOLUENE
0.426633
ERR
0.965178
ERR
-55.7922
ERR
13.3936
1.76063
ERR
-0.058
-0.042
ERR
C-1/3-DCPE
0.452087
ERR
0.219440
0.9041B4
106.0184
ERR
0.75916
1.65514
ERR
-0.048
0.04)
ERR
i/I/2-TCE
ERR
ERR
ERR
4.141776
ERR
ERR
0.5547B
ERR
ERR
-0.006
ERR
ERR
TETRACEE
3.401927
127.7902
2.957483
41.35785
15.0277!
208.9B66
0.75103
0.87767
2.3736
-0.055
-0.052
-0.047
DBCKETH.
ERR
ERR
ERR
107.9457
ERR
ERR
3.02301
ERR
ERR
0.104
ERR
ERR
CHL.BENZ
ERR
ERR
1.442691
ERR
ERR
ERR
0.98521
ERR
ERR
0.076
ERR
ERR
n/P-IYLENE
0.231170
ERR
1.032139
ERR
-77.6027
ERR
30.1571
7.15425
ERR
-0.051
-0.03
ERR
STYR/O-IYL
0.135245
ERR
1.113405
ERR
-87.8529
ERR
7.474B
0.96435
ERR
-0.089
-0.065
ERR
BFB
ERR
ERR
2.007363
0.552811
ERR
ERR
1.44044
ERR
ERR
0.147
ERR
ERR
1122-TCE
0.018150
ERR
0.051843
2B.22652
-64.9B9B
ERR
70.54B3
20.0998
ERR
-0.063
-0.033
ERR
N-DCB
0.039125
ERR
1.656212
0.874760
-97.6376
ERR
5.66506
0.13294
ERR
-0.097
-0.04B
ERR
P-OCB
0.065834
ERR
1.602915
0.256050
-95.8927
ERR
22.1363
0.88045
ERR
-0.114
-0.042
ERR
0-KB
0.121006
ERR
1.393923
0.713262
-91.3189
ERR
6.9474B
0.58428
ERR
-0.038
0.041
ERR
Figure 2-5. Detection response data for air toxics sample BNY 3585.
1 O

-------
3.0 RESULTS
To test the performance of the sample interface system and the
analytical system, an in-house standard of 37 of the target compounds was
prepared. The results of two sets of daily calibrations are given in Tables
3-1, through Table 3-6.
Different calibration standards were used for the first time period
from September 9, 1987 through September 19, 1987, and the second time period
from September 21, 1987 through October 1, 1987. Table 3-1 through Table 3-6
contain averages of the daily area counts, standard deviations (STD), percent
coefficients of variation (% CV), and number of cases for each identifiable
compound or compound pair in the standard for each detector used in the
analytical system. The % CV is a precision of the analytical measurement,
which includes the precision of the delivery of the sample from the canisters
to the gas chromatograph by the sample interface system. Average % CV values
listed in the tables do not include statistics from acetylene, 1,3-butadiene,
vinyl chloride, chloromethane, and chloroethane, as indicated in the tables.
Tables 3-1 and 3-2 give the results of the FID calibrations for the
two time periods, and show average % CVs of 5.8 and 9.3 respectively. Tables
3-3 and 3-4 give the results of the PID calibrations for the two time periods,
and show average % CVs of 22.8 and 16.7, respectively. The ECD calibration
results are given in Tables 3-5 and 3-6 and show average % CVs of 3.5%.
The ECD results are obviously the most precise of the three
detectors. The FID results are next in precision with % CV, while the
precision results of the PID average more than twice the precision of the FID.
Because the precisions reported include the variability of the
detector/integrator results and the variability of the delivery of the sample
by the sample interface system it is clear that the latter precision (delivery
of the sample by the interface system) is less than 3.5%.
21

-------
I ABLE. J-l. AIR TOXICS FID CALIBRATION SPAN, U9/09/87—U9/19/8 7
FID Area Counts
Compound
Average
SFD
7.CV
Number
* Acetylene
57972.6
240 70.7
41 .52
9
* 1,3-Butadiene
107450.9
14433.3
13. 43
9
* Vinyl Chloride
134359.2
8474.8
6. 308
10
* Ch 1 orornethane
127518.6
8954.2
7. 022
10
ฆ* Chloroethane
66600.7
9037.9
13.570
10
Bromoethane
151701.4
9272.6
6. 112
10
Methylene Chloride
63594.1
6213.5
9. 771
10
tr ans- t , 2-Di ch 1 oroethy 1 ene
127871.1
8363.2
6. 540
10
1 , 1-Lh ch1oroethane
125575.U
6046.8
4.815
10
Ch1oroprene
46394.0
3413.9
7. 358
10
Pert 1uorcbensene
367886.1
17378.6
4. 724
10
Bromochiorornethane
65330.5
3387.4
5. 185
10
Ch1 oro+orm
55978.2
2867.0
5. 122
10
1 , 1,1-Trichloroethane
127266.5
5498.0
4. 320
10
Carbon Tetrachloride
61129.6
3886.1
6.357
10
Benzene/1,2-Dichloroethane
517140.0
•2
4. 297
10
F'er-* 1 uor otol uene
384972.6
22281.1
5. 788
10
Trichloroethylene
124849.9
5691.4
4.559
10
1,2-Di ch1oropropene
184382.3
9140.9
4. 958
10
Bromodi ch.l orornethane
53124.7
4524.6
8.517
10
trans-1,3-Dichloropropylene
128642.8
8331.0
6. 476
10
Toluene
435349.8
20818.8
4. 782
10
cis-l,3-Dichloropropylene
564176.5
28164.1
4. 992
10
1 , 1 , 2-Trlch1oroethane
130082.0
6371.2
4.898
10
T etrachloroethy1ene
125122.5
6509.7
5. 203
10
Di bromochlorornethane
46355.0
3203.8
6.911
10
Chloroben:ene
327219.8
16193.6
4.949
10
m/p-Xylene
121804.3
7135.0
5.858
10
Styrene/o-Xylene
306408.0
22345.9
7.293
10
Bromof1uorobenzene
300175.7
15492.5
5. 161
10
1,1,2,2-Tetrachioroethane
88206.1
5477.8
6. 210
10
m-Di chlorobensene
267689.9
15164.5
5. 665
10
p-Di chlorobenzene
247085.4
15432.1
6.246
10
o-Di chloroben2ene
304186.8
18059.7
5.937
10
* Not included in average "/.CV Average 7.CV = 5.828
22

-------
TABLE
AIR TOXICS FID CALIBRATION SPAN, 09/21/87—
10/06/87
FID Area Counts
Compound
Average
STD
ฆ/.cv
Number
* Acetylene
40267.3
29440.0
73.11 1
9
* 1,3-Butadiene
108809.9
15718.3
14.446
9
* Vinyl Chloride
145305.1
11912.2
8. 198
7
* Ch1 oromethane
130924.7
12475.6
9. 529
9
+ Chloroethane
74231.0
11128.9
14.992
9
Bromoethane
157216.1
12553.5
7. 985
9
Methylene Chloride
70444.1
8289.0
1 1.767
9
tran'i-l ,2-Dich1 oroethy1ene
137831.7
13960.5
10.129
9
1 , 1-Dichloroethane
131522.B
10333.2
7. 857
9
L.h 1 oroprene
53202.4
5446.V
10.238
9
rertJ uorobenzene
360356.8
29765.9
8. 260
9
Bromoch1 oromethane
68460.1
5740.3
8. 385
9
Chl or o+ orm
60480.3
5515.5
9.119
9
L , 1 , 1 - l'r l ch 1 oroethane
132677.8
10604.7
7. 993
9
Carbon Tetrachloride
66940.9
7516.9
11.229
9
Benzene/1,2-Dich1oroethane
506384.9
41647.7
8.225
9
F'ert 1 uorotol uene
387111.O
31756.8
8.204
9
Trichloroethylene
127608.4
10839.4
8. 494
9
1,2-Dichloropropene
18B394.9
17959.3
9. 533
9
Bromodichloromethane
60288.8
8583.5
14.237
9
trans-1,3-Dichloropropylene
140694.6
16372.2
11.637
9
Vol uene
430435.7
35118.2
8. 159
9
ci5-l , 3-Di ch 1 oropropyl ene
564682.0
45194.2
8.003
9
1 , 1,2-Trichloroethane
130766.3
12137.5
9. 282
9
Tetracnloroethylene
128291.1
12589.9
9.814
9
Di bromoch1oromethane
49292.1
4687.5
9.510
8
Chlorobenz ene
321414.6
26085.3
8. 116
9
m/p-Xylene
124553.7
12073.5
9. 693
9
Styrene/o-Xylene
317294.7
33885.3
10.679
9
Bromof1uorobenzene
286311.4
18449.0
6.444
9
1,1,2,2-Tetrachloroethane
89389.4
10066.5
11.261
9
m-Di ch1 orobensene
245430.1
11526.7
4.697
9
p-Di chlorobenzene
229321.4
11218.3
4. 892
9
o-Di chlorobenzene
295184.2
48397.2
16.396
9
* Not included in average '/.CV Average "/.CV = 9.318
23

