EPA/600/R-08/142
                                                           December 2008
Arsenic Removal from Drinking Water by Adsorptive Media
     U.S.  EPA Demonstration Project at Brown City, MI
            Final Performance Evaluation Report
                              by

                       Abraham S.C. Chen
                        Wendy E. Condit
                           Lili Wang
                          Anbo Wang

                            Battelle
                    Columbus, OH 43201-2693
                     Contract No. 68-C-00-185
                       Task Order No. 0019
                              for

                         Thomas J. Sorg
                       Task Order Manager

             Water Supply and Water Resources Division
           National Risk Management Research Laboratory
                       Cincinnati, OH 45268
           National Risk Management Research Laboratory
                 Office of Research and Development
                U.S. Environmental Protection Agency
                      Cincinnati, OH 45268

-------
                                       DISCLAIMER
The work reported in this document is funded by the United States Environmental Protection Agency
(EPA) under Task Order 0019 of Contract 68-C-00-185 to Battelle. It has been subjected to the Agency's
peer and administrative reviews and has been approved for publication as an EPA document. Any
opinions expressed in this paper are those of the author(s) and do not, necessarily, reflect the official
positions and policies of the EPA.  Any mention of products or trade names does not constitute
recommendation for use by the EPA.

-------
                                         FOREWORD
The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's
land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to
formulate and implement actions leading to a compatible balance between human activities and the ability
of natural systems to support and nurture life. To meet this mandate, EPA's research program is provid-
ing data and technical support for solving environmental problems today and building a science knowl-
edge base necessary to manage our ecological resources wisely, understand how pollutants affect our
health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation
of technological and management approaches for preventing and reducing risks from pollution that
threaten human health and the environment.  The focus of the Laboratory's research program is on meth-
ods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface
resources; protection of water quality in public water systems; remediation of contaminated sites, sedi-
ments, and ground water; prevention and control of indoor air pollution; and restoration of ecosystems.
NRMRL collaborates with both public and private sector partners to foster technologies that reduce the
cost of compliance and  to anticipate emerging problems. NRMRL's research provides solutions to envi-
ronmental problems by  developing and promoting technologies that protect and improve the environment;
advancing scientific and engineering information to support regulatory and policy decisions; and provid-
ing the technical support and information transfer to ensure implementation of environmental regulations
and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan.  It is
published and made available by EPA's Office of Research and Development to assist the user commun-
ity and to link researchers with their clients.
                                            Sally Gutierrez, Director
                                            National Risk Management Research Laboratory
                                               in

-------
                                         ABSTRACT
This report documents the activities performed and the results obtained from the arsenic removal
treatment technology demonstration project in Brown City, MI.  The objectives of the project were to
evaluate (1) the effectiveness of a Severn Trent Services (STS) adsorptive media system - Arsenic
Package Unit (APU) - with the use of SORB 33™ media in removing arsenic to meet the new arsenic
maximum contaminant level (MCL) of 10 |o,g/L, (2) the reliability of the treatment system, (3) the
simplicity of required system operation and maintenance (O&M) and operator skills, and (4) the cost-
effectiveness of the technology. The project also characterized water in the distribution system and
process residuals produced by the treatment system.

The STS system consisted of two  APU-300 units each comprising two 63-in-diameter, 86-in-tall
fiberglass  reinforced plastic (FRP) vessels in parallel configuration. Each adsorption vessel contained
approximately 80 ft3 of SORB 33™ media, which is an iron-based adsorptive media developed by Bayer
AG and packaged under the name SORB 33™ by STS. The system was designed for a flowrate of 640
gal/min (gpm) (160 gpm to each vessel), corresponding to a design empty bed contact time (EBCT) of
about 3.7 min and a hydraulic loading rate of 7.4 gpm/ft2.  Actual flowrate through the system averaged
564 gpm during the performance evaluation study, corresponding to an EBCT of 4.2 min.

The STS treatment system started on May 11, 2004, and continued to operate through May 2, 2007, with
a total operating time of 4,547 hr.  Averaged daily operating time was approximately 4.5  hr/day or a 19%
utilization rate. During the performance evaluation, approximately 154,000,000 gal or 64,370 bed
volumes (BV) of water were treated.  The system continued to operate through the three-year
demonstration study with only a few minor repairs and adjustments. The flowrate, pressure data and
other operational parameters were within the vendor specifications after a system retrofit that was
completed before system startup on May 11, 2004. The system continued to operate within the vendor
equipment specifications through  May 2, 2007.

Arsenic in source water existed primarily as soluble As(III) (i.e., 85% at 13.1 (ig/L), with a small amount
also present as soluble As(V) (i.e., 0.7 (ig/L ) and particulate As (i.e., 1.6 (ig/L). Per the vendor's
recommendations, raw water was  fed directly through the adsorption vessels without prechlorination to
evaluate the capacity of the SORB 33™ media for As(III) adsorption from May 11, 2004, through May
15, 2005.  Because of premature arsenic breakthrough over 10 (ig/L, prechlorination was implemented on
May 16, 2005, to extend the media bed life through oxidation of As(III) to As(V).  Since  then, the system
operated with prechlorination through the end of the performance evaluation on May 2, 2007.

From May 11, 2004, to May 10, 2005, without prechlorination, concentrations of total arsenic in the
treated water primarily as As(III) ranged from 0.7 to 12.8 (ig/L, with >10-(ig/L breakthrough occurring at
20,800 BV.  From May 16, 2005,  to May 2, 2007, with prechlorination, concentrations of arsenic in the
treated water primarily as As[V] ranged from 0.6 to 7.5 (ig/L. The amount of water treated during the
entire study period was 64,370 BV, representing about 80% of the vendor-estimated working capacity.
Prechlorination was effective in extending the media bed life by removing soluble As(V) and particulate
As (about 19% of the arsenic removed) by the media beds. Particulate iron averaged 144 (ig/L after
prechlorination was removed to below the method detection limit of 25 (ig/L.

Distribution system water samples were collected to determine any impact of arsenic treatment on the
lead and copper levels and water chemistry in the distribution system. Comparison of the distribution
system sampling results before and after the operation of the STS system showed a decrease in arsenic
concentration at all three sampling locations. Total aresnic levels in the distribution system decreased
from an average of 10.3 to 5.3 |o,g/L, and generally mirrored those in the treatment plant effluent.  Iron
                                               IV

-------
levels decreased to the non-detect level, while manganese levels increased slightly. Lead concentrations
did not appear to have been affected by the operation of the system.  Copper concentrations were
generally lower.

Backwash wastewater contained lower-than-raw-water-level of soluble arsenic, indicating removal of
soluble As(III) by the media during backwash. (Note that raw water was used for backwash.)  As
expected, particulate arsenic, iron, and manganese concentrations were considerably higher than
respectively soluble concentrations. Particulate As might be associated with either iron particles
intercepted by the media beds during the service cycle or media fines. Based on the total suspended solid
(TSS) values, approximately  15.6 Ib of suspended solids were produced in 20,000 gal of backwash
wastewater during each backwash event.

The capital investment cost of $305,000 included $218,000 for equipment, $35,500 for site engineering,
and $51,500 for installation.  Using the system's rated capacity of 640 gpm, the capital cost was
$477/gpm ($0.33/gpd) and equipment-only cost was $340/gpm ($0.24/gpd).  These calculations did not
include the cost of a building addition to house the treatment system. The unit annualized capital cost was
$0.09/1,000 gal, assuming the system operated 24 hours a day, 7 days a week, at the system design
flowrate of 640 gpm.  The system operated only 4.5 hr/day on average, producing an average of
51,333,670 gal of water per year. At this reduced usage rate, the unit annualized capital cost increased to
$0.56/1,000 gal.

O&M cost included only incremental cost associated with the APU-300 system, such as media
replacement and disposal, chemical supply, electricity, and labor. The estimated media changeout cost is
$53,600 for both APU-300 units, which would represent the majority of the O&M cost.  Media changeout
did not occur  during the performance evaluation period.

-------
                                       CONTENTS

FOREWARD	iii
ABSTRACT	iv
APPENDICES	vii
FIGURES	vii
TABLES	vii
ABBREVIATIONS AND ACRONYMS	ix
ACKNOWLEDGMENTS	xi

Section 1.0: INTRODUCTION	1
       1.1  Background	1
       1.2  Treatment Technologies for Arsenic Removal	1
       1.3  Project Objectives	2

Section 2.0: SUMMARY AND CONCLUSIONS	3

Section 3.0: MATERIALS AND METHODS	5
       3.1  General Project Approach	5
       3.2  System O&M and Cost Data Collection	6
       3.3  Sample Collection Procedures and Schedules	6
           3.3.1   Source Water	8
           3.3.2  Treatment Plant Water	8
           3.3.3  Backwash Wastewater	10
           3.3.4  Residual Solids	10
           3.3.5  Distribution System Water	10
       3.4  Sampling Logistics	10
           3.4.1  Preparation of Arsenic Speciation Kits	10
           3.4.2  Preparation of Sampling Coolers	11
           3.4.3   Sample Shipping and Handling	11
       3.5  Analytical Procedures	11

Section 4.0: RESULTS AND DISCUSSION	12
       4.1  Facility Description	12
           4.1.1  Preexisting System	12
           4.1.2   Source Water Quality	12
           4.1.3  Distribution System	12
       4.2  Treatment Process Description	15
       4.3  System Installation	20
           4.3.1  Permitting	20
           4.3.2  Building Construction	20
           4.3.3   System Installation, Shakedown, and Startup	21
       4.4  System Operation	22
           4.4.1  Operational Parameters	22
           4.4.2  Backwash	24
           4.4.3  Residual Management	27
           4.4.4   System/Operation Reliability and Simplicity	27
       4.5  System Performance	28
           4.5.1  Treatment Plant Sampling	28
           4.5.2  Back Wash Water Sampling	37
           4.5.3  Distribution System Water Sampling	40
                                            VI

-------
       4.6  System Cost	41
            4.6.1  Capital Cost	41
            4.6.2  Operation and Maintenance Cost	44

Section 5.0:  REFERENCES	46
                                   APPENDICES
APPENDIX A: Operational Data
APPENDIX B: Analytical Data
                                         FIGURES
Figure 3-1.   Process Flow Diagram and Sampling Locations	9
Figure 4-1.   Map of the Brown City Service Area	13
Figure 4-2.   Former Well No. 4 Pump House at Brown City	14
Figure 4-3.   Pump Motor, System Piping, and Chlorine Addition Assembly at Wellhead No. 4	14
Figure 4-4.   Schematic Diagram of an APU-300 Unit after System Retrofit	17
Figure 4-5.   Photograph of an APU-300 Unit at Brown City	19
Figure 4-6.   System Components	20
Figure 4-7.   New Building Adjacent to Preexisting Pump House	21
Figure 4-8.   Instantaneous Flowrates through Vessels A, B, C, and D	24
Figure 4-9.   Differential Pressure Across Vessels A, B, C, D during Operation Without (Top)
            and with (Bottom) Prechlorination	25
Figure 4-10.  Amounts of Water Treated Between Backwash Events	26
Figure 4-11.  Backwash Wastewater Discharge unto the Ground (left) and into a Underground
            Concrete Vault (right)	28
Figure 4-12.  Concentrations of Arsenic Species at Wellhead, After Chlorination, and After
            Combined Effluent	33
Figure 4-13.  Total Arsenic Breakthrough Curves	34
Figure 4-14.  Total Iron Concentrations vs. Bed Volumes	35
Figure 4-15.  Total Manganese Concentrations Versus Bed Volumes	36
Figure 4-16.  A Comparison of Sulfate Concentrations at IN, AC, and TT Locations	38
Figure 4-17.  Comparsion of Total Arsenic Concentrations in Distribution System Water and
            APU-300 System Effluent	43
Figure 4-18.  Media Replacement and O&M Cost for Brown City, MI, System	45


                                          TABLES

Table 1-1.   Summary of Round 1 Arsenic Removal Demonstration Sites	2
Table 3-1.   Predemonstration Study Activities and Completion Dates	5
Table 3-2.   Evaluation Objectives and Supporting Data  Collection Activities	5
Table 3-3.   Sampling Locations, Schedules, Analytes	7
Table 4-1.   Brown City Water Quality Data	15
Table 4-2.   Physical and Chemical Properties of SORB  33™ Media	16
Table 4-3.   Design Specifications of APU-300 System	18
Table 4-4.   Demonstration Study Activities and Completion Dates	22
Table 4-5.   Summary of Treatment System Operation at the Brown City	23
Table 4-6.   Summary of Arsenic, Iron, and Manganese Analytical Results	30
                                             vn

-------
Table 4-7.   Summary ofWater Quality Parameter Measurements	31
Table 4-8.   Backwash Wastewater Sampling Results	39
Table 4-9.   Backwash Solids Total Metal Results	40
Table 4-10.  Distribution System Sampling Results	42
Table 4-11.  Capital Investment for APU-3 00 System	43
Table 4-12.  O&M Cost for APU-300 System	44
                                            Vlll

-------
                           ABBREVIATIONS AND ACRONYMS
Ap            differential pressure

AA           activated alumina
AAL          American Analytical Laboratories
Al            aluminum
AM           adsorptive media
APU          arsenic package unit
As            arsenic

BET          Brunauer, Emmett, and Teller
bgs           below ground surface
BV           bed volume(s)

Ca            calcium
C/F           coagulation/filtration
Cl            chlorine
CRF          capital recovery factor
Cu            copper

DO           dissolved oxygen

EBCT         empty bed contact time
EPA          U.S. Environmental Protection Agency

F             fluoride
Fe            iron
FRP          fiberglass reinforced plastic

GFH          granular ferric hydroxide
gpd           gallons per day
gpm          gallons per minute

HC1           hydrochloric acid
hp            horsepower

ICP-MS       inductively coupled plasma-mass spectrometry
ID            identification
IX            ion exchange

KWh          kilowatt hours

LCR          Lead and Copper Rule

MCL          maximum contaminant level
MDL          method detection limit
MDEQ        Michigan Department of Environmental Quality
Mg           magnesium
Mn           manganese
                                            IX

-------
Mo
molybdenum
Na           sodium
NA           not applicable
NaOCl        sodium hypochlorite
NR           no reading
NRMRL      National Risk Management Research Laboratory
NTU          nephelometric turbidity units

O&M         operation and maintenance
ORD          Office of Research and Development
ORP          oxidation-reduction potential

P&ID         piping and instrumentation diagram
PLC          process logic controller
psi           pounds per square inch
psig          pounds per square inch (gage)
PVC          polyvinyl chloride

QAPP         Quality Assurance Project Plan
QA/QC       Quality Assurance/Quality Control

RPD          relative percent difference

Sb           antimony
SDWA        Safe Drinking Water Act
SM           system modification
STMGID      South Truckee Meadows General Improvement District
STS          Severn Trent Services

TBD          to be determined
TCLP         Toxicity Characteristic Leaching Procedure
TDS          total dissolved solids
TOC          total organic carbon
TSS          total suspended solids

V            vanadium
WRWC
White Rock Water Company

-------
                                   ACKNOWLEDGMENTS
The authors wish to extend their sincere appreciation to the staff of the Brown City Water Distribution
Department in Brown City, MI. The staff monitored the treatment system daily and collected samples
from the treatment system and distribution system on a regular schedule throughout this reporting period.
This performance evaluation would not have been possible without their efforts.
                                              XI

-------
                                Section 1.0: INTRODUCTION
1.1 Background

The Safe Drinking Water Act (SDWA) mandates that the U.S. Environmental Protection Agency (EPA)
identify and regulate drinking water contaminants that may have adverse human health effects and that
are known or anticipated to occur in public water supply systems. In 1975 under the SDWA, EPA
established a maximum contaminant level (MCL) for arsenic (As) at 0.05 mg/L. Amended in 1996, the
SDWA required that EPA develop an arsenic research strategy and publish a proposal to revise the
arsenic MCL by January 2000.  On January 18, 2001, EPA finalized the arsenic MCL at 0.01 mg/L (EPA,
2001). In order to clarify the implementation of the original rule, EPA revised the rule text on March 25,
2003, to express the MCL as 0.010 mg/L (10 (ig/L) (EPA, 2003). The final rule requires all community
and non-transient, non-community water systems to comply with the new standard by January 23, 2006.

In October 2001, EPA announced an initiative for additional research and development of cost-effective
technologies to help small community water systems (<10,000 customers) meet the new arsenic standard
and to provide technical assistance to operators of small systems in order to reduce compliance cost.  As
part of this Arsenic Rule Implementation Research Program, EPA's Office of Research and Development
(ORD) proposed a project to conduct a series of full-scale, on-site demonstrations of arsenic removal
technologies, process modifications, and engineering approaches applicable to small systems. Shortly
thereafter, an announcement was published in the Federal Register requesting water utilities interested in
participating in Round 1 of this EPA-sponsored demonstration program to provide information on their
water systems. In June 2002, EPA selected 17 out of 115 sites to host the demonstration studies,
including the Brown City water system in Brown City, MI.

In September 2002, EPA solicited proposals from engineering firms and vendors for cost-effective arsenic
removal treatment technologies for the 17 host sites. EPA received 70 technical proposals for the 17 host
sites, with each site receiving from one to six proposals.  In April 2003, an independent technical panel
reviewed the proposals and provided its recommendations to EPA on the technologies that it determined
were acceptable for the demonstration at each site. Because of funding limitations and other technical
reasons, only 12 of the 17 sites were selected for the demonstration project.  Using the information
provided by the review panel, EPA in cooperation with the host sites and the  drinking water programs of
the respective states, selected one technical proposal for each site.  Severn Trent Services (STS), using the
Bayoxide E33 media developed by Bayer AG, was selected for the Brown City, MI facility.  STS has
given the E33 media the designation "SORB 33™."

1.2        Treatment Technologies for Arsenic Removal

The technologies selected for the 12 Round 1 EPA arsenic removal demonstration host sites include nine
adsorptive media systems, one anion exchange system, one coagulation/filtration system,  and one process
modification with iron addition.  Table 1-1 summarizes the locations, technologies, vendors, and key
source water quality parameters of the 12 demonstration sites. An overview of the technology selection
and system design (Wang et al, 2004) and the associated capital cost for each site (Chen et al., 2004) are
provided on the EPA Website at http://www.epa.gov/ORD/NRMRL/wswrd/dw/arsenic/.  As of June
2008, all 12 systems were operational, and the performance evaluation of 11  systems was completed.

-------
              Table 1-1. Summary of Round 1 Arsenic Removal Demonstration Sites
Demonstration Site
WRWC, NH
Rollinsford, NH
Queen Anne's County, MD
Brown City, MI
Climax, MN
Lidgerwood, ND
Desert Sands MDWCA, NM
Nambe Pueblo, NM
Rimrock, AZ
Valley Vista, AZ
Fruitland, ID
STMGID, NV
Technology (Media)
AM (G2)
AM (E33)
AM (E33)
AM (E33)
C/F (Macrolite)
SM
AM (E33)
AM (E33)
AM (E33)
AM (AAFS50/ARM 200)
IX (A300E)
AM (GFH/Kemiron)
Vendor
ADI
AdEdge
STS
STS
Kinetico
Kinetico
STS
AdEdge
AdEdge
Kinetico
Kinetico
Siemens
Design
Flowrate
(gpm)
70(a)
100
300
640
140
250
320
145
90(a)
37
250
350
Source Water Quality
As
(Hg/L)
39
36(b)
19(b)
14(b)
39(b)
146(b)
23(b)
o o
JJ
50
41
44
39
Fe
(Hg/L)
<25
46
270(c)
127(o)
546(c)
l,325(c)
39
<25
170
<25
<25
<25
pH
7.7
8.2
7.3
7.3
7.4
7.2
7.7
8.5
7.2
7.8
7.4
7.4
  AM = adsorptive media; C/F = coagulation/filtration; GFH = granular ferric hydroxide; IX = ion exchange;
  SM = system modification
  MDWCA = Mutual Domestic Water Consumer's Association; STMGID = South Truckee Meadows General
  Improvement District; WRWC = White Rock Water Company; STS = Severn Trent Services
  (a)  Design flowrate reduced by 50% due to system reconfiguration from parallel to series operation.
  (b)  Arsenic exists mostly as As(III).
  (c)  Iron exists mostly as soluble Fe(II).
1.3
Project Objectives
The objective of the Round 1 arsenic demonstration program is to conduct full-scale arsenic treatment
technology demonstration studies on the removal of arsenic from drinking water supplies. The specific
objectives are to:

        •   Evaluate the performance of the arsenic removal technologies for use on small systems.
        •   Determine the required system operation and maintenance (O&M) and operator skill levels.
        •   Characterize process residuals produced by the technologies.
        •   Determine the capital and O&M cost of the technologies.

This report summarizes the performance of the STS system at the Brown City facility from May 11, 2004,
through May 2, 2007. The types of data collected include system operation, water quality (both across the
treatment train and in the distribution system), residuals, and capital and O&M cost.

-------
                         Section 2.0:  SUMMARY AND CONCLUSIONS
Based on the information collected during three years of system operation, the following conclusions
were made relating to the overall objectives of the treatment technology demonstration study.
Performance of the arsenic removal technology for use on small systems:

        •   Chlorine was effective in oxidizing As(III) to As(V), reducing As(III) concentrations
           from 13.1 (ig/L (on average) in raw water to 2.1 (ig/L (on average).

        •   SORB 33™ media had some adsorptive capacity for As(III). Without the use of
           prechlorination, total arsenic, existing primarily as As(III), broke through at 10 |o,g/L
           after treating approximately 20,800 bed volumes (BV) of water.

        •   Prechlorination significantly extended the media bed life. Removal was achieved
           primarily through As(V) adsorption and, to a lesser extent (i.e., 19%), arsenic-laden
           iron particles filtration. By the end of the performance evaluation, an additional
           43,570 BV of water was treated, with only 3.1 |o,g/L of arsenic in the treated water.
           The total amount of water treated during the entire study period was 64,370 BV,
           representing 80% of the vendor estimated working capacity.

        •   The throughput between consecutive backwash events decreased significantly with
           prechlorination, from just under 3,000 BV to as little as 150 BV. Media attrition
           during backwash appeared to have caused more frequent backwash.

        •   Arsenic concentrations in the distribution system were reduced from an average of 10.3 |o,g/L
           before system startup to 5.3 |o,g/L after system startup.  Arsenic concentrations mirrored those
           in the plant effluent.  Lead concentration did not appear to have been affected by the
           operation of the system. Copper concentration was generally lower than those before system
           startup.

Required system O&Mand operator skill levels:

        •   The APU-300 system experienced higher than expected pressure drops across the
           adsorption vessels and the entire treatment system during system shakedown. The
           system was retrofitted before system startup on May 11, 2004. Since then the system
           was able to operate according to the original design specifications through the end of
           the evaluation study.  There was no unscheduled downtime during the performance
           evaluation period.

        •   Under normal operating conditions, the skill requirements to operate the system were
           minimal, with a typical daily demand on the operator of 30 minutes.  Normal
           operation of the system did not appear to require additional skills beyond those
           necessary to operate the existing water supply equipment. A Class D-3 state-certified
           operator was required for operation of the water system at Brown City.

Characteristics of residuals produced by the technology:

        •   Residuals produced by the  operation of the treatment system included only backwash
           wastewater. The media were not exhausted during the performance evaluation.

-------
       •   Each backwash event produced approximately 20,000 gal of wastewater and 15.6 Ib
           of solids. Backwash wastewater contained less soluble arsenic than raw water (water
           used for backwash), indicating removal of arsenic, mostly as As(III), by the media
           during backwash.

Capital and O&Mcost of the technology:

       •   The unit annualized capital cost was $0.09/1,000 gal if the system operated at a 100%
           utilization rate. The system's actual unit annualized capital cost was $0.56/1,000 gal, based
           on 4.5 hr/day of system operation and 51,333,670 gal/year of water production.

       •   The estimated media changeout cost is $53,600 for both APU-300 units.  Media changeout
           did not occur during the performance evaluation period. O&M cost is therefore reported in
           graphical form as a function of projected run length.

-------
                          Section 3.0: MATERIALS AND METHODS
3.1
General Project Approach
Following the pre-demonstration activities summarized in Table 3-1, the performance evaluation study of
the STS treatment system began on May 11, 2004. Table 3-2 summarizes the types of data collected
and/or considered as part of the technology evaluation process. The overall performance of the system
was evaluated based on its ability to consistently remove arsenic to below the target MCL of 10  |o,g/L
through the collection of water samples across the treatment train.  The reliability of the system was
evaluated by tracking the unscheduled system downtime and frequency and extent of repair and
replacement. The unscheduled downtime and repair information were recorded by the plant operator on a
Repair and Maintenance Log Sheet.
               Table 3-1. Predemonstration Study Activities and Completion Dates
Activity
Introductory Meeting Held
Request for Quotation Issued to Vendor
Vendor Quotation Submitted to Battelle
Purchase Order Completed and Signed
Letter of Understanding Issued
Letter Report Issued
Engineering Package Submitted to MDEQ
Building Construction Initiated
Permit Issued by MDEQ
Final Study Plan Issued
Building Construction Completed
Date
07/24/03
07/28/03
08/26/03
09/24/03
08/15/03
10/20/03
11/26/03
12/01/04
02/11/04
02/12/04
02/12/04
                     MDEQ = Michigan Department of Environmental Quality
           Table 3-2.  Evaluation Objectives and Supporting Data Collection Activities
Evaluation Objective
Performance
Reliability
System O&M and Operator
Skill Requirements
Residual Management
System Cost
Data Collection
-Ability to consistently meet 10 |ag/L of arsenic in treated water
-Unscheduled system downtime
-Frequency and extent of repairs including a description of problems,
materials and supplies needed, and associated labor and cost
-Pre- and post-treatment requirements
-Level of system automation for system operation and data collection
-Staffing requirements including number of operators and laborers
-Task analysis of preventative maintenance including number, frequency,
and complexity of tasks
-Chemical handling and inventory requirements
-General knowledge needed for relevant chemical processes and health and
safety practices
-Quantity and characteristics of aqueous and solid residuals generated by
system operation
-Capital cost for equipment, site engineering, and installation
-O&M cost for media, chemical consumption, electricity usage, and labor

-------
The O&M and operator skill requirements were evaluated based on a combination of quantitative data
and qualitative considerations, including the need for any pre- and/or post-treatment, level of system
automation, extent of preventative maintenance activities, frequency of chemical and/or media handling
and inventory, and general knowledge needed for relevant chemical processes and related health and
safety practices.  The system staffing requirements were recorded on  an Operator Labor Hour Log Sheet.

The quantity of aqueous and solid residuals generated was estimated by tracking the amount of backwash
wastewater produced during each backwash cycle and the need to replace the media upon arsenic
breakthrough.  Backwash wastewater was sampled and analyzed for its chemical characteristics.

The cost of the system was evaluated based on the capital cost per gal/min (gpm) (or gal/day [gpd]) of
design capacity and the O&M cost per 1,000 gal of water treated.  This task required tracking of the
capital cost for the equipment, engineering, and installation, as well as the O&M cost for media
replacement and disposal, chemical supply, electricity usage, and  labor.

3.2        System O&M and Cost Data Collection

The plant operator performed daily, weekly, and monthly system O&M and data collection following the
instructions provided by STS and Battelle.  On a daily basis, the plant operator recorded system
operational data, such as pressure, flowrate, totalizer, and hour meter readings on a Daily System
Operation Log Sheet; checked the sodium hypochlorite (NaOCl) tank level; and conducted visual
inspections to ensure normal system operations. If any problems occurred, the plant operator contacted
the Battelle Study Lead, who determined if STS needed to be contacted for troubleshooting.  The plant
operator recorded all relevant information on the Repair and Maintenance Log Sheet.  Biweekly, the plant
operator measured temperature, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP),
and recorded the data on a Weekly On-site Water Quality Parameters Log Sheet.  Total and free chlorine
residuals also were measured biweekly by the operator since switching to prechlorination. STS  originally
recommended a backwash every 45 days; however, since switching to prechlorination, the system was
backwashed whenever differential pressure (Ap) across each adsorption vessel had reached a set point of
10 psi.  Backwash data were recorded on a Backwash Log Sheet.

The capital cost for the arsenic removal system consisted of the cost for equipment, site engineering, and
system installation. The O&M cost consisted of the cost for media replacement and spent media disposal,
chemicals and electricity consumption, replacement parts, and labor.  The NaOCl and electricity
consumption was tracked using the Daily System Operation Log Sheet. Labor for various activities, such
as the routine system O&M, troubleshooting and repair, and demonstration-related work, were tracked
using an Operator Labor Hour Log Sheet.  The routine O&M included activities such as completing daily
field logs, replenishing the NaOCl solution, ordering inventory, performing regular system inspection, and
others as recommended by the vendor.  The demonstration-related work, including activities such as
performing field  measurements, collecting and shipping samples, and communicating with the Battelle
Study Lead and the vendor, was recorded, but not used for the cost analysis.

3.3        Sample Collection Procedures and Schedules

To  evaluate the system performance, samples were collected from the source water, treatment plant, and
distribution system. Table 3-3 provides the sampling schedules and analytes measured during each
sampling event.  Figure 3-1 presents a flow diagram of the treatment  system along with the analytes and
schedules at each sampling location. Specific sampling requirements for analytical methods, sample
volumes, containers, preservation, and holding times are presented in Table 4-1 of the EPA-endorsed
Quality Assurance Project Plan (QAPP) (Battelle, 2003). The procedure for arsenic speciation is
described in Appendix A of the QAPP.

-------
Table 3-3. Sampling Locations, Schedules, and Analytes
Sample
Type
Source
Water












Treatment
Plant
Water

























Backwash
Wastewater







Sampling
Locations'3'
IN













IN, AC, TA,
TB, TC, and
TD







IN, AC, and
TT
















Backwash
discharge
line from
Vessels A,
B, C, andD




No. of
Samples
1













6









3

















4









Frequency
Once (during
initial site visit)












Monthly
(Once every four
weeks,
measurements
discontinued after
10/18/05)




Monthly
(Once every four
weeks)















Once every one to
four months for a
total of 17 times







Analytes
On-site: pH

Off-site:
As (total and soluble),
As(III), As(V),
Fe (total and soluble),
Mn(total and soluble),
Al(total and soluble),
V (total and soluble),
Mo(total and soluble),
Sb(total and soluble),
Na, Ca, Mg, Cl, F, SO4,
sulfide, SiO2, PO4, TOC,
and alkalinity
On-site: pH, temperature,
DO, ORP, and C12 (free
and total) (b)

Off-site: As (total), Fe
(total), and Mn (total),
SiO2, PO4(C), alkalinity,
and turbidity


On-site: pH, temperature,
DO, ORP, and C12 (free
and total) (d)

Off-site(e):
As (total and soluble),
As(III), As(V),
Fe (total and soluble),
Mn (total and soluble),
Ca, Mg, F, N03, S04,
Si02, P04(c), total P(f),
alkalinity, and turbidity






Before 02/0 1/06 :pH,
TDS, turbidity, soluble
As, Fe, and Mn

After 02/0 1/06 :pH,
TDS, and TSS,
As (total, and soluble),
Fe (total and soluble),
Mn (total and soluble)

Collection Date(s)
07/24/03













05/18/04, 06/08/04,
07/06/04, 08/03/04,
08/31/04,09/28/04,
11/02/04, 11/30/04,
01/18/05, 02/15/05,
03/15/05, 03/29/05,
04/13/05, 05/10/05,
06/07/05, 07/05/05,
08/02/05, 09/06/05,
09/13/05, 10/18/05
05/25/04, 06/24/04,
07/20/04, 08/17/04,
09/14/04, 10/12/04,
11/16/04, 12/14/04,
01/05/05, 02/01/05,
03/07/05, 04/26/05,
05/24/05, 06/22/05,
07/19/05, 08/16/05,
09/28/05, 10/25/05,
12/19/05, 01/17/06,
03/01/06,03/21/06,
04/18/06, 05/16/06,
06/14/06,07/11/06,
08/14/06,09/19/06,
10/17/06, 11/28/06,
12/12/06, 01/22/07,
02/27/07, 03/27/07,
05/02/07
06/15/04, 07/28/04,
09/09/04, 10/22/04,
01/14/05, 02/22/05,
04/08/05, 05/23/05,
07/06/05, 10/12/05,
02/01/06, 02/28/06,
04/06/06, 04/29/06,
06/01/06, 07/26/06,
09/12/06

-------
                 Table 3-3.  Sampling Locations, Schedules, Analytes (Continued)
Sample
Type
Backwash
Solids


Distribution
Water












Sampling
Locations'3'
At
backwash
discharge
point
Three
homes (LCR
sampling
locations)










No. of
Samples I
2



3














'requeue y
Once



Monthly














Analytes
Total Al, As, Ba, Ca, Cd,
Cu, Fe, Mg, Mn, Ni, P,
Pb, Sb,Si, V, andZn

pH, alkalinity, total As,
Cu, Fe, Mn, and Pb













Collection Date(s)
07/12/06



Baseline sampling:
12/04/03, 12/18/03,
01/08/04, 01/21/04

Monthly sampling:
06/15/04, 07/13/04,
08/10/04, 09/08/04,
10/05/04, 11/02/04,
12/08/04, 01/12/05,
02/09/05, 03/08/05,
04/13/05, 05/10/05,
06/07/05, 07/06/05,
08/03/05, 09/07/05,
10/05/05, 01/25/06
  (a)  Abbreviation corresponding to sample locations in Figure 3-1: IN = at wellhead, AC = after chlorination
      (prechlorination began on May 16, 2005), TA = after Vessel A, TB = after Vessel B, TC = after Vessel C,
      TD = after Vessel D, TT = comined effluent, and BW = at backwash wastewater discharge line
  (b)  Onsite chlorine measurements not performed at IN; measurements at AC, TA, TB, TC, and TD conducted
      on June 7, July 5, August 2, September 6, and October 18, 2005.
  (c)  PO4 measured from May 18 to December 14, 2004
  (d)  Onsite chlorine measurements not performed at IN; measurements at AC and TT conducted from August
      16, 2005, through May 2, 2007, except for September 28 and October 25, 2005.
  (e)  Since August 14, 2006, analyses for F, NO3, SO4, and alkalinity discontinued; SO4 analyses resumed on
      January 22, February 27, and May 2, 2007.
  (f)  Total P measured from October 25, 2005, through November 28, 2006, except for October 17, 2006.
3.3.1       Source Water. During the initial visit to the site, source water samples were collected and
speciated using an arsenic speciation kit described in Section 3.4.1.  The sample tap was flushed for
several minutes before sampling; special care was taken to avoid agitation, which could cause unwanted
oxidation. Analytes for the source water samples are listed in Table 3-3.

3.3.2       Treatment Plant Water.  Treatment plant water samples were collected by the plant
operator biweekly, on a four-week cycle, for on- and off-site analyses. For the first week of each four-
week cycle, water samples were collected at six locations across the treatment train, including at wellhead
(IN), after chlorination (AC), and after Vessels A, B, C, and D (TA, TB, TC, and TD), and analyzed for
the analytes listed in Table 3-3.  For the third week of each four-week cycle, water samples were collected
at IN, AC, and the combined effluent of Vessels A, B, C and D  (TT) and analyzed for the analytes shown
in Table 3-3.  Sampling at AC started only after prechlorination had been initiated on May 16, 2005. The
sampling frequency was reduced from weekly, as stated in the Study Plan,  to biweekly due to the low
water demand and resulting low volume throughput to the system (Battelle, 2004).

Over the course of the demonstration study, several changes were made to  the sampling schedules:

        •   Sampling at TA, TB, TC, and TD was discontinued after October 18, 2005. Since then, the
           sampling frequency was reduced from bi-weekly to monthly.

-------
                                                       INFLUENT
                                                     (WELL NO. 4)
                 Monthly
          pH>TW^
oluble), \^/ 1
: JL : 1







1

[ ^

•4 	 DA: C12





r

f 	 ;• 	 > v
turbidity, alkalinity
LEGEND
o f IN J Influent
g (^\ Media Vessel Effluent
ll \__y (TA-TD)

f BW ) Backwash Sampling Location
f S3 ) Sludge Sampling Location
INFLUENT Unit Process
DA: C12 Chlorine Disinfection


                                                  MEDIA \ / MEDIA \ / MEDIA
                                                  VESSEL  11  VESSEL  11 VESSEL
                                                     B    /\    C    /\   D
                                                                                   pH(a), temperature^, DO/ORPW,
                                                                                   C12 (free and total), As (total),
                                                                                   Fe (total), Mn (total), SiO2, PO4,
                                                                                   turbidity, alkalinity
          pHW, temperature^, DO/ORPW,
     As (total and soluble), As (III), As (V),
   C12 (free and total), Fe (total and soluble),-
Mn (total and soluble), Ca, Mg, F, NO3, SO4,
     SiO2, PO4, P (total), turbidity, alkalinity
      Footnote
      (a) On-site analyses
DISTRIBUTION
    SYSTEM
                      Figure 3-1. Process Flow Diagram and Sampling Locations

-------
       •   Since August 14, 2006, monthly analyses for fluoride, NO3, SO4, and alkalinity at IN, AC,
           and TT were discontinued. SO4 analyses were resumed on January 22, February 27, and May
           2, 2007.

       •   Beginning on October 25, 2005, orthophosphate analyses were replaced with total
           phosphorus analyses, which were discontinued since November 28, 2006.

3.3.3       Backwash Wastewater. Periodic grab samples were collected by the plant operator from
June 15, 2004, through October 12, 2005, from a tap on the backwash wastewater discharge line.  Filtered
samples using 0.45-(im filters were analyzed for soluble As,  Fe, and Mn and non-filtered samples
analyzed for pH, total dissolved solids (TDS), and turbidity.  Since February 1, 2006, composite samples
were collected periodically using a revised procedure to allow collection of more representative samples
during backwash. Tubing, connected to the tap on the discharge line, directed a portion of backwash
wastewater at approximately 1 gpm into a clean, 32-gal container over the duration of the backwash for
each vessel. After the content in the container was thoroughly mixed, composite samples were collected
and/or filtered on-site with 0.45-(im disc filters.  Filtered and non-filtered samples were analyzed for the
grab-sample analytes plus total suspended solids (TSS) and total As, Fe, and Mn.

3.3.4       Residual Solids. Residual solids included backwash solids and spent media. On July 12,
2006, backwash solids samples were collected after solids had settled in the 32-gal backwash containers
and the supernatant carefully decanted. Each aliquot of the samples was air-dried, acid-digested, and
analyzed for the analytes listed in Table 3-3.

Since the adsorption media was not changed out during the performance evaluation study, no media
samples were collected and analyzed.

3.3.5       Distribution System Water. Water samples were collected from the distribution system to
determine the impact of the arsenic treatment system on the water chemistry in the distribution system,
specifically on lead, copper, and arsenic levels. From December 2003 to January 2004, prior to the
startup of the treatment system, four monthly baseline distribution system water samples were collected at
each of three homes that had been included for the Lead and Copper Rule (LCR) sampling at Brown City.
Following system startup, distribution system sampling continued on a monthly basis at the same three
locations until January 2006.

The distribution system water samples were taken following an instruction  sheet developed by Battelle
according to the Lead and Copper Rule Reporting Guidance for Public Water Systems (EPA, 2002).  First
draw samples were collected from cold-water faucets that had not been used for at least six hours to
ensure that stagnant water was sampled. The sampler recorded the date and time of last water use before
sampling and the date and time of sample collection for calculation of the stagnation time.  The samples
were analyzed for the analytes listed in Table 3-3. Arsenic speciation was not performed on the
distribution water samples.

3.4        Sampling Logistics

All sampling logistics including arsenic speciation kits preparation, sample cooler preparation, and
sampling shipping and handling are discussed below.

3.4.1       Preparation of Arsenic Speciation Kits.  The arsenic field speciation method used an anion
exchange resin column to separate the soluble arsenic species, As(V) and As(III) (Edwards et al., 1998).
Resin columns were prepared in batches at Battelle laboratories  according to the procedures detailed in
Appendix A of the EPA-endorsed QAPP (Battelle, 2003).
                                               10

-------
3.4.2       Preparation of Sampling Coolers. For each sampling event, a cooler was prepared with the
appropriate number and type of sample bottles, disc filters, and/or speciation kits.  All sample bottles
were new and contained appropriate preservatives. Each sample bottle was affixed with a pre-printed,
colored-coded, waterproof label consisting of the sample identification (ID), date and time of sample
collection, collector's name, site location, sample destination, analysis required, and preservative. The
sample ID consisted of a two-letter code for the specific water facility, sampling date, a two-letter code
for a specific sampling location, and a one-letter code designating the arsenic speciation bottle (if
necessary). The sampling locations at the treatment plant were color-coded for easy identification. The
labeled bottles for each sampling location were placed separately in a ziplock bag (each corresponding to
a specific sample location) and packed in the cooler. When needed, the sample cooler also included
bottles for the distribution system sampling.

In addition, all sampling- and shipping-related materials, such as disposable gloves, sampling instructions,
chain-of-custody forms, prepaid/pre-addressed FedEx air bills, and bubble wrap, were placed in each
cooler. The chain-of-custody forms and airbills were completed except for the operator's signature and
the sample dates and times.  After preparation, sample coolers were sent to the site via FedEx for the
following week's sampling event.

3.4.3       Sample Shipping and Handling.  After sample collection, samples for off-site analyses were
packed carefully in the original coolers with wet ice and shipped to Battelle. Upon receipt, the sample
custodian checked sample IDs against the chain-of-custody forms and verified that all samples indicated
on the forms were included and intact.  Discrepancies noted by the sample custodian were addressed with
the plant operator by the Battelle Study Lead. The shipment and receipt of all coolers by Battelle were
recorded on a cooler tracking log.

Samples  for metal analyses were stored at Battelle's inductively coupled plasma-mass spectrometry (ICP-
MS) laboratory. Samples for other water quality analyses were packed in separate coolers and picked up
by couriers from American Analytical Laboratories (AAL) in Columbus, OH and TCCI Laboratories in
New Lexington, OH. The chain-of-custody forms remained with the samples from the time of
preparation through analysis and final disposal.  All samples were archived by the appropriate
laboratories for the respective duration of the required hold time and disposed of properly thereafter.

