-------
9.
PM Number Emissions
The PSD measurements made by the Nano-SMPS, EEPS and ELPI provided the particle number
concentrations under various test conditions. The PM number emissions in this study were quantified by
emission index (E/w), which was expressed by the number of particles emitted from burning one kg of
fuel. Although the ELPI was not useful in this study for the PSD determination due to the relatively large
cut-off size of its lowest channel (see Section 10), the use of a filter stage enabled the instrument to
measure the total particle number concentration for the jet engine PM emissions. Therefore, the PM
number emissions data obtained from all three instruments are discussed in this section.
The ELPI was installed in both the plume and background sampling systems to allow for background
correction in the calculation of PM number emission indices. However, the Nano-SMPS and EEPS were
only used in the plume sampling system. Therefore, the PM number emission indices obtained from the
Nano-SMPS were corrected for background using data collected before/after each test. A similar
correction was not applied to the EEPS, however, since background had little effect on the EIN values
obtained.
The PM particle number emission indices and their SDs under various test conditions, both before and
after sampling line particle-loss correction, are summarized in Table E-1 for the Nano-SMPS, in Table E-2
for the EEPS, and in Table E-3 for the ELPI as found in Appendix E. Note that the EEPS was not
available during the APEX-1 campaign. In addition, the ELPI data were not available for some APEX-1
tests (NASA-1 and NASA-5) and APEX-3 tests (T2, T5, T8 and T10) due to sample recovery. Thus, these
results are not reported in the tables. Because of the effects of the crosswind on the emission
measurements during tests EPA-1 and NASA-1 from APEX-1, and test T1 from APEX-3 (as indicated in
Table 7-1), the emission results from these tests were not used in the particle emission analysis and are
not presented in the tables. Note also that the ELPI is subject to small particle artifacts, thus further
limiting its usefulness.
It was difficult to run the jet engines under high power settings (e.g., 100% takeoff) for long periods of
time. Therefore, few data points are available from the Nano-SMPS measurements at high power settings
due to the slow instrument response.
In this section, the effects of the fuel flow rate, fuel type, engine type, engine cycle, engine temperature,
and sampling probe location were studied based on the particle number emissions results corrected for
sampling line particle losses, except where noted. The discussion in the following subsections will
primarily be based on the results obtained from the measurements made by the 30-m probe with the
Nano-SMPS.
109
-------
9.1 Effect of Fuel Flow Rate
The particle number emission indices from the jet engines were found to strongly correlate to the fuel flow
rate, which in turn is a function of rated engine thrust. Figure 9-1 shows the typical relationship between
the particle number emission index and the fuel flow rate observed by the Nano-SMPS for the CFM56-
2C1 engine burning three different jet fuels: base, high sulfur and high aromatic. The data used for these
three fuels were obtained from the NASA-1a, NASA-2 and NASA-5 tests from the APEX-1 campaign,
respectively. The average particle number emission indices range between 2x1015 to 8x1016 kg"1 with the
value of EIn decreasing with increasing fuel flow rate. The decrease in particle number emission index
was much steeper at a fuel flow rate <1000 kg/h. The emission indices were below 1x1016 particles/kg
when the fuel flow rates were greater than approximately 2000 kg/h for the base fuel, 1000 kg/h for the
high-sulfur fuel, and 2500 kg/h for the high-aromatic fuel.
The above observation is consistent with the results reported in the NASA APEX-1 report for the 30-m
probe (Wey et al., 2006). NASA found that the EIN values at 30 m were typically 5 to 20 times greater
than in comparable samples drawn from the 1-m probe, with the EIN decreasing with increasing engine
power. The EIN values obtained for the APEX-1 test ranged from 2x1015 to 4x1016 kg"1, which are close to
the NASA results. NASA reported that the number-based emission indices varied from 1 to 5x1015 kg"1.
Figure 9-2 presents the PM particle number emission indices as a function of fuel flow rate for the
CFM56-3B1 and CFM56-7B24 engines. The CFM56-3B1 data are taken from the T2 test from APEX-2
and the T11 test from APEX-3, whereas the CFM56-7B24 emission indices were obtained from the T4
test from APEX-2. All models of the jet engine CFM56 show similar trends: the particle number emission
index decreased with increases in fuel flow rate, except for the T11 test from APEX-3. In this case, the
EIn increases slightly above idle, then decreases in a fashion similar to the other CFM56 engines tested.
Note, however, that APEX-3 T11 only included the cold portion of the engine operating cycle which could
have influenced these results. A steep reduction was also observed in the particle number emission index
with fuel flow rates less than 500 kg/h.
Figure 9-3 presents the particle number emission index as a function of fuel flow rate for the CJ610-8ATJ
turbojet engine. This engine was evaluated in both the T2 and T5 tests from APEX-3. The emissions were
sampled primarily by the 15-m probe, with only part of the data in the T5 test being measured by 30-m
probe. Figure 9-3 shows the data for the T5 test as measured at the 30-m probe. These data do not
follow the same trend that was observed for the CFM56 model engines shown above. This engine also
exhibited a different trend in the EIM with fuel flow compared to the other engines which were previously
described in Section 8.
With the exception of engine CJ610-8ATJ, the relationship between the particle number emission index
and the fuel flow rate for all the other types of engines tested in the three APEX campaigns was similar to
the relationship observed for the CFM56 engines. For example, the results from the APEX-3 campaign for
the AE3007 series engines are presented in Figure 9-4, the P&W4158 engine in Figure 9-5, and the
RB211-535E4-B engine in Figure 9-6.
110
-------
4.0E+16
O.OE+OO
(a)
CFM56-2C1
(APEX-1 NASA 1a)
Base Fuel
1
<
<
]
~
~*
500 1000 1500 2000 2500
Fuel Flow Rate (kg/h)
3000
3500
1.2E+17
— 1.0E+17
0)
3
4-
U)
JX
$ 8.0E+16
o
TO
~ 6.0E+16
0)
¦O
c
| 4.0E+16
w
w
E
LU
2.0E+16
0.0E+00
0 500 1000 1500 2000 2500 3000
Fuel Flow Rate (kg/h)
8.0E+16
7.0E+16
a>
6.0E+16
w
¦3 5.0E+16
t
TO
~ 4.0E+16
O)
¦O
I 3.0E+16
o
t/)
¦| 2.0E+16
LU
1.0E+16
0.0E+00
0 500 1000 1500 2000 2500 3000 3500
Fuel Flow Rate (kg/h)
(b)
CFM56-2C1
(APEX-1 NASA 2)
-
<
J
<
i
*
¥
~
~ ~
(c)
CFM56-2C1
(APEX-1 NASA5)
High-Aromatic Fuel
-
<
>
<
1
* . •
~ ~
* ~
~~
Figure 9-1. Particle number emission indices as a function of fuel flow as determined by the
Nano-SMPS during APEX-1 for: (a) base fuel; (b) high-sulfur fuel; and (c) high-
aromatic fuel.
111
-------
7.0E+15
6.0E+15
5.0E+15
t 4.0E+15
¦3 3.0E+15
2.0E+15
E
LD
1.0E+15
O.OE+OO
(a)
500
CFM56-3B1 (APEX-2T2)
1000 1500
Fuel Flow Rate (kg/h)
*
2000
2500
9.0E+15
8.0E+15
= 7.0E+15
6.0E+15
« 5.0E+15
® 4.0E+15
o 3.0E+15
E 2.0E+15
1.0E+15
0.0E+00
(b)
CFM56-3B1 (APEX-3T11)
0 500 1000 1500 2000 2500 3000 3500 4000
Fuel Flow Rate (kg/h)
(c)
CFM 56-7B24 (APEX-2 T4)
t
*
500 1000 1500 2000
Fuel Flow Rate (kg/h)
2500
3000
Figure 9-2. Particle number emission indices as a function of fuel flow as determined by the
Nano-SMPS for two CFM56 engine models during: (a) APEX-2 T2; (b) APEX-3 T11;
and (c) APEX-2 T4. Data shown are corrected for line losses.
112
-------
1.6E+16
1.4E+16
aj
^ 1.2E+16
w
| 1.0E+16
re
§ 8.0E+15
a)
T3
| 6.0E+15
o
w
¦| 4.0E+15
LU
2.0E+15
0.0E+00
0 200 400 600 800 1000 1200 1400
Fuel Flow Rate (kg/h)
Figure 9-3. Particle number emission index as a function of fuel flow rate as determined by the
Nano-SMPS for the CJ10-8ATJ turbojet engine. Data shown are corrected for
sampling line particle losses.
CJ610-8ATJ (APEX-3T5)
n r
{
i—i—i—i—r*i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r
113
-------
4.0E+16
3.5E+16
^ 3.0E+16
1/)
"5 2.5E+16
t
CO
~ 2.0E+16
d)
"D
I 1.5E+16
o
'«!
¦| 1.0E+16
111
5.0E+15
O.OE+OO
0 200 400 600 800 1000 1200 1400
Fuel Flow Rate (kg/h)
AE3007A1E (APEX-3 T3)
1
t
I
It I t * 4 .
1 ~ * f
7.0E+16
6.0E+16
^ 5.0E+16
w
a>
¦¦£ 4.0E+16
re
x 3.0E+16
T3
C
c 2.0E+16
o
55
E 1.0E+16
LU
0.0E+00
AE3007A1/1 (APEX-3 T10)
>
4
~
O T
* ~ * ~ * %
1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1000
Fuel Flow Rate (kg/h)
1500
Figure 9-4. Particle number emission index as a function of fuel flow as determined by the Nano-
SMPS for: AE3007A1E; and AE3007A1/1 engines. Data are corrected for particle line
losses.
114
-------
2.5E+16
2.0E+16
¦£ 1.5E+16
1.0E+16
5.0E+15
O.OE+OO
P&W4158 (APEX-3 T6)
f
~~
I
~l 1 1 1 1 1 1-
"I 1 1 1 1 1 T-
-I 1 1 1 1 1 1—
-I 1 1 1 1 1 1—
0 1000 2000 3000 4000 5000 6000 7000 8000
Fuel Flow Rate (kg/h)
2.5E+16
® 2.0E+16
£ 1.5E+16
x
0)
= 1.0E+16
£ 5.0E+15
0.0E+00
¦+
P&W4158 (APEX-3 T7)
-| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1—l 1 1 1 1 l l l l | l l l l | l l l l
1000 2000 3000 4000 5000 6000 7000 8000
Fuel Flow Rate (kg/h)
Figure 9-5. Particle number emission index as a function of fuel flow as determined by the Nano-
SMPS for a PW4158 engine during: Test 6; and Test 7 of APEX-3. Data are corrected
for particle line losses.
115
-------
3.0E+16
- 2.5E+16
$ 2.0E+16
— 1.5E+16
o 1.0E+16
5.0E+15
O.OE+OO
RB211-535E4-B (APEX-3 T8)
<~
<>
4
I
I
t
~ ~
~
« ~ ~
1000 2000 3000 4000 5000
Fuel Flow Rate (kg/h)
6000
7000
OE+16
5E+16
3.0E+16
2.5E+16
2.0E+16
1.5E+16
1 .OE+16
5.0E+15
0.0E+00
RB211-535E4-B (APEX-3 T9)
* 4
^ «~ ~
0 1000 2000 3000 4000 5000 6000 7000 8000
Fuel Flow Rate (kg/h)
Figure 9-6. Particle number emission index as a function of fuel flow as determined by the Nano-
SMPS for two different RB211-535E4B engines during: Test 8; and Test 9 of APEX-3.
Data are corrected for particle line losses.
116
-------
A predictive model was found capable of approximately describing the relationship between the particle
number emission index and the fuel flow rate obtained in this study. Figure 9-7 is an example of the
results obtained from the EEPS measurements, showing that, in general, the emission indices obtained
for five types of engines were logarithmically correlated to the fuel flow rate (power).
1.2E+17
ACFM56-7B
ACFM56-3B
AAE3007A1/1
1.0E+17
y=-3E+16ln(x) +2E+17
R2 = 0.9723
ARB211
*L 8.0E+16
U)
y=-2E+16ln(x) +2E+17
R2 = 0.918
¦5 6.0E+16
.52 4.0E+16
y=-1E+16ln(x) +9E+16
R2 = 0.7209
2.0E+16
y=-1E+16ln(x) +8E+16
R2 = 0.9245
^ P. '¦ Mfi > , ,
y=-2E+15ln(x) +2E+16
R2 = 0.935
T*
0.0E+00
100
1000
Fuel Flow Rate (kg/h)
10000
Figure 9-7. Logarithmic correlation between particle number emission index measured by EEPS
and fuel flow rate.
9.2 Effect of Fuel Composition
The effects of fuel composition on the PM particle number emission index were investigated based on the
results of the Nano-SMPS and ELPI obtained in the APEX-1 campaign. Figure 9-8 compares the
emission indices as a function of fuel flow rate obtained from the three tests with different fuels: test
NASA-1a with the base fuel, test NASA-3 with the high-sulfur fuel, and test NASA-4 with the high-
aromatic fuel.
The Nano-SMPS results in Figure 9-8 show that high-sulfur fuel produced higher particle counts at all
tested fuel flow rates. The higher particle number emissions from the high-sulfur fuel may be attributable
to the formation of sulfate particles or sulfate coatings on particles. A small portion of the sulfur in jet fuel
was converted into sulfuric acid. The sulfuric acid could either form nucleates or condense onto the
existing aerosol surfaces as the plume cooled. Sulfur content in the PM and its contribution will be further
discussed in Sections 10 and 13.
117
-------
5.0E+16
4.5E+16
of 4.0E+16
3
M—
|* 3.5E+16
high
aromatic fuel > base JP8 fuel. Petzold and Schroder (1998) also found from their jet engine exhaust
aerosol study that the S02 emitted from a jet engine was oxidized by OH or O to S03 which then reacted
with H20 to form gaseous H2S04. Nucleation and condensation of the low volatility sulfuric acid and
hydrocarbons were the primary sources for the increase in number of particles in the exhaust plume.
To further illustrate the effect of fuel sulfur on the particle number emissions, the Nano-SMPS particle
number emission indices obtained with fuels of same sulfur content for the CFM56 series engine
(including models -2C1, -3B1 and 2 and -7B24 used in APEX-1 and APEX-2 campaigns) were averaged
under two levels of engine thrust: 7 and 30 percent. The results were then plotted as a function of fuel
~ Base Fuel (NASA 1a)
~ High-Sulfur NASA 3
OHigh-Aromatics NASA 4
0
I
r
1
p
>
i
:>
>
>~<
e
O T
*
O *
A
0 ~*
t—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r
118
-------
sulfur content as shown in Figure 9-9. The figure shows that the particle number emission index
increased with fuel sulfur. However, the emission indices at 132 ppm sulfur were higher than those at 206
and 352 ppm sulfur. The reason for this observation is not currently known. One possible explanation is
associated with differences in technology used in the three variants of the CFM56 jet engine used in this
comparison. The CFM56-7B24 engine was tested with the fuel of 132 ppm sulfur, while the CFM56-3B
engine used the fuels with 206 ppm and 352 ppm sulfur. The CFM56-3B seemed to produce a smaller
number of particles.
7.0E+16
^ 6.0E+16
a>
3
M—
3 5.0E+16
"35
a>
o
£ 4.0E+16
re
a
x
¦§ 3.0E+16
c
£
O
« 2.0E+16
(/)
E
LU
1.0E+16
0.0E+00
0 200 400 600 800 1000 1200 1400 1600 1800
Sulfur Content in Fuel (ppm)
Figure 9-9. Particle number emission index as a function of fuel sulfur for all CFM56 variants.
9.3 Effect of Engine Type
To investigate the effect of engine type on the particle number emissions, only the data obtained with the
base fuel or fleet fuel measured at 30 m were used. Considering the possible interference of strong
crosswinds, the results for the tests EPA-1 and NASA-1 from APEX-1, and test T1 from APEX-3, were
discarded. For comparison, the particle number emission indices obtained by the same jet engines in
different tests were averaged under the four engine power settings that simulate the ICAO airport LTO
cycle.
The lowest rated thrust for the tests with jet engine AE3007A1E was 8.4 percent, and this value was
treated as the idle engine condition and compared with the other engines at 7 percent thrust. Similar
treatment was used for the P&W 4158 engine, where data at 80 percent thrust were averaged and
7% Rated Thrust
30% Rated Thrust
119
-------
compared with the other engines under climb-out condition (85% thrust). The fuel flow rates
corresponding to each engine power setting were also averaged to obtain the averaged fuel flow rate
under that engine cycle for each different engine.
The results of averaged EIN values for different engines as a function of fuel flow rates are compared in
Figure 9-10. These results indicate that, in general, the P&W4158 had the highest particle number
emission index. Since the value of EIN is also engine-power-dependent, the comparison of particle
number emission index between different engines was made under the same engine operation mode.
Table 9-1 and Figure 9-11 show the comparisons of the EIN values obtained by the Nano-SMPS for
different engines at the four designated LTO engine power settings (idle, takeoff, climb and approach).
The data at engine takeoff mode were not available for the CFM56-2C1, CFM56-7B24 and P&W 4158
engines. The data show that, at engine takeoff and climb modes, the CJ610-8ATJ turbojet produced the
highest particle number emissions per kg of fuel burned among the seven engines shown. The reason for
the low emissions for the CJ610-8ATJ turbojet engine at idle is unknown. It seems unlikely that this
discrepancy was attributable primarily to the measurement errors, because this trend was also shown by
the EIn results derived from the EEPS measurement, as shown in Figure 9-12.
It is also interesting to note from Figure 9-11 that, among the CFM56 engine variants, the EIN at climb-out
power for model -7B was significantly lower than the comparable value for the older technology -2C and
-3B models (also see Lobo et al., 2007). At idle and approach, however, the model -3B had the lowest
E//v, followed by -7B, and -2C models, respectively.
9.4 Effect of Cold and Warm Engine Conditions
The particle number emission results derived from the Nano-SMPS measurements were used to
investigate the effect of engine cold and warm operating conditions on the particle number emission
index. In Figure 9-13, the particle number emission indices obtained under the cold engine condition were
plotted against the emission indices obtained for the same engines under the warm operating condition.
The diagonal line in the figure represents the situation where the emission index results obtained under
cold and warm conditions are identical. The linear regression results are also provided in the figure (see
the pink line) showing a slope of 0.92. This slope would indicate that the PM number emission indices are
approximately 8 percent lower with warm engines.
120
-------
CFM56-2C1
CFM56-7B24
CFM56-3B
CJ610-8ATJ
AE3007A1/1
P&W4158
RB211-535E4B
4.5E+16
4.0E+16
3.5E+16
3.0E+16
2.5E+16
2.0E+16
1.5E+16
1.0E+16
5.0E+15
O.OE+OO
~I 1 1 1 1 1 1 1 1 1 1 1 1 1-
2000 4000 6000
Fuel Flow Rate (kg/h)
8000
Figure 9-10. Particle number emission index as a function of fuel flow (power) for different
engines (Nano-SMPS).
Table 9-1. Particle Number Emission Indices at Each of Four Engine Power Settings for
Different Engines (Nano-SMPS results)
Engine
Idle
Takeoff
Climb
Approach
Ave
SD
Ave
SD
Ave
SD
Ave
SD
CFM56-2C1
2.02E+16
2.40E+15
6.79E+15
3.24E+14
1.44E+16
1.89E+15
CFM56-7B24
1.11E+16
1.18E+15
9.56E+14
3.38E+13
7.70E+15
1.21E+15
CFM56-3B
5.20E+15
6.53E+14
3.58E+15
1.40E+14
4.40E+15
1.68E+14
3.98E+15
4.34E+14
CJ610-8ATJ
2.03E+14
1.48E+14
1.01E+16
1.41E+15
9.76E+15
5.53E+14
1.32E+16
7.28E+14
AE3007A1/1
2.64E+16
1.56E+16
6.45E+15
3.37E+14
7.45E+15
5.03E+14
9.79E+15
1.59E+15
P&W4158
2.00E+16
1.79E+15
2.45E+15
2.77E+14
1.03E+16
4.37E+14
RB211-535E4-B
1.25E+16
8.51E+14
7.59E+14
2.46E+13
1.41E+15
6.33E+13
4.80E+15
4.37E+14
Ave = arithmetic average; SD = standard deviation.
121
-------
ro
ro
ns
Q.
4.5E+16
4.0E+16
3.5E+16
3.0E+16
2.5E+16
2.0E+16
1.5E+16
1.0E+16
5.0E+15
0.0E+00
ai
S 1.2E+16
u>
¦5 1.0E+16
X
a>
~G
c
c
o
E
LU
_*> ^ J"
S? v<3® S? jy <£>
4* A® .(? ^
& & & ^ & <$>
*Ss dSr
jjr jjr
& <$ <£ ^
J>r
>K
A
Figure 9-11. Comparison of particle number emission indices for different engines at: idle; take-off; climb-out; and approach power
(Nano-SMPS).
-------
1.2E+17
1.0E+17
o) 8.0E+16 —
5
I 6.0E+16 -I—
'j/j 4.0E+16
E
LU
2.0E+16
O.OE+OO
CO
p
0
O
O
m
co
a:
LU
<
o<$
Q_
Figure 9-12. Comparison of particle number emission indices by EEPS for different engines
under the idle power condition.
4.0E+16
O)
0)
0
Q.
3.0E+16
S 2.0E+16
o
T5
c
o
o
E
LU
J 1.0E+16
T3
0.0E+00
/
/ ° 0
o
v= 0.9207x1
O / *
R2 = 0.96 |
~ /V o
~
o
0.0E+00 1.0E+16 2.0E+16 3.0E+16
El under Cold Condition (particles/kg fuel)
4.0E+16
Figure 9-13. Effect of engine operating temperature on particle number emission index.
123
-------
9.5 Comparison of Particle Number Emission Indices Obtained from Different
Instruments
Four different instruments were used in the APEX campaigns for the measurement of particle number
concentration in the plume. The Nano-SMPS was used for plume sampling during all three APEX
campaigns, a SMPS equipped with a long DMA for both plume and background sampling during APEX-1,
an EEPS for plume sampling during APEX-2 and APEX-3, and an ELPI for both plume and background
sampling during all three APEX campaigns.
The comparison between Nano-SMPS and EEPS was made based on the test results obtained from the
APEX-2 and APEX-3 campaigns. The EIN results obtained by the EEPS were plotted against the data
obtained with the Nano-SMPS under the same test conditions. The two straight lines shown in Figure 9-
14 were obtained, indicating a linear relationship between the Nano-SMPS and EEPS measurements.
These lines represent the two groups of APEX tests: (1) APEX-3: T1-T3 and T6-T11, and (2) APEX-3: T4-
T5 and APEX-2: T1-T4. It is not clear why the results obtained by Nano-SMPS and EEPS were linearly
correlated in the separate groups, as this observation could not be explained by engine type or test
conditions. The explanation may be related either to the characteristics of the PM emissions, differences
in instrument design, or both.
~ APEX-3 T1-T3 and T6-T11
¦ APEX-3 T4-T5 and APEX-2 T1-T4
1.6E+17
1.4E+17
y = 7.8933X +4E+15
R2 = 0.9018
1.2E+17
1.0E+17
8.0E+16
6.0E+16
y = 1.2868x -2E+15
R2 = 0.6782
4.0E+16
2.0E+16
0.0E+00
0.0E+00
1.0E+16 2.0E+16 3.0E+16
Emission Index by Nano SM PS (particles/kgfuel)
4.0E+16
Figure 9-14. Comparison of particle number emission indices as obtained from the Nano-SMPS
and EEPS instruments.
124
-------
The EIn results from APEX-1, obtained by the long DMA SMPS, were compared with those obtained by
Nano-SMPS in Figure 9-15. The figure shows that measurements from two instruments can be correlated
approximately in two linear groups: (1) tests EPA-1, EPA-2, NASA-1, NASA-1a, NASA-2, NASA-3 and
EPA-3; and (2) NASA-4 and NASA-5. This observation again suggests that the characteristics of the PM
might affect the comparison of instrument measurements since the group (1) data were obtained with
base jet fuel or high sulfur fuel, and group (2) data were from the high aromatic fuel. Both lines in the
figure have slope values of less than 0.7, probably due to the difference in the effect of line loss correction
on the results from these two instruments. The long DMA SMPS did not collect particles smaller than
10 nm, so the line losses of the particles in the 3 to 10 nm size range were counted by the Nano-SMPS
but were not compensated for by the long DMA SMPS.
3.5E+16
0)
X 3.0E+16
O)
a>
o 2.5E+16
+-»
L.
W
Q.
CO 2.0E+16
CL
(/)
£ 1.5E+16
x
0)
u
- 1.0E+16
c
0
w
1 5.0E+15
LU
0.0E+00
0.0E+00 1.0E+16 2.0E+16 3.0E+16 4.0E+16
Emission Index by Nano SM PS (particles/kgfuel)
Figure 9-15. Comparison of particle number emission indices as obtained from the Nano-SMPS
and long DMA SMPS.
A APEX-1 EPA 1-3 and NASA 1-3
A APEX-1 NASA 4-5
y= 0.6348X-4E+14
R2 = 0.9121
y = 0.4942X - 2E+15
R2 = 0.747
125
-------
This page intentionally left blank.
126
-------
10. Particle Size Distribution and Geometric Mean Diameter
The PM emissions from jet engines were monitored by various instruments for investigations of the
effects of fuel type, fuel flow rate, engine type and operating condition (cold or warm) on particle size
distribution (PSD). In APEX-1, the PM PSDs were measured with a long DMA SMPS, the Nano-SMPS,
and the ELPI. PM emitted from the jet engines contained a large portion of particles with diameters below
the sizes of the lowest instrument channel for either the long DMA SMPS or the ELPI. Only the Nano-
SMPS was capable of providing a complete PSD for the jet engine PM emissions. However, the Nano-
SMPS had a data recording frequency of approximately 2.5 minutes. In contrast, the engine run time for
the 100 percent power setting was usually maintained for less than 1.5 minutes. This relatively slow
instrument response made it difficult for the Nano-SMPS to obtain the PSD information under the highest
power settings. Therefore, no PSDs for the 100 percent power setting (take-off) are reported for Nano-
SMPS, and limited data are reported for the 85 percent power setting (climb). After the APEX-1
campaign, an EEPS was used to replace the long DMA SMPS for PM emissions measurements in both
APEX-2 and APEX-3. The EEPS had a fast instrument response and was able to record data points at 1
second intervals.
The differential number PSD, dN/dlogDp at a specified power setting, was obtained by averaging the
particle numbers recorded under the same engine operating condition from the same instrument size bins
and then plotting them against the particle size. Both the Nano-SMPS and EEPS were only used in the
plume emissions measurement system. Therefore, the PM emission results obtained by the Nano-SMPS
were background-corrected using measurements obtained before and after each test. No background
correction was needed for the EEPS, as discussed earlier. Also, the PSD data both before and after
particle line loss-correction are presented in the following discussion with the differences also
investigated.
The geometric mean diameter (GMD) and geometric standard deviation (GSD) were calculated as a
function of fuel flow rate from the PSD for each individual test of the three APEX campaigns. Table F-1,
included in Appendix F, summarizes the results obtained from the Nano-SMPS and EEPS
measurements. The GMD and GSD data, both before and after particle loss correction, are presented in
the table.
10.1 Particle Size Results for APEX-1
During APEX-1, all tests were conducted on a CFM56-2C1 engine using two different engine testing
matrices. The "EPA" test matrix followed the ICAO-defined LTO cycle to simulate aircraft emissions at an
airport and consisted of approximately four repetitions of the following power settings: 26 min at idle (7%),
0.7 min at takeoff (100%), 2.2 min at climb (85%), and 4 min at approach (30%). The "NASA" test matrix
was designed to investigate the effects of engine operating parameters on particle emissions and
encompassed steady-state power settings of 4, 5.5, 7, 15, 30, 40, 60, 65, 70, 85 and 100 percent
127
-------
(restricted to about 93% actual thrust, henceforth, 100%). Except for the 100 percent thrust level, which
was limited to a run-time of 1.5 min, approximately 10 min were provided at each power setting to allow
for samples to be adequately analyzed.
The PSD at a specified experimental condition was obtained by averaging the dN/dlogDp data recorded
from the instrument in the same size bins and then plotting those averages against the particle size. To
investigate the effects of fuel type and engine operation cycle on PSD, the dN/dlogDp data were then
averaged for the same fuel type and operation cycle. Since only the Nano-SMPS was able to cover the
entire particle size range of the jet engine PM emissions, this section is restricted to the results obtained
from the Nano-SMPS measurements. Also, no PSD data for the 100 percent power setting (as well as the
85% power setting for EPA-2) are reported here as discussed above.
The particle size results for the EPA test series conducted during APEX-1 are shown in Figures 10-1 to
10-3. Note that both the loss-corrected (a) and uncorrected (b) PSDs are provided in these figures.
Figures 10-4 to 10-9 provide similar information for the NASA test series. The figures show that for most
tests a unimodal and log-nomal PSD was obtained regardless of experimental conditions.
10.2 Particle Size Results for APEX-2
During the APEX-2 campaign, two additional models of the CFM56 engine, the -7B24 and -3B1 and 2,
were tested. The engine-rated power thrust was varied in a stepwise fashion at six thrust levels (4, 7, 30,
40, 65, and 85%) as discussed in Section 6. Except for the 85 percent thrust level where run-time was 8
min, approximately 10 min were provided at each power setting to allow for samples to be adequately
analyzed. The power setting was first increased from the lowest thrust level to highest level under cold
engine conditions, and then decreased under warm engine conditions to investigate the effects of engine
temperature on particle emissions.
Figures 10-10, 10-11, 10-12 and 10-13 present the average PSDs under different power settings obtained
from the Nano-SMPS, with (a) and without (b) particle loss correction for tests T1, T2, T3 and T4,
respectively. Again these figures show that the PSDs of the PM emissions from jet engines were
generally unimodal and followed a log-normal function.
10.3 Particle Size Results for APEX-3
In APEX-3 campaign, six different engines were tested for emissions at various power settings. Like
APEX-2, the engine tests in APEX-3 were conducted by increasing the thrust power in a stepwise fashion
from idle (4 or 7%) to climb (100%) under cold engine conditions and then decreasing through the same
power settings under warm engine conditions.
Figures 10-14 to 10-24 present the Nano-SMPS results of the average PSD with (a) and without (b)
particle loss correction under different power settings for each of individual tests T1 through T11,
respectively. All the data were measured with the 30 m sampling probe. The PSDs shown in these figures
were log-normal and consistent with the results of APEX-1 and APEX-2. Flowever, in some cases, the
PSDs were bimodal with an additional accumulation mode present at higher fuel flows.
128
-------
1.0E+07
8.0E+06 —
CO
E
o
^ 6.0E+06
Q.
Q
£ 4.0E+06
T3
2.0E+06
0.0E+00
436 kg fuel/h Loss Corr
992 kg fuel/h Loss Corr
2819 kg fuel/h Loss Corr
100
Particle Diameter (nm)
6.0E+06
-436 kg fuel/h
992 kg fuel/h
-2819 kg fuel/h
" 4.0E+06
P 2.0E+06
0.0E+00
100
Particle Diameter (nm)
Figure 10-1. Average PSD measured by the Nano-SMPS during APEX-1, Test EPA-1, (a) with line
loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 2969 kg fuel/h (100%) power.
129
-------
1.
1.
t1-
11-
~ 8.
O)
I 6.
i 4.
2.
0.
425 kg fuel/h Loss Corr
1023 kg fuel/h Loss Corr
10
Particle Diameter (nm)
r i i i r
100
6E+07
425 kg fuel/h
1023 kg fuel/h
4E+07
0E+07
0E+06
0E+06
0E+06
0E+06
0E+00
100
Particle Diameter (nm)
Figure 10-2. Average PSD measured by the Nano-SMPS during APEX-1, Test EPA-2, (a) with line
loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 2860 kg fuel/h (85%) and 3181 kg fuel/h (100%) power.
130
-------
3.5E+07
3.0E+07
E 2.5E+07
o
X 2.0E+07
Q.
Q
g5 1.5E+07
z 1.0E+07
"O
5.0E+06
O.OE+OO
3.5E+07
438 kg fuel/h
964 kg fuel/h
2424 kg fuel/h
2840 kg fuel/h
3.0E+07
E 2.5E+07
o
— 2.0E+07
1.5E+07
1.0E+07
5.0E+06
0.0E+00
10
Particle Diameter (nm)
100
Figure 10-3. Average PSD measured by the Nano-SMPS during APEX-1, Test EPA-3, (a) with line
loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 3116 kg fuel/h (100%) power.
10 100
Particle Diameter (nm)
438 kg fuel/h Loss Corr
964 kg fuel/h Loss Corr
2424 kg fuel/h
2840 kg fuel/h
131
-------
CO
E
o
Q.
Q
O)
o
T3
1.6E+07
1.4E+07
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
-350 kg fuel/h Loss Corr
-386 kg fuel/h Loss Corr
-427 kg fuel/h Loss Corr
-560 kg fuel/h Loss Corr
1012 kg fuel/h Loss Corr
-1252 kg fuel/h Loss Corr
1998 kg fuel/h Loss Corr
-2406 kg fuel/h Loss Corr
Particle Diamter (nm)
CO
E
o
1.6E+07
1.4E+07
1.2E+07
1.0E+07
8.0E+06
-350 kg fuel/h
-386 kg fuel/h
-427 kg fuel/h
-560 kg fuel/h
1012 kg fuel/h
-1252 kg fuel/h
1998 kg fuel/h
-2406 kg fuel/h
(b)
6.0E+06
4.0E+06
2.0E+06
0.0E+00
10
Particle Diamter (nm)
100
Figure 10-4. Average PSD measured by the Nano-SMPS during APEX-1, Test NASA-1, (a) with
line loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 2906 kg fuel/h (100%) power.
132
-------
2.0E+07
CO
E
o
Q.
Q
O)
o
T3
336 kg fuel/h Loss Corr
1922 kg fuel/h Loss Corr
2098 kg fuel/h Loss Corr
2252 kg fuel/h Loss Corr
— 2898 kg fuel/h Loss Corr
1.8E+07 :
1.6E+07 :
1.4E+07
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
10
Particle Diameter (nm)
100
2.0E+07
1.8E+07
1.6E+07
336 kg fuel/h
1922 kg fuel/h
2098 kg fuel/h
2252 kg fuel/h
— 2898 kg fuel/h
(b)
1.4E+07 -¦
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
10
Particle Diameter (nm)
100
Figure 10-5. Average PSD measured by the Nano-SMPS during APEX-1, Test NASA-1a, (a) with
line loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 3127 kg fuel/h (100%) power.
133
-------
3.0E+07
2.5E+07 -I
O 2.0E+07 1
1.5E+07
Q.
Q
O)
o
5 1.0E+07
z
T3
5.0E+06
0.0E+00
¦345 kg fuel/h Loss Corr
-413 kg fuel/h Loss Corr
-543 kg fuel/h Loss Corr
-955 kg fuel/h Loss Corr
-1235 kg fuel/h Loss Corr
1855 kg fuel/h Loss Corr
2046 kg fuel/h Loss Corr
-2727 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
3.0E+07
CO
E
o
Q.
Q
O)
o
T3
1.5E+07
1.0E+07
5.0E+06
0.0E+00
—345 kg fuel/h
413 kg fuel/h
543 kg fuel/h
955 kg fuel/h
1235 kg fuel/h
1855 kg fuel/h
2046 kg fuel/h
2727 kg fuel/h
(b)
i i i I
10
Particle Diameter (nm)
100
Figure 10-6. Average PSD measured by the Nano-SMPS during APEX-1, Test NASA-2, (a) with
line loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 3116 kg fuel/h (100%) power.
134
-------
CO
E
o
Q.
Q
O)
o
T3
4.0E+07
3.5E+07
3.0E+07
2.5E+07
2.0E+07
1.5E+07
1.0E+07
5.0E+06
0.0E+00
I 347 kg fuel/h Loss Corr
" 405 kg fuel/h Loss Corr
- 538 kg fuel/h Loss Corr
" 986 kg fuel/h Loss Corr
- 1255 kg fuel/h Loss Corr
2053 kg fuel/h Loss Corr
2758 kg fuel/h Loss Corr
A (a)
-
Ml \l\
1// V
#/ yi
10
Particle Diameter (nm)
100
CO
E
o
Q.
Q
O)
o
T3
4.0E+07
3.5E+07
3.0E+07
2.5E+07
2.0E+07
1.5E+07
1.0E+07
5.0E+06
0.0E+00
347 kg fuel/h
405 kg fuel/h
538 kg fuel/h
986 kg fuel/h
1255 kg fuel/h
2053 kg fuel/h
2758 kg fuel/h
(b)
/yy\\\
10
Particle Diameter (nm)
100
Figure 10-7. Average PSD measured by the Nano-SMPS during APEX-1, Test NASA-3, (a) with
line loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 3051 kg fuel/h (100%) power.
135
-------
2.5E+07
345 kg fuel/h Loss Corr
381 kg fuel/h Loss Corr
401 kg fuel/h Loss Corr
960 kg fuel/h Loss Corr
1220 kg fuel/h Loss Corr
2023 kg fuel/h Loss Corr
2157 kg fuel/h Loss Corr
2708 kg fuel/h Loss Corr
2.0E+07
1.5E+07
o 1.0E+07
5.0E+06
0.0E+00
10
Particle Diameter (nm)
100
E
o
2.5E+07
2.0E+07
1.5E+07
o 1.0E+07
5.0E+06
0.0E+00
-345 kg fuel/h
-381 kg fuel/h
401 kg fuel/h
960 kg fuel/h
-1220 kg fuel/h
-2023 kg fuel/h
-2157 kg fuel/h
2708 kg fuel/h
(b)
I Yr~—l 1—l—I—f
10
Particle Diameter (nm)
100
Figure 10-8. Average PSD measured by the Nano-SMPS during APEX-1, Test NASA-4, (a) with
line loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 2978 kg fuel/h (100%) power.
136
-------
3.0E+07
2.5E+07
CO**
| 2.0E+07
£ 1.5E+07
O)
o
5 1.0E+07
z
T3
5.0E+06
0.0E+00
- 345 kg fuel/h Loss Corr
410 kg fuel/h Loss Corr
989 kg fuel/h Loss Corr
1292 kg fuel/h Loss Corr
2131 kg fuel/h Loss Corr
— 2894 kg fuel/h Loss Corr
(a)
.
/ / X WW \
/ / / \ \w\ \
10
Particle Diamter (nm)
100
3.0E+07
2.5E+07
CO
| 2.0E+07
g- 1.5E+07
O)
o
5 1.0E+07
z
T3
5.0E+06
0.0E+00
; 345 kg fuel/h
- 410 kg fuel/h
- 989 kg fuel/h
- 1292 kg fuel/h
" 2131 kg fuel/h
. 2894 kg fuel/h
(b)
My
/A\\\
JJ/
10
Particle Diamter (nm)
100
Figure 10-9. Average PSD measured by the Nano-SMPS during APEX-1, Test NASA-5, (a) with
line loss correction; and (b) without line loss correction.
Note: unable to collect PSD for 3176 kg fuel/h (100%) power.
137
-------
E
o
1.0E+07
8.0E+06
6.0E+06 -
o.
Q
O)
o 4.0E+06
T3
2.0E+06
O.OE+OO
— Cold 336 kg fuel/h Loss Corr
Cold 418 kg fuel/h Loss Corr
— Cold 1180 kg fuel/h Loss Corr
— Cold 1544 kg fuel/h Loss Corr
— Cold 2497 kg fuel/h Loss Corr
¦Cold 4131 kg fuel/h Loss Corr
— Warm 2497 kg fuel/h Loss Corr
— Warm 1498 kg fuel/h Loss Corr
— Warm 1135 kg fuel/h Loss Corr
— Warm 313 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
1.0E+07
8.0E+06 --
6.0E+06
O 4.0E+06
2.0E+06
0.0E+00
7
¦Cold 336 kg fuel/h
Cold 418 kg fuel/h
¦Cold 1180 kg fuel/h
¦Cold 1544 kg fuel/h
¦Cold 2497 kg fuel/h
Cold 4131 kg fuel/h
¦Warm 2497 kg fuel/h
¦Warm 1498 kg fuel/h
¦Warm 1135 kg fuel/h
¦Warm 313 kg fuel/h
10
Particle Diameter (nm)
100
Figure 10-10. Average PSD for a CFM56-7B24 engine measured by the Nano-SMPS during
APEX-2, Test T1, (a) with line loss correction; and (b) without line loss correction.
138
-------
6.0E+06
5.0E+06
4.0E+06
3.0E+06 ¦
2.0E+06
1.0E+06
O.OE+OO
Cold 2700 kg fuel/h Loss Corr
Cold 3348 kg fuel/h Loss Corr
Cold 8712 kg fuel/h Loss Corr
Cold 11124 kg fuel/h Loss Corr
Cold 17388 kg fuel/h Loss Corr
-Warm 17316 kg fuel/h Loss Corr
-Warm 10836 kg fuel/h Loss Corr
-Warm 8460 kg fuel/h Loss Corr
Warm 3312 kg fuel/h Loss Corr
-Warm 2736 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
6.0E+06
5.0E+06
4.0E+06
3.0E+06
2.0E+06
1.0E+06
0.0E+00
Cold 2700 kg fuel/h
Cold 3348 kg fuel/h
Cold 8712 kg fuel/h
Cold 11124 kg fuel/h
Cold 17388 kg fuel/h
-Warm 17316 kg fuel/h
-Warm 10836 kg fuel/h
-Warm 8460 kg fuel/h
Warm 3312 kg fuel/h
-Warm 2736 kg fuel/h
10
Particle Diameter (nm)
100
Figure 10-11. Average PSD for a CFM56-3B1 engine measured by the Nano-SMPS during APEX-2,
Test T2, (a) with line loss correction; and (b) without line loss correction.
139
-------
-Cold 2952 kg fuel/h Loss Corr
Cold 3492 kg fuel/h Loss Corr
¦Cold 8964 kg fuel/h Loss Corr
¦Cold 11448 kg fuel/h Loss Corr
-Cold 17856 kg fuel/h Loss Corr
-Warm 17928 kg fuel/h Loss Corr
-Warm 11196 kg fuel/h Loss Corr
-Warm 8784 kg fuel/h Loss Corr
Warm 3348 kg fuel/h Loss Corr
-Warm 2916 kg fuel/h Loss Corr
(a)
H
Mi 1
l//\\
\i\
li /
i/ /*\
Ml /' \
1/ /'
It til
\\
\ \
I *
\ \
II
A \
t&JI *\
m
m \
¦ t
ii«
W t
i\ i
i *
i \
0.0E+00
10
Particle Diameter (nm)
100
7.0E+06
Cold 2952 kg fuel/h
Cold 3492 kg fuel/h
Cold 8964 kg fuel/h
Cold 11448 kg fuel/h
Cold 17856 kg fuel/h
Warm 17928 kg fuel/h
Warm 11196 kg fuel/h
Warm 8784 kg fuel/h
Warm 3348 kg fuel/h
Warm 2916 kg fuel/h
6.0E+06
5.0E+06
E
r, 4.0E+06
§> 3.0E+06
tj 2.0E+06
1.0E+06
0.0E+00
10
Particle Diameter (nm)
100
Figure 10-12. Average PSD for a CFM56-3B2 engine measured by the Nano-SMPS during APEX-2,
Test T3, (a) with line loss correction; and (b) without line loss correction.
140
-------
O.OE+OO
¦Cold 2664 kg fuel/h Loss Corr
Cold 3312 kg fuel/h Loss Corr
¦Cold 9360 kg fuel/h Loss Corr
•Cold 12240 kg fuel/h Loss Corr
Cold 19800 kg fuel/h Loss Corr
Warm 19800 kg fuel/h Loss Corr
¦Warm 11880 kg fuel/h Loss Corr
Warm 9000 kg fuel/h Loss Corr
Warm 3024 kg fuel/h Loss Corr
¦Warm 2484 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
O.OE+OO
-Cold 2664 kg fuel/h
Cold 3312 kg fuel/h
•Cold 9360 kg fuel/h
-Cold 12240 kg fuel/h
Cold 19800 kg fuel/h
Warm 19800 kg fuel/h
-Warm 11880 kg fuel/h
Warm 9000 kg fuel/h
Warm 3024 kg fuel/h
-Warm 2484 kg fuel/h
10
Particle Diameter (nm)
100
Figure 10-13. Average PSD for a CFM56-7B24 engine measured by the Nano-SMPS during
APEX-2, Test T4, (a) with line loss correction; and (b) without line loss correction.
141
-------
1.0E+07
8.0E+06
CO
E
^ 6.0E+06 4
Q.
Q
O 4.0E+06 "H
¦c
2.0E+06
0.0E+00
-Cold 300 kg fuel/h Loss Corr
Cold 397 kg fuel/h Loss Corr
-Cold 654 kg fuel/h Loss Corr
-Cold 1136 kg fuel/h Loss Corr
-Cold 1618 kg fuel/h Loss Corr
-Cold 2260 kg fuel/h Loss Corr
Cold 2903 kg fuel/h Loss Corr
-Cold 3385 kg fuel/h Loss Corr
-Warm 3385 kg fuel/h Loss Corr
Warm 2903 kg fuel/h Loss Corr
-Ward 2260 kg fuel/h Loss Corr
-Warm 1618 kg fuel/h Loss Corr
-Warm 1136 kg fuel/h Loss Corr
-Warm 654 kg fuel/h Loss Corr
Warm 397 kg fuel/h Loss Corr
-Warm 300 kg fuel/h Loss Corr
10
100
Particle Diameter (nm)
1.0E+07
8.0E+06 -
^ 6.0E+06
Q.
Q
O 4.0E+06 "H
¦c
2.0E+06
0.0E+00
-Cold 300 kg fuel/h
Cold 397 kg fuel/h
-Cold 654 kg fuel/h
-Cold 1136 kg fuel/h
-Cold 1618 kg fuel/h
-Cold2260 kg fuel/h
Cold 2903 kg fuel/h
-Cold 3385 kg fuel/h
-Warm 3385 kg fuel/h
Warm 2903 kg fuel/h
-Ward 2260 kg fuel/h
-Warm 1618 kg fuel/h
-Warm 1136 kg fuel/h
-Warm 654 kg fuel/h
Warm 397 kg fuel/h
-Warm 300 kg fuel/h
10
100
Particle Diameter (nm)
Figure 10-14. Average PSD for a CFM56-3B1 engine measured by the Nano-SMPS during APEX-3,
Test T1, (a) with line loss correction; and (b) without line loss correction.
142
-------
1.8E+07
1.6E+07 4
1.4E+07 i
^ 1.2E+07
0
X 1.0E+07 J]
Q.
Q
g> 8.0E+06 ^
1 6.0E+06
4.0E+06
2.0E+06
O.OE+OO
Cold 182 kg fuel/h Loss Corr
Cold 304 kg fuel/h Loss Corr
Cold 452 kg fuel/h Loss Corr
Cold 568 kg fuel/h Loss Corr
Cold 760 kg fuel/h Loss Corr
Cold 999 kg fuel/h Loss Corr
Cold 1226 kg fuel/h Loss Corr
- Warm 1226 kg fuel/h Loss Corr
-Ward 763 kg fuel/h Loss Corr
- Warm 568 kg fuel/h Loss Corr
- Warm 454 kg fuel/h Loss Corr
Warm 304 kg fuel/h Loss Corr
- Warm 182 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
1.8E+07 -i
Cold 182 kg fuel/h
Cold 304 kg fuel/h
Cold 452 kg fuel/h
Cold 568 kg fuel/h
Cold 760 kg fuel/h
Cold 999 kg fuel/h
Cold 1226 kg fuel/h
Warm 1226 kg fuel/h
Ward 763 kg fuel/h
Warm 568 kg fuel/h
Warm 454 kg fuel/h
Warm 304 kg fuel/h
Warm 182 kg fuel/h
1.6E+07 --
1.4E+07
— 1.0E+07 --
o) 8.0E+06
6.0E+06 --
4.0E+06
2.0E+06
0.0E+00
10
100
Particle Diameter (nm)
Figure 10-15. Average PSD for a CJ610-8ATJ turbojet engine measured by the Nano-SMPS during
APEX-3, Test T2, (a) with line loss correction; and (b) without line loss correction.
143
-------
5.0E+06
4.0E+06
3.0E+06
O 2.0E+06
1.0E+06
O.OE+OO
Cold 174 kg fuel/h Loss Corr
Cold 238 kg fuel/h Loss Corr
Cold 389 kg fuel/h Loss Corr
Cold 555 kg fuel/h Loss Corr
Cold 805 kg fuel/h Loss Corr
Cold 1082 kg fuel/h Loss Corr
Cold 1286 kg fuel/h Loss Corr
Warm 1088 kg fuel/h Loss Corr
Ward 810 kg fuel/h Loss Corr
Warm 563 kg fuel/h Loss Corr
Warm 392 kg fuel/h Loss Corr
Warm 235 kg fuel/h Loss Corr
Warm 173 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
5.0E+06
4.0E+06
3.0E+06
O 2.0E+06
1.0E+06
0.0E+00
Cold 174 kg fuel/h
Cold 238 kg fuel/h
Cold 389 kg fuel/h
Cold 555 kg fuel/h
Cold 805 kg fuel/h
Cold 1082 kg fuel/h
Cold 1286 kg fuel/h
Warm 1088 kg fuel/h
Ward 810 kg fuel/h
Warm 563 kg fuel/h
Warm 392 kg fuel/h
Warm 235 kg fuel/h
Warm 173 kg fuel/h
10
Particle Diameter (nm)
100
Figure 10-16. Average PSD for an AE3007-A1E engine measured by the Nano-SMPS during
APEX-3, Test T3, (a) with line loss correction; and (b) without line loss correction.
144
-------
5.0E+06
4.0E+06
3.0E+06
O 2.0E+06
1.0E+06
O.OE+OO
(a)
-Cold 168 kg fuel/h Loss Corr
Cold 239 kg fuel/h Loss Corr
-Cold 385 kg fuel/h Loss Corr
-Cold 547 kg fuel/h Loss Corr
-Cold 788 kg fuel/h Loss Corr
-Cold 1050 kg fuel/h Loss Corr
-Cold 1253 kg fuel/h Loss Corr
-Warm 1052 kg fuel/h Loss Corr
-Warm 786 kg fuel/h Loss Corr
-Warm 549 kg fuel/h Loss Corr
-Warm 384 kg fuel/h Loss Corr
Warm 231 kg fuel/h Loss Corr
-Warm 167 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
5.0E+06
4.0E+06
CO
E
3.0E+06
O 2.0E+06
1.0E+06
0.0E+00
(b)
Cold 168 kg fuel/h
Cold 239 kg fuel/h
Cold 385 kg fuel/h
Cold 547 kg fuel/h
Cold 788 kg fuel/h
Cold 1050 kg fuel/h
Cold 1253 kg fuel/h
Warm 1052 kg fuel/h
Warm 786 kg fuel/h
Warm 549 kg fuel/h
Warm 384 kg fuel/h
Warm 231 kg fuel/h
•Warm 167 kg fuel/h
10
Particle Diameter (nm)
100
Figure 10-17. Average PSD for an AE3007-A1E engine measured by the Nano-SMPS during
APEX-3, Test T4, (a) with line loss correction; and (b) without line loss correction.
145
-------
1.2E+07
1.0E+07
^ 8.0E+06
o
Q 6.0E+06
O)
O
T3
Z 4.0E+06
T3
2.0E+06
O.OE+OO
1 10 100
Cold 227 kg fuel/h Loss Corr
Cold 303 kg fuel/h Loss Corr
Cold 452 kg fuel/h Loss Corr
Cold 567 kg fuel/h Loss Corr
Cold 763 kg fuel/h Loss Corr
Cold 1009 kg fuel/h Loss Corr
Cold 1226 kg fuel/h Loss Corr
Warm 1226 kg fuel/h Loss Corr
Warm 1009 kg fuel/h Loss Corr
Warm 763 kg fuel/h Loss Corr
Warm 567 kg fuel/h Loss Corr
Warm 452 kg fuel/h Loss Corr
Warm 227 kg fuel/h Loss Corr
1.0E+07
^ 8.0E+06
o
Q 6.0E+06
O)
O
T3
Z 4.0E+06
2.0E+06
0.0E+00
1 10 100
Particle Diameter (nm)
Figure 10-18. Average PSD for a CJ610-8ATJ turbojet engine measured by the Nano-SMPS during
APEX-3, Test T5, (a) with line loss correction; and (b) without line loss correction.
Particle Diameter (nm)
1.2E+07 n r
Cold 227 kg fuel/h
Cold 303 kg fuel/h
Cold 452 kg fuel/h
Cold 567 kg fuel/h
Cold 763 kg fuel/h
Cold 1009 kg fuel/h
Cold 1226 kg fuel/h
Warm 1226 kg fuel/h
Warm 1009 kg fuel/h
Warm 763 kg fuel/h
¦Warm 567 kg fuel/h
Warm 452 kg fuel/h
Warm 227 kg fuel/h
146
-------
1.8E+07
1.6E+07
1.4E+07
^ 1.2E+07
o
^ 1.0E+07
Q.
Q
g> 8.0E+06
Z 6.0E+06
T3
4.0E+06
2.0E+06
O.OE+OO
1.8E+07
1.6E+07
1.4E+07
^ 1.2E+07
o
— 1.0E+07
Q.
Q
g> 8.0E+06
Z 6.0E+06
T3
4.0E+06
2.0E+06
O.OE+OO
Figure 10-19.
- Cold 610 kg fuel/h Loss Corr
Cold 1014 kg fuel/h Loss Corr
- Cold 2245 kg fue l/h Loss Corr
Cold 3726 kg fuel/h Loss Corr
Cold 5827 kg fuel/h Loss Corr
I Cold 7026 kg fuel/h Loss Corr
Warm 7026 kg fuel/h Loss Corr
I Warm 5658 kg fuel/h Loss Corr
Warm 3834 kg fuel/h Loss Corr
I Warm 2465 kg fuel/h Loss Corr
Warm 1097 kg fuel/h Loss Corr
I Warm 368 kg fuel/h Loss Corr
(a)
/-\
Au
to \ \
n\
if i* \ *
/ Av \
f m Vil1 1
1 S SI* 1
// f nil 1
S / I \ i 1
/ ''7 Iv \
T»—P nt 1
11 I \ b(i 1
| / / \ IK 1
#' i «V« i
#' / #\ » Wi \
/.'/ / \ \ « . \
i i i i
i i i i
1 10 100
Particle Diameter (nm)
Cold 610 kg fuel/h
Cold 1014 kg fuel/h
(b)
-
Cold 2245 kg fuel/h
-
Cold 3726 kg fuel/h
-
Cold 5827 kg fuel/h
:
Cold 7026 kg fuel/h
/ \
Warm 7026 kg fuel/h
1 \
1 %
-
Warm 5658 kg fuel/h
*f \ \
'/ \ M \
-
Warm 3834 kg fuel/h
Otf \
-
Warm 2465 kg fuel/h
//\IA i i
wf fi \ i 1
if N* 11 m
-
Warm 1097 kg fuel/h
// |A> \ i 1
f 1
-
Warm 368 kg fuel/h
// f mil *
| f VI1 1
// # Vli i
Id \ \
•J.'sL \ \V \
/'/#\ % W V
/'/ # \ \ w V
/'/ / \ x
1 1 1 1
1 10 100
Particle Diameter (nm)
Average PSD for a PW4158 engine measured by the Nano-SMPS during APEX-3,
Test T6, (a) with line loss correction; and (b) without line loss correction.
147
-------
2.0E+07
1.8E+07
1.6E+07
1.4E+07
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
O.OE+OO
Cold 600 kg fuel/h Loss Corr
Cold 1035 kg fuel/h Loss Corr
Cold 2230 kg fuel/h Loss Corr
Cold 3688 kg fuel/h Loss Corr
Cold 5702 kg fuel/h Loss Corr
Cold 7100 kg fuel/h Loss Corr
¦Warm 7200 kg fuel/h Loss Corr
-Warm 5711 kg fuel/h Loss Corr
-Warm 2252 kg fuel/h Loss Corr
¦Warm 596 kg fuel/h Loss Corr
10
Particle Diameter (nm)
100
2.0E+07 j
1.8E+07
1.6E+07 4-
1.4E+07 J-
1.2E+07
1.0E+07 ^
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
-Cold 600 kg fuel/h
Cold 1035 kg fuel/h
-Cold 2230 kg fuel/h
-Cold 3688 kg fuel/h
-Cold 5702 kg fuel/h
-Cold 7100 kg fuel/h
-Warm 7200 kg fuel/h
-Warm 5711 kg fuel/h
-Warm 2252 kg fuel/h
¦Warm 596 kg fuel/h
10
Particle Diameter (nm)
100
Figure 10-20. Average PSD for a PW4158 engine measured by the Nano-SMPS during APEX-3,
Test T7, (a) with line loss correction; and (b) without line loss correction.
148
-------
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
O.OE+OO
-Cold 566 kg fuel/h Loss Corr
Cold 770 kg fuel/h Loss Corr
-Cold 1191 kg fuel/h Loss Corr
-Cold 2109 kg fuel/h Loss Corr
-Cold 3178 kg fuel/h Loss Corr
-Cold 4750 kg fuel/h Loss Corr
-Cold 6096 kg fuel/h Loss Corr
-Warm 4691 kg fuel/h Loss Corr
-Warm 3436 kg fuel/h Loss Corr
¦Warm 2131 kg fuel/h Loss Corr
-Warm 1178 kg fuel/h Loss Corr
Warm 654 kg fuel/h Loss Corr
-Warm 437 kg fuel/h Loss Corr
10
100
Particle Diameter (nm)
1.2E+07
1.0E+07
^ 8.0E+06
o
O 6.0E+06
4.0E+06
2.0E+06
0.0E+00
-Cold 566 kg fuel/h
Cold 770 kg fuel/h
-Cold 1191 kg fuel/h
•Cold2109 kg fuel/h
-Cold3178 kg fuel/h
•Cold4750 kg fuel/h
-Cold6096 kg fuel/h
-Warm 4691 kg fuel/h
-Warm 3436 kg fuel/h
-Warm 2131 kg fuel/h
-Warm 1178 kg fuel/h
Warm 654 kg fuel/h
-Warm 437 kg fuel/h
10
100
Particle Diameter (nm)
Figure 10-21. Average PSD for a RB211-535E4B engine measured by the Nano-SMPS during
APEX-3, Test T8, (a) with line loss correction; and (b) without line loss correction.
149
-------
Cold 421 kgfuel/h Loss Corr
Cold 690 kg fue l/h Loss Corr
Cold 1221 kgfuel/h Loss Corr
Cold 2004 kgfuel/h Loss Corr
Cold 3068 kgfuel/h Loss Corr
Cold 4479 kg f ue l/h Loss Corr
Cold 6233 kg f ue l/h Loss Corr
Cold 6966 kgfuel/h Loss Corr
Warm 6307kgfuel/h Loss Corr
Warm 4551 kg fuel/h Loss Corr
Warm 3111 kg fuel/h Loss Corr
Warm 2037 kg fuel/h Loss Corr
Warm 1173 kg fuel/h Loss Corr
Warm 668 kgfuel/h Loss Corr
Warm 506 kgfuel/h Loss Corr
o.
O
O)
o
T3
1.4E+07
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
Particle Diameter (nm)
1.4E+07
1.2E+07
^ 1.0E+07
o
^ 8.0E+06
Q.
O
§* 6.0E+06
¦O 4.0E+06
2.0E+06
0.0E+00
1 10 100
Particle Diameter (nm)
Figure 10-22. Average PSD for a RB211-535E4B engine measured by the Nano-SMPS during
APEX-3, Test T9, (a) with line loss correction; and (b) without line loss correction.
Cold 421 kgfuel/h
(b)
Cold 690 kgfuel/h
-Cold 1221 kgfuel/h
Cold 2004 kg fuel/h
Cold 3068 kg fuel/h
Cold 4479 kg fuel/h
¦¦ Cold 6233 kg fuel/h
Cold 6966 kg fuel/h
/ #\ *
Warm 6307 kg fuel/h
/ ' \ *
/ 1 \ 1
Warm4551 kg fuel/h
/ ' \ *
/ ' I *
Warm3111 kg fuel/h
/ ' I *
/ ' \ *
Warm 2037 kg fuel/h
/ ' 1 *
II I 1
Warm 1173 kg fuel/h
/ i \
Warm 668 kg fuel/h
/ i \ \
Warm 506 kg fuel/h
J ! \ \
i \
14 1\J\ \ \
1*1 V \ \ %
t&rfSkS \ V
// /\X\ V * \ %
\\V» \
150
-------
8.0E+06
7.0E+06
6.0E+06
CO
| 5.0E+06
Q- 4.0E+06
Q
O)
% 3.0E+06
2.0E+06
1.0E+06
0.0E+00
10
Particle Diameter (nm)
100
8.0E+06
7.0E+06
6.0E+06
CO
| 5.0E+06
Q- 4.0E+06
0
O)
1 3.0E+06
2.0E+06
1.0E+06
0.0E+00
Figure 10-23. Average PSD for an AE3007-A1/1 engine measured by the Nano-SMPS during
APEX-3, Test T10, (a) with line loss correction; and (b) without line loss correction.
Cold 179 kgfuel/h Loss Corr
Cold 233 kg fue l/h Loss Corr
Cold 372 kgfuel/h Loss Corr
Cold 524 kg f ue l/h Loss Corr
Cold 750 kgfuel/h Loss Corr
Cold 971 kgfuel/h Loss Corr
Cold 1171 kgfuel/h Loss Corr
Warm 1180 kgfuel/h Loss Corr
Warm 982 kgfuel/h Loss Corr
Warm 767 kgfuel/h Loss Corr
Warm 529 kgfuel/h Loss Corr
Warm 371 kgfuel/h Loss Corr
Warm 231 kgfuel/h Loss Corr
Warm 178 kgfuel/h Loss Corr
Cold 179 kg fuel/h
Cold 233 kg fuel/h
Cold 372 kg fuel/h
Cold 524 kg fuel/h
Cold 750 kg fuel/h
- Cold 971 kg fuel/h
Cold 1171 kg fuel/h
Warm 1180 kg fuel/h
Warm 982 kg fuel/h
Warm 767 kg fuel/h
Warm 529 kg fuel/h
Warm 371 kg fuel/h
Warm 231 kg fuel/h
Warm 178 kg fuel/h
10 100
Particle Diameter (nm)
151
-------
381 kg fuel/h Loss Corr
431 kg fuel/h Loss Corr
622 kg fuel/h Loss Corr
1090 kg fuel/h Loss Corr
1530 kg fuel/h Loss Corr
2179 kg fuel/h Loss Corr
2815 kg fuel/h Loss Corr
3564 kg fuel/h Loss Corr
E
o
Q.
Q
O)
O
T3
CO
E
O
Q.
Q
O)
o
¦c
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
1.2E+07
1.0E+07
8.0E+06
6.0E+06
4.0E+06
2.0E+06
0.0E+00
10 100
Particle Diameter (nm)
10 100
Particle Diameter (nm)
-381 kg fuel/h
-431 kg fuel/h
-622 kg fuel/h
-1090 kg fuel/h
-1530 kg fuel/h
2179 kg fuel/h
-2815 kg fuel/h
3564 kg fuel/h
Figure 10-24. Average PSD for a CFM56-3B1 engine measured by the Nano-SMPS during APEX-3,
Test T11, (a) with line loss correction; and (b) without line loss correction.
152
-------
10.4 Effects of Particle Loss Correction on PSD Results
To examine the effect of particle loss correction on the PSD results, the PSDs under the idle condition
(7% power), before and after loss correction, were plotted in Figure 10-25 for APEX-1. Shown in this
figure are Test EPA-2 for base fuel, NASA-2&3 for high sulfur fuel, and NASA-4&5 for high aromatic fuel.
The six PSD curves in this figure represent the three different fuels: the blue lines show the base fuel, the
pink lines the high-sulfur fuel, and the green lines the high-aromatic fuel. The PSD curves before particle
loss correction are shown as fine lines with open dots, and the results after loss correction are shown as
solid lines. The particle loss correction in this study did not alter the shape of the PSD over the entire
particle size range. However, this correction did change the results for number of particles emitted.
1.2E+17
1.0E+17
a>
X 8.0E+16
O)
a 6.0E+16
D
O)
o
5 4.0E+16
c
LU
¦a
2.0E+16
0.0E+00
Figure 10-25.
The effects of particle loss correction can also be evaluated by comparing the total particle number data,
GMDs and GSDs of the PSD, before and after line loss correction as obtained by the Nano-SMPS
measurements. The results of this comparison for all three APEX campaigns are shown in Figure 10-26.
In Figure 10 26(a), the total particle number concentrations before and after line loss correction show that
the concentrations after loss correction increased by about a factor of 1.6 for APEX-1, and about 1.2 for
APEX-2 and APEX-3. The different increases for the three APEX campaigns are considered to be due to
differences in the sampling line configurations used for these three APEX campaigns. Figure 10 26(b)
shows that the GMD data after line loss correction were linearly correlated with the data before loss
correction with a correlation coefficient of approximately 0.99. The straight line had a slope of 0.95,
indicating that the average particle size was reduced by about 5 percent after sampling line loss
correction due to the loss of fine particles by diffusion in the sampling line. Figure 10 26(c) indicates that
the line loss correction had little effect on the GSD results as the slope of the correlation line is close to
unity.
Base Fuel (EPA 2) Before Corr
Base Fuel (EPA 2) After Corr
Hi-Sulfur (NASA 2&3) Before Corr
Hi-Sulfur (NASA 2&3) After Corr
Hi-Aromatics (NASA 4&5) Before Corr
Hi-Aromatics (NASA 4&5) After Corr
1 10 100
Particle Diameter (nm)
Effects of line particle loss correction on PSD for a CFM56-2C1 during APEX-1
(Nano-SMPS results).
153
-------
1.4E+07
~ APEX-1
~ APEX-2 & -3
y = 1.5656x
R2 = 0.9916
1.2E+07 -
1.0E+07
8.0E+06
6.0E+06
4.0E+06
y = 1.2109x
R2 = 0.9847
2.0E+06
0.0E+00
o
£
L.
o
O
8
o
£
ra
Q
S
o
—i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r
0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07
Total Particles before Loss Correction (#/cm3)
45 q
y = 0.9522X
R2 = 0.9877
10 20 30 40
GMD before Loss Correction (nm)
50
y = 0.9948x
R2 = 0.9837
« 2.0
® 1.5
1.5 2.0 2.5 3.0
GSD before Loss Correction (-)
Figure 10-26. Comparison of total particle number, GMD and GSD before and after loss correction
for all tests conducted based on: (a) total particle concentration and (b) GMD and
(c) GSD.
154
-------
Thus, in summary, the sampling line loss correction increased the total particle number (mass) and
slightly reduced the GMD. No effect on the GSD was observed.
10.5 Effect of Engine Power and Fuel Flow Rate
The particle GMD was found to track closely with engine fuel flow rate and, in turn, thrust. Figure 10-27
shows the typical GMD time-series results of two tests: EPA-2 of APEX-1 and T1 of EPA-3. The GMD
data were obtained by Nano-SMPS and are presented both with and without line loss correction. The fuel
flow rate data are represented by the red line (refer to the second y-axis on the right).
To investigate the effect of engine power thrust or fuel flow rate on PSD, the time series GMD and GSD
data measured by the Nano-SMPS in each APEX test were averaged at the same power settings and
then plotted against the fuel flow rate as shown in Figure 10-28 for APEX-1, Figures 10-29 and -30 for
APEX-2, and Figures 10-31 to -34 for APEX-3. The data for APEX-2 and -3 are broken down by engine
size and cold or warm operation. Since the sampling line particle loss does not affect the overall trend of
PSD with engine operation conditions, only the results with particle loss correction are presented here.
These figures show that, in general, the GMD was larger at idle (lowest fuel flow rate), decreased as fuel
flow rate increased until the minimum value was reached, and then increased again with fuel flow.
Notable exceptions to this U-shaped pattern include the AE3007 series engines which exhibited an
almost consistent GMD of -10 nm across all fuel flow (thrust) levels as indicated in Figures 10-31 (a) and
10 33(a). Most of the GMD values in the figures were obtained from the measurement probe 30 m
downstream of the engines, which show variation with fuel flow between 10 to 30 nm. Note that in Figure
10-31 (a), the cold engine data for APEX-3 tests T2, T3, T4 and T5 were measured by the 15-m probe,
and the cold engine data for T8 in Figure 10 32(a) were measured by the 43-m probe.
The GSD values in Figures 10-29 to -34 were usually near 1.4 at idle, then gradually increased to greater
than 2 as the fuel flow increased. As shown in Figure 10 31(b) and 10 33(b) for T2 and T3 of APEX-3, the
GSDs measured at 15 m varied with fuel flow in a pattern different from the other engines tested.
Figure 10 35(a) and (b) compare the GMDs and GSDs measured by the Nano-SMPS for the four ICAO-
specified engine operation modes of idle, takeoff, climb-out, and approach power for different jet engines
in the three test campaigns. The data in the figures are particle-loss-corrected, and only data from the 30-
m probe are presented.
The figure shows that, in general, the PM emissions for the approach power condition (30% power) had
the smallest GMD for all of the engines tested. The largest GMDs and GSDs were obtained during the
takeoff (100% power) and climb-out (85% power) conditions. These observations suggest that the PSDs
of PM emissions from the jet engines under both idle (7% power) and approach (30% power) conditions
were unimodal and consisted of primary nuclei particles. When the engines were operated under the
takeoff (100% power) and climb (85% power) conditions, accumulation mode particles were formed (by
either homogeneous nucleation, condensational growth, and/or coagulation to form larger particles) and
the PSD curves became broader.
155
-------
E
c
20
19
18
0) 17
a)
i 16
(0
§ 14
« 13
a>
E 12
o
a)
O 11
10
3500
3000
- 2500 £
O)
2000 S
1500
LL
-- 1000 3
LL
500
Fuel Flow Rate
with loss corr
¦without loss corr
8:00 8:30 9:00 9:30 10:00
Time of Day
10:30 11:00
17:16
17:45
18:14
Time of Day
with loss corr
without loss corr
Fuel Flow Rate
120
- 100
- 80
- 40
18:43
19:12
o
J*
a>
+-»
£
5
o
a>
3
Figure 10-27. Two typical results of GMD as a function of fuel flow rate for (a) a CFM56-2C1
engine during APEX-1, Test EPA-2; and (b) for a CFM56-3B1 engine during APEX-3,
Test T1.
156
-------
~ EPA2
EPA3
ANASA 1a
ANASA 2
~NASA 3
ONASA 4
• NASA 5
500 1000 1500 2000 2500
Fuel Flow Rate (kg/h)
3000
3500
~ EPA2
EPA3
~ NASA 1a
~ NASA 2
~ NASA 3
O NASA 4
• NASA 5
(b)
"V
a om
<3> c*
500 1000 1500 2000 2500
Fuel Flow Rate (kg/h)
3000
3500
Figure 10-28. The (a) GMD and (b) GSD of the PM emissions measured during APEX-1 for a
CFM56-2C1 engine as a function of fuel flow.
157
-------
0)
0)
Q
"E
ra
¦o
c
ra
(O
o
"S
E
o
0)
O
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
:
~
J
: A
;
;
O
~
J
A
A
~d
o
11 11
¦
~ CRVI56-7B24 (T1) Cold
ACFIVI56-7B24 (T4) Cold
-
OCFM56-3B1 (T2) Cold
:
ACFHVI56-3B2 (T3) Cold
i i i i i
i i
—, , , ,
—, , , , , ,
1000 2000 3000
Fuel Flow Rate (kg/h)
4000
5000
Figure 10-29. The (a) GMD and (b) GSD of the PM emissions measured for three derivatives of the
CFM56 engine during APEX-2 as a function of fuel flow. Engines operated during
cold portion of test cycle.
158
-------
(a)
~ CFM56-7B24 (T1)Warm
ACFM56-7B24 (T4) Warm
OCFM56-3B1 (T2) Warm
ACFM56-3B2 (T3) Warm
o
_7V_
A A
-o-
~
1000 2000 3000
Fuel Flow Rate (kg/h)
4000
5000
(b)
~ CFM56-7B24 (T1) Warm
A
ACFM56-7B24 (T4) Warm
OCFM56-3B1 (T2) Warm
ACFM56-3B2 (T3) Warm
O
A
~
A
A
-------
60
50
(a)
Cold-Small Engines
ACJ610-8ATJ (T2)
~ CJ610-8ATJ (T5)
..AAE3QQZ=A1£4I3}..
E
£
at
E
ro
Q
c
ro
at
40
30
? 20
E
o
at
0
10
6
¦ AE3007-A1E (T4)
~ AE3007-A1/1 (T10)
~ D
-A—
-<£-
..<>~
200 400 600 800 1000
Fuel Flow Rate (kg/h)
1200
1400
'>
0
Q
TO
"O
c
ro
+->
tn
o
"3
E
o
-------
60
_ 50
a>
a>
E
re
Q
c
re
a>
~ 40
30
S 20
E
o
a>
CD
10
re
>
a>
Q
T3
L_
re
T3
c
re
•*-»
<0
o
-C
©
E
o
a>
CD
Cold-Large Engines
ACFM56-3B1 (T1)
~ CFM56-3B1 (T11)
A PW4158 (T6)
~ PW4158 (T7)
ARB211-535E4B (T8)
~ RB211-535E4B (T9) .
¦
J1 D A
¦
¦
I
-------
60
50
(a)
Warm-Small Engines
ACJ610-8AT J (T2)
~ CJ610-8ATJ (T5)
A AF3007-A1F (T3)
-k 40
¦ AE3007-A1E (T4)
~ AE3007-A1/1 (T10)
30
* 20
A
~
~
~
10
200 400 600 800
Fuel Flow Rate (kg/h)
1000
1200
1400
ACJ610-8ATJ (T2)
~ CJ610-8ATJ (T5)
~ AE3007-A1E (T3)
~ AE3007-A1E (T4)
~ AE3007-A1/1 (T10)
Warm-Small Engines
200 400 600 800 1000
Fuel Flow Rate (kg/h)
1200
1400
Figure 10-33. The (a) GMD and (b) GSD of the PM emissions measured for the small engines
during APEX-3 as a function of fuel flow. Engines operated during the warm portion
of the test cycle.
162
-------
60
_ 50
a>
a>
E
re
Q
c
re
a>
~ 40
30
S 20
E
o
a>
® 10
re
>
a>
Q
T3
L_
re
T3
c
re
•*-»
<0
o
c
a>
E
o
a>
CD
! Warm-Large Engines
ACFM56-3B1 (T1)
APW4158 (T6)
~ PW4158 (T7)
ARB211-535E4B (T8)
~ RB211-535E4B (T9)
¦
¦
~
<
<
-------
2.8
~ CFM56-2C1
~ CFM56-7B24
~ CFM56-3B
~ CJ610-8ATJ
¦ AE3007A1/1
~ PW 4158
~ RB211
Idle
Takeoff
Climb
Approach
Engine Cycle
~ CFM56-2C1
~ CFM56-7B24
~ CFM56-3B
~ CJ61 0-8 AT J
¦ AE3007A1/1
~ PW4158
~ RB211
Idle
Takeoff
Climb
Approach
Engine Cycle
Figure 10-35. Comparison of: (a) GMD and (b) GSD under four ICAO power conditions for
different engine types.
164
-------
10.6 Effects of Fuel Type
To investigate the effects of fuel type on particle size distribution, the differential number PSDs
(dN/dlogDp) obtained from APEX-1 for different fuels were compared. Figure 10-36 shows the
comparisons of the PSDs obtained by the Nano-SMPS for the three different jet fuels (base, high-sulfur
and high-aromatic) under three engine power levels representative of (a) idle, (b) climb and (c) approach,
respectively. The three test results used were NASA-1 for base fuel, NASA-3 for high-sulfur fuel, and
NASA-4 for high-aromatic fuel. Take-off data could not be obtained by the Nano-SMPS due to its slow
instrument response and relatively short run time under the 100 percent rated thrust condition. Note that
the test NASA-1 of APEX-1 was run under higher crosswind conditions as discussed previously. This test
is being used for the discussion here because the NASA-1 test was the only test with all three power
levels for the base fuel measured by Nano-SMPS.
Under all three power levels, a unimodal and log-normal PSD was observed regardless of the difference
in fuel type and power setting. In Figure 10-36, under all three power settings, the base fuel produced the
smallest number of particles, followed by the high-aromatic fuel and the high-sulfur fuel. This trend is due
to the conversion of a small fraction of the sulfur in jet fuel to sulfate during combustion. The sulfate then
becomes part of the PM emissions. The PSD for the high-sulfur fuel peaked at approximately 17 nm
regardless of the power setting, while the peaks for the PSDs of base and high-aromatic fuels were at
slightly smaller particle size. Measurement of higher PM emissions from high-aromatic fuel than from
base fuel is most likely due to unburned hydrocarbons in the high-aromatic fuel being condensed and
forming additional nuclei particles in the emissions.
In Figure 10 36(c), the PSD curves under the climb-out power (85%) shows notable "tails" in the larger
particle size channels (>30 nm) indicative of the formulation of a minor accumulation mode. Under
approach conditions (30% power), as shown in Figure 10 36(b), the number of particles emitted from all
three fuels sharply increased, but the particles were still not as numerous as was the case at idle. Again,
like idle, a higher particle count resulted from the high-sulfur fuel.
Figure 10-37 also provides a comparison of the average GMDs and GSDs obtained for selected APEX-1
tests at idle and at 30 and 85 percent rated thrust. The data presented in the figure were particle-loss-
corrected. As Figure 10-37 shows, the GMDs of the particles produced using high sulfur fuel tend to be
greater than those for the other two fuel types tested. Also, the GMDs obtained with either high-sulfur or
high-aromatic fuel showed little effect from changes in engine power. The GMD for high-sulfur fuel was in
the range of 16-17 nm, the GMD for high-aromatic fuel was between 11-12 nm, and, in contrast, the GMD
for base fuel varied significantly from -11 to 17 nm as the engine power changed. Figure 10 37(b) also
shows that the GSD obtained with base fuel varied by a factor of 1.7 between idle and climb-out power,
where the GSD exceeded 2.3.
10.6 Effects of Engine Type
To investigate the effects of engine type on particle size distribution, Figure 10-38 compares the GMDs
obtained by the different engines tested during the three APEX campaigns. The results, measured by
Nano-SMPS at 30 m behind the engines, are presented in the figure. The PSDs for the CJ610-8ATJ (Test
2 and 5 from APEX-3) and AE3007-A1E (Test 3 and 4 from APEX-3) engines were measured 15 m
downstream of the engines, and are therefore not presented here. The effect of probe position on the PM
emission from jet engines is discussed in Section 10.9 below.
165
-------
3.0E+07 q
Base Fuel (NASA1)
Hi-Sulfur (NASA3)
= 2.5E+07
Hi-Aromatic
NASA4)
2.0E+07
1.5E+07 :
1.0E+07
5.0E+06
0.0E+00
10
Particle Diameter (nm)
100
_ 3.0E+07
jj 2.5E+07
? 2.0E+07
*
5 1.5E+07
Q
o 1.0E+07
¦o
= 5.0E+06
LU
0.0E+00
10
Particle Diameter (nm)
100
4.0E+07
3.5E+07
o
•5 3.0E+07
# 2.5E+07
~ 2.0E+07
o) 1.5E+07
5 1.0E+07
c
hi 5.0E+06
0.0E+00
A
(c
\
/
i
fl\
\
;
\
si
/
/
t
s
10
Particle Diameter (nm)
100
Figure 10-36. Effects of fuel type on PSD for different engine power conditions during APEX-1 for:
(a) idle (7%), (b) climb-out (85%), and (c) approach (30%).
166
-------
(a)
~ Base (NASA-1)
¦ Hi-Sulfur (NASA-3)
~ Hi-Aromatic (NASA-4)
Idle
Climb
Approach
(b)
~ Base (NASA-1)
¦ Hi-Sulfur (NASA-3)
~ Hi-Aromatic (NASA-4)
Idle
Climb
Approach
Figure 10-37. Comparison of the loss-corrected: (a) GMDs; and (b) GSDs for different power
conditions and fuels during APEX-1.
167
-------
50
45 i
40
35
¦ CFM56-2C (APEX-1 NASAIa)
~ CFM56-7B (APEX-2 T1)
~ CFM56-3B (APEX-2 T2)
~ AE3007A1/1 (APEX-3 T10)
~ P&W 4158 (APEX-3 T6)
~ RB211-535E4 (APEX-3 T9)
30
25
20
15
10
~
—o-
~
-o—
¦-ff-
0 m
Qd
1000 2000 3000 4000 5000
Fuel Flow Rate (kg/h)
6000
7000
8000
Figure 10-38. Comparison of GMDs for different engines.
Figure 10-38 shows that at low fuel flow rates, all the engines had a GMD of about 10-20 nm, which first
decreased and then increased as the fuel flow rate increased. For most of these engines, the GMD was
smallest at the fuel flow rate ranging below -2,000 kg/h. Also, in comparison to the P&W 4158 engine, the
GMD of the RB211 engine increased more sharply as the fuel flow rate increased beyond -3,000 kg/h.
The GSD data for different engines can be compared as shown in Figure 10-39. The GSD results showed
a trend similar to the GMD. All of these observed trends suggest that more accumulation mode particles
were present in the PM emissions when the engines were operated under the higher power settings
(higher fuel flow rate). Figures 10-38 and 10-39 also show that the P&W 4158 and RB211 engines, which
were the largest tested in the APEX campaigns, also had larger GMD and GSD at higher fuel flow rates.
The GMDs of the PM emissions obtained from the six different engines were also compared under the
four ICAO-specified engine operation modes of takeoff, climb-out, approach and idle, as shown in Figure
10-40(a) - (d). The data in the figure are particle-loss-corrected, and only 30-m data are presented for
APEX-3. In Figure 10-40(a), only three engines - CFM56-3B1, AE3007-A1/1 and RB211-535E4-B - have
Nano-SMPS data at 100 percent power thrust for comparison. At takeoff, the GMD of the PM emissions
generally increased with engine size. The larger RB211-535E4-B engine had a GMD of about 30 nm,
followed by 28 nm for the medium-sized CFM56-3B1 engine, with the smaller AE3007-A1/1 engine
having the smallest GMD (11 nm). When the engines operated at climb mode, Figure 10 40(b) shows that
the GMD of the RB211-535E4-B engine decreased to -28 nm and was the largest among all the engines
tested. The larger P&W 4158 engine ranked second at climb-out with a GMD of 26 nm.
168
-------
3.5
3.0
2.5
2.0
¦ CFM56-2C (APEX-1 NASA1 a)
~ CFM56-7B (APEX-2 T1)
~ CFM56-3B (APEX-2 T2)
~ AE3007A1/1 (APEX-3 T10)
~ P&W 4158 (APEX-3 T6)
~ RB211-535E4 (APEX-3 T9)
~
~
~
~
~
~
1.0
%
asiacD ¦
1 n
~ ~
1000 2000 3000 4000 5000
Fuel Flow Rate (kg/h)
6000
7000
8000
Figure 10-39. Comparison of GSDs for different engines.
When the engines switched to approach mode, the GMD for all of the engines was significantly reduced
as shown in Figure 10 40(c). Figure 10 40(d) shows that the engines at idle also had small GMDs, but the
GMDs measured at idle were slightly larger than those measured at approach mode.