-------
TABLE 3-3. AIR TOXICS PID CALIBRATION SPAN, 09/09/B7—09/19/87
PID Area Counts
Compound
Average
STD
7.CV
Number
* Acetylene
—
—
—
0
* 1 ,3-Butadiene
84737.1
18059.1
21.312
9
* Vinyl Chloride
198240.&
56949.2
28.727
10
* Chioromethane
—
—
—
0
* Chloroethane
—
—
—
0
bromoethane
—
—
—
0
Methylene Chloride
11969.3
5483.5
45.813
10
trans-1 , 2-Di ch 1 oroethy 1 ene
649765.O
124361.2
19.139
10
l ,i-Dich1oroethane
—
—
—
(.)
Ch1aroprene
119487.6
30063.6
25.160
10
Pert 1 Liorobenzene
53762.1
11309.5
21.036
9
bromach1oromethane
—
—
—
0
Chiorotorm
—
—
—
0
1 , 1 , l-Trichloroethane
—
—
—
0
Carbon Tetrachiorlde
—
—
—
0
Benz ene/1,2-Dichloroethane
630029.1
125821. 1
19.971
10
Pert1uorotoluene
9953.0
1989.6
19.990
10
]"r i chl oroethy 1 ene
609110.0
117353.2
19.266
10
1 , 2-L)i chl oropropene
16003.2
oB35•6
23.96B
10
Bromodichloromethane
—
—
—
0
trans-1,3-Dichloropropylene
143690.5
33528.9
2c>. s^o4
10
Toluene
645162.7
125091.5
19.389
10
cis-1,3-Dichloropropylene
151325.5
36706.0
24.256
10
1 , 1 ,2-Trichloroethane
—
—
—
0
T etrachi oroethylene
586321.8
125142.4
21.344
10
Dibromoch1oromethane
—
—
—
0
Chlorobenz ene
734783.9
14 7011.5
20.007
10-
in/ p-Xy 1 ene
199796.8
44932.6
22.489
10
Styrene/o-Xy1ene
534696.1
115475.2
21.596
10
Bromofluorobenzene
937170.0
198124.3
21.141
10
1 ,1,2,2-Tetrachloroethane
11915.9
2548.5
21.387
10
m-Dichlorobenzene
694150.2
146504.9
21.106
10
p-Di ch1orobenzene
624885.3
135281.7
21.649
10
o-Dichlorobenzene
669090.0
149429.9
22.333
10
* Not included in average 7.CV Average 7.CV = 22.807
24

-------
1ABLL 3-4. AIR TOXICS RID CALIBRATION SPAN, U9/21/87—10/06/87
PID Area Counts
Compound
Average
STD
7.CV
Number
* Acetylene
—
—
—
0
ซฆ 1 , 3-Butadi ene
72050.3
40711.6
56.504
9
*• Vinyl Chloride
132130.3
16702.1
12.641
7
* Chlaromethane
—
—
—
0
* Chloroethane
—
—
—
0
Bromoethane
—
—
—
0
Methylene Chloride
7045.7
1575.4
22.360
9
trans-1,2-Dich1oroethy1ene
427673.8
58017.9
13.566
9
1 , l-l)i cnl oroethanp
—
—
—
0
Ch1 oroprene
76911.3
10731.9
13.954
9
K'f?r 11 uorobenz ene
34753.2
5019.0
14.442
9
Bromoch i oromethane
—
—
—
0
Chi or o+ orm
—
—
—
0
1 , I,1-frichloroethane
—
—
—
0
Carbon Tetrachloride
—
—
—
0
Benz ene/1,2-Dichloroethane
401230.1
58937.6
14.689
9
Pert 1uDrotoluene
6372.4
1085.4
17.033
9
frichloroethylene
382977.9
56987.7
14.880
9
1,2-Dich1oropropene
7712.7
2217.0
28.745
9
Bromodich1 oromethane
—
—
—
0
trans-1,3-Dichloropropylene
95361.4
14433.5
15.136
9
I'ol uene
415451.9
62413.9
15.023
9
cis-1,3-DichloroprDpylene
106436.3
17099.0
16.065
9
1,1,2-Trichloroethane
—
—
—
0
Tetrachloroethylene
367998.9
56300.6
15.299
9
Dibromcch1 oromethane
—
—
—
0
Chlorobenzene
467587.8
71471.7
15.285
9
m/p-Xy1ene
127231.7
17994.5
14.143
9
Styrene/o-Xylene
347106.4
49507.3
14.263
9
Bromo-f 1 uorobenzene
582005.7
88372.7
15.184
9
1,1,2,2-Tetrachloroethane
5956.3
1692.0
28.406
9
m-Di chlorobenzene
416858.1
64469.7
15.466
9
p-Dichlorobenzene
375706.2
57813.1
15.388
9
o-Dichlorobenzene
397437.4
60564.5
15.239
9
* Not included in average "/.CV Average "/.CV = 16.728
25

-------
TABLE 3-5. AIR TOXICS ECD CALIBRATION SPAN, 09/09/87—09/19/87
ECD Area Counts
Compound
Average
STD
ฆ/.CV
Number
* Acetylene
—
—
	
0
* 1,3-Butadiene
—
—
—
0
+ Vinyl Chloride
—
—
—
0
* Chioromethane
—
—
—
0
* Chloroethane
—
—
—
0
Bromoethane
—
—
—
0
Methylene Chloride
—
—
—
0
trans-I,2-Dichloroethylene
—
—
—
0
1,1-Dichloroethane
—
—
—
0
Ch I oropr ene
—
—
—
0
r'ert 1 uorobenzene
2028357.O
55328.o
2. 728
10
bromochloromethane
2361233.0
34754.2
1.472
10
Ch 1 oro+ orm
2062333.0
30571.7
1. 482
10
1,1,1-rrichloroethane
3908773.0
50085.3
1.281
10
Carbon Tetrachlorlde
6427321.O
57679.7
0. 897
10
Benzene/1,2-Dich1oroethane
—
—
—
0
F'er + 1 uor otol uene
8882415.0
69521.5
0. 783
10
Trlchloroethy1ene
2424193.0
33570.0
1.385
10
1 ,2-Dich1Dropropene
47988.4
5370.6
11.191
10
Bromodichloromethane
4851098.0
37695.6
0. 777
10
trans-1,3-Dich1oropropy 1 ene
651591.2
22294.1
3. 421
10
foluene
—
—
—
0
cis-1,3-Dichloropropylene
285449.9
27146.3
9.510
10
1,1,2-Trich1oroethane
426259.2
13927.6
3. 267
10
Tetrachloroethylene
4680480.0
29321.2
O. 626
10
Dibromochloromethane
4656013.0
34323.9
0. 737
10
Ch 1 orobenz ene
—
—
—
0
m/p-Xylene
—
—
—

Styrene/o-Xylene
—
—
—
0
Bromo-f 1 uorobenzene
122107.3
6033.2
4.941
9
1,1,2,2-Tetrachloroethane
2266129.O
37453.8
1.653
10
m-Di ch1 orobenzene
178805.4
8203.2
4.588
10
p-Dichlorobensene
42605.7
4626.9
10.860
10
a-Dichlorobenzene
167262.5
8004.5
4. 786
10
* Not included in average "/.CV
Average
•/.cv =
3.494

26

-------
TABLE 3-6.
AIR TOXICS ECD CALIBRATION SPAN, 09/21/87-
-10/06/87
ECD Area Counts
Compound
Average
STD
7.CV
Number
* Acetylene
—
—
—
0
* 1 ,3-Butadiene
—
—
—
0
* Vinyl Chloride
—
—
—
0
ซฆ Chloromethane
—
—
—
0
* Lhloroethane
—
—
—
0
Bromoethane
—
—
—
0
Methylene Chloride
—
—
—
0
trans-1,2-Dichloroethylene
—
—
—
0
] , l-Diczhloroethane
—
—
—
0
Chloroprene
—
—
—
0
Pert 1uorobenr ene
2030587.8
58205.2
2.866
9
Bromoch1oromethane
2357294.4
34414.1
1. 460
9
Chiorotorm
2059873.3
31359.1
1.522
9
1,1, 1-Trlch1oroethane
3902081.i
48148.9
1. 234
9
Carbon Tetrachlorlde
6416325.6
48812.9
0. 761
9
Ben:ene/1,2-Dichloroethane
—
—
—
0
Per +1uorotoluene
8879750.0
73194.9
0. 824
9
Frichloroethylene
2423751.1
35575.5
1.468
9
1 , 2-L)i chl oropropene
48473.0
5459.5
11.263
9
Bromodlch1oromethane
4850361.1
39905.7
0.823
9
trans-1,3-Dichloropropylene
653757.8
22502.2
3.442
9
Toluene
—
—
—
0
cis-1,3-Dichloropropylene
287124.O
28240.2
9.836
9
1,1,2-Trich1oroethane
427806.Q
13830.5
3. 233
9
Fetrachloroethylene
4680715.6
31089.8
0. 664
9
Dibromoch1oromethane
4656487.8
36371.1
0. 781
9
Chlorobennene
—
—
—
0
m/p-Xylene
—
—
—
0
Styrene/o-Xylene
—
—
—
0
Bromof1uorobenzene
122778.6
6079.8
4.952
8
1,1,2,2-Tetrachloroethane
2270210.0
37293.0
1.643
9
rr.-Di ch 1 orobenz ene
179753.1
8099.4
4.506
9
p-Dichloroben2ene
43117.1
4598.0
10.664
9
o-Dichlorobenzene
168308.8
7730.8
4.593
9
* Not included in average */.CV
Average
ll
>
u
3.502

