USER'S MANUAL:
HYDROTHERMAL AND WATER QUALITY
MODELS FOR LAKES AND RESERVOIRS
August 1974
OBaltelie
Pacific Northwest Laboratories
Richland, Washington 99352

-------
USER'S MANUAL:
HYDROTHERMAL AND WATER QUALITY
MODELS FOR LAKES AND RESERVOIRS
By
R. G. Baca
M. W. Lorenzen
R. D. Mudd
L. V. Kimmel
PACIFIC NORTHWEST LABORATORIES
a Division of
BATTELLE MEMORIAL INSTITUTE
P. 0. Box 999
Richland, Washington 99352
August 1974
Prepared for
OFFICE OF RESEARCH AND MONITORING
.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 204 60

-------
SUMMARY
In a project recently completed for the Environmental
Protection Agency, Battelle-Northwest developed a generalized
water quality model1 for lakes and reservoirs. The simulation
models are designed to provide a complete portrayal of the
dynamic processes which determine the eutrophic states in lakes
and reservoirs. The models are formulated in terms of several
key environmental variables: dissolved oxygen, biochemical oxygen
demand, coliform bacteria, toxic material, algal populations
and nutrient materials, and the major controlling factors:
light, temperature, stream flows, and loading rates. The
final simulation models were applied to American Falls Reservoir
in Idaho with excellent results. The computer models consist
of three programs: CLIMA, TERMA and AQUA-II. This document is
provided to guide the general user in setting up and applying
the models.
'Baca, R. G., M. W. Lorenzen, R. D. Mudd, and L. V. Kimmel.
"A Generalized Water Quality Model for Eutrohpic Lakes and
Reservoirs." Battelle, Pacific Northwest Laboratories,
Richland, Washington, prepared for Office of Research and
Monitoring, U.S. Environmental Protection Agency, August 1974.

-------
TABLE OF CONTENTS
Page
SUMMARY		iii
TABLES		V
INTRODUCTION		1
MODEL DESCRIPTION 		1
Program Operational Sequence 		1
Program Descriptions 		2
DATA SOURCES		16
PREPARATION OF INPUT DATA		16
FINAL REMARKS		42
TABLES
No.	Page
1	Variables Used in CLIMA		4
2	Variables Used in TERMA		9
3	Variables Used in AQUA-II	13
4	Card Input for CLIMA	28
5	Input Data - CLIMA	22
6	Card Input for TERMA		25
7	Sample Input Data Listing - TERMA	27
8	Card Input for AQUA-II	28
9	Sample Input Listing - AQUA-II 		33
10	Sample Output - TERMA	35
11	Sample Output - AQUA-II	38
v

-------
HYDROTHERMAL AND WATER QUALITY
MODELS FOR LAKES AND RESERVOIRS
USER'S MANUAL
INTRODUCTION
This manual is a guide to the use of the Deep Reservoir
Hydrothermal and Water Quality Models. The examples and
illustrative data are given for American Falls Reservoir in
Idaho. By following the instructions in this manual, the
user should be able to set up and run water quality simula-
tions for situations where sufficient data are available.
Theoretical considerations that are important in model
development are discussed in the Documentation Report.1
MODEL DESCRIPTION
Program Operational Sequence
The overall numerical model for reservoirs and thermal
impoundments consists of three component computer programs:
•	a generalized input program, CLIMA
o a thermal-hydraulic simulation program, TERMA
•	a water quality simulation program, AQUA-II
The separation of the overall numerical model into modular
programs has an important advantage in that it allows calibration
of individual models. In general application, the programs are
used in sequence so that the determinations of one become input
for the next.
The input program CLIMA reads a standard set cf meteorologic,
hydraulic, and hydrologic data for a particular simulation period
and prepares a magnetic tape data file which may be used repeatedly
as input to the thermal simulation program.
The thermal simulation program, TERMA, determines the verti-
cal temperature profiles and interflow distributions for the
entire simulation period. These predictions are required input
data for the water quality program.

-------
Reservoir water quality is modeled with the AQUA-II program
which simulates advective-diffusive transport as well as chemical
and biological reactions of the parameters being modeled. Figure 1
is a diagram of the basic information flow between the three prog-
grams .
Program Descriptions
CLIMA. Various kinds of input data must be prepared for
modeling specific reservoir sites and their environments. CLIMA,
the generalized input program, performs the important function
of ordering, organizing, checking and outputting the standard
set of data necessary to initiate a thermal-hydraulic or quality
simulation.
In addition to the basic data preparation, this program
estimates the net energy flux passing the air-water interface
and the equilibrium water surface temperature. These quantities
establish boundary conditions for the thermal simulation program.
The CLIMA program consists of five computational subroutines.
Input data requirements are listed below.
Group I
Simulation specification and site characterization
1)	Period of simulation, days
2)	Latitude
3)	Longitude
4)	Average water surface elevation
Meteorologic-climatic data
1)	Number of observations per day
2)	Atmospheric pressure
3)	Sky cover
4)	Wind speed
5)	Dry bulb temperature
6)	Wet bulb temperature
7)	Dew point temperature
2

-------
START
CARD INPUT
1.	SITE CHARACTERIZATION
2.	HYDROLOGIC-METEOROLOGIC DATA
3.	CLIMATIC DATA
4.	HYDROMECHANICAL DATA
5.	WATER TEMPERATURE DATA
END
1.	PROBLEM SPECIFICATION
2.	SYSTEM DISCRETIZATION
3.	GEOMETRIC DATA
4.	INITIAL CONDITIONS
5.	OUTPUT MODES
CARD INPUT
PROBLEM SPECIFICATIONS
I/O MODES
QUALITY MODEL SELECTION-
DEFINITION
INITIAL AND BOUNDARY
CONDITIONS
OUTPUT MODES
CARD INPUT
CLIMA
FUNCTION:
CREATE DATA FILES
FOR TERMA OUTPUTS
(TO MAGNETIC TAPE)
1.	METEOROLOGIC FILE
2.	UPSTREAM INFLOW FILE
3.	OUTFLOW FILE
4.	TRIBUTARY INFLOW FILE
INPUT PROGRAM
FUNCTION:
PREDICT THERMAL STRUCTURE,
STRATIFIED FLOW AND CREATE
A DATA FILE FOR AQUA
OUTPUT: (MAGNETIC TAPE)
1.	TEMPERATURE
2.	INTERFLOW DISTRIBUTIONS
3.	GEOMETRY DATA
4.	SYSTEM DISCRETIZATION
TERMA
THERMAL SIMULATION
PROGRAM
AQUA-II - WATER QUALITY
FUNCTION:
PREDICT SPATIAL AND TEMPORAL
WATER
QUALITY STATE, CHANGES
OUTPUT:
1.	PROBLEM SPECIFICATION,
QUALITY
2.	MODEL SELECTION, INPUT
DATA
3.	PREDICTED CONCENTRATION-
PROFILES
SIMULATION PROGRAM
FIGURE 1. Information Flow Diagram
3

-------
8)	Short wave radiation
9)	Relative humidity
Group II
Hydrologic data
1)	Water surface elevations
. 2)	Upstream inflow rates and temperatures
3)	Outflow rates from reservoir
4)	Tributary inflow rates and temperatures
General card input is structured to accommodate any units;
conversion factors may be input by the user. A complete data
echo initializes all printer output, listing all card images
(numbered according to group) loaded for program execution.
These listings aid in detecting random errors (such as keypunch
errors or systematic inconsistencies in the original data). The
CLIMA program organization is shown in Figure 2. Variables used
are listed in Table 1.
TABLE 1. Variables Used in CLIMA
IYR
1DAY
LDAY
NOBS
ITAPE
A
B
LAT
LONG
RESEL
DATA (J,l)
DATA (J,2)
DATA (J,3)
DATA (J,4)
-	Year of meteorological observations
-	First Julian day for the observations
-	Final Julian day for the observations
-	Number of meteorological observations per day
-	Output tape number
-	Evaporation coefficient 1
-	Evaporation coefficient 2
-	Latitude of site
-	Longitude of site
-	Average water surface elevation
-	Atmospheric pressure (mb)
-	Sky cover (decimal fraction)
-	Wind speed (m/sec)
-	Dry bulb air temperature (°C)
4