The GSDs obtained by different engines operated under four modes were compared in Figure 10-41 (a) -
(d). Regardless of engine type, the PM emissions at approach and idle modes generally had lower GSD
values, in the 1.3 to 1.5 range, except for the RB211-535E4-B engine, which had a GSD of 1.9 at
approach power. As was the case for GMD, the GSDs increased during takeoff and climb modes. The
only exception to the GSD increase during takeoff and climb modes was for the small AE3007-A1/1
engine, which showed little change in GSD value when the engine operated at climb-out power.
These observations again suggest that the PSDs of PM emissions from the jet engines under both idle
(7% power) and approach (30% power) conditions were unimodal and consisted of primary nuclei
particles. When the engines operated under the takeoff (100% power) and climb (85% power) conditions,
accumulation mode particles were formed and the PSD curves became broader.
169
-------
40
35
(a) Idle
E 30
| 25
20
15
E
o
O)
O 10
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158
o
40
35
E 30
g 25
20
J= 15
d>
E
o
O)
O 10
(c) Climb
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158
40
35
(b) Take-Off
E 30
| 25
20
15
E
o
O)
O 10
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158
40
35
(d) Approach
E 30
25
20
J= 15
d>
E
o
O)
O 10
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158
Figure 10-40. Comparison of GMD produced by different engines at: (a) idle, (b) takeoff, (c) climb, and (d) approach power.
-------
2.6
(a) Idle
2.6
2.4
r 2.2
2.0
"2 1.8
1.6
1.4
1.2
1.0
(b) Take-Off
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158 RB211
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158 RB211
(c) Climb
1.0
2.6
2.4
r 2.2
2.0
"2 1.8
1.6
1.4
1.2
1.0
(d) Approach
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158 RB211
CFM56-2C CFM56-7B CFM56-3B AE3007A1/1 PW4158 RB211
Figure 10-41. Comparison of GSD produced by different engines at: (a) idle, (b) takeoff, (c) climb, and (d) approach power.
-------
10.7 Effects of Cold and Warm Engine Conditions
In APEX-2 and APEX-3, the PM emissions were measured under both increasing (cold) and decreasing
(warm) engine power. Figures 10-10 through 10-13 (for APEX-2) and Figures 10-14 through 10-24 (for
APEX-3) show that slight differences were observed in the PSD between cold and warm engine
conditions. To investigate the magnitude of these differences, particle number concentration, GMD and
GSD obtained at different power settings under cold engine conditions were plotted against the
corresponding data under warm engine conditions in Figure 10 42(a), (b) and (c), respectively. Figure 10-
42(a) shows that the particle number concentration data obtained from cold engines were linearly
correlated with the data obtained from warm engines, with a correlation coefficient of 0.91. The straight
line had a slope of 0.925, indicating that the particle number concentrations were ~7 percent lower with
warm engines than they were with cold engines. Figures 10 42(b) and (c) show that the correlation lines
between cold and warm engine conditions have slopes equal to 1 for both GMD and GSD. Engine warm-
up results in fewer particles being emitted, but does not markedly change the particle size distribution.
10.8 Effect of Probe Position on PSD
During the APEX-3 campaign, the effect of sampling probe location on the PM emissions was
investigated in tests T5 and T8. In test T5, the emissions from the CJ610-8ATJ turbojet engine were
sampled at two locations. The data were first collected by the 15-m sampling probe as the engine power
increased step-by-step at the rated thrust levels of 7, 30, 45, 65, 85, and 100 percent. Samples were then
collected by the 30-m probe while the engine power setting was switched in opposite order from 100 to 7
percent. The same procedure was used to compare the results between the 30-m and 43-m probes in
test T8 for the RB211-535E4-B engine. Flowever, the data were comparable only at the power setting
levels of 4, 7, 15, 30, 45 and 65 percent. The engine was tested at up to 85 percent thrust, but the
emissions were only measured at 30 m.
The probe position effects on PM emissions were first investigated by comparing the three characteristic
parameters of the PSDs measured by Nano-SMPS at different distances from the tested engines. Figure
10 43(a) - (c) shows the particle number concentration, GMD and GSD, respectively, plotted against the
engine thrust as measured by the 30-m and 15-m probes during APEX-3 test T5. Figure 10 43(b) shows
that the GMD measured by the 30-m probe was lower than the GMD measured by the 15-m probe under
all the engine power settings, with the exception of 7 percent idle. The GSD measured by 30-m probe, on
the other hand, was greater than the GSD measured by 15-m probe at all power levels. As the plume
moved from 15-m to 30-m downstream of the engine, more nuclei mode particles were formed in the
plume, which reduced the average particle size and widened the size distribution. The exception at idle
seen in Figure 10 43(b) shows that smaller GMDs were obtained from the 15-m probe, indicating
compositional differences in the particles produced at lower power settings. At higher power settings (i.e.,
fuel flow), the engine seems to produce more volatiles, which formed additional nuclei mode particles
from the gas phase as the plume traveled farther downstream of the engine.
172
-------
6.0E+06
g 5.0E+06
£ 4.0E+06
3.0E+06
y= 0.9248x
R2 = 0.9126
= 2.0E+06
« 1.0E+06
0.0E+00
0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06
CN Measured Under Cold Condition (#/cm3)
40
(b)GMD
35
£ 30
20
y = 1.0011x
R2 = 0.9258
0
5
10
15
20
25
30
35
40
GMD Measured Under Cold Condition (nm)
2.4
(c)GSD
2.2
5 2.0
y = 1.0011X
R2 = 0.9258
~ ~
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
GSD Measured UnderCold Condition (nm)
Figure 10-42. Effect of engine operating temperature on: (a) PM number concentration; (b) GMD
and (c) GSD.
173
-------
1.0E+07
o 8.0E+06
=§ 6.0E+06
O 4.0E+06
a) 2.0E+06
0.0E+00
~ 15-m Probe
¦ 30-m Probe
2.4
2.2 ¦
2.0
_ 1.8
Q
(/>
V 1.6
1.4 -
1.2
1.0
Mil
30
45 65
Rated Th rust (%)
Rated Thrust(%)
n 15-m Probe
¦ 30-m Probe
30
45 65
Rated Thrust(%)
(a)
85 100
~ 15-m Probe
30-m Probe
(C)
85
100
Figure 10-43. Comparisons of: (a) particle number concentration; (b) GMD; and (c) GSD measured
by the 15- and 30-m probes during APEX-3 T5 (Nano-SMPS; line-loss corrected).
174
-------
Figure 10 44(a) - (c) show the particle concentration, GMD and GSD measured using the 30-m and 43-m
probes from APEX-3 test T8 for the RB211-535E4-B engine. The comparison shows similar trends to
those observed in APEX-3 test T5. Figure 10 44(b) shows that the GMDs measured at 43-m were lower
than the GMDs measured at 30 m at power levels greater than 15 percent, again indicating that, at higher
power settings, the formation of fine particles by the nucleation and condensation of volatiles continued to
dominate as the plume moved from the 30- to 43-m probe location. At lower power settings, as was seen
in test T5 for the 15-m and 30-m comparison, the GMD was larger at 43-m than that at 30-m. The GSD
measured by the 43-m probe at power settings above 7 percent was greater than the GSD measured by
the 30-m probe, as shown in Figure 10 44(c), consistent with the observation in APEX-3 test T5. This
result is considered to be mainly a result of the formation of additional sulfate particles from the gas
phase as reported by Wey et al. (2006).
Both Figures 10 43(a) and 10 44(a) show that, at higher power settings, the particle number
concentration decreased as the plume traveled farther downstream of the engine, possibly because of the
dilution of the plume by ambient air during transit.
The effects of probe position on particle number and mass were further investigated using the number-
and mass-based Els derived from the Nano-SMPS measurements in the APEX-3 T5 and T8 tests. Figure
10-45 shows the comparison between the particle number emission indices (EIN) measured by the 15-m
and 30-m probes for test T5 with the CJ610-8ATJ engine and T8 of the RB211-535E4-B engine. Although
the particle number Els varied differently with power settings for these two engines, at lower power
settings the EIN decreased as the probe moved farther from the engine and, at higher power settings, the
EIn increased with distance. The increase in EIN at higher power settings as the plume traveled farther is
probably attributable to the nucleation of volatiles, while the EIN decrease at engine idle may imply some
different mechanism for particle transformation under lower power conditions.
For particle mass emissions, Figure 10-46 compares the mass emission indices (EIM) measured at
different probe positions for APEX-3 test T5 for the CJ610-8ATJ engine and APEX-3 test T8 for the
RB211-535E4-B engine. The figure shows that, for both engines, the EIM values decreased with travel
distance of the plume, and that the trends were consistent for most power setting levels. The only
exception was for the RB211 engine at 4 and 65 percent thrust, where the EIM was higher at the 43-m
probe position than that at 30-m. The decrease in EIM observed here is in conflict with the EIN results
discussed above. This decrease may be partly attributed to the EIM results being converted from the
Nano-SMPS number measurements, which were affected by the PSDs measured. Note also that in
APEX-3 test T5 and T8, the first measurements were made at the probe location closer to the engine
when the engine was operating under the cold condition, resulting in the measurements at the more
distant probe position always being collected under warm engine conditions. The engine condition may
have also affected these results. Additional research would be needed to help explain the above
experimental results.
175
-------
6.0E+06
w 5.0E+06
4.0E+06
3.0E+06
a) 2.0E+06
¦g 1.0E+06 +-
'€
ro
Q_
0.0E+00
~ 30-m Probe
~ 43-m Probe
(a)
15 30 45
Rated Th rust (%)
65
85
~ 30-m Probe
43-m Probe
Rated Th rust (%)
~ 30-m Probe
43-m Probe
0 1.8
15 30 45
Rated Thrust(%)
Figure 10-44. Comparisons of: (a) particle number concentrations; (b) GMD; and (c) GSD
measured by the 30- and 43-m probes during APEX-3 T8 (EEPS; line-loss
corrected).
176
-------
2.0E+16
CD
D
*o> 1.5E+16
w
Q)
O
s
Q.
x 1.0E+16
0
"O
c
c
O
"t/>
E 5.0E+15
LU
0.0E+00
CJ610-8ATJ (APEX-3T5)
~ 15-m Probe
¦ 30-m Probe
30
45 65
Rated Thrust (%)
85
100
3.5E+16
_ 3.0E+16
0)
D
4—
U)
* 2.5E+16
w
Q)
0
1 2.0E+16
Q.
X
<1)
? 1.5E+16
c
o
.« 1.0E+16
E
LU
Q- 5.0E+15
0.0E+00
RB211-535E4(APEX-3T8)
~ 30-m Probe
¦ 43-m Probe
15 30
Rated Thrust (%)
45
65
Figure 10-45. Effects of probe position on particle number emission indices for a: CJ610-8ATJ
turbojet; and RB211-535E4B turbofan engine.
177
-------
CJ610-8ATJ (APEX-3T5)
~ 15-m Probe
¦ 30-m Probe
-f-
30
45 65
Rated Thrust (%)
85
100
RB211-535E4 (APEX-3 T8)
~ 30-m Probe
¦ 43-m Probe
15 30
Rate Thrust (%)
45
65
Figure 10-46. Effects of probe position on particle mass emission indices for a: CJ610-8ATJ
turbojet; and RB211-535E4B turbofan engine.
178
-------
10.9 Comparison of PSDs Measured by Different Instruments
The GMD and GSD data of the particle size distributions, as measured by Nano-SMPS and EEPS, were
compared. The comparison of particle number emission indices measured by different instruments was
discussed previously in Section 9 (PM Number Emissions). Figure 10-47 plots the results from the Nano-
SMPS against those of the EEPS under the same test conditions for all APEX-2 and APEX-3 tests.
Therefore, these graphs show the average of tests T1 to T4 from APEX-2 for the CFM56-7B24, -3B1, and
-3B2 engines; and tests T1 to T11 from APEX-3 for the CFM56-3B1, CJ610-8ATJ, AE3007-A1E and -
A1/1, P&W 4158 and RB211-535E4-B engines.
Figure 10 47(a) shows the comparison of GMD results measured by the two instruments. The correlation
line in the figure shows a slope of 0.84, indicating that the GMDs measured by the EEPS were -16
percent smaller than those measured by the Nano-SMPS. For most of the measurement results, a weak
linear correlation between the two instruments can be observed, with a correlation coefficient of -0.6. The
GSD comparison is shown in Figure 10 47(b), where the weak linear correlation between the two
instrument measurements can again be observed (correlation coefficient is -0.5). The slope of the
correlation line is 0.98, indicating that the PSD measurements by the two instruments had nearly the
same standard deviations.
179
-------
50
40
30
~~
y = 0.8417x
R2 = 0.5833
20
~~
CP
10
0
0
5
10
15
20
25
30
35
40
45
GMDby nano-SMPS(nm)
GSD by nano-SMPS (-)
Figure 10-47. Comparison of the GMD and GSD as obtained from Nano-SMPS and EEPS
measurements during all tests conducted during APEX-2 and -3.
180
-------
11. Black Carbon and PAH Emissions
The PM emissions from aviation gas turbine engines consist of a number of components including black
carbon (BC) as well as other organic compounds, inorganic acids and salts, etc., which are generated
during the combustion process. In the APEX test series, black carbon was continuously monitored using
a Magee Aethalometer and particle surface-bound PAHs were continuously monitored by a PAS 2000
instrument. The data collected from these two analyzers are summarized in this section with details
provided in Appendix G. All results provided were background-corrected using data collected before/after
each test.
However, the quality of the data collected by the aethalometer and PAH analyzer was generally poor. The
data were highly variable and often did not respond to changes in engine power. Therefore, only selected
data are being presented here for the sake of completeness and the analysis of trends. All continuous BC
and PAH results should be used with extreme caution and certainly should not be used in absolute terms.
11.1 Black Carbon Emissions
The black carbon (BC) content in PM emissions was continuously monitored by the Magee Aethalometer
for all the three APEX campaigns. The data were recorded every second. The time-series BC
concentration data for individual tests are presented in Figures 11-1 to 11-8. In the figures, the black lines
represent the recorded black carbon concentration and the rated power thrust was plotted using the
second y-axis. Also note the very high degree of variability in the data produced by the aethalometer.
Figure 11-1 consists of the results of four tests: EPA-1, EPA-2, NASA-1, and NASA-1a of APEX-1
campaign. These tests were conducted with the same CFM56-2C1 engine and base jet fuel. The BC
concentrations measured for EPA-2 and NASA-1 a were well correlated to the variation in engine power
thrust. The responses for the EPA-1 and NASA-1 tests were poor and may have been caused by the
crosswind background interference.
The CFM56-2C1 engine was also tested with high-sulfur fuel during APEX-1 tests EPA-3, NASA-2 and
NASA-3. The BC concentrations recorded for NASA-2 were found to be unrealistically high during some
of the test period, and the BC data for EPA-3 and NASA-3 did not correlate well with the power settings.
Therefore, these tests were not used in the data analysis.
Figure 11-2 shows the BC concentrations measured for the CFM56-2C1 engine with high-aromatic fuel.
The two APEX-1 tests, NASA-4 and NASA-5, are presented in the figure. The data show some
correlation between the BC concentration and the rated power thrust, though there was large fluctuation
in these tests.
181
-------
The BC concentration results of APEX-2 T1 and T4 tests for the CFM56-7B24 engine are shown in Figure
11-3, with the results of the T2 and T3 of APEX-2 and the T1 and T11 of APEX-3 presented in Figure
11-4. As shown, there is some correlation of the BC measurements with power changes.
Figure 11-5 presents the results of APEX-3 T2 and T5 for the CJ610-8ATJ engine. The discrepancy
between the BC concentration change with ascending and descending power variation were believed to
be caused primarily by the probe position change. The probe position was changed during these two
tests. This change in the probe position will be discussed further in a later subsection.
Figures 11-6, 11-7, and 11-8 are the results for the AE3007-A series, P&W 4158 and RB211 engines,
respectively, during APEX-3. The BC concentrations recorded in these tests show good correlation with
power change. The results of the test T8 of APEX-3 in Figure 11-8 were obtained from the two probe
positions. The effect of probe position will be discussed later.
The tests during which the black carbon monitoring results were not correlated to engine power are
indicated in Table 11-1. Also note that all data presented are uncorrected for losses in the sampling iines
since this parameter was not measured during the line loss determination.
APEX
-1 EPA-1
— Black Carbon
Rated Thrust
-
I
00 12:30 13:00 13:30 14:
Tim
2S .
)0 14:30 15:00 15:30 16:00
of Day
J ».ii>
5
¦8
a
m b.os
1
APEX-1
I
riASA-l
WufcCartwi 1
f'afnt IhluM
I
L
1 n
\
J
.lliUil
it Jill ill. ijll
-GO
40 i
Bba Cmbcn
R«t«U 'tiiuit
ArcA-1 EPA-Z
S CMS
8:52 9:21 *50
Time of Day
ri:*5 12:1* tz:43 isiz 13:40
Tbreof Day
14XB 14:3
AFfcX-1 NASA-1,-1
8:82 831
Time of Day
Figure 11-1. Time-series black carbon concentration data for the tests EPA-1, EPA-2, NASA-1,
and NASA-1 a of APEX-1 campaign for the CFM56-2C1 engine with base fuel.
182
-------
100
«o
E
B»
E
c
o
nj
HI
u
c
o
O
c
o
JO.
imm
o
J*
2
m
n r
AREX-1 NASA-4
Black Carbon
Ratgd Thrusl
y
*
13:13
13:43 14:13 14:43
Time of Day
15:13
g.
tJ
3
k_
c.
H
1
~»
or
0.60
100
M
£
n«
£
s
o
*•+
<¦&
a>
u
c
o
o
c
o
n
5
a
u
2
00
Black Carbon
Rated Thrust
APEX-1 NASA-5
-
N
8:38 9:07 9:36 10:04 10:33
Time of Day
11:02
11:31
15
T3
®
Figure 11-2. Time-series black carbon concentration data for the tests NASA-4 and NASA-5 of
APEX-1 campaign for the CFM56-2C1 engine with high-aromatic fuel.
183
-------
043
040
0.59
0.50
0.2?
0.20
0.15
0.10
0.*3
0.00
APEX-2T1
0.30
043
040
0.W
0.30
0.25
0.20
0.15
0.10
0.03
0.00
2?:$1
0:00
ttiH
a
A
-Black Carbon
-Kated I hrust
so
¦00
\
100
¦40
e
I
- 2Q
1:53 2:24 2:32 3:21
Time ot Day
?:30
4:1*
APEX-2 T4
1
¦ i
— Black Carbon 1
— Rated Thrust [¦
1 j
I1
1
I
l
1
jw
i j
r
MT
h
,i
ri
iLto,i .ii
i
LI Jt
uwm
mm
100
so
00
40
20
£
0:2?
0:37
Tim* of Day
1:20
1:W
2:24
Figure 11-3. Time-series black carbon concentration data for the tests T1 and T4 of APEX-2
campaign for the CFM56-7B24 engine.
184
-------
t.40
120
t.00
0.80
§ O.GO
S
0.00
23:31
APEX-2 T2
—r*:kc>-mki
—RnrdTftvKf
I
I
r—'
r-J
J
1
'
j_ jW
g
-I
0:20 fl:57
TlmtdD^
£ 0.S
S
e,
S 0.5
1
S M t«:55
Time or Day
Figure 11 -4. Time-series black carbon concentration data for the tests T2 and T3 of APEX-2 and
T1 and T11 of APEX-3 for the CFM56-3B series engine.
185
-------
m
Black Carbon
Rated Thrust
APEX-3T2
tf
\
I
17:09 17:24 17:?? 17:92 1S:07 1S:21 1S:?0 13:50
Time of Day
100
s
1
a
I
tt
Black Carbon
Rated Thrust
APEX-3 T5
i i
WM 1$:04 19:?? 17:02 17:31
Time of Pay
18:00
1S:2§
Figure 11-5. Time-series black carbon concentration data for the APEX-3 T2 and T5 for the
CJ610-8ATJ turbojet engine.
186
-------
i "¦«»
§
I
o
s
¦9
5
0.02
Cj.'Ijwi)
•Rite J TErus.1
2:00 2:3S
Tint* of Day
0.1*6
0.100
§
1
0.000
0.00
22: f* 22: ¥>
«
2S:I0 23:49 9:1i> 9:40
TtneofDag/
sue Cirbcn
APEX-3T1Q
rr
111
93* ¦}:« 0:57 t:12 1:2* IsM 1:55 2:M 1:24
TlnwcTDiw
Figure 11-6. Time-series black carbon concentration data for the APEX-3 T3 and T4 for the
AE3007A1E engine and T10 for the AE3007A1/1 engine.
187
-------
0.7*
QM
0.90
040
0.30
0.20
0.10
0.00
APEX-3T6
Aja^
N
S
jS
]£
jUUL
Black Carbon
Rated Thrust
¦ 00
100
$0
£
-40
- 20
15:9? 14:24
14:92 19:21
Time of Pay
19:50 10:19
0.00
0.50
040
0.30
0.20
0.10
0.00
APEX-3T7
-Black Carbon
Rated Thrust
fl
Hi
Y
"wjy
*
%
¦80
VI
ui
100
§0
t
-40
20
17:09 17:24
17:$$ 17:92
Time of Day
15:07 19:21
Figure 11-7. Time-series black carbon concentration data for the APEX-3 T6 and T7 for the P&W
4158 engine.
188
-------
1.20
1.00
0.80
0.00
OM
0.20
0.W
- APEX-3 TS
n
Black Carbon
Rated Thrust |
~
ri
IP
1
--
Iri
•
i hi i
21:$$ 21:47 22:01 22:19 22:30 22:4? 22:5
Tim* of Day
100
¦ $0
49
29
P
I
100
Black Carbon
Rated Thrust
APEX-3 T9
w
20:19 20:45 21:14 21:4?
Tim* of Pay
22:12
€
I
Figure 11-8. Time-series biack carbon concentration data for the APEX-3 T8 and T9 for the
RB211-535E4-B engine.
189
-------
Table 11-1. Black Carbon Monitoring in APEX Tests
Campaign
Aircraft
Engine
Fuel
Probe Position
Concentration
APEX
Test No.
Type
correlated with
engine power?b
EPA-1a
30-m
N
EPA-2
Base
30-m
Y
NASA-13
30-m
N
NASA-1 a
30-m
Y
1
EPA-3
DC-8
CFM56-2C1
30-m
N
NASA-2
Hi-S
30-m
N
NASA-3
30-m
N
NASA-4
Hi-A
30-m
Y
NASA-5
30-m
Y
T1
B737-
CFM56-7B24
30-m
Y
2
T4
700
30-m
Y
T2
B737-
CFM56-3B1
30-m
Y
T3
300
CFM56-3B2
30-m
Y
T1a
B737-
CFM56-3B1
30-m
N
T11
300
30-m
Y
T2
NASA
Lear
Model
25
CJ610-8ATJ
turbojet
15-m
Y
T5
Fleet
30-m/15-m
Y
T3
AE3007A1E
15-m
Y
3
T4
Embraer
EMB145
15-m
Y
T10
AE3007A1/1
30-m
Y
T6
A300
P&W4158
30-m
Y
T7
30-m
Y
T8
B757
RB211-
30-m/43-m
Y
T9
535E4-B
30-m
Y
a Indicates the tests with high cross wind in background.
b N = no; Y = yes.
190
-------
11.1.1 Effect of Fuel Flow Rate and Engine Thrust
The effect of fuel flow rate on the BC emission index was investigated. By averaging the fuel flow rates
and BC concentration readings that were recorded under the same rated power within a test, the average
BC concentrations as well as the corresponding average fuel flow rates at various power levels were
calculated for each test. The average BC emission indices were then calculated from the average C02
concentration and summarized in Table G-1 in Appendix G. Figures 11-9 to 11-15 plot the BC emission
index as a function of fuel flow rate. Note that only the results obtained from the 30-m probe are
discussed here. The effect of probe position will be discussed later.
In these figures, the results of different tests with the same engine and fuels were plotted for comparison.
Figure 11-9 shows the large uncertainty in the APEX-1 black carbon measurement. In comparison, the
BC measurements for the APEX-2 and APEX-3 campaigns, shown in Figures 11-10 to 11-15, were much
better. These figures show that the fuel flow rate had effects on the BC emission index similar to those
observed for the PM mass emission index. A U-shaped curve of El vs. fuel flow was determined where
the emissions are slightly elevated near idle, decreases to a minimum at mid-range power, and then
increases to the maximum at climb-out or take-off power.
Five engines in this study had black carbon emission data collected at 30-m for the four ICAO- specified
engine powers: idle (7%), takeoff (100%), climb (85%), and approach (30%). These five engines are
CFM56-2C1, CFM56-3B series, CJ610-8ATJ, AE3007A1/1, and RB211-535E4-B. The data for the
AE3007A1/1 engine collected at 8.4 percent rated thrust were used to represent the results of the idle
engine condition and were compared with the data of the other engines at seven percent rated thrust. The
emission indices derived from the black carbon measurements under the same engine thrust were
averaged and summarized in Table 11-2.
The effects of the LTO engine cycle on the BC emission index for different engines are illustrated in
Figure 11-16. This figure shows the same trend of BC El with the change in engine power, although the
absolute El values were different for the different engines at the same engine power. In general the BC
emission indices were the highest at takeoff and climb and became the lowest when the engine was at
idle and approach modes. The engines operated under approach mode emitted slightly more or less
black carbon than under idle. These results are consistent with those reported by Wey et al. (2006) and
Lobo et al. (2007) for APEX-1 and -2. The reported results indicate that the BC emissions are generally
greater at higher engine power.
191
-------
600
a) 500
400
CFM56-2C
Base Fuel
AAPEX-1 EPA2
•APEX-1 NASA-la
'u) 300
200
100
500 1000 1500 2000
Fuel Flow Rate (kg/h)
2500
3000
3500
600
a) 500
400
'u) 300
200
100
CFM56-2C
High-Aromatic
~ APEX-1 NASA-4
AAPEX-1 NASA-5
500 1000 1500 2000 2500
Fuel Flow Rate (kg/h)
3000
3500
Figure 11 -9. Black carbon emission index as a function of fuel flow rate for the CFM56-2C1
engine during APEX-1.
192
-------
700
600
500
400
300
¦2 200
100
-
CFM56-7B
~ APEX-2 T1
i APEX-2 T4
¦
:
i
i
:
i
~
i
~
*
¦ j
¦
1
'
~
1000 2000 3000
Fuel Flow Rate (kg/h)
4000
5000
Figure 11-10. Black carbon emission index as a function of fuel flow rate for the CFM56-7B24
engine.
1600
0)
.3 1400
£ 1200
X
E
m 600
c
o
n
to 400
O
o
JS 200
CO
0
0 500 1000 1500 2000 2500 3000 3500 4000
Fuel Flow Rate (kg/h)
Figure 11-11. Black carbon emission index as a function of fuel flow rate for the CFM56-3B series
engine.
CFM56-3B
~ APEX-2 T2
A APEX-2 T3
• APEX-3 T11
l
k
i
~
<
1
i
i 1 j
1
Hi * f
193
-------
CJ610-8ATJ
~ APEX-3 T5
4
~
«
~
1 ^
~
i
i i i i i
~
i i i i i i i i i i i i -i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—
200 400 600 800 1000
Fuel Flow Rate (kg/h)
1200
1400
Figure 11-12. Black carbon emission index as a function of fuel flow rate for the CJ610-8ATJ
turbojet engine.
350
o
¦2 300
U)
O)
-§¦ 250
3
¦o
f 200
o
"t/>
t/>
E 150
LD
C
O
¦S 100
ro
O
ro 50
OQ
0
0 200 400 600 800 1000 1200 1400
Fuel Flow Rate (kg/h)
Figure 11-13. Black carbon emission index as a function of fuel flow rate for the AE3007A1/1
engine.
AE3007A1/1
~ APEX-3 T10
:
-
-
4
4
~
~
i
~
-
4
~ ,
4
~
I I I I
¦ ¦¦¦I
4
>
¦ i ¦ i i
¦ i ¦ ¦ ¦ i ¦ ¦ ¦ ¦ i i i i i
194
-------
-------
Table 11-2. BC Emission Indices at the LTO Power Levels for Different Engines
Engine
Test Average
Engine Cycle
BC
El
SD
mg/kg
mg/kg
CFM56-2C1
APEX-1 EPA-2
& NASA-1 a
Idle (7%)
33.6
46.2
Takeoff (100%)
71.2
81.6
Climb (85%)
402
113
Approach (30%)
99.5
174
CFM56-
7B24
APEX-2 T1&T4
Idle (7%)
260
204
Takeoff (100%)
-
-
Climb (85%)
406
168
Approach (30%)
111
60.9
CFM56-3B
series
APEX-2 T2&T3
APEX-3 T11
Idle (7%)
333
92.6
Takeoff (100%)
734
58.5
Climb (85%)
718
236
Approach (30%)
205
27.1
CJ610-8ATJ
APEX-3 T5
Idle (7%)
137
651
Takeoff (100%)
808
378
Climb (85%)
853
106
Approach (30%)
289
72.3
AE3007A1/1
APEX-3 T10
Idle (8.4%)
108
192
Takeoff (100%)
190
97.3
Climb (85%)
154
77.4
Approach (30%)
53.6
85.1
P&W4158
APEX-3 T6&T7
Idle (7%)
209
229
Takeoff (100%)
-
-
Climb (80%)
386
135
Approach (30%)
35.4
60.5
RB211-
535E4-B
APEX-3 T8&T9
Idle (7%)
142
172
Takeoff (100%)
665
140
Climb (85%)
873
65.9
Approach (30%)
191
72.6
196
-------
1000
900
800
700
600
500
400
300
200
100
0
~ CFM56-2C
¦ CFM56-7B
~ CFM56-3B
~ CJ610-8ATJ
~ AE3007A1/1
¦ P&W 4158
~ RB211
El
m
Idle (7%)
Takeoff (100%) Climb (85%) Approach (30%)
Figure 11-16. Effect of engine cycle on BC emission index for multiple engine types.
11.1.2 Effect of Fuel Composition
To investigate the effects of fuel type on the BC emissions, the APEX-1 test results with different types of
fuels were evaluated. Figure 11-17 compares the BC emission indices for the base and high-aromatic
fuels. The BC emission indices in the figure are the average values obtained from the data at the same
rated thrust levels for the same fuel. For the base fuel, the data from the APEX-1 test NASA-1a were
averaged, and the data for the high-aromatic fuel were from the test NASA-5. There were no BC data for
the high-sulfur fuel tests in the comparison because, as discussed previously, the BC measurements for
tests EPA-3, NASA-2 and NASA-3 were not reliable. The BC emission index data for each fuel type were
plotted against fuel flow rate. The fuel type appeared to have little effect on the BC emission index. The
difference in BC emission indices between the base fuel and the high-aromatic fuel was insignificant in
comparison to the experimental errors.
To assess the effect of sulfur content, the black carbon emission indices obtained from all the tests with
the CFM56 engine were plotted in Figure 11-18 against the sulfur content in the fuel, including the data
obtained from the -2C1, -3B, and -7B24 models in all the three APEX campaigns. The BC emission
indices are the averages at the same engine rated thrust level and fuel sulfur content. The figure shows
that, unlike the PM mass emission index, the BC emission index was not directly correlated to the sulfur
content of the jet fuel. Our finding that BC El is independent of fuel type is consistent with the
observations of other APEX investigators (Lobo et. al., 2007).
197
-------
~ Base Fuel
A Hi-Aromatic
CFM56-2C
<
~
k
k
i
i
i
k
k
i
i
I
I
i
i
4
>
<
i
~
500 1000 1500 2000 2500
Fuel Flow Rate (kg/h)
3000
3500
Figure 11-17. Comparison of black carbon emission indices obtained from different types of fuel
for the CFM56-2C1 engine during APEX-1.
1600
= 1400
4—
|> 1200
¥
¦O 1000
_c
c
O
tn 800
w
^ 600
O
n
3 400
o
TO _ _ _
5 200
0
0 500 1000 1500 2000
Sulfur Content in Fuel(ppm)
~ 7% Rated Thrust
¦ 30% Rated Thrust
' 85% Rated Thrust
• 100% Rated Thrust
-
i
I
1
<
i
*
k
i
<
' * .
~ ¦
.
>
1
1
1
J
<
1 "
1
1
Figure 11-18. Effect of sulfur content in fuel on BC emission index for all CFM56 engines tested.
198
-------
11.1.3 Effect of Engine Type
The average BC emission indices obtained from the different engine types tested were compared in
Figures 11-19 for the four ICAO engine power levels: idle, take-off, climb, and approach. Only the data
with the base fuel or fleet fuel and measured at the 30-m sampling location were presented here. The
data for the tests EPA-1 and NASA-1 of APEX-1 and the test T1 of APEX-3 were not used as discussed
previously. The data are averages from the different tests with the same engines. The lowest rated thrust,
8.4 percent, for the AE3007-A1/1 engine, was used as the idle condition and compared with the other
engines at 7 percent rated thrust. For the P&W4158 engine, the data available at 80 percent rated thrust
were averaged and compared with the other engines at 85 percent rated thrust. There were no data
available at engine take-off (100%) thrust for the CFM56-7B24 and P&W4158 engines. The fuel flow rate
is also presented in the figure using the second y-axis. Again note that the fuel flows provided are
averages for only those test periods where valid BC data were available and may not match those shown
earlier in Table 7-2.
The figure shows that the larger engines did not always produce the most BC. In fact, the CJ610-8ATJ
turbojet, which is the smallest engine with older combustor technology, had highest BC emission indices
except for idle. The large error bars in the figure indicate that the BC emission data measured in this
study were highly variable. It is therefore difficult to make any clear conclusion from the above
observations. More accurate data than can be provided by the aethalometer are needed to reach clear
conclusions.
11.1.4 Effect of Cold and Warm Engine Conditions
In Figure 11-20, all of the BC emission index data under the cold engine condition were plotted against
the equivalent indices obtained for the same engine type and the same engine power but under the warm
condition. The black diagonal line in the figure represents the 1:1 relationship where the emission indices
under cold and warm conditions are identical. The figure also shows the linear regression results (see the
pink line). The correlation line has a slope of 0.947, indicating that the BC emission indices were
approximately 5 percent lower after engine warm-up. Therefore, the warm-up of engines can improve
carbon burn-off.
11.1.5 Effect of Probe Position
In the APEX-3 campaign, the effect of the sampling probe distance from the test engine was investigated.
The emissions were collected at both 15 m and 30 m in test T5 for the CJ610-8ATJ engine and at 30 m
and 43 m in test T8 for the RB211-535E4-B engine. In the test T5, the data were first collected at 15 m
while the engine power increased in five steps from 7, 30, 45, 65, 85 to 100 percent rated thrust, and then
collected at 30 m with the engine power setting varied stepwise downward from 100 to 7 percent. The
same experimental procedure was used in Test T8, but the rated thrust settings were between 4 and 85
percent in six steps.
199
-------
ro
o
o
900
~ 800
a>
3
§ 700
o>
E
^ 600
d>
•a
c 500
o
t/)
W
¦g 400
LU
C
% 300
ro
O
200
ro
m
100
o
1200
"a5
3 1000
t
O)
E
800
&
5
o
1000 t
O)
3
u_
500
CFM56-2C CFM56-7B CFM56-3B CJ610-8ATJ AE3007A1/1 P&W4158
CFM56-2C CFM56-7B CFM56-3B CJ610-8ATJ AE3007A1/1 P&W4158
Figure 11-19. Effect of engine type on BC emission index for multiple engine types.
-------
1400
U)
1200
U)
E
c
~ 1000
y = 0.947x
R2= 0.8006
c
o
o
E
800
600
LU
c
o
¦£ 400
ro
O
O
J2 200
m
0
200
400
600
800
1000
1200
1400
Black Carbon El at Cold Condition (mg/kg)
Figure 11-20. Effect of engine cold and warm condition on BC emission index.
The BC emission indices obtained from the different sampling positions for these two engines are
compared in Figure 11-21. The results show that the BC emission indices of the CJ610-8ATJ engine
obtained at 15 m were always higher than the indices obtained at 30 m except for idle. For the RB211-
535E4-B engine, the BC emission index was lower at idle and at a rated thrust >65 percent but was
higher at 30 or 45 percent rated thrust when the sampling probe changed from 30 m to 43 m. The reason
for higher BC emissions when the probe was closer to the engine is currently unknown. However, this
result is consistent with the results of measurements of particulate mass based emission indices
discussed in Section 10, where EIM decreased as the probe distance increased. Since the BC El should
not be affected by probe distance, further study without complication by engine cold and warm operating
condition is required.
11.1.6 Test-Average Black Carbon Emission Index
The test-average black carbon emission indices are summarized in Table 11-3. The available test-
average PM mass emission indices and the percentage non-volatile PM obtained from the Teflon filter
sampling are also presented in the table. The percentage black carbon in PM as shown in the table for
each test was obtained by dividing the BC El by the PM El. The comparison shows that the percentage
black carbon in PM for most of the APEX tests was higher than the percentage non-volatile PM measured
from the Teflon filter/thermal denuder sampling. This result implies that there were significant non-volatile
PM losses in the thermal denuder. The test-average rated power and fuel flow rate for each test shown in
Table 11-3 were evaluated by taking account of both the time at each power setting and the time for
transition from one power setting to another.
201
-------
DJ610-8AT
~ 30-m"15-n
J
I
I
1
<
»
1
<
.
~
<
! <
~
<
¦
200 400 600 800
Fuel Flow Rate (kg/h)
1000
1200
1400
RB211-535E4
~ 30-m"43-rr
1000 2000 3000 4000
Fuel Flow Rate (kg/h)
5000
6000
7000
Figure 11-21. Effect of probe position on BC emission index for the CJ610-8ATJ and
RB211-535E4B engines.
202
-------
Table 11-3. Test-average PM and BC Els and BC Fraction in PM
Rated
Fuel
Teflon Filter
Black Carbon
APEX
Test
Engine
Fuel
Thrust
Flow
PM El
Non-
Volatile
El
BC/PM
%
kg/h
mg/kg
%
mg/kg
%
1
EPA-1
19.5
785
107
32.0
Fail
1
EPA-2
Base
18.8
770
305
38.0
71.3
23.4
1
NASA-1
Fuel
22.6
635
N/A
Fail
1
NASA-1 a
45.1
1559
N/A
166
1
EPA-3
CFM56-2C1
20.4
797
447
30.7
301
67.4
1
NASA-2
Hi-Sulfur
38.4
1279
443
20.7
Fail
1
NASA-3
38.6
1277
Fail
1
NASA-4
Hi-
36.2
1197
219
34.5
153
70.0
1
NASA-5
Aromatic
35.3
1244
168
77.0
2
T1
CFM56-
30.1
1264
Fail
237
2
T4
7B24
30.1
1264
Fail
282
2
T2
31.5
1201
Fail
464
2
T3
CFM56-3B
30.4
1199
Fail
288
3
T1
series
36.7
1352
N/A
Fail
3
T11
31.1
1161
267
20.6
275
§
3
T2
CJ610-8ATJ
47.4
618
N/A
592
3
T5
Fleet
Fuel
41.0
566
N/A
584
3
T3
AE3007A1E
39.3
523
116
38.2
62.5
53.9
3
T4
43.1
554
137
§
3
T10
AE3007A1/1
45.0
550
N/A
101
3
T6
P&W4158
28.5
2344
268
46.4
198
73.7
3
T7
35.0
2968
198
73.7
3
T8
RB211-
27.5
2087
N/A
667
3
T9
535E4-B
34.2
2473
384
59.1
559
§
§ BC/PM percentage exceeds 100%.
203
-------
11.2 PAH Emissions
The particle surface-bound PAH was monitored by the PAS 2000 during all the APEX tests. The data
were recorded every second. The time-series PAH concentration data for each test are presented in
Figures 11-22 to 11-29. In these figures, the PAH concentrations were plotted as black lines. The rated
thrust for each test was plotted as a pink color line using the second y-axis. Again note the variable, and
sometimes erratic, data produced by the PAH analyzer which were difficult to analyze and significantly
impacted the resulting Els.
Figure 11-22 shows the results of four tests: EPA-1, EPA-2, NASA-1, and NASA-1a of APEX-1 campaign.
These tests were conducted with the same CFM56-2C1 engine and the same base jet fuel. The PAH
concentrations measured for the tests EPA-2 and NASA-1 a generally tracked with changes in engine
power. The EPA-1 and NASA-1 tests may have been influenced by the strong crosswind.
PAH concentration data for the CFM56-2C1 engine with high-sulfur fuel were collected during APEX-1
Tests EPA-3, NASA-2, and NASA-3. However, as was the case for BC with these tests, the data were
found to be unreliable and were not used in the data analysis.
Figure 11-23 shows the PAH concentrations measured for the CFM56-2C1 engine with high-aromatic
fuel. The NASA-4 and NASA-5 tests of APEX-1 are presented here. The data show some correlation
between the PAH concentration and the percentage thrust, though large fluctuations were observed.
The PAH concentration results for APEX-2 T1 and T4 tests for the CFM56-7B24 engine are shown in
Figure 11-24 and the results of the T2 and T3 of APEX-2 and the T1 and T11 of APEX-3 are presented in
Figure 11-25. Figure 11-26 presents the results of APEX-3 T2 and T5 for the CJ610-8ATJ engine and
Figures 11-27, 11-28, and 11-29 are the results for the AE3007A, P&W 4158 and RB211 engines,
respectively. The tests during which the PAH monitoring results were not correlated to engine power for
all the APEX tests are summarized in Table 11-4. Also note that all data presented are uncorrected for
sampling line losses.
204
-------
AHfcX-lfcHA-1
-PAH
-HaledThrjrt 1
"™ I
: 1
1Sfi
"40 § ® IOC
; " f
12:08 12:39 13:08 13:30 14: «o 14:30 1S:00 l$:30 te:oa
Tim* 4f Day
APEX-1 EPA-2
L
..II, -^1
-pw
-RjffdThfusl
lb.
mm iitii
2
4
-100
APEX-1 NA3A-1
APEX-1 MAS A -1 j
f? 20®
S? 200
3 ?
40 f £ 10C
11:45 12:14 12:43 13:12 15:40 14cOS> 14:38
Time Doty
f:33
8:24
s:32 9:21
Tine of Day
9:5#
Figure 11-22. Time-series PAH concentration data for tests EPA-1, EPA-2, NASA-1, and NASA-1a
of APEX-1 campaign for the CFM56-2C1 engine with base fuel.
205
-------
29*
200
1 U
APEX-1 NASA-4
T
Rated Thrust
12:4? 13:13
13:4$ 14:13
TlimofDay
14:43 15:13
&
250 1
m 200
10Q
PAH
Rated Thrust
APEX-1 NASA-5
m
»:30 10:04 10:33
Time of Day
F
I
Figure 11-23. Time-series PAH concentration data for tests NASA-4 and NASA-5 of APEX-1
campaign for the CFM56-2C1 engine with high-aromatic fuel.
206
-------
999
450
4»0
350
309
250
ZW
159
100
50
APEX-2 T1 ,
PAH
Rated Thrust L
kr
. 1
1
w
r
¦
J»lh
/
100
80
00
40
1:55
2:24
2:92 3:21
Time of Day
3:50
4:10
1200
1000
§00
600
O
ji 400
200
APEX-2 T4
n
PAH
Rated Thrust
L
-
/
|t)
1
"
UL.
V
" "—I 1 1 T
"¦ §0
100
€-
40
¦ 20
23:31 0:00
0:2?
0:57
Time of Day
1:20 1:55
2:24
Figure 11-24. Time-series PAH concentration data for tests T1 and T4 of APEX-2 campaign for the
CFM56-7B24 engine.
207
-------
5 t 0:00
0:2® 9:^
Tim* AfDay
1:26 1:55
f.
0 -
17:06
ftjltii T?n«vl
rt
17: tt
I
fs:07 1S:3«
TimeaTOay
19:M
s
i
5 *00
APEX-273 —™
PlTfiJ ThfUJI
w
L
, I
^ I f
3-W^
r-n*l
K441
<* i
E
J—
in
40 §
as
20
3:07 3:36
4:0* 4:M
nmofDay
5:02 5:31
£
& 500
2)0
-PAH
-ftiwd Thrust
fa
0 -
14:12
<—4.. .r
» g
1
p
-
« |
u
16:36
16:55
Time of Doy
17:0$ 17:24
Figure 11-25. Time-series PAH concentration data for tests T2 and T3 of APEX-2 and T1 and T11
of APEX-3 for the CFM56-3B series engines.
208
-------
1200
100
RAM
Rated Thrust
APEX-3 T2
17:09 17:24 17:?$
17:52 1S:07
Tims
-------
WEX4TJ
«w> -
21.19
25: f 9 r3:»
TlraeofDay
fl^tx-3 no
S 255
u 13®
IMO
flPEX*3T4
- SO
2:09 2:3»
TkrneefDay
Figure 11-27. Time-series PAH concentration data for the APEX-3 T3 and T4 for the AE3007A1E
engine and T10 for the AE3007A1/1 engine.
210
-------
1200
1000
soo
$00
400
200
APEX-3 TS
-PAH
Rated Thrust
>HWW
f
A
ill
¦ so
V,
¦ oo
100
£
- 40
- 20
1$:?? 14:24
14:92 15:21
TlimofDay
19:90 10:10
1200
1000
§00
000
400
200
APEX-3 T7
-PAH
Rated Thrust
, , , , rr*Aw
H
n
f
¦ so
V
-¦ 00
ir:oo ir:24
'1,1 i i ¦ i i
ir:?s 17:92
This of Day
f
100
40
e
I
- 20
i$:or 1S:21
Figure 11-28. Time-series PAH concentration data for the APEX-3 T6 and T7 for the P&W 4158
engine.
211
-------
EP
1290
100C'
199
PAH
Rated Thrust
APEX-3 T8
£
i — t 1- I I I
21:33 21:47 22:01 22:1$ 22:39 22:4? 22:5
Time
-------
Table 11-4. PAH Monitoring in APEX Tests
Campaign
Aircraft
Engine
Fuel
Probe
Concentration
APEX
Test No.
Type
Position
Correlated with
Engine Power?b
EPA-1
30-m
Na
EPA-2
Base
30-m
Y
NASA-1 a
30-m
N
NASA-1
30-m
Ya
1
EPA-3
DC-8
CFM56-2C1
30-m
N
NASA-2
Hi-S
30-m
N
NASA-3
30-m
N
NASA-4
Hi-A
30-m
Y
NASA-5
30-m
Y
T1
B737-
CFM56-7B24
30-m
Y
2
T4
700
30-m
Y
T2
B737-
CFM56-3B1
30-m
Y
T3
300
CFM56-3B2
30-m
Y
T1
B737-
CFM56-3B1
30-m
Ya
T11
300
30-m
Y
T2
NASA
Lear
Model
25
CJ610-8ATJ
turbojet
15-m
Y
T5
Fleet
30-m/15-
m
Y
T3
AE3007A1E
15-m
Y
3
T4
Embraer
EMB145
15-m
Y
T10
AE3007A1/1
30-m
Y
T6
A300
P&W4158
30-m
Y
T7
30-m
Y
T8
B757
RB211-
535E4-B
30-m/43-
m
N
T9
30-m
N
a. indicates tests not used due to high cross wind in background.
b. N = no; Y = yes.
213
-------
11.2.1 Effect of Fuel Flow Rate
The relationship between the PAH concentration and fuel flow rate was investigated. The PAH
concentration readings and corresponding fuel flow rate data under the same rated thrust were averaged
within the test and the results summarized in Table G-2 in Appendix G. The PAH emission indices for
various tests were then calculated from average C02 and plotted as a function of fuel flow rate as shown
in Figures 11-30 to 11-35. Only the results obtained from the 30-m probe are presented in the figures.
The results of different tests for the same engine and same fuel were plotted together for comparison.
These figures show that the PAH emission index varied with the fuel flow rate in a pattern similar to that
observed for black carbon. The PAH El was slightly elevated at low fuel flow (engine power), reached a
minimum at mid-range fuel flow (500-2000 kg/h, depending on the type of engine), and increased with
fuel flow at high engine power.
11.2.2 Effect of Fuel Composition
The effects of fuel composition on the PAH emissions were investigated using the data available from the
APEX-1 campaign. The base fuel data were from the Tests EPA-2 and NASA-1a and the high aromatic
fuel were from the NASA-4 and NASA-5 tests. The high sulfur fuel results for Test EPA-3 were not used
for the reasons discussed above. For each type of fuel, the PAH El values and corresponding fuel flow
rate at the same rated thrust levels were averaged and compared in Figure 11-36. The figure shows that
the base fuel had highest PAH emission index. This observation seems to suggest that the PAH
emissions are primarily determined by factors other than just the aromatic content of the fuel. However,
this preliminary finding needs further investigation.
214
-------
~ APEX-1 EPA-2
AAPEX-1 NASA-1a
i
4
j I
~
l
i
i
~ a
500 1000 1500 2000 2500
Fuel Flow Rate (kg/h)
3000
3500
~ APEX-1 NASA-4
AAPEX-1 NASA-5
i
<
i
~
i
i ~. . »
1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Fuel Flow Rate (kg/h)
Figure 11 -30. PAH emission index as a function of fuel flow for the CFM56-2C1 engine while
burning: (a) base fuel; and (b) high-aromatic fuel.
215
-------
~ APEX-2T1
AAPEX-2 T4
4-
1
~
—At
1000 2000 3000
Fuel Flow Rate (kg/h)
4000
5000
Figure 11-31. PAH emission index as a function of fuel flow for CFM56-7B24 engines.
~ APEX-2T2
AAPEX-2 T3
• APEX-3T11
t
~ ~
i • i i i
-I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Fuel Flow Rate (kg/h)
Figure 11 -32. PAH emission index as a function of fuel flow for CFM56-3B series engines.
216
-------
~ APEX-3 T5(30-m only)
+
T
200 400 600 800 1000
Fuel Flow Rate (kg/h)
1200
1400
Figure 11 -33. PAH emission index as a function of fuel flow for the CJ610-8ATJ turbojet engine.
~ APEX-3T10
T
-4
+
200 400 600 800 1000
Fuel Flow Rate (kg/h)
1200
1400
Figure 11-34. PAH emission index as a function of fuel flow for the AE3007-A1/1 engine.
217
-------
1.6
1.4 --I
<1)
3
4—
U)
O)
£
X
0)
73
c
c
o
'in
(A
E
LU
X
<
D.
1.2
1.0
0.8
0.6
0.4
0.2
0.0
~ APEX-3T6
AAPEX-3T7
F
0 1000 2000 3000 4000 5000 6000 7000 8000
Fuel Flow Rate (kg/h)
Figure 11-35. PAH emission index as a function of fuel flow for the PW4158 engine.
0.5
o 0.4
O)
O)
— 0.3
x
-------
11.2.3 Effect of Engine Cycle
Like black carbon discussed previously, the PAH emission data collected at 30 m from the CFM56-2C1,
CFM56-3B series, CJ610-8ATJ, AE3007A1/1 and RB211-535E4-B engines under the four ICAO-
specified engine thrusts representing idle (7%), takeoff (100%), climb (85%) and approach (30%) were
used to investigate the effects of the LTO engine cycle. The data for the AE3007A1/1 engine collected at
a rated thrust of 8.4 percent were used to represent the results of idle engine condition and compare with
the data of the other engines at 7 percent rated thrust. The average emission index results derived from
the PAH measurements were averaged for each of the four power levels and summarized in Table 11-5
for the individual engine types.
The PAH emission indices derived from the measurement data for the CFM56-2C, CFM56-3B, CFM56-
7B24 and CJ610-8ATJ engines had a trend similar to the trend shown in Figure 11-37(a)-(c). The engines
all showed lower PAH El values when engine was at idle and approach and higher PAH El values when
the engines were at take-off and climb-out. Also, the CJ610-8ATJ had the highest PAH El except at idle.
Figure 11-37 also shows the PAH emissions from the AE3007A1/1 and PW4158 were affected differently
by engine power. The AE3007A1/1 and PW4158 engines had the highest PAH emission index at idle,
comparable to the PAH emission index observed at climb-out and take-off. The differences observed
could have been caused by differences in engine technology or may simply be experimental errors as the
large error bars in the figure suggest.
11.2.4 Effect of Engine Type
The average PAH emission indices obtained from the different engine types tested were compared in
Figure 11-38. Only the data with the base fuel or fleet fuel and measured at the 30-m sampling location
were presented here. The data for the Tests EPA-1 and NASA-1 of APEX-1 and Tests T1, T8 and T9 of
APEX-3 were not used due to lack of response to changes in engine power as mentioned previously in
Table 11-4. The data were the averages from the different tests of the same engines under each of the
four ICAO engine power levels. The lowest rated thrust, 8.4 percent, for the engine AE3007A1E was used
as idle condition and compared with the other engines at 7 percent rated thrust. For the P&W 4158
engine, the data available at 80 percent rated thrust were averaged and compared with the other engines
at 85 percent rated thrust. No data were available at engine take-off (100% thrust) for the CFM56-7B24
and P&W 4158 engines. The PAH El value for each engine was presented at the bottom of the bars. The
fuel flow rate is also presented in the figure using the second y-axis. As before, the fuel flows shown only
represent those periods with valid PAH data.
As was the case for BC, the figure shows that the CJ610-8ATJ turbojet which is the smallest engine had
the highest PAH emission indices when this engine was run at approach, climb-out and take-off power.
The CFM56-2C engine, on the other hand, had the lowest PAH emission indices at all thrust levels.
11.2.5 Effect of Cold and Warm Engine Conditions
The PAH emission index data under the cold engine condition were plotted against the indices obtained
for the same engine type and the same engine power but under warm condition in Figure 11-39. The
black dashed line in the figure represents where the emission indices under cold and warm conditions are
identical. The figure also shows the linear regression results (see the pink line), indicating a slight
reduction in the PAH emission indices after the engine was warmed up. These results are consistent with
most of the other emission parameters measured during the APEX campaigns, such as the mass and BC
Els, which tended to be lower after engine warm up.
219
-------
Table 11-5. PAH Emission Indices at the Four ICAO Engine Power Levels for Different Engines
Engine
Campaign and Tests
Engine Power
Average
Fuel Flow
PAH
El
SD
(kg/h)
(mg/kg)
(mg/kg)
CFM56-2C1
APEX-1 EPA-2 & NASA-1 a
Idle (7%)
419
0.0127
0.0325
Takeoff (100%)
3151
0.319
0.0858
Climb (85%)
2881
0.319
0.0366
Approach (30%)
1023
0.00
0.000736
CFM56-
7B24
APEX-2 T1 & T4
Idle (7%)
401
0.0814
0.0389
Takeoff (100%)
Climb (85%)
4109
0.663
0.0514
Approach (30%)
1158
0.0208
0.0502
CFM56-3B
series
APEX-2 T2 &T3
APEX-3 T11
Idle (7%)
419
0.226
0.0361
Takeoff (100%)
3564
0.617
0.184
Climb (85%)
3465
1.05
0.0649
Approach (30%)
1099
0.141
0.0228
CJ610-8ATJ
APEX-3 T5
Idle (7%)
227
0.0944
0.352
Takeoff (100%)
1226
3.05
0.267
Climb (85%)
1009
3.25
0.256
Approach (30%)
452
1.43
0.137
AE3007A1/1
APEX-3 T10
Idle (8.4%)
178
1.03
0.601
Takeoff (100%)
1175
0.954
0.0749
Climb (85%)
976
0.847
0.0689
Approach (30%)
371
0.591
0.0830
PW4158
APEX-3 T9
Idle (7%)
532
0.946
0.492
Takeoff (100%)
Climb (80%)
7088
0.985
0.0241
Approach (30%)
2298
0.00853
0.0144
220
-------
4.0
~ CFM56-2C1
¦ CFM56-7B24
~ CFM56-3B
~ CJ610-8ATJ
¦ AE3007-A1/1
~ PW4158
Idle (7%) Take-off (100%) Climb-out(85%) Approach (30%)
Figure 11-37. Effect of engine power on the PAH emission index for different engine types.
221
-------
~ Idle (7%)
• Fuel Flow
• 419
0 419
0.0127 I I I
T . 1 0.081/1 I
(a)
# 532
CFM56-2C1 CFM56-7B24 CFM56-3B CJ610-8ATJ AE3007-A1/1 PW4158
3.0
a>
£ 2.5
U)
E
2.0
2.5
| 1.5
LU
~ Climb-out (85%)
• Fuel Flow
1005T788 | 976.1:
CFM56-2C1 CFM56-7B24 CFM56-3B CJ610-8ATJ AE3007-A1/1 PW4158
_ 1.4
U)
1.2
5000 2* £
O) —
x 1.0
— a»
> -a
4000 J £
£ I 08
3 W
sonn u_ w
E
LU
0.4
~ Approach (30%)
• Fuel Flow
# 1023
# 1158
04208
(d)
1.43 0.591
• 371
0.00853
CFM56-2C1 CFM56-7B24 CFM56-3B CJ610-8ATJ AE3007-A1/1 PW4158
Figure 11-38. Effect of engine type on (a) idle, (b) take-off, (c) climb-out and (d) approach PAH emissions.
-------
4.0
— 3.5
I* 3.0
o>
2.5
y = 0.9344x
R2= 0.9011
"D
2.0
1.0
0.5
~~
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
PAH El at Cold Condition (mg/kg fuel)
Figure 11-39. Effect of engine operating temperature on PAH emissions.
11.2.6 Effect of Probe Position
Emissions data were collected at both 15 m and 30 m locations in Test T5 of APEX-3 for the CJ610-8ATJ
engine and at 30 m and 43 m in Test T8 of APEX-3 for the RB211-535E4-B engine. In the Test T5, the
data were first collected at 15 m while the engine power increased step by step from 7, 30, 45, 65, 85 to
100 percent rated thrust, and then collected at 30 m with the engine power setting varied stepwise
downward from 100 to 7 percent. The same experimental procedure was used in Test T8, but the rated
thrust settings were 4, 7, 15, 30, 45, 65 and 85 percent. Again, the data for RB211 were deemed
unreliable and are not presented here.
The PAH emission indices obtained from the different sampling positions for the CJ610-8ATJ engine
were compared as shown in Figure 11-40. The results show that the PAH emission index obtained from
the probe position farther from the engine was generally higher at higher fuel flows (thrust), suggesting
that more particles with surface-bound PAHs were formed during plume transport from the gas phase.
This observation is consistent with the previous discussion about more nuclei size particles being formed
as the plume moves away from the engines. As discussed in Section 10, the GMD decreased and the
GSD increased with probe distance due to the formation of more nuclei particles during plume processing
in the near-field atmosphere.
223
-------
~ 15-m Probe
¦ 30-m Probe
200 400 600 800
Fuel Flow Rate (kg/h)
1000
1200
1400
Figure 11-40. Effect of probe position on PAH emission index for the CJ610-8ATJ engine during
APEX-3.
11.2.7 Test-Average PAH Emission Index
The test-average PAH emission indices for all the APEX tests are summarized in Table 11-6. By
averaging the results of the same engines from different tests, Figure 11-41 compares the PAH emission
indices of different engines when the base fuel or fleet fuels were used. The figure shows that the CJ610-
8ATJ and AE3007A1 series engines had highest PAH emission indices. The CFM56 model engines, on
the other hand, emitted the least particles with surface-bound PAHs. Note that the test-average emission
index is an overall measure of the emissions for all power conditions. The red color points in the figure
are the test-averaged fuel flow rates for individual tests, which were determined by the power log during
the tests. A higher test-average PAH emission index with lower test-average fuel flow rate implies a
poorer combustion efficiency for an engine over the range of power conditions evaluated.
Also shown for comparison in Table 11-6 are the equivalent PAH Els obtained from the quartz filter time-
integrated sampling. Table 11-6 shows that the two data sets somewhat agree for the CFM56 series
engines during some tests, but not for the others. Of the data presented, the quartz filter data are
considered to be underestimated due to the lack of information on the unresolved compounds by the GC-
MS analysis, as discussed in Section 13.
224
-------
Table 11-6. Comparison between the PAH Emission Indices Obtained by the PAS 2000
Measurements and the Quartz Filter Integrated Sampling
Average
Fuel Flow
(kg/h)
PAH Emission Index (mg/kg fuel)
APEX
Test
Engine
Model
Fuel
PAS 2000a
Quartz filter
analysis'3
EPA-1*
785
Fail
EPA-2
Base
770
0.0650
0.0696
NASA-1*
Fuel
635
Fail
NASA-1 a
1559
0.225
1
EPA-3
CFM56-2C1
797
Fail
0.104
NASA-2
Hi-Sulfur
1279
Fail
NASA-3
1277
Fail
NASA-4
Hi-
1197
0.0560
NASA-5
Aromatic
1244
0.0927
T1
CFM56-7B24
1264
0.196
0.00997
2
T4
1264
0.253
T2
1201
0.479
0.0243
T3
CFM56-3B
1199
0.752
T1*
series
1352
1.53
T11
1161
0.205
0.154
T2
CJ610-8ATJ
618
1.67
T5
Fleet
566
1.93
T3
AE3007A1E
523
1.94
0.123
3
T4
554
1.94
T10
AE3007A1/1
550
0.802
T6
P&W4158
2344
0.564
0.00807
T7
2968
0.598
T8
RB211-535E
2087
Fail
T9
2473
Fail
0.179
* indicates the tests with high cross wind in background
a. The PAH El data shown here were obtained from the measurement by the PAS 2000 with no background correction.
b. The quartz filter data shown here were after background and backup-filter correction.
225
-------
2.0
3000
~ Emission Index
• Fuel Flow Rate
2500
- 2000 ™
a
ro
a.
5
1500 £
O
3
+ 1000 g
500
o.o -I— —l-
CFM56-2C CFM56-7B
-+-
CFM56-3B CJ610-8ATJ AE3007-A1/1 P&W4158
Figure 11-41. Comparison of the average PAH emission indices obtained from the tests with
different types of jet engines.
226
-------
12. Gas-Phase Chemical Composition
The gaseous emission samples were collected in both the plume and background sampling system
during the APEX tests on a time-integrated basis using SUMMA canisters and DNPH cartridges. The
samples were then analyzed by EPA Method TO-15 for analysis of the SUMMA samples and Method TO-
11A for the DNPH samples. The analytical results from these plume and background samples were used
to derive the background corrected Els for the individual non-methane volatile organic compounds
(NMVOCs) and carbonyls in the gaseous engine emissions. The test results used in investigating
gaseous emissions from different engines in this section were: EPA-2 of APEX-1 for the CFM56-2C1,
T1&4 of APEX-2 for the CFM56-7B24, T2&3 of APEX-2 for the CFM56-3B series, T3&4 of APEX-3 for the
AE3007-A1E, T6&7 of APEX-3 for the P&W 4158, and T9 of APEX-3 for the RB211-535E4-B engine. The
gaseous emissions from a total of six different engine types were studied here.
The emission indices of individual NMVOCs and carbonyl compounds obtained from the SUMMA and
DNPH sampling for different engines are summarized in Table 12-1 and Figure 12-1, and Table 12-2 and
Figure 12-2, respectively. Table 12-3 and Figure 12-3 compare the El sums of VOCs and carbonyls for
the different engines. The tables show that the P&W 4158 engine had emission indices of 703 mg/kg for
NMVOCs and 729 mg/kg for carbonyls. These values are the highest among all the engines tested. The
AE3007A1E engine produced the least amount of speciated gaseous pollutants and its emission indices
were 258 mg/kg for NMVOCs and 287 mg/kg for carbonyls. Note that the ratio of NMVOCs to carbonyls
was close to 1 for the CFM56-2C1, CFM56-7B24, CFM56-3B, AE3007-A1E, and P&W 4158 engines
despite the difference in engine technology. The RB211-535E4-B engine, on the other hand, had higher
NMVOC pollutants compared to carbonyls. The NMVOCs accounted for 57 percent of the total speciated
gas phase pollutants for the CFM56-3B and 69 percent of the total gaseous pollutants for the RB211.
The individual gaseous compounds emitted from the six different engines are compared in Figure 12-4.
The figure shows that the gaseous emissions primarily consisted of formaldehyde (El = 120-360 mg/kg or
16-28 percent of total gaseous emissions), ethylene (41-246 mg/kg, 8-23%), acetaldehyde (38-126
mg/kg, 5-13%), acetylene (28-128 mg/kg, 5-15%), propylene (9-86 mg/kg, 2-8%), and glyoxal (0-112
mg/kg, 3-8%), with significant quantities of acrolein (0-38 mg/kg, <4%), benzene (0-25 mg/kg, <3%), 1,3-
butadiene (2-31 mg/kg, <3%), and toluene (3-10 mg/kg, <1%). A slight difference in the speciated
gaseous emissions was seen for the AE3007-A1E engine, which had no glyoxal in the emissions, but
instead contained 15 percent acetone (82 mg/kg) and 6 percent ethane (33 mg/kg). Formaldehyde,
acetaldehyde, benzene, acrolein, toluene, and 1,3-butadiene are some of the compounds considered as
hazardous air pollutants by EPA in the Clean Air Act.
The above discussion was based on the gaseous compounds that were identified and quantified by the
analytical instruments. Unresolved compounds made up about 16-42 percent of the total NMVOC (as
227
-------
ppmC) and carbonyl (as formaldehyde) compounds shown by gas chromatography, depending on the
engine tested.
Table 12-1. Emission Indices of Individual VOCs Obtained by SUMMA Sampling for Different
Engines
Engine
CFM56-
2C1
CFM56-
7B24
CFM56-3B
AE3007A1E
P&W4158
RB211-
535E4B
APEX
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
Test
EPA-2
T1&4
T2&3
T3&4
T6&7
T9
Gaseous Compound
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Ethylene
219
92.7
123
40.6
246
194
Acetylene
103
107
119
28.3
105
128
Ethane
9.05
10.8
32.8
15.0
10.7
Propylene
66.4
75.4
86.3
8.99
86.8
61.7
Propane
2.53
2.09
25.9
0.944
1.10
Isobutane
0.0778
0.265
6.23
lsobutene/1-Butene
18.1
23.3
31.1
32.1
20.9
n-Butane
0.316
15.4
trans-2-Butene
1.44
2.53
2.67
2.68
1.86
cis-2-Butene
1.15
1.62
1.95
2.63
2.01
3-Methyl-1-butene
0.453
0.845
2.99
1.98
Isopentane
2.94
2.12
8.28
1-Pentene
6.62
5.53
8.08
11.4
6.05
2-Methyl-1-butene
2.69
2.61
1.38
3.04
1.91
n-Pentane
2.90
5.48
0.270
0.539
Isoprene
3.81
2.44
0.274
trans-2-Pentene
1.31
0.978
0.880
1.51
1.00
cis-2-Pentene
0.731
0.867
0.844
0.613
2-Methyl-2-butene
0.453
0.786
0.328
2,2-Dimethylbutane
2.82
0.908
2.96
0.109
Cyclopentene
0.655
1.28
1.49
4-Methyl-1-pentene
1.15
1.30
1.73
1.52
Cyclopentane
0.0564
0.547
0.0912
2,3-Dimethylbutane
0.0362
0.0113
2-Methylpentane
0.884
2.98
3-Methylpentane
2.63
2-Methyl-1-pentene
0.917
0.435
0.421
0.698
0.466
1-Hexene
2.88
4.99
5.08
0.145
7.98
5.34
228
-------
Engine
CFM56-
2C1
CFM56-
7B24
CFM56-3B
AE3007A1E
P&W4158
RB211-
535E4B
APEX
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
Test
EPA-2
T1&4
T2&3
T3&4
T6&7
T9
Gaseous Compound
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
n-Hexane
2.41
trans-2-Hexene
0.398
0.475
0.567
0.441
cis-2-Hexene
0.452
3.62
34.6
58.6
Methylcyclopentane
1.01
0.301
2,4-Dimethylpentane
0.557
Benzene
25.5
22.5
5.54
24.7
21.9
Cyclohexane
0.483
2-Methylhexane
0.0564
1.23
0.604
0.588
2,3-Dimethylpentane
0.564
0.310
3-Methylhexane
1.03
1.21
1-Heptene
3.31
3.27
4.07
2.33
n-Heptane
0.290
0.684
4.68
2.61
2.13
Methylcyclohexane
0.409
0.391
0.994
2.52
0.809
2,3,4-Trimethylpentane
0.285
Toluene
2.88
8.19
9.80
2.87
9.57
6.30
2-Methylheptane
0.525
0.933
1.52
3-Methylheptane
1.03
1.11
0.766
1-Octene
1.83
1.24
n-Octane
0.0655
1.69
1.86
4.11
0.882
Ethylbenzene
2.22
2.36
0.603
2.57
1.25
Styrene
3.47
4.59
4.49
3.34
2.23
o-Xylene
2.95
2.72
0.704
2.49
0.34
1-Nonene
1.41
2.02
1.92
2.50
1.40
n-Nonane
0.197
1.65
2.02
0.905
Isopropylbenzene
0.27
a-Pinene
0.917
0.416
2.99
n-Propylbenzene
1.06
1.38
1.20
0.466
m-Ethyltoluene
0.622
2.22
2.57
0.402
4.60
2.03
p-Ethyltoluene
1.15
1.49
2.33
0.294
1,3,5-Trimethylbenzene
0.557
0.49
1.39
0.402
3.45
o-Ethyltoluene
1.79
2.15
0.453
1.32
1,2,4-Trimethylbenzene
1.08
5.57
6.05
9.46
3.63
n-Decane
0.557
4.17
1.48
229
-------
Engine
CFM56-
2C1
CFM56-
7B24
CFM56-3B
AE3007A1E
P&W4158
RB211-
535E4B
APEX
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
Test
EPA-2
T1&4
T2&3
T3&4
T6&7
T9
Gaseous Compound
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
1,2,3-Trimethylbenzene
2.00
2.36
2.84
0.809
m-Diethylbenzene
0.779
0.508
1.07
1.27
p-Diethylbenzene
0.435
0.582
1.41
0.466
1-Undecene
1.84
0.882
n-Undecane
2.10
3.60
2.81
10.1
3.82
1-Dodecene
1.68
3.08
1.20
n-Dodecane
2.37
1.42
5.49
1.89
n-Tridecane
2.06
Dichlorodifluoromethane
0.272
0.0564
18.7
Chloromethane
0.349
0.182
6.34
Dichlorotetrafluoroethane
0.704
1,3-Butadiene
7.11
24.6
30.6
1.69
25.3
18.4
Acrolein
30.0
37.6
Trichlorofluoromethane
0.109
10.8
Acrylonitrile
0.634
Dichloromethane
0.836
0.0790
1.06
Trichlorotrifluoroethane
5.03
1,1,1-Trichloroethane
0.805
Carbon Tetrachloride
1.87
0.198
5.67
0.147
0.294
m,p-Xylene
4.90
7.15
1.56
8.08
2.25
230
-------
800
700
cik-2-Hexene
Acrolein
O) 500
3-Butadiene
ci >-2-Hexene
Acrolein
3-Butadiene
Propylene
u 400
1.3-Butadiene
Propylene
Propylene
3-Butadiene
c/> 300
Propylene
AcetyleneH Acetylene
Propylene
AcetyleneH Acetylene
Ethylene
Ethylene
Ethylene
Ethylene
T1&4
APEX-1
APEX-2
CFM56-2C1
CFM56-7B24
Ethylene
Ethane
| Ethylene |
T2&3 T3&4
APEX-2 APEX-3
CFM56-3B AE3007A1E
T6&7
APEX-3
P&W 4158
RB211-
535E4B
~ Ethylene
¦ Acetylene
~ Ethane
~ Propylene
¦ Propane
~ Isobutane
B lsobutene/1 - Butene
~ 1,3-Butadiene
¦ n Butane
¦trans-2-Butene
~ cis-2-Butene
~ 3-Methyl-1-butene
¦ Isopentane
¦ 1-Pentene
B2-Methy 1-1-butene
¦ n-Pentane
~ Isoprene
~trans-2-Pentene
~ cis-2-Pentene
~ 2-Methyl-2-butene
~ 2,2-Dim ethyl butane
~ Cyclopentene
~ 4-Methyl-1 -pentene
~ Cyclopentane
112,3-Dim ethyl butane
~ 2-Methylpentane
~ 3-Methylpentane
~ 2-Methyl-1 - pentene
~ 1-Hexene
~ n-Hexane
~trans-2-Hexene
Bcis-2-Hexene
¦ Methyl cyclopentane
~ 2,4 - Dim ethyl pentane
¦ Benzene
¦ Cyclohexane
¦ 2-Methylhexane
¦ 2,3- Dim ethyl pentane
¦ 3-Methylhexane
¦ 1-Heptene
¦ n Heptane
~ Methyl cyclohexane
¦ 2,3,4 - Trim ethylpentane
~ Toluene
¦ 2-Methylheptane
~ 3-Methylheptane
Ul-Octene
~ n-Octane
¦ Ethylbenzene
¦ m-Xylene/p-Xylene
¦ Styrene
~ o-Xylene
¦ 1-Nonene
¦ n-Nonane
~ Isopropylbenzene
Ba-Pinene
~ n- Propylbenzene
~ m-Ethyltoluene
~ p-Ethyltoluene
~ 1,3,5-Trim ethylbenzene
Bo-Ethyltoluene
~ 1,2,4-Trim ethylbenzene
~ n-Decane
~ 1,2,3-Trim ethylbenzene
~ m- Diethyl benzene
~ p-Diethyl benzene
~1-Undecene
~ n-Undecane
~1-Dodecene
Bn-Dodecane
~ n-Tridecane
~ Dichlorodifluorom ethane
~ Chloromethane
~ Dichlorotetrafluoroethane
~ Acrolein
~ T richlorofluorom ethane
~ Aciylonitrile
~ Di chloromethane
~ T richlorotrifluoroethane
~ 1,1,1-Trichloroethane
~ Carbon Tetrachloride
Figure 12-1. Mass Els of individual NMVOCs from SUMMA canister sampling.
231
-------
Table 12-2. Emission Indices of Individual Carbonyl Compounds Obtained by DNPH Sampling
for Different Engines
Engine
CFM56-
2C1
CFM56-
7B24
CFM56-3B
AE3007A1E
P&W4158
RB211-
535E4B
APEX
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
Test
EPA-2
T1&4
T2&3
T3
T6&7
T9
Gas Compound
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
Formaldehyde
268
232
231
117
357
130
Acetaldehyde
90.3
95.8
76.4
69.8
126.4
38.3
Acetone
11.4
16.8
1.61
82.4
Propionaldehyde
7.37
10.4
9.55
7.81
16.6
6.64
Crotonaldehyde
21.7
19.7
20.7
26.8
10.41
Butyraldehyde
3.11
5.26
4.22
4.86
2.70
Benzaldehyde
13.5
10.2
10.0
14.0
7.18
Isovaleraldehyde
2.14
0.670
0.811
2.43
Valeraldehyde
6.94
3.48
4.57
6.13
3.01
o-Tolualdehyde
3.57
4.77
6.45
2.60
m-Tolualdehyde
7.04
3.85
5.42
9.33
3.01
p-Tolualdehyde
3.24
1.20
1.30
3.14
Hexaldehyde
0.118
1.92
2.41
4.72
2.09
2,5-Dimethylbenzaldehyde
4.72
0.986
Diacetyl
1.71
Methacrolein
11.8
9.73
7.56
11.4
3.06
2-Butanone
5.35
3.86
5.12
4.36
Glyoxal
29.8
44.8
40.2
112
40.7
Acetophenone
12.4
3.95
Methylglyoxal
25.2
7.00
5.01
23.7
9.80
Octanal
1.57
2.63
0.811
Nonanal
3.83
0.568
2.65
232
-------
800
Glyoxal
=• 600
Glyoxal
Glyoxal
o 400
Glyoxal
Acetaldehyde
O 300
Acetone
Formaldehyde
Formaldehyde
Formaldehyde
Formaldehyde
Formaldehyde
T3
APEX-3
AE3007A1E
T6&7
APEX-3
P&W4158
APEX-2
APEX-3
CFM56-3B
EPA2 T1&4
APEX-1 APEX-2
CFM56-2C1 CFM56-7B24
RB211-
535E4B
~ Nonanal
~ Octanal
~ Methylglyoxal
~Acetophenone
~ Glyoxal
~ 2-Butanone
¦ Methacrolein
~ Diacetyl
¦ 2,5-Dimethylbenzaldehyde
¦ Hexaldehyde
~ p-Tolualdehyde
nm-Tolualdehyde
~ o-Tolualdehyde
¦ Valeraldehyde
~ Isovaleraldehyde
~ Benzaldehyde
~ Butyraldehyde
¦ Crotonaldehyde
nPropionaldehyde
~ Acetone
~ Acetaldehyde
~ Formaldehyde
Figure 12-2. Mass Els of individual carbonyl compounds from DNPH cartridge sampling.
Table 12-3. Comparison of NMVOC and Carbonyl Emission Indices for Different Engines
Test
EPA-2
T1&4
T2&3
T3&4
T6&7
T9
APEX
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
Engine
CFM56-2C1
CFM56-
7B24
CFM56-3B
AE3007A1E
P&W4158
RB211-
535E4B
NMVOCs
mg/kg
452
490
567
258
703
577
Carbonyls
mg/kg
521
479
432
287
729
263
NMVOCs
%
46.5
50.6
56.7
47.3
49.1
68.7
233
-------
QUO
-X.
X
-------
=r 1000
& 900
CUD
£ 800
Acetaldehyde
9.39T
•g 600
I 500
15.1%
Acetylene
7.3%
Propylene
8.6%
Acetylene
12%
Acetylene
10.6%
Propylene
7.8%
Acetylene
11.1%
APEX-1
CFM56-2C1
T1&4 T2&3
APEX-2 APEX-2
CFM56-7B24 CFM56-3B
APEX-3
AE3007A1E
Acetylene
15.3%
T6&7 T9
APEX-3 APEX-3
P&W4158 RB211-535E4B
¦ Ethylene
¦ Ethane
¦ Propane
¦ lsobutene/1-Butene
¦ n-Butane
¦ cis-2-Butene
¦ Isopentane
¦ 2-Methyl-l-butene
¦ Isoprene
¦ cis-2-Pentene
¦ 2,2-Dimethylbutane
¦ 4-Methyl-l-pentene
¦ 2,3-Dimethylbutane
¦ 3-Methylpentane
¦ 1-Hexene
¦ trans-2-Hexene
¦ Methylcyclopentane
¦ Benzene
¦ 2-Methylhexane
¦ 3-Methylhexane
¦ n-Heptane
¦ 2,3,4-Trimethylpentane
¦ 2-Methylheptane
¦ 1-Octene
¦ Ethylbenzene
¦ Styrene
¦ l-Nonene
~ Isopropylbenzene
~ n-Propylbenzene
~ p-Ethyltoluene
E3o-Ethyltoluene
ESn-Decane
~ m-Diethylbenzene
~ l-Undecene
~1-Dodecene
On Tridecane
~ Chloromethane
~ Acrolein
~ Acrylonitrile
~ Trie h lo rot rif I uo roet h a ne
~ Carbon Tetrachloride
~ Acetaldehyde
~ Propionaldehyde
~ Butyraldehyde
~ I sova le ra I de hyd e
~ o-Tolualdehyde
~ p Tolualdehyde
E3 2,5-Dimethylbenzaldehyde
E3 Meth acrolein
~ Glyoxal
~ Methylglyoxal
~ Nonanal
¦ Acetylene
¦ Propylene
¦ Isobutane
¦ 1,3-Butadiene
¦ trans-2-Butene
¦ 3-Methyl-l-butene
¦ 1-Pentene
¦ n-Pentane
¦ trans-2-Pentene
¦ 2-Methyl-2-butene
¦ Cyclopentene
¦ Cyclopentane
¦ 2-Methylpentane
¦ 2-Methyl-l-pentene
¦ n-Hexane
¦ cis-2-Hexene
¦ 2,4-Dimethylpentane
¦ Cyclohexane
¦ 2,3-Dimethylpentane
¦ 1-Heptene
¦ Methylcyclohexane
¦ Toluene
¦ 3-Methylheptane
¦ n-Octane
¦ m-Xylene/p-Xylene
¦ o-Xylene
~ n-Nonane
~ a-Pinene
~ m-Ethyltoluene
~ 1,3,5-Trimethylbenzene
~ 1,2,4-Trimethylbenzene
~ 1,2,3-Trimethylbenzene
~ p-Diethylbenzene
~ n-Undecane
E3 n-Dodecane
~ Dichlorodifluoromethane
~ Dichlorotetrafluoroethane
~ Trichlorofluoromethane
~ Dichloromethane
~ 1,1,1-Trichloroethane
~ Formaldehyde
~ Acetone
~ Croton aldehyde
~ Benzaldehyde
~ Valeraldehyde
~ m-Tolualdehyde
~ Hexaldehyde
E3 Diacetyl
~ 2-Butanone
~ Acetophenone
~ Octanal
Figure 12-4. Comparison of Els for individual gas phase species as produced by different engine
types.
235
-------
This page intentionally left blank.
236
-------
13. Particle-Phase Chemical Composition
The PM-phase chemical composition discussed in this study includes the inorganic elements and ions,
elemental carbon, organic carbon, and organic compounds determined by analyzing the Teflon and
quartz filter samples collected from the time-integrated sampling. Like the discussion of black carbon and
PAH emissions, the emission indices reported here are without correction for sampling line particle losses
because the fraction of species of the PM lost in the sampling line could not be determined from available
data. Summary tables of experimental results for PM speciation and element El can be found in Tables
H-1 and H-2, respectively, in Appendix H.
13.1 Element and Ion Emissions
The Teflon filter samples were first subjected to trace elemental analysis by X-ray fluorescence (XRF).
The samples were then extracted with HPLC-grade deionized water and the extracts were analyzed by
ion chromatography (IC) for determination of sulfate, nitrate, and chloride in the PM collected on the
filters. The Teflon filters were installed in both plume and background sampling systems, so that the
background-corrected concentrations and emission indices for individual elements and ions were
obtained for each test. The tests in this study for which the XRF and IC analyses were conducted are
EPA-1, EPA-2, EPA-3 and NASA-4&5 of APEX-1, T1 to T4 of APEX-2, and T3&4, T6&7, T9, and T11 of
APEX-3. In calculation of the element emission indices from the XRF analytical results, the reported
uncertainties were used. Thus, the elements which had detected concentrations either less than their
detection limits or less than three times their uncertainties were not reported.
Although integrated filter sampling was conducted in the APEX-1 EPA-1 test, the results from this test
were not used in the discussion of this section because of high background interference by crosswinds
during this test. Furthermore, the total element and ion concentrations on the background Teflon filter for
the APEX-3 T6&7 were extremely high. Since the PM mass collected on the background Teflon filter for
this test was low (-0.016 mg), that filter may have been contaminated either in the field or in the
laboratory. Therefore, this test was also excluded in the element and ion emission discussion.
Various trace elements in the PM emissions are considered to originate from the presence of these
elements in fuels, lubricating oils, engine wear and corrosion, sampling line, and fugitive dust. Table 13-1
summarizes the total emission index of elements derived from the XRF analysis for each test. The engine
type, fuel sulfur content, and test-average rated thrust and fuel flow rate are also presented in the table.