27

-------
Preliminary calibration curves were prepared for 1,1,1-trichloro-
ethane, tetrachloroethylene, and o-dichlorobenzene. Figures 3-1 through 3-9
show the calibration curves for these three compounds with the three
detectors, FID, PID, and ECD. The lines drawn on these figures were
calculated from orthogonal regression equations assuming equal variances of
the independent variable, ppbv, and the dependent variable, Area Counts.
Table 3-7 shows the correlation coefficients for each of these calibration
curves. The coefficients of correlation range from 0.97888 to 0.99785,
showing good linearity over the calibration range from 10 to 100 ppbv.
Tables 3-8 through 3-11 show area-count ratios for PID/FID and
ECD/FID for the target compounds shown. Compounds for which blanks are shown
in Table 3-8 and 3-9 are those having no response on the PID, while those
compounds shown with blanks in Table 3-10 and 3-11 have no response on the
ECD. Tables 3-8 and 3-9 show PID/FID area count ratios for the target
compounds for the time periods 09/09/87-09/19/87, and 09/21/87-10/06/87,
respectively. Percent coefficients of variation range from 16.0 to 45.1
averaging 19.0% for the first time period and 18.6% for the second time
period.
Tables 3-10 and 3-11 show ECD/FID area count ratios for the target
compounds for the time periods 09/09/87-9/19/87, and 09-/21/87-10/06/87,
respectively. Percent coefficients of variation range from 3.1 to 17.3%,
averaging 6.4% for the first time period and 8.0% for the second time period.
Retention times are summarized in Tables 3-12 through 3-17. FID
retention time statistics are listed in Tables 3-12 and 3-13, and average
0.245% CV and 0.179% CV for the time periods 09/09/87-09/19/87 and 09/21/87-10/06/87,
3-14 and 3-15, and average 0.229% CV and 0.189% CV for the time periods
09/09/87-09/19/87 and 09/21/87-10/06/87, respectively. ECD retention time
statistics are listed in Tables 3-16 and 3-17, and average 0.209% CV and
0.138% CV for the time periods 09/09/87-09/19/87 and 09/21/87-10/06/87,
respectively.
28

-------
400
Flame Ionization Detector/R.T. 13.199
Orthogonal Regression
en ^
CO
p
O CO
O co
$ o
Q i-
rv>
vo
350-
300-
250-
200"
150-
100-
50-
—r~
20
~r
—i	1	p—
40	60	80
Concentration, ppbv
	1—
100
—I—
120
CO
a>
CO
f-
Figure 3-1. FID Calibration Results for 1,1,1 - trichloroethane	I

-------
400
Flame Ionization Detector/R.T. 18.235
Orthogonal Regression
GO
O
tn
ฆ—	to
1	=
O	(0
O	en
nJ	o
350-
300-
250-
200-
150"
100 -
50-
20
i	1	1	1	1—
40	60	80
Concentration, ppbv
—i—
100
—I—
120
Figure 3-2. FID Calibration Results for Tetrachloroethylene
it
o
h-
o

-------
2.0
Flame Ionization Detector/R.T. 29.498
Orthogonal Regression
1.8-
1.6-
1.4-
1.2-
10 ฆ—.
*-• V)
ซ c
O (Q
O w
CO Q
?l 0.8
1.0-
0.6-
0.4-
0.2-
0-
~T~
20
—r~
40
—I-
60
80
100
—I—
120
Concentration, ppbv
Figure 3-3. FID Calibration Results for o-dichlorobenzene
h-
o
h-
CO

-------
CO
ro
co ^
+* CO
I"
O CO
o CO
S O
2 -C
Photoionization Detector/R.T. 13.183
Orthogonal Regression
1	1	r
40	60	80
Concentration, ppbv
Figure 3-4. PID Calibration Results for 1,1,1 - trichloroethane	2

-------
Photoionzation Detector/R.T. 18.228
Orthogonal Regression
0	20	40	60	80	100	120
Concentration, ppbv
Figure 3-5. PID Calibration Results for tetrachloroethylene

-------
CO
450
co ^
*- V)
1 =
O (0
O OT
CO Q
Photoionzation Detector/R.T. 29.485
Orthogonal Regression
-i	1	r
40	60	80
Concentration, ppbv
Figure 3-6. PID Calibration Results for o-dichlorobenzene
r-.
O
K
GO

-------
Electron Capture Detector/R.T. 13.199
Orthogonal Regression
40	60	80
Concentration, ppbv
100
ac
m
Figure 3-7. ECD Calibration Results for 1,1,1 - trichloroetharie

-------
6
Electron Capture Detector/R.T. 18.235
Orthogonal Regression
o>
5-
4-
(O
1 =
o O o,
O = 3
r-
0) fc
2-
1 -
"T"
20
n	r
40
~i	r
60
~T~
80
t	r~
100
i	1—
120
Concentration, ppbv
Figure 3-8. ECD Calibration Results for tetrachloroethylene
oc
tf>
o
co

-------
450
Electron Capture Detector/R.T. 29.498
Orthogonal Regression
~i	1	1	1	r
40	60	80
Concentration, ppbv
Figure 3-9. ECD Calibration Results for o-dichlorobenzene

-------
TABLE 3-7. ORTHOGONAL REGRESSION OF CALIBRATION DATA
Coefficient of Correlation
Compound	FID	PID	ECD
1,1,1-Trichloroethane	0.98818	0.99118	0.99785
Tetrachloroethylene	0.98966	0.99239	0.97888
o-Dichlorobenzene	0.99344	0.98806	0.98831
38

-------
39

-------
TABLL 3-8. FID/FID CALIBRATION AREA COUNT F-
-------
IABLL 3-9. PID/FIL) CALIBRATION AREA COUNT RATIOS, 09/21/87—10/06/87
Compound
PIU/hlD Area Count
Rati o

Average
STD
/1CV
Number
< Acetyl one
—
—
—
0
ฆ* I , ad l ene
0. 784
(J.191
24.365
7
ฆ* Vinyl Chloride
1 . 494
0. 384
25.724
9
ซฆ Chloromethane
—
—
—
(.)
* i-hl oroethane
—
—
—
0
Bromoethane
—
—
—
0
Her.hvlcne l.hJ onde
U. 192
0. 089
46.0/2
9
cruris - l , - -Dl ch J oroethylenfi
L J • 1 _• J
0. 779
15.183
9
1 , 1 -l cn l Timet hanp

—
--
0
;. i i i ur npf c?ne
2 . o 1 2
. Lj73
22.oi /
9
i-'(03
8
bromoch 1 oromethane
—
—
—
0
L.hl or nt nrni
—
—
—
(j
I ,1 , 1 - 1rich1oroethane
—
—
—
(.)
Carbon letrachloride
—
—
—
o
ben:: ene / 1 ,2-Dichl oroethane
1 . 237
0. 206
16.6 78
9
Pert 1uorotoluene
0. i.) 2 6
0. 0u4
16.221
9
[richloroethylene
4. 958
0. 794
16. 016
9
1 , 2-Dichloropropene
0. <->89
0. (J 1 7
18.833
9
Bromodlch1 oromethane
—
—
—
0
trans- I , >Dichloropropylene
1. 131
O . 1 9 1
16.923
9
Toluene
1. 503
' J • 2 -Jj -2/
15.483
9
cis-1 ,3-Dichloropropy 1 ene
U. 2 72
0. 055
20.341
9
I , 1 , J- I'r l ch 1 oroethane
—
—
—
0
1elrachloroethylene
4. 751
0. Sol
16.864
9
UibromochJ oromethane
—
—
—
O
Chloroben:ene
2. 278
0. 373
16.394
9
m/p-Xy1ene
1. 664
0. 299
18.000
9
Styrene/o-Xylene
1 . 767
0. 297
16.833
9
bromof1uorobenzene
3. 164
0. 535
16.908
9
1 , 1,2,2-Tetrachloroethane
0. 138
0. 021
15.159
9
m-Di ch1orobenzene
2.623
0. 426
1 6 . A •	4 al
9
p-Dichlorobensene
2. 554
0. 426
16.676
9
o-Dichlorobenzene
2. 226
0. 390
17.527
9
* Not included in average 7.CV
Average
•/.cv =
18.554

