-------
4 ,
J
5 ,
5.
5.
5 i
5 ,
5 i
5.
5.
5 .
5.
5.
5.
6.
6.
6.
6.
o.
6.
6.
6 .
15 .
6 .
6 .
6.
6.
6 .
6 ,
7 .
7 i
7 .
- _
7 .
? ,
7 _
7 .
3 .
3.
3 .
3.
3 .
a .
8.
3.
3.
a.
a.
3.
3.
3.
3.
3.
9 .
3.
9.
9 .
9.
9.
5.
9.
9 .
o 6 a
•12 i
354
I 1 1
1 94
24 Q
32 1
4 3 1
"j I C1
J J 'J
625
•"* J 5
765
347
!?5y
>j 1 3
07 7
1 42
166
223
2':> 5
35 1
3 7 3
4 7 3
545
629
656
743
335
925
096
140
2-3S
254
351
663
7 3 O
923
003
&35
1 3k)
1'97
283
343
4 1 1
513
575
6 7 3
725
734
3 1 3
344
9 3 2
373
042
070
1 37
1 49
235
306
3 3Q
423
5 18
i 4 -i 2 6 3 3
11-3313
213312
530653
255109
5 y 7 9 y 3
17760 3
.- i n ? 2 ,J
•?Q5.?6
-3455 L
1214599
233533
1 4 4 I '.* t
1562 3 3
1 9 1 9 6 o
3 9 '? 9 9
457305
51 1 05
103645
157346
163443
3 4 1 '? 3
162 I 24
116264
182920
3 5 138
233242
31237
9 2234
2 0 7534
17521
57702
24737
13404
1234910
3 7302
56014?
111069
56356
29946
1 13090
91173
73554
24025
37974
32961
1 22790
25392
43136
48163 -
6 2 7.6
53472
5 9 f) 2 1
3 4 3 3 3
33256
2336 3
1 3 4 s e
46244
63390
277 16
32608
34309
23746
s£
j F £.
3 f'i-j
>PB
3P6
•iPB
SF6
3F B
iPB
3 P 6
3 P e
3F B
3FB
3 P B
3 P B
3PB
3 P B
SPB
3 P 6
3 P B
3 P 6
SPB
SPB
3PB
3 P B
SPB
3 P 6
SPB
3PB
SPB
3P6
SPB
SPB
SPB
S P 6
SPB
S P B
SPB
SPB
•iPl
SPB
SPB
SPB
SPB
51*8
SPB
SPB
SPB
SPB
SPB
SPB
3PB
SPB
SPB
SPB
SPB
SPB
SPB
SPB
SPB
SPB
SPB
3 P B
, 'j-^ 1
, >i i -5
.025
. 0 4 3
.024
.041
. fl 3 6
. 062
.019
.045
.Q7«
. 026
. 025
. y5y
. 0 3 5
. i j 1 3
. 049
,OI5
.020
. 029
. >5 3 2
.012
.072
.021
.025
. e i 7
.047
.033
.024
.133
.812
.028
.018
.012
. 170
.025
, 130
.036
. 043
.819
.046
. 063
. 044
.027
. 844
.031
.049
. 021
.024
. 021
.012
, 034
.021
.019
. 025
.027
.010
. 032
. 05S
.032
. 025
.032
.019
1 . -j o -.- 5 I
, 0 3 i -1 c
. 15670
. i o' y a1 '•}
. 13526
. 36456
. 1 2 7 4 S
.52176
. y •-, 4 9 3
. 45546
. S ~ 2 Q 1
. 207 10
. 10350
, 11213
. 13773
. 023o5
. 32324
.63663
.07439
. 11294
. 12030
.02454
.11637
, '33345
. 07387
.06114
. 17100
.05331
. S6620
. 14396
.01253
.04142
.01779
.01321
. 33637
, 02677
. 40205
. 07972
. 0433 1
, 0 2, 1 4 2
.03117
. 06544
. 05638
. 01724
.06250
.02366
. 933 I 3
. 9 1 3 2 J
.03096
. 03457
.00451
.04197
.94236
. 62504
. 52337
.01713
. S9963
.83319
.04335
.01939
.02349
.02463
.92963
-------
j.
;•,
10.
< 0 .
I 0 ,
I 0 ,
1 0 .
1 3.
1 0 ,
1 0 .
; o .
1 0.
1 3.
1 0.
t 0.
1 I .
1 1 .
1 1 .
1 1 .
1 1 .
i 1 .
1 1 .
1 1 .
1 1 .
1 1 ,
1 1 .
1 1 .
12.
1 2.
~ - "3
•s 2 -J
o?r
y 3 6
135
I 52
1 :i5
•j 2 •!'
4 i i
535
-j ' i
593
661
7 i 5
74-5
7 =-7
>3 1 9
350
151
1 99
492
524
7 ^ 1
772
SIS
495
93?
967
So 7
155
19 1
-* .? — J
i "? 9 1 2
627 ? [
L 2 9 3 3 4
: "i o 3 7
5 3 7 4 S
4673 9
i ? 6 •:- ;•
-! I o i d
24 3 5 i
i 7 'i 7
i 1 .1 .j 0
i 7693
5 5 9 4
2 0 ? 2 4
56 132
9405
1 U 5 P B
56
C 6
P D
£:&
Bb
BB
B&
&B
BB
FB
BB
BB
BB
BB
SB
BB
36
BB
BB
BB
BB
66
SB
I &F-
. U *j *J
, 0 o 6
.042
, 349
. u 2 3
. «J I 9
. 3 7 3
. 029
, 027
.016
. ~i 0 9
.021
.019
. 020
.626
.052
.314
.346
.841
, 04-3
.124
.163
. 82 7
.021
. 345
.314
.014
. 023
. 035
. 022
. 028
, *j j -* j -*
. •_' c ; -J •?
.02365
. 34537
. Q 9 -3 1 7
. 0 2 0 5 7
.33642
. 0 .3 3 5 i
, 3 j 4 ; j
,03055
.01743
, 0 0 d o tf
. 31926
,01270
. 00402
.31502
.34027
. fj 3 1. 7 5
, 0 7 5 3 6
.34534
, 33226
.07725
.-31207
.01332
.31207
.34316
.31963
.63923
,01457
. 0 3 4 .i 1
.31476
. 0 1 :3 6 2
TOTAL H R E A•1 .
F1UL FACTOR=1.8
2E + 33
PUN PARAMETERS
ZERO
ft T T 2 •'"' =
CRT S F =
H R R E J =
T H R "5 H =
P K U D
0
•J
1 . 6
53s
2
0 . 0
-------
* P P E P CflLIB S
E = EXTERNAL STANDARD
I = INTERNAL 3T H H 0 H R D
N = H 0 R M » L I Z M T I 0 H
C ft L I B PROCEDURE C E * <" I -' N } :
R E F :: R T II [ 5 . fj 6 €l ] :
N 0 H - R E F K F: T U C 5 , "3 8 0 1 :
R F B H 3 E D OH A R E A OR HEIGHT t A •» ,' H ] :
CALK
1 :
2 :
3
4 :
5 :
REF P K
REF P K
REF P K
RT
.794
.391
1.493
3.4-10
CALK:
CALK:
C A L IH
AMI
: I 4 . 9 '5
= 14.5
: 14.2
: 14 . b
i
1
NAME
: METHANE
:ETHANE
i P R 0 P ft N £ E
: SUTflUE
GROUP PEAKS
CALIBRATION OPTIONS
RF of ur-.c^librited
Replace calibr«iion f i '. [ Y x N + ] :
Disable B-o^i-run RT uud5(.* [ Y ^ N * ] :
SAMPLE AUT :e.Q99aE + i3i3 ]s
MU L FACTOR c1 .8 9 0 6 E * 9 6 1 :
" LIST: LIST
PEAK CAPACITY:
ZERO =
ATT 2-" =
C H T S F =
AR REJ =
THRSH
PK UD =
Q, 24 .
•J
1 . 0
see
*ZEPQ BREAK
" RUN ft 13
SEP £3, I '391 97: 13: 54
-------
(V
23<
RT
TYPE
-------
1. .
1 .
i .
1 ,
1 .
1 ,
1 .
.-.
2 .
,1 ,
3 .
J .
3 ,
j .
s ,
4 .
4 .
4 .
4 .
4 .
4 .
5.
-J .
•J m
5.
5.
5.
6 .
6 .
6 .
6 .
6.
6 ,
6 ,
;? _
7
->
;? _
a .
'd .
3 .
9.
9 .
9,
9 .
ia.
1 3.
1 8.
1 1 .
1 2.
1 j.
13,
13.
13.
1 3.
1 4 .
1 4 .
1 4.
13.
i7 S
i - =
~j~ ~~
' a 7
9 3 a
«45
125
21*
2 o 5
:•< 3 o
45 I
3 5 0
1 4 4
•505
736
a 9 2
343
4 3 9
59 1
S 5 7
i 4 9
396
46 1
6 15
a 3 s
965
t«7
Id 1
422
a 0 S
94 e
961
1 99
396
557
666
726
'5 1? £
996
1 45
357
512
aaa
333
6 Lt)
a 3 3
0 1 3
357
472
539
584
6 1 8
726
683
465
183
165
ses
732
39 1
435
499
606
828
9 '; s
u - -^ ~
565
26-34
1114
745
4265
5?7
142'?
1730
4525
4194
:"• "•• 7
6u5
2 3Si
3392
581
4241
•i 394
1 34747
3 9 4 9
3442
1430
5368
2753
1286
;3Qy
1714
1
BB
PB
F 6
PB
BB
BE-
E.D
EB
V B
V B
F &
PB
BB
FB
PB
BB
BB
BB
BB
PB
BB
PB
V B
BB
P6
BB
BB
PB
BB
BB
BB
PB
PB
BB
BB
PB
BB
PB
PB
PB
VB
PB
PB
"PB
PB
PB
BB
BB
PB
VB
BB
PB
PB
PB
BB
PB
PB
1 PB
BB
BB
BB
PB
-J 1J
IF
, -Jj-
, '3 6 j
.853
. 153
.022
, 0 3 7
- 1 13
. 8 -l 3
.155
.934
4.925
.144
. 126
. 954
. 196
.044
. 029
. 063
.037
.126
.019
. 055
. 293
. 1 9 3
. 846
. 049
. 873
035
929
093
426
143
. 24 t
. 667
.119
. 826
. 851
. 156
9 . 732
. 198
. 1 07
.851
. 032
. 845
.025
. 025
. I 87
. 875
.221
-------
; " . ' ? -j
L ~ . -65
1 '3 . 5 j i
i. 5 . i ,T i
i • 5 . r r i
i ?..;••?•*
2 0 . a r 0
i 1 . =. o *
2 I . o 7 5
2 1 . i 3 t>
™ O '3
3 2 j
» * ? ' i. i
w O C J
sr-4
i£-54
4 S 6 5
I 3 1 •••
•5'J 2
- * '-' b
.- £
Bt
BB
66
PB
Be
8 B
PB
P&
&B
: H =
M U L F H C 7 0 F. = I . W 0 9 o E T €i 0
R U H P H P H M E T t R 5
ZERO = >3
ATT 2'"' ~ 3
C H T S P = 1 . Q
Ar-. R.EJ = 500
T H F S H = 2
P K N D = 8 . ij 4
.^21
, Q4y
. 022
, fj 77
-------
-i >.i n- P r s = = I o c al f ? TJ fj r '., [ ~\ ,• H •»• j :
H t I ij H 7 '< r' « r.- o r T. i V / H » j s
R € r- i a.; « r = r^ o r i. till*- C V - (O ] :
P.« i 1 s,; •= i it o u n i. label C 'i' •• IO ] ; Y
H I'l O U i"i T. 1 -a b ^ 1 '• CO N C ,
f. € P o r '. u n <: = i ; u f- a i e cl fi • a K s, i V * -•'" N
En T. •• r, a f d r- -_ p o r i. [ V . H * 1 : V*
9, Go j
ZE=
a. ?a-3
11.956
!:
;
14,33!
iijii
[ill
-IS.i S 2
-a.24;
11. i 5 e
19.913
28 .76-3
-------
, gZ i
" " Tl
M £ T n 6 L. £ STOP
r U H N
u. ; 4 ? :
H n T H Y C U N o T p, U C T 1 0 H
E S T D - ri r: E N
1
1
t
2
2
3
7
?
'3
3
9
9
9
9
9
1 U
i 0
1 Q
10
19
1 0
1 I
1 1
1 I
12
1 2
12
[ 2
12
13
i 3
1 3
13
1 3
1 3
1 4
14
14
1 5
15
15
15
F. T
. 297
,377
.690
. 393
.501
,65-5
. s i a
,865
. 5«y
. 576
,567
. 737
.063
.739
. 028
.419
.553
.7-34
. 3 4 f)
.159
,213
.362
. 503
. 596
.7 S3
. £50
. 6-50
.956
.ill
.249
.438
. 625
.926
. 398
.163
.279
. 3-35
.673
.940
.335
. 755
.925
. i 93
.311
.335
.583
T V r E
86
96
P6
VB
FB
BB
PB
VB
F'B
VB
FB
BB
I PB
V B
BB •
Pi
BB
PB
BB
FB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
Pi
BB
BB
BB
PB
BB
BB
BB
BB
ee
BB
BB
BB
H R E S
389
b 9 7
9554
1-394 9
2750
i ;j 6 i
277S
21361
4496
4576
4223
3440
793
I 1299
5904
5208
1583
3 1 9
552
3.255
2-38 !
552S
3302
1568
9 S 2 4
1547092
1595
55~2$
7549
3631
2204
1 105?
1331
i 6»1
1499
903
2955
2256
1 528
239?
15931
5437
5938
I 099
425i
.5233
bl I D 7 H
. U42
. 05.'
, 124
,154
. 069
.043
.054
. 133
.104
. 073
, 039
. 069
.830
.146
. 122
, 082
.046
. 022
.031
.073
. 053
.034
.079
. 050
, 093
.211
. 049
.168
, 062
. 376
. 092
. 138
. 061
.030
. 857
. 020
. 055
. 138
. 03 1
. Q76
. 1 £7
. 1 64
, 097
. W36
.041
. 064
HEIGHT
332
2Q5
1239
1512
6-i3
721
856
1994
7 a i
las-i
7'3-S
826
4 J9
1293
367
1057
663
622
299
48 I
744
1099
802
527
1621
122462
554
550
2029
8 1 1
400
1229
379
900
439
756
893
Z72
833
637
2098
556
1038
504
1725
84S
C ft L * C 0 H C . H H M t
.032
.82?
IP . 349 METHArtE
2 .247 ETHANE
3 ,Q32 P R 0 P ft N E E
.075
.101
. 79S
,164
4 ,040 BUTftHi
.154
. 126
.029
.41-3
. 2 Lb
.130
. 85S
.0-36
. 02Q
.032
.337
. 202
.139
. 05?
.338
56.546
. 058
.202
. 276
. 135
.031
. 404
, 067
. 060
.055
, 033
. 183
.082
. ass
. 186
.582
. 231
.217
. 040
. 156
.113
-------
->'
'l i
\ f
i r
i r
l -3
1 b'
'
^ c
35
47
94
26
47
35
4 a
.34
*^ o
16
79
88
19
7 7
22
94
76
2 4 . ;3 b -3
5 3
S c
Y e
6E
BB
BB
EB
p-s
bE
f- c
r B
f c
f &
FB
BB
86
68
P&
Be
P&
BB
FB
PS
BB
BB
P6
BB
P&
BB
PB
BB
i - 1
I a
2
2
2
1 1
i i
*
1 3
252*
1
2
4
2
2
3
6
3
4
2
I
I
1
1
2
7S 4
5-12
*! 9 -•
542
•irS
454
.•i 4 7
5i4
.3 4 y
S 1 1
'?94
i39S
223
.5 3 3
475
6 7 3
'3 1 Q
70 3
»3'fb
1 4 i
£86
94?
755
6 6 Q
1 56
-34?
2. 3ti
. i 4
. 0 3
. 0-3
. 04
. 1 3
. 1-"
. 0 9
. L ^
. 44
. 04
, 0 5
. 0 5
0
2
4
•i
j
•j
4
4
"j
3
3
j
\ 1 ^
1 2
1 2
1 3
1 1
'-1
1 2
1 3
1 2
13
945
15
'?
I i
•^
j
1
1
7
•3
2
2
5
l
4
3
y
1
•j
D
2
4
ij
6
7
1
9
•7
. e 2- & M44
. 65
. 05
. a 5
, Q 7
2
4
8
•?
7
1 9
1 '?
a
5
f
\
2
3
2
1
2
•5 S . 5 0 '?
. S 9 3
.034
. >J 9 3
.427
.41'J
. 2 5 \j
. 4 So
•?2..S5o
. 0 D i
. 109
.150
.051
. 03*
.127
.244
.143
.01-3 -356 . (} 2 6
. L4
. 0 3
. 32
S
7
4
4
4
5
l
»3
e
i
4
. 0 3 5 342
. 04
. 05
. y 2
. 03
2
2
-7
1
.032
Z5~ Z . a 6 S
1
475
. 02
4
2
5
T
•7
1 1
b
1 Q
9
j
1
1
b'
3
9
5
50
0
5
d
. 150
. o ~ a
. 029
, 068
. &23
.061
. e4£
. a 4 9
.332
. 994
. 054
TOTAL HREH=b233574
MUL FACTOR-i.
ZERO =
H T T j.'"- *
C H T S F =
H R ft E J =
T H ft 5 H =
P K U D
9
3
1 . a
2
a. a?
-------
,TuP
' F K w u B R t r> K,
* LIST; F- K lu u = y , 0 r
* P K i.j 0 ,12 (i
•>• L I 5 T : 2 £ R 0 = 8 , 1 1 , i ? -4
C CQ L '"1
•j.
«• R U M # I
•s T H fi: T
SEP 23, 1 -3 •> 1 S a : 2 9 = 4 1
1 9 , 2 3 &
J T 0 P
-1 J . b y 9
u . o ns
RUN It 13
SEP 23, l'J'51 6 8 » 2 9 : -U
CONSTRUCT I OH
140 CHLIB PEAKS FOUND
ft R E A H
RT
,74.3
. 945
1 . 5 9 •»
3 .
BREft TYPE UIQTH
93 B B . e '5 7
767635 BB .097
1137188 BB
1532636 B6
. i aa
. i&a.
4.66559
9.37164
I 3 .38332
1 •> . 3 2 1 4 7
-------
i J T « L » r! E rt = b 1 j 1 0 -1 0
U L r H C T 0 F = i , -I' Q 6 w E - 0 -j
RUN r HKMflETtP. '
IE F u - 0
•'. H T S P =
N R R E J =
T H F. •; H
F K U 0
3 . 1 i
-------
> D t L B S E M r.
k DELETE C H u I S '•
DELETE M\_i- L V -'il • ] : V
" PREP c M L i e a
E = E X T t ?, fi F, L '; T H H D M F. D
I ~ I H T E r H r« L •< T M H D •-< F. D
N = H u F: M H i, I ; r. T I U 11
C -, L I 6 F R 0 C E D U R E L E » '• I .- r4 ] ;
F E F :•. RTU i 5 . y y e 1 :
HuH-FEF ;; RTU [ 1S,.Jyy::
F. r 6 ft 'i E D ON H R E H OR HEIGHT I A *.- H 1 :
C H L H F: T H M T H H H E
1
2
3
•4
5
b
.
.
1
3
7
1
7-13 * ;i "•
'?•< ?
, 5^4
. 8 «3 -5
. 5 ^ 0
1 . 67>i
( S - . 7 4 ;j
: J 5
: 1 4
: 1 4
: 1 4
: 14
= 1 4
. U
. 5
• 2
. f>
.*
. 5
NETHnKE
E T H H H E
P R u P H H E
P E N T ft N E
PEHTnHE
HEXANE
GROUP P E ft K -= CV -- H •• 1 =
CALIBRATION OPTIONS
R F Of uncalibrat*d P « a k i [ y . % » W 8 E * <•) 0 J • j . 9 2 2 E - o 5
R * P 1 a c s calibration I' i '• C Y .-• H * ] :
[j \ -. * b 1 €• n o i l - r u rt R T u P fj a «, * C V -' N * ] :
SAMPLE H M T [a.3y50E+90 Is
M u L FACTOR Li.a a e a E + o e ]:
" LI i T: TIME S
y . 0 0 e I N T G * = 2
u.aee IHTG * = s
2 5 . s a e -5 T o R
•• DELETE TIME 25 S
.r TIME £7 STOP
•» PUN H 16 SEP £3, 1-591 33:43:33
START
1,555
II .3 . 7 4 3
STOP
-------
hw TH'i C OH i 7 RuC I I C-rl
ESTu-nREn
R T T '(' P E H R E H WIDTH HEIGHT C H L It C 0 H C . M M M E
. ~ I r F B 2 i ?,~ J E - >J /
M U L F M C T 0 R = 1 . ij u 6 y E - C-i y
E U H F H R rt M E T £ R •=.
IE R 0 = y
H T T ^'''"' = o
C H T •=. f- = l . y
nR P- E J = 588
T H R S H = I
F K U D = 'j . 1 2
-------
• -~ !_ "t
0 >3 "5 * 1 U (3 . 4
'5 •" . -3 J
= C H L I 6 F P 0 C E D iJ r. E
= RETENTION T • M £ U I H 0 011 '=
= T n 6 L t E H 7 F I E i
= P E H K u F: 0 U F S
= C M L I B 0 R T I 0 H i
**#
5 E C I I 0 N TO BE E D I T E 0 : .3
C M L n : 2
F. T i
ft H T : 1 y i . 1
M M T - H F: E H :
SECTION TO BE EDITED:
* RUN* 1;
T H P T
SEP 23, 1991 83:59:0;
8.497
STOP
0.715
64
RUN* 17
SEP 2 3, 1991 0 9:5 9 s 0 7
MhiTHV CONSTRUCTION
ESTD-AREft
F;T TYPE
,497 F' B
,715 V B
AREA UIDTH
L 1 0 9 4 ,293
57173 .137
HEIGHT CALtt CONC.
.J3B
6974 1R 2.25b METHANE
TOTAL ftREA= 63567
w u L FACTOR-i.aaeaE
(t U H P ft R ft M £ T E ft S
2ERu = y
HTT 2'* =• 3
C H T 3, P = L . 8
6R REJ - 593
T H R S M a a
P K U D = a . 1 2
-------
0 ,,"34
•iTOP
X
f. U H
i E F 15' 1991 3 3 : 'a i : i 1
i'l n T H Y C U N S T fi U C T i 0 1'i
E -3 * LJ ~ H R E
'/ F £
Ps
H K. E M U I D T H
5 r a 2 L , i i ;-
COriC
56:34 IF.
MET HU
T 0 T M L M r E rt = t« 7 o ^ 1
Fi U L r H C T u R. = 1 . 0 i-j 0 0 E T- 0 0
f, UN p ft R A11E T ESS
Z E ? d = 0
ATT ;" = 3
C H T S F = 1 . d
n F; R: E j = 50
-------
C - i. I 5 3
0 , r ', .5
i . -? -i 6
L . 5 3 4
J . r '? 3
7 . 5 v :j
. 1 . 67*
-------
-------
HHTHY CONSTRUCT ION
E 3 7 U -
•
1 .
1 .
3 ,
3,
i.
3.
6,
6 .
b" .
, 9 .
i e.
1 0.
1 L .
. 12.
i i.
15,
I*.
Iri.
1 7 ,
13.
SO,
23 .
24 .
"RE*
R T T
70 I
3 3 3
4^4
H T TJ
1 "3 I
625
«^ 4 .•*
474
745
4i7
7 15
a 85
•i32
139
474
•i-f i
5 i i
492
•32-e
81 9
42-S
435
3 15
*82
526
b 3 S
i1 PL
P6
B&
C b
E&
BB
P&
BB
se
&&
P6
66
66
P&
86
66
SB
BB
6B
68
BB
66
PB
BB
PB
BB
VB
nREH
1 7 o ," o 4
i o ? 0 0
j i J I y a
Q J ^ '-* i
i >3 3 2 3' i
4 7 2 e
54 19
I :J S 4 2 1
22*42
15914
2 1 3 l •?
l---?5,- JT6
1 >s 0 y 9
5 2 "i o
7 1 '5 4 5
o-(622
1 : j 4 o 3 3
2 S ,3 4 9
254639
73*'*
4 3 3 6 5
54251
5393-2
131631
1 2 2 1 o 3
4 5 5 0 6
Lu I &TH
.073
, -38 4
.1,4
. 039
.157
.ill
.104
.He-
.123
.132
.175
. 4 i i
.273
. 155
.271
. 254
.292
. 7b d
.233
.136
. 2 15 2
3 B "•"
,412
.5*9
. "3 &,"
. 'SsO
H E i G H T C M L ft
4 0 4 fl 5 [ R
5345 2
3 1 £ 4 4
I 7 j i 3 j
1 U 9 4 3
6 C 2
3 15 15
1 t 4 6 r
3 0 7 3 4
2 3 1 . j
1 9 o 3
? 3 B S 4 7
979
5 c 6
442'5
5 5 ^ 5
7 6 3 Q
446
i •* • 3 a
631
2735
25-30
2 1 35
3 3 5 7
3355
1423
•3.13 ,
. 5 U 3
.2.250
1.115
4.04?
.155
.203
. o24
.324
•3 15 5 . 0 tj i"
.623
. 5:34
5. 236
'? . 937
. 2 '5 '-3
1 . 7 1 a
2.123
2.117
5.163
4.791
1.942
H H n E
M E T H A H E
£ T H M H E
? POP fiHE
H E X A N E
TOTAL flR£rt«L.3937E*9?
MuL FRCTOR=i
R U N P
ZERO
M T T £ A -
CHT 3P =
HP P E J =
THRSH
F K Ui D
1 . e
500
2
0.12
-------
UN I
_^ \':l\l
1 3 . 4 y 8
1 J . 5 7 5
12.454
1 £ . 3 6 7
13.^86
14.992
15.454
1 5 , "t 2 5
1 6 . .3 4 7
1".335
18, 172
2 6 . 8 L •»
2 3 . J a £
24.313
STOP
-------
,^- H
ftT 1
- 5 '• ?
1.144
I - 4 i i
V i J . 4 8 3
1 1.575
12.454
I i . 9 6 7
1 a . 4 0 a
i 5 , 4 5 4
15. J25
1 i .347
17. j i 5
13. 172
20.31?
24 . i 1-5
TOTAL SREr
s ~ r LJ C 7 !
" V F E
c b
8 B
£ a
oB
£6
56
BB
F B
BB
D &
o B
BB
BB
B D
V D
SB
BB
F&
^25.36-
• -, f
fiREH
1 1 i 7 o 4 5
[,2o3
i -i o 3 ^ r
277o,
1 4 B 7 I -j
i-5i5
10445
2 2 0 '5 6 0
1 C-i 582
4 7 Q 0 5
2 '5 2 1 o
•? 4 y 7 -?
1 3 2 * 6 y
ISIS
*i'J
50
CX
WIDTH
- i -5 r
. i j, "i
i -J •' J Q
, i Q J
. rj "/ w
.145
. 1 4.3
. 2o2
. -J 7 4
. i PS .B
.235
. 17'?
. 2 8 S
. .3 3 1
. 5 V 1
. 57 -j
.18£
GhT
7 J5
•350
J 1 -1 .i
,404
i 1 0 3
i 5 S 7
N 13
;295
5524
434
15679
9 3 3
-.-,,««
il 1 1 i'
1473
2'? 5 4
-3 3 1 '5
1 21
C H L B C Q H C .
. Q .2 >3
1.464
5.036
5.506
.821
i "j 1 ,2.
5 . 7 5 4
.075
.410
3 . <9 Q Q
.415
1.544
i . 1 46
3 , i 5 0
5. 2Q3
. 052
H E ,'l M H £
M U L F H C T u ft = 1 . S u 0 w E -MO u
R1J H PARAMETER 5
Z E F: 0 = ti
n T 7 j "• = j
C H T s F = I . 6
H R fiE J = 53d
T H F. S H = i
f K U D = 13 . 1 c
-------
SUN 9
i1.571
STOP
R U H »
MNTH V C 0 H 3TR UCTi u K
E P- 2 J ,
E i T D •
ift t H
R T TYPE
'16 B B
3 . 6 9 2
7 , 44T
BB
BB
BB
I L . 5 7 .3 I B H
1 0 : 2 T : 3
AREA WIDTH
793967
1171181
2041939
5355725
.lei
.203
HEIGHT CALft COKC.
71342 1 R 1 !
1 39262
ie?7 ia
1D? 3S3
I 7 oo tl b
1 J .
H H M E
METHnNE
ETKnUE
PROFANE
14.944 P E11T H N E'
14,332 P E H T ft N E
14.563 H E ;< H N E
TOTAL AREM
M U L
R U H P H P. M M E T E B.
ZERO = Q
r.TT 2*'- = 3
L H T & P = 1.8
MR REJ - 56y
THRSH = i
F K U D = 8.1
-------
* 1 ta S
, >^,,Y/ft'
j - 4 i -5
j . -f ^ .-
19.353
i i . 5 4
l£. -4 1 7
1 3 . y 15 5
13.341
1 4 . y -t 5
15,425
-------
I d i 4 1 l 5 j
H A T H V C U ri -3 T R U C T i u r
E-iTO-HrtEn
1 .
1 ,
i .
j .
;.
1 1 .
1 2 .
1 3 .
1 4 .
1 j ,
l 5 .
1 6 .
1 7 ,
1 3 .
29 .
"e. "i ,
24 .
KT i
Sr'r
i 5 J
450
22=i
4 i'?
6-5 -j
542
4 L 7
34 1
045
425
•* 1 J
.305
365
083
3fll
266
3 S 3
i i Fc
r D
a B
b c
Bb
5 b
B D
Bo
B B
& E
68
D D
S£
o B
SB
V6
V B
BB
BB
rtfit
< i o j ;>
I 1 o 0 0 3-
J7 36
i • 3 i i 3
3-4 62
^ - l • ;•
5 o 2 J
L .3 4 L ~
.5-33
1 1 54
2 i3 3 7 9
4*4
4540
S 3
20703
1S765
11667
5655
"
J
6
^
ij
'3
4
ij
^
,i
4
2
1
4
6
L
D
5
LU i D
• -
. 6
. 1
1 . 1
. 1
2 . 4
. 1
. 2
. 2
. LI
. 2
. 1
. 2
. 1
T
. 6
. i
* Q
T H
- J
4 I
6 2
49
40
05
7 6
74
1 u
54
it}
6 6
52
d 1
7 2
'50
1 4
46
HE I
4 -t
-JVJ
"H
1
4
5
4
0
2
1 5
3
4
4
O
1
Ij
-3
0
O
4
L
i
T-
l
6
2
1
4
Q
L
4
5
1
4
ri T C M L it C (
•?7
'^
Q ™.
o r
2'?
54 4
45 a
52
S3
-. _
0 3
66
y 2
j ('
63
-;nN£
-------
t . t 2
o , U i j
i s. ? a -i
17.515
-------
•j h H is D t P 2 ;> • i •• ? i 11:111-11
[1 rl T n I C Q H S 7 r, U C T I U hi
, .. ~ y - £ H R £ M iii i 0 T H ri t i G rt 7 C n L ft *- u f i»- . N M M E
. o .j o F B 4 5 01 c - j . v ^ 5 *L i 7 7 i i r.»»5 5
. .? 4 5 06 j k 1 i 5 .0-15 I i 4 5 -4 i F. . j S "7 M E T H M h E
. '3 =J 7 CD • 3 5 b '3 -" • 'J d, -J « "j -9 3 J I . 4 Ij ,"•"
i . i 2, ;• cb c \ T* -3 .i 1 . c >J 1 i $. ^ 6 5 -i • r> £ 1
1 . -i Q y E. D I r 5 i , Q i u o' I 5 . 1 i «i
i . 5 0 Q £ 6 ? 4 9 ? . 0 -i -3 4 i 5 j , 3 ~ 3
-i « ij j 5 & B i 7 2 4 •* i .^O^ &olo • I 0 . o o S
7.515 Ft. 5 ill ™ j . i .3 7 .357 . 1 i '5
0 T n L H R E M = L 8 i 7 3 u 4
U L F n C 7 0 K = i , o U 'J 0 E » Q u
F: U K F M r M f'l E T E R "3
2 E R
-------
'- M s- l 5 r n T i 0 N 0 F ^ I 'J h' 3
'• f* Oi" u n o -a I i b r- a ', * >y P €• a k & C .» . J c i 0 E - >} -5 3 !
P- •= r-' 1 = c € c -a 1 i b r a ', i -i ri i i ', ['(' . M <• 1 :
D i i a b L * r» o j ;, - r u n R 7 y P a i t. = £ V f H >• j :
S M M F L E H H 7 I y . 4 u >j d E " -J u 3 :
H u L r M C T 0 R [ I . o S 'j d E T vj 0 j :
Or » .3
t i^ i_ I c ^. n T I 0 N u r' T I 0 N a
f F -j T u n c 3 i ; o r' i '• f- '"J >"•• f. 3 t, » L j • ? i i 81 - £' 5 j •
r, •! P i .a c * Call b r -a t i >j n t' i T, [ y , ft * J : y
f = ft '} I Ci I - I, o - P v 1 n V
L = I i n « i r •, 1 •=- a i v 5 •a y a r « >
N = n o n - i i n € .3 r '.. a y a d r a i i o >
C j k i b r a ', i o n f IT. [ K •• L .-' F1 * 1 ;
D i 5 a fc i s P o e i. - r- '.i n E T g r- d -lie C V x N <• ] :
S n M F L £ M M T L fj . 0 0 H) 0 £ * Q O ] :
M U L F H C 7 Cl R C i , '3 0 8 Q E ^ % 0 ] :
i- R U M » 2 •(
T n F: 7
S E P i 3 , t 9 'i I 11:48:56
1.438
- J , 4 5 o
d . ? I 3
7, 4??
a, 693
1 1 .
13.455
14. 157
15.535
-------
21.*;
TIMETABLE SI0P
RIJ H *
SEP 2;
H H T H V C Cl N 5 T R U C T i 0 H
1
1
1
1
1
1
1
L
1
2
2
£
1 .
3 ,
6 ,
8 .
8 .
•j .
1 .
2 .
3.
4 .
"5 .
6 .
b ,
3.
1 ,
3 .
4 ,
4
4
4
F. T T y P E
" 1 BB
3 & 96
56 FB
3 u B B
77 BB
260
6
4
6
5
4
1
-J
a
4
3
3
<*"
9
J
3
1
V
5
j
3
p?
2
T
3
99
3
6
u
5
5
;?
5
7
4
5
13
•j
*
B&
BB
V6
BB
6B
BB
BB
BB
66
BB
VB
e&
BB
F &
1 1 i
1
•1
MR EH
6 7 "i '3
1 4 5 J
1914
1624
SiSali
U IOTH
. 377
. L33
3681'? . £ y 8
5
5
7329
4613
. 36
. 24
7
1
6 5 -j 6 4 .213
1 2
I
deee
isse
b 3 3 3
389334
4
23
1 3
3
ii443
3546
5600
. 28
. 27
.65
- 34
. 13
D
L
3
1
1
. 238
. 93
fr
-J
1625 .749
1235
d
25353 . 439
HEIGHT CML* C
51b 13
7663
2753
3 9 3 9 5 -
3 0 7 1
2b3b
3776
4996 b
7457
7 1«
1933
14663
595
2591
3936
4849
2416
563
0 H C .
45. "oa
.449
.359
1 . 230
.329
1.444
2.249
2 . 142
.413
5 . e2Q
.453
. i 4 9
11.779
.253
1.7*3
9 . 2 4 u
7 . 123
j . 136
1.014
N rt M E
P E N T H H E
H E X MI-IE
T 0 T '» L ft R E ft = Z 5 1 2 6 4 2
MUL
ftUN PARAMETERS
ZERO * g
-------
-------
R U M
V",
«(<
10.573
15.
-------
k U fi A
H U 1J n j_ I & p £ H t-. i r 0 U H U
nF. E^;.
FT n r. En T l F t Id I U T H
I 0 . 5 ~ 3 '. -It 6 6 I -3 r E .144
I^i618 ~J D .3 r 7 r 5 b . .j r o
I '3 . i» 3 4 i ? ,7 'r 5 i r 6 i J'? 2
- 2 . "-> ~ fj i e 3 5 F i .036
2 3 . '3 7 •'•} 2 3 2 r 66 .4 ; i ~
^.'j,-3'4*:' *ibo4 B& .44^
2 4 . i l 0 2 I ? 0 6 l B & - .7 <3 i
M h. t H -
id. -3 0 4 5 i
5 0 i d o & 3 <
i o. 3 r o 2;
.2472"
T 0 T M L Hf.EM=l-J657l4
P1 U L F n C T 0 r = i . 0 0 U Q £ -^ 0 0
R. U N r H p. ri M £ T c. R.
IE F, 0 = f<
H T T 5 •"• » 3
C H T S p = t . u
MT. P. E J = 500
7 H F. i H = 2
F K U D = 8.1
-------
—,
"3 I U
P. ijli
i ? '5 i
; = 155155
r c
F6
Ul i u i n
.351
1R
li H PI C
4 . 03U METKMHE
TOTAL HfttH= liSO'.--
SUH P H ft n M t T t R S
ZERO = «
rtTT i'- = 5
CHT =r = l.a
AR nEJ = 508
\
K WO
-------
: U H A
F. T
M RE H WIDTH
•"> i 3 •) e .101
HEIGHT C HL * C u H
.5 343 1 R
H H M c
'3* J') E T H H H t
T i j T M L fiP, EM= 33346
M U L F M C T 0 F. = i . 0
-------
w T rf ( '- u f <
i - H F. £ H
F, T T V F' E
, 7 3b I or
H F. E rt
4 i o 5
I 0 T H
H eIG H T C rt L # C U11C , NAME
5333 i R .591 M£ T H N li E
TOTAL A R E M = j •? I 6 3
N U L F M C T 0 fi; = i . u i3 u y E + a 6
ft U H F A R H li £ T E R S
IE r: u = 0
MTT i = .3
C H T S P = 1 . 8
H R R E • j = 583
T H F: i H = 2
F K y D = 0,12
-------
10.644
1 1 . 7 i -4
STOP
RUN*
SEP 2 3 r
I 9 •
13! e -a; 12
MM T H V CONSTRUCTION
1 .
3.
3 .
-: t
•B ,
I 0.
1 1 .
RT r
743
945
5 90
1 23
3 1 6
595
•3 15
644
734
i'PE
BB
BB
PB
VB
BB
BB
6B
&B
BB
AREA
379577
"76304
1158298
29349
1 6 0 S 8 6 9
2617564
3788
5962
2 3 1 3 7 3 i
y IDTH
.097
.1397
.193
.746
. I 63
.283
.079
. 282
. 229
HEIGHT CHLH COHC.
65384 1R 14.837
132791 2 14.664
177141 3 14.365
627 1 . 1 @ a
164311 4 14.3£5
165913 5 14.784
992 .149
493 .234
175322 6 1 4 . 6 a 3 H E X ft N E
METHANE
ETHftHE
P K 0 P ft N E
P E N T A M E
P E N T H M E
T 0 T H L riREft = 32
MUL FftCTOR=l .
RUN PHRAMETERS
• IE ft 0 = 0
flTT 2'- « 3
C H T S P = 1 . e
-------
-------
- " r E 7£N 7 I Orl T I ME
3 = T H E L E £ M T r ! E ;
•* = r E n r., Ij p. ij 0 P i
5 = C ft L I E 0 F T I 0 M ;•
i H 0 o W
S E C T i j
£ o I 7 c 0 :
nH: 1
r T :
I-. H T :
« M T •- - r, i. M :
? E - 0 5
C H L t :
SECTION TO bE EDITED:
S E P 2 .3 , 1 9 •? 1 13:30:26
IS.62
15.
-------
T 0 F
R -J H »
SEP 2
M M T H Y C 0 H 5 T r. U C T I U H
Ho CALiB F-EAk3 FOUND
M R E n "',
F:T
1 0 . 0 2 •=
15.^89
13, 3" "5 4
25.825
Tr,L ^REA =
HREH
17757 '-•>
-5a£>-J*
286 9 5 3
2 7 9 8 1) 7
5 1502547
T Y1 P E
F'B
BE
F'B
1 r'P
WI DTH
.214
.442
.413
.1=34
M R E M ','.
11.8185*
S3. 40 152
1-5 . 337"
I ij . 6 2 2 1 3
F, UN F^fcflPIETE F; S
ZERO = 6
MTT 2" = 3
C H T *F = 1.0
Ar; REJ = 'SOiJ
T H R 5 H = 2
F K U 0 = £i.!2
-------
j . i 4 ^
j . 5^0
•3 . -i 5 o
8 . t 0 8
8 . a 6 W
1 0 . 3 3 •»
1 0 . (iib
11. 5 e a
1 1 . 735
12.6?2
15.663
-------
T i I'! t T M 5 ^ E -5 7 C, F1
Rod
H H T H 'i C 0 H i T F. il C. 7 I 0 H
t r i j . 1 7 '7 1 L 4 : o ,• : u
1
1
1
1
1
1
1
1
1
1
i
ii
c
T uT
M U L
R. 1.1 N
ZEf:
rtT T
CHT
MR
TrlF;
Fk
t", T T
. r o '•>
t . i 4 I-
1 . 505
2 , 2 J y
? . J 4 4
3.50*
6 . j a 5
7 . 637
o , 4 o •:--
S , 3 6 u
u , 354
0 . 6 i 6
1.50 8
1 . 755
£ . 6 7 i
5 , 663
6 . 199
6 . 6-33
7. 70S
3 . 5 ;i Q
1 . iJQ
3. 595
5,145
ML HR E H
FACT 0 R
ire H r. t n iij I U T ri K t i G n 1 C r< L B C U H C . H ft ('1 E
p & i i e- c- < i. . 1 i 5 1 '3 i ? 0 *i c , -; ? * c. T H n N c.
DC i i •'.' 5 1 6 . 3 i -3 87*5 4 . 3 j 4
E t- 4 0 i •-' 1 . y 6 3 1 »j 660 3 . 5 0 -i P ?, 0 F H M E
B B i il 4 J i .091 1919 .411
P 6 7 7 J 3 .1 £i u 128'- . i 0 3
D B i 0 5 5 7 ,135 3 7 o 0 1 . i •'? S
b 6 7 i i: i ? .357 3 3 £ '9 i . 7 '5 5
BB 7 171 a .254 47ll 5 _ ,5i3 PEIITflUE
D & 3 4 =j •:- a .135 2 •? s ; 1.357
b B 1 a . j 1 7 . 1 4 ,3 2 Q 6 9 , 7 i ">i
F E ^ 5 o 7 . i 6 '8 649 . ••'' _
3F =
RE J =
™ U —
UD
0
3
L . 0
5UW
2
a. 12
-------
E? ,; ;• • lr-I I 4 : 4,-: -14
10.610
15.
1 a . 9 £
-------
.,.„-, -
c I ll t : - C3
\-
r* LUi » i c ^tri^jiS^i ;
&
MnTH'i CONSTRUCT I OH
H 0 C n L I B F' £ H r, i F ft I j f'4 0
H K S. M '*,
nT nr.En TYFc WIDTH nKEfi'.
1 >i . i i y I T 1 i .J5 6 SB . i i 5 i I . i 9 9 6 5
1 t. . - o I c- T 5 •? 1 4 r 6 .104 1 U , '? J 4 ti 4
1 i . ? i 1 c ii U D ? i 0 V 6 . 4 I >i 3 •* • ? 3 o- >i r
I 5 . 0 k ," i 6 i j 4 j 4 P B . r i: "5 3 i . 5'? 9 4 .i
T U 1 ri L H F-! E rl ™ 8 0 il t^ '3 C D
H i j L F H C T 0 F, = i , (j C y 0 E * 0 fl
F. u r-i F r, R hi rl £ T E F. 3
Z E R 'j = a
H T T i •" » '3
C H T S P = I , 0
M R R E J = 5 B >5
T H F. S H » i
F K U 0 = S . i i
-------
55-3
•3 2 5
•i . -i c C
8.931
10,342
1 y , 5 v £.
1 1 . -145
11.75 1
:. 6-t 1
16. l 'J 7
16. 6 a 0
1 51. 5 3
<•:: j , ? 6 ?
24.920
-------
M n T n Y C C ri 3 T r, U C T I 0 h
Tu-riF.
,
I .
1 ,
-.
J;
s.
;J _
O ,
l 0 ,
1 0 ,
I 1 ,
1 1 .
1 2 .
1 b.
l-i.
1 7 ,
1 3.
2 1 ,
24 .
;•
'?
0
.j
-^
j
c
.3
ij
-j
5
-(
7
r>
1
6
7
5
i
•J
r. 7 i
JO
u 7
- c;
3 5
i o
-! 'V
•?5
& 6
b c
3 I
4 i*'
*? 2
T 3l
5 L
4 I
9 7
Q9
•3 6
'37
s*
£9
' i r c
f 5
6 b
0 D
5 o
B E
V B
BB
bB
F b
BB
EE
P6
BB
BB
BB
BB
BB
£6
P6
BB
P6
PB
n R t 1-1
^744 \
.5 i 5 0 "i
5 i ';' o 7
3 i •:• r 0
"i i o 2 ^
a 4 ,5 1 ;
15777
1 7269
o o 3 -i £
£3081
c 1 i77
1 'tf j ^
4 :j 9 3 .3
3 'i 4 3
5 4 •-, 3 9
3 9 'J i 5
4-539
35054
13344
65499
2 2 3 & 9 6
1710
U i i
. 0
, 'J
, 1
. 1
. 1
• 1
. 1
. i
. 1
• <:
. 2
, c
. 2
. 1
.<
• 3
,5
. '?
. 1
TH
53
4 1
u2
•:• i
1 6
4 1
0?
77
7 '5
90
05
21
91
a?
c' 3
69
aij
99
21
5?
'3b
03
HE 1C
o5
1 £ 9
47
d o
1 i
24
16
33
24
1 7
i
£ 7
1
4 1
J f"
4
2y
7
19
3 7
2
H
'Q
2
,j
^
7
•J
•^
1
5
3
5
9
3
0
o
2
1
1
5
4
o
r c n L R c <:
0
i
2
3 i
t
4
a 4
•*
a 5
l
l
3
9
5 «3
3
5
2
y
9
3
5
J 1 1 C .
L ' U
. 5
I . i
. I.
_ _,
, 9
. l
. ^
. 4
L . 1
. 3
> y
1 . 9
. 0
. 3
3. 5
. i
1 . 3
. 5
i. S
e, 7
rlMllE
7 o
95 E ' H ri N E
S4
r 6 F R 0 P ri M E
5 i T\^
^\V^
4 e P £ H T M H E *" A
p ™
i Q F E r<7 M riE
y 1
50
7 c
1 9
92
47 HE KM HE
23
86
"3
•i 3
>j9
73
o"
TOTAL H RE M= 37 313 7
H U L F H C T 0 R =1 . QOQ0Et0Q
RUN PflRAMETERS
ZERO = 0
HIT 2-" = 3
C H T 3 P = L , 0
nR REJ = see
T H F; 'i H = 2
F K: u o = 0.12
-------
•:.i •_ • s r = .;• •: £ D i.. P. s
f. E T E N 7 i 0 N TIME uj I H 0 i
T H & L E ENTRIES
r E H K d P. 0 U F S
C M L S B 0 F T I 0 S-t :
;• c.'. T i 0 f I i i j £, £ EDITED: ^
1 = C H L i b f- f: 0 C E D U ?. E
>i = f, £ T E H T I 0 K II It E ill I H D 0 U 'i
S - ThBLE £ M T RIE S
4 - r' E n K d r, 0 U f i
5 = C M L I B OPTIONS
SECTION TO 6 E E D i T E 0 : -5
C A L It : -i
P.T :
fi i'l T :
H K T '' H F', E M >
HhiME: B U T ft H E
C fi L * :
5 t C T I ij K TO BE EDITED:
* L I '5 T : C H t I B Q
E 5 T D
F E F :-.
LEVEL
LEVEL
LEVEL
C rl L 0
IP
i
3
4
5
6
GAL*
L
2
'1
4
5
o
P, T U : 5 . 6 0 0
; 1
: c
: '-3
RT LV
W . T 3 4 I
2
3
8,9£7 L
1.554 1
2
3,772 1
2
7.347 1
1 1 . e b 5 1
NAME
M E T H A H E
ETHflHE
P R 0 P ft H E
BUTANE
P E N T fl H E
H E X A H E
H 0 H - R E f ': R T y
RECHS. I BRAT I OH
RECALIBRAT ION
RECftLIBRrtTIOH
: 5.
^ "m I
3 : i
3: I
ft M T MMT/AftEft
i . 5098E + 0 1 3 .
i . Q256E+S2 3 .
'S.960iE-ei 2.
i.AseeE+ei i.
1 . 42a0E + 0 1 1 .
i.384eE+e2 i.
!.,460iE + iSl 9.
9 . 7 3 1 6 E + 9 J 3 .
1.4680E+81 7.
I . 4560E + B1 6 .
924FE-
3 5 9 1 E -
99B0E-
8399E-
243TE-
2553E-
2252E-
89 58E-
268 1E-
3 1 1 6E-
«5
65
05
95
05
g>5
06
06
06.
Qi»
OH OPTIONS
F; F o i u r. c- a 1 i b r -a 11 cl o e a
Calibraiion f ii
3 . 9 -d 2 8 E - 0!
-------
i L L t' - n L F 1 L £ H M M E
k LIST' c PI L I 6 o "i
ILLEGAL FILE N H Ms
>• L I ? T : Tnriri = i,
>• L I i T : C M L I E> LEVEL c.
! L L. E G H t. FILE H A M E
34
SEP 23, 1 9 9 1 1 6:Q a:5 0
10.335
10.5 '3 -3
11.765
12.655
15,
-------
T I n E T n S L £ 3 T 0 ?'
F; U N ft
M " T H Y .". 0 H 5 T R U C T I 0 H
i E F' 2 3 . I'? '5 1 I 6 = Q 2 :
•=, T D -
1 .
t .
2 ,
-3 .
3 .
3 .
j .
i.
^
i .
3.
1 0 -
i *> ,
1 1 .
12.
1 5 .
16 .
1 6 .
1 7 .
1 a.
£ 1 .
S3 ,
24 .
25,
n R E H
F, T
•j- 15>
u 3 2
5-56
244
I -jy
3 39
5? 1
843
5 9 3
Q *i y
3 ^ •-?
•344
325
593
765
b5 5
65<3
136
o j y
6 '? 5
544
31 5
375
866
f| 9 5
r ,' p E
pe
BB
66
B6
BB
BB
bB
BB
BB
BB
BB
BB
P6
BB
6B
BB
66
B8
68
PB
BB
BB
VB
BB
BB
H R E M
24444
4 1 13 8 tj
5 y 6 6 3
5 4 3 i
3-404
6*?U
2 3 ore
23553
45644
7523 3
3 b -d 3 "i
2 3 3 6 3
2£ 1 4
5 -5 y 2 4
b 6695
106530
374514
6110
5 15«6
1 1609
2353 S6
144313
623919
116327
70544
U I D T H
- 04 0
. 130
. as i
. U"^
.111
.113
- 1-38
. i3e
- 23 1
.266
. 2 e i
. 206
.062
.26'?
. 2 1 '?
, 246
.419
- 174
.381
. 253
. 995
.593
1 . £l 4 ?
.941
.623
H E 1 C. H T
10164
5344
10453
1 1 54
510
345
3 "i y 3
3 o 2 '5
2671
4715
3 0 1 3
2336
5 '3 7
3713
5037
7229
1 4 8 S 6
534
2356
~50
4 7 3 0
4054
9 9 1 2
zas a
1337
C A L it C U U C .
2 .462
1.632
J .63 3
. 2 1 3
. 134
.262
i . 1 '3 1
4 .217
1.767
5 .549
1.425
1 . 132
.037
2 . 346
6 .421
4 , 173
14,638
, 240
2. 023
. 455
11. I 9 «
5. 660
24.470
4.562
2.767
HnME
E T H H H E
PR OP HUE
B U T H H E
P E H T A H E
HEKuHE
T 0 T H L hi R E rt = 2 2 S 3 5 U 0
p! U L FA
PARAMETERS
2ERO = 0
M T T i " = 3
CHT SP = 1.9
-------
-------
o. * r?
~i . 3 c -)
7 , i 1 0
18.318
16.595
11.763
Ic. 650
14. 333
16.236
I Q . 634
-38
21. 3 £ '5
953
-------
i'OF
P. u h »
M n T H V C Q14 '3 T f; U C T i U N
o c. r c i
1 S1 '
i o i 3 9: 14
E i 7 u -
.
I .
i.
3.
0 .
7 r
3 »
10.
1 'J .
1 1 .
1 C i
i 5 .
1(5.
16.
Id.
2 1 .
23 .
2 6 .
"r. t H
P. T i
:-i '?
170
567
a 2 4
e. A c,
6 1 0
j r 7
3.J4
313
5 ?5
7 i 3
o53
6 54
2 3 9
634
536
329
'5 3 .J
3 Q 9
"i'PE
f 3
£ 6
BE
6 &
E6
E6
&B
BE
P6
66
66
86
&B
66
B&
r'6
PB
PB
PB
pi R E ft
147055
6 1 9 7 .3
22973
26277
62331
7 4 Q 5 £
3697 1
26372
1963
53273
7 3 0 U 3
I 1 9 9 7 2
.S 4 1 7 3 7
1 9 1 ' j
51 25y
54164
133763
121133
3549
UID
* i
. 1
. 1
. 1
. i
. 2
. 1
. £
, 0
. 2
. 2
. 2
Th
1 3
4 ,'
34
ir
23
6 i
99
oa
o 5
' -j
28
7o
.406
i
49
HE I
i 1
-
2
3
o
-4
-2
2
:3
5
7
I 4
,361 2
. 4
T
. 6
, 3
-M ~1
(' /
1 4
78
6 1
1
4
G
2
a
i
2
1
f7
6
1
3
2
3
4
»3
2
H T C H L 9 C
2
i
e"-
«3
6
-
4 2
9
3
5 4
*9
S 5
94
-j
8
2
•>
1
2
1
8
v
p
Sm T1
2
0
3
Q H C .
2,77
2.43
. 50
, 24
2,44
. 34
1,45
1 . 92
• *7
2. 93
. 46
4.70
13.4 y
. 37
riHPie
3 ETHnrtE
1
5
2 BUT HI) E
5
4 P £ N T H H E
U
•3
7
•~£
1 H E X ft N E
5
3
5
340 2 . 3 1 Ci
S
•SI 2.124
407
38
^
1
~Z
5
7
7.46
4 . 75
. 1 3
3
3
9
TOTAL ARE»:«=:4691S7
H U L F H C 7 0 P. = 1 , fl 6 y « E •*• S ^
RUH P M R H 11E T E R 3
ZERO = 0
H T T 2'" ~ 3
C H T S P = l . Q
HR REJ = 5Q»j
THP-SH •= 2
PK UO - d.12
-------
•i . 5'? 5
s . 3 j 0
1 0 i -3 '5 8
I 0 . •» 1 5
L L . 4 7 5
11.363-
1 -
-------
K j r-i •
E 3 7 Q ~ H P, t ri
i
1
1
1
1
I
I
I
1
I
C
1 .
•j 1
3.
i.
T
a.
3 .
y .
•3 ,
i ,
i ,
2 .
5 «
6.
6.
(- _
3 .
1 .
£4 .
£
5.
'y
*j
D
o>
o
6
4
3
3
6
4
*3
6
6
ii
6
•3
g
4
t)
1
K
1
6
•r
-_1
VJ
"5
j
9
•i
L
T
3
•j
.3
7
7
0
5
3
1
3
u
6
b
•j
5
3
a
6
04
4 4
8
4
ij
b
6
•j
5
I
'J
•>
T .' F E
Pe
BB
?5
SB
BB
D B
BB
B&
F B
66
BB
&B
BB
BB
BB
BB
BB
66
PB
PS
1 VH
^
4
2
L
6
0
J
2
4
c
1 1
3 1
i
M
5
ii
2
2
2
'3
6
'?
2
4
1
RE H
i:3
1 7
7i
1 1
37
1 J
3 b
64
&6
p; 2
1 5
8
3
C-
^
i
•5
3
1
0
a
a
bJ I LiTH
. 0
• i
. 1
. 0
* j
, 2
. 1
> 2
. 1
. 2
. 1
33
60
35
72
26
44
9 o
05
44
4 7
87
9 '3 6 0 .220
5
0
8
348 . i
.'i e a
19
Q
. 3
. 1
3 8 >i 2 1 ,2
1
6
3
4
62
7 2
95
52
9 86 . £ '? J
95
^?
. 5
'342813 .4
1 1
2
09
32
4476 ,645
4
317 .446
HEIGHT CnLfl COIIC, NAME
UJ41t) 2 1.042 ETHMI4E
4 3 a 7 1.311
2 3 0 2 . 3 •> 1
2 d 1 5 4 .112' S iJ T H H E
24^7
3 S3
3886
1 79
533-1
7361
13396
3 6 ?
2552
9ij4
2128
32,57
295-5
•J 8 9
304 P E H T t, 11E
1 .
t .
,
1 .
.
4 .
1 2 ,
.
1 .
,
C •
J .
4 .
!
426
163
104
746
045
442
543
1 73
3 9 9
5 15
624
543
698
496
954
H E X ft H E
TOTAL AREM=lc40945
MUL
RUN PARAMETERS
ZERO
ATT a "
CHT SP
to R R E J
THRSH
PK UD
S
=
m
=
=
a
0
3
i , a
see
C.
b, I
-------
(.
"
s T o P
RUM*
SEP 23, 1991 17i50i5
MflTHY CONSTRUCTION
E3TD-AREft
R T TYPE
.745 B6
.956 &B
t.£85 BB
3,359 B B
3,994 B B
11.302 P &
AREA
356619
7 S 4 a 4 2
1 1 s 0 3 3 5
2023450
4718
2 2 9 a :3 9 4
DTH
108
ie&
1 10
164
203
390
219
HEIGHT CrtLIt CQHC.
652€il
130551
175048
Io3e46
165912
931
174970
1R
2
3
4
3
6
15.
1-4 .
1 4.
1 4 ,
M.
14,
3
*
4
7
"7
1
S
24
i 0
91
73
47
85
e~
H A M E
M E T H ft H E
E T H ft N E
PROPANE
BUTftHE
P E H T A H E
H E X H H E
TOTAL
nut FACTOR-i.eeeec+ae
RUN. PflRflMETERS
2 E R 0 = 8
-------
-------
3 c. r » j
>>
M Midi C 0 ti i 7 r, u >. I I 0 f i
E ^ s G ~ H F., E M
R T T i1 F E
Ld 1 U T H HEIGHT C M L * C 0 H C ,
.033 -t,"" 4 7 I r,.
11 (i 11 E
. .~y i MET HritiE
1 U L F ii C T 0 R = 1 . €' Q 0 0 E * U U
R U ti F' A R A M E T E R 9
ZERO = 0
M T T 2 "' - j
C H T 3 r = i . Q
AF; RtJ = 5u«
T H R S H = c
F K kj D = 0.12
-------
fun 1
1 0 . o <5 ->
13.715
25. 06-*
-------
i M £ , i-i 6 L £ i i u r
•< U H *
STRUCT i CM
t3lU-nrEn
n 7 T i" F E
« / j LI b B
i 0 . 6 o 3 Bo
i 6 . ;5 4 y 8 S
1 ^ . ? '? 2 F 8
2 5 , -j 6 J P B
bi i D i H
4 T 5 5 5 "5 .59?
c '5162 8 . 19 '5 5
H£IGHT CHUS i^ONC. rl^PlE
r.Jili IF: i.SJt PlETHnHE
i -t 0 3 0 " . 0 i 3
T ij T r» L H p. £ H = 2 5 9 I -4 =• 1
W U L F H C T 0 F. = I .50 0 0 t -»• 0 0
RUN P
Z E F: 0 =
H T T £ " =
C H T S P =
HR S:EJ =
7 H R S K -
F K U D =
1 . 6
500
6.1
-------
i E P i 4 , 1 ? ? ; 3 -i : 4 j : 4 ji
RU N « 43
> E f' £ -t .. I -?'? 1 8 6 : 4 '? : 4
MHTHY CONSTRUCT I OH
£ S T D - » F. £ H
F. T T Y P E
.5*5 P6
.753 B B
flfiEA WIDTH
3338 . 2 5L
> I 6 I 3 , 0" s "3
HEIGHT C AL * C0 H C, NAME
255 .151
5583 1 ft .'"-"Ij METHANE
TOirtL H R E H a
MU L FACT Q R-U
F: U K P M R M M E T E R S
2 E R 0 = 0
HTT 2A = 3
C H T S F = 1.3
AR RE-J = 508
T H R S H = I
P K U 0 = 0 . 1 2
-------
." 4 a
0. :-4-.j
1 . 5 a 4
11.746
STOP
RUHR
SEP £4, 1991 07:34:89
PI A T H Y CONSTRUCTION
1 . 5%4
.614
TYPE
BB
8B
BB
PB
68
PB
AREA
289279
66325?
1368131
206714?
197 1943
22S31 14
U IDTH
.696
.892
. 185
HEIGHT CflL* COMC.
1R 13
2 12
3 13
4
. £19
121648
168556
166369
163485
17212?
642
238
18.396
14.372
14.234
NAME
M £ T H A N E
ETHAHE
P R 0 P fl H E
eUTftHE
P E N T ft N E
HEXAHE
TOTftL fi|REfl=33127£9
MUL
RUH PARAMETERS
ZERO = 0
ftTT 2' = -3
CHT 3P = 1 .0
AR REJ - 588
T H R S H
p K U 0
S
8.12
-------
B U H » 43 S c. F .i 4 - rr '•• 1 .J 7 : c 4 : a fj
11.7-43
R U N »
SEP 24 ,
87124:48
MATHV CONSTRUCT 1 OH
ESTD-AREA
R T TYPE
.
1 ,
3 .
'j *
7.
1 1 .
736
933
584
316
283
652
74S
BB
BB
BB
BB
BB
BQ
PB
flREH
339761
1151474
1594363
2113
1932493
2262450
UIDTH
. 096
. 997
, 193
, 163
.282
.219
HEIGHT
67321
1-33510
177725
163324
596
163956
171959
1R
2
3
A
5
6
COHC .
15.291
14.731
14.379
1 4.705
. 993
I 4. 449
14,230
UrtME
METHflME
ETHftHE
P R: 0 P fl N E
BUTRNE
P E N T ft H E
HEXAHE
TOTftL
MUL FftCTOR-l.e000E*eO
RUN PARAMETERS
ZERO = 9
ftTT 2" = 3
CHT SP = 1.0
AR REJ = 590
THRSH = 0
-------
-UH 4
-------
. Fun »
T A P T
c
IF
i a. 4 15
1 5.
17 . 4 7 5
13.31!
.355
j c r i
-------
T i M £ T A 5 L t STOP
F, U H *
'5 E P 24- l£9 I 39:03:2;
H u T H V C u i i j T R U C T I fj II
HO CrtLiB PEr,Ki FOUND
RT
I 0 . -4 1 T.
i r, 475
n r- E « TYPE U I D T H H F; E A :;
5650' B B .146 11.94314
l 3 1 r t, 3 B B . y 0 Q 2 i . r'? G o 2
213610 B 6 .484 35.16122
1 '3 3 4 -314 PS . i 3'3 "3 1 . '3 'S'3 3 3
TuT«L fc R S fi = 6 y •» o ~ 5
HUU F«CTOR=1 .OOBQE
RUN PARfiriETERS
~ E F; 0 = 9
C H T 'i P = 1 . 0
SR REJ = 5uy
THR5H - -J,
P K, bl D = 0.04
-------
^,'r
:-. u H *
SEP 2. •> , 1 ? ? 1 3 j : 4
I
>
a '3
>TOF
R U N » "3
SEP 14. i 'j 'J 1 3 '5 s 4 6 '• 5 -1
H h T H V C 0 t-i 'i T r. U C 7 i 0 H
R T T '(' F E
99 I 6P
3 -3 b 1
WIDTH HEIGHT Ch*Llt COHC. It A ME
.134 "3.3 5 3 i R i . a 0 S Pt E T H rt fl E
T 0 T H L fi R E A = i 3 6 I
HUL FACTOR=1,OB99
RUN PARAP1ETERS
ZERO = W
H T T 2" = - 2
C H T S P = 1 . 6
HR R.EJ = 599
T H R •-, H = 4
P K U D = 0 . 5 4
-------
F.Ul-il
2 -t > 1 '5 9 1 a -J : -4 3 ; 5,~
M ri T K V C 0 H i T r, U C T I 0 H
E S T D - in f. E H
fi T T',' P E
, 7 •} y 86
H KE M WIDTH
•31484 , 0 9 o
HEiGHT CAL* COH(
5 -! 5 o IF;
MM ME
. '? 4 t M ETHANE
T u i H L n R E A = o 1 4 3 •»
M U i- r h C T 0 R = 1 . 0 0 3 Q E +• B
RUN PftftHMETERS
ZERO = 0
HIT £" = - a
CHT SP = 1,9
HR F:EJ = 59Q
T H R S H = 4
F K UO = S.Q4
-------
:'= T 0 P
RiJrtD 80
; E P 24, I '3 ; I 0 'r : 5 £ : I 3
T H
H !
K lj C T I 0 H
F. 7 T (' F E
3 '5 6 B
rtfiEA WIDTH
> 5 '5 4 c Q .119
HEIGHT CrtLI* COHC, HhME
53630 1 R 1 4.8 3 i M E T H H N E
M U L F H C' T 0 r. = i . U 3 0 8 E + 6 0
R U II F M R H H E T E R S
ZERO = Q
rt T T 2 " = - i
C H T 'a F = l.Q
Mr. RE J = 3US
T H F: S H = 4
F K. Li D = 0.04
-------
STOP
14. 1351
H M T HY C u N '-i T r, U C 7 I 0 N
E ? T u - A R E H
RT TYPE
. T4-4 EB
H R E ft UIOTH
-3 1 0 6 , a 3 S
HEIGHT CMU* COHC, HAilE
4 -t 1 3.3 1 R 10,05-3 M E T H H H E
TOTAL H R E H = i.59ly>i
WUU f HI". TOR= I . &G&0E *QO
R U H P ft R ft M E T E F: S
ZERO » 6
ATT 2"' = -2
C H T 5 P = 1.9
AR REJ - see
THRSH = 4
F K UD = a . 9 4
-------
i T 0 F
R 1J N * 3 j'
. -U .
3 E F- 34- I 9 9 1
E i T 0 - H R E ^
RT '
,' P E M P £ M WIDTH
r B 252516 , 0 'J 6
HEIGHT C A L tl 0 0 N C , N ft M E
•1 3 9 6 •* IF; 9,795 r
-------
I VJ I .J ~) '• ^ .
STOP
F.UtU
'I E P 3 -I - 15 ""-1 I I 0 : 8
"l rt T H 'r! L. 0 N 'i T F U C 7 I 0 11
EbTu-nREn
R T T ••! P t
. 7 5'? B B
AREA WIDTH
3 5 r I 5 . 1 y 3
HEIGHT CALB COHC. HnHE
5 -4 •> 3 i P. 1 . 0 1 £ ft E F H H H E
TOTAL ft R E H = 33715
FA C TO F: =1.00 6 0 E + 0 0
RUM
Z E F: Q
HIT S "
CHT SP
HR FEJ
THRSH
P K U 0
1 . "3
Sue
-t
9.84
-------
F .J I- 0
TF"
3 . ? £ t
1 0 . 5 <) i
2.563
15.5bi
16, 4 8 8
1 3 . 4 1 9
Z 3 . 6 o 3
-------
T 1 M £ T H £ L E 3 T 0 F
SEP i 4
1 0 ; -J 5 : I 9
n H T H Y
' RIJ C T i 0 N
D - M F. E ri
I
1
3
=,
6
7
-------
i 4 . L * 3 L I y = -M ; i y r
fill!
i . 4 "5 ~
.5C>*
11.
15.5 3 3
£ 3,640
-------
i. J - t > 7 i
,—\
•'„ fM
11 H I rl'(' C 0 H S T r, U C T I 0 H
E i r D -
L i
i .
i .
1 .j .
1 1 .
M h/En
f T
r o o
S .; 0
022
457
492
503
' i r
p
o
c
f
V
V
£
s
D
t
O
6
B
PS 5 " BE
1 2. 54y SB
2 I .
2 j-.
0*2
64 >J
F'
p
e
B
HP,
1 f Q
r -» ~*
— -* I
c. ri
32
pj ^
7 5
ul i 0
. j
. U
. u
r o o -* -4 , ~o
T
5
T
C
H
0
-i
1
•94
H e i £ H
535
1 5-i 3
4 -?r
1 i 4 7
!
•>
6
-
•3
•i j 7 r i . t •* 3 -4 6 £ 5
? Q 3
47'?
72-3
73-i
I -J o 5
-3 j
»'?
L 2
24
ijij
. 3
, 2
. 2
. j
. o
5
1
-t
i
6
•j
'S
I
-t
-
426
ipj 4
5 y u
C -J Q
253
5
fT
7
A
O
. J 1^ r
2 . 7 1 o
. 'J 4 '5
1.560
j . 5 b 2
1,87 9
2 . S 3 3
4 . d 6 'j
M >i 11 E
H E T H n ti E
HEXSNE
TOTnL dF:EA= 615140
M U L F H C T I "J R = 1 . fi Q y o E + a 0
R U H FARftMETE F: S
IE R i J = Q
ATT 2" = -2
C H T 5 F * i , 0
AR REJ = 5oti
T H R S H = 4
F k U D = u . a 4
-------
EiTD
Fcr :~. F T Id: 5,oOO HOri-r.EF '. r.I'ui: 3.000
LEVEL; i R E C n L I B F. M T I 0 M S i I
LEVEL: i P- S C A L I 6 P, A T I Q H 'j : i
L E V E L : .;. F. E C A L I B F. A T I 0 l-l S '• 1
C H L I* P: T L V AMI M M T . H R E n
L R -3 . T i i I L.5QOOE + U1 '1 . '5 £ -4 ,"" E - -J 5
:• ? , 5 o y u £ - y 1 I. '3 '5 8 6 E - 0 5
c o . •; i o i 1 . 4 5 0 3 E •>- 0 1 1 . 3 S 3 9 E - 0 5
3 1.545 1 1 . AiB0 E + 0 1 1 . i 4 3 7 £ -u 5
i 1.-3U4SE + 02 l,i5v3E-iJ5
4 -3 . ."* 3 £ I I , 4 e fl S E * vj I r . 2 i" 5 2 E - I? i
2 •> . 7 i i a E + V 1 b , S 9 5 b E - u 6
5 •" . ? 7 7 i 1 . 4 6 3 a E * 0 1 7.2SSlE-Ois
i i 1 . '5 1 3 1 1 , 4 5 9 0 E *• 0 I 6 . 2 1 I 6 E - >3 Q
C M L # r< A H E
i METHANE
2 ETHANE
.; P R 0 P H N E
4 BUTANE
5 P E H T A N E
i HEXAHE
CALI6RATIOK QPTIOHS
R F of u n c a 1 i b r a i e d P * a k s .... i . '•> £ Z tl E - 3 5
C .s 1 i b r a i, i o n fit . , . P
G i i a b 1 e POST.- r g n R T u f> d a ', € . . HO
s ft hi P L E ft n T , a.aaaoE + QQ
M U L FACTOR l.a800E + S6
» EDIT CALIB 3 a
1 » CMLIB PROCEDURE
2 = RETENTION TIME WINDOWS
3 = TABLE. ENTRIES
•4 = PEAK GROUPS
5 = CALIB OPTIONS
SECTIOH TO BE EDITED! 3
C M L * : l I S
RT :
M M T :
M H T , MREH: 3,-»:35E-e5
NAME:
CftL H :
SECTION TO BE E D 1 T E Ci!
* EDIT CAL IB a
1 = C A L I B PROCEDURE
2 = RETENTION T I 11E U I H D 0 U S
3 - TABLE ENTRIES
•4 = PEAK G R Q IJ p S
5 = CALIB OPT IONS
-------
.3 , '•> -i !• 6 - -J 5
C H L * ! 2
f. T :
H t'l T :
H 11T - S p E H :
H M M E :
2 , >J 1 -3 E - y 5
t » L It : 3
F T :
h M T :
n Pi T , M F, E M :
li ri n E :
1 . 2 S 6 E - 0 5
C A L * : 4
P T :
M M T :
A rt T .' A F, E ft ••
N H H E i
•31 . 1 5 6 E - W D
C H L # : 5
ftT :
ft W 7 :
ft 11T -' ft F; E H :
M H M E :
7 . -3 'd 3 E - «
RT ;
AMT-'MREM: s.
CTION TO BE EDITED:
-------
§:§?§
i. -M :•
16. 5'33
1 1 , b 7" 8
14. 195
15.551
13.
23,6
-------
PI n T ri Y ;; o H i T r. U C T I 0 N
1
1
i
1
1
2
<=•
TOT
MUL
R U H
2 Eft
nT T
CUT
riR
THft
P K
f : T i
• 7-,,j
- o .; 0
i.o; o
1.44V
J . 4 o 0
7.521
>;i * 5^3
i .
66 52V23
& S S 2 5 1 7
SB 251107
V B 243151
F- B I 7 ii 2 i :3
B B 107577
= 127-3977
= i , a u »3 e E T e a
TER3
0
2
i . 0
5ua
4
i J . U 4
W i D T H
. 0 3 i
. U i»4
.032
.085
.144
.221
. 1 ' i 3
. 4 t:j
. 2 1 S
.243
. "•.> 5 .5
. r o 1
. 7 i y
.654
HEIGHT CnLB C OiiC .
h n I'l E
M E T H « H E
4*4 6
5 i o 4
1 1737
4131
j 364
2743
1 . 5 3 15
1 . U 5 d
4.270
2 . 0 7 19
*? . S 4 S
F £ N T H H E
HL I'. n
-------
.'-/ lu.S-M
i a. a u;
-------
0 d »
n H T r! V C 0 H S T R U C T 1 Q N
HO CMLJS PEHK'i FOUND
» R c n:.
r T n p. E M r f f c a I Q T n n f, c. n",
10.544 I o Q 0 1 j l ft, . 2. 1 4 i i'. 5 o 1 i 5
i 'j , ^ v ^ "a 5 ii "5 «' I f* o . '3 ^ d .3 . ,- 5 1 '3 j
L j , .= Q 7 ^ 5 !3 6 i 0 0 f 6 .-410 j 4 . S 4 ^ s 7
2 4 , S 1 5 i 5 c j '; r b F'S . ." S -3 3 i . o ~ 4 I -3
T 0 7 H L M F. £ S = r 4 5 a * 4 .~
M U L P H C T 0 R = i . u « 0 0 E - S O
RUM PRRnllETERS
ZERO = fl
nTT S." - -2
C H T S P = 1 . «
nR F.EJ = 559
THRbH = -1
F1 K U D = u . Q 4
-------
u H » .3.3
10.57 I
15.613
24 . 3-J3
-------
MH7 HV C 0HSTRUCT ION
(&
HO Cn L I 3 r E h K i F 0 U I J D
H F, t n ',
f . T r, K E n F r' P E WIDTH
1 0 . T. T i i 5 o 0 7 t. E- & . £ 0 '3
I '3 . -3* i ^ ^ ^ -9 ii y -5 D E .411
i 4 . 3 i -s i I S ; 5 i r' 6 . i 5 4
H F. £ H -";
I 5 , •? y i -~ -J
,]v ,T * -3 ~ -1 Ci -;!
T 0 T H L M r. E M = ii 0 i J -S I
M U L FriiLTGR =1. 5 6 w & E ••- 8 8
r, U H r H R H t'l £ 7 E P. D
Z E R 0 = &
M T 7 i = — ^
C H T S P ' t , 6
HP; R E J = 5 0 S
T H F. 3 H = 4
F K U D = 0.04
-------
E :TD
r E F •'. R T U : j . 0 u 8 H 0 M ~ n. t F '. F. T U : 3,00 -j
LEVEL: 1 FECnL I 8PnT I DNS; i
LEVEL: 2 F £ C ri L I B F- A 7 i 0 N i : i
L E V t. L : 5 F E '„ n L I & r. n T ! 0 H 2 J i
L V ^ M ' H F1] T - ri r E M
i 1 . 5 0 5 0 E •»• 3 1 3 . .3 -1 j tj E - u 5
2 L .0 c 5 0 E » 0 i S.3591E-G5
; ? . 5 c- 0 0 E - U i i . 4 j 5 U E - U 5
1 1 . 4 5 u Q E + u i £ . 0 I -5 0 E - 0 5
1 i , J i u 0 E » 3 t L . 2 5 D 5 E - 8 5
t i .ou 4 u E »0Z l.i55jE-85
1 1 , 4 6 Q i J E + 6 L 9 . 1 5 6 0 L -1) ii
Z 5 . ~ 3 1 O E " 'i 1 S . S 3 5 o E - Q >i
7.563 I 1 . 4 6 Go E * u 1 7 , 3 S 3 3 E - ti 6
L c , o ~ 4 i i . 4 5 Q o e * y i B , 4 e 7 5 E - a 6
C A L » H ft M E
1 M E T H A H E
2 E T ri ri if E
o P R 0 F H H £
4 BUT ft HE
5 P E H T H N E
D HEKHHE
IOH OPTIONS
P F of u n c a 1 i b r a i * d B e •» V, 5 .... .j. . 5 i i 8 E - -J 5
C or 1 i b r a i, i o n i i i ....... . ..... P
D L s a b 1 s P u = ', - r u n F: T u fr d a 1 4 . . H 0
oHMF'LE ft M T ........... . ...... 8
M U L F A C T Q F: .................. i
•i EDIT C H L IB 2
1 » CALIB PROCEDURE
£ = F; E T E N T I Q H TIME U 11J D 0 U 5
S = TABLE ENTRIES
4 = PEA K'. u R 0 U P S
5 = C A L 1 8 0 F' T I 0 N i
SECTION TO BE EDITED: 'C
R E F :•. F. T U [ 5 . a 8 6 ] : BREAK
•t- EDIT CALIB 3
1 = CALI6 PROCEDURE
2. - R E T E H T I 0 N TIME U 1 H D u U S
3 = TABLE E H T R I E 'i
•» = F £ M K GROUPS
5 = CHUB OFT IONS
SECTION TO BE EDITED: 3
C H L » : (i
RT : 11.74 a
f> M T :
H M T x H ft E A :
NAME:
-------
,- , 5 5 0
1 0 . 5 j 5
1 1 . -i ? i
12. °j7 I
16.5 0
i.150
2.3 . 6 r ^
-------
HriTHY CGN3TF.UC T I Oft
C '5 i U - t
1 I
•5 .
•j *
6.
a ,
1 5 ,
1 1 .
1 2,
I 5 .
1 5 .
I *.
1 3.
2 i ,
2 J .
-,
3
•i
;
_-
=.
j
5
i
5
5
5
•5
4
1
o
R7 ]
••3 rJ
9 2
65
1C-
77
*>i
50
35
!r* 2
7 1
7i
7 0
a 6
54
59
7s
• •,- F E
f a
•B£,
?E
•/' b
DO
F £
B 6
SB
F5
BB
BE
BB
6B
BB
PB
BB
BE
5
i
j
2
o
D
i J
-•
1 L
1
23
4
?
2 1
1 1
n f, E
i 2 7
• t I
Oc 3
2^4
244
6 o U
0 15 7
33 2
5 -3 4
174
S ? 4
2^.5
132
5 8 3
4 8y
H
C
0
i
2
cj
I
-r
•J
1
t
?
-
3
. 1 4
. L j
. 3 -1
I ta -'
. i v
. 41
. 22
. 26
. j -J
. i 4
. 2 7
. Si
. i3Q
, 64
H
O
7
2
*
6
5
0
9
2
3
y
5
T
b
1
h E i i j ri T C H L ft C
4572 IF:
i 3 4 i 5
i 1 5 J y
4 7 5 •?
2 '5 i 2 4
'3 0 3 ii
4 5 5 •? 5
3004
5 .3 1 4
5134
7 j 3 2 6
-3 b b
14147
£ 5 -4 ?
2275
4444
2 935
0 H C .
2,
2 ,
I .
2 ,
1 .
5 .
2 .
,
1 1 .
l .
2 .
3 .
4 .
HMWE
2 2 j PI E T H
o s •?
's 5 o
5 CJ 4
2 1 j 3 U T M
44:-
503 PENT
J '3 A
1 25
7 7S
74-i HEXM
4od
.S 3 3
i 7 3
321
4 3 'i
502
3 0
M U L F M C 7 0 R = 1 . 0 3 6 0 t ••• 0 u
R U H
Z E R U «
nTT 2A a
C H T S P =
AR REJ =
T H R b H *
F C, LiD
I . 0
4
8.64
-------
? =•?•" ". r. Tiij: 5.0-30 H On -r.tr '. F, T W: 5.000
LEVEL: 1 F, E C A L I B F A T [ 0 US; 1
L e ''•' E L : £ • F E C M L i B F A T 1 0 N i : 1
LEVEL: S F. EC-HL i E F. AT I OH'a : I
L n S T
IF' 0 . ~ 4 •=•
i .J . *:> i ,?
.:. i , S 4 5
L V
1 1.5
2. I « bJ
I r . ?
i 1 . •)
1 1.4
hMT
0 0
M •«.'
00
J "5
OE
'it
OE
yE
2yyE
i i . 0 0 4
- 3. 74 i
5 ,? , 55?
i 11.953
1 1.4
£ '; . 7
i 1,4
i 1.4
O1
^ 1
& £
6E
OE
0E
» 0 1
-"-82
-0 1
*'j i
+ 01
"4i
+ 0 1
-01
+ 8 1
5 Q 6 E t y 1
r,HT
3 . S
i . i
i , 4
i, -3
i . 2
1 « ^.
? . I
3. 3
>•
4
5
.5
i
3
.J
5
!5
7, 38
b . ^
0
APE
JOE
9 1 E
5 U E
j 0 E
c-f'E
5. IE
•iOE
53 E
30E
75E
A
-0
-a
-9
-y
~ P.
- a
-«
-0
- e
5
5
-j
5
5
5
t'
b
6
-ijii
C H L tl ri A H E
1 M E T H A H E
£ E T H H N E
i P RO P H H E
4 & ij T H H E
•5 PEHTftHE
o H E X ft H E
CALIBRATION Ij P r I ij H S
R F o i u n c a 1 i b r a i e a r> s a k s .... 3 • 9 2 £ 8 E - 8 j
C a 1 1 b r i 11 o n Ml F'
D i •=, a t. 1 ~ pos-t-ruri R T u B d a T. e . . NO
.- H i't F L E M M T e.aaeeE*-oe
MuL FACTOR i.eeeoE + eo
' EDIT CALIB «3
i = CHLIE PROCEDURE
£ = RETENTION TIME UII4DOU3
3 = TABLE ENTRIES
4 = PEAK OS GUPS
5 * C A L J 6 OPTIONS
SECTION TO BE EDITED": 3
C H L It ; 6
RT!
HPIT i
A N T .' A R E A i
NAME :
C H L » : 6
R T s 1 1 . 7 4 S
ft W T =
A M T .' » ft E A I
H rt M E :
C A L # :
SECTION TO BE EDITED:
* LIST: CrtLIB i3
-------
5, -. - i- i c S - 7 i '.' ; ( : :
L E V E L
C H L S
1 r.
-
i
-!
5
0
;^, *"Cvi-iLIdr!-T
; it F E C H L I B R H T
P T L V H H T
Ci, -n r i 1 . 500SE t-G 1
2 i . Oi^'yE'-
3 •? . '? o 0 u E -
o , > 1 S 1 1 . J 5 d 0 E +
1 , 5 -t •? 1 1 . 4 2 0 0 E 1-
2 l . »j i j •» G E T
i , r -; ;- I i . 4 6 C 0 E +
i •> . r 3 i f> E +•
r . 5 5 ~ i 1 . -4 is 0 0 E •>•
1 1 . .' 4 3 1 1 . 4 5 0 % E *
0£
e i
0 l
e i
02
U i
y i
0 i
y 1
1 1J N -3
i 0 1 1 :>
Hf'lT
S . -j
i , -4
C . 0
t , 2
I . 2
'5 , 1
!3 • >3
"!* T;
is. 4
' 1
• H R
•* ?0
-v 'J 1
•J w y
1 30
'if C- -""
^ 5 3
5cO
7 !j S'
& 5 0
or 5
E
E
E
c
E
E
£
E
E
E
E
H
->)**
-05
-05
-05
-flii
-.3^
-&•;.
- *J S
-^^
(,$
IN X
^/
!- H L * N M W E
I METHANE.
.5 FROPnllE
4 BUTriHE
i HE ;-: HUE
i; H L i a P. A T I 0 N 0 P T I 0 N S
F; F o f u n C a I 1 b r a I € d p e .a k. t .... 3 • '
C a i i b r -a ', i o ri r i ', , P
0 i » a b 1 * B o s t, - r u n R T u P d a i« . , HO
SfiMPLE AMI 9.
M L! L F H C T 0 R 1 .
-------
:
i . 4 -»-5
7.543
10.5 3 7
1 1. 6 919
12.591
14.a^a
15,53
16.582
21 . 178
-------
j : "". 4 : i o
M „ T H V C 0 ri S T F. U C T I 0 N
£ i T 0 - H r. E H
f, T 1
i -" '1* -
, o <5 'J
i . -> -1 i?
•J i "* *3) O
- _ = 4 -
'3 i i J. U
1 y . 5 J 7
1 i . * -r i
i c » 5 o t
1 "5 . 5 9 0
1 1 . = 0 i
C 1 . i .'' C
ii -? » •' j 5
r r r E
F o
EB
FB
c t
FB
BB
F E
BE,
6 B
SB
F6
rB
66
M F; E H WIDTH
•3 i ':> r i .05 '5
i ,3 S 4 i . i '<} I
i-i?.?,; .14t)
0-3735 . dfj->
.30957 .199
U a 1 o 0 .424
57'?35 .215
i -j 5 3 •? I - i <•> is
0 1 9 '? 7 . 2 i C
1 1 b525 . 5S3
i 1 .3 '5 "? is . "? 5 7
H E I !i N T C H L it C 0 N C .
4 * - i 1 F:
1 u 4 y i i .
1154-4 i ,
-3 .-3 •! J
4 1 a? 5
25'?4
4 o4tj
443 5 6
ii 5 ? <3
i -J 6 .^ J
2 e i i
-5 -i Q 4
239-3
i .
,
1 .
•4 .
•»•
i 1 •
1 ,
4 .