The emission indices for individual elements are presented in stacked column format for each test in
Figure 13-1. The blue columns in the figure represent the sulfur in PM, which clearly was the most
abundant element for all the tests. The samples of APEX-2 T1 test contained notable amounts of Si,
probably due to dust contamination resulting from the resuspension of concrete cuttings left over from the
drilling of holes in the tarmac.
237
-------
Table 13-1. Total Elemental Emission Index Derived from the XRF Analyses
APEX
Test
Engine
Fuel
Sulfur
(ppm)
Time-weighted
Engine Power3
(%)
Fuel Flow
(kg/h)
Total Metal
Emission Index
(mg/kg fuel)
1
EPA-2
CFM56-2C1
409
18.8
770
10.8
EPA-3
1639
20.4
797
27.5
NASA-4&5
553
35.7
1221
12.0
2
T1
CFM56-7B24
132
30.1
1264
6.33
T4
412
30.1
1264
13.5
T2&3
CFM56-3B series
279
31.0
1200
10.1
3
T11
400
31.1
1161
12.8
T3&4
AE3007A1E
300
41.1
537
7.51
T9
RB211-535E4-B
300
34.2
2473
6.92
a Time-weighted average (TWA) thrust calculated over entire test period.
30
25
20
15
10 -
5 -
-Ma-
Si
~ Tl
~ I
~ Te
~ Sb
~ In
¦Ag
¦ Br
¦ Zn
¦ Cu
~ Ni
~ Fe
QMn
¦ Cr
~ Ti
¦ Ca
~ K
¦ CI
~ S
~ P
¦ Si
~ Ma
s
s
o
to
It)
O
APEX-1
EPA2
O
to
It)
O
APEX-1
EPA3
O
to
It)
O
APEX-1
NASA4&5
m
to
It)
O
APEX-2 T1
m
to
It)
O
APEX-2 T4
m
•?
to
It)
O
APEX-2
T2&3
m
to
It)
O
APEX-3
T11
<
f-
o
o
CO
HI
<
APEX-3
T3&4
HI
m
CO
«?
CM
m
o:
APEX-3 T9
Figure 13-1. Elemental emission indices for each test.
238
-------
The results of the tests with the same engine and same fuel were averaged and the elemental emissions
from different engines compared in Table 13-2 and Figure 13-2. The element emission indices for
different engines were obtained with base fuel or fleet fuel and were plotted in stacked columns in the
figure. The results show that the total element emissions produced from the CFM56 engines were
relatively higher than the total element emissions from the AE3007-A1E and RB211-535E4-B engines.
The table shows that about 2 to 7 percent of the total PM mass were the elements for these engines. The
mass percentage of sulfur in the total elements detected for each test was also provided in the figure,
indicating that over 80 percent of the elemental mass was sulfur for all five engines compared except for
the AE3007A1E engine (54% sulfur).
Table 13-2. Elemental Emission Indices for Different Engines
Engine
Time-Weighted
Engine Power3
(%)
Fuel Flow
(kg/h)
PM El
(mg/kg)
Total
Metal El
(mg/kg)
Metal/PM
(%)
Sulfur El
(mg/kg)
S/Metal
(%)
CFM56-2C1
18.8
770
305
10.8
3.54
9.54
88.3
CFM56-7B24
30.1
1264
9.94
8.05
81.0
CFM56-3B
31.0
1200
267
11.5
4.30
10.1
88.4
AE3007A1E
41.1
537
116
7.51
6.48
4.03
53.7
RB211-535E4-B
34.2
2473
384
6.92
1.80
6.15
88.9
a. TWA calculated for all tests conducted.
88% s
Mg
81% S
Si
~ I
~ Te
~ Sb
¦ In
¦Ag
¦ Br
¦ Zn
~ Cu
~ Ni
¦ Fe
¦ Mn
~ Cr
¦ Ca
~ K
¦ CI
~ S
~ P
¦ SI
~ Mg
88% S
Fe
54% S
89% S
CFM56-2C
CFM56-7B
CFM56-3B
AE3007A1E
RB211-535E4
Figure 13-2. Comparison of elemental emission indices for different engines.
239
-------
The sulfur detected in PM samples originated from the jet fuels used in the tests. Therefore the high-
sulfur fuel was expected to produce a higher elemental sulfur emission index. Table 13-3 provides the
sulfur emission index results and the sulfur contents in the fuels. Table 13-3 indicates that the primary
element in the PM emissions was sulfur regardless of fuel type. The sulfur content in the total detected
elements was 88 percent for base fuel (APEX-1 EPA2), 95 percent for high sulfur fuel (APEX-1 EPA3),
and 93 percent for high aromatic fuel (APEX-1 NASA-4&5). The sulfur emission index for high sulfur fuel
was 26.2 mg/kg, which was 2.3 times as much for high aromatic fuel and 2.7 times as much for base fuel.
It is not surprising that the high sulfur fuel had the highest sulfur emission index. The conversion of fuel
sulfur into particulate was also calculated and presented in the table, indicating that about 2 to 3 percent
of fuel sulfur was converted into sulfate as part of particulate matter emissions. By plotting the sulfur
emission indices derived from the XRF analytical results for the CFM56 engines as a function of fuel
sulfur content, Figure 13-3 shows that the correlation between the emission index of sulfur in PM and the
fuel sulfur content can be approximately expressed by a linear equation with a correlation coefficient (r2)
of 0.93.
The water soluble ion emission indices derived from the IC analysis of the Teflon filter samples for various
tests are presented in Table 13-4 and Figure 13-4. Four ions, K+, NH4+, CI", and S04~2, were reported, of
which S04~2 and NH4+ were the two primary inorganic ions comprising 90 percent of the total ion mass.
The table also presents the S(IV) to S(VI) conversion calculated from the known amount of sulfur in fuel
and the measured sulfate El. Also shown for comparison in Table 13-4 are similar results from the
European PartEmis program (Katragkou et al., 2004) and the landmark study by Schumann et al. (2002).
The IC results show that approximately two to four percent of the sulfur in the fuel was converted to water
soluble particulate sulfate, consistent with the data of Katragkou et al. (2004) and Schumann et al. (2002).
Also, comparing this value to the sulfur conversion values shown in Table 13-3, the fuel sulfur conversion
efficiency determined by IC was either slightly more or less than that measured by XRF, indicating
differences in the two analytical methods.
Table 13-5 and Figure 13-5 compare the average Els of individual ions among five different engines. The
total ion emission indices for all five engines range from 30-40 mg/kg fuel. For the three CFM56 engines,
SO4"2, had about 71 percent of total ion mass. The AE3007-A1E and RB211-535E4-B engines had 63
and 53 percent S04~2, respectively.
Table 13-6 presents the S04~2 ion Els obtained for the CFM56 engine with different fuel compositions.
Like sulfur detected by XRF, the emission index of S04~2 was linearly correlated to the sulfur content in
fuel as shown in Figure 13-6. The relation between S04"2 El and fuel sulfur content can be approximately
described by a linear equation with an r2 of 0.90.
240
-------
Table 13-3. Sulfur Emission Indices for Individual Tests as Determined from the XRF Analyses
and Their Associated Fuel Sulfur Contents
APEX
Test
Engine
Sulfur
in Fuel
(ppm)
Sulfur El
(mg/kg)
S/Metal
(%)
Sulfur
Conversion
(%)
1
EPA2
CFM56-2C1
409
9.54
88.3
2.33
EPA3
1639
26.2
95.3
1.60
NASA-4&5
553
11.2
93.3
2.02
2
T1
CFM56-7B24
132
3.11
49.1
2.35
T4
412
13.0
95.9
3.15
T2&3
CFM56-3B
series
279
9.21
91.2
3.30
3
T11
400
11.1
86.3
2.77
y= 0.0136x +4.4952
R2= 0.9258
1000
Sulfur in Fuel(ppm)
2000
Figure 13-3. Correlation of sulfur emission index with fuel sulfur content for CFM56 engines.
241
-------
Table 13-4. Water Soluble Ion Emission Indices Derived from the IC Analyses for Each Test
APEX
Test
Engine
Fuel
Sulfur
(ppm)
Time-
Weighted
Engine
Power (%)
Time-
Weighted
Fuel Flow
(kg/h)
Emission Indices
Sulfur
Conversion
(%)
Total Ions
(mg/kg)
K
(mg/kg)
nh4
(mg/kg)
CI
(mg/kg)
SCU
(mg/kg)
1
EPA2
CFM56-
2C1
409
18.8
770
29.4
2.98
5.46
20.9
1.71
EPA3
1639
20.4
797
86.0
5.54
10.5
69.9
1.42
NASA-
4&5
553
35.7
1221
40.0
1.91
5.69
32.4
1.95
2
T1
CFM56-
7B24
132
30.1
1264
25.8
8.51
17.3
4.37
T4
412
30.1
1264
53.0
13.8
39.2
3.17
T2&3
CFM56-
3B series
279
31.0
1200
36.5
2.38
6.69
27.4
3.28
3
T11
400
31.1
1161
42.0
13.6
28.4
2.37
T3&4
AE3007-
A1E
300
41.1
537
40.7
15.1
25.6
2.85
T9
RB211-
535E4-B
300
34.2
2473
31.8
3.85
8.24
3.01
16.7
1.86
PartEmis (Katragkov et al., 2004)
2.30a
Schumann et al., 2002
3.30b
a Low pressure stage of combustor + hot end simulator at modern cruise power.
b CFM56-3B1 engine at cruise altitude.
~ S04
~ CI
¦ NH4
~ K
0
O
O
m
m
m
m
(N
(N
(N
n-
n-
«?
«?
CD
CD
CD
CD
co
CD
CD
U)
U)
U)
IO
10
IO
U>
S
S
S
S
S
s
S
LL
LL
LL
LL
LL
LL
LL
O
O
O
O
O
O
O
APEX-1
APEX-1
APEX-1
APEX-2
APEX-2
APEX-2
APEX
EPA2
EPA3
NASA4&5
T1
T4
T2&3
T11
LU
T—
<
LU
<
APEX-3
T3&4
LU
U)
m
DC
APEX-3
T9
Figure 13-4. Water-soluble ion emission indices for each test.
242
-------
Table 13-5. Water Soluble Ion Emission Indices for Different Engines
Engine
Power3
(%)
Fuel Flow3
(kg/h)
PM El
(mg/kg)
Total Ion El
(mg/kg)
lons/PM
(%)
SO4EI
(mg/kg)
SCVIons
(%)
CFM56-2C1
18.8
770
305
29.4
9.64
20.9
71.3
CFM56-7B24
30.1
1264
39.4
28.3
71.7
CFM56-3B
31.0
1200
267
39.3
14.7
27.9
71.2
AE3007-A1E
41.1
537
116
40.7
35.2
25.6
62.9
RB211-535E4-B
34.2
2473
384
31.8
8.29
16.7
52.6
a TWA calculated for all tests conducted.
45
40 :
? 35 :
|30:
O)
E
c 20
o
I 10
5
0
Figure 13-5. Comparison of water-soluble ion emission indices for different engines.
63% S04
~ S04
~ CI
¦ NH4
~ K
—
72% so4
71% SO4
71% so4
53% S04
—
CFM56-2C CFM56-7B CFM56-3B AE3007A1E RB211-535E4
243
-------
Table 13-6. Sulfate Emission Indices from the IC Analyses and Their Fuel Sulfur Contents
APEX
Test
Engine
Fuel Sulfur
(ppm)
SO4EI
(mg/kg)
S/lons
(%)
1
EPA2
CFM56-2C1
409
20.9
71.3
EPA3
1639
69.9
81.3
NASA-4&5
553
32.4
81.0
2
T1
CFM56-7B24
132
17.3
67.0
T4
412
39.2
74.0
T2&3
CFM56-3B
series
279
27.4
75.2
3
T11
400
28.4
67.7
o>
o>
y=0.0333x + 15.469
R2 = 0.9004
40
0
200
400
600
800
1000
1200
1400
1600
1800
Sulfur in Fuel (ppm)
Figure 13-6. Correlation of S04 emission index with fuel sulfur content for CFM56 engines.
13.2 Organic and Elemental Carbon Emissions
The quartz filters collected from the integrated sampling were first analyzed by the EC/OC analyzer to
determine the organic and elemental carbon content in the PM samples, and then analyzed by GC/MC to
determine the semivolatile organic compounds in PM. Accurate collection and determination of particulate
organic material on quartz filters was complicated by the fact that gas phase organic compounds may be
adsorbed by the quartz filters during sampling, resulting in overestimate of the actual concentrations. This
sampling artifact was accounted for by placing a backup quartz filter(s) behind the Teflon filter in the
sampling array using an approach developed by Turpin et al. (1994). No artifact correction was made for
244
-------
the Teflon filters. The organic carbon was then obtained by subtracting the amount of OC found on the
quartz filter located downstream of the Teflon filter from the amount found on the primary quartz filter. The
elemental carbon is always considered as non-volatile particulate, and therefore no backup filter
correction was needed in the elemental carbon emission index calculation. Like Teflon filter sampling, the
quartz filters were installed in both the plume and background systems so that the background could be
corrected. For comparison, the emission indices of OC and semivolatile organic compounds were
reported both with background and backup correction and with only the background corrected.
Table 13-7 summarizes the results of organic and elemental carbon emission indices derived from the
analysis of quartz filter samples. The tests shown are EPA-3, NASA-2&3, and NASA-4&5 for APEX-1; T1,
T4 and T2&3 for APEX-2; and T3&4, T9 and T11 for APEX-3. For the EPA-2 test, both plume front and
background quartz filters were found broken. Therefore the EPA-2 plume quartz filter samples were not
analyzed for organic and elemental carbon content. However, these samples were solvent-extracted and
analyzed by GC/MS for organic speciation which will be discussed later. High background OC and EC
content was also found for APEX-3 T3&4. As a result, only the uncorrected OC El was reported. For
backup and background-corrected samples, the emission indices obtained in this study ranged from 37-
83 mg/kg of fuel burned for OC and 21-98 mg/kg of fuel burned for EC, depending on the test conditions.
The EC/OC ratio ranged from 0.3 to 2.
Table 13-7. Organic and Elemental Carbon Emission Indices for Each Test
APEX
Test
Engine
Time-
Weighted
Engine
Power
(%)
Time-
Weighted
Average
Fuel Flow
(kg/h)
Background and
Backup Corrected
Background
Corrected Only
Without Any
Correction
OC
(mg/kg)
ECa
(mg/kg)
EC/OC
Ratio
OC
(mg/kg)
ECa
(mg/kg)
OC
(mg/kg)
EC
(mg/kg)
1
NASA-2&3
CFM56-2C1
18.8
770
83.2
21.1
0.253
100
21.1
179
27.9
EPA-3
20.4
797
37.1
26.1
0.703
21.1
26.1
188
40.2
NASA-4&5
35.7
1221
50.7
32.4
0.640
80.7
32.4
137
48.2
2
T1
CFM56-7B24
30.1
1264
82.0
28.1
0.342
132
28.1
225
37.4
T4
30.1
1264
42.2
25.1
0.595
76.8
25.1
176
33.5
T2&3
CFM56-3B
series
31.0
1200
50.4
91.9
1.82
69.3
91.9
120
95.4
3
T11
31.1
1161
54.7
98.4
1.80
77.5
98.4
113
98.4
T3&4
AE3007-A1E
41.1
537
-
39.2
-
-
39.2
118
63.4
T9
RB211-
535E4-B
34.2
2473
39.2
27.5
0.700
57.0
27.5
89.9
27.5
a. Quarlz filters will not adsorb EC, therefore the EC data before and after backup correction should be the same.
By averaging the emission indices of the tests with the same engine type, the OC and EC Els for different
engine models are compared in Table 13-8. The El results for the CFM56-2C1 are not shown in the table
due to the high background effect of crosswinds. For APEX-3 T3&4 for the AE3007-A1E engine, the
background quartz filter had high OC contamination, resulting in zero OC Els after backup and/or
background corrections.
245
-------
Table 13-8. Organic Carbon and Elemental Carbon Emission Indices for Different Engines
Engine
Time-
Weighted
Engine
Power3
(%)
Time-
Weighted
Fuel
Flow
(kg/h)
Background and
Backup Corrected
Background
Corrected Only
Without Any
Correction
OC
(mg/kg)
ECb
(mg/kg)
OC
(mg/kg)
ECb
(mg/kg)
OC
(mg/kg)
EC
(mg/kg)
CFM56-7B24
30.1
1264
62.1
26.6
105
26.6
200
35.4
CFM56-3B
31.0
1200
52.5
95.2
73.4
95.2
116
96.9
AE3007-A1E
41.1
537
-
39.2
-
39.2
118
63.4
RB211-535E4-B
34.2
2473
39.2
27.5
57.0
27.5
89.9
27.5
a. TWA was calculated from all the power levels tested for each test.
b. Quartz filters do not adsorb EC, therefore the EC data before and after backup filter correction should be the same.
Figure 13-7 compares the OC and EC emission indices obtained from different engines. Figure 13-7(a)
shows that, among the engines tested, the newer CFM56-7B24 engine produces the highest organic
carbon emissions and the RB211-535E4 engine had lowest OC El. The figure also shows that the effects
of backup and background correction on the emission index were different from one engine to another.
For elemental carbon emissions as shown in Figure 13-7(b), the highest El was obtained from the
CFM56-3B engine and the CFM56-2C had lowest EC El.
13.3 Particle-Phase Organic Compounds
The identification and quantification of trace organic compounds collected on the APEX quartz filter
samples were done using two approaches. After the APEX-1 campaign, the amount of organic carbon
collected on each individual quartz filter ranged between 0.01 and 0.16 mg, much below 1 mg of OC
required in order to use the solvent-extraction and GC/MS method for appropriate organic compound
speciation. As a result, the quartz filter samples obtained during APEX-2 from the same engines were
composited to increase the amount of OC for solvent extraction analysis. Thus, the corresponding
samples from T2 and T3 tests for the CFM56-3B tests were composited and labeled as T2&3. Also the
composite samples from T1 and T4 for the -7B24 model CFM56 were labeled as T1&4. In the case of
APEX-3, the more sensitive thermal desorption GC/MS (TD/GC/MS) method was used in lieu of solvent
extraction for all samples collected.
The emission indices of individual organic compounds were calculated for the different tests. Both the
quartz-filter artifact correction (backup correction) and background correction were conducted during the
emission index calculation. The results of emission indices with both backup and background correction
and the results that were background corrected but without backup-quartz-filter correction are all
summarized in Table H-1 in Appendix H. The total emission indices for individual organic groups and for
all the organic compounds detected are also presented in the tables.
246
-------
~ OC BK+Bkup Corrected
¦ OC BK Corrected
~ OC Without Correction
CFM56-2C CFM56-7B CFM56-3B AE3007A1E RB211-535E4
(b)
¦ EC BK Corrected
~ EC Without Correction
CFM56-2C CFM56-7B CFM56-3B AE3007A1E RB211-535E4
Figure 13-7. Comparison of OC and EC emission indices for: (a) organic carbon; and
(b) elemental carbon.
247
-------
Figure 13-8 shows the contribution of individual organic compounds to the total speciated particle-phase
El for different engines. The results were corrected for both quartz filter sampling artifact and background.
The test number and sampling campaign are presented in the figure. In general, the figure shows that
AE3007-A1E and CFM56-3B were the two engines having the highest emission indices of total speciated
organics. Both the P&W 4158 and CFM56-7B24 produced the lowest El for semi-volatile organic
compounds. However, the samples from APEX-2 T1&4 for the CFM56-7B24 engine were analyzed by
solvent extraction, which is considered less sensitive than the thermal desorption analysis used for the
APEX-3 engine samples. Therefore, the lower emission indices of speciated organic compounds for
APEX-2 T1&4 could be attributable to the method of analysis used.
Figure 13-9 compares the emission indices of classes of organic compounds for different engines. The
percentage value for each group is also presented in the figure. Regardless of the difference in engine
type, the n-alkanes and PAHs were the primary compounds observed. For the AE3007-A1E engine, the
total emission index of organic compounds was 293 ug/kg of fuel burned, of which about 58 percent was
n-alkanes and 42 percent was PAHs.
E317A(H)-21 B(H)-Hopane
~17A(H)-22,29,30-Trisnorhopane
~ABB-20R-C28-M ethyl c hoi estane
~ ABB-20R-C27-Chol estane
¦ lndeno[1,2,3-cd]pyrene
¦ Benzo[b]fl uoranthene
¦ Benzo[a]anthracene
~ Pyrene
¦ Fl uoranthene
¦ Phenanthrene
¦ Di benzofuran
¦ 2,6-Dimethylnaphthalene
¦ 2,7 Dimethyl naphthalene
¦ 1 -M ethyl naphthalene
¦ Naphthalene
~ Dodecylcyclohexane
~ Squalene
~ 2-M ethylnonadecane
~ n-Hexatriacontane (n-C36)
~ n-Tetratriacontane (n-C34)
~ n-Dotriacontane (n-C32)
~ n-Triacontane (n-C30)
¦ n-Octacosane (n-C28)
~ n-Hexacosane (n-C26)
¦ n-Tetracosane (n-C24)
~ n-Docosane (n-C22)
¦ n-Nonadecane (n-C19)
~ n-Heptadecane (n-C17)
¦ n-Pentadecane (n-C15)
~ n-Tridecane (n-C-13)
~ n-Undecane (n-C11)
oou
Pyrene
Fluor-
anthene
¦=•200
Fluor-
anthene
O 150
Pyrene
Squalene
n-Non-
T1 &4
T3&4
T6&7
APEX-1
APEX-2
APEX-3
APEX-3
APEX-3
APEX-3
~ Coronene
~ 17B(H)-21A(H)-30-Norhopane
~ABB-20R-C29-EthylchoI estane
~AAA-20S-C27-Cholestane
~ Be nzo[ghi ]pe ryl e ne
~ Benzo(e)pyrene
¦ Benzo[k]fl uoranthene
~ Chrysene
~ Retene
~Anthracene
~ Fluorene
¦Acenaphthylene
01,3 Dimethylnaphthalene
¦ 2-M ethyl naphthalene
~ Series34
~ Nonadecylcyclohexane
~ Naphthalic Anhydride
~ Phytane
~ n-Heptatriacontane (n-C37)
~ n-Pentatriacontane (n-C35)
~ n-Tritriacontane (n-C33)
~ n-Hentricontane (n-C31)
°n-Nonacosane (n-C29)
~ n-Heptacosane (n-C27)
¦ n-Pentacosane (n-C25)
~ n-Tricosane (n-C23)
~ n-Heneiicosane (n-C21)
~ n-Octadecane (n-C18)
~ n-Hexadecane (n-C16)
~ n-Tetradecane (n-C14)
~ n-Dodecane (n-C12)
Figure 13-8. Relative contribution of individual organic compounds to the total speciated
particle-phase El.
248
-------
24.5%
EPA2
APEX-1
CFM56-2C
43.4%
SB «'!-
T1&4
APEX-2
CFM56-7B
T11
APEX-3
CFM56-3B
~ PAH
¦ Cyclohexanes
~ OxyPAH
~ Alkenes
¦ Branched alkanes
~ n-alkanes
T3&4
APEX-3
AE3007
50.1%
T6&7
APEX-3
P&W4158
33.9
T9
APEX-3
RB211
Figure 13-9. Relative contribution of classes of organic compounds to the total speciated
particle-phase El.
The effects of the correction for quartz filter sampling artifact on the emission indices of individual organic
compounds were investigated by comparing the emission index results of individual organic groups
before and after backup correction as presented in Figure 13-10(a) and (b), respectively. After correction,
most oxy PAH and phthalates on the plume front quartz filters were significantly reduced or even
eliminated for all engines.
The effect of background correction was further investigated in Figure 13-11, where the emission index
results of n-alkanes and PAH obtained without any correction, with background correction only and with
both backup and background correction were compared. The results for n-alkanes are presented in
Figure 13-11(a) and Figure 13-11(b) provides the PAH results. The figures show that the background
quartz filters contained high n-alkanes, and therefore the El values for alkanes were substantially reduced
by background correction. For the PAHs, only the APEX-3 T3&4 and T9 tests had a high background.
Both Figure 13-10 and 13-11 underscore the need for a valid ambient background correction for these
types of chemical analyses.
249
-------
o>
J*
O)
X
0)
¦o
o
>
>
E
LLI
800
700
600
500
400
300
200
100
(a)
~ PAH
¦ Steroids
~ Cyelohexanes
¦ Oxy PAH
~ Phthalate
~ Alkenes
¦ Branched alkanes
~ n-alkanes
EPA1
EPA2
EPA3
T1&4
T2&3
T3&4
T6&7
T9
APEX-1
APEX-1
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
T11
APEX-3
O)
J*
O)
X
0)
"D
o
>
>
E
LLI
800
700
600
500
400
300
200
100
0
(b)
EPA1
APEX-1
B
~ PAH
¦ Steroids
~ Cyelohexanes
¦ Oxy PAH
~ Phthalate
~ Alkenes
¦ Branched alkanes
~ n-alkanes
EPA2
EPA3
T1&4
T2&3
T3&4
T6&7
T9
APEX-1
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
T11
APEX-3
Figure 13-10. Effects of quartz-filter sampling-artifact correction on emission indices of individual
organic groups: (a) before backup correction; and (b) after backup correction.
250
-------
1200
1000
o> 800
O)
s
a> 600
"O
¦g 400
>
I
LU
200
(a) n-alkanes
~ No Correction
¦ BK Corrected
~ BK&Bkup Corrected
EPA1
EPA2
EPA3
T1&4
T2&3
T3&4
T6&7
T9
APEX-1
APEX-1
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
~
T11
APEX-3
250
_ 200
a)
O)
"5) 150
x
0)
¦o
c
~ 100
0
3)
tn
1
m 50
(b) PAH
ntb.
~ No Correction
¦ BK Corrected
~ BK&Bkup Corrected
EPA1
EPA2
EPA3
T1&4
T2&3
T3&4
T6&7
T9
T11
APEX-1
APEX-1
APEX-1
APEX-2
APEX-2
APEX-3
APEX-3
APEX-3
APEX-3
Figure 13-11. Effects of background correction on emission indices of individual organic groups
for: (a) n-Alkanes; and (b) PAHs.
251
-------
This page intentionally left blank.
252
-------
14. Quality Assurance
14.1 Data Quality Indicator Goals
The DQI (Data Quality Indicator) goals that were established prior to the three testing campaigns and
referenced in the respective QAPPs are presented in Table 14-1.
Table 14-1. DQI Goals for DEAL Instrumentation
Experimental
Parameter
Measurement
Method
Precision3
Accuracy13
Completeness
Detection Limit or
Range
[APEX-1]:Gas phase
measurements (CO2,
CO, THC)
Photoacoustic
analyzer
± 5%
± 5%
95%
CO2: 3.4 ppmv
CO: 0.2 ppmv
THC (as hexane):
0.008 ppmv
[APEX-2 and APEX-3]:
Gas phase
measurements (CO2)c
Infrared analyzer
± 5%
±5%
95%
0 to 800 ppmc
0 to 2000 ppm
[APEX-3]: Gas phase
measurements (CO2)d
Infrared analyzer
± 5%
± 5%
95%
0- to 10,000 ppm
Temperature
Thermocouple
5%
+ 5%
95%
K-type: -200°C-
1250°C
J-type: 0 °C-750°C
T-type: -250 °C - 350
°C
Volumetric air flow rate
Mass flow
controllers8
5%
+ 10%
95%
0-2 Lpm; 0-15 Lpm;
0-50 Lpm; 0-112 Lpm;
0-1120 Lpm
Differential pressure
Transducers
5%
+ 10%
95%
0-17.5 inches H20
PM massf
Gravimetric
analysis
3 pg9
±15 pg
90%
1 M9
a Calculated as the RSD of the reference measurements obtained at a constant instrument set point.
b Average variation between the reference measurements and instrument readings as determined over the entire
operating range.
c 0 to 800 ppm used for APEX-2; 0 to 800 ppm and 0 to 2000 ppm used in APEX-3.
d Horiba Model AIA 210.
8 Includes all on-line and time-integrated instruments as well as sampling tunnels.
f For time-integrated sampling only.
9 Determined as the standard deviation of the results of multiple analyses of the same filter on the same microbalance.
253
-------
All of the instruments used were calibrated before and after APEX-1 and before the APEX-2 field
campaign. APEX-3 followed shortly thereafter. Although not all of the instrumentation was calibrated
following APEX-3, all measurements were taken within the annual calibration window and, therefore,
there should be no resulting impact on data quality.
14.1.1 Photoacoustic Analysis (APEX-1)
Table 14-2 lists the optical filters and the calibration gas concentrations used with the
B & K Photoacoustic Multigas Analyzer during APEX-1. The analyzer was set up and calibrated for each
of the three gas channels before departing for the test campaign.
Table 14-2. INNOVA 1314 Photoacoustic Multigas Analyzer Calibrations
Optical
Gas Name
Span Gas
Filter
Concentration
UA0983
Carbon Dioxide (CO2)
924 ppm
UA0984
Carbon Monoxide (CO)
41.8 ppm
UA0987
Total Hydrocarbons (THC) as n-Hexane
5.37 ppm
Water
Water (H2O)
N/A
Quality control checks for the three gas compounds (C02, CO and n-hexane) measured by the
photoacoustic analyzer were performed before each test during APEX-1 per the QAPP. Post-test
calibration checks were not possible due to physical and time constraints that restricted access to the test
site. Therefore, span and zero calibration checks for the photoacoustic analyzer were performed once
each day. Summaries of all the daily calibration checks are included in the paragraphs below and are
summarized in Table 14-3.
Table 14-3. DQI Values for Photoacoustic Analyzer Gas Measurements for All Tests
Gas
Compound
Calibration Check
Range
(ppm)
Accuracy
(% bias)
Precision
(% RSD)
Percent Complete
C02
891-960
3.6-3.9
<2
100
CO
39.8-41.3
CO
^r
I
CM
<2
100
THC
4.95-5.58
3.9-7.8
<2
88
Calibration checks for C02 ranged from 891 ppm to 960 ppm. This range represents an accuracy range of
3.6 to 3.9 percent, which meets the 5 percent DQI goal. Precision for all C02 measurements was <2
percent, which also meets the 5 percent DQI goal. C02 measurements during APEX-1 were 100 percent
complete.
Measured calibration checks for CO ranged from 39.8 ppm to 41.3 ppm. This range represents an
accuracy range of 1.2 to 4.8 percent, which meets the 5 percent DQI goal. Precision for all CO
measurements was <2 percent, which also meets the 5 percent DQI goal. CO measurements for APEX-1
were 100 percent complete.
254
-------
THC calibration checks ranged from 4.95 ppm to 5.58 ppm. This range represents an accuracy range
from 3.9 to 7.8 percent, which falls slightly above the 5 percent DQI goal. Precision for all THC
measurements was <2 percent, which meets the 5 percent DQI goal. Of the 26 measurements made,
three were below 5.1 ppm, a value which represents the lowest acceptable value. This number of
measurements results in a completeness of 88 percent, which falls below the 95 percent completeness
goal.
14.1.2 Infrared C02 Gas Analyzers (APEX-2 and APEX-3)
Two identical Milton Roy 3300A infrared gas analyzers were used to measure the C02 gas concentration
during APEX-2 and APEX-3. One analyzer was installed to measure a sample from the plume tunnel and
the second to measure a sample from the background tunnel per the equipment configuration diagrams
included in the QAPP. The analyzers were equipped with three selectable ranges of 0-800, 0-1600, and
0-2000 ppm. Calibrations for both analyzers were performed on August 2, 2005, before departing for the
APEX-2 field campaign. Calibrations were performed on October 10, 2005, for the 0 to 2000 ppm range
before departing for APEX-3.
One Horiba Model AIA 210 infrared gas analyzer was used in APEX-3 only and was calibrated in the
DEAL on October 17, 2005, prior to departing for the field campaign.
These calibrations, summarized in Table 14-4, generated a linear relationship between the voltage output
of the analyzers and the calibration gases.
Daily calibration checks performed during the APEX-2 and APEX-3 campaigns are summarized in the
following paragraphs and in Table 14.5.
Table 14-4. Carbon Dioxide Analyzer Calibrations
Gas Analyzer
Gas Name
Span / Mid Gas
Concentrations
Milton Roy 3300A - Plume (APEX-2 only)
C02
710 ppm / 454 ppm
Milton Roy 3300A - Background (APEX-2 and APEX-3)
co2
710 ppm / 454 ppm
Milton Roy 3300A - Plume Low Range Analyzer (APEX-3 only)
co2
1730 ppm/1103 ppm
Horiba AIA 210 - Plume High Range Analyzer (APEX-3 only)
co2
5610 ppm/8570 ppm
255
-------
Table 14.5 DQI Values for Infrared C02 Gas Analyzer Measurements for All Tests
Plume
Background
Gas
Compound
Daily Calibration
Check Range
(ppm)
Accuracy
(% bias)
Precision
(% RSD)
Percent
Complete
CO2 Span Gas
(APEX-2)
709.5 - 734
705 - 716
-0.7 to 3.4
<3
100*
CO2 Mid-range
(APEX-2)
439-467
429-461
-3.3 to 2.9 (P)
-5.5 to 2.9 (B)*
<3
CO2 Span Gas,
High Range
8319-8807
-3 to 3
0-1
(APEX-3)
100
C02 Span Gas,
High mid-range
5613 -5905
0 to 5
1 -3
(APEX-3)
CO2 Span Gas,
Low Range
1719-1786
-1 to 3
0-<1
(APEX-3)
90
CO2 Span Gas,
Low mid-range
1104
0 to 6
0-<1
(APEX-3)
CO2 Span Gas
(APEX-3)
—
699 - 736
-2 to 4
0-1
100
CO2 Mid-range
(APEX-3)
—
438-474
-4 to 4
0-2
* With the exception of one low reading of 429 ppm in the analyzer used to sample background.
Daily calibration checks for the C02 span gas concentration during the APEX-2 campaign ranged from
709.5 to 734 ppm for the analyzer used to sample the plume, and from 705 to 716 ppm for the analyzer
used to sample the background. This range represents an accuracy range for both analyzers of -0.7 to
3.4 percent to meet the DQI goal of ± 5 percent.
Daily calibration checks for the C02 mid-gas concentration during APEX-2 ranged from 439 to 467 ppm
for the analyzer used to sample the plume. This range represents an accuracy range of -3.3 to 2.9
percent for the plume analyzer to meet the DQI goal of 5 percent. The analyzer used to sample
background ranged from 429 to 461 ppm, a range which represents an accuracy range of -5.5 to 2.9
percent. This range failed to meet the DQI goal of ± 5 percent for one reading of 429 ppm. This value is
the only reading that failed to meet the accuracy DQI goal and there is no explanation for the low value.
The same instrument performed exceptionally well the day before and the day after for the mid-calibration
checks, with readings of 460.7 and 450.1 ppm, respectively. These values represent accuracy values of
1.5 and -0.7 percent, respectively. Precision for all C02 measurements taken with both analyzers was
less than 3 percent to meet the DQI goal of 5 percent. With the exception of the one low reading, C02
measurements were 100 percent complete.
256
-------
During the APEX-3 campaign, three gas analyzers were used to measure C02 concentrations. Two
analyzers were used to sample from the "plume tunnel" with ranges of 0 to 2000 ppm and 0 to 10,000
ppm. One analyzer was used to sample from the "background tunnel" at a range from 0 to 800 ppm.
The span gas calibration checks for the Plume High Range C02 Anlayzer ranged from 8319 ppm to 8807
ppm, with an average of 8559 ppm. These values represent an accuracy range of -3 to 3 percent and a
precision ranging from 0 to 1 percent. The mid-range gas calibration checks for the same analyzer ranged
from 5613 ppm to 5905 ppm, with an average overall reading of 5742 ppm. The accuracy values ranged
from 0 to 5 percent and the precision ranged from 1 to 3 percent. Plume High Range C02 measurements
were 100 percent complete.
The span gas calibration checks for the Plume Low Range C02 Analyzer ranged from 1719 ppm to 1786
ppm, with an average of 1742 ppm. These values represent an accuracy range of -1 to 3 percent, and a
precision range from 0 to <1 percent. The mid-range gas calibration checks for the same analyzer ranged
from 1104 ppm to 1159 ppm, with an average overall reading of 1133 ppm. The accuracy values ranged
from 0 to 6 percent (highest value slightly exceeded the DQI goal of 5 percent) and the precision ranged
from 0 to <1 percent. Plume Low Range C02 measurements were 90 percent complete, a level which fell
slightly below the 95 percent goal.
The span gas calibration checks for the Background C02 Analyzer ranged from 699 ppm to 736 ppm, with
an average of 713 ppm. These values represent an accuracy range of -2 to 4 percent and a precision
ranging from 0 to 1 percent. The mid-range gas calibration checks for the same analyzer ranged from 438
ppm to 474 ppm, with an average overall reading of 450 ppm. The accuracy values ranged from -4 to 4
percent and the precision ranged from 0 to 2 percent. These measurements were 100 percent complete.
14.1.3 DQI Measurements for Volumetric Air Flow Rates
For APEX-1, APEX-2 and APEX-3, calibrations for the filter sampler mass flow meters and mass flow
controllers were completed annually by the EPA Metrology Laboratory. The calibration files will be
archived as part of the permanent record of the study. The DQIs can be assessed using the Metrology
Laboratory reports and the information they provide. The reports include a "combined expanded
uncertainty" value that is applicable over the calibration range of the particular device. All volumetric flows
were recorded on the DAS and were monitored closely before, during, and after testing. No unexpected
behavior was observed during the field campaigns, and it is therefore assumed that the true value is ± the
uncertainty of the recorded value. These measurements were 100 percent complete.
During the APEX-1 campaign, the major and minor sampling tunnel flows were measured using thermal
dispersion mass flow transmitters that provided feedback to a pair of variable speed blowers. The ability
of this system to precisely control the flow rate was impractical to test prior to the system being subjected
to the ram effects from the jet engine exhaust. The blowers functioned properly in providing a sample flow
into the DEAL that was sufficient for the particle measurement instruments to draw a slipstream via their
own internal or external pump. Since isokinetic sampling was not a requirement and a sufficient sample
was delivered, the quality of the data does not appear to have been compromised as a result of these
imprecise measurements. The only compromise that could be a result of these imprecise measurements
would be having an unknown cutpoint for the virtual pre-separator. However, the main function of the
virtual impactor was to remove the larger particles that were not of interest and that could result in the
need for more frequent instrument cleaning. The EPA Metrology Laboratory performed calibrations of
these devices. The calibration files will also be archived.
257
-------
For the APEX-2 and APEX-3 campaigns, new centrifugal blowers, each controlled by variable frequency
drives, were installed in the DEAL to replace the sample extraction system used in APEX-1. The new
blowers substantially improved flow stability in the plume sampling tunnel.
14.1.4 Temperature (Thermocouples)
The DEAL thermocouples are calibrated annually by the EPA Metrology Laboratory. The calibration files
will be archived as part of the permanent record of the study. The thermocouple DQIs can be assessed
using the Metrology Laboratory reports and the information they provide. The reports include a "combined
expanded uncertainty" value that is applicable over the calibration range of that thermocouple. As long as
there were no observations of a thermocouple responding with unexpected values, it can be assumed
that the true value is ± the uncertainty of the recorded value. Metrology Laboratory experience has
determined that thermocouple results are consistent and reliable within one year of the calibration date.
No measurements were made during the field campaigns that fell outside of the calibration range of the
thermocouples; therefore, these measurements were 100 percent complete.
14.1.5 DQI Measurements for Differential Pressure
The Validyne PD55 and the Modus R12 differential pressure transducers were calibrated by the EPA
Metrology Laboratory so that the field campaigns took place within a year of the calibration date. The
Validyne PD55 was used in APEX-1 and the Modus R12 was used in APEX-2 and APEX-3. The
calibration files will be archived. The differential pressure transducer DQIs can be assessed using the
Metrology Laboratory report and the information this report provides. The report includes a "combined
expanded uncertainty" value that is applicable over the calibration range of the pressure transducer. As
long as there were no observations of the transducer responding with unexpected values, it can be
assumed that the true value is ± the uncertainty of the recorded value. No measurements were made
during the field campaigns that fell outside of the calibration range of the differential pressure transducers;
therefore, these measurements were 100 percent complete.
14.2 Post-Test Laboratory Analysis
14.2.1 Gravimetric Analysis of Teflon Filter Samples
As described by MOP-2503 for filter gravimetric analysis (see Table 4-7), sample weighing was
conducted at specified ranges of room temperature and relative humidity. The balance stability was
controlled by checking the variations of the standard weights before and after analysis. A control Teflon
filter was used to monitor the long-term balance stability.
Table 14-6 shows the results of a QC check of the variations in these parameters during the gravimetric
analysis that was conducted for the APEX-3 samples. The balance exhibited good stability with RSDs of
less than 0.002 percent. The RSD was 0.8 percent for weighing room temperature and 1.2 percent for
weighing room relative humidity, indicating that the gravimetric analysis was done under the required
strictly controlled environmental conditions. Table 14-6 also includes replicate weights obtained for 100
mg and 200 mg standards used to assess accuracy/bias. All of the weights obtained met the DQI
accuracy goal of ± 0.015 mg.
258
-------
Table 14-7 documents the standard deviation of replicate tare weights observed for individual APEX-3
Teflon filters. These standard deviations were equal to 0.003 mg or less, a value which also met the QA
precision requirement.
The replicate final weights of APEX-3 Teflon filter samples are shown in Table 14-8. The values in the
table were measured on three different days: 1/16, 1/18 and 1/20/06. The standard deviation in replicate
sample weight measurement was less than 0.05 mg. By comparing the weights measured on 1/16 and
1/20, consistent losses were observed for almost all the samples as shown in Figure 14-1. This weight
reduction is considered to be primarily attributable to slight sample losses by vaporization of volatile
materials during the sample measurement procedure (in particular, during the 24-hour equilibrium prior to
weighing). The detection limit of this sampling technique was limited due to the low mass of PM collected
on the filters. Therefore, the usability of these data is limited.
Table 14.6 Variations in Environmental Conditions and Balance Stability for APEX-3 Teflon
Filter Gravimetric Analysis
Date
Time
Temp
(F)
RH
(%)
Control
TF
(mg)
Blank
TF
(mg)
Standarc
(100 mg)
Weight
(200 mg)
10/1 7/05
69.5
36.0
172.627
174.773
99.994
199.993
172.627
199.993
172.627
199.993
172.627
199.992
14:57
70.0
36.3
172.629
174.772
99.995
199.990
17:15
70.0
36.3
10/18/05
14:50
69.9
36.0
16:48
70.5
36.5
10/19/05
71.0
37.0
71.0
37.0
10/21/05
70.0
37.0
172.633
174.780
99.993
199.993
172.634
174.769
99.996
199.993
172.632
174.774
Standard Deviation
0.54
0.44
0.003
0.004
0.001
0.001
Relative SD (%)
0.77
1.19
0.002
0.002
0.001
0.001
259
-------
Table 14-7. Standard Deviation of Replicate Tare Weight Measurement for Each of APEX-3 Teflon
Filters
Filter ID
Tare Weight (mg)
Standard
Deviation
1
2
3
4
5
6
7
8
mg
T101305A
152.394
152.393
0.001
T101305B
150.436
150.437
0.001
T101305C
151.785
151.786
0.001
T101305D
148.281
148.284
148.280
148.280
0.002
T101305E
147.762
147.761
0.001
T101305F
148.521
148.523
148.519
148.524
148.523
148.522
0.002
T101305G
149.070
149.071
0.001
T101305H
149.312
149.309
149.311
149.312
0.001
T1013051
149.999
149.998
0.001
T101305J
151.229
151.226
151.228
151.229
0.001
T101305K
151.106
151.101
151.099
151.103
151.103
151.103
0.002
T101305L
144.638
144.637
0.001
T101305M
148.034
148.034
0.000
T101305N
146.045
146.043
146.047
146.044
146.046
146.041
146.039
146.041
0.003
T1013050
146.488
146.487
0.001
T101305P
147.761
147.761
0.000
T101305Q
149.349
149.349
0.000
T101305R
147.470
147.470
0.000
T101305S
146.170
146.169
0.001
T101305T
146.722
146.718
146.720
146.715
146.718
146.717
0.002
T101305U
147.734
147.730
147.734
147.733
0.002
T101 305V
147.462
147.464
147.462
147.465
147.465
147.465
0.001
T101305W
149.207
149.209
149.206
149.210
149.208
149.208
0.001
T101305X
145.766
145.767
0.001
T101305Y
147.371
147.374
147.370
147.375
147.377
147.371
147.376
0.003
260
-------
Table 14-8. Replicate Final Weight Measurement for Each APEX-3 Teflon Filter
Filter ID
1/16/06
(mg)
1/16/06
(mg)
1/18/06
(mg)
1/18/06
(mg)
1/20/06
(mg)
1/20/06
(mg)
SD
(mg)
T101305A
152.547
152.542
152.531
0.008
T101305B
150.489
150.468
150.467
0.012
T101305C
151.838
151.804
151.798
0.022
T101305D
148.352
148.318
148.265
0.044
T101305E
148.345
148.332
148.325
148.324
148.323
148.320
0.009
T101305F
148.635
148.587
148.584
0.029
T101305G
149.444
149.435
149.437
149.432
0.005
T101305H
149.324
149.315
0.006
T1013051
150.067
150.060
0.005
T101305J
151.276
151.247
151.239
151.241
0.017
T101305K
151.258
151.250
151.247
0.006
T101305L
144.696
144.659
144.656
0.022
T101305N
146.070
146.064
0.004
T1013050
146.749
146.743
0.004
T101305P
147.794
147.772
0.016
T101305Q
149.374
149.351
149.351
0.013
T101305S
146.204
146.187
146.181
0.012
261
-------
153
152
O) 151
E
O)
5
150
Z 149
c
^ 148
a)
c
o
a)
147
146
145
144
~ 1/16/06
¦ 1/20/06
OlOlOo
OOOOOOoOfO
tOtOtOtOtOtOpijfO,-
o555oo55°
^ -I z O 0-
2 m w m m
o o o o o o
" to f> to to f>
a
w
o
to
w
w
o
to
Figure 14-1. Sample losses from the comparison of weights measured on 1/16/06 and 1/20/06.
14.2.2 PM Organic Speciation Analysis
14.2.2.1 Solvent Extraction - GC/MS
The speciation of APEX-2 quartz filter samples was conducted by solvent extraction and GC/MS analysis.
Five-level standard calibration curves were prepared and injected onto the GC/MS system prior to
analysis of all quartz filter samples. These calibration curves consisted of aromatic PAHs (NIST1491 and
NIST 2260 standards), the second calibration curve of semivolatile alkanes (NIST 1494), and the third
calibration curve of methyl esters of organic acids [Quantitative Standard #3 (QS#3) from University of
Wisconsin]. The standard deviations for all calibration components were below 30 percent (most below
15%) for nearly all target compounds.
A method detection limit (MDL) study was also conducted prior to sample analysis. The lowest calibration
level (the practical quantitation limit, or PQL) was chosen to be the level that was replicated seven times
in accordance with EPA's SW-846 guidelines (Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods) for determination of an MDL. The standard deviation was multiplied by 3.14
(chart values for seven replicates) to determine each MDL. Sample values that fell below the MDL were
not used.
Some compounds were not present in the standard and were quantified using relative response factors
from closely eluting similar compounds. The qualitative determination of these non-target components
262
-------
was facilitated using retention times gathered from an extracted wax resin and also by using
fragmentation library matching.
Due to the punches taken from the quartz filter samples for OC/EC analysis before solvent extraction, a
compensation was required to account for sample losses. Since the exposed area of each quartz filter
was 13.45 cm2 and each punch had a known area of 1.45 cm2, the total nanogram (ng) value of the filter
was multiplied by a factor of 1.12 if one punch was taken from the filter.
Overall target analyte validity was determined by the presence of the target ion plus the molecular ion
(alkanes)/qualifier ions. Comparison of isotopic ratios and retention times with daily standards as well as
known mass spectral libraries assisted greatly in this process. Since the GC/MS system used was
equipped with an electronically programmable control (EPC), retention times did not shift appreciably
throughout the analysis period. This stability of retention times was critical for accurate determination of
target analyte components, especially when good isotopic ratio comparisons/lack of molecular ion
(alkanes) were not a viable option. In certain cases, the levels of interfering ions were judged to be
significant, and these particular components were deemed invalid. These results were not used.
Spikes were performed to determine the recoveries of individual components. Excellent recoveries were
found for most of the targets as shown in Table 14-9.
14.2.2.2 Thermal Desorption - GC/MS
The quartz filter samples collected during APEX-1 and APEX-3 were analyzed using the thermal
desorption (TD) system with GC/MS. Quantitative analysis was performed for semivolatile alkanes and
PAHs.
Due to the known low organic content in the quartz filter samples, a single level (high level 1) calibration
was used to quantify the data set. A lower calibration level (mid level 2) was used as the closing standard
and laboratory acceptance criterion. The standard had 83 percent of the components fall within 20
percent of the actual values. More than 75 percent of the target components meet the acceptance criteria,
meaning the calibration was valid. A valid calibration ensured that all of the samples and blanks analyzed
were bracketed by a successful stable calibration.
Blanks were analyzed prior to the analysis of each sample to determine cleanliness of the TD/GC/MS
system. Cleanliness of the TD/GC/MS system was of particular importance due to the nature of the TD
methodology and the relative inefficiency of system cleansing for the components with higher boiling
points in complex matrices. A method was specifically designed to purge the system of all residual target
components. This purging method allowed the TDS split vent to open and purge the system at 90 ml/min
for 10 minutes under high heat. This procedure was conducted prior to each sample run. An additional
intensive rinsing procedure was developed to minimize target contamination.
Maximum sample load was determined by a pre-study. The pre-study demonstrated that a maximum of
three quantitative slivers (2 mm x 30 mm) could be contained within the critical 79 mm "optimal heat
zone." Loading more sample slivers would have proved more difficult and could have potentially resulted
in adverse affects such as poor thermal transfer and internal standard biasing. The methodology proved
to have enough organic material present for each sample to acquire meaningful data without jeopardizing
thermal transfer to the GC/MS.
263
-------
Fable 14-9. Recoveries of Individual Components by Solvent Extraction Analysis
Compound % Recovery Compound % Recovery
Napthalene
78%
Squalene
110%
1 -Methylnaphthalene
91%
n-Heptacosane
130%
2-Methylnaphthalene
91%
Pristane
86%
2,6-Dmethylnaphthalene
94%
n-Octacosane
131%
Acenapthylene
93%
n-Nonacosane
128%
Acenapthene
95%
n-Triacontane
128%
Dibenzofuran
92%
n-Hentricontane
123%
Fluorene
103%
n-Dotriacontane
116%
Methylfluorene
96%
n-Tritriacontane
116%
Phenanthrene
101%
n-Tetratriacontane
113%
Anthracene
114%
n-Pentatriacontane
120%
9-Methylanthracene
99%
n-Hexatriacontane
112%
Fluoranthene
110%
n-Heptatriacontane
107%
Retene
113%
n-Octatriacontane
106%
n-Decane
26%
Pyrene
93%
n-Undecane
66%
Benzo(ghi)fluoranthene
114%
n-Dodecane
86%
Cyclopenta(cd)pyrene
95%
n-Tridecane
96%
Benz(a)anthracene
101%
n-Tetradecane
99%
Chrysene
98%
n-Pentadecane
102%
1-Methylchrysene
108%
n-Hexadecane
104%
Benzo(b)fluoranthene
101%
n-Heptadecane
105%
Benzo(k)fluoranthene
100%
n-Octadecane
106%
Benzo(e)pyrene
108%
Phytane
110%
Benzo(a)pyrene
115%
Dodecylcyclohexane
111%
Perylene
122%
n-Nonadecane
113%
lndeno(1,2,3-cd)pyrene
99%
2-Methylnonadecane
126%
Dibenzo(a,h)anthracene
99%
3-Methylnonadecane
127%
Benzo(ghi)perylene
113%
n-Eicosane
102%
Coronene
87%
n-Heneicosane
108%
ABB-20R-C27-Cholestane
74%
Pentadecylcyclohexane
114%
AAA-20S-C27-Cholestane
91%
ABB-20R-C28-
Docosane
111%
Methylcholestane
98%
ABB-20R-C29-
Tricosane
118%
Ethylcholestane
95%
17A(H)-22,29,30-
Tetracosane
122%
Trisnorhopane
82%
17 B(H)-21 A(H)-30-
Pentacosane
120%
Norhopane
115%
Hexacosane
125%
17A(H)-21 B(H)-Hopane
96%
Nonadecylcyclohexane
98%
264
-------
14.2.2.3 IC Analyses
The quality of the inorganic water-soluble ion analysis was evaluated by comparing the results of three
replicate injections of the sample extracts. Table 14-10 provides the RSD for some of the filter samples
analyzed, all of which met the measurement acceptance criterion of ± 15 percent established for the IC
analyses.
14.2.2.4 XRF Analyses
In the XRF analytical report, the concentrations of elements were reported together with their
uncertainties. To insure the quality of the emissions data calculated accordingly, a criterion was set to
discriminate the data reported. Only an element with a concentration three times greater than its
uncertainty was considered acceptable for further emission factor estimation.
Table 14-10. Relative Standard Deviation in IC Measurements
Sample ID
nh4
CI
S04
NO3
%
%
%
%
T0322040
0.990
3.95
T032304U
3.08
0.747
T032403A
2.64
T032204Q
1.13
3.44
T080105B
0.845
1.25
T080105F
1.77
2.97
0.941
T080105G
2.98
T080105E
3.57
7.75
T1081051
7.72
2.25
T101305E
5.30
0.784
T101305F
1.10
T101305D
5.68
2.82
T101305G
14.0
0.669
T101305K
3.27
0.340
T101305J
1.92
T101305N
1.30
1.10
T1013050
2.04
14.2.2.5 EC/OC Analyses
Single point calibrations were performed daily prior to analysis of samples using a known amount of
sucrose solution spiked into a filter cut. If the results of this calibration check were within ± 5 percent of
the known value, the sample analysis was performed. If results of the calibration were outside the ± 5
percent criterion, the instrument was recalibrated and analysis of the spike was repeated until an
acceptable value was achieved. Instrument blanks were also performed with each batch of samples and
at least one sample was analyzed in duplicate. All accuracy and precision objectives were met and the
analyses were 100 percent complete.
265
-------
This page intentionally left blank.
266
-------
15. Conclusions and Recommendations
A number of conclusions were reached as a result of the APEX testing program. These conclusions are
as follows:
• The testing of aircraft turbine engine emissions is difficult, requiring long sampling lines with their
associated high residence time and particle losses. Corrections were made for particle losses, but the
impact of the long residence time has yet to be established.
• The PM mass emission index ranged from approximately 10 to 550 mg/kg of fuel burned, depending
on engine and fuel type, operating power, and environmental conditions.
• For the turbofan engines tested, the relationship of EIM to fuel flow (engine power) followed a
characteristic U-shape with the emissions high at idle, dropping off to a minimum at mid-range power,
and rising again at high engine thrust.
• The particle number emission indices observed in the program ranged from approximately 1 (10)15 to
1 (10)17 particles/kg of fuel burned, again depending on engine and fuel type, operating power, and
environmental conditions.
• For most of the turbofan engines tested, a logarithmic relationship of EIN to fuel flow (engine power)
was determined in the general form:
El = m(ln fuel flow) + b (15-1)
where
m = slope of the regression line = -2(10)15 to -3(10)16
b = intercept of the regression line = 2(10)16 to 2(10)17
• Both EIm and EIN were found to increase with increasing fuel sulfur content. For EIM, the PM emission
increased linearly with fuel sulfur, whereas for EIN, the increase appears to be more of an exponential
function.
• Engine operating temperature had a measurable effect on both EIM and EIN. In both cases, the
emissions were slightly lower (i.e., ~8%) when the engine was warm.
• The particle size distributions of the emissions found in the study were generally unimodal and
lognormally distributed with electrical mobility diameters ranging from ~3 to slightly larger than
100 nm. At higher power levels, a small accumulation mode was also observed.
• Both the GMD and GSD of the PSD also varied with engine and fuel type, thrust, and environmental
conditions. The GMD ranged from approximately 10 to 30 nm (electrical mobility diameter) and the
GSD ranged from 1.4 to 2.
267
-------
• In general, the largest GMDs and GSDs were obtained at high power conditions. The observations
suggest that the PSDs produced by the engines tested under power conditions of <30% rated thrust
were unimodal and consisted of primary nuclei particles, whereas for thrust levels >85%,
accumulation mode particles were formed, and the PSD curves became broader.
• A comparison of measurement techniques for PM mass, number, and size indicated significant
discrepancies between instruments. Of particular note is a comparison of the EIM obtained by the
Nano-SMPS and the time-integrated Teflon filter sampling. The filter-based method always produced
higher values than the SMPS-based method and there was no linear correlation between the two
techniques.
• Of the various instruments used to measure PM mass, number, and size, the SMPS appears to be
the most reliable. The lack of correlation with the filter-based technique is disturbing, however, and an
area worthy of further investigation.
• The emission indices for BC and particle surface-bound PAHs generally follow trends similar to EIM
discussed above, except that: (1) BC was always highest at high power, and (2) fuel composition had
no measureable effect on either BC or PAH emissions. However, the BC and PAH on-line
measurements were highly variable and oftentimes did not track well with power changes.
• The chemical composition of the gas-phase NMVOCs and carbonyls varied by engine type as
measured on a time-integrated basis over all power conditions. However, significant quantities of a
number of compounds listed in the Clean Air Act as HAPs were found in some or all engines
including formaldehyde, acetaldehyde, benzene, acrolein, toluene, and 1,3-butadiene.
• The elemental composition of the PM samples collected on Teflon filters was dominated by sulfur. In
some samples, however, significant amounts of crustal elements such as silicon were also found due
to the resuspension of concrete cuttings generated during installation of the sampling probes and
lines.
• Sulfate was by far the most abundant water-soluble ion determined from the Teflon filter samples.
Calculations of the transformation of S(IV) in the fuel to S(VI) indicate conversion rates in the range of
2 to 4%, a conversion rate which compares favorably to the rates obtained by other investigators.
• The emission indices determined in the program for OC and EC as determined from quartz filter
sampling ranged from 37 to 83 mg/kg fuel for OC and 21 to 98 mg/kg fuel for EC, respectively. The
ratio of EC to OC ranged from 0 to almost 2 depending on the engine type and fuel being tested.
• Over 70% of the particle-phase organic compounds, also determined from the quartz filters, consisted
of n-alkanes and PAHs. Also, of the engines tested, the CFM56-3B1 and AE3007A1E had the highest
emission indices of total speciated organic compounds, whereas the P&W 4158 and CFM56-7B24
had the lowest.
• The results obtained in the study are at least generally comparable to those of other APEX
investigators. However, a report of the APEX-3 results from the other groups has not as yet been
released.
Based on the above conclusions, the following recommendations for future research are offered for
consideration by funding agencies:
268
-------
• One major issue to be resolved in future work is the effect of the sampling system on the
experimental results. This effect includes both particle losses in the sampling lines as well as the
potential transformation of the aerosol from the point of collection to the point of measurement. A
standardized sampling system with well-characterized performance should be employed in all future
testing. Also, the issue of representative plume sampling should be addressed.
• The lack of good agreement between instruments is also a significant issue warranting additional
research. Of particular importance is the lack of correlation between on-line SMPS and filter-based
methods for determining EIM.
• Although particle losses through the sampling system can be characterized using traditional aerosol
science techniques (e.g., NaCI aerosol), a reliable soot calibration source is needed that is both
reproducible and stable. Although work is underway under both NASA and EPA Office of
Transportation and Air Quality sponsorship to develop the necessary calibration equipment, additional
research and development is definitely needed in this regard.
• A reliable on-line method for the direct determination of PM mass emissions is needed. Neither the
TEOM nor the QCM appears capable of conducting these measurements in a reliable manner. The
TEOM is generally not sensitive enough and the QCM produces values higher than other methods
and QCM sampling times are limited due to crystal saturation.
• The effect of fuel composition is also an area worthy of additional investigation. In particular, the
further examination of the influence of sulfur and aromatics on sulfate and organic emissions is
needed to assess the impact of future aviation fuels on local air quality and global climate change.
• Further work is needed in the characterization of plume aging. To date, all measurements have been
performed in the near-field plume < 50 m from the engine exit. There are many issues related to
fence-line and neighborhood air quality that need to be addressed at distances far greater than 50 m
and multiple points downstream. For the plume aging tests, the instrumentation should be positioned
directly in the plume to avoid problems with long sampling lines.
• Additional chemical characterization of both the gas- and particle-phase emissions by power
condition is needed. The data provided above are representative of all thrust levels during a particular
test. However, specific data for at least the four ICAO-specified power conditions are needed in order
to make a determination of the local air quality impacts from airports.
269
-------
This page intentionally left blank.
270
-------
16. References
Anderson, B. E., E. L. Winstead, C. H. Hudgins, and K. L. Thornhill (2006). Concentrations and physical
properties of particles within the exhaust of a CFM-56 engine. In Aircraft Particle Emissions experiment,
Report No. NASA/TM-2006-214382, National Aeronautics and Space Administration, Glenn Research
Center, Cleveland, OH.
EPA (2008). Ambient air monitoring reference and equivalent methods. Title 40 Code of Federal
Regulations, Part 53, available at: http://www.qpoaccess.gov/cfr/index.html.
EPA (2005a). Characterization of fine particulate emissions from commercial jet aircraft engines during
JETS (Jet Emissions Testing for Speciation). Quality Assurance Project Plan, Category Ill/Applied
Research, Revision 0, QTRAK# 3056, August.
EPA (2005b). Characterization of fine particulate emissions from commercial jet aircraft engines during
the Aircraft Particle Emissions experiment 3 (APEX3) Program. Quality Assurance Project Plan, Category
Ill/Applied Research, Revision 0, QTRAK #3056, October.
EPA (2004). Testing of a CFM-56 commercial aircraft engine. Quality Assurance Project Plan, Category
Ill/Applied Research, Revision 0, QTRAK# 3056, April.
EPA (1999a). Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) In Air
Collected in Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry
(GC/MS). Center for Environmental Research Information, Office of Research and Development, U.S.
Environmental Protection Agency, Cincinnati, OH. January 1999. Available at: http://www.epa.gov/
ttn/amtic/files/ambient/airtox/to-15r.pdf.
EPA (1999b). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient
Air, Second Edition, Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using
Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling
Methodology], Center for Environmental Research Information, Office of Research and Development,
U.S. Environmental Protection Agency, Cincinnati, OH. January 1999. Available at: http://www.epa.gov/
ttn/amtic/files/ambient/airtox/to-11 ar.pdf.
EPA (1998). Technical Assistance Document for Sampling and Analysis of Ozone Precursors, EPA/600-
R-98/161; National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research
Triangle Park, NC. September 1998. Available at: http://www.epa.gov/ttn/amtic/files/ambient/pams/
newtad.pdf.
271
-------
Hildemann, L. M., G. R. Markowski, M. C. Jones, and G. R. Cass (1991). "Submicrometer aerosol mass
distributions of emissions from boilers, fireplaces, automobiles, diesel trucks, and meat cooking
operations," Aerosol Sci. Techno!., 14, 138-152.
Katragkou, E., S. Wilhem, and F. Arnold (2004). First gaseous S(VI) measurements in the simulated
internal flow of an aircraft gas turbine engine. Geo. Res. Letters, 31, L02117, doi:
10.1029/2003GL018231.
Kinsey, J. S., W. A. Mitchell, W. C. Squier, A. Wong, C. D. Williams, R. Logan, and P. H. Kariher (2006a).
Development of a new mobile laboratory for characterization of the fine particulate emissions from heavy-
duty diesel trucks," J. Auto. Eng., D3, Vol. 220, 335-345.
Kinsey, J. S., W. A. Mitchell, W. C. Squier, K. Linna, F. G. King, R. Logan, Y. Dong, G. J. Thompson, N.
N. Clark (2006b). "Evaluation of methods for the determination of diesel-generated fine particulate matter:
Physical characterization results," J. Aero. Sci., 37, 63-87.
Liscinsky, D. and H. Hollick (2008). Effect of particle sampling technique and transport on particle
penetration at the high temperature and pressure conditions found in gas turbine combustors and
engines. Summary Report of Year 1 Activities, NASA Contract No. NNC07CB03C, United Technologies
Research Center, East Hartford, CT, February 29.
Lobo, P., P. D. Whitefield, D. E. Hagen, S. C. Herndon, J. T. Jayne, E. C. Wood, W. B. Knighton, M. J.
Northway, D. Cocker, A. Sawant, H. Agrawal, and J. W. Miller (2007). The development of exhaust
speciation profiles for commercial jet engines. Final Report, Contract No. 04-344, California Air
Resources Board, Sacramento, CA, October 31.
Lobo, P., D. E. Hagen, and P. D. Whitefield (2006). Physical characterization of aerosol emissions from a
commercial gas turbine engine—Project APEX. In Aircraft Particle Emissions experiment, Report No.
NASA/TM-2006-214382, National Aeronautics and Space Administration, Glenn Research Center,
Cleveland, OH.
NIOSH (2003). Diesel particulate matter (as elemental carbon). Method 5020:lssue 3, available at:
http://198.246.98.21/niosh/nmam/pdfs/5040.pdf.
Petzold, A. and F. P. Schroder (1998). "Jet engine exhaust aerosol characterization, Aerosol Sci.
Technol., 28, 63-77.
Schumann, U., F. Arnold, R. Busen, J. Curtius, B. Karcher, A. Kiendler, A. Petzold, H. Schlager, F.
Schroder, and K.-H. Wohlfrom (2002). Influence of fuel sulfur on the composition of aircraft exhaust
plumes: The experiments SULFUR 1-7. J. Geo. Res., 107, D15, 4247, doi: 10.1029/2001JD000813.
Turpin, B.J.; Huntzicker, J.J.; Hering, S.V. (1994). Investigation of organic aerosol sampling artifacts in the
Los Angeles Basin, Atmos. Environ. 28, 3061-3071.
272
-------
Wey, C. C. et al., (2006). Aircraft particle emissions experiment (APEX). NASA/TM-2006-214382, ARL
TR-3903, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH.
September. Available at: http://qltrs.qrc.nasa.gov.
273
-------
This page intentionally left blank.
274
-------
Appendix A
Description of the Dilution Sampling System (DSS)
-------
This page intentionally left blank.
-------
A. Dilution Sampling System (DSS)
This program was originally designed to also provide critical PM emissions data for
artificially diluted exhaust (measured 1 m behind the engine) as well as for the plume
after natural atmospheric dilution and cooling. This methods comparison was attempted
during the first two tests of APEX-1 using the Dilution Sampling System (DSS).
However, because of the highly disparate results produced between the two methods in
APEX-1, this portion of the study was deferred for further investigation at a future date.
For completeness, a brief description of the DSS is provided here.
The dilution sampler dilutes hot exhaust emissions with clean air to simulate atmospheric
mixing and particle formation. The DSS collected samples from the custom-designed
rake assembly provided by NASA at the engine exit plane. Figure A-l presents the
engine exhaust configuration where the exhaust plane sampling was conducted.
Figure A-l. APEX 1- Jet Engine Exhaust Plume Configuration
Control of residence time, temperature, and pressure allows condensable organic
compounds to adsorb onto particles as they might in ambient air. The sampler is also
designed and fabricated to minimize any contamination of samples, especially organic
compound contamination. The dilution sampling unit is designed to minimize PM2.5
losses to the sampler walls. A clean air supply system provides high efficiency, particle-
A-l
-------
arresting (HEPA) and carbon-filtered air for dilution of source emissions. The dilution air
conditioning system can be modified to add a heater, cooler, and dehumidifier as needed.
Cleaned dilution air enters the main body of the sampler downstream of the dilution air
orifice meter. Figure A-2 is a schematic diagram of the dilution sampling unit and its
major components. A full description of the sampler inlet equipment (SI), turbulent
mixing chamber (S2), residence time chamber (S3), and sample collection zone (S4) can
be found in EPA's Quality Assurance Project Plan (QAPP), Chemical Analysis of Fine
Particulate Matter, Quality Assurance Category III (U.S. EPA, 2000), and the Operation
and Instructions Manual for the DSS (ARCADIS, 2003).
A. 1 DSS - Sample Extraction System
Instrumentation for control of the dilution sampling unit is shown in Figure A-3.
Differential pressure measurements made across the venturi and orifice meters are used to
determine the dilution air flow rate, the sample gas flow rate, and the exhaust gas flow
rate. The sampler is equipped with automated data logging capabilities to better monitor
testing operations and to minimize manpower requirements during sampling operations.
Automated temperature control of the heated inlet line and the venturi meter is also
provided as well as automated control of gas flow rates.
A. 2 Monitoring Instrumentation for DSS
The DSS is designed to accommodate manual sample collection using multiple media, as
well as continuous monitoring approaches. Manual sampling is accomplished through the
use of collection arrays including PM-2.5 cyclones, Teflon and quartz filters, PUF plugs,
SUMMA-polished stainless steel canisters, and DNPH-impregnated sampling cartridges.
Samples are collected from both the dilution chamber (DC) (to establish the background
of materials of interest in the high volume of dilution air) and the residence chamber
(RC). A detailed schematic diagram of the sample collection arrays used in testing
aircraft jet engine emissions is shown in Figure A-4. Samples of the dilution air are
collected to evaluate the analyte background in the dilution air. The sampling array
configuration for the DSS for speciated testing at the engine exit plane is summarized in
Table A-1.
A-2
-------
S2 - Turbulent Mixing Chamber
Re
10,000
S3 - Residence Time Chamber
RESIDENCE
TIME
CHAMBER
ACCESS
PORTS
O hi
S1 - Sample Inlet Equipment
STACK
EMISSIONS
'HIGH-VOL)
FROM
NASA
RAKE
ASSEMBLY
2.1 um
IYCLONES
FILTER
VENTURI
HEATED INLET LINE
EMISSIONS INLET
SAMPLE
FILTER
HOLDERS
PUMP
DILUTION
AIR
ACTIVATED
CARBON
BED
HEPA
FILTER
COOLING
UNIT
BLOWER
Dilution Air Sampling Port
DILUTION AIR
INLET
VACUUM
PUMPS
60 cm
S4 - Sample Collection Zone
Figure A-2. APEX 1- Schematic Diagram of the Dilution Sampling Unit and its Major Components
A-3
-------
Residence
Time
Chamber
FI-1
Carbon Bed
HEPA Filter
Dilution Air
Blower
Exhaust
Blower
TI-4
PI-1
TI-1
PI-2
FI-3
TI-9
RH-1
PI-4
PI-3
TI-7
TI-6
TM
TI-5
TI-2
TI-3
FI-2
From
NASA
Rake Assembly
Key:
Tl = Temperature Indicator
PI = Pressure Indicator
Fl = Flow Indicator
RH = Relative Humidity Indicator
Figure A-3. APEX 1 - Instrumentation for Control of the DSS
A-4
-------
Dilution chamber
Port #1
Port #2
QF
~ QF ~ IF
I
Cyclone
T
Swage I ok
Filter
Residence chamber
Port #2
Port #3
I ]QF
Cyclone
: PUF DNPH
t
DNPH
: PUF X
DNPH
1 QF
Port #3
Port #4
^ QF
g qf g tf
Cyclone
Key
PUF = Polyurethane Foam
SUMMA= Canister
DNPH = 2,4-Dinitrophenylhydrazine
QF = Quartz Filter
TF = Teflon Filter
DLPI = Dekati Low Pressure Impactor
Port #5
r
Swagelok
Filter
Port #6
Port #7 Port #8
Cyclone
g tf Bqf
Cyclone
DLPI
|—I QF
Fn TF
Cyclone
Figure A-4. APEX 1, DSS Sampling Array Configuration for Speciated Testing,
Engine Exit Plane
A-5
-------
Table A-l. APEX 1, Sampling Configuration for EPA DSS at Engine Exit3
Sampler Port Sampling Array Type of Sample/Analytes Analytical Method
Dilution Air Port 1
Leg A: PM2 5 cyclone,
quartz filter, PUF plugs
LegB: PM25 cyclone,
Teflon filter, quartz
filter
Particle- and gas-phase SVOCs
PM2 5 mass and elemental
composition
Solvent extraction and GC/MS
Gravimetry, XRF
Dilution Air Port 2
SUMMA canister
Speciated gas-phase air toxics
and nonmethane organics
GC/FID, GC/MS
Dilution Air Port 3
DNPH-coated silica gel
cartridges
Speciated gas-phase carbonyl
compounds
Solvent extraction and HPLC
RC Port 2
Leg A: PM2 5 cyclone,
Teflon filter, quartz
filter
LegB: PM2 5 cyclone,
quartz filter, PUF plugs
PM2 5 mass and elemental
composition + EC/OC
Particle- and gas-phase SVOCs
Gravimetry, XRF, NIOSH
Method 5040
Solvent extraction and GC/MS
RC Port 3
DNPH-coated silica gel
cartridges
Speciated gas-phase carbonyl
compounds
Solvent extraction and HPLC
RC Port 4
same as RC Port 2
same as RC Port 2
same as RC Port 2
RC Port 5
SUMMA canister
Speciated gas-phase air toxics
and nonmethane organics
GC/FID, GC/MS
RC Port 6
same as RC Port 2
PM2 5 mass, elemental and
ionic composition
Particle- and gas-phase SVOCs
Gravimetry, XRF, IC
Solvent extraction and GC/MS
RC Port 7
PM2 5 cyclone, DLPI
Speciated organics by particle
size
Thermal desorption, GC/MS
RC Port 8
same as RC Port 2
Particle- and gas-phase SVOCs
PM2 5 mass and inorganic ions
Solvent extraction and GC/MS
Gravimetry, IC
a DLPI = is basically an Electrical Low Pressure Impactor.(ELPI) without the electronics
DNPH = 2,4-Dinotriphenylhydrazine
EC/OC = Elemental Carbon/Organic Carbon
GC/FID = Gas Chromatography/Flame Ionization Detection.
GC/MS = Gas Chromatography/Mass Spectroscopy
HPLC = High Pressure Liquid Chromatography
IC = Ion Chromatography
NIOSH = National Institute for Occupational Safety and Health
PUF = Polyurethane Foam
SVOC = Semivolatile Organic Compound
XRF = X-ray fluorescence.
A-6
-------
A. 3 Calibration and Frequency for DSS Instrumentation
DSS instruments and monitoring device calibration procedures include the following and
are described in detail in the DSS Operating Manual (ARCADIS, 2003).
• Orifice meters (volumetric gas flow calibration with Roots Meter having an accuracy to
within ± 1% of reading):
• Venturi meters (volumetric gas flow calibration with DryCal Meter having an accuracy to
within ± 1% of reading);
• Thermocouples (temperature calibration with DryBlock Calibrator having an accuracy to
within ±1.5 °C);
• Flow transmitters (Heise gauge with differential pressure accuracy to within ± 0.05% of
range);
• Pressure transmitters (Heise gauge with an accuracy to within ± 0.05% of range);
• Analytical and platform balances (calibration with American Society for Testing and
Materials (ASTM) E617 Class 1 high accuracy mass standards); and
• Relative humidity (RH) probes (calibration with RH one-point calibrator having an
accuracy to within ± 2% RH).
A. 4 DSS Cleaning and Assembly
The dilution sampling system and sample collection array components were thoroughly
cleaned and decontaminated by EPA between each series of field tests. The sampler must
be completely disassembled for cleaning. The main body of the dilution sampling system
(dilution tunnel and residence time chamber sections) was cleaned using volatile solvents
and dried thoroughly. The interior walls of the sampler were rinsed and wiped with
solvent as described in EPA's Q APP, Chemical Analysis of Fine Particulate Matter,
Quality Assurance Category ///(U.S. EPA, 2000).
After the parts of the DSS were cleaned, the unit was reassembled in a clean laboratory
environment minus the sample collection array components connected to the RC. All
ports were plugged and the system was heated to 95 °C as measured by skin
thermocouples attached through the sampling unit. One plug was removed from the
residence time chamber, and the dilution air blower on the dilution air cleaning system
and the exhaust blower were started at low speed. The blowers were set to maintain a
slight positive pressure in the sampling unit. A positive pressure was present when clean
air blew out of the open port of the residence time chamber. After the 4-hour period, the
heating supply was turned off and air flow through the sampling unit was maintained
until the unit reached room temperature. When the sampling unit was completely cooled,
the blowers were stopped and the open sampling port was plugged. The cleaned sampling
unit was stored sealed until the field test.
A-7
-------
A.5 References
U.S. EPA (2000). Chemical Analysis of Fine Particulate Matter, EPA Quality Assurance
Project Plan, Category Ill/Applied Research, Air Pollution Prevention and Control
Division, Research Triangle Park, NC; December.
ARCADIS (2003). Operation and Maintenance Instructions Manual, Fine PM Source
Dilution Sampler. Prepared for the U.S. Environmental Protection Agency, Emissions
Characterization and Prevention Branch, Air Pollution Prevention and Control Division,
Research Triangle Park, NC; December.
A-8
-------
Appendix B
Target Analytes and Detection Limits for SUMMA Canister Samples
-------
This page intentionally left blank.
-------
Table B-1. Target Air Toxic Compounds Measured by EPA Method TO-15
Compound
CAS No.
Method Detection Limit (MDL)
(ppbv)
acetylene
74-86-2
0.05
propylene
115-07-1
0.06
dichlorodifluoromethane
75-71-8
0.08
chloromethane
74-87-3
0.07
dichlorotetrafluoroethane
1320-37-2
0.07
vinyl chloride
75-01-4
0.06
1,3-butadiene
106-99-0
0.10
bromomethane
74-83-9
0.08
chloroethane
75-00-3
0.09
acetonitrile
75-05-8
0.35
trichlorofluoromethane
75-69-4
0.05
acrylonitrile
107-13-1
0.21
1,1-dichloroethene
75-35-4
0.05
methylene chloride
75-09-2
0.05
trichlorotrifluoroethane
26523-64-8
0.06
trans-l,2-dichloroethylene
56-60-5
0.07
1,1-dichloroethane
75-34-3
0.04
methyl tert-butyl ether
1634-04-1
0.10
methyl ethyl ketone
78-93-3
0.20
chloroprene
126-99-8
0.05
cis-l,3-dichloroethylene
156-59-2
0.11
bromochloromethane
74-97-5
0.15
chloroform
67-66-3
0.06
ethyl tert-butyl ether
637-92-3
0.10
1,2-dichloroethane
107-06-2
0.07
1,1,1-trichloroethane
71-55-6
0.07
benzene
71-43-2
0.05
carbon tetrachloride
56-23-5
0.11
tert-amyl methyl ether
994-05-8
0.12
1,2-dichloropropane
78-87-5
0.05
ethyl acrylate
140-88-5
0.16
bromodichloromethane
75-27-4
0.10
trichloroethylene
79-01-6
0.06
methyl methacrylate
80-62-6
0.10
cis-l,3-dichloropropene
10061-01-5
0.10
methyl isobutyl ketone
108-10-1
0.18
trans-l,3-dichloropropene
10061-02-6
0.08
1,1,2-trichloroethane
79-00-5
0.06
toluene
108-88-3
0.09
dibromochloromethane
124-48-1
0.14
1,2-dibromoethane
106-93-4
0.08
n-octane
111-65-9
0.10
tetrachloroethylene
127-18-4
0.09
chlorobenzene
108-90-7
0.11
ethylbenzene
100-41-4
0.07
B-l
-------
Compound
CAS No.
Method Detection Limit (MDL)
(ppbv)
m-, p-xylene
108-38-3/106-42-3
0.08
bromoform
75-25-2
0.14
styrene
100-42-5
0.10
1,1,2,2-tetrachloroethane
79-34-5
0.09
o-xylene
95-47-6
0.07
1,3,5-trimethylbenzene
108-67-8
0.09
1,2,4-trimethylbenzene
95-63-6
0.10
m-dichlorobenzene
541-73-1
0.08
chloromethylbenzene
100-44-7
0.19
p-dichlorobenzene
106-46-7
0.12
o-dichlorobenzene
95-50-1
0.11
1,2,4-trichlorobenzene
120-82-1
0.17
hexachloro-l,3-butadiene
87-68-3
0.23
B-2
-------
Table B-2. Target SNMOCs Measured by EPA Method CB-4a
Compound
CAS No.
MDLs parts per billion carbon
(ppbC)
acetylene
74-86-2
0.11
ethane
74-84-0
0.17
ethylene
74-85-1
0.15
propylene
115-07-1
0.11
propane
74-98-6
0.19
propyne
74-99-7
0.19
isobutane
75-28-5
0.14
isobutene/l-butene
115-11-7/106-98-0
0.17
1,3-butadiene
106-99-0
0.17
n-butane
106-97-8
0.17
trans-2-butene
624-64-6
0.17
cis-2-butene
590-18-1
0.16
3-methyl-l-butene
563-45-1
0.16
isopentane
78-78-4
0.19
1-pentene
109-67-1
0.20
2-methyl-l-butene
563-46-2
0.20
n-pentane
109-66-0
0.19
isoprene
78-79-4
0.20
trans-2-pentene
646-04-8
0.21
cis-2-pentene
627-20-3
0.22
2-methyl-2-butene
513-35-9
0.22
2,2-dimethylbutane
75-83-2
0.20
cyclopentene
142-29-0
0.20
4-methyl-1-pentene
691-37-2
0.20
cyclopentane
287-92-3
0.20
2,3-dimethylbutane
79-29-8
0.20
2-methylpentane
107-83-5
0.13
3-methylpentane
96-14-0
0.22
2-methyl-1-pentene
763-29-1
0.22
1-hexene
592-41-6
0.32
2-ethyl-l-butene
760-21-4
0.22
n-hexane
110-54-3
0.21
trans-2-hexene
4050-45-7
0.21
cis-2-hexene
7688-21-3
0.21
methylcyclopentane
96-37-7
0.21
2,4-dimethylpentane
108-08-7
0.22
benzene
71-43-2
0.18
cyclohexane
110-82-7
0.16
2-methylhexane
591-76-4
0.21
2,3-dimethylpentane
565-59-3
0.28
3-methylhexane
589-34-4
0.17
1-heptene
592-76-7
0.17
2,2,4-trimethylpentane
540-84-1
0.19
n-heptane
142-82-5
0.23
methylcyclohexane
108-87-2
0.25
2,2,3-trimethylpentane
564-02-3
0.25
B-3
-------
Compound
CAS No.
MDLs parts per billion carbon
(ppbC)
2,3,4-trimethylpentane
565-75-3
0.20
toluene
108-88-3
0.20
2-methylheptane
592-27-8
0.17
3-methylheptane
589-81-1
0.20
1-octene
111-66-0
0.20
n-octane
111-65-9
0.21
ethylbenzene
100-41-4
0.21
m-, p-xylene
108-38-3/106-42-3
0.16
styrene
100-42-5
0.20
o-xylene
95-47-6
0.19
1-nonene
124-11-8
0.19
n-nonane
111-84-2
0.11
isopropylbenzene
98-82-8
0.18
a-pinene
80-56-8
0.18
n-propylbenzene
103-65-1
0.21
m-ethyltoluene
620-14-4
0.15
p-ethyltoluene
622-96-8
0.19
1,3,5-trimethylbenzene
108-67-8
0.18
o-ethyltoluene
611-14-3
0.22
(5-pinene
127-91-3
0.22
1,2,4-trimethylbenzene
95-63-6
0.21
1-decene
872-05-9
0.21
n-decane
124-18-5
0.25
1,2,3-trimethylbenzene
526-73-8
0.19
m-diethylbenzene
141-93-5
0.20
p-diethylbenzene
105-05-5
0.22
1-undecene
821-95-4
0.22
n-undecane
1120-21-4
0.24
1-dodecene
112-41-4
0.24
n-dodecane
112-40-3
0.49
1-tridecene
2437-56-1
0.49
n-tridecane
629-50-5
0.49
Unidentified species were determined using the response factor for propane. A value for Total SNMOC was
calculated including speciated and unspeciated NMOC compounds.