41

-------
TABLE 3-10. ECD/FID CALIBRATION AREA COUNT RATIOS, 09/09/87—09/19/!
Compound
LCC/FID Area Count
Rati o

Average
5TD
ฆ/.cv
Number
* Acetylene
—
—
—
0
-*ฆ 1 ,3-Butadiene
—
—
—
0
* Vinyl Chloride
—
—
—
0
ฆ+ Chioromethane
—
—
—
0
* Lhloroethane
—
—
—
0
Bromoethane
—
—
—
0
Methylene Chloride
—
—
—
0
trans-1,2-Dich1oroethy1ene
—
—
—
0
l ,1-Dich1 oroethane
—
—
—
<_)
Chi ornprene
—
—
—
0
rer-t 1 uor obenz ene
e_* l. ' >
0. 264
4. 7\i8
10
Bromochl oromethane
36.242
2. 198
6. 064
10
Chi oro+orm
36.937
2. 137
5. 784
10
1 , 1 , 1-lrichloroethane
30.769
1 . 482
4.817
10
Carbon letrachloride
105.563
7. 454
/. 061
lo
Benzene/1,2-Dichloroethane
—
—
—
0
F'er+ 1 uorotol uene
23.146
1 .431
6. 182
10
Trichloroethylene
19.457
1.017
b. 225
10
1 ,2-Dichloropropene
0.261
0.029
11.268
10
Bromodichloromethane
91.893
7.637
8.311
10
trans-l,3-Dich1oropropylene
5. 079
0. 286
5. 623
10
Toluene
—
—
—
o
cis-1,3-Dich1 oropropy1ene
0. 506
0. 042
8. 279
10
1 , 1 ,2-Trichloroethane
t '-'pri
0.161
4. 906
10
Tetrachloroethylene
37.505
2. 108
b. 621
10
Dibromochloromethane
100.858
6. 778
6. 720
10
Chlorobenz ene
—
—
—
0
m/p-Xylene
—
—
—
0
Styrene/o-Xylene
—
—
—
0
Bromofluorobenzene
0. 409
0. 022
5. 299
9
1,1,2,2-Tetrachi oroethane
25.770
1.458
5. 658
10
m-Dichlorobenzene
0. 669
0. 030
4.542
10
p-Di chlorobenzene
0. 173
0.016
9. 323
10
o-Di chlorobenzene
0.551
0. 025
4. 471
10
* Not included in average 7.CV
Average
ฆ/.cv =
6. 436

42

-------
I ABLE '.-11 ECD/FID CALIBRATION AREA COUNT RATIOS, 09/21/87—10/06/87
ECD/J-IIJ Area Count Ratio
Compound	Average? dTD	'/.CV Number
* acetylene
—
—
—
O
-*ฆ J , J.-butad i ene
—
—
—
0
* Vinyl Chloride
—
—
—
0
* Lhloromethane
—
—
—
0
ฆ* Uh J or oethane
—
—
—
0
BromoGthane
-—
—
—
(.)
;li?thylene Chi ori de
—
—
—
0
t:r ans - 1 , J-Dicniorosthylene
—
—
—
0
] . i -l)] r.h 1 nroet hane
—
--
—
(.)
Lh l afoprene
—
---
—
0
ppn l nor oDenr ฃ?ne
b. fa 3 1
o. 4;. 9
/ . b03
9
br omac:h 1 or ome thane
34.653
2. 995
8.642
9
Ch1 orof orm
34.326
T "T r~?
9. /06
9
I , i , 1 --1 r l ch 1 cr oethane
29.570
2. 238
7. 738
9
Carbon l'etrach 1 or l de
96.955
11.083
1 1.431
9
benzene/1,2-Dich1 oroethane
0. 000
0. 000
—
0
Pert 1 ucrotoi uene
23.0/5
00
U
8. 1 78
9
frichloroethylene
19.116
1. 641
8.584
9
1 ,2-Di ch1 oropropene
0. 260
0. 0 39
15.012
9
bromodlch1oromethane
81.869
11.245
13.736
9
trans-1,3-Dichloropropylene
4. 696
0. 503
10. 7<-ป5
9
l"ol uene
—
—
—
0
cis~J , 3-1)1 chl oropropyl ene
U. SO9
u. U45
8.81 1
9
1 ,1,2-Trichloroethane
3. 295
0. 304
9.214
w
1 etr ach 1 oroethyl ene
36./85
44/
9. 372
9
i)i bromoch 1 oromethane
95.349
8. 796
9. 225
8
Ch1 orobenz ene
—
—
—
o
m/p-Xylene
—
—
—
0
Styrene/o-Aylene
—
—
—
o
Bromof1uorobenzene
0. 383
0. 146
38.261
0
1 ,1,2,2-Tetrachloroethane
ป>j . b*ju
2. 6U6
o
^0
•
o
9
m-Dichlorobenz ene
0.733
0. 035
4. 763
9
p-Di chloroDenzene
O. 188
0. U20
10.496
9
o-Di chlorobenzene
0.581
0. 077
13.264
9
* Not included in average 7.CV
Average
ฆ/.cv =
8.963

43

-------
TABLE J.-12. FID RETENTION TIMES, 09/09/87—09/19/87
FID Retention Time, Minutes
Compound	Average STD Number */.CV
* Acetylene
5.
113
0.
096
9
3.
074
* 1 , 3-Butadiene
•
532
O.
141
9
-j .
991
* Vinyl Chloride
O •
800
0.
034
10
0.
883
* Chloromethane
5 m

0.
057
10
1 .
098
* Ch 1 oroethane
5.
799
0.
027
10
0.
465
Bromoethane
8.
243
0.
049
10
0.
594
Methylene Chloride
9.
321
0.
046
10
0.
494
trans - 1 , 2-Di c:hl oroethyl ene
1 0.
167
0.
045
10
0.
, 445
1 , J -Lh chl or oethane
1 1.
2U3
o.
044
10
1.).
394
Chiaroorene
1 1 .
596
(.).
044
10
0.
, 381
Pert 1uoroDenzenp
1 J.
169
0.
O 4 1
10
1.1.
314
bromochlaromethane
13.
493
0.
044
10
0.
, 327
Ch1 oro+orm
13.
865
0.
043
10
0.
31 1
1,1,1-frichloroethane
14.
249
0.
045
10
0.
,315
Carbon I'etrachioride
14.
742
o.
044
lo
0.
301
Benr ene/1,2-Dichloroethane
15.
228
0.
043
10
0.
,283
Pert 1uorotoluene
15.
513
0.
040
10
0.
255
l'r l ch 1 or oethy 1 ene
17.
108
0.
029
8
0.
. 168
1,2-Dich1 oropropene
17.
593
0.
043
10
0.
,242
Bromodlch1oromethane
18.
446
0.
020
7
0.
, 110
trans-1,3-Dichloropropy1ene
19.
799
0.
U4 1
10
0.
,207
f oluene
20.
764
0.
041
10
0.
, 198
cis-1,3-Dichloropropylene
21.
565
0.
038
10
0.
1 77
1 , 1 ,2-Trlchloroethane
21.
927
0.
040
10
0.
, 182
Tetrachloroethylene

446
0.
04 O
10
0.
179
Dibromochloromethane
"T
4— sJ •
061
0.
040
10
IJ.
. 175
Chloroben:ene
24.
974
0.
040
10
0.
159
m/p-Xy1ene
25.
871
0.
039
10
0.
, 152
Styrene/o-Xylene
27.
145
0.
039
lo
0.
144
Bromof1uorobenzene
28.
775
0.
039
10
0.
, 137
1,1,2,2-Tetrachloroethane
29.
333
0.
037
10
0.
127
m-Di ch1 orobensene
32.
462
0.
037
10
0.
, 115
p-Dichlorobens ene
32.
784
u.
038
10
0.
115
o-Di cnl orobensene
34.
000
0.
035
10
0.
, 103
* Not included in average 7.CV