3.5        Analytical Procedures

The analytical procedures described in Section 4.0 of the EPA-endorsed QAPP (Battelle, 2003) were
followed by Battelle ICP-MS, AAL, and TCCI Laboratories.  Laboratory quality assurance/quality control
(QA/QC) of all methods followed the prescribed guidelines. Data quality in terms of precision, accuracy,
method detection limit (MDL), and completeness met the criteria established in the QAPP (i.e., 20% relative
percent difference [RPD], 80 to 120% percent recovery and 80% completeness).  The quality assurance
(QA)  data associated with each analyte will be presented and evaluated in a QA/QC Summary Report to be
prepared under separate cover upon completion of the Arsenic Demonstration Project.

Field  measurements of pH, temperature, DO, and ORP were conducted by the plant operator using a
WTW Multi 340i handheld meter,  which was calibrated for pH and DO prior to use following the
procedures provided in the user's manual.  The ORP probe also was checked for accuracy by measuring
the ORP  of the standard  solution and comparing it to the expected value. The plant operator collected a
water sample in a clean,  plastic beaker and placed the WTW probe in the beaker until a stable value was
obtained. The plant operator also performed free and total chlorine measurements using Hach chlorine
test kits following the user's manual.
                                               11

-------
                           Section 4.0:  RESULTS AND DISCUSSION
4.1        Facility Description

The Brown City, MI water system supplys water to 1,334 community members via 664 service
connections. Figure 4-1 shows a map of the service area and the locations of the supply wells (No. 3 and
4), water tower, treatment plant, which is located at the end of Maple Street.  Figure 4-2 shows the former
pump house prior to the demonstration study.

4.1.1       Preexisting System. The source water was groundwater from three supply wells. However,
the water demand was met primarily with Wells No. 3 and No. 4 (see Figure 4-1 for the locations). Prior
to the demonstration study, Well No. 3 was the primary well, operating on an intermittent basis for
approximately 4 hr/day. Since commencement of the demonstration study, Well No. 3 was used only as
an emergency backup well with Well No. 4 as the main supply well. Well No. 4 was 16-in in diameter
and installed at a depth of approximately 315 ft below ground surface (bgs).  The static water level was
approximately 23 to 27 ft bgs. Well No. 4 was equipped with a 75 horsepower (hp) submersible pump
rated for approximately 640 gpm at a discharge pressure of 59 lb/in2 (psi).

Figure 4-3 shows the preexisting piping configuration in Well No. 4 pump house, including a pump
motor, several pressure gauges, a flow totalizer, and a chlorine addition assembly. The chlorine addition
assembly was used to provide chlorine residuals in the distribution system. Residuals levels were
targeted at 0.3 mg/L for free chlorine (as C12) and 0.4 mg/L for total chlorine (as C12).  The treated water
was stored in a nearby 200,000 gal water tower.

4.1.2       Source Water Quality. Source water samples were collected from Well No. 4 on July 24,
2003, and subsequently analyzed for the analytes shown in Table 3-3. The results of the source water
analyses, along with those provided by the facility to EPA for the demonstration site selection and those
independently collected and analyzed by EPA, are presented in Table 4-1.

As shown in Table 4-1, total arsenic concentrations in raw water ranged from 10 to 31 |o,g/L. Based on
the July 24, 2003 sampling results, arsenic existed primarily as soluble As(III) (i.e., 79% at 11.2 (ig/L),
with small amounts also present as soluble As(V) (i.e., 5.5% at 0.8 |o,g/L) and particulate As (i.e.,  15.5%
at 2.2 ng/L). During the first year of system operation, chlorine was added after the adsorption vessels so
that the capacity of the adsorptive media for As(III) might be evaluated. Because of the short run length
observed, prechlorination was initiated to oxidize As(III) to As(V) prior to adsorption starting from May
16, 2005.

Raw water pH values ranged  from 7.3 to 7.5, which were  within the STS recommended range between
6.0 and 8.0.  Therefore, pH adjustment was not required.

Concentrations of iron (127 to 263 (ig/L) and manganese (13.0 to 18.7 (ig/L) in raw water were
sufficiently low so that pre-treatment prior to adsorption was not recommended. Phosphate and silica
concentrations also were low (i.e., <0.1  and <8.1 mg/L, respectively), therefore,  their effects on arsenic
adsorption should be minimal. Although relatively elevated at 74 to 128 mg/L, sulfate should not
interfere with arsenic adsorption.

4.1.3       Distribution System. During the three-year demonstration study, the distribution system
was supplied primarily by Well No. 4. Well No. 3, the emergency backup well, was operated only five
times  on October 13 and November 7, 2004, and June 18, November 10, and December 11, 2005.  The
water from the two wells was blended in the 200,000 gal water tower. The well pumps were activated by
                                              12

-------
                                                                      :Y Or sscwN err.  w.c.-i'CA;
                                                                           ASCRESS MA?
                                                                                   in)

                                                                            SCALl ^* - 300*
Figure 4-1.  Map of the Brown City Service Area

-------
       Figure 4-2. Former Well No. 4 Pump House at Brown City
Figure 4-3.  Pump Motor, System Piping, and Chlorine Addition Point at
                         Wellhead No. 4
                                14

-------
                         Table 4-1. Brown City Water Quality Data
Parameter
Unit
Sampling Date
pH
Alkalinity (as CaCO3)
Hardness (as CaCO3)
Chloride
Fluoride
Sulfate
Silica (as SiO2)
Orthophosphate (as P)
TOC
As (total)
As (soluble)
As (paniculate)
As(III)
As(V)
Fe (total)
Fe (soluble)
Al (total)
Al (soluble)
Mn (total)
Mn (soluble)
V (total)
V (soluble)
Mo (total)
Mo (soluble)
Sb (total)
Sb (soluble)
Na
Ca
Mg
—
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
HB/L
^g/L
HB/L
HB/L
HB/L
W?/L
HB/L
HB/L
HB/L
^g/L
HB/L
HB/L
W?/L
HB/L
HB/L
HB/L
^g/L
mg/L
mg/L
mg/L
Raw Water
Utility
Data
NA
7.5
267(a)
90.0
314
NS
128
7.7
<0.01(a)
NS
31
NS
NS
NS
NS
200(a)
NS
NS
NS
18.0(a)
NS
NS
NS
NS
NS
NS
NS
168(a)
14.0(a)
7.0(a)
EPA
Data
07/23/02
NS
244
108
NS
NS
109
7.4
0.06
NS
10
NS
NS
NS
NS
193
NS
NS
NS
18.7
NS
NS
NS
NS
NS
<25
NS
240
30.6
7.7
Battelle
Data
07/24/03
7.3
235
83.2
51.0
1.9
74.0
8.1
O.10
O.50
14.2
12.0
2.2
11.2
0.8
127
118
<10
<10
13.0
15.0
<0.1
0.1
7.9
6.9
<0.1
0.1
115
20.6
7.7
07/23/02
NS
NS
NS
NS
NS
NS
NS
NS
NS
11.9
12.0
O.I
7.9
4.2
263
148
12.6
1.3
16.9
16.3
NS
NS
NS
NS
NS
NS
NS
NS
NS
Historic Utility
Distribution
Water Data
Min
2000-2003
NS
NS
90.0
ND
1.4
50.0
NS
NS
NS
10.0
NS
NS
NS
NS
200
NS
NS
NS
NS
NS
NS
NS
NS
NS
ND
NS
60.0
NS
NS
Max
2000-2003
NS
NS
144
314
1.9
128
NS
NS
NS
36.0
NS
NS
NS
NS
400
NS
NS
NS
NS
NS
NS
NS
NS
NS
ND
NS
289
NS
NS
     (a)  Data provided by EPA.
     NA = not available; NS = not sampled; ND = not detected
the level sensors in the water tower, which signaled the designated pump to turn on and off when the
water level reached a pre-set low and high setting. The distribution system was constructed primarily of
asbestos cement pipe with some ductile iron and plastic pipe. The sizes of water main ranged from 4 to
12 in. Table 4-1 provides a summary of the treated water quality from historic samples collected within
the distribution system from 2000 to 2003. Based on the June 1998 to September 2000 monitoring
results, the 90th percentile concentrations for lead and copper were 6 and 150 |o,g/L, respectively, which
were below the respective action levels of 15 and 1,300 |o,g/L.
4.2
Treatment Process Description
STS' Arsenic Package Unit (APU) systems are designed for arsenic removal for small systems with
flowrates greater than 100 gpm. They use Bayoxide® E33 (branded as SORB 33™ by STS), an iron-
                                             15

-------
based adsorptive media developed by Bayer AG, for arsenic removal from drinking water supplies.
Table 4-2 presents vendor-provided physical and chemical properties of the media. The SORB 33™
media are delivered in a dry crystalline form and listed by NSF International under Standard 61 for use in
drinking water applications.  The media are provided in both granular and pelletized forms, which have
similar physical and chemical properties, except that pellets are 25% denser than granules (i.e., 35 vs. 28
lb/ft3). The granular media were used at Brown City.
                Table 4-2. Physical and Chemical Properties of SORB 33™ Media
                       SORB 33™ Media
                                      Physical Properties
                               Parameter
                      Matrix
                      Physical Form
                       Color
                      Bulk Density (lb/ft3)
                      BET Surface Area (nrVg)
                       Attrition (%)
                      Moisture Content (%)
                      Particle Size Distribution
                      (U.S. Standard Mesh)
                       Crystal Size (A)
                       Crystal Phase
      Values
Iron oxide composite
 Dry granular media
      Amber
       28.1
       142
       0.3
   <15% (by wt.)
      10x35
        70
    a-FeOOH
                                       Chemical Analysis
                       Constituents
                      FeOOH
                       CaO
                       Si02
                      MgO
                      Na2O
                       SO3
                       A1203
                      MnO
                       Ti02
                      P205
                       Cl
    Weight (%)
       90.1
       0.27
       0.06
       1.00
       0.12
       0.13
       0.05
       0.23
       0.11
       0.02
       0.01
                      Note: BET = Brunauer, Emmett, and Teller Method
                      Source: STS
The Brown City treatment system consisted of two APU-300 units arranged in a parallel configuration to
meet the design flowrate of 640 gpm (i.e., 320 gpm for each unit). During the initial system hydraulic
testing, difficulties in system operation, including excessive flow restriction and elevated Ap across the
                                               16

-------
adsorption vessels and entire system, were encountered. The system was retrofitted (see Section 4.3.3)
before startup on May 11, 2004.

Figure 4-4 is a simplified piping and instrumentation diagram (P&ID) of an APU-300 unit after system
retrofit.  Each APU-300 unit consisted of two adsorption vessels, an electrically actuated valve tree, and
associated piping and instrumentation.  Electrically actuated butterfly valves diverted raw water
downward through the two fixed-bed adsorption vessels operating in parallel.  As water passed through
the adsorbers, arsenic concentrations were reduced to below 10 |o,g/L. When reaching 10-|a,g/L arsenic
breakthrough, the spent media are to be removed and disposed of after being subjected to the EPA
Toxicity Characteristic Leaching Procedure (TCLP) test. The design features of the APU-300 system are
summarized in Table 4-3.
            Figure 4-4. Schematic Diagram of an APU-300 Unit after System Retrofit
                                               17

-------
                      Table 4-3. Design Specifications of APU-300 System
Parameter
Value
Remarks
Pretreatment
NaOCl Dosage (mg/L)
0.4-0.5
Prechlorination initiated on May 16, 2005
Adsorption Vessels and Media Beds
Number of Vessels
Vessels Configuration
Vessel Size (in)
Type of Media
Media Volume (ft3/vessel)
Media Bed Depth (in)
4
Parallel
63 D x 86 H
SORB 33™
80
44
Two APU-300 units each with 2 vessels

21.6 ft2 cross-sectional area
Granular form
320 ft3 total
-
Service
Design Flowrate (gpm/vessel)
Hydraulic Loading (gpm/ft2)
EBCT (min)
Average Use Rate (gpd)
Estimated Working Capacity (BV)
Estimated Breakthrough
Throughput (1000 gal)
Estimated Media Life (month)
160
7.4
3.7
153,600
80,000(a)
191,488(a)
40
640 gpm total
Based on vessel cross-sectional area of 21.6 ft2
Based on design flowrate
Based on 640 gpm for 4 hr/day
Based on influent As concentration of 3 1 (o,g/L
and arsenic breakthrough at 10 (o,g/L
Four vessels combined
Based on average use rate
Backwash
Flowrate (gpm)
Hydraulic Loading (gpm/ft2)
Frequency (time/45 days)
Duration (min/vessel)
Rinse Duration (min/vessel)
200
9.2
1
20
4
Recommended by STS
Based on backwash flowrate and vessel cross
sectional area of 2 1 .6 ft2
Manually or based on a Ap threshold
Recommended by STS
Recommended by STS
(a)  Based on STS proposal dated January 7, 2003, with an influent As concentration of 31 (o,g/L.
Four key process components are discussed as follows:

       •   Intake.  Raw water from Well No. 4 was chlorinated and fed into the APU-300 system for
           operation with prechlorination. Raw water was fed directly into the APU-300 system for
           operation without prechlorination. The amount of water pumped was tracked with a totalizer
           installed at the wellhead.

       •   Chlorination.  During the first year of system operation, a 12.5% NaOCl solution was added
           at the end of the treatment train to evaluate the media's adsorptive capacity for As(III).  Upon
           arsenic breakthrough at  10 (ig/L, the NaOCl solution was added to the raw water to oxidize
           As(III).  The NaOCl dosage was controlled at 0.4 to 0.5 mg/L (as C12) for a target chlorine
           residual level of 0.3 mg/L (as C12) for free chlorine and 0.4 mg/L (as C12) for total chlorine in
           the distribution system.  Actual dosages were monitored directly by measuring solution
           consumption rates in the chemical day tank and indirectly by measuring total and free
           chlorine residual levels at the AC sampling location, which was located at a common feed
           line to the adsorption vessels.

       •   Adsorption. Each APU-300 unit consisted of two 63-in-diameter, 86-in-tall vertical
           pressure vessels. The vessels were fiberglass reinforced plastic (FRP) construction,
           rated for 75 psi working pressure, skid mounted, and piped to a valve rack mounted
                                              18

-------
           on a polyurethane coated, welded frame. Each vessel contained approximately 80 ft3
           of SORB 33™ media supported by a gravel underbed. Empty bed contact time
           (EBCT) for the system was 3.7 min based on a design flowrate of 320 gpm.
           Hydraulic loading to each vessel was approximately 7.4 gpm/ft2. Figure 4-5 shows
           the two APU-300 units that were installed in a parallel configuration at the Brown
           City, MI site.
                   Figure 4-5.  Photograph of an APU-300 Unit at Brown City
As illustrated in Figure 4-4, the two adsorption vessels were interconnected with schedule 80 polyvinyl
chloride (PVC) piping and 10 electrically actuated butterfly valves using a valve tree design (Figure 4-6).
During normal operation, the feed valves (i.e., BF-121 A and B) and effluent valves (i.e., BF-122 A and
B) were opened and the other six valves were closed to divert water downward through the two
adsorption vessels. Flow through the two vessels was balanced by throttling the effluent valves, if
needed. During backwash, the feed and effluent valves were closed and the backwash feed valves (i.e.,
BF-123 A and B) and backwash effluent valves (i.e., BF-124 A and B) were opened to divert water
upward through the two adsorption vessels.  During backwash rinse process, the feed valves (i.e., BF-121
A and B) and rinse valves (i.e., BF-125 A and B) were opened and the other six valves were closed to
rinse the media with downward water flow.

Flowmeters (+GF+SIGNET 8550 ProcessPro™ Flow Transmitter) installed in the supply line of each
adsorption vessel monitored instantaneous flowrates through the vessels.  The flowmeters also tracked the
volume of water treated in each vessel. Ap readings across each vessel were monitored by differential
pressure gauges (WIKA Differential Pressure Gauge). The adsorption vessels were backwashed
sequentially whenever the Ap across one vessel had reached 10 psi. The system controller (Figure 4-6)
controlled the operation of the actuated valve tree for the adsorption, backwash, and forward fast rinse
cycles.
                                              19

-------
4.3
                        Figure 4-6. System Components
                 (Control Panel & Color Coded Sample Taps [left];
                      andAPU-300 System Valve Tree [right])


•   Backwash. STS recommended that the SORB  33™ media be backwashed approximately
    once every 45 days using raw water to loosen up the media bed, and remove particulates and
    media fines accumulating in the beds. The APU-300 system was designed and programmed
    with an automatic backwash feature that would place the vessels into backwash based on a set
    timer or when the Ap across a vessel had reached a set point. Controllers for the backwash
    system included actuated valves for adsorption, backwash and forward flush (fast rinse)
    cycles, timers, and pressure sensors.  The backwash water was directly discharged into a
    drainage ditch adjacent to the treatment building.

    System Installation
The building was completed by the City in early February 2004 and the two STS APU-300 units were
installed in March 2004 by a subcontractor to STS. Hydraulic shakedown and startup activities continued
into late April 2004, and the system was retrofitted in early May 2004.

4.3.1      Permitting. Engineering plans for the system permit application were prepared by Boss
Engineering, a subcontractor to STS located in Howe 11, MI. The plans included diagrams of and
specifications for the treatment system, as well as drawings detailing the connection of the new units to
the preexisting facility infrastructure. After incorporating comments on the plans from STS and Battelle,
the permit application was submitted by the City to the MDEQ for review on November 26, 2003.  The
MDEQ approved the permit application package on February 11, 2004.

4.3.2       Building Construction.  The City constructed an addition to its existing Well No. 4 pump
house to house the two APU-300 units. The addition is a 28 ft * 28 ft concrete block structure with a
10-ft-wide roll-top metal door and access hatches  in the roof for media loading. A photograph of the new
structure adjacent to the preexisting block pump house is shown in Figure 4-7. The scope of work for the
building construction included excavation, masonry, carpentry, concrete floor pouring, building trim and
                                              20

-------
             Figure 4-7. New Building Adjacent to Preexisting Pump House (on left)
painting, and associated heating and electrical work.  Also, included in the building construction was
installation of an overhead door, roof deck, and roofing, including overhead roof hatches.  Building
construction started in December of 2003 with the installation of building footers and walls and was
completed by February of 2004.

4.3.3       System Installation, Shakedown, and Startup.  The two APU-300 units were delivered to
the site on February 23, 2004.  A subcontractor to STS off-loaded and installed the system, including
piping connections to the existing entry and distribution piping.  Installation was completed on March 18,
2004, and the system hydraulic shakedown before media loading was initiated on March 19, 2004.

The system configuration as delivered included system components such as the piping inlet, an automatic
variable diaphragm valve (to control flow), a strainer, a programmable Fleck valve controller (to switch
flow from a service to a backwash mode), an FRP vessel with top diffuser and bottom laterals, a
restrictive orifice, and an outlet for each vessel. This configuration was later modified to a valve-tree
configuration, as described below in this subsection, to address relevant pressure loss and flow issues.

STS began hydraulic testing of the two APU-300 units on March 19, 2004, with no media loaded in the
vessels in order to troubleshoot issues related to low and imbalanced flow as well as excessive pressure
losses noted on an identical APU-300 unit installed at Desert Sands Mutual Domestic Water Consumers
Association (MDWCA) in Anthony, NM, in December 2003 (Chen et al., 2008a). Water from Well No.
4 was pumped through the two empty APU-300 units with flowrates ranging from 105 to 115 gpm per
vessel, which were well below the design flowrate of 160 gpm.  The corresponding pressure losses were 7
to 8 psi across each vessel and 24 to 26 psi across the entire system.  These results suggested that the
system components and plumbing most likely were the sources of the high pressure losses.

To address these issues, STS performed a series of systematic hydraulic tests at its Torrance, CA,
fabrication shop and at the Brown City, MI, site.  The results are provided in the Final Performance
Evaluation Report for Deserts  Sands MDWCA (Chen et al., 2008a).  The results of the Brown City
testing performed on April 6, 2004, showed that, after removing the restrictive orifices, strainers, and top
                                              21

-------
diffusers, significant pressure losses were observed across the variable diaphragm valves (from 80 to 71
psi) and across Fleck valve controllers and bottom laterals (from 71 to 58 psi). These results were
consistent with those observed during testing at Torrance, CA, except for the 1-psi loss (from 44 to
43 psi) across the variable diaphragm valve.  The results of the Brown City, MI, and Torrance, CA,
testing were further confirmed during a separate test in Torrance, CA, on April 14, 2004.  It was
concluded that the main source of pressure losses originated from the Fleck valve controllers. Upon
completion of the hydraulic testing, STS recommended retrofitting the system.

STS developed a revised plumbing design, which included replacing the 3-in-diameter pipe with 4-in-
diameter pipe; removing the diaphragm valves, restrictive orifices, and valve controllers; and installing a
nested system of fully ported actuated butterfly valves and a new control panel. STS completed the
system retrofit of the two APU-300 units, and the media were loaded on May 5, 2004. The flowrate, and
pressure data and other operational parameters were within established specifications after the system
retrofit. On May 7, 2004, STS conducted operator training for system operations and Battelle conducted
operator training for system sampling and data collection. Water samples were taken from the vessels on
May 10, 2004, and the system passed the coliform test. The performance evaluation study officially
began on May 11,2004.
4.4
System Operation
Table 4-4 presents timelines of key activities/events that occurred during the system performance
evaluation. These demonstration activities are described in more details in the following sections.
                 Table 4-4. Demonstration Study Activities and Completion Dates
Activity
APU-300 Units Shipped by STS
APU-300 Units Delivered to Brown City
System Installation Completed (before Media Loading)
Initial Hydraulic Testing/System Shakedown Performed
System Retrofit Completed
Media Loading and Initial Backwash Events Performed
Final Hydraulic Testing/System Shakedown Performed
Performance Evaluation Begun
Prechlorination Initiated
Performance Evaluation Ended
Date
02/18/04
02/23/04
03/18/04
03/19/04
05/05/04
05/07/04
05/07/04
05/11/04
05/16/05
05/02/07
4.4.1        Operational Parameters.  The operational parameters of the system are tabulated and
attached as Appendix A. Key parameters are summarized in Table 4-5. The plant operations were
initiated on May 11, 2004, and continued through May 2, 2007. Relevant system operational parameters
are discussed in detail as follows:

A well pump hour meter was installed on June 7, 2004, approximately one month after system startup.
Between June 7, 2004 and May 2, 2007, Well No. 4 operated for a total of 4,430 hr, equivalent to a
utilization rate of approximately 19%, or an average daily operating time of 4.5 hr/day. The low
utilization rate experienced was due primarily to relatively low water demand. Using the daily operating
time of 4.5 hr/day, the operating time between the system  startup and June 7, 2004 was estimated to be
117 hr, which increased the total cumulative operating time to 4,547 hr for the entire period of
performance evaluation study.
                                               22

-------
               Table 4-5.  Summary of Treatment System Operation at Brown City
Operational Parameter
Duration
Cumulative Operating Time (hr)
Average Daily Operating Time (hr)

Throughput (1,000 gal)
Throughput (BV)
Average Flowrate (gpm) (a)
Range of Flowrate (gpm)
Average EBCT (min)(d)
Range of EBCT (min)(e)
Ap across Vessel - without C12 (psi)
Ap across Vessel - with C12 (psi)
Ap across Each APU-300 Unit - without C12 (psi)
Ap across Each APU-300 Unit - with C12 (psi)
Backwash Interval - without C12 (day)
Backwash Interval - with C12 (day)
Value/Condition
05/11/04-05/02/07
4,547
4.5
Vessel A
40,834
68,274
154
iis-ise0^
3.9
3.2-5.1
2.2-5.4
2.8-15
Vessel B
42,846
71,640
162
127-196(b)
3.7
3.1-4.7
2.6-5.0
2.5-15
1.0-8
3.0-20
Vessel C
36,389
60,843
137
99-170(b)
4.4
3.5-6.0
2.2-4.0
2.0-14
Vessel D
33,931
56,732
128
86-182(b)
4.7
3.3-7.0
1.0-4.2
2.0-13
2.0-8
2.0-19
System
154,001
64,372
564
382-666(c)
4.2
3.6-6.3
NA

NA
NA
34^5
3-25
    (a) Calculated based on cumulative throughput and corresponding operating time.
    (b) Based on instantaneous flowrates measured at Vessels A, B, C, and D.
    (c) Sum of instantaneous flowrates measured at Vessels A, B, C, and D.
    (d) Based on average flowrate and 80 ft3 of media per vessel.
    (e) Based on instantaneous flowrates and 80 ft3 of media per vessel.
    NA = not applicable
The total system throughput from May 11, 2004, to May 2, 2007, was approximately 154,001,000 gal
based on digital readings of the flow totalizers installed on the four vessels.  This throughput value
corresponds to 64,372 BV of water processed through the entire system.  Based on the readings for the
individual vessels, the throughput values were 40,834,000; 42,846,000; 36,389,000; and 33,931,000 gal
through Vessels A, B, C, and D, respectively. Significant flow imbalance was observed between Unit 1
(Vessels A and B) and Unit 2 (Vessels C and D), each receiving approximately 54.3 and 45.7% of flow,
respectively.  For each unit, there also was slight flow imbalance between two vessels, i.e., 48.8 and
51.2% through Vessels A and B, respectively, and 51.7 and 48.3% through Vessels C and D, respectively.

Beginning on June 22, 2004, the total  system throughput also was recorded from the master flowmeter at
the wellhead. Based on this flowmeter, 167,441,000 gal of water was treated from June 22, 2004, through
May 2, 2007.  The total system throughput for the entire period of performance study was estimated to be
173,729,000 gal by adding 6,288,000 gal for the period between system startup and June 21, 2004, based
on the totalizer readings for the individual vessels.  The total system throughput recorded from the master
flowmeter was approximately 13% higher than that recorded from the totalizers at individual vessels
(154,001,000 gal).  Throughput values from the individual totalizers were used for this performance
evaluation.

Figure 4-8 presents instantaneous flowrates measured at Vessels A, B, C, and D during the performance
evaluation. The imbalanced flow through the two APU-300 units was clearly reflected, with flowrates
through Unit  1 (Vessels A and B) consistantly higher than those through Unit 2 (Vessels C and D). The
average flowrates were  154, 162,  137  and 128 gpm through Vessels A, B, C, and D, respectively. The
flowrates through Vessels A and B were closer to the design flowrate of 160 gpm, while the flowrates
through Vessels C and D were 14 to 20% lower than the design flowrate.  Because of the imbalanced
                                               23

-------
        250 -,
               Figure 4-8. Instantaneous Flowrates through Vessels A, B, C, and D
flow, EBCT values varied significantly between the two units, averaging 3.8 min for Unit 1 and 4.6 min
for Unit 2.

Figure 4-9 (top) presents Ap readings measured across Vessels A, B, C, and D before switching to
prechlorination on May 16, 2005. During this period, Ap across each vessel varied from 1.0 to 5.4 psi and
remained low throughout; Ap across each APU-300 unit also was low, ranging from 1 to 8 psi. Figure 4-
9 (bottom) presents Ap readings measured across Vessels A, B, C, and D after switching to
prechlorination. Since then, Ap across each vessel increased significantly to as high as 15 psi; Ap across
each APU-300 unit also increased correspondingly to as high as 20 psi. The increases in Ap were caused
by the accumulation of iron solids in the media beds due to the addition of NaOCl before the adsorption
vessels.  Ap readings across each vessel were restored to as low as 2 psi after backwash.

4.4.2 Backwash      . STS recommended that the SORB 33™ media be backwashed manually or
automatically approximately every 45 days to loosen up the media bed and remove media fines and
particles accumulating in the beds. Automatic backwash was initiated either by a timer or  whenever the
pressure drop across an adsorption vessel exceeded a set point, e.g., 10 psi. During the first year of
system operation without prechlorination, backwash was never triggered by the 10-psi Ap set point
because Ap across each vessel remained low throughout the duration. Instead, backwash was initiated
manually eight times with backwash intervals ranging from 34 to 45 days and averaging 41 days.

After the system was switched to prechlorination, due to a faster than anticipated increase in Ap during
system operation, backwash was conducted far more frequently than without prechlorination.  During the
two-year operation with prechlorination, backwash was conducted 69 times with backwash intervals
ranging from 3 to 25 days and averaging  10 days.
                                              24

-------
                18
                16
             =- 14
             (A
             S 12
             (A  H/-1
             W  10
             o
             re
             o>
 Vessel A
•Vessel B
-Vessel C
-Vessel D
System Operated without Prechlorination
           05/11/04-05/10/05
                       fcv
to
                                            System off for well  System Operated with Prechlorination
                                              maintenance              OS/16/OS-OS/02/07
                                             11/9/05-12/11/05
               Figure 4-9. Differential Pressure Across Vessels A, B, C, D during Operation Without (Top) and with (Bottom) Prechlorination

-------
The amount of water treated (in bed volume) between two consecutive backwash events is presented in
Figure 4-10. During the first-year operation without prechlorination, the amount treated fluctuated
between approximately 2,000 to 3,300 BV. After it was switched to prechlorination, the amount
decreased progressively from just under 3,000 BV immediately after the switch to less than 500 BV about
halfway through the remainder of the demonstration study. Since then, the amount treated could be as
little as 150 BV.
         2500

         2000

         1500

         1000

           500
Without Prechlorination
   05/11/04-05/15/05
With Prechlorination
 05/16/04-05/02/07
                                                                         ,/  /
                    Figure 4-10. Amounts of Water Treated Between Backwash Events
Media attrition during backwash appeared to be the main reason for the increasingly more frequent
backwashes observed.  During the first-year operation without prechlorination, Ap across the media beds
was low at 1 to 5.4 psi, and backwash was initiated manually at vendor recommended intervals. After
switching to prechlorination, backwashes had to be conducted more frequently to remove iron particles
formed following prechlorination. The more backwashes that were performed, the more media fines that
were generated, causing run times between backwashes to shorten. Similar deteriorating media integrity
also was observed at other EPA arsenic demonstration sites, including Rollinsford (Cumming et al,
2008), Desert Sands (Chen et al., 2008a), and Queen Anne's County (Chen et al., 2008b).  It is not clear,
however, if chlorine would have any adverse effects on media integrity. All of the demonstration sites
referenced added chlorine prior to the adsorption vessels.

Backwash was performed at approximately 200 gpm, or 9.2 gpm/ft2, as set by STS using the manual
valves on the backwash discharge line from each unit. Based on the backwash logs, backwash flowrates
for all four vessels ranged from 185 to 229 gpm. Each backwash event lasted for approximately 20 min,
followed by a four-min filter-to-waste rinse, thereby producing approximately 4,800 gal of wastewater
per vessel. Based on the backwash logs, the amount of backwash water produced ranged from 3,900 to
5,300 gal/ vessel and averaged 4890 gal/vessel, which was very close to the design value of 4,800
gal/vessel.
                                                  26

-------
4.4.3      Residual Management.  Residuals produced by the operation of the APU-300 system
included backwash wastewater and spent media. Because the media were not replaced during the
performance evaluation period, the only residual produced was backwash wastewater.

Aboveground piping for backwash wastewater from both APU-300 units was combined before extending
outside the treatment plant building.  The pipe emerged from the building and discharged after an air gap
onto the ground during the first four months of system operation (left of Figure 4-11), and into a
subsurface concrete vault that discharged via an underground pipe to a nearby drainage ditch during the
remainder of the study (right of Figure 4-11).

4.4.4      System/Operation Reliability and Simplicity.  After the system retrofit, no major
operational problems were encountered. The only O&M issues encountered were the temporary failure of
a digital flowmeter, the failure of a differential pressure gauge, and a loose switch on an automatic valve.
Neither scheduled nor unscheduled downtime had been required since the completion of the system
retrofit. The simplicity of system operation and operator skill requirements are discussed according to
pre- and post-treatment requirements, levels of system automation, operator skill requirements,
preventative maintenance activities, and frequency of chemical/media handling and inventory
requirements.

Pre- and Post-Treatment Requirements. Pre-treatment was not initially implemented in order to
evaluate the capacity of the SORB 33™ media for As(III). From May 11, 2004 to May 10, 2005 only
post-chlorination was implemented for disinfection. From May 16, 2005 to May 2, 2007, prechlorination
was implemented to oxidize As(III) to As(V) to determine if the media bed life could be  further extended.

System Automation. For the most part, backwash  was automatically triggered by a 10-psi Ap setting
across each vessel. Backwash was initiated manually during the first-year system operation without
prechlorination and when backwash wastewater sampling was required.  All other major functions of the
APU-300 system were automated and it required only minimal operator oversight and intervention.
Automated processes included system startup in the forward feed mode when the well energized,
backwash cycling based on time  or pressure triggers, fast rinse cycling, and system shutdown when the
well pump shut down.

Operator Skill Requirements. Under normal operating conditions, the skill sets required to operate the
APU-300 system were basic and limited to observation of the process equipment integrity and operating
parameters such as pressure, flow, and system alarms. The process logic controller (PLC) interface was
intuitive, and all major system operations were automated as described above. The daily demand on the
operator was 30 min to allow the operator to visually inspect the system and record the operating
parameters on the log sheets. The operation of the system did not appear to require additional skills
beyond those necessary to operate the existing production equipment.

Based on the size of the population served and the  treatment technology, the State of Michigan requires
Class D-3  Certification for operation of the STS treatment system at the Brown City facility. The State
of Michigan divides water treatment systems into two categories for operating certification, i.e., complete
treatment system and limited treatment system. A complete  treatment system uses disinfection,
coagulation, sedimentation, and filtration to produce finished water that meets the requirements of the
state drinking water standards. The STS treatment system installed at the Brown City facility is
considered limited treatment system. The State of Michigan has five levels of certification for operations
of limited water treatment systems based on population served by the public water supplies or rated
treatment capacities of the treatment systems. The levels range from Class D-5 for noncommunity
supplies and Class D-4 for community supplies serving a population of less than 1,000 to Class D-l  for
community supplies serving a population greater than 20,000.
                                              27

-------
         Figure 4-11. Backwash Wastewater Discharge unto the Ground (left) and into an
                              Underground Concrete Vault (right)
Preventative Maintenance Activities. Preventative maintenance tasks recommended by STS included
monthly inspection of the control panel; quarterly checking and calibration of the flowmeters; biannual
inspection of the actuator housings, fuses, relays, and pressure gauges; and annual inspection of the
butterfly valves. STS recommended checking the actuators during each backwash event to ensure that the
valves were opening and closing in the proper sequence. Further, inspection of the adsorber laterals and
replacement of the gravel underbedding were recommended concurrent with the media replacement.  The
operator also compared the flowmeter and totalizer data from the STS system to his existing meters on a
consistent basis, which did not require any appreciable time expenditure. During the performance
evaluation study, maintenance activities performed by the operator included cleaning and repairing the
flowmeter paddle wheels, replacing one differential pressure gauge, and replacing plastic pressure line
fittings/elbows on sampling taps. Maintenance also was required on an automated valve to repair a loose
limit switch. This repair was made by STS and beyond routine maintenance activities that could be
performed by the operator.

Chemical/Media Handling and Inventory Requirements. Chemical use was not required beyond the
liquid NaOCl chlorination system already in place. Media changeout was not required during the
performance evaluation.
4.5
System Performance
The performance of the APU systems was evaluated based on analyses of water samples collected from
the treatment plant, system backwash, and distribution system.

4.5.1       Treatment Plant Sampling.  Water samples were collected at seven locations through the
treatment process: including IN, AC, TA, TB, TC, TD, and TT (Table 3-3).  The treatment plant water
was sampled on 59 occasions (including four duplicate events) during the study,  with field speciation
performed during 35(12 times in the first year without prechlorination and 23 times in the remaining two
                                              28

-------
years with prechlorination) of the 59 occasions. Field-speciation samples at the IN and TT sampling
locations were collected once every four weeks from system startup through the end of performance
evaluation. Field-speciation samples at the AC location were collected once every four weeks since the
system was switched to prechlorination.

Table 4-6 provides a summary of analytical results for arsenic, iron, and manganese during the
performance evaluation study from May 11, 2004, through May 2, 2007. Table 4-7 summarizes the
results of the other water quality parameters.  Appendix B contains a complete set of analytical results.
The results of the water samples collected throughout the treatment plant are discussed below.

Arsenic. Figure 4-12 contains three bar charts showing the concentrations of total As, particulate As, and
soluble As(III) and As(V) at the IN, AC, and TT sampling locations for each speciation sampling event.
Total arsenic concentrations in raw water ranged from 9.5 to 29.6 |o,g/L and averaged 15.3 |o,g/L. Soluble
As(III) was the predominating species with its concentrations ranging from 9.0 to 30.2 |o,g/L and
averaging 13.1 |og/L. The  remainder of soluble arsenic was As(V) with concentrations averaging 0.7
Hg/L. Some particulate arsenic also existed, with concentrations averaging 1.6 |o,g/L. Concentrations of
various arsenic species measured during the three-year study period were consistent with those collected
during the initial site visit on July 24, 2003 (Table 4-1).

The key parameter for evaluating the effectiveness of the SORB 33™ system was the concentration of
arsenic in the treated water.  The arsenic breakthrough curves for the four adsorption vessels and the
entire system are presented in Figure 4-13 with total arsenic concentrations plotted against the volume of
water treated in BV.  As shown in the figure, from May 11, 2004, to May 15, 2005, chlorine was added
only after the adsorption vessels to provide chlorine residuals to the distribution system. Total As
existing mostly as As(III) broke through from the adsorption vessels immediately after system startup
with concentrations increasing steadily as  observed at the TA, TB, TC, TD, and TT sampling locations.
Total arsenic concentrations exceeded the  target level of 10 (ig/L at approximately  20,800 BV,
representing 25% of the vendor estimated  working capacity of 80,000 BV.  Because arsenic existed
primarily  as As(III) in source water and because As(V) would have much higher adsorptive affinity than
As(III), prechlorination was  implemented  on May 16, 2005, to continue the treatment process.

One week after switching to prechlorination, total arsenic concentrations in the treated water remained
almost as  high as those at the pre-switching levels, with soluble As(III) continuing to be the predominant
species (e.g., 7.5 (ig/L of total As measured on May 24, 2005 with 84% present as As(III), compared to
6.9 to 9.3  (ig/L of total As  measured on May  10, 2005). The continuing presence of As(III) in the treated
water after switching to prechlorination seems to suggest that, while As(V) along with some chlorine
residuals were being fed to the top of the adsorption vessels, As(III) began to be desorbed or displaced
from the bottom of the adsorption vessels.  The desorption or displacement seems to last for at least three
weeks (or approximately 23,700 BV), as indicated by the 1.5 to 8.5 (ig/L of total arsenic in effluent of the
four adsorption vessels on  June 7, 2005. It is also interesting to note that even three weeks after switching
to prechlorination, only one out of four vessels had effluent with measurable chlorine (i.e., 0.4 and
0.5 mg/L  [as C12] of free and total chlorine at TA on June 7, 2005). Because SORB 33™ was known to
have little or no chlorine demand, chlorine fed to the adsorption vessels most likely was consumed by the
reducing species, such as As(III), Fe(II), and Mn(II), previously removed by the media. As these
reducing species on the media had been oxidized, chlorine began to emerge from the vessel (such as
Vessel A), and As(III) desorption or displacement ceased to occur.