B-4
-------
Appendix C
Target Carbonyl Compounds and Detection Limits for DNPH-
Impregnated Silica Gel Cartridge Samples
-------
This page intentionally left blank.
-------
Table C-1. Target Carbonyl Compounds Measured by EPA Compendium Method TO-11A
(Expanded)
Compound
CAS No.
MDLs (ppbv)
formaldehyde
50-00-0
0.078
acetaldehyde
75-07-0
0.047
acetone
67-64-1
0.045
propionaldehyde
123-38-6
0.011
crotonaldehyde
4170-30-3
0.016
butyraldehyde/isobutyraldehyde
123-72-8
0.022
benzaldehyde
100-52-7
0.003
isovaleraldehyde
590-86-3
0.005
valeraldehyde
110-62-3
0.004
o-tolualdehyde
529-20-4
0.012
m-tolualdehyde
620-23-5
0.012
p-tolualdehyde
104-87-0
0.012
hexaldehyde
66-25-1
0.005
2,5-dimethylbenzaldehyde
5779-94-2
0.007
diacetyl
431-03-8
0.022a
methacrolein
78-85-3
0.011a
2-butanone
78-93-3
0.022a
glyoxal
107-22-2
0.022a
acetophenone
98-86-2
0.003a
methylglyoxal
78-98-8
0.022a
octanal
124-13-0
0.005a
nonanal
124-19-6
0.005a
Estimated value. Unidentified species were determined using the response factor for formaldehyde. A value
for total carbonyls was calculated including speciated and unspeciated carbonyl compounds.
C-1
-------
This page intentionally left blank.
-------
Appendix D
Tables for Section 8
Particulate Matter Mass Emissions
Table D-1. PM mass emission indices and rates determined by the nano-SMPS
Table D-2. PM mass emission indices and rates determined by the EEPS
Table D-3. PM mass emission indices and rates determined by the TEOM
Table D-4. PM mass emission indices and rates determined by the QCM
-------
This page intentionally left blank.
-------
Table D-1. PM mass emission indices and rates determined by the nano-SMPS
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
1
EPA 1
CFM56-2C
Base
7
424
30-m
18.51
4.85
27.01
6.88
3.18
0.81
1
EPA 1
CFM56-2C
Base
30
1012
30-m
5.49
1.01
7.77
1.43
2.19
0.40
1
EPA 1
CFM56-2C
Base
7
436
30-m
17.48
7.51
25.25
10.56
3.06
1.28
1
EPA 1
CFM56-2C
Base
7
442
30-m
12.71
3.37
18.50
4.70
2.27
0.58
1
EPA 1
CFM56-2C
Base
85
2974
30-m
40.04
2.11
50.52
2.66
41.74
2.20
1
EPA 1
CFM56-2C
Base
30
991
30-m
5.19
1.32
7.78
1.89
2.14
0.52
1
EPA 1
CFM56-2C
Base
7
431
30-m
13.61
5.36
19.72
7.43
2.36
0.89
1
EPA 1
CFM56-2C
Base
30
963
30-m
3.60
0.22
5.45
0.33
1.46
0.09
1
EPA 1
CFM56-2C
Base
7
440
30-m
13.31
0.72
19.60
1.64
2.40
0.20
1
EPA 2
CFM56-2C
Base
7
436
30-m
30.09
18.14
43.05
26.13
5.21
3.16
1
EPA 2
CFM56-2C
Base
30
1017
30-m
17.03
1.29
24.90
1.88
7.03
0.53
1
EPA 2
CFM56-2C
Base
7
409
30-m
40.06
4.48
57.88
6.39
6.57
0.73
1
EPA 2
CFM56-2C
Base
85
2824
30-m
10.73
0.30
14.67
0.41
11.50
0.32
1
EPA 2
CFM56-2C
Base
30
1022
30-m
15.40
1.69
23.08
2.53
6.55
0.72
1
EPA 2
CFM56-2C
Base
7
418
30-m
36.51
4.09
53.34
5.94
6.19
0.69
1
EPA 2
CFM56-2C
Base
30
1017
30-m
16.59
0.87
24.98
1.31
7.06
0.37
1
EPA 2
CFM56-2C
Base
7
413
30-m
26.69
4.35
39.27
6.39
4.51
0.73
1
EPA 2
CFM56-2C
Base
30
1038
30-m
11.57
2.73
17.62
4.16
5.08
1.20
1
EPA 2
CFM56-2C
Base
7
449
30-m
20.66
3.13
31.26
4.67
3.90
0.58
1
NASA 1
CFM56-2C
Base
4
354
30-m
48.85
6.17
66.95
8.31
6.59
0.82
1
NASA 1
CFM56-2C
Base
85
2406
30-m
34.65
1.71
43.76
2.16
29.25
1.44
1
NASA 1
CFM56-2C
Base
65
1998
30-m
9.62
0.71
12.61
0.93
7.00
0.51
1
NASA 1
CFM56-2C
Base
40
1187
30-m
6.24
0.53
9.00
0.76
2.97
0.25
1
NASA 1
CFM56-2C
Base
4
341
30-m
65.61
27.31
91.35
38.03
8.64
3.60
1
NASA 1
CFM56-2C
Base
15
527
30-m
18.59
2.28
27.36
3.36
4.00
0.49
1
NASA 1
CFM56-2C
Base
7
427
30-m
21.17
3.79
31.88
5.70
3.78
0.68
1
NASA 1
CFM56-2C
Base
4
354
30-m
32.07
3.80
44.38
5.26
4.37
0.52
1
NASA 1
CFM56-2C
Base
4
354
30-m
50.65
5.24
70.40
7.28
6.93
0.72
1
NASA 1
CFM56-2C
Base
5.5
388
30-m
34.64
8.04
49.94
11.58
5.38
1.25
1
NASA 1
CFM56-2C
Base
7
436
30-m
35.63
5.59
50.51
7.93
6.11
0.96
1
NASA 1
CFM56-2C
Base
30
1067
30-m
13.08
0.65
18.61
0.93
5.51
0.28
1
NASA 1
CFM56-2C
Base
4
345
30-m
47.86
6.09
66.66
8.38
6.39
0.80
1
NASA 1
CFM56-2C
Base
40
1317
30-m
7.60
2.09
10.71
2.95
3.92
1.08
1
NASA 1
CFM56-2C
Base
30
1017
30-m
7.94
0.72
11.50
1.05
3.25
0.30
1
NASA 1
CFM56-2C
Base
15
545
30-m
20.16
0.69
29.00
0.99
4.39
0.15
1
NASA 1
CFM56-2C
Base
7
409
30-m
25.17
1.40
36.13
2.01
4.10
0.23
1
NASA 1
CFM56-2C
Base
5.5
379
30-m
36.85
7.75
52.28
11.17
5.51
1.18
1
NASA 1
CFM56-2C
Base
4
359
30-m
39.69
25.89
57.30
37.29
5.71
3.72
1
NASA 1
CFM56-2C
Base
5.5
400
30-m
36.13
10.47
51.75
15.00
5.74
1.66
1
NASA 1
CFM56-2C
Base
7
436
30-m
20.24
4.47
29.93
6.62
3.62
0.80
1
NASA 1
CFM56-2C
Base
15
595
30-m
17.54
0.86
24.87
1.22
4.11
0.20
1
NASAIa
CFM56-2C
Base
4
350
30-m
87.03
14.02
118.70
19.12
11.53
1.86
1
NASAIa
CFM56-2C
Base
85
2928
30-m
63.74
3.45
81.59
4.42
66.37
3.60
1
NASAIa
CFM56-2C
Base
65
2107
30-m
24.55
1.11
33.62
1.53
19.67
0.89
1
NASAIa
CFM56-2C
Base
4
327
30-m
87.00
20.24
121.92
28.22
11.07
2.56
1
NASAIa
CFM56-2C
Base
65
2070
30-m
22.10
0.57
30.74
0.79
17.68
0.45
1
NASAIa
CFM56-2C
Base
60
1902
30-m
19.99
0.84
28.48
1.20
15.05
0.63
1
NASAIa
CFM56-2C
Base
4
336
30-m
75.06
15.85
105.90
22.25
9.88
2.08
1
NASAIa
CFM56-2C
Base
85
2946
30-m
52.41
1.29
67.23
1.65
55.02
1.35
1
NASAIa
CFM56-2C
Base
4
336
30-m
82.01
16.64
115.36
23.41
10.77
2.18
1
NASAIa
CFM56-2C
Base
4
336
30-m
62.29
12.70
87.47
17.62
8.16
1.64
1
NASAIa
CFM56-2C
Base
85
2838
30-m
48.16
2.72
61.87
3.49
48.77
2.75
1
NASAIa
CFM56-2C
Base
70
2252
30-m
27.54
0.83
36.91
1.11
23.09
0.69
1
NASAIa
CFM56-2C
Base
60
1941
30-m
17.19
2.29
24.70
3.29
13.31
1.77
1
NASAIa
CFM56-2C
Base
4
331
30-m
71.24
15.76
101.00
22.35
9.30
2.06
1
EPA 3
CFM56-2C
Hi-S
7
445
30-m
60.85
20.65
88.23
29.25
10.90
3.62
1
EPA 3
CFM56-2C
Hi-S
76
2424
30-m
61.47
9.00
81.66
11.95
54.99
8.05
1
EPA 3
CFM56-2C
Hi-S
30
958
30-m
74.45
5.69
109.20
8.35
29.06
2.22
D-1
-------
Table D-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
1
EPA 3
CFM56-2C
H
-S
7
418
30-m
59.74
42.53
89.04
62.53
10.33
7.26
1
EPA 3
CFM56-2C
H
-S
85
2838
30-m
65.88
6.41
84.30
8.20
66.44
6.46
1
EPA 3
CFM56-2C
H
-S
7
454
30-m
46.42
26.47
69.81
39.49
8.80
4.98
1
EPA 3
CFM56-2C
H
-S
30
944
30-m
53.45
17.79
79.45
26.44
20.84
6.94
1
EPA 3
CFM56-2C
H
-S
7
445
30-m
34.28
18.83
51.78
28.10
6.40
3.47
1
EPA 3
CFM56-2C
H
-S
7
427
30-m
73.23
38.08
108.56
56.29
12.87
6.67
1
NASA 2
CFM56-2C
H
-S
4
345
30-m
61.72
3.94
87.33
5.57
8.38
0.53
1
NASA 2
CFM56-2C
H
-S
85
2715
30-m
38.21
1.27
48.55
1.61
36.61
1.22
1
NASA 2
CFM56-2C
H
-S
65
2072
30-m
17.68
0.72
24.68
1.01
14.20
0.58
1
NASA 2
CFM56-2C
H
-S
40
1245
30-m
30.96
1.71
45.39
2.50
15.70
0.87
1
NASA 2
CFM56-2C
H
-S
30
950
30-m
33.38
2.15
49.07
3.16
12.95
0.83
1
NASA 2
CFM56-2C
H
-S
4
350
30-m
63.72
7.70
91.01
10.80
8.84
1.05
1
NASA 2
CFM56-2C
H
-S
65
2053
30-m
14.40
0.26
19.98
0.36
11.39
0.21
1
NASA 2
CFM56-2C
H
-S
40
1238
30-m
24.64
1.73
36.98
2.59
12.71
0.89
1
NASA 2
CFM56-2C
H
-S
30
954
30-m
46.12
5.01
67.91
7.37
18.00
1.95
1
NASA 2
CFM56-2C
H
-S
7
413
30-m
63.73
9.01
93.59
13.23
10.73
1.52
1
NASA 2
CFM56-2C
H
-S
4
341
30-m
66.23
19.72
95.09
27.71
9.01
2.62
1
NASA 2
CFM56-2C
H
-S
85
2791
30-m
46.01
1.79
58.36
2.28
45.25
1.76
1
NASA 2
CFM56-2C
H
-S
65
2013
30-m
13.77
0.50
19.03
0.70
10.65
0.39
1
NASA 2
CFM56-2C
H
-S
60
1855
30-m
12.20
0.30
17.71
0.43
9.13
0.22
1
NASA 2
CFM56-2C
H
-S
15
543
30-m
70.26
21.19
104.40
31.48
15.76
4.75
1
NASA 2
CFM56-2C
H
-S
7
424
30-m
97.52
36.06
108.88
40.27
12.84
4.75
1
NASA 3
CFM56-2C
H
-S
4
353
30-m
106.08
11.73
147.64
16.32
14.47
1.60
1
NASA 3
CFM56-2C
H
-S
85
2785
30-m
66.80
2.27
88.80
3.01
68.69
2.33
1
NASA 3
CFM56-2C
H
-S
40
1241
30-m
64.71
2.04
93.34
2.92
32.17
1.01
1
NASA 3
CFM56-2C
H
-S
30
976
30-m
69.68
9.22
100.59
13.30
27.28
3.61
1
NASA 3
CFM56-2C
H
-S
7
402
30-m
77.96
7.01
112.80
10.14
12.59
1.13
1
NASA 3
CFM56-2C
H
-s
4
341
30-m
84.49
11.41
121.59
15.95
11.52
1.51
1
NASA 3
CFM56-2C
H
-s
85
2763
30-m
61.51
2.32
82.52
3.11
63.34
2.39
1
NASA 3
CFM56-2C
H
-s
65
2047
30-m
48.90
2.94
70.25
4.23
39.95
2.41
1
NASA 3
CFM56-2C
H
-s
40
1251
30-m
64.61
2.82
93.39
4.06
32.45
1.41
1
NASA 3
CFM56-2C
H
-s
30
998
30-m
72.23
2.02
104.59
2.93
28.99
0.81
1
NASA 3
CFM56-2C
H
-s
7
405
30-m
71.72
4.15
103.72
6.00
11.67
0.67
1
NASA 3
CFM56-2C
H
-s
4
348
30-m
65.68
7.65
94.47
10.78
9.14
1.04
1
NASA 3
CFM56-2C
H
-s
65
2060
30-m
46.04
0.72
66.51
1.04
38.06
0.60
1
NASA 3
CFM56-2C
H
-s
60
1846
30-m
44.33
1.71
64.66
2.49
33.15
1.28
1
NASA 3
CFM56-2C
H
-s
30
985
30-m
64.46
1.63
93.53
2.37
25.58
0.65
1
NASA 3
CFM56-2C
H
-s
15
538
30-m
65.71
5.61
96.10
8.21
14.36
1.23
1
NASA 3
CFM56-2C
H
-s
4
382
30-m
65.28
2.10
94.68
3.05
10.05
0.32
1
NASA 4
CFM56-2C
H
-Arom
4
342
30-m
49.27
8.44
71.42
12.23
6.78
1.16
1
NASA 4
CFM56-2C
H
-Arom
85
2697
30-m
47.54
1.25
60.84
1.60
45.58
1.20
1
NASA 4
CFM56-2C
H
-Arom
65
2029
30-m
18.22
1.44
25.28
2.00
14.25
1.13
1
NASA 4
CFM56-2C
H
-Arom
7
397
30-m
27.32
4.70
42.01
7.22
4.64
0.80
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
17.65
7.76
26.83
11.54
2.59
1.11
1
NASA 4
CFM56-2C
H
-Arom
85
2706
30-m
45.85
1.87
59.01
2.41
44.35
1.81
1
NASA 4
CFM56-2C
H
-Arom
40
1185
30-m
16.73
1.05
25.73
1.62
8.47
0.53
1
NASA 4
CFM56-2C
H
-Arom
30
962
30-m
15.70
0.50
24.33
0.78
6.50
0.21
1
NASA 4
CFM56-2C
H
-Arom
7
395
30-m
21.78
3.83
33.69
5.93
3.70
0.65
1
NASA 4
CFM56-2C
H
-Arom
4
341
30-m
33.97
19.48
51.10
28.87
4.83
2.73
1
NASA 4
CFM56-2C
H
-Arom
85
2701
30-m
44.99
3.26
57.75
4.18
43.33
3.14
1
NASA 4
CFM56-2C
H
-Arom
70
2157
30-m
21.85
1.55
30.36
2.16
18.18
1.29
1
NASA 4
CFM56-2C
H
-Arom
65
1998
30-m
15.57
0.48
22.03
0.68
12.23
0.38
1
NASA 4
CFM56-2C
H
-Arom
60
1850
30-m
13.47
0.27
19.93
0.40
10.24
0.21
1
NASA 4
CFM56-2C
H
-Arom
40
1226
30-m
12.32
0.48
19.12
0.75
6.51
0.26
1
NASA 4
CFM56-2C
H
-Arom
30
962
30-m
14.69
0.69
22.92
1.08
6.13
0.29
1
NASA 4
CFM56-2C
H
-Arom
7
404
30-m
24.42
3.63
37.59
5.59
4.22
0.63
1
NASA 4
CFM56-2C
H
-Arom
5.5
381
30-m
21.19
9.94
33.05
15.51
3.50
1.64
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
41.04
23.87
62.58
36.67
6.04
3.54
D-2
-------
Table D-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
1
NASA 4
CFM56-2C
Hi-Arom
85
2697
30-m
46.93
1.20
60.17
1.54
45.07
1.15
1
NASA 4
CFM56-2C
Hi-Arom
65
2029
30-m
16.84
0.78
23.39
1.08
13.18
0.61
1
NASA 4
CFM56-2C
Hi-Arom
40
1244
30-m
13.08
0.44
20.24
0.69
6.99
0.24
1
NASA 4
CFM56-2C
Hi-Arom
7
409
30-m
12.53
1.65
19.79
2.60
2.25
0.30
1
NASA 5
CFM56-2C
Hi-Arom
4
354
30-m
114.33
35.38
157.37
48.66
15.48
4.79
1
NASA 5
CFM56-2C
Hi-Arom
65
2191
30-m
33.00
0.95
45.22
1.30
27.52
0.79
1
NASA 5
CFM56-2C
Hi-Arom
7
413
30-m
59.88
18.99
90.01
28.55
10.33
3.28
1
NASA 5
CFM56-2C
Hi-Arom
4
341
30-m
101.25
41.96
142.85
58.92
13.51
5.57
1
NASA 5
CFM56-2C
Hi-Arom
85
2869
30-m
71.59
0.66
91.51
0.84
72.94
0.67
1
NASA 5
CFM56-2C
Hi-Arom
65
2134
30-m
33.43
3.35
45.70
4.58
27.09
2.71
1
NASA 5
CFM56-2C
Hi-Arom
40
1280
30-m
25.68
1.13
38.52
1.69
13.70
0.60
1
NASA 5
CFM56-2C
Hi-Arom
7
404
30-m
51.53
1.74
74.38
2.51
8.35
0.28
1
NASA 5
CFM56-2C
Hi-Arom
4
338
30-m
104.02
5.95
143.72
8.22
13.50
0.77
1
NASA 5
CFM56-2C
Hi-Arom
85
2933
30-m
57.24
2.04
73.23
2.61
59.66
2.12
1
NASA 5
CFM56-2C
Hi-Arom
65
2088
30-m
27.95
1.44
38.17
1.97
22.15
1.14
1
NASA 5
CFM56-2C
Hi-Arom
60
1930
30-m
21.82
0.56
31.20
0.79
16.72
0.43
1
NASA 5
CFM56-2C
Hi-Arom
40
1271
30-m
23.71
0.78
34.98
1.15
12.35
0.41
1
NASA 5
CFM56-2C
Hi-Arom
30
999
30-m
20.66
1.26
31.08
1.90
8.62
0.53
1
NASA 5
CFM56-2C
Hi-Arom
7
413
30-m
43.67
1.92
63.35
2.79
7.27
0.32
1
NASA 5
CFM56-2C
Hi-Arom
4
345
30-m
85.92
6.23
119.68
8.67
11.47
0.83
1
NASA 5
CFM56-2C
Hi-Arom
65
2111
30-m
24.45
0.58
33.62
0.80
19.71
0.47
1
NASA 5
CFM56-2C
Hi-Arom
40
1362
30-m
19.34
1.00
28.62
1.47
10.83
0.56
1
NASA 5
CFM56-2C
Hi-Arom
30
1003
30-m
21.70
0.36
32.44
0.54
9.04
0.15
1
NASA 5
CFM56-2C
Hi-Arom
7
409
30-m
34.76
6.84
51.09
10.05
5.80
1.14
1
NASA 5
CFM56-2C
Hi-Arom
4
345
30-m
92.50
11.20
129.24
15.65
12.39
1.50
2
T1
CFM56-7B
Fleet
4
336
30-m
94.55
13.11
104.94
14.50
9.79
1.35
2
T1
CFM56-7B
Fleet
7
418
30-m
38.90
3.76
44.39
4.22
5.15
0.49
2
T1
CFM56-7B
Fleet
30
1180
30-m
21.13
2.09
24.40
2.36
8.00
0.77
2
T1
CFM56-7B
Fleet
40
1544
30-m
18.72
2.17
21.57
2.40
9.25
1.03
2
T1
CFM56-7B
Fleet
65
2497
30-m
19.96
7.24
22.32
8.04
15.48
5.57
2
T1
CFM56-7B
Fleet
85
4131
30-m
17.89
0.63
19.77
0.70
22.69
0.80
2
T1
CFM56-7B
Fleet
7
395
30-m
26.85
9.75
30.44
10.76
3.34
1.18
2
T1
CFM56-7B
Fleet
65
2497
30-m
18.70
1.77
20.97
1.99
14.54
1.38
2
T1
CFM56-7B
Fleet
40
1498
30-m
15.03
1.70
17.14
1.90
7.13
0.79
2
T1
CFM56-7B
Fleet
30
1135
30-m
22.61
7.00
25.77
7.98
8.13
2.52
2
T1
CFM56-7B
Fleet
4
313
30-m
77.11
14.24
85.56
15.74
7.45
1.37
2
T4
CFM56-7B
Fleet
4
336
30-m
46.26
7.89
51.95
8.81
4.85
0.82
2
T4
CFM56-7B
Fleet
7
418
30-m
24.70
2.31
28.46
2.66
3.30
0.31
2
T4
CFM56-7B
Fleet
30
1180
30-m
19.56
1.71
22.51
1.96
7.38
0.64
2
T4
CFM56-7B
Fleet
40
1544
30-m
19.06
1.10
21.86
1.26
9.37
0.54
2
T4
CFM56-7B
Fleet
65
2497
30-m
26.71
1.90
29.93
2.14
20.76
1.48
2
T4
CFM56-7B
Fleet
7
395
30-m
34.16
5.42
39.09
6.11
4.29
0.67
2
T4
CFM56-7B
Fleet
65
2497
30-m
26.13
1.30
29.33
1.45
20.34
1.01
2
T4
CFM56-7B
Fleet
40
1498
30-m
19.30
1.24
22.15
1.42
9.22
0.59
2
T4
CFM56-7B
Fleet
30
1135
30-m
22.28
2.01
25.54
2.28
8.05
0.72
2
T4
CFM56-7B
Fleet
7
381
30-m
28.24
3.26
32.49
3.73
3.44
0.40
2
T4
CFM56-7B
Fleet
4
313
30-m
47.31
7.70
53.38
8.67
4.64
0.75
2
T2
CFM56-3B
Fleet
4
341
30-m
26.29
3.28
29.44
3.65
2.78
0.35
2
T2
CFM56-3B
Fleet
7
422
30-m
14.40
1.82
16.46
2.08
1.93
0.24
2
T2
CFM56-3B
Fleet
30
1099
30-m
9.42
0.78
10.90
0.88
3.33
0.27
2
T2
CFM56-3B
Fleet
40
1403
30-m
8.40
1.03
9.73
1.17
3.79
0.46
2
T2
CFM56-3B
Fleet
65
2193
30-m
20.73
2.19
23.04
2.40
14.04
1.46
2
T2
CFM56-3B
Fleet
7
404
30-m
14.17
1.25
16.21
1.43
1.82
0.16
2
T2
CFM56-3B
Fleet
65
2184
30-m
22.28
1.81
24.78
1.98
15.03
1.20
2
T2
CFM56-3B
Fleet
40
1367
30-m
10.99
0.92
12.61
1.06
4.79
0.40
2
T2
CFM56-3B
Fleet
30
1067
30-m
12.26
1.09
14.06
1.24
4.17
0.37
2
T2
CFM56-3B
Fleet
7
418
30-m
16.66
2.36
18.95
2.70
2.20
0.31
2
T2
CFM56-3B
Fleet
4
345
30-m
30.05
3.43
33.43
3.83
3.20
0.37
D-3
-------
Table D-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
2
T3
CFM56-3B
Fleet
4
372
30-m
35.50
3.90
39.34
4.32
4.07
0.45
2
T3
CFM56-3B
Fleet
7
440
30-m
28.59
4.22
32.01
4.69
3.92
0.57
2
T3
CFM56-3B
Fleet
30
1130
30-m
21.23
3.11
23.96
3.47
7.52
1.09
2
T3
CFM56-3B
Fleet
40
1444
30-m
22.39
2.14
25.10
2.38
10.07
0.96
2
T3
CFM56-3B
Fleet
65
2252
30-m
43.85
5.14
48.49
5.57
30.33
3.48
2
T3
CFM56-3B
Fleet
7
418
30-m
31.01
3.50
34.76
3.92
4.03
0.45
2
T3
CFM56-3B
Fleet
65
2261
30-m
46.70
3.93
51.59
4.33
32.40
2.72
2
T3
CFM56-3B
Fleet
40
1412
30-m
23.19
2.00
26.06
2.23
10.22
0.87
2
T3
CFM56-3B
Fleet
30
1108
30-m
21.65
1.70
24.46
1.92
7.53
0.59
2
T3
CFM56-3B
Fleet
7
422
30-m
31.11
3.86
34.88
4.33
4.09
0.51
2
T3
CFM56-3B
Fleet
4
368
30-m
37.50
5.76
41.66
6.36
4.26
0.65
3
T1
CFM56-3B
Fleet
4
300
30-m
192.07
28.67
216.91
32.27
18.08
2.69
3
T1
CFM56-3B
Fleet
7
397
30-m
153.03
17.18
173.88
19.55
19.15
2.15
3
T1
CFM56-3B
Fleet
15
654
30-m
99.95
8.47
114.91
9.74
20.86
1.77
3
T1
CFM56-3B
Fleet
30
1136
30-m
121.11
30.42
137.05
32.98
43.23
10.40
3
T1
CFM56-3B
Fleet
45
1618
30-m
122.08
8.12
137.04
9.11
61.58
4.09
3
T1
CFM56-3B
Fleet
65
2260
30-m
202.77
9.32
223.21
10.23
140.16
6.42
3
T1
CFM56-3B
Fleet
85
2903
30-m
284.37
16.29
311.20
17.90
250.96
14.43
3
T1
CFM56-3B
Fleet
4
300
30-m
329.57
175.11
366.75
192.06
30.57
16.01
3
T1
CFM56-3B
Fleet
100
3385
30-m
354.14
12.16
386.71
13.28
363.64
12.49
3
T1
CFM56-3B
Fleet
85
2903
30-m
260.40
10.90
285.00
11.94
229.83
9.63
3
T1
CFM56-3B
Fleet
65
2260
30-m
178.81
8.03
197.06
8.85
123.73
5.56
3
T1
CFM56-3B
Fleet
45
1618
30-m
110.15
6.29
123.85
7.01
55.65
3.15
3
T1
CFM56-3B
Fleet
30
1136
30-m
95.76
6.30
109.41
7.02
34.52
2.22
3
T1
CFM56-3B
Fleet
15
654
30-m
108.49
12.86
124.08
14.47
22.53
2.63
3
T1
CFM56-3B
Fleet
7
397
30-m
166.84
17.06
188.75
19.30
20.79
2.13
3
T1
CFM56-3B
Fleet
4
300
30-m
205.89
22.39
231.11
25.06
19.27
2.09
3
T11
CFM56-3B
Fleet
4
381
30-m
135.00
16.90
146.97
18.29
15.57
1.94
3
T11
CFM56-3B
Fleet
7
431
30-m
134.46
19.66
146.16
21.30
17.51
2.55
3
T11
CFM56-3B
Fleet
15
622
30-m
94.77
9.06
103.70
9.93
17.92
1.72
3
T11
CFM56-3B
Fleet
30
1090
30-m
100.48
7.62
110.13
8.25
33.33
2.50
3
T11
CFM56-3B
Fleet
45
1530
30-m
101.26
3.84
110.88
4.23
47.12
1.80
3
T11
CFM56-3B
Fleet
65
2179
30-m
128.34
4.88
140.28
5.32
84.92
3.22
3
T11
CFM56-3B
Fleet
85
2815
30-m
197.01
7.52
215.20
8.21
168.26
6.42
3
T11
CFM56-3B
Fleet
100
3564
30-m
234.63
9.16
256.47
10.02
253.90
9.91
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
1297.45
192.88
1457.82
216.72
73.54
10.93
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
289.81
48.74
320.78
54.32
27.10
4.59
3
T2
CJ610-8ATJ
Fleet
30
452
15-m
190.99
17.06
211.30
18.89
26.51
2.37
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
181.81
19.56
200.37
21.60
31.59
3.41
3
T2
CJ610-8ATJ
Fleet
65
760
15-m
222.29
9.20
244.05
10.09
51.55
2.13
3
T2
CJ610-8ATJ
Fleet
85
999
15-m
190.02
5.37
208.52
5.90
57.85
1.64
3
T2
CJ610-8ATJ
Fleet
85
999
30-m
319.60
33.50
347.92
36.41
96.53
10.10
3
T2
CJ610-8ATJ
Fleet
100
1226
30-m
265.18
156.79
288.70
170.08
98.30
57.91
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
416.60
622.53
452.50
673.43
22.83
33.97
3
T2
CJ610-8ATJ
Fleet
100
1226
15-m
199.27
5.08
218.92
5.58
74.54
1.90
3
T2
CJ610-8ATJ
Fleet
65
763
15-m
204.65
8.14
225.04
8.96
47.68
1.90
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
192.39
7.15
212.75
7.91
33.54
1.25
3
T2
CJ610-8ATJ
Fleet
30
454
15-m
211.01
14.31
234.03
15.87
29.51
2.00
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
242.39
27.77
269.92
30.93
22.81
2.61
3
T5
CJ610-8ATJ
Fleet
7
227
15-m
26.20
43.96
30.37
51.13
1.91
3.22
3
T5
CJ610-8ATJ
Fleet
15
303
15-m
276.53
73.12
306.61
80.56
25.83
6.79
3
T5
CJ610-8ATJ
Fleet
30
452
15-m
230.89
28.94
255.26
31.80
32.03
3.99
3
T5
CJ610-8ATJ
Fleet
45
567
15-m
262.53
39.79
289.17
43.60
45.51
6.86
3
T5
CJ610-8ATJ
Fleet
65
763
15-m
311.61
15.34
341.96
16.80
72.45
3.56
3
T5
CJ610-8ATJ
Fleet
85
1009
15-m
501.36
51.84
548.95
56.57
153.83
15.85
3
T5
CJ610-8ATJ
Fleet
100
1226
15-m
559.40
12.54
612.24
13.72
208.47
4.67
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
6.18
2.82
7.05
3.18
0.44
0.20
D-4
-------
Table D-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T5
CJ610-8ATJ
Fleet
100
1226
30-m
496.93
43.67
540.25
47.48
183.95
16.17
3
T5
CJ610-8ATJ
Fleet
85
1009
30-m
405.17
34.23
440.71
37.26
123.50
10.44
3
T5
CJ610-8ATJ
Fleet
65
763
30-m
248.38
12.75
270.70
13.90
57.35
2.94
3
T5
CJ610-8ATJ
Fleet
45
567
30-m
190.42
16.57
208.43
18.08
32.80
2.85
3
T5
CJ610-8ATJ
Fleet
30
452
30-m
150.98
60.73
165.69
65.85
20.79
8.26
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
5.47
1.02
6.28
1.13
0.40
0.07
3
T3
AE3007A1E
Fleet
8.4
174
15-m
67.66
45.03
76.64
50.96
3.71
2.47
3
T3
AE3007A1E
Fleet
15
238
15-m
50.79
18.24
56.68
20.35
3.75
1.35
3
T3
AE3007A1E
Fleet
30
389
15-m
41.03
10.09
45.76
11.25
4.95
1.22
3
T3
AE3007A1E
Fleet
45
555
15-m
43.50
10.05
48.31
11.06
7.45
1.70
3
T3
AE3007A1E
Fleet
65
805
15-m
46.42
10.32
51.35
11.34
11.48
2.54
3
T3
AE3007A1E
Fleet
85
1082
15-m
41.64
9.74
46.08
10.75
13.84
3.23
3
T3
AE3007A1E
Fleet
100
1286
15-m
47.53
8.35
52.37
9.20
18.71
3.29
3
T3
AE3007A1E
Fleet
8.4
172
15-m
57.21
39.45
65.09
44.67
3.11
2.13
3
T3
AE3007A1E
Fleet
85
1088
15-m
45.05
10.46
49.72
11.49
15.03
3.47
3
T3
AE3007A1E
Fleet
65
810
15-m
41.17
7.54
45.51
8.30
10.24
1.87
3
T3
AE3007A1E
Fleet
45
563
15-m
39.51
9.47
43.93
10.49
6.87
1.64
3
T3
AE3007A1E
Fleet
30
392
15-m
41.87
10.88
46.73
12.14
5.09
1.32
3
T3
AE3007A1E
Fleet
15
235
15-m
47.03
10.81
52.61
12.08
3.44
0.79
3
T3
AE3007A1E
Fleet
8.4
173
15-m
86.95
54.05
98.17
61.11
4.71
2.93
3
T4
AE3007A1E
Fleet
8.4
168
15-m
7.79
8.09
9.73
4.26
0.45
0.20
3
T4
AE3007A1E
Fleet
15
239
15-m
14.24
14.72
17.11
4.50
1.14
0.30
3
T4
AE3007A1E
Fleet
30
385
15-m
20.97
21.99
24.15
10.99
2.58
1.18
3
T4
AE3007A1E
Fleet
45
547
15-m
50.24
52.65
55.85
36.91
8.49
5.61
3
T4
AE3007A1E
Fleet
65
788
15-m
48.88
49.85
54.12
13.08
11.85
2.86
3
T4
AE3007A1E
Fleet
85
1050
15-m
70.21
71.07
77.50
16.39
22.60
4.78
3
T4
AE3007A1E
Fleet
100
1253
15-m
8.57
8.60
9.86
0.85
3.43
0.30
3
T4
AE3007A1E
Fleet
8.4
168
15-m
16.42
16.44
19.56
2.63
0.91
0.12
3
T4
AE3007A1E
Fleet
85
1041
15-m
58.81
59.43
64.77
9.89
18.74
2.86
3
T4
AE3007A1E
Fleet
8.4
168
15-m
7.03
7.07
8.94
1.76
0.42
0.08
3
T4
AE3007A1E
Fleet
85
1052
15-m
55.33
56.33
60.96
11.63
17.81
3.40
3
T4
AE3007A1E
Fleet
65
786
15-m
45.72
46.96
50.66
12.04
11.06
2.63
3
T4
AE3007A1E
Fleet
45
549
15-m
16.35
17.30
18.96
9.97
2.89
1.52
3
T4
AE3007A1E
Fleet
30
384
15-m
10.25
10.79
12.63
8.85
1.35
0.94
3
T4
AE3007A1E
Fleet
15
231
15-m
6.52
6.55
8.35
1.08
0.54
0.07
3
T4
AE3007A1E
Fleet
8.4
167
15-m
6.00
6.01
7.86
3.01
0.37
0.14
3
T10
AE3007A1/1
Fleet
8.4
179
30-m
61.77
65.81
70.84
75.79
3.52
3.76
3
T10
AE3007A1/1
Fleet
15
233
30-m
22.82
4.69
26.45
5.36
1.71
0.35
3
T10
AE3007A1/1
Fleet
30
372
30-m
27.79
2.38
31.57
2.78
3.26
0.29
3
T10
AE3007A1/1
Fleet
45
524
30-m
35.06
8.72
39.31
9.55
5.72
1.39
3
T10
AE3007A1/1
Fleet
65
750
30-m
42.54
2.97
47.44
3.31
9.88
0.69
3
T10
AE3007A1/1
Fleet
85
971
30-m
50.30
3.79
55.82
4.20
15.05
1.13
3
T10
AE3007A1/1
Fleet
100
1171
30-m
51.05
2.98
56.48
3.30
18.38
1.07
3
T10
AE3007A1/1
Fleet
8.4
177
30-m
41.88
17.49
48.28
20.27
2.37
0.99
3
T10
AE3007A1/1
Fleet
100
1180
30-m
52.73
2.18
58.14
2.40
19.05
0.79
3
T10
AE3007A1/1
Fleet
85
982
30-m
47.11
2.44
52.05
2.70
14.19
0.74
3
T10
AE3007A1/1
Fleet
65
767
30-m
41.57
6.43
45.93
7.10
9.78
1.51
3
T10
AE3007A1/1
Fleet
45
529
30-m
29.09
3.47
32.65
3.80
4.80
0.56
3
T10
AE3007A1/1
Fleet
30
371
30-m
25.64
3.82
28.89
4.31
2.98
0.44
3
T10
AE3007A1/1
Fleet
15
231
30-m
21.09
4.50
23.98
5.12
1.54
0.33
3
T10
AE3007A1/1
Fleet
8.4
178
30-m
50.25
16.99
57.87
19.56
2.86
0.97
3
T6
P&W4158
Fleet
7
610
30-m
165.59
13.71
183.25
15.24
31.03
2.58
3
T6
P&W4158
Fleet
15
1014
30-m
23.84
1.89
28.29
2.24
7.97
0.63
3
T6
P&W4158
Fleet
30
2245
30-m
23.37
0.75
27.09
0.87
16.90
0.55
3
T6
P&W4158
Fleet
45
3726
30-m
63.84
36.81
70.41
40.11
72.87
41.51
3
T6
P&W4158
Fleet
7
595
30-m
153.25
24.46
170.13
27.06
28.11
4.47
3
T6
P&W4158
Fleet
65
5658
30-m
130.93
52.10
142.90
56.75
224.59
89.18
D-5
-------
Table D-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T6
P&W4158
Fleet
80
7026
30-m
87.22
72.85
95.02
79.36
185.44
154.88
3
T6
P&W4158
Fleet
7
368
30-m
155.62
29.89
172.77
32.82
17.64
3.35
3
T6
P&W4158
Fleet
80
7026
30-m
146.92
7.37
160.08
8.05
312.42
15.71
3
T6
P&W4158
Fleet
65
5658
30-m
81.09
18.67
88.37
20.40
138.89
32.06
3
T6
P&W4158
Fleet
45
3834
30-m
41.07
0.95
45.50
1.06
48.45
1.13
3
T6
P&W4158
Fleet
30
2465
30-m
21.75
1.67
25.14
1.92
17.22
1.31
3
T6
P&W4158
Fleet
15
1097
30-m
23.29
3.64
27.41
4.04
8.36
1.23
3
T6
P&W4158
Fleet
7
368
30-m
156.26
19.47
173.57
21.30
17.72
2.17
3
11
P&W4158
Fleet
7
600
30-m
186.05
7.67
205.97
8.49
34.36
1.42
3
11
P&W4158
Fleet
15
1035
30-m
29.11
1.51
34.22
1.77
9.84
0.51
3
11
P&W4158
Fleet
30
2230
30-m
33.72
8.39
38.67
9.27
23.95
5.74
3
11
P&W4158
Fleet
45
3688
30-m
43.35
1.21
48.37
1.35
49.54
1.38
3
11
P&W4158
Fleet
65
5702
30-m
86.82
2.53
94.91
2.76
150.33
4.36
3
11
P&W4158
Fleet
80
7100
30-m
128.50
2.37
140.06
2.59
276.22
5.10
3
11
P&W4158
Fleet
7
591
30-m
168.62
14.89
187.06
16.27
30.73
2.67
3
11
P&W4158
Fleet
80
7200
30-m
136.22
2.25
148.48
2.45
296.96
4.90
3
11
P&W4158
Fleet
65
5711
30-m
61.63
34.10
67.49
37.08
107.06
58.81
3
11
P&W4158
Fleet
30
2252
30-m
26.67
1.50
30.87
1.71
19.31
1.07
3
11
P&W4158
Fleet
7
596
30-m
130.52
48.52
145.84
52.77
24.15
8.74
3
T8
RB211
Fleet
4
566
30-m
124.80
5.62
140.54
6.56
22.09
1.03
3
T8
RB211
Fleet
7
770
30-m
105.49
7.17
119.71
7.96
25.61
1.70
3
T8
RB211
Fleet
15
1191
30-m
66.40
7.88
74.51
9.10
24.65
3.01
3
T8
RB211
Fleet
30
2109
30-m
85.63
2.36
94.58
2.60
55.42
1.53
3
T8
RB211
Fleet
45
3178
30-m
187.91
85.81
205.79
93.77
181.65
82.77
3
T8
RB211
Fleet
65
4750
30-m
136.95
69.39
149.70
75.97
197.51
100.22
3
T8
RB211
Fleet
85
6096
30-m
76.77
2.75
84.23
3.02
142.63
5.11
3
T8
RB211
Fleet
85
6449
30-m
94.17
3.27
103.29
3.59
185.03
6.43
3
T8
RB211
Fleet
4
552
43-m
42.95
8.06
55.57
10.23
8.52
1.57
3
T8
RB211
Fleet
65
4691
43-m
174.41
4.25
201.95
4.93
263.15
6.43
3
T8
RB211
Fleet
45
3436
43-m
99.38
26.24
116.75
30.17
111.42
28.79
3
T8
RB211
Fleet
30
2131
43-m
72.56
3.14
87.66
3.80
51.88
2.25
3
T8
RB211
Fleet
15
1178
43-m
51.32
2.45
64.88
3.11
21.24
1.02
3
T8
RB211
Fleet
7
654
43-m
81.94
7.81
104.13
9.93
18.91
1.80
3
T8
RB211
Fleet
4
437
43-m
134.98
21.11
169.50
26.64
20.58
3.24
3
T9
RB211
Fleet
4
421
30-m
342.42
103.35
377.41
113.26
44.17
13.26
3
T9
RB211
Fleet
7
690
30-m
32.75
3.97
36.48
4.38
6.99
0.84
3
T9
RB211
Fleet
15
1221
30-m
34.50
5.49
38.16
6.18
12.94
2.09
3
T9
RB211
Fleet
30
2004
30-m
59.78
4.66
65.35
5.14
36.38
2.86
3
T9
RB211
Fleet
45
3068
30-m
97.03
3.87
105.83
4.23
90.20
3.61
3
T9
RB211
Fleet
65
4479
30-m
182.45
14.21
199.28
15.55
247.93
19.35
3
T9
RB211
Fleet
85
6233
30-m
95.53
2.90
104.46
3.17
180.86
5.49
3
T9
RB211
Fleet
100
6966
30-m
61.36
1.99
67.11
2.18
129.84
4.21
3
T9
RB211
Fleet
4
494
30-m
71.93
9.81
80.66
11.12
11.07
1.53
3
T9
RB211
Fleet
85
6307
30-m
90.07
2.98
98.51
3.26
172.59
5.71
3
T9
RB211
Fleet
65
4551
30-m
138.59
59.13
151.19
64.74
191.14
81.85
3
T9
RB211
Fleet
45
3111
30-m
89.25
4.47
97.39
4.86
84.17
4.20
3
T9
RB211
Fleet
30
2037
30-m
51.28
3.08
56.12
3.36
31.76
1.90
3
T9
RB211
Fleet
15
1173
30-m
26.05
10.37
28.94
11.38
9.43
3.71
3
T9
RB211
Fleet
7
668
30-m
24.00
2.94
26.79
3.28
4.97
0.61
3
T9
RB211
Fleet
4
506
30-m
103.28
14.79
116.06
16.62
16.32
2.34
D-6
-------
Table D-2. PM mass emission indices and rates determined by the EEPS
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
2
T1
CFM56-7B
Fleet
4
336
30-m
313.02
54.74
356.39
61.43
33.26
5.73
2
T1
CFM56-7B
Fleet
7
418
30-m
156.32
20.09
184.55
23.22
21.41
2.69
2
T1
CFM56-7B
Fleet
30
1180
30-m
72.72
11.29
88.76
13.18
29.10
4.32
2
T1
CFM56-7B
Fleet
40
1544
30-m
68.42
10.46
82.89
12.35
35.54
5.30
2
T1
CFM56-7B
Fleet
65
2497
30-m
65.46
10.15
75.38
15.68
52.28
10.88
2
T1
CFM56-7B
Fleet
85
4131
30-m
81.84
8.51
92.15
9.54
105.76
10.95
2
T1
CFM56-7B
Fleet
7
395
30-m
189.13
57.20
223.16
64.40
24.48
7.07
2
T1
CFM56-7B
Fleet
85
4086
30-m
99.67
10.14
114.44
11.72
129.89
13.30
2
T1
CFM56-7B
Fleet
65
2497
30-m
81.17
6.61
95.15
7.90
66.00
5.48
2
T1
CFM56-7B
Fleet
40
1498
30-m
91.65
8.82
109.64
10.53
45.63
4.38
2
T1
CFM56-7B
Fleet
30
1135
30-m
109.23
12.32
130.46
15.31
41.13
4.83
2
T1
CFM56-7B
Fleet
4
313
30-m
355.29
71.26
406.77
80.53
35.40
7.01
2
T4
CFM56-7B
Fleet
4
336
30-m
209.02
27.97
242.41
44.01
22.62
4.11
2
T4
CFM56-7B
Fleet
7
418
30-m
116.86
15.99
140.86
19.09
16.34
2.21
2
T4
CFM56-7B
Fleet
30
1180
30-m
85.64
8.37
103.84
10.07
34.05
3.30
2
T4
CFM56-7B
Fleet
40
1544
30-m
77.41
6.74
93.41
8.20
40.05
3.52
2
T4
CFM56-7B
Fleet
65
2497
30-m
80.40
5.04
94.08
5.98
65.25
4.15
2
T4
CFM56-7B
Fleet
85
4131
30-m
93.59
4.76
107.90
5.56
123.83
6.38
2
T4
CFM56-7B
Fleet
7
395
30-m
148.39
24.86
177.23
28.96
19.45
3.18
2
T4
CFM56-7B
Fleet
85
4086
30-m
99.63
6.24
114.63
7.05
130.11
8.00
2
T4
CFM56-7B
Fleet
65
2497
30-m
81.13
5.27
95.26
6.30
66.08
4.37
2
T4
CFM56-7B
Fleet
40
1498
30-m
83.01
7.07
100.07
8.51
41.65
3.54
2
T4
CFM56-7B
Fleet
30
1135
30-m
95.34
9.90
114.88
11.67
36.22
3.68
2
T4
CFM56-7B
Fleet
7
381
30-m
140.81
22.18
168.74
26.05
17.88
2.76
2
T4
CFM56-7B
Fleet
4
313
30-m
230.95
52.24
268.41
59.65
23.36
5.19
2
T2
CFM56-3B
Fleet
4
341
30-m
156.55
26.23
181.04
29.94
17.12
2.83
2
T2
CFM56-3B
Fleet
7
422
30-m
97.32
18.24
115.78
20.99
13.58
2.46
2
T2
CFM56-3B
Fleet
30
1099
30-m
62.21
6.73
75.47
8.34
23.03
2.55
2
T2
CFM56-3B
Fleet
40
1403
30-m
51.68
5.15
62.83
6.51
24.49
2.54
2
T2
CFM56-3B
Fleet
65
2193
30-m
81.51
6.96
93.08
8.10
56.69
4.93
2
T2
CFM56-3B
Fleet
85
3528
30-m
150.04
8.70
167.13
9.69
163.77
9.50
2
T2
CFM56-3B
Fleet
7
404
30-m
98.83
12.59
118.05
15.07
13.25
1.69
2
T2
CFM56-3B
Fleet
85
3559
30-m
167.94
12.81
187.00
14.32
184.89
14.16
2
T2
CFM56-3B
Fleet
65
2184
30-m
81.04
6.48
93.12
7.66
56.49
4.65
2
T2
CFM56-3B
Fleet
85
3559
30-m
146.14
7.73
163.20
8.64
161.35
8.54
2
T2
CFM56-3B
Fleet
40
1367
30-m
63.33
5.86
76.37
7.22
28.99
2.74
2
T2
CFM56-3B
Fleet
30
1067
30-m
75.93
7.47
91.22
9.08
27.04
2.69
2
T2
CFM56-3B
Fleet
7
418
30-m
108.47
15.01
128.29
17.78
14.88
2.06
2
T3
CFM56-3B
Fleet
4
372
30-m
163.00
22.77
185.66
25.81
19.20
2.67
2
T3
CFM56-3B
Fleet
7
440
30-m
141.54
20.55
163.64
23.68
20.02
2.90
2
T3
CFM56-3B
Fleet
30
1130
30-m
99.44
10.85
116.68
12.65
36.64
3.97
2
T3
CFM56-3B
Fleet
40
1444
30-m
96.08
8.72
111.90
10.26
44.88
4.11
2
T3
CFM56-3B
Fleet
65
2252
30-m
146.05
22.48
163.77
25.16
102.44
15.74
2
T3
CFM56-3B
Fleet
85
3677
30-m
281.13
19.21
312.40
21.35
319.12
21.81
2
T3
CFM56-3B
Fleet
7
418
30-m
154.33
21.42
178.30
24.59
20.69
2.85
2
T3
CFM56-3B
Fleet
85
3650
30-m
309.24
24.23
344.01
26.96
348.81
27.34
2
T3
CFM56-3B
Fleet
65
2261
30-m
147.93
10.50
166.00
11.90
104.26
7.47
2
T3
CFM56-3B
Fleet
40
1412
30-m
93.46
8.00
109.43
9.52
42.92
3.74
2
T3
CFM56-3B
Fleet
30
1108
30-m
96.39
9.08
113.60
10.81
34.96
3.33
2
T3
CFM56-3B
Fleet
7
422
30-m
152.57
22.04
176.33
25.30
20.68
2.97
2
T3
CFM56-3B
Fleet
4
368
30-m
168.93
24.49
192.82
27.84
19.70
2.84
3
T1
CFM56-3B
Fleet
4
300
30-m
458.55
78.89
618.61
109.69
51.57
9.14
3
T1
CFM56-3B
Fleet
7
397
30-m
384.07
75.05
524.35
107.98
57.76
11.89
3
T1
CFM56-3B
Fleet
15
654
30-m
296.89
55.73
414.15
80.96
75.19
14.70
3
T1
CFM56-3B
Fleet
30
1136
30-m
224.96
40.36
309.36
57.43
97.59
18.12
3
T1
CFM56-3B
Fleet
45
1618
30-m
212.94
30.81
285.05
43.18
128.09
19.40
3
T1
CFM56-3B
Fleet
65
2260
30-m
230.97
18.47
291.52
26.25
183.05
16.48
D-7
-------
Table D-2 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T1
CFM56-3B
Fleet
85
2903
30-m
281.39
19.21
339.05
25.63
273.42
20.67
3
T1
CFM56-3B
Fleet
100
3385
30-m
354.93
19.10
414.09
25.28
389.38
23.77
3
T1
CFM56-3B
Fleet
4
300
30-m
502.09
78.63
676.42
108.99
56.39
9.09
3
T1
CFM56-3B
Fleet
100
3385
30-m
334.40
19.85
395.69
26.60
372.08
25.01
3
T1
CFM56-3B
Fleet
85
2903
30-m
270.24
24.55
331.29
31.41
267.17
25.33
3
T1
CFM56-3B
Fleet
65
2260
30-m
227.09
20.02
293.45
27.76
184.26
17.43
3
T1
CFM56-3B
Fleet
45
1618
30-m
228.88
21.30
313.06
31.12
140.68
13.99
3
T1
CFM56-3B
Fleet
30
1136
30-m
263.73
25.55
366.31
37.71
115.56
11.89
3
T1
CFM56-3B
Fleet
15
654
30-m
368.82
42.51
514.46
61.08
93.41
11.09
3
T1
CFM56-3B
Fleet
7
397
30-m
490.24
65.35
672.62
93.08
74.09
10.25
3
T1
CFM56-3B
Fleet
4
300
30-m
558.95
72.73
757.81
101.66
63.18
8.48
3
T11
CFM56-3B
Fleet
4
381
30-m
124.07
40.57
141.54
55.58
14.99
5.89
3
T11
CFM56-3B
Fleet
7
431
30-m
103.61
14.32
114.22
16.26
13.68
1.95
3
T11
CFM56-3B
Fleet
15
622
30-m
80.87
7.94
90.19
9.33
15.58
1.61
3
T11
CFM56-3B
Fleet
30
1090
30-m
84.34
10.27
94.21
11.65
28.51
3.52
3
T11
CFM56-3B
Fleet
45
1530
30-m
76.82
4.07
85.46
4.95
36.32
2.11
3
T11
CFM56-3B
Fleet
65
2179
30-m
94.92
9.43
104.87
10.47
63.48
6.34
3
T11
CFM56-3B
Fleet
85
2815
30-m
145.76
23.37
160.69
25.64
125.64
20.05
3
T11
CFM56-3B
Fleet
100
3564
30-m
173.58
27.67
191.65
30.87
189.73
30.56
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
1059.57
648.03
1237.75
742.84
62.44
37.47
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
164.94
36.28
187.89
40.99
15.88
3.46
3
T2
CJ610-8ATJ
Fleet
30
452
15-m
112.87
12.12
128.29
13.76
16.10
1.73
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
99.67
8.18
112.54
9.30
17.74
1.47
3
T2
CJ610-8ATJ
Fleet
65
760
15-m
114.01
7.01
127.55
7.89
26.94
1.67
3
T2
CJ610-8ATJ
Fleet
85
999
15-m
138.89
9.52
154.59
10.63
42.89
2.95
3
T2
CJ610-8ATJ
Fleet
85
999
30-m
155.37
24.75
176.99
27.57
49.11
7.65
3
T2
CJ610-8ATJ
Fleet
100
1226
30-m
172.90
15.28
195.29
17.30
66.50
5.89
3
T2
CJ610-8ATJ
Fleet
7
182
30-m
515.94
597.94
702.82
714.95
35.45
36.07
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
1651.06
1239.10
1891.05
1412.98
95.39
71.28
3
T2
CJ610-8ATJ
Fleet
100
1226
15-m
167.88
15.05
186.20
16.58
63.40
5.65
3
T2
CJ610-8ATJ
Fleet
65
763
15-m
137.56
11.94
153.40
12.96
32.50
2.74
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
127.25
10.64
143.57
11.82
22.63
1.86
3
T2
CJ610-8ATJ
Fleet
30
454
15-m
140.67
13.47
159.95
15.25
20.17
1.92
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
182.06
28.40
207.15
32.04
17.50
2.71
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
652.82
612.71
763.62
694.50
38.52
35.03
3
T5
CJ610-8ATJ
Fleet
7
227
15-m
331.79
366.21
372.87
419.60
23.51
26.46
3
T5
CJ610-8ATJ
Fleet
15
303
15-m
1080.15
544.94
1219.85
613.52
102.76
51.68
3
T5
CJ610-8ATJ
Fleet
30
452
15-m
940.23
136.83
1056.52
153.36
132.57
19.24
3
T5
CJ610-8ATJ
Fleet
45
567
15-m
969.61
122.51
1082.13
136.39
170.31
21.47
3
T5
CJ610-8ATJ
Fleet
65
763
15-m
1121.02
77.80
1242.72
86.02
263.29
18.23
3
T5
CJ610-8ATJ
Fleet
85
1009
15-m
1590.63
246.78
1758.55
272.79
492.78
76.44
3
T5
CJ610-8ATJ
Fleet
100
1226
15-m
1754.34
77.27
1937.72
85.09
659.79
28.97
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
252.15
730.67
289.67
807.23
18.27
50.90
3
T5
CJ610-8ATJ
Fleet
100
1226
30-m
1596.33
226.56
1751.66
248.43
596.44
84.59
3
T5
CJ610-8ATJ
Fleet
85
1009
30-m
1361.00
170.24
1494.41
187.00
418.76
52.40
3
T5
CJ610-8ATJ
Fleet
65
763
30-m
928.34
113.00
1023.69
124.23
216.89
26.32
3
T5
CJ610-8ATJ
Fleet
45
567
30-m
794.29
92.51
885.82
102.83
139.42
16.18
3
T5
CJ610-8ATJ
Fleet
30
452
30-m
815.67
77.31
909.77
85.92
114.16
10.78
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
198.87
99.45
232.04
113.41
14.63
7.15
3
T3
AE3007A1E
Fleet
8.4
174
15-m
44.67
41.46
52.92
49.57
2.56
2.40
3
T3
AE3007A1E
Fleet
15
238
15-m
30.16
18.36
34.95
21.87
2.31
1.45
3
T3
AE3007A1E
Fleet
30
389
15-m
27.41
13.42
31.66
16.07
3.42
1.74
3
T3
AE3007A1E
Fleet
45
555
15-m
28.14
11.45
32.36
13.83
4.99
2.13
3
T3
AE3007A1E
Fleet
65
805
15-m
26.85
9.46
30.52
11.34
6.83
2.54
3
T3
AE3007A1E
Fleet
85
1082
15-m
30.99
10.92
35.15
12.87
10.56
3.87
3
T3
AE3007A1E
Fleet
100
1286
15-m
35.57
11.30
40.12
13.23
14.34
4.73
3
T3
AE3007A1E
Fleet
8.4
172
15-m
43.76
82.39
51.80
97.54
2.48
4.66
D-8
-------
Table D-2 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T3
AE3007A1E
Fleet
100
1299
15-m
40.77
18.11
45.55
20.42
16.43
7.37
3
T3
AE3007A1E
Fleet
85
1088
15-m
30.78
10.38
34.69
12.18
10.49
3.68
3
T3
AE3007A1E
Fleet
65
810
15-m
25.73
10.11
29.28
12.13
6.59
2.73
3
T3
AE3007A1E
Fleet
45
563
15-m
23.31
12.95
26.93
15.68
4.21
2.45
3
T3
AE3007A1E
Fleet
30
392
15-m
271.42
197.07
308.49
230.97
33.60
25.16
3
T3
AE3007A1E
Fleet
15
235
15-m
243.55
65.71
274.61
74.56
17.93
4.87
3
T3
AE3007A1E
Fleet
8.4
173
15-m
480.40
336.54
358.39
250.67
17.19
12.02
3
T4
AE3007A1E
Fleet
8.4
168
15-m
58.79
59.45
70.28
69.20
3.27
3.22
3
T4
AE3007A1E
Fleet
15
239
15-m
49.63
40.34
59.50
49.45
3.96
3.29
3
T4
AE3007A1E
Fleet
30
385
15-m
36.55
27.67
43.64
33.78
4.67
3.61
3
T4
AE3007A1E
Fleet
45
547
15-m
197.92
100.99
221.33
114.80
33.65
17.45
3
T4
AE3007A1E
Fleet
65
788
15-m
249.83
78.95
276.91
89.42
60.64
19.58
3
T4
AE3007A1E
Fleet
85
1050
15-m
309.36
70.64
341.25
78.15
99.50
22.79
3
T4
AE3007A1E
Fleet
100
1253
15-m
359.41
50.71
395.96
56.34
137.82
19.61
3
T4
AE3007A1E
Fleet
8.4
168
15-m
325.68
237.62
359.85
261.76
16.75
12.19
3
T4
AE3007A1E
Fleet
100
1252
15-m
388.18
115.58
426.25
126.91
148.19
44.12
3
T4
AE3007A1E
Fleet
85
1041
15-m
314.64
65.38
345.99
71.94
100.09
20.81
3
T4
AE3007A1E
Fleet
8.4
168
15-m
252.74
92.79
279.00
101.99
13.02
4.76
3
T4
AE3007A1E
Fleet
85
1052
15-m
340.57
118.39
374.16
130.04
109.30
37.98
3
T4
AE3007A1E
Fleet
65
786
15-m
238.38
80.82
262.89
89.22
57.41
19.48
3
T4
AE3007A1E
Fleet
45
549
15-m
190.14
83.96
210.39
93.10
32.10
14.20
3
T4
AE3007A1E
Fleet
30
384
15-m
214.92
80.74
237.58
89.47
25.35
9.55
3
T4
AE3007A1E
Fleet
15
231
15-m
240.75
29.22
266.06
32.60
17.08
2.09
3
T4
AE3007A1E
Fleet
8.4
167
15-m
247.25
29.96
273.41
34.59
12.70
1.61
3
T10
AE3007A1/1
Fleet
8.4
179
30-m
33.38
25.22
40.08
30.21
1.99
1.50
3
T10
AE3007A1/1
Fleet
15
233
30-m
17.52
5.88
21.13
7.30
1.37
0.47
3
T10
AE3007A1/1
Fleet
30
372
30-m
20.20
3.25
23.86
4.17
2.47
0.43
3
T10
AE3007A1/1
Fleet
45
524
30-m
22.22
4.06
25.80
5.09
3.75
0.74
3
T10
AE3007A1/1
Fleet
65
750
30-m
28.11
3.42
32.21
4.14
6.71
0.86
3
T10
AE3007A1/1
Fleet
85
971
30-m
33.47
3.98
37.87
4.54
10.21
1.22
3
T10
AE3007A1/1
Fleet
100
1171
30-m
37.77
3.27
42.34
3.69
13.77
1.20
3
T10
AE3007A1/1
Fleet
8.4
177
30-m
36.00
19.20
42.91
22.98
2.10
1.13
3
T10
AE3007A1/1
Fleet
100
1180
30-m
39.00
3.19
43.45
3.61
14.24
1.18
3
T10
AE3007A1/1
Fleet
85
982
30-m
32.84
2.65
36.79
3.07
10.03
0.84
3
T10
AE3007A1/1
Fleet
65
767
30-m
26.69
6.15
30.11
7.13
6.41
1.52
3
T10
AE3007A1/1
Fleet
45
529
30-m
21.30
2.52
24.46
3.34
3.59
0.49
3
T10
AE3007A1/1
Fleet
30
371
30-m
17.58
3.90
20.27
4.59
2.09
0.47
3
T10
AE3007A1/1
Fleet
15
231
30-m
15.90
5.24
18.44
6.30
1.18
0.40
3
T10
AE3007A1/1
Fleet
8.4
178
30-m
39.54
20.45
46.90
24.39
2.31
1.20
3
T6
P&W4158
Fleet
7
610
30-m
31.48
45.47
40.70
67.95
6.89
11.51
3
T6
P&W4158
Fleet
15
1014
30-m
6.75
5.31
9.14
7.64
2.57
2.15
3
T6
P&W4158
Fleet
30
2245
30-m
5.16
3.40
6.98
5.21
4.35
3.25
3
T6
P&W4158
Fleet
45
3726
30-m
7.35
3.09
9.09
4.67
9.41
4.83
3
T6
P&W4158
Fleet
65
5827
30-m
13.56
4.44
15.71
5.72
25.42
9.26
3
T6
P&W4158
Fleet
7
595
30-m
27.04
9.96
33.08
14.19
5.47
2.34
3
T6
P&W4158
Fleet
65
5658
30-m
15.00
3.65
17.36
5.08
27.28
7.98
3
T6
P&W4158
Fleet
80
7026
30-m
21.61
4.09
24.29
5.23
47.40
10.21
3
T6
P&W4158
Fleet
7
368
30-m
26.81
10.21
32.69
14.18
3.34
1.45
3
T6
P&W4158
Fleet
80
7026
30-m
25.06
4.67
28.17
5.91
54.98
11.54
3
T6
P&W4158
Fleet
65
5658
30-m
14.33
3.45
16.53
4.91
25.97
7.72
3
T6
P&W4158
Fleet
45
3834
30-m
7.84
3.29
9.89
5.01
10.53
5.33
3
T6
P&W4158
Fleet
30
2465
30-m
6.00
4.23
8.12
6.49
5.56
4.44
3
T6
P&W4158
Fleet
15
1097
30-m
8.86
7.03
12.41
10.84
3.78
3.30
3
T6
P&W4158
Fleet
7
368
30-m
29.14
9.13
35.64
13.19
3.64
1.35
3
11
P&W4158
Fleet
7
600
30-m
47.05
16.77
57.17
23.03
9.54
3.84
3
11
P&W4158
Fleet
15
1035
30-m
14.73
10.55
20.31
15.82
5.84
4.55
3
11
P&W4158
Fleet
30
2230
30-m
10.81
7.48
14.84
11.60
9.19
7.19
D-9
-------
Table D-2 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
11
P&W4158
Fleet
45
3688
30-m
11.49
5.47
14.87
8.46
15.23
8.67
3
11
P&W4158
Fleet
65
5702
30-m
22.11
6.91
26.26
10.26
41.60
16.25
3
11
P&W4158
Fleet
80
7100
30-m
33.17
7.23
38.12
9.87
75.18
19.47
3
11
P&W4158
Fleet
7
591
30-m
45.51
13.55
55.04
19.89
9.04
3.27
3
11
P&W4158
Fleet
80
7200
30-m
38.46
7.80
43.52
10.24
87.04
20.47
3
11
P&W4158
Fleet
65
5711
30-m
21.70
6.50
25.47
9.37
40.40
14.87
3
11
P&W4158
Fleet
30
2252
30-m
11.48
8.28
15.83
12.71
9.90
7.95
3
11
P&W4158
Fleet
7
596
30-m
51.19
21.36
64.06
31.86
10.61
5.28
3
T8
RB211
Fleet
4
566
30-m
214.47
175.72
289.77
274.60
45.54
43.15
3
T8
RB211
Fleet
7
770
30-m
193.18
151.81
258.95
237.50
55.38
50.80
3
T8
RB211
Fleet
15
1191
30-m
58.69
33.31
74.93
50.59
24.79
16.74
3
T8
RB211
Fleet
30
2109
30-m
50.60
18.44
61.21
28.07
35.86
16.44
3
T8
RB211
Fleet
45
3178
30-m
62.71
12.86
72.79
19.34
64.25
17.07
3
T8
RB211
Fleet
65
4750
30-m
127.13
11.11
142.07
13.01
187.43
17.16
3
T8
RB211
Fleet
85
6096
30-m
90.08
16.70
102.07
19.39
172.85
32.83
3
T8
RB211
Fleet
7
782
30-m
132.25
57.52
173.92
88.48
37.78
19.22
3
T8
RB211
Fleet
85
6449
30-m
79.26
16.20
90.49
19.04
162.10
34.11
3
T8
RB211
Fleet
4
552
43-m
53.67
30.66
73.84
48.20
11.33
7.39
3
T8
RB211
Fleet
65
4691
43-m
127.14
15.79
149.24
19.09
194.46
24.88
3
T8
RB211
Fleet
45
3436
43-m
64.59
14.92
77.89
19.94
74.34
19.03
3
T8
RB211
Fleet
30
2131
43-m
47.32
16.14
61.00
24.54
36.10
14.53
3
T8
RB211
Fleet
15
1178
43-m
48.37
23.68
65.31
37.79
21.38
12.37
3
T8
RB211
Fleet
7
654
43-m
57.28
17.76
75.79
27.75
13.76
5.04
3
T8
RB211
Fleet
4
437
43-m
82.10
22.90
107.86
35.03
13.10
4.25
3
T9
RB211
Fleet
4
421
30-m
38.74
16.36
43.17
18.61
5.05
2.18
3
T9
RB211
Fleet
7
690
30-m
8.11
5.87
9.28
7.18
1.78
1.38
3
T9
RB211
Fleet
15
1221
30-m
7.52
3.33
8.58
4.90
2.91
1.66
3
T9
RB211
Fleet
30
2004
30-m
10.47
2.85
11.65
4.15
6.49
2.31
3
T9
RB211
Fleet
45
3068
30-m
18.36
8.15
20.92
12.28
17.83
10.47
3
T9
RB211
Fleet
65
4479
30-m
41.54
6.46
45.89
7.23
57.09
9.00
3
T9
RB211
Fleet
85
6233
30-m
31.71
4.37
35.82
5.49
62.01
9.51
3
T9
RB211
Fleet
100
6966
30-m
21.03
2.84
23.71
3.49
45.88
6.75
3
T9
RB211
Fleet
4
494
30-m
19.54
4.50
22.16
5.64
3.04
0.77
3
T9
RB211
Fleet
100
6987
30-m
24.08
4.39
27.17
5.28
52.73
10.25
3
T9
RB211
Fleet
85
6307
30-m
30.64
4.16
34.47
5.07
60.39
8.88
3
T9
RB211
Fleet
65
4551
30-m
47.69
3.86
52.79
4.55
66.75
5.76
3
T9
RB211
Fleet
45
3111
30-m
17.06
4.58
18.72
5.29
16.17
4.57
3
T9
RB211
Fleet
30
2037
30-m
12.54
8.24
14.81
12.99
8.38
7.35
3
T9
RB211
Fleet
15
1173
30-m
8.69
2.93
9.79
4.19
3.19
1.37
3
T9
RB211
Fleet
7
668
30-m
7.76
3.57
8.87
5.48
1.65
1.02
3
T9
RB211
Fleet
4
506
30-m
10.75
4.51
12.22
6.55
1.72
0.92
D-10
-------
Table D-3. PM mass emission indices and rates determined by the TEOM
APEX
Test
Enqine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kq fuel)
Emission Rate (mq/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
1
EPA 1
CFM56-2C
Base
100
2906
30-m
489.21
578.57
667.95
789.95
539.11
637.58
1
EPA 1
CFM56-2C
Base
85
2622
30-m
2059.74
1179.08
2812.29
1609.87
2048.16
1172.45
1
EPA 1
CFM56-2C
Base
30
1012
30-m
349.21
390.46
476.79
533.11
134.09
149.93
1
EPA 1
CFM56-2C
Base
30
1003
30-m
417.35
719.64
569.83
982.57
158.82
273.85
1
EPA 1
CFM56-2C
Base
7
443
30-m
308.15
188.93
420.74
257.96
51.73
31.72
1
EPA 1
CFM56-2C
Base
7
442
30-m
50.22
930.74
68.56
1270.79
8.42
156.09
1
EPA 1
CFM56-2C
Base
85
2974
30-m
142.29
242.11
183.87
312.85
151.91
258.46
1
EPA 1
CFM56-2C
Base
30
991
30-m
159.55
296.35
217.84
404.62
59.97
111.39
1
EPA 1
CFM56-2C
Base
7
431
30-m
33.56
258.91
45.82
353.50
5.49
42.35
1
EPA 1
CFM56-2C
Base
30
963
30-m
97.11
237.22
132.58
323.89
35.46
86.63
1
EPA 2
CFM56-2C
Base
7
436
30-m
100.30
220.46
138.85
305.19
16.81
36.95
1
EPA 2
CFM56-2C
Base
85
2898
30-m
683.87
370.35
946.71
512.68
762.07
412.69
1
EPA 2
CFM56-2C
Base
30
1017
30-m
74.25
570.51
102.79
789.78
29.02
223.01
1
EPA 2
CFM56-2C
Base
7
409
30-m
305.75
1089.67
423.27
1508.47
48.04
171.21
1
EPA 2
CFM56-2C
Base
30
1022
30-m
533.56
602.14
738.63
833.56
209.59
236.52
1
EPA 2
CFM56-2C
Base
7
418
30-m
161.51
388.79
223.59
538.22
25.94
62.44
1
EPA 2
CFM56-2C
Base
85
2892
30-m
8.29
364.02
11.48
503.93
9.22
404.88
1
EPA 2
CFM56-2C
Base
30
1017
30-m
528.27
627.34
731.31
868.45
206.59
245.33
1
EPA 2
CFM56-2C
Base
7
413
30-m
91.98
181.33
127.33
251.02
14.61
28.81
1
EPA 2
CFM56-2C
Base
30
1038
30-m
506.42
581.20
701.05
804.58
202.20
232.05
1
EPA 2
CFM56-2C
Base
7
449
30-m
155.04
207.00
214.63
286.56
26.80
35.78
1
NASA 1
CFM56-2C
Base
85
2406
30-m
95.10
484.49
127.44
649.26
85.18
433.96
1
NASA 1
CFM56-2C
Base
40
1187
30-m
134.90
238.16
180.78
319.15
59.62
105.25
1
NASA 1
CFM56-2C
Base
4
341
30-m
343.58
297.12
460.42
398.17
43.55
37.66
1
NASA 1
CFM56-2C
Base
30
953
30-m
120.87
111.88
161.98
149.93
42.90
39.71
1
NASA 1
CFM56-2C
Base
15
527
30-m
250.30
191.43
335.42
256.54
49.07
37.53
1
NASA 1
CFM56-2C
Base
7
427
30-m
106.58
64.56
142.82
86.51
16.93
10.26
1
NASA 1
CFM56-2C
Base
5.5
377
30-m
110.85
125.69
148.55
168.43
15.55
17.63
1
NASA 1
CFM56-2C
Base
4
354
30-m
54.14
130.11
72.56
174.36
7.14
17.15
1
NASA 1
CFM56-2C
Base
4
354
30-m
141.64
412.09
189.81
552.23
18.67
54.32
1
NASA 1
CFM56-2C
Base
5.5
388
30-m
83.81
60.44
112.31
80.99
12.11
8.73
1
NASA 1
CFM56-2C
Base
7
436
30-m
125.94
169.27
168.76
226.84
20.43
27.46
1
NASA 1
CFM56-2C
Base
4
345
30-m
160.09
150.32
214.53
201.44
20.56
19.31
1
NASA 1
CFM56-2C
Base
40
1317
30-m
6.31
139.33
8.45
186.71
3.09
68.28
1
NASA 1
CFM56-2C
Base
30
1017
30-m
126.47
134.74
169.48
180.56
47.88
51.01
1
NASA 1
CFM56-2C
Base
15
545
30-m
136.03
111.90
182.30
149.96
27.59
22.69
1
NASA 1
CFM56-2C
Base
7
409
30-m
61.02
33.90
81.77
45.42
9.28
5.16
1
NASA 1
CFM56-2C
Base
5.5
379
30-m
95.40
78.78
127.85
105.57
13.46
11.12
1
NASA 1
CFM56-2C
Base
5.5
400
30-m
77.33
71.92
103.62
96.38
11.50
10.70
1
NASA 1
CFM56-2C
Base
7
436
30-m
32.25
130.69
43.22
175.13
5.23
21.20
1
NASA 1
CFM56-2C
Base
15
595
30-m
16.06
44.54
21.52
59.69
3.56
9.86
1
NASA1a
CFM56-2C
Base
4
350
30-m
184.37
179.95
245.98
240.09
23.89
23.31
1
NASAIa
CFM56-2C
Base
85
2928
30-m
43.07
409.20
57.47
545.96
46.75
444.09
1
NASA1a
CFM56-2C
Base
65
2107
30-m
168.64
153.84
225.00
205.26
131.66
120.11
1
NASAIa
CFM56-2C
Base
4
327
30-m
421.91
414.73
562.92
553.34
51.11
50.24
1
NASAIa
CFM56-2C
Base
85
2883
30-m
171.35
185.37
228.62
247.32
183.08
198.05
1
NASAIa
CFM56-2C
Base
70
2288
30-m
167.94
60.15
224.06
80.25
142.41
51.01
1
NASAIa
CFM56-2C
Base
65
2070
30-m
95.97
120.63
128.04
160.94
73.63
92.55
1
NASAIa
CFM56-2C
Base
60
1902
30-m
115.45
131.05
154.03
174.85
81.39
92.39
1
NASAIa
CFM56-2C
Base
4
336
30-m
426.70
502.52
569.30
670.46
53.13
62.57
1
NASAIa
CFM56-2C
Base
85
2946
30-m
164.41
150.42
219.35
200.70
179.53
164.26
1
NASAIa
CFM56-2C
Base
65
2102
30-m
252.26
184.76
336.56
246.50
196.52
143.93
1
NASAIa
CFM56-2C
Base
4
336
30-m
504.83
632.70
673.55
844.14
62.86
78.78
1
NASAIa
CFM56-2C
Base
85
2897
30-m
253.26
118.27
337.90
157.79
271.87
126.96
1
NASAIa
CFM56-2C
Base
65
2088
30-m
302.23
150.77
403.24
201.16
233.92
116.70
1
NASAIa
CFM56-2C
Base
4
336
30-m
22.87
633.62
30.51
845.37
2.85
78.89
D-11
-------
Table D-3 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
1
NASAIa
CFM56-2C
Base
85
2838
30-m
282.23
90.82
376.55
121.17
296.79
95.50
1
NASAIa
CFM56-2C
Base
70
2252
30-m
272.19
168.52
363.16
224.84
227.16
140.64
1
NASAIa
CFM56-2C
Base
65
2122
30-m
29.59
77.56
39.48
103.48
23.28
61.01
1
NASAIa
CFM56-2C
Base
60
1941
30-m
26.70
62.44
35.62
83.31
19.20
44.91
1
NASAIa
CFM56-2C
Base
4
331
30-m
799.54
591.76
1066.75
789.52
98.21
72.68
1
EPA 3
CFM56-2C
H
-S
85
2847
30-m
485.90
280.65
676.46
390.70
534.89
308.94
1
EPA 3
CFM56-2C
H
-S
76
2424
30-m
256.88
250.79
357.61
349.14
240.83
235.12
1
EPA 3
CFM56-2C
H
-S
30
958
30-m
657.42
643.77
915.23
896.24
243.54
238.48
1
EPA 3
CFM56-2C
H
-S
7
418
30-m
271.02
676.57
377.30
941.90
43.78
109.28
1
EPA 3
CFM56-2C
H
-S
30
981
30-m
1191.20
1177.81
1658.34
1639.71
451.73
446.66
1
EPA 3
CFM56-2C
H
-S
7
454
30-m
171.17
262.48
238.29
365.41
30.05
46.08
1
EPA 3
CFM56-2C
H
-S
30
944
30-m
928.02
1089.07
1291.95
1516.16
338.89
397.71
1
EPA 3
CFM56-2C
H
-S
7
445
30-m
84.48
388.48
117.60
540.83
14.53
66.84
1
EPA 3
CFM56-2C
H
-S
30
972
30-m
736.16
761.36
1024.86
1059.93
276.59
286.05
1
NASA 2
CFM56-2C
H
-S
4
345
30-m
259.50
24.89
353.70
33.93
33.94
3.26
1
NASA 2
CFM56-2C
H
-S
85
2715
30-m
229.75
119.70
313.15
163.15
236.16
123.04
1
NASA 2
CFM56-2C
H
-S
65
2072
30-m
185.76
165.36
253.19
225.38
145.70
129.70
1
NASA 2
CFM56-2C
H
-S
40
1245
30-m
249.08
140.68
339.50
191.74
117.44
66.33
1
NASA 2
CFM56-2C
H
-S
30
950
30-m
168.13
58.34
229.17
79.51
60.46
20.98
1
NASA 2
CFM56-2C
H
-S
7
402
30-m
342.83
233.11
467.28
317.74
52.15
35.46
1
NASA 2
CFM56-2C
H
-s
4
350
30-m
267.29
185.99
364.32
253.51
35.38
24.62
1
NASA 2
CFM56-2C
H
-s
85
2676
30-m
126.34
101.91
172.21
138.90
128.00
103.25
1
NASA 2
CFM56-2C
H
-s
65
2053
30-m
100.53
103.32
137.02
140.83
78.12
80.30
1
NASA 2
CFM56-2C
H
-s
40
1238
30-m
137.67
158.68
187.64
216.28
64.51
74.35
1
NASA 2
CFM56-2C
H
-s
30
954
30-m
219.18
139.96
298.75
190.77
79.19
50.57
1
NASA 2
CFM56-2C
H
-s
85
2791
30-m
54.87
58.76
74.79
80.09
57.99
62.10
1
NASA 2
CFM56-2C
H
-s
60
1855
30-m
-99.90
139.56
-136.17
190.22
-70.18
98.04
1
NASA 2
CFM56-2C
H
-s
40
1224
30-m
67.46
201.46
91.95
274.59
31.25
93.32
1
NASA 2
CFM56-2C
H
-s
15
543
30-m
113.69
375.43
154.96
511.72
23.39
77.25
1
NASA 3
CFM56-2C
H
-s
4
353
30-m
155.35
336.06
219.69
475.25
21.53
46.57
1
NASA 3
CFM56-2C
H
-s
85
2785
30-m
356.95
127.95
504.79
180.95
390.49
139.98
1
NASA 3
CFM56-2C
H
-s
65
2050
30-m
254.74
202.18
360.24
285.91
205.16
162.83
1
NASA 3
CFM56-2C
H
-s
40
1241
30-m
212.63
145.19
300.69
205.32
103.64
70.77
1
NASA 3
CFM56-2C
H
-s
30
976
30-m
277.50
106.71
392.43
150.91
106.40
40.92
1
NASA 3
CFM56-2C
H
-s
7
402
30-m
617.63
482.40
873.43
682.19
97.48
76.14
1
NASA 3
CFM56-2C
H
-s
4
341
30-m
260.85
114.64
368.89
162.12
34.94
15.35
1
NASA 3
CFM56-2C
H
-s
85
2763
30-m
196.65
73.32
278.09
103.69
213.44
79.58
1
NASA 3
CFM56-2C
H
-s
65
2047
30-m
210.56
96.23
297.76
136.09
169.32
77.38
1
NASA 3
CFM56-2C
H
-s
40
1251
30-m
213.88
165.19
302.47
233.60
105.09
81.16
1
NASA 3
CFM56-2C
H
-s
30
998
30-m
302.86
140.98
428.29
199.38
118.72
55.27
1
NASA 3
CFM56-2C
H
-s
7
405
30-m
554.70
464.41
784.44
656.75
88.24
73.88
1
NASA 3
CFM56-2C
H
-s
4
348
30-m
190.63
169.58
269.59
239.81
26.08
23.20
1
NASA 3
CFM56-2C
H
-s
85
2727
30-m
198.88
64.61
281.25
91.36
213.06
69.21
1
NASA 3
CFM56-2C
H
-s
70
2200
30-m
166.73
143.15
235.79
202.43
144.07
123.69
1
NASA 3
CFM56-2C
H
-s
65
2060
30-m
150.06
88.80
212.20
125.57
121.44
71.86
1
NASA 3
CFM56-2C
H
-s
60
1846
30-m
157.73
95.10
223.05
134.49
114.35
68.94
1
NASA 3
CFM56-2C
H
-s
40
1274
30-m
334.89
202.89
473.59
286.92
167.65
101.57
1
NASA 3
CFM56-2C
H
-s
30
985
30-m
153.81
96.30
217.51
136.18
59.50
37.25
1
NASA 3
CFM56-2C
H
-s
15
538
30-m
548.45
427.64
775.59
604.75
115.91
90.38
1
NASA 3
CFM56-2C
H
-s
7
410
30-m
210.17
71.28
297.21
100.79
33.81
11.47
1
NASA 3
CFM56-2C
H
-s
5.5
382
30-m
264.18
140.59
373.60
198.81
39.67
21.11
1
NASA 4
CFM56-2C
H
-Arom
85
2697
30-m
171.66
156.32
221.81
201.98
166.16
151.30
1
NASA 4
CFM56-2C
H
-Arom
65
2029
30-m
129.27
119.24
167.04
154.07
94.16
86.85
1
NASA 4
CFM56-2C
H
-Arom
40
1226
30-m
59.55
174.91
76.95
226.01
26.20
76.96
1
NASA 4
CFM56-2C
H
-Arom
30
976
30-m
161.32
235.28
208.45
304.01
56.52
82.43
1
NASA 4
CFM56-2C
H
-Arom
7
397
30-m
516.92
594.00
667.93
767.52
73.70
84.69
D-12
-------
Table D-3 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
217.15
228.46
280.59
295.20
27.07
28.48
1
NASA 4
CFM56-2C
H
-Arom
85
2706
30-m
185.50
79.76
239.69
103.06
180.16
77.46
1
NASA 4
CFM56-2C
H
-Arom
65
2034
30-m
57.99
144.80
74.92
187.09
42.33
105.70
1
NASA 4
CFM56-2C
H
-Arom
40
1185
30-m
270.92
177.53
350.06
229.39
115.22
75.50
1
NASA 4
CFM56-2C
H
-Arom
30
962
30-m
134.35
144.89
173.60
187.21
46.41
50.05
1
NASA 4
CFM56-2C
H
-Arom
7
395
30-m
511.31
615.00
660.68
794.66
72.49
87.19
1
NASA 4
CFM56-2C
H
-Arom
4
341
30-m
141.60
156.68
182.96
202.45
17.31
19.15
1
NASA 4
CFM56-2C
H
-Arom
85
2738
30-m
78.95
153.64
102.01
198.52
77.57
150.97
1
NASA 4
CFM56-2C
H
-Arom
85
2701
30-m
23.26
86.02
30.05
111.14
22.55
83.40
1
NASA 4
CFM56-2C
H
-Arom
70
2157
30-m
125.16
127.59
161.73
164.87
96.88
98.76
1
NASA 4
CFM56-2C
H
-Arom
65
1998
30-m
69.49
239.26
89.79
309.16
49.83
171.55
1
NASA 4
CFM56-2C
H
-Arom
60
1850
30-m
55.87
109.42
72.19
141.39
37.10
72.66
1
NASA 4
CFM56-2C
H
-Arom
40
1226
30-m
196.88
157.28
254.39
203.23
86.62
69.20
1
NASA 4
CFM56-2C
H
-Arom
30
962
30-m
86.33
177.26
111.55
229.04
29.82
61.23
1
NASA 4
CFM56-2C
H
-Arom
15
545
30-m
149.40
273.94
193.05
353.96
29.21
53.57
1
NASA 4
CFM56-2C
H
-Arom
7
404
30-m
253.02
298.83
326.93
386.12
36.69
43.34
1
NASA 4
CFM56-2C
H
-Arom
5.5
381
30-m
237.39
129.60
306.73
167.46
32.49
17.74
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
113.58
240.03
146.76
310.14
14.16
29.92
1
NASA 4
CFM56-2C
H
-Arom
85
2697
30-m
91.55
105.75
118.29
136.65
88.61
102.36
1
NASA 4
CFM56-2C
H
-Arom
65
2029
30-m
75.39
104.59
97.42
135.14
54.92
76.18
1
NASA 4
CFM56-2C
H
-Arom
40
1244
30-m
201.91
176.16
260.89
227.62
90.15
78.65
1
NASA 4
CFM56-2C
H
-Arom
30
940
30-m
260.45
411.02
336.54
531.08
87.85
138.64
1
NASA 4
CFM56-2C
H
-Arom
7
409
30-m
149.98
147.72
193.79
190.87
22.00
21.66
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
488.46
313.20
631.15
404.69
60.89
39.04
1
NASA 5
CFM56-2C
H
-Arom
4
354
30-m
175.40
156.60
233.23
208.24
22.94
20.48
1
NASA 5
CFM56-2C
H
-Arom
85
2960
30-m
392.77
256.65
522.28
341.27
429.44
280.61
1
NASA 5
CFM56-2C
H
-Arom
65
2191
30-m
183.44
232.81
243.93
309.57
148.43
188.37
1
NASA 5
CFM56-2C
H
-Arom
40
1253
30-m
309.40
287.58
411.41
382.41
143.20
133.10
1
NASA 5
CFM56-2C
H
-Arom
30
962
30-m
193.57
205.15
257.40
272.80
68.82
72.93
1
NASA 5
CFM56-2C
H
-Arom
7
413
30-m
439.75
1855.81
584.74
2467.74
67.11