Average
7.CV =
0.
, 245
44

-------
1 ABLE 3-13. FID RETENTION TIMES, U9/21/87—10/06/B7
.-ID Retention Time, Minutes
Compound	Average BID Number "/.CV
* Acetylene
•
9B4
U.
143
9
4.
782
* 1,5-Butadiene
J l
, 599
O.
, O70
9
1.
,945
-* Vinyl Chloride
_ซ .
/90
0.
048
/
1.
257
* Chloromethane
5 .
, 137
O.
.072
9
1.
,392
+ Chloroethane
b.
738
0.
101
V
1.
768
Bromoethane
8.
, 154
O.
. U44
9
0.
,541
Methylene Chloride
9.
^ —r
u.
, 036
9
0.
387
trans-1,2-Dichloroethylene
10.
, u 77
0.
, U31
9
0.
,312
1,1-Dich1 or oet hane
1 1.
190
(J.
U27
9
0.
239
'.lil oronrene
1 1 ,
. 502
0.
. 026
9
0.
, 230
-'er t luoroDen:ene
13.
077
0.
, U22
9
0.
171
bromochIoromethane
13.
. 397
0.
. U24
9
0.
. 177
uh 1 orntorm
13.
76B
0.
,(.123
9
0.
171
1 . 1 , 1-l'richloroethane
14.
. 151
0,
. 023
9
0.
, 164
Carbon Tetrachloride
14.
642
u.
, 023
9
0.
156
Benz ene/1,2-Dich1oroethane
15.
. 128
0,
.023
9
0.
, 152
Peri 1 uorotol uene
15.
420
0.
,023
9
0.
148
Trich1 oroethy1ene
17.
. 022
0,
. u25
9
0.
, 148
1 , L'-Di ch 1 oropr op ene
17.
, 491
0.
,026
9
0.
148
Bromodichloromethane
18.
, 369
0,
. 027
9
0.
. 147
trans-1,3-Dichloropropylene
19.
694
0.
,028
9
0.
, 145
Toluene
20.
. 658
0.
, 030
9
(->.
. 144
cis-],3-Dichlaropropylene
21.
461
u.
, 030
9
0.
139
1,1,2-Trichloroethane
21.
, 823
0.
, 031
9
0.
, 143
Tetrachloroethy1ene
/
340
u.
031
u
u.
140
L)i bromoch 1 oromethane

, 955
0.
. 033
9
0.
, 144
Chlorooenzene
24.
866
u.
035
9
(.).
140
m/p-Xylene
25.
, 763
0.
. 036
9
0.
, 139
Styrene/o-Xylene
27.
036
(.).
037
9
0.
136
Bromof1uorobenz ene
28.
. 665
0.
, O'jB
9
0.
, 133
1,1,2,2-Tetrachloroethane
29.
225
0.
039
9
0.
132
m-Di chlorobenzene
37 _
, 347
0.
, O40
9
0.
124
p-Dichlorobenzene
TTi
a
671
0.
041
9
0.
124
o-Dich1 orobenz ene
-'•J •
1 885
0.
042
9
0.
123
* Not included in average '/.CV	Average '/.CV = 0.179
45

-------
FABLE 3-14. RID RETENTION TIMES, O9/09/87--O9/19/B7
PID Retention Time, Minutes
Compound	Hveraqe SID Number V.CV
* Acetylene
—

—

0


* I ,3-Butadiene

.610
o,
. 051
8
1.
,414
* Vinyl Chloride

812
o.
, 049
9
1.
i 296
* Chi oroinethane
—

--

(.)


ซ Lhioroethane
—

—

(j


Bromoethane
-ฆ

--

0


Methylene Chloride
9.
315
0.
, o50
9
0.
542
trans-i ,2-Dich1 oroethy1ene
10.
, 163
0,
. 047
9
0.
, 463
1 , 1 --l)i cn 1 or oethane
—

—

(j


Uh1oroarens
1 1 .
. 591
o,
. 046

0.
, 394
Ken J uor oDenzene
1 J..
, 1 e>o
o.
, 042
u
o.
316
bromocn1oromethane
13.
,464
--

1


Chiorot orm
13.
835
—

1


1,1,1-Trichloroethane
14.
,218
--

1


Carbon Tetrachloride
14.
734
—

1


Benzene/1,2-Di ch1 oroethane
15.
.219
0,
. 044
9
0.
, 288
Pert 1uorotoluene
15.
505
0.
, 038
10
0.
245
Trichloroethylene
17.
, 118
0.
. (J 41
10
0.
,237
1 , 2-L)i chl oropropene
17.
621
o.
099
10
0.
560
Bromodich1 oronethane
—

—

O


trans-l,3-Dichloropropylene
19.
792
0.
, 039
lo
0.
19B
foluene
20.
, 760
0,
. 041
9
0.
, 199
cis-l,3-Dichi oropropylene
21.
462
0.
0.39
10
0.
180
1,1,2-Trichloroethane

, 184
o.
ฆ oil
_/
0.
,051
Tetracnloroethylene
'-! ฆ—1
426

o26
8
0.
1 16
Dibromoch1oromethane
^ "T
aL ฆ-ป ฆ
, 037
—

1


Chlorobenzene
24.
971
0.
04 O
9
0.
159
m/p-Xylene
25.
> 866
0.
. 039
9
0.
, 151
Styrene/o-Xylene
27.
141
0.
039
9
0.
143
Bromof1uorobsn:ene
23.
768
0.
i 0.jป7
10
0.
130
1,1,2,2-Tetrachloroethane
29.
336
0.
036
10
0.
124
m-Di chloroben2 ene
32.
, 455
0.
, 0o6
10
0.
no
p-Dichlorobenzene
*
778
o.
036
10
0.
109
o-Di ch1orobens ene
• jป3 ฆ
994
0.
, 034
10
0.
100
* Not included in average 7.CV	Average 7.CV = 0.229
46

-------
mBLE J.-15. PID RETENTION IIMEฃS, 09/21/87—10/06/87
RID Retention Time, Minutes
Compound
Aver age
8 1 D
Number
ฆ/.CV
* ricetyiene
—
—
u

* 1 , 3-butad l ene
3. 594
(„>. U/5
8
2. 095
* Vinyl Chloride
3. /81

'.). (.)(.)(.)
8

! Jh 1 or opr ene
1 1 .491
0. 02 7
8
0. 233
Ken i uorodenzene
13.U69
u. (J 2 2
V
U. 168
Bromoch l oroinethane
13.4u3
—
1

Chlorororm
13.771
—
1

l , I , l-rrich1oroethane
14.158
—
1

Carbon Ietrach1 oride
14.686
—
1

Benzene/1,2-Dichloroethane
15.114
(.). 023
8
0. 149
Pert 1uorotoluene
15.412
O. U22
9
(.>. 146
frichloroethylene
17.014
0. U24
9
0. 142
1 , 2-Dich1 oropropene
17.522
(.). 108
9
i.). 61 7
Bromod1ch1 oromethane
—
—
0

trans-1,3-Dichloropropylene
19.688
0. 027
9
0. 135
f oluene
20.653
u. (_> 31
8
0. 148
cis-1 ,3-Dich1 oropropy1ene
21.357
0. 030
9
0. 139
I , 1 ,12 - 1 r l chl oroethane
—
—
(.)

Tetrachloroethvlene
1' < T —^ CT
(J. U30
9
(.). 135
Dibromochloromethane
22.952
—
1

Chlorobenz ene
24.861
U. 0 36
8
0. 145
in/p-Xy 1 ene
25.757
U. U37
8
0. 143
Styrene/o-Xylene
27.030
U. 038
8
0. 141
bromo-f 1 uor obenz ene
28.660
0. 037
9
0. 129
1,1,2,2-Tetrachioroethane
29.228
0. 039
9
0. 132
m-Dichlorobensene
32.342
0. 040
9
0. 124
p-Dicnlorobensene
32.66b
0. 041
9
0. 124
o-Dich1 orobenzene
33.880
0. 042
9
0. 123
* Not included in average */.CV

Average
ฆ/.cv =
0. 189
47

-------
TABLE J.-16. ECD KETENTIDN TIMES, 09/09/87—U9/19/87
Compound
ECD
Retention 1
ii - i
II 01 1
II E 1
II r-. 1
Mi nutes
Average
SID Number
•/.cv
* Acetylene
—
—
0

* 1,3-Butadiene
—
—
(.)

* Vinyl Chloride
—
—
(.)

* Ch1oramethane
—
—
0

* Chiaroethane
—
—
0

bromoethane
—
—
U

Methylene Chloride
—
—
0

trans-l ,2-Dichloroethylene
—
—
t.)

1,1-Oichloroethane
—
—
i.)