-1 ,
n H PI E
125 N E T H H H E
4 5 '3
7 U 5
276
471 P E N T M H E
i 1 4
•i-3 i
372 He^nrlc
1 53
•?'53
255
•j .••' y
47 i
T 0 T n L -i R E A = 1 8 S ~ t 7 3
PI u L F « c T o F, = i. y e u 0 E +• e a
FIJN PHP, Ml'lETEF,:i
Z E R U = 0
HT7 2" - -2
C H T S F = 1 , 0
H ft F. E J = 5 S a
T >i r •;, H = -i
F k lu D = ^ , %l 4
-------
C PI ^ 1 r F R i.i C c. D !J R c
F, E T E H T I u H TIME ul I H D 0 U 'a
T R B L E e K 7 F; I E 'i
PER K 0. R 01J F -i
C H L I B 0 F1 T I Q ri S
S £ C T I 0 H r 0 & E E & I T E u s 3
'"- M L » : r
R T ; 1 0 . 5 -1 -i
ri M T S 1
ft H T .- ^ R E H s 6 . '3 y 5 E - >j >i
HMW£: BEH2EHE
C H L * : 8
R T : l y . S 0 ~
H fl T : l . n
M M T / H R E H ; -t . 13 5 E - is <•>
H H n E : E T H V L B E N Z E t'l £ N E
C i L » '- '5
F. T : 24.315
h M T : 1 . 8 a
M M T ••' H R: E ft = 4 . 3 2 2 E - 0 b
0-XVLEHE
C h L # i
SECTION TO BE ED17EDi
-------
Q . .J .J 1.1
1 1 . -i^S
L2.579
15,58 >J
1 ? , -5 3 2
£ 1 . 185
2-3.7 0 -4
-------
K IJ H D
H H r H i
E 3 1 0 -
.
1 .
.4
T
*.
1 'J .
1 i .
L i .
i 5 ,
16.
i r.
2 i ,
2 3 .
CONSTRUCT]
[On
hr.;En
F, T
7 7 0
3 ;1
4 8 0
52 ,,
555
3 3 0
549
*'?5
579
5-3iJ
522-
532
105
794
T i F c
r c
bS
f 6
/ c1
f'b
£ a
Pa
SB
Bo
B5
PB
6B
VE
BE)
M r. E n
1 * 3 4 5
i 1027 1
9 S a -i i
54 230
5 6 ,-" -l 3
i •) 1 1 4
1 1 3 3 5 7
6 i 1 7 4
S :j i i 5
27Z 173
i 3 U L 3
7 5 o i ii
4 3 4 7 '? 5
' J 2 S 5 1
U i u T H
, iJ 4 >
, 034
, i i •;>
.1.50
,275
,193
. 3 3 7
. i 5 S
, 2 15 3
, 33i-
« £ o "3
. s6 t
1 . -i 12
. "9 1 '?
HEIGHT t
5573
; 1 '5 1 i
i 4 '? 3 3
6 •} c 3
5443
£ 8 7 '?
5 1 1 S
4U 1 4
5598
I !3&1
I ? 5 3
I 9 0 b
c r '• '
£ 3 '3 e
^i-iLs LuNC.
i F: . j o i
4.325
3 . o ^ 0
2 . 123
V .41V
. 9 J 6
' . " 2 t.
6 . 3 'J 3
3.461
; e . e 7 5
i . <3 ? 3
2 . 3 b b
r:* , >j 1 4
J . *> 4 i
H H [i| £
N E T H H t ! E
r E N T r. H E
6 E H 2 E H E
H E ;', H N £
M U L F M C T 0 R = 1 , 01< t) 8 E + 0 u
RUN PARAMETERS
ZERO = y
H T T 2 •" = - 2
C H T S F" = 1.0
H F: R E J = 3 Q 0
T H R 3 H = 4
F r:. U D = »3 , ij 4
-------
17.
1 S . 7'? ,
-------
(V,
I'l MTU V r 0 H -i T F, U C i I 0 H
n r, £ n UJ I "u * h
ri £ I i j H T
I j -3 0 5
C " L H C 0 H C .
B 6
f I H M £
i , d I i 5 E M Z E ri E
5 • '3 6 -4
1 . .i -t i E T h i' L B E N Z E ri E
i . '} 6 i 0 - .-! 'i' U E H E
M Li L r H L T 0 r- - i , 'j 0 >J 6 E » 0 0
r. U ri r n r n PI E 7 E f. S
Z t R 0 = ij
nT7 c = -£
C h T S p * i . 6
M R R E J = 5 u 9
T H R ;• H = 4
f K 'ul D = y . >J -I
-------
> T 0 P
R U N *
i E P i -4
: -t 5 s 4 2
H ri 7 H V C 0 H S 7 r. U C T I 0 rl
7 u ~ n h c H
R T r '(' r' E
1 . j i 5 I -j B F
nft EH UlIDTH
£2444944 .139
HEIGHT C N L * COlh;. H H H E
3 4 4 0 06 £ 3 £31.929 P R 0P H H E
nLlL FMC T0f: = i . OOQSE
RUH FMR ft ME i Er. 'j
ZERO = 6
HTT Z- = -£
C H T i P = l . 8
fi R R E J = 5 0 3
T H R & H = 4
F K W D = 0.84
-------
-f-r
i a. 5 b s
1 3 . •» 2 13
i s. * Q 2
STOP
RUN* 95 5 £ P 2 4 . 1931 1 6: i 2• 4 £
MflTHV CONSTRUCTION
RT TYPE rtREft UIOTH HEIGHT CAL# COHC. HrtME
I Q . 5 i 5 B B 162243 .299 1 2 9 3 Q 7 .985 BENZENE
1 .3 . -1 2 fj PB 76654 .304
-------
1 5 . 5 3 o
18,
RUri»
SEP 24, 199L l6:5^:5a
CONSTRUCT ion
E3TO-HRE*
kT
13.534
15.58o
1 S , ~ 3 3
TYPE
PB
66
1 BP
«REH
15 3d 5 *
1 •» S 6 3 £ 3
"£l 15573
UIDfH
.190
.913
1 .251
HEIGHT CftLK COHC.
13355 ? .934
2 "633 58,^9-1
£3234 3 IB.iSfl
HAHE
BENZENE
ETHVLBEHZENE
TOTAL HREM-.-J753986
-------
F. IJ M F' H P- IT i'l E T E £. C-
:ERO = o
HT T 2 ' = -2
€ h 7 S? = 1 . y
H r. f, E j = 5 g *j
T H F. •;. h - 4
F K I'i Q = 0 . 0 -t
-------
• H Ij r E r r- D
o £ o r E P K 0 r '". 0 h T r. 0 l- - i
, 5 - 1 5 , >3 r.. r- 11 '.,' S t. 4 i'c iJ -a r d
F. I j H H '? 3 'a E P £
L N u
£4:51
TF
. _ 1 . 1J •> J
10. 3 y;
STOP
R U H *
•J8
SEP 25.- I'JSl 6 7 s £ •» ! 5 1
f'lw THY CONSTRUCT ION
,
1 .
2 .
€, .
16.
RT
5 13
649
893
730
3 0 3
3 3 2
T V P E
PB
BB
BB
BB
BB
PB
1
1
2
(1
HREft
4 6 6"j i36
9 2 fl 9 2 4
353454
880156?
333526
665480
U10TH
, 356
, esa
.971
.152
. 259
.234
HE1C.HT CM|-» CONC. NnME
13/645 1 a.£39
265206 36,119
315662 5 3. I a £
£€15339 73.736
166336 91.717
,' 16.379 BENZENE
TOTAL AREfi=9.6433E+e6
HUL FACTGR-l.S680E+0e
RUN PARAMETERS
ZERO = 8
HTT £-'- = -i
C H T S p = 1.0
Afi S, E J = 5SQ
T H R 3 H = 4
-------
' E F - D
'J s £ 5 F E r- K 0 S. -: 0 I i 7 r1 >J L - I 7 0 E !•> u
•' > o P. R I-, v W e >. r, an* s ? M ri 2 H F. D
i T H F; T
. JJ . ? 1
> E F' i 5 , i -5 i,
07ms 10
tl H T H Y C U U S T R U C T I U N
HO C ft L I B F' E H K. S F 0 U H D
H R E H y.
r: T H F, E H T V P E U I D T H
• 5 I fc) -t u 7 ^ 7 SB . ij6 i 1
T 0 7 M L n ft E h = -) y 7 2 7
f'l U L. F«CTOR=l,oeeeE*OQ
H R E H J;
. ii y ^ S a
c t F; Q = g
H T T 2 ••- = - 2
C H T b P = i . 1
Hp; P.EJ ^ 5iji
T H R i H = 4
PR L.JD = 0 .
-------
rj r c 3 F E H K u r. C v N T f- 0 L ~ f s *J c. (t \j
. ''- 5 :; rs F-,^ TYPE UIDTH ftRErt^
.515 3 i l J 5 7 f-' 6 . y 5 D 1 0 9 . ^ 1J 0 8 0
TOFrti. Hf:£«= 3&9S7
11 ij L F H C T 0 R = 1 . Q y e 0 E + u 0
F, U H PnRA METERS
ZERO = o
ft T T 2'' • - 2
C H T S F' = 1.0
MR REJ = "3ma
T H R S H = J
P K LJ 0 = 3 . 0 4
-------
<. .c ortnf. Of. C
C1-C4 14.5 PFHV
RUN t nil
START
T ? ClL - i
O e N D -•
F
STOP
5EP 25. 1991
10. tO iJ
RUN*
I 31
SEP
9 I 87:56:93
NttTHV CONSTRUCTION
ESTO-rtREn
ftT T
. 52 I
. 000
i . i a 7
2.799
6.328
I 0 . 4 9 S
TOTAL flSEw
MUL FACTOR
Y P E
BB
BB
PS
P6
SB
BB
a .^
= i .
AREA
4632~5
137S8 1 9
2269279
26Q22 13
y IDTH
.S57
. 959
. 871
. 149
. 281
. 225
S90E+ic
HEI&HT CftL* COHC.
134379
2*3785
319205
289526
1 38320
192434
18. 170
36.493
53,o49
73.578
89.001
15.371
BENZENE
RUN PARAMETERS
ZERO = g
flTT 2" - -2
CHT SP = l.e
ftp. REJ =
THRSH = 4
-------
', ij'sE BREnK Or C C'ti T r, OL -'r TO
B T E X '= T li H D K G , 1 F P 11 V
R UN It 1 a 2
S T fl R T
SEP c 5 . i '"i '
0 3 : 1 .7 : 0 1
. •« 3 ^
14,313
I 6.£ 18
16.3 a a
21.437
-------
r o
f. U 14 I
I Hi.
I ?'5l
j S : 1 T s 3 1
I H T H Y C G N 3 T R U C T I 0 N
j C H L I B p E H K S F 0 U H D
'••. E H :•.
P T
i , 2 b o
I 4 . i l 3
lo,2I3
1 e,3*3
hi R E n r v P E u i D r H AREA:;
2U 3032 66 .225 14,43632
2 0S389 Be . 1 'j " 14 , 6 9 U i 3
3 T b 9 S J 66 j . 2 1J 1 i b . 1 3 5 1 4
B 6 ,-336 2 i . T 6 9 4 9
B 6 ,583 2 I .o 6 ' 37
3 1911 3
T 0 T H L H R E A = 1 4 y 1 4 9 4
I1! U L F ft C T 0 R = l . y C 0 6 E + ij y
RUU PARAHETERS
ZERO =
-------
- H 0 7 £ P f Cr
., U .3 £ S E E ri /. 0 a C 0 N 7 R 0 L - < ' 'J END,'
6 T E S X 1 , 13 P P i*" 'J 3 T H N D M ft 0
k RUN* 183 S E P i 3 > 1 9'? 1 0 3 ! 5 -1 : 4 'j
3 T ft R T
- —rr-
14.320
15.511
16.395
21.522
STOP
-------
f "J C ri L i B r E H K > r 0 U H D
RT
S 1
nftEft TYPE WIDTH riRE*;-,
I 9 3 0 r2 E 6 .2 c * 24.49438
3 v 7 £ "5 E: B i . >i ." 1 4 , 5 i J J i
arS'?2l FB . J3? 3=-.£5^-34
T U T H L H R £ M » r 9 t 1 i .5
MUL FriC TG'R= 1 . yuOOE + y-J
RUN
ATT 2'- =
C H T S Pa
* P. R E J =
T H R S H =
P K U D =
4
0.04
-------
R U N 0 1 ,5 4
< r 7
— i r
•9,256
14,3Q5
1 5 . "t 7 1
16,332
-------
r. IJ H
i 0 4
'3 £ r' I 5 - I 5 '? 1
T H Y C 0 H S T R U C T I Q N
HO C R L 1 S F E fi K S F 0IJ H D
H P. t A :•,
F; T n r. t H T V r E lil i D T H n R t h:,
'5.256 13^,13 PB ,227 ii.5r-i-3~
i 5 . 9 71 1 j i 3 3 3 B 6 '? , -4 U S I 7 . 7 i» j -t o
1 Q . o b' c 2^05 -j >S '/ B , o 4 5 -i' y . *2 S 4 i '3
£ 1 . •; i i c 5 i "J 0 6 V B . 3 '? £ 3 a . 3734 7
T 0 T t, L rt F. t M = 3 o o 5 1 fl
n U L F H C 7 0 R = I . 0 0 9 0 E
F; U N P ft R ft 11 E T £ R 3
2 E F: 0 = 0
C H T '5 r' =
hF: REJ =
T H R S M =
P K bi [j =
1.0
506
-)
0,94
-------
»NQ7EPb 0 'i e 5 F. E S K >J F. C 0 N T r 0 L - i' ~ "j END .•
f, L rt H K
i- R U K » 105 S E ? 25-. i V 9 k 10 '. 0 i
^-"vV
S T M R T
. ! F _
"« ; -J § f
STOP
RUN* 105 SEP 25, 1991 1 @ : 6 l ;
MATHY CONSTRUCTION
NO CALI6 PEAKS FOUND
M R E H 'r,
P,T AREA TYPE U1DTH
.•193 130534 PB .036 42.58165
.561 293659 BB .132 5?. 49835
TOTfiL n
j . aeeeE + ee
RUN PARflMETERS
ZERO = e
MTT ~d'" = -2
CHT SP - l.Q
AR REJ - 5051
T H R S H = 4
PK yo = a.64
-------
L 16
R T 10 :
y e y H 014 - R E F :>, R T U :
5 . u y o
LEVEL: i
LEVEL: ;
LEVEL: 5
C A L » R T L V
IF: Q . 7 5 y 1
c
5
c U . '•> 'i i i
3 1,55-! I
£
4 a . r 5 i i
d
5 7 , 46-3 1
6 11.725 1
7 I y , 5 7 6 1
3 13.307 1
9 i 4 . S 1 5 1
C A L It H M M E
1 M E T H H H E
2 E T H ft 14 E
3 P P 0 P A H E
4 B U T H H E
5 P E H T fl N E
6 H E H M H E
7 B E N Z E H E
3 ETHVLBEHZENE
•'i 0-XYLENE
CAL I BRAT 10H Qf'T I OH3
R F of 'j n c « 1 i b r a i e d
D i ~. a b I e BO* i- run R T
MUL FACTOR
RECHL1BRHT IONS: l
R E C M L I B F, S T 1 G 1 i i : 1
P. c. 1 n u I c R ri i i u 1 1 i- . i
H M T n V\ T - n F: E
i . 5 0 Q e E -*• 3 L 3 . S 4 s1 3 E
i . -3 2 5 3 E -*• 3 2 '5 . S 5 9 i E
? . 5 » 0 'j E - 0 L 3.4 i 5 0 E
1.4500E*0V c. • 0 1 i 8 E
l.-li80E + Ol 1 . 2 S 6 fl E
1 . e Q4 y E <• 0 2 I.iSSSE
1 . 4 6 W ij E + 6 1 9 . 1 5 6 0 E
9 . 7 3 i y E + 0 1 S . 3 ••> 5 3 E
1 . 4 ii Q <3 E * 0 L 7 . 3 y 3 U E
1.45UGE-OL 6 . 4 'J 7 5 E
1.0Q0eE + 00 6.6'J9aE
1.14QQE + 0Q -4,S38i3E
l.Qs00£ + eO 4 . ••} £ ii 0 E
p*ak=, .... 3 . '? 2 i S E -
, P
update . . NO
,. o.SoOQE-'
n
-85
-85
-65
-,J5
-05
-05
-06
-ti6
-06
-as
-SB
-06
-0-s
05
00
ea
DELETE CMLI6
LIST; CAL1B
ESTD
R E F :'. 1
LEVEL!
LEVEL:
C H L tt
1 R
2
3
4
5
6
7
3
STU: 5.
1
-
ftT
y , 759
0.922
J . 554
3 . 7 5 i
7 , 463
11.725
10.576
1 6. 307
0B3
LV
1
2
1
1
2
1
2
I
1
1
1
1
1
1
1
1
1
9
1
1
1
I
N 0 N - R E F K
RECALI BRftT
RECftL 1BP.&T
AUT
. 5008E*01
. 0258E+02
. 45ueE + ai
-4290E+01
. 0640E<.ei
, 4 633E + 81
. 7310E*9 1
. 4606E+01
.45eeE*ei
. weoQE+eo
. 1 400E + Q3
RTU: 5.806
I G N 3 i 1
IONS! 1
AMT/ftREA
3 . 3496E-05
3. 359 IE-05
2. 0130E-05
1 .2&e.BE-05
1 . 2553E-95
9. 1560E-06
3. 8953E-06
7.3S30E-66
b. 4675E-96
6. 3390E-06
4.3590E-e6
-------
^. H n K E
? r r -I' F M ri t
•1 B U T M H E
5 F E N 7 H N E
•= HE A H H E
r E.EHZEHE
"= ETHVLBEMIENE
!? C> - X V L E N E
C fi L L & R ft T I 0 r, OPTION'-.
r. F o f j •=. T, - r u n R T update • , HO
S n M F L E ft M T .................. 0 , 9 9 9 U E T 0 >3
M U L F H C T 0 F ............ . ...... 1 . a 0 M 0 E + 8 u
•- EDIT C H L I B £
1 = C H L I 6 PROCEDURE
i. = R E T E H T 1 0 H TIME U I H D 0 U S
3 = T M B L E E H T F, 1 E S
•4 = P E H K G R 0 U P 5
5 = C H L I B 0 P T I 0 H S
S E C T I 0 N TO BE EDITED! 3
C « L « : I
R T : .521
H M T :
AMTVSREA: 3 . 2 Z? 5E -05
H A M E :
C M L * : 2
R T i . 6 b Q
A M T :
H H T . M R E ft : 1 . 5 5 6 6 5 5 IS S $ 6 & 5
I -I ft M E :
CSL* : 2
R T i .640
M M T :
MMT/AREM: 1.5645E-Q5
NAME!
! 3
R T ; 1.107
AREfl: 1.0435E-95
N PI n E i
C H L » s 4
RT: 2.799
NAME:
CflLK: 5
RT: 6.3328120
N H PI F. :
-------
t ^ L » : ?
PT: -5, £,6
AWT: 1 . f] 0
"MT.'sREn: 5 . 1 6 -i E - 0 o
H H M E :
>~, M L # : 3
P. T : 1 4 , .3 i :;
M M T : I . 15 5
f> H T , « S E H ! 5.9S56-yb
H A M E :
C n L » : 9
F. T :
HI1T :
H M T ,' f, P E * :
N H M E ! T 0 L IJ £ N E
C ' H L H ! '•>
f:~ '• 16,333
ft M T : 1 . H
A M T / A R E H i 4 . 9 1 1 E - 3 6
NAME: ETVJSHVLBEN2EHE
C rt L » : I Q
ft T s 21.43?
ft M T : 1.03
S M T -' fl R E ft f 3.322E-ido
H R 11 C : o - X V L E N E
CALK:
SECTION TO BE EDITED:
* DELETE
6 R E H K
* EDIT CHL1B £ BREAK
•c DELETE CttLIB 2 S
* EDIT CfiLIB 2 O
1 =• CALIB PROCEDURE
2 = RETEKTIGH TIME UIHDOUS
.3 = TPBLE ENTREES
4 = PEftK GROUPS
5 = CftLlB OPTIONS
SECTION TO BE EDITED: 3
CAL » : 1
RTi
ANT: .993
flMT/ftREfl! 2.575E-95
H A tn E i
SECTION TO BE EDITED:
-------
H u ri - P E f
L E 'ijl E L
LEVEL
•: A L it
I
£
3
4
5
6
v
a
?
1 £1
CALK
L
2
3
4
5
ii
?
f?
•J
13
; 1
: *
FT • LV
0,521 1
c
0 . b o y L
i . i or i
i . ,T •? '5 I
Q . j «i 0 1
i 0 , 4 0 U 1
S . i 6 6 1
14.313 1
lo. iS3 i
,3 i . •) 3 ~ 1
H rt M E
METHANE
ETHANE
r P 0 F H H E
BUTANE
F E H T A H E
H E X H H E
BENZENE
TOLUENE
E T H '.' L 6 E H Z E H E
o - X V L E H E
R E C A L I e R » T
RECAi-I&RAT
Mf'IT
1 . 5 0 y U E -r 3 1
9 , 9 3 u a E - y I
1 . 4 5 3 0 E - 0 1
1 , 4 2 6 0 E * 0 i
1 . 4 o >i y E * 13 1
i . 4 6 y t' E + 9 I
1 . 4 5 0 & E *• 0 1
1 , 99Q&E + Q9
1.053QE-i-0a
i . nauE + ^e
1 . 0 8 0 9 E -r y Q
I 0 H '3 : 1
1 0 H ^ ; i
M H T A P. E
3 , i 2 7 5 E
2 . j T 5 0 E
1 . 3 i 6 5 E
I . -i 4 i 5 E
~ - ? 7 4 a E
6 . .3 3 8 0 c
5 . 4 3 5 5 E
5 , U 4 0 E
5 . 9 £ 5 a E
4 . lj 1 i Q £
3 , -i 2 2 CJ E
rt
~ -J 5
-05
-35
-e«5
-yii
-96
-06
-©i
-•3b
-e-;
-66
C H L I B R M T 1 u H 0 p T I 0 H 5
R F of un calibrated » e « K « ..
C a 1 i b r- i ». i o r. f i i ...
D i =. a b 1 * P o s t - r u n R T update
SAMPLE fl M T
MUL FACTOR
3.922SE-Q
P
NO
-------
y 11 L i '} 7 I' r . I 0 N 'i
t.;. = i, - i" ,j n r <= r- o r i C '< H * j :
R E f 0 fj - 0 P T I 0 N 3
u P •- r € •» i local r' €• r- o r t t Y -• N * ] :
>• OP It 3
C n L I B R H T I fj N 0 f T I 0 N 3
F. r st u r. ca 1 i br a ': = i-J p«aV. t [ -3 . '5 i3SE -05
P = r> 1 3 c ^ c a 1 i b r a T. i o ri t i », L "i1 •' H •* 1 '
0 I 5. a b 1 «• R o •=. L - r i.i n R T g P .J a '- € C V •'" N (• ] :
SAMPLE H I'l T [ 3 . 8 j el y E * 0 0 J =
M U L FACT 0 R [ j . y y Q 0 £ «• 0 3 ] :
-------
8,ie
1 . 5 -4 J
10 , j 9 5
11.215
12. i 37
12,33J
-1-3. 53.'
I -1 . 3 0 2
1'5 . 1 j 1
13.~ I 1
-------
u H
11 fi T H ¥ C 0 H S 7 P. U C 7 I Q K
E=TD-rtF.Ert
3 c r «; .
R T T ••( f E
,
,
1 .
i .
2 .
2 .
2 .
3 .
4 .
5.
5
b
T
O
0
J
j
S
,7
0
T
3
0
«i
4
L
4
3
7
*
S
L
6
1
5 . 54
b .
6 .
8 .
9 .
1 vj .
1 1 .
1 2 .
12,
13,
14 .
1 5 .
3
9
9
^
3
2
1
3
5
3
1
1
'?
2
b
9
1
3
g
j
o
3
16,59
IS,
20 .
7
7
1
£
•j
3
"i
Id
4
J
2
9
9
J
^
j
j
3
9
6
5
5
5
p
3
-?
2
I
5
1
4
PB
b D
SB
e D
BE
B 5
F-B
BB
BB
BB
V 6
BB
BB
BB
SB
PB
BB
BB
BB
BB
BB
BB
P6
BB
PB
BB
BB
-
-^ Cj
2
42
2
3
3
1
•3
J7
5
1 S
2
19
3
1 1
MR En
y.3<
7 2
63
05
97
9 3
4-3
1 -t
25
76
35
•52
14
25
2-5
77
52
34
1 7
34
30
2 1
54
53
S 3
1 f,
55
85
21
7 9
73
75
1682
39
53
I '5
1 2
2 0 S 6 5
1
I
8 8 3 5
57
1674
395
6
3
1 1
5 1
70
55
36
'2 ^
2 1
@9
20
03
'ul i 0 T H
. 0 4 3
. a 6 a
.046
. 054
. VJ 3 7
.123
.095
- 1 2 Q
. -D 9 9
.134
.345
.110
. 199
. 352
.139
. 1 3 3
.343
.260
.279
.253
,031
, 296
.232
.273
.439
.393
. 566
HEIGHT L ft L It C
2 9 3 3 2 1
209347
2474
6 .3 j 7
3 l 3 S 1
4 05 5
6091
1 132 7
2 3 25 4
i 0 9 3 4
3550
7 9 9
OHC .
2 „ i j 3
24.44
.22
. r? «
i J . a 7
, 96
i . 1 I
2. oc
. «9
2. 32
bl * J i'
. 1 7
NAME
3 M E T H M H E
U
y
-3
y
2
5
9
S 3 U T M H E
8
4
1
4307 1.660
4354 5
2032
936
9168 7
5 3 33 6
6 9 2 9
1359
2077
389
1 £ 0 S 1 8
2 3 5 1
2474 9
3735
3851 10
« 6 -j
.72
, 25
0 P E M T ft H E
9
1
. 9 9 e BENZENE
. 46
9 H E ',< S H E
3. 733
, 66
. 32
. 5a
1 . 00
1.24
. 26
^r
5
•?
2 T 0 L U E M E
3
1 ETHYLBENZEHE
2,809
. 44
1 o-XYLEHE
TOTAL AR.EM=27y52 t 9
H U i. F
RUN PARAMETERS
ZERO »
ATT 2"- =
CHT SP =
AR REJ =
T H R 5 H
P K U D ==
0
-2
1 . 0
590
4
0,04
-------
1 ij i c D r. E A '• Of
3 M F L £ # i
+ RUM* 1 3 r'
START
SEP Z'j, 1991 i I : i 5 : 0 f,
I . 5 3
9. 225
10.333
STOP
1 -t . «
._l5.5Z
-------
»' » ' •* . >j t
M«TKY CONS
E'iTQ-hRcM
F.T T
. 5'3 1
. 5 2 b
, €20
. / O i
1.034
1.536
2 , 3 Q 3
2.566
2.79 2
5 . 2 3 i
6.293
3 Ji c. *"•
1 0 . "j 3 3
i 1 . 2 .J 7
14,284
15,526
16, 555
2. 0 ,961
V r U C T '
V r E
F £
Bk
S 6
0 D
S &
a &
PS
£-5
66
F&
PB
ve
BB
SB
66
&B
PS
PB
i C r ^ -, ,
(
i OH
H ft E H til
i 5 4 3 i
4 9 6 3
1 j 3 ij L 5
6 -3 i i ^
122115
15726
o S 7 7
36354
1 3 0 4 5
1 1 234
6 5S.4 6
1 0 3 0 7 S
5 ," 5 2 -i
9 4331
220*5
95732 3
1 «i '3 1 2
9 3 5 6
* - 7 i
1DTH
.02?
. 0 i 7
. U65
. 1 27
. 073
. 0 S 3
. 0 9 7
. 120
. 157
. 13-3
.271
.361
• ii ^ 5
.278
,043
. 645
, 251
. y 2 9
HEIGHT
i 0252
4i579
.34663
5254
26074
3145
1 527
5*56
2 3 0 S
1416
4041
4615
4 2:30
5659
8467
433
1 1 £ 1
532 1
CHL »
1
-)
5
7
15
3
9
i y
.493
» i c '^
4 . -3 7 7
2,33 S
3.94;
.507
. 2S7
1 . 1 7 3
. i 40
.364
.416
.517
. '3 I 7
3.545
.132
3 . 0 9 L
. 0 6 3
N » II £
t>l E T H H H E
BUTAKE
PEH TAME
BENZENE
H E X ft N E
TOLUENE
ETHYLBEN^EHE
o-XVLEHE
TOTAL A R E H = 893524
NUL F«CTOR=i,aaewE+oi
F: UN P A R H 14 E T E R S
ZERO
M T T 2 "' =•
C H T S P =
AF: F;EJ =
THR5H
F K bl D =
y
- 2
i . is
56 o
4
0.34
-------
• ! i 0 I" E r M D
> U j c o R E ri f- 0 r '1 0 H T R 0 L - >' T 0 t H D .-
n M 0 P L t # -3
* RUHII 168 'i E P i 5 - _ l 9 9 1 i 1 : 4 9 : £ 6
T r, R T
IF -
0. -i I i
1,027
9.215
IQ.363
11.175
Li.369
14.£5 1
15.112
13.595
-------
TIMETHBLE STOP
;: U H tt l u 8
-5 E P 2 5 , 1991 I 1 : 4 * : Z i
M H f H < C 0!! '9 T F, U C T I u H
E S T D - h R E H
R T T Y P E
WIDTH HEIGHT C M L It C 0 H C . H M M E
. 6 3 4
. 1 55 flETHMHE
1
,
1 ,
2-
'"7 .
k 0.
1 I .
S5.
1:3 .
4
•V
,
a
5
w
3
1
1
5
'? 3
27
1 -J
27
5u
-15
63
75
1 I
-,5
F&
SB
E8
PB
PB
B6
VB
BE
66
6B
Fb
j
1 3
1 1
1
*
•!
5
2
^
iid
681
14£
576
297
326
7 '? U
538
o31
-323
5
2
j
1
C"
o
'j
1
1
0
. a2o
. *3 1 7
'. >35 7
, 9 8 0
,195
. I 20
..351
.243
.272
. 3 8 a
. ci-a
£96
59
i 3 4
£4 1
-1 7
34
32
4 0
1 1
g
1
Q
C
w
a
6
1
I
4
5
6
6
o 1
-
3
p
j
4 b
~i
5
5
1 . 6 3 •
. 1 5?
4 . 2'4.
3 . 7 3 1
• 4 ' •
L , 0 '?
. 37;
.26;
2.12*
, 3 4 ':
, 4-z;
.378 BENZENE
H E X, ft N E
TOTML AREA= 553035
M Ij L F A C T 0 F: = I . y e B 9 E + M
fiUU PARHMETER.S
ZERO » 0
ATT 2' = -2
C H T i P = 1.9
ft ft F.EJ « 5oe
T H P: 3 H « -1
P k: U D = b . 6 4
-------
- H U i t r n u
<. 0 j c. D h = n r U r,
i 0 II F L E M
>• ft U N # 1 0 S
i T A F,. T
IF
"0 END >
i. £1 a'?
IB.35?
11.177
1 2 . 3 -i 5
M . 2 5 5
15,13S
I 3 , 43 1
.547
SEP 25, 1 '5 9 1 1 2 i £ S : H
STOP
-------
.- V 1! I
f'l " T H ',' C 0 N ;
r. Li u i i U H
to i u - - r. E n
r, T T
P6
nrlEn uitOTH
6274 , ij i7
H £ I G h T C M L i* C 0 \\ L .
B D
r 5
V B
f ' B
B B
B D
V B
F6
3 o »Ji *J •;«
1 17^42
i94 1 2
f . i v r 4
7 5 ? 0 •?
- jj "^ C "'
1 4 1 '.j I 1
ir~50
, y « 4
. .}*•?
.120
, 24i
.277
.581
. n 1 v
.433
22303
2 i 3 3 5
J L 'j 1
5519
4371
553
3S2*
-• a" ^ -^
i y
tin HE
M E 7 H H N E
. i 3 5 HE X M H t
£ . 450
, 67 0
4 , 5 j 1
.259 o-XYLEUE
T 0 T »i L hi r. E rt = -j 1 T 2 '? ~
M U L F H C T i j F: = 1 . Ci © 0 0 E * 0
F; UN ? A F: h in E 7 E
t E F: 0 = e
C H T b P = 1 . 0
A R R E J = 5 y &
T H F. S H = A
P K U D = U . a 4
-------
-M
1 4 . i 3
—1 5• 339
STOP
-------
E
' i 7 D - ^ F, E f
RT
') . i. 4 J,
i 5 . 3 3 '3
1 * . ij 4 i
< ; . r •« '_ . i v n
i
7 Y r E M r! E M
B B 1 '5 3 i o a
SB i j i 3 5
B B i 4 v -3 j i
M \ D T H
, ii'5
. 3 3 1
.531
HEIGHT
i 4 r> 9 4
5 1 3
1 4 3 3 0
C r^ L « C 0 H U
I . Q i 4 o E N Z £ H E
. 3 2 '5
i . i 4*3 E TriV LBE
T u T n L n F, E H = 4 "t 3 3 a. 5
14 U L F ri C 7 0 F. = 1 . 3 -i 0 U E + 3 0
F- IJ H r M F, fi M E i £ F '.a
i E F, 0 * 9
r. T T e." = - i
C n T 3 r = I . 0
^ K F. E j = 5QQ
T H F. s H = 4
P K U D = 8 . a •»
-------
R U h « ill
3 £ F
i T 0 F
RUN* 1 i i
:stf z. j :
T H V C 0 H S T R lj C T I 0 H
R T T Y p £
505 BB
WIDTH
3 6 .3 9 5 .056
HEIGHT C ft L» C 0H C. NAME
10 S 93 L .9 5 0 METHANE
T 0 T K L M R E fi " 3 13 o S 5
M U L F H C T g F: = I . o 6 fj 0 E - y 0
RUM PARAMETERS
ZERO = Q
H T T a * = - 2
C H T 3 F = 1.0
MR F:£ J = 5y Q
THF.SH = 4
F R bl 0 = 0.0-1
-------
L i i
-t-P-
ii.ir a
11.796
12.1d3
^1 * 3 o 8
1 4. i
id.5i5
24. M 16
-------
R U H *
W H T K f C 0 rt S T R U C 7 I U K
-: c, r ,_ -j
-"t J I
-i R E H WIDTH
HEIGHT C H L * C 0HC.
H M PI E
C.
I
\
2
i
4
4
=,
*
-
O
V
1 u
1 l
1 i
1 2
i 2
1 5
1 D
l y
23
24
. D -J c
r5T.T^>
. d (i 5
.325
. "5 *i 5
. 555
,777
. 1 3 9
. 5 5 3
. 2 7 ."5
.274
. 9 5 iS
. o 7 b-
, 1 7ii
, 3 o 2
,172
. 73o
.123
. i' 3 3
. 70 i
, 372
. 57-S
e -i e
.416
PB
SB
BB
S3
6S
BB
F'6
E&
66
ee
6B
PB
BB
P&
SB
VB
BB
BB
65
PB
BB
PB
BB
P6
68
i i33ii
4701
42713
•? 5 4 L 9
? 3 5 -3 5
15S12
s0127
2 1 •> 7 7
1 a i 0 7
1 "5 4 1 6
.' b U 6
74997
24392
7 b -j ^
43433
63203
9 2 2 3 6
7 i 4
4 9 3 4
2 Q J 2 4
3240
9 2 9
1706
1 2 -3 9
1 % 3 9
, '112 5
.317
, U 7 0
, 0 9 I
.875
. 0 9 i
.113
. lib'
,223
.247
. 100
, 234
,194
.14^
. ,320
. 2 3 3
. 2 ,' 9
. 1 65
. 199
,196
,157
,034
, 95 1
. S 9 3
. 830
i a 6 o i i
4545
1017- 2
i 7 "t i 4
2 0 (j 3 4
2 3 5 1
4249
j 093 4
754
9ijii
1 262
4395 5
2093
370
2261 7
4525 6
5504
72
4 1 4
1725
345
461 9
552
229 10
227
.414 .MET'riHME -rtf^
.152* "'
. 6 "i r ET H nflE
j , 176
3 ,019
.501
. ;-.-2
. 1 7 i B U T H H E
.325
. 4 "i 3
, 245
,475 R E H T A H E
,737
, 24b
,224 6EN2EHE
.347 H E X A H E
2.977
.823
.159
. o 56
. 105
.004 ETHYL6EN2EHE
. 85-5
. & Q 5 o - X V L E H E
.035
T 0 T ri L AREA- t> 9 4 3 a 5
M U L F A C T rj R = i . y 9 0 0 E + U 8
RUN PARAMETERS
ZERO = t)
ATT 2~ = - £
C H T S F
H R ft E J
THR3H
PK UID
1 . &
500
0.84
-------
STOP-
R U M *
Mn i KV CON
E '2 i D - M r. E ri
F, T T V ? E
1 i 4
3 S 6 3
LSIQTH
.Oil
. 'Il b u
HEIGHT C H L * C 0 K t , ri n m c.
17 o ? .937
i -3 8 I'? 1 . 9 9 9 H £ I H M rl E
1 0 T PI L ri ?: E H = -39327
IU L F H C T 0 F- = i . a u v] y E •» 0 0
RUM P A F; A H E T E R S
Z E "f- 0 = d
fiTT 2'" = -2
CHT SP = 1.6
MR P.EJ = 58i
T H R S H = 3
P K U 0 = 9 , -3 4
-------
r. !„• f4 « ; 1 J S £ r i 5 • I • i 1 1 -I : ; ; : 5 1
STOP
R U H ft 114
<**""'*'
H ri T H Y 0 0 N 5 T ?. U C 7 I 0
FT T V F E
030 6 B
526 B B
r 31. i B F
H R E H WIDTH
Jo5 4 .316
5 e60 I ,056
1 1S r 6 5 ,165
HEIGHT C H L « C, 0 H C .
'2.7 i-3
lOS9e 1 .942 MET
1 t 0 0 5 3 , d 3 3
H U L " F ri C T 0 F. = 1 . 6 Q Q fl t + 8 6
RUM F- H R A M E T E r. S
ZERO = 0
H i J C. = — ^
C H 7 S r = i , 0
H R R E j = sea
T H R S H = 3
F K U 0 = 0 . 3 -(
-------
ft U N * I ! 5
v.o(r
TH=
STOP
11. £ '3
14.2 9 3
15. -I-M
1 6.9 Tl
21.39 o
RUN* 115
SEP 25. 1991 14:£3«3Q
FlriTHY COH3T RUCTION
-------
b £
F E
1 . .3 >4
i u I h L H R E M - 1 i ~* i
M U L F n C T 0 F = i , 0 3 y u E + 0 0
F, U H F .i F, rt M t T E r. i
Z E f, "j = U
CHT SF =
M R F: E J =
T H F; s H
F V, lu 0 =
1 . 0
u . CM
-------
;-•"' iri $rfi!i 1>fl
f.Z
., ; ij -t
1 i , 2 0 3
1 £ . 4 i 3
12.361
1 j . £ 3 3
— 15.9 1 7
.._! 6.451
i a, 5 ? o
d u . 5 y
i£.535
-------
F. U K *
E T H 8 i- E
! -J4 : 46
1 H T K .' C 0 H 'j T ft U C T 1 0 N
1
1
1
1
I
1
1
1
1
E
2
1 .
1 .
2 ,
2 .
2 .
5 ,
l-i f
•-. ,
0 .
1 .
2 .
2 .
3 ,
4 .
•J X
*.
3 .
'j .
2 *
F:T 1
504
•3 J 7
332
y j -j
54 1
371
5 o 9
79 1
27,
304
2 j 7
3 9 ~
2uS
4 9 S
3ft 1
283
272
9 17
45 1
57u
590
535
' 'i r> E
F B
56
D D
BB
BB
PB
B3
63
PS
F5
56
FB
SB
BB
BB
68
BB
BB
PB
FB
BEf
PB
HfiEh
73553
•i !? 8 5 9
3 9 3 9 4
j 0 y 9 ^
1722s
5453
29641
1330 0
13520
3 8 3 6 9
1043 6
4523 3
6 9 S 6 9
1 9 S 7 6
22795
2126
34557
26 1342
4642
919
63562
1 £34
W1D
. 6
. 5
. u
. u
. i
. 0
. 1
. 1
. t
. 2
. 1
. 2
. 2
2 . 5
. Z
, 2
. »
3 . 7
. 1
. &
, 4
, 6
TH
47
7 2
95
7 3
80
9o
1 9
15
59
33
6 1
1 7
59
85
4 3
2 . 9
£ . j
. 5
. 1
-j
, \
, 4
« H
. w
. 2
2 , 2
. 6
T
. ^
, 2
3 , 4
. 0
. 0
2
H hi I"! E
« 6 METHANE
24 ETHhiKE
0 1
3 j
56
r>i
c- --
42 BUT hi HE
36
43 PEHTrtHE
54 BENZENE
43 HE X HUE
55
-32
33
6 '5
07 TOLUENE
51
1 >i ETHYLBEHZENE
3e
43 o - X Y L E N E
4 1
TuThlL hlF;ER= 947 y 51.
I'lUL FACTOR= 1
RUN PARAMETERS
i. a
3
6 . 94
ATT 2 "
C NT S P
H R R E J
THRSH
P K U D
-------
; U N i 11 T I A/ = E ? : 5 . 1 ? ? 1 i i : 4
STOP
U 9.243
13,
14.30
1 5 . 3 5
:L .
R U H « 117
iEP £5, 1991
[1HTHY CONSTRUCTION
-------
j . i - a - a i 3 ;3 •= 4 -J
i •;. . i 5 o 5 B 151 j * -J
i i . -I 5 5 V B i -H '? 7 •?
. i ? '3
6 , i 5 4
,355
.>."-!
1 . 0 j -( c T H 't L B E ri (. £;t t
• '? 3 o o - X V l_ £ *i E
T u T H L fi R E ft - 1 ft y 6 ? "5 £1
M'.' L r ^ C 7 0 R = i . 6 0 0 €' E ^ 0 0
RUM PARS METERS
ZERO = 0
H T T 2 ' = - i
C H T 'i P = 1 . 6
n K P- E J = -I y f i
T H R S H = ^
P K U D = • Q . 0 -1
-------
* N G T E f n C
C ."
'<• USE o r. E n X, 0 R v : J h T ? 0 u - '<"" TO END y
v I *"" C "3 i 4 , j P ** 1 !'i •• ' • j r r-i H 0 !-i R D
* fiiJIJ » 115 SE? 25, 1-5-91 ie.'i9-'00
i T ft R T
IZIITII
2, r j 3
10.332
1 1 , !
"OP
RUN*
1 i 9
SEP
1991 16:19!B 0
Pit* THY CONSTRUCTION
ESTD-flREfl
R T TYPE
,530 BB
1
2
6
1>3
1 1
TOTn
MUL
,669
.113
.793
.317
. 332
. 950
L flfiE
FflCTO
BB
66
BB
PB
PB
PB
M= 1 ,
R= t .
AREfi
518513
1 8 8 -J 2 1 5
1491 I 3 S
2078894
2538529
2970293
1168
y IDTH
. 961
, 862
. B?4
. 154
. 269
. 235
.161
HEIGHT C«L« COHC. NAME
133i2£ l 16.584 METHANE
269913 2 15.389 ETHANE
334436 3 15,561 PROPANE
225472 4 1 D. lot BUTflNE
266261 5 16,496 PENT*HE
210685 6 IS. 294 HEXftNE
121 .038
RUM PHRftPlETEHb
ZERO = 8
-------
-------
CH7 if
n ft F: E
T H R •'; H
f K LI D
y . 04
L ;•
f; I U
f; £ F ;
5.060 HOH-REF
LEVEL
L E V E L
REC riL I &F:hT IOHS: 1
REC^L I 6RH T I Qtlb : 1
10
y
i u
R 7 L V
•j . ^ I "5 i
c
U , i =j •< 1
1 . i tl 0 I
i . r 3 c i
6 . 3 0 £ 1
1 0 . "j 7 9 1
'3 . £ 3 0 1
1 -1 . £ 9 9 1
1 6 . ? e 3 i
i 0 . '9 £ 8 L
NAME
METHANE
E T H fl H E
PROPANE
BUTANE
F E H T A N E
H E X ft N E
6EHZEHE
T 0 L U E N c
ETHYLBENZENE
0 - X ¥ L E N E
SMT
L . "5 y y 0 E
9 . T* i fl £j E
I . 45iiiE
i . -i 2 e o E
1 . 4 & 0 0 E
L , 4 6 0 G E
L , 4 1 fl u E
I . a US 6 E
1 , 9 5 a y E
i . 1 4 ti a E
i . a 3 -3 e E
+ y i
-01
+ 51
+ 0 1
-y 1
+ U 1
+ 0 l
+ Ci6
+ 90
+ 00
+ 00
" hi R E
3 . £^
5 ii
0-1
o j E
3 5 E
3 3 5 w E -
OS
eb
@ 6
4 .
3.
93
Q L
50E
1 0 E
06
a -i
OPTIONS
R F o*' un calibrated Raaks .
C a 1 i b r a I i o n fit
Disabls POST, -run RT update
SHMPLE A ti T .......... ...,.
MUL F fl C T 0 ft
3,£275E-05
P
NO
e.oaaeE + i&a
1.60QQE+90
LIST; TIME
£) . a 8 8 1 H 7 C » = 2
6.930 1N T G H = 3
~.ee9 STOP
-------
APPENDIX F
ANALYTICAL DATA
F.I PM/Metals
F.2 PMto/CPM
F.3 Aldehydes
F.4 PAH
F.5 Sample Log
-------
APPENDIX F.I
PM/METALS
-------
Client
Plant .
Run K
Date
Sampte type
Technician
Sheet _2
-rt/J
of
Run 0
Sample
Sample
Vol.
Blank
Corr.
(ml)
Tare
Weight
(g)
Final
Weight
Sample
Weight
Comments
33
o-l^flt.
3
tf,
17
y
c
I
50
Method 5 Analysis Data Sheet
-------
Client
Plant .
Run ft
Date
Technician
Sample type
( r* i>
of
Run
Sample
Sample
Vol.
(mil
Blank
Con.
Tare
Weight
Rnai
Weight
Sample
Weight
Comments
, iVf
r?
o.nsa
a.otnD
_li
O.Oo^O
*?
jf
d.OO^t
v
0,2 IS"?
33
V
Q,o£Ha
>T^ - 0.0 MiS
y
iv J *
0.0^ s
EC
(M
Method 5 Analysis Data Sheet
-------
Client
Want
Run *
Data
/ ll'i
Sample
Terfmioan
Sheet ?__ of - 2-
Run 9
Sample
10*
Sample
Vol.
Blank
Con.
Tara
Weignr
Rmri
Weight
Sampto
Weight
Comment!
31
5-5"
o».
0,0111
/
LL
'C&Oaafe-
V
t^. -k'
A* c-t
IS
crc
CLo?
,-C
3
/
O-
CrC
1,
o.oooz
. '? C(«|
"fe
< ' t-c
fS
LLiO
Q
Method 5 Analysia Data Sheet
-------
HMHT • Asphalt: Front 1/2
Rieulta in ug/L.
| SHI
| Umber
lPMD-010-oi.
IPI-IO oio oj«
(pi-ia-aiD-ah
|F1-10-010-D4>
|PMD ClO-IHo
IPI-ID-OID-D&I
|pi-io-oio-o7«
Ipi-io-oio-asi
1
|pi-ro-oio-09«-i«
|P1- 10-010- tQa-N
1
(Fl-IO-OID-llt-B
1
IPI-10-003-
1
Sonple
Dcicriptfon
K26 - 15,14,17 Ffl
*a
1CU>
< 6,00
N21 - 3!,32,UCul|> 20. 7
M26 - W,35,Mfc*.*|* 29,8
N26 - 47,A8.S»i_-J|- 20,2
H& - 2,3, 4 C6
N6 - 2i,2«,27*~.L
MA • C],44;4SR— I
• 14.2
• 28,0
* 21,4
NA - 40,41, 62 K—l|< 4.00
Mthed Spika
Method spikc-cLp
Method llnnk
LCS
7*5
2«7
< 6. 00
2145
Ba
I UP
180
257
140
119
19.2
14.6
29.9
M.O
9U
910
• I.OQ
1B32
Be
IUP
• 1.60
• 2.20
• 1.7D
• 1.10
< 1.00
< 1.00
< 1.00
< i.oo
175
47«
< 1.00
974
W
IUP
• I, TO
• 9. DO
12,4
18. 8
• 6.10
11,7
• 3.30
• 5,70
loud
W
< 2.00
20S3
Cr
IUP
• »7.9
403
419
111
• 15.1
• 31.0
• 12.8
• 13.5
W6
994
< 6.00
2007
Cu
IMP
' 10.4
92.0
77.4
148
< t.OO
< 4.00
t ' C,00
< 4.00
en
919
< i.OO
1926
Hn | Hi
ICW | I CAP
221 | 11,0
J2B | 551
376 | 399
420 | 5J.I
19,7 ]• 13:2
212 | 180
116 |- 9,70
l« |* 14.0
1
MI | 999
962 | 1302
1
3.10 |« 1,00
I
1«*2 | 2048
1
p
IC»P
*47
* 1261
* 1222
• 1MO
~i MO'
• 300
• 300
« 300
B9Z
921
< 300
1900
Pb
MS CF
32. 5
124
115
147
* i".«>
• 7.67
< 1.00
25.4
978
1020
< 3. DO
50.3
5b | Se
I CAP | 1CAP
1
• 37.5 |< 16,0
• 60.1 |< 14. C
• 4T.2 |< 14.0
* IB. 3 |< 16.0
• 54.4 |* 16:0
• 56.2 |c 16. 0
- «B.2 |< 16.0
• 40. 2 |< 16.0
1
loot | 790
1001 | 996
1
< 15.0 |« 16.0
i
2185 | 2121
1
Tl
IMP
« 100
< 100
< 100
< 100
< 100
< 100
< 100
< • 100
1DZJ
1002
' 100
1970
In
iew>
278
997
1073
1265
" B67V
95.2
61.5
140
1014
1014
24.1
2105
Us
MS GF
64.3
93-B
80.6
ioa
<- 4-00-
< 4,00
< 4.00
« 4.00
874
954
< 4. DO
45.7
• less than S tines the dercccioi Unit.
-------
Table 2.
MTHT - Atpfialt. Front 1/2
Btiulla in lolsl ug.
| SAM | Sao?U
| nutter | Description
I " I
|Pl-IO-OIO-01a | N26 - )S, 14,17". ',
1P1-IO 010 02« | «J4 • 31,32,3)1 >
|PI-1D-010-03a | «6 • 14,15,34 '
|PMO-D10-04a | NZ4 * 47,60,49 -j
|P1-lO-010-Oio | M - 2,5,* ", 1-,
JP1-10-OIO-06* | N4 • 25,24.2*. «
|JM-10-OIO-07« J H6 - 41,44,45 •
|PI-lO"Q10-0«a | H6 - 60,41,62 '•
1 1
|P1-10-alO-09«-N| Method ipikt
|P1-IO-010-10a-N| HBihod Spike-dtp
1 1
|P1-10-010-Ha-aj Method 3 look
I I
|P1-10-001- | LCS
1 1
Ag f fl»
ICAP | 1CA>>
1
< 1,50 | 45.0
• 5.18 | 64.3
• 7.45 | 40.0
• 5.05 | 79.8
• '4.05 | 4.80
• 7.00 | 9.15
• 5.J5 | 7.tB
< 1.50 | 9.50
1
74.5XJ 91.41
24.7XJ 91.01
!
< 0.600 |* 0.100
I
107S| 91.41
i
ICAP
- D.40C
• 0,550
• 0.425
• 0.275
< 0,250
< 0.250
« 0.250
< 0,250
95 -W
«.n
* 0.100
97. 4X
Cd | Cr
1C*P | IMP
I
• LIB [• 24-5
• 2.25 |' 101
3.10 | 105
4.70 | 27.8
• 1.58 )• J.7B
2.93 (• 7.75
• 0.83 |- 3.20
• 1.43 |- J.M
i
KMTI| 99.&I
99,n| 99.41
1
< 0.200 |< 0,400
!
104X| 1001
1
Cu
1C«P
• £.40
21.0
19,4
37,0
< 1.00
< '1,00
< 1.00
« 1.00
93.5*
91.91
- o.;oo
W.4X
Nn
ICIP
55, J
42,0
94,0
IDS
4.91
58.0
2V, 0
41,5
96.11
96. a
• o.uo
97. IX
Hi | P
IC*I | ICAP
i ...
1
15,3 I' 112
133 )• US
W,3 |- 10*
13,1 |- 3M
• 3,30 |< 75.0
45,0 |< 75,0
• J,«J |< 75,0
• 1.50 |« 75.0
1
99,H| B9.21
1COX| 92.11
1
f 0.300 ]• 30,0
1
102*1 99.0X
1
Pb | Sb | Se
MS GF | ICAP | ICAP
...„. j !....'.»-
1 1
8.11 |* 9.38 |- 4.00
31.0 |* 1S.1 |i 4.00
28.3 1* 11.8 |< 4.00
V..8 |* 9.58 |< 4,00
• 1'.7*'|« 13,4 |« 4.00
• 1.92 [• 14.1 |« 4.00
« 0.750 |« 12.1 |« 4.00
4.35 |- 12.1 1< 4.00
1 1
97.8X) 100X| 99. OX
102X| !OOI| W. Kt
\ 1
< 0.300 |< 1.50 \< 1,60
1 1
101X| 109X| 1041
1 i
Tl | Zn
ICAP | ICAP
i
1
t 25.0 | 49.5
< 25.0 | 249
< 25.0 | 268
< 2S.O | 314
e 25.0 j 21.4
c 25,0 | 23. S
< ,25,0 |- J5.4
< 25,0 | 15.0
1
I02*| 1031
100X| 104»
1
« 10.0 |* 2,41
1
98.5X| I05X
1
As
US CF
14.1
23.5
20.2
27.0
< 1.00
< 1.00
< 1.00
i 1.00
87.4X
95. 4X
< 0.40
91. 4X
Final
Volume
, . . , . —
0.250
0,250
0,250
0.250
0.250
0.250
0,250
0.250
0.100
0.100
0,100
54.0
less than 5 lines cho detection
MLCUIA.TIMIS;
Sarqile Result (oa/L) I Final Volute (1) « lolol ua
t b
-------
MIHT - «sphnli:
BHUlie in ug/L.
| Umber
|pl-10-010-16a
|p1-10-010-17a
Pl-10-OlO-IBa
Pl-10>010-19a
PI 10 010-12=
Pl-10-010-13a
PMO-010-Ua
P1-10-010-1S«,
PI 10-010 20..M
P1-10-Q10-21B H
P1-10-Q10-22a-B
P1-1Q-QIO-
Baek 1/2
Saiple
Description
M - 1
H6 - 24
"*'«
Ha * 59
«26 - It
N26 - 10
M2ft • 37
«6 - «
Marhmd Spike
Method Spike 1*4)
He c hod Blink
LCS
1
•
<
c
«
<
<
*
«
< I
>g
CAP
.30
.00
.00
.00
,00
.90
.00
.00
410
104
.00
145
Ba |
IUP | I
9-10 |<
7.BD |<
too |<
13.5 [<
< 1.00 |<
12.5 |<
15.B |«
12. & |<
i
1
882 |
i
1
* 1.00 |«
1832 |
1
Be
CAP
.00
.00
.00
.00
.00
.00
.00
.00
447
.00
974
Cd
(CAP
< 2.00
* Z.70
96.0
• 6.66
< 2.00
• 2.40
• 6. BO
• 2.00
985
BBS
< 2.00
20BJ
Cr
[CAP
• 7.30
• 17.9
104
12.2
< 6.00
• 11.9
• 29.2
• 12.4
970
U5
< 6.00
2007
Cu
IMP
< 4.00
59.6
1876
54.3
< 4.00
•^ 10.1
27.5
< 4.90
901
793
< 4.00
1923
m
IUP
n.l
26,9
384
11.8
* 4.00
17.4
216
19.1
940
B49
22.4
1942
Hi
1CAP
- e,w
20.8
290
16.4
• 3.30
24.5
4t.i
17,4
aei
985
• 5.40
2048
P
ICtP
' 698
565
IBIS
• 697
• 449
* 414
495
• 642
782
B6S
< 300
1980
Pb
AAS CF
• 1.34
• B.4S
280
IS.fl
< 3.00
• l.JA
11 -J
• 9.21
886
988
• 7.02
ts.o
Sb
(CAP
< 15.0
< 15.0
< 15.0
< 15-0
4 15. 0
i 15.0
< 15.0
i 15.0
B68
96B
• 15,0
2185
Se
IUP
< 16.0
t 16.0
< 16.0
< 16.0
< 16,0
< 16.0
f 16,0
< 16.0
853
958
< 16.0
2121
U
IC*P
< 100
< 100
< 100
< 100
< 100
< too
i 100
< ' 100
947
975
< 100
1970
Zn
I«P
20,2
154
2326
127
< 15.0
136
231
55.5
907
1010
* 15.0
2105
19
AAS GF
< 4.00
< 4. CO
• 10.4
< .00
< .00
* .00
* .00
< .00
840
978
< 4.00
44.0
* less than 5 dimes the detection limit.
-------
Table Z.
MINT
Resulti In local
Back 1/2
"9-
[ SMI
| Hunter
1 '
|PI-IO-010-16«
|PI-lO-OlC-17a
{PI-ID-OlO'lte
|P1-10-010-19l
|Pl-10-010-12a
|P1 10 010 13»
|Pl-10-D10-Ua
|pi-io-oTo-iSa
1
|pi-to-oio-2o*.M
|PI-IO-010-21«-H
I
|P1 10-010 22« B
1
IPI-IO-OIO-
I
Saople
Description
*• 1 PI
H6 - » K-- »•
HA • 42 *— 1
tt - S9 1., J
N26 - U f^
•26 - JO H— 1
M26 - 17 t-- T-
H26 - 46? -" 5
derliod Spik«
Method Spike-dup
Method Blink
LCS
*g
ICAP
• 0.700
< 0,«7
< 0,413
< 0.631
< 0.671
< 0.614
< 0.631
< 0.631
41.01
JO 41
< 0.616
1071
BB
ICAP
1 01
0.815
10.5
1.42
< 0.112
1.3Z
1.66
1.11
flfl.K
7e.4«
• 0.106
91 .6X
Be
IUP
< 0.111
< 0,104
•< 0,105
< 0.105
< 0.112
< 0.106
< 0.105
« 0.105
83. 41
93. rt
< 0.106
97.41
Cd
ICAP
* a. 222
• 0.202
10.1
• 0,700
< 0 224
' O.Z54
• 0,716
< 0,210
«8,SX
M.5X
« 0.212
104X
Cr
IUP
. .*.....
* 0.811
• 1.07
11.0
1.29
< 0.671
* 1.24
• 1.07
• 1 .30
97. n
84.51
< 0.&3A
1001
cu
IUP
* 0.444
6.2}
198
S,«
< O.U7
• 1,07
' 2.8?
< 0,421
90,11
7V.W
< 0.424
96.41
Nn
IUP
1.25
2.B1
40.5
3.14
" 0,447
1.B4
24 .8
2.01
94.01
84.91
Z.17
97.11
Ni j P | Pb
[CAP 1 1C1P | MS GF
II
1
• 0.955 I* 77.5 |- 0,373
2,17 |* 5».0 |' O.BB6
JO. 8 | 191 [ 29. S
1,72 |* 73.1 | 1.66
• O.JM |" 50.2 |« 0.115
2.5» |* 64.9 |« 0.155
4.M |- 73,1 | 1.50
2,04 |- 67.5 |* 0.969
1 1
aa.itj 7s.2i| M «
9fl.5I| B6.II) 98, Kl
1 1
• O.S7Z )« 31.8 |«. 0.7U
I 1
102I| 99.01) W-01
1 1
Sb
l»p
< 1.67
* 1.57
< 1.58
< 1,58
< ran
« 1.59
< 1.58
< 1.58
B4.BI
M.BI
< 1,59
1091
Se
ICAP
. . . . .
< 1.7B
i 1.67
< 1.69
< 1.U
— r.fr
< 1.6V
< 1.68
< 1.&B
85. IX
9S.8X
< 1.70
1061
Tl
ICAP
« 11,1
< 10,4
< 10.5
« 10.5
< 11.2
< 10.6
« 10.5
< 10.5
94.71
97.51
« 10.6
96,51
In
(CAP
I......
|* 2.24
16.1
2(5
13.4
< i:«r
14.4
24.1
• 5.64
DO.Tt
101X
< 1.59
1051
AS
AAS CF
< 0.444
i 0,418
• 1.10
< 0.421
< o:w
< 0.421
< 0.421
< 0.421
B6.0I
97. HI
: 0.424
1071
Finat
valunc
0,100
0.100
0.100
0.100
"0.100
o.ioo
0.100
0.100
0.100
O.IOO
0.100
Initial
Volune
0.5030
1.1615
0.9605
1.0191
•o:i75!"i
0.9246
1.0069
1.0161
O.IOO
0.100
O.BB34
bigesled
Volune
. .
0.4510
1.1115
0.9105
0.9691
OTtSS
0.8746
0.9569
0.9661
0.100
0.100
0.8114
• less than 5 [(
the detection Unit,
CALCULATIONS;
Soiplt Result (ug/L) V final Volun (L) X Initial Voluac / Digested Volune " lotal
-------
APPENDIX F.2
PM10/CPM
-------
Client
Plant .
Run #
Date
Technician
T
Sample type
f
f*
V-VW-S (/? <
Sheet
'
n.
Run
Sample
Sample
Vol.
SmU
Blank
Corr.
(ml)
Tare
Weight
Final
Weight
tg)
Sample
Weight
(g)
Comments
0,3591
.OC10
a-
0,213-?
/
3
.3
0,00%
B
&.3IS3
M
\\ /M
i
a
Method 5 Analysis Data Sheet
-------
Client
Plant ,
Sample type
Run *
Date
/'.5T
Technician
Sheet
Of
Run n
Samole
100
Sample
Vol.
(ml)
Blank
Corr.
Tare
Weight
Final
Weight
(9)
Sample
Weight
(g)
Comments
T>^
o.o
0,0
J
fS
**$",% "70
2,<.t,«.n --••3 " Y
crc
LLo?
/c '
Q.cooi.
0,
/
0. OOQ 2
1 2 . ^ C»<»
O, o 2. » <*
<-' r r
fefiSS:
H«
-i-rt t\
ti-j, tjji??^
O.
Method 5 Analysis Data Sheet
-------
Run
Client
Warn .
Sample type ?'W5
+
Technician
Sheat_
Run f
Sample
ID*
Sample
Vol.
Blank
Corr.
(ml)
Tare
Weight
Final
Weight
Sample
Weight
(g)
Comments
i
/
O-OOMO
H-jO
1
,05- JS
Oi-f'
a. oo to
f 0,
.
7?
LLol
y
1^,,-
3
0.00^5
J
> a.
3
7?
0 . 00 (i
5,03^*
4
p
f^.'ffCI
f C~
X \0
, i^-tL d
l~i
Method 5 Analysis Data Sheet
-------
APPENDIX F.3
ALDEHYDES
-------
Radian Uork Order PI-10-001
Analytical Report
12/16/91
EMB
EHB
Radian Corporation
RTP( NC
Larry Banesburg
Customer Work Identification EHH Asphalt Teat Site 26
Purchase Order Nuifcer 275-026-48-17
Contents:
1 Analytical Data Surmary
2 Sample History
3 Comnents Sinmary
4 Notes and Definitions
Radian Analytical Services
900 Perimeter Park
Horrisville, NC 27560
919-481-0212
Client Services Coordinator; LJROHESBURG
Certified by.-
-------
Analytical Data Suimary
Page: 3
EMB
Radian Work Order: P,1-10-001
-
Met hod: Aldehydes, Mod T011, HPLC (1)
LiscCcnpendiUD Method TO- 11
Sample ID: M26-0922-ALD—
FB (1C, PR)
Factor: 10
Results in: Total ug
OU
Matrix: Stack
K26-WZ3-ALD--
1 (1C, PR)
10
Total us
02A
Slack
N26-092J-ALD--
2 (1C, PS)
10
Total ug
03*
Stack
MZ6-0924-ALD--
3 UC. PR)
10
Total ug
04A
Stack
Ace t aldehyde
Acetone
Acetophenone/o-Tolualdehyde
Acrolein
Beni aldehyde
Butyraldehyde/Isobutyraldehyde
Crotonaldehyde
2,5-Dimethylbenzaldehyde
Formaldehyde
Hexanal
Isophorone
1 sova I era Ldehyde
HIBK/p-Tolualdehyde
Methyl Ethyl Ketone
Propionaldehyde
Quinone
m-Tolualdehyde
Valeraldehyde
Result Det, Limit
'•••'•'••'^••'4'w^y^
ND
396
MD
ND
ND 2T«»|I'
S:iii:;K:«;:»-
ND Kill
ND
:Wft.XWSW
ND
14.5 • Pill
ND iftttt
MD .1*111
ND lillll
ND lill
ND
ND lllll
ND
ND
ND lilll
Result Det. Limit
3530 11B -
2180 148 -
ND 23
107 11
86.4 2,1
464 is :
109 18 -
ND 24 •
2070 m
190 20
ND 11
75.1 • 1ft
ND 25
36,9 • JI
241 14
122 14
NO 23 ••
89.1 • 18' *
Result Det, Limit
1220 ilolll
2280 ilSlli
ND ZJlif
NO lllll
65.3 • iilli
253 1:8111
48.1 • lilil
NO
2100 iilll
136 atflll
5W5SftlW:r:
MD 1B?;;ii
::::«"vft::'-.v:v:
ND mm
ND afiii
NO lllli
105
155 ia?»
«D siiii
62.9 • lilll
Result Det, Limit
5830 ZTOll
2280 JWlll
«D 23|1|
MD llil!
757
633 lllll
561
"°
11800 22Cli
519
ND iia:i|l
138 iail-1
MD alii
BO iaiS
759 l^:!:;ii
Bi a msm
ND ZS|1|
344 lllll
ND Not detected at specified detection limit • Ear. result less than 5 times detection limit
(1) For a detailed description of flags end technical terms In this report refer to Appendix A in this report.
-------
im
Kadi an Work Order:
P1-10-Q01
Analytical Data Summary
Page: 9
Method: Aldehydes, Mod T011, HPLC <1J
List Compendium Method TO- 11
Sairple ID: M26-M25-ALD- • METHOD BLANK METHOD SPIKE Calibration
4 (1C
Factor: 10
Results in: Total
05A
Matrix: Stack
, WJ)
.56
ug Total
06A
DNPH
Check OC
1 1
ug X Z
07A 20A
DNPH ACN
Aceta Idehyde
Acetone
Acetophenone/o-Tolua Idehyde
Acrolein
Benzaldehyde
Butyra Idehyde/ 1 sobuty ra Idehyde
Crocona Idehyde
2,5-Dimethylbenialdehyde
Formaldehyde
Hexanal
Isophorone
I sova I era Idehyde
M I BK/p-Tolua Idehyde
Methyl Ethyl Ketone
Propiona Idehyde
Ouinone
Ffl*Tolualdehyde
Va I era Idehyde
Result
2560
2710
ND
134
135
Det. Limit
110
tt«
21
11 •
21
237 1« '
102 18 i
ND
3050
200
ND
85.3 *
ND
ND
181
344
ND
134
24
69
20
18
16
23
1*
14
1B
21
1*
Result
NO
2.74 «
ND
ND
ND
ND
ND
ND
1.24 •
NO
ND
ND
ND
ND
ND
NO
ND
NO
ND Not detected at specified detection limit
Q Outside control limits
NS Not spiked
(1) For a detailed description of flags
and technical terms In
Det. Limit
mmm
.t£2$£$
1111
ifiii
1*111
Still
ifisitSsi?
(JSfSiii
SlaPli
W&m
mm
ilpll
mtim
Result Oet. Limit
90 lllll
83
70 Q '&&£&'????
23 Q
lit lllll
NA
25 0
•85 Hil
87 »§«wHs
117
91
MS
106
«* ill!
107 sftmm
64 Q liifi
93
82 lllll
Result Det
115
NS
NS
NS
NS
103
NS
NS
105
NS
NS
NS
NS
NS
165 Q
NS
NS
NS
* Est. result less than 5 tines detection limit
HA Not analyzed
this report refer to Appendix A in this report.
. Limit
!!:£w®;-:i
SSiJiiBSs:
Illii
lllll!
Hill
'iSS*:>wJ
'•;|!|:|;;J!l
••"•• ;••;».*
'i-'yt'i-i-ry ; •:•;•;•:;
:*;lliti
•>:'y '•'•'&'•$''•$!$'
-------
SanpLe History
Page:15
EMB
Radian Work Orders P1-10-001
Sample Identifications and Date*
Sanple 10 H26-092Z-ALD-- H26-0923-ALD-- H26-0923-ALD-- NZ6-0924-M.D-- H26-0925-ALD-- METHOD BLANK
FB (1C, PR) 1 (1C, PR) 2 (1C, PR) 3 (1C, PR) < (1C, PR)
Date Sanpled 09/22/91 09/23/91 09/23/91 09/24/91 09/25/91
Date Received 10/01/91 10/01/91 10/01/91 10/01/91 10/01/91 10/01/91
Matrix Stack Stack Stack Stack Stack ONPN
01 02 03 04 05 06
Aldehydes, Mod T011, HPLC
Prepared
Analyzed
Analyst
File ID
Blank ID
Instrument
Report as
10/08/91
10/18/91
IKK
OWEN 130
OUEN129
V5000
received
10/08/91
10/19/91
LKK
OWEN131/179
OWEN 129
VSOOO
received
10/08/91
10/19/91
LKK
OUEN132/17B
OWEN 129
VSOOO
received
10/08/91
10/19/91
LKK
OWEN133/177
OWEN 129
VSOOO
received
10/08/91
10/19/91
LKK
OUEN 134/1 76
OWEN 129
VSOOO
received
10/08/91
10/18/91
LKK
OWN 129
OWEN 129
VSOOO
received
-------
Append IK A
Conmenrs, Notes and D«fInitfons
-------
EMB
Radian Work Order: P1-10-OT1
Report Coronents and Narrative
Page: K-2
General Comnents
05-A; The XAD-2/Filter portion of the sanples was lost during
preparation.
NO = Not quantitated.
PAH sanfjies were diluted because of hiflh hydrocarbon content.
-------
Notes and Definitions Page: A-3
EMS
Radian Work Order; P1-10-001
J Indicates an estimated value for GC/MS data. This flag is used either
when estimating a concentration for tentatively identified compounds
where a response factor of 1 is assured, or when the mass spectral
data indicate the presence of a compound that meets the identification
criteria but the result is less than the sample quantisation limit,
NA This analyte was not analyzed.
ND This flag (or < ) is used to denote analytes which are not detected
at or above the specified detection limit. The value to the right of
the < syntool is the method specified detection limit for the sample.
MS This analyte or surrogate was not added ( spiked) to the sanf>Le for
this analysis.
D This quality control standard is outside method or laboratory spec-
ified control limits. This flag is applied to matrix spike, analy-
tical QC spike, and surrogate recoveries; and to RPOCrelative percent
difference) values for duplicate analyses and matrix spike/matrix
spike duplicate result.
* The asterisk(*j is used to flag results which are less than five times
the method specified detection limit. Studies have shown that the
uncertainty of the analysis will increase exponentially as the method
detection limit is approached. These results should be considered
approximate.
-------
Notes and Definitions
EHB
Radian Work Order: P1-10-001
Page: A-4
TERMS USED IN THIS REPORT:
Analyte - A chemical for which B sanple is to be analyzed,
EPA method and QC specifications,
The analysis uill meet
Conpound - See Analyte.
Detection Limit - The method specified detection limit, which is the lower limit of
quantisation specified by EPA for a method. Radian staff regularly assess their
laboratories' method detection limits to verify that they meet or are lower than those
specified by EPA. Detection limits which are higher than method limits are based
on experimental values at the 99X confidence level. The detection limits for EPA CLP
(Contract Laboratory Program) methods are CROLs (contract required quantitat ion
limits) for organics and CRDLs (contract required detection limits) for inorganics.
Mote, the detection limit may vary from that specified by EPA based on sample
size, dilution or cleanup. (Refer to Factor, below)
EPA Method - The EPA Specified method used to perform an analysis. EPA has Specified
standard methods for analysis of environmental samples. Radian will perform its
analyses and accompanying QC tests in eonformance with EPA methods unless otherwise specified.
Factor - Default method detection limits are based on analysis of clean water samples,
A factor is required to calculate sanple specific detection limits based on alternate
matrices (soil or water), reporting units, use of cleanup procedures, or dilution of extracts/
digestates. For example, extraction or digestion of 10 grams of soil in contrast
to 1 liter of water uill result in a factor of 100.
Matrix - The sample material. Generally, it will be soil, uater, air, oil, or solid
waste.
Radian Work Order - The unique Radian identification code assigned to the samples reported in
the analytical sumary.
Units • ug/L microgratns per liter (parts per biIIion);liquids/water
ug/kg micrograns per kilograa (parts per billion); soils/solids
ug/H3 microgrsBS per cubic meter; air sonnies
mg/L milligrams per liter (parts per mil I ion);liquids/water
mg/kg mi 11 i grams per Icilograa (parts per mi U ion);soi Is/solids
X percent; usually used for percent recovery of QC standards
uS/cm conductance unit,* oicroSiemans/centimeter
nt/hr ml Ui liters per hour; rate of settlement of matter in water
NTU turbidity unit; nephelometric turbidity unit
CU color unit; equal to 1 mg/L of chloroplatlnate salt
-------
EHB
Radian Work Order: P1-10-001
Sanple History
Page:17
ID
Date Sanpled
Senile Identification and Dates
Method Spike Calibration
Check QC
Date Received 10/01/91 10/01/91
Matrix XAD-2/Fi ACN
19 20
70-Semi -votatil.es
Prepared
Analyzed
Analyst
File 10
Blank 10
Inscrunent
Report as
hydes, Hod T011, HPLC
Prepared
Analyzed
Analyst
File ID
Blank ID
Instrunent
Report as
10/11/91
11/05/91
RK
45B6534.TS
4586533, TI
GC/NS B
received
10/19/91
UK
OMEN ISO
VSOOO
received
-------
Phenol
2-Chlorophenoi
1,4-Dichlorobenzene
N-Nitroso-di-n-propylamine
Aceiophenone
3-Meihylphenol
Indene
Cydohexane
Isophorone
1 ,2,4-TrichIorobenzene
Naphthalene
4-Chloro-3-methyIphenol
2-Meihynaphihalene
l-Meihynaphlhalene
Acetoaphthylene
Aceioaphihene
4-Nilrophenol
2,4-Diniiroioluene
Dieihylphthalate
Fluorene
N-niircrtodiphenylamine
Pentachloropheriol
Phenanthrene
Anihracene
Di-n-butylphthalate
Fluoranthene
Diphenylamine
Pyrene
Butylbenzylphihalate
Bis-(2-cthylhexyl)-phthalate
D i- n -oc typh t ha la I e
34,63
93.5
5.695
420.855
416-255
407.595
249.355
41.765
14.94
9.035
10.24
50
1
47.4
83.405
3.465
387.09
776.14
347.54
212.975
37.745
50
12.245
7.935
8.99
50.
0.625
390,355
0.66
23.97
113-565
2.745
426.24
995.545
1470.645
416.865
262-12
48.13
50
17.875
8.49
9.62
50
1
36,87
1.17
-------
Dilution Factor
Final Extract Volume
Target Compounds
9 Nitiobenzene-dS (SS)
10 2 FluofObiphonyl (SS)
14 Phenol
17 2 Chlorophonol
19 M-DtcHofOberuene
Z5 N-Nltraao-tf-n-fHOpylamine
32 AcelophenOM
33
37 IndMW
39
43
49 1,2,4-TricWofotwnzww
50 Napftihaian*
S3 4^hlof^3^n<«hytph«ooJ
54 2-4fcnfryeo<>
«3 1 Motfrytnaphthatsne
73 Aoooaprthytorw
75 AoKvapMhene
77 4-NJtnphmeX
80 2.4-OMtratolMm
81 Diomylf*tt»tat«>
83 Fh
97
100 PwttKhlOfOphenol
101
102
103
104 FtuoniKtam
107
DO Pynn*
ill
114 Bb-(2-eOTytho*yf) phthalala
131 Dt-n-oety*pWhalalo
1 100 TOO
5 10 10
M-260922FB M 26 923 1 M 26 923 2 M-
304.35
462.095
341.985
NA
NA
NA
NA
NA
NA
NA
NA
2-235
NA
87.39
NA
NA
NA
NA
NA
NA
NA
5685
NA
NA
NA
NA
NA
7.9'
NA
NA
NA
NA
3.125
NA
779
1023
650
NA
NA
NA
NA
NA
NA
NA
16763
NA
NA
NA
NA
3033
2016
NA
NA
MA
HA
911
NA
NA
NA
290
NA
1654
NA
NA
NA
NA
716
NA
777
B34
590
NA
NA
NA
NA
1017
NA
NA
9731
NA
NA
NA
NA
2256
1451
NA
NA
NA
NA
112
120
NA
NA
430
75
2049
73
330
NA
NA
1069
NA
100 1
6 5
26-924-3 M26-Blank
928.2
10524
655. B
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1502.4
NA
1983
1217.4
NA
54.6
NA
NA
43,8
54
134.4
NA
207.6
NA
1102.Z
NA
134.4
36
NA
590.4
NA
625.085
771.33
773.BB
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
037
NA
NA
NA
NA
NA
NA
NA
12.98
NA
NA
NA
NA
NA
6.34
NA
NA
NA
NA
13.02
NA
< 11111
5 55555
Spike M-6-918-FB M69191 M-6-9192 M-6-919-3 M-6-Blanh
53604
741.09
647.43
940275
941.64
477,905
520,855
NA
NA
NA
NA
NA
5M.90S
53002
999.405
1.285
1.165
NA
546.725
529.995
491. BBS
14.41
NA
NA
2C6.t7
NA
NA
10,77
NA
NA
676.415
NA
8.5
NA
491,05
729,41
566.67
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
751,275
NA
2.36
1,935
NA
NA
NA
NA
7,27
NA
0,72
NA
0.275
NA
0.405
NA
0.72
NA
NA
11,435
NA
573.825
757,145
566,49
34 S3
NA
NA
NA
93,54
5,695
420,855
NA
NA
NA
416.265
NA
407.595
249,355
41.765
1494
NA
MA
NA
MA
NA
NA
9,035
tfl.24
MA
HA
HA
1.265
0,67
47,«
0,66
478,18
642.93
568.265
NA
NA
NA
NA
83.405
3.465
38709
NA.
NA
NA
776.14
NA
34754
212.975
37.745
NA
NA
NA
12.245
NA
NA
NA
7.935
8,99
NA
NA
NA
Q,025
NA
390,359
NA
575765
794.995
614,345
23.97
NA
NA
NA
113.565
2.745
42624
995.545
NA
NA
1470.645
NA
416.865
362.12
4813
NA
NA
NA
17875
NA
NA
NA
8,49
962
NA
NA
NA
0.805
NA
36.87
1.17
445.09
67551
564.045
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
259,75
NA
0.68
0.365
NA
NA
NA
NA
22.26
0.375
NA
NA
NA
NA
11.655
NA
NA
0.605
NA
19.465
NA
-------
APPENDIX F.4
PAH
-------
Radian Work Order P1>10-001
Analytical Report
01/13/92
EMB
EHB
Radian Corporal ion
RTF, NC
Larry Homesburg
Customer Uork Identification EMB Asphalt Test Site 26
Purchase Order Nurfaer 275-026-48-17
Concents:
1 Analytical Data Surinary
2 Sample History
3 Corments Suimary,
4 Notes and Definitions
Radian Analytical Services
900 Perimeter Park
NorMsvilte, NC 27560
919-481-0212
Client Services Coordinator: UROHESBURG
Certified
Previously Reported on 12/16/91.
-------
RADIAN
COBPQBBTIOH
EHB
Radian Work Order;
P1-10-001
Analytical Data Sutnriarv
Page: 2
Method:SU8270-Semi-Volatiles (13
LlSE.-pAHs by SWB46 8270
Sample 10: M26-09Z2-PAH-- MZ6-0923-PAH-1 HZ6-0923-PAH-2 H26-0924-PAH-3
FB
Factor: 5 1000 1000 600
Results in: Total ug Total ug Total ug Total ug
14A ISA 16* 17A
Matrix: Acetone Stack Stack Stack
Acenaphthene
Acenaphthylene
Anthracene
BenzoC a) anthracene
Benlo(a)pyrene
Benzo(b)f Luoranthene
Benzo(g,h, i)perylene
Benzo(k)f luoramhene
Chrysene
D i benz( a, h) anthracene
Dibcnzofuran
7, 12-Dimethylbenz(a)ariihracene
Fluoranthene
Fluorene
I ndenot 1,2,3- cd )pyrene
2 -He thy I naphthalene
Naphthalene
Phenanthrene
Pyrene
1
(See next page for ret
Result Det. Limit
ND 50
ND 50
NO 50
ND 50
MD 50 '
ND 50
ND 50
ND SO •
NO SO
ND 50
ND 50
ND 100 '
ND 50
ND 50
ND 50
ND 50
87.4 • 50
NO 50
ND 50
itatively identified co»
Result Det. Limit
NO 10000
ND 10000
ND 10000
NO 10000
ND 10000
ND 10000
ND 10000
ND 10000
ND 10000
ND 10000
ND 10000
ND 20000
NO 10000
ND 10000
ND 10000
3040 J 10000
1900 J 10000
290 J 10000
ND 10000
npounds.)
Result Det. Limit
ND 10COQ
ND 10000,
75.0 J 10000:
ND 10000
ND 10000 .
ND 1001X1
ND 10COO
HD 10000*
ND 10000.
ND 10000::
ND 1000D:
ND 20000
73.0 J 10000
120 Jf 10000
ND 10000
2260 J 10000
3100 J 10000
430 J« 10000'
ND 10000
Result Det. Limit
54.6 J 6000
ND 6000
NO 6000
ND 6000
ND 6000
NO 6000
ND 6000
ND 6000
ND 6000
ND 6000
ND 6000
ND 12000
ND 6000
54.0 J 6000
ND 6000
1980 J 6000
1500 J 6000
zoa j* MOO
36.0 J 6000
ND Not detected at specified detection limit
J Detected at less than detection limit
• Est, result less than 5 times detection limit
(1) For a detailed description of flags end technical terms in this report refer to Appendii A in this report.
C2) 4-Methylphenol co-elutes with 3-methylphenol, The
value reported is the combined total of the 2
cwnpounds.
-------
• P O B • T I O I
EH6
Radian uork Order: P1-10-Q01
Analytical Data Summary
Page: 3
Method:SU8270-Serni-Volatiles (1)
Ust:PAHs by Syfl46 8270
Sample ID;
Factor:
Results in;
Matrix:
M26-Q922-PAH-
FB
5
Total yg
14A
Acetone
«6-0923-PAH-1
1000
Total ug
ISA
Stack
M26-0923-PAH-2
1000
Total ug
16A
Stack
H26-0924-PAM-3
600
Total ug
17*
Stack
Surrogate Recovery(%)
2-Fluorobiphenyl
Control Limits: 30 to 115
Nilrobeniene-d5
Control Limits; 23 to 120
Terphenyl-d14
Control Limits; 18 to 137
CS*e next page for ter
Result Det. Limit
59.4
39.4
44.8
natively identified con
Result Det, Limit
132 0
102
85.1
pounds, >
Result Oet, Limit
107
102
Result Det. Limit
135 0
122 Q
90.3 | 85.8
Q Outside control limits
(1) For a detailed description of flags and technical terms in this report refer to Appendix A in this report.
(2) 4-Methylphenol co-eluies with 3-methytphenol. The
value reported is the confcined total of the 2
compounds.
-------
RADIAN
COBPOBBTION
Analytical Data Summary
Page: u
EHB
Radian Uork Order:
Pl-10-001
HeihodrSUaZTO-Semi-Volanles (1
LiSt:PAHs by SU846 8270
Sample ID:
Factor:
Results in:
Matrix:
Acenaphthene
Acenaphthylene
Anthracene
Senzo(a)anthracene
Benzo(a)pyrene
Benzo(tOf luoranthene
Benzo(g,h, Uperytene
BenzoCk ) f luoranthene
Chrysene
0 ibenzC a, h) anthracene
Dibeniofuran
7, 12-Dimethylbenz(a)anthracene
F luoranthene
Fluorene
!ndeno( 1 ,2,3-ccDpyrene
2 -He thy I naphthalene
Naphthalene
Phenanthrene
Pyrene
)
Hethod Blank
5
Total ug
ISA
Stack
Result Det. Limit
NC 50,]>:>;.;;
ND 5CN&J
ND 5D:X' •
NO 50 \.
NO 50:
NO 50:;v: ;.,.,
ND 5'oi; ;•:,..'
ND SO-f jt.
ND 501*,'
NO 5or;_,v'
ND 50 ?-••;•;•
ND |f»^X
ND 50l::; *
ND SO1?'? ;i
NO so;** !•
NO 50 ;U 1
0.37 J 50 •:!-
ND 50;::f ;:
ND 50:;!> 1
Hethod Spike
5
X
19A
XAD-2/Fi
Result Det. Limit
S^sj:;-; :>.;.
NS . '-f:f|
NS -.'•:.':;•;
NS v:;;-;"':
NS ^'S-f
NS .a;i?
NS '*' i'. '/'•.•,•:•
'x '-:':-"' "•'• -
NS -.iifsl-:-:
NS .I:''--!;?
NS /|%
NS 119M
NS '•|i|:l
NS i;lii
NS iPP
NS |--| 1
NS •%; 1
HS ,;|l 1
NS ;;$! 1
. 135 ''S: s;
.>'•:• "'•.•",-,"
Vi%>:';-.:''-
:p"'V,
' '-:.
ND Not detected at specified detection limit
NS Not spiked
J Detected at less than detection limit
(1) For a detailed description of flags and technical terms in this report refer to Appendix A in this report,
(2) 4-Hethylphenol co-elutes with 3-me thy I phenol. The
value reported is the combined total of the 2
compounds.
-------
RADIAN
EHB
Radian Uork Order: PI-10-001
Analytical Data Summary
Page: 5
Method;SU8270-Setni-Volatiles (1)
List:PAHs by SUB46 BZ70
Sample ID;
Factor:
Results in;
Matrix;
Method Blank
Total ug
ISA
Stack
Method Spike
5
f.