-------
DATA (J,5)
- Wet bulb air temperature (°C)
DATA (J,6)
- Dew point temperature (°C)
DATA (J,7)
- Short wave solar radiation (KCaL/m**2-sec)
DATA (J,8)
- Relative humidity (decimal fraction)
VPS(x)
- Vapor pressure (mb)
QNS(J)
- Net short wave radiation (KcaL/m**2-sec)
QAT (J)
- Long wave atmospheric radiation (KcaL/m**2-sec)
AP(J)
- Atmospheric pressure (mb)
DBT(J)
- Dry bulb temperature (°C)
EA (J)
- Atmospheric vapor pressure (mb)
WS (J)
- Wind speed (m/sec)
ET (J)
- Equilibrium temperature (°C)
CLD (J)
- Cloudiness
DPT(J)
- Dew point temperature
QS (J)
- Gross shortwave solar radiation (KcaL/m**2-sec)
WBT(J)
- Wet blub temperature (°C)
WC (J)
- Water content of atmosphere
TA (J)
- Average daily water surface elevation (m)
TB (J)
- Average daily upstream inflow (m**3/sec)
TC (J)
- Average daily upstream inflow temperature (°C)
NOUTS
- Number of discrete withdrawals
ELOUT
- Elevation of outlet•
WOT
- Width of dam at outlet
QOUT (J)
- Average daily outflow (m**3/sec)
QIN(J)
- Average daily tributary inflow (m**3/sec)
TIN(J)
- Average daily tributary inflow temperature CO
TERMA. The TERMA program performs the component function
of simulating the thermal-hydraulic behavior of a thermally
stratified reservoir. Vertical temperature profiles and inter-
flow distributions are computed for the specified simulation
period in days. The thermal simulation program operates on a
simple segment-element discretization. A complete reservoir
system is represented by N segments, each composed of M horizontal
elements (layers). The entire system is simulated segment by
segment, working downstream. This successive simulation procedure
5

-------
EQUI
Calculate equilibrium
temperature s
Return
SMOOTH
Smooths meteorological
data with moving average
Return
SORT
Prepares data to be plotted
by PICTURE
Return
SURA
Read data from disk
Make unit conversions
Call SMOOTH
Return
CLIMA
Reads card images
on to dis\
Call SUBA
Call SUBB
Call SUDC
PICTURE
Call SORT
Plots data on line printer
Return
SUBC
Read and handle hydraulic data
Call PICTURE for each trib-
utary, inflow and outflow
Return
SUBB
Handle and out*.>ut meteoro-
logical data to the output
file for the IPMA input
Call EQUI
Return
fthttpf: ?
tt.tma .
Prnnram Orcranization

-------
yields a quasi-two-dimensional representation of the reservoir
in the form of a series of one-dimensional vertical profiles.
Time step selection for all simulations is a critical
factor in program functionality and must be consistent with the
input data timd base (e.g., data - hourly -> simulation step -
hourly, data - daily average- simulation step - 1 day, etc.) .
Basic card input to the thermal simulation program consists
of two main groups and includes:
Group I
Simulation Specifications
1)	Period of simulation, days
2)	Initial and daily water surface elevations
3)	Heat transfer coefficients
4)	Thermal gradient range
5)	System discretization
6)	Location of tributary inflows
Group II
Segment parameters
1)	Elevation - area profile
2)	Segment lengths
3)	Initial temperature profile
4)	Element thickness
5)	Diffusion coefficients
6)	Output modes
All printer output is preceded oy a complete listing of
input card images and is numbered according to group. The TERMA
program organization is shown in Figure 3. Table 2 lists the
variables used.
7

-------

SUBB
1.
Read initial system data
2.
Read meteorological input

file (from CLIMA)
3.
Read hydrological input

files (from CLIMA)
4.
Return
5.
Read specific lake

segment physical data
6.
Call SUBG
7.
Write segment output
8.
Return
7
8
9
10
11
12
13
SUBG
1.	Approximates point data
into a continuous linear function
2.	Return
FIGURE 3.

TERMA
1.
Read da':a cards.

write \o disk
2.
Call Si; iB (1)
3.
Call Si;, IB (2)
4.
Call SL. ;C
5.
Repeat : & 4

for each segment
SUBC
Initialize sccment volume
If tributary inflow into
segment read ihe data from
the disk
Read withdraw*Is from segment
if applicable
Enter executicn loop
Call SUBD
Calculate density profile
Locate thermocline
Calculate horizontal energy
input
Call SUBH
Call SUBE if ojtlet is
in segment
Calculate energy inputs
Write results
Return
SUBD
1.	Read weather record
2.	Calculate air-water
heat transfers
3.	Return
SUBH
1.	Locate flow layers
2.	If outlet segment, return
3.	Redistribute flows
4.	Return
SUBE
1.	For outlets, calculate
flow boundaries
2.	Distribute outflow
3.	Return
TERMA,
Program Organization

-------
wERA
United States
Environmental Protection
Agency
Region 10
1200 Sixth Avenue
Seattle WA 98101-9797 /\ .
OlW-iO Ji
Official Business ur " '
Penalty for Private Use $300
EQUAL OPPORTUNITY EMPLOYER
INTERLIBRARY LOANS
U.S. ENVIRONMENTAL PROTECTION AGENCY
REGION 10 LIBRARY, MB*«8 o*\P-to o
1200 6th AVENUE	7
SEATTLE, WA 98101

-------
rpn r
A r.c e. s si on r" u mb « r
- Main Ti-la
i Perscsnsi Au",hex
Publisher
Year Published
OCJjC Number
Holdings
; 6:: R o o
mcdiit iO: 2
*—t			—-
tlri •_¦ -> r •'. ' -
and
- v >"
irnCrvo:rn
?roC£C:t:cn Aaan>
><:.* ¦ ;i > i; b. Man iT-0]\i nCf,
1 974
2153 7 914
ESAR j I F.P.t 103R |
Press	r
R^cl. jcc^. %r
INTERLIBRARY loans
U.S. ENVIRONMENTAL PROTECTION AGENCY
REGION 10 LIBRARY, MD-108
1200 6th AVENUE
SEATTLE, WA 98101
Vj
6
Request no.:
Dale:
Need before:
Notes:
Call No.'
Petron Information:	Q-> 'f- ^
Booh: author; OP, S«rls^tine, vo'ume, Issue,  f J s ' t
C ^ C. r C-
^ tyxir
i
.-} - (/

~ Tnis edition only
j f, V' 's 'X-^-
REQUEST
'/Jj

ver.' S3 K:'	C>?: I":
(SEN ISSN, LCC-S' cot^s't;- ;;-;Ehlc "r
! J,0 ^
TYPE OF REQUEST:
| | loaM; Will pay fee	
| 1 PHOTOCOPY; MAX. COST t
II"
LENDING LIBRARY REPORT: Dile	, ,
OsteshlppedQZ/^/^feshlppedvIa	
Insured for %j	.Charges I 	
DUE 7 //. *)/9*C>	[ jReturnlnBur
Packing Requirements „	
RESTRICTIONS} ] Library use only
| ] Oopyinfl not permitted I ] No renewals
I I 		
NOT SENT BECAUSE:{ 1 louse [ |Lacki
[ [Notowned[ ] At bindery! ] Cost exceeds Hr
[ 1 Nop Circulating [ i No! lound »e cllsd
i ] Not on She'1 | ) Poor Condition [ ) L-it
[ ) Ld:K& eop.-i^hi coT'pllnce [ 1 On orcii
[ i ViM/'ssue p3' >ei fi-,s!l6sli' ( ) Cn rese'-s
• 5 In p:j»;es3 ) Rs's^uss: on
( ] Hold l)!»(!ftd
( 1 EellrneltaiJ Ccs' or. Loan J		
PnotocKi	H.oroI'i'Al'f.na 5 .	
[ ] Fr^f)^ 1?r-!
BORROWING USRASY (SECOND
.^eNjr-ipo ^10 „ _ „ . tr-su'ed (or S .
foment pro-no's $
c^-~~!p"=j= f^Un
!	i2, G-. SiHrio?
I CJ-t''.m	of f-Oiy/ifN !3a
, ,, ,, / f "! - . , / / j-fj £ i-
-1.*> i nMon	-'si f-i. - ~^j
Ti ip-—\2
WCNWAV.fi:
u1"!© roQ jc5?rJ				
hhw Ovrtditft 		
Ncrjovt/g.!					
'NTiRLiSru^V [^0AN ^"C -

-------
TABLE 2. Variables Used in TERMA
IDAY	- Initial day of simulation period
LDAY	- Last day of simulation period
UDZ	- Segment element thickness (m)
ELRES	- Initial system water surface elevation (m)
ELMAX	- Ilaximum system water surface elevation (m)
EDMAX	- Depth of short wave extinction (m)
A	- Evaporation rate coefficient 1 (m/sec-mb)
BB	- Evaporation rate coefficient 2 (mb)
NTRIBS	- Total number of tributary inflows
ITRIB	- Numbers of segments with tributary inflows
NLETS	- Number of the segment with outflows
NOUTS	- Number of reservoir system outlets
NOBS	- Number of meteorological observations per simulation day
POOL (J)	- Average daily surface elevation (m)
3
QUP(J)	- Average daily upstream inflow (m /sec)
TUP (J)	- Average daily inflow temperature (CC)
ELOUT(I)	- Elevation of Ith outflow (m)
WOT(I)	- Width of Ith outflow (m)
3
QOT(I)	- Daily value of withdrawal of Ith outflow (m /sec)
IAT	- First day of tributary data from CLIMA
IBT	- Last day of tributary data from CLIMA
NSEG	- Segment number
NAP	- Number of points in segment area profile
NTP	- Number of points in segment temperature profile
NSD	- Number of days for which output is specifically
requested
IPRT	- Printing Interval (days)
INTP	- Printing interval for vertical elements
(every INTPth element)
NXEQ	- Number of executions per simulation day
IVAL	- Simulation interval in a day with output
GSWH	- Critical stability parameter
A1	- Diffusion Coefficient 1
A2	- Diffusion Coefficient 2
9