Uh I oroprons
—
—
(j

i-'ert iuuroDen:ene
1 J.. 1 /u
O. i.'4 1
io
o. o 15
Bromoch i or nine thane
1 J.. 494
0. 044
10
0. 326
Chiorotorm
13.86/
0. 043
lo
0. 307
1,1,1-lrichlaroethane
14. 252
0. 044
10
0. 312
Cartion 1etrach1 orlde
14.166
O. 045
10
0. 307
Benz ene/1,2-Dich1aroethane
—
—
0

Pert 1uorotoi uene
15.520
0. 039
lo
0. 252
rrlchloroethylene
17.112
O. 029
8
0. 168
1,2-Dichloropropene
17.909
0. 042
10
0. 232
Bromodlch1oramethane
—
—
0

trans-l,3-Dichloropropylene
19.8GO
O. 040
lo
o. 204
Toluene
—
—
(.)

cis-1,3-Dichloropropylene
21.463
O. 040
10
0. 189
1,1,2-Trichloroethane
—
—
0

Tetrachloroethylene
22.454
<_>. U4 1
10
0. 184
Dibromoch1 oromethane
23.U67
0. 041
10
o. 177
Chlorobenzene
—
—
0

m/p-Xylene
—
—
0

Styrene/o-Xylene
—
—
0

Bromof1uorobenz ene
23.768
0.035
9
0. 122
1,1,2,2-Tetrachloroethane
29.337
0. 038
10
0. 130
m-Di ch1orobenz ene
32.460
0. 038
10
0. 117
p-Dichlcrobenzene
32.783
0. 038
10
0. 115
o-Di chlorobenzene
33.998
0. 035
10
0. 103
* Not included in average 7.CV

Average
7.CV
0.209
48

-------
fABLE 17. ECD RETEN TI ON TIME5, u 9/21/87—10/06/87

ECD
Retention
r i me,
Pli nutes
Compound
Average
STD
Number
ฆ/.cv
* Acetylene
—
—
0

* 1 , >butadlene
—
—
U

* Vinyi Chi oride
—
—
0

* Ch1 oromethane
—
—
0

~ Chloroethane
—
—
0

bromoethane
—
—
o

Methylene Chloride
—
—
o

f.rans- l , 2-Di chl oroethyl ene
—
—
(.)

1.1 -l)i ch i or oethane
—
—
(j

Ch 1 or opr r?ne
—
—
t.)

r er -t luoroDenzene
1 J.. U/tJ
U. U21
7
0. 158
L-ironioch 1 aroinethane
13.396
U. 021
9
u. 159
Lh 1 oroป orm
13.76/
O. 021
9
0. 156
1,1,1 -Trich1 ornethane
14.153
0. 022
9
0. 155
Lart;on 1 etrachl orl de
14.667
U. 025
9
0. 170
Benrene/l, 2-Dich1oroethane
—
—
0

Pert 1uorotoluene
15.425
o. u22
9
0. 141
Trlch1oroethylene
17. 024
0. 023
9
0. 138
1 ,2-Di ch 1 or opr op ene
17.805
O. 024
9
0. 134
Bromodlch1 oromethane
—
—
O

trans-l,3-Dichloropropylene
19.693
0. 027
9
0. 136
To1uene
—
—
0

ci5-l,3-Dichloropropylene
21.357
0. 027
9
0. 126
1,1,2-Trichloroethane
—
—
0

Tetrachloroethylene
22.346
U. 029
9
0. 131
Dibromoch1 oromethane
22.959
0. 030
9
0. 131
Chlorobenzene
—
—
(.)

m/p-Xy1ene
—
—
0

Styrene/o-Xylene
—
—
0

Bromo-f 1 uoroben: ene
28.663
0. 035
9
0. 124
1,1,2,2-Tetrachloroethane
29.227
0. 037
9
0. 126
m-Dichlorobensene
32.345
0. 038
9
0. 119
p-Dichlorobenzene
32.669
U.U39
9
U. 119
o-Dichlorobenzene
33.883
0. 040
9
0. 117
* Not included in average V.CV	Average "/.CV = 0.138
49

-------
The variability of the retention time is a decreasing function of
increasing retention time for all three detectors as shown in Figures 3-10,
3-11, and 3-12. The % CV plotted in Figures 3-10, 3-11, and 3-12 are from the
time period 09/21/87-10/06/87, and are typical of the target compounds and
three detectors used in this study.
50

-------
4.0
CONCLUSIONS
The results reported here have shown that the prototype analytical
system developed for measuring air toxics concentrations in ambient air can
reliably analyze most of the target compounds listed in Table 2-1.
Four pairs of target compounds coelute and cannot be distinguished
from one another-benzene/1,2-dichloroethane, m-xylene/p-xylene,
styrene/o-xylene, and n-octane/CIS-l,3-dichloropropylene.
Retention times were highly precise, averaging less than 0.2 % CV
for each detector and compound having a retention time greater than
chloroehtane.
Variability of FID responses for compounds having retention times
greater than chloroethane averaged 7.6% CV. PID response variability averaged
19.8% CV, while ECD response variability averaged 3.5% CV.
The precision with which a sample may be delivered from a canister
to the analytical system is less than 3.4% CV.
5i

-------
AIR TOXICS RETENTION TIMES
Flame Ionization Detector
5.0
4.5	H
4.0
3.5	-
3.0	-
2.5	-
2.0	-
1.5	-
1.0	-
0.5	-
0.0
Retention Time, Minutes
Figure 3-10. Response variability of the flame ionization detector.

-------
-e-
AIR TOXICS RETENTION TIMES
Photoionization Detector
~
~
~
~
1=1 m ~ ~~~~ ~~~ ~~ ~~ c
_t	,	1	1	1	1	1	1	1	1	1	1	\	1
6	10	14	18	22	26	30	34
Retention Time, Minutes
Figure 3-11. Response variability of the photoionization detector.

-------
0.17 -i	B-
AIR TOXICS RETENTION TIMES
Electron Capture Detector
0.16 D
~
~
0.15
~
0.14 H
0.13 -
0.12 -
0.1 1
~
~
~
~ ~
~
~
~
~ ~
d
Retention Time, Minutes
Figure 3-12. Response variaH'' y of the electron capture detector.

-------
5.0	RECOMMENDATIONS
The recommendations are primarily concerned with improvement of the
performance of the analytical system for those compounds having a retention
time less than 6 minutes. Two approaches are recommended:
(1)	Install a precolumn upstream of the present column to enable
better resolution and better precision.
R
(2)	Test columns other than the Megabore DB624 fused silica column
with and without a precolumn.
(3)	Install a valve switching apparatus so that for the gases
having retention times less than 6.0 minutes a separate column
phase may be used. The valve would then switch the sample gas
to flow into the regular Megabore DB624 fused silica column
(or possible another similar column).
The possibilities suggested here could be tested within budget and scheduling
restrai nts.
55

-------
56

-------
6.0	ACKNOWLEDGEMENTS
Alston L. Sykes contributed to the initial design stages of the
sample interface system. Dave-Paul Dayton completed the design of the sample
interface system procured the parts, fabricated the apparatus, and evaluated
its performance. JoAnn Rice designed and assembled the multidetector
analytical system and data transfer system, and evaluated their performance.
D
Ms. Rice wrote the Lotus Macro needed to transfer the data from the VARIAN
3700 data system to the IBM-AT.
Vinson L. Thompson, Frank F. McElroy, and Larry L. Purdue of the
U.S. EPA. Emissions Monitoring Systems Laboratory (EMSL) at Research Triangle
Park. N.C., completed the initial phases of the design and construction of the
24-hour sampler. Robert F. Jongleux of Radian Corporation participated with
EMSL personnel in the later stages of the development, testing, and
certification of the 24-hour air toxics sampler.
57

-------
58

-------
7.0 . REFERENCES
1. "Cryogenic Preconcentration and Direct Flame Ionization Detection (PDFID)
Method for Measurement of Atmospheric Concentrations of Non-Methane Organic
Compounds (NMOC), "U.S. Environmental Protection Agency, Quality Assurance
Division, Environmental Monitoring Systems Laboratory, Research Triangle Park,
NC, EPA-600/4-85-063, October 1985.
59

-------
60

-------
APPENDIX A
STANDARD OPERATING PROCEDURE
FOR THE
SAMPLE INTERFACE SYSTEM

-------
Sample Interlace System
Analytical System
Data Sysy|i
lempweiuie Conitomj
l/lf Siซwซu Stmt
Tftnilv tin*
I
Air Toxics Sample Handling, Analytical, and Data Base	I
Management System	s

-------
STANDARD OPERATING PROCEDURE (SOP) FOR THE
SAMPLE INTERFACE SYSTEM
1.0 PURPOSE
The purpose of this SOP is to outline the procedures involved in the
operation of the Sample Interface System. This includes the precision
trapping and thermal desorption cycles and delivery to the analytical
system.
2.0 PROCEDURE
Analyses
(1)	Label integrators and Analysis Log with Site Code, Radian ID #,
Sample Date, Sample Type, and Analysis Date.
(2)	Check to ensure trap temperature is at 78ฐF. If the temperature
is above 78ฐF, submerge the trap in liquid argon to bring the
temperature down. The 78ฐF starting temperature provides a
standardized initial temperature.
(3)	Ensure that the "Routing Valve" is in the SAMPLE CANISTER position
and the "Isolation Valve" is in the OFF position. This allows you
to adjust the absolute pressure gauge to "0" by opening the sample
inlet to ambient pressure.
(4)	Actuate the 8-port gas sampling valve to the LOAD position and
zero the absolute pressure gauge.
(5)	Connect Sample Canister to the Sample Inlet Port. Ensure the
"Sample Canister Valve" is closed.
A-2