1
-------
RADIAN
Analytical Data Suimary
EMS
Radian Uork Order; PI-10-001
Tentatively Identified Compounds
Method; SU6270-$emi-Volatile* (1)
List: PAHs by SUS46 8270
Sample ID
M26-0922-PAH-FB
H26-0923-PAH-1
H26-09Z3-PHH-2
ftnalyte
Isophorone
Diechylphthalate
Di-n-butylphthalate
Result Units "
2.24 J* .Total ug
5.68 J" Total ug
7.9 J« Total ug
Scan
Bis-(2-ethylheKyl)-ptichalate 3.12 J* Total ug
Cyclohexane
1 -Mechylnaphthalene
Diethylphthalate
Df-n-butylphthalace
Acecopherwne
Cyclohexane
1 -Hethylnaptithalene
Diethylphthalate
Di-n-butylphthalate
Diphenylamine
16800 Total ug
2020 J* Total ug
911 J* Total ug
1650 J* Total ug
716 a~ Total, ug
1050 J* Total ug
9730 J' Total ug
U50 J* Total ug
112 J* Total ug
2050 J* Total ug
330 J* Total ug
8is-(2"ethylhexyl)-phth8late 1070 J* Total ug
Page: 6
M26-09Z4-PAH-3
1-Methyinaphthatene
1220 J* Total ug
-------
RADIAN
COBPOBHTIOM
EMB
Radian Work Order; PI-10-001
Analytical Data Summary
Page: 7
rentalivtLy Identified Compounds
Method: sy8E?0-Sefni-volati les (1)
List: PAHs by Sy84& 8270
Sample ID
Method Blank
Method Spike
Analyte
Diethylphthalate
N-nitrosodiphenylamine
Di-n-butylphthalate
Diphenylamitie
iis-(2-e£hylhexyl)-phthalate
Diethylphthalate
Di-n-butylphthalate
Result Units Scan
43.8 J« Total ug
134 J* Total ug
1100 a* Total us
134 J* Total ug
590 J* Total ug
13.0 J" Total ug
6.34 J' Total us
Bis-(2-ethylhe*yt)-phthalate 13.0 J* Total ug
Phenol
2-Chlorophenol
1,4-Dichlorobenzene
M-Nitroso-di-n-propylamine
1,2,4-Trichlorobeniene
4-Chloro-3-methylphenol
4-NitrophenoA
2,4-Dinitrotolucne
Pentachlorophenol
Di-n-butylphthalate
84.8
94.2
95.6
104
109
99,9
53.0
96.4
26.6
2.15
%
X
%
%
X
%
X
X
X
X
-------
RADIAN
Analytical Data Suimary
Page: 1C
ENB
Radian Work Order: PI-10-001
Melhod:Tuenty TICS to be reported (1)
List:
Sample ID; H26-Q922-PAH-
FB
Factor: 5
Results in: Total ug
14A
Matrix: XAD-2/Fi
H26-0923-PAH-1
1000
Total ug
ISA
Stack
H26-Q923-PM-2
1000
Total ug
16A
Stack
H26-Q921-PAH-3
600
Total ug
17A
Stack
Result Det . Limit
Result Oet. Limit
Result Det, Limit
Result Det. Limit
(1) For a detailed description of flags and technical terms in this report refer to Appendix A in this report.
-------
ommommttom
EMS
Radian Work Order: PI-10-001
ftnalycical Data Sunnary
Page: 11
Method:Tuenty TICS to be reported (1)
List:
Sample ID: Method Blank
Factor:
Results in;
Hatrix:
Total ug
ISA
XAO-2/Fi
Result Det. Limit
Result Dec. Limit
Result Det. limit
Result Det. Limit
(1) For a detailed description of flags and technical terms in this report refer to Appendix A in this report.
-------
RADIAN
Analytical Data Surinary
EHB
Radian Uork Order: Pl-10-001
Tentatively Identified Compounds
Method: Twenty TICS to be reported CD
List:
Sample ID Analyte Result
*
M26-0922-PAH-FB
Cyclohexene NO 6
Oxygenated hydrocarbons NQ
2-Hexanol NO
Hethy Ipentenone isomers NO 8
unknown alkoxy alcohol NO
2,2,4,4-Tetramethyl-3- NQ
pentanone NQ
2,2'-Oxybis-ethanol diacetate NO B
1,3-Diethylbenzene NO
l-Ethenyl-4-ethylbenzene NO
Unknoun alcohol NO
M26-0923-PAH-1
Cyclohexene NO B
Unknown oxygenated hydrocarbon NO
Unknoun branched alkane NQ
Decane NO
Dime thy lundecanes HO
6-Methyldodecane NO
Trimethyldodecanes NO
Uni ts Scan
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Total ug
Page: 1
-------
RADIAN
Analytical Data Sunroary
Page: 13
EMB
Radian Work Order; Pl-10-001
Tentatively Identified Confounds
Method: Tuenty TICS to be reported (1)
List:
Sample ID
M26-0923-PAH-2
K26-OW-PAH-3
Analyte
Dimethylheptadecanes
2-Ethyl-l-Decanol
Cyelohexene
Unknown oxygenated hydrocarbon NO
Decane
Dimethylundecane isoroers
2,3,7-Trimethyloctane
2,7,10-Trimethyldodecane
2,6,11-Trimethyldodecane
Branched alkanes
Cyclohenene
-------
RADIAN
Analytical. Data Sunroary
EMB
Radian Work Order: P1-10-001
Page:
Tentatively Identified Compounds
Method: Twenty TICS to be reported (1)
List:
Sample ID Analyte
Method Blank
Dimethylheptadecane isomers
Result Units Scan
NO Total ug
Cyclohexene NQ Total ug
4-Methyl-3-penten-2-one NO Total ug
Oxygenated hydrocarbons NQ Total ug
2,2'-Oxybis-erhanol diacetate NQ Total ug
-------
RADIAN
ladian Work Order: PI-10-001
Sample History
Page:16
Sample Identifications and Dates
Sample 10 METHOD SPIKE M26- 0922- PAN -• H26-09Z3-PAH-1 M26-Q923-PAH-2 H26-Q924-PAH-3 Method Blank
FB
Date Sampled , , 09/22/91 09/23/91 09/23/91 09/24/91
Date Received 10/01/91 10/01/91 10/01/9! 10/01/91 10/01/91 10/01/91
Matrix DNPH XAD-2/Fj Stack Stack Stack XAD-2/Fi
07 H 15 16 17 18
'0-Setni-Volatiles
Prepared
Analyzed
Analyst
File ID
Blank ID
Instrument
Report as
lydes, Mod T011, HPLC
Prepared
Analyzed
Analyst
File ID
Blank 10
Instrument
Report as
:y TICS to be reported
Prepared
Analyzed
Analyst
File ID
SUnk 10
Instrunent
Report as
09/30/91
10/04/91
LKK
UUA76
LLUA75
V50CO
received
10/11/91
11/05/91
RK
45B6539.TI
4586533. T I
GC/MS B
received
10/11/91
11/05/91
RK
45B6539.TI
45B6533.T1
GC/MS B
rece i ved
10/11/91
11/05/91
RK
45B6540.TI
45B6533.TI
GC/MS 8
received
10/11/91
11/05/91
RK
458639.11
45B633.T1
CC/MS B
received
10/11/91
11/06/91
RK
4586545. T[
4586533. T I
GC/MS 9
received
10/11/91
1^1/06/91
RK
45B6545.TI
45B6533.TI
GC/MS B
received
10/11/91
11/06/91
RK
45S6546.Tr
45B6S33.T1
GC/MS B
received
10/11/91
11/06/91
RK
i5B6546.11
4586533.11
GC/MS B
received
10/11/91
11/05/91
RK
4 586533. T I
4586533. T I
GC/MS 8
received
10/11/91
11/05/91
RK
45B6533.TI
45B6533.TI
GC/HS B
received
-------
RADIAN
EHB
Radian Work Order; P1-10-001
Sample History
Page:17
Identifications and Dates
Sample ID
Date Sanfiled
Dace Received
Matrix
Method Spike Ca librae ion
Check QC
10/01/91
XAO-2/Fi
10/01/91
ACN
20
SU8270-Semi-VoLatiles
Prepared
Analyzed
Analyse
File 10
Blank ID
Instrunent
Report as
Aldehydes, Mod T011, HPLC
Prepared
Analyzed
Analyst
File ID
Blank ID
Instrument
Report as
10/11/91
11/05/91
RK
45B6534.TI
45S6S33.TI
GC/MS B
received
10/19/91
LKK
OWEN ISO
V5000
received
-------
COBPORJKTIOM
Appendix A
Comments, Notes and Definitions
-------
EHB
Radian Work Order; P1-10-001
Report Comnents and Narrative
Page: A-2
General Garments
05-A: The XAD-2/FiIter portion of the samples was lost during
preparation,
NO = Not quantitaced.
PAH sanples were diluted because of high hydrocarbon content.
-------
RADIAN
COBPORATIOH ,
Motes and Definitions Page: A-3
EHB
Radian Work Order: P1-10-001
J Indicates an estimated value for CC/MS data. This flag is used either
when estimating a concentration for tentatively identified compounds
where a response factor of 1 is assumed, or yhen the mass spectral
data indicate the presence of a compound that meets the identification
criteria but the result is less than the sample quantiration limit.
NA This analyte UBS not analyzed,
ND This flag (or < ) is used to denote anaLytes uHch are not detected •
at or above the specified detection limit. The value to the right of
the < symbol is the method specified detection Limit for the sample.
MS This analyte or surrogate yas not added ( spiked) to the sample for
this analysis.
Q This quality control standard is outside method or laboratory spec-
ified control limits. This flag is applied to matrix spike, analy-
tical OC spike, and surrogate recoveries; and to RPDCrelatwe percent
difference) values for duplicate analyses and matrix spike/matrix
spike duplicate result.
* The asteriskC*) is used to Mag results which are Less than five times
the method specified detection Limit. Studies have shown thai the
uncertainty of the analysis will increase exponentially as the method
detection limit is approached. These results should be considered
approximate.
-------
RADIAM
Notes and Definitions
EM8
Radian Uork Order: Pi-10-001
TERMS USED IN THIS REPORT:
Analyte - A chemical for which a sample is to be analyzed.
EPA method and DC specifications.
The analysis will meet
Compound - See Analyte.
Detection Limit - The method specified detection limit, which is the lower limit of
quantitacion specified by EPA for a method. Radian staff regularly assess their
laboratories1 method detection limits to verify that they meet or are lower than those
specified by EPA. Detection limits uhich are higher than method Limits are based
on experimental values at the 99% confidence level. The detection limits for EPA CLP
(Contract Laboratory Program) methods are CROLs (contract required quantisation
limits) for organics and CROLS (contract required detection limits) for inorganics.
Note, the detection limit may vary from that specified by EPA based on sample
size, dilution or cleanup, (Refer to Factor, below)
EPA Method - The EPA specified method used to perform an analysis. EPA has specified
standard methods for analysts of environmental samples. Radian uill perform its
analyses and accompanying OC tests in conformance with EPA methods unless otherwise specified.
Factor • Default method detection limits are based on analysis of clean uater samples.
A factor is required to calculate sample specific detection limits based on alternate
matrices (soil or uater), reporting units, use of cleanup procedures, or dilution of extracts/
digestates. For example, extraction or digestion of 10 grams of soil in contrast
to 1 liter of water will result in a factor of 100.
Matrix
waste.
The sample material. Generally, it uill be soil, water, air, oil, or solid
Radian Uorlc Order - The unique Radian identification code assigned to the samples reported in
the analytical summary.
Units - ug/L microgrants per liter (parts per biII ion);Iiquids/water
ug/kg micrograms per kilogram (parts per billion); soils/solids
ug/M3 micrograms per cubic meter; air samples
mg/L milligrams per liter (parts per mill ion);liquids/water
mg/kg milligrams per kilogram (parts per miLIion);soits/sotids
X percent; usually used for percent recovery of QC standards
us/cm conductance unit; mieroSiemans/centimeter
mL/hr mi Hi liters per hour; rate of settlement of matter in water
MTU turbidity unit; nephetometrie turbidity unit
CU color unit; equal to 1 mg/L af chloroplatinate salt
-------
APPENDIX F.5
SAMPLE ID LOG
-------
Project No-
-------
RADIAN
Pro|ect Mft fr
torn Pige No—
*p—.
IMHH
S5
3~)
3 I
^
»UM^
S"7."7 f <5tr-ftcj j^-tei?
iLLk
JQQ4.1
v
us
/ i
L\
XA-P
Ml
5-
'Si
' 5z
55
;sc.
* t>g
^^
HI
V
C-3
io-rc- 1
i.;
a
*5
To Pafe No.
Witnessed & Understood by me.
Date
Invented by
Recorded lay
Date
-------
TITLE.
Project No
. BookNo._252B4
Ci.
c
I) tj
'J
It,
11
7?
ro
From Page No—
ToPac
Witnessed & Understood by me,
Date
Invented by
Recorded by
Date
-------
APPENDIX G
CALIBRATION DATA SHEETS
-------
Posi Test - Mai hey
Meter Box Calibration
Dale
10/3/91
Cal Meier
6830284
Pbar
29.9
Box*
N-30
Cal Meter Yd
0.9967
Vaccum
10 " tig
Orifice
Selling
1.1
1.1
1.1
Cal. Meter
Pressure
-0.07
-0.07
-0.07
Gas Volume
Cal. Meier
Final
IniL
Toial
Final
lnii.
Toial
Final
IniL
Toial
41149
39.743
3.406
49.823
43.5 IS
6.308
S7.947
49.823
8.124
Gas Volume
Meier Box
51743
49.400
3.343
-59.250
S3. 100
6.150
67.182
59.250
7.932
Cal. Temp
In Oul
68
68
67
67
Avg. 67.5
66
66
67
67
Avg. 66.5
67
68
67
68
Avg. 67.5
Meier Temp
In Out
70
71
68
69
Avg. 69.5
71
70
68
69
Avg. 69.5
70
73
69
70
Avg. 70.5
Time
6
11
14.25
Average
Yd
1.0164
1,0252
1.0237
1.0218
Delta
||@
1.92
1.87
1.90
1.90
-------
Meter Box Calibration
Posi Test - Maihey
Dale
10/4/91
Cal Meier
6830284
Pbar
29.88
Box*
N-32
Cal Meier Yd
0.9967
Vaccum
12 "llg
Orifice
Setting
1.0
1.0
1.0
Cal. Meier
Pressure
-0.06
-0.06
-0.06
Gas Volume
Cal. Meter
Final
[nil.
Total
Final
Inii.
Tolal
Final
Init.
Tolal
32.507
21882
9.625
37.323
3Z507
4.816
44.398
37.323
7.075
Gas Volume
Meier Box
47.087
37.450
9.637
51.885
47.087
4.798
58.962
51.885
7.077
Cal. Temp
In Oui
65
66
65
66
Avg^ 6S.5
66
67
66
67
Avg. 66.5
67
67
67
67
Avg. 67.0
Meter Temp
In Out
71
73
69
70
AT 708
73
74
70
71
Avg. 710
73
75
71
71
Avg. 715
Time
18
9
13.25
Average
Yd
1.0028
1.0083
1.0042
1.0051
Delia
M@
1.95
1.95
1.%
1.95
-------
Post Test - Maihey
Meter Box Calibration
Dale
10/15/91
Cal Meier
6830284
Pbar
29.88
N-33
Cal Meier Yd
0.9967
Vaccum
11 "Hg
Orifice
Selling
1.1
1.1
1.1
Cal. Meier
Pressure
-0.07
-0.07
-0,007
Gas Volume
Cal, Meier
Final
[nil.
Total
Final
(nil.
Toial
Final
Ink.
Total
67.375
61.057
6.318
73.116
67.375
5.741
79.410
73.116
6.294
Gas Volume
Meier Box
76.428
70.000
6.428
. 81298
76.428
5.870
88,777
82.298
6.479
Cal. Temp
In Oui
70
72
70
72
Avg. 71.0
73
72
73
72
Avg. 715
73
72
73
72
Avg. 715
Meier Temp
In Out
73
78
70
72
Avg. 73.3
80
77
75
73
Avg. 76.3
82
79
78
75
Avg. 78.5
Time
11
10
11
Average
Yd
0.9810
0.9788
0.9765
0.97.88
Delia
H@
1.89
1.89
1.90
1.89
-------
APPENDIX H
SAMPLE EQUATIONS
-------
SAMPLE CALCULATIONS
COMPANY ; BORGESS MEDICAL CENTER
PLANT SITE : KAIAMAZOO. MI INPUT PARAMETERS:
SAMPLING LOCATION : BAGHCUSE OUTLET
DATE ;
EXAMPLE II: PM/Hetals , RUN 02
iHUUbt QUILtl
07/91
RUN 02
F, 29.92 in Hq
As
Cp
On >
Kp
P(std) -
Pb
Pmg(avg)-
gas sampled at standard condi
Y * Vm ' (T(std) • 460) ' Pm
551
0
0.
94
29
29
0
.55
.84
313
.59
.92
,52
45
sc
i n
in
in
in
|. in.
Hq
Hg
HZO
Ps
xcoz
INZ
toz
T(std) -
Tm(avg) •
Vm
29
4
80
15
68
no
91
48 in. Hg
PM COLLECT.- 0.0102 grin* :
69 AVG SORT OEL.P • Q.ZS46 IN HZO;
26
05
00 f
09 F
40 ft"3
MOISTURE • 211.60 grams :
COLLECTED :
SAMPL TIME . 240 rain. :
Ts(avg) - Z94.4Z F -.
Y • 1.0108 :
tlons:
Pm
Pm
• Pmg/13.6 » Pb :
V
29.5530
Vm(std)
P(std) • (Tm(avg) • 460)
Vm(std) • (1.011 " 91.40 " (88 * 460) * 29.55) / (29.92
Vm(std) • 64.52 dscf
2) Volume of water vapor at standard conditions:
vw[gas) • 0.04707 ftj/g • (moisture collected)
Vw(gas) - ( 0.04707 ' 211.60 )
Vw(gas) * 9.95 scf
3) Percent moisture in stack:
100 * Vv(gas)
Vm(std) * Vw(gas)
XV « (100 *9.95) / (84.SZ » 9.95)
XV . 10.53
4) *c!a fraction of dry stack gas:
100 - XV
HFd -
100
Wfd • (100 - 10.53) / 100
HFd • O.B9S
110.09 * 460))
-------
DEFINITION OF TERMS
SYMBOL DEFINITIONS
As AREA OF STACK
Cp PITQT COEFFIC1EMT
Ca CONCENTRATION OF PARTIOJLATE
On DIAMETER OF SAMPLING NOZZLE
ER EMISSION RATE OF PARTICIPATE
Kp PITOT TUBE COEFFICIENT
MFd HOLE FRACTION OF DRY STACK HAS
HWd MOLECULAR WEIGHT OF DRY STACK GAS
MW> MOLECULAR WEIGHT OF WET STACK GAS
MOISTURE COLLECTED [N IKPINGERS
P(std) STANDARD PRESSURE (29.9Z in. Hg)
Pb BAROMETRIC PRESSURE
Pnq(avg) AVERAGE GAUGE METER PRESSURE
Pa ABSOLUTE STACK PRESSURE
PARTtCULATE CATCH
Old AVERAGE STACK ORY VOLUMETRIC FLOW RATE
XCOZ PERCENT COZ IN STACK GAS
XNZ PERCENT NZ IN STACK GAS
X02 PERCENT 02 IN STACK GAS
XV PERCENT MOISTURE IN STACK
US PERCENT EXCESS AIR
TOTAL SAMPLING TIME
T(std) STANDARD TEMPERATURE [68 F) -
Tm(avg) AVERAGE TEMPERATURE OF THE METER
Ts(avg) AVERAGE TEMPERATURE OF THE STACK
Vm TOTAL HETERED VOLUME
Vm(std) STANDAAO METERCD VOLUME
V.(gas) VOLUME OF MTER IN STACK GAS
Vs VELOCITY OF STACK GAS
T TEST METER CALIBRATION COEFFICIENT
UNITS
In,"2
gralns/tt'a
In.
Ib/hr
lb/lb-mla
lb/lb-mla
gram
in, Hg
In Hg
In. Hg
in. Hg
gratia
dry ft'3/mtn.
nitn.
F
f
f
ft"3
dry jtindard ft'J
standard ft"3
-------
10) £«ces3 air (X):
100 * «2
ws • l
(0,264 ' WZ] - 102
XXS - (100 * 15,05) / ((0.26J ' 80,26) - '=.35)
XXS • 244.53
11) Concentration of participate:
Ca • (paniculate catch) / Vm(std) / 453,59 * 7000
Ca • 0.0102 / 84.52 / 45J.59 * 7000
Ca • 0.00186 grains/dscf
12) Psrttculate Emissions Rate:
ER • (concentration) • (Qsd) * 60 / 7000
ER • 0.0019 ' 2444,95 • 60 / 7000
ER • 0.039 Ib/hr
-------
5) Average mjlecular weight of dry stack gat:
HWd - (0.4' * XCOZ) • (0.32 * MZ) • (O.ZB ' XN2)
MWd • (0,44 ' 4.69) * (0,32 • 15.05} • (O.Z8 • 80.26)
HWd • 29 35 Ib/lb-mole
5) Average molecular Might of vet stack gas:
HUM • HWd * KFd • 18,0 ' (1.0 - HFd)
rV. - 29.35 " 0.895 * 18.0 ' (1.0 - 0.895)
MU« - 28,16 Ib/lb-mole
7) Stack velocity (feet/min) at stack conditions:
Vs * Kp'Cp'[SQRT(dPn»»g*(SQRT[(Ts)avg])'[SQRT(l/Ps-MI*)]*60
Vs - 84.59 • 0,84 ' 0.25 • SQRT[(29«.4Z *460) / (29.48 • 28.16)]
Vs • 17.24665 fpi
1034.799 fan
8) Average stack dry volumetric fin rate:
Vj • As " HFd " (T(std)+460) ' Ps
Qsd •
144 sq.in./cu.ft, * (Ts(avg) + 460) * P(std)
Qad - 17.25 ' 551.55 • 3.395 ' (M.O * 460) * Z9.48 / (144 • (294.42 * 480) ' 29-92)
Qsd • 2444.95 dicfn
69.24236
9) Fsokinetic sailing rate (X):
1039.S746 • Vm(std) • (Ts(avg) + 460)
II - -
Vs * samp, time ' Ps " HFd " (Dn)"2
XI • (1039.5746 ' 34.SZ • (294.42 * 460)) / (1034.80 * 240 • 29,48 * 0.895 ' (0.3U)"2!
11 • 103.24
-------
APPENDIX I
PROJECT PARTICIPANTS
-------
PROJECT PARTICIPANTS
RADIAN CORPORATION
Rod Brown
Geoff Johnson
Jack Johnson
Vince Laura
Julie Lopez
Tom McDonald
Terry Medley
Charlie Parrish
Kathryn Potter
Larry Romesberg
Tim Skelding
Judy Smith
ENVIRONMENTAL PROTECTION AGENCY
Dennis Holzschuh
-------
APPENDIX J
SAMPLING AND ANALYTICAL PROTOCOLS
J,l PM/Metals
J.2 PM10/CPM
J,3 Aldehydes
J,4 PAH
J.5 CEM and GC
-------
APPENDIX J.I
PM/METALS
-------
EMB DRAFT METHOD 1C,]! =3
METHODOLOGY FOR THE DETERMINATION OF METALS EMISSIONS
IS gfflAUST GASES FROM INCINERATION PROCESSES
1. Applicability and Principle
1.1 Applicability. This method is applicable for the determination of
arsenic (Aa), beryllium (Be), cadmium (Cd), total chromium (Cr), lead (Pbj.
asercury (Hg), nickel (Ni), and sine (Zn) emissions from municipal waste
incinerators and similar combustion processes. These elements are referred to
hereafter as the primary metals. This method may also be used for the
dstermlnation of antimony (Sb). barium (Ba), copper (Cu). eanganase (Mn),
phosphorus (P). selenium (Se). silver (Ag), and thallium (Tl) emissions froo
these sources. These elements are referred to hereafter as the secondary
eetals.
In addition, the eethod eay be used to determine partlculate emissions by
following the additional procedures described. Modifications to the sample
recovery and analysis procedures described in this protocol for the purpose of
determining particulate emissions may potentially impact the front hair nercury
determination.*
1.2 Principle. The stack sample is withdrawn isokiAetieally from the
source, with partieulate emissions collected la the probe and on a heated
filter and gaseous emissions collected la a series of chilled impingers
containing a solution of dilute nitric acid la hydrogen peroxide in two
iopingers. and acidic potassium permanganate solution la two (or one)
iBplAgers. Sampling train components are recovered sad digested in separate
front and back half fractions. Materials collected In the sampling train are
digested with acid solutions to dissolve inorganics and to remove organic
constituents that may create analytical interferences. Acid digestion is
performed using conventional Parr' Bomb or microwave digestion techniques. The
•Field tests to date have shown that of the) total aveunt of mercury measured
by the method, only 0 to <2I was measured ia the front half. Therefore, it is
tentatively concluded, baaed on the above data, that partlculate emissions nay
be measured by this train, without signlficsntly altering the mercury results.
-------
nitric acid and hydrogen peroiiide impinger solution, the acidic potassium
permanganate impinger solution, and the probe rinse and digested filter
solutions are analyzed for mercury by cold vapor atomic absorption spectroscapy
(CVAAS). Except for the permanganate solution, the remainder of the sampling
train fractions are analyzed for Aa. Be. Cd. Cr. Pb. Ml, and Zn (and Sb. Ba.
Cu, Mn. P, Se. Ag, and Tl, if desired) by inductively coupled argon pluaa
emission ipectroacopy (ICAP) or atomic absorption spectroacopy {AAS). Graphite
furnace atoeic absorption ipectroacopy (GFAAS) is used for analysis of AS. Cd,
and Pb (and Sb. Se. and Tl. when Measured) if these elements require greater
analytical sensitivity than can be) obtained by ICAP. Additionally, if desired,
the tester Bay use AAS for analyses of all target metals if the resulting in-
stack eethod detection Halts (combined seepling and analytical detection
limits) meet the data quality objectives of the) tasting program. For
convenience, allquota of tech digested sample fraction can be combined
proportionally for a single analytical determination. Thm efficiency of the
analytical procedure is quantified by the analysis of spiked quality control
samples containing each of the) target metals including actual sample satrix
effects checks.
2. Range. Sensitivity, Precision, and Interferences
2.1 Range. For the analyse* described la this methodology and for siallar
analyses, the ICAP response ia linear over several orders of magnitude. Sam-
ples containing metal concentrations la the) nanograma per mllllllter (ng/el) to
aicrograms per mlllllitar (ug/ml) range la the analytical finish solution can
be analyzed using tola technique. Samples) containing greater than
approximately 50 ug/ml of arsenic, chromium, or lead should be diluted to that
level or lover for final analysis. Semples "•*****i*'*«g greater than
approximately 20 ug/al of cadmium) should be diluted to that level before
analysis.
2.2 Analytical Sensitivity. ICAP analytical detection limits for the
primary [and secondary] metals ia the sample solutions) (baaed on SH-8»6, Method
6010) arm approximately as follower As (53 og/ml). fie (0.3 ng/el). Cd (<<
ng/al). Cr (7 ng/ml), Pb (02 ng/ml). Hi (15 ng/al), & (2 ng/ml) [Sb (32
ng/ml). Ba (2 ng/ml). Cu (6 ng/al). P (75 og/ml). HB (2 ng/ml). Se (75 ng/il),
Ag (7 ng/ml). Tl (HO ng/ml)]. The actual method detection limits are sample
dependent and may vary as the sample matrix may affect the limits. The
-------
analytical detection Halts for the prlaary [and secondary] aetals in sample
solutions analyzed by direct aspirttion AAS (baaed on SH-W6, Method 7000) are
approximately «LS follows: As (2 ng/al}, Be (5 ng/ml). Cd (5 nf/il), Cr (50
ng/al). Pb (100 ng/al). Ni C*0 ng/al), Zn (5 rig/el) [Sb (200 ng/«l), 9a (100
ng/Bi), Cu [20 ng/al). Mn (10 ng/al), Se (2 ng/il). Ag (10 ng/al). Tl {100
ng/ml)j, The detection Halt for aereury by CVAAS is epproaiaetely 0.2 ng/al.
The use of CFAAS can give added senaitivity compared to the use of diracc
aspirstion AAS for the following priaary and secondary metals: As (1 ng/al). 3e
(0.2 ng/al). Cd (0.1 ng/Bl). Cr (1 n«/Bl), Pb (1 ng/ml), Sb (3 ng/al). S« (2
ng/Bl), and Tl (1 ng/al).
Using (1) the procedures described in this eethod, (2) the analytical
detection liaita described in the previous paragraph. (}) a voluae of 300 al
for the front half and 150 al for the back half saaples. and (4) a stack gaa
laaple volume of 1.2? a3, the corresponding in-stack eethod detection
are presented in Table A-l and calculated aa shown:
where: A • analytical detection Halt, ug/ml.
9 • volume of sample prior to aliquot for analysis, al.
C • stack sample volume, dsca (dssP).
0 * tn-stack detection limit, ug/a3.
Values in Table A-l are calculated for the front and back half and/or the
train.
To ensure optimum sensitivity la obtaining the measurements, the
concentration* of target metals in the solution* are suggested to be at least
tan times the analytical detection limit*. Under certain conditions, and with
greater care in thm analytical procedure, this concentration can be a* low as
approximately three time* the analytical detection limit. In all cases.
repetitive analyse*, method of standard addition* (0A). serial dilution, or
aatrix spikm addition should be uaed to eatabllah the quality of the data.
Actual in-stack method detection limit* will be determined baaed on actual
source sampling parameter* and analytical result* a* described above. If
required, the method in-stack detection limit* can be made more sensitive than
those shown la Table A-l for a specific teat by uaing one or more of the
following option*:
-------
TABLE A-l. IN-STACK METHOD DETECTION LIMITS fuf/a3)
FOR TRAIN FRACTIONS USING 1CA? AUD AAS
Metal
Front Half
Fraction 1
Pro ex and Filc*r
Back Half1
Fraction 2
laplnfara 1-3
Bade Half.
Fraction |
lapiflfara U-5
Total Train
Primary Matala
Araanie
Baryiliua
Cadaiya
Chroaiua
Laad
Harctiry
Niekal
Zinc
12.7 (0.3)*
0.0? (0.05)*
1.0 (0.02)*
1.7 (0.2)*
10.1 (0.2)*
0.05**
3-6
0.5
6.* (0.1)*
0.04 (Q.QS)*
0.5 (0.01)*
0.8 (0.1)*
5-0 (0,1)*
0.03** 0.03**
1.8
0.3
19- 1 SO. 4)*
O.ll (0.08)B
1.5 (0.03)*
2. 5 '(0,3)'
15-1 (0-3)*
0.11**
5-4
0.8
Secondary Natala
Antimony
Barium
Copper
Mancanaaa
Phoaphorua
Salanlua
Silvtr
Thaliiua
7.7 (0.7)*
0.5
l.l*
0.5 (0.2)*
IS
18 (0.5)»
1.7
9-6 (0.25*
3-8 (0.4)*
0.3
0.7
0.2 (O.D*
9
9 (0.3)*
0.9
4.8 (0.1)*
11.5 (!.!)•
0.8
2.1
0.7 (0.35*
27
27 (0.3>*
2.6
14.4 (0.3)*
D*t*ction limit whan analysad by 3FAAS.
D*t*cuon limit trim analytad by CVAAS.
Actual MtlMd in-acacfe d« tact ion llml ta trill bm d«tarmin«d baaed
on actual aotiree aampllnc paraaMtara aad analytical raaulta aa
daacnbad aarliar in tMa auction.
A normal 1-bour aaapllnf run collacta a atack faj aaapllnf voluaa of
atwut 1.25 a*. If tba aaaplin< eia* ta inerMaad and 5 •* •«
collactad. tha in-atack aathod dataction lialta would ba ona fourth of
th- vmluits ii^^ ^ fabla A-l (tMa aaa&a that with tMa chant*, tha
aatbod la tour tim« aor* aanaitiva than aoraal).
Tha la-atacfc datactlon limlta uaiaw that all of tha •aapla If dl|«at0d
(vita a»captlon of t&a aliquot for aarcury) aad taa final liquid
voluaaa for analyaia ara 300 al for tha front Half aftd 150 al for tnc
back half aaapla. If tha front half volian li raducad froa 300 ml to
30 al, tha front half in-atack da tact ion liaita would ba ona tanth of
tha valuaa ahown e.ov* (tan tiaaa aora aanaitiva). If tha back half
voluaa la raduead froa 150 al to 25 al. t&a in-atack dataction Halts
-------
would be one sixth of the above values. Matrix effects checks are
necessary on analyses of samples and typically are of greater signifi-
cance for saaples that have been concentrated to less than the noraal
aaaple volume. A voluae leas than 25 ml may not allow resolubtliza-
:.on of che residue and may increase interference by other compounds.
o When both of che above two isproveaents are used on one sample at the
sue time, che resultant improvements are multiplicative. For exuple.
•here stack gas voluae is increased by a factor of five and the total
liquid saaple digested volume of both the front and back halves is
reduced by factor of six. the In-stack method detection limit is
reduced by a factor of thirty (the method is thirty times acre
sensitive).
o Conversely, reducing stack gas saaple voluae and increasing saaple
liquid voluae will increase liaits. The) front half and back halfl
samples (Fractions 1 and 2) can be combined priorrto analysis. The
resultant liquid volume (excluding Fraction 3. which eust be analyzed
separately) la recorded. Combining the asaple as described does not
allow determination (whether front or back half) of where in the -rain
the saaple was captured. The In-stack method detection Halt then
becomes a single value for all target metals except mercury, for which
the contribution of Fraction 3 "ust be considered.
o The above discussion assuaes no blank correction. Blank corrections
are discussed later in this method.
2.3 Precision. The) precisions (relative standard deviations) for each of
the primary and secondary metals detected la a method development test at a
sewage sludge incinerator, an as follows: As (13.51). Cd (11.5», Cr (11.21),
Pb (11.6S). Zn (11.81). Sb (12.71). Ba (20.61). Cu (11.51), P U4.6S). Se
(15-31), and Tl (12.39). The precision for nickel was 7-7J for another test
conducted at a source simulator. Berylliua, manganese and silver were not
detected in the) tests; however, based on the analytical sensitivity of the ICAP
for these metals, it is assuaed that their precisions should be similar to
those for the other metals, whan detected at slallar levels.
2.4 Interferences. Iron can b* a spectral interference during the
analysis of anemic, chroalua, and cadalua by ICAP. Aluainua can be a spectral
interference during the) analysis of arsenic and laad by ICAP. Generally, these
interferences can be reduced by diluting the asaple. but this increases the
-------
in-stack method dec set ion Halt. Refer to EPA Method 6010 (SM-&46) for details
on potential interferences for chit method. For til GFAAS analyse*, estrix
modifiers should be used to lialt interferences, and standards should be
aacc.h.ed.
3, Apparacus
3-1 Samplinf Train. A schematic of th« samplinf train is shown in
A-l. Ic is similar to th* Method 5 train. The samplinf train consists of the
followinf component*.
3-1.1 Prob* Nosile (Prcae Tip) and Boroslllcate or Quarts Glass Probe
Liner. Same as Method 5, Section* 2.1.1 and 2.1.2. 01 ass nossles art
requiredunless an altcrnata probe tip prevent* the possibility of eontaainacion
or interference of the sample with it* materials of construction. If a probe
tip other than fleet it used, no correction of the stack ssmpls test results
can be Bade because of the effect on the result* by the probe tip.
3.1.2 Pitot Tube and Differential Pressure Oaufe. Same at Method 2.
Sections 2.1 and 2.2. respectively.
3.1.3 Filter Holder. Olata, same at Method 5. Section 2.1.9, except that
e. Teflon filter support vuat be uaed to replace the flats frit.
3.1.4 Filter Heatinf 3ystea. Same at Method 9. Section 2.1.6.
3.1.5 Oandenaer. Th* follovinc tyetsti ahmll be uted for the condensation
*
and collection of fateous metalt end for determininf the eoisture content of
the stack faa. The condenainf eymtem ahould conelat of four to sia impinfen
connected in series with leak-free framd flaea fittin«t or other leak-free.
non-contaminatinf flctinfi. Tbe firtt iapiiift* U optional and it recommended
at s water toockout trap for ume durlaf teet condition* which require such a
trap. The impinfere to be ueed In th* metalt train arm now described, vhen
the firtt impinfer it uted at a water knockout, it shall be appropriately-sited
for an expected larfe. toUture catch and eonitructad fmnerelly at deeeribed for
the firtt impincer in Method 5. Parafraph 2.1.7' The second Utpinfer (or the
first HNO,/H,0, iepinfer) shall alto be at described for th* firtt impiAfer in
Method 5. Tom third Upincmr (or the impinfer used at th* second RW))/H30,
impinftr) shall be the same at the Oreenfrurf Smith impiisfer with the standard
tip described at the second impinfer in Method 3. Partfrapa 2.1.7. All other
impinfers uaed in the metals train arm the tarn* am thm second iapinfer (the
first HMOj/RjO, imp infer) previously deeeribed in this pmrtiraph. In summary.
-------
a
2>
i
VI
i
i
i
•3
s
i
-------
che first impinger should be empty, the second and third shall contain kr.owr.
quantities of a nitric acid/hydrogen peroxide solution (Section 4,2.1). the
fourth (and fifth, if required) shall contain a known quantity of acidic
potassium permanganate solution (Section '4.2.2) ./id the last -apinger shall
ontain a known quantity of silica eel or equivalent deeiccanc. A theraoaeter
capable of measuring to within 1°C (2°F) shall be placed ac the outlet of the
last iapinfer. When che water Imockout lap infer is not needed, it is reeoved
from the train and the other ispiiifers resiain the same. If mercury analysis ia
not needed, the potassium permanganate tap infers are removed.
3.1.6 Metering Systee. Barometer, and Qas Density Detereination
Equipment. Save ae Method 5. Sections) 2.1 throufh 2.1.10, respectively.
3.1.7 Teflon Tape. For capplnf openings and sealinf connections on che
sampling train.
3.2 Sample Recovery. Sam*) u Method 5. Section* 2.2.1 throufh 2.2.8
(Nonmetallic Probe-Liner and Probo-Noiils Brushes, Wash Bottles, Sample
Storafe Containers). Petrl Oishee, Glass Graduated Cylinder. Plaetic Storafe
Containers, runnel and Rubber Policeman, and Olaai Funnel), respectively, with
the follovtnf exceptions and additions);
3.2.1 Nonaetallic Probe-Liner and Probe-Hoatle Bruahea. For quantitative
recovery of Materials collected Ln the fr -t half of the saaplinf train.
Description of acceptable all-Teflon eoapvrant brushes to be included in EPA'a
Emission KeasuresMnt Technical Information Center (BVITC) filee.
3.2.2 Saaple 3 tor ace Container*. Olasie bottles) with Teflon-lined caps.
1000- and 500-sJ,. ahall be used for KlfeiO,-concal&inf •••pies and blanks.
Polyethylene bottles say be used for other staple types.
3-2.3 Qraduatad Cylinder. Olass or equivalent.
3.2.4 Fxmnel. Olass or equivalent.
3.2.; Labels. For identification of •••plea.
3.2.6 Polypropylene Tweeisre aed/or Plastic Qlove«. For recovery of the
filter frost the saaplinf train filter holder.
3-3 Sample Preparation and Analysis. For the analysis, the followinf
equipment is needed;
3.3.1 Volumetric Flasks. IX al, 290 ml. end 1000 ml. For preparation of
standards and sample dilution.
3.3.2 Graduated Cylinders. For preparation of reagents.
3.3.3 Parr1 ic«bs or Microwave Pressure Belief Vessels with Capplnf
-------
Station (CO! Corporation lodel or equivalent).
3.3.4 Beakers and Watchglasses. 250-»1 beakers for sample digestion with
watchglasses to cover the tops.
3.3-5 Ring Stands and Clamps. For securing equipment such as filtration
apparatus.
3.3.6 Filter Funnels, For holding filter paper.
3.3.7 Whatman 541 Filter Paper (or equivalent). For filtration of
digested samples.
3.3-d Disposable Pasteur Pipets and Bulbs.
3.3.9 Volumetric Pipets.
3.3.10 Analytical Balance. Accurate to within Q.I sf.
3.3.11 Microwave, or Conventional Oven. For heating saaples at fixed
power levels or temperatures.
3.3.12 Hot Plates.
3.3-13 Atomic Absorption Spectrometer (AAS). Equipped with a background
corrector.
3.3.13.1 Graphite Furnace Attachment. With A*. C
-------
che metals to b« eeuured. Analytical results provided by filter
are acceptable. However, if no such results are available, filter blanks auac
b« analyzed for each tarfet aetal prior to Mission test inf. Quartz fiber or
gl&aa fiber niter* without orcanie binder* shall b* used. The filters should
exhibit at least 99-95 percent efficiency (<0.05 perceri penecretion) on 0.3
aicron dioctyl phthalate saoke particles. The filter efficiency test shall be
conducted in accordance with ASTM Standard Method 02986-71 (incorporated by
reference). For particulate determination in sources containinf SO, or SO ,
the filter aaterial iust be of a type that is unreactlve to SO, or S0}, as
described in EPA Method 5- Quartx fiber filter* aeetlng these requireeencs are
recommended.
U.i.2 Water. To conform to ASTM Specification 01193.77, Type II
(incorporated by reference). Analyze the vater for all tartet aetals prior to
field use. All tarfet aetals should be le*e than 1 ng/el.
4.1.3 Nitric Acid. Concentrated. Baker Inatra-enalyred or equivalent.
4.1.4 Hydrochloric Acid. Concentrated. Baker Instra-analyzed or
equivalent.
4.1.5 Hydrogen Peroxide. 30 Percent (V/V).
4.1.6 Potaeelusi Permanganate.
4.1.7 Sulfurlc Acid. Concentrated.
4.1.8 Silica 0*1 and Crushed Ice. Same w Method 5. Sections 3,1.2 and
3.1.4. respectively.
4.2 Pretast Preparation for Saaplinf Reafects.
4.2.1 Nitric Add (HHO,)/Hydrofec Peroxide (H,0a) Ataerblnff Solution.
5 Percent HNOj/10 Percent 0,0,. Add 50 ml of concentrated HKO, and 333 •! of
30 percent 11,0, to • LOOO~aU, voluejsjtrlc flaak or fretfuated cylinder containinf
approxisuitely 500 ml of water. Dilute to volume with vater. The reecent shall
contain lace then 2 nf/al of each tarfet eetal.
4.2.2 Acidic Potassiua Pereanfinate (Ote04) Ataorbiaff Solution. 4 Percent
KMnO, (W/V). Prepare fresh daily. DUsolve 40 f of K»aO» la sufficient 10
percent H,SO, to aake 1 liter. Prepare sad store la flaas bottles to prevent
degradation. The reagent shall contain lea* than 2 of/al of Bf.
Precaution; To prevent autocatalytic decoepoeition of the peraanfmn*t«
solution, filter the solution throufh Wutman 941 filter paper. Also, due to
reaction of the potaMlia permanfaaste vita the add. there aay be pressure
buildup in the ssaple storage bottle; these bottle* should not be fully filled
-------
and should be vented both to relieve excess pressure and prevent explosion
-------
4.4.14 lanthenua Oxide. la,0j
4.4.15 AAS Grid* As Standard,
a. a. 16 AAS Grade Be Standard.
'4. 4.17 AAS Grade Cd Standard.
4.4.1.3 AAS Grid* Cr Standard.
4.4.19 AAS Grade Pb Standard,
4.4,20 AAS Grade Hf Standard.
4,4.21 AAS Grade Ml Standard.
4.4.22 AAS Grade Zn Standard,
4.4.23 AAS Grade Al Standard.
4.4.24 AAS Grad* Fa Standard,
4.4.29 AAS Qrada Sb Standard.
4.4.26 AAS Grade Ba Standard. 1000 uff/al.
4.4.27 AAS Grade Cu Standard, 1000 uff/ml,
4.4.21 AAS Grade to Standard,
4.4.29 AAS Grade P Standard,
4.4.30 AAS Grade Sa Standard,
4.4.31 AAS Grade A* Standard,
4.4.32
1000 uf/al.
1000 uf/ai.
1000 uf/«l.
LOGO ug/al.
1000 uf/al.
1000 uf/ml.
LOGO uf/al.
1000 uf/ml.
1000 uf/*l.
1000 uf/al.
1000 uf/al.
Optional.
Optional.
Optional,
Optional.
Optional.
Optional.
Optional.
Optional.
1000
1000 uf/*l.
1000 uaVal.
1000 u«/al.
AAS Grade Tl Standard. 1000 uf/al.
4.4.33 the aetala •tandarda aay alao be aade froa lelid chaaicali as
deacrib«i in EPA fethod 200.7. BPA Method 7470 or Standard Method* for the
Analyaii of Water and Waataimtar. 15th*Edition, Method 303? anould be referred
to for additional information on aarcury atandardj.
4.4.34 Mercury Standard* and Quality Control Saaplw. Prepare freah
weekly a 10 uf/al intermediate eercury •tandard by addinc 5 al of 1000 yf/ai
•erairy ttock solution to a 500-ml voliaatrle flaak; dilute to 500 al by first
addinf 20 al of 15 percent UNO, and then adding water. Prepare a working
aercury •tandard aolution freah daily; add 5 «1 of taa 10 uf/al intermediate
•tandard to a 250 al volumetric flaak and dilute to 250 al vita 5 al of
4 percent Oto04, 5 al of 15 percent iNO,, and than watar. At leaat «i«
separate aliquota of the workinf mercury atandard •olutlon ahould be uaed to
prepare the •tandard curve. Theae allquota anould contain 0.0. 1.0. 2.0. 3-0.
4.0, and 5.0 al of the working standard aolution. Quality control laaples
should be prepared by aakinf a Mparata 10 uf/al •tandard and diluting until in
the ranee of the calibration.
4.4.35 ICAP Standard* and Quality Control SaaplM. Calibration standard!
-------
for ICAP analysis can be combined into four different eixed standard solutions
as shown below,
MIXED STANDARD SOLUTIONS FOR ICAP ANALYSIS
Solution ElesMmts (secondary aetals in parantheaea)
I As. 8a. Cd. Pb. Zn (Nn. Se)
II Fa (Ba. Cu)
III Al. Cr. Hi
IV (5b. P. Af. Tl)
Prepare these standard* by coabinlng and diluting the appropriate volumes of
che 1000 ug/al solution! with 5 percent nitric acid. A alniaua) of one stan-
dard and a blank can be used to fora each calibration curve. However, a
separate quality control saiple spiked with known aaounts of the target laeais
in quantities in the aidranfe of the calibration curve should be prepared.
Suggested standard levels are 50 uf/al for Al. 23 uf/el for Cr and Pb. 15 ug/al
for Fa. and 10 ui/el for the regaining elements. Standard* containing lass
than 1 u^/al of eetal should be prepared dally. Standard* containing ffraaeer
than 1 ug/el of eetal should be stable for a alnlsus of 1 to 2 we*fcj.
4.4.36 Graphite Furnace AAS Standarda for Arsenic, Cadmiua, snd Uad (and
Antisony. Selenlua, and Thalliua). Prepare a 10 uf/al atandard by adding i si
of 1000 ug/el standard to a lOO-el volumetric flask. Dilute to 100 el with 10
percent nitric acid. For graphite furnace AAS, the standards eust be eatrix
oatched; e.g.. if the saaplee contain 6 percent nitric acid and 4 percent
hydrofluoric acid, the standarda should'also be esda up with 6 percent nitric
acid and 4 percent hydrofluoric acid. Prepare a 100 afl/al standard by adding
1 al of the 10 uf/el staodard to a 100-el volumetric flask and dilute to 100 nl
with the appropriate aatrln solution. Other standarda should be prepared by
dilution of the 100 nc/el standarda. At leaat five standards should be used ca
aake up the standard curve. Suffeated levels are 0. 10. 50. 75. and 100 ng/al.
Quality control samples should be prepared by aaMlnf a separate 10 uc/sd
standard and diluting until it if in the range of th* saaple*. Standarda
containing leM than 1 ug/al of eetal should be prepared dally. Standarda
containing greater than 1 ug/el of eetel should be stable for a ainiaue. of 1 to
2 week*.
4.4.37 Matrix Modifiers-
4,4.37.1 Nickel Nitrate, l Percent (V/V). OUaolve 4.996 g of
Mi(N03)a 6H,0 ia approxlMtely 50 el of rater in a 100-al volusMtrlc flask.
-------
Dilute to 100 •! with water.
U.U.37.2 Nickel Nitrate, One-tenth Percent (V/V). Dilute 10 el of 1 per-
cent nickel nitrate solution to 100 mi with water. Inject an equal aacunc of
and this modifier into the graphite furnace during AAS analysis for AS.
.^.37.3 Lanthanum. Dlsaolve 0.5864 g of L^Qj in 10 mi of concentrated
and dilute to 100 mi with water. Inject an equal amount of saaple and
this eodifler into the graphite furnace during AAS analysis for Pb.
5. Procedure
5.1 Sampling. The complexity of this method is such chat, to obtain reli-
able resultsv testers should be trained and experienced with the test procedures
5.1.1 Pretest Preparation. Follow the saae general procedure given in
Method 5. Section 4.1.1. except that, unless partlculate emission* arc to be
determined, the filter need not ba> desiccated or weighed. All sampling train
glassware should first be rinsed with hot tap water and then washed in hat
soapy water. Next, glassware should be rinsed three times with tap vster,
followed by three additional rinses with water. All glassware should then be
soaked in a 10 percent (V/V) nitric acid solution for a minimum or U hours,
rinsed three times with water, rinsed a final time with acetone, and allowed
to air dry. All glassware openings where contamination can occur should be
covered until the sampling train is assembled, prior to sampling.
5.1.2 Preliminary Determinations. Seme as Method 3, Section 4,1.2.
?.!.} Preparation of Sampling Train. Follow the same general procedure*
given iA Method 3. Section 1.1.3. except place 100 el of the nitric
acid/hydrogen peroxide solution (Section 4.2.1) la the two HNOj/H,Oa ispingers
{normally the second and third impingers). place 100 al of the acidic potassiua
permanganate solution (Section 4.2.2) in the fourth and fifth impinger. and
transfer approximately 200 to 300 g of preweighed silica gel from its container
to the last imp lager. Alternatively, the silica gel say be weighed directly in
the ispinger Just prior to train assembly.
Several options ere available to the tester based on the sampling
conditions. The use of an empty first implnger can be eliminated if the
moisture to be collected in the implngers is calculated or determined to be
less than 150 al. The tester shall Include two impingers containing the
acidic potassium permanganate solution for the first test run. unless past
testing experience at the same or similar sources ham shown that only one is
-------
necessary. The last pereanganete ispinger aay be discarded if both
peraanganate iapingers have retained their origin*! deep purple pereangana:e
color. A aaxiBua of 200 el in aach pereanganate ispinger (and a aaxiaua of
three peraanganate iepingers) aay be used, if necessary, to maintain the
desired color in the l»st peraanganate iapinger,
Retain for reagent blanks, 100 al of tha nitric acid/hydrogen peronide
solution and 100 >1 of tha acidic potass iua permanganate solution. These
solutions should be labeled and treated as described in Section 7. Sec up the
sasplinf train aa shown In Pifur* A-l. If rveceaaary to anjure leak-fr«e
saapling train connection*, Teflon tape should be uaed instead of silicon*
gr«asa to prevent contaeination.
Precaution; Extreee care should be taken to prevent contaainacion within
the train. Prevent the eercury collection reagent (acidic potaaaiue
pereanganate) froe contacting any glassware of the train which is washed and
analyzed for Nn. Prevent hydrogen peroxide free) aixlng with the acidic
potasaiue pereanganate.
5.1.4 Leak-Check Procedures. Follow the leak-check procedures given in
Method 3. Section lngera into the filter.
Before eovins; the sampling train to the cleanup site, reeove the probe
the saapling treia and cap the open outlet. Be careful not to lose any
condensats that aight be present. Cap the filter inlet where the probe was
fastened. Remove the uabllical cord froe the last ispinger and cap the
-------
ispingar. Cap off the filter holder outlet »nd tapinger inlet. Use non-
contaainating cape, whether ground-glass stoppers, plastic capa, serum cap*.
or Teflon cap« to close that* openings.
Alternatively, the train can be disajseablad before the probe and filter
holder/ovan ara completely coolad. if thia procedure la followed: Initially
disconnect the filter holder outlet/impinger ialat and looaaly cap the op«n
end*' Then disconnect the probe from tha filter holder or cyclone inlet and
looialy cap the open end*. Cap the probe tip and remove the umbilical cord as
previously described.
Transfer the probe and filter-impinger assembly to a cleanup area that is
claan and protected from the wind and other potential causaa of contamination
or losa of sample. Inspect the train before and during disassembly and note
any abnormal conditions. The sample is recovered and treated as follows (see
schematic in Fifure A-2). Assure that all items necesaary for recovery of the
sample do not contaminate it.
5.2.1 Container Ho. I (Filter). Carefully remove the filter from tha
filter holder and place it in its identified petri dish container. Acid-
washed polypropylene or Teflon coated tweezer* or clean, disposable surjical
gloves rinsed with water should be used to handle tarn filters. If it is
necessary to fold the filter, make certain the particulata cake is inside the
fold. Carefully transfer the filter and- any particulate matter or filter
fibers that adhere to the filter bolder gasket to the petrl dish by using a dry
(acid-cleaned) ayloa bristle brush. Do not use any metal-containing materials
when recovmrinf this train. Seal the labeled petri dish.
5.2.2 **-**ittlittr Ho. 2 (Acetone Rinse). Taking care) to see that dust on
the outside) of tha) probe or other exterior surfaces tees not get into the
sample, quantitatively recover particulata) Batter and any condensata from the
probe noxile, proem fitting, proem liner, and front half of the filter holder
by washina* tbmmm components vita, 100 ml of acetone and placing the wash i_n a
glass container. Hotat The use of emsetly 100 ml Is necessary for the
subsequent blank correction procedures. Distilled water may be used instead of
acetone wham approved by tarn Administrator aad shall be used wHaa specified by
the Administrator; la rhmss esses, save a water blank aad folio* tarn
Administrator's directions on analysis. Perform tarn acmtonm rinses as follows:
Carefully remove the probe nossla and clean the inside surface by rinsing with
acetone from a wash bottle and brushing with a nonmmtallic brush. Brush until
-------
1.
1
a
S
I
*
1
j
1
S
1
i
Hi §
w
* s.
i 3 1 t*
i
w
n
>»
I
—
•j
1
"* '
^
^j
*
J1
1
-------
the acetone rinse shows no visible particles, after which aake a final rinse z:
the inside surface with acetone.
Brush and rinse the inside parts of Che Swegelok fittinf with acetone in a
giailar way until no visible particles remain.
Rinse che p'-obe liner with acetone by tilting and rotating the prob« while
squirting acetone into its upper and so that all inside surfaces will be wetted
with acetone. Allow the acetone to drain from the lover end into the staple
container. A funnel eay be used to aid in transferring liquid washings to the
container. Follow the acetone rinse with a nonmetallic probe brush. Hold the
probe in an inclined position, squirt acetone Into the upper end as the probe
brush is being pushed with a twisting action through the probe; hold a
saaplecontalner underneath the lover end of the probe, and catch any acetone
and partlculete eattar which Is brushed through the probe three times or acre
until no visible paniculate asttar is carried out with the acetone or until
none remains in the probe liner on visual inspection. Rinse the brush with
acetone, and quantitatively collect these washings la the staple container.
After the brushing, make a final acetone rinse of the probe as described above.
It is recommended that two people clean the probe to minimize sample
losses. Between sampling runs, keep brushes clean and protected from
contamination.
Clean the inside of the front half of the filter holder by rubbing •
surfaces with a nonaetalllc nylon bristle brush and rinsing with ace tor,
Rinse each surface three tlaee or more If needed to remove visible partlculate.
Make a final rinse of the brush and filter holder. After all acetone washings
and partlculate eat tar have been collected ta tbm sample container, tighten the
lid on the saaple container so that acetone) will net leak out whan it is
shipped to the laboratory. Mark the height of the) fluid level to determine
whether or not leakage occurred during transport. Label the container clearly
to identify its contents.
5.2.3 Container No. 3 (Probe Rinse). Rinse the probe liner, probe nozzle.
and front half of the filter holder thoroughly with 100 el of 0.1 N nitric acid
and place the wash into a temple storage container. Note: The use of exactly
100 el is necessary for the subsequent clank correction procedures. Perfora
th* rinses as described In Method 12. Section 9.2.2. Record the) volume of the
combined rinse. Nark torn height of the fluid level on tarn outside of the
storage container and use this aark to determine If leakage occurs during
-------
transport. Seal th* container and clearly label the contents. Finally, rinse
the nozzle, probe liner, and front half of the filter holder with water
followed by acetone and discard these rinses.
5.2.14 Container Mo. H (lapingers 1 through 3. Contents and Rinses). Due
tc the Large quantity of liquid involved, the tetter Bay place the iapir.ger
solutions in «ore than one container. Measure the liquid in the first three
iapingers voluaetricelly to within 0.5 al using a graduated cylinder. Record
the volume of liquid present. This information is required to calculate the
aoisture content of the sastpled flue fas- Clean each of the first three
iapingers. the filter support, the back Half of the filter housing, and
connecting f lass ware by thoroughly rinsing with 100 ml of 0.1 N nitric acid as
described in Method 12. Section 5.2.1. Note); The use of exactly 100 si of 0.1
N nitric acid rinse is necessary for the) subsequent blank correction
procedures. Combine the rinses end impinger solutions, measure and record the
volume. Calculate the 0.1 N nitric acid rinse volume by difference. Mark the
height of the fluid level on the outside of the container to determine if
leakage occur* during transport. Seal the) container and clearly label the
contents.
5.2.5 Container No. 5 (Acidified Potassium Permanganate Solution and
Rinses, lap Inge rs No. *t fc 5). Pour all the liquid fros) the permanganate
iapinger* (fourth and fifth, if two permanganate iapinger* are used) into a
graduated cylinder and measure the volume to within 0.5 ml. This information
is required to calculate the) moiaturs) content of the sampled flue gas. Using
100 al total of the acldlfiad potassium permanganate solution, rinse the
permanganate iapingmr(a) and connecting glama pieces a minimum of three tiaes.
Combine the rinse* vita tarn permanganate impingmr solution. Finally, rinse the
permanganate iapingar(s) and connecting glamsvmre vita 50 mi of fl N HC1 to
remove any reaidu*. Ngta: The) ua* of exactly 100 al and 50 ml for the two
rinse* is omcasaary for the) subsequent blank correction procedure*. Place the
combined rinsaa and iapingar eontanta in a labeled glass storage bottle. Nark
the height of the fluid level on the outside) of to* bottle to determine if
leakage occur* during transport. Sa*j the) following nota and the) Precaution in
Paragraph U.2.2 and properly seal the bottla sad clearly label the ce«tents.
Nota: Due to thai potantlal reaction of th* potassium permanganate with the
acid, there aay be pressure buildup la tat) sample s to rag* bottle*. These
bottle* should not be filled full and should be vented to relieve axeass
-------
pressure. Venting, is highly recommended. A No. 70-72 hole drilled in the
container cap and Teflon liner has been found to allow adequate venting wichou:
loss of sample.
5.2.6 Container Mo. 6 (Silica Oei). Note the color of the indicating
silica gel to determine whether it haj been completely spent and oake a
notation of its condition. Transfer the silica gel from its iapinger co its
original container and seal. The teeter may use a funnel co pour the silica
gel and a rubber policeman co remove the silica gel from the ispinger. The
small amount of particles chat may adhere to the impinger wall need not be
removed. Do not use water or other liquids to transfer the silica gel since
weigr rained in the silica gel impinger is used for moisture calculations,
Alter -itively, if a balance is available in the field, record the weight of
the spent silica gel (or silica gel plus iapinger) to the nearest 0.; g,
5.2.7 Container No. 7 (Acetone Blank). Once during each field test, place
LOO ml of the acetone used in the sample recovery process into a labeled
container for use in the front half field reagent blank. Seal the container.
5,2.8 Container No. 8 (0.1 N Nitric Acid Blank). Once during each field
test, place 200 ml of the 0.1 N nitric acid solution used in the sample
recovery process into a labeled container for use in the front half and back
half field reagent blanks. Seal the container.
5.2.9 Container No. 9 (5* Mitrie Acid/lOS Hydrogen Peroxide Blank). Once
during each field test, place 200 ml of the) 5* nitric acid/101 hydrogen
peroxide solution used as the nitric acid impinfmr reagent into a labeled
container for use in the) beck half field reagent blank. Seal the container.
5.2.10 Container No. 10 (Acidified Potassium Permanganate Blank). Once
during each field teat, place) 300 ml of the acidified potassium permanganate
solution used as the impinger solution and in the sample recovery process inco
» labeled container for use In the) back half field reagent blank for mercury
analysis. Semi the container.
Note; This container should be vented, as described in Section 5.2.4. to
relieve excess pressure.
5.2.11 Container No. 11 (8 N HC1 Blank). Ones) during each field test,
place 50 ml of the 8 N hydrochloric acid used to rinse the acidified potassiua
permanganate ispinger* into a labeled container for use in the back half
reagent blank for mercury.
5.2.12 Container No. 12 (Filter Blank). Once during each field test.
-------
place an unused filter from the same lot as the sampling filters in a labeled
petri dish- Seal the petri dish. This will be used in the front half field
reagent blank.
5.3 Sample Preparation, Note the level of the liquid in each of the
containers and determine if any sample was lost during shipment. If •
noticeable amount of leakage has occurred, either void the sample or use
nethods, subject to the approval of the Administrator, to correct the final
results. A diagram illustrating sample preparation and analysis procedures for
each of the sample train components is shown in Figure A-3.
5-3-1 Container No. 1 (Filter). If partieulata emissions are being
determined, then desiccate the filter and filter catch without heat and weigh ::
a constant weight as described in Section 4.3 of Method 5- For analysis of
•etals, divide the filter with its filter catch into portions containing
approximately 0.5 g each and place into the analyst's choice of either
individual microwave pressure relief vessels or Parr1 Bombs. Add 6 ml of
concentrated nitric acid and * ml of concentrated hydrofluoric acid to each
vessel. For microwave heating, microwave the ssmpls vessels for approximately
12-15 minutes in intervals of 1 to 2 minutes at 600 watts. For conventional
heating, heat the Parr Bombs at l40"C (28**F) for 6 hours. Than cool the
samples to room temperature and combine with the acid digested probe rinse as
required in Section 5-3-3. below.
Motes: 1. Suggested microwave heating times are approximate and are dependent
upon the number of samples Heine digested. Twelve to 15 minute
heating times have bean found to be acceptable for simultaneous
digestion of up to 12 individual samples. Sufficient heating is
evidenced by sorbent reflux within the vessel.
'• 2. If the sampling train uses aa optional cyclone, the cyclone catch
should be prepared and digested using tarn same procedures described
for the filters and combined vita tarn digested filter samples.
5-3-2 Container No. 2 (Acetone Rinse). Mot* tarn level of liquid in the
container sad confirm oa tarn analysis sheet whether or not leakage occurred
during transport. If a noticeable amount of leakage ham occurred, either void
the sample or use methods, subject to the approval of tarn Administrator, to
correct the final results. Meaaure thai liquid in this container either
voluaetricslly to •! ml or gravimetrically to ±0,5 •• Transfer the contents to
an acid-cleaned tared 250-ml beaker sad evaporate to dryness at ambient Figure
-------
ltMr )
AC 14 rro** «I
tcUII> la
•Ilk CMC.
Mr I
raM lln
(LafcilM Ml
•life
i 4ltu««
:!!•• I
Container I
rin.r
. 1.4 P)
Conl*liM> *
cr. ir
lima in i* frmui I I •*•!<(•«• ta
r******* »•*•» I l«o»i«M wi^«
fllur
for CWiAt
for H| aM
fraclla
fail* 0 S •
CllM Bltft
Mil* Kit
•i %"* rw a b
10 p
or a
•M^yf , MBit
Fractional
Mltk
IC*T
•*«*!•
•IftMl vllk «cl« M«
• ••••^•al* •* W°C !•
• Ml«r talk f•• 2 k
•>!•!•
fraclln U
••!•!• k* OT4M
tor
for •*
, If
Container
rlUt Kill
•W
for
for
lop )
fui
««S, If
Figure A 3 bba|»le pi-epurullun and anulysia acheac
-------
temperature and pressure. (IF participate emissions are being determined.
desiccate For 2
-------
.. -3-'4-2, b«low.
5. 3.U.i Convention*! Difettion Procedure. Add 30 ml of 50 percent nitric
acid and heat for 30 ainutti on * not plat* to Juat below boilinf. Add 10 al 3f
3 percent hydrofen peroxid* and heat for 10 more ainutaa. Add 50 al or hoc
water and heat the sample for an additional 20 ai iutee. Cool, filter the
staple, and dilute to 150 ml (or the appropriate volua* for the expected setais
concentration*) with water.
5.3.U.2 Microwave Digeation Procedure. Add 10 el of 50 percent nitric
acid and heat for 6 alnutaa in intervale of 1 co 2 ainutee at 600 Watts. Allow
the iaarpl* to cool. Add 10 al of 3 Percent hydrogen peroxide and heat for 2
no re ainutea. Add 50 al of hoe water and heat for an additional 5 minutes.
Cool, filter th* aaapla, and dilute to 150 eJ. (or the appropriate volume for the
expected aatals concentration*) with water.
Note: All alcrowave heating CiM* given are approjilaate and are dependant
upon the number of saaple* being digeated at a tlae. Heating tlaea a* given
above have been found acceptable for simultaneous di feet ion of up to 12
individual aaiplca. Sufficient heating la evidenced by solvent reflux within
the veaael.
5.3>3 Container No. 5 (I«pinger« 445)- Haaaure and record the total
voluae of this saaple to within 0.5 al. Thia aaflple ia referred to aa Fraction
3. Follow the anal/eia procedure* deccribed ia Section 5.U.3.
5-3-6 Container No. 6 (Silica del). Weigh the spent silica fel (or silica
gel plua iapingef) to the neareat 0.5 g uaiag a balance. (IMa step
may be conducted ia tha fiald.)
5.U Saaple Analyaie. For aach sampling train, five individual samples are
generated for analyaia. A achamatic identifying; each eaapla aad the prescribed
saajple preparation and aaalyaia ache»a ia above in Figure A-3. Tbe first two
saaplea. laba>lad Fraction* IA and IS, conaiat of taa digeated saapla* froa tha
front half of tba train. Fraction 1A ia for ICAP or MS analysis aa daacribed
in Section* 5.4.1 and/or M-2- Praction IS i* for datersUnation of front half
aareury aa deecribed ia Section 3.4.3,
The back half of th* train waa uaad to prepara tte third through fifth
saapla*. The third aad fourth saapla*, labeled Fraction* 2A and 28. contain
tha digeated saaplas froa th* H,0 and HN03/H,0, lapingera 1 througa 3- Fractior
2A it for ICAP or AAS aaalyaia. Fraction 2S will be analyaad for mercury.
The fifth sample, labeled Fraction 3. coaaiau of th* impLnger contents snd
-------
rinses froa the paraanfanata Ispinfwrs U and 9. This sasple u analyzed for
Mrcury u described In Section 5.*».3. Tha total back hair Mrcury cacch i$
determined froa the sua of Fraction 2fi and Fraction 3.
5.4.1 ICAP Analysis. Fraction 1A and Fraction 2A are analyzed by ICAP
using EPA Method 200.7 (<*Q CFR 136. Append!* C). Calibrate the ICAP, and set -p
an analysis profraa as described in Method 200.7. The quality control proce-
dure* described in Section 7-3-1 of this Mthod ihall ba followed. Recooaended
wavelenrth* for UM in the analysis of the prioary. secondary, and incerferring
oetals are listed below.
ElesMmt Wavelenfth (ra)
Arsenic
Beryl liua
CadaluB
ChrosM.ua
Ued
Nlckal
Zinc
Aneiaony
Bariua
Ccpp«r
Nanfanes*
Stlanlua
Silver
Tlxalliusi
Alumlnua
Iron
193.696
313-042
226.902
267.716
220.333
231.604
213. 356
206.833
*55.<*03
324.75*
257.610
196.026
328.066
190.864
308.215
259-940
Tha wavelenfthsj lisjtsjd SJT« rernamaniled because of thslr sensitivity and overall
acceptance. Otter wavmleoftlui My b« subatlcutad if ttey eta provide the
needs*! sensitivity and are traatad with tte saasj corrective techniques for
spectral int«rfareac«.
Initially, analyis) all saaplesj for tte tarfat astala plus iron and
alualnua. If iron sad aluaimai are present la tte saaple, tte saaple aay have
to be dilutsjd so ttet each of ttess) eleaants Is at • concentration of less than
50 ppa to redue* tteir spectral latarfarencsa on arseelc and lead.
Note: When anslyilnc saaplas la a hydrofluoric acid ntrla, an aluaina
torch should be usad; sines all front half saaples will contain hydrofluoric
acid, usa an aluaiaa torch.
-------
5.U.2 AAS by Direct Aspiration Mid/or Graphite Furnace. If analysis of
oetals in Fraction 1A and Fraction 2A using graphite furnace or direct
aspiration AAS is desired. Table A-2 should be used to determine which
techniques and aethods should be applied for each target a«tal. Table A-2
should also be consulted to determine posaible interferences and techniques :c
be followed far chair minimization. Calibrate the instrument according to
Section 6.3 and follow the quality control procedures specified in Section
7.3-2.
5.U.3 Cold Vapor AAS Mercury Analysis. Fraction IB. Fraction 2B, and
Fraction 3 should be analyzed for eercury using cold vapor atomic absorption
spectroscopy following the eethod outlined in EPA Method 7**70 or in Standard
Method* for Water and Was tracer Analysis. 15th Edition, Method 30 3F. See up
the calibration curve aa described in Section 7.3 of Method 303F. Add
approximately 5 el of each saatple to BOD bottlee. Record the amount of saeple
added. The aeount used is dependent upon the expected levels of mercury.
Dilute to approximately 120 si with eercury-free water. Add approxlaately 15
ol of 5 percent potassium permanganate solution to the Fraction 2B and Fraction
3 samples. Add 5 percent potaesium permanganate solution to the Fraction IB
sample as needed to produce a purple solution lasting at least 15 alnutes, A
ainiaum of 2? el is suggested. Add 5 ml of 90 percent nitric acid. 5 el of
concentrated sulfurlc add, and 9 •! of'5 percent potassium persulfate to each
sample and each standard. Oisjeet the solution in the capped BOD bottle at 95s'
(205*F) in a convectloo oven or water bath for 2 hours. Cool. Add 3 ml of
hydroxylamine hydrochlorlde solution and aix the) sample. Than add 7 el of
stannou* chloride to each saaple and analyie Ijsmedlately.
6. Calibration
Maintain a laboratory lot of all calibrations).
6.1 Sampling Train Calibration. Calibrate the taavlinf train components
according to the indicated sections) of Method 5i Probe Mossle (Section 9.1):
Pitot Tube (Section 5-2); Metering System (Section 3.3); Probe Heater (Section
5.4); Temperature Gauge* (Section 5.5); Leak-Check of the Metering System
(Section 5.6); and Barometer (Section 5.7).
6.2 Inductively Coupled Argon Plasma Spectrometer Calibration. Prepare
standards as outlined in Section 4.4. Profile and calibrate the instrument
according to the instrument manufacturer's recommended procedures using :he
-------
TABLE A-2. APPLICABLE TECHNIQUES. METHODS. AND MINIMIZATION OF INTtKLHthCK Km AAS ANALYSIS
Metal
Sb
Sb
Aa
Ba
Ba
Ba
Cd
Cd
Cr
Cr
Technique
Aspiration
Purnaca
Purnaca
Aspiration
Aspiration
ftu.sc*
Aapiratlca
Puroaca
Aspiration
Purnaca
Method
Mo.
70*0
70*1
7060
7060
7090
7091
7130
7D1
7190
7191
Wavelength
(M)
217.6
217.6
193-7
553-6
23*-9
23*.9
226.6
226.6
357-9
357 9
Interfei
Cause
1000 ag/al Pb
Ni. Cu, or acid
High Pb
Arsenic vulati -
zation
Aluainiua
Calciua
Bar iua ioni zation
500 ftm Al
High Me & Si
Ba in optical path
Absorption & light
acat taring
Aa abova
bceaa chloride
Plpet tipa
Alkali Metal
Absorption I acatt
2OO ag/L calciua
4 phosphate
*ence.
Miniaiztttioi)
Use secondary wavelengla ol ^Ji , | am.
Natch aaaple 1 standards m id concentration
or uae nitrous OMide/aceiylene riaaw
Secondary wawnlpnirih rtr /<•<••»» mmu-t im
Spiked saaplea i add nickel nitrate solution
to dlgeetatea prior to analyses
Use Zeeann background correction
High hollow cathode current 1 narrow band set
2 aL of KC1 per 1OO aL of saapla
Add 0.1| TLduride
Uae •etltod of atandard additions
Optiaiaa paraawtara to aJainlza effect a
Background correction ia required
Aa above
Aaaonlua) ohaaphate uaed aa a aatrla aodifler
Uae cadaiua-frae tlpa
KC1 i on J zation suppreaaant in aaaple i stand
Consult Manufacturer's literature
All calciuM nitrate Tor a know conatant effect
and to elJainale eTfect of phosphate
(continued)
-------
TABLE A-2 (CONTINUED)
Metal
Cu
Fe
Pb
Pb
Nn
Ni
Se
A«
Tl
Tl
Zn
Technique
Aspiration
Aspiration
Aspiration
Furnace
Aspiration
Aspiration
Furnace
Aspiration
Aspiration
Furnace
Aspiration
Method
No-
7210
7300
7420
7*21
7460
7520
77*0
7760
7MO
7Ml
7950
Wavelength
( — >
324.7
248 1
28J.1
20-3-3
279-5
2J2.0
196.0
326.1
276.8
276.8
211-9
Interfe
Cause
Absorpi t scalier
Contaaination
217.0 nm alternal
Poor recoveries
403.1 na alternat
352-'l nm aliernai
Fe. Co. 1 Cr
Nonlinear reopons
Vulltallty
Adaorpt 4 scatter
Abaorpt I scatter
AgCl insoluble
Viscosity
Hydrochloric acid
or chloride
High Si . Cu 1 P
Con 1 a* j nm mil
'ente
Nmiaizalion
Consult manufacturer's nauii.il
Greul care taken lu avuxJ cuniaBiinal ion
liuckground correction required
Main a aodirier. add JU ul. ui (ihusphorus acid
to 1-mL of prepared saaple in soapier cup
backg round correc 1 1 on requ 1 1 CM!
hut: kg round correction requn-cd
MairiH matching or a nilruu^-uxide/acety Tlaae
Sa^tle dilution or uae 352. .jked saapleij or atandad addl
Palladium is a suitable aairim audifler
jii I'tini ILM reaovea Cu an
-------
above standard*, 'ihe instrument calibration should be checked once per hour.
If the instrument do*s not reproduce th* concentration* of th* standard within
10 percent, the coaplet* calibration procedures should be performed.
6,3 Atoalc Absorption Spectrometer - Direct Aspiration. Graphite Furnace
and Cold Vapor Mercury Analyses. Prepare the standards a* outlined in Section
k.k. Calibrate the apectroaeter using these prepared standards. Calibration
procedures are also outlined in the EPA aethods referred to in Table A-2 and in
Standard Method* for Mater and Maatewater. ijth Edition, Nathod 303F (for
aercury). Each standard curve should be run in duplicate and the Bean values
used to calculate th* calibration line. Th* instrument should be recalibrated
approximately once every 10 to 12 saaples.
7. Quality Control
7.1 Sampling. Field Raagant Blank*. Th* blank sample* in Container
Numbers 7 through 12 produced previously in Section* 5.2.7 through 5.2.11.
respectively, shall be processed, digested, and analyied a* follow*. Digest
and process Container No. 12 content* par Saction 5-3.1. Container No. 7 per
Section 5-3.2. and half of Container No. 8 per Section 5-3-3. Thla produces
Fraction Blank 1A and Fraction Blank IB froa Fraction Blank 1. Coabine the
remaining half of Container No. 8 with th* content* of Container No. 9 and
digest and proce** th* raaultant voluaw par Section 5-3-1*- Thla produces
Fraction Blank 2A and Fraction Blank 2B froa Fraction Blank 2. Container No. 10
and Container No. 11 content* are Fraction Blank 3. Analyse Fraction Blank IA
and Fraction Blank 2A par Section 5.4.1 and/or 5.*-2. Analy** Fraction Blank
IB. Fraction Blank 21. and Fraction Blank 3 par Section 5.4.3. The analysis of
Fraction Blank LA produca* th* front half r a agent blank correction value* for
th* aatal* except aarcuryi th* analysl* of Fraction Blank IB produces the front
half reagent blank correct valu* for aarcury. Th* analyvla of Fraction Blank 2A
produca* th* back half reagent blank correction valu** for th* **tala except
aereury. valla aeparat* analyai* of Fraction Blank* 2B and 3 produca th* back
half reagent blank correction valua for aarcury.
7.2 An ettaapt aay be aada to detarala* if th* laboratory reagent* used in
Section 5.3 -aiirtil contamination. They ahould b* aaalyiad by th* procedure* in
Section 5-1. Th* Adainiatrator will dat*rala* afMthar or not th* laboratory
blank reagent valua* can be uaed la th* calculation of th* stationary source
teat result*.
-------
7.3 Quality Control Staples. Th* following quality control samples should
be analyzed.
7.3.1 ^CAF Analyeia. Follow the quality control ihown in Section 8 of
Method 6010. For the purpoee* of a thre« run teat aeriea. theae requirements
hav* been modified to Includ* the following; two inatrument check standard
runs, two calibration blank run*, one interference ch*ck sample at the
beginning -f the analyau (must be within 251 or analyze by standard addition).
on* quality control tuple to check the accuracy of the calibration standards
(must be within 25% of calibration), and one duplicate! analysis (Bust be within
51 of average or repeat all analyaii).
7.3.2 Direct Aapiration and/or Graphite Furnace AAS Analysis for Arsenic.
Beryllium. Cadmium. Chromium, Lead. Mercury, Nickel, and Zinc (and Antimony,
Barium, Copper, Mangane«e. Phoiphorua. Selenium, Silver, and Thalliua. if
aeaaured), All sawplea should be analysed In duplicate. Perform a aatrix spika
on one front half eaaple and one) back half aeaple or one combined sample. If
recoveriea of leas than 73 percent or greater than 125 percent are obtained for
the aatrix ipike. aoalyie each aacple by the) method of addition*. A quality
control sample should be analysed to check the accuracy of the calibration
standard*. The reeult* muat be within 101 or the calibration repeated.
7.3.3 Cold Vapor AAS Analyai* for Hercury. All samplea should be analyi«d
in duplicate. A quality control aamplfahould be analysed to check the accuracy
of the calibration standard* (within 10% or repeat calibration). Perform a
matrix apike on on* aampl* from the nitric i*jpiiif*r portion (au*t be within 251
or samplea muat be aaalyied by the) method of ataadard addition*}. Additional
information on quality control on be obtained from ffA Method 7470 or in
Standard Kethod* for Hater and Waatewater. 15th Bdltion, Method 303F-
3. Calculation*
8.1 Dry OM Voliaw. Uaia§ che data from thla cave, calculate v.(iia, . the
dry faa sample volum* at •taadard eonditlona aa outlinmd in Section 6.3 of
Method 5-
8.2 Volum* of Water Vapor and Noiaeurm Content. Uaiac the d* a obtained
tvm thl* tmat. calculat* the) volume of watar vapor Vv<0li) and the moiatura
content BVI of the ataek fma. U«e Equation* 5-2 and 5-3 of Method 5.
8.3 Stack Oaa Velocity. Uainf the data from thla taat and Equation 2-9 of
Method 2, calculate) the average atack fa* velocity.
-------
3.1* (totals (Eacept Mercury) In Source Saeple.
3.1.1 Fraction 1A. Front Half, Metals (except Hf). Calculate the aaounc
of each aetal collected in Fraction 1 of the •ampling train using the following
equation:
«rB ' C. F, V..,.^ a,. L-
where:
Mril • total eass of *ach eetal (except Hf) collected la the
front half of the laepllng train (Fraction i), ug.
Ct * concentration of eetal In saaple Fraction LA ae reed fro* the
standard curve (uf/ml).
Fc • dilution factor (?t • the inverse of the fractional portion of the
concentrated laeple in the solution actually used in the instrument to
produce the reading C,. For example, when the dilution of Fraction LA
1* froe 2 to 10 el. F< -5).
volume of digested saaple aolution (fraction 1), el.
8.4.2 Fraction 2A. Back Half. Natals (except Hg). Calculate the amount of
each Beta! collected in fraction 2 of the sampling train using the following
equation.
**» ' c» p» v. B«- 2*
where:
MH, • total mesa of each metal (except Hg) collected in the back half
of the sampling train (Fraction 2), ug.
Ct • concentration of metal in sample fraction 2A. as read from the
standard curve (ug/ml).
Ft • aliquot factor, volume) of fraction 2 divided by volume of aliquot
fraction 2A.
V • volume of digeeted sample analysed (concentrated fraction 2A). al.
8.4.3 Total Train, totals (except Hg). Calculate the total amount of «ach
of the quantified metals collected in the sampling train as follc
"t " <"f. - «W *
•If Fractions 1A and 2A are comhlned. proportional aliquots must be used.
Appropriate changes must be aade in Equations 1*3 to reflect this approach.
-------
where:
M. • total aaaa of each seta! (separately stated for each aetal) collected
in the saapling train, ug.
Mfn9 • blank correction value for aaia of aetal detected in front half
field reagent blank, ug.
*»„<,* olank correction value for aa*a of aetal detected in back half
field reagent blank, ug.
Nbte: If the Manured blank value for the front half (•,„,) ia in the range C.;
to A ug [wham A ug equal* tha value determined by aultiplylng l.U ug par iquar<
inch (l.U ug/ln.]) times the actual area in aquare inches (in.1) of the filter
used In the ealsaion saaple], efh, aay be) vuad to correct the ealasion sample
valua («,„): If •rht exceed* A ug, the greater of cha two following value*
(either I. or II.) eay ba uaad:
I- A ug, or
II. the leaaer of (a) arht. or (b) 5 percent of mrit,
If the aaaaurad blank valua for tha back half (•khk) it in tha rang* 0.0 to 1
ug, athB aay ba uaad to correct tha emiaiion saaple valua («^J; if a^^ exceeds
1 ug, tha greater of tha two following valuaa aay ba uaad: 1 ug or 5 percent a
"Hh-
8.5 Mercury In Source Sample.
d.5.1 Fraction IB. Front Half, Hg. Calculate tha aaount of aarcury
collected in tha front half. Fraction U of tha aaapllng train uaing tha
following aquation:
a
»tf. •—^-'
Vfli
where:
Hgfh • total aua of aarcury collected in tha front half of tha aaapling
train (Fraction 1), ug.
0,,, • quantity of aarcury in anal/tad staple. ug.
vieln t • total volume of dlgvatad aaaple aolutloa (fraction 1). al.
vril • voluaa of Fraction IB analyzed, al. Sea tha following Note.
vri| la tha actual aaount of Fraction IB analy»«d. For axaapla, if 1 al
of Fraction IB wara dllutad to 100 al to brine it Into tha proper analytical
range, and 1 al of tha 100-al dilution waa analysed, Vfll would ba 0.01.
6.3.2 Fraction 2B and Fraction 3. Back Half. Hg. Calculate tha aaount or
aarcury col lee tad in Fractiona 2 and 3 uaing Equation* 5 and 6. reapectively.
-------
CilcuJ.it* th« total Mount of Mrcury colltcttd In tin back half of th« sai
train uiinf Equation 7-
* V.8li, , Eq, 5
v 4
rn
where:
J • total **•• of Mrcury colltctad in Fraction 2.
a • quantity of Mreury in analytad taipl*. u§.
vfli • voluB* of Fraction 2B analytad. •! (MM Mow in
Section 8.5-1).
' total voluM of Fraction 2, al.
what*:
total aaaa of a«rcury coll«et*d la Fraction 3. uf.
,
Q,h. • quantity of avreury 1ft analyiad vaapl*. uf.
VM • voluM of Fraction 3 aaalyiad, al (MM Hota in
Sw:tlon 3. 5-1).
. «i n. 3 " total voluaa of Fraction 3. al.
- 7
K • tot«l MUMI of •arcury colltcta4 ia U» back half of th«
train, uf.
6.3-3 Total Train lareyiy Catca. Calculat* tha total aaouRt of Mrcury
coll«cta4 la thft MBpllng train uaiaff Bquation A.
•, . (Bf,. - HiV,,.) * (i^k • iaV.J Eq. 8
wharv:
Nt • total aaaa of Mrcury collaetad la taa taapllnc train, uff.
Hffllk • blank correction valu* for aa*a of Mrcury wtactad In front half
flald raafnt blank, uf.
-------
correction value for aass of aercury detected in back
half field reagent blank, ug.
No_ce; If the total of the measured blank values (Hgfmft • Hg,fta) is in the r
of 0 co 3 ug. then Che total aay be used to correct the eaission saaple value
(Hgrn - Hg,n); if it exceeds 3 ug. the greater of the following two values say
be used: 3 ug or 5 percent of the eaission saaple value (Hgfh • Hgbpi).
8.6 Metal Concentration of Stack Gas. Calculate the concentrations of
arsenic, berylliua. cadalua, total chroeiua. lead, aercury, nickel, and zinc
(and antiaony, bariua, copper, eanganeae. phoaphorua, •eleniua, silver, and
thalliua. if aeaaured) in the stack gaa (dry baala. adjusted to standard
conditions) &a follows:
c. ' K* (Nt/v»<.i«) ) Eq-9
where;
Ct • concentration of each aetal in the stack gaa. ag/daca.
K, • 10*1 eg/ug.
Nt • total «a»s of aach aetal collected in the saapllng train, ug.
v.did) • volu«* of f*» saaple aa eeaaured by the dry gaa eater, correczed
to dry standard conditiona, dacsj.
3.7 Isokinetic Variation and Acceptable Reault*. Saa« aa Method 5,
Sectioru 6.11 and 6.12. respectively.
9• Bibliography
9-1 Method 3037 la Standard Methods for the Eaamination of Mater
waatewater. 15th Edition, 1980. Available froa the Aaerican Public Health
Association. 1015 18th Street H.W., Washington. D.C. 20036.
9-2 EPA Hethoda 6010, 7000. 7041, 7060. 7131, 7421. 7470. 77<*0, and
Teat Method* for IValuatiflg Solid Waate; Ptiyaieal/Chemical Methods. S
Third Edition. Septeaber 1968. Office of Solid Waate and Eeergency Response.
U. S. TTni li ijiaeiiiil Protection Agency, Waahingtoe. O.C. 20460.
9.3 EPA Hethod 200.7. Code of Federal Regulation*. Title 40, Part 136.
Appendix C. July 1. 1987-
9-4 EPA Method* 1 through 5. Code of Federal Regulations. Title 40, Part
60. Appendix A, July 1. 198?.
-------
APPENDIX J.2
PM10/CPM
-------
Federal Register / Vol. 55, No. 74 / Tuesduv. AD.-;! -.". 1WU
and Reauiauons
Sun;;///if* flo/c, for directions in the UPC of
ihn equation tor 0 in (he setup caiculaunrs.
•V4 C«---«d« Impactor. The purpnir ni
rjhliralmc a Cascade impactor u In
Oi-.lermme the empirical consent (SIX,),
which is specific to the impador and which
ptrmiti ihe accurate determination ol ihe eul
>i7.e of ihe impaclur napes a! Held condition*.
ll la nm necessary 10 calibrate each
individual impaeior, Onn* iifi impuctoThan
linen calibrated, the calibration dug can be
applied to other tmpacion o( identical demgn.
5-'.l Wind Tunnel Same ai in Section
5.11 ot thii method.
S,4.r Puriiclf Generation System. Same as
in Section 5.3.2 of Ihii method.