One month after switching to prechlorination on June 7, 2005 (or after approximately 2,800 BV), total
arsenic concentration in the system effluent decreased sharply to 0.9 (ig/L.  Since then, total As
concentrations in the treated water remained low at levels mostly less than 3 (ig/L through the end of the
                                               29

-------
            Table 4-6. Summary of Arsenic, Iron, and Manganese Analytical Results
Parameter
As (total)
(see Figure 4-13)
As (soluble)
As (paniculate)
As(III)
As(V)
Fe (total)
(see Figure 4-14)
Fe (soluble)
Mn (total)
(see Figure 4-15)
Mn (soluble)
Sampling
Location^
IN
AC
TA
TB
TC
TD
TT
IN
AC
TT
IN
AC
TT
IN
AC
TT
IN
AC
TT
IN
AC
TA
TB
TC
TD
TT
IN
AC
TT
IN
AC
TA
TB
TC
TD
TT
IN
AC
TT
Number of
Samples
(w/o/with C12)
59
0/20
18/6
18/6
18/6
18/6
12/23
35
0/20
12/23
35
0/20
12/23
34
0/20
12/23
34
0/20
12/23
59
0/20
18/6
18/6
18/6
18/6
12/23
35
0/20
12/23
59
0/20
18/6
18/6
18/6
18/6
12/23
35
0/20
12/23
Concentration (u.g/L)
Minimum
(w/o/with C12)
9.5
NM/11.3
0.6/0.6
0.5/0.6
0.7/0.5
0.4/0.6
0.7/0.6
9.6
NM/7.9
0.6/0.5
0.1
NM/0.7
0.1/0.1
9.0
NM/0.3
0.5/0.3
0.1
NM/0.1
0.1/0.1
101
NM/97.2
<25/<25
<25/<25
<25/<25
<25/<25
<25/<25
98.9
NM/<25
<25/<25
12.3
NM/12.6
0.5/7.6
0.5/7.2
1.5/6.0
2.1/5.5
1.3/6.0
12.4
NM/3.3
1.6/6.0
Maximum
(w/o/with C12)
29.6
NM/16.0
8.7/1.5
9.6/2.7
10.6/7.8
11.0/8.5
12.8/7.5
29.8
NM/12.2
12.1/6.7
7.7
NM/4.3
1.1/1.4
30.2
NM/12.0
10.2/6.3
2.5
NM/10.6
1.9/2.4
312
NM/205
149/<25
139/68.2
235/<25
134/255
79.0/39.4
285
NM/129
54.3/<25
25.9
NM/18.1
22.7/8.4
22.2/8.7
27.4/8.2
25.0/8.6
22.4/14.8
19.7
NM/15.5
22.6/14.7
Average
(w/o/with C12)
15.3
NM/13.0
_(a)
_(a)
_(a)
_(a)
_(a)
13.7
NM/10.1
_(a)
1.6
NM/2.9
_(a)
13.1
NM/2.1
_(a)
0.7
NM/8.0
_(a)
177
NM/144
-(a)/<25
-(a)/<25
-(a)/<25
-(a)/53.0
-(a)/<25
151
NM/28.5
-(a)/<25
16.2
NM/15.3
-(a)/8.0
-(a)/7.9
-(a)/7.2
-(a)/6.9
-(a)/10.3
15.8
NM/9.8
-(a)/10.2
Std. Dev.
(w/o/with C12)
4.5
NM/1.3
_(a)
_(a)
_(a)
_(a)
_(a)
3.5
NM/1.2
_(a)
1.7
NM/0.9
_(a)
3.6
NM/3.4
_(a)
0.6
NM/2.8
_(a)
47.6
NM/27.8
-(a)/NA
-(a)/22.7
-(a)/NA
-(a)/99.2
-(a)/5.6
35.0
NM/35.3
-(a)/NA
2.4
NM/1.7
-(a)/0.3
-(a)/0.5
-(a)/0.9
-(a)/1.3
-(a)/2.4
1.8
NM/3.1
-(a)/2.2
(a)  Not meaningful for data related to breakthrough curves; see Figures 4-13, 4-14, and 4-15 and Appendix B
    for results.
(b)  See Table 3-3.
NM = not measured
NA = not applicable
One-half of detection limit used for nondetect results for calculations.
Duplicate samples included for calculations.
                                                30

-------
Table 4-7.  Summary of Water Quality Parameter Measurements
Parameter
Alkalinity
(as CaCO3)
Fluoride
Orthophosphate
(as PO4)
Total
Phosphorus
(asP)
Silica
(as SiO2)
Sulfate
Nitrate
(asN)
Turbidity
pH
Sampling
Location(a)
IN
AC
TA
TB
TC
TD
TT
IN
AC
TT
IN
TA
TB
TC
TD
TT
IN
AC
TT
IN
AC
TA
TB
TC
TD
TT
IN
AC
TT
IN
AC
TT
IN
AC
TA
TB
TC
TD
TT
IN
AC
TA
TB
TC
TD
TT
Unit
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
ug/L
ug/L
ug/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
NTU
NTU
NTU
NTU
NTU
NTU
NTU
s.u.
s.u.
s.u.
s.u.
s.u.
s.u.
s.u.
Number
of
Samples
50
11
24
24
24
24
26
26
11
26
19
11
11
11
11
8
12
12
12
50
11
24
24
24
24
26
29
14
29
26
11
26
50
11
24
24
24
24
26
45
15
18
18
18
18
27
Minimum
218
238
214
214
202
214
164
0.9
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<10
<10
<10
6.5
7.0
7.2
2.3
2.7
3.1
3.0
43.9
50.7
60.8
<0.05
O.05
<0.05
0.2
0.1
<0.1
<0.1
<0.1
<0.1
<0.1
7.6
7.6
7.6
7.6
7.6
7.6
7.5
Maximum
284
264
273
268
268
272
271
3.3
1.6
1.9
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<10
<10
<10
14.6
10.4
17.4
8.3
8.5
8.4
10.0
136
146
140
2.7
<0.05
0.6
2.3
0.8
0.8
0.9
1.1
0.9
1.3
8.5
7.8
8.1
8.1
8.0
8.0
8.0
Average
242
250
240
242
243
247
245
1.4
1.2
1.4
<0.
<0.
<0.
<0.
<0.
<0.
<10
<10
<10
9.0
8.2
8.1
7.6
7.7
7.6
7.8
75.2
93.3
97.8
0.3
O.05
0.1
1.0
0.4
0.3
0.2
0.3
0.3
0.4
7.9
7.7
8.0
8.0
7.9
7.9
7.8
Standard
Deviation
11.9
8.5
16.0
11.4
11.6
8.7
16.6
0.3
0.4
0.3
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.6
0.9
1.0
0.8
0.7
0.7
0.7
25.6
25.2
23.5
0.7
NA
0.1
0.5
0.2
0.3
0.2
0.3
0.2
0.3
0.1
0.0
0.1
0.2
0.1
0.2
0.1
                          31

-------
       Table 4-7. Summary of Water Quality Parameter Measurements (Continued)
Parameter
Temperature
DO
ORP
Free Chlorine
(as C12)
Total Chlorine
(as C12)
Total Hardness
(as CaCO3)
Ca Hardness
(as CaCO3)
Mg Hardness
(as CaCO3)
Sampling
Location'3'
IN
AC
TA
TB
TC
TD
TT
IN
AC
TA
TB
TC
TD
TT
IN
AC
TA
TB
TC
TD
TT
AC
TA
TB
TC
TD
TT
AC
TA
TB
TC
TD
TT
IN
AC
TT
IN
AC
TT
IN
AC
TT
Unit
°C
°c
°c
°c
°c
°c
°c
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mV
mV
mV
mV
mV
mV
mV
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
Number
of
Samples
46
15
19
19
19
19
27
43
15
17
17
17
17
26
25/21
0/15
14/5
14/5
14/5
14/5
11/16
0/20
0/5
0/5
0/5
0/5
0/16
0/21
0/5
0/5
0/5
0/5
0/16
28
13
28
28
13
28
28
13
28
Minimum
10.3
11.7
10.4
10.5
10.5
10.5
10.2
1.0
1.4
1.3
1.2
0.7
1.1
0.7
-51.0/97.0
NM/300
-50.0/99.0
-47.0/100
-49.0/98.0
-49.0/95.0
-20.0/152
NM/0.3
NM/0.3
NM/0.0
NM/0.0
NM/0.0
NM/0.3
NM/0.4
NM/0.3
NM/0.0
NM/0.0
NM/0.0
NM/0.4
65.1
77.7
82.4
39.4
49.9
58.6
22.5
25.3
22.5
Maximum
15.8
15.4
13.8
13.5
13.5
13.9
15.2
5.6
1.9
4.4
4.7
2.7
2.3
1.9
106/389
NM/419
99.0/232
102/245
104/248
104/252
77.0/421
NM/0.8
NM/0.7
NM/0.4
NM/0.4
NM/0.4
NM/0.5
NM/0.9
NM/0.5
NM/0.5
NM/0.5
NM/0.5
NM/0.6
133
118
151
91.5
87.9
103
55.5
37.1
48.0
Average
12.1
12.6
11.6
11.6
11.6
11.7
12.2
1.9
1.6
1.8
1.6
1.6
1.6
1.5
21.7/267
NM/345
12.7/158
11.4/161
10.4/161
9.1/162
21.5/337
NM/0.4
NM/0.4
NM/0.3
NM/0.3
NM/0.3
NM/0.4
NM/0.5
NM/0.5
NM/0.4
NM/0.4
NM/0.4
NM/0.4
98.2
101
104
64.9
70.8
74.0
33.4
30.1
30.4
Standard
Deviation
1.1
1.4
0.9
0.9
1.0
1.0
1.1
0.5
0.2
0.6
0.5
0.2
0.3
0.2
42.4/91.9
NM/34.5
42.1/48.0
40.4/52.8
40.4/54.5
39.9/57.0
25.6/58.4
NM/0.1
NM/0.2
NM/0.2
NM/0.2
NM/0.2
NM/0.1
NM/0.1
NM/0.1
NM/0.2
NM/0.2
NM/0.2
NM/0.1
17.2
15.9
15.6
14.3
13.6
11.4
8.1
3.7
5.8
(a)  See Table 3-3.
NM = not measured
NA = not applicable
NTU = nephelometric turbidity unit
SU = standard units
One-half of detection limit used for nondetect results for calculations.
Duplicate samples included for calculations.
                                             32

-------
^35
^30 H
 C OR
.2
 E 20
-I—'
 § 15
 §10

3  5
    0
                     Arsenic Speciation at the Influent (IN)
Without Prechlorination
05/11/04-05/15/05
With Prechlorination
05/16/05-05/02/07
                                     Ill
    35 n
                    Arsenic Speciation after Chlorination (AC)
§> 30
¥ 25
O
'•4—1
nj on
™ 20 -
-i— »
c
8 15~
C
,9 10
o
w J-
n
Without Prechlorination With Prechlorination
05/1 1 /04-05/1 5/05 05/1 6/05-05/02/07

DAs (particulate)
• As(lll)
DAs(V)



















	

































n
1

n




u
1

1


1


                    Arsenic Speciation after Total Effluent (TT)
35
30
25
20
 o5 15
 o
 o 10
 O
 co  5
            Without Prechlorination
              05/11/04-05/15/05
 •,-iiinli.
                    With Prechlorination
                     05/16/05-05/02/07
                              DAs (particulate)

                              • As(lll)
                              DAs(V)
  ^
     ^^V'^V"
                                 '^
Figure 4-12. Concentrations of Arsenic Species at Wellhead, After Chlorination, and After
                                Combined Effluent
                                       33

-------
     35
     30
     25
     20
   HI
   o
   c
   o
   o
15
     10 -
      5
           Without Prechlorination
             05/11/04-05/15/05
With Prechlorination
 05/16/05-05/02/07
-IN
-AC
-TA
-TB
-TC
-TD
                   10
                               20           30           40           50
                                     Bed Volumes of Treated Water (xlOOO)
                                                                                60
                                                                                             70
                        Figure 4-13. Total Arsenic Breakthrough Curves
performance evaluation. By the end of the study, the APU system had treated approximately 154,001,000
gal of water, equivalent to 64,500 BV or 81% of the vendor-estimated working capacity of 80,000 BV.

Prechlorination oxidized As(III) to As(V) and provided required chlorine residuals to the distribution
system. As shown in Figure 4-12, most samples collected after prechlorination at the AC location
contained mostly As(V) and particulate arsenic, indicating effective oxidation of As(III) with chlorine.
(The trace amounts of As(III) measured were believed to have been caused primarily by the speciation
method.) The exceptions were the two samples collected on January 17, 2006, and February 27, 2007,
during which arsenic oxidation did not appear to occur. Onsite free and total chlorine measurements
indicated the presence of residual chlorine; therefore, sampling or analytical errors were suspected for
these samples. Typically at the AC location, free chlorine levels were measured at 0.4 to 0.9 mg/L (as
C12), which were very similar to total chlorine levels ranging from 0.3 to 0.8 mg/L (Table 4-7). Except
for the first three weeks, average chlorine residuals measured at the TA, TB, TC, TD, and TT locations
were similar to or slightly lower than those at the AC location, indicating little or no chlorine
consumption through the adsorption vessels.

The performance evaluation study demonstrated that, while SORB 33™ media has some adsorptive
capacity for soluble As(III), the media life can be significantly increased by oxidizing As(III) to As(V)
with chlorine before adsorption. The media bed effectively removed soluble As(V) and particulate As
(about 19% of the arsenic removed). Some As(III) previously removed by the media can be desorbed or
displaced, but the desorption or displacement ceases to occur as soon as As(III) on the media is oxidized
by the incoming chlorine.
                                               34

-------
Iron. Total iron concentrations in raw water ranged from 101 to 312 jog/L and averaged 177 |og/L
(Table 4-6). Iron existed primarily in the soluble form ranging from 98.9 to 285 |o,g/L and averaging
151 ng/L. Although existing as a cation, soluble iron was removed by SORB 33™ as demonstrated by
the breakthrough curves shown in Figure 4-14 before switching to prechlorination. It is not clear what
mechanisms govern the removal of cationic species by iron-based media, but a similar observation was
made at the other arsenic demonstration site at Queen Anne's County in MD, where iron-based media
E33 was used to remove arsenic (Chen et al., 2008b).
     350
     300 -
     250 -
  i
     200 -
     150
     100 -
     50
-IN
-AC
-TA
-TB
-TC
-TD
-TT
                 Without Prechlorination
                   05/11/04-05/15/05
With Prechlorination
 05/16/05-05/02/07
                    10
                                20          30          40
                                     Bed Volumes of Water Treated (xlOOO)
                                                                     50
                                                                                 60
                                                                                             70
                     Figure 4-14. Total Iron Concentrations vs. Bed Volumes
The breakthrough curves shown in Figure 4-14 indicate that soluble iron was removed to below the
method detection limit of 25 |o,g/L up to about 12,400 BV and then broke through from the four
adsorption vessels rather quickly, as shown at TA, TB, TC, TD, and TT, with concentrations reaching
those in raw water at about 22,000 BV. After switching to prechlorination on May 16, 2005, unlike
arsenic, iron concentrations were quickly reduced to below the detection limit of 25 |o,g/L and stayed at
the non-detectable level, except for one sampling event on September 13,  2005, through the remainder of
the evaluation study. Upon chlorination, soluble iron in source water was oxidized to Fe(III) and
precipitated as iron solids,  which were removed by SORB 33™ media via filtration.  As a result, the
differential pressure across the media beds began to rise steadily, thus requiring more frequent backwash
of the media beds as discussed in Section 4.4.2.

Manganese.  Figure 4-15 shows total Mn concentrations versus BV of water treated across the treatment
train. Total Mn concentrations in raw water ranged from 12.3 to 25.9 |o,g/L and averaged 16.2 |o,g/L
(Table 4-6). Manganese existed almost entirely in the soluble form with concentrations  ranging from
12.4 to 19.7 |og/L and averaging 15.8 |o,g/L.
                                               35

-------
     30
     25
           Without Prechlorination
             05/11/04-05/15/05
With Prechlorination
 05/16/05-05/02/07
                   10
                               20          30           40           50
                                    Bed Volumes of Water Treated (xlOOO)
                                                                                60
                Figure 4-15. Total Manganese Concentrations Versus Bed Volumes
From May 11, 2004 to May 10, 2005 without prechlorination, total manganese, existing mainly as soluble
manganese, broke through from the adsorption vessels almost immediately after system startup, with
concentrations increasing from <3 |o,g/L to the levels in raw water within about 6,000 BV.  After this point
manganese concentrations in the treated water became higher than those in raw water until the system was
switched to prechlorination.  It is not clear why manganese concentrations increased in the treated water,
although it was possible that Mn(II) with less adsorptive affinity was displaced by other more strongly
adsorbed cations, such as Fe(II), thus exhibiting this chromatographic-like effect. Similar observations
with higher manganese concentrations in the system effluent also were made at another arsenic removal
demonstration site at Queen Anne's County in MD (Chen et al., 2008b).

After switching to prechlorination on May  16, 2005, through the end of the performance evaluation, total
manganese concentrations in the treated water were reduced by 33 to 55%. As indicated in Table 4-6,
chlorination oxidized and precipitated approximately 40% of soluble Mn (i.e., Mn[II]) in source water,
presumably, to MnCh. Previous studies revealed that the amount of Mn(II)that precipitated upon
chlorination varied significantly (Knocke et al., 1987; Knocke et al., 1990; Condit and Chen, 2006;
McCall et al., 2007), probably due to varying oxidation kinetics. At EPA arsenic removal demonstration
sites, <10% Mn(II) precipitation was observed at two sites (i.e., Delavan, WI and Bruni, TX), 14.6 to
55.0% at seven sites, and 93.5% at one site (Alvin, TX).  At Chateau Estates in Springfield, OH,  1.1 to
98% of soluble manganese was precipitated during  13 speciation events (McCall et al., 2007). It is not
clear why precipitation rates varied so widely and why some raw waters had slower oxidation kinetics
than others. The  contact time did not seem to correlate directly with the precipitation rate (McCall et al.,
2007).
                                               36

-------
Other Water Quality Parameters.  In addition to arsenic, iron, and manganese, other water quality
parameters were analyzed to provide insight into the chemical processes occurring within the treatment
system.  The results of the water quality parameters are included in Appendix B and are summarized in
Table 4-7.

Onsite measurements of pH remained consistent at all sampling locations, with average values ranging
from 7.7 to 8.0 across the treatment train. Average alkalinity results ranged from 240 to 250 mg/L (as
CaCO3) across the treatment train.  The average value of total hardness was 98.2 mg/L (as CaCO3) in raw
water and 104 mg/L (as CaCO3) in the treated water.  The samples contained predominantly  calcium
hardness (approximately 66% to 71%).

Averaged fluoride concentrations ranged from 1.2 to  1.4 mg/L at all sampling locations and were not
affected by SORB 33™ media. Orthophosphate and total phosphorus were below the detection limit in
all samples. The average silica concentration was 9.0 mg/L (as SiO2) in raw water and 7.8 in the system
effluent (TT), indicating some removal by SORB 33™ media. Sulfate concentrations ranged from 44 to
136 mg/L (averaged 75.2 mg/L) in raw water, 51 to 146 mg/L (averaged 93.3 mg/L) after chlorination,
and 61 to 140 mg/L (averaged 97.8 mg/L) in the effluent. As shown in Figure 4-16, sulfate concentrations
at AC and TT were higher than those in raw water, both before and after switching to prechlorination
(although the increases appear to be even more significantly during the second half of performance
evaluation). Several attempts were made to examine  the cause of the increases,  including the analysis of
NaOCl solution and the analysis for sulfide (dissolved hydrogen sulfide) across the treatment train. The
operator reported the presence of dark slime/black precipitates in the City's water heater, coffee machine,
and other equipment using water from the distribution system. This can be an indication of the presence
of sulfur-oxidizing bacteria, which can convert sulfide into sulfate. However, no detectable levels of
sulfide were found in the samples taken across the treatment train.  Despite all of the efforts made, the
cause of the observation remained unknown.

DO levels ranged from 1.0 to 5.6 and averaged 1.9 mg/L in raw water and ranged from 0.7 to 4.7 mg/L
and averaged 1.6 mg/L in the treated water. There did not appear to be any significant difference in DO
level in raw water, after chlorination, or after adsorption vessels. ORP readings at the IN location varied
from -51 to 389 mV. As expected, with prechlorination, ORP readings at the AC location increased,
ranging  from 300 to 419 mV.  ORP readings following adsorption at the TA, TB, TC, TD, and TT
sampling locations ranged from 95 to 421 mV, somewhat lower than those measured at the AC location,
indicating some effect from the media.

4.5.2       Backwash Water Sampling. Backwash was performed one vessel at a time using raw water
(non-chlorinated). Backwash wastewater was sampled periodically from the sample ports located in the
backwash effluent discharge lines from each vessel. The unfiltered samples were analyzed for pH,
turbidity, and TDS/TSS. Filtered samples using 0.45-(im disc filters were analyzed for soluble arsenic,
iron, and manganese. For the last seven backwash wastewater sampling events (taking place since
February 1 through September 12, 2006), TSS and total As, Fe, and Mn concentrations also were
measured. The analytical results are summarized in Table 4-8.

pH values of backwash wastewater ranged from 7.4 to 8.4 and averaged 7.8, similar to those of raw water.
Soluble  arsenic concentrations in backwash wastewater averaged 11 ng/L for backwash events conducted
during the period without prechlorination. This average concentration was slightly lower than that in raw
water (i.e., 13.7 |o,g/L [on average]). It appears that, although existing as soluble As(III), some arsenic
was removed by the media during backwash.  Soluble arsenic concentrations in backwash wastewater
averaged 6 |o,g/L for backwash events conducted during the period with prechlorination. This average
concentration was less than half of that in raw water,  indicating significant removal of soluble arsenic,
existing again as As(III), by the media during backwash. Soluble iron concentrations  ranged from <25 to
                                              37

-------
  160


  140


  120

i>
£ 100
c
o
1
  o
  o
     80
     60
     40
     20
           Without Prechlorination
             05/11/04-05/15/05
                   10
                               20           30          40
                                     Bed Volumes of Water Treated (xlOOO)
                                                                   50
                                                                               60
                                                                                           70
        Figure 4-16.  A Comparison of Sulfate Concentrations at IN, AC, and TT Locations
384 |og/L and averaged 96.4 ng/L, which was also less than that in raw water (i.e., 151 |o,g/L [on
average]), indicating some removal by the media during backwash.  Soluble manganese concentrations
were about the same as those in raw water, ranging from 9.1 to 23.2 |o,g/L and averaged  16.4 |o,g/L.  In
general, the results measured from Vessels A, B, C, and D were consistent among one another.

As expected, total arsenic, iron, and manganese concentrations were significantly higher than the
respective soluble fractions, averaging 157, 21,950, and 497 |o,g/L, respectively.  Measured particulate As
in backwash wastewater averaged 147|o,g/L.  Particulate As might be associated with either iron particles
filtered out by the media beds during the service cycle or the media fines. Assuming the average
backwash flowrate was 200 gpm and the backwash duration was 25  min per vessel, the total amount of
backwash wastewater generated during each backwash event would be 20,000 gal. Assuming that 94
mg/L of TSS (i.e., the average of TSS values measured on seven backwash events from  February 1 to
September 12, 2006) was  produced in 20,000 gal of backwash wastewater from the vessels,
approximately 15.6 Ib of solids would be discharged during each backwash event. Based on the average
particulate metal data collected during the  last seven backwash events (i.e., 147 (ig/L of particulate
arsenic, 21,847 (ig/L of particulate iron, and 481  (ig/L of particulate manganese), the solids discharged
would be composed of 0.03 Ib of arsenic (i.e. 0.2% by weight), 3.6 Ib of iron (i.e. 23% by weight), and
0.08 Ib of manganese (i.e. 0.5% by weight).
                                               38

-------
                                            Table 4-8.  Backwash Wastewater Sampling Results
Sampling
Event
No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Date
06/15/04
07/28/04
09/09/04
10/22/04(a)
01/14/05
0252/05
0408/05
0553/05 *"
0706/05
10/12/05
0201/06
0258/06
0406/06
0459/06
0601/06
0756/06
09/12/06
BW1
Vessel A
X
su
7 4
79
74
79
76
77
80
7 4
79
78
80
8 1
80
84
80
80
79
>•
T3
".a
I—
NTU
28
55
33
24
4
4
3
8
40
270
NS
NS
NS
NS
NS
NS
NS
O3
O
1—
mg/L
648
770
392
612
534
396
398
1000
948
462
880
866
606
938
538
880
480
03
O3
1—
mg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
150
98
16
74
80
56
240
(A
1
pgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
257
202
368
126
133
544
276
Soluble As
pgl
49
65
61
91
200
147
124
5 1
75
32
72
57
36
55
42
65
49
Particulate As
[Jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
250
196
332
121
129
479
271
Total Fe
[Jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
54766
38115
3241
14117
20694
9892
31179
Soluble Fe
pgl
<25
<25
<25
382
280
110
91 9
472
885
59 1
138
125
468
81 0
469
271
904
Total Mn
pgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
1479
903
840
342
164
330
839
Soluble Mn
pg/L
116
157
168
175
192
165
173
11 5
12 4
154
197
149
137
157
169
128
232
BW2
Vessel B
X
s u
76
79
77
79
78
78
80
75
78
79
80
81
80
83
80
81
80
>•
T3
".a
I—
NTU
27
36
28
10

3
8
26
41
270
NS
NS
NS
NS
NS
NS
NS
O3
O
1—
mg/L
1,010
852
698
816
740
800
742
1030
998
764
920
922
856
922
830
904
636
03
O3
1—
mgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
190
106
71
64
108
44
80
Total As
[jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
331
161
143
119
210
115
201
Soluble As
[jg/L
61
85
88
156
118
11 3
11 5
5 4
57
63
10 1
47
68
63
56
60
58
Particulate As
[jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
321
1568
137
112
205
109
195
Total Fe
[jgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
51699
24516
12301
12465
28622
11815
21545
Soluble Fe
[jg/L
<25
<25
<25
120
123
113
757
592
31 1
112
384
545
176
140
51 7
<25
145
Total Mn
[jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
1384
615
324
308
213
398
593
Soluble Mn
pgl
132
172
158
150
166
178
180
145
95
139
287
146
18 1
164
204
97
140
BW3
Vessel C
X
su
76
79
76
79
78
79
80
77
78
79
80
8 1
80
84
80
8 1
80
>•
T3
".a
NTU
38
50
28
16
2
2
3
89
55
320
NS
NS
NS
NS
NS
NS
NS
O3
O
mg/L
864
808
798
838
914
862
882
886
912
870
904
922
894
924
876
898
850
03
O3
mg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
178
66
20
44
120
56
74
Total As
pgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
382
118
41 1
972
189
328
169
Soluble As
pgl
74
9 1
97
188
11 4
11 0
119
66
83
7 1
69
54
46
68
53
44
73
Particulate As
[jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
375
113
365
904
183
284
162
Total Fe
[jgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
61712
16530
3278
9735
31030
5431
16830
Soluble Fe
[jg/L
<25
287
357
154
161
175
165
139
989
126
969
104
437
222
590
<25
222
Total Mn
[jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
1605
421
756
202
203
174
416
Soluble Mn
[jgl
152
190
180
174
175
182
195
168
12 1
155
196
166
184
193
178
126
181
BW4
Vessel D
X
su
76
79
7 4
8 1
79
79
80
78
78
79
80
82
80
84
8 1
8 1
8 1
>•
T3
".a
NTU
39
62
25
2
1
10
7
31
210
21
NS
NS
NS
NS
NS
NS
NS
O3
O
mg/L
678
888
862
410
910
914
898
926
906
880
886
908
878
924
862
922
868
03
O3
mg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
116
76
33
44
130
72
226
(A
<
1
[jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
30 8(c)
129
572
103
185
138
240
Soluble As
pg/L
70
99
97
195
11 2
11 4
11 6
69
69
80
53
55
4 1
72
52
49
64
Particulate As
pgl
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
255
123
531
954
180
133
234
Total Fe
[Jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
9801(c)
16839
5454
11059
32997
19717
29883
Soluble Fe
[Jg/L
<25
<25
600
225
157
115
108
149
124
149
<25
891
892
224
736
<25
147
Total Mn
[Jg/L
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
79 9(c)
440
176
229
231
600
758
Soluble Mn
pgl
144
182
179
173
178
182
188
15 1
127
162
156
152
173
178
21 0
91
142
TDS = total dissolved solids; TSS = total suspended solids; NS = not sampled
(a) Vessel B did not fast rinse properly during backwash, possibly affecting BW2 sample.
(b) Prechlorination began 05/16/05.
(c) Reanalysis indicated similar results.

-------
The participate iron present in the backwash wastewater might have come from at least two separate
sources, i.e., the iron from raw water or media fines. The amount of iron attributable to both sources was
estimated using the data of the last seven backwash sampling events conducted from February 1 to
September 12, 2006 (Table 4-8). The amount of iron attributable to the iron removed from raw water was
estimated based on the average throughput between backwash events (i.e., 1,513,900 gal) and the average
total iron concentration (i.e., 171 (ig/L) in source water during the same period. Assuming complete
removal of iron solids by the media beds and complete discharge of iron solids during the backwash
events, there would have been 980 g of iron solids, as part of TSS discharged per backwash event,
originating from the iron in source water.  Using an average TSS value of 94 mg/L in 20,000 gal of
backwash wastewater, approximately 7,117 g of solids would have  been discharged  as TSS. Based on the
wastewater metal analyses, 23% of the solids would be iron, thus amounting to 1637 g. This amount is
much higher than the 980 g derived from the iron in raw water, indicating a significant amount of media
fines in backwash wastewater.

Backwash solid samples were collected on July 12, 2006, from Vessels A and B. No backwash solid
samples were collected from Vessels C and D.  The samples were analyzed for total  metals and the results
are presented in Table 4-9. Arsenic, iron, and manganese levels in the  solids were averaged 0.022 mg/g
(or 0.002%), 2.5 mg/g (or 0.25%), and 0.3 mg/g (or 0.03%), respectively.  These amounts were low when
compared to those based on backwash wastewater metal analysis. Calcium levels in the solids were high,
averaging 375 mg/g (or 37.5%).  The significantly high calcium content suggested that the  solid samples
taken for metal analysis might contain sediments. A high percentage of sediments in solid  samples, in
turn, could cause an under estimation of arsenic, iron, and manganese in the  solids.  The ratio of iron to
arsenic measured in backwash solid samples was 114, which is consistent with that measured in backwash
wastewater samples of around 120.
                      Table 4-9. Backwash Solids Total Metal Results (ug/g)
Analyte
Vessel A
Vessel B
Mg
22,916
31,736
Al
305
170
Si
1,028
730
P
92
386
Ca
367,332
381,977
V
<1.4
0.7
Mn
328
261
Fe
3,333
1,612
Ni
25.0
217
Cu
268
913
Zn
117
338
As
35.0
9.0
Cd
0.5
<0.5
Sb
0.5
O.5
Ba
124
72.0
Pb
3.0
18.0
Note: Solids collected on July 12, 2006, from Vessels A and B for total metal analysis.
Average compositions calculated from triplicate analyses.
4.5.3       Distribution System Water Sampling. Distribution system water samples were collected to
determine if water treated by the arsenic removal system would impact the lead, copper, and arsenic
levels and other water chemistry in the distribution system. Prior to system startup, baseline distribution
water samples were collected on December 4 and 18, 2003, and January 8 and 21, 2004. Since system
startup, distribution water sampling continued monthly at the same three locations until January 25, 2006.
The samples were analyzed for pH, alkalinity, arsenic, iron, manganese, lead, and copper and the results
are presented in Table 4-10.

The main differences observed between the baseline samples and samples collected after system startup
were decreases in arsenic concentration at each of the three sampling locations.  Arsenic concentrations
were reduced from a pre-startup level of 10.3 |o,g/L (on average) to 6.2 |o,g/L before implementing
prechlorination and to 4.9 |o,g/L following prechlorination. In Figure 4-17, arsenic concentrations
measured in distribution system water were compared to those  measured in system effluent. In general,
concentrations in distribution system water mirrored those in system effluent, except two apparent outliers
at throughput around 13,000 BV.
                                              40

-------
Measured pH values ranged from 7.3 to 8.3, and alkalinity levels ranged from 229 to 268 mg/L (as
CaCO3). Iron concentrations ranged from <25 to 94.5 |og/L, with the majority of the samples being
<25 |o,g/L. In general, iron concentrations in the distribution system samples decreased since system
startup. Manganese concentrations in the distribution system averaged 6.7 |o,g/L for baseline samples, and
averaged 12.9 and 7.7 |o,g/L, respectively, for samples taken during the operation without and with
prechlorination.  Manganese levels appeared to decrease initially after the system startup, but have since
increased to above baseline levels  starting from August 10, 2004.  The manganese levels measured in the
distribution system mirrored those in the system effluent results.

Lead levels ranged from <0.1 to 3.0 |o,g/L, which were less than the action level of 15 |o,g/L. The average
lead level  was  1.1 |o,g/L in baseline samples and 0.9 |o,g/L for samples taken after system  startup. Lead
concentrations in the distribution system appeared to  have not been affected by the operation of the
arsenic treatment system. Copper  concentrations ranged from 4.9 to 242 |o,g/L, with no samples
exceeding the 1,300 |o,g/L action level. The average copper level was  132 |o,g/L in baseline samples and
60.8 |o,g/L for samples taken after system startup. Copper concentrations in the distribution system were
generally lower than those before treatment.

4.6        System Cost

The cost of the system was evaluated based on the capital cost per gpm (or gpd) of design capacity and
the O&M  cost per 1,000 gal of water treated. This task required tracking capital cost for the equipment,
site engineering, and installation and the O&M cost for media replacement and disposal, replacement
parts, chemical supply, electricity consumption, and labor.

4.6.1       Capital Cost. The capital investment cost for equipment, site engineering, and installation
was $305,000 (see Table 4-11).  The equipment cost included the cost for the two skid-mounted APU-300
units ($144,400), SORB 33™ media ($150/ft3 or $5.34/lb to fill four vessels with a total  cost of $48,000),
miscellaneous materials  and supplies ($3,400), and vendor's labor and travel for the system shakedown
and startup ($22,200). The equipment cost is 71% of the total capital  investment.

The engineering cost included the  cost for the design  work necessary to develop the final system layout
and footprint within the building, design of the piping connections up  to the distribution tie-in points in
the building, and the design of the  electrical connection and conduit plan.  The engineering cost also
included the cost for the submission of the plans to MDEQ for permit review and approval. Engineering
cost amounted to $35,500, or 12% of the total capital investment.

The installation cost included equipment and labor to unload and install the system, perform piping tie-ins
and electrical work, and load and backwash the media.  Piping tie-ins  were completed using ductile iron
pipe, valves, and fittings. Installation cost was $51,500, or 17% of the total capital investment.

The capital cost of $305,000 was normalized to $477/gpm ($0.33/gpd) of design capacity using the
system's rated capacity of 640 gpm (or 921,600 gpd). The capital cost also was converted to an
annualized cost of $28,790/yr using a capital recovery factor (CRF) of 0.09439 based on a 7% interest
rate and a 20-yr return period (Chen et al., 2004).  Assuming that the system operated 24 hr/day, 7 day/wk
at the design flowrate  of 640 gpm to produce 336,384,000 gal/yr, the unit capital cost would be
$0.09/1,000 gal.  During the performance evaluation study, the system operated only 4.5 hr/day and
produced an average of 51,333,670 gal of water in one year, so the unit capital cost increased to
$0.56/1,000 gal at this reduced rate of usage.  These  calculations did not include the building
construction cost.
                                               41

-------
                                                            Table 4-10.  Distribution System Sampling Results
Sampling Event
No.
BL1
BL2
BL3
BL4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Date
12/04/03
12/18/03
01/08/04
01/21/04
06/15/04
07/13/04
08/10/04
09/08/04
10/05/04
1 1/02/04
12/08/04
01/12/05
02/09/05
03/08/05
04/13/05
05/10/05
06/07/05(a)
07/06/05
08/03/05
09/07/05
10/05/05
01/25/06
DS1
4397 Main Street
LCR
1st Draw
Stagnation Time
hr
7.0
7.0
7.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
8.3
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
B.
s.u.
7.9
8.0
7.7
8.1
7.6
7.8
7.8
7.9
7.6
7.8
8.0
7.8
8.0
8.3
8.2
7.9
7.8
7.6
7.8
7.8
7.9
8.2
Alkalinity
mg/L
246
254
268
258
232
263
239
234
244
242
244
240
259
254
251
268
255
255
233
229
251
246
1/3
<
Hg/L
11.5
10.1
11.8
13.3
4.8
3.8
3.0
3.9
4.1
5.3
11.8
6.1
5.6
7.6
8.2
9.0
6.7
4.5
7.0
4.0
2.9
4.5
£
Hg/L
75.6
88.6
44.8
92.8
<25
<25
<25
<25
<25
<25
63.6
<25
27.4
<25
62.4
67.9
<25
<25
<25
<25
<25
<25

Hg/L
4.9
6.1
5.3
6.7
1.7
3.4
9.6
11.4
16.1
10.2
10.9
7.8
7.0
8.2
10.6
15.7
9.7
5.9
8.0
4.4
5.8
1.8
j=
—
Hg/L
1.8
1.1
1.0
2.7
0.5
0.8
0.4
0.4
0.9
1.2
1.2
1.7
1.5
2.0
1.6
0.7
0.4
0.5
0.8
0.6
0.7
0.4
5
Hg/L
44.6
51.4
53.9
72.7
9.1
27.3
21.4
24.8
31.0
45.0
49.4
56.0
53.7
57.6
39.4
13.1
21.8
27.5
29.3
9.6
25.7
24.3
DS2
6783 Cade Road
LCR
1st Draw
Stagnation Time
hr
8.0
6.7
7.0
7.5
6.2
6.0
8.3
6.5
6.0
8.3
6.7
6.8
7.0
6.8
7.0
7.5
5.8
6.8
7.1
8.8
6.5
8.5
e.
S.U.
7.6
7.9
7.6
8.2
7.6
7.8
7.7
7.9
7.8
8.1
8.0
7.8
8.0
8.2
8.1
8.0
7.8
7.7
7.8
7.9
7.7
8.0
Alkalinity
mg/L
244
246
256
249
245
243
235
234
244
246
244
240
268
254
268
268
251
255
242
246
264
251
1/3
<
Hg/L
9.0
7.2
8.8
9.0
5.5
4.8
3.0
4.3
4.5
6.1
12.1
5.2
4.8
7.1
7.8
7.7
8.5
5.5
5.4
4.7
3.4
3.7
£
Hg/L
33.8
49.8
<25
30.6
<25
<25
<25
<25
<25
<25
62.4
<25
<25
28.2
35.9
34.0
<25
<25
<25
<25
<25
<25

Hg/L
6.5
6.3
6.2
5.0
2.6
4.7
6.5
13.8
17.6
17.8
18.0
16.5
13.1
14.7
12.8
13.7
15.3
8.7
7.5
7.8
7.6
9.1
j=
—
HR/L
0.5
<0.1
0.1
0.5
<0.1
0.3
0.3
<0.1
1.7
0.6
0.5
0.5
0.4
0.3
0.3
0.6
0.4
0.5
0.5
0.4
0.4
0.1
5
HS/L
128
218
183
242
6.3
93.5
62.3
94.8
55.1
33.5
65.5
108
130
197
118
140
68.2
109
77.0
30.6
86.7
11.9
DS3
7065 Merrill Street
LCR
1st Draw
Stagnation Time
hr
15.0
14.5
15.0
15.0
14.9
14.9
15.0
15.0
15.0
15.0
15.5
14.8
15.0
15.0
15.0
15.0
15.0
15.3
15.0
15.0
12.0
16.0
B.
S.U.
7.3
7.9
7.3
8.2
7.6
7.8
7.8
7.9
7.9
8.0
8.1
7.8
8.0
8.1
8.0
7.9
7.9
7.8
7.8
7.8
7.8
8.0
Alkalinity
mg/L
252
282
260
256
232
239
239
242
244
246
244
244
268
259
260
268
255
242
246
246
264
255
1/3
<
Hg/L
10.4
8.8
11.7
11.8
3.8
4.1
3.1
4.2
5.0
5.8
6.8
6.8
5.9
9.8
10.4
11.3
7.8
4.0
3.5
4.6
3.1
3.5
£
Hg/L
70.5
94.5
34.9
44.1
<25
<25
<25
<25
<25
<25
<25
32.8
25.3
84.5
79.0
93.4
<25
<25
<25
<25
<25
<25
1
Hg/L
9.7
10.0
10.2
4.1
2.4
4.7
11.5
14.0
20.4
16.9
19.6
17.1
16.0
31.1
25.3
19.6
15.6
5.1
5.0
6.0
7.0
8.9
j=
—
Hg/L
2.1
1.0
1.0
0.9
0.3
2.3
1.4
<0.1
2.2
0.9
0.4
1.6
1.8
0.7
2.7
3.0
1.0
0.6
1.9
0.6
1.5
0.1
5
Hg/L
183
156
194
56.4
4.9
74.5
70.1
73.3
62.1
53.9
13.6
63.0
90.5
103
220
110
53.1
56.3
66.4
21.8
82.0
9.4
to
       Notes: (a) Prechlorination began on May 16, 2005
       Alkalinity measured in mg/L as CaCO3. Action levels:
15 |ig/L Pb and 1.3 mg/L Cu. BL = baseline sampling; DS = Distribution Sampling

-------
  14
  12
  10 -
c
o
o
   8
   6
   4 -
   2
         Without Prechlorination
           05/11/04-05/15/05
With Prechlorination
 05/16/05-05/02/07
                 10
                             20           30           40
                                   Bed Volumes of Treated Water (xlOOO)
                                                                   50
                                                                                60
                                                                                            70
   Figure 4-17. Comparsion of Total Arsenic Concentrations in Distribution System Water
                                and APU-300 System Effluent
                     Table 4-11. Capital Investment for APU-300 System
Description
Quantity
Cost
% of Capital Investment Cost
Equipment
APU-300 Skid-Mounted System
SORB-33™ Media
Misc. Equipment and Materials
Vendor Labor
Vendor Travel
Equipment Total
2
320 ft3
-
-
-
-
$144,400
$48,000
$3,400
$17,500
$4,700
$218,000
-
-
-
-
-
71%
Engineering
Subcontractor
Vendor Labor
Vendor Travel
Engineering Total
-
-
-
-
$27,740
$6,680
$1,080
$35,500
-
-
-
12%
Installation
Subcontractor
Vendor Labor
Vendor Travel
Installation Total
Total Capital Investment
-
-
-
-
-
$42,000
$5,600
$3,900
$51,500
$305,000
-
-
-
17%
100%
                                              43

-------
The total cost for the addition to the existing concrete block well house was $62,602. The primary con-
struction cost totaled $41,468 and included excavation, masonry, carpentry, and concrete floor pouring.
The overhead door cost was $1,400.  The building cost also included $13,048 for the roof deck work and
roofing, including the overhead roof hatches. The building was finished with a wood and aluminum trim
and painted white.  The cost for painting was $2,135, and the heating and electrical work for the building
totaled $4,550.