-------
(6)	Rotate the "Isolation Valve" to the ON position. This isolates
the Flow Controller and provides an end point against which the
trap assembly and connecting lines can be evacuated between
samples.
(7)	Rotate the "Purge/Flood Valve" to the Purge Position and evacuate
to 27" Hg. This purges any remaining sample from the system prior
to loading a new sample.
(8)	Rotate the "Purge/Flood Valve" to the Flood Position. Open the
"Sample Canister Valve" and allow pressure to stabilize as
indicated by the absolute pressure gauge.
Note! Canister pressure cannot exceed 10 psig. If pressure does
exceed 10 psig, bleed pressure off until 10 psig is achieved.
(9)	Record canister pressure in analysis log.
(10)	Once pressure has stabilized, rotate the "Isolation Valve" to the
OFF position. Notice that a flow registers on the flow controller
readout module. Once indicated flow returns to zero, place the
cryogen dewar flask filled with liquid argon around the cryotrap
block assembly. Allow trap temperature to attain -185ฐC. Add
liquid argon to the dewar flask as needed to maintain the level
indicated on the block assembly.
(11)	Rotate the "Routing Valve" to the 500 cc VESSEL position. This
permits monitoring the pressure on the know volume displacement
reservoir (rather than monitoring the pressure in the sample
canister).
(12)	Open the "Evacuate Toggle Valve" and evacuate the 500 cc
displacement vessel to 25.0" Hg vacuum exactly, as indicated by
the absolute pressure gauge. Close the "Evacuate Toggle Valve"
when 25.0" Hg vacuum is attained.
A-3

-------
(13)	Open the "Load Toggle Valve" and monitor the delta vacuum change
in the 500 cc displacement vessel. Close the "Load Toggle Valve"
when 10" Hg vacuum is attained as indicated by the absolute
pressure gauge. When the "Load Toggle Valve" is opened and flow
through the trap begins, the mass flow controller will maintain
the trapping flowrate at 30 seem.
(14)	Rotate "Isolation Valve" to the ON position and close "Sample
Canister Valve." This should be performed quickly.
(15)	Ensure that the analytical system is ready to receive sample.
Remove the dewar flask from around the trapping block assembly.
Simultaneously turn on the thermal desorption temperature
controller and actuate the 8-port gas sampling valve to the INJECT
position.
(16)	Disconnect the sample canister from the heated sample inlet line
and rotate the "Routing Valve" to the SAMPLE CANISTER position.
This allows the absolute pressure gauge to return to ambient
pressure.
(17)	Thirty minutes after the injection has occurred, turn off the
thermal desorption temperature controller and allow trapping block
assembly to return to ambient temperature.
A-4

-------
A-5

-------
APPENDIX B
PRELIMINARY CALIBRATION CURVES
FOR THE GC/MS ANALYTICAL SYSTEM
Bromochloromethane
Vinyl chloride
Methylene chloride
Chloroprene
Chloroform
1,2-Dichloroethane
Bromodichloromethane
Toluene
Di bromochl orometha'ne
m.p-Xvlene
1,1,2.2-Tetrachloroethane
o-Dichlorobenzene
PFT
Acetylene
1,3-Butadiene
trans-1,2-Dichloroethene
1.1.1-Trichloroethane
Carbon tetrachloride
Trichloroethene
n-Octane
cis-1,3-Dichloropropene
Chlorobenzene
o-Xylene
m-Dichlorobenzene
Styrene
1.1.2-Trichloroethane
Chioromethane
Chioroethane
1.1-Dichloroethane
Bromochloromethane
Benzene
1.2-Dichloropropane
trans-1,3-Dichloropropene
Tetrachloroethene
Ethyl benzene
Bromoform
p-Di chlorobenzene
Bromomethane
Propylene

-------
B-l

-------
RESPONSE LIB:AT/l; MASS: 130 (REF.COMP:AT,1; MASS: 130)
CMP:BROMOCHLOROMETHAHE
REF:BROMOCHLOROMETHANE
AREA (AO: 198409.)
600000.
500000.
40O000.
T3 30O000.
I
O
20OO00.
100000.
0.
AMOUNT
/
/•
/
/
/
.f
/
/
/
/
/
/
/
/
/
/
/
/
/
3
\L
0.000
	1	
100.000
DRIFT=
5247.390
SCATTEP=
2419.780
?. SCATTER=
1.220
CORR.COEF.
1.000
SDH =1.0
J
200.000

-------
RESPONSE
CMP:ACETYLENE
REFsPFB
AREA 
-------
RESPONSE LIB:AT,35 MASS: 59 
-------
RESPONSE LIB:AT,4; MASS:
CMP:UINYL CHLORIDE
REF s BROMOCHLOROMETHANE
62 (REF.COMP:AT,l; MASS: 130)
AREA -
v:




J?T
T	
10.000
T
30.000
—i	r
50.000
70.OO0
	1	
30.000
DRIFT=
1613.850
SCATTER3
2018.190
7. SCATTER=
syt 2.770
^ CORR.COEF.
0.939
SDM = 1.0
	1
110.000

-------
RESPONSE LIB:AT,5; MASS: 54 
-------
RESPONSE LIB:AT,65 MASS:
"MP:CHLQROETHANE
*EF:BRGMOCHLORQMETHANE
=>REA \* MASS: 130)
70000.

J*

.f

. DRIFT=
^ 862.8^1
SCATTER=
J-	437.733
7. SCATTERฎ
1.155
CORR.COEF.=
1.000
60000.

-------
RESPONSE LIB:AT,7; MASS:
DMP:METHYLENE CHLORIDE
REF:BROMOCHLOROHETHANE
AREA CAU: 109811.)
400000.
84 :
-ฆ/
	1	
100.000
DRIFT=
3010.840
SCATTER=
4833.200
2 SCATTER=
4.401
CORP.COEF.
0.399
SDI1 =1.0
I
200.000

-------
" 
REFs BROMOCHLOROMETHANE
AREA (AU: 168548.)
500000.

/
r
400000•
/
v
/
300000•
CD
I
KO
200000-
/
100000.
0. "f<	
AMOUNT	0.600
	1	
100.000
DR1FT=
4553.210
SCATTER=
26S4.940
7. 5CATTER=
1.599
CORR.COEF.
1.000
SDM =1.0
1
200.000

-------
RESPONSE LIB:AT,9J MASS: 63 (REF.COMP:AT.1; MASS: 130)
CMP:1,1-0ICHLOROETHANE
REF;BROMOCHLOROMETHANE
AREA 
-------
RESPONSE L.IB:AT,10; MASS: 53 (REF.COMP:RTฆ 1; MASS: 139)
CMP:CHLOROPRENE
REF:BROMOCHLOROMETHAHE
AREA 
k
*
0.000
*
4
/
f


/
/
f
t
J
/
/
\r
/•
f
/
	1	
100.000
DRIFT=
666.396
SCATTER=
516.776
7. SCATTER=
1.613
CORR.COEF.
1.000
SDH = 1.0
I
200.006

-------
RESPONSE LIB:AT,115 MASS: 37 00000.
200000.
100000.
0.
AMOUNT
/



f
0.000
/,
A

//
t*
/
/
,/
0
4

/i.
0
ฅ
/
T
100.000
DRIFT=
6005.760
SCATTER=
5510.200
7. SCATTER=
2.393
CORR.COEF.
1.000
SDH =1.0
I
00.000

-------
RESPONSE UB:AT, 12; MASS: 130 
-------

-------
RESPONSE LIB:AT> H5 MASS: 117 (PEF.COMP: hT . 1; 11 ASS: 130)
CMP:CARBOH TETRACHLORIDE
REF:BROMOCHLOROMETHAME
AREA (AU: 306755.)
900000. ~j
CD
I
8O00O0.
700080.
600000.
500000.
4000O0.
300000.
206080.
100000.
0.
AMOUNT
/
/
ft
4
/
i
A
- j
V,/
f
/
A''
4-
/
/
/
ฅ
0.000
100.000
DRIFT=
7994.690
SCATTER=
7469.470
7. 5CATTER=
2.435
CORR.COEF.
1.000
SDH =1.0
1
200.000

-------
RESPONSE LIB:AT, 15; MASS:
:MP:BENZENE
REF:BROMOCHLOROMETHANE
AREA 
600000.
500000.
400000.
300000.
200000.
100000.
0.
AMOUNT
-/
v#'
/
//
/

/
//
0
ft
/(
0.000




//
100
DRIFT=
6999.850
SCATTER=
9108.940
7, SCATTER=
3.505
CORR.COEF.
0.999
SDM =1.0
I
200.000

-------
RESPONSE
CMP:1,2-DICHLOROETHANE
REF:BROMOCHLOROMETHANE
AREA 16; MASS: 62 (REF.COMP:AT-1; MASS: 130)
DROETHANF
ROMETHANl
136100.)
300000.
CD
I
I—ป
200000.
100000.
0.
AMOUNT
/
/
/
i
/
/
/
/
/
/
/
/
/
/
/
X
/
/
0.000
	1	
100.O0O
DRIFT=
3604.370
SCATTER=
1330.730
?. 5CATTER=
0.978
CORR.COEF.
1.0O0
SDM =1.0
1
200.000

-------
?ESPONSE LIB:AT, 17; MASS: 1?0 (REF.COMF':hT • 1' MASS: 130;
:MP:TRICHLOROETHENE
?EF:BROMOCHLOROMETHANE
^REA 00000.
400000.
I
oo 300000.
200000.
100000.
0.
AMOUNT
4
//
4/
<'/
#
0.000
//,
A





/

#
	!	
100.000
DRIFT=
6462.620
SCATTER=
6735.350
7. SCATTER3
2.724
CORR.COEF.
1.000
SDM =1.0
I
00.000

-------
RESPONSE LIB:AT,18; MASS:
CMP:\>2-DICHLOROPROPANE
REF!BROMOCHLOROMETHAME
62 (REF.COUP:AT-15 MASS: 130)
AREA 
100000.
0.
AMOUNT

//.


/s
///
/
//
/
/
4
A
0. 000
/f
/
/

:*
100.
DRIFT=
2504.830
SCATTER-
2777.460
?. SCATTER=
3.040
CORR.COEF.
1.000
SDM = 1.0
I
200.000

-------
RESPONSE LIB:AT> 195 11 ASS: 83 00000.
100000.
0.
AMOUNT
/
/
0.000
y

/
/

/
f
\A'
r
f
/
—i—
100.000
DRIFT=
9033.370
SCATTER=
6141.190
7. SCATTER=
1.791
CORR.COEF.
1.000
SDN =1.0
	1
200.000

-------
RESPONSE LIB:AT,205 MASS:
CMP:N-OCTANE
REF:BROMOCHLOROMETHANE
85 (REF.COI1P: AT. 1; MASS: 130)
AREA 
-------
(ESP0N5E LIB:AT>21; MASS: 75 (REF.COHP-.AT, 1; MASS: 130)
:t1P: T-l, 3-piCHLOROPROPENE
*EF:BROMOCHLOROMETHANE
}REA 
-------
RESPONSE LIB:AT/22* MASS: 92 (REF.COMPrrtTฆ1; MASS: 130)
CMP:TOLUENE
SEF:BROMOCHLOROHETHANE
AREA  *
ft
rY>
>/>'
ft
//
0. 000
	1	
100.000
DRIFT=
5760.130
SCATTER=
10532.600
7. SCATTER=
5.018
CORR.COEF.
0.999
SDM =1.0
I
200.^00

-------
RESPONSE LIB:AT,23" MASS: 75 (REF.COMPsttT,1; MASS: 130)
:MP:C-l,3-DICHLOROPROPENE
*EFsBROMOCHLOROMETHAHE
)REA 
/A*
///
/ '
t
/ / /
• > *
y'
>/
, s ฆ
/ * /
> f
/
<ฆ/
DRIFT=
3582.536
SCATTER=
10376.800
?. SCATTERS
8.553
CORR.COEF.
0.997
SDH =1.0
	1
200.000

-------
RESPONSE LIB:AT,24; MASS: 164 
-------
RESPONSE LIB:AT/25; MASS: 123 (REF.COMP:AT.l; MASS: 130)
DMP:DIBROMOCHLOROMETHANE
REF:BROMOCHLOROMETHAHE
AREA (AU:
1933990.
491893.)
Z 1000000.
&
//
sS
/>'

//
DRIFT=
12733.200
SCATTER=
18851.700
Z SCATTER=
3.832
CORR.COEF.
0.999
SDM =1.0
/ฆ
SS

J~S

ฆJ?
0.
ฃ
AMOUNT
0.000
	1	
100.000
	1
200.000

-------
RESPONSE LIB:AT>26; MASS: 112 (REF.COUP:rT.1; MASS: 130)
CMP:CHL0R0BEN2ENE
REF: BROHOCHLOROMETHAHE
AREA -

r
AMOUNT
0.000
	1	
100.000
DRIFT=
11202.700
SCATTER=
16879.900
7. SCATTER2
4.105
CORR.COEF.
0.999
SDN =1.0
I
200.000

-------
RESPONSE LIB:AT,27; MASS:
CMP:ETHYL BENZENE
REF:BROMOCHLOROMETHAHE
91 < REF.C OMR:ATฆ1; MASS: 130>
AREA  I,
ฆv
0.
AMOUNT
M
/
0.000
I
100.000
DRIFT=
1689.620
SCATTER=
7019.330
?. SCATTER'
12.765
CORR.COEF.
8.994
SDH =1.0
200.000

-------
RESF0NSE^lenLIB:AT,28; MASS: SI 
-------

-------
RESPONSE LIB:AT,305 MASS: 173 
-------
RESPONSE L1B:AT,315 (IhSS: 83 (REF.COHP:hT, 1; MASS: 130)
CMP:1,1,2,2-TETRACHL0R0ETHANE
REF:BROMOCHLOROMETHAHE
AREA (AU:
1999990.
483035.)
f 1000000.
A)
0.
AHOUHT
//V
. / "v
s r / ฆ'N-
0.000
y&'"
. z'

	1	
100.000
DRIFT=
13543.400
SCATTER=
43623.600
7. SCATTER=
9.032
CORR.COEF.
0.996
SDM = 1.0
I
200.000

-------
RESPONSE LIB:AT,325 MASS: 146 (REF.COMPihT.1; MASS: 130)
CMP:M-DICHLOROBENZENE
REF:BROMOCHLOROMETHAHE
AREA (AU: 444804.)
1999999.
™ 1000000.
U)
U)
0.
AMOUHT

'V '
/V
s s
* r
?- S'
>'j ''
V '
a-
'V vi
-• j s
/s /


0.000
	1	
100.000
DRIFT=
12242.200
SCATTER^
3305G.900
?. SCATTER=
•? 407
CORRXOEF.
0.997
SDM =1.0
2Q0.OC10

-------
RESPONSE LIB:AT,33;
CMP:P-DICHLOROBENZENE
REF: BROHOCHLOROHETHANE
MASS: 146 (REF.COMP:AT.1; MASS: 130)
AREA 
-------
RESPONSE LIB:AT^34; MASS: 146 (REF.COMP:AT.1; MASS: 130^
CMP:O-DICHLOROBENZENE
REF:BROMOCHLOROMETHAHE
AREA (AU: 465883.)
1999990.
CO
I
CO
1600600.
0.
AMOUNT
-4<.
,s /
y
' /
s / ฆ
. /
/' / s
y /
/ /'
.. j
/ / /

/ y
. r
/A
ฆ-// ~
JX/'
* A
' / S
y
/ / v
/ y
0. 000
	1	
100.000
DRIFT=
13415.30O
SCATTER=
51485.300
?. SCATTER1
11.051
CORR.COEF.
0.994
SDH =1.0
	1
200.000

-------
C|f!IroRoCHLOROMETHANE
RESPONSE
sr""
AREA • / "
/ \
/	t
V '
/ /
/
4	/
/ /
/ ,
> <
> /
f

/ A
' /X''
/ t
/ / i
/ >'
//}
/ / / X
/ ''
... <
'/V *
AMOUNT
0.000
	1	
100.000
DRIFT=
8184.980
SCATTER=
53338.200
Z SCATTER2
20.863
CORR.COEF.
0.983
SDM =1.0
	1
200.000

-------
RESPONSE LIB:AT,36; MASS: 96 
CMP: BROMOMETHANE
REF: BR0I10CHL0R0HETHAHE
AREA 
X X-


s
y
DRIFT=
- 3679.7 20
SCATTER=
10300.000
?. SCATIER=
5.879
CORR.COEF.
0.996
SDt1 = 1.0
co 200000.
I
u>

s
s y -ฆ
/ ^
X S
/ ^
^ r
>


100000.

' X ,
s //
x'"

AMOUNT
v

—I	
10.000
	1	
20.00O
—I	1	1
50.000	70.000
	1	
90.000
110.0*0

-------
RESPONSE L1B:AT,37; MASS: 217 '\

Xl


X
T"
0.000
I
100.000



DRIFT=
x 10071.500
SCATTER=
749.471
/	7. SCATTER=
0.185
CORR.COEF.
1.000
SDH =1.0
	1
200.000

-------
^?^2-TRIฎa.rS: 9? 
-------
RESPONSE LIB:AT,39; MASS: 41 (REF.COMP:AT,1; MASS
CMP:PROPYLENE
REF: BR0I10CHL0R0METHAHE
AREA (AU: 48886.)
90000.
80000•
co
o
70000.
60000.
50000.
46000.
30000.
20000.
AMOUNT
J?
w
if

s

,r

rP
—i	: r
30.000
—i	r
50.000
DRIFT=
814.191
SCATTER=
416.458
7. SCATTER=
0.852
CORR.COEF.
1.000
SDN = 1.0
0.000
	1	
30.000
	1
110.000

-------