H.3 Hardware Configuration (or
Calibrations. An impacnon nape Constrains
un nerobul to (ofm circular or rectangular jots.
which urc directed toward a suitable
substrate where the larger aerosol particles
arc collected. Far calibration purpone*. three
stages of the caacude impHClnr thull lie
discussed and designated culibrulion itupes
1. Z. and 3. The tint calibration maae consists
of the cullcction substrate of an impuction
mane and all upstream surface* up to and
including the nozzle. Thii mny mcludf other
urevcdinR imoactor Hugos. The second and
third cnlibrmion ilagei consul of each
respective collection substrate and all
upMrewm surfaces up lo but excluding (he
collection substrate of the preceding
culihruuon tinge Thii may include
intervening impaclor napes which are not
designated ae calibration itayet- The cut size,
or D»- of the adjacent calibration iinget aholl
differ by a factor ol not lest than l.J and not
more than :.0, For example, if the fir*i
calibration flag* h«i • DH of 12 nm. then tho
DM of the downitream itagc ahaii be between
6 and 8 nm.
5.4.3.1 It it expected, but not necessary.
that the complete hardware assembly will be
used in each of ihe templing rum of ihe
calibration and performance deiermjnadoni.
Only the first calibriiiion itage must be tesicd
under isokinetic lampling conditions. The
second and third calibration itagua mull be
calibrated with Una collectnsn-Jubiiraie of lha
preceding calibration ita?e in place. 10 lha'
gus (low patterns ousting in field operation
will be simulated,
5.4.3.2 Each of the PM» singes should be
calibrated with the type of collection
substrate, viscid material (such a* gn«M) or
flust Hbcr. uied in PM» measurements. Note
that moil nutenali uied at •ubimiet at
elevated temperature! are not viicid at
normal laboratory condition*. Tho eubtuvie
mbtena! used for calibration* ihould
mini mile particle bounc*. yet t>« VIKOIU
enoup+i to withstand ermien or deformation
by ;he impactor jell and not interfere *nh
the procedure for meaiuring (he collected
PM.
5.4.4 Calibration Procedure, Establish tail
panicle generaior operiuan and verify
panicle size microscopically If
monodUpenity ii to be verified by
nvensurcmenii at the beginning and the end
of the run rather than by an integrated
sample, these measurements shall b* mode at
this lime. Measure in triplicate the PM
collected by the calibration uage (m) and ih«
PM on all surfaces downitream of the
r;nlil>ra\ion n.ipi- |m"i lor .ii ol thr
flaw m:cs md pnnicle IIZP cnmbinHMuiw
shown in T«bte i ol this melKud Trchmqucs
ol nialb mtiijuremenl tn«v inriudr 'hi- usi- ol
d dye and jpecirophuiomcter. PMTlirlf s an th<-
upstream side of a jet plaie ahull bt- includea
wi;h (he substrate downstream- enccpi
«a«lumfnj(et of particle!', which thai! be
included with the preceding or upmream
substrate- Us* the following formula to
calculate the collection efficiency 1E1 tot euch
stupe,
544.1 Use the lormula in Suction B^JJ
of this mrlhod lo calculate thn iLaqdard
di viation \r\ lor the replicate measurements.
II if exceeds C.10, repeat ihe replicate runs
S.4.4.2 U>* the following formula to
calculate the averape collection efTicieBcy
(E.^) fur each sei ol replicate mennurctncnts
£...-(£,* EC-- E=]/J
when; Ei, Ee. and EJ are rt-pllcole
measurements of E.
i.4.4.3 Upe the followmp formnU Hi
- S(k r'ir nar.h
Sik.
Ad,
whrrc:
D = Afrwlynamic diameti.-r gf the Itsi
particlu. cm (g/cn1)^.
Q = Cat flow rate through the culibmion
mage at inlet condition!. cm'/»*c.
u."Cat viscoiity, micrapoiie-
A •Total cross-icctionni area ot iht juts of
the calibmtion itafiv. cm1
d. = Diameier of one jet of ihe calibrulion
Huge, cm.
5 4.4 4 Dvtermme Sik« (or each
calibrntion sufie by plotting £„ vrrsuc Sik
on log-log paper, Slkl, ii the Sik number el SO
percent efficiency. Note that nonicie bounce
can cause efficiency to decreoM at hlph
valuei of Stk. Thus. SO percent efficiency can
occur at multiple value* of Sik. The
calibration data should dearly indicate the
value of Slku (or minimum panicle bounce.
Impaclor efficiency versus Sik with minimal
panicle bounce ii characterized by a
monuiotucatly increasing (unction with
constant or increasing slope with increiisinp
Sik.
J.4.4J The Sth» of the flrel cnlibration
stage can potentially decrease tvith
decreaiing nouia sue. Therefore,
calibraliona should be performed with
enough rural* aizca to provide • measured
value within IS percent of any nonle site
uMfd in PMt. meaaurvmcnu-
5.4.1 Criteria For Acceptanca Plot EM for
tha first calibration stage v«raui the square
root of the ratio of Sik to Slk» on Figure 9 of
this method Draw a imooth curve through ill
of the polnn. The curve shall be within tha
banded region.
6. Calculation*
a.I Nomenclature.
B_- Moisture (mcuoo of stack, by volume,
dlnjentionlcts.
, Ci -Viscosity constant. 31.11 mioropoise
for *K (51-05 mtcropoiM for *R|.
C, - ViKoiity conitanL OJ7Z micmpouw/
'K (IL207 micro|xjise/*R).
Ci i Ymconn conmuni. 1,oS •: l(t~'
(nn.Ttipoi»WK:f3.24 • 10'1 rmcrupaisi-,'
C. a Viscnaity eonsia^l. S3.147 micrnpinut;/
frkcnun Oi.
C>- Visco.iiiy constant, 74.143 micmpoise/
fraction K-0.
LU m Diameter ol particle* hnviru: a SU
percent nnibuhiliiy of prneimiiun. >jm_
I, =• Slack gut fraction Oi, by volume. dr>
Lam
k, .O.HlM'K/mm llgjlMM "(I/in. I IB).
M,«alVel molecular weight of mixKii pan
through Ihu PWi« cyclone, p/g-mulu |ll./
!l*-niDlr).
M.«iDry mnli-ciilar wrighl »'*luck piiii. p/
p-mole (Ib/lb-rr.olc).
mm lip (in. HK>
P." AUiidlulc slack presnurc. mm UK (In.
Q.wTuhil cyclon* flow rale at wet r.j'cltmc
conduioni. m'/min [ft',mini.
Q.iu«<"Total ryclone flow rale nl it.iftdai J
condiiions. dacm/min (ilacf/miiij.
TB- Average absolute iempHrniurb of rfry
mi:!cr, 'K ('RJ.
T.o Averttpe alisuliilv stuck gin
tcmpiTBlur*. 'K (*R).
V.4Mt» Volume of WSILT vapor in fas
lumi'ie (sluniiard conditional, son Iscf).
OiToUl wmpling bmc. min.
ti^," ViBcosiiy of mixed cyclone gHS.
micropaitc.
M,M- VUeojiiy of Jiandurd uir. ina.l
micro poiM.
0-2 Analynii of Cflsoido Impaclor Diilu.
Use (he nanulaclurcf s mt
procedure* to rtn«lyT.« diiiK from i
impuciort.
6.3 An.ilysi* of Cyclnne Oula. Use the
following procedures to analyze dntu from a
sinfiln sinpe cydone-
8J.1 PMu'WeighL Dci«tmine the PM
catch In the PM» range from the iitm of lhe>
tvcijhti obtained from Contninrr Numbers 1
and 3 IUM the acetone blank.
6 3J Tctal PM Weight (oplionall
Determine the PM catch (or greater than PM..
from the wui'pht otitained from Container
Numl.er z Ion ihe acetone bUink. anil add it
lo the PMi* H'eighL
8JJ PM» Fraction. Determine the PM..
fraction of the iota) paniculate wciphi by
dividing the PMn piirticulBfB weigh! bj' ihe
toial paniculate weight.
8.3.* Aerodynamic Cut Size. Calculate the
s:ack gui viscosity ai follows:
OJ.4,1 The PM» (low rate, at aciuul
cyclone condition*, ia enleuloied ai follows:
Q,-
I4 Cnlculale the molecular weiehl un
a wot t*a»ia of the Hack gas ai CoKowi:
M.- MJl-8») + iaJMB«J
OJ.4J Calculate the aciiwl D> ot tha
cydn-ne (of the given conditions ni follows:
-------
14272 Federal Register / VQ|. 55. No. 74 / Tuesday, Apr:! I", 199O / Rul»s and Regulations
D» = 5,
T.
M,r.
Q.
where 3, =0,Q;"S-i for metric uir,!S i
for English uni'.i).
fl.3.5 Acceptable Rriuiu. The rcsahi arf
BCCCplsU* if l*u toi-.damns urc r.'.i;! The
first is iha: »U cm •, 0« c ll 0 u~- T!ie
iccor.d is !hn! no sarspbnfi poinis i.'e ouliide
A3»,n and 4P,U, or thai 83 pcrccni •; I < 120
perceni and nc more than one sampling poini
i.<> ou'sid: lpKII, and
Mccsurement with Csfisaa.it Ssmp.'imi .t
EPA/000/3-68-057.
BILUKO COOt flM-M-M
-------
Federal Re^ifier / Vol. 55, No. 74 / Tuesday, Apnl 17. 199U / Ruit:s and Repuiulions
14269
HRii-nilil}' inch lh«t flow dinlurlmncti an-
• 'nmiznd.
41.:.; The n-iup calculnlivni- c*n be
r>i-rlnrnif J by using ihu foliuwmn prvccuuntk.
i I.C.. i In order 10 maintain « cut n:xe of
in un: in i:,- gizmg device, the Huw rjif
(hrnuEri (he niing dri'ict mull b*- rnaim
dosiyn spccificalions in Fipure 3 of thin
method. use ihr equetieni in Fipur* 4 of lhi»
mtlhoil lo calculate it:ret orifice he«dj lilll
UIH ;n ihe average nucL lemperimu-e. And ihe
ulhcr Iwu ot lempffnilurss —2H "C [.= 5)1 "Kl
uf tin- average jinck lernpcrMture. Uir all
calculated al lhe ui'eruer Black temprniiur*
*s Ihc \itLiSurc htmil Inr Ihs iambic flow rain
ii* Ion? as iht stuck lemperniurx during lite
run in within ;g 'C ISO 'KJ of the •vcrunt
*lac» temperature. If the IIHCJC lemnerwlurv
vaues by more than :a LC (So T). ihun une
Ihe appropriate AH.
4.1.2.2.2 IF the iizinji duvici: in H cyclone
lhai'dijes not meet the design sptrifiCJliuni
in Fipure 3 of ihi! method, us' the equuliimi
in Figure 4 of this m*thtid, cicppi use ihn
procedures in Section 5.3 of this nielhuJ in
dpic'rmin* Q., the corrrc: cyr!oni« flnw run-
fn: ;. 10 j.m size.
4.1.2.1.3 To ittiew b nuzzle, uie lliv
.•yum Kirn inFicunrSofihifcmttliod lu uilculnir
ip,,™ and &pM for each nozzle til M three
inmpurHiurei. If she suing device ii a cydonn
thai dam noi meet ihe dctiiin sprcificBli&rui
in Fipun; 3 of ihn method, ihp exumple
worksheets can br used.
4.1,2.2,4 Correct the Method ".' pliui
n-wding". to Method 201A pilot reading] by
multiplying the Method 2 pilot readings by
Ihe i-u --e of a ratio of the Afethod 201A pilot
Cf.cfficu-ni to the Method 2 pilol coefficient.
Select the nozzle for which ip,,. bnd ^p,..
lirnckel nil of the corrected Method 2 pilol
readings. If more than one nuzzle meed thia
nrquirenienl. uleci Ihe no tile giving the
grcaitjl jvmmetry. Note ihul if the expected
pilol reading for one or more points is near a
limit for a chosen nozzle, ii may be cu;side
the limili al the time of the run.
4-1,».S Vary Ihe dwell lima, or aiunplioj;
time. At each uavenc poini proportioflaleiy
wilh lh« point velocity. UM ihe aqualian* in
figure 8 of ihjt method to cdlcuLala lh« dwall
nmc al the firit point and al each lubaequaril
point. It i* recommended ;h«l Ihe number of
-•mnutei mingled Ht each paint Uc rounded to
the ntaresi 13 jeconds.
4-1.3 Preparation of Collection Train.
Same at in Method S. Section 4.1J. excepl
nmii direc'.ioni about • glai* eye!one.
4.1.4 Leak-Check Procedure. The fixing
device ik removed before the peit-leat leak-
check (o prevent arj- ditturOance of the
collected sample prior to inalyeil.
4,1,4.1 Prijiesi L'lk-Chacki A prelect l«ak-
uheck of the entire sampling train, including
the sizing device, u required U»e the leak-
check procedure in Method 3. S*etion 4.1.4.1
to conduct a preiesi leak-check,
4.1.4.1 Leak-Check* During Sample Run.
Same ai in Method 5, Section 4.1.4,1.
4.1.4.3 Poit-Tsil Leak-Cheek. A Isuk-
check ii required at the concluiion of each
jamplmg run. Ramava the ci'done befora the
leak-check to prevent the vacuum cnaied by
the cooling of ihe probe fro- diiiurfaing the
cullocunJ um|Hc und u*c ine proccciure in
Mrlhod S. Seciion 4.1.4.3 ir cunauri t puai-
4.1.S Method 3J1A Train Opermiun.
us in Method 1 Svction 4.1 J. encepl UM th«
procedure* to thu nectiun lor iiokmelic
sampling *nd flow rate uriiufunt!nl. Maintain
(he Haw rate uicututed in Section 4.1J.2.1 of
(his meihud througiinui the run provided the
j'.ack temperature n wuhin 2£ 'C (SO T) of
the iemu*rsiure u»td lu calculair iH. If tiuci
tcrnpeniiu/ei van b>* more than 28 'C (50 'Kl.
usr the appropriate AH vaiue O'tcuiatMi in
Suction 4.1X2-1 of thii method. Calculnle Iht
dwell lime »i each iruvcrw point ai in Figure
fi of Ihit method-
4.I.B Calculation of Percanl UukmelJt
Ratr und Aerodynamic Cut Siza (Owl.
Cdjrultir percent inokinetic rate and UM laer
Caiculmiank. Sc-rtion 6 uf thii mtUind) to
dotcrmiue whether the ten ci*dun^ in
Section S.3 of ifiii method lu tudbrale (he
cyclone. The purpoae of the PS Ie6» arr in
cnnform Ihut the uyclunt and naizlc
rombuiunon hai the dcairecJ ihurpnm nf cul.
Conduct the PS teiti in a wind i urine I
detcrUwd in Section J.Z.1 of ihia method und
particle generation lyilem deioibed in
S«-ctior 9-L2 of Ihii malhod. Uie live parlidu
sizci and three wind velocities HI Hi ted in
Tdble 2 uf Ihi* mclhod A minimum of three
rrplicuir nmuiuremcntj afcolluclinn
tfficicncj- thatl tit pertonmtd lor e«ch of tlie
IS condilioni luted, for a minimum uf 45
mcaauremanta.
S.2-i Wind Tunnel Perform ihr
caUbmtion and PS lean in a wind tunnel (ur
equivalent tail apparatui) Capubl* o(
BSublijMing and maintaining the required gai
stream velocities within 10 percenL
5.Z2 Panicle CHneretion Syiiem. The
panicle generation lyilem liiuU he cnpuble uf
prutiucmg iolid monodUoennd dye pnrtictea
H-iih ihr :rus» median aerodynamic
di.irnclrn ipecified in Tiible 2 of thii meihud.
Perform the panicle liie diUhbttiun
venficatmn on an integrated aampie aliiuined
during thr lampling period of each tell. An
acceptable alternative ii to verify the- uze
distribution of jamplei obtained before and
" after each tetL with both lamplei required tu
rntrtti the dinmeler and nionodilpcrsiiy
rcquiremenia for an •ceaplable ie»i run.
Siil Eaiublieh the aize of the aolid dye
parti del delivered to Ihe leit teciion of the
wind tunnel by uiing the opcnting
parameter! of the particle generation iy,ilem,
and verify them durinq tha leiis by
mierotcopic examination of tjmpiei or the
parliclea collected on a membrane filter. The
particle me. ai ntablUhed by the opening
parameten of the gcneratian jystem. shall be
within the tolerance ipecified in Tublo 2 a! •
ihia method. The preciiion of tiic particle size
verifiejlion leehnjque ihall be al leeii ±
-------
14270 Federal Register / Vol. 55. No. 74 / Tuesday. April 1". 1990 / Rulea and Regulations
opersung parameters oTlhc particle
generation system.
5,2.2.1 Certify ihe monoJispe-'sify of the
panicles for each test either by microscopic
inspection of collected particle* on fillers or
by olher suitable monitoring techniques such
us an opiical particle counter followed by a
multichannel pulse height analyzer. If the
proportion of multiple!* and satellites in an
aerntol exceeds 10 percent by mass, the
particle aeneialion ivilcm n unar.repliiliip
lor the purpose of lhi» icsl. Multiplies nrt
partielei that are HRslomrrdlrd, and satellites
are psniclei thai are imalter than the
sp*cjfied size range.
5.2.3 Schematic Drawings, Schematic
drawings of ihe wind tunnel end blower
system and other information ihowing
complete procedural deiailt of the ten
atmosphere generation, verification, and
dehven' techniques shall be furnished with
calibration data lo the reviewing apenry.
S.Z.I Flow Measurements. Measure ttir
ci'done air now raiei kith a dn> gas meter
and a nonwaich. or a calibrated orifice
system capable of measuring flow rates 10
wiihin 2 perceni,
S.2,5 Performance Specification
Procedure, Eatabli'h (eat panicle gencraiar
operation and verify panicle size
rnir.ioscipically If monoduperry is to be
verified by measurements at the beginning
and the end of the run rather than by <>n
integrated sample, these mpnujremrn'j may
be made ai ihis lime.
5.2.5.1 The cyclone cut sire, or DM, of a
cyclone ia defined hen aa the panicle sue
having • SO perceni probability of
penetration. Determine ihe cyclone flow rale
al which DM ii 10 Mm. A augg-3iud procedure
is 10 vary the cyclone flow rule while keeping
e constant rm'ucle sin of '.0 fc.-n. Measure 'he
PM collected in ihe cydun: 1m,). inc eml hific
|m(j. and the filter |m,l. Calculate cyclone
efficiency (E,) for each How rale as follows:
m,
,-f m,)
100
i.:.5.2. Do three replicates ind calculate
ine overage cyclone eflicicncy ;£...„,] as
follows;
When F.I. Em. and Ea are replicate
mcdsurtmenis of £..
1253 Calculute the standard deviation
If) lor the replir.iiie meuflurumentii 01 E, as
follows:
(£,'+£,•+£.•)--
If im. Sample
lung enough lo obtain r5 percent precision
on total collected moss aa determined by the
precision and the sensitivity of measuring
technique. Determine separately the nozzle
catch f m.]. cyclone catch (m,), cyclone axil
lube (M,l. and collection filler catch (m,] for
each panicle size and nominal gas velocity in
Tab!* 2 of this method. Calculate overall
efficiency (E,) *s follows:
following the procedures described in (his
section far determining efTiciency-
(m,+m.J
X100
(m,-f m,-t-m,+m«)
5 r.5.6 Do three replicates for each
combination of gas velocity and particle size
in Table 2 of this method. Us* the equation
below le calculate the iveng* overall
efficiency [EV«,il lor ouch combination
Where E,. E>. and E> are replicate
measurements of E..
SJ.3.7 Uaa (he formula in Section SJ.3J
lo calculate
shall be 50^0-9 pamni at 10 pm. .
3J Cyclone Calibration Procedure. The
purpose of this procedure ia to develop the
relationship between Dow rala. gaa viscosity,
gas denaily. and Dt*.
SJ.l CalcuUt* Cyclone Flow Rale.
Determine flow rein and D»"i for lima
difTenni porticl* tan between 5 >»m and 19
jim. one of which shall be 10 MID. All liiea
mual be determined within OJ fuo. For each
sue. use a dtflsrenl lemperaiurt) wiihin 80 *C
(10e *F] of the tampermtura at which Lhe
cyclone ia to be u»ed and conduct triplicate
nino. A luggeited procedura is lo keep the
panicle ii» constant and vary the Dow rate.
5.3,1.1. On log-lftfl graph paper, plot the
Reynold* number (Re) on the abscissa, and
i he a qua re root of Ihe Stokes SO number
|{SiW)r*| on the ordinate for each
temperature. Use the following equations lo
compute both values:
Re -
» M™.
q.,
where:
Qj,,-Cyclone flow rate. cmVsec.
p«Cas density, g/cm1.
d^-Diameter of cyclono inlet, cm.
H^ -Viscosity of gai through the cyclone.
micm poise.
0«- Aerod>-n*mic diameter of a panicle
having a SO perceni probability of
penetration, cm.
5.3.1.2. UM • linear regression analysis lo
determine the alope (n) and the Y-mtercepi
(b). Us* the following formula to dutermine
Q. the cyclone flow rate required for a cut
size of 10 (*m-
T. ,-/'—
w »*«• f 1 f T- 1
a—r[(»«*)-bj [—]
"where:
m = Slope of the calibration line.
b-y-iniererpl of the calibration line.
Q.-Cyclone flow rate for a cut siu af 10
d • Diameter af nozzle, an.
T.-Suck git temperature, R.
P. • Abaolule stack pressure, in. Hg.
M.~ Molecular weight of Ihe alack gas. lb/
Ib-mole.
K,-4.077X10".
5J.1.3 Refer to (he Method 201A
operator! manual entitled Application Guide
for Source PM,m Measurement wiifi Consiar.:
-------
Fed«ra! Register / Vol. 55. No, 74 / Tuesday. Apr;! 17. 19SO / Rules and Regulations
93
90
> 80
o
LU
u
c
yj
70
60
SO
40
30
20
10
1 1
17 < v < 27 m/s
9 < v < 17 m/s
v < 9 m/i
I III
a 10
AERODYNAMIC DIAMETER
20
40
• IU-49
Figure 13. Efficiency envelope for the PM10 cyclone.
•1UJMO COM IMtMO-C
-------
1426B Federal Regime* / Vol. 55. No. 74 J Tuesday. April 17. 1990 / Rules and Regulations
Emikwun G«» Rvcvclr. Dull R«dur.iu.n.
V«mnnS.* MA IT IB*)*
Te*t ID. Cude: Chupcl Hill :
Teat Locution Baghouiu- Ouili-t.
Teal Site' Chapel Hill.
Test Ome WtZQtBd.
: )U RH MIL
un Pan:
TsKCi.'...,..... ............... _ ............... ;>il t
T.lfC: ........ ....... _______ ...... ___ "I M f
TiUOMI .............. _________ .......... _ rs.U V
lem Prniun><
DHionii— ....... __ .................... _.- -..in !Nwt:
DHTOT] ____ ...... _______________ ..... i PI IN we;
I»!NLI__ __________ ............ ... :;.:.'> i.wvc
DP'KCL] _____ ................................ Z.;i IMVf.
......... ____________ ..... _ ..... ti.ra is w::
DHSTV] _________________ ............. (j.10 1NWC
V'(i>CMi _____ .......... ____ ....... .... 13. TM IT3
bO.tfc MIN
..... _ ....... _______ ..... _. g.ou
__________ ..... ------ ........... SJ.QH
r.l: M!.
li.ii CM
I'iltrr ...... — ........... __ ........... ____ 11.7 MC
Inipmypr P.ikiduiT ...... - ............... O.n MC •
rili.nl Vilun;
HfC Km.» .-•„,,... ...... ------- ........ . 0-0 MC.
filler llulUrf Kin*- ................... u.li Ml',
Hiii-r niiiiik ............ ______ .......... . on ML,
fi-p Rin*r,~ --- ........... ____ u.n MC
OTI1TCT1 - u ivu.
t)Hf«»DRIl _ _ _ uuwii
M: rot LH:I _ u.--2^>.
BlTOT LK>:i - - ('I.™
MIKCI. i»:i „ _ (MUM*
D- HC1, Iff,} _ - .00""
IK At CAMMA— - [l !«•<«
,'trrluccd Untn
Sv,.k X <-h.:, :ii (I T,' SIX)..— ........... ___ .............. !.'!••:-
•*!,,i> {;«» Mumiuif p."i _______ ............ ----- ....... ••:.«
Sufli|iii< Fmw R«ic IACCM) ...... - ....................... (UHK
HucvL-lf Kl(>» Ri.lu I ACFMI .............................. 0,1TIHI
Jvrceni hvcynlt- _________ ........................................ -Itt.f
l»i.i>ni"H Rr.ijci [' I ................ _ ............... _ .......... .1.1.1
P'DARU ..... ____ .......... .............. ;«.!»; IN we
: (UMi
<)
(MG/DNCMI
,Gn/ACF|
(Gfl/OCF)
> 1 '
Cycum* l ' 10 'S ' 356 ! KB
f)ickup Pi"tfr , M . i, ' : M5
i , ;
0 OlTSf* ! 0 3J470
000368 1 C 0*332
COI76Z ' 0 03bO:
3 53701
1 907
S "'
EG" f»
Maihod Z01A— Datern:n*tion of PM,.
Emiuuim (Contiuit Sampling Ralr
Procodurv)
Ji. Applicability and Principle
1.1 Appliciibilily. This T.cihuJ a;t()iie) to
111* in-tlack measuremenr of pa.-.ie-jlale
mailer (PS') eminioni equdl (o nr leu Ui«n
an Rcradycamic diameter of narainully 10
(HM..1 from lialionary sgunres. Ttie EPA
rccujnues Lhn condcniible cmiuianx not
collected by an in. Hack method ire also
PM.i. and tKai emunonj that coninbuie to
ambient PM,, levelt sr* ihe sum of
condensible emmionj und emujioni
nea.iu.-ed by an m-nack PM,. melhotl. lucti
m thii method or Method ZUl. Therefore, lot
establishing tource coniribuliont 10 nmliienl
!*velj of PM,fc such ai for emission invcniory
?urpoiei. EPA luggesti thai source PM,.
nieaiurement includa both In-siack P?.l,. and
CDndensible emiuiong, Condennble
emission! may be measured by an impinger
jnalvsu in combination with ihn method.
1^ Principle. A gas sample it axtincied »(
u coni'.ani flow rcte irirough an in-iut;!
siziog device, which separeiei PM greater
than PMi. Vanatign.t from iiokinelic
sampling condiiioni are maintained within
ivell-defi.ied limiti. The paniculate ma*a ii
dtlermmed gravimeiriuilly ii.'ier renoval Of
uncomfaincd we
r. .\ppamuM
Sole: Melhodi ciled in ihii mrthud ,irt PHPI
nf 40 CFH pan M. app«ndi* A,
-1 Sampling Traia A schrnatic i-f the
Method 2B1A sampling train ii shown in
Kigure l of this method With thi exception of
(he PM,. sizing doyico end in-siack niter, thit
train is the ume as an ETA Method 17 train.
2.1.1 Nozzle. Siainlesa neel <3ic or
^r.ivilent) with • iharp lapennl lending
..T Llvven niculuf thai imet the
api-caficaikm in figure 2 of thii method are
recommended A larger number of nonles
with small noatie increments increase the
likelihood that I Sir.pla no^J* Un be Jled fur
thu er.tin travei-se. If the i-.o-iiu do not mcci
the dflbign spcci'iralion* in Figure Zol ihn
ice l hod. (hen the nonlc* must meet lha
cnienn in Sectiun S 2 of thia meihud,
Z.1.2 PM,. Sixer. Stainleai neel (316 or
equivulcnll. eap-ble of determining tha PNf<.
(ruction. The tiling device shall be eittior •
cyclone that me«U iht ipeciricaiiooj In
S«ctifin SJ of th;i method or a ca««ada .
impactor that hai been caltbraietl using the
procedure in Section S,4 of thii method.
2.1 J Filter Holder. B3-mrn. iujnlM* iteoL
An Andanen filter, part number SE2*4, baa
been found to ba acceptable for the m-nack
filler. Kotr, Mannon of lr«de name* ur
specific product* doei not constitute
aadone;nenl by 'he Environmental Protection
Agency,
2.1.4 IHtol Tube. Same as in Method 3.
Sectiun 2.1.3. The pilot linen shall b? made of
heal militant tubing «nd attached lo ihe
probe H-ith itainlvia neel filling!.
2.1.9 Probe Liner. Optional, seme as in
Method V Section 1.1.2.
2.1.0 Differential PrMaure C«UB«.
Condenser. Metering System, ftaromcler. and
Cat Density Determination Equipmtml. Same
at in Method S, Section* 2.1.4. and 2.1 7
threuj-n 2.1.10. re'pectively.
2.2 Samnle Recovery.
2.L.1 Nowlt, Sizing Device. I'roKe, and
Kilter Hbider Brushes, Nylun bnjtl* bfmho*
with stainless steel wire shafts and handles.
properly aizeii and shaped (or cleaning the
notzie. siting dedvics, prubn or probe line;.
and filler holders.
Z-L3. Wuah Bottlei. Ciuaa Sumple S!oru|ia
Container*, Petri Diahoi. Crudualed Cylinder
lind Jtuldrce. Pliislic ~ :• : • Containers.
Funnel and Rubber .!s..;_ r, j.-., and Kunncl.
5
in Mi-thru] 5. Sucliun 4.1.1. except use ;hc
direction) on nozile size selection and
sampl'nt cnie in this miiiKud. Ulf of any
norjl* ^c(r,pr than 0.16 in. in diameter
require a sampling port di'r-^cr of 6 inchuj,
Alio, the required ma i - - -bar of
trnvenr points at ar . 1 be 12.
4.:il The iizing ; . . : . ^e in-ilack
or RiHintuined a', slack leir.prraiLro durinp
iumpi:ag. Tha blockage effect of the C5R
sampling assembly will be m:nirniil if the
cross-sectional ire« of the san-.pling
aaacmblx* ia 3 percent or less of the cru.s*-
sc-ctiujinl urea of Ihe duct. If (he LTOSI-
K-c'.iur.iil urea of the assembly is preulcr Ih.m
1 uercent of ihe crosj-secnonal area of ihu
ducL then either deiermina the pilul
coefficient at mimpling conditions or use a
standard pilot with a known cuefficivnl in »
with the CSR sampling
-------
Federal Reister ' Vui. 55. No. "4 / Tuesdav. Aj.-.i
?;;:ivs ard Reflations
I-S2M
Cyclone Inte-ior D'!-Tigrisir
0.10 in. :-
Z
L
•Deuo
I
:i
_L
Heup
cm
inches
Dimensions (iQ.OZ cm, ±0.01 in.)
Om
1.27
o.sa
0
4.47
1.76
Oe
i.sa
0.53
B
1.£3
0.74
H
6J5
2.74
b
2.24
0.83
I
4.71
US
S
t.S7
0.62
Hcvp
US
0.89
Ocup
4.45
1,75-
o;
1.02
0.44
D0
124
0.43
Figure 12. Cyclone design specifications.
B1LLIMQ COQC I»«-W-C
-------
14266 Federal Register / Vol. S5. No. 74 / Tuesday. April 17. 1990 / Rules and Regulations
SOURCE PW,o Cyclones and Noz-
zle ComDinanons
eolMcion
bl-CK!" l.T.S
|nd Figmc
13.
2. C*oon* cul I urn
TABLE 2. PARTICLE SIZES AND NOMINAL
GAS VELOCITIES FOR EFFICIENCY
Panic*) i Twgei gat *«iociiiai (m/ieel
i 7-1.0 1 tSsi.l 1 Z1-2.S
(X Hau moflian Htoornirmc diaff.tii*
•O.UHO COM I
-------
1
Run
Code
Swnplti
ID
FIIHl
ID
fi*mpl*f
Oiltnlillon
S»mpllng
Location
NonU
Diimtlti ID (In}
Optraloi (1}
Due
Slul
Tlmt
End
Time
Sampling
Ounllon (mlnl
OGM
(Initial)
DGM
(llntl)
Snnplt
tfolum, t'l'l
Dull Manantt Iff Leieltd ind 2aro«d>
Mign*h«llc» Z*fotdT
Run
Tlmt
Pail No
TI«>|.
f>f
Pllol
AH
S«npl>
.
DGM
Volumi
AP
loMl
SUcN
TcmpciilufB " (CT)
Sl.ifk Si » lie
Trcssure '"' ^*jO|
Annhlcnl
f etnperalni* i'*}
Amblrnt
PiMiurr <'' "91
G»l
Velocity
Syilvni, tt«l Chfcii
{ » IS In. Hg)
P
Inlfl
fi P
Dec pell
T,
Sl.ck
G» Compo«lllon
%CO, %0, %CO
Molllur* Conlrnl
Pllei Ltik Ch*ch
(Poi) |N«9»
fiolei
Tl
Hf cycle
Tl
Piob*
T«
irE
T»
DGM
If
I
«
en
*
ui
O.
n:
T3
J.
(V
(A
Ol
CL
ja
03
C
£U~
O
5
Flguro 10, Example EGO Procedure claia sheet,
10
cn
C-J
-------
14264 Federal Register / Vol. 55. No. 74 / Tuesday. April IT. 1990 / Rules and Regulations
Run no. •
Fiilrr no.
Comain*r
'art
Amount liquid lost during
Acelone blank volume, ml _
Acelone wash volume, ml
( = 1 - (3) -
Aceionp blank cone,, ntp/m£ [Equalion
5-1. Mnlhnd 5) _
Acetone wash blank, mg (Fqunlton 5-5,
Methods] _
3....
Tom ;..
i
L*M «e«or*« Win*....!..
I of PM* !..
Container rnjmo
Vi«iq.ni o' pincuiaic
"man»i, mg
inW i Tar* ,
i»M action* Wink.
Tom oan
-------
FwiaraJ RegMler / Vol. 55- No- 74 / Tuesdcy, April 17, 1990 / Rules and Regulations
• lack fat. *»t basm,
M. Ib/lb mole.
rVtmuT u|)iln>«m a! °- 0,6
U"E. in. Jig,
Cat inslyaii:
VO.
comem. B,..
Calibration dau.
in.
Pilot ^••"'fncicnl C. =
T dial LFE calibration ' Viscosity of dry narJt
constant. X,. a ;ui;
Tulsl LFC cslibral.tin ^« 152.418-^ 023.11
eotuuni. T.. = T.*J.^53 <10"'
Ahjolui* pressure T,;t-0.i31'l7 l"*Oi). - _
upsiream of LFT1
ViicotHj-ofgaiuTiol-I Con.iann;
LFE
^•i-2"^1,?^,
Kiol.STSIxlO'1-
It,-01139
Mi«T. D.'C. f_l] ,,,
T.
[i -o.aMtf (i , -
(i -
Figure S. CxampI* »orkjh»ct Z. total LTT,
head.
X, 180.1 K,
K. K.
Bl ° SM.J^X,='
Tola! LFE pretiurc head;
^^Ji^ni —pi t«*pj "™ tn H^fl
Daromeiric pressure, PB^ in. Hg«i ,
Absolute slack pressure. P. in.
Average stack temperature, T..
Meier temperature, T_ 'B =
Molecular weight of stack gas. dry basis,
Me. Ib/lb mole -
Viscosity of LFE gas. pm. poise=
Viscosity of dry stack gas, p* „
Abiolulu pressure upjircam 01 LTJ
Calibration data:
Nozzle diameter, Dn, m. =
Pilot coeffidenL C, =
Recycle LFE calibration conatunt.
Recycle LFE calibration constant,
K, - IJ732X10"1-
T, P.*— m.
M^T. D.'C. , P.
K. - 0.1339 — - H
1C. -
B,J
_£. l^n ,
X, 180.1 X,
B,-
.K,
Pressure head for recycle LFE:
" in,H,O
-------
14262 Federal Register / Vol. 55, N'o. "4 / Tuesday. April 17. 1990 / Rules and Regulations
Figure 9, Example workshee
recycle LFE pressure head-
BILLING COOI IUO-W-M
t *
-------
ORIFICE METER
DRY GAS METER
THERMOCOUPLE
TOTAL FLOW
THERMOCOUPLE
DRY GAS METER
MANOMETER
SOLENOID
RECYCLE FLOW
OUICKCONNECT
TOTAL FLOW
OUICKCONNECT
n
a.
?o
Q
CM
-
HEPA FILTER
TOTAL LFE
nECYCLE LFE
RECYCLE FLOW
SOLENOID
TOTAL FLOW
SOLENOID
V.
o
Ul
n.
(u
s
pa
c
O)
b.
10
5T
o
Ul
Figure 5, Example EGR control module (rear view)
showing principle componenls.
-------
142SO
Federal Register / Vol. 55. No. 74 / Tuesday. April 17, TWO / Rule* and Regulations
EXAMPLE EMISSION GAS RECYCLE SETUP SHEET
VERSION m MAY Iflflfi
TEST 1.D-: SAMPLE SFTUI'
RUN DATE; 11/24,'se
LOCATION: SOURCE SIM
OPERATOR(S): RH |B
NOZZLE DIAMETER (IN'J: .-5
AVERAGE TEMI1IKATTHK (If. 2tii4),.
AVERAGE VELOCITY invsRO: u.n..
AMBIENT PRESSirKE (IN HGJ: 29-92-
STACK PRESSUTU, [IN Hai|: .10 ________
_, r.AscdMi'OSiiii
11:0=10.0%
02 = 20.9%..,
MU-2C.H4
Mw=:-.rs
(LD/U
Dl'(HTO)
O.D2C
.rai
.035..,.
iso
SAMPLE
TOTAJ.
RECYCLE
%RCL
.58
1.HD
i.aa
1ST
54*
.78
1.87
2.44
101
.40
1,90
UP
C1%
.M
1,19
174
57%
GS
1.88
100
sss
.71
1.86
-4?
53%
TARGET PRESSURE OUCH'S
TEMPERATURE (F)
ir:
.«w
1.M)
:.9:
ins
.55
I.8P
2.77
58*
.M
1.R8
2-93
SS%
t.m
2.94
1.9O
2.80
iflt
.S3
1.89
ran
50%
.47
1.92
2.37
(CH
5T.
1-ffl
:.K
59%
.B2
l.W
:.ta
.72 .71
1,8» 1-89
2.50 2.S3 i!
SZX 53% 53
Kgur* 6 Example EGR wiup aheel.
.40
1.92
3.no
Q:I%
.M
1J1
2-35
59%
.61
1.90
57*
69
1.90
2.59
.45
1.9:
302
«3'.t
.53
1.91
:.o«
60%
.00
1.91
.87
1.90
'..U
AS
1,93
3.05
03%
,a:
1.9:
190
ecH-
-59
1.91
2.74
Sn;
.(f,
1.91
2.S."
5S':.
Barameinc
Slack italic
pressure, P,. in.
H;0.
Ai'entit Hick
lernperaltrs. (^ "F,
Meier lemperaiurt
U. T.
GUI anclysii:
«-COi _____________
Fraction moitmr* —
conicni. B.T
Calibrsiion data:
Nozzic diameier,
D, in.
Pi I o( uclficieni.
O-
&H«. in. 11:0.
Molecular »«iphi
of itack gii. dry
(%CO,)-rOJ2
Molecular weight of
•tack gal, wet
bain:
Absolute slack
preiture
j/lb
in. Hp
K-M&72 D»« 4H» C.1 (1 -8.) " Hi (t,-t-4aO) l>
M, ((.4-480) P
Dcf ir«d mtinr onHce rirv->5ufe (iHJ for
velocity head of itarJt pat |ip|:
4H-Kip- in. H;O
Figum 7, t.iampie wurlshr-tl 1, nit ler urifio;
prciRura heiid calculMtion.
pmtum.
P«v In- Hg.
Absolute Hack
prvttun. P_ in. Hg.
Ai'flraga alack
(empersturt, T, *fL
T_ "R-
-------
Federal Register / Voi 55. No. ~* I Tuesday. Aorii :7, 1990 / Rules and Regulations 14237
PM 10 CYCLONE
i- .-I
FILTER HOLDER
(63-mm)
i r
EGR NOZZLE
TYPE-S PITOT
RECYCLE LINE
rSTACK THERMOCOUPLE
RECYCLE THERMOCOUPLE
Rgure 3. EGB PM10 cyclone sampling device.
-------
re
FINE TOTAL
VALVE
COARSE TOTAL
VALVE
VACUUM GAUGE
FLOW
MAGNEHELICS
DUAL
MANOMETER
7
TEMPERATURE
SELECT SWITCH
TEMPERATURE
INDICATOR
DRY GAS METER
SAMPLE BACK
PRESSURE VALVE
FINE RECYCLE
VALVE
COARSE RECYCLE
VALVE
• i
I
0.
2.
Ol
5"
M
Figure 4, Example EGR control module (Ironl view)
showing principle components.
-------
PITOT TUBE
EGR PROBE ASSEMBLY
RECYCLE
LINE
10
HEATED
FILTER
HOLDER
NOZZLE FILTER
HOLDER
METHOD 5 '
IMPINGERS |
I
, METER AMD FLOW
1 CONTROL CONSOLE
EXHAUST
H
n
m
O.
(B
TJ
a
SEALED PUMP
Figure I. Schematic ol tha eihaual gat recycle Iraln.
CL.
JO
i
CT.
o
-------
14256
Federal Register / Vol. 55. No. 74 f Tuesday. April17. 1990 / Rules and Regulations
Vi
/ r
~T- (H
0^
-xU
*\ ^~
r> /
./
m"*^ tJ
A --
u
S3
39
o
cr
u
o
jj
75
E
u
t
(3
j"^*
i
F
if
S| Sw
/ 4 o3
b
«
3
&
u.
40
-------
J^deral Register /VQ|. 55. JS'Q. TJ / Tuesday. Apnl_17. 1990 / Rules and Regulations 14253
E.-
(m, i.mr-* m, -f mr)
X 100
5.7.5.7 Do Ihret replicaici lor each
combination of fas velocities and panicle
rzei In Table : of lhi» melhod, Calculate E.
fur each panicle nit following the
procedural described in ihii itclion lor
deiermining efficiency. Calculate the
itandard deviation |cr) for th« replicate
meaiurementa. If '« for three
different particle lizes between S u,m and 15
M.m, one of which shall be 10 urn. All tizei
mull be within 0.5 |im. For each stxe. UM •
different temperature within SO'C (106T] of
the temperature at which ihe cyclone u to b*
used and conduct triplicate runs. A suggested
procedure it to keep the particle sue constant
and vary ihe flow rate. Some of ihevataet
obtained in the PS lean in Section 5,7.3 may
tie u»d.
5,8.11 On log-log graph paper, plot the
Reynolds number (Re) on the abvciiM. and
the square root of the Stoke* SO number '
[(STKn)" 1 on the ordinaie for each
temperature. Use the following equations:
Re -
where:
Q^. • Cyclone flow rale cm-'/icc.
p • Gas density, a/cm'.
d^. •> Diameter of cyclone inlet, cm.
pLo. « Viicoiiiy of gai through the cycionc.
pulse,
Dw - Cyclone cut sue. cm.
3.0.1.2 Use a linear regrestion analysis to
determine the ilop« (m). and the y-iniercepi
[b). UM the following formula to determine
Q. the cycloM flow rate required-far a cut
sice of 10 fin.
Q •
J (MOOHK,)* J -|n.s-m)
T.
M.P.
m/lm-O.Si
Q « Cyclone (low rate for a cut sue of 10
Mm. cmj/sec
T, = Stack gai lemptrature. K.
d • Diameter of nozzle, cm.
K, - 4.077 X 10-'.
3,6-2. Dircc;iorui Tor Using Q. Refer to
Section S of the ECR opera ion manual Tor
directions in using ihii expression for Q in
the letup calculations.
0. Cotculauo-j
B.I The ECR data reduction calculation*
are performed by (he ECR reduction
computer program, which it written in IBM
BASIC computer language and is available
through NT1S. Accession number PB90-
500000. 5283 Ron Royal Road. Springfield,
Virginia 22161. Examples at proanm inputt
and outputs are ihown in Figure 14 of lhi«
meihod-
6.1.1 Calculaiioni can alto be done
manually, as ipecified in Method 3. Scciiona
6.3 through 9.7. ind 6.9 through 8.11 with ihe
addition of the fallowing1.
8.1.2 Nomenclature.
B, n Moisture fraction of mixed cyclone
ga*. by volume, dimensionleu.
C, - Viscosity constant 31.12 BliempoiM
for *K (SI ,05 micropoia* for *R).
Ci • Viscosiiy connani.
*K (0.207 rnicrapoise/'R).
Ci - Viscoiity conatanL i.OS X 10"
micropoise/'K1 (3,24 X 10~*mlCTOpoiie/
C • Viacoilty conatanl. U.I 47
micropaiM/fraciion O|.
C, - Vitcosity constant. 74 143
miercpoise/fraclion H,O.
Du B Diameter of panicle* having a SO
percent probability of penetration, p.it.
lai «• Stack gaJ fraction ft. by volume, dry
basis.
K, m 0.3853 'K/mm Hg (17.64 'R/in. Hg).
M. » Wei molecular weight of mixed ga*
through the PMn cyclone, g/g-tnale (Ib/
Ib-male).
W, - Dry molecular weighv of atacV gai, gl
g-mol« (Ib/lb-mole).
PM • Barometer pruMurtt st umpflng site.
mm Hg [in. Hg).
PI.I - Gauge pressure at inlet lo total LFE.
mm HiO (in- HaO).
Pi - Abaolut* JUck prMsure, mm Hg (in.
Qi - Total cyclone flow rale at wel
cyclone conditions, m'/roin (ft'/tnin).
Qt^ft • Total cyclone flow rait at
standard condilons. dicm/min (d*e//
mb).
Ta • Avcragji temperature of dry gat
meler. 'K\"R}.
T, — Average stack gin temperature. "K
CRl-
V^i^j • Volume of water vapor in gaa
lanrple (iiindard candjliona). sen (icf).
XT - Total LFE linear calibration coniianu
m'/Kmrnllmm htO'J (ft'/I(iBin)(ifi.
rM3)]).
YT - Toul LFE liaur colibraijon COWIODL
dian/min (dsef/min).
APT • Pretaun dilTcrennal acrosj total
LFE. nm HiO, [En. K.O)
0 B Total Mmpling lime. min.
!!„ v Vlicomj of nixed cyclone gns.
micro poiM.
u^, a Viscosity of gaa laminar flow
elevrenii. micropoiie.
H^ m Viscosity of standard air. 180.1
micro poise.
U PMi* Panieulnie WeigiU- Determine
the weight of PMM by summing ihe weights
obtained from Contniner Nurntwn ] and 3.
leu ihe acetone blank.
8.3 Total Paniculate Weight, Determine
Uie paniculate ca:=h for PM greater than
PMn froen the weight obtained from
Conuiner Number 2 ICM iha acetone blank.
and add it to Ihe PM,. paniculate weight.
8.4 PM,, Fraction. Determine the PM,.
fraction of the total paniculate weight by
dividing the PMw paniculate weight by the
tola) paniculate weight,
64 Total Cyclone Flow Ral«. The average
flow rate at itandard conditions ia
determined from the average pressure drop
icma the total LFE and ii calculated aa
follow*:
XTAP
-------
1-1S54 Federal Register / Vol. 55. No- 74 /Tuesday, April 17. 1990 / Rules and Regulations
The fioo. rate, gi actual Cyclone conditions.
ii culcuiaiud 19 (o!lo*i-
Q' =
T,
6.6.1 Determine the «mer fraction of Ihe
mixed yas through the cyclone by using ihc
equation
Q.i.MiO * V.
6.B.2 Calculate Ihe cyclone gai viscosity
as follows:
>W- C, -t- C, T. + CiT.1 + C. U - C. B,
B.G.3 Calculate (he molecular weigh) on a
*el basis of the cyclone gas «» follow*:
M, •= M.d - e.) * ia.o(D.s
C.B.4 I! the cyclone mecii the design
•peciricaiicm in Figure 12 of ihm meihod.
calculate the actual D» of Ihe cyclone (or ihe
run B9 follow*:
T.
M.P.
Q.
wh*re jj, a 0.1502.
6.0.5 K the cyclone do«s not meet the
design tpecificatmnt in Figure 12 of ihi»
meihod. then uie the following equation to
culcuiute DM.
DM -
6,6 Aerodynamic Cut Size. Use the
following procedure to determine the
aerodynamic cut size (D»).
where:
m a Slope of the eslibraiion curve
obtained in Section S.B.I.
b - y-imercepi of (he calibroiion curve
obtained in Section 5.8.2.
6.* Acceptable Reiuld, Accepiabih'ty of
eniiokinetic variation is the lame as Method
S. Section 8.12.
6.7.; If 9.0 nm < DM <11 jwn Bnd90< 1 <;
110. the reiulu are acceptable. If DM it
greater than 11 pro. the Administrator may
(7.378 X 1CT T
M.P.
T,
d--
accept Ihe results. If Dm it lest than BO pm.
reiect the results and repeal the teat.
7. Bibliography
1. Same at Biblioprapby in Method 5.
2. McCain. 1-D-.! W. (Upland Hnd A.D.
Williamion. Recommended Methodology for
Ihe DeierminaUon ofPartidoi Site
Distribution* in Dueled Source*, Final Report.
Prepared for the California Air Resource*
Board by Southern Research Iiutilute. May
1986.
3. Fanning. WE- S S Dawei. A.D.
Williamson. | D. McCain. R.S Martin, and
J,W, Rsglnnd, Development of Sampling
Methods tot Source PM-10 Emissions.
Southern Research Institute for ihe
Environmental Protection Agency, A prill 389.
4. Application Guide for ihe Scarce PMa
EfheuU Cat Recycle Sampling System EPA/
GOO/3-BS-C2&
-------
Federal Register /' Vol. 55. No. 74 / Tuesday. April 17. 1930 / Rule? and Resdancns
14251
4.1.4.3 Poil-Tei; Leak-Check. A leak-
check is required a! the conclusion of each
sampling mn. Remove the cyclone before ihc
leak-check to prevent ihi> vacuum created by
Irir cooling of ihe probe from disturbing the
cnllecicd sample and use the following
procedure Id conduct a post-test leak-check.
1,1.4.2.1 The sample.nd* leak-cheek 11
performed ai follows: After removing the
cyclone, seal the probe with a leak-light
Hopper. Before starting pump, close the
coarse total valv« and both recycle values
and open completely the sample back
pressure valve and the fine total valve. After
turning the pump on. partially open the
coarse total valve slowly lo prevent a surge
in the manometer, Adjust the vacuum to ai
iean 3Q1 mm Hg (1S.D in. Hg) with the fine
total valve. If the deiired vacuum ii
exceeded, either leak-check at this higher
vacuum or end the leak-check as shown
below and start over.
Caution: Do not decrease the vacuum with
any of the valvej. This may cause a rupture
of the filter.
Note: A lower vacuum may be used, provided
that i: is not exceeded during the ten.
4.1.4.3.Z Leak rate* in exceaa of 0-00057
m'/min (O.OCO ft'/mm) are unacceptable. If
the leek rate is toe high, void the sampling
run.
4.1 4 3J To complete the leak-check.
slowly remove the (topper from the nozzle
until the vacuum ii near zero, then
immediately turn aft the pump. Thii
procedure sequence prevents a pressure
surge in the manometer f.uid and rupture of
the filler.
4.1.4.3.1 The recycle-side leak-check is
performed at follows: Clow the coane and
fine total valves and sample back pressure
valve. Plug the sample .inlet at the meter box.
Turn on the power and ihe pump, close the
recycle vaivej, end open the total flow
valves. Adjtut the total flow Tine adjust valve
until t vacuum of 23 inches of marcury it
achieved. If the desired vacuum is exceeded.
either leak-check at this higher vacuum, or
end the leak-check and stan aver. Minimum
acceptable leak rates are the same as for the
sample-side. If th« leak rale is too hiah, void
the sampling run,
4.1,3 ECU Train Operation. Sane a* in
Method 5, Section 4.1.3, except omit
references to nomographs and
recorr.mendationa about changing the filter
assembly during a run.
4,1.5.1 Retard the date required on a data
sheet such at the one shown in Figure 10 of
this method- Moie periodic chtcka of the
(nanometer level and lero to ensure comet
iH and ip valuer An acceptable procedure
for checking the tero ia to equalize the
pressure at both ends of the manometer by
pulling off ihe tubing, allowing the fluid to
equilibrate and, if necaasary. lo re-xero.
Mai-.:ain the probe temperature to within
II 'C (ZTJ T) of stack temperature.
4.1.3-2 The procedure for using the
example ECR setup sheet ia as follows:
Obtain a stack velocity reading from the pilot
manometer (4p), and find this value on lha
ordinal* axia of ihe setup sheet. Find the
stack temperature on the sbsciiia. Whore
the** two values Lnteneci an the differential
pressure* necessary to achieve isokinetlciry
and 10 pm eui siw (interpolation may be
necessary),
4.1,3,3 The top three number* are
differential pressures (in. H,O], and the
bonum number is the percent recycle at these
flow settings. Adjust the total How rate
valves, coane and Pine, to the sample value
I AH) on the letup sheet, and ihe recycle How
rait valves, coarse and fine, to [ha recycle
flow on the setup sheet.
4.1.3.4 For startup of Ihe ECR (ample
train. Ihe fallowing procedure is
recommended. Preheat the cyclone in the
slack lor 30 minutes. Close both the sample
and recycle coarse valves. Open the fine
total, fine recycle, and sample back pressure
valves hallway. Ensure that the nozzle is
properly aligned with the sample stream.
After rnl:ng the dp and stack temperature.
select the appropriate AH and recycle from
the ECR setup sheet. Start the pump and
timing device simultaneously- Immediately
open both the wane total and the coarse
recycle valves slowly lo obtain Ihe
approximate deiired values. Adjust both the
fine total and the Tine recycle valve* to
achieve more precisely (he desired values. ID
the ECR flow system, adjustment of either
valve will result in a change in both tola! and
recycle flow rates, and a slight iteration
between the total and recycle valves may be
necessary, Became the sample back pressure
valve controls the total flow me through the
system, it may be necessary to adjust this
valve in order 10 obtain the correci flow rate.
Note; Isokmeiic sampling and proper
operation of the cyclone an not achieved
unless the correct aH and recycle flow rate*
are maintained
4,1,3.5 During Ihe lest run. monitor the
probe and filter temperatures periodically,
and make adjustments aj necsnary lo
maintain lha desired temperature*. If the
aample loading is high, the filter may begin lo
blind or the cyclone may clog, Tha filter or
the cydona may be replaced during the
sample run. Before changing the filler or
cyclone, conduct a leak-chock (Section 4.1 4.2
of this method). The total portlculaia miss
shall be the sum of all cyclone and Ihe filter
catch during the run. Monitor stack
temperaturt and Ap periodically, and make
the necessary kdjustmonti in sampling and
recycle Row ratal to maintain isakinelic
sampling and the prepw (low rale through the
cyclone. At the end of the run. turn off the)
pump, close the coane tolsil valve, and
record the final dry gas meter reading.
Remove the probe from the stack, and
conduct a post-test leak-check as outlined in
Section i.l ,4J of this method.
4.1.0 Calculation of Percent Lsokinelic
Rate and Aerodynamic Cut Siia, Calculate
percent isokineuc rale and the aerodynamic
cut size (Oa\ (see Calculations. Section a of
this method) lo determine whether the test
wag valid or another test run should be made.
If there wai difficult in maintaining isokinetic
rates or a On of 10 inn bccnus* of source
conditions, lha Administrator nay b«
corumlied for possible variance.
4.2 Sample Recovery. Allow the probe to
cooL When lha probe can be ufely handled.
wipe off all external PM adhering to the
outside of the noizle. cyclone, and nozzle
attachment and place a cap over the* nonle
10 prevent losinji or painmg PM. Do not cap
the noMle lip tightly while the sampling lmin
is cooling, as this action would create a
vacuum in the Filter holder, Disconnect thr
prolte from the umbilical connector, and take
the probe to thr cleanup site. Sample
recovery should be conducted in t dry irinuor
area nr, if outside, in an area protected from
wind and free of dust. Cap ihe ends of Ihe
imptngen and carry them to the cleanup site.
Inspect llir components of the train prior to
and during disassembly (o note any abnormal
conditions. Disconnect Ihe pitol from the
cyclone. Remove the cyclone from the probe.
Recover the sample ai (ollcwj:
4.2.1 Container Number 1 (Filler). The
recovery shall be the same as that for
Container Number 1 in Method 5. Section 41
4.2.2 Container Number 2 (Cyclune or
Large PM Catch). The cyclone must be
disassembled and the nouie removed in
order to recover the large PM catch.
Quantitatively recover ihc PM.from the
interior surfaces of the noiil* and the
cyclone, excluding the "turn around" cup jnU
the interior surfaces of the exit tube- The
rceuvery shall be ihe same as that for
Container Number Z in Method J, Section 4.:,
4,2,3 Container Number 3 |PM,.).
Quantitatively recover ihe PM from all of the
surfaces from cyclone exit lo the front half of
the in-slack filler holder, including the "turn
around" cup and the interior of the exit lube.
The recovery shall be the same as thai lor
Container Number 2 in Method 5, Section 4.:.
4.2.4 Container Number * (Silica Gel],
Same as thai for Container Number 3 in
Method 3. Section 4.2.
4.1.5 Impinger Water, Same as in Method
5. Section 42. under "Impinger Water,"
4-3 Analysis. Same as un Method i.
Section 4.3. except handle ECR Container
Numbers 1 and 2 like Container Number l in
Method 3, ECR Container Numbers 3, t. and 5
like Container Number 3 in Method S, and
ECR Container Number 6 like Container
Number 3 in Method S. Use Figure 11 ef this
method to record the weights of PM collected.
4,4 Quality Contra! Procedures. Same as
in Method 3. Section 4.4.
i Calibration
Maintain en accurate laboratory ing of all
calibrations.
3-1 Probe No=le. Sarr.a as in Method i
Section 5.1.
5.2 Pilot Tube. Same as in Method S,
Section 3.2.
3,3 Meter and Flow Control Console.
5.3 1 Dry Gas Meter. Same as in Method
5. Section 5,3-
3,3J LFE Gauges. Calibrate the recycle.
total, and inlet total LFE gauges with a
manometer. Read and record flow rales at 10.
SO, and 90 percent of full scale on the total
and recycle pressure gauges. Read and record
flow rales at 10. 20. and 30 percent of full
scale on the inlet total LFE pressure gauge.
Record the toial and recycle readings la the
nearest OJ nun (OBI in.). Record the inlet
total LFE readings lo the neareil 3 mm (0.1
in.). Make thne separata measurements at
each telling end calculate (he average. The
maximum difference between the average
pressure reading and the average manometer
-------
14252
Fudcval Register I Vol. 5S. No. 74 f Tueidav. April 17. 1990 / Rules and Regulations
hall not eacewd I nun IM3 in.). U the
d»flerwic» exceed we limit specified, adjust
or replace tbe precaure fausW- Afla* etiicfc
field use. check the calibration of the
preMure f eufe*.
5-3-3 Total LFE. Same »t ihe metennj,
system in Method 5. Section 5.3.
53.4 Recyck IFL Sane M the melering
jyjiero in Method i. Section Si woe-Dl
completely dot* boih (he coarse aad fbf
recycle valve*,
5.f Probe Heater. Conned she proiie -.c
the meier anJ (law control console wi-J» Lhe
umbilical connector. Insert • ihernocoupie
into the probe sample lint approximate:)} balf
ihe length of ihe probe lample line. Calibrate
the probe heater at 68 "C (ISO T). in *C
(250 "F], and 177 "C I3SO "FJ. Turn on Iht
power, and let the probe heater to ihe
i pec; Tied temperature. Allow me heater to
equilibrate, and record Ihe thermocouple
temperature and the mete.* and How control
console temperature 10 the nearest OJS "C
(1 '>"]- The two temperatures ihmild agree
within 5-5 "C (10 T). If this agreement ii not
me), adjust or replace the probe healer
controller.
S.S Temperature Gauge*. Coonect all
thermocouples, and let the meter ana flow
cental coniole equilibrate 10 ambient
temperature- All thermocouple* ihall acree to
within i.t "C (2.0 T] with a nsnoard
nereury-in-glats thermometer, Replace
defective thermocouples.
S.B Barometer. Calibrate agiinat a
standard tmrcury-m-glai* barometer.
5,7 Probe. Cyclone and Nozzie
Combiiu lions. The probe cyclomend Mtzie)
combinations need not be calibrated if the
cyclone necta fb* design sncciBcatiotis in
Figure 12 of ihit method and the nosie meets
ihe design specifications in appendix S of the
Application Guide far the Source PM *
EjJiauii Cat Rgeyele Sampling System. EPA/
flOQ/J-as-OAa Thia document may be
obtained from Roy Humley at (919) 441-1060.
If the nozzle* do not meet ihe design
jpeaficaiiona. then lest the cyclone eud
no ale combination Tor conformity wrlh ihe
performance ipecificaliana (PS's) In Table 1
of thii method. The purpose of the PS lasu Is
to detemme if ihe cyclona'i iharp~eu of oil
meet! minimum performance criteria. If the
evcione doei not meet deiipi ipeoficatieaa.
then, in addition to the cyclone and oosle
combination conforming 10 the PS'a, calibrate
the cyclone and determine ihe relationship
between flaw raic, c»i viaco«ity. ard gai
denti'.y. Use iht procedures in Scctmn 1.7 J of
ihn method.to eondw.i PS teiti and the
procedural in Secuon SJ of thii method to
ceJibraM the cycioiw. Conduct the PS lent In
i winj tunnel deicrtbed rn Secnon S.7.1 of
•- - nwthod and u«m« a pe,n>de gcnerarion
m detcribed in Seciton 5.7.2 of thii
.-.od. UH live partide litet and three
,nd velocitiei ai liiled In Table 2 of thii
method. PeKorm a miniirwai of three replicate
meaiurementi of collection rffiriency for
each of the 13 cunditioni lined, for a
minimum of 15 meaaurninetita.
S.7.1 Wind Tunnel. Perform calibration
and PS leiui in a wind tunnel (or equivalent
left apparatus) capable of eilabJiching and
maintaining the required gai iirvaa
volocitiet within 10 percent.
SJ2 Partida Genera tion Syiteui- The
particle generation fvatein thai! be capable of
producing iclid monodispenwd dye partlclfl*
with the maM rm>diin aerodynamic
diameten speciried in 1 able 2 ef ihii method.
The panicle tize dMtribution verificntion
ihauld be performed an an integrated sample
obtained during the umpJ:ng period of each
leit. An acceptable aliematrve ia to verify Ihe
liu distribution of iamplea obtained before
and after each lea;, with boih Mir.plee
required to meet Ihe diameter and
monodiiaeniry requirementi for an
acceptable test run.
SJJLl Ettabliih the aizaof thcioliddye
particiei delivered to the tnt section of the
wind lunneJ uiiAg the operating pamrmen
of the pa,rucle generaUon ryitem. ami Tenfy
(he aite during the leita by microscopic
examination of iairiples of she p*rridea
collected oa a membrene filler, Tha particle
site, aa eatabliahed by the operating
parametert of the generation tyiiean, tiaLl be)
wrJ-.m iha lolenaei f peaCed in Table 2 of
thia method. The precwion of the perude ita
venntauon lecJsnjque ihall be) ai lean rOJ
fiat, and the) pa/ticlt aiza determiaed by the
venficanon ucfaoique ihall not differ by more
than to percent from thai eiuMUhed by the
operating paiamMen of ihe particle '
generation lyitea.
1.7i2 Certify the Bwaodiipenily of the
particle* (or each let! either by microscopic
inspection of collected pauticiea on filian or
by other luilable aoniioriag technique* such
ea an optical pautick counter followed by a
nuiiichaimei pulaa height aoaiyiv. tl the
proportion of multiple!* and aatcUites in a-
ncrosol e«ee*dl tO pereetil by masi, the
particle jenerewow IJPSNMI n unacevriiitbl*
for purpote* of thia tnt Mallipi««9 gre
panic!*! ihet ere atgilomeTiied. and » range-
S.7.3 Schematic Dniwingi. Sdicmitie
drawing! of the wind lunnel and blower
jVBiern end other information ihowinj
complete procedural detaili ef the test
itmotphere generalinn. verificatron. and
delivery teehr.HHieii ihall be furnished with
calibration data to tne reviewing nfiency.
S.7.4 Flaw Rate Measuriment. Determine
the cyclone flow ratet wilb a dry gaa meter
and a stopwatch, or a calibrated orifice
•ysiem capable of measaring flow rates in
within 2 percent.
J.7 s Performance Specification
Procedure. Establish the test panicle
pencrator operation and verify the panicle
lize microicopicully. If mondisparsily is robe
verified by nteeturemerm at the beginning
and the end of the run ruher thin by an
integruted iumplc. these measurements may
be made at this time.
5.7.3.1 The cyclone cut me (DM) is
defined ai the aerodynamic diameter of a
panicle having a SO percent probability of
penetration. Dei ermine ihe required cyclone
flaw rule nl which Dv> is 10 |tm. A suggested
procedure ia to vary ihe cyclone flow rate
while keeping a constant particle site of 10
fim. Measure the PM collected in the cyclone
|nU eiil tube (m,), and filler (mr). Compute
the cyclone efficiency (E.) aa fallows:
m.
(m, + m, + m,J
X ICO
5.7 52Perform ikrree nrpiiatei and
calcuiaic) the arverage cycioae eJQaenr,1 *t
follow.
where Ea. E«. and Ei ar« replicaie
Qeasummenta of E^
5.7.3.3 Dilculala ite itaadard deviation (4f Cskalstc ma overall efTicienei' (E,)
as follows;
-------
Federal Register / Vol. 55. No. ?4 / Tuesday. April 17. 1990 / Rules and Regulations 14249
them to be erroneously measured as
PM,..
Drying and shrinking is not thought to
be a problem. Should it be considered a
problem, the letter could choose Method
201A in which there i» no recycle gas.
Another commenter laid that the use
of recycle gas increases velocity in the
cyclone which could cause friable
particlei to break yp. becoming PM|0.
Prior to size classification by a PM,a
cyclone, there is no known or suspected
mechanism by which friable panicles,
should they exist, may break up. When
particles greater than 10 jim
aerodynamic size reach the cyclone wall
due to their inertia, (hey are collected.
One commenter said that no
consideration is made in either method
of the gai density, gai viscosity, or of
the denaity of the participate matter
being measured.
Gas density and viscosity are
compensated for in the calculations for
both PMio methods. Because the
aerodynamic diameter of PMu
emissions is used in both PMio methods,
determination of particle densities,
volumes, or shapes is not necessary and
would be redundant.
Another commenter said if the PM,«
measurement is made downstream of an
electrostatic precipitater (ESP), then the
particles will carry an electric charge
and the measurement of PMio by these
methods will be affected.
The effect of an ESP on par tide sizing
when using Method 201 or 201A is
considered to be negligible.
There was concern by the commenters
that the particuiate matter may settle
out inside the sample train.
The trains have been calibrated with
test aerosols and the relative accuracies
to each other have been established,,
These tests results and Lhe operation
principles of both methods have shown
that "settling" is not a problem. The
particles travel only 1.5 to 3 in. (nozzle
length) prior to size classification by the
trains.
IV. Administrative
The docket is an organized and
complete file of all the information
considered by EPA In the development
of this rulemaking. The docket ii a
dynamic file since malarial is added
throughout the rulemaking development.
The docketing system is intended to
allow members of the public and
industries involved to identify readily
and locate documents so that they can
effectively participate in the rulemaking
process. Along with the statement of
basis and purpose of the proposed and
promulgated test method revisions and
EPA responses to significant comments,
the contents of the docket, except for
interagency review materials, will serve
as the record in case of judicial review
(section 307{d)[7J(A)J.
Under Executive Order 12291. EPA is
required to judge whether a regulation is
a "major rule" and. therefore, subject to
the requirements of a regulatory impact
analysis. The Agency bas determined
(hat this regulation would result in none
of the advene economic effects set forth
in section \ of the Order aa grounds for
finding a regulation to be a "major rale."
The Agency has, therefore, concluded
that this regulation is not a "major rule"
under Executive Order 12291.
The Regulatory Flexibility Act (RFAJ
of 1960 requires the identification of
potentially advene impacts of Federal
regulations upon email business entities.
The Act specifically requires the
completion of • RFA analysis in those
instances where small business impacts
are possible. Oecauie this rulemaking
imposes no adverse economic impacts.
an analysis has not been conducted.
Lial of Subject* in 40 CFR Part 51
Administrative practice and
procedure, Air pollution control. Carbon
monoxide. Intergovernmental relations,
Lead, Nitrogen dioxide. Ozone,
Particuiate matter. Reporting and
recordkeeping requirements. Sulfur
oxides. Volatile organic compounds.
Dated; March 22. 1B90-
William K. RtUIy,
The EPA amends title 40, chapter L
part 51 of the Code of Federal
Regulations as follows:
PART 51— [AMENDED]
l. The authority citation for part 51 ii
revised to read ai follows;
Authority: 12 U.5.C 74O1fb)(1). 7410, 7470-
7479. 7SQ1-7U8. and TtOl(a), unlwi
otherwise noted.
2. Subpart K. 1 91-212 Ii amended by
adding paragraph [c] to read as follow*:
f 3 1.211 Testing, Impacted, enforcement.
and complaints.
(c) Enforceable test methods for each
emission limit specified in lha plan. Aj
an enforceable method. Slates may use:
(1) Any of Uii appropriate methods In
appendix M to this part Recommended
Test Methods for Stale Implementation
Plans; or
(2) An alternative method following
review and approval of that method by
the Administrator or
[3] Any appropriate method in
appendix A to,40 CFR part GO.
3. Appendix M is added to part 31 io
read as follows:
Appendix M—Recommended Test
Meihodi for State Implementation Flans
Method an—Determmaiion of PM,,
Emuiioni (Exhausi C«i Recycle Procedure).
Method HttA—Determination of PM,»
Emission! (Constant Sampling Rale
Procedure).
Presented herein art recommended test
methods for meaiuring air polluisnii
emanating from an emission source. They are
provided for Slates Io uie in their plan io
meel the requirements of Subpart K—Source
Surveillance.
The Siala may also chooee lo adopt other
methods to meet the requirememi of Subpari
1C of ihil part, subject to iho normal plan
review process.
The Slate may also meet the requirements
of Subpan K of this part by adopting, again
subject lo Ihe normal plan review process.
any of lh« relevant methods in appendix A to
40 CFR pan 80.
Melhod Ml—Oetormuniion of PM,,
Emiuioiu
(Exhaust Caj Recycle Procedure)
2. Applicability and Principla
1.1 Applicability. This method applies lo
the in.ilHck measurement of paniculate
mailer (PM) emissions equal lo or lesi than
an aerodynamic diameter of nominally 10 p.m
(PM..I from stationary tourcei. The EPA
recognizes thai condensible emissions not
collected by an in-Hack method are also
PMn, and thai emiesions that conlnbule lo
ambient PM,. levels are the sum of
condaniible emiasions and emissions
measured by an in-slack PMi* method, such
&> ihis m*ihod or Method ZfflA. Thetefon>,
for establishing source contribution! to
ambient levels of PM,*. luch as for emission
inventory purposes, EPA suggest* that source
PMu measurement include both in-slack PMio
and condensible emission!. Condensible
minions nay be measured by an impinger
analysis in combination with ihis method.
1-2 Principle. A gai sample if
iiokijietleally extracted from the lource. An
in-Hick cyclone ii used lo separate PM
greater than PM.* and in in-slack glass fiber
filler ii used lo collect the PMi* To maintain
iiokjnatic flow rale conditions a! the tip of
the probe and • constant flow rate through
ihe cyclone, a clean, dried portion of the
sample fas ai Hack lempefaiure is recycled
into the noxila. The paitieulaie misi ii
determined gravineuicaUy after removal of
uncotnbined water.
2. AppcratuM
Note Method S as cited in ihn method
refers la the method in 40 CFR part SO.
appendix A.
2.1 Sampling Train. A schema tie of the
exhaust of Ihe amhault gsa recycle |ECR|
train ii ihown in Figure l of thii method.
2.1.1 Norile with Recycle Attachment.
Siamleit itnl (311 or equival«nii with a
sharp tapered leading edge, and recycle
attachment welded directly on the aide of ihe
nozzle (•*• icheinaiic in Figure 2 of this
method). The angle of the taper ahsll be on
the outside. DM only iirtight sampling
nonlet. "Gooseneck" or other noBle
-------
14250 Fedtvmi Renter / Vol. 55. No. 74 I Tuesday. Apnj 17. 1990 / Rule*- ami RegoJatk>n«
cutension* deugrwd '<> 'em ih«
flow 80- . u u htaliwd S uc not acsepwbie.
Locate a thermocouple in the recycle
attachment to im»a«r* >h* temperemi* of *«
recycle IBI 11 .rKwn in Figure 3 of Ihw
method. The wcycle iiikc-hmeni »K«8 be
made of ititnle" *l«l and th^ll be
connected to lne Prob* and noizle wrth
naiolMi i1**1 fniifigi. Two noole »ixe«, a g .
0,123 and 0-18D in,, ibnuU be available to
,How itokineiic snmpLTij to be conducted
over • rang* of flow raie*. Calibrate each
noiile aa deicrib*d in Method 5. Sccron S.I.
2.1.2 PM.o Siier. Cycicne, meeting the
specification* m Secaon U of ihu method.
2-1.3 Filter Haider. 63mm. auintaa »te*L
An Andersen filler, pun number SE274. has
b«en found to be acceptable (or the in-aUck
Tiller.
NUM.- Mention of trade namea or unecific
product* don nai con»i>tute endorsement by
Lhe Environmental Protection Agency.
11.4 Pilot Tube. Samp as i:i Method S,
Section 2,1.3. Attach iht pilot to (he pilot
tinea with iiajrJeaa tteel fv.insi and :o the:
cyclone in a configuration umiiar to that
thown in Figure 3 of this method. The pitoi
lines ihall be made of heel rctiaianf material
and attached to the probs with nainlcM HeeJ
filling*.
2.1.5 ECRProtw. Steinksi necL
1.5.9-mm (S-in.) ID tubing with a probe
liner, itainleji ste-el 9.5J-mffl (%-in.) ID
gtainlea* steel recycle tubing, two 6.35-0110
(•/•-in.) ID iteinless Meet tubing fcr the pilot
tuba exienaioiu. three thermocouple, lead A.
and one power lead, ill contained by
atainlna iteel tubing with a diameter of
approximately 51 nun (2.0 in.]. Design
consideration* should include minimum
weight construction materials Tufficieni for
probe atnicural strength. Wrap ihe lamp I e
and recycle tatm with • hearing tape to heat
the sample and recycle gasea to itack
temperature,
2.1.8 Condenser. Sane n in Method 1
Seel-on 2.1.7.
Z.I. 7 Umbilic*] Connector. Flexible tubing
with thermocouple and power leads of
lufHcient length to connect probe 10 meter
jnd flow control console.
2-1.8 Vacuum Pump. Leak-right oil-ten.
nanconiaiBinaring, with an abioiala filter.
"HEP AT typt, at the pump exit. A Gael Model
0522-V1G3 C180X p\imp ha a been fonnd to b>
.1-9 Meier and Flaw Control Console.
Syit«m constating of • dry gam me4er and
calibrated onfice for amnnmng Mmple flaw
rate and capable ef muauring vohima to ±2
percent, calibrated laminar Qom «!*rrMnu
1LFE"§) or equivalent for maaaorini toul end
•ample Row rniea, probe heater controL and
nti flow. Flow
meftsuremgnu include veloaty hud (ipl.
on Hoe dirferantial prMaure (AH|. total flew,
recycle How, «nd total back-preMur* through
the iyatera.
2.1.10 BarooBler. S*aw ai in Method S.
Section n.g.
z.i.11 Rubb«r Tubing. &js-mj»jsiHn4
ID flexible nibljcr rubina,
i2 Sample Recovery.
2.2.1 NoaJ«. Cyclone, and niter Hold*r
DniahH. Nykwi briaile fartuhei properly uaed
and ihaptd for cleaning the nozzle, cyclone.
Filler holder, and prate or prolM liner, with
nainlett reel w*r« ihaf:j and handles.
2.2.1 vv'aah Boplea. Clan Sample Storage
Containnr*. Petri DIWIM, Graduated Cylinder
and Balojioe, PlaiUc Storage Container*, and
Funnel*. S*me >a Method 4. Secbooi LZJ
thraagh HA «nd iiB. reta«cliv«ry.
2.3 Analylia. Sume ui in Method 5,
Section 13.
3. fteagena
The reogerra otrt in MmpKog.
recovery, end analyaii an rtw
specified in Method 5. Sacuon* 3 13— and
3.3, reipectivoijr.
<- Procedure
4.1 Sampling. The complexity of ihit
method i»»och !h«L In orter TO obtain
relialite results, tnten ahould be trained and
experienced with tiw tm proudurM.
4.1.1 PTBW« Preparation.Sam* as in
Method 3. Section 4.1.1.
4.1.Z Preliminary Datemunationi. Same at
Method 5. Section «.!_! eMept uae the
dircctioni oa noaJe me lelection in thia
aeclion. Uw of the ECU method may require
a minimum sampling pon di*mei«r of 02 m (0
in.). Alao, the required majumnm number of
aarr.ple travene PJIQU «; ^.y locatiuti ahatl
be 11
4.1.3-1 The cydone and filter holder matt
be in-iuck or it ttack iemp«ntura duriog
lamplir-g. The blockage effaeia of the ECR
lampiing auembly will b« minimal If [he
croai-seciionoi a.Ta of the jump I ing
aiMtnbly ia 3 percent or leu of ihe craia-
aeclional «rt* of the duel »nd a pitoi
coefTicieni of Q.04 may be aaaignad to lh«
pitot IT '.he croM-aactioaal avew of iKe
aajembly a greater than 3 percent of the
creai-iectional area of tha duel, then either
determina the pilot coafCaent at lampliog
condition! or UM a alandard pilot with*
known cocRlcitm in a configuration with the
ECR aampling auamlity aucfa that flow
disturbance! art) rainiiBixnd.
41.2.2 CoMtrucl • aalup ef preisure dropa
for varioua ip I and tempataturea. A
computer it uaeful lor ih«aa ulculaiiona. An
•kampla af tha outpni ef the ECR aetup
pragran ii abown in Tigure 6 of Ihia method.
and directions on it* uaa an in atct:on 4.1 J^
of thia mvihod. Compuwr piu^iunij. wnttcn
in IDM BASIC computer lanoiiag*. 10 do the*«
typea of aatup and reduction calculation! for
(he ECR pracedui*. are *v«ilabJ« through the
National Technical Information Strvicaw
INTIS). AcotMioo numbw PBeO-SOOOOi S285
Pon Roy*! Rotd. Spraiffi01d. Vltgtai* 22161.
4.1 JJ The ECR a*lup progno allow* the
leitar to aolect the noala liu btatd on
anticipated avertge stack condllioni and
pnnu a letup theet for Hold u»«. The anaount
of recycle through lha noizie ahould ba
between 10 and 80 percent, lapuu for the
ECR Mtup profpram an Hack tenparatura
(minimum, eiaxiraunv and a,vtBrtae>). alack
velocity (miutmim. maJumum. and average).
atmaepheric pr«*aure. «Uck viatic preuure,
metar box tefnptrarurt itack moiinm.
peroerU tk, and pcreea! CD, to tha alack gaa,
pilot coePVjenl iz«.
41.2.5 The prcsaure upalreamof the LFTs
11 anumed to be cnnitnnt at 08 in, H; in the
ECR letup calculations.
4.1.2.0 The setup ihcet ronsmieted using
thii pracedgre shall be similar in Figure 0 of
thu meihod. Inputa needed for the calculation
ant the same aa for the icwp computer
except thai luck velocities ere not needed
4.U PreparaUon of Coliection Train.
S^rae ai in Method S. Section 4.1J. except
UM tha fallowing diraciiaru 10 set up ibe
train.
4.1.3.1 Astemble the ECR wnpUng
device, and atuch >l to p.-ob* a* shown in
Figure ] of thia method. If Jiaci le-T-peraturei
exceed 300 'C (500 'D, then useroblc the
ECR cyclone without the O-nng and reduce
the vacuum requirement to 130 mm Hg (S.Q in.
Hg) in ihe leak-check procedure ia Section
4.1.O.2 of ihU method.
4.1.3.2 Conned the proble directly to the
Hlier bolder and condenaer aa in Meihod S.
Connect the condenser and prabe to the
meter and Qow control console with the
umbilical connector. Plu- in ibe pump and
attach pump linea u Ihe meter and flow
control console.
4-1.4 Utak-Chtck Procedure. The leak-
check for the ECR Method consi»ii ol two
pana: the umple-flida «nd the recycle-tide.
The simple-aide leak-check ia required at the
beginning of lha run wiUi the cyclone
attached, and after the run with tha cyclone
removed. The cyclone li removed before the
poit-tMt leak
-------
Moisture Determination
Volume or weight of liquid in Impingers
Weight of moisture in silica gel \
ml or g
9
Sample Preparation (Container Ho. 4)
Amount of liquid lost during transport
Final volume
pH of sample prior to analysis
Addition of NH4OH required?
Sample extracted 2X with 75 ml MeCl2?
For TUration of Sulfate
Normality of NH4OH
Volume of sample titrated
Volume of titrant
ml
ml
N
ml
ml
Sample Analysis
Container
number
Weight of Condensible Participate, mg
Final Weight Tare Weight
Weight Gain
4 (Inorganic)
445 (Organic)
Total
Less Blank
Weight of Condensible Particulate
Figure 3. Analytical data sheet.
-------
OiUlc*
n
Us* Mion
MiffiM/uu liuottjli iyiium
PllS/litfJ
tkjli SyllMl
FknMRila
bicai* f
* lloUmal
If .
II
201pm
Ttiwrnocaiiplat
Melai Ooi
Tlppad In^tlngait
Wlten Piitaig
NOtogan lluoitgh System
2, Scltoouii it: of post-teg I itl I i'(i(:cii purge system.
-------
EMTIC CTM-005 EMTIC CONDITIONAL TEST METHOD page 8
fl.2 Analysis of Chlorides by 1C. At the conclusion of the final weighing as
described in Section 5.3.2.3, redissolve the Inorganic fraction In 100 ml of
water. Analyze an aliquot of the redvssolved sample for chlorides by 1C using
techniques similar to those described in Method 5F for sulfates. Previous
drying of the sample should have removed all HC1. Therefore, the remaining
chlorides measured by 1C can be assumed to be NH4C1, and this weight can be
subtracted from the weight determined for CPM.
8.3 Air Purge to Remove SO, from Impinger Contents. As an alternative to the
post-test Nj purge described in Section 5.2.1, the tester may opt to conduct
the post-test purge with air at 20 liter/min. Note: The use of an air purge
is not as effective as a N2 purge.
9. BIBLIOGRAPHY
1. DeWees, W.D., S.C. Steinsberger, G.M. Pluramer, L.T. Lay, G.O. McAlister,
and R.T. Shigehara. "Laboratory and Field Evaluation of the
EPA Method 5 Impinger Catch for Measuring Condensible Matter from Stationary
Sources." Paper presented at the 1989 EPA/AUMA International Symposium on
Measurement of Toxic and Related Air Pollutants. May 1-5, 1989. Raleigh,
North Carolina.
2. DeWees, W.D. and K.C. Steinsberger. "Method Development and Evaluation of
Draft Protocol for Measurement of Condensible Particulate Emissions." Draft
Report. November 17, 1989.
3. Texas Air Control Board, Laboratory Division. "Determination of
Particulate in Stack Gases Containing Sulfuric Acid and/or Sulfur Dioxide."
Laboratory Methods for Determination of Air Pollutants. Modified December 3,
1976.
4. Nothstein, Greg. Masters Thesis. University of Washington Department of
Environmental Health. Seattle, Washington.
5. "Particulate Source Test Procedures Adopted by Puget Sound Air Pollution
Control Agency Board of Directors." Puget So.und Air Pollution Control Agency,
Engineering Division. Seattle, Washington. August 11, 1983.
6. Commonwealth of Pennsylvania, Department of Environmental Resources.
Chapter 139, Sampling and Testing (Title 25, Rules and Regulations, Part I,
Department of Environmental Resources, Subpart C, Protection of Natural
Resources, Article III, Air Resources). January 8, I960.
7. Wisconsin Department of Natural Resources. Air Management Operations
Revision 3. January 11, 198B.
-------
EMTIC CTM-005 EMT1C CONDITIONAL TEST METHOD Page 7
7.3 Mass of Inorganic CPM.
V
mr
1C
me Eq. 2
7.4 Concentration of CPM.
ffl. c i
• Eq. 3
8. ALTERNATIVE PROCEDURES
8.1 Determination of NH4" Retained in Sample by Titration.
8.1.1 An alternative procedure to determine the amount of NH4" added to the
inorganic fraction by titration may be used. After dissolving the inorganic
residue in 100 ml of water, titrate the solution with 0.1 N NH4OH to a pH of
7.0, as indicated by a pH meter. The O.I N NH4OH is made as follows: Add
7 ml of concentrated (14.8 M) NHjOH to 1 liter of water. Standardize against
standardized 0.1 N H:SOa and calculate the exact normality using a
procedure parallel to that described in Section 5.5 of Method 6 (Appendix A,
40 CFR Part 60). Alternatively, purchase 0.1 N NH.OH that has been
standardized against a National Institute of Standards and Technology
reference material .
8.1.2 Calculate the concentration of S04" 1n the sample using the following
equation.
-48.03 Vt N
c< — -
where:
N - Normality of the NH4OH, mg/ml ,
Vt . Volume of NH4OH tUrant, ml.
48.03 • mg/meq.
100 - Volume of solution, ml.
8.1.3 Calculate the CPM as described In Section 7.
; I
V
-------
EMTIC CTM-005 EKTIC CONDITIONAL TEST METHOD page g
5.3.4 Analysis of Acetone Blank (Container No. 8). Same as in Method 5,
Section 4.3.
6. CALIBRATION
Same as in Method 5, Section S, except calibrate the 1C according to the
procedures in Method SF, Section 5.
7. CALCULATIONS
Same as in Method 5, Section 6, with the following additions:
7.1 Nomenclature. Same as in Method 5, Section 6.1 with the
following additions.
c • Concentration of the CPM in the stack gas, dry basis, corrected to
standard conditions, g/dscm (g/dscf).
CSQ4 • Concentration of SO/ in the sample, mg/il.
m^ • Sum of the mass of the water and MeCl2 blanks, mg.
mc • Mass of the NH/ added to sample to fora ammonium sulfati, mg.
m, • Mass of inorganic CPM matter, rag.
mg » Mass of organic CPM, mg.
mr • Mass of dried sample from Inorganic fraction, mg.
mre • Mass of dried sample from Inorganic fraction corrected for volume
of aliquot taken for 1C analysis, mg.
Vb • Volume of aliquot taken for 1C analysis, ml.
Vic - Volume of itnplnger contents sample, ml.
7.2 Correction for NH4" ind H20. Calculate tht correction factor to
delete the NH4" retained In the sample and to add the combined water removed
by the acid-base reaction based on the 1C S0t".
«e-KCswVle Eq. 1
where:
K - 0.020502
-------
EMTIC CTM-005 EMTIC CONDITIONAL TEST METHOD Page 5
(Note: Do not use this aliquot to determine chlorides since the HC1 will be
evaporated during the first drying step; Section 3.2 details a procedure for
this analysis.)