283.20
1
NASA 5
CFM56-2C
H
-Arom
100
3264
30-m
254.96
425.57
339.04
565.89
307.42
513.12
1
NASA 5
CFM56-2C
H
-Arom
85
2869
30-m
231.82
208.74
308.26
277.57
245.69
221.23
1
NASA 5
CFM56-2C
H
-Arom
65
2134
30-m
279.54
225.27
371.72
299.55
220.33
177.55
1
NASA 5
CFM56-2C
H
-Arom
40
1280
30-m
203.88
412.31
271.11
548.26
96.42
194.98
1
NASA 5
CFM56-2C
H
-Arom
7
404
30-m
275.67
321.84
366.57
427.97
41.14
48.03
1
NASA 5
CFM56-2C
H
-Arom
4
338
30-m
148.19
128.46
197.05
170.82
18.51
16.05
1
NASA 5
CFM56-2C
H
-Arom
85
2933
30-m
160.92
79.64
213.98
105.90
174.32
86.27
1
NASA 5
CFM56-2C
H
-Arom
70
2247
30-m
85.29
84.49
113.41
112.34
70.79
70.13
1
NASA 5
CFM56-2C
H
-Arom
65
2088
30-m
110.50
76.32
146.94
101.49
85.24
58.88
1
NASA 5
CFM56-2C
H
-Arom
60
1930
30-m
35.20
71.30
46.81
94.81
25.09
50.82
1
NASA 5
CFM56-2C
H
-Arom
40
1271
30-m
145.00
172.93
192.81
229.95
68.08
81.20
1
NASA 5
CFM56-2C
H
-Arom
30
999
30-m
234.16
190.10
311.38
252.78
86.39
70.13
1
NASA 5
CFM56-2C
H
-Arom
15
545
30-m
330.62
427.98
439.64
569.09
66.53
86.12
1
NASA 5
CFM56-2C
H
-Arom
7
413
30-m
127.70
110.72
169.81
147.23
19.49
16.90
1
NASA 5
CFM56-2C
H
-Arom
5.5
395
30-m
104.16
121.02
138.51
160.92
15.20
17.66
1
NASA 5
CFM56-2C
H
-Arom
4
345
30-m
264.37
90.21
351.54
119.95
33.69
11.50
1
NASA 5
CFM56-2C
H
-Arom
65
2111
30-m
54.32
145.13
72.23
192.98
42.35
113.17
1
NASA 5
CFM56-2C
H
-Arom
40
1362
30-m
103.60
200.56
137.76
266.70
52.12
100.90
1
NASA 5
CFM56-2C
H
-Arom
30
1003
30-m
137.56
239.29
182.92
318.20
50.98
88.68
1
NASA 5
CFM56-2C
H
-Arom
7
409
30-m
344.82
443.95
458.52
590.33
52.04
67.00
1
NASA 5
CFM56-2C
H
-Arom
4
345
30-m
262.71
233.88
349.34
311.00
33.48
29.81
2
T1
CFM56-7B
Fleet
4
336
30-m
1465.20
219.60
1640.05
245.80
153.05
22.94
2
T1
CFM56-7B
Fleet
7
418
30-m
228.61
20.12
255.89
22.52
29.69
2.61
2
T1
CFM56-7B
Fleet
30
1180
30-m
249.99
21.41
279.82
23.96
91.75
7.86
2
T1
CFM56-7B
Fleet
40
1544
30-m
142.53
10.87
159.54
12.17
68.41
5.22
2
T1
CFM56-7B
Fleet
65
2497
30-m
106.69
7.51
119.42
8.41
82.83
5.83
D-13
-------
Table D-3 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
2
T1
CFM56-7B
Fleet
85
4131
30-m
22.32
2.71
24.99
3.04
28.68
3.48
2
T1
CFM56-7B
Fleet
7
395
30-m
200.36
27.97
224.27
31.31
24.61
3.44
2
T1
CFM56-7B
Fleet
85
4086
30-m
222.62
20.05
249.19
22.45
282.83
25.48
2
T1
CFM56-7B
Fleet
65
2497
30-m
93.20
8.26
104.32
9.25
72.36
6.41
2
T1
CFM56-7B
Fleet
40
1498
30-m
29.50
2.46
33.02
2.75
13.74
1.14
2
T1
CFM56-7B
Fleet
30
1135
30-m
266.08
22.60
297.84
25.29
93.90
7.97
2
T1
CFM56-7B
Fleet
4
313
30-m
429.55
74.65
480.81
83.56
41.84
7.27
2
T4
CFM56-7B
Fleet
4
336
30-m
442.92
60.38
498.46
67.95
46.52
6.34
2
T4
CFM56-7B
Fleet
7
418
30-m
320.17
31.71
360.31
35.69
41.80
4.14
2
T4
CFM56-7B
Fleet
30
1180
30-m
127.84
8.45
143.87
9.51
47.17
3.12
2
T4
CFM56-7B
Fleet
40
1544
30-m
206.75
12.90
232.67
14.51
99.77
6.22
2
T4
CFM56-7B
Fleet
65
2497
30-m
128.40
6.19
144.50
6.96
100.23
4.83
2
T4
CFM56-7B
Fleet
85
4131
30-m
255.72
10.06
287.78
11.32
330.26
12.99
2
T4
CFM56-7B
Fleet
7
395
30-m
289.56
36.04
325.86
40.56
35.75
4.45
2
T4
CFM56-7B
Fleet
85
4086
30-m
433.93
18.80
488.34
21.16
554.26
24.01
2
T4
CFM56-7B
Fleet
65
2497
30-m
164.45
10.89
185.07
12.26
128.36
8.50
2
T4
CFM56-7B
Fleet
40
1498
30-m
135.06
10.34
152.00
11.63
63.26
4.84
2
T4
CFM56-7B
Fleet
30
1135
30-m
82.98
6.77
93.38
7.62
29.44
2.40
2
T4
CFM56-7B
Fleet
7
381
30-m
261.61
28.67
294.41
32.26
31.19
3.42
2
T4
CFM56-7B
Fleet
4
313
30-m
356.37
60.58
401.05
68.17
34.90
5.93
2
T2
CFM56-3B
Fleet
4
341
30-m
323.32
38.68
358.89
42.94
33.94
4.06
2
T2
CFM56-3B
Fleet
7
422
30-m
150.86
16.08
167.46
17.85
19.64
2.09
2
T2
CFM56-3B
Fleet
30
1099
30-m
175.39
14.54
194.68
16.14
59.41
4.93
2
T2
CFM56-3B
Fleet
40
1403
30-m
128.53
8.49
142.67
9.42
55.59
3.67
2
T2
CFM56-3B
Fleet
65
2193
30-m
122.12
6.67
127.23
7.03
77.50
4.28
2
T2
CFM56-3B
Fleet
85
3528
30-m
276.54
13.90
306.96
15.43
300.78
15.12
2
T2
CFM56-3B
Fleet
7
404
30-m
234.09
23.36
259.85
25.93
29.16
2.91
2
T2
CFM56-3B
Fleet
85
3559
30-m
445.43
24.16
494.43
26.82
488.84
26.52
2
T2
CFM56-3B
Fleet
65
2184
30-m
174.12
9.84
193.28
10.92
117.24
6.63
2
T2
CFM56-3B
Fleet
85
3559
30-m
247.34
11.36
274.54
12.61
271.44
12.47
2
T2
CFM56-3B
Fleet
40
1367
30-m
65.67
4.46
72.90
4.95
27.67
1.88
2
T2
CFM56-3B
Fleet
30
1067
30-m
146.92
11.56
163.09
12.84
48.33
3.80
2
T2
CFM56-3B
Fleet
7
418
30-m
177.99
18.31
197.57
20.33
22.92
2.36
2
T2
CFM56-3B
Fleet
4
345
30-m
275.23
31.31
305.50
34.75
29.28
3.33
2
T3
CFM56-3B
Fleet
4
372
30-m
315.89
35.18
348.84
38.85
36.07
4.02
2
T3
CFM56-3B
Fleet
7
440
30-m
227.94
25.63
251.71
28.31
30.79
3.46
2
T3
CFM56-3B
Fleet
30
1130
30-m
195.57
16.91
215.97
18.68
67.82
5.86
2
T3
CFM56-3B
Fleet
40
1444
30-m
99.04
6.33
109.37
6.99
43.86
2.80
2
T3
CFM56-3B
Fleet
65
2252
30-m
293.45
16.25
324.07
17.95
202.71
11.23
2
T3
CFM56-3B
Fleet
85
3677
30-m
604.01
30.26
667.03
33.42
681.37
34.14
2
T3
CFM56-3B
Fleet
7
418
30-m
237.11
26.43
261.84
29.18
30.38
3.39
2
T3
CFM56-3B
Fleet
85
3650
30-m
560.05
31.47
618.48
34.76
627.10
35.24
2
T3
CFM56-3B
Fleet
65
2261
30-m
232.48
13.48
256.73
14.89
161.24
9.35
2
T3
CFM56-3B
Fleet
40
1412
30-m
161.48
11.02
178.33
12.17
69.94
4.77
2
T3
CFM56-3B
Fleet
30
1108
30-m
144.18
11.44
159.23
12.63
49.00
3.89
2
T3
CFM56-3B
Fleet
7
422
30-m
232.06
27.82
256.27
30.72
30.06
3.60
2
T3
CFM56-3B
Fleet
4
368
30-m
221.69
26.36
244.82
29.11
25.01
2.97
3
T1
CFM56-3B
Fleet
4
300
30-m
157.61
23.31
187.18
27.53
15.60
2.29
3
T1
CFM56-3B
Fleet
7
397
30-m
223.91
28.04
262.48
32.69
28.91
3.60
3
T1
CFM56-3B
Fleet
15
654
30-m
138.43
16.17
161.94
18.66
29.40
3.39
3
T1
CFM56-3B
Fleet
30
1136
30-m
343.68
23.48
390.17
26.51
123.08
8.36
3
T1
CFM56-3B
Fleet
45
1618
30-m
609.90
62.11
682.45
69.08
306.67
31.04
3
T1
CFM56-3B
Fleet
65
2260
30-m
269.04
12.97
305.21
14.65
191.64
9.20
3
T1
CFM56-3B
Fleet
85
2903
30-m
429.50
20.10
482.24
22.45
388.90
18.11
3
T1
CFM56-3B
Fleet
100
3385
30-m
431.22
20.43
483.43
22.69
454.59
21.34
3
T1
CFM56-3B
Fleet
4
300
30-m
759.27
104.13
858.03
117.40
71.53
9.79
D-14
-------
Table D-3 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T1
CFM56-3B
Fleet
100
3385
30-m
660.50
29.31
737.12
32.58
693.15
30.63
3
T1
CFM56-3B
Fleet
85
2903
30-m
507.98
23.27
569.81
26.02
459.51
20.99
3
T1
CFM56-3B
Fleet
65
2260
30-m
245.29
16.17
280.57
18.20
176.17
11.43
3
T1
CFM56-3B
Fleet
45
1618
30-m
217.93
19.57
248.03
21.99
111.45
9.88
3
T1
CFM56-3B
Fleet
30
1136
30-m
100.07
8.12
120.70
9.46
38.08
2.99
3
T1
CFM56-3B
Fleet
15
654
30-m
86.11
10.10
105.43
12.15
19.14
2.21
3
T1
CFM56-3B
Fleet
7
397
30-m
100.72
13.54
124.30
16.44
13.69
1.81
3
T1
CFM56-3B
Fleet
4
300
30-m
235.32
27.22
281.91
32.31
23.50
2.69
3
T11
CFM56-3B
Fleet
4
381
30-m
186.78
18.00
207.94
20.01
22.03
2.12
3
T11
CFM56-3B
Fleet
7
431
30-m
195.97
19.01
217.52
21.09
26.06
2.53
3
T11
CFM56-3B
Fleet
15
622
30-m
152.93
13.06
169.41
14.46
29.27
2.50
3
T11
CFM56-3B
Fleet
30
1090
30-m
149.73
8.61
165.30
9.50
50.03
2.88
3
T11
CFM56-3B
Fleet
45
1530
30-m
136.04
5.14
150.03
5.65
63.76
2.40
3
T11
CFM56-3B
Fleet
65
2179
30-m
166.02
5.88
182.55
6.46
110.50
3.91
3
T11
CFM56-3B
Fleet
85
2815
30-m
308.87
12.26
338.16
13.42
264.40
10.49
3
T11
CFM56-3B
Fleet
100
3564
30-m
347.96
13.67
380.68
14.95
376.87
14.80
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
663.55
116.26
769.92
134.08
38.84
6.76
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
349.44
45.77
386.39
50.59
32.65
4.27
3
T2
CJ610-8ATJ
Fleet
30
452
15-m
268.61
15.24
296.85
16.83
37.25
2.11
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
196.09
7.97
217.01
8.82
34.21
1.39
3
T2
CJ610-8ATJ
Fleet
65
760
15-m
227.71
9.12
251.48
10.07
53.12
2.13
3
T2
CJ610-8ATJ
Fleet
85
999
15-m
254.05
8.61
280.12
9.48
77.72
2.63
3
T2
CJ610-8ATJ
Fleet
85
999
30-m
338.73
22.32
373.90
24.63
103.74
6.83
3
T2
CJ610-8ATJ
Fleet
100
1226
30-m
322.56
18.97
355.91
20.93
121.19
7.13
3
T2
CJ610-8ATJ
Fleet
7
182
30-m
1358.97
869.18
1510.07
965.56
76.17
48.71
3
T2
CJ610-8ATJ
Fleet
7 182
15-m
247.81
163.54
287.58
189.19
14.51
9.54
3
T2
CJ610-8ATJ
Fleet
100
1226
15-m
296.04
13.22
326.05
14.52
111.02
4.95
3
T2
CJ610-8ATJ
Fleet
65
763
15-m
387.32
17.76
426.56
19.54
90.37
4.14
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
382.96
15.69
422.08
17.28
66.54
2.72
3
T2
CJ610-8ATJ
Fleet
30
454
15-m
359.96
24.89
397.18
27.46
50.09
3.46
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
371.78
42.68
410.75
47.16
34.71
3.98
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
3016.62
361.03
3339.21
398.76
168.44
20.12
3
T5
CJ610-8ATJ
Fleet
7
227
15-m
755.83
281.68
828.33
308.70
52.23
19.47
3
T5
CJ610-8ATJ
Fleet
15
303
15-m
438.74
121.99
480.83
133.69
40.51
11.26
3
T5
CJ610-8ATJ
Fleet
30
452
15-m
406.41
36.71
445.40
40.23
55.89
5.05
3
T5
CJ610-8ATJ
Fleet
45
567
15-m
402.52
34.22
441.13
37.50
69.43
5.90
3
T5
CJ610-8ATJ
Fleet
65
763
15-m
427.83
16.30
468.87
17.86
99.34
3.78
3
T5
CJ610-8ATJ
Fleet
85
1009
15-m
520.92
78.33
570.89
85.84
159.97
24.06
3
T5
CJ610-8ATJ
Fleet
100
1226
15-m
565.61
12.97
619.87
14.22
211.07
4.84
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
346.73
131.42
379.99
144.02
23.96
9.08
3
T5
CJ610-8ATJ
Fleet
100
1226
30-m
511.08
45.44
560.11
49.80
190.72
16.96
3
T5
CJ610-8ATJ
Fleet
85
1009
30-m
564.71
44.70
618.88
48.99
173.42
13.73
3
T5
CJ610-8ATJ
Fleet
65
763
30-m
439.64
23.90
481.82
26.19
102.08
5.55
3
T5
CJ610-8ATJ
Fleet
45
567
30-m
386.43
26.19
423.50
28.71
66.65
4.52
3
T5
CJ610-8ATJ
Fleet
30
452
30-m
413.32
23.02
452.97
25.23
56.84
3.17
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
280.88
14.69
307.83
16.10
19.41
1.01
3
T3
AE3007A1E
Fleet
8.4
174
15-m
281.08
182.32
324.90
210.70
15.72
10.19
3
T3
AE3007A1E
Fleet
15
238
15-m
98.58
35.53
116.21
41.85
7.69
2.77
3
T3
AE3007A1E
Fleet
30
389
15-m
71.57
18.10
83.87
21.19
9.07
2.29
3
T3
AE3007A1E
Fleet
45
555
15-m
117.59
20.40
134.58
23.30
20.75
3.59
3
T3
AE3007A1E
Fleet
65
805
15-m
114.07
17.79
131.08
20.40
29.31
4.56
3
T3
AE3007A1E
Fleet
85
1082
15-m
94.13
18.23
108.84
21.06
32.70
6.33
3
T3
AE3007A1E
Fleet
100
1286
15-m
54.69
10.25
65.05
12.12
23.24
4.33
3
T3
AE3007A1E
Fleet
8.4
172
15-m
270.20
169.48
310.40
194.65
14.83
9.30
3
T3
AE3007A1E
Fleet
100
1299
15-m
94.64
17.01
109.23
19.56
39.41
7.06
3
T3
AE3007A1E
Fleet
85
1088
15-m
129.59
25.32
148.45
28.98
44.88
8.76
D-15
-------
Table D-3 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T3
AE3007A1E
Fleet
65
810
15-m
66.87
11.49
79.11
13.53
17.80
3.04
3
T3
AE3007A1E
Fleet
45
563
15-m
108.14
23.39
127.20
27.48
19.88
4.30
3
T3
AE3007A1E
Fleet
30
392
15-m
112.00
24.36
128.93
27.98
14.04
3.05
3
T3
AE3007A1E
Fleet
15
235
15-m
89.58
20.95
104.44
24.37
6.82
1.59
3
T3
AE3007A1E
Fleet
8.4
173
15-m
250.95
150.56
291.96
175.12
14.00
8.40
3
T4
AE3007A1E
Fleet
8.4
168
15-m
414.51
120.34
476.94
138.24
22.22
6.44
3
T4
AE3007A1E
Fleet
15
239
15-m
148.58
41.47
182.38
50.58
12.12
3.36
3
T4
AE3007A1E
Fleet
30
385
15-m
141.14
45.87
167.11
54.20
17.88
5.80
3
T4
AE3007A1E
Fleet
45
547
15-m
2.19
0.87
4.05
1.52
0.62
0.23
3
T4
AE3007A1E
Fleet
65
788
15-m
68.47
14.45
80.94
17.00
17.72
3.72
3
T4
AE3007A1E
Fleet
85
1050
15-m
105.94
17.28
121.98
19.86
35.57
5.79
3
T4
AE3007A1E
Fleet
100
1253
15-m
76.73
9.21
88.23
10.51
30.71
3.66
3
T4
AE3007A1E
Fleet
8.4
168
15-m
353.44
38.43
410.45
43.49
19.11
2.03
3
T4
AE3007A1E
Fleet
100
1252
15-m
184.38
35.06
209.08
39.68
72.69
13.80
3
T4
AE3007A1E
Fleet
85
1041
15-m
109.05
16.57
126.03
19.10
36.46
5.53
3
T4
AE3007A1E
Fleet
8.4
168
15-m
108.83
13.93
135.19
17.01
6.31
0.79
3
T4
AE3007A1E
Fleet
85
1052
15-m
115.86
25.03
134.35
28.76
39.24
8.40
3
T4
AE3007A1E
Fleet
65
786
15-m
108.46
26.27
126.57
30.58
27.64
6.68
3
T4
AE3007A1E
Fleet
45
549
15-m
138.13
48.93
160.54
56.81
24.49
8.67
3
T4
AE3007A1E
Fleet
30
384
15-m
276.43
94.06
322.64
109.52
34.43
11.69
3
T4
AE3007A1E
Fleet
15
231
15-m
48.64
10.03
61.70
12.16
3.96
0.78
3
T4
AE3007A1E
Fleet
8.4
167
15-m
311.27
31.07
363.43
35.85
16.88
1.67
3
T10
AE3007A1/1
Fleet
8.4
179
30-m
206.59
131.39
233.71
148.62
11.61
7.38
3
T10
AE3007A1/1
Fleet
15
233
30-m
166.15
34.10
189.19
38.81
12.22
2.51
3
T10
AE3007A1/1
Fleet
30
372
30-m
92.80
7.83
106.77
8.96
11.03
0.93
3
T10
AE3007A1/1
Fleet
45
524
30-m
98.96
11.49
112.98
13.10
16.44
1.91
3
T10
AE3007A1/1
Fleet
65
750
30-m
109.53
8.23
124.78
9.35
26.00
1.95
3
T10
AE3007A1/1
Fleet
85
971
30-m
112.39
9.87
127.16
11.14
34.29
3.00
3
T10
AE3007A1/1
Fleet
100
1171
30-m
129.10
9.33
145.86
10.49
47.46
3.41
3
T10
AE3007A1/1
Fleet
8.4
177
30-m
123.52
44.10
142.13
50.70
6.97
2.49
3
T10
AE3007A1/1
Fleet
100
1180
30-m
132.49
7.86
149.62
8.82
49.02
2.89
3
T10
AE3007A1/1
Fleet
85
982
30-m
140.69
8.53
159.18
9.60
43.40
2.62
3
T10
AE3007A1/1
Fleet
65
767
30-m
73.81
11.86
84.94
13.63
18.09
2.90
3
T10
AE3007A1/1
Fleet
45
529
30-m
97.83
7.86
111.96
8.93
16.45
1.31
3
T10
AE3007A1/1
Fleet
30
371
30-m
84.63
13.89
97.18
15.89
10.01
1.64
3
T10
AE3007A1/1
Fleet
15
231
30-m
98.68
22.07
113.73
25.39
7.28
1.63
3
T10
AE3007A1/1
Fleet
8.4
178
30-m
126.72
43.19
147.36
50.21
7.27
2.48
3
T6
P&W4158
Fleet
7
610
30-m
338.69
23.66
381.83
26.65
64.65
4.51
3
T6
P&W4158
Fleet
15
1014
30-m
98.32
6.78
114.19
7.74
32.16
2.18
3
T6
P&W4158
Fleet
30
2245
30-m
44.98
2.35
52.58
2.70
32.79
1.68
3
T6
P&W4158
Fleet
45
3726
30-m
69.43
2.29
79.98
2.60
82.77
2.69
3
T6
P&W4158
Fleet
65
5827
30-m
207.80
8.27
231.63
9.15
374.95
14.81
3
T6
P&W4158
Fleet
7
595
30-m
301.19
34.31
340.55
38.77
56.27
6.41
3
T6
P&W4158
Fleet
65
5658
30-m
192.91
5.24
215.24
5.83
338.27
9.16
3
T6
P&W4158
Fleet
80
7026
30-m
255.49
4.80
283.88
5.32
554.04
10.38
3
T6
P&W4158
Fleet
7
368
30-m
131.43
14.42
149.90
16.41
15.30
1.68
3
T6
P&W4158
Fleet
80
7026
30-m
272.49
5.82
302.68
6.45
590.73
12.59
3
T6
P&W4158
Fleet
65
5658
30-m
131.33
4.35
147.40
4.84
231.65
7.61
3
T6
P&W4158
Fleet
45
3834
30-m
61.08
2.54
70.76
2.85
75.35
3.03
3
T6
P&W4158
Fleet
30
2465
30-m
61.87
2.84
72.41
3.27
49.59
2.24
3
T6
P&W4158
Fleet
15
1097
30-m
74.83
5.80
87.93
6.64
26.80
2.03
3
T6
P&W4158
Fleet
7
368
30-m
262.92
22.39
298.32
25.34
30.46
2.59
3
17
P&W4158
Fleet
7
600
30-m
550.38
24.68
616.87
27.59
102.90
4.60
3
17
P&W4158
Fleet
15
1035
30-m
196.14
10.96
224.90
12.50
64.68
3.60
3
17
P&W4158
Fleet
30
2230
30-m
86.23
3.58
100.70
4.10
62.37
2.54
3
17
P&W4158
Fleet
45
3688
30-m
107.38
3.67
122.81
4.14
125.80
4.24
D-16
-------
Table D-3 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
17
P&W4158
Fleet
65
5702
30-m
192.90
5.72
215.91
6.36
341.99
10.08
3
T7
P&W4158
Fleet
80
7100
30-m
268.32
5.62
298.59
6.25
588.85
12.32
3
T7
P&W4158
Fleet
7
591
30-m
345.83
14.76
391.11
16.65
64.24
2.74
3
T7
P&W4158
Fleet
80
7200
30-m
277.86
6.05
309.09
6.70
618.17
13.40
3
T7
P&W4158
Fleet
65
5711
30-m
133.38
5.20
150.34
5.80
238.49
9.20
3
T7
P&W4158
Fleet
30
2252
30-m
56.27
3.00
66.67
3.43
41.70
2.15
3
T7
P&W4158
Fleet
7
596
30-m
310.20
20.18
352.50
22.86
58.38
3.79
3
T8
RB211
Fleet
4
566
30-m
92.90
8.21
123.44
10.56
19.40
1.66
3
T8
RB211
Fleet
7
770
30-m
119.72
12.34
154.65
14.82
33.08
3.17
3
T8
RB211
Fleet
15
1191
30-m
19.09
2.74
24.55
3.38
8.12
1.12
3
T8
RB211
Fleet
30
2109
30-m
159.83
6.84
188.78
7.87
110.61
4.61
3
T8
RB211
Fleet
45
3178
30-m
279.58
9.24
322.25
10.55
284.44
9.31
3
T8
RB211
Fleet
65
4750
30-m
635.11
18.18
722.24
20.62
952.87
27.20
3
T8
RB211
Fleet
85
6096
30-m
520.71
18.91
592.38
21.51
1003.16
36.42
3
T8
RB211
Fleet
7
782
30-m
2459.67
408.14
2797.53
464.20
607.76
100.85
3
T8
RB211
Fleet
85
6449
30-m
436.11
16.28
496.81
18.52
889.93
33.17
3
T8
RB211
Fleet
4
552
43-m
1773.71
120.93
2018.62
137.62
309.64
21.11
3
T8
RB211
Fleet
65
4691
43-m
565.82
17.22
645.59
19.58
841.22
25.51
3
T8
RB211
Fleet
45
3436
43-m
386.27
14.26
443.96
16.29
423.70
15.54
3
T8
RB211
Fleet
30
2131
43-m
218.02
12.39
256.49
14.34
151.80
8.49
3
T8
RB211
Fleet
15
1178
43-m
117.05
5.95
146.48
7.36
47.95
2.41
3
T8
RB211
Fleet
7
654
43-m
118.83
13.18
149.31
16.26
27.11
2.95
3
T8
RB211
Fleet
4
437
43-m
282.06
40.19
341.13
48.41
41.42
5.88
3
T9
RB211
Fleet
4
421
30-m
513.88
115.54
567.14
127.51
66.37
14.92
3
T9
RB211
Fleet
7
690
30-m
140.46
15.83
155.75
17.53
29.83
3.36
3
T9
RB211
Fleet
15
1221
30-m
87.26
9.26
97.87
10.37
33.19
3.52
3
T9
RB211
Fleet
30
2004
30-m
121.70
8.63
135.09
9.57
75.20
5.33
3
T9
RB211
Fleet
45
3068
30-m
197.91
8.88
218.30
9.78
186.05
8.33
3
T9
RB211
Fleet
65
4479
30-m
480.02
17.26
527.12
18.94
655.79
23.57
3
T9
RB211
Fleet
85
6233
30-m
470.71
14.70
516.66
16.14
894.52
27.94
3
T9
RB211
Fleet
100
6966
30-m
382.88
12.73
420.38
13.97
813.40
27.03
3
T9
RB211
Fleet
4
494
30-m
559.28
81.29
616.48
89.52
84.59
12.28
3
T9
RB211
Fleet
100
6987
30-m
211.33
14.38
232.50
15.77
451.26
30.61
3
T9
RB211
Fleet
85
6307
30-m
444.40
14.96
487.87
16.43
854.72
28.78
3
T9
RB211
Fleet
65
4551
30-m
646.52
18.51
709.48
20.31
896.95
25.67
3
T9
RB211
Fleet
45
3111
30-m
339.02
18.62
372.99
20.45
322.36
17.67
3
T9
RB211
Fleet
30
2037
30-m
152.57
8.22
169.16
9.09
95.74
5.15
3
T9
RB211
Fleet
15
1173
30-m
124.71
11.10
138.90
12.29
45.28
4.00
3
T9
RB211
Fleet
7
668
30-m
42.96
6.02
49.16
6.87
9.12
1.27
3
T9
RB211
Fleet
4
506
30-m
168.32
25.14
187.64
28.01
26.38
3.94
D-17
-------
Table D-4. PM mass emission indices and rates determined by the QCM
APEX
Test
Enqine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kq fuel)
Emission Rate (mq/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
2
T1
CFM56-7B
Fleet
4
336
30-m
96.76
22.08
108.31
24.72
10.11
2.31
2
T1
CFM56-7B
Fleet
7
418
30-m
84.77
7.45
94.89
8.34
11.01
0.97
2
T1
CFM56-7B
Fleet
30
1180
30-m
74.70
4.78
83.62
5.31
27.42
1.74
2
T1
CFM56-7B
Fleet
40
1544
30-m
87.00
5.25
97.38
5.88
41.75
2.52
2
T1
CFM56-7B
Fleet
65
2497
30-m
69.79
3.28
78.12
3.67
54.18
2.54
2
T1
CFM56-7B
Fleet
85
4131
30-m
52.38
1.97
58.63
2.20
67.29
2.53
2
T1
CFM56-7B
Fleet
7
395
30-m
182.48
21.30
204.26
23.84
22.41
2.62
2
T1
CFM56-7B
Fleet
85
4086
30-m
30.12
1.26
33.71
1.42
38.26
1.61
2
T1
CFM56-7B
Fleet
65
2497
30-m
39.05
1.87
43.71
2.09
30.32
1.45
2
T1
CFM56-7B
Fleet
40
1498
30-m
51.00
8.20
57.09
9.18
23.76
3.82
2
T1
CFM56-7B
Fleet
30
1135
30-m
115.65
7.92
129.45
8.87
40.81
2.80
2
T1
CFM56-7B
Fleet
4
313
30-m
124.26
42.14
139.09
47.17
12.10
4.10
2
T4
CFM56-7B
Fleet
4
336
30-m
271.26
36.46
305.27
41.03
28.49
3.83
2
T4
CFM56-7B
Fleet
7
418
30-m
111.53
10.33
125.52
11.63
14.56
1.35
2
T4
CFM56-7B
Fleet
30
1180
30-m
147.80
8.86
166.33
9.97
54.54
3.27
2
T4
CFM56-7B
Fleet
40
1544
30-m
162.78
8.98
183.20
10.11
78.55
4.33
2
T4
CFM56-7B
Fleet
65
2497
30-m
233.64
9.55
262.94
10.75
182.38
7.45
2
T4
CFM56-7B
Fleet
85
4131
30-m
320.31
11.55
360.47
12.99
413.68
14.91
2
T4
CFM56-7B
Fleet
7
395
30-m
356.20
42.27
400.87
47.57
43.98
5.22
2
T4
CFM56-7B
Fleet
85
4086
30-m
309.43
12.16
348.23
13.68
395.24
15.53
2
T4
CFM56-7B
Fleet
65
2497
30-m
256.73
11.08
288.92
12.46
200.40
8.65
2
T4
CFM56-7B
Fleet
40
1498
30-m
243.65
14.03
274.20
15.79
114.11
6.57
2
T4
CFM56-7B
Fleet
30
1135
30-m
280.25
18.60
315.39
20.93
99.43
6.60
2
T4
CFM56-7B
Fleet
7
381
30-m
403.35
42.31
453.93
47.62
48.09
5.04
2
T4
CFM56-7B
Fleet
4
313
30-m
583.71
93.13
656.90
104.80
57.16
9.12
2
T2
CFM56-3B
Fleet
4
341
30-m
346.47
38.34
384.58
42.56
36.38
4.03
2
T2
CFM56-3B
Fleet
7
422
30-m
135.91
13.84
150.87
15.37
17.69
1.80
2
T2
CFM56-3B
Fleet
30
1099
30-m
98.77
6.61
109.63
7.33
33.46
2.24
2
T2
CFM56-3B
Fleet
65
2193
30-m
141.74
7.18
157.34
7.97
95.84
4.85
2
T2
CFM56-3B
Fleet
85
3528
30-m
367.58
15.24
408.01
16.92
399.80
16.58
2
T2
CFM56-3B
Fleet
7
404
30-m
193.75
16.35
215.06
18.15
24.14
2.04
2
T2
CFM56-3B
Fleet
85
3559
30-m
435.81
21.85
483.75
24.25
478.29
23.98
2
T2
CFM56-3B
Fleet
65
2184
30-m
184.36
8.82
204.64
9.79
124.13
5.94
2
T2
CFM56-3B
Fleet
85
3559
30-m
368.07
14.18
408.56
15.74
403.95
15.57
2
T2
CFM56-3B
Fleet
40
1367
30-m
122.22
6.46
135.67
7.17
51.50
2.72
2
T2
CFM56-3B
Fleet
30
1067
30-m
134.31
8.63
149.09
9.58
44.18
2.84
2
T2
CFM56-3B
Fleet
7
418
30-m
215.82
20.37
239.56
22.61
27.79
2.62
2
T2
CFM56-3B
Fleet
4
345
30-m
364.00
39.28
404.04
43.60
38.73
4.18
2
T3
CFM56-3B
Fleet
4
372
30-m
336.80
36.80
371.94
40.63
38.46
4.20
2
T3
CFM56-3B
Fleet
7
440
30-m
215.34
23.28
237.80
25.71
29.09
3.15
2
T3
CFM56-3B
Fleet
30
1130
30-m
74.69
5.50
82.49
6.07
25.90
1.91
2
T3
CFM56-3B
Fleet
40
1444
30-m
146.21
8.70
161.47
9.61
64.75
3.85
2
T3
CFM56-3B
Fleet
65
2252
30-m
396.56
21.51
437.94
23.75
273.93
14.86
2
T3
CFM56-3B
Fleet
85
3677
30-m
468.02
27.13
516.84
29.96
527.95
30.60
2
T3
CFM56-3B
Fleet
7
418
30-m
508.09
51.72
561.09
57.12
65.10
6.63
2
T3
CFM56-3B
Fleet
85
3650
30-m
44.14
27.59
48.74
30.47
49.42
30.90
2
T3
CFM56-3B
Fleet
40
1412
30-m
176.74
10.22
195.18
11.29
76.55
4.43
2
T3
CFM56-3B
Fleet
30
1108
30-m
193.25
12.97
213.41
14.33
65.67
4.41
2
T3
CFM56-3B
Fleet
7
422
30-m
356.99
39.48
394.24
43.60
46.24
5.11
2
T3
CFM56-3B
Fleet
4
368
30-m
395.67
44.75
436.95
49.42
44.63
5.05
3
T1
CFM56-3B
Fleet
4
300
30-m
575.84
76.18
636.30
84.17
53.05
7.02
3
T1
CFM56-3B
Fleet
7
397
30-m
426.45
48.70
471.23
53.81
51.90
5.93
3
T1
CFM56-3B
Fleet
15
654
30-m
410.74
38.99
453.87
43.08
82.41
7.82
3
T1
CFM56-3B
Fleet
30
1136
30-m
402.00
25.18
444.21
27.83
140.13
8.78
3
T1
CFM56-3B
Fleet
45
1618
30-m
474.84
34.66
524.69
38.30
235.78
17.21
3
T1
CFM56-3B
Fleet
65
2260
30-m
685.76
29.41
757.76
32.50
475.80
20.41
D-18
-------
Table D-4 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T1
CFM56-3B
Fleet
85
2903
30-m
1033.03
41.47
1141.50
45.83
920.55
36.96
3
T1
CFM56-3B
Fleet
100
3385
30-m
916.33
49.43
1012.54
54.62
952.13
51.36
3
T1
CFM56-3B
Fleet
4
300
30-m
1096.63
140.42
1211.78
155.17
101.02
12.94
3
T1
CFM56-3B
Fleet
100
3385
30-m
959.44
38.25
1060.18
42.26
996.93
39.74
3
T1
CFM56-3B
Fleet
85
2903
30-m
409.98
19.92
453.03
22.01
365.34
17.75
3
T1
CFM56-3B
Fleet
65
2260
30-m
128.68
10.94
142.19
12.09
89.28
7.59
3
T1
CFM56-3B
Fleet
45
1618
30-m
174.66
8.95
193.00
9.89
86.73
4.44
3
T1
CFM56-3B
Fleet
30
1136
30-m
261.47
13.26
288.93
14.65
91.15
4.62
3
T1
CFM56-3B
Fleet
15
654
30-m
496.44
42.60
548.56
47.07
99.60
8.55
3
T1
CFM56-3B
Fleet
7
397
30-m
706.48
72.97
780.66
80.63
85.99
00
00
CO
3
T1
CFM56-3B
Fleet
4
300
30-m
664.63
69.71
734.42
77.03
61.23
6.42
3
T11
CFM56-3B
Fleet
4
381
30-m
516.96
48.21
563.80
52.58
59.73
5.57
3
T11
CFM56-3B
Fleet
7
431
30-m
417.16
40.34
454.96
44.00
54.51
5.27
3
T11
CFM56-3B
Fleet
15
622
30-m
305.06
25.69
332.70
28.02
57.48
4.84
3
T11
CFM56-3B
Fleet
30
1090
30-m
356.56
20.43
388.87
22.28
117.70
6.74
3
T11
CFM56-3B
Fleet
45
1530
30-m
368.14
11.82
401.50
12.89
170.63
5.48
3
T11
CFM56-3B
Fleet
65
2179
30-m
522.91
18.02
570.29
19.65
345.21
11.90
3
T11
CFM56-3B
Fleet
85
2815
30-m
923.62
36.61
1007.31
39.93
787.60
31.22
3
T11
CFM56-3B
Fleet
100
3564
30-m
1047.23
44.73
1142.11
48.79
1130.66
48.30
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
682.23
115.18
748.79
126.42
37.77
6.38
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
88.55
11.47
97.19
12.58
8.21
1.06
3
T2
CJ610-8ATJ
Fleet
30
452
15-m
62.31
3.45
68.38
3.79
8.58
0.48
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
61.95
2.55
68.00
2.80
10.72
0.44
3
T2
CJ610-8ATJ
Fleet
65
760
15-m
78.07
3.16
85.69
3.46
18.10
0.73
3
T2
CJ610-8ATJ
Fleet
85
999
15-m
93.64
2.80
102.77
3.07
28.51
0.85
3
T2
CJ610-8ATJ
Fleet
85
999
30-m
104.95
6.75
115.19
7.41
31.96
2.06
3
T2
CJ610-8ATJ
Fleet
100
1226
30-m
102.74
6.01
112.76
6.60
38.40
2.25
3
T2
CJ610-8ATJ
Fleet
7
182
30-m
534.23
338.68
586.35
371.72
29.58
18.75
3
T2
CJ610-8ATJ
Fleet
7 182
15-m
1204.99
759.93
1322.55
834.07
66.72
42.07
3
T2
CJ610-8ATJ
Fleet
100
1226
15-m
107.82
3.20
118.34
3.51
40.29
1.20
3
T2
CJ610-8ATJ
Fleet
65
763
15-m
109.10
4.56
119.74
5.00
25.37
1.06
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
109.05
4.17
119.69
4.58
18.87
0.72
3
T2
CJ610-8ATJ
Fleet
30
454
15-m
105.48
7.28
115.77
8.00
14.60
1.01
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
113.96
13.25
125.08
14.54
10.57
1.23
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
293.59
92.08
322.24
101.06
16.26
5.10
3
T5
CJ610-8ATJ
Fleet
7
227
15-m
393.67
142.80
431.44
156.50
27.20
9.87
3
T5
CJ610-8ATJ
Fleet
15
303
15-m
629.15
174.97
689.51
191.75
58.09
16.15
3
T5
CJ610-8ATJ
Fleet
30
452
15-m
563.09
50.55
617.11
55.40
77.44
6.95
3
T5
CJ610-8ATJ
Fleet
45
567
15-m
579.58
49.11
635.19
53.82
99.97
8.47
3
T5
CJ610-8ATJ
Fleet
65
763
15-m
258.52
21.39
283.32
23.44
60.03
4.97
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
5441.15
3178.32
5963.14
3483.24
376.01
219.64
3
T5
CJ610-8ATJ
Fleet
100
1226
30-m
572.10
52.10
626.98
57.10
213.49
19.44
3
T5
CJ610-8ATJ
Fleet
30
452
30-m
425.60
23.36
466.43
25.60
58.53
3.21
3
T3
AE3007A1E
Fleet
8.4
174
15-m
243.08
157.27
269.63
174.45
13.05
8.44
3
T3
AE3007A1E
Fleet
15
238
15-m
167.41
59.70
185.70
66.22
12.29
4.38
3
T3
AE3007A1E
Fleet
30
389
15-m
142.57
35.25
158.15
39.10
17.11
4.23
3
T3
AE3007A1E
Fleet
45
555
15-m
124.03
20.33
137.57
22.55
21.21
3.48
3
T3
AE3007A1E
Fleet
65
805
15-m
113.51
17.07
125.91
18.94
28.16
4.24
3
T3
AE3007A1E
Fleet
85
1082
15-m
112.70
21.64
125.01
24.00
37.55
7.21
3
T3
AE3007A1E
Fleet
100
1286
15-m
126.81
22.91
140.67
25.41
50.26
9.08
3
T3
AE3007A1E
Fleet
8.4
172
15-m
256.59
160.22
284.62
177.72
13.60
8.49
3
T3
AE3007A1E
Fleet
100
1299
15-m
132.94
23.25
147.46
25.79
53.21
9.30
3
T3
AE3007A1E
Fleet
85
1088
15-m
126.91
24.62
140.77
27.30
42.56
8.25
3
T3
AE3007A1E
Fleet
65
810
15-m
141.28
23.08
156.71
25.60
35.25
5.76
3
T3
AE3007A1E
Fleet
45
563
15-m
154.79
33.09
171.69
36.71
26.83
5.74
3
T3
AE3007A1E
Fleet
30
392
15-m
166.59
34.48
184.78
38.25
20.13
4.17
D-19
-------
Table D-4 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
T3
AE3007A1E
Fleet
15
235
15-m
183.44
41.26
203.48
45.77
13.29
2.99
3
T3
AE3007A1E
Fleet
8.4
173
15-m
311.64
186.35
345.68
206.70
16.58
9.91
3
T4
AE3007A1E
Fleet
8.4
168
15-m
312.14
88.31
342.45
96.89
15.95
4.51
3
T4
AE3007A1E
Fleet
15
239
15-m
276.16
72.67
302.98
79.72
20.14
5.30
3
T4
AE3007A1E
Fleet
30
385
15-m
214.61
68.02
235.46
74.63
25.19
7.98
3
T4
AE3007A1E
Fleet
45
547
15-m
141.93
44.75
155.71
49.09
23.67
7.46
3
T4
AE3007A1E
Fleet
65
788
15-m
131.87
26.47
144.68
29.04
31.68
6.36
3
T4
AE3007A1E
Fleet
85
1050
15-m
131.58
20.88
144.36
22.91
42.09
6.68
3
T4
AE3007A1E
Fleet
100
1253
15-m
142.81
13.12
156.68
14.39
54.53
5.01
3
T4
AE3007A1E
Fleet
8.4
168
15-m
324.06
26.96
355.53
29.58
16.55
1.38
3
T4
AE3007A1E
Fleet
100
1252
15-m
151.26
28.20
165.95
30.94
57.70
10.76
3
T4
AE3007A1E
Fleet
85
1041
15-m
135.47
19.93
148.62
21.87
42.99
6.33
3
T4
AE3007A1E
Fleet
8.4
168
15-m
334.73
35.08
367.23
38.48
17.13
1.80
3
T4
AE3007A1E
Fleet
85
1052
15-m
141.12
27.57
154.82
30.25
45.22
8.83
3
T4
AE3007A1E
Fleet
65
786
15-m
138.58
32.51
152.04
35.67
33.20
7.79
3
T4
AE3007A1E
Fleet
45
549
15-m
185.32
64.11
203.32
70.34
31.02
10.73
3
T4
AE3007A1E
Fleet
30
384
15-m
286.01
94.20
313.78
103.35
33.48
11.03
3
T4
AE3007A1E
Fleet
15
231
15-m
385.24
42.44
422.65
46.56
27.13
2.99
3
T4
AE3007A1E
Fleet
8.4
167
15-m
352.81
25.03
387.07
27.46
17.98
1.28
3
T10
AE3007A1/1
Fleet
8.4
179
30-m
369.95
233.73
411.17
259.77
20.42
12.90
3
T10
AE3007A1/1
Fleet
15
233
30-m
282.38
56.70
313.85
63.02
20.28
4.07
3
T10
AE3007A1/1
Fleet
30
372
30-m
271.93
20.34
302.23
22.60
31.23
2.34
3
T10
AE3007A1/1
Fleet
45
524
30-m
286.65
31.26
318.59
34.75
46.35
5.06
3
T10
AE3007A1/1
Fleet
65
750
30-m
302.28
21.16
335.96
23.52
69.99
4.90
3
T10
AE3007A1/1
Fleet
85
971
30-m
326.61
24.71
363.00
27.46
97.88
7.40
3
T10
AE3007A1/1
Fleet
100
1171
30-m
356.75
20.99
396.50
23.33
129.00
7.59
3
T10
AE3007A1/1
Fleet
8.4
177
30-m
450.82
157.87
501.05
175.46
24.57
8.60
3
T10
AE3007A1/1
Fleet
100
1180
30-m
354.53
14.99
394.03
16.66
129.11
5.46
3
T10
AE3007A1/1
Fleet
85
982
30-m
306.41
16.40
340.56
18.22
92.85
4.97
3
T10
AE3007A1/1
Fleet
65
767
30-m
281.90
43.73
313.31
48.61
66.73
10.35
3
T10
AE3007A1/1
Fleet
45
529
30-m
263.01
17.18
292.31
19.10
42.95
2.81
3
T10
AE3007A1/1
Fleet
30
371
30-m
261.58
39.20
290.72
43.57
29.94
4.49
3
T10
AE3007A1/1
Fleet
15
231
30-m
285.70
61.28
317.54
68.11
20.33
4.36
3
T10
AE3007A1/1
Fleet
8.4
178
30-m
440.51
149.47
489.59
166.12
24.16
8.20
3
T6
P&W4158
Fleet
7
610
30-m
502.08
34.48
553.61
38.02
93.73
6.44
3
T6
P&W4158
Fleet
15
1014
30-m
93.78
5.77
103.41
6.36
29.13
1.79
3
T6
P&W4158
Fleet
30
2245
30-m
85.32
2.57
94.08
2.84
58.67
1.77
3
T6
P&W4158
Fleet
45
3726
30-m
118.72
3.24
130.90
3.57
135.47
3.69
3
T6
P&W4158
Fleet
65
5827
30-m
191.77
4.51
211.45
4.98
342.28
8.06
3
T6
P&W4158
Fleet
7
595
30-m
518.77
58.28
572.01
64.26
94.52
10.62
3
T6
P&W4158
Fleet
65
5658
30-m
156.78
4.26
172.87
4.70
271.68
7.39
3
T6
P&W4158
Fleet
80
7026
30-m
2.01
4.79
2.22
5.28
4.33
10.30
3
T6
P&W4158
Fleet
7
368
30-m
585.68
59.38
645.79
65.48
65.93
6.68
3
T6
P&W4158
Fleet
80
7026
30-m
256.45
5.08
282.77
5.60
551.87
10.93
3
T6
P&W4158
Fleet
65
5658
30-m
90.21
2.81
99.46
3.09
156.32
4.86
3
T6
P&W4158
Fleet
45
3834
30-m
79.89
1.99
88.09
2.20
93.81
2.34
3
T6
P&W4158
Fleet
30
2465
30-m
134.82
4.65
148.65
5.13
101.80
3.51
3
T6
P&W4158
Fleet
15
1097
30-m
196.22
10.34
216.35
11.40
65.94
3.47
3
T6
P&W4158
Fleet
7
368
30-m
251.80
20.60
277.64
22.71
28.34
2.32
3
17
P&W4158
Fleet
7
600
30-m
614.53
26.69
677.22
29.41
112.96
4.91
3
17
P&W4158
Fleet
15
1035
30-m
86.89
6.34
95.75
6.99
27.54
2.01
3
17
P&W4158
Fleet
30
2230
30-m
102.96
3.39
113.46
3.74
70.28
2.31
3
17
P&W4158
Fleet
45
3688
30-m
123.28
3.61
135.86
3.98
139.16
4.08
3
17
P&W4158
Fleet
65
5702
30-m
185.96
4.43
204.93
4.88
324.60
7.73
3
17
P&W4158
Fleet
80
7100
30-m
212.67
4.43
234.37
4.88
462.21
9.63
3
17
P&W4158
Fleet
7
591
30-m
467.24
18.57
514.90
20.47
84.58
3.36
D-20
-------
Table D-4 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
Emission Rate (mg/s)
No Loss Corr
Loss Corr
After Loss Corr
%
kg/h
Average
SD
Average
SD
Ave
SD
3
17
P&W4158
Fleet
30
2252
30-m
89.68
3.08
98.82
3.40
61.81
2.13
3
T7
P&W4158
Fleet
7
596
30-m
481.46
30.28
530.57
33.37
87.86
5.53
3
T8
RB211
Fleet
4
566
30-m
90.16
6.77
101.81
7.65
16.00
1.20
3
T8
RB211
Fleet
7
770
30-m
98.34
7.56
111.05
8.53
23.75
1.83
3
T8
RB211
Fleet
15
1191
30-m
25.06
23.67
28.30
26.73
9.36
8.84
3
T8
RB211
Fleet
30
2109
30-m
268.62
7.92
303.33
8.94
177.72
5.24
3
T8
RB211
Fleet
45
3178
30-m
401.70
9.77
453.60
11.03
400.39
9.74
3
T8
RB211
Fleet
65
4750
30-m
87.41
16.28
98.70
18.39
130.22
24.26
3
T8
RB211
Fleet
45
3436
43-m
62.54
5.81
70.62
6.56
67.40
6.26
3
T9
RB211
Fleet
4
421
30-m
962.47
216.06
1054.25
236.66
123.38
27.70
3
T9
RB211
Fleet
15
1221
30-m
51.78
6.65
56.72
7.29
19.23
2.47
3
T9
RB211
Fleet
30
2004
30-m
192.39
12.32
210.73
13.50
117.31
7.51
3
T9
RB211
Fleet
45
3068
30-m
342.54
12.64
375.20
13.84
319.78
11.80
D-21
-------
This page intentionally left blank.
-------
Appendix E
Tables for Section 9
PM Number Emissions
Table E-1. Particle number emission indices and rates determined by the nano-SMPS
Table E-2. Particle number emission indices and rates determined by the EEPS
Table E-3. Particle number emission indices and rates determined by the ELPI
-------
This page intentionally left blank.
-------
Table E-1. Particle number emission Indices and rates determined by the nano-SMPS
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
1
EPA1
DC8
CFM56-2C
Base
7
424
30-m
13.5
2.48E+06
4.40E+05
3.91E+06
7.01E+05
7.48E+15
1.56E+15
1.18E+16
2.47E+15
1
EPA1
DC8
CFM56-2C
Base
30
1012
30-m
3.2
4.88E+05
7.86E+05
1.56E+15
2.89E+14
2.52E+15
4.65E+14
1
EPA1
DC8
CFM56-2C
Base
7
436
30-m
21.3
2.17E+06
5.89E+05
3.46E+06
9.11E+05
6.75E+15
2.14E+15
1.08E+16
3.34E+15
1
EPA1
DC8
CFM56-2C
Base
7
442
30-m
12.9
1.78E+06
2.29E+05
2.88E+06
3.84E+05
5.47E+15
1.20E+15
8.85E+15
1.96E+15
1
EPA1
DC8
CFM56-2C
Base
85
2974
30-m
3.0
4.67E+05
6.68E+05
7.96E+14
4.19E+13
1.14E+15
5.99E+13
1
EPA1
DC8
CFM56-2C
Base
30
991
30-m
7.0
1.19E+06
2.51E+05
2.04E+06
3.99E+05
3.46E+15
7.62E+14
5.95E+15
1.22E+15
1
EPA1
DC8
CFM56-2C
Base
7
431
30-m
52.4
1.72E+06
2.47E+05
2.81E+06
3.65E+05
5.88E+15
1.29E+15
9.60E+15
2.02E+15
1
EPA1
DC8
CFM56-2C
Base
30
963
30-m
3.1
9.88E+05
1.75E+06
2.76E+15
1.68E+14
4.91E+15
2.99E+14
1
EPA1
DC8
CFM56-2C
Base
7
440
30-m
7.1
2.30E+06
4.55E+04
3.72E+06
7.13E+04
6.53E+15
3.52E+14
1.05E+16
5.67E+14
1
EPA 2
DC8
CFM56-2C
Base
7
436
30-m
17.2
2.58E+06
1.72E+06
3.94E+06
2.62E+06
8.75E+15
5.88E+15
1.33E+16
8.95E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1017
30-m
3.9
2.88E+06
4.64E+06
7.91E+15
5.97E+14
1.28E+16
9.63E+14
1
EPA 2
DC8
CFM56-2C
Base
7
409
30-m
26.7
3.76E+06
6.97E+04
5.77E+06
1.01E+05
1.33E+16
1.30E+15
2.05E+16
1.98E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1022
30-m
4.2
2.98E+06
4.87E+06
9.08E+15
9.93E+14
1.48E+16
1.62E+15
1
EPA 2
DC8
CFM56-2C
Base
7
418
30-m
26.1
3.53E+06
1.83E+05
5.48E+06
2.70E+05
1.43E+16
1.42E+15
2.22E+16
2.17E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1017
30-m
4.0
3.05E+06
4.99E+06
1.03E+16
5.38E+14
1.68E+16
8.80E+14
1
EPA 2
DC8
CFM56-2C
Base
7
413
30-m
26.5
2.97E+06
1.31E+05
4.70E+06
1.89E+05
1.17E+16
1.83E+15
1.85E+16
2.87E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1038
30-m
4.2
2.61 E+06
4.34E+06
8.02E+15
1.89E+15
1.33E+16
3.14E+15
1
EPA 2
DC8
CFM56-2C
Base
7
449
30-m
13.5
2.62E+06
1.95E+05
4.23E+06
2.98E+05
1.22E+16
1.56E+15
1.96E+16
2.47E+15
1
NASA1
DC8
CFM56-2C
Base
4
354
30-m
3.8
3.67E+06
1.17E+05
5.50E+06
1.28E+05
8.35E+15
5.67E+14
1.25E+16
8.04E+14
1
NASA1
DC8
CFM56-2C
Base
85
2406
30-m
2.4
5.79E+05
9.05E+05
9.76E+14
4.82E+13
1.53E+15
7.53E+13
1
NASA1
DC8
CFM56-2C
Base
65
1998
30-m
2.9
6.86E+05
1.18E+06
1.32E+15
9.69E+13
2.26E+15
1.66E+14
1
NASA1
DC8
CFM56-2C
Base
40
1187
30-m
3.2
1.22E+06
2.11 E+06
3.31E+15
2.79E+14
5.71E+15
4.83E+14
1
NASA1
DC8
CFM56-2C
Base
4
341
30-m
4.7
3.90E+06
5.86E+06
1.37E+16
5.69E+15
2.05E+16
8.53E+15
1
NASA1
DC8
CFM56-2C
Base
15
527
30-m
2.7
2.63E+06
4.27E+06
9.20E+15
1.13E+15
1.49E+16
1.83E+15
1
NASA1
DC8
CFM56-2C
Base
7
427
30-m
3.3
2.66E+06
4.29E+06
1.23E+16
2.20E+15
1.98E+16
3.54E+15
1
NASA1
DC8
CFM56-2C
Base
4
354
30-m
3.7
2.57E+06
3.99E+06
7.40E+15
8.76E+14
1.15E+16
1.36E+15
1
NASA1
DC8
CFM56-2C
Base
4
354
30-m
4.7
3.77E+06
1.09E+05
5.73E+06
1.95E+05
1.11 E+16
1.19E+15
1.69E+16
1.84E+15
1
NASA1
DC8
CFM56-2C
Base
5.5
388
30-m
2.9
3.40E+06
5.37E+06
1.31E+16
3.05E+15
2.07E+16
4.81E+15
1
NASA1
DC8
CFM56-2C
Base
7
436
30-m
2.8
2.92E+06
4.62E+06
1.14E+16
1.79E+15
1.81E+16
2.84E+15
1
NASA1
DC8
CFM56-2C
Base
30
1067
30-m
2.8
1.84E+06
3.06E+06
5.18E+15
2.59E+14
8.61E+15
4.30E+14
1
NASA1
DC8
CFM56-2C
Base
4
345
30-m
8.8
3.76E+06
2.36E+05
5.77E+06
3.71E+05
1.13E+16
1.36E+15
1.73E+16
2.09E+15
1
NASA1
DC8
CFM56-2C
Base
40
1317
30-m
15.6
1.31 E+06
3.35E+05
2.26E+06
5.30E+05
3.19E+15
8.37E+14
5.51E+15
1.33E+15
1
NASA1
DC8
CFM56-2C
Base
30
1017
30-m
3.0
1.39E+06
2.40E+06
4.09E+15
3.73E+14
7.03E+15
6.41E+14
1
NASA1
DC8
CFM56-2C
Base
15
545
30-m
3.0
2.92E+06
4.75E+06
8.58E+15
2.94E+14
1.40E+16
4.78E+14
1
NASA1
DC8
CFM56-2C
Base
7
409
30-m
3.6
3.21 E+06
5.10E+06
9.24E+15
5.15E+14
1.47E+16
8.18E+14
1
NASA1
DC8
CFM56-2C
Base
5.5
379
30-m
4.3
3.34E+06
6.16E+05
5.22E+06
9.45E+05
1.13E+16
2.88E+15
1.76E+16
4.46E+15
1
NASA1
DC8
CFM56-2C
Base
4
359
30-m
6.1
2.32E+06
6.50E+05
3.66E+06
1.06E+06
1.48E+16
9.83E+15
2.33E+16
1.56E+16
1
NASA1
DC8
CFM56-2C
Base
5.5
400
30-m
3.3
3.01 E+06
4.73E+06
1.23E+16
3.55E+15
1.92E+16
5.57E+15
1
NASA1
DC8
CFM56-2C
Base
7
436
30-m
3.0
2.57E+06
4.15E+06
1.03E+16
2.27E+15
1.66E+16
3.67E+15
1
NASA1
DC8
CFM56-2C
Base
15
595
30-m
3.1
2.10E+06
3.44E+06
6.25E+15
3.08E+14
1.02E+16
5.04E+14
1
NASAIa
DC8
CFM56-2C
Base
4
350
30-m
4.9
3.91 E+06
5.76E+06
1.30E+16
2.09E+15
1.92E+16
3.09E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2928
30-m
2.9
2.87E+06
4.59E+06
4.63E+15
2.51E+14
7.41E+15
4.01E+14
1
NASAIa
DC8
CFM56-2C
Base
65
2107
30-m
4.0
3.43E+06
5.56E+06
6.47E+15
2.93E+14
1.05E+16
4.76E+14
1
NASAIa
DC8
CFM56-2C
Base
4
327
30-m
8.8
5.34E+06
3.53E+05
7.99E+06
4.93E+05
1.92E+16
4.14E+15
2.87E+16
6.15E+15
1
NASAIa
DC8
CFM56-2C
Base
65
2070
30-m
4.2
3.62E+06
5.85E+06
6.84E+15
1.75E+14
1.11 E+16
2.83E+14
1
NASAIa
DC8
CFM56-2C
Base
60
1902
30-m
3.9
3.64E+06
5.88E+06
7.58E+15
3.19E+14
1.23E+16
5.16E+14
1
NASAIa
DC8
CFM56-2C
Base
4
336
30-m
10.7
4.51 E+06
4.39E+05
6.78E+06
6.32E+05
1.79E+16
3.45E+15
2.69E+16
5.12E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2946
30-m
3.8
2.60E+06
4.19E+06
4.11E+15
1.01E+14
6.63E+15
1.63E+14
1
NASAIa
DC8
CFM56-2C
Base
4
336
30-m
8.4
4.35E+06
7.22E+04
6.54E+06
1.01E+05
1.90E+16
3.86E+15
2.85E+16
5.80E+15
1
NASAIa
DC8
CFM56-2C
Base
4
336
30-m
7.5
4.22E+06
3.38E+05
6.32E+06
4.75E+05
1.40E+16
2.39E+15
2.10E+16
3.53E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2838
30-m
3.0
2.35E+06
3.80E+06
3.92E+15
2.21E+14
6.34E+15
3.58E+14
1
NASAIa
DC8
CFM56-2C
Base
70
2252
30-m
3.4
2.86E+06
4.67E+06
5.64E+15
1.70E+14
9.21E+15
2.77E+14
1
NASAIa
DC8
CFM56-2C
Base
60
1941
30-m
3.9
3.27E+06
5.33E+06
7.25E+15
9.64E+14
1.18E+16
1.57E+15
1
NASAIa
DC8
CFM56-2C
Base
4
331
30-m
4.2
4.46E+06
6.76E+06
1.85E+16
4.09E+15
2.80E+16
6.19E+15
1
EPA 3
DC8
CFM56-2C
Hi-S
7
445
30-m
17.1
4.08E+06
2.51E+05
6.36E+06
3.78E+05
2.30E+16
6.82E+15
3.58E+16
1.06E+16
1
EPA 3
DC8
CFM56-2C
Hi-S
76
2424
30-m
4.2
4.85E+06
7.67E+06
1.06E+16
1.56E+15
1.68E+16
2.46E+15
1
EPA 3
DC8
CFM56-2C
Hi-S
30
958
30-m
4.1
7.19E+06
1.11E+07
3.04E+16
2.33E+15
4.72E+16
3.61E+15
1
EPA 3
DC8
CFM56-2C
Hi-S
7
418
30-m
26.3
2.63E+06
8.46E+05
4.20E+06
1.28E+06
3.01E+16
1.85E+16
4.79E+16
2.90E+16
1
EPA 3
DC8
CFM56-2C
Hi-S
85
2838
30-m
2.3
3.22E+06
5.14E+06
5.00E+15
4.87E+14
7.99E+15
7.76E+14
1
EPA 3
DC8
CFM56-2C
Hi-S
7
454
30-m
26.1
2.31 E+06
5.56E+05
3.75E+06
8.68E+05
2.69E+16
1.42E+16
4.36E+16
2.29E+16
1
EPA 3
DC8
CFM56-2C
Hi-S
30
944
30-m
4.1
4.95E+06
7.84E+06
2.64E+16
8.79E+15
4.18E+16
1.39E+16
1
EPA 3
DC8
CFM56-2C
Hi-S
7
445
30-m
26.0
2.00E+06
5.12E+05
3.29E+06
7.95E+05
2.16E+16
1.05E+16
3.55E+16
1.70E+16
1
EPA 3
DC8
CFM56-2C
Hi-S
7
427
30-m
9.3
2.74E+06
3.51E+05
4.38E+06
5.88E+05
3.59E+16
1.87E+16
5.73E+16
2.99E+16
1
NASA 2
DC8
CFM56-2C
Hi-S
4
345
30-m
3.3
4.98E+06
7.49E+06
1.48E+16
9.42E+14
2.22E+16
1.42E+15
1
NASA 2
DC8
CFM56-2C
Hi-S
85
2715
30-m
3.1
8.99E+05
1.45E+06
1.37E+15
4.56E+13
2.21E+15
7.35E+13
1
NASA 2
DC8
CFM56-2C
Hi-S
65
2072
30-m
4.1
2.82E+06
4.57E+06
5.19E+15
2.12E+14
8.42E+15
3.43E+14
1
NASA 2
DC8
CFM56-2C
Hi-S
40
1245
30-m
4.1
4.96E+06
7.67E+06
1.16E+16
6.41E+14
1.80E+16
9.92E+14
1
NASA 2
DC8
CFM56-2C
Hi-S
30
950
30-m
4.0
5.01 E+06
7.76E+06
1.32E+16
8.49E+14
2.04E+16
1.31E+15
1
NASA 2
DC8
CFM56-2C
Hi-S
4
350
30-m
8.8
5.43E+06
2.35E+05
8.20E+06
3.25E+05
1.71 E+16
1.64E+15
2.59E+16
2.43E+15
1
NASA 2
DC8
CFM56-2C
Hi-S
65
2053
30-m
4.1
2.46E+06
4.18E+06
4.55E+15
8.29E+13
7.72E+15
1.41E+14
E-1
-------
Table E-1 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
1
NASA 2
DC8
CFM56-2C
H
-S
40
1238
30-m
4.0
5.05E+06
8.04E+06
1.24E+16
8.67E+14
1.97E+16
1.38E+15
1
NASA 2
DC8
CFM56-2C
H
-S
30
954
30-m
4.2
6.55E+06
1.02E+07
1.87E+16
2.03E+15
2.89E+16
3.14E+15
1
NASA 2
DC8
CFM56-2C
H
-S
7
413
30-m
3.8
4.93E+06
7.66E+06
2.60E+16
3.68E+15
4.04E+16
5.71E+15
1
NASA 2
DC8
CFM56-2C
H
-S
4
341
30-m
7.9
5.43E+06
8.80E+05
8.26E+06
1.24E+06
1.92E+16
3.95E+15
2.93E+16
5.74E+15
1
NASA 2
DC8
CFM56-2C
H
-S
85
2791
30-m
4.0
9.95E+05
1.64E+06
1.61E+15
6.27E+13
2.64E+15
1.03E+14
1
NASA 2
DC8
CFM56-2C
H
-S
65
2013
30-m
3.4
2.12E+06
3.62 E+06
4.11E+15
1.50E+14
7.02E+15
2.57E+14
1
NASA 2
DC8
CFM56-2C
H
-S
60
1855
30-m
3.5
2.80E+06
4.69E+06
5.61E+15
1.37E+14
9.41E+15
2.29E+14
1
NASA 2
DC8
CFM56-2C
H
-S
15
543
30-m
3.5
5.95E+06
9.37E+06
3.31E+16
9.98E+15
5.21E+16
1.57E+16
1
NASA 2
DC8
CFM56-2C
H
-S
7
424
30-m
3.6
5.09E+06
8.04E+06
4.98E+16
1.84E+16
7.86E+16
2.91E+16
1
NASA 2
DC8
CFM56-2C
H
-S
5.5
381
30-m
3.8
1.98E+06
3.23E+06
1.38E+16
2.27E+15
2.25E+16
3.69E+15
1
NASA 3
DC8
CFM56-2C
H
-S
4
353
30-m
4.4
5.18E+06
7.66E+06
1.82E+16
2.02E+15
2.70E+16
2.98E+15
1
NASA 3
DC8
CFM56-2C
H
-S
85
2785
30-m
3.3
4.57E+06
6.79E+06
7.09E+15
2.41E+14
1.05E+16
3.57E+14
1
NASA 3
DC8
CFM56-2C
H
-S
40
1241
30-m
20.0
7.78E+06
4.51 E+04
1.17E+07
6.39E+04
1.90E+16
5.71E+14
2.87E+16
8.59E+14
1
NASA 3
DC8
CFM56-2C
H
-S
30
976
30-m
4.0
7.86E+06
1.19E+07
2.15E+16
2.84E+15
3.26E+16
4.31E+15
1
NASA 3
DC8
CFM56-2C
H
-S
7
402
30-m
3.7
6.48E+06
9.86E+06
2.48E+16
2.22E+15
3.77E+16
3.38E+15
1
NASA 3
DC8
CFM56-2C
H
-S
4
341
30-m
8.0
5.69E+06
2.65E+05
8.60E+06
3.81 E+05
2.43E+16
2.47E+15
3.67E+16
3.70E+15
1
NASA 3
DC8
CFM56-2C
H
-S
85
2763
30-m
3.2
5.67E+06
8.69E+06
8.84E+15
3.33E+14
1.35E+16
5.10E+14
1
NASA 3
DC8
CFM56-2C
H
-S
65
2047
30-m
3.3
7.16E+06
1.08E+07
1.33E+16
8.00E+14
2.01E+16
1.21E+15
1
NASA 3
DC8
CFM56-2C
H
-S
40
1251
30-m
20.1
7.97E+06
7.21E+04
1.21E+07
1.09E+05
1.95E+16
8.14E+14
2.95E+16
1.23E+15
1
NASA 3
DC8
CFM56-2C
H
-S
30
998
30-m
3.8
8.08E+06
1.23E+07
2.29E+16
6.42E+14
3.48E+16
9.74E+14
1
NASA 3
DC8
CFM56-2C
H
-S
7
405
30-m
4.1
6.08E+06
9.23E+06
2.25E+16
1.30E+15
3.42E+16
1.98E+15
1
NASA 3
DC8
CFM56-2C
H
-S
4
348
30-m
7.8
5.05E+06
2.36E+05
7.63E+06
3.20E+05
1.86E+16
1.63E+15
2.81E+16
2.40E+15
1
NASA 3
DC8
CFM56-2C
H
-S
65
2060
30-m
3.5
6.86E+06
1.04E+07
1.32E+16
2.08E+14
2.02E+16
3.17E+14
1
NASA 3
DC8
CFM56-2C
H
-S
60
1846
30-m
3.2
7.08E+06
1.08E+07
1.39E+16
5.38E+14
2.12E+16
8.18E+14
1
NASA 3
DC8
CFM56-2C
H
-S
30
985
30-m
3.2
7.94E+06
1.21E+07
2.11E+16
5.33E+14
3.20E+16
8.11 E+14
1
NASA 3
DC8
CFM56-2C
H
-S
15
538
30-m
3.4
7.06E+06
1.09E+07
2.44E+16
2.09E+15
3.76E+16
3.21E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
4
342
30-m
3.3
3.64E+06
5.74E+06
1.82E+16
3.11E+15
2.86E+16
4.90E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
85
2697
30-m
2.7
2.31E+06
3.90E+06
3.78E+15
9.91E+13
6.37E+15
1.67E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
65
2029
30-m
3.4
3.17E+06
5.38E+06
6.46E+15
5.11E+14
1.10E+16
8.66E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
7
397
30-m
4.2
3.82E+06
6.22E+06
1.88E+16
3.23E+15
3.06E+16
5.26E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
4
347
30-m
9.4
2.20E+06
5.17E+05
3.64E+06
7.89E+05
1.12E+16
4.16E+15
1.86E+16
6.68E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
85
2706
30-m
3.1
2.59E+06
4.31 E+06
4.33E+15
1.77E+14
7.20E+15
2.94E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
40
1185
30-m
4.3
4.23E+06
7.00E+06
1.23E+16
7.78E+14
2.04E+16
1.29E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
30
962
30-m
3.6
4.18E+06
6.93E+06
1.23E+16
3.94E+14
2.04E+16
6.54E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
7
395
30-m
4.2
3.57E+06
5.92E+06
1.67E+16
2.93E+15
2.76E+16
4.86E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
4
341
30-m
7.8
3.38E+06
7.66E+05
5.44E+06
1.13E+06
1.87E+16
9.09E+15
3.01E+16
1.44E+16
1
NASA 4
DC8
CFM56-2C
H
-Arom
4
30-m
8.0
2.44E+06
1.79E+06
3.97E+06
2.80E+06
1.12E+16
9.10E+15
1.82E+16
1.43E+16
1
NASA 4
DC8
CFM56-2C
H
-Arom
85
2701
30-m
4.2
2.25E+06
3.82E+06
4.04E+15
2.92E+14
6.85E+15
4.96E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
70
2157
30-m
3.6
3.83E+06
6.41 E+06
7.59E+15
5.40E+14
1.27E+16
9.02E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
65
1998
30-m
3.4
3.17E+06
5.36E+06
6.55E+15
2.03E+14
1.11E+16
3.44E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
60
1850
30-m
3.6
3.54E+06
5.95E+06
7.70E+15
1.55E+14
1.29E+16
2.61E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
40
1226
30-m
3.7
3.87E+06
6.51 E+06
1.00E+16
3.94E+14
1.69E+16
6.63E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
30
962
30-m
3.5
4.14E+06
6.91 E+06
1.23E+16
5.80E+14
2.06E+16
9.68E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
7
404
30-m
3.4
4.05E+06
6.65E+06
1.77E+16
2.64E+15
2.91 E+16
4.33E+15
1
NASA 4
DC8
CFM56-2C
H
-Arom
5.5
381
30-m
3.3
2.58E+06
4.31 E+06
1.70E+16
7.97E+15
2.84E+16
1.33E+16
1
NASA 4
DC8
CFM56-2C
H
-Arom
4
347
30-m
9.2
5.86E+06
4.92E+06
1.09E+07
1.03E+07
3.76E+16
3.58E+16
6.98E+16
7.33E+16
1
NASA 4
DC8
CFM56-2C
H
-Arom
85
2697
30-m
3.2
2.22E+06
3.76E+06
4.00E+15
1.02E+14
6.78E+15
1.74E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
65
2029
30-m
3.1
2.83E+06
4.85E+06
6.04E+15
2.79E+14
1.03E+16
4.77E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
40
1244
30-m
3.4
3.82E+06
6.43E+06
1.04E+16
3.54E+14
1.76E+16
5.97E+14
1
NASA 4
DC8
CFM56-2C
H
-Arom
7
409
30-m
4.2
2.46E+06
4.18E+06
1.15E+16
1.52E+15
1.96E+16
2.57E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
4
354
30-m
6.1
3.47E+06
4.61 E+05
5.19E+06
6.99E+05
2.06E+16
6.58E+15
3.07E+16
9.84E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
65
2191
30-m
3.5
5.20E+06
8.51 E+06
9.94E+15
2.85E+14
1.62E+16
4.66E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
7
413
30-m
3.4
4.37E+06
6.92E+06
3.24E+16
1.03E+16
5.14E+16
1.63E+16
1
NASA 5
DC8
CFM56-2C
H
-Arom
4
341
30-m
8.7
4.55E+06
3.14E+05
6.87E+06
4.15E+05
2.52E+16
9.78E+15
3.81E+16
1.47E+16
1
NASA 5
DC8
CFM56-2C
H
-Arom
85
2869
30-m
3.0
3.76E+06
6.11 E+06
5.84E+15
5.35E+13
9.51E+15
8.71E+13
1
NASA 5
DC8
CFM56-2C
H
-Arom
65
2134
30-m
3.8
5.09E+06
8.29E+06
9.64E+15
9.66E+14
1.57E+16
1.57E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
40
1280
30-m
4.9
5.44E+06
8.85E+06
1.55E+16
6.82E+14
2.53E+16
1.11E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
7
404
30-m
4.1
4.92E+06
7.52E+06
1.69E+16
5.72E+14
2.59E+16
8.74E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
4
338
30-m
8.5
5.94E+06
8.74E+06
1.85E+16
1.06E+15
2.72E+16
1.55E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
85
2933
30-m
4.2
2.87E+06
4.64E+06
4.60E+15
1.64E+14
7.42E+15
2.64E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
65
2088
30-m
3.6
3.80E+06
6.13E+06
7.52E+15
3.88E+14
1.21E+16
6.25E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
60
1930
30-m
4.6
4.31 E+06
6.92E+06
8.85E+15
2.25E+14
1.42E+16
3.62E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
40
1271
30-m
3.9
4.47E+06
7.15E+06
1.17E+16
3.83E+14
1.87E+16
6.13E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
30
999
30-m
3.7
4.17E+06
6.74E+06
1.22E+16
7.48E+14
1.98E+16
1.21E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
7
413
30-m
4.1
4.70E+06
7.23E+06
1.56E+16
6.86E+14
2.40E+16
1.06E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
4
345
30-m
11.7
5.41 E+06
1.51 E+05
8.03E+06
2.19E+05
1.75E+16
1.22E+15
2.60E+16
1.80E+15
1
NASA 5
DC8
CFM56-2C
H
-Arom
65
2111
30-m
4.3
3.71 E+06
5.97E+06
6.96E+15
1.66E+14
1.12E+16
2.67E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
40
1362
30-m
3.4
4.14E+06
6.65E+06
9.92E+15
5.10E+14
1.59E+16
8.20E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
30
1003
30-m
3.5
4.24E+06
6.84E+06
1.21E+16
2.02E+14
1.95E+16
3.26E+14
1
NASA 5
DC8
CFM56-2C
H
-Arom
7
409
30-m
4.4
3.67E+06
5.78E+06
1.51E+16
2.97E+15
2.38E+16
4.69E+15
E-2
-------
Table E-1 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
1
NASA 5
DC8
CFM56-2C
Hi-Arom
4
345
30-m
4.5
5.26E+06
7.84E+06
1.96E+16
2.37E+15
2.91E+16
3.53E+15
2
T1
B737-700
CFM56-7B
Fleet
4
336
30-m
10.2
2.67E+06
5.67E+04
3.09E+06
7.32E+04
1.49E+16
2.02E+15
1.73E+16
2.35E+15
2
T1
B737-700
CFM56-7B
Fleet
7
418
30-m
10.0
2.19E+06
9.39E+04
2.63E+06
1.16E+05
1.08E+16
9.83E+14
1.29E+16
1.19E+15
2
T1
B737-700
CFM56-7B
Fleet
30
1180
30-m
9.4
2.04E+06
7.83E+04
2.52E+06
9.05E+04
6.79E+15
4.79E+14
8.38E+15
5.80E+14
2
T1
B737-700
CFM56-7B
Fleet
40
1544
30-m
10.1
2.11E+06
5.49E+04
2.59E+06
4.11E+04
5.81E+15
3.46E+14
7.13E+15
3.98E+14
2
T1
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
1.21E+06
4.63E+05
1.57E+06
6.07E+05
2.43E+15
9.37E+14
3.17E+15
1.23E+15
2
T1
B737-700
CFM56-7B
Fleet
85
4131
30-m
1.8
4.73E+05
6.18E+05
7.31E+14
2.58E+13
9.56E+14
3.38E+13
2
T1
B737-700
CFM56-7B
Fleet
7
395
30-m
10.1
1.16E+06
2.04E+05
1.38E+06
2.21E+05
6.63E+15
1.39E+15
7.88E+15
1.55E+15
2
T1
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
1.22E+06
1.53E+05
1.50E+06
1.89E+05
2.48E+15
3.27E+14
3.03E+15
4.03E+14
2
T1
B737-700
CFM56-7B
Fleet
40
1498
30-m
10.0
1.38E+06
1.08E+05
1.65E+06
1.30E+05
3.92E+15
3.77E+14
4.70E+15
4.55E+14
2
T1
B737-700
CFM56-7B
Fleet
30
1135
30-m
10.5
1.81E+06
5.28E+05
2.16E+06
6.31E+05
6.08E+15
1.82E+15
7.27E+15
2.18E+15
2
T1
B737-700
CFM56-7B
Fleet
4
313
30-m
11.9
1.94E+06
1.53E+05
2.23E+06
1.75E+05
1.22E+16
2.17E+15
1.41E+16
2.50E+15
2
T4
B737-700
CFM56-7B
Fleet
4
336
30-m
11.9
1.72E+06
1.38E+05
2.01E+06
1.58E+05
9.57E+15
1.49E+15
1.12E+16
1.74E+15
2
T4
B737-700
CFM56-7B
Fleet
7
418
30-m
10.1
1.61E+06
8.79E+04
1.94E+06
1.06E+05
7.85E+15
7.64E+14
9.47E+15
9.23E+14
2
T4
B737-700
CFM56-7B
Fleet
30
1180
30-m
11.0
1.82E+06
1.09E+05
2.19E+06
1.32E+05
6.03E+15
5.08E+14
7.27E+15
6.13E+14
2
T4
B737-700
CFM56-7B
Fleet
40
1544
30-m
10.0
2.05E+06
3.67E+04
2.46E+06
4.40E+04
5.59E+15
3.16E+14
6.72E+15
3.79E+14
2
T4
B737-700
CFM56-7B
Fleet
65
2497
30-m
9.9
1.84E+06
1.66E+05
2.23E+06
1.99E+05
3.69E+15
3.64E+14
4.46E+15
4.38E+14
2
T4
B737-700
CFM56-7B
Fleet
7
395
30-m
10.0
1.68E+06
8.00E+04
2.01E+06
8.93E+04
9.51E+15
1.19E+15
1.14E+16
1.41E+15
2
T4
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
2.05E+06
1.12E+05
2.46E+06
1.40E+05
4.12E+15
2.84E+14
4.96E+15
3.50E+14
2
T4
B737-700
CFM56-7B
Fleet
40
1498
30-m
10.3
2.05E+06
4.39E+04
2.46E+06
5.19E+04
5.80E+15
3.50E+14
6.97E+15
4.19E+14
2
T4
B737-700
CFM56-7B
Fleet
30
1135
30-m
10.0
1.96E+06
9.49E+04
2.36E+06
1.13E+05
6.58E+15
5.38E+14
7.89E+15
6.44E+14
2
T4
B737-700
CFM56-7B
Fleet
7
381
30-m
11.0
1.63E+06
5.14E+04
1.97E+06
5.93E+04
8.84E+15
9.64E+14
1.06E+16
1.16E+15
2
T4
B737-700
CFM56-7B
Fleet
4
313
30-m
10.0
1.70E+06
3.03E+04
2.00E+06
3.68E+04
1.07E+16
1.71 E+15
1.26E+16
2.01E+15
2
T2
B737-300
CFM56-3B
Fleet
4
341
30-m
10.0
1.15E+06
8.05E+04
1.34E+06
9.71E+04
4.29E+15
5.61E+14
5.01E+15
6.61E+14
2
T2
B737-300
CFM56-3B
Fleet
7
422
30-m
10.0
1.02E+06
5.48E+04
1.22E+06
6.63E+04
3.44E+15
3.90E+14
4.12E+15
4.67E+14
2
T2
B737-300
CFM56-3B
Fleet
30
1099
30-m
10.1
1.08E+06
7.55E+04
1.31E+06
9.36E+04
2.65E+15
2.52E+14
3.21E+15
3.09E+14
2
T2
B737-300
CFM56-3B
Fleet
40
1403
30-m
11.0
1.13E+06
5.02E+04
1.38E+06
5.86E+04
2.37E+15
1.64E+14
2.89E+15
1.97E+14
2
T2
B737-300
CFM56-3B
Fleet
65
2193
30-m
10.0
1.02E+06
6.21E+04
1.24E+06
7.70E+04
1.66E+15
1.31E+14
2.02E+15
1.61E+14
2
T2
B737-300
CFM56-3B
Fleet
7
404
30-m
10.0
1.11E+06
4.59E+04
1.32E+06
5.61E+04
3.84E+15
3.56E+14
4.57E+15
4.27E+14
2
T2
B737-300
CFM56-3B
Fleet
65
2184
30-m
10.7
1.20E+06
5.95E+04
1.45E+06
7.64E+04
1.98E+15
1.35E+14
2.38E+15
1.69E+14
2
T2
B737-300
CFM56-3B
Fleet
40
1367
30-m
11.0
1.26E+06
1.03E+05
1.52E+06
1.26E+05
2.66E+15
2.58E+14
3.20E+15
3.14E+14
2
T2
B737-300
CFM56-3B
Fleet
30
1067
30-m
10.0
1.27E+06
1.02E+05
1.52E+06
1.23E+05
3.14E+15
3.21E+14
3.75E+15
3.85E+14
2
T2
B737-300
CFM56-3B
Fleet
7
418
30-m
10.0
1.25E+06
1.49E+05
1.48E+06
1.79E+05
4.01E+15
6.06E+14
4.73E+15
7.24E+14
2
T2
B737-300
CFM56-3B
Fleet
4
345
30-m
10.0
1.38E+06
1.05E+05
1.60E+06
1.25E+05
4.49E+15
5.90E+14
5.19E+15
6.89E+14
2
T3
B737-300
CFM56-3B
Fleet
4
372
30-m
10.0
1.52E+06
3.41E+04
1.75E+06
4.26E+04
4.32E+15
4.81E+14
4.97E+15
5.55E+14
2
T3
B737-300
CFM56-3B
Fleet
7
440
30-m
10.1
1.44E+06
1.18E+05
1.68E+06
1.37E+05
4.45E+15
6.02E+14
5.19E+15
7.01E+14
2
T3
B737-300
CFM56-3B
Fleet
30
1130
30-m
10.0
1.54E+06
1.78E+05
1.82E+06
2.08E+05
3.69E+15
4.97E+14
4.36E+15
5.84E+14
2
T3
B737-300
CFM56-3B
Fleet
40
1444
30-m
10.0
1.52E+06
9.14E+04
1.80E+06
1.10E+05
3.16E+15
2.65E+14
3.75E+15
3.17E+14
2
T3
B737-300
CFM56-3B
Fleet
65
2252
30-m
10.0
1.18E+06
8.21E+04
1.42E+06
9.81E+04
1.91E+15
1.69E+14
2.30E+15
2.02E+14
2
T3
B737-300
CFM56-3B
Fleet
7
418
30-m
10.0
1.54E+06
8.87E+04
1.79E+06
1.07E+05
4.96E+15
5.80E+14
5.77E+15
6.80E+14
2
T3
B737-300
CFM56-3B
Fleet
65
2261
30-m
10.0
1.30E+06
9.12E+04
1.56E+06
1.09E+05
2.09E+15
1.81E+14
2.51E+15
2.17E+14
2
T3
B737-300
CFM56-3B
Fleet
40
1412
30-m
10.1
1.61E+06
1.07E+05
1.91E+06
1.27E+05
3.46E+15
3.01E+14
4.11E+15
3.57E+14
2
T3
B737-300
CFM56-3B
Fleet
30
1108
30-m
10.0
1.58E+06
9.59E+04
1.88E+06
1.15E+05
3.87E+15
3.46E+14
4.59E+15
4.12E+14
2
T3
B737-300
CFM56-3B
Fleet
7
422
30-m
10.0
1.47E+06
1.09E+05
1.72E+06
1.28E+05
4.89E+15
6.50E+14
5.72E+15
7.60E+14
2
T3
B737-300
CFM56-3B
Fleet
4
368
30-m
10.0
1.53E+06
1.50E+05
1.76E+06
1.72E+05
4.76E+15
7.13E+14
5.49E+15
8.20E+14
3
T1
B737-300
CFM56-3B
Fleet
4
300
30-m
6.0
1.85E+06
8.97E+04
2.17E+06
1.02E+05
3.14E+16
4.38E+15
3.69E+16
5.12E+15
3
T1
B737-300
CFM56-3B
Fleet
7
397
30-m
5.3
1.92E+06
5.83E+04
2.28E+06
6.57E+04
2.83E+16
3.27E+15
3.35E+16
3.86E+15
3
T1
B737-300
CFM56-3B
Fleet
15
654
30-m
6.7
1.91E+06
2.31 E+06
2.41E+16
2.04E+15
2.90E+16
2.46E+15
3
T1
B737-300
CFM56-3B
Fleet
30
1136
30-m
5.2
2.41 E+06
1.82E+03
2.88E+06
5.00E+03
2.09E+16
1.07E+15
2.49E+16
1.28E+15
3
T1
B737-300
CFM56-3B
Fleet
45
1618
30-m
5.6
2.46E+06
1.27E+04
2.94E+06
1.57E+04
1.74E+16
1.15E+15
2.08E+16
1.38E+15
3
T1
B737-300
CFM56-3B
Fleet
65
2260
30-m
7.7
2.28E+06
1.35E+04
2.72E+06
1.59E+04
1.25E+16
5.19E+14
1.49E+16
6.19E+14
3
T1
B737-300
CFM56-3B
Fleet
85
2903
30-m
4.8
1.80E+06
8.55E+04
2.14E+06
9.88E+04
8.66E+15
5.31E+14
1.03E+16
6.21E+14
3
T1
B737-300
CFM56-3B
Fleet
100
3385
30-m
2.2
1.48E+06
1.74E+06
6.47E+15
1.78E+14
7.58E+15
2.08E+14
3
T1
B737-300
CFM56-3B
Fleet
4
300
30-m
6.2
1.70E+06
2.34E+04
1.97E+06
2.26E+04
2.97E+16
3.73E+15
3.45E+16
4.32E+15
3
T1
B737-300
CFM56-3B
Fleet
100
3385
30-m
2.3
1.28E+06
1.50E+06
5.85E+15
2.01E+14
6.85E+15
2.35E+14
3
T1
B737-300
CFM56-3B
Fleet
85
2903
30-m
4.8
1.52E+06
1.69E+04
1.82E+06
2.56E+04
8.13E+15
3.44E+14
9.69E+15
4.19E+14
3
T1
B737-300
CFM56-3B
Fleet
65
2260
30-m
4.7
1.77E+06
2.11 E+06
1.15E+16
5.17E+14
1.37E+16
6.15E+14
3
T1
B737-300
CFM56-3B
Fleet
45
1618
30-m
5.9
1.87E+06
3.78E+04
2.23E+06
4.09E+04
1.59E+16
7.86E+14
1.90E+16
9.23E+14
3
T1
B737-300
CFM56-3B
Fleet
30
1136
30-m
5.7
1.88E+06
1.50E+04
2.23E+06
1.83E+04
1.97E+16
8.82E+14
2.35E+16
1.05E+15
3
T1
B737-300
CFM56-3B
Fleet
15
654
30-m
4.8
1.54E+06
6.97E+04
1.84E+06
7.82E+04
2.31E+16
2.16E+15
2.76E+16
2.54E+15
3
T1
B737-300
CFM56-3B
Fleet
7
397
30-m
4.4
1.51 E+06
1.77E+06
2.77E+16
2.84E+15
3.25E+16
3.33E+15
3
T1
B737-300
CFM56-3B
Fleet
4
300
30-m
7.3
1.45E+06
1.35E+04
1.69E+06
1.52E+04
2.85E+16
2.98E+15
3.32E+16
3.46E+15
3
T11
B737-300
CFM56-3B
Fleet
4
381
30-m
10.8
1.29E+06
3.49E+04
1.43E+06
3.67E+04
6.17E+15
5.97E+14
6.84E+15
6.59E+14
3
T11
B737-300
CFM56-3B
Fleet
7
431
30-m
7.7
1.46E+06
9.44E+04
1.61 E+06
1.03E+05
5.68E+15
6.59E+14
6.28E+15
7.24E+14
3
T11
B737-300
CFM56-3B
Fleet
15
622
30-m
7.8
2.17E+06
1.39E+05
2.43E+06
1.58E+05
5.84E+15
6.17E+14
6.53E+15
6.94E+14
3
T11
B737-300
CFM56-3B
Fleet
30
1090
30-m
8.9
3.25E+06
4.38E+04
3.65E+06
5.73E+04
6.66E+15
3.88E+14
7.49E+15
4.41E+14
3
T11
B737-300
CFM56-3B
Fleet
45
1530
30-m
6.0
3.37E+06
1.45E+04
3.79E+06
1.50E+04
5.94E+15
1.90E+14
6.67E+15
2.14E+14
3
T11
B737-300
CFM56-3B
Fleet
65
2179
30-m
6.3
3.30E+06
6.23E+04
3.73E+06
6.87E+04
5.05E+15
1.95E+14
5.69E+15
2.19E+14
3
T11
B737-300
CFM56-3B
Fleet
85
2815
30-m
4.7
2.92E+06
3.29E+06
3.90E+15
1.49E+14
4.40E+15
1.68E+14
3
T11
B737-300
CFM56-3B
Fleet
100
3564
30-m
1.2
2.59E+06
2.92 E+06
3.18E+15
1.24E+14
3.58E+15
1.40E+14
E-3
-------
Table E-1 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
15-m
4.5
2.53E+05
3.09E+05
2.35E+16
3.49E+15
2.87E+16
4.27E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
15
304
15-m
5.2
5.47E+06
9.95E+05
6.41E+06
1.13E+06
1.46E+16
3.25E+15
1.71 E+16
3.74E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
30
452
15-m
7.1
5.10E+06
4.10E+05
6.06E+06
4.71E+05
9.70E+15
9.43E+14
1.15E+16
1.09E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
45
568
15-m
6.6
4.25E+06
5.20E+05
5.05E+06
6.18E+05
7.11 E+15
9.13E+14
8.44E+15
1.09E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
65
760
15-m
7.4
4.04E+06
1.21E+03
4.70E+06
5.37E+02
5.89E+15
2.34E+14
6.84E+15
2.72E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
85
999
15-m
2.3
3.89E+06
4.49E+06
4.68E+15
1.32E+14
5.41E+15
1.53E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
85
999
30-m
5.7
3.79E+06
6.43E+04
4.32E+06
7.93E+04
7.50E+15
4.93E+14
8.54E+15
5.65E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
100
1226
30-m
7.2
3.90E+06
8.46E+05
4.42E+06
9.12E+05
6.84E+15
1.54E+15
7.76E+15
1.66E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
15-m
5.1
1.40E+05
1.46E+05
1.59E+05
1.56E+05
5.70E+15
6.94E+15
6.47E+15
7.55E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
100
1226
15-m
2.3
4.85E+06
5.56E+06
5.12E+15
1.30E+14
5.87E+15
1.49E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
65
763
15-m
2.2
4.65E+06
5.39E+06
6.30E+15
2.51E+14
7.30E+15
2.91E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
45
568
15-m
2.1
5.83E+06
6.92E+06
9.56E+15
3.55E+14
1.13E+16
4.22E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
30
454
15-m
2.5
6.18E+06
7.30E+06
1.21 E+16
8.23E+14
1.43E+16
9.72E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
15
304
15-m
2.2
6.37E+06
7.44E+06
1.61E+16
1.84E+15
1.88E+16
2.15E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
15-m
1.6
4.59E+05
5.21E+05
2.03E+16
1.22E+15
2.30E+16
1.39E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
7
227
15-m
19.6
5.68E+04
3.45E+04
7.52E+04
4.51E+04
8.51E+14
6.02E+14
1.13E+15
7.90E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
15
303
15-m
14.6
4.53E+06
7.08E+05
5.34E+06
8.35E+05
1.57E+16
3.90E+15
1.85E+16
4.60E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
30
452
15-m
7.5
4.40E+06
1.59E+05
5.24E+06
1.84E+05
1.16E+16
1.12E+15
1.39E+16
1.34E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
45
567
15-m
7.1
3.84E+06
1.76E+05
4.58E+06
1.96E+05
1.01E+16
9.75E+14
1.21 E+16
1.14E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
65
763
15-m
8.8
3.82E+06
6.76E+04
4.44E+06
7.86E+04
8.06E+15
3.37E+14
9.36E+15
3.91E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
85
1009
15-m
7.9
5.36E+06
2.43E+05
6.11E+06
2.66E+05
9.64E+15
4.91E+14
1.10E+16
5.41E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
100
1226
15-m
7.2
6.02E+06
5.96E+03
6.82E+06
8.19E+03
9.94E+15
2.22E+14
1.13E+16
2.52E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
7
227
30-m
19.3
1.90E+04
1.14E+04
2.60E+04
1.51E+04
1.72E+14
1.22E+14
2.36E+14
1.63E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
100
1226
30-m
7.5
3.62E+06
2.89E+04
4.09E+06
3.35E+04
1.11 E+16
9.73E+14
1.25E+16
1.10E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
85
1009
30-m
7.6
3.03E+06
4.43E+04
3.45E+06
5.28E+04
9.85E+15
7.90E+14
1.12E+16
9.01E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
65
763
30-m
7.3
2.25E+06
3.04E+04
2.64E+06
4.24E+04
7.93E+15
4.21E+14
9.30E+15
5.00E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
45
567
30-m
10.4
2.79E+06
7.29E+04
3.41E+06
7.98E+04
1.07E+16
7.57E+14
1.31E+16
9.13E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
30
452
30-m
4.9
2.87E+06
1.04E+04
3.50E+06
2.65E+04
1.08E+16
5.93E+14
1.32E+16
7.28E+14
3
T5
Lear 25
CJ610-8ATJ
Fleet
7
227
30-m
10.5
1.35E+04
1.04E+04
1.76E+04
1.34E+04
1.31E+14
1.01E+14
1.71 E+14
1.30E+14
3
T3
EMB145
AE3007A1E
Fleet
8.4
174
15-m
17.3
6.52E+05
1.54E+05
9.18E+05
2.10E+05
1.45E+16
9.95E+15
2.04E+16
1.40E+16
3
T3
EMB145
AE3007A1E
Fleet
15
238
15-m
6.7
5.13E+05
3.76E+04
7.53E+05
5.98E+04
6.27E+15
2.28E+15
9.20E+15
3.35E+15
3
T3
EMB145
AE3007A1E
Fleet
30
389
15-m
6.8
5.28E+05
3.30E+04
7.74E+05
5.55E+04
5.04E+15
1.28E+15
7.38E+15
1.89E+15
3
T3
EMB145
AE3007A1E
Fleet
45
555
15-m
7.6
6.32E+05
9.27E+03
9.34E+05
1.52E+04
4.79E+15
7.82E+14
7.09E+15
1.16E+15
3
T3
EMB145
AE3007A1E
Fleet
65
805
15-m
7.2
6.83E+05
4.59E+04
1.02E+06
6.68E+04
4.32E+15
7.01E+14
6.43E+15
1.04E+15
3
T3
EMB145
AE3007A1E
Fleet
85
1082
15-m
8.2
6.94E+05
6.64E+04
1.04E+06
9.83E+04
4.07E+15
8.64E+14
6.08E+15
1.29E+15
3
T3
EMB145
AE3007A1E
Fleet
100
1286
15-m
2.3
5.66E+05
8.51E+05
3.13E+15
5.49E+14
4.70E+15
8.26E+14
3
T3
EMB145
AE3007A1E
Fleet
8.4
172
15-m
7.9
6.42E+05
1.14E+05
9.03E+05
1.60E+05
1.28E+16
8.30E+15
1.80E+16
1.17E+16
3
T3
EMB145
AE3007A1E
Fleet
85
1088
15-m
8.0
5.55E+05
1.03E+04
8.37E+05
1.71E+04
3.54E+15
6.81E+14
5.33E+15
1.03E+15
3
T3
EMB145
AE3007A1E
Fleet
65
810
15-m
6.9
3.60E+05
1.39E+04
5.43E+05
2.66E+04
3.00E+15
4.98E+14
4.54E+15
7.65E+14
3
T3
EMB145
AE3007A1E
Fleet
45
563
15-m
7.9
3.63E+05
6.10E+04
5.38E+05
1.02E+05
3.83E+15
1.04E+15
5.67E+15
1.61E+15
3
T3
EMB145
AE3007A1E
Fleet
30
392
15-m
8.6
4.45E+05
5.40E+04
6.51E+05
7.40E+04
4.81E+15
1.15E+15
7.04E+15
1.66E+15
3
T3
EMB145
AE3007A1E
Fleet
15
235
15-m
9.9
5.74E+05
4.00E+04
8.42E+05
6.05E+04
6.56E+15
1.54E+15
9.63E+15
2.27E+15
3
T3
EMB145
AE3007A1E
Fleet
8.4
173
15-m
6.8
7.32E+05
2.06E+05
1.03E+06
2.69E+05
1.49E+16
9.86E+15
2.10E+16
1.37E+16
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
7.0
3.37E+03
2.32E+03
4.79E+03
3.02E+03
9.90E+13
7.36E+13
1.41E+14
9.72E+13
3
T4
EMB145
AE3007A1E
Fleet
15
239
15-m
4.9
3.15E+04
4.87E+04
8.25E+14
2.17E+14
1.27E+15
3.35E+14
3
T4
EMB145
AE3007A1E
Fleet
30
385
15-m
6.9
7.53E+04
2.83E+04
1.13E+05
4.62E+04
1.29E+15
6.33E+14
1.94E+15
1.00E+15
3
T4
EMB145
AE3007A1E
Fleet
45
547
15-m
4.8
2.00E+05
6.16E+04
2.95E+05
1.02E+05
2.25E+15
9.88E+14
3.31E+15
1.55E+15
3
T4
EMB145
AE3007A1E
Fleet
65
788
15-m
7.6
4.36E+05
8.08E+04
6.45E+05
1.26E+05
2.81E+15
7.67E+14
4.17E+15
1.16E+15
3
T4
EMB145
AE3007A1E
Fleet
85
1050
15-m
6.8
4.62E+05
1.34E+05
6.61E+05
2.18E+05
2.23E+15
7.38E+14
3.19E+15
1.16E+15
3
T4
EMB145
AE3007A1E
Fleet
100
1253
15-m
2.2
4.90E+05
7.47E+05
1.93E+15
1.67E+14
2.94E+15
2.55E+14
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
6.4
2.53E+03
1.51E+02
3.39E+03
1.08E+02
8.17E+13
6.60E+12
1.10E+14
6.91E+12
3
T4
EMB145
AE3007A1E
Fleet
85
1041
15-m
9.9
4.27E+05
4.92E+04
6.17E+05
7.65E+04
2.16E+15
4.02E+14
3.13E+15
5.99E+14
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
9.9
9.96E+02
1.46E+02
1.53E+03
1.55E+02
3.29E+13
5.81E+12
5.05E+13
7.16E+12
3
T4
EMB145
AE3007A1E
Fleet
85
1052
15-m
2.2
2.64E+05
3.79E+05
1.54E+15
2.93E+14
2.21E+15
4.21E+14
3
T4
EMB145
AE3007A1E
Fleet
65
786
15-m
7.2
2.84E+05
4.76E+04
4.15E+05
8.21E+04
2.14E+15
6.16E+14
3.13E+15
9.58E+14
3
T4
EMB145
AE3007A1E
Fleet
45
549
15-m
6.8
1.11E+05
3.34E+04
1.72E+05
5.18E+04
1.60E+15
7.33E+14
2.48E+15
1.14E+15
3
T4
EMB145
AE3007A1E
Fleet
30
384
15-m
4.7
2.82E+04
6.67E+02
4.51E+04
2.46E+03
7.60E+14
2.49E+14
1.22E+15
4.03E+14
3
T4
EMB145
AE3007A1E
Fleet
15
231
15-m
4.6
2.11E+03
1.24E+03
3.16E+03
1.56E+03
7.03E+13
4.18E+13
1.05E+14
5.27E+13
3
T4
EMB145
AE3007A1E
Fleet
8.4
167
15-m
5.9
1.07E+03
2.39E+01
1.63E+03
1.79E+02
3.70E+13
2.37E+12
5.61E+13
7.03E+12
3
T10
EMB145
AE3007A1/1
Fleet
8.4
179
30-m
5.9
2.21E+06
2.90E+06
3.02E+16
1.90E+16
3.96E+16
2.50E+16
3
T10
EMB145
AE3007A1/1
Fleet
15
233
30-m
4.5
1.03E+06
1.51E+05
1.49E+06
2.00E+05
8.69E+15
2.15E+15
1.25E+16
3.03E+15
3
T10
EMB145
AE3007A1/1
Fleet
30
372
30-m
9.0
1.25E+06
2.07E+05
1.78E+06
2.68E+05
7.66E+15
1.39E+15
1.09E+16
1.83E+15
3
T10
EMB145
AE3007A1/1
Fleet
45
524
30-m
8.6
1.24E+06
1.26E+05
1.76E+06
1.65E+05
6.72E+15
1.00E+15
9.58E+15
1.38E+15
3
T10
EMB145
AE3007A1/1
Fleet
65
750
30-m
4.9
1.52E+06
2.13E+06
6.73E+15
4.69E+14
9.41E+15
6.56E+14
3
T10
EMB145
AE3007A1/1
Fleet
85
971
30-m
5.1
1.52E+06
2.12E+06
5.94E+15
4.47E+14
8.27E+15
6.22E+14
3
T10
EMB145
AE3007A1/1
Fleet
100
1171
30-m
4.0
1.43E+06
2.00E+06
5.04E+15
2.95E+14
7.04E+15
4.11E+14
3
T10
EMB145
AE3007A1/1
Fleet
8.4
177
30-m
6.3
1.06E+06
2.44E+05
1.44E+06
2.96E+05
1.32E+16
5.54E+15
1.80E+16
7.30E+15
3
T10
EMB145
AE3007A1/1
Fleet
100
1180
30-m
4.7
1.19E+06
1.69E+06
4.13E+15
1.71E+14
5.85E+15
2.42E+14
3
T10
EMB145
AE3007A1/1
Fleet
85
982
30-m
5.1
1.23E+06
1.73E+06
4.70E+15
2.43E+14
6.64E+15
3.44E+14
3
T10
EMB145
AE3007A1/1
Fleet
65
767
30-m
5.2
9.34E+05
1.34E+06
4.48E+15
6.93E+14
6.42E+15
9.93E+14
E-4
-------
Table E-1 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
3
T10
EMB145
AE3007A1/1
Fleet
45
529
30-m
5.0
1.16E+06
4.55E+04
1.66E+06
6.02E+04
6.15E+15
4.64E+14
8.84E+15
6.53E+14
3
T10
EMB145
AE3007A1/1
Fleet
30
371
30-m
5.3
9.06E+05
2.96E+04
1.32E+06
4.22E+04
5.92E+15
8.94E+14
8.64E+15
1.30E+15
3
T10
EMB145
AE3007A1/1
Fleet
15
231
30-m
5.9
6.19E+05
9.12E+05
5.55E+15
1.19E+15
8.18E+15
1.75E+15
3
T10
EMB145
AE3007A1/1
Fleet
8.4
178
30-m
4.3
1.46E+06
1.96E+06
1.61E+16
5.46E+15
2.17E+16
7.34E+15
3
T6
A300
paw 4158
Fleet
7
610
30-m
9.7
4.04E+06
2.58E+05
4.89E+06
2.94E+05
1.54E+16
1.44E+15
1.86E+16
1.70E+15
3
T6
A300
paw 4158
Fleet
15
1014
30-m
7.7
3.30E+06
1.52E+05
4.35E+06
1.78E+05
1.12E+16
7.58E+14
1.47E+16
9.47E+14
3
T6
A300
paw 4158
Fleet
30
2245
30-m
7.1
3.73E+06
1.02E+05
4.83E+06
1.28E+05
7.83E+15
2.90E+14
1.01E+16
3.70E+14
3
T6
A300
paw 4158
Fleet
45
3726
30-m
8.5
3.42E+06
1.39E+05
4.41E+06
1.51E+05
5.38E+15
2.59E+14
6.93E+15
2.97E+14
3
T6
A300
paw 4158
Fleet
65
5827
30-m
2.1
1.77E+06
2.32E+06
2.02E+15
4.43E+13
2.65E+15
5.83E+13
3
T6
A300
paw 4158
Fleet
7
595
30-m
9.0
3.89E+06
3.50E+05
4.73E+06
3.92E+05
1.64E+16
2.35E+15
2.00E+16
2.78E+15
3
T6
A300
paw 4158
Fleet
65
5658
30-m
4.8
2.99E+06
4.80E+04
3.71E+06
2.26E+03
3.43E+15
9.70E+13
4.26E+15
9.90E+13
3
T6
A300
paw 4158
Fleet
80
7026
30-m
4.8
1.57E+06
4.91E+05
1.83E+06
5.44E+05
1.55E+15
4.85E+14
1.81E+15
5.37E+14
3
T6
A300
paw 4158
Fleet
7
368
30-m
8.0
4.08E+06
2.56E+05
4.95E+06
2.65E+05
1.65E+16
1.82E+15
2.01E+16
2.11 E+15
3
T6
A300
paw 4158
Fleet
80
7026
30-m
5.4
2.07E+06
8.02E+04
2.41E+06
1.04E+05
2.10E+15
9.02E+13
2.45E+15
1.15E+14
3
T6
A300
paw 4158
Fleet
65
5658
30-m
6.8
2.06E+06
5.62E+04
2.55E+06
6.11E+04
2.42E+15
8.92E+13
3.00E+15
1.03E+14
3
T6
A300
paw 4158
Fleet
45
3834
30-m
7.8
3.12E+06
4.98E+04
4.04E+06
6.04E+04
4.86E+15
1.36E+14
6.28E+15
1.72E+14
3
T6
A300
paw 4158
Fleet
30
2465
30-m
6.8
3.35E+06
1.39E+05
4.37E+06
1.65E+05
7.16E+15
3.81E+14
9.35E+15
4.71E+14
3
T6
A300
paw 4158
Fleet
15
1097
30-m
6.5
3.00E+06
6.64E+04
3.96E+06
7.55E+04
9.75E+15
5.54E+14
1.29E+16
7.18E+14
3
T6
A300
paw 4158
Fleet
7
368
30-m
7.1
4.18E+06
1.05E+05
5.06E+06
1.24E+05
1.66E+16
1.41E+15
2.01E+16
1.70E+15
3
T7
A300
paw 4158
Fleet
7
600
30-m
5.8
4.84E+06
5.21E+04
5.77E+06
6.28E+04
1.70E+16
7.25E+14
2.03E+16
8.64E+14
3
T7
A300
paw 4158
Fleet
15
1035
30-m
5.5
3.85E+06
4.97E+06
1.15E+16
5.94E+14
1.48E+16
7.68E+14
3
T7
A300
paw 4158
Fleet
30
2230
30-m
5.5
4.34E+06
1.45E+05
5.53E+06
1.87E+05
8.80E+15
3.98E+14
1.12E+16
5.11E+14
3
T7
A300
paw 4158
Fleet
45
3688
30-m
5.4
4.11E+06
1.58E+04
5.22E+06
2.10E+04
6.27E+15
1.75E+14
7.96E+15
2.22E+14
3
T7
A300
paw 4158
Fleet
65
5702
30-m
5.3
3.21 E+06
5.51E+04
4.01E+06
6.12E+04
3.64E+15
1.06E+14
4.55E+15
1.27E+14
3
T7
A300
paw 4158
Fleet
80
7100
30-m
5.1
2.31 E+06
2.75E+06
2.28E+15
4.21E+13
2.71E+15
5.00E+13
3
T7
A300
paw 4158
Fleet
7
591
30-m
9.2
4.75E+06
9.12E+04
5.68E+06
9.39E+04
1.70E+16
7.49E+14
2.04E+16
8.74E+14
3
T7
A300
paw 4158
Fleet
80
7200
30-m
3.5
2.41 E+06
2.87E+06
2.36E+15
3.90E+13
2.81E+15
4.64E+13
3
T7
A300
paw 4158
Fleet
65
5711
30-m
3.8
3.08E+06
2.71E+04
3.89E+06
7.28E+04
3.51E+15
1.04E+14
4.43E+15
1.50E+14
3
T7
A300
paw 4158
Fleet
30
2252
30-m
5.8
4.15E+06
1.20E+05
5.30E+06
1.29E+05
8.30E+15
3.25E+14
1.06E+16
3.80E+14
3
T7
A300
paw 4158
Fleet
7
596
30-m
6.1
4.69E+06
2.76E+05
5.65E+06
3.14E+05
1.70E+16
1.45E+15
2.05E+16
1.70E+15
3
T8
B757
RB211
Fleet
4
566
30-m
6.6
1.49E+06
1.52E+05
2.01E+06
1.71 E+05
1.93E+16
2.12E+15
2.60E+16
2.46E+15
3
T8
B757
RB211
Fleet
7
770
30-m
6.3
1.48E+06
5.50E+04
1.92E+06
6.73E+04
1.83E+16
8.12E+14
2.38E+16
1.01E+15
3
T8
B757
RB211
Fleet
15
1191
30-m
5.2
3.12E+06
8.05E+05
3.87E+06
9.80E+05
9.15E+15
2.44E+15
1.14E+16
2.97E+15
3
T8
B757
RB211
Fleet
30
2109
30-m
5.5
2.90E+06
3.60E+06
6.12E+15
1.69E+14
7.60E+15
2.09E+14
3
T8
B757
RB211
Fleet
45
3178
30-m
5.2
2.33E+06
1.08E+05
2.79E+06
1.22E+05
3.88E+15
2.03E+14
4.64E+15
2.32E+14
3
T8
B757
RB211
Fleet
65
4750
30-m
5.0
1.22E+06
3.54E+05
1.41E+06
3.96E+05
1.57E+15
4.56E+14
1.81E+15
5.10E+14
3
T8
B757
RB211
Fleet
85
6096
30-m
0.4
1.36E+06
1.71 E+06
1.51 E+15
5.41E+13
1.90E+15
6.81E+13
3
T8
B757
RB211
Fleet
85
6449
30-m
4.8
1.24E+06
1.56E+06
1.37E+15
4.77E+13
1.72E+15
5.98E+13
3
T8
B757
RB211
Fleet
4
552
43-m
8.3
1.88E+06
2.23E+05
3.13E+06
2.70E+05
7.51E+15
1.03E+15
1.25E+16
1.37E+15
3
T8
B757
RB211
Fleet
65
4691
43-m
5.6
1.21 E+06
9.18E+04
1.71 E+06
1.54E+05
2.05E+15
1.63E+14
2.89E+15
2.70E+14
3
T8
B757
RB211
Fleet
45
3436
43-m
6.4
1.42E+06
1.06E+05
2.23E+06
1.32E+05
2.82E+15
2.25E+14
4.40E+15
2.91E+14
3
T8
B757
RB211
Fleet
30
2131
43-m
4.2
1.94E+06
3.19E+06
5.09E+15
2.21E+14
8.36E+15
3.62E+14
3
T8
B757
RB211
Fleet
15
1178
43-m
6.5
1.97E+06
2.12E+04
3.31E+06
2.22E+04
7.18E+15
3.50E+14
1.20E+16
5.78E+14
3
T8
B757
RB211
Fleet
7
654
43-m
5.0
2.28E+06
2.51E+04
3.67E+06
4.50E+04
1.13E+16
1.08E+15
1.82E+16
1.75E+15
3
T8
B757
RB211
Fleet
4
437
43-m
5.5
2.58E+06
2.48E+05
4.03E+06
3.76E+05
1.53E+16
2.56E+15
2.39E+16
3.97E+15
3
T9
B757
RB211
Fleet
4
421
30-m
12.2
4.39E+06
5.25E+05
5.19E+06
5.85E+05
2.55E+16
6.48E+15
3.02E+16
7.56E+15
3
T9
B757
RB211
Fleet
7
690
30-m
8.1
1.28E+06
1.90E+04
1.81E+06
3.39E+04
5.29E+15
5.26E+14
7.46E+15
7.47E+14
3
T9
B757
RB211
Fleet
15
1221
30-m
8.6
1.19E+06
3.63E+05
1.69E+06
4.97E+05
4.25E+15
1.36E+15
6.04E+15
1.87E+15
3
T9
B757
RB211
Fleet
30
2004
30-m
9.7
9.47E+05
1.95E+05
1.28E+06
2.67E+05
2.40E+15
5.15E+14
3.24E+15
7.06E+14
3
T9
B757
RB211
Fleet
45
3068
30-m
10.1
8.91 E+05
4.47E+04
1.08E+06
7.38E+04
1.80E+15
1.12E+14
2.19E+15
1.69E+14
3
T9
B757
RB211
Fleet
65
4479
30-m
6.4
1.22E+06
5.11E+04
1.36E+06
5.37E+04
1.93E+15
1.04E+14
2.16E+15
1.12E+14
3
T9
B757
RB211
Fleet
85
6233
30-m
5.2
7.24E+05
3.74E+04
8.29E+05
5.98E+04
9.18E+14
5.50E+13
1.05E+15
8.23E+13
3
T9
B757
RB211
Fleet
100
6966
30-m
1.7
5.49E+05
6.45E+05
6.47E+14
2.10E+13
7.59E+14
2.46E+13
3
T9
B757
RB211
Fleet
4
494
30-m
7.5
2.55E+06
6.46E+05
3.25E+06
7.98E+05
1.18E+16
3.38E+15
1.50E+16
4.20E+15
3
T9
B757
RB211
Fleet
85
6307
30-m
5.3
6.69E+05
7.52E+05
8.70E+14
2.88E+13
9.79E+14
3.24E+13
3
T9
B757
RB211
Fleet
65
4551
30-m
5.6
1.11 E+06
1.47E+05
1.24E+06
1.58E+05
1.73E+15
2.35E+14
1.94E+15
2.54E+14
3
T9
B757
RB211
Fleet
45
3111
30-m
5.6
1.06E+06
1.42E+04
1.35E+06
4.45E+04
2.08E+15
9.13E+13
2.66E+15
1.41E+14
3
T9
B757
RB211
Fleet
30
2037
30-m
8.6
1.02E+06
1.18E+04
1.42E+06
1.34E+04
2.57E+15
1.26E+14
3.56E+15
1.73E+14
3
T9
B757
RB211
Fleet
15
1173
30-m
5.5
1.17E+06
1.68E+05
1.69E+06
2.20E+05
4.08E+15
6.44E+14
5.90E+15
8.61E+14
3
T9
B757
RB211
Fleet
7
668
30-m
4.0
9.33E+05
1.36E+06
4.27E+15
5.23E+14
6.23E+15
7.63E+14
3
T9
B757
RB211
Fleet
4
506
30-m
4.2
3.51 E+06
4.39E+06
1.77E+16
2.53E+15
2.21E+16
3.17E+15
E-5
-------
Table E-2. Particle number emission indices and rates determined by the EEPS
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
2
T1
B737-700
CFM56-7B
Fleet
4
336
30-m
10.2
1.41E+07
5.82E+05
1.74E+07
6.34E+05
7.88E+16
1.10E+16
9.74E+16
1.35E+16
2
T1
B737-700
CFM56-7B
Fleet
7
418
30-m
10.0
1.30E+07
4.35E+05
1.69E+07
4.91 E+05
6.40E+16
5.58E+15
8.28E+16
7.10E+15
2
T1
B737-700
CFM56-7B
Fleet
30
1180
30-m
9.4
1.25E+07
3.77E+05
1.68E+07
4.55E+05
4.15E+16
2.76E+15
5.60E+16
3.64E+15
2
T1
B737-700
CFM56-7B
Fleet
40
1544
30-m
10.1
1.34E+07
5.02E+05
1.79E+07
4.97E+05
3.68E+16
2.41E+15
4.92E+16
2.97E+15
2
T1
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
8.82E+06
8.71 E+05
1.27E+07
1.01 E+06
1.78E+16
1.90E+15
2.55E+16
2.27E+15
2
T1
B737-700
CFM56-7B
Fleet
85
4131
30-m
1.8
6.21 E+06
7.62E+05
9.22E+06
9.14E+05
9.60E+15
1.23E+15
1.42E+16
1.50E+15
2
T1
B737-700
CFM56-7B
Fleet
7
395
30-m
10.1
1.37E+07
1.26E+06
1.78E+07
1.31 E+06
7.81E+16
1.15E+16
1.01E+17
1.39E+16
2
T1
B737-700
CFM56-7B
Fleet
85
4086
30-m
2.1
1.51E+07
1.38E+06
2.04E+07
1.44E+06
2.32E+16
2.30E+15
3.13E+16
2.51E+15
2
T1
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
1.51E+07
3.14E+05
2.06E+07
4.05E+05
3.06E+16
1.43E+15
4.16E+16
1.93E+15
2
T1
B737-700
CFM56-7B
Fleet
40
1498
30-m
10.0
1.61E+07
3.03E+05
2.12E+07
3.69E+05
4.57E+16
2.71E+15
6.02E+16
3.55E+15
2
T1
B737-700
CFM56-7B
Fleet
30
1135
30-m
10.5
1.57E+07
7.57E+05
2.06E+07
1.04E+06
5.29E+16
4.32E+15
6.95E+16
5.76E+15
2
T1
B737-700
CFM56-7B
Fleet
4
313
30-m
11.9
1.54E+07
7.28E+05
1.92E+07
8.20E+05
9.75E+16
1.62E+16
1.21E+17
1.99E+16
2
T4
B737-700
CFM56-7B
Fleet
4
336
30-m
11.9
1.30E+07
8.99E+05
1.66E+07
1.03E+06
7.26E+16
1.09E+16
9.22E+16
1.36E+16
2
T4
B737-700
CFM56-7B
Fleet
7
418
30-m
10.1
1.32E+07
5.42E+05
1.76E+07
6.36E+05
6.47E+16
5.85E+15
8.59E+16
7.59E+15
2
T4
B737-700
CFM56-7B
Fleet
30
1180
30-m
11.0
1.57E+07
3.74E+05
2.11E+07
4.29E+05
5.22E+16
3.32E+15
6.98E+16
4.37E+15
2
T4
B737-700
CFM56-7B
Fleet
40
1544
30-m
10.0
1.66E+07
4.41 E+05
2.21 E+07
5.46E+05
4.53E+16
2.71E+15
6.05E+16
3.57E+15
2
T4
B737-700
CFM56-7B
Fleet
65
2497
30-m
9.9
1.63E+07
3.91 E+05
2.20E+07
4.79E+05
3.27E+16
1.53E+15
4.42E+16
2.02E+15
2
T4
B737-700
CFM56-7B
Fleet
85
4131
30-m
2.3
1.55E+07
3.70E+05
2.12E+07
4.57E+05
2.38E+16
1.02E+15
3.26E+16
1.35E+15
2
T4
B737-700
CFM56-7B
Fleet
7
395
30-m
10.0
1.32E+07
6.44E+05
1.74E+07
7.50E+05
7.51E+16
9.41E+15
9.90E+16
1.22E+16
2
T4
B737-700
CFM56-7B
Fleet
85
4086
30-m
2.0
1.66E+07
7.04E+05
2.25E+07
7.63E+05
2.53E+16
1.45E+15
3.43E+16
1.76E+15
2
T4
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
1.72E+07
3.73E+05
2.30E+07
4.60E+05
3.45E+16
1.63E+15
4.63E+16
2.15E+15
2
T4
B737-700
CFM56-7B
Fleet
40
1498
30-m
10.3
1.70E+07
3.69E+05
2.26E+07
4.42E+05
4.80E+16
2.90E+15
6.40E+16
3.82E+15
2
T4
B737-700
CFM56-7B
Fleet
30
1135
30-m
10.0
1.64E+07
4.05E+05
2.19E+07
4.57E+05
5.50E+16
3.87E+15
7.33E+16
5.07E+15
2
T4
B737-700
CFM56-7B
Fleet
7
381
30-m
11.0
1.36E+07
6.67E+05
1.79E+07
7.80E+05
7.35E+16
8.49E+15
9.70E+16
1.10E+16
2
T4
B737-700
CFM56-7B
Fleet
4
313
30-m
10.0
1.30E+07
1.05E+06
1.66E+07
1.20E+06
8.20E+16
1.46E+16
1.05E+17
1.82E+16
2
T2
B737-300
CFM56-3B
Fleet
4
341
30-m
10.0
1.33E+07
7.53E+05
1.69E+07
8.46E+05
4.97E+16
6.15E+15
6.31E+16
7.64E+15
2
T2
B737-300
CFM56-3B
Fleet
7
422
30-m
10.0
1.30E+07
5.34E+05
1.72E+07
6.23E+05
4.39E+16
4.73E+15
5.78E+16
6.14E+15
2
T2
B737-300
CFM56-3B
Fleet
30
1099
30-m
10.1
1.45E+07
4.63E+05
1.96E+07
5.34E+05
3.56E+16
2.57E+15
4.80E+16
3.37E+15
2
T2
B737-300
CFM56-3B
Fleet
40
1403
30-m
11.0
1.45E+07
4.26E+05
1.98E+07
5.06E+05
3.05E+16
1.85E+15
4.15E+16
2.45E+15
2
T2
B737-300
CFM56-3B
Fleet
65
2193
30-m
10.0
1.32E+07
5.63E+05
1.81 E+07
6.91 E+05
2.15E+16
1.41E+15
2.96E+16
1.86E+15
2
T2
B737-300
CFM56-3B
Fleet
85
3528
30-m
1.9
8.80E+06
4.12E+05
1.24E+07
5.34E+05
1.06E+16
6.58E+14
1.49E+16
8.86E+14
2
T2
B737-300
CFM56-3B
Fleet
7
404
30-m
10.0
1.34E+07
5.06E+05
1.76E+07
5.85E+05
4.65E+16
4.24E+15
6.11E+16
5.46E+15
2
T2
B737-300
CFM56-3B
Fleet
85
3559
30-m
2.0
9.05E+06
4.80E+05
1.26E+07
6.53E+05
1.04E+16
7.58E+14
1.45E+16
1.04E+15
2
T2
B737-300
CFM56-3B
Fleet
65
2184
30-m
10.7
1.48E+07
4.73E+05
2.02E+07
5.80E+05
2.43E+16
1.39E+15
3.31E+16
1.84E+15
2
T2
B737-300
CFM56-3B
Fleet
85
3559
30-m
1.9
1.03E+07
3.46E+05
1.44E+07
4.59E+05
1.21E+16
6.13E+14
1.69E+16
8.38E+14
2
T2
B737-300
CFM56-3B
Fleet
40
1367
30-m
11.0
1.63E+07
4.24E+05
2.19E+07
4.80E+05
3.44E+16
2.00E+15
4.61 E+16
2.60E+15
2
T2
B737-300
CFM56-3B
Fleet
30
1067
30-m
10.0
1.62E+07
4.27E+05
2.16E+07
4.90E+05
4.01 E+16
2.74E+15
5.33E+16
3.57E+15
2
T2
B737-300
CFM56-3B
Fleet
7
418
30-m
10.0
1.44E+07
5.80E+05
1.88E+07
6.60E+05
4.61 E+16
4.70E+15
6.00E+16
5.99E+15
2
T3
B737-300
CFM56-3B
Fleet
4
372
30-m
10.0
1.42E+07
6.44E+05
1.77E+07
7.29E+05
4.03E+16
4.77E+15
5.05E+16
5.88E+15
2
T3
B737-300
CFM56-3B
Fleet
7
440
30-m
10.1
1.43E+07
6.25E+05
1.83E+07
7.06E+05
4.43E+16
5.14E+15
5.65E+16
6.45E+15
2
T3
B737-300
CFM56-3B
Fleet
30
1130
30-m
10.0
1.65E+07
4.75E+05
2.17E+07
5.23E+05
3.97E+16
2.97E+15
5.20E+16
3.81E+15
2
T3
B737-300
CFM56-3B
Fleet
40
1444
30-m
10.0
1.70E+07
4.22E+05
2.24E+07
4.86E+05
3.52E+16
2.24E+15
4.64E+16
2.90E+15
2
T3
B737-300
CFM56-3B
Fleet
65
2252
30-m
10.0
1.37E+07
4.86E+05
1.86E+07
5.94E+05
2.23E+16
1.44E+15
3.03E+16
1.90E+15
2
T3
B737-300
CFM56-3B
Fleet
85
3677
30-m
1.6
5.89E+06
3.12E+05
7.88E+06
4.70E+05
6.90E+15
4.96E+14
9.23E+15
7.10E+14
2
T3
B737-300
CFM56-3B
Fleet
7
418
30-m
10.0
1.51E+07
6.71 E+05
1.91 E+07
7.53E+05
4.86E+16
5.40E+15
6.16E+16
6.72E+15
2
T3
B737-300
CFM56-3B
Fleet
85
3650
30-m
2.0
5.98E+06
6.14E+05
7.94E+06
9.06E+05
6.98E+15
8.06E+14
9.26E+15
1.17E+15
2
T3
B737-300
CFM56-3B
Fleet
65
2261
30-m
10.0
1.41E+07
4.33E+05
1.91 E+07
5.31 E+05
2.27E+16
1.33E+15
3.08E+16
1.76E+15
2
T3
B737-300
CFM56-3B
Fleet
40
1412
30-m
10.1
1.69E+07
3.79E+05
2.23E+07
4.27E+05
3.64E+16
2.20E+15
4.81E+16
2.85E+15
2
T3
B737-300
CFM56-3B
Fleet
30
1108
30-m
10.0
1.65E+07
4.33E+05
2.18E+07
4.98E+05
4.04E+16
2.87E+15
5.32E+16
3.71E+15
2
T3
B737-300
CFM56-3B
Fleet
7
422
30-m
10.0
1.44E+07
6.48E+05
1.83E+07
7.37E+05
4.79E+16
5.71E+15
6.10E+16
7.16E+15
2
T3
B737-300
CFM56-3B
Fleet
4
368
30-m
10.0
1.39E+07
6.38E+05
1.74E+07
7.24E+05
4.34E+16
5.28E+15
5.44E+16
6.53E+15
3
T11
B737-300
CFM56-3B
Fleet
4
381
30-m
10.8
1.33E+06
2.70E+05
1.51 E+06
3.04E+05
6.32E+15
1.42E+15
7.18E+15
1.60E+15
3
T11
B737-300
CFM56-3B
Fleet
7
431
30-m
7.7
1.54E+06
7.46E+04
1.75E+06
8.20E+04
6.00E+15
6.46E+14
6.82E+15
7.30E+14
3
T11
B737-300
CFM56-3B
Fleet
15
622
30-m
7.8
2.44E+06
2.19E+05
2.83E+06
2.63E+05
6.57E+15
8.07E+14
7.61 E+15
9.54E+14
3
T11
B737-300
CFM56-3B
Fleet
30
1090
30-m
8.9
3.71 E+06
2.48E+05
4.32E+06
2.94E+05
7.61 E+15
6.67E+14
8.88E+15
7.86E+14
3
T11
B737-300
CFM56-3B
Fleet
45
1530
30-m
6.0
3.90E+06
1.09E+05
4.56E+06
1.34E+05
6.88E+15
2.90E+14
8.03E+15
3.48E+14
3
T11
B737-300
CFM56-3B
Fleet
65
2179
30-m
6.3
4.03E+06
1.03E+05
4.73E+06
1.27E+05
6.16E+15
2.60E+14
7.22E+15
3.11E+14
3
T11
B737-300
CFM56-3B
Fleet
85
2815
30-m
4.7
3.71 E+06
1.49E+05
4.36E+06
1.74E+05
4.97E+15
2.75E+14
5.83E+15
3.22E+14
3
T11
B737-300
CFM56-3B
Fleet
100
3564
30-m
1.2
3.43E+06
2.70E+05
4.04E+06
3.12E+05
4.22E+15
3.70E+14
4.96E+15
4.30E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
15-m
4.5
7.57E+05
7.10E+04
9.56E+05
8.90E+04
7.03E+16
1.24E+16
8.88E+16
1.56E+16
3
T2
Lear 25
CJ610-8ATJ
Fleet
15
304
15-m
5.2
6.69E+06
1.01 E+06
8.32E+06
1.21 E+06
1.79E+16
3.54E+15
2.22E+16
4.31E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
30
452
15-m
7.1
6.29E+06
5.92E+05
7.96E+06
7.21 E+05
1.20E+16
1.30E+15
1.51E+16
1.60E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
45
568
15-m
6.6
4.74E+06
4.25E+05
5.99E+06
5.49E+05
7.93E+15
7.78E+14
1.00E+16
1.00E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
65
760
15-m
7.4
4.08E+06
1.39E+05
4.95E+06
1.64E+05
5.93E+15
3.11E+14
7.21 E+15
3.73E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
85
999
15-m
2.3
5.03E+06
2.01 E+05
5.99E+06
2.27E+05
6.06E+15
2.97E+14
7.21 E+15
3.41E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
85
999
30-m
5.7
3.80E+06
4.18E+05
4.53E+06
4.77E+05
7.52E+15
9.55E+14
8.96E+15
1.10E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
100
1226
30-m
7.2
4.35E+06
2.27E+05
5.11 E+06
2.61 E+05
7.63E+15
5.96E+14
8.97E+15
6.93E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
30-m
2.43E+05
7.81 E+05
3.02E+05
9.63E+05
9.90E+15
3.24E+16
1.23E+16
4.00E+16
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
15-m
5.1
4.23E+06
2.01 E+05
5.22E+06
2.47E+05
1.72E+17
1.09E+17
2.13E+17
1.34E+17
3
T2
Lear 25
CJ610-8ATJ
Fleet
100
1226
15-m
2.3
6.18E+06
2.78E+05
7.28E+06
2.99E+05
6.52E+15
3.37E+14
7.68E+15
3.71E+14
3
T2
Lear 25
CJ610-8ATJ
Fleet
65
763
15-m
2.2
5.36E+06
8.87E+05
6.52E+06
1.13E+06
7.26E+15
1.24E+15
8.83E+15
1.58E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
45
568
15-m
2.1
7.48E+06
5.59E+05
9.50E+06
7.39E+05
1.23E+16
1.02E+15
1.56E+16
1.34E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
30
454
15-m
2.5
8.70E+06
3.77E+05
1.10E+07
4.45E+05
1.71E+16
1.37E+15
2.15E+16
1.70E+15
E-6
-------
Table E-2 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
3
T2
Lear 25
CJ610-8ATJ
Fleet
15
304
15-m
2.2
8.40E+06
5.02E+05
1.04E+07
5.75E+05
2.12E+16
2.74E+15
2.63E+16
3.35E+15
3
T2
Lear 25
CJ610-8ATJ
Fleet
7
182
15-m
1.6
7.20E+05
2.06E+05
9.01 E+05
2.57E+05
3.18E+16 9.31E+15
3.98E+16
1.16E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
7
227
15-m
19.6
1.44E+06
4.93E+06
1.85E+06
6.27E+06
2.16E+16
7.42E+16
2.78E+16
9.45E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
15
303
15-m
14.6
3.76E+07
1.33E+07
4.75E+07
1.64E+07
1.46E+17
6.57E+16
1.84E+17
8.17E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
30
452
15-m
7.5
4.26E+07
3.55E+06
5.42E+07
4.28E+06
1.13E+17
1.38E+16
1.44E+17
1.72E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
45
567
15-m
7.1
3.34E+07
2.28E+06
4.25E+07
2.81 E+06
8.81E+16
9.57E+15
1.12E+17
1.20E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
65
763
15-m
8.8
3.05E+07
1.19E+06
3.73E+07
1.40E+06
6.44E+16
3.50E+15
7.86E+16
4.20E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
85
1009
15-m
7.9
3.89E+07
9.78E+05
4.64E+07
1.11 E+06
7.24E+16
1.10E+16
8.62E+16
1.31E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
100
1226
15-m
7.2
4.42E+07
9.99E+05
5.21 E+07
1.12E+06
7.30E+16
2.32E+15
8.61 E+16
2.67E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
7
227
30-m
19.3
7.76E+05
4.10E+06
9.95E+05
5.02E+06
7.03E+15
3.72E+16
9.01 E+15
4.56E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
100
1226
30-m
7.5
2.65E+07
2.23E+06
3.13E+07
2.56E+06
8.08E+16
9.81E+15
9.56E+16
1.14E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
85
1009
30-m
7.6
2.30E+07
1.83E+06
2.75E+07
2.14E+06
7.48E+16
8.39E+15
8.94E+16
9.91 E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
65
763
30-m
7.3
1.85E+07
1.50E+06
2.29E+07
1.82E+06
6.53E+16
6.25E+15
8.08E+16
7.65E+15
3
T5
Lear 25
CJ610-8ATJ
Fleet
45
567
30-m
10.4
2.80E+07
2.03E+06
3.71 E+07
2.61 E+06
1.07E+17
1.05E+16
1.43E+17
1.37E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
30
452
30-m
4.9
2.94E+07
1.96E+06
3.88E+07
2.54E+06
1.11E+17
9.54E+15
1.46E+17
1.25E+16
3
T5
Lear 25
CJ610-8ATJ
Fleet
7
227
30-m
10.5
4.11E+05
2.43E+06
5.30E+05
3.15E+06
3.99E+15
2.36E+16
5.14E+15
3.05E+16
3
T3
EMB145
AE3007A1E
Fleet
8.4
174
15-m
17.3
8.35E+05
1.65E+04
1.23E+06
2.42E+04
1.85E+16
1.20E+16
2.74E+16
1.77E+16
3
T3
EMB145
AE3007A1E
Fleet
15
238
15-m
6.7
5.14E+05
2.42E+05
7.66E+05
3.67E+05
6.28E+15
3.70E+15
9.36E+15
5.59E+15
3
T3
EMB145
AE3007A1E
Fleet
30
389
15-m
6.8
6.18E+05
2.47E+05
9.34E+05
3.81 E+05
5.90E+15
2.77E+15
8.91 E+15
4.24E+15
3
T3
EMB145
AE3007A1E
Fleet
45
555
15-m
7.6
6.40E+05
2.09E+05
9.63E+05
3.18E+05
4.86E+15
1.77E+15
7.31E+15
2.69E+15
3
T3
EMB145
AE3007A1E
Fleet
65
805
15-m
7.2
6.91 E+05
2.14E+05
1.05E+06
3.33E+05
4.36E+15
1.50E+15
6.66E+15
2.33E+15
3
T3
EMB145
AE3007A1E
Fleet
85
1082
15-m
8.2
8.51 E+05
4.57E+05
1.30E+06
6.93E+05
4.99E+15
2.84E+15
7.63E+15
4.31E+15
3
T3
EMB145
AE3007A1E
Fleet
100
1286
15-m
2.3
6.96E+05
2.64E+05
1.06E+06
4.08E+05
3.84E+15
1.61E+15
5.87E+15
2.48E+15
3
T3
EMB145
AE3007A1E
Fleet
8.4
172
15-m
7.9
6.93E+05
9.41 E+05
1.02E+06
1.39E+06
1.38E+16
2.06E+16
2.04E+16
3.05E+16
3
T3
EMB145
AE3007A1E
Fleet
100
1299
15-m
2.3
6.88E+05
4.30E+05
1.04E+06
6.45E+05
3.73E+15
2.41E+15
5.63E+15
3.62E+15
3
T3
EMB145
AE3007A1E
Fleet
85
1088
15-m
8.0
3.76E+05
1.37E+05
5.51 E+05
2.10E+05
2.40E+15
9.84E+14
3.51E+15
1.50E+15
3
T3
EMB145
AE3007A1E
Fleet
65
810
15-m
6.9
2.66E+05
8.29E+04
3.90E+05
1.28E+05
2.22E+15
7.80E+14
3.26E+15
1.19E+15
3
T3
EMB145
AE3007A1E
Fleet
45
563
15-m
7.9
2.05E+05
7.38E+04
2.95E+05
1.12E+05
2.16E+15
9.04E+14
3.10E+15
1.35E+15
3
T3
EMB145
AE3007A1E
Fleet
30
392
15-m
8.6
2.74E+06
1.31 E+06
3.99E+06
1.93E+06
2.96E+16
1.54E+16
4.31E+16
2.27E+16
3
T3
EMB145
AE3007A1E
Fleet
15
235
15-m
9.9
4.73E+06
1.46E+06
7.02E+06
2.23E+06
5.40E+16
2.06E+16
8.02E+16
3.12E+16
3
T3
EMB145
AE3007A1E
Fleet
8.4
173
15-m
6.8
9.98E+06
2.47E+05
7.79E+06
7.87E+05
2.03E+17
1.22E+17
1.59E+17
9.62E+16
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
7.0
1.91E+04
6.26E+04
2.52E+04
8.95E+04
5.63E+14
1.85E+15
7.41E+14
2.64E+15
3
T4
EMB145
AE3007A1E
Fleet
15
239
15-m
4.9
2.21 E+04
2.63E+04
2.85E+04
3.80E+04
5.77E+14
7.05E+14
7.47E+14
1.01 E+15
3
T4
EMB145
AE3007A1E
Fleet
30
385
15-m
6.9
4.96E+04
3.86E+04
6.72E+04
5.62E+04
8.51E+14
7.14E+14
1.15E+15
1.03E+15
3
T4
EMB145
AE3007A1E
Fleet
45
547
15-m
4.8
1.19E+06
7.98E+05
1.71 E+06
1.19E+06
1.33E+16
9.88E+15
1.92E+16
1.47E+16
3
T4
EMB145
AE3007A1E
Fleet
65
788
15-m
7.6
2.83E+06
1.18E+06
4.10E+06
1.79E+06
1.83E+16
8.48E+15
2.65E+16
1.27E+16
3
T4
EMB145
AE3007A1E
Fleet
85
1050
15-m
6.8
4.52E+06
3.15E+06
6.63E+06
4.88E+06
2.18E+16
1.56E+16
3.20E+16
2.41E+16
3
T4
EMB145
AE3007A1E
Fleet
100
1253
15-m
2.2
5.27E+06
3.29E+06
7.75E+06
5.06E+06
2.08E+16
1.31E+16
3.06E+16
2.01 E+16
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
6.4
1.40E+05
5.83E+05
1.90E+05
8.63E+05
4.54E+15
1.89E+16
6.14E+15
2.79E+16
3
T4
EMB145
AE3007A1E
Fleet
100
1252
15-m
2.2
1.83E+06
5.12E+05
2.32E+06
6.95E+05
8.17E+15
2.74E+15
1.04E+16
3.65E+15
3
T4
EMB145
AE3007A1E
Fleet
85
1041
15-m
9.9
2.34E+06
6.14E+05
3.20E+06
9.08E+05
1.19E+16
3.56E+15
1.62E+16
5.17E+15
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
9.9
4.96E+04
1.00E+05
5.86E+04
1.32E+05
1.64E+15
3.31E+15
1.93E+15
4.36E+15
3
T4
EMB145
AE3007A1E
Fleet
85
1052
15-m
2.2
1.62E+06
5.44E+05
2.08E+06
7.45E+05
9.43E+15
3.64E+15
1.21 E+16
4.91 E+15
3
T4
EMB145
AE3007A1E
Fleet
65
786
15-m
7.2
1.69E+06
6.81 E+05
2.34E+06
9.85E+05
1.28E+16
5.93E+15
1.76E+16
8.49E+15
3
T4
EMB145
AE3007A1E
Fleet
45
549
15-m
6.8
6.86E+05
5.06E+05
9.56E+05
7.41 E+05
9.90E+15
8.06E+15
1.38E+16
1.17E+16
3
T4
EMB145
AE3007A1E
Fleet
30
384
15-m
4.7
1.38E+05
1.69E+05
1.78E+05
2.32E+05
3.72E+15
4.71E+15
4.79E+15
6.46E+15
3
T4
EMB145
AE3007A1E
Fleet
15
231
15-m
4.6
5.35E+04
5.38E+04
6.46E+04
7.50E+04
1.78E+15
1.80E+15
2.15E+15
2.50E+15
3
T4
EMB145
AE3007A1E
Fleet
8.4
167
15-m
5.9
7.06E+04
3.39E+05
9.24E+04
5.08E+05
2.43E+15
1.17E+16
3.18E+15
1.75E+16
3
T10
EMB145
AE3007A1/1
Fleet
8.4
179
30-m
5.9
1.89E+06
7.03E+05
2.77E+06
1.00E+06
2.58E+16
1.89E+16
3.79E+16
2.76E+16
3
T10
EMB145
AE3007A1/1
Fleet
15
233
30-m
4.5
1.85E+06
4.23E+05
2.86E+06
6.34E+05
1.56E+16
4.75E+15
2.42E+16
7.21 E+15
3
T10
EMB145
AE3007A1/1
Fleet
30
372
30-m
9.0
2.40E+06
5.44E+05
3.69E+06
7.78E+05
1.47E+16
3.51E+15
2.26E+16
5.06E+15
3
T10
EMB145
AE3007A1/1
Fleet
45
524
30-m
8.6
2.37E+06
3.18E+05
3.64E+06
4.65E+05
1.29E+16
2.22E+15
1.98E+16
3.32E+15
3
T10
EMB145
AE3007A1/1
Fleet
65
750
30-m
4.9
2.95E+06
4.05E+05
4.47E+06
5.74E+05
1.30E+16
2.01 E+15
1.98E+16
2.89E+15
3
T10
EMB145
AE3007A1/1
Fleet
85
971
30-m
5.1
3.01 E+06
3.26E+05
4.57E+06
4.63E+05
1.17E+16
1.55E+15
1.78E+16
2.25E+15
3
T10
EMB145
AE3007A1/1
Fleet
100
1171
30-m
4.0
2.84E+06
2.19E+05
4.33E+06
3.14E+05
1.00E+16
9.67E+14
1.53E+16
1.42E+15
3
T10
EMB145
AE3007A1/1
Fleet
8.4
177
30-m
6.3
2.02E+06
7.22E+05
2.99E+06
1.03E+06
2.53E+16
1.26E+16
3.74E+16
1.83E+16
3
T10
EMB145
AE3007A1/1
Fleet
100
1180
30-m
4.7
2.38E+06
2.36E+05
3.66E+06
3.46E+05
8.25E+15
8.84E+14
1.27E+16
1.31E+15
3
T10
EMB145
AE3007A1/1
Fleet
85
982
30-m
5.1
2.40E+06
1.84E+05
3.69E+06
2.71 E+05
9.18E+15
8.51E+14
1.41E+16
1.27E+15
3
T10
EMB145
AE3007A1/1
Fleet
65
767
30-m
5.2
1.90E+06
3.84E+05
2.95E+06
5.78E+05
9.13E+15
2.32E+15
1.42E+16
3.54E+15
3
T10
EMB145
AE3007A1/1
Fleet
45
529
30-m
5.0
1.94E+06
1.64E+05
3.03E+06
2.44E+05
1.03E+16
1.10E+15
1.61 E+16
1.66E+15
3
T10
EMB145
AE3007A1/1
Fleet
30
371
30-m
5.3
1.50E+06
2.77E+05
2.35E+06
4.26E+05
9.77E+15
2.31E+15
1.54E+16
3.59E+15
3
T10
EMB145
AE3007A1/1
Fleet
15
231
30-m
5.9
1.03E+06
2.83E+05
1.63E+06
4.45E+05
9.25E+15
3.22E+15
1.46E+16
5.06E+15
3
T10
EMB145
AE3007A1/1
Fleet
8.4
178
30-m
4.3
2.35E+06
8.37E+05
3.46E+06
1.19E+06
2.60E+16
1.28E+16
3.82E+16
1.85E+16
3
T6
A300
P&W4158
Fleet
7
610
30-m
9.7
9.62E+05
7.82E+04
1.23E+06
9.40E+04
3.67E+15
3.90E+14
4.69E+15
4.81E+14
3
T6
A300
P&W4158
Fleet
15
1014
30-m
7.7
6.44E+05
6.09E+04
9.14E+05
7.45E+04
2.17E+15
2.33E+14
3.08E+15
2.95E+14
3
T6
A300
P&W4158
Fleet
30
2245
30-m
7.1
7.05E+05
5.12E+04
9.90E+05
6.99E+04
1.48E+15
1.14E+14
2.08E+15
1.56E+14
3
T6
A300
P&W4158
Fleet
45
3726
30-m
8.5
7.05E+05
1.39E+05
9.80E+05
1.89E+05
1.11E+15
2.20E+14
1.54E+15
3.00E+14
3
T6
A300
P&W4158
Fleet
65
5827
30-m
2.1
6.19E+05
2.26E+05
8.24E+05
3.08E+05
7.06E+14
2.58E+14
9.41E+14
3.52E+14
3
T6
A300
P&W4158
Fleet
7
595
30-m
9.0
1.11 E+06
1.07E+05
1.43E+06
1.26E+05
4.67E+15
6.91 E+14
6.04E+15
8.61 E+14
3
T6
A300
P&W4158
Fleet
65
5658
30-m
4.8
7.58E+05
1.87E+05
1.02E+06
2.55E+05
8.70E+14
2.16E+14
1.17E+15
2.94E+14
3
T6
A300
P&W4158
Fleet
80
7026
30-m
4.8
4.82E+05
1.31 E+05
5.77E+05
1.80E+05
4.75E+14
1.30E+14
5.69E+14
1.78E+14
3
T6
A300
P&W4158
Fleet
7
368
30-m
8.0
1.12E+06
1.58E+05
1.44E+06
1.86E+05
4.52E+15
7.61 E+14
5.85E+15
9.21 E+14
3
T6
A300
P&W4158
Fleet
80
7026
30-m
5.4
5.46E+05
1.18E+05
6.59E+05
1.56E+05
5.54E+14
1.20E+14
6.68E+14
1.59E+14
E-7
-------
Table E-2 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
3
T6
A300
P&W4158
Fleet
65
5658
30-m
6.8
4.93E+05
6.99E+04
6.42E+05
9.43E+04
5.79E+14
8.34E+13
7.54E+14
1.12E+14
3
T6
A300
P&W4158
Fleet
45
3834
30-m
7.8
7.07E+05
7.70E+04
9.90E+05
1.08E+05
1.10E+15
1.22E+14
1.54E+15
1.71E+14
3
T6
A300
P&W4158
Fleet
30
2465
30-m
6.8
6.98E+05
5.45E+04
9.91 E+05
7.60E+04
1.49E+15
1.27E+14
2.12E+15
1.77E+14
3
T6
A300
P&W4158
Fleet
15
1097
30-m
6.5
7.13E+05
6.15E+04
1.02E+06
8.43E+04
2.32E+15
2.34E+14
3.32E+15
3.25E+14
3
T6
A300
P&W4158
Fleet
7
368
30-m
7.1
1.30E+06
9.65E+04
1.67E+06
1.15E+05
5.17E+15
5.67E+14
6.66E+15
7.05E+14
3
T7
A300
P&W4158
Fleet
7
600
30-m
5.8
1.76E+06
1.83E+05
2.22E+06
2.34E+05
6.21 E+15
6.93E+14
7.81E+15
8.83E+14
3
T7
A300
P&W4158
Fleet
15
1035
30-m
5.5
1.23E+06
8.67E+04
1.70E+06
1.06E+05
3.65E+15
3.20E+14
5.07E+15
4.10E+14
3
T7
A300
P&W4158
Fleet
30
2230
30-m
5.5
1.36E+06
1.40E+05
1.88E+06
1.86E+05
2.76E+15
2.97E+14
3.81E+15
3.95E+14
3
T7
A300
P&W4158
Fleet
45
3688
30-m
5.4
1.30E+06
1.82E+05
1.78E+06
2.51 E+05
1.98E+15
2.83E+14
2.72E+15
3.90E+14
3
T7
A300
P&W4158
Fleet
65
5702
30-m
5.3
1.18E+06
2.05E+05
1.58E+06
2.78E+05
1.34E+15
2.35E+14
1.80E+15
3.18E+14
3
T7
A300
P&W4158
Fleet
80
7100
30-m
5.1
8.83E+05
1.80E+05
1.10E+06
2.36E+05
8.69E+14
1.78E+14
1.09E+15
2.33E+14
3
T7
A300
P&W4158
Fleet
7
591
30-m
9.2
2.14E+06
1.33E+05
2.71 E+06
1.59E+05
7.66E+15
5.64E+14
9.74E+15
6.87E+14
3
T7
A300
P&W4158
Fleet
80
7200
30-m
3.5
1.04E+06
2.22E+05
1.30E+06
2.92E+05
1.02E+15
2.19E+14
1.28E+15
2.87E+14
3
T7
A300
P&W4158
Fleet
65
5711
30-m
3.8
1.18E+06
2.30E+05
1.58E+06
3.16E+05
1.34E+15
2.65E+14
1.81E+15
3.63E+14
3
T7
A300
P&W4158
Fleet
30
2252
30-m
5.8
1.44E+06
1.56E+05
2.01 E+06
2.14E+05
2.88E+15
3.22E+14
4.02E+15
4.41E+14
3
T7
A300
P&W4158
Fleet
7
596
30-m
6.1
2.28E+06
1.75E+05
2.91 E+06
1.96E+05
8.26E+15
8.14E+14
1.06E+16
9.65E+14
3
T8
B757
RB211
Fleet
4
566
30-m
6.6
1.27E+06
2.31 E+05
1.80E+06
3.01 E+05
1.65E+16
3.07E+15
2.34E+16
4.01 E+15
3
T8
B757
RB211
Fleet
7
770
30-m
6.3
1.25E+06
2.97E+05
1.70E+06
3.90E+05
1.55E+16
3.69E+15
2.11E+16
4.85E+15
3
T8
B757
RB211
Fleet
15
1191
30-m
5.2
2.67E+06
6.80E+05
3.56E+06
9.08E+05
7.83E+15
2.06E+15
1.04E+16
2.75E+15
3
T8
B757
RB211
Fleet
30
2109
30-m
5.5
2.57E+06
8.22E+05
3.38E+06
1.06E+06
5.42E+15
1.74E+15
7.13E+15
2.24E+15
3
T8
B757
RB211
Fleet
45
3178
30-m
5.2
1.67E+06
2.45E+05
2.13E+06
3.09E+05
2.77E+15
4.13E+14
3.54E+15
5.21 E+14
3
T8
B757
RB211
Fleet
65
4750
30-m
5.0
1.00E+06
8.77E+04
1.18E+06
1.09E+05
1.29E+15
1.16E+14
1.52E+15
1.45E+14
3
T8
B757
RB211
Fleet
85
6096
30-m
0.4
9.39E+05
1.12E+05
1.22E+06
1.61 E+05
1.05E+15
1.30E+14
1.36E+15
1.86E+14
3
T8
B757
RB211
Fleet
7
782
30-m
0.3
2.17E+06
4.45E+05
2.91 E+06
5.96E+05
1.11E+16
2.92E+15
1.48E+16
3.91 E+15
3
T8
B757
RB211
Fleet
85
6449
30-m
4.8
8.81 E+05
1.54E+05
1.14E+06
2.16E+05
9.72E+14
1.74E+14
1.26E+15
2.42E+14
3
T8
B757
RB211
Fleet
4
552
30-m
0.6
1.93E+06
5.26E+05
3.47E+06
7.32E+05
7.69E+15
2.16E+15
1.38E+16
3.07E+15
3
T8
B757
RB211
Fleet
65
4691
43-m
5.6
8.84E+05
9.44E+04
1.37E+06
1.68E+05
1.50E+15
1.64E+14
2.32E+15
2.89E+14
3
T8
B757
RB211
Fleet
45
3436
43-m
6.4
1.05E+06
1.53E+05
1.89E+06
2.80E+05
2.08E+15
3.09E+14
3.74E+15
5.64E+14
3
T8
B757
RB211
Fleet
30
2131
43-m
4.2
1.36E+06
1.19E+05
2.59E+06
2.37E+05
3.56E+15
3.47E+14
6.77E+15
6.87E+14
3
T8
B757
RB211
Fleet
15
1178
43-m
6.5
1.55E+06
9.07E+04
3.01 E+06
1.63E+05
5.66E+15
4.26E+14
1.09E+16
7.90E+14
3
T8
B757
RB211
Fleet
7
654
43-m
5.0
1.87E+06
1.65E+05
3.45E+06
2.72E+05
9.26E+15
1.20E+15
1.71E+16
2.11E+15
3
T8
B757
RB211
Fleet
4
437
43-m
5.5
2.27E+06
1.90E+05
4.05E+06
3.11 E+05
1.34E+16
2.16E+15
2.40E+16
3.78E+15
3
T9
B757
RB211
Fleet
4
421
30-m
12.2
7.11 E+05
2.27E+05
8.72E+05
2.76E+05
4.13E+15
1.61 E+15
5.07E+15
1.96E+15
3
T9
B757
RB211
Fleet
7
690
30-m
8.1
1.82E+05
1.07E+05
2.56E+05
1.28E+05
7.53E+14
4.48E+14
1.06E+15
5.39E+14
3
T9
B757
RB211
Fleet
15
1221
30-m
8.6
1.76E+05
4.08E+04
2.54E+05
5.82E+04
6.30E+14
1.58E+14
9.06E+14
2.26E+14
3
T9
B757
RB211
Fleet
30
2004
30-m
9.7
1.44E+05
2.51 E+04
1.91 E+05
3.60E+04
3.65E+14
6.76E+13
4.84E+14
9.60E+13
3
T9
B757
RB211
Fleet
45
3068
30-m
10.1
1.65E+05
1.95E+04
1.92E+05
2.65E+04
3.33E+14
4.14E+13
3.89E+14
5.55E+13
3
T9
B757
RB211
Fleet
65
4479
30-m
6.4
2.54E+05
3.74E+04
2.82E+05
4.19E+04
4.02E+14
6.09E+13
4.47E+14
6.81E+13
3
T9
B757
RB211
Fleet
85
6233
30-m
5.2
1.67E+05
1.86E+04
1.86E+05
2.12E+04
2.12E+14
2.45E+13
2.35E+14
2.78E+13
3
T9
B757
RB211
Fleet
100
6966
30-m
1.7
1.22E+05
1.38E+04
1.36E+05
1.60E+04
1.44E+14
1.69E+13
1.60E+14
1.95E+13
3
T9
B757
RB211
Fleet
4
494
30-m
7.5
8.24E+05
1.70E+05
1.10E+06
2.19E+05
3.81E+15
9.36E+14
5.07E+15
1.22E+15
3
T9
B757
RB211
Fleet
100
6987
30-m
1.9
1.19E+05
2.14E+04
1.33E+05
2.41 E+04
1.49E+14
2.72E+13
1.65E+14
3.05E+13
3
T9
B757
RB211
Fleet
85
6307
30-m
5.3
1.65E+05
2.07E+04
1.84E+05
2.35E+04
2.15E+14
2.78E+13
2.39E+14
3.15E+13
3
T9
B757
RB211
Fleet
65
4551
30-m
5.6
2.83E+05
2.25E+04
3.14E+05
2.55E+04
4.43E+14
3.74E+13
4.92E+14
4.22E+13
3
T9
B757
RB211
Fleet
45
3111
30-m
5.6
2.15E+05
3.37E+04
2.66E+05
5.08E+04
4.23E+14
6.85E+13
5.23E+14
1.02E+14
3
T9
B757
RB211
Fleet
30
2037
30-m
8.6
2.43E+05
3.09E+04
3.41 E+05
4.59E+04
6.11E+14
8.30E+13
8.56E+14
1.22E+14
3
T9
B757
RB211
Fleet
15
1173
30-m
5.5
2.39E+05
4.73E+04
3.49E+05
6.92E+04
8.33E+14
1.74E+14
1.22E+15
2.54E+14
3
T9
B757
RB211
Fleet
7
668
30-m
4.0
1.40E+05
3.06E+04
2.04E+05
4.45E+04
6.41E+14
1.61E+14
9.33E+14
2.34E+14
3
T9
B757
RB211
Fleet
4
506
30-m
4.2
2.10E+05
5.77E+04
2.70E+05
7.34E+04
1.06E+15
3.27E+14
1.36E+15
4.18E+14
-------
Table E-3. Particle number emission indices and rates determined by the ELPI
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
1
EPA 1
DC8
CFM56-2C
Base
7
424
30-m
17.1
8.23E+06
3.33E+06
1.20E+07
4.77E+06
2.48E+16
1.04E+16
3.61 E+16
1.49E+16
1
EPA 1
DC8
CFM56-2C
Base
100
2906
30-m
0.8
2.91 E+06
1.28E+06
4.47E+06
2.12E+06
4.82E+15
2.14E+15
7.41E+15
3.53E+15
1
EPA 1
DC8
CFM56-2C
Base
85
2622
30-m
1.5
1.24E+06
2.06E+05
1.90E+06
2.94E+05
1.99E+15
3.64E+14
3.04E+15
5.26E+14
1
EPA 1
DC8
CFM56-2C
Base
85
2883
30-m
2.5
1.07E+06
6.31 E+05
1.64E+06
9.12E+05
1.87E+15
1.12E+15
2.85E+15
1.63E+15
1
EPA 1
DC8
CFM56-2C
Base
30
1012
30-m
4.1
1.89E+06
6.20E+05
2.89E+06
8.91 E+05
6.06E+15
2.28E+15
9.27E+15
3.33E+15
1
EPA 1
DC8
CFM56-2C
Base
7
436
30-m
27.0
5.81 E+06
1.35E+06
8.52E+06
1.93E+06
1.80E+16
5.12E+15
2.65E+16
7.40E+15
1
EPA 1
DC8
CFM56-2C
Base
100
2867
30-m
0.4
1.24E+06
3.94E+05
1.90E+06
5.69E+05
2.60E+15
8.44E+14
3.97E+15
1.22E+15
1
EPA 1
DC8
CFM56-2C
Base
30
1003
30-m
4.2
2.32E+06
3.78E+05
3.51 E+06
5.45E+05
6.57E+15
1.39E+15
9.93E+15
2.04E+15
1
EPA 1
DC8
CFM56-2C
Base
7
443
30-m
2.2
4.51 E+06
5.42E+05
6.66E+06
7.78E+05
1.23E+16
2.24E+15
1.81E+16
3.26E+15
1
EPA 1
DC8
CFM56-2C
Base
85
2829
30-m
2.3
1.26E+06
9.99E+05
1.92E+06
1.44E+06
1.98E+15
1.57E+15
3.01 E+15
2.27E+15
1
EPA 1
DC8
CFM56-2C
Base
7
442
30-m
16.3
3.61 E+06
8.85E+05
5.36E+06
1.27E+06
1.11E+16
3.36E+15
1.65E+16
4.88E+15
1
EPA 1
DC8
CFM56-2C
Base
100
3042
30-m
1.4
7.92E+05
2.84E+05
1.23E+06
4.07E+05
1.22E+15
4.39E+14
1.90E+15
6.30E+14
1
EPA 1
DC8
CFM56-2C
Base
85
2974
30-m
3.8
6.48E+05
6.95E+04
1.04E+06
9.73E+04
1.10E+15
1.32E+14
1.77E+15
1.90E+14
1
EPA 1
DC8
CFM56-2C
Base
30
991
30-m
CO
CO
1.75E+06
5.67E+05
2.69E+06
8.15E+05
5.10E+15
1.68E+15
7.84E+15
2.43E+15
1
EPA 1
DC8
CFM56-2C
Base
7
431
30-m
66.2
3.05E+06
8.91 E+05
4.54E+06
1.29E+06
1.04E+16
3.51E+15
1.55E+16
5.11E+15
1
EPA 1
DC8
CFM56-2C
Base
100
3064
30-m
0.8
3.27E+06
4.00E+06
4.79E+06
5.74E+06
5.93E+15
7.28E+15
8.70E+15
1.04E+16
1
EPA 1
DC8
CFM56-2C
Base
85
2786
30-m
2.2
4.77E+05
8.22E+04
7.96E+05
1.12E+05
7.97E+14
1.63E+14
1.33E+15
2.38E+14
1
EPA 1
DC8
CFM56-2C
Base
30
963
30-m
3.9
1.07E+06
1.26E+06
1.58E+06
1.80E+06
2.99E+15
3.54E+15
4.43E+15
5.06E+15
1
EPA 1
DC8
CFM56-2C
Base
7
440
30-m
9.0
3.74E+06
5.79E+05
5.55E+06
8.31 E+05
1.06E+16
1.73E+15
1.57E+16
2.49E+15
1
EPA 2
DC8
CFM56-2C
Base
7
436
30-m
17.2
1.60E+07
1.02E+06
2.30E+07
1.46E+06
5.41E+16
6.00E+15
7.79E+16
8.63E+15
1
EPA 2
DC8
CFM56-2C
Base
100
3180
30-m
0.7
8.70E+06
4.19E+06
1.24E+07
6.03E+06
1.68E+16
8.21 E+15
2.40E+16
1.18E+16
1
EPA 2
DC8
CFM56-2C
Base
85
2898
30-m
2.2
5.61 E+06
3.45E+05
8.02E+06
4.91 E+05
8.94E+15
8.14E+14
1.28E+16
1.16E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1017
30-m
3.9
7.69E+06
7.96E+05
1.11E+07
1.14E+06
2.11E+16
2.71E+15
3.06E+16
3.90E+15
1
EPA 2
DC8
CFM56-2C
Base
7
409
30-m
26.7
1.21E+07
1.72E+06
1.74E+07
2.47E+06
4.28E+16
7.34E+15
6.18E+16
1.06E+16
1
EPA 2
DC8
CFM56-2C
Base
100
3178
30-m
0.8
8.52E+06
1.95E+06
1.22E+07
2.81E+06
1.46E+16
3.34E+15
2.08E+16
4.81 E+15
1
EPA 2
DC8
CFM56-2C
Base
85
2824
30-m
2.0
4.40E+06
4.64E+05
6.29E+06
6.64E+05
7.23E+15
7.90E+14
1.03E+16
1.13E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1022
30-m
4.2
5.13E+06
6.66E+05
7.42E+06
9.59E+05
1.56E+16
2.65E+15
2.26E+16
3.83E+15
1
EPA 2
DC8
CFM56-2C
Base
7
418
30-m
26.1
8.58E+06
9.05E+05
1.24E+07
1.30E+06
3.47E+16
4.69E+15
5.01 E+16
6.76E+15
1
EPA 2
DC8
CFM56-2C
Base
100
3230
30-m
0.7
5.85E+06
1.62E+06
8.58E+06
2.64E+06
1.28E+16
3.79E+15
1.87E+16
6.09E+15
1
EPA 2
DC8
CFM56-2C
Base
85
2892
30-m
2.3
2.23E+06
4.38E+05
3.18E+06
6.41 E+05
3.56E+15
7.29E+14
5.08E+15
1.07E+15
1
EPA 2
DC8
CFM56-2C
Base
30
1017
30-m
4.0
4.37E+06
5.47E+05
6.33E+06
7.94E+05
1.48E+16
2.00E+15
2.14E+16
2.90E+15
1
EPA 2
DC8
CFM56-2C
Base
7
413
30-m
26.5
6.11 E+06
7.40E+05
8.84E+06
1.07E+06
2.41E+16
4.64E+15
3.48E+16
6.71E+15
1
EPA 2
DC8
CFM56-2C
Base
100
3137
30-m
0.8
3.54E+06
1.16E+06
5.23E+06
1.98E+06
5.20E+15
1.72E+15
7.69E+15
2.93E+15
1
EPA 2
DC8
CFM56-2C
Base
85
2825
30-m
2.3
1.30E+06
1.80E+05
1.85E+06
2.59E+05
2.10E+15
2.98E+14
2.98E+15
4.28E+14
1
EPA 2
DC8
CFM56-2C
Base
30
1038
30-m
4.2
3.05E+06
4.82E+05
4.43E+06
7.03E+05
9.36E+15
2.66E+15
1.36E+16
3.86E+15
1
EPA 2
DC8
CFM56-2C
Base
7
449
30-m
13.5
3.82E+06
3.82E+06
5.54E+06
8.41 E+05
1.77E+16
1.78E+16
2.57E+16
4.73E+15
1
NASAIa
DC8
CFM56-2C
Base
4
350
30-m
4.9
1.99E+07
3.29E+06
2.87E+07
4.72E+06
6.63E+16
1.53E+16
9.53E+16
2.20E+16
1
NASAIa
DC8
CFM56-2C
Base
100
3169
30-m
1.5
6.05E+06
7.31 E+05
8.60E+06
1.05E+06
1.04E+16
2.22E+15
1.47E+16
3.18E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2928
30-m
2.9
5.75E+06
5.48E+05
8.22E+06
7.95E+05
9.29E+15
1.02E+15
1.33E+16
1.47E+15
1
NASAIa
DC8
CFM56-2C
Base
65
2107
30-m
4.0
7.75E+06
6.05E+05
1.12E+07
8.76E+05
1.46E+16
1.32E+15
2.11E+16
1.91 E+15
1
NASAIa
DC8
CFM56-2C
Base
4
327
30-m
CO
CO
1.60E+07
1.46E+06
2.31 E+07
2.10E+06
5.75E+16
1.29E+16
8.29E+16
1.86E+16
1
NASAIa
DC8
CFM56-2C
Base
100
3155
30-m
1.4
7.31 E+06
1.42E+06
1.05E+07
2.06E+06
1.54E+16
3.91 E+15
2.21 E+16
5.62E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2883
30-m
3.0
5.35E+06
2.56E+05
7.66E+06
3.67E+05
8.77E+15
4.56E+14
1.26E+16
6.54E+14
1
NASAIa
DC8
CFM56-2C
Base
70
2288
30-m
3.8
6.13E+06
3.30E+05
8.83E+06
4.78E+05
1.05E+16
6.45E+14
1.52E+16
9.34E+14
1
NASAIa
DC8
CFM56-2C
Base
65
2070
30-m
4.2
6.78E+06
2.69E+05
9.79E+06
3.87E+05
1.28E+16
6.04E+14
1.85E+16
8.71E+14
1
NASAIa
DC8
CFM56-2C
Base
60
1902
30-m
3.9
6.92E+06
2.91 E+05
9.99E+06
4.19E+05
1.44E+16
8.58E+14
2.08E+16
1.24E+15
1
NASAIa
DC8
CFM56-2C
Base
4
336
30-m
10.7
1.29E+07
1.53E+06
1.87E+07
2.19E+06
5.14E+16
1.05E+16
7.40E+16
1.51E+16
1
NASAIa
DC8
CFM56-2C
Base
100
3146
30-m
1.5
5.60E+06
1.29E+06
8.02E+06
1.86E+06
1.00E+16
2.69E+15
1.44E+16
3.88E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2946
30-m
3.8
4.06E+06
2.16E+05
5.82E+06
3.11 E+05
6.43E+15
3.76E+14
9.21 E+15
5.41E+14
1
NASAIa
DC8
CFM56-2C
Base
65
2102
30-m
3.7
5.39E+06
4.11 E+05
7.78E+06
5.95E+05
1.07E+16
1.60E+15
1.55E+16
2.31E+15
1
NASAIa
DC8
CFM56-2C
Base
4
336
30-m
8.4
1.11E+07
1.02E+06
1.59E+07
1.46E+06
4.82E+16
1.07E+16
6.95E+16
1.55E+16
1
NASAIa
DC8
CFM56-2C
Base
100
3110
30-m
1.5
4.61 E+06
8.89E+05
6.60E+06
1.28E+06
7.35E+15
1.51E+15
1.05E+16
2.18E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2897
30-m
3.0
3.27E+06
1.40E+05
4.68E+06
2.02E+05
5.47E+15
2.66E+14
7.83E+15
3.83E+14
1
NASAIa
DC8
CFM56-2C
Base
65
2088
30-m
3.5
4.46E+06
3.63E+05
6.44E+06
5.25E+05
8.61 E+15
7.38E+14
1.24E+16
1.07E+15
1
NASAIa
DC8
CFM56-2C
Base
4
336
30-m
7.5
1.12E+07
1.05E+06
1.61 E+07
1.50E+06
3.71E+16
6.57E+15
5.35E+16
9.46E+15
1
NASAIa
DC8
CFM56-2C
Base
100
3055
30-m
1.5
4.09E+06
7.31 E+05
5.86E+06
1.05E+06
7.54E+15
1.80E+15
1.08E+16
2.59E+15
1
NASAIa
DC8
CFM56-2C
Base
85
2838
30-m
3.0
2.93E+06
1.20E+05
4.19E+06
1.73E+05
4.88E+15
3.40E+14
6.99E+15
4.88E+14
1
NASAIa
DC8
CFM56-2C
Base
70
2252
30-m
3.4
3.46E+06
2.19E+05
5.01 E+06
3.16E+05
6.83E+15
4.77E+14
9.87E+15
6.90E+14
1
NASAIa
DC8
CFM56-2C
Base
65
2122
30-m
3.8
3.71 E+06
1.30E+05
5.37E+06
1.87E+05
8.06E+15
3.13E+14
1.17E+16
4.50E+14
1
NASAIa
DC8
CFM56-2C
Base
60
1941
30-m
3.9
3.69E+06
1.69E+05
5.35E+06
2.44E+05
8.20E+15
1.15E+15
1.19E+16
1.67E+15
1
NASAIa
DC8
CFM56-2C
Base
4
331
30-m
4.2
9.22E+06
6.95E+05
1.33E+07
9.96E+05
3.82E+16
8.92E+15
5.50E+16
1.29E+16
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
7
445
30-m
17.1
3.70E+06
3.82E+05
5.31 E+06
5.42E+05
2.08E+16
6.42E+15
2.99E+16
9.21 E+15
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
100
3128
30-m
0.9
4.51 E+06
4.08E+04
4.54E+06
4.08E+04
7.57E+15
5.83E+14
7.63E+15
5.88E+14
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
85
2847
30-m
2.3
4.34E+06
7.51 E+04
4.37E+06
7.51E+04
7.18E+15
3.81E+14
7.24E+15
3.84E+14
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
76
2424
30-m
4.2
4.12E+06
5.67E+04
4.16E+06
5.67E+04
9.04E+15
1.33E+15
9.12E+15
1.34E+15
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
30
958
30-m
4.1
3.98E+06
6.43E+04
4.02E+06
6.43E+04
1.68E+16
1.32E+15
1.70E+16
1.33E+15
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
7
418
30-m
26.3
3.30E+06
5.13E+05
3.34E+06
5.13E+05
3.77E+16
2.06E+16
3.81E+16
2.08E+16
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
100
30-m
0.7
4.47E+06
5.71 E+04
4.51 E+06
5.71 E+04
1.14E+16
2.49E+15
1.15E+16
2.51E+15
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
85
2838
30-m
2.3
3.60E+06
5.90E+05
3.64E+06
5.90E+05
5.60E+15
1.07E+15
5.65E+15
1.07E+15
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
30
981
30-m
4.1
3.71 E+06
6.30E+04
3.75E+06
6.30E+04
2.08E+16
8.61 E+15
2.10E+16
8.69E+15
1
EPA 3
DC8
CFM56-2C
Hi-Sulfur
7
454
30-m
26.1
3.08E+06
6.64E+05
3.11 E+06
6.64E+05
3.58E+16
1.85E+16
3.62E+16
1.87E+16
E-9
-------
Table E-3 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
100
3110
30-m
0.7
4.43E+06
8.55E+04
4.47E+06
8.55E+04
1.62E+16
4.34E+15
1.63E+16
4.37E+15
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
85
2860
30-m
2.3
4.10E+06
6.33E+04
4.14E+06
6.33E+04
7.40E+15
5.18E+14
7.46E+15
5.22E+14
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
30
944
30-m
4.1
3.78E+06
4.47E+04
3.82E+06
4.47E+04
2.02E+16
6.72E+15
2.04E+16
6.78E+15
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
7
445
30-m
26.0
2.62E+06
7.73E+05
2.65E+06
7.73E+05
2.82E+16
1.43E+16
2.86E+16
1.44E+16
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
100
3110
30-m
0.7
4.27E+06
1.26E+05
4.31E+06
1.26E+05
8.75E+15
4.96E+14
8.82E+15
4.99E+14
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
85
2815
30-m
2.2
4.15E+06
9.31 E+04
4.18E+06
9.31E+04
7.11E+15
3.95E+14
7.18E+15
3.98E+14
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
30
972
30-m
3.9
3.84E+06
6.11E+04
3.88E+06
6.11E+04
1.57E+16
5.39E+15
1.58E+16
5.44E+15
1
EPA 3
DC8
CFM56-2C
H
-Sulfur
7
427
30-m
9.3
3.00E+06
7.10E+05
3.03E+06
7.10E+05
3.93E+16
2.19E+16
3.98E+16
2.21 E+16
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
4
345
30-m
3.3
4.10E+06
5.91 E+04
5.84E+06
7.63E+04
1.22E+16
7.96E+14
1.73E+16
1.13E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
100
3020
30-m
1.5
2.22E+06
1.15E+06
3.11E+06
1.64E+06
3.84E+15
2.04E+15
5.39E+15
2.91 E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
85
2715
30-m
3.1
7.37E+05
4.27E+04
1.01 E+06
5.54E+04
1.12E+15
7.51E+13
1.55E+15
9.90E+13
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
65
2072
30-m
4.1
2.93E+06
7.77E+05
4.20E+06
1.12E+06
5.39E+15
1.45E+15
7.74E+15
2.09E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
40
1245
30-m
4.1
3.97E+06
1.04E+05
5.67E+06
1.35E+05
9.32E+15
5.69E+14
1.33E+16
7.99E+14
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
30
950
30-m
4.0
4.10E+06
5.07E+04
5.84E+06
6.55E+04
1.08E+16
7.06E+14
1.53E+16
1.00E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
7
402
30-m
3.6
4.09E+06
3.06E+04
5.83E+06
3.95E+04
1.33E+16
9.36E+14
1.89E+16
1.33E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
4
350
30-m
8.8
4.13E+06
5.27E+04
5.87E+06
6.80E+04
1.30E+16
1.12E+15
1.85E+16
1.59E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
100
2963
30-m
1.5
2.85E+06
1.27E+06
4.03E+06
1.81E+06
4.58E+15
2.09E+15
6.48E+15
2.97E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
85
2676
30-m
2.9
6.79E+05
8.43E+04
9.43E+05
1.18E+05
1.11E+15
1.40E+14
1.54E+15
1.96E+14
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
65
2053
30-m
4.1
1.26E+06
3.95E+05
1.81 E+06
5.73E+05
2.32E+15
7.30E+14
3.33E+15
1.06E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
40
1238
30-m
4.0
3.69E+06
4.49E+05
5.29E+06
6.38E+05
9.03E+15
1.27E+15
1.30E+16
1.81 E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
30
954
30-m
4.2
4.00E+06
5.65E+04
5.71 E+06
7.28E+04
1.14E+16
1.25E+15
1.63E+16
1.78E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
7
413
30-m
3.8
3.82E+06
3.17E+04
5.48E+06
4.13E+04
2.02E+16
2.85E+15
2.89E+16
4.09E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
4
341
30-m
7.9
4.02E+06
1.09E+05
5.74E+06
1.40E+05
1.42E+16
1.83E+15
2.03E+16
2.61 E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
100
2968
30-m
1.5
2.07E+06
1.32E+06
2.92E+06
1.88E+06
3.48E+15
2.22E+15
4.90E+15
3.17E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
85
2791
30-m
4.0
5.98E+05
7.95E+04
8.26E+05
1.09E+05
9.66E+14
1.34E+14
1.33E+15
1.84E+14
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
70
2191
30-m
3.7
9.57E+05
2.24E+05
1.37E+06
3.27E+05
1.75E+15
4.15E+14
2.51E+15
6.04E+14
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
65
2013
30-m
3.4
1.35E+06
1.80E+05
1.94E+06
2.60E+05
2.62E+15
3.62E+14
3.77E+15
5.23E+14
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
60
1855
30-m
3.5
2.72E+06
8.14E+05
3.91 E+06
1.16E+06
5.46E+15
1.64E+15
7.84E+15
2.33E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
40
1224
30-m
3.5
4.22E+06
5.80E+04
5.99E+06
7.47E+04
1.04E+16
7.51E+14
1.48E+16
1.06E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
30
962
30-m
3.5
4.10E+06
1.31E+05
5.84E+06
1.68E+05
1.35E+16
1.13E+15
1.92E+16
1.59E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
15
543
30-m
3.5
3.84E+06
1.42E+05
5.50E+06
1.94E+05
2.14E+16
6.49E+15
3.06E+16
9.29E+15
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
7
424
30-m
3.6
3.14E+06
6.66E+05
4.51 E+06
9.49E+05
3.07E+16
1.31E+16
4.42E+16
1.88E+16
1
NASA 2
DC8
CFM56-2C
H
-Sulfur
5.5
381
30-m
3.8
3.24E+06
6.22E+05
4.66E+06
8.89E+05
2.26E+16
5.71E+15
3.25E+16
8.18E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
4
353
30-m
4.4
4.35E+06
3.44E+04
6.17E+06
4.44E+04
1.53E+16
1.70E+15
2.17E+16
2.41 E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
100
3121
30-m
1.8
4.55E+06
2.67E+04
6.43E+06
3.54E+04
8.73E+15
1.93E+15
1.23E+16
2.72E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
85
2785
30-m
3.3
4.52E+06
5.95E+03
6.39E+06
8.05E+03
7.01 E+15
2.38E+14
9.91 E+15
3.36E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
65
2050
30-m
4.1
4.43E+06
1.84E+04
6.28E+06
2.38E+04
8.67E+15
4.22E+14
1.23E+16
5.97E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
40
1241
30-m
20.0
1.06E+07
5.73E+06
1.52E+07
8.15E+06
2.58E+16
1.40E+16
3.70E+16
1.99E+16
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
30
976
30-m
4.0
9.78E+06
3.47E+05
1.40E+07
4.93E+05
2.67E+16
3.66E+15
3.83E+16
5.24E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
7
402
30-m
3.7
7.32E+06
5.35E+05
1.05E+07
7.65E+05
2.79E+16
3.24E+15
4.02E+16
4.64E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
4
341
30-m
8.0
6.87E+06
7.89E+05
9.87E+06
1.13E+06
2.93E+16
4.29E+15
4.22E+16
6.15E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
100
3022
30-m
1.5
9.08E+06
1.46E+06
1.30E+07
2.07E+06
1.75E+16
4.83E+15
2.50E+16
6.87E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
85
2763
30-m
3.2
6.62E+06
1.04E+05
9.48E+06
1.48E+05
1.03E+16
4.21 E+14
1.48E+16
6.02E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
65
2047
30-m
3.3
8.44E+06
3.30E+05
1.21E+07
4.71E+05
1.57E+16
1.13E+15
2.24E+16
1.61 E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
40
1251
30-m
20.1
8.60E+06
2.80E+05
1.23E+07
3.98E+05
2.10E+16
1.10E+15
3.01 E+16
1.57E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
30
998
30-m
3.8
7.85E+06
2.18E+05
1.13E+07
3.11E+05
2.23E+16
8.80E+14
3.20E+16
1.26E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
7
405
30-m
4.1
6.11E+06
4.63E+05
8.79E+06
6.62E+05
2.26E+16
2.16E+15
3.26E+16
3.09E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
4
348
30-m
7.8
6.00E+06
4.92E+05
8.64E+06
7.03E+05
2.21 E+16
2.45E+15
3.19E+16
3.51 E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
100
3009
30-m
1.5
7.01 E+06
1.33E+06
1.00E+07
1.89E+06
1.38E+16
4.15E+15
1.96E+16
5.90E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
85
2727
30-m
3.5
4.68E+06
2.77E+05
6.71 E+06
3.95E+05
7.40E+15
5.83E+14
1.06E+16
8.32E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
70
2200
30-m
3.4
6.25E+06
2.16E+05
8.96E+06
3.08E+05
1.17E+16
4.19E+14
1.68E+16
5.97E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
65
2060
30-m
3.5
6.63E+06
2.08E+05
9.50E+06
2.96E+05
1.28E+16
4.50E+14
1.83E+16
6.40E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
60
1846
30-m
3.2
6.96E+06
2.15E+05
9.98E+06
3.05E+05
1.37E+16
6.78E+14
1.96E+16
9.67E+14
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
40
1274
30-m
3.5
7.02E+06
2.40E+05
1.01E+07
3.40E+05
1.77E+16
7.30E+14
2.54E+16
1.04E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
30
985
30-m
3.2
6.70E+06
2.11E+05
9.61 E+06
2.99E+05
1.78E+16
7.18E+14
2.55E+16
1.02E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
15
538
30-m
3.4
5.09E+06
4.21 E+05
7.33E+06
6.01 E+05
1.76E+16
2.10E+15
2.54E+16
3.00E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
7
410
30-m
3.7
5.00E+06
3.24E+05
7.20E+06
4.63E+05
1.88E+16
1.27E+15
2.70E+16
1.82E+15
1
NASA 3
DC8
CFM56-2C
H
-Sulfur
5.5
382
30-m
3.6
5.01 E+06
2.93E+05
7.22E+06
4.20E+05
2.03E+16
1.36E+15
2.93E+16
1.95E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
4
342
30-m
3.3
3.68E+06
9.16E+05
5.31 E+06
1.31E+06
1.84E+16
5.55E+15
2.65E+16
7.97E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
100
2984
30-m
1.5
1.95E+06
1.08E+06
2.76E+06
1.55E+06
3.29E+15
1.88E+15
4.66E+15
2.69E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
85
2697
30-m
2.7
8.79E+05
8.03E+04
1.24E+06
1.17E+05
1.44E+15
1.36E+14
2.03E+15
1.98E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
65
2029
30-m
3.4
1.43E+06
1.97E+05
2.06E+06
2.84E+05
2.91 E+15
4.63E+14
4.20E+15
6.68E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
40
1226
30-m
3.4
2.18E+06
2.28E+05
3.15E+06
3.28E+05
5.68E+15
6.16E+14
8.22E+15
8.86E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
30
976
30-m
3.3
2.43E+06
2.76E+05
3.51 E+06
3.97E+05
6.82E+15
8.11E+14
9.86E+15
1.17E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
7
397
30-m
4.2
2.21 E+06
6.05E+05
3.20E+06
8.70E+05
1.09E+16
3.51E+15
1.57E+16
5.06E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
4
347
30-m
9.4
2.37E+06
9.03E+05
3.42E+06
1.30E+06
1.21 E+16
5.77E+15
1.75E+16
8.30E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
100
2949
30-m
1.5
2.44E+06
1.36E+06
3.48E+06
1.96E+06
3.92E+15
2.20E+15
5.58E+15
3.15E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
85
2706
30-m
3.1
1.13E+06
1.87E+05
1.60E+06
2.66E+05
1.89E+15
3.22E+14
2.68E+15
4.58E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
65
2034
30-m
3.6
1.40E+06
1.77E+05
2.02E+06
2.56E+05
2.91 E+15
3.95E+14
4.20E+15
5.73E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
40
1185
30-m
4.3
1.84E+06
3.35E+05
2.67E+06
4.82E+05
5.37E+15
1.03E+15
7.77E+15
1.49E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
30
962
30-m
3.6
2.09E+06
2.10E+05
3.02E+06
3.02E+05
6.16E+15
6.50E+14
8.90E+15
9.35E+14
E-10
-------
Table E-3 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
7
395
30-m
4.2
1.90E+06
7.24E+05
2.75E+06
1.04E+06
8.86E+15
3.72E+15
1.28E+16
5.36E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
4
341
30-m
7.8
2.36E+06
1.00E+06
3.41 E+06
1.44E+06
1.31E+16
7.90E+15
1.89E+16
1.14E+16
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
100
2974
30-m
1.5
1.73E+06
1.17E+06
2.46E+06
1.69E+06
2.99E+15
2.02E+15
4.24E+15
2.91 E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
85
2738
30-m
3.5
7.01 E+05
6.59E+04
9.87E+05
9.47E+04
1.18E+15
1.18E+14
1.66E+15
1.69E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
4
30-m
8.0
2.35E+06
1.11 E+06
3.39E+06
1.59E+06
1.08E+16
6.29E+15
1.56E+16
9.05E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
100
2974
30-m
1.5
1.30E+06
3.66E+05
1.85E+06
5.28E+05
2.43E+15
7.17E+14
3.44E+15
1.03E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
85
2701
30-m
4.2
8.36E+05
8.60E+04
1.18E+06
1.23E+05
1.50E+15
1.89E+14
2.12E+15
2.69E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
70
2157
30-m
3.6
1.15E+06
2.43E+05
1.66E+06
3.49E+05
2.28E+15
5.08E+14
3.29E+15
7.30E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
65
1998
30-m
3.4
1.43E+06
3.45E+05
2.07E+06
4.96E+05
2.97E+15
7.20E+14
4.29E+15
1.03E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
60
1850
30-m
3.6
1.48E+06
2.38E+05
2.14E+06
3.42E+05
3.22E+15
5.22E+14
4.65E+15
7.49E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
40
1226
30-m
3.7
1.66E+06
2.33E+05
2.40E+06
3.35E+05
4.30E+15
6.28E+14
6.23E+15
9.03E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
30
962
30-m
3.5
1.89E+06
2.74E+05
2.73E+06
3.94E+05
5.61 E+15
8.56E+14
8.13E+15
1.23E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
15
545
30-m
3.4
2.13E+06
2.86E+05
3.08E+06
4.11E+05
7.78E+15
1.27E+15
1.13E+16
1.83E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
7
404
30-m
3.4
2.29E+06
5.26E+05
3.31 E+06
7.57E+05
1.00E+16
2.75E+15
1.45E+16
3.96E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
5.5
381
30-m
3.3
1.94E+06
1.06E+06
2.81 E+06
1.53E+06
1.28E+16
9.21 E+15
1.85E+16
1.33E+16
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
4
347
30-m
9.2
2.27E+06
1.18E+06
3.28E+06
1.69E+06
1.46E+16
9.99E+15
2.10E+16
1.44E+16
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
100
3008
30-m
1.6
1.95E+06
1.76E+06
2.78E+06
2.52E+06
3.61 E+15
3.26E+15
5.12E+15
4.68E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
85
2697
30-m
3.2
8.34E+05
1.26E+05
1.18E+06
1.81E+05
1.50E+15
2.30E+14
2.13E+15
3.32E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
65
2029
30-m
3.1
1.19E+06
1.23E+05
1.72E+06
1.79E+05
2.53E+15
2.87E+14
3.65E+15
4.16E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
40
1244
30-m
3.4
1.93E+06
2.18E+05
2.79E+06
3.13E+05
5.28E+15
6.23E+14
7.64E+15
8.95E+14
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
30
940
30-m
3.6
1.79E+06
1.87E+05
2.59E+06
2.69E+05
5.73E+15
7.65E+14
8.30E+15
1.10E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
7
409
30-m
4.2
1.90E+06
7.58E+05
2.75E+06
1.09E+06
8.90E+15
3.73E+15
1.29E+16
5.37E+15
1
NASA 4
DC8
CFM56-2C
H
-Aromatic
4
347
30-m
4.6
2.82E+06
8.89E+05
4.07E+06
1.28E+06
2.34E+16
9.82E+15
3.38E+16
1.41 E+16
2
T1
B737-700
CFM56-7B
Fleet
4
336
30-m
10.2
4.32E+06
4.75E+04
5.24E+06
5.27E+04
2.42E+16
3.24E+15
2.93E+16
3.93E+15
2
T1
B737-700
CFM56-7B
Fleet
7
418
30-m
10.0
3.77E+06
1.91 E+05
4.64E+06
1.90E+05
1.85E+16
1.76E+15
2.28E+16
2.06E+15
2
T1
B737-700
CFM56-7B
Fleet
30
1180
30-m
9.4
3.54E+06
2.67E+05
4.40E+06
2.64E+05
1.18E+16
1.13E+15
1.47E+16
1.23E+15
2
T1
B737-700
CFM56-7B
Fleet
40
1544
30-m
10.1
3.75E+06
3.26E+04
4.61 E+06
3.49E+04
1.03E+16
5.59E+14
1.27E+16
6.85E+14
2
T1
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
2.83E+06
3.94E+05
3.52E+06
4.65E+05
5.70E+15
8.27E+14
7.10E+15
9.80E+14
2
T1
B737-700
CFM56-7B
Fleet
85
4131
30-m
1.8
1.93E+06
6.66E+05
2.37E+06
7.96E+05
2.98E+15
1.03E+15
3.66E+15
1.24E+15
2
T1
B737-700
CFM56-7B
Fleet
7
395
30-m
10.1
3.73E+06
2.79E+05
4.60E+06
2.79E+05
2.12E+16
2.92E+15
2.62E+16
3.42E+15
2
T1
B737-700
CFM56-7B
Fleet
85
4086
30-m
2.1
4.09E+06
4.70E+04
5.00E+06
5.21 E+04
6.27E+15
2.52E+14
7.67E+15
3.06E+14
2
T1
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
3.90E+06
1.27E+05
4.79E+06
1.27E+05
7.90E+15
4.19E+14
9.68E+15
4.80E+14
2
T1
B737-700
CFM56-7B
Fleet
40
1498
30-m
10.0
3.81 E+06
1.02E+05
4.68E+06
1.02E+05
1.08E+16
6.75E+14
1.33E+16
8.03E+14
2
T1
B737-700
CFM56-7B
Fleet
30
1135
30-m
10.5
3.84E+06
1.72E+04
4.71 E+06
1.79E+04
1.29E+16
8.53E+14
1.58E+16
1.05E+15
2
T1
B737-700
CFM56-7B
Fleet
4
313
30-m
11.9
4.21 E+06
1.89E+05
5.12E+06
1.91 E+05
2.66E+16
4.39E+15
3.24E+16
5.28E+15
2
T4
B737-700
CFM56-7B
Fleet
4
336
30-m
11.9
4.02E+06
5.17E+04
4.91 E+06
5.49E+04
2.24E+16
3.00E+15
2.73E+16
3.66E+15
2
T4
B737-700
CFM56-7B
Fleet
7
418
30-m
10.1
3.68E+06
1.03E+05
4.54E+06
1.04E+05
1.80E+16
1.53E+15
2.22E+16
1.86E+15
2
T4
B737-700
CFM56-7B
Fleet
30
1180
30-m
11.0
3.74E+06
5.18E+04
4.60E+06
5.28E+04
1.24E+16
7.53E+14
1.53E+16
9.20E+14
2
T4
B737-700
CFM56-7B
Fleet
40
1544
30-m
10.0
3.80E+06
1.17E+04
4.67E+06
1.31 E+04
1.04E+16
5.57E+14
1.28E+16
6.84E+14
2
T4
B737-700
CFM56-7B
Fleet
65
2497
30-m
9.9
3.95E+06
1.21E+04
4.83E+06
1.35E+04
7.91 E+15
3.20E+14
9.68E+15
3.91 E+14
2
T4
B737-700
CFM56-7B
Fleet
85
4131
30-m
2.3
4.03E+06
5.66E+03
4.92E+06
6.30E+03
6.19E+15
2.19E+14
7.57E+15
2.68E+14
2
T4
B737-700
CFM56-7B
Fleet
7
395
30-m
10.0
3.59E+06
1.47E+05
4.45E+06
1.46E+05
2.04E+16
2.50E+15
2.52E+16
3.03E+15
2
T4
B737-700
CFM56-7B
Fleet
85
4086
30-m
2.0
4.07E+06
4.02E+04
4.98E+06
4.51 E+04
6.21 E+15
2.47E+14
7.59E+15
3.00E+14
2
T4
B737-700
CFM56-7B
Fleet
65
2497
30-m
10.0
3.94E+06
7.25E+03
4.83E+06
8.03E+03
7.94E+15
3.32E+14
9.72E+15
4.07E+14
2
T4
B737-700
CFM56-7B
Fleet
40
1498
30-m
10.3
3.78E+06
8.00E+03
4.64E+06
8.87E+03
1.07E+16
6.02E+14
1.31E+16
7.40E+14
2
T4
B737-700
CFM56-7B
Fleet
30
1135
30-m
10.0
3.72E+06
6.64E+04
4.58E+06
6.63E+04
1.25E+16
8.50E+14
1.53E+16
1.03E+15
2
T4
B737-700
CFM56-7B
Fleet
7
381
30-m
11.0
3.70E+06
3.04E+04
4.55E+06
3.25E+04
2.00E+16
2.10E+15
2.46E+16
2.58E+15
2
T4
B737-700
CFM56-7B
Fleet
4
313
30-m
10.0
3.81 E+06
9.29E+04
4.69E+06
9.58E+04
2.40E+16
3.85E+15
2.95E+16
4.72E+15
2
T2
B737-300
CFM56-3B
Fleet
4
341
30-m
10.0
5.02E+05
4.23E+04
5.49E+05
4.58E+04
1.88E+15
2.61 E+14
2.06E+15
2.84E+14
2
T2
B737-300
CFM56-3B
Fleet
7
422
30-m
10.0
2.73E+05
3.46E+04
3.02E+05
3.72E+04
9.21 E+14
1.48E+14
1.02E+15
1.61 E+14
2
T2
B737-300
CFM56-3B
Fleet
30
1099
30-m
10.1
1.99E+05
6.52E+03
2.20E+05
7.19E+03
4.88E+14
3.54E+13
5.40E+14
3.91 E+13
2
T2
B737-300
CFM56-3B
Fleet
40
1403
30-m
11.0
1.69E+05
3.76E+04
1.86E+05
4.15E+04
3.55E+14
8.12E+13
3.92E+14
8.97E+13
2
T2
B737-300
CFM56-3B
Fleet
65
2193
30-m
10.0
3.30E+05
1.83E+04
3.65E+05
2.02E+04
5.39E+14
4.02E+13
5.96E+14
4.44E+13
2
T2
B737-300
CFM56-3B
Fleet
85
3528
30-m
1.9
5.71 E+05
2.12E+04
6.39E+05
2.24E+04
6.87E+14
3.79E+13
7.69E+14
4.15E+13
2
T2
B737-300
CFM56-3B
Fleet
7
404
30-m
10.0
1.34E+05
1.85E+04
1.46E+05
2.01 E+04
4.64E+14
7.50E+13
5.06E+14
8.13E+13
2
T2
B737-300
CFM56-3B
Fleet
85
3559
30-m
2.0
5.93E+05
1.99E+04
6.63E+05
2.14E+04
6.82E+14
4.10E+13
7.62E+14
4.52E+13
2
T2
B737-300
CFM56-3B
Fleet
65
2184
30-m
10.7
3.19E+05
1.61E+04
3.55E+05
1.83E+04
5.23E+14
3.63E+13
5.83E+14
4.08E+13
2
T2
B737-300
CFM56-3B
Fleet
85
3559
30-m
1.9
5.15E+05
5.00E+03
5.78E+05
5.49E+03
6.06E+14
2.37E+13
6.81E+14
2.66E+13
2
T2
B737-300
CFM56-3B
Fleet
40
1367
30-m
11.0
1.27E+05
1.11E+04
1.41 E+05
1.20E+04
2.69E+14
2.72E+13
2.98E+14
2.97E+13
2
T2
B737-300
CFM56-3B
Fleet
30
1067
30-m
10.0
1.21 E+05
1.27E+04
1.34E+05
1.38E+04
2.98E+14
3.65E+13
3.30E+14
4.00E+13
2
T2
B737-300
CFM56-3B
Fleet
7
418
30-m
10.0
1.76E+05
1.51E+04
1.93E+05
1.64E+04
5.63E+14
7.14E+13
6.17E+14
7.79E+13
2
T2
B737-300
CFM56-3B
Fleet
4
345
30-m
10.0
4.50E+05
1.80E+04
4.91 E+05
1.99E+04
1.46E+15
1.67E+14
1.59E+15
1.83E+14
2
T3
B737-300
CFM56-3B
Fleet
4
372
30-m
10.0
5.54E+05
2.92E+03
6.12E+05
3.51 E+03
1.58E+15
1.72E+14
1.74E+15
1.90E+14
2
T3
B737-300
CFM56-3B
Fleet
7
440
30-m
10.1
5.20E+05
1.91E+04
5.74E+05
2.06E+04
1.61 E+15
1.83E+14
1.77E+15
2.01 E+14
2
T3
B737-300
CFM56-3B
Fleet
30
1130
30-m
10.0
3.78E+05
2.63E+04
4.22E+05
2.85E+04
9.06E+14
8.90E+13
1.01 E+15
9.78E+13
2
T3
B737-300
CFM56-3B
Fleet
40
1444
30-m
10.0
4.03E+05
2.06E+04
4.50E+05
2.22E+04
8.37E+14
6.50E+13
9.35E+14
7.15E+13
2
T3
B737-300
CFM56-3B
Fleet
65
2252
30-m
10.0
4.90E+05
1.06E+04
5.51 E+05
1.14E+04
7.97E+14
4.64E+13
8.95E+14
5.19E+13
2
T3
B737-300
CFM56-3B
Fleet
85
3677
30-m
1.6
6.18E+05
8.93E+03
6.95E+05
9.71 E+03
7.23E+14
3.67E+13
8.14E+14
4.12E+13
2
T3
B737-300
CFM56-3B
Fleet
7
418
30-m
10.0
5.28E+05
2.75E+04
5.82E+05
2.97E+04
1.70E+15
1.94E+14
1.87E+15
2.13E+14
2
T3
B737-300
CFM56-3B
Fleet
85
3650
30-m
2.0
6.12E+05
1.46E+04
6.89E+05
1.60E+04
7.14E+14
4.16E+13
8.03E+14
4.66E+13
2
T3
B737-300
CFM56-3B
Fleet
65
2261
30-m
10.0
4.57E+05
7.96E+03
5.15E+05
8.64E+03
7.37E+14
3.91 E+13
8.31E+14
4.39E+13
E-11
-------
Table E-3 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
2
T3
B737-300
CFM56-3B
Fleet
40
1412
30-m
10.1
3.52E+05
8.98E+03
3.95E+05
9.80E+03
7.58E+14
4.67E+13
8.51E+14
5.23E+13
2
T3
B737-300
CFM56-3B
Fleet
30
1108
30-m
10.0
3.25E+05
1.20E+04
3.66E+05
1.29E+04
7.93E+14
5.99E+13
8.92E+14
6.68E+13
2
T3
B737-300
CFM56-3B
Fleet
7
422
30-m
10.0
4.78E+05
3.40E+04
5.29E+05
3.64E+04
1.59E+15
2.09E+14
1.76E+15
2.29E+14
2
T3
B737-300
CFM56-3B
Fleet
4
368
30-m
10.0
5.54E+05
6.96E+03
6.12E+05
7.60E+03
1.73E+15
1.96E+14
1.91E+15
2.17E+14
3
T11
B737-300
CFM56-3B
Fleet
4
381
30-m
10.8
1.16E+06
2.96E+05
1.48E+06
3.25E+05
5.54E+15
1.50E+15
7.06E+15
1.69E+15
3
T11
B737-300
CFM56-3B
Fleet
7
431
30-m
7.7
1.54E+06
1.39E+05
1.90E+06
1.68E+05
5.99E+15
7.90E+14
7.38E+15
9.66E+14
3
T11
B737-300
CFM56-3B
Fleet
15
622
30-m
7.8
4.02E+06
4.14E+05
4.98E+06
5.18E+05
1.08E+16
1.44E+15
1.34E+16
1.79E+15
3
T11
B737-300
CFM56-3B
Fleet
30
1090
30-m
8.9
4.35E+06
4.51 E+04
5.39E+06
4.77E+04
8.94E+15
5.15E+14
1.11E+16
6.35E+14
3
T11
B737-300
CFM56-3B
Fleet
45
1530
30-m
6.0
4.41 E+06
3.14E+04
5.45E+06
3.40E+04
7.77E+15
2.53E+14
9.61 E+15
3.11E+14
3
T11
B737-300
CFM56-3B
Fleet
65
2179
30-m
6.3
4.52E+06
3.04E+04
5.58E+06
3.51 E+04
6.90E+15
2.37E+14
8.52E+15
2.92E+14
3
T11
B737-300
CFM56-3B
Fleet
85
2815
30-m
4.7
4.58E+06
1.81 E+04
5.65E+06
2.16E+04
6.13E+15
2.35E+14
7.56E+15
2.90E+14
3
T11
B737-300
CFM56-3B
Fleet
100
3564
30-m
1.2
4.50E+06
1.62E+05
5.55E+06
2.05E+05
5.53E+15
2.93E+14
6.81E+15
3.67E+14
3
T3
EMB145
AE3007A1E
Fleet
8.4
174
15-m
17.3
3.32E+05
1.31 E+05
4.24E+05
1.62E+05
7.36E+15
5.58E+15
9.41E+15
7.07E+15
3
T3
EMB145
AE3007A1E
Fleet
15
238
15-m
6.7
2.73E+05
4.38E+04
3.43E+05
5.29E+04
3.33E+15
1.30E+15
4.19E+15
1.62E+15
3
T3
EMB145
AE3007A1E
Fleet
30
389
15-m
6.8
2.68E+05
3.08E+04
3.36E+05
3.68E+04
2.56E+15
6.95E+14
3.21 E+15
8.64E+14
3
T3
EMB145
AE3007A1E
Fleet
45
555
15-m
7.6
2.80E+05
2.81 E+04
3.53E+05
3.87E+04
2.13E+15
4.06E+14
2.68E+15
5.25E+14
3
T3
EMB145
AE3007A1E
Fleet
65
805
15-m
7.2
2.66E+05
2.17E+04
3.28E+05
2.72E+04
1.68E+15
2.84E+14
2.07E+15
3.52E+14
3
T3
EMB145
AE3007A1E
Fleet
85
1082
15-m
8.2
2.72E+05
7.88E+04
3.36E+05
9.76E+04
1.59E+15
5.52E+14
1.97E+15
6.83E+14
3
T3
EMB145
AE3007A1E
Fleet
100
1286
15-m
2.3
2.32E+05
2.27E+04
2.84E+05
2.76E+04
1.28E+15
2.58E+14
1.57E+15
3.15E+14
3
T3
EMB145
AE3007A1E
Fleet
8.4
172
15-m
7.9
3.24E+05
1.38E+05
4.20E+05
1.72E+05
6.45E+15
4.87E+15
8.37E+15
6.24E+15
3
T3
EMB145
AE3007A1E
Fleet
100
1299
15-m
2.3
2.84E+05
1.14E+05
3.52E+05
1.48E+05
1.54E+15
6.70E+14
1.91 E+15
8.63E+14
3
T3
EMB145
AE3007A1E
Fleet
85
1088
15-m
8.0
1.95E+05
2.64E+04
2.50E+05
2.70E+04
1.25E+15
2.92E+14
1.59E+15
3.51E+14
3
T3
EMB145
AE3007A1E
Fleet
65
810
15-m
6.9
1.91E+05
1.24E+04
2.36E+05
1.52E+04
1.59E+15
2.78E+14
1.97E+15
3.42E+14
3
T3
EMB145
AE3007A1E
Fleet
45
563
15-m
7.9
1.77E+05
4.54E+04
2.21 E+05
5.39E+04
1.87E+15
6.21 E+14
2.33E+15
7.54E+14
3
T3
EMB145
AE3007A1E
Fleet
30
392
15-m
8.6
2.13E+05
2.98E+04
2.81 E+05
2.92E+04
2.31E+15
5.74E+14
3.04E+15
7.02E+14
3
T3
EMB145
AE3007A1E
Fleet
15
235
15-m
9.9
3.00E+05
2.44E+04
3.83E+05
3.07E+04
3.43E+15
8.19E+14
4.38E+15
1.04E+15
3
T3
EMB145
AE3007A1E
Fleet
8.4
173
15-m
6.8
4.02E+05
1.20E+05
1.03E+06
2.69E+05
8.20E+15
5.48E+15
1.06E+16
7.02E+15
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
7.0
2.63E+04
6.53E+04
3.13E+04
7.88E+04
7.75E+14
1.93E+15
9.20E+14
2.33E+15
3
T4
EMB145
AE3007A1E
Fleet
15
239
15-m
4.9
1.70E+04
1.13E+04
2.31 E+04
1.67E+04
4.44E+14
3.17E+14
6.04E+14
4.65E+14
3
T4
EMB145
AE3007A1E
Fleet
30
385
15-m
6.9
4.97E+04
1.91 E+04
6.63E+04
2.30E+04
8.52E+14
4.23E+14
1.14E+15
5.33E+14
3
T4
EMB145
AE3007A1E
Fleet
45
547
15-m
4.8
1.15E+05
3.37E+04
1.44E+05
4.12E+04
1.29E+15
5.54E+14
1.62E+15
6.88E+14
3
T4
EMB145
AE3007A1E
Fleet
65
788
15-m
7.6
2.50E+05
4.16E+04
3.07E+05
5.05E+04
1.61E+15
4.20E+14
1.98E+15
5.13E+14
3
T4
EMB145
AE3007A1E
Fleet
85
1050
15-m
6.8
3.31 E+05
4.83E+04
4.03E+05
5.91 E+04
1.60E+15
3.43E+14
1.95E+15
4.18E+14
3
T4
EMB145
AE3007A1E
Fleet
100
1253
15-m
2.2
3.61 E+05
3.73E+04
4.38E+05
4.60E+04
1.43E+15
1.92E+14
1.73E+15
2.35E+14
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
6.4
2.48E+04
6.15E+04
2.97E+04
7.47E+04
8.01 E+14
1.99E+15
9.61 E+14
2.42E+15
3
T4
EMB145
AE3007A1E
Fleet
100
1252
15-m
2.2
2.04E+05
5.86E+04
2.50E+05
7.57E+04
9.11E+14
3.11E+14
1.12E+15
3.96E+14
3
T4
EMB145
AE3007A1E
Fleet
85
1041
15-m
9.9
2.86E+05
2.97E+04
3.48E+05
3.55E+04
1.45E+15
2.59E+14
1.76E+15
3.14E+14
3
T4
EMB145
AE3007A1E
Fleet
8.4
168
15-m
9.9
1.58E+04
3.67E+04
1.88E+04
4.50E+04
5.21 E+14
1.21E+15
6.19E+14
1.49E+15
3
T4
EMB145
AE3007A1E
Fleet
85
1052
15-m
2.2
1.91 E+05
4.06E+04
2.42E+05
4.36E+04
1.11 E+15
3.18E+14
1.41E+15
3.70E+14
3
T4
EMB145
AE3007A1E
Fleet
65
786
15-m
7.2
2.09E+05
4.11 E+04
2.58E+05
4.97E+04
1.58E+15
4.81E+14
1.94E+15
5.89E+14
3
T4
EMB145
AE3007A1E
Fleet
45
549
15-m
6.8
8.40E+04
2.63E+04
1.06E+05
3.21 E+04
1.21E+15
5.65E+14
1.54E+15
7.04E+14
3
T4
EMB145
AE3007A1E
Fleet
30
384
15-m
4.7
1.97E+04
1.16E+04
2.68E+04
1.50E+04
5.32E+14
3.57E+14
7.24E+14
4.69E+14
3
T4
EMB145
AE3007A1E
Fleet
15
231
15-m
4.6
1.05E+04
4.83E+02
1.24E+04
1.92E+03
3.50E+14
3.59E+13
4.12E+14
7.41E+13
3
T4
EMB145
AE3007A1E
Fleet
8.4
167
15-m
5.9
8.19E+03
1.88E+03
1.47E+04
6.01 E+03
2.82E+14
6.71E+13
5.04E+14
2.09E+14
3
T6
A300
P&W 4158
Fleet
7
610
30-m
9.7
4.23E+06
1.56E+05
5.21 E+06
1.78E+05
1.61E+16
1.25E+15
1.99E+16
1.52E+15
3
T6
A300
P&W 4158
Fleet
15
1014
30-m
7.7
2.44E+06
4.02E+05
3.04E+06
4.91 E+05
8.22E+15
1.42E+15
1.03E+16
1.73E+15
3
T6
A300
P&W 4158
Fleet
30
2245
30-m
7.1
3.30E+06
2.26E+05
4.12E+06
2.81 E+05
6.92E+15
5.05E+14
8.64E+15
6.28E+14
3
T6
A300
P&W 4158
Fleet
45
3726
30-m
8.5
2.86E+06
4.89E+05
3.54E+06
6.11 E+05
4.49E+15
7.78E+14
5.56E+15
9.71E+14
3
T6
A300
P&W 4158
Fleet
65
5827
30-m
2.1
2.25E+06
4.70E+05
2.74E+06
5.90E+05
2.57E+15
5.40E+14
3.12E+15
6.77E+14
3
T6
A300
P&W 4158
Fleet
7
595
30-m
9.0
4.11 E+06
1.16E+05
5.08E+06
1.30E+05
1.74E+16
2.00E+15
2.15E+16
2.46E+15
3
T6
A300
P&W 4158
Fleet
65
5658
30-m
4.8
2.63E+06
6.09E+05
3.21 E+06
7.60E+05
3.02E+15
7.03E+14
3.68E+15
8.77E+14
3
T6
A300
P&W 4158
Fleet
80
7026
30-m
4.8
1.55E+06
1.65E+05
1.85E+06
2.06E+05
1.53E+15
1.65E+14
1.83E+15
2.05E+14
3
T6
A300
P&W 4158
Fleet
7
368
30-m
8.0
4.04E+06
3.97E+05
4.99E+06
4.80E+05
1.64E+16
2.19E+15
2.02E+16
2.67E+15
3
T6
A300
P&W 4158
Fleet
80
7026
30-m
5.4
1.63E+06
3.08E+05
1.95E+06
3.82E+05
1.65E+15
3.14E+14
1.97E+15
3.89E+14
3
T6
A300
P&W 4158
Fleet
65
5658
30-m
6.8
1.48E+06
2.79E+04
1.78E+06
3.56E+04
1.74E+15
5.42E+13
2.09E+15
6.66E+13
3
T6
A300
P&W 4158
Fleet
45
3834
30-m
7.8
2.16E+06
1.26E+05
2.67E+06
1.58E+05
3.35E+15
2.11E+14
4.15E+15
2.64E+14
3
T6
A300
P&W 4158
Fleet
30
2465
30-m
6.8
2.24E+06
1.66E+05
2.80E+06
2.08E+05
4.79E+15
3.90E+14
5.98E+15
4.88E+14
3
T6
A300
P&W 4158
Fleet
15
1097
30-m
6.5
1.85E+06
2.22E+05
2.32E+06
2.77E+05
6.04E+15
7.88E+14
7.56E+15
9.84E+14
3
T6
A300
P&W 4158
Fleet
7
368
30-m
7.1
4.17E+06
1.41 E+05
5.14E+06
1.60E+05
1.66E+16
1.45E+15
2.05E+16
1.77E+15
3
T7
A300
P&W 4158
Fleet
7
600
30-m
5.8
4.37E+06
1.78E+05
5.38E+06
2.22E+05
1.54E+16
8.92E+14
1.89E+16
1.10E+15
3
T7
A300
P&W 4158
Fleet
15
1035
30-m
5.5
2.65E+06
3.32E+05
3.31 E+06
4.05E+05
7.89E+15
1.07E+15
9.86E+15
1.31E+15
3
T7
A300
P&W 4158
Fleet
30
2230
30-m
5.5
3.43E+06
1.93E+05
4.28E+06
2.40E+05
6.95E+15
4.44E+14
8.69E+15
5.54E+14
3
T7
A300
P&W 4158
Fleet
45
3688
30-m
5.4
3.21 E+06
1.60E+05
3.98E+06
2.00E+05
4.89E+15
2.79E+14
6.07E+15
3.47E+14
3
T7
A300
P&W 4158
Fleet
65
5702
30-m
5.3
2.14E+06
1.80E+05
2.61 E+06
2.26E+05
2.43E+15
2.12E+14
2.96E+15
2.66E+14
3
T7
A300
P&W 4158
Fleet
80
7100
30-m
5.1
1.44E+06
8.52E+04
1.73E+06
1.06E+05
1.42E+15
8.79E+13
1.70E+15
1.09E+14
3
T7
A300
P&W 4158
Fleet
7
591
30-m
9.2
4.26E+06
1.13E+05
5.26E+06
1.26E+05
1.53E+16
7.28E+14
1.89E+16
8.72E+14
3
T7
A300
P&W 4158
Fleet
80
7200
30-m
3.5
1.59E+06
3.68E+05
1.92E+06
4.59E+05
1.56E+15
3.62E+14
1.88E+15
4.52E+14
3
T7
A300
P&W 4158
Fleet
65
5711
30-m
3.8
1.99E+06
1.68E+05
2.43E+06
2.06E+05
2.27E+15
2.02E+14
2.77E+15
2.48E+14
3
T7
A300
P&W 4158
Fleet
30
2252
30-m
5.8
2.97E+06
3.21 E+05
3.72E+06
4.06E+05
5.94E+15
6.60E+14
7.43E+15
8.35E+14
3
T7
A300
P&W 4158
Fleet
7
596
30-m
6.1
4.10E+06
1.66E+05
5.09E+06
1.94E+05
1.49E+16
1.10E+15
1.84E+16
1.34E+15
3
T9
B757
RB211
Fleet
4
421
30-m
12.2
4.40E+06
1.22E+05
5.44E+06
1.39E+05
2.56E+16
5.77E+15
3.16E+16
7.13E+15
E-12
-------
Table E-3 (continued)
APEX
Test
Aircraft
Engine
Fuel
Power
Fuel
Flow
Rack
Run
Time
Concentration (#/cm3)
Emission Index (#/kg fuel)
No Loss Corr
Loss Corr
No Loss Corr
Loss Corr
%
kg/h
min
Average
SD
Average
SD
Average
SD
Average
SD
3
T9
B757
RB211
Fleet
7
690
30-m
8.1
7.65E+05
6.58E+05
9.43E+05
8.11 E+05
3.16E+15
2.73E+15
3.89E+15
3.37E+15
3
T9
B757
RB211
Fleet
15
1221
30-m
8.6
5.77E+05
1.10E+05
7.07E+05
1.36E+05
2.06E+15
4.42E+14
2.53E+15
5.46E+14
3
T9
B757
RB211
Fleet
30
2004
30-m
9.7
7.85E+05
1.13E+05
9.46E+05
1.37E+05
1.99E+15
3.12E+14
2.39E+15
3.78E+14
3
T9
B757
RB211
Fleet
45
3068
30-m
10.1
1.10E+06
2.51 E+04
1.31E+06
2.98E+04
2.23E+15
9.59E+13
2.65E+15
1.14E+14
3
T9
B757
RB211
Fleet
65
4479
30-m
6.4
1.48E+06
2.77E+04
1.75E+06
3.31 E+04
2.34E+15
8.99E+13
2.77E+15
1.07E+14
3
T9
B757
RB211
Fleet
85
6233
30-m
5.2
1.01E+06
5.95E+04
1.18E+06
7.35E+04
1.28E+15
8.48E+13
1.50E+15
1.04E+14
3
T9
B757
RB211
Fleet
100
6966
30-m
1.7
8.53E+05
1.79E+04
1.01E+06
2.15E+04
1.00E+15
3.88E+13
1.19E+15
4.60E+13
3
T9
B757
RB211
Fleet
4
494
30-m
7.5
2.98E+06
7.45E+05
3.73E+06
9.42E+05
1.38E+16
3.91 E+15
1.72E+16
4.93E+15
3
T9
B757
RB211
Fleet
100
6987
30-m
1.9
6.34E+05
8.29E+04
7.35E+05
9.85E+04
7.88E+14
1.07E+14
9.15E+14
1.27E+14
3
T9
B757
RB211
Fleet
85
6307
30-m
5.3
9.48E+05
7.42E+04
1.12E+06
8.92E+04
1.23E+15
1.05E+14
1.45E+15
1.26E+14
3
T9
B757
RB211
Fleet
65
4551
30-m
5.6
1.38E+06
6.06E+04
1.64E+06
7.46E+04
2.16E+15
1.13E+14
2.56E+15
1.37E+14
3
T9
B757
RB211
Fleet
45
3111
30-m
5.6
8.95E+05
5.85E+04
1.06E+06
6.90E+04
1.76E+15
1.36E+14
2.09E+15
1.61 E+14
3
T9
B757
RB211
Fleet
30
2037
30-m
8.6
5.51 E+05
2.52E+04
6.61 E+05
2.97E+04
1.38E+15
9.17E+13
1.66E+15
1.09E+14
3
T9
B757
RB211
Fleet
15
1173
30-m
5.5
3.96E+05
5.13E+04
4.84E+05
6.35E+04
1.38E+15
2.01 E+14
1.69E+15
2.48E+14
3
T9
B757
RB211
Fleet
7
668
30-m
4.0
3.38E+05
4.69E+04
4.17E+05
5.85E+04
1.55E+15
2.86E+14
1.91 E+15
3.56E+14
3
T9
B757
RB211
Fleet
4
506
30-m
4.2
3.64E+06
3.47E+05
4.56E+06
4.33E+05
1.83E+16
3.16E+15
2.29E+16
3.94E+15
E-13
-------
This page intentionally left blank.
-------
Appendix F
Tables for Section 10
Particle Size Distribution and Geometric Mean Diameter
Table F-1. Summary of the geometric mean particle diameter (GMD) and geometric standard
deviation (GSD) of the particle size distributions obtained during APEX-1 to -3
-------
This page intentionally left blank.
-------
Table F-1. Summary of the geometric mean particle diameter (GMD) and geometric standard deviation (GSD) of the particle size distributions obtained
during APEX-1 to -3
nano-SMPS
EEPSb
no Loss Corr
Loss Corr
no Loss Corr
Loss Corr
Power
FF
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
APEX
Test
%
kg/h
Probe
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
7
436
30-m
1.94E+06
13.09
1.42
3.13E+06
12.63
1.42
EPA-1
30
992
30-m
1.01E+06
11.12
1.44
1.73E+06
10.67
1.44
85
2819
30-m
4.67E+05
27.05
2.00
6.68E+05
24.46
2.08
EPA-2
7
425
30-m
3.20E+06
15.80
1.34
4.98E+06
15.48
1.34
30
1023
30-m
2.88E+06
12.34
1.34
4.71 E+06
12.04
1.34
4
350
30-m
3.51 E+06
16.12
1.44
5.37E+06
15.58
1.45
6
386
30-m
3.01 E+06
14.54
1.43
4.73E+06
14.06
1.43
7
427
30-m
2.84E+06
13.53
1.40
4.54E+06
13.10
1.40
NASA-1
15
560
30-m
2.55E+06
12.84
1.45
4.15E+06
12.34
1.45
30
1012
30-m
1.61 E+06
11.28
1.47
2.74E+06
10.79
1.46
40
1252
30-m
1.61 E+06
11.63
1.53
2.71 E+06
11.02
1.51
65
1998
30-m
6.86E+05
11.86
1.77
1.18E+06
10.90
1.72
85
2406
30-m
5.79E+05
19.75
2.28
9.05E+05
16.76
2.32
4
336
30-m
4.52E+06
17.21
1.38
6.78E+06
16.78
1.39
60
1922
30-m
3.45E+06
12.74
1.38
5.61 E+06
12.39
1.37
NASA-1a
65
2098
30-m
3.52E+06
12.98
1.43
5.71 E+06
12.57
1.42
70
2252
30-m
2.86E+06
12.80
1.49
4.67E+06
12.33
1.47
85
2898
30-m
2.61 E+06
14.24
1.75
4.19E+06
13.37
1.69
7
438
30-m
2.67E+06
13.17
1.35
4.28E+06
12.83
1.36
EPA-3
30
964
30-m
6.07E+06
14.34
1.33
9.49E+06
14.02
1.33
76
2424
30-m
4.85E+06
14.24
1.47
7.67E+06
13.78
1.45
85
2840
30-m
3.22E+06
14.62
1.73
5.14E+06
13.76
1.68
4
345
30-m
4.87E+06
16.00
1.37
7.40E+06
15.60
1.38
7
413
30-m
5.01 E+06
14.36
1.33
7.85E+06
14.03
1.34
15
543
30-m
5.95E+06
14.10
1.35
9.37E+06
13.74
1.36
1
NASA-2
30
955
30-m
5.78E+06
14.95
1.33
8.96E+06
14.62
1.34
40
1235
30-m
5.00E+06
14.31
1.34
7.86E+06
13.97
1.35
60
1855
30-m
2.80E+06
11.62
1.41
4.69E+06
11.24
1.41
65
2046
30-m
2.47E+06
11.86
1.48
4.12E+06
11.39
1.47
85
2727
30-m
9.47E+05
16.37
2.24
1.54E+06
14.12
2.20
4
347
30-m
5.29E+06
16.85
1.36
7.98E+06
16.46
1.37
7
405
30-m
6.28E+06
16.19
1.34
9.55E+06
15.84
1.35
15
538
30-m
7.06E+06
15.41
1.33
1.09E+07
15.08
1.34
NASA-3
30
986
30-m
7.96E+06
16.21
1.33
1.21E+07
15.89
1.34
40
1255
30-m
7.88E+06
16.53
1.33
1.19E+07
16.21
1.34
60
1846
30-m
7.08E+06
16.10
1.33
1.08E+07
15.77
1.34
65
2053
30-m
7.01 E+06
16.21
1.34
1.06E+07
15.88
1.35
85
2758
30-m
5.12E+06
17.14
1.45
7.74E+06
16.71
1.44
4
345
30-m
3.88E+06
11.99
1.38
6.80E+06
11.64
1.37
5.5
381
30-m
2.58E+06
11.60
1.34
4.31 E+06
11.29
1.35
7
401
30-m
3.48E+06
11.91
1.34
5.74E+06
11.59
1.34
NASA-4
30
960
30-m
4.16E+06
11.68
1.32
6.92 E+06
11.40
1.33
40
1220
30-m
3.97E+06
11.49
1.33
6.65E+06
11.19
1.34
65
2023
30-m
3.06E+06
11.13
1.43
5.20E+06
10.75
1.42
70
2157
30-m
3.83E+06
11.73
1.43
6.41 E+06
11.33
1.42
85
2708
30-m
2.34E+06
12.37
1.80
3.95E+06
11.49
1.72
4
345
30-m
4.63E+06
17.73
1.40
6.90E+06
17.26
1.41
7
410
30-m
4.41 E+06
14.74
1.34
6.86E+06
14.39
1.35
NASA-5
30
989
30-m
4.20E+06
12.89
1.34
6.79E+06
12.57
1.34
40
1292
30-m
4.68E+06
13.02
1.34
7.55E+06
12.69
1.35
65
2131
30-m
4.45E+06
12.92
1.43
7.22E+06
12.51
1.41
85
2894
30-m
3.32E+06
13.82
1.73
5.37E+06
13.00
1.67
4
336
30-m
2.67E+06
19.92
1.36
3.09E+06
19.52
1.37
1.41E+07
15.6
1.44
1.74E+07
15.1
1.45
7
418
30-m
2.19E+06
16.87
1.33
2.63E+06
16.49
1.34
1.30E+07
13.4
1.39
1.69E+07
12.9
1.40
30
1180
30-m
2.04E+06
15.16
1.34
2.52E+06
14.78
1.35
1.25E+07
11.9
1.35
1.68E+07
11.5
1.35
40
1544
30-m
2.11 E+06
15.49
1.34
2.59E+06
15.11
1.35
1.30E+07
12.4
1.37
1.73E+07
12.0
1.37
65
2497
30-m
1.21 E+06
13.89
1.57
1.57E+06
13.29
1.55
8.82E+06
10.7
1.48
1.27E+07
10.2
1.45
T1
85
4131
30-m
4.73E+05
16.00
1.97
6.18E+05
14.70
1.92
6.21E+06
10.7
1.70
9.22E+06
9.9
1.62
7
395
30-m
1.16E+06
17.39
1.33
1.38E+06
17.02
1.34
1.37E+07
13.3
1.39
1.78E+07
12.8
1.39
85
4086
30-m
1.51E+07
12.1
1.45
2.04E+07
11.6
1.44
65
2497
30-m
1.22E+06
16.19
1.45
1.50E+06
15.74
1.45
1.51E+07
11.8
1.40
2.06E+07
11.4
1.39
40
1498
30-m
1.38E+06
16.90
1.33
1.65E+06
16.54
1.34
1.61E+07
12.7
1.38
2.12E+07
12.2
1.38
30
1135
30-m
1.81 E+06
16.95
1.32
2.16E+06
16.60
1.33
1.57E+07
12.8
1.38
2.06E+07
12.3
1.38
4
313
30-m
1.94E+06
20.19
1.35
2.23E+06
19.81
1.36
1.54E+07
15.3
1.43
1.92E+07
14.7
1.44
4
336
30-m
1.72E+06
18.62
1.33
2.01 E+06
18.25
1.35
1.30E+07
14.2
1.41
1.66E+07
13.7
1.42
7
418
30-m
1.61 E+06
16.36
1.31
1.94E+06
16.01
1.32
1.32E+07
12.4
1.36
1.76E+07
12.0
1.36
30
1180
30-m
1.82E+06
16.41
1.32
2.19E+06
16.06
1.33
1.57E+07
12.1
1.35
2.11E+07
11.7
1.36
40
1544
30-m
2.05E+06
16.63
1.31
2.46E+06
16.29
1.33
1.66E+07
12.3
1.36
2.21E+07
11.8
1.36
65
2497
30-m
1.84E+06
16.63
1.43
2.23E+06
16.20
1.43
1.63E+07
12.0
1.39
2.20E+07
11.5
1.39
-------
Table F-1 (continued)
nano-SMPS
EEPSb
no Loss Corr
Loss Corr
no Loss Corr
Loss Corr
Power
FF
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
APEX
Test
%
kg/h
Probe
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
85
4131
30-m
1.55E+07
11.6
1.43
2.12E+07
11.2
1.42
T4
7
395
30-m
1.68E+06
16.82
1.32
2.01E+06
16.46
1.33
1.32E+07
12.7
1.37
1.74E+07
12.2
1.37
85
4086
30-m
1.66E+07
12.0
1.43
2.25E+07
11.5
1.42
65
2497
30-m
2.05E+06
16.92
1.40
2.46E+06
16.51
1.40
1.72E+07
12.2
1.39
2.30E+07
11.7
1.38
40
1498
30-m
2.05E+06
16.63
1.31
2.46E+06
16.28
1.32
1.70E+07
12.3
1.36
2.26E+07
11.9
1.36
30
1135
30-m
1.96E+06
16.73
1.32
2.36E+06
16.38
1.33
1.64E+07
12.3
1.36
2.19E+07
11.9
1.36
7
381
30-m
1.63E+06
16.49
1.31
1.97E+06
16.13
1.33
1.36E+07
12.6
1.37
1.79E+07
12.2
1.37
4
313
30-m
1.70E+06
18.19
1.33
2.00E+06
17.82
1.34
1.30E+07
14.1
1.41
1.66E+07
13.5
1.41
2
4
341
30-m
1.15E+06
19.27
1.37
1.34E+06
18.85
1.39
1.33E+07
14.3
1.43
1.69E+07
13.7
1.43
7
422
30-m
1.02E+06
17.21
1.35
1.22E+06
16.84
1.36
1.30E+07
12.8
1.39
1.72E+07
12.3
1.39
30
1099
30-m
1.08E+06
16.23
1.33
1.31E+06
15.88
1.34
1.45E+07
11.9
1.36
1.96E+07
11.5
1.36
40
1403
30-m
1.13E+06
15.87
1.34
1.38E+06
15.51
1.35
1.45E+07
11.6
1.36
1.98E+07
11.2
1.36
65
2193
30-m
1.02E+06
17.10
1.59
1.24E+06
16.48
1.58
1.32E+07
11.7
1.48
1.81E+07
11.2
1.46
85
3528
30-m
8.80E+06
12.6
1.85
1.24E+07
11.5
1.78
T2
7
404
30-m
1.11 E+ 06
17.22
1.32
1.32E+06
16.88
1.33
1.34E+07
12.8
1.38
1.76E+07
12.3
1.38
85
3559
30-m
9.05E+06
13.1
1.89
1.26E+07
11.9
1.82
65
2184
30-m
1.20E+06
17.55
1.54
1.45E+06
16.99
1.54
1.48E+07
11.9
1.45
2.02E+07
11.4
1.44
85
3559
30-m
1.03E+07
12.3
1.77
1.44E+07
11.4
1.71
40
1367
30-m
1.26E+06
16.87
1.34
1.52E+06
16.50
1.35
1.63E+07
12.1
1.37
2.19E+07
11.7
1.37
30
1067
30-m
1.27E+06
17.08
1.33
1.52E+06
16.74
1.34
1.62E+07
12.4
1.37
2.16E+07
11.9
1.37
7
418
30-m
1.25E+06
17.86
1.32
1.48E+06
17.51
1.33
1.44E+07
13.2
1.39
1.88E+07
12.7
1.39
4
345
30-m
1.38E+06
20.19
1.36
1.60E+06
19.80
1.37
4
372
30-m
1.52E+06
20.79
1.39
1.75E+06
20.39
1.40
1.42E+07
15.2
1.46
1.77E+07
14.6
1.46
7
440
30-m
1.44E+06
19.26
1.38
1.68E+06
18.86
1.39
1.43E+07
14.1
1.43
1.83E+07
13.6
1.43
30
1130
30-m
1.54E+06
18.14
1.37
1.82E+06
17.76
1.38
1.65E+07
13.0
1.41
2.17E+07
12.5
1.40
40
1444
30-m
1.52E+06
18.15
1.41
1.80E+06
17.73
1.42
1.70E+07
12.8
1.42
2.24E+07
12.3
1.42
65
2252
30-m
1.18E+06
19.17
1.73
1.42E+06
18.37
1.73
1.34E+07
12.6
1.60
1.81E+07
11.9
1.56
85
3677
30-m
5.89E+06
18.0
2.29
7.88E+06
15.4
2.27
T3
7
418
30-m
1.54E+06
19.43
1.36
1.79E+06
19.05
1.37
1.51E+07
14.4
1.43
1.91E+07
13.8
1.43
85
3650
30-m
5.98E+06
18.8
2.31
7.94E+06
16.1
2.30
65
2261
30-m
1.30E+06
19.32
1.73
1.56E+06
18.52
1.72
1.41E+07
12.5
1.59
1.91E+07
11.9
1.55
40
1412
30-m
1.61E+06
17.84
1.40
1.91E+06
17.44
1.41
1.69E+07
12.7
1.41
2.23E+07
12.2
1.41
30
1108
30-m
1.58E+06
17.77
1.38
1.88E+06
17.38
1.38
1.65E+07
12.8
1.40
2.18E+07
12.3
1.40
7
422
30-m
1.47E+06
19.10
1.38
1.72E+06
18.69
1.39
1.44E+07
14.2
1.43
1.83E+07
13.6
1.43
4
368
30-m
1.53E+06
20.42
1.39
1.76E+06
20.02
1.40
1.39E+07
15.1
1.45
1.74E+07
14.5
1.46
4
300
30-m
1.85E+06
19.77
1.34
2.17E+06
19.44
1.35
2.94E+06
15.7
1.44
3.65E+06
15.3
1.44
7
397
30-m
1.92E+06
18.87
1.34
2.28E+06
18.55
1.34
3.13E+06
14.9
1.42
3.94E+06
14.4
1.42
15
654
30-m
1.91E+06
17.34
1.33
2.31E+06
17.04
1.33
3.12E+06
13.6
1.40
4.03E+06
13.2
1.40
30
1136
30-m
2.41 E+06
18.04
1.36
2.88E+06
17.71
1.36
3.93E+06
13.6
1.41
5.07E+06
13.2
1.41
45
1618
30-m
2.46E+06
18.18
1.40
2.94E+06
17.81
1.40
4.19E+06
13.9
1.45
5.39E+06
13.4
1.44
65
2260
30-m
2.28E+06
19.57
1.58
2.72E+06
18.99
1.58
3.81E+06
14.3
1.58
4.91E+06
13.7
1.56
85
2903
30-m
1.80E+06
21.88
1.81
2.14E+06
20.96
1.80
3.01E+06
15.3
1.79
3.88E+06
14.4
1.75
100
3385
30-m
1.48E+06
26.35
1.98
1.74E+06
24.94
2.00
2.19E+06
18.4
2.06
2.77E+06
16.9
2.04
T1
4
300
30-m
1.70E+06
21.41
1.39
1.97E+06
21.06
1.39
2.72E+06
16.5
1.44
3.34E+06
16.0
1.45
100
3385
30-m
1.28E+06
27.18
2.01
1.50E+06
25.65
2.03
1.83E+06
18.6
2.09
2.31E+06
16.9
2.07
85
2903
30-m
1.52E+06
21.60
1.81
1.82E+06
20.68
1.80
2.37E+06
15.3
1.80
3.06E+06
14.4
1.76
65
2260
30-m
1.77E+06
19.62
1.56
2.11 E+06
19.08
1.56
2.81E+06
14.4
1.58
3.61E+06
13.8
1.56
45
1618
30-m
1.87E+06
18.54
1.38
2.23E+06
18.18
1.39
2.96E+06
14.3
1.46
3.77E+06
13.8
1.45
30
1136
30-m
1.88E+06
18.41
1.33
2.23E+06
18.10
1.33
2.88E+06
14.4
1.43
3.67E+06
13.9
1.43
15
654
30-m
1.54E+06
18.20
1.33
1.84E+06
17.89
1.34
2.49E+06
14.7
1.43
3.14E+06
14.2
1.43
7
397
30-m
1.51 E+06
19.79
1.33
1.77E+06
19.49
1.34
2.44E+06
16.0
1.44
3.02E+06
15.5
1.44
4
300
30-m
1.45E+06
20.82
1.35
1.69E+06
20.50
1.35
2.36E+06
16.9
1.45
2.88E+06
16.4
1.46
4
381
30-m
1.29E+06
30.43
1.38
1.43E+06
30.09
1.38
1.33E+06
25.4
1.50
1.51E+06
24.8
1.51
7
431
30-m
1.46E+06
31.32
1.37
1.61E+06
30.99
1.38
1.54E+06
25.6
1.48
1.75E+06
25.0
1.50
15
622
30-m
2.17E+06
27.64
1.37
2.43E+06
27.29
1.38
2.44E+06
22.6
1.49
2.83E+06
22.0
1.50
T11
30
1090
30-m
3.25E+06
26.62
1.38
3.65E+06
26.26
1.38
3.71E+06
21.7
1.49
4.32E+06
21.1
1.50
45
1530
30-m
3.37E+06
26.84
1.40
3.79E+06
26.45
1.41
3.90E+06
21.6
1.50
4.56E+06
21.0
1.52
65
2179
30-m
3.30E+06
27.26
1.51
3.73E+06
26.78
1.51
4.03E+06
21.8
1.58
4.73E+06
21.0
1.59
85
2815
30-m
2.92 E+06
30.17
1.69
3.29E+06
29.48
1.70
3.71E+06
23.0
1.74
4.36E+06
22.0
1.75
100
3564
30-m
2.59E+06
33.12
1.81
2.92E+06
32.23
1.82
3.43E+06
24.0
1.85
4.04E+06
22.8
1.86
7
182
15-m
2.53E+05
18.42
1.34
3.09E+05
18.04
1.37
7.57E+05
15.6
1.89
9.56E+05
14.5
1.86
15
304
15-m
5.47E+06
24.10
1.59
6.41E+06
23.43
1.60
6.69E+06
17.2
1.60
8.32E+06
16.5
1.60
30
452
15-m
5.10E+06
22.60
1.65
6.06E+06
21.78
1.66
6.29E+06
16.2
1.67
7.96E+06
15.4
1.66
45
568
15-m
4.25E+06
23.66
1.73
5.05E+06
22.64
1.75
4.74E+06
17.0
1.75
5.99E+06
16.0
1.75
65
760
15-m
4.04E+06
27.77
1.72
4.70E+06
26.79
1.74
4.08E+06
20.7
1.76
4.95E+06
19.6
1.77
85
999
15-m
3.89E+06
28.54
1.71
4.49E+06
27.64
1.72
5.03E+06
23.3
1.73
5.99E+06
22.2
1.75
85
999
30-m
3.79E+06
28.84
1.74
4.32E+06
27.80
1.76
3.79E+06
21.6
1.75
4.52E+06
20.4
1.77
T2
100
1226
30-m
3.90E+06
28.29
1.64
4.42E+06
27.47
1.66
4.35E+06
23.1
1.72
5.11 E+06
22.0
1.75
7
182
30-m
1.40E+05
31.64
1.58
1.59E+05
30.47
1.63
2.43E+05
16.7
1.88
3.02E+05
15.6
1.88
F-2
-------
Table F-1 (continued)
APEX
nano-SMPS
EEPSb
no Loss Corr
Loss Corr
no Loss Corr
Loss Corr
Power
FF
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
Test
%
kg/h
Probe
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
7
182
15-m
4.26E+06
17.8
1.64
5.26E+06
17.0
1.64
100
1226
15-m
4.85E+06
29.32
1.62
5.56E+06
28.64
1.63
6.18E+06
24.9
1.71
7.28E+06
23.9
1.73
65
763
15-m
4.65E+06
27.41
1.67
5.39E+06
26.52
1.69
5.36E+06
20.8
1.76
6.52E+06
19.7
1.78
45
568
15-m
5.83E+06
22.74
1.65
6.92E+06
21.96
1.66
7.48E+06
16.2
1.71
9.50E+06
15.3
1.70
30
454
15-m
6.18E+06
22.95
1.58
7.30E+06
22.31
1.58
8.70E+06
16.2
1.61
1.10E+07
15.5
1.61
15
304
15-m
6.37E+06
23.91
1.50
7.44E+06
23.36
1.51
8.40E+06
17.3
1.58
1.04E+07
16.7
1.58
7
182
15-m
4.59E+05
31.54
1.38
5.21E+05
31.06
1.40
7.20E+05
16.8
1.85
9.01E+05
15.9
1.83
7
227
15-m
5.68E+04
13.76
1.62
7.52E+04
13.15
1.63
1.44E+06
19.3
2.18
1.85E+06
17.7
2.14
15
303
15-m
4.53E+06
23.42
1.60
5.34E+06
22.68
1.61
3.76E+07
16.0
1.62
4.75E+07
15.2
1.62
30
452
15-m
4.40E+06
22.44
1.68
5.24E+06
21.55
1.69
4.26E+07
15.9
1.69
5.42E+07
15.0
1.68
45
567
15-m
3.84E+06
23.36
1.75
4.58E+06
22.30
1.77
3.34E+07
16.6
1.76
4.25E+07
15.6
1.76
65
763
15-m
3.82E+06
27.86
1.73
4.44E+06
26.86
1.75
3.05E+07
20.3
1.76
3.73E+07
19.2
1.78
85
1009
15-m
5.36E+06
32.50
1.68
6.11 E+06
31.65
1.70
3.89E+07
23.2
1.73
4.64E+07
22.1
1.75
T5
100
1226
15-m
6.02E+06
34.05
1.66
6.82E+06
33.27
1.67
4.42E+07
24.6
1.71
5.21E+07
23.6
1.73
7
227
30-m
1.90E+04
14.13
1.84
2.60E+04
13.42
1.81
7.76E+05
19.4
2.34
9.95E+05
17.4
2.29
100
1226
30-m
3.62E+06
30.37
1.70
4.09E+06
29.43
1.73
2.65E+07
22.2
1.73
3.13E+07
21.1
1.76
85
1009
30-m
3.03E+06
28.78
1.73
3.45E+06
27.76
1.75
2.30E+07
21.2
1.75
2.75E+07
20.0
1.77
65
763
30-m
2.25E+06
24.47
1.79
2.64E+06
23.16
1.83
1.85E+07
18.3
1.78
2.29E+07
17.1
1.79
45
567
30-m
2.79E+06
19.25
1.78
3.41E+06
18.07
1.79
2.80E+07
13.9
1.73
3.71E+07
12.9
1.71
30
452
30-m
2.87E+06
18.99
1.70
3.50E+06
17.95
1.72
2.94E+07
14.0
1.72
3.88E+07
13.0
1.70
7
227
30-m
1.35E+04
17.45
1.84
1.76E+04
16.70
1.84
4.11E+05
22.2
2.36
5.30E+05
20.1
2.35
8.4
174
15-m
6.52E+05
10.73
1.60
9.18E+05
10.20
1.56
8.35E+05
9.49
1.53
1.23E+06
9.05
1.49
15
238
15-m
5.13E+05
10.47
1.87
7.53E+05
9.56
1.79
5.14E+05
9.71
1.72
7.66E+05
9.04
1.65
30
389
15-m
5.28E+05
10.44
1.87
7.74E+05
9.56
1.79
6.18E+05
9.23
1.70
9.34E+05
8.63
1.62
45
555
15-m
6.32E+05
10.15
1.88
9.34E+05
9.31
1.78
6.40E+05
9.40
1.75
9.63E+05
8.75
1.66
65
805
15-m
6.83E+05
9.94
1.91
1.02E+06
9.12
1.79
6.91E+05
9.07
1.77
1.05E+06
8.44
1.66
85
1082
15-m
6.94E+05
9.74
1.87
1.04E+06
8.99
1.76
8.51E+05
8.96
1.75
1.30E+06
8.37
1.64
100
1286
15-m
5.66E+05
10.07
2.04
8.51E+05
9.11
1.90
6.96E+05
9.27
1.85
1.06E+06
8.55
1.73
T3
8.4
172
15-m
6.42E+05
10.86
1.60
9.03E+05
10.30
1.57
6.93E+05
15.0
1.57
1.02E+06
14.4
1.54
100
1299
15-m
6.88E+05
9.80
1.96
1.04E+06
8.93
1.83
85
1088
15-m
5.55E+05
9.80
1.97
8.37E+05
8.93
1.84
3.76E+05
11.2
2.04
5.51E+05
10.0
1.93
65
810
15-m
3.60E+05
10.41
2.11
5.43E+05
9.20
1.98
2.66E+05
11.1
2.02
3.90E+05
9.96
1.92
45
563
15-m
3.63E+05
10.84
2.00
5.38E+05
9.69
1.91
2.05E+05
11.8
1.96
2.95E+05
10.6
1.89
30
392
15-m
4.45E+05
10.86
1.94
6.51E+05
9.80
1.86
2.74E+06
10.8
1.86
3.99E+06
9.87
1.79
15
235
15-m
5.74E+05
10.36
1.85
8.42E+05
9.48
1.77
4.73E+06
9.74
1.73
7.02E+06
9.06
1.65
8.4
173
15-m
7.32E+05
11.13
1.70
1.03E+06
10.44
1.66
9.98E+06
9.08
1.52
1.48E+07
8.68
1.47
8.4
168
15-m
3.37E+03
20.71
2.50
4.79E+03
19.65
2.44
1.91E+04
32.2
1.58
2.52E+04
31.4
1.61
15
239
15-m
3.15E+04
11.05
2.20
4.87E+04
9.60
2.14
2.21E+04
27.8
1.71
2.85E+04
26.7
1.73
30
385
15-m
7.53E+04
11.71
2.18
1.13E+05
10.24
2.10
4.96E+04
18.5
1.96
6.72E+04
16.9
1.97
45
547
15-m
2.00E+05
12.97
2.33
2.95E+05
11.04
2.24
1.19E+06
13.1
2.09
1.71 E+06
11.6
2.02
65
788
15-m
4.36E+05
11.32
2.18
6.45E+05
9.94
2.06
2.83E+06
12.1
2.11
4.10E+06
10.7
2.02
85
1050
15-m
4.62E+05
14.28
2.41
6.61E+05
12.11
2.33
4.52E+06
12.3
2.14
6.63E+06
10.8
2.04
100
1253
15-m
4.90E+05
8.95
1.69
7.47E+05
8.37
1.61
5.27E+06
11.8
2.18
7.75E+06
10.4
2.06
8.4
168
15-m
2.53E+03
43.85
2.54
3.39E+03
38.70
2.64
1.40E+05
40.9
1.95
1.90E+05
39.2
2.00
T4
100
1252
15-m
1.83E+06
22.0
2.29
2.32E+06
19.3
2.35
85
1041
15-m
4.27E+05
13.26
2.43
6.17E+05
11.24
2.31
2.34E+06
15.9
2.30
3.20E+06
13.8
2.26
8.4
168
15-m
9.96E+02
32.05
3.29
1.53E+03
27.10
3.31
4.96E+04
40.7
2.08
5.86E+04
38.6
2.14
85
1052
15-m
2.64E+05
14.45
2.57
3.79E+05
11.92
2.48
1.62E+06
20.4
2.22
2.08E+06
18.0
2.26
65
786
15-m
2.84E+05
12.47
2.30
4.15E+05
10.72
2.20
1.69E+06
15.1
2.18
2.34E+06
13.2
2.14
45
549
15-m
1.11 E+ 05
10.11
2.09
1.72E+05
8.86
1.99
6.86E+05
15.6
2.15
9.56E+05
13.8
2.12
30
384
15-m
2.82E+04
10.06
2.07
4.51E+04
8.86
1.99
1.38E+05
28.6
2.10
1.78E+05
26.7
2.13
15
231
15-m
2.11E+03
21.74
3.01
3.16E+03
18.77
3.01
5.35E+04
40.3
1.96
6.46E+04
38.8
2.00
8.4
167
15-m
1.07E+03
29.21
2.93
1.63E+03
26.06
2.95
7.06E+04
39.9
2.07
9.24E+04
37.9
2.13
8.4
179
30-m
2.21 E+06
13.00
1.45
2.90E+06
12.54
1.44
9.70E+06
9.74
1.40
1.40E+07
9.39
1.38
15
233
30-m
1.03E+06
10.10
1.49
1.49E+06
9.66
1.45
1.85E+06
8.42
1.38
2.86E+06
8.13
1.35
30
372
30-m
1.25E+06
10.52
1.54
1.78E+06
10.03
1.49
2.40E+06
8.60
1.41
3.69E+06
8.28
1.37
45
524
30-m
1.24E+06
10.65
1.59
1.76E+06
10.11
1.54
2.37E+06
8.59
1.44
3.64E+06
8.25
1.39
65
750
30-m
1.52E+06
11.30
1.61
2.13E+06
10.71
1.57
2.95E+06
8.88
1.46
4.47E+06
8.52
1.41
85
971
30-m
1.52E+06
11.48
1.65
2.12E+06
10.88
1.60
3.01E+06
8.96
1.49
4.57E+06
8.57
1.44
100
1171
30-m
1.43E+06
11.54
1.71
2.00E+06
10.89
1.64
2.84E+06
8.93
1.53
4.33E+06
8.52
1.47
T10
8.4
177
30-m
1.06E+06
11.72
1.48
1.44E+06
11.25
1.46
2.02E+06
9.30
1.41
2.99E+06
8.95
1.38
100
1180
30-m
1.19E+06
11.41
1.81
1.69E+06
10.63
1.73
2.38E+06
8.91
1.60
3.66E+06
8.45
1.52
85
982
30-m
1.23E+06
11.41
1.76
1.73E+06
10.67
1.69
2.40E+06
8.83
1.55
3.69E+06
8.40
1.48
65
767
30-m
9.34E+05
11.11
1.79
1.34E+06
10.33
1.71
1.90E+06
8.64
1.55
2.95E+06
8.22
1.47
45
529
30-m
1.16E+06
10.46
1.60
1.66E+06
9.91
1.55
1.94E+06
8.49
1.48
3.03E+06
8.12
1.42
30
371
30-m
9.06E+05
10.21
1.63
1.32E+06
9.61
1.57
1.50E+06
8.32
1.49
2.35E+06
7.95
1.42
15
231
30-m
6.19E+05
10.07
1.64
9.12E+05
9.43
1.58
1.03E+06
8.31
1.50
1.63E+06
7.92
1.43
8.4
178
30-m
1.46E+06
12.15
1.47
1.96E+06
11.70
1.45
2.35E+06
9.44
1.42
3.46E+06
9.08
1.39
7
610
30-m
4.04E+06
18.25
1.54
4.89E+06
17.64
1.54
9.62E+05
14.4
1.50
1.23E+06
13.8
1.50
F-3
-------
Table F-1 (continued)
nano-SMPS
EEPSb
no Loss Corr
Loss Corr
no Loss Corr
Loss Corr
Power
FF
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
N
GMD
GSD
APEX
Test
%
kg/h
Probe
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
(#/cm3)
(nm)
(-)
15
1014
30-m
3.30E+06
12.53
1.32
4.35E+06
12.23
1.33
6.44E+05
10.1
1.32
9.14E+05
9.86
1.31
30
2245
30-m
3.73E+06
13.24
1.35
4.83E+06
12.92
1.35
7.05E+05
10.4
1.35
9.90E+05
10.1
1.34
45
3726
30-m
3.42E+06
14.61
1.64
4.41E+06
13.96
1.62
7.05E+05
11.3
1.58
9.80E+05
10.8
1.54
65
5827
30-m
1.77E+06
13.70
1.64
2.32E+06
13.02
1.62
6.19E+05
15.7
2.01
8.24E+05
14.1
1.98
7
595
30-m
3.89E+06
17.63
1.52
4.73E+06
17.04
1.52
1.11 E+06
13.8
1.49
1.43E+06
13.2
1.48
65
5658
30-m
2.99E+06
20.31
2.06
3.71E+06
18.69
2.05
7.58E+05
14.4
1.97
1.02E+06
13.1
1.91
T6
80
7026
30-m
1.57E+06
28.63
1.90
1.83E+06
26.69
1.97
4.82E+05
26.3
2.00
5.77E+05
24.0
2.08
7
368
30-m
4.08E+06
17.83
1.51
4.95E+06
17.26
1.51
1.12E+06
13.7
1.49
1.44E+06
13.2
1.48
7
368
30-m
4.78E+06
20.5
1.64
5.69E+06
19.7
1.64
1.15E+06
17.5
1.62
1.45E+06
16.7
1.62
80
7026
30-m
2.07E+06
30.96
2.03
2.41E+06
28.64
2.12
5.46E+05
25.4
2.06
6.59E+05
22.9
2.14
65
5658
30-m
2.06E+06
20.32
2.05
2.55E+06
18.60
2.05
4.93E+05
17.2
2.09
6.42E+05
15.3
2.08
45
3834
30-m
3.12E+06
14.15
1.59
4.04E+06
13.57
1.56
7.07E+05
11.2
1.59
9.90E+05
10.6
1.55
30
2465
30-m
3.35E+06
12.94
1.37
4.37E+06
12.61
1.37
6.98E+05
10.2
1.37
9.91E+05
9.89
1.35
15
1097
30-m
3.00E+06
12.38
1.33
3.96E+06
12.08
1.33
7.13E+05
9.87
1.32
1.02E+06
9.62
1.31
7
368
30-m
4.18E+06
17.97
1.50
5.06E+06
17.43
1.50
1.30E+06
13.9
1.49
1.67E+06
13.4
1.48
7
600
30-m
4.84E+06
19.32
1.51
5.77E+06
18.76
1.51
1.76E+06
15.4
1.51
2.22E+06
14.8
1.51
15
1035
30-m
3.85E+06
13.39
1.36
4.97E+06
13.04
1.36
1.23E+06
10.7
1.33
1.70E+06
10.4
1.33
30
2230
30-m
4.34E+06
14.06
1.39
5.53E+06
13.69
1.39
1.36E+06
10.9
1.34
1.88E+06
10.6
1.33
45
3688
30-m
4.11E+06
14.77
1.52
5.22E+06
14.25
1.51
1.30E+06
11.4
1.49
1.78E+06
10.9
1.46
65
5702
30-m
3.21 E+06
17.86
1.90
4.01E+06
16.69
1.88
1.18E+06
14.0
1.90
1.58E+06
12.8
1.85
T7
80
7100
30-m
2.31 E+06
26.48
2.10
2.75E+06
24.32
2.15
8.83E+05
21.1
2.13
1.10E+06
18.8
2.16
7
591
30-m
4.75E+06
18.89
1.50
5.68E+06
18.34
1.50
2.14E+06
14.7
1.49
2.71E+06
14.1
1.48
80
7200
30-m
2.41 E+06
26.53
2.12
2.87E+06
24.30
2.17
1.04E+06
21.1
2.17
1.30E+06
18.7
2.20
65
5711
30-m
3.08E+06
16.80
1.82
3.89E+06
15.78
1.79
1.18E+06
14.0
1.92
1.58E+06
12.8
1.87
30
2252
30-m
4.15E+06
13.97
1.38
5.30E+06
13.60
1.38
1.44E+06
10.6
1.35
2.01E+06
10.3
1.34
7
596
30-m
4.69E+06
18.13
1.45
5.65E+06
17.63
1.46
2.28E+06
14.3
1.47
2.91E+06
13.8
1.47
4
566
30-m
1.49E+06
12.69
1.63
2.01E+06
12.00
1.60
1.27E+06
10.8
1.61
1.80E+06
10.2
1.56
7
770
30-m
1.48E+06
13.98
1.56
1.92E+06
13.30
1.56
1.25E+06
11.9
1.56
1.70E+06
11.4
1.53
15
1191
30-m
3.12E+06
16.09
1.51
3.87E+06
15.53
1.51
2.67E+06
12.7
1.52
3.56E+06
12.2
1.50
30
2109
30-m
2.90E+06
16.96
1.67
3.60E+06
16.16
1.66
2.57E+06
13.4
1.61
3.38E+06
12.8
1.59
45
3178
30-m
2.33E+06
23.65
1.99
2.79E+06
22.10
2.01
1.67E+06
16.3
1.87
2.13E+06
15.2
1.85
65
4750
30-m
1.22E+06
32.77
2.04
1.41E+06
30.69
2.11
1.00E+06
30.6
2.21
1.18E+06
27.8
2.30
85
6096
30-m
1.36E+06
20.16
2.22
1.71 E+06
18.20
2.21
9.39E+05
21.1
2.50
1.22E+06
18.3
2.50
T8
7
782
30-m
2.17E+06
12.5
1.55
2.91 E+06
12.0
1.53
85
6449
30-m
1.24E+06
22.54
2.39
1.56E+06
19.92
2.41
8.81E+05
20.6
2.43
1.14E+06
18.0
2.42
4
552
43-m
1.88E+06
14.43
1.50
3.13E+06
13.58
1.47
1.93E+06
12.0
1.50
3.47E+06
11.2
1.45
65
4691
43-m
1.21 E+06
30.86
2.17
1.71 E+06
25.79
2.28
8.84E+05
26.1
2.35
1.37E+06
19.9
2.45
45
3436
43-m
1.42E+06
20.24
2.05
2.23E+06
17.28
2.01
1.05E+06
16.1
2.15
1.89E+06
12.9
2.03
30
2131
43-m
1.94E+06
15.96
1.74
3.19E+06
14.43
1.69
1.36E+06
12.5
1.76
2.59E+06
11.0
1.65
15
1178
43-m
1.97E+06
14.58
1.58
3.31E+06
13.48
1.55
1.55E+06
11.5
1.57
3.01E+06
10.5
1.50
7
654
43-m
2.28E+06
15.69
1.53
3.67E+06
14.70
1.51
1.87E+06
12.2
1.53
3.45E+06
11.2
1.48
4
437
43-m
2.58E+06
16.92
1.55
4.03E+06
15.87
1.53
2.27E+06
12.9
1.53
4.05E+06
11.9
1.49
4
421
30-m
4.39E+06
20.35
1.53
5.19E+06
19.75
1.54
7.20E+05
19.1
1.60
8.83E+05
18.4
1.60
7
690
30-m
1.28E+06
11.21
1.65
1.81E+06
10.53
1.60
1.82E+05
11.3
1.75
2.56E+05
10.6
1.68
15
1221
30-m
1.19E+06
11.22
1.75
1.69E+06
10.43
1.68
1.76E+05
11.1
1.82
2.54E+05
10.3
1.73
30
2004
30-m
9.47E+05
15.59
2.19
1.28E+06
13.63
2.14
1.44E+05
17.0
2.20
1.91E+05
15.0
2.18
45
3068
30-m
8.91 E+05
25.87
2.15
1.08E+06
22.96
2.26
1.65E+05
28.3
1.95
1.92E+05
26.4
2.01
65
4479
30-m
1.22E+06
38.19
1.81
1.36E+06
36.96
1.86
2.54E+05
39.9
1.76
2.82E+05
38.9
1.80
85
6233
30-m
7.24E+05
37.33
1.99
8.29E+05
34.86
2.11
1.67E+05
43.3
1.82
1.86E+05
42.1
1.87
100
6966
30-m
5.49E+05
33.85
2.14
6.45E+05
30.37
2.31
1.22E+05
41.9
1.87
1.36E+05
40.7
1.92
T9
4
494
30-m
2.55E+06
14.70
1.52
3.25E+06
14.14
1.51
8.24E+05
12.6
1.53
1.10E+06
12.1
1.51
100 6987
30-m
1.19E+05
44.7
1.83
1.33E+05
43.5
1.89
85
6307
30-m
6.69E+05
38.84
1.86
7.52E+05
37.11
1.95
1.65E+05
42.1
1.83
1.84E+05
41.0
1.88
65
4551
30-m
1.11 E+06
35.93
1.78
1.24E+06
34.78
1.82
2.83E+05
40.5
1.75
3.14E+05
39.6
1.78
45
3111
30-m
1.06E+06
20.75
2.28
1.35E+06
18.00
2.32
2.15E+05
23.2
2.12
2.66E+05
20.8
2.17
30
2037
30-m
1.02 E+06
13.82
2.11
1.42E+06
12.24
2.04
2.43E+05
13.2
2.09
3.41E+05
11.7
2.00
15
1173
30-m
1.17E+06
10.63
1.70
1.69E+06
9.93
1.63
2.39E+05
10.7
1.83
3.49E+05
9.86
1.74
7
668
30-m
9.33E+05
10.38
1.66
1.36E+06
9.69
1.60
1.40E+05
10.7
1.80
2.04E+05
9.92
1.71
4
506
30-m
3.51 E+06
15.44
1.48
4.39E+06
14.93
1.48
2.10E+05
14.4
1.63
2.70E+05
13.8
1.60
a Not corrected for ambient background. Presented for comparison only.
b Power =% rated thrust; N = particle number concentration; no Loss Corr = data not corrected for particle line loss; and
Loss Corr = data were corrected for particle line loss.
F-4
-------
Appendix G
Tables for Section 11
Black Carbon and PAH Emissions
Table G-1. Black carbon emission indices as determined by the aethalometer
Table G-2. Particle surface-bound PAH emission indices determined by the PAS 2000
-------
This page intentionally left blank.
-------
Table G-1. Black carbon emission indices as determined by the aethalometer
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
1
EPA 2
CFM56-2C
Base
7
436
30-m
33.61
46.18
1
EPA 2
CFM56-2C
Base
100
3180
30-m
40.52
78.71
1
EPA 2
CFM56-2C
Base
85
2898
30-m
375.87
127.93
1
EPA 2
CFM56-2C
Base
30
1017
30-m
90.17
155.22
1
EPA 2
CFM56-2C
Base
7
409
30-m
1
EPA 2
CFM56-2C
Base
100
3178
30-m
9.54
18.44
1
EPA 2
CFM56-2C
Base
85
2824
30-m
352.84
172.97
1
EPA 2
CFM56-2C
Base
30
1022
30-m
104.25
172.96
1
EPA 2
CFM56-2C
Base
7
418
30-m
1
EPA 2
CFM56-2C
Base
100
3230
30-m
1
EPA 2
CFM56-2C
Base
85
2892
30-m
340.12
124.77
1
EPA 2
CFM56-2C
Base
30
1017
30-m
86.12
181.93
1
EPA 2
CFM56-2C
Base
7
413
30-m
1
EPA 2
CFM56-2C
Base
100
3137
30-m
12.14
29.43
1
EPA 2
CFM56-2C
Base
85
2825
30-m
360.05
168.30
1
EPA 2
CFM56-2C
Base
30
1038
30-m
117.59
184.73
1
EPA 2
CFM56-2C
Base
7
449
30-m
1
NASAIa
CFM56-2C
Base
4
350
30-m
111.86
72.32
1
NASAIa
CFM56-2C
Base
100
3169
30-m
200.02
205.27
1
NASAIa
CFM56-2C
Base
85
2928
30-m
585.92
146.45
1
NASAIa
CFM56-2C
Base
65
2107
30-m
192.46
157.83
1
NASAIa
CFM56-2C
Base
4
327
30-m
6.31
46.31
1
NASAIa
CFM56-2C
Base
100
3155
30-m
77.90
113.25
1
NASAIa
CFM56-2C
Base
85
2883
30-m
381.34
90.98
1
NASAIa
CFM56-2C
Base
70
2288
30-m
177.80
84.04
1
NASAIa
CFM56-2C
Base
65
2070
30-m
62.42
33.69
1
NASAIa
CFM56-2C
Base
60
1902
30-m
47.10
46.88
1
NASAIa
CFM56-2C
Base
4
336
30-m
16.93
45.74
1
NASAIa
CFM56-2C
Base
100
3146
30-m
83.32
72.98
1
NASAIa
CFM56-2C
Base
85
2946
30-m
418.39
84.85
1
NASAIa
CFM56-2C
Base
65
2102
30-m
170.59
104.43
1
NASAIa
CFM56-2C
Base
4
336
30-m
7.29
40.70
1
NASAIa
CFM56-2C
Base
100
3110
30-m
35.38
25.09
1
NASAIa
CFM56-2C
Base
85
2897
30-m
420.05
56.77
1
NASAIa
CFM56-2C
Base
65
2088
30-m
185.28
156.11
1
NASAIa
CFM56-2C
Base
4
336
30-m
20.04
48.35
1
NASAIa
CFM56-2C
Base
100
3055
30-m
48.93
46.32
1
NASAIa
CFM56-2C
Base
85
2838
30-m
379.46
46.41
1
NASAIa
CFM56-2C
Base
70
2252
30-m
182.64
68.31
1
NASAIa
CFM56-2C
Base
65
2122
30-m
71.17
13.73
1
NASAIa
CFM56-2C
Base
60
1941
30-m
43.45
39.35
1
NASAIa
CFM56-2C
Base
4
331
30-m
20.22
50.56
1
EPA 3
CFM56-2C
Hi-S
7
445
30-m
187.13
344.39
1
EPA 3
CFM56-2C
Hi-S
100
3128
30-m
1
EPA 3
CFM56-2C
Hi-S
85
2847
30-m
315.09
153.26
1
EPA 3
CFM56-2C
Hi-S
76
2424
30-m
233.49
151.76
1
EPA 3
CFM56-2C
Hi-S
30
958
30-m
161.41
194.49
1
EPA 3
CFM56-2C
Hi-S
7
418
30-m
349.94
745.77
1
EPA 3
CFM56-2C
Hi-S
85
2838
30-m
344.27
314.21
G-1
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
1
EPA 3
CFM56-2C
H
-S
30
981
30-m
179.25
471.25
1
EPA 3
CFM56-2C
H
-S
7
454
30-m
464.13
766.92
1
EPA 3
CFM56-2C
H
-S
100
3110
2860
30-m
62.41
112.00
1
EPA 3
CFM56-2C
H
-S
85
30-m
230.95
115.14
1
EPA 3
CFM56-2C
H
-S
30
944
30-m
371.08
645.51
1
EPA 3
CFM56-2C
H
-S
7
445
30-m
441.06
820.03
1
EPA 3
CFM56-2C
H
-S
100
3110
2815
30-m
207.63
11.94
1
EPA 3
CFM56-2C
H
-S
85
30-m
254.79
128.83
1
EPA 3
CFM56-2C
H
-S
30
972
30-m
384.05
398.78
1
EPA 3
CFM56-2C
H
-S
7
427
30-m
339.29
621.32
1
NASA 2
CFM56-2C
H
-S
4
345
30-m
1
NASA 2
CFM56-2C
H
-S
100
3020
30-m
64.58
77.59
1
NASA 2
CFM56-2C
H
-S
85
2715
30-m
189.85
46.49
1
NASA 2
CFM56-2C
H
-S
65
2072
30-m
43.72
66.26
1
NASA 2
CFM56-2C
H
-S
40
1245
30-m
341.48
363.53
1
NASA 2
CFM56-2C
H
-S
30
950
30-m
1586.17
1586.69
1
NASA 2
CFM56-2C
H
-S
7
402
30-m
537.38
185.91
1
NASA 2
CFM56-2C
H
-S
4
350
30-m
582.43
363.96
1
NASA 2
CFM56-2C
H
-S
100
2963
30-m
925.75
249.32
1
NASA 2
CFM56-2C
H
-S
85
2676
30-m
3985.38
1841.91
1
NASA 2
CFM56-2C
H
-S
65
2053
30-m
8823.49
5063.76
1
NASA 2
CFM56-2C
H
-S
40
1238
30-m
6139.27
3559.95
1
NASA 2
CFM56-2C
H
-S
30
954
30-m
406.83
588.24
1
NASA 2
CFM56-2C
H
-S
7
413
30-m
144.81
319.07
1
NASA 2
CFM56-2C
H
-S
4
341
30-m
23.32
137.92
1
NASA 2
CFM56-2C
H
-S
100
2968
30-m
1
NASA 2
CFM56-2C
H
-s
85
2791
30-m
1
NASA 2
CFM56-2C
H
-s
70
2191
30-m
1
NASA 2
CFM56-2C
H
-s
65
2013
30-m
1
NASA 2
CFM56-2C
H
-s
60
1855
30-m
1
NASA 2
CFM56-2C
H
-s
40
1224
30-m
291.72
292.52
1
NASA 2
CFM56-2C
H
-s
30
962
30-m
236.11
257.79
1
NASA 2
CFM56-2C
H
-s
15
543
30-m
496.87
575.60
1
NASA 2
CFM56-2C
H
-s
7
424
30-m
345.04
574.08
1
NASA 2
CFM56-2C
H
-s
5.5
381
30-m
441.22
330.88
1
NASA 3
CFM56-2C
H
-s
4
353
30-m
1
NASA 3
CFM56-2C
H
-s
100
3121
30-m
1
NASA 3
CFM56-2C
H
-s
85
2785
30-m
1
NASA 3
CFM56-2C
H
-s
65
2050
30-m
1
NASA 3
CFM56-2C
H
-s
40
1241
30-m
1
NASA 3
CFM56-2C
H
-s
30
976
30-m
21.14
31.68
1
NASA 3
CFM56-2C
H
-s
7
402
30-m
831.92
578.31
1
NASA 3
CFM56-2C
H
-s
4
341
30-m
738.95
537.88
1
NASA 3
CFM56-2C
H
-s
100
3022
30-m
762.98
203.08
1
NASA 3
CFM56-2C
H
-s
85
2763
30-m
519.38
335.30
1
NASA 3
CFM56-2C
H
-s
65
2047
30-m
281.88
270.18
1
NASA 3
CFM56-2C
H
-s
40
1251
30-m
424.64
282.43
1
NASA 3
CFM56-2C
H
-s
30
998
30-m
304.02
160.95
1
NASA 3
CFM56-2C
H
-s
7
405
30-m
3.27
59.44
G-2
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
1
NASA 3
CFM56-2C
H
-S
4
348
30-m
20.17
62.61
1
NASA 3
CFM56-2C
H
-S
100
3009
30-m
122.81
284.88
1
NASA 3
CFM56-2C
H
-S
85
2727
30-m
696.58
231.87
1
NASA 3
CFM56-2C
H
-S
70
2200
30-m
352.58
509.51
1
NASA 3
CFM56-2C
H
-S
65
2060
30-m
287.69
494.69
1
NASA 3
CFM56-2C
H
-S
60
1846
30-m
1
NASA 3
CFM56-2C
H
-S
40
1274
30-m
1
NASA 3
CFM56-2C
H
-S
30
985
30-m
569.76
805.83
1
NASA 3
CFM56-2C
H
-S
15
538
30-m
1524.83
787.36
1
NASA 3
CFM56-2C
H
-S
7
410
30-m
699.38
625.12
1
NASA 3
CFM56-2C
H
-S
5.5
382
30-m
348.29
608.92
1
NASA 4
CFM56-2C
H
-Arom
4
342
30-m
109.38
75.69
1
NASA 4
CFM56-2C
H
-Arom
100
2984
30-m
245.73
177.59
1
NASA 4
CFM56-2C
H
-Arom
85
2697
30-m
542.26
138.19
1
NASA 4
CFM56-2C
H
-Arom
65
2029
30-m
156.51
118.07
1
NASA 4
CFM56-2C
H
-Arom
40
1226
30-m
90.87
118.21
1
NASA 4
CFM56-2C
H
-Arom
30
976
30-m
10.21
65.07
1
NASA 4
CFM56-2C
H
-Arom
7
397
30-m
407.87
377.16
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
146.74
224.92
1
NASA 4
CFM56-2C
H
-Arom
100
2949
30-m
217.28
38.24
1
NASA 4
CFM56-2C
H
-Arom
85
2706
30-m
303.69
98.50
1
NASA 4
CFM56-2C
H
-Arom
65
2034
30-m
103.44
85.37
1
NASA 4
CFM56-2C
H
-Arom
40
1185
30-m
76.21
99.71
1
NASA 4
CFM56-2C
H
-Arom
30
962
30-m
1
NASA 4
CFM56-2C
H
-Arom
7
395
30-m
93.26
201.61
1
NASA 4
CFM56-2C
H
-Arom
4
341
30-m
100.59
192.29
1
NASA 4
CFM56-2C
H
-Arom
100
2974
30-m
131.40
93.36
1
NASA 4
CFM56-2C
H
-Arom
85
2738
30-m
270.57
31.99
1
NASA 4
CFM56-2C
H
-Arom
100
2974
30-m
17.38
24.19
1
NASA 4
CFM56-2C
H
-Arom
85
2701
30-m
264.15
114.34
1
NASA 4
CFM56-2C
H
-Arom
70
2157
30-m
145.73
128.84
1
NASA 4
CFM56-2C
H
-Arom
65
1998
30-m
25.51
36.89
1
NASA 4
CFM56-2C
H
-Arom
60
1850
30-m
65.32
78.00
1
NASA 4
CFM56-2C
H
-Arom
40
1226
30-m
1
NASA 4
CFM56-2C
H
-Arom
30
962
30-m
171.09
152.18
1
NASA 4
CFM56-2C
H
-Arom
15
545
30-m
86.29
64.80
1
NASA 4
CFM56-2C
H
-Arom
7
404
30-m
167.82
173.87
1
NASA 4
CFM56-2C
H
-Arom
5.5
381
30-m
33.65
161.73
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
73.17
143.07
1
NASA 4
CFM56-2C
H
-Arom
100
3008
30-m
145.13
164.54
1
NASA 4
CFM56-2C
H
-Arom
85
2697
30-m
308.44
75.18
1
NASA 4
CFM56-2C
H
-Arom
65
2029
30-m
176.82
138.96
1
NASA 4
CFM56-2C
H
-Arom
40
1244
30-m
38.64
72.75
1
NASA 4
CFM56-2C
H
-Arom
30
940
30-m
8.98
38.96
1
NASA 4
CFM56-2C
H
-Arom
7
409
30-m
1
NASA 4
CFM56-2C
H
-Arom
4
347
30-m
499.92
447.11
1
NASA 5
CFM56-2C
H
-Arom
4
354
30-m
178.48
175.38
1
NASA 5
CFM56-2C
H
-Arom
100
3210
30-m
147.67
138.14
1
NASA 5
CFM56-2C
H
-Arom
85
2960
30-m
321.80
142.02
G-3
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
1
NASA 5
CFM56-2C
H
-Arom
65
2191
30-m
167.16
176.73
1
NASA 5
CFM56-2C
H
-Arom
40
1253
30-m
67.30
95.71
1
NASA 5
CFM56-2C
H
-Arom
30
962
30-m
131.79
215.30
1
NASA 5
CFM56-2C
H
-Arom
7
413
30-m
373.50
420.60
1
NASA 5
CFM56-2C
H
-Arom
4
341
30-m
109.92
230.15
1
NASA 5
CFM56-2C
H
-Arom
100
3264
30-m
107.27
126.49
1
NASA 5
CFM56-2C
H
-Arom
85
2869
30-m
419.50
237.60
1
NASA 5
CFM56-2C
H
-Arom
65
2134
30-m
149.04
173.63
1
NASA 5
CFM56-2C
H
-Arom
40
1280
30-m
153.39
244.51
1
NASA 5
CFM56-2C
H
-Arom
30
990
30-m
19.15
54.30
1
NASA 5
CFM56-2C
H
-Arom
7
404
30-m
146.38
245.34
1
NASA 5
CFM56-2C
H
-Arom
4
338
30-m
140.30
232.74
1
NASA 5
CFM56-2C
H
-Arom
100
3087
30-m
197.53
136.21
1
NASA 5
CFM56-2C
H
-Arom
85
2933
30-m
205.09
94.80
1
NASA 5
CFM56-2C
H
-Arom
70
2247
30-m
150.63
137.54
1
NASA 5
CFM56-2C
H
-Arom
65
2088
30-m
72.30
74.52
1
NASA 5
CFM56-2C
H
-Arom
60
1930
30-m
52.57
72.63
1
NASA 5
CFM56-2C
H
-Arom
40
1271
30-m
229.94
324.55
1
NASA 5
CFM56-2C
H
-Arom
30
999
30-m
113.40
178.39
1
NASA 5
CFM56-2C
H
-Arom
15
545
30-m
237.56
326.27
1
NASA 5
CFM56-2C
H
-Arom
7
413
30-m
180.84
207.44
1
NASA 5
CFM56-2C
H
-Arom
5.5
395
30-m
81.15
117.39
1
NASA 5
CFM56-2C
H
-Arom
4
345
30-m
150.68
263.14
1
NASA 5
CFM56-2C
H
-Arom
100
3142
30-m
254.92
201.61
1
NASA 5
CFM56-2C
H
-Arom
85
2815
30-m
303.18
210.14
1
NASA 5
CFM56-2C
H
-Arom
65
2111
30-m
117.30
135.05
1
NASA 5
CFM56-2C
H
-Arom
40
1362
30-m
56.86
124.45
1
NASA 5
CFM56-2C
H
-Arom
30
1003
30-m
297.55
311.27
1
NASA 5
CFM56-2C
H
-Arom
7
409
30-m
161.52
322.58
1
NASA 5
CFM56-2C
H
-Arom
4
345
30-m
199.07
256.43
2
T1
CFM56-7B
Fleet
4
336
30-m
238.07
206.87
2
T1
CFM56-7B
Fleet
7
418
30-m
124.14
161.09
2
T1
CFM56-7B
Fleet
30
1180
30-m
172.21
67.32
2
T1
CFM56-7B
Fleet
40
1544
30-m
89.85
72.68
2
T1
CFM56-7B
Fleet
65
2497
30-m
344.89
111.52
2
T1
CFM56-7B
Fleet
85
4131
30-m
347.08
90.05
2
T1
CFM56-7B
Fleet
7
395
30-m
315.59
558.61
2
T1
CFM56-7B
Fleet
85
4086
30-m
318.30
262.18
2
T1
CFM56-7B
Fleet
65
2497
30-m
362.90
118.58
2
T1
CFM56-7B
Fleet
40
1498
30-m
96.51
136.79
2
T1
CFM56-7B
Fleet
30
1135
30-m
66.66
57.12
2
T1
CFM56-7B
Fleet
4
313
30-m
163.96
199.68
2
T4
CFM56-7B
Fleet
4
336
30-m
413.64
200.19
2
T4
CFM56-7B
Fleet
7
418
30-m
235.58
81.90
2
T4
CFM56-7B
Fleet
30
1180
30-m
147.08
68.10
2
T4
CFM56-7B
Fleet
40
1544
30-m
86.63
39.28
2
T4
CFM56-7B
Fleet
65
2497
30-m
399.87
64.97
2
T4
CFM56-7B
Fleet
85
4131
30-m
551.39
102.95
2
T4
CFM56-7B
Fleet
7
395
30-m
498.96
141.64
G-4
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
2
T4
CFM56-7B
Fleet
85
4086
30-m
407.68
218.34
2
T4
CFM56-7B
Fleet
65
2497
30-m
375.12
107.61
2
T4
CFM56-7B
Fleet
40
1498
30-m
109.94
84.58
2
T4
CFM56-7B
Fleet
30
1135
30-m
57.84
51.03
2
T4
CFM56-7B
Fleet
7
381
30-m
127.70
75.98
2
T4
CFM56-7B
Fleet
4
313
30-m
183.64
109.18
2
T2
CFM56-3B
Fleet
4
341
30-m
465.40
51.68
2
T2
CFM56-3B
Fleet
7
422
30-m
307.82
31.34
2
T2
CFM56-3B
Fleet
30
1099
30-m
184.98
12.14
2
T2
CFM56-3B
Fleet
40
1403
30-m
140.02
8.32
2
T2
CFM56-3B
Fleet
65
2193
30-m
463.72
26.55
2
T2
CFM56-3B
Fleet
85
3528
30-m
722.41
29.57
2
T2
CFM56-3B
Fleet
7
404
30-m
484.90
40.30
2
T2
CFM56-3B
Fleet
85
3559
30-m
680.22
33.90
2
T2
CFM56-3B
Fleet
65
2184
30-m
721.79
34.82
2
T2
CFM56-3B
Fleet
85
3559
30-m
772.16
29.28
2
T2
CFM56-3B
Fleet
40
1367
30-m
558.98
29.07
2
T2
CFM56-3B
Fleet
30
1067
30-m
255.47
16.15
2
T2
CFM56-3B
Fleet
7
418
30-m
184.03
17.29
2
T2
CFM56-3B
Fleet
4
345
30-m
248.98
27.03
2
T3
CFM56-3B
Fleet
4
372
30-m
328.41
58.33
2
T3
CFM56-3B
Fleet
7
440
30-m
424.39
105.49
2
T3
CFM56-3B
Fleet
30
1130
30-m
260.33
40.26
2
T3
CFM56-3B
Fleet
40
1444
30-m
305.25
43.12
2
T3
CFM56-3B
Fleet
65
2252
30-m
2
T3
CFM56-3B
Fleet
85
3677
30-m
2
T3
CFM56-3B
Fleet
7
418
30-m
583.83
324.05
2
T3
CFM56-3B
Fleet
85
3650
30-m
823.85
635.34
2
T3
CFM56-3B
Fleet
65
2261
30-m
992.12
486.21
2
T3
CFM56-3B
Fleet
40
1412
30-m
350.92
91.07
2
T3
CFM56-3B
Fleet
30
1108
30-m
299.94
36.99
2
T3
CFM56-3B
Fleet
7
422
30-m
315.30
74.87
2
T3
CFM56-3B
Fleet
4
368
30-m
335.59
64.33
3
T11
CFM56-3B
Fleet
4
381
30-m
33.22
65.11
3
T11
CFM56-3B
Fleet
7
431
30-m
30.06
54.81
3
T11
CFM56-3B
Fleet
15
622
30-m
27.97
40.83
3
T11
CFM56-3B
Fleet
30
1090
30-m
26.33
29.90
3
T11
CFM56-3B
Fleet
45
1530
30-m
50.74
30.27
3
T11
CFM56-3B
Fleet
65
2179
30-m
222.78
118.42
3
T11
CFM56-3B
Fleet
85
2815
30-m
554.18
248.97
3
T11
CFM56-3B
Fleet
100
3564
30-m
733.66
58.47
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
192.73
121.69
3
T2
CJ610-8ATJ
Fleet
30
452
15-m
270.12
43.95
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
306.89
60.19
3
T2
CJ610-8ATJ
Fleet
65
760
15-m
477.98
92.82
3
T2
CJ610-8ATJ
Fleet
85
999
15-m
492.86
133.43
3
T2
CJ610-8ATJ
Fleet
85
999
30-m
823.30
212.95
3
T2
CJ610-8ATJ
Fleet
100
1226
30-m
696.21
99.33
G-5
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
3
T2
CJ610-8ATJ
Fleet
7
182
30-m
5140.86
8207.19
3
T2
CJ610-8ATJ
Fleet
7 182
15-m
263.08
1044.94
3
T2
CJ610-8ATJ
Fleet
100
1226
15-m
279.34
254.67
3
T2
CJ610-8ATJ
Fleet
65
763
15-m
771.39
271.42
3
T2
CJ610-8ATJ
Fleet
45
568
15-m
605.73
124.84
3
T2
CJ610-8ATJ
Fleet
30
454
15-m
322.14
81.17
3
T2
CJ610-8ATJ
Fleet
15
304
15-m
269.50
98.41
3
T2
CJ610-8ATJ
Fleet
7
182
15-m
2437.39
230.78
3
T5
CJ610-8ATJ
Fleet
7
227
15-m
11.68
178.74
3
T5
CJ610-8ATJ
Fleet
15
303
15-m
249.54
161.50
3
T5
CJ610-8ATJ
Fleet
30
452
15-m
327.90
105.24
3
T5
CJ610-8ATJ
Fleet
45
567
15-m
434.18
97.54
3
T5
CJ610-8ATJ
Fleet
65
763
15-m
661.64
100.22
3
T5
CJ610-8ATJ
Fleet
85
1009
15-m
967.81
229.98
3
T5
CJ610-8ATJ
Fleet
100
1226
15-m
1068.75
85.17
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
184.96
1049.11
3
T5
CJ610-8ATJ
Fleet
100
1226
30-m
808.40
377.67
3
T5
CJ610-8ATJ
Fleet
85
1009
30-m
853.30
106.06
3
T5
CJ610-8ATJ
Fleet
65
763
30-m
564.47
141.32
3
T5
CJ610-8ATJ
Fleet
45
567
30-m
304.94
79.31
3
T5
CJ610-8ATJ
Fleet
30
452
30-m
289.30
72.30
3
T5
CJ610-8ATJ
Fleet
7
227
30-m
88.75
253.64
3
T3
AE3007A1E
Fleet
8.4
174
15-m
64.47
328.70
3
T3
AE3007A1E
Fleet
15
238
15-m
34.71
145.60
3
T3
AE3007A1E
Fleet
30
389
15-m
39.35
127.76
3
T3
AE3007A1E
Fleet
45
555
15-m
44.99
96.59
3
T3
AE3007A1E
Fleet
65
805
15-m
74.68
93.72
3
T3
AE3007A1E
Fleet
85
1082
15-m
99.21
100.78
3
T3
AE3007A1E
Fleet
100
1286
15-m
133.27
83.68
3
T3
AE3007A1E
Fleet
8.4
172
15-m
61.08
298.85
3
T3
AE3007A1E
Fleet
100
1299
15-m
151.41
81.12
3
T3
AE3007A1E
Fleet
85
1088
15-m
124.59
88.90
3
T3
AE3007A1E
Fleet
65
810
15-m
58.11
111.65
3
T3
AE3007A1E
Fleet
45
563
15-m
3
T3
AE3007A1E
Fleet
30
392
15-m
19.26
144.53
3
T3
AE3007A1E
Fleet
15
235
15-m
26.91
135.42
3
T3
AE3007A1E
Fleet
8.4
173
15-m
3
T4
AE3007A1E
Fleet
8.4
168
15-m
615.36
1357.20
3
T4
AE3007A1E
Fleet
15
239
15-m
3
T4
AE3007A1E
Fleet
30
385
15-m
3
T4
AE3007A1E
Fleet
45
547
15-m
18.25
105.83
3
T4
AE3007A1E
Fleet
65
788
15-m
85.89
99.13
3
T4
AE3007A1E
Fleet
85
1050
15-m
177.70
73.43
3
T4
AE3007A1E
Fleet
100
1253
15-m
230.23
72.79
3
T4
AE3007A1E
Fleet
8.4
168
15-m
292.14
707.55
3
T4
AE3007A1E
Fleet
100
1252
15-m
136.91
137.52
3
T4
AE3007A1E
Fleet
85
1041
15-m
216.32
92.76
3
T4
AE3007A1E
Fleet
8.4
168
15-m
48.57
460.53
3
T4
AE3007A1E
Fleet
85
1052
15-m
106.72
89.69
G-6
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
3
T4
AE3007A1E
Fleet
65
786
15-m
155.71
142.55
3
T4
AE3007A1E
Fleet
45
549
15-m
31.45
168.46
3
T4
AE3007A1E
Fleet
30
384
15-m
3
T4
AE3007A1E
Fleet
15
231
15-m
3
T4
AE3007A1E
Fleet
8.4
167
15-m
30.05
381.33
3
T10
AE3007A1/1
Fleet
8.4
179
30-m
169.17
215.68
3
T10
AE3007A1/1
Fleet
15
233
30-m
6.18
101.43
3
T10
AE3007A1/1
Fleet
30
372
30-m
32.89
69.18
3
T10
AE3007A1/1
Fleet
45
524
30-m
53.85
84.10
3
T10
AE3007A1/1
Fleet
65
750
30-m
88.63
64.23
3
T10
AE3007A1/1
Fleet
85
971
30-m
132.91
75.18
3
T10
AE3007A1/1
Fleet
100
1171
30-m
199.98
64.47
3
T10
AE3007A1/1
Fleet
8.4
177
30-m
104.23
223.93
3
T10
AE3007A1/1
Fleet
100
1180
30-m
179.49
130.18
3
T10
AE3007A1/1
Fleet
85
982
30-m
175.23
79.54
3
T10
AE3007A1/1
Fleet
65
767
30-m
103.24
98.79
3
T10
AE3007A1/1
Fleet
45
529
30-m
40.38
63.77
3
T10
AE3007A1/1
Fleet
30
371
30-m
74.29
101.11
3
T10
AE3007A1/1
Fleet
15
231
30-m
3
T10
AE3007A1/1
Fleet
8.4
178
30-m
50.30
135.75
3
T6
P&W4158
Fleet
7
610
30-m
158.46
116.69
3
T6
P&W4158
Fleet
15
1014
30-m
47.40
70.47
3
T6
P&W4158
Fleet
30
2245
30-m
21.88
41.12
3
T6
P&W4158
Fleet
45
3726
30-m
75.11
40.58
3
T6
P&W4158
Fleet
65
5827
30-m
165.27
65.69
3
T6
P&W4158
Fleet
7
595
30-m
241.36
263.83
3
T6
P&W4158
Fleet
65
5658
30-m
251.63
100.38
3
T6
P&W4158
Fleet
80
7026
30-m
431.13
116.83
3
T6
P&W4158
Fleet
7
368
30-m
379.99
474.36
3
T6
P&W4158
Fleet
80
7026
30-m
454.40
182.39
3
T6
P&W4158
Fleet
65
5658
30-m
316.61
118.63
3
T6
P&W4158
Fleet
45
3834
30-m
97.44
98.63
3
T6
P&W4158
Fleet
30
2465
30-m
25.67
56.46
3
T6
P&W4158
Fleet
15
1097
30-m
3
T6
P&W4158
Fleet
7
368
30-m
111.48
87.17
3
T7
P&W4158
Fleet
7
600
30-m
322.71
261.82
3
T7
P&W4158
Fleet
15
1035
30-m
52.68
73.45
3
T7
P&W4158
Fleet
30
2230
30-m
18.72
22.66
3
T7
P&W4158
Fleet
45
3688
30-m
52.06
45.14
3
T7
P&W4158
Fleet
65
5702
30-m
182.56
52.90
3
T7
P&W4158
Fleet
80
7100
30-m
324.37
82.86
3
T7
P&W4158
Fleet
7
591
30-m
191.95
322.02
3
T7
P&W4158
Fleet
80
7200
30-m
332.21
156.58
3
T7
P&W4158
Fleet
65
5711
30-m
296.78
105.66
3
T7
P&W4158
Fleet
30
2252
30-m
75.26
121.74
3
T7
P&W4158
Fleet
7
596
30-m
58.98
74.91
3
T8
RB211
Fleet
4
566
30-m
263.64
395.17
3
T8
RB211
Fleet
7
770
30-m
238.82
231.21
3
T8
RB211
Fleet
15
1191
30-m
86.40
79.20
G-7
-------
Table G-1 (continued)
APEX
Test
Engine
Fuel
Power
Fuel
Flow
Sample
Probe
Position
Emission Index (mg/kg fuel)
No Loss Corr
%
kg/h
Average
SD
3
T8
RB211
Fleet
30
2109
30-m
196.74
69.05
3
T8
RB211
Fleet
45
3178
30-m
426.31
133.51
3
T8
RB211
Fleet
65
4750
30-m
1052.55
415.94
3
T8
RB211
Fleet
85
6096
30-m
1123.36
44.15
3
T8
RB211
Fleet
7
782
30-m
5175.43
858.69
3
T8
RB211
Fleet
85
6449
30-m
694.57
80.25
3
T8
RB211
Fleet
4
552
43-m
127.05
489.22
3
T8
RB211
Fleet
65
4691
43-m
942.97
413.45
3
T8
RB211
Fleet
45
3436
43-m
682.58
306.84
3
T8
RB211
Fleet
30
2131
43-m
342.37
213.61
3
T8
RB211
Fleet
15
1178
43-m
3
T8
RB211
Fleet
7
654
43-m
95.90
94.94
3
T8
RB211
Fleet
4
437
43-m
3
T9
RB211
Fleet
4
421
30-m
483.77
151.38
3
T9
RB211
Fleet
7
690
30-m
155.16
176.97
3
T9
RB211
Fleet
15
1221
30-m
96.81
72.85
3
T9
RB211
Fleet
30
2004
30-m
204.03
54.51
3
T9
RB211
Fleet
45
3068
30-m
401.29
88.65
3
T9
RB211
Fleet
65
4479
30-m
1044.20
360.72
3
T9
RB211
Fleet
85
6233
30-m
915.13
75.01
3
T9
RB211
Fleet
100
6966
30-m
723.75
40.96
3
T9
RB211
Fleet
4
494
30-m
424.50
816.93
3
T9
RB211
Fleet
100
6987
30-m
606.78
193.19
3
T9
RB211
Fleet
85
6307
30-m
760.69
58.15
3
T9
RB211
Fleet
65
4551
30-m
1128.27
107.57
3
T9
RB211
Fleet
45
3111
30-m
591.56
443.93
3
T9
RB211
Fleet
30
2037
30-m
173.02
89.89
3
T9
RB211
Fleet
15
1173
30-m
90.55
90.59
3
T9
RB211
Fleet
7
668
30-m
33.13
61.37
3
T9
RB211
Fleet
4
506
30-m
60.67
89.15
G-8
-------
Table G-2. Particle surface-bound PAH emission indices determined by the PAS 2000
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
1
EPA1
CFM56-2C1
30
7
424
3.94
8.83
574
62.9
0.0119
0.0266
100
2906
38.2
40.3
1043
60.7
0.0633
0.0669
85
2622
135.3
56.1
1078.2
82.9
0.217
0.0915
85
2883
198.7
5.1
994.5
126.4
0.345
0.0448
30
1012
3.2
6.9
539.3
99.6
0.0102
0.0221
7
436
12.7
22.9
555.9
91.0
0.0394
0.0716
100
2867
86.1
70.6
829
61.0
0.179
0.148
30
1003
10.4
27.7
611
82.4
0.0293
0.0784
7
443
10.5
12.0
637
87.5
0.0284
0.0329
85
2829
78.8
52.0
1103
85.6
0.124
0.0821
7
442
19.4
28.0
562
99.5
0.0596
0.0868
100
3042
112
69.0
1121
33.8
0.172
0.106
85
2974
120
37.3
1014
53.4
0.205
0.064
30
991
5.42
11.1
593
36.4
0.0158
0.0323
7
431
17.0
20.5
505
83.8
0.0580
0.0708
100
3064
5.62
6.62
951
77.4
0.0102
0.0120
85
2786
28.6
37.2
1035
114
0.0477
0.0623
30
963
24.0
25.2
617
37.5
0.0672
0.0706
7
440
19.7
28.2
609
30.6
0.0560
0.0801
1
EPA2
CFM56-2C1
30
7
436
11.6
17.7
510
46.3
0.0394
0.0601
100
3180
184
46.6
894
71.3
0.355
0.0943
85
2898
200
1085
72.8
0.319
0.0214
30
1017
-0.0253
0.0631
628
47.4
-0.0000695
0.000174
7
409
0.396
1.55
487
46.4
0.00140
0.00549
100
3178
196.37
22.4
1011
8.46
0.3355
0.0383
85
2824
199.54
1.65
1051
29.5
0.3282
0.00959
30
1022
-0.0237
0.0565
567
62.1
-0.0001
0.000172
7
418
0.111
0.798
427
36.2
0.0005
0.00323
100
3230
141.0
81.6
792
85.6
0.3074
0.181
85
2892
184.0
46.6
1082
62.7
0.2938
0.0764
30
1017
-0.0227
0.0510
512
26.8
-0.0000767
0.000172
7
413
2.42
6.01
439
65.8
0.00954
0.0237
100
3137
46.0
61.8
1174
30.3
0.0677
0.0910
85
2825
182
36.4
1070
32.5
0.2934
0.0595
30
1038
0.0558
0.470
564
133
0.000171
0.00144
7
449
1.99
5.30
372
38.8
0.00925
0.0246
1
EPA3
CFM56-2C1
30
7
445
5.23
12.3
306
89.0
0.0294
0.0699
100
3128
-0.0366
0.0588
1027
78.5
-0.0000615
0.0000990
85
2847
9.43
33.1
1042
52.2
0.0156
0.0548
76
2424
1.47
8.38
787
115
0.00323
0.0184
30
958
-0.0397
0.0656
408
31.2
-0.000168
0.000278
7
418
3.49
7.63
151
79.2
0.0398
0.0895
85
2838
22.3
39.9
1111
108
0.0346
0.0621
30
981
0.561
4.98
308
128
0.00314
0.0279
7
454
4.25
9.97
148
69.9
0.0495
0.118
100
3110
24.9
52.9
473
127
0.0907
0.194
85
2860
14.2
27.4
956
65.3
0.0256
0.0495
30
944
-0.0273
0.0628
323
108
-0.000146
0.000339
7
445
5.27
10.6
160
65.8
0.0569
0.117
100
3110
-0.0334
0.0553
843
40.8
-0.0000684
0.000113
85
2815
3.08
8.55
1007
51.1
0.00529
0.0147
30
972
0.231
1.96
423
145
0.000941
0.00798
7
427
6.59
15.970
132
66.5
0.0863
0.214
1
NASA1
CFM56-2C1
30
4
354
18.5
22.4
761
45.7
0.0421
0.0509
100
2906
160
63.4
1129
22.7
0.244
0.0971
85
2406
116
47.4
1025
50.6
0.196
0.0804
65
1998
33.5
39.6
900
66.2
0.0643
0.0761
40
1187
7.09
27.2
638
53.9
0.0192
0.0738
4
341
20.5
28.8
494
205
0.0717
0.105
30
953
0.792
3.76
617
33.7
0.00222
0.0105
15
527
9.11
18.5
494
60.6
0.0319
0.0649
7
427
7.03
17.0
375
67.0
0.0324
0.0784
5.5
377
22.7
30.1
405
45.6
0.0967
0.129
4
354
16.4
23.6
599
71.0
0.0473
0.0682
4
354
28.4
44.1
587
60.7
0.0837
0.130
G-9
-------
Table G-2 (continued)
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
5.5
388
13.9
20.4
448
104
0.0539
0.0799
7
436
17.6
37.4
442
69.3
0.0690
0.147
15
572
19.3
43.8
468
34.1
0.0712
0.162
30
1067
15.3
35.1
615
30.7
0.0431
0.0987
4
345
9.26
13.9
576
59.0
0.0278
0.0419
40
1317
8.35
20.2
707
38.7
0.0204
0.0493
30
1017
18.8
27.3
589
53.8
0.0551
0.0803
15
545
13.7
29.0
588
20.1
0.0402
0.0853
7
409
10.9
23.8
601
33.5
0.0314
0.0685
5.5
379
15.4
24.2
512
90.7
0.0518
0.0822
4
359
25.5
36.6
271
163
0.163
0.253
5.5
400
22.6
43.2
425
123
0.0918
0.178
7
436
17.9
31.2
432
95.5
0.0717
0.126
15
595
8.77
15.5
581
28.6
0.0261
0.0461
1
NASAIa
CFM56-2C1
30
4
350
200
0.00
520
83.7
0.665
0.107
100
3169
200
0.00
1009
179
0.342
0.0608
85
2928
200
0.00
1070
58.0
0.323
0.0175
65
2107
93.5
40.2
916
41.6
0.176
0.0763
4
327
78.7
18.0
481
98.7
0.283
0.0868
100
3155
200
0.00
819
133
0.422
0.0683
85
2883
200
0.00
1053
21.4
0.328
0.00667
70
2288
78.1
39.0
1007
29.6
0.134
0.0671
65
2070
5.95
12.3
915
23.4
0.0112
0.0232
60
1902
829
34.9
4
336
52.1
11.7
436
72.3
0.207
0.0577
100
3146
200
0.00
964
132
0.359
0.0491
85
2946
200
0.00
1092
26.9
0.317
0.00779
65
2102
35.4
35.7
870
112
0.0703
0.0715
4
336
46.7
13.9
396
80.4
0.204
0.0734
100
3110
200
0.00
1084
78.3
0.319
0.0230
85
2897
200
0.00
1033
23.7
0.335
0.00767
65
2088
64.0
42.2
895
24.0
0.124
0.0814
4
336
38.0
14.4
520
78.3
0.126
0.0514
100
3055
198
8.46
938
150
0.364
0.0601
85
2838
200
0.00
1037
58.5
0.333
0.0188
70
2252
151
33.5
877
26.3
0.298
0.0666
65
2122
77.3
25.0
796
13.2
0.168
0.0544
60
1941
13.1
15.0
779
104
0.0292
0.0335
4
331
16.9
9.58
417
92.4
0.0700
0.0426
1
NASA2
CFM56-2C1
30
4
345
50.4
14.1
581
37.1
0.1496
0.0429
100
3020
27.5
28.1
998
114
0.0475
0.0488
85
2715
10.8
15.3
1131
37.6
0.0164
0.0234
65
2072
4.31
28.4
937
38.2
0.00794
0.0524
40
1245
-0.0405
0.0638
736
40.6
-0.000095
0.000150
30
950
-0.0437
0.0602
657
42.4
-0.000115
0.000158
7
402
-0.0437
0.0787
532
37.2
-0.000142
0.000256
4
350
2.94
4.75
546
46.5
0.00927
0.0150
100
2963
7.36
14.5
1073
99.8
0.0118
0.0233
85
2676
17.7
31.2
1058
24.4
0.0288
0.0509
65
2053
1.51
4.14
935
17.0
0.00278
0.00763
40
1238
-0.0377
0.0724
705
49.4
-0.0000924
0.000177
30
954
-0.0403
0.0735
606
65.8
-0.000115
0.000210
7
413
-0.0507
0.0814
327
46.3
-0.000267
0.000431
4
341
10.0
9.79
487
61.3
0.0355
0.0349
100
2968
8.33
16.4
1028
74.3
0.0140
0.0276
85
2791
11.7
20.7
1068
41.7
0.0189
0.0335
70
2191
3.41
10.1
942
30.6
0.00624
0.0184
65
2013
3.04
12.0
889
32.5
0.00589
0.0233
60
1855
0.282
1.68
861
21.0
0.000566
0.00336
40
1224
-0.0442
0.0867
697
49.3
-0.000109
0.000215
30
962
-0.0486
0.0702
525
40.6
-0.000160
0.000231
15
543
-0.0458
0.0819
310
93.6
-0.000255
0.000462
7
424
2.67
6.47
176
65.2
0.0261
0.0640
5.5
381
4.55
10.4
248
40.6
0.0318
0.0725
1
NASA3
CFM56-2C1
30
4
353
193
12.0
490
54.1
0.679
0.0862
G-10
-------
Table G-2 (continued)
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
100
3121
31.1
32.7
898
198
0.0597
0.0642
85
2785
-0.0210
0.101
1113
37.8
-0.0000326
0.000156
65
2050
-0.0266
0.0546
882
42.7
-0.0000520
0.000107
40
1241
-0.0259
0.0578
707
20.9
-0.0000631
0.000141
30
976
-0.0294
0.0539
632
83.5
-0.0000803
0.000148
7
402
-0.0297
0.0677
452
40.6
-0.000114
0.000259
4
341
21.5
8.37
404
36.5
0.0919
0.0367
100
3022
0.353
2.63
896
201
0.000681
0.00507
85
2763
0.292
1.49
1107
41.7
0.000455
0.00232
65
2047
0.945
8.36
930
56.0
0.00176
0.0155
40
1251
-0.0302
0.0575
705
28.7
-0.0000739
0.000141
30
998
-0.0340
0.0559
608
17.0
-0.0000964
0.000159
7
405
-0.0246
0.0602
466
27.0
-0.0000911
0.000223
4
348
13.2
8.04
468
34.7
0.0488
0.0299
100
3009
-0.0278
0.0773
880
206
-0.0000546
0.000152
85
2727
-0.0327
0.0637
1093
57.0
-0.0000516
0.000101
70
2200
-0.0309
0.0704
921
8.46
-0.0000578
0.000132
65
2060
-0.0356
0.0653
893
14.0
-0.0000687
0.000126
60
1846
-0.0334
0.0756
876
33.8
-0.0000658
0.000149
40
1274
-0.0412
0.0686
684
15.7
-0.000104
0.000173
30
985
-0.0355
0.0613
651
16.5
-0.0000942
0.000162
15
538
-0.0272
0.0611
499
42.6
-0.0000942
0.000212
7
410
-0.0287
0.0541
459
8.89
-0.000108
0.000203
5.5
382
-0.0336
0.0582
425
13.7
-0.000136
0.000236
1
NASA4
CFM56-2C1
30
4
342
33.8
19.0
347
59.3
0.169
0.0989
100
2984
100
46.7
1023
143
0.169
0.0824
85
2697
86.1
45.5
1057
27.7
0.141
0.0743
65
2029
1.73
8.44
848
67.0
0.00353
0.0172
40
1226
-0.0304
0.0567
662
18.4
-0.0000794
0.000148
30
976
-0.0351
0.0534
614
20.9
-0.000099
0.000150
7
397
2.86
8.98
351
60.4
0.0140
0.0442
4
347
13.5
19.2
338
96.8
0.0691
0.100
100
2949
88.4
66.9
1076
53.0
0.142
0.108
85
2706
68.5
42.7
1034
42.3
0.114
0.0715
65
2034
3.15
17.3
833
41.9
0.00653
0.0359
40
1185
-0.0300
0.0682
593
37.4
-0.0000873
0.000199
30
962
-0.0410
0.0652
586
18.7
-0.000121
0.000192
7
395
5.13
11.6
370
65.2
0.0239
0.0541
4
341
13.8
19.4
312
134
0.0765
0.112
100
2974
72.7
69.0
1001
17.2
0.125
0.119
85
2738
60.7
50.1
1028
35.9
0.102
0.0842
100
2974
111
48.5
929
85.8
0.206
0.0922
85
2701
52.6
49.7
964
69.8
0.0942
0.0893
70
2157
6.09
15.5
872
62.0
0.0121
0.0308
65
1998
-0.0307
0.0620
834
25.8
-0.0000636
0.000128
60
1850
0.0314
0.277
794
16.0
0.0000682
0.000602
40
1226
0.412
2.22
665
26.1
0.00107
0.00577
30
962
-0.0295
0.0612
581
27.3
-0.0000877
0.000182
15
545
-0.0338
0.0532
472
44.2
-0.000123
0.000195
7
404
3.60
14.4
394
58.6
0.0158
0.0632
5.5
381
5.59
17.3
262
123
0.0368
0.115
4
347
7.63
12.0
269
121
0.0489
0.0803
100
3008
68.2
59.4
936
98.8
0.126
0.110
85
2697
62.6
48.7
958
24.5
0.113
0.0879
65
2029
3.94
11.2
811
37.4
0.00840
0.0239
40
1244
-0.0357
0.0602
631
21.4
-0.0000977
0.000165
30
940
0.296
1.66
539
44.5
0.000950
0.00531
7
409
11.1
24.8
369
48.6
0.0520
0.116
4
347
14.6
16.6
208
57.7
0.121
0.142
1
NASA5
CFM56-2C1
30
4
354
138
35.3
291
84.6
0.821
0.317
100
3210
177
51.9
1120
51.1
0.273
0.0810
85
2960
107
54.6
1052
44.9
0.175
0.0899
65
2191
0.612
3.93
905
26.0
0.00117
0.00751
40
1253
-0.0293
0.0566
546
34.9
-0.0000926
0.000179
30
962
-0.0258
0.0613
552
14.9
-0.0000806
0.000192
G-11
-------
Table G-2 (continued)
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
7
413
3.40
7.98
233
73.8
0.0252
0.0598
4
341
49.8
21.1
312
119
0.276
0.157
100
3264
115
54.3
1125
14.6
0.177
0.0833
85
2869
75.8
51.9
1111
10.2
0.118
0.0807
65
2134
4.81
24.6
911
91.3
0.00911
0.0467
40
1280
-0.0329
0.0680
604
26.5
-0.0000940
0.000194
30
990
-0.0243
0.0692
603
23.9
-0.0000696
0.000198
7
404
0.875
4.84
502
17.0
0.00301
0.0167
4
338
83.2
16.7
556
31.8
0.259
0.0541
100
3087
115
58.2
1204
80.2
0.164
0.0842
85
2933
71.0
44.7
1080
38.4
0.114
0.0716
70
2247
2.12
9.54
999
41.5
0.00367
0.0165
65
2088
0.313
1.71
873
45.0
0.0006
0.0034
60
1930
-0.0327
0.0538
841
21.4
-0.0000671
0.000110
40
1271
-0.0289
0.0654
661
21.7
-0.0000755
0.000171
30
999
-0.0287
0.0660
588
35.9
-0.0000845
0.000194
15
545
-0.0252
0.0604
380
43.1
-0.000114
0.000275
7
413
-0.0256
0.0591
520
22.9
-0.0000851
0.000196
5.5
395
0.0564
0.441
510
24.1
0.000191
0.00149
4
345
65.515
10.640
534
34.0
0.212
0.0370
100
3142
109
55.6
998
138
0.188
0.0998
85
2815
74.496
47.043
1079
72.1
0.119
0.0757
65
2111
3.94
19.7
920
22.0
0.00739
0.0370
40
1362
-0.0247
0.0552
721
37.1
-0.0000592
0.000132
30
1003
-0.0326
0.0593
607
10.2
-0.0000929
0.000169
7
409
0.156
0.849
419
82.5
0.000642
0.00350
4
345
44.7
19.2
465
56.2
0.166
0.0742
2
1
CFM56-7B24
30
4
336
133
16.3
307
41.0
0.746
0.135
7
418
53.9
7.41
350
28.2
0.264
0.0422
30
1180
16.1
29.4
515
30.5
0.0535
0.0979
40
1544
19.4
3.03
624
33.4
0.0534
0.00880
65
2497
174
18.6
852
34.4
0.350
0.0401
85
4131
393
27.8
1110
39.3
0.607
0.0480
7
395
7.58
3.51
301
34.8
0.0432
0.0206
30
85
4086
149
16.6
1120
43.1
0.229
0.0269
65
2497
65.3
7.87
848
35.5
0.132
0.0169
40
1498
8.22
2.73
604
34.0
0.0234
0.00786
30
1135
8.61
6.46
510
33.6
0.0290
0.0218
4
313
17.4
3.59
272
43.2
0.110
0.0286
2
2
CFM56-3B1
30
4
341
213
17.2
459
50.6
0.796
0.109
7
422
65.7
14.0
510
50.8
0.221
0.0522
30
1099
64.6
6.09
702
45.4
0.158
0.0181
40
1403
78.1
13.1
818
43.5
0.164
0.0289
65
2193
552
59.0
1054
52.7
0.900
0.106
85
3528
999
0.06
1430
58.5
1.20
0.0492
7
404
41.3
3.58
496
41.1
0.143
0.0172
30
85
3559
999
0.05
1495
74.5
1.15
0.0573
65
2184
430
27.6
1047
49.7
0.706
0.0564
85
3559
999
0.05
1461
55.4
1.18
0.0446
40
1367
44.0
4.48
816
42.4
0.0927
0.0106
30
1067
27.1
4.08
697
43.9
0.0670
0.0109
7
418
41.5
3.64
539
50.4
0.133
0.0170
4
345
168
9.48
530
56.9
0.545
0.0661
2
3
CFM56-3B2
30
4
372
272
37.2
600
65.5
0.773
0.135
7
440
132
14.2
552
59.4
0.408
0.0621
30
1130
112
14.1
712
49.2
0.268
0.0386
40
1444
181
17.8
822
48.1
0.377
0.0430
65
2252
934
33.3
1050
56.8
1.52
0.0984
85
3677
999
0.0559
1457
70.8
1.17
0.0569
7
418
95.4
5.06
530
53.9
0.307
0.0352
30
85
3650
999
0.0521
1464
77.8
1.16
0.0619
65
2261
945
164
1059
53.0
1.52
0.275
40
1412
133
11.9
792
44.5
0.286
0.0302
30
1108
83.9
7.70
699
46.1
0.205
0.0231
7
422
108
8.73
513
56.5
0.359
0.0491
G-12
-------
Table G-2 (continued)
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
4
368
213
13.5
547
61.7
0.664
0.0859
2
4
CFM56-7B24
30
4
336
74.9
21.0
307
41.0
0.417
0.130
7
418
7.31
3.52
350
28.2
0.0357
0.0175
30
1180
0.154
0.798
515
30.5
0.000511
0.00265
40
1544
0.803
3.18
624
33.4
0.00220
0.00871
65
2497
261
9.46
852
34.4
0.523
0.0284
85
4131
568
16.7
1110
39.3
0.874
0.0402
7
395
9.07
12.3
301
34.8
0.0515
0.0698
30
85
4086
618
44.6
1120
43.1
0.942
0.0770
65
2497
199
9.02
848
35.5
0.400
0.0247
40
1498
0.204
1.46
604
34.0
0.000578
0.00412
30
1135
0.0326
0.021
510
33.6
0.000109
0.0000697
7
381
2.28
2.47
316
33.0
0.0124
0.0134
4
313
41.1
7.05
272
43.2
0.258
0.0604
3
1
CFM56-3B1
30
4
300
115.7
5.48
102
13.3
1.97
0.274
7
397
60.7
6.56
117
13.1
0.894
0.139
15
654
34.7
11.1
137
11.6
0.437
0.144
30
1136
35.7
5.81
199
10.2
0.309
0.053
45
1618
86.1
9.28
243
16.0
0.611
0.0772
65
2260
285
12.8
315
12.9
1.56
0.0951
85
2903
534
30.7
359
14.0
2.56
0.178
100
3385
868
42.6
396
10.9
3.78
0.213
4
300
90.6
15.1
98.5
12.3
1.59
0.331
30
100
3385
894
72.4
378
13.0
4.08
0.359
85
2903
474
66.0
323
13.2
2.53
0.367
65
2260
199
31.1
265
11.9
1.29
0.210
45
1618
55.8
14.6
202
9.11
0.476
0.126
30
1136
22.3
4.43
164
7.22
0.235
0.0477
15
654
24.0
2.99
115
9.40
0.359
0.0536
7
397
43.4
4.80
93.7
9.58
0.799
0.120
4
300
86.7
8.17
87.9
9.13
1.70
0.239
3
2
CJ610-8ATJ
15
7
182
85.4
127
18.5
2.76
7.93
11.9
15
304
519
78.5
645
82.7
1.39
0.275
30
452
477
23.0
906
49.4
0.906
0.0660
45
568
778
62.2
1031
41.0
1.30
0.116
65
760
999
0.0437
1183
47.1
1.45
0.0578
85
999
999
0.0479
1430
40.4
1.20
0.0340
30
85
999
999
0.0470
870
55.2
1.98
0.126
100
1226
999
0.0704
982
57.0
1.75
0.102
7
182
52.8
161
42.3
26.6
2.15
6.71
15
7
182
424
232
42.3
26.6
17.3
14.4
100
1226
999
0.0546
1633
41.6
1.05
0.0268
65
763
972
88.8
1272
50.6
1.32
0.131
45
568
636
82.4
1051
39.1
1.04
0.140
30
454
377
26.6
877
59.5
0.741
0.0725
15
304
468
34.7
682
78.1
1.18
0.161
7
182
60.3
125
38.9
2.35
2.67
5.52
3
3
AE3007-A1E
15
8.4
174
117
54.2
78.1
50.5
2.60
2.07
15
238
194
56.7
142
50.4
2.37
1.09
30
389
167
33.5
181
44.6
1.60
0.506
45
555
204
26.0
228
37.1
1.55
0.320
65
805
257
24.7
274
40.5
1.62
0.286
85
1082
305
44.7
295
56.0
1.79
0.429
100
1286
340
79.2
313
55.1
1.88
0.548
8.4
172
129
60.5
86.8
54.2
2.56
2.00
15
100
1299
488
152
319
53.5
2.65
0.935
85
1088
309
41.6
272
52.1
1.97
0.461
65
810
205
26.5
207
33.4
1.71
0.354
45
563
150
26.3
164
34.9
1.59
0.437
30
392
136
24.2
160
33.0
1.47
0.401
15
235
211
32.2
151
34.0
2.41
0.654
8.4
173
154
57.4
84.9
50.7
3.14
2.21
3
4
AE3007-A1E
15
8.4
168
23.3
113
58.8
16.5
0.684
3.32
15
239
16.3
14.2
66.1
17.4
0.427
0.388
G-13
-------
Table G-2 (continued)
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
30
385
35.5
24.5
101
31.8
0.609
0.462
45
547
102
48.5
154
48.3
1.15
0.653
65
788
303
68.1
268
53.5
1.95
0.588
85
1050
513
74.7
358
56.2
2.48
0.530
100
1253
705
61.0
439
38.0
2.78
0.340
8.4
168
18.8
93.5
53.5
2.91
0.608
3.02
15
100
1252
632
128
387
70.9
2.83
0.771
85
1041
497
71.7
342
50.0
2.52
0.517
8.4
168
9.23
47.0
52.4
5.19
0.305
1.55
85
1052
466
106
297
56.7
2.71
0.807
65
786
257
78.4
230
53.7
1.94
0.744
45
549
66.2
37.6
120
41.4
0.956
0.635
30
384
11.7
14.0
64.1
20.9
0.316
0.392
15
231
2.71
3.09
52.0
4.77
0.0902
0.103
8.4
167
2.40
3.88
50.3
3.02
0.0825
0.134
3
5
CJ610-8ATJ
15
7
227
16.1
53.1
115
41.6
0.242
0.800
15
303
577
215
443
123
2.24
1.04
30
452
553
54.1
650
58.2
1.46
0.194
45
567
948
68.2
654
55.3
2.50
0.277
65
763
999
0.0524
817
30.9
2.11
0.0798
85
1009
957
182
926
139
1.78
0.431
100
1226
999
0.0541
1042
23.3
1.65
0.037
30
7
227
49.9
68.5
190
71.6
0.452
0.644
100
1226
999
0.0442
565
49.5
3.05
0.267
85
1009
999
0.0456
529
41.7
3.25
0.256
65
763
999
0.0468
488
25.1
3.52
0.181
45
567
387
65.2
449
29.5
1.49
0.269
30
452
378
29.9
457
25.0
1.43
0.137
7
227
9.7
36.2
177
6.93
0.0944
0.352
3
6
PW4158
30
7
610
231
72.9
453
31.0
0.881
0.284
15
1014
23.4
41.4
512
25.6
0.0788
0.140
30
2245
10.8
12.4
823
20.5
0.0228
0.0260
45
3726
160
16.0
1099
28.5
0.251
0.0259
65
5827
645
45.7
1513
33.3
0.736
0.0546
7
595
203
40.1
409
45.8
0.856
0.195
30
65
5658
843
105
1505
35.0
0.967
0.122
80
7026
999
1752
29.1
0.985
0.0164
7
368
357
294
426
38.6
1.45
1.20
80
7026
999
1703
31.7
1.01
0.0188
65
5658
649
38.9
1470
36.5
0.762
0.0494
45
3834
128
11.7
1111
25.6
0.199
0.0188
30
2465
1.37
2.69
808
27.0
0.00293
0.00576
15
1097
4.44
5.86
531
27.8
0.0144
0.0191
7
368
199
47.4
434
35.0
0.793
0.199
3
7
PW4158
30
7
600
288
59.7
491
20.2
1.012
0.214
15
1035
29.0
97.3
580
30.1
0.0864
0.290
30
2230
3.89
5.28
852
26.0
0.00788
0.0107
45
3688
130
13.3
1133
31.3
0.197
0.0209
65
5702
558
30.9
1522
35.7
0.634
0.0381
80
7100
978
34.1
1755
32.4
0.963
0.0380
7
591
237
28.7
482
19.0
0.849
0.108
30
80
7200
999
1759
29.0
0.981
0.0162
65
5711
583
140
1515
42.7
0.664
0.160
30
2252
0.282
0.777
864
22.8
0.000564
0.00155
7
596
216
55.0
477
29.4
0.782
0.205
3
8
RB211-535E4B
30
4
566
64.0
10.4
134
5.47
0.828
0.139
7
770
38.5
4.74
140
3.39
0.476
0.0598
15
1191
115
104
590
39.7
0.337
0.305
30
2109
861
175
820
22.6
1.82
0.373
45
3178
999
1039
24.9
1.66
0.0399
65
4750
999
1346
30.2
1.28
0.0288
85
6096
999
1553
55.6
1.11
0.0399
7
782
577
432
340
56.4
2.94
2.25
85
6449
999
1567
54.4
1.10
0.0383
4
552
241
75.6
433
29.4
0.962
0.309
G-14
-------
Table G-2 (continued)
Engine
Probe
Thrust
Fuel Flow
PAH Cone (ng/m3)
C02 (wet ppm)
PAH El (mg/kg fuel)
APEX
Test
Model
Position (m)
%
kg/h
Ave
SD
Ave
SD
Ave
SD
43
65
4691
958
185
1022
24.4
1.62
0.315
45
3436
999
875
25.7
1.98
0.0580
30
2131
999
660
28.6
2.62
0.113
15
1178
439
85.0
475
22.6
1.60
0.319
7
654
347
22.9
349
33.2
1.72
0.199
4
437
425
52.8
292
40.2
2.52
0.466
3
9
RB211-535E4B
30
4
421
890
141
298
66.7
5.17
1.42
7
690
289
139
419
41.2
1.19
0.584
15
1221
302
96.0
484
47.9
1.08
0.359
30
2004
707
90.2
684
43.1
1.79
0.254
45
3068
999
0.0472
855
31.2
2.02
0.0738
65
4479
978
140
1091
36.5
1.55
0.228
85
6233
999
1365
41.4
1.27
0.0384
100
6966
999
1469
47.6
1.18
0.0382
4
494
300
111
374
49.8
1.39
0.546
30
100
6987
999
1391
49.5
1.24
0.0442
85
6307
999
1330
44.0
1.30
0.0430
65
4551
999
1105
31.3
1.56
0.0442
45
3111
815
88.9
880
36.7
1.60
0.187
30
2037
338
36.2
688
32.9
0.85
0.100
15
1173
182
35.6
495
32.3
0.635
0.131
7
668
132
19.8
378
46.3
0.607
0.117
4
506
298
55.1
344
49.2
1.50
0.351
3
10
AE3007-A1/1
30
8.4
179
59.1
35.0
127
79.8
0.807
0.699
15
233
88.2
24.1
205
41.1
0.744
0.252
30
372
104
6.85
282
20.9
0.640
0.0634
45
524
118
11.8
318
34.6
0.644
0.0948
65
750
157
9.35
391
27.2
0.695
0.0637
85
971
212
11.2
444
33.4
0.827
0.0760
100
1171
254
11.7
491
28.7
0.894
0.0664
8.4
177
90.9
28.3
138
48.4
1.14
0.532
30
100
1180
293
20.5
500
20.7
1.01
0.0825
85
982
226
10.7
451
23.4
0.868
0.0609
65
767
149
15.6
361
55.8
0.713
0.133
45
529
106
5.14
326
21.0
0.563
0.0454
30
371
82.9
8.92
265
39.1
0.542
0.0989
15
231
78.1
16.1
193
41.2
0.701
0.208
8.4
178
103
36.6
156
52.9
1.14
0.559
3
11
CFM56-3B1
30
4
381
51.6
23.5
362
33.7
0.246
0.114
7
431
50.0
5.83
444
42.7
0.194
0.0294
15
622
22.9
12.6
641
53.9
0.0615
0.0344
30
1090
3.02
5.56
840
47.6
0.00620
0.0114
45
1530
10.9
5.21
979
31.1
0.0192
0.00921
65
2179
108
35.0
1130
38.1
0.164
0.0537
85
2815
321
75.7
1290
49.2
0.429
0.103
100
3564
502
149
1405
54.9
0.617
0.184
G-15
-------
This page intentionally left blank.
-------
Appendix H
Tables for Section 13
Particle-Phase Chemical Composition
Table H-1. Individual elemental emission indices for PM in various tests
Table H-2. Individual organic compound emission indices for PM in various tests
-------
This page intentionally left blank.
-------
Table H-1. Individual elemental emission indices for PM in various tests
Test
Engine
Fuel Flow
Total Metal
Mg
Si
P
S
CI
K
Ca
Ti
Cr
kq/h
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
EPA2
CFM56-2C
770
10.80
1.18
9.54
0.08
EPA3
797
27.47
0.80
26.19
0.26
NASA4&5
1221
11.96
0.44
11.16
0.02
0.10
T1
CFM56-7B
1264
6.33
1.78
3.11
0.32
T4
1264
13.54
12.99
0.33
T2&3
CFM56-3B
1200
10.11
0.54
0.33
9.21
T11
1161
12.85
11.09
0.84
T3&4
AE3007A1E
537
7.51
4.03
0.42
0.11
T9
RB211-535E4
2473
6.92
6.15
0.16
0.07
Test
Engine
Mn
Fe
Ni
Cu
Zn
Br
Ag
In
Sb
Te
I
TI
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
mq/kq
EPA2
CFM56-2C
EPA3
0.23
NASA4&5
0.07
0.14
0.02
T1
CFM56-7B
0.78
0.04
0.30
T4
0.13
0.06
0.04
T2&3
CFM56-3B
0.03
T11
0.07
0.26
0.25
0.34
T3&4
AE3007A1E
1.04
0.18
0.14
0.35
0.44
0.79
T9
RB211-535E4
0.29
0.06
0.18
-------
Table H-2. Individual organic compound emission indices for PM in various tests
QF El (ug/kg)
APEX-1
APEX-2
APEX-3
Compound
EPA1
EPA2
EPA3
T1&4
T2&3
T3&4
T6&7
T9
T11
n-alkanes
130
7.51
10.1
13.0
589
171
20.7
59.0
81.1
n-Undecane (n-C11)
3.61
n-Dodecane (n-C12)
3.73
3.01
n-Tridecane (n-C-13)
1.86
0.362
0.24
5.01
n-Tetradecane (n-C14)
0.578
6.90
4.28
0.724
7.97
8.58
n-Pentadecane (n-C15)
6.93
0.815
14.5
13.7
n-Hexadecane(n-C16)
3.43
0.818
14.7
5.92
n-Heptadecane (n-C17)
1.31
5.64
n-Octadecane (n-C18)
0.403
n-Nonadecane (n-C19)
11.6
n-Eicosane (n-C20)
n-Heneiicosane (n-C21)
1.01
20.7
n-Docosane (n-C22)
1.18
6.12
7.91
n-Tricosane (n-C23)
28.4
23.7
9.32
n-Tetracosane (n-C24)
46.7
7.27
9.41
n-Pentacosane (n-C25)
49.9
1.94
n-Hexacosane (n-C26)
53.8
3.01
56.7
10.8
n-Heptacosane (n-C27)
70.9
15.1
n-Octacosane (n-C28)
76.5
4.87
62.7
7.42
5.98
n-Nonacosane (n-C29)
94.5
41.3
n-Triacontane (n-C30)
50.0
0.171
n-Hentricontane (n-C31)
43.5
27.4
n-Dotriacontane (n-C32)
36.3
13.7
1.39
n-Tritriacontane (n-C33)
16.5
20.4
2.89
n-Tetratriacontane (n-C34)
14.9
2.70
1.27
n-Pentatriacontane (n-C35)
2.54
1.09
n-Hexatriacontane (n-C36)
1.89
0.362
n-Heptatriacontane (n-C37)
0.272
Branched alkanes
2.50
9.32
1.63
3.82
2-Methylnonadecane
9.32
1.44
3.82
3-Methylnonadecane
Pristane
Phytane
2.50
0.190
Alkenes
8.85
8.57
34.2
Squalene
1.09
8.57
34.2
1 -Octadecene
7.76
Phthalate
Diethylphthlate
Dibutyl phthalate
Butyl benzylphthalate
Bls(2-ethylhexyl)
Oxy PAH
19.8
76.5
9-H-Fluoren-9-one
3.03
Anthraqulnone
3.80
Naphthallc Anhydride
19.8
69.7
Cyclohexanes
2.35
Dodecylcyclohexane
0.416
| Pentadecylcyclohexane
Nonadecylcyclohexane
1.93
Steroids
Cholestane 1
Cholestane 2
Cholestane 3
Cholestane 4
Methylcholestane
Ethylcholestane
Trisnorhopane
PAH
5.89
50.9
32.6
9.97
24.3
123
8.07
115
146
Naphthalene
14.0
1.00
6.33
7.58
4.64
1 -Methyl naphthalene
0.758
6.13
5.01
9.10
6.85
9.56
2-Methyl naphthalene
0.504
12.9
8.25
2.73
6.81
5.13
2,7 Dlmethylnaphthalene
1.84
2.09
H-2
-------
Table H-2 (continued)
1,3 Dimethylnaphthalene
1.97
1.79
2,6-Di methyl naphthalene
4.02
3.22
3.15
6.81
7.58
Acenaphthylene
2.55
1.65
3.79
1.99
|Dibenzofuran
0.135
Fluorene
1.13
0.0720
1.00
1.15
1-Methylfluorene
0.37
Phenanthrene
0.48
3.35
7.12
8.28
7.67
Anthracene
0.0263
0.08
1.08
0.0604
0.641
0.625
Fluoranthene
0.99
5.42
62.5
53.3
Retene
2.93
Pyrene
0.757
0.882
5.48
23.7
28.8
9.16
Chrysene
0.312
0.496
0.85
2.56
3.93
3.61
Benzo[a]anthracene
0.227
0.324
0.21
1.08
0.0905
1.85
0.576
Benzo[k]fluoranthene
0.726
1.74
0.52
5.22
Benzo[b]fluoranthene
0.512
3.15
2.04
8.83
Benzo(e)pyrene
1.08
6.86
1.26
lndeno[1,2,3-cd]pyrene
0.0346
0.208
1.59
7.83
Dlbenzo[a,h]anthracene
0.502
2.27
Benzo[ghl]perylene
0.710
0.538
1.95
10.2
Benzo(ghl)flouranthene
5.59
ABB-20R-C27-Cholestane
8.09
4.47
0.604
3.72
AAA-20S-C27-Cholestane
1.30
5.49
ABB-20R-C28-Methylcholestane
0.785
2.35
ABB-20R-C29-Ethylcholestane
1.36
0.0151
4.49
17A(H)-22,29,30-T rlsnorhopane
0.875
3.46
17B(H)-21A(H)-30-Norhopane
9.75
17A(H)-21B(H)-Hopane
10.7
Coronene
1.58
0.225
0.88
Total organic species detected
145
80.6
128
23.0
613
294
41.3
174
265
H-3
-------
This page intentionally left blank.
-------