United States
Environmental Protection
Agency
EPA 822-R-03-026
November 2003
&EPA 2003 DRAFT UPDATE OF
AMBIENT WATER
QUALITY CRITERIA FOR
COPPER

-------
2003 UPDATE OF AMBIENT WATER QUALITY CRITERIA FOR
COPPER
(CAS Registry Number 7440-50-8)
November 2003
U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Washington, DC

-------
NOTICES
This document has been reviewed by the Health and Ecological Criteria Division, Office of Science and
Technology, U.S. Environmental Protection Agency, and approved for publication.
11

-------
ACKNOWLEDGMENTS
Document Update: 2003
Cindy Roberts
(document coordinator and contributor)
U.S. EPA
Health and Ecological Effects Criteria Division
Washington, DC
Mary Reiley
(contributor)
U.S. EPA
Health and Ecological Effects Criteria Division
Washington, DC
Robert Santore
(contributor)
HydroQual, Inc.
Syracuse, New York
Paul Paquin
(contributor)
HydroQual, Inc.
Syracuse, New York
Gary Chapman
(contributor)
Great Lakes Environmental Center
Columbus, Ohio
Jennifer Mitchell
(contributor)
U.S. EPA (formerly)
Health and Ecological Effects Criteria Division
Washington, DC
Charles Delos
(contributor)
U.S. EPA
Health and Ecological Effects Criteria Division
Washington, DC
Joseph Meyer
(contributor)
University of Wyoming
Laramie, Wyoming
Rooni Mathew
(contributor)
HydroQual, Inc.
Syracuse, New York
Tyler K. Linton
(contributor)
Great Lakes Environmental Center
Columbus, Ohio
Statistical Support and Contributor:
Russell Erickson
Office of Research and Development
Environmental Research Laboratory
Duluth, Minnesota
iii

-------
CONTENTS
Notices	 ii
Acknowledgments 	iii
Acronyms	vi
I.0	INTRODUCTION 		1
1.1	Background 		1
1.2	Copper in the Environment		1
1.3	Update of Copper Criteria with the Biotic Ligand Model		1
1.4	Copper Criteria Document Information		2
2.0 THE CONCEPT OF BIOAVAILABILITY AND REGULATORY
APPROACHES FOR COPPER	2
2.1	Empirical Models Relating Water Chemistry to Toxicity	 4
2.2	Mechanistic Models—Relating Water Chemistry to Toxicity 	 5
3.0 INCORPORATION OF BLM INTO CRITERIA DEVELOPMENT PROCEDURES	7
3.1	Implications for Criteria—Criteria Calculations		7
3.2	BLM Input Parameters		7
3.3	Model Prediction Modes 		8
3.4	Data Acceptability and Screening Procedures		8
3.5	Estimation of Test Water Chemistry		9
3.6	Water Chemistry Data Acquisition 		9
3.7	Ranking of Quality of Test Chemistry Characterization		9
3.8	Criteria Computations 	 10
4.0 CONVERSION FACTORS	11
5.0 DATA SUMMARY AND CRITERIA CALCULATION	11
5.1	Summary of Acute Toxicity to Freshwater Animals and Criteria Calculation 		11
5.1.1 Comparison with Hardness-Adjusted Values 		15
5.2	Summary of Acute Toxicity to Saltwater Animals and Criteria Calculation		16
5.3	Formulation of the CCC 		17
5.3.1	Statistical Evaluation of Chronic Toxicity Data 		17
5.3.2	Calculation of Freshwater CCC		19
5.3.3	Evaluation of the Chronic Data Available for Saltwater Species 		21
6.0 PLANT DATA 	 21
7.0 BIOACCUMULATION OF COPPER	23
8.0 OTHER DATA	 23
9.0 NATIONAL CRITERIA STATEMENT	24
10.0 IMPLEMENTATION	 24
II.0	REFERENCES 	 58
iv

-------
FIGURES
Figure 1. Conceptual Diagram of Copper Speciation and Copper-Gill Model	 5
Figure 2. Comparison of Predicted and Measured Acute Copper Toxicity to P. promelas 	 6
Figure 3. Quality Scale for D. magna BLM Input Data	 12
Figure 4. Ranges and Distribution of Normalized LC50 Values for Species Listed in Table 1 	 13
Figure 5. Ranked Freshwater Genus Mean Acute Values (GMAVs)	 14
Figure 6. Comparison of Existing Hardness Based WQC and BLM Based WQC in
Synthetic Laboratory Water and EPA Standard Recipe Water for DOC = 2.3 mg/L	 15
Figure 7. Ranked Saltwater Genus Mean Acute Values (GMAVs) 	 18
Figure 8. Relationship Between Freshwater Acute Copper Sensitivity (LC50 or EC50)
and Acute-Chronic Ratios 	 20
TABLES
Table la. Acute Toxicity of Copper to Freshwater Animals		26
Table lb. Acute Toxicity of Copper to Saltwater Animals		36
Table 2a. Chronic Toxicity of Copper to Freshwater Animals		42
Table 2b. Chronic Toxicity of Copper to Saltwater Animals 		44
Table 2c. Acute-Chronic Ratios 		45
Table 3a. Ranked Freshwater Genus Mean Acute Values
with Species Mean Acute-Chronic Ratios		46
Table 3b. Ranked Saltwater Genus Mean Acute Values
with Species Mean Acute-Chronic Ratios		47
Table 3c. Freshwater and Saltwater Final Acute Value (FAV) and Criteria Calculations 		49
Table 4a. Toxicity of Copper to Freshwater Plants		50
Table 4b. Toxicity of Copper to Saltwater Plants 		53
Table 5a. Bioaccumulation of Copper by Freshwater Organisms		55
Table 5b. Bioaccumulation of Copper by Saltwater Organisms 		56
Table 6. Species Numbers Used in Figure 4 		57
APPENDICES
Appendix A. Ranges in Calibration and Application Data Sets	 A-l
Appendix B. Biotic Ligand Model (BLM) User's Guide	 B-l
Appendix C. Other Data on Effects of Copper on Freshwater
and Saltwater Organisms	 C-l
Appendix D. Estimation of Water Chemistry Parameters for Acute Copper Toxicity Tests	 D-l
Appendix E. Saltwater Conversion Factors for Dissolved Values	 E-l
Appendix F. BLM Input Data and Notes 	F-l
Appendix G. Hardness Slopes 	 G-l
Appendix H. Regression Plots 	 H-l
Appendix I. Unused Data	1-1
v

-------
ACRONYMS
ACR	Acute-Chronic Ratio
BL	Biotic Ligand
BLM	Biotic Ligand Model
CCC	Criterion Continuous Concentration
CF	Conversion Factors
CHESS	Chemical Equilibria in Soils and Solutions
CMC	Criterion Maximum Concentration
CWA	Clean Water Act
DIC	Dissolved Inorganic Carbon
DOC	Dissolved Organic Carbon
DOM	Dissolved Organic Matter
ELS	Early Life Stage
EPA	Environmental Protection Agency
FACR	Final Acute-Chronic Ratio
FAV	Final Acute Value OR Final Accumulation Value
FCV	Final Chronic Value
FIAM	Free Ion Activity Model
GMAV	Genus Mean Acute Value
GSIM	Gill Surface Interaction Model
HA	Humic Acid
LA50	Lethal Level of Accumulation at 50 Percent Effect Level
LOAEC	Lowest Observed Adverse Effect Concentration
Me:BL	Metal-Biotic Ligand Complex
MSE	Mean Square Error
NASQAN National Stream Quality Accounting Network
NOAEC No Observed Adverse Effect Concentration
NOM	Natural Organic Matter
PLC	Partial Life-Cycle
SMAV	Species Mean Acute Values
TSS	Total Suspended Solids
WER	Water-Effect Ratio
WET	Whole Effluent Toxicity
WHAM	Windermere Humic Aqueous Model
WQC	Water Quality Criteria
vi

-------
1.0 INTRODUCTION
1.1	Background
Over the past 20 years the U.S. Environmental Protection Agency (EPA) has published a number of
guidance documents containing aquatic life criteria recommendations for copper (e.g., U.S. EPA 1980,
1985, 1986, 1996). The present document contains EPA's latest criteria recommendations for protection
of aquatic life in ambient water from acute and chronic toxic effects from copper. These criteria are based
on the latest available scientific information and supersede EPA's previously published recommendations
for copper.
This document provides updated guidance to States and aulhon/.ed Tribes lo establish waler quality
standards under the Clean Water Act (CWA) to protect aqua lie life from copper I nder I lie (AV.V Slates
and authorized Tribes are to establish water quality criteria in protect designated uses Although this
document constitutes EPA's scientific recommendations regarding ambient eoneenlialions of copper, il
does not substitute for the CWA or EPA's regulations, nor is il a regulation ilsclf Thus, il cannot impose
legally binding requirements on EPA, States, Tribes, or the regulated communih . and might not apply to
a particular situation based on the circumstances. State and Tribal decisionmakers retain llie discretion in
adopting approaches, on a case-by-case basis, that differ from llus guidance w hen appropriate U'A may
change this guidance in the future.
1.2	Copper in the Environment
Copper is an abundant trace element found in llie earth's crusl and is also a naturally occurring
element that is generally present in surface waters (\nagu ll>7l>) Copper is a micronutrient for both
plants and animals at low concentrations: however, il ma\ become lo\ic lo some forms of aquatic life at
elevated eoneenlialions Thus, copper eoneenlialions in natural environments, and its biological
availability, are important ViluralK occurring concentrations of copper have been reported from 0.03 to
0.23 (ig/L in surface seawalers and iVom <) 2 to 3d ug I. in freshwater systems (Bowen 1985). Copper
concentrations in locations recei\ mg anthropogenic inputs such as mine tailing discharges can vary
anywhere from nalural background to loo ug 1.(1 lem 1989; Lopez and Lee 1977) and have in some cases
been re]toiled in the 2oo.ooo I. range in mining areas (Davis and Ashenberg 1989; Robins etal. 1997).
Mining, leather and leather products, fabricated melal products, and electric equipment are a few of the
industries with copper-bearing discharges thai contribute to anthropogenic inputs of copper to surface
waters (Patterson el al I WX)
1.3	I pilate of Copper Criteria with the Biotic Ligand Model
The freshwater criteria in this document differ from EPA's previous metals criteria primarily with
regard to how metal availability to organisms is addressed. Previous criteria were based on empirical
relationships of toxicity to water hardness. These criteria combine the effects of various water quality
\ anables correlated with hardness. Such criteria are most applicable to waters where these correlations
were similar lo the data set used to derive the relationships. The criteria presented here instead use the
biotic ligand model (IJLM) (Di Toro et al. 2001). The BLM is based on the premise that toxicity is related
to melal bound lo a biochemical site (the biotic ligand) and that binding is related to total dissolved metal
concentrations and complexing ligands in the water. The complexing ligands compete with the biotic
ligand for metals and other cations in the water. Unlike the empirical harness relationships, the BLM
explicitly accounts for individual water quality variables, is not linked to a particular correlation among
these variables, and can address variables that were not a factor in the hardness relationship.
1

-------
1.4 Copper Criteria Document Information
Although the new BLM model has now been adopted for use in place of the formerly applied
hardness-based approach the updated freshwater criteria derivations in this document are still based on the
principles set forth in the 1985 Guidelines (or Guidelines, Stephan et al. 1985). Therefore, it is useful to
have some understanding of how the Guidelines are ordinarily applied: (1) Acute toxicity test data must
be available for species from a minimum of eight genera with a minimum required taxonomic diversity.
The diversity of tested species is intended to ensure protection of various components of an aquatic
ecosystem. (2) The final acute value (FAV) is an estimate of the fifth percentile of a sensitivity
distribution represented by the average LC50s and EC50s, the Genus Mean Acute Values (GMAVs), of
the tested genera. The criterion maximum concentration (CMC) is sel in one-halfof llie I AV in
correspond to a lower level of effect than the LC50s/EC50s used lodcme llie I'.W (3) Chronic toxicity
test data (longer term survival, growth, or reproduction) musl lie available for al leasl ill i ce la\a in derive
a final chronic value (FCV). A criterion continuous concentration (CCC) can lie established limn an I (A
calculated similarly to an FAV, if chronic toxicity data are a\ a liable Inr eight genera w i ill a 111111111111111
required taxonomic diversity; or most often the chronic criterion is sel b\ dclcrniuiuig an appropriate
acute-chronic ratio (ACR) (the ratio of acutely toxic concentrations in the chronicalK lo\ic
concentrations) and applying that ratio to the FAV. (4) When necessary. the acule and or chronic criterion
may be lowered to protect recreationally or commercially impoi uiiil species.
The body of this document contains information 011 acule and chronic lo\icil\ of copper relevant to
the derivation of the freshwater and saltwater acule and chronic crilena ll also includes informalion on
the effects of water quality parameters 011 bioa\ ailabilih and lo\icil\ of cupper as well as some BLM
development information. Additional informalion 011 llie generalized IiI.\ 1 framework, theoretical
background, model calibration, and application can be found 111 the Technical Support Document for the
BLM or in the published literature. The dala thai were re\ ie\\ed and not used to derive the criteria and
other supporting information are also pro\ ided 111 tables and appendices
2.0 THE CONCEPT OF BIOAVAILABILITY AM) RI!(IULATORY APPROACHES
FOR COPPER
Copper occurs 111 natural waters primarily as Cu (11) predominately in complexed form. Free Cu
may be present, but is generalK a minor species (Stumm and Morgan 1981). Copper reacts with both
inorganic and organic chemicals 111 solution and in suspension, resulting in a multitude of chemical forms.
Because the cupnc 1011 is liiglih reacli\e. it forms moderate to strongly complexed solutes and
precipitates w illi main inorganic and organic constituents of natural waters (e.g., carbonate, phosphate,
and organic materials) and is readiK sorbed onto surfaces of suspended solids. Even though it is present
in water in main forms, the lo\icil\ of copper to aquatic life has been shown to be related primarily to
acli\ ilv of the cupnc 1011. and possibly lo some of the hydroxy complexes (Allen and Hansen 1996;
Andrew 1976; Andrew et al. 1977: Borgmann and Ralph 1983; Chakoumakos et al. 1979; Chapman and
McCradv 1977; Dodge and Theis 1979; Howarth and Sprague 1978; Pagenkopf 1983; Petersen 1982;
Rueler 1983). Manx examples of this classic response of organisms to cupric ion activity, as well as some
limited exceptions, are reviewed by Campbell (1995). A formal description of these metal-organism
interactions, now commonly referred to as the Free Ion Activity Model (FIAM), was first provided by
Morel (I 1>X3) Pagenkopf (1983) using a similar approach applied the Gill Surface Interaction Model
(GSIM) to predict metal effect levels over a range of water quality characteristics.
Based on the mechanistic principles underlying the BLM, the following general trends of copper
toxicity are expected because individual water quality parameters and their combinations are varied
among exposure waters. Any changes in water quality that would be expected to decrease the activity of
2

-------
the free copper ion would be expected to decrease the bioavailability of copper. For example, increases in
pH, increases in alkalinity, and increases in natural organic matter would all tend to decrease copper
bioavailability and would therefore tend to be associated with increased copper LC50 values. Metal
bioavailability may also be modified by competitive interactions at the biotic ligand. Increased
concentrations of sodium and calcium, for example, can result in reduced binding of copper to
physiologically active gill binding sites and can thereby reduce copper bioavailability. Competition with
protons is included in the copper model and could result in lower bioavailability at low pH. But these
effects occur at relatively lower pH values than are typically used in toxicity tests and, as a result, the
primary effect of changing pH is to decrease bioavailability at high pH. Cation competition also has an
effect on complexation of Cu by natural organic matter (NOM), and this interne lion will In some decree
offset competitive interactions that occur at the gill or other sites of action of lo\icil\.
Historically, aqueous discharges of metals have been regulated based on concentrations of loial
metal—usually measured as the concentration of total recoverable metal (i.e . llie sum of llie dissol\ ed
metal and the metal that can be liberated from solids during extraction in hoi. dilule mineral acid) This
regulatory approach was the basis for previous EIW water qualil\ criteria for copper In liw.\ UW
altered the traditional regulatory approach for protection of aquatic life in account for the influence of
suspended solids on metal toxicity. EPA authorized Slales in regulate discharges based on dissolved metal
concentration instead of total recoverable metal concentration (Prothro I '¦>'¦>?¦) This change was an attempt
to incorporate into the regulatory process the notion thai the concentration of dissolved metal better
approximates the toxic fraction than does the concent ral ion of lolal metal (i.e.. llie presence of suspended
solids tends to decrease metal toxicity; see review b\ \le\erelal 2<)ii2) V-\erlheless, a regulatory
approach based solely on the concentration of dissol\ ed metal did nol address concerns that other water
quality parameters besides total suspended solids (TSS) concentration alter melal toxicity.
EPA has already incorporated linear regression equations into criteria calculation procedures to
account for decreases of acule and chronic lo\icil\ of copper to lieshwaler organisms as water hardness
increases. However, these regression equalions account for oilier parameters that vary in addition to
hardness (at least among some of llie data) bill do nol explicitly account for effects of these other water
quality parameters on lo\icil\
In response to concerns dial the melal criteria did not provide a mechanism to account for the
modifying eflecls of water qualih parameters oilier than hardness on metal toxicity, EPA issued guidance
in the early llM>s on the use of a waler-eflecl ratio (WER) method (Carlson etal. 1984; U.S. EPA 1983,
1992, 1994). The \YI R is "a biological melhod to compare bioavailability and toxicity in receiving waters
versus laboratory lesi waters"' (I S UW I I\lensive guidance has been developed on how to
evaluate a WER (U.S l!l\\ 1^4) The essence of the approach is as follows. The WER is calculated by
dividing the acute L( 5<> of the melal. determined in water collected from the receiving water of interest,
b\ the LC50 of the melal determined in a standard laboratory water, after adjusting both test waters to the
same hardness. The national hardness-based acute criterion concentration is then multiplied by this ratio
(i e . llie WER) to establish a site-specific criterion that reflects the effect of site water characteristics on
lo\icil\
I lowe\ er. a W'LR accounts only for interactions of water quality parameters and their effects on
melal lo\icil\ to llie species tested, in the water sample collected at a specific location and at a specific
time. Although the WER approach remains an important component in establishing site-specific
variations to ambient water quality criteria for metals, a complementary approach is needed that (1)
explicitly accounts for water quality parameters that modify metal toxicity and (2) can be applied more
frequently across spatial and temporal scales.
3

-------
Because of the influence of water quality parameters such as pH, alkalinity, and organic matter on
the formation of compounds that affect the amount of cupric ion present, not all of the copper in the water
column contributes directly to toxicity. In other words, not all of the copper appears to be bioavailable.
Although the term "bioavailability" eludes a consensus definition (Dickson et al. 1994), in the context of
this document it is used to convey the general concept that total Cu (or, more generally, the total
concentration of any metal in an exposure water) is not a good predictor of toxicity (Campbell 1995;
Meyer 2002; Morel 1983). This concept has led to research and regulatory activity to develop better ways
to predict metal toxicity and regulate aqueous discharges (Bergman and Dorward-King 1997; Di Toro et
al. 2001; Hamelink et al. 1994; Morel 1983).
2.1 Empirical Models Relating Water Chemistry to Toxicity
Early copper criteria documents (U.S. EPA 1980. I()85. 1996) incorporated linear regression
equations into the criterion-calculation procedure to accounl lor attenuation of acule and chronic lo\icil\
of copper to freshwater biota as water hardness increases Pie\ louslv though, ihe onl\ parameter w ilh
enough useful data to provide an acceptable predictive capahi I il\ of copper lo\icil\ was hardness
Temperature ranges were not sufficiently wide with mosl species. pH values were often nol reported or
were highly variable, and alkalinity and dissolved organic carbon (DOC) were rarely reported. As a
result, criteria for copper, and those for several other metals, were established as functions of water
hardness. These equations were determined from meta-analyses in w hich variables other than hardness
varied among at least some of the data sets that were used. Therefore, the regression coefficients for
hardness did not only reflect how hardness affected copper toxicity: additionally. hardness was a
surrogate for other co-varying water quality parameters not explicilK included in the regression analyses.
Moreover, these criteria did not include methods lo explicitly accounl lor modi lying effects of other water
quality parameters when those parameters varied and hardness did nul.
An alternate approach 1hal has been proposed to predict metal toxicity is to (1) identify the
bioavailable fraction of the melal. (2) analyze or calculale ihe conccntration(s) of the bioavailable form(s)
in the exposure water; and (3) predict ihe loxicih based on an empirical relationship between the
biological response and ihe concenlralion(s) of ihe bioavailable form(s). According to this approach, only
direct measurement of ihe concentration of the live melal ion or calculation of its concentration (using a
geochemical-specialion model) is needed Supporting this bioavailable-fraction approach, the
concenlralion of cupric ion is a conslanl predictor of acute toxicity even in the presence of varying levels
of inorganic or organic ligands. which complex copper and alter the cupric ion concentration (i.e., the
cupric ion l.( 5<) remains conslanl e\en lliough the concentrations of the ligands differ considerably in
different exposure walers) (eg.. IJorgmann 1983; Santore et al. 2001). However, this approach is not
correcl w hen oilier calions in ihe waler can interact with the biota. For example, the LC50 of Cu2+
increases sigmlicanlK as ihe concentration of Ca2+ (a major component of water hardness) is increased
<\ley er el al. 1999). Thus, ihe concentration of cupric ion alone is not always sufficient to predict
lo\icil\
M ore general l\. lliere is no universally constant bioavailable fraction of a metal that can be
idemified b\ chemical analyses (Meyer et al. 2002). The interactions among the abiotic components in the
exposure waler are important to consider, as well as the interactions of those components with the biota.
I lence. although ihe simple concept of predicting metal toxicity based on the chemical analysis of a
bioavailable fraction is qualitatively appealing, in practice, it is quantitatively elusive (Meyer 2002).
Instead, the complex interactions of Cu2+ with dissolved components, suspended particles, and the biota
must be simultaneously considered in order to accurately predict copper toxicity (see Mechanistic Models
section).
4

-------
2.2 Mechanistic Models—Relating Water Chemistry to Toxicity
Although the current water quality criteria for several metals, including copper, are hardness-
dependent, it has long been recognized that many other factors affect copper toxicity. The chemical
speciation of copper in natural waters and the explanatory power of the free copper ion in determining
copper toxicity were first recognized more than 30 years ago (Anderson and Morel 1978; Sunda and
Gillespie 1979; Sunda and Guillard 1976; Sunda and Lewis 1978; Zitko et al. 1973). These concepts were
eventually formalized in models that linked metal chemistry and biological effects including the gill
surface interaction model (GSIM) (Pagenkopf 1983) and the free ion activity model (FIAM) (Morel
1983). Playle and others demonstrated that copper binding to fish gills can be modeled using a chemical
speciation approach (Playle et al. 1993a, b). Recently, MacRae and others demonstrated that copper
accumulation at the gill shows a dose-response relationship with mortality (MacRae et al. 1999). A more
comprehensive review of these historical developments is presented in Paquin et al. (2002).
Although early models showed remarkable utility, several critical issues remained. A considerable
amount of information about speciation of metals in the environment has become available and
computing techniques have been developed to simulate metal speciation (Nordstrom et al. 1979). Still, the
interactions of metals with natural organic matter remained a topic of intense research and debate for the
next few decades. Until recently, few available models could predict metal chemistry in the presence of
natural organic matter over a range of environmental conditions
The biotic ligand model is a recent allenipl in de\ elop a melal lnoa\ ai lahi I il> model based on the
latest chemical and physiological effects information of melals in aquatic en\ ironments (Di Toro et al.
2001; Paquin et al. 1999; Santore et al. 2<)(i I) The approach was presented In EPA's Science Advisory
Board during 1999 and it received a generalK l'a\ oraMe response (I S LIW 1999, 2000). Like the FIAM
and GSIM, the BLM is based on a description of the chemical speciation of metals in aqueous systems
(Figure 1). Chemical speciation is simulated as an equilibrium s\ stem that includes complexation of
inorganic ions and NOM. The chemical s\ stem is simulated b\ the chemical equilibria in soils and
solutions (CHESS) model (Santore and Driscoll 1^5). including a description of metal interactions with
NOM based on the Windermere limine aqueous model (\\ 11AM) (Tipping 1994). A significant advantage
I
. Gill Surface
(biotic ligand)
Active Metal
Sites
Cu - Carbonates
Figure 1. Conceptual Diagram of Copper Speciation and Copper-Gill Model
(after Pagenkopf 1983)
5

-------
of the NOM chemistry developed for WHAM is that reactions and parameter values were developed by
simultaneously considering numerous NOM samples and numerous metals.
The BLM also includes reactions that describe the chemical interactions of copper and other
cations to physiologically active sites (or "biotic ligands") that correspond to the proximate site of action
of toxicity. The model parameters define the degree of interaction based on binding affinity
characteristics measured in gill-loading experiments (Playle et al. 1993a, b). That is, the biotic ligand
(BL) is represented by a characteristic binding site density and conditional stability constant for each of
the dissolved chemical species with which it reacts. Predictions of metal toxicity are made by assuming
that the dissolved metal LC50, which varies with water chemistry, is always associated with a fixed
critical level of metal accumulation at the biotic ligand. This fixed level of accumulation at 50 percent
mortality, referred to as the LA50, is the concentration of the metal-biotic ligand complex (Me:BL) that is
associated with 50 percent mortality for a fixed exposure. It is assumed to be constant, regardless of the
chemical characteristics of the water (Meyer et al. 1999, 2002). This combination of reactions that
describe aqueous metal speciation and organism interactions allows the BLM to predict copper toxicity to
a variety of organisms over a variety of water quality conditions (Santore et al. 2001). Appendix A
describes the range of water quality values and species to which the model has been applied.
A significant advantage of the BLM is that most of the parameters are invariant for different
organisms, despite the complexity of the modeling framework. All of the thermodynamic constants used
to simulate inorganic and organic chemical equilibrium reactions are determined by characteristics of the
metal and the available ligands. As such, the constants do not change for simulations involving different
organisms. Binding constants for copper and other cations to the biotic ligand were developed from data
reported by Playle and others using fathead minnow (Playle et al. 1993a, b). Similar measurements would
be difficult or impossible to obtain for many organisms, especially invertebrates, because of the difficulty
associated with isolating and excising gill tissue, or an appropriate analog. Nevertheless, the parameter
values developed from fathead minnow measurements appear to work adequately for other organisms
(Santore et al. 2001). Figure 2 shows the predictive capabilities of the model with fathead minnows.
10000
Erickson et al., 1987
Fathead minnow, 96h static exposures
o 1000
10
10
100
1000
10000
Measured Cu LC50 (ug/L)
Figure 2. Comparison of Predicted and Measured Acute Copper Toxicity to P. promelas
6

-------
3.0 INCORPORATION OF BLM INTO CRITERIA DEVELOPMENT PROCEDURES
3.1	Implications for Criteria—Criteria Calculations
The use of the BLM to predict the bioavailability and toxicity of copper to aquatic organisms
under site-specific conditions is a significant change from the previous CMC derivation methodology.
Previous aquatic life criteria documents for copper (e.g., U.S. EPA 1980, 1985, 1996) expressed the CMC
as a function of water hardness. Now, EPA chooses to utilize the BLM to update its freshwater acute
criterion because the BLM accounts for all important inorganic and organic ligand interactions ofcopper
while also considering competitive interactions thai influence Innding of cupper al the sile of toxicity, or
the "biotic ligand." The BLM's ability to incorporate metal specialion reactions and organism infractions
allows prediction of metal effect levels to a varieh of organisms o\er a w ide range of water quality
conditions. Accordingly, the BLM is an attractive lool lor deri\ mg waler qualil\ criteria Application of
the BLM may reduce, if not eliminate, the need fur sile-specilic niodilicalions. such as Waler L fleet
Ratios, to account for site-specific chemistry influences on melal lo\icil\
While the BLM is currently considered appropriale lor use in deri\e an updaled lieshwaler CMC,
further development is required before it will be suilaMe lor use in evaluate a sall\\aler CMC or a CCC or
chronic value.
3.2	BLM Input Parameters
For copper simulations, the necessary waler qualil\ mpul paranielers are pi I. dissol\ ed organic
carbon (DOC) (inmg/L); percent humic acid: temperalure. major calions (( a . \ly . \a . and k ); major
anions (S04, CI ); dissolved inorganic carbon (D1C): and sulfide
Dissolved cations conipele w ilh Cu lor dissolved organic matter (DOM) binding sites. For
example, pH is important in determining llie melal coniple\ation capacity of dissolved organic matter
(DOM). It also is important in delernuning specialion of inorganic carbon, which relates to formation of
metal carbonate complexes. DOM can likewise play a critical role in determining metal speciation and
bioavailahilil\ lis concenlralion is entered into the BLM in terms of the concentration of DOC. Because
the representalion of melal-NOM complexes in the BLM adopted from WHAM, characterizes metal
comple\alion with both limine and ful\ ic organic matter, it is necessary to specify the distribution of
these two limine acid forms of nalural organic matter. Ca andNa can directly compete with copper at
DOM and biolic ligand binding siles. and diese cations will therefore have a direct effect on model
predictions. Magnesium ma\ ha\ e a critical role as well for some organisms. In that S04 may be the
dominant anion in lieshwaler. it is important for determining the charge balance and ionic strength in
BI.M calculations. Chloride can also contribute to ionic strength computations for copper. The sum of
lluvc inorganic species in the BLM—carbonate (C03), bicarbonate (HC03), and carbonic acid
(11 ( (),)—is considered inorganic carbon. Inorganic carbon is a critical input to the BLM because many
metals including copper form carbonate complexes. DIC measurements are typically not made in the
en\ ironmeiil. so e\ en though it is the preferred measurement, DIC can be estimated from alkalinity and
pi I w hen a DIC measurement is not available. Sulfide has a strong affinity for many metals, and although
the sulfide concentration is traditionally assumed to be negligible in aerated waters; its concentration may
be impacted by wastewater treatment plant effluents.
A number of fixed parameters or constants are also used in the BLM along with the input
parameters specified above for speciation or toxicity mode computations. Some of the key fixed constants
are the binding constants for the interactions between copper and protons and the "biotic ligand." The
7

-------
values contained in the model were derived by Playle and coworkers by conducting gill-loading
experiments (Janes and Playle 1995; Playle et al. 1992, 1993a, b). Playle et al. (1993a, b) also developed
the gill site density parameter of 30 nmol/g wet weight used in the model from measured copper gill
concentrations.
3.3	Model Prediction Modes
The graphical user interface that has been developed for the BLM allows the user to run the
model in either the "Metal Toxicity Mode" or in the "Metal Spcciation Mode." Run in the toxicity mode,
the BLM predicts the dissolved concentration of copper required to cause acute mortality for water
characteristics specified by the user. Run in the spcciation mode, the BLM calculates the chemical
speciation of a dissolved metal, including complexation with inorganic and organic ligands. and the biotic
ligand. Each computational mode requires the user to specify the chemical parameters discussed above
and either a dissolved copper concentration or a copper accumulation associated with the biotic ligand.
The biotic ligand represents a discrete receptor or the site of action of toxicity to an organism,
where accumulation of metal at or above a critical threshold concentration leads to acute toxicity. The
lethal accumulation level on the BL that results in an effect on 50 percent of the individuals is termed the
"LA50" for that species. The LA50 concentration of copper on the BL is expected to result in 50 percent
mortality in a toxicological exposure for a fixed exposure duration. The LA50 is expressed in units of
nmol Cu/g wet weight of the BL. Since the BLM includes inorganic and organic spcciation and
competitive complexation of copper with the BL. the amount of dissolved copper required to reach this
threshold will vary, depending on the water chcmistr\ Therefore, in addition to calculating chemical
speciation, use of the BLM to evaluate the dissol\ ed ( u concentration that is associated with the LA50
provides a prediction of the concentration of copper llial would result in acute toxicity (e.g.. LC50) for a
given set of water quality characteristics
When run in the metal to\icit\ mode, llie lil.M will predict the LC50 of copper using an LA50
value from a parameter file specific in a particular species lor all of the observations with a complete set
of BLM input parameters. Howe\ er. llie IJLM can also lv run with "User Defined" LA50s. That is, the
BLM will predicl l.( '5<>s hased on llie I.A50 \ allies specified by the user rather than the default LA50
value specified in the parameter liles for particular organisms. Instructions for constructing BLM input
files and running the model can he found m the Biotic Ligand Model User's Guide (Appendix B).
3.4	DsHsi Acccplsihililv :iiul Screening Procedures
Data screening procedures for this effort differed from data screening procedures for previous
copper criteria documents, in that studies previously considered unacceptable for deriving criteria are
acceptable when utilizing the BLM. For example, studies with DOC content exceeding 5 mg/L or studies
that w ere fed were not always acceptable in the past, but are now acceptable for use with the BLM,
because the BLM is designed to account for these differences. Conversely, some previously acceptable
freshwater acute toxicity tests were relegated to Appendix C (other data) because of poor chemical
characterization, together with several other freshwater tests in which copper concentrations in the test
chambers w ere not measured. Detailed chemical analyses of the dilution water, test water, and measured
copper concentrations are critical parameters for the BLM (see Mechanistic Models section). The lack of
any or all of these major ion concentrations, including measurements of total or dissolved copper, without
reliable estimates of surrogate values, precludes the use of a particular study's results (see next section,
Estimation of Test Water Chemistry).
8

-------
3.5 Estimation of Test Water Chemistry
To incorporate the BLM into the copper aquatic life criteria document, a data table was generated
summarizing the acute toxicity of copper to freshwater organisms that included the necessary BLM water
chemistry parameters. Studies lacking measured copper concentrations were not considered for further
evaluation. A literature review was conducted, searching AQUIRE, BIOSYS, and CAS. The literature
was reviewed, and the appropriate measurements were tabulated.
As the understanding by the scientific community of the important influence of water chemistry
on metals toxicity has increased, measurements (and reporting) of relevant w aler qualih paramelers luis
also increased. Still, much of the currently available aqua lie to\icil\ hlcralure lor metals does nol include
measurements for all of the key BLM inputs. Many of these ke\ I i I. \ 1 111 puis were nol measured or
reported in the published material reviewed for this updale ol'lhe W()( ( onsequenlh . addilional dala
were obtained from the authors; additional measurements were made in rele\ anl waler sources, or. finally,
input parameters were estimated. A detailed description of llie melhods used in oblam or eslimale these
input parameters is included in Estimation of Water Chemistry Parameters for Acute Copper Toxicity
Tests (Appendix D). Below is a summary of the effort undertaken in eslimale llie various lesl waler
chemistry conditions.
3.6	Water Chemistry Data Acquisition
Studies included in Table la of the ambienl waler qualih criteria document for copper were
reviewed to record all reported information on dilution and lesl waler chemisliy . Any additional
references to which the authors referred while describing llieir lesl waters were retrieved. When critical
water chemistry parameters were not available, authors were asked lo measure missing water chemistry
parameters in the toxicity test source waters. If primar\ or corresponding authors could not be contacted,
an attempt was made to contact secondary authors or personnel from the laboratories where the studies
had been conducted. Failing this, llie I S Geological Survey National Stream Quality Accounting
Network (NASQAN) and the UW STOrage and RLTrieval (STORET) data were used to obtain data for
tests conducted in ambient surface waler Where actual water chemistry data were unavailable, data from
other studies w nh the same waler were used as surrogate values if appropriate. In some instances, other
available sources were contacted to oblam water chemistry data (e.g., city drinking water treatment
officials) The acquired dala were scrulim/ed for representativeness and usefulness for estimating
surrogate \ allies to complete the waler qualil\ information for the dilution and/or test water that was used
in the original studies. When the abo\ e sources could not be used geochemical ion input parameters were
based on llie reported hardness measurement and regression relationships constructed for various input
paramelers from Y\S().\\ dala
As with any modeling effort, the reliability of model output depends on the reliability of model
input. Although the input data have been carefully scrutinized and filtered, the reliability of the BLM-
deri\ ed accumulation and toxicity values for this project are subject to the limitations of the input
measurements and estimation procedures described above.
3.7	Ranking of Quality of Test Chemistry Characterization
A ranking system was devised to evaluate only the quality of the chemical characterization of the
test water, not the overall quality of the study itself. Studies with a rank of 1 contain all of the necessary
parameters for BLM input based on measurements from either the test chambers or the water source. In
general, studies in which the BLM input parameters were reported for test chamber samples take
precedence over studies in which the parameters were reported only for the source water. A
9

-------
characterization ranking of 2 denotes those studies where not all parameters were measured, but reliable
estimates of the requisite concentrations could be made. Similarly, a rank of 3 denotes studies in which all
parameters except DOC were measured, but reliable estimates of DOC could be made. For the majority of
the tests, a chemical characterization of 4+ was assigned because hardness, alkalinity, and pH were
measured, and the ionic composition could be reliably estimated or calculated. A 4- was assigned to those
studies conducted using standard reconstituted water in which hardness, alkalinity, or pH was either
measured or referenced, and the recipe for the water is known (ASTM 2000; U.S. EPA 1993). The
chemical characterization rank of 5 was ascribed to studies in which one of the key parameters (DOC, Ca,
pH, alkalinity) was not measured, and when it could not be reliably estimated. If two or more key
parameters (DOC, Ca, pH, alkalinity) were not measured and could not be reliably estimated, a study was
given a chemical characterization rank of 6. Studies receiving a quality rating of greater than 4 were not
used in the criteria development procedures because the estimates for some of the key input parameters
were not thought to be reliable.
3.8 Criteria Computations
To calculate the acute criterion or CMC, reported acute toxicity values (e.g.. LC50s) (Table la)
and individual test water chemistry parameters were used to calculate LA50 values by running the model
in the speciation mode. These LA50 values were then normalized to a standard water condition (Table la,
footnote d) by running the model in the toxicity mode and specifying user-defined LA50s. As used here,
"normalization" refers to the procedure whereby all of the measured effect levels w ere adjusted, via use of
the BLM, to the predicted LC50 that would have been expected in a standard test water. These
normalized LC50s were used to calculate Species Mean Acute Values (SMAVs). Genus Mean Acute
Values (GMAVs), and a Final Acute Value (FAV) pursuant to the 1985 Guidelines procedure. The FAV
represents a hypothetical genus more sensitive than 95 percent of the tested genera. The FAV was derived
from the four GMAVs that have cumulative probabilities closest to the 5th percentile toxicity value for all
the tested genera (Table 3a). Inputting this FAV as an LC50 concentration and running the model in
speciation mode determines the lethal accumulation associated with the FAV in the standard test water.
Since it is assumed that the LA50 does not vary w iill changes in water chemistry, this LA50 is
programmed into the model as a constant. To dem c a criterion for a specific site, the site water chemistry
data arc input to the model. The model then uses an iterative approach to determine the dissolved copper
concentration needed to achieve a Cu-biotic ligand concentration equal to the criterion LA50. This
dissolved Cu concentration is in effect the FAV based on site water chemistry. The site-specific CMC is
this predicted dissolved metal concentration divided by two. The site-specific CCC is the CMC divided
by the final acute-chronic ratio (FACR).
The LA50s used in criteria computations were calculated for each test in which water quality
characteristics could be reasonably well characterized. Because an underlying premise of the BLM is that
ihc IA50 is invariant for a given organism, for any test condition, the fact that some residual variability in
l..\5<)s exists may reflect model uncertainty, including: (1) among-strain variability; (2) among-life-stage
\ unabilitv: and (3) potential physiological effects of the site water on the test organism that alter
organism sensitivity rather than metal bioavailability.
I Ilimak-K . lire final freshwater criteria depend on a number of varying water quality parameters
(c g . ( a . \lg . and DOC), and any number of test water chemistries could be used to normalize the Table
la data. Table la data (LC50s and EC50s) are standardized to the water chemistry condition specified in
footnote f, for illustrative purposes only as is typical in hardness-dependent metals criteria documents. Be
that as it may, the normalization chemistry selected may influence the species sensitivity distribution,
particularly when two or more species have similar sensitivities to copper toxicity. Example criteria for
several water chemistry conditions are provided in Figure 6.
10

-------
4.0 CONVERSION FACTORS
Although past water quality criteria for copper (and other metals) had been established upon total
metals' concentrations, EPA made the decision to allow the expression of metals criteria on the basis of
dissolved metal (operationally defined as metal that passes through a 0.45-micron filter, [U.S. EPA 1993])
because it was thought to better represent the bioavailable fraction of the metal. At that time, most data in
existing databases were from tests that were either conducted using nominal concentrations, or provided
only total copper measurements, such that some procedure was required to estimate their dissolved
equivalents. Now, dissolved metals toxicity values are required as BLM input in order to obtain lethal
accumulation values. EPA used conversion factors (CF) that when multiplied h> the total metal
concentrations result in a dissolved metal concentration. CF corresponds to the percentage of the total
recoverable metal that is dissolved.
CFs for the conversion of total copper concentrations in water from freshwater to\icit\ tests in
dissolved copper concentrations were developed by conducing a number of laboratory toxicity tests
(Stephan 1995; University of Wisconsin-Superior 1995). Simulation tests were conducted to determine
the influence of copper concentrations, presence or absence of fund, duration of the test, hardness, and
species of test organism on the concentration of dissolved copper in the test water. The simulation tests
were designed to mimic conditions that existed during the to\icit\ tests used to derive the earlier metals
criteria, such as sorption of metal onto test chambers, uptake ol' metal b\ test organisms, and precipitation.
The recommended conversion factors from the Stephan (I ()()5) report (<) for both the CMC and CCC)
were utilized to convert total recoverable measurements to dissolved \ allies, when necessary.
In the case of saltwater, several studies are available that report nominal, total, and dissolved
concentrations of copper in laboratory water (Table I b) from site-speci lie \\ I iR studies (refer to
Appendix E for further details). These studies show relati\el\ consistent ratios for the nominal-to-
dissolved concentrations and for tolal-to-dissolved concentrations The dissolved-to-nominal conversion
requires a larger correction factor than does the dissolved-to-total correction. The data provided in
Appendix \ . bear this out in all but one case (SAIC 1993 data for the blue mussel). Nominal copper
concentrations for this series of tests ma\ ha\e been overstated or the measured total copper
concentrations ma\ ha\e been proportionally lower than for the other studies. The overall ratio for
correcting saltwater total copper concentrations to dissolved copper concentrations is 0.909, based on the
results of si\ studies (Appendix I) This is comparable to its equivalent conversion factor in freshwater,
which is 11 lM(i (Stephan |w5) W hen it is necessary to convert nominal saltwater copper concentrations
to dissol\ ed copper concentrations, the coin ersion factor is 0.838 based on the same six studies.
5.0	DATA SI MMARY AM) CKITKKIA CALCULATION
5.1	Summary of Acute Toxicity to Freshwater Animals and Criteria Calculation
This effort identified approximately 600 acute freshwater toxicity tests with aquatic organisms
and copper considered acceptable for deriving criteria. Of these acceptable studies, approximately 100
were eliminated from the criteria derivation process because they did not report measured copper
concentrations Nearly 150 additional studies were eliminated from the calculation of the FAV because
lhe\ recei\ ed a quality rating of greater than 4 in the quality rating scheme described above.
The BLM version AP08-Build 2002-05-07 was used to calculate lethal accumulation values for
each individual test result included in Table la by running the model in the metal speciation mode (see
Appendix B, BLM User's Guide). Reported effect levels (i.e., LC50s or EC50s) and the chemistry
characterization for each test were input parameters for the model (Appendix F). LC50s or EC50s
11

-------
reported in terms of total recoverable metal were converted to dissolved concentrations as discussed
above in the Conversion Factors section. Lethal accumulation values were then converted to toxicity
values (e.g., LC50s) at standard water condition by running the model in the metal toxicity mode.
Data from approximately 350 test were used to derive normalized LC50 values, including 15
species of invertebrates, 22 species of fish, and 1 amphibian species (Table la). Large variations in
toxicity values were observed for some species. Examination of the nature of these individual values
showed that a majority of them corresponded to observations where key BLM parameters were missing
and thus estimated (i.e., a quality ranking of 3 or 4 range is typical for these values), and for many species
the variation in LC50 was seen to increase in observations with more missing Iil.\I paianvlcis (e ij . D.
magna, Figure 3). The large variability in LC50 for some species, therefore, seems in lie relaled in llie use
of estimated BLM parameters for some of the data. For other organisms (such as rainbow iroul).
significant variations in LC50s were likely due to the mixture of life-slaves represented in llie acule
toxicity datasets. In general, an objective approach that could lie used in autnmalicalK screen annmalnus
LC50 values was needed. For a given species with more than fix e lesl results. relali\ el\ extreme \ allies

10 2


*#«•
10 1
=	I	1	1	1	
=

1
o»

-
-

1
10 '

o

L.

E
o I

§"

_
o
o

>¦*

8
o

a
10 -1
5 8 1
o

«

O ""

w
m

- 8 o


£

o 8
-

Qi

§ o
o


10 "2
o
o




10 ^
1 ! 1 1
0	2
1


12 3 4
4*


Quality Scale for BLM Inputs



Figure 3. Quality Scale for D. magna BLM Input Data

12

-------
were defined within the distribution of LC50 values using a simple statistical method that identifies those
individual values that are far from most of the rest of the population of values (Chambers et al. 1983). To
characterize these extreme values, a range was established by first calculating the difference between the
1st and 3rd quartiles for the entire dataset. This difference was then multiplied by 1.5 and either added to
the 3rd quartile, or subtracted from the 1st quartile to establish the "inside range." Any points falling
outside this range were identified as extreme values. While data limitations preclude the application of a
more formal evaluation of "statistical outliers," this simplified procedure was considered to be a
reasonable way to account for what appeared to be anomalous results.
As an example of this method applied to the LC50 data, box plots are shown of the range of
LC50 values for each of the species in Table la. Species are identified with numbers. as show n in Table
6. For each species, the geometric mean is shown as the center symbol, the lirsl sel of ranges represent the
1st and 3rd quartile. The second set of ranges represent the minimum and maximum \ allies excluding
extreme values. Data corresponding to extreme values are indi\ iduallv plotted as se pa rale ploiimg
symbols (Figure 4). For the extreme values, the number of vertices in the ploiimg s\ mbol repiesenls llie
10
18
10 '
I
i 10
O
~i i i i i i i i i i i i i i i i i i r i i i i i i i i i i i i r
o s
e D
ir5
o &
i •
T o e
e l
i i i i i i i
J	I	I	L
I I t I I I
I I I I I I I I t
J	L
J	I	L
10 S 4 8 12 11 3 6 13 30 20 S 21 3? 23 18 17 7 18 38 1 22 32 28 28 24 16 31 35 27 34 29 38 25 15 33 2 14
Species Number
l-'igmv 4. Ranges and Distribution of Normalized LC50 Values for Species Listed in Table 1
Species are identified by unique species number listed in Table 6. For each species the range between the 1st and
3rd quartile of all available normalized LC50 values is represented by the box. Extreme values are plotted as
individual symbols, with the number of vertices indicating the quality scale (extreme values and quality scales
are discussed in Section 5.1). Statistics shown for normalized LC50 values after excluding extreme values
include the geometric mean shown as a circle, and minimum and maximum values shown as whisker bars around
the mean.
13

-------
quality ranking (e.g., a triangle represents an observation with a quality ranking of three, a diamond
represents an observation with a quality ranking of 4+, a star represents a quality ranking of 4 or 4-). The
LC50 values that corresponded to "extreme values" were therefore not considered in subsequent
calculation of the 5th-percentile LC50 value.
SMAVs ranged from 2.54 (ig/L for the most sensitive species, Daphniapulicaria, to 101,999
(ig/L for the least sensitive species, Notemigonus crysoleucas. Cladocerans were among the most
sensitive species, with D. pulicaria, D. magna, Ceriodaphnia dubia, and Scapholeberis sp. being four out
of the six most sensitive species. Invertebrates in general were more sensitive than fish, representing the
10 lowest SMAVs.
The 27 GMAVs calculated from the above-mentioned SMAVs runted from 3 5^ lilj I. for
Daphnids to 101,999 (ig/L for the Notemigonus genus \iik- of the I <> mosl sensili\ e genera were
invertebrates. The salmonid genus Oncorhynchus was llie mosl sensili\e lish genus, with a (iMAV of
29.11 (ig/L and an overall GMAV ranking of 10.
Toxicity values are available for more than one species in eight dilTerenl la\onomic families The
ranked GMAVs are presented in Figure 5. Pursuant in procedures used in calculale a l-'AV. a l-'AV nf 4.2
• g/L was derived from the four GMAVs with cumukili\ e probabilities closest in llie 5lh percentile
toxicity value for all the tested genera (Table 3c). The presumption is lhal llus acute lo\icil\ \alue
represents the LC50 for an organism that is sensitive al the 5 percentile le\el of the (iMAV dislrilnilion.
The four lowest GMAVs vary by less than a factor of lliree from the highest to the lowest \ alue The
CMC is the FAV divided by two, and rounded to two significant figures Therefore, llie freshwater
dissolved copper CMC for the normalization chemistr\ presented is 2 I ug I..
Site-water chemistry parameters are needed lo e\ aluale a criterion This is analogous to llie
situation that previously existed for the hardness-based WQC. w here a hardness concenlralion was
necessary in order to derive a criterion I Examples of CMC calculations at various water chemistry
conditions are presented in Figure 6
WOO j
~ W'Huhr.th'
100000 "
~ Invvrk'bot?
I
a Amphibia I
1
2
10000 -
1000
o
D ~
#
* * * *
A Q
~ "
~
~
o	n	"—"" 0
f u	Firu»* Ai ufi* \ >*lu> - 1 if ti'j I Diss jvoi i u
	a..a			~		
~
r r**s»hwjter Criterion Maximum Concentration - 2.1 ug/L dissolved Cu
Ranked Genera
Figure 5. Ranked Freshwater Genus Mean Acute Values (GMAVs)
14

-------
! 	 Hardness Based WGC
| • • - • BLM Predicted WQC in syndetic Jaboratory water with only hardness increasing
j - BLM Prr>diMM VVGC Reopen ,<¦ in EPA ¦- Irjndrard i-npe wzb <¦
0,1 1
0	50	iun 1*0 2HQ zsu 300 350 400
Hardness (mqii. CaC03)
Figure 6. Comparison of Existing Hardness Based WQC and BI.M Based WQC
in Synthetic Laboratory Water and EPA Standard Recipe Water lor DOC = 2.3 mg/L
5.1.1 Comparison With Hardness-Adjusted Values
As discussed previously, EPA's earlier freshwater cupper criteria recommendations were
hardness-dependent values. One would expect a BI.M-based criterion calculation procedure to yield the
more appropriate criterion—appropriate in the sense that it accounts lor the important water chemistry
factors that affect toxicity, including DOC comple\ation. w here the hardness correction does not. While in
principle the BLM is expected to improve the criteria calculation method, the BLM's ability to accurately
predict LC5
-------
The mean square of error (MSE) from these two least squares regression procedures were
compared. The MSE from the BLM measured versus predicted analysis (0.403) was only slightly lower
than the MSE from the comparable hardness analysis (0.420). The small reduction in the MSE for the
BLM analysis is interpreted to mean that the BLM, in this case, was a slightly better predictor of LC50
values and somewhat better at reducing variability among species mean values compared with the hardness
adjustment for these laboratory water studies. Application of the BLM in field situations where DOC is
expected to be present at higher concentrations than those observed in laboratory studies would likely
improve the performance of the BLM compared with the hardness adjustment. The reason is that the BLM
would reasonably account for the typically observed increase in effect levels under such conditions, while
the hardness-based approach would not.
As a comparison between the hardness typical of the previous copper criterion and llus re\ ised
criterion using the BLM, both procedures were used to calculate criterion values lor wale is u i ill a range in
hardness as specified by the standard EPA recipes (U.S. EPA 1993) Tlie TPA recipes spec11\ the
concentration of various salts and reagents to be used in the synthesis of laboralor\ test waters u i ill
specific hardness values (e.g., very soft, soft, moderately hard. hard, or very hard) As llic water hardness
increases in these recipes, pH and alkalinity also increase This has implications lor the IJI.M because the
bioavailability of copper would be expected to decrease w i ill increasing pi I and alkalinit) due in the
increasing degree of complexation of copper with h\ dro\ides and carhonales and decreasing proton
competition with the metal at both DOM and biotic ligand binding siles. The IJI.M was used to predict the
WQC with aDOC concentration of 2.3 mg/L (the average \alue in llic data used in Table 1) forthe five
standard hardness waters. The BLM criterion for these walers agrees \er\ well w iill that calculated by the
hardness equation used in previous copper criterion docunienls (figure ^) I lowe\ er. alkalinity and pH
change as hardness changes in the EPA recipes. The IJI.M predict ion is taking all of these changes in water
quality into account. It is possible to use the BLM to look onl\ at the change in predicted WQC with
changes in hardness (e.g., alkalinity and pH remaining constant) Also shown in I'igure 6 are BLM
predictions with only hardness varying. As can be seen, these predictions show a much flatter response
with increasing hardness, and do not match the response seen in the hardness equation at all. The hardness
equation, therefore, is based on waters where changes in hardness are accompanied by changes in pH and
alkalinity. However. there are main possible natural walers where changes in hardness are not
accompanied h> changes in pi I and alkalinity (such as water draining a region rich in gypsum). In these
cases, the hardness equation based criterion will still assume a response that is characteristic of waters
where hardness, alkalimh . and pi I co-vary, and will likel> be underprotective relative to the level of
protection intended h> the Guidelines, in high hardness waters. Conversely, in waters where the
covariation between hardness, pi I. and alkalinity is greater than is typical for data in Table 1, the hardness
equation based criteria ma\ be o\crproiccli\c
5.2 Summary of Acute Toxicity to Saltwater Animals and Criteria Calculation
Tests of the acute lo\icil\ of copper to saltwater organisms (acceptable for deriving criteria) have
been conducted with 34 species of invertebrates and 18 species of fish (Table lb). In general, where
relationships were apparent between life stage and sensitivity, values only forthe most sensitive life stage
were considered in deriving SMAVs. The censoring procedure used forthe freshwater toxicity values was
also considered for use in censoring saltwater acute toxicity values. However, it was not applied. The
freshwater censoring procedure was not used because, in one case, it resulted in eliminating only data for
the most sensiti\ e life-stage, rather than the insensitive life-stage. In situations where data indicate that a
particular life-stage for the species is at least a factor or two more resistant than another, the Guidelines
recommend that the data for the more resistant life-stage not be used in the calculation of the SMAV.
Embryo-larval life-stages of bivalve mollusc genera represent the first two of the four most
sensitive genera, including, by sensitivity rank, the generaMytilus-I 1.5 (ig/L and Crassostrea-12.6 (ig/L.
Toxicity data for Mytilus edulis were distinguished from data forMytilus spp. based on the molecular
16

-------
genetics work presented by Gaffney (1997) and information about the collection locations of the test
organisms for the Mytilus studies. The fourth most sensitive genera (the sea urchin genus
Strongylocentrotus) is also represented by the embryo-larval life-stage (Table lb). Comparing the data for
older mussels (Nelson et al. 1988) and oysters (Okazaki 1976) with data for embryo-larval forms indicates
that these early life stages (ELSs) are appreciably more sensitive than the older forms. This is probably
true for marine invertebrates in general, although data for the red abalone (Martin et al. 1977) indicate that
48-hour larvae are perhaps slightly more resistant than larger forms. The mysid, Holmesimysis costata, and
the copepods, Eurytemora affinis and Acartia tonsa, are among the most sensitive crustacean species
tested.
Except for the summer flounder and the cabezon, with GMAVs of 12 7 and Sfi 4 tig I..
respectively, no other saltwater fish had a GMAV below 100 j^ig/L. Fourteen oilier genera of murine lish
had GMAVs from 117 to 4,743 (ig/L dissolved copper. Two of the lowest fish GMAVs were based on
tests with early life stages, and the higher fish GMAVs did nol include tests w iill earl\ lil'e stages These
results suggest that acute tests with early (post-hatch) life stages can generalh lie protective of acute
toxicity to older life stages, but not necessarily the reverse.
In sum, several studies indicate that salinm affects copper io\icil\ and lliose el'lecls are species-
dependent. The brackish water clam, Rangia cuntwhi. was \ er\ sensili\ e in copper in freshwater (LC50
210 (ig/L at <1 g/kg salinity), but 35 to 38 times more resistant al salinities of 5 5 and 22 g/kg (Olson and
Harrel 1973). Similarly, young striped bass were about ilircc limes more sensiln e in copper at a salinity of
5 g/kg than at 10 or 15 g/kg (Reardon and Harrel I wo) An mlluence of sahnil\ was observed by Ozoh
(1992a) in the previously cited study of the influence of lempcraluic and salinih on copper toxicity to the
polychaete worm, Hediste diversicolor. Effects of salinih were more consistent ihan those for temperature.
A regression of log LC50 versus log salinity unhealed a slope of" 245 for \oung worms, and a slope of
0.596 for mature worms. Increasing salinity over llie range lesled (7 3<) g kg) increased LC50s by factors
of approximately 1.4 and 2.4 for young worms and malurc worms. respecli\ el\ I Establishing salinity-
dependent criteria on the basis of these limited dala is nol possible Tuilheniioic, salinity-based criteria
should be based only on tests with organisms and life slages that would be present at lower salinities.
Acule \allies are available for more than one species in the eight differenttaxonomic families
recommended in llie (iuideluies The 44 available sallwaler GMAVs ranged from 11.5 (ig/L dissolved
copper for Myii/ns in (\44X ug I. Inr Kiingia, a faclur of o\ er 500 difference (Table 3b, Figure 7). In each
of six genera w uli a range of S\IA Vs. all SMAVs within the genus are within a factor of 3.5. A saltwater
FAV of 12 3 ug I. dissok ed copper was obtained using the four lowest GMAVs in Table 3b and the
calculation procedure described in the (iuideluies. This FAV was lowered to 6.19 (ig/L to protect
commerciall\ and rccrcalionalK important mussel species. The CMC is the FAV divided by two, and
rounded to two significant figures. Therefore, the new saltwater dissolved copper CMC is 3.1 (ig/L.
5.3 Torm ulation of the C'('('
5.3.1 Statistical Evaluation of Chronic Toxicity Data
In aquatic lo\icil\ tests, chronic values are usually defined as the geometric mean of the highest
concentration of a to\ic substance at which no adverse effect is observed (highest no observed adverse
eflecl concent ration, or NOAEC) and the lowest concentration of the toxic substance that causes an
ad\ erse eflecl (lowest observed adverse effect concentration, or LOAEC). The significance of the observed
effects is determined by statistical tests comparing responses of organisms exposed to low-level (control)
concentrations of the toxic substance against responses of organisms exposed to elevated concentrations.
Analysis of variance is the most common test employed for such comparisons. This
17

-------
10000
1000
at
3_
in
> 100
£
O
3
o
10
¦ Invertebrate
~ Vertebrate
* *
~ ~
¦ ~ ~
~ ¦ ~
¦ ~ ¦
Saltwater Final Acuta Value 6 2 ug/L dissolved copper
Criterion Maximum Concentration^ 3.1 ug/L dissolved copper
Ranked Genera
Figure 7. Ranked Saltwater Genus Mean Acute Values (GMAVs)
approach, however, has limitations; it has the disadvantage of resulting in marked differences between the
magnitudes of the effects corresponding to the individual chronic values, because of variation in the power
of the statistical tests used, the concentrations tested, and the size and variability of the samples used
(Stephan and Rogers 1985).
An alternative approach to calculate chronic values focuses on the use of point estimates such as
regression analysis to define the dose-response relationship. With a regression equation or probit analysis,
which defines the level of adverse effects as a function of increasing concentrations of the toxic substance,
it is possible to determine the concentration that causes a relatively small effect, for example a 5 to 30
percent reduction in response. To make chronic values reflect a uniform level of effect, regression and
probit analyses were used, where possible, both to demonstrate that a significant concentration-effect
relationship was present and to estimate chronic values with a consistent level of effect. The most precise
estimates of effect concentrations can generally be made for 50 percent reduction (EC50); however, such a
major reduction is not necessarily consistent with criteria providing adequate protection. In contrast, a
concentration that causes a low level of reduction, such as an EC5 or EC 10, is rarely statistically
significantly different from the control treatment. As a compromise, the EC20 is used here to represent a
low level of effect that is generally significantly different from the control treatment across the useful
chronic datasets that are available for copper.
Regression or probit analysis was utilized to evaluate a chronic dataset only in cases where the
necessary data were available and the dataset met the following conditions: (1) it contained a control
treatment (or low exposure data point) to anchor the curve at the low end, (2) it contained at least three
concentrations, and (3) two of the data points had effect variable values below the control and above zero
(i.e., "partial effects")- Control concentrations of copper were estimated in cases where no measurements
were reported. These analyses were performed using the Toxicity Relationship Analysis Program software
18

-------
(version 1.0; U.S. EPA). Additional detail regarding the aforementioned statistical procedures is available
in the cited program.
When the data from an acceptable chronic test met the conditions for the logistic regression or
probit analysis, the EC20 was the preferred chronic value. When data did not meet the conditions, was not
available, or did not lend itself to regression analysis, best scientific judgment was used to determine the
chronic value. In this case, the chronic value is usually the geometric mean of the NOAEC and the
LOAEC. But when no treatment concentration was an NOAEC, the chronic value was less than the lowest
tested concentration.
For life-cycle, partial life-cycle, and early life stage tests, the toxicological \ unubk' used in chronic
value analyses was survival, reproduction, growth, emergence, or intrinsic g row ill rale 11' copper
apparently reduced both survival and growth (weight or length), the product of \ ariables (biomass) was
analyzed, rather than analyzing the variables separately. The most sensith e of the loxicological \ anables
was selected, for the most part, as the chronic value for the particular stud\
A species-by-species discussion of each acceptable chronic test on copper e\ alualed lor this
document is presented in Appendix H. Figures that presents the data and regression/probability distribution
line for each of the acceptable chronic test which contained sufficient acceptable data are also provided in
Appendix H.
5.3.2 Calculation of Freshwater CCC
Acceptable freshwater chronic toxicity data from earl\ 11 le staye tests, partial life-cycle tests, and
full life-cycle tests are currently available for 29 tests including data for (¦> ui\ ertebrate species and 10 fish
species (Table 2a). The 17 chronic values for invertebrate species range from 2 S3 (D. pulex) to 34.6 (.ig/L
(C. dubia); and the 12 chronic values lor the fish species raiiLie from 5 (brook trout) to 60.4 (ig/L
(northern pike). Of the 29 chronic tests, comparable acute \ allies are available for 17 of the tests (Table
2c). The relationship between acute toxicity \ allies and ACRs is presented in Figure 8. The supporting
acute and chronic test \ allies for the ACRs and the species mean ACRs are presented in Table 3c.
Tlie general effect of hardness on chronic lo\icil\ is not evident upon inspection of the limited
hardness-chronic toxicity data for the species for which such evaluations are marginally possible. Five
tests over a range of hardness \ allies were conducted w ilh D. magna (Blaylock et al. 1985; Chapman et al.
unpublished manuscript. \an I .ecu wen el al I^SS) l'i\e tests over a range of hardness values were also
conducted with (' i/iihia (lielanger el al IW. ( arlson el al. 1986; Oris et al. 1991). Winner (1985)
conducted eight lesls w ilh 1 \ />nlc\ o\ er a range of hardness values, but humic acid was also varied in
lliese lesls In llie D. nnigihi lesls. chronic values increased when hardness increased from about 50 to
about I'll) mg I.: however, in one of the tests, the chronic value decreased when hardness was further
raised lo about 200 mg I. I n a second lest conducted at a hardness of 225 mg/L, the chronic value was not
much higher llian those in the 100 mg/L hardness tests. The resulting overall slope for D. magna based on
these data is negative. The C. ththia test exhibited no discernible trends between hardness and toxicity.
One possibility is that daphnids may be ingesting precipitated copper that might form at high hardness and
high pi I Allernali\el\. Winner et al. (1985) suggest that Ca2+ and Mg2+ ions in hard water may be
displacing ( u from binding sites on humic acid, making more copper bioavailable. Because the hardness
relationship w ilh chronic toxicity is equivocal, no overall chronic slope was derived.
19

-------
1000
100
~ FW ratios
o SW ratio
A< 1
10
<
\
100
This ACR was not used to
derive Species Mean ACR
/
1000
10000
0,1
LC50 or EC50 (ug/L)
Figure 8. Relationship Between Freshwater Acute Copper Sensitivity
(LC50 or EC50) and Acute-Chronic Ratios
Because the minimum eight family data requirements for chronic toxicity data were not met in
order to use the FAV approach and because the relationship between hardness and chronic toxicity is
equivocal, EPA elected to derive the CCC utilizing the ACR approach from the Guidelines. Moreover,
this was a means of incorporating the improvements of the acute BLM calculations into the chronic
criterion derivation procedures even though, as previously mentioned, additional development is required
before the BLM will be suitable for use in evaluating chronic toxicity data directly. To calculate the FCV,
the FAV is divided by the FACR; thus, no chronic hardness slope is necessary to derive a CCC.
The freshwater FCV is derived using acute chronic ratios in conjunction with the FAV. However,
the FAV is site-water specific. To derive a FCV, the BLM is run in the toxicity mode, which utilizes the
accumulation value constant incorporated in the model to calculate an LC50 based on the site water
chemistry composition. This LC50 is then divided by the freshwater FACR to generate an FCV, which is
the basis for the CCC.
Overall, individual ACRs varied from <1 (0.55) for C. dubia (Oris et al. 1991) to 191.6 for the
snail, Campeloma decisum (Arthur and Leonard 1970). Species mean acute-chronic ratios ranged from
1.48 in saltwater for the sheepshead minnow (Hughes et al. 1989) to 171.2 in freshwater for the snail, C.
decisum. The FACR of 3.23 was calculated as the geometric mean of the ACRs for sensitive freshwater
species, C. dubia, D. magna, D. pulex, O. tshawytscha, and O. mvkiss along with the one saltwater ACR
for C. variegatus. Pursuant to the Guidelines, consideration was given to calculating the FACR based on
all ACRs within a factor of 10, but because there appeared to be a relationship between acutely sensitive
species and increases in ACRs as sensitivity decreased, the FACR was derived from data for species
whose SMAVs were close to the FAV. Based on the normalization water chemistry conditions used for
20

-------
illustrative purposes in the document, the freshwater CMC value is 4.2, which divided by the FACR of
3.23 results in a freshwater CCC of 1.3 (ig/L dissolved Cu.
5.3.3 Evaluation of the Chronic Data Available for Saltwater Species
Only one acceptable saltwater chronic copper value is available for the sheepshead minnow
(Table 2b). This chronic toxicity value was obtained from a flow-through early life stage test in which the
concentrations of copper in the test chamber were measured.
The ELS test with sheepshead minnow was one of the tests for which the chronic \ a I ue and most
sensitive effect are reported without providing concentration-response data. Thus, regression anaK sis was
not an option for statistical evaluation of the data in this case. In the 28-day ITS lesl. grow ill was reported
to be amore sensitive endpointthan mortality, and the chronic value for growth was 2-N ug I. The %-
hour LC50 reported for copper in this study was 368 (ig/L, and I lie two values pro\ ide an acule-chronic
ratio of 1.48.
A life-cycle test was conducted with the mysid. Amcricainysis huhia (formerh MysiJo/>sis
bahia). Survival of mysids was reduced at 140 pg I., and production of \ oung \ ii tuallv ceased al 77 (ig/L
(significant at /'<().05). but reproduction at 24 and 38 ug I. was nol different from that of controls. Based
on reproductive data, unacceptable effects were observed al 77 ug I., but nol al 38 ug/L, resulting in a
chronic value of 54.09 (ig/L. Using the acute value of 181 tig I., an ACR lor llus mysid would be 3.346.
Control survival in this test however, was considered madequale. lluis. llie chronic value was not used to
derive the final chronic criterion.
The ACR value for saltwater is for a relali\el\ aculeK insensili\e sallwaler species, with a
GMAV falling in the upper half of all tested sallwaler genera The lowest sallwaler acute values are from
tests with embryos and larvae of molluscs and embr\ os of summer llounder. w Inch are possibly the most
sensitive life stages of these species Although sallwaler ACRs for aculeK sensitive saltwater species are
not available, ACRs for acutely sensil i \ e Ireshwaler species are available. Some of the most acutely
sensitive freshwaler species for which ACRs are available are cladocerans C. dubia, D. magna, andD.
pulex). (Dala for I > /'ii/cx are nol I isled in Table I a because of the ranking based on the chemical
characterization of llie lesl water for the BLM / > />nlcx would be among the most acutely sensitive
species if a hardness adjustment were utilized instead of the BLM.) On the basis of data for the five
sensitive lieshw aler species along w illi the one available saltwater ACR for the sheepshead minnow, the
saltwater I ACR is the same as the freshwaler ACR of 3.23. Thus, for saltwater, the final chronic value for
copperis equal to llie LAV of <•> 188 ug I. di\ idedby the ACR of 3.23, or 1.9 (ig/L (Table 3c).
6.0 PLANT DATA
( opper has been w idel\ used as an algicide and herbicide for nuisance aquatic plants (McKnight
el al. 11>83). Although copper is known as an inhibitor of photosynthesis and plant growth, toxicity data
on individual species suilable for deriving aquatic life criteria (Table 4a, b) are not numerous.
The relationship of copper toxicity to the complexing capacity of the water or the culture medium
is now w ideK recognized (Gachter et al. 1973; Petersen 1982), and several studies have used algae to
"assa\" llie copper complexing capacity of both fresh and salt waters (Allen et al. 1983; Lumsden and
Florence 1983, Rueter 1983). It has also been shown that algae are capable of excreting complexing
substances in response to copper stress (McKnight and Morel 1979; Swallow et al. 1978; van den Berg et
al. 1979). Foster (1982) and Stokes and Hutchinson (1976) have identified resistant strains and/or species
of algae from copper (or other metal) impacted environments. A portion of this resistance probably results
from induction of the chelate-excretion mechanism. Chelate excretion by algae may also serve as a
21

-------
protective mechanism for other aquatic organisms in eutrophic waters; that is, where algae are capable of
maintaining free copper activities below harmful concentrations.
Copper concentrations from 1 to 8,000 (ig/L have been shown to inhibit growth of various
freshwater plant species. Very few of these tests, though, were accompanied by analysis of actual copper
exposure concentrations. Notable exceptions are freshwater tests with green alga, including
Chlamydomonas reinhardtii (Schafer et al. 1993; Winner and Owen 1991b), which is the only flow-
through, measured test with an aquatic plant, Chlorella vulgaris and Selenastrum capricornutum
(Blaylock et al. 1985). There is also a measured test with duckweed (Taraldsen and Norberg-King 1990).
A direct comparison between the freshwater plant data and the BLM demed criteria is difficult to
make without a better understanding of the composition of the algal media used lor di ffcrcnl studies (e.g.,
DOC, hardness, and pH) because these factors influence the applicable criteria comparison Iil.\I derived
criteria for certain water conditions, such as low to mid-range pH. hardness up in l"ii mg I. as ( a( (),.
and low DOC are in the range of, if not lower than, the lowest reported toxic cndpoinls lor freshwater
algal species and would therefore appear protecti \ c of planl species In oilier water qualih conditions
BLM-derived criteria may be significantly higher (see I 'iguie <¦>).
Data are available on the toxicity of copper in sallwaler lo se\ era I species of macroalgae and
microalgae (Table 4b). A comparison of effect lex els seen in lesls \x i ill sallwaler plants and the CMC and
CCC established to protect saltwater animals indieales ilial onl\ one lesl resull falls slightly below the
CCC. One static unmeasured test, with the microalgae Scrippsiclla facrocnsc. provides an 8-day growth
EC50 of <1 (ig/L (Saifullah 1978). However, this resull failed lo include a reported background copper
concentration of 1.86-4.18 (ig/L. placing this response in llie range of 2 Xh 5 18. In addition, the study
included a second experiment with the same species and an X-da\ grow ill I X'5<> of 5 (ig/L; adding in the
reported background range brings this EC50 to 6 Xh IX ug I. Thus, llie animal CCC appears adequate
for protecting against chronic seawater plant effects obserx ed in lesls included in Table 4b.
Two publications provide dala for the red algae ( hampiaparvula that indicate that reproduction
of this species is cspccialK sensilixe lo copper The melhods manual (U.S. EPA 1988) for whole effluent
toxicity (WIT) testing contains the resulls of six experiments showing nominal reproduction LOECs
from 48-hr exposures lo I <) lo 2 5 ug I. copper (mean 2 <) (.ig/L); these tests used amixture of 50 percent
sterile seawaler and 5<) percent (il'2 medium copper The second study by Morrison et al. (1989)
evaluated inlcrlaboralor\ \ anal ion of the 4X-hr WIT lesl procedure; this six-test study gave growth EC50
values from <) 8 lo I .<¦> tig I. (mean 1.0 ug I.) Thus, lliere are actually 12 tests that provide evidence of
significanl reproductive impainiieiil in (' purvnlu al nominal copper concentrations between 0.8 and 2.5
(.ig/L. which is in llie range of llie sallwaler ('('(' I'or lliese studies though, the dilution water source was
not identified.
One difficult} in assessing lliese data is the uncertainty of the copper concentration in the test
solutions, primarily w illi respect to any background copper that might be found in the dilution water,
especially with solutions compounded from sea salts or reagents. Thus, with a CCC of 1.9 (ig/L dissolved
copper, llie significance of a 1 or 2 (ig/L background copper level to a 1 to 3 (ig/L nominal effect level
can be considerable
The reproduction of other macroalgae appears to be generally sensitive to copper, but not to the
exlenl of ('hampia. Many of these other macroalgae appear to have greater ecological significance than
Champia, several forming significant intertidal and subtidal habitats for other saltwater organisms, as well
as being a major food source for grazers. Reproductive and growth effects on the other species of
macroalgae sometimes appear to occur at copper concentrations between 5 and 10 (ig/L (Appendix C,
Other Data). Thus, most major macrophyte groups seem to be adequately protected by the CMC and
CCC, but appear similar in sensitivity to some of the more sensitive groups of saltwater animals.
22

-------
7.0 BIOACCUMULATION OF COPPER
Because no regulatory action levels for copper and human health are applicable to aquatic
organisms, and no consumption limits are established for wildlife, there is no basis for developing a
residue-based criterion (or final residue value) for copper based on EPA's current Guidelines.
As more information is acquired about food consumption as a route of copper exposure to fish
and macroinvertebrates, bioaccumulation potential—and the link to environmental source
concentrations—may become a considerably more important factor in establishing criteria. Currently, the
database available for calculating potential bioconcentration (from the water) or bioaccumulation (from
all sources) is limited. This is especially true given the current Guidelines requirement lor dem mil: IJCFs
that all water concentrations be adequately quantitated, and that tissue levels lie approachiiil: slead\ state
or else that tests be at least 28 days in duration. Additionally, bioconcentralion factors lor copper usually
are not constant; instead, they generally decrease as aqueous copper concentrations increase (\lc( ieer et
al. 2003).
After culling the data according to the Guidelines, the only acceptable bioaccumulation factors
for copper (Table 5a, b) were juvenile fathead minnows (4M). Asiatic clams (45..300), pohchaele worms
(1,006-2,950), mussels (2,491-7,730), and Pacific o\ slers (33.4<)(i 57.<)<)<))
8.0 OTHER DATA
Many of the data identified for this effort are 11 sled in Appendix ('. Oilier Data, for various
reasons, including exposure durations other than '¦Hi hours w iill llie same species reported in Tables la and
lb, with some exposures lasting up to 30 days. Acule \ allies lor lesl durations less than 96 hours are
available for several species not shown in Tables la and lb Slill. lliese species have approximately the
same sensitivities to copperas species in llie same I ami lies 11 sled in Tallies la and lb. Reported LC50s at
200 hours for chinook salmon and rainbow iroul (Chapman ll>7X) differ onl\ slightly from 96-hour
LC50s reported forthese same species in llie same waler
A number of other acule lesls in Appendix ( were conducted in dilution waters that were not
considered appropnale for criteria de\ elopmenl linings et al. (1976) and Geckler et al. (1976) conducted
tests w illi main species in slream waler lliat contained a large amount of effluent from a sewage treatment
plant Wallen el al ( ll>57) lesled mosquilofish in a turbid pond water. Until chemical measurements that
correlale well w i ill llie lo\icil\ of copper in a wide variety of waters are identified and widely used,
resulls of lesls in unusual dilution waters, such as those in Appendix C, will not be very useful for
deriving waler quahl\ criteria
Appendix ( also includes lesls based on physiological effects, such as changes in growth,
appelile. blood paramelers. slamina. elc. These were included in Appendix C because they could not be
direclly interpreted for demalion of criteria.
A di rect comparison of a particular test result to a BLM-derived criterion is not always
straightforward. particularly if complete chemical characterization of the test water is not available. Such
is llie case for a number of studies included in Appendix C. While there are some test results with effect
concenlralions below the example criteria concentrations presented in this document, these same effect
concentrations could be above criteria derived for other normalization chemistries, raising the question as
to what is the appropriate comparison to make. For example, Appendix C includes an EC50 for D. Pulex
of 3.6 (ig/L (Koivisto et al. 1992) at an approximate hardness of 25 mg/L (33 mg/L as CaC03). Yet,
example criteria at a hardness of 25 mg/L (as CaC03) (including those in Figure 6) range from 0.23 (ig/L
(DOC = 0.1 mg/L) to 4.09 (ig/L (DOC = 2.3 mg/L) based on the DOC concentration selected for the
23

-------
synthetic water recipe. The chemical composition for the Koivisto et al. (1992) study would dictate what
the appropriate BLM criteria comparison should be.
Based on the expectation that many of the test results presented in Appendix C were conducted in
laboratory dilution water with low levels of DOC, the appropriate comparison would be to the criteria
derived from low DOC waters. Comparing many of the values in Appendix C to the example criteria
presented in this document, it appears that a large proportion of Appendix C values are above these
concentration levels. This is a broad generalization though and as stated previously, all important water
chemistry variables that affect toxicity of copper to aquatic organisms should be considered before
making these types of comparisons.
Studies not considered suitable for criteria development were placed in Appendix I. I nuscd Data.
9.0 NATIONAL CRITERIA STATEMENT
The procedures described in the "Guidelines for Dem mg Numerical Nalional \Yaler Qualil\
Criteria for the Protection of Aquatic Organisms and Their I ses" indicate thai. except where a local I y
important species is very sensitive, freshwater aqualic organisms and llieir uses should not he affected
unacceptably if the 4-day average concentration of dissolved copper does nol exceed the BLM-derived
site-water LC50 (i.e., FAV) divided by the FACR more lhan once e\ er\ 3 \ ears on the average (i.e., the
CCC) and if the 24-hour average dissolved copper concenlralion does nol exceed llie BLM-derived site-
LC50 (or FAV) divided by two, more than once e\ er\ 3 \ ears on llie a\ erage (i e . ihe CMC).
The procedures described in the "Guidelines for l)eri\ mg Numerical National Water Quality
Criteria for the Protection of Aquatic Organisms and Their I ses" indicale lluil. evcept where a locally
important species is very sensitive, saltwater aqualic organisms and llieir uses should not be affected
unacceptably if the 4-day average concenlralion of dissok ed copper does nol exceed 1.9 (ig/L more than
once every 3 years on the average and if llie 24-hour average concenlralion does not exceed 3.1 (ig/L
more than once every 3 years on the a\ erage
A return interval of 3 \ ears continues lo he I PA's general recommendation. However, the
resilience of ecos\ slems and llieir ahihl\ lo reco\ er differ greatly. Therefore, a site-specific return interval
for the criteria ma\ he established if adequate juslificalion is provided.
10.0 IMPLEMENTATION
The use of criteria in designing waste treatment facilities requires selection of an appropriate
wasteload allocation model. D\ naniic models are preferred for application of these criteria. Limited data
or other laclors ma\ make their use impractical, in which case one should rely on a steady-state model.
LIW recommends llie interim use of IQ5 or 1Q10 for criterion maximum concentration design flow and
7Q5 or 7Q10 for the criterion continuous concentration design flow in steady-state models for unstressed
and stressed systems, respectively. These matters are discussed in more detail in the Technical Support
Document for Water Quality-Based Toxics Control (U.S. EPA 1991).
Willi regard to BLM-derived freshwater criteria, to develop a site-specific criterion for a stream
reach, one is faced with determining what single criterion is appropriate even though a BLM-calculated
"inslanlaneous criterion" (i.e., a criterion value appropriate for specific water chemistry conditions at a
particular instant) will be time-variable. This is not a new problem unique to the BLM—hardness-
dependent metals criteria are also time-variable values. Although the variability of hardness over time can
be characterized, EPA has not provided guidance on how to calculate site-specific criteria considering this
variability. Multiple input parameters for the BLM complicate the calculation of site-specific criteria
because of their combined effects on variability. EPA is currently in the process of developing guidance
24

-------
on how to address these factors. Presently, EPA expects that few sites have sufficient data for all the input
parameters to enable adequate characterization of the inherent variation at a site. Therefore, EPA is
currently evaluating probabilistic techniques (Monte Carlo techniques) and statistical analyses to address
this issue and anticipates publishing separate BLM implementation guidance.
25

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference
Worm,
adult (mixed age)
S,M,T
N
130
—
LUVA01S
39.06
50.12
Schubauer-Berigan et al. 1993
Lumbriculus variegatus
adult (mixed age)
S,M,T
N
270
—
LUVA02S
57.44

Schubauer-Berigan et al. 1993

adult (mixed age)
S,M,T
N
500
...
LUVA03S
56.12

Schubauer-Berigan et al. 1993
Snail,
1.1-2.7 cm
F,M,T
S
2000
...
CADE01F
3661
3027
Arthur and Leonard 1970
Campeloma decisum
1.1-2.7 cm
F,M,T
S
1400
...
CADE02F
2502

Arthur and Leonard 1970
Snail,
adult
F,M,T
C
15
...
JUPL01F
10.84
10.84
Nebeker et al. 1986b
Juga plicifera









Snail,
adult
F,M,T
C
8
...
LIVI01F
5.75
5.75
Nebeker et al. 1986b
Lithoglyphus virens









Snail,
0.4-0.7 cm
F,M,T
S
41
...
PHIN01F
19.91
18.60
Arthur and Leonard 1970
Physa integra
0.4-0.7 cm
F,M,T
S
37
...
PHIN02F
17.37

Arthur and Leonard 1970
Freshwater mussel,
juvenile
S,M,T
S
27
...
ACPE01S
10.47
11.35
Keller unpublished
Actinonaias pectorosa
juvenile
S,M,T
S
<29
...
ACPE02S
12.31

Keller unpublished
Freshwater mussel,
1 -2 d juv
S,M,T
S
86
...
UTIM01S
170.8
35.97
Keller and Zam 1991
Utterbackia imbecillis
1-2djuv
S,M,T
S
199
...
UTIM02S
175.3

Keller and Zam 1991

juvenile
S,M,T
N
76
...
UTIM03S
36.22

Keller unpublished

juvenile
S,M,T
N
85
...
UTIM04S
38.09

Keller unpublished

juvenile
S,M,T
N
41
...
UTIM05S
21.54

Keller unpublished

juvenile
S,M,T
S
79
...
UTIM06S
41.38

Keller unpublished

juvenile
S,M,T
S
72
...
UTIM07S
35.34

Keller unpublished

juvenile
S,M,T
S
38
...
UTIM08S
29.87

Keller unpublished
Cladoceran,
<4 h
S,M,T
C
19
...
CEDU01S
9.24
5.75
Carlson et al. 1986
Ceriodaphnia dubia
<4 h
S,M,T
C
17
...
CEDU02S
8.24

Carlson et al. 1986

<12 h
S,M,D
...
-
25
CEDU03S
7.25

Belanger et al. 1989

<12 h
S,M,D
...
-
17
CEDU04S
4.71

Belanger et al. 1989

<12 h
S,M,D
...
-
30
CEDU05S
8.96

Belanger et al. 1989

<12 h
S,M,D
...
-
24
CEDU06S
6.92

Belanger et al. 1989

<12 h
S,M,D
...
-
28
CEDU07S
8.26

Belanger et al. 1989

<12 h
S,M,D
...
-
32
CEDU08S
9.67

Belanger et al. 1989

<12 h
S,M,D
...
-
23
CEDU09S
6.60

Belanger et al. 1989

<12 h
S,M,D
...
-
20
CEDU10S
5.64

Belanger et al. 1989

<12 h
S,M,D
...
-
19
CEDU11S
5.33

Belanger et al. 1989

<12 h
S,M,D
...
-
26
CEDU12S
2.99

Belanger et al. 1989

<12 h
S,M,D
...
-
21
CEDU13S
2.36

Belanger et al. 1989

<12 h
S,M,D
...
-
27
CEDU14S
3.12

Belanger et al. 1989

<12 h
S,M,D
...
-
37
CEDU15S
4.51

Belanger et al. 1989

<12 h
S,M,D
...
-
34
CEDU16S
4.07

Belanger et al. 1989

<12 h
S,M,D
...
-
67
CEDU17S
5.16

Belanger et al. 1989

<12 h
S,M,D
...
-
38
CEDU18S
2.52

Belanger et al. 1989

<12 h
S,M,D
...
-
78
CEDU19S
6.35

Belanger et al. 1989

<12 h
S,M,D
...
-
81
CEDU20S
6.70

Belanger et al. 1989

<12 h
S,M,D
...
-
28
CEDU21S
3.97

Belanger and Cherry 1990

<12 h
S,M,D
...
-
84
CEDU22S
10.21

Belanger and Cherry 1990
26

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference

<12 h
S,M,T
S
13.4
—
CEDU23S
6.10

Oris et al. 1991

<24 h
R,M,T,D
S
6.98
5.54
CEDU24R
5.06

Diamond et al. 1997b
Cladoceran,
1 d
S,M,T
C
9.1
...
DAMA01S
2.93
4.98
Nebeker et al. 1986a
Daphnia magna
1 d
S,M,T
C
11.7
...
DAMA02S
3.83

Nebeker et al. 1986a

<2 h
S,M,T
C
6.6
...
DAMA03S
2.12

Nebeker et al. 1986a

<2 h
S,M,T
C
9.9
...
DAMA04S
3.25

Nebeker et al. 1986a

1 d
S,M,T
C
11.7
...
DAMA05S
12.06

Nebeker etal. 1986a

<4 h
S,M,T
C
6.7
...
DAMA06S
7.26

Nebeker etal. 1986a

1 d
S,M,T
C
9.1
...
DAMA07S
3.76

Nebeker etal. 1986a

<2 h
S,M,T
C
5.2
...
DAMA08S
1.80

Nebeker etal. 1986a

<24 h
S,M,T
S
41.2
...
DAMA09S
22.21

Baird et al. 1991

<24 h
S,M,T
S
10.5
...
DAMA10S
5.83

Baird et al. 1991

<24 h
S,M,T
S
20.6
...
DAMA11S
11.68

Baird et al. 1991

<24 h
S,M,T
S
17.3
...
DAMA12S
9.77

Baird et al. 1991

<24 h
S,M,T
S
70.7
...
DAMA13S
34.71

Baird etal. 1991

<24 h
S,M,T
S
31.3
...
DAMA14S
17.37

Baird etal. 1991

<24 h
S,M,I
S
7.1
...
DAMA15S
2.08

Meador1991

<24 h
S,M,I
S
16.4
...
DAMA16S
3.38

Meador 1991

<24 h
S,M,I
S
39.9
...
DAMA17S
4.16

Meador 1991

<24 h
S,M,I
S
18.7
...
DAMA18S
2.68

Meador 1991

<24 h
S,M,I
S
18.9
...
DAMA19S
1.53

Meador 1991

<24 h
S,M,I
s
39.7
...
DAMA20S
2.38

Meador 1991

<24 h
S,M,I
s
46
...
DAMA21S
7.37

Meador 1991

<24 h
S,M,I
s
71.9
...
DAMA22S
8.26

Meador 1991

<24 h
S,M,I
s
57.2
...
DAMA23S
4.65

Meador 1991

<24 h
S,M,I
s
67.8
...
DAMA24S
3.30

Meador 1991

<24 h
S,M,T
c
26
...
DAMA25S
9.24

Chapman et al. Manuscript

<24 h
S,M,T
c
30
...
DAMA26S
8.09

Chapman et al. Manuscript

<24 h
S,M,T
c
38
...
DAMA27S
8.84

Chapman et al. Manuscript

<24 h
S,M,T
c
69
...
DAMA28S
11.12

Chapman et al. Manuscript

<24 h
S,M,T,D
s
4.8
...
DAMA29S
1.08

Long's MS Thesis

<24 h
S,M,T,D
s
7.4
...
DAMA30S
15.57

Long's MS Thesis

<24 h
S,M,T,D
s
6.5
...
DAMA31S
2.17

Long's MS Thesis
Cladoceran,
...
S,M,T
s
11.4
...
DAPC01S
1.37
2.54
Lind et al. Manuscript (1978)
Daphnia pulicaria
...
S,M,T
s
9.06
...
DAPC02S
0.87

Lind et al. Manuscript (1978)

...
S,M,T
s
7.24
...
DAPC03S
0.74

Lind et al. Manuscript (1978)

...
S,M,T
s
10.8
...
DAPC04S
0.94

Lind et al. Manuscript (1978)

...
S,M,T
s
55.4
...
DAPC05S
7.87

Lind et al. Manuscript (1978)

...
S,M,T
s
55.3
...
DAPC06S
5.33

Lind et al. Manuscript (1978)

...
S,M,T
s
53.3
...
DAPC07S
3.59

Lind et al. Manuscript (1978)

...
S,M,T
s
97.2
...
DAPC08S
3.59

Lind et al. Manuscript (1978)

...
S,M,T
s
199
...
DAPC09S
2.70

Lind et al. Manuscript (1978)

...
S,M,T
s
213
...
DAPC1 OS
7.02

Lind et al. Manuscript (1978)
27

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(|jg/L)f
Species Mean
Acute Value (|jg/L)s
Reference
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
165
35.5
78.8
113
76.4
84.7
184
9.3
17.8
23.7
27.3
25.2
25.1
25.1
DAPC11S
DAPC12S
DAPC13S
DAPC14S
DAPC15S
DAPC16S
DAPC17S
DAPC18S
DAPC19S
DAPC20S
DAPC21S
DAPC22S
DAPC23S
DAPC24S
5.28
1.45
2.29
0.98
1.89
6.27
6.78
0.93
1.69
2.13
2.17
3.40
3.93
4.66
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Lind et al.
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
Manuscript
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
(1978)
Cladoceran,
Scapholeberis sp.
adult
S,M,T
18
SCSP01S
8.77
8.77
Carlson et al. 1986
Amphipod,
Gammarus
1-3 d
1-3 d
F,M,T
F,M,T
22
19
GAPS01F
GAPS02F
9.31
7.88
8.57
Arthur and Leonard 1970
Arthur and Leonard 1970
Amphipod,
Hyalella azteca
7-14 d
7-14 d
7-14 d
<7 d
<7 d
<7 d
<7 d
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
S,M,T
17
24
87
24.3
23.8
8.2
10
HYAZ01S
HYAZ02S
HYAZ03S
HYAZ04S
HYAZ05S
HYAZ06S
HYAZ07S
12.50
10.24
16.20
7.19
7.03
13.79
16.83
11.36
Schubauer-Berigan et al. 1993
Schubauer-Berigan et al. 1993
Schubauer-Berigan et al. 1993
Welsh 1996
Welsh 1996
Welsh 1996
Welsh 1996
Stonefly,
Acroneuria lycorias
S,M,T
8300
ACLY01S
17484
17484
Warnickand Bell 1969
Midge,
Chironomus decorus
4th instar
S,M,T
739
CHDE01S
1925
1925
Kosalwat and Knight 1987
Shovelnose sturgeon,
S caphirhynchus
platorynchus
fry, 6.01 cm, 0.719 j
S,M,T
160
SCPL01S
72.50
72.50
Dwyer et al. 1999
Apache trout,
Ortcorhynchus apache
larval, 0.38 g
S,M,T
70
ONAP01S
33.70
33.70
Dwyer et al. 1995
Lahontan cutthroat trout,
Ortcorhynchus clarki
henshawi
larval, 0.34 t
larval, 0.57 t
S,M,T
S,M,T
60
ONCL01S
ONCL02S
35.50
25.55
31.28
Dwyer et al. 1995
Dwyer et al. 1995
28

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total |jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference
Cutthroat trout,
7.4 cm, 4.2 g
F,M,T,D
C
398.91
367
ONCL03F
69.79

Chakoumakos et al. 1979
Oncorhynchus clarki
6.9 cm, 3.2 g
F,M,T,D
C
197.87
186
ONCL04F
42.67

Chakoumakos et al. 1979

8.8 cm, 9.7 g
F,M,T,D
C
41.35
36.8
ONCL05F
19.52

Chakoumakos et al. 1979

8.1 cm, 4.4 g
F,M,T,D
C
282.93
232
ONCL06F
47.53

Chakoumakos et al. 1979

6.8 cm, 2.7 g
F,M,T,D
C
186.21
162
ONCL07F
109.1

Chakoumakos et al. 1979

7.0 cm, 3.2 g
F,M,T,D
c
85.58
73.6
ONCL08F
36.29

Chakoumakos et al. 1979

8.5 cm, 5.2 g
F,M,T,D
c
116.67
91
ONCL09F
17.19

Chakoumakos et al. 1979

7.7 cm, 4.4 g
F,M,T,D
c
56.20
44.4
ONCL10F
16.79

Chakoumakos et al. 1979

8.9 cm, 5.7 g
F,M,T,D
c
21.22
15.7
ONCL11F
9.80

Chakoumakos et al. 1979
Pink salmon,
ilevin (newly hatched
F,M,T
s
143
...
ONGO01F
38.75
37.30
Servizi and Martens 1978
Oncorhynchus gorbuscha
alevin
F,M,T
s
87
...
ONGO02F
18.46

Servizi and Martens 1978

fry
F,M,T
s
199
...
ONGO03F
72.52

Servizi and Martens 1978
Coho salmon,
6g
R,M,T,I
...
164
...
ONKI01R
91.75
15.98
Buckley 1983
Oncorhynchus kisutch
parr
F,M,T
c
33
...
ONKI02F
18.70

Chapman 1975

adult, 2.7 kg
F,M,T
c
46
...
ONKI03F
29.13

Chapman and Stevens 1978

fry
F,M,T,D,I
...
61
49
ONKI04F
11.42

Mudge et al. 1993

smolt
F,M,T,D,I
...
63
51
ONKI05F
11.90

Mudge et al. 1993

fry
F,M,T,D,I
...
86
58
ONKI06F
10.76

Mudge et al. 1993

parr
F,M,T,D,I
...
103
78
ONKI07F
20.95

Mudge et al. 1993
Rainbow trout,
larval, 0.67 g
S,M,T
s
110
...
ONMY01S
43.37
21.60
Dwyer et al. 1995
Oncorhynchus mykiss
larval, 0.48 g
S,M,T
s
50
...
ONMY02S
26.12

Dwyer et al. 1995

larval, 0.50 g
S,M,T
s
60
...
ONMY03S
30.49

Dwyer et al. 1995

swim-up, 0.25 g
R,M,T,D
c
46.7
40
ONMY04R
10.21

Cacela et al. 1996

swim-up, 0.25 g
R,M,T,D
c
24.2
19
ONMY05R
9.04

Cacela et al. 1996

swim-up, 0.20-0.24 g
R,M,T,D
c
0
3.4
ONMY06R
5.49

Welsh et al. 2000

swim-up, 0.20-0.24 g
R,M,T,D
c
0
8.1
ONMY07R
10.29

Welsh et al. 2000

swim-up, 0.20-0.24 g
R,M,T,D
c
0
17.2
ONMY08R
14.63

Welsh et al. 2000

swim-up, 0.20-0.24 g
R,M,T,D
c
0
32
ONMY09R
20.86

Welsh et al. 2000

alevin
F,M,T
c
28
...
ONMY10F
18.16

Chapman 1975, 1978

swim-up, 0.17 g
F,M,T
c
17
...
ONMY11F
11.06

Chapman 1975, 1978

parr, 8.6 cm, 6.96 g
F,M,T
c
18
...
ONMY12F
8.63

Chapman 1975, 1978
smolt, 18.8 cm, 68.19
F,M,T
c
29
...
ONMY13F
20.04

Chapman 1975, 1978

1 g
F,M,T,D
c
-
169
ONMY14F
22.60

Chakoumakos et al. 1979

4.9 cm
F,M,T,D
c
-
85.3
ONMY15F
9.77

Chakoumakos et al. 1979

6.0 cm, 2.1 g
F,M,T,D
c
-
83.3
ONMY16F
9.50

Chakoumakos et al. 1979

6.1 cm, 2.5 g
F,M,T,D
c
-
103
ONMY17F
12.21

Chakoumakos et al. 1979

2.6 g
F,M,T,D
c
-
274
ONMY18F
42.87

Chakoumakos et al. 1979

4.3 g
F,M,T,D
c
-
128
ONMY19F
15.91

Chakoumakos et al. 1979

9.2 cm, 9.4 g
F,M,T,D
c
-
221
ONMY20F
32.16

Chakoumakos et al. 1979

9.9 cm, 11.5 g
F,M,T,D
c
-
165
ONMY21F
21.91

Chakoumakos et al. 1979

11.8 cm, 18.7 g
F,M,T,D
c
-
197
ONMY22F
27.61

Chakoumakos et al. 1979

13.5 cm, 24.9 g
F,M,T,D
c
-
514
ONMY23F
95.34

Chakoumakos et al. 1979

13.4 cm, 25.6 g
F,M,T,D
c
-
243
ONMY24F
36.51

Chakoumakos et al. 1979
29

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference

6.7 cm, 2.65 g
F,M,T
C
2.8
—
ONMY25F
5.83

Cusimano et al. 1986

parr
F,M,T,D,I
...
90
68
ONMY26F
17.96

Mudge et al. 1993

swim-up, 0.29 g
F,M,T,D
c
19.6
18
ONMY27F
8.85

Cacela et al. 1996

swim-up, 0.25 g
F,M,T,D
c
12.9
12
ONMY28F
34.48

Cacela et al. 1996

swim-up, 0.23 g
F,M,T,D
c
5.9
5.7
ONMY29F
23.48

Cacela et al. 1996

swim-up, 0.23 g
F,M,T,D
c
37.8
35
ONMY30F
15.35

Cacela et al. 1996

swim-up, 0.26 g
F,M,T,D
c
25.1
18
ONMY31F
35.69

Cacela et al. 1996

swim-up, 0.23 g
F,M,T,D
c
17.2
17
ONMY32F
24.39

Cacela et al. 1996

0.64 g, 4.1 cm
F,M,T,D
c
101
...
ONMY33F
42.35

Hansen et al. 2000

0.35 g, 3.4 cm
F,M,T,D
c
308
...
ONMY34F
94.18

Hansen et al. 2000

0.68 g, 4.2 cm
F,M,T,D
c
93
...
ONMY35F
100.8

Hansen et al. 2000

0.43 g, 3.7 cm
F,M,T,D
c
35.9
...
ONMY36F
52.78

Hansen et al. 2000

0.29 g, 3.4 cm
F,M,T,D
c
54.4
...
ONMY37F
49.46

Hansen et al. 2000
Sockeye salmon,
ilevin (newly hatched
F,M,T
s
190
...
ONNE01F
65.95
50.83
Servizi and Martens 1978
Ortcorhynchus nerka
alevin
F,M,T
s
200
...
ONNE02F
73.27

Servizi and Martens 1978

alevin
F,M,T
s
100
...
ONNE03F
22.28

Servizi and Martens 1978

alevin
F,M,T
s
110
...
ONNE04F
25.68

Servizi and Martens 1978

alevin
F,M,T
s
130
...
ONNE05F
33.19

Servizi and Martens 1978

fry
F,M,T
s
150
...
ONNE06F
42.32

Servizi and Martens 1978

smolt, 5.5 g
F,M,T
s
210
...
ONNE07F
80.98

Servizi and Martens 1978

smolt, 5.5 g
F,M,T
s
170
...
ONNE08F
53.26

Servizi and Martens 1978

smolt, 5.5 g
F,M,T
s
190
...
ONNE09F
65.95

Servizi and Martens 1978

smolt, 4,8 g
F,M,T
s
240
...
ONNE10F
104.3

Servizi and Martens 1978
Chinook salmon,
alevin, 0.05 g
F,M,T
c
26
...
ONTS01F
12.84
25.68
Chapman 1975, 1978
Ortcorhynchus tshawytsche
swim-up, 0.23 g
F,M,T
c
19
...
ONTS02F
9.11

Chapman 1975, 1978

parr, 9.6 cm, 11.58 g
F,M,T
c
38
...
ONTS03F
25.34

Chapman 1975, 1978
smolt, 14.4 cm, 32.46
F,M,T
c
26
...
ONTS04F
17.95

Chapman 1975, 1978

3 mo, 1.35 g
F,M,T,I
c
10.2
...
ONTS05F
17.68

Chapman and McCrady 1977

3 mo, 1.35 g
F,M,T,I
c
24.1
...
ONTS06F
30.37

Chapman and McCrady 1977

3 mo, 1.35 g
F,M,T,I
c
82.5
...
ONTS07F
33.95

Chapman and McCrady 1977

3 mo, 1.35 g
F,M,T,I
c
128.4
...
ONTS08F
21.38

Chapman and McCrady 1977

swim-up, 0.36-0.45 g
F,M,T,D
c
0
7.4
ONTS09F
35.81

Welsh et al. 2000

swim-up, 0.36-0.45 g
F,M,T,D
c
0
12.5
ONTS10F
28.39

Welsh et al. 2000

swim-up, 0.36-0.45 g
F,M,T,D
c
0
14.3
ONTS11F
31.17

Welsh et al. 2000

swim-up, 0.36-0.45 g
F,M,T,D
c
0
18.3
ONTS12F
44.51

Welsh et al. 2000
30

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference
Bull trout,
0.130 g, 2.6 cm
F,M,T,D
C
228
—
SACO01F
75.20
72.36
Hansen et al. 2000
Salvelinus confluentus
0.555 g, 4.0 cm
F,M,T,D
C
207
—
SACO02F
69.33

Hansen et al. 2000

0.774 g, 4.5 cm
F,M,T,D
C
66.6
...
SACO03F
77.73

Hansen et al. 2000

1.520 g, 5.6 cm
F,M,T,D
C
50
...
SACO04F
66.12

Hansen et al. 2000

1.160 g, 5.2 cm
F,M,T,D
C
89
...
SACO05F
74.05

Hansen et al. 2000
Chiselmouth,
4.6 cm, 1.25 g
F,M,T
c
143
...
ACAL01F
187.5
187.5
Andros and Garton 1980
Acrocheilus alutaceus









Bonytail chub,
larval, 0.29 g
S,M,T
s
200
...
GIEL01S
65.62
65.62
Dwyer et al. 1995
Gila elegans









Golden shiner,
...
F,M,T
c
84600
...
NOCR01F
101999
101999
Hartwell et al. 1989
Notemigonus crysoleucas









Fathead minnow,
adult, 40 mm
S,M,T
s
310
...
PIPR01S
236.3
72.07
Birge et al. 1983
Pimephales promelas
adult, 40 mm
S,M,T
s
120
...
PIPR02S
95.02

Birge et al. 1983

adult, 40 mm
S,M,T
s
390
...
PIPR03S
193.6

Birge et al. 1983; Benson & Birge

...
S,M,T
c
55
...
PIPR04S
34.74

Carlson et al. 1986

...
S,M,T
c
85
...
PIPR05S
63.41

Carlson et al. 1986

<24 h
S,M,T
N
15
...
PIPR06S
11.54

Schubauer-Berigan et al. 1993

<24 h
S,M,T
N
44
...
PIPR07S
18.53

Schubauer-Berigan et al. 1993

<24 h
S,M,T
N
>200
...
PIPR08S
25.04

Schubauer-Berigan et al. 1993

<24 h, 0.68 mg
S,M,T
S
4.82
...
PIPR09S
7.75

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
8.2
...
PIPR10S
14.86

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
31.57
...
PIPR11S
22.35

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
21.06
...
PIPR12S
15.66

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
35.97
...
PIPR13S
18.72

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
59.83
...
PIPR14S
14.72

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
4.83
...
PIPR15S
5.06

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
70.28
...
PIPR16S
11.66

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
83.59
...
PIPR17S
6.98

Welsh etal. 1993

<24 h, 0.68 mg
S,M,T
S
182
...
PIPR18S
11.99

Welsh etal. 1993

larval, 0.32 g
S,M,T
s
290
...
PIPR19S
76.77

Dwyer et al. 1995

larval, 0.56 g
S,M,T
s
630
...
PIPR20S
165.4

Dwyer et al. 1995

larval, 0.45 g
S,M,T
s
400
...
PIPR21S
107.6

Dwyer et al. 1995

larval, 0.39 g
S,M,T
s
390
...
PIPR22S
169.2

Dwyer et al. 1995
3.2-5.5 cm, 0.42-3.23
S,M,T
s
450
...
PIPR23S
161.2

Richards and Beitinger 1995
2.8-5.1 cm, 0.30-2.38
S,M,T
s
297
...
PIPR24S
81.18

Richards and Beitinger 1995
1.9-4.6 cm, 0.13-1.55
S,M,T
s
311
...
PIPR25S
70.03

Richards and Beitinger 1995
3.0-4.8 cm, 0.23-1.36
S,M,T
s
513
...
PIPR26S
78.68

Richards and Beitinger 1995

<24 h
S,M,T,D
s
62.23
53.96
PIPR27S
23.42

Erickson et al. 1996a,b

<24 h
S,M,T,D
s
190.5
165.18
PIPR28S
72.39

Erickson et al. 1996a,b

<24 h
S,M,T,D
s
68.58
59.46
PIPR29S
26.01

Erickson et al. 1996a,b

<24 h
S,M,T,D
s
168.91
146.46
PIPR30S
74.50

Erickson et al. 1996a,b

<24 h
S,M,T,D
s
94.62
82.04
PIPR31S
44.23

Erickson et al. 1996a,b
31

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(ijg/L)f
Species Mean
Acute Value (|jg/L)9
Reference

<24 h
S,M,T,D
S
143.51
124.43
PIPR32S
91.55

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
120.65
103.76
PIPR33S
76.77

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
196.85
167.32
PIPR34S
100.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
133.35
120.02
PIPR35S
114.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
184.15
169.42
PIPR36S
192.6

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
304.8
268.22
PIPR37S
119.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
292.1
242.44
PIPR38S
161.1

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
133.35
113.35
PIPR39S
91.76

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
92.71
77.88
PIPR40S
66.17

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
152.4
128.02
PIPR41S
108.5

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
177.8
151.13
PIPR42S
133.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
203.2
166.62
PIPR43S
137.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
190.5
163.83
PIPR44S
125.8

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
196.85
157.48
PIPR45S
148.8

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
234.95
199.71
PIPR46S
161.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
146.05
128.52
PIPR47S
109.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
171.45
150.88
PIPR48S
129.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
152.4
131.06
PIPR49S
95.81

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
184.15
160.21
PIPR50S
107.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
203.2
182.88
PIPR51S
105.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
203.2
180.85
PIPR52S
85.58

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
203.2
176.78
PIPR53S
104.4

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
222.25
188.91
PIPR54S
119.3

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
146.05
125.60
PIPR55S
99.21

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
139.7
117.35
PIPR56S
78.65

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
139.7
114.55
PIPR57S
72.30

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
152.4
126.49
PIPR58S
76.77

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
203.2
172.72
PIPR59S
103.1

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
196.85
167.32
PIPR60S
91.87

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
266.7
226.70
PIPR61S
119.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
99.06
84.20
PIPR62S
127.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
111.13
97.79
PIPR63S
151.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
78.74
70.08
PIPR64S
103.9

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
92.71
81.58
PIPR65S
108.4

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
85.09
77.43
PIPR66S
93.19

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
123.19
110.87
PIPR67S
105.3

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
165.1
151.89
PIPR68S
93.38

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
190.5
175.26
PIPR69S
72.74

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
165.1
145.29
PIPR70S
122.1

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
127
111.76
PIPR71S
88.62

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
92.08
79.18
PIPR72S
52.68

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
66.68
60.01
PIPR73S
34.17

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
393.70
370.08
PIPR74S
156.7

Er
ckson et al. 1996a,b
32

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference

<24 h
S,M,T,D
S
317.50
292.10
PIPR75S
233.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
107.95
101.47
PIPR76S
153.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
67.95
62.51
PIPR77S
129.3

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
45.72
42.06
PIPR78S
108.4

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
177.80
172.47
PIPR79S
170.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
13.97
12.43
PIPR80S
25.34

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
304.80
271.27
PIPR81S
138.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
71.12
71.12
PIPR82S
97.64

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
83.82
79.63
PIPR83S
99.81

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
104.78
99.54
PIPR84S
105.8

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
139.70
132.72
PIPR85S
126.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
152.40
137.16
PIPR86S
106.1

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
260.35
182.25
PIPR87S
105.9

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
488.95
268.92
PIPR88S
112.4

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
203.20
188.98
PIPR89S
135.6

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
704.85
662.56
PIPR90S
172.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
952.50
904.88
PIPR91S
183.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
1244.60
995.68
PIPR92S
174.9

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
1485.90
891.54
PIPR93S
126.5

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
781.05
757.62
PIPR94S
170.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
S
476.25
404.81
PIPR95S
161.2

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
273.05
262.13
PIPR96S
175.3

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
22.23
20.45
PIPR97S
51.55

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
24.13
23.16
PIPR98S
57.82

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
36.83
34.99
PIPR99S
89.18

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
27.94
27.94
PI PR100S
69.87

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
26.67
26.67
PI PR101S
65.31

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
20.32
20.32
PI PR102S
44.85

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
26.67
26.67
PI PR103S
58.92

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
190.50
182.88
PI PR104S
134.8

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
109.86
96.67
PI PR105S
85.13

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
203.20
182.88
PIPR106S
121.76

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
209.55
190.69
PI PR107S
109.6

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
146.05
127.06
PIPR108S
94.04

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
165.10
148.59
PIPR109S
115.0

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
254.00
223.52
PIPR110S
122.7

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
311.15
283.15
PIPR111S
122.3

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
165.10
150.24
PIPR112S
98.55

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
920.75
644.53
PIPR113S
121.8

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
1073.15
697.55
PIPR114S
112.5

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
1003.30
752.48
PIPR115S
107.9

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
933.45
653.42
PIPR116S
116.9

Er
ckson et al. 1996a,b

<24 h
S,M,T,D
s
742.95
646.37
PIPR117S
128.2

Er
ckson et al. 1996a,b
33

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference

<24 h
S,M,T,D
S
1879.60
939.80
PIPR118S
111.3

Erickson et al. 1996a,b

<24 h
S,M,T,D
S
266.70
253.37
PIPR119S
161.4

Erickson et al. 1996a,b

...
F,M,T
S
114.00
...
PIPR120F
16.27

Lind et al. Manuscript (1978)

...
F,M,T
S
121.00
...
PIPR121F
17.88

Lind et al. Manuscript (1978)

...
F,M,T
S
88.50
...
PIPR122F
11.98

Lind et al. Manuscript (1978)

...
F,M,T
S
436.00
...
PIPR123F
69.67

Lind et al. Manuscript (1978)

...
F,M,T
S
516.00
...
PIPR124F
46.18

Lind et al. Manuscript (1978)

...
F,M,T
S
1586.00
...
PIPR125F
61.17

Lind et al. Manuscript (1978)

...
F,M,T
S
1129.00
...
PIPR126F
67.41

Lind et al. Manuscript (1978)

...
F,M,T
S
550.00
...
PIPR127F
41.03

Lind et al. Manuscript (1978)

...
F,M,T
S
1001.00
...
PIPR128F
31.96

Lind et al. Manuscript (1978)

30 d, 0.15 g
F,M,T,D
N
96.00
88.32
PIPR129F
35.79

Spehar and Fiandt 1986

<24 h
F,M,T,D
S
31.75
27.94
PIPR130F
7.72

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
117.48
105.73
PIPR131F
32.23

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
48.26
40.06
PIPR132F
18.97

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
73.03
64.26
PIPR133F
19.48

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
59.06
49.02
PIPR134F
18.47

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
78.74
67.72
PIPR135F
16.80

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
22.23
18.67
PIPR136F
12.29

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
6.99
6.15
PIPR137F
9.83

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
22.23
20.45
PIPR138F
16.03

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
S
107.32
93.36
PIPR139F
59.69

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
292.10
245.36
PIPR140F
4.33

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
81.28
72.34
PIPR141F
37.18

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
298.45
229.81
PIPR142F
3.79

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
241.30
195.45
PIPR143F
8.56

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
133.35
109.35
PIPR144F
8.64

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
93.98
78.00
PIPR145F
45.63

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
67.95
45.52
PIPR146F
21.06

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
4.76
4.38
PIPR147F
35.59

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
13.97
12.43
PIPR148F
40.38

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
29.85
26.86
PIPR149F
52.53

Er
ckson et al. 1996a,b

<24 h
F,M,T,D
s
59.69
51.33
PIPR150F
51.59

Er
ckson et al. 1996a,b
Northern squawfish,
larval, 0.32 g
S,M,T
s
380
...
PTLU01S
92.13
138.2
Dwyer et al. 1995
Ptychocheilus oregonensis
larval, 0.34 g
S,M,T
s
480
...
PTLU02S
207.4

Dwyer et al. 1995
34

-------
Table 1a. Acute Toxicity of Copper to Freshwater Animals
Species3
Organism Age,
Size, or Lifestage
Method"
Chemical0
Reported LC50 or
EC50
(total (jg/L)d
Reported LC50
or EC50
(Diss. |jg/L)e
BLM Data Label
BLM Normalized
LC50 or EC50
(Mg/L)f
Species Mean
Acute Value (|jg/L)9
Reference
Northern squawfish,
5.0 cm, 1.33 g
F,M,T
C
23
—
PTOR01F
15.23
13.15
Andros and Garton 1980
Ptychocheilus oregonensis
7.2 cm, 3.69 g
F,M,T
C
18
—
PTOR02F
11.36

Andros and Garton 1980
Razorback sucker,
larval, 0.31 g
S,M,T
S
220
—
XYTE01S
66.16
81.75
Dwyer et al. 1995
Xyrauchen texanus
larval, 0.32 g
S,M,T
S
340
...
XYTE02S
101.0

Dwyer et al. 1995
Gila topminnow,
2.72 cm, 0.219 g
S,M,T
S
160
...
POAC01S
58.32
58.32
Dwyer et al. 1999
Poeciliposis occidentalis









Bluegill,
3.58 cm, 0.63 g
R,M,D
c
-
2200
LEMA01R
2026
1968
Blaylocketal. 1985
Lepomis macrochirus
12 cm, 35 g
F,M,T
s
1100
...
LEMA02F
1965

Benoit 1975

2.8-6.8 cm
F,M,T
c
1000
...
LEMA03F
3512

Cairns et al. 1981

3.58 cm, 0.63 g
F,M,D
c
-
1300
LEMA04F
1073

Blaylocketal. 1985
Fantail darter,
3.7 cm
S,M,T
s
330
...
ETFL01S
123.2
130.2
Lydy and Wissing 1988
Etheostoma flabellare
3.7 cm
S,M,T
s
341
...
ETFL02S
126.6

Lydy and Wissing 1988

3.7 cm
S,M,T
s
373
...
ETFL03S
128.5

Lydy and Wissing 1988

3.7 cm
S,M,T
s
392
...
ETFL04S
143.1

Lydy and Wissing 1988
Greenthroat darter,
2.26 cm, 0.133 g
S,M,T
s
260
...
ETLE01S
86.34
86.34
Dwyer et al. 1999
Etheostoma lepidum









Johnny darter,
3.9 cm
S,M,T
s
493
...
ETNI01S
175.5
187.3
Lydy and Wissing 1988
Etheostoma nigrum
3.9 cm
S,M,T
s
483
...
ETNI02S
172.5

Lydy and Wissing 1988

3.9 cm
S,M,T
s
602
...
ETNI03S
210.4

Lydy and Wissing 1988

3.9 cm
S,M,T
s
548
...
ETNI04S
193.2

Lydy and Wissing 1988
Fountain darter,
2.02 cm, 0.062 g
S,M,T
s
60
...
ETRU01S
23.38
23.38
Dwyer et al. 1999
Etheostoma rubrum









Boreal toad,
tadpole, 0.012 g
S,M,T
s
120
...
BUBO01S
49.06
49.06
Dwyer et al. 1999
Bufo boreas









a Species appear in order taxonomicaiiy, with invertebrates listed first, fish, and an amphibian listed last. Species within each genus are ordered alphabetically. Within each species, tests are ordered by
test method (static, renewal, flow-through) and date.
bS = static, R = renewal, F = flow-through, U = unmeasured, M = measured, T = exposure concentrations were measured as total copper, D = exposure concentrations were measured as
dissolved copper.
CS = copper sulfate, N = copper nitrate, C = copper chloride.
d Values in this column are total copper LC50 or EC50 values as reported by the author.
0 Values in this column are dissolved copper LC50 or EC50 values either reported by the author or if the author did not report a dissolved value then a conversion factor (CF) was applied
to the total copper LC50 to estimate dissolved copper values.
formalization Chemistry
Temp
pH
Diss Cu
DOC
% HA
Ca
IVIg
Na
K
S04
CI
HCOS
S
Deg C

ug/L
mg/L

mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
20.00
7.50
1.00E+00
5.00E-01
10.00
1.40E+01
1.21E+01
2.63E+01
2.10E+00
1.90E+00
8.14E+01
6.50E+01
3.00E-04
g Underlined LC50s or EC50s not used to derive SMAV because considered extreme value.
35

-------
Table 1b. Acute Toxicity of Copper to Saltwater Animals
Species3
Age, Size, or
Lifestage of Test
Organism
Test
Method"
Chemical0
Salinity
(g/kg)
Reported LC50
or EC50d
(Total |jg/L)
Reported LC50
or EC508
(Diss. |jg/L)
LC50 or EC50
Used in SMAV
Calculations'
(Diss. |jg/L)
SMAV8
(Diss.
Mg/L)
Reference
Nematode,
3-4 d
S, U
S
5.5
260
—
217.9
217.9
Williams & Dusenbery 1990
Caenorhabditis elegans









Polychaete worm,
...
s, u
S
...
120
—
100.6
100.6
McLusky& Phillips 1975
Phyllodoce maculata









Polychaete worm,
adult
F, M, T
N
31
77
...
69.99
136.9
Pesch & Morgan 1978
Neanthes arenaceodentata
adult
F, M, T
N
31
200
...
181.8

Pesch & Morgan 1978

...
F, M, T
N
31
222
...
201.8

Pesch & Hoffman 1982
Polychaete worm,
...
S, U
S
...
200
...
167.6
318.3
Jones et al. 1976
Hediste diversicolor
...
S, U
S, U
S, U
S
S
S
...
445
480
410
...
372.9
402.2
343.6

Jones et al. 1976
Jones et al. 1976
Jones et al. 1976

2.0 cm
R, U
N
7.3
357
...
299.2

Ozoh1992a

2.0 cm
R, U
N
7.3
357
...
299.2

Ozoh1992a

2.0 cm
R, U
N
7.3
247
...
207.0

Ozoh1992a

2.0 cm
R, U
N
14.6
307
...
257.3

Ozoh1992a

2.0 cm
R, U
N
14.6
400
...
335.2

Ozoh1992a

2.0 cm
R, U
N
14.6
462
...
387.2

Ozoh1992a

2.0 cm
R, U
N
21.9
375
...
314.3

Ozoh1992a

2.0 cm
R, U
N
21.9
362
...
303.4

Ozoh1992a

2.0 cm
R, u
N
21.9
480
...
402.2

Ozoh1992a

2.0 cm
R, u
N
29.2
512
...
429.1

Ozoh1992a

2.0 cm
R, u
N
29.2
360
...
301.7

Ozoh1992a

2.0 cm
R, u
N
29.2
500
...
419.0

Ozoh1992a

mature
R, u
N
7.6
394
...
NU

Ozoh1992b

mature
R, u
N
22.8
949
...
NU

Ozoh1992b

mature
R, u
N
30.5
858
...
NU

Ozoh1992b

mature
R, u
N
7.6
479
...
NU

Ozoh1992b

mature
R, U
N
15.25
628
...
NU

Ozoh1992b

mature
R, U
N
22.8
742
...
NU

Ozoh1992b

mature
R, U
N
30.5
738
...
NU

Ozoh1992b

mature
R, U
N
7.6
360
...
NU

Ozoh1992b

mature
R, U
N
15.25
648
...
NU

Ozoh1992b

mature
R, U
N
22.8
1,090
...
NU

Ozoh1992b

mature
R, U
N
30.5
857
...
NU

Ozoh1992b
Black abalone,
6.2-17.0 cm
S, U
S
33
50
...
41.90
41.90
Martin et al. 1977
Haliotis cracherodii









Red abalone,
17.3-20.4 cm
s, u
S
33
65
...
54.47
72.14
Martin et al. 1977
Haliotsis rufescens
48 h larva
s, u
S
30.4
114
...
95.53

Martin et al. 1977
36

-------
Table 1b. Acute Toxicity of Copper to Saltwater Animals
Species3
Age, Size, or
Lifestage of Test
Organism
Test
Method"
Chemical0
Salinity
(g/kg)
Reported LC50
or EC50d
(Total |jg/L)
Reported LC50
or EC508
(Diss. |jg/L)
LC50 or EC50
Used in SMAV
Calculations'
(Diss. |jg/L)
SMAV8
(Diss.
Mg/L)
Reference
Mussel,
embryo
S, U
S
—
5.8
—
NU
6.188
Martin etal. 1981
Mytilus spp.
embryo
s, u
S
33
7.21
—
NU

ToxScan1991a

embryo
s, u
S
32
6.4
...
NU

ToxScan 1991b

embryo
s, u
S
32
5.84
...
NU

ToxScan 1991c

embryo
S, M, D
S
27
...
5.787
5.787

ToxScan1991a

embryo
S, M, D
S
28
...
8.889
8.889

ToxScan 1991b

embryo
S, M, D
S
26
...
6.278
6.278

ToxScan 1991c

embryo
S, M, D
C
30
...
12.45
12.45

SAIC 1993

embryo
S, M, D
C
30
...
14.1
14.10

SAIC 1993

embryo
S, M, D
C
30
...
11.3
11.30

SAIC 1993

embryo
S, M, D
C
30
...
11.9
11.90

SAIC 1993

embryo
S, M,T, D
S
28
7.159
5.95
5.950

City of San Jose 1998

embryo
S, M,T, D
S
28
5.847
5.208
5.208

City of San Jose 1998

embryo
S, M,T, D
S
28
5.028
5.054
5.054

City of San Jose 1998

embryo
S, M,T, D
S
28
3.821
3.752
3.752

City of San Jose 1998

embryo
S, M,T, D
S
28
4.696
3.803
3.803

City of San Jose 1998

embryo
S, M,T, D
S
28
6.418
4.965
4.965

City of San Jose 1998

embryo
S, M,T, D
S
28
6.215
5.724
5.724

City of San Jose 1998

embryo
S, M,T, D
S
28
6.205
5.838
5.838

City of San Jose 1998

embryo
S, M,T, D
S
28
5.874
5.439
5.439

City of San Jose 1998

embryo
S, M,T, D
S
28
5.404
4.746
4.746

City of San Jose 1998

embryo
S, M,T, D
s
28
5.998
5.099
5.099

City of San Jose 1998

embryo
S, M,T, D
s
28
9.049
8.302
8.302

City of San Jose 1998

embryo
S, M,T, D
s
28
7.194
5.024
5.024

City of San Jose 1998

embryo
S, M,T, D
s
28
8.019
6.822
6.822

City of San Jose 1998

embryo
S, M,T, D
s
28
7.291
5.591
5.591

City of San Jose 1998

embryo
S, M,T, D
s
28
8.932
6.351
6.351

City of San Jose 1998

embryo
S, M,T, D
s
28
7.194
5.024
5.024

City of San Jose 1998

embryo
S, M,T, D
s
28
5.56
4.392
4.392

City of San Jose 1998

embryo
S, M,T, D
s
28
8.479
7.497
7.497

City of San Jose 1998

embryo
S, M,T, D
s
28
7.362
6.789
6.789

City of San Jose 1998

embryo
S, M,T, D
s
28
8.019
6.822
6.822

City of San Jose 1998

embryo
S, M,T, D
s
28
9.5
7.806
7.806

City of San Jose 1998
Blue mussel,
<4 hr embryo
S,M,T,D
s
20
17.46
17.83
17.830
21.497927
CH2MHill 1999b
Mytilus edulis
<4 hr embryo
S,M,T,D
s
20
22.81
21.35
21.350

CH2MHill 1999b

<4 hr embryo
S,M,T,D
s
20
27.37
26.1
26.100

CH2MHill 1999b

1.58 cm
R, U
c
25
122
...
NU

Nelson et al. 1988
Bay scallop,
2.12 cm
R, U
c
25
29
...
24.30
24.30
Nelson et al. 1988
Argopecten irradians









37

-------
Table 1b. Acute Toxicity of Copper to Saltwater Animals
Species3
Age, Size, or
Lifestage of Test
Organism
Test
Method"
Chemical0
Salinity
(g/kg)
Reported LC50
or EC50d
(Total |jg/L)
Reported LC50
or EC508
(Diss. |jg/L)
LC50 or EC50
Used in SMAV
Calculations'
(Diss. |jg/L)
SMAV8
(Diss.
Mg/L)
Reference
Pacific oyster,
embryo
S, M, T
C
30
12.06
—
10.963
10.96254
Harrison et al. 1981
Crassostrea gigas
...
S, U
S
...
5.3
—
NU

Martin etal. 1981

embryo
S, U
S
33
11.5
...
NU

Coglianese & Martin 1981

13-17 cm adult
F, M, T
S
33
560
...
NU

Okazaki 1976
Eastern oyster,
embryo
S, U
C
26
15.1
...
12.65
14.488
Maclnnes & Calabrese 1978
Crassostrea virginica
embryo
S, U
c
26
18.7
...
15.67

Maclnnes & Calabrese 1978

embryo
S, U
c
26
18.3
...
15.34

Maclnnes & Calabrese 1978
Common rangia,
...
S, U
...
5.5
8,000
...
6,704
6,448
Olson & Harrel 1973
Rangia cuneata
...
S, U
...
22
7,400
...
6,201

Olson & Harrel 1973
Surf clam,
1.59 cm
R, U
c
25
51
...
42.74
42.74
Nelson et al. 1988
Spisula solidissima









Soft-shell clam,
...
S, U
c
30
39
...
32.68
32.68
Eisler 1977
Mya arenaria









Coot clam,
...
S, M, D
c
30
...
21
21.00
17.69
SAIC 1993
Mulina lateralis
...
S, M, D
c
30
...
19.25
19.25

SAIC 1993

...
S, M, D
c
30
...
14.93
14.93

SAIC 1993

...
S, M, D
c
30
...
17.28
17.28

SAIC 1993

...
S, M, D
c
30
...
16.85
16.85

SAIC 1993

...
S, M, D
c
30
...
17.44
17.44

SAIC 1993
Squid,
larva
S, M, T
c
30
309
...
280.9
280.9
Dinnel et al. 1989
Lo/igo opalescens









Copepod,
...
S, U
c
30
235.4
...
197.3
197.3
Gentile 1982
Pseudodiaptomus coronatus









Copepod,
...
S, U
c
30
928
...
NU
25.83
Gentile 1982
Eurytemora affinis
24 h
24 h
24 h
24 h
24 h
R, M, T
R, M, T
R, M, T
R, M, T
R, M, T
...
...
30.6
31.1
28.7
7.5
33.7
...
27.82
28.27
26.09
6.818
30.63

Sullivan et al. 1983
Sullivan et al. 1983
Sullivan et al. 1983
Sullivan et al. 1983
Sullivan et al. 1983

24 h
S, M, D
c
15-16
...
69.4
69.40

Hall etal. 1997
Copepod,
...
S, U
c
30
48.8
...
40.89
40.89
Gentile 1982
Acartia clausi









Copepod,
...
S, U
c
10
17
...
14.25
25.74
Sosnowski & Gentile 1978
Acartia tonsa
...
S, U
c
10
55
...
46.09

Sosnowski & Gentile 1978

...
S, U
c
30
31
...
25.98

Sosnowski & Gentile 1978
Copepod,
egg
R, U
N
35
229
...
191.9
196.2
O'Brien et al. 1988
Tigriopus californicus
1st nauplius
R, U
N
35
76
...
63.69

O'Brien et al. 1988

2nd nauplius
R, U
N
35
19
...
15.92

O'Brien et al. 1988

3rd nauplius
R, U
N
35
159
...
133.2

O'Brien et al. 1988

4th nauplius
R, U
N
35
184
...
154.2

O'Brien et al. 1988
38

-------
Table 1b. Acute Toxicity of Copper to Saltwater Animals
Species3
Age, Size, or
Lifestage of Test
Organism
Test
Method"
Chemical0
Salinity
(g/kg)
Reported LC50
or EC50d
(Total |jg/L)
Reported LC50
or EC508
(Diss. |jg/L)
LC50 or EC50
Used in SMAV
Calculations'
(Diss. |jg/L)
SMAV8
(Diss.
Mg/L)
Reference

5th nauplius
R, U
N
35
261
—
218.7

O'Brien et al. 1988

6th nauplius
R, U
N
35
305
—
255.6

O'Brien et al. 1988

1st copepodite
R, U
N
35
375
...
314.3

O'Brien et al. 1988

2nd copepodite
R, U
N
35
496
...
415.6

O'Brien et al. 1988

3rd copepodite
R, U
N
35
413
...
346.1

O'Brien et al. 1988

4th copepodite
R, u
N
35
394
...
330.2

O'Brien et al. 1988

5th copepodite
R, u
N
35
394
...
330.2

O'Brien et al. 1988

6th copepodite
R, u
N
35
762
...
638.6

O'Brien et al. 1988
Copepod,
<24 h
R, M, D
S
...
...
178
178.0
178.0
Bechmann 1994
Tigriopus furcata









Mysid,
3d
S, M, T
C
35-38
17
...
15.45
15.45
Martin et al. 1989
Holmesimysis costata









Mysid,
24 h
R, U
C
25
153
...
NU
164.529
Cripe 1994
Americamysis bahia
24 h
F, M, T
N
30
181
...
164.5

Lussieretal. 1985; Gentile 1982
Mysid,
24 h
F, M, T
N
30
141
...
128.2
128.2
Gentile 1982
Americamysis bigelowi









Mysid,
<5 d
F, M, T
S
2
71
...
64.54
123.4
Brandt et al. 1993
Neomysis mercedis
>15 d
F, M, T
S
2
220
...
200.0

Brandt et al. 1993

>15 d
F, M, T
S
2
160
...
145.4

Brandt et al. 1993
Amphipod,
0.8-1.2 cm
S, U
C
...
600
...
502.8
502.8
Reish 1993
Corophium insidiosum









Amphipod,
0.8-1.2 cm
S, U
C
...
250
...
209.5
209.5
Reish 1993
Elasmopus bampo









Sand shrimp,
6.1 cm adult
F, M, T
C
30.1
898
...
816.3
816.3
Dinnel et al. 1989
Crangon spp.









American lobster,
24 h larva
S, U
N
30.5
48
...
40.22
40.22
Johnson & Gentile 1979
Homarus americanus









Dungeness crab,
larva
S, U
S
...
49
...
41.06
41.06
Martin et al. 1981
Cancer magister
zooea
S, M, T
C
30
96
...
NU

Dinnel et al. 1989
Green crab,
larva
S, U
S
...
600
...
502.8
502.8
Connor 1972
Carcinus maenas









Sea urchin,
embryo
S,M,D
C
30
...
21.4
21.4
21.4
SAIC 1993
Arbacia punctulata









Sea urchin,
embryo
S, M, T
S
28
13.4
...
12.18
12.81
City of San Jose 1998
Strongylocentrotus

S, M, T, D
S
28
14.383
13.515
13.52

City of San Jose 1998
purpuratus

S, M, T,D
S
28
15.048
12.765
12.77

City of San Jose 1998
Coho salmon,
smolt
F, M, T
C
28.6
601
...
546.3
546.3
Dinnel et al. 1989
Oncorhynchus kisutch









Mangrove rivulus,
4-6 wks
F, M, D
S
14
...
1,250
1,250
1,419
Lin & Dunson 1993
Rivulus marmoratus
4-6 wks
F, M, D
S
14
...
1610
1,610

Lin & Dunson 1993
39

-------
Table 1b. Acute Toxicity of Copper to Saltwater Animals
Species3
Age, Size, or
Lifestage of Test
Organism
Test
Method"
Chemical0
Salinity
(g/kg)
Reported LC50
or EC50d
(Total |jg/L)
Reported LC50
or EC508
(Diss. |jg/L)
LC50 or EC50
Used in SMAV
Calculations'
(Diss. |jg/L)
SMAV8
(Diss.
Mg/L)
Reference
Sheepshead minnow,
...
R, M, T
C or S
30
368
—
334.5
334.5
Hughes et al. 1989
Cyprinodon variegatus









Killifish,
...
S, U
C
5.5
3,100
—
NU
1,690
Dorfman 1977
Fundulus heteroclitus
...
S, U
C
23.6
2,000
...
NU

Dorfman 1977

...
S, U
C
6.1
2,300
...
NU

Dorfman 1977

...
S, U
C
24
400
...
NU

Dorfman 1977

4-6 wks
F, M, D
S
14
...
1,690
1,690

Lin & Dunson 1993
Topsmelt,
8 d larva
S, M, T
C
33
288
...
261.8
220.9
Anderson et al. 1991
Atherinops affinis
8 d larva
S, M, T
C
33
212
...
192.7

Anderson et al. 1991

8 d larva
S, M, T
C
33
235
...
213.6

Anderson et al. 1991
Inland silverside,
...
S, M, D
S
...
...
115.4
115.4
111.1
ToxScan1991a
Menidia beryllina
—
S, M, D
S, M, D
S
S
—
—
96.5
123
96.50
123.0

ToxScan 1991b
ToxScan 1991c
Atlantic silverside,
3 wk larva
F, M, T
N
31
66.6
...
60.54
123.3
Cardin 1982
Menidia menidia
1 wk larva
F, M, T
N
30.4
216.5
...
196.8

Cardin 1982

1 d larva
F, M, T
N
30.4
101.8
...
92.54

Cardin 1982

3 d larva
F, M, T
N
31
97.6
...
88.72

Cardin 1982

2 wk larva
F, M, T
N
30
155.9
...
141.7

Cardin 1982

1 d larva
F, M, T
N
30
197.6
...
179.6

Cardin 1982

juvenile
F, M, T
N
30
190.9
...
173.5

Cardin 1982
Tidewater silverside,
19 d larva
S, U
N
20
140
...
117.3
117.3
Hansen 1983
Menidia peninsulae









Striped bass,
1-2 mo
S, U
S
5
2,680
...
2,246
4648.0
Reardon & Harrell 1990
Morone saxatilis
1-2 mo
S, U
S
10
8,080
...
6,771

Reardon & Harrell 1990

1-2 mo
S, U
S
15
7,880
...
6,603

Reardon & Harrell 1990
Florida pompano,
...
S, U
S
10
360
...
301.7
345.0
Birdsong & Avavit 1971
Trachinotus carolinus
...
S, U
S
20
380
...
318.4

Birdsong & Avavit 1971

...
S, U
S
30
510
...
427.4

Birdsong & Avavit 1971
Sheepshead,
18-21 cm
S, U
C
30
1,140
...
955.3
955.3
Steele 1983a
Archosargus









probatocephalus









Pinfish,
13-17 cm
S, U
C
30
2,750
...
2,305
2,305
Steele 1983a
Langodon rhomboides









Spot,
adult
S, U
N
20
280
...
234.6
234.6
Hansen 1983
Leiostomus xanthurus









Atlantic croaker,
16-19 cm
S, U
C
30
5,660
...
4,743
4,743
Steele 1983a
Micropogon undulatus









Cabezon,
larva
S, M, T
C
27
95
...
86.36
86.36
Dinnel et al. 1989
Scorpaenichthys









Shiner perch,
9.7 cm adult
F, M, T
C
29.5
418
...
380.0
380.0
Dinnel et al. 1989
Cymatogaster aggregata









40

-------
Table 1b. Acute Toxicity of Copper to Saltwater Animals
Species3
Age, Size, or
Lifestage of Test
Organism
Test
Method"
Chemical0
Salinity
(g/kg)
Reported LC50
or EC50d
(Total |jg/L)
Reported LC50
or EC508
(Diss. |jg/L)
LC50 or EC50
Used in SMAV
Calculations'
(Diss. |jg/L)
SMAV8
(Diss.
Mg/L)
Reference
Summer flounder,
46 d, 1.8-2.2 cm, 0.03-
S,M,T,D
S
22
610
586
NU
12.66
CH2MHill 1999a
Paralichthys dentatus
0.05 g









48 d, 2.0-2.4 cm, 0.04-
S,M,T,D
S
22
1,029
928
NU

CH2MHill 1999a

0.08 g









57 d, 2.4-2.8 cm, 0.07-
0.12 g
early cleavage embryo
S,M,T,D
S
22
606
597
NU

CH2MHill 1999a

F, M, T
N
30
16.3
	
14.82

Cardin 1982

early cleavage embryo
F, M, T
N
30
11.9
...
10.82

Cardin 1982

blastula stage embryo
F, M, T
N
30
111.8
...
NU

Cardin 1982

blastula stage embryo
F, M, T
N
30
77.5
...
NU

Cardin 1982
Winter flounder,
blastula
F, M, T
N
30
167.3
...
152.1
124.9
Cardin 1982
Pseudopleuronectes americai
pre-cleavage zygote
F, M, T
N
30
52.7
...
47.90

Cardin 1982

blastula
F, M, T
N
28
158
...
143.6

Cardin 1982

blastula
F, M, T
N
30
173.7
...
157.9

Cardin 1982

pre-cleavage zygote
F, M, T
N
28
271
...
246.3

Cardin 1982

pre-cleavage zygote
F, M, T
N
30
132.8
...
120.7

Cardin 1982

blastula
F, M, T
N
30
148.2
...
134.7

Cardin 1982

early cleavage embryo
F, M, T
N
30
98.2
...
89.26

Cardin 1982
aSpecies appear in order taxonomically, with invertebrates listed first and fish listed last. Species within each genus are ordered alphabetically. Within each species, tests are ordered by
test method (static, renewal, flow-through) and date.
bS = static, R = renewal, F = flow-through, U = unmeasured, M = measured, T = exposure concentrations were measured as total copper, D = exposure concentrations were measured as
dissolved copper
CS = copper sulfate, N = copper nitrate, C = copper chloride
"Values in this column are total copper LC50 or EC50 values as reported by the author.
eValues in this column are dissolved copper LC50 or EC50 values as reported by the author.
'if author did not report a dissolved copper LC50 value, then a conversion factor (CF) was applied to the total copper LC50 to estimate dissolved copper values. For tests in which copper
was not measured, the total copper LC50 was multiplied by a CF of 0.838, and for tests in which copper concentrations were measured, the total copper LC50 was multiplied by a CF of 0.909
see discussion in Section 4 and Appendix E). 'NU' indicates that a test result was not used in the SMAV calculation, typically because data for a more sensitive life stage were used
preferentially.
gThe species mean acute value (SMAV) is calculated as the geometric mean of the tabulated LC50 or EC50 values for each species (Stephan et al. 1985).
41

-------
Table 2a. Chronic Toxicity of Copper to Freshwater Animals
Species
Test3
Chemical
Endpoint
Hardness
(mg/L as
CaC03)
Chronic
Limits (|jg/L)
Chronic Values
Species Mean
Chronic Value
(Total |jg/L)
Genus Mean
Chronic Value
(Total |jg/L)
ACR
Reference
Chronic
Valueb
(Mg/L)
EC20b
(M9/L)
Rotifer,
Brachionus calyciflorus
LC,T
Copper sulfate
Intrinsic growth
rate
85
2.5-5.0
3.54
"
3.54
3.54

Janssen et al. 1994
Snail,
Campeloma decisum (Test 1)
LC,T
Copper sulfate
Survival
35-55
8-14.8
10.88
8.73
9.77
9.77
191.6
Arthur and Leonard 1970
Snail,
Campeloma decisum (Test 2)
LC,T
Copper sulfate
Survival
35-55
8-14.8
10.88
10.94


153.0
Arthur and Leonard 1970
Cladoceran,
Ceriodaphnia dubia (New River)
LC,D
"
Reproduction
179
6.3-9.9
7.90°
(8.23)
"
19.3
19.3
3.599
Belanger et al. 1989
Cladoceran,
Ceriodaphnia dubia (Cinch River)
LC,D
"
Reproduction
94.1
<19.3-19.3
<19.3
19.36°
(20.17)


3.271
Belanger et al. 1989
Cladoceran,
Ceriodaphnia dubia
LC,T
Copper sulfate
Survival and
reproduction
57
"
24.50
"


0.547
Oris et al. 1991
Cladoceran,
Ceriodaphnia dubia
LC,T
Copper sulfate
Survival and
reproduction
57
"
34.60
"



Oris et al. 1991
Cladoceran,
Ceriodaphnia dubia
LC,T,D
Copper chloride
Reproduction

12-32
19.59
9.17


2.069
Carlson et al. 1986
Cladoceran,
Daphnia magna
LC,T
Copper chloride
Reproduction
85
10-30
17.32
"
14.1
8.96

Blaylock et al. 1985
Cladoceran,
Daphnia magna
LC,T
Copper chloride
Carapace length
225
12.6-36.8
21.50
"



van Leeuwen et al. 1988
Cladoceran,
Daphnia magna
LC,T
Copper chloride
Reproduction
51
11.4-16.3
13.63
12.58


2.067
Chapman et al. Manuscript
Cladoceran,
Daphnia magna
LC,T
Copper chloride
Reproduction
104
20-43
29.33
19.89


1.697
Chapman et al. Manuscript
Cladoceran,
Daphnia magna
LC,T
Copper chloride
Reproduction
211
7.2-12.6
9.53
6.06


11.39
Chapman et al. Manuscript
Cladoceran,
Daphnia pulex
LC,T
Copper sulfate
Survival
57.5 (No HA)
4.0-6.0
4.90
2.83
5.68

9.104
Winner 1985
Cladoceran,
Daphnia pulex
LC,T
Copper sulfate
Survival
115 (No HA)
5.0-10.0
7.07



3.904
Winner 1985
Cladoceran,
Daphnia pulex
LC,T
Copper sulfate
Survival
230 (0.15 HA)
10-15
12.25
9.16


3.143
Winner 1985
42

-------
Table 2a. Chronic Toxicity of Copper to Freshwater Animals
Species
Test3
Chemical
Endpoint
Hardness
(mg/L as
CaC03)
Chronic
Limits (|jg/L)
Chronic Values
Species Mean
Chronic Value
(Total |jg/L)
Genus Mean
Chronic Value
(Total |jg/L)
ACR
Reference
Chronic
Valueb
(Mg/L)
EC20b
(M9/L)
Caddisfly,
Clistoronia magnifies
LC,T
Copper chloride
Emergence (adult
1st gen)
26
8.3-13
10.39
7.67
7.67
7.67

Nebeker et al. 1984b
Rainbow trout,
Oncorhynchus mykiss
ELS,T
continuous
Copper chloride
Biomass
120


27.77
23.8
11.9
2.881
Seim et al. 1984
Rainbow trout,
Oncorhynchus mykiss
ELS,T
Copper sulfate
Biomass
160-180
12-22
16.25
20.32



Besser et al. 2001
Chinook salmon,
Oncorhynchus tshawytscha
ELS,T
Copper chloride
Biomass
20-45
<7.4
<7.4
5.92
5.92

5.594
Chapman 1975, 1982
Brown trout,
Salmo trutta
ELS,T
Copper sulfate
Biomass
45.4
20.8-43.8
29.91
"
29.9
29.9

McKim et al. 1978
Brook trout,
Salvelinus fontinalis
PLC,T
Copper sulfate
Biomass
35.0
<5 -5
<5
"
12.5
19.7

Sauter et al. 1976
Brook trout,
Salvelinus fontinalis
ELS,T
Copper sulfate
Biomass
45.4
22.3-43.5
31.15
"



McKim et al. 1978
Lake trout,
Salvelinus namaycush
ELS, T
Copper sulfate
Biomass
45.4
22.0-43.5
30.94
"
30.9


McKim et al. 1978
Northern pike,
Esox lucius
ELS, T
Copper sulfate
Biomass
45.4
34.9-104.4
60.36
"
60.4
60.4

McKim et al. 1978
Bluntnose minnow
Pimephales notatus
LC,T
Copper sulfate
Egg production
172-230
<18-18
18.00
"
18.0
13.0
12.88
Horning and Neiheisel 1979
Fathead minnow,
Pimephales promelas
ELS.T.D
"
Biomass
45


9.38
9.38

11.40
Lind et al. manuscript
White sucker,
Catostomus commersoni
ELS, T
Copper sulfate
Biomass
45.4
12.9-33.8
20.88
"
20.9
20.9

McKim et al. 1978
Bluegill (larval),
Lepomis macrochirus
ELS.T.D
Copper sulfate
Survival
44-50
21-40
28.98
27.15
27.2
27.2
40.52
Benoit 1975
a LC = life-cycle; PLC = partial life-cyle; ELS = early life state; T = total copper; D = dissolved copper.
b Results are based on copper, not the chemical.
c Chronic values based on dissolved copper concentration.
43

-------
Table 2b. Chronic Toxicity of Copper to Saltwater Animals
Species
Test
Chemical
Salinity
(g/kg)
Limits (|jg/L)
Chronic Value
(tjg/L)
Chronic Value Dissolved
(Mg/L)
ACR
Reference
Sheepshead minnow,
Cyprinodon variegatus
ELS
Copper chloride
30
172-362
249
206.7
1.48
Hughes et al. 1989
44

-------
Table 2c. Acute-Chronic Ratios
Species
Hardness (mg/L
as 03003)
Acute Value
(Mg/L)
Chronic
Value (|jg/L)
Ratio
Reference
Overall
Ratio for
Species

Snail,
35-55
1673a
8.73
191.61
Arthur and Leonard 1970


Campeloma decisum
35-55
1673a
10.94
152.95
Arthur and Leonard 1970
171.19

Cladoceran,
179
28.42b
7.90
3.60
Belanger et al. 1989


Ceriodaphnia dubia
94.1
63.33b
19.36
3.27
Belanger et al. 1989



57
13.4
24.5
0.55
Oris et al. 1991



-
18.974°
9.17
2.07
Carlson et al. 1986
2.90h
~
Cladoceran,
51
26
12.58
2.07
Chapman et al. Manuscript


Daphnia magna
104
33.76d
19.89
1.70
Chapman et al. Manuscript



211
69
6.06
11.39
Chapman et al. Manuscript
3.42
~
Cladoceran,
57.5
25.737e
2.83
9.10
Winner 1985


Daphnia pulex
115
27.6e
7.07
3.90
Winner 1985



230
28.79e
9.16
3.14
Winner 1985
4.82
~
Rainbow trout,







Oncorhynchus mykiss
120
80
27.77
2.88
Seim et al. 1984
2.88
~
Chinook salmon,







Oncorhynchus tshawytscha
20-45
33.1
5.92
5.59
Chapman 1975, 1982
5.59
~
Bluntnose minnow,







Pimephales notatus
172-230
231,9f
18
12.88
Horning and Neiheisel 1979
12.88

Fathead minnow,







Pimephales promelas
45
106.8759
9.38
11.40
Lind et al. 1978
11.40

Bluegill,
Lepomis macrochirus
21-40
1100
27.15
40.52
Benoit 1975
40.49

Sheepshead minnow,
Cyprinodon variegatus
-
368
249
1.48
Hughes et al. 1989
1.48
~
'Geometric mean of two values from Arthur and Leonard (1970) in Table 1.
bGeometric mean of five values from Belanger et al. (1989) in Table 1. ACR is based on dissolved metal measurements.
°Geometric mean of two values from Carlson et al. (1986) in Table 1.
dGeometric mean of two values from Chapman manuscript in Table 1.
6Geometric mean of two values from Winner (1985) in Table 1.
'Geometric mean of three values from Horning and Neiheisel (1979) in Appendix D.
gGeometric mean of three values from Lind et al. (1978) in Table 1.
hACR from Oris et al. (1991) not used in calculating overall ratio for species because it is <1.
FACR
Freshwater final acute-chronic ratio = 3.23
Saltwater final acute-chronic ratio = 3.23
45

-------
Table 3a. Ranked Freshwater Genus Mean Acute Values with Species Mean
Acute-Chronic Ratios
Rank
GMAV
Species
SMAV (|Jg/L)
ACR
27
101,999
Golden shiner, Notemigonus crysoleucas
101,999

26
17,484
Stonefly, Acroneuria lycorias
17,484

25
3,027
Snail, Campeloma decisum
3,027
171.19
24
1,968
Bluegill sunfish, Lepomis macrochirus
1,968
40.49
23
1,925
Midge, Chironomus decorus
1,925

22
187.5
Chiselmouth, Acrocheilus alutaceus
187.5

21
83.76
Fantail darter, Etheostoma flabellare
130.2

Greenthroat darter, Etheostoma lepidum
86.34

Johnny darter, Etheostoma nigrum
187.3

Fountain darter, Etheostoma rubrum
23.38

20
81.75
Razorback sucker, Xyrauchen texanus
81.75

19
72.50
Shovelnose sturgeon, Scaphirhynchus platorynchus
72.50

18
72.36
Bull trout, Salvelinus confluentus
72.36

17
72.07
Fathead minnow, Pimephales promelas
72.07
11.40
16
65.62
Bonytail chub, Gila elegans
65.62

15
58.32
Gila topminnow, Poeciliposis occidentalis
58.32

14
50.12
Worm, Lumbriculus variegatus
50.12

13
49.06
Boreal toad, Bufo boreas
49.06

12
42.64
Colorado squawfish, Ptychocheilus lucius
138.2

Northern squawfish, Ptychocheilus oregonensis
13.15

11
35.97
Freshwater mussel, Utterbackia imbecillis
35.97

10
29.11
Apache trout, Oncorhynchus apache
33.70

Cutthroat trout, Oncorhynchus clarki
31.28

Pink salmon, Oncorhynchus gorbuscha
37.30

Coho salmon, Oncorhynchus kisutch
15.98

Rainbow trout, Oncorhynchus mykiss
21.60
2.88
Sockeye salmon, Oncorhynchus nerka
50.83

Chinook salmon, Oncorhynchus tshawytscha
25.68
5.59
9
18.60
Snail, Physa integra
18.60

8
11.36
Amphipod, Hyalella azteca
11.36

7
11.35
Freshwater mussel, Actinonaias pectorosa
11.35

6
10.84
Snail, Juga plicifera
10.84

5
8.77
Cladoceran, Scapholeberis sp.
8.77

4
8.57
Amphipod, Gammarus pseudolimnaeus
8.57

3
5.75
Cladoceran, Ceriodaphnia dubia
5.75
2.90
2
5.75
Snail, Lithoglyphus virens
5.75

1
3.56
Cladoceran, Daphnia magna
4.98
3.42
Cladoceran, Daphnia pulicaria
2.54

46

-------
Table 3b. Ranked Saltwater Genus Mean Acute Values with Species Mean Acute-Chronic Ratios
GMAV Rank
GMAV (|jg/L)
Species
SMAV (|Jg/L)
ACR
44
6,448
Common rangia, Rangia cuneata
6,448

43
4,743
Atlantic croaker, Micropogon undulatus
4,743

42
4,648
Striped bass, Morone saxatilis
4,648

41
2,305
Pinfish, Langodon rhomboides
2,305

40
1,690
Killifish, Fundulus heteroclitus
1,690

39
1,419
Mangrove rivulus, Rivulus marmoratus
1,419

38
955.3
Sheepshead, Archosargus probatocephalus
955.3

37
816.3
Sand shrimp, Crangon spp.
816.3

36
546.3
Coho salmon, Oncorhynchus kisutch
546.3

35
502.8
Green crab, Carcinus maenas
502.8

34
502.8
Amphipod, Corophium insidiosum
502.8

33
380.0
Shiner perch, Cymatogaster aggregata
380.0

32
345.0
Florida pompano, Trachinotus carolinus
345.0

31
334.5
Sheepshead minnow, Cyprinodon variegatus
334.5
1.48
30
318.3
Polychaete worm, Hediste diversicolor
318.3

29
280.9
Squid, Lo/igo opalescens
280.9

28
234.6
Spot, Leiostomus xanthurus
234.6

27
220.9
Topsmelt, Atherinops affinis
220.9

26
217.9
Nematode, Caenorhabditis elegans
217.9

25
209.5
Amphipod, Elasmopus bampo
209.5

24
197.3
Copepod, Pseudodiaptomus coronatus
197.3

23
186.9
Copepod, Tigriopus furcata
Copepod, Tigriopus californicus
178.0
196.2

22
145.2
Mysid, Americamysis bahia
Mysid, Mysidopsis bigelowi
164.5
128.2

21
136.9
Polychaete worm, Neanthes arenaceodentata
136.9

20
124.9
Winter flounder, Pseudopleuronectes americanus
124.9

19
123.4
Mysid, Neomysis mercedis
123.4

18
117.1
Tidewater silverside, Menidia peninsulae
Atlantic silverside, Menidia menidia
Inland silverside, Menidia beryllina
117.3
123.3
111.1

17
100.6
Polychaete worm, Phyllodoce maculata
100.6

16
86.4
Cabezon, Scorpaenichthys marmoratus
86.36

15
54.98
Black abalone, Haliotis cracherodii
Red abalone, Haliotsis rufescens
41.90
72.14

14
42.74
Surf clam, Spisula solidissima
42.74

13
41.06
Dungeness crab, Cancer magister
41.06

12
40.22
American lobster, Homarus americanus
40.22

11
32.68
Soft-shell clam, Mya arenaria
32.68

10
32.45
Copepod, Acartia tonsa
25.74

47

-------
Table 3b. Ranked Saltwater Genus Mean Acute Values with Species Mean Acute-Chronic Ratios
GMAV Rank
GMAV (|jg/L)
Species
SMAV (|Jg/L)
ACR


Copepod, Acartia clausi
40.89

9
25.83
Copepod, Eurytemora affinis
25.83

8
24.30
Bay scallop, Argopecten irradians
24.30

7
21.40
Sea urchin, Arbacia punctulata
21.40

6
17.69
Coot clam, Mulina lateralis
17.69

5
15.45
Mysid, Holmesimysis costata
15.45

4
12.81
Sea urchin, Strongylocentrotus purpuratus
12.81

3
12.66
Summer flounder, Paralichthys dentatus
12.66

2
12.60
Eastern oyster, Crassostrea virginica
Pacific oyster, Crassostrea gigas
14.49
10.96

1
11.53
Blue mussel, Mytilus edulis
Mussel, Mytilus sp.
21.50
6.19

48

-------
Table 3c. Freshwater and Saltwater Final Acute Value (FAV) and Criteria Calculations
Calculated Freshwater FAV based on 4 lowest values:
Total Number of GMAVs in Data Set = 27

Rank
GMAV
InGMAV
(InGMAV)2
P = R/(n+1)
SQRT(P)
4
8.5666
2.148
4.613
0.14286
0.3780
3
5.7536
1.750
3.062
0.10714
0.3273
2
5.7472
1.749
3.058
0.07143
0.2673
1
3.5579
1.269
1.611
0.03571
0.1890
Sum:

6.916
12.34
0.3571
1.1615
S =
4.419




L =
0.4456




A =
1.434




Calculated FAV =
4.194590




Calculated CMC =
2.097




Dissolved Copper Criterion Maximum Concentration (CMC) = 2.1 ^g/L (for example normalization chemistry see Table 1a, footnote f)
Criteria Lethal Accumulation (LA50) based on example normalization chemistry = 0.0412 nmol/g wet wt
Criterion Continuous Concentration (CCC) = 4.19459/3.23 = 1.3 ^g/L (for example normalization chemistry see Table 1a, footnote f)

Calculated Saltwater FAV based on 4 lowest values:
Total Number of GMAVs in Data Set = 44

Rank

GMAV
InGMAV
(InGMAV)2
P = R/(n+1)
SQRT(P)
4

12.81
2.550
6.503
0.08889
0.2981
3

12.66
2.538
6.444
0.06667
0.2582
2

12.60
2.534
6.421
0.04444
0.2108
1

11.53
2.445
5.979
0.02222
0.1491
Sum:


10.068
25.35
0.2222
0.9162

S =
0.752





L =
2.3447





A =
2.513




Calculated FAV =
12.340
Lowered FAV =
6.188


Calculated CMC =
6.170
Calculated CMC =
3.094


Dissolved Copper Final Acute Value (FAV) = 6.188 ^g/L (lowered from 12.30 to protect Mytilus sp.)
Dissolved Copper Criterion Maximum Concentration (CMC) = 6.188/2 = 3.1 ^g/L
Criterion Continuous Concentration (CCC) = 6.188/3.23 = 1.9 ^g/L
S = Scale parameter or slope
L = Location parameter or intercept
P = Cumulative probability
A = InFAV
49

-------
Table 4a. Toxicity of Copper to Freshwater Plants
Species
Method3
Chemical
Hardness (mg/L
as CaC03)
Duration
Effect
Resultb
(Total |jg/L)
Reference
Blue-green alga,
Anabaena flos-aqua
S,U
Copper
sulfate
65.2
96 hr
EC75
(cell density)
200
Young and Lisk 1972
Bllue-green alga,
Anabaena variabilis
s,u
Copper sulfate
65.2
-
EC85
(wet weight)
100
Young and Lisk 1972
Blue-green alga,
Anabaena strain 7120
-
-
-
-
Lag in growth
64
Laube et al. 1980
Blue-green alga,
Chroococcus paris
s,u
Copper nitrate
54.7
10 days
Growth reduction
100
Les and Walker 1984
Blue-green alga,
Microcystis aeruginosa
s,u
Copper sulfate
54.9
8 days
Incipient inhibition
30
Bringmann 1975; Bringmann and Kuhn
1976, 1978a,b
Alga,
Ankistrodesmus braunii
-
-
-
-
Growth reduction
640
Laube et al. 1980
Green alga,
Chlamydomonas sp.
s,u
Copper sulfate
68
10 days
Growth inhibition
8,000
Cairns et al. 1978
Green alga,
Chlamydomonas reinhardtii
S,M,T
-
90-133
72 hr
NOEC
(deflagellation)
12.2-49.1
Winner and Owen 1991 a
Green alga,
Chlamydomonas reinhardtii
S,M,T
-
90-133
72 hr
NOEC
(cell density)
12.2-43.0
Winner and Owen 1991 a
Green alga,
Chlamydomonas reinhardtii
F,M,T
-
24
10 days
EC50
(cell density)
31.5
Schafer et al. 1993
Green alga,
Chlorella pyrenoidosa
S,U
-
-
96 hr
ca. 12 hr lag in growth
1
Steeman-Nielsen and Wium-Andersen
1970
Green alga,
Chlorella pyrenoidosa
S,U
-
54.7
-
Growth inhibition
100
Steeman-Nielsen and Kamp-Nielsen
1970
Green alga,
Chlorella pyrenoidosa
S,U
Copper sulfate
365
14 days
EC50
(dry weight)
78-100
Bednarz and Warkowska-Dratnal 1985
Green alga,
Chlorella pyrenoidosa
S,U
Copper sulfate
36.5
14 days
EC50
(dry weight)
78-100
Bednarz and Warkowska-Dratnal 1985
Green alga,
Chlorella pyrenoidosa
S,U
Copper sulfate
3.65
14 days
EC50
(dry weight)
78-100
Bednarz and Warkowska-Dratnal
1983/1984
Green alga,
Chlorella saccharophila
S,U
Copper
chloride
-
96 hr
96-h EC50
550
Rachlin et al. 1982
Green alga,
Chlorella vulgaris
S,U
Copper sulfate
2,000
96 hr
Growth inhibition
200
Young and Lisk 1972
Green alga,
Chlorella vulgaris
S,U
Copper
chloride

33 days
EC20
(growth)
42
Rosko and Rachlin 1977
Green alga,
Chlorella vulgaris
F,U
Copper sulfate
-
96 hr
EC50 or EC50
(cell numbers)
62
Ferard et al. 1983
Green alga,
Chlorella vulgaris
S,M,D
Copper sulfate
-
96 hr
IC50
270
Ferard et al. 1983
Green alga,
Chlorella vulgaris
S,M,T
Copper
chloride
-
96 hr
EC50
(cell density)
200
Blaylock et al. 1985
Green alga,
Chlorella vulgaris
S,U
Copper sulfate
17.1
7 days
15% reduction in cell density
100
Bilgrami and Kumar 1997
50

-------
Table 4a. Toxicity of Copper to Freshwater Plants
Species
Method3
Chemical
Hardness (mg/L
as CaC03)
Duration
Effect
Resultb
(Total |jg/L)
Reference
Green alga,
Scenedesmus quadricauda
S,U
Copper sulfate
68
10 days
Growth reduction
8,000
Cairns et al. 1978
Green alga,
Scenedesmus quadricauda
s,u
Copper sulfate
181
7 days
LOEC
(growth)
1,100
Bringmann and Kuhn 1977a, 1978a,b,
1979, 1980a
Green alga,
Selenastrum capricornutum
s,u
Copper
chloride
14.9
14 days
EC50
(cell volume)
85
Christensen etal. 1979
Green alga,
Selenastrum capricornutum
s,u
Copper
chloride
14.9
7 days
LOEC
(growth)
50
Bartlett et al. 1974
Green alga,
Selenastrum capricornutum
S,M,T
Copper
chloride
24.2
96 hr
EC50
(cell count)
400
Blaylock et al. 1985
Green alga,
Selenastrum capricornutum
S,U
Copper sulfate
9.3
96 hr
EC50
(cell count)
48.4
Blaise et al. 1986
Green alga,
Selenastrum capricornutum
S,U
Copper sulfate
9.3
96 hr
EC50
(cell count)
44.3
Blaise et al. 1986
Green alga,
Selenastrum capricornutum
S,U
Copper sulfate
9.3
96 hr
EC50
(cell count)
46.4
Blaise et al. 1986
Green alga,
Selenastrum capricornutum
s,u
Copper
chloride
15
2-3 wk
EC50
(biomass)
53.7
Turbak et al. 1986
Green alga,
Selenastrum capricornutum
s,u
Copper sulfate
14.9
5 days
Growth reduction
58
Nyholm 1990
Green alga,
Selenastrum capricornutum
s,u
Copper sulfate
9.3
96 hr
EC50
(cell count)
69.9
St. Laurent et al. 1992
Green alga,
Selenastrum capricornutum
s,u
Copper sulfate
9.3
96 hr
EC50
(cell count)
65.7
St. Laurent et al. 1992
Green alga,
Selenastrum capricornutum
s,u
Copper sulfate
24.2
96 hr
EC50
(cell count)
54.4
Radetski et al. 1995
Green alga,
Selenastrum capricornutum
R,U
Copper sulfate
24.2
96 hr
EC50
(cell count)
48.2
Radetski et al. 1995
Green alga,
Selenastrum capricornutum
s,u
Copper sulfate
16
96 hr
EC50
(cell density)
38
Chen et al. 1997
Algae,
mixed culture
s,u
Copper sulfate
-
-
Significant reduction in blue-green
algae and nitrogen fixation
5
Elder and Home 1978
Diatom,
Cyclotella meneghiniana
s,u
Copper sulfate
68
10 days
Growth inhibition
8,000
Cairns et al. 1978
Diatom,
Navicula incerta
s,u
Copper
chloride
-
96 hr
EC50
10,429
Rachlin et al. 1983
Diatom,
Nitzschia linearis
-
-
-
5 day
EC50
795-815
Academy of Natural Sciences 1960;
Patrick et al. 1968
Diatom,
Nitzschia palea
-
-
-
-
Complete growth inhibition
5
Steeman-Nielsen and Wium-Andersen
1970
Duckweed,
Lemna minor
F
-
-
7 day
EC50
119
Walbridge 1977
Duckweed,
Lemna minor
s,u
Copper sulfate
-
28 days
Significant plant damage
130
Brown and Rattigan 1979
51

-------
Table 4a. Toxicity of Copper to Freshwater Plants
Species
Method3
Chemical
Hardness (mg/L
as CaC03)
Duration
Effect
Resultb
(Total |jg/L)
Reference
Duckweed,
Lemna minor
S,U
-
0
96 hr
EC50
(frond number)
1,100
Wang 1986
Duckweed,
Lemna minor
s,u
Copper sulfate
78
96 hr
EC50
(chlorophyll a reduction)
250
Eloranta et al. 1988
Duckweed,
Lemna minor
R,M,T
Copper nitrate
39
96 hr
Reduced chlorophyll production
24
Taraldsen and Norberg-King 1990
Eurasian watermilfoil,
Myriophyllum spicatum
S,U
-
89
32 days
EC50
(root weight)
250
Stanley 1974
a S=Static; R=Renewal; F=Flow-through; M=Measured; U=Unmeasured; T=Total metal conc. measured; D=dissolved metal conc. measured.
b Results are expressed as copper, not as the chemical.
52

-------
Table 4b. Toxicity of Copper to Saltwater Plants
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Resultb
(total |jg/L)
Reference
Dinoflagellate,
Amphidinium carteri
S,U
Copper
chloride
21
14 days
83% reduction in growth
<50
Erickson et al. 1970
Dinoflagellate,
Gymnodinium splendens
s,u
Copper
sulfate
31.6-33.3
5 days
EC50
(growth)
20
Saifullah 1978
Dinoflagellate,
Prorocentrum micans
s,u
Copper
sulfate
31.6-33.3
8 days
EC50
(growth)
5
Saifullah 1978
Dinoflagellate,
Scrippsiella faeroense
s,u
Copper
sulfate
31.6-33.3
5 days
EC50
(growth)
5
Saifullah 1978
Dinoflagellate,
Scrippsiella faeroense
R,U
Copper
sulfate
31.6-33.3
8 days
EC50
(growth)
<1
Saifullah 1978
Dinoflagellate,
Simbiodinium microadriaticum
S,M,T
Copper
sulfate
FSW
23 days
46% reduction in growth
(significant)
40
Goh and Chou 1997
Dinoflagellate,
Simbiodinium microadriaticum
S,M,T
Copper
sulfate
FSW
23 days
26% reduction in growth
(not significant)
42
Goh and Chou 1997
Green alga,
Chlorella stigmatophora
S,M,T
Copper
chloride
35
21 days
EC50
(cell volume)
70
Christensen et al. 1979
Green alga (zoospores),
Enteromorpha intestinalis
S,U
-
-
5 days
EC50
(development to 2+ cell stage)
10
Fletcher 1989
Green alga,
Olisthodiscus luteus
S,U
Copper
chloride
21
14 days
74% reduction in growth
<50
Erickson et al. 1970
Diatom,
Nitzschia closterium
-
-
-
96 hr
EC50
(growth)
33
Rosko and Rachlin 1975
Diatom,
Nitzschia thermalis
s,u
Copper
sulfate
35.7
Several
days
No growth
38.1
Metaxas and Lewis 1991
Diatom,
Skeletonema costatum
s,u
Copper
chloride
21
14 days
58% reduction in growth
50
Erickson et al. 1970
Diatom,
Skeletonema costatum
s,u
Copper
sulfate
35.7
Several
days
LOEC
(no growth)
31.8
Metaxas and Lewis 1991
Diatom,
Skeletonema costatum
s,u
Copper
chloride
-
96 hr
EC50
(growth)
45
Nassiri et al. 1997
Diatom,
Thalassiosira aestevallis
s,u
Copper
chloride
-
3-4 days
Reduced growth
19
Hollibaugh et al. 1980
Red alga (tetrasporophyte),
Champia parvula
R,M,T
Copper
chloride
30
11 days
Reduced growth
4.6
Steele and Thursby 1983
Red alga (tetrasporophyte),
Champia parvula
R,M,T
Copper
chloride
30
11 days
Reduced production
13.3
Steele and Thursby 1983
Red alga (mature),
Champia parvula
R,M,T
Copper
chloride
30
7 days
Reduced female growth
4.7
Steele and Thursby 1983
Red alga (mature),
Champia parvula
R,M,T
Copper
chloride
30
7 days
Stopped sexual reproduction
7.3
Steele and Thursby 1983
53

-------
Table 4b. Toxicity of Copper to Saltwater Plants
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Resultb
(total |jg/L)
Reference
Kelp (meiospore),
Laminaria saccharina
R,U
Copper
sulfate
-
21 days
Reduced gametophyte
development rate
5
Chung and Brinkhuis
1986
Kelp (1-3 cm sporophyte),
Laminaria saccharina
S,U
Copper
sulfate
-
9 days
LOEC
(100% mortality)
100
Chung and Brinkhuis
1986
Kelp (8-10 cm sporophyte),
Laminaria saccharina
S,U
Copper
sulfate
-
-
23% decrease in blade growth
10
Chung and Brinkhuis
1986
Giant kelp,
Macrocystis pyrifera
S,U
-
sw
96-hr
EC50
(photosynthesis)
60
Clendenning and North
1959
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33
19-20 days
NOEC
(sporophyte production)
<10.2
Anderson et al. 1990
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33
19-20 days
NOEC
(sporophyte production)
10.2
Anderson et al. 1990
a S=Static; R=Renewal; F=Flow-through; M=Measured; U=Unmeasured; T=Total metal conc. measured; D=dissolved metal conc. measured.
b Results are expressed as copper, not as the chemical.
54

-------
Table 5a. Bioaccumulation of Copper by Freshwater Organisms
Species
Chemical
Hardness
(mg/L as
CaC03)
Concentration in Water3
(Mg/L)
Duration
Days
Tissue
BCF or BAF
Reference
Asiatic clam,
Corbicula fluminea
Copper sulfate
-
16
28 days
Soft tissue
45,300b
Graney et al. 1983
Macroinvertebrates
Field study
-
3
-
Whole body
1,533
Farag et al. 1998
Macroinvertebrates
Field study
-
3
-
Whole body
4,800
Farag et al. 1998
Macroinvertebrates
Field study
-
3
-
Whole body
2,267
Farag et al. 1998
Macroinvertebrates
Field study
-
1
-
Whole body
5,600
Farag et al. 1998
Macroinvertebrates
Field study
-
5
-
Whole body
2,000
Farag et al. 1998
Fathead minnow (larva),
Pimephales promelas
-
45
5
30
Whole body
464
Lind et al. manuscript
Yellow perch,
Perca flavescens
Field study
-
1
-
Whole body
9,600
Farag et al. 1998
Yellow perch,
Perca flavescens
Field study
-
5
-
Whole body
1,860
Farag et al. 1998
a Results are based on copper, not the chemical.
b Recalculated; authors substracted control residues.
55

-------
Table 5b. Bioaccumulation of Copper by Saltwater Organisms
Species
Chemical
Concentration in
Water
(M9/L)
Salinity
(g/kg)
Duration
Days
Tissue
BCF or BAF
Reference
Polychaete worm,
Phyllodoce maculata
Copper sulfate
40
FSWb
35
Whole body
2,500
McLusky and Phillips 1975
Polychaete worm,
Neanthes arenaceodentata
Copper nitrate
40
31
28
Whole body
2,950
Pesch and Morgan 1978
Polychaete worm,
Eudistylia vancouveri
Copper chloride
6
30.4
29
Body (less
radioles)
1,006
Young et al. 1979
Blue mussel (0.45 cm),
Mytilus edulis
Copper chloride
3
25
550
Soft tissue
7,730
Calabrese et al. 1984
Blue mussel (0.45 cm),
Mytilus edulis
Copper chloride
7.9
25
550
Soft tissue
4,420
Calabrese et al. 1984
Blue mussel (0.45 cm),
Mytilus edulis
Copper chloride
12.7
25
550
Soft tissue
5,320
Calabrese et al. 1984
Mussel (6.02-6.34 cm),
Mytillus galloprovincialis
Field study
0.285
37-38
266
Soft tissue
3,263
Martincic et al. 1992
Mussel (6.02-6.34 cm),
Mytillus galloprovincialis
Field study
0.446
37-38
266
Soft tissue
2,491
Martincic et al. 1992
Mussel (6.02-6.34 cm),
Mytillus galloprovincialis
Field study
0.203
37-38
266
Soft tissue
4,384
Martincic et al. 1992
Mussel (6.02-6.34 cm),
Mytillus galloprovincialis
Field study
0.177
37-38
266
Soft tissue
4,915
Martincic et al. 1992
Bay scallop (5.12-6.26 cm),
Argopecten irradians
Copper chloride
4.56
29-32
56
Muscle
185
Zaroogian and Johnson 1983
Bay scallop (5.12-6.26 cm),
Argopecten irradians
Copper chloride
4.56
29-32
56
Viscera
3,816
Zaroogian and Johnson 1983
Pacific oyster,
Crassostrea gigas
Field study
25.45
-
32
Soft tissue
34,600
Han and Hung 1990
Pacific oyster,
Crassostrea gigas
Field study
9.66
-
32
Soft tissue
57,000
Han and Hung 1990
Pacific oyster,
Crassostrea gigas
Field study
10.37
-
32
Soft tissue
33,400
Han and Hung 1990
Atlantic oyster,
Crassostrea virginica
Field study
25
31
140
Soft tissue
27,800
Shusterand Pringle 1968
Soft-shell clam,
Mya arenaria
Field study
100
31
35
Soft tissue
790
Shusterand Pringle 1968
a Results are based on copper, not the chemical.
b FSW=Full Strength Seawater.
56

-------
Table 6. Species Numbers Used in Figure 4
Species #
Species
N
1
Worm, Lumbriculus variegatus
3
2
Snail, Campeloma decisum
2
3
Snail, Juga plicifera
1
4
Snail, Lithoglyphus virens
1
5
Snail, Physa Integra
2
6
Freshwater mussel, Actinonaias pectorosa
2
7
Freshwater mussel, Utterbackia imbecillis
8
8
Cladoceran, Ceriodaphnia dubia
24
9
Cladoceran, Daphnia magna
31
10
Cladoceran, Daphnia pulicaria
24
11
Cladoceran, Scapholeberis sp.
1
12
Amphipod, Gammaruspseudolimnaeus
2
13
Amphipod, Hyallela azteca
7
14
Stonefly, Acroneuria lycorias
1
15
Midge, Chironomus decorus
1
16
Shovelnose sturgeon, Scaphirhynchus platorynchus
1
17
Apache trout, Oncorhynchus apache
1
18
Cutthroat trout, Oncorhynchus clarki
11
19
Pink salmon, Oncorhynchus gorbuscha
3
20
Coho salmon, Oncorhynchus kisutch
7
21
Rainbow trout, Oncorhynchus mykiss
37
22
Sockeye salmon, Oncorhynchus nerka
10
23
Chinook salmon, Oncorhynchus tshawytscha
12
24
Bull trout, Salvelinus confluentus
5
25
Chiselmouth, Acrocheilus alutaceus
1
26
Bonytail chub, Gila elegans
1
27
Golden shiner, Notemigonus crysoleucas
1
28
Fathead minnow, Pimephales promelas
150
29
Colorado squawfish, Ptychocheilus lucius
2
30
Northern squawfish, Ptychocheilus oregonensis
2
31
Razorback sucker, Xyrauchen texanus
2
32
Gila topminnow, Poeciliposis occiderrtalis
1
33
Bluegill, Lepomis macrochirus
4
34
Fantail darter, Etheostoma flabellare
4
35
Greenthroat darter, Etheostoma lepidum
1
36
Johnny darter, Etheostoma nigrum
4
37
Fountain darter, Etheostoma rubrum
1
38
Boreal toad (tadpole), Bufo boreas
1
57

-------
11.0 REFERENCES
Abbasi, A.R. and S.E. Sheckley. 1995. Effects of copper on newly hatched larvae of herring, Clupea harengus L.
Pak. J. Zool. 27(4):285-290.
Abbasi, A.R., S.E. Shackley and P.E. King. 1995. Effects of copper on the ultrastructure of brain cells of Atlantic
herring, Clupea harengus L. Pak. J. Zool. 27(3):203-206.
Academy of Natural Sciences. 1960. The sensitivity of aquatic life to certain chemicals commonly found in
industrial wastes. Philadelphia, PA.
Alam, M.K. and O.E. Maughan. 1992. The effect of malalhiou. dia/iuou. and \ annus couceuinilioiis of/inc. cupper,
nickel, lead, iron, and mercury on fish. Biol. Trace Elan Res ^4< ') 225-2
Allen, H.E. andD.J. Hansen. 1996. The importance of irace nielal specialiou Ik walerquahis criicna Waler
Environ. Res. 68:42-54.
Allen, H.E. et al. 1983. An algal assay method for delcrniiiialiou of copper coniplcviliou capacilies of naliiral
waters. Bull. Environ. Contam. Toxicol. 30:448.
Anderson, B.G. 1944. The toxicity thresholds of various suhsiauces found hi iudiisirial wasies as delerniiiied h>
Daphnia magna. Sewage Works J. 16:1156-1164.
Anderson, B.G. 1948. The apparent thresholds of toxic11\ in / >,i/
Anderson, B.S., J.W. Hunt, S.L. Turpen, A.R. Coulon and \1. Mailiu I1)')" ( upper lo\icil> In microscopic siages of
giant kelpMacrocystispyrifera: Interpopulation comparisons and temporal \anahihi\ Mar I vol I'rou Ser <>X(1-
2): 147-156.
Anderson, B.S., D.P. Middaugh, J.W. Hunt and S.L. I iirpcu iwl Copper to\icil> In sperm. enihi\os. and larvae of
topsmelt Atherinops affinis, with notes on induced spawning Mar. I !n\ iron Res ' 1(1): 17-35.
Anderson. D M and F M M Morel 19~s ( opper seusiii\ nv of Crcin.wl.iv lamarensis. Limnol. Oceanogr. 23: 283-
295.
Anderson. I'D and \' \ Spear IWiia Copper pharniaeokiiielies mi fish gills-1. Kinetics in pumpkinseed sunfish,
Zepo/w/.s-iy//'/"'.N/.'.s. of dilfereiii hods si/es \\ aler Res. 14 III) I
Anderson. I'D and lJ A Spear I'JXOb. (opper pharniaeokiiielies infish gills-II. Body size relationships for
accumulation and lolei.mee. W aler Res 14 I Hi"
Anderson. R I..( I Walhridue and II 1'iaudl l''Sn Siiia i\ ;il and growth of Tanytarsus clissimilis (Chrionomidac)
exposed to copper, cadmium, /me. and lead \rcli I !n\ iron ( ontam. Toxicol. 9:329.
Anderson. R.S., L.iVl. iMora ami S \ l lioniioii. 1994b. Modulalion of oyster (Crassostrea virginica) hemocyte
immune function by copper, as measured by luminol-enhanced chemiluminescence. Comp. Biochem. Physiol.
|usCC):215-220.
\iiderssnu. S and L. Kaulskv. 1996. Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Mar.
I'.iol (I'.erl i I25HVI7I-176.
\udrew. R W I ')'<> I oxicily relationships to copper forms in natural waters. In: Toxicity to biota of metal forms in
ualunil waler \udrew, R.W. et al. (Eds.) International Joint Commission, Windsor, Ontario, Canada, p. 127.
Andrew, R.W. et al. 1977. Effects of inorganic complexing on toxicity of copper to Daphnia magna. Water Res.
11:309.
Andros, J.D. and R.R. Garton. 1980. Acute lethality of copper, cadmium, and zinc to northern squawfish. Trans. Am.
Fish. Soc. 109:235.
58

-------
Arillo, A. et al. 1984. Biochemical effects of long-term exposure to cadmium and copper on rainbow trout (Salmo
gairdneri): Validation of water quality criteria. Ecotoxicol. Environ. Safety 8:106.
Arthur, J.W. and E.N. Leonard. 1970. Effects of copper on Gammarus pseudolimnaeus, Physa integra, and
Campeloma decisum in soft water. J. Fish. Res. Board Can. 27:1277-1283.
ASTM. 2000. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates,
and amphibians. E729-96. In: Annual book of ASTM standards. Section 11, Volume 5. American Society for
Testing and Materials, Pennsylvania, PA.
Bailey, H.C. and D.H.W. Liu. 1980. Lumbricalus variegatus, a benthic oligochaete, as a bioassay organism. In:
Aquatic toxicology. Eaton, J.G. et al. (Eds.). ASTM STP 707. American Society for Testiim and Materials.
Philadelphia, PA. p. 205.
Bailey, H.C., J.L. Miller, M.J. Miller and B.S. Dhaliwal. 1995. Application of toxic11\ identification procedures to
the echinoderm fertilization assay to identify toxicity in a municipal effluent Environ To\icol. ( hem 14< 12) 2181-
2186.
Baird, D.J., I. Barber, M. Bradley, A.M.V.M. Soares and P. Calow I '>'> I . A compar;iii\ e Mud> of ucnois pe
sensitivity to acute toxic stress using clones of Daphnia magn.i Sirans I ;coto\icol I !n\ iron. Salel\ 2 li ') 257-265.
Baker, J.T.P. 1969. Histological and electron microscopical obser\ al ions on copper poisoning in the winter flounder
(Pseudopleuronectes americanus). J. Fish. Res. Board Can. 26 2 ~X5-2~1^
Bartlett, L. et al. 1974. Effects of copper, zinc and cadmium on Sclanasiriim capricorn imnn. Water Res. 8:179.
Beaumont, A.R., G. Tserpes and M.D. Budd. 1987. Some effects ol copper on ihc \ elmer larvae of the mussel
Mytilus edulis and the scallop Pecten maximus (Mollusca. I!i\ al\ ia> Mar l!ii\noii Res 21(4):299-309.
Bechmann, R.K. 1994. Use of life tables and LC50 tcsis io e\ aluale chronic and acute lo\icity effects of copper on
the marine copepod Tisbefurcaia (Baird). Environ. Toxicol. Clicni I V>). I5<>1M 51"
Bednarz, T. andH. Warkowska-Dralnal. 1983/1984. Toxicity of zinc, cadmium, lead, copper, and their mixture for
Chlorellapyrenoidosa. Acta Hvdrobiol. 25/26(3/4):3X()-400
Belanger, S.E. and D.S. Cherry. 1990. Interacting effects of pi I acclimation, pH, and heavy metals of acute and
chronic to\icit\ to G rind,iphiii.i duhia (Cladoccran). J. Crustacean Biol. 10(2):225-235.
Belanger. S ID.S (hem ..II.. Farris. K.G. Sappington and J. Cairns, Jr. 1991. Sensitivity of the Asiatic clam to
various biocidal control aucnts I \m. Water Works Assoc. 83(10):79-87.
Belanger. S I!. I I.. I 'ai i is and I) S ( berry 1989. Effects of diet, water hardness, and population source on acute and
chronic copper toxicity to Ceriodaphnia duhia. Arch. Environ. Contam. Toxicol. 18(4):601-611.
Belanger. SI!.. I I. lams. I) S (hem and J. Cairns, Jr. 1990. Validation of Corbicula fluminea growth reductions
induced by copper in artificial streams ;md river systems. Can. J. Fish. Aquat. Sci. 47(5):904-914.
I !el la\ ere, C. and J. Gorhi I'JX I \ comparative analysis of acute toxicity of chromium, copper and cadmium to
Daphnia magna, Biomphala^ifi glabrala, and Brachydanio rerio. Environ. Technol. Lett. 2:119.
I ienlira. \ . (' M. Radetski and J.F. Ferard. 1997. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate
test l!ii\iioii I'omcoI ( hem. 16(3):505-508.
I '.eiinetl. W A . \ Sosa and T.L. Beitinger. 1995. Oxygen tolerance of fathead minnows previously exposed to
copper I >nlI. Liimioli. Contam. Toxicol. 55(4):517-524.
Benoit, D.A. 1975. Chronic effects of copper on survival, growth, and reproduction of the bluegill (Lepomis
macrochirus). Trans. Am. Fish. Soc. 104:353-358.
Benson, W.H. and W.J. Birge. 1985. Heavy metal tolerance and metallothionein induction in fathead minnows
(Pimephalespromelas): Results from field and laboratory investigations. Environ. Toxicol. Chem. 4(2):209-218.
59

-------
Bergman, H.L. and E.J. Dorward-King, Eds. 1997. Reassessment of Metals Criteria for Aquatic Life Protection:
Priorities for Research and Implementation, Proceedings of the SETAC Pellston Workshop on Reassessment of
Metals Criteria for Aquatic Life Protection, February 10-14, 1996, Pensacola, Florida, SETAC Press, 114 pp.
Besser, J.M., J.F. Dwyer, C.G. Ingersoll, and N. Wang. 2001. Early life-stage toxicity of copper to endangered and
surrogate fish species. EPA Project No. DW14937809-01-0. Office of Research and Development, Washington, DC.
Betzer, S.B. and P.P. Yevich. 1975. Copper toxicity inBusycon canaliculatun L. Biol. Bull. 148:16-25.
Biesinger, K.E. and G.M. Christensen. 1972. Effects of various metals on survival, growth, reproduction, and
metabolism of Daphnia magna. Jour. Fish Res. Board Can. 29:1691.
Bilgrami, K.S. and S. Kumar. 1997. Effects of copper, lead and zinc on phytoplanktou mow ill I '.ml Haul
39(2):315-317.
Bills, T.D. etal. 1981. Polychlorinatedbiphenyl (Aroclor 1254) residues in minbow Hour ITI'ecls ol sensin\ u> in
nine fishery chemicals. North Am. J. Fish. Manage. 1:200.
Birdsong, C.L. and J.W. Avault, Jr. 1971. Toxicity of certain chemicals iojiin euile ponipauo. lJmu I'isli ( nil ^ "<.-
80.
Birge, W.J. 1978. Aquatic toxicology of trace elements nfcoal and fl\ ash In I! i ic ru> and environmental stress in
aquatic systems. Thorp, J.H. and J.W. Gibbons (Eds.) COM-'-"" I 114 DO l\. S\ niposmin Series, Vol. 48. National
Technical Information Service, Springfield, VA. p. 12l>-24(>
Birge, W.J., W.H. Benson and J.A. Black. 1983. The induction of tolerance in hea\ > metals in natural and laboratory
populations of fish. PB84-111756. National Technical Information Sen ice. Spiiimfiekl. Y \
Birge, W.J. and J.A. Black. 1979. Effects of copper mi emhi>miic and ju\ enile staues of aquatic animals. In: Copper
in the environment. Part II. Health Effects. Nriagu. J.O (lid i Wiles ;md Sons. Inc. New York, NY. 373-399.
Birge, W.J., J.A. BlackandB.A. Ramey. I'JXI I he rcpiodiicli\e to\icolou> of aquatic contaminants. In: Hazard
assessment of chemicals: Current developments. Ynl I Sa\eua, I audi' fisher (I ids i \cademic Press, New York,
NY. p. 59-115
Birge, W..I . I \ I'.lack. \(i \\ esieiiiian and J.E. I ludsmi I ''So \quatic toxicity tests on inorganic elements
occurring mi ml shale In Oil shale s\ posuim: Sampling. ;in:il\sis, and quality assurance. Gale, C. (Ed.). EPA-600/9-
80-022. Nalimial Technical Information Service, Spmmficld. Y A p. 519-534.
Birge, W..I . .1.1 I ludsmi. I \ I'.lack and \(i Wesierman. 1978. Embryo-larval bioassays on inorganic coal
elements and in >iw himnoniim iim of cnal-uasie ell'luents. In: Surface mining and fish/wildlife needs in the Eastern
United Steles Samuel. I) I! (lid) PI 5	National Technical Information Service, Springfield, VA. p. 97-104.
Black. J.A and \\ J I'.ii'ue I'imi. An a\mdance response bioassay for aquatic pollutants. PB80-180490. National
Technical lufm'nialimi Ser\ ice. Spiiuulield, VA.
I '.laise. C.. R. Legault, N I '.ei niiimhani. II. van Coillie and P. Vasseur. 1986. A simple microplate algal assay
lechuique for aquatic to\icil> assessment. Toxic. Assess. 1(3):261-281.
I !la> lock. P. G., M.L. Frank and J.F. McCarthy. 1985. Comparative toxicity of copper and acridine to fish, Daphnia
and aluae Luviron Toxicol. Chem. 4(1):63-71.
I joi uniaiiii. I I 'JN" Metal speciation and toxicity of free metal ions to aquatic biota. In: J.O. Nriagu (Ed.). Aquatic
To\icolou\. Vol I ^ John Wiley & Sons, New York, NY. p. 47-72.
Borgmann, U. and C.C. Charleton. 1984. Copper complexation and toxicity to Daphnia in natural waters. J. Great
Lakes Res. 10(4):393-398.
Borgmann, U., W.P. Norwood and C. Clarke. 1993. Accumulation, regulation and toxicity of copper, zinc, lead and
mercury inHyalella azteca. Hydrobiologia 259(2):79-89.
60

-------
Borgmann, U. and K.M. Ralph. 1983. Complexation and toxicity of copper and the free metal bioassay technique.
Water Res. 17:1697-1703.
Borgmann, U. and K.M. Ralph. 1984. Copper complexation and toxicity to freshwater zooplankton. Arch. Environ.
Contam. Toxicol. 13:403-409.
Botton, M.L., K. Johnson and L. Helleby. 1998. Effects of copper and zinc on embryos and larvae of the horseshoe
crab, Limuluspolyphemus. Arch. Environ. Contam. Toxicol. 35:25-32.
Boutet, C. and C. Chaisemartin. 1973. Specific toxic properties of metallic salts inAustropotamobiuspallipes
pallipes and Orconectes limosus. C.R. Soc. Biol. (Paris) 167:1973.
Bowen, H.J.M. 1985. In D. Hutzinger (ed.), The Handbook of Environmental Chemism. Vol I. I'aii I) I lie natural
environment and biogeochemical cycles, Springer-Verlag, New York. p. 1-26.
Braginskij, L.P. andE.P. Shcherban. 1978. Acute toxicity of heavy metals lo aquatic m\ citcbnilcs al different
temperatures. Hydrobiol. J. 14(6):78.
Brandt, O.M., R.W. Fujimura and B.J. Finlayson. 1993. Use of Nemnvsis nur, e - a case siinK . Proc. Toxic. Subst. Water
Environ. 5/23-5/30. Water Environment Federation, Alevuidiia. Y \
Bringmann, G. 1975. Determination of the biologically harmful el'fecl of u aler polliiianls by means of the retardation
of cell proliferation of the blue algae Microcystis. Gesuiid -I nu ')(> 2 ^X-241
Bringmann, G. andR. Kuhn. 1959a. Comparative watcr-to\icolomcal iii\estimations on bacteria, algae, and daphnia.
Gesundheits-Ing. 80:115-120.
Bringmann, G. and R. Kuhn. 1959b. Water io\icolou\ siudies w nli protozoans as lesi oru;inisms. Gesund.-Ing.
80:239-242.
Bringmann, G. andR. Kuhn. 1976. ( onipaiali\ e resiilis of I lie damamuu effects of water pollutants against bacteria
(Pseudomonas putida) and blue algae (Microcystis aeruginosa). Gas-Wasscrfach, Wasser-Abwasser 117:410.
Bringmann, G. andR. Kuhn I'' a. I.iniitum \ allies for the damaging action of water pollutants to bacteria
(Pseudomonas putida) and green algae (Scenedesntus quadricauda) in the cell multiplication inhibition test. Z.
Wasser \hwasser I'orscli |u
Bringniauu. G and k. Kuhn l''~S;i l.i mil i uu \ a lues for the noxious effects of water pollutant material to blue algae
(Microcystis aeruginosa) and green algae (Scenedesmus quadricauda) in cell propagation inhibition tests. Vom
Wasser 5u
Bringniauu. (i and k Kuhn I lJ~Kb Testnm of substances for their toxicity threshold: Model organisms Mcrocysfe
(Diploc> stis) aeruginosa and Scendesmus quadricauda. Mitt. Int. Ver. Theor. Angew. Limnol. 21:275-284.
I '.iiuumann. G. and R. Kuhn I lJ79. Comparison of toxic limiting concentrations of water contaminants toward
bacteria, algae, and prolo/oa m the cell-growth inhibition test. Haustech. Bauphys. Umwelttech. 100:249-252.
] Ji'iiiuniauu. (i. and R. Kuhn. 1980a. Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and
prolo/oa in the cell multiplication inhibition test. Water Res. 14:231-241.
I	ii'iimniauii. (i and k Kuhn. 1980b. Determination of the harmful biological effect of water pollutants on protozoa.
II	P.aclcrioNoi'ous ciliutes. Z. Wasser AbwasserForsch. 13:26-31.
Bringmann, G. and R. Kuhn. 1981. Comparison of the effects of harmful substances on flagellates as well as ciliates
and on halozoic bacteriophagous and saprozoic protozoa. Gas-Wasserfach, Wasser-Abwasser 122:308.
Brown, V.M. 1968. The calculations of the acute toxicity of mixtures of poisons to rainbow trout. Water Res. 2:723-
733.
61

-------
Brown, V.M. and R.A. Dalton. 1970. The acute toxicity to rainbow trout of mixtures of copper, phenol, zinc and
nickel. J. FishBiol. 2:211.
Brown, B.T. and B.M. Rattigan. 1979. Toxicity of soluble copper and other metal ions to Elodea canadensis.
Environ. Pollut. 18:303.
Brown, V.M., T.L. Shaw and D.G. Shurben. 1974. Aspects of water quality and toxicity of copper to rainbow trout.
Water Res. 8:797.
Brungs, W.A., E.N. Leonard and J.M. McKim. 1973. Acute and long-term accumulation of copper by the brown
bullhead, Ictalurus nebulosus. J. Fish. Res. Board Can. 30(4):583-586.
Brungs, W.A., J.R. Geckler and M. Gast. 1976. Acute and chronic toxicity of copper In I lie fathead minnow mi a
surface water of variable quality. Water Res. 10:37-43.
Buckley, J.A. 1983. Complexation of copper in the effluent of a seuaue treatment plain and an estimate ol lis
influence on toxicity to coho salmon. Water Res. 17(12): 1929-19"4
Buckley, J.T., M. Roch, J.A. McCarter, C.A. Rendell and \ I Malhesou ll>X2 Chrome exposure lo coho salmon lo
sublethal concentrations of copper -1. Effect on growlli. on acciiiniilalioii and disirihiiiion of copper, and on copper
tolerance. Comp. Biochem. Physiol. 72C: 15-19.
Buhl, K.J. and S.J. Hamilton. 1990. Comparative toxieil> of iiioruame eoiiiaiiniiaiils released by placer mining to
early life stages of salmonids. Ecotoxicol. Environ. Safel> 2 and hazard assessment: Sixth
symposium. Bishop, W.E., R.D. Card well and I! I! I leidolph 11 Ids. i \ST\I SIP 802. American Society for Testing
and Materials, Philadelphia, PA. pp. 2u4-2 15.
Burton, D.T. and D.J. Fisher. 1990. \euie lo\icil> of cadmium, copper, zinc, ammonia, 3,3'-dichlorobenzidine, 2,6-
dichloro-4-nitroaniline, melliv leue chloride, and 2.4.(>-lriehloropheuol to juvenile grass shrimp and killifish. Bull.
Environ. Contain Toxicol. 44ni (i--S"
Cacela, D . k Hudson. .I l.ipton. I \larr. I I'odrabsky, and P. Welsh. 1996. Preliminary Toxicological Evaluation
U.S. v. Iron Mountain Mines, luc Prepared h\ I lazierBailly Consulting, Inc. Boulder, CO.
Cairns, J., Jr. \ I. I '.uikenia. Jr. \ (i I lealli and I 5.C. Parker. 1978. Effects of temperature on aquatic organism
sensitivity lo seleeled chemicals I lulleliu Kk. Virginia Water Resources Research Center, Blacksburg, VA.
Cairns. I . Jr and \ Seheier I ''<>N \ comparison of the toxicity of some common industrial waste components
lesled indiMdually and eomhiiied Piou Pish Cult. 30:3.
('aims. J., Jr., D.I. Messeuuer and W.F. Calhoun. 1976. Invertebrate response to thermal shock following exposure
lo aeuiely sub-lethal coueeuiralions of chemicals. Arch. Hydrobiol. 77:164-175.
Cairns. .1 . Jr. K W Thompsonand A.C. Hendricks. 1981. Effects of fluctuating, sublethal applications of heavy
nielal solutions upon ihe gill ventilation response of bluegills (Lepomis macrochirus). EPA-600/3-81-003. National
Technical Information Service, Springfield, VA.
Cairns, J., Jr. el al. 1980. Effects of a sublethal dose of copper sulfate on the colonization rate of freshwater
protozoan communities. Am. Midi. Nat. 104:93.
Calabarese, A., R.S. Collier, D.A. Nelson and J.R. Maclnnes. 1973. The toxicity of heavy metals to embryos of the
American oyster Crassostrea virginica. Mar. Biol. 18:162.
62

-------
Calabrese, A., J.R. Maclnnes, D.A. Nelson and J.E. Miller. 1977. Survival and growth of bivalve larvae under
heavy-metal stress. Mar. Biol. 41:179-1984.
Calabrese, A., J.R. Maclnnes, D.A. Nelson, R.A. Greig and P.P. Yevich. 1984. Effects of long-term exposure to
silver or copper on growth, bioaccumulation and histopathology in the blue mussel Mytilus edulis. Mar. Environ.
Res. ll(4):253-274.
Calamari, D. and R. Marchetti. 1973. The toxicity of mixtures of metals and surfactants to rainbow trout (Salmo
gairdneri Rich.). Water Res. 7:1453-1464.
Calamari, D. and R. Marchetti. 1975. Predicted and observed acute toxicity of copper and ammonia lo rainbow trout
{Salmo gairdneri Rich.). Prog. Water Technol. 7:569-577.
Campbell, P.G.C. 1995. "Interactions Between Trace Metals and Aquatic Organisms \ ( riiiquc oil lie I ree-ion
Activity Model," in Metal Speciation and Bioavailability in Aquatic SV.s/rw.v A. Tessier and I) k Turner. eds . John
Wiley and Sons, New York, pp. 45-102.
Cardin, J.A. 1982. U.S. EPA,(Memorandum to JohnH. Gentile. U S I PA, Narrauausell. kl.
Carlson, A.R., W.A. Brungs, G.A. Chapman and D.J. Hansen 19X4. Guidelines Ibidem niu numerical aquatic site-
specific water quality criteria by modifying national ciileria I IP \-(>(m) ^-N4-n')'). I S I !uvironmeiiial Protection
Agency, Environmental Research Laboratory, Duluth. Minnesota. I S\
Carlson, A.R., H. Nelson and D. Hammermeister. 198<> I )e\ clopnieui and \ alidation of siie-specific water quality
criteria for copper. Environ. Toxicol. Chem. 5(11):99--1 < > 12
CH2MHill. 1999a. Bioassay report: Acute toxicity of copper lo summer flounder (i'.irnli, hihys dentatus). Final
report prepared for U.S. Navy. November 1999. CH2MII ill. Norfolk. Yirmma 2<> p
CH2MHill. 1999b. Bioassay report: Acute toxicity of copper lo blue mussel M h iiln.s idnlis). Final report prepared
for U.S. Navy. November 1999. CH2MIIill. Norfolk. Yirmuia 41 p
Chagnon, N.L. and S.I. Guttman. 1989. Differential sur\ i\orslnp of ;illo/\ me ueuoi\pes inmosquitofishpopulations
exposed to copper or cadmium Environ Toxicol Clicm 8(4V* 19-^2<>
Chakouniakos. ( . k ( kiissoaudkV I Illusion l'J~lJ I lie toxicity of copper to cutthroat trout {Salmo clarki)
under d i He re i H conditions of alkahuiis. pi I. and hardness |-u\ iron. Sci. Technol. 13:213-219.
Chambers. J \1 . \\ S	( le\ eland. I!. Kleiner and I' \ I uke> 1983. Graphical Methods for Data Analysis. Duxbury
Press, l.osiou
Chapman, (i \ ll>~5	To\icil> of copper, cadiuium and /me lo Pacific Northwest salmonids. U.S. EPA, Corvallis,
OR.
Chapman. (i \ l'J"S	I b\icilies orcadiiiiuni. copper, and /me to four juvenile stages of chinook salmon and
steelhead I rails \m	fish Soc H>~X4I-X4~
Chapman, G.A. 1982. U.S. I PA. Corvallis, OR (Letter to Charles E. Stephan. U.S. EPA, Duluth, MN. December 6).
( hapni;in, G.A. and J.K. Mc( rady. 1977. Copper toxicity: A question of form. In: Recent advances in fish
toMcolous Tubb, R.A. (Ed.). EPA-600/3-77-085. National Technical Information Service, Springfield, VA. p. 132.
( hapniau. (i \ . S ()ia and F. Recht. Manuscript. Effects of water hardness on the toxicity of metals to Daphnia
' I S IPV Cor\ all is, OR.
Chapman, G.A. and D.G. Stevens. 1978. Acute lethal levels of cadmium, copper, and zinc to adult male coho salmon
and steelhead. Trans. Am. Fish. Soc. 107:837-840.
Charoy, C.P., C.R. Janssen, G. Persoone and P. Clement. 1995. The swimming behavior of Brachionus calyciflorus
(Rotifer) under toxic stress. I. The use of automated trajectometry for determining sublethal effects of chemicals.
Aquat. Toxicol. 32(4):271-282.
63

-------
Chen, C.Y., K.C. Lin and D.T. Yang. 1997. Comparison of the relative toxicity relationships based on batch and
continuous algal toxicity tests. Chemosphere 35(9): 1959-1965.
Christensen, E.R., J. Scherfig and P.S. Dixon. 1979. Effects of manganese, copper, and lead on Selenastrum
capricornutum and Chlorella stigmatophora. Water Res. 13:79-92.
Chung, I.K. and B.H. Brinkhuis. 1986. Copper effects in early life stages of the kelp, Laminaria saccharina. Mar.
Pollut. Bull. 17(5):213-218.
Chynoweth, D.P., J. A. Black and K.H. Mancy. 1976. Effects of organic pollutants on copper toxicity to fish. In:
Toxicity to biota of metal forms in natural water. Andrew, R.W. et al. (Eds.). International Joint Commission,
Windsor, Ontario, Canada, p. 145.
City of San Jose. 1998. Development of a site-specific water quality criterion for copper in South San francisco Bay.
San Jose/Santa Clara Water Pollution Control Plant, San Jose, CA 171 pp
Clements, W.H., D.S. Cherry and J. Cairns, Jr. 1988. Structural alteration;, 111 aquatic insect communities e\posed In
copper in laboratory streams. Environ. Toxicol. Chem. 7(9):715-~22
Clements, W.H., D.S. Cherry and J. Cairns, Jr. 1989a The influence of copper exposure on precl;ilor-pre\
interactions in aquatic insect communities. Freshwater I >iol 2 I < ') 4X ,-4XX.
Clements, W.H., J.L. Farris, D.S. Cherry and J. Cairns. Ir I'WJh I he influence of ualer quality on
macroinvertebrate community responses to copper in outdoor c\pcrinieuial sireanis \qual Toxicol. 14(3):249-262.
Clements, W.H., D.S. Cherry and J. Cairns, Jr. 1990. \1acroiu\ eriehrale coniniiiinis responses to copper in
laboratory and field experimental streams. Arch. Environ ( oiitani. TomcoI I 'H 11 ^<> I-"(>5
Clendenning, K.A. and W.J. North. 1959. Effects of wastes on I lie maul kelp. W./> /¦<« \ wiis pyrifera. In: Proceedings
of the first international conference on wasle disposal mi ihe marine en\ imiinieui lJearsou. E.A. (Ed.). Berkeley,
California, p. 82.
Coglianese, M. andM. Martin. I'JSI lndi\ idual and iuicracli\e effects of eu\ iroiinieuial stress on the embryonic
development of the Pacific oyster. (/.w.w/v./ I'ari I To\icit\ of copper and silver. Mar. Environ. Res. 5:13-
27.
Colly a rd. S \ .(i I \ukle>.k \ llokeaud I (loklsieiu I 'J'H I nfluence of age on the relative sensitivity of
HyalelLi ,ch\ ~2 Acute lo\icil> of lieaw metals io some maiine larvae. Mar. Pollut. Bull. 3:190-192.
Conrad. (i W I ''NX I lea\ > melal effects on cellular shape changers, cleavage, and larval development of the marine
gastropod molliisk. i//i•iuu.s.s.i	Sa>;. Bull. Environ. Contam. Toxicol. 41(l):79-85.
Cote, k I'JX; I o\ic aspects of copper onthe biomass and productivity of phytoplankton in the Saguenay River,
Quebec I lulrohiologia S5
( ouillard, Y., P. Ross and I > Pinel-Alloul. 1989. Acute toxicity of six metals tot he rotifer Brachionus calyciflorus,
\\ illi comparisons to other freshwater organisms. Toxic. Assess. 4(4):451-462.
( ow ui 11. I \l and I) \' \lilazzo. 1991a. Comparison of the effect of metallic copper and copper nitrate
(CuiSO.i 'I I ()i on < \-riodaphnia dubia utilizing the three-brood test. Bull. Environ. Contam. Toxicol. 46(1): 141-
145
Crecelius, E.A., J.T. Hardy, C.I. Gibson, R.L. Schmidt. C.W. Apts, J.M. Gurtisenand S.P. Joyce. 1982. Copper
bioavailability to marine bivalves and shrimp: Relationship to cupric ion activity. Mar. Environ. Res. 6:13-26.
Cripe, G.M. 1994. Comparative acute toxicities of several pesticides and metals to Mysidopsis bahia and postlarval
Penaeus duorarum. Environ. Toxicol. Chem. 13(11): 1867-1872.
64

-------
Curtis, M.W., T.L. Copel and C.H. Ward. 1979. Acute toxicity of 12 industrial chemicals to freshwater and saltwater
organisms. Water Res. 13:137-141.
Curtis, M.W. and C.H. Ward. 1981. Aquatic toxicity of forty industrial chemicals: Testing in support of hazardous
substance spill prevention regulation. J. Hydrol. 51:359-367.
Cusimano, R.F., D.F. Brakke and G.A. Chapman. 1986. Effects of pH on the toxicities of cadmium, copper and zinc
to steelhead trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 43(8): 1497-1503.
Davis, A. and D. Ashenberg. 1989. The aqueous geochemistry of the Berkeley Pit, Butte, Montana, U.S.A. Appl.
Geochem. Vol (4):23-36.
Davis, J.C. and I.G. Shand. 1978. Acute and sublethal copper sensitivity, growth and saliwaler snr\ i\ al in > oimg
Babine Lake sockeye salmon. Technical Report No. 847. Environment Canada, Wesi Yancom or. I Sriiish ( olumbia.
Canada.
De Boeck, G., H. DeSmet and R. Blust. 1995. The effect of sublethal le\ els of copper on o\\ uen coiisnnipiioii and
ammonia excretion in the common carp, Cyprinus carpio. Aquatic IomcoI. (Amsterdam i "2( 2-^» 12 —-141
Deshmukh, S.S. and V.B. Marathe. 1980. Size related toxicity of copper and nierciin lo / r/'/.wo iviit nl.u.i (IVicr).
I.aheo rohita (Ham.) and Cyprinus carpio (Linn.). Indian .1 l\p liiol 1X421-42 ^
Diamond, J.M., C. Gerardi, E. Leppo andT. Miorelli. I ''''"a I sum a walcr-cfl'ccl ralio approach to establish effects
of an effluent-influenced stream on copper toxicity to llie I'alhead minnow I !ii\ iioii IomcoI. Chem. 16(7):1480-
1487.
Diamond, J.M., D.E. Koplish, J. McMahon, III and R kosi. I Wh I\\ ahialion ol ihe ualer-effect ratio procedure
for metals in a riverine system. Environ. Toxicol. Chem l<>(') 5(>l)-52(>
Dickson, K.L., J.P. Giesy, R. Parrish, andL Wolfe. Liw4 Siinnii;ir\ and conclusions In I lamelink, J.L., P.F.
Landrum, H.L. Bergman, and W.H. Benson. (Eds.). Eiioa\ ailabilils Mi> sical. Chemical, and Biological Interactions.
Lewis Publishers, Boca Raton, Florida, USA. pp 221 -230
Dinnel, P. A., J.M. Link, Q..T Stobcr. VI \\. I .cloiiriieau and W E Robcris. 1989. Comparative sensitivity of sea
urchin spermbioassays to melals and pesiicides \rcli lai\ iron Contain. Toxicol. 18(5):748-755.
Di Toro, D M el al 2001. The persistence and a\ nilahililv of nielals in aquatic environments. International council
onmetals and ihe eiiMronmeni Oiiawa. Oniano. ( anada
Di I oro. I) \1 . 11 I! \llen. III. r.erunian. IS \1e\er. I' k I'aquin and R.C. Santore, 2001. A Biotic Ligand Model
of I lie \cnle I o\icil> ol'Nlelals I Technical liasis. rnvininincntal Toxicology and Chemistry. 20:2383-2396.
Di\on. I)(i and I \V llilion I ''SI h I iirinenee on available dietary carbohydrate content on tolerance of waterborne
copper h\ nmibow ironi. \ilui" ^.linliuri Richardson. J. Fish Biol. 19:509-517.
Di\on. I)(i and .I I! Spraune I ''XI a Acclimation to copper by rainbow trout (Salmo gairdneri): A modifying
faelor in io\ieil> Can I I 'ish \qnal Sci. 38:880-888.
I )i\oii. \\ .J. and M.B. J '.row n i Lds>;. 1979. BMDP biomedical computer programs, P-series. University of California,
15erkele\. C \
I )obbs. \1 (i. I I. I arris, k I Reash, D.S. Cherry and J. Cairns, Jr. 1994. Evaluation of the resident-species
procedure lor de\ eloping bite-specific water qualtiy criteria for copper in Blaine Creek, Kentucky. Environ. Toxicol.
( hem I "((>).I
Dodge, E.E. and T.L. Theis. 1979. Effect of chemical speciation on the uptake of copper by Chironomus tentans.
Environ. Sci. Technol. 13:1287.
Donaldson, E.M. and H.M. Dye. 1975. Corticosteriod concentrations in sockeye salmon (Oncorhynchus nerka)
exposed to low concentrations of copper. J. Fish. Res. Board Can. 32:533-539.
65

-------
Dorfman, D. 1977. Tolerance of Fundulus heteroclitus to different metals in salt waters. Bull. N.J. Acad. Sci. 22:21-
23.
Drummond, R.A. et al. 1973. Some short-term indicators of sublethal effects of copper on brook trout, Salvelinus
fontinalis. J. Fish. Res. Board Can. 30:698.
Dwyer, F.J., D.K. Hardesty, C.E. Henke, C.G. Ingersoll, D.W. Whites, D.R. Mount, C.M. Bridges. 1999. Assessing
Contaminant Sensitivity Of Endangered and Threatened Species: Toxicant Classes. EPA/600/R-99/098.
Dwyer, J.F., L.C. Sappington, D.R. Buckler, and S.B. Jones. 1995. Use of Surrogate Species in Assessing
Contaminant Risk to Endangered and Threatened Fishes. USEPA Project No: DWI14935155-01 -0 Office of
Research and Development, Washington, DC.
Eisler, R. 1977. Acute toxicities of selected heavy metals to the softshell clam. Mya • n\nuri,i Hull I !n\ mum
Contam. Toxicol. 17:137.
Elder, J.F. and A.J. Home. 1978. Copper cycles and CuS04 algicidal capacity in two ( aliforma lakes I !m\ mum
Manage. 2:17-30.
Ellgaard, E.G. and J.L. Guillot. 1988. Kinetic analysis of the swimnnim hcha\ lor of hi iicui 11 sniilish. / ,/ kelali\ e sensiin n\ oi l luce daplinid species to selected
organic and inorganic chemicals. Environ. Toxicol. Clieni 5(4)
Eloranta, P., T. Lahtinen and H. Salonen. 1988. Effecis of some ciin iroiiniciiial faclois dm ilie pigments of duckweed
(Lemna minor L.) AquaFenn. 18(l):75-84.
Eklund, B. 1993. A 7-day reproduction test with I lie marine red alua (\rnmiinu >//¦/> mm Sci. Total Environ. 1
(Suppl.):749-759.
Engel, D.W., W.G. Sunda and R.M Thuoiie. I K>~<> Tl fecls of copper on mannc eggs and larvae. Environ. Health
Perspect. 17:288-289
Environmental Ser\ ices I )epai'inieiii. ( n> of San lose. Iwx I )e\ elopment of a site-specific water quality criterion
for copper in south S;im I rancisco I !a> I ji\ iroiiniciiial Sen ices Department, City of San Jose, San Jose/Santa Clara
Water Pol Imiiom Control Haul. 4245 /.anker koad. San lose. ( V. 171 pp. May.
Erickson. k I . I) A P.eiioii and Y k. Malison l^^(>a \ proioispe toxicity factors model for site-specific copper
water quality cniei'ia I S. IP \. DmIiiiIi. Miniiesoia
Erickson, R.J.. I) \ lienoii. \ k. Malison. II I' Nelson. Ir and E.N. Leonard. 1996b. The effects of water chemistry
on the toxicity of copper lo falhead imimmous. Lnviron. loxicol. Chem. 15(2): 181-193.
Erickson. S J. 1972. Toxicil> of copper lo Thalassiosirapseudonona inunenriched inshore seawater. J. Phycol.
84 ' 18.
I D ickson. S.J. et al. 197( i \ screening technique for estimating copper toxicity to estuarine phytoplankton. J. Water
Polliil. ConlrolFed. 42 k2~t>
I 'ai.iu. \ \l . I) I' Woodw aid, J.N. Goldstein, W. Brumbaugh and J.S. Meyer. 1998. Concentrations of metals
associated with milium waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene
ki\er basin. Idaho \rch. Environ. Contam. Toxicol. 34:119-127.
Faust, S.D. and O.M. Aly. 1981. Chemistry of natural waters. Ann Arbor Science Publishers, Inc., Ann Arbor, MI.
Ferard, J.F., P. Vasseur and J.M. Jouary. 1983. Value of dynamic tests in acute ecotoxicity assessment in algae. In:
Proceedings of the ninth annual aquatic toxicity workshop. McKay, W.C. (Ed.). Can. Tech. Rept. Fish. Aquat. Sci.
No. 1163. University of Alberta, Edmonton, Alberta, Canada, p. 38-56.
66

-------
Ferrando, M.D. and E. Andreu. 1993. Feeding behavior as an index of copper stress in Daphnia magna and
Brachionus calyciflorus. Comp. Biochem. Physiol. 106C(2):327-331.
Ferrando, M.D., M.E. Andreu and A. Fernadez-Casalderry. 1992. Relative sensitivity of Daphnia magna and
Brachionus calyciflorus to five pesticides. J. Environ. Sci. Health 27B(5):511-522.
Ferrando, M.D., C.R. Janssen, E. Andreu and G. Persoone. 1993a. Ecotoxicological studies with the feshwater
rotifer Brachionus calyciflorus. III. The effects of chemicals on the feeding behavior. Ecotoxicol. Environ. Safety
26(1): 1-9.
Finlayson, B.J. and K.M. Verrue. 1982. Toxicities of copper, zinc, and cadmium mixtures to juvenile chinook
salmon. Trans. Am. Fish. Soc. 111:645-650.
Fisher, N.S. and G.J. Jones. 1981. Heavy metals and marine phytoplankton: Correlation of io\icil> and siilfhulryl-
binding. J. Phycol. 17:108-.
Fletcher, R.L. 1989. A bioassay technique using the marine fouling ureeii alga eiilerniorpha I m Iiiodelenor
25(6):407-422.
Fogels, A. and J.B. Sprague. 1977. Comparative short-term tolerance of /ebialish. flaulish. and rainbow ironi lo five
poisons including potential reference toxicants. Water Res II SI I -SI ~
Folmar, L.C. 1976. Overt avoidance reaction of rainbow ironi fi \ in nine herbicides Hull Environ. Contam.
Toxicol. 15:509-513.
Fort, D.J., E.L. Stover and J.A. Bantle. 1996. Integrated ecolomcal ha/ard assessmenl ol' waste site soil extracts
using FETAX and short-term fathead minnow teratogenesis assa> In. I !n\ iroiinieiiial lo\icology and risk
assessment. Fourth Volume. La Point, T.W., F.T. hiceand \ :. \ :. I.illle(l!ds i \S I \1 SIP 1262. American Society
for Testing and Materials. Philadelphia, PA. 93-10')
Foster, P.L. 1982. Metal resistances of chlorophs la from ri\ eis pollnied b\ lieaw melals Freshwater Biol. 12:41.
Francis, J.C. andF.W. Harrison. 1988. Copperand /me uj.nicity in / '/•hwl.ni.i ihiviatilis (Porifera: Spongillidae).
Trans. Am. Microsc. Soc. 10"7nV6"7-"78
Gachter, R., K. Lum-Shue-Chan and Y K ( liau ll>~^ Coniple\inu capacity of the nutrient medium and its relation
to inhibition of alual photos> nihesis In copper Scliwei/ /. I lulrol. 35:252.
Gaffney, I' M kleiiiificalion ol' Mussel ( Wiv/Y/.'.m species College of Marine Studies, University of Delaware,
Lewes, DI! ()clober 2lJ. IW
Gardner, (ik and G l.aRoche I'J"' Copper induced lesions in estuarine teleosts. J. Fish. Res. Board Can. 30:363.
Garman, G I). \1 I) Rillai and (i \ (lie it l'J94. I nhibition of cellular events during early algal gametophyte
developmeiu I ll l'ecls nl' selecl melals and an aqueous petroleum waste. Aquat. Toxicol. 28(1-2):127-144.
Gar\ e>. J.E.. 11 \ Owen and R W. Winner. 1991. Toxicity of copper to the green alga, Chlamydomonas reinhardtii
(Chlorophvccae), as affected b\ luimic substances of terrestrial and freshwater origin. Aquat. Toxicol. 19(2):89-96.
(lanss. J.D., P.E. Woods. R \V Winner and J.H. Skillings. 1985. Acute toxicity of copper to three life stages of
(Ivronomus lentans as affected by water hardness-alkalinity. Environ. Pollut. 37A(2): 149-57.
(icckler. .1 R . \V 15. I lurning, T.M. Neiheisel, Q.H. Pickering, E.L. Robinson and C.E. Stephan. 1976. Validity of
laboralon lesis lor predicting copper toxicity in streams. EPA-600/3-76-116. National Technical Information
Ser\ ice. Spriimliekl. VA.
Gentile, S.M. 1982. U.S. EPA, City, ST (Memorandumto JohnH. Gentile. U.S. EPA, Narragansett, RI.
Giattina, J.D., R.R. Garton and D.G. Stevens. 1982. Avoidance of copper and nickel by rainbow trout as monitored
by a computer-based data acquisition system. Trans. Am. Fish. Soc. 111:491-504.
67

-------
Giesy, J.P., A. Newell and G.J. Leversee. 1983. Copper speciation in soft, acid, humic waters: Effects on copper
bioaccumulation by and toxicity to Simocephalus serrulatus (Daphnidae). Sci. Total Environ. 28:23-36.
Giles, M.A. and J.F. Klaverkamp. 1982. The acute toxicity of vanadium and copper to eyed eggs of rainbow trout
(Salmo gairdneri). Water Res. 16:885.
Goettl, J.P., Jr., J.R. Sinley and P.H. Davies. 1972. Water pollution studies. In: Colorado Fisheries Research Review
No. 7. Yeager, L.E. and D.T. Weber (Eds.). Colorado Division of Wildlife, Fort Collins, CO. p. 36-49.
Goh, B.P.L. and L.M. Chou. 1997. Effects of the heavy metals copper and zinc on zooxanthellae cells in culture.
Environ. Monitor. Assess. 44(1-3): 11-19.
Gould, E., R.J. Thompson, L.J. Buckley, D. Rusanowsky and G.R. Sennefelder. 198S I piake and cITccls of copper
and cadmium in the gonad of the scallop Placopecten magellanicus: Concurrent meial exposure Mar I iiol
97(2):217-223.
Grace, A.L. andL.F. Gainey, Jr. 1987. The effects of copper on the heart rale and Illinium rale of \i\iiln.s r, Inli.s
Mar. Pollut. Bull. 18(2):87-91.
Graney, R.L., Jr., D.S. Sherry and J. Cairns, Jr. 1983. I lca\ \ niclal indicator potential of ilie \sialic clam it 'm-bicula
fluminea) in artificial stream systems. Hydrobiologia I < >2 SI -SS
Hale, J.G. 1977. Toxicity of metal mining wastes. Bull l!ii\iron ( oniani IonicoI I "(¦(¦-73.
Hall, L.W., Jr., R.D. Anderson, J.V. Kilian, B.L. Lewis and k lrae\ler l')'J~. \enle and elironic toxicity of copper
to the estuarine copepodEurytemora affinis: Influence ol organic coniplcvilion and speeialion. Chemosphere
35(7):1567-1597.
Hamelink, J.L., P.F. Landrum, H.L. Bergman and Will ieiisoii letls i I !ioa\ ailahilils Physical, Chemical and
Biological Interactions. Lewis Publishers, Boca Ralon. II.
Hamilton, S.J. and K.J. Buhl. 1990. Safei> assessment of selected iiioruanic elements in liy of chinook salmon
(Oncorhynchus tshawytscha). Ecotoxicol I m\ iron Salel\ 2 mi rainhow ironi (/>m "rlnm hnsmykiss) sub-chronically exposed to copper. Final Report. Stratus
Consulting lnc Sepieniher 2u. 2(i(in
I lai a. 1. J.. Y.M.C. Law and S VlacDonald. 1976. Effects of mercury and copper on the olfactory response in
rainbow trout, Salmo gaird/hri J. Fish. Res. Board Can. 33:1568-1573.
I larrisou. I'l., J.P. Knc/.o\ ich and D.W. Rice, Jr. 1981. Effects of copper on adult and early life stages on the
frcsliu aler clam. ('m-bi> ula manilensis. UCRL-52741. National Technical Information Service, Springfield, VA.
I laiTistm. I' I.. I lJ knezovichand D.W. Rice, Jr. 1984. The toxicity of copper to the adult and early life stages of
llie liesliw aler clam. ('orbicula manilensis. Arch. Environ. Contam. Toxicol. 13:85-92.
Harrison, F.L. and D.W. Rice, Jr. 1981. The sensitivity of adult, embryonic, and larval carp Cyprinus carpio to
copper. UCRL-52726. National Technical Information Service, Springfield, VA.
Hartwell, S.I., J.H. Jin, D.S. Cherry and J. Cairns, Jr. 1989. Toxicity versus avoidance response of golden shiner,
Notemigonus crysoleucas, to five metals. J. Fish Biol. 35(3):447-456.
68

-------
Hawkins, A.J.S., J. Rusin, B.L. Bayne and A.J. Day. 1989. The metabolic/physiological basis of genotype-
dependent mortality during copper exposure inMytilus edulis. Marine Environ. Res. 28:253-257.
Hazel, C.R. and S.J. Meith. 1970. Bioassay of king salmon eggs and sac fry in copper solutions. Calif. Fish Game.
56:121-124.
Heath, A.G. 1984. Changes in tissue adenylates and water content of bluegill, Lepomis macrochirus, exposed to
copper. J. Fish Biol. 24:299-309.
Hedtke, S.F. 1984. Structure and function of copper-stressed aquatic microcosms. Aquat. Toxicol. 5:227-244.
Hem, J.D. 1989. Study and interpretation of the chemical characteristics of natural water, 3rd eel I S. Geological
Survey water-supply paper 2253. Government Printing ()ffice
Henry, M.G. and G.J. Atchison. 1986. Behavioral chauues in social uroups of hlucuiIK ¦/ r/vw/.s />/./¦ /¦<« him*)
exposed to copper. Trans. Am. Fish. Soc. 115(4):590-5l>5
Herbert, D.W.M. and J.M. Vandyke. 1964. The toxicm In lish nf mixtures of poisons II Copper-ammonia and /uic-
phenol mixtures. Ann. Appl. Biol. 53:415-421.
Hildebrand, S.G. andR.M. Cushman. 1978. Toxicity of uallium and hers IIlinn lo dc\elopum carp euus (< '\j>rinus
carpio) utilizing copper as a reference. Toxicol. Lett. 2 ') I -l>5
Hinton, M.J. and A.G. Eversole. 1978. Toxicity of ten coniniuouK used chemicals io \niericau eels Proceedings of
the Annual Conference of the South Eastern Association of lishaud Wildlife \uencies ^2 5l^-<>(>4
Hinton, M.J. and A.G. Eversole. 1979. Toxicity of ten chemicals coniniouK used m aquaciiliiii'c lo ihe hlack eel
stage of the American eel. In: Proceeding of the World Mariculiure Societ> \\ aull. I \\ . Ir (I!d ) In 554-5<><>
Hoare, K., A.R. Beaumont and J. Davenport. 1995a. Variation anioim populalions in ilie resistance of \lviihi* edulis
embryos to copper: Adaptation to pollution? Mar. Ecol Prou Ser 12<« I - ^» I55-I<>l
Hoare, K., J. Davenport and A.R. Beaumont 1995b. Effects of exposure and pre\ ious exposure to copper on growth
ofveliger larvae and survivorship of Mviihi* eihili:v juveniles. Mar. l!col Prou Ser. 120(1-3): 163-168.
Holland, G.A., J.E. Lasater, E.D. Neumann and W. E. I-Undue I'M). Toxic effects of organic and inorganic
pollutants on \oiinc salmon and trout Research liullciin \o 5 Washington Department of Fisheries.
Hollibauj:h. 1)1. el al I'JSi) \ comparison of the acute toMcities of tenheavy metals to the planktonfrom Sasnick
Inlet, B.C . Canada Fsiuariuc Coastal Mar Sci I<>:y3-.
Hopkins, k and I M. kam II I lie effect of marine pollutants onLaminarea hyperboria. Mar. Pollut. Bull. 2:75-
77.
Home. M l' and \\ \ Duusoii. I I Allusion ol'the Jefferson Salamander, . inihystonia jeffersonicinuni. from
some potential hreedum pouds m Peniiss Ivania: Effects of pH, temperature, and metals on embryonic development.
\rch Environ. Contam TonicoI. 2"("i "23-330.
I Ionic. M.T. and W. A. I )uusoii 1995. Effects of low pH, metals, and water hardness on larval amphibians. Arch.
I !n\ iron. Contam. Toxicol 2l><4):500-505.
Iloriiiim. \V l> and 'I' W. \eiheisel. 1979. Chronic effect of copper on the bluntnosc minnow. I'tmephales notatus
(kaliiiesquei \rcli. I-!n\iron. Contam. Toxicol. 8:545-552.
I lossaiu. \1. \ . \1 Shariff, A.T. Law and I. Patimah. 1995. Median lethal concentration of copper to goldfish
Carassius auraius Linnaeus. Pak. J. Sci. Ind. Res. 38(5-6): 196-199.
Howarth, R.S. and J.B. Sprague. 1978. Copper lethality to rainbow trout in waters of various hardness and pH.
Water Res. 12:455-462.
Hubschman, J.H. 1967. Effects of copper on the crayfish Orconectes rusticus (Girard): I. Acute toxicity.
Crustaceana 12:33-42.
69

-------
Hughes, J.S. 1973. Acute toxicity of thirty chemicals to striped bass (Morone saxatilis). Western Association of
State Game and Fish Commissioners, Salt Lake City, UT. July.
Hughes, M.M., M.A. Heber, G.E. Morrison, S.C. Schimmel and W.J. Berry. 1989. An evaluation of a short-term
chronic effluent toxicity test using sheepshead minnow (Cyprinodon variegatus) larvae. Environ. Pollut. 60(1): 1-14.
Huilsom, M.M. 1983. Copper-induced differential mortality in the masselMytilus edulis. Mar. Biol. 76:291-295.
Hutchinson, T.H., T.D. Williams and G.J. Eales. 1994. Toxicity of cadmium, hexavalent chromium and copper to
marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Mar. Environ. Res. 38(4):275-290.
HydroQual. 2001. Biotic Ligand Model (BLM) Version a008 User's Guide for Cu, Ag, & Cd. I's Environmental
Protection Agency.
Ingersoll, C.G. andR.W. Winner. 1982. Effect onDaphniapulex (Do ( icon of dail\ pulse exposures in cupper or
cadmium. Environ. Toxicol. Chem. 1:321-327.
Inglis, A. andE.L. Davis. 1972. Effects of water hardness on the to\icit> ol several oruamc and iuoruauic herbicides
to fish. Technical Paper No. 67. U.S. Fish and Wildlife Service, Washington. D ('
Itow, T., R.E. Loveland and M.L. Botton. 1998. De^ clopnieuial abnormalities in horseshoe crab embr\ us caused by
exposure to heavy metals. Arch. Environ. Contain. To\ieol "o ^-4(>
Jackim, E. 1973. Influence of lead and other metals on d-aniiuole\ uhiiale delis drase acli\ ity. J. Fish. Res. Board
Can. 30:560-562.
Jacobson, P.J., J.L. Farris, D.S. Cherry and R.J. Neves I'Wi ,lu\einle freshwater mussel (I'.ivalia: Unionidae)
responses to acute toxicity testing with copper. Environ TonicoI. ( hem 12< 51 X"l>-XX"
Jacobson, P.J., R.J. Neves, D.S. Cherry and J1. Farris I'W Seusin\ii\ of uloclndial stages of freshwater mussels
(Bivalvia: Unionidae) to copper. Emirou TonicoI ( hem l<>< I 11 2^N4-2"l>2
Janes, N., Playle, R.C. 1995. Modehuu sil\ er buidiim lo mils of rainbow ironi if >ncorhynchus mykiss). Env. Toxicol.
Chem. 14, 1847-1858.
Janssen, C.R., M.D. Ferrando Rodriuo and (i I'''' ' IVrsnoue I icotoxicological studies with the freshwater rotifer
Brachiontf.s i ,il\\ iihirn.s I Coiicepiual framework and applicalions Hydrobiologia 255-256:21-32.
Janssen, C k.. (i IVrsoone and I W. Suell I'''M ( \ si-based toxicity tests. VIII. Short-chronic toxicity tests with
the freshwater rotifer />'/¦./> Iii"iin.s > .//w iih'rn.s \qual. Toxicol. 28:243-258.
Johnson, M \\ and .1 11. (leutile l''~'J Acute to\icity of cadmium, copper, and mercury to larval American lobster
Homarus ,nih-ri< ,uin> I >ull. I ji\ iron Contain To\icol. 22:258-264.
Jones. L.H . \ Y loues and \ I kadlett I Some effects of salinity on the toxicity of copper to the polychaete
Nereis diviT.\U ii/ur I istuariiie ( oastal Mar Sci 4 L07-111.
J<>p. K.M.. \ \l \skew and k 15 I 'oster I ''''5 I )evelopment of a water-effect ratio for copper, cadmium, and lead
for the Great Works River mi Maine using Ceriodaphnia dubia and Salvelinusfontinalis. Bull. Environ. Contam.
I o.ncioI. 54(l):29-35.
losln. \ (i and M.S Reue 1980. Acute toxicity of some pesticides and a few inorganic salts to the mosquitofish
Ciambusia qffinis (Baird and Girard). Indian J. Exp. Biol. 18:435-437.
Juchelka. ('. M and T. W. Snell. 1994. Rapid toxicity assessment using rotifer ingestion rate. Arch. Environ. Contam.
Toxciol. 2o(4j.549-554.
Judy, R.D., Jr. 1979. The acute toxicity of copper to Gammarus fasciatus Say, a freshwater amphipod. Bull.
Enviorn. Contam. Toxicol. 21:219-224.
Julliard, A.K., D. Saucier and L. Astic. 1993. Effects of chronic low-level copper exposure on ultrastructure of the
olfactory system in the rainbow trout (Oncorhynchus mykiss). Histol. Histopathol. 8(4):655-672.
70

-------
Kallanagoudar, Y.P. and H.S. Patil. 1997. Influence of water hardness on copper, zinc and nickel toxicity to
Gambusia affinis (B and G). J. Environ. Biol. 18(4):409-413.
Kapur, K. and N.A. Yadav. 1982. The effects of certain heavy metal salts on the development of eggs in common
carp, Cyprinus carpio var. communis. Acta Hydrochim. Hydrobiol. 10:517-522.
Kaur, K. and A. Dhawan. 1994. Metal toxicity to different life stages of Cyprinus carpio Linn. Indian J. Ecol.
21(2):93-95.
Kazlauskiene, N., A. Burba and G. Svecevicius. 1994. Acute toxicity of five galvanic heavy metals to hydrobionts.
Ekologija. 1:33-36.
Keller, A.E. Unpublished. Personal Communication to U.S. EPA.
Keller, A.E. and S.G. Zam. 1991. The acute toxicity of selected metals in ihe freshw ater mussel.. iimhecilis.
Environ. Toxicol. Chem. 10(4):539-546.
Khangarot, B.S. 1981. Chelating agent EDTA decreases the toxicin of copper to l ish (hit Sci 5-24X
Khangarot, B.S. 1991. Toxicity of metals to a freshwater luhilicid worm. / nhikx mhikx < Mullen I >ul I I !n\ iron
Contam. Toxciol. 46(6):906-12.
Khangarot, B.S., V.S. Durve and V.K. Rajbanshi. 1981a l o\ial\ of uiieraclioiis of /mc-nickel. copper-nickel and
zinc-nickel-copper to a freshwater teleost, Lebistes reth nl.un>. (IVlersi \cta I lulioclmii Hydrobiol. 9:495-503.
Khangarot, B.S., S. Mathur and V.S. Durve. 1981b. Studies on i lie acuie io\icil> of copper on selected freshwater
organisms. Sci. Cult. 47:429-431.
Khangarot, B.S. and P.K. Ray. 1987. Studies on 1 he acuie io\icil> ol'copper and mcrcurs alone and in combination
to the common guppy Poecilia reticulata (Peters) \rcli 11\drohiol I I (M 2 r 14
Khangarot, B.S. and P.K. Ray. 1989a. Investigation ol' correlation helw eeu pli\ sicoclieuiical properties of metals and
their toxicity to the water flea Daphnia magna Straus l!coio\icol I!u\iioii Sal'el> 18(2) 109-120.
Khangarot, B.S and P K Ray 1989b Seusin\ ity of mi due Ian ac ol' (lurotiomus tentans Fabricius (Diptera
Chironomidaei lo hea\\ melals Dull kmiiou ( oiiiam TonicoI. 42(3):325-330.
Khangarot. P. S . \ Selmal and M k. I.achiu I'KV "Mauaud the Biosphere" - Studies on Sikkim Himalayas. Part I:
Acute to\icil> ol'copper and /iiic lo common carp ( y/Tiim.s > ,ir/no (Linn.) in soft water. Acta Hydrochim.
Hydrobiol II
Koivisto, S. and M ketola I ''''5 ITI'ecls ol' copper on lil'e-lnsiory traits of Daphnia pulex and Bosmina longirostris.
Aquat. Toxicol ^2(2-^i.255-2(>^
Koivisto. S . M ketola and M W alls |w2 Conipaiibon ol'liv e cladoceran species in short-and long-term copper
exposure. 11\drobiol. 248i21 125-1
korsakova. M.D. andO M koru. IWi Using barnacle larvae for evaluation of the toxicity of antifouling paint
compounds. Russ. J. Mar ISiol. 19(3):212-216.
kosalwat. P and A.W. kumlit. 1987. Acute toxicity of aqueous and substrate-bound copper to the midge,
Chironomus decorus. Arch. Environ. Contam. Toxicol. 16(3):275-282.
kraak. Mil S . I) l.a\>. W.H.M. Peeters and C. Davids. 1992. Chronic ecotoxicity of copper and cadmium to the
/ehra mussel / >i\-i.sM-napolymorpha. Arch. Environ. Contam. Toxicol. 23(3):363-369.
Kraak, M.H.S., H. Schoon, W.H.M. Peeters, and N.M. van Straalen. 1993. Chronic ecotoxicity of mixtures of
copper, zinc, and cadmium to the zebra mussel Dreissena polymorpha. Ecotoxicol. Enviorn. Safety 25(3):315-327.
Lalande, M. and B. Pinel-Alloul. 1986. Acute toxicity of cadmium, copper, mercury and zinc to Tropocyclops
prasinus mexicanus (Cyclopoida, Copepoda) from three Quebec lakes. Environ. Toxicol. Chem. 5(1):95-102.
71

-------
Laube, V.M. et al. 1980. Strategies of response to copper, cadmium, and lead by a blue-green and a green alga. Can.
J. Microbiol. 26:1300-.
Lazorchak, J.M. and W.T. Waller. 1993. The relationship of total copper 48-H LC50s to Daphnia magna dry weight.
Environ. Toxicol. Chem. 12(5):903-911.
Leland, H.V. and J.L Carter. 1984. Effects of copper on species composition of periphyton in a Sierra Nevada,
California, stream. Freshwater Biol. 14:281-296.
Leland, H.V. and J.L. Carter. 1985. Effects of copper on production of periphyton, nitrogen fixation and processing
of leaf litter in a Sierra Nevada, California stream. Freshwater Biol. 15(2): 155-173.
Les, A. and R.W. Walker. 1984. Toxicity and binding of copper, zinc, and cadmium by the bluc-urecu alca.
Chroococcusparis. Water Air Soil Pollut. 23:129-130.
Lett, P.F., G.J. Farmer and F.W.H. Beamish. 1976. Effect of copper on some aspecis of ihe bioeucruelics of rainbow
trout {Salmo gairdneri). J. Fish. Res. Board Can. 33:1335-1342.
Lewis, M. 1978. Acute toxicity of copper, zinc, and manganese in snide and mi\ed sail solutions io j i in cuile loimliu
6&cq, Agosia chrysogaster. J. Fish Biol. 13:695-700.
Lewis, S.D. and W.M. Lewis. 1971. The effect of zinc and copper on ihe osinol;iln\ of hlood serum of the channel
catfish, Ictaluruspunctatus Rafinesque, and golden shiner. Soiemigonius crysoleucas Mitchell. Trans. Am. Fish.
Soc. 100:639-643.
Lilius, H., T. Hastbacka and B. Isomaa. 1995. A comparison of ihe io\icil> of reference chemicals to Daphnia
magna andDaphniapulex. Environ. Toxicol. Chem. 14(12».2<>S5-2<>SS
Lin, H.C. and W.A. Dunson. 1993. The effect of saliuii> on ihe acuie lo\icil> of cadmium to the tropical, estuarine,
hermaphroditic fish, Rivulus marmoratus: A comparison of ( d. copper, and /iiic lolerauco withFundulus
heteroclitus. Arch. Environ. Contam. To\icol 25i 11 41 -"
Lind, D., Alto and Chatterton. Manuscripi Regional cupper-nickel siud> \qualic lo\icology study. Preliminary
draft report, Minnesota Environmental Qua I il> P>oard. Si Paul. \l\
Lloyd, R. 1961. The toxicit\ of mi Mures of/iiic and copper sulpliales to rainbow trout {Salmo gairdneri R.). Ann.
Appl. I'.iol 4l> 5'5-5'S
Lopez. I M . I.ee. (i I' ll> Waler. \iraud Soils Pollui Vol (S): 373.
Lorz, 11 \\ and 15 1J MePlieisou I I Tl'ecls of copper or zinc in fresh water on the adaptation to sea water and
ATPase acli\ n\. and llie effecls of copper on nimraloiA disposition of coho salmon (Oncorhynchus kisutch). J. Fish.
Res. Board ( au ^ 2(>2 ^
Lumsdeu. 15.k and I \l I'loreuce I lJ83. A new algal assay procedure for the determination of the toxicity of copper
species in seawaler l!u\irou l'o\icol. Lett. 4:271.
I.ussier. S.M., W.S. Booilinian. S Pouclier, D. Champlin and A. Helmsteter. 1995. Derivation of conversion factors
for dissolved saltwater aqualic life criieiia for metals. Draft report to the U.S. EPA, Office of Water. U.S. EPA,
Virrauausell. RI. March 'I. Il>l>5
I .ussier. S \1 . I 11 (icuiile. and J. Walker. 1985. Acute and chronic effects of heavy metals and cyanide on
Mysidopsis bahia (Cruslacca:Mysidacea). Aquat. Toxicol. 7(l-2):25-35.
I .\ d\. \l..l and if Wissing. 1988. Effect of sublethal concentrations of copper on the critical thermal maxima
(CTMax) of the fantail (Etheostoma flabellare) and johnny (E. nigrum) darters. Aquat. Toxicol. 12(4):311-321.
Macdonald, J.M., J.D. Shields and R.K. Zimmer-Faust. 1988. Acute toxicities of eleven metals to early life-history
stages of the yellow crab Cancer anthonyi. Mar. Biol. 98(2):201-207.
72

-------
Maclnnes, J.R. and A. Calabrese. 1978. Response of embryos of the American oyster, Crassostrea virginica, to
heavy metals at different temperatures. In: Physiology and behavior of marine organisms. McLusky, D.S. and A.J.
Berry (Eds.). Pergamon Press, New York, NY. pp. 195-202.
Maclnnes, J.R. and F.P. Thurberg. 1973. Effects of metals on the behavior and oxygen consumption of the mud
snail. Mar. Pollut. Bull. 4:1895.
MacRae, R.K., December, 1994. "The Copper Binding Affinity of Rainbow Trout (Oncorhynchus mykiss) and
Brook Trout (Salvelinus fontinalis) Gills," a thesis submitted to the Department of Zoology and Physiology and The
Graduate School of the University of Wyoming in partial fulfillment of the requirements for the degree of Master of
Science in Zoology and Physiology.
MacRae, R.K., D.E. Smith, N. Swoboda-Colberg, J.S. Me>eraud 11 I. P.crmnau lw ( upper buidiim alTiinlv of
rainbow trout (Oncorhynchus mykiss) and brook trout (Sa/w/iun> luiiiiihi/i*) mils I niplicatioiis for assessing
bioavailable metal. Environ. Toxicol. Chem. 18:1180-118''
Marking, L.L., T.D. Bills and J.R. Crowther. 1984. Effects of fi\ e diets mi sciisiti\ n\ of rainbow iroui in ele\ en
chemicals. Prog. Fish Cult. 46:1-5.
Marr, J.C.A., J. Lipton, D. Cacela, J.A. Hansen, H.L. Bergman. I S Mc>eraud( I lousiraud lw<>. kelatioiiship
between copper exposure duration, tissue copper concentration. and rainbow trout mowtli \quat IonicoI "(>< I -
2): 17-30.
Marr, J.C.A., J. Lipton, D. Cacela, J.A. Hansen, J.S. Meyerand 11 I. P.crmnau. Manuscript l!ioa\ailabihts and
acute toxicity of copper to rainbow trout in the presence of oruauic acids siniulatiuu natural dissnl\ ed oruauic
carbon. Mississippi-Alabama Sea Grant. Ocean Springs. MS.
Martin, M., J.W. Hunt, B.S. Anderson, S.L. Turpen and I ' 11 Palmer llJ8l> I Aperinicuial e\ alualiou of ilie m\ sid
Holmesimysis costata as a test organism for effluent. toxicitv lestiuu Pn\ iron. To\icol Clieni 8i I 11 |uui-|u|2.
Martin, M., K. Osborn, P. Billig and N. Glicksicui I ''81 Toniclucs of leu niclals lo Crussusireu gigus andMyiilus
edulis embryos and Cancer magister lar\ ae Mar Pollui Pull I2:^>5-^ix
Martin, M., M.D. Stephenson and J.I I Martin I'' ( upper to\icit\ experiments in relation to abalone deaths
observed inapower plant's cooliuu waters ( alif l isli (lame (¦' 100.
Martin,T.k and I) M lloklich. llJ8<. The acute lethal to\icit> of heavy metals to peracarid crustaceans (with
particular reference to fresh-wateraselhds and uaniniai'ids; W'alerRes. 20(9):1137-1147.
Martinicic. I)./. kwokal. /. Peharec. I) \1;i runs and M. Branica. 1992. Distribution of Zn, Pb, Cd and Cu between
seawateraud liaiisplauted mussels i \l\iiln.s g.ilh'/'ruvincialis). Sci. Total Environ. 119:211-230.
McCarter, J.A and M Koch I ')8v I lepalic metal lothionein and resistance to copper in juvenile coho salmon.
Comp. Biocheni Ph\sml "4( l"^-l^"
Mc( rady. J.K. and (i \ ( hapmaii I *>'*> I )eleinii nation of copper completing capacity of natural river water, well
water and artificially reconstituted water. Water Res. 13:143-150.
Mc( icer, J.C., K.V. Brix. I M. Skeaff, D.K. DeForest, S.I. Brigham, W.J. Adams, A. Green. 2003. Inverse
relat lonship between bioconcentration factor and exposure concentration for metals: Implications for hazard
assessment of metals mi the aquatic environment. Environ. Toxicol. Chem. 22:1017-1037.
Mckim. I M.. (i M ( liristensen and E.P. Hunt. 1970. Changes in the blood of brook trout (Salvelinusfontinalis)
al ter short-term and long-term exposure to copper. J. Fish. Res. Board Can. 27:1883-1889.
McKim, J.M., J.G. Eaton and G.W. Holcombe. 1978. Metal toxicity to embryos and larvae of eight species of
freshwater fish - II. Copper. Bull. Environ. Contam. Toxicol. 19:608-616.
McKnight, D.M. and F.M.M. Morel. 1979. Release of weak and strong copper-complexing agents by algae. Limnol.
Oceanogr. 24:823.
73

-------
McKnight, D.M. et al. 1983. CuS04 treatment of nuisance algal blooms in drinking water reservoirs. Environ.
Manage. 7:311.
McLeese, D.W. 1974. Toxicity of copper at two temperatures and three salinities to the American lobster (Homarus
americanus). J. Fish. Res. Board Can. 31:1949.
McLeese, D.W. and S. Ray. 1986. Toxicity of cadmium chloride, cadmium-EDTA, copper(II) chloride, and copper-
EDTAto marine invertebrates. Bull. Environ. Contam. Toxicol. 36(5):749-755.
McLusky, D.S. and C.N.K. Phillips. 1975. Some effects of copper on the polychaete Phyllodoce maculata. Estuarine
Coastal Mar. Sci. 3:103-108.
McNulty, H.R., B.S. Anderson, J.W. Hunt, S.L. Turpen and M.M. Singer. 1994. Agc-spccilic lo\icil> of copper to
larval to\>sme\t Atherinops affinis. Environ. Toxicol. Chem. 13(3):487-492.
Meador, J.P. 1991. The interaction of pH, dissolved organic carbon, and loial copper in I lie dclcrniiualiou of ionic
copper and toxicity. Aquat. Toxciol. 19(1): 13-31.
Metaxas, A. and A.G. Lewis. 1991. Copper tolerance of Skeletonema casta)um and Sitzschia ilwrmalis. Aqual.
Toxicol. 19(4):265-280.
Meyer, J.S. 2002. The utility of the terms "bioavailabihis" and "hioa\ ailable Inchon" lor metals \1ar. Lnviron. Res.
53:417-423.
Meyer, J.S., C.J. Boese and S.A. Collyard. 2002. Wholc-hod> acciiniulaliou of cupper predicts acute toxicity to an
aquatic oligochaete (Lumbriculus variegatus) as pH and calcium are \ aried ( omp. I !ioc hem. Physiol. Part C
133:99-109.
Meyer, J.S., R.C. Santore, J.P. Bobbitt, L.D. DeBrc>. ( .1 I >ocsc. I' R Raquiu. III! \llen, H.L. Bergman and D.M.
Di Toro. 1999. Binding of nickel and copper to fish mils prcdicls io\icil\ w lien waler hardness varies, but free-ion
activity does not. Environ. Sci. Technol. 33:913-9l(>.
Milanovich, F.P., R. Spies, M.S. Guram and E.E. Sykes I lJ76. Uptake of cupper by the polychaete Cirriformia
spirabranchia in the presence of dissol\ ed yellow oruanic matter of natural origin. Estuarine Coastal Mar. Sci.
4:585-5X8
Miller. I (i and W ( \1acka> I ''Xn Ihe cffccls ol' hardness, alkalinity and pH of test water on the toxicity of
copper in rainbow iroul (\//w< :^tiin!ih ri) W aler Res 14:12^-133.
Minicucci. DI) II Now ellecls in ;k|ii;iiic hio;iss;i\s ulie toxicity of copper atvarious flow rates to the guppy.
Lebisw.s ivii, nlmns) MS Thesis I m\ersiiv of Michmau. \uu Arbor, MI.
Moore. M \ and \ R I). Siehhiug II lie quauiiiali\ e c\ lochemical effects of three metal ions on the lysosomal
hydrolase of a hvdroid I Mar P.iol \ssnc I k 5(> ,J,J5-|oo5
Morailou-Xposinlopoiiloii. M. Il^"8. Acuie ln\icil\ of copper in a copepod. Mar. Pollut. Bull. 9:278-280.
Morailou-Apostolopoulou, M. and (J. Vcrriopoulos. 1982. Individual and combined toxicity of three heavy metals,
( ii. Cd and Cr for the marine copcpod Tisbe holothuriae. Hydrobiologia 87:83-.
Morel. I'M. 1983a. "Complexation: Trace Metals and Microorganisms," in Chapter 6 of Principles of Aquatic
t Ih iiiisirv. \\ i le> luicrscicnce, New York, pp. 301-308.
Morel I '. M M. I ''X Mi Principles of Aquatic Chemistry. John Wiley and Sons, New York, NY.
Morel, F.M.M. and J.G. Hering, 1993, Principles and Applications of Aquatic Chemistry, John Wiley & Sons, Inc.,
New York.
Morgan, W.S.C. 1979. Fish locomotor behavior patterns as a monitoring tool. J. Water Pollut. Control Fed. 51:580-
589.
74

-------
Morrison, G., E. Torello, R. Comeleo, R. Walsh, A. Kuhn, R. Burgess, M. Tagliabue and W. Greene. 1989.
Intralaboratory precision of saltwater short-term chronic toxicity tests. J. Water Pollut. Control Fed. 61(11-12): 1707-
1710.
Mount, D.I. 1968. Chronic toxicity of copper to fathead minnows (Pimephales promelas Rafinesque). Water Res.
2:215-223.
Mount, D.I. and T.J. Norberg. 1984. A seven-day life-cycle cladoceran toxicity test. Environ. Toxicol. Chem. 3:425-
434.
Mount, D.I. and C.E. Stephan. 1969. Chronic toxicity of copper to the fathead minnow (Pimephales promelas) in
soft water. J. Fish. Res. Board Can. 26:2449-2457.
Mudge, J.E., T.E. Northstrom, G.S. Jeane, W. Davis and J.L. Hickam. 1993. Effect of \ ai> mu en\ iioiinieiiial
conditions on the toxicity of copper to salmon. In: Environmental tOMcnlnuv and risk assessment (lorsueh. I \V.,
F.J. Dwyer, C.G. Ingersoll and T.W. LaPoint (Eds.). ASTM STP 121 (• \merican Sociel> fur Tesinm and Maleiials.
Philadelphia, PA. pp. 19-33.
Munoz, M.J., M. Carballo and J.V. Tarazona. 1991. The effect of suhlcllial levels of copper and c> anide on some
biochemical parameters of rainbow trout after subacute exposure. (omp I iiochem Ph\ siol. 100('(') 5 -582.
Nacci, D., E. JackimandR. Walsh. 1986. Comparative evaluation oi l hive rapid man no loxicity tests: Sea urchin
early embryo growth test, sea urchin sperm cell toxicity tests andMicioU>\ lu\ iron To\ieol. Chem. 5(6):521-525.
Nassiri, Y., J.L. Mansot, J. Wery, T. Ginsburger-Vogel and J.C. Animal I1'1'- I llinsimcliiral and electron energy
loss spectroscopy studies of sequestration mechanisms of Cd and ( u in I lie man no dialom Skeletonema costatum.
Arch. Environ. Contam. Toxicol. 33(2): 147-155
Nebeker, A.V., M.A. Cairns, S.T. Onjukka and k II Tuns I ''N(>a ITfecl of aue on sensitivity of Daphnia magna to
cadmium, copper and cyanazine. Environ. Toxicol, ( hem 5<<>i 52~-5'<>.
Nebeker, A.V., M.A. Cairns and C M Wise I lJ84a Relali\e sensin\ n\ of <'liinnnniius tentans life stages to copper.
Environ. Toxicol. Chem. 3(1):15I-I5X
Nebeker, A.V. and A.R. Gaufin I ''(4 I iioassavs to determine pesiicide toxicity to the amphipod crustacean,
Gamm.irn* l.i< n>tri.\ Pmc TTl;ili \cad Sci 4l:64-<>~
Nebeker. \Y.( Sa\oiien. K .1 ISakeraud I k Mc( 'i ad> I lW4b. Effects of copper, nickel and zinc on the life-
cycle ol'ihe caddisl'ls ( li.si \ c 111 a I i c nisecls as hiolomcal monitors of heavy metal pollution. Bull. Environ. Contam.
Toxicol 15 14"-154
Neiheisel, I \\ and NIL ^oimu I ')')2 I so of three artificial sea salts to maintain fertile sea urchins (.irhacia
j'Mh mlata) and to conduct fori ilizalion tests with copper and sodium dodecyl sulfate. Enivron. Toxicol. Chem.
I I I riM185.
Nelson. I) \ . TE Miller and A. Calabrese. 1988. Effect of heavy metals on bay scallops, surf clams, and blue
mussels in acnie and lon^-lerm exposures. Arch. Environ. Contam. Toxicol. 17(5):595-600.
Neller. I and W \\ asserman. 1974. Applied linear statistical models. Irwin, Inc., Homewood, IL.
Norberg, T.J. and D.I. Mount. 1985. A new fathead minnow (Pimephales promelas) subchronic toxicity test.
Environ. Toxicol. Chem. 4(5):711-718.
Nordstrom, D.K., L.N. Plummer, T.M.L. Wigley, T.J. Wolery, J.W. Ball, E.A. Jenne, R.I. Bassett, R.E. McDuff, F.
Morel, M.M. Reddy, G. Sposito and J.Thrailkill. 1979. Comparison of computerized chemical models for
75

-------
equilibrium calculations in aqueous systems. P. 857-892. In E.A. Jenne (Ed.) Chemical modeling in aqueous
systems. ACS, Washington, D.C.
Nriagu, J.O. (Ed.) 1979. Copper in the Environment. Part I: Ecological Cycling; Part II: Health Effects. Wiley and
Sons, Inc. New York, NY.
Nyholm, N. 1990. Expression of results from growth inhibition toxicity tests with algae. Arch. Environ. Contam.
Toxicol. 19(4):518-522.
O'Brien, P., H. Feldman, E.V. Grill and A.G. Lewis. 1988. Copper tolerance of the life history stages of the
splashpool copepod Tigriopus californicus (Copepoda, Harpacticoida). Mar. Ecol. Prog. Ser. 44(l):59-64.
O'Hara, J. 1971. Alterations in oxygen consumptionb> hluemlls exposed in sublethal irealuicui w illi copper W ater
Res. 5:321-327.
Oikari, A., J. Kukkonenand V. Virtanen. 1992. Acute lo\ieil\ of chemicals In /' >,i/'lini,i m.i^iui in limine waters. Sci.
Total Environ. 117/188:367-377.
Okazaki,R.K. 1976. Copper toxicity in the Pacific o\sierf	Hull I !u\ iron ( oniani IomcoI
16:658-665.
Olson, K.R. andR.C. Harrel. 1973. Effect of salinity on acute lo\icil> of uicrcur\. cupper, and chromium \\n Rangia
cuneata (Pelecypoda, Matridae). Contrib. Mar. Sci. I ~ 1 '
Oris, J.T., R.W. Winner and M.V. Moore. 1991. Afour-da> siiia i\al and reproduclioii io\icil> lesi lor' \-ri" ol copper lo 11in emle IL-J.iste
(Nereis) diversicolor (O.F. Muller). Environ. Monil \ssess 2 li 11.1 - H >
Ozoh, P.T.E. 1992b. The effect of temperature and sa 11 in i\ mi cupper bod> hurdeii and cupper lo\ieil\ in IU- adaptation ol' IU-disic (Nereis) diversicolor embryogenesis to salinity,
temperature and copper Mar l!u\uoii kes 29(3i22"-24^
Pagenkopf. (i K I''X^ (nil surface niiei.iclion model lor iraee-melal toxicity to fishes: Role of complexation, pH,
and water hardness Liimioii Sci Technol. 17:342-^4"
Palawski. I). .115 I liinii and I'I I )\\ \ or IW5 Sensitivity of young striped bass to organic and inorganic
contaminants iu fresh and saline waters Trims \m. Fish. Soc. 114(5):748-753.
Paquin, P k . I)\1 l)i Tom. k( Sauiore. I) I mediandK.B. Wu, April 1999. "A Biotic Ligand Model of the
\cute To\icil> of Metals III. Applicaliou lo I'ish and Daphnia Exposure to Silver," Section 3 in Integrated
. Ipproach lo. [ssessing the Bioavailability and Toxicity of Metals in Surface Waters and Sediments, a submission to
ihe I :i' \ Science Advisors I ioard. ()l'l'icc of Water, Office of Research and Development, Washington, DC, pp. 3-59
lo -in:
IJiic|111ji. \' k . .1 W. Gorsuch. S Apte, G.E. Batley, K.C. Bowles, P.G.C. Campbell, C.G. Delos, D.M. Di Toro, R.L.
I)w\er. I' (inl\oz. R.W Gensemer, G.G. Goss, C. Hogstrand, C.R. Janssen, J.C. McGeer, R.B. Naddy, R.C. Playle,
k (' Sauiore. I Schneider. W.A. Stubblefield, C.M. Wood and K.B. Wu. 2002. The bitoic ligand model: A
hisimical o\er\ icw. Comp. Biochem. Physiol. PartC 133:3-35.
kardiie. \\ I and I S Wood. 1980. Baseline toxicity data for freshwater bryozoa exposed to copper, cadmium,
chromium, and zinc. J. Tenn. Acad. Sci. 55:27.
Parker, J.G. 1984. The effects of selected chemicals and water quality on the marine polychaete Ophryotrocha
diadema. Water Res. 18:865-868.
Parkhurst, D.F. 1998. Arithmetic versus geometric means for environmental concentration data. Environ. Sci.
Technol./News. 32:92A-95A.
76

-------
Parrott, J.L. and J.B. Sprague. 1993. Patterns in toxicity of sublethal mixtures of metals and organic chemicals
determined by Microtox and by DNA, RNA, and protein content of fathead minnows (Pimephales promelas). Can. J.
Fish. Aquat. Sci. 50(10):2245-2253.
Patterson, J.W., R.A. Minear, E. Gasca and C. Petropoulou. 1998. Industrial discharges of metals to water. In: H.E.
Allen, A. W. Garrison and G.W. Luther III (Eds.). Metals in Surface Waters. Ann Arbor Press, Chelsea, MI. pp. 37-
66.
Patrick, R. et al. 1968. The relative sensitivity of diatoms, snails, and fish to twenty common constituents of
industrial wastes. Prog. Fish Cult. 30:137.
Paulson, P.C., J.R. Pratt and J. Cairns, Jr. 1983. Relationship of alkaline stress and acnle copper lo\ieil\ in I lie snail
Goniobasis livescens (Menke) Bull. Environ. Contam. Toxicol. 31(6):719-726.
Pearlmutter, N.L. and M.A. Buchheim. 1983. Copper susceptibility of lliree growlli siaues of I lie uieeii alua
Haematococcus. PB83-25678. National Technical Information Sen ice. Springfield. V.\
Perkins, E.J., B. Griffin, M. Hobbs, J. Gollon, L. WolfordandD. Schleiik. I'W Se\nal differences in iikhciI11\ and
sublethal stress in channel catfish following a 10-week exposure to cupper snlI'ale \qiial IomcoI "4)
Pesch, C.E. and G.L. Hoffman. 1982. Adaptation of the pol\ cliacle \r.////r.s ,u\ //./> r<<.U-mata In copper. \l;ir.
Environ. Res. 6:307-317.
Pesch, C.E. and D. Morgan. 1978. Influence of sedimeni in copper lo\icil> lesis w nli pol\chaete Neanthes
arenaceodentata. Water Res. 12:747-751.
Pesch, C.E., P.S. Schauer and M.A. Balboni. 1986. El'fecl of diel on copper lo\icil> lo \c,uuhes arenaceodentata
(Annelida: Polychaeta). In: Aquatic toxicology and en\ imiinieiiial I'ale I !ds" \ST\I S'l'l' 921. American Society of
Testing Materials. Philadelphia, PA. pp. 369-383.
Pesch, G., N. Stewart and C. Pesch. 1979. Copper io.\icil> lo ihe has scallop i. Ir^n/vi u n irradians). Bull. Environ.
Contam. Toxicol. 23:759-765.
Petersen. R 1982 Influence of copper and /.me on ilie umw ill of a freshwater algae, Scenedesmus quadricauda: The
significance of special ion l!ii\noii Sci Technol I (>.44
Pickernm. o 11 . \\ I iriinus and \1 (msi II! flee I of exposure lime and copper concentration on reproduction of
thefaihead minnow u'iiih/<> I lie acnie lo\icil> of some heavy metals to different species of warmwater
fishes \n Waler kolliii. Im I |t>45>-4<>>
Pickernm. o 11 and I M. I.a/orcliak I ''''5 l\\;ihi;iiion of I he robustness of the fathead minnow. Pimephales
promcl.is. Ian al siiia i\al and mow ill lesi. I S IP \ nielhod I < >00.0. Environ. Toxicol. Chem. 14(4):653-659.
Playlc. k ('. I) (i Di\oiiaiidK I 'iiiriiison I^;i (opper and cadmium binding to fish gills: Estimates of metal-gill
slahilih eoiisianis and niodehiiu of nielal aeeiiniiilalion Can I Fish. Aquat. Sci. 50(12):2678-2687.
I'la> le. R.C., D.G. Dixim and k. Burnison. 1993b. Copper and cadmium binding to fish gills: Modification by
dissol\ ed organic carbcm and synthetic ligands. Can. J. Fish. Aquat. Sci. 50(12):2667-2677.
Pla> le. k ( . k \\ (lensener and D.G. Dixon. 1992. Copper accumulation on gills of fathead minnows: Influence of
w aler hardness, complevilionand pH of the gill micro-environment. Environ. Toxicol. Chem. 11(3):381-391.
Poria. A \ and \l! Ronco. 1993. Copper (II) acute toxicity to the rotifer Hrachionus ccilycijlorus. as affected by
fulvic acids of freshwater origin. Environ. Pollut. 82(3):263-267.
Pratt, J.R. and J.L. Rosenberger. 1993. Community change and ecosystem functional complexity: A microcosm
study of copper toxicity. In: Environmental toxicology and risk assessment, 2nd Volume. ASTM STP 1216.
American Society for Testing and Materials, Philadelphia, PA. 88-102.
77

-------
Prothro, M. 1993. Memorandum concerning "Office of Water Policy and Technical Guidance on Interpretation and
Implementation of Aquatic Life Metals Criteria." October 1.
Qureshi, S.A. and A.B. Saksena. 1980. The acute toxicity of some heavy metals to Tilapia mossambica (Peters).
Aqua 1:19-20.
Rachlin, J.W. et al. 1982. The growth response of the green alga (Chlorella saccharophila) to selected
concentrations of the heavy metals Cd, Cu, Pb, and Zn. In: Trace substances in environmental health-XVI. Hemphill,
D.I. (Ed.). University of Missouri, Columbia, MO. p. 145.
Radetski, C.M., J.F. Ferard and C. Blaise. 1995. A systematic microplate-based phytotoxicity lesi Environ. Toxicol.
Chem. 14(2):299-302.
Reader, J.P., N.C. Everall, M.D.J. Sayer andR. Morris. 1989. The effects of eight trace nielals mi acid sol i waler on
survival, mineral uptake and skeletal calcium deposition in yolk-sac fr\ of brown trout. Xiluin irmi.i I. I lish ISiol.
35(2):187-198.
Reardon, I.S. and R.M. Harrell. 1990. Acute toxicity of formalin and cupper sulfate In sniped bass I'umcrlums held
in varying salinities. Aquaculture 87(3-4):255-270.
Redpath, K.J. 1985. Growth inhibition and recovery in mussels < \ l\ liln.s ahili.s) e\ posed lo low cupper
concentrations. J. Mar. Biol. Assoc. U.K. 65(2):421 -4 ^ I
Redpath, K.J. and J. Davenport. 1988. The effect of cupper, /me and cadmium on ihe pumping rate of Mytilus edulis
L. Aquat. Toxicol. 13(3):217-225.
Reeve, W.R. et al. 1976. A controlled environmental pollution experiment (CI PI A) and ils> usefulness in the study
of larger marine zooplankton under toxic stress. In I Tl'ecls ol pi)lliiiauis on aqualic oruamsms. Lockwood, P.M.
(Ed.). Cambridge University Press, New York, NY p 145
Rehnberg, B.C. and C.B. Schreck. 1986. Acule metal lo\icolou\ ol oll'aclioii mi colio salmon: Behavior, receptors,
and odor-metal complexation. Bull. Environ ( ouiam TomcoI "(>(4» 5-lJ-5S(>
Rehwoldt, R. et al 19"7] \cute toxicity nl'copper, nickel and /inc ious io some Hudson River fish species. Bull.
Environ. Contain I onicoI (> 445
Rehwoldt. R el al ll>"2 Ihe cl'l'ecl ol' increased icnipcralurc upon i he acute toxicity of some heavy metal ions. Bull.
Environ. Contain TomcoI S I
Reish, D.J I1)')' I Tl'ccls ol' nielals and oruauic compounds on survival and bioaccumulation in two species of
marine ganiniarideaii amphipod. louclhcr w ilh a suniniar> ol' lo\icological research on this group. J. Nat. Hist.
27(4):781-794
Rice, D.W . I r and I '.L. I larrison I ''~S ( upper beiiMliv it\ of Pacific herring, Clupea harenguspallasi, during its
early life hisiors . Fish. Bull "(> "4--"5(>
Rice. D.W.. Jr. andF.L I larrison. I 'J-1' Copper sensitivity of the Northern Anchovy, Engraulis mordax, during its
carls life history. Fisheries liull. 76(2):347-356.
Rice. I) W . Jr. and F.L. Harrison. 1983. The sensitivity of adult, embryonic, and larval crayfishProcambaris clarkii
lo copper I CRT,-53048 National Technical Information Service, Springfield, VA.
Richards. Y I. and I I. Bcilinger. 1995. Reciprocal influences of temperature and copper on survival of fathead
minnows. Pinicphalcs promelas. Bull. Environ. Contam. Toxicol. 55(2):230-6.
Richey, D. and D. Roseboom. 1978. Acute toxicity of copper to some fishes in high alkalinity water. PB 294923.
National Technical Information Service, Springfield, VA.
Ringwood, A.H. 1992. Comparative sensitivity of gametes and early developmental stages of a sea urchin species
(Echinometra mathaei) and a bivalve species (Isognomon californicum) during metal exposures. Arch. Environ.
Contam. Toxicol. 22(3):288-295.
78

-------
Robins, R.G., Berg, R.B., Dysinger, D.K., Duaime, T.E., Metesh, J.J., Diebold, F.E., Twidwell, L.G., Mitman, G.G.,
Chatham, W.H., Huang, H.H., Young, C. A. 1997. Chemical, physical and biological interactions at the Berkeley
Pit, Butte, Montana. Tailings and Mine Waste 97. Bakeman, Rotterdam.
Rodgers, J.H. et al. 1980. Comparison of heavy metal interactions in acute and artificial stream bioassay techniques
for the Asiatic clam (Corbicula fluminen). In: Aquatic toxicology. Eaton, J.G. et al. (Eds.). ASTM STP 707.
American Society for Testing and Materials, Philadelphia, PA. p. 266.
Roesijadi, G. 1980. Influence of copper on the clam Protothaca staminea: Effects on gills and occurrence of copper-
binding proteins. Biol. Bull. 158:233.
Rombough, P.J. 1985. The influence of the zona radiata on the toxicities of zinc, lead. nierciu>. cupper and si1\ er
ions to embryos of steelhead trout Salmo gairdneri. Comp. Biochem. Physiol. 82C( I) 115-11"
Rosko, J.J. and J.W. Rachlin. 1975. The effect of copper, zinc, cobalt and manganese mi llic mow ill ol llic man lie
diatom Nitzschia closterium. Bull. Torrey Bot. Club 102:100-106.
Rosko, J.J. and J.W. Rachlin. 1977. The effect of cadmium, copper, mercury, zinc and lead on cell di\ isum. mow ill.
and chlorophyll a content of the chlorophyte Ch lore lla vulgaris. Bull lorre> I !oi. Cluh h>4 22<>-2^
Roux, D.J., P.L. Kempster, E. Truter andL. vander Merue I'''' ^ I Tfecl of cadmium and copper mi siiia i\ al and
reproduction of Daphniapulex. Water SA 19(4):269-2"4
Rueter, J.G. 1983. Alkaline phosphatase inhibition b> cupper Iniplicalious lo phosphorus nutrition and use as a
biochemical marker of toxicity. Limnol. Oceanogr. 28 "4^
Rumbold, D.G. and S.C. Snedaker. 1997. Evaluation of hioassa\s in iiinminr surface microlayer toxicity in tropical
marine waters. Arch. Environ. Contam. Toxicol. 32(2) I "5-l4<>
SAIC. 1993. Toxicity testing to support the New York New Jerse> I larbor siie-specilic cupper criteria study. Final
Report to U.S. EPA, Office of Wastewater riifnrcemeiu and Compliance <( oiunicl \n (>8-C8-0066. Work
Assignment C-4-94). Science Applicatioiis liiiematioiial ('orpurciiinii. Narrauaiisell. kl
Saifullah, S.M. 1978. Inhibitory effects of copper on maniie diiioflauellales. Mar. Biol. 44:299-308.
Samuelson, D.F 19"6 Walerqualil> Wesicrii fish To\icolou\ Sialion and Western Oregon rivers. EPA-600/3-76-
077. U.S. FPV DiiIiiiIi. \l\
Sanders, 15 \1 . I. S. \lainii. \\ (i \elson. I) k Phelps and \Y. Welch. 1991. Relationships between accumulation
of a 60 KDa siress prolan and scnpe-lor-urow ill in Xlytilus edulis exposed to a range of copper concentrations. Mar.
Environ. Res ^ I :S I
Sandheinnch. \l I! andG.I. \icliisnn I 'W) Sublethal copper effects on bluegill, Lepomis macrochirus, foraging
behavior. Can..I I'isli \i|iial Sci 4(>( I 11 ll> -S5
Sanlore. R.C.. I) M I )i I oro and P.k lJac|iuu. III! Allen, and J.S. Meyer. 2001. "A BioticLigand Model of the
Acuie I'oxicih oI'Melals II \pplicaliou lo \cuie Copper Toxicity in Freshwater Fish and Daphnia," Environmental
To\icology and Chemistrx 2i>( 10):2397-2402.
Sanlore. R C and C.T. I )riscoll. 1995. The CHESS model for calculating chemical equilibria in soils and solutions.
In K II I .oeppert. \ P Schwab and S. Goldberg (Eds.). Chemical Equilibrium and Reaction Models. American
Sociel> of Auroikiim. Madison, WI. pp. 357-375.
Sasikuniar. \ . \ S Clare, D.J. Gerhart, D. Stover and D. Rittschof. 1995. Comparative toxicities of selected
compounds Lo nauplii of Balanus amphitrite Darwin and. iriemia sp. Bull. Environ. Contam. Toxicol. 54(2):289-
296.
Saucier, D. and L. Astic. 1995. Morpho-functional alterations in the olfactory system of rainbow trout
(Oncorhynchus mykiss) and possible acclimation in response to long-lasting exposure to low copper levels. Comp.
Biochem. Physiol. 112A(2):273-84.
79

-------
Saucier, D., L. Astic and P. Rioux. 1991a. The effects of early chronic exposure to sublethal copper on the olfactory
discrimination of rainbow trout Oncorhynchus mykiss. Environ. Biol. Fishes 30(3):345-352.
Saucier, D., L. Astic, P. Rioux and F. Godinot. 1991b. Histopathological changes in the olfactory organ of rainbow
trout Oncorhynchus mykiss induced by early chronic exposure to a sublethal copper concentration. Can. J. Zool.
69(8):2239-2245.
Sauter, S., K.S. Buxton, K.J. Macek and S.R. Petrocelli. 1976. Effects of exposure to heavy metals on selected
freshwater fish. Toxicity of copper, cadmium, chromium and lead to eggs and fry of seven fish species. EPA-600/3-
76-105. National Technical Information Service, Springfield, VA.
Sayer, M.D.J., J.P. Reader and R. Morris. 1989. The effect of calcium concentration on the to\icil> of copper, lead
and zinc to yolk-sac fry of brown trout, Salmo trutta ].. in soli, acid water I lish ISml '5('i ^-"2
Sayer, M.D.J., J.P. Reader and R. Morris. 1991a. Effects nf si\ mice metals on calcium fluxes mi hrow u trout {Salmo
trutta L.) in soft water. J. Comp. Physiol. 161B(5):53~-542
Sayer, M.D.J., J.P. Reader and R. Morris. 1991b. Embi\ouic and lar\al de\ clopnieui of hrow n num. \ilui" inm.i I.
Exposure to aluminum, copper, lead or zinc in soft, acid waler I lish 15ml "Si"» 4I-455
Sayer, M.D.J., J.P. Reader and R. Morris. 1991c. EmbrwHiic and lar\al de\ clopnieui of hrow u iroui. Sulnm trutta L.:
Exposure to trace metal mixtures in soft water. J. Fish I '.ml 'Xi 5) "" "-~X~
Schafer, H., A. Wentzel, U. Fritsche, G. Rodererand W Tiauspurucr. Il.oim-tcrni effects ol selecled
xenobiotica on freshwater green alga: Developmental of a How -iliiouuli lesi s\ sic in Sci loial I !u\ iron Suppl. :735-
740.
Schubauer-Berigan, M.K., J.R. Dierkes, P.D. Moiishii and (i I \ukle> l'W5 pi l-dcpcudeiii io\icil> of cadmium,
copper, nickel, lead and zinc to Ceriodaphnia duhia. Pimcpha/cspromelas. Ilyalella azteca and I.umhriculus
variegatus. Environ. Toxciol. Chem. 12(7):1261-I2<><>
Scott, D.M. and C.W. Major ll>~2 Ihc of loci of coppen II i mi survi\al. respiration, and heart rate in the common
blue mussel, Mytilus edulis I! in I I lull 14^ <>~lJ-<>XX
Scott, K.J. et al. Manuscripi I o\icolomcal uiclliods usum I lie hcuiliic amphipod. impelisca abdita Mills. U.S. EPA,
Narragansett. RI
Scudder, 15 ('. .1 I. ( ailei and 11.\ l.elaud I ''XX I Tl'ecls nl'cupper on development of the fathead minnow,
Pimephalc.s/•rn/iulu* kaliiiesque \t|iial IiimcoI 12(2) 111—-124.
Seim, W.K.I, k (uiiis. S \\ (¦ Icmi and (i \ ( liapmaii I ''X4 Growth and survival of developing steelhead trout
{SalmogairJ.ih ri) cmiiuiumisK m' iiikTunllciilK e\pnsed in cupper. Can. J. Fish. Aquat. Sci. 41(3):433-438.
Shaw. T.L and V \\ 15i\»\\ n 11'"4 The ln\icily of some forms of copper to rainbow trout. Water Res. 8:377-382.
Sha/.ili. N \ \l and I) I'ascoe. I 'JX(.. N'ariable sensitivity of rainbow trout {Salmo gairdneri) eggs and alevins to
lica\> metals liull l!u\ii'mi ( miiam Ioxicol. 36(3):468-474.
Sliusicr, C.N., Jr. and B 11 hiuulc I ''<>X. Effects of trace metals on estuarine molluscs. In: Proceedings of the first
Mid- Allaulic Industrial Wnsic ( mireieuce, November 13-15, 1967. Department of Civil Engineering, University of
Delaware. Newark. DF. pp. 2X5-304.
Suell. T \V |w| New rotifer bioassays for aquatic toxicology. Final Report, U.S. Army Medical Research and
l)e\ekipnieui ( mnniaiid, Ft. Detrick, Frederick, MD.
Snell, T.W. and B.D. Moffat. 1992. A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environ. Toxicol.
Chem. 11(9): 1249-1257.
Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone. 1991a. Acute toxicity tests using rotifers. III. Effects of
temperature, strain, and exposure time on the sensitivity of Brachionus plicatilis. Environ. Toxicol. Water Qual.
6(l):63-75.
80

-------
Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone. 1991b. Acute toxicity tests using rotifers. IV. Effects of cyst
age, temperature, and salinity on the sensitivity of Brachionus calyciflorus. Ecotoxicol. Environ. Safety 21(3):308-
317.
Snell, T.W. and G. Persoone. 1989a. Acute toxicity bioassays using rotifers. I. A test for brackish and marine
environments with Brachionusplicatilis. Aquat. Toxicol. 14(l):65-80.
Snell, T.W. and G. Persoone. 1989b. Acute toxicity bioassays using rotifers. II. A freshwater test with Brachionus
rubens. Aquat. Toxicol. 14(1):81-91.
Sosnowski, S.L. and J.H. Gentile. 1978. Toxicological comparison of natural and cultured populations of Acartia
tonsa to cadmium, copper and mercury. J. Fish. Res. Board Can. 35:1366.
Sosnowski, S.L., D.J. Germond and J.H. Gentile. 1979. I lie of loci of miiriiimi mi I lie response of liekl populations of
the calanoid copepod Acartia tonsa to copper. Water Res I ^ 44lM52
Spear, P. 1977. Copper accumulation kinetics and lethal tolerance in relalimi to fish si/e \1 S Thesis ( oucordia
University, Montreal, Canada.
Spehar, R.L. and J.T. Fiandt. 1986. Acute and chronic effects of water qualils critcria-hascd metal iiii.niiires mi three
aquatic species. Environ. Toxicol. Chem. 5(10):917-931.
Sprague, J.B. 1964. Lethal concentrations of copper and /me for wmim \tlaiitie salmon I. Fish. Res. Board Can.
21:17.
Sprague, J.B. andB.A. Ramsay. 1965. Lethal levels of nn\ed coppci-/iuc solutions lor juvenile salmon. J. Fish. Res.
Board Can. 22:425-432.
Stanley, R.A. 1974. Toxicity of heavy metals and salts to l\urasiaii water-milfoil i Mwinphyllum spicatum L.). Arch.
Environ. Contam. Toxicol. 2:331.
Staples, L.S., P.F. Shacklock and J.S. Craiuie I 'J''5. Rapid mow ill of clones of the red ulna Chondrus crispus:
Applications in assays ofto\ic substances and in ph\ siolouical studies Mar I'.iol I22i\i 471-477.
Starodub, M.E., P.T.S. Wonu. ( I Ma> field and ^ k Chan I'JX" Influence of complexation and pH on individual
and combined heavy metal tomcil> to a freshwater urccu alua ( au. I fish. Aquat. Sci. 44(6):1173-1180.
Stauber,JI. and T M I'loreuce I'W I he effect of culture medium on metal toxicity to the marine diatom
Nitzschiu > l".sh riinii and the freshwater urccu alua < hl"i\ ll,i pwenoidosa. Water Res. 23(7):907-911.
Stebbing, \ k I). Il>~<>. The effects of low metal lc\ els on a clonial hydroid. J. Mar. Biol. Assoc. U.K. 56:977.
Steele, C.W l''S\i Comparison olTlic hehn\ ioral and acute lovicity of copper to sheepshead, Atlantic croaker and
pinfish. Mar I'ollui. Dull I4( I 11 425-42S
Steele. C.W 11>X5 I .aleui heha\ ioral toxicity of copper to sea catfish, Arius felis, and sheepshead, Archosargus
probataeej'litihis .1 fish liiol 2~(5i:<>43-654.
Steele. C.W. 1989. Effects of sublethal exposure to copper on diel activity of sea catfish, Arius felis.
11\ dlobiologia. 178(2): 135-141.
Steele, k I. and G R. I'liuishy. 1983. A toxicity test using life stages of Champiaparvula (Rhodophyta). In: Aquatic
1o\icolou> and hazard assessment. Bishop, W.E. et al. (Eds.). ASTM STP 802. American Society for Testing and
Materials Philadelphia. PA. p. 73.
Sleeniann-iNielseii, E. andL. Kamp-Nielsen. 1970. Influence of deleterious concentrations of copper on the growth
of Chlorellapyrenoidosa. Physiol. Plant. 23:828-840.
Steemann-Nielsen, E. and S. Wium-Andersen. 1970. Copper ions as poison in sea and in freshwater. Mar. Biol. 6:93.
Stephan, C.E. 1995. Derivation of conversation factors for the calculation of dissolved freshwater aquatic life criteria
for metals. Report. March 11, 1995. U.S. EPA, Duluth, MN.
81

-------
Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines for
deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB85-
227049. National Technical Information Service, Springfield, VA.
Stephan, C.E., and J.W. Rogers. 1985. Advantages of Using Regression Analysis to Calculate Results of Chronic
Toxicity Tests. In: Aquatic Toxicology and Hazard Assessment: Eighth Symposium. R.C. Bahner and D.J. Hansen,
Eds. ASTM STP 891. American Society for Testing and Materials, Philadelphia, PA. Pp. 328-338.
St. Laurent, D., C. Blaise, P. MacQuarrie, R. Scroggins and B. Trottier. 1992. Comparative assessment of herbicide
phytotoxicity to Selenastrum capricornutum using microplate and flask bioassay procedures. Environ. Toxicol.
Water Qual. 7(l):35-48.
Stokes, P. and T.C. Hutchinson. 1976. Copper toxicity to phytoplankton, as affected In oruauic liuands. oilier
cations and inherent tolerance of algae to copper. In: Toxicity to biola of mclal forms in n;iliir;il \\ ;ilci \udrew.
R.W., P.V. Hodson and D.E. Konasewich. (Eds.) International Joint Commission, Duliiih. \1V pp I5'MX5
Stouthart, X.J.H.X., J.L.M. Haans, R.A.C. Lock and S.E.W. Bonga. 1996. Effects ofwater pi I on copper to\icit> lo
early life stages of the common carp (Cyprinus carpii> i Liimioii Tom col (hem 15i" i	i
Straus, D.L. and C.S. Tucker. 1993. Acute toxicity of copper sulfate and chelated copper lo channel calfish lualurus
punctatus. J. World Aquacul. Soc. 24(3):390-395.
Stromgren, T. 1986. The combined effect of copper and huliocarhoiis on ihe leiimli m ow ihof Mytilus edulis. Mar.
Environ. Res. 19:251-258.
Stromgren, T. and M.V. Nielsen. 1991. Spawning freqiicuc>. mow ill and mortalits of * lyiilns edulis larvae, exposed
to copper and diesel oil. Aquat. Toxicol. 21(3-4): 171-1"';.
Stumm, W. and J.T. Morgan. 1981. An introduction cniphasi/iuu chemical equilibria m natural waters. John Wiley
and Sons Inc., New York, NY.
Suedel, B.C., E. Deaverand J.H Rodeers. Tr |w<. F:\peiinieutal factors that ma> affect toxicity of aqueous and
sediment bound copper to freshwater organisms \rcli Ijimioii Contain. Toxicol. 3U(l):40-46.
Sullivan, B.K., E. Buskey, D.C. Milleraud IM kitacco. I ''X ^ I; fleets of copper and cadmium on growth, swimming
and predator a~\ oidance iaFiirvu¦iihh-.i uiiiiii.s (Copepodai. Mar l!iol. 77(3):299-306.
Sunda, W.(i and lJ. \ (ullespie. llJ~l> I lie response of a marine bacterium to cupric ion and its use to estimate
cupric ion acti\ it\ iuseawater lour Mar kes ~<>l
Sunda. W and k.k I., (iiiillard ll>"<> I lie relationship hetweeu cupric ion activity and the toxicity of copper to
ph\ loplaiiktou I Mar kes ^4.511-52^
Sunda. W (i and I' I I laiisen. "Chemical Speciationof Copper in River Water: Effect of Total Copper, pH,
Carbonate, and l)issol\ed Oruamc Matter," p. 147-180. InE.A. Jenne (Ed.)] Chemical Modeling in Aqueous
Sy.sh-iii.s. \( S S\ niposiiim Series V ^CS, Washington, DC.
Sunda. \\ (i and I M Lewis ITS I Tfect of complexation by natural organic ligands on the toxicity of copper to a
unicellular alga. Monochrysis lutheri. Limnol. Oceanogr. 23:870.
Suiiila. I I lW(> Chrome histopathological effects of short-term copper and cadmium exposure on the gill of the
mussel. Mytilus edulis. J. Invertebr. Pathol. 47(2):125-142.
Suiiila. I IWJ C\ stic kidneys in copper exposed to mussels. Dis. Aquat. Org. 6:63-66.
Sunila, I. and R. Lindstrom. 1985. Survival, growth, and shell deformities of copper-exposed and cadmium-exposed
mussels (Mytilus edulis) in brackish water. Estuarine Coastal Shelf Sci. 21(4):555-566.
Svecevicius, G. andM.Z. Vosyliene. 1996. Acute toxicity of copper to common freshwater fishes of Lithuania.
Ekologija (2): 17-21.
82

-------
Swallow, K.C. et al. 1978. Potentiometric determination of copper complexation by phytoplankton exudates.
Limnol. Oceanogr. 23:538.
Swedmark, M. and A. Granmo. 1981. Effects of mixtures of heavy metals and a sufactant on the development of cod
0Gadus morhua L.). Rapp. P.V. Reun. Cons. Int. Explor. Mer. 178, pp. 95-103.
Taraldsen, J.E. and T.J. Norberg-King. 1990. New method for determining effluent toxicity using duckweed (Lemna
minor). Environ. Toxicol. Chem. 9(6):761-767.
Tarzwell, C.M. and C. Henderson. 1960. Toxicity of less common metals to fishes. Ind. Wastes 5:12.
Taylor, R.M., G.D. Watson and M. A. Alikhan. 1995. Comparative sublethal and lethal acute toxicih of copper to
the freshwater crayfish, Cambarus robustus (Cambaridae, Decapoda, Crustacea) from an acidic niclal-couianiiualed
lake and a circumneutral uncontaminated stream. Water Res. 29(2):401-408.
Thompson, K.W., A.C. Hendricks and J. Cairns, Jr. 1980. Acute to\icil> of /.inc and copper smuk and in
combination to the bluegill (Lepomis macrochirus). Bull. Environ. ( oniani. Toxicol 25.122
Tipping, E., 1994. "WHAM—A Chemical Equilibrium Model and Computer ( ode lor Waters. Sedimeiils. and Soils
Incorporating a Discrete Site/Electrostatic Model of Ion-I '.iiidniu In I Mimic Substances." ( inii/'iih r.s ,mJ.
Geosciences, 20(6): 973-1023.
ToxScan. 1991a. Results of provision E5F spiked metals to\icil> lesiiim 14 lo 2 I lehiiiaiy 1991.. Prepared for
Kinnetic Laboratories, Inc. for "Site-specific water qualiis ob|ecli\ es lor Souili San l iancisco Bay" report by Larry
Walker Associates and Kinnetic Laboratories under subconiracl lo ( 112\ 1 Mill
ToxScan. 1991b. Results of provision E5F spiked metals io\icil> lestum 2" I ehi'iiais lo (> March 1991. Prepared for
Kinnetic Laboratories, Inc. for "Site-specific water qiiahis ob|ecli\ es lor Souili San 1'iancisco Bay" report by Larry
Walker Associates and Kinnetic Laboratories under subcontract lo CI 12\ 1 I Mil
ToxScan. 1991c. Results of provision E5F spiked mclals to\icil> lesiiim 2 lo '¦> \pril II. Prepared for Kinnetic
Laboratories, Inc. for "Site-specific water qualiis objccli\es lor Souili San I'raucisco I >;i\'' report by Larry Walker
Associates and Kinnetic Laboratories under subconiracl lo CH2M I Mil
Trama, F.B. 1954. The acule lo\icil> of copper lo ihe common hluegill Lepomis macrochirus Rafinesque. Notulae
Naturae. 257:1-13.
Turbak, S. ( S I! Olson and (i \ Mcl'elers I'M. Comparison of algal assay systems for detecting waterborne
herbicides and nielals Waler kes 2 of various refinery materials to freshwater fish. Ind.
Eng. Chem. 4o ^24--
U.S. EPA. 198U \mhieiii water quahi\ criiena for copper. EPA-440/4-80-036. National Technical Information
Service. Springfield. \' \
US I ;i»A. 198 ^a Methods for chemical a nalysis of water and wastes. EPA-600/4-79-020. National Technical
I iiformalion Service, Sprinulield. \ \
I S 1:1* \ 1983b. Water quality standards regulation. Federal Register 48:51400. November 8.
I S I :P \ ll)SV W aler quality standards handbook. Office of Water Regulations and Standards, Washington, D.C.
I S I - I' \ I ')N5 " \mbient Water Quality Criteria for Copper - 1984," Office of Water Regulations and Standards,
( riiei'ia and Standards Division, Washington, DC.
U.S. EPA. 1986. Quality Criteria for Water 1986. EPA 440/5-86-001. Office of Water, Regulation and Standards,
Washington, DC.
U.S. EPA. 1988. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine
and estuarine organisms. EPA/600/4-87-028. National Technical Information Service, Springfield, VA.
83

-------
U.S. EPA. 1991. Technical support document for water quality-based toxics control. EPA-505/2-90-001. National
Technical Information Service, Springfield, VA.
U.S. EPA. 1992. Interim guidance on interpretation and implementation of aquatic life criteria for metals. Health and
Ecological Criteria Division, Office of Science and Technology, U.S. Environmental Protection Agency,
Washington, District of Columbia, USA.
U.S. EPA. 1993. Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine
organisms. Fourth Edition. EPA/600/4-90/027F. National Technical Information Service, Springfield, VA.
U.S. EPA. 1994. Water quality standards handbook. 2nd Edition. EPA-823-B94-005b.National Technical Information
Service, Springfield, VA.
U.S. EPA. 1996. 1995 Updates: Water Quality Criteria Documents for the Protection of Aquatic l.il'c in \nihient
Water. Office of Water. EPA-820-B-96-001.
U.S. EPA. 1999. Integrated Approach to Assessing the Bioavailability and Toxicity of Metals in Surface Haters and
Sediments, a report to the EPA Science Advisory Board, Office of Water, Office of Research and I )e\ elopnieiit.
Washington, DC, USEPA-822-E-99-001.
U.S. EPA. February 2000. An SAB Report: Review of llie l.iotic l.maiid Model of ilie \cnte To\icit> of \1elals,
prepared by the Ecological Processes and Effects Comniiiiee of llie Science Ad\ ism> I !oard, EPA-SAB-EPEC-00-
0006.
U.S. EPA. 2003. Estimation of Water Chemistry Parameters lor \cnie Copper To\icil> Tcsls. Office of Water,
Office of Science and Technology, Health and Ecological Criteria I )i\ isioii Washington. DC.
University of Wisconsin-Superior. 1995. Results of freshwater siniiilalion lesis coiiccmiii;> dissolved metal. Report.
March 10, 1995. U.S. EPA, Duluth, MN.
vandenBerg, C.M.G., P.T.S. Wong and Y.K. Chan ll>"l> Measurement of coniple\nm materials excreted from
algae and their ability to ameliorate copper toxicity. J fish Res. Board (an '.'01-905.
vanLeeuwen, C.J., J.L. BuchnerandH van Dijk. I')SS Intermittent flow s\ stem for population toxicity studies
demonstrated withDaphnia and copper. I Hill. Environ Contain Toxicol. 40(4):496-502.
Vassenr. I'. I' I'aiidard and I) I'.miiel I''88. Influence olsome experimental factors to metal toxicity to
Selenastrum capricornutum. Toxic. Assess. 3(3):331 -343.
Vavilm. I) V . V \ l\.|> no\. I) V Malorni and I' S. Venediktov. 1995. Sublethal concentrations of copper stimulate
photossstem II Plioioiiiliibiiioii off 'lihurlla /•vivnoidosa. J. Plant Physiol. 146(5-6):609-614.
Verrioponlos. (i I ''''2 I Effects of snhletlial concentrations of zinc, chromium and copper on the marine copepods
Tisbe holothuriae and. Icartia clausi. In: Proceedings of the FAO/UNEP/IOC workshop on the biological effects of
pollutants mi marine organisms (lahnelides, G.P. (Ed.). Malta, 10-14 Sept., 1991, UNEP, Athens, Greece, MAP
Tech Rep Scr \o <>') 2<>5-2"5
Walbridge, C.T. 1977. A flow-through testing procedure with duckweed (Lemna minor L.). EPA-600/3-77-108.
National Technical Information Service, Springfield, VA.
Walleii. I L. WC Cneerand R. Lasater. 1957. Toxicity to Gambusia affinis of certain pure chemicals in turbid
waleiv Sewaue Ind Wastes 29:695-711.
Waim. W I 'J8(. To\ icity tests of aquatic pollutants by using common duckweed. Environ. Pollut. 11B(1): 1-14.
Wani, G.P. 1986. Toxicity of heavy metals to embryonic stages of Cyprinus carpio Communis Linn. Pollut. Res.
5(2):47-51.
Warnick, S.L. and H.L. Bell. 1969. The acute toxicity of some heavy metals to different species of aquatic insects. J.
Water Pollut. Contr. Fed. 41:280-284.
84

-------
Weber, C.I. and B.H. McFarland. 1981. Effects of copper on the periphyton of a small calcareous stream. In:
Ecological assessments of effluent impacts on communities of indigenous aquatic organisms. Bates, J.M. and C.I.
Weber (Eds.). ASTM STP 730. American Society for Testing and Materials, Philadelphia, PA. pp. 101-131.
Weber, R.E., A. De Zwaan and A. Bang. 1992. Interactive effects of ambient copper and anoxic, temperature and
salinity stress on survival and hemolymph and muscle tissue osmotic effectors in Mytilus edulis. J. Exp. Mar. Biol.
Ecol. 159(2): 135-156.
Wellborn, T.L., Jr. 1969. The toxicity of nine therapeutic and herbicidal compounds to striped bass. Prog. Fish Cult.
31:27-32.
Welsh, P.G. 1996. Influence of dissolved organic carbon on the speciation, bioavailabilils and lo\icil\ of metals in
aquatic biota in soft water lakes. Ph.D. Thesis, University of Waterloo. Waterloo, Ontario. ( anada
Welsh, P.G. Lipton, J. Chapman, G.A. Podrabsky, T.L. 2000. Relative importance of calcium and niamicsiiini in
hardness-based modification of copper toxicity. Environ. Toxicol, ( hem. 11>(6): 1<>24-I < > ^ I
Welsh, P.G., J.L. Parrott, D.G. Dixon, P.V. Hodson, D T Spry and (i Mierle IWi I Slimaliiiu acute cupper to\icit>
to larval fathead minnow (Pimephalespromelas) in sol i water from measurements ol dissol\ ed oruanic carbon,
calcium, and pH. Can. J. Fish Aquat. Sci. 53(6): 1263-12" I
Welsh, P.G., J.F. Skidmore, D.J. Spry, D.G. Dixon, P Y I lodson. \ I I liitchiiisnii and I! E. Hickie. 1993. Effect of
pH and dissolved organic carbon on the toxicity of copper in lar\al fathead minnow u'inuphales promelas) in
natural lake waters of low alkalinity. Can. J. Fish. Aqnal Sci 5< K -) I ^5(>-1 "(>2.
West, C.W., V.R. Mattson, E.N. Leonard, G.L. Phipps and (i T \nklc> I'''' ^ Comparison of the relative sensitivity
of three benthic invertebrates to copper-contaminated sediments Ironi ilie Keweenaw Waterway. Hydrobiol.
262(l):57-63.
Williams, P.L. and D.B. Dusenbery. 1990. \qnatic to\icit\ tcstiim iisiiiu llie nenialode  in icccin iiiu waters I I'ishRes. Board Can. 29:1500-1502.
Wilson, W.B. andL.R. Freeberg. 19Su Toxicits of melals in niarme phytoplankton cultures. EPA-600/3/80/025 or
PB80-IS2S4^ National Technical Information Scr\ ices Spriimfield, VA.
Winner, k W I ''N4h The lo\icil> and hioacciiniiilalion of cadmium and copper as affected by humic acid. Aquat.
Toxicol 5( ^i:2<>~-2~4
Winner, k W ll>85 l.ioacciiniiilalion and to\icit> of copper as affected by interactions between humic acid and
water hardness Water kes l^(4i44lM55
Winner, k W and \1 I' l-'arrell I ')'<> \cnie ;ind chronic toxicity of copper to four species of Daphnia. J. Fish. Res.
Board ( an. ^ l<>85-l<>lH
Wiiiiier. k \\ and II \ Owen l'''J l;i Seasonal\ariability in the sensitivity of freshwater phytoplankton
coniniiinities to a chronic copper stress. Aquat. Toxicol. 19(2):73-88.
Winner. R.W. andH. \ Owen. 1991b. Toxicity of copper to Chlamydomonas reinhardtii (Chlorophyceae) and
(\riodaphma dvhia (Crustacea) in relation to changes in water chemistry of a freshwater pond. Aquat. Toxicol.
11( '-4i. 15—-1(>l>
oodw ai d. I) IJ.N. Goldstein, A.M. Farag and W.G. Brumbaugh. 1997. Cutthroat trout avoidance of metals and
conditions characteristic of a mining waste site: Coeur d'Alene River, Idaho. Trans. Am. Fish. Soc. 126(4):699-706.
Wright, D.A. 1988. Dose-related toxicity of copper and cadmium in striped bass larvae from the Chesapeake Bay:
Field considerations. Water Sci. Technol. 20(6/7):39-48.
Wurtz, C.B. and C.H. Bridges. 1961. Preliminary results from macroinvertebrate bioassays. Proc. Pennsylvania
Acad. Sci. 35:51.
85

-------
Young, J.S., R.L. Buschbom, J.M. Gurtisenand S.P. Joyce. 1979. Effects of copper on the sabellid polychaete,
Eudistylia vancouveri: I. Concentration limits for copper accumulation. Arch. Environ. Contam. Toxicol. 8:97.
Young, R.G. and D.J. Lisk. 1972. Effect of copper and silver ions on algae. J. Water Pollut. Control Fed. 44:1643.
Young, L.G. and L. Nelson. 1974. The effect of heavy metal ions on the motility of sea urchin spermatozoa. Biol.
Bull. 147:236-246.
Zaroogian, G.E. andM. Johnson. 1983. Copper accumulation in the bay scallop.. Irgopecten irradians. Arch.
Environ. Contam. Toxicol. 12:127-133.
Zitko, P., W.V. Carson and W.G. Carson. 1973. Prediction of incipient lethal levels of copper to juvenile Atlantic
salmon in the presence of humic acid by cupric electrode. Bull. Environ. Contam. Tn\ia»l Hi 2
-------
Appendices

-------
Appendix A. Ranges in Calibration and Application Data Sets

-------
40
i—i—i—i—i—i—i—i—r
Measured/Nominal/Calculated Data
Assumed/Untraceable Data
t—i—i—i—i—i—i—i—r
30 _
o
¥
3 20
2
0)
a
E
.0)
5
10 _
N
46 0 33 030101010	24 0	13 0 10 04001 0460	0 17 20 0
		I	¦ ¦ ¦ ¦	I	I	I	I	I	L
3 0 0 7 4 0
30 0 1050 0 13 0 13
8 0 4 0 0 1
11 0 03 10 02 01
		I	I	I	I	I	I	I	I	I	I	I	IL
Q)
>
j*.
O
a.
3
O
a—
O
i—

o>

o>
o>
o in
O
C/5
.Q
O)
O)
O
E
ro
b
00
o>
co
a>
a>
co
.c
o
o
N
(0
o>
o>
o
T3
ro

o>

T—



X.
T—
c
c
a>
c
c
o>
03
cu
T—
E
E

O)
O)
"O
o
o
"CO
CQ
CD
CQ
*
*
*
CO
a>
o>
cs
.Q
oo
o>
o>
o>

o
03
O
o
CO
o>
o>
C. dubia
D. D. magna
pulicaria
D. pulex H. azteca
5
>
CO
03


a>
o>
CO
E
o>
a>
a>


T_
o>
o
c
TJ

LL.
o

CO
o>
o>
CQ
CD
O)
03
X
00
h-
O)
u>
O)
03
E
Q.
03
.C
o
oo
h-
o>
00
r-
o>
ti
i
o
X
o>
h-
O)

o
03
E
3
O
03
.C
o
N.
h-
O)
03

03
E
o
Q.	£
o	
^	
-------
100
90
80
70
60
o>
^ 50
40
30
20
10
0 46 0 33 03 01 01 01
_l	I	I	I	L
1	L
0 24
-I	L
0 13 0 10 04 01 04 06
_l	I	I	I	I	L
0 17 0 20
-J	I	L
0 3 0 7 0 4
-I	I	L_
0 30 0105 0 13 0 13
_J	I	I	I	L
0 8 0 4 0 1 0 9
_J	I	I	L
0 11 03 01 02 0 1 ""J
-I	I	I I II 1
0)
>
e
TO
o
Q.
D
O
o

O)


O)
n
h-
o>
o>
o
E
to
b
oo
h-
a>
CO
O)
O)
TO
.£
O
o
N
TO
o>
O
o
T3
TO

TO
E
Q.
TO
SZ
O
CO
CO
o>
TO
E
0)
o
CO
00
CT>
c	O)
TO	t—
!	t
o	"to
CQ	CO
CD
o>
o>
TO
.Q
lO
00
o>
o>
O)
<1)
CQ
TO
n
o
c/)
o>
O)	CD
t—	<7>
„	o>
TO
>
O
o
0
>
TO
o
CD
O)
o>
TO
h-
o>
o>
¦O
c
o
E
TO
b
CD
o>
o>
TO
.Q
CD
O)
o>
TO
CQ
O)
TO
X
00
h-
o>
If)
h-
o>
c
TO
E
Q.
TO
.C
o
oo
h-
o>
j/)
d)
O)
o
00
h-
o>
i
o
X
O)
h-
o>
(/)
o
TO
E
o>
O lT
TO 0
Q.
CO
o
CD
CO
O)
TO
E
o
CD
O)
o>
!n	*
1	-2
TO	O
s	s
i-	o
S;	®
re	>
2	w
C. dubia
D. D. magna
pulicaria
D. pulex H. azteca F. minnow -> R. trout
Median, Range and Quartiles of HA in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-2

-------
10
i—i—i—i—i—i—i—i—i—i—r
Measured/Nominal/Calculated Data
Assumed/Untraceable Data
t—i—i—ir^i
9 _

7 _
N
0
I
0
6 _
s
5	
46 0 33 0 30 10 10 10
13 0 10 0 40 01 04
3 0 0 7 4 0
30 0 1050 13 0 0 13
8 0 4 0 0 1
11 0 03 10 02 01
		I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I I II

'qi
to
o
Q.
3
O
5
5
Q.
Q.
O
o
Q)
0_
o>
05

¦*"	o>
uT	O)
TO	¦*-
aj	(0
o.	£

¦O
c
o
E
5
Q
co
h-
o>
CO
O)
O)
to
.c
o
o
N
TO
o>
O)
o
"D
TO

C	O)
£	05
TO	t—
I	I
O	TO
DO	CD
co
o>
o>
TO
n
u>
CO
O)
o>
o>

o>	
-	o>
TO
O
o
.c

0
>
5
TO
o
co
O)
O)
o
(/)
TO
h-
o>
o>
o
E
TO
Q
CO
o>
O)
TO
.Q
C. dubia
D. D. magna
pulicaria
Q f
D. pulex H. azteca F. minnow ->
CO
O)
o>
TO
m
O)
TO
X
co
h-
O)
h-
O)
c
TO
E
Q.
TO
CO
h-
o>
j/>

I
o
X
O)
h-
O)

O fcT
03
TO O
Q.
C/)
CO
CO
O)
TO
E
CO
O)
o>
CJ
o

TO V
s. 5
TO ®
R. trout
Median, Range and Quartiles of pH in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-3

-------
10
F i—i—i—i—i—i—i—i—i—i—i—r~
	 Measured/Nominal/Calculated Data
	 Assumed/Untraceable Data
I
-I
10 _
O
L10
0
O
o
Q
- _ I
10 _
i
I.
i:
N
10
2026 2013 0 3 0 1 0 1 0 1
_l	I	I	I	I	l_
17 7
_L_
0 13 10 0 4 0 0 1
_l	¦ ¦ ¦
0 4 6 0
J	U
0 17 20 0
-I	U
0 3 0 7 4 0
-I	I	U
1119 0105 0 13 0 13
_l	I	I	L_
8 0
|
4 0
|
0 -
1

00


h-

CO
O)

O)


o>
r.





h-

>
O
00

T—
h-
03

O
CO
03
T~
iL
F
t/>
Q>
Q.
Q)
U)
03
D)
03
.£
O
X
o
Ll_
*
*
*
R.
trout -¦
11 0 0 3 10 0 2
_J	I	I	l_
0 1
JL
<1)
>
Q.
D
O
5
5
Q.
Q.
O
o
O
O

o>
1_- o>
03 ¦*-
"S «
^ O
C/)
.Q
h-
O
O
o
E
5
b
00
h-
O
CO
O
O
03
.c
o
o
N
03
o>
O
o
00
O
CO
00
o>
00
O
fcT	5	<0	(0	£
o	E	E	E
«	&	P P	I
^	.c	o	o	rc
^	O	CQ	CO	CD
CO
O
O
03
.£2
u>
00
O
o>
O
0
CO
03
.£2
O
C/)
O
O
03
>
o
o
CO
O
O

a:
O
CO
a>
O
o

03
h-
o>
O
o
E
5
b
CO
a>
a>
03
.£2
oo
h-
a>
5
o
X
O
h-
O

o
03
E
D
O
03
.c
O
h-
h-
a>
03
o
a.
CO
CO
00
a>
03
E
'
D
o
o

CO
a>
O
s	%
>-	o
re	>
^	CO
D. D. magna
pulicaria
D. pulex H. azteca F. minnow ->
Median, Range and Quartiles of DOC in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-4

-------
i—i—i—i—i—i—i—i—i—i—i—r~
	 Measured/Nominal/Calculated Data
	 Assumed/Untraceable Data
§10'
. a

46 0 33 0 30 10 10 10
¦ ¦ ¦ ¦	I	L
17 7	13 0 10 0 40 01 04 60
_l	I	I	I	I	I	I	U
0 17 20 0
J	I	U
3 0 0 7 4 0
J	I	I	U
30 0 1050 13 00 13	804001 09
¦ I	I	I	I	I	I	I	L
11 0 03 10 02 01
_!	I	I	I	IL.
o
>
&
to
O
Q.
3
O
5
£
Q.
Q.
O
o

o>

o
n
h-
o>
O)
O
E
5
b
00
h-
o>
CO
o>
o>
XL
TO
o>
O)
o
"O
TO
0
o
00
o>
TO
E
Q.
CO
.c
o
00
CO
o>
f0
E
O)
o
CD
CO
o>
^	°>
s	°>
TO	T-
| -g
o	"(5
CD	CO
CD
o>
O)
CO
n
CO
o>
o>
o
0
CD
CO
o
CO
o>
O)	
o>
CD

O)
o>
o>

T_
T_
O)
i—
o
C
¦D
T~
Li_
o
to
C
o
TO
X
XL
c
.Q
&-
TO
o
Em
co
C
3
o
L±j
b
Q
F.
minnow
->
CD
o>
o>
CO
CQ
Ui
co
X
CO
h-
o>
h-
o>
c
CO
E
Q.
CO
00
h-
O)
U)
CD
D)
O
O Ll_
CO
h-
o>
i
o
X
o>
h-
O)

CO
CD
Q.
CO
CD
CO
o>
CO
E
'
3
o
CD
o>
Q. 5
0
CO 3
1	.2
TO o
s S
»_ o
TO >
S CO
R. trout
Median, Range and Quartiles of Ca in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-5

-------
10
10fe—i—i—i—i—i—i—i—i—i—i—r
9ll-
10
.J
^ 71L
co
O
t ».
^ c
E™ 4(t"
U)
s ».
10
2lfc-
11 L.
Measured/Nominal/Calculated Data
Assumed/Untraceable Data
N .2
10
46^ 0 33j 0
46.0 32L0 3 0 1 0 1 0 1 0
J_x
¦ TT
13.0 10.0 4 0 0 1 0 4 6 0
' '
3 0 0 7 4 0
O
30 0 1050 13 0 0 13
8 0 4 0 0 1 0 9
11 0 03 10 02 01
_J	I	' ' >

ix
o
o
Q.
D
O
5
5
Q.
Q.
O
O

§ *
°> T-	-
¦*" O) T3
o> c
RJ ¦*- o
® « 1
S. ¦= ,!S
~ Q
00
h-
O)
CO
CO
O)
O)
.c
o
o
N
03
o>
O)
o
00
O)
CO
00
o>
^t
00
O)
fcT	5	<0	(0	£
0	E	E	E
1	&	£?	£?	I
^	.C	O	O	<3
^	O	CQ	CO	CD
CO
O)
O)
^2
u>
00
O)
o>
O)
0
CO
^2
O
C/)
^t
O)
O)
>
o
o

5
>
CO
ra
h-

CO
O)
O)
E
O)
O)
O)
O)
CO
O)
O)

o
LL.
c
T3
T~
JZ
tf)
o
If)
C
o
(5


E
re
.Q
1
*
cc
o
c
D
o
LU
b
Q
CO
O)
O)
CD
O)
TO
X
00
h-
O)
in
h-
O)
rc
E
Q.
RJ
JZ.
O
00
h-
O)
j/>
0
O)
o
00
h-
O)
O)
h-
O)

o
rc
E
3
O
RJ
.C
o
h-
fe	O
£	c
15	.1
0	tf>
Q.	3
CO	O
CO	Q-
00	Z
O)	o
¦*-	t/>
CO
O)
O)
TO
s	s
i-	o
m	<"
ro	>
2	CO
C. dubia
D. D. magna
pulicaria
D. pulex H. azteca F. minnow -> R. trout
Median, Range and Quartiles of HA in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-6

-------
10
10
<0
(0
(0
Ui
E,
<0
-I
110
10
N
t—i—i—i—i—i—i—i—i—r
Measured/Nominal/Calculated Data
Assumed/Untraceable Data
X - -
0
>
0£
s
o
Q.
D
O
5
o
Q.
Q.
O
CJ
0)
CL
o>
o>

o>
H3
"S W
Q- £
CO O
J2
o>
o>
o
E
2
b
00
O)
CO
O)
O)
RJ
o
o
N
TO
O)
o>
o
¦D
cu

c
TO
E
Q.
f0
CO
00
o>
c
c
(0
E
O)
o
CO
00
o>
^	a>
£	05
fij	T—
i	I
O	ro
m	m
D. D. magna
pulicaria
CD
O)
o>
cu
-Q
CO
o>
0)
c
o>
o>
0
CQ
RJ
.Q
O
CO
o>
O)

O
O
CO

o>
D. pulex H. azteca
5
CO
h-

o
o>
&
O)
O)
J*
T—

o
c
T3
11
o
C

t/>
o
k.
Q
E
cu

ra
o
LU
b
F.
minnow
CO
o>
a>
co
CQ
a>
ro
x
00
h-
o>
lO
h-
o>
R3
E
a.
rc
.£
o
oo
h-
O)
0
O)
o
R. trout
00
h-
o
ti
I
o
X
o>
o>

o
E
D
o
.c
O
N.
h-
o>
(Z
CD
Q.
CO
co
oo
o>
RJ
E
'55
O
co
o
O)
0		D
1	.2
s	3
i-	a
m	°
^	CO
Median, Range and Quartiles of Na in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-7

-------
10
10
2*10
(0
(0
TO
E
'10
10
N
-1
= 1
10
i—i—i—i—i—i—i—i—i—i—i—r~
	 Measured/Nominal/Calculated Data
	 Assumed/Untraceable Data
a
o
B
4^0^1^20^
111

X

X.

4|° °|1 °>4 6|°
^^0^17 2(V 0
ILl
3j° °j7 4j°
30 0 1050 0 13 0 13 L 8 0 4 0 0 1 0 9 11 0 0 3 1 0 0 2 0 1
I 1	I	I	I	I	L_l	I	I	I	I	I	IL.

s
O
Q.
D
O
5
o
Q.
Q.
O
o
CD
a.
O)
O)
CD
CD
CO
n
o
co
CD
CO
2
^ o>
i_T o
CO
o «
O
CO
-Q
o>
a>
o
E
2
b
00
o>
CO
o>
o>
CO
.c
o
o
N
co
o>
o>
o
"D
03
CD
o
CO
a>
c
co
E
Q.
CO
.C
O
CO
CO
o
c
c
CO
E
O)
o
CD
CO
o>
ffl	°>
CO	t-
I -g
o	"co
CD	CO
CD
O)
o>
CO
to
CO
a>
o>
o>
cd
CQ
CO
.Q
O
CO
o>
O)	CD
t-	05
-	a>
CO
O
O

s
JO
o
CD
a>
a>
O
if)
CO
h-
o>
o>
o
E
5
b
CD
a>
o>
co
12
CD
O
O)
CO
CQ
O)
CO
X
CO
h-
o>
to
N-
O)
CO
E
Q.
CO
CO
h-
a>
CO
h-
a>
I
O
X
O)
h-
o>
t/>
o
CO
E
O)
O ^
co a)
a.
co
o
CD
CO
o>
CO
E
o
.9- £
o
 R. trout
Median, Range and Quartiles of K in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-8

-------
10
10
°10 1
t/>
re
U)
I1"0
O
CO
10
N
f i—i—i—i—i—i—i—i—i—i—r
10
-2
Measured/Nominal/Calculated Data
Assumed/Untraceable Data
-I
II
St
B
B


X
X
X
X
lU
X
X
X.
X.

X
X
X
^CH) 10{
L


J	L
X

11 o
_L_
0 3
0 2
_1_
0 1
JL

E
Q.
D
o
5
£
Q.
Q.
O
O
o>
o>
0
m
.q
o
CO
* 5
O CL
C. dubia
CO
00
°>
o>
i_- o>
RJ ¦«-
"S tfl
O
c/)
-Q
o>
o>
o
E
5
b
00
h-
o>
co
o>
o>
TO
.c
o
o
N
TO
o>
o>
o
00
o>
CO
00
O)
00
O)
uT	IS	«B	CO	^
0	£	£	E
1	8-	s>	E> I

-Q
m
00
o>
0
c
c
o>
o>
0
CO
-Q
o
C/)
o>
O)	CD
T-	O
-	o>
CU
>
o
o
o
>
k
JH
o
CD
O)
o>
o

o>
CD
(7)
o>
0
1	=
.2	3
Q	Q
D. D. magna
pulicaria
q r
D. pulex H. azteca F. minnow ->
CD
O)
o>
CQ
U)
ro
x
00
h»
o>
ID
h-	CO
2 oo £
t- ^ 2
i—" OJ
RJ
E
Q.
CU
o>
h-
o
t/>
o
rc
E
h-
o>
0	5
U)	>
O	o
O u-	X
O i_~
RJ O
Q.
CO
CD
00
O
CO
E
o

CD
G>
o>
o
rc	.r
s	s
»-	o
TO	>
^	CO
R. trout
Median, Range and Quartiles of S04 in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-9

-------
10
F i—r
2
-
10



o

CO

w 1

_J 10
—
o>
— r-
E
-


o
-
10 0


—
—i—i—i—i—i—i—i—i—i—r~
Measured/Nominal/Calculated Data
Assumed/Untraceable Data
I
N

E
to
o
Q.
3
o
5
s
Q.
Q.
O
O


O)
vT O
TO
"S (0
o
CO
.Q
o>
o>
o
E
TO
b
CO
h-
o>
¦O
c
CO
o>
O)
TO
£
o
o
N
TO
O)
o>
O
¦D
TO

TO
E
Q.
TO
SI
O
CO
00
o>
TO
E
D)
O
CD
00
o>
^	a>
s	°>
TO	T—
I	I
O	W
m	m
D. D. magna
pulicaria
CO
o>
o>
TO
n
c
oo
O)
o
a r
D. pulex
o>
o>

a>	co
T-	O)
-	o>
TO
o
o
o
H. azteca
5
CO
TO
h-


o>
o>
CO

o>
O)
o>
jm
¦*"
T~
O)
i—
Q
c
"O
¦*"
LL.
o
c/>
C
o
TO


c
.Q
>—
TO
o
u
c
TO
c
D
o
LU
b
Q
F.
minnow
->
CO
o>
O)
TO
CQ
O)
TO
00
h-
o>
lO
o>
TO
E
Q.
TO
.C
o
oo
h-
o>
R. trout
00
o>
a;	§
05	>
°	-2
LL.	X
O)
h-
o>

o
TO
E
u
o
TO
£
o
h-
h-
O)
TO

TO
E
'
D
o
CO
o>
o>
O	
^	CO
Median, Range and Quartiles of CI in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-10

-------
10
N
i—i—i—i—i—i—i—i—i—i—r
	 Measured/Nominal/Calculated Data
	 Assumed/Untraceable Data
i—r
CO
O 2
O10
(0
O
(0
(0
U)
E
C 1
= 10
(0
It
:1 i
_ b
I
I

3
I
B
0
46 0 33 0 30 10 10 10
13 0 10 0 40 01 04
3 0 0 7 4 0
30 0 1050 13 0 0 13
8 0 4 0 0 1
11 0 03 10 02 01
10
		I	I	¦ ¦ ¦ ¦	I	I	I	I	I	L
		I	I	I	I	I	I	I	I	I	I	IL

5
_C0
O
Q.
3
O
i—
o
1—

CD
0
C0
n
o
(/>
CD
00
O)
O)
uT 0>
co ¦*-
O
CO
n
h-
o>
o>
O
E
5
b
00
h-
o>
CO
o>
o>
_	CO
o	CO	CO
CO	O)	O)
5 2	^	T"
? c	F	S 5
£	C	C q>
g	co	co
o E	E	E
w «	? S> I

O)	CD
T-	O)
-	O)
"O	~"
ro	£
>	(/)
o
o
CD
>
S
o
CD
o>
O)
o

o>
o
E
2
Q
CD
o
o
CO
.Q
c
D
Q
CD
o>
O
CO
CD
U)
co
X
CO
h-
O)
ID
h-
O)
CO
E
Q.
CO
.C
O
CO
h-
o>
CO
h-
o>
ti
i
o
x
o>
h-
o>

o
CO
E
D
O
CO
.c
O
h-
N-
O)
CO
0
Q.
CO
CD
CO
O
CO
E
o
o

c
CO
CD
O)
O)
>

Cf)
C. dubia
D. D. magna
pulicaria
D. pulex H. azteca F. minnow -> R. trout
Median, Range and Quartiles of Alkalinity in BLM Calibration and Application Datasets
(All species, Median and Quartiles calculated directly from data i.e., no distributional assumptions)
A-11

-------
Appendix B. Biotic Liganri Model (BLM) I ser's Guidf

-------
Biotic Ligand Model
Windows Interface, Version 2.0.0
User's Guide and
Reference Manual
April 2003
HydroQual, Inc.
1 Lethbridge Plaza
Mahwah, NJ 07430
U.S.A
B-1

-------
SECTION 1
INTRODUCTION TO THE BLM
Introduction
1.1
Metal bioavailability and toxicity have long been recognized to be a function of water chemistry (Sunda
and Guillard 1976; Sunda and Hansen 1979). For example, formation of inorganic and organic metal
complexes and sorption on particle surfaces can reduce metal toxicity. As a result, metal toxicity can be
highly variable and dependent on ambient water chemistry when expressed as total or dissolved metal
concentration. In contrast, the effects of water chemistry on metal toxicity can often be reduced or
eliminated when metal toxicity is related to free metal ion concentrations (Sunda and Guillard 1976).
Allen and Hansen (1996) have shown the relationship between metal speciation and toxicity and have
used this relationship to predict the range of effects that site-specific water quality characteristics can
have on copper toxicity.
BLM FRAMEWORK AND CONCEPTUAL MODEL
1.2
The Biotic Ligand Model (BLM) was developed to incorporate metal speciation and the protective effects
of competing cations into predictions of metal bioavailability and toxicity (Di Toro et al. 2001). A formal
description of metal-organism interactions, now commonly referred to as the Free Ion Activity Model
(FIAM), was described by Morel (1983a). Pagenkopf (1983), using a similar approach, applied the Gill
Surface Interaction Model (GSIM) to predict metal effect levels over a range of water quality
characteristics. The BLM is founded upon the principles that underlie these earlier models. The BLM
incorporates a version of CHESS (Santore and Driscoll 1995) that has recently been modified to include
the chemical and electrostatic interactions described in WHAM (Tipping 1994). The BLM includes
reactions that describe the chemical interactions of copper and other cations to physiologically active sites
(or "biotic ligands") which correspond to the proximate site of action of toxicity. However, inorganic and
organic ligands can also bind metal, thereby reducing accumulation at the biotic ligand. By incorporating
the biotic ligand into a chemical equilibrium framework that includes aqueous metal complexation, the
relation between free metal ion concentrations and toxicity is an inherent feature of the model.
The BLM framework also incorporates the competitive effects of other cations that interact with the
biotic ligand to mitigate toxicity. For example, at a fixed free metal concentration, as hardness increases,
the increased Ca2+ competes with the free metal for binding sites at the biotic ligand. A higher free metal
concentration is therefore required to achieve the same toxic effect in the presence of elevated Ca2+
concentration. The BLM uses this competitive mechanism to simulate the reduction in metal toxicity due
to elevated hardness concentrations. Thus, the BLM can effectively account for reduction in metal
toxicity due to elevated levels of hardness cations (Meyer et al. 1999).
The BLM has been developed using published information on metal toxicity and biotic ligand
accumulation as a function of water chemistry. The most comprehensive data compiled to date for use
with the BLM is for copper toxicity to fathead minnows (Pimephales promelas). Copper accumulation on
the gill has been associated with respiratory distress and decreased blood plasma Na concentrations due to
interference with these sites (Playle et al. 1992). The adsorption of copper on gill surfaces in the BLM has
been calibrated to measurements of copper accumulation on the gill over a wide range of water quality
conditions (Playle et al. 1992, 1993b). Additionally, MacRae (1994) established a dose response
B-2

-------
relationship necessary to determine the biotic ligand LC50 in rainbow trout. In the BLM, metal toxicity is
defined as the amount of metal necessary to result in accumulation at the biotic ligand equal to the biotic
ligand LC50. While others have developed models capable of predicting metal bioaccumulation on the
gill in short term exposures (Playle et al. 1993a, b), the BLM is the first that includes a scheme for
predicting toxicity. The BLM for other metals and organisms is based on a similar approach.
1.3 PREDICTION MODE
The BLM interface application allows the user to run the BLM either in toxicity mode or in the speciation
mode. When run in the toxicity mode, for the metal and organism specified by the user, the BLM will
predict the amount of metal required to cause acute mortality in the water specified by the user. However,
when the BLM is run in the speciation mode, for the metal concentration specified by the user, the BLM
will predict the organic and the inorganic speciation in the water column.
1.4 BLM APPLICATIONS
In summary, the BLM can be used to calculate the chemical speciation of a dissolved metal including
complexation with inorganic and organic ligands, and the biotic ligand. The biotic ligand represents a
discrete receptor or site of action on an organism where accumulation of metal leads to acute toxicity. The
BLM can therefore be used to predict the amount of metal accumulation at this site for a variety of
chemical conditions and metal concentrations (i.e. the inorganic, organic, and biotic speciation of metals
in aquatic settings).
According to the conceptual framework of the BLM, accumulation of metal at the biotic ligand at or
above a critical threshold concentration leads to acute toxicity. This critical accumulation on the biotic
ligand is also termed the LA50, the Lethal Accumulation of metal on the biotic ligand that results in 50%
mortality in a toxicological exposure. The LA50 is expressed in units of nmol/g wet weight of the biotic
ligand. Since the BLM includes inorganic and organic metal speciation and competitive complexation
with the biotic ligand, the amount of dissolved metal required to reach this threshold will vary, depending
on the water chemistry. Therefore, in addition to calculating chemical speciation, the BLM can also be
used to predict the concentration of metal that would result in acute toxicity within a given aquatic
system.
B-3

-------
SECTION 2
Overview and Help File layout
What's New In This Distribution?
2.1
Originally, the BLM was developed as an MS-DOS based program, with the user developing the BLM
input files using an external spreadsheet program such as Microsoft Excel, running the BLM in the MS-
DO S environment, and then analyzing the BLM output using a different set of software tools. However,
in order to facilitate data-entry, model simulations, and the analysis of model output in a common
application environment and in a more efficient and user-friendly fashion, a graphical user interface was
developed for the BLM and first distributed as BLM, Windows Interface Version 1.0.0. The current
distribution, Version 2.0.0, is an updated version that offers additional options for data inputs and model
simulations. The new functionalities are further described in the subsequent sections. The BLM,
Windows Interface Version 2.0.0 incorporates the most current version of the BLM, Version APE8.
Note that BLM datafiles created using the older version of the BLM Windows Interface can be used
directly with the new version.
HELP FILE LAYOUT
2.2
The remainder of this document describes the hardware and software requirements for installing and
running the BLM Windows Interface, the data requirements of the BLM, a step-by-step guide to using the
various functionalities of the BLM Windows Interface and a walk-through of the application using an
example BLM datafile.
B-4

-------
SECTION 3
Setup and Installation
System Requirements
3.1
The BLM Windows Interface is designed for use on the IBM compatible PC family of microcomputers
running Microsoft Windows. The memory requirements of the BLM Windows Interface are modest and
should not interfere with other resident programs. The minimum hardware and software requirements and
the recommended system configurations are described below.
Minimum System Requirements
•	PC Compatible, Intel Pentium 233 MHz
•	Microsoft Windows 95 or higher
•	32 MB RAM
•	30 MB free disk space
Recommended System Configuration
•	Intel Pentium 3 or higher, 500 MHz or faster
•	64 MB RAM
•	100 MB free disk space
Even though the BLM Windows Interface can be run on a system with the specified minimum
requirements, in the interest of computation time, the recommended system configuration or a higher one
would be ideal.
INSTALLING THE BLM WINDOWS INTERFACE
3.2
•	Installing from a disk - To install the BLM Windows Interface from a CD-ROM, insert the installation
disk into the CD-ROM drive. In case the installation does not start up automatically, locate and run the
program "setup.exe" located in the main directory in the installation disk by simply double clicking on
the file name.
•	Installing from the self-extracting (.exe) file - To install the BLM Windows Interface from the self-
extracting file "BLMWindowsInterface_Version2.0.0.exe" simply double click on the file to extract its
contents to a temporary folder. This temporary folder can be deleted once the installation is completed.
To start the installation, locate and run the program "setup.exe" located in the temporary folder by
simply double clicking on the file name.
Note that on PCs running Microsoft Windows 2000 and higher or any version of Microsoft Windows NT,
the user may have to be logged on as the "Administrator" or have the relevant permissions to modify the
"System" directory in order to install the necessary files.
The setup program will guide the user through a fairly straightforward installation process, querying the
user for information on where to install the necessary files. During the installation, a shortcut to the BLM
Windows Interface application will be added to the "Programs" sub-menu within the "Start" menu on the
Microsoft Windows desktop. In addition, the BLM Windows Interface application will also be registered
B-5

-------
in the system registry so that the BLM datafiles created by the user can be accessed directly by just
double clicking on the file name.
B-6

-------
SECTION 4
Data Requirements
The BLM predicts metal toxicity and speciation for a particular site based on the ambient water quality.
Therefore, the user will be expected to provide data describing the physical and chemical properties of the
site water. The data requirements of the BLM are conventional physical and chemical parameters that are
easily measurable in the laboratory. This section describes the general physical and chemical data
requirements for an application of the BLM to predict metal speciation and toxicity in aquatic systems.
Water Quality Parameters Required
4.1
The ambient water quality information required to run the BLM is listed below:
•	Temperature
•	pH
•	Dissolved Organic Carbon
•	Major cations (Ca, Mg, Na, and K)
•	Major anions (SO4 and CI)
•	Alkalinity
Sulfide
For a given metal some of these chemical inputs have an important effect on determining metal
speciation, while other chemical inputs have only minor effects on BLM predictions. The user should be
aware of the relative importance of each of the chemical inputs to decide whether adequate information is
available for a meaningful application of the BLM. The guidelines described in the subsequent sections
may be helpful in that assessment.
Each water sample has to be fully described in terms of the above water quality inputs before the BLM
can be used. However, if some of the parameters are known to be absent in the water sample, a nominal,
negligible concentration should be input (a value on the order of 1E-10 mg/L should suffice typically)
rather than a zero concentration.
Temperature
4.1.1
Temperature measurements are typically the most common and basic of all water quality measurements
and therefore available in most laboratory characterizations of site-water chemistry. Since the BLM is
based on a thermodynamic chemical equilibrium modeling framework, temperature measurements are
important to determine the relevant thermodynamic reaction rates.
pH
4.1.2
Accurate pH values are important to BLM results for most metals. The chemical speciation of many
metals, such as copper, is directly affected by pH. However, pH is also important to determine the metal
complexation capacity of dissolved organic matter. It is also important to determine the speciation of
inorganic carbon, which relates to the formation of metal carbonate complexes. For these reasons, pH is a
required chemical input to the BLM. If BLM results are to be compared to laboratory measurements of
metal toxicity, then it is preferable that the pH is measured within the test chamber during the exposure.
B-7

-------
Dissolved Organic Carbon
4.1.3
Dissolved organic matter plays a critical role in determining metal speciation and bioavailability. In the
BLM, the presence of dissolved organic matter is specified as a dissolved organic carbon (DOC)
concentration in mg/L and is a required input for the BLM. For water with low DOC it is important to
make sure that analytical detection limits are sufficiently low. In toxicity studies, the test organisms
themselves maybe a significant source of organic matter depending on the number of organisms and the
volume of the test chamber.
Humic Acid Fraction of DOC
The BLM uses a description of organic matter chemistry developed for the Windermere Humic Aqueous
Model (WHAM, Version 1.0), which characterizes metal complexation with both humic and fulvic
organic matter sources. It is therefore necessary to specify the distribution of humic and fulvic acids in the
organic matter present in a given water. Unfortunately, natural organic matter composition is not
routinely characterized and information on humic and fulvic acid content is not likely to be available. In
the absence of chemical characterization, a value of 10% humic acid content is recommended for most
natural waters. The variability of the dissolved organic matter content in diverse water sources is a topic
of current study by BLM investigators.
Metal Concentrations
4.1.4
The BLM can be used to predict the speciation and bioaccumulation of metals when a metal concentration
is provided as an input. When the model is used in metal speciation mode, metal concentrations are a
required input. However, the BLM model is probably most useful as a means of predicting metal toxicity
(i.e., a concentration associated with a specific toxicological effect). When used in metal toxicity mode,
there is no need to input metal concentrations.
Major Cations
4.1.5
The cations Ca, Mg, Na, and K are all necessary inputs to the BLM. For copper and silver, Ca and Na can
directly compete with the metal at biotic ligand sites and these cations will, therefore, have a direct effect
on predictions of metal toxicity. For some organisms, Mg may play a critical role as well. These cations,
therefore, are required inputs to the BLM. On the other hand, K currently has no direct effect on metal
toxicity in the BLM and can be estimated if measurements do not exist.
Major Anions
4.1.6
The anions S04 and CI are necessary inputs to the BLM (although bicarbonate is also an important anion,
it is discussed separately below). In freshwaters, S04 may be the dominant anion and is, therefore,
important for determining charge balance and ionic strength. The chemistry of metals and of natural
organic matter is dependent to varying degrees on ionic strength and so S04 has some importance as a
BLM input. However, if measurements of S04 are not available, the concentrations can be estimated. For
copper simulations, CI is only important as a contribution to ionic strength, but for silver simulations CI
can have an additional importance due to the formation of silver-chloride complexes. Therefore, it is
preferable that only measured CI concentrations are used for BLM applications involving silver, while
estimates can be used for applications involving copper.
B-8

-------
Alkalinity
4.1.7
Inorganic carbon species in the BLM include carbonate (C03), bicarbonate (HC03), and carbonic acid
(H2C03). The sum of these species is called dissolved inorganic carbon (DIC). Bicarbonate is usually the
most important DIC species in natural waters since it is the dominant species between pH 6.35 and 10.33.
Inorganic carbon is a critical input to the BLM since many metals, including copper, form carbonate
complexes. Silver, on the other hand, does not form carbonate complexes, and so DIC is not a critical
input to BLM applications for silver. Unfortunately, measurements of DIC are not often made in natural
water samples. However, if it can be reasonably assumed that carbonate alkalinity is the dominant source
of the measured alkalinity, the DIC can be estimated from alkalinity and pH measurements as in the
equation below.
The BLM Windows Interface uses this expression to calculate the DIC internally, and so only the
alkalinity and the pH need to be specified. Alkalinity should be measured on filtered samples to eliminate
potential contribution from suspended CaC03 and specified in units of mg/L of CaC03. However,
depending on the inorganic carbon option selected, the user may also opt to specify DIC concentrations
directly. This latter option would be preferred generally, and especially when carbonate alkalinity is not
the dominant source of measured alkalinity, but must depend on reliable measurements of DIC.
Sulfide
4.1.8
Although it has traditionally been assumed that sulfide concentrations are negligible in aerated waters,
recent evidence suggests that appreciable sulfide concentrations persist in both marine and freshwaters.
Waters impacted by wastewater treatment plant effluents in particular can have elevated sulfide
concentrations. Sulfide has a strong affinity for many metals and is therefore an important consideration
in determining metal speciation and bioavailability. If it is present, measured sulfide should be considered
a required input to the BLM, especially when sulfide concentrations are similar to the predicted effect
levels for a given metal and organism.
At the present time, researchers at several universities are still looking into the nature of sulfide-metal
complexes in aqueous systems. The persistence of sulfide in aerated waters may be linked to the
formation of stable metal-sulfide clusters, and these clusters may not be detected by traditional sulfide
measurements. Alternatively, strong metal complexes that are believed to be due to sulfide compounds
may be due to other forms of reduced sulfur that are also missed by traditional sulfide measurements.
Suitable analytical methods that measure the target form of sulfide and which do not measure other non-
reduced forms of sulfur, are under development. Also, sulfide levels in some locations may be known to
be low and well below the effect levels of interest for a given metal. Therefore, sulfide measurements may
DIC = Alk ¦ M
where Alk. = alkalinity in equivalents/L
= 2 x 10 ^ x alkalinity (as mg CaCC>3 / L)
H = 10"PH
£ 1^0
B-9

-------
not be critical in all instances. Since these research questions are still being addressed, metal-sulfide
reactions have not yet been incorporated into the BLM. The sulfide column in the input file is a reminder
that these interactions are likely to be added to a subsequent version of the model. Sulfide concentrations
added in that column will not affect the BLM calculation.
B-10

-------
SECTION 5
Starting the Application
To start using the BLM Windows Interface, select the application using "Start 	> Programs" on the
Microsoft Windows desktop. The user will be presented with the following screen, which contains the
user input areas and the various functions implemented in this version of the BLM Windows Interface.
i Biotic Ugand Model, Version 2.0.0 - Research Mode:

Fie Ed*
Ir
-------
SECTION 6
Running the Application
The BLM Windows Interface provides access to the BLM in its full suite of capabilities (i.e.,, predicting
metal speciation and toxicity, predicting Water Effect Ratios (WER), comparison to laboratory
measurements of toxicity, calibration to new metals and organisms, etc). Providing an easy-to-use
interface and environment for developing datasets of water chemistry information and applying the BLM
for predictions of metal speciation and toxicity makes the process of BLM development more efficient
and productive.
The following sections describe the various functions and features available in the BLM Windows
Interface and the use of the BLM in its various predictive capabilities.
Description of Interface
6.1
Figure 2 shows a snapshot of the BLM Windows Interface application. The main purpose of this section
of the interface application is to provide an easy-to-use editor to develop input files containing water
chemistry information for the BLM, to facilitate checks and validate the user inputs for the various
parameters, to perform checks on whether the values entered for any given parameter are within the range
for which the BLM has been calibrated, and to run the BLM for predictions of aquatic speciation or
toxicity for a variety of metals and organisms.
(	J [	J	[ display j
I * Biotic Ligand Model, Version 2-0.t
- Research Mode:
-(~1*1
Ffc E
-------
As shown in Figure 2, the interface window is divided into seven areas broadly based on their
functionality. Each of these is described in the subsequent sections.
Data Inputs
6.2
This region of the interface window contains a spreadsheet-based editor, which organizes the various
BLM input parameters in a columnar format such that the chemistry for each discrete water sample can be
specified on a separate row. Apart from the water chemistry information, two additional columns are also
provided for labeling the sites and the samples described in a given BLM datafile. Figure 3 shows the
various columns typically available for user input.
BMic Uqand Model, Version 2.0.1
¦ Research Mode:


-Inixi
Ne Edt vfe# Input* Help
¦-	• f 	
\£Z y .y/ ^ Melai Copper Orgasm Falhead Mmow Precfctfon Mode: TcweHy
f 1

Site Label
Sample Label
Temp.
P«
Cu
OOC
HA
Ca
Mq
Ne
K
5Q4
a
AhaWy
s
H



X

ug/L
mgC/1
X
moA.
mg/L
mg/l
mg/L
rog/l
mg/L
mg/L C«C03
mg/L
~
J	














i
-2















Figure 3: Columns for Data Input in the BLM Windows Interface
Site Label and Sample Label Descriptors
6.2.1
The first column, the "Site Label," is meant to contain information about the site under consideration. For
example, it could be the name of the river or it could be the Mile Point along a river if the same file
contains water chemistry data for more than one location along a particular river. The information
contained within the "Sample Label" field can be used to distinguish the various water chemistry samples
available for a particular site. For instance, at a given site, this field could represent the date and time at
which the site water samples were collected. Flow ever, for both the site and the sample descriptor fields,
there is an upper limit of 20 characters that are allowed in each field.
Water Chemistry Inputs
6.2.2
The subsequent columns contain the data input area for the water quality parameters described under Data
Requirements. For predictions of metal toxicity, metal concentration is not a required input, since the
BLM will predict the amount of metal that results in acute toxicity to the specified organism. However,
for predictions of metal speciation, the metal concentration is a required input and if no metal
concentration is specified, the row will be considered incomplete and no BLM predictions will be made
for that row. For all other water quality inputs, any row with a missing input will be flagged as incomplete
and no BLM predictions will be made for that row.
Menu bar
6.3
Located at the very top of the interface window, the menu bar provides the user with a range of functions
and features including:
*	Managing the BLM datafiles
•	Text editing functions
B-13

-------
•	Functions to select between various units for data inputs
•	A help function
These features are described below in further detail.
File
6.3.1
Figure 4 shows the functions available under this menu item. Basic file management utilities to create a
new BLM datafile, to open an existing BLM datafile, and to save a BLM datafile are provided.
Si Etiotic Ligand Model, Version 2.0.0 - Research Mode:
¦
File Edit View Inputs Help
New
Ctrl+N
Open
Ctrl+O
Save
Ctrl+S
Save As Ctrl+A
Quit
Ctrl+Q
1

1 2

1 3

?V ft f
r Current Selections
Metal: Copper
Organism:
T
Sample Label
Tei
Figure 4: Snapshot of File Menu Item
Shortcut keys (shown to the right of each item) are also implemented for all the different functions in this
menu item.
For ease of access, BLM datafiles can also be opened directly by double clicking on the BLM datafile in a
file system manager such as Microsoft Windows Explorer. This avoids having to first start the application
and then navigate through the file menu to locate the BLM datafile of interest.
Note that the BLM datafiles created by the interface application are given a ".BLM" extension by default.
Even though the BLM datafile created by the interface application is basically an ASCII text file, it is
recommended that the user not modify this file using a program other than the BLM Windows Interface
application. Doing so may result in the BLM datafile getting corrupted and if this happens, the next time
the user tries to edit that BLM datafile using the BLM Windows Interface, the file may not be read
correctly by the BLM interface application.
Edit
6.3.2
Figure 5 shows the editing functions available in the BLM Windows Interface. Basic editing functions
such as "Cut," "Copy," "Paste," and "Delete" are implemented in the interface application.
B-14

-------
1 Biotic Ligand Model, Version 2.0.G
- Research Mode:
File
Edit View Inputs
Help
E
Copy Ctrl+C
Cut Ctrl+X
Paste Ctrl+V
Delete Del
e Current Selections
^ ^ Metal: Copper Organism:
r






Site Label
Sample Label
T ei




1



2



3



Figure 5: Snapshot of Edit Menu Item
The editing functions can be performed on a single cell or multiple cells selected by highlighting the cells
with a mouse click and drag operation or by using the Shift and Arrow functions on the keyboard. These
editing functions can also be accessed by using the shortcut keys shown to the right of each item or by
clicking the right mouse over the selected data cells and then selecting the editing operation from the
editing menu that is displayed. Note that it is also possible to copy and paste data from external programs
such as a spreadsheet application into the BLM Windows Interface.
View
6.3.3
This feature is not implemented in the current distribution of the BLM Windows Interface but maybe
available in subsequent versions.
Inputs
6.3.4
Measurements of the water quality parameters required for using the BLM are often reported with varying
units. In order to provide the user with a higher degree of flexibility to develop BLM input files, the BLM
interface allows data inputs in several different units by means of this menu item, as shown in Figure 6.




Site Label
Sample Label
Tei




1



2



3 1



Figure 6: Snapshot of Inputs Menu Item
B-15

-------
Units
The first option, "Set Units," allows the user to select the units for the various BLM input parameters, as
shown in Figure 7. For each parameter, the current selected units are highlighted by default and the user
can select the desired units from the list of options shown. When changing units for a given parameter,
data already input for that parameter is converted to the new units to prevent any loss of data.
Biotic Ligand Model, Version 2.
Select Units
^Jnjxj
Select Component:
Select Units:
T ennperature
luq^L
pH
1 mg/'L
Cu

g/L
DOC

urnol/L
HA

mmol/L
iCa

nnol/L
Mg


Na


K


S04


CI


Alkalinity


S






Ok

Cancel

Help

Inorganic Carbon
Figure 7: View of a Typical "Set Units" Screen
The second option, "Inorganic carbon," gives the user the option to select between various options for
specifying the inorganic carbon in the system. As mentioned previously, the BLM simulates the
formation of metal-carbonate complexes and therefore inorganic carbon is a required input for BLM
simulations. Inorganic carbon in the system can be specified in one of two ways—alkalinity or dissolved
inorganic carbon. Accordingly, the user can select between these two options by means of the "Inorganic
carbon" feature, as shown in Figure 8.
B-16

-------
Si Biotic Ligand Model, Version 2.
Select DIC input option
^Jnjx]
Inorganic carbon is assumed to be controlled as a :
C closed system, input DIC
C closed system, input alkalinity
C open system, input pC02
Ok
Cancel
Help
Figure 8: View of Inorganic Carbon Input Options Screen
Help
6.3.5
Figure 9 shows the various features available under the Help menu item.
ii Biotic Ligand Model, Version 2.0.0 - Research Mode:
File Edit View Inputs Help
Contents,
B7 13 ICuf Index
	 Search...
r Current Selections
Metal: Copper	Organism:

Support


Site Label
le Label
Tei


About BLM


1





2



3



Figure 9: Snapshot of Help Menu Item
The help file for the BLM Windows Interface can be accessed via this menu item and can be browsed by
its contents, by a keyword index, or by searching for a particular word or phrase. In addition, under the
"Support" sub-item, there is also information on whom to contact for technical support and sending bug
reports, etc. A short description of the BLM can be found under the sub-item "About BLM."
Shortcuts Menu
6.4
This group of icons contains shortcuts to some of the menu bar items and some additional functions that
are not available on the menu bar. Figure 10 shows the various icons and their functions.
B-17

-------
Figure 10: Shortcut Menu Icons
Open File
6.4.1
This is a shortcut to the menu bar item under "File	> Open" and is provided for a quick mode of
access to the BLM datafiles. In case the BLM datafile being edited by the user has changed since the last
time it was saved, the user will be queried for a confirmation on whether to proceed to open another
datafile with or without saving the current datafile.
Save File
6.4.2
This is a shortcut to the menu bar item under "File	> Save" and is provided for a quick mode of
saving the BLM datafiles. The datafile will be saved under the same name it was last saved as. In case the
user wishes to save the file under a different file name, the menu bar item "File	> Save As" should be
chosen.
Metal/Organism Selection
6.4.3
As mentioned previously, the BLM can be used to study the toxicity and speciation for a variety of metals
and organisms. This action button is provided to allow the user to select the metal and the organism for
which toxicity or speciation has to be predicted. Clicking on this icon will present the user with the
window shown in Figure 11 and the user can choose the desired metal and organism for the BLM
predictions. The current metal and organism selections are displayed in the Current Selection Display
area.
B-18

-------
*i Biotic Ligand Model, Version 2.1
-Select Organism and Metal for BLM Simulation
Organism
Copper
Silver
Cadmium
Zinc
Fathead Minnow
(*
r
r
r
Rainbow trout
r
r
r
r
Dapivya nyagrhs
r
r
r
r
Daptvw pt/fctx
r
r
r
r
i&'iod3phni3 difhig
r
r
r
r
User Defined
r
r
r
r
User Selected	C
~ k	Cancel	Help
Figure 11: Metal and Organism Selection Options
Metal and Organism Options Available
The metal- and organism-specific parameter files that are distributed along with the current distribution of
the BLM Windows Interface, Version 2.0.0 are indicated by the options that are not grayed out in Figure
11, i.e., the combinations available for the user to choose from. Note that these metal and organism
specific parameter files are part of an ongoing task of refining the calibration and application of the BLM
and may therefore undergo revisions from time to time. The metal and organism selections made by the
user are also saved in the BLM datafile and the next time the user opens the BLM datafile, the application
will default to the selections made by the user at the time the file was saved.
It is advisable to develop separate BLM datafiles for separate metals even though the application of the
BLM may be for the same set of observations. The current distribution of the BLM can be applied to only
one metal at a time. Since the input metal concentrations are specified in units of mg/L, the interface
application internally converts these to units of mols/L using the molecular weight for the metal selected
by the user. Changing the metal for the BLM application within an existing datafile developed for a
different metal may result in an erroneous conversion from units of mg/L to mols/L when the user saves
and opens the datafile the next time.
User Defined
Normally, when run in the toxicity prediction mode for a given organism and metal, the BLM interface
application will derive the LA50 for the user selected organism from the parameter file specific to that
particular metal and organism. The BLM will then predict the LC50 of the selected metal to the selected
organism for all the observations with a complete set of BLM input parameters. However, in order to
provide additional flexibility in operation, the BLM can be run for a given metal with different LA50s for
different rows of input. That is, the BLM will predict LC50s corresponding to different LA50s for each
row. This is accomplished by selecting the "User Defined" option shown in Figure 11 and selecting "Ok."
This will add an extra column to the spreadsheet editor in the application window in the very last column
position, to the extreme right. The user is expected to populate this column for each row of input, with the
desired LA50. Note that leaving this column blank for any line of input can result in the BLM treating
that line of input as a incomplete input and will result in failure to predict toxicity.
B-19

-------
User Selected
In addition to the metal- and organism-specific parameter files that are distributed along with the current
distribution, users may also opt to develop and use their own versions of these files for BLM predictions.
This is achieved by selecting the "User Selected" option shown in Figure 11 and selecting "Ok." The user
will then be queried for the location of the desired parameter file. New parameter files can be developed
by the user along the lines of the parameter files supplied with this distribution (files with the extension
".DAT" located in the "Model" sub-directory within the BLM home directory).
Prediction Mode
6.4.4
The BLM interface application allows the user to run the BLM either in toxicity mode or in the speciation
mode. When run in the toxicity mode, for the metal and organism specified by the user, the BLM will
predict the amount of metal required to cause acute mortality in the water specified by the user. However,
when the BLM is run in the speciation mode, for the metal concentration specified by the user, the BLM
will predict the organic and the inorganic speciation in the water column.
The "Prediction Mode" button allows the user to toggle between the speciation and toxicity prediction
modes in the BLM. The current prediction mode is also displayed in the Current Selection Display area.
By default, the BLM interface application assumes that the BLM prediction mode is the toxicity mode
unless the user specifies otherwise. The current prediction mode is also saved in the BLM datafile and the
next time the user opens up the BLM datafile, the application will default to the prediction mode at the
time the file was saved.
Check Inputs
6.4.5
After creating a BLM datafile, the user may wish to check the water chemistry inputs to verify if the
parameter values are within the overall range for which the BLM has been calibrated and to check to see
if all the parameters necessary for a BLM prediction have been specified. Clicking on this icon serves to
generate an input check report which contains information on what parameters are out of range (too high
or too low when compared to range for which the BLM has been calibrated) and what parameters are
missing for any given row of input. The range of parameter values for which the BLM has been calibrated
is described in Input Check Range. Figure 12 shows an example of such an input check report.
B-20

-------
* Biotic Ligand Model, Version 2.0.0 - BLM Input Check Report
Jul-*
Input 1 has missing Temperature pC)
Input 1 has high Calcium (mg/L)
Input 1 has high Magnesium (mg/L)
Input 1 has high Sulfate (mg/L)
Input 1 has high Alkalinity (rng/L CaC03)
Input 1 has low Sulfide (mg/L)
Input 2 has missing DOC (mg C/L)
Input 2 has missing Sulfate (mg/L)
Input 2 has high Chloride (mg/L)
Input 2 has high Alkalinity (mg/L CaC03)
Input 2 has low Sulfide (mg/L)
Input 3 has missing Dissolved Copper (ug/L)
Input 3 has high Magnesium (mg/L)
Input 3 has high Sodium (mg/L)
Input 3 has high Sulfate (mg/L)
Input 3 has high Chloride (mg/L)
Input 3 has high Alkalinity (mg/L CaC03)
Input 3 has low Sulfide Imq/L)	
Figure 12: An Example of an Input Check Report Generated by the Check Inputs Function
Note that a similar check is also done every time the user edits the contents of any cell in the water
chemistry input section. However, in this case an input check report is not generated. Instead, the out of
range parameter value is highlighted in red as opposed to the normal text color of black.
Run BLM
6.4.6
This icon is used to launch the BLM program to predict either metal toxicity or speciation for the user-
specified selections for the site water chemistry described in the BLM datafile currently open in the BLM
Windows Interface. In case the BLM datafile has been edited since its last save, the user is queried for
confirmation on whether to save the file and the BLM predictions proceed subsequently.
Help
6.4.7
This feature provides a point-and-click help functionality for several features of the interface application.
To use this feature, simply click on this icon and point and click on the icon or area for which the user is
interested in finding help/additional information.
6.5
Current Selection Display
This area of the interface window displays the current metal, organism, and prediction mode selections
made by the user. For the example shown in Figure 2 the user has opted to predict the toxicity of copper
to fathead minnows by using the "Shortcuts Menu" buttons Prediction Mode and Metal/Organism
Selection. The options selected by the user are saved in the BLM datafile and the next time the user opens
the BLM datafile the application defaults to the selections made by the user at the time of the previous file
save.
B-21

-------
Editing Cell
6.6
This area shows the value of the parameter in the current cell as it is being edited.
Datafile Description
6.7
This area is provided for the user to insert comments describing the BLM datafile which will then be
saved along with the water chemistry parameters input by the user. Though it is not of critical importance
to the use of the BLM, for record keeping and possibly QA/QC purposes, it is a desirable input.
Item Description
6.8
Located at the very bottom of the interface window, this area is designed to show a brief description of the
icon/image/area the mouse cursor is currently positioned over. For the case shown in Figure 2, the mouse
cursor is positioned over the "Data Inputs" area. Similar messages are displayed when the mouse cursor is
moved over other areas of the interface window.
DESCRIPTION OF OUTPUT FILES
6.9
When run in the metal speciation or metal toxicity mode, the BLM creates two output files within the
directory containing the BLM input file. The names of the output files are based on the name of the input
file. For example, using the input file "TEST.BLM" would create two output files, "TEST.SIM" (the
simple version of the model output), and "TEST.DET" (the detailed version).
The detailed version of the model output contains all the chemical species in the simulation. Since this file
can grow quite large, the more useful information is summarized in the simple version of output. The
simple version of the model output contains the most relevant information for most users. Included are the
site and sample labels, the mode of operation (i.e., did the BLM use an input dissolved metal
concentration to predict metal speciation or was it predicting the LC50?), the pH, the total dissolved metal
in mol/L (this is the input metal concentration in the speciation mode and the predicted LC50 in the
toxicity prediction mode), the free metal concentration in mol/L, the activity-corrected free metal
concentration in mol/L, concentration of metal bound to DOC in mol/L, concentration of metal and metal
hydroxide bound to DOC in mol/L, the concentration of metal on the biotic ligand in nmol/gwet of the gill,
the DOC in mg/L, the percent humic acid and the rest of the input water chemistry in units of mol/L.
B-22

-------
SECTION 7
Input Check Range
In order to provide users with an idea of the range of water chemistry to which the BLM can be applied,
the range of parameter values to which the BLM has been developed and calibrated is defined in the BLM
interface application. The users can check to verify if the user input water chemistry parameter values are
within this range to which the BLM has been calibrated. This is done by using the "Check Inputs"
function. The ranges prescribed for each of the BLM input parameters are shown below.
PARAMETER
LOWER
BOUND
UPPER
BOUND
Temperature (°C)
pH
DOC (mg/L)
Humic Acid Content (%)
Calcium (mg/L)
Magnesium (mg/L)
Sodium (mg/L)
Potassium (mg/L)
Sulfate (mg/L)
Chloride (mg/L)
Alkalinity (mg/L)
DIC (mmol/L)
Sulfide (mg/L)
0.204
0.024
0.16
0.039
0.096
0.32
1.99
0.056
10
4.9
0.05
10
0
29.65
60
120.24
51.9
236.9
156
278.4
279.72
360
44.92
25
9.2
B-23

-------
SECTION 8
Example Application
The BLM Windows Interface installation also contains an example application for demonstration
purposes. This file is named "Kansas River.BLM" and is installed along with the BLM interface
application and is located in the "Data" directory within the BLM home directory on the user's hard-disk.
The file can be opened directly, by double clicking on the file name through a file-system manager such
as Microsoft Windows Explorer or by first starting the BLM Windows Interface application and selecting
the file through the "File — —> Open" action. This example datafile contains the water quality
observations for USGS Station 6892350 on the Kansas River at Desoto, KS. Although in this case, only
observations with a complete characterization of all the BLM input parameters are included in the BLM
datafile, it is recommended that all the available water quality measurements (including the ones without
a complete characterization of the BLM input parameters) be included in the BLM datafile.
This datafile "Kansas River.BLM" can be used to predict metal speciation using the input metal
concentrations or to predict the LC50 to a variety of metals and organisms. However, it is recommended
that separate BLM datafiles be maintained for each metal. In this case, the datafile contains dissolved
copper concentrations and the BLM can be used to predict the inorganic, organic, and biotic speciation by
setting the BLM prediction mode to "Speciation" using the Shortcut Menu button Prediction Mode. Metal
toxicity for the specified site water chemistry can also be predicted by setting the prediction mode to
"Toxicity" and selecting the metal and organism for which toxicity is to be predicted.
B-24

-------
SECTION 9
Contact Information
For questions or problems, including bug reports, relating to the use and application of the Biotic Ligand
Model or the BLM Windows Interface, please contact either:
Cindy Roberts
U.S. EPA
1200 Pennsylvania Ave, NW (MC4304T)
Washington, DC 20460
roberts.cindv@epa.gov
or
Additional information including support details can be found online at http://www.hydroqual.com/blm.
B-25

-------
References
Allen, H.E. and D.J. Hansen. 1996. The importance of trace metal speciation to water quality criteria. Water
Environ. Res. 68:42-54.
Di Toro, D.M., H.E. Allen, H.L. Bergman, J.S. Meyer, P.R. Paquin and R.C. Santore, 2001. A Biotic Ligand Model
of the Acute Toxicity of Metals. I. Technical Basis, Environmental Toxicology and Chemistry. 20:2383-2396.
MacRae, R.K., December, 1 994. "The Copper Binding Affinity of Rainbow Trout (Oncorhynchus mykiss) and
Brook Trout (Salvelinus fontinalis) Gills," a thesis submitted to the Department of Zoology and Physiology and The
Graduate School of the University of Wyoming in partial fulfillment of the requirements for the degree of Master of
Science in Zoology and Physiology.
Meyer, J.S., R.C. Santore, J.P. Bobbitt, L.D. DeBrey, C.J. Boese, P.R. Paquin, H.E. Allen, H.L. Bergman and D.M.
Di Toro. 1999. Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion
activity does not. Environ. Sci. Technol. 33:913-916.
Morel, F.M., 1983a. "Complexation: Trace Metals and Microorganisms," in Chapter 6 of Principles of Aquatic
Chemistry, Wiley Interscience, New York, pp. 301-308.
Pagenkopf, G.K. 1983. Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH,
and water hardness. Environ. Sci. Technol. 17:342-347.
Playle, R.C., R.W. Gensener and D.G. Dixon. 1992. Copper accumulation on gills of fathead minnows: Influence of
water hardness, complexation and pH of the gill micro-environment. Environ. Toxicol. Chem. 11(3):381-391.
Playle, R.C., D.G. Dixon and K. Burnison. 1993a. Copper and cadmium binding to fish gills: Estimates of metal-gill
stability constants and modeling of metal accumulation. Can. J. Fish. Aquat. Sci. 50(12):2678-2687.
Playle, R.C., D.G. Dixon and K. Burnison. 1993b. Copper and cadmium binding to fish gills: Modification by
dissolved organic carbon and synthetic ligands. Can. J. Fish. Aquat. Sci. 50(12):2667-2677.
Santore, R.C. and C.T. Driscoll. 1995. The CHESS model for calculating chemical equilibria in soils and solutions.
In: R.H. Loeppert, A.P. Schwab and S. Goldberg (Eds.). Chemical Equilibrium and Reaction Models. American
Society of Agronomy, Madison, WI. pp. 357-375.
Sunda, W. and R.R.L. Guillard. 1 976. The relationship between cupric ion activity and the toxicity of copper to
phytoplankton. J. Mar. Res. 34:511-529.
Sunda, W.G. and P.J. Hansen, 1979, "Chemical Speciation of Copper in River Water: Effect of Total Copper, pH,
Carbonate, and Dissolved Organic Matter," p. 147-180. In E.A. Jenne (Ed.)] Chemical Modeling in Aqueous
Systems, ACS Symposium Series 93, ACS, Washington, DC.
Tipping, E., 1994. "WHAM—A Chemical Equilibrium Model and Computer Code for Waters, Sediments, and Soils
Incorporating a Discrete Site/Electrostatic Model of Ion-Binding by Humic Substances," Computers and
Geosciences, 20(6): 973-1023.
B-26

-------
Appendix C. Other Data on Hffects of Copper on
Freshwater and Saltwater Organisms

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Bacteria,
Escherichia coli
S,U
Copper
sulfate
-
48 hr
Threshold of inhibited glucose use;
measured by pH change in media
80
-
Bringmann and Kuhn 1959a
Bacteria,
Pseudomonas putida
s,u
Copper
sulfate
81.1
16 hr
EC3
(cell numbers)
30
-
Bringmann and Kuhn 1976, 1977a,
1979, 1980a
Protozoan,
Entosiphon sulcatum
s,u
Copper
sulfate
81.9
72 hr
EC5
(cell numbers)
110
-
Bringmann 1978;
Bringmann and Kuhn 1979, 1980a,
Protozoan,
Microreqa heterostoma
s,u
Copper
sulfate
214
28 hr
Threshold of decreased feeding rate
50
-
Bringmann and Kuhn 1959b
Protozoan,
Chilomonas Paramecium
s,u
Copper
sulfate
-
48 hr
Growth threshold
3,200
-
Bringmann and Kuhn 1980b, 1981
Protozoan,
Uronema parduezi
s,u
Copper
sulfate
-
20 hr
Growth threshold
140
-
Bringmann and Kuhn 1980b, 1981
Protozoa,
mixed species
-
-
-
7 days
Reduced rate of colonization
167
-
Cairns et al. 1980
Protozoa,
mixed species
S,M,T
Copper
sulfate
-
15 days
Reduced rate of colonization
100
-
Buikema et al. 1983
Green alga,
Ciadophora qlomerata
Dosed
stream
Copper
sulfate
226-310
10 mo
Decreased abundance from 21% dowi
to 0%
120
-
Weber and McFarland 1981
Green alga,
Chlamydomonas reinhardtii
-
Copper
sulfate
76
72 hr
Deflagellation
6.7
-
Garvey et al. 1991
Green alga,
Chlamydomonas reinhardtii
-
Copper
sulfate
76
72 hr
Deflagellation
6.7
-
Garvey et al. 1991
Green alga,
Chlamydomonas reinhardtii
-
Copper
sulfate
76
72 hr
Deflagellation
16.3
-
Garvey et al. 1991
Green algg
Chlamydomonas reinhardti
-
Copper
sulfate
76
72 hr
Deflagellation
25.4
-
Garvey et al. 1991
Green alga,
Chlorella sp.
s,u
Copper
nitrate
-
28 hr
Inhibited photosynthesis
6.3
-
Gachteretal. 1973
Green alga,
Chlorella pyrenoidosa
s,u
-
29.4
72 hr
IC50
(cell division rate)
16
-
Stauberand Florence 1989
Green alga,
Chlorella pyrenoidosa
s,u
-
14.9
72 hr
IC50
(cell division rate)
24
-
Stauberand Florence 1989
Green alga,
Chlorella pyrenoidosa
s,u
Copper
sulfate
82
4 hr
Disturbed
photosystem II
25
-
Vavilin et al. 1995
Green alga,
Eudorina californica
s,u
Copper
sulfate
19.1
-
Decrease in cell density
5,000
-
Young and Lisk 1972
Green alga (flagellate cells),
Haematococcus sp.
s,u
Copper
sulfate
2
24 hr
Inhibited growth during 96 hr recovery
period
50
-
Pearlmutter and Buchheim 1983
Green alga,
Scenedesmus quadricauda
s,u
Copper
sulfate
214
96 hr
Threshold of effect on cell numbers
150
-
Bringmann and Kuhn 1959b
Green alga,
Scenedesmus quadricauda
s,u
Copper
sulfate
60
72 hr
EC3
(cell numbers)
1,100
-
Bringmann and Kuhn 1980a
Green alga,
Scenedesmus quadricauda
s,u
Copper
sulfate
34.8
24 hr
EC50
(photosynthesis)
100
-
Starodub et al. 1987
C1-1

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Green alga,
Scenedesmus quadricauda
S,U
Copper
sulfate
34.8
24 hr
NOEC
(growth)
50
-
Starodub et al. 1987
Green alga,
Scenedesmus quadricauda
s,u
Copper
sulfate
34.8
24 hr
NOEC
(growth)
50
-
Starodub et al. 1987
Green alga,
Scenedesmus quadricauda
s,u
Copper
sulfate
34.8
24 hr
NOEC
(growth)
>200
-
Starodub et al. 1987
Green alga,
Selenastrum capricornutum
s,u
Copper
chloride
14.9
7 days
Growth reduction
50
-
Bartlett et al.1974
Green alga,
Selenastrum capricornutum
s,u
Copper
sulfate
29.3
72 hr
EC50
(cell count)
19
-
Vasseur et al. 1988
Green alga,
Selenastrum capricornutum
s,u
Copper
sulfate
24.2
72 hr
EC50
(cell count)
41
-
Vasseur et al. 1988
Green alga,
Selenastrum capricornutum
s,u
Copper
sulfate
24.2
72 hr
EC50
(cell count)
28
-
Vasseur et al. 1988
Green alga,
Selenastrum capricornutum
s,u
Copper
sulfate
14.9
72 hr
EC50
(cell count)
60
-
Vasseur et al. 1988
Green alga,
Selenastrum capricornutum
s,u
Copper
sulfate
24.2
72 hr
EC50
(cell count)
28.5
-
Benhra et al. 1997
Green alga,
Selenastrum capricornutum
F,U
Copper
sulfate
15
24 hr
EC50
(cell density)
21
-
Chen et al. 1997
Diatom,
Cocconeis placentula
Dosed
stream
Copper
sulfate
226-310
10 mo
Decreased abundance from 21 % dowi
to <1%
120
-
Weber and McFarland 1981
Phytoplankton,
mixed species
S,U
-
-
124 hr
Averaged 39% reduction in primary
production
10
-
Cote 1983
Macrophyte,
Elodea canadensis
S,U
Copper
sulfate
-
24 hr
EC50
(photosynthesis)
150
-
Brown and Rattigan 1979
Microcosm
F,M,T,D
Copper
sulfate
200
32 wk
LOEC
(primary production)
9.3
-
Hedtke 1984
Microcosm
F,M,T,D
Copper
sulfate
200
32 wk
NOEC
(primary production)
4
-
Hedtke 1984
Microcosm
F,M,T
Copper
sulfate
76.7
96 hr
Significant drop in no. of taxa and no.
of individuals
15
-
Clements et al. 1988
Microcosm
F,M,T
Copper
sulfate
58.5
10 days
Significant drop in no. of individuals
2.5
-
Clements et al. 1989
Microcosm
F,M,T
Copper
sulfate
151
10 days
58% drop in no. of individuals
13.5
-
Clements et al. 1989
Microcosm
F,M,T
Copper
sulfate
68
10 days
Significant drop in species richness
and no. of individuals
11.3
-
Clements et al. 1990
Microcosm
F,M,T
Copper
sulfate
80
10 days
Significant drop in species richness
and no. of individuals
10.7
-
Clements et al. 1990
Microcosm
S,M,T
Copper
sulfate
102
5 wk
14-28% drop in phytoplankton species
richness
20
-
Winner and Owen 1991b
Microcosm
F,M,T
-
160
28 days
LOEC
(species richness)
19.9
-
Pratt and Rosenberger 1993
C1-2

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Dosed stream
F,M,D
Copper
sulfate
56
1 yr
Shifts in periphyton species
abundance
5.208
-
Leland and Carter 1984
Dosed stream
F,M,D
Copper
sulfate
56
1 yr
Reduced algal production
5.208
-
Leland and Carter 1985
Sponge,
Ephydatia fluviatilis
S,U
Copper
sulfate
200
10 days
Reduced growth by 33%
6
-
Francis and Harrison 1988
Sponge,
Ephydatia fluviatilis
S,U
Copper
sulfate
200
10 days
Reduced growth by 100%
19
-
Francis and Harrison 1988
Rotifer,
Philodina acuticornis
S,U
Copper
sulfate
45
48 hr
LC50
(5° C)
1,300
-
Cairns et al. 1978
Rotifer,
Philodina acuticornis
S,U
Copper
sulfate
45
48 hr
LC50
(10° C)
1,200
-
Cairns et al. 1978
Rotifer,
Philodina acuticornis
S,U
Copper
sulfate
45
48 hr
LC50
(15° C)
1,130
-
Cairns et al. 1978
Rotifer,
Philodina acuticornis
S,U
Copper
sulfate
45
48 hr
LC50
(20° C)
1,000
-
Cairns et al. 1978
Rotifer,
Philodina acuticornis
S,U
Copper
sulfate
45
48 hr
LC50
(25° C)
950
-
Cairns et al. 1978
Rotifer,
Brachionus calyciflorus
S, U
Copper
sulfate
39.8
24 hr
EC50
(mobility)
200
-
Couillard et al. 1989
Rotifer (2 hr),
Brachionus calyciflorus
S,U
Copper
sulfate
-
2 hr
LOEC
(swimming activity)
12.5
-
Charoy et al. 1995
Rotifer,
Brachionus calyciflorus
S,U
Copper
sulfate
90
24 hr
EC50
(mobility)
76
-
Ferrando et al. 1992
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
90
5 hr
EC50
(filtration rate)
34
-
Ferrando et al. 1993a
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
90
6 days
LOEC
(reproduction decreased 26%)
5
-
Janssen et al. 1993
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
90
5 hr
LOEC
(reduced swimming speed)
12
-
Janssen et al. 1993
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
85
3 days
LOEC
(reproduction decreased 27%)
5
-
Janssen et al. 1994
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
85
3 days
LOEC
(reproduction decreased 29%)
5
-
Janssen et al. 1994
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
85
8 days
LOEC
(reproduction decreased 47%)
5
-
Janssen et al. 1994
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
chloride
170
35 min
LOEC
(food ingestion rate)
100
-
Juchelka and Snell 1994
Rotifer (2 hr),
Brachionus calyciflorus
s,u
Copper
sulfate
63.2
24 hr
EC50
(mobility)
9.4
-
Porta and Ronco 1993
Rotifer (2 hr),
Brachionus calyciflorus
s,u
-
90
2 days
LOEC
(reproduction decreased 100%)
30
-
Snell and Moffat 1992
Rotifer (<2 hr),
Brachionus calyciflorus
s, u
-
85
24 hr
EC50
(mobility)
26
-
Snell et al. 1991b
C1-3

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Rotifer (<2 hr),
Brachionus calyciflorus
S, U
-
85
24 hr
EC50
(mobility; 1(?C)
18
-
Snell 1991;
Snell etal. 1991b
Rotifer (<2 hr),
Brachionus calyciflorus
s, u
-
85
24 hr
EC50
(mobility; 1^ C)
31
-
Snell 1991;
Snell etal. 1991b
Rotifer (<2 hr),
Brachionus calyciflorus
s, u
-
85
24 hr
EC50
(mobility; 2tf C)
31
-
Snell 1991;
Snell etal. 1991b
Rotifer (<2 hr),
Brachionus calyciflorus
s, u
-
85
24 hr
EC50
(mobility; 2^ C)
26
-
Snell 1991;
Snell etal. 1991b
Rotifer (<2 hr),
Brachionus calyciflorus
s, u
-
85
24 hr
EC50
(mobility; 3tf C)
25
-
Snell 1991;
Snell etal. 1991b
Rotifer (<3 hr),
Brachionus rubens
s, u
Copper
sulfate
90
24 hr
LC50
19
-
Snell and Persoone 1989b
Rotifer,
Keratella cochlearis
s,u
Copper
chloride
-
24 hr
LC50
101
-
Borgman and Ralph 1984
Worm,
Aeolosoma headleyi
s,u
Copper
sulfate
45
48 hr
LC50
(5° C)
2,600
-
Cairns et al. 1978
Worm,
Aeolosoma headleyi
s,u
Copper
sulfate
45
48 hr
LC50
(10° C)
2,300
-
Cairns et al. 1978
Worm,
Aeolosoma headleyi
s,u
Copper
sulfate
45
48 hr
LC50
(15° C)
2,000
-
Cairns et al. 1978
Worm,
Aeolosoma headleyi
s,u
Copper
sulfate
45
48 hr
LC50
(20° C)
1,650
-
Cairns et al. 1978
Worm,
Aeolosoma headleyi
s,u
Copper
sulfate
45
48 hr
LC50
(50 C)
1,000
-
Cairns et al. 1978
Worm (adult),
Lumbriculus varieqatus
s,u
Copper
sulfate
30

LC50
150

Bailey and Liu, 1980
Worm (7 mg),
Lumbriculus varieqatis
F,M,T
Copper
sulfate
45
10 days
LC50
35
-
West etal. 1993
Tubificid worm,
Limnodrilus hoffmeisteri
S,U
Copper
sulfate
100

LC50
102

Wurtz and Bridges 1961
Tubificid worm,
Tubifex tubifex
R, U
Copper
sulfate
245

LC50
158

Khangarot 1991
Snail (11-27 mm),
Campeloma decisum
F,M,T
Copper
sulfate
45
6 wk
LOEC
(mortality)
14.8
-
Arthur and Leonard 1970
Snail,
Gyraulus circumstriatus
S,U
Copper
sulfate
100

LC50
108

Wurtz and Bridges 1961
Snail,
Goniobasis livescens
S,U
Copper
sulfate
154
48 hr
LC50
860
-
Cairns et al. 1976
Snail,
Goniobasis livescens
S,M,D
Copper
sulfate
154
96 hr
LC50
-
390
Paulson et al. 1983
Snail,
Nitrocris sp.
S,U
Copper
sulfate
45
48 hr
LC50
(5° C)
3,000
-
Cairns et al. 1978
Snail,
Nitrocris sp.
S,U
Copper
sulfate
45
48 hr
LC50
(10° C)
2,400
-
Cairns et al. 1978
C1-4

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Snail,
Nitrocris sp.
S,U
Copper
sulfate
45
48 hr
LC50
(15° C)
1,000
-
Cairns et al. 1978
Snail,
Nitrocris sp.
s,u
Copper
sulfate
45
48 hr
LC50
(20° C)
300
-
Cairns et al. 1978
Snail,
Nitrocris sp.
s,u
Copper
sulfate
45
48 hr
LC50
(25° C)
210
-
Cairns et al. 1978
Snail,
Lymnaea emarqinata
s,u
Copper
sulfate
154
48 hr
LC50
300
-
Cairns etal. 1976
Snail (adult),
Juqa plicifera
F,M,T
Copper
chloride
23
30 days
LC50
6
-
Nebeker et al. 1986b
Snail (adult),
Lithoqlyphus virens
F,M,T
Copper
chloride
23
30 days
LC50
4
-
Nebeker et al. 1986b
Snail,
Physa heterostropha
S,U
Copper
sulfate
100

LC50
69

Wurtz and Bridges 1961
Freshwater mussel (released
glochidia),
Actinonaias pectorosa
R,M
Copper
sulfate
140
24 hr

132

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Actinonaias pectorosa
R,M
Copper
sulfate
150
24 hr

93

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Actinonaias pectorosa
R,M
Copper
sulfate
170
24 hr

67

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Actinonaias pectorosa
R,M
Copper
sulfate
140
24 hr

42

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Actinonaias pectorosa
R,M
Copper
sulfate
170
48 hr

51

Jacobson et al. 1997
Freshwater mussel (1-2 d),
Anodonta qrandis
S,M,T
Copper
sulfate
70
24 hr
LC50
44
-
Jacobson et al. 1993
Freshwater mussel (1-2 d),
Anodonta imbeciiis
S,M,T
Copper
sulfate
39
48 hr
LC50
171
-
Keller and Zam 1991
Freshwater mussel (1-2 d),
Anodonta imbeciiis
S,M,T
Copper
sulfate
90
48 hr
LC50
388
-
Keller and Zam 1991
Freshwater mussel (released
glochidia), Lampsiiis
fascioia
R,M,T
Copper
sulfate
170
24 hr

48

Jacobson et al. 1997
Freshwater mussel (released
glochidia), Lampsiiis
fascioia
R,M,T
Copper
sulfate
160
24 hr

26

Jacobson et al. 1997
Freshwater mussel (released
glochidia), Lampsiiis
fascioia
R,M,T
Copper
sulfate
75
24 hr

46

Jacobson et al. 1997
C1-5

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Freshwater mussel (released
glochidia), Lampsilis
fasciola
R,M,T
Copper
sulfate
170
48 hr

40

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
185
24 hr

69

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
185
24 hr

40

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
185
24 hr

37

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
170
24 hr

46

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
160
24 hr

41

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
150
24 hr

81

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Medionidus conradicus
R,M,T
Copper
sulfate
170
48 hr

16

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Pyqranodon qrandis
R,M,T
Copper
sulfate
170
24 hr

>160

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Pyqranodon qrandis
R,M,T
Copper
sulfate
170
24 hr

347

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Pyqranodon qrandis
R,M,T
Copper
sulfate
50
24 hr

46

Jacobson et al. 1997
Freshwater mussel (1-2 d),
Viiiosa iris
S,M,T
Copper
sulfate
190
24 hr
LC50
83
-
Jacobson et al. 1993
Freshwater mussel (released
glochidia),
Viiiosa iris
R,M,T
Copper
sulfate
190
24 hr

80

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Viiiosa iris
R,M,T
Copper
sulfate
190
24 hr

73

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Viiiosa iris
R,M,T
Copper
sulfate
185
24 hr

65

Jacobson et al. 1997
C1-6

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
185
24 hr

46

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
170
24 hr

75

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
160
24 hr

46

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
160
24 hr

36

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
155
24 hr

39

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
155
24 hr

37

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
150
24 hr

46

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
150
24 hr

46

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
55
24 hr

55

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
55
24 hr

38

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
50
24 hr

71

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
160
24 hr

46

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
170
48 hr

66

Jacobson et al. 1997
Freshwater mussel (released
glochidia),
Villosa iris
R,M,T
Copper
sulfate
150
48 hr

46

Jacobson et al. 1997
Zebra mussel (1.6-2.0 cm),
Dreissena polymorpha
R,M,T
Copper
chloride
268
9 wk
EC50
+F106(filtration rate)
43
-
Kraaket al. 1992
C1-7

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Zebra mussel (1.6-2.0 cm),
Dreissena polymorpha
R,M,T
Copper
chloride
268
10 wk
NOEC
(filtration rate)
13
-
Kraaketal. 1993
Asiatic clam (1.0-2.1 cm),
Coprbicula fluminea
S,M,T
Copper
sulfate
64
96 hr (24hr
LC50 also
reported)
LC50
40

Rodgers et al. 1980
Asiatic clam (1.0-2.1 cm),
Coprbicula fluminea
F,M,T
Copper
sulfate
64
96 hr (24 hr
LC50 also
reported)
LC50
490

Rodgers et al. 1980
Asiatic clam (juvenile),
Corbicula fluminea
F,M,D
Copper
sulfate
78
30 days
43.3% mortality
14.48
-
Belanger et al. 1990
Asiatic clam (juvenile),
Corbicula fluminea
F,M,D
Copper
sulfate
78
30 days
Stopped shell growth
8.75
-
Belanger et al. 1990
Asiatic clam (adult),
Corbicula fluminea
F,M,D
Copper
sulfate
78
30 days
13.3% mortality
14.48
-
Belanger et al. 1990
Asiatic clam (adult),
Corbicula fluminea
F,M,D
Copper
sulfate
71
30 days
25% mortality
16.88
-
Belanger et al. 1990
Asiatic clam (adult),
Corbicula fluminea
F,M,D
Copper
sulfate
78
30 days
Inhibited shell growth
8.75
-
Belanger et al. 1990
Asiatic clam (adult),
Corbicula fluminea
F,M,D
Copper
sulfate
-
15-16 days
LC50
-
-
Belanger et al. 1991
Asiatic clam (adult),
Corbicula fluminea
F,M,D
Copper
sulfate
-
19 days
LC100
-
-
Belanger et al. 1991
Asiatic clam (veliger larva),
Corbicula manilensis
S,M,T
Copper
chloride
-
24 hr
34% mortality
10
-
Harrison et al. 1981, 1984
Asiatic clam (juvenile),
Corbicula manilensis
S,M,T
Copper
chloride
17
24 hr
LC50
100
-
Harrison et al. 1984
Asiatic clam (veliger),
Corbicula manilensis
S,M,T
Copper
chloride
17
24 hr
LC50
28
-
Harrison et al. 1984
Asiatic clam (trochophore),
Corbicula manilensis
S,M,T
Copper
chloride
17
8 hr
LC100
7.7
-
Harrison et al. 1984
Asiatic clam (adult),
Corbicula manilensis
F,M,T
Copper
chloride
17
7 days
LC50
3,638
-
Harrison et al. 1981, 1984
Asiatic clam (adult),
Corbicula manilensis
F,M,T
Copper
chloride
17
42 days
LC50
12
-
Harrison et al. 1981, 1984
Asiatic clam (4.3 g adult),
Corbicula manilensis
F,M,T
Copper
chloride
17
30 days
LC50
11
-
Harrison et al. 1984
Cladoceran,
Bosmina lonqirostrus
S, U
Copper
sulfate
33.8

EC50
1.6

Koivisto et al. 1992
Cladoceran (<24 hr),
Daphnia ambiqua
S,U
Copper
sulfate
145
72 hr
LC50
86.5
-
Winner and Farrell 1976
Cladoceran (<24 hr),
Daphnia ambiqua
S,U
Copper
sulfate
145
Life span
(ca. 5 wk)
Chronic limits (inst. rate of population
growth)
50
-
Winner and Farrell 1976
Cladoceran,
Ceriodaphnia dubia
S,U
Copper
sulfate
188

EC50
36.6

Bright 1995
C1-8

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Cladoceran,
Ceriodaphnia dubia
S,U
Copper
sulfate
204

EC50
19.1

Bright 1995
Cladoceran,
Ceriodaphnia dubia
s,u
Copper
sulfate
428

EC50
36.4

Bright 1995
Cladoceran,
Ceriodaphnia dubia
s,u
Copper
sulfate
410

EC50
11.7

Bright 1995
Cladoceran,
Ceriodaphnia dubia
s,u
Copper
sulfate
494

EC50
12.3

Bright 1995
Cladoceran,
Ceriodaphnia dubia
s,u
Copper
sulfate
440

EC50
12

Bright 1995
Cladoceran,
Ceriodaphnia dubia
s,u
Copper
chloride
90
1 hr
NOEC
(ingestion)
30
-
Juchelka and Snell 1994
Cladoceran (<24 hr),
Ceriodaphnia dubia
S,M,D
Copper
sulfate
6-10
48 hr
LC50
-
2.72
Suedel et al. 1996
Cladoceran (<12 hr),
Ceriodaphnia dubia
S,M,D
-
113.6
48 hr
LC50
-
52
Belanger and Cherry 1990
Cladoceran (<12 hr),
Ceriodaphnia dubia
S,M,D
-
113.6
48 hr
LC50
-
76
Belanger and Cherry 1990
Cladoceran (<12 hr),
Ceriodaphnia dubia
S,M,D
-
113.6
48 hr
LC50
-
91
Belanger and Cherry 1990
Cladoceran (<48 h),
Ceriodaphnia dubia
S,M,T
Copper
nitrate
280 - 300
48 hr
LC50
9.5
-
Schubauer-Berigan et al. 1993
Cladoceran (<48 h),
Ceriodaphnia dubia
S,M,T
Copper
nitrate
280 - 300
48 hr
LC50
28
-
Schubauer-Berigan et al. 1993
Cladoceran (<48 h),
Ceriodaphnia dubia
S,M,T
Copper
nitrate
280 - 300
48 hr
LC50
200
-
Schubauer-Berigan et al. 1993
Cladoceran (<24 hr),
Ceriodaphnia dubia
S,M,T,D
Copper
nitrate
100
48 hr
LC50
66
60.72
Spehar and Fiandt 1986
Cladoceran,
Ceriodaphnia dubia
R,U
Copper
nitrate
111
10 days
LC50
53
-
Cowgill and Milazzo 1991a
Cladoceran,
Ceriodaphnia dubia
R,U
Copper
nitrate
111
10 days
NOEC
(reproduction)
96
-
Cowgill and Milazzo 1991a
Cladoceran,
Ceriodaphnia dubia
R,U
Copper
sulfate
90
-
LOEC
(reproduction)
44
-
Zuiderveen and Birge 1997
Cladoceran,
Ceriodaphnia dubia
R,U
Copper
sulfate
90
-
LOEC
(reproduction)
40
-
Zuiderveen and Birge 1997
Cladoceran,
Ceriodaphnia dubia
R,M,T
-
20
-
IC50
(reproduction)
5
-
Jop et al. 1995
Cladoceran (<24 hrs),
Ceriodaphnia reticulata
S, U
Copper
chloride
240

EC50
23

Elnabarawy et al. 1986
Cladoceran,
Ceriodubia reticulata
S,U
-
43-45

EC50
17

Mount and Norberg 1984
Cladoceran,
Daphnia magna
-
Copper
sulfate
-
72 hr
EC50
(mobility; 1(f C)
61
-
Braginskij and Shcherben 1978
C1-9

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Cladoceran,
Daphnia magna
-
Copper
sulfate
-
72 hr
EC50
(mobility; 1^C)
70
-
Braginskij and Shcherben 1978
Cladoceran,
Daphnia magna
-
Copper
sulfate
-
72 hr
EC50
(mobility; 2tf C)
21
-
Braginskij and Shcherben 1978
Cladoceran,
Daphnia magna
-
Copper
sulfate
-
72 hr
EC50
(mobility; 3tf C)
9.3
-
Braginskij and Shcherben 1978
Cladoceran,
Daphnia magna
S,U
Copper
sulfate
-
16 hr
EC 50
(mobility)
38
-
Anderson 1944
Cladoceran (<8 hr),
Daphnia magna
s,u
Copper
chloride
-
64 hr
Immobilization threshold
12.7
-
Anderson 1948
Cladoceran (1 mm),
Daphnia magna
s,u
Copper
nitrate
100
24 hr
EC 50
(mobility)
50
-
Bellavere and Gorbi 1981
Cladoceran (1 mm),
Daphnia magna
s,u
Copper
nitrate
200
24 hr
EC 50
(mobility)
70
-
Bellavere and Gorbi 1981
Cladoceran,
Daphnia magna
s,u
-
100
48 hr
EC50
(mobility)
254
-
Borgmann and Ralph 1983
Cladoceran,
Daphnia magna
s,u
-
100
49 hr
EC50
(mobility)
1,239
-
Borgmann and Ralph 1983
Cladoceran,
Daphnia magna
s,u
Copper
sulfate
45
48 hr
EC50
(mobility; C)
90
-
Cairns et al. 1978
Cladoceran,
Daphnia magna
s,u
Copper
sulfate
45
48 hr
EC50
(mobility; 1(f C)
70
-
Cairns etal. 1978
Cladoceran,
Daphnia magna
s,u
Copper
sulfate
45
48 hr
EC50
(mobility; 1^ C)
40
-
Cairns etal. 1978
Cladoceran,
Daphnia magna
s,u
Copper
sulfate
45
48 hr
EC50
(mobility; 2^ C)
7
-
Cairns et al. 1978
Cladoceran (4 days),
Daphnia magna
s,u
Copper
sulfate
-
24 hr
EC50
(filtration rate)
59
-
Ferrando and Andreu 1993
Cladoceran (24-48 hr),
Daphnia magna
s,u
Copper
sulfate
90
24 hr
EC50
(mobility)
380
-
Ferrando et al. 1992
Cladoceran,
Daphnia magna
s,u
Copper
sulfate
50

EC50
7

Oikari et al. 1992
Cladoceran,
Daphnia magna
s,u
Copper
sulfate
-
48 hr
EC50
(mobility)
45
-
Oikari et al. 1992
Cladoceran (<24 hr),
Daphnia magna
s,u
Copper
sulfate
145
Life span
(ca. 18 wk)
Chronic limits
(inst. rate of population growth)
70
-
Winner and Farrell 1976
Cladoceran (<24 hrs),
Daphnia magna
S,M,D
Copper
sulfate
72-80
48 hr
LC50
-
11.3
Suedel et al. 1996
Cladoceran (<24 hrs),
Daphnia magna
S,M,I
-
180
-
LC50
55.3
-
Borgmann and Charlton 1984
Cladoceran (<24 hr),
Daphnia magna
S,M,I
Copper
sulfate
100
48 hr
EC50
(mobility)
46.0
-
Meador 1991
Cladoceran (<24 hr),
Daphnia magna
S,M,I
Copper
sulfate
100
48 hr
EC50
(mobility)
57.2
-
Meador 1991
C1-10

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Cladoceran (<24 hr),
Daphnia magna
S,M,I
Copper
sulfate
100
48 hr
EC50
(mobility)
67.8
-
Meador 1991
Cladoceran (<24 hr),
Daphnia magna
S,M,T
Copper
sulfate
100
72 hr
EC50
(mobility)
52.8
-
Winner 1984b
Cladoceran (<24 hr),
Daphnia magna
S,M,T
Copper
sulfate
100
72 hr
EC50
(mobility)
56.3
-
Winner 1984b
Cladoceran (<24 hr),
Daphnia magna
S,M,T
Copper
chloride
85
96 hr
EC50
(mobility)
130
-
Blaylock et al. 1985
Cladoceran (24 hr),
Daphnia magna
R,U
Copper
sulfate
-
48 hr
EC50
(mobility)
18
-
Kazlauskiene et al. 1994
Cladoceran (<24 hr),
Daphnia parvuia
S,U
Copper
sulfate
145
72 hr
EC50
(mobility)
72
-
Winner and Farrell 1976
Cladoceran (<24 hr),
Daphnia parvuia
S,U
Copper
sulfate
145
72 hr
EC50
(mobility)
57
-
Winner and Farrell 1976
Cladoceran (<24 hr),
Daphnia parvuia
S,U
Copper
sulfate
145
Life span
(ca. 10 wk)
Chronic limits (inst. rate of population
growth)
50
-
Winner and Farrell 1976
Cladoceran,
Daphnia pulex
S,U
Copper
sulfate
45

EC50
10

Cairns et al. 1978
Cladoceran,
Daphnia pulex
S,U
-
45

EC50
53

Mount and Norberg 1984
Cladoceran (<24 hrs),
Daphnia pulex
S, U
Copper
chloride
240

EC50
31

Elnabarawy et al. 1986
Cladoceran (<24 hrs),
Daphnia pulex
S, U
Copper
sulfate
33.8

EC50
3.6

Koivisto et al. 1992
Cladoceran (<24 hrs),
Daphnia pulex
S,U
Copper
chloride
80-90

EC50
18

Roux et al. 1993
Cladoceran (<24 hrs),
Daphnia pulex
s,u
Copper
chloride
80-90

EC50
24

Roux et al. 1993
Cladoceran (<24 hrs),
Daphnia pulex
s,u
Copper
chloride
80-90

EC50
22

Roux et al. 1993
Cladoceran (<24 hr),
Daphnia pulex
s,u
Copper
sulfate
145
72 hr
EC50
(mobility)
86
-
Winner and Farrell 1976
Cladoceran (<24 hr),
Daphnia pulex
s,u
Copper
sulfate
145
72 hr
EC50
(mobility)
54
-
Winner and Farrell 1976
Cladoceran (<24 hr),
Daphnia pulex
s,u
Copper
sulfate
145
Life span
(ca. 7 wk)
Chronic limits (inst. rate of population
growth)
50
-
Winner and Farrell 1976
Cladoceran,
Daphnia pulex
s,u
Copper
sulfate
45
48 hr
EC50
(mobility)
70
-
Cairns et al. 1978
Cladoceran,
Daphnia pulex
s,u
Copper
sulfate
45
48 hr
EC50
(mobility)
60
-
Cairns et al. 1978
Cladoceran,
Daphnia pulex
s,u
Copper
sulfate
45
48 hr
EC50
(mobility)
20
-
Cairns et al. 1978
Cladoceran,
Daphnia pulex
s,u
Copper
sulfate
45
48 hr
EC50
(mobility)
56
-
Cairns et al. 1978
C1-11

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Cladoceran (<24 hr),
Daphnia pulex
S,U
Copper
sulfate
200
24 hr
EC50
(mobility)
37.5
-
Lilius et al. 1995
Cladoceran,
Daphnia pulex
S,M,T
Copper
sulfate
106
48 hr
EC50
(mobility)
29
-
Ingersoll and Winner 1982
Cladoceran,
Daphnia pulex
S,M,T
Copper
sulfate
106
48 hr
EC50
(mobility)
20
-
Ingersoll and Winner 1982
Cladoceran,
Daphnia pulex
S,M,T
Copper
sulfate
106
48 hr
EC50
(mobility)
25
-
Ingersoll and Winner 1982
Cladoceran,
Daphnia pulex
R,U
Copper
sulfate
85
21 days
Reduced fecundity
3
-
Roux et al. 1993
Cladoceran,
Daphnia pulex
R,M,T
Copper
sulfate
106
70 days
Significantly shortened life span;
reduced brood size
20
-
Ingersoll and Winner 1982
Cladoceran,
Daphnia pulicaria
S,M,T
-
31
48 hr
EC50
(mobility; TOC=14 mg/L)
55.4
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
29
49 hr
EC50
(mobility; TOC=13 mg/L)
55.3
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
28
50 hr
EC50
(mobility; TOC=13 mg/L)
53.3
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
28
50 hr
EC50
(mobility; TOC=28 mg/L)
97.2
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
100
51 hr
EC50
(mobility; TOC=34 mg/L)
199
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
86
52 hr
EC50
(mobility; TOC=34 mg/L)
627
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
84
53 hr
EC50
(mobility; TOC=32 mg/L)
165
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
16
54 hr
EC50
(mobility; TOC=12 mg/L)
35.5
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
151
55 hr
EC50
(mobility; TOC=13 mg/L)
78.8
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
96
56 hr
EC50
(mobility; TOC=28 mg/L)
113
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
26
57 hr
EC50
(mobility; TOC=25 mg/L)
76.4
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
84
58 hr
EC50
(mobility; TOC=13 mg/L)
84.7
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
92
59 hr
EC50
(mobility; TOC=21 mg/L)
184
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
-
106
60 hr
EC50
(mobility; TOC=34 mg/L)
240
-
Lind et al. manuscript
Cladoceran,
Daphnia pulicaria
S,M,T
Copper
sulfate
106
48 hr
LC50
240
-
Lind et al. manuscript
Cladoceran,
Simocephalus serrulatus
S,M,T
Copper
nitrate
8
24 hr
EC50
(mobility; TOC=11 mg/L)
12
-
Giesy et al. 1983
C1-12

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Cladoceran,
Simocephalus serrulatus
S,M,T
Copper
nitrate
16
25 hr
EC50
(mobility; TOC=12.4 mg/L)
7.2
-
Giesy et al. 1983
Cladoceran,
Simocephalus serrulatus
S,M,T
Copper
nitrate
16
26 hr
EC50
(mobility; TOC=15.6 mg/L)
24.5
-
Giesy et al. 1983
Cladoceran (<24 hr),
Simocephalus vetulus
S,U
-
45


57

Mount and Norberg 1984
Cladoceran (life cycle),
Bosmina longirostris
R,U
Copper
sulfate

13 days
LOEC
(intrinsic rate of population increase)
18

Koivisto and Ketola 1995
Copepods (mixed sp),
P ri m a ri ly A canth ocyclops
vernaiis and Diacyclops thomasi
R,M,I
Copper
chloride

1 wk
EC20
(growth)
42

Borgmann and Ralph 1984
Copepod (adults and copepodids
V),
Tropocyclops prasinus
mexicanus
S, U
Copper
sulfate
10


29

Lalande and Pinel-Alloul 1986
Copepod (adults and copepodids
V), Tropocyclops
prasinus
mexicanus
S, U
Copper
sulfate
10
96 hr
LC50
247

Lalande and Pinel-Alloul 1986
Amphipod (0.4 cm),
Cranqonyx pseudoqracilis
R,U
Copper
sulfate
45-55


1290

Martin and Holdich 1986
Amphipod (4 mm),
Cranqonyx psuedoqracilis
R,U
Copper
sulfate
50
48 hr
LC50
2,440
-
Martin and Holdich 1986
Amphipod,
Gammarus fasciatus
S,U
Copper
sulfate
206
48 hr
LC50
210
-
Judy 1979
Amphipod,
Gammarus lacustris
S,U
Copper
sulfate
-
96 hr
LC50
1,500
-
Nebeker and Gaufin 1964
Amphipod (2-3 wk),
Hyallela azteca
S,M,T
Copper
sulfate
6-10
-
LC50
65.6
-
Suedel et al. 1996
Amphipod (0-1 wk),
Hyallela azteca
R,M,T
Copper
nitrate
130
10 wk
Significant mortality
25.4
-
Borgmann et al. 1993
Amphipod (7-14 days),
Hyallela azteca
F,M,T
Copper
sulfate
46
10 days
LC50
31
-
West et al. 1993
Crayfish (intermoult adult,
19.6 g),
Cambarus robustus
S,M,D

10-12
96 hr
LC50

830
Taylor et al. 1995
Crayfish (1.9-3.2 cm),
Orconectes limosus
S,M,T
Copper
chloride
-
96 hr
LC50
600
-
Boutet and Chaisemartin 1973
Crayfish (3.0-3.5 cm),
Orconectes rusticus
F,U
Copper
sulfate
100-125


3,000

Hubschman 1967
Crayfish (embryo),
Orconectes rusticus
F,U
Copper
sulfate
113
2 wk
52% mortality of newly
hatched young
250
-
Hubschman 1967
C1-13

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Crayfish (3.14 mg dry wt.),
Orconectes rusticus
F,U
Copper
sulfate
113
2 wk
23% reduction in growth
15
-
Hubschman 1967
Crayfish (30-40 mm),
Orconectes sp.

-
113
48 hr
LC50
2,370
-
Dobbsetal. 1994
Crayfish,
Procambarus clarkii
F,M,T
Copper
chloride
17
1358 hr
LC50
657
-
Rice and Harrison 1983
Mayfly (6th-8th instar),
Stenonema sp.
S,M,T
-
110
48 hr
LC50
453
-
Dobbsetal. 1994
Mayfly,
Cloeon dipterium
-
Copper
sulfate
-
72 hr
LC50
(10° C)
193
-
Braginskij and Shcherban 1978
Mayfly,
Cloeon dipterium
-
-
-
72 hr
LC50
(15° C)
95.2
-
Braginskij and Shcherban 1978
Mayfly,
Cloeon dipterium
-
-
-
72 hr
LC50
(25° C)
53
-
Braginskij and Shcherban 1978
Mayfly,
Cloeon dipterium
-
-
-
72 hr
LC50
(30° C)
4.8
-
Braginskij and Shcherban 1978
Mayfly,
Ephemerella qrandis
F,M,T
Copper
sulfate
50
14 days
LC50
180-200
-
Nehring 1976
Mayfly,
Ephemerella subvaria
S,M
Copper
sulfate
44
48 hr
LC50
320
-
Warnickand Bell 1969
Mayfly (6th-8th instar),
Isonychia bicolor
S,M,T
-
110
48 hr
LC50
223
-
Dobbs et al. 1994
Stonefly,
Pteronarcys californica
F,M,T
Copper
sulfate
50
14 days
LC50
12,000
-
Nehring 1976
Caddisfly,
Hydropsyche betteni
S,M,T
Copper
sulfate
44
14 days
LC50
32,000
-
Warnickand Bell 1969
Midge (2nd instar),
Chironomus riparius
S,M,T
-
110
48 hr
LC50
1,170
-
Dobbs et al. 1994
Midge (1st instar),
Chironomus tentans
S,U
Copper
sulfate
42.7


16.7

Gauss et al. 1985
Midge (1st instar),
Chironomus tentans
S,U
Copper
sulfate
109.6


36.5

Gauss et al. 1985
Midge (1st instar),
Chironomus tentans
S,U
Copper
sulfate
172.3


98.2

Gauss et al. 1985
Midge (4th instar),
Chironomus tentans
S,U
Copper
sulfate
42.7


211

Gauss et al. 1985
Midge (4th instar),
Chironomus tentans
S,U
Copper
sulfate
109.6


977

Gauss et al. 1985
Midge (4th instar),
Chironomus tentans
S,U
Copper
sulfate
172.3


1184

Gauss et al. 1985
Midge,
Chironomus tentans
S,U
Copper
sulfate
25


327

Khangarot and Ray 1989
Midge (2nd instar),
Chironomus tentans
S,M,T
Copper
sulfate
8
96 hr
LC50
630
-
Suedel et al. 1996
C1-14

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Midge (4th instar),
Chironomus tentans
F,M,T
Copper
chloride
36
20 days
LC50
77.5
-
Nebeker et al. 1984b
Midge (embryo),
Tanytarsus dissimilis
S,M,T
Copper
chloride
46.8
10 days
LC50
16.3
-
Anderson et al. 1980
Midge,
Unidentified
F,M,T,D
Copper
sulfate
200
32 wk
Emergence
30
-
Hedtke 1984
Bryozoan (2-3 day ancestrula),
Lophopodella carteri
S,U
-
190-220


510

Pardue and Wood 1980
Bryozoan (2-3 day ancestrula),
Pectinatella magnifica
S,U
-
190-220


140

Pardue and Wood 1980
Bryozoan (2-3 day ancestrula),
Plumatella emarginata
S,U
-
190-220


140

Pardue and Wood 1980
American eel (5.5 cm glass eel
stage),
Anguilla rostrata
S,U
Copper
sulfate
40-48
96 hr
LC50
2,540

Hinton and Eversole 1978
American eel (9.7 cm black eel
stage),
Anguilla rostrata
S,U
Copper
sulfate
40-48
96 hr
LC50
3,200

Hinton and Eversole 1979
American eel,
Anguilla rostrata
S,M,T
Copper
nitrate
53
96 hr
LC50
6,400
-
Rehwoldt et al. 1971
American eel,
Anguilla rostrata
S,M,T
Copper
nitrate
55
96 hr
LC50
6,000
-
Rehwoldt etal. 1972
Arctic grayling (larva),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
67.5

Buhl and Hamilton 1990
Arctic grayling (larva),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
23.9

Buhl and Hamilton 1990
Arctic grayling (larva),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
131

Buhl and Hamilton 1990
Arctic grayling (swim-up),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
9.6

Buhl and Hamilton 1990
Arctic grayling (0.20 g juvenile),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
2.7

Buhl and Hamilton 1990
Arctic grayling (0.34 g juvenile),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
2.58

Buhl and Hamilton 1990
Arctic grayling (0.81 g juvenile),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
49.3

Buhl and Hamilton 1990
Arctic grayling (0.85 g juvenile),
Thymallus arcticus
S,U
Copper
sulfate
41.3
96 hr
LC50
30

Buhl and Hamilton 1990
Coho salmon (larva),
Oncorhynchus kisutch
S,U
Copper
sulfate
41.3
96 hr
LC50
21

Buhl and Hamilton 1990
Coho salmon (larva),
Oncorhynchus kisutch
s,u
Copper
sulfate
41.3
96 hr
LC50
19.3

Buhl and Hamilton 1990
Coho salmon (0.41 g juvenile),
Oncorhynchus kisutch
s,u
Copper
sulfate
41.3
96 hr
LC50
15.1

Buhl and Hamilton 1990
C1-15

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Coho salmon (0.47 g juvenile),
Oncorhynchus kisutch
S,U
Copper
sulfate
41.3
96 hr
LC50
23.9

Buhl and Hamilton 1990
Coho salmon (0.87 g juvenile),
Oncorhynchus kisutch
s,u
Copper
sulfate
41.3
96 hr
LC50
31.9

Buhl and Hamilton 1990
Coho salmon (10 cm),
Oncorhynchus kisutch
s,u
Copper
sulfate
-
72 hr
LC50
280
-
Holland et al. 1960
Coho salmon (9.7 cm),
Oncorhynchus kisutch
s,u
Copper
sulfate
-
72 hr
LC50
190
-
Holland et al. 1960
Coho salmon (9.7 cm),
Oncorhynchus kisutch
s,u
Copper
sulfate
-
72 hr
LC50
480
-
Holland et al. 1960
Coho salmon (juvenile),
Oncorhynchus kisutch
R,M,T,I
-
33
96 hr
LC50
(TOC=7.3 mg/L)
164
-
Buckley 1983
Coho salmon (juvenile),
Oncorhynchus kisutch
R,M,T,I
-
33
96 hr
LC50
286

Buckley 1983
Coho salmon (6.3 cm),
Oncorhynchus kisutch
F,U
Copper
sulfate
-
30 days
LC50
360
-
Holland et al. 1960
Coho salmon (6.3 cm),
Oncorhynchus kisutch
F,U
Copper
sulfate
-
72 hr
LC50
370
-
Holland et al. 1960
Coho salmon (smolts),
Oncorhynchus kisutch
F,M,T
Copper
chloride
91
144 hr
Decrease in survival upon transfer to
30 ppt seawater
20
-
Lorz and McPherson 1976
Coho salmon (smolts >10 cm),
Oncorhynchus kisutch
F,M,T
Copper
chloride
91
165 days
Decrease in downstream migration
after release
5
-
Lorz and McPherson 1976
Coho salmon (7.8 cm),
Oncorhynchus kisutch
F,M,T
Copper
acetate
276
14 wk
15% reduction in growth
70
-
Buckley et al. 1982
Coho salmon (7.8 cm),
Oncorhynchus kisutch
-
-
276
7 days
LC50
220
-
Buckley et al. 1982
Coho salmon (3-8 g),
Oncorhynchus kisutch
F,M,T
Copper
acetate
280
7 days
LC50
275
-
McCarter and Roch 1983
Coho salmon (3-8 g),
Oncorhynchus kisutch
F,M,T
Copper
acetate
280
7 days
LC50 (acclimated to copper for 2 wk)
383
-
McCarter and Roch 1983
Coho salmon (parr),
Oncorhynchus kisutch
F,M,T,D,I
-
24.4
61 days
NOEC
(growth and survival)
22
-
Mudge et al. 1993
Coho salmon,
Oncorhynchus kisutch
F,M,T,D,I
-
31.1
60 days
NOEC
(growth and survival)
18
-
Mudge et al. 1993
Coho salmon (parr),
Oncorhynchus kisutch
F,M,T,D,I
-
31
61 days
NOEC
(growth and survival)
33
-
Mudge et al. 1993
Rainbow trout (15-40g)
Oncorhynchus mykiss
F,M,
Copper
chloride
—
120 hr
LA50 (50% mortality)
~1.4 ug Cu/g gill
-
MacRae et al. 1999
Sockeye salmon (yeasrling),
Oncorhynchus nerka
S,U
Copper
sulfate
12
1-24 hr
Drastic increase in plasma
corticosteroids
64
-
Donaldson and Dye 1975
Sockeye salmon (fry, 0.132 g,
2.95 cm),
Oncorhynchus nerka
R,M,T
Copper
chloride
36-46
96 hr
LC50
220

Davis and Shand 1978
C1-16

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms



Hardness


Total
Dissolved

Species
Method3
Chemical
(mg/L as
CaC03)
Duration
Effect
Concentration
(M9/L)b
Concentration
(M9/L)
Reference
Sockeye salmon (fry, 0.132 g,
R,M,T
Copper
36-46
96 hr
LC50
210
-
Davis and Shand 1978
2.95 cm),

chloride






Oncorhynchus nerka








Sockeye salmon (fry, 0.132 g,
R,M,T
Copper
36-46
96 hr
LC50
240
-
Davis and Shand 1978
2.95 cm),

chloride






Oncorhynchus nerka








Sockeye salmon (fry, 0.132 g,
R,M,T
Copper
36-46
96 hr
LC50
103
-
Davis and Shand 1978
2.95 cm),

chloride






Oncorhynchus nerka








Sockeye salmon (fry, 0.132 g,
R,M,T
Copper
36-46
96 hr
LC50
240
-
Davis and Shand 1978
2.95 cm),

chloride






Oncorhynchus nerka








Chinook salmon (18-21 weeks),
S,U
Copper
211
96 hr
LC50
58

Hamilton and Buhl 1990
Oncorhynchus tshawytscha

sulfate






Chinook salmon (18-21 weeks),
S,U
Copper
211
96 hr
LC50
54

Hamilton and Buhl 1990
Oncorhynchus tshawytscha

sulfate






Chinook salmon (18-21 weeks),
S,U
Copper
343
96 hr
LC50
60

Hamilton and Buhl 1990
Oncorhynchus tshawytscha

sulfate






Chinook salmon (5.2 cm),
S,U
Copper
-
5 days
LC50
178
-
Holland et al. 1960
Oncorhynchus tshawytscha

nitrate






Chinook salmon (eyed embryos)
F,M,D
Copper
44
26 days
93% mortality
41.67
-
Hazel and Meith 1970
Oncorhynchus tshawytscha

sulfate






Chinook salmon (alevin),
F,M,T
Copper
23
200 hr
LC50
20
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (alevin),
F,M,T
Copper
23
200 hr
LC10
15
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (swimup),
F,M,T
Copper
23
200 hr
LC50
19
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (swimup),
F,M,T
Copper
23
200 hr
LC10
14
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (parr),
F,M,T
Copper
23
200 hr
LC50
30
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (parr),
F,M,T
Copper
23
200 hr
LC10
17
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (smolt),
F,M,T
Copper
23
200 hr
LC50
26
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (smolt),
F,M,T
Copper
23
200 hr
LC10
18
-
Chapman 1978
Oncorhynchus tshawytscha

chloride






Chinook salmon (3.9-6.8 cm),
F,M,T
Copper
20-22
96 hr
LC50
32
-
Finlayson and Verrue 1982
Oncorhynchus tshawytscha

sulfate






Cutthroat trout (3-5 mo),
F,M
Copper
50
20 min
avoidance of copper
7.708
-
Woodward et al. 1997
Oncorhynchus clarki

chloride






C1-17

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Rainbow trout,
Oncorhynchus mykiss
-
-
320
48 hr
LC50
500
-
Brown 1968
Rainbow trout (9-16 cm),
Oncorhynchus mykiss
In situ
-
21-26
48 hr
LC50
70
-
Calamari and Marchetti 1975
Rainbow trout (0.4 g),
Oncorhynchus mykiss
S,U
Copper
sulfate
-
96 hr
LC50
185
-
Bills etal. 1981
Rainbow trout (larva),
Oncorhynchus mykiss
S, U
Copper
sulfate
41.3
96 hr
LC50
36

Buhl and Hamilton 1990
Rainbow trout (0.60 g juvenile),
Oncorhynchus mykiss
S, U
Copper
sulfate
41.3
96 hr
LC50
13.8

Buhl and Hamilton 1990
Rainbow trout (13-15 cm),
Oncorhynchus mykiss
S,U
Copper
sulfate
250
72 hr
LC50
580
-
Brown et al. 1974
Rainbow trout (13-15 cm),
Oncorhynchus mykiss
S,U
Copper
sulfate
250
72 hr
LC50
960
-
Brown et al. 1974
Rainbow trout (3.2 cm),
Oncorhynchus mykiss
S,U
Copper
sulfate
-
24 hr
LC50
140
-
Shaw and Brown 1974
Rainbow trout (3.2 cm),
Oncorhynchus mykiss
s,u
Copper
sulfate
-
24 hr
LC50
130
-
Shaw and Brown 1974
Rainbow trout (4.0-10.6 cm),
Oncorhynchus mykiss
s,u
Copper
sulfate
45
24 hr
LC50
(5° C)
950
-
Cairns et al. 1978
Rainbow trout (4.0-10.6 cm),
Oncorhynchus mykiss
s,u
Copper
sulfate
45
24 hr
LC50
(15° C)
430
-
Cairns et al. 1978
Rainbow trout (4.0-10.6 cm),
Oncorhynchus mykiss
s,u
Copper
sulfate
45
24 hr
LC50
(30° C)
150
-
Cairns et al. 1978
Rainbow trout (0.52-1.55 g),
Oncorhynchus mykiss
s,u
Copper
sulfate
-
96 hr
LC50
(Silver Cup diet)
23.9
-
Marking et al. 1984
Rainbow trout (0.41 -2.03 g),
Oncorhynchus mykiss
s,u
Copper
sulfate
-
96 hr
LC50
(purified H440)
11.3
-
Marking et al. 1984
Rainbow trout (0.0.40-1.68 g),
Oncorhynchus mykiss
s,u
Copper
sulfate
-
96 hr
LC50
(SD-9 diet)
15.9
-
Marking et al. 1984
Rainbow trout (0.0.34-1.52 g),
Oncorhynchus mykiss
s,u
Copper
sulfate
-
96 hr
LC50
(liver diet)
14.3
-
Marking et al. 1984
Rainbow trout (0.0.38-1.30 g),
Oncorhynchus mykiss
s,u
Copper
sulfate
-
96 hr
LC50
(brine shrimp diet)
11.3
-
Marking et al. 1984
Rainbow trout (embryo),
Oncorhynchus mykiss
s,u
Copper
chloride
30
56 hr
LC50
100
-
Rombough 1985
Rainbow trout (6.6 cm),
Oncorhynchus mykiss
R,U
Copper
sulfate
320
72 hr
LC50
1,100
-
Lloyd 1961
Rainbow trout (6.6 cm),
Oncorhynchus mykiss
R,U
Copper
sulfate
17.5
7 days
LC50
44
-
Lloyd 1961
Rainbow trout,
Oncorhynchus mykiss
R,U
Copper
sulfate
320
48 hr
LC50
270
-
Herbert and Vandyke 1964
Rainbow trout (yearling),
Oncorhynchus mykiss
R,U
Copper
sulfate
240
48 hr
LC50
750
-
Brown and Dalton 1970
C1-18

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Rainbow trout (13-15 cm),
Oncorhynchus mykiss
R,U
Copper
sulfate
250
8 days
LC50
500
-
Brown et al. 1974
Rainbow trout (embryo),
Oncorhynchus mykiss
R,U
Copper
sulfate
104
28 days
LC50
90
-
Birge 1978;
Birge et al. 1978
Rainbow trout (embryo),
Oncorhynchus mykiss
R,U
Copper
sulfate
101
28 days
EC50
(death or deformity)
110
-
Birge et al. 1980;
Birge and Black 1979
Rainbow trout (embryo),
Oncorhynchus mykiss
R,U
Copper
sulfate
101
28 days
EC10
(death or deformity)
16.5
-
Birge et al. 1980
Rainbow trout (eyed embryos),
Oncorhynchus mykiss
R,U
Copper
sulfate
-
96 hr
LC50
1,150
-
Kazlauskiene et al. 1994
Rainbow trout (larva),
Oncorhynchus mykiss
R,U
Copper
sulfate
-
96 hr
LC50
430
-
Kazlauskiene et al. 1994
Rainbow trout (16-18 cm),
Oncorhynchus mykiss
R,U
Copper
sulfate
-
96 hr
LC50
930
-
Kazlauskiene et al. 1994
Rainbow trout (embryo),
Oncorhynchus mykiss
R,M,T
Copper
sulfate
62.9
7-9 mo
Lesions in olfactory rosettes
22
-
Saucier et al. 1991b
Rainbow trout (embryo),
Oncorhynchus mykiss
R,M,T
Copper
sulfate
62.9
7-9 mo
31 % mortality
22
-
Saucier et al. 1991b
Rainbow trout (eyed embryos),
Oncorhynchus mykiss
R,M,T
Copper
sulfate
40-48
96 hr
LC50
400
-
Giles and Klaverkamp 1982
Rainbow trout (yearling),
Oncorhynchus mykiss
R,M,T
Copper
sulfate
36.5
21 days
Elevated plasma Cortisol returned
to normal
45
-
Munoz et al. 1991
Rainbow trout (embryo),
Oncorhynchus mykiss
R,M,T
Copper
sulfate
44
96 hr
15-20% post-hatch mortality
80
-
Giles and Klaverkamp 1982
Rainbow trout (embryo),
Oncorhynchus mykiss
R,M,T
Copper
sulfate
62.9
7-9 mo
Inhibited olfactory discrimination
22
-
Saucier et al. 1991a
Rainbow trout (5.1-7.6 cm),
Oncorhynchus mykiss
F,U
Copper
nitrate
-
96 hr
LC50
253
-
Hale 1977
Rainbow trout (11 cm),
Oncorhynchus mykiss
F,U
-
100
96 hr
LC50
250
-
Goettl et al. 1972
Rainbow trout (5 wk post
swimup)
Oncorhynchus mykiss
F,U
Copper
sulfate
89.5
1 hr
Avoidance
10

Folmar 1976
Rainbow trout (18.5-26.5 cm),
Oncorhynchus mykiss
F,U
Copper
sulfate
90
2 hr
55% depressed olfactory response
50
-
Hara et al. 1976
Rainbow trout (3.2 cm),
Oncorhynchus mykiss
F,M,I
Copper
sulfate
-
8 days
LC50
500
-
Shaw and Brown 1974
Rainbow trout (12-16 cm),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
300
14 days
LC50
870
-
Calamari and Marchetti 1973
Rainbow trout (adult),
Oncorhynchus mykiss
F,M,T
Copper
chloride
42
-
LC50
57
-
Chapman 1975, Chapman and
Stevens 1978
Rainbow trout (53.5 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
365
96 hr
LC50
465
-
Lettet al. 1976
C1-19

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Rainbow trout (53.5 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
365
15 days
Transient decrease in food
consumption
100
-
Lett et al. 1976
Rainbow trout (alevin),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24
200 hr
LC50
20
-
Chapman 1978
Rainbow trout (alevin),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24
200 hr
LC10
19
-
Chapman 1978
Rainbow trout (swimup),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24
200 hr
LC50
17
-
Chapman 1978
Rainbow trout (swimup),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24
200 hr
LC10
9
-
Chapman 1978
Rainbow trout (parr),
Oncorhynchus mykiss
F,M,T
Copper
chloride
25
200 hr
LC50
15
-
Chapman 1978
Rainbow trout (parr),
Oncorhynchus mykiss
F,M,T
Copper
chloride
25
200 hr
LC10
8
-
Chapman 1978
Rainbow trout (smolt),
Oncorhynchus mykiss
F,M,T
Copper
chloride
25
200 hr
LC50
21
-
Chapman 1978
Rainbow trout (smolt),
Oncorhynchus mykiss
F,M,T
Copper
chloride
25
200 hr
LC10
7
-
Chapman 1978
Rainbow trout,
Oncorhynchus mykiss
F,M,T
Copper
sulfate
112.4
80 min
Avoidance threshold
74
-
Black and Birge 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
49
15-18 days
LC50
48
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
51
15-18 days
LC50
46
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
57
15-18 days
LC50
63
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
12
15-18 days
LC50
19
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
99
15-18 days
LC50
54
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
98
15-18 days
LC50
78
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
12
15-18 days
LC50
18
-
Miller and MacKay 1980
Rainbow trout (>8 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
97
15-18 days
LC50
96
-
Miller and MacKay 1980
Rainbow trout (200-250 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
320
4 mo
Altered liver and blood enzymes and
mitochondrial function
30
-
Arillo et al. 1984
Rainbow trout (7 cm),
Oncorhynchus mykiss
F,M,T
Copper
chloride
28.4
20 min
Avoidance
6.4
-
Giattina et al. 1982
Rainbow trout (2.70 g),
Oncorhynchus mykiss
F,M,T
Copper
chloride
9.2
96 hr
LC50
4.2
-
Cusimano et al. 1986
Rainbow trout (2.88 g),
Oncorhynchus mykiss
F,M,T
Copper
chloride
9.2
96 hr
LC50
66
-
Cusimano et al. 1986
C1-20

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Rainbow trout (2.88 g),
Oncorhynchus mykiss
F,M,T
Copper
chloride
9.2
168 hr
LC50
36.7
-
Cusimano et al. 1986
Rainbow trout (2.70 g),
Oncorhynchus mykiss
F,M,T
Copper
chloride
9.2
168 hr
LC50
3.1
-
Cusimano et al. 1986
Rainbow trout (2.65 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
9.2
168 hr
LC50
2.3
-
Cusimano et al. 1986
Rainbow trout (5 day embryo),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
8,000
-
Shazili and Pascoe 1986
Rainbow trout (10 day embryo),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
2,000
-
Shazili and Pascoe 1986
Rainbow trout (15 day embryo),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
400
-
Shazili and Pascoe 1986
Rainbow trout (22 day embryo),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
600
-
Shazili and Pascoe 1986
Rainbow trout (29 day embryo),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
400
-
Shazili and Pascoe 1986
Rainbow trout (36 day embryo),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
100
-
Shazili and Pascoe 1986
Rainbow trout (2 day larva),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
87.7
48 hr
LC50
100
-
Shazili and Pascoe 1986
Rainbow trout (7 day larva),
Oncorhynchus mykiss
F,M,T
Copper
nitrate
87.7
48 hr
LC50
100
-
Shazili and Pascoe 1986
Rainbow trout (yearling),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
63
15 days
Olfactory receptor degeneration
20
-
Julliard et al. 1993
Rainbow trout (swimup),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
60.9
13-40 wk
Inhibited olfactory discrimination
20
-
Saucier and Astic 1995
Rainbow trout (swimup),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
60.9
40 wk
43% mortality
40
-
Saucier and Astic 1995
Rainbow trout (9.0-11.5 cm,
10.6 g),
Oncorhynchus mykiss
F,M,T
Copper
sulfate
284
96 hr
LC50
650

Svecevicius and Vosyliene 1996
Rainbow trout (3.5 cm),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24.2
96 hr
LC50
12.7
-
Marr et al. Manuscript
Rainbow trout (3.5 cm),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24.2
96 hr
LC50
16.6
-
Marr et al. Manuscript
Rainbow trout (3.5 cm),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24.2
96 hr
LC50
21.4
-
Marr et al. Manuscript
Rainbow trout (3.5 cm),
Oncorhynchus mykiss
F,M,T
Copper
chloride
24.2
96 hr
LC50
34.2
-
Marr et al. Manuscript
Rainbow trout (10.0 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
362
144 hr
LC50
(extruded diet)
276
-
Dixon and Hilton 1981
Rainbow trout (10.9 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
362
144 hr
LC50
(steam pelleted diet)
350
-
Dixon and Hilton 1981
C1-21

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Rainbow trout (12.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
362
144 hr
LC50
(Low carbohydrate diet)
408
-
Dixon and Hilton 1981
Rainbow trout (11.6 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
362
144 hr
LC50
(high carbohydrate diet)
246
-
Dixon and Hilton 1981
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level
329
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level
333
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level
311
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level
274
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level
371
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level (acclimated to 3C
ug/L)
266
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level (acclimated to 56
ug/L)
349
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level (acclimated to 9^
ug/L)
515
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level (acclimated to 13
ug/L)
564
-
Dixon and Sprague 1981a
Rainbow trout (1.7-3.3 g),
Oncorhynchus mykiss
F,M,D
Copper
sulfate
374
21 days
Incipient lethal level (acclimated to 19'
ug/L)
708
-
Dixon and Sprague 1981a
Rainbow trout (2.9 g),
Oncorhynchus mykiss
F,M,D
Copper
chloride
30.5
ca. 2 hr
Inhibited avoidance of serine
6.667
-
Rehnberg and Schreck 1986
Rainbow trout (3.2 g),
Oncorhynchus mykiss
F,M,T,D
Copper
sulfate
30
96 hr
LC50
-
19.9
Howarth and Sprague 1978
Rainbow trout (1.4 g),
Oncorhynchus mykiss
F,M,T,D
Copper
sulfate
101
96 hr
LC50
-
176
Howarth and Sprague 1978
Rainbow trout (2.2 g),
Oncorhynchus mykiss
F,M,T,D
Copper
sulfate
370
96 hr
LC50
-
232
Howarth and Sprague 1978
Rainbow trout (smolt),
Oncorhynchus mykiss
F,M,T,D
Copper
sulfate
363
>10 days
LC50
97.92
-
Fogels and Sprague 1977
Rainbow trout (parr),
Oncorhynchus mykiss
F,M,T,D,I
-
31.0
62 days
NOEC
(growth and survival)
90
-
Mudge et al. 1993
Atlantic salmon (2-3 yr parr),
Salmo salar
S,M,T
-
8-10
96 hr
LC50
125
-
Wilson 1972
Atlantic salmon (6.4-11.7 cm),
Salmo salar
F,M,T
Copper
sulfate
20
7 days
LC50
48
-
Sprague 1964
Atlantic salmon (7.2-10.9 cm),
Salmo salar
F,M,T
-
14
7 days
LC50
32
-
Sprague and Ramsay 1965
Brown trout (3-6 day larva),
Salmo trutta
S,M,T
Copper
chloride
4
30 days
>90% mortality
80
-
Reader et al. 1989
C1-22

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Brown trout (larva),
Salmo trutta
S,M,T
Copper
chloride
4
30 days
>90% mortality
20
-
Sayer et al. 1989
Brown trout (larva),
Salmo trutta
S,M,T
Copper
chloride
22
30 days
<10% mortality
80
-
Sayer et al. 1989
Brown trout (larva),
Salmo trutta
F,M,T
Copper
chloride
25
60 days
Inhibited growth
4.6
-
Marret al. 1996
Brook trout,
Salvelinus fontinalis
-
-
-
24 hr
Significant change in cough rate
9
-
Drummond et al. 1973
Brook trout (1 g),
Salvelinus fontinalis
S,M,T
Copper
chloride
4
80 hr
75% mortality
25.4
-
Sayer et al. 1991 b, c
Brook trout (8 mo),
Salvelinus fontinalis
R,M,T
-
20
10 days
IC50
(growth)
187
-
Jop et al. 1995
Brook trout (15-20 cm),
Salvelinus fontinalis
F,M,T
Copper
sulfate
47
21 days
Altered Blood Hct, RBC, Hb, CI,
PGOT, Osmolarity, protein
38.2
-
McKim et al. 1970
Brook trout (13-20 cm),
Salvelinus fontinalis
F,M,T
Copper
sulfate
47
337 days
Altered blood PGOT
17.4
-
McKim et al. 1970
Goldfish (3.8-6.3 cm),
Carassius auratus
S,U
Copper
sulfate
20
96 hr
LC50
36

Pickering and Henderson 1966
Goldfish (10.5 g),
Carassius auratus
S,M,T
Copper
sulfate
34.2
-
LC50
150
-
Hossain et al. 1995
Goldfish (embryo),
Carrassius auratus
R,U
Copper
sulfate
195
7 days
EC50
(death or deformity)
5,200
-
Birge 1978;
Birge and Black 1979
Goldfish,
Carassius auratus
R,U
Copper
sulfate
45
24 hr
LC50
(5° C)
2,700
-
Cairns et al. 1978
Goldfish,
Carassius auratus
R,U
Copper
sulfate
45
24 hr
LC50
(15° C)
2,900
-
Cairns et al. 1978
Goldfish,
Carassius auratus
R,U
Copper
sulfate
45
24 hr
LC50
(30° C)
1,510
-
Cairns et al. 1978
Common carp (1.8-2.1 cm),
Cyprinus carpio
S,U
Copper
sulfate
144-188
96 hr
LC50
117.5

Deshmukh and Marathe 1980
Common carp (5.0-6.0 cm),
Cyprinus carpio
S,U
Copper
sulfate
144-188
96 hr
LC50
530

Deshmukh and Marathe 1980
Common carp (embryo),
Cyprinus carpio
S,U
Copper
sulfate
360
-
EC50
(hatch and deformity)
4,775
-
Kapur and Yadav 1982
Common carp (embryo),
Cyprinus carpio
S,U
Copper
acetate
274
96 hr
LC50
140
-
Kaur and Dhawan 1994
Common carp (larva),
Cyprinus carpio
S,U
Copper
acetate
274
96 hr
LC50
4
-
Kaur and Dhawan 1994
Common carp (fry),
Cyprinus carpio
S,U
Copper
acetate
274
96 hr
LC50
63
-
Kaur and Dhawan 1994
Common carp,
Cyprinus carpio
S,M,T
Copper
nitrate
53
-
LC50
110
-
Rehwoldt et al. 1971
Common carp,
Cyprinus carpio
S,M,T
Copper
nitrate
55
-
LC50
800
-
Rehwoldt etal. 1972
C1-23

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Common carp (4.7-6.2 cm),
Cyprinus carpio
R,U
Copper
sulfate
19
96 hr
LC50
63

Khangarot et al. 1983
Common carp (embryo and
larva),
Cyprinus carpio
R,U
Copper
sulfate
50
108 hr
77% deformed
10

Wani 1986
Common carp (3.5 cm),
Cyprinus carpio
R,U
Copper
sulfate
-
96 hr
LC50
300
-
Alam and Maughan 1992
Common carp (6.5 cm),
Cyprinus carpio
R,U
Copper
sulfate
-
96 hr
LC50
1,000
-
Alam and Maughan 1992
Common carp (embryo),
Cyprinus carpio
R,M,T
Copper
sulfate
50
72 hr
Prevented hatching
700
-
Hildebrand and Cushman 1978
Common carp (1 mo),
Cyprinus carpio
R,M,T
Copper
nitrate
84.8
1 wk
Raised critical D.O. and altered
ammonia excretion
14.0
-
De Boeck et al. 1995a
Common carp (22.9 cm),
Cyprinus carpio
F,M,T
Copper
chloride
17
48 hr
LC50
170
-
Harrison and Rice 1981
Common carp (embryo and
larva),
Cyprinus carpio
F,M,T
Copper
chloride
100
168 hr
55% mortality
19

Stouthartet al. 1996
Common carp (embryo and
larva),
Cyprinus carpio
F,M,T
Copper
chloride
100
168 hr
18% mortality;
50.8

Stouthartet al. 1996
Bonytail (larva),
Gila eieqans
s, U
Copper
sulfate
199
96 hr
LC50
364

Buhl and Hamilton 1996
Bonytail (100-110 days),
Gila eieqans
S, U
Copper
sulfate
199
96 hr
LC50
231

Buhl and Hamilton 1996
Golden shiner (11-13 cm),
Notemiqonus crysoleucas
S,U
Copper
sulfate
221
94 hr
Decreased serum osmolality
2,500
-
Lewis and Lewis 1971
Golden shiner,
Notemiqonus crysoleucas
S,U
Copper
sulfate
45
24 hr
LC50
(5° C)
330
-
Cairns et al. 1978
Golden shiner,
Notemiqonus crysoleucas
S,U
Copper
sulfate
45
24 hr
LC50
(15° C)
230
-
Cairns et al. 1978
Golden shiner,
Notemiqonus crysoleucas
S,U
Copper
sulfate
45
24 hr
LC50
(30° C)
270
-
Cairns et al. 1978
Golden shiner,
Notemiqonus crysoleucas
F,M,T
Copper
chloride
72.2
15 min
EC50
(avoidance)
26
-
Hartwell et al. 1989
Striped shiner,
Notropis chrysocephalus
F,M,T,D
Copper
sulfate
318
96 hr
LC50
3,400
-
Geckler et al. 1976
Striped shiner (4.7 cm)
Notropis chrysocephalus
F,M,T,D
Copper
sulfate
316
96 hr
LC50
4,000
-
Geckler et al. 1976
Striped shiner (5.0 cm)
Notropis chrysocephalus
F,M,T,D
Copper
sulfate
274
96 hr
LC50
5,000
-
Geckler et al. 1976
Striped shiner,
Notropis chrysocephalus
F,M,T,D
Copper
sulfate
314
96 hr
LC50
8,400
-
Geckler et al. 1976
C1-24

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC O j)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Striped shiner,
Notropis chrysocephalus
F,M,T,D
Copper
sulfate
303
96 hr
LC50
16,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
208
48 hr
LC50
290
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
132
48 hr
LC50
150
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
182
48 hr
LC50
200
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
233
48 hr
LC50
180
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
282
48 hr
LC50
260
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
337
48 hr
LC50
260
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
322
48 hr
LC50
6,300
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,U
Copper
sulfate
322
48 hr
LC50
11,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
s,u
Copper
sulfate
322
48 hr
LC50
25,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
s,u
Copper
sulfate
203
48 hr
LC50
160
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
s,u
Copper
sulfate
203
48 hr
LC50
1,100
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
s,u
Copper
sulfate
203
48 hr
LC50
2,900
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
320
48 hr
LC50
6,300
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
324
48 hr
LC50
9,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
324
48 hr
LC50
4,700
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
320
48 hr
LC50
11,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
318
48 hr
LC50
5,700
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
318
48 hr
LC50
10,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
314
48 hr
LC50
8,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
318
48 hr
LC50
11,000
-
Geckler etal. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
324
48 hr
LC50
9,700
-
Geckler etal. 1976
C1-25

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
339
48 hr
LC50
7,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
310
48 hr
LC50
12,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
310
48 hr
LC50
21,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
302
48 hr
LC50
19,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
296
48 hr
LC50
8,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
332
48 hr
LC50
11,000
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
340
48 hr
LC50
6,300
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
296
48 hr
LC50
1,500
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
306
48 hr
LC50
750
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
308
48 hr
LC50
2,500
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
304
48 hr
LC50
1,600
-
Geckler et al. 1976
Bluntnose minnow,
Pimephales notatus
S,M,D
Copper
sulfate
315
48 hr
LC50
4,000
-
Geckler et al. 1976
Bluntnose minnow (3.9 cm),
Pimephales notatus
F,M,T,D
Copper
sulfate
314
96 hr
LC50
6,800
-
Geckler et al. 1976
Bluntnose minnow (5.3 cm),
Pimephales notatus
F,M,T,D
Copper
sulfate
303
96 hr
LC50
13,000
-
Geckler et al. 1976
Fathead minnow (adult),
Pimephales promelas
S,U
Copper
sulfate
103-104
96 hr
LC50
210

Birge et al. 1983
Fathead minnow (adult),
Pimephales promelas
S,U
Copper
sulfate
103-104
96 hr
LC50
310

Birge et al. 1983
Fathead minnow (adult),
Pimephales promelas
S,U
Copper
sulfate
103-104
96 hr
LC50
120

Birge et al. 1983
Fathead minnow (adult),
Pimephales promelas
S,U
Copper
sulfate
103-104
96 hr
LC50
210

Birge et al. 1983;
Benson and Birge 1985
Fathead minnow (adult),
Pimephales promelas
S,U
Copper
sulfate
254-271
96 hr
LC50
390

Birge et al. 1983;
Benson and Birge 1985
Fathead minnow,
Pimephales promelas
S,U
Copper
sulfate
200
96 hr
LC50
430

Mount 1968
Fathead minnow,
Pimephales promelas
S,U
Copper
sulfate
31
96 hr
LC50
84

Mount and Stephan 1969
Fathead minnow (3.8-6.3 cm),
Pimephales promelas
S,U
Copper
sulfate
20
96 hr
LC50
25

Pickering and Henderson 1966
C1-26

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Fathead minnow (3.8-6.3 cm),
Pimephales promelas
S,U
Copper
sulfate
20
96 hr
LC50
23

Pickering and Henderson 1966
Fathead minnow (3.8-6.3 cm),
Pimephales promelas
s,u
Copper
sulfate
20
96 hr
LC50
23

Pickering and Henderson 1966
Fathead minnow (3.8-6.3 cm),
Pimephales promelas
s,u
Copper
sulfate
20
96 hr
LC50
22

Pickering and Henderson 1966
Fathead minnow (3.8-6.3 cm),
Pimephales promelas
s,u
Copper
sulfate
360
96 hr
LC50
1760

Pickering and Henderson 1966
Fathead minnow (3.8-6.3 cm),
Pimephales promelas
s,u
Copper
sulfate
360
96 hr
LC50
1140

Pickering and Henderson 1966
Fathead minnow,
Pimephales promelas
s,u
Copper
sulfate
20
96 hr
LC50
50

Tarzwell and Henderson 1960
Fathead minnow,
Pimephales promelas
s,u
Copper
sulfate
400
96 hr
LC50
1,400

Tarzwell and Henderson 1960
Fathead minnow (3.2-4.2 cm),
Pimephales promelas
S,M
Copper
acetate
44
96 hr
LC50
117
-
Curtis et al. 1979;
Curtis and Ward 1981
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
294
96 hr
LC50
16,000
-
Brungs et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
120
96 hr
LC50
2,200
-
Brungs et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
298
96 hr
LC50
16,000
-
Brungs et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
280
96 hr
LC50
3,300
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
244
96 hr
LC50
1,600
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
212
96 hr
LC50
2,000
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
260
96 hr
LC50
3,500
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
224
96 hr
LC50
9,700
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
228
96 hr
LC50
5,000
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
150
96 hr
LC50
2,800
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
310
96 hr
LC50
11,000
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
280
96 hr
LC50
12,000
-
Brungs et al. 1976;
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
280
96 hr
LC50
11,000
-
Brungs et al. 1976;
Geckler et al. 1976
C1-27

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
260
96 hr
LC50
22,200
-
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
308
96 hr
LC50
4,670
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
206
96 hr
LC50
920
-
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
262
96 hr
LC50
1,190
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
322
96 hr
LC50
2,830
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
210
96 hr
LC50
1,450
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
260
96 hr
LC50
1,580
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
252
96 hr
LC50
1,000
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
312
96 hr
LC50
5,330
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
276
96 hr
LC50
4,160
-
Geckleretal. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
252
96 hr
LC50
10,550
-
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
298
96 hr
LC50
22,200
-
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
282
96 hr
LC50
21,800
-
Geckler et al. 1976
Fathead minnow (2.0-6.9 cm),
Pimephales promelas
S,M,D
Copper
sulfate
284
96 hr
LC50
23,600
-
Geckler et al. 1976
Fathead minnow (<24 h),
Pimephales promelas
S,M,T
Copper
nitrate
290
96 hr
LC50
>200
-
Schubauer-Berigan et al. 1993
Fathead minnow (<24 h),
Pimephales promelas
S,M,T
Copper
sulfate
16.8
96 hr
LC50
36.0
-
Welsh et al. 1993
Fathead minnow (<24 h),
Pimephales promelas
S,M,T
Copper
sulfate
19.0
96 hr
LC50
70.3
-
Welsh et al. 1993
Fathead minnow (<24 h),
Pimephales promelas
S,M,T
Copper
sulfate
19.0
96 hr
LC50
85.6
-
Welsh et al. 1993
Fathead minnow (<24 h),
Pimephales promelas
S,M,T
Copper
sulfate
19.0
96 hr
LC50
182.0
-
Welsh et al. 1993
Fathead minnow (<24 h; 0.68
mg),
Pimephales promelas
S,M,T
Copper
sulfate
17
96 hr
LC50
1.99

Welsh et al. 1993
C1-28

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms



Hardness


Total
Dissolved

Species
Method3
Chemical
(mg/L as
CaC03)
Duration
Effect
Concentration
(M9/L)b
Concentration
(M9/L)
Reference
Fathead minnow (<24 h; 0.68
S,M,T
Copper
20.5
96 hr
LC50
4.86
-
Welsh etal. 1993
mg),

sulfate






Pimephales promelas








Fathead minnow (<24 h; 0.68
S,M,T
Copper
16.5
96 hr
LC50
11.1
-
Welsh etal. 1993
mg),

sulfate






Pimephales promelas








Fathead minnow (<24 h; 0.68
S,M,T
Copper
17.5
96 hr
LC50
9.87
-
Welsh etal. 1993
mg),

sulfate






Pimephales promelas








Fathead minnow (<24 h; 0.68
S,M,T
Copper
17
96 hr
LC50
15.7
-
Welsh etal. 1993
mg),

sulfate






Pimephales promelas








Fathead minnow (60-90 days),
S,M,T
-
110
48 hr
LC50
284
-
Dobbs et al. 1994
Pimephales promelas








Fathead minnow (3 wk),
S,M,T
Copper
101
48 hr
Short-term intolerance of hypoxia (2
186
-
Bennett et al. 1995
Pimephales promelas

sulfate


mg D.O./L)



Fathead minnow (2-4 day),
S,M,T
Copper
6-10
-
LC50
12.5
-
Suedel et al. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
9.9
96 hr
LC50
10.7
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
7.1
96 hr
LC50
6.3
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
8.3
96 hr
LC50
12.2
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
8.9
96 hr
LC50
9.5
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
16.8
96 hr
LC50
26.8
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
12.2
96 hr
LC50
21.2
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
9.4
96 hr
LC50
19.8
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
11.4
96 hr
LC50
31.9
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
10.9
96 hr
LC50
26.1
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
12.4
96 hr
LC50
26.0
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T
Copper
17.4
96 hr
LC50
169.5
-
Welsh etal. 1996
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T,D
Copper
46
96 hr
LC50
17.15
14.87
Erickson et al. 1996a,b
Pimephales promelas

sulfate






Fathead minnow (<24 hrs),
S,M,T,D
Copper
46
96 hr
LC50
21.59
18.72
Erickson et al. 1996a,b
Pimephales promelas

sulfate






C1-29

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Fathead minnow (<24 hrs),
Pimephales promelas
S,M,T,D
Copper
sulfate
47
96 hr
LC50
123.19
106.8
Erickson et al. 1996a,b
Fathead minnow (<24 hrs),
Pimephales promelas
S,M,T,D
Copper
sulfate
45
96 hr
LC50
42.56
36.89
Erickson et al. 1996a,b
Fathead minnow (<24 hrs),
Pimephales promelas
S,M,T,D
Copper
sulfate
46
96 hr
LC50
83.19
72.13
Erickson et al. 1996a,b
Fathead minnow,
Pimephales promelas
S,M,T,D
Copper
sulfate
100
96 hr
LC50 (fish from metal-contaminated
pond)
360
-
Birge et al. 1983
Fathead minnow,
Pimephales promelas
S,M,T,D
Copper
sulfate
250
96 hr
LC50 (fish from metal-contaminated
pond)
410
-
Birge et al. 1983
Fathead minnow (<24 hr),
Pimephales promelas
R,U
-
45
7 days
LC50
70
-
Norberg and Mount 1985
Fathead minnow (<24 hr),
Pimephales promelas
R,U
-
45
7 days
LOEC
(growth)
26
-
Norberg and Mount 1985
Fathead minnow (<24 hr),
Pimephales promelas
R,U
Copper
sulfate
345
4 days
RNA threshhold effect
130
-
Parrott and Sprague 1993
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
5 days
LC50
480
-
Fort et al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
5 days
LC50
440
-
Fort et al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
5 days
EC50
(malformation)
270
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
5 days
EC50
(malformation)
260
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
7 days
LC50
310
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
7 days
LC50
330
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
7 days
EC50
(malformation)
190
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
7 days
EC50
(malformation)
170
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
7 days
LOEC
(length)
160
-
Fortet al. 1996
Fathead minnow (embryo),
Pimephales promelas
R,U
Copper
sulfate
106
7 days
LOEC
(length)
180
-
Fortet al. 1996
Fathead minnow (larva),
Pimephales promelas
R,M,T
Copper
sulfate
180
7 days
LOEC
(growth)
25
-
Pickering and Lazorchak 1995
Fathead minnow (larva),
Pimephales promelas
R,M,T
Copper
sulfate
218
7 days
LOEC
(growth)
38
-
Pickering and Lazorchak 1995
Fathead minnow (larva),
Pimephales promelas
R,M,T
Copper
sulfate
218
7 days
LOEC
(growth)
38
-
Pickering and Lazorchak 1995
Fathead minnow (3-7 days),
Pimephales promelas
R,M,T
Copper
sulfate
74
48 hr
LC50
225
-
Diamond et al. 1997b
C1-30

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Fathead minnow (larva),
Pimephales promelas
R,M,T,D
Copper
sulfate
80
48 hr
LC50
35.9
-
Diamond et al. 1997a
Fathead minnow (larva),
Pimephales promelas
R,M,T,D
Copper
sulfate
80
48 hr
LC50
28.9
-
Diamond et al. 1997a
Fathead minnow (larva),
Pimephales promelas
R,M,T,D
Copper
sulfate
80
48 hr
LC50
20.7
-
Diamond et al. 1997a
Fathead minnow (larva),
Pimephales promelas
R,M,T,D
Copper
sulfate
80
48 hr
LC50
80.8
-
Diamond et al. 1997a
Fathead minnow (3-7 days),
Pimephales promelas
R,M,T,D
Copper
sulfate
80
48 hr
LC50
297.1
-
Diamond et al. 1997b
Fathead minnow (3-7 days),
Pimephales promelas
R,M,T,D
Copper
sulfate
72
48 hr
LC50
145.8
-
Diamond et al. 1997b
Fathead minnow (32-38 mm),
Pimephales promelas
F,M,T
Copper
sulfate
244
9 mo
LOEC
(93% lower fecundity)
120
-
Brungs et al. 1976
Fathead minnow (larva),
Pimephales promelas
F,M,T
Copper
sulfate
202
-
LC50
250
-
Scudder et al. 1988
Fathead minnow (embryo),
Pimephales promelas
F,M,T
Copper
sulfate
202
34 days
Reduced growth;
increased abnormality
61
-
Scudder et al. 1988
Fathead minnow (embryo),
Pimephales promelas
F,M,T
Copper
sulfate
202
34 days
LC50
123
-
Scudder et al. 1988
Fathead minnow (24-96 hr),
Pimephales promelas
F,M,T
Copper
sulfate
10.7
21 days
Incipient lethal level
6.2
-
Welsh 1996
Fathead minnow (24-96 hr),
Pimephales promelas
F,M,T
Copper
sulfate
10.7
21 days
Growth (length) reduced by 8%
5.3
-
Welsh 1996
Fathead minnow (24-96 hr),
Pimephales promelas
F,M,T
Copper
sulfate
9.3
21 days
Incipient lethal level
17.2
-
Welsh 1996
Fathead minnow (24-96 hr),
Pimephales promelas
F,M,T
Copper
sulfate
9.3
21 days
Growth (length) reduced by 17%
16.2
-
Welsh 1996
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T
Copper
sulfate
46
96 hr
LC50
305
-
Erickson et al. 1996 a,b
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T
Copper
sulfate
46
96 hr
LC50
298.6
-
Erickson et al. 1996 a, b
Fathead minnow,
Pimephales promelas
F,M,T
-
30
96 hr
LC50
(TOC=12 mg/L)
436
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
-
37
96 hr
LC50
(TOC=13 mg/L)
516
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
-
87
96 hr
LC50
(TOC=36 mg/L)
1,586
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
-
73
96 hr
LC50
(TOC=28 mg/L)
1,129
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
-
84
96 hr
LC50
(TOC=15 mg/L)
550
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
-
66
96 hr
LC50
(TOC=34 mg/L)
1,001
-
Lind et al. manuscript
C1-31

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Fathead minnow,
Pimephales promelas
F,M,T
-
117
96 hr
LC50
(TOC=30 mq/L)
2,050
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
-
121
96 hr
LC50
(TOC=30 mq/L)
2,336
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
Copper
sulfate
117
96 hr
LC50
2,050
-
Lind et al. manuscript
Fathead minnow,
Pimephales promelas
F,M,T
Copper
sulfate
121
96 hr
LC50
2,336
-
Lind et al. manuscript
Fathead minnow (4.4 cm),
Pimephales promelas
F,M,T,D
Copper
sulfate
314
96 hr
LC50
11,000
-
Geckler et al. 1976
Fathead minnow (4.2 cm),
Pimephales promelas
F,M,T,D
Copper
sulfate
303
96 hr
LC50
15,000
-
Geckler et al. 1976
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T,D
Copper
sulfate
45
96 hr
LC50
158.8
138.1
Erickson et al. 1996a,b
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T,D
Copper
sulfate
45
96 hr
LC50
80.01
72.01
Erickson et al. 1996a,b
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T,D
Copper
sulfate
46
96 hr
LC50
20.96
18.23
Erickson et al. 1996a,b
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T,D
Copper
sulfate
44
96 hr
LC50
50.8
39.12
Erickson et al. 1996a,b
Fathead minnow (<24 hrs),
Pimephales promelas
F,M,T,D
Copper
sulfate
45
96 hr
LC50
65.41
45.78
Erickson et al. 1996a,b
Colorado squawfish (larva),
Ptychocheilus lucius
S,U
Copper
sulfate
199
96 hr
LC50
363

Buhl and Hamilton 1996
Colorado squawfish (155-186
days),
Ptychocheilus lucius
S,U
Copper
sulfate
199
96 hr
LC50
663

Buhl and Hamilton 1996
Colorado squawfish (32-40 days
posthatch),
Ptychocheilus lucius
S,U
Copper
sulfate
144
96 hr
LC50
293

Hamilton and Buhl 1997
Colorado squawfish (32-40 days
posthatch),
Ptychocheilus lucius
S,U
Copper
sulfate
144
96 hr
LC50
320

Hamilton and Buhl 1997
Creek chub,
Semotilus atromaculatus
F,M,T
Copper
sulfate
316
96 hr
LC50
11,500
-
Geckler et al. 1976
Creek chub,
Semotilus atromaculatus
F,M,T
Copper
sulfate
274
96 hr
LC50
1,100
-
Geckler et al. 1976
Razorback sucker (larva),
Xyrauchen texanus
S,U
Copper
sulfate
199
96 hr
LC50
404

Buhl and Hamilton 1996
Razorback sucker (102-116
days),
Xyrauchen texanus
S,U
Copper
sulfate
199
96 hr
LC50
331

Buhl and Hamilton 1996
Razorback sucker (13-23 days
posthatch),
Xyrauchen texanus
S,U
Copper
sulfate
144
96 hr
LC50
231

Hamilton and Buhl 1997
C1-32

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Razorback sucker (13-23 days
posthatch),
Xyrauchen texanus
S,U
Copper
sulfate
144
96 hr
LC50
314

Hamilton and Buhl 1997
Brown bullhead,
Ictallurus nebulosus
F,M,T
Copper
sulfate
303
96 hr
LC50
12,000
-
Geckler et al. 1976
Brown bullhead (5.2 cm),
Ictalurus nebulosus
F,M,T
Copper
sulfate
314
96 hr
LC50
5,200
-
Geckler et al. 1976
Channel catfish (13-14 cm),
Ictalurus punctatus
S,U
Copper
sulfate
221
94 hr
Decreased serum osmolality
2,500
-
Lewis and Lewis 1971
Channel catfish,
Ictalurus punctatus
S,U
Copper
sulfate
45
24 hr
LC50
(5° C)
3,700
-
Cairns et al. 1978
Channel catfish,
Ictalurus punctatus
S,U
Copper
sulfate
45
24 hr
LC50
(15° C)
2,600
-
Cairns et al. 1978
Channel catfish,
Ictalurus punctatus
S,U
Copper
sulfate
45
24 hr
LC50
(30° C)
3,100
-
Cairns et al. 1978
Channel catfish,
Ictalurus punctatus
S,U
Copper
sulfate
100
10 days
EC50
(death and deformity)
6,620
-
Birge and Black 1979
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
16
96 hr
LC50
54

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
16
96 hr
LC50
55

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
83
96 hr
LC50
762

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
83
96 hr
LC50
700

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
161
96 hr
LC50
768

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
161
96 hr
LC50
1139

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
287
96 hr
LC50
1041

Straus and Tucker 1993
Channel catfish (fingerlings),
Ictalurus punctatus
S,U
Copper
sulfate
287
96 hr
LC50
925

Straus and Tucker 1993
Channel catfish (400-600 g),
Ictalurus punctatus
F,M,T
Copper
sulfate
-
10 wk
Significant mortality
354
-
Perkins et al. 1997
Channel catfish (4.1 gm),
Ictalurus punctatus
F,M,T,D
Copper
sulfate
319
14 days
LC50
1,229
-
Richey and Roseboom 1978
Channel catfish (5.7 gm),
Ictalurus punctatus
F,M,T,D
Copper
sulfate
315
14 days
LC50
1,073
-
Richey and Roseboom 1978
Banded killifish,
Fundulus diaphanus
S,M,T
Copper
nitrate
53
-

860
-
Rehwoldt et al. 1971
Banded killifish,
Fundulus diaphanus
S,M,T
Copper
nitrate
55
-

840
-
Rehwoldt etal. 1972
C1-33

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Flagfish (0.1-0.3 g),
Jordanella floridae
F,M,T,D
Copper
sulfate
363
10 days
LC50
-
680
Fogels and Sprague 1977
Flagfish (0.1-0.3 g),
Jordanella floridae
F,M,T,D
Copper
sulfate
363
96 hr
LC50
-
1,270
Fogels and Sprague 1977
Mosquitofish (3.8-5.1 cm
female),
Gambusia affinis
S,U
Copper
nitrate
27-41
96 hr
LC50
93

Joshi and Rege 1980
Mosquitofish (3.8-5.1 cm
female),
Gambusia affinis
S,U
Copper
sulfate
27-41
96 hr
LC50
200

Joshi and Rege 1980
Mosquitofish (2.5 cm male),
Gambusia affinis
S,U
-
50
96 hr
LC50
3,500

Kallanagoudar and Patil 1997
Mosquitofish (2.5 cm male),
Gambusia affinis
S,U
-
150
96 hr
LC50
5,000

Kallanagoudar and Patil 1997
Mosquitofish (2.5 cm male),
Gambusia affinis
S,U
-
300
96 hr
LC50
6,000

Kallanagoudar and Patil 1997
Mosquitofish (3.5 cm female),
Gambusia affinis
S,U
-
50
96 hr
LC50
2,500

Kallanagoudar and Patil 1997
Mosquitofish (3.5 cm female),
Gambusia affinis
S,U
-
150
96 hr
LC50
2,900

Kallanagoudar and Patil 1997
Mosquitofish (3.5 cm female),
Gambusia affinis
S,U
-
300
96 hr
LC50
5,000

Kallanagoudar and Patil 1997
Mosquitofish (0.8 cm fry),
Gambusia affinis
S,U
-
50
96 hr
LC50
900

Kallanagoudar and Patil 1997
Mosquitofish (0.8 cm fry),
Gambusia affinis
S,U
-
150
96 hr
LC50
1,400

Kallanagoudar and Patil 1997
Mosquitofish (0.8 cm fry),
Gambusia affinis
S,U
-
300
96 hr
LC50
2,000

Kallanagoudar and Patil 1997
Mosquito fish,
Gambusia affinis
s,u
Copper
sulfate
-
96 hr
LC50
(high turbidity)
75,000
-
Wallen et al. 1957
Mosquito fish,
Gambusia affinis
R,M
Copper
sulfate
45
48 hr
LC50
180
-
Chagnon and Guttman 1989
Guppy (1.5 cm),
Poecilia reticulata
S,U
Copper
sulfate
230
96 hr
LC50
1,230

Khangarot 1981
Guppy (1.62 cm),
Poecilia reticulata
S,U
Copper
sulfate
240
96 hr
LC50
764

Khangarot et al. 1981 b
Guppy (1.9-2.5 cm),
Poecilia reticulata
S,U
Copper
sulfate
20
96 hr
LC50
36

Pickering and Henderson 1966
Guppy (1.5 cm),
Poecilia reticulata
R,U
Copper
sulfate
260
96 hr
LC50
2,500

Khangarot et al. 1981a
Guppy (0.8-1.0 cm),
Poecilia reticulata
R,U
Copper
sulfate
144-188
96 hr
LC50
160

Deshmukh and Marathe 1980
Guppy (1.2-2.3 cm; female),
Poecilia reticulata
R,U
Copper
sulfate
144-188
96 hr
LC50
275

Deshmukh and Marathe 1980
C1-34

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Guppy (2.3-2.8 cm; male),
Poecilia reticulata
R,U
Copper
sulfate
144-188
96 hr
LC50
210

Deshmukh and Marathe 1980
Guppy (340 mg; female),
Poecilia reticulata
R,U
Copper
sulfate
144-188
96 hr
LC50
480

Deshmukh and Marathe 1980
Guppy (1.5 cm),
Poecilia reticulata
R,U
Copper
sulfate
260
48 hr
LC50
2,500
-
Khangarot et al. 1981a
Guppy (1.5 cm),
Poecilia reticulata
R, U
Copper
sulfate
181
96 hr
LC50
986
-
Khangarot and Ray 1987b
Guppy (1 mo),
Poecilia reticulata
F,U
Copper
sulfate
76
24 hr
LC50
1,370
-
Minicucci 1971
Guppy (1 mo),
Poecilia reticulata
F,U
Copper
sulfate
76
24 hr
LC50
930
-
Minicucci 1971
Guppy (1 mo),
Poecilia reticulata
F,U
Copper
sulfate
76
24 hr
LC50
1,130
-
Minicucci 1971
White perch,
Morone americana
S,M,T
Copper
nitrate
53
-
LC50
6,200
-
Rehwoldt et al. 1971
White perch,
Morone americana
S,M,T
Copper
nitrate
55
-
LC50
6,400
-
Rehwoldt etal. 1972
Striped bass (larva),
Morone saxitilis
S,U
Copper
chloride
34.6
96 hr
LC50
50

Hughes 1973
Striped bass (larva),
Morone saxitilis
S,U
Copper
sulfate
34.6
96 hr
LC50
100

Hughes 1973
Striped bass (3.5-5.1 cm),
Morone saxitilis
S,U
Copper
chloride
34.6
96 hr
LC50
50

Hughes 1973
Striped bass (3.1-5.1 cm),
Morone saxitilis
S,U
Copper
sulfate
34.6
96 hr
LC50
150

Hughes 1973
Striped bass (35-80 day),
Morone saxitilis
S,U
Copper
sulfate
285
96 hr
LC50
270

Palawski et al. 1985
Striped bass (6 cm),
Morone saxitilis
S,U
Copper
sulfate
35
96 hr
LC50
620

Wellborn 1969
Striped bass,
Morone saxitilis
S,M,T
Copper
nitrate
53
96 hr
LC50
4,300
-
Rehwoldt et al. 1971
Striped bass,
Morone saxitilis
S,M,T
Copper
nitrate
55
96 hr
LC50
2,700
-
Rehwoldt etal. 1972
Rock bass,
Ambloplites rupestris
F,M,T
-
24
96 hr
LC50
(high TOC)
1,432
-
Lind et al. manuscript
Pumpkinseed (1.2 g),
Lepomis qibbosus
S,M,T
Copper
nitrate
53
-
LC50
2,400
-
Rehwoldt et al. 1971
Pumpkinseed (1.2 g),
Lepomis qibbosus
S,M,T
Copper
nitrate
55
-
LC50
2,700
-
Rehwoldt etal. 1972
Pumpkinseed,
Lepomis qibbosus
S,M,T
Copper
nitrate
53
96 hr
LC50
2,400
-
Rehwoldt et al. 1971
Pumpkinseed,
Lepomis qibbosus
S,M,T
Copper
nitrate
55
96 hr
LC50
2,700
-
Rehwoldt etal. 1972
C1-35

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC O j)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Bluegill,
Lepomis macrochirus
S,U
Copper
chloride
43
96 hr
LC50
770

Academy of Natural Sciences 1960
Bluegill,
Lepomis macrochirus
s,u
Copper
sulfate
43
96 hr
LC50
1,250

Academy of Natural Sciences 1960
Cairns and Scheier 1968; Patrick e
Bluegill,
Lepomis macrochirus
s,u
Copper
sulfate
45
24 hr
LC50
(5° C)
2,590
-
Cairns et al. 1978
Bluegill,
Lepomis macrochirus
s,u
Copper
sulfate
45
24 hr
LC50
(15° C)
2,500
-
Cairns et al. 1978
Bluegill,
Lepomis macrochirus
s,u
Copper
sulfate
45
24 hr
LC50
(30° C)
3,820
-
Cairns et al. 1978
Bluegill (3-4 cm),
Lepomis macrochirus
s,u
-
119
8 days
33% reduction in locomotor activity
40
-
Ellgaard and Guillot 1988
Bluegill (4.2 cm),
Lepomis macrochirus
s,u
Copper
sulfate
52
96 hr
LC50
254

Inglis and Davis 1972
Bluegill (4.2 cm),
Lepomis macrochirus
s,u
Copper
sulfate
209
96 hr
LC50
437

Inglis and Davis 1972
Bluegill (4.2 cm),
Lepomis macrochirus
s,u
Copper
sulfate
365
96 hr
LC50
648

Inglis and Davis 1972
Bluegill (5-15 g),
Lepomis macrochirus
s,u
Copper
sulfate
35
2-6 days
8% increase in oxygen consumption
rates
300
-
O'Hara 1971
Bluegill (3.8-6.3 cm),
Lepomis macrochirus
s,u
Copper
sulfate
20
96 hr
LC50
660

Pickering and Henderson 1966
Bluegill (3.8-6.3 cm),
Lepomis macrochirus
s,u
Copper
sulfate
360
96 hr
LC50
10,200

Pickering and Henderson 1966
Bluegill,
Lepomis macrochirus
s,u
Copper
sulfate
20
96 hr
LC50
200

Tarzwell and Henderson 1960
Bluegill,
Lepomis macrochirus
s,u
Copper
sulfate
400
96 hr
LC50
10,000

Tarzwell and Henderson 1960
Bluegill (5-11 cm),
Lepomis macrochirus
s,u
Copper
sulfate
46
48 hr
LC50
3,000
-
Turnbull etal. 1954
Bluegill (5-11 cm),
Lepomis macrochirus
s,u
Copper
sulfate
101.2
48 hr
LC50
7,000
-
Turnbull etal. 1954
Bluegill (0.51 g),
Lepomis macrochirus
S,M,T
-
110
48 hr
LC50
4,300
-
Dobbs et al. 1994
C1-36

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Bluegill (5-9 cm),
Lepomis macrochirus
S,M,T
Copper
chloride
45-47
-
LC50
710
-
Trama 1954
Bluegill (5-9 cm),
Lepomis macrochirus
S,M,T
Copper
sulfate
45-47
-
LC50
770
-
Trama 1954
Bluegill (5-15 g),
Lepomis macrochirus
F,M
Copper
sulfate
35
-
LC50
2400
-
O'Hara 1971
Bluegill (3.5-6.0 cm),
Lepomis macrochirus
F,M,T
Copper
sulfate
112.4
80 min
Avoidance threshold
8,480
-
Black and Birge 1980
Bluegill (3.2-6.7 cm),
Lepomis macrochirus
F,M,T
Copper
chloride
21.2-59.2
96 hr
LC50
1,100
-
Thompson et al. 1980
Bluegill (3.2-6.7 cm),
Lepomis macrochirus
F,M,T
Copper
chloride
21.2-59.2
96 hr
LC50
900
-
Thompson et al. 1980
Bluegill (35.6-62.3 g),
Lepomis macrochirus
F,M,T
Copper
sulfate
273.3
24-96 hr
Various behavioral changes
34
-
Henry and Atchison 1986
Bluegill,
Lepomis macrochirus
F,M,T
Copper
chloride
157
24-96 hr
27% reduction in food consumption
31
-
Sandheinrich and Atchison 1989
Bluegill,
Lepomis macrochirus
F,M,T,D
Copper
sulfate
316
96 hr
LC50
(high BOD)
16,000
-
Geckler et al. 1976
Bluegill,
Lepomis macrochirus
F,M,T,D
Copper
sulfate
318
96 hr
LC50 (high BOD)
17,000
-
Geckler et al. 1976
Bluegill (0.14-0.93 g),
Lepomis macrochirus
F,M,T,D
Copper
sulfate
246
14 days
LC50
-
2,500
Richey and Roseboom 1978
Bluegill (1.15-2.42 g),
Lepomis macrochirus
F,M,T,D
Copper
sulfate
237
14 days
LC50
-
3,700
Richey and Roseboom 1978
Bluegill (48.3 g),
Lepomis macrochirus
F,M,T,D
Copper
sulfate
40
96 hr
Biochemical changes
2,000
-
Heath 1984
Largemouth bass (embryo),
Micropterus saimoides
R,U
Copper
sulfate
100
8 days
EC50
(death and deformity)
6,560
-
Birge et al. 1978; Birge and Black
1979
Largemouth bass,
Micropterus saimoides
F,U
-
-
24 hr
Affected opercular rhythm
48
-
Morgan 1979
Rainbow darter,
Etheostoma caeruieum
F,M,T,D
Copper
sulfate
318
96 hr
LC50
(high BOD)
4,500
-
Geckler et al. 1976
Rainbow darter,
Etheostoma caeruieum
F,M,T,D
Copper
sulfate
316
96 hr
LC50
(high BOD)
8,000
-
Geckler et al. 1976
Rainbow darter,
Etheostoma caeruieum
F,M,T,D
Copper
sulfate
274
96 hr
LC50
(high BOD)
2,800
-
Geckler et al. 1976
Rainbow darter (4.6 cm),
Etheostoma caeruieum
F,M,T,D
Copper
sulfate
314
96 hr
LC50 (high BOD)
4,800
-
Geckler etal. 1976
Rainbow darter (4.6 cm),
Etheostoma caeruieum
F,M,T,D
Copper
sulfate
303
96 hr
LC50 (high BOD)
5,300
-
Geckler etal. 1976
Fantail,
Etheostoma flabellare
S,M,T
Copper
sulfate
170
96 hr
Lowered critical thermal maximum
43
-
Lydy and Wissing 1988
C1-37

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(M9/L)
Reference
Johnny darter,
Etheostoma rtiqrum
S,M,T
Copper
sulfate
170
96 hr
Lowered critical thermal maximum
148
-
Lydy and Wissing 1988
Johnny darter,
Etheostoma rtiqrum
F,M,T,D
Copper
sulfate
316
96 hr
LC50
(high BOD)
6,800
-
Geckler et al. 1976
Orangethroat darter,
Etheostoma spectabile
F,M,T,D
Copper
sulfate
314
96 hr
LC50
(high BOD)
7,100
-
Geckler et al. 1976
Orangethroat darter,
Etheostoma spectabile
F,M,T,D
Copper
sulfate
303
96 hr
LC50
(high BOD)
9,800
-
Geckler et al. 1976
Orangethroat darter,
Etheostoma spectabile
F,M,T,D
Copper
sulfate
318
96 hr
LC50
(high BOD)
7,900
-
Geckler et al. 1976
Orangethroat darter,
Etheostoma spectabile
F,M,T,D
Copper
sulfate
316
96 hr
LC50
(high BOD)
5,500
-
Geckler et al. 1976
Orangethroat darter,
Etheostoma spectabile
F,M,T,D
Copper
sulfate
274
96 hr
LC50
(high BOD)
5,800
-
Geckler et al. 1976
Orangethroat darter (4.4 cm),
Etheostoma spectabile
F,M,T,D
Copper
sulfate
314
96 hr
LC50
(high BOD)
7,100
-
Geckler et al. 1976
Orangethroat darter (4.4 cm),
Etheostoma spectabile
F,M,T,D
Copper
sulfate
303
96 hr
LC50 (high BOD)
9,400
-
Geckler etal. 1976
Mozambique tilapia (8.7 cm),
Tiliapia mossambica
S,U
Copper
sulfate
115
96 hr
LC50
1,500

Qureshi and Saksema 1980
Leopard frog (embryo),
Rarta pipierts
R,U
Copper
sulfate
100
8 days
EC50
(death and deformity)
50
-
Birge and Black 1979
Wood frog (larva),
Rarta sylvatica
S,U
Copper
chloride
6.2
28 days
100% mortality
15
-
Home and Dunson 1995
Wood frog (larva),
Rarta sylvatica
S,U
Copper
chloride
12.4
28 days
Little effect
15
-
Home and Dunson 1995
Wood frog (larva),
Rarta sylvatica
S,U
Copper
chloride
6.2
28 days
Little effect
15
-
Home and Dunson 1995
Wood frog (larva),
Rarta sylvatica
S,U
Copper
chloride
12.4
28 days
Little effect
15
-
Home and Dunson 1995
Narrow-mouthed toad (embryo),
Gastrophryrte carolinertsis
R,U
Copper
sulfate
195
7 days
EC50
(death and deformity)
40
-
Birge 1978;
Birge and Black 1979
American toad,
Bufo americartus
F,M,T
Copper
sulfate
112.4
80 min
Avoidance threshold
100
-
Black and Birge 1980
Fowler's toad (embryo),
Bufo fowleri
R,U
Copper
sulfate
195
7 days
LC50
40
-
Birge and Black 1979
Fowler's toad (embryo),
Bufo fowleri
R,U
Copper
sulfate
195
7 min
EC50
(death and deformity)
26,960
-
Birge and Black 1979
Southern gray treefrog
(embrsyo),
Hyla chrysoscelis
R,U
Copper
sulfate
195
7 min
EC50
(death and deformity)
40

Birge and Black 1979
Marbled salamander (embryo),
Ambysoma opacum
R,U
Copper
sulfate
195
8 days
EC50
(death and deformity)
770
-
Birge et al. 1978; Birge and Black
1979
Jefferson salamander (larva),
Ambyostoma jeffersoniartum
S,U
Copper
chloride
6.2
7 days
LC100
15
-
Home and Dunson 1995
C1-38

-------
Appendix C1. Other Data on Effects of Copper on Freshwater Organisms
Species
Method3
Chemical
Hardness
(mg/L as
CaC03)
Duration
Effect
Total
Concentration
(M9/L)b
Dissolved
Concentration
(Mg/L)
Reference
Jefferson salamander (larva),
Ambyostoma jeffersonianum
S,U
Copper
chloride
12.4
28 days
LC100
15
-
Home and Dunson 1995
Jefferson salamander (embryo),
Ambyostoma jeffersonianum
S,M,D
Copper
chloride
6.5
96 hr
LC50
328.1
-
Home and Dunson 1994
Two-lined Salamander,
Eurycea bislineata
S,M,T
-
100-120
48 hr
LC50
1,120
-
Dobbsetal. 1994
a S = static; R = renewal; F = flow-through; M = measured; U = unmeasured; T = total metal concentration measured; D = dissolved metal concentration; I = ionic
b Results are expressed as copper, not as the chemical
c In river water
C1-39

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Natural phytoplankton
populations
-
-
-
5 days
Reduced chlorophyll a
19
-
Hollibaugh et al. 1980
Natural phytoplankton
populations
-
-
-
4 days
Reduced biomass
6.4
-
Hollibaugh et al. 1980
Dinoflagellate,
Glenodinium halli
S,U
-
28
48 hr
No growth
10-160
-
Wilson and Freeberg 1980
Dinoflagellate,
Glenodinium halli
s,u
-
28
48 hr
No effect on growth
2-120
-
Wilson and Freeberg 1980
Dinoflagellate,
Gymnodinium splendens
s,u
-
28
48 hr
No growth
10-100
-
Wilson and Freeberg 1980
Dinoflagellate,
Gymnodinium splendens
s,u
-
28
48 hr
No effect on growth
5-90
-
Wilson and Freeberg 1980
Phytoflagellate,
Isochrysis galbana
s,u
-
28
48 hr
No growth
100-1,000
-
Wilson and Freeberg 1980
Phytoflagellate,
Isochrysis galbana
s,u
-
28
48 hr
No effect on growth
20-300
-
Wilson and Freeberg 1980
Alga,
Laminaria hyperboria
-
-
-
28 days
Growth decrease
50
-
Hopkins and Kain 1971
Diatom,
Asterionella japonica
s,u
Copper
sulfate
-
72 hr
EC50
(growth)
12.7
-
Fisher and Jones 1981
Diatom,
Thalassiosira pseudonana
s,u
Copper
chloride
30-34
72 hr
EC50
(growth rate)
6
-
Erickson 1972
Diatom,
Thalassiosira pseudonana
s,u
-
28
48 hr
No growth
80-500
-
Wilson and Freeberg 1980
Diatom,
Thalassiosira pseudonana
s,u
-
28
48 hr
No effect on growth
50-70
-
Wilson and Freeberg 1980
Red alga (gametophytes),
Ceramium strictum
s,u
-
34
24 hr
EC50
(fertilization)
10-15
-
Eklund 1993
Red alga (mature),
Champia parvula
s,u
-
30
48 hr
LOEC
(reproduction)
2.0
-
U.S. EPA 1988
Red alga (mature),
Champia parvula
s,u
Copper
sulfate
30
48 hr
IC50
(fertilization)
1.4
-
Morrison et al. 1989
Red alga (female),
Chondrus crispus

Copper
sulfate
-
24 hr
14% reduction in growth
10
-
Staples et al. 1995
Bladderwrack (zygotes),
Fucus vesiculosis
s,u
-
6
24 hr
EC50
(germination)
60
-
Andersson and Kautsky 1996
Kelp (mature sporophyte),
Laminaria saccharina
s,u
Copper
sulfate
-
1 hr
LOEC
(28% decrease is meiospore release)
50
-
Chung and Brinkhuis 1986
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
<40.8
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
99.1
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
19.4
-
Anderson et al. 1990
C2-1

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
54.1
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
55.8
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
94.5
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
50.1
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
<40.8
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
<40.8
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
<31.1
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
<10.1
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
18.8
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
8.8
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
9.3
-
Anderson et al. 1990
Giant kelp (spores),
Macrocystis pyrifera
S,M,T
Copper
chloride
33
48 hr
NOEC
(Germination)
10.2
-
Anderson et al. 1990
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33-35
42 hr
NOEC
(Spore germination)
20
-
Garman et al. 1994
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33-35
42 hr
LOEC
(Spore germination)
40
-
Garman et al. 1994
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33-35
42 hr
NOEC
(Germ tube growth)
20
-
Garman et al. 1994
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33-35
42 hr
NOEC
(Germ tube growth)
40
-
Garman et al. 1994
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33-35
42 hr
NOEC
(Nuclear migration)
10
-
Garman et al. 1994
Giant kelp,
Macrocystis pyrifera
R,M,T
Copper
chloride
33-35
42 hr
NOEC
(Nuclear migration)
20
-
Garman et al. 1994
Hydroid,
Campanuiaria fiexuosa
S,U
Copper
chloride
FSW
11 days
Threshold reduced growth rate
13
-
Stebbing 1976
Hydroid,
Campanuiaria fiexuosa
S,U
Copper
chloride
FSW
11 days
Glucosamidase increased
1.43
-
Moore and Stebbing 1976
Hydromedusa,
Phialidium sp.
S,U
-
-
24 hr
LC50
36
-
Reeve et al. 1976
Ctenophore,
Pleurobrachia plicatilis
S,U
-
-
24 hr
LC50
33
-
Reeve et al. 1976
C2-2

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Ctenophore,
Mnemiopsis mccradyi
S,U
-
-
24 hr
LC50
17-29
-
Reeve et al. 1976
Rotifer,
Brachionus plicatilis
s,u
-
-
24 hr
LC50
100
-
Reeve et al. 1976
Rotifer (<3 hr),
Brachionus plicatilis
s, u
Copper
sulfate
15
24 hr
LC50
120
-
Snell and Persoone 1989a
Rotifer (<3 hr),
Brachionus plicatilis
s, u
Copper
sulfate
30
24 hr
LC50
130
-
Snell and Persoone 1989a
Rotifer (<3 hr),
Brachionus plicatilis
s,u
-
15
24 hr
LC50
63
-
Snell et al. 1991a
Rotifer (<3 hr),
Brachionus plicatilis
s,u
-
15
24 hr
LC50
35
-
Snell et al. 1991a
Rotifer (<3 hr),
Brachionus plicatilis
s,u
-
15
24 hr
LC50
170
-
Snell et al. 1991a
Rotifer (<5 hr),
Brachionus plicatilis
s,u
Copper
chloride
15
1 hr
NOEC
(ingestion)
100
-
Juchelka and Snell 1995
Poiychaete worm (embryos),
Hediste diversicolor
R,U
Copper
nitrate
14.6
6 days
Severe reduction in hatching
100
-
Ozoh and Jones 1990a
Poiychaete worm (embryos),
Hediste diversicolor
R,U
Copper
nitrate
21.9
6 days
Severe reduction in hatching
100
-
Ozoh and Jones 1990a
Poiychaete worm (embryos),
Hediste diversicolor
R,U
Copper
nitrate
29.2
6 days
Severe reduction in hatching
100
-
Ozoh and Jones 1990a
Poiychaete worm,
Phyllodoce maculata
R,U
Copper
sulfate
-
9 days
LC50
80
-
McLusky and Phillips 1975
Poiychaete worm,
Neanthes arenaceodentata
F,M,T
Copper
nitrate
31
28 days
LC50
44
-
Pesch and Morgan 1978
Poiychaete worm,
Neanthes arenaceodentata
F,M,T
Copper
nitrate
31
28 days
LC50
100
-
Pesch and Morgan 1978
Poiychaete worm,
Neanthes arenaceodentata
F,M,T
Copper
nitrate
31
7 days
LC50
137
-
Pesch and Hoffman 1982
Poiychaete worm,
Neanthes arenaceodentata
F,M,T
Copper
nitrate
31
10 days
LC50
98
-
Pesch and Hoffman 1982
Poiychaete worm,
Neanthes arenaceodentata
F,M,T
Copper
nitrate
31
28 days
LC50
56
-
Pesch and Hoffman 1982
Poiychaete worm (21-day),
Neanthes arenaceodentata
F,M,T
Copper
chloride
29
28 days
LC50
83
-
Pesch et al. 1986
Poiychaete worm (21-day),
Neanthes arenaceodentata
F,M,T
Copper
chloride
29
28 days
LC50
81
-
Pesch et al. 1986
Poiychaete worm (21-day),
Neanthes arenaceodentata
F,M,T
Copper
chloride
29
28 days
LC50
86
-
Pesch et al. 1986
Poiychaete worm,
Ophrytrocha diadema
S,U
Copper
chloride
FSW 98%
48 hr
LC50
100-330
-
Parker 1984
Poiychaete worm,
Ophrytrocha diadema
S,U
Copper
chloride
FSW 98%
48 hr
LC50
60-80
-
Parker 1984
C2-3

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Polychaete worm,
Ophrytrocha diadema
S,U
Copper
chloride
FSW 98%
48 hr
LC50
80-100
-
Parker 1984
Polychaete worm,
Ophrytrocha diadema
s,u
Copper
chloride
FSW 98%
48 hr
LC50
80-110
-
Parker 1984
Polychaete worm,
Cirriformia spirabranchia
R,U
Copper
sulfate
29
26 days
LC50
40
-
Milanovich et al. 1976
Annelids (larvae),
mixed species
S,U
-
-
24 hr
LC50
89
-
Reeve et al. 1976
Black abalone.
Haliotis cracherodii
-
-
-
96 hr
Histopathological gill abnormalities
>32
-
Martin etal. 1977
Red abalone.
Haliotis rufescens
-
-
-
96 hr
Histopathological gill abnormalities
>32
-
Martin etal. 1977
Coral (embryos),
Montastraea faveolata
s,u
Copper
sulfate
36.0
24 hr
EC50 (normal development)
24.9
-
Rumbold and Snedaker 1997
Channeled whelk,
Busycon canaliculatum
R,U
Copper
chloride
-
77 days
LC50
470
-
Betzer and Yevich 1975
Mudsnail,
Nassarius obsoletus
-
-
-
72 hr
Decrease in oxygen consumption
100
-
Maclnnesand Thurberg 1973
Mudsnail (embryo),
llyanassa obsoleta
s,u
Copper
chloride
-
ca. 3 hr
Abnormal development
63.5
-
Conrad 1988
Queen conch (embryo),
Strombus gigas
s,u
Copper
sulfate
36.8
24 hr
EC50 (normal development)
21.3
-
Rumbold and Snedaker 1997
Bivalve mollusk (embryo),
Isognomon californicum
s, u
Copper
chloride
16
96 hr
LC50
7

Ringwood 1992
Blue mussel (1-2 cm),
Mytilus edulis
s,u
Copper
chloride
-
7 days
LC50
100-200
-
Scott and Major 1972
Blue mussel (ca, 2 cm),
Mytilus edulis
R,U
Copper
sulfate
16.5
7 days
LC50
200
-
Huilsom 1983
Blue mussel (ca, 2 cm),
Mytilus edulis
R,U
Copper
sulfate
16.5
14 days
LC50
100
-
Huilsom 1983
Blue mussel (1.0-1.5 cm),
Mytilus edulis
F,M,T
Copper
chloride
-
10 days
EC50 (growth)
6
-
Redpath 1985
Blue mussel (0.5-1.5 cm),
Mytilus edulis
S,U
Copper
sulfate
brackish
24 hr
LC50 (after 3 weeks)
420
-
Sunila and Lindstrom 1985
Blue mussel (2.0-3.0 cm),
Mytilus edulis
S,U
Copper
sulfate
brackish
24 hr
LC50 (after 3 weeks)
270
-
Sunila and Lindstrom 1985
Blue mussel (1 -1.9 cm),
Mytilus edulis
F,U
Copper
sulfate
32.1
144 hr
EC20
(growth rate)
3
-
Stromgren 1986
Blue mussel (2-3.5 cm),
Mytilus edulis
S,U
Copper
sulfate
-
24 hr
Gill histopathology 1 yr later
100
-
Sunila 1986
Blue mussel (2-3.5 cm),
Mytilus edulis
S,U
Copper
sulfate
-
24 hr
Renal cysts 4 months later
200
-
Sunila 1989
Blue mussel (larvae),
Mytilus edulis
R,U
Copper
chloride
32
15 days
LC50
270
-
Beaumont et al. 1987
C2-4

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Blue mussel (5-6 cm),
Mytilus edulis
S,U
-
-
5 days
EC50
(filtration rate)
2
-
Grace and Gainey 1987
Blue mussel (5-6 cm),
Mytilus edulis
s,u
-
-
96 hr
EC50
(heart rate)
170
-
Grace and Gainey 1987
Blue mussel (49.5 mm),
Mytilus edulis
F,U
Copper
chloride
26
126 days
Significant increase in mortality
5
-
Nelson et al. 1988
Blue mussel (4-6 cm),
Mytilus edulis
F,M,T
Copper
chloride
35
Several
hr
Halted pumping
20.8-25.6
-
Redpath and Davenport 1988
Blue mussel (7-9 cm),
Mytilus edulis
R,U
Copper
sulfate
32
20 days
LC100
150
-
Hawkins et al. 1989
Blue mussel (4.76 cm),
Mytilus edulis
F,U
Copper
sulfate
30
7 days
LOEC
(scope for growth)
32
-
Sanders et al. 1991
Blue mussel (maturing),
Mytilus edulis
R,M,T
Copper
sulfate
32
1 mo
IC50
(no. spawning w/ KCI injection)
3.3
-
Stromgren and Nielsen 1991
Blue mussel (150 um),
Mytilus edulis
R,M,T
Copper
sulfate
32
10 days
EC50
(growth)
5
-
Stromgren and Nielsen 1991
Blue mussel (5.7 cm),
Mytilus edulis
R,U
Copper
chloride
36
9 days
LC50
894
-
Weber etal. 1992
Blue mussel (5.7 cm),
Mytilus edulis
R,U
Copper
chloride
36
14 days
LC50
146
-
Weber etal. 1992
Blue mussel (embryo),
Mytilus edulis
S,U
Copper
chloride
FSW
3 days
23% fewer normal larvae
10
-
Hoare et al. 1995a
Blue mussel (embryo),
Mytilus edulis
S,U
Copper
chloride
FSW
3 days
49% fewer normal larvae
10
-
Hoare et al. 1995a
Blue mussel (embryo),
Mytilus edulis
S,U
Copper
chloride
FSW
3 days
80% fewer survivors after 5 mo
10
-
Hoare et al. 1995b
Bay scallop,
Argopecten irradians
F,M,T
Copper
chloride
27.4-31.5
42 days
EC50
(growth)
5.8
-
Pesch et al. 1979
Bay scallop,
Argopecten irradians
F,M,T
Copper
chloride
29-32
119 days
100% mortality
5
-
Zaroogian and Johnson 1983
Bay scallop (31.2 mm),
Argopecten irradians
F,U
Copper
chloride
26
126 days
Significant increase in mortality
5
-
Nelson et al. 1988
Giant sea scallop (107 mm ht.),
Placopectin magellanicus
F,M
Copper
sulfate
24.7
8 wk
Significant decrease in gonad weight,
protein, RNA
20
-
Gould etal. 1988
Bivalve mollusk (sperm),
Isognomen californicum
S,U
Copper
chloride
16
1 hr
EC50 (fertilization)
55
-
Ringwood 1992
Eastern oyster (larva),
Crassostrea virginica
S,U
Copper
chloride
25
12 days
LC50
46
-
Calabrese et al. 1977
Eastern oyster (embryo),
Crassostrea virginica
S,U
Copper
chloride
25
-
LC50
128
-
Calabrese et al. 1973
Pearl oyster (embryos),
Pteria colymbus
S,U
Copper
sulfate
36.6
24 hr
EC50 (normal development)
<7
-
Rumbold and Snedaker 1997
Common rangia,
Rangia cuneata
S,U
-
<1.0
96 hr
LC50
210
-
Olson and Harrel 1973
C2-5

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Surf clam (30.4 mm),
Spisula solidissima
F,U
Copper
chloride
26
126 days
Significant increase in mortality
5
-
Nelson et al. 1988
Clam,
Macoma inquinata
F,U
Copper
sulfate
-
30 days
LC50
15.7
-
Crecelius et al. 1982
Clam,
Macoma inquinata
F,U
Copper
sulfate
-
30 days
LC50
20.7
-
Crecelius et al. 1982
Quahog clam (larva),
Mercenaria mercenaria
R,U
Copper
chloride
24
8-10 days
LC50
30
-
Calabrese et al. 1977
Quahog clam,
Mercenaria mercenaria
F,M,T
-
31
11-15 wk
LC50
25
-
Shusterand Pringle 1968
Common Pacific littleneck,
Protothaca staminea
-
-
-
17 days
LC50
39
-
Roesijadi 1980
Soft-shell clam (3.9-4.9 cm),
Mya arenaria
s,u
Copper
chloride
30
7 days
LC50
35
-
Eisler 1977
Horseshoe crab (embryo),
Limulus polyphemus
R,U
Copper
sulfate
20
72 hr
LC50
2,000
-
Botton et al. 1998
Horseshoe crab (embryo),
Limulus polyphemus
R,U
Copper
sulfate
20
72 hr
LC50
171,000
-
Botton et al. 1998
i luiocoiiuc uau ^uiaoiuia anu
gastrula stage embryo),
R,U
Copper
sulfate
-
24 hr
Total mortality
100,000
-
Itow et al. 1998
1 iui ocoi iuc Lrdb \puoi-yaon uia
embryo),
R,U
Copper
sulfate
-
24 hr
<50% mortality
100,000
-
Itow et al. 1998
Copepod,
Enidula vulgaris
S,U
-
-
24 hr
LC50
192
-
Reeve et al. 1976
Copepod,
Euchaeta marina
S,U
-
-
24 hr
LC50
188
-
Reeve et al. 1976
Copepod,
Metridia pacifica
S,U
-
-
24 hr
LC50
176
-
Reeve et al. 1976
Copepod (24 hr),
Eurytemora affinis
R,M,T
Copper in
hno3
FSW
96 hr
LOEC (development)
27.2
-
Sullivan et al. 1983
Copepod (24 hr),
Eurytemora affinis
R,M,T
Copper in
hno3
FSW
96 hr
LOEC (development)
23.5
-
Sullivan et al. 1983
Copepod (24 hr),
Eurytemora affinis
S,M,D
Copper
chloride
14-16
8 days
LOEC
(survival, gravid females, maturation)
-
79.9C
Hall et al. 1997
Copepod
Labidocera scotti
S,U
-
-
24 hr
LC50
132
-
Reeve et al. 1976
Copepod,
Acartia clausi
S,U
Copper
sulfate
FSW
48 hr
LC50
34
-
Moraitou-Apostolopoulou 1978
Copepod,
Acartia clausi
S,U
Copper
sulfate
FSW
96 hr
LC50
<10
-
Moraitou-Apostolopoulou 1978
Copepod,
Acartia tonsa
F,U
Copper
nitrate
30
6 days
LC50
9-78
-
Sosnowski et al. 1979
Copepod,
Acartia tonsa
-
-
-
24 hr
LC50
104-311
-
Reeve et al. 1976
C2-6

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Copepod,
Acartia tonsa
R,U
Copper
sulfate
38
10 days
Decrease mean lifespan by about
40%
1
-
Verriopoulous 1992
Copepod (adult female),
Tisbe holothuriae
S,U
-
FSW
48 hr
LC50
80
-
Moraitou-Apostolopoulou and
Verriopoulos 1982
Copepod (nauplii),
mixed species
S,U
-
-
24 hr
LC50
90
-
Reeve et al. 1976
Barnacle (nauplii),
Balanus amphitrite
S,U
Copper
chloride
FSW
22-24 hr
LC50
480
-
Sasikumar et al. 1995
Barnacle (3 hr nauplii),
Balanus improvisus
S,M,T
Copper
oxide
FSW
96 hr
LC50
20
-
Koryakova and Korn 1993
Mysid shrimp,
Americamysis bahia
S,U
Copper
chloride
20
48 hr
LC50
-
423
PBS&J1999
Mysid shrimp,
Americamysis bahia
S,U
Copper
chloride
20
48 hr
LC50
-
284
PBS&J 1999
Mysid shrimp,
Americamysis bahia
S,U
Copper
chloride
20
48 hr
LC50
-
403
PBS&J 1999
Mysid shrimp,
Americamysis bahia
S,U
Copper
chloride
20
48 hr
LC50
-
367
PBS&J1999
Mysid (7-day),
Americamysis bahia
R,U
Copper
sulfate
20-30
7 days
LC50
169.3
-
Morrison et al. 1989
Mysid shrimp,
Americamysis bahia
R, M, D
Copper
chloride
30
96 hr
LC50
-
164
SAIC 1993
Mysid,
Mysidopsis bahia
LC
-
30
-
Reduction in reproduction
54.1
44.9
Lussieretal. 1985
Amphipod,
Ampeiisca abdita
F
Copper
nitrate
30
7 days
LC50
86.8
-
Scott et al. Manuscript
Euphausiid,
Euphausia pacifica
S,U
-
-
24 hr
LC50
14-30
-
Reeve et al. 1976
r ii iiv bi ii iiiifj udy pubi-
larvae),
S,U
Copper
chloride
25
96 hr
LC50
832
-
Cripe 1994
Grass shrimp,
Paiaemonetes pugio
S,M
Copper
acetate
25
96 hr
LC50
12,600
-
Curtis et al. 1979;
Curtis and Ward 1981
Grass shrimp,
Paiaemonetes pugio
S,M,T
Copper
acetate
25
96 hr
LC50
35,900
-
Curtis et al. 1979
Grass shrimp (<20 mm),
Paiaemonetes pugio
S,M,T
Copper
sulfate
8-12
48 hr
LC50
2,100
-
Burton and Fisher 1990
Coon stripe shrimp,
Pandalus danae
F,U
Copper
sulfate
-
30 days
LC50
27.0
-
Crecelius et al. 1982
Pink shrimp,
Pandalus montagui
R,M,T
Copper
chloride
-
7 days
LC50
50
-
McLeese and Ray 1986
Sand shrimp,
Crangon septemspinosa
R,M,T
Copper
chloride
-
7 days
LC50
1,400
-
McLeese and Ray 1986
American lobster (450 g adult),
Homarus americanus
F,M,T
Copper
sulfate
30
96 hr
LC50
100
-
McLeese 1974
C2-7

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
American lobster,
Homerus americanus
F,M,T
Copper
sulfate
30
13 days
LC50
56
-
McLeese 1974
Yellow crab (embryo),
Cancer anthonyi
R,U
Copper
chloride
34
7 days
LC50
7,080
-
Macdonald et al. 1988
Yellow crab (embryo),
Cancer anthonyi
R,U
Copper
chloride
34
7 days
28% reduction in hatching
10
-
Macdonald et al. 1988
Sea urchin (sperm),
Arbacia punctulata
S,U
Copper
chloride
FSW
12 min
42% decrease in sperm motility
318
-
Young and Nelson 1974
Sea urchin (embryo),
Arbacia punctulata
S,U
Copper
sulfate
30
4 hr
EC50 (growth as thymidine
incorporation)
14
-
Nacci et al. 1986
Sea urchin (sperm),
Arbacia punctulata
S,U
Copper
sulfate
30
1 hr
EC50 (fertilization)
12
-
Nacci et al. 1986
Sea urchin (sperm),
Arbacia punctulata
S,U
-
30
1 hr
EC50 (fertilization)
7.3
-
Neiheisel and Young 1992
Sea urchin (sperm),
Arbacia punctulata
S,U
-
30
1 hr
EC50 (fertilization)
20.9
-
Neiheisel and Young 1992
Sea urchin (sperm),
Arbacia punctulata
S,U
-
30
1 hr
EC50 (fertilization)
11.9
-
Neiheisel and Young 1992
Sea urchin (sperm),
Arbacia punctulata
S,U
-
30
1 hr
EC50 (fertilization)
19.3
-
Neiheisel and Young 1992
Sea urchin (sperm),
Arbacia punctulata
S,U
-
30
1 hr
EC50 (fertilization)
79.2
-
Neiheisel and Young 1992
Sea urchin (sperm),
Arbacia punctulata
s,u
Copper
sulfate
30
1 hr
EC50
(fertilization)
33.3
-
Morrison et al. 1989
Rock-boring urchin (embryo),
Echinometra lucunter
s,u
Copper
sulfate
36
24 hr
EC50
(normal development)
21.9
-
Rumbold and Snedaker 1997
Sea urchin (sperm),
Echinometra mathaei
s,u
Copper
chloride
FSW
1 hr
EC50 (fertilization)
14
-
Ringwood 1992
Variegated urchin (embryo),
Lytechinus variegatus
s,u
Copper
sulfate
35.7
24 hr
EC50
(normal development)
33.8
-
Rumbold and Snedaker 1997
vjiccii oca uioiiiii ^ofjcniiy
Strongylocentrotus
S,M,T
Copper
chloride
30
1 hr
EC50 (fertilization)
59
-
Dinnel et al. 1989
GjiccTrSca ulLi III 1 ^blllUiyu^
Strongylocentrotus
S,M,T
Copper
chloride
30
120 hr
EC50 (development)
21
-
Dinnel et al. 1989
Red sea urchin (sperm),
Strongylocentrotus franciscanus
S,M,T
Copper
chloride
30
1 hr
EC50 (fertilization)
1.9
-
Dinnel et al. 1989
Sea urchin (sperm),
Strongylocentrotus purpuratus
S,M,T
Copper
chloride
30
1 hr
EC50 (fertilization)
25
-
Dinnel et al. 1989
Sea urchin (embryo),
Strongylocentrotus purpuratus
S,M,T
Copper
chloride
30
120 hr
EC50 (development)
6.3
-
Dinnel et al. 1989
Sea urchin (sperm),
Strongylocentrotus purpuratus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
40
-
Bailey et al. 1995
Sea urchin (sperm),
Strongylocentrotus purpuratus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
39.4
-
Bailey et al. 1995
C2-8

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Sand dollar (sperm),
Dendraster excentricus
S,M,T
Copper
chloride
30
1 hr
EC50 (fertilization)
26
-
Dinnel et al. 1989
Sand dollar (embryo),
Dendraster excentricus
S,M,T
Copper
chloride
31
72 hr
EC50 (development)
33
-
Dinnel et al. 1989
Sand dollar (sperm),
Dendraster excentricus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
20
-
Bailey et al. 1995
Sand dollar (sperm),
Dendraster excentricus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
26.2
-
Bailey et al. 1995
Sand dollar (sperm),
Dendraster excentricus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
10.8
-
Bailey et al. 1995
Sand dollar (sperm),
Dendraster excentricus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
7.6
-
Bailey et al. 1995
Sand dollar (sperm),
Dendraster excentricus
S,U
Copper
sulfate
30
20 min
LOEC (fertilization)
16
-
Bailey et al. 1995
Arrow worm,
Sagita hispida
S,U
-
-
24 hr
LC50
43-460
-
Reeve et al. 1976
Atlantic menhaden,
Brevoortia tyrannus
F,-
-
-
14 days
LC50
610
-
Engel et al. 1976
Atlantic herring (embryo),
Ciupea harengus
R,U
Copper
sulfate
20
15 days
brain cell size reduced, perinuclear
space increased
30
-
Abbasi et al. 1995
Atlantic herring (embryo),
Ciupea harengus
R,U
Copper
sulfate
20
-
spinal deformities
50
-
Abbasi and Sheckley 1995
Pacific herring (1 hr larva),
Ciupea harengus pailasi
F,M,T
Copper
chloride
-
6 days
LC50
33
-
Rice and Harrison 1978
Pacific herring (12 hr embryo),
Ciupea harengus pailasi
F,M,T
Copper
chloride
-
6 days
LC50
900
-
Rice and Harrison 1978
i ii ici 11 r-u ioi iu v y i u i n
embryo),
F,M,T,I
-
sw
25 hr
LC50
186
-
Rice and Harrison 1979
Pink salmon (4.1 cm),
Oncorhynchus gorbuscha
S,U
Copper
nitrate
16.6
5 days
LC50
563
-
Holland et al. 1960
Hardhead catfish (26-29 cm),
Arius felis
S,U
Copper
chloride
30-32
72 hr
hyperactivity
100
-
Steele 1985
Hardhead catfish (26-29 cm),
Arius felis
S,U
Copper
chloride
30-32
72 hr
7-day latent hypoactivity
100
-
Steele 1985
Hardhead catfish (26-29 cm),
Arius felis
S,U
Copper
chloride
30-32
72 hr
57% mortality after 3 weeks
100
-
Steele 1985
Atlantic cod (embryo),
Gadus morhua
-
-
-
14 days
LC50
10
-
Swedmark and Granmo 1981
Sheepshead minnow (<24 hr),
Cyprinodon variegatus
R,M,T
chloride or
30
7 days
Chronic value
(survival)
253
-
Hughes et al. 1989
Sheepshead minnow (<24 hr),
Cyprinodon variegatus
R,M,T
chloride or
30
7 days
Chronic value
(growth and survival)
177
-
Hughes et al. 1989
Sheepshead minnow (<24 hr),
Cyprinodon variegatus
R,M,T
chloride or
30
7 days
Chronic value
(growth)
44
-
Hughes et al. 1989
C2-9

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Sheepshead minnow (<24 hr),
Cyprinodon variegatus
R,M,T
chloride or
30
7 days
Chronic value
(growth and survival)
177
-
Hughes et al. 1989
Sheepshead minnow (<24 hr),
Cyprinodon variegatus
R,M,T
chloride or
30
7 days
Chronic value
(growth and survival)
177
-
Hughes et al. 1989
Sheepshead minnow (<24 hr),
Cyprinodon variegatus
R,M,T
chloride or
30
7 days
Chronic value
(growth)
177
-
Hughes et al. 1989
Sheepshead minnow (24 hr),
Cyprinodon variegatus
R,U
Copper
sulfate
32
7 days
LC50
471.5
-
Morrison et al. 1989
Sheepshead minnow (24 hr),
Cyprinodon variegatus
R,U
Copper
sulfate
32
7 days
IC50
(growth)
351.6
-
Morrison et al. 1989
Sheepshead minnow (24 hr),
Cyprinodon variegatus
R,M,T
Copper
nitrate
34-35
96 hr
LC50
>220
-
Hutchinson et al. 1994
Mummichog,
Fundulus heteroclitus
R,U
Copper
chloride
20
21 days
Histopathology (lesions)
<500
-
Gardner and LaRoche 1973
Mummichog,
Fundulus heteroclitus
S,M,T
Copper
chloride
-
96 hr
Enzyme inhibition
600
-
Jackim 1973
Mummichog (<23 days),
Fundulus heteroclitus
S,M,T
Copper
sulfate
8-12
48 hr
LC50
19,000
-
Burton and Fisher 1990
Topsmelt (sperm),
Atherinops affinis
S,M,T
Copper
chloride
-
15 min
EC50 (fertilization)
109
-
Anderson et al. 1991
Topsmelt (embryo),
Atherinops affinis
S,M,T
Copper
chloride
33
12 days
EC50
(hatching)
146
-
Anderson et al. 1991
Topsmelt (<24 hr)
Atherinops affinis
R,M,T
Copper
chloride
-
7 days
LC50
365
-
McNulty et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
-
7 days
LC50
134
-
McNulty et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
34
7 days
LC50
162
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
34
7 days
LC50
274
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
34
7 days
LC50
169.1
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
22
7 days
LC50
55.7
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
22
7 days
LC50
58.4
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
10
7 days
LC50
5.66
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
17
7 days
LC50
<10
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
25
7 days
LC50
29.9
-
Anderson et al. 1994
Topsmelt (9 day)
Atherinops affinis
R,M,T
Copper
chloride
34
7 days
LC50
53.6
-
Anderson et al. 1994
C2-10

-------
Appendix C2. Other Data on Effects of Copper on Saltwater Organisms
Species
Method3
Chemical
Salinity
(g/kg)
Duration
Effect
Total
Concentration
(Mg/L)b
Dissolved
Concentration
(Mg/L)
Reference
Inland silverside (7 day),
Menidia beryllina
R,U
Copper
sulfate
32
7 days
LC50
286.4
-
Morrison et al. 1989
Inland silverside (7 day),
Menidia beryllina
R,U
Copper
sulfate
32
7 days
IC50
(growth)
483.5
-
Morrison et al. 1989
Atlantic silverside,
Menidia menidia
-
-
-
96 hr
Histopathological lesions
<500
-
Gardner and LaRoche 1973
Yellowtail snapper (embryo),
Ocyurus chrysurus
s,u
Copper
sulfate
36
24 hr
EC50 (viable hatch)
>250
-
Rumbold and Snedaker 1997
Sheepshead porgy (28-30 cm),
Archosargus probatocephalus
s,u
Copper
chloride
30-32
72 hr
hyperactivity
100
-
Steele 1985
Sheepshead porgy (28-30 cm),
Archosargus probatocephalus
s,u
Copper
chloride
30-32
72 hr
7-day latent hypoactivity
100
-
Steele 1985
Sheepshead porgy (28-30 cm),
Archosargus probatocephalus
s,u
Copper
chloride
30-32
72 hr
43% mortality after 3 weeks
200
-
Steele 1985
Pinfish,
Lagodon rhomboides
s,u
-
-
14 days
LC50
150
-
Engel et al. 1976
Spotted seatrout (embryo),
Cynoscion nebuloosus
s,u
Copper
sulfate
35.9
48 hr
EC50 (normal development)
118.6
-
Rumbold and Snedaker 1997
Spot,
Leiostomus xanthurus
s,u
-
-
14 days
LC50
160
-
Engel et al. 1976
Atlantic croaker,
Micropogonias undulatus
s,u
-
-
14 days
LC50
210
-
Engel et al. 1976
V VII IICI IIUUI IUCI ,
Pseudopleuronectes
F,M,T
Copper
sulfate
-
14 days
Histopathological lesions
180
-
Baker 1969
Striped bass (16 days),
Morone saxatilis
R, M

1.5
-
LC50
24

Wright 1988
a S = static; R = renewal; F = flow-through; M = measured; U = unmeasured; T = total metal concentration measured; D = dissolved metal concentration; I = ionic
b Results are expressed as copper, not as the chemical
c Dissolved copper; No other measurement reported
C2-11

-------
Appendix D. Estimation of Water Chemistry Parameters for
Acute Copper Toxicity Tests

-------
Appendix D-l. Calculations for Ionic Composition of Standard
Laboratory-Reconstituted Water
Molecular Weights
Atomic Weights
NaHC03 = 84.03
CaS04.2H2 O = 172.12
MgS04= 120.37
KC1 = 74.55
S04= 96.06
Na = 22.98
Ca = 40.08
Mg = 24.31
K = 39.10
CI = 35.45
Example Calculation
[Na] in very soft water:
12 mg NaHC03/L x 1 mmol NaHCO3/84.03 mg NaHC03 = 0.143 mmol NaHC03/L.
0.143 mmol NaHC03/L x (1 mmol Na/1 mmol NaHC03) x 22.98 mg Na/1 mmol Na = 3.3 mg Na/L.
[Ca] in very soft water:
7.5 mg CaS04.2H20/L x 1 mmol CaS04.2H20/172.12 mg CaS04.2H20 = 0.044 mmol CaS04.2H20/L.
0.044 mmol CaS04.2H20/L x (1 mmol Ca/1 mmol CaS04.2H20) x 40.08 mg Ca/1 mmol Ca =1.8 mg Ca/L.
[Mg] in very soft water:
7.5 mg MgS04/L x 1 mmol MgSO4/120.37 mg MgS04 = 0.062 mmol MgS04/L.
0.062 mmol MgS04/L x (1 mmol Mg/1 mmol MgS04) x 24.31 mg Mg/1 mmol Mg =1.5 mg Mg/L.
[K] in very soft water:
0.5 mg KC1/L x 1 mmol KC1/74.55 mg KC1 = 0.0067 mmol KC1/L.
0.0067 mmol KC1/L x (1 mmol K/l mmolKCl) x 39.102 mg K/l mmol K = 0.26 mg K/L.
[CI] in very soft water:
0.5 mg KC1/L x 1 mmol KC1/74.55 mg KC1 = 0.0067 mmol KC1/L.
0.0067 mmol KC1/L x (1 mmol Cl/1 mmolKCl) x 35.453 mg Cl/1 mmol K = 0.24 mg Cl/L.
[S04] in very soft water:
7.5 mg CaS04.2H20/L x 1 mmol CaS04.2H2 0/172.12 mg CaS04.2H20 = 0.044 mmol CaS04.2H20/L.
0.044 mmol CaS04.2H20/L x (1 mmol S04/1 mmol CaS04.2H20) x 96.064 mg Ca/1 mmol Ca = 4.2 mg Ca/L.
[S04] in very soft water:
7.5 mg MgS04/L x 1 mmol MgSO4/120.37 mg MgS04 = 0.062 mmol MgS04/L.
0.062 mmol MgS04/L x (1 mmol S04/1 mmol MgS04) x 96.064 mg Mg/1 mmol Mg = 6.0 mg Mg/L.
Total S04 = 10.2 mg/L
Conversion Factors to calculate water hardness (as CaC03) from [Ca] and [Mg]:
[Ca] x 2.497
[Mg] x 4.116
D-33

-------
Appendix D-2. Dissolved, Particulate, and Estimated Total Organic Carbon for Streams
and Lakes by State (as presented in EPA Document #822-B-98-005)
State
POC
DOC
Streams
Est. TOC
Est. DOC:TOC
POC
DOC
Lakes
Est. TOC
Est. DOC:TOC
AK
0.54
4.6
5.14
89.49
0.53
6.4
6.93
92.35
AL
0.72
3.4
4.12
82.52
...
...
...
...
AR
0.8
7.2
8
90.00
0.4
2.7
3.1
87.10
AZ
0.71
5.2
5.91
87.99
0.52
4.2
4.72
88.98
CA
1.13
8.2
9.33
87.89
0.32
2.3
2.62
87.79
CO
1.29
8.6
9.89
86.96
...
...
...
...
CT
0.71
4.8
5.51
87.11
...
...
...
...
DC
...
...
...
...
...
...
...
...
DE*
0.7
7.1
7.8
91.03
...
...
...
...
~fl
r
>
0.68
16.1
16.78
95.95
2.9
12.1
15
80.67
GA
0.67
4.3
4.97
86.52
...
...
...
...
HI
0.59
4
4.59
87.15
...
...
...
...
IA
1.79
11.6
13.39
86.63
...
...
...
...
ID
0.6
3.2
3.8
84.21
...
...
...
...
IL
1.77
6.8
8.57
79.35
0.12
4.7
4.82
97.51
IN
0.71
9.2
9.91
92.84
...
...
...
...
KS
1.75
5.2
6.95
74.82
1.53
4.5
6.03
74.63
KY
0.75
3.1
3.85
80.52
...
...
...
...
LA
1.52
6.9
8.42
81.95
0.65
5.6
6.25
89.60
MA
0.47
5.9
6.37
92.62
...
...
...
...
MD
1.66
3.7
5.36
69.03
...
...
...
...
ME
0.46
15.3
15.76
97.08
...
...
...
...
MI
0.58
6.3
6.88
91.57
0.32
2.7
3.02
89.40
MN
1.79
12.2
13.99
87.21
0.16
4.8
4.96
96.77
MO
0.56
4.2
4.76
88.24
...
...
...
...
MT
0.9
9.4
10.3
91.26
0.91
8.2
9.11
90.01
NC
1.14
11.5
12.64
90.98
...
...
...
...
ND
1.14
14.5
15.64
92.71
0.8
14.9
15.7
94.90
NE
1.84
6.8
8.64
78.70
...
...
...
...
NH
0.28
4.2
4.48
93.75
...
...
...
...
NJ
0.69
5.5
6.19
88.85
1.04
5
6.04
82.78
NM
1.43
6.3
7.73
81.50
0.51
5.2
5.71
91.07
NV
0.82
4.2
5.02
83.67
...
...
...
...
NY
1.4
4
5.4
74.07
0.46
2.4
2.86
83.92
OH
0.57
5
5.57
89.77
0.49
2.6
3.09
84.14
OKA
1.27
7.7
8.97
85.84
1.72
15
16.72
89.71
OR*A
1.14
2.1
3.24
64.81
0.64
4.4
5.04
87.30
PA
2.19
5.4
7.59
71.15
0.63
3.2
3.83
83.55
RI*
0.42
8.3
8.72
95.18
...
...
...
...
SC
0.7
5.7
6.4
89.06
...
...
...
...
SD
1.25
7.6
8.85
85.88
...
...
...
...
TN
0.67
2.3
2.97
77.44
...
...
...
...
TX
1.33
6.5
7.83
83.01
1.55
10.3
11.85
86.92
UTA
1.38
8.9
10.28
86.58
0.5
2.4
2.9
82.76
VA
0.81
4.7
5.51
85.30
...
...
...
...
VT
0.31
4.5
4.81
93.56
...
...
...
...
WA
1.52
5.4
6.92
78.03
0.61
2.8
3.41
82.11
WI
1.03
9.2
10.23
89.93
0.16
4.1
4.26
96.24
wv
0.63
2.8
3.43
81.63
...
...
...
...
WY
1.07
8.2
9.27
88.46
...
...
...
...
D-34

-------
State
POC
DOC
Streams
Est. TOC Est. DOC:TOC
POC
DOC
Lakes
Est. TOC Est. DOC:TOC
Mean
Max
Min
85.71
97.08
64.81
Mean
Max
Min
87.84
97.51
74.63
States where sample size was low for streams.
States where sample size was low for lakes.
D-35

-------
Appendix D-3. Mean TOC and DOC in Lake Superior Dilution Water
(data from Greg Lien, U.S. EPA-Duluth, MN)
Replicate Ambient (8/29/2000)	pH 7.0 (8/30/2000)	pH 6.2 (8/31/2000)
Filter Blank*

-0.04
0.22
0.38
Pre-gill
a
1.13
1.34
1.26
experiment TOC
b
1.37
1.30
1.36

Mean
1.25
1.32
1.31
Post-gill
a
1.20
1.24
1.18
experiment TOC
b
1.27
1.46
1.10

Mean
1.24
1.35
1.14
Pre-gill
a
1.96
1.51
1.34
experiment DOC
b
1.52
1.28
0.99

Mean
1.74
1.40
1.17
Post-gill
a
1.49
1.36
1.44
experiment DOC
b
1.64
1.58
1.24

Mean
1.57
1.47
1.34
* Filter blank is ultra-pure Duluth-EPA laboratory water.
D-36

-------
Appendix D-4. Measured Hardness and Major Ion and Cation Concentrations
in WFTS Well Water from April 1972 to April 1978. Concentrations Given as Mg/L
(data from Samuelson 1976 and Chapman, personal communication)
Month
Total Hardness
Ca
Ma
Na
K
SO,
CI
Mar-72







Apr-72

7.9
2
5
1.1
<10.0
8
May-72
22
5.8
1.4
4.4
0.5
<5.0
7
Jun-72
24
5.8
1.6
4.4
0.5
3
7
Jul-72
23
6.7
1.6
4.6
0.5
<1.0
8.3
Aug-72
23
6.5
1.7
4.7
0.5
<10.0
6.3
Sep-72
22
6
1.6
4.5
0.6
<10.0
4
Oct-72
22
6.7
1.9
4.7
0.6
5
5.5
Nov-72
23
6.2
1.6
4.2
0.6
3.7
5.3
Dec-72
23
6.2
1.5
4.2
0.5
3
4
Jan-7 3
52
15.3
3.5
7.1
0.7
7.8
12.4
Feb-73
33
7.7
2.1
5
0.5
5
5
Mar-73
30
8
2.1
5.3
0.7
5
6
Apr-73
31
8.9
2.3
5.4
0.7
5.3
8.8
May-73
28
8.3
2.4
5.8
0.7
3
8
Jun-73
28
8.4
2.2
5.8
0.7
4.8
7.5
Jul-7 3
26
7.4
1.9
5.8
0.8
<5.0
6.8
Aug-73
25
6.5
1.7
5.7
0.7
3.1
5.8
Sep-73
25
6.7
1.7
5.4
0.7
3.1
5.3
Oct-73
27
7
1.8
5.4
0.7
2.9
5.4
Nov-73
28
7.9
2.1
4.8
0.7
10
6.8
Dec-73
62
20.3
4.2
9
0.8
13
14
Jan-74
67
21.3
4.8
7
0.8
17.3
11.3
Feb-74
58
14.3
3.4
6.9
0.9
14.7
6.7
Mar-74
53
20.8
3.8
7.2
0.7
13
7
Apr-74
51
18.2
3.7
6.8
0.6
15.5
8.5
May-74
23
7.5
2.1
4.6
0.6
5
4.8
Jun-74
22
6
1.9
4.8
0.5
3
4.5
Jul-7 4
23
5.4
1.7
5
0.6
3.3
6.3
Aug-74
23
4.8
1.6
5
0.7
3
6
Sep-74
23
5.8
1.5
5.1
0.7
2.9
4.8
Oct-74
23
11
2
7.1
0.8
3.1
5
Nov-74
23
12
2.6
4.5
0.5
3.8
5.3
Dec-74
24
6.4
2.5
5.2
0.7
3.8
5
Jan-7 5
41
7.7
2.9
6.7
0.6
8
8
Feb-75
61
11.6
4.2
8.6
0.8
16
11.8
Mar-75
54
9.1
3.1
6.4
0.6
8
8
Apr-75

4.4
1.6
4.4
0.5
3
5
May-75

7.2
2
5
0.5
6
7
Jun-75

4.4
1.6
4.6
0.6
5
6
Jul-7 5

5.2
1.6
7
0.7
5
7
Aug-75

5.2
1.4
7
0.6
5
5
Sep-75

4.5
1.5
4.5
0.7
5
4
Oct-75

7.1
1.9
4.3
0.5
20
5
Nov-75
18
5.3
1.5
4.2
0.5
5
4
Dec-75







Jan-7 6







Feb-76

9.8
5
5.4
0.4
9
9
Mar-76



4.1
0.1
3
6
Apr-76



5.3
0.1
6
9
D-37

-------
CI
6
7
6
7
8
11
8
7
5
5
7
8
6
4.6
4.6
12
11
9
9.55
Total Hardness	Ca	Mg	Na	K	SO„
7.9 1.8 4.5	0.5 3
27 8.1 1.9 3.3	0.6 4
26
23 4.9 1.3 4.8	0.1 3
23	6.7 2.6 4.7	0.1
21	6.7 2.6 4.7	0.1
22	7.7 3 4.7	0.1 3
25-5 6.4 1.8 5	0.1 4
27.2 7.7 2.6 5.6	0.6 4
10.7 4.9 5.9	0.6 3
3
10.7 2.2 5.5	0.8 3
25 5 1.8 5	0.8 3
2V 6.6 2 5.2	0.7 3
24	6.7 2 7.1	0.8	3
25	6.9 1.9 6.9	1
27	9.9 2.1 5.9	0.9	3
3
6-6 2.1 5.6	0.9	10
27 9.7 4.95	0.65	9
10.9 3.75	0.85	6
10.6 3.8 8.6	0.7	5
10.2 2.6 4.7	0.6	6
	83	2A		0.7	5
D-38

-------
Appendix D-5. Results of the Sample Analysis of New and Clinch Rivers
and Sinking Creek, VA.
Samples were analyzed August and September 2000, under WA 1-20. Water was collected for
analysis by Dr. Don Cherry, Virginia Polytechnic Institute and State University,
Blacksburg, VA. Units are mg/L, except pH, which are standard units.

Sampling Point: New River

General Chemistry
Metals

Parameter
Value
Parameter
Value
no3
0.7
Ca
15
CI
6.1
Mg
0.6
Sulfate
9.8
K
2
Sulfide
0.05
Na
6.6
Alkalinity
52


pH
8


DOC
2


TOC
2.25



Sampling Point: Clinch River

General Chemistry
Metals

Parameter
Value
Parameter
Value
no3
1
Ca
42
CI
9.2
Mg
11
Sulfate
19
K
2.4
Alkalinity
150
Na
12
Hardness
150


pH
8.3


DOC
2.3



Sampling Point: Sinking Creek

General Chemistry
Metals

Parameter
Value
Parameter
Value
no3
0.6
Ca
33
CI
2.6
Mg
1.1
Sulfate
5
K
6.7
Sulfide
0.05
Na
1.7
Alkalinity
130


pH
8.1


DOC
1.05


TOC
1.3


D-39

-------
Appendix D-6. Water Composition of St. Louis River, MN, from USGS NASQAN and
Select Relationships to Water Hardness
Date
PH
Hardness
Alkalinity
Ca
Mg
Na
K
CI
so4
no3
DOC
19730222
6.8
68
53
17
6.3
11
1.6
14
14
0.19

19730503
7.1
58
46
14
5.5
6.6
1.1
9.5
13
0.17

19730816
6.9
70
51
17
6.6
7.6
1.2
9
20
0.01

19731128
7
65
48
16
6.1
7.5
1.3
8.8
14


19740221
7
64
48
16
5.8
8.9
1.3
12
14


19740516
6.9
45
32
11
4.3
3.5
1.2
3.8
11


19740919

88
60
21
8.6
12
1.8
17
23


19741030
7.3
83
62
23
6.3
13
1.3
16
23


19741209
7.4
86
62
22
7.6
12
1.6
15
18


19750121
7.3
74
66
18
7
10
1.1
12
13


19750303
7.3
74
68
17
7.6
10
1.7
11
12


19750407
7.2
95
80
22
9.7
11
2
14
16


19750527
7.5
63
50
15
6.1
8.5
1.5
9.2
12


19750708
9.2
58
43
14
5.7
3.2
1
3.4
10


19750818
7.2
73
56
18
6.9
12
1.3
16
16


19750929
7.4
90
72
23
8
12
1.5
13
20


19751110
7.1
90
63
22
8.4
12
1.7
15
24


19751216
7.6
87
61
22
7.8
14
1.6
16
28


19760209
7.5
72
59
18
6.6
13
1.6
13
18


19760322
7.7
78
65
19
7.4
12
1.4
11
17


19760503
7.6
59
43
14
5.8
7.9
1.3
8.6
15


19760614
7.5
94
75
22
9.4
16
1.9
20
20


19760726
7.4
93
80
22
9.3
21
1.9
25
24


19760908
7.5
82
78
18
9.1
17
2.5
9.3
26


19761019
7.5
83
72
20
8.1
21
1.6
24
21


19761129
7.4
95
74
22
9.7
25
1.8
32
24


19770110
7.3
85
88
20
8.4
17
1.5
15
19


19770214
8.2
82
73
20
7.8
18
1.7
26
17


19770404
7.3
87
67
21
8.5
20
2.4
28
24


19770516
7.3
120
98
29
11
30
2.8
26
36


19770628
7.8
100
75
24
9.9
13
2
16
23


19770808
7.4
110
90
26
10
27
2.2
32
28


19770919
7.4
73
44
17
7.3
6.6
1.7
8.9
17


19771031
7.6
64
47
15
6.5
7.9
1.3
9.7
22

37
19771212
7.5
65
50
15
6.8
6.3
1.2
7.1
16


19780123
7.3
71
52
17
6.9
12
1.5
9.4
18


19780306
7.2
67
48
16
6.5
8.8
1.2
17
16

32
19780417
7.5
43
28
10
4.3
4.2
1.8
5.7
15


19780530
7.9
64
54
15
6.4
5.7
1.5
7.1
14

33
19780710
7.4
53
44
13
5.1
4.3
1.3
5.3
8.9


19780821
8.4
60
42
15
5.5
5.3
1.5
6.5
12

36
19781002
7.7
71
57
17
6.9
8.2
1.1
9.6
15

24
19781115
7.4
68
52
16
6.8
11
1.1
10
12


19781218
7.4
68
55
16
6.9
11
1
9.2
14


19790205
7.4
63
57
15
6.3
3.4
1
3.1
8

12
D-40

-------
Date
PH
Hardness
Alkalinity
Ca
Mg
Na
K
CI
so4
no3
DOC
19790329
7.6
80
63
19
8
8.4
2.3
7.8
13


19790430
7.6
37
29
8.7
3.7
2.2
1.3
2.8
8.9

20
19790611
7.2
47
34
11
4.8
3.1
0.8
2.8
9.4


19790723
7.6
73
55
17
7.3
3.9
0.9
3.7
8.9

30
19790827
7.2










19791015
8.1
74
54
16
8.2
5
1.1
3.9
13
0.01
12
19791126
7.8
61
52
14
6.3
3.8
0.9
3.6
11
0.37

19800121
7.6
60
53
14
6
3.8
0.9
3.2
9.9
0.15

19800219
7.4
63
51
15
6.2
3.9
0.8
2.9
9.2
0.19
17
19800331
8.4
68
64
16
6.9
4.2
1.1
3.5
9.2
0.3

19800602
8.3
84
72
19
8.8
6.4
1.2
5
15
0.01
21
19800630
8.3
93
68
21
9.9
7.9
1.4
6.7
24
0.02

19800804
8.1
130
110
28
14
10
1.9
11
24
0.01
13
19800902
7.8
110
82
24
11
7.2
1.7
7.6
18
0.01

19800929
7.6
73
54
16
8.1
5.7
1.4
5.8
14
0.12

19801103
7
82
58
18
8.9
5.6
1.3
6.9
18
0.19
23
19801208

67
50
15
7.2
4.6
1
4.1
11
0.19

19810105
7.6
70
55
16
7.2
4.2
1.1
4.1
13
0.23

19810209
7.5
68
58
16
6.9
4.9
1
3.5
8.1
0.27
14
19810309
7.7
61
57
14
6.2
5.2
1.8
5.1
8.6
0.36

19810504
7.3
42
40
9.6
4.3
3.7
1.2
3.6
9.6
0.18
21
19810706
7.4
51
39
12
5
3.5
1.2
3.2
7.5
0.14
10
19810908
7.9
73
64
16
8
4.2
0.8
4.2
8.3
0.11

19811020
7.6
51
37
12
5.2
4.3
1.2
4.2
8.9
0.31

19820113

62
52
14
6.5
4
0.9
3.7
9.3
0.24

19820309
7.4
66
58
15
7
5.3
1
3.8
11
0.36

19820420
7.2
32
25
7.5
3.3
2.1
1.3
2.3
6
0.19

19820621
7.9
61
55
14
6.4
4.3
1.1
4
10
0.1

19820809
7.4
66
54
15
6.9
3.9
0.6
3.5
9
0.25

19821004
8
73
63
15
8.7
4.9
1
4.7
13
0.11

19821207
7.3
55
43
12
6.1
4.2
0.8
3.3
16
0.24

19830131
6.9
62
50
14
6.5
4.1
0.8
3.5
15
0.36

19830328
7.5
68
56
15
7.3
4.5
1.2
4.1
15
0.35

19830523
8.2
68
53
15
7.5
4
1.3
0.8
23
0.12

19830718
7.6
67
53
15
7.2
3.7
1.3
3.7
22
0.15

19831031
7.7
64
48
14
7
3.9
1.2
3.5
24
0.12

19840109
7.4
57
50
13
6
3.6
0.9
3.4
13
0.23

19840306
7.1
66
57
15
7
4.4
0.9
5.2
8.7
0.31

19840424
7.2
51
39
11
5.6
3.1
1.4
3.2
14
0.12

19840619
9.5
52
39
12
5.3
2.9
0.8
3.6
10
0.13

19840822
6.4
70
58
15
7.9
4.7
1
3.8
17
0.1

19841009
7.6
73

16
7.9
4.6
1
3.7
15
0.1

19841120
7.1
64

14
7.1
3.9
0.9
3.7
14
0.24

19850211
7
69

15
7.7
4.6
1.1
4
11
0.27

19850325
7.3
61

13
7
5.6
2.5
6.6
16
0.31

19850506
7.4
55

12
6
3.6
1.7
4.2
14
0.15

19850730
7.6
62

14
6.6
3.2
0.9
4
9.8
0.1

19851021
7.5
58

12
6.8
3.7
1.1
0.2
12
0.13

D-41

-------
Date
PH
Hardness
Alkalinity
Ca
Mg
Na
K
CI
so4
no3
DOC
19851203
7.4
73

16
8
4
1
4.2
18
0.16

19860303
7.4
66

15
7
4
1
3.4
10
0.24

19860407
7.3








0.19

19860602
7.5
58

13
6.3
3.5
1
2.8
15
0.1

19860818
7.9
74

15
8.9
4.6
1.2
3.7
24
0.1

19861112
7.5
55

12
6
3.4
1.4
3.8
19
0.27

19861210
7.3
70
57
13
9
5
1
4.8
21
0.16

19870218
7
66

15
6.8
3.7
0.9
3.1
12
0.24

19870518
8
83

18
9.3
5.8
1.2
5
10
0.1

19870622
7.8
75

16
8.5
6.2
1.1
5.2
19
0.1

19870721
7.6
51

12
5.2
2.8
1.3
3.1
15
0.1

19871028
8
82

17
9.6
6.8
1.4
1.3
19
0.1

19871208
7.9
69

15
7.7
5.3
1.4
4.8
17
0.1

19880119
7.4
73

16
8
5.1
1
3.6
15
0.15

19880223
7.4
85

19
9.2
6.5
8.5
5.1
16
0.2

19880412
7.4
42

9.2
4.7
3
2.8
5
20
0.25

19880907
7.1
70

15
8
5.3
1.5
6.1
18
0.15

19881031
7.6
100

21
12
9
1.9
7.8
27
0.1

19881130
7.6
78

17
8.6
5.5
1.3
5.5
19
0.19

19890221
7.1
77

17
8.4
6.3
1.3
4.4
17
0.25

19890410
7.2
48

11
5
4.9
1.8
8.1
8
0.37

19890626
7.4
63

14
6.8
4.6
1.1
5
12
0.15

19890814
8.1
95

20
11
9.1
1.5
8.9
18
0.1

19891101
8.1
110

20
15
7.8
1.9
6.3
31
0.1

19891218
7.5
88

17
11
6.1
1.4
5
22
0.16

19900123
7.3
100

18
14
7.2
1.7
5.2
28
0.23

19900416
7.5
62

13
7.2
5.1
1.9
5.4
14
0.2

19900716
7.7
70

15
8
5.7
1.3
5.4
11
0.2

19900820
8.1
95

20
11
7.8
1.5
7.9
20
0.1

19901009
7.3
81

18
8.7
5.4
1.5
5.7
13
0.1

19910102
7.4
83

19
8.7
5.3
1.4
5
12
0.2

19910212
7.1
80

18
8.5
6.8
1.3
3.9
11
0.2

19910502
6.7
56

13
5.8
4
1
3.7
7.9
0.1

19910610
7.3
64

15
6.5
4
0.7
4.1
6.9
0.12

19910731
7.8
55

13
5.4
2.5
1
2.6
3.8
0.05

19910801
7.3










19911003
7.8
67

15
7.1
4.4
1
4.4
9.6
0.068

19911204
7.4
61

13
6.9
4.8
1
3.5
7
0.18

19920113
7.9
67

15
7.2
4.3
1.1
3.2
9.3
0.21

19920413
7.7
30

7.8
2.5
2.5
0.3
2.4
4.8
0.16

19920722
7.6
71

16
7.5
4.8
0.9
2.1
9.6
0.11

19921026
8.2
86

18
10
5.3
1.2
5.4
14


19921216
7.6
89

19
10
6
1.2
5.6
13
0.25

19930201
7.2
83

18
9.1
7.3
1.2
7.3
12
0.28

19930426
7.7
66

15
6.8
4.1
1.2
4.9
9.5
0.092

19930722
7.5
64

15
6.5
4
0.2
3.9
7.7
0.079

19931201
7.7
80

17
9
4.8
1
4
11
0.16

D-42

-------
Date
PH
Hardness
Alkalinity
Ca
Mg
Na
K
CI
so4
no3
DOC
19940216
7.3










19940511
7.7
51

11
5.6
3.7
1.1
3.4
9.4
0.076













MIN
6.4
30
25
7.5
2.5
2.1
0.2
0.2
3.8
0.01
10
MAX
9.5
130
110
29
15
30
8.5
32
36
0.37
37
MEAN
7.52
71.11
56.94
16.16
7.46
7.09
1.37
7.39
15.04
0.17
22.19
D-43

-------
40
30
O 20
10
0
50
1977
70
	1	
90
Hardness
y = 0.2486X- 0.9304
R2 = 0.9962
1 10
1 30
1977
y = 0.0791x + 1 .5586
R2= 0.9814
15
10
5
0
50
70
90
Hardness
110
130
1977
y = 0.3951 x- 18.303
Rz= 0.7937
40
30
£ 20
10
0
	1	1	1	
50 70 90 1 10 130
Hardness
D-44

-------
1977
y = 0.0237x-0.2069
R2= 0.7611
50
	1	1	1	
70	90	110
Hardness
130
D-45

-------
Appendix D-7. Supplementary Data for Bennett et al. (1995)






Alkalinity
Hardness

Dose
Conductivity

Oxygen
Temp
(as mg
(as mg
Tank
(ug Cu/L)
(umho/cm)
PH
(mg/L)
(°C)
CaCO,/L)
CaCO,/L)
0 hours
7/9/92






a
897
325
8.62
7.5
21
100
96
b
897
300
8.6
7.6
21
100
96
c
897
320
8.6
7.6
21
80
96
d
607
320
8.62
7.7
21
80
96
e
607
370
8.62
7.6
21
80
96
f
607
328
8.64
7.6
21
80
96
g
93
310
8.64
7.6
21
80
96
h
93
370
8.69
7.5
21
80
96
I
93
310
8.6
7.6
21
80
96
j
505
310
8.62
7.7
21
100
96
k
505
310
8.65
7.7
21
80
96
1
505
320
8.69
7.7
21
80
96
m
319
320
8.69
7.7
21
80
96
n
319
330
8.68
7.7
21
80
96
0
319
320
8.67
7.7
21
80
96
P
0
310
8.62
7.5
21
80
96
q
0
320
8.63
7.6
21
80
96
r
0
320
8.6
7.7
21
80
96
24 hours 7/10/92






a
897
300
7.78
8.5
21.5
60
104
b
897
305
7.64
8.4
22
80
100
c
897
305
7.68
8.5
22
90
100
d
607
300
7.7
8.4
21.5
90
100
e
607
305
7.65
8.4
21.5
80
100
f
607
305
7.75
8.4
21.5
80
100
g
93
300
7.77
9.1
22
80
100
h
93
295
7.76
9.2
21.5
80
108
I
93
295
7.76
9
21.5
85
100
j
505
300
7.73
8.8
22
90
84
k
505
300
7.71
8.8
21.5
80
100
1
505
300
7.73
8.7
21.5
80
100
m
319
300
7.74
9.1
21.5
80
100
n
319
300
7.52
8.5
22
80
100
0
319
310
7.79
8.7
22.5
80
100
P
0
305
7.79
9.1
22
80
100
q
0
305
7.7
9.1
22
80
104
r
0
300
7.71
9.1
22
80
104
48 hours 7/11/92






a
897
*
*
*
*
*
*
b
897
*
*
*
*
*
*
c
897
320
8.1
7.2
21.5
100
96
d
607
315
7.91
6.9
21.5
100
96
e
607
310
7.84
6.8
21.5
100
100
f
607
315
8
7
21.5
100
104
g
93
300
8.19
7.7
21.5
100
100
D-46

-------
Alkalinity Hardness
Tank
Dose
(U2 Cu/L)
Conductivity
(umho/cm)
PH
Oxygen
(ms/L)
Temp
(°C)
(as mg
CaCO,/L)
(as mg
CaCO,/L)
h
93
300
8.13
7.7
21
100
100
I
93
300
8.16
7.6
21
100
104
j
505
310
8.1
7.5
21
80
100
k
505
310
8.12
7.4
21
100
100
1
505
310
8.13
7.4
21
80
100
m
319
310
8.12
7.4
21
100
100
n
319
310
7.8
6.4#
21.5
100
100
0
319
310
8.18
7.3
22
100
96
P
0
300
8.16
8
21.5
80
100
q
0
300
8.1
7.9
21.5
80
104
r
0
300
8.21
8
21.5
100
100
' hours 7/12/92






a
897
*
*
*
*
*
*
b
897
*
*
*
*
*
*
c
897
*
*
*
*
*
*
d
607
310
8.02
8.9
21.5
100
100
e
607
315
8.04
8.8
21.5
100
100
f
607
315
8.02
8.7
21.5
80
100
g
93
310
7.92
9.1
21.5
100
104
h
93
305
7.91
9.1
21
100
100
I
93
310
7.91
9
21
80
106
j
505
315
7.97
8.9
21.5
100
104
k
505
310
7.96
8.9
21
100
100
1
505
310
7.96
9
21
80
104
m
319
310
7.91
9
21
100
100
n
319
310
7.97
9
21
80
100
0
319
320
7.99
8.8
22
100
104
P
0
300
7.86
9.3
21.5
100
104
q
0
300
7.81
9.1
21.5
80
100
r
0
305
7.93
9.3
21.5
80
100
' hours 7/13/92






a
897
*
*
*
*
*
*
b
897
*
*
*
*
*
*
c
897
*
*
*
*
*
*
d
607
320
8.03
7.3
21.5
100
104
e
607
320
8.07
7.3
21.5
100
100
f
607
325
8.02
7.2
21.5
100
104
g
93
325
7.95
7.1
21.5
120
104
h
93
315
8.03
7.5
21
100
100
I
93
310
8.02
7.4
21
100
100
j
505
320
8.06
7.4
21.5
80
100
k
505
320
8.05
7.4
21
120
100
1
505
320
8.03
7.3
21
100
104
m
319
315
8.05
7.5
21
100
104
n
319
320
8.06
7.4
21
100
100
0
319
330
8.08
7.3
22
100
104
D-47

-------






Alkalinity
Hardness

Dose
Conductivity

Oxygen
Temp
(as mg
(as mg
Tank
(ug Cu/L)
(umho/cm)
PH
(mg/L)
(°C)
CaCO,/L)
CaCO,/L)
P
0
330
7.78
8.1
21.5
80
96
q
0
325
7.75
7.9
21.5
80
104
r
0
330
7.86
8.1
21.5
80
100
* All fish dead, no water quality measured.
# Air stone had fallen out of tank.
D-48

-------
Appendix D-8. Supplementary Data for Richards and Beitinger (1995)
Acclimation
Temperature
5°C
12°C
22°C
32°C
Replicate
1
2
1
2
1
2
1
2
Sample size
30
36
30
36
36
30
33
29
pH
8.2-8.3
7.8-8.2
8.4-8.5
8.2-8.4
8.3-8.4
8.1-8.5
8.4-8.5
8.4-8.5
Hardness
(mg/1 CaC03)
164-180
152-166
152-168
148-170
164-174
162-172
164-168
162-172
Alkalinity
(mg/1 CaC03)
125-140
130-140
130-140
130-140
140-145
140-145
135-140
135-145
Weights of
minnows (g)
0.62-
3.23
0.42-2.64
0.56-2.38
0.30-1.93
0.66-
1.15
0.13-
1.55
0.26-
1.36
0.23-
1.32
Lengths of
minnows (cm)
3.3-5.5
3.2-5.2
3.2-4.9
2.8-5.1
1.9-4.3
2.4-4.6
3.0-4.8
3.3-4.8
D-49

-------
Appendix D-9. Data for the American River, CA, for July 1978 Through December 1980
(data from the City of Sacramento, CA, Water Quality Laboratory; personal
communication). Units Are mg/L.
Date
PH
Hardness
Alkalinity
Ca
Ma
Ca:Mg
Na
CI
SO,
Jul-7 8
7.6
20
22
5.2
1.7
3.06
3.2
2.6
4
Aug-78
7.6
20
22
4.9
1.9
2.58
3.4
2.8
5
Sep-78
7.5
20
22
5.2
1.7
3.06
3.5
2.6
4
Oct-78
7.3
20
22
5
1.8
2.78
3.6
3
4
Nov-78
7.2
20

4.9
1.9
2.58
3.9

5
Dec-78









Jan-79
7.4
23
24
5.1
2.1
2.43
3.2
2.9
4
Feb-79
7.5
24
25
6.5
1.9
3.42
3
3
5
Mar-79
7.6
26
27
7.4
1.8
4.11
3.3
2.7
6
Apr-79
7.7
27
27
7.5
2
3.75
3.6
2.7
7
May-79
7.6
25
26
5.7
2.6
2.19
3.4
2.4
6
Jun-79
7.7
22
24
5.7
1.9
3.00
3.1
2.5
4
Jul-7 9
7.6
21
22
5.3
1.9
2.79
3
2.7
4
Aug-79
7.5
21
22
5.6
1.7
3.29
3.2
2.4
5
Sep-79
7.3
20
21
5.7
1.4
4.07
3.5
2.5
3
Oct-79
7.2
19
20
5.5
1.3
4.23
3.1
2.8
3
Nov-79









Dec-79









Jan-80
7.5
23
23
6.1
1.9
3.21
2.4
2.6
4
Feb-80
7.4
23
23
6.1
1.9
3.21
2.7
2.3
2
Mar-80
7.5
24
26
5.8
2.3
2.52
2
2.3
2
Apr-80
7.7
25
25
6.4
2.2
2.91
1.9
2.5
3
May-80
7.5
22
21
6.1
1.6
3.81
2.4
2.4
3
Jun-80
7.3
19
21
5.1
1.5
3.40
2.3
2.4
2
Jul-80
7.4
18
20
4.6
1.6
2.88
2.6
2.1
3
Aug-80
7.5
18
21
5.2
1.2
4.33
3
2.7
2
Sep-80
7.3
18
20
4.9
1.4
3.50
2.9
2.4
4
Oct-80
7.3
18
20
5
1.3
3.85
3
2.7
2
Mean
7.5
21.4
22.8
5.6
1.8
3.2
3.0
2.6
3.8
max
7.7
27.0
27.0
7.5
2.6
4.3
3.9
3.0
7.0
min
7.2
18.0
20.0
4.6
1.2
2.2
1.9
2.1
2.0
D-50

-------
Appendix D-10. STORET Data for Minnesota Lakes and Rivers
Date
pH Hardness
Alkalinity
Ca
Mr
Ca:Mg
Na
K
CI
SO,
NO,
TOC
DOC Sulfide
Embarrass River, MN











3/22/76
7
133
103
27
16
1.69
2.5
2
11
34



4/29/76
6.7
25.3
23
5.2
3
1.73
2.8
0.7
2.9
8.4
0.04
16
0.6
5/28/76
6.5

53





3.5
12



6/28/76
6.9
44
36
9.9
4.6
2.15
3.9
0.3
5
13
0.04
37

7/28/76
6.6

76
5.2




4.8
7.5



8/26/76
6.9
100
110
24
9.9
2.42
9
1
8.4
5.6

21
0.6
Means
6.8
75.58
66.83
14.26
8.38
2.00
4.55
1.00
5.93
13.42
0.04
24.67
0.60
max.
7
133
110
27
16
2.42
9
2
11
34
0.04
37
0.6
min.
6.5
25.3
23
5.2
3
1.69
2.5
0.3
2.9
5.6
0.04
16
0.6
S. Kawishiwi River, MN











10/16/75
6.4
21
14
4.9
2.1
2.33
1.3
0.4
0.5
4.4
0.01
12
0.2
11/6/75
6.9
24
19
5.5
2.5
2.20
1.2
0.4
0.6
4.1



12/11/75

39
23
10
3.4
2.94
1.4
0.4
1.5



0.2
1/9/76
6.6
29
24
6.2
3.2
1.94
1.6
0.8
2.3
7



2/4/76
6.3
24
20
5.2
2.7
1.93
1.7
0.6
0.9
6.3
0.16
16
0
3/9/76
6.9
23
23
5.7
2.2
2.59
1.5
0.5
0.9
4.9


1
4/23/76
6.6
14
8
3.4
1.3
2.62
0.9
0.4
0.7
4.8


0.2
5/25/76
6.8
16
11
4
1.5
2.67
0.9
0.4
0.7
4.8



6/25/76
6.6

16





1.1
3.3


1.8
7/23/76
6.7

19





1.2
4.4


0.5
Means
6.6
23.75
17.70
5.61
2.36
2.40
1.31
0.49
1.04
4.89
0.09
14.00
0.56
max.
6.9
39
24
10
3.4
2.94
1.7
0.8
2.3
7
0.16
16
1.8
min.
6.3
14
8
3.4
1.3
1.93
0.9
0.4
0.5
3.3
0.01
12
0
Colby Lake, MN
LCY2












6/17/96
8.5
56
33
13
5.7
2.28
4.3
1.5
6.3
22
0.25
17

6/17/96
6.8









0.25
17

6/17/96
6.9
71
33
17
7
2.43
4.3
1.4
9.4
22

18

LCY1













6/17/96
6.8
54
33
12
5.8
2.07
3.9
1.4
6.6
26
0.3
16

6/17/96
6.8










16

6/17/96
6.5
41
34
11
3.2
3.44
3.6
1.3
6.8
22
0.33
17

6/17/96
7.4
83
39
21
7.3
2.88


7.8
52
0.18


Means
7.1
55.50
33.25
13.25
5.43
2.55
4.03
1.40
7.28
23.00
0.28
16.83

max.
8.5
71
34
17
7
3.44
4.3
1.5
9.4
26
0.33
18

min.
6.5
41
33
11
3.2
2.07
3.6
1.3
6.3
22
0.25
16

Cloquet Lake, MN
7/13/76 6.4
17
11
4
1.8
2.22


1.7
7.6
0
38

Lake One, MN












10/16/75
7.2
27
21
6.9
2.3
3.00


1.2
5.6
0.02
22

Greenwood Lake, MN











7/6/76
6.7
10
15
2.8
0.7
4.00
0.1
0.3
0.2
4.2
0
11

D-51

-------
Appendix E. Saltwater Conversion Factors for Dissolved Values

-------
Appendix E
Saltwater Conversion Factors for Dissolved Values
September 26, 2002
U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Washington, D.C.
E-1

-------
ACKNOWLEDGMENTS
Larry Brooke and Tyler Linton
(primary authors)
Great Lakes Environmental Center
1295 King Avenue
Columbus, OH 43212
Jennifer Mitchell and Cindy Roberts
(authors and document coordinators)
U.S. Environmental Protection Agency
Washington, DC
E-2

-------
Saltwater Conversion Factors for Converting Nominal or Total Copper Concentrations to
Dissolved Copper Concentrations
The U.S. EPA changed its policy in 1993 of basing water quality criteria for metals from a total
metal criteria to a dissolved metal criteria. The policy states "the use of dissolved metal to set and
measure compliance with water quality standards is the recommended approach, because dissolved metal
more closely approximates the bioavailable fraction of metal in the water column than does total
recoverable metal" (Prothro 1993). All of the criteria for metals to this date were based upon total metal
and very few data were available with dissolved concentrations of the metals. A problem was created by
the new policy of how to derive dissolved metal concentrations for studies in which this form of the
metal was not measured. The U.S. EPA attempted to develop correction factors for each metal for which
criteria exist for both fresh- and saltwater (Lussier et al. 1995; Stephan 1995). In the case of saltwater, a
correction for copper was not derived.
Several saltwater studies are available that report nominal, total, and dissolved concentrations of
copper in laboratory water (Table 1) from site-specific water effect ratio (WER) studies. These studies
show relatively consistent ratios for the nominal-to-dissolved concentrations and for the total-to-
dissolved concentrations. Calculation of a mean ratio (conversion factor) to convert nominal and total
copper concentrations to dissolved copper permits the use of the results for critical studies without
dissolved copper measurements.
Three studies, each with multiple tests per study, were useful for deriving the conversion factors.
One study was conducted for the lower Hudson River in the New York/New Jersey Harbor (SAIC 1993).
The tests were conducted with harbor site water and with EPA Environmental Research Laboratory -
Narragansett water from Narragansett Bay, Massachusetts. Only the tests with laboratory water were
used for this exercise. Three series of 48-hour static tests were conducted with various animals. Salinity
ranged from 28 to 32 ppt during all the tests. Series 1 tests were not used to calculate ratios for dissolved-
to-total or dissolved-to-nominal copper concentrations, because in many instances, concentrations of
measured copper did not increase as nominal concentrations increased. Of the series 2 tests, only the coot
clam (Mulinia lateralis) tests were successful and used to calculate ratios. Three replicate tests without
ultraviolet (UV) light present and one test with UV light present were reported with total and dissolved
copper measurements made at 0 hr and 48 hr (end) of the tests. Dissolved-to-total and dissolved-to-
nominal ratios were calculated for the four tests each with two time intervals. The mean ratio for the
dissolved-to-total measurements is 0.943 and the mean ratio for the dissolved-to-nominal is 0.917. A
third series of static tests was conducted by SAIC and the mussel (Mytilus sp.) test was the only
successful test. Again the tests were conducted as three replicate tests without UV light and a fourth with
UV light. The mean test ratio for dissolved-to-total copper was 0.863 and the dissolved-to-nominal mean
test ratio was 0.906.
The summer flounder (Paralichthys dentatus) was exposed to copper in laboratory water for 96
hours in a static test (CH2MHill 1999a). The water was collected from Narragansett Bay and diluted with
laboratory reverse osmosis water to dilute the solution to 22 ppt salinity. Three tests were run with
copper concentrations measured at the start of the tests as total recoverable and dissolved copper. Five
exposure concentrations were used to conduct the tests. Only the two lowest concentrations were used to
derive ratios for dissolved-to-total and dissolved-to-nominal copper mean ratios. These concentrations
were at the approximate 500 (xg/L or lower concentrations, and are in the range of most copper
concentrations routinely tested in the laboratory. The mean dissolved-to-total and dissolved-to-nominal
ratios were 0.947 and 0.836, respectively.
Three 48-hour static tests were conducted with the blue mussel (Mytilus edulis) in water from the
E-3

-------
same source and treated in the same manner as the summer flounder tests (CH2MHill 1999b). Salinity
was diluted to 20 ppt. Exposures were made at eight concentrations of copper and total and dissolved
copper concentrations were measured only at the start of the tests. Mean ratios for the dissolved-to-total
and disso1ved-to-nominal copper were calculated by combining the ratios calculated for each of the test
concentrations. The mean dissolved-to-total and dissolved-to-nominal ratios were 0.979 and 0.879,
respectively.
A study was conducted by the City of San Jose, CA to develop a WER for San Francisco Bay in
which copper was used as a toxicant and the concentrations used in the laboratory exposures were
measured as total and dissolved copper (Environ. Serv. Dept., City of San Jose 1998). Mussels and the
purple sea urchin (Strongylocentrotus purpuratus) were used as the test organisms. Tests were conducted
in filtered natural sea water from San Francisco Bay that was diluted to a salinity of 28 ppt. The mussel
test was of 48-hour duration and the purple sea urchin test was of 96-hour duration. Five concentrations
of copper were used in the toxicity tests with the concentrations measured at the start of each test.
(During each test, a single concentration of copper was measured at the termination of the test and this
value was not used in the calculations.) Twenty-two tests were conducted during a 13-month period with
the mussel and two tests were conducted with the purple sea urchin. The mean dissolved-to-total and
dissolved-to-nominal ratios for the mussel tests were 0.836 and 0.785, respectively. The mean dissolved-
to-total and dissolved-to-nominal ratios for the purple sea urchin were 0.883 and 0.702, respectively.
For some of the tests, control concentrations had measured concentrations of total and dissolved
copper. These values were not used to calculate ratios for dissolved-to-total and dissolved-to-nominal
copper concentrations. All mean ratios were calculated as the arithmetic mean and not as a geometric
mean of the available ratios. When the data are normally distributed, the arithmetic mean is the
appropriate measure of central tendency (Parkhurst 1998) and is a better estimator than the geometric
mean. All concentrations of copper used to calculate ratios should be time-weighted averages (Stephan
1995). In all instances of data used to calculate ratios, the concentrations were identical to time-weighted
values because either only one value was available or if two were available they were of equal weight.
Based on the information presented above the overall ratio for correcting total copper
concentrations to dissolved copper concentrations is 0.909 based upon the results of six sets of studies.
This is comparable to its equivalent factor in freshwater, which is 0.960 ± 0.037 (Stephan 1995). When it
is necessary to convert nominal copper concentrations to dissolved copper concentrations the conversion
factor is 0.838 based upon the same studies. The means of both conversion factors have standard
deviations of less than ten percent of the means (Table 1).
E-4

-------
Table E-l. Summary of Saltwater Copper Ratios
Species
Mean Dissolved-to-
Total Ratio
Mean Dissolved-to-
Nominal Ratio Reference
Coot clam,
Mulinia lateralis
Summer flounder,
Paralichthys dentatus
Blue mussel,
Mytilus sp
Blue mussel,
Mytilus edulis
Blue mussel,
Mytilus sp
Purple sea urchin,
Strongylocentrotus
purpuratus
0.943
0.947
0.863
0.979
0.836
0.883
0.917
0.836
0.906
0.879
0.785
0.702
SAIC 1993
CH2MHill 1999a
SAIC 1993
CH2MHill 1999b
Environ. Serv. Dept.,
City of San Jose 1998
Environ. Serv. Dept.,
City of San Jose 1998
Arithmetic Mean
Standard Deviation
0.909
±0.056
0.838
±0.082
E-5

-------
References
CH2MHH1. 1999a. Bioassay report: Acute toxicity of copper to summer flounder (Paralichthys dentatus). Final
report prepared for U.S. Navy. November 1999. CH2MHH1, Norfolk, Virginia. 26 p.
CH2MHH1. 1999b. Bioassay report: Acute toxicity of copper to blue mussel (Mytilus edulis). Final report prepared
forU.S. Navy. November 1999. CH2MHH1, Norfolk, Virginia. 41 p.
Environmental Services Department, City of San Jose. 1998. Development of a site-specific water quality criterion
for copper in south San Francisco Bay. Environmental Services Department, City of San Jose, San Jose/Santa Clara
Water Pollution Control Plant, 4245 Zanker Road, San Jose, CA. 171 pp. May.
Lussier, S.M., W.S. Boothman, S. Poucher, D. Champlin and A. Helmsteter. 1995. Derivation of conversion factors
for dissolved saltwater aquatic life criteria for metals. Draft report to the U.S. EPA, Office of Water. U.S. EPA,
Narragansett, RI. March 31, 1995.
Parkhurst, D.F. 1998. Arithmetic versus geometric means for environmental concentration data. Environ. Sci.
Technol./News. 32:92A-95A.
Prothro, M. 1993. Memorandum concerning "Office of Water Policy and Technical Guidance on Interpretation and
Implementation of Aquatic Life Metals Criteria." October 1.
SAIC. 1993. Toxicity testing to support the New York/New Jersey Harbor site-specific copper criteria study. Final
Report to U.S. EPA, Office of Wastewater Enforcement and Compliance (Contract No. 68-C8-0066. Work
Assignment C-4-94). Science Applications International Corporation, Narragansett, RI.
Stephan, C.E. 1995. Derivation of conversation factors for the calculation of dissolved freshwater aquatic life criteria
for metals. Report. March 11, 1995. U.S. EPA, Duluth, MN.
E-6

-------
Appendix F. BLM Input Data and Notes

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
LUVA01S
1.7158
290
25
6.57
124.8
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5
LUVA02S
3.0893
290
25
7.29
259.2
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5
LUVA03S
2.9895
290
25
8.25
480
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5
CADE01F
28.0060
44.9
15
7.7
1920

10
13.1965
2.911001
1.27
0.56
3.32
1.2
42.7
0.0003
1,2,3,6,7,8
CADE02F
27.1187
44.9
15
7.7
1344

10
13.1965
2.911001
1.27
0.56
3.32
1.2
42.7
0.0003
1,2,3,6,7,8
JUPL01F
0.1732
21
15
7.20
14.4

10
6.0583
1.7462
4.5302
0.7
2.8706
5.468
26
0.0003
1,3,6,7,9,10
LIVI01F
0.0642
21
15
7.2
7.68

10
6.0583
1.7462
4.5302
0.7
2.8706
5.468
26
0.0003
1,3,6,7,9,10
PHIN01F
0.5126
44.9
15
7.7
39.36

10
13.1965
2.911001
1.27
0.56
3.32
1.2
42.7
0.0003
1,2,3,6,7,8
PHIN02F
0.3980
44.9
15
7.7
35.52

10
13.1965
2.911001
1.27
0.56
3.32
1.2
42.7
0.0003
1,2,3,6,7,8
ACPE01S
0.1634
96
25
8.35
25.92
0.5
10
15.8434
13.728
29.734
2.3762
92.159
2.1544
102
0.0003
1,2,3,4,6,7,20
ACPE02S
0.2150
68
25
8.35
27.84
0.5
10
11.2224
9.724
21.061
1.6831
65.279
1.526
108
0.0003
1,2,3,4,6,7,20
UTIM01S
10.0781
39
23
7.4
82.56
0.5
10
6.43638
5.577
12.079
0.9653
37.439
0.8752
32.5
0.0003
1,2,3,4,6,11
UTIM02S
10.2894
90
23
7.6
191.04
0.5
10
13.9716
12.11764
26.253
2.098
81.372
1.9022
65
0.0003
1,2,3,4,12
UTIM03S
1.5125
92
25
8.1
72.96
0.5
10
29.0614
4.73839
30.798
1.6408
46.006
32.716
77
0.0003
1,2,3,4,6,7,53
UTIM04S
1.6461
86
25
8.2
81.6
0.5
10
27.1661
4.429364
28.79
1.5338
43.005
30.583
78
0.0003
1,2,3,4,6,7,53
UTIM05S
0.5932
90
25
8
39.36
0.5
10
28.4296
4.635381
30.129
1.6052
45.006
32.005
78
0.0003
1,2,3,4,6,7,53
UTIM06S
1.8845
90
24
8.2
75.84
0.5
10
14.8532
12.87
13.938
1.1138
43.199
1.0099
99
0.0003
1,2,3,4,5,6,7
UTIM07S
1.4506
90
25
7.9
69.12
0.5
10
28.4296
4.635381
30.129
1.6052
45.006
32.005
99
0.0003
1,2,3,4,6,7,53
UTIM08S
1.0813
86
25
7.9
36.48
0.5
10
14.193
12.298
13.318
1.0643
41.279
0.965
59
0.0003
1,2,3,4,5,6,7
CEDU01S
0.1332
52
24.5
7.5
18.24
1.1
10
15.2833
3.371316
1.5
0.57
3.8
1.4
55
0.0003
1,2,3,6,7,8
CEDU02S
0.1109
52
24.5
7.5
16.32
1.1
10
15.2833
3.371316
1.5
0.57
3.8
1.4
55
0.0003
1,2,3,6,7,8
CEDU03S
0.0909
45
25
7.72
25
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU04S
0.0484
45
25
7.72
17
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU05S
0.1266
45
25
7.72
30
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU06S
0.0847
45
25
7.72
24
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU07S
0.1114
45
25
7.72
28
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU08S
0.1433
45
25
7.72
32
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU09S
0.0788
45
25
7.72
23
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU10S
0.0625
45
25
7.72
20
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU11S
0.0576
45
25
7.72
19
1.5
10
11.0991
4.2075
9.5
1.6
46
34
39.7
0.0003
1,2,6,7,16
CEDU12S
0.0262
94.1
25
8.15
26
2
10
23.2094
8.79835
5.2449
1.6
20.054
6.1705
69.6
0.0003
1,2,6,7,17
CEDU13S
0.0194
94.1
25
8.15
21
2
10
23.2094
8.79835
5.2449
1.6
20.054
6.1705
69.6
0.0003
1,2,6,7,17
CEDU14S
0.0277
94.1
25
8.15
27
2
10
23.2094
8.79835
5.2449
1.6
20.054
6.1705
69.6
0.0003
1,2,6,7,17
F-1

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
CEDU15S
0.0454
94.1
25
8.15
37
2
10
23.2094
8.79835
5.2449
1.6
20.054
6.1705
69.6
0.0003
1,2,6,7,17
CEDU16S
0.0395
94.1
25
8.15
34
2
10
23.2094
8.79835
5.2449
1.6
20.054
6.1705
69.6
0.0003
1,2,6,7,17
CEDU17S
0.0551
179
25
8.31
67
2.3
10
50.1069
13.12323
14.32
2.4
22.673
10.979
140.1
0.0003
1,2,6,7,18
CEDU18S
0.0211
179
25
8.31
38
2.3
10
50.1069
13.12323
14.32
2.4
22.673
10.979
140.1
0.0003
1,2,6,7,18
CEDU19S
0.0745
179
25
8.31
78
2.3
10
50.1069
13.12323
14.32
2.4
22.673
10.979
140.1
0.0003
1,2,6,7,18
CEDU20S
0.0806
179
25
8.31
81
2.3
10
50.1069
13.12323
14.32
2.4
22.673
10.979
140.1
0.0003
1,2,6,7,18
CEDU21S
0.0382
97.6
25
8
28
2
10
24.0727
9.1256
5.44
1.6
20.8
6.4
74.2
0.0003
1,2,6,7,17
CEDU22S
0.1566
182
25
8
84
2.3
10
50.9467
13.34317
14.56
2.4
23.053
11.163
144.3
0.0003
1,2,6,7,18
CEDU23S
0.0702
57.1
25
8.18
12.864
0.5
10
9.42352
8.1653
17.685
1.4133
54.815
1.2814
81
0.0003
1,2,3,4,6,7,20
CEDU24R
0.0535
80
20
7.6
5.5396825
0.5
10
13.2028
11.44
24.778
1.9801
76.799
1.7953
53
0.0003
1,2,6,7,20,21
DAMA01S
0.0256
39
20
7.8
8.736

10
10.9867
2.7776
5.8136
0.7
7.9394
7.7684
51
0.0003
1,2,3,6,7,9,10
DAMA02S
0.0364
39
20
7.8
11.232

10
10.9867
2.7776
5.8136
0.7
7.9394
7.7684
51
0.0003
1,2,3,6,7,9,10
DAMA03S
0.0170
38
20
7.79
6.336

10
10.7129
2.7203
5.7423
0.7
7.6578
7.6406
50
0.0003
1,2,3,6,7,9,10
DAMA04S
0.0293
38
20
7.79
9.504

10
10.7129
2.7203
5.7423
0.7
7.6578
7.6406
50
0.0003
1,2,3,6,7,9,10
DAMA05S
0.2076
39
20
6.9
11.232

10
10.9867
2.7776
5.8136
0.7
7.9394
7.7684
30
0.0003
1,2,3,6,7,9,10
DAMA06S
0.0911
39
20
6.9
6.432

10
10.9867
2.7776
5.8136
0.7
7.9394
7.7684
30
0.0003
1,2,3,6,7,9,10
DAMA07S
0.0355
26
20
7.6
8.736

10
7.4273
2.0327
4.8867
0.7
4.2786
6.107
24
0.0003
1,2,3,6,7,9,10
DAMA08S
0.0140
27
20
7.7
4.992

10
7.7011
2.09
4.958
0.7
4.5602
6.2348
24
0.0003
1,2,3,6,7,9,10
DAMA09S
0.6284
170
20
7.8
39.552
0.5
10
27.9433
24.23527
52.507
4.1961
162.74
3.8045
115
0.0003
3,4,22,23
DAMA10S
0.0656
170
20
7.8
10.08
0.5
10
27.9433
24.23527
52.507
4.1961
162.74
3.8045
115
0.0003
3,4,22,23
DAMA11S
0.1963
170
20
7.8
19.776
0.5
10
27.9433
24.23527
52.507
4.1961
162.74
3.8045
115
0.0003
3,4,22,23
DAMA12S
0.1457
170
20
7.8
16.608
0.5
10
27.9433
24.23527
52.507
4.1961
162.74
3.8045
115
0.0003
3,4,22,23
DAMA13S
1.4067
170
20
7.8
67.872
0.5
10
27.9433
24.23527
52.507
4.1961
162.74
3.8045
115
0.0003
3,4,22,23
DAMA14S
0.3981
170
20
7.8
30.048
0.5
10
27.9433
24.23527
52.507
4.1961
162.74
3.8045
115
0.0003
3,4,22,23
DAMA15S
0.0166
109.9
21
6.93
6.816
2.4
10
40.0
2.43
85.1
1.23
10
106
12.5
0.0003
1,2,3,6,7,24
DAMA16S
0.0308
109.9
21
6.93
15.744
3.4
10
40.0
2.43
85.1
1.23
10
106
12.5
0.0003
1,2,3,6,7,24
DAMA17S
0.0407
109.9
21
7.43
38.304
3.4
10
40.0
2.43
85.1
1.23
10
106
13.875
0.0003
1,2,3,6,7,19,24
DAMA18S
0.0228
109.9
21
7.43
17.952
2.4
10
40.0
2.43
85.1
1.23
10
106
13.875
0.0003
1,2,3,6,7,19,24
DAMA19S
0.0115
109.9
21
7.82
18.144
2.4
10
40.0
2.43
85.1
1.23
10
106
14.5
0.0003
1,2,3,6,7,19,24
DAMA20S
0.0196
109.9
21
7.82
38.112
3.4
10
40.0
2.43
85.1
1.23
10
106
14.5
0.0003
1,2,3,6,7,19,24
DAMA21S
0.0932
109.9
21
6.93
44.16
4.4
10
40.0
2.43
85.1
1.23
10
106
12.5
0.0003
1,2,3,6,7,24
DAMA22S
0.1114
109.9
21
6.93
69.024
6.1
10
40.0
2.43
85.1
1.23
10
106
12.5
0.0003
1,2,3,6,7,24
DAMA23S
0.0475
109.9
21
7.43
54.912
4.4
10
40.0
2.43
85.1
1.23
10
106
13.875
0.0003
1,2,3,6,7,19,24
DAMA24S
0.0298
109.9
21
7.82
65.088
4.4
10
40.0
2.43
85.1
1.23
10
106
14.5
0.0003
1,2,3,6,7,19,24
F-2

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
DAMA25S
0.1330
52
18.2
7.8
24.96
1.1
10
14
3.5
12
2.9
23
11
45
0.0003
1,2,3,6,7,9,25
DAMA26S
0.1078
105
20.3
7.9
28.8
1.1
10
29
6.8
29
5.3
57
21
79
0.0003
1,2,3,6,7,9,25
DAMA27S
0.1239
106
19.7
8.1
36.48
1.1
10
29
6.8
29
5.3
57
21
82
0.0003
1,2,3,6,7,9,25
DAMA28S
0.1807
207
19.9
8.3
66.24
1.1
10
58
13
62
8.2
127
40
166
0.0003
1,2,3,6,7,9,25
DAMA29S
0.0077
7.1
24
8.55
4.608
0.5
10
1.15182
1.027387
3.5102
2.8052
6.8159
2.5434
56
0.0003
1,2,3,4,6,7,56
DAMA30S
0.3257
20.6
24
6.97
7.104
0.5
10
3.39973
2.9458
2.5478
2.1356
19.776
1.9363
60
0.0003
1,2,3,4,6,7,56
DAMA31S
0.0175
23
24
8.52
6.24
0.5
10
3.79581
3.289
2.8446
2.3845
22.08
2.1619
64
0.0003
1,2,3,4,6,7,56
DAPC01S
0.0101
48
18
8.03
10.944
2.288
10
14.1077
3.111984
1.36
0.57
3.55
1.25
42
0.0003
1,2,3,6,7,15,26
DAPC02S
0.0061
48
18
8.03
8.6976
2.816
10
14.1077
3.111984
1.36
0.57
3.55
1.25
42
0.0003
1,2,3,6,7,15,26
DAPC03S
0.0051
48
18
8.01
6.9504
2.728
10
14.1077
3.111984
1.36
0.57
3.55
1.25
44
0.0003
1,2,3,6,7,15,26
DAPC04S
0.0066
44
18
8.04
10.368
3.08
10
12.932
2.852652
1.24
0.57
3.25
1.15
42
0.0003
1,2,3,6,7,15,26
DAPC05S
0.1033
31
18
6.66
53.184
12.2094
10
7.37407
3.063455
1.6792
0.5
6.3292
1.2917
27
0.0003
1,2,3,6,7,27,28
DAPC06S
0.0576
29
18
6.97
53.088
11.3373
10
6.89832
2.865813
1.5708
0.5
5.9208
1.2083
27
0.0003
1,2,3,6,7,27,28
DAPC07S
0.0334
28
18
7.2
51.168
11.3373
10
6.66045
2.766992
1.5167
0.5
5.7167
1.1667
22
0.0003
1,2,3,6,7,27,28
DAPC08S
0.0334
88
18
7.01
93.312
24.4188
10
20.9464
8.5194
16.466
1.8787
22.629
18.986
20
0.0003
1,2,3,6,7,27,29
DAPC09S
0.0230
100
18
7.55
191.04
29.6514
10
23.9296
9.4686
21.207
2.1631
25.98
23.28
20
0.0003
1,2,3,6,7,27,29
DAPC10S
0.0866
82
18
6.99
204.48
27.9072
10
19.4548
8.0448
14.095
1.7365
20.953
16.84
18
0.0003
1,2,3,6,7,27,29
DAPC11S
0.0569
84
18
7.01
158.4
27.9072
10
19.952
8.203
14.885
1.7839
21.512
17.555
17
0.0003
1,2,3,6,7,27,29
DAPC12S
0.0108
16
18
7.39
34.08
11.6124
10
4.13844
1.379481
0.16
0.3
6.72
0.32
11
0.0003
1,2,3,6,7,27,28
DAPC13S
0.0187
151
18
7.76
75.648
12.5801
10
36.7872
14.39533
10.786
1.4
62.018
19.684
44
0.0003
1,2,3,6,7,27,28
DAPC14S
0.0069
96
18
8.1
108.48
27.0956
10
22.0888
9.939946
6.8571
1.4
19.911
4.2667
91
0.0003
1,2,3,6,7,27,28
DAPC15S
0.0148
26
18
7.24
73.344
24.1925
10
7.37925
1.844812
0.26
0.3
11.624
2.6
4
0.0003
1,2,3,6,7,27,28
DAPC16S
0.0730
84
18
7.08
81.312
12.5801
10
20.4644
8.008
6
1.4
34.5
10.95
13
0.0003
1,2,3,6,7,27,28
DAPC17S
0.0822
92
18
7.22
176.64
20.3217
10
22.4134
8.770667
6.5714
1.4
37.786
11.993
19
0.0003
1,2,3,6,7,27,28
DAPC18S
0.0065
47
18
8.03
8.928
2.728
10
13.8137
3.047151
1.33
0.57
3.47
1.23
42.5
0.0003
1,2,3,6,7,15,26
DAPC19S
0.0130
97
18
8.03
17.088
2.728
10
34
2.9
1.3
0.57
51.3
1.2
42.5
0.0003
1,2,3,6,7,15,30
DAPC20S
0.0171
147
18
8.03
22.752
2.728
10
54
2.9
1.3
0.57
99.3
1.2
42.5
0.0003
1,2,3,6,7,15,30
DAPC21S
0.0175
247
18
8.03
26.208
2.728
10
94
2.9
1.3
0.57
147.3
1.2
42.5
0.0003
1,2,3,6,7,15,30
DAPC22S
0.0311
97
18
8.03
24.192
2.728
10
13.6
15.2
1.3
0.57
51.3
1.2
42.5
0.0003
1,2,3,6,7,15,30
DAPC23S
0.0376
147
18
8.03
24.096
2.728
10
13.6
27.5
1.3
0.57
99.3
1.2
42.5
0.0003
1,2,3,6,7,15,30
DAPC24S
0.0477
247
18
8.03
24.096
2.728
10
13.6
51.9
1.3
0.57
147.3
1.2
42.5
0.0003
1,2,3,6,7,15,30
SCSP01S
0.1224
52
24.5
7.5
17.28
1.1
10
15.2833
3.371316
1.47
0.57
3.84
1.36
55
0.0003
1,2,3,6,7,8
GAPS01F
0.1347
44.9
15
7.7
21.12
1.1
10
13.1965
2.911001
1.27
0.57
3.32
1.17
42.7
0.0003
1,2,3,6,7,8
GAPS02F
0.1035
44.9
15
7.7
18.24
1.1
10
13.1965
2.911001
1.27
0.57
3.32
1.17
42.7
0.0003
1,2,3,6,7,8
F-3

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
HYAZ01S
0.2206
290
25
6.23
16.32
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5,13
HYAZ02S
0.1575
290
25
7.51
23.04
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5,13
HYAZ03S
0.3502
290
25
8.38
83.52
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5,13
HYAZ04S
0.0898
20.5
21
7.15
23.328
2.8
10
5.1
1.9
5.3
0.8
9.3
10.0
6.7
0.0003
3,31
HYAZ05S
0.0868
20.5
21
7.15
22.848
2.8
10
5.1
1.9
5.3
0.8
9.3
10.0
6.7
0.0003
3,31
HYAZ06S
0.2623
20.6
21
7.14
7.872
0.5
10
5.3
1.8
5.5
0.8
7.0
9.7
11.0
0.0003
3,31
HYAZ07S
0.3754
20.6
21
7.14
9.6
0.5
10
5.3
1.8
5.5
0.8
7.0
9.7
11.0
0.0003
3,31
ACLY01S
29.6273
42
18.5
7.0
7968
1.1
10
12.3442
2.722986
1.3
0.57
3.4
1.2
47
0.0003
1,2,3,6,7,8
CHDE01S
26.3192
44
20
7.40
709.44
0.5
10
6.99
6.06
13.1
1.05
40.7
0.951
32.5
0.0003
1,2,3,4,32,33
SCPL01S
4.2091
167
22
7.6
153.6
0.5
10
27.5609
23.881
51.724
4.1335
160.32
3.7478
115
0.0003
1,2,3,4,6,7,20
ONAP01S
1.3372
169
12
8
67.2
0.5
10
27.891
24.167
52.344
4.183
162.24
3.7927
117
0.0003
1,2,3,4,6,7,20
ONCL01S
1.4620
169
12
8.1
76.8
0.5
10
27.891
24.167
52.344
4.183
162.24
3.7927
117
0.0003
1,2,3,4,6,7,20
ONCL02S
0.8147
169
12
8.25
57.6
0.5
10
27.891
24.167
52.344
4.183
162.24
3.7927
117
0.0003
1,2,3,4,6,7,20
ONCL03F
4.0100
205
13.7
7.73
367
3.3
10
49.8
19.6
4
0.64
10
0.44
178
0.0003
1,2,6,7,34
ONCL04F
1.9796
69.9
13.7
8.54
186
1.5
10
18.4
5.8
1.405
0.2248
3.5126
0.1546
174
0.0003
1,2,6,7,35
ONCL05F
0.4939
18
13.7
8.07
36.8
0.75
10
4.8
1.5
0.3618
0.0579
0.9045
0.0398
183
0.0003
1,2,6,7,35
ONCL06F
2.3421
204
13.7
7.61
232
3.3
10
64.7
10.3
4.1005
0.6561
10.251
0.4511
77.9
0.0003
1,2,6,7,35
ONCL07F
6.7006
83
13.7
7.4
162
1.7
10
20.4
7.8
1.6683
0.2669
4.1709
0.1835
70
0.0003
1,2,6,7,35
ONCL08F
1.5177
31.4
13.7
8.32
73.6
0.94
10
7.9
2.7
0.6312
0.101
1.5779
0.0694
78.3
0.0003
1,2,6,7,35
ONCL09F
0.3903
160
13.7
7.53
91
2.8
10
57.5
4.0
3.2161
0.5146
8.0402
0.3538
26.0
0.0003
1,2,6,7,35
ONCL10F
0.3737
74.3
13.7
7.57
44.4
1.5
10
24.7
3.1
1.4935
0.239
3.7337
0.1643
22.7
0.0003
1,2,6,7,35
ONCL11F
0.1465
26.4
13.7
7.64
15.7
0.87
10
6.0
2.8
0.5307
0.0849
1.3266
0.0584
20.1
0.0003
1,2,6,7,35
ONGO01F
1.6934
83.1
7.15
7.63
137.28
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONGO02F
0.4452
83.1
7.15
7.63
83.52
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONGO03F
4.2106
83.1
7.15
7.63
191.04
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONKI01R
5.5651
33
13.5
7.29
157.44
2.496
10
8.77741
2.698479
7.3188
1.15
6.1426
6.8124
29
0.0003
1,2,3,6,7,27,36
ONKI02F
0.4559
25
12
7.30
31.68
1.3
10
6.8
1.8
5.0
0.6
4.2
6
24
0.0003
3,37
ONKI03F
1.0338
20
9.4
7.29
44.16
1.3
10
5.7845
1.6889
4.4589
0.7
2.589
5.3402
22
0.0003
1,2,3,6,7,10,38
ONKI04F
0.1889
31.1
13.3
7.30
49
3.2
10
8.01999
2.695987
5.12
0.653
4
4.5
29.6
0.0003
1,2,6,7,39
ONKI05F
0.2029
31.1
13.3
7.30
51
3.2
10
8.01999
2.695987
5.12
0.653
4
4.5
29.6
0.0003
1,2,6,7,39
ONKI06F
0.1710
31.6
15.7
7.50
58
3.2
10
8.14893
2.739331
5.12
0.653
3.5
4.2
30.4
0.0003
1,2,6,7,39
ONKI07F
0.5633
31
15.3
7.20
78
3.2
10
7.99421
2.687318
5.12
0.653
2.3
3.1
29.7
0.0003
1,2,6,7,39
ONMY01S
2.0313
169
12
8.2
105.6
0.5
10
27.891
24.167
52.344
4.183
162.24
3.7927
117
0.0003
1,2,3,4,6,7,20
ONMY02S
0.8481
169
12
7.95
48
0.5
10
27.891
24.167
52.344
4.183
162.24
3.7927
117
0.0003
1,2,3,4,6,7,20
F-4

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
ONMY03S
1.1217
169
12
7.95
57.6
0.5
10
27.891
24.167
52.344
4.183
162.24
3.7927
117
0.0003
1,2,3,4,6,7,20
ONMY04R
0.1566
44.1
11.5
7.7
40
2
10
9.07
4.1
4.75
1.02
3.3
1.56
49.7
0.0003
40
ONMY05R
0.1284
44.6
11.5
7.8
19
0.99
10
7.37
6.1
6.24
0.8
1.31
3.82
53.1
0.0003
40
ONMY06R
0.0601
38.7
12
7.62
3.4
0.33
10
2.37
8.65
13.7
0.15
0.36
20.3
40
0.0003
51
ONMY07R
0.1587
39.3
12
7.61
8.1
0.36
10
14.1
1.8
13.2
0.1
0.36
19.9
41.7
0.0003
51
ONMY08R
0.2912
89.5
12
8.21
17.2
0.345
10
15
11.85
10.05
1
0.36
6.73
97.5
0.0003
51
ONMY09R
0.5590
89.67
12
8.15
32
0.345
10
28.9
3.15
32.5
0.5
0.36
45.2
97.25
0.0003
51
ONMY10F
0.4321
23
12.2
7.1
26.88
1.4
10
6.1
1.8
4.4
0.4
5.8
6
22
0.0003
3,37
ONMY11F
0.1791
23
12.2
7.1
16.32
1.4
10
6.1
1.8
4.4
0.4
5.8
6
22
0.0003
3,37
ONMY12F
0.1193
23
12.2
7.4
17.28
1.3
10
6.8
1.8
5.0
0.6
4.2
6
22
0.0003
3,37
ONMY13F
0.5189
23
12.2
7.1
27.84
1.3
10
6.8
1.8
5.0
0.6
4.2
6
22
0.0003
3,37
ONMY14F
0.6489
194
12.8
7.84
169
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY15F
0.1457
194
12.8
7.84
85.3
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY16F
0.1393
194
12.8
7.84
83.3
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY17F
0.2120
194
12.8
7.84
103
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY18F
1.9944
194
12.8
7.84
274
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY19F
0.3390
194
12.8
7.84
128
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY20F
1.2327
194
12.8
7.84
221
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY21F
0.6126
194
12.8
7.84
165
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY22F
0.9384
194
12.8
7.84
197
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY23F
5.8066
194
12.8
7.84
514
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY24F
1.5335
194
12.8
7.84
243
3.3
10
55.1
13.7
4
0.64
10
0.44
174
0.0003
1,2,6,7,34
ONMY25F
0.0656
9.2
15.5
6.96
2.688
0.5
10
2.3
0.7
2
0.2
4.6
2.1
11
0.0003
3,41
ONMY26F
0.4233
31
15.3
7.2
68
3.2
10
7.99421
2.687318
5.12
0.653
2.3
3.1
29.7
0.0003
1,2,6,7,39
ONMY27F
0.1243
36.1
11.4
7.6
18
1.31
10
4.03
7.13
1.56
0.26
1.49
0.88
36.6
0.0003
40
ONMY28F
1.3908
36.2
11.5
6.1
12
1.36
10
3.93
7.27
1.57
0.28
1.47
0.87
8.5
0.0003
40
ONMY29F
0.6969
20.4
11.7
7.5
5.7
0.15
10
3.13
2.77
2.62
0.25
0.36
1.48
23
0.0003
40
ONMY30F
0.3174
45.2
11.7
7.7
35
1.23
10
9.7
4.43
5.33
0.97
3.41
1.47
50
0.0003
40
ONMY31F
1.4750
45.4
11.8
6.3
18
1.22
10
9.7
4.43
5.02
0.98
3.37
1.37
10.9
0.0003
40
ONMY32F
0.7476
41.9
12.3
7.9
17
0.33
10
6.6
5.97
5.89
0.63
1.11
3.37
48.3
0.0003
40
ONMY33F
1.9559
214
7.64
7.94
96.96
0.27
10
49.4
24.1
10.3
1.75
18.9
5.28
198
0.0003
1,2,3,6,7,54,55
ONMY34F
5.7290
220
7.74
7.92
295.68
0.36
10
51.2
25.5
8.36
2.1
24
4.64
197
0.0003
1,2,3,6,7,54,55
ONMY35F
6.1696
105
7.77
7.82
89.28
0.1
10
23.1
11.8
3.54
3.22
17.1
2.91
94.1
0.0003
1,2,3,6,7,54,55
ONMY36F
2.7375
98.2
8.49
7.89
34.464
0.045
10
22.3
11.2
3.58
0.9
11.5
2.85
87.9
0.0003
1,2,3,6,7,54,55
F-5

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
ONMY37F
2.4870
104
16.3
7.83
52.224
0.28
10
22.4
11.4
3.76
2.72
12.4
3.01
97.6
0.0003
1,2,3,6,7,54,55
ONNE01F
3.7268
83.1
7.15
7.63
182.4
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE02F
4.2652
83.1
7.15
7.63
192
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE03F
0.6317
83.1
7.15
7.63
96
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE04F
0.8220
83.1
7.15
7.63
105.6
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE05F
1.3021
83.1
7.15
7.63
124.8
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE06F
1.9540
83.1
7.15
7.63
144
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE07F
4.8185
83.1
7.15
7.63
201.6
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE08F
2.7735
83.1
7.15
7.63
163.2
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE09F
3.7268
83.1
7.15
7.63
182.4
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONNE10F
6.3927
83.1
7.15
7.63
230.4
2.58
10
22.3428
6.313221
10.259
7.5024
25.1
9.994
62.5
0.0003
1,2,3,6,7,52
ONTS01F
0.2311
23
12.2
7.4
24.96
1.3
10
6.8
1.8
5.0
0.6
4.2
6
22
0.0003
3,37
ONTS02F
0.1300
23
12.2
7.4
18.24
1.3
10
6.8
1.8
5.0
0.6
4.2
6
22
0.0003
3,37
ONTS03F
0.8021
23
12.2
7.1
36.48
1.4
10
6.1
1.8
4.4
0.4
5.8
6
22
0.0003
3,37
ONTS04F
0.4226
23
12.2
7.1
24.96
1.3
10
6.8
1.8
5.0
0.6
4.2
6
22
0.0003
3,37
ONTS05F
0.4110
13
12
7.15
9.792
0.5
10
2.14546
1.859
4.0264
0.3218
12.48
0.2917
12
0.0003
1,2,3,4,6,7,20
ONTS06F
1.1139
46
12
7.55
23.136
0.5
10
7.59162
6.578
14.247
1.1386
44.159
1.0323
35
0.0003
1,2,3,4,6,7,20
ONTS07F
1.3545
182
12
8.12
79.2
0.5
10
30.0364
26.026
56.37
4.5048
174.72
4.0844
125
0.0003
1,2,3,4,6,7,20
ONTS08F
0.5851
359
12
8.49
123.264
0.5
10
59.2477
51.337
111.19
8.8858
344.64
8.0566
243
0.0003
1,2,3,4,6,7,20
ONTS09F
1.4835
36.6
12
7.71
7.4
0.055
10
6.36
4.73
4.84
0.22
0.94
2.79
40.8
0.0003
51
ONTS10F
0.9872
34.6
12
7.79
12.5
0.19
10
7.82
3.17
9.98
0.11
0.73
8.34
40.6
0.0003
51
ONTS11F
1.1667
38.3
12
7.71
14.3
0.24
10
6.33
5.1
5.27
0.6
0.99
2.96
43.6
0.0003
51
ONTS12F
2.1157
35.7
12
7.74
18.3
0.17
10
8.15
3.38
10
0.37
0.76
9.1
43.3
0.0003
51
SACO01F
4.4046
214
7.64
7.94
218.88
0.27
10
49.4
24.1
10.3
1.75
18.9
5.28
198
0.0003
1,2,3,6,7,54,55
SACO02F
3.9765
220
7.74
7.92
198.72
0.36
10
51.2
25.5
8.36
2.1
24
4.64
197
0.0003
1,2,3,6,7,54,55
SACO03F
4.5865
105
7.77
7.82
63.936
0.1
10
23.1
11.8
3.54
3.22
17.1
2.91
94.1
0.0003
1,2,3,6,7,54,55
SACO04F
3.7394
98.2
8.49
7.89
48
0.045
10
22.3
11.2
3.58
0.9
11.5
2.85
87.9
0.0003
1,2,3,6,7,54,55
SACO05F
4.3216
104
16.3
7.83
85.44
0.28
10
22.4
11.4
3.76
2.72
12.4
3.01
97.6
0.0003
1,2,3,6,7,54,55
ACAL01F
10.8390
54
10.5
7.3
137.28
1.1
10
15.0937
3.6371
6.8831
0.7
12.163
9.6854
43
0.0003
1,2,3,6,7,9,10
GIEL01S
3.7022
173
22
8.05
192
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,6,7,20
NOCR01F
29.9833
72.2
25
7.50
81216
1.5
10
17.8079
6.7507
15.26
1.6
73.841
54.15
42.5
0.0003
2,3,6,7,16,42
PIPR01S
12.7822
103
22
7.4
297.6
0.5
10
28.4667
7.773195
27.778
2.6358
29.602
53.021
65
0.0003
1,2,3,4,6,48
PIPR02S
5.7854
103
22
7.4
115.2
0.5
10
28.4667
7.773195
27.778
2.6358
29.602
53.021
65
0.0003
1,2,3,4,6,48
PIPR03S
11.1072
263
22
7.4
374.4
0.5
10
72.6868
19.84806
36.487
3.4623
77.901
130.77
65
0.0003
1,2,3,4,6,48
F-6

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
PIPR04S
1.4088
52
24.5
7.4
52.8
1.1
10
15.2833
3.371316
1.47
0.57
3.84
1.36
55
0.0003
1,2,3,6,7,8
PIPR05S
3.5374
52
24.5
7.4
81.6
1.1
10
15.2833
3.371316
1.47
0.57
3.84
1.36
55
0.0003
1,2,3,6,7,8
PIPR06S
0.1923
290
25
6.27
14.4
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5
PIPR07S
0.4486
290
25
7.14
42.24
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5
PIPR08S
0.7848
290
25
8.6
192
0.5
10
47.8602
41.47
89.821
7.178
278.4
6.5081
235
0.0003
1,2,3,4,5
PIPR09S
0.1007
19
22
7.06
4.6272
0.6
10
4.9
1.64
3.7
0.78
9.6
5.8
11.17
0.0003
3,49
PIPR10S
0.2995
19.5
22
7.25
7.872
0.4
10
5.2
1.64
5.36
0.79
2.45
8.6
12.7
0.0003
3,49
PIPR11S
0.6353
16.5
22
6.36
30.3072
3.3
10
4.1
1.54
2.82
0.76
9.4
4.7
8.46
0.0003
3,49
PIPR12S
0.3291
17
22
6.42
20.2176
3.1
10
4.2
1.56
2.74
0.74
7.4
4.6
3.4
0.0003
3,49
PIPR13S
0.4571
19
22
6.38
34.5312
4.3
10
5
1.62
7.04
0.72
10.2
12.2
7.83
0.0003
3,49
PIPR14S
0.2945
17
22
7.15
57.4368
3.4
10
4.2
1.54
2.9
1
7.4
4.7
8.74
0.0003
3,49
PIPR15S
0.0536
17
22
7.16
4.6368
0.8
10
4.5
1.46
2.68
0.78
10.9
3.8
9.3
0.0003
3,49
PIPR16S
0.1957
17.5
22
7.13
67.4688
5.1
10
4.6
1.48
2.62
0.77
10.5
3.5
8.95
0.0003
3,49
PIPR17S
0.0858
18.5
22
7.06
80.2464
10.5
10
5
1.54
2.64
0.8
10.7
3.5
8.29
0.0003
3,49
PIPR18S
0.2054
18.5
22
6.90
174.72
15.6
10
4.9
1.5
3.54
0.99
7
5.2
9.52
0.0003
3,49
PIPR19S
4.5177
173
22
8.25
278.4
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
PIPR20S
9.8196
173
22
8.1
604.8
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
PIPR21S
6.6067
173
22
8.15
384
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
PIPR22S
10.0006
173
22
7.3
374.4
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
PIPR23S
9.6130
166
5
8.05
432
0.5
10
27.3959
23.738
51.415
4.1088
159.36
3.7253
132.5
0.0003
1,2,3,4,6,7,20
PIPR24S
4.8327
159
12
8.35
285.12
0.5
10
26.2406
22.737
49.247
3.9355
152.64
3.5682
135
0.0003
1,2,3,4,6,7,20
PIPR25S
4.0277
168
22
8.3
298.56
0.5
10
27.7259
24.024
52.034
4.1583
161.28
3.7702
142.5
0.0003
1,2,3,4,6,7,20
PIPR26S
4.6547
167
32
8.45
492.48
0.5
10
27.5609
23.881
51.724
4.1335
160.32
3.7478
140
0.0003
1,2,3,4,6,7,20
PIPR27S
0.6934
45.54059
22
7.93
53.958366

10
13.4911
2.888065
1.6093
0.391
3.362
1.4181
42.037464
0.0003
43,44
PIPR28S
4.2004
45.54059
22
7.93
165.17867

10
13.4911
2.888065
91.27
0.391
3.362
143.23
42.037464
0.0003
43,44
PIPR29S
0.8415
44.53969
22
7.98
59.464322

10
13.1946
2.824591
1.6093
0.391
3.362
1.4181
42.037464
0.0003
43,44
PIPR30S
4.3543
44.53969
22
7.98
146.45842

10
13.1946
2.824591
45.98
0.391
3.362
72.324
44.039248
0.0003
43,44
PIPR31S
2.0950
44.53969
22
7.99
82.038741

10
13.1946
2.824591
1.6093
0.391
3.362
1.4181
42.53791
0.0003
43,44
PIPR32S
5.5515
45.54059
22
7.96
124.4346

10
13.4911
2.888065
1.6093
0.391
3.362
36.871
43.038356
0.0003
43,44
PIPR33S
4.5180
45.04014
22
7.79
103.759

10
13.3428
2.856328
1.6093
0.391
3.362
1.4181
46.041032
0.0003
43,44
PIPR34S
6.1264
45.04014
22
7.81
167.3225

10
13.3428
2.856328
47.589
0.391
99.42
1.4181
46.041032
0.0003
43,44
PIPR35S
7.0053
138.1231
22
7.785
120.015

10
12.892
25.75825
1.6093
0.391
3.362
72.324
43.038356
0.0003
43,44
PIPR36S
11.0638
151.1347
22
7.78
169.418

10
14.1065
28.18476
1.6093
0.391
99.42
1.4181
43.038356
0.0003
43,44
PIPR37S
7.3217
138.1231
22
8.02
268.224

10
12.892
25.75825
1.6093
0.391
3.362
1.4181
149.13291
0.0003
43,44
F-7

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
PIPR38S
9.6045
139.124
22
7.775
242.443
1.1
10
51.1778
2.779812
1.6093
0.391
99.42
1.4181
43.038356
0.0003
43,44
PIPR39S
5.5658
47.04192
22
7.78
113.3475
1.1
10
13.4268
4.010325
1.6093
0.391
3.362
1.4181
43.038356
0.0003
43,44
PIPR40S
3.7432
37.033
22
7.785
77.8764
0.88
10
11.022
3.281175
2.9887
0.391
3.362
1.4181
43.038356
0.0003
43,45
PIPR41S
6.6608
60.05352
22
7.795
128.016
1.1
10
15.2304
5.954725
1.6093
0.391
17.771
1.4181
43.038356
0.0003
43,44
PIPR42S
8.1233
76.06779
22
7.8
151.13
1.1
10
18.8376
7.413025
1.6093
0.391
32.179
1.7727
42.037464
0.0003
43,44
PIPR43S
8.3422
103.0919
22
7.805
166.624
1.1
10
25.05
10.2081
2.0691
0.391
60.036
1.7727
43.038356
0.0003
43,44
PIPR44S
7.7119
103.0919
22
7.78
163.83
1.1
10
32.064
4.010325
1.8392
0.391
58.115
1.7727
40.03568
0.0003
43,44
PIPR45S
8.9807
107.0954
22
7.79
157.48
1.1
10
18.2364
15.43368
1.6093
0.391
61.957
1.7727
43.038356
0.0003
43,44
PIPR46S
9.6110
134.1195
22
7.8
199.7075
1.1
10
32.2644
13.00318
1.6093
0.391
88.854
1.7727
43.038356
0.0003
43,44
PIPR47S
6.7076
45.04014
22
7.815
128.524
1.1
10
14.028
2.18745
1.3794
0.391
3.362
1.0636
41.036572
0.0003
43,44
PIPR48S
7.8946
46.04103
22
7.82
150.876
1.1
10
14.028
2.18745
6.2072
1.5639
5.7635
7.0906
42.037464
0.0003
43,44
PIPR49S
5.8380
45.04014
22
7.82
131.064
1.1
10
14.028
2.18745
15.173
1.5639
10.566
15.245
41.036572
0.0003
43,44
PIPR50S
6.5811
45.04014
22
7.81
160.2105
1.1
10
14.2284
2.18745
35.174
1.5639
21.613
36.162
41.036572
0.0003
43,44
PIPR51S
6.4808
44.03925
22
7.82
182.88
1.1
10
15.03
2.18745
62.992
1.5639
40.825
70.906
40.03568
0.0003
43,44
PIPR52S
5.1408
45.04014
22
7.81
180.848
1.1
10
14.4288
2.18745
101.39
1.9549
59.076
107.78
41.036572
0.0003
43,44
PIPR53S
6.3992
46.04103
22
7.81
176.784
1.1
10
14.2284
2.18745
57.015
19.158
40.825
71.97
42.037464
0.0003
43,44
PIPR54S
7.3246
189.1686
22
7.82
188.9125
1.1
10
55.11
15.79825
1.6093
0.782
152.25
1.0636
42.037464
0.0003
43,44
PIPR55S
6.0630
46.04103
22
7.865
125.603
1.1
10
14.6292
3.15965
1.3794
0.391
3.362
1.0636
42.037464
0.0003
43,44
PIPR56S
4.6526
75.0669
22
7.87
117.348
1.1
10
24.4488
5.954725
1.3794
0.391
30.739
1.0636
41.036572
0.0003
43,44
PIPR57S
4.1939
46.04103
22
7.865
114.554
1.1
10
14.4288
3.15965
19.771
0.391
12.488
18.436
41.036572
0.0003
43,44
PIPR58S
4.5177
74.06601
22
7.85
126.492
1.1
10
24.4488
6.07625
18.392
0.391
38.903
18.436
42.037464
0.0003
43,44
PIPR59S
6.3135
133.1186
22
7.85
172.72
1.1
10
41.082
11.6664
18.392
0.391
98.94
18.436
42.037464
0.0003
43,44
PIPR60S
5.5732
76.06779
22
7.85
167.3225
1.1
10
24.048
6.07625
47.589
0.782
58.115
52.116
43.038356
0.0003
43,44
PIPR61S
7.3483
134.1195
22
7.84
226.695
1.1
10
40.8816
11.6664
49.198
0.782
118.63
51.052
43.038356
0.0003
43,44
PIPR62S
7.7886
52.04638
22
7.96
84.201
0.3
10
12.024
4.13185
1.6093
0.391
10.566
1.7727
42.037464
0.0003
43,46
PIPR63S
9.0948
51.04549
22
7.96
97.79
0.3
10
11.2224
3.8888
2.7588
0.782
10.566
3.5453
41.036572
0.0003
43,46
PIPR64S
6.3665
50.0446
22
7.945
70.0786
0.3
10
11.022
3.767275
5.9773
1.5639
12.007
8.1542
41.036572
0.0003
43,46
PIPR65S
6.6569
51.04549
22
7.965
81.5848
0.3
10
11.2224
3.8888
11.955
2.3459
15.369
15.245
42.037464
0.0003
43,46
PIPR66S
5.6622
51.04549
22
7.96
77.4319
0.3
10
11.2224
3.767275
23.22
3.1279
21.613
30.135
41.036572
0.0003
43,46
PIPR67S
6.4605
53.04728
22
7.97
110.871
0.3
10
11.2224
3.767275
46.899
4.6918
33.62
59.207
41.537018
0.0003
43,46
PIPR68S
5.6753
53.04728
22
7.96
151.892
0.3
10
11.6232
3.8888
117.94
7.0377
68.201
141.81
42.037464
0.0003
43,46
PIPR69S
4.2260
52.04638
22
7.94
175.26
0.3
10
11.4228
3.767275
236.79
10.948
128.24
279.72
43.038356
0.0003
43,46
PIPR70S
7.4910
47.04192
25
7.82
145.288
1.1
10
13.9359
2.983276
1.6093
0.391
3.362
1.4181
42.53791
0.0003
43,44
PIPR71S
5.3514
47.04192
20
7.82
111.76
1.1
10
13.9359
2.983276
1.6093
0.391
3.362
1.4181
43.038356
0.0003
43,44
F-8

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
PIPR72S
2.7296
47.04192
15
7.82
79.1845
1.1
10
13.9359
2.983276
1.6093
0.391
3.362
1.4181
42.53791
0.0003
43,44
PIPR73S
1.3695
47.04192
10
7.82
60.0075
1.1
10
13.9359
2.983276
1.6093
0.391
3.362
1.4181
42.53791
0.0003
43,44
PIPR74S
9.3865
140.1249
22
8.03
370.078
0.3
10
29.058
12.03098
25.059
4.3008
60.036
25.881
98.087416
0.0003
43,46
PIPR75S
12.6630
88.0785
22
7.965
292.1
0.3
10
19.038
7.04845
14.943
2.7369
37.943
17.017
63.056196
0.0003
43,46
PIPR76S
9.2347
59.05263
22
7.89
101.473
0.3
10
12.024
4.61795
9.1959
0.782
23.054
9.9268
39.034788
0.0003
43,46
PIPR77S
7.9134
41.03657
22
7.825
62.5094
0.3
10
8.2164
3.038125
7.5866
2.7369
13.928
6.3815
29.025868
0.0003
43,46
PIPR78S
6.6518
27.02408
22
7.745
42.0624
0.3
10
5.6112
1.822875
4.598
2.3459
8.6452
4.2544
23.020516
0.0003
43,46
PIPR79S
10.0742
43.03836
22
7.885
172.466
1.1
10
10.4208
2.67355
1.6093
0.782
2.8817
1.4181
42.037464
0.0003
43,44
PIPR80S
0.8019
25.0223
22
7.565
12.4333
0.3
10
6.68596
2.02764
3.4485
1.1729
4.3226
4.9634
16.014272
0.0003
43,46
PIPR81S
8.4407
107.0954
22
8.105
271.272
0.3
10
28.6924
8.631893
14.254
1.9549
19.212
16.308
80.07136
0.0003
43,46
PIPR82S
5.9596
87.0776
22
7.055
71.12
0.3
10
23.3293
7.018455
13.564
1.9549
19.212
15.954
58.051736
0.0003
43,46
PIPR83S
6.1026
85.07582
22
7.33
79.629
0.3
10
22.793
6.857111
13.794
1.9549
19.212
15.954
58.051736
0.0003
43,46
PIPR84S
6.4883
88.0785
22
7.605
99.53625
0.3
10
23.5975
7.099127
13.564
1.9549
19.212
15.954
59.052628
0.0003
43,46
PIPR85S
7.7626
87.0776
22
7.745
132.715
0.3
10
23.3293
7.018455
14.484
1.9549
18.731
15.954
59.052628
0.0003
43,46
PIPR86S
6.5085
87.0776
22
8.07
137.16
0.3
10
23.3293
7.018455
12.644
1.9549
18.731
15.954
59.052628
0.0003
43,46
PIPR87S
6.4970
87.0776
22
8.375
182.245
0.3
10
23.3293
7.018455
13.334
1.9549
18.731
15.954
59.052628
0.0003
43,46
PIPR88S
6.9041
87.0776
22
8.73
268.9225
0.3
10
23.3293
7.018455
14.254
1.9549
18.731
14.89
59.052628
0.0003
43,46
PIPR89S
8.2686
87.0776
22
8.115
188.976
0.3
10
23.3293
7.018455
12.874
1.9549
18.731
15.954
59.052628
0.0003
43,46
PIPR90S
10.1330
251.2239
22
7.2
662.559
0.3
10
67.127
20.35751
57.475
4.6918
72.524
62.397
150.1338
0.0003
43,46
PIPR91S
10.6409
252.2248
22
7.575
904.875
0.3
10
67.3945
20.43861
57.475
4.6918
70.603
62.043
164.14629
0.0003
43,46
PIPR92S
10.2715
252.2248
22
7.915
995.68
0.3
10
67.3945
20.43861
57.475
4.6918
73.484
62.043
150.1338
0.0003
43,46
PIPR93S
7.7492
251.2239
22
8.275
891.54
0.3
10
67.127
20.35751
57.475
4.6918
73.484
62.043
143.12756
0.0003
43,46
PIPR94S
10.0406
200.1784
22
8.05
757.6185
0.3
10
53.5426
16.18781
37.243
3.5188
49.47
46.798
128.11418
0.0003
43,46
PIPR95S
9.6108
140.1249
22
7.95
404.8125
0.3
10
37.4414
11.35479
22.99
2.3459
28.817
25.172
99.088308
0.0003
43,46
PIPR96S
10.2877
90.08028
22
8.045
262.128
0.3
10
24.1338
7.260471
14.254
1.9549
18.731
15.599
65.05798
0.0003
43,46
PIPR97S
2.6441
19.01695
22
7.525
20.447
0.3
10
5.08133
1.541007
3.4485
0.782
0.9606
4.9634
19.016948
0.0003
43,46
PIPR98S
3.1176
34.03033
22
7.53
23.1648
0.3
10
9.0929
2.757591
3.4485
0.782
9.6058
4.6089
20.01784
0.0003
43,46
PIPR99S
5.3898
51.04549
22
7.54
34.9885
0.3
10
13.6394
4.136386
3.4485
0.782
16.81
4.6089
21.018732
0.0003
43,46
PIPR100S
4.0158
29.02587
22
7.585
27.94
0.3
10
7.75571
2.352063
3.4485
0.782
5.2832
4.6089
22.019624
0.0003
43,46
PIPR101S
3.6791
30.02676
22
7.605
26.67
0.3
10
8.02315
2.433168
1.3794
0.782
4.3226
2.4817
23.020516
0.0003
43,46
PIPR102S
2.1414
27.02408
22
7.55
20.32
0.3
10
7.22084
2.189852
10.345
1.1729
5.2832
13.118
20.01784
0.0003
43,46
PIPR103S
3.2004
27.02408
22
7.525
26.67
0.3
10
7.22084
2.189852
20.691
1.5639
10.566
26.59
20.01784
0.0003
43,46
PIPR104S
8.2240
90.08028
22
7.995
182.88
0.3
10
24.1338
7.260471
14.254
1.9549
19.212
15.954
63.056196
0.0003
43,46
PIPR105S
5.1099
60.05352
22
8.11
96.6724
0.3
10
16.0463
4.866337
11.955
1.5639
3.8423
17.372
58.051736
0.0003
43,46
F-9

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
PIPR106S
7.4717
120.107
22
8.09
182.88
0.3
10
32.0926
9.732674
11.955
1.5639
33.62
17.372
59.052628
0.0003
43,46
PIPR107S
6.7299
180.1606
22
8.09
190.6905
0.3
10
48.1389
14.59901
11.955
1.5639
62.438
17.017
58.051736
0.0003
43,46
PIPR108S
5.7199
91.08117
22
8.125
127.0635
0.3
10
24.3369
7.380611
11.955
1.5639
19.212
15.954
59.052628
0.0003
43,46
PIPR109S
7.0631
90.08028
22
8.155
148.59
0.3
10
24.0695
7.299505
2.299
6.2557
15.85
6.027
60.05352
0.0003
43,46
PIPR110S
7.5267
93.08296
22
8.135
223.52
0.3
10
24.8718
7.542822
35.864
3.9098
27.377
49.989
62.055304
0.0003
43,46
PIPR111S
7.5035
92.08206
22
8.145
283.1465
0.3
10
24.6043
7.461717
71.728
7.4287
41.305
102.81
61.054412
0.0003
43,46
PIPR112S
6.0200
91.08117
22
8.19
150.241
0.3
10
24.402
7.341142
14.484
15.248
18.731
17.372
62.055304
0.0003
43,46
PIPR113S
7.4768
144.1284
22
8.38
644.525
0.3
10
38.5111
11.67921
34.485
3.1279
12.488
42.189
138.1231
0.0003
43,46
PIPR114S
6.9113
292.2605
22
8.27
697.5475
0.3
10
78.092
23.68284
34.485
3.1279
87.893
57.079
137.1222
0.0003
43,46
PIPR115S
6.6201
440.3925
22
8.225
752.475
0.3
10
117.673
35.68647
34.485
3.1279
175.31
41.125
133.11864
0.0003
43,46
PIPR116S
7.1813
217.1936
22
8.31
653.415
0.3
10
58.0341
17.59992
34.485
3.1279
46.588
43.253
133.11864
0.0003
43,46
PIPR117S
7.8480
218.1945
22
8.305
646.3665
0.3
10
58.3016
17.68102
6.8969
1.5639
38.903
9.5723
140.12488
0.0003
43,46
PIPR118S
6.8379
212.1891
22
8.345
939.8
0.3
10
56.6969
17.19439
103.45
7.8197
65.319
124.79
143.12756
0.0003
43,46
PIPR119S
9.6212
92.08206
22
8.125
253.365
0.3
10
24.6701
7.421814
14.254
1.9549
19.212
16.663
63.056196
0.0003
43,46
PIPR120F
0.3530
48
25
8.03
109.44
2.64
10
14.1077
3.111984
1.35
0.57
3.54
1.25
44
0.0003
1,2,3,6,7,15,26
PIPR121F
0.4196
45
25
8.04
116.16
2.64
10
13.2259
2.917485
1.27
0.57
3.33
1.17
44
0.0003
1,2,3,6,7,15,26
PIPR122F
0.2051
46
25
7.98
84.96
2.64
10
13.5198
2.982318
1.3
0.57
3.4
1.2
41
0.0003
1,2,3,6,7,15,26
PIPR123F
4.0014
30
25
6.82
418.56
10.4652
10
7.1362
2.964634
1.625
0.5
6.125
1.25
21
0.0003
1,2,3,6,7,27,28
PIPR124F
2.2409
37
25
7.28
495.36
11.3373
10
8.80131
3.656382
2.0042
0.5
7.5542
1.5417
21
0.0003
1,2,3,6,7,27,28
PIPR125F
3.3697
87
25
7.11
1522.56
31.3956
10
20.6978
8.4403
16.071
1.855
22.35
18.629
20
0.0003
1,2,3,6,7,27,29
PIPR126F
3.8346
73
25
6.94
1083.84
24.4188
10
17.2174
7.3329
10.539
1.5232
18.439
13.619
18
0.0003
1,2,3,6,7,27,29
PIPR127F
1.8591
84
25
7.07
528
14.5155
10
20.4644
8.008
6
1.4
34.5
10.95
12
0.0003
1,2,3,6,7,27,28
PIPR128F
1.2189
66
25
6.97
960.96
32.9018
10
16.0792
6.292
4.7143
1.4
27.107
8.6036
12
0.0003
1,2,3,6,7,27,28
PIPR129F
1.4826
43.9
25
7.4
88.32
2
10
12.9026
2.846168
1.24
0.57
3.24
1.14
42.4
0.0003
1,2,6,7,8,14,15
PIPR130F
0.1002
47.04192
22
8.1
27.94
1.1
10
13.9359
2.983276
1.6093
0.391
3.362
1.4181
42.53791
0.0003
43,44
PIPR131F
1.2371
243.2168
22
8.01
105.7275
1.1
10
92.7261
2.884195
47.129
0.391
3.362
143.23
43.038356
0.0003
43,44
PIPR132F
0.4681
255.7279
22
8.01
40.0558
1.1
10
14.1661
53.5752
1.6093
0.391
3.362
143.23
43.538802
0.0003
43,44
PIPR133F
0.4918
47.04192
22
8.1
64.262
1.1
10
13.9359
2.983276
47.589
0.391
3.362
72.324
43.538802
0.0003
43,44
PIPR134F
0.4459
45.04014
22
8.02
49.01565
1.1
10
13.3428
2.856328
1.6093
0.391
3.362
1.4181
43.038356
0.0003
43,44
PIPR135F
0.3741
45.04014
22
8.65
67.7164
1.1
10
13.3428
2.856328
1.6093
0.391
3.362
1.4181
47.041924
0.0003
43,44
PIPR136F
0.2142
45.54059
22
7.3
18.669
1.1
10
13.4911
2.888065
1.6093
0.391
3.362
1.4181
44.039248
0.0003
43,44
PIPR137F
0.1471
49.04371
22
6.63
6.1468
1.1
10
14.5289
3.110224
1.6093
0.391
3.362
1.4181
49.043708
0.0003
43,44
PIPR138F
0.3435
45.04014
22
7.16
20.447
1.1
10
13.3428
2.856328
1.6093
0.391
3.362
15.599
26.023192
0.0003
43,44
PIPR139F
3.2588
43.03836
22
7.93
93.36405
1.1
10
12.7498
2.72938
1.6093
0.391
3.362
1.4181
41.036572
0.0003
43,44
F-10

-------
Appendix F. BLM Table
BLM
Data Label
Model Output
Hard-
ness
(mg/L)
Model Input
Notes
Critical
Accumulation
Temp Dissolved DOC Humic Ca Mg Na K S04 CI Alkalinity S
(°C) pH LC50(|jg/L) (mg/L) Acid (%) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
PIPR140F
0.0430
45.54059
22
7.91
245.364
6.1
83.7705
13.4911
2.888065
1.6093
0.391
3.362
1.4181
44.039248
0.0003
43,47
PIPR141F
1.5807
45.04014
22
7.94
72.3392
1.1
10
13.3428
2.856328
1.6093
0.391
3.362
1.4181
43.038356
0.0003
43,44
PIPR142F
0.0359
45.04014
22
7.95
229.8065
6.1
83.7705
13.3428
2.856328
1.6093
0.391
3.362
1.4181
43.038356
0.0003
43,47
PIPR143F
0.1178
45.54059
22
7.94
195.453
3.6
72.5
13.4911
2.888065
1.6093
0.391
3.362
1.4181
44.039248
0.0003
43,47
PIPR144F
0.1195
45.04014
22
7.91
109.347
2.35
57.8723
13.3428
2.856328
1.6093
0.391
3.362
1.4181
42.037464
0.0003
43,47
PIPR145F
2.1998
44.03925
22
7.87
78.0034
1.1
10
13.0463
2.792854
1.6093
0.391
3.362
1.4181
42.037464
0.0003
43,44
PIPR146F
0.5690
44.03925
22
7.84
45.52315
1.1
10
13.0463
2.792854
1.6093
0.391
3.362
19.145
17.015164
0.0003
43,44
PIPR147F
1.4682
22.52007
22
6.01
4.3815
0.3
10
6.01736
1.824876
3.4485
0.391
3.362
4.2544
15.01338
0.0003
43,46
PIPR148F
1.8114
24.02141
22
7.02
12.4333
0.3
10
6.41852
1.946535
3.6784
0.391
3.362
4.9634
17.015164
0.0003
43,46
PIPR149F
2.7182
23.02052
22
8
26.8605
0.3
10
6.15108
1.865429
4.1382
0.782
3.362
4.9634
17.51561
0.0003
43,46
PIPR150F
2.6477
21.51918
22
9.01
51.3334
0.3
10
5.74992
1.743771
4.598
1.5639
3.362
4.9634
19.016948
0.0003
43,46
PTLU01S
5.5908
173
22
8.3
364.8
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
PTLU02S
11.6814
173
22
7.25
460.8
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
PTOR01F
0.3130
25
7.8
7.3
22.08
1.1
10
7.1535
1.9754
4.8154
0.7
3.997
5.9792
25
0.0003
1,2,3,6,7,9,10
PTOR02F
0.1873
54
11.5
7.3
17.28
1.1
10
15.0937
3.6371
6.8831
0.7
12.163
9.6854
43
0.0003
1,2,3,6,7,9,10
XYTE01S
3.7420
173
22
8.15
211.2
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
XYTE02S
6.1809
173
22
8.05
326.4
0.5
10
28.5511
24.739
53.583
4.282
166.08
3.8824
117
0.0003
1,2,3,4,6,7,20
POAC01S
3.1551
167
22
8
153.6
0.5
10
27.5609
23.881
51.724
4.1335
160.32
3.7478
115
0.0003
1,2,3,4,6,7,20
LEMA01R
26.4894
85
20.2
7.3
2200
1.1
10
23.9
6.5
0.64
0.46
4.32
1.5
82
0.0003
50
LEMA02F
26.3896
45
20
7.5
1056
1.1
10
13.2259
2.917485
1.3
0.57
3.4
1.2
43
0.0003
1,2,3,6,7,8
LEMA03F
27.9229
25.9
19
7.03
960
1.5
10
6.38814
2.42165
5.4743
1.6
26.489
19.425
27.1
0.0003
1,2,3,6,7,16
LEMA04F
23.8414
85
21.85
7.45
1300
1.1
10
23.9
6.5
0.64
0.46
4.32
1.5
82
0.0003
50
ETFL01S
7.5590
170
20
7.8
316.8
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETFL02S
7.7563
170
20
7.8
327.36
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETFL03S
7.8675
170
20
7.9
358.08
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETFL04S
8.6770
170
20
7.8
376.32
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETLE01S
5.1937
167
22
8
249.6
0.5
10
27.5609
23.881
51.724
4.1335
160.32
3.7478
115
0.0003
1,2,3,4,6,7,20
ETNI01S
10.2981
170
20
7.8
473.28
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETNI02S
10.1579
170
20
7.8
463.68
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETNI03S
11.8023
170
20
7.8
577.92
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETNI04S
11.0865
170
20
7.8
526.08
0.5
10
27.9
24.2
52.5
4.2
163
3.80
115
0.0003
1,3,4,22
ETRU01S
0.6913
167
22
8.2
57.6
0.5
10
27.5609
23.881
51.724
4.1335
160.32
3.7478
115
0.0003
1,2,3,4,6,7,20
BUBO01S
2.4569
167
22
7.9
115.2
0.5
10
27.5609
23.881
51.724
4.1335
160.32
3.7478
115
0.0003
1,2,3,4,6,7,20
F-11

-------
Notes:
Unless otherwise noted, a value of 10% humic acid and a value of 0.0003 mg/L sulfide were assumed for all tests (HydroQual 2001).
1.	Temperature value used here is either the mean or the midpoint of the range measured for this specific test or for a group of tests reported in this study.
2.	pH value used here is either the mean or the midpoint of the range measured for this specific test or for a group of tests reported in this study.
3.	The dissolved copper LC50/EC50 used here was calculated as 96% of the reported total LC50/EC50 value (based on Stephan 1995).
4.	A default reconstituted water DOC value of 0.5 mg/L was used for this test (see U.S. EPA 2003).
5.	Alkalinity and hardness values used are midpoints of nominal range for very hard reconstituted water (U.S. EPA 1993; ASTM 2000). Cations and anions were calculated stoichiometrically
according to nominal concentrations of salts added (ASTM 2000; U.S. EPA 1993), and adjusted according to the expected hardness (see U.S. EPA 2003).
6.	Hardness value used here is either the mean or the midpoint of the range measured for this specific test or for a group of tests reported in this study.
7.	Alkalinity value used here is either the mean or the midpoint of the range measured for this specific test or for a group of tests reported in this study.
8.	Concentration of K is mean of values reported for Lake Superior water in Biesingerand Christensen (1972) and Erickson et al. (1996 a, b). Ca, Mg, Na, CI, and S04 were derived in the same
way, but were adjusted according to the measured hardness of the test water. DOC value is a mean of Lake Superior measurements taken by Greg Lien at U.S. EPA Duluth. See U.S. EPA
2003 for details.
9.	DOC value is measured TOC of the same well water reported by McCrady and Chapman (1979).
10.	Using available data for the Western Fish Toxicology Station (G. Chapman unpublished data, Samuelson 1976), regression analyses were conducted to quantify relationships between
hardness and various ions (see U.S. EPA 2003). The resulting regression equations were used to estimate concentrations of Ca, Mg, Na, CI, and S04. The mean K value was used because
the relationship between K and hardness was non-significant.
11.	Alkalinity and pH values used are midpoints of nominal range for soft reconstituted water (ASTM 2000; U.S. EPA 1993). Cations and anions were calculated stoichiometrically according to
nominal concentrations of salts added (ASTM 2000; U.S. EPA 1993), and adjusted according to the measured hardness (see U.S. EPA 2003 for details.) Hardness, alkalinity, and pH values
used are midpoints of nominal range for moderately hard reconstituted water (ASTM 2000; U.S. EPA 1993). Cations and anions were calculated stoichiometrically according to nominal
concentrations of salts added (see U.S. EPA 2003 for details.) Although test organisms were fed during this test, test results were used because Hyalella azteca are cannibalistic and only a
small amount of food (500 ul) was added to the test chambers (300 mis) such that the percentage addition is not so great as to significantly affect copper complexation.
12.	The dissolved copper LC50 used here was calculated as 92% of the reported total LC50 value (based on percent dissolved reported by authors).
13.	DOC value is based on measured TOC in the Lake Superior dilution water used and an estimate of the dissolved fraction (see U.S. EPA 2003).
14.	Test was conducted in City of Blacksburg, VA tap water. Ionic concentrations and DOC were not measured. Ionic concentrations were estimated based on measurements made by the City of
Blacksburg as well as USGS NASQAN data for the New River (see U.S. EPA 2003). These concentrations were adjusted according to the measured hardness of the test water. The DOC
value used here was based on measurements of TOC made by the City of Blacksburg (see U.S. EPA 2003).
15.	Ionic concentrations were estimated based on New River data included in the USGS NASQAN database, and were adjusted according to the measured hardness of the test water (see U.S.
EPA 2003). The DOC value used here was based on a single measurement made on a New River water sample collected by Don Cherry in 2000.
16.	Ionic concentrations were estimated based on measurements made on a single Clinch River water sample collected by Don Cherry in 2000, and were adjusted according to the measured
hardness of the test water (see U.S. EPA 2003). The DOC value used here was based on a measurement made on the same water sample.
17.	Alkalinity was estimated based on pH adjustment according to nomograph in Faust and Aly (1981) - see U.S. EPA 2003.
18.	This test was conducted in a standard reconstituted water (ASTM 2000; U.S. EPA 1993). Ionic concentrations were calculated stoichiometrically according to nominal concentrations of salts
added (ASTM 2000; U.S. EPA 1993), and adjusted according to the measured hardness of the test water (see U.S. EPA 2003 for details.)
19.	DOC was measured in the dilution water, but was not detected (detection limit = 1 mg/L). DOC value used was 0.5 mg/L, which is one-half the detection limit and is consistent with the
recommended default DOC value for reconstituted waters (see U.S. EPA 2003) pH was not reported; value used here is midpoint of nominal range for moderately hard reconstituted waters.
The dissolved copper LC50 was calculated from the total copper LC50 using a 1.26 total to dissolved ratio reported by the author.
20.	Hardness, alkalinity, and pH values used are midpoints of nominal range for hard reconstituted water (ASTM 2000; U.S. EPA 1993). Cations and anions were calculated stoichiometrically
according to nominal concentrations of salts added (see U.S. EPA 2003 for details).
21.	Test temperature was not reported; temperature used here is the temperature recommended by OECD (1981) because these methods were cited by the study's author.
22.	Ionic composition calculated from Table 1 titled: Microcosm Medium (T82MV) and sediment composition, in ASTM (2000) publication E1366, vol. 11.05. T85MVK is recommended for culturing
Daphnia magna and varies from T82MV by including 0.1 times the concentration of nitrate and phosphate.
23.	TOC was measured in the dilution water, but was not detected (detection limit = 0.25 mg/L). DOC value used was 0.125 mg/L, which is one-half the TOC detection limit (see U.S. EPA 2003).
24.	Ionic concentrations used here are those reported in the publication, which are estimated values based on known chemistry of well water and amounts of chemicals added.
25.	Concentration of K is mean of values reported for Lake Superior water in Biesingerand Christensen (1972) and Erickson et al. (1996). Ca, Mg, Na, CI, and S04 were derived in the same way,
but were adjusted according to the measured hardness of the test water. See U.S. EPA 2003 for details.
26.	Ionic concentrations were estimated based on measured values reported for the source water in STORET, and adjusted according to the measured hardness of the test water (see U.S. EPA
2003).
27.	Using available data for the St. Louis River from the USGS NASQAN database, regression analyses were conducted to quantify relationships between hardness and various ions (see U.S.
EPA 2003). The resulting regression equations were used to estimate ionic concentrations of Ca, Mg, Na, CI, and S04.
F-12

-------
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
Concentrations of Na, K, CI, and S04 are means of values reported for Lake Superior water in Biesinger and Christensen (1972) and Erickson et al. (1996) (see U.S. EPA 2003). Ca, Mg, and
S04 were derived in the same way, but were adjusted according to the amounts of CaS04 or MgSO„ added to the test water.
Concentrations of Na, K, CI, and S04 are means of values reported for Lake Superior water in Erickson et al. (1996). Ca and Mg values were derived in the same way, but were adjusted
according to the measured hardness of the test water. DOC value is a mean of Lake Superior measurements taken by Greg Lien at U.S. EPA Duluth. See U.S. EPA 2003 for details.
With the exception of sulfide and dissolved copper, all parameters listed here were measured either in the exposure chamber water (pH, temperature, total copper) or in the dilution water prior
to testing (ions, alkalinity, DOC) and were reported by Welsh (1996).
Dilution water was not a standard reconstituted water mix; concentrations of salts added were reported in this study. Measurements of hardness and alkalinity were not reported in this study;
values used here were estimated based on nominal concentrations of salts added. DOC value used here is based on subsequent DOC measurement made on the same laboratory's dilution
water (data provided by Uwe Borgmann).
Sufficient Cerophyl was added for C. tentans to construct burrows during the exposure. The authors reported that the cerophyl was required as substrate and food by the test animals for
growth and survival.
A default DOC value of 1.6 mg/L, applicable to tap and well waters, was used for this test (see U.S. EPA 2003).
Ionic concentrations for this water (Green-Duwamish River) were estimated based on measured values reported in Santos and Stoner (1973), and adjusted according to the measured
hardness of the test water (see U.S. EPA 2003).
With the exception of sulfide and dissolved copper, all parameters listed here were measured either in the exposure chamber water (pH, hardness, alkalinity, temperature, total copper) or in
the dilution water prior to testing (ions, alkalinity, TOC) and were reported by Chapman (1975 and/or 1978). TOC was assumed to be 100% dissolved.
DOC value is a measure of TOC in the Western Fish Toxicology Station well water, as reported in Chapman 1978.
Dilution water used in this test was taken from the Chehalis River. DOC was estimated based on data supplied by the USGS NASQAN database. Ionic concentrations were provided by the
author (see U.S. EPA 2003).
With the exception of sulfide and total copper LC50s, all parameters listed here were measured either in the exposure chamber water or in the dilution water and were reported by Hagler
Bailly (1996). Total copper was measured, but LC50s were not reported. We estimated total copper LC50s based on reported dissolved LC50s and percentages of total copper in dissolved
form.
Tests reported by Fogels and Sprague (1977) and Howarth and Sprague (1978) were conducted in very hard well water or a mix of this well water and de-ionized water. Measurements of
organic carbon, most ionic concentrations, and occasionally alkalinity were not made or not reported. Methods used for estimating these parameters are described in U.S. EPA 2003. The
authors reported LC50s as dissolved copper concentrations, and no attempt was made here to estimate total copper LC50s.
Tests were conducted in dechlorinated City of Montreal tap water. Ionic concentrations given here are based on those reported for the dilution water (Anderson and Spear 1980 a, b) and
adjusted slightly based on measured test water hardness.
Tests were conducted in water collected from Pinto Creek, Arizona. Author reported concentrations of Ca, Mg, Na, and S04. Default values were used for K, CI, and DOC (CI default was
scaled according to measured hardness). LC50s were reported as dissolved copper; we have not attempted to estimate total copper values.
This test was conducted in dechlorinated tap water at the Chesapeake Biological Laboratory in Solomons, MD. Measurements of ions, alkalinity, and DOC were not reported, so default values
were used here. Default values for alkalinity and ions are from HydroQual 2001, and all except alkalinity and K were adjusted according to the measured hardness of the test water.
This test was conducted in a mix of Lake Superior water and laboratory reconstituted water. DOC value given here is an estimate based on the percent dilution of Lake Superior water and
DOC measurements made on Lake Superior water by Greg Lien at U.S. EPA Duluth (see U.S. EPA 2003).
This test was conducted in a laboratory reconstituted water. DOC value is based on measurements taken by Greg Lien on reconstituted water used at U.S. EPA Duluth (see U.S. EPA 2003).
This test was conducted in Lake Superior water with added humic acid (additional salts may have been added). DOC value here is estimated based on Lake Superior DOC (see note 60) and
nominal additions of humic acid. The percent humic acid was also adjusted accordingly.
Measurements of alkalinity and ions were not reported for this test; alkalinity for similar test water reported in Birge et al. 1981 was used here. Ions were estimated based on concentrations
reported in Birge et al. 1981 and adjusted according to measured test hardness. One of the acute tests with fathead minnows from this study was excluded because the minnows, which were
held for 10 days at 220 mg/L water hardness, were subsequently tested at a hardness 100 mg/L without acclimation.
With the exception of dissolved copper, sulfide, and hardness, all parameters listed here were measured either in the exposure chamber water (pH, temperature, total copper) or in the dilution
water prior to testing (ions, alkalinity, DOC) (Welsh et al. 1993). Some of these data were not reported by Welsh et al. (1993), but were provided to EPA by the primary author. Hardness was
calculated based on measured concentrations of Ca and Mg (see U.S. EPA2003).
This test was conducted in dechlorinated City of Denton, TXtap water, and although not reported by Bennet et al. (1995), alkalinity, pH, and temperature were measured in the test chambers.
Data were supplied to EPA by the authors (see U.S. EPA 2003); means of all daily measurements of test chambers were used here. Ionic concentrations were not available for this test;
default values (HydroQual 2001) adjusted for measured test hardness were used.
This test was conducted in carbon filtered, millipore Ann Arbor tap water, and the DOC was assumed to be 0.5 mg/L (default for reconstituted waters). Concentrations of Ca and Mg were
calculated based on reported total hardness and Ca hardness. Default values adjusted according to measured hardness were used for other ions (K was not adjusted; see U.S. EPA 2003).
This test was conducted in natural lake water (Lake Cultus, BC). The mean "soluble organic carbon" (DOC) value reported by the author for this lake was used here. Authors reported sulfate
concentrations in the dilution water, but did not report any other anion or cation concentrations. These concentrations were estimated using default values from (HydroQual 2001), adjusting all
except K according to the measured hardness of the test water.
A default DOC value of 0.3 mg/L for ultra-pure water was used for this test (see U.S. EPA 2003).
This test was conducted in tap water from an unspecified source. Authors did not report a DOC concentration for this water, but stated that it was "free from... organic matter." On this basis, a
F-13

-------
default value of 0.5 mg DOC/L was used. Ionic concentrations were estimated using default values from (HydroQual 2001), adjusting all except K according to the measured hardness of the
test water.
53.	Alkalinity value used is the midpoint of nominal range for soft reconstituted water (ASTM 2000; U.S. EPA 1993). Cations and anions were calculated stoichiometrically according to nominal
concentrations of salts added (ASTM 2000; U.S. EPA 1993), and adjusted according to the measured hardness (see U.S. EPA 2003 for details.)
54.	This test was conducted in a non-standard reconstituted water (Kristen Long's recipe). Ionic concentrations were calculated stoichiometrically according to nominal concentrations of salts
added and adjusted according to the measured hardness.
55.	With the exception of sulfide, all parameters listed were measured in the exposure chamber.
56.	This test was conducted in a non-standard reconstituted water (Kristen Long's recipe). Ionic concentrations were calculated stoichiometrically according to nominal concentrations of salts
added and adjusted according to the measured hardness.
F-14

-------
Appendix G. Hardness Slopes

-------
Appendix G. Hardness Slopes
As discussed in Section 5.1.1, EPA's earlier freshwater copper criteria recommendations were hardness-
dependent values. Although characterized as "hardness-dependent," EPA recognized that these adjusted
criteria not only reflected the influence of hardness on copper toxicity; hardness was also a surrogate for
other covarying water quality parameters. In order to compare the new BLM-based criteria with updated
hardness-dependent criteria an overall or "pooled slope" was needed to normalize the acute toxicity data
to a standard hardness for calculating criteria. A pooled hardness slope was derived using all appropriate
acute toxicity data, regardless of the quality rating assigned, according to the procedures in the 1985
Guidelines.
To account for the apparent relationship of copper acute toxicity to hardness, an analysis of covariance
(Dixon and Brown 1979; Netter and Wasserman 1974) was performed using WINKS statistical software
(WINKS ETC) to calculate the pooled slope for hardness using the natural logarithm of the acute value
as the dependent variable, species as the treatment or grouping variable, and the natural logarithm of
hardness as the covariate or independent variable. The pooled slope is a regression slope from a pooled
data set, where every variable is adjusted relative to its mean. The species are adjusted separately, then
pooled for a single conventional least squares regression analysis. The slope of the regression line is the
best estimate of the all-species relationship between toxicity and hardness.
This analysis of covariance model was fit to the data contained in this appendix for the seven species for
which definitive acute values are available over a range of hardness such that the highest hardness is at
least three times the lowest, and the highest is also at least 100 mg/L higher than the lowest. Other
species either did not meet these criteria, the organisms were fed, or as with D. pulex, D. pulicaria and H.
azteca did not show any hardness-toxicity trend, possibly due to differences in exposure methods such as
unusual chemical composition of the dilution water.
A list of the species, acute toxicity and hardness values, and the slopes used to estimate the pooled
hardness slope are included in this appendix. The slopes for the seven species ranged from 0.4349 to
0.8963, and the pooled slope for these seven species was 0.9584. An F-test was used to test whether a
model with separate species slopes for each species gives significantly better fit to the data than the
model with parallel slopes. This test showed that the separate slopes model is not significantly better, and
therefore the slopes are not significantly different than the overall pooled slope (P=0.39).
G-1

-------
Appendix G. Hardness Slopes
Results of Covariance Analysis of Freshwater Acute Toxicity Versus Hardness
Species
n
Slope
R2 Value
95% Confidence Limits
Degrees ot
Freedom
Ceriodaphnia dubia
27
0.8821
0.6063
0.5893
1.1749
25
Daphnia magna
46
0.7495
0.6174
0.5702
0.9288
44
Oncorhynchus clarki
11
0.6461
0.4184
0.0717
1.2204
9
Oncorhynchus mykiss
56
0.6245
0.6557
0.5010
0.7480
54
Oncorhynchus tshawytscha
12
0.8963
0.6064
0.3875
1.4051
10
Pimephales promelas
159
0.4349
0.4447
0.3583
0.5116
157
Lepomis macrochirus
6
0.7282
0.8499
0.3033
1.1531
4
All of the above
317
0.9584
0.5098
0.8542
1.0625
303
(p = 0.389)
G-2

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
LC50 or EC50
Reference
CaC03)
Total (ug/L)
Ceriodaphnia dubia
<4 h
S,M,T
52
19.00
Carlson et al. 1986
Ceriodaphnia dubia
<4 h
S,M,T
52
17.00
Carlson et al. 1986
Ceriodaphnia dubia
<4 h
S,M,T
36
20.00
Carlson et al. 1986
Ceriodaphnia dubia
<4 h
S,M,T
36
18.00
Carlson et al. 1986
Ceriodaphnia dubia
<12 h
S,M,D
45
26.04
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
17.71
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
31.25
Belanqer et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
25.00
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
29.17
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
33.33
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
23.96
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
20.83
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
45
19.79
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
94.1
27.08
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
94.1
21.88
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
94.1
28.13
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
94.1
38.54
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
94.1
35.42
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
179
69.79
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
179
39.58
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
179
81.25
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
179
84.38
Belanger et al. 1989
Ceriodaphnia dubia
<12 h
S,M,D
97.6
14.58
Belanger & Cherry 1990
Ceriodaphnia dubia
<12 h
S,M,D
97.6
29.17
Belanger & Cherry 1990
Ceriodaphnia dubia
<12 h
S,M,D
97.6
32.29
Belanger & Cherry 1990
Ceriodaphnia dubia
<12 h
S,M,D
182
58.33
Belanger & Cherry 1990
Ceriodaphnia dubia
<12 h
S,M,D
182
87.50
Belanger & Cherry 1990

Daphnia magna
<24 h
S,M,T,I
100
31.80
Borgmann & Ralph 1983
Daphnia magna
<24 h
S,M,I
100
35.60
Borgmann & Charlton 1984
Daphnia magna
1 d
S,M,T
39
9.10
Nebeker et al. 1986a
Daphnia magna
1 d
S,M,T
39
11.70
Nebeker et al. 1986a
Daphnia magna
<2 h
S,M,T
38
6.60
Nebeker et al. 1986a
Daphnia magna
<2 h
S,M,T
38
9.90
Nebeker et al. 1986a
Daphnia magna
1 d
S,M,T
39
11.70
Nebeker et al. 1986a
Daphnia magna
<4 h
S,M,T
39
6.70
Nebeker et al. 1986a
Daphnia magna
1 d
S,M,T
26
9.10
Nebeker et al. 1986a
Daphnia magna
<2 h
S,M,T
27
5.20
Nebeker et al. 1986a
Daphnia magna
<24 h
S,M,T
170
41.20
Baird et al. 1991
Daphnia magna
<24 h
S,M,T
170
10.50
Baird et al. 1991
Daphnia magna
<24 h
S,M,T
170
20.60
Baird et al. 1991
Daphnia magna
<24 h
S,M,T
170
17.30
Baird et al. 1991
Daphnia magna
<24 h
S,M,T
170
70.70
Baird et al. 1991
Daphnia magna
<24 h
S,M,T
170
31.30
Baird et al. 1991
Daphnia magna
<24 h
S,M,I
109.9
7.10
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
16.40
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
39.90
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
18.70
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
18.90
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
39.70
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
46.00
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
71.90
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
57.20
Meador 1991
Daphnia magna
<24 h
S,M,I
109.9
67.80
Meador 1991
Daphnia magna
<24 h
R,M,T
170
31.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
38.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
35.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
58.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
37.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
51.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
39.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
50.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
52.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
31.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
30.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
46.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
R,M,T
170
63.00
Lazorchak & Waller 1993
Daphnia magna
<24 h
S,M,T
52
26.00
Chapman et al. Manuscript
Daphnia magna
<24 h
S,M,T
105
30.00
Chapman et al. Manuscript
G-3

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
CaC03)
LC50 or EC50
Total (ug/L)
Reference
Daphnia magna
<24 h
S,M,T
106
38.00
Chapman et al. Manuscript
Daphnia magna
<24 h
S,M,T
207
69.00
Chapman et al. Manuscript
Daphnia magna
<24 h
S,M,T,D
7.1
4.80
Long's MS Thesis
Daphnia magna
<24 h
S,M,T,D
20.6
7.40
Long's MS Thesis
Daphnia magna
<24 h
S,M,T,D
23
6.50
Long's MS Thesis

Oncorhynchus clarki
larval, 0.34 g
S,M,T
169
80.00
Dwyer et al. 1995
Oncorhynchus clarki
larval, 0.57 g
S,M,T
169
60.00
Dwyer et al. 1995
Oncorhynchus clarki
7.4 cm, 4.2 g
F,M,T,D
205
398.91
Chakoumakos et al. 1979
Oncorhynchus clarki
6.9 cm, 3.2 g
F,M,T,D
69.9
197.87
Chakoumakos et al. 1979
Oncorhynchus clarki
8.8 cm, 9.7 g
F,M,T,D
18
41.35
Chakoumakos et al. 1979
Oncorhynchus clarki
8.1 cm, 4.4 g
F,M,T,D
204
282.93
Chakoumakos et al. 1979
Oncorhynchus clarki
6.8 cm, 2.7 g
F,M,T,D
83
186.21
Chakoumakos et al. 1979
Oncorhynchus clarki
7.0 cm, 3.2 g
F,M,T,D
31.4
85.58
Chakoumakos et al. 1979
Oncorhynchus clarki
8.5 cm, 5.2 g
F,M,T,D
160
116.67
Chakoumakos et al. 1979
Oncorhynchus clarki
7.7 cm, 4.4 g
F,M,T,D
74.3
56.20
Chakoumakos et al. 1979
Oncorhynchus clarki
8.9 cm, 5.7 g
F,M,T,D
26.4
21.22
Chakoumakos et al. 1979

Oncorhynchus mykiss
larval, 0.67 g
S,M,T
169
110.00
Dwyer et al. 1995
Oncorhynchus mykiss
larval, 0.48 g
S,M,T
169
50.00
Dwyer et al. 1995
Oncorhynchus mykiss
larval, 0.50 g
S,M,T
169
60.00
Dwyer et al. 1995
Oncorhynchus mykiss
swim-up, 0.25 g
R,M,T,D
44.1
46.70
Cacela et al. 1996
Oncorhynchus mykiss
swim-up, 0.25 g
R,M,T,D
44.6
24.20
Cacela et al. 1996
Oncorhynchus mykiss
swim-up, 0.20-0.24 g
R,M,T,D
38.7
3.54
Welsh et al. 2000
Oncorhynchus mykiss
swim-up, 0.20-0.24 g
R,M,T,D
39.3
8.44
Welsh et al. 2000
Oncorhynchus mykiss
swim-up, 0.20-0.24 g
R,M,T,D
89.5
17.92
Welsh et al. 2000
Oncorhynchus mykiss
swim-up, 0.20-0.24 g
R,M,T,D
89.67
33.33
Welsh et al. 2000
Oncorhynchus mykiss
12-16 cm
F,M
300
890.00
Calamari & Marchetti 1973
Oncorhynchus mykiss
alevin
F,M,T
23
28.00
Chapman 1975, 1978
Oncorhynchus mykiss
swim-up, 0.17 g
F,M,T
23
17.00
Chapman 1975, 1978
Oncorhynchus mykiss
parr, 8.6 cm, 6.96 g
F,M,T
23
18.00
Chapman 1975, 1978
Oncorhynchus mykiss
smolt, 18.8 cm, 68.19 g
F,M,T
23
29.00
Chapman 1975, 1978
Oncorhynchus mykiss
1.2-7.9 g
F,M,T,D
335
106.25
Fogels & Sprague 1977
Oncorhynchus mykiss
iuvenile, 3.9 g
F,M,T
125
200.00
Spear 1977, Anderson & Spear 1980b
Oncorhynchus mykiss
iuvenile, 29.1 g
F,M,T
125
190.00
Spear 1977, Anderson & Spear 1980b
Oncorhynchus mykiss
adult, 176 g
F,M,T
125
210.00
Spear 1977, Anderson & Spear 1980b
Oncorhynchus mykiss
1.1 g
F,M,T,D
32
23.33
Howarth & Sprague 1978
Oncorhynchus mykiss
2.2 g
F,M,T,D
31
30.10
Howarth & Sprague 1978
Oncorhynchus mykiss
1.4 g
F,M,T,D
31
31.25
Howarth & Sprague 1978
Oncorhynchus mykiss
2.7 g
F,M,T,D
30
31.25
Howarth & Sprague 1978
Oncorhynchus mykiss
3.2 g
F,M,T,D
101
41.67
Howarth & Sprague 1978
Oncorhynchus mykiss
0.71 g
F,M,T,D
99
34.48
Howarth & Sprague 1978
Oncorhynchus mykiss
0.80 g
F,M,T,D
102
31.98
Howarth & Sprague 1978
Oncorhynchus mykiss
1.5 g
F,M,T,D
101
48.23
Howarth & Sprague 1978
Oncorhynchus mykiss
1.6 g
F,M,T,D
99
49.90
Howarth & Sprague 1978
Oncorhynchus mykiss
1.5 g
F,M,T,D
100
50.10
Howarth & Sprague 1978
Oncorhynchus mykiss
10 g
F,M,T,D
100
84.48
Howarth & Sprague 1978
Oncorhynchus mykiss
10 g
F,M,T,D
98
89.48
Howarth & Sprague 1978
Oncorhynchus mykiss
10 g
F,M,T,D
366
72.92
Howarth & Sprague 1978
Oncorhynchus mykiss
1-7 g
F,M,T,D
371
85.63
Howarth & Sprague 1978
Oncorhynchus mykiss
6.6 g
F,M,T,D
361
310.42
Howarth & Sprague 1978
Oncorhynchus mykiss
1.8 g
F,M,T,D
371
537.50
Howarth & Sprague 1978
Oncorhynchus mykiss
0.90 g
F,M,T,D
360
321.88
Howarth & Sprague 1978
Oncorhynchus mykiss
3.1 g
F,M,T,D
364
115.63
Howarth & Sprague 1978
Oncorhynchus mykiss
1 g
F,M,T,D
194
176.04
Chakoumakos et al. 1979
Oncorhynchus mykiss
4.9 cm
F,M,T,D
194
88.85
Chakoumakos et al. 1979
Oncorhynchus mykiss
6.0 cm, 2.1 g
F,M,T,D
194
86.77
Chakoumakos et al. 1979
Oncorhynchus mykiss
6.1 cm, 2.5 g
F,M,T,D
194
107.29
Chakoumakos et al. 1979
Oncorhynchus mykiss
2.6 g
F,M,T,D
194
285.42
Chakoumakos et al. 1979
Oncorhynchus mykiss
4.3 g
F,M,T,D
194
133.33
Chakoumakos et al. 1979
Oncorhynchus mykiss
9.2 cm, 9.4 g
F,M,T,D
194
230.21
Chakoumakos et al. 1979
Oncorhynchus mykiss
9.9 cm, 11.5 g
F,M,T,D
194
171.88
Chakoumakos et al. 1979
Oncorhynchus mykiss
11.8 cm, 18.7 g
F,M,T,D
194
205.21
Chakoumakos et al. 1979
Oncorhynchus mykiss
13.5 cm, 24.9 g
F,M,T,D
194
535.42
Chakoumakos et al. 1979
Oncorhynchus mykiss
13.4 cm, 25.6 g
F,M,T,D
194
253.13
Chakoumakos et al. 1979
Oncorhynchus mykiss
6.7 cm, 2.65 g
F,M,T
9.2
2.80
Cusimano et al. 1986
Oncorhynchus mykiss
134 g
F,M,T
120
80.00
Seim et al. 1984
Oncorhynchus mykiss
parr
F,M,T,D,I
31
90.00
Mudge et al. 1993
G-4

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
CaC03)
LC50 or EC50
Total (ug/L)
Reference
Oncorhynchus mykiss
swim-up, 0.29 g
F,M,T,D
36.1
19.60
Cacela et al. 1996
G-5

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
CaC03)
LC50 or EC50
Total (ug/L)
Reference
Oncorhynchus mykiss
swim-up, 0.25 g
F,M,T,D
36.2
12.90
Cacela et al. 1996
Oncorhynchus mykiss
swim-up, 0.23 g
F,M,T,D
20.4
5.90
Cacela et al. 1996
Oncorhynchus mykiss
swimup, 0.23 g
F,M,T,D
45.2
37.80
Cacela et al. 1996
Oncorhynchus mykiss
swim-up, 0.26 g
F,M,T,D
45.4
25.10
Cacela et al. 1996
Oncorhynchus mykiss
swim-up, 0.23 g
F,M,T,D
41.9
17.20
Cacela et al. 1996

Oncorhynchus tshawytscha
alevin, 0.05 g
F,M,T
23
26.00
Chapman 1975, 1978
Oncorhynchus tshawytscha
swim-up, 0.23 g
F,M,T
23
19.00
Chapman 1975, 1978
Oncorhynchus tshawytscha
parr, 9.6 cm, 11.58 g
F,M,T
23
38.00
Chapman 1975, 1978
Oncorhynchus tshawytscha
smolt, 14.4 cm, 32.46 g
F,M,T
23
26.00
Chapman 1975, 1978
Oncorhynchus tshawytscha
3 mo, 1.35 g
F,M,T,I
13
10.20
Chapman & McCrady 1977
Oncorhynchus tshawytscha
3 mo, 1.35 g
F,M,T,I
46
24.10
Chapman & McCradv 1977
Oncorhynchus tshawytscha
3 mo, 1.35 g
F,M,T,I
182
82.50
Chapman & McCrady 1977
Oncorhynchus tshawytscha
3 mo, 1.35 g
F,M,T,I
359
128.40
Chapman & McCrady 1977
Oncorhynchus tshawytscha
swim-up, 0.36-0.45 g
F,M,T,D
36.6
7.71
Welsh et al. 2000
Oncorhynchus tshawytscha
swim-up, 0.36-0.45 g
F,M,T,D
34.6
13.02
Welsh et al. 2000
Oncorhynchus tshawytscha
swim-up, 0.36-0.45 g
F,M,T,D
38.3
14.90
Welsh et al. 2000
Oncorhynchus tshawytscha
swim-up, 0.36-0.45 g
F,M,T,D
35.7
19.06
Welsh et al. 2000

Pimephaies promeias
adult, 40 mm
S,M,T
103
310.00
Birge et al. 1983
Pimephaies promeias
adult, 40 mm
S,M,T
103
120.00
Birge et al. 1983
Pimephaies promeias
adult, 40 mm
S,M,T
262
390.00
Birge et al. 1983; Benson & Birge 1985
Pimephaies promeias
...
S,M,T
52
55.00
Carlson et al. 1986
Pimephaies promeias
...
S,M,T
52
85.00
Carlson et al. 1986
Pimephaies promeias
...
S,M,T
36
180.00
Carlson et al. 1986
Pimephaies promeias
...
S,M,T
36
95.00
Carlson et al. 1986
Pimephaies promeias
<24 h
S,M,T
290
15.00
Schubauer-Berigan et al. 1993
Pimephaies promeias
<24 h
S,M,T
290
44.00
Schubauer-Berigan et al. 1993
Pimephaies promeias
<24 h
S,M,T
290
200.00
Schubauer-Berigan et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
19
4.82
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
19.5
8.20
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
16.5
31.57
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
17
21.06
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
19
35.97
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
17
59.83
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
17
4.83
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
17.5
70.28
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
18.5
83.59
Welsh et al. 1993
Pimephaies promeias
<24 h, 0.68 mg
S,M,T
18.5
182.00
Welsh et al. 1993
Pimephaies promeias
larval, 0.32 g
S,M,T
173
290.00
Dwyer et al. 1995
Pimephaies promeias
larval, 0.56 g
S,M,T
173
630.00
Dwyer et al. 1995
Pimephaies promeias
larval, 0.45 g
S,M,T
173
400.00
Dwyer et al. 1995
Pimephaies promeias
larval, 0.39 g
S,M,T
173
390.00
Dwyer et al. 1995
Pimephaies promeias
3.2-5.5 cm, 0.42-3.23 g
S,M,T
165
450.00
Richards & Beitinger 1995
Pimephaies promeias
2.8-5.1 cm, 0.30-2.38 g
S,M,T
159
297.00
Richards & Beitinger 1995
Pimephaies promeias
1.9-4.6 cm, 0.13-1.55 g
S,M,T
168
311.00
Richards & Beitinger 1995
Pimephaies promeias
3.0-4.8 cm, 0.23-1.36 g
S,M,T
167
513.00
Richards & Beitinger 1995
Pimephaies promeias
<24 h
S,M,T,D
45.540586
62.23
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
45.540586
190.50
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
44.539694
68.58
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
44.539694
168.91
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
44.539694
94.62
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
45.540586
143.51
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
45.04014
120.65
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
45.04014
196.85
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
138.123096
133.35
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
151.134692
184.15
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
138.123096
304.80
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
139.123988
292.10
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
47.041924
133.35
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
37.033004
92.71
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
60.05352
152.40
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
76.067792
177.80
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
103.091876
203.20
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
103.091876
190.50
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
107.095444
196.85
Er
ckson et al. 1996a,b
Pimephaies promeias
<24 h
S,M,T,D
134.119528
234.95
Er
ckson et al. 1996a,b
G-6

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
CaC03)
LC50 or EC50
Total (ug/L)
Reference
Pimephales pnomelas
<24 h
S,M,T,D
45.04014
146.05
Erickson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
46.041032
171.45
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
45.04014
152.40
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
45.04014
184.15
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
44.039248
203.20
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
45.04014
203.20
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
46.041032
203.20
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
189.168588
222.25
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
46.041032
146.05
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
75.0669
139.70
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
46.041032
139.70
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
74.066008
152.40
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
133.118636
203.20
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
76.067792
196.85
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
134.119528
266.70
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
52.046384
99.06
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
51.045492
111.13
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
50.0446
78.74
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
51.045492
92.71
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
51.045492
85.09
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
53.047276
123.19
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
53.047276
165.10
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
52.046384
190.50
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
47.041924
165.10
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
47.041924
127.00
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
47.041924
92.08
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
47.041924
66.68
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
140.12488
393.70
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
88.078496
317.50
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
59.052628
107.95
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
41.036572
67.95
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
27.024084
45.72
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
43.038356
177.80
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
25.0223
13.97
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
107.095444
304.80
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
87.077604
71.12
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
85.07582
83.82
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
88.078496
104.78
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
87.077604
139.70
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
87.077604
152.40
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
87.077604
260.35
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
87.077604
488.95
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
87.077604
203.20
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
251.223892
704.85
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
252.224784
952.50
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
252.224784
1244.60
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
251.223892
1485.90
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
200.1784
781.05
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
140.12488
476.25
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
90.08028
273.05
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
19.016948
22.23
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
34.030328
24.13
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
51.045492
36.83
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
29.025868
27.94
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
30.02676
26.67
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
27.024084
20.32
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
27.024084
26.67
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
90.08028
190.50
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
60.05352
109.86
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
120.10704
203.20
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
180.16056
209.55
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
91.081172
146.05
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
90.08028
165.10
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
93.082956
254.00
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
92.082064
311.15
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
91.081172
165.10
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
144.128448
920.75
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
292.260464
1073.15
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
440.39248
1003.30
Er
ckson et al. 1996a,b
G-7

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
CaC03)
LC50 or EC50
Total (ug/L)
Reference
Pimephales pnomelas
<24 h
S,M,T,D
217.193564
933.45
Erickson et al. 1996a,b
G-8

-------
Appendix G. Hardness Slopes
Species
Lifestage
Method
Hardness (mg/L as
CaC03)
LC50 or EC50
Total (ug/L)
Reference
Pimephales pnomelas
<24 h
S,M,T,D
218.194456
742.95
Erickson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
212.189104
1879.60
Erickson et al. 1996a,b
Pimephales pnomelas
<24 h
S,M,T,D
92.082064
266.70
Erickson et al. 1996a,b
Pimephales pnomelas
adult
F,M,T
198
470.00
Mount 1968
Pimephales pnomelas
...
F,M,T
31
75.00
Mount & Stephan 1969
Pimephales pnomelas
5.6 cm, 1.6 g
F,M,T
200
440.00
Geckler et al. 1976
Pimephales pnomelas
4.7 cm
F,M,T
200
490.00
Geckler et al. 1976
Pimephales pnomelas
fry, 6 wk, 2.2 cm
F,M,T
202
490.00
Pickering et al. 1977
Pimephales pnomelas
subadult, 6 mo, 5.5 cm
F,M,T
202
460.00
Pickering et al. 1977
Pimephales pnomelas
...
F,M,T
48
114.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
45
121.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
46
88.50
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
30
436.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
37
516.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
87
1586.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
73
1129.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
84
550.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
...
F,M,T
66
1001.00
Lind et al. Manuscript (1978)
Pimephales pnomelas
30 d, 0.15 g
F,M,T,D
43.9
96.00
Spehar& Fiandt 1986
Pimephales pnomelas
60-90 d, 3.3 cm, 0.7 g
S,M,T
101
252.00
Bennett et al. 1995
Pimephales pnomelas
<24 h
F,M,T,D
47.041924
31.75
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
243.216756
117.48
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
255.727906
48.26
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
47.041924
73.03
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.04014
59.06
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.04014
78.74
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.540586
22.23
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
49.043708
6.99
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.04014
22.23
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
43.038356
107.32
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.540586
292.10
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.04014
81.28
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.04014
298.45
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.540586
241.30
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
45.04014
133.35
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
44.039248
93.98
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
44.039248
67.95
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
22.52007
4.76
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
24.021408
13.97
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
23.020516
29.85
Er
ckson et al. 1996a,b
Pimephales pnomelas
<24 h
F,M,T,D
21.519178
59.69
Er
ckson et al. 1996a,b

Lepomis macnochinus
3.58 cm, 0.63 g
R,M,D
85
2291.67
Blaylock et al. 1985
Lepomis macnochinus
12 cm, 35 g
F,M,T
45
1100.00
Benoit 1975
Lepomis macnochinus
10.3 cm, 18.6 g
F,M,T
200
8300.00
Geckler et al. 1976
Lepomis macnochinus
10.1 cm, 19.2 g
F,M,T
200
10000.00
Geckler et al. 1976
Lepomis macnochinus
2.8-6.8 cm
F,M,T
25.9
1000.00
Cairns et al. 1981
Lepomis macnochinus
3.58 cm, 0.63 g
F,M,D
85
1354.17
Blaylock et al. 1985
G-9

-------
Appendix G. Hardness Slopes
SUMMARY OUTPUT









Overall Slope



Regression Statistics





Multiple R
0.714033268





R Square
0.509843507





Adjusted R Square
0.508287455





St&ard Error
0.744214128





Observations
317





ANOVA







df
SS
MS
F
Significance F

Regression
1
181.4715328
181.4715328
327.651897
1.05959E-50

Residual
315
174.4642206
0.553854669



Total
316
355.9357534












Coefficients
St&ard Error
tStat
P-vaiue
Lower 95%
Upper 95%
Intercept
-1.34057E-15
0.04179923
-3.20717E-14
1
-0.082240968
0.082240968
X Variable
0.958366107
0.052945018
18.10115734
1.05959E-50
0.854195537
1.062536676
G-10

-------
Appendix H. Regression Plots

-------
Appendix H. Analyses of Chronic Data
The following pages contain figures and other information related to the regression and probability distribution analyses that were performed to calculate
chronic EC20s. The initial parameter estimates are shown in the tables below. In the figures that follow, circles denote measured responses and solid lines
denote estimated regression lines.
Probability Distribution Analysis
Species
Study
Test
Endpoint

Initial Estimates







Control Value
EC50
Standard
Deviation
EC20
EC10
Snail,
Campeloma decisum (Test 1)
Arthur and Leonard 1970
LC
Survival
0.925
14.50
0.192
8.73
7.01
Snail,
Campeloma decisum (Test 2)
Arthur and Leonard 1970
LC
Survival
0.875
11.80
0.339
10.94
9.16
Cladoceran,
Ceriodaphnia dubia (Cinch River)
Belanger et al. 1989
LC
Reproduction
16.60
33.6
1.15
19.36
14.03
Cladoceran,
Daphnia pulex
Winner 1985
LC
Survival
1.00
4.57
0.260
2.83
2.24
Cladoceran,
Daphnia pulex
Winner 1985
LC
Survival
0.900
11.3
0.111
9.16
8.28
Caddisfly,
Clistoronia magnifica
Nebeker et al. 1984b
LC
Emergence (adult
1st gen)
0.750
20.0
0.300
7.67
5.63
Bluegill (larval),
Lepomis macrochirus
Benoit 1975
ELS
Survival
0.880
39.8
0.250
27.15
21.60
Logistic Regression Analysis
Species
Study
Test
Endpoint
Control Value
Initial Estimates
EC50
Slope
EC20
EC10
Cladoceran,
Ceriodaphnia dubia
Carlson et al. 1986
LC
Reproduction
13.10
14.6
1.36
9.17
7.28
Cladoceran,
Daphnia magna
Chapman et al. Manuscript
LC
Reproduction
171.5
16.6
1.40
12.58
10.63
Cladoceran,
Daphnia magna
Chapman et al. Manuscript
LC
Reproduction
192.1
28.4
1.59
19.89
16.34
Cladoceran,
Daphnia magna
Chapman et al. Manuscript
LC
Reproduction
88.0
15.8
1.00
6.06
3.64
Rainbow trout,
Oncorhynchus mykiss
Seim et al. 1984
ELS
Biomass
137.6
40.7
1.69
27.77
22.16
Rainbow trout,
Oncorhynchus mykiss
Besser et al. 2001
ELS
Biomass
1224
29.2
1.99
20.32
16.74
Chinook salmon,
Oncorhynchus tshawytscha
Chapman 1975, 1982
ELS
Biomass
0.901
9.55
1.27
5.92
4.47
Fathead minnow,
Pimephales promelas
Lind et al. manuscript
ELS
Biomass
108.4
11.4
4.00
9.38
8.67
H-1

-------
Evaluation of the Chronic Data Available for Freshwater Species
Following is a species-by-species discussion of each chronic test on copper evaluated for this
document. Also presented are the results of regression analysis and probability distribution analysis of
each dataset that was from an acceptable chronic test and contained sufficient acceptable data. For each
such dataset, this appendix contains a figure that presents the data and regression/probability distribution
line.
Brachionus calyciflorus. The chronic toxicity of copper was ascertained in 4-day renewal tests
conducted at regular intervals throughout the life of the freshwater rotifer, B. calyciflorus (Janssen et al.
1994). The goal of this study was to develop and examine the use of this rotifer as a viable test organism.
The effect of copper on the age-specific survivorship and fertility of B. calyciflorus was determined, but
no individual replicate data were provided and only three copper concentrations were tested, which
precludes these data from further regression analysis. Chronic limits based on the intrinsic rate of natural
increase were 2.5 (xg/L total copper (NOAEC) and 5.0 (xg/L total copper (LOAEC). The chronic value
determined via traditional hypothesis testing is 3.54 (xg/L total copper (Table 2a).
Campeloma decisum. Adult C. campeloma were exposed to five concentrations of total copper
and a control (Lake Superior water) under flow-through conditions in two 6-week studies conducted by
Arthur and Leonard (1970). Adult survival in the two separate chronic copper toxicity test trials was
markedly reduced in the two highest copper concentrations, 14.8 and 28.0 (xg/L, respectively. The
authors reported that growth, as determined from cast exoskeleton, was not measurable for this test
species, although the authors did observe that the adult snails would not consume food at the two highest
copper concentrations. Control survival was 80 percent or greater. Chronic values of 10.88 (xg/L total
copper were obtained for survival based on the geometric mean of the NOAEC and LOAEC of 8.0 and
14.8 (xg/L, respectively, in both tests. The corresponding EC20s were 8.73 and 10.94 fxg/L (Table 2a).
Ceriodaphnia dubia. The chronic toxicity of copper to C. dubia was determined in ambient river
water collected upstream of known point-source discharges of domestic and industrial wastes as part of a
water effect ratio study (Carlson et al. 1986). In this study, survival and young production of C. dubia
were assessed using a 7-day life-cycle test. Organisms were not affected at total copper concentrations
ranging from 3 to 12 fxg/L (5 to 10 (xg/L dissolved copper). There was a 62.7 percent reduction in
survival and 97 percent reduction in the mean number of young produced per female at 32 (xg/L total
copper (27 (xg/L dissolved copper). No daphnids survived to produce young at 91 (xg/L total copper.
Control survival during the study was 80 percent, which included one male. The chronic value EC20
selected for C. dubia in this study, 9.17 (xg/L derived from a nonlinear regression evaluation, was based
on mean number of young produced (reproduction).
The effects of water hardness on the chronic toxicity of copper to C. dubia were assessed by
Belanger et al. (1989) using 7-day life-cycle tests. C. dubia 2 to 8 hours old were exposed to copper in
ambient surface water from the New and Clinch Rivers, Virginia. Mean water hardness levels were 179
and 94 mg/L as CaC03, respectively. Test water was renewed on days 3 and 5. The corresponding
chronic values for reproduction based on the NOAEC and LOAEC approach were 7.9 and <19.3 (xg/L
dissolved copper, respectively. The EC20 value for number of young (neonates) produced in Clinch
River water (water hardness of 94 mg/L as CaC03) was 19.36 (xg/L dissolved copper. The EC20 for
young produced in New River water was not calculated. The chronic values were converted to total
copper using the freshwater conversion factor for copper 0.96 (e.g., 7.897/0.96). The resulting total
chronic values for the New and Clinch rivers are 8.23 and 20.17 (xg/L, respectively.
H-2

-------
Copper was one of 12 toxicants examined by Oris et al. (1991) in their comparisons between a 4-
day survival and reproduction toxicity test utilizing C. dubia and a standard 7-day life-cycle test for the
species. The reported 7-day chronic values for survival and reproduction (mean total young per living
female) in two tests based on the traditional hypothesis testing techniques were 24.5 and 34.6 (xg/L total
copper. Comparable point estimates for these 7-day tests could not be calculated using regression
analysis.
Daphnia magna. Blaylock et al. (1985) reported the average numbers of young produced for six
broods of D. magna in a 14-day chronic exposure to copper. A significant reduction was observed in the
mean number of young per female at a concentration of 30 (xg/L total copper, the highest copper
concentration tested. At this concentration, young were not produced at brood intervals 5 and 6.
Reproduction was not affected at 10 (xg/L total copper. The chronic value determined for this study
(17.32 fxg/L total copper) was based on the geometric mean of theNOAEC, 10 (xg/L, and LOAEC, 30
Hg/L.
Van Leeuwen et al. (1988) conducted a standard 21-day life-cycle test with/), magna. The water
hardness was 225 mg/L as CaC03. Carapace length was significantly reduced at 36.8 (xg/L total copper,
although survival was 100 percent at this concentration. Carapace length was not affected at 12.6 (xg/L
total copper. No daphnids survived at 110 (xg/L concentration. The highest concentration not
significantly different from the control for survival was 36.8 (xg/L. The lowest concentration significantly
different from the control based on survival was 110 (xg/L, resulting in a chronic value of 63.6 (xg/L for
survival. The chronic value based on carapace length was 21.50 (xg/L. The 21-day EC10 as reported by
the author was 5.9 (xg/L total copper.
Chronic (21-day) renewal toxicity tests were conducted using D. magna to determine the
relationship between water hardness (nominal values of 50, 100, and 200 mg/L as CaC03, respectively)
and the toxicity of total copper (Chapman et al. unpublished manuscript). All test daphnids were <1 day
old at the start of the tests. The dilution water was well water from the Western Fish Toxicology Station
(WFTS), Corvallis, Oregon. Test endpoints were reproduction (total and live young produced per female)
and adult survival. The survival of control animals was 100 percent at nominal water hardness levels of
50 and 200 mg/L as CaC03, and 80 percent at a hardness of 100 mg/L as CaC03. The chronic values for
total young produced per female (fecundity) based on the geometric mean of the NOAEC and LOAEC
were 13.63, 29.33, and 9.53 (xg/L at the nominal hardness levels of 50, 100, and 200 mg/L as CaC03,
respectively. The corresponding EC20 values for reproduction calculated using nonlinear regression
analysis were 12.58, 19.89, and 6.06 (xg/L total copper. The chronic toxicity of copper to D. magna was
somewhat ameliorated from an increase in water hardness from 50 to 100 mg/L as CaC03, but slightly
increased from 100 to 200 mg/L as CaC03.
Daphnia pulex. Winner (1985) evaluated the effects of water hardness and humic acid on the
chronic toxicity (42-day) of copper to D. pulex. Contrary to the expectation that sublethal endpoints are
more sensitive indicators of chronic toxicity, reproduction was not a sensitive indicator of copper stress
in this species. Water hardness also had little effect on the chronic toxicity of copper (similar to D.
magna trends), but humic acid significantly reduced chronic toxicity of copper when added to the varying
water types. The survival chronic values based on the NOAEC and LOAEC values for the three low to no
humic acid studies were 4.90, 7.07, and 12.25 (xg/L total copper at hardnesses of 57.5, 115, and 230 (0.15
mg/L HA) (xg/L as CaC03, respectively. The EC20 values calculated for the low and high hardness
studies using nonlinear regression techniques were 2.83 and 9.16 (xg/L at hardness values of 57.5 and 230
(0.15 mg/L HA) fxg/L as CaC03, respectively.
H-3

-------
Clistoronia magnifica. The effects of copper on the lifecycle of the caddisfly, C. magnifica, were
examined inNebeker et al. (1984b). The test included continuous exposure of first-generation aquatic
larvae and pupae through to a third generation of larvae. A significant reduction in adult emergence
occurred at 13.0 (xg/L total copper from first-generation larvae. No observed adverse effect to adult
emergence occurred at 8.3 (xg/L total copper. Percent larval survival was close to the control value of 80
percent. The chronic value based on hypothesis testing was 10.39 (xg/L total copper. The corresponding
EC20 value for adult emergence was 7.67 (xg/L total copper.
Oncorhynchus mykiss. The growth and survival of developing O. mykiss embryos continuously
and intermittently exposed to copper for up to 85 days post-fertilization was examined by Seim et al.
(1984). Results only from the continuous exposure study are considered here for deriving a chronic
value. A flow-through apparatus was used to deliver six concentrations and a control (untreated well
water; average of 3 (xg/L copper) to a single incubation chamber. Continuous copper exposure of
steelhead embryos in the incubation chambers was begun 6 days post-fertilization. At 7 weeks post-
fertilization, when all control fish had hatched and reached swim-up stage, subsamples of approximately
100 alevins were transferred to aquaria and the same exposure pattern continued. Dissolved oxygen
remained near saturation throughout the study. Water hardness averaged 120 mg/L as CaC03. Survival of
steelhead embryos and alevins exposed continuously to total copper concentrations in the range of 3
(controls) to 30 (xg/L was greater than 90 percent or greater. Survival was reduced at 57 (xg/L and
completely inhibited at 121 (xg/L. A similar effect on survival was observed for embryos and alevins
exposed to a mean of 51 (peak 263) and 109 (peak 465) (xg/L of copper in the intermittent exposure,
respectively. The adverse effect of continuous copper exposure on growth (measured on a dry weight
basis) was observed at concentrations as low as 30 (xg/L. (There was a 30 percent reduction in growth
during the intermittent exposure at 16 (xg/L.) The chronic limits for survival of embryos and alevin
steelhead trout exposed continuously to copper were 16 and 31 (xg/L, respectively (geometric mean =
22.27 (xg/L). The EC20 for biomass for the continuous exposure was 27.77 (xg/L.
Besser et al. (2001) conducted an ELS toxicity test with copper and the rainbow trout, O. mykiss,
starting with eyed embryos and continuing for 30 days after the fish reached the swim-up stage. The total
test period was 58 days. The test was conducted in ASTM moderately hard reconstituted water with a
hardness of approximately 160 to 180 mg/L as CaC03. Twenty-five eyed embryos were held in each of
four replicate egg cups at each concentration. Survival was monitored daily. At the end of the test,
surviving fish in each replicate chamber were weighed (dry weight). Dry weights were used to determine
growth and biomass of surviving fish. The no observed effect concentrations (NOECs) for survival and
biomass were both 12 (xg/L and the lowest observed effect concentrations (LOECs) for survival and
biomass was also the same for both endpoints, 22 (xg/L. The chronic values for biomass and survival
based on the geometric mean of the NOEC and LOEC were 16.25 (xg/L. The corresponding EC20 for
biomass was 20.32 (xg/L.
Oncorhynchus tshawytscha. The draft manuscript prepared by Chapman (1975/1982) provides
the results from a 4-month egg through fry partial chronic test conducted to determine the effects of
copper on survival and growth of O. tshawytscha. Continuous exposure occurred from several hours
post-fertilization through hatch, swim-up, and feeding fry stages. The test was terminated after 14 weeks
post-hatch. The dilution water was WFTS well water. Because of the influence of the nearby Willamette
River on the hardness of this well water, reverse osmosis water was mixed periodically with ambient well
water to attain a consistent hardness. The typical hardness of this well water was approximately 23 mg/L
as CaC03. Control survival exceeded 90 percent for the test. The measured total copper concentrations
during the test were 1.2 (control), 7.4, 9.4, 11.7, 15.5, and20.2 (xg/L, respectively. Copper adversely
affected survival at 11.7 (xg/L copper and higher, and growth was reduced at all copper concentrations
tested compared with the growth of control fish. The chronic limits for copper in this study were
H-4

-------
estimated to be less than 7.4 (xg/L. The EC20 value estimated for biomass is 5.92 (xg/L total copper based
on a logistic nonlinear regression model.
Salmo trutta. McKim et al. (1978) examined the survival and growth (expressed as standing
crop) of embryo-larval and early juvenile brown trout to copper. The most sensitive exposure was with
embryos exposed for 72 days. The NOAEC and LOAEC, as obtained from the figure, were 20.8 and 43.8
(xg/L total copper, respectively. Data were not available to calculate point estimates at the 20 percent
effect level using regression analysis. The chronic value selected for this species was 29.91 (xg/L total
copper (geometric mean of 20.8 and 43.8 (xg/L total copper).
Salvelinus fontinalis. Sauter et al. (1976) examined the effects of copper on selected freshwater
fish species at different hardness levels (softwater at 37.5 mg/L as CaC03; hardwater at 187 mg/L as
CaC03) during a series of partial life-cycle (PLC) tests. The species tested were brook trout (Salvelinus
fontinalis), channel catfish (Ictalurus punctatus), and walleye (Stizostedion vitreum). Because of the poor
embryo and larval survival of control animals (in all cases less than 70 percent), results from tests with
channel catfish and walleye were not included in Table 2a. One of the replicate control chambers from
the PLC tests conducted with brook trout in hard water also exhibited poor hatchability (48 percent) and
survival (5 8 percent) between 31 and 60 days of exposure. Therefore, the data for brook trout in hard
water were not included in the subsequent EC20 (regression) analysis either.
The softwater test with brook trout was conducted using untreated well water with an average
water hardness of 35 mg/L as CaC03. This PLC exposure consisted of six copper concentrations and a
control. Hatchability was determined by examining randomly selected groups of 100 eggs from each
replicate exposure tank. Growth and survival of fry were determined by impartially reducing the total
sample size to 50 fry per tank and assessing their progress over 30 day intervals up to 60 days post-hatch.
The chronic limits based on the growth (wet weight and total length) of larval brook trout after 60 days of
exposure to copper in soft water were <5 and 5 (xg/L. The resultant chronic value for soft water based on
hypothesis testing was <5 (xg/L. The corresponding EC20 values based on total length, wet weight, and
biomass (the product of wet weight and survival) for brook trout in the soft-water exposures after 60 days
were not amenable to nonlinear regression analysis.
McKim et al. (1978) examined survival and growth (expressed as standing crop) of embryo-
larval and early juvenile brook trout exposed to copper. The embryo exposure was for 16 days, and the
larval-early-juveniles exposure lasted 60 days. The NOAEC and LOAEC were 22.3 and 43.5 (xg/L total
copper, respectively. Data were not available to calculate point estimates at the 20 percent effect level
using regression analysis. The chronic value for this species was 31.15 (xg/L total copper (geometric
mean of 22.3 and 43.5 (xg/L total copper).
Salvelinus namaycush. McKim et al. (1978) examined the survival and growth (expressed as
standing crop) of embryo-larval and early juvenile lake trout exposed to copper. The embryo exposure
was for 27 days, and the larval-early-juveniles exposure lasted 66 days. The NOAEC and LOAEC were
22.0 and 43.5 (xg/L total copper, respectively. Data were not available to calculate point estimates at the
20 percent effect level using regression analysis. The chronic value for this species was 30.94 (xg/L total
copper (geometric mean of 22.0 and 43.5 (xg/L total copper).
E.sox lucius. McKim et al. (1978) examined the survival and growth (expressed as standing crop)
of embryo-larval and early juvenile northern pike exposed to copper. The embryo exposure was for 6
days, and the larval-early-juveniles exposure lasted 34 days. The NOAEC and LOAEC were 34.9 and
104.4 (xg/L total copper, respectively. The authors attributed the higher tolerance of is. lucius to copper to
the very short embryonic exposure period compared with salmonids and white sucker, Catostomus
H-5

-------
commersoni. Data were not available to calculate point estimates at the 20 percent effect level using
regression analysis. The chronic value for this species was 60.36 (xg/L total copper (geometric mean of
34.9 and 104.4 fxg/L total copper).
Pimephales notatus. An experimental design similar to that described by Mount and Stephan
(1967) and Mount (1968) was used to examine the chronic effect of copper on the bluntnose minnow, P.
notatus (Horning andNeiheisel 1979). Measured total copper concentrations were 4.3 (control), 18.0,
29.9, 44.1, 71.8, and 119.4 (xg/L, respectively. The experimental dilution water was amixture of spring
water and demineralized City of Cincinnati tap water. Dissolved oxygen was kept at 5.9 mg/L or greater
throughout the test. Total water hardness ranged from 172 to 230 mg/L as CaC03. The test was initiated
with 22 6-week-old fry. The fish were later separated according to sex and thinned to a sex ratio of 5
males and 10 females per duplicated test chamber. Growth (total length) was significantly reduced in
parental and first (Fj) generation P. notatus after 60 days of exposure to the highest concentration of
copper tested (119.4 (xg/L). Survival of parental P. notatus exposed to this same high test concentration
was also lower (87 percent) at the end of the test compared with the other concentrations (range of 93 to
100 percent). Copper at concentrations of 18 (xg/L and greater significantly reduced the number of eggs
produced per female. The number of females available to reproduce was generally the same up to about
29.9 (xg/L of copper. The chronic limits were based on anNOAEC and LOAEC of <18 and 18 (xg/L for
number of eggs produced per female. An EC20 was not estimated by nonlinear regression; nevertheless,
in this case an EC20 is likely to be substantially below 18 |xg/L.
Pimephales promelas. The results from a 30-day ELS toxicity test to determine the chronic
toxicity of copper to P. promelas using dilution water from Lake Superior (hardness ranging from 40 to
50 mg/L as CaC03) was included in Table 2a from a manuscript prepared by Lind et al. in 1978. In this
experiment, five test concentrations and a control were supplied by a continuous-flow diluter. The
exposure began with embryos 1 day post-fertilization. Pooled results from fish dosed in replicate
exposure chambers were given for mean percentage embryo survival to hatch, mean percentage fish
survival after hatch, and mean fish wet weight after 30 days. The percentage of embryo survival to hatch
was not affected by total copper concentrations as high as 52.1 (xg/L total copper. Survival after hatch,
however, was compromised at 26.2 (xg/L, and mean wet weight of juvenile fathead minnows was
significantly reduced at 13.1 (xg/L of copper. The estimated EC20 value for biomass was 9.376 (xg/L total
copper.
Catastomus commersoni. McKim et al. (1978) examined the survival and growth (expressed as
standing crop) of embryo-larval and early juvenile white sucker exposed to copper. The embryo exposure
was for 13 days, and the larval-early-juvenile exposure lasted 27 days. The NOAEC and LOAEC were
12.9 and 33.8 (xg/L total copper, respectively. The resulting chronic value based on hypothesis testing for
this species was 20.88 (xg/L total copper (geometric mean of 12.9 and 33.8 (xg/L total copper).
Lepomis macrochirus. Results from a 22-month copper life-cycle toxicity test with bluegill (L.
macrochirus) were reported by Benoit (1975). The study included a 90-day embryo-larval survival and
growth component. The tests were conducted at the U.S. EPA National Water Quality Laboratory in
Duluth, Minnesota, using Lake Superior water as the dilution water (average water hardness = 45 mg/L
as CaC03). The test was initiated in December 1969 with 2-year-old juvenile L. macrochirus. In May
1971, the fish were sexed and randomly reduced to three males and seven females per tank. Spawning
commenced on 10 June 1971. The 90-day embryo-larval exposure was initiated when 12 lots of 50 newly
hatched larvae from one of the two control groups were randomly selected and transferred to duplicate
grow-out chambers at 1 of 6 total copper concentrations: 3 (control), 12, 21, 40, 77, and 162 (xg/L,
respectively. In the 22-month juvenile through adult exposure, survival, growth, and reproduction were
unaffected at 77 (xg/L of copper and below. No spawning occurred at 162 (xg/L. Embryo hatchability and
H-6

-------
survival of 4-day-old larvae at 77 (xg/L did not differ significantly from those of controls. However, after
90 days of exposure, survival of larval L. macrochirus at 40 and 77 (xg/L was significantly lower than for
controls, and no larvae survived at 162 (xg/L. Growth remained unaffected at 77 (xg/L. Based on the 90-
day survival of bluegill larvae, the chronic limits were estimated to be 21 and 40 (xg/L (geometric mean =
28.98 (xg/L). The corresponding EC20 for embryo-larval survival was 27.15 (xg/L.
H-7

-------
Campeloma decisum (Test 1), Life-cycle, Arthur and Leonard 1970
Campeloma decisum (Test 2), Life-cycle, Arthur and Leonard 1970
Ceriodaphnia dubia (Clinch River), Life-cycle, Belanger et al. 1989
H-8

-------
Lepomis macrochirus, Early Life-stage, Benoit 1975
Oncorhynchus mykiss, Early Life-Stage, Besser et al. 2001
Ceriodaphnia dubia, Life-cycle, Carlson et al. 1986
H-9

-------
Daphnia magna (Hardness 104), Life-cycle, Chapman et al. Manuscript
Daphnia magna (Hardness 211), Life-cycle, Chapman et al. Manuscript
Daphnia magna (Hardness 51), Life-cycle, Chapman et al. Manuscript
H-10

-------
Oncorhynchus tshawytscha, Early Life-Stage, Chapman 1975 & 1982
Lug CU (Ugfl.)
Pimephales promelas, Early Life-stage, Lind et al. 1978
Clistoronia magnified, Life-cycle, Nebeker et al. 1984a
H-11

-------
Oncorhynchus mykiss, Early Life-stage, Seim et al. 1984
Daphnia pulex (Hardness 230 HA 0.15), Life-cycle, Winner 1985
Daphnia pulex (Hardness 57), Life-cycle, Winner 1985
H-12

-------
Appendix I. I n used Data

-------
APPENDIX I. UNUSED DATA
Based on the requirements set forth in the guidelines (Stephan et al. 1985), the following studies
are not acceptable for the following reasons and are classified as unused data.
Studies Were Conducted with Species That Are Not Resident in North America
Abalde et al. (1995)
Abel (1980)
Ahsanullah and Ying (1995)
Ahsanullah et al. (1981)
Aoyama and Okamura (1984)
Austen and McEvoy (1997)
Bougis (1965)
Cid et al. (1995, 1996a,b)
Collvin (1984)
Cosson and Martin (1981)
Daly etal. (1990a,b, 1992)
Denton and Burdon-Jones (1986)
Drbaletal. (1985)
Giudici and Migliore (1988)
Giudici et al. (1987, 1988)
Gopal and Devi (1991)
Gustavson and Wangberg (1995)
Hameed and Raj (1989)
Heslinga (1976)
Hori et al. (1996)
Huebner and Pynnonen (1992)
Ismail et al. (1990)
Jana and Bandyopadhyaya (1987)
Jindal and Verma (1989)
Jones (1997)
Kadioglu and Ozbay (1995)
Karbe (1972)
Knauer et al. (1997)
Kulkarni (1983)
Kumar et al. (1985)
Lan and Chen (1991)
Lee andXu (1984)
Luderitz and Nicklisch (1989)
Majori and Petronio (1973)
Masuda and Boyd (1993)
Mathew and Fernandez (1992)
Maund et al. (1992)
Migliore and Giudici (1988)
Mishra and Srivastava (1980)
Negilski et al. (1981)
Nell and Chvojka (1992)
Neuhoff (1983)
Nias et al. (1993)
Nonnotte et al. (1993)
Pant et al. (1980)
Paulij et al. (1990)
Peterson et al. (1996)
Pistocchi etal. (1997)
Pynnonen (1995)
Raj and Hameed (1991)
Rajkumar and Das (1991)
Reeve et al. (1977)
Ruiz etal. (1994, 1996)
Sawardet al. (1975)
Schaferet al. (1993)
Smith etal. (1993)
Solbe and Cooper (1976)
Steeman-Nielsen and Bruun-Laursen
(1976)
Stephenson (1983)
Takamura et al. (1989)
Taylor etal. (1991, 1994)
Timmermans (1992)
Timmermans et al. (1992)
Vardia et al. (1988)
Verriopoulos and Moraitou-
Apostolopoulou (1982)
Visviki and Rachlin (1991)
Weeks and Rainbow (1991)
White and Rainbow (1982)
Wong and Chang (1991)
Wong et al. (1993)
Copper Was a Component of a Drilling Mud, Effluent, Mixture, Sediment, or Sludge
Buckler et al. (1987)
Buckley (1994)
Clements et al. (1988)
de March (1988)
Hollis et al. (1996)
Home and Dunson (1995)
Hutchinson and Sprague (1987)
Kraak et al. (1993 and 1994a,b)
Lowe (1988)
McNaught (1989)
Munkittrick and Dixon (1987)
Pellegrini et al. (1993)
Roch and McCarter (1984a,b)
Roch et al. (1986)
Sayeret al. (1991b)
Weis andWeis (1993)
Widdows and Johnson (1988)
Wong etal. (1982)
1-1

-------
These Reviews Only Contain Data That Have Been Published Elsewhere
Ankley et al. (1993)
Borgmann and Ralph (1984)
Chapman et al. (1968)
Chen et al. (1997)
Christensen et al. (1983)
Dierickx and Brendael-Rozen (1996)
DiToro etal. (1991)
Eisler (1981)
Eisleretal. (1979)
Enserink et al. (1991)
Felts and Heath (1984)
Gledhill et al. (1997)
Handy (1996)
Hickey et al. (1991)
Janssen et al. (1994)
LeBlanc (1984)
Lilius etal. (1994)
Meyer et al. (1987)
Ozoh (1992c)
Peterson et al. (1996)
Phillips and Russo (1978)
Phipps et al. (1995)
Spear and Pierce (1979b)
Starodub et al. (1987b)
Taylor et al. (1996)
Thompson et al. (1972)
Toussaintet al. (1995)
No Interpretable Concentration, Time, Response Data, or Examined Only a Single Concentration
Asztalos et al. (1990)
Beaumont et al. (1995a,b)
Beckman and Zaugg (1988)
Bjerselius et al. (1993)
Carballo et al. (1995)
Daoust et al. (1984)
De Boecket al. (1995b, 1997)
Dick and Dixon (1985)
Felts and Heath (1984)
Ferreira(1978)
Ferreiraet al. (1979)
Hansen etal. (1993, 1996)
Heath (1987, 1991)
Hughes and Nemcsok (1988)
Julliard et al. (1996)
Koltes (1985)
Kosalwat and Knight (1987)
Kuwabara (1986)
Lauren and McDonald (1985)
Leland (1983)
Lett etal. (1976)
Miller and McKay (1982)
Mis and Bigaj (1997)
Nalewajko et al. (1997)
Nemcsok et al. (1991)
Ozoh (1990)
Ozoh and Jacobson (1979)
Parrott and Sprague (1993)
Pyatt and Dodd (1986)
Riches et al. (1996)
Sayer (1991)
Sayeret al. (1991a,b)
Schleuter et al. (1995, 1997)
Starcevic andZielinski (1997)
Steele (1989)
Taylor and Wilson (1994)
Viale and Calamari (1984)
Visviki and Rachlin (1994b)
Waiwood(1980)
Webster and Gadd (1996)
Wilson and Taylor (1993a,b)
Winberget al. (1992)
Wundramet al. (1996)
Wurts and Perschbacher (1994)
No Useable Data on Copper Toxicity or Bioconcentration
Cowgill et al. (1986)
de March (1979)
Lehman and Mills (1994)
Lustigman (1986)
Lustigman et al. (1985)
MacFarlane et al. (1986)
van Hoofet al. (1994)
Weeks and Rainbow (1992)
Wong etal. (1977)
Wren and McCarroll (1990)
Zamuda et al. (1985)
Results Not Interpretable as Total or Dissolved Copper
Brand et al. (1986)	Sanders and Martin (1994)	Sunda et al. (1987)
MacFie et al. (1994)	Sanders et al. (1995)	Winberg et al. (1992)
Riedel (1983)	Stearns and Sharp (1994)
Sanders and Jenkins (1984)	Stoecker et al. (1986)
Some of these studies would be valuable if copper criteria were developed on the basis of cupric
ion activity.
1-2

-------
Organisms Were Selected, Adapted or Acclimated for Increased Resistance to Copper
Fisher (1981)
Fisher and Fabris (1982)
Hall (1980)
Halletal. (1989)
Harrison and Lam (1983)
Harrison et al. (1983)
Lumoaet al. (1983)
Lumsden and Florence (1983)
Munkittrick and Dixon (1989)
Myint and Tyler (1982)
Neuhoff (1983)
Parker (1984)
Phelps et al. (1983)
Ray et al. (1981)
Sander (1982)
Scarfe et al. (1982)
Schmidt (1978a,b)
Sheffrin et al. (1984)
Steele (1983b)
Takamura et al. (1989)
Viarengo etal. (1981a,b)
Wood (1983)
Either the Materials, Methods, Measurements or Results Were Insufficiently Described
Abbe (1982)
Alam and Maughan (1995)
Balasubrahmanyam et al. (1987)
Baudouin and Scoppa (1974)
Belanager et al. (1991)
Benedeczky et al. (1991)
Benedetti et al. (1989)
Benhra et al. (1997)
Bouquegneau and Martoja (1982)
Burton and Stemmer (1990)
Burton et al. (1992)
Cabejszek and Stasiak (1960)
Cain and Luoma (1990)
Chapman (1975, 1982)
Cochrane et al. (1991)
Devi etal. (1991)
Dirilgen and Inel (1994)
Dodge and Theis (1979)
Doucet and Maly (1990)
Dunbar et al. (1993)
Durkina and Evtushenko (1991)
Enesco etal. (1989)
Erickson et al. (1997)
Evans (1980)
Ferrando and Andreu (1993)
Finlayson and Ashuckian (1979)
Furmanska (1979)
Gibbs et al. (1981)
Gordon et al. (1980)
Gould et al. (1986)
Govindarajan et al. (1993)
Hayes et al. (1996)
Howard and Brown (1983)
Janssen et al. (1993)
Janssen and Persoone (1993)
Kean et al. (1985)
Kentouri et al. (1993)
Kessler(1986)
Khangarotet al. (1987)
Kobayashi (1996)
Kulkarni (1983)
Labat et al. (1977)
Lakatos et al. (1993)
LeBlanc (1985)
Leland et al. (1988)
Mackey (1983)
Magni (1994)
Martin et al. (1984)
Martincic et al. (1984)
Mcintosh and Kevern (1974)
McKnight (1980)
Moore and Winner (1989)
Muramoto (1980, 1982)
Nyholm and Damgaard (1990)
Peterson et al. (1996)
Pophan and D'Auria (1981)
Reed-Judkins et al. (1997)
Rehwoldt et al. (1973)
Riches et al. (1996)
Sakaguchi et al. (1977)
Sanders etal. (1995)
Sayer (1991)
Schultheis et al. (1997)
See etal. (1974)
Shcherban (1977)
Smith etal. (1981)
Sorvari and Sillanpaa (1996)
Stearns and Sharp (1994)
Strong and Luoma (1981)
Sullivan andRitacco (1988)
Taylor (1978)
Taylor et al. (1994)
Thompson (1997)
Trucco et al. (1991)
Verma et al. (1980)
Visviki and Rachlin (1994a)
Watling (1983)
Winner et al. (1990)
Young and Harvey (1988, 1989)
Zhokhov (1986)
1-3

-------
Questionable Effect Levels Due to Graphical Presentation of Results
Alliot and Frenet-Piron (1990)
Andrew (1976)
Arsenault et al. (1993)
Balasubrahmanyam etal. (1987)
Bjerselius et al. (1993)
Bodar et al. (1989)
Chen (1994)
Cowgill and Milazzo (1991b)
Cvetkovic et al. (1991)
Dodoo et al. (1992)
Francisco et al. (1996)
Gupta etal. (1985)
Hansen et al. (1996)
Hoare and Davenport (1994)
Lauren and McDonald (1985)
Llanten and Greppin (1993)
Metaxas and Lewis (1991)
Michnowicz and Weeks (1984)
Miersch et al. (1997)
Nasu et al. (1988)
Pearlmutter and Lembi (1986)
Pekkalaand Koopman (1987)
Peterson et al. (1984)
Romanenko and Yevtushenko (1985)
Sanders etal. (1994)
Smith and Heath (1979)
Stokes and Hutchinson (1976)
Winner and Gauss (1986)
Wong (1989)
Young and Lisk (1972)
Studies of Copper Complexation With No Useable Toxicology Data for Surface Waters
Borgmann (1981)
Filbin and Hough (1979)
Frey et al. (1978)
Gillespie and Vaccaro (1978)
Guy and Kean (1980)
Jennett et al. (1982)
Maloney and Palmer (1956)
Nakajima et al. (1979)
Stauber and Florence (1987)
Sunda and Lewis (1978)
Swallow et al. (1978)
van den Berg et al. (1979)
Wagemann and Barica (1979)
Questionable Treatment of Test Organisms or Inappropriate Test Conditions or Methodology
Arambasic etal. (1995)
Benhra et al. (1997)
Billard and Roubaud (1985)
Bitton et al. (1995)
Brand et al. (1986)
Bringmann and Kuhn (1982)
Brkovic-Popovic and Popovic
(1977a,b)
Dirilgenand Inel (1994)
Folsom etal. (1986)
Foster et al. (1994)
Gavis et al. (1981)
Guanzon et al. (1994)
Hawkins and Griffith (1982)
Ho and Zubkoff (1982)
Hockett and Mount (1996)
Huebert etal. (1993)
Huilsom (1983)
Jezierska and Slominska (1997)
Kapu and Schaeffer (1991)
Kessler(1986)
Khangarot and Ray (1987a)
Khangarotet al. (1987)
Lee andXu (1984)
Marek et al. (1991)
McLeese (1974)
Mis etal. (1995)
Moore and Winner (1989)
Nasu et al. (1988)
Ozoh and Jones (1990b)
Reed and Moffat (1983)
Rueteretal. (1981)
Sayeret al. (1989)
Schenck (1984)
Shaner and Knight (1985)
Sullivan et al. (1983)
Tomasik et al. (1995)
Watling (1981, 1982, 1983)
Wikfors andUkeles (1982)
Wilson (1972)
Wong and Chang (1991)
Wong (1992)
High control mortalities occurred in all except one test reported by Sauter et al. (1976). Control
mortality exceeded 10% in one test by Mount and Norberg (1984). Pilgaard et al. (1994) studied
interactions of copper and hypoxia, but failed to run a hypoxic control. Beaumont et al. (1995a,b) studied
interactions of temperature, acid pH and copper, but never separated pH and copper effects. The 96-hour
values reported by Buikema et al. (1974a,b) were subject to error because of possible reproductive
interactions (Buikema et al. 1977).
1-4

-------
Bioconcentration Studies Not Conducted Long Enough, Not Steady-State,
Not Flow-through, or Water Concentrations Not Adequately Characterized or Measured
Anderson and Spear (1980a)
Harrison et al. (1988)
Krantzberg (1989)
Felton et al. (1994)
Griffin et al. (1997)
Martincic et al. (1992)
McConnell and Harrel (1995)
Miller et al. (1992)
Ozoh (1994)
Wright and Zamuda (1987)
Xiaorong et al. (1997)
Yan et al. (1989)
Young and Harvey (1988, 1989)
Zia and Alikhan (1989)
Anderson (1994), Anderson et al. (1994), Viarengo et al. (1993), and Zaroogian et al. (1992)
reported on in vitro exposure effects. Benedeczky et al. (1991) studied only effects of injected copper.
Ferrando et al. (1993b) studied population effects of copper and cladoceran predator on the rotifer prey,
but the data are difficult to interpret. A similar problem complicated use of the cladoceran competition
study of LeBlanc (1985).
1-5

-------