5.3.2.1 Extraction. Separate the organic fraction of the sample by adding
the contents of Container No. 5 (MeCl?) to the contents of Container No. 4 in
a 1000-ml separatory funnel. After mixing, allow the aqueous and organic
phases to fully separate, and drain off most of the organic/MeCl2 phase. Then
add 75 ml of MeCl, to the funnel, mix well, and drain off the lower organic
phase. Repeat with another 75 ml of MeClj. This extraction should yield
about 250 ml of organic extract. Each time, leave a small amount of the
organic/HeCl2 phase in the separatory funnel ensuring that no water is
collected in the organic phase. Place the organic extract in a tared 3.50-™!'
weighing tin.
5.3.2.2 Organic Fraction Height Determination (Organic Phase from Container
Nos. 4 and 5). Evaporate the organic extract at room temperature and pressure
in a laboratory hood. Following evaporation, desiccate the organic fraction
for 24 hours in a desiccator containing anhydrous calcium sulfate. Weigh to a
constant weight and report the results to the nearest 0.1 mg..
5.3.2.3 Inorganic Fraction Weight Determination. Using a hot plate, or
equivalent, evaporate the aqueous phase to approximately 50 ml; then evaporate
to dryness in a 105'C oven. Redissolve the residue in 100 ml of water. Add
five drops of phenolphthalein to this solution, then add concentrated
(14.3 M) NH,QH until the sample turns pink. Any excess NH;OH will be
evaporated during the drying step. Evaporate the sample to dryness in a lOE'C
oven, desiccate the sample for 24 hours, weigh to a constant weight, and
record the results to the nearest 0.1 mg. (Note: The addition of NH.OH is
recommended, but is optional when no or little SQ2 is present In the gas
stream, i.e., when the pH of the impinger solution is greater than 4.5, the
addition of NH4OH is not necessary.)
5.3.2.4 Analysis of Sulfate by 1C to Determine Aranonlun Ion (NH4*) Retained
in the Sample. (Note: If NH4OH is not added, omit this step.) Determine the
amount of sulfate in the aliquot taken from Container No. 4 earlier as
described in Method 5F (Appendix A, 40 CFR Part 60). Based on the 1C SO/
analysis of the aliquot, calculate the correction factor to delete the NH/
retained in the sample and to add the combined water removed by the acid-base
reaction (see Section 7.2).
5.3.3 Analysis of Watar and HeC1z Blanks (Container Nos. 9 and 7). Analyze
these sample blanks as described above in Sections 5.3.2.3 and
5.3.2.2, respectively. The sum of the values for the water blank and the
MeCl2 blank must be less than 2 mg or 5 percent of the mass of the CPU
(n, + nr), whichever Is greater. If the sun of the actual blank values Is
greater, then subtract 2 mg or 5 percent of the mass of the CPM, whichever is
greater.
-------
EHTIC CTM-Q05 IMTIC CONDITIONAL TEST METHOD " Page 4
Is operating at greater than ambient pressure and prevents that possibility of
passing ambitnt air (rather than N2) through the impingers. Continue the
purge under these conditions for 1 hour, checking the rotameter and AH
value(s) periodically. After 1 hour, simultaneously turn off the delivery and
pumping systems.
5.2.2 Sample Handling.
5.2.2.1 Container Nos. U_2_. and 3. If filter catch 1s to be determined, as
detailed in Method 5, Section 4.2.
5.2.2.2 Container jJQj__4 (Impinger Contents). Measure the liquid in the first
three impingers to within 1 ml using a clean graduated cylinder or by weighing
it to within O.S g using a balance. Record the volume or weight of liquid
present to be used to calculate the moisture content of the effluent gas. "
Quantitatively transfer this liquid into a clean sample bottle (glass or
plastic); rinse each impinger and the connecting glassware, including probe
extension, twice with water, recover the rinse water and add it to the same.
sample bottle. Mark the liquid level on the bottle.
5.2.2.3 Container No. 5 (MeClz Rinse). Follow the water rinses of each
impinger ana the connecting glassware, including the probe extension with two
rinses of MeCl2; save the rinse products in a clean, glass sample jar. Hark
the liquid level on the jar.
5.2.2.4 Container No.^ (Water Blank). Onca during each field test, placa
500 ml of water in a separate sample container.
5.2.2.5 Container Ho. 1 (WeC12 Blank). Once during each field test, place in
a separate glass sample jar a volume of MeClj approximately equivalent to the
volume used to conduct the MeCl2 rinse of the impingers.
5.2.2.6 Container No. 8 (Actions Hank). As-described in Method 5,
Section 4.2.
5.3 Analysis. Record the data required on a sheet such as the one shown in
Figure 3. Handle each simple container as follows:
5.3.1 Container Nos. 1. 2. and 3. If filter catch Is analyzed, as detailed
in Method I, Section 4.3.
5.3.2 Container Hos. 4 and 5. Note the Itvtl of liquid in the containers and
confirm on the analytical data sheet whether leakage occurred during
transport. If a noticeable amount of leakage has occurred, either void the
sample or use methods, subject to the approval of the Administrator, to
correct the final results. Measure the liquid In Container No. 4 either
voluffletrically to +1 ffll or graviraetrlcally to iO.S g. Remove a 5-ml aliquot
and set aside for later ion chromatographic (1C) analysis of sulfates.
-------
EMTIC CTN-005 EHTIC CQNDITIOKAL TEST HETHOD Page 3
4.2.1 Hz fias. Nj gas at delivery pressures high enough to provide a flow of
2Q liters/min f°r 1 hour through the sampling train.
4,2.2 Methylene Chloride.
4.2.3 Water. Same as in Section 4.1.
4.3 Analysis. Same as In Method 5, Section 3.3, with the following
additions:
4.3.1 Methylene Chloride.
4.3.2 Ammonium Hydroxide. Concentrated (H-9 M) NH4OH.
4.3.3 Water. Same as in Section 4.1.
.Oi' i>^
4.3.4 Phenolphthalein. The pH indicator solution, Irfl percent in^SO percant
alcohol.
5. PROCEDURE
5.1 Sampling. Same as in Method 5, Section 4.1, with the following
exceptions:
5.1.1 Place 100 ml of water in the first three impingers.
5.1.2 The use of silicone grease in train assembly is not recommended.
Teflon tape or similar means may be used to provide leak-free connections
between glassware.
5.2 Sample Recovery. Same as in Method 17,. Section 4.2 with the addition of
a post-test N2 purge and specific changes in handling of individual samples as
described below.
5.2.1 Post-test H, Purge for Sources Emitting SO,. (Note: This step is
recommended, but is optional. When no or little S02 is present in the gas
stream, I.e., the pH of the Impinger solution 1s greater than 4.5, purging has
been found to be unnecessary.) As soon as possible after the post-test leak
check, detach the probe and filter from the Impinger train. Leave the ice in
the impinger box to prevent removal of moisture during the purge. If
necessary, add more ice during the purge to maintain the gas temperature below
20'C. With no flow of gas through the clean purge line and fittings, attach
It to the Input of the Impinger train (see Figure 2). To avoid over- or
under-pressurizing the Ifflpinger array, slowly commence the N2 gas flow through
the line while simultaneously opening the mater box pump valve(s). Adjust the
pump bypass and N2 delivery rates to obtain the following conditions:
(1) 20 Uters/rain or &H9 and (2) an overflow rate through the rotameter of
less than 2 liters/rain. Condition (2) guarantees that the Nz delivery system
-------
EMTIC CTM-QQ5 EKTIC CONDITIONAL TEST METHOD Page 2
3.1.2 A Teflon filter support shall be used.
3.1.3 Both the first and second impingers shall be of the Greenburg-Smith
design with the standard tip.
3.1.4 All sampling train glassware shall be cleaned prior to the test with
soap and tap water, water, and rinsed using tap water, water, acetone, and
finally, MeCl,. It is important to remove completely all silicone grease from
areas that will be exposed to the MeClz during sample recovery.
3.2 Sample Recovery. Same as in Method 5, Section 2.2, with the following
additions:
3.2.1 N, Purge Line. Inert tubing and fittings capable of delivering .-
0 to 28 liters/min of N2 gas to the imoinger train from a standard gas
cylinder (see Figure 2). Standard 0.95 cm (3/8-in.ch) plastic tubing and
compression fittings in conjunction with an adjustable pressure regulator and
needle valve may be used.
3.2.2 Rotameter. Capable of measuring gas flow at 20 liters/min.
3.3 Analysis. The following equipment is necessary in addition to that
listed in Method 5, Section 2.3:
3.3.1 Separatory Funnel. Glass, 1-liter.
3.3.2 Weighing Tins. 350-ml.
3.3.3 Drying Equipment. Hot plate and oven with temperature contro,.
3.3.4—Burmi.—t*ml aiio with O.Q1 m\ graduations.
3.3.5 Pipets. 5-ml.
3.3.6 Ion Chromatograpn. Same as in Method 5F, Section 2.1.6.
4. REAGENTS
Unless otherwise indicated, all reagents must conform to the specifications
established by the Committee on Analytical Reagents of the American Chemical
Society. Where such specifications are not available, use the best available
grade.
4.1 Sampling. Same as in Method 5, Section 3.1, with the addition of
deionized distilled water to conform to the American Society for Testing and
Materials Specification D 1193-74, Type II.
4.2 Sample Recovery. Sane as in Method 5, Section 3.2, with the following
additions:
-------
II
u
EC
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
CONDITIONAL TEST METHOD
Detirmination Of Condensiblt Emissions
From Stationary Sources
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method applies to the determination of eondensible
participate matter (CPM) emissions from stationary sources. It is intended to
represent condensible matter as material that condenses after passing through
an in-stack filter (Note: The filter catch can be analyzed according to
Method 17 procedures). This method may be used in conjunction with Hethod 201
or 201A If the probes are glass lined. This method may also be modified to
measure material that condenses at other temperatures by specifying the filter
temperature.
1.2 Principle. The CPM is collected in the impinger portion of a Hethod 17
(Appendix A, 40 CFR Part 60) type sampling train. The impinger contents are
immediately purged after the run with nitrogen (N,) to remove dissolved sulfur
dioxide (SQ?) gases from the impinger contents. The impinger solution is then
extracted with methylene chloride (MeCl2). The organic and aqueous fractions
are then taken to dryness and the residues weighed. The total of both
fractions represents the CPM.
2. PRECISION AND INTERFERENCE
2.1 Precision. The precisions based on method development tests at a wood
waste burner and two coal-fired boilers are 13.0 ± 2.1 mg/m3, 3.5 ± 1.1 mg/nr,
and 39.S + 9.0 mg/m1, respectively.
2.2 Interference. Ammonia (e.g., in sources that use ammonia injection as a
control technique) interferes by reacting with tht hydrogen chloride (HC1) in
the gas stream to form ammonium chloride (NH4C1) which would be measured as
CPM. The sample may be analyzed for chloride and the equivalent amount of
NH4C1 can be subtracted from the CPM weight.
3. APPARATUS
3.1 Sampling Triln, Same as In Method 17, Section 2.1, with the following
exceptions noted below (see Figure 1). Note: Mention of trade names or
specific products does not constitute endorsement by EPA.
3.1.1 The probe extension shall be glass-lined.
Prepared by Candace Sorrel!, Emission Measurement Branch EHTIC CTH-Q05
Technical Support Division, QAQPS, EPA March 21, 1990
-------
Federal Resale? ' Vo1.. 55. N'o. 74 / Tueaoai- Asn! 1". 13*0 / Kuie? and Regulations
14279
33
90
> BO
u
S 70
u
t M
w
Z M
1 *
£ a
20
10
3
17 < » < Z7 m/i
9 < y < 1" m/i
» < 9 m/i
4 6 fl 10
AERODYNAMIC DIAMETER
20
40
FLgv*r« 3. ECCLciency cru-elop« for tho PH., cyclone.
ssj—
90
BO
« 70
u.
u SO
u
e
40
30
20
10
5
17 < » < 17 */•
9 < * < 17 m/t
< 9 m/i
J L
0.1
0> 0.6 OJ t
IIII41
9. Efficiency envelope for firsc calibration stage,
Figure
(KR Doc. 9O-rao3 Filod 4-10-flO: MS am
COM «M«-«-C
-------
14278 Federal Reaisler / Vol. 55. No. 74 / Tuesday. April 27. 1990 / Rules and Resulations
TABLE 2.— PARTICLE SIZES AND NOMINAL
GAS VELOCITIES FOB EFFICIENCY
"""'' r 1=10
10iO.S..
14 i 1 0..
20= 1.0..
" Muai median acrodv'miniiL d;nnn'li:
CODE i
-------
Remitter / VoL 5S. N'u. "4 / Tuesday, April 17. 1990 / Rules and Regulation! 14277
in... - i.
\ to"'
It, + 4HOJ Cf~
C n
v d';
» f.
»„. fi
...
Norzia NO. i
!
in HjQ ,.,,».,...,
\r\ H,0 ' '•»• »
i i
] <
t
1 ,..,„
;
Vcliir.i'v lriivef*r diila:
l run lime, mmuiei =
Number of irni-crie point* •»
in' i (Tntul run linin)
H ___^^^^
Ml At < £p(Mi-lho<1 2)
C.'
,
I, a dwell lime nl fir?) imvune puinl.
minutes.
ip i «lhr vciocily ncud n( liit [irsl iruvcni:
poini (Irani a prcvioui (rovericj, in. tto
ip'^. = lliL> HJJJJ-E D/ the nvcraur iquurc
rue I of the ip'l (from a prcvimis vcl
irnvcrsf-). in, 11:0.
Al iulinKu.u«nl iruvcne points, mciisurp ihu
veiacily Ap und calculute the dwell-timc
liy uiinp Ihu ((jllnwinf! i
I,-
(in. is. n=ZJ.' " ' loml number of mimplinn pulnli
i here;
4[i.-rtiiiujurtd vflnclty hcud Hi point n. In. ^pp -dwell time ut fim Iruvurse puinl
i L-;u-i:rjie point n. niinutw, H-.-Q, minulus.
Fipurv 6. Fjtnmplb worksheet 3. dm:;l linn:
Pom:
a !
Plani
Dale
Run no. _
Filler no.
Amount uf liquid lost during
I run sport
Acitorie blank volume, ml -
Acciqne wash volune. ml (4),
(5).
Acclone blank cone, mg/mg (Equation 9-4,
Meihod 51
Aceionc wa>h blank, mg (Equnlinn S-S.
Method 5)
ConUinwNO
I.__
J
Find
TUT
Figure 7, Method 2T1A analyil* »heel.
TABLE 1.—PERFORMANCE SPECIFIC*
TIONS FOR SOURCE PM,U CYCXONES
AND NOZZLE COMBINATIONS
Una
Pgrnn ' Sucti tnai
cotlKUon
'«'»
vi Iran
S.2.B
S.
-------
14276 Federal Reciater / Vol. 55. No. 74 / Tuesday. April 17, 1990 / Rules and Reflations
Buromciri!" possum.
Slock sidiic prcisurc.
P,. in. |[.Q«
icmperalur*.
Metur lemoeraiurt, lm. Tm
Orifice 1H». in. II-;O=
Gas nrmlysii:
"
moisture c
Molecular »eishl of Black gui. dry basin:
_ lb/iymoic
Molecular weight of Hack gas. wet biisii:
M. .M.11-B..I- 1S(B..]= _ l
lb mole
nvck pressure:
13.6
in, 11-;
Viicosr.y ufiluck gas:
M, = 152,418-0.^52 I, J. 3.2355 < 10'»
I.- + Q.5314? (".'-O-1-74.143 D,.=
^^_^_^_ micropoisc
Cyclone CJVK r;i!«:
Q.-O.C02E37 p.
M. P.
d'/ram
Figure (. ELium^lc workbheti I. nyriune
flow raie and iH.
Orifice prc«jur« head (4H) needed for
cycJone flow rale;
Q, (l-B.,) P. t i.
ill- | t •-
I,+ 400
) 08a iH»
. in. H:O
iH for three i
Slack vmcuiiiy. ^
micro pour
1.-P 1 i i
ax M.
Abtolui* flack pressure.
F. ta. Hi -
Av«rag« jtick lemperacura.
Cjelonc flow faie. fi'/mtn.
Q.
Method 2 pitoi cocfficienl.
C.'-
Molecular weight of slack gas. w«i bc.su.
M.-
Nozzle diarncior. D., in. =
Norzie vdoeiiv:
J.OSfiQ.
mum *nd minimum velucilira:
(LM37 4-
,,].
[i/sec
0.+U7
(U890 -
02603 Q.*n.
, 1-
* ~
1 J
.ft/I
Figur* S. Example workih«ei 2. nozzle
sclcciioo.
Mjuumuin nflxl ^•••»»»« velocity bcui
value t:
p*,. " 1-30.% X 10"
>. ,
(I. f
-------
Federal Regisler / Vol. 55. No. 74 / Tuesday. April ir. 1990 / Rules and Regulations
14275
Cyclone Interior Dimensions
Din
t
0,10 in. :
,J
u
•Ocup-
H
•Hcup,
J.
cm
inches
Dimensions (±0.02 cm, ±0.01 in.)
Din
1.27
Q.5QL
D
4.47
1.76
Or
l.SQ
0.59
§
US
0.7*
H
OS
174
h
124
0.83
Z
4.71
US
s
1.57
0.52
Hca?
125
0.89
Ocup
4.45
1.75-
a;
1.02
0.40
00
1.24
0.49
Figure 3. Cyclone design speciffcatians.
BIUJNQ
-------
14274
Federal Re?frler / Vol. Si No. 74 / Tuesday. April 17.1990 / Rules ind Regulations
•;- -' — '' '-LjfJ,1/
Nozzl-
(inches)
r.136
0.150
0.164
0.130
0.1S7
0.2TS
Q.2S4
0.300
0.342
Con*
Angle, 9
(degrees)
4
4
5
6
6
6
6
5
i.
4
3
Outside
tapec, *
(degrees)
15
15
15
15
15
15
15
15
15
IS
15
Straight inLe'
Length, I
Ur.ches)
<0
<0.
-------
IMPINGER TRAIN
THERMOMETER
PM 10
SAMPLER
vc*
FILTER HOLDER
HEATED PROBE
NOZZLI
X
"S-TYPE
PfTOTTUBE
DISTILLED WATER EMPTY SILICA GEL
INCLINED
MANOMETER
FLOW CONTROL SYSTEM COARSE
FINE
CALIBRATED
GAS ^ ORIFICE
EXIT
VACUUM
PUMP
INCLINED
MANOMETER
DRY GAS
METER
Figure 1. CSR Sampling Train
76A
-------
Moisture Determination
Volume or weight of liquid in 1mpingers_
Weight of moisture in silica gel ]
ml or g
9
Sample Preparation (Container No. 4)
Amount of liquid lost during transport
Final volume
pH of sample prior to analysis
Addition of NH,OH required? ^_____
Sample extracted 2X with 75 ml MeCl2?
For Tltration of Sulfate
Normality of NH.QH
Volume of sample titrated
Volume of titrant
ml
ml
N
ml
ml
Sample Analysis
Container
number
Weight of Condensible Participate, mg
Final Weight Tare Weight Weight Gain
4 (Inorganic)
415 (Organic)
Total
Less Blank
Weight of Condensible Particulate
Figure 3. Analytical data sheet.
-------
APPENDIX J.3
ALDEHYDES
-------
Foraaldehyde, acncone, and 2 .^-dinisroanlUn* contaalnation Of :ni aquaous
acidic 2.--dinL:rephenyL-hydrazi-e (3NPH) reagent is frequently encountered
The reagenc BusC be prepared w;:hin five day! of us* in ch* field And Jnuac
scored in an uneor. laminated envi-orjaenc :oth before and after aaapiirvj in
oriar :o air.iaire blank problem. Sooe concentration of acetone con:a.-air.j:
ii unavoidAbli. b*caui« acicona Li ublqulcouf In laboratory and fltld opera-
tions. How«v«r. ;h« actcont eoncaalnatlon muse b« alniatud.
Aarieui and
3.5.^ -I A ich«nacic of ch« taopUng criin Is shevn In Figurt
35-1 This sampling :rain eonf ijuracion ii adapctd froa E?A Hcchod ^
proc«dur»a Th« sanplLng craln conaLtet of eh« following coopon*nc» . ?
Nozzl*. Picoc Tub«, DLff«r«nctal Prtnurt G«u|«. Mactrlng Syscta. Baroatcer,
and Gas Density DtcermlnacLon Equipaenc.
3.3.^.1.1 Probe Hocxle: Quire* or (lass vtth iharp. capered (30*
angle) leading edge. The caper shall be on Che oucsida co preserve a cons:i.-:
inner diaaecer. The nozzle shall be buttonhook or elbow design A range of
nettle sizes mi cable far Isoktlnetlc laapllng should be available In incre-
ments of 0.13 cod/16 in), e.g., 0.32 co 1.2? ca (I/I to 1/2 In), of larger .:
higher volume taapling train* are used. Each nozzle the 11 b« calibrated
according co the procedures outlined In Section 3.3,8,1
3.3.4.1.2 Prob* Liner: Bores illcace glass or quart i shall be used
for the probe liner. The tester should nee allev the teener a cur a in che probe
to exceed 120 + lt*C (24t £ 25T) ,
3.3.4.1.3 Pleee Tub*: The Fttae cub* shall be Type 3, as described
in Section 2.1 of EPA Msehod 2, or any other appropriate device. The pleot
tub* shall be attached to the probe to allow constant aenitoring of eh* stack
gas velocity. The impact (high pressure) opening plane of the pitec tube
shall be even with or above the nozzle entry plan (se* EPA Method 2. Figure I-
6b) during saapling. The Type S pttot tub* asseably shall have a known
coefficient, determined as outlined in Section 4 of EPA Method 2.
-------
2.5 S«maLi!-.| g?r A-.der.vde Jf1| -dtni,crophenyl-hydrtiint
2 . - - dir.i:r±ir.ilir.= , ±is be ••• •r.ily^l?«L i«?«rfar*nc Lf concencraciont art
nigh. 2 , 4-DlnitroanilLn« can coaluta wlch 2 ,4-dlnlcrophenylhydrazona af
foraaldehyda und«r high perfonwnc* liquid chroaacegriphy condicloni, which
•nay be used far eh« arvalyiii. High coneencraelons of highly -oxygeoacad
compounds, especially 4eecan«, chac have the iaM racenclon eia« or nearly :he
same retention C!A* a* che dinicropheny Ihydrazone of f ora*ld«hyde , and cha;
also abterb ac 160 na, will InCerfara wich che
3-153
-------
3,5.^.1.4 Differential Prtssure Gauge: The differential pressurt
gauge shall be an inclined .nanometer or aquivalant davLet ai described :n
Section 2.2 of £?A Method 2. One tnanoaeter shail be used for velocity-head
raadir.g and the other for orifice differential prtsiure readings,
3.5.4.1.5 laplngars: The sampling ;rain requires a miniaua of four
ispingeri, connected as shown . in Figure 3.5-1, with ground glaas
-------
IhMOKMMMi
liaui
-------
3.5.4.2,5 Rubber Policeman and Funnel; A rubber policeman and
fur.r.al art required co aid in ;he :ranaf«r of oacsrial Lnco and ouc of
containers in che field.
3.5.4.) Reagent Prtparaclon
3.5.4 3,1 Boteles/Caps: Amber I- or 4-L bottles wich Teflon- lined
caps ace required for scoring cleaned DNPH tolucion. Additional 4-L boc-lei
are required to collect va«ce organic solvenci.
] 5 u.3.2 Large Class Concainer: AC lease one large glass (3 :o
La L) .» required for nixing che aqueous acidic DNPH tolucion.
3.5.4.3.3 Stir Place/Large Scir Bars/Stir Bar Re cr lever a oagneeic
scir plate and large selr bar are required for tha aixing of aqueous acidic
DNPH solution. A stir bar retriever is needed tot removing the) scir bar froa
she large container holding the DNPH solution.
3 5.4.3.4 Buehner Filter/Filter Haslt/rilcer Piper: A large fil:ar
flask (2-4 L) with a buchner filter, appropriate rubber stopper, filter paper
and connecting tubing art required for filtering the aquaoua acidic DNPH
solution prior to cleaning.
3.5.4.3.3 Separatory Funnel; AC least on* large saparatory funnel
(21) is required for cleaning the ONPH prior to uae.
3.3.4.3.6 iMkari: Bcalurs (130 al, 230 ml, and 400 «1) art useful
for holdlng/«»a*urlng organic liquids whan cleaning tha aquaeusj acidic DNPH
solution and fee weighing DNTH crystals.
3.3.4.3.7 ruunala: AC lease one) large funnol li nee dad for pouring
che aqueous acidic DNFH into tha separator funnel.
3-isa
-------
gas iniLyrtc, If necessary (»» described Ln E?A Method 3), The :enpera:~;t
sar.sor Lisa!!/ should be permanently attached :a che picas cube or laaplir.g
r:33« ;r. a fixed configuration such chic the cip of ;hs s«nior «xcends btyor.d
the itadir.g edge of the probe shtach and dots ROC couch any steal. Al:«rr.a-
tivaly. :hi str.sor say b« aciachtd juic prior co mt in ch« field. So:e.
hov»ver, :•*: if :h« c«ap«racur« str.sor is aeraehtd Ln :h« field. :h« ser.scr
T.US; b« placid in an incirfirtnct-frte arrang*m«nc «ich rtspicc :o the Tvpe 5
pi:oc openir.gi dee IPA Hechod 2, Figure 2-T). Aa a iecond alserna-i'-'e . if 3
difference of no more chart It in che average velocity aeaiurenen: is co b«
ir.crsduced, che eeoperaeure gauge need nee be aecached ta che probe or ;.:;:
1.3.4.2 Saaple Recovery
3.5.4.2.1 Prob« Liner; Prob* nozzle and bcuihee; Teflon bciscle
brushes wich icainleii tceel wire handles are required. The probe brush shall
have extension* of scatnless sceel, Teflon, or inert &acerial at least as Ion;
as the probe. The brushes shall be properly sized and shaped co brush au: :.-e
probe liner, che probe nozzle, and che inrpingen
3,3,4,2.2 Wash Bottles: Three wash beetles are required, teflon or
glass vash bottles are recommended; polyethylene wash beetles should not be
used because organic contaainancs nay be extracted by exposure to organic
solvents used for staple recovery.
3.5.4.2.3 Graduate Cylinder end/ or Balance: A graduated cylinder or
balance is required to ewasure condensed water to che nearest I ml or I g.
Craduaeed cylinders shall have division not ?< ml. Labor* to c=y e«l*n««i
capable of w»l§hing eo ±0.3 g are required.
3.3.4.2.4 Aaber Class Storage Containers; On*- liter wide-aouch
aober fline glass bottles vith Teflon* lined caps ar* required to store
iapinger water saaples. The boecles dust be sealed with Teflon tape,
3-157
-------
3.5.5.4 2>-dini::oph«r.ylhydca*i.ne (ONPH), ( 2 .4- (0,N),CIH,;SH.VH1 -
The quins i ~J of vacsr nay vary from 10 so 30%.
3. 5. S.fc.i The 2>-dini:rophenylhydrazine rsagenc ausc be prepared 1-
;he Laboratory wi:hin five days of laopUng use in che field, Preparation of
:N?H can also be done in che field, with coneLderaclon of appropriaca proce-
dures required for iaf« handling of loLvtnt in eh« fitLd. U*h«n a cpncair.tr =f
prepared ONPH raagcnc ii opantd in :h« fiald, th« cgnctncs of ch« opened
concain*r ihouLd b« o««d wichin ^8 hours. All laboratory §I«*iwara aui; b«
washad «i:h d«ctrg«nc and wac*r and rina«d wich wac«c, ««chanol, and cntchy.are
chloride prior co
N'OTE. DNPH crytCll* or ONPH lolucion should b« handUd vtch plastic glov«i
ae all cijua wich proapc and txcaniiva oi« of rxmninf wacar in cai«
of akin «xpoiur«
3.3,3.4,2 Preparation of Aqueouj Acidic DNFH D«rlvacUtng Reaginc:
Each bacch of DH7H reagenc should b« prepared and purified wichin five days ::
saapling, aceordinj e» the procedures described be Lev.
NOTE; Reagenc boctles for storage of cleaned DNPH darlvacizing solution
ouac be rimed wich aceconicrile and dried "=«fore u»e. Baked
glassware is noc es«encl*l for preparaclo- : DMPH reagenc The
glasavtr* mat, DOC bej riru«d wich »ce^^-; r an unaccepcable concer. •
crtcion of ace ten* concajitnacion will be Incroduced. If field
prep«racioo of 09111 ii perforMd, eaueion mat b« exercised in
avoldinf Aeecoftt contajiinaclon.
3.3.3.4.2.X Pl«e« *n 8 L concain«r under « fusM hood on a
nagneclc scirr«r. Add • Urf« seir bar and fill chsj concainair half full of
organic- free reagenc water. Save th« eitpcy beetle frost cha organic -free '
reagent water. Start tha stirring bar and adjuae tha atir rata to b« as fas:
as poaaible. Uaing a graduated cylinder, naaaura l.fc •! of eoneontracad
hydrochloric acid. Slowly pour the acid into che stirring wacar. Fuaes nay
ba generated and che water aay become wars. Weight che DNPH crystals on a
3-160
-------
3.5,4,3,3 Gradua:ed -yUr.deri: AC lease one large gradua:ed
:•/•. L-iar (1 :o 2 L) la required far aeasurir.g organic -free reagent wacer'ar.i
ac:i when preparing the DN?H solution.
3.5 - 3.9 Top-Leading Balance: A one-place :op loading balance -.s
needed foe weighing ouc the DNPH crystals used to prepare :he aqueous ac.i:c
3NPH solution.
3.5.^-3,10 Sp*cula«; Spaculas ace needed foe weighing ouc DS?H .-.a-
preparlng the aqueous DNPH 10Luc ion.
3.5 * ^ Crushed Ice: Quanci:ies ranging from 10-50 Lb may be
necessary during a stapling run, depending upon aablenc ceoperacure. Stap.es
which have been caken ousc be scored and shipped cold; sufficienc Ue for z'-Ls
purpose auic be allowed
3.5.5
3.5.5.1 Reagenc grade chemicals shall be used in all cescs.
Unless ochervtse indicated, ic is intended chac all reagents shall confon :;
:he specifleacioni of the Conaittee on Analytical ReegenCi af che Aaerizan
"hemical Soeiecy. where such specification* are available. Ocher grades lay
be used, provided Lt li fine ascertained chec che reagenc li of sufificier.c./
high pur icy co penic lea uje vicheue lessening the eecurtey of che decersi-i
:ion.
1.3.3.2 Organic-tree reagenc v«tec;
aecho^ refer to organic-free reagenc water, aa defined in Chapter One
3.S.9.3 Silica Gel: Silica gel itul! be indicating type, 6-16
mesh. If che silica gel haa been used previously, dry ae 17S'C (HOT) for 2
hours before using. New silica gel nay be used aa received.
other cypea of deeieeancs (equlvalene or beceer) nay be used.
3-139
-------
Table 3.5
APPROXMIATE AMOUNT OF CRYSTALLISE DNPH USED
TO PREPAAE A SATURATED SOLUTION
Aaouns of Moiacuri Ln DNPH
Waighc R«quir>d par 8 L of Soluclon
LO ufighc p«rc»nc
15 wfighc parctnc
30 w«ighc pareanc
31
31
Table 3.5-2
INSTRUMENT DETECTION LIMITS AND REAGENT CAPACITY
FOR FORMALDEHYDE ANALYSIS1
Analyti D«ctccion Limit, ppbv* Raa(«nc Capacity, ppnv
Foranld.hyd*
Ac«c*ld«hyd«
Aerolfin
AC« cons/Prop Lonaldthyd*
3ucyrald«hyd«
MtchyL tchyl kccoM
VtiirtldahydA
I tov«iti«id«hyd«
H«x«ld«hyd«
BvnzaldAbyd*
o • /• • /p • TolutlcUhyd*
D Lmt ehylb«nx«ld4ihyd*
1.3 66
1.7. 70
»
1.
i
i
^
75
75
79
79
84
1.4 84
1.3 88
1.4 84
1.3 89
1.2 93
L0xyg«n*t«d covpoundt In tddicton co fora*ld«hyd* ira Ineludad for
companion with fera*ld«hyd« ; •KCtrulon of ch« iMChodoloij Co och«r coapouniii
It poitibla.
ID«cieclon llaiei art
r«pr«i«nc ch« opcloua
Ln tolvtnc. Th«§«
chtr«fert
of
1-162
-------
ont-pUct balanct (see TabU 3-5-1 for approximet aaouncs) and add :o ;'-«
ssirri.-.g acid solacian. Fill :h* 8-L concmir.tr :o cha 8-L mark wi;h orjar.i;-
free rea§«ne wa;tr and jcir ovtrnighc- If *li of che QNPH crystals hav«
disso'.vad ovarr.ig'r.;, add additional QNPH and stir for two sort hours,
:ar.:ir.ua :ha prices! of addir.g 2M?H wlch addicianal stirring un:il a sa:ura:e:
solution Has bttn !arni«d. "Lliic ch« DNPH solucion uiir.g vac-ua 5i'.:rar::r.
Gravity filzracian may b« used, buc a such Long«r slat is rtquicid. S:sre :.-.*
:Ll:trad solucion in an aabtr boc'la ac room c«mp«racuri
3.5.5,4.2.2 "*L;hin fiva days of propoiad u««, piac* abou- '..6 '_
of ;ha ;s?H reagtnc in a 2-L scparacary funnel. Add approximately 200 al ;:
ratthyltna chlocii* and icopp«r rh« funniL. ?«rap :h« icopp«r of ;hi fup.r.el
wtch pap«r :ow«l§ co abiorb any i«akagt. tnv«rc and vone ch« funn«L. Then
sh*k« '/igorouily foe 3 ainucas. Initially. ch« funntl should b« vancad
fraquanciy (avary 10 -15 sac;. Afcar ch* layers hav« s*p«racad. discard ;ha
lowtr (organic) lay*r.
3-5-5^.2.3 Excracc ch« DNPH a sacond cima wlch o«chyL«na
chlorida and finally with cycloh«x*n«. Whan ch» cycloh»xan* layar has
»«paracad fro« eh* DKPH reagtnc.cha cycioh«x»n« lay*r will b* cha cop layer .-
:h« stparacory funnel. Drain cha lower layer (che claaned axerace DNPH
roagant solucion) ince an aabar boccla chat has been rimed wich aceconUr •. le
and allowed co dry.
3,5.3.4.3 Quailiey Control: Take cvo aliquots of Che axcraccad DKPH
c«agene. The six* of the aliquoci It dependent upon che a«act taapling
p»9<:*<*<,!!•*
-------
purposes, 2.t-dini:rophenylhydra*ine is a.flammable solid when dry.
so vacer should noc be evaporated from ;he ioiu;ion of the reagene.
3.5.5.5 Field Spike Scand-srd Preparacion: To prepare a formalde-
hyde field spiking itandard ac i.Ol ng/ml. use a 500 Ml syringe co transfer
0.5 al Co 37% by weight of formal ehyde (401 mg/ml) co a 50 nl voluatcric
flask containing approximately 50 ol of aechanol. Dilute co 50 al vich
-lechanol-
3.5.3,6 Hydrochloric Acid. HCL: Reagent grade hydrochloric acid
(approxiaacely 12N) ii required for acidifying che aqueous DNPH solucion.
3.3.3.7 Methyleno Chloride, CH,Cl,: Mechyleno chloride (juicable
for residue and pesticide analysis, CC/MS. HPLC, CC, Spectrophotoaecry or
equlvelent) la required for cleaning the aqueous acidic DNPH solution, rinsing
glassware, and recovery of saople eralas.
3.3.3,8 Cyclohexane, C,HU: Cyclohexane (HPLC grade) is required
for cleaning che aqueous acidic DNPH solution.
NOTE: Do nee uae ipeceroanalyxed grades of Cyclohexane If this sampling
methodology la extended to aldehydes and ketones with four or acre
carbon a COM.
3.3.3.9 Nethanol, CH,OH: Neehanel (HPLC grade or equivalent) is
required for rinsing glasavare
3.J.3.10 Aeeeonltrlle, CK,CM: Acetonitrlle (HPLC grade or equiva-
lent) Is required for rinsing glassvare.
3.3.3.11 Formaldehyde, HCHO: Analytical grade or equivalent
formaldehyde la required for preparation of standards. Iff other aldehydes or
kecones are uaed, analytical grade or equivalent Is required.
3-16i
-------
:apt. Af:tr ;ht bocilt ii labeled. :ht bocele may be placed In a f ric::;r.- ::
= an ^painc can or equivalent) containing a 1-2 Lr.ch layer of granulaeed
;r.ar;oal and scored ac ambient :emper*cure until use.
] 5 3 -.-.I If ;ht DN?H reagenc has pasaed :he Qualiry Car.zra'.
;ri:eria. ehe rsagenc aay be packaged co rates ntcassary *hipping ttquLrestr,:i
ar.d stnc :s :ht sampling ar«a, If :ht Qualify Concrol crictria art -o: =e:
:'r.e reagsnc solution a«y b« ti-*xtrac;td or ch« solusion aay b* rt-preparsi
and "~« •xc;ae;ion i«quenca rap«aced.
3,5.5.4.4.2 If sh« DNPH rtagtnc ii nee us«d in cht fitld wi:hi-
fi'.-t days of txcraeeion, an allquoc nay bi ;aktn and analyzed as dtacribfd :.-
Mo;hod OOllA. If :h* rtagtn: atacs ;he Quality Concrol r«quir««tncj . :ha
rtagenc aay b* uJtd. If eht r«ag«nc do«i noc ottc ch« Quality Control
rtquirto»nci , ch* rtagane ouac b« discacdtd and new raagenc cause b« pr«parad
and c
3,5.5.4 5 CaleuLaclsn of Aectpcabl* Concenerationt of Iapuri:its -~
"NPH Rtagtne: The accapcabl* Impurity conctncracion (AlC. ug/nl) Is caL:-!^:-
td from ch« •xpiceed aaalyct concincracion In eht saapltd gai (EAC, ppbv) , :-e
vol-jat of air chac will b* $aapl«d ac icandard condicions (5VOL. L) , :h«
formula wtlghe of eht aaalyct (FV, g/ool) . and eht volua* of DHPH rtagtnc :~a:
•-'ill bt uiad In eht Lapingtri (RVOL. ml) :•
AtC - 0,1 x [EAC * SVOL X fV/22-4 * (FW • ISO)/F«I (IVOI. * L.OOO)
O.I It ch« acctpcablt concaainanc conctncrtcion,
22.4 ii a factor rt lacing ppbv so g/L,
180 Ii « ftceo relating und*riv»clr«d CB d*rlv«tirtd analyct
1,000 !• a unlc eonvtriion factor.
3.3.3.4.6 DUpoial off Exctia ONPH Rtagtnc: Cxctst ONPH rtagtnc aa
bt r«curntd ca ch* laboracory and rtcyclid or trtactd aj aqiotovu watet for
3-163
-------
char.gi the nozzle/ Ensurt that -~.t propar dif ftrtntiai pressure gauge is
chosen for the rang* of velocity heads encountered (see Section 2.2. of
-err.od 2)
3.5-6.3.3 Select a suitable probe liner and probe length so that il".
:rav«rse points can be saaplad. For large stacks, to reduce the length of :-«
probe, considtr stapling froa opposlc* sides of the stack.
3.3.1.3.4 A ainimua of ^5 Cs1 of saapU voiuae is required for zr.e
deeerain*cion of the Descraccion and Reaoval Efficiency (DIE) of CoraaLdehvde
from incineration systems (43 fe1 is equivalent te one hour of saapling a-
0.75 dsef). Additional saaple voluae shall be collected as necessitated by
:h« capacity of the DNPH reagent and analytical detection liait constraints.
To determine die ulniaua saaple voluae required, refer ea saaple calculations
in Section 10,
3,5,6,3.3 Oecensine the tocal length of taarpllng elae needed to
obtain the identified ainiarua voluae by coaparing the anticipated average
sampling rate with the voluae requireaent. Allocate the saae ttae co all
traverse points defined by EPA Method I. To avoid tiaekeeptng errors, che
length of ciae taapled at each traverse point should be an integer or an
integer plus 0.3 Bin.
3 5.6.3.6 In SOCM circuaatances (e.g., batch cyclee) it aay be
necessary to saaple for ehorter tlaai at the traverse point* and to obtain
smaller gaj-voluM saaplec. In these eases, careful documentation aust be
maincaLned IB ordar to allow accurate calculation of concentrations
3.3.1.4 Preparation of Collection Train:
3.3.6.4.1 During preparation and asseably of the saapling train,
keep all openings where contaaination can occur covered with Teflon fila or
iluainua foil until Juae prior to assembly or until saapling if about to
begin.
3-166
-------
- 5 * S*«Pl« -?ol\jr;'.r- ?-«««rv*=iar- *r.d Handling
3 5.6,1 Because o£ :he complexity of :his aethoa, field perscr.rel
should be :rair.id in and exparitnced wish she :sst procedures In orfer :a
obtain reliable resales .
3.5-1.2 Laboratory Preparation:
3.3.6.2.1 All the coaponenes shall be aalntainad and calibrated
according :o cha proc«dur« dascribtd in APTD-0576, onl«si ochirwin sptcifiec:
3,5.6.2.2 r-«igh i«v«r«l 200 to 300 g porcions of fiUca-giL in
ai.r;ighe conc*in«ri eo ch« n«*rist 0,5 §. Rtcord on «»ch concaintr ch* :o;a'.
•jeijhc of =h* sllLc* gel plua conc«in*rs. As an alcira»civ« :o priw«ighing
chc ilLLc* g«l, Le a*y Lnaciad b» w«lgh«4 dirtccly in th« Lfflpingtr or sanpLir.;
holder Ju*t prior ta train
3.5.6.3 Prtliainary Field 0«c«rtBinacioni :
3.5.6.3.1 Select che sampling tiea and eh* minioiua nuab«r of
sampling poinc according es EPA Method I or other relevant criteria. D«:ec-
•aine the itack prenure, teaperacure, and range of velocity head* uaing l?\
Method 2. A leak-check of che picac line* according to EPA Hachod 2, S«c :.;.-.
3,1. nuac be perfonMd. Deceraln* th« scack gaa aolicure content oiing E?A
Appcaxiaacion Mechod 4 or iti alcenuiclvea eo eetabliih escioatei of iaokina-
:ie s«aflln§*r«c* ••celnfi. u«c«rvin* &n* ***** gas dry sslscul-; y-l»hr. **
described la EfA K«chod 2, Section 3.6. If integrated EPA Method 3 saapiir.g
U used for aclecular weighc deteraination. the integrated bag iaopl« shall be
:aken jinulcaneovuly wlch. and for the saae total length of tiaw aj . the
aaaple run,
3.3,6.3.2 Select a nestle •!<* baaed on the range of velocity heads
so chat Is noe neceesary eo change the nozzle size in order co maintain
isokineelc laopUng races below 21 L/ain (1.0 cfa). During che run, do r.o:
3-165
-------
3-5-6-5 Laak-Chack Procadura*:
].1.6.5,1 Pra-casc Leak Chack
3. 3. 6. 5.1. L After ehe laapLing crain haa baen assaoblad, :urn on
and lac :ha probe heaclng iy»ca» «c ehe daalead oparaclng tamp«:»curt. Ai'.=u
:ine for :h« eaaperacura co scablHza. If a Vlcon-A 0-rlng or ochar Uak-free
connacclon Is ujod Ln aasaabling cha preba nozzle co cha proba liner, Laak
chack :ha crain ac cha aaapUng jlea by plugging cha nozzle and pulling A 33'.
T.I Hg (IS in Hg) vaeuua.
^OTE: A lowar vaeuua nay ba ujad. provldad chac cha lovar vmcuum ii noc
axeaadad during cha caic.
3.3.6.5,1.2 If an aibaieoi icrlng Is uaad, do nee eonnaec cha
proba eo cha crain during cha laak cheek. Injcamd, laak-chaek cha train by
flrac aceaehlng a carbon-fIliad laak check ioplngar co cha tnlot and Chan
plugging cha inlac and pulling a 381 •• Hg US In Hg) vaeuua. (A lowar vacuum
any ba uaad If chls lovar vaeuua li noc axcaadad during cha caac.) Maxc
eonnaec eha preba co cha train and laak-ehack at about 25 an Hg (I In Hg)
•/acuua, Alcanuclvoly, laak-ehack eha prob* with the rate of cha laopling
-.-tin in ona tcap ac 301 OB Hg (15 In Hg) vaeuua. Laakaga racaa in axcaas of
(a) 4| of cha avaraga aaopllng raca or (b) X).00037 «J/»in (0.02 cfa), ara
unaecaptabla.
3.3.§.3.1.3 Th« folloving laak chock Inacruccloru for cha
sampling craln d«acrla4 la ADfT-057* and APTD-0111 m*j b« halpful. Scare cha
puap wich clM flo«-adjujt valve fully open and eoarta-valve cooplecely cloiad
Partially op«n ch« co«rso*adju«e valve and •lowly elett ehe flne«adju«c valva
uncll cha daa1rod VACUUM la raachad Do noe raveraa dlracclon of ehe fine-
adjuac Uva, aa liquid will back up Inco ch« erain. If ehe daairad vaeuua is
•icaad eleher parform ehe leak check ac chit higher vacuum or end ehe laak
chtck. ax ahovn belov, and icarc over.
3-168
-------
3.5.6.C.2 Pita ".00 ml a£ cleaned ONPH solucion in each of :r,« f
:vo iapir.gtrj, ard leav* :hi :hird iflpirgar smpey. If addirionaL capac::-.-
re-uired for high expec:ed cancan.zracion.j of faraaLdehyda in :he slack gas
ICO al of 2SPH per i^pir.ger say be used or addi:ional iapir.gen may be .sa
far sasplir.g. Trar.sfac approximately 200 to 300 g of pre-veighed silica j
froffl i:a container -3 "ha fourch iopingar. Cara should ba :akan to ar.s-.re
:hac :he silica j«L is r.ot vncrainad and carriad ouc fron :h« iapir.gar
sampling. Placa :ha silica gal concainar In « cLaan placa or lacer use .- :-
saapla racovary. \LcacnacivaLy, ;ha waighc of cha tLlica gal plui iap-.r.^er
may b« dacarainad :o cha naarasc 0.3 g and racordad. r
J . 5 6 , i 3 '-L;ii a glass or quartz linar, inicail cha saleccad r.;::.e
using a VLcon-A 0-ring wich scack caaparacurai ara <260'C C500T) and a vo-.-er.
glass-fvbar gaskac whan :a»paracuras ara hlghar. Saa APTO-05'6 iRom, .I'll
for dacails. Qchar connaccion sytcaas uciUrLng althar 316 icainUis s:eel :
Taflon Carrulas may ba ujad. Mark cha proba with haac-raslscant :ap« or by
soaa ochar aachod co danoca ch* propar dlscanca Lnco cha scaek or due: far
each saapling poinc.
J.S.S.u.i. Aiaaobl* cha train as shown in Figure 3.3-1. During
assaobly, do noc uia any lillcona grease on ground-glass Joincs upstream o:
:ha iapingtri. Us* Teflon cap*, Lf raquirad. A vary Ughc coating of
silicon* graaa* aay ba used en ground-flan Jolnci downjcraaa of cha
implngars. buc cha iilicon* grease should b« UaLtad ce eh* oucar portion
APTD-OJ76) of cha ground-glan JolnCJ to ainialza silicon* graaaa concaair.a-
ion. If n*c*isary. Teflon cap* aay b* u««d co seal l*«lu. Connect all
s=?«r§?urf ••"§or» ca an approprlcc* poc*ncloa*c*r/dlspUy unic, Check all
eaperacur* ••niort ac aafalanc caaparacurai
1.3.6.4,3 Pl*ca crviihad ica all around eh* laplngan.
3.S.6 4.6 Turn on and s*c ch* prob* h**clng syicaa ac ch* dasirad
pacacing ceaparacura. Allow cia* for ch* c*ap*r»cura co scmbllUe.
3-167
- 4
0
-------
(0,02 C£B) or s.% of che average sampling net (which«v«r U :ii). :.-«
ara acceptable. If. howevar, a highar Laakage rate Li obtained, :'-«
:es;er snail record :he Leakage race and void che sampling run.
} . 5 . 5 . 5 Sampling train Operation:
15661 during che sampling run, maintain an isoklnetic sanpUr.j
race ~o viihin 101 of crue isokinetic. below 20 L/nln (1.0 da) , .".air.zai- a
temperature around the probe of I20'C (24fl* + 25'F).
3.566-2 Tor each run. record che daea on a daca iheec lueh as :r.e
one shown in Figure 1.5-2. 9* sure ce record che Initial dry-gas oecer
reading. Record che dry-gai oecer readings ac che beginning and end of each
laapLing time increment, whan changei in flow rate* are ud«, before and af:er
each leak check, and whan ianpllng Is haIced. Take other readings required by
Figure 2 ac Lease once ae each sample poinc during each do* inereaenc and
addlclonsl readings when significant adjusea«nef 20* variation In valocicy
head readings) necessitate additional adjuscMncs In flow race. Laval and
zero che oanoaecer. Because che «*no
-------
3,5.6,5.1,4 «k«n -*• leak chick is coiputed, fine slowLv re=ov-
:h« plug froB che inlet co cha probe. When che vacuum drops co L27 am (5 ;-
Hj or '.€91. immediately cioi« che coane-adjuic valve. Switch aff -hi pus?:.-.*
svs:tm and rtepen ;he Sine-adjust valve. Do not rtoptn che £ir.e-idl us: valve
.-til the coarie-adjua; valve has b«tn cioiad :o prtv«nc :hi liquid L- :he
:.?.p ir.gt cs £zo« b«in§ foccad backward in :h« sampling ILna and silica jel fr:-:
-aing ancrainid bickvmrd in:o chi chlrd iopLng*r.
3.3.6,5.2 L*«k Ch«cki During Stapling Run:
3.5.6.3.2.1 If. during :h« SAapLing run, a conpontnc changt
(..t.. Itnpingtr) baeoa«i nactuary. a l««k check shall b« conducted '.aa*£:.i-i -
ly afcar eha incsrrupcLon of stapling and b«fort eht change is aade. 7h« '.
check shall be don* according co che procedure described In Section 3.5.6.
excepe chat is shall b* done ac a vaeuua greater Chan or equal "o che aa
value recorded up co chat poinc in che case. It che leakage race ii found :s
be no greater Chan 0.00057 a3/Bin (0.02 cfa or 4% of the average saapllng :a:a
(whichever La leaa), th* results are acceptable. If a higher leakage rare .s
obtained, che tester aust void ch* sampling run.
N'OtE; Any correction of che saaple volume by calculation reduces che
integrity of the pollutant concentration data generated and BUS: :«
avoided.
3.5.6.5.2.2 lasted lately after a coa^onent change and before
simpUng is reinitiated, a leak check ilallar co a pre-cest leak check auic
3.5.6.3.3 Post-tesc Leak Check:
3.5.6.3.1.1 A laak chick li «*ndatory at tha ccncluaton of each
stapling run. Ih« leek check shall be don* with eh* iaa* procedure* as che
pre-taat leak check, except thae th* post cest leak ch*ek shall b« conduectd
at a vaeuua greater than or equal co eh* aaxlau* v*lu* reached during the
sampling run. If ch* leakage race Is found to be no greacer chan 0.00057
1-169 . .
-------
3,5,6,6.4 Whin thi scack is under significant nagactva prassura
•lequivalanc co chs haighc of cha Lnpinger seen), cake car* co cloic che
:aacse-adjus: valve before inserting che probe Into cht icaek in order :o
?rev«nc Liquid from backing up through che Grain. If necessary, che pump say
3e turned on with che coarn• adjust valv* cLoi«d.
1.3.6.65 Uhan ch« prob* is in potUion, block off :ht op«nin;s
around cht probt and scack aectis perc co pravtnc unrtprtstncaelvc dliu:ior. ::
:h« gas icrtaa
3,5.6.6,6 Traverse cht icack cross stccion, as rtquirtd by EPA
Mtchod I. being careful noc co bump che probe nozzle into che scack walls vher.
sampling near ch« wails or when removing or inserting che probe through che
access pore, in order co alnialze che chance of txcraccing deposlctd aecerial
3.5.6.6.7 During che cesc run. isaxke periodic adjuecaencs co keep :ha
itnperacure around Che probe *C che proper levels. Add oere ice and, IS
r.teassary, jalc. co aelneain « csaperacura of <20*C (6ST) ac che silica gal
ouclec. Also, periodically check che level end zero of che aanoaectr.
3.5.6.6,3 A single train shall bejused for che encire stapling rur.
excepc in cases where tioulcaneouj saapling Is required in cvo or no re
separace ducts or ac cvo or acre differenc Location* wlchln che sea* ducc, or
in cases where tqulpejenc failure necesslcacee a change of cralnj. An addition-
al crain or addiciooaJ. eraltu svay also be used for sasqiling when che capacity
of a single craia it exceeded.
3.S.i.$,9 When cvo or «ore cralnj are used, separacs analyse* of
cooponenci fron each eraia «h«ll be performed. If aulciple eraina have been
used because che capacity of a single crain would be exceeded, fine tapingers
froa each crain aay be coabined, and second lapIngers froa each crain aay be
coabined.
3-172
-------
Mote LMfytt
f •*•»***«
l*MfMH
Jo
o.
fenulrapi
•cm
I nf Minn
i No
-------
3,5.7,1.5 Savs 4 porcian of all vaihlng solution (nechyLena ehlo-
t, vacar) usad for citanup 41 a blank. Tranjfir 200 al of each soLucion
«c:ly froa cha wash bocsla biing used and placa «ach In a separate,
container.
3.5.7.2 Saapla Containers:
3.5.7.2.L Container L: Probe and lapinger Catches. Using a
graduated cylinder. oeasure to che naaresc al, and record the voluoe of :^a
solucion in ih« fLrsc chrtc vapLngan. Alc«rnaciv«ly , ch« tolucLon aay ba
•JiLghad ;o ch« naarcic 0.5 g. Include any eondaniae* In th« proba Ln chis
d«c«rtainactan Transfer :h« iapingcr lolucton froa eh« graduacad cyUndar
in=D ch« aab«r flinc gL«n beccLc. Taking ear* ch«c dujc on ch« ouciid* o£
:ht prob* or och«r «xc«rlor surfacai do«a not g«c Lneo eh« lAoplc, clean all
surface! Co which che saople lj expeicd ( Including che probe netzle. probe
ficclng. probe linetr, fine laptnger, and Lapinger connector) with m«chylene
chloride, Ute lea* than 300 al for che entire vaah (230 ml would be bec;«r,
L£ poiflble). Add the waahlng eo ehe scople container.
3.3.7.2.1.1 Carefully reaeve che probe noxzle and rinae che
injide surface wlch aeichylene chloride froa a waah boccle. Brujh wlch a
Teflon briiele bruah. and rioae until che rtnae ahowa no visible parclcles or
yellow color, after vhlch aak« a final rlnje of che Inalda surface. Bruih and
rinse che iruida parti of ch« Svagelak fitting with aaehylana chloride in a
sLailar vay.
3.9.7.2.1.2 ainae the probe liner with MChylana chloride.
squirting the) atchylena chlorlda into che upper end of the probe, tile and
rotate the probe ao chae all Inald* surface* will be veeted with «e thy lane
chloride. Let the aochylene chloride drain fresi the lover end Into che saaple
container. The ceater aay uae a funnel (glaat or polyechylene) co »id In
transferring che liquid waahes to che container. Follow the rinae with a
Teflon bruah. Hold ehe probe In an inclined poeleton. and squire aethylene
chlorlda Into the upper end as the probe brush !• being pushed with a tviicLr.;
action chroufh che probe. Hold the sample container underneath the lowar end
3-1-4,
-------
3.5,6.6.10 AC :he and of ;ht stapling run. curn off :he caarse-
adjus: valve, ranova che probe and nozzli from che slacks, turn off che puap .
recsri :ht fLnal dry gas sectr reading, and conduce 4 pose- case Leak chack.
Also, leak chick cha pi:oc Unas as dtscribid in EPA Machod 2. The lines -5.5
;ass iris leak chaclc in order co validate che va
3. 5. 6. 6. LI CaLcuLaca parcenc isokinacicity (sit Meehod 2: ;a
who char cha run was valid or anochar :asc ihouLd ba madi .
3.5.7 Sajrpla Raeovacv
1.5,7.1 Praparacion:
3. S, 7. 1,1 Proper claanup procadura baglni «• soon ai cha proba is
rinovad froa ch* stack ac cha and of cha laapling period. Allow cha proba :s
coal. «"han cha probe can ba handled aafaly, wipa off all excamal parcicui*:
raaccar near ch« clp of the probe noizle and place 4 cap over cha tip EO
prevent lottng or gaining parciculace aaccer. Do not cap che probe cip
cighcly whlla che iaapling crain la cooling because a vacuua will be creazei
drawing Liquid from cha lapingars back through cha aaapling crain,
3.3,7.1.2 Before moving che laopling crain Co che cleanup si;a,
remove che probe fro* cha •aopling era inland cap che open ouclec. being
careful nee ca lei« mny eond«nja.ce chat alghc be preicne, Reaove che uabll:
cal cord froa che l«4C lop Inge r and cap che laplnger. If • flexible Line is
ujed. lee any cond«rued water or liquid drain into the tapingeri. Cap off ar.
open Lnplnger inleea and outlece. Ground gla«i • toppers, Teflon caps or caps
of ocher Inare aviterials say be used to leal all opening! .
3.5.7.1.1 Transfer che probe and laptnger aaieably eo in area cha:
is clean and protected froa wind so chac cha chance* of eoncaainaclng or
losing che saople are ainiaized.
3.5,7.1.4 Inspect che train before and during disasieably, and note
any abnormal condition*.
3-LT3
-------
'-ydrazone is * solid which floats and frochj on :op of cha tspinger iolu:iar.
Ar.y physical carryover af col'.ictad aois;-r* inro :he second iapingar viLl
invalidate a breakthrough assessment.
3,5.7.2,2 Container 2; Staple Blank. Prepare a blank by uiLr.g an
amber flinc glass concainer and addlr.g • volume of DNPH reagent and oachyler.e
chloride equal to che total vol.ua* Ln Concainer 1. Process the blank in :he
nannar a« Container 1.
3.3.7.2.3 Concaintc ): Silica Gil. Noc« ch« color of ch*
i-.g silica gal co d«t«nnin« wh«ch«r ic ham b««n compl«c«iy ip«nc and aaki a
r.otacion of Its condition 7h« iapingcc containing th« silica gal oay b« ,se-
aa a saapl* tracuporc containtr with boch andJ italtd with cighcly fitting
capi or pluji. Ground -jl»J« icoppcra or Taflon caps uyb« uu«d. Th« silica
gal impingtr should eh«n b« lab«l«d, eev«r«d vlch aluaiinua foil, and packaged
on ice for cruuporc co cho laboratory. If eh« silica |«1 La raaovad froa the
imping«r. ch« ctacar aay u*a a funnel co pour ch« silica (•! and a rubber
policiaan co rtoMv* ch« silica f«l froa eho impingac. Ic la nee n«e«iiary -.3
-«mov« cha aoall aaoune of dusc parciclaa ch«c nay adhara co ch« iapingtr wall
and ara difficulc co raaova. Since cht gain In weijhc It eo be uaad for
moiicure calculaclon*, da noc use wacer or ochar liquid* eo transfer the
siLLea gel. If a balance la available in che field, the apene silica gel (or
silica gel plua iaplnger) aaybe weighed eo che neareac 0.3 g.
3.3.7.2.4 Sappl* concainers should bo placed In a cooler, cooled by
(although noc In conucc vlch) ice. Sample concainere Buac be placed varci-
cally and. since they are (laja, proeecced frost breakage durlny; shipment,
Samples ihould b« cooled durinf ehlpaenc so they will be received cold ae :ha
Laboratory.
-------
of :he probe, and catch any aeihylane chloride, vactr, and p*r:icu:a:e =a::e:
:hac i.i Crushed from che probe . Run :ha brush ihrough the probe :hr«a :l3Bs
or T.O re. -Ich siainlau i:eel or achtr aacaL probas, run :ha brush chrs'-jh .
t'-a tbo''« prescribed manntc *c *.a»»c six ;i,nie» linca chare say b« small
cravices in which p*rt '.culaca nac:ar can b« «n:rapptd. R:ns« :ha br^sh vi:-
.T.e:hyl«r.t c^lorid* or wactr, and qu»nci:a:ivtly collte: :h«j« vaihi-j ir. :r.e
samplt concaintr. Afc«r Che brushing, nakc a final rini« of ;^« prob* as
N'OTE : Two p«opl« ihouid clean :ha probi in order co ainimize
Lossei Becveen jaapLing rum , brushei avmc be kepc cltan and ;r°e
froo conc*ffllnjcion
3.5.7.2.1.3 Ulnse che Lniida surface of each of che f'.rtc :hrt*
i.npinger* (and connecting tubing) chrei separate cimea, Use a in* 11 porzior.
of mechylene chloride for each rlnje, and brush each surface co which che
simple is exposed vleh e Teflon brlsele brush Co enjure recovery of fine
parciculate eMceer. tf«cer will be required for the recovery of che iapi-gers
In addition co che specified quantity of aethylene chloride. There will b« a:
lease evo phases In che Lopingeri. This cvo- phase aixcure does noc pour .ell
and a significant adount of the implnger catch will be left on che walls. The
use of water as a rinse aakes che recovery quanciceclve . (lake a final rir.ie
of each surface and of che brush, us Ing -both me thy lane chloride and water
3.5.7.2.1.4 After all nechylene chloride and water washing and
particulats utter havej been collected in the staple container, tighten :ha
lid so the solvenc, wat«r, and DHPH reagent will nee leak out whan che
container !• shlppad ce eh« laboratory. Hark the height of Che fluid lava I :±
da ca mine whacher leakage occurs during transport. Seal che container wL:h
Teflon cape. Label the container clearly co Identify its concents.
3.5.7.2.1.3 If che fine cvo Lapingers are to be analyzed
separately co cheek foe breakthrough, separate the contents and rinses of :r.e
two laplngers into Individual containers. Care oust be taken to avoid
physical carryover fro« the first inplnger co the second. The foraaldehvda
3- ITS
-------
•'alv« iecvaen cha wac-caic aec«r and ;ha Lnlac of cha aecaring iyic«a.
-a'.cuiace :ht *varaga valua of che calibration faccor. If che calibracion has
changed by sort che 5», recalibrate che aecar over che full rang* of orifice
s«"ir,gi, as ouclirvad in APTD-Q576,
3.3.3.3,3 Leak check of aecoring lyieea: The parcion of =Ha
sampling criin froa che puop Co cha orlfica aecer («aa Flgurt 1) should b«
liak chackad prior co IniciiL uia and afcar aach ihtpaanc. Laakaga *f:ar t-e
puntp will rasulc In Lais voluma baing racordad Chan !• actually saapiad. . '."SB
:ha following procadura: Cloia cha main valva on cha aactr box. Insar: a
on«-hola rubber icoppar wtch rubber cubing attachad Into cha orLCica axhauj;
pipa. Dticonnacc and vane cha Low itda of cha orlfica aano««car. Clos* off
:ha low ilda ortflca cap. Pranurtra ch« tyscaa co 13 - 18 c« (5 • 7 in)
wacar coluan by blowing Lneo cha rubbar cubing. Pinch off eh« cubing and
obiarva cha aanoaACar far I aln. A Ion of praiiura on ch« aanoaacar Lndi-
cacaa a laak In cha Mcar box. Laak* avuc b« corracead.
SOIL: It ch« dry-f«j-««e«r coefficient vtiuat obtained before and af:er a
caac ierle« differ by >5%, elcher the caic aerlea BUJC be voided or
calculeclonJ for ceic icriei onuc be performed using whichever aacer
coefficlenc value (I.e., before or after) give* the Lower value of
cocal saople voluoe,
3,3.8.4 probe) He«cer: The probe heactng lyteea a\«c be calibr*:e<3
before ic« inlelel ua« la che field eeeordlnf co the procedure outlined Ln
APTD-0376. Probee cooflCrueced eeeordln| co 4TO-03I1 need not be callbracad
if the callbreCion curwe in AfTB-0576 art uuied.
3.1.1.9 Teaperacure gtuget: Each cher*ocoupla BUJC be penenancly
and uniquely aArkad on th« c**eing. All B«eeuz7*ln-|lMi r«fcr«nce cheraoat-
can avuc conform co ASTM I«l 63C or 63F ipeclfleaclonj. Themoeouplea should
be calibraced Ln che laboratory wlch and wlchouc Che me of e*conalon Leadt.
If excenslon leadJ are used In che field, che thermocouple reading* ac cha
aablenc air ceaperacurei. wlch and wlchouc che escenilon lead, auje be nocad
3-178
-------
1.5.3 CaiibratLan
3,5.S.I ?robe Hazzle; Probe nozzles shall be calibrated before
ir.eir L-izial use in che field. Using a aicromater, aeasure the iniida
liaaeier af ;he nozzle to the nearest 0.023 am (O.OOL in), *ake n«*surtatr.:s
a: three separats places across the diameter and obtain the avteagi of the
T.easurtnanss. Th» difference boc«««n ch« high and low nuabtri shall no;
axcaad 0.I ma (0.004 in), whtn ch« nozzlts btcoac nickad or corroded, :hev
shall b« rtplactd and calibrac«d before us«. Each noczlt nusc bt p•mar.tr.:'.-.-
and uniquely Ldincifitd
3.5.8.2 PLcoc Tube: The Type S picoc c-obe aiaeobly shall be
calibrated according co ehe procedure outlined in Section (* of EPA Method 2.
or assigned a noainal coefficlenc of 0.84 if it is not visibly nicked or
corroded and if tc meets design and intercoaponent spacing specifications.
3.5.8.3 Metering System
3.5.8.3.1 Before tcs initial use in the field, the metering sys;t=
shall be calibrated according to the procedure outlined In AFTD-OS76. :-.s:eii
of physically adjusting the dry-gas aeter dial reading! to correspond to :.-.e
wet-test netsr readings, calibration factors «ay be used co correct :he gas
meter dial readings mathematically co Che proper values. Before calibrating
;he metering systea. it is suggested chat a leak cheek be conducted. For
metering systesu having diaphragm putsps, the normal leak check procedure will
not detect leakages with the puap. Foe these cases, the following leak check
procedure will apply: BMSU a cen-«inute calibration run at 0.0003? »V«in
(U.02 cim"). AC che end of CM ran. C«M ci» M*ffsrsr^c sf ths se£*u;ed "*?•
:*st and dry-gaj aacer voluaet and divide the difference by 10 Co gee the lt*k
rate. The leak rate should noe exceed 0.00037 «V«in (0.02 cf»).
3.5.1.3.2 Alter each field use. check the calibration of the
.uttering systeti by performing three calibration run* ac a single incermedia;t
orifice setting (based on the previous field case). Sac the vacuua ac the
maxiaua value reached during the tesc series. To adjust cha vacuua, insect a
3.177
-------
3,3,9.1 Calculation of Total Formaldahyda: TO deearmini she ra:
fonaVdahydo Ln nj. usa cha £aI Lowing aquation;
ig/nola aldahyda]
Total a; forsaldahyda - Ct x V x DF K _.. x LOJ ag/Mg
(g/mola QNPH daeivacwa}
«har«:
Cj - maasurad conctncracton of ONPH • £orn«id*hyd« dtrivaeivg,
V - organic «xcracc voluaa •!
DF - dilution faccot
3.3.9.2 Foraaldchyd* eoneancraclan Ln *c*ek (a*
ch« foraaldahyd* cencvncraclon In th« *cack gas uaing :he
following tquaclon;
Ct - H [cocaL f or»ald«hyd« , af]
K -33.31 fc'/>] l>f VM|U, Is •xpr*aaad In English unlcs
• 1.00 m* /mj If '.,.«, is ••pittitjd In MCTIC unici
V,(IU) - voluat of gas aaopL* « Maiurad by dry gas ««c«r,
cocraccid to standard condlclooj, 4*ca (daef)
3,3.9.3 Avaraga Dry Ca« Haitar Ta«p«racura and Avtraga Orifice
Prasiur* Drop ara obcalnad froaj eh* d«ca sh««c.
3.394 Pry C«J Veluaa: Ca\leul«ec ?,(,u> «"4 mdjujt for leakage
If nactasary, ujlng eh« «quAClon In Sceeioa 6.1 of If A Itoehod 3.
3.5.f .5 VoluM of Uaear Vapor and MoL*cura Concant: Calculata c
of v«e«r vapor uid •oljcuro concone froa ao>i«eionj 3-2 and 3-3 of EPA
Nachod 9.
3.3. 10 P« canntmclafl of
To dAcanlno tha nlnlsua saopla voluao eo bo eollteeod, uao tho following
i«qu«nca of aquations.
3-180
-------
and recorded, Correction >i necessary if =ha use of an extension lead
products a change >l.5l.
3.5,8.5.1 Impingar and dry-gas mater thermocouples : Tor the
ihtr-ccaup Its used to measure the temperature of the gag leaving the 1-pir.itr
train. three -poir:t calibration a; ice water, room air, and boilir.g va-tr
:imptricuris is n«ciis*ry. Accept :h« :hermocoupLe« only if ;he riadir.§s a:
all ;hree ;«mp«ra:urts agrtt :o -2C (3.S"F) wich choit of Ch« *bioi.u:t '-'4'. ,e
of ihe rt£irtnc§ checmoaiecer ,
3.5.3.5.2 Probt and stack chirmocaupl* : for she chiraocaupl'ts ,5ei
;a indicace che probe and scack ;emperaeuces. a ehree-paine calibra::or a: .-_•.
wacer, boiling vaeer, and hot oil bach :enpecacucei ause be perforaed '.'si :
a poinc ac room air :enperacure is recooaended. The checaonaeer and chernio-
couple auie agree co wichin l,3i ac each of the calibration poincs. A
calibracion curve (equacion) nay be constructed (calculated) and the daca
•xtrapolatad to cover che entice ceaperature range sug|eiC*d by the manufac-
turer .
3.5.8.6 Baroaacer: Adjust cha barooater Initially and before ea::
test series to agree to within ±2 . S am Hg (0,1 in Hg) of the aercury baront:*:
or the correct barometric pressure value reported by • nearby National V«a:.-~:
Service Station (saa* altitude above sea_ level).
5.5. 8. 7 Trtple-beaa balance: Calibrate the trtple-beu balance
before each ceat serial . ualng Clan S standard weights, till weights BUI; be
within ±0,31 of the standard*, or the balance auac be adjusted to a*et these
Limits.
3.5.9
Carry out calculation!, retaining at leaat one extra decimal figure beyond
chat o£ the acquired data, Round off figures after final calculations.
3-179
-------
3.5,10.4 Tha following analytical datsccton Ualti and 3NPH
-apaci:y (band on a cocal valuaa Of 200 nl in cwo Lsplngan) mu«c alto ba
in deCaraLning a vgLonc :o ba saaplad.
Coneral
3.5.11-1 Saapling: Saa EPA Manual 60QA-77-02b for M«:hod 5
quality control ,
3.5.11-2 Analysis: Tha quality anuranca prograa raquirad for ;his
nachod includai cha analyiii of cha flald and aachod blanks, proeadura
validations, and analyili of fiaid ipikai. fha anaiimane of combustion da:a
and poiiciv* idanclf Lcacion and qoanclcacion of formaldahyda ara dapandanc an
;ha Lncajricy of cha laaplai racalvad and cha praclaLon and accuracy of cha
analytical ••chodoLogy. Quality aiaucanca procaduras for this saehod ara
daitgnad to aenicor ch« parfomanca of tha arulyelcal MChodoloiy and eo
provida tha raquirad Inform* don eo ealu corracclva acclon If problau ara
obiarvad In laboratory oparaelons or In flald iiaplinf acclvlclaa.
3,5.11.2.1 Flald Blanks: Flald blanks aust be subalccad wi;K
:ha aaaplas collactad at aach sampling lita. Tha flald blanks Ineluda :ha
samp It bocclas containing allquoci of «a«pla 'racovary so 1 vanes , aachylana
chlortda and watar, and unusad ONPH raaganc. AC a alnloua, on* coaplact
sampling train will ba asaaoblad In cha flald staging araa, takan co tha
saapllng ara. and laak-chaetud ac cha baglmxlnf and and of cha tasting (or for
:ha saaa total nuabar of elsMs as cha actual smcpliaf craln) . Tha proba of
-ha blank, train uuat b« htatad during tha aaapla cast. The train will ba
racovarad aj if It war* 4n actual case saopla. No guaous saa^la will ba
panad through tha blank sampling train.
3.9.11.2,2 HaChod Blanks; A Bached blank oust b* praparad for
aach fat of analytical oparaelons. co avaluata concaalnaclon and arclfacci
:hat can ba darlvad froa glasiwara, raagants , and laopla handling In tha
laboratory.
3-192
-------
3.5.10,1. Froo pri-or analysti of :he waitt ft«d, she cor.cen;ra;;-r.
of formaldehyde (FORM) introduced into che combustion syicen can be calcula: •
ed The degree of destruction and raraoval ifficiancy chat if required .3 usec
:o dererair.e :he amount of FORM allowed to be preienc in she ef fluer.:. TV.is
a.r.our,: lay ba «xpreaiid AS:
Max FORM ««§s - ; (-T) (FORM cone) (100 - iDRE) : /'.OO
where:
• 7 - aasi flow race of viice feed per h, g/h (lb/>.)
FORM - cor,cencr*cion of FORM (we %) Lncroductd in:a :r.«
conbuicion process
ORE - percent Destruction and Removal Efficiency required
Max FORM - tnais flow race (g/h [lb/]) of FORM emicced froa :.-«
combuiclon icurces
3 . 5 10 . 2 The average discharge concencracLon ot che FORM in :he
affluenc gas Is determined by conparing che Max FORM with :he voluoecric flaw
race being exhausted froa che source. Voluaecrlc flow rate data are avaiLab.;
is a result of preliminary EPA Mechod I • & determinations;
!tax FORM cone - [Max FORM Mas a] / OVC(CC|U)
where:
D'»ifciui • volumetric flow race of exhauie ga« , dsca (dscf)
FORM cone - anticipated concentration of Che FORM in :he
exhaust gee streaa. g/dscm (Ib/dscf)
3 5.1.0.3 la BAklng this calculation, le Li recoiaended chat a
safety aargln of «c lease ten be Included.
eonc ' ?«toi
where:
detectable aaount of FORK In ancire saapllng train
alnloua dry standard volume to be collected at dry.
gas aeter
M31
-------
table 3.5-3
EXPECTED METHOD PERFORMANCE FOR FORMALDEHYDE
?arta«c«r Precision1 Aceurtcy* D«c«ccion Limit3
JUcrix: DvuiL crtlni ±151 RPD ±201 1,5 * LO" Ib/f;3
(L.S ppbv)
dl£f«rtnc« ILalc for du*i
zLLaic for fi*ld »ptk« r«eov«rl»i.
3Th« Lov«r r«p«rtln| llaic having !••• chui Li probabiltey of fkls«
dtcoeelon.
-------
3.5.11.2.3 Field Spike: A field spike is perforaed by :-;:3i,c
ing 200 *L of the Field Spike Standard ir.:o an iapir.ger containing 2CO .?.; :f
;N?H solution. Scandard iapir.ger recovery procedures are followed and :r,«
spike is used as a check on field handling and recovery procedures, an
aliquot of the field spike scandard is retained in the laboratory far ieriva-
tization a~d casparative analysis.
3.5.12 Meehod Performance
3. S, 12,1 Hechod performance evaluation: The enpecced aechod
perforaance paranecers for precision, accuracy, and dececsion liaiis are
provided in Table 3.5-3,
Addition of a Filler ca che Forma Idthyde SaapLing train
I
At a check on cha survival of parciculaca aacertal through che iopinger
system, a filter can be added co che impinger train etcher after the second
impinger or after the third iopingcr. Since the iapingers are in an ice ba
there ia no reason to heac che filcer ac chls point.
Any suicable medium (e.g., paper, organic mentor ane) nay be used for the f:.:
if the aacerial conforms to che following specifications;
«
1) the filter has ac lease 93% collection efficiency (<3l pane era dor.
for 3 urn dloccyl phchalace sooka parttclei. The filter efficiency
test shall be conducted In accordance) with ASTM scandard method
02986-71. IMC data fron the supplier's quality control prograa
sufficienc sot chii
2) the filter has a low aldehyde blank velua (<0.013 mg foraaldeh-
yda/cii2 of filter area). Before the case sertar. daceraine the
averag« for»«Uahyd« blank vilm of at leaat three fileari (fraa the
loc to be uaed for sampling) using the applicable analytical
procedures.
3-113
-------
far ^dahvdai *nd Keeonet fry Mjgh
i"H?LC) 'Method
2 . S - 1 Seooe ar.d ApalieasLon
] 6,1,1 .".achod OOilA cov»rs Chi determination of free foraaliehvie
Ln :hi aqueous samples and Uachacn and d«rLv«d *ld«hyd«i/k«:or.«» co'.*.tc:ad
bv M«;hod 00 II.
Compound Sam« CAS So •
Form*id«hyd« 50-00-0
Ac«:ald«hyd« 73-07-0
* Chtaical Abicracc S«cvie*s Ragiiery Nuab«r
3.6.L.2 Mtchod OOILA is • hifh p*rforaane« liquid chromacogrjpr..;
(HPLC) a«chod opcimirtd for eh« daCinainacion of fam*Ld«hyd« and tcica.ie- :e
in aqu*ous «nvi.rona«ncal oucrlcti and l«achac«i of loUd iaapl«j and szack
samplti colltctid by Machod 0011. ^"htn Chia aachod La uitd co analyza
•-nfaailiar laapla .nacrict*. coapound idancificaclon should b« supported by a:
Lease oni additional qualicaciv* cachniqua. A gas chronacograph/naii sp«c-
;roaacar (GC/MS) nay b« usad for eha qoalLcaclva confirmacton of raiulci :r:-
:ha cargac anaLycat, using cha axcracc pcoducad by ehis •«ehod.
3.6.1.3 Tha Mehod dacaccion LiaLcj (HDL) art liittd in TabUi
3.6-1 and 3.6-2. That HDL tot • ipaciftc taapla uy dtffar from that Uicad,
depending upon eh* nscura of tncarfaraneaa in eh* ia«pla nacrlx and eh* aaour:
of 5aapla us*d In eh* procadur*.
3.6.1.4 Tha axer«,ceion procadura foe solid saaplas Ls slailar :a
chac spacifiad in Machod 1311 (1), thus, a singla sasrpl* nay b« excracted ::
naaaura cha analycas includad .in eha seep* of oehar appropriate aaeheds. The
analyse Is allowed cha flexibility co lelecc chronacographic condicUni
3-IS6
-------
Racovar =h« axpond filter inco a laparaci claan container *"d racurn ;-a
consainar .ovar lea co cha iaboracary for analysii. If cnt filcar Li b«i-i
a.-.a^vied for foraaldahydt, :ht fil:ar may ba raeoverad inco a concainar o:
::;?H reagenc for shipaant back co :ha laboratory. If cha ftl:ar '.» baing
«xaa'.r.ed far :ha prasanca of parziculaca aacariaL, :ha fj,L:«r say b«
."a a clean dry csncainar ind racurnad co :ha laboracorv,
3-185
-------
aopropriace for ;he simultaneous measurement of eoncaalnations of :h
est
I 5,1,3 ThU siechod it restricted co use by, or under :he super.-. •
sion of ar.alyics experienced tn the uje of chronatography and In cha Lncar?:*-
:acion of chromacograaa. Each analyst oujc demonstrate ch« ability :a
generate acceptable results vtth this method,
3.6.1.6 The coxlcLey or carcinoganielcy of aach raagant usad .n
:hi* aachod ha* noc baan practsaLy daflnad: hov«v«c, aaeh chtalcal compound
should ba craaead as a pottncial health hazard. Froa ehla viawpoLnc, expos..-;
•-Q zhasa chamicals ousc ba raducad co cha lowasc poisibla lav«l by vhacavar
-eans avaiLabla. Th« Laboracocy is rasponiibla Cor aalncaLning a curranc
awiranasi fila of OSHA rafulations rajardlng ch« *afa handHnj of cha chaai-
cals ipaciflad In chls nachod A rafcranca flic of aacarLal safaey daca
shatcs should also bat a«4a available co all personnel lnvolv«d Ln cha chaoical
anaiyiii. Ad4Lctena\L rafarancas to laboratory safacy ara avatlabla
3.6.1.7 ForaaLdahyda has b««n eaneaelvaly elasilftad as a kr.owr
suipaccad, human or aajmalLan carelno|«n.
352 s ufflaarv a t Machad
3.6.2.1 Environmental Liquid* and Solid Uaehatas
3.6.2.1.1 For vutas comprised of solid* or for aqueotu va*cas
concalnlnf •Ifjniftecnc ameunea of solid aacarlal, eho aqviaou* phaia, If any.
.1 iaparac«d from tolld pha\a« and •cored for later analysis. If neces-
sary, the particle slxo of the solid* In the wa*te Is reduced. The solid
phase La eitraeced with an amount of extraction fluid equal co 20 times cha
weight of the solid phase of the waste. A special extractor vessel is usad
whan casting for volatile*. Following extraction, the aqueous extract it
separated from the solid phase by filtration employing 0.6 co 0.8 MS glass
fLbar filters.
3-iaa
-------
Table 3.6-1
H:CH PERFGR.IANC£ I::L-:D CHRCMATDCRAPHY COND:T::N'S
METHOD SETECTIOS LIMITS CSINC SOLI3
SOU EOT EXTRACTION
ia«
H?LC condi:ion>: R«v«n« ph»t« CIS column. 4,6 x 230 am: Liacriclc •'..
using a«ch«nel/w«t«r (73:23, v/v); flow ctct L 0 nL/min.: d«c«ecor 160
• Af:«r corriesion for Laboratory blank.
Table 3.6-2
HIGH PERFORMANCE LIQUID CKROHATOCRAfHY CQKOITIONS
METHOD DETECTION LIMITS USING HETHYUNE
CHLORIDE EXTlACTION
Rtctnelon Tla« MHL
7,1- 7,2
S.6 171*
HPLC condition!: livtri* ph«J« C1I eoluan. <»-4 i 230 ••; UocracLe •Luzi
u«in; ••chAnal/vaear (79:2S. v/v): Clew r*C« L.O «L/«tn ; d*c«ccoc 360 na.
Th«t« valutj Lnelud* r«af*ne bl*nk cone*ncr*clenj of 4pproxia*ctly 1
forMld«hyd« «n4 130 wg/L aetealdchyd*.
3-187
-------
:has« aacatialf »ujc b* toucinaly damonssracad co ba Craa froa ineacftser,cts
-ndar :ha conditions of :ha analysis lay analysing laboratory raaganc blanks
3,6.3.1.1 Glassvara ausc ba scrupulously claanad. Claan all
giasiwart ai soon is posslbla afcar usa by rinsing vich cha Use solvmc ustd
This should b« failow»d by dacargtnc wathing «ich hoc wacar. and rinsai vt:h
rap wacar and diseiiltd wacar. Ic should Chan b* drainad, drlad, and h«i:«i
in a laboracory ov«n ae 130'C for sav«cai hours bafora us a. SoLvanc r-.r.sei
with aachanol nay ba subitteuead for tha ov«n haacing. Aftar drying and
cooling, giassvara should ba scorad In a claan anvlronaanc co pravane any
accuauLaeton of duac or ochar eoncaatnanti.
3.6.3.1.2 Tha usa of high pur Ley raaganci and solvancs halps -a
ninlslza Incarfaranca problaaa. Purification of solvancs by dlidllaclort in
all-glass syicasa *ay ba raqulrad,
3,6.3.2 Analyst* far fomaldahyda Is aapaclally coapllcacad by L:s
ubiquitous occurranea in cha anvlronaanc.
3,6.3,3 Matrix Incarfarancas a«y ba causad by eeneaalnancs chac
ara coaxtractad froa cha saapla Tha axcanc of »acrix Incarfarances will v«:y
consldarably froa sourca eo sourea. dapandinj upon cha nacura and divarsUy o:
:ha matrix balng saaplad. No Inearfarancaa hava baan obsarvad In cha aacrlcas
siudlad as a rasulc of using solid sorbanc axcraceion aa opposad eo liquid
axcracclon. If incarfarancaa occur in subsaquanc saaplas, soaa addlelonal
claanup aay ba nacaasajry.
3.1.3.4 Tha axtanc of incarfarancaa thac stay ba aneouncarad using
liquid chro«aeographle cachniquaa has nee baan fully aaaaaaad. Although cha
HPLC condiciona dascribad alien for a rasolucion of cha apacific compounds
covarad by chis aachod, ochar aacrlx coaponanes aay incarfara.
3.6.4 Aaaaracujand Maeariala
3.6.4.1 Raacclon v«s»»L • 220 al Floranca flask,
3-190
-------
-2,1,2 If conpACiblt (i.t,, aulsipU phases vLll noe fora or,
'he initial aqutous phase o£ :he wait* it added co cht aqutous
extract, and these liquids art analyzed zageshtr. if incompatible, cht
'.iquida art ar.aiy*td stparactly and the rtsul;i an aachoaaeically coablr.td
yield a vo~kvae -oighctd aviragt concincraclan.
3 5 2.L.] A ataiurtd voluat of aquaoui j*npl« or an ippropr'.ite
a.T.oun: of solids i«ach4C« is buffartd co pH 5 and dtrivaclztd wi;h 2,--
iir.i;roph«nylhydr*ztn« (DNFH) , using tichtr cht solid sorbtne or she atsr.v'.sr
i«rivacizacion/txtraccion opcion. If cht soLid »orb«ne option i* ustd. :r.e
derivacivt is txcraestd using solid iorb«nc c*rcridjt«, followtd by •lusiar,
vi;h achanol. If :ht ntchyltnt chloridt opcion is uitd, :ht dtriv«civt is
sx:racctd wi:h ntchyltnt chioridt. The atchyUnt chloride txtrac:i art
=onctncr*t*d using cht Kudtrna-Danish (K-D) procedure and iolvtnc txehangaii
i-to atchanoi prior co HPLC analysis Liquid chroajcographic conditions art
describtd which ptraic cht itparacion and ataiurtmtnc of foraaldthydt in :h«
extract by absocbanct dtctecion ac 360 na.
3-6.2,2 Scack Cas SaapUs Colltcctd by Mtchod 0011
3.6.2.2.1 The tncirt saaplt recurned to tht laboratory is txccac:e
with oechylene chloride and the aaehylene chloride titrate is brought up :o A
-------
3.6.4.8.5 Scrip-chari recorder compatible «ich decectoc • r.'se of A
ia:a sysrea foe aeasurir.g ?**"* areas and ricaneion cisies ii r«coma«nd«d
3,6.4.9 :ian fiber filler paper.
3-6,4.10 Solid lorbenc cartridges • Picked wlch 500 ng C13 (3akar
or aquivaitnc).
3.6.&.11 Vacuua manifold • Capabl* of siouLtantoua txcractior. ::
= 3 12 safflpL«i (Sup«lco or
3,6.4.12 SanpU rtsir/oiri • 60 al capacUy (Sup«lco or
Une) .