4.6.2       Operation and Maintenance Cost.  O&M cost included only incremental cost associated
with media replacement and disposal, chemical supply, electricity, and labor and is summarized in Table
4-12.  Because media replacement and disposal did not take place during the performance evaluation
period, its cost per 1,000 gal of water treated was calculated as a function of projected media run length
using the vendor-estimate of $53,600 for media replacement for all four vessels.  This replacement cost
included the cost for new media, freight, labor, travel expenses, and media profiling and disposal fee.  At
the vendor-estimated media capacity of 80,000 BV for As(V) or a throughput of 192,000,000 gal (see
Table 4-4), the media replacement cost is projected to be $0.28/1,000 gal (Figure 4-18).
                          Table 4-12. O&M Cost for APU-300 System
Cost Category
Value
Remarks
Media Replacement and Disposal
Media Cost ($/ft3)
Total Media Volume (ft3)
Media Replacement Cost ($)
Labor Cost ($)
Media Disposal Fee ($)
Subtotal
Media Replacement and Disposal Cost
($71,000 gal)
$150
320
$48,000
$4,240
$1,360
$53,600
See Figure 4-18
Vendor quote
Four vessels
Vendor quote
Vendor quote
Vendor quote
Vendor quote
Based upon media run length at 10 u.g/L
arsenic breakthrough
Equipment Replacement
Replacement Parts Cost ($)
Labor and Travel Cost ($)
Equipment Replacement Cost ($71,000 gal)
$0.00
$0.00
$0.00
Cost related to parts replacement was
negligible.
-
Total system throughput = 1 54,00 l,Kgal
Chemical Usage
Chemical Cost ($)
$0.00
No additional chemicals required.
Electricity
Electric Utility Charge ($7kWh)
Incremental Daily Usage (kWh)
Estimated Incremental Electricity Cost ($)
Incremental Cost ($71,000 gal)
$0.0812
131
$11,647
$0.08
Based on 2003 Detroit Edison Rate
Based on average daily incremental usage
from May to November 2004
From May 2004 to May 2007
Total system throughput = 1 54,00 l,Kgal
Labor
Average Weekly Labor (hr/week)
Total Labor (hr)
Labor cost ($71, 000 gal)
Total O&M Cost/1,000 gallons
3.5
546
$0.05
See Figure 4-18
30 minutes/day
156 weeks of performance evaluation
Labor rate = $15/hr and
Total system throughput = 154,001 Kgal
-
                                              44

-------
The chemical cost associated with the operation of the treatment system included chlorine addition prior
to the adsorption vessels. This treatment step was in use at the site prior to installation of the APU-300
treatment system. The APU-300 treatment system did not have a significant effect on the NaOCl usage
based on the data collected during the performance evaluation study. Therefore, the incremental chemical
cost due to the APU-300 system was negligible.
The incremental electrical consumption was reviewed.  From May to November of 2003, the utility bill
totaled $2,610.45 before the treatment plant was installed. From May to November of 2004, the utility
bill totaled $4,770.50 after the treatment plant was installed and operational. The incremental utility cost
over running the well alone before treatment  is  approximately $10.64/day or an additional 131 kilowatt
hours (KWh) each day at $0.0812 per KWh.  The incremental electricity cost over the before-treatment
cost was approximately $0.08/1000 gal.
The routine, non-demonstration related labor activities consume only 30 min/day, as noted in Section
4.4.4. The labor cost was $0.05/1,000 gallons of water treated based on this time commitment and a labor
rateof$15/hr.
      «
      o
      o
$2.00
$1.90
$1.80
$1.70
$1.60
$1.50
$1.40
$1.30
$1.20
$1.10
$1.00
$0.90
$0.80
$0.70
$0.60
$0.50
$0.40
$0.30
$0.20
$0.10
$0.00
                                                                     •O&M cost
                                                                    • Media replacement cost
                  10    20    30    40    50    60    70    80    90    100   110
                                   Media Working Capacity, Bed Volumes (xlOOO)
                                                                         120   130   140   150
           Figure 4-18.  Media Replacement and O&M Cost for Brown City, MI, System
                                      (Two APU-300 Units)
                                               45

-------
                                 Section 5.0:  REFERENCES
Battelle. 2003. Revised Quality Assurance Project Plan for Evaluation of Arsenic Removal Technology.
       Prepared under Contract No. 68-C-00-185, Task Order No. 0019, for U.S. Environmental
       Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.

Battelle. 2004. Final System Performance Evaluation Study Plan: U.S. EPA Demonstration of Arsenic
       Removal Technology at Desert Sands MDWCA in Anthony, New Mexico. Prepared under
       Contract No. 68-C-00-185, Task Order No. 0019 for U.S. Environmental Protection Agency,
       National Risk Management Research Laboratory, Cincinnati, OH.

Chen, A.S.C., L. Wang, J.L. Oxenham, and W.E. Condit. 2004. Capital Costs of Arsenic Removal
       Technologies: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1.
       EPA/600/R-04/201. U.S. Environmental Protection Agency, National Risk Management
       Research Laboratory, Cincinnati, OH.

Chen, A.S.C., C.T. Coonfare, L. Wang, and A. Wang. 2008a. Draft Final Performance Evaluation
       Report: Arsenic Removal from Drinking Water by Adsorptive Media EPA Demonstration Project
       at Desert Sands MDWCA, NM. Prepared under Contract No. 68-C-00-185, Task Order No. 0019
       for Environmental Protection Agency, National Risk Management Research Laboratory,
       Cincinnati, OH.

Chen, A.S.C., G.M. Lewis, L. Wang, A.Wang 2008b.  Draft Final Performance Evaluation Report:
       Arsenic Removal from Drinking  Water by Adsorptive Media EPA Demonstration Project at
       Queen Anne's County, Maryland. Prepared under Contract No. 68-C-00-185, Task Order No.
       0019 for Environmental Protection Agency, National Risk Management Research Laboratory,
       Cincinnati, OH.

Condit, W.E. and A.S.C. Chen. 2006. Final Performance Evaluation Report: Arsenic Removal from
       Drinking Water by Iron Removal, EPA Demonstration Project at Climax, MN. EPA/600/R-
       06/152.  U.S. Environmental Protection Agency, National Risk Management Research
       Laboratory, Cincinnati, OH.

Cumming,L.J., A.S.C. Chen, and L. Wang 2008. Draft Final Performance Evaluation Report: Arsenic
       Removal from Drinking Water by Adsorptive Media EPA Demonstration Project at Rollinsford,
       NH. Prepared under Contract No. 68-C-00-185, Task Order No. 0037 for Environmental
       Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.

Edwards, M., S.  Patel, L. McNeill, H. Chen, M. Frey, A.D. Eaton, R.C. Antweiler, and H.E. Taylor. 1998.
       "Considerations in As Analysis and Speciation." J. AWWA, 90(3): 103-113.

EPA.  2003. "Minor Clarification of the National Primary Drinking Water Regulation for Arsenic."
       Federal  Register, 40 CFR Part 141.

EPA.  2002. Lead and Copper Monitoring and Reporting Guidance for Public Water Systems.
       EPA/816/R-02/009. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

EPA.  2001.  "National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance
       and New Source Contaminants Monitoring." Federal Register, 40 CFR Parts 9, 141, and 142.
                                             46

-------
Knocke, W.R., Hoehn, R. C.; Sinsabaugh, R. L. 1987. "Using Alternative Oxidants to Remove Dissolved
       Manganese from Waters Laden with Organics." J. AWWA, 79(3): 75.

Knocke, W.R., Van Benschoten, J.E., Kearney, M., Soborski, A., and Reckhow, D.A.,  1990. Alternative
       Oxidants for the Removal of Soluble Iron and Manganese. Final report prepared for the AWWA
       Research Foundation, Denver, CO.

McCall, S.E, A.S.C. Chen, and L. Wang. 2007. Final Performance Evaluation Report: Arsenic Removal
       from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Chateau Estates
       Mobile Home Park in Springfield, OH. EPA/600/R-07/072. U.S. Environmental Protection
       Agency, National Risk Management Research Laboratory, Cincinnati, OH.

Wang, L., W.E. Condit, and A.S.C. Chen. 2004. Technology Selection and System Design: U.S. EPA
       Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-05/001. U.S.
       Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati,
       OH.
                                             47

-------
 APPENDIX A




Operational Data

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet
Week
No.
1
2
3
4
5
6
Date
05/12/04
05/13/04
05/14/04
05/15/04
05/16/04
05/17/04
05/18/04
05/19/04
05/20/04
05/21/04
05/22/04
05/23/04
05/24/04
05/25/04
05/26/04
05/27/04
05/28/04
05/29/04
05/30/04
05/31/04
06/01/04
06/02/04
06/03/04
06/04/04
06/05/04
06/06/04
06/07/04
06/08/04
06/09/04
06/10/04
06/11/04
06/12/04
06/13/04
06/14/04
06/15/04
06/16/04
06/17/04
06/18/04
06/19/04
06/20/04
Operation Master Flow
Hours Meter
hr
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
5.1
5.8
5.5
3.1
4.9
NA
NA
5.6
4.5
2.6
5.5
5.4
3.7
6.1
gal
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Vessel Flow Totalizer
Vessel A
kgal
107.229
119.759
178.436
183.837
228.270
272.865
313.825
318.571
372.478
414.647
416.054
465.207
495.832
542.984
551.846
598.829
646.928
689.973
704.951
739.799
785.052
830.267
887.743
932.469
978.901
1029.094
1076.384
1129.432
1180.313
1209.263
1259.343
1273.504
1323.025
1373.086
1414.744
1438.503
1491.156
1537.023
1571.981
1631.160
Vessel B
kgal
125.518
136.316
196.577
201.828
246.131
290.377
331.255
335.899
389.394
431.453
432.858
481.841
512.374
559.458
568.312
615.068
662.993
705.651
720.591
755.361
800.464
845.019
902.285
946.932
993.219
1043.325
1090.546
1143.459
1194.214
1223.006
1273.014
1287.035
1336.439
1386.065
1427.542
1451.468
1504.426
1550.457
1585.942
1645.949
Vessel C
kgal
109.790
119.673
175.054
179.684
220.452
262.550
300.841
305.065
355.552
395.179
396.406
442.715
491.501
515.886
524.235
568.329
613.441
654.642
668.179
701.103
743.762
786.476
840.696
882.967
926.814
974.219
1019.011
1069.078
1117.091
1144.636
1191.852
1204.935
1251.707
1298.811
1338.089
1361.052
1407.619
1448.061
1479.695
1531.712
Vessel D
kgal
114.571
125.300
184.938
189.859
233.650
277.445
317.329
321.661
373.048
414.685
416.038
463.226
492.931
538.692
547.306
593.048
639.870
681.960
696.401
730.179
773.887
817.877
873.881
917.388
962.458
1011.296
1057.645
1109.166
1158.868
1187.023
1235.582
1249.005
1297.311
1345.953
1386.452
1408.409
1454.439
1494.498
1525.727
1577.346
Head Loss
Vessel A
psi
NR
3.1
4.4
NR
NR
3.2
3.2
3.2
3.6
3.6
3.6
NR
3.2
3.1
3.6
3.8
NR
3.7
3.2
3.5
3.2
3.5
3.5
3.5
NR
NR
3.8
3.6
3.0
3.0
4.6
NR
NR
3.3
3.4
3.6
4.6
4.8
4.1
4.8
Vessel B
psi
NR
2.8
2.8
NR
NR
2.9
2.9
2.9
3.1
3.1
3.1
NR
2.9
3
3
3.2
NR
3.2
2.8
3.0
3.0
3.0
3.0
3.0
NR
NR
3.0
3.0
3.0
2.8
2.8
NR
NR
3
3
3.4
3
3
3
3.5
Unit 1 (Vessels A & B)
Influent
psig
NR
61
66
NR
NR
65
65
60
64
65
60
NR
62
62
62
62
NR
66
62
63
58
58
59
58
NR
NR
62
63
64
64
64
NR
NR
64
65
62
64
65
64
65
Effluent
psig
NR
56
60
NR
NR
58
59
54
58
60
55
NR
58
58
57
56
NR
60
57
57
56
57
56
57
NR
NR
56
57
60
58
58
NR
NR
59
60
56
56
58
59
59
AP
psi
NA
5
6
NA
NA
7
6
6
6
5
5
NA
4
4
5
6
NA
6
5
6
2
1
3
1
NA
NA
6
6
4
6
6
NA
NA
5
5
6
8
7
5
6
Head Loss
Vessel C
psi
NR
2.6
2.3
NR
NR
2.2
2.2
2.2
2.6
2.6
2.6
NR
2.4
NR
2.5
2.7
NR
2.7
2.7
2.7
2.6
2.6
2.6
2.7
NR
NR
2.6
2.6
2.2
2.8
2.4
NR
NR
2.6
2.6
3.4
3
3
3
3.2
Vessel D
psi
NR
1.7
1.5
NR
NR
1.2
1.2
1.2
1.2
1.2
1.2
NR
1.2
1.2
1.4
1.6
NR
1.4
1.5
2
2.3
2.3
2.3
2.3
NR
NR
1.4
1.4
1
1.2
1.2
NR
NR
1.4
1.4
2.4
2.2
2.2
2.8
2.2
Unit 2 (Vessels C & D)
Influent
psig
NR
52
64
NR
NR
64
64
60
62
66
63
NR
64
64
62
62
NR
66
62
63
60
60
60
63
NR
NR
62
63
64
64
65
NR
NR
64
66
61
62
64
64
65
Effluent
psig
NR
56
62
NR
NR
60
60
54
58
60
58
NR
59
59
57
56
NR
62
58
58
56
56
56
58
NR
NR
56
58
60
60
60
NR
NR
60
61
56
57
59
60
59
AP
psi
NA
NA
2
NA
NA
4
4
6
4
6
5
NA
5
5
5
6
NA
4
4
5
4
4
4
5
NA
NA
6
5
4
4
5
NA
NA
4
5
5
5
5
4
6
                                        A-l

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
7
8
9
10
11
12
Date
06/21/04
06/22/04
06/23/04
06/24/04
06/25/04
06/26/04
06/27/04
06/28/04
06/29/04
06/30/04
07/01/04
07/02/04
07/03/04
07/04/04
07/05/04
07/06/04
07/07/04
07/08/04
07/09/04
07/10/04
07/11/04
07/12/04
07/13/04
07/14/04
07/15/04
07/16/04
07/17/04
07/18/04
07/19/04
07/20/04
07/21/04
07/22/04
07/23/04
07/24/04
07/25/04
07/26/04
07/27/04
07/28/04
07/29/04
07/30/04
07/31/04
08/01/04
Operation Master Flow
Hours Meter
hr
2.2
2.8
5.6
4.7
0.3
NA
NA
NA
4.5
0.2
4.5
6
5.6
5.2
2.6
3.6
5.6
4.5
0
5.3
5.5
5.5
4.7
3.5
1.9
5.3
5.5
4.8
4.2
0.7
0.6
7.4
5.4
5.7
0.4
6
5
1
5.2
5.1
4.8
4.1
gal
NA
63005400
63250100
63426100
63437900
63640100
63835800
64039500
64209400
64219700
64421300
64634600
64847800
65042600
65109500
65243800
65450500
65625100
65625100
65825900
66032000
66234900
66416400
66544400
66614900
66811300
NR
NR
67352300
67380100
67403600
67475800
67679100
67893400
68107000
68332700
68516400
68525600
68747400
68942600
69121100
69275700
Vessel Flow Totalizer
Vessel A
kgal
1652.422
1679.876
1740.701
1784.262
1787.186
1837.227
1885.586
1936.024
1978.058
1980.588
2030.435
2083.219
2135.890
2184.052
2199.704
2233.734
2284.732
2327.858
2338.512
2377.569
2428.535
2478.721
2522.278
2555.110
2572.546
2621.027
2671.860
2716.725
NA
2761.547
2767.358
2785.192
2835.338
2888.310
2940.996
2996.551
3041.739
3044.011
3098.278
3146.499
3190.561
3228.229
Vessel B
kgal
1667.722
1695.329
1756.855
1800.935
1803.885
1854.253
1903.133
1954.016
1996.398
1998.944
2049.123
2102.226
2155.313
2203.936
2219.753
2254.023
2305.502
2349.120
2359.932
2399.256
2450.728
2501.298
2545.293
2578.485
2596.063
2645.117
2696.327
2741.592
2778.792
2786.859
2792.739
2810.777
2861.406
2915.004
2968.242
3024.475
3069.980
3072.286
3127.310
3175.843
3220.191
3258.260
Vessel C
kgal
1550.962
1575.022
1628.973
1667.542
1670.122
1714.283
1757.023
1801.423
1838.395
1840.622
1884.502
1930.917
1977.272
2019.592
2033.632
2068.245
2108.073
2145.983
2155.540
2189.552
2234.232
2278.147
2316.276
2345.305
2360.291
2402.747
2447.251
2486.541
2518.928
2525.844
2530.954
2546.569
2590.503
2636.838
2683.016
2731.768
2771.298
2773.293
2821.301
2863.298
2901.722
2934.860
Vessel D
kgal
1596.585
1620.202
1673.389
1711.392
1713.949
1757.673
1799.960
1844.034
1880.729
1882.934
1926.365
1972.479
2018.462
2060.456
2074.436
2103.766
2148.215
2185.787
2195.326
2229.099
2273.498
2317.292
2355.290
2384.199
2399.060
2441.387
2485.806
2524.969
2557.272
2564.104
2569.184
2584.818
2628.701
2675.008
2721.097
2769.864
2809.497
2811.501
2859.811
2901.906
2940.348
2973.537
Head Loss
Vessel A
psi
4
5.4
3.6
5
3.6
NR
NR
3.4
3.4
3.4
3.4
3.4
NR
NR
3.8
3.8
3.8
3.8
3.6
NR
NR
3.7
3.7
3.6
3.6
3.6
NR
NR
3.7
3.7
3.7
2.8
2.8
NR
NR
3
3
2.8
3.2
3.2
3.2
2.4
Vessel B
psi
3.2
3
3.6
3.2
3.1
NR
NR
3
3
3
3
3
NR
NR
2.8
3
3
3
3
NR
NR
3.6
3
2.8
3
3
NR
NR
3
3.6
3
3.2
3
NR
NR
3.6
3.6
3.6
3.4
3.4
3.4
3.2
Unit 1 (Vessels A & B)
Influent
psig
64
63
64
66
68
NR
NR
64
66
66
64
62
NR
NR
62
62
62
64
62
NR
NR
64
64
64
62
61
NR
NR
64
60
63
63
62
NR
NR
64
64
62
62
62
62
64
Effluent
psig
58
56
58
60
62
NR
NR
58
60
60
58
56
NR
NR
56
56
56
59
58
NR
NR
58
59
58
57
56
NR
NR
60
54
59
56
58
NR
NR
58
58
56
58
58
58
58
AP
psi
6
7
6
6
6
NA
NA
6
6
6
6
6
NA
NA
6
6
6
5
4
NA
NA
6
5
6
5
5
NA
NA
4
6
4
7
4
NA
NA
6
6
6
4
4
4
6
Head Loss
Vessel C
psi
3.2
3.2
3.3
3.4
3
NR
NR
3
3
3
3
3
NR
NR
2.8
3
3
3
3
NR
NR
3.2
3.2
3
3
3
NR
NR
3
3
3
3.2
3
NR
NR
3.2
3
3
3
3.2
3
2.8
Vessel D
psi
2.2
2
2.2
2
2
NR
NR
2.2
2
2
2
2
NR
NR
1.8
2
2
2
2
NR
NR
2
2
2
2
2
NR
NR
2
2.2
2.2
2.2
2
NR
NR
2.2
2
2
2
2
2
2
Unit 2 (Vessels C & D)
Influent
psig
64
62
64
66
68
NR
NR
66
66
66
64
62
NR
NR
64
62
62
64
62
NR
NR
64
64
64
62
62
NR
NR
66
60
62
60
64
NR
NR
64
64
62
62
62
62
64
Effluent
psig
58
58
58
60
62
NR
NR
59
60
60
58
56
NR
NR
58
58
58
59
58
NR
NR
58
59
60
57
57
NR
NR
62
55
60
56
58
NR
NR
58
58
56
58
58
58
60
AP
psi
6
4
6
6
6
NA
NA
7
6
6
6
6
NA
NA
6
4
4
5
4
NA
NA
6
5
4
5
5
NA
NA
4
5
2
4
6
NA
NA
6
6
6
4
4
4
4
                                                 A-2

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
13
14
15
16
17
18
Date
08/02/04
08/03/04
08/04/04
08/05/04
08/06/04
08/07/04
08/08/04
08/09/04
08/10/04
08/11/04
08/12/04
08/13/04
08/14/04
08/15/04
08/16/04
08/17/04
08/18/04
08/19/04
08/20/04
08/21/04
08/22/04
08/23/04
08/24/04
08/25/04
08/26/04
08/27/04
08/28/04
08/29/04
08/30/04
08/31/04
09/01/04
09/02/04
09/03/04
09/04/04
09/05/04
09/06/04
09/07/04
09/08/04
09/09/04
09/10/04
09/11/04
09/12/04
Operation Master Flow
Hours Meter
hr
1.4
5.8
6.3
4.8
0.1
5.5
5.3
5.2
5
1.2
4.1
5.2
5
4.8
4.7
5.2
1
6.3
5.8
5.4
5.6
5.8
4.6
5.8
15
6
3.1
1.8
5.3
5.3
0.7
5.2
5.4
4.8
4.7
0.7
5.5
4.5
5.6
1.9
5.4
5.1
gal
69327700
69545300
69779600
69959000
69961400
70164600
70365100
70560900
70745700
70794000
70952300
71143500
71332200
71513000
71690100
71877100
71913300
72113900
72331600
72533900
72743700
72961300
73163600
73383000
73938800
74163100
74280300
74348000
74545800
74739700
74761500
74955600
75159600
75339700
75518500
75548500
75755200
75914600
76123800
76194300
76396100
76586900
Vessel Flow Totalizer
Vessel A
kgal
3241.637
3295.618
3353.549
3397.916
3398.509
3448.819
3498.296
3546.467
3592.056
3604.023
3643.034
3690.203
3736.696
3781.307
3825.047
3871.220
3880.057
3929.629
3983.447
4033.436
4085.240
4138.999
4189.020
4243.217
4381.027
4436.595
4464.967
4482.336
4531.284
4579.144
4584.525
4632.531
4682.929
4727.469
4771.724
4779.803
4830.332
4869.733
4921.357
4938.969
4989.458
5037.255
Vessel B
kgal
3271.628
3325.930
3384.293
3428.890
3429.493
3480.127
3530.098
3578.485
3624.430
3636.553
3675.998
3723.375
3770.260
3815.255
3859.337
3905.800
3914.767
3964.661
4018.874
4069.234
4121.514
4175.703
4226.111
4280.706
4419.407
4475.420
4504.061
4521.507
4570.822
4619.151
4624.574
4672.952
4723.924
4768.626
4813.205
4821.392
4872.174
4911.832
4963.877
4980.815
5030.742
5077.936
Vessel C
kgal
2946.287
2993.284
3044.037
3082.787
3083.211
3127.336
3170.709
3212.662
3252.673
3263.457
3297.430
3338.839
3379.776
3419.003
3457.362
3497.878
3505.859
3549.140
3596.454
3640.357
3865.934
3733.177
3777.147
3824.736
3945.532
3994.336
4019.491
4034.531
4077.545
4119.722
4124.468
4166.658
4210.961
4250.125
4288.982
4296.299
4340.479
4375.129
4420.622
4436.103
4479.699
4521.038
Vessel D
kgal
2984.870
3031.829
3082.475
3120.938
3121.447
3165.239
3208.196
3249.779
3289.447
3300.282
3333.858
3374.953
3415.491
3454.295
3492.315
3532.431
3540.358
3583.137
3629.658
3673.056
3717.985
3764.599
3807.769
3854.657
3973.532
4021.487
4046.256
4060.927
4102.983
4144.285
4148.936
4190.162
4233.471
4271.783
4309.724
4316.920
4360.036
4393.808
4438.204
4453.543
4496.667
4537.540
Head Loss
Vessel A
psi
2.8
3
3
3
3
3
3
3
3
2.9
NR
NR
NR
3
3
3
3
3
3
3
3
NR
3
NR
NR
NR
2.8
NR
NR
3.2
3
NR
NR
NR
NR
3
NR
3
3
NR
NR
NR
Vessel B
psi
3.6
3.6
3.6
3.4
3.6
3.2
3.2
4
3.2
3.4
NR
NR
NR
3.6
3.6
3.6
3.6
3.6
3.8
3.8
3.8
NR
3.8
NR
NR
NR
3
NR
NR
4
3.4
NR
NR
NR
NR
4
NR
3.2
3.8
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
60
64
66
68
62
62
64
63
64
61
NR
NR
NR
65
62
66
60
62
65
62
60
NR
65
NR
NR
NR
64
NR
NR
64
62
NR
NR
NR
NR
60
NR
62
65
NR
NR
NR
Effluent
psig
56
57
60
62
58
58
60
58
58
56
NR
NR
NR
58
57
59
56
57
59
57
56
NR
59
NR
NR
NR
59
NR
NR
60
54
NR
NR
NR
NR
56
NR
56
60
NR
NR
NR
AP
psi
4
7
6
6
4
4
4
5
6
5
NA
NA
NA
7
5
7
4
5
6
5
4
NA
6
NA
NA
NA
5
NA
NA
4
8
NA
NA
NA
NA
4
NA
6
5
NA
NA
NA
Head Loss
Vessel C
psi
3
3
3
3
3
3
3
3
3
3
NR
NR
NR
3
3
3
3
3
3
3
3
NR
3
NR
NR
NR
3
NR
NR
4
3
NR
NR
NR
NR
2.8
NR
3.4
3
NR
NR
NR
Vessel D
psi
2.6
2.2
2
2
2
2.2
2
2
2
2
NR
NR
NR
2
2
2
2
2
2
2
2.4
NR
2.4
NR
NR
NR
2.4
NR
NR
2.4
2.4
NR
NR
NR
NR
2.8
NR
2.6
2.6
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
60
63
66
68
62
64
66
64
64
62
NR
NR
NR
65
62
66
60
62
65
62
60
NR
66
NR
NR
NR
64
NR
NR
66
62
NR
NR
NR
NR
62
NR
62
65
NR
NR
NR
Effluent
psig
56
58
60
62
56
58
60
58
58
56
NR
NR
NR
58
57
59
56
57
59
57
56
NR
60
NR
NR
NR
60
NR
NR
62
54
NR
NR
NR
NR
56
NR
56
60
NR
NR
NR
AP
psi
4
5
6
6
6
6
6
6
6
6
NA
NA
NA
7
5
7
4
5
6
5
4
NA
6
NA
NA
NA
4
NA
NA
4
8
NA
NA
NA
NA
6
NA
6
5
NA
NA
NA
                                                 A-3

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
19
20
21
22
23
24
Date
09/13/04
09/14/04
09/15/04
09/16/04
09/17/04
09/18/04
09/19/04
09/20/04
09/21/04
09/22/04
09/23/04
09/24/04
09/25/04
09/26/04
09/27/04
09/28/04
09/29/04
09/30/04
10/01/04
10/02/04
10/03/04
10/04/04
10/05/04
10/06/04
10/07/04
10/08/04
10/09/04
10/10/04
10/11/04
10/12/04
10/13/04
10/14/04
10/15/04
10/16/04
10/17/04
10/18/04
10/19/04
10/20/04
10/21/04
10/22/04
10/23/04
10/24/04
Operation Master Flow
Hours Meter
hr
4.9
3.1
2.4
8.1
3.7
4.9
4.6
5
3.7
3.7
5.8
6
7.4
4.7
4.9
5.8
0.5
6.2
5
5.4
5.4
0
5.2
5.3
4.3
4.8
4.5
0
5.3
8
4.2
9.5
4.5
0
5.3
5.1
5.3
0.3
5
5.1
2.1
7.3
gal
76771600
76890900
76980700
77193700
77415500
77599000
77771300
77955300
78046300
78235900
78456400
78680100
78955300
79130800
79315200
79521400
79558200
79755100
79958900
80161900
80332000
80332000
80526700
80725200
80911300
81093000
81264000
81264000
81463600
81763200
81919800
82271900
82448800
82448800
82647300
82840100
83010200
83023800
83211700
83399200
83480200
83674400
Vessel Flow Totalizer
Vessel A
kgal
5083.534
5113.468
5136.039
5189.433
5245.048
5291.023
5334.175
5380.325
5416.220
5451.256
5506.044
5562.250
5631.430
5675.510
5721.823
5773.682
5782.936
5832.344
5883.586
5934.522
5977.235
5977.235
6026.088
6075.869
6122.481
6168.076
6210.960
6210.960
6261.015
6336.357
6373.468
6461.988
6506.433
6506.433
6556.288
6604.728
6647.529
6650.931
6698.260
6745.434
6765.973
6814.714
Vessel B
kgal
5123.582
5153.076
5175.191
5227.659
5282.371
5327.558
5369.943
5415.248
5450.568
5484.917
5538.703
5593.930
5662.127
5705.434
5750.926
5801.817
5810.924
5859.629
5910.058
5960.125
6002.108
6002.108
6050.130
6099.067
6145.029
6189.880
6232.058
6232.058
6281.302
6355.360
6391.866
6470.542
6523.402
6523.402
6572.713
6620.624
6662.841
6666.199
6712.851
6759.491
6777.897
6826.266
Vessel C
kgal
4560.992
4586.943
4606.198
4652.188
4700.133
4739.762
4776.941
4816.589
4847.701
4877.839
4924.836
4973.144
5032.222
5070.088
5109.803
5154.303
5162.268
5204.704
5248.719
5292.486
5329.143
5329.143
5371.084
5413.814
5453.892
5492.938
5529.687
5529.687
5572.569
5637.080
5668.856
5745.047
5783.000
5783.000
5825.824
5867.410
5904.081
5907.003
5947.517
5987.913
6006.032
6047.648
Vessel D
kgal
4577.018
4602.683
4621.603
4666.941
4714.237
4753.419
4790.161
4829.483
4860.336
4890.151
4936.737
4984.586
5043.251
5080.753
5120.154
5164.104
5171.954
5213.948
5257.398
5300.683
5337.010
5337.010
5378.646
5420.918
5460.528
5499.203
5535.516
5535.516
5577.978
5641.777
5673.190
5748.336
5785.583
5785.583
5827.575
5868.414
5904.385
5907.250
5946.919
5986.486
6004.418
6045.656
Head Loss
Vessel A
psi
NR
2.6
NR
NR
3
NR
NR
NR
2.4
NR
2.6
2.6
NR
NR
NR
3
NR
NR
3
NR
NR
NR
3.2
NR
3
NR
NR
NR
2.6
2.8
NR
2.8
NR
NR
NR
NR
2.8
NR
NR
2.9
NR
NR
Vessel B
psi
NR
3
NR
NR
3.8
NR
NR
NR
4
NR
3.6
4.8
NR
NR
NR
3.8
NR
NR
3.4
NR
NR
NR
4
NR
4
NR
NR
NR
2.8
3
NR
3.6
NR
NR
NR
NR
4
NR
NR
5
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
64
NR
NR
63
NR
NR
NR
65
NR
64
64
NR
NR
NR
64
NR
NR
62
NR
NR
NR
60
NR
64
NR
NR
NR
60
64
NR
65
NR
NR
NR
NR
66
NR
NR
64
NR
NR
Effluent
psig
NR
58
NR
NR
57
NR
NR
NR
60
NR
58
58
NR
NR
NR
58
NR
NR
57
NR
NR
NR
56
NR
58
NR
NR
NR
56
59
NR
62
NR
NR
NR
NR
59
NR
NR
58
NR
NR
AP
psi
NA
6
NA
NA
6
NA
NA
NA
5
NA
6
6
NA
NA
NA
6
NA
NA
5
NA
NA
NA
4
NA
6
NA
NA
NA
4
5
NA
3
NA
NA
NA
NA
7
NA
NA
6
NA
NA
Head Loss
Vessel C
psi
NR
2.8
NR
NR
3
NR
NR
NR
2.8
NR
2.8
2.8
NR
NR
NR
3
NR
NR
3
NR
NR
NR
2.8
NR
2.8
NR
NR
NR
3.2
3
NR
2.8
NR
NR
NR
NR
3
NR
NR
3
NR
NR
Vessel D
psi
NR
2
NR
NR
2
NR
NR
NR
2
NR
2.8
2.6
NR
NR
NR
2
NR
NR
2
NR
NR
NR
2.6
NR
2
NR
NR
NR
2
2.2
NR
2
NR
NR
NR
NR
2
NR
NR
2
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
64
NR
NR
64
NR
NR
NR
65
NR
64
64
NR
NR
NR
64
NR
NR
62
NR
NR
NR
60
NR
64
NR
NR
NR
60
64
NR
68
NR
NR
NR
NR
66
NR
NR
64
NR
NR
Effluent
psig
NR
60
NR
NR
58
NR
NR
NR
60
NR
59
59
NR
NR
NR
58
NR
NR
57
NR
NR
NR
56
NR
58
NR
NR
NR
56
59
NR
64
NR
NR
NR
NR
59
NR
NR
58
NR
NR
AP
psi
NA
4
NA
NA
6
NA
NA
NA
5
NA
5
5
NA
NA
NA
6
NA
NA
5
NA
NA
NA
4
NA
6
NA
NA
NA
4
5
NA
4
NA
NA
NA
NA
7
NA
NA
6
NA
NA
                                                 A-4

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
25
26
27
28
29
30
Date
10/25/04
10/26/04
10/27/04
10/28/04
10/29/04
10/30/04
10/31/04
11/01/04
11/02/04
11/03/04
11/04/04
11/05/04
11/06/04
11/07/04
11/08/04
11/09/04
11/10/04
11/11/04
11/12/04
11/13/04
11/14/04
11/15/04
11/16/04
11/17/04
11/18/04
11/19/04
11/20/04
11/21/04
11/22/04
11/23/04
11/24/04
11/25/04
11/26/04
11/27/04
11/28/04
11/29/04
11/30/04
12/01/04
12/02/04
12/03/04
12/04/04
12/05/04
Operation Master Flow
Hours Meter
hr
5
4.4
0
5
5.1
4.4
0
3.6
5
1.2
5
4.9
0.2
4.7
5.1
5
0.6
4.7
4.9
4.5
1.6
3.6
4.9
4.5
0.9
5
4.9
4.6
0
0
1.8
5.2
0
6.8
4.8
0
9.2
5.4
0
6.3
5
0
gal
83862200
84026900
84026900
84213400
84406700
84572400
84572400
84959000
84770000
85004400
85189200
85374400
85388500
85564300
85755800
85931700
85958700
86128100
86312100
86481600
86542300
86672300
86855300
87026700
87058800
87246400
87428700
87600700
87600700
87730000
87799700
87996100
87996100
88252800
88433600
88433600
88633600
88836000
88836000
89071000
89257900
89257900
Vessel Flow Totalizer
Vessel A
kgal
6861.857
6903.227
6903.227
6949.989
6998.465
7039.997
7039.997
7089.632
7137.105
7148.444
7194.811
7241.365
7246.114
7289.078
7337.275
7381.504
7388.376
7430.962
7477.247
7519.882
7535.594
7567.866
7613.893
7657.378
7665.106
7712.296
7758.117
7801.389
7801.389
7826.418
7851.447
7900.857
7900.857
7965.340
8010.916
8021.543
8061.260
8112.190
8112.190
8170.696
8217.843
8217.843
Vessel B
kgal
6872.979
6913.946
6913.946
6960.326
7008.371
7049.552
7049.552
7098.683
7145.650
7156.908
7202.886
7249.096
7253.858
7296.407
7344.173
7388.015
7394.869
7436.970
7482.808
7525.004
7540.687
7572.517
7618.088
7661.282
7668.862
7715.604
7761.055
7803.942
7803.942
7836.342
7836.652
7836.652
7836.652
NR
NR
7836.652
7836.652
NR
NR
7853.309
7899.604
7899.604
Vessel C
kgal
6087.794
6122.979
6122.979
6162.830
6204.150
6239.645
6239.645
6281.918
6322.362
6332.059
6391.641
6411.334
6415.579
6452.052
6493.121
6530.875
6536.912
6573.001
6612.485
6648.888
6662.613
6689.849
6729.132
6766.423
6772.783
6813.090
6815.830
6815.830
6815.830
6815.831
NR
6857.973
6857.973
6913.039
6951.789
6961.023
6994.733
7038.098
7038.098
7089.329
7129.282
7129.282
Vessel D
kgal
6085.656
6120.678
6120.678
6160.377
6201.478
6236.714
6236.714
7098.683
6318.872
6328.497
6367.823
6407.247
6411.543
6447.715
6483.547
6526.007
6532.062
6567.877
6607.015
6643.101
6656.767
6683.665
6722.580
6759.578
6765.839
6805.788
6844.607
6881.211
6881.211
6909.036
6923.572
6965.326
6965.326
7019.942
7058.368
7067.549
7100.799
7143.729
7143.729
7194.476
7234.047
7234.047
Head Loss
Vessel A
psi
NR
NR
2.8
NR
NR
NR
NR
NR
3
NR
3
NR
3
NR
3
3
3
NR
NR
NR
3
NR
3
3
NR
NR
NR
NR
NR
2.8
NR
NR
NR
NR
NR
2.8
2.8
NR
NR
NR
NR
NR
Vessel B
psi
NR
NR
3
NR
NR
NR
NR
NR
3.2
NR
3.2
NR
3
NR
3
3
4
NR
NR
NR
4
NR
3
3
NR
NR
NR
NR
NR
2.8
NR
NR
NR
NR
NR
3
3
NR
NR
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
NR
64
NR
NR
NR
NR
NR
64
NR
64
NR
62
NR
62
66
66
NR
NR
NR
62
NR
64
62
NR
NR
NR
NR
NR
62
NR
NR
NR
NR
NR
62
64
NR
NR
NR
NR
NR
Effluent
psig
NR
NR
60
NR
NR
NR
NR
NR
60
NR
58
NR
52
NR
56
60
62
NR
NR
NR
59
NR
58
60
NR
NR
NR
NR
NR
56
NR
NR
NR
NR
NR
56
58
NR
NR
NR
NR
NR
AP
psi
NA
NA
4
NA
NA
NA
NA
NA
4
NA
6
NA
10
NA
6
6
4
NA
NA
NA
3
NA
6
2
NA
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
6
6
NA
NA
NA
NA
NA
Head Loss
Vessel C
psi
NR
NR
2.6
NR
NR
NR
NR
NR
2.8
NR
2.8
NR
3
NR
3
3
3
NR
NR
NR
3
NR
3
3
NR
NR
NR
NR
NR
2.8
NR
NR
NR
NR
NR
2.8
2.8
NR
NR
NR
NR
NR
Vessel D
psi
NR
NR
2
NR
NR
NR
NR
NR
2
NR
2.6
NR
2.8
NR
2.8
2.8
2.8
NR
NR
NR
3
NR
2.4
2.5
NR
NR
NR
NR
NR
1.8
NR
NR
NR
NR
NR
3
2.6
NR
NR
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
NR
64
NR
NR
NR
NR
NR
64
NR
64
NR
62
NR
62
66
62
NR
NR
NR
61
NR
64
63
NR
NR
NR
NR
NR
62
NR
NR
NR
NR
NR
62
64
NR
NR
NR
NR
NR
Effluent
psig
NR
NR
60
NR
NR
NR
NR
NR
60
NR
58
NR
56
NR
56
60
56
NR
NR
NR
58
NR
58
60
NR
NR
NR
NR
NR
56
NR
NR
NR
NR
NR
58
58
NR
NR
NR
NR
NR
AP
psi
NA
NA
4
NA
NA
NA
NA
NA
4
NA
6
NA
6
NA
6
6
6
NA
NA
NA
3
NA
6
3
NA
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
4
6
NA
NA
NA
NA
NA
                                                 A-5

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
31
32
33
34
35
36
Date
12/06/04
12/07/04
12/08/04
12/09/04
12/10/04
12/11/04
12/12/04
12/13/04
12/14/04
12/15/04
12/16/04
12/17/04
12/18/04
12/19/04
12/20/04
12/21/04
12/22/04
12/23/04
12/24/04
12/25/04
12/26/04
12/27/04
12/28/04
12/29/04
12/30/04
12/31/04
01/01/05
01/02/05
01/03/05
01/04/05
01/05/05
01/06/05
01/07/05
01/08/05
01/09/05
01/10/05
01/11/05
01/12/05
01/13/05
01/14/05
01/15/05
01/16/05
Operation Master Flow
Hours Meter
hr
5.5
5.2
0.2
5.1
5.1
0
5.3
4.8
0
5.3
5.1
0.4
5.4
5.1
4.9
4.1
0.4
5.5
5.6
5.2
4.9
4.7
4.5
4.7
1.5
3.5
5.3
5.1
4.8
4.9
0.2
5.5
5.2
4.7
4.6
4.6
0.2
5.3
5.2
4.9
2
5.3
gal
89463200
89655400
89664300
89856400
90042400
90042400
90242800
90421300
90421300
90621100
90812000
90828800
91016900
91207800
91390900
91551500
91566000
91774500
91981300
92174800
92357500
9253300
92703500
92879800
92935100
93068100
93269600
93461300
93642000
93812200
93819900
94018600
94213200
94396100
94567600
94737700
94740100
94937500
95132600
95318700
95394000
95593500
Vessel Flow Totalizer
Vessel A
kgal
8269.609
8318.061
8320.288
8368.719
8415.567
8415.567
8466.210
8510.989
8510.989
8561.237
8609.399
8613.690
8661.082
8709.139
8755.308
8795.739
8799.445
8851.942
8903.985
8952.654
8998.543
9042.716
9085.608
9129.988
9143.844
9177.382
9228.083
9276.352
9321.919
9364.789
9366.707
9416.746
9465.808
9511.811
9554.958
9597.834
9598.585
9648.101
9697.174
9744.010
9762.570
9812.741
Vessel B
kgal
7950.531
7998.236
8000.434
8048.107
8094.164
8094.164
8143.873
8188.052
8188.052
8237.540
8284.817
8289.081
8335.549
8382.770
8428.066
8467.808
8471.390
8523.004
8574.263
8622.188
8667.459
8710.929
8753.194
8796.843
8809.942
8841.874
8891.926
8939.433
8984.277
9026.570
9028.468
9077.958
9126.060
9171.439
9213.934
9256.100
9256.840
9305.736
9354.127
9400.288
9418.653
9468.082
Vessel C
kgal
7173.267
7214.423
7216.320
7258.493
7297.320
7297.320
7340.225
7378.504
7378.504
7421.354
7462.349
7466.174
7506.408
7547.479
7586.845
7621.504
7624.547
7669.450
7714.019
7755.104
7795.635
7832.854
7869.654
7907.736
7919.788
7948.366
7991.638
8032.982
8071.950
8108.710
8110.364
8153.346
8195.365
8234.793
8271.785
8308.443
8309.086
8351.480
8393.524
8433.552
8450.041
8492.882
Vessel D
kgal
7277.566
7318.351
7320.234
7360.848
7400.319
7400.319
7442.859
7480.590
7480.590
7522.794
7563.102
7566.908
7606.419
7646.742
7685.432
7719.523
7722.462
7766.504
7810.180
7851.163
7889.767
7926.791
7962.752
7999.875
8011.705
8039.603
8082.007
8122.404
8160.583
8196.447
8198.054
8239.865
8280.795
8319.191
8355.189
8390.964
8391.590
8432.919
8473.819
8512.834
8529.149
8571.195
Head Loss
Vessel A
psi
NR
2.6
NR
NR
NR
NR
NR
NR
2.8
NR
NR
2.8
NR
NR
NR
2.8
NR
NR
NR
NR
NR
NR
2.8
NR
2.8
NR
NR
NR
NR
2.8
2.8
NR
NR
NR
NR
2.8
2.8
NR
NR
2.2
NR
NR
Vessel B
psi
NR
2.6
NR
NR
NR
NR
NR
NR
5
NR
NR
3.2
NR
NR
NR
3.2
NR
NR
NR
NR
NR
NR
3.6
NR
3.6
NR
NR
NR
NR
3
2.8
NR
NR
NR
NR
3
2.8
NR
NR
2.6
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
66
NR
NR
NR
NR
NR
NR
62
NR
NR
62
NR
NR
NR
66
NR
NR
NR
NR
NR
NR
68
NR
64
NR
NR
NR
NR
66
66
NR
NR
NR
NR
64
64
NR
NR
68
NR
NR
Effluent
psig
NR
60
NR
NR
NR
NR
NR
NR
56
NR
NR
56
NR
NR
NR
62
NR
NR
NR
NR
NR
NR
61
NR
58
NR
NR
NR
NR
60
60
NR
NR
NR
NR
58
58
NR
NR
64
NR
NR
AP
psi
NA
6
NA
NA
NA
NA
NA
NA
6
NA
NA
6
NA
NA
NA
4
NA
NA
NA
NA
NA
NA
7
NA
6
NA
NA
NA
NA
6
6
NA
NA
NA
NA
6
6
NA
NA
4
NA
NA
Head Loss
Vessel C
psi
NR
3
NR
NR
NR
NR
NR
NR
3
NR
NR
3
NR
NR
NR
3.2
NR
NR
NR
NR
NR
NR
3
NR
3.4
NR
NR
NR
NR
3.2
3.4
NR
NR
NR
NR
3
3
NR
NR
3
NR
NR
Vessel D
psi
NR
3
NR
NR
NR
NR
NR
NR
4.2
NR
NR
4.2
NR
NR
NR
4
NR
NR
NR
NR
NR
NR
4
NR
4
NR
NR
NR
NR
4
4
NR
NR
NR
NR
3.5
4
NR
NR
1.4
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
66
NR
NR
NR
NR
NR
NR
62
NR
NR
62
NR
NR
NR
66
NR
NR
NR
NR
NR
NR
68
NR
62
NR
NR
NR
NR
66
66
NR
NR
NR
NR
64
64
NR
NR
68
NR
NR
Effluent
psig
NR
60
NR
NR
NR
NR
NR
NR
56
NR
NR
56
NR
NR
NR
62
NR
NR
NR
NR
NR
NR
61
NR
58
NR
NR
NR
NR
60
60
NR
NR
NR
NR
58
58
NR
NR
64
NR
NR
AP
psi
NA
6
NA
NA
NA
NA
NA
NA
6
NA
NA
6
NA
NA
NA
4
NA
NA
NA
NA
NA
NA
7
NA
4
NA
NA
NA
NA
6
6
NA
NA
NA
NA
6
6
NA
NA
4
NA
NA
                                                 A-6

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
37
38
39
40
41
42
Date
01/17/05
01/18/05
01/19/05
01/20/05
01/21/05
01/22/05
01/23/05
01/24/05
01/25/05
01/26/05
01/27/05
01/28/05
01/29/05
01/30/05
01/31/05
02/01/05
02/02/05
02/03/05
02/04/05
02/05/05
02/06/05
02/07/05
02/08/05
02/09/05
02/1 0/05
02/11/05
02/12/05
02/1 3/05
02/14/05
02/1 5/05
02/16/05
02/1 7/05
02/1 8/05
02/1 9/05
02/20/05
02/21/05
02/22/05
02/23/05
02/24/05
02/25/05
02/26/05
02/27/05
Operation Master Flow
Hours Meter
hr
5.3
4.7
3.2
2.4
5.1
5.4
5.3
5.1
5
4.7
4.5
4.3
4.6
4.6
4.8
6.8
5.3
4.1
4.4
4.4
4.4
4.4
4.5
4.4
0.4
5.1
5.1
5
4.9
4.8
2.9
2.6
5.1
5.2
5
4.8
4.4
1.9
4.9
4.9
5
5
gal
95781600
95970300
96091600
96179300
96372500
96571000
96769800
96962500
97147300
97324300
97493200
97655300
972828700
98002100
98175000
98428600
98630400
98786200
98945000
99104700
99271300
99435800
99598700
99763400
99778800
99968600
158200
345600
529500
700900
810400
907800
1096900
1287500
1475800
1651800
1818500
1892500
2077400
2262600
2450700
2637800
Vessel Flow Totalizer
Vessel A
kgal
9812.842
9857.727
9888.120
9910.160
9958.594
10008.332
10058.241
10106.528
10152.861
10197.139
10239.302
10279.759
10323.092
10366.424
10409.683
10473.152
10523.528
10562.438
10602.359
10642.726
10684.630
10726.010
10766.990
10808.458
10812.317
10860.014
10907.673
10954.743
11001.041
11044.163
11071.972
11106.768
11143.826
11191.742
11239.123
11283.478
11325.369
11343.653
11390.299
11436.935
11483.973
11530.796
Vessel B
kgal
9517.206
9561.459
9591.513
9613.202
9961.065
9710.234
9759.463
9807.209
9852.927
9896.731
9938.612
9978.747
10021.739
10064.675
10107.550
10170.502
10220.540
10259.219
10298.937
10339.105
10380.843
10422.020
10462.801
10504.166
10507.947
10555.761
10603.271
10650.289
10696.449
10739.569
10767.393
10802.074
10838.925
10886.692
10886.896
10886.896
10886.896
10905.076
10951.225
10997.345
11043.946
11090.306
Vessel C
kgal
8535.499
8573.895
8600.087
8618.742
8660.268
8702.818
8745.608
8787.023
8826.724
8864.748
8901.044
8935.884
8973.206
9010.516
9047.714
9102.251
9145.673
9179.257
9213.759
9248.634
9284.864
9320.552
9355.958
9392.008
9395.172
9436.405
9477.506
9518.095
9557.971
9595.058
9619.246
9649.046
9680.760
9722.036
9762.659
9800.640
9836.689
9853.044
9893.142
9933.340
9973.976
10014.424
Vessel D
kgal
8612.972
8650.656
8676.473
8694.783
8735.523
8777.402
8819.293
8859.927
8898.903
8936.239
8971.930
9006.124
9042.673
9079.207
9115.752
9169.456
9212.143
9245.072
9278.946
9313.202
9348.679
9383.699
9418.370
9453.765
9456.773
9497.211
9537.562
9577.457
9616.619
9653.115
9676.915
9706.193
9737.317
9777.824
9817.807
9855.165
9890.526
9906.581
9945.926
9985.213
10024.885
10064.435
Head Loss
Vessel A
psi
NR
NR
2.8
NR
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
NR
2.8
NR
NR
NR
NR
NR
NR
3
2.8
NR
NR
NR
NR
NR
3
3
3
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
Vessel B
psi
NR
NR
3.8
NR
NR
NR
NR
NR
3.2
NR
NR
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
NR
3
3
NR
NR
NR
NR
NR
3.2
3
3
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
NR
64
NR
NR
NR
NR
NR
66
NR
NR
NR
NR
NR
NR
66
NR
NR
NR
NR
NR
NR
66
66
NR
NR
NR
NR
NR
66
63
62
NR
NR
NR
NR
66
NR
NR
NR
NR
NR
Effluent
psig
NR
NR
58
NR
NR
NR
NR
NR
60
NR
NR
NR
NR
NR
NR
58
NR
NR
NR
NR
NR
NR
59
62
NR
NR
NR
NR
NR
60
60
56
NR
NR
NR
NR
61
NR
NR
NR
NR
NR
AP
psi
NA
NA
6
NA
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
NA
8
NA
NA
NA
NA
NA
NA
7
4
NA
NA
NA
NA
NA
6
3
6
NA
NA
NA
NA
5
NA
NA
NA
NA
NA
Head Loss
Vessel C
psi
NR
NR
3
NR
NR
NR
NR
NR
3.2
NR
NR
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
NR
3.2
3.2
NR
NR
NR
NR
NR
3
3
3.5
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
Vessel D
psi
NR
NR
2
NR
NR
NR
NR
NR
2
NR
NR
NR
NR
NR
NR
2.4
NR
NR
NR
NR
NR
NR
2.2
2.4
NR
NR
NR
NR
NR
2.2
2.5
2.5
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
NR
64
NR
NR
NR
NR
NR
66
NR
NR
NR
NR
NR
NR
66
NR
NR
NR
NR
NR
NR
66
66
NR
NR
NR
NR
NR
66
64
62
NR
NR
NR
NR
66
NR
NR
NR
NR
NR
Effluent
psig
NR
NR
58
NR
NR
NR
NR
NR
60
NR
NR
NR
NR
NR
NR
58
NR
NR
NR
NR
NR
NR
59
62
NR
NR
NR
NR
NR
60
60
58
NR
NR
NR
NR
61
NR
NR
NR
NR
NR
AP
psi
NA
NA
6
NA
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
NA
8
NA
NA
NA
NA
NA
NA
7
4
NA
NA
NA
NA
NA
6
4
4
NA
NA
NA
NA
5
NA
NA
NA
NA
NA
                                                 A-7

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
43
44
45
46
47
48
Date
02/28/05
03/01/05
03/02/05
03/03/05
03/04/05
03/05/05
03/06/05
03/07/05
03/08/05
03/09/05
03/1 0/05
03/11/05
03/12/05
03/1 3/05
03/14/05
03/1 5/05
03/16/05
03/1 7/05
03/1 8/05
03/1 9/05
03/20/05
03/21/05
03/22/05
03/23/05
03/24/05
03/25/05
03/26/05
03/27/05
03/28/05
03/29/05
03/30/05
03/31/05
04/01/05
04/02/05
04/03/05
04/04/05
04/05/05
04/06/05
04/07/05
04/08/05
04/09/05
04/1 0/05
Operation Master Flow
Hours Meter
hr
4.7
4.9
4.5
1.2
3.9
5.2
5.2
5.1
5
3.6
1.4
5.1
5.1
4.9
4.7
4.9
1.3
4.2
5.3
5.3
5
4.8
4.7
3.4
2
5.3
5.2
5.2
5
4.7
0.5
5.2
4.7
3.9
5.1
2
5.3
5
2.7
2.7
6.2
4.2
gal
2815100
2983600
3152400
3198400
3344700
3539400
3732200
3925100
4110100
4246900
4300600
4494200
4688700
4874800
5051300
5221200
5273500
5432900
5627400
5824900
6020500
6192600
6366500
6495800
6570400
6772400
6970200
7168000
7343400
7521500
7540500
7735700
7928500
8063900
8109000
8316400
8517200
8706500
8811200
8905900
9141000
9296200
Vessel Flow Totalizer
Vessel A
kgal
11575.122
11617.267
11659.436
11671.362
11707.430
11756.064
11804.192
11852.332
11898.496
11932.582
11946.047
11994.362
12042.903
12089.381
12133.470
12175.965
12189.026
12228.945
12277.637
12278.874
12327.809
12370.917
12414.481
12446.854
12465.570
12516.108
12565.517
12614.902
12658.740
12703.220
12707.966
12756.852
12805.103
12839.437
12850.261
12902.170
12952.356
12999.763
13026.401
13049.591
13108.147
13147.002
Vessel B
kgal
11134.243
11176.045
11217.891
11229.791
11265.613
11313.835
11361.687
11409.548
11455.453
11489.353
11502.655
11550.647
11598.813
11644.908
11688.710
11730.759
11743.704
11783.143
11831.297
11880.281
11928.659
11971.270
12014.432
12046.491
12064.956
12114.931
12163.887
12212.035
12256.199
12300.279
12304.975
12353.356
12401.184
12435.233
12445.904
12497.267
12547.120
12594.114
12620.614
12643.570
12701.366
12739.597
Vessel C
kgal
10052.714
10089.148
10125.564
10136.050
10167.149
10209.181
10250.864
10292.472
10332.393
10362.052
10373.506
10415.203
10457.155
10497.307
10535.401
10572.049
10583.447
10617.693
10659.660
10702.410
10744.591
10781.727
10819.324
10847.318
10863.277
10906.834
10949.455
10992.128
11030.017
11068.467
11072.572
11114.763
11156.366
11186.155
11195.317
11240.126
11283.518
11324.482
11347.677
11367.593
11418.429
11451.814
Vessel D
kgal
10101.928
10137.451
10173.077
10183.360
10213.646
10254.722
10295.402
10336.204
10375.303
10404.405
10415.626
10456.660
10497.908
10537.357
10574.762
10610.655
10621.880
10655.411
10696.521
10738.282
10779.642
10816.023
10852.773
10880.216
10895.804
10938.398
10980.080
11021.291
11058.706
11096.315
11100.328
11141.704
11182.545
11211.753
11220.696
11264.612
11307.032
11347.071
11369.756
11389.117
11439.254
11472.227
Head Loss
Vessel A
psi
NR
NR
NR
2.8
2.8
NR
NR
3
3
3
NR
NR
NR
NR
NR
2.6
2.6
NR
NR
NR
NR
NR
2.8
2.8
NR
NR
NR
NR
NR
2.8
NR
NR
NR
2.8
NR
NR
2.8
NR
2.8
3
NR
NR
Vessel B
psi
NR
NR
NR
3
2.8
NR
NR
3.2
4.8
2.8
NR
NR
NR
NR
NR
2.8
2.8
NR
NR
NR
NR
NR
4.6
3
NR
NR
NR
NR
NR
3
NR
NR
NR
3
NR
NR
3
NR
3
3
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
NR
NR
62
61
NR
NR
66
66
66
NR
NR
NR
NR
NR
67
64
NR
NR
NR
NR
NR
66
64
NR
NR
NR
NR
NR
68
NR
NR
NR
66
NR
NR
66
NR
66
62
NR
NR
Effluent
psig
NR
NR
NR
56
56
NR
NR
59
59
60
NR
NR
NR
NR
NR
61
56
NR
NR
NR
NR
NR
60
60
NR
NR
NR
NR
NR
62
NR
NR
NR
60
NR
NR
59
NR
58
57
NR
NR
AP
psi
NA
NA
NA
6
5
NA
NA
7
7
6
NA
NA
NA
NA
NA
6
8
NA
NA
NA
NA
NA
6
4
NA
NA
NA
NA
NA
6
NA
NA
NA
6
NA
NA
NA
NA
8
5
NA
NA
Head Loss
Vessel C
psi
NR
NR
NR
3
3
NR
NR
3.2
3.2
3.2
NR
NR
NR
NR
NR
3
3
NR
NR
NR
NR
NR
3.4
3
NR
NR
NR
NR
NR
3.2
NR
NR
NR
3
NR
NR
3.2
NR
3
3
NR
NR
Vessel D
psi
NR
NR
NR
2.6
2.6
NR
NR
2.4
2.4
2.4
NR
NR
NR
NR
NR
2
2.2
NR
NR
NR
NR
NR
2.2
2.2
NR
NR
NR
NR
NR
2.4
NR
NR
NR
2
NR
NR
2.2
NR
2.2
2.6
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
NR
NR
62
61
NR
NR
66
66
66
NR
NR
NR
NR
NR
67
62
NR
NR
NR
NR
NR
66
64
NR
NR
NR
NR
NR
68
NR
NR
NR
66
NR
NR
66
NR
64
62
NR
NR
Effluent
psig
NR
NR
NR
58
56
NR
NR
59
59
60
NR
NR
NR
NR
NR
61
58
NR
NR
NR
NR
NR
60
60
NR
NR
NR
NR
NR
62
NR
NR
NR
60
NR
NR
59
NR
59
57
NR
NR
AP
psi
NA
NA
NA
4
5
NA
NA
7
7
6
NA
NA
NA
NA
NA
6
4
NA
NA
NA
NA
NA
6
4
NA
NA
NA
NA
NA
6
NA
NA
NA
6
NA
NA
7
NA
5
5
NA
NA
                                                 A-8

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
49
50
51
52
53
54
Date
04/11/05
04/12/05
04/1 3/05
04/14/05
04/1 5/05
04/16/05
04/1 7/05
04/1 8/05
04/1 9/05
04/20/05
04/21/05
04/22/05
04/23/05
04/24/05
04/25/05
04/26/05
04/27/05
04/28/05
04/29/05
04/30/05
05/01/05
05/02/05
05/03/05
05/04/05
05/05/05
05/06/05
05/07/05
05/08/05
05/09/05
05/1 0/05
05/11/05
05/12/05
05/1 3/05
05/14/05
05/1 5/05
05/16/05
05/1 7/05
05/1 8/05
05/1 9/05
05/20/05
05/21/05
05/22/05
Operation Master Flow
Hours Meter
hr
5.5
5.3
4.7
1
5.5
4.8
4.6
4.6
2.3
5.1
5.1
4.5
0
5.3
4.9
0.1
5.1
3.6
3.9
0.8
5.5
4.7
3.7
0.4
5.4
5.2
5
3.1
1.8
5.7
6.1
0
5.4
5.2
4
1.3
3.7
5.7
1.4
5.3
5.5
4.5
gal
9505200
9706800
9878400
9918000
10127300
10308900
10483300
10656900
10746000
10850600
11054200
11223500
11223500
11425500
11614100
11614100
11807600
12003000
12153100
12186900
12383300
12560100
12700500
12717300
12918500
13114900
13304300
13421800
13491280
13696000
13925100
13925100
14125200
14317100
14467300
14517400
14654100
14866700
14922600
15118600
15327100
15492700
Vessel Flow Totalizer
Vessel A
kgal
13199.343
13249.753
13292.623
13302.517
13354.774
13400.099
13443.627
13487.031
13509.219
NA
13583.247
13625.518
13625.518
13675.977
13722.100
13723.265
13771.690
13820.615
13858.175
13866.618
13915.750
13959.977
13995.085
13999.291
14049.479
14098.599
14145.863
14175.512
14192.595
14243.950
14301.347
14301.347
14351.481
14400.300
14438.548
14451.711
14485.970
14539.890
14554.089
14604.069
14657.255
14699.594
Vessel B
kgal
12791.167
12840.989
12883.318
12893.089
12944.801
12987.650
13032.730
13075.662
13097.667
NA
13170.852
13212.622
13212.622
13262.526
13308.044
13309.249
13357.207
13405.755
13442.968
13451.267
13499.871
13543.722
13578.464
13582.625
13632.373
13681.055
13728.080
13757.694
13774.650
13825.580
13882.711
13882.711
13932.576
13981.113
14019.139
14032.291
14066.375
14119.725
14133.798
14182.841
14235.015
14276.512
Vessel C
kgal
11496.710
11540.126
11577.006
11585.498
11630.479
11669.499
11706.849
11744.233
11763.529
NA
11827.211
11863.720
11863.720
11907.267
11947.082
11948.247
11989.941
12032.212
12064.851
12072.010
12114.404
12152.702
12183.005
12186.633
12230.124
12272.602
12313.594
12339.639
12354.219
12398.730
12448.344
12448.344
12491.680
12534.101
12567.334
12578.977
12608.539
12655.292
12667.743
12710.794
12756.775
12793.538
Vessel D
kgal
11516.632
11559.476
11595.959
11604.385
11648.858
11687.479
11724.609
11761.551
11780.698
NA
11843.593
11879.645
11879.645
11922.573
11961.784
11962.963
12003.969
12045.573
12077.696
12084.707
12126.453
12164.045
12193.958
12197.558
12240.552
12282.585
12323.144
12348.833
12363.156
12406.998
12456.118
12456.118
12498.903
12540.998
12574.034
12585.630
12614.814
12660.312
12672.395
12713.701
12757.472
12792.018
Head Loss
Vessel A
psi
NR
NR
2.8
NR
NR
NR
NR
NR
2.8
NR
NR
NR
NR
NR
NR
3
NR
NR
2.8
NR
NR
NR
2.6
2.6
NR
NR
NR
3
NR
3
NR
NR
3
NR
NR
3
3.4
3.4
3
3.8
NR
NR
Vessel B
psi
NR
NR
3
NR
NR
NR
NR
NR
2.8
NR
NR
NR
NR
NR
NR
3
NR
NR
2.8
NR
NR
NR
3
3
NR
NR
NR
3
NR
3
NR
NR
3
NR
NR
3
3.4
3.8
3.6
4
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
NR
68
NR
NR
NR
NR
NR
64
NR
NR
NR
NR
NR
NR
62
NR
NR
66
NR
NR
NR
66
63
NR
NR
NR
63
NR
64
NR
NR
64
NR
NR
62
64
66
62
64
NR
NR
Effluent
psig
NR
NR
62
NR
NR
NR
NR
NR
58
NR
NR
NR
NR
NR
NR
56
NR
NR
62
NR
NR
NR
60
58
NR
NR
NR
60
NR
58
NR
NR
52
NR
NR
59
58
62
56
58
NR
NR
AP
psi
NA
NA
6
NA
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
NA
6
NA
NA
4
NA
NA
NA
6
5
NA
NA
NA
3
NA
6
NA
NA
12
NA
NA
3
6
4
6
6
NA
NA
Head Loss
Vessel C
psi
NR
NR
3
NR
NR
NR
NR
NR
3
NR
NR
NR
NR
NR
NR
3
NR
NR
3
NR
NR
NR
3
3
NR
NR
NR
3
NR
3
NR
NR
4
NR
NR
4
3.8
4.2
3.6
4.2
NR
NR
Vessel D
psi
NR
NR
2
NR
NR
NR
NR
NR
2
NR
NR
NR
NR
NR
NR
2
NR
NR
2
NR
NR
NR
2.4
2.4
NR
NR
NR
2.5
NR
2.4
NR
NR
2.4
NR
NR
2
2.8
3.4
3.4
3.4
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
NR
68
NR
NR
NR
NR
NR
64
NR
NR
NR
NR
NR
NR
62
NR
NR
66
NR
NR
NR
66
63
NR
NR
NR
63
NR
64
NR
NR
64
NR
NR
62
64
66
64
64
NR
NR
Effluent
psig
NR
NR
62
NR
NR
NR
NR
NR
60
NR
NR
NR
NR
NR
NR
56
NR
NR
62
NR
NR
NR
60
58
NR
NR
NR
60
NR
58
NR
NR
52
NR
NR
59
58
62
58
58
NR
NR
AP
psi
NA
NA
6
NA
NA
NA
NA
NA
4
NA
NA
NA
NA
NA
NA
6
NA
NA
4
NA
NA
NA
6
5
NA
NA
NA
3
NA
6
NA
NA
12
NA
NA
3
6
4
6
6
NA
NA
                                                 A-9

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
55
56
57
58
59
60
Date
05/23/05
05/24/05
05/25/05
05/26/05
05/27/05
05/28/05
05/29/05
05/30/05
05/31/05
06/01/05
06/02/05
06/03/05
06/04/05
06/05/05
06/06/05
06/07/05
06/08/05
06/09/05
06/1 0/05
06/11/05
06/12/05
06/1 3/05
06/14/05
06/1 5/05
06/16/05
06/1 7/05
06/1 8/05
06/1 9/05
06/20/05
06/21/05
06/22/05
06/23/05
06/24/05
06/25/05
06/26/05
06/27/05
06/28/05
06/29/05
06/30/05
07/01/05
07/02/05
07/03/05
Operation Master Flow
Hours Meter
hr
3.9
2.9
5.5
5.1
0.8
5.9
3.6
3.7
3.4
3.9
3.3
8.2
5.9
6
5.5
5.2
6.1
5.2
5.4
5.7
5.4
5.2
2.8
3
5.5
2.6
NA
5.6
5.4
3.1
5.5
6.0
5.1
5.4
5.3
5.1
6.0
5.6
2.6
6.5
5.7
5.6
gal
15658700
15748100
15956300
16110100
16140400
16332300
16523700
16663800
16787100
16932700
17055300
17358900
17572800
17798100
18004200
18198800
18423900
18617000
18816700
19020800
19232000
19425800
19530700
19641700
19847800
20019100
NA
2011600
20317600
20429700
20641200
20862400
21042400
21247500
21442300
21632800
21853500
22061100
22124500
22341800
22553900
22761400
Vessel Flow Totalizer
Vessel A
kgal
14742.081
14765.503
14817.900
14856.967
14864.292
14912.488
14960.717
14996.336
15026.786
15063.530
15094.348
15170.741
15224.617
15281.445
15333.462
15382.636
15439.687
15488.716
15539.356
15591.333
15645.177
15695.078
15722.082
15750.535
15796.232
15833.596
NA
15854.995
15895.997
15920.983
15968.483
16018.708
16061.286
16101.279
16140.289
16178.672
16223.676
16289.688
16306.598
16378.444
16445.505
16504.439
Vessel B
kgal
14318.077
14340.155
14392.511
14431.569
14438.909
14486.959
14534.872
14570.399
14600.572
14636.875
14667.306
14742.544
14795.522
14851.131
14901.836
14949.970
15005.601
15053.341
15102.725
15153.042
15205.012
15252.252
15278.013
15305.059
15372.794
15430.000
NA
15462.450
15528.073
15564.944
15633.655
15704.623
15763.475
15820.796
15877.099
15932.021
15995.653
16044.324
16056.829
16110.155
16159.985
16201.718
Vessel C
kgal
12830.375
12850.167
12895.609
12929.723
12936.097
12977.707
13019.846
13051.626
13078.186
13110.475
13137.732
13205.514
13253.712
13304.712
13351.365
13395.492
13446.474
13490.391
13535.724
13582.228
13630.461
13674.468
13698.679
13723.697
13765.746
13800.684
NA
13820.829
13862.085
13885.136
13928.943
13974.894
14013.338
14044.975
14074.832
14104.370
14139.315
14167.060
14174.124
14205.981
14236.187
14298.024
Vessel D
kgal
12826.331
12844.685
12889.464
12922.965
12929.213
12969.784
13010.438
13040.905
13066.251
13096.781
13122.402
13185.859
13230.492
13277.259
13319.876
13360.226
13406.409
13446.111
13486.927
13528.732
13571.719
13610.681
13632.238
13654.306
13691.481
13722.086
NA
13739.941
13776.218
13796.184
13834.597
13874.470
13907.988
13965.960
14022.544
14077.033
14139.097
14189.872
14203.068
14257.310
14307.321
14343.059
Head Loss
Vessel A
psi
NR
3
NR
3
3.2
NR
NR
3
2.8
NR
4.8
5
NR
NR
5.6
5.8
NR
NR
NR
NR
NR
NR
7
NR
NR
NR
NR
8
8
NR
NR
NR
NR
NR
NR
NR
NR
NR
5
NR
NR
NR
Vessel B
psi
NR
3
NR
3.2
3.6
NR
NR
4
4
NR
5.2
5.4
NR
NR
6.2
7
NR
NR
NR
NR
NR
NR
9
NR
NR
NR
NR
6
7
NR
NR
NR
NR
NR
NR
NR
NR
NR
8
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
64
NR
66
62
NR
NR
63
66
NR
68
66
NR
NR
70
70
NR
NR
NR
NR
NR
NR
70
NR
NR
NR
NR
66
70
NR
NR
NR
NR
NR
NR
NR
NR
NR
62
NR
NR
NR
Effluent
psig
NR
58
NR
62
56
NR
NR
60
58
NR
59
50
NR
NR
60
62
NR
NR
NR
NR
NR
NR
58
NR
NR
NR
NR
58
58
NR
NR
NR
NR
NR
NR
NR
NR
NR
56
NR
NR
NR
AP
psi
NA
6
NA
4
6
NA
NA
3
8
NA
9
16
NA
NA
10
8
NA
NA
NA
NA
NA
NA
12
NA
NA
NA
NA
8
12
NA
NA
NA
NA
NA
NA
NA
NA
NA
6
NA
NA
NA
Head Loss
Vessel C
psi
NR
3
NR
3.2
3.6
NR
NR
4
4
NR
5.2
5.4
NR
NR
6.2
6.2
NR
NR
NR
NR
NR
NR
8
NR
NR
NR
NR
9
9
NR
NR
NR
NR
NR
NR
NR
NR
NR
9.2
NR
NR
NR
Vessel D
psi
NR
2.2
NR
2.6
3
NR
NR
3
3.2
NR
4
4.2
NR
NR
5.2
5.2
NR
NR
NR
NR
NR
NR
7
NR
NR
NR
NR
8
8
NR
NR
NR
NR
NR
NR
NR
NR
NR
6
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
64
NR
66
62
NR
NR
63
64
NR
68
66
NR
NR
70
70
NR
NR
NR
NR
NR
NR
70
NR
NR
NR
NR
70
68
NR
NR
NR
NR
NR
NR
NR
NR
NR
64
NR
NR
NR
Effluent
psig
NR
58
NR
62
56
NR
NR
60
58
NR
59
50
NR
NR
60
62
NR
NR
NR
NR
NR
NR
60
NR
NR
NR
NR
58
58
NR
NR
NR
NR
NR
NR
NR
NR
NR
56
NR
NR
NR
AP
psi
NA
6
NA
4
6
NA
NA
3
6
NA
9
16
NA
NA
10
8
NA
NA
NA
NA
NA
NA
10
NA
NA
NA
NA
12
10
NA
NA
NA
NA
NA
NA
NA
NA
NA
8
NA
NA
NA
                                                 A-10

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
61
62
63
64
65
66
Date
07/04/05
07/05/05
07/06/05
07/07/05
07/08/05
07/09/05
07/10/05
07/11/05
07/12/05
07/13/05
07/14/05
07/15/05
07/16/05
07/17/05
07/18/05
07/19/05
07/20/05
07/21/05
07/22/05
07/23/05
07/24/05
07/25/05
07/26/05
07/27/05
07/28/05
07/29/05
07/30/05
07/31/05
08/01/05
08/02/05
08/03/05
08/04/05
08/05/05
08/06/05
08/07/05
08/08/05
08/09/05
08/1 0/05
08/11/05
08/12/05
08/1 3/05
08/14/05
Operation Master Flow
Hours Meter
hr
5.2
11.5
0.7
6.8
5.5
5.8
6.2
7.5
8.7
6.9
7.0
7.7
7.4
5.2
4.9
3.4
2.3
6.1
5.9
7.6
6.7
5.1
5.5
0.5
4.7
7.0
2.3
18.0
7.9
7.8
7.9
7.6
2.4
8.4
5.5
6.9
10.2
9.5
6.4
4.9
7.1
4.8
gal
22956300
23153600
23181800
23434300
23638400
23853700
24084100
24352200
24671600
24926600
25181600
25464700
25732000
25922500
26101700
26230100
26314900
26539400
26755000
27034800
27281600
27469400
27673900
27676400
27858700
28115500
28168800
28433700
28717200
29001700
29286700
29564200
29654600
29959500
30162400
30399800
30773400
31107500
31340200
31603300
31780500
31957500
Vessel Flow Totalizer
Vessel A
kgal
16560.004
16616.074
16623.999
16693.925
16745.505
16799.818
16857.742
16925.019
17005.271
17069.075
17132.753
17133.432
17133.432
17133.432
17133.432
17133.432
17133.432
17190.179
17244.601
17313.965
17376.881
17424.699
17462.947
17463.505
17509.898
17574.938
17589.263
17655.318
17726.688
17798.425
17870.209
17940.225
17963.072
18032.002
18070.317
18115.670
18189.967
18257.450
18306.045
18372.364
18417.192
18462.037
Vessel B
kgal
16241.552
16282.203
16288.048
16344.041
16395.970
16451.247
16510.762
16580.433
16663.695
16730.702
16798.055
16873.313
16944.718
16995.658
17043.693
17077.924
17100.421
17160.592
17218.968
17292.476
17356.701
17406.105
17460.340
17460.973
17509.609
17578.771
17594.123
17665.315
17742.766
17821.239
17899.879
17976.991
18002.020
18107.898
18172.860
18249.580
18368.883
18475.466
18548.950
18616.541
18662.906
18709.715
Vessel C
kgal
14346.555
14400.496
14408.120
14474.220
14517.819
14563.973
14613.509
14671.470
14741.265
14797.592
14853.986
14916.898
14976.759
15019.556
15059.941
15088.999
15107.867
15158.530
15207.298
15267.227
15319.280
15359.062
15402.500
15403.111
15441.976
15497.175
15509.800
15565.852
15627.201
15688.765
15750.502
15810.832
15830.519
15891.108
15920.031
15953.467
16008.808
16060.183
16097.663
16152.850
16189.981
16227.269
Vessel D
kgal
14375.683
14408.503
14413.181
14456.090
14498.983
14543.544
14590.631
14644.665
14708.173
14758.152
14807.293
14861.484
14912.137
14947.972
14981.473
15005.893
15021.580
15063.127
15102.152
15159.508
15209.541
15247.012
15287.415
15288.025
15323.686
15373.298
15384.540
15433.585
15486.871
15539.793
15592.063
15642.557
15658.978
15708.502
15764.812
15830.052
15927.202
16010.722
16066.346
16119.242
16154.656
16189.380
Head Loss
Vessel A
psi
NR
6.4
6
NR
NR
NR
NR
NR
5.8
NR
6.2
NR
NR
NR
NR
7
NR
NR
5.8
NR
NR
NR
NR
5
NR
NR
6
NR
NR
6.8
NR
NR
6.8
NR
NR
8.8
NR
NR
9.4/2.8
NR
NR
NR
Vessel B
psi
NR
8.8
7.8
NR
NR
NR
NR
NR
6.2
NR
7
NR
NR
NR
NR
8
NR
NR
4
NR
NR
NR
NR
5
NR
NR
6
NR
NR
6.9
NR
NR
5.8
NR
NR
7
NR
NR
7.8/3
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
70
72
NR
NR
NR
NR
NR
66
NR
68
NR
NR
NR
NR
70
NR
NR
63
NR
NR
NR
NR
64
NR
NR
62
NR
NR
70
NR
NR
66
NR
NR
66
NR
NR
69
NR
NR
NR
Effluent
psig
NR
60
62
NR
NR
NR
NR
NR
56
NR
60
NR
NR
NR
NR
60
NR
NR
58
NR
NR
NR
NR
56
NR
NR
56
NR
NR
60
NR
NR
56
NR
NR
56
NR
NR
59
NR
NR
NR
AP
psi
NA
10
10
NA
NA
NA
NA
NA
10
NA
8
NA
NA
NA
NA
10
NA
NA
5
NA
NA
NA
NA
8
NA
NA
6
NA
NA
10
NA
NA
10
NA
NA
10
NA
NA
10
NA
NA
NA
Head Loss
Vessel C
psi
NR
6
6
NR
NR
NR
NR
NR
5.6
NR
6.2
NR
NR
NR
NR
7
NR
NR
3.6
NR
NR
NR
NR
5
NR
NR
5
NR
NR
8.6
NR
NR
8.2
NR
NR
9
NR
NR
10.5/3
NR
NR
NR
Vessel D
psi
NR
6.2
6
NR
NR
NR
NR
NR
4.6
NR
5
NR
NR
NR
NR
6.4
NR
NR
3.8
NR
NR
NR
NR
5
NR
NR
5
NR
NR
6.2
NR
NR
8.4
NR
NR
6
NR
NR
8/2
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
70
72
NR
NR
NR
NR
NR
66
NR
68
NR
NR
NR
NR
70
NR
NR
63
NR
NR
NR
NR
62
NR
NR
50
NR
NR
70
NR
NR
66
NR
NR
64
NR
NR
69
NR
NR
NR
Effluent
psig
NR
60
62
NR
NR
NR
NR
NR
56
NR
60
NR
NR
NR
NR
60
NR
NR
58
NR
NR
NR
NR
56
NR
NR
55
NR
NR
60
NR
NR
56
NR
NR
56
NR
NR
59
NR
NR
NR
AP
psi
NA
10
10
NA
NA
NA
NA
NA
10
NA
8
NA
NA
NA
NA
10
NA
NA
5
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
10
NA
NA
10
NA
NA
8
NA
NA
10
NA
NA
NA
                                                 A-ll

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
67
68
69
67
68
69
Date
08/1 5/05
08/16/05
08/1 7/05
08/1 8/05
08/1 9/05
08/20/05
08/21/05
08/22/05
08/23/05
08/24/05
08/25/05
08/26/05
08/27/05
08/28/05
08/29/05
08/30/05
08/31/05
09/01/05
09/02/05
09/03/05
09/04/05
09/05/05
09/06/05
09/07/05
09/08/05
09/09/05
09/1 0/05
09/11/05
09/12/05
09/1 3/05
09/14/05
09/1 5/05
09/16/05
09/1 7/05
09/1 8/05
09/1 9/05
09/20/05
09/21/05
09/22/05
09/23/05
09/24/05
09/25/05
Operation Master Flow
Hours Meter
hr
2.5
4.6
4.9
5.0
5.1
5.9
5.4
5.3
5.0
5.0
4.9
5.1
5.6
4.9
4.9
4.8
1.8
6.4
5.5
4.8
4.8
4.8
5.3
5.8
5.6
5.4
5.4
6.0
7.7
NA
15.9
5.5
5.6
4.6
4.7
3.3
2.3
5.4
6.1
5.3
4.1
5.1
gal
32051000
32220700
32401800
32585000
32773300
32970400
33169800
33365900
33548900
33730300
33910500
34095500
34292200
34470600
34646200
34715800
34914300
35121100
3532400
35497900
35673600
35850200
36046300
36260300
36460900
36655300
36851100
37070000
37348400
37673400
37931900
38136100
38343400
38513900
38686900
38794900
38878800
39077800
39300900
39495200
39668600
39822900
Vessel Flow Totalizer
Vessel A
kgal
18485.755
18528.796
18574.839
18621.790
18669.484
18719.891
18770.950
18821.186
18868.128
18914.644
18960.943
19008.584
19059.457
19105.702
19151.254
19169.544
19219.921
19272.026
19322.890
19366.285
19410.070
19453.982
19502.715
19556.012
19606.014
19654.561
19703.658
19758.524
19828.726
19911.910
19976.802
20027.913
20079.746
20122.371
20165.571
20192.598
20213.541
20263.524
20319.675
20368.790
20412.729
20452.415
Vessel B
kgal
18734.491
18779.742
18828.410
18878.389
18929.312
18983.425
19038.361
19092.653
19143.486
19193.995
19244.337
19296.351
19351.704
19402.071
19851.697
19471.590
19522.936
19577.273
19631.379
19678.297
19726.130
19774.580
19828.218
19888.041
19944.112
19998.740
20054.034
20116.044
20195.129
20279.584
20347.588
20401 .437
20457.066
20502.957
20549.667
20579.045
20601.797
20656.030
20717.118
20770.381
20817.890
20861.014
Vessel C
kgal
16247.171
16283.040
16321.376
16360.518
16400.043
16441.830
16484.260
16526.176
16565.371
16604.564
16643.644
16683.641
16726.178
16764.683

16817.225
16858.392
16901.222
16943.418
16979.661
17016.281
17053.171
17094.175
17138.944
17181.158
17222.180
17263.743
17310.340
17369.823
17437.018
17490.328
17532.550
17575.647
17611.258
17647.509
17670.458
17687.969
17730.088
17779.695
17819.525
17856.995
17891.117
Vessel D
kgal
16207.626
16240.102
16274.306
16308.685
16342.871
16378.624
16414.291
16449.051
16481.243
16512.862
16543.908
16575.489
16608.989
16639.005
16668.429
16680.152
16720.614
16761.934
16801.791
16835.486
16869.657
16902.333
16938.846
16978.037
17014.111
17048.535
17082.648
17120.106
17166.979
17229.679
17280.536
17320.046
17359.639
17391.800
17423.967
17444.030
17459.156
17495.146
17535.022
17569.225
17599.375
17626.566
Head Loss
Vessel A
psi
4
5
5
5.3
NR
NR
NR
NR
8
8.2
NR
9
NR
NR
10.6/2.8
NR
0
NR
NR
NR
NR
NR
7
NR
7.5
8.2
NR
NR
9.4/3
NR
4.8
NR
NR
NR
NR
8
NR
NR
8.8
9
6
NR
Vessel B
psi
4.8
5
5
6
NR
NR
NR
NR
9.2
8.8
NR
9.2
NR
NR
12/3
NR
4
NR
NR
NR
NR
NR
6.2
NR
7.5
8.2
NR
NR
9.8/3.2
NR
5
NR
NR
NR
NR
7
NR
NR
9
9.4
4
NR
Unit 1 (Vessels A & B)
Influent
psig
66
66
66
66
NR
NR
NR
NR
68
70
NR
68
NR
NR
70
NR
65
NR
NR
NR
NR
NR
69
NR
69
68
NR
NR
68
NR
65
NR
NR
NR
NR
70
NR
NR
68
69
63
NR
Effluent
psig
59
58
58
56
NR
NR
NR
NR
60
60
NR
58
NR
NR
58
NR
57
NR
NR
NR
NR
NR
60
NR
60
58
NR
NR
56
NR
57
NR
NR
NR
NR
58
NR
NR
58
59
64
NR
AP
psi
7
8
8
10
NA
NA
NA
NA
8
10
NA
10
NA
NA
12
NA
8
NA
NA
NA
NA
NA
9
NA
9
10
NA
NA
12
NA
8
NA
NA
NA
NA
12
NA
NA
10
10
NA
NA
Head Loss
Vessel C
psi
5.5
5.6
6
6
NR
NR
NR
NR
8.8
9
NR
9.4
NR
NR
10.4/3
NR
4
NR
NR
NR
NR
NR
7
NR
8.5
9
NR
NR
10.4/3
NR
5.2
NR
NR
NR
NR
8
NR
NR
9.3
9.4
NR
5
Vessel D
psi
4
4
5
5.5
NR
NR
NR
NR
7.8
8.2
NR
9.2
NR
NR
10/4.1
NR
4
NR
NR
NR
NR
NR
6
NR
6.2
8
NR
NR
9.8/4
NR
4.2
NR
NR
NR
NR
6.2
NR
NR
8.9
9
NR
4.3
Unit 2 (Vessels C & D)
Influent
psig
64
65
65
64
NR
NR
NR
NR
68
70
NR
68
NR
NR
70
NR
65
NR
NR
NR
NR
NR
69
NR
69
68
NR
NR
68
NR
65
NR
NR
NR
NR
68
NR
NR
68
69
NR
72
Effluent
psig
59
58
58
56
NR
NR
NR
NR
60
60
NR
58
NR
NR
58
NR
57
NR
NR
NR
NR
NR
60
NR
60
58
NR
NR
56
NR
57
NR
NR
NR
NR
60
NR
NR
58
59
NR
69
AP
psi
5
7
7
8
NA
NA
NA
NA
8
10
NA
10
NA
NA
12
NA
8
NA
NA
NA
NA
NA
9
NA
9
10
NA
NA
12
NA
8
NA
NA
NA
NA
8
NA
NA
10
10
NA
3
                                                 A-12

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
70
71
72
73
74
75
Date
09/26/05
09/27/05
09/28/05
09/29/05
09/30/05
10/01/05
10/02/05
10/03/05
10/04/05
10/05/05
10/06/05
10/07/05
10/08/05
10/09/05
10/10/05
10/11/05
10/12/05
10/13/05
10/14/05
10/15/05
10/16/05
10/17/05
10/18/05
10/19/05
10/20/05
10/21/05
10/22/05
10/23/05
10/24/05
10/25/05
10/26/05
10/27/05
10/28/05
10/29/05
10/30/05
10/31/05
11/01/05
11/02/05
11/03/05
11/04/05
11/05/05
11/06/05
Operation Master Flow
Hours Meter
hr
0.6
8.1
6.9
5.9
5.3
5.0
4.5
4.8
4.1
1.1
5.7
5.5
8.5
5.4
5.6
5.2
5.3
3.0
4.7
5.7
5.8
5.9
5.8
5.7
4.7
1.1
4.8
5.5
5.3
3.3
2.3
6.1
5.2
4.8
0.0
6.1
5.1
4.9
2.7
4.2
6.8
4.7
gal
39846200
40144200
40391400
40617000
40813300
40996300
41173100
41349300
41500700
41541400
41748900
41950200
42225700
42422600
42625700
42815800
43002600
43100300
43274600
43486300
43701800
43919700
44134500
44341900
44515700
44559100
44728600
44929800
45125100
45245900
45324600
45544800
45738200
45915600
45915600
46127100
46322800
46503400
46604100
46759200
46995700
47171700
Vessel Flow Totalizer
Vessel A
kgal
20457.960
20534.930
20596.381
20652.606
20701.700
20747.509
20791.971
20836.451
20874.928
20885.311
20938.175
20989.691
21060.876
21112.166
21165.183
21215.091
21264.344
21290.985
21334.857
21387.923
21441.729
21496.045
21549.709
21601.788
21645.561
21656.635
21699.571
21751.149
21801.803
21834.015
21854.576
21912.875
21960.793
22004.477
22004.477
22056.129
22103.847
22147.950
22172.056
22211.927
22261.014
22304.067
Vessel B
kgal
20867.021
20945.328
21009.558
21068.681
21120.325
21168.634
21215.558
21262.472
21302.874
21313.816
21369.101
21422.899
21496.437
21548.936
21603.182
21653.765
21703.498
21729.134
21773.589
21828.118
21884.070
21940.871
21997.119
22051 .796
22097.948
22109.463
22154.430
22207.888
22259.767
22291 .969
22312.522
22369.885
22419.635
22465.570
22465.570
22520.525
22571.517
22618.564
22644.741
22684.230
22734.868
22780.154
Vessel C
kgal
17895.393
17957.923
18009.289
18056.355
18097.572
18136.038
18173.438
18210.867
18243.442
18252.176
18296.567
18339.991
18399.650
18442.567
18487.152
18529.078
18570.424
18590.552
18626.719
18670.521
18715.368
18760.957
18806.215
18850.287
18887.350
18896.756
18932.834
18976.250
19018.313
19044.578
19061.089
19106.766
19146.149
19182.212
19182.212
19225.146
19264.942
19301.601
19322.151
19353.550
19394.112
19430.538
Vessel D
kgal
17629.918
17685.713
17734.775
17778.878
17816.788
17851.664
17884.893
17917.559
17945.395
17952.802
17989.844
18025.430
18073.284
18106.911
18141.007
18177.596
18203.223
18220.100
18254.811
18296.525
18338.451
18380.204
18420.824
18459.466
18491.303
18499.338
18529.699
18565.269
18599.190
18620.225
18633.266
18673.026
18712.127
18747.997
18747.997
18790.778
18830.208
18866.477
18886.736
18917.229
18957.077
18992.854
Head Loss
Vessel A
psi
10/3.2
NR
5.4
NR
NR
NR
NR
8
8
8.2
NR
9
NR
NR
NR
NR
10.4/3
3
NR
NR
NR
NR
7.4
NR
7.8
8.2
NR
NR
NR
9.2
10/3.2
NR
5
NR
NR
NR
NR
7
7/3.1
NR
NR
NR
Vessel B
psi
10.5/3.2
NR
5
NR
NR
NR
NR
8.2
8.2
9.2
NR
9.8
NR
NR
NR
NR
12.8/3.2
4
NR
NR
NR
NR
8
NR
8.8
9
NR
NR
NR
11
1 1 .2/3.2
NR
5.4
NR
NR
NR
NR
8.4
8.4/3.3
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
70
NR
66
NR
NR
NR
NR
68
68
66
NR
68
NR
NR
NR
NR
76/68
64
NR
NR
NR
NR
68
NR
70
70
NR
NR
NR
74
72/64
NR
66
NR
NR
NR
NR
68
65
NR
NR
NR
Effluent
psig
56
NR
57
NR
NR
NR
NR
60
60
56
NR
58
NR
NR
NR
NR
60/62
54
NR
NR
NR
NR
58
NR
60
58
NR
NR
NR
60
58/58
NR
59
NR
NR
NR
NR
60
58
NR
NR
NR
AP
psi
14
NA
9
NA
NA
NA
NA
8
8
10
NA
10
NA
NA
NA
NA
16/6
10
NA
NA
NA
NA
10
NA
10
12
NA
NA
NA
14
14/6
NA
7
NA
NA
NA
NA
8
7
NA
NA
NA
Head Loss
Vessel C
psi
10.5/3
NR
5.2
NR
NR
NR
NR
8.2
8.2
9
NR
9.8
NR
NR
NR
NR
13/5.4
3.5
NR
NR
NR
NR
7.4
NR
8.6
9
NR
NR
NR
10
1 1 .4/3
NR
5.2
NR
NR
NR
NR
7.6
7.6/3
NR
NR
NR
Vessel D
psi
10.0/4
NR
4.4
NR
NR
NR
NR
7
7
8
NR
9
NR
NR
NR
NR
12.4/2
2.8
NR
NR
NR
NR
6
NR
7.6
8
NR
NR
NR
9.8
10.2/2
NR
3.2
NR
NR
NR
NR
5.8
6/2
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
70
NR
66
NR
NR
NR
NR
68
68
66
NR
68
NR
NR
NR
NR
76/68
62
NR
NR
NR
NR
68
NR
70
70
NR
NR
NR
72
72/64
NR
66
NR
NR
NR
NR
68
68
NR
NR
NR
Effluent
psig
56
NR
57
NR
NR
NR
NR
60
60
56
NR
58
NR
NR
NR
NR
60/62
58
NR
NR
NR
NR
58
NR
60
58
NR
NR
NR
60
58/58
NR
59
NR
NR
NR
NR
60
59
NR
NR
NR
AP
psi
14
NA
9
NA
NA
NA
NA
8
8
10
NA
10
NA
NA
NA
NA
16/6
4
NA
NA
NA
NA
10
NA
10
12
NA
NA
NA
12
14/6
NA
7
NA
NA
NA
NA
8
9
NA
NA
NA
                                                 A-13

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
76
84
85
86
87
88
Date
11/07/05
11/08/05
11/09/05
Operation Master Flow
Hours Meter
hr
2.5
3.5
NA
gal
47267400
47397900
NR
Vessel Flow Totalizer
Vessel A
kgal
22327.368
22359.366
NR
Vessel B
kgal
22804.742
22837.368
NR
Vessel C
kgal
19458.784
19478.110
NR
Vessel D
kgal
19012.482
19038.762
NR
Head Loss
Vessel A
psi
5
NR
NR
Vessel B
psi
6
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
68
NR
NR
Effluent
psig
60
NR
NR
AP
psi
8
NA
NA
Head Loss
Vessel C
psi
5
NR
NR
Vessel D
psi
3.2
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
66
NR
NR
Effluent
psig
60
NR
NR
AP
psi
6
NA
NA
System Down for Well Maintenance 11/10/05 - 12/11/05
12/12/05
12/13/05
12/14/05
12/15/05
12/16/05
12/17/05
12/18/05
12/19/05
12/20/05
12/21/05
12/22/05
12/23/05
12/24/05
12/25/05
12/26/05
12/27/05
12/28/05
12/29/05
12/30/05
12/31/05
01/01/06
01/02/06
01/03/06
01/04/06
01/05/06
01/06/06
01/07/06
01/08/06
01/09/06
01/10/06
01/11/06
01/12/06
01/13/06
01/14/06
01/15/06
NA
0.2
5.2
5.0
5.0
3.9
0.7
5.3
6.3
4.7
4.8
0.6
5.5
5.5
5.0
5.0
4.8
0.2
5.2
5.5
4.9
3.3
1.7
5.4
6.7
4.8
1.4
3.7
5.8
5.6
4.9
4.9
1.1
4.3
5.6
47539400
47542500
47736500
47926600
48110400
48258300
48225000
48479400
48712200
48886800
49059900
49090200
49291500
49497440
49685300
49863600
49986800
50048300
50249200
50445100
50627100
50748200
50809100
51007400
51259900
51435500
51490100
51630100
51840500
52048800
52230800
52414100
52457600
52613700
52818300
22377.200
22377.721
22378.473
22424.023
22424.344
22459.836
22466.198
22511.589
22565.388
22605.207
22644.420
22651.304
22700.641
22750.118
22794.705
22836.503
22865.304
22879.637
22926.154
22971.433
23013.618
23042.366
23056.244
23103.306
23165.704
23207.354
23220.643
23252.947
23301.625
23349.572
23391.554
23434.289
23444.677
23481.160
23529.922
22838.166
22838.648
22888.327
22904.390
22904.390
22943.286
22950.172
22999.782
23060.099
23105.724
23151.499
23159.555
23211.713
23265.304
23314.392
23361.087
23393.420
23409.532
23462.333
23513.772
23561.432
23593.595
23609.155
23660.631
23726.038
23771.740
23786.504
23822.750
23872.985
23932.684
23980.145
24027.860
24039.219
24079.499
24131.954
19493.934
19494.190
19534.447
19574.203
19613.290
19645.013
19650.674
19691.707
19741.932
19779.827
19817.507
19824.248
19866.522
19909.370
19949.066
19987.215
20013.997
20027.232
20071.539
20115.065
20155.726
20183.248
20196.317
20240.572
20293.318
20330.284
20342.342
20371.696
20416.938
20461.805
20501.368
20541.460
20551.177
20585.289
20629.646
19054.396
19054.601
19094.844
19134.871
19173.917
19205.526
19211.167
19251.542
19300.446
19337.066
19373.259
19379.718
19419.786
19461.873
19499.947
19535.777
19560.590
19572.666
19612.609
19651.403
19687.083
19711.122
19722.448
19760.605
19810.323
19845.890
19857.408
19885.751
19927.262
19968.658
20004.549
20040.351
20049.005
20079.075
20118.143
NA
NR
NR
NR
NR
NA
NA
NA
NR
NR
NA
NA
NR
NR
NR
NA
NA
NA
NR
NR
NR
NA
NR
NA
NR
NA
NA
NR
NA
NR
NA
NR
NA
NR
NR
4.4
NR
NR
NR
NR
7
9
9.4
NR
NR
12.2
12/3.8
NR
NR
NR
6.8
6.8
8.2
NR
NR
NR
11
NR
12.2/13.8
NR
5.8
6
NR
8.6
NR
9.2
NR
10
NR
NR
66
NR
NR
NR
NR
70
70
68
NR
NR
74
76
NR
NR
NR
69
69
69
NR
NR
NR
71
NR
72
NR
68
66
NR
68
NR
70
NR
70
NR
NR
61
NR
NR
NR
NR
61
55
58
NR
NR
60
56
NR
NR
NR
59
60
58
NR
NR
NR
60
NR
58
NR
58
58
NR
58
NR
60
NR
58
NR
NR
5
NA
NA
NA
NA
9
15
10
NA
NA
14
20
NA
NA
NA
10
9
11
NA
NA
NA
11
NA
14
NA
10
8
NA
10
NA
10
NA
12
NA
NA
4.2
NR
NR
NR
NR
6
8
8.2
NR
NR
11
11/3.2
NR
NR
NR
6.6
7
7.6
NR
NR
NR
10
NR
1 1 .2/3.2
NR
5.4
6
NR
7
NR
8.8
NR
9.3
NR
NR
3
NR
NR
NR
NR
5
6
6.4
NR
NR
9
9/2
NR
NR
NR
5.2
6.8
6
NR
NR
NR
9
NR
9.8/2
NR
4.4
4.4
NR
5.8
NR
7
NR
8
NR
NR
66
NR
NR
NR
NR
70
70
68
NR
NR
74
76
NR
NR
NR
69
69
69
NR
NR
NR
70
NR
72
NR
68
66
NR
68
NR
70
NR
68
NR
NR
61
NR
NR
NR
NR
61
59
58
NR
NR
60
58
NR
NR
NR
59
60
58
NR
NR
NR
60
NR
58
NR
58
58
NR
58
NR
60
NR
58
NR
NR
5
NA
NA
NA
NA
9
11
10
NA
NA
14
18
NA
NA
NA
10
9
11
NA
NA
NA
10
NA
14
NA
10
8
NA
10
NA
10
NA
10
NA
NA
                                                 A-14

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
89
90
91
92
93
94
Date
01/16/06
01/17/06
01/18/06
01/19/06
01/20/06
01/21/06
01/22/06
01/23/06
01/24/06
01/25/06
01/26/06
01/27/06
01/28/06
01/29/06
01/30/06
01/31/06
02/01/06
02/02/06
02/03/06
02/04/06
02/05/06
02/06/06
02/07/06
02/08/06
02/09/06
02/1 0/06
02/11/06
02/12/06
02/1 3/06
02/14/06
02/1 5/06
02/16/06
02/1 7/06
02/1 8/06
02/1 9/06
02/20/06
02/21/06
02/22/06
02/23/06
02/24/06
02/25/06
02/26/06
Operation Master Flow
Hours Meter
hr
5.4
5.0
2.2
3.8
5.4
4.8
1.8
5.5
5.3
5.1
5.1
0.2
5.4
5.6
5.1
4.7
0.2
6.0
5.3
5.0
2.0
3.3
4.9
1.5
3.6
5.2
4.7
3.9
1.6
5.4
1.0
5.0
5.2
3.2
1.7
5.6
5.2
4.6
2.2
3.0
5.4
5.0
gal
53018600
53202300
53284300
53424400
53625700
53807000
53873900
54082400
54284100
54472300
54659800
5466800
54869400
55078500
55269400
55444300
55456300
55676500
55878100
56053200
56132100
56256800
56443400
5650200
56639200
56833100
57010600
57160800
57219600
57415000
57454300
57640700
57834900
57958600
58022700
58232500
58425100
58598100
58684900
58794700
58995100
59182000
Vessel Flow Totalizer
Vessel A
kgal
23578.430
23624.128
23645.576
23680.324
23731.783
23777.643
23793.172
23842.207
23888.946
23932.500
23974.952
23976.840
24022.455
24069.760
24112.987
24152.835
24155.636
24209.660
24257.006
24297.463
24315.765
24343.916
24386.097
24399.630
24430.093
24473.345
24513.010
24547.009
24559.746
24604.036
24613.252
24658.560
24704.460
24733.629
24748.153
24796.322
24840.046
24879.169
24898.847
24923.063
24967.808
25009.422
Vessel B
kgal
24182.713
24228.678
24249.577
24283.680
24333.341
24380.243
24397.011
24450.921
24503.391
24552.440
24601 .365
24603.520
24656.002
24710.511
24760.228
24805.594
24808.684
24864.826
24916.664
24961.991
24982.785
25014.955
25063.580
25079.268
25114.789
25165.720
25212.363
25252.134
25267.127
25317.856
25328.002
25375.503
25425.605
25458.100
25474.426
25529.168
25579.616
25624.814
25647.731
25676.170
25728.620
25777.475
Vessel C
kgal
20673.082
20712.905
20731.205
20760.979
20804.765
20842.698
20855.944
20899.222
20941.740
20981.840
21022.296
21024.173
21067.601
21113.312
21155.299
21193.770
21196.511
21242.253
21283.567
21320.216
21337.196
21363.179
21402.882
21415.842
21444.983
21487.235
21526.154
21559.760
21572.349
21615.327
21624.024
21663.477
21703.100
21729.120
21741.939
21785.840
21826.000
21863.690
21882.634
21906.030
21949.595
21990.630
Vessel D
kgal
20155.793
20189.110
20205.317
20230.236
20266.521
20301.183
20313.921
20355.092
20394.572
20431.225
20467.780
20469.360
20508.168
20548.385
20584.843
20617.990
20620.586
20661.604
20701.800
20736.541
20752.425
20776.733
20813.259
20825.107
20851.390
20888.900
20922.891
20952.014
20962.781
20999.507
21006.932
21040.856
21078.945
21103.539
21115.521
21156.325
21193.865
21227.618
21244.719
21265.576
21304.010
21339.716
Head Loss
Vessel A
psi
NA
NR
NA
NR
NA
NA
NA
NA
NR
NA
NA
NA
NR
NR
NR
NA
NA
NR
NA
NR
NA
NR
NR
NA
NR
NA
NR
NA
NA
NA
NA
NR
NA
NA
NR
NR
NR
NA
NA
NR
NR
NR
Vessel B
psi
10
NR
11
NR
12/4.8
4
5
5.4
NR
7.2
8
8.3
NR
NR
NR
11
12/3.8
NR
5.2
NR
6
NR
NR
8
NR
9.6
NR
10.1
11
11.8
11.8/2.6
NR
5
5
NR
NR
NR
8.8
9
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
68
NR
57
NR
72
69
64
65
NR
68
72
66
NR
NR
NR
74
72
NR
68
NR
66
NR
NR
68
NR
70
NR
70
70
72
70
NR
68
70
NR
NR
NR
70
70
NR
NR
NR
Effluent
psig
58
NR
70
NR
58
60
59
56
NR
58
62
56
NR
NR
NR
62
56
NR
59
NR
58
NR
NR
58
NR
58
NR
60
58
58
58
NR
58
60
NR
NR
NR
59
59
NR
NR
NR
AP
psi
10
NA
NA
NA
14
9
5
9
NA
10
10
10
NA
NA
NA
12
16
NA
9
NA
8
NA
NA
10
NA
12
NA
10
12
14
12
NA
10
10
NA
NA
NA
11
11
NA
NA
NA
Head Loss
Vessel C
psi
8.8
NR
9.2
NR
11/3.2
3.5
4
5.6
NR
6.2
7
8
NR
NR
NR
10.5
11/3.2
NR
4.8
NR
5.8
NR
NR
7
NR
9
NR
9.3
10
11.2
1 1 .2/7.4
NR
5.2
6
NR
NR
NR
8.2
8.2
NR
NR
NR
Vessel D
psi
7
NR
8.2
NR
10/2
3.2
4
4.4
NR
5.8
6
6.3
NR
NR
NR
9.2
9.2/2.2
NR
3.8
NR
5
NR
NR
6
NR
7.8
NR
8
9
10
10/2
NR
4.2
5
NR
NR
NR
6.4
6.4
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
68
NR
57
NR
72
68
62
65
NR
68
70
66
NR
NR
NR
74
74
NR
68
NR
64
NR
NR
66
NR
70
NR
70
70
72
70
NR
68
69
NR
NR
NR
70
70
NR
NR
NR
Effluent
psig
58
NR
70
NR
58
60
59
56
NR
58
62
56
NR
NR
NR
62
56
NR
59
NR
58
NR
NR
58
NR
58
NR
60
58
58
58
NR
58
60
NR
NR
NR
59
60
NR
NR
NR
AP
psi
10
NA
NA
NA
14
8
3
9
NA
10
8
10
NA
NA
NA
12
18
NA
9
NA
6
NA
NA
8
NA
12
NA
10
12
14
12
NA
10
9
NA
NA
NA
11
10
NA
NA
NA
                                                 A-15

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
95
96
97
98
99
100
Date
02/27/06
02/28/06
03/01/06
03/02/06
03/03/06
03/04/06
03/05/06
03/06/06
03/07/06
03/08/06
03/09/06
03/1 0/06
03/11/06
03/12/06
03/1 3/06
03/14/06
03/1 5/06
03/16/06
03/1 7/06
03/1 8/06
03/1 9/06
03/20/06
03/21/06
03/22/06
03/23/06
03/24/06
03/25/06
03/26/06
03/27/06
03/28/06
03/29/06
03/30/06
03/31/06
04/01/06
04/02/06
04/03/06
04/04/06
04/05/06
04/06/06
04/07/06
04/08/06
04/09/06
Operation Master Flow
Hours Meter
hr
4.4
0.3
6.3
5.5
4.5
1.5
3.9
5.3
4.7
2.7
2.2
5.1
6.1
0.7
5.5
5.1
2.2
2.9
5.5
5.2
4.5
2.0
3.3
5.9
2.7
3.0
5.1
4.6
11.0
4.1
5.2
5.1
3.2
3.8
3.3
4.6
0.5
1.0
2.0
7.8
NA
4.8
gal
59346500
59360500
59382000
59793900
59966400
60026600
60173800
60373500
60552900
60657400
60738600
60932700
61157200
61183700
61390800
61586500
61668100
61781800
61978300
62174700
62346200
62423700
62546000
62759900
62863700
62974900
63168000
63344000
63391600
63546300
63744900
63938800
64060500
64128500
64328700
64504600
64526900
64704800
64902400
64975700
65172100
65358100
Vessel Flow Totalizer
Vessel A
kgal
25046.239
25049.353
25103.167
25153.273
25193.496
25207.733
25241.388
25286.989
25327.633
25351.145
25369.343
25412.774
25468.133
25474.110
25522.803
25568.312
25587.542
25613.048
25657.543
25701.496
25739.542
25756.484
25783.411
25830.311
25853.083
25880.395
25926.430
25967.570
25978.825
26014.486
26059.418
26102.681
26129.563
26144.474
26188.069
26226.045
26230.840
26268.861
26310.632
26329.879
26376.734
26420.233
Vessel B
kgal
25820.365
25823.971
25880.505
25934.655
25979.063
25994.961
26032.723
26084.607
26131.196
26158.370
26179.466
26229.625
26286.895
26293.251
26346.362
26396.714
26418.385
26447.191
26498.127
26549.133
26593.965
26614.132
26646.389
26702.672
26730.107
26758.581
26807.774
26853.031
26865.334
26905.417
26959.710
27007.808
27039.751
27057.572
27110.234
27156.625
27162.493
27209.454
27261.772
27280.067
27330.009
27377.605
Vessel C
kgal
22026.992
22029.943
22076.308
22119.829
22155.645
22168.659
22199.100
22241.313
22279.766
22302.433
22319.844
22362.121
22408.644
22413.561
22456.285
22497.239
22515.115
22538.654
22580.559
22622.737
22659.894
22676.814
22703.443
22750.404
22773.461
22796.882
22836.067
22872.290
22882.212
22914.264
22955.991
22997.111
22997.442
22997.442
22997.442
22997.442
NR
22997.443
NR
NR
23037.895
23076.679
Vessel D
kgal
21371.106
21373.601
21414.907
21456.272
21489.786
21501.867
21529.937
21568.428
21602.922
21623.130
21638.583
21675.755
21718.776
21723.390
21763.449
21801.105
21817.405
21838.641
21876.418
21914.180
21946.985
21961.810
21985.026
22025.613
22045.402
22065.899
22102.620
22136.655
22146.017
22175.825
22214.213
22251.619
22275.283
22288.256
22326.925
22360.931
22365.345
22399.521
22437.562
22450.136
22487.951
22523.544
Head Loss
Vessel A
psi
NA
NA
NR
NR
NR
NA
NR
NA
NR
NA
NR
NA
NA
NR
NA
NR
NA
NR
NA
NR
NR
NA
NR
NR
NA
NR
NR
NR
NA
NR
NR
NR
NA
NR
NR
NR
NA
NR
NA
NR
NR
NR
Vessel B
psi
11
11.8/3.8
NR
NR
NR
6
NR
8
NR
9.2
NR
10.8/3.8
5
NR
6
NR
7
NR
9
NR
NR
10.3
NR
NR
13/4.2
NR
NR
NR
5
NR
NR
NR
7.8
NR
NR
NR
12
NR
13/5.2
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
76
72
NR
NR
NR
66
NR
68
NR
72
NR
70
70
NR
66
NR
66
NR
66
NR
NR
72
NR
NR
76
NR
NR
NR
66
NR
NR
NR
70
NR
NR
NR
70
NR
72
NR
NR
NR
Effluent
psig
62
58
NR
NR
NR
58
NR
57
NR
59
NR
57
60
NR
58
NR
60
NR
58
NR
NR
58
NR
NR
60
NR
NR
NR
56
NR
NR
NR
60
NR
NR
NR
56
NR
60
NR
NR
NR
AP
psi
14
14
NA
NA
NA
8
NA
11
NA
13
NA
13
10
NA
8
NA
6
NA
8
NA
NA
14
NA
NA
16
NA
NA
NA
10
NA
NA
NA
10
NA
NA
NA
14
NA
12
NA
NA
NA
Head Loss
Vessel C
psi
10
10.8/3.6
NR
NR
NR
6
NR
8
NR
9
NR
10.2/3.6
5
NR
6.2
NR
7
NR
8.8
NR
NR
10
NR
NR
12/4.5
NR
NR
NR
6
NR
NR
NR
8
NR
NR
NR
10
NR
12/3.4
NR
NR
NR
Vessel D
psi
9.2
9.8/2.4
NR
NR
NR
5
NR
6.2
NR
7
NR
8.8/2.2
3
NR
4.6
NR
6
NR
6.2
NR
NR
8.8
NR
NR
10/2.9
NR
NR
NR
4
NR
NR
NR
6.4
NR
NR
NR
9
NR
10.5/2.2
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
74
72
NR
NR
NR
64
NR
68
NR
68
NR
70
69
NR
66
NR
66
NR
66
NR
NR
70
NR
NR
72
NR
NR
NR
64
NR
NR
NR
70
NR
NR
NR
70
NR
72
NR
NR
NR
Effluent
psig
62
58
NR
NR
NR
58
NR
57
NR
60
NR
57
60
NR
58
NR
60
NR
58
NR
NR
58
NR
NR
60
NR
NR
NR
58
NR
NR
NR
60
NR
NR
NR
58
NR
60
NR
NR
NR
AP
psi
12
14
NA
NA
NA
6
NA
11
NA
8
NA
13
9
NA
8
NA
6
NA
8
NA
NA
12
NA
NA
12
NA
NA
NA
6
NA
NA
NA
10
NA
NA
NA
12
NA
12
NA
NA
NA
                                                 A-16

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
101
102
103
104
105
106
Date
04/1 0/06
04/11/06
04/12/06
04/1 3/06
04/14/06
04/1 5/06
04/16/06
04/1 7/06
04/1 8/06
04/1 9/06
04/20/06
04/21/06
04/22/06
04/23/06
04/24/06
04/25/06
04/26/06
04/27/06
04/28/06
04/29/06
04/30/06
05/01/06
05/02/06
05/03/06
05/04/06
05/05/06
05/06/06
05/07/06
05/08/06
05/09/06
05/1 0/06
05/11/06
05/12/06
05/1 3/06
05/14/06
05/1 5/06
05/16/06
05/1 7/06
05/1 8/06
05/1 9/06
05/20/06
05/21/06
Operation Master Flow
Hours Meter
hr
0.8
4.4
5.2
4.6
0.1
5.6
5.4
5.1
2.1
3.8
4.9
5.4
4.1
0.9
5.6
5.5
4.9
0.4
5.8
5.3
0.8
4.6
5.5
5.1
4.8
4.8
1.8
5.0
6.0
5.2
4.8
3.3
1.8
6.0
5.0
3.7
2.0
6.2
1.8
3.6
5.4
4.8
gal
65390400
65557500
65754300
65928500
65932600
66139600
66342200
66453600
66533400
66760500
66964100
67148500
67305300
67338800
67550000
67754700
67941400
67954000
68174700
68377000
68411100
68581400
68789300
68980700
69162800
69340300
69408400
69615400
69827700
70021000
70204400
70370300
70397700
70624100
70812900
70955100
71027300
71262600
71333300
71467100
71669300
71848600
Vessel Flow Totalizer
Vessel A
kgal
26427.747
26466.002
26510.422
26549.174
26550.089
26595.632
26639.609
26663.673
26680.674
26735.432
26783.631
26826.846
26863.663
26870.689
26918.629
26964.451
27005.728
27008.482
27059.312
27106.856
27115.035
27153.959
27201.073
27243.895
27284.403
27322.941
27339.625
27387.653
27436.017
27479.436
27520.157
27556.619
27562.684
27615.783
27659.097
27691.236
27707.461
27759.873
27775.458
27804.864
27848.920
27887.663
Vessel B
kgal
27385.995
27429.006
27479.934
27525.201
27526.268
27580.165
27633.110
27662.377
27683.166
27740.211
27791.386
27837.979
2787.173
27886.174
27939.790
27991.903
28034.398
28042.624
28098.391
28149.058
28157.965
28200.590
28253.288
28301 .946
28348.284
28393.451
28410.058
28461.831
28515.258
28563.983
28610.310
28652.328
28659.310
28715.588
28762.788
28798.385
28816.427
28875.568
28893.306
28926.864
28977.571
29022.540
Vessel C
kgal
23083.680
23118.815
23160.935
23198.553
23199.441
23244.626
23289.324
23314.410
23331.909
23379.426
23421 .226
23459.512
23493.125
23499.416
23544.202
23588.030
23628.376
23631.245
23678.377
23719.407
23726.774
23761.490
23804.939
23845.377
23884.287
23922.564
23936.814
23979.046
24023.085
24063.657
24102.419
24138.003
24143.768
24190.630
24229.436
24259.164
24274.144
24323.822
24339.031
24367.585
24411.350
24450.541
Vessel D
kgal
22529.934
22561 .664
22599.264
22632.584
22633.369
22672.966
22711.679
22733.172
22748.124
22790.320
22829.156
22864.319
22895.046
22900.681
22941.001
22980.097
23015.775
23018.343
23059.331
23097.914
23104.798
23136.885
23176.448
23212.822
23247.519
23281 .234
23293.419
23332.670
23373.163
23410.188
23445.352
23477.355
23482.850
23525.135
23561.132
23588.410
23602.000
23646.676
23660.255
23685.532
23723.978
23758.037
Head Loss
Vessel A
psi
4.8
NR
NR
10.5
NR
NR
NR
11.5
12
NR
NR
NR
8
NR
NR
11
NR
11.8/4.0
NR
NR
6
NR
9.5
NR
10
1 1 .5/4
NR
NR
NR
NR
9.5
10
10.5/4.5
NR
NR
7
8.5
NR
9.5
NR
NR
NR
Vessel B
psi
6
NR
NR
9.8
NR
NR
NR
11.8
12
NR
NR
NR
9
NR
NR
11
NR
11.2/5.8
NR
NR
7
NR
9.2
NR
10
11/7
NR
NR
NR
NR
9.5
8.5
10.5/3.5
NR
NR
6.2
7
NR
9
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
66
NR
NR
70
NR
NR
NR
70
70
NR
NR
NR
70
NR
NR
70
NR
70
NR
NR
66
NR
68
NR
68
70
NR
NR
NR
NR
70
70
68
NR
NR
68
68
NR
68
NR
NR
NR
Effluent
psig
56
NR
NR
61
NR
NR
NR
62
56
NR
NR
NR
60
NR
NR
60
NR
56
NR
NR
56
NR
58
NR
58
60
NR
NR
NR
NR
60
62
56
NR
NR
60
58
NR
58
NR
NR
NR
AP
psi
10
NA
NA
9
NA
NA
NA
8
14
NA
NA
NA
10
NA
NA
10
NA
14
NA
NA
10
NA
10
NA
10
10
NA
NA
NA
NA
10
8
12
NA
NA
8
10
NA
10
NA
NA
NA
Head Loss
Vessel C
psi
6
NR
NR
8.2
NR
NR
NR
9.8
10.5
NR
NR
NR
6
NR
NR
9
NR
9.8/7.0
NR
NR
5.3
NR
7
NR
8.8
9.4/7
NR
NR
NR
NR
7.2
7.5
9.2/3.2
NR
NR
5.9
6.2
NR
8
NR
NR
NR
Vessel D
psi
5
NR
NR
6
NR
NR
NR
8.9
9.4
NR
NR
NR
5
NR
NR
8
NR
8.8/6.0
NR
NR
4.1
NR
5.8
NR
7
7.8/6
NR
NR
NR
NR
6.2
6.2
7/2
NR
NR
4.5
5
NR
6
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
64
NR
NR
70
NR
NR
NR
70
70
NR
NR
NR
70
NR
NR
70
NR
66
NR
NR
64
NR
68
NR
68
70
NR
NR
NR
NR
70
70
68
NR
NR
68
68
NR
66
NR
NR
NR
Effluent
psig
58
NR
NR
61
NR
NR
NR
60
56
NR
NR
NR
61
NR
NR
60
NR
56
NR
NR
58
NR
58
NR
58
60
NR
NR
NR
NR
60
62
56
NR
NR
60
58
NR
58
NR
NR
NR
AP
psi
6
NA
NA
9
NA
NA
NA
10
14
NA
NA
NA
9
NA
NA
10
NA
10
NA
NA
6
NA
10
NA
10
10
NA
NA
NA
NA
10
8
12
NA
NA
8
10
NA
8
NA
NA
NA
                                                 A-17

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
107
108
109
110
111
112
Date
05/22/06
05/23/06
05/24/06
05/25/06
05/26/06
05/27/06
05/28/06
05/29/06
05/30/06
05/31/06
06/01/06
06/02/06
06/03/06
06/04/06
06/05/06
06/06/06
06/07/06
06/08/06
06/09/06
06/1 0/06
06/11/06
06/12/06
06/1 3/06
06/14/06
06/1 5/06
06/16/06
06/1 7/06
06/1 8/06
06/1 9/06
06/20/06
06/21/06
06/22/06
06/23/06
06/24/06
06/25/06
06/26/06
06/27/06
06/28/06
06/29/06
06/30/06
07/01/06
07/02/06
Operation Master Flow
Hours Meter
hr
1.8
4.2
5.4
4.9
5.1
0.0
6.7
6.0
6.6
6.3
7.4
7.9
5.8
5.3
5.6
6.6
6.8
NA
NA
20.5
6.5
6.4
6.2
6.7
7.7
8.4
9.1
9.3
6.3
6.1
4.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
gal
71916200
72073400
72277200
72462200
72671200
72671200
72907000
73131000
73378200
73610200
73883900
74181500
74400100
74599100
74812900
75060300
75312700
NR
NR
76079600
76322200
76558000
76789600
77038400
77327900
77638000
77978500
78326200
78562900
78786700
78971400
78976200
79238300
79461600
79646700
79831300
80015700
80126100
80260900
80465800
80691900
80880200
Vessel Flow Totalizer
Vessel A
kgal
27901.799
27942.665
27993.328
28038.400
28088.447
28088.447
28144.081
28196.267
28252.942
28305.427
28366.571
28438.830
28484.879
28535.837
28584.586
28640.418
28696.724
28747.732
28814.728
28882.980
28941.757
28998.018
29052.928
29111.077
29178.551
29249.502
29327.846
29404.094
29455.049
29502.739
29541.606
29542.345
29602.070
29652.469
29693.681
29734.267
29774.442
29798.441
29828.994
29875.092
29924.946
29965.940
Vessel B
kgal
29039.100
29081.687
29137.876
29188.969
29246.737
29246.737
29311.677
29373.197
29440.919
29504.354
29579.451
29654.346
29708.692
29758.355
29811.862
29873.999
29937.608
29996.069
30058.774
30132.804
30197.717
30260.641
30322.252
30388.754
30465.417
30548.304
30632.794
30719.417
30778.790
30835.135
30881.807
30882.727
30947.979
31002.696
31048.339
31093.993
31139.700
31167.415
31200.128
31250.078
31305.501
31351.816
Vessel C
kgal
24465.131
24502.268
24552.068
24596.920
24647.205
24647.205
24703.506
24756.778
24815.396
24870.499
24935.155
24995.960
25039.806
25080.029
25123.462
25174.144
25226.286
25274.533
25336.631
25402.414
25459.619
25514.651
25568.461
25626.549
25693.997
25766.593
25836.130
25907.035
25956.133
26003.109
26042.135
26042.969
26097.163
26142.064
26179.652
26217.524
26255.741
26279.279
26306.479
26347.463
26393.506
26432.403
Vessel D
kgal
23770.735
23789.827
23812.786
23834.869
23861.843
23861.043
23891.685
23921.683
23955.387
23987.528
24025.898
24077.676
24117.929
24154.519
24193.740
24239.023
24285.153
24327.311
24358.248
24390.378
24420.192
24450.498
24481.025
24513.654
24553.702
24595.988
24656.688
24721.594
24765.716
24807.398
24841.734
24842.507
24890.152
24931.573
24965.846
24999.977
25034.164
25055.095
25078.778
25116.915
25158.954
25193.977
Head Loss
Vessel A
psi
12/5
NR
NR
NR
NR
NR
NR
NR
12
NR
14/3
NR
NR
NR
NR
NR
10
11/4.5
NR
NR
NR
NR
NR
11
NR
13/3.5
NR
NR
NR
NR
NR
11/4
NR
NR
NR
NR
NR
11/3
NR
9
NR
NR
Vessel B
psi
12/4.5
NR
NR
NR
NR
NR
NR
NR
11.2
NR
13/4
NR
NR
NR
NR
NR
10
11/4.0
NR
NR
NR
NR
NR
10
NR
11/3
NR
NR
NR
NR
NR
12/3
NR
NR
NR
NR
NR
10/3
NR
6
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
72
NR
NR
NR
NR
NR
NR
NR
70
NR
70
NR
NR
NR
NR
NR
70
70
NR
NR
NR
NR
NR
70
NR
70
NR
NR
NR
NR
NR
64
NR
NR
NR
NR
NR
70
NR
65
NR
NR
Effluent
psig
58
NR
NR
NR
NR
NR
NR
NR
58
NR
56
NR
NR
NR
NR
NR
59
58
NR
NR
NR
NR
NR
58
NR
56
NR
NR
NR
NR
NR
56
NR
NR
NR
NR
NR
60
NR
59
NR
NR
AP
psi
14
NA
NA
NA
NA
NA
NA
NA
12
NA
14
NA
NA
NA
NA
NA
11
12
NA
NA
NA
NA
NA
12
NA
14
NA
NA
NA
NA
NA
8
NA
NA
NA
NA
NA
10
NA
6
NA
NA
Head Loss
Vessel C
psi
10/7
NR
NR
NR
NR
NR
NR
NR
12
NR
13/4
NR
NR
NR
NR
NR
9.2
10/5
NR
NR
NR
NR
NR
10
NR
12/4
NR
NR
NR
NR
NR
10/4
NR
NR
NR
NR
NR
9/5
NR
5
NR
NR
Vessel D
psi
8.5/4.8
NR
NR
NR
NR
NR
NR
NR
11.6
NR
12/2.2
NR
NR
NR
NR
NR
7.5
8.5/4.5
NR
NR
NR
NR
NR
10
NR
12/2.2
NR
NR
NR
NR
NR
9/2.5
NR
NR
NR
NR
NR
8/2.5
NR
4
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
72
NR
NR
NR
NR
NR
NR
NR
70
NR
70
NR
NR
NR
NR
NR
70
70
NR
NR
NR
NR
NR
70
NR
70
NR
NR
NR
NR
NR
63
NR
NR
NR
NR
NR
70
NR
65
NR
NR
Effluent
psig
58
NR
NR
NR
NR
NR
NR
NR
58
NR
56
NR
NR
NR
NR
NR
59
58
NR
NR
NR
NR
NR
58
NR
58
NR
NR
NR
NR
NR
57
NR
NR
NR
NR
NR
60
NR
59
NR
NR
AP
psi
14
NA
NA
NA
NA
NA
NA
NA
12
NA
14
NA
NA
NA
NA
NA
11
12
NA
NA
NA
NA
NA
12
NA
12
NA
NA
NA
NA
NA
6
NA
NA
NA
NA
NA
10
NA
6
NA
NA
                                                 A-18

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
113
114
115
116
117
118
Date
07/03/06
07/04/06
07/05/06
07/06/06
07/07/06
07/08/06
07/09/06
07/1 0/06
07/11/06
07/12/06
07/1 3/06
07/14/06
07/1 5/06
07/16/06
07/1 7/06
07/1 8/06
07/1 9/06
07/20/06
07/21/06
07/22/06
07/23/06
07/24/06
07/25/06
07/26/06
07/27/06
07/28/06
07/29/06
07/30/06
07/31/06
08/01/06
08/02/06
08/03/06
08/04/06
08/05/06
08/06/06
08/07/06
08/08/06
08/09/06
08/1 0/06
08/11/06
08/12/06
08/1 3/06
Operation Master Flow
Hours Meter
hr
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
5.2
5.1
3.5
2.2
6.3
5.8
5.4
3.6
3.0
5.6
5.2
5.0
4.3
1.5
6.5
4.1
5.7
5.4
3.3
2.8
5.8
5.7
5.2
1.4
5.4
5.8
gal
81087600
81289400
81477500
81658900
81902000
82118900
82337800
82556900
82765000
82968000
83036300
83247500
83461900
83666400
83910800
84127400
84317600
84506800
84637100
84719200
84954300
85167200
85370400
85505200
85612000
85822700
86018800
86207800
86367600
86422400
86663600
86818600
87030800
87229900
87351900
87455800
87673600
87885300
88077900
88131200
88332600
88550200
Vessel Flow Totalizer
Vessel A
kgal
30010.668
30053.889
30094.058
30132.102
30192.321
30244.659
30296.359
30347.287
30394.875
30440.633
30457.748
30505.137
30552.506
30597.117
30649.948
30696.354
30736.697
30776.569
30804.123
30820.994
30885.893
30942.879
30995.970
31030.920
31057.835
31104.514
31147.266
31188.008
31222.431
31233.807
31284.954
31317.532
31361.785
31402.995
31428.439
31456.967
31516.356
31572.226
31622.036
31635.896
31684.154
31731.774
Vessel B
kgal
31402.874
31452.541
31498.861
31543.565
31607.281
31664.953
31723.003
31780.980
31835.915
31889.446
31906.415
31957.131
32008.810
32058.247
32117.573
32170.320
32216.719
32263.060
32295.340
32315.232
32382.601
32444.651
32503.332
32542.589
32570.879
32621 .923
32669.672
32715.771
32755.222
32768.244
32827.329
32865.385
32917.642
32966.782
32997.485
33026.302
33090.556
33152.291
33207.747
33223.388
33275.157
33327.461
Vessel C
kgal
26475.816
26518.599
26559.043
26598.242
26656.633
26709.679
26762.443
26814.777
26864.250
26912.331
26927.025
26969.322
27012.826
27054.855
27105.541
27150.810
27190.891
27231.174
27259.574
27276.739
27314.592
27349.263
27383.398
27406.970
27426.160
27468.709
27508.774
27547.796
27581.591
27592.541
27643.255
27676.171
27721.598
27764.503
27791.451
27807.585
27841.880
27876.541
27909.116
27918.667
27956.861
28001.139
Vessel D
kgal
25232.546
25270.106
25305.198
25338.913
25365.750
25389.617
25415.334
25442.444
25469.353
25496.373
25506.150
25545.584
25585.712
25624.011
25669.664
25710.070
25745.450
25780.714
25805.323
25820.097
25852.221
25881.420
25909.998
25929.709
25945.149
25984.535
26021.289
26056.657
26086.988
26096.757
26141.794
26170.716
26210.241
26247.387
26270.636
26284.317
26313.187
26342.268
26369.417
26377.356
26409.896
26450.515
Head Loss
Vessel A
psi
10
NR
NR
12/5
NR
NR
NR
11
NR
13/3.5
NR
NR
NR
NR
NR
11
NR
NR
13
14/6.5
NR
NR
NR
11/4
NR
NR
NR
NR
9
9.5
NR
NR
NR
NR
14/6
NR
NR
11
NR
12/4.5
NR
NR
Vessel B
psi
9
NR
NR
12/4.5
NR
NR
NR
11
NR
13/3.5
NR
NR
NR
NR
NR
11
NR
NR
13
14/6
NR
NR
NR
10/4
NR
NR
NR
NR
9
9.5
NR
NR
NR
NR
14/6
NR
NR
11
NR
11/4.5
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
70
NR
NR
NR
NR
NR
NR
75
NR
74
NR
NR
NR
NR
NR
72
NR
NR
73
72
NR
NR
NR
75
NR
NR
NR
NR
70
68
NR
NR
NR
NR
74
NR
NR
72
NR
71
NR
NR
Effluent
psig
60
NR
NR
NR
NR
NR
NR
60
NR
60
NR
NR
NR
NR
NR
59
NR
NR
60
56
NR
NR
NR
60
NR
NR
NR
NR
60
58
NR
NR
NR
NR
59
NR
NR
59
NR
58
NR
NR
AP
psi
10
NA
NA
NA
NA
NA
NA
15
NA
14
NA
NA
NA
NA
NA
13
NA
NA
13
16
NA
NA
NA
15
NA
NA
NA
NA
10
10
NA
NA
NA
NA
15
NA
NA
13
NA
13
NA
NA
Head Loss
Vessel C
psi
6
NR
NR
11/6
NR
NR
NR
10
NR
12/3
NR
NR
NR
NR
NR
9
NR
NR
11
12.5/9
NR
NR
NR
13/3.5
NR
NR
NR
NR
8
8.5
NR
NR
NR
NR
12/9
NR
NR
13
NR
14/3.7
NR
NR
Vessel D
psi
7
NR
NR
9/5
NR
NR
NR
10
NR
12/2.5
NR
NR
NR
NR
NR
8
NR
NR
9
11/7.5
NR
NR
NR
12/2
NR
NR
NR
NR
6
6.5
NR
NR
NR
NR
11/7
NR
NR
12
NR
13/6
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
70
NR
NR
72
NR
NR
NR
70
NR
74
NR
NR
NR
NR
NR
72
NR
NR
72
72
NR
NR
NR
72
NR
NR
NR
NR
69
68
NR
NR
NR
NR
74
NR
NR
70
NR
70
NR
NR
Effluent
psig
60
NR
NR
60
NR
NR
NR
60
NR
60
NR
NR
NR
NR
NR
59
NR
NR
60
56
NR
NR
NR
60
NR
NR
NR
NR
60
58
NR
NR
NR
NR
59
NR
NR
59
NR
59
NR
NR
AP
psi
10
NA
NA
12
NA
NA
NA
10
NA
14
NA
NA
NA
NA
NA
13
NA
NA
12
16
NA
NA
NA
12
NA
NA
NA
NA
9
10
NA
NA
NA
NA
15
NA
NA
11
NA
11
NA
NA
                                                 A-19

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
119
120
121
122
123
124
Date
08/14/06
08/1 5/06
08/16/06
08/1 7/06
08/1 8/06
08/1 9/06
08/20/06
08/21/06
08/22/06
08/23/06
08/24/06
08/25/06
08/26/06
08/27/06
08/28/06
08/29/06
08/30/06
08/31/06
09/01/06
09/02/06
09/03/06
09/04/06
09/05/06
09/06/06
09/07/06
09/08/06
09/09/06
09/1 0/06
09/11/06
09/12/06
09/1 3/06
09/14/06
09/1 5/06
09/16/06
09/1 7/06
09/1 8/06
09/1 9/06
09/20/06
09/21/06
09/22/06
09/23/06
09/24/06
Operation Master Flow
Hours Meter
hr
5.9
5.7
5.4
3.1
2.9
6.4
5.7
4.9
3.8
1.7
6.0
6.8
0.1
5.7
5.5
5.0
0.1
5.8
5.6
2.3
4.2
5.2
0.5
5.4
5.4
0.6
5.6
5.4
0.1
5.8
1.8
5.6
5.3
0.9
5.0
5.4
1.3
4.5
5.7
0.3
6.1
5.1
gal
88769300
88983700
89184200
89303600
89409200
89649500
89861700
90047500
90191400
90251700
90476400
90734200
90738900
90951100
91157900
91345200
91348100
91563400
91772800
91859200
92017500
92212300
92233500
92434400
92637600
92660400
92869300
93069400
93074400
93286700
93357800
93567700
93766800
93801000
93987200
94189200
94240000
94405000
94617900
94631600
94857400
95052800
Vessel Flow Totalizer
Vessel A
kgal
31779.095
31824.791
31867.152
31892.611
31914.681
31968.040
32014.442
32054.500
32085.547
32098.172
32145.858
32203.498
32203.678
32250.725
32294.802
32334.456
32334.632
32380.463
32424.403
32442.749
32478.654
32521.099
32525.957
32568.949
32612.382
32617.472
32661.340
32703.309
32703.475
32748.563
32765.466
32810.972
32853.633
32861.135
32900.328
32942.806
32954.083
32987.971
33031.986
33034.990
33084.335
33126.485
Vessel B
kgal
33380.205
33431 .846
33480.167
33509.357
33534.685
33591.498
33641 .820
33685.904
33720.352
33734.325
33787.654
33847.518
33847.774
33898.304
33946.073
33989.687
33989.924
34040.527
34089.367
34109.906
34146.199
34191.297
34196.552
34243.016
34290.475
34296.116
34344.409
34390.917
34391.153
34441 .521
34457.925
34506.491
34552.619
34560.823
34603.499
34650.084
34662.446
34699.909
34748.862
34752.261
34803.416
34847.743
Vessel C
kgal
28046.311
28091.119
28133.153
28158.787
28180.864
28229.403
28272.206
28310.193
28340.249
28352.276
28398.910
28450.696
28451.076
28495.116
28537.100
28575.845
28576.189
28621.514
28665.774
28684.578
28716.100
28755.657
28760.401
28801.231
28843.293
28848.457
28891.655
28933.723
28934.069
28979.820
28994.231
29036.387
29077.026
29084.490
29122.425
29164.226
29175.382
29209.227
29253.955
29257.191
29302.990
29341.981
Vessel D
kgal
26491 .372
26531.122
26568.334
26590.921
26610.355
26653.360
26692.706
26727.104
26754.169
26764.926
26806.499
26853.427
26853.813
26894.125
26932.125
26966.880
26967.245
27007.310
27046.081
27062.491
27090.062
27125.772
27130.051
27166.497
27203.672
27208.229
27246.044
27282.603
27282.941
27322.329
27334.067
27372.634
27409.059
27415.750
27449.357
27486.290
27496.132
27525.782
27564.585
27567.391
27607.054
27642.695
Head Loss
Vessel A
psi
8.5
NR
NR
11
12/4.5
NR
NR
NR
9
NR
11/5
NR
7
8
NR
NR
11
NR
NR
13/4
NR
NR
9
NR
NR
10
NR
NR
12
13/5
NR
NR
NR
9
NR
NR
11
NR
NR
13/5
NR
NR
Vessel B
psi
7.5
NR
NR
10
12/4.5
NR
NR
NR
8
NR
10.5/4
NR
7
8
NR
NR
10
NR
NR
13/4
NR
NR
8
NR
NR
9.5
NR
NR
13
13/4
NR
NR
NR
8.5
NR
NR
10.5
NR
NR
13/7
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
69
NR
NR
71
69
NR
NR
NR
71
NR
68
NR
62
69
NR
NR
68
NR
NR
72
NR
NR
63
NR
NR
69
NR
NR
70
72
NR
NR
NR
68
NR
NR
68
NR
NR
70
NR
NR
Effluent
psig
59
NR
NR
60
58
NR
NR
NR
60
NR
57
NR
57
59
NR
NR
59
NR
NR
58
NR
NR
58
NR
NR
58
NR
NR
58
58
NR
NR
NR
58
NR
NR
57
NR
NR
57
NR
NR
AP
psi
10
NA
NA
11
11
NA
NA
NA
11
NA
11
NA
5
10
NA
NA
9
NA
NA
14
NA
NA
5
NA
NA
11
NA
NA
12
14
NA
NA
NA
10
NA
NA
11
NA
NA
13
NA
NA
Head Loss
Vessel C
psi
6.5
NR
NR
9
10/7
NR
NR
NR
8
NR
9/7
NR
7
7
NR
NR
9
NR
NR
11/6
NR
NR
8
NR
NR
8
NR
NR
11
12/4
NR
NR
NR
7
NR
NR
9.5
NR
NR
11/3.5
NR
NR
Vessel D
psi
6
NR
NR
8
9/6
NR
NR
NR
6
NR
8.5/6
NR
5
6
NR
NR
8
NR
NR
10/2
NR
NR
8
NR
NR
8
NR
NR
9
11/3
NR
NR
NR
6
NR
NR
8
NR
NR
9/2.5
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
69
NR
NR
70
69
NR
NR
NR
69
NR
68
NR
62
64
NR
NR
68
NR
NR
72
NR
NR
60
NR
NR
63
NR
NR
70
72
NR
NR
NR
68
NR
NR
68
NR
NR
69
NR
NR
Effluent
psig
59
NR
NR
60
58
NR
NR
NR
60
NR
57
NR
58
60
NR
NR
59
NR
NR
58
NR
NR
57
NR
NR
59
NR
NR
58
58
NR
NR
NR
58
NR
NR
57
NR
NR
58
NR
NR
AP
psi
10
NA
NA
10
11
NA
NA
NA
9
NA
11
NA
4
4
NA
NA
9
NA
NA
14
NA
NA
3
NA
NA
4
NA
NA
12
14
NA
NA
NA
10
NA
NA
11
NA
NA
11
NA
NA
                                                 A-20

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
125
126
127
128
129
130
Date
09/25/06
09/26/06
09/27/06
09/28/06
09/29/06
09/30/06
10/01/06
10/02/06
10/03/06
10/04/06
10/05/06
10/06/06
10/07/06
10/08/06
10/09/06
10/10/06
10/11/06
10/12/06
10/13/06
10/14/06
10/15/06
10/16/06
10/17/06
10/18/06
10/19/06
10/20/06
10/21/06
10/22/06
10/23/06
10/24/06
10/25/06
10/26/06
10/27/06
10/28/06
10/29/06
10/30/06
10/31/06
11/01/06
11/02/06
11/03/06
11/04/06
11/05/06
Operation Master Flow
Hours Meter
hr
0.0
5.8
5.0
0.0
6.1
4.8
0.0
5.7
3.5
1.8
5.4
3.5
3.4
5.1
0.0
9.0
3.2
2.2
8.5
8.2
0.7
5.0
5.8
0.9
7.0
5.4
1.8
7.8
0.0
6.7
6.0
0.0
5.8
5.2
0.0
6.0
1.9
5.6
5.2
0.0
10.1
0.0
gal
95052800
95270200
95455000
95455000
95687900
95868400
95868400
96081700
96214700
96279100
96482300
96644400
96741400
96934900
96934900
97273100
97396900
97474900
97794000
98101600
98129700
98319400
98537200
98569600
98831300
99033500
99101500
99392300
99392300
99644800
99867300
99867300
85700
279800
279800
502200
572100
785300
980000
980000
1359700
1359700
Vessel Flow Totalizer
Vessel A
kgal
33126.485
33172.918
33212.187
33212.187
33263.210
33302.085
33302.085
33347.619
33376.024
33389.444
33432.209
33466.488
33488.041
33529.878
33529.878
33603.837
33630.609
33646.840
33714.251
33781.954
33788.423
33828.970
33875.402
33882.242
33937.419
33979.750
33995.559
34058.474
34058.474
34112.437
34159.510
34159.510
34205.406
34245.905
34245.905
34292.083
34308.719
34354.864
34396.602
34396.602
34479.336
34479.336
Vessel B
kgal
34877.430
34897.292
34939.487
34939.487
34992.396
35033.179
35033.179
35081.140
35111.452
35125.637
35171.291
35208.156
35229.424
35272.835
35272.835
35349.890
35378.219
35395.381
35466.877
35535.097
35546.757
35583.212
35631 .203
35638.321
35695.915
35740.174
35754.819
35818.022
35818.022
35872.769
35920.996
35920.996
35968.635
36010.927
36010.927
36058.748
36073.830
36119.985
36162.460
36162.460
36245.172
36245.172
Vessel C
kgal
29341.981
29386.092
29423.924
29423.924
29471.096
29507.083
29507.083
29550.284
29577.927
29590.771
29632.735
29666.900
29686.234
29724.701
29724.701
29792.834
29818.293
29833.590
29898.812
29960.562
29966.654
30004.006
30048.123
30054.690
30108.272
30150.123
30163.742
30222.024
30222.024
30273.615
30319.512
30319.512
30365.114
30406.002
30406.002
30453.294
30467.329
30509.940
30549.305
30549.305
30625.729
30625.729
Vessel D
kgal
27642.695
27682.447
27716.268
27716.268
27758.260
27791.483
27791.483
27830.853
27855.807
27867.336
27904.899
27935.195
27951.595
27986.959
27986.959
28049.021
28072.125
28085.889
28144.290
28199.834
28205.496
28239.687
28279.705
28285.616
28333.512
28370.481
28381.910
28434.599
28434.599
28480.373
28520.649
28520.649
28560.168
28595.248
28595.248
28635.458
28646.660
28685.355
28720.782
28720.782
28789.575
28789.575
Head Loss
Vessel A
psi
NR
NR
NR
10.5/5
NR
NR
NR
NR
9
NR
NR
11/4
NR
NR
NR
NR
7
NR
10.5/4
NR
6
NR
9
NR
NR
12/4
NR
NR
NR
NR
NR
NR
NR
NR
NR
13/6
NR
NR
NR
9.5/6
NR
NR
Vessel B
psi
NR
NR
NR
10/7
NR
NR
NR
NR
9
NR
NR
11/4
NR
NR
NR
NR
6
NR
10/4
NR
5.5
NR
8
NR
NR
11/3
NR
NR
NR
NR
NR
NR
NR
NR
NR
14/5
NR
NR
NR
9.5/5
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
NR
NR
68
NR
NR
NR
NR
70
NR
NR
75
NR
NR
NR
NR
70
NR
68
NR
66
NR
70
NR
NR
72
NR
NR
NR
NR
NR
NR
NR
NR
NR
72
NR
NR
NR
70
NR
NR
Effluent
psig
NR
NR
NR
58
NR
NR
NR
NR
60
NR
NR
61
NR
NR
NR
NR
60
NR
58
NR
56
NR
60
NR
NR
60
NR
NR
NR
NR
NR
NR
NR
NR
NR
58
NR
NR
NR
59
NR
NR
AP
psi
NA
NA
NA
10
NA
NA
NA
NA
10
NA
NA
14
NA
NA
NA
NA
10
NA
10
NA
10
NA
10
NA
NA
12
NA
NA
NA
NA
NA
NA
NA
NA
NA
14
NA
NA
NA
11
NA
NA
Head Loss
Vessel C
psi
NR
NR
NR
9/4
NR
NR
NR
NR
7
NR
NR
9/3
NR
NR
NR
NR
6
NR
9/4
NR
5
NR
8
NR
NR
10/3
NR
NR
NR
NR
NR
NR
NR
NR
NR
13/7
NR
NR
NR
7/6
NR
NR
Vessel D
psi
NR
NR
NR
7/2.5
NR
NR
NR
NR
6
NR
NR
8/2
NR
NR
NR
NR
4
NR
6/2
NR
4
NR
6
NR
NR
9/2
NR
NR
NR
NR
NR
NR
NR
NR
NR
11/3
NR
NR
NR
6/2.5
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
NR
NR
68
NR
NR
NR
NR
68
NR
NR
70
NR
NR
NR
NR
69
NR
68
NR
66
NR
70
NR
NR
72
NR
NR
NR
NR
NR
NR
NR
NR
NR
72
NR
NR
NR
70
NR
NR
Effluent
psig
NR
NR
NR
58
NR
NR
NR
NR
60
NR
NR
61
NR
NR
NR
NR
60
NR
58
NR
56
NR
60
NR
NR
60
NR
NR
NR
NR
NR
NR
NR
NR
NR
58
NR
NR
NR
59
NR
NR
AP
psi
NA
NA
NA
10
NA
NA
NA
NA
8
NA
NA
9
NA
NA
NA
NA
9
NA
10
NA
10
NA
10
NA
NA
12
NA
NA
NA
NA
NA
NA
NA
NA
NA
14
NA
NA
NA
11
NA
NA
                                                 A-21

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
131
132
133
134
135
136
Date
11/06/06
11/07/06
11/08/06
11/09/06
11/10/06
11/11/06
11/12/06
11/13/06
11/14/06
11/15/06
11/16/06
11/17/06
11/18/06
11/19/06
11/20/06
11/21/06
11/22/06
11/23/06
11/24/06
11/25/06
11/26/06
11/27/06
11/28/06
11/29/06
11/30/06
12/01/06
12/02/06
12/03/06
12/04/06
12/05/06
12/06/06
12/07/06
12/08/06
12/09/06
12/10/06
12/11/06
12/12/06
12/13/06
12/14/06
12/15/06
12/16/06
12/17/06
Operation Master Flow
Hours Meter
hr
7.1
5.7
0.0
6.2
5.9
0.0
6.7
4.6
1.8
4.9
4.9
4.5
0.0
5.3
5.0
1.8
5.2
5.1
4.3
0.0
5.3
5.2
4.4
2.3
4.9
4.4
0.0
9.3
0.0
5.1
1.8
5.1
4.7
3.5
1.7
5.5
5.3
2.2
5.2
5.2
4.6
4.6
gal
1626400
1838700
1838700
2068800
2289200
2289200
2536800
2707600
2777500
2963600
3149400
3318100
3318100
3515600
3704100
3773900
3969100
4161100
4324800
4324800
4522000
4716300
4882000
4967300
5154200
5322900
5322900
5426100
5672400
5865100
5934700
6128300
6304000
6439800
6502000
6705700
6903700
6987700
7185100
7377000
7551400
7722600
Vessel Flow Totalizer
Vessel A
kgal
34536.548
34581.514
34581.514
34629.899
34675.919
34675.919
34727.196
34762.459
34779.223
34819.738
34859.898
34896.123
34896.123
34938.189
34978.035
34994.251
35036.662
35077.877
35112.659
35112.659
35154.438
35195.334
35230.221
35249.707
35291.074
35327.859
35327.859
35350.192
35403.030
35444.007
35459.901
35501.905
35539.555
35568.672
35581.621
35624.611
35666.036
35685.151
35728.066
35769.612
35806.617
35842.640
Vessel B
kgal
36303.693
36350.430
36350.430
36400.781
36449.275
36449.275
36503.995
36541 .800
36557.313
36598.375
36639.417
36676.625
36676.625
36720.220
36761.871
36777.335
36820.975
36863.786
36900.256
36900.256
36944.177
36987.398
37024.780
37043.610
37086.074
37123.763
37123.763
37146.649
37201 .247
37243.065
37259.100
37301.843
37340.606
37370.888
37384.239
37429.175
37472.740
37491 .240
37535.509
37578.890
37617.894
37656.155
Vessel C
kgal
30679.494
30722.879
30722.879
30770.191
30816.074
30816.074
30868.032
30904.184
30918.240
30955.267
30992.689
31027.131
31027.131
31067.721
31106.794
31120.807
31159.389
31197.876
31230.968
31230.968
31271.439
31311.694
31346.149
31363.425
31400.248
31433.597
31433.597
31454.171
31503.983
31543.326
31557.325
31595.736
31630.943
31658.767
31671.005
31712.787
31753.766
31770.705
31810.115
31849.281
31884.869
31920.133
Vessel D
kgal
28838.416
28877.341
28877.341
28919.623
28960.075
28960.075
29005.467
29036.601
29047.775
29081.492
29115.069
29145.507
29145.507
29181.090
29215.027
29226.588
29261.513
29295.848
29325.109
29325.109
29360.412
29395.308
29425.029
29439.360
29473.255
29503.689
29503.689
29522.321
29566.913
29601.680
29613.465
29648.591
29680.570
29705.688
29716.642
29753.893
29790.043
29804.232
29840.198
29875.450
29907.173
29938.388
Head Loss
Vessel A
psi
NR
NR
NR
NR
NR
NR
NR
15/5
5
NR
NR
NR
NR
NR
11/4
NR
NR
NR
NR
NR
NR
NR
11/4
NR
6
NR
NR
NR
NR
10/4
NR
NR
NR
9
NR
NR
12/5
NR
NR
NR
NR
NR
Vessel B
psi
NR
NR
NR
NR
NR
NR
NR
15/4.5
4
NR
NR
NR
NR
NR
12/5
NR
NR
NR
NR
NR
NR
NR
10/4
NR
5
NR
NR
NR
NR
10/4
NR
NR
NR
9
NR
NR
12/4.5
NR
NR
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
NR
NR
NR
NR
NR
NR
NR
74
65
NR
NR
NR
NR
NR
70
NR
NR
NR
NR
NR
NR
NR
72
NR
70
NR
NR
NR
NR
72
NR
NR
NR
68
NR
NR
70
NR
NR
NR
NR
NR
Effluent
psig
NR
NR
NR
NR
NR
NR
NR
58
59
NR
NR
NR
NR
NR
58
NR
NR
NR
NR
NR
NR
NR
62
NR
60
NR
NR
NR
NR
60
NR
NR
NR
60
NR
NR
58
NR
NR
NR
NR
NR
AP
psi
NA
NA
NA
NA
NA
NA
NA
16
6
NA
NA
NA
NA
NA
12
NA
NA
NA
NA
NA
NA
NA
10
NA
10
NA
NA
NA
NA
12
NA
NA
NA
8
NA
NA
12
NA
NA
NA
NA
NA
Head Loss
Vessel C
psi
NR
NR
NR
NR
NR
NR
NR
13/4
6
NR
NR
NR
NR
NR
10/4
NR
NR
NR
NR
NR
NR
NR
10/4
NR
5
NR
NR
NR
NR
9/3
NR
NR
NR
7
NR
NR
10/4
NR
NR
NR
NR
NR
Vessel D
psi
NR
NR
NR
NR
NR
NR
NR
12/6
6
NR
NR
NR
NR
NR
9/3
NR
NR
NR
NR
NR
NR
NR
9/3
NR
4
NR
NR
NR
NR
8/3
NR
NR
NR
6
NR
NR
9/25
NR
NR
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
NR
NR
NR
NR
NR
NR
NR
74
60
NR
NR
NR
NR
NR
70
NR
NR
NR
NR
NR
NR
NR
72
NR
68
NR
NR
NR
NR
72
NR
NR
NR
68
NR
NR
70
NR
NR
NR
NR
NR
Effluent
psig
NR
NR
NR
NR
NR
NR
NR
58
58
NR
NR
NR
NR
NR
68
NR
NR
NR
NR
NR
NR
NR
62
NR
60
NR
NR
NR
NR
60
NR
NR
NR
60
NR
NR
58
NR
NR
NR
NR
NR
AP
psi
NA
NA
NA
NA
NA
NA
NA
16
2
NA
NA
NA
NA
NA
2
NA
NA
NA
NA
NA
NA
NA
10
NA
8
NA
NA
NA
NA
12
NA
NA
NA
8
NA
NA
12
NA
NA
NA
NA
NA
                                                 A-22

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
137
138
139
140
141
142
Date
12/18/06
12/19/06
12/20/06
12/21/06
12/22/06
12/23/06
12/24/06
12/25/06
12/26/06
12/27/06
12/28/06
12/29/06
12/30/06
12/31/06
01/01/07
01/02/07
01/03/07
01/04/07
01/05/07
01/06/07
01/07/07
01/08/07
01/09/07
01/10/07
01/11/07
01/12/07
01/13/07
01/14/07
01/15/07
01/16/07
01/17/07
01/18/07
01/19/07
01/20/07
01/21/07
01/22/07
01/23/07
01/24/07
01/25/07
01/26/07
01/27/07
01/28/07
Operation Master Flow
Hours Meter
hr
0.6
5.5
5.3
5.1
4.6
1.3
4.3
5.3
4.7
1.8
5.4
5.1
4.6
0.0
5.4
5.5
5.1
4.8
4.9
1.8
10.7
8.5
4.9
0.0
5.6
5.5
1.9
5.6
5.3
4.9
0.0
5.4
5.3
4.2
3.2
5.4
2.2
3.8
5.5
5.5
4.8
3.4
gal
7745700
7951500
8152300
8344500
8515700
8565200
8723200
8921800
9095700
9165400
9367300
9559700
9732300
9732300
9935600
10137900
10327000
10506500
10688000
10754700
11158100
11473400
11656900
11656900
11863100
12068200
12138000
12348300
12548100
12731100
12731100
12933300
13132300
13294400
13411400
13613800
13700500
13841100
14043600
14249400
14427200
14553600
Vessel Flow Totalizer
Vessel A
kgal
35847.681
35892.993
35936.602
35977.992
36014.549
36025.503
36058.566
36100.447
36168.630
36153.446
36197.416
36238.890
36275.816
36275.816
36319.033
36361.799
36401.619
36439.218
36476.981
36493.191
36581.422
36649.024
36688.096
36688.096
36731.685
36774.756
36791.505
36837.695
36881.839
36922.510
36922.510
36967.324
37011.500
37048.268
37073.634
37117.606
37136.463
37166.335
37209.552
37253.148
37290.661
37317.570
Vessel B
kgal
37661 .576
37707.235
37752.031
37794.907
37833.011
37844.547
37879.074
37923.131
37961 .642
37977.153
38022.499
38065.431
38103.061
38103.061
38149.001
38193.858
38235.784
38275.445
38315.451
38330.280
38420.926
38490.885
38531.799
38531.799
38577.773
38623.356
38638.943
38686.139
38731.827
38774.120
38774.120
38820.762
38866.793
38904.036
38929.954
38975.551
38995.384
39026.727
39072.310
39118.602
39158.516
39187.240
Vessel C
kgal
31925.252
31966.549
32006.641
32045.493
32004.760
32091.267
32123.132
32164.379
32200.694
32214.684
32254.322
32292.683
32327.594
32327.594
32369.202
32410.964
32450.369
32487.995
32526.366
32539.631
32619.894
32682.801
32720.285
32720.285
32762.809
32805.602
32819.482
32860.798
32900.337
32936.920
32936.920
32977.062
33016.964
33049.634
33072.264
33112.671
33130.467
33158.607
33206.095
33242.444
33279.456
33306.277
Vessel D
kgal
29942.958
29978.770
30014.969
30049.610
30080.531
30090.041
30117.978
30153.843
30185.287
30196.569
30233.108
30268.032
30299.252
30299.252
30336.057
30372.655
30406.931
30439.552
30472.527
30483.137
30556.868
30613.727
30647.077
30647.077
30684.588
30722.002
30733.405
30771.459
30807.836
30841.265
30841.265
30678.194
30914.612
30944.197
30965.035
31001.780
31017.886
31043.133
31080.056
31117.567
31150.003
31173.430
Head Loss
Vessel A
psi
11/5
NR
NR
NR
NR
11
NR
NR
12/7
NR
NR
NR
NR
NR
NR
NR
NR
NR
14/6
NR
9
NR
NR
NR
NR
13/6
NR
NR
NR
NR
NR
NR
9/5
6
NR
NR
9
NR
NR
NR
NR
12
Vessel B
psi
12/5
NR
NR
NR
NR
10
NR
NR
11/2.5
NR
NR
NR
NR
NR
NR
NR
NR
NR
14/8
NR
8
NR
NR
NR
NR
15/6
NR
NR
NR
NR
NR
NR
8/5
7
NR
NR
8
NR
NR
NR
NR
13
Unit 1 (Vessels A & B)
Influent
psig
70
NR
NR
NR
NR
69
NR
NR
74
NR
NR
NR
NR
NR
NR
NR
NR
NR
74
NR
67
NR
NR
NR
NR
74
NR
NR
NR
NR
NR
NR
66
66
NR
NR
64
NR
NR
NR
NR
78
Effluent
psig
58
NR
NR
NR
NR
57
NR
NR
59
NR
NR
NR
NR
NR
NR
NR
NR
NR
60
NR
56
NR
NR
NR
NR
58
NR
NR
NR
NR
NR
NR
58
59
NR
NR
59
NR
NR
NR
NR
60
AP
psi
12
NA
NA
NA
NA
12
NA
NA
15
NA
NA
NA
NA
NA
NA
NA
NA
NA
14
NA
11
NA
NA
NA
NA
16
NA
NA
NA
NA
NA
NA
8
7
NA
NA
5
NA
NA
NA
NA
18
Head Loss
Vessel C
psi
9/5
NR
NR
NR
NR
8
NR
NR
12/7
NR
NR
NR
NR
NR
NR
NR
NR
NR
13/7
NR
7
NR
NR
NR
NR
12/7
NR
NR
NR
NR
NR
NR
9/5
6
NR
NR
7
NR
NR
NR
NR
9
Vessel D
psi
8/2.5
NR
NR
NR
NR
7
NR
NR
11/2.5
NR
NR
NR
NR
NR
NR
NR
NR
NR
12/3
NR
5
NR
NR
NR
NR
11/3
NR
NR
NR
NR
NR
NR
8/5
7
NR
NR
5
NR
NR
NR
NR
9
Unit 2 (Vessels C & D)
Influent
psig
69
NR
NR
NR
NR
69
NR
NR
74
NR
NR
NR
NR
NR
NR
NR
NR
NR
74
NR
67
NR
NR
NR
NR
74
NR
NR
NR
NR
NR
NR
66
66
NR
NR
63
NR
NR
NR
NR
70
Effluent
psig
59
NR
NR
NR
NR
57
NR
NR
59
NR
NR
NR
NR
NR
NR
NR
NR
NR
60
NR
56
NR
NR
NR
NR
58
NR
NR
NR
NR
NR
NR
58
59
NR
NR
59
NR
NR
NR
NR
60
AP
psi
10
NA
NA
NA
NA
12
NA
NA
15
NA
NA
NA
NA
NA
NA
NA
NA
NA
14
NA
11
NA
NA
NA
NA
16
NA
NA
NA
NA
NA
NA
8
7
NA
NA
4
NA
NA
NA
NA
10
                                                 A-23

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
143
144
145
146
147
148
Date
01/29/07
01/30/07
01/31/07
02/01/07
02/02/07
02/03/07
02/04/07
02/05/07
02/06/07
02/07/07
02/08/07
02/09/07
02/1 0/07
02/11/07
02/12/07
02/1 3/07
02/14/07
02/1 5/07
02/16/07
02/1 7/07
02/1 8/07
02/1 9/07
02/20/07
02/21/07
02/22/07
02/23/07
02/24/07
02/25/07
02/26/07
02/27/07
02/28/07
03/01/07
03/02/07
03/03/07
03/04/07
03/05/07
03/06/07
03/07/07
03/08/07
03/09/07
03/1 0/07
03/11/07
Operation Master Flow
Hours Meter
hr
2.9
4.6
5.4
5.2
4.6
4.8
3.6
1.6
5.4
5.5
6.5
0.9
5.4
5.6
5.5
5.3
4.8
4.5
4.5
3.8
2.6
4.8
5.0
5.1
4.8
4.6
1.8
5.1
4.8
4.9
6.8
4.7
5.1
2.7
4.8
5.4
5.6
4.3
1.9
5.6
7.2
5.0
gal
14662600
14834100
15033900
15228900
15402400
15582600
15720400
15778600
15979900
16184600
16428800
16464900
16665400
16875200
17077800
17277200
17452500
17620600
17786300
17928900
18010200
18201700
18389400
18575800
18752300
18920600
18989400
19177600
19359100
19539300
19710000
19967600
20153500
20256300
20435800
20634000
20842700
21002000
21071300
21280400
21550100
21734200
Vessel Flow Totalizer
Vessel A
kgal
37340.393
37379.252
37423.515
37466.806
37505.312
37545.773
37576.178
37588.623
37633.049
37678.104
37733.001
37741.073
37785.174
37830.779
37874.474
37917.153
37955.339
37992.062
38028.297
38065.017
38085.246
38133.079
38179.023
38223.904
38266.601
38307.268
38324.321
38366.470
38407.488
38447.160
38503.012
38542.073
38583.231
38606.982
38646.331
38689.599
38734.984
38770.261
38784.772
38830.281
38890.953
38931.381
Vessel B
kgal
39211.561
39250.342
39295.963
39341.083
39381.355
39423.102
39455.432
39468.279
39514.883
39562.085
39617.920
39626.264
39671 .823
39719.293
39765.019
39810.012
39850.406
39889.220
39927.503
39964.446
39985.123
40034.676
40082.648
40129.884
40174.911
40217.720
40234.269
40277.567
40320.183
40361 .475
40420.097
40461 .080
40504.449
40528.140
40568.542
40613.502
40661.158
40698.377
40713.608
40761 .746
40822.870
40864.586
Vessel C
kgal
33328.859
33363.219
33402.515
33441.144
33475.667
33511.650
33539.642
33550.893
33591.253
33632.312
33680.446
33687.478
33726.921
33768.523
33809.214
33849.765
33885.628
33919.965
33954.009
33978.828
33992.074
34024.781
34057.558
34090.799
34123.035
34153.998
34167.286
34204.326
34240.433
34276.254
34326.873
34362.430
34400.014
34420.933
34455.910
34495.422
34537.418
34570.190
34583.736
34626.286
34679.050
34715.827
Vessel D
kgal
31193.030
31222.964
31258.923
31294.511
31326.290
31359.131
31384.755
31394.955
31431.680
31468.958
31513.013
31519.573
31556.166
31594.581
31631.650
31668.188
31700.354
31731.361
31761.984
31783.939
31795.575
31824.494
31853.374
31882.497
31910.613
31937.630
31948.360
31981.906
32014.687
32046.857
32092.248
32124.187
32157.878
32176.238
32208.535
32244.280
32283.004
32312.854
32325.042
32363.506
32411.963
32445.225
Head Loss
Vessel A
psi
13/3
NR
NR
NR
7
NR
9
NR
9
9/6
6
NR
NR
NR
10
NR
NR
NR
11
7
NR
NR
NR
NR
NR
11/3
NR
NR
NR
8
NR
NR
10/5
6
NR
9.5
NR
10
11
11/7
NR
NR
Vessel B
psi
11/4
NR
NR
NR
6
NR
6
NR
8
9/6
6
NR
NR
NR
10
NR
NR
NR
10
7
NR
NR
NR
NR
NR
12/3
NR
NR
NR
7
NR
NR
8/4
6
NR
8
NR
9
9
11/4
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
70
NR
NR
NR
70
NR
68
NR
64
66
66
NR
NR
NR
70
NR
NR
NR
68
68
NR
NR
NR
NR
NR
73
NR
NR
NR
68
NR
NR
69
64
NR
69
NR
70
71
70
NR
NR
Effluent
psig
58
NR
NR
NR
60
NR
60
NR
59
58
59
NR
NR
NR
59
NR
NR
NR
58
58
NR
NR
NR
NR
NR
59
NR
NR
NR
58
NR
NR
59
56
NR
59
NR
59
61
58
NR
NR
AP
psi
12
NA
NA
NA
10
NA
8
NA
5
8
7
NA
NA
NA
11
NA
NA
NA
10
10
NA
NA
NA
NA
NA
14
NA
NA
NA
10
NA
NA
10
8
NA
10
NA
11
10
12
NA
NA
Head Loss
Vessel C
psi
11/3
NR
NR
NR
6
NR
6
NR
7
7/3
5
NR
NR
NR
8
NR
NR
NR
9
7
NR
NR
NR
NR
NR
12/6
NR
NR
NR
6
NR
NR
7/4
6
NR
6
NR
6
7
10/6
NR
NR
Vessel D
psi
9/2
NR
NR
NR
5
NR
4
NR
4
5/5
4
NR
NR
NR
7
NR
NR
NR
7
6
NR
NR
NR
NR
NR
11/6
NR
NR
NR
5
NR
NR
6/2
4
NR
6
NR
6
7
8/3
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
70
NR
NR
NR
69
NR
68
NR
63
66
64
NR
NR
NR
65
NR
NR
NR
68
68
NR
NR
NR
NR
NR
78
NR
NR
NR
68
NR
NR
64
64
NR
63
NR
70
70
70
NR
NR
Effluent
psig
58
NR
NR
NR
60
NR
60
NR
59
58
60
NR
NR
NR
59
NR
NR
NR
58
58
NR
NR
NR
NR
NR
59
NR
NR
NR
58
NR
NR
59
56
NR
59
NR
59
60
58
NR
NR
AP
psi
12
NA
NA
NA
9
NA
8
NA
4
8
4
NA
NA
NA
6
NA
NA
NA
10
10
NA
NA
NA
NA
NA
19
NA
NA
NA
10
NA
NA
5
8
NA
4
NA
11
10
12
NA
NA
                                                 A-24

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
149
150
151
152
153
154
Date
03/12/07
03/1 3/07
03/14/07
03/1 5/07
03/16/07
03/1 7/07
03/1 8/07
03/1 9/07
03/20/07
03/21/07
03/22/07
03/23/07
03/24/07
03/25/07
03/26/07
03/27/07
03/28/07
03/29/07
03/30/07
03/31/07
04/01/07
04/02/07
04/03/07
04/04/07
04/05/07
04/06/07
04/07/07
04/08/07
04/09/07
04/1 0/07
04/11/07
04/12/07
04/1 3/07
04/14/07
04/1 5/07
04/16/07
04/1 7/07
04/1 8/07
04/1 9/07
04/20/07
04/21/07
04/22/07
Operation Master Flow
Hours Meter
hr
3.9
1.5
5.2
5.8
5.8
2.3
5.6
5.9
5.3
0.2
5.9
3.2
6.9
5.8
4.0
1.7
6.1
5.9
5.2
1.9
6.0
1.5
6.0
4.0
6.7
0.8
5.2
2.6
4.3
7.6
5.4
5.2
1.0
6.3
6.8
4.0
4.8
4.7
5.6
4.4
4.6
4.4
gal
21880200
21934100
22127200
22339600
22554700
22641400
22848300
23069200
23265200
23275200
23493400
23607400
23863900
24079000
24229900
24292000
24519700
24738300
24931800
25001800
25225300
25280100
25506500
25653100
25900500
25928300
26121800
26219900
26378200
26658700
26854900
27047000
27085100
27324100
27575700
27725100
27903000
28074900
28281300
28443000
28611600
28791100
Vessel Flow Totalizer
Vessel A
kgal
38963.891
38974.762
39016.289
39061.531
39107.199
39128.064
39173.278
39222.250
39265.495
39267.602
39315.685
39340.437
39397.958
39450.750
39487.744
39502.688
39557.819
39610.368
39656.778
39673.522
39722.962
39735.152
39784.430
39816.638
39869.695
39875.955
39917.621
39939.066
39972.456
40032.086
40073.890
40115.534
40123.967
40177.835
40232.256
40264.612
40302.962
40340.355
40384.831
40419.335
40458.042
40497.891
Vessel B
kgal
40897.650
40909.768
40953.380
41001.247
41049.649
41069.851
41116.601
41167.877
41213.314
41215.493
41266.212
41292.298
41352.190
41406.733
41445.348
41460.808
41518.371
41573.512
41622.140
41638.643
41689.839
41702.591
41754.694
41788.861
41844.576
41851.958
41896.533
41919.566
41955.344
42019.604
42064.196
42105.433
42114.220
42169.901
42226.790
42268.924
42301 .602
42341 .347
42388.635
42425.336
42463.876
42505.515
Vessel C
kgal
34745.299
34756.084
34795.266
34838.680
34883.072
34900.512
34940.399
34984.297
35023.816
35025.621
35069.590
35092.563
35143.671
35180.919
35208.211
35219.020
35259.823
35299.221
35334.165
35347.636
35390.862
35401.541
35445.754
35474.519
35523.785
35529.309
35568.537
35588.532
35620.198
35677.540
35717.896
35753.556
35760.868
35808.162
35856.884
35886.610
35922.304
35957.117
35999.231
36032.489
36065.414
36100.274
Vessel D
kgal
32471 .670
32481 .306
32516.316
32554.745
32593.591
32608.444
32645.175
32684.958
32720.765
32722.369
32761.849
32782.347
32827.813
32860.835
32885.086
32894.633
32930.704
32965.289
32996.077
33007.216
33046.773
33056.500
33096.678
33122.743
33166.763
33171.605
33206.191
33223.815
33257.448
33301.293
33335.971
33366.311
33373.030
33416.155
33460.051
33486.598
33518.093
33548.596
33585.137
33613.701
33642.241
33674.505
Head Loss
Vessel A
psi
9
10
NR
NR
13/4
6
NR
NR
9
NR
NR
10/5
NR
NR
8
8
NR
NR
8/5
NR
NR
NR
NR
NR
10
NR
12
12
NR
NR
13/3
NR
NR
8
NR
11
11
13
NR
15/4
NR
8
Vessel B
psi
8
10
NR
NR
11/6
7
NR
NR
9
NR
NR
10/5
NR
NR
8
6
NR
NR
8/5
NR
NR
NR
NR
NR
10
NR
13
12
NR
NR
14/6
NR
NR
9
NR
11
11
12
NR
15/4
NR
7
Unit 1 (Vessels A & B)
Influent
psig
70
73
NR
NR
72
64
NR
NR
71
NR
NR
72
NR
NR
69
68
NR
NR
70
NR
NR
NR
NR
NR
78
NR
70
70
NR
NR
74
NR
NR
66
NR
70
71
72
NR
78
NR
70
Effluent
psig
60
61
NR
NR
58
56
NR
NR
62
NR
NR
60
NR
NR
60
58
NR
NR
58
NR
NR
NR
NR
NR
62
NR
60
58
NR
NR
60
NR
NR
57
NR
60
59
60
NR
62
NR
60
AP
psi
10
12
NA
NA
14
8
NA
NA
9
NA
NA
12
NA
NA
9
10
NA
NA
12
NA
NA
NA
NA
NA
16
NA
10
12
NA
NA
14
NA
NA
9
NA
10
12
12
NA
16
NA
10
Head Loss
Vessel C
psi
7
7
NR
NR
10/6
6
NR
NR
6
NR
NR
7/5
NR
NR
9
8
NR
NR
8/2
NR
NR
NR
NR
NR
10
NR
11
11
NR
NR
13/4
NR
NR
6
NR
10
10
11
NR
14/6
NR
6
Vessel D
psi
6
7
NR
NR
10/2
3
NR
NR
5
NR
NR
6/4
NR
NR
6
6
NR
NR
7/3
NR
NR
NR
NR
NR
7
NR
9
9
NR
NR
13/4
NR
NR
6
NR
7
7
7
NR
13/6
NR
4
Unit 2 (Vessels C & D)
Influent
psig
70
71
NR
NR
72
64
NR
NR
71
NR
NR
72
NR
NR
70
68
NR
NR
70
NR
NR
NR
NR
NR
71
NR
70
70
NR
NR
74
NR
NR
66
NR
70
70
71
NR
78
NR
70
Effluent
psig
60
61
NR
NR
58
56
NR
NR
61
NR
NR
60
NR
NR
60
58
NR
NR
58
NR
NR
NR
NR
NR
62
NR
60
59
NR
NR
60
NR
NR
57
NR
60
60
61
NR
62
NR
61
AP
psi
10
10
NA
NA
14
8
NA
NA
10
NA
NA
12
NA
NA
10
10
NA
NA
12
NA
NA
NA
NA
NA
9
NA
10
11
NA
NA
14
NA
NA
9
NA
10
10
10
NA
16
NA
9
                                                 A-25

-------
Table A-l. U.S. EPA Arsenic Demonstration Project at Brown City, MI - Daily System Operation Log Sheet (Continued)
Week
No.
155
156
Date
04/23/07
04/24/07
04/25/07
04/26/07
04/27/07
04/28/07
04/29/07
04/30/07
05/01/07
05/02/07
Operation Master Flow
Hours Meter
hr
5.2
5.5
4.7
4.6
4.8
5.8
5.2
4.9
4.6
4.7
gal
28967300
29166400
29336800
29506800
29679400
29903600
30084300
30267000
30436800
30610100
Vessel Flow Totalizer
Vessel A
kgal
40536.348
40580.007
40616.534
40652.572
40688.934
40739.315
40779.536
40819.971
40857.170
40895.134
Vessel B
kgal
42545.984
42592.225
42631 .767
42671 .226
42711.587
42764.028
42805.908
42848.246
42887.740
42928.037
Vessel C
kgal
36134.178
36173.788
36208.072
36242.545
36277.811
36322.778
36357.155
36392.332
36425.044
36459.020
Vessel D
kgal
33706.310
33742.261
33772.995
33803.651
33834.764
33873.406
33906.096
33939.211
33970.059
34001.562
Head Loss
Vessel A
psi
10
NR
NR
NR
NR
NR
NR
NR
NR
NR
Vessel B
psi
10
NR
NR
NR
NR
NR
NR
NR
NR
NR
Unit 1 (Vessels A & B)
Influent
psig
72
NR
NR
NR
NR
NR
NR
NR
NR
NR
Effluent
psig
60
NR
NR
NR
NR
NR
NR
NR
NR
NR
AP
psi
12
NA
NA
NA
NA
NA
NA
NA
NA
NA
Head Loss
Vessel C
psi
8
NR
NR
NR
NR
NR
NR
NR
NR
NR
Vessel D
psi
8
NR
NR
NR
NR
NR
NR
NR
NR
NR
Unit 2 (Vessels C & D)
Influent
psig
70
NR
NR
NR
NR
NR
NR
NR
NR
NR
Effluent
psig
61
NR
NR
NR
NR
NR
NR
NR
NR
NR
AP
psi
9
NA
NA
NA
NA
NA
NA
NA
NA
NA
                                                 A-26

-------
   APPENDIX B




ANALYTICAL DATA

-------
                                     Table B-l Analytical Results from Long-Term Sampling, Brown City, MI
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/Lw
mg/Lw
mg/Lw
Hg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
5/18/04
IN
-
238
-
-
<0.10
10.2
-
1.5
NA(C)
14.3
4.2([1)
4
-
-
-
28.7
-
-
-
-
168
-
14.3
-
TA
0.4
234
-
-
<0.10
17.4
-
0.5
NA(C)
13.8
4.4(0
3
-
-
-
1.1
-
-
-
-
<25
-
<0.5
-
TB
0.4
217
-
-
<0.10
2.3
-
0.4
NA(C)
12.8
4.7W
2
-
-
-
0.5
-
-
-
-
<25
-
<0.5
-
TC
0.4
234
-
-
<0.10
2.7
-
0.5
NA(C)
12.3
1.8
3
-
-
-
2.3
-
-
-
-
<25
-
1.5
-
TD
0.4
234
-
-
<0.10
3.1
-
0.9
NA(C)
12.3
1.7
2
-
-
-
2.5
-
-
-
-
<25
-
2.1
-
5/25/04
IN
-
246
1.5
95
<0.10
7.9
<0.04
1.4
8.2
12.4
1.7
3
110
77.7
32.1
15.6
13.4
2.2
13.1
0.3
149
139
15.5
15.8
TT
0.8
246
1.5
73
<0.10
5.0
<0.04
0.4
7.9
11.0
0.7
7
93.1
63.5
29.6
2.1
1.8
0.3
1.9
<0.1
<25
<25
1.3
1.6
6/08/04
IN
-
228
-
-
<0.10
8.6
-
1.1
8.5
11.7
1.0
10
-
-
-
15.1
-
-
-
-
101
-
17
-
TA
1.9
236
-
-
<0.10
7.2
-
0.3
8.0
11.7
1.6
7
-
-
-
0.6
-
-
-
-
<25
-
0.7
-
TB
1.9
236
-
-
<0.10
7.0
-
0.3
7.9
11.7
1.2
7
-
-
-
1.0
-
-
-
-
<25
-
0.7
-
TC
1.8
240
-
-
<0.10
7.1
-
0.8
7.9
11.3
0.7
8
-
-
-
3.2
-
-
-
-
<25
-
2.9
-
TD
1.8
236
-
-
<0.10
7.0
-
0.8
7.9
11.2
1.3
7
-
-
-
2.9
-
-
-
-
<25
-
2.7
-
6/24/04
-------
                            Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L*>
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L(a)
mg/L(a)
mg/Lw
re/L
re/L
jjg/L
re/L
jjg/L
re/L
re/L
Hg/L
Hg/L
7/06/04
IN
-
218
-
-
<0.10
9.5
-
2.3
8.0
11.9
2.5
7
-
-
-
21.5
-
-
-
-
228
-
17.0
-
TA
3.8
214
-
-
<0.10
7.5
-
0.4
7.9
11.7
1.4
5
-
-
-
0.7
-
-
-
-
<25
-
2.2
-
TB
3.8
214
-
-
<0.10
8.1
-
0.6
7.9
11.6
1.6
5
-
-
-
0.7
-
-
-
-
<25
-
3.8
-
TC
3.5
202
-
-
<0.10
7.5
-
0.6
7.9
11.6
2.7
4
-
-
-
0.8
-
-
-
-
<25
-
4.7
-
TD
3.6
214
-
-
<0.10
7.8
-
0.4
7.9
11.7
2.2
4
-
-
-
0.4
-
-
-
-
<25
-
2.4
-
7/20/04
IN
-
277
1.3
56
<0.10
14.3
NA(C)
0.8
8.0
11.7
2.4
9
111
66.4
44.8
15.6
14.9
0.7
14.2
0.7
157
135
12.3
13.4
TT
4.6
223
1.4
79
<0.10
7.2
NA(C)
0.6
7.9
13.4
1.5
13
131
91.1
40.0
0.7
0.6
0.1
0.9
<0.1
<25
<25
2.9
2.7
8/03/04
IN
-
236
236
-
-
<0.10
<0.10
8.3
8.7
-
0.2
1.2
7.6
11.6
2.3
12
-
-
-
14.5
14.3
-
-
-
-
164
167
-
18.3
18.5
-
TA
5.7
217
236
-
-
<0.10
<0.10
8.0
7.8
-
0.3
0.2
7.6
11.7
2.0
13
-
-
-
1.2
1.6
-
-
-
-
<25
<25
-
11.4
9.6
-
TB
5.7
225
236
-
-
<0.10
<0.10
8.1
7.8
-
0.3
0.5
7.6
11.7
1.9
13
-
-
-
2.0
2.1
-
-
-
-
<25
<25
-
14.2
12.5
-
TC
5.2
236
236
-
-
<0.10
<0.10
7.7
7.7
-
0.3
0.2
7.6
11.8
1.4
14
-
-
-
0.8
1.2
-
-
-
-
<25
<25
-
12.5
12.3
-
TD
5.2
256
240
-
-
<0.10
<0.10
7.6
7.6
-
0.1
0.2
7.6
11.7
2.3
16
-
-
-
1.6
1.8
-
-
-
-
<25
<25
-
13.4
13.4
-
8/17/04
IN
-
233
1.4
59
<0.10
8.7
<0.04
0.5
8.0
11.8
1.7
18
82.9
55.0
27.9
13.1
12.9
0.2
12.9
<0.1
108
105
12.6
12.7
TT
6.4
164
1.8
82
<0.10
7.9
<0.04
0.1
7.9
11.6
1.4
31
99.2
71.4
27.8
2.8
2.2
0.6
2.0
0.2
<25
<25
13.0
14.0
(a) As CaCO3.  (b) As PO4. (c) Sample out of holding time for laboratory analysis.
IN = inlet; TA = after tank A; TB = after tank B; TC = after tank C; TD = after tank D; TT = after tanks combined.
NA = data not available.

-------
                             Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L(a)
mg/L(a)
mg/L(a)
re/L
re/L
re/L
re/L
Hg/L
|xg/L
Hg/L
|xg/L
Hg/L
8/31/04
IN
-
241
-
-
<0.10
8.3
-
0.9
8.0
11.2
5.6(c)
24
-
-
-
14.9
-
-
-
-
115
-
13.7
-
TA
8.0
241
-
-
<0.10
8.0
-
0.2
7.9
11.0
2.0
29
-
-
-
1.4
-
-
-
-
<25
-
13.2
-
TB
8.0
241
-
-
<0.10
7.5
-
0.3
7.9
11.1
2.0
30
-
-
-
2.1
-
-
-
-
<25
-
15.5
-
TC
7.1
241
-
-
<0.10
7.6
-
0.3
7.9
11.2
1.7
29
-
-
-
1.8
-
-
-
-
<25
-
15.6
-
TD
7.2
245
-
-
<0.10
7.5
-
0.1
7.9
11.2
2.3
28
-
-
-
2.2
-
-
-
-
<25
-
17.1
-
9/14/04
IN
-
242
1.8
120
<0.06
7.7
<0.04
0.6
7.9
11.2
2.2
47
98.4
75.9
22.5
9.5
9.6
<0.1
9.0
0.6
159
127
17.0
16.5
TT
8.5
242
1.8
120
<0.06
7.6
<0.04
0.2
7.9
11.2
1.6
33
100
77.0
23.3
3.6
3.5
0.1
3.3
0.2
35.0
<25
19.7
19.1
9/28/04
IN
-
234
-
-
<0.06
8.4
-
0.8
8.0
11.2
1.9
58
-
-
-
12.6
-
-
-
-
160
-
15.0
-
TA
10.1
230
-
-
<0.06
7.8
-
0.2
7.9
11.1
1.6
45
-
-
-
2.4
-
-
-
-
<25
-
20.5
-
TB
10.1
234
-
-
<0.06
7.8
-
0.3
7.8
11.5
1.6
38
-
-
-
2.8
-
-
-
-
<25
-
21.8
-
TC
9.0
238
-
-
<0.06
7.5
-
0.2
7.9
11.6
1.9
36
-
-
-
2.2
-
-
-
-
<25
-
19.2
-
TD
9.0
234
-
-
<0.06
7.4
-
0.3
7.8
12.0
1.6
34
-
-
-
3.0
-
-
-
-
<25
-
22.0
-
10/12/04
IN
-
231
3.3
54
<0.06
9.2
<0.04
2.1
7.9
10.3
1.4
24
104
62.9
41.2
15.6
15.8
<0.1
14.2
1.6
203
135
16.6
14.8
TT
10.4
236
1.6
74
<0.06
7.3
<0.04
0.6
7.9
10.2
1.8
18
87.5
61.4
26.1
2.6
2.4
0.2
<1.0(tl)
2.4
<25
<25
22.4
19.3
(a) As CaCO3. (b) As PO4. (c) Sample was potentially aerated by operator,  (d) Rerun sample was diluted 10 times due to insufficient quantity for analysis.
IN = inlet; TA = after tank A; TB = after tank B; TC = after tank C; TD = after tank D; TT = after tanks combined.

-------
                             Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(!l)
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L(a)
mg/L(a)
mg/L(a)
re/L
re/L
re/L
re/L
|xg/L
re/L
Hg/L
re/L
|xg/L
ll/02/04(c)
IN
-
246
242
-
-
<0.06
<0.06
7.9
8.1
-
0.7
0.7
8.0
10.9
2.1
69
-
-
-
12.4
12.9
-
-
-
-
165
152
-
13.8
13.3
-
TA
12.5
246
246
-
-
<0.06
<0.06
7.5
7.6
-
0.6
0.6
7.9
10.8
1.3
62
-
-
-
4.3
5.2
-
-
-
-
<25
<25
-
16.5
17.3
-
TB
12.5
246
246
-
-
<0.06
<0.06
7.6
7.7
-
0.7
0.5
7.8
10.9
1.4
57
-
-
-
7.8
8.7
-
-
-
-
<25
<25
-
17.3
17.2
-
TC
11.0
250
250
-
-
<0.06
<0.06
7.5
7.5
-
0.3
0.3
7.8
10.9
1.4
54
-
-
-
7.8
7.6
-
-
-
-
<25
<25
-
21.7
22.8
-
TD
11.0
250
250
-
-
<0.06
<0.06
7.6
7.6
-
0.3
0.3
7.8
10.9
1.2
53
-
-
-
8.0
7.9
-
-
-
-
<25
<25
-
23.7
25.0
-
11/16/04
IN
-
246
1.4
62
<0.06
8.3
<0.04
0.9
7.9
11.0
1.7
88
71.2
41.8
29.4
12.1
11.7
0.4
12.0
<0.1
142
108
13.7
13.0
TT
12.5
250
1.5
85
<0.06
7.6
<0.04
0.4
7.7
11.4
1.5
77
92.1
60.1
32.0
7.1
6.2
0.9
5.3
0.9
<25
<25
20.5
19.9
11/30/04
IN
-
234
-
-
<0.06
8.5
-
0.5
7.9
11.0
2.1
106
-
-
-
11.6
-
-
-
-
144
-
13.1
-
TA
14.1
236
-
-
<0.06
7.7
-
0.2
7.8
10.9
1.5
99
-
-
-
2.4
-
-
-
-
<25
-
18.1
-
TB
13.7
236
-
-
<0.06
7.5
-
0.1
7.8
10.9
1.8
102
-
-
-
3.6
-
-
-
-
<25
-
16.1
-
TC
12.2
240
-
-
<0.06
7.5
-
0.3
7.7
10.8
1.4
104
-
-
-
3.8
-
-
-
-
<25
-
19.5
-
TD
12.4
240
-
-
<0.06
7.6
-
0.3
7.7
10.7
1.9
104
-
-
-
4.1
-
-
-
-
<25
-
20.5
-
12/14/04
IN
-
240
1.6
100
<0.06
8.3
<0.04
0.8
NA(tl)
NA(tl)
NA(tl)
NA(tl)
113
81.1
31.7
16.4
13.3
3.1
13.4
<0.1
161
136
15.0
14.5
TT
13.8
236
1.6
97
<0.06
7.9
<0.04
0.3
NA(d)
NA([1)
NA(d)
NA([1)
111
78.6
32.7
7.9
6.8
1.1
7.0
<0.1
<25
<25
20.4
19.9
(a) As CaCO3. (b) As PO4. (c) Vessel B did not
IN = inlet; TA = after tank A; TB = after tank B;
NA = data not available.
fast rinse properly during
TC = after tank C; TD =
> 10/22/04 backwash, possibly affecting TB sample,  (d) Field meter was not functional during this event.
after tank D; TT = after tanks combined.

-------
                            Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
NO3-N
Turbidity
PH
Temperature
DO
ORP
Total Hardness
Ca Hardness
Mg
As (total)
As (total
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
rng/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L(a)
mg/L(a)
mg/L(a)
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
1/05/05
-------
                          Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
NO3-N
Turbidity
PH
Temperature
DO
ORP
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L(a)
mg/L(a)
mg/L«
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
jjg/L
3/15/05
IN
-
245
-
-
<0.05
9.6
-
0.8
8.1
10.9
1.6
-32
-
-
-
19.6
-
-
-
-
226
-
17.1
-
TA
21.4
254
-
-
<0.05
8.6
-
0.2
8.1
10.8
1.5
-27
-
-
-
5.1
-
-
-
-
<25
-
20.5
-
TB
20.5
254
-
-
<0.05
8.3
-
0.2
8.0
10.9
1.6
-26
-
-
-
6.4
-
-
-
-
33.1
-
21.6
-
TC
18.5
259
-
-
<0.05
8.5
-
0.3
8.0
10.8
1.8
-29
-
-
-
8.7
-
-
-
-
124
-
27.4
-
TD
18.6
254
-
-
<0.05
8.4
-
0.3
8.0
10.9
1.6
-30
-
-
-
7.1
-
-
-
-
92.1
-
18.9
-
3/29/05
IN
-
248
-
-
<0.05
7.9
-
0.7
8.0
10.7
2.1
-51
-
-
-
10.2
-
-
-
-
110
-
12.8
-
TA
22.3
248
-
-
<0.05
8.0
-
0.2
7.9
10.4
1.6
-50
-
-
-
5.6
-
-
-
-
31.6
-
17.0
-
TB
21.5
248
-
-
<0.05
7.8
-
0.2
8.0
10.5
1.4
-47
-
-
-
8.4
-
-
-
-
26.7
-
17.4
-
TC
19.4
248
-
-
<0.05
7.9
-
0.4
8.0
10.5
1.8
-49
-
-
-
10.6
-
-
-
-
82.3
-
17.4
-
TD
19.4
265
-
-
<0.05
7.7
-
0.5
8.0
10.5
2.2
-49
-
-
-
11.0
-
-
-
-
130
-
18.7
-
4/13/05
IN
-
277
268
-
-
<0.05
<0.05
8.3
7.8
-
0.9
1.1
8.1
10.4
1.9
-21
-
-
-
12.4
11.8
-
-
-
-
153
153
-
18.1
18.8
-
TA
23.3
273
268
-
-
<0.05
<0.05
7.8
7.8
-
0.4
0.3
7.9
10.7
1.6
-19
-
-
-
7.6
8.7
-
-
-
-
<25
<25
-
21.0
22.7
-
TB
22.6
268
268
-
-
<0.05
<0.05
7.9
8.1
-
0.3
0.3
8.0
10.6
1.6
-20
-
-
-
9.3
9.6
-
-
-
-
37.2
32.0
-
22.2
21.8
-
TC
20.3
268
268
-
-
<0.05
<0.05
8.2
7.8
-
0.6
0.5
8.0
10.5
1.6
-21
-
-
-
10.0
10.4
-
-
-
-
98.0
111
-
20.9
22.8
-
TD
20.3
264
272
-
-
<0.05
<0.05
7.8
7.9
-
0.5
0.6
8.0
10.6
1.7
-19
-
-
-
10.6
10.6
-
-
-
-
119
112
-
23.2
22.7
-
(a) As CaCO3. (b) As PO4.
IN = inlet; TA = after tank A; TB = after tank B; TC = after tank C; TD = after tank D; TT = after tanks combined.

-------
                             Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
NO3-N
Turbidity
PH
Temperature
DO
ORP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg
U™A»~c,c,
As (total)
As (total
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L<">
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/L(a)
mg/Lw
mg/L(a)
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
4/26/05
IN
-
284
1.5
132
<0.05
7.9
<0.05
0.6
8.0
11.1
3.1
46
-
-
119
91.5
27.6
12.5
13.3
<0.1
11.2
2.1
163
149
17.3
17.6
TT
22.3
271
1.5
135
<0.05
7.8
<0.05
0.4
8.0
11.0
1.8
43
-
-
123
93.1
29.8
12.8
12.1
0.7
10.2
1.9
79.0
54.3
19.7
19.5
5/10/05
IN
-
259
-
-
<0.05
9.4
-
0.9
8.0
11.1
1.4
-21
-
-
-
-
-
14.7
-
-
-
-
164
-
15.2
-
TA
25.0
254
-
-
<0.05
8.2
-
0.2
8.0
11.0
1.3
-21
-
-
-
-
-
6.9
-
-
-
-
149
-
19.9
-
TB
24.2
268
-
-
<0.05
8.2
-
0.2
8.0
11.1
1.6
-20
-
-
-
-
-
7.8
-
-
-
-
139
-
19.4
-
TC
21.7
254
-
-
<0.05
7.8
-
1.1
8.0
10.9
1.5
-20
-
-
-
-
-
9.3
-
-
-
-
235
-
18.2
-
TD
21.8
255
-
-
<0.05
7.7
-
0.6
8.0
10.9
1.1
-22
-
-
-
-
-
7.7
-
-
-
-
134
-
17.4
-
5/24/05
-------
                                Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
NO3-N
Turbidity
PH
Temperature
DO
$RP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg
U™A»~c,c,
As (total)
As (total
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/Lw
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/Lw
mg/L«
mg/Lw
re/L
|xg/L
Hg/L
re/L
Hg/L
re/L
Hg/L
re/L
re/L
6/22/05
IN
-
242
1.4
82
<0.05
7.8
2.7
1.1
NA(C)
NA(C)
NA(C)
NA(C)
-
-
92.7
66.2
26.5
11.1
11.7
<0.1
11.5
0.2
154
143
15.3
15.8
AC
-
-
-
-
-
-
-
-
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
-
-
-
-
-
-
-
-
-
-
-
-
TT
26.0
220
1.4
74
<0.05
8.2
<0.05
1.3
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
103
72.3
30.8
0.9
0.6
0.3
1.1
<0.1
<25
<25
8.2
8.4
7/05/05
IN
-
238
-
-
<0.05
8.5
-
0.6
8.0
12.1
1.5
142
-
-
-
-
-
11.5
-
-
-
-
139
-
13.6
-
AC
-
-
-
-
-
-
-
-
-
-
-
-
0.4
0.5
-
-
-
-
-
-
-
-
-
-
-
-
TA
29.2
220
-
-
<0.05
8.2
-
<0.1
8.1
11.8
1.4
143
0.7
0.5
-
-
-
0.6
-
-
-
-
<25
-
7.7
-
TB
28.6
238
-
-
<0.05
7.9
-
0.1
8.0
11.8
1.3
143
0.4
0.5
-
-
-
0.7
-
-
-
-
<25
-
7.2
-
TC
25.3
238
-
-
<0.05
8.1
-
0.1
8.0
11.9
1.4
143
0.4
0.5
-
-
-
1.0
-
-
-
-
<25
-
6.0
-
TD
25.3
238
-
-
<0.05
7.8
-
0.1
8.0
11.8
1.4
143
0.4
0.5
-
-
-
1.2
-
-
-
-
<25
-
5.5
-
7/19/05
IN
-
242
1.6
136
<0.05
7.0
<0.05
0.7
NA(C)
NA(C)
NA(C)
NA(C)
-
-
99.6
73.5
26.1
13.5
11.0
2.5
10.1
0.9
160
128
16.8
17.7
AC
-
-
-
-
-
-
-
-
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
-
-
-
-
-
-
-
-
-
-
-
-
TT
28.2
246
1.5
136
<0.05
7.1
<0.05
0.5
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
99.2
73.7
25.5
4.9
3.6
1.3
2.8
0.8
<25
<25
7.1
7.6
8/02/05
IN
-
220
-
-
<0.05
9.1
-
0.9
8.1
12.9
NA(tl)
159
-
-
-
-
-
24.3
-
-
-
-
272
-
17.0
-
AC
-
-
-
-
-
-
-
-
-
-
-
-
0.4
0.5
-
-
-
-
-
-
-
-
-
-
-
-
TA
31.3
229
-
-
<0.05
8.1
-
0.8
8.0
13.0
NA(d)
161
0.4
0.5
-
-
-
1.2
-
-
-
-
<25
-
7.6
-
TB
31.3
229
-
-
<0.05
7.9
-
0.7
8.1
13.5
NA(tl)
163
0.4
0.5
-
-
-
0.6
-
-
-
-
<25
-
7.6
-
TC
27.5
233
-
-
<0.05
7.8
-
0.7
8.0
13.5
NA([1)
162
0.4
0.5
-
-
-
0.7
-
-
-
-
<25
-
6.1
-
TD
27.2
246
-
-
<0.05
7.7
-
0.3
8.0
13.9
NA(tl)
162
0.4
0.5
-
-
-
0.8
-
-
-
-
<25
-
5.6
-
(a) As CaCO3. (b) As PO4. (c) Operator was unable to take water quality measurements, (d) DO Probe was not operational.
IN = inlet; AC = after prechlorination; TA = after tank A; TB = after tank B; TC = after tank C; TD = after tank D; TT = after tanks combined.
NA = data not available.

-------
                                Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/Lw
mg/Lw
mg/L(a)
re/L
re/L
re/L
re/L
|xg/L
Hg/L
|xg/L
Hg/L
|xg/L
8/16/05
IN
-
255
1.4
120
<0.05
7.6
<0.05
0.6
8.1
12.1
NA(C)
149
-
-
120
90.4
29.1
11.0
11.5
<0.1
10.3
1.1
163
152
18.8
19.1
AC
-
255
1.5
112
<0.05
7.8
<0.05
0.1
-
-
-
-
NA(tl)
0.5
118
85.3
32.4
15.0
10.7
4.3
3.2
7.5
164
<25
17.1
8.7
TT
30.7
251
1.4
109
<0.05
8.0
0.3
<0.1
8.0
12.2
NA(C)
152
0.4
0.5
117
84.4
32.7
6.3
5.7
0.7
3.3
2.4
<25
<25
8.4
8.7
9/06/05
IN
-
233
-
-
<0.05
9.4
-
1.1
8.1
12.1
NA(C)
147
-
-
-
-
-
21.3
-
-
-
-
205
-
18.7
-
AC
-
-
-
-
-
-
-
-
-
-
-
-
0.4
0.5
-
-
-
-
-
-
-
-
-
-
-
-
TA
34.3
238
-
-
<0.05
8.4
-
0.8
8.0
12.1
NA(C)
154
0.4
0.5
-
-
-
0.6
-
-
-
-
<25
-
8.0
-
TB
34.8
233
-
-
<0.05
8.1
-
0.3
8.0
12.1
NA(C)
155
0.4
0.5
-
-
-
0.6
-
-
-
-
<25
-
8.0
-
TC
30.0
242
-
-
<0.05
8.4
-
0.5
8.0
12.1
NA(C)
156
0.4
0.5
-
-
-
0.7
-
-
-
-
<25
-
7.1
-
TD
29.7
246
-
-
<0.05
8.2
-
0.5
8.0
12.1
NA(C)
156
0.4
0.5
-
-
-
1.0
-
-
-
-
<25
-
6.5
-
9/13/05
IN
-
233
-
-
<0.05
9.2
-
1.0
NA([1)
NA([1)
NA<[1)
NA([1)
-
-
-
-
-
16.0
-
-
-
-
240
-
18.2
-
AC
-
-
-
-
-
-
-
-
-
-
-
-
NA<[1)
NA([1)
-
-
-
-
-
-
-
-
-
-
-
-
TA
35.0
229
-
-
<0.05
8.4
-
0.2
NA([1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
-
-
-
0.9
-
-
-
-
<25
-
8.4
-
TB
35.6
242
-
-
<0.05
8.1
-
0.2
NA<[1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
-
-
-
0.6
-
-
-
-
68.2
-
8.7
-
TC
30.6
229
-
-
<0.05
8.4
-
0.1
NA([1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
-
-
-
0.5
-
-
-
-
<25
-
8.0
-
TD
30.3
242
-
-
<0.05
8.2
-
<0.1
NA<[1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
-
-
-
0.6
-
-
-
-
255
-
7.7
-
9/28/05
IN
-
233
1.4
44
<0.05
11.4
<0.05
0.9
NA([1)
NA([1)
NA<[1)
NA([1)
-
-
99.1
60.4
38.7
14.7
14.8
<0.1
14.3
0.5
178
144
16.6
16.5
AC
-
242
1.4
51
<0.05
10.4
<0.05
0.1
NA<[1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
80.7
53.9
26.9
11.9
11.2
0.7
1.5
9.7
124
<25
13.1
8.5
TT
34.0
251
1.4
61
<0.05
10.0
<0.05
<0.1
NA([1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
91.6
63.7
27.9
3.3
3.2
<0.1
2.4
0.8
<25
<25
8.0
8.7
(a) As CaCO3. (b) As PO4. (c). DO Probe was not operational.
IN = inlet; AC = after prechlorination; TA = after tank A; TB =
NA = data not available.
(d) Water quality parameter not measured.
after tank B; TC = after tank C; TD = after tank D; TT = after tanks combined.

-------
                                       Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Cd
o
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Orthophosphate
Total P (as PO4)
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L*'
mg/L^
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/Lw
mg/Lw
mg/L(!l)
re/L
re/L
re/L
re/L
|xg/L
Hg/L
|xg/L
Hg/L
|xg/L
10/18/05
-------
                               Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Sulfide
Total P (as PO4)
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L
mg/L**
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/L(a)
mg/L(a)
mg/Lw
Mg/L
re/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
3/01/06
IN
-
232
1.4
54
-
<0.03
10.3
<0.05
2.1
7.7
11.7
1.4
259
-
-
118
68.9
49.5
21.4
15.7
5.8
15.2
0.5
215
164
18.6
17.6
AC
-
249
1.5
69
-
<0.03
8.2
<0.05
0.4
7.8
11.8
1.6
303
0.3
0.4
77.7
49.9
27.9
13.6
9.8
3.8
0.8
9.0
104
<25
12.6
7.5
TT
41.5
240
1.5
77
-
<0.03
7.8
<0.05
0.6
7.7
11.4
1.5
307
0.3
0.4
89.2
60.6
28.6
1.6
1.2
0.3
1.1
0.1
<25
<25
8.4
8.6
3/21/06
IN
-
239
1.3
56
-
<0.01
9.8
<0.05
1.9
7.9
12.1
1.5
314
-
-
108
67.2
40.6
15.3
13.2
2.0
13.4
<0.1
165
192
15.8
15.7
AC
-
239
1.4
83
-
<0.01
7.7
<0.05
0.3
7.8
11.7
1.4
319
0.4
0.4
95.3
68.7
26.6
13.0
10.8
2.2
1.7
9.1
108
<25
13.6
8.2
TT
42.7
234
1.3
70
-
<0.01
8.2
<0.05
0.6
7.8
11.5
1.3
316
0.3
0.4
105
77.6
27.5
0.7
0.6
0.1
1.0
<0.1
<25
<25
8.5
8.5
4/18/06
IN
-
256
1.9
70
-
<0.01
8.0
<0.05
0.6
7.7
15.0
2.1
331
-
-
84.7
49.8
34.9
12.0
11.3
0.7
10.6
0.8
131
129
13.9
14.0
AC
-
264
<0.1
116
-------
                                Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Sulfide
Total P (as PO4)
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L(a)
mg/L
mg/L
mg/L
mg/L**
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/L(a)
mg/L(a)
mg/Lw
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
08/14/06
IN
-
NA(tl)
NA(tl)
NA(tl)
NA(tl)
<0.01
NA([1)
NA<[1)
NA([1)
7.9
12.1
1.5
315
-
-
133
77.7
55.5
24.4
16.7
7.7
15.8
0.9
230
167
19.1
17.6
AC
-
NA(tl)
NA(tl)
NA(tl)
NA(tl)
<0.01
NA([1)
NAW
NA([1)
7.7
11.9
1.6
342
0.3
0.4
82.5
55.9
26.6
12.4
9.9
2.5
0.7
9.2
113
<25
13.0
7.3
TT
52.6
NA([1)
NA(d)
NA([1)
NA(d)
<0.01
NA(tl)
NA(d)
NA(tl)
7.7
12.0
1.6
342
0.3
0.4
95.5
69.5
26.0
0.6
0.6
<0.1
0.6
<0.1
<25
<25
8.4
8.5
09/19/06
IN
-
NA([1)
NA(d)
NA([1)
NA(d)
<0.01
NA(tl)
NA(d)
NA(tl)
7.8
12.6
2.0
357
-
-
118
87.7
29.9
12.3
10.9
1.4
9.9
1.0
166
160
17.4
17.1
AC
-
NA([1)
NA(d)
NA([1)
NA(d)
<0.01
NA(tl)
NA(d)
NA(tl)
7.7
12.4
1.4
362
0.3
0.3
118
87.7
29.9
11.9
9.2
2.8
0.8
8.4
151
<25
17.3
15.2
TT
54.7
NA([1)
NA(d)
NA([1)
NA(d)
<0.01
NA(tl)
NA(d)
NA(tl)
7.7
12.3
1.2
370
0.3
0.3
114
83.3
30.9
1.8
1.6
0.2
0.7
1.0
<25
<25
9.5
9.5
10/17/06
IN
-
NA([1)
NA(d)
NA([1)
NA(d)
NA(e)
NA(tl)
NA(d)
NA(tl)
7.9
12.2
1.6
314
-
-
NA®
NA®
NA®
19.9
16.9
3.0
14.4
2.5
226
195
18.2
18.1
AC
-
NA([1)
NA(d)
NA([1)
NA(d)
NA(e)
NA(tl)
NA(d)
NA(tl)
7.7
11.9
1.5
368
0.4
0.4
NA®
NA®
NA®
14.0
10.5
3.5
0.6
9.9
118
<25
13.3
9.0
TT
56.2
NA(tl)
NA(tl)
NA(tl)
NA(tl)
NA(e)
NA([1)
NA([1)
NA([1)
7.7
12.0
1.7
370
0.4
0.4
NA®
NA®
NA®
1.4
1.1
0.2
0.6
0.5
<25
<25
12.0
11.5
11/28/06
IN
-
NA(tl)
NA(tl)
NA(tl)
NA(tl)
<0.01
NA<[1)
NA([1)
NA<[1)
7.8
12.4
1.7
358
-
-
NA®
NA®
NA®
20.8
20.0
0.8
20.6
<0.1
260
245
17.9
17.5
AC
-
NA(tl)
NA(tl)
NA(tl)
NA(tl)
<0.01
NA<[1)
NA([1)
NA([1)
7.7
11.9
1.4
364
0.4
0.4
NA®
NA®
NA®
11.4
9.3
2.1
0.8
8.5
158
112
15.1
15.0
TT
58.5
NA(tl)
NA(tl)
NA(tl)
NA(tl)
<0.01
NA<[1)
NA([1)
NA<[1)
7.7
12.1
1.6
365
0.4
0.4
NA®
NA®
NA®
0.8
0.8
<0.1
0.8
<0.1
<25
<25
10.2
9.9
12/12/06
IN
-
NA(tl)
NA(tl)
NA(tl)
NA(tl)
NA(e)
NA<[1)
NA([1)
NA([1)
7.7
13.1
2.1
389
-
-
NA®
NA®
NA®
29.6
29.8
<0.1
30.2
<0.1
278
285
18.1
19.7
AC
-
NA(tl)
NA(tl)
NA(tl)
NA(tl)
NA(e)
NA<[1)
NA([1)
NA<[1)
7.7
12.4
1.8
419
0.4
0.4
NA®
NA®
NA®
13.5
11.4
2.1
0.8
10.6
131
<25
14.6
7.2
TT
59.2
NA(tl)
NA(tl)
NA(tl)
NA(tl)
NA(e)
NA<[1)
NA([1)
NA([1)
7.5
12.2
1.6
421
0.4
0.4
NA®
NA®
NA®
0.8
0.8
<0.1
0.7
0.1
<25
<25
11.2
11.3
01/22/07
IN
-
NA(tl)
NA(tl)
63
NA(tl)
NA(e)
NA<[1)
NA([1)
NA<[1)
7.8
12.3
1.9
360.1
-
-
NA®
NA®
NA®
16.9
14.7
2.1
14.2
0.5
245
197
17.0
15.8
AC
-
NA(tl)
NA(tl)
87
NA(tl)
NA(e)
NA<[1)
NA([1)
NA([1)
7.7
12.4
1.6
380.1
0.4
0.4
NA®
NA®
NA®
13.1
11.3
1.8
0.9
10.5
169
62.2
14.5
10.1
TT
61.7
NA(tl)
NA(tl)
110
NA(tl)
NA(e)
NA<[1)
NA([1)
NA<[1)
7.7
12.5
1.8
381.1
0.4
0.4
NA®
NA®
NA®
1.9
1.6
0.3
0.8
0.8
<25
<25
6.0
6.0
(a) As CaCO3. (b) As PO4. (c) Samples reanalyzed outside of hold time, (d) Alkaline samples not taken, (e) Total P samples not analyzed,  (f) Hardness samples not analyzed.
IN = inlet; AC = after prechlorination; TA = after tank A; TB = after tank B; TC = after tank C; TD = after tank D; TT = after tanks combined.

-------
 Table B-l Analytical Results from Long-Term Sampling, Brown City, MI (Continued)
Sampling Date
Sampling Location
Parameter Unit
Bed Volume
Alkalinity
Fluoride
Sulfate
Sulfide
Total P (as PO4)
Silica (as SiO2)
N03-N
Turbidity
PH
Temperature
DO
ORP
Free Chlorine
Total Chlorine
Total Hardness
Ca Hardness
Mg Hardness
As (total)
As (total soluble)
As (particulate)
As (III)
As(V)
Fe (total)
Fe (soluble)
Mn (total)
Mn (soluble)
103
mg/L«
mg/L
mg/L
mg/L
mg/L*'
mg/L
mg/L
NTU
-
°C
mg/L
mV
mg/L
mg/L
mg/Lw
mg/L(a)
mg/L(a)
Hg/L
|xg/L
Hg/L
|xg/L
re/L
re/L
re/L
re/L
re/L
02/27/07
IN
-
NA(C)
NA(C)
57
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
7.7
12.3
1.8
379
-
-
NA(C)
NA(C)
NA(C)
21.6
15.8
5.8
14.9
1.0
312
216
20.0
18.6
AC
-
NA(C)
NA(C)
65
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
7.8
12.2
1.5
365
0.3
0.4
NA(C)
NA(C)
NA(C)
15.4
12.2
3.2
11.7
0.5
181
129
15.9
13.9
TT
63.8
NA(C)
NA(C)
80
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
7.7
12.2
1.8
364
0.3
0.4
NA(C)
NA(C)
NA(C)
1.0
1.4
<0.1
0.8
0.6
<25
<25
11.5
12.7
03/27/07
IN
-
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA([1)
NA<[1)
NA([1)
NA<[1)
-
-
NA(C)
NA(C)
NA(C)
11.4
10.5
0.9
9.2
1.3
170
164
16.8
17.1
AC
-
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA(C)
NA(C)
NA(C)
12.0
8.2
3.8
0.7
7.5
147
<25
16.1
3.3
TT
65.6
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA([1)
NA<[1)
NA(C)
NA(C)
NA(C)
1.7
1.8
<0.1
0.7
1.1
<25
<25
13.5
13.5
05/02/07
IN
-
NA(C)
NA(C)
85.4
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
7.8
15.8
1.6
230
-
-
NA(C)
NA(C)
NA(C)
12.9
10.3
2.6
10.7
<0.1
179
146
16.2
14.6
AC
-
NA(C)
NA(C)
146
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
7.7
15.4
1.9
300
0.5
0.6
NA(C)
NA(C)
NA(C)
11.8
7.9
3.9
1.2
6.6
157
<25
17.8
11.1
TT
67.9
NA(C)
NA(C)
139
NA(C)
NA(C)
NA(C)
NA(C)
NA(C)
7.6
15.2
1.7
362
0.5
0.6
NA(C)
NA(C)
NA(C)
3.1
2.1
1.0
1.5
0.5
<25
<25
14.8
14.7
(a)  As CaCO3. (b) As PO4. (c) Alkaline samples not taken.
IN = inlet; AC = after prechlorination; TA = after tank A; TB :
tanks combined.
(d) Water quality parameters not taken.
= after tank B; TC = after tank C; TD = after tank D; TT = after
                                            B-13

-------