-------
A3	- Epilimnion diffusion coefficient (not used)
SDZ	- Vertical thickness of standard element (m)
RLEN	- Horizontal segment length (m)
Z(I)	- Elevation of Ith element (m)
AREA(I)	- Area of Ith element (m)
DZ(I)	- Thickness of Ith element (m)
i
MAXP	- Maximum possible number of elements
MAXE	- MAXP-1
T(K)	- Initial temperature (°C) at Kth element
TDOT(K)	- Initial rate of temperature change (C°/sec)
IDOUT	- Julian day number for specific printed output
NOU(J)	- Element number of outfall I!J" location
VOL(J)	- Volume of Jth element
DVOL(J)	- Difference in volume between Jth and (J+l) the element
RESEL	- Reservoir elevation (m)
AT	- Air Temperature
DZT	- Vertical thickness of uppermost element (NUME)
ABAR(J)	- Average of J & J+l element areas
DRLT	- Number of seconds in each execution per simulation day
DTBY2	- DELT/2
NHOB	- Number of hours between meteorological observations
NHXQ	- Number of hours in each execution per simulation day
3
QIN(K)	- Daily tributary inflow rate (m /sec)
TIN (K)	- Temperature of tributary inflow (°C)
NUMP	- Total number of element faces
NUME	- Total number of element (NUMP-1)
NUM	- NUME-1
NULL	- NUM-1
DZTOP	- Thickness of surface element
EXCO	- Extinction coefficient
TFX(J)	- Temperature of Jth element
DRNS(J)	- Density of Jth element
ELTC	- Elevation of thermocline
TOUT(J)	- Temperature of outflow at outfall J
QOUT	- Total outflow
QI	- Total inflow to segment
10

-------
NUSI	- Number of upstream inflows
IMIX	- Layer above which reservoir is mixed
DC(J)	- Diffusion coefficient for Jth element
QN	- Net radiation heat transfer (KcaL/(m**2)-sec)
QNS	- Net shortwave solar radiation (KcaL/m**2)-sec)
QNA	- Atmospheric longwave radiation (KcaL/m**2)-sec)
QW	- Longwave back radiation (KcaL/m**2)-sec)
QE	- Evaporative heat (KcaL/m**2)-sec)
QC	- Sensible heat
RESTM(I)	- Residence time for Ith day
WS	- Wind speed (m/sec)
DST(I)	- Downstream temperature on ith day
SHEAT	- Net rate of surface heating
EVA	- Rate of evaporation
EVAP	- Cumulative evaporation
EA	- Atmospheric vapor pressure
EV	- Evaporation rate per unit area
VSUM	- Total volume of segment
ATWO	- Surface area of layer
VTOP	- Volume of surface element
ATOP	- Average surface area of top element
DZI(I)	- 1/standard element thickness
NTC	- Element in which thermocline is located
AV (J)	- Vertical energy input to Jth element
QHI(I)	- Inflow to element I
QHO(I)	- Outflow from element I
AQUA-II. The AQUA-II program solves the water quality
reaction and mass transport equations for concentrations of
each parameter at the end of each time step.
Card input to the AQUA-II program is necessarily complex
due to the variety of input modes (e.g., constant, variable,
uniform, etc.). One standard data group is required for each
simulation consisting of:
11

-------
Group I
Site Characterization - specifications
1)	Simulation period
2)	Reservoir discretization
3)	Simulation mode (i.e., with or without water quality
reactions)
4)	Quality model selection
5)	Rate constants
6)	Initial and boundary conditions
7)	Output modes
The AQUA-II program organization is shown in Figure 4 and
variables used are listed in Table 3. A detailed description
of card input structure for each program is presented in the
following sections.
TABLE 3. Variables Used in AQUA-II
RLC
BODCAL(1)
REACAL(1)
DOXCAL (1)
RLD
TININ (1)
TININ (2)
TININ(3)
CI
C2
C3
C4
PHO (1)
PHOIN (2)
PHOIN (3)
Variable
Carbonaceous BOD
Decay rate constant
Reaeration coefficient
Saturation oxygen concentration
Benthic BOD
Rate constant NH,
NO,
4 2
>2 N°3
Rate constant organic - N->-NH,
Rate constant N0£ -*¦ NO^
NH. concentration
4
NO^ concentration
NO^ concentration
Organic N concentration
Rate constant, dissolved P -+¦ Sed. P
Rate constant, SedP-*HPO^
Rate constant, 0rg.P-»HP04
Units
mg/1
day ^
g/m /day
-1
day
day
-1
-1
day
mg/1
mg/1
mg/1
mg/1
-1
day
day
day
-1
-1
12

-------
D1
D2
D3
COLI
COLCAL (1)
TC
TOXCAL(1)
TOXIN (2)
ALGIN (1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
ALGCAL
(1)
(2)
(3)
(4)
(5)
(6)
HPO. concentration
4
Sediment-P concentration
Organic-P concentration
Coliform concentration
Rate constant, decay
Toxic compound concentration
Rate constant, decay
Algal toxicity constant
Zooplankton concentration
Phytoplankton concentration
Maximum specific growth rate
Adaption to light
Extinction coefficient
Self shading factor
Detrital settling velocity
Michaelis constant for nitrogen
Michaelis constant for phosphoros
Algal repiration rate
Zooplankton grazing rate
Phyto/Zoo conversion efficiency
Michaelis constant for Zoo or phyto
N/carbon ratio, phytoplankton
P/carbon ratio, phytoplankton
N/carbon ratio, zooplankton
P/carbon ratio, zooplankton
Zooplankton respiration rate
Zooplankton decay rate
Algal setting velocity
Gross phytoplankton growth rate
Phytoplankton decay rate
Zooplankton growth rate
Zooplankton death rate
Effective nitrogen concentration
Effective phosphorus concentration
mg/1
mg/1
mg/1
NO/100ml
day
mg/1
day
mg/1
mg-C/1
mg-C/1
day_1/°C
lux-1
-1
m
m /mg/1
m/day
mg/1
mg/1
day V°C
mg/1
day_1/°C
day 1
m/day
-1
day
day
day
-1
-1
day
mg/1
mg/1
-1
13

-------
AVbhAGK
1.	Average inflows into
segment
2.	Return
1.	CalcuLate reaeration
2.	Return


IJJI'UT
1.	Read model control cards
2.	Call LOAD
3.	Read initial conditions
4.	Call ZERO
rj. Return


LOAD
1.	Loads model coefficients
2.	Return

Zi RO

1 .
Initializes data array

2.
Return

FIGURE 4
AQUA
1.	Read input rom TERMA
2.	C.j]1 INPUT 1)
3.	Read thcrma hydraulic
data from TJ RMA
4.	Enter segmci L loop
5.	Call INPUT .')
6.	Enter daily execution loop
7.	Enter "hour'/" execution
loop
8.	Read conceni.rations from
tape
9.	Call AVERAGI
10.	Calculate equilibrium values
for each element
11.	Call REARTH
12.	Call TEMPER
13.	Call SETCY il)
14.	Call DIFEQ
3 5. Call SETCY i2)
16.	Call TrtANSP
17.	Output resuli.s
18.	Continue
1.
2.
3.
D1FFLQ
4th Order Runge-Kutta
solution
Call DE (I times)
Return
1.
Solution
2.
Call
to:
3.
Call
alc
4.
Call
PK< •
5.
Call
Til
6.
Call
SPI
7.
Call
Dor
8.
Call
DO}
9.
Call
COI
10.
Return
TEMPER
1.
Calculate temperature
corrections for rate
constants
2. Return
SETCY
1.	Transfers initial concen-
trations to the Y-array
2.	Return
3.	Transfers new y-array values
to concentration matrix
4.	Return
TRANSP
1.	Mass transport calculation
2.	Call BNDRYS
3.	Call TRIDAG
Reset concentrations
5. Return
ENDRYS
1.	Estimate boundary conditions
2.	Return
2.
TRIDAG
Solves system of linear
simultaneous equations
by Tri-diagonal method
Return
AQUA—II Program Organization

-------
TIN
Calculates rate of change
SPR
Calculates D-0 production
by photosynthesis
DOX
Calculate D-o rate change
Return
COL
Calculate coliform rate
of change
Pc-turn	
o\5x"
Calculate degradation
Of BOO
keturn
PHO
Calculate rate of phosphoros
change
Re- tu rn
C.ill SPECK
Calculate rate of Zoo-Phyto-plankton
population ciiar.'jes
Return
FIGURE 4« {"'ontinued)
SPECK
1.	Calculate specific algal
growth rate as a function
of light, depth & algal
concentration
2.	Return		 	

-------
DATA SOURCES
Input data for the three component programs are available
from a variety of sources according to the data category (mete-
orology, hydraulics, hydrology or quality).
Some reservoirs routinely collect onsite daily meteorologic
data such as air temperature, water surface temperature, evapora-
tion, wind speed, and relative humidity; however, in most cases,
meteorologic data recorded at the nearest weather station must
be used. Most of the meteorologic data can be ©btained from the
National Weather Records Center, Ashville, North Carolina, in
either tabular or punched card form.
The required hydraulic data consist of the reservoir outflow
regulation policy tributary flows and the observed pool elevations.
These data are routinely collected and recorded by the Corps of
Engineers for Corps dams and are usually summarized by the U.S.
Geological Survey.
PREPARATION OF INPUT DATA
Card input modes for CLIMA, TERMA, and AQUA have been
designed for ease of use. All program listings identify and
define the necessary card input and include descriptions of
the variables, appropriate units, and suggested and/or default
coefficient values.
Inherent in the overall reservoir model is the use of
certain empirical coefficients which attempt to lump complex
phenomena into simple mathematical characterizations. The
specific values assigned to these coefficients are very im-
portant to the correct operation and accuracy of the model
components. The computer programs are presently designed to
default to a "workable set" of coefficients. However, calibra-
tion of the model to specific reservoir sites requires "work-
able ranges" for these coefficients in order to obtain good
spatial and temporal correlation between predicted and observed
data.
16

-------
The formal card input structures for the component programs
of the reservoir model are presented in Tables 4, 6 and 8.
CLIMA. Card input requirements for the program CLIMA are
described in Table 4. Table 5 is a sample listing of input data
used at American Falls Reservoir for the period April through
December, 1968.
TERMA. Card input requirements for the program TERMA are
described in Table 6. Table 7 is a listing of input data cards
used at American Falls Reservoir.
AQUA-II. Card input requirements for the program AQUA-II
are listed in Table 8. Table 9 is a listing of input data cards
used at American Falls.
Sample listings of output from TERMA and AQUA-II are shown
in Tables 10 and 11 respectively.
Table 12 is a complete listing of all three programs.
17

-------
TABLE 4. Card Input for CLIMA
Card

Card


Variable
Default
No.
Format
Columns
Description

Name
Value
GROUP
I - SITE
CHARACTERIZATION AND METEOROLOGY



1
16A5
1-80
Title

TITLE
NONE
2
5110
1-10
Year of the meteorologic observations

IYR
NONE


11-20
First Julian day for simulation

I DAY
NONE


21-30
Final Julian day for simulation

LDAY
NONE


31-40
Number of meteorologic observations per
day
NOBS
NONE


41-50
Tape No. for data file output

I TAPE
0
3
5E10.0
1-10
Evaporation coefficient No. 1

A
0.0


11-20
Evaporation coefficient No. 2

B
1 .E-10


21-30
Latitude of reservoir site

LAT
NONE


31-40
Longitude of reservoir site

LONG
NONE


41-50
Average water surface elevation (m)

RESEL
NONE
4
110
1-10
Code identifying meteorologic parameter
to be
ID
NONE
(Optional]
(Optional)
(Optional)
ID Code
1
2
3
4
5
6
7
Parameter
Units
3E10.0
15
11-20
21-30
31-40
41-45
Atmospheric pressure
Sky cover
Wind speed
Dry bulb air temperature
Wet bulb air temperature
Dew point temperature
Short wave solar rad.
Relative humidity
Conversion factor 1
Conversion factor 2
Conversion factor 3
Millibars
Decimal fraction
Meters/sec
Centigrade
Centigrade
Centigrade
Kcal/M**2*sec
Decimal fraction
XID=CV* (X^W + CVA) +CVB
XID~meteorologic parameter
Switch for inputting constant or variable raete-
orologic data values (positive Inconstant,
0^-variable)
CV
CVA
CVB
LOGIC
1.0
0 . 0
0 . 0
0

-------
TABLE 4 (continued)
Card Card	Variable	Default
No. Format Columns 	Description		Name	Value
5 8E10.0 1-80 Data set for the meteorologic parameter desig-	DATA	NONE
nated in ID code in card 4:
Note: A. ID 2, 3, 4, and 5 or 6 are necessary
to run. If data for ID 5 are not
available, it is recommended that
data for ID 8 be included in addition
to data for ID 6 if at all possible.
B. There should be as many card group
4	and 5 sets as the number of ID
parameters used (with a minimum of 4
sets). An equal number of card group
5	cards will also be needed to
provide input data for the simu-
lation period if variable input is
used. If constant input is used,
each card group 4 will be followed
by one card group 5 with the con-
stant value to be used for that
parameter.
110
A5
10
1-5
Insert a 0 (zero) in column 10 to terminate
Group I input data
The Sentry designating end of Group I card
input is END (right justified)
END
NONE

-------
TABLE 4 (continued)
Card
No.
Format
Card
Columns
Description
GROUP II - HYDRAULIC AND HYDROLOGIC INPUT
315
4E10.0
K)
o
3E10.0
I-5
6-10
II-15
16-25
26-35
36-45
46-55
I-10
II-20
21-30
First Julian day with hydraulic and hydrologic
data
Last Julian day with hydraulic and hydorlogic
data
Blank
Units conversion	factor	1
Units conversion	factor	2
Units conversion	factor	3
Units conversion	factor	4
units	m
units -*	cms
units -*	°C
units ->	°C
Conversion factors transform raw data to
metric units indicated
Average daily water surface elevations
Average daily upstream inflow rates
Average daily upstream inflow temperatures
Repeat card group 2 for each day in simulation
period
Variable
Name
I DAY
LDAY
A1
B1
CI
C2
TA
TB
TC
Default
Value
NONE
NONE
NONE
1.0
1.0
1.0
0.0
NONE
NONE
NONE
3
315
1-5
First Julian day with outflow (discrete
I DAY
NONE



withdrawals)





6-10
Last Julian day with outflow (discrete
LDAY
NONE



withdrawals)





11-15
Number of outlets with withdrawals
NOUTS
NONE

3E10.0
16-25
Units conversion factor 1
1 units m
A1
1.0


26-35
Units conversion factor 2
? units m
Bl
1.0


36-45
Units conversion factor 3
J units -*¦ cms
CI
1.0
4
2E10.0
1-10
Elevation of the outflow

ELOUT
NONE


11-20
Width of dam at elevation
of outlet
WOT
NONE
Repeat card group 4 for each outlet in system

-------
TABLE 4 (continued)
Card
No.
Format
8E10.0
Card
Columns
1-80
Description
Average daily outflow rates
Variable
Bane
QOT
Default
Value
NONE
1-80
NJ
315
3E10.0
2E10.0
A5
I-5
6-10
II-15
16-25
26-35
36-45
I-10
II-20
1-5
Repeat card group 5 for each outlet, maintain-
ing the same outlet order established in
card group 4
First Julian day of tributary inflow
Last Julian day of tributary inflow
Number of tributaries with significant inflows
Conversion factor 1
Conversion factor 2
Conversion factor 3
units -* cms
units -»¦ °C
units -* °C
Average daily tributary inflow rate
Average daily tributary inflow temperature
List all data for first tributary, then
proceed to other tributaries in succession
The Sentry designating the end of Group II
card input is END (right justified)
I DAY
LDAY
NTRIB
A1
B1
B2
QIN
TIN
END
NONE
NONE
NONE
1.0
1.0
010
NONE
NONE
NONE

-------
TABLE 5. Input Data - CLIMA
AMERIC&N FALLS RESERVOIR CALIBRATION 1968 DATA
68	1	365	1	1
0.0E0 1.0E-10	A3.	113, 1320.0
1	3.39F1	0.0	0.0 0
2.5 26 rO1 2.5A4F01 2.565F01 2.572F01 2.549F01 2.581F01 2.563F01 2.546F01
2.540F01 2 . 519 FO 1 2.573F0] 2.596E01 2.586E01 2.570F01 2.545E01 2.540E01
Continue atmospheric pressure data cards
NJ
fo
2.503F01
2
1 .OF01
1.0 F01
2.527F01
1.OF—1
1.0*01
1.0r01
2.519E01
n. o
0 • 6 F n 1
O.^FOl
2.53^E01
n . o
0 . A F P 1
O.2Fr»l
2. ^ 5 5 F 0 1
n
0. 9E01
0.6F01
2.q74E01
O.2E01
0.8F01
0.6E01
0.8E01
1.0E01
0.8E01
Continue sky cover data cards
0.QF01 1.0E01
3 4.47E-1
1•5 7 FO 1
1 .60^01
0.50E01
2.67F01
0.9E01
0.0
1 .A4E01
0.71F01
0.2E01
0.0 0
1.14F01
0.53F01
0.4E01
1 .88Fol
0 • 5 2 F 0 1
0.9E01
0.63E01
0. 60F01
O.^OEOI
0.37E01
1.71EQ1
0.99E01
Continue wind speed data cards
A 5.56FT-1 -3.2F1	0.0 0
2.7F01 1.5E01 2.1F0] 2.0F01 2.AE01 l.^FOl O.^FOl ? 4cm
3.4F01 3.1F01 1.AFP1 0.8EO1 1.2K01 Z.IE01	jl'iol

-------
TABLE 5. continued
Continue dry bulb
temperature data cards
2.4E01
5
2 . 7 1 E 0 1
2.Q5F01
2.6^01
5.56E-1
1.49FDI
2 » 98Fn1
3.0E01
-3.2F1
1 .88F01
1.50F01
1.8E01
n.o
1 . 78E01
0 o ^8 EO1
O.^Fol
0
2.3?E01
1.0AF01
0.0F01
].25F01
1.79E01
0.50F01
2.16EQ1
2.C8E01
2.56E91
Continue wet bulb temperature data cards
to
OJ
2.50F01
6
2.^01
2.1F01
2.2 8E0!
S.56E-1
1.1FO]
2.3EOT
2.66F01
-3.2E1
1 .2Ffil
1.0F01
].fcSEOl
0.0
1 .0 F° 1
o. imi
0.56F01
0
1	.6F01
0.5E01
0.0°E01
0.7EO]
1• 2 EO1
0.PEOO
1.cfoi
1.?E0 1
2.0E01
Continue dew point data cards
2•OF 0 1
7
6.71F01
3.71F01
1.7roi
1.157E-4
8.88F01
3.74F01
2.2E01
0.0
19.66E0]
20.83F01
0.9E01
0.0
16.S6F01
20.29E01
-0.2E01
0
14.36 c0 1
10.69E01
-0.7E01
20.01F01
11.67F01
1 7.Q9F0 1
12.21E01
5. 19E01
13.69E01
Continue shortwave solar radiation data cards
9 . oft Fo 1
8
7. A8F01
5.73F01
! • 5 F n i
1.OF-2
8 . 1.6 E o 1
6.55^01
12.12-01
0. 0
6.38^01
7 . 6 3 F 0 1
7.^7F0l
0.0
6.SqF01
8.	16E01
10.36E01
0
6.5 3F01
7 . 3 3 F 0 1
° . 2 3 F 0 1
7.53E01
7.10E01
7.6 A EO1
6.80E01
5 . 4 3 E 0 1
7.08E01

-------
TABLE 5. continued
Continue relative humidity data cards
7.51E01 6.93E01 7.45E01 7.09E01 6.78E01 6.61E01
EM 0 GROUP 1
1 365	. 3048 .0283?	1.0	0.0
434.15F01 352.0F<"M 0.42E01
434.17F01 342.0F01 0.42F01
Continue flow, temperature, elevation data cards
434.60F01	343.0E01 0.47F01
1 3 6 5 2	.3048 .30480 1.0
43^0.	285.
43^3.8	240.
4.2449F1	4.2023E1 10.5765E1 17.2601E1 11.8906E1 12.4254E1 11.6305F1 17.7600E1
10.82 4 8E1	18.8753F1 12.0457E1 18.2358E1 17.48 20E1 5.0000El 11.1717E1 11.3803E1
Continue outflow data cards
ne0000c0 ^,o^0°P0 ^,0OO0F0 O.OHOofO 0.0000F0 O.OOOOFO 0.0000FH
1 365 3	1.0	1.0	0.0
6.7 34F0 1 0.42E01
f.9f)"7r0] n.42F01
Continue inflow and temperature data cards
0.7 2 E 00 0.47E01
END	CLIMA rNPUT

-------
TABLE 6. Card Input for TERMA
Card	Card
No. Format Colums
Description
Variable
Name
Default
Value
GROUP I
1-2
16A5
1-80
Title or comment identifying the simulation
CMENT
NONE
3
2110
1-10
First Julian day in the simulation period
I DAY
NONE


11-20
Last Julian day in the simulation period
LDAY
NONE
4
3E10.0
1-10
Segment element thickness (m)
UDZ
NONE


11-20
Initial reservoir water surface elevation (m)
ELRES
NONE


21-30
Maximum reservoir water surface elevation (m)
ELMAX
NONE
5
5E10.0
1-10
Depth of shortwave extinction (m)
EDMAX
NONE


11-20
Evaporation rate coefficient 1
A
0.0


21-30
Evaporation rate coefficient 2
BB
1 .E-9


31-40
Maximum thermal gradient allowed (not used)
GMAX
NONE


41-50
Minimum thermal gradient allowed (not used)
GMIN
NONE
6
8110
1-10
Total number of tributary inflows
NTRIBS
NONE


11-60
Segment numbers with tributary inflows
ITRIBS
NONE


61-70
Number of the segment with outflows
NLETS
NONE


71-80
Number of reservoir system outlets
NOUTS
NONE
7
A5
1-5
The Sentry designating end of Group I card input





is END
END
NONE
GROUP
II (NOTE: This
data group is repeated for each reservoir segment)


1
8110
1-10
Segment number
NSEG
NONE


11-20
Number of points in segment area profile
NAP
NONE


21-30
Number of points in segment temperature profile
NTP
NONE


31-40
Number of days for which printed output is requested
NSD
NONE


41-50
Time interval for printing (days)
IPRT
NONE


51-60
Print interval for vertical elements
INTP
NONE



(1^-every element, 2-^every other element, etc.)




61-70
Flag for output of temperature to tape (>0)
I TAPE
NONE


71-80
Flag for output temperature and flow predictions
NTAPE
NONE



for quality program (the number assigned to





output tape)



-------
Table 6 (Continued)
Card	Card
No. Format Columns
Description
Variable
Name
Default
Value
2110
1-10
11-20
6E10.0 1-10
11-20
21-30
31-40
41-50
51-60
2E10.0 1-10
11-20
Number of executions per simulation day
Simulation interval in a day with output
Critical stability parameter
Diffusion coefficient 1
Diffusion coefficient 2
Diffusion coefficient 3
Vertical thickness of standard element (m)
Horizontal segment length (m)
Elevation at which area is specified (m)
Horizontal surface area (m2)
NXEQ
IVAL
GSWH
Al
A2
A3
SDZ
RLEN
TA
TB
1.0
1.0
1 . E-6
1 .E-3
1.0E-9
0 . 0
NONE
NONE
NONE
1-10
11-20
3E10.0 1-10
11-20
21-30
1615 1-5
6-10
Note: Start with bottom elevation
Elevation at which initial temperature is specified	TA	NONE
(m)
Initial temperature at this elevation (°C)	TB	NONE
Initial time rate of change of temperature (°C/sec)	TC	NONE
Julian day numbers with printed output (up to 50	IDOUT	NONE
days) (NSD > 0)
A5
76-80
1-5
The sentry designating end of Group II card input
is END
END
NONE

-------
TABLE 7. Sample Input Data Listing TERMA
t-'t sb.v n j, ^ r a l t ~ v a t | o i	19 8 8
f^p
l
=»,
3 . i.
- b
NJ
-J
1 ,/t
1 M 7
I .Me
1 1? 7
Hlr
1 < u 11 f
1
1
-	f">
. *>
Jhb
I ^
. (¦>
. *
. '¦?
¦-ic
e!
i
-
. V!
. 1
. ^
. l'
,l3
. <4
>x?
1
" ^
. ^
1
• *
.
.I"
! < r> / . O
1 .
f>
r i(W i
<
1 . -' L - "7
3 . -:F *
1 . -Jt
1 . £' / f
1 .
1 . ^ h
lh? 1 >
I . i'11 -
/ . rff
7. at
l. t
1, s if
ip 91
i.
1 . S-jt
1*3 1 /
1 ,!'t-
M , w f\
s." c
^ . r> F
'J . ' t
'.V.
1 . WVifc
1 . C 5> (¦
1 .*¦+
< : '
1«S^c-P
'¦«. /4t-h
- 1 . r"J K - b
in ,?/*
t , -a
'5 . h 1 t " 7
I . 
1 . *r>fc-b
I w • ^ ',i i
? L *
? I *
J
1 *5
S?
1
-I.
' 55
1 p
/i. 3
<4
»»a
. * F. - 1
£?
7
1 .4E«
r> a 7
Z'i
? f 5
S.MF.-l
<^9*1
'4
1 ,*Ra
3*}9
i2*
^^7
it's
7
^¦4 7
3 *> r>
f>4
't-1
?73
1.
3P9
328
w

3fr5
/
^ 1 ^
-
7
^ h h
3 M c> ^ /
;-Q

^ a 7 JiS^

-------
TABLE 8. Card Input for AQUA-II
Card	Card
No. Format Column
Description
Variable
Name
Default
Value
PROBLEM SPECIFICATION
1-2 16A5
1015
3a 1615
4	215
2E10. 0
5	515
1-80
1-80
1-5
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
1-80
1-5
6-10
11-20
21-30
1-5
6-10
11-15
16-20
21-25
Comment cards or label
identifying the simulation
First Julian day of simulation
Final Julian day of simulation
NOTE: Must be the
same days as run
for TERMA
Switch for selecting transport only (>0)
Time print frequency (hours)
Space print frequency (elements)
Tape No. W/ thermal and hydraulic input
Tape No. W/ upstream inflow concentrations
Tape No. for quality output
Number of reservoir segments
Number of days for which special printed output
will be requested
Julian day numbers for special printed output
Number of elements in the segment
Dummy variable (blank)
Simulation time step (hours)
Standard element thickness (m)
Algae models (2)
1	= Algae calculations performed
2	= Algae calculation not performed
BOD models (1)
1 = Only total BOD is modeled
Dissolved oxygen models (1)
1 = Calculates rate of change for D.G.
Nitrogen models (2)
1	= Algal nitrogen model
2	= Ammonia-nitrate only model
Phosphorous models (2)
1	= Algal phosphorus model
2	= First order decay model
TITLE
I DAY
LDAY
LOGIC
IPRINT
NPRINT
NTAPE1
NTAPE2
NTAPE3
NSEG
NELEM1
NADA
DELTH
DELZ
MODALG
MODBOD
MODDOX
MODTIN
MODPHO
NONE
NONE
NONE
NONE
NONE
NONE
4
4
NONE
NONE
NONE
1
2

-------
Table 8 (continued)
Card Card Variable Default
No. Format	Column	Description	Name	Value
PROBLEM SPECIFICATION
6	15	1-5	Parameter Identification	ID	NONE
ID Code Quality Submodel
1	Algae
2	Coliform
3	BOD
4	Toxic compounds
5	Nitrogen
6	Phosphorous
7	7E10.0	Coefficients for submodel indicated in Card 6
ID	Coefficient
NJ
kO
Saturation growth rate (1/day-C)	ALGIN(l)	0.5 3
Adaptation to low light (1/LUX)	ALGIN(2)	0.00054
Extinction coefficient (1/m)	ALGIN(3)	0.5
Algal attentuation coefficient (1/m-mg/l)	ALGIN(4)	0.20
Organic nitrogen setting velocity (m/day)	ALGIN(5)	0.30
Nitrogen limiting constant (mg/1)	ALGIN(6)	0.025
Phosphorus limiting constant (mg/1)	ALGIN(7)	0.006
Phytoplankton respiration((l/day-C°)	ALGIN(8)	0.005
Zooplankton grazing rate (1/mg-C.-day)	ALGIN(9)	0.13
Phyto to zoo utilization efficiency	ALGIN(10)	0.6
Michaelis constant for phytoplankton (mg-C./L) ALGIN(11)	1.5
Nitrogen to phytoplankton ratio	ALGIN(12)	0.0 8
Phosphorous to phytoplankton ratio	ALGIN(13)	0.02
Phosphorous to zooplankton ratio	ALGIN(14)	0.02
Nitrogen to zooplankton ratio	ALGIN(15)	0.0 8
Zooplankton respiration (1/day-C)	ALGIN(16)	0.01
Zooplankton death rate (1/day)	ALGIN(17)	0.1
Algal settling velocity (m/day)	ALGIN(18)	0.1
ID
2
Coefficient
Coliform decay rate (1/day)
Order of decay law
Temperature coefficient
COLIN(1)
COLIN(2)
COLIN(3)
0.5
1.0
1.1

-------
Table 8 (continued
Card
No .
Format
Card
Column
Description
Variable
Name
Default
Value
ID
3
PROBLEM SPECIFICATION
Total BOD
Benthic
decay rate
(1/day)2
BOD uptake rate (g/m /day)
Temperature coefficient
Toxic degradation rate (1/day)
Algal toxicity constant (mg/1)
Temperature coefficient
Ammonia to nitrite rate (1/day)
Nitrite to nitrate rate (1/day)
Organic-N to ammonia rate (1/day)
Phosphorus to sedimentary-P rate (1/day)
Sedimentary-P to soluble phosphorus rate (1/
Organic-P to soluble phosphorus rate (1/day)
BODIN(l)
o:.
. 1
BODIN(2)
0.
.0
BODIN(3)
1.
.02
TOXIN(1)
0,
.0
TOXIN(2)
1,
,0
TOXIN(3)
1.
. 05
TININ(1)
0.
. 10
TININ(2)
5.
.00
TININ(3)
0.
. 10
PHOIN(1)
• 0.
. 10
PHOIN(2)
0 .
. 10
PHOIN(3)
0.
.10
8A
15
NOTE :
1-5
6-15
8B
8E10.0
Card groups 6 and 7 must be repeated for each of the six
submodels given in the ID code list in the card group 6
list above.
A sentry for selecting the mode of input-
Switch<0 -- constant (no vertical variation
for the K-TH parameter)
Switch=0 — variable
Parameter value (switch<0)
Parameter values (switch=0)
C(J,1) ....soluble phosphorus (mg/1)
C (J,2).....organic phosphorus (mg/1)
C(J,3)	total B.O.D. (mg/1)
C(J,4)	coliform (No./100ml)
C(J,5)	ammonia nitrogen (mg/1)
C(J,6)	nitrite nitrogen (mg/1)
C(J,7)	nitrate nitrogen (mg/1)
C(J,8)	organic nitrogen (mg/1)
SWITCH
CONC
C (J , K)
NONE
NONE
NONE
J=element number/W bottom

-------
Table 8 (continued)
Card Card Variable Default
No. Format	Column	Description	Name	Value
C(J,9)	toxic compound (mg/1)
C(J,10)....phytoplankton (mg-C/L)
C(J,11)....zooplankton (mg-C/L)
C(J,12)....dissolved oxygen (mg/1)
Card Group 8B is a set of initial conditions for the segment beginning
with the bottom element. Elements in each segment are indexed from the
reservoir bottom to the water surface, and the initial conditions must be
loaded in a similar order.
10
11
Twelve Card 8B groups are loaded for each segment, starting with the first
parameter (soluble phosphorus) and ending with the twelfth (DO).
15
1-5
7E10.0
1-70
Interval for upstream inflow
quality variation (days)
0	= constant input
1	= daily variation
7 = weekly variation
etc.
Upstream inflow quality
(12 parameters)
Must be in same order as indicated for Card Group 8B.
L5	1-5	Logical sentry to determine tributary inflow
True = one tributary inflow to segment
False = no tributary inflow to segment
15
6-10	Interval for tributary inflow
Quality variation (days)
0	= constant input
1	= daily
7 = weekly
etc.
INT
CCIN (1, K)
NTRIBS
INT
NONE
NONE
NONE

-------
Table 8 (continued)
Card
No. Format
Card
Column
Description
Variable
Name
Default
Value
12	7E10.0 1-70	Tributary inflow quality
(12 parameters)
must be in same order as Card Group 10
13. A5	1-5	Sentry designating end of input deck
The last card of input deck has END
starting in Column 1
CTRIB(K)
END
NONE
NONE
U)
NJ

-------
TABLE 9. Sample Input Listing - AQUA-II
f c, L L 6 h' (¦.. s r ? v 0 i u C »L I * .V A I I j N may m - D F C 4 1 > 1 9 *> 6
le"H if' r'-i	> /	13	?	lb
! ^	,s*. 1 ' /	e'l/'i ? IB r? 3 n ¦? 4 7 ?bb ? 7 3 ? 9 0 3 F 	1.1/	. i*1 ^
/I. I.'?
1

, r/>s
'/ . I>'1 k' 1

A 1 X
• '
, i-jrt
r , • 1
?

>b
$

a


'A . r-
s

i/

h

" l
1 .SP-1
-1
cfr'-l
-1
1 . S c -1
-1
* . 1'iM''
-1
1 . fi t - 1
-1
] . /.t -*
- 1
i . '.'F -c'
-1
^ , Si'f
-1
1 .!» <
-1
^ . . 'i c <• r
-1
c . if F - 3
-1
7 , k" t '/
7

1 .Sr
- ? 1 . 'i r
u , iir
- 1 \ . c t.
.
Continue
. s } e V. a . 0 ,11 e; 3 . t - ? 1 . F £ - 2
MiVYft-ia
Continue upstream quality data

-------
TABLE 9. Continued
TfcUfc
a.at
1 „
S.lt
^ t ¦* 5
5.«»f -1
1 . - i
ri . \ * L *'/)
2 . P t - •¦?
1S.H5IEI
. i1 £ - 3
H.00E4
u-l
9. i {¦; m ij
1 ,7£-2
5.6E-1
MAY0-
Continue tributary one quality data
\.7t
33
1
1
1 c * t
e' » '+ fc 1
J 1
S.Pt-l
i

7.7&30
'>>. /¦ ¦?
'/. 1,1 a 1

*.4


0 . :-3b
>1 /
f/, , !.)

e. i
v?.?A
0.0?
0.0?
~J, frj f.
i> . £-i 1

¦i. 4



.2S
3
a
1 . <4
2./
V
7KI;fc
w , 7 F ** 1
<> • ¦)
<5 , •/ C '<1
1 . * V - 1
1 , !/> fc » 
-------
".B^E 9. Continued
ivi.i
<•"*"' *•»«-» '.«tw
Continue tributary two quality data
OJ
^	Continue same format for all tributaries.
4 , e-c - I
FN n
? , i't. - I . i * t ^	. ? ¦) E d 5 . r/l t - '4 a . 0 E - 3 « , t - I
1 , i' K - < ? . i' f-. • ^ *? . K t » i	. S 9 E 1,1

-------
TABLE 10. Sample Output - TERMA
^ F S F 9 V n J> T M U L A T I '' N » R 0 ti R A M
i A T f t U, L t" ^ u P 1 M W £ 3 T
TfeP Pi-. SULWr,ir S SYSTEMS SECTION
. enx 9 r rchlami) 4ftSniNr;T0N
Pa;;F \q.	1
•st Mf	1
summary of output for simulation day ife8 execution int i
FmF:-AU bVSTfM I N p n B M M I 0 M
tthSfe^VPlf FLFvAT,ru.M
SJWFACF Element
TCitAL SvS!E* 1NFL>>'
TOTAL SY^TtM OUfCLO^
KLFV TrifcRMijCLl ^E
on'Insi «t i m re«p
•it T tT 1 L \ II^E
1 i?7 ,	M
\,19	M
bfc^.,5	CMS
baa.s	cms
I32b.0	M
DEG C
la.M	DAYS
surface air temp
surface i*ater temp
EV APC.1RI ZATION RATE
CULM t*VAPU»I ZaTIOiN
MET SURFACE HEATING
LOWEST MIXED elev
TRIBUTARY IMPLOW
16,66 DEG C
19.01 DEG C
U.77E HCJ CMS
S3, 193 M
-1.63E-C9? KC/M3/S
1326.0 M
104.8 CMS
S11 k F A (" r ri E A f ExCuANitjES
jjNi
b.aflaE-F?
t^C/Md/ 3

r.bbi E-7>a
KC/Mi/S
QvA
7,gfl6£>0«?
< C / M /S

-------
TABLE 10. continued
RfcSF.PVOI* SIMULATION PROGRAM
B&rTKuu^-NO«rHuesT
KiATtp RtSU'JRCeS SYSTEMS SECTION
P,n. BOX pwy, «Ic H L a\U WASHINGTON
PAGfe	d
SfciiMENl	1
CO
-J
$UM;1AKY of OUTPUT for SIMULATION
\n	E L E v a T I n m	TEMP iJEG C	TEMP DE(i F
1
1 31*.H
14.6994
58.4589
i»
1 S1 
-------
TABLE 11. Sample Output - AQUA-II
;; i-r « (!• c	(<¦	;; 1,	r C I 5 f II 3 t » 5 « f- « » « « « t 11 « » f » 4
!f	*
J Llrr~- O'J/LLITY TSt: v ;} i f-< G JML'laT X 0; 'J P PUG* AM	«
» ' J A T rr_i. L r-:-iQri	«
VaTEX r SYRTr.-'S £bf. T ION	«
^ ^ i, .') > 9 *'r > r-' I C *H L A i) J|l1 ^ T 0 ^
*	«
j .v u -a t:- v » >:. -i v- « v •" «• <} i> # » Q- « ¦> » » «¦ « »	a- -P ¦» » » •» #
G'U.:" i '--PLC IFIC;,TIC-J°
V'i- • ' : , f- aL l .. w •_' v ' I :\ ULI',iil! J'v ri a Y h - Dt C, 3l»iyfc«>
LO
00
-i~st ; a v			. • . • ( *	l ? a
F I'\aL "A v					365
LO'^IC ( > rrc/	;.r^>OKT om.y - -„r quality simulation).,,,.	q
PPU-T f^;^,|'-CY (DAYS)			2-4
poT:,T r Cv ( E LE I^E r TP )			2
I m '-' IJ T T A !J F_ 1 ( •'YORoTHf.f- MAL )				7
I'.^OT Til r ^ ( ;PGT."JK.^-| ylAlJTV)					-Q
!H Tpi J TAfr. (jJALITY f-'r-bL'l 				1.3
M-bEh OP bbT,				3
T 1|V t STt^ ( h01J 
-------
TABLE 11 (continued)

»ft0«oaa»o»ft4«o«
QUALITY simulation: for SEGhENT
MUMPER CiF ELOEATS IN SEGMENT IS
~ « » «
1
19
«•««»«»
»
»
f'OT'EL SELECT I ON
ALGAF. WILL HE [lOOeLEO
TOTAL BfU IS MODELED
p-3 I r, & I-~ 0 P 0 R T I DUAL TO PHYTOPLANKTON CONCENTRATION
TH? ALGAL NITROGE" MODEL WILL BE USEO
jvf. algal PHOSPHOROUS MODEL WILL BE USED
f-'0";EL CONSTANTS
S a T U ,< a T J 0 J
G R 0 7^aTE
{i /o.'-y-c >
. Jtri
PHOSPHORUS LT.1J T I JG
C u -o ( A '.' T
(:-.G/L )
. -Jbo
PHC
PnYTCi'
'uteris to
?Mr, K-'' ^tTj'l
. r"i 2 u
i JA'jT ion
Tf -G'-: Lir.HT
( 1 /I UX)
. ^ "11
P-iYTOPL.M.'KTON
r>f:rr>rrlA HON ~
-------
TABLE 11 (continued)
INITIAL C0f I ITIONS
SEG"E^T
1
TI-E32f
. DAYS
24 .CI
HIORS








EUEV
rru
0*C P
' H ~'D
cnuF.i
¦ V|H J
MO?
'.03
ORli N
TOXIC
PHYTO
200
0.0.
TFMP

"g/l
M5/L

G'L
NO/i^o il
¦•IC/L
*G'L
l-'C/L
MG'L
mg/L
MG-C/L
mg-c/l
MG/L
Cent
1327.S25 1 .5 )-!.i
2 • TO-J?
1
5j\0
?.r.'j*C'j
1.3o*01
1 .01-02
7. 01-02
5 ,nu*oi
1. D0"03
2.00-02
2.00*03
7.00+00
1.23*01
1326.6Q3
. 5'»-p1
? . 35" . ?
1
b i*uC
2.3U*0r
1.43-01
1. 00-02
7 . 00-02
5.1U"01
1 . UO-OJ
2.00-02
2.00-03
7.00+00
1.23+01
lJ2">. 6Q0
. ^ J ":i 1
2. DO"..?
1
- 1 * r. r
? •
1,83-01
3 .no- '?
7, un-12
i.nu-oi
1 ,00-13
?. 00-02
2.00-03
7.00+00
1.23+01
1 ->2-» . ft 31
.5)- il
2.33-:?
2
^ j + C 0
2.oo+o:
:•so-ui
1.0C-J2
7.Cn-22
5. nu-oi
1. 00*03
2.00-02
2.OC-03
7,ro+oo
1,23*01
1J23.ScU
.5 J-Jl
2. 30"'?
1
- 1 + 00
2.CO*01
1.30-01
i. oo-o?
'. i1 C -12
S.U'J-01
1. 00*13
2.00-02
2,00-03
7.C0+00
1.23*01
i->2? .Son
. 5 o - J l
?• 30"',?
\
5 j o
? . rj C) + 0 c
l .Bn-m
1. 00-02
7. oti-n2
5.03-01
1.CO"33
2,00-02
2,OC-03
7.00+00
1.23*11
132- .A:'T
.-3-31
2. 3C-.J?
\

2 .30*03
1 . 6fi-01
t.oc-o?
7 , OU-02
5.00-01
1.10-03
2.0U-02
2,00-03
7.C0+00
1,23*01
1323 .630
.53- u
2 . 30-0?
1
3 ~ C' p
2.03*00
1.80-01
1.01-0?
7 . ,30-02
5.CD-01
1i00-03
2,00-0?
2.0H-03
7,00+00
1,17*01
1J1« . 6 0 3

2.33-0?
1
5 j * 0 0
2. ro + or
1.6n-01
1.00-u2
7.00-C2
5.00*01
1,00*03
2,00-02
2.00-03
7.C0+00
7,69*00
1-Jl" . lt'O
,5n-oi
2-33-??
1

2 . Cl U *00
1.83-01
1.00-02
7.00-02
5.0U-Oi
1.00-03
2.00-02
2,00*03
7,00+00
5.20+00
upstream	t oncent^ations
StQ-ENiT
1
T I -E
.2'
, G^YS
2a.'30 HOUHS







ELEV
F14
C^G P
r
: ">u
colif i
NH 3
MO?
'JO 3
N
TUXIC
PHYTO
ZOO
0,0,
TEMP

r.f./L
*VL

Cl
v//inc'»u
¦Mf, / L
VG/L
;-;r./L
Nry l
MO/L
nr,-c/L
MG-C/L
MG/L
cent
1327.">25
. a .i - ;i 2
1 • 3o-31

*¦ 3*c 0

3..30-32
1.10-3?
2.10-01
« .<0-01
1.00-03
7.03-02
2,00"G 3
8 , 00 + 00
1.23*01
1^26.633
i


'Wo
d . n 'J + n 2
3. r;o-r>2
1 • 3 r - 3 ?
2.13-01
*.<3-01
1.00-13
2.00-02
2.00-03
8.00+00
1.23*01
1325.60G
; .i.'- .2
1 • 5 J - 1 1

( .>*
< .9u+C;.?
3 . jo-i.2
1. 1CI-J?
2.:3-01
<* .<1l)-01
1, 0f)-o3
2.30-0?
2.an-o3
BifO + 'JO
1.23*01
13 2 <. f. j:
u ^
* . ".. _ e
i 1
/

* . +
3 .33-02
1.33-0?
2. l3-11
4 . * J - 0 1
i, uo-r.3
2 ¦ 0 0 - 0 2
2.00-03
« . CG + 03
1,23*01
13 2 3 . 6 j 3
: .3'«- "2
l • 5 rj -i

6 i+ o
< . 9p + n?
3 .3 " n ?
1.3C-J?
i.:3-01
4 .1
"D > f L> 0
4 . 9o*o?
3.00-02
1, 1C-0?
?, ir-ni
4 ,40-01
1,00-13
2,00-02
2.00-03
8,00+00
7,69*00
1 31 -5 . l 3 3
I , - "J -'' 2
1. ?c-c \
c. .
t 3*qo
4 , QG + Ci.-'
3.03-02
1.00-02
2, 10-01
4.4U-01
1,UO-03
2.00*0 2
2.00-03
8.C0+00
5,20*00
SI'lUUiTION RESULTS
StC'EMT
1
T ! 'E1
7
i, DAYS
2 4.no
H ~)URS








L\.*y
F 14
O'G °

r.t :j
C-L IF .
UH3
"J02
j"j3
oat h
TOXIC
PHYTO
200
0.0.
TEMP

¦ 'G/l
i-II/L

r,/L
..//mo -L
•IC/L
mG/L
'G/l
cg/l
^G/l
MG-C/L
MG-C/L
MG/L
CENT
1327 • A?"5
:. ^ .i - j i
i ¦' 1 - r ?

$ * c r
?•
7 . 6c-d2
1 . 7 c - J ?
. .9-01
4.9 ^- 01
1.00-03
2,25-0?
1,81-03
7,37*00
1,23+Cl
132^.*:'"
l. ~«-"i
5.52- ?
i
~i < ~ o ^
1.^7 + 01
' .67-02
1.70-02
. >7"01
4.92-01
1,UO-33
2,2i-02
l.Si-03
7,l7+oo
1,23*31
132^ . SQ'J
:.11 ¦> ~.. i
3 . 5 5 - ?

jZ
1 , 7 6 + fv ^
7 .60-32
!.7^-0?
. > 3-C1
4 ,93*01
1i03-13
2.25-Q2
1.81-03
6,15*30
1,23*31
1 3 2 4 . f- .J j
i, b i
4 . "II - n ?

< 3 ~ :

7./2-02
1.7C-0?
. > 5 - c i
4.43-01
1,00-13
2,24-02
1.81-03
6,67*00
1,23+11
1 323 . 6oI:
1 . 5 1 - J i
4,39-' 2
i
4 J* I'O
] .G3*n
7 , 76-n2
J , 7[;-0?
. > ¦-C1
4 .93-01
1,00-03
2,24-02
1.81-03
6,65*00
1,23+11
132 2.^33
1 .51-.J1
".19-j7

OlO
i•5?*: i
7.63-02
1, 70-J?
. •) 7 - 01
4,93-Q1
1,00-03
2.23-02
1.61-03
6,66*00
1,23*01
1321.^33
;. 5i-'u
4 . J6-"?

4 4 * 0 0
1.&3+01
7.91-02
1.70-02
. >9-01
4.93-01
1,00-03
2,22-02
1.81-03
6,67+00
1,23+01
1323.633
1.5l-"l
4,73-'?

4 w-o
1. ?7 + Cl
8 ,0a-02
1.7C-0?
. '4-01
4 .94-01
1,00-03
2.18-02
1.82-03
6,69+00
1.17+31
13l9,6 c 3
1.24- ,!
3.9?-u?
l
4 -i ~ c:
1.28*01
7.V7-02
1,71-0?
, 'a-ci
4,94-01
1,00-03
2,09-02
1,67-03
6,67+00
7,69+00
1319.130
t ,24-J2
5.16-C?
l
4 ^ + uo
1.22+C1
7.93-02
1.71-0?
. i '-31
4.94-qi
1,00-03
2.04-02
1.90-03
6,66+00
5,20tCQ

-------
TABLE 11 (continued)
SHr.-'t'-'i
1
TI*
Elt?.
24. n
Hf 'JRS
£L£V
F.,0
~ ^C- P
ftf" "'L'

CHUIFm
V.H3

" :/>.
1-1" / L
'C /U

^//too 'L
>:g/l
1-527 . 39-1
2 . 6 > - : !
3. *> 3 - ..
1 *' 7 *

1 • +
5 . 8 4- r-,2
i J2<>.ago
2. i> 1 - J 1
5.-6- i
:. 3 -

9, a/ + U1
b,aft -
i-25 . f- :i'
1
5 . 7 ,
i. i .

0 t A "} + r ^
5. 9"-c.2

2./ 5 -; i
3.V- 1
i. J '
J
9. io*r:
4. 2l-",2
1-523 . 6 jo
2 . J 1 - L' 1
4 ¦ 32" -1
l • - 1

H . 7 6 ~ i
'..34-ri2
i->?:>cn
2. 'Wl
1

J
ft . U + r ;
^.97-02
1J21-^30
- ;1
' . 4 ? - 1
i . 3 - ~

"•l5 + c i
''.60-02
132j.6 CC
2 . c") - j 1
4 r - I
1 . +

7,A9*G !
8 , 7 9 - j 2

1 ,fcr'--i
J.ij-Jl
i. 3
-I
7.01*jl
a.04-02
lJl9.12J
9 .'.'-ji
1 . 44-.-. 1
l . < y
0
*.73*ui
7.66 -j2
r,]' UL4TJ0N R:SL'l.TS
NO?
>'C/L
<¦ ."'-"j
IS , 4 6 - J
6 . =>3-'J
6	, 7;"- Q
'..97-j
7.35-j
7	, 9 J--j
(1 , « f - o
S . 4&-0
o.sa-j
* 3
f ' /L
2.';"CI
2. < '"'-"1
2.: '> - o l
2.;'-oi
2. >-01
2, 9-C1
"01
2 •' • 3 - 01
2. '1-01
2.>2-01
O^li N
f'G/L
. 41"01
.<2-01
. ¦'¦J-oi
. *» = -ci
.<0-01
. « /"!J1
.<'"Ul
.4'"01
.51*01
.5J-01
TOXIC
M(i/L
11 00" 0 3
1iCO-Oi
1iUO-3J
1.0C"C3
1iU0'03
liuo-n3
1.UO-03
liU0-03
1.00-D3
1.U0-03
PHyTO
MG-C/L
9.Sq-0?
9. Bl-(J2
9,76-02
9.56-Q2
9.12-02
8,34-02
7.11-02
5.12-02
3,76-02
3,14-02
zoo
MG-C/l
1, 0 * 0 3
1.U7-03
1.07-03
1i07-03
1•Q7-03
1.07-03
1.07-03
1.0'~03
1.07"03
1,06-03
D,0,
nc/i
7,«»*00
7,Bo+uO
7 , 43*00
6,95+00
6,57*00
6 , 34 + of)
6.21*00
' . l5 + 0Ci
6.02*00
5,97*00
TEMP
CE NT
1.67*01
1,67*01
1, 60*01
1.55*01
1,50-01
1.46'nj, .
1.42*01
1•<1*01

-------
FINAL REMARKS
It is anticipated that these computer models will provide
an important decision-making tool for assessing future eutrophic
states of reservoirs and lakes as functions of nutrient inputs,
waste loadings, and hydraulic and morphometric site character-
istics. Other potential applications of these models are:
• Waste allocation studies
» Evaluation of waste discharge impacts
© Management of reservoir operations
© Preimpoundment analyses
e Nutrient diversion and lake recovery studies
These models, when applied by experienced analysts, can
be used to find sound and economical solutions to the complex
problems of lake and reservoir management.
Up-to-date program listings and source decks can be
obtained by contacting the Environmental Protection Agency,
Region X in Seattle, Washington. Battelle-Northwest will also
accept requests for program listings and source decks.
42

-------