3.1, 4. 13 PLp*e • C*p«bi« of 4ccur»c«ly d«Uv«rin| 0.10 ml lelucion
(Piptcaan or
3.6.4.14 Vactc bach • Htaead, wieh ceneanerie ring cov«r, capab'.t
of c«Bp«rttur« eoncrol ((±) 2*C). Th« b»eh should b« ui«d und*r • hood,
3.6.4.13 VoLua«cric rUiki - 2SO or 500 al .
3.6.5
3,6,3.1 RaagiRC grad* ehtaleali shall b« ua*4 in all
oeharvlia LndLcac«d. It L» Incindad thac all rsaganea shall conform :a
:h« ipicifleaelon* of cha Co«iicc*« on Analytical Raagtncs of cha Aaarlcan
Chaaical Soelarjr, vtiara tueh «p«eiftc*eiona are availabla. Other gradai aay
=• mid. provtdad ic is first aac«reaLna4 ehae eha reaganc la of sufficiently
high puricy ea peraic lea uaa vichouc Lessening ctia accuracy of che dectrmir.a-
:ian.
3.6.3,2 Organic -free wacer • All references co waeer in ehii
nechod refer co organic -free reagenc vaear, as defined In Chapter 1 SU-846,
3-192
-------
J.6-4.2 Separacory funnel • 205 si. vi:h Teflon s;opeock
3,6.4.3 Kuderna-Oanish 'K-0) apparatus.
J.6.4.3.L Concentrator :ube • 10 al graduated (Konces K- 5TC050 • '.:Z:
:r equivalent) A ground glass stopper is used :o priv«nC evaporation of
extrac :s -
3,5.4-3.2 £v«p0racion flask • 500 al (Koncii K-57COOL -:G-" sr
equiv«L«nc) . Accaeh co conctrrrator cub« wich springs, clamps, or equivalent
3.5.i«. 3. 3 Snyd«r col'^an • Thr«« ball a*cro (Kanci* K- 503000 -Ci: 1 ;
3,6,4,].<* Snydar coluan - Two ball nacra (Koncis 1C- 56900L-.021? 7:
equivalenc) ,
3.6.4 3.5 Springs • 1/2 inch (Konctf K-662T50 or «quiv*l«nc).
3.6.4.4 VLali • 10. 25 al, glass wich Teflon lined screw caps or
crisp cops.
3.6.4.3 Belling ships - Selv«nc extracted wich nechylen« chloride
approxio«cely 10/40 »«sh (silicon carbid* or •quLvalmc) .
3,6.4.6 Btltne* • An«lycieal. capable of accurately weighing to
the nearest 0.0001 g.
3,6.4.7 pH a«cer • Capable of measuring to chi ntartsc 0.01 units
3.6.4.S High performance liquid chroaacograph (modular)
3.6.4.1.1 PiapLni •yteeoi • Isocracic, wtch conaeanc tlpv concral
capable of 1.00 •l/rnin.
3.6.4.1.2 High pCMaure injection valv* wich 20 i*L loop,
3.6,4,8.3 Coluan - 230 am x 4.6 aa ID. 3 uA parclcl* size, C18 (or
•quivalenc) .
3.6,4.1.4 Abaorbanca decteeor • 360 na.
3-191
-------
-sing O.L H HCl. The formaldehyde conc«ncr*cion is calculated using :!r.e
fallowing equation;
:oncanira=ion (sg/al) - 30.03 x (N HCl) x (si HCl) 23.0
where :
N HCl • Mortality of HCL solution usad
ml HCl - ol of standardized HCl solution usad
10-03 - !« of formaldahyda
3. S. 5. 14. 2 Stock formaldahyda and acaealdahyde • Prepare by adding
ZS5 uL formalin and 0.1 g acataldahyda co 90 al of wacar and dtluca co 100 .-ol
Tha concancracton of acacaldahyd* in chi« »olutlon Ls I. 00 ng/ml . CilcuLa:*
:ha coneaneracion of fornaldahyda in this lolutton u*tng cha rasulci of :ha
parformad Ln Sacclon 3.6.5.14.1.1.
3. 6. 3. 14. 3 Scock standard solution* BU>C b« rapUcad afcac six
montha , or soonar, if covparlson with ehack standard! Lndicatti « problta.
3.6.1.13 Raaceton Solutions
3. 6. 5. 13. 1 ONPH (1.00 vg/L) • DissoUa 142.9 d| of 701 (w/v) raigsn:
*
Ln 100 ol absoluta «thanol. Slight ht«cln| or sonicatlon ««y b« naeassary ;a
affact dtaaolueton.
3 6.5.13.2 Actuca buffer (3 N) Praptr* by lUucraHsing
acatle acid to pH 3 with S S M«OH lelutlon. Dilute co standard veluoM with
wacar.
3.6.9.13.3 Sodiia chlorld* iclutUn (t«curae«4) Prtpara by nixing
at cha raagtnc frada solid with w«tar.
3.6.6 Saaala Callaeclon. Prasarvarlon. infl HMdllPl
3.6.6.1 Saa th« Ineroduceory aaetrlal to this Chjptar, Organic
Analytts, SaecLon 4.1 of SW-146.
-------
3.6.5.3 -echylsr-.a cr.Larida. CH,Ci, • HPLC grada or
3.6,5.t MathanoL, CHjOH • HPLC grad* or iquiv»l«nc.
3.5.5.3 EshanoL (4biolu = i), CHjCHjOH - HPLC grida or
3.6.5.6 2 , *'Dtni;rophtnylhydrizin« (DNPH) (70% (•/•"))
in organic-fret naganc vacar.
3.6.5.7 Fonnaiin (37,6 pareonc («/«)), fora*ld«hvd« in organ.;; -
r«ag«nc w«c«r,
3.6,5.8 Acccic acid (glacial). CH,C02H.
3.6.5,9 Sodl.ua hydroxide lolucioni S«OH, L . 0 N and 5 N ,
3.6.3.10 Sodiufl chlorlda. S«Cl.
3,6.5.11 Sodiufl sulflc* lolucion, Nt,SO,, 0.1 N.
3.6.5.12 Hydrochloric Acid, HC1, O.I N.
3.6.5.13 EKCTMCLon fluid • Olluc* 64.3 «1 of 1.0 N NtOH end 57 -
glacitl Acacie icid eo 900 al vlch or|tntc-frt« r««f*ne wacar. Dlluca to :
li:«r vlch organic -fraa rt*|ane wacar. Th« pH should ba 4.93 ± 0,02.
3.6.3.14 Stock aundtrd lolucloiu
3,6.3.14.1 Stock formtldahyda (approilaaealy 1.00 «|/«1) - Prepare
by diluting 243 itl formal In co 100 al vlch organic -fra« raaganc vacar.
3.6.5.14.1.1 Scandardizaeton of fora*ld»hyd« tceck solution •
Tranafac a 25 al aliquot of a 0.1 N Na,SO, loluclon eo a boakar and racord -,-t
pH. Add a 23.0 al aliquot of tho fonaldahyda itock tolutlon (Sactlon
3.6.3.14.1) and racord tha pH, Tltraca chii alxtura back to tha original pH
3-193
-------
for IS hours- Fil:«r the axcracc =hrsugh gU*1 --^er paper and scar* ir.
sealed bac:1.»» a!: -*C. Each su of txcracs reprtsencs 0.010 3 solid,
3.6.7.2 Cleanup «nd Separation
15,7.2.1 Cleanup procedures nay roc be necessary far a rela: !•/•:•/
clean sample oacrix. tha cltanup procidurti rtcorara«r.d«d Ln chis mathod have
b««n used for the »naly§i.s of various sample :yp«j, if parcicuLar c-.r:_--
s:ar.cta dtmand :h« usa of an al:trn«civt clsanup proctdur«, chi analys; ~-s:
d«c«min« :ht elucion profile and danonacract chac :ht rtcov«ry of farmal.e-
hyd« is no loss chan 351 of recoveries specified Ln Table 3,6-3. Recovery -i
be lower for samples which fora enuisionx.
3.1.7.2.2 If che sadple la noc clean, or che coapLexicy is unknown,
:he entire sample should be cencrifuged ae 2500 rpa for 10 ninucei Deeane
che supernacanc Liquid Iron che centrifuge boccle, and filcer chrough gLaas
fiber filcer paper ineo a coneainer which can be cighcly tenled.
3.6.7.3 Deriv»ciz*clon
36.7,3.1 For aqueous saaples. measure a 30 co 100 al aLiquoc o: :.-
sanple. Quancicartvely cranafer che sample aliquoc co che ceaccion vessel
(Section 3.6.4.L).
3,6.7.3,2 For solid laaplei, I co 10 ml of le*ch»ce (Seccion
36.7.1) will ujoally bei required, the aaounc uued for e particular saapla
oiuie be decerained through preliainmry experiaenc*.
3-196
-------
3.6-6.2 Envitonn«nc»L liquid and Leachate imp In muac be :e:::-.
eracid ac ^*C, and oust be d«ri.vastztd ytchin 5 dayi of laapLa eollec:;:n ir.i
vichin 3 days of dsr;v«cization.
3 §.6.3 Stack gas saaples collected by Method 0011 aus: be
refrigerated ac 4"C. It is recommended chat ia«pUi b« »x:rac:«d vi;r,i- 30
days of eoLltccion and :h*c «xcraccs b« analyzad wichin 30 days exsracziar,
3.6.7 Procidurt
1.6.7.1 Extraction of Solid Saaplai
3.6,7.1.1 ALL 10 Lid saapLts should b« homogintous '."h«n -he sasp'.«
is noc dry, diciraina eh* dry vaighc of ch« saispla. using a r*prastneaeiv«
aLiquoC-
3.6.7.1.1.1 D«ctrnin«eion of dry w«ifhe • In c*re*in cas«s. saapLt
reiuLcs ar« d«sir«d ba»«d on a dry w«ighe basis. Uh«n such daca It das i red.
at r«quin
-------
Sota: Tot all reactions, 'ht local voluoa of :he aqueous layer should :«
adjusted =o IQO al «i:h water
35*33 Derivacizacion and entraction of che derivative can be
accomplished using :ha solid sorbanc (Section 3,6.7.3.4) or nathylene chloride
spzion (Saccion 3.6.7.3.3)-
3.6.7.3.4 Solid Sorbanc Option
3.6,7.3.4.1 Add 4 n l of acetate buffer and adjusc cha pH to 5.: ;
0.1 wi;h glacial acaclc acid oc 5 N SiJH Add 6 al of DNPH :aaganc, jaal :r.e
:an:air.ar, and place on a wrisc-accior. ihaker for 30 ainutai.
3.6.7.3,4.2 AataabLa cha vaeuua «*nifold and connect :o a wacer
aspirator or vacuvui puop. Ajaaabla solid sorbanc cartridges containing a
reinioua of 1.5 g of CIS sorbanc, ujlnf connectors supplied by the aanufaccur-
oc. and attach eha sorbant train to th« vacuua manifold. Condition aach
cartridge by passing 10 al diluta aeatata buffar (10 mi 3 N acataca buffer
dissolved in 230 al water) through cha sorbent cartridge train.
3.6.7.3.4.3 Reaove the reaction vassal froa cha shaker and add L*
-il saturated SaCl solution to eh* vessel.
3.6.7.3.4.4 Add cht reaction solution to th« sorbent train and
apply a vacuua so chae eh« solution is drawn through th« cartridges at a ra:a
of 3 to 5 al/aln. Rtlajua th« vaeuua after the solution ha* passed through
;he sorbent.
3.6.7.3.4.9 Clue* each cartridge eraln wlch appro*laately 9 al o:
absolute ethanol. directly Into a 10 al voluaacrlc flaak. Dilute the solution
=o voLuaa with absolute eehanol, alxed thoroughly, and place in a tightly
sealed vial until analyzed,
3-L99
-------
.ablt 3.6-3
s:sci£ CPESUTCR ACC.TUCY A.SD PRECIS ::N
USING SOLID SOJULST EXTRACTION
**cru
Muly=i Typt
Av«r«g« Se*nd*rd Spike N"'_-bir
Ptretne ^tviAcUn R*ng« 3f
Rteovtry ?«rc«ne -wi/L) Ar.il-.-m
Rsagtne
Final
Effluent
Phanol
form*U«hy(l*
Slu4ft
96
90
93
9 i.
'.1.0
12.0
LS-l'.lO
,6 8-li.lO
-------
3-6.7.:, 5,5.1 Following K-3 concentration of -j,« mechylsne chlorite
ex.rac: :o < 10 nl using the aacrs Snyder column, allow che apparatus co cool
and drain foe at lease 10 minutes.
].S " ' " 5.2 Momencarily rtaove che Snyder column, add 5 al af :;-e
:?.s:hanol. a -: . oed, or bailing chip, and accach che micro Snyd«r
column. Concenerace che excracc using 1 al of a«ch*nol co prtwcc :he Sr./iar
coluan. Plact ch« K-D apparacui on ch« w»c«r b*ch 10 thac th« concAncracor
:ub« ii partially Immersed in ch« hoc wac«r, Adjuic ch» vertical pojtv.on of
:K« apparacui and che vacer teoperacure, as required. Co complece concar.:za-
::on. At the proper -: of dlsclilacLon the belli of che column will
actively chatter. : chambers will noc flood. When che apparent voluise
of liquid reacr ... remove the K-D apparatus and allow le co drain and
cool for *c lease .J mlnucee.
3.6.7.3,3.3.3 Remove che Snyder column and rinse che flask and Lcs
lower Joint with 1-2 ml of aechanol and ad4 co concentracor cube. A 3-ml
syringe Is recommended for this operation. Adjust the extract volume to '.3
ml. Stopper che concentrator cube and store refrigerated at <**C If further
processing will not be performed Immediately, If the extract will be scorid
longer than eve days, it should be cransferred co a vial with • Teflon- Lir.ed
screw cap or crimp cop. Proceed with liquid chromacographle analysis if
further cleanup is not required.
3.6.7.4 btrMtlon of Stack G«« Saxplei Collected by Method 0011
3.4.7.4,1 itaASJuze the aqueous volume of the sample prior to extrac-
tion (for moIscure determination in case che volume was noc measured in che
field). Pour ch« sample into a separacory funnel and drain che mechyUne
chloride into e volumetric flask.
3.6.7.4.2 Extract the aqueous solution with two or three aliquot* of
machylene chloride. Add the methylene chloride extracts Co che volumetric
flask.
3-200
-------
3.S.7.J.5 Macnylana Chi a ci da Ope ion
3 5.7.3,5.1 Add 5 a of icacaca buffer and adjuie :he pH :o 5 ] -
:.: -••.:;- slacial acacic acid or 5 S SaOH. Add 10 mi of DSPH reagen:, s«a. :r.a
rar.cair.ar. and place on a vrisc-acsion shakar for 1 hour,
3.6,7.3.5.2 Excracc =ha solucion wi;h chraa 20 ol portions of
,?,«-hylana chlorida, using a 250 al saparacory funnal, and eoabina cha aczi-.y
Lena chiorlda Layars. If an taulflion forai upon axcraecton. removi-hhii en:..-?
emulsion and cincrifuga ac, 2000 rpa far LO alnucaa, Saparaca cha layars ir,;
procaad wich :ha naxc axcraccion,
1.6,7.3.5.3 AjtanbLa * Kudarn*-DanUh (K-D) coneancracor by
ac;achlng a 10 ml eoneancracer cub* ca a 500 al aviporacor flaik. Uath cha K-
0 apparatus with 23 al of axcraccion solv«nc co coaplaca cha qutncicaclva
:ransfar .
3.6,7.3.3.4 Add ona co cue claan boiling chipa co cha avtpora:. ?
flask and accach a chraa ball Snydar coluan. Praaac cha Snydar coluon by
adding aboue L al aachyiana ehlorid* co cha cop, Placa cha K-0 apparacuj on a
hoc w«ctr bach (80-90'C) so chac cha concancracor Cuba U ptrctalLy Laaariad
Ln cha ho: wacar and eha anctra lovar raundad surf act of cha Claak is bathad
wtch hoe v«por. Adjuic cha varcieal poaicion of tha apparacuj and cha w*c»r
:aop«racur«, at raquirad, Co coaplaca eha concancracioo in 10-13 ain. AC :r.e
propar raca of dtietllatlon eha balls of eha coluan will aecivily ehaccar, bu:
of liquid raaehaa 10 al, raaovi cha K-0 apparaeua and allow ic co drain and
cool foe a laaae 10 ain.
3.6,7.3.9.3 Prior co liquid chroaaeographU analysis, cha solv«r:
T.USC ba axehangad co aaehanol. Tha analyse ouae ansura quaneieaeiva cram far
of cha axcracc eoncancraca. Thai axchanga is parfonwd as follows:
3-199
-------
3.6.7 5.1.1,2 Process each calibration standard solution through
:~.e derivat;zaeion op:-.on used for sample processing (Section 3.6.7,3.^ or
3,5.7.3.5)
3.6.7,6.1.2 External standard calibration procedure
3.6.7.6.1.2.1 Analyst each darivacizad calibration standard usir.g
the chronatographic conditions listed In Tablet 3.6-1 and 3.6-2, and tabulate
peak area against concentration injected. The ritults may be used to prepare
calibration curias for formaldehyde and acetaldehyde,
3.6.7,6.1.2.2 The working calibration curve aust be verified on
each working day by the meaaursenenc of on* or more calibration standards If
the response for any analyte varies from the previously established responses
by more the 10%. the teac oust be repeated using a fresh calibration standard
after U is veriflid that the analytical syitea ii In control. Alternatively,
t new calibration curve may bo prepared for that coopound. If an autoiuipltr
is available, it is convenient to prepare a calibration curve dally by
analyzing standard* along with teat auplea.
3.6-7.7 AnaLyili
3.6.7.7,1 Analyze •aaplea by HPLC, uilng condlciona ettabiished in
Section 3-67.6.1. Tabl*« 3.6-1 and 1.6-2 Lilt the retention tiaes and NOLj
that were obtained under cheee conditions. Other HPLC coluanj. chroaatogrtph•
ic conditions, or detectors may be used if the requirement! for Section
3.6,8.1 are Mt. or if the data are within the lialti described In Tablet
3.6-1 and 3.6-2.
3.6.7.7,2 The width ef the retention eiae window used to uke
identifications should be based upon MasureoMnts of actual retention cine
variation! of standard! over the course of a day. Three tlaiea the standard
deviation of a retention time for a compound can be used to calculate a
suggested window sice; however, the experience of the analyst should weigh
heavily in the interpretation of the chronacograas.
3-202
-------
3.6.7,4.3 Fill chi voluaecrtc flaik to ehe line wich mtchyler.e
chioridt. Mix wtll and rtmovt an allquoc,
3.6.7,4.4 if high levels of formaldehyde art prtsenc. che excrac;
can be diluted vi;h mob Lie phase, ochervist cht txcracc ousc bt solven:
exchangtd as describtd in Seccion 3,6.7.3,3.3. If low Itvels of faraa'.iehyde
are prestnc, che sanplt should be concencraced during che solvenc exchange
procedure.
3.6.7.5 Chrooacographlc Condi.clone
Column1 CIS, 250 mm x 4,6 nun ID, 5 ua particle sizt
Mobile Pnait: mtchanol/wactr, 75:25 (v/v), isocracic
Flow Ract: 1.0 nl/mln
UV Dtceccor: 360 na
Injtccion Voluat: 20 itl
3.6.7,6 Calibracion
3.6.7.6.1 Escablith liquid chronacographic optracing parameters :o
product a rtctncion clot tquivaltnc co chac indlcaced In Table 3.6*1 for :he
solid sorbenc opciona, or in Tablt 3.6-2 for aechylene chioridt option.
Suggtictd chromacographlc condlciona art provldtd in Stecion 3.6.7.3. Prepare
dtrivaclztd caltbracion tcandardj according co cht proctdurt In Steclon
3,6.7.6.1.1. CalLbCACt cht chroaacographlc sytceat ualng cht tictrnal scandari
technique (Steclon 3.6.7.6.1.2).
3.6.7,6.1.1 Prtparaeion ot calibracion icandard*
3.6.7.6.1.1.1 Prtpart calibration icandard toluciona of fornalde*
hydt and actetldthydt in vacar froa cht «cock acandard (Stecion 3.6.3,14,2)
Prtpart che it solucionj ac cht) following conctncraclona (In >*g/«D by ttrial
dilucien of cht aceek tcandard soluclen: 30, 20, 10. Prtpart addiclonal
calibration tcandard toluclona ac ch« following concencreeionj, by dilution o:
cht appropriact 30. 20, or 10 Mg/«l teandard: 3. 0.3, 2, 0.2, 1, 0.1.
3-201
-------
zacal Mg/raL - (RF) (are* of signal) (concentration factor)
where :
Final Volume of Extract
concentration factor -
Initial Extract YoLuae
3-6.8 ?uaIL:v Canrral
3.6.8.1 Refer :a Chapter One of Sf-gifi f0f guidance on quality
control, procedures.
3.6,9
3.6.9.L Th« HDL concencraciont Listed in Tab La 3,6-1 w«r» obtair.ed
using organic-free wacec and soLLd forbenc extraecLon, Slnilar reiul;s were
achieved using a final effluent and sludge leachace The HDL concentrations
lisctd In Table 3.6-2 wan obtained using organic -free water and aethylene
chloride extraction. Similar results were achieved uaing representative
cnatrices.
3.6,9,2 This o«thod has been ceiced for linearity of recovery fran
spiked organic- free water and has been deeons traced Co be applicable over :h«
rang* from 2 x .1DL co 200 x HOL.
^
3.6.9.3 In a single laboratory ev«iu*eton ujlng several spiked
matrices, tha average recevariea presented In Tables 3-6-3 and 3.6-4 ware
obcalnad using solid sorbtnc and aechylana chloride excracclon. respectively
The standard devlatleiu of Che percent recovery ace also Included In Tables
3.6-3 and 3.6-4.
3.6.9.4 A represencaclve chroaacograa is pr«t«nced In
Figure 3.6-1.
3-20i
-------
3,6.7.7.3 If che p«ak area exceeds cha linear range of ;he calibra-
tion curve, a smaller saapi* "'olume should be used, Alcernatively. che fir.a'.
solution may bt diluted with echanol and reanalyzed.
].5.r.7.i. If ;he peak area aeasurenanz is prevented by che presence
of observed incerfarencas, further cleanup is requlrid. However, none of ;l-.e
1600 aechod series have been evaluated for ;his procedure.
3,6,7.3 Calculations
3.6.7.3.1 Calculate each response factor as follows (mean value
baaed on 5 points):
eancenrration of standard
R? - ar«a of che signal
5
(I «,)
1
mean - RJ - RT -
1.6,7,8.2 Calculate ch« concentration of formaldehyde and acecalde
hyde as follows:
«
-------
Table 3.6-*
SIXCLX OPERATOR ACCL1UCY AND PRECISION
us IMC HITHYU.WE CHLORIDE IXHACT:ON
AnftLyct "/P*
forBildthyd* Rtflfinc
•Actr
Ground-
vicar
Liquid*
u«eir
Ground-
vac«r
Liquid*
(2 eyp«*>
Solid*
Ptrctnc
R*eov«ry
X
91
92.3
69 6
40. 1
63. ft
44.0
31.4
ScindArd
D«vl*cion
P»rc«nc
P
2,3 '
82
16-3
3.2
10,9
20.2
2.7
Splk*
30-1000
50
230
30-1000
30
230
0,10-1. 0€
S'uaotr !
of
Ar.4-.-m
9
i
L2
9
12
12
12
it - Av«rtf« r«cov«ry «xp«eead far ehls a>ehp4
p - Av«r«|« luiMUird davl«tlon txp«ce«d Cor ehia Mchod.
3-206
-------
3.6,10
F«d«r«L Regisctr, 1996, 51, i.0643- 40632; Noviab«r 7
2. EPA Machod* 6010, 7000, 7041, ?0«0, 7131, 76,21, 7^70, 7740, and
for £v«lu*ein| Solid
.
SU-846, TKlrd Edition. S«pciuib«c L98S. oefic* of Soil!
.
and Eaargtncy Miponit. U.S. Envtronmtrical ProcacrLan
-Ajhingcon, D.C. 20^60,
3-205
-------
METHOD OOUA
'.-i.-i i:-:«
•9 so-"*: aaa
"«-'9« "ma:
r ' I
' 1.'
. (I
12 :
a^
••CUM*
ia-91*.
•f 3 iOluff« •( 100
-1
JC-*
sr i«
*r«rgii«t:
10
'f
M.4.4
tnvitf
7.14,4 MM IM
71* J
•!'•»•§»•
:•;-:§
,'M
! J »iu-: •
i? -••
*« TJ -7
'5
7 1 S 1
•• «§»•:• ii
-0 JIM'-:
3-208
-------
Figure 3 . 5-i
«lM£S£
-------
00 UA
'I •••Mr*
'* S.I 2.!
IW11*
»*«• •»«« t||ilt«f
5-1 2.1
'9' out:
rK
r
1.2 -M
M.I '( IMI
M.4 If
'•
fT't W-J
3-209
-------
APPENDIX J.4
PAH
-------
METHOD 0010
MODIFIED METHOD 5 SAMPLING TRAIN
1.0 SCOPE AND APPLICATION
l.l This method Is applicable to the determination of Destruction and
Removal Efficiency (ORE) of sem1vo1at11e Prfndpal Organic Hazardous Compounds
(POHCs) from Incineration systems (PHS, 1967). This method also may be used
to determine parti oil ate emission rates from stationary sources as per EPA
Method 5 (see References at end of this method).
2.0 SUMMARY OF METHOD
2.1 Gaseous and participate pollutants are withdrawn from an emission
source at an Isoklnetlc sampling rate and are collected In a muIt1component
sampling train. Principal components of the train Include a high-efficiency
glass- or quartz-fiber filter and a packed bed of porous polymeric adsorbent
resin. The filter Is used to collect o.^aMc,-laden participate materials and
the porous polymeric resin to adsorb seal volatile organic species.
Semlvolatlle species are defined as compounds with boiling points >100'C.
2.2 Comprehensive chemical analyses of the collected sample are
conducted to determine the concentration and Identity of the organic
materials.
3.0 INTERFERENCES
3.1 Oxides of nitrogen (NOX) are possible Interferents in the
determination of certain water-soluble compounds such as dloxane, phenol, and
urethane; reaction of these compounds with NO* In the presence of moisture
will reduce their concentration. Other possibilities that could result In
positive or negative bias are (1) stability of the compounds In nethylene
chloride, (2) the formation of water-soluble organic salts on the resin In the
presence of moisture, and (3) the solvent extraction efficiency of water-
soluble compounds from aqueous media. Use of two or more Ions per compound
for qualitative and quantitative analysis can overcome Interference at one
mass. These concerns should! be addressed on a compound-by-compound basis
before using this method.
4.0 APPARATUS AND MATERIALS
4.1 Sampling train;
4.1.1 A schematic of the sampling train used in this method is
shown in Figure 1. This saopllng train configuration Is adapted from EPA
Method 5 procedures, and, as such, the majority of the required equipment
0010 - 1
Revision
Date September 1986
-------
••Sent** I I!
T««np««li
PtolM-*^
H**«l A*e«
Sl«*MMI
HtvtfM-f yp* Piiol lit*
o
I
IVi
fttot MafMnMl
fUcw culMwn Pump
TtttmMMMMfi
CbiNc*
it o
Line
Diy CM Uelci Ail lii^il Pt.mp
vO
t»
Ol
Figure I. Modi I led Mmtiod 5 Sampling Tram.
-------
is identical to that used In EPA Method 5 determinations. The new
components required are a condenser coll and a sorbent module, which are
used to collect semlvolatile organic materials that pass through the
glass- or quartz-fiber filter in the gas phase.
4.1.2 Construction details for the basic train components are given
in APTD-05SI (see Martin, 1971, in Section 13.0, References); commercial
models of this equipment are also available. Specifications for the
sorbent module- are provided In the following subsections. Additionally,
the following subsections 11st changes to APTO-0581 and Identify
allowable train configuration modifications.
4.1.3 Basic operating and maintenance procedures for the sampling
train are described In APTD-0576 (see Rom, 1972, In Section 13.0,
References). As correct usage Is Important In obtaining valid results,
all users should refer to APTD-OS76 and adopt the operating and
maintenance procedures outlined therein unless otherwise specified. The
sampling train consists of the components detailed below.
4.1.3.1 Probe nozzle; Stainless steel (316) or glass with
sharp, tapered (30* angle) leading edge. The taper shall be on the
outside to preserve a constant I.D. The nozzle shall be buttonhook
or elbow design and constructed fron seamless tubing (If made of
stainless steel). Other construction materials may be considered
for particular applications. A range of nozzle sizes suitable for
isoklnetic sampling should be available In Increments of 0.16 cm
(1/16 1n.), e.g., 0.32-1.27 c« (1/8-1/2 In,), or larger If higher
volume sampling trains are used. Each nozzle shall be calibrated
according to the procedures outlined fn Paragraph 9.1.
4.1.3.2 Probe Hner: Boroslllcate or quartz-glass tubing with
a heating system capable of maintaining a gas temperature of 120 +
14*C (248 + 2S*F) at the exit end during sampling. (The tester may
opt to operate the equipment at a temperature lower than that
specified.) Because the actual temperature at the outlet of the
probe 1s not usually monitored during sampling, probes constructed
according to APTD-0581 and utilizing the calibration curves of APTD-
0576 (or calibrated according to the procedure outlined In APTD-
0576) are considered acceptable. Either boroslllcate or quartz-
glass probe liners nay be used for stack temperatures up to about
480"C (900*F). Quartz liners shall be used for temperatures between
480 and 900*C (900 and 1650*F). (The softening temperature for
boroslllcate 1s 820*C (1508T). and for quartz 1500'C (2732*F).)
Water-cooling of the stainless steel sheath w111 be necessary at
temperatures approaching and exceeding 500*C.
*•1-3.3 P1tot tubt! T*P« s' ** described In Section 2.1 of
EPA Method 2, orother appropriate devices (Vollaro, 1976). The
pi tot tube shall be attached to the probe to allow constant
monitoring of the stack-gas velocity. The Impact (high-pressure)
opening plane of the pltot tube shall be even with or above the
nozzle entry plane (see EPA Method 2, Figure 2-6b) during sampling.
The Type S pltot tube assembly shall have a known coefficient,
determined as outlined 1n Section 4 of EPA Method 2.
0010 - 3
Revision 0
Date September 1986
-------
4.1.3.4 Differentia) pressure gauge: Inclined manometer or
equivalent device as described 1n Section "2.2 of EPA Method 2. One
manometer shall be used for velocity-head (4P) readings and the
other for orifice differential pressure (AH) readings.
4.1.3.5 Filter holder: Boroslllcate glass, with a glass frit
filter support and a sealing gasket. The sealing gasket should be
made of materials that will not Introduce organic material fnto the
gas stream at the temperature at which the filter holder will be
maintained. The gasket shall be constructed of Teflon or materials
of equal or better characteristics. The holder design shall provide
a positive seal against leakage at any point along the filter
circumference. The holder shall be attached Immediately to the
outlet of the cyclone or cyclone bypass.
4.1.3.6 Filter heating system: Any heating system capable of
maintaining a temperature or 120 + 14'C (248 + 25*F> around the
filter holder during sampling. ~ Other temperatures may be
appropriate for particular applications. Alternatively, the tester
may opt to operate the equipment at temperatures other than that
specified. A temperature gauge capable of measuring temperature to
within 3'C (S.4*n shall be installed so that the temperature around
the filter holder can be regulated and monitored during sampling.
Heating systems other than the one shown In APTD-0581 nay be used.
4.1.3.7 Organic samel Ing module; This unit consists of three
sections, Including a gas-conditioning section, a sortent trap, and
a condensate knockout trap. The gas-condlttoning system shall be
capable of conditioning the gas leaving the back half of the filter
holder to a temperature not exceeding 20*C (68*F). The sorbent trap
shall be sized to contain approximately 20 g of porous polymeric
resin (Rohm and Haas XAD-2 or equivalent) and shall be Jacketed to
maintain the Internal gas temperature at 17 + 3*C (62.5 • 5.4'F).
The most coomonly used coolant 1s Ice water from the Implnger Ice-
water bath, constantly circulated through the outer Jacket, using
rubber or plastic tubing and j peristaltic pump. The sorbent trap
should be outfitted with a glass well or depression, appropriately
sized to accommodate a small thermocouple 1n the trap for monitoring
the gas entry temperature. The condensate knockout trap shall be of
sufficient size to collect the condensate following gas
conditioning. The organic module components shall be oriented to
direct the flow of condensate formed vertically downward from the
ccfivil b'viiiiiy ivvtlun, through the adsorbent media, and into the
condensate knockout trap. The knockout trap 1s usually similar in
appearance to an empty Inplnger directly underneath the sorbent
module; It may be oversized but should have a shortened center stem
(at a minimum, one-half the length of the normal Implnger stems) to
collect a large volume of condensate without bubbling and
overflowing Into the Inplnger train. All surfaces of the organic
module wetted by the gas sample shall be fabricated of boroslHcate
glass, Teflon, or other Inert materials. Commercial versions of the
0010 - 4
Revision
Date September 1986
-------
complete organic moduli art not currently available, but may be
assembled from commercially available laboratory glassware and a
custom-fabricated sorbent trap. Details of two acceptable designs
ire shown In Figures 2 and 3 (the thermocouple well is shown In
Figure 2).
4.1.3.8 Implnger train; To determine the stack-gas moisture
content, four 500-mL implngers, connected In series with leak-free
ground-glass Joints, follow the knockout trap. The first, third,
and fourth fmplngers shall be of the Greenburg-Smlth design,
modified by replacing the tip with a l.3-cm (1/2-tn.) 1.0. gltss
tube extending about 1.3 cm (1/2 In.) from the bottom of the outer
cylinder, The second Implnger shall be of the Greenburg-Smlth
design with the standard tip. The first and second Implngers shall
contain known quantities of water or appropriate trapping solution.
The third shall be empty or charged with a caustic solution, should
the stack gas contain hydrochloric acid (HC1). The fourth shall
contain a known weight of silica gel or equivalent deslccant.
4.1.3.9 Metering system; The necessary components are a
vacuum gauge, 1eak-freepump, thermometers capable of measuring
temperature to within 3*C (5.4*F), dry-gas liter capable of
measuring volume to within IS, and related equipment, as shown in
Figure I. At a minimum, the pump should be capable of 4 cfn free
flow, and the dry-gas meter should have a recording capacity of
0-999.9 cu ft with a resolution of 0.005 cu ft. Other metering
systems capable of maintaining sampling rates within 101 of
Isoklnetldty and of determining sample volumes to within 21 may be
used. The metering system must be used 1n conjunction with a pi tot
tube to enable checks of 1sok1net1c sampling rates. Sampling trains
using metering systems designed for flow rates higher than those
described In APTO-0581 and APTD-Q576 may be used, provided that the
specifications of this method are met.
4.1.3.10 Barometer; Mercury, aneroid, or other barometer
capable of measuring atmospheric pressure to within 2.5 mm Hg (0.1
m. Hg). In many casts the barometric reading may be obtained from
a nearby National Weather Service station, In which case the station
value (which Is the absolute barometric pressure) Is requested and
an adjustment for elevation differences between the weather station
and sampling point 1s applied at a rate of minus 2.5 m Hg (0.1 in.
Hg) per 30-m (100 ft) elevation Increase (vice versa for elevation
decrease).
4.1.3.11 Gas density determination equipment: Temperature
sensor and pressure gauge (asdescribed1n Sections 2.3 and 2.4 of
EPA Method 2), and gas analyzer, If necessary (as described In EPA
Method 3). The temperature sensor ideally should be permanently
attached to the pilot tube or sampling probe in a fixed
configuration such that the tip of the sensor extends beyond the
leading edge of the probe sheath and does not touch any metal.
0010 - 5
Revision
Date September 1986
-------
•V6.S in.
m
168
28/12
BiMJoinl
•\J M/16" or 45 mm
B* a
v»o
CT
II
1
40RCGIauFiil
?R/l7So«:ki?l Joint
Fiqiue
Sysl«>in
00
-------
Flow Diicction
o
o
*—•
o
I
A —
M
«/» O
RclAininq Spiii|(|
8 mm G1«i Cooling Coil
Ffilinl SlMnfau Sieri OIK
16 mm SatM Sa«l Join!
lof M/12 Snchct Jmml
Figure 3. Atlsoflwni Sampling System.
-------
Alternatively, the sensor may be attached Just prior to use In the
field. Note, however, that If the temperature sensor is Attached in
the field, the sensor must be placed In an Interference-free
arrangement *Hh respect to the Type S pttot tube openings (see EPA
Method 2, Figure 2-7). As a second alternative, If a difference of
no more than U In the average velocity measurement is to be
Introduced, the temperature gauge need not be attached to the probe
or pi tot tube.
4.1.3.12 Callbratton/fleld-preparatlon record: A permanently
bound laboratory notebook, In which duplicate copies of data may be
made as they are being recorded, 1s required for documenting and
recording calibrations and preparation procedures (I.e., filter and
silica gel tare weights, clean XAD-2, qual Ity assurance/quality
control check results, dry-gas meter, and thermocouple calibrations,
etc.). The duplicate copies should be detachable and should be
stored separately In the test program archives.
4.2 Sample Recovery;
4.2.1 Probe liner: Probe nozzle and organic module conditioning
section brushes; nylon bristle brushes with stainless steel wire handles
are required. The probe brush shall have extensions of stainless steel,
Teflon, or Inert material at least as long as the prob*. The brushes
shall be properly sized and shaped to brush out the probe liner, the
probe nozzle, and the organic module conditioning section.
4.2.2 Wash bottles; Three. Teflon or glass wash bottles are
recommended; polyethylene wash bottles should not be used because organic
contaminants may be extracted by exposure to organic solvents used for
sample recovery.
4.2.3 Glass sa^>1e storage containers: Chemically resistant,
borostllcate amber and clear glass bottles, 500-ml or 1,000-mL. Bottles
should be tinted to prevent action of light on sample. Screw-cap liners
shall be either Teflon or constructed so as to be leak-free and resistant
to chemical attack by organic recovery solvents. Narrow-mouth glass
bottles have been found to exhibit less tendency toward leakage.
4.2.4 Pttrl dishes: Glass, sealed around the circumference with
wide (l-ln.) Teflon tape, for storage and transport of filter samples.
4.2.5
water to the nearest 1* oL or 1 g. Graduated cylinders shall have
subdivisions not >2 •(.. Laboratory triple-bean balances capable of
weighing to +0.5 g or better are required.
4.2.6 Plastic storage containers; Screw-cap polypropylene or
polyethylene containers to store silica gel.
4.2.7 Funnel and rubber poltceaan: To aid in transfer of silica
gel to container (not necessary 1f silica gel 1s weighed In field).
0010 - 8
Revision _ 0
Date September 1986
-------
5.4 Sample recovery reagents:
5.4.1 Methylene chloride: 01st1lled-1n-glass grade Is required For
sample recovery and cleanup (see Note to 5.4.2 below).
5.4.2 Methyl alcohol: 01st1Hed-1n-glass grade Is required for
sample recovery and cleanup.
NOTE: Organic solvents from metal containers may have a high
-residue blank and should not be used. Sometimes suppliers
transfer solvents from metal to glass bottles; thus blanks shall
be run prior to field use and only solvents with low blank value
«0.001I) shall be used.
5.4.3 Water: Water (Type II) shall be used for rinsing the organic
module and condenser component.
6.0 SAMPLE COLLECTION, PRESERVATION, AND MAUDLINS
6.1 Because of complexity of this method, field personnel should be
trained 1n and experienced with the test procedures 1n order to obtain
reliable results.
6.2 Laboratory preparation;
6.2.1 All the components shall be maintained and calibrated
according to the procedure described in APTO-0576, unless otherwise
specified.
6.2.2 Weigh several 200- to 300-g portions of silica gel in
airtight containers to the nearest 0.5 g. Record on each container the
total weight of the silica, gel plus containers. As an alternative to
prewelghlng the silica gel. It may Instead be weighed directly fn the
tmplnger or sampling holder Just prior to train assembly.
6.2.3 Check filters visually- against light for irregularities and
flaws or plnhole leaks. Label the shipping containers (glass Petrf
dishes) and keep the f 11 ten 1n these containers at all tines except
during sampling and weighing.
6.2.4 Desiccate the filters at 20 * $.ft«C (68 * 10'F) and anblent
pressure for at least 24 hr, and weigh at Intervals of"at least 6 hr to a
constant weight (I.e., <0.5-ng change from previous weighing), recording
results to the nearest 0.1 ng. During each weighing the filter nust not
be exposed for more than a 2-«1n period to the laboratory atmosphere and
relative humidity above 501. Alternatively (unless otherwise specified
by the Administrator), the filters uy be oven-dried at IQS'C (220*F) for
2-3 hr, desiccated for Z hr, and weighed.
0010 - 10
Revision
Date September 1986
-------
6.3 Preliminary field determinations:
6.3.1 Select the sampling site and the minimum number of sampling
points according to EPA Method 1 or as specified by the Administrator.
Determine the stack pressure, temperature, and range of velocity heads
using EPA Method 2. It is recommended that a leak-check of the pilot
lines (see EPA Method 2, Section 3.1) be performed. Determine the stack-
gas moisture content using EPA Approximation Method 4 or Its alternatives
to establish estimates of Isoklnetlc sampling-rate settings. Determine
the stack-gas dry molecular weight, as described In EPA Method 2, Section
3.6. If Integrated EPA Method 3 sampling Is used for molecular weight
determination, the Integrated bag sample shall be taken simultaneously
with, and for the same total length of time as, the sample run.
6.3.2 Select a nozzle size based on the range of velocity heads so
that It Is not necessary to change the nozzle size In order to maintain
Isoklnetlc sampling rates. During the run, do not change the nozzle.
Ensure that the proper differential pressure gauge 1s chosen for the
range of velocity heads encountered (see Section 2.2 of EPA Method 2).
6.3.3 Select a suitable probe Uner and probe length so that all
traverse points can be sampled. For large stacks, to reduce the length
of the probe, consider sampling froa opposite sides of the stack.
6.3.4 A mini nun of 3 dsca (105.9 dscf) of sample volume Is required
for the determination of the Destruction and Removal Efficiency (ORE) of
POHCs froa Incineration systems. Additional sample volume shall be
collected as necessitated by analytical detection Halt constraints. To
determine the minium sample volume required, refer to sample
calculations In Section 10.0.
6.3.5 Determine the total length of sampling time needed to obtain
the identified Minimum volume by comparing the anticipated average
sampling rate with the volume requirement. Allocate the same time to all
traverse points defined by EPA Method 1. To avoid timekeeping errors,
the length of time sampled at each traverse point should be an Integer or
an Integer plus one-half aln.
4
6.3.6 In SOB* circumstances (e.g., batch cycles) it nay be
necessary to sample for shorter times at the traverse points and to
obtain smaller gas-sample volumes. In these cases, the Administrator's
approval must first be obtained.
6.4 Preparation of collection train;
6.4.1 During preparation and assembly of the sampling train, keep
all openings where contamination can occur covered «1th Teflon film or
aluminum foil until Just prior to assembly or until sampling Is about to
begin.
0010 - 11
Revision
Date September 19S6
-------
6.4.2 Fill the sorbent trap section of the organic module with
approximately 20 g of clean adsorbent resin. While filling, ensure that
the trap packs uniformly, to eliminate the possibility of channeling.
When freshly cleaned, many adsorbent resins carry a static charge, which
will cause clinging to trap walls. This may be minimized by filling the
trap In the presence of an antistatic device. Commercial antistatic
devices Include Model-204 and Model-210 manufactured by the 3M Company,
St. Paul, Minnesota.
6.4.3 If an Impinger train Is used to collect moisture, place 100
mL of water In each of the first two Implngers, leave the third Impinger
empty (or charge with caustic solution, as necessary), and transfer
approximately 200-300 g of prewelghed silica gel from Its container tc
the fourth Impinger. More silica gel may be used, but care should be
taken to ensure that U Is not entrained and carried out from the
tmplnger during sampling. Place the container In a clean place for later
use In the sample recovery. Alternatively, the weight of the silica gel
plus Impinger nay be determined to the nearest 0.5 g and recorded.
6.4.4 Using a tweezer or clean disposable surgical gloves, place a
labeled (Identified) and weighed filter in the filter holder. Be sure
that the filter Is properly centered and the gasket properly placed to
prevent the sample gas stream fro* circumventing the filter. Check the
filter for tears after assembly Is computed.
6.4.5 When glut linen arc used. Install the selected nozzle using
a VUon-A 0-nng when stack temperatures art <260'C (500*F) and a woven
glass-fiber gasket when temperatures art higher. See APTD-0576 (Rom,
1972) for details. Other connecting systems utilizing either 316
stainless steel or Teflon ferrules may be used. When metal liners are
used, install the nozzle as above, or by a leak-free direct mechanical
connection. Hark the probe with heat-resistant tape or by some other
method to denote the proper distance Into the stack or duct for each
sampling point.
6.4.6 Set up the train as In Figure 1. During assembly, do not use
any slUcone grease on ground-glass Joints that are located upstream of
the organic module. A very light coating of si 11 cone grease nay be used
on all ground-glass Joints that are located downstream of the organic
module, but It should be Halted to the outer portion (see APTD-0576) of
the ground-glass Joints to minimize si 11cone-grease contamination.
Subject to the approval of the Administrator, a glass cyclone may be used
between the arch* *nd thf flltfr h«H*r Hh*n th* tQti! p*rttculit§ Citch
Is expected to exceed 100 mg or when water droplets are present in the
stack. The organic module condenser must be maintained at a temperature
of 17 + 3*C. Connect all temperature sensors to an appropriate
potentiometer/display unit. Check all temperature sensors at ambient
temperature.
6.4.7 Place crushed Ice around the Implngers and the organic module
condensate knockout.
0010 - 12
Revision
Date September 1986
-------
6.4.8 Turn on the sorbent moduli and condenser coll coolant
redrcutitlng pump and begin monitoring the sortient module gas entry
temperature. Ensure proper sorbent module gas entry temperature before
proceeding and again before any sampling is Initiated. It 1s extremely
important that the XAD-2 resin tenperature ntver exceed 50*C (122*F),
because thermal decomposition will occur. During testing, the XAO-2
temperature must not exceed 20*C (68*F) for efficient capture of the
semlvolatlle species of Interest.
6.4.9 Turn on and set the filter and probe heating systems at the
desired operating temperatures. Allow time for the temperatures to
stabilize.
6.5 Leak-check procedures
6.5.1 Pre-test leak-check:
6.5.1.1 Because the number of additional intercomponent
connections 1n the Sem1-VOST train (over the M5 Train) Increases the
possibility of leakage, a pre-test leak-check 1s required.
6.5.1.Z After the sampling train has been assembled, turn on
and set the filter and probe heating systems at the desired
operating temperatures. Allow time for the temperatures to
stabilize. If a Vtton A 0-Hng or other leak-free connection Is
used in assembling the probe nozzle to the probe liner, leak-check
the train at the sampling site by plugging the nozzle and pulling a
381-mm Hg (!5-1n. Hg) vacuum.
(NOTE: A lower vacuum may be used, provided that 1t Is not exceeded
during the test.}
6,5.1.3 If an asbestos string is used, do not connect the
probe to the train during the leak-check. Instead, leak-check the
train by first attaching a carbon-filled leak-check 1mp1nger (shown
in Figure 4) to the Inlet of the filter holder (cyclone, 11 applic-
able) and then plugging the Inlet and pulling a 381-nn Hg (15-in.
Hg) vacuum. (Again, a lower vacuum Bay be used, provided that it is
not exceeded during the test.) Then, connect the probe to the train
and leak-check at about 25-e* Hg (l-1n. Hg) vacuum; alternatively,
leak-check the probe with the rest of the sampling train In one step
at 381-nn Hg (li-ln. Hg) vacuum. leakage rates In excess of 41 of
the average sampling rate or >0.00057 m^/mln (0.02 cfv), whichever
is less, are unacceptable.
6.5.1.4 The following leak-check instructions for the sanpHng
train described 1n APTD-0576 and APTD-0581 may be helpful. Start
the pump with fine-adjust valve fully open and coarse-adjust valve
completely closed. Partially open the coarse-adjust valve and
slowly close the fine-adjust valve until the desired vacuum Is
reached. Do not reverse direction of the fine-adjust valve; this
will cause water to back up Into the organic module. If the desired
vacuum 1s exceeded, either leak-check at this higher vacuum or end
the leak-check, as shown below, and start over.
0010 - 13
Revision 0
Date September 1968
-------
lilt
21/11 «*i«
Joint
Figure 4. Leak-check 1 ginger.
0010 - 14
Revision o
Date Septeatier 1986
-------
6.5.1.5 When tht leak-check Is competed, first slowly remove
the plug from the Inlet to the probe, filter holder, or cyclone (If
applicable). When the vacuum drops to 127 mm (5 In.) Hg or less
immediately close the coarse-adjust valve. Switch off the pumping
system and reopen the fine-adjust valve. Do not reopen the fine-
adjust valve until the coarse-adjust valve has been closed. This
prevents the water In the Implngers from being forced backward Into
the organic module and silica gel from being entrained backward Into
the th1rd~1mp1nger.
6.5.Z Leak-checks during sampling run:
6.5.2.1 If, during the sampling run, a component (e.g., filter
assembly, Implnger, or sorbent trap) change becomes necessary, a
leak-check shall be conducted immediately after the Interruption of
sampling and before the change Is made. The leak-check shall be
done according to the procedure outlined 1n Paragraph 6.S.I, except
that it shall be done at a vacuum greater than or equal to the
maximum value recorded up to that point In the test. If the leakage
rate Is found to be no greater than 0.00057 m^/mln (0.02 cfn) or 4V
of the average sampling rate (whichever Is less), the results are
acceptable, and no correction will need to be applied to the total
volume of dry gas metered. If a higher leakage rate (s obtained,
the tester shall void the sampllna run. (It should be noted that
any 'correction' of the sample volume by calculation by calculation
reduces the Integrity of the pollutant concentrations data generated
and must be avoided.)
6.5.2.2 Immediately after a component change, and before
sampling 1s reinitiated, a Teak-check similar to a pre-test leak-
check must also be conducted.
6.5.3 Post-test leak-check:
6.5.3.1 A leak-check Is mandatory at the conclusion of each
sampling run. The leak-cheek shall be done with the same procedures
as those with the pre-test Teak-check, except that It shall be
conducted at a vacuum greater than or equal to the maximum value
reached during the sampling run. If the leakage rate 1s found to be
no greater than 0.00057 oP/iln (0.02 cfa) or 41 of the average
sampling rate (whichever ts less), the results are acceptable, and
no correction need be applied to the total volume of dry gas
metered. If, however, a higher leakage rate Is obtained, the tester
shall either record the leakage rate, correct the sample volume (as
shown in the calculation section of this method), and consider the
data obtained of questionable reliability, or void the sampling run.
6.6 Sampl1ng-tra1n operationt
6.6.1 During the sampling run, maintain an Isoklnetlc sampling rate
to within 101 of true Isoklnetlc, unless otherwise specified by the
Administrator. Maintain a temperature around the filter of 120 + 14*C
(248 * 25*F) and a gas temperature entering the sorbent trap at a maximum
of 20TC (68'F).
0010 - 15
Revision 0
Date September 1966
-------
6.6.2 FOP each pun, record the data required on a data sheet such
as the one shown In Figure 5. Be sure to record the Initial dry-gas
meter reading. Record the dry-gas meter readings at the beginning and
end of each sampling time Increment, when changes In flow rates are made
before and after each leak-check, and when sailing Is halted. Take
other readings required by Figure 5 at least once at each sample point
during each time Increment and additional readings when significant
changes (201 variation In velocity-head readings) necessitate additional
adjustments 1n flow rate. Level and zero the manometer. Because the
manometer level and zero may drift due to vibrations and temperature
changes, make periodic checks during the traverse.
6.6.3 Clean the stack access ports prior to the test run to
eliminate the chance of sampling deposited material. To begin sampling,
remove the nozzle cap, verify that the filter and probe heating systems
are at the specified temperature, and verify that the pHot tube and
probe are properly positioned. Position the nozzle at the first traverse
point, with the tip pointing directly Into the gas stream. Immediately
start the pump and adjust the flow to 1sok1net1c conditions. Nomographs,
which aid In the rapid adjustment of the Isoklnetlc sampling rate without
excessive computations, are available. These nomographs are designed for
use when the Type S pi tot-tube coefficient is 0.84 + 0.02 and the stack-
gas equivalent density (dry molecular weight) Is equal to 29 + 4. APTD-
0576 details the procedure for using the nomographs. If the stack-gas
molecular weight and the pi tot-tube coefficient are outside the above
ranges, do not use the nomographs unless appropriate steps (SMgehara,
1974) are taken to compensate for the deviations.
6.6.4 When the stack is under significant negative pressure
(equivalent to the height of the laplnger stea), take care to close the
coarse-adjust valve before Inserting the probe Into the stack, to prevent
water from backing Into the organic nodule. If necessary, the pump may
be turned on with the coarse-adjust valve closed.
6.6.5 When the probe Is In position, block off the openings around
the probe and stack access port to prevent unrepresentative dilution of
the gas streaa.
6.6.6 Traverse the stick cross section, as required by EPA Method 1
or as specified by the Administrator, being careful not to bump the probe
nozzle Into the stack walls when sup ling near the walls or when removing
.or Inserting the probe through the access port, In order to minimize the
6.6.7 During the test run, make periodic adjustments to keep the
temperature around the filter holder and the organic module at the proper
levels; add more 1ce and, If necessary, salt to maintain a temperature of
<20*C (68*F) at the condenser/silica gel outlet. Also, periodically
check the level and zero of the aanoneter.
0010 - 16
Revision 0
Date September 1966
-------
1 •€•«!••
Opvrtlar
••It
•M to.
*«*!• to* lo.
•Mw ••• ••.
•Mrr I* _
C f attar
of Slat* Croti \rit IM
!*• Catffltlwrt C,
metric Prni«r«>
HdUUre I
ofcr l^^lll. • (ft)
on •«.
Ol«rl«r.
fr«fc» Hftlpr Irlllnq
It* •*!». •1/Bla, (ifa)
ilk Cr«.||«r*. • Hq (U Hq)
o
at
r*
»
1*
g
rt
r»
§
-1
UD
to
Ok
O
0
s Ir"^sl-
1
~**
JO
«
<
M ...
Q _
O
fatal
*.*»•»
luw
(•1 •"•
— •*
Stark
T}'*}""
-
-Tiiv
Prrttw*
ntl(pr#at Itl
Jkratt
Cklflte
Brlrr
• (H70I
0*t $•*•!?
al ttrj t«\ l»«rr
Tilrl 0^1 1*1
*•]. *.g.
I Illrr Hnldrr
"^11*1""
ll^xrjturf
at Ct\
Inle' loq
SnrlM-l
»r» -j.iri
lr<. inq
m 1 «\l
figure 5. Paniculate field data.
-------
6.6.8 If tht prtssurt drop across the filter or sorbent trap
becomes too high, making isoklnetlc sailing difficult to maintain, the
filter/sorbent trap may be replaced 1n the midst of a sample run. using
another complete filter holder/sorbent trap assembly 1s recommendtd,
rather than attempting to change the filter and resin themselves. After
a new fllter/sorbent trap assembly is installed, conduct a leak-check.
The total participate weight shall Include the summation of all filter
assembly catches.
6,6.9 A single train shall be ysed for the entire sample run,
except In cases where simultaneous sampling 1s required In two or more
separate ducts or at two or more different locations within the same
duct, or in cases where equipment failure necessitates a change of
trains. In all other situations, the use of two or more trains will be
subject to the approval of the Administrator.
6.6,10 Note that when two or more trains are used, separate
analysis of the front-half (if applicable) organic-module and Implnger
(If applicable) catches from each train shall be performed, unless
identical nozzle sizes were used on all trains. In that case, the front-
half catches from the individual trains nay bt combined (as may the
Implnger catches), and one analysis of front-half catch and one analysis
of Implnger catch may be performed.
6.6.11 At the end of the sarnie ran, turn off the coarse-adjust
valve, remove the probe and nozzle froa the stack, turn off the pump,
record the final dry-gas meter reading, and conduct a post-test leak-
check. Also, leak-check the pUot lines as described In EPA Method 2.
The lines must pass this leak-check in order to validate the velocity-
head data.
6.6.12 Calculate percent 1sok1netlcUy (set Section 10.8) to
determine whether the run was valid or another test run should be made.
7.0 SAMPLE RECOVERY
7.1 Preparation;
7.1.1 Proper cleanup procedure begins as soon as the probe is
removed froi the stack at the end of the saapllng period. Allow the
probe to cool. When the probe can be safely handled, wipe off all
external paniculate Better neer the Up of the pruov naiile itiu M'«£i «
cap over the tip to prevent losing or gaining particulate natter. Do not
cap the probe tip tightly while the sampling train is cooling down
because this will create a vacuun In the filter holder, drawing water
from the Implngers into the sorbent nodule.
7.1.2 Before noving the staple train to the cleanup site, remove
the probe froa the sample train and cap the open outlet, being careful
not to lose any condensate that night be present. Cap the filter inlet.
0010 - 18
Revision
Date September 1986
-------
Remove the umbilical cord from the last Implnger and cap the Implnger.
If a flexible line Is used between the organic module and the filter
holder, disconnect the line at the filter holder and let any condensed
water or liquid drain Into the organic nodule.
7.1.3 Cap the filter-holder outlet and the Inlet to the organic
module. Separate the sorbent trap section of the organic module from the
condensate knockout trap and the gas-conditioning section. Cap all
organic module openings. Disconnect the organic-module knockout trap
from the implnger train Inlet and cap both of these openings. Ground-
glass stoppers, Teflon caps, or caps of other Inert materials may be used
to seal all openings.
7.1.4 Transfer the probe, the filter, the organic-nodule
components, and the Implnger/condenser assembly to the cleanup area.
This area should be clean and protected from the weather to minimize
sample contamination or loss.
7.1.5 Save a portion of all washing solutions (methanol/methylene
chloride, Type II water) used for cleanup as a blank. Transfer 200 ml of
each solution directly from the wash bottle being used and place each In
a separate, prelabeled glass sample container.
7.1.6 Inspect the train prior to and during disassembly and note
any abnormal conditions.
7.2 Sample contalners;
7.2.1 Container no. 1: Carefully remove the filter fro* the filter
holder and place It In Its Identified Petrl dish container. Use a pair
or pairs of tweezers to handle the filter. If It Is necessary to fold
the filter, ensure that the partIculate cake Is Inside the fold.
Carefully transfer to the Petrl dish any part1culate utter or filter
fibers that adhere to the filter-holder gasket, using a dry nylon bristle
brush or sharp-edged blade, or both. Label the container and seal with
l-1n.-wlde Teflon tape around the circumference of the Hd.
7.2.2 Container no. 2: Taking care that dust on the outside of the
probe or other exterior surfaces does not get Into the sample,
quantitatively recover partlculate matter or any condensate from the
probe nozzle, probe fitting, probe liner, and front half of the filter
holder by washing these components first with nethanol/methylene chloride
(1:1 v/v) into a glass container. Distilled water may also be used.
Retain a water and solvent blank and analyze In the same manner as with
the samples. Perform rinses as follows:
7,2.2.1 Carefully remove the probe nozzle and clean the Inside
surface by rinsing with the solvent mixture (1:1 v/v methanol/-
methylene chloride) from a wash bottle and brushing with a nylon
bristle brush. Brush until the rinse shows no visible particles;
then make a final rinse of the Inside surface with the solvent mix.
Brush and rinse the Inside parts of the Swage1ok fitting with the
solvent mix In a similar way until no visible particles remain.
0010 - 19
Revision 0
Date September 1986
-------
7.2.2.2 Hive two people rinse the probe liner with the solvent
mix by tilting and rotating the probe while squirting solvent Into
Us upper end so that all Inside surfaces will be wetted with
solvent. Let the solvent drain from the lower end Into the sample
container. A glass funnel may be used to aid In transferring liquid
washes to the container.
7.2.2.3 Follow the solvent rinse with a probe brush. Hold the
p'robe in an Inclined position and squirt solvent Into the upper end
while pushing the probe brush through the probe with a twisting
action; place a sample container underneath the lower end of the
probe and catch any solvent and partlculate matter that Is brushed
from the probe. Run the brush through the probe three times or more
until no visible partlculate matter 1s carried out with the solvent
or until none remains In the probe liner on visual Inspection. UUh
stainless steel or other metal .probes, run the brush through In the
above-prescribed manner at least six tines (metal probes have small
crevices In which partlculate matter can be entrapped). Rinse the
brush with solvent and quantitatively collect these washings (n the
sample container. After the brushing, make a final solvent rinse of
the probe as described above.
7.2.2.4 It Is recommended that two people work together to
clean the probe to minimize sample losses. Between sampling runs,
keep brushes clean and protected from contamination.
7.2.2.5 Clean the Inside of the front half of the filter
holder and cyclone/cyclone flask, If used, by rubbing the surfaces
with a nylon bristle brush and rinsing with Mthanol/methylene
chloride (1:1 v/v) mixture. Rinse each surface three times or more
If needed to remove visible partlculate. Hake a final rinse of the
brush and filter holder. Carefully rinse out the glass cyclone and
cyclone flask (tf applicable). Brush and rinse any partlculate
material adhering to the Inner surfaces of these components (nto the
front-half rinse sample. After all solvent washings and partlculate
matter have been collected In the sample container, tighten the ltd
on the sample container so that solvent will not leak out when it is
shipped to the laboratory. Mark the height of the fluid level to
determine whether leakage occurs during transport. Label the
container to identify its contents.
module may be used as a sample transport container, or the spent resin
may be transferred to a separate glass bottle for shipment, if the
sorbent trap Itself Is used as the transport container, both ends should
be sealed with tightly fitting caps or plugs. Ground-glass stoppers or
Teflon caps Bay be used. The sorbent trap should then be labeled,
covered with aluminum foil, and packaged on Ice for transport to the
laboratory. If a separate bottle Is used, the spent resin should be
quantitatively transferred fro* the trap Into the clean bottle. Resin
that adheres to the walls of the trap should be recovered using a rubber
policeman or spatula and added to this bottle.
0010 - 20
Revision 0
Date September 1986
-------
7.2.4 Container no. 4: Measure the volume of condensate collected
in the condensate knockout section of the organic module to wlttitn +1 ml
by using a graduated cylinder or by weighing to within +0.5 g using a
triple-beam balance. Record the volume or weight of HquTd present and
note any discoloration or film In the liquid catch. Transfer this liquid
to a prelabeled glass sample container. Inspect the back half of the
filter housing and the gas-conditioning section of the organic nodule.
If condensate Js observed, transfer it to a graduated or weighing bottle
and measure the volume, as described above. Add this material to the
condensate knockout-trap catch.
7,2.5 Container no. 5: All sampling train components located
between the high-efficiency glass- or quartz-fiber filter and the first
wet implnger or the final condenser system (Including the heated Teflon
line connecting the filter outlet to the condenser) should be thoroughly
rinsed with methanol/methylene chloride (1:1 v/v) and the rinsings
combined. This rinse shall be separated from the condensate. If the
spent resin Is transferred from the sorbent trap to a separate sample
container for transport, the sorbent trap shall be thoroughly rinsed
until all sample-wetted surfaces appear clean. Visible films should be
removed by brushing. Whenever train components are brushed, the brush
should be subsequently rinsed with solvent mixture and the rinsings added
to this container.
7.2.6 Container no. 6: Note the color of the Indicating silica gel
to determine If It has been completely spent and make a notation of Its
condition. Transfer the silica gel from the fourth Implnger to Us
original container and seal. A funnel may make It easier to pour the
silica gel without spilling. A rubber policeman may be used as an aid in
removing the silica gel fran the Implnger. It 1s not necessary to remove
the small amount of dust particles that may adhere strongly to the
implnger wall. Because the gain In weight Is to be used for moisture
calculations, do not use any water or other liquids to transfer the
silica gel. If a balance Is available 1n the field, weigh the container
and Its contents to 0.5 g or better.
7.3 Implnqer water;
*
7.3.1 Hake a notation of any color or fill In the liquid catch.
Measure the liquid 1n the first three laplngers to within *l mL by using
a graduated cylinder or by weighing it to within +lance (if one is available). Record the volume or weight of liquid
present. This Information Is required to calculate the Moisture content
of the effluent gas.
7.3.2 Discard the liquid after measuring and recording the volume
or weight, unless analysis of the Implnger catch 1s required (tee
Paragraph 4.1.3.7). Amber glass containers should be used for storage of
Implnger catch, If required.
7.3.3 If a different type of condenser Is used, measure the amount
of moisture condensed either volumetrtcally or gravlmetrlcally.
0010 - 21
Revision 0
Date September 1956
-------
7-4 Sample preparation for shipment: Prior to shipment, recheck all
sample containers to ensure that the caps are w«11 secured. Seal the Hds of
all containers around the circumference with Teflon tape. Ship all liquid
samples upright on 1ce and all paniculate filters with the paniculate catch
facing upward. The paniculate filters should be shipped unrefrlgerated.
3.0 ANALYSES
8.1 Sample preparation;
8.1.1 General: The preparation steps for all samples will result
in a finite volume of concentrated solvent. The final sample volume
(usually In the 1- to 10-mL range) Is then subjected to analysis by
GC/HS. All samples should be Inspected and the appearance documented.
All samples are to be spiked with, surrogate standards as received from
the field prior to any sample manipulations. The spike should be at a
level equivalent to 10 times the HOL when the solvent Is reduced in
volume to the desired level (I.e., 10 ml). The spiking compounds should
be the stable isotoplcally labeled analog of the compounds of Interest or
a compound that would exhibit properties similar to the compounds of
Interest, be easily chromatographed, and not Interfere with the analysis
of the compounds of Interest. Suggested surrogate spiking compounds are:
deuterated naphthalene, chrysene, phenol, nitrobenzene, chlorobenzene,
toluene, and carbon-13-labeled pentachlorophenol.
8.1.2 Condensate: The 'condensate' Is the moisture collected in
the first implnger following the XAO-2 module. Spike the condensate with
the surrogate standards. The volum* Is measured and recorded and then
transferred to a separatory funnel. The pH Is to be adjusted to pH 2
with 6 N sulfurlc acid, If necessary. The sample container and graduated
cylinder are sequentially rinsed with three successive 10-aL aliquots of
the extraction solvent and added to the separatory funnel. The ratio of
solvent to aqueous sample should be maintained at 1:3. Extract the
sample by vigorously shaking the separatory funnel for 5 nln. After
complete separation of the phases, remove the solvent and transfer to a
Kuderna-Danish concentrator (K-0), filtering through a bed of precleaned,
dry sodium sulfate. Repeat the extraction step two additional times.
Adjust the pH to 11 with 6 N sodium hydroxide and reextract combining the
acid and base extracts. Rinse the sodium sulfate Into the K-0 with fresh
solvent and discard the deslccant. Add Teflon boiling chips and
concentrate to 10 ml by reducing the volume to slightly less than 10 ml
and then bringing ig voluaa with ffvin solvent. In order tu achieve tile
necessary detection Halt, the sample volume can be further reduced to 1
ml by using a micro column K-0 or nitrogen blow-down. Should the sample
start to exhibit precipitation, the concentration step should be stopped
and the sample redIssolved with fresh solvent taking the volume to some
finite amount. After adding a standard (for the purpose of quantltatlon
by GC/HS), the sample Is ready for analysis, as discussed in Paragraph
8.2.
0010 - 22
Revision
Date September 1936
-------
8.1.3 linger-. spike the sample with the surrogate standards;
measure and record the volume and transfer to a separatory funnel.
Proceed as described In Paragraph 8.1.2.
8.1.4 XAD-2: Spike the resin directly with the surrogate
standards. Transfer the resin to the all-glass thimbles by the following
procedure (care should be taken so as not to contaminate the thimble by
touching It with anything other than tweezers or other solvent-rinsed
mechanical hording devices). Suspend the XAD-2 module directly over the
thimble. The glass frit of the module (see Figure 2) should be In the up
position. The thimble is contained In a clean beaker, which will serve
to catch the solvent rinses. Using a Teflon squeeze bottle, flush the
XAD-2 Into the thimble. Thoroughly rinse the glass module with solvent
Into the beaker containing the thimble. Add the XAD-2 glass-wool plug to
the thimble. Cover the XAD-2 in the thimble with a precleaned glass-wool
plug sufficient to prevent the resin from floating Into the solvent
reservoir of the extractor. If the resin Is wet, effective extraction
can be accomplished by loosely packing the resin In the thimble. If a
question arises concerning the completeness of the extraction, a second
extraction, without a spike, is advised. The thimble 1$ placed In the
extractor and the rinse solvent contained In the beaker Is added to the
solvent reservoir. Additional solvent 1s added to make the reservoir
approximately two-thirds full. Add Teflon boiling chips and assemble the
apparatus. Adjust the heat source to cause the extractor to cycle 5-6
times per hr. Extract the resin for 16 hr. Transfer the solvent and
three 10-mL rinses of the reservoir to a K-0 and concentrate as described
In Paragraph 8.1.2.
3.1.5 Partfculate filter (and cyclone catch): If paniculate
loading (s to be determined, weigh the filter (and cyclone catch, if
applicable). The partlculate filter (and cyclone catch, If applicable)
Is transferred to the glass thimble and extracted simultaneously with the
XAD-2 resin.
8.1.6 Train solvent rinses: All train rinses (I.e., probe,
Implnger, filter housing) using the extraction solvent and nethanol are
returned to the laboratory as a single sanple. If the rinses are
contained In more than one container, the Intended spike Is divided
equally among the containers proportioned fron a single syringe volume.
Transfer the rinse to a separatory funnel and add a sufficient aaount of
organic-free water so that the methylene chloride becomes Imlsclble and
its volume no longer Increases with the addition of more water. The
extraction and concentration steps are then performed as described In
Paragraph 8.1.2.
8.2 Sample analysis;
8.2.1 The primary analytical tool for the measurement of emissions
from hazardous waste Incinerators 1s GC/MS using fused-slUca capillary
GC columns, as described 1n Method 8270 In Chapter Four of this manual.
Because of the nature of GC/MS Instrumentation and the cost associated
0010 - 23
Revision
Date September 1986
-------
9-3 Metering system:
9.3.1 Before its Initial use In the field, the metering system
shall be calibrated according to the procedure outlined 1n APTD-0576.
Instead of physically adjusting the dry-gas meter dial readings to
correspond to the wet-test meter readings, calibration factors may be
used to correct the gas meter dial readings mathematically to the proper
values. Before calibrating the metering system, It Is suggested that a
leak-check be conducted. For metering systems having diaphragm pumps,
the normal Teak-check procedure will not detect leakages within the pump.
For these cases the following leak-check procedure Is suggested: Make a
10-mln calibration run at 0.00057 m3/m1n (0.02 cfm); at the end of the
run, take the difference of the measured wet-test and dry-gas meter
volumes and divide the difference by 10 to get the leak rate. The leak
rate should not exceed 0.00057 irK/mln (0.02 cfm).
9.3.2 After each field use, the calibration of the metering system
shall be checked by performing three calibration runs at a single
intermediate orifice setting (based on the previous field test). The
vacuum shall be set at the maximum value reached during the test series.
To adjust the vacuum, Insert a valve between the wet-test meter and the
Inlet of the metering system. Calculate the average value of the
calibration factor. If the calibration has changed by more than 51,
recalibrate the meter over the full rang* of orifice settings, as
outlined In APTD-0576.
9.3.3 Leak-check of Metering system1: That portion of the sampling
train from the pump to the orifice meter (see Figure 1) should be leak-
checked prior to Initial use and after each shipment. Leakage after the
pump will result in less volume being recorded than Is actually sampled.
The following procedure Is suggested (see Figure 6): Close the main
valve on the meter box. Insert a one-hole rubber stopper with rubber
tubing attached Into the orifice exhaust pipe. Disconnect and vent the
low side of the orifice manometer. Close off the low side orifice tap.
Pressurize the system to 13-18 cm (5-7 In.) water column by blowing Into
the rubber tubing. Pinch off the tubing and observe the manometer for I
mln. A loss of pressure on the manometer indicates a leak in the meter
box. Leaks, If present, must be corrected.
NOTE: If the dry-gas-meter coefficient values obtained before and after
a test series differ by >5I, either the test series shall be
voided or calculations for test series shall be performed using
whichever meter coefficient value (i.e., before or after) gives
the lower value of total sample volume.
9.4 Probe heater; The probe-heating system shall be calibrated before
Its Initial use In the field according to the procedure outlined 1n APTD-057S.
Probes constructed according to APTO-OSfll need not be calibrated if the
calibration curves tn APTD-0576 are used.
0010 - 25
Revision
Date September 1986
-------
with sample analysis, prescreenlng of the sample extracts by gas
chromatography/flame lonlratlon detection (GC/FID) or with electron
capture (GC/ECD) 1s encouraged. Information regarding the complexity anc
concentration level of a sample prior to GC/MS analysis can be oi
enormous help. This Information can be obtained by using either
capillary columns or less expensive packed columns. However, the FIE
screen should be performed with a column similar to that used with the
GC/MS. Keep in mind that GC/FID has a slightly lower detection Hmti
than GC/MS and, therefore, that the concentration of the sample can b<
adjusted either up or down prior to analysis by GC/MS.
8.2.2 The mass spectrometer will be operated 1n a full scan (40-
450) mode for most of the analyses. The range for which data an
acquired In a GC/MS run will be sufficiently broad to encompass the inajoi
Ions, as listed In Chapter Four, Method 8270, for each of the deslgnatec
POHCs 1n an Incinerator effluent analysis.
8.2.3 For most purposes, electron lonlzatlon (El) spectra will b<
collected because a majority of the POHCs give reasonable El soectra
Also, El spect-a are compatible with the NBS Library of Mass Spec--a am
other mass spectral references, which aid In the identification ;ces
for other components in the Incinerator process streams.
8.2.4 To clarify soew Identifications, chealcal lonlzatlon (CI
spectra using either positive Ions or negative Ions will be used t
elucidate molecular-weight Information and sl^llfy the fragnentatlo
patterns of some compounds. In no case, however, should CI spectra alon
be used for compound Identification. Refer to Chapter Four, Method 8270
for complete descriptions of GC conditions, MS conditions, an
quantitative and quantitative Identification.
9.0 CALIBRATION
9.1 Probe nozzle; Probe nozzles shall be calibrated before thel
initial use In the field. Using a oiler -ter, treasure the Inside diameter o
the nozzle to the nearest 0.025 on (0.... in.). Hake measurements at thre
separate placet across the dlaMter and obtain the average of th
measurements. The difference between the high and low numbers shall no
exceed 0.1'mi (0.004 In.). When nozzles bccoett nicked, dented, or corroded
they shall be reshaped, sharpened, and recalibrated before use. Each nozzi
1 h* n*m»HM»tw »nA n«1nii*1u 1H«nt1f1**l
9.2 PI tot tube; The Type S pUot tube assembly shall be calibrate
according to the procedure outlined 1n Section 4 of EPA Method 2, or assigns
a nominal coefficient of 0.84 If It 1s not visibly nicked, dented, or corrode
and If 1t meets design and Intel-component spacing specifications.
0010 - 24
Revision 0
Date September 1986
-------
4.2.8 Funnels: Glass, to aid In sample recovery.
4.3 Filters: Glass- or quartz-fiber filters, without organic binder,
exhibiting at least 99.951 efficiency «0.05I penetration) on 0.3-ym dfoctyi
phthalate smoke particles. The filter efficiency test shall bi conducted In
accordance with ASTN standard method 02986-71. Test data from the supplier's
quality control program are sufficient for this purpose. In sources
containing S02 or 503, the filter material must bt of a type that is
unreactive to SO? or SOj. Reeve Angel 934 AH or Schlelcher and Schwell 13
filters work welt under these conditions.
4.4 Crushed 1ce; Quantities ranging from 10-50 Ib may be necessary
during a sampling run, depending on an&lent air temperature.
4.5 Stopcock grease: Solvent-lnsolublt, heat-stable slllcone grease.
Use of sIHcont grease upstream of the moduli Is not permitted, and amounts
used on components located downstream of the organic module shall be
minimized. Slllcone grease usage Is not necessary If screw-on connectors and
Teflon sleeves or ground-glass Joints are used.
4.6 Glass wool: Used to plug the unfrttted end of the sorbent nodule.
The glass-wool fiber should bt solvent-extracted with aethylene chloride in a
Soxhlet extractor for 12 hr and a1r-dr1ed prior to use.
5.0 REAGENTS
5.1 Adsorbent resin; Porous polymeric resin (XAO-2 or equivalent) Is
recommended. These resins shall be cleaned prior to their use for sample
collection. Appendix A of this method should be consulted to determine
appropriate precfeanfng procedure. For best results, resin used should not
exhibit a blank of higher than 4 rag/kg of total chroaatographable organic*
(TCO) (see Appendix 8) prior to use. Once cleaned, resin should be stored in
an airtight, wide-mouth aufcer glass container with a Teflon-lined cap or
placed in one of the glass sorbent modules tightly sealed with Teflon film and
elastic bands. The resin should be used within 4 wk of the preparation.
5.2 Silica gel; Indicating type, 6-li mesh. If previously used, dry at
175*C (350*F) for 2 hr before using. New silica gel nay be used as received.
Alternatively, other types of deslccants (equivalent or better) nay be used,
subject to the approval of the Administrator.
5.3 Inclnqer solutions; Distilled organic-free water (Type II) shall be
used, unless sampling is Intended to quantify a particular Inorganic gaseous
species. If sampling 1s Intended to quantify the concentration of additional
species, the 1ginger solution of choice shall be subject to Administrator
approval. This water should be prescreened for any compounds of Interest.
One hundred mi. will be added to the specified 1np1nger; the third Implnger In
the train may be charged with a basic solution (1 N sodium hydroxide or sodium
acetate) to protect the sampling pump from acidic gases. Sodium acetate
should be used when large saajjle volumes are anticipated because sodium
hydroxide will react with carbon dioxide In aqueous media to fora sodium
carbonate, which may possibly plug the Itnplnger.
0010 - 9
Revision 0
Date September 1986
-------
o
o
»-*
o
I
Kl
RUBIER
RUBBER ORIFICE
SfOfTEH
•V PASS VALVE
VACUUM
CALM.l
Mlft ••*•»! !<•
«*•»«!• IMC Hit
•IAIN VALVE CLOSf O
AIRTIGHT
PUMP
M O
• 3
O
«•*
l»
§
i»
-»
10
oo
Ftguie 6. Leak check ol melci bon
-------
9.5 Temperature gauges ; Each thermocouple must be permanently and
uniquely marked on the casting; all mercury-ln-glass reference thermometers
must conform to ASTN E-l 63C or 63F specifications. Thermocouples should be
calibrated In the laboratory with and without the use of extension leads. If
extension leads are used In the field, the thermocouple readings at ambient
air temperatures, with and without the extension lead, must be noted and
recorded. Correction Is necessary If the use of an extension lead produces a
change >1.5X.
9.5.1 Implnger, organic module, and dry-gas meter thermocouples:
For the thermocouples used to measure the temperature of the gas leaving
the Implnger train and the XAD-2 resin bed, three-point calibration at
Ice-water, room-air, and boiling-water temperatures 1s necessary. Accept
the thermocouples only If the readings at all three temperatures agree to
+2'C (3.6*F) with those of the absolute value of the reference
thermometer.
9.5.2 Prota and stack thermocouple: For the thermocouples used to
Indicate the probe and stack temperatures, a three-point calibration at
fee-water, boiling-water, and hot-oil -oath temperatures must be
performed; It Is recommended that room-air temperature be added, and that
the thermometer and the thermocouple agree to within 1.51 at each of the
calibration points. A calibration curve (equation) may be constructed
(calculated) and the data extrapolated to cover the entire temperature
range suggested by the manufacturer.
9-6 Barometer; Adjust the barometer Initially and before each test
series to agree to within +25 m Hg (0.1 tn. Hg) of the mercury barometer or
the corrected barometric pressure value reported by a nearby National Weather
Service Station (same altitude above sea level).
9.7 Triple-beam balance; Calibrate the triple-beam balance before each
test series, using Clas$-S standard weights; the weights must be within +0.5X
of the standards, or the balance must be adjusted to meet these limits.
10.0 CALCULATIONS
10.1 Carry out calculations. Round off figures after the final
calculation to the correct number of significant figures.
10.2 Nomenclature;
An • Cross-sectional area of nozzle, m2 (ft2).
• Water vapor tn tht gas stream, proportion by volume.
Cd - Type S pltot tube coefficient (nominally 0.84 + 0.02),
dimension less.
I • Percent of Isoklnetlc sampling.
0010 - 27
Revision
Date September 1986
-------
La - Maximum acceptable leakage rate for a leak-check, either pre-test
or following a component change; equal to 0.00057 m3/mln (0.02
cfm) or 41 of the average sampling rate, whichever Is less.
LI - Individual leakage rate observed during the leak-check conducted
prior to the "itn« component change (1 • 1, 2, 3...n) nJ/mln
(cfm).
LD • Leakage rate observed during the post-test leak-check, mVmln
M (cfm) .
Md " Stack-gas dry molecular weight, g/g-mole (Ib/lb-mole).
M* - Molecular weight of water, 18.0 g/g-mole (18.0 Ib/lb-mole).
pbar ' Barometric pressure at the sampling site, mm Hg (In. Hg)..
Ps • Absolute stack-gas pressure, m Hg (In. Hg) .
pstd ' Standard absolute pressure, 760 nn Hg (29.92 In. Hg) .
R • Ideal gas constant, 0.06236 m Hg-Bp/K-g-mole (21.85 in.
Hg-ft3/*R-1b-mole).
Tm • Absolute average dry-gas neter temperature (see Figure 6), K
CR).
T$ • Absolute average stack-gas temperature (see Figure 6), K (*R).
Tstd " Standard absolute temperature, 293K (528*R).
V]c • Total volume of liquid collected In the organic module condensate
knockout trap, the Inplngers, and silica gel, ml.
Vm - Volume of gas sample as measured by dry-gas meter, dscni (dscf).
vm(std) * Vo^uoe of gas sample measured by the dry-gas meter, corrected
to standard conditions, dscm (dscf).
Mstd) " VoluM of water vapor 1n the gas sample, corrected to standard
conditions, so (scf).
v« • Stack-gas velocity, calculated by Method 2, Equation 2-9, using
data obtained from Method 5, m/sec (ft/sec).
"a • Weight of residue In acetone wash, ng.
7 • Dry-gas-meter calibration factor, dlmenslonless.
AH • Average pressure differential across the orifice meter (see
Figure 2), mm HjO (In. HjO).
0010 - 28
Revision
Date September 1986
-------
^ « Density of water, 0.9982 g/ml (0.002201 Ib/mL).
8 • Total sampling time, min.
81 « Sampling time Interval from the beginning of a run until tht
first component change, m1n.
9\ » Sampling time interval between two successive component
changes, beginning with the Interval between the first and
second changes, m1n.
Ip • Sampling time Interval from the final (n*n) component change
until the end of the sampling run, mtn.
13.6 « Specific gravity of mercury.
60 » sec/m1n.
100 » Conversion to percent.
10.3 Average dry-gas-meter temperature and average orifice pressure
drop: See data sheet (Figure 5, "aboveJT
10.4 Dry-gas volume: Correct the sample neasurtd by the dry-gas meter
to standard conditions [ZQ'C, 760 TO Hg [68*F, 21.92 1n. Hgj) by using
Equation I;
Tstd Pbar * &H/l3'fi 'bar * ftH/l3'8
' V — — Ki*taf (i)
Tn pstd '•
where;
<1 • 0.3858 K/m Hg for Mtrlc units, or
K! * l7.64*R/1n. Hg for English units.
It should be noted that Equation ! can be used as written, unless the leakage
rate observed during any of the mandatory leak-checks (I.e., the post-test
leak-check or leak-checks conducted prior to component changes) exceeds ia.
If Ip or LI exceeds I*, Equation 1 mist be modified as follows:
a* Case I (no component changes nade during sampling run): Replace vm
in Equation 1 with the expression:
0010 - 29
Revision
Date September 1986
-------
b. Case II (one or more component changes made during the sampling
run):Replace Vm in Equation i by the expression:
V™ ' 'Ll ' L.)91 -
and substitute only for those leakage rates (LI or Lp) that exceed
La"-
10.5 Volume of water vapor;
where:
• 0.001333 B3/ml. for metric units, or
• 0.04707 ft3/nL for English units.
10.6 Moisture content;
* vw($td)
NOTE: In saturated or water-droplet-laden gas streams, two calculations
of the moisture content of the stack gas shall be made, one froir
the Inplnger analysis (Equation 3) and a second from the
assunptlon of saturated conditions. The lower of the two values
of B* shall be considered correct. The procedure for determining
the moisture content based upon assumption of saturated conditions
is given In the Note to Section 1.2 of Method 4. For the purposes
of this net hod, the average stack-gas temperature from Figure e
may be used to make this determination, provided that the accuracy
of the In-stack temperature sensor is +l*C (2*F).
10.7 Conversion factors;
To Multiply by
i* 0.02832
ar/ftj 15.43
Ib/ft' 2.205 x 10'3
g/ft* g/i* 35.31
0010 - 30
Revision
Date September 198J
-------
10.8 Isok1net1c variation:
10.8.1 Calculation froa raw data:
100 V*3Flc * (VV ("bar * 1H/13'6>]
where:
I
0.003454 mm Hg-m^/ml-K for metric units, or
0.002669 1n. Hg-ft3/mL-*R for English units.
10.8.2 Calculation for Intermediate values:
I •
(4)
- (5)
r Vmfstd)
4 PsW
where:
K4 • 4.320 for metric units, or
K4 • 0.09450 for English units.
10.a.3 Acceptable results: If 90S ^ I ^ UOX, the results are
acceptable. If the results are low In comparison with the standard and
I Is beyond the acceptable range, or If I Is less than 90S, the
Administrator may opt to accept the results.
10.9 To determine the n1n1mua sample volume that shall be collected, the
following sequence of calculations shall be used.
10.9.1 Proa prior analysis of the waste feed, the concentration of
POHCs introduced Into the combustion -system can be calculated. The
degree of destruction and removal efficiency that 1s required is used to
determine the tux 1 BUB amount of POHC allowed to be present in the
effluent. This may be expressed as:
(WF) (POHCj cone) (100-lORE)
100
100
Max POHC, Mass
(6)
where:
WF
POHCt
mass flow rate of waste feed per hr, g/hr (Ib/hr).
concentration of Principal Organic Hazardous Compound (wt 1}
Introduced Into the combustion process.
0010 - 31
Revision 0
Date September 1986
-------
ORE » percent Destruction and Removal Efficiency required.
Max POHC • mass flow rate (g/hr [lb/hr]) of POHC emitted from the
combustion source.
10.9,2 The average discharge concentration of the POHC in the
effluent gas Is determined by comparing the Max POHC with the volumetric
flow rate being exhausted from the source. Volumetric flow rate data are
available as a result of preliminary Method 1-4 determinations:
Max POHCj Hass
• Max PQHCf cone (7)
-Oveff(std)
where:
DVeff(,td) ' volumetric flow rate of exhaust gas, dscm (dscf),
POHCf cone • anticipated concentration of the POHC In the
exhaust gas stream, g/dscm (Ib/dscf).
10.9.3 In making this calculation, It Is recomnended that a safety
margin of at least ten be Included:
LDLWHC x 10
(8)
POHC1 cone
where:
poHC ' detectable amount of POHC In entire sampling train.
NOTE: The whole extract fro* an XAD-2 cartridge 1s seldom If ever,
Injected at once. Therefore, If allquotlng factors are
Involved, the LDlpoHC -1* not the sane as the analytical (or
col ion) detection MBit.
VTBC • BlnlBua dry standard voluM to be collected at dry-gas
eater.
10.io concentration or any given POHC in the gaseous emissions of a
combustion process:
1) Multiply the concentration of the POHC as determined In Method 8270
by the final concentration voluM, typically 10 ml.
CpQHC (ug/BL) * sample voluae (mL) • amount (ug) of POHC In sample (9)
0010 - 32
Revision
Date September 1986
-------
where:
" concentration of POHC as analyzed by Method 8270.
2} Sum the amount of POHC found in all samples associated with a single
train.
Total (ug) * XAO-2 (ug) * condensate (ug) * rinses (ug) * Imptnger (ug) (10)
3) Divide the total ug found by the volume of stack gas sampled (m3).
(Total yg)/(tra1n sample volume) » concentration of POHC (ug/m3) (11)
11.0 QUALITY CONTROL
11.1 Sampling; See EPA Manual 600/4-77-027b for Method 5 quality
control.
11.2 Analysts; The quality assurance prograa required for this study
Includes the analysis of field and method blanks, procedure validations,
Incorporation of stable labeled surrogate compounds, quantltatlon versus
stable labeled Internal standards, capillary column performance checks, and
external performance tests. The surrogate spiking compounds selected for a
particular analysts are used as primary Indicators of -the quality of the
analytical data for a wide range of compounds and a variety of sample
matrices. The assessment of combustion data, positive Identification, and
quantltatlon of the selected compounds are dependent on the Integrity of the
samples received and the precision and accuracy of the analytical methods
employed. The quality assurance procedures for this method are designed to
monitor the performance of the analytical method and to provide the required
Information to take corrective action If problems are observed In laboratory
operations or In field sampling activities.
11.2.1 Field Slinks: Field blanks ust be submitted with the
samples collected at each sampling site. The field blanks include the
sample bottles containing all quo ts of staple recovery solvents, unused
filters, and resin cartridges. At a •fnlaua, ont complete sampling train
will be assembled in the field staging area, taken to the sampling trtt,
and leak-checked at the beginning and end of the testing (or for the same
total number of ttws as the actual ttst train). The filter housing and
probe of the blank train will be heated during the sample test. The
train will be recovered as if it wert an actual test saaple. No gaseous
sample will be passed through the sampling train.
11.2.2 Method blanks: A method blank nist be prepared for each set
of analytical operations, to evaluatt contamination and artifacts that
can be derived frosi glassware, reagents, and saaple handling 1n the
laboratory.
11.2.3 Refer to Method 8270 for additional quality control
considerations.
0010 - 33
Revision 0
Date September 1986
-------
12.0 METHOD PERFORMANCE
12.1 Method performance evaluation; E .luatlon of analytical procedures
for a selected series of confounds mus. Include the sample-preparation
procedures and each associated analytical determination. The analytical
procedures should be challenged by the test compounds spiked at appropriate
levels and carried through the procedures.
12.2 -Method detection limit; The overall method detection limits (lower
and upper)mustbedetermined on a compound-by-compound basis because
different compounds may exhibit different collection, retention, and
extraction efficiencies as well as Instrumental minimum detection limit (HDL).
The method detection limit must be quoted relative to a given sample volume.
The upper limits for the method must be determined relative to compound
retention volumes (breakthrough).
12.3 Method precision and bias: The overall method precision and bias
must be determined onacompound-by-compound basis at a given concentration
level. The method precision value would Include a combined variability due to
sampling, sample preparation, and Instrumental analysis. The method bias
would be dependent upon the collection, retention, and extraction efficiency
of the train components. From evaluation studies to date using a dynamic
spiking system, method biases of -131 and -161 have been determined for
toluene and 1,1,2,2-tetrachloroethane, respectively. A precision of 19.9* was
calculated from a field test data sat representing seven degrees of freedom
which resulted from a series of paired, unsplked Semi volatile Organic Sampling
trains (Seml-VOST) sampling emissions from a hazardous waste Incinerator.
13.0 REFERENCES
1. Addendum to Specifications for Incinerator Testing at Federal Facilities,
PHS, NCAPC, December 6, 1967.
2. Bursey, J., Hooolya, J., McAllister, R., and McGangley, J., Laboratory
and Field Evaluation of the Seal-VOST Method, Vols. 1 and 2, U.S.
Environmental Protection Agency, EPA/600/4-851/075A, 075B (1985).
3. Martin, R.M., Construction Details of Isold net1c Source-Sampling
Equipment, Research Triangle Park, NC, U.S. Environmental Protection Agency,
April 1971, PB-203 060/BE, APTD-0581, 35 pp.
4. Rom, J.J., Maintenance, Calibration, and Operation of Isoklnetlc Source-
Sampling Equipment, Research Triangle Park, NC, U.S. Environmental Protection
Agency, March 1972, PB-209 022/BE, APTD-OS76, 39 pp.
5. Schllckenrleder,. L.M., Adam, J.W., and Thrun, K.E., Modified Method 5
Train and Source Assessment Sampling System: Operator's Manual, U.S.
Environmental Protection Agency, EPA/600/8-85/003, (1985).
0010 - 34
Revision
Date September 1986
-------
6. SMgehara, R.T., Adjustments 1n the EPA Nomography for Different Pi tot
Tube Coefficients and Dry Molecular Weights, Stack Sampling News, 2:4-11
(October 1974).
7. U.S. Environmental Protection Agency, CFR 40 Part 60, Appendix A, Methods
1-5.
8. vollaro, R.F., A Survey of Commercially Available Instrumentation for th«
Measurement of Low-Range Gas Velocities, Research Triangle Park, NC, U.S.
Environmental Protection Agency, Emissions Measurement Branch, November 1976
(unpublished paper).
0010 - 35
Revision
Date September 1986
-------
METHOD 0010, APPENDIX A
PREPARATION OF XAD-2 SORSENT RESIN
1.0 SCOPE AND APPLICATION
1.1 XAD-2 restn as supplied by the manufacturer 1s Impregnated with a
bicarbonate solution to Inhibit mlcroblal growth during storage. Both the
salt solution and any residual extractable monomer and polymer species must be
removed before use. The resin 1s prepared by a series of water and organic
extractions, followed by careful drying.
2.0 EXTRACTION
2.1 Method l: The procedure may be carried out In a giant Soxhlet
extractor.An all-glass thimble containing an extra-coarse frit 1s used for
extraction of XAD-2. The frit 1s recessed 10-15 « above a crenellated ring
at the bottom of the thimble to facilitate drainage. The resin must be
carefully retained 1n the extractor cup with a glass-wool plug and stainless
steel screen because It floats on methylene chloride. This process Involves
sequential extraction In the following order.
Solvent
Water
Water
Methyl alcohol
Methylene chloride
Methylene chloride (fresh)
2.2 Method 2;
Procedure
Initial rinse: Place resin In a beaker,
rinse once with Type II water, and
discard. Fill with water a second time,
let stand overnight, and discard.
Extract with h^O for 8 hr.
Extract for 22 hr.
Extract for 22 hr.
Extract f6r 22 hr.
2.2.1 As an alternative to Soxhlet extraction, a continuous
extractor has been fabricated for the extraction sequence. This extractor has
been found to be acceptable. The particular canister used for the apparatus
shown in Figure A-I contains about 500 g of finished XAO-2. Any size may be
constructed; the choice Is dependent on the needs of the sawpUng programs.
The XAD-2 is held under light spring tension between a pair of coarse and fine
screens. Spacers under the bottoa screen allow for even distribution of clean
solvent. The three-necked flask should be of sufficient size (3-liter In this
case) to hold solvent
0010 - A - 1
Revision 0
Date September 1986
-------
Figure A-l. XAD-2 cleanup extraction apparatus,
0010 - A - 2
Revision 0
Data September 1986
-------
equal to twice the dead volume of the XAO-2 canister. Solvent Is re fluxed
through the Snyder column, and the distillate Is continuously cycled up
through the XAO-2 for extraction and returned to the flask. The flow is
maintained upward through the XAO-2 to allow maximum solvent contact and
prevent channeling, A valve at the bottom of the canister allows removal of
solvent from the canister between changes.
2.2.2 Experience has shown that It Is very difficult to cycle
sufficient water tn this mode. Therefore the aqueous rinse Is accomplished by
simply flushing the canister with about 20 liters of distilled water. A small
pump may be useful for pumping the water through the canister. The water
extraction should be carried out at the rate of about 20-40 mL/nln.
2.2.3 After draining the water, subsequent methyl alcohol and
methylene chloride extractions are carried out using the refluxlng apparatus.
An overnight or 10- to 20-hr period 1s normally sufficient for each
extraction.
2.2.4 All materials of construction are glass, Teflon, or stainless
steel. Pumps, If used, should not contain extractable materials. Pumps are
not used with metnanol and methylene chloride.
3.0 DRYING
3.1 After evaluation of several nethods of removing residual solvent, a
fluldlzed-bed technique has proved to be tht fastest and most reliable drying
method.
3.2 A simple col nan with suitable retainers, as shown In Figure A-2,
will serve as a satisfactory column. A 10.2-a (4-tn.) Pyrex pipe 0.6 m (Z
ft) long will hold all of the XAO-2 from tht extractor shown In Figure A-I or
the SoxhUt extractor, with sufficient space for fluldlzlng the bed while
generating a minimum resin load at the exit of the column.
3.3 Method I; The gas used to remove the solvent 1s the key to
preserving the cleanliness of the XAO-2. • Liquid nitrogen from a standard
commercial liquid nitrogen cylinder has routinely proved to be a reliable
source of large voluaes of gas free from organic contaminants. The liquid
nitrogen cylinder 1s connected to the column by a length of precleaned 0.95-cm
(3/8-In.) copper tubing, colled to pass through a heat source. As nitrogen is
bled from the cylinder, It Is vaporized In the heat source and passes through
the column. A convenient heat source Is a water bath heated froa a steam
line. The final nitrogen temperature should only be wan to the touch and not
over 40*C. Experience has shown that about 500 g of XAO-2 nay be dried
overnight by consuming a full 160-liter cylinder of liquid nitrogen.
3.4 Method 2; As a second choice, high-purity tank nitrogen may be used
to dry the XAO-2. The high-purity nitrogen must first be passed through a bed
0010 - A - 3
Revision
Date September 1986
-------
Uquitf Nlffvf
rfindi
(1101)
Figure A-2. XAD-2 fluldlzed-bcd drying apparatus.
0010 - A - 4
Revision 0
Date September 1986
-------
of activated charcoal approximately 150 ml In volume. With either type of
drying method, the rate of flow should gently agitate the bed. Excessive
flu1d1zat1on may cause the particles to break up.
4.0 QUALITY CONTROL PROCEDURES
4.1 For.both Methods 1 and 2, the quality control results must be
reported for the batch. The batch must be reextracted 1f the resTiJual
extractable organlcs are >20 ug/ml by TCO analysis or the gravimetric residue
is >0.5 mg/20 g XAD-2 extracted. (See also section 5.1, Hethod 0010.)
4.2 Four control procedures are used with the final XAD-2 to check for
(1) residual methylene chloride, (2) extractable organlcs (TCO), (3) specific
compounds of Interest as determined by GC/MS, as described In Section 4.5
below, and (4) residue (GRAV).
4.3 Procedure forresidual methylene chloride;
4.3.1 Description: A 1+0.1-g sample of dried resin 1s weighed Into
a small vial, 3 raL of toluene are added, and the vial 1s capped and well
shaken. Five uL of toluene (now containing extracted oethylene chloride) are
Injected Into a gas chronatograph, and the resulting Integrated area 1s
con^ared with a reference standard. The reference solution consists of 2.5 uL
of methylene chloride (n 100 ml. of toluene, simulating 100 ug of residual
methylene chloride on the resin. The acceptable maximum content is 1,000 ug/g
resin.
4.3.2 Experimental: The gas chroma tog raph conditions are as
follows:
6-ft x l/8-1n. stainless steel column containing 101 OV-101 on
100/120 Supelcoport;
Helium carrier at 30 mL/mln;
FID operated on 4 x 10'11 A/eV;
Injection port temperature: 250*C;
Detector temperature: 305*C;
Program: 30"C(4 m1n) 40'C/m1n 250"C (hold); and
Program terminated at 1,000 sec.
4.4 Procedure for residual extractable orqanlcs;
4.4.1 Description: A 20+0.l-g staple of cleaned, dried resin is
weighed into a precleaned alundum or cellulose thimble which 1$ plugged *Uh
cleaned glass wool. (Note that 20 g of resin will fill a thimble, and the
0010 - A - 5
Revision
Date September 1966
-------
resin all! float out unless well plugged.) The th liable containing the resin
is extracted for 24 hr with 200-ml of pesticide- grade nethylene chloride
(Burdlck and Jackson pesticide-grade or equivalent purity). The 200-mL
extract 1s reduced 1n volume to 10-mL using a Kuderna-Oanlsh concentrator
and/or a nitrogen evaporation stream. Five uL of that solution are analyzed
by gas chromatography using the TCO analysis procedure. The concentrated
solution should not contain >20 ug/mL of TCQ extracted from the XAO-2. This
is equivalent to 10 ug/g of TCO In the XAO-2 and would correspond to 1.3 mj of
TCO In the-extract of the 130-g XAD-2 module. Care should be taken to correct
the TCO data for a solvent blank prepared (200 oL reduced to 10 ml) in a
similar manner.
4.4.2 Experimental: Use the TCO analysis conditions described in
the revised Level I manual (EPA 600/7-78-201).
4.5 GC/HS Screen: The extract, as prepared In paragraph 4.4.1, Is
subjected to GC/HS analysis for each of the Individual compounds of Interest.
The GC/HS procedure Is described 1n Chapter Four, Method 8270. The extract Is
screened at the MOI of each compound. The presence of any confound at a
concentration >25 ug/mL In the concentrated extract will require the XAO-2 to
be recleaned by repeating the methylene chloride step.
4.* Methodology for residual gravimetric determination: After the TCO
value and GC/MS data are obtained for the resin batch by the above procedures,
dry the remainder of the extract In a tared vessel. There oust be <0.5 mg
residue registered or the batch of resin will have to be extracted with fresh
methyl ene chloride again until It Mets this criterion. This level
corresponds to 25 ug/g In the XAO-2, or about 1.25 wg In a resin charge of
130 g.
0010 - A - 6
Revision 0
Date September 1986
-------
METHOD 0010, APPENDIX 8
TOTAL CHROMATOGRAPHABLE ORGANIC MATERIAL ANALYSIS
1.0 SCOPE AND APPLICATION
1.1 In this procedure, gas chromatography Is used to determine the
quantity of lower boiling hydrocarbons (boiling points between 90* and 300*C)
In the concentrates of all organic solvent rinses, XAO-2 resin and LC
fractions - when Method 1 Is used (see References, Method 0010) - encountered
In Level 1 environmental sample analyses. Oata obtained using this procedure
serve a twofold purpose. First, the total quantity of the lower boiling
hydrocarbons In the sample Is determined. Then whenever the hydrocarbon
concentrations in the original concentrates exceed 75 ug/m3, the
chromatography results are reexaolned to determine the amounts of individual
species.
The extent of compound Identification Is limited to representing all
materials as normal alkanes based upon comparison of boiling points. Thus the
method Is not qualitative. In a similar manner, the analysis ts
semiquantitative; calibrations are prepared using only one hydrocarbon. They
are replicated but samples routinely are not.
1.2 Application; This procedure applies solely to the Level 1 C7-C16
gas chromatographlc analysis of concentrates of organic extracts, neat
liquids, and of LC fractions. Throughout the procedure, It is assumed the
analyst has been given a properly prepared sample.
1.3 Sensitivity; The sensitivity of this procedure, defined as the
slope of aplotof response versus concentration, Is dependent on the
instrument and must be verified regularly. TRW experience indicates the
nominal range Is of the order of 77 uV-V-sec-uL/ng of n-h*ptane and 79
uV'sec-ul/ng of n-hexadecane. Tht Instrument Is capable cf perhaps one
hundredfold greater sensitivity. The level specified here 1s sufficient for
Level 1 analysis.
1.4 Detection jtmlt; The detection Unit of this procedure as written
1s 1.3 ng/uL for a I ul Injection of n-decane. This limit is arbitrarily
based on defining the minima detectable response as 100 uvsec. This Is an
easier operational definition than defining the minimum detection limit to be
that amount of material which yields a signal twice the noise level.
1.5 Range: The range of the procedure will be concentrations of 1.3
ng/uL and greater.
1.6 Limitations
1.6.1 Reporting limitations: It should be noted that a typical
environmental sample will contain compounds which: (a) will not elute in
the specified boiling ranges and thus will not bt reported, and/or (b)
0010 - B - 1
Revision
Date September 1986
-------
will not elute from the col nan at all and thus Mill not be reported.
Consequently, the organic content of the sample as reported 1s a lower
bound and should be regarded as such.
1.5.2 Calibration limitations: Quantltatlon 1s based on
calibration with n-decane. Data should therefore be reported as, e.g.,
mg C8/mJ as n-decane. Since response varies linearly with carbon number
(over a wide range the assumption nay Involve a 201 error), It is clear
that heptane (C7) detected In a sample and quantltated as decane will be
overestimated. Likewise, hexadecane (C16) quantltated as decane will be
underestimated. From previous data, It Is estimated the error involved
is on the order of 6-71.
1.6.3 Detection limitations: The sensitivity of the flame
tonlzatton detector varies from compound to compound. However, n-alkanes
have a greater response than other classes. Consequently, using an ri-
al kane as a callbrant and assuming equal responses of all other compounds
tends to give low reported values.
2.0 SUWARY OF METHOD
2.1 A aL aliquot of all 10-mL concentrates Is disbursed for GC-TCQ
analysis. With boiling point-retention time and response-amount calibration
curves, the data (peak retention times and peak areas) are Interpreted by
first sunning peak areas In th« ranges obtained fro* the boiling point-
retention time calibration. Then, with the response-amount calibration curve,
the area suns are converted to amounts of material In the reported boiling
point ranges.
2.2 After the Instrument Is set up, the boiling point-retention time
calibration Is effected by Injecting a mixture of n-C7 through n-C16
hydrocarbons and operating the standard temperature program. Response-
quantity calibrations are accomplished by Injecting n-decane in n-pentane
standards and performing the standard temperature program.
2.3 Definitions
2.3.1 SC: Gas chromatography or gas chroma tograph.
2.3.2 C7-C16 n-alkanes: Heptane through hexadecane.
2.3.3 GCA ttmp«r»tur« program: 4 «1n isothermal at 60*C, 10'C/mln
2.3.4 TW temptratur* program: 5 «1n Isothermal at room
temperature, then program from 30*C to 2SO'C at 15'C/nln.
3.0 INTERFERENCES
Hot applicable.
0010 - B - 2
Revision
Date September 1986
-------
4.0 APPARATUS AND MATERIALS
4.1 Gas chromatooraph: This procedure is Intended for use on a Varlan
1860 gas chromatograph, equipped with dual flame tonlzatlon detectors and a
linear temperature programmer. Any equivalent Instrument can be used provided
that electrometer settings, etc., be changed appropriately.
4.2 Gases;
4.2.1 Hellua: Minimum quality 1$ reactor grade. A 4A or 13X
molecular sieve drying tube 1s required. A filter must be placed between
the trap and the Instrument. The trap should be recharged after every
third tank of helium.
4.2.2 Air: Zero grade 1s satisfactory.
4.2.3 Hydrogen: Zero grade.
4.3 Syringe; Syringes are Hamilton 701N, 10 uL, or equivalent.
4.4 Septa; Septa will be of such quality as to produce very lot* bleed
during the temperature program. An appropriate septm Is Supelco Mlcrosep
138, which 1s Teflon-backed. If septu» bleed cannot be reduced to a
negligible level, It will be necessary to Install septua swingers on the
Instrument.
4.5 Recorder: The recorder of this procedure oust be capable of not
less than i mV full-scale display, a 1-sec time constant and 0.5 1n. per rain
chart rate.
4.6 Integrator; An Integrator Is required. Peak area measurement by
hand 1s satisfactory but too time-consuming. If manual integration is
required, the method of 'height times width at half height' Is used.
4.7 Columns:
4.7.1 Preferred column: 6 ft x -1/8 In. O.D. stainless steel column
of 101 OV-iOl on 100/120 mesh Supelcoport.
4.7.2 Alternate column: 6 ft x 1/8 1n. O.D. stainless steel column
of 101 OV-1 (or other silicon phase) on 100/120 mesh Supelcoport.
4.8 Syringe cleaner; Hamilton syringe cleaner or equivalent connected
to a suitable vacuua source.
5.0 REAGENTS
5.1 Pentanet •DIstllled-ln-GUts' (reg. trade«*rk) or "Manograde" (reg.
trademark) for standards and for syringe cleaning.
0010 - B - 3
Revision
Date September 1986
-------
5.2 Hethylene chloride: "DIstllled-ln-Glass" (reg. trademark) or
"Nanograde" (reg. trademark) for syringe cleaning.
6.0 SAMPLING HANDLING AND PRESERVATION
6.1 The extracts are concentrated tn a Kuderna-Oanlsh evaporator to a
volume less than 10 mL. The concentrate Is then quantitatively transferred to
a IQ-irL volumetric flask and diluted to volume. A 1-mL aliquot Is taken for
both this analysis and possible subsequent GC/HS analysis and set aside In the
sample bank. For each GC-TCO analysis, obtain the sample sufficiently in
advance to allow It to warm to room temperature. For example, after one
analysis 1s started, return that sample to the sample bank and take the next
sample.
7.0 PROCEDURES
7.1 Setup and checkout: Each day, the operator will verify the
following:
7.1.1 That supplies of carrier gas, air and hydrogen are
sufficient, I.e., that each tank contains > 100 pslg.
7.1.2 That, after replacement of any gas cylinder, all connections
leading to the chromatograph have been leak-checked.
7.1.3 That the carrier gas flow rate Is 30 + 2 mL/ra1nr the hydrogen
flow rate Is 30 + 2 mL/nln, and the air flow rate~1s 300 * 20 mL/mln.
7.1.4 That the electrometer 1s functioning properly.
7.1.5 That the recorder and Integrator are functioning properly.
7.1.6 That the septa have been leak-checked (leak-checking 1s
effected by placing the soap babble flow meter Inlet tube aver the
injection port adaptors), and that no septum will be used for more than
20 Injections.
7.1.7 That the Ust of samples to be run 1s ready.
7.2 Retention time calibration;
7.2.1 To obtain the temperature ranges for reporting the results of
the analyses, the chromatograph Is given a normal boiling point-retention
time calibration. The n-alkanes, their boiling points, and data
reporting ranges are given In the table below:
0010 - B - 4
Revision
Date September 1986
-------
NBP *C
Reporting Range,*C
Report As
n-heptane
n-octane
n-nonane
n-decane
n-undecane
n-dodecane
n-tHdecane
n-tetradecane
n-pentadecane
n-hexadecane
98
126
151
174
194
214
234
252
270
288
90-110
110-140
140-160
160-180
180-200
200-220
220-240
240-260
260-280
280-300
C7
C8
C9
CIO
Cll
C12
C13
C14
CIS
C16
7.2.2 Preparation of standards: Preparing a mixture of the C7-C16
alkanes Is required. There are two approaches: (1) use of a standards
kit (e.g., Pol/science Kit) containing bottles of mixtures of selected n-
alkanes which may be combined to produce a C7-C16 standard; or (2) use of
bottles of the Individual C7-C16 alkanes frosi which accurately known
volumes may be taken and combined to give a C7-C16 mixture.
7.2.3 Procedure for retention time calibration: This calibration
Is performed at the start of an analytical program; the mixture 1s
chronatographed at the start of each day. To attain the required
retention time precision, both the carrier gas flow rate and the
temperature program specifications must be observed. Details of the
procedure depend on the Instrument being used. The general procedure Is
as follows:
7.2.3.1 Set the programmer upper limit at 250*C. If this
setting does not produce a column temperature of 250*C, find the
correct setting.
7.2.3.2 Set the programmer lower limit at 30*C.
7.2.3.3 Verify that the Instrument and samples are at room
temperature.
7.2.3.4 Inject 1 uL of the n-alkane mixture.
7.2.3.5 Start the Integrator and recorder.
7.2.3.6 Allow tht 1nst
temperature for five mln.
7.2.3.7 Shut tht oven door.
nt to run Isothermally at room
7.2.3.8 Change the mode to Automatic and start the temperature
program.
7.2.3.9 Repeat Steps 1-9 a sufficient number of times so that
the relative standard deviation of the retention times for each peak
1s
0010 - B - 5
Revision 0
Date September 1986
-------
7.3 Response calibration;
7.3.1 For the purposes of a Level I analysis, response-quantity
calibration with n-decane is adequate. A 10-uL volume of n-decane 1s
injected Into a tared 10 ml volumetric flask. The weight Injected 1s (
obtained and the flask 1s diluted to the mark with n-pentane. This
standard contains about 730 ng n-decane per uL n-pentane. The exact
concentration depends on temperature, so that a weight Is required. Two
serial tenfold dilutions are made from this standard, giving standards at
about 730, 73, and 7.3 ng n-decane per uL n-pentane, respectively.
7.3.2 Procedure for response callbrat jn: This calibration 1s
performed at the start of an analytical progran and monthly thereafter.
The most concentrated standard 1s Injected once each day. Any change In
calibration necessitates a full calibration with new standards.
Standards are stored In the refrigerator locker and are made up monthly.
7.3.2.1 Verify that the Instrument Is set up properly.
7.3.2.2 Set electroMter at 1 x 10-1° A/aV.
7.3.2.3 Inject I uL of the highest concentration standard.
7.3.2.4 Run standard temperature progran as specified above.
7.3.2.5 Clean syringe.
7.3.2.6 Make repeated Injections of all three standards until
the relative standard deviations of the areas of each standard are
£51.
7.4 Samjle analy t1s procedure•.
7.4.1 The following apparatus Is required:
7.4.1.1 MS chrautograpn set up and working.
7.4.1.2 Recorder, Integrator working.
7.4.1.3 Syringe and syringe cleaning apparatus.
7.4.1.4 Parameters: Electrometer setting Is 1 * 10-1° A/mV,-
recorder 1s set at 0.5 In./mln and 1 aV full-scale.
7.4.2 Steps In the procedure are:
7.4.2.1 Label chromatogram with the data, sample number, etc.
0010 - B - 6
Revision
Date September 1986
-------
7.4.2.2 Inject sample.
7.4.2.3 Start integrator and recorder.
7.4.2.4 After Isothermal operation for 5 mln, begin
temperature program.
7.4.2.5 Clean syringe.
7.4.2.6 Return sample; obtain new sample.
7.4.2.7 When analysis Is finished, allow Instrument to cool.
Turn chromatogram and Integrator output and data sheet over to data
analyst.
7,5 Syringe cleaning procedure;
7.5.1 Remove plunger from syringe.
7.5.2 Insert syringe Into cleaner; turn on aspirator.
7.5.3 F111 pi pet with pentane; run pentane through syringe.
7.5.4 Repeat with nethylene chloride fro» a separate plpet.
7.5.5 Flush plunger with pentane followed by methylene chloride.
7.5.6 Repeat with nethylene chloride.
7.6 Sample analysts decision criterion; The data from the TCO analyses
of organic extract and Hnse concentrates are first used to calculate the
total concentration of C7-C16 hydrocarbon-equivalents (Paragraph 7.7.3) in the
sample with respect to the voluM of air actually sampled, I.e., ug/m3. On
this basis, a decision Is Bade both on whether to calculate the quantity of
each n-alkane equivalent present and on which analytical procedural pathway
will be followed. If the total organic content 1s great enough to warrant
continuing the analysis -- >500 ufl/m3 — 4 TCO of less than 75 ug/ra3 will
require only 1C fractlonatlon and gravlMtrlc determinations and IR spectra to
be obtained on each fraction. If the TCO Is greater than 75 ug/m3, then the
first seven LC fractions of each sample will be reanalyzed using this same gas
chromatographlc technique.
7.7 Calculations:
7.7.1 Boiling Point - Retention Time Calibration: The required
data for this calibration are on the chromatogram and on the data sheet.
The data reduction Is performed as follows:
7.7.1.1 Average the retention times and calculate relative
standard deviations for each n-hydrocarbon.
0010 - B - 7
Revision
Date September 1986
-------
7.7.1.2 Plot average retention times as abscissae versus
normal boiling points as o nil nates,
7.7.1.3 Draw In calibration curve.
7.7.1.4 Locate and record retention times corresondlnq to
boiling ranges 90-100, 110-140, 140-160, 160-180, 180-200, 200-220,
220-240, 240-260, 260-280, 280-300'C.
7.7.2 ftesponse-UDOunt calibration: The required data for this
calibration are on the chromatogran and on the data sheet. The data
reduction Is performed as follows:
7.7.2.1 Average the area responses of each standard and
calculate relative standard deviations.
7.7.2.2 Plot response (uv-sec) as ordlnate versus ng/uL as
abscissa.
7.7.2.3 Draw in the curve. Perfora least squares regression
and obtain slope (uV-sec-uL/ng).
7.7,3 Total C7-C16 hydrocarbons analysis: The required data for
this calculation are on the chroaatograa and on the data sheet. The data
reduction 1s performed as follows:
7.7.3.1 Sua the areas of all peaks within the retention time
range of Interest.
7.7.3.2 Convert this area (uV>sec) to ng/uL by dividing by the
weight response for n-decane (uY*sec,uL/ng).
7.7.3.3 Multiply this weight by the total concentrate volume
(10 ml) to get the weight of the C7-C16 hydrocarbons 1n the sample.
7.7.3.4 Using the voluM of gas saapled or the total weight of
sample acquired, convert the result of Step 7.7.3.3 above to ug/n3.
7.7.3.5 If the value of total C7-C16 hydrocarbons front Step
7.7.3.4 above exceeds 75 ufl/i3, calculate Individual hydrocarbon
concentrations In accordance with the Instructions In Paragraph
' • ' t V . V 419 I WW .
7.7.4 Individual C7-C16 n-Alkane Equivalent Analysis: The required
data fro* the analysts are on the chroMtograi and on the data sheet.
The data reduction Is performed as follows:
ranges.
7.7.4.1 Sun the areas of peaks In the proper retention time
'i.
0010 - B - 8
Revision
Date September 1986
-------
7.7.4.2 Convert areas (uV-sec) to ng/uL by dividing by the
proper weight response (uV-sec-uL/ng).
7.7.4.3 Multiply each weight by total concentrate volume (10
ml) to get weight of species in each range of the sample.
7.7,4.4 using the volume of gas sampled on the total weight of
sampje acquired, convert the result of Step 7.7.4.3 above to ug/rn3.
8.0 QUALITY CONTROL
8.1 Appropriate QC Is found In the pertinent procedures throughout the
method.
9.0 METHOD PERFORMANCE
9.1 Even relatively comprehensive error propagation analysis Is beyond
the scope of this procedure. With reasonable care, peak area reprodudblltty
of a standard should be of the order of IX BSD. The relative standard
deviation of the sun of all peaks In a fairly complex waste sight be of the
order of 5-101. Accuracy Is more difficult to assess. With good analytical
technique, accuracy and precision should be of the order of 10-201.
10.0 REFERENCES
1. Emissions Assessment of Conventional Stationary Combustion Systems:
Methods and Procedure Manual for Sampling and Analysis, Interagency
Energy/Environmental R&O Program, Industrial Environmental Research
Laboratory, Research Triangle Park, NC 27711, EPA-600/7-79-Q29a, January 1979.
0010 -8-9
Revision
Date September 1986
-------
APPENDIX J.5
CEM AND GC
-------
W. M.
II
flantptlna equkpRNnM f-nvlronmrMal Pro
Uwlton Atm-p Rraratrh Tilaiiflr I'aik
M <; APTU Ml* March, ini
4 Snlth. W a,. R T Rhlarriara. and w
P To*! A M^hod o< Inirrpertfc* mart
Oakapnrn DeOa Papr* Prevented at Ihr tin!
Anrmal Meelkaa, of thr Ah ndlullan Can
Ual AakBClkittcni. 81. Louie Mo June If I*.
40 CM Cli. I (7-1-19
Ihr maroi orguiir rofnpnnrnM ol a B.M
mliluir arr tr|i*iair «tl«T> and indl«Mu>llr ouant ilfc-d by
Ilkmr lonbwllon. plmliiinnrullim. rlrrlum
r«p4uir or o4fi*f BinunfHldn drln Ihm
kHPi, W. B. el al. Star* Uuflantpilna:
•nd ttkaeptlfepd with Mr* Equb>
•eml AFCA Patter Mo. •) lit IM1.
• efeectftaoJloaa tar InctnrraUw Tmlng at
•tedMVl PfcrMUtw PHfl HCAPC. IMT.
1. Bhatrhara. R. T.. Adtaataenf*. hi tie*
IPA HHeauantiii lot OMfemtl Pilot Tot*
and Orp Molecular WHaMa
i 1:1 II, October, l»1«.
• VaObro. R P. A Dvrcp of fmmiiilil
Tlie relrnllon llnm ol rarh
roenponrnl are iianparrd wllh I how ol
known mmpoulMkt undri Idrnllral romM
liana Therelore, the analm ronflrnk Irw
ktrntllp and approilamlr> ronrrnirailon* ol
WHti Ihbj inforaMlton. Ine tnalril
pare*) or purchaae*. njaMiinrMlp
kt*ndard mlktorea (a calibrate the
ideniicaj to tr
The Hkllrai
UH n«d l«r ••Bit dftaUm lo «TO*
llw« II IndHa to TTnrmr*— U8
Acmrr,
ch llmairh Trbui«kF Put
far a
d»
UctmbK oonmrtrkUon of lhal romvound, or
UM conecnbvUon thai producaa a kbjnaj la-
ralto of Uirv* 10 onr. Tke
UK pi«a»iii> eaUbraunn lot each
Thto BkHhod appllca lo
H |)en»m of
riaMtod Itrmm an
II doe. not tattude Mch
I ProrMoaaa
Oaa ctiroaMtlaanpnlc ucfinlqikN IpptcaJlp
provide • iiikifcdiii of I to I* percent rela-
tive kUndard dewbuion (RBDI. bat an ekp*
will not drteneilnr
I thai lit are polpvoeikr (hhjh moknru
ku weajhl). ill can potrwrbv brforr anajp-
eta. or III have »rr> lo* .apoi prrvwrc-a ml
•lark, or tnaUiiaMnl condliloni
I I Prtnrlpfe
tai
•MMnlpenenM of Inetr i
ibl Aocwrae?. AnoJpaki "***• ol prepared
are vHhbi I* pcrnnl of prep-
araUnn
« ImUrftr
neaoluUan knte*lcrtnee« lhat Map occur
can be eWaJnated bp appraprlaU OC
coluMn and dtetoetoi chelre or bp ahllllm
the ralentlon thaai ihrouch changa l« lh*
cotunut Ho* ran and Ihr uar ol Umpe««
The analrtlceJ arMtn k> dmonatrated ">
be aecrnlbdlp free fraea nmUoibianU t>T P*
rtodhnllp analpllrtf Muikj thai conibit »'
hpdrnrartoon free kjr or nHroirn
Hwnplr ritmm conlamlnallon lhal off""
mhtn high l*»rl uul tow Irvrl tmmirlr* *"
krr analrvd alUrnalrlr. I" *K"1'
drill ollh bp Ihorouth puribifj ol Ihr (1C trhkrroal. Tmaji. HAD I rtc I loe
kampfe loop brlarrn aunpkra. trj camplra
To aanii* romhrtrnl drtertor raepoiaM. kill Pvraonnel MaiapHn« Pueap
rallbrallon iaan are conialnrd In dry al« brated. lor rollrrlltia adknrtarnt urbr i
To adhMI caBrous ovianhr roncvnlrallonk >rp mmplra
•hrn emter rapor la ptnrnl to Ihr OMMpV. B I |l nthnlen BpUn* CalHnlrd the
«ter rapor conrrntrallor. arr drtan.dncd Ahjllon kpabn« b> to be comtrvrted follow
lor I hoar umpire, and a rorrerilon fartor b) bMj the kprrlllralloni of an acrmUMr
lo br
of iht In-
aa1 Prriaror* San
rVrlnrm a niraurwr lor rath
inlrd. Rvlrr la Flaw* II I.
hxriullon can br collcrlcd
tarrrn and mm srimmtt Oollccl «a>
•unptea IhM ran be analnnl lo con'tra* Uw
Can
1.1 I* flMpk Probrk Pjrei or kUhileaa
•*rt of kBlla-irnl Irncth lo reach cmtmld
ol ilark. a* a point no rioarr to Ihc waJIk
titan lai.
I I » Barometer To
ol the OTBanlr r»Ua1iik> 11 I Oriootard rtWOkd Water
II Apfawklua Thfcj apparaUai tlat aan III Mrthplmr iNcbtekle.
applla to Srrtlom • aod \ in Cadlbntlon flaota A kerlea ol atand
III Teflon TtiOkMf (MenUon of Indr ankt prrparrd lor ernip rrmipoMnd of Inter
nanea or apMifk produrte doea not oonaU ert.
lute tiidi»oninitl bp Ihe U.B biebonn«ti lit Orranlr CoMBOHnd Oohitbana. Pare
Ul Protection Afcnip I OfewaeHrr and IM>I peranmi. or mm pure mm an iraaniiklili
krnfth drlcrakknrd bp, tonnrtllon rewulrt be obutned Hquhl kanMpiee of an the organ
avntf of cpllndcr rvcnlaton and Ihc OC br curapoundi nrrdrd lo prepare callbraieon
AddHlonal Ivbeng Ik mttmmti to connect atandafd*
theOCaB»pkf looploUktatkajIr. an eT.lrarllon antoenu »»r ealronion
111 Oka CnronMloatwnli. OC arllli ka*a of adaarbrml lube eamptn fen prppuMlon
bte drtcciar, rorueana. tewtperal<>r*«an for anal pah)
iroUrd akMotr loop and valve aaaraitilp. and | j • Fuel Aa rrroamendrd bp the nan
Imperative proaramablc o*m. If neneakMp ufactum lor operation of Ih* DC.
Ill Can In Oaa Hpdranrbon Iree. ak
PCCOMHVMVMVfl wC *n*t IBBUtMlwkClllfVV fOf 4>fV
erallon of Ihe drtector and iiaaiiaiklHIItt
•Mr, the ca4naa«.
tit Zen dak. Hrdrvcarhoa me air or
blank
Thr «C khall achieve aeiadUvKP reawb-e
114 nowakcter* To
I I.I RrutaUm Uaed on fa* e»Onderi nltracrn. Is br laird lor
lor CH: and for cpi
11 • Rcfarder. Recwrdrr wkUt
tharl to •Infeeniai acoeptablr. I
logUonalUa rirri «iriiki«
111 oprweje*. ••eat, I •- mmmt It aklrro
prrparktlan. and standard preparaUon.
II .Ukaejllirel.
Ill CsaOrctlon of Sakkpv* wUi Oiao>
tp kaeapkta can be
iu Uihl), for prciaHfeaj ralfcraUor. aland
HI Tubin*
fke rplbidm.
I II BeplwBi
I I I* Ola. Jan If
ft I II Roap Pllrn Pto* Mrter To drkr
Mlnr flow ratea
Sill Tmflar Ba*a. I* and W liter tapac
H» for orrparailon ol atamkudk.
» I II D»p Oai Meter with Teatpriklure
•nd Piewnre Oautea. Ac«uta*r to I 1 per-
«in. rot verparat tan of mm* Mamkirdk
> I M Hk%r| Imptmrr/llol Plate Ak
wnhlir Por prrparillon al mmm iLandaiito
1 I 15 fJampte Ptekk* Knr prrkurvfy iam
1 I !• Ad*ot»iloii Tiinri II mi i•»11
*>li»li luhn lllir.l «l r.-rw*ir ukutrbriil
llaai aamplhn fMaftj. Teflon kiopoockA
wlthoul jKaai. tire pnrlerred Pkawu abould
br cleaned at fatlom flcwwvr I
froca bath endk of in* fladka. i
i to remove anp frewat. data tne t
reb. and recetven w«h avthp
CVanafl a«k
•BhMlon. Uten itoae «IUi Up I
dbUlled water Plan the
ajiea anneaMn* fiunace and applF heal up
lo HO C. Maintain at Ihlk lii»o»itl«rr for
I hour Alter lhai lime period, khM off and
open trie fuinacr la aHov Ihc naak lo cool.
(irtw the anocacm* vrtUi atopnocfc
uid rrlurn Ihvm lo the
Purtr Ihr uerftablr with hkfh purttr nllro
mm tar I to 9 miiHiin Clnar off "•* •***>
rarm* alter putilnc lo maintain a tllthl
pmlllrr nitrogen prnwirr Brcur* Ihe ilop
rnrkj with lapr
P>riur*rp eamulra ran be obtained ellhct
br 'lr.»ln« Ihr (un Inlo thr prolowlr
r«u-uilrd Hack (it br dr»ln« Ihr «aon Inlo
868
HA a
-------
ft. oO. App A,
II
and purging Ihe flas* »Mri a rubber iiK-liun
bulb
ft 1 I I Evacuated r'lu«s Piorrdiirr llw «
high vacuum pump I" rvsi-uale llir lluk lo
llir rapacity of the iMimu. thru rlue nil llir
stopcock leading l» Iht pump Attach a I
mm outside dUmelrr lOUl glass tee lu llw
flask Inlet with a short piece of Tel Ion
tubing Belect • ••mm OD boraalllcale sam
pllng prate, enlarged al one end In a 11 mm
Oil and ol mfftelenl length lo leach Hi*
ceniroM of the duct lo be aamplrd Inacrl •
glass moot plug In Ihe enlarged eiul of IM
prate lo remove pankulale mailer. Attach
the other end of Ihe prate to the tee .llh •
short piece ol Tellon tubing Connect a
rubber auction bulb lo Ihe Ihlrd leg of UM
tee Place Ihe filter end of Ihe prate at Ihe
cenlrotd of the duct, or al a point no closer
to Ihe .alls lhawt I m, and purge the probe
•llh Ihe rubber suction bulb. After the
prate to completely purged and filled .lib
duct gaaca. open Ihe sbipcock la the giab
fssaa until the pressure In the flask reaches
doct pnsaurt. Close oil the stopcock, and
remove Ihe prate fraaj the duct. Remove
the tee Iron the lists and tape Ihe stop
cocks to prevent teaks during shipment
Measure and record Ihe duct temperature
and) pressure
B.I. 1.1 Purged Plaak Procedure. Allarh
one end of the sampling flask to a rubber
suction bulb. Allach Ihe otter end to a ••
mm OD glass probe at drwtlted In Section
S J.1.1. Place the filter end of Uir prate at
the cent road of Ihe durt or al a point no
r-loaer to Ihe sraJU lhan I m, and apply suc-
tion srllli the bulb lo rumpielfly purge the
probe and flask After the flags has been
purged, cuse oil the stopcock near the sur<
Hun bulb, and then cloae Ihe stopcock near
Ihe probe. Remove the prate from the duel,
and disconnect both the probe and suction
bulb Tape Ihe atoprnrk* lo prevent leakage
during shipment Measure and record Use
durt temperature and pmaura,
b.l.I PVilnle Bag Procedure Tedbar or
alununtard My tar bags ran also he used to
obtain tte prcsitrvey sample. Use nrai bags.
and leak check Iheat before field use. In ad
dlllon. check Ihe bag before use for con.
lamination by filling II .llh nitrogen or air,
and snalnAng in* gas by OC al high i
aUperlrnoe Indfcrates thai II Is i
.a Ch.
(•ill in
HU
* In ilrli-imliir (hr
Me to allow the Inert •• u> remain U> tme
bag about M hour* or longer la check tar
deanrptloji of organta from Ihr bag. r\tlto%
In* leak check aad mmvte coHectkon proee-
dutca glten ta Brcllon f. I.
••I.* netenntaiatlon uf liolilure Conlent.
r\M ranbuaUon or vain coitlialkn! praccoi-
n. nbtarn the moWurr rontrnl from planl
peraonnel or by fMruurrmrnl durta^ the
preaurvei. II Ihr mtun'r is brlnv W C,
meautre the w»i bulb nxl dry bulb Irmprra-
lufft*, and ukulair Uir molitliirr ranlpnt
tulng • nrrhroiarlitc rlurl Al liialirr lem-
44 llrlrrinlii*lioii »l Slmln
ItblBlii llir alalH- inriwuir I«IMII
IwiMMiiirl or m*a!ciifrinr"iil H
lulr Bird an huhiird nianomrter are tued,
lake rire lo align llir |>ll»l lubr tO' Iram
llir tllrifllon ol llir floiv. ItlaruiiiH-rt our ol
llir lutes to Ihe manomrln •nd read Ihe
alsllr prrjaure; note vhelhrr llw rradli^ ti
pobltlvt or n»i»Vli*
& $ t'nllertlon ol Prmurnrir Kamitlrs Blm
Adaorpi lun Tubr follow Brrlhm 1 * l«i nir
uirvet iiaropllng .
• Mmaliau Itrvrlupmrnt
• I eeierllonul CM: P»r«melrr»
• I I Column I'tiotrr Kurd on Ihe InMlal
contact atlUi irfant prrattnncl ronrrrning the
plant p-ocra* and Ihe anllrlj>Bl«d rmlkmlum
chocae I column lhal pmtldes guod rnolu
lion an I rapid analysts lime. The rliolce ol
am apptopflaie rohunn rsji be aided by a III
rralure search, conlart «Mh manufarlurrn
of UC loliBBni. and dfaeusalan millh person
nrl si tite eraawkm SDUTCT
Moal eohnnri aaamifaeturen keep eieel-
lenl reiords of Ihrti Broducts. Tneli terhnl-
ral srrvtcr departments sway be able to rec
omcnrnl appropriate columns and detector
type far aepatallng Ihe anHdpabrd com-
pounda. and they may be able to provide In
formalin on ntiffferenrca, optimum off
al Ing c* ndMtona, and cotumii Itmlialioiia,
KTsnln with analyltcal laboralorlem nisy
also be. able lo provide Infnrmalloii Lsjtdards and cniumn oMalned1 in Sec
lion • I I. perform InMlal teats tu determine
appropriate OC romfllUms thai providt
good feiiolullon ami mlntmym analysis lime
lor Ihe ijompounds ol Interest
• I 1 Preparallon of ft«ur»ey Bampsta.
If Ihr lUBpkm »ete coJIecUvl on an adsorb
ent, ealracl the aample *a recommended by
the twsiiufacturer for removal of Ihe euro
pounds *tth a aolvefM auttablc to liie type
of OC analyakt. Prepare other aamplea in an
f.l.i Prraurvey Sample Analyiis Beforf
analysis, heal the preauney sample to the
duct tmiperature. to vaporise any condensed
material. Ajialyie the aamplei by the OC
procedure, and compare the retention limes
against those of the calibration m«mp»n
thai contain the rufaponenU eiperted lu be
sn the ilrrafo If any cosnpoundi rannol be
IdrtHllh-d wllh certainty by tills prmfrturr,
Idrnllly them by oilier rneans sucli a* tlt.V
mam apectraarapy limiit" M'lMnil*
l,B*r brrii 4lelrrmliu-il. iieilwnn rr|»sl UM'T
HLIU ul tlir SBifiuli- lo rtrirrmliir Uir rrlrii
,1 Inir al rmrl, rimipoiMHl Tn ln»rrl •
ssiiililr diao itainlilr lliriHilll «" •»"«» »' •
,.,ii.ll.nl r.lr 1100 ml/ml™ I«« J» «ero«d»l
|Ir rsrrful no! lo preasiirlse M»r ian. In «l«r
loop T«rii ull tin- p«mp and allo« Ihr gas
In Hie sample loon l« ftwnf In amok-ill pr'"
s,ne Arll.atc Ihe sample »•!»*. »»M| 'word
Iiiirrtton tltiw. toop *rw(P««U««. column
trmpetatuir. carrier ll.iw rale, cliarl speed,
and attemwUir setlliig Calrulale the rrlen
lion time »l rarli peak using Ihe distance
Irom inKiii-" l« »hr P««* mailnwim dlvM
rd by Hie . nart speed Retention Utn*»
sh
typest»l'lT...roVl.rs .ml MMnmr.rlally a.all
.hli ililul systems can alsu br used,
C .lllx.li each Ihi.mrler before "*•»
placing M hi-lafii-.i llw dllurnl gas supply
and «iltably ulu-db«ibbte meter,
mft tr.l nM-t«-r Hrrur.l all dala i
Plgurr It 4 WhlN li l> at may
iwnluflr It Tin- .-ii.H Introdured by ualial
Ihr dllue.ii ga.v lu> rsllbrallor. Is Instinlfl.
i.ul fur gas nusliurs «l up lo I.PoH IO *.mm
uurn «l earlt nrniiih- rwinponeiil
Oner Ihr fkwmriers are caltbraird, con
nect the ll,,.m, n - l» ihr rallbralhin aud
diluent gas miinilirs u^ng • mm «*«''> i:on«rr.vhipm
X Mule ur volume fiaciloi: ol Ihe organic
In tin- rahbrali«m ga.i lo be dilulrd
d, , plo. rate ol the calibration gaa lo be dl
luted
q,, - tMliM-ni gas !!»• rale.
Single stage dlluUuns should be used lo pre-
pare callbtatlon mlslurcs up U> about I:M
dilution ISJ-UK
r\K grralrr illlultuns. a double dilution
system I* irnMnrnriwIed. aa Bho*n In figure
It • Pill the T. rtlsi bag with lite Ollule gas
from the M-rimd clage Record Ihr laborato
ly l^mprraliirc. bartimrtrir i>ie*uire. and
Btalir pri-^ure ti-Billnga CTorrrcl Ihe float
reading '<" l.'miifralure and iMeuure. Cal
nilslr Hi.- i utN-eiilrallon C. in IHMH ol the
iirisiiir "• ">•- linal gas mlslure as lollo»«
Use Hi* OC conditions itrirrtuliird by ll»-
iwocrdtirri ol Bivlluii g I 2 liu Hit Itisl l»
•rclIon Vsiy Ihr (It: uaiainrli'i^ diiiinf
subsequent ln|Miiuiu Ml drlrrinliH- lln- <•!•<*
070
-------
T
P». M, Aa*. A, MwhY II
6 -
Ce • 10 X
«d
«0 CM Oi. I (7-1-19 IdMion)
'cZ
*O,
A. Mcjlkk. It
lqcl * «<« \qt* * ^2,
fo-
Where troaen through • drr la* mrlri lhal ha«
II* -. Convercton lo pom, been calibrated In a manner ronibtrnt win,
X • Mote or volume fraction of Ihr organic I** procedure deacrlbed In Section ft I.I O|
In the calibration gaa lo be diluted. Method • While the bag b lining u*e a B »
wag on a amooth aurf ace. and al
Volatile MaJUrrml*. Record all data ahown on ternatelr atprata iMjjiiallr rndea of the bag
Plgun II I H Urn** la mil the gacca Record (he aver
• 111 Oat Intaetton Technhpic Thta aa-e Mate* lomfwratare and fmeauw, ihe
a applicable- u> organic com IBB volume and thr barometric Drmmnt,
I thai eirnt onUrelr at a gaa al arabl Record the ifrtnae tenpcraluK and prra-
rnl oandllmna. KVaruate a IO liter Tedmr *ure befope Infection
hag that haa pacacd a ma-cheek <•** Bee- CatcumU each organic atandard COIMCA-
Uonf II, andBMter bill liter* of air or nl I ration C, m ppm a* foltowa:
f, «nV C vJ "
UM • 10
.llh Ihr oriairic Plat* Ihr «»rlrnc
Inlo tfit Implnarr InIM mini Ifw arfMum
umvldrd, and ln|m I In- liquid Into lh« llo»
In Mr rtrcam UH • nt-tHtr of nlflclcm
Irrwth to W"nH Inlcdlon ol the liquid
ortov in* air Inlet branch ol (he ire.
Rcmovr Ott ivilncc.
When Ihc tn« (* tilled, Hop Uw pump, and
clow (he ta« bilrl nln. M
outlet, and «lhr» «H II uldr lo. «i leaM I
hour, or mMaflt the bai to Inrare toropl*ie
Mfaiure lh« MiNriil liquid dcnallf at
ruom trntMrratiiir. br arcuiaulr •etflhln« a
knoMi (Olumr al Ihf material on an UMlri
leal nalanr.* U> Ilir nrmittt 1.0 mllltaTam. A
• round |lu» Mavpftfd M mil
flu* 01 a (laai abifipercd apeclllc
bolllr to ntHabtr lor «lflilna:. Calnilalc the
rrauH In term ol |/ml. Aa an aflctwitvc.
lluralurr valon ol the dnvHr of lh« UquM
U M "C may b* u«ed.
Calculaf earh w«m»c Manojard
trallon C. In ppm ai lolHm
^5-
(Z«.0*4 i
«.?« i 10
l.P I
fq.
".
760
IOOU
vhcre:
.
Uojuld ataBnk dcnatir «a oMmanwd. •/
be nmllrmrd In thr
and analyilni callbrkUon Mandank contain
bi multifile onjanfc
al m *K
"
TED
) t
1000
H . Moiccwmr weight of
It MB-Ideal gaa
and TM mm rig.
ia>.Can*eraionU>
I iw».Con>«i«liin II
f •! PreparaUon of CallbrmUari Gurvca.
Falatrtfctir uimici OC conaWIOBB. UMB fbjah
the mmr"~i loot) l°* •* an""'*' al a raw of
IM ml/mbi Alto* UM
lo eoullWraU to
activate Ihc bitecUoa *•!*•
•here.
O.-Oa» ralunw IK ofcantr rompoutnl in
iccted, ml.
. •- Connralon lo pen
P. -Absolute prvamre of cr'!"*' brlor* In
(tctlon, BMM Ha
T.-AtaoluU tenperalurr ol (irrlnic belore
•HFCllon. K
V..CIa« *oluaH> tndlcalrd t>» di 1 «a* meter.
Mten.
V -Drr (aa meter eallbrallon factor. dJrarn
P.- Aaaohite preBBU* of dr^ caa meter. BIB
Ha,
T.- Abaolute tciBBCtaturr ol drr !•• meter.
-ff.
• 111 IJqutd Injn-llon IVrlmlqiir Uv
lt>r mulpmcnl ihovn In M§urr I* • (.'all
IMBU in« dry >a> mrUi BJ Jru-ilbril In tlrr
lk*> a | I | aillh * vrl lr>l mrlrr <>i • ipl
roraeter. Vff B vater nanometer lor the
pnraaure aauce and «1aaa, Trllon. hraai. or
•UJntaB BUei for all conmctloaa. Connect a
ralve la Ihc Inlet ol the »lit** TMUar b*t
To prepare Ihr ilamlardi. anrmhli' the
•qulpinenl aa ihoan In Plaure II •. and
leak check I he iratem. CunptrLrlr r*aru«ir
(he ba«, PUI the ba* vllh hrdroraibon I'tr
air. ant nacuate the bag again. Ctoat Ihr
Inlri vain,
Turn on the hoi plate, and allow thr
••ter lo reach ballln*, Connart the baa to
the Imp4n(*r outlet. Record (he Initial
mrter lewttng. opm thr baa- Inlrl *al>r. •'•!
oprn (he cyltndrr Adfinl. I he rate •> thai
Ihr ba« »lll be mnptTlrlr flllrd In appro*!
mktrlf It mloul*« Hrrord mrlrr prruurr
and Irrnprralurc. ajMt Inril bari>m*>irlr P'"s
•urr,
Allnv lltt liquid orfuilr lo rqiilllbrBlr lo
inooi U-mprralurr mil Ittr I o 01 lOmxii,
Illrr iyilii«r (u Ihr drilrrd lluind »iiln""
Qualltr Aaauranr* for
ImaMdmtelr a/ter the prcpara
i of Utc callbrallon curxa and prior to
(he preaurvcr aample aaalrmy the anatiram
audit Jrmrlcea In M CPU Part «l. Appcn-
dli C, Ptwwdut* * "Fwctdnr* '«* PlHd Au
dhMng OC Anaiyahx" ihould be performed
The InlormatUm reojulred la document Ihe
analrala of the
rtuded on Ihe nample
II I and II 1
._. j the vtendard bilecUoo umUl two eon
atcutlve InfncUona gf*e area cownte wtthtn •
pemcnl of (heir average. The avrragv ralue
Mulllprcd far the altenualor factor b> then
ihe calibration area value for Ihc oottcenlra
lun
Repeat tMa procedure lor each nandaid.
Prepare a graphical plot of eanrcnuaUon
i C.I venui the tUlnratlon area value* Per-
form a rtgnaalon anal raw and draw Ihe
bail louftrea line.
• 4 Remit** Heapon** PacUta. The call
brallon curve generated from the BUmfcvdi
(or • tingle organic can uauallr or. related to
rich of Ihe Individual OC rcapona* curvea
!!%•! nr developed bi Ihe lahoraiorr lot all
UH- rampoundl In the aource In Ih* Ikflcl
•laniard* lor that ringfe ofianlr can ilirn
br iixil lo "calibrate" Ihr (Ml lor all Ihr or
i prcaenl 1'hui pracrHuir ihould Hnl
ihould agnc mtt.lt the audB oBnceniraUona
•Khtn II penenl When BnUaMe. Ihc
Icate* mar obtain audn crllndm »>r coo
tartlng UB BwlronawoUJ Fn*
AgewT. Oi»*m«Ben«l MonlloHag HI
lAboralor*. Qi«lttr Aawranot I"
"10?
itandarda and analriki «|Mka»enl different
f torn ll.«ar >ue* lor Ihe aa* man-larlorer •
aji«lMl* Verlllrallon to eomo»«te and ae
rr|H>blr •Urn Ihr Independrnt
872
H71
-------
It. M, Apav A, Math !•
rtmrenlrallon I* vllhln A prirrnl ol Ihr lk>
manufacturer'* conmilrallon
t rlnaJ S*apMa* • •** tmalrtu Pnirrdarr
Carakferlng oilety I flame haiardil and
Ihe aourer aondttkon* Mtoct an appropriate
•ampung and analfMa prorrdur* iSeciluft
Till 71. or i.ii. InaMualtorv Bhrrr a hy
dmgen Haaae to g haaard and no bHrbttleai-
ly amfe OC to auUabw, uae Ihe fltilble bag
caHacUon technique or an adaorptlon tech-
n*»j». It the avarcc leavperaturc to brtow
IWC, and Ihe organic cunornuaumto are
•MMahaf for the detector to be uaed. uat the
direct Interlace method. If the aource gaata
require dtluUon taw a dilution Interlace and
cither the bag- attapfe or adsorption tube*.
The (hotor t»la*«n thcae two teehoique*
•III depend on Ihe phyatcal layout of Ihe
alie, the Baurce temperature, and the auw
age atabtllty of Ihe covajmunda If coMeded
direct Interlacing or dUutlon Interlacmg to
prevent ammple taa* by adaufpUon on Uw
bag
II Integrated Bag
40 • CJi I (7 l-»9
lurllolri «•«> (lorn 1'ltrii ixnllliMi ll>r
mm) vu-iiiint llnrs Ini um|illiig. knct
Ilir wlnBl umpllni. trrpliic Ilir nu- i«,,
p»rlk>ni I u> i|tc ilarli vrlorlly Urn m ptnrtu
linn, dlirci itir IM nliiii< Hie romncUi
*•>•? It m Mjnplliic |>rr*n«n«'l Al Ihv rnd
ol ihr i«mpl« prilod, ihul oil It if pun>n
dUroiuvcl IHc Mmiilf tin* IIMM ittr b*«
•nd dtamnneci me ••cuum line liom uW
bad ciaiWInei, RecoM the lourcr imnprt*
lur*. terauMttlc prtnurv, amMrnl unprrii
lure, mmvitnm no* nUct •«! Initial MM
final MiPplU* llow on Ihe n-t *ho*n
In Plgut* It !• ProlcM UM T«« 111, rirtf* ptaa the piuap MM
needle lalfC brlwren Ike prate and Itie oj«
Uav • p«B» Mid nredte «M«C oomrwEtcd of
•Illnlnii clcel Of «at»e albei BMterlu iw« •!
fccMd in a* «aet •••. L**h rtxc* in,
••MOB. Mid Uwi) purvc Mill
btlon Ite coutecUni to U»
I.I.I BvaaaUed C^Ialner SaiapUaf Pro-
cedure. In IM* procedure. the bage at* fiBed
br evacuating- the rigid air tight container*
that hold Ihe te«. Uw • field aaiapte data
ah*** aa ahotm In Figure !•• I*. Cotktcl trip
I teat* atunple tram each aaavpie localjon
1 1 I I Appanlw*.
1.1. 1. I.I Ptobt. Buintaga atecL Pjrei
•KM. or TeftoB tubing prote. «~~^.^ to
the duct IcatpemlBi*. vMh • 4 MM OO
Teflon tubing of Mfltotn* length U> aan-
nort la Ihe aiiafllf bag. Uw ataJnwai gtett at
111 bptaaton Pta* Art* R|
Proaed.**. Polio* i.l.i eieepi
pump va/i another cvacuai«d can lace
Plgur* IB aat Ueje UU* avrlhod *henever
there to a pnaallilUtr of an eiploatan due u>
punapa. healed probe*, or other faune pro-
ducing . Aa aa al
UrnaUitt. eaUatt the aampaf gaa, and avawl
lancoaily dHm» av to Uat Tvdau bag.
In Ihi fbat immnlun, heal Uw bom mo
. ' •*• 10 Uw aourc* lev*
porataif. piurtdad Uw rianiu.iuiU of
Connect Hie
Iroe. UM Mrdle nltt la tlw Teflon
line tram ittr prate PU« Ihe cmf of Uw
prate «t Uv crairotd of Ihe Mack or at a
point no clam la (hr •«!!> than I n and
Mart Uw PUBBP with the ramllp f UM- ad|iM|.
ed lo rleld a Horn ol q* Utrf/nOnuie Utter
uloMiw MifllrtrtM «b»r to paf,* UM im,
op««ral lime*, mnnn-t itx Tvuum line to
llie ba«, and >«Bcuai« until the rot*Arl*r
. Then U«papart the bag a*
~ar la the aiMlytkcal anai
r the heating, or eovcr lit*
BOB B*H an ba»ilal>ng blanket. In Uw ana
lyUcal M*B. kaep Uw boa healed lo aman*
»«mMttttan onttl apaltikt. Be awe UuM the
awtnom of heaUM Uw boa and the control
lor the hcaUng dram are compatible «Mh
Uw a»My natnctlona required In each aira
. To mm Ihe veomd procvxku*. prefll! «hr
Trduw bag «HJi a knovn auaniny of Inert
a**. Miter Uw Inert gaa lnu> Ihe bag accord-
Ing ho 'ihe procedure for Ihe preparation ol
gaa CTTtrrntrailon atandarda of voaail*
liquid iMVtrhUB iSerUati d.l.l.tl. but rilml
partly lUlcd bag to the aourre. and mrUi
urrr gal InKi Ihr bag (lirnugli liralrd
lines and a l>r»lrd Ilitvmrtri. or
Triton pnelllvr dbolarrmritl pump Vtilly
ilir dilution lacton peiliMllrally Irtniugh dl
IUIWHI and analyil* ol gafl<** ol knunn run
rnitratton
lib Analyila ul Rag Hamplr*
1 I S I Apparatus Hww u fln-lloii S A
minimum of three gat standard* are re
qulrrd
T I • 1 Prnrrdurr Cilabltih pinper OC
operailng condlltona a* deacrlbed In Section
g 1 and record all data tlmird in PIgure II 1
Pnrpar* Ihe fX,' an mat gal can be dram
through Ihe aamplr ralve. Pluan Ihe aimlile
loop wtth gaa liooi one ol the three callbra
Hot) oU»lurr». and activate the valvt.
Obtain al leaat l«o chrowalocrams lor Ihe
taliture. The RMIU are aoccptabvc *hen
the peak area* Iron two conaeewUve tn^c-
UOM agree to within i pervent ol Uwtr aver-
age. If Ihey do not. run additional anafyaai
or correct the analytical technvauM until
HIM requirement la a*et. Then analyac the
otfwi tarn caUbratlBti olilurea M the avaw
manner Prepare a caJIbrmUao curve aa de
acrlbed hi the aame vaarmrr Prepare a call-
braUoo enrve aa dearrltied tn OftOtm •.».
Anaiyae Ihe aourer gaa aarafHra by con
nertlng each bag to the aampUng vaivt »tvh
a Piece ol Teflon lubing Identified lor that
bag- PMlOB the apecUlcaUoiii on repllcalc
analyaea apcctlled lor the mibraUon gaaea.
Hecorfl Uw data IWc4 in Figure U II If
certain Item* do not apply, uae the notation
• N A " Alter all aamptai ha«e been ana-
lysed, repeal the analyam of tftc callbrallon
ga* mlilurcB. and generate a arcond caJIbm
Unn curve Oar an a»rrage ol the l*o mrvea
to determine the auaole gar ccormiraUona
II Ihr l»o eaUtvaUort curm dUler by aMire
than t percent Iron their mean »alue. then
report UM (Inal reaulta by eompmrlaon la
bath callbr»ttan curve*
l.l.t DelnmlnaUon of Bag Water Vapor
Content, afeamre and record Uw aotbtenl
temperature and bafoaiclrlc IIIIBVIIII near
the bag. Prom a water amuiraUan vapor
preaBur* table, determine and rawed Uw
vjaler vapM content aa a declaaal figure
I Aamoat the retail** humldlly to br IN per
cent untcaf a train vahw. to kMMna.l II the
bag haa been maintained al an elevated teav>
prraiiwe a* deacrlbed In BccUon 1 I.I. deter-
mine the atack gai vater content by Method
i,
ill Quality Aaauranee. Immediately
prior u» tr>e analyiM ol the alack gaa BBBV
plea, prrlorm audll anaJrae* ai dracrlbed In
Srrllon • S The audit analyari muil agrr«
vttit ttir »»rt» ronrrniratlona vjhMn 10 per
rrni || ilir results are acrrptablr. procrrd
atllh ilir aiialysrs ol the ifMircr kamplcv II
Ihry do mil agrre viilhln 10 prrrrnl, thru
rtrlrrtnliM' Ilir traMin fin ihr dlacrrvarwy.
•ml laar «urrrll«r u'lhui brlurr piorrrd
PI. Mi, Mpp, m, •»»•••!. .-
1 I I rlniiulmi < «l, .lUllom r*l«m Ilir •»
nm*r olibull ..... uivr drarribm In H*rtimi
•» I i . vtm Ilir »«IMC ui < . iliat nwf rtputMb
In ilir |>r*k *tra < «lr"1»lr Ilir runcnitra
lion «'. In inm> di» te. ul rtcli uigaiilc In
Ilir tamplr u lollowa
<'.
Eq. Ii-5
ilir organlr from the
(.'onrrnlratlon ol
calltH ttkwi rur»r.
P, nelnrncr pieuuir. thr beromelrle
prnwuie or ateuilulr taotuk- Mop prea
•ore rrrurdi-d duiing CBllbfaUoti. MBB
Hg
T, -Baanple hup innpriaturr at the Uaac ol
•ample analyiu. "K
P. p RrUtUr irtponie lacUw ill applicable.
•ee SexlkMi • ti
P. *Bar«m»etrlr or abaolute aantple
prevaure al tlmr of aanpie analyaki. i
«t
T. - fttfenrnce temperajurr. the
tme ol Ihe aanple loop recorded during
calibration K
B_ «Watrt vapor content ol the bag aample
or atack gaa. praportlon toy volume.
7 I iMrect Inlrrlaor Sampling and Analy-
tit Procedure. The direct Interlace prac*.
durc can be uaed provided that the mnamiiT
content ol the gaa doe* not tnterfen «llh
thr analyiU proredure. Ihe phrviral irqulre
nwnte of Ihr equlptnenl can be MMFI al the
alte. and the aource gaa concentration la lo*
enough that drtector aalurallon I* not a
problem Adhere lo all lalety terjulicmcnU
•Ith thte rmrlhod
111 Apparatua.
fill Probe L'onalrucird ol •teJnIcaB
•IceI. Pyrei glaa. or Triton tubing aa ra-
aulrrd by duct temperature. • * mm OO. en-
larged at duct end la contain glaav araol
plug. If neceavary. heal the profer arllh heat-
(nd tape or « aperlal healing unll capable of
maintaining duct teiBperalure.
1111 Samplr Unea. • « mm on Teflon
Hnea, oral iracrO to prevent rondrnaaUon
of avatertel
f.I.l.l Quirk Conrtecu. To cmtnect
aamrrlr line u> gai lampllrMi valvr on UC Hi-
atAiownl and ut pump unll uard to •llh
dra* aourre gaa, llav a gutck connect or
tavjAvalrnt on thr ryllndrr ot bat ronuUnlng
caUbrtllon g,a& lo allovi rcMiitrrtlnn of Ihe
callbrallon *a* lo i IK ga* uun^rfing *alve.
TI i 4 Tliniiiuruuplr Hradoul llrvlrr
INWrnllumrlrr or digital thrrtoonwlrr. ta
mraauir iu>un r trinprtaluie Mid probe tern
pr-ial uir
1 3 I i lli-*lrtl Cla* Sampling Valve Ol
tvtu ixuiium kU IMUI drmlgn. In allov
um|>lr liiu|i In tor puigrd »»lh souirr gal Ol
f« dlrrrl MHiri-r gas into Ihr (II.' IrudruMirnl.
BTH
815
-------
ft. M, AM». A. Math. It
111* Needle Valve To rnnlrul gas Nam
pllne rale from Ihe aourre
1111 Pump l*aklem Triton roalrd dlB
phraani-lrpe pump or roulvalrnl, cipaMr of
B! Irmct | liter/minute mm0tlng rate.
Ill* Plowmeter, Ol lullablr rang* lo
1.1.1,1 Charcoal Adaorbcr. To adtorb or-
•ante vapor oolie**ed from Ihe aource lo
prevent eipoaure of pemmel to aourcc gai.
I.I.I lo Oca CyUnden Carrier gwi
Ihellum or nitrogen I. and oiyien and hv-
tkroaen for a fmmc nntiallon or lector IPIDl
If one to uaad,
11 I II da* Cnranataampn Capable, of
being moved toto Ihe field, with detector,
healed gaa campling valve, column rcourrod
u. compart* arparatlon of deal
nenla, and option for temperature i
III II Recorder/lntewrBUM To
1.11 Procedure To obtain a
the mmriliin Bretem aa ahown bo
IB II Make cure all conaccflono or*
MM. Ttorn on Ihe probe and mmc-lr line
htaUfr Ac Ihe limimiliire of the probe
and healed line approachec the couroe tem-
perature ac IndHaliid on the thermocouple
readout device, control Ihc heating lo mato
lain a tcmpcralure of a to re above the
While Ihe probe and
ealod. diffmiim'i Ihe
Unc from Uw gao mmnling valve,
and attach Ine Bne from Ihe callbrmlkxi gwi
ine m mil It nap with call
Jpce a portion of that
•aa. BuMocd the rmwrU Afuv Ihe colfbra
Uon gac Bacaple haa been nuahed tnlo the
OC motrumenl. uam Ihe |mc campling valve
to fhawi poanion. then reconnect Inc probe
• mil In IBM lo the valve. Place Ihc true* of
Ihc probe at Ihe cenOold of Ihc duct, or al a
peon* no rlour u» the vatto than I m, and
: eaa Into the prate, heal ml IBM.
loap, After thorough ftuBhing.
Ing Ihe aaeae rant*
aa for Ihe cattnraiion gal mUlun.
the araupBto on an additional
< |he peak area* lor the two
. and If Iher do not agree lo wtlhfen t
perBent of Ihetr mean walue. analroe aaol-
i until tiro concorutlve anal*
criteria Record the
ralua to arrmagod to thai either a IO I or
IwTi "HIirttTiTf of the caanc gac can be di-
rected lo the ennmuMograph * pump of
to atoo reaumd, and Ihto
anal bo heated and pmc«d In Ihr
> beta tin Ihc cample Une and Ihc dr
lullon apparmtuB
1-1.1 ApparaUai The cojinnncnl required
In addition lo that cpodlkd for Ihc direct
tnmfacc cintem to ac foUoaja:
T.l.l.t aampte Pump- Inklcai Teflon.
coaled dUphragm trp* lhal can wHhctand
being healed lo IIB'C and deliver I ft ItUn/
i PttBipe Two Model A tH
lerf Ptolertion A|
ll.l.t
Kocahrr Tetloa paaHlw dtoj>ln»anni type
dcUTCttrw IH ae/mtnuit. or equlnlcnl. Ai
an option eallhralccl flovwHcn can be u*ed
bi contunrUon •tth Teflon-onalcd A*
phracaa piMBpa,
1.1 I.I Varna Tmo Teflon Ihrec war
(alwca. aullable for ooonectlni to 1.1 mat
On Teflon tuMnc.
11.1.1 nomm**ti* Two. lot tneanin
awtfl of dthtcnt ew. eipattod drlli«r HOB
rate lob* I.BMoe/iBin.
T.I.!.• Diluent Ow vllti Cfllnden and
IU«ulaton Oat eaii be ntliatcn or clean
Ji. drpendlnt on the nature of Ihe
Til* Healed Boi auJUbte tor
la IWC, la contain Ihe three
lrme-«r lain*, and aawlaUd
The boi ehould be eaulpprd
•III) quit* oanncct IIUtnc> to racllllalc con
necUon of; til The healed ample line Iroro
Ihr probe, 191 Ihe cai eamplIrM) ••••*. til
Uu callnratlon |u nlilurea. and 14) dllurnl
•a* llnea A arnemallc diafram ol Hie com
ponenl* and cnnneclloiu to ihovn In Fliuir
IB II
I Nora Care tntMl be uken lo k>ik rtirrk
Ihr *fmUa> prior lo Ilir dllullone- K> u nul i»
rrrmlt m potentially riulmln almocplirir >
Tnr hraml boi iriiiwii In PlBiirr II IJ '>
rlvr a hr«lr«l Illlr Iriiill 1 l*f
,,|Dnr An onlKHiBl ilnlin U ID build a probe
Hiul Ilial iliarlM-x dlrrclly In Ihr healrd
bun lu IhU WBI Ihr healed boi rwilalnii
Ilir ronlroli lor Ilir probr heilrn. or. II Ihv
bill U plarrd aeairui the durl being um
pled. It mar br puvalblr lo eliminate the
pjobe hciu>» In rllher raw. a healed
Triton line to uatd lo connect the healrd
bui u> the gac Bampllng *al«e on the cr.ru
oHlograpri.
111 Procedure. Aaannhli the appaimluB
t>r connecting Ihe healed boi. ahown In
Figure II I), between the heated
IMC from the probe and the gac
rtlie on the rhroraatognpri. Vent Ihc
•ourr* gac from Ihe gac mmpllng valve di-
rectly to Ihc charcoal filler, eliminating Ihe
pump and toiameler. Heal Ihe cample
probe, cample line, and healed boi. Invert
Ihe probe and courc* thermocouple to the
centrotd of Ihe dud. or lo a peM no ctooer
lo the watto than I m. Mracurc Ihc aourcc
irmperahtrc. and ad|uat all neatmg unite lo
• lecnperaliin I lo I-C above Into tempera
lore II Ihto temperature to above the cafe
oprrailng temperature of Uw Teflon compo
ocnta, adlual Ihe healing lo pMlnlaln a leva
peialurr high enough lo prevent
lion of water and orgarur.
Verily Inc operation of Ihe dilution eyaUsn
br anal/Ural a hbjh coneen* rattan g»a of
blown eompnaHloo throufh etther Ihc l» I
or IB* I dUuUon claaeB. la approprml*. lriilBllniu Bame M Sec
lion l.l.S, •Hli Ihe dlluilon IBCUM applied
1 I Adsorption Tubr Ptorrdufc I Allema-
ilve Piueedum. II to lunmrd that Ihe
tester rrlrr lo Ihe National InatnuU of Oc-
cupational Halrtf and Health iNtOBHJ
method for UH patlkralai orBBnlcc lo be
campled Tlw piliirlpml Inlnlennt will be
•aler »M«« II watei vapor to pieotnt al
concenlfatloru) •ho»e 1 percent. ctUra gel .
ahould he uanl In Irani of the charcoal.
Where more Ilian one compound to prcatnt
In Ih* i,.iv.lorfc>na, then de«tap cchum ad-
aofpthe copBcllr uiformBllon,
14.1 AddlUonal ApoantuB. In •ddNlon
la Ihr eouipmrnl Itoud to Ihe KIOHH
method for Ihe particular ormanirdl lo be
•Mnpted. the foltovlnt Hemi lot equtvalcntt
14.1.1 Probe lOptlonall.
glaai or flalntem cud. approibBatetr • mm
ID. with a healing •yttcm If water conden-
aulon to a problem, and a filter (either In
atact or out alack heated lo i
lurei lo remove partlcuUte miller In i
Inatanrei. • plug of glam wool to a aUtofac
torr tlHer.
141.1 Pteilbte Tubtog. To connecl probe
lo adaorpilon twbea. Uce a malrruJ that ci
hibtu minimal mmriH adaorpUon __^
trailed, conatam rate pump. wHh a act of
Uniting (BonJcl orlfloca lo provide i
rala ftaai eaproilmatelr Id to II
1 « it Bubble Tube FV>*meU» Vo
wUhn i I percent, la caUbntc
14.1.1 Btopivatrh To
immii rate callbralkni.
1.1 II AdaorpUi
apMtned by MI08H. cuept Ihc
Once the dllulton ivctcm and OC oper
aUonc an mltolartorr. piooM't with Ihc
•nalrato ol courc* g*c. ouunlalnwti Ihc came
elluUon Ktllnga •• need for the narnmrtto.
Repeal the aiuu>irc until two oBncccullvc
•iluea do not varr br more than • percenl
liom their mean value are obtained.
Repeal the analrcii of Ihe calibration gu
mliiurea lo verlfr equlpffwnl operation
Analyu ine Ian IteM audit mmplec uilng
'Mhrr Ihe dilution •(•vm, or directly con
"n-l lo the BM aunpllrMi imitt a* requlrrd
Hrrurd ill data and rrpon Ihe irnilU lo Ilir
ring.
•JM/VM fat for charaoal I
mf for alllea vH tabca.
Ihc t
lorbentauthMTciauaCaT XAD-I
1.4.1.1 Paromelrr AcrurmU to •
U> •im
aatnpllnB and
T 4.1 • Holameicv O to IOB cc/i
delect ehanBca bi flow tale >
1,« 1 Sampllnc] and Anaiyeto, II to
•ected that Ihc leWer folto* Ihc
and analr** portion ol
HIOflH method CM
durr," ccllbrale Ihe »—... ^Z-T_. ^
Ike now r»U through adBorpUon tuhaj wllh
Ihe bubble tube Oowmrter be lore mjrf>llna,
Thf ample ircUm can be operated al a "r«-
rlinilBlino. loop" lor Into nperalMn M«cord
Ilir amWriil irmpriilure and bmromelrte
utrviirr Tlirti, during urapllnc uce lh« ro
-------
!•
rr lo (filfr Ihal.lhe pump inq uriflrr
•Mppllnj nu* m»»im romluil
U«r • •unole profar. il irqulrrd in obtain
Ihr Olinptt •! Ihr rrnlioM of Ittr OlH-i. of *L
• polnl no ctuon lo the walb Ihtn I m Mm
Imb* Ihe felMlh ol (kid* lufaJnf t»l»rvn
the prate mint KBorpUon lubn Sr'vrtl ad
•orplJun lirfM COT 6* I'M onopl* mUm •!
• unman cuff M«M for Ihe llmlllru- orllln
lo function • • •ntc orlrtrr Record Ihe
Oo* r*le lor the
llw bvonetrlr
lenptnuure. OMaW
caoornUMJenUI of Ihe •oWMc
rnl bi the
1 la 3 ncr-
ocni. UM •dnrpUwc eaptcMr
ly ntfuocA OpcMla (he
•ononHnf lo We •wmif»«U0* • I
After
wtfi
Uie
T.«.«,*l, Inrn (he i
the uMlnta of
•uaple unUl (he rcteUve drvtaUut o« l*o
Uve uiladlom doe* nol coated I per
141 SUunduOi «nl CmKbrmllon The
MamlMdi can be prrpaml •DOonMn* lo the
N»P*cU*e HIQSH MrUxxl. UK • i
of three different rtMdfcnfc. (elect UM con
onM«mllarai lo bmckel
40 CM Cfc. I (7-1-** IdlH..)
' Hi primary tiid bark up prxlli»i.i ul n,r
lubri iffHtmlrlf II 111*
(H>ilk»i rirrrdi 10 urrrrnl ul Ihr
uMiunl (primary and bar* up I, repeal in,
aamull' | >Hh • Uiirr umplln* porlkan
14 t It Ankifdi Audit Inunedltlrlt
brlrar Ihe •ample aralyara. miimlnr In* tm,0
•udlio In accordance •lilt Srrtlon T 4.1. Thr
•JulrMi audH ihall M*re «llh Ihe aooH
cuncrnltmlton *|ihln 10 prrcrnl.
14.4.4 Pump LcoA <1»rc*j and Volumr
PIOB Mil* Checfea Perform both of thn*
rhecka inuaedMkirlr after ounptlni wllh 411
•MBQUni Irmin rwnponenU In plan Pw
fan all kn« rheck* •ecordlni lo the nanu
lM-lum i knauunkm, and record the rt
Ua* the babbit lube flo««wt« la
the ptOBO foJone flow rale «ttb
UM ortf ta «a«ri to UM Lot
Uw ra»lt- If H ha* cfuncvd bf i
but ban Uioa • prrarnt. cajcuwl* an i
•«« fkw raw for UM U»* If the fk»
BW4
rllt
11 41 CaJnOaUooA. AH calculation*
MIO8H iHtiwd Corrart all I
*I**m toB baeo uaed, OMdUptr Inc reouHi
by the aioroprtalc dOuUon mllo. Cornet all
•r drrkHiHi b» UM iteaorpllnn «ffl
ft tiMCtaaai raluel Report rrculU M
1.1 HmarUnj of RaulU Al Ihe coMofct
Uan of ilh* field wuJnai portion of Ihe
olud*. enaun Uwt (be data iheeU ahown In
Phjure H1-11 h»*e been otMBnletcd.
thai d*ta on the <
II !•
f»ol»cHon Aaomy
II
.•Is
u-lll
i
i»6» noil .«d
I87a,
10 rT* 41 KH 41111 4m« !•"
" n.»t»m i t:i.ro-.io,.w
...Irnul U—* «»"""' '
rlillllr Publlihlnf Cnmpon*. Mr. _
II llunrnm J W . a '- »«'*"»«»• «1-
» > IMoZlun* eP«/IEHI< RTF Pror*
dirt. Mtm.»i: I**'' '
MB En»l.o.inn-nUl
cw.rch Trton.1. P-rt
Ho EPA •»/!« "•••• Jut* IIF1"
"MPII«IU J c . H J H.M. P i. if""
^1 D B UndMf •PA/IBBtBT P Prot,(
*,„. for l*,rt I SHBpltni »d Af«l1«bvOf
slilulr l»l (>irll|>"l •' ^•ll"" •l*d."
P.
liH-«dV«» «• lli*umrnU,
A! °>s
Vul
J OH 013 00»«l 4/IU,
ft oil «»»)••
lectkm -
IW: Pubttrmllon Mo EPA o
ftuui m* IM p
14 rtotm W B II <•
.rammed T-»P»r.l«rr Q« t
phr Joh" W"« * a°™- lne
York.
"J? Intcfiwlely Comntlllee bH-lhodliol
Air aunp»n« Mid An»l»«ta Amerlrwi
Hrallh AMorUOon W*MHngUn. I*:. !•«
Joon, K W . R U Orwnn**'- P =_
u and T B Siwitor* Bi»(roiifnr«M«l
,
II UrNilr llwi Bonelll. E J.
Berkeley IM*
II Helwm U O (.'«iniroll*d T»sl Almam
phern Prm.lpJn "i"" Iwhiilourm An"
Arbor Aim Arow Stlri*r PuNUhen ir?l
MTp
0/»T
order* *ddnprr< i-ii
• 8rh«c«r>- M. T J I1-.I"
Huddrll BanMiUm: •"" An«lr«i» _
,lon> Iron. ».llon«i» 3iiu«M. I Odot »nd
Taul H»drOrBih.«ik Jo««rn»l ol Itw Alf r»i
lullon Control « ""••»•' •="'•
^otM from (Miflaiiifr Suitirm MS fc"»l
rmuncnul ltui^«l-.» A«r»-» K'1**rL*J*1'
MNllr Poifc, MC piiWlr«llon Ho I.PA MO/I
l Jul» in* II P
TrniMlfr H.-lhod lor <;onllnu«u»
»f T.rt»l llyOrprtibo.* In Mrt- Al
liili-i.-rfK-H-IV fwnmlllrr. Am-rl
, ... IMWh Mr ..... A.-»»UlK>n W»l»n«lon.
IK 111] U ••• IM
» 'iwcrB U »;M*r HwMlliM* ull'liriniiB
liifiBphr. V ..... MM-* I •!«! I' StH'rm.. Kui-ph
ird KL'HC rVr«». CN-wUi'd 1*11
lion berore aod ftllcr
1*4
1441 DrteiMbMUon ol OMorpUon Bfll-
ctoncy. Duett* UM UoUna pro«r*a. deter
cflldrnti bi UM ei
lor,
lo be wed. U«
A
Uan cfdctrocr of
Lalned RcpoM UM fhonrylion drlcrnuna-
Uon until UM MkMlvc dntoUon of IM> con
deKtufcmirim don not fined a
Uoi UM o«eiM« dmorpilon elfl
cr of tbao* t*o conaectaiw deteratbM.
Uam for UM tunattloii apKtlled In Section
7 4 4 a M th* dtMivUan elllcim* of UM
co*opoiil>dla> of bitrinl t» qunitonkbtr
under actml aampUng rondllkHM. UH of the
Hethoa of BUMMlaid Addlllunc a»r be help
ful lo detennlne thai »»l*i*
1.4.4.1 Oetetvl«Miuon of Horaplr (Jollvc
Iton Cfftclrntr Par (he mourn •ampin «,„
I. lloii man anejtlr for Te
rtali C. rhrouch C. Hro>ocmrfaoo* In UM
m by OH C3uaaMi««rmpbp,
D mm-lt. pmn U. PfcllodrlpnJa. Pm
n«M MII in*.
1 Com on. *. V. Hctnodafoii far CoUerl
•>• ond Juodyilnt Orfjanic Ate PoUutoou
U« &ntnMnnn»ul Protecuon A*cnri
Puollratkn No, EPA fd*/l !• *41 Prom
w in*
1, Onniteka. A . B, K Krol«uMiioU. 4,
WhHfleld. A. O Donnrll, *nd T, Biuvwahl
BnrlroiaBnilal Odenot >nd Technolatr-
HI »»: i MI int in i
4. BMerum. P. T,, and P M Netaen. Ou
ChronuuUiirapnk AiuUntt of Engine Km
bouM and AteaopncrE. An»lrlt«-»l Chemn
Uf. J««l: IMulM) Itfifl
k PolrlMHIn, V. N.. P J M>rn. I) H
Hurbv ud U L Huibj TrelmlrtJ Mviu«l
for Plocat Honpilnt B4r»lr«tn »M <)r««n*r
HkUflab) 11.8. EnvlronnwnUI
A*rnry KrorMrh Trluiih- P»ik. Nf
»Uon Ho KrM oOO/l 7« III April ICTi
nip
H19
878
-------
Pi. 40, Iff. A, MUtV It
I. mm tftMMV
«« CM Ch. I (7-l-M
et tr ft* It It
11.
•M«tttrltl
l: Ittch Cntl
fteftf tf k«Uh «• cfclt _
•nl «« to l«tt
Cyclic
PffMr* 1S-1. PrtltalMry tunwy tfita sNwt.
Pt. M, Ap*. A, MUHi It
III.
Mta
Sit* «nfrlpi«M _
feet AM* toi iln
MUrtel _
Sin •? prt
Slntf
I. frtptrtltt tf pi
-------
, 40, A»*. A. *•«*. )•
c.
4DOI Ch I iri-fVEdHlon) j f«*lf**MMital
M, Apr A, M.H>. It
tol humm to ta
M4lnU
Mricl* tnfnt r»lt§
t. lit* «
ir
tpm U-l (o»tlM4).
to
mm flow r«to ___
Ctolojni tftapoxatarot
lB)«ctiaB port/siunplt
Ootootor u«0«r«tiiro
Dotoctor flow ratoll
*e
*c to
loop toaporataro
•t ^-C/»JUi
MtOBMtiOO
•toorapltlr condition* 4*ta *n*«t
882
883
-------
«O.
II
*r*Mratle* of Sta*«r*i In
aatf C*llfcri|l«* Cunt
CP • CH. i
-w MM*,
Pr*Mr«lt«* O*LI:
•I "turf
ij
MM
fat atl
! «t»r
at atlcr calibration fact*r
(Hurt)
illt*rfl
Nitmtf *•!•• illMrtl
%«r«9t Mlw l«p*r«t«rt
Avtrtft •»«•*• prtftvr*.
III
««p |» MB I
«r«
AttM*attM 'actor
Paw h»lpkt ftp!
•aai araa laVT
P*at araa • attmvatlea factor tmtl
CalHlal*i caa«a*traila« Ippai
flo^ailaii It-) ar II 4|
riot Mat araa m •lla^Mlloo factor afal
ta a»ul* catlaraiia* c*r«a.
fpwr It-].
calcol*U4 co«««tr*|(on
•nlal Proloction Aponcy
M. App A, M*ifi. It
Or IdtfltlflCatlOH
M*.
riot f). a»J «ra« a
MMlft cwva. If lia flaMMtar fecliif callferat»4 It a rouawUr ar *tiwf
fla* M*Ua IMI It •lK*tltf *»aa4a«i. It Mr ba oacattary ta MMrate a
•faally* af call brat loo cor«tt that co»tr tk* aparatlaf praiiojr* mt
ra*fai of tba floMMlar.
M. II Mf
ifeila UM f«lla«liif lacMlwt ika«I« M »»riri«4 Mfar*
ka Mtttftlt I* calCMlat* flM *••!• r*a*laft far rvlaavlari al
ta«*ltl*at Q|t4 •*
I/t
lav ratt
flw rata
!•-«.
cat lira!!«• c«r>*.
-------
't-t|
I
1
s
£
i
iivuumM
nuvuieam
IJ
-------
1
j- SYVINGI
BOIUN6
«AIEI
IAIN
-------
I
•i-fl
d
S
9
I
4
1
S
-------
I
ftat fcU
003
>i
'^^^^^^mmmm •^^^^^^*mm^ •^•MM
ro
I. •»M**l tftfMl
n rci
••«
tall
<•€»
Nalifctta I WMI !•«/«• tatoi
Caniai «•• fl«* vau
fCI
•r tail*)
W-M. rtoU M^W *U Mwt - MUr . ^^n,
UtetlM fM ffter ••••
It-11. rtaU «Ml]r*l« *u Btat
893
-------
f
*
i
I
I
V
•
I
\
I
I
w W
r •
1 r
: r
a
*
r
1C
CK
••c
!•»». Mf«t
7
8
.
$
-------
•M MCtafCMl
frm Pit*
Oriel
I.I
1M
cc/Mi
10:1 100:1
?• i*
ti1«H
W0:l
(MtM to it lift Ir
I
(OR Ovtjt*
Of
n» tit* ftf ft
1MO ec/Wii
1A*1S idi^Htle MMPM »f tta iMt^ tei
W^ftV* ••WiWVM V "* V *1^p>lRHF V* •••• nHRBMH ••"•
M
'I!
Ji
i:
!fl
; f
1:1
0 0
:!IH iHiii
I IBfi SSI ?!!«
!
n •»
i: .ir
I
aca
a a i
!
3 , Z
ooo B DDO o o a o sac c::c c IS
f ! i
-II
-II
-II
-------
EPA METHOD 3A
-------
ft. to.
padtr
rrru-d
lurr.
tot or
il
A. M**. 1
hu cauti
by varM
t
Uw
rllnl «•
Calibration »l|| Or *f
In Mad IK* l*mi»-r*
ltp. and ntolrru
UM promdurr In Srrllun
UM •T-MT— i dr>lra> pa
tMcr»al Irrqurncp lufll
profile c*ch projvai ry
iniB «w*», A
r Hay to iimd.
«. CWM**No«
Dr*lcc. Uaf the
1 t. MMl
«o «• CH. i (7-i-i*
•1>I>IX llir umr prilarmwr
I'allbrair tlir mraaiiilita' driiri- vlili ihr
prim-Ilia! ilmrt |U lo br mraoiird >t m . mtt,
nilroarn* Malm I • aundard irrrtrnrr
mrlrr A r*IIto*l*d dry |a* iwtcr h an «c
r««UM» rtlrtcnra m»l«> Idndlr. nilhraia
Ihr mruuiln* dr*HK In llM Ck-W »llh llw
•rlual t« to kc irnnirrit ftot nwuurtr^
drrlm UMt INK • *Mmc r«lr iradout.
cBlculBic UM •naitlm Arvlnc csllbrallon
ctM-fltctrnl. T^ lot Mich t«n M follow*
In Urn «Hd ta«
fewwwtet pttat to Uw n»M
|h« (Uck |M| (to* rale. Q_ M
Eq .10-1
T.
I-Q»» Ajiuvai* MM C*uop Dto«
IH. OlTaav. Kacaa* Am. u* DBV Mo
I. fMBCtpt) M4 J»p(iiwMli|a-
"* I.I PrlnclM* A CM •ajatple to riUMUd
fraM • MX*, br am* of UM foilBvtn* ^nh
•dB'. Ill Btnglt.pofaL grab laMplIni: Ol
•kMlr point, miccntrd aM-pHn« or in
i~. H.. «»ulll-|i«*H. IntcaTBlad naaplln* Th* gm
inc. w- aaaapl* to aoajpamd for pCTfMM rutan dtoi
i Ortflo. Het^ta, of *Mm> o^ A«en *JC^-T12^1^^CT,IT".
M^Arilngtan. VA Report ^ nMrtecuto* •cl.hl dxtcnjlralton to l» to
606
•lot
40, App. A,
rllhrr an !
I lot-in* analyalt, foi t
_ . ralr rorieclkin factor
nation, an OtMl mnmtr*** mtmt to uard
I 2 A|W>ltr*BlHI» Thta mrlhud U i
Mr lof drirrmlnln* CXI. and (>•
lion*, rirrm mil. and drr nwlerular
of a laniptr tram • (B* Hiram of • luavll
•too M appltraolr la othw-i vtocca«a •!«••«
II ham torn drirnBlnrd thai
other lltwt CO.. IX CO. ami i
at* not nrrarnl to eoncenirmllon* Mff
l« af led UM reatilu.
OlIMf B»lhod» a. mil •• modllhalloo. la
UM iHvrrOu'* Aacrllvd iMrcln. arc atao ap
> lot «••* at all of |h* mban dclcf •
•••MOln of Aperinc mrtnod.
(11 • aiuHl polnl
r to
I M
III • BMtltOd «•»"• CO. IN O.
• lull Agrnry
II Ji f.'ioliunrrwntat Ptoli-r
Am an «lir«M«u»r lu llir B«mi>|lna mpfmim
tim *IH| ifilrms drmlbrd hrtfln ot»v»r
Muttplii« •»•!» mi lnlii« « irprrariuallvv (Binplc
UKt RiBlnlAlntnt • COMUM. ••cHtn« imlc,
•ml «r« o
1 1 I Proa* Th» pco*>r itxmld he madr ol
•ulnlna M»l « nofuvltkmi* gtm
___ ^ ----- -
•ad MaltliMwtrtr
* m ^^«— • »' '» — -- — --
trtr ealnilMlani la •»
•* lor
lor
. . or oU
MMI iMdinaUoni OHIP te
but M* M*|ecl la Uw •mranl ol llw
wl|M. ki Um erf
cxil liar* (IHn lo rrmuv* p*rtlruhkir iMilur
<• eta* 0' VMM *uol to uU«r*rtMr for thh
Aii» o*r»*f main Mi |nMl lo IK
CO, and N. UMt inMuM la H-^ffura-
twnr •! MMpHni catMllllaiiB "•» to «•* fat
UM ptoto; ••Miffm of well awlcftol •*•
•hHBlnaai, rapfwr. «u*ru «!•« Bad Tcllam.
ill FWip « anr traf nn»f»«t ouH>. at
tavl*alrnl. !• W»M IB lr>
wnpl* la Ihc •
1.1
1)1 Ptoto A ptato suck M Uut
•rtta-d in atcttai II I
'Mention of umtv nunn CM •prrlllr prvd
urU don nol cmullluU mdunfmrnl by llir
Eii>liutunrnUJ
6U1
-------
PI. Ml. App. A. Mplh. 3
40 CHI Ch, I (7-1-W Fdtllon)
„ /
Ml lldi ItltlMfi
HI UN 161*11*0011
/ 10 MAI V|| „
MMf M tm»
3 I Gi
fonl
808
Protect!** Agency
111 CiMxtrretrr An ill rooVrd or »alrr
1'iiolrd cotMlriii*f, o§ other corwlenarr tlitl
vlll not rrmorr O., Co.. CO. and N. may be
iiard la remove nrru mottture whkh *auM
Inlrrlrrr vllh the operation of I he pump
and fla* meter,
I II Vatic A nerdle valve Is uaed to
adjiul aampfcr ia* do* rate.
1 It Pump A leak free, diaphragm type
pump. or equivalent. I* tued U> Iranapart
••mill* gaa (u ilir llrilblr teg liuUII *
•mall auric lank between the pump AIM!
rale mciri lo eliminate Ittf pulaallon rllrat
ol the diaphragm pump on Ihe rotametrr.
1,14 Hale MtUr The rotameier, m
e«ul»aienl ralr meter. uaed ihould be cap*
Me of Bicaaurlng flo* rale to vllltin i 3 or* •
cent ol Ihe •elected' (low ml*. A Oow rate
tan** ol KM to IM» ruVmln b MiuralMl,
tJ.f PVatblc BM Any Ink Irec ptm^tc
M. or c«Hl*«lenl. lM*lm • c«|McUp con
•IMfiM *Nli Uw wlcrted Oom nte and line
lm«th ol the Icat run, m«r be UMd A t»-
In lit* tMwe of M to to lltcn t* lug-
To leak-chccft Uw tag. connect II U> •
*Mer iBMMMnctrr «nd praouittc Ihe Ing la
t la 10 en H.O II lo 4 In H^)> Alto* lo
•land lot lo mfenulcB. Any illmliiiiiiiiil In
llw «mi«r aaananrKi InjBtmm * lettt, An
•netmllic Ink dMcft mrlhod I* (o prnuw-
Mc llw DM lo tt la lOrm HjOlt u>4 tn H.O>
Mid *lto» la Mjuid ovrmlchl A drflMcd b>|
Indlcmtra > irftk
1 1.1 PrcMur* Otu«c A **lcr filled U
lube ounoatrUr. at rrtul*atmt. ol about M
am in bvi h uwH for the flCBllHe UM leUk-
ciu-f
1.1 • Vu-uum CtaufE A
»t*r. m muliBjcni. ol •! k^ 1W •<• Hi
<» In Ho b wrd f«M UM ••mplli* ItMn
I i
durca, folio*) the maUuctlcm i
by the manulaciurcf. unfcai otlM
tiled herein
111 Oty Molecular
Uon An Oraat analraer oc Pyrtu type com
bunion gaa analyacr may be iaMd.
1.1.1 ^—«—«— Hale Correction Partoi or
B»eea» Air Determination An Onat analyt
ei muat be uaed. Par la* CO. (leaf than * •
percent! or high O, (greater thai IS* per
unl I concent ration*. the mcaoirlng bufrtte
ol the Oraat muM ha*« al In at O.I
> D*» VobCMter WdgAI Octermlaalloii
Any ol Ihc Uirec tmmpHitt and •nalyllril
voc«duica drwiltxnl brio* may be usrd fur,
dcKrmlnlnc ih' dip raolrcular wrlilil
1 I ainato Polnl. titan Hjun|illiia UMI An
*lrl leal
PI. 60. App. A, ftUth 3
1 I I The sampling polm In the duct
•hall rliliri br al Ilir ctntroid ol the croaa
•mum or al a point no rloarr u> Ihe walla
than I M m U 1 II i, unleaa olherwlae apecl-
llrd by Ihe Admlnulralui
I.I 1 Hr[ up Ihc equipment a* ahovn In
Figure 1 I. making Mire all oMtnecttena
ahead of Ihr analyicr we light and leak-
Iree. II an Onat inalyier t* uacd, U la nee-
onunrnded that Ihe analyser be leaked
checked by lollovlni Ihe procedure In Sec-
tion 8: hovrtrr. Ihe leak-check at if* IT*
1 I 1 Place Ihe probe In the alack, *llh
Ihe lip of Ihr. probe paarUmied at the aajn
prlng point: purge the aaa»pHng line Orav a
•ample Into the analyier and liaaawrtlalrli
anaiyar II lor prrcenl CO. and peroenl Ob.
Determine the percentage of the gaa that I*
N. and CO by auMractlng the auaa of the
percent CO, and percent O, from IM pet
cent. Calculate Ihe dry molecular vetghl aa
bMMcated In Bectlan • J
111 Mental |he aampllng, artalyaai, and
calculation procedure*, until the dry i
ular *dghli of any three grab
dtlfer Iruoi their mean by no more than • I
g/gaaote iO» Ib/lbrnolri Average Iheac
three molrcular velghli. and report the re
aului In the neareal Ol f/g mote llb/lto
molel
1.1 Single Point. Integrated Sampluig
and Analyllcal Procedure.
Ill The aampllng point In Ihe duct
•hall br located at apedltod In Section 111.
1.11 Icakchcch loptlonall Ihc fleimle
bag aa in flection lit, Set up the emilp-
anenl al aho*n In Figure 1 1. Jual prior U>
aaBopllng. teak check
-------
1*1. 40, A*a». A.
Detenntne the pcratntac* ol the «u (h»i to
H. and CO by •uMrartlntl Ihe mm of ihe
prrarol CO, and «cmmt t). from IW pti
ami. T^m'™'-'- the dry molecular •eight ai
mmmiMl In auction • .1.
l.I.S Repeml the analyse and mlcuiallon
proigtUmo until UK Individual dry nmlecu-
ku veighU for any Uircc analvK* differ
from Urctt mean by no more than 0 ) •/«
•wto «• 1 M/aVawtel. Average thcae three
mnlM-uhii wrigttU. and report the reaull* to
UM !••»•! a | g/g aMlle I* I |b/lt> mote)
1.1 HulU Pomt. Intcvraled 8ampllng MMl
Analytmi Proeadun.
Ill UntaH ntoarwfac aperlfled by the
i of eight Umvcrae
id to* circular Bt*c9J
i Umn • •! • (M m.l, •
I foil
•iiaaliii mat
Uwo •.«! •> 1M m.>. and • airntonna ol
l*a«v* Invayaa pntoui atuul be •acd for an
. Th* invvrac ponta anal I be to-
te Method I. The «a* of
fMPft paint! to •BBjBtf to «npntal of the
40 CFI O I {1-\-m IrfltUe.)
-3 • S*aa*t*M>n>Mt
S.&al PMtWat UM iwcKWkdmWcc fivflifiwl fen
fmrtfcma 111 Ihrmarh S.l.t. e»eept for Uw
following- Uaverav all campling potnU and
aaaaplt al aach potnl for an equal length of
Uaat. MaDord mmpltng data a* chown to
figure I I
4. SmitBitm Hale Comcifon Factor or
I****** Jlr Deiermlaatioa
Mom A PTTHe type combuctlon gai ana
lywtr hi not acceptable for eco*m all or eaua-
atom rale corrwcUon factor ortermmaUon.
ueitoav. afajt'ovad by Ihe AdaBtoMralor. II
botli paiutiit CO, and percent O. are
and. Uw aoalyUcaJ reaulu of any of Uw
threa procauuraa given below may atoo be
for cakulaUng Uw dry molecular
4.1.1 Pmot the probe to Ihe BUM*, irtth
Uw Up of Uw probe poaNloned al the *anv
pom Uw •amptlng Itoe. Draw a
i Uw analyarr Por emamton rate
actar determtoatlon. towiinttote
ly analyae Uw •amplr. a* outlined to Sec
lion*. 4.1.4 and 1.11. for percent CO, or per-
cent tx If aaeaa* ah- M deatred. proceed aa
futkiaa: 111 wamawftatdy analvat the aampw.
aa to uwrltoiw) 4.1,4 and 4,1,1. for percent
CO. «X and CO. tSI determine the percent
an of Uw caaUaU • H. by aubtrartlng Uw
cent CO from It* percaet: and ill atteoml*
percertt eicaat ah- a* outlined to aectloo • I
4,1,4 To toaure ccaaptete afeaorpUon of
Uw CfX Ok or U apptlcaMe. CO. make re-
peated paaan through each absorbing aolu.
Uon unto two cooaecuUve reading*, are Uw
aame. Several m>i«n ithree at four) ahouM
be made between readtowa. at the omtrntd of UM croav-
aaetlon or at a paint no daaef U> Ihe wmlto
than I m> m (II ftl. unloai otherwlac apeel
Had by UM AomtnMraU*.
« 1.1 BM UB the •outpmenl a* ahown hi
II. aajtlng mtrr all owmectlon*
of tnc analyaer are light and lea*
frae/. Laak-dMck UM Ofaal •nalyier acrord
Ins to the procedure deacrfbed In flecUon I.
Thai mafe -check li nuuirfaLDf y
filing and analyl^al peocmlure
In nonjanctlan a4th a alngle
grab Bamming and analytkBal proof-
dare for a poOwUuii. only one analyato to or
dtnarffly conducted. Therefore.
muat be taken la obtain a valid i
analyato Although In moat caaea only CO.
or O, to rtiqutred. U M recommended thai
both CO, and O. be meaaiired, and that Bee
Uon 4.4 be uaed la validate the analytical
1.1 Blaxte Pobil, lnlcar«U4 aaaapllng
and Analytical Procedure
' 4.1.1 The aaaaplttig potnl In the duct
ahall be totaled aa apeclfled In flection t I.I.
Ill leak-etwc* (mandabwyl Uie fleil
Me bag a* In Section I.U. Bet up the equip.
merit a* ahoam In figure IV Jiot prior ID
ammpllng, leak check I mandatory i the train
010
toi Pioloclton
60, App A, M.lh 3
hf placing a vacuum ••iifr al Ilir before
Uw analyato ff ciccyj} klr to desired, proceed
U) wttnln 4 hour* after tht-
taken, analyat It faa to Bed ion*
411 through 4.111 for percent CIX CK. and
CO. llrdriermlne the percentage of the gai
that to N. by auMractlng the mm of the per
cent CfX percent O* and percent CO from
!<•» percent; III calculate percent eiceu air
ai outlined In Scctton 4 1
4 J.» To tnaure complete absorption of
the COk Ob or If applicable CO. make re
peated pame* through each abaorbing aolu
lion until taw eonateuUve rradlngi are the
avow Several pame* Ithree of four I ihouM
be make between rauHiMja. ilf constant
reaaln«a cannot be obtained after three con
eecollve rcadtog*. replace Uw afeaorbtng an-
luUon.l
4.1.0 Repeat Uw analyato unUI the lol
towbig criteria are mel
4 I.i.l Pot percent cOb. repeal the ana
Irtlcal procedure unto Uw raaalu of any
Ihree analywe* differ by no more that ia> 01
pernml by vohnm when €7Ob hi greater than
40 percent or Ibl ».l percent by volume
when CO. to lem than or equal to 4.0 per
. Average the three acceptable valuta of
eent.
. .
4.M.J Ft* percent CK repeal Ihe analytl
eal procedure until the train* ol any three
analyat* differ by no more than lal • 1 per
rant by votum* when O. to Irm than IfiO
percent of ibl 01 percent by rolurar when
O, to greater (tun or equal la IS a perrcnl
Average the three acceptable value* of per
cent €1. and report Hit reatilta u> thr iM-aicit
01 percent.
4.1.4TJ For perrenl CO. repeat Ihr ana
lytlcal procedure until Ihr rrmlu ol any
Hirer Dialer* ililln by „„ mnr, lttmn aj
priiviu Ari-mgr Ilir Ihrt-r •rrriMahlr
vaiiii-... »l iH-irnil ihr Ofial inalyu-f
MINT •••Hi. *, he valid. llic
llriai uializri mini pau ihli Irak ir»l
before *n illrr the analyila.
No»t. AHIuMiiti m nxMI InMancea only
ct». or O, to required, II to recommended
IMM both CO. and O. br ntraauretf, and Ih.l
Section « 4.1 be uir« U> validate the analyll
eal data.
« 1 Mulll Putin. IniniBinJ Sampling and
Analytical procedure.
4 J 1 Hwlli Ihr minimum numbrr of cam
Vllnt point* and the campllnc point km ion
•hall br as (perilled In Section 111 of ihli
method. The uae of fever potnla than apecl
fled M Mibirct to I he approval of the Admta
•Orator.
4.J 1 PMlow the procedure* outlined hi
Section. 411 through 4.1,1. eicept for the
10110.1m Tiaverat aj| aimnllng potnj. .^
amamit al each point io> an equal lentrth of
Ifcne. Record aampllng d,u u ihown M
Plajurr • I
44 Qimllty Control Procedure*
44.1 llal* Validation When Roth CO,
and U, Af e Hruitrrd Allhouih m mam In
ilanres, onlf c.YK ur Oi mrMuremenl b> le
quired. II U recommended that bnlh t:O,
and I*, br mraiuipd to protlde a chert on
the quililr ol Hie data. The follo«liig gual
I11 rnnlrol prureilure li
percent CO, and report the reauMa to the "°"
Hun Hlra-e the method lor vtlldallrai the
O, and O, analyie* a baard on eombuatiun
of organic and fomll lueto and dilution of
the gai it ream with atr. thai method doe*
not apply Ut aourcei that (11 remove CO, or
O. through ptOttawa other than comhua-
Uon. Ill add O. leg. oiygen enrichment)
and N. to proportion! dlffernrt from that of
atr, 111 add CO, le g . cement or lime kiln.)
01 441 have no fuel factor. •„ value* obtain-
able leg., eitremely variable wart* mil
tunai. Thb method valktete*, Ihe measured
proportion* oM"O. and O, for the fuel type,
but the method doe* not delect •ample dUu'
rewulllng from leaks durlruj or aftet
aampk rollerUon. The method to applicable
for aamptea collected downatream of moM
lime or Umeatone flue !•* desulfurtovtion
unlu a* the CO, added or removed from the
g*a ilrram to not (trolllean* to relation u>
Ihe total
-------
40 IM 0.. I (7-l-W
p..
)
••c!l iftauld be coMibVral In de.
Lrrmlntna If • rHol b •opra**«ttc. I* . U
the uM»»uml i-iafauuia urr nnirti town •
oiiKti (Tnter I ban the ecmpttence UB,H
j I (vpetlUanof Uicb»lmiUnol>l«nllfc»mUv
N «0 tak. TtwnriOT. MI Oral AIM
UM a Md CO*
UM mtruhllnn far f. m
N.-r 00
i a
CO,
«? rant* of ill pn
lot the r. tartar of
nvtBMr furl nUoi The
ratr relative to Che
CO. and H. I<*latent from Bectton « I
* > «> Into Bawrilon ) 1.
I <•
613
«. M. A**. A.
1A
0 Ml
0B*ro
o.» «coi
J I
Mow: TTt*
Iton tfuf« tanawa IhW
all » aaedai theaaurc* ol O. and
luri doe* not tamlaln vomtelito
aBMMinto of N. «aa do eokc o*m a* ataal fuf
•» Vat Ihuac caon •ben amMwcte
i of N. an loiaaul «i
• I Orr Hohmiaw Vc%M. UM
1 I lo cajntteic Uw diy awfaruav •vhjM of
J I
lion ol Ihc umplr ilrrun • oonteied lo an
O, and CO, ronrcnlnllonliI Pcrlom-
apKirtemtMMM and teat procedure* arc
Idnt in rnMirc reliable dala.
1 Haaav aad Sf ••l(lv not lea* than
H percent of the i
II Meoaumacnl flr
atnlpiiirnt rmulrcd lor Uta
of Uw O, or CO, ai DMtaiaa Covramu
I.I AnpHrmMlltr Thai lacUBd at aiipll
cmbta IA thr drlcnataallnn of amfffu tO,\
fend cutnn dtoildc UtWl connUvllom bi
ii«h»luiM) Irani ilAllonur Kurra onlr
• hen •jmillrd vUltln Ihr ingutallmic
I 1 mnrtolc * (unpl* !• conilnuiHHlV
rilnrLrd frun ihf rlflurnl itirtm m vat
t I t On Anal ran An i
maw ronltoMMHaUi llw O> or CO, onmrnlra
•hall ocvi ihr owtaaole prrfanMnc* apoc
IIKalKHu ol aecllonvf A IOWWH of rontiol
llnf Iht inalrwf I tow imtr end • dolor for
oVI»mJ»Jn« prufvr camplr Oo» rate tr«.
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 3 - Gas Analysis for the Determination of
Dry Molecular Weight
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability.
1.1.1 This method is applicable for determining carbon dioxide (C02) and oxygen
(0^) concentrations ind dry molecular weight of a sample from a gas stream of
a rossil-futi combustion process. The method^may also be applicable to other
processes where it has bten determined that compounds other thin CQ^t 0,, carbon
monoxide (CO), and nitrogen (N-) art not present in concentrations sufficient
to affect the results.
1.1.2 Other methods, as will as modifications to the procedure described herein,
are also applicable for some or all of the abovt determinations. Examples of
specific methods and modifications include: (1) a multi-point sampling method
using an Orsat analyzer to analyze individual grab samples obtained at each
point; (2) a method using C02 or 02 and stoichiometric calculations to determine
dry molecular weight; and (3j assigning a value of 30.0 for dry molecular weight,
in lieu of actual measurements, for processes burning natural gas, coal, or oil.
These methods and modifications may be used, but are subject to the approval of
the Administrator, U.S. Environmental Protection Agency (EPA).
1.1.3 Note. Mention of trade names or specific products does not constitute
endorsement by EPA.
1.2 Principle. A gas sample is extracted from a stack by one of the following
methods: (1) single-point, grab sampl ing; (2) single-point, integrated sampling;
or (3) multi-point, integrated sampling. The-gas sample is analyzed for percent
CO*, percent 02, and if necessary, for percent CO. For dry molecular weight
determination, either an Orsat or a Fyrite analyzer may be used for the analysis.
2. APPARATUS
As an alternative to the sampling apparatus and systems described herein, other
sampling systems (e.g., liquid displacement} may be used, provided such systems
are capable of obtaining a representative sample and maintaining a constant
sampling rate, and are, otherwise, capable of yielding acceptable results. Use
of such systems is subject to the approval of the Administrator.
2.1 Grab Sampling (Figure 3-1).
Prepared by Emission Htisureuwnt Branch EMTIC TM-003
Technical Support Division, OAQPS, EPA May 14, 1990
-------
EMTIC TM-003 EHT1C NSPS TEST HETHOO Page i
2.1.1 Probe. Stainless steel or borosilicate glass tubing equipped with an
in-stack or out-stack filter to remove particulate matter (a plug of glass wool
is satisfactory for this purpose). Any other materials, inert to CU, C02, CO,
and N., and resistant to temperature at sampling conditions, may be used for the
probe Examples of such materials are aluminum, copper, quartz glass, and
Teflon.
2.1.2 Pump. A one-way squeeze bulb, or equivalent, to transport the gas sample
to the analyzer.
2.2 Integrated Sampling (Figure 3-2).
2.2.1 Probe. Same as in Section 2.1.1.
2.2.2 Condenser. An air-cooled or water-cooled condenser, or other condenser
no greater than 250 ml that will not remove 0,, CO^, CO, and N^, to remove excess
moisture which would interfere with the operation of the pump and flowmeter.
2.2.3 Valve. A needle valve, to adjust sample gas flow rate.
2.2.4 Pump. A leak-free, diaphragm-type pump, or equivalent, to transport
sample gas to the flexible bag. Install a small surge tank between the pump
and rate meter to eliminate the pulsation effect of the diaphragm pump on the
rotameter.
2.2.5 Rite Meter. A rotameter, or equivalent rate meter, capable of measuring
flow rate to within 2 percent of the selected flow rate. A flow rate range of
500 to 1000 cc/min is suggested.
2.2.6 Flexible Sag. Any leak-free plastic (e.g., Tedlar, Mylar, Teflon) or
plastic-coated aluminum (e.g., aluminized Mylar) bag, or equivalent, having a
capacity consistent with the selected flow rate and time length of the test run.
A capacity in the range of 55 to 90 liters is suggested. To leak check the bag,
connect it to a water manometer, and pressurize the bag to 5 to 10 cm H^O (2 to
4 in, HjO). Allow to stand for 10 minytes, Any displacement in the water
manometer indicates a leak. An alternative leak-check method is to pressurize
the bag to 5 to 10 cm (2 to 4 in.) H-O and allow to stand overnight. A deflated
bag indicates a leak.
2.2.7 Pressure Gauaa. A water-filled U-tube manometer..or equivalent, of about
30 cm (12 in.), for the flexible bag leak check.
2.2.S Vacuum Gauge. A mercury manometer, or equivalent, of at least 760 mm
(30 in.) Hg, for the sampling train leak check.
2.3 Analysis. An Orsat or Fyrite type combustion gas analyzer. For Orsat and
Fyrlte analyzer maintenance and operation procedures, follow the instructions
recommended by the manufacturer, unless other-wise specified herein.
-------
EHTIC TH-003 EMT1C NSPS TEST METHOD Page 3
3. SINSLE-POINT, GRAB SAMPLING AND ANALYTICAL PROCEDURE
3.1 The sampling point in the duct shall either be at the centroid of the cross
section or at a point no closer to the walls than. 1.00 m (3.3 ft), unless
otherwise specified by the Administrator.
3.2 Set up the equipment as shown in Figure 3-1, making sure all connections
ahead of the analyzer are tight. If an Orsat analyzer is used, it is recommended
that the analyzer be leak checked by following the procedure in Section 6;
however, the leak check is optional.
percent
3.3 Place the probe in the stack, with the tip of the probe positioned at the
sampling point; purge the sampling line long enough to allow at least five
exchanges. Draw a sample into the analyzer, and immediately analyze it for
percent CO* and percent CL. Determine the percentage of the gas that is N, and
CO by subtracting the sum of the percent CO* and percent 0^ from 100 perc
Calculate the dry molecular weight as indicated in Section 7.2.
3.4 Repeat the sampling, analysis, and calculation procedures until the dry
molecular weights of any three grab samples differ from their mean by no more
than 0.3 g/g-mole (0.3 Ib/lb-mole). Average these three molecular weights, and
report the results to the nearest 0.1 g/g-mole (0.1 Ib/lb-mole).
4. SINGLE-POINT, INTEGRATED SAMPLING AND ANALYTICAL PROCEDURE
4.1 The sampling point in the duct shall be located as specified in Section 3.1.
4.2 Leak check (optional) the flexible bag as in Section 2.2.6. Set up the
equipment as shown in Figure 3-2. Just before sampling, leak check (optional)
the train by placing a vacuum gauge at the condenser inlet, pulling a vacuum of
at least 250 mm Hg (10 in. Hg), plugging the outlet at the quick disconnect, and
then turning off the pump. The vacuum should remain stable for at least
0.5 minute. Evacuate the flexible bag. Connect the probe, and place it in the
stack, with the Up of the probe positioned it the sampling point; purge the
sampling line. Next, connect the bag, and make sure that all connections are
tight.
4.3 Sample at a constant rate. The sampling run should be simultaneous with,
and for the same total length of time as, the pollutant emission rate
determination. Collection of at least 30 liters (1.00 ft ) of sample gas is
recommended; however, smaller volumes may be collected, if desired.
4.4 Obtain one Integrated flue gas sample during each pollutant emission rate
determination. Within 8 hours after the sample Is taken, analyze it for percent
CO, and percent Og using either an Orsat analyzer or a Fyrite type combustion
gas analyzer. If an Orsat analyzer is used, it is recommended that Orsat leak
check described In Section 6, be performed before this determination; however,
the check is optional. Determine the percentage of the gas that is N2 and CO
by subtracting the sum of the percent CO? and percent 02 from 100 percent.
Calculate the dry molecular weight as indicated in Section 7.2.
-------
EMTIC TH-Q03 _ EMTIC NSPS TEST METHOD _ page 4
4.5 Rtptat the analysis and calculation procedures until the individual dry
molecular weights for any three analyses differ from their mean by no more than
0.3 g/g-mole (0.3 lb/lb-tnole) . Average these three molecular weights, and report
the results to the nearest 0.1 g/g-mole (0.1 Ib/lb-mole) .
5. MULTI-POINT, INTEGRATED SAMPLING AND ANALYTICAL PROCEDURE
5.1 Unless otherwise specified by the Administrator, a minimum of eight traverse
points shall be used for circular stacks having diameters less than 0,61 m
(24 in.), a minimum of nine shall be used for rectangular stacks having
equivalent diameters less than 0.61 m (24 in.), and a minimum of 12 traverse
points shall be used for all other cases. The traverse points shall be located
according to Method 1. The use of fewer points is subject to approval of the
Administrator.
5.2 Follow the procedures outlined in Sections 4.2 through 4.5, except for the
following: Traverse all sampling points, and sample at each point for an equal
length of time. Record sampling data as shown in Figure 3-3.
6. LEAK-CHECK PROCEDURE FOR ORSAT ANALYZER
Moving an Orsat analyzer frequently causes it to leak. Therefore, an Qrsat
analyzer should be thoroughly leak checked on site before the flue gas sample
is introduced into it. The procedure for leak checking an Orsat analyzer is as
follows:
S.I Bring the liquid level in each pipette up to the reference mark on the
capillary tubing, and then close the pipette stopcock.
6.2 Raise the leveling bulb sufficiently to bring the confining liquid meniscus
onto the graduated portion of the burette, and thin close the manifold stopcock.
6.3 Record the meniscus position.
6.4 Observe the meniscus in the burette and the liquid level in the pipette
for movement over thi next 4 minutts.
6.5 For the Orsat analyzer to pass the leak check, two conditions must be (net:
6.5.1 The liquid level 1n each pipette must not fall below the bottom of the
tubing during this 4-minut§ inttrvil,
6.5.2 The meniscus in the burette must not change by more than 0.2 ml during
this 4-minuti interval.
6.6 If the analyzer fails the leak-check procedure, check all rubber connections
and stopcocks to determine whether they might be the cause of the leak.
Disassemble, clean, and regrease leaking stopcocks. Replace leaking rubber
connections. After the analyzer is reassembled, repeat the leak-check procedure.
-------
EMTIC TH-003 EMTIC NSPS TEST METHOD Page 5
7. CALCULATIONS
7.1 Nomenclature.
Md - Dry molecular weight, g/g-mole (Ib/lb-mole).
%L£>2 * Percent CO- by volume, dry basis,
%02 - Percent Oj by volume, dry basis.
%CO • Percent CO by volume, dry basis.
%N2 • Percent Nj by volume, dry basis.
0.280 • Molecular weight of Nj or CO, divided by 100.
0.320 - Molecular weight of 02 divided by 100.
0.440 - Molecular weight of C02 divided by 100.
7.2 Dry Molecular Weight. Use Equation 3-1 to calculate the dry molecular
weight of the stack gas.
Md - 0.440(%C02) + O'.320{%02) + 0,280(%N2 * %CO) Eq. 3-1
Note; The above equation does not consider argon in air (about 0.9 percent,
molecular weight of 39.9). A negative error of about 0.4 percent is introduced.
The tester nay choose to include argon in the analysis using procedures subject
to approval of the Administrator.
8. BIBLIOGRAPHY
1. Altshuller, A.P. Storage of Gases and Vapors in Plastic Bags. International
Journal of Air and Mater Pollution. $:75-81. 1963.
2. Conner, William 0. and J.S. Nader. Air Sampling with Plastic Bags. Journal
of the American Industrial Hygiene Association. 21:291-297. 1964.
3. Burrell Manual for Gas Analysts, Seventh edition. Burrell Corporation,
2223 Fifth Avenue, Pittsburgh, PA. 15219. 1951.
4. Mitchell, W.J. and M.R. Midgett. Field Reliability of the Orsat Analyzer.
Journal of Air Pollution Control Association. 2fi:491-495. May 1976.
5. Shigehara, R.T., R.M. Neullcht, and W.S. Smith. Validating Orsat Analysis
Data from Fossil Fuel-Fired Units. Stack Sampling News. 4(2):21-26.
August 1976.
-------
Time
Traverse
pt.
Average
Q,
1 i ter/min
7. dev.a
a % dev. - (Q - Qavg)/Qavg x 100 (Must be s|10%|)
Figure 3-3. Sampling rate data.
-------
EPA METHOD 10
-------
IrinsmiUid LifHt Pulll|
Biciicirttr Return Sifnai
a« at«e Zattcv '
vvn B":t«3is»
»,«,<\9 Qt«.jt
s
f
1
»
u
a
I
I
f
1
3
S
I
-------
Pi. *C,
A, MUH». IO
••!• Plulblr Rag. TealBf, or rqulvilrni.
•ith • capacity oi eo u> »o lit*™ < i u> 3 n • i.
Leak Lot Ihc bat In the laboratory brlorr
inlng by evacuating b«g with • pump fol-
lowed by • dry ta« meter. Whrn rvaruallon
b ootnpteU, there ihould be no How
through the meter.
t.1.7 Pilot Tube. Type B, or equivalent. at-
tached lo the probe ao Hut the aampllng
rale can be regulated proporUonal lo Ihc
ilaek gai velocity when velocity b varying
wtlh the time or • ample Iravene to con-
ducted,
1.1 Analyak* (Pwjure IO.H.
Ill Carbon llonoiMe Analyaer Nondta
pcralve infrared apatu-ometer. or equivalent,
Thle Instrument ahouM be c»emorwtr»l*d.
preferably br Uw manufacturer. to meet or
eioMd manufacturer'1 cnecilkaltoni and
that tocrlbed tn Into meUtad,
t.l.l Drying Tube, To contain appraii-
malely KM • of Mm «el.
• II Calibration Oav Refer la cectlan II
1.1.4 rnirr Ai recommended br KDIR
manufacturer.
11 8 CO. Removal Tvibr To contain ap-
prnlfanalcly MO i ol aacarlu.
•.!.• Ice Water Bath. Fat awmrllc and
dllcm gel lubea.
B.1,7 Valte. Needlr valvr, or equivalent, to
ad|uat flow rale
*0 Ol Ch. I (?-l-l9 Edition)
ft .1 II llalr Mrlrr, Rolunrl" or mul*Blrnl
In mruinfr (U flow ril» ol 0 In I 0 Illtr prt
mln *0 OJ6 rim) lliromh NDIB
(.I.B Rmtrdrr (npdonall. To prn'Idr prr
m«jwnt rrrord of HIHH
4, 1 Ckllbrallon (Iwn Knaim oonccnu*
lion or CO In nitrogen IN.» lor Inalrunwni
•p«n; prrpurltlrd trmde ol Hi lor wro. uwt
l*o MMIllmMl Mnccnlrmllon* cotmjwotflnf
kpprailm*Lplr to 6O ocrcvnt uid 10 pemnl
•p*n. Trte (P*n coiwpfitr*i>on ihall nol
ricecd IB lime* the apfillobtc BMirce prr
lormwwe (tBiMlBrd. The c»l'brmtlon tmme»
•hmll be certified br the maitufwiurer to be
•llhln il petcenl of the vecltled
• I «lk» Oel. IndXsltnf trpe. • lo II
merti, dried *l ITS' C 1141' F> for 3 hour*
1 1 AKariU. ComnwrcUllr •»lteble.
7.
7.1.1 ContlniKNU flftmplln« Set up Utt
equipment •• •hawn In rlvun; IO- 1 nakbic
nire all unimectlot» are leak Irce, Flaer UK
probe lit the rlart it • Mmpllng point tnd
purfe the •mplln* line, Cotmrct the ana-
Ifier and bedn drmwlrw avnple Into the mn
alner. Allow I mlnuUm for the BTMCIB U>
•UbUta, then record the analyser mdlnf
a* required to* the tod proeedura. (See MC-
Uon 1.1 and •> CO, oonlmt ol the •« roar
be detennlned by urin« the Method t InU
tnted am pie prootdunt, or br wdghbii Iht
Mearlle CO. remoral tube and compuUnf
CO, ooneenUmllon from the |ai rolumt
•mpled and Uw «ebjhl fmln of the lube.
1,1.1 Inlefraled awnplln* E*ani*ie IM
npilMr bat Bet up the equipment a* jhovn
In Figure 10 1 vlih Ihc bai dBVonnecWd
F\»fr the probe In Ihr (lack and purir IM
"tamptln* line Comwcl lite bat. making rurt
thai all conmwtloni are lemk irrr Sample at
a rale propnnlonat to Ihr. Hack Tflorllf
CO, content of Ihe |u may br determined
by mint the Melhod 1 Inlriraled aampl'
procedure*, or br •rtahlnf Ihe aocarlu CU<
removal lube and rocnpulln* CO. roncentr*
EnvlronfB*nlol ftolecflon
linn fn.m Ihr IHH volume lampird tud llir
wi-lRhl mln »l llir Ilibr.
1 2 < <) Amly.il.i A.W">hlr (l>r apparaliK
•n shown In F1|iitr 10 1. rKHbratf Ihr In
itriimrnt. and prrlurm nllvr-> irquUrd nprr
alloru M drurrlbrd In wrllon I Purfe ana
lyzrr vllh N. prior to Introduction of farh
•ample Dlrecl Ihr umple itiram through
tnr bulrurnrnl for the le*t period, rrcord
ln« Ihr rewDnfi. Chrrk Ihr irro and nmn
M«*" Mler Ihr lr«l lo anurr I hal any drift
or malfunction to detected. Record Ihr
aamplr data on Table 10- 1,
• Calibration
Anemble Ihr apparalua imirdlng to
FU Tlir wmplr ron
H KyMrm ilra-rlbril In Mrlhotl IDA.
1 I ^ »n,l I 1. miy or «uvrt u an al
trrnalhc In tlir 'Mi t irl and aararltr tikpm
II. RINinoropA*
II. I MrElroy. Prmrtk.Thc Inlerlrrh HDIR
CO Analy>4-r, Prrnrnlrd al Illh lielh
nda Conlrrrnrr on All Pollution. Untvrr-
illy or Caliromla, Berkeley. CA. April I.
I no
\\1 Jacob*. M. n , (t •!.. ConUnuou* Oe-
lermlrullon ol Carbon Honoilde and
Hydiorarboni In Air by a Modified In
Irarrd Anal>«-r, J. Air Pollution Control
Anocbulun WH 110 |i«. Aufuat ItM
1 1.1 MSA I.IRA Infrared da* and Liquid
Analyter Iruirucllon Donh, Mme Balely
Appllancri Co., Technical Produru Dlrl
Don, PHtabotfh, PA.
ll.l Modrb 1I»A. 1I9A. and IDA Infrmred
Aralytcn, Brcaman InAmmento. Inc.,
Beckman Inalruclkm 1115 -B, Puller -
Km, CA. October IM1.
Ill Continuous CO Monltorlnt Syvtem.
Model AMI I. liilrrlech Corp., Prince
ton, NJ.
It! UHOU Infrared Oa» Analywn.
Bendli Corp., Ronceverle, WV
ADDIHD*
SPEOTRATIONS ron NDtR
CARBON MONOHDC AMM.VIEBS
ouai
9 roJrulafloa
Concenlralkm of carbon mowiloe. Calm
late the concentration of carlnn monoilde
In the Black ualng Equation 101.
Bq. 10 I
Where:
(',„ ,nri Ci>nrrntrallnn ul CO In alwk. upm
by viilntnr (Jry banl.M
(',,, HOI* Com rnlntlon al IT' meamirrd by
NDIH tnilyv.ri. pimi by volumr al analyst* Jlvldril
by 100
B I. H0-MB
B. Oc/lnlfloiu of frtformumtt
Horn*
The minimum and mailmum
rmenl limit*.
Owfpaf Rlmrkal signal »hlrh to piopor-
Uonal to Ihr meaduremrnl: Intended lor
connection lo readout or dam procealng de-
vim. Usually riprcBard a> millivolts or mil
I lamp* full .vilr »l a f Ivrn Impedance.
Full i< air Thr maximum measuring limit
lur • Riven ranyr.
Winirnxm dflTtaNr tnallivtlf-Ttte
imallrst amount
-------
Pi. M. App. A, M«4li. IOA
4cnrae*— The litfi'iin of Mtvcmerrt. be-
Ivevn • na«wur«d *»lue and the true value;
uwallp prpreavxt at ± percent of full acale.
rime to M purernt fwpwite— The time In
tcr*«| fram a rt«p etiangc In the Input eon
omtraUan al the lartnm»n>l bilct to a read-
In* ot H percent of the ultimate
Xlw Ttine (W penmD-The Inlerral he
iwwm tnltU nafnrae Ume and lime to »
pvraent ••^••••i after a rtep incrcaie In the
Intel eonoanmUon.
fall naM (M »cn*Mf>-The bilerval be-
IVMD Initial raapMM tte» and time to n
afler a «tep dcei-eaie In the
Z*r» DrVt— Th* chao*e ID
ootpnt mvr a «Uied time period, uauall? 34
noon, of unadjusted cootbiuoui operation
•ban UM taput ennemtratlon b ano: uaual
IT expnaaMf a« pemmt foil acale.
9fmm ZW/T— The chance In Inrtnnoenl
output o»wr a «UI«d time period, umallr M
hoota, of unadjualed conUnooui operaLkm
•hen tlw Input rawantratlon !• a tUted
"Ttf*Jf value; ummll; eipnaavrd mm percent
fug acale
JPmctffton — -~1TW WSffHB^ft Of BCT^MfOOMfftll DB*
tvccn repealed nwaanreaienu of the awn*
OMmntratlon. cMpitaatil ai the aterai« de-
vtatlofi of the afettle reauiu from the mean.
ITotac— Spootaneou* derutllon* from a
mean output not cauacd by Input oonemtra-
maximum deviation be-
tween an actual Instrument readlm and the
raading predicted b» a ctralfht line drawn
between upper and lover calibration point*
or C*B*OM
Miom in CBmrrrno
nioa Moiirroaino Sra-
I. MffHcohUtttanA Principle
LI AppHcaAtHlf Thai method applla to
the nteaiuirrmefit of carbon monoiMe
at petroleum refmerteB. Thto method mrntm
mm the referwnce inetnod In the relallte ae-
niracf teat for noodtopemlve Infrared
(rtDDt) COflonttnuoui emtaalon nonllorln*
•ntena |
naii taMBil MI Ifinni Ilinav. flu atinrJuil iMiii
atlon of the mean teas*** blank vahHa.
II InUrfemamt. Sulfur omtdna. niuto
oikta. and other aeM BW ralerfen with
Hill U| TIN.
br u««nliM the •••jiliil am* Uiraugh an alaa-
Ime potaawum peiiaaiaiiiaitr atnibbtns a>
luUon. Carbon dkwlde dan »fler prepara-
tion to avoid etoravrfe blank correction The
•ample* In the TedJar ' bag *houM be (UMe
for at least I month If the baa* are leak-
free.
2. Appomfaf
2, / Sampling. The ammplln* tram ki *hown
in Plttirr lOA-l. and component parts are
dtacuaacd below;
ciiomioi
net i*
moil i»
lute the endoraement or recommendation
for me by the Environmental Protection
L
k^—ln** v*ivt
cmiaiuic SMI in
Wf INCI M
figure IOA-T. Sampling
wool
'•'.1 Prota. 8taliue*B rteel. rtiealhed
or equivalent, equipped with a
plug to remove paniculate
I '.2 Sample Ctnuflflonlnp Skitem. Three
Otenburg-Bmllh Implnger* connected In
""ei with leak-free connection*.
Z.I.S P*mp. Leak-free pump with eUhileai
•teel mni T«non part* to lran*»ort "•™Pj«
•1 • How rale or MO ml/mln U> the fleiiwe
bag
IH Sarpe TdaJt Installed between the
pump and the rale meter U> eliminate the
pulsation effect of lh* P"mp on lh« r«l*
meter.
768
tan
-------
EPA METHOD 6C
-------
T
n «0. Ap». A,
The aampllna: train In ui»mhlr<1 a.* slmain
In Figure •* 1. e«crpl Ih' iiot»roi«««'l b«b
birr to not twinded The probe miiM br
heated lo • temperature lur'irkriil In pre
• rnl water eanrienaallon mm) mull Include *
IIILer Irllher In Hack owl of alack, of bull.I
lo prrrent parliculale enlralnmenl In Iht
peroBidt tonptngera, TIM electric aupplr fix
the probe heal ahauld be eonllniioui and
•epwale *roB» tne limed operation of Ihe
Adfuat I he timer »wiuri to operate in the
"aa" poaNion Inmi 1 lo 4 mlnulci oo • I
hour repeating cwde or other cyrlc apertftrd
In Ihe applicable regulation Other ttoaer se-
quence* MMV be aaed wHh (fir rotricitan
that (he MW aampt* •otamc coMeded to be
Add arid water u. Ihe Unk until the to»
ninger* and bufcWm are ravefetf al leaat
i*«-thlrdB nil theti length. The Imprngcra
•Ml bubMrr tank nut be emend and pro-
tected Iran InWnae heal and dJrcc* tun
Hght. II fracatng amUllona ektet. tne In
ptnger aolulron and Ihe water balh muel be
protected,
Nora aaj»pHn« mar br rondurltd ran
Knianatfr If • taw Hoar-rate laoiptc pump <»
u> «• nl/mln lor the reagent volume* *
atrltara In Ihto anethadi li ward Thrn Ihe
Ibnei iwltch to MM neceatarr In addition, II
ihe aampte pump to dertinwf lor canalajM
rale lampllng. the rile meter mar br deltl-
rdi. The total gaa volume collected ahoutd be
between 19 and «O lltera lor irw amount* ol
BBfltplIng reagent* prearrllied In Ihto
met had
4.1 J l*ak Cheek Procedure The l*«*
check prot*du*« to Iht Mm* •• dacrlbed In
If ethn« •. Bectlnn • 1.1.
f I > Bv»pt* Collrvllon Rerocd Itw Ini-
tial dry ••• newt rndtnt. To brtln utn-
pllna iKtottlnn Ihe lip ol the piobr •• «hc
•mmr*ln* porrti comwl Ihr probe u> the
flnl tanptnter «* flltel i. •'«> xl*'1 lr» "<«'
uid Ihr »«t»l>tr pump Adjim Ine umplc
l
bf
40 Cm Cti. I (7.1-19 l«ll*«>
hli-|)S in lltls srrllilii |II3> lor siMirviivr
nitis
4 1 .lamplr Kn'utrny Tlir |«fiwrjiires fur
umnlr rrrt»vrr» ItmiiMiur mrKSiiirmrni,
prroilrtr lohiiloii. «IH| f«>. •tnorbrrt atr
llur wnr u l» MrllxnJ «A. HerlhMi « 1
I I itamplr Analy^li Ariklril* of lite per
nildr Inplrwrr iohitlnw b Irw ume •> In
Melhod i. 8ccll«n 41.
44 QuaMIr Auuruirr <«*' Audll Sun
ptn Only alien ihli mcihod U mcd lot
^,^,-pji— delrrmlmiMm, obtain an audit
MOVfe Mt u directed In Bectlon l.K ol
HMttMd fl. Axialrie Ine audit kuapln ai
leMI one* la* r*tir M d»»i ol (ample col
tertion, ajid report the raulta •• directed In
44 ol Hetnad • The UMJrK per
air>ea tluUI per'onn
Ihe BiidH aimlr*aa II "»r» Uun on* Mulpit
tuilummd UM aao«p«e MMlr*> during Ihe
M dtn Miapikw prrtod, octi •ntJyii ahall
nerform UM W0I kmltna and Ul «udli rt
•ulU •onll tot reported Acceptance criteria
lor Ihc •udU rejBilU mtt the Mine u in
Method I
Inirlr
PI. *o,
A. M«n,. tx:
llir
»e thai Ihe tuner I* oprrallni a. Intend
ed. I e . In the "on" puuli«n lur tlir dralied
period and Ihe r.yrle rrpraU a» " 'jiilird
Ourlna tne 14 rwwi rarnplina: period.
in-ord the d»v «a* rwrirr Irmprralure one
lime between tOD a m and 11 OO a m., and
Ih* tjaromelrk- preuiirr
At Ihr conelimloii of Ihr tun, lurn nil Ihr
llmvi and the aamplr pump. rrmi»r Ihe
IHOtar Irom Ihe utark. ami feccud Ihe Dual
|U nrlrr lolumr r'adlrif fuiMliui a Irak
rhn-k aa drartlbrd H> Srlliin « I I If • Irak
ll lourwl. Hold Ihr Irsl run III IINC |M«rrdurrs
•vrrplabfe La llir ArlnilnUIrir.ir In •(IJiitl
llir umple vuliimr fin Irlkair Hr|H-al llir
• I Mctrrtn* Brctom.
B I.I Initial Cmllbralton The Inllltl Mil
Dnlkm lor Ihe MtUioK meterrna nMlem to
ine ome ai tor kin hod •, Section S I I ,
S I 1 PerUMttc Ckllbrktron Cnccfe Altn
JO dari ol operallon ol the tnl train, ron
duel • c*JMM»ilon rhert a* to Section B I I
abore. rieept lor the loltovilna vkrUllona
1 1 1 The leak check to not to be condttrUd,
ill three or morr ttmlulkMH ol Ihe drr •"
meler mini be uaed. and 111 only two rnde
prndent rum need be made II Ihe ealibiB
Han factor does no* deviate by morr than ft
percent from the Initial calibration factor
determined bi Section S I.I, then Ihe drr
|U meter voliunei obtained durlnfl Hie teat
term are acceptable and u*c ol the traJn
can conllnix. II the canbrallan latlor de.l
alei br more Inan I percent, reeallbralr the
meterinc mffUm mm In Section 6 I I, and lur
Ihe rah-ulallofM lor Ilie preceding M da»i ol
d«la u*r the callbrallon fartiir I Initial or rr
rillbrilkml that H*Ws Ihe »oarrr (ax
oolume tut each le»t inn Hie Hie laird rah
brallun factor lor iu*rerdin« lr»l*.
» 1 Tliemionieleri Calibrate Maiiu<
mrrrurv In |laat IhrrmunwIiTt InUlally *IM!
al M) tUr Inlervab
1 ] Holamcler. The rutamrtrr nerd lift
br calibrated, but iliouM br rleaiM-d and
nialnlalned accurdliMi; U. llw maimlarlurcr'i
liulrurtlona.
S < Uaranirlrr Calibrate acalnal k iurr
rnir baromrlrr Inillally ana tl JU da> U»l«''
«al^
»S Ilirliim I'rtrlHilial"- SnlillM.li Sl»«
tlmiUr tin- liallnni ueiclllwrale Milull'""
•Cihui M nil of sianilaiil iiilfuili ai l«t '»
which IOO ml ol loo percent Impropanol has
orrn added.
4 Calrktaflom
The nomefKl>tfir« and ralrulallan prore-
durea art Ihe tame ai In Method aA vilh
IM lollmlni earvplloni:
p_ Inlltol baronrtric pinatue for Ihe tnl
period, mm H«.
T. -Abaorule owlet lempeiaiur* for the
teat pertodT *K.
1 CinuJtixi Male rVocrdare
The emtoalon rale procedure, to the mo*
ai dnerlbed In Melhod «A. SecUon 1, eicept
thai the Uaier to needed and to operated aa
JuciloeJ In Ihto metnod Onli "hen Ihto
method to vaed for cmnptlaon determlna-
llom. peiforam the QA audit analraca aa de
atrMied bi Beet Ion 4.4.
• BlMuwraa**
The btblto«rap*iir to the aam aa deacrBwd
M Method *A, arctton 1, a-Mh the addition
of ihe loltovtna
• I Butler. Fianb aV J.B. Knoll JC
Bu««i MR Mtdaetl. and W. Maaon The
ColUtioraU*e Teat of Melnod «B. Twenty
Pour Hoar nnalnto of BO, and CO,
JAPCA. Vol. II, No. II.OctobM IflU.
Mirnoa 1C nemniaaTliM o* SviruB Ol
OBiaa bfiaaioa Ftoai Btmitommmt
Boimrm llminumintTiL AftLwum F»o-
counl
I. 4ppHr»Mflf I ••* Pflmeifl*
II JpaflnMni r Thto method to aacittca
Mr to Ihe detrmlnauon ol wlfin dkaaUe
(W».l tmnecntratlarM bi conln>»Hd and toi-
tonUDlWO emtoalona Iroaa ftatlonaiy aotircn
onlr when aperifkd •NJdn Ua>
1.1 Prmcmie. A «aa mil ..... tilr to
Ir eilnrtcd Iron a Mack, and a portlom of
the aaaiiili to convered la aa taattnaaental
•nalran for detetMinaUon of HO. caa eon
eentraUaB Mtaa? an »ttrae»o»»t IUV». oondto
prndte tofrared INDIRI, or fluoreacenee an
klnet Perfomaamoe apecllleaUQna and leal
vroordurca are provided to enaun reliable
Ua La
mrnt srilem pur a wrll dnlgned intern,
Hit- minimum drimaub limit tlioukj be leai
than 1 pr-rcenl ian
J Itrfimtliumi
JI MeBBiiremnil Kviirm. The total
equipment required lor the detcnainallon
of gaB ranmiirallim Thr meaaurement
iratem constil* ol il» fuliuwlng makw tub
•yilenu
1 I.I Sample Interface. That portion ol a
•rslem uard for one or more of the follow
Ing: aampkr arqutolllnn, mranto tranapart,
•ample condllhmuig. or prolectlon ol Ihe
analvtrn Irum llw elfect* of the alack ef-
fluent.
1.1 1 Oaa Analrter That portion of the
araiem thai arnm the IM to be meaaured
and generate* an output proportional lo III
concentration.
JIJ Data Hecordrr. A (trip chart record
er, anatog computer, or digital rerrxder for
rrcordlng rarmmrerneni data from Ihe ana
Iriei output.
11 Span The upper llmll of Ihc |ai con-
cent ration meaavremenl range dtoplared on
the data recorder,
11 CaNbrallon Qai. A known concentra
lion of a taa In an appropriate dlluenl gaa.
1.4 Analyser Calibration Error. The dif-
ference between the gai conernlral Ion ri-
hlbtted br Ihe gu analrwr and Ihc known
foncenlrMion of Ihe raUbratlan gai when
Ihc callbrallon gM to Introduced directIr la
the analvaer.
IB Sampling Bratera Wat The differ
cnce between the gaa concentraUoru eihlb
Hed bv the ror-aaurenimi BrUem »her> a
known cancenlrallan ga* to Introduced al
the outlet of the aaimpNog probe and when
the aame gaa to Introduced dUectlr lo the
].• Zero Drill. The difference In the
measurement tratem output rtadtna Irom
Ihe IrriUal calibration reapero* al the arm
concentration le>el alter a Bated period of
operation during which no uraKneduled
maintenance, repair, or adtuatmenl took
1 I Analr'kal Hanac The analrtlcal
ranir to determined br the tnalnMaenlal
aealcn PM thli method, a pot I km of lhe> an
Mrilcal range to Belecteit br chooalrai Ihe
Bpan ol Ihe monltorlnf irilefn The tpmn ol
ihe monllorlnf aiBiem ahall br. aelected
•urn that Ine pvtlulafll iraa concenlrallon
*qt>l»Bl*nl u> Ihr emtorton itandard to not
>m than » percent ol Ihc apan If al any
llnw duilnt a run the meuurcd IBB conren
daiiun eicectta Iht apan. Ihr run iliall br
roiuidried Invalid
11 Hrna(ll»IHr Tlie inliitmum deLrrUblr
"inn drpenda on llir aJMlyllral raiigr, ai>aii.
••Mt alBiial Lu IM*LW lallti Ml llir niraAiiir
11 Calibration Drift The difference bi
Ihe meaaurcracnt ir*lem oulpul reading
from Ihe Initial calibration rcMpana* at a
mid range canbrallon nlue after a atated
period ol operation during aihtcn no on
arhrduted malnlenant*, repab, or adluat
meiil Look, place.
1 • Hemponae Trme. The amount of time
required fw the meaauf emenl »»atem to dto
plar »S percent ol a ««i chanfe ta (aa con-
rrnl ration on Itir data recordrr
IB Inlnlrrrnre Chrrt A method lor de
in-llna analrlh-al lnirr(eie«cr« and eirra
slvr littatrr, iliruiiili dlirrl romiiarUon ol gu
riHH-riilrallinu prnnlded br Ihr mraaurr
mriil sr^lrn, and br a miidllied blrlhod •
itdirrdiirr H>r this rlin-». the rnuulllrrt
702
-------
n. M, App. A. nUtH «C
Method • aamplrs Brr argnlrrd si Ihr
asmplr br PUB dtarhane trot
I 10 Calibration C-rve A irsuli •«• <
..Hematic method of nl.WUhln. Uir rrla
llitroihlp between Ib* anal|»r rrwoiur and
Ihe actual IBS ooncenlralkm Inlrodurrd lo
Ihe analraer
4 sreu.mwaf SgHrm Frr/omasrr Sprrt
/Icallomi
I | Amlntr Callhrallon Error Lria than
i I percent of the span Iw (lie lero. mkt
range, and Ithjh range caJInrallun aaon
percrnl of Ihe ap»Q l« Ihe uro. and Bud a
high range calibration iases
11 Zero Drtfl. Leas lhan 1I percenl of
Ihe apan over the period of each run.
14 Calibrate*, Drill. Irm lhan il per
rent ol the apan over Uir period ol cacti
T» Interference Chert las lhan tl
pereead ol Ihc modified Method • result for
Ihr i|
,1,11
• .I Measurement ByHcoi. Anr aaeaaure-
nenl •ratrn for BO, lhal raeeto Ihe speclfl
OBlranj ol Uua Bart bod A BehemaUrof an
figure «C I The uarnlhU aumvancmt of
the meaaurnaent irrten an Jeaviltaal
beta*
111 Hwnptf Probe. Olssa. Malnlesa steel.
or equivalent, ol mffkhml length lo Ua
verse Ihe aamplr potnU. The
probe ahall be healed lo prevent conocnaa
Uon
6 II Sample Unt. Healed 4rafflctenl to
prevent eondrnaaltoot lUlnlea steel or
Teflon tubing, to transport Ihe sample CM
U the moMun? reowvai ifaum.
B I » ftaBptc- Transport Lines. fUalnhtas
steel or Tenon tuMng. Lo trampurt the
sample from Ihe motaturt lemoval iratcm
In Ihe sample pump, atmptr no* rale con
Irol and aample gaa amanlfold.
Ill Calibration Valve AsacmMr A
three ny valve asaetaWr. « equivalent, for
Mocfclag Ihe aamplr gas flu*
DM caUbraUon gaaea lo Ihe
i at Ihe outlet ol the sampling probe
40 CFI Ch. I (7-1-V9
|.(>i".»l III Uir AilnilnlMlBliir Tlir ilr
K'lliil»«i« aiial»»er« Hial
inruinr raiwiilrailiMM IMI • mri limtla mtint
,11 . ...-1 bub «-4t, BiiBlrfrr uperaled ar
n»dlii| i« Urlhud 3A b lued to obUIn al
nniltii>^aiu m»a»nr»mT«>l< and "3 I Ihe pol
liiiuil/t-**> nwaAurrmrnta air turd lo opfr
mlnr emlMlufti In unlU ol the ilandaid
a I I Partkulalc Filler. An in alack, or
lu>«lrd laitfWdenl l» pre»rol »"
ulloiii oul ol >Uck fillrr The filler
buroilllcal* or quarli llui aioal, or
liber mat AddMJonal flllen al the Uriel or
rl of Ihe motaturr irmoraJ iratem and
n «hall be
fabrkued of RkaierUt* that art noAreadlw
to UM vac betna MBpled.
» I V BkBiple Ftatnp. A anfe-lree, purap, lo
pull lite aaaBpic ca* through Ibe aiatcaa al a
flofe rale aulflrtnil lo aalnlavlBt Ihe re
apoiw Ibav ol the meaaurenvrnt iratem.
The pump mm* br oooatrurted of anr i
rial l»ai to laiojeacave lo the aaa bring i
1.1.1 Moisture Removal BiMera A rtlrtg
evalor trpe condvuavr or vtmllar device le.g..
piiiB«sllon drvert. to reaaov
conimuouslr from Ibe aample IBS
ojalnlaJnIng —fr^r*' contort brli
nwirlrivam and Ihe aanple IB* The
lure itmuval •yawaa k not nui'aaarv for
analrsera thai can measure gas luammra
lion* on • Bet baam, lor I heat analraera. 11»
heal the saaiplr Une and all Interlace cart
pOnBRts IBJI to the Inlet ol the aiialvarr sulfl
rtentlv lo prevent rondeiuallon, and I II o*
termlne Ihc ajioWure corrfenl and eorrrrt
Ihe oteaMied gas nmrenlrBlhana Ui a dri
•ppraprlau meihathi. lubfrri u>
111 Aampte Plc« Rate Control. A
•ampll fto« rate conlrol val.e and rotarar
ler, oil «prtvalrr»t. lo maintain a ecawUnt
sampkng rate arlthbi 1C percenl.
The leater may elect lo Inatall a
regulalor lo sa*lnta»n Ihe
• gaa manifold al a canatant prrarsurr
In orcfcr Lo protect Ihe analvMitil from
ovcrpresBHrmmUon, and lo
need f ir flaw nle ad»u*tjrnrrn
1.10 Sample Oas Manifold A i
gnnlfirid. Lo divert a portion of the i
•mi auram to the analyaer, and the remain.
der Ui the tar pam dhKhgjge vent. The
iainpli> ggg nmitlloM anouM asm tarJude
provWonv. for mtrmtudng caJUaraJLIan gaaea
ghraetlr la the analraer. The •anllorfi amr
be conatructed of anr material that b POD
reacUie to the gaa being anamlcil.
1.1.IH Ow An*lner A If* or MDIR ab
•orpUeei or ftaoreacence analFaer. lo deter
mine cootUMOoalr the SO, oonoenUaUoo to
the B»aw*e gaa stream The analraer shall
awn Ihe atwIkaUe pcrlorauMiee spedfin-
Uons br rrrardrd manuallr 11 thai Bllerna
liur u used, Ihe reading* »hall be obtained
al rquallr ipaced Inler-rala over Ihr dura
lion ol Ihe sampling run Vow sampling run
duration* of teas lhan I hour, measurement*
al I mlnulc Intervals or a mlmmiUB of H
mraaurcmnila. «hlcheTer hi leas n*trlcll.e,
ahall br obtained POr sampling run dura
(torn greater lhan I hour, measurements at
1 mlnulc Interval* or a minimum of M
gifajurrmm'r aihlchevcr hi hcsa rcatrlcllve.
ahall be obtained.
I.I Mrthod • Apparalus and HeagenU.
The apparatus and leggenU deacrlbed In
Hrthod •. and ahoarn br Ihe acheraatk of
Ihe aampMm] tmoi In Figure iC 1, to con
duct Ihe Interference check.
• I 8Ot Calibration Oaar* The csJmra
lion gaara for Ihe gas analvwr almll be BO,
In N. or BO. In air Allematrvelr. 8O./CO,.
BO./CK. or SO,/CO./CX gas mlitura In Hi
•ay be uvd. For ftuuttateme baaed BtuUvm
era. the O. and CO. concenUaUons of the
rmlmratmn gaaes aa Introduced to Ihe ana
Iner shall be Mlhln I percenl labaolulel O,
and I percenl < absolute I CO, ol Ihr O, and
Co, eorKenliallona ol Ihe cffluenl sampteB
as Intradueed la Ihr analyicr Ailemallvelr,
for niioiearence-bated analrten. uae call
braltott Merrda of BO! In air and Ihe nomo
granhs provided br Ihe vendor to determine
the aunvrhlng correction factor ilhe efllu
erri O, and CO, concenlraltona must be
knoantl. Uae three calibration gage* aa apecl
Ikdbrloar:
• II High Range Oaa Concentration
«mdvalrnl lo t* to gg percent of llw apan.
til Hid Range aaa. Coneenlralkm
equlvalenl lo M lo • percent of Ihc apan
1*1 Zero das. Concentration of less
lhan g.U percent of Ine apa/v Purified sca-
bhnu BUT may be uaed fat the am* gaa by
paaatng air through a charcoal f flier, or
through one or aaare tmpfaigcn containing •
solution ol 1 percent HiO>.
g m*m»mmuml Snttm Prr/armmmee Tr§l
ft tO, A.p A.
*C
I 1
Alli-riiBllmr Nlimhrr 1 Us* ul r«ll
hralKm «BM> inn i««-|»«'*il •rc<»rt»n« la P*«
torol Nomuri I If Ihta alternative ii rliuaeii.
uMaln ••* mill urn •llh • annularlurerB
Inlfiwtrr mil lt> r«rr«l I 1 percent ol the
la« tmtuf wtiltln • month* talarr the emto
• km Inl analrv rarh "I Ihe ca,llbrallo«
•un In trlpllralr •»•«• Melbod • €TIUth»»
1 In the BIMUgraphr dearrlnea procedures
and techniques that mat be !•"» *or *'•'•
BJuiittB Record lh* mulu an • dal* *e*t
urr «C 4.
Norm A calibration curve rttmWtahcd prior
lo In* mnalrcrr nJlor«tlon rrrm ehrem nay
be iaMil lo converl the •nalrwr iiwyutmr lo
the mul««lrnl tai conrvmrBl Ion Introduced
lo the aiulrwf Ho*r>rr Ihe aaBM raft ft
Uan pforrdnrr limit br uant f« all rinuntl
•nd callbrtikni mraaiiremenu obtained
diulnf Ihr Inl.
• 1 1 Thr knulrur Hllbra,llon error
<-h«r» ihill br roruMerpd Inialld If Ihr IM
rone ml rallun irc arllon, and rrpcal
704
705
-------
ft. M. Afr». A. fcUit. AC
Ihe inalrrer rallbrallon t-tn.i • ln-rk until
arrrplibtr performance Is •rliirvrtl
• I Sampling SyMem Illax I In-, k |Vr
lorot Ihe Buitpling irilem blu rliri'k by lit
traducing rallbratlon gasr* al Ihr ctllbr*
lion valve Installed al tiir outlet ol Ihr uun
pllng probe A UM-O gav and erfftwr flu mht
ruigr of high ran** |u. •liirlimvi niuai
rloarly approilntatea I In- tlfhtelil rmtren
irmllona. ihall br uatd for Dili > lirra u lul
low.
• «.I Introduce lh» upacalr calibration
gai. wid record Ihr |U ranrrnlration dto-
played by Ihe analyzer an * form timltcr to
Pta-ure- tC-t. Then Introduce rero gu. and
record Ihe CHI concentration dlaptayrd by
Ihe analyser. Durlm Ute campling *y*um
operate the crUrm al the
illna1 nil*. and make nn adluxi-
U» the tactauieiMni ayttrai other
than I hoar orri-aiti-y (A achieve proper caJl
oration gki flow rala at Ihc analywr. Alter
natejy Introduce llie utio and Mjiarale gMaa
until a atcMe revpanar b achieved*. The
bnMjr ahall detcmlnr Ihe meaiurrmcnt
lyttein rrapan*r time by obaervtng the Urn**
rn]ulr«1 lo •rhtrvt • •table miim*ae lo.
both Uw »rro uid uoaralr |un Note llw
lonaYr of Ihc durtna
Ihe kaMlBl fleM teat on » parlleuhMr aowrcc
r*trtofr Hetaln Ihe rmilim. and rcfiort
itvn* with each l*ml perlorned on lhal
anorec cMevorf.
If an tnlfilttmct rheck to belnc Oft
mraMil. aa»f•»•••• ronlalnlnc I percent llt<>, and dry
>a* m-trr> a* ihovn In Plpure W.' 1 fniilall
in* auBplliM t'Bln lo Mtialn * ounplr •! the
mvaAiiirntenl •yttrm ftafiif>lr by pace 4la
rhtrcr *enl Hfrord Ilir lnill»l diy laa
tmru-i rradim
m ti r , * IO
'I'lir *ain
xamr a.v fui
40 CFt Ch I (7-1-19 fdilion)
irlliif iilniir II Hi i (h si cn< k.Mi
•mi bruin uniitliiii it ilu Mm
dufiiig Ihr &Amr>lfiig syhf*"i
Maintain constant lair >am|il
tl i durlrm Ihr e nllrc n
limr prr run ihcfl br Hi
Mrlliod • plm Ivlrr thr synli-m rriimnir
llnw. KOI rarh "in uir only ihov mraaurr
nvrnu obtalnnl iliri l»U-r irxKmar Km* ol
the ntcaiutrinm) •rttetn hai tlkpanl, lo de
iermlne the avrra^e rffnient concenlrBllan,
If an fnterferenrr check to being perfotmrd,
opm the Oo« control valve on Ihr modlftrd
Method • ttaln rancvrrenl *llh thr Initi-
ation of lite kkimmnt period, and adHisl Ihe
flo* lo I liter pet oilnolr I t I* prrcrnl I,
cffofi: tl m pump to not un*d in the modi.
lied Method * Urnln. caution ahouM br rirr-
ctard In •AkajUha the Oo» rtlr linr*
oirrpreaawrtoailDn of the (mplnccn m*r
i.a>»« Inakaar bi Ihe kBpfcnacv train, result-
ln« In portUvely Maaid raulU)
1 • Zero and C^NbraUon Dtllt Trmia. Im.
rordlately praeedtn* ami lolloailni each run.
or If adluMlaBenla arc m coami for Ihe
•eaaurcfacnl •>•<€• dMHm (he run. repeM
the •tmpHni ivMcai Mac check procedure
deacrlhed In fiectlon t « rMakc no adtucl-
nmU to the meaMirenent lyMem until
after Ih* drill check* are comptetrd.)
Record and anatnrr * ratMNWei on a form
Umllar to Pkfure *C •
t.t I II either the aero or upatale callbra
lion value eiecedk thr akiBpilna; •!•!•• Maj
•prclllCBllon, thru the run to conatdrml in-
valid Hrpnt both the analyapr calibration
error check procedure tBmlon • Ji and the
•anpllnc lyatcm blai check procedure «fjre-
llofi • t » belore repeating the run,
1,*.I If both Ihe aero and Mfavalc callbra-
lion valuca are vlthln the laaiplhn •yatem
fata* apedllcailaa, then uat the average of
the InltlaJ and final bto* chock nlua to cal-
culate Ihc (a* ooncentraUon lot the nm. If
Ihe atro or Mpmtsaje aaMbratMn drift value
e. cento In* drift IbaMa tmtrtt on Ihr differ
ence btl»r»n Uw amnllng lyatem btoa
check itanonam kMMedtalely before and
after the run, repeat both the analyaer cali-
bration error chock procedure (Section • ti
and (he aBiafiltin cyatetm bla* check man
dure iSn-Uon «4i before conduct In* addl-
llonal ntna
1» Inlcrferenot Check III prrlurniedl.
After completing the run, record Ihe final
dry Ifti meter reading, meter trmpr««lurr
and barontelrlc preaiiire. Recover and ana-
>rtf the content* of the mldgcl Implngm.
and drtermlne Ihr tK>> au murrntralkm
using (hr prorcdurea of Method t ill ta IUM
nnraaary lo analyze EfA urilmmaiM-r
•udll lamtilrx lor Mr I hud * I llrirrminr Ilir
•vrrM* cai runrrntrallon rilnbltril by tlir
analyzer tot Ilir riin M tlir iftn rtMii-rntr*
oeiMonlol PfOloctUn Aljmtcf
lliHi.1 fiffivldi'd by Ihr analyier and Ilii*
mudlllrd MrlliiKl 8 «lhl«lrrl
• fmifnon Cafrvlafron
The av*ragr gai efflurnt cnncrnlrallon Is
dtlermlnrd from Ihc averkgr gai ronrenlra
Uon dtoplayrd by Ihc gai analyiri. and b
adlusted for the arro and upacalr aampllng
•palnn bias checkj, a* determined in accord
anre vllh Herllon II The arerage gar eon
cenlratlon dtoptoyed by Ihr, analyier may br
drUrmbMMl by Integration of the area undrr
Ihe curve for chart recorder*, or by averag-
ing all of Ihe * I fluent mramrrntrnu Alter
natively. Ihe average my be calrulaled
from reeaavreraenui recorded at equally
Where
App A. M.M,.
Eq «C
('•_ Eflliirril na.1 fMirrnlrallon, dry bail*.
•mm
pprn,
prn,
C Avrragi- iu, runccntrallon Indmied by
, n
gai analyzer, dry baato. pnat.
gai analyzer, dry baato. pnat.
( . - Average ul Initial and final iy*t*m call
oration Mai rheck rnma»i.» for the *ero
Inlervato over the entire duration of
Ihe run. rot ammpilng nin owmtloM of leal
than I hour. meuureiaenU at I ftilnule In
tervato or a minimum of M ovraaurrmenii.
•Mr he re r to lfo> rcatrlrtlve, chmll be uard
Por •ampllng run durallona greater than I
hour. memnrrmenU «l 1 mhiulr hilervato
or a mlntraum of ag nwaaurenienui, Bhtch
ever to lea« realrfcllve. ahall be ua»d. Calcu-
late Ihc effluent gal concenlratlon inlng
Equation *C I.
••«. §•*"**
C. Average <>l tnlitoj and final lyMem
callbrailiin blai cheek roponan for the
upBCatr evllbrellOR car, pom.
C!_ - Actual concciMratlon of Ihe upacale.
callbrallni> ga», ppm
t.
I. TraccBtMllly Protoct^ lor ErtaMtohlng
True Coorrntr«llon» of Quev Uatd for C«ll
braHom and AudlU of Cundnuow Source
Emualon Monllori Protocol Number I US
Environmental Protection Agency. Quality
Aaurure t)ivl*lun. Meaearch Triangle
i^tk. He. June irir
1. Wnllln. frier R and J. W. &ra«n
Method* lor Col feeling and Analysing Ou
Cylinder Bamplei Hourcc Bvaluallon Socle
ly NewtleUe, Jillft II. Beplcmber
-------
ft, tO, Ap*. A. M*Mi. 6C
40 CFI Cfc. I (7-1-19 Edition)
Environmental Protection Ag«nnllllr*tian
TrH prfB
Run numiirr
Dilc
cri
i
al
Sntara
c^>»*u
tMI
( or Nitvonm
IMI Pkoa 8i*tiov«av Boucc
OBIM BBIM
I 1 Prlnclplr A f r«b umpVr la collect*-*
In ui rtHiwu^i fUMk rontMlnlnc •
•uirurto meM hrrfracrn iwromhle
•olulton. and inr nllro«rn omUin. rin-pt ni
limn i>» Mr mtt mruuird rnlorlinclrlrally
lultil (hi- ulirnwltfbullnnlr arid illiSi pto
rrdmr
I 2 AI>I>I>< jblllly Tli la mrlliud In
Mr in llir mrunrnnfnl o| mirugrn
rriiiltrU irmn !ilailonary Miurivi, Ttlr fatiir
«>l III. mriluMt li»-v lH>i-n nj ac
rrplablr •llrrmlivra, >ub)m to appfoval of
Ihr A<1nilnLMi»n uiU rqiilppi^l with an In Hack of mil
ituk Hlli-r In rrmuirr iwrllrulttr mallei i*
708
109
-------
EPA METHOD 7E
-------
40 CM O. I <7-l-«t l«fhjti)
Jiiea eeroMI cnnmMrallon In P|NO,/ml arquUrd dal* ftound nil Ilium •«l«-i llnal
> oat tort* the rum Ihraua'i trio Ikfiu • rak-ulaltan.
4h curve Iftrawah Ihe point* The tune a I fuwml* ««iu_» n. _ — - r-m. j . .
^^~ _ u • • •^^"•••i *"•*•••*, mr na*M, ».iwiM_ieo
U^et^rT^"^!,,? ^.^-^C—"••— H"" - '" Method
• I Total M MO.
retaining al fmaBT
Havre heiond llul of the
n.«o.
M*l
-HI* 18 Bl
IB I
«TST±±r^ rT-rtTrr^Tu..^' """ ,* ' "—"—*•- n"^» Prepar.,ta. ju,
ine !•• romponenl rjelni meMiiied alrari Cilibrallon Einv and
Bratra* Bla* f."nert Pbllo* Smion,
through • 4 0| Method §T
aanre M Method *C, aecUam 4 I Irirnnh * ' MU> *° *°
• dMMmlu o*d •ewml* UMliht HO. ooarantralloii " ^ms&t
_jj .^frr^L ?!Mf* *•'. •*"-"• ^HteHtrr^rru^r.^^
OMB*•*•!••• lor HO. that BMMaUM anecUl i> HO J. MrU
(iyjC Brf§Wt€JiOB of 0BaH^^tal ffftMiY U^fl a^fffffffl'
• III
it.l.l IfuiiBth •.!.». and
lit HO. !• HO Cotreerter Ttmt pottton
jf UM HBUMI UM« IHBUIJI UM "
oiMe IHO.» hi UM BMMPB, tm
MUI4HO) «D Hpb lo HO Mmtrwt k nol K»M th»e iiiMtud to
ii ....... «i| H dua on pi» b ba. UMB t prnrnt of the total HO
the
OBlfl
i obtained alter ivtee UM
d. U» dettrMii'M the areraae eMlnent
It Xfta and CaUkraUan Drill Tot
PtollM aenlon 1 « of Method «C
• tmtuiom CWrBlarioB
« bMtatraphf of Mrlhod «c
IMOB • - D*TBmMio«iMo: D* SinmBic
Ana Mm COB SOLT** DIOIIBB lOiia
fjliiioaiaiv I
•c. i mi
Mrthn.il for Detei
uumr
I tVnloiilnei A«*ncr. He
Phrk HC. Journal of UM
I Of tBBMdBBB OMCtlBB tl.
•J raH»,t)uu oa* OarMotraUoa ferHV II
•J of MHlMii K. Me lor the
a* Method «C.
11 I.I I I. andl I I
III HO.I«MOOon«*ff«*f AdBVfcolhal
to I HO.) to UM
tav Method r and ctMfM* an t> cement POT
'"•••»« »ah»«a !• !• peranM lar •• pan.
bM HinHMiii lahiriilHii lo The Homed. Drill, CaMbratian Drill, and I
•TA. March Ml. I MM HH, Intnltrrne* tn Bam I1 a* Method dC, Orrtlon* t.l IhroMh
MethodHCotMITD. I*
• Q*BM| Amurwwr Handbook lor Air II Interfereno* ftflBjianec The output
Pollution MeBovremenl armltmf Volume frvponee ol the •f»*unnu.i»i ivatem to •
oullw Irlaildt. aad hi UM
of other aarUcutaU BMllm and
•wlfar dteiMe eouMoB* Iroai mtulmmi i
otMrcw. CMlBhonlhw laU how otMvn Uial
method an •«• ayitlB¥*MI/cuMr rwter
10 U > !• ' paurKbj/nttrt looll lor wUiu Irt
• 1 InUrrnrnR
•fnlnnw g^^^^^
prto. lo H* brMM we In UM IkM Theml
tn. rechor* Ihe oMBMiiBMin nnteai U oildr and II •*/••<• N H • •>/«•» lor
rhanfca on nade hi Ihe tnaUwrnKlion ulfur dto'lde Ho upprr Itouu hate been m
thai oautd aHei Ihe InUtlrrrm leoponM laMlahed rtaoril on iheorrUeal CBtralaUon*
<' I . chamtoi In Ihe aa* drietrlari C otMturl (or MB mlllrVrra ol } ueioirt hrdio*en per
Ih* BM\«ifutitu ilfvmim In aorofdaivr oitldr •olulbm Ihe uppei oonmunitlon
allh Becunt, f « of Method M limit lot luilui dloilde In a I • m" 11*1 II •>
730
731
-------
EPA METHOD 25A
-------
. tt, At*. A. M*ffc. 7M
40 CF« Ck,
Mtt» t*«*l
i •*• al the calibration cxllbnlkm aa> Thr an-raav (hall I
_ __*^. *4|uat Uw analrm output mined by (hr Inlranltan of Uw output r»
to Uw appropriate leww. II nrnmmrr. CM aOrtOni o*»r Ih* period apeelifed In thr M>
lor Uw !»•• ptlcaMe nvutallon
i baaed on a Ibmr
Ifcw eetaarii Uw aero and hbjh-
Tnen Mradonr it>* trnl wbM •^iw.Uon »A I
If raulu we required bi ICVM el PPN» M
ror tomtnrl and aild-w»l
and determine Uw dMIpr
Uw awaaurtiBcnl litcai rc-
rvllon M cvrtion.
hMi I pnwnt «f
II «t.
to uw n*uhw
etiMt BCttodiol praotM Inter
Uw la* anted. |*M*».
aAcr both Uw aero
If Uw drill ralun euved Uw cam. ajrf M analraer aei to I
r the loat raaolu atwnrpilnrt band I Tnc oanamtraUon hi ••-
i and rrpial the taal fol- prowwl to Una* of propane tor other appro-
to Uw imjwumiwii* prtalc organic calRmUon •*•» or hi temw ol
reeallbrau Uw tat cvrtnn.
H In Serum • 4 and | 1 ntnHpw A «aa wMVlr to
I bath atto of «inn» Iron Uw aoaree tnrovali a htalc
i U«. data ortcrnMnrd prior to the line. It im«wj»ii and «laa> flbR fitter to a
and data drtormlnrd folloa'lna nondwornrn bifrarvd analyan iNDlHt. Re-
lha taat period) mHa are reported • volwiw conettM ration
• orffHf Ctonmlrmtlo* CcLlrUaflou rqulwawnto of Uw cajlbrallon ••• or
D»iHiw.lm Ihe B*rraie organic concenlra-
ol Ptvnr a* (kropw or othrr
caibon rqultalrnla.
J
944
II PrtorltaJt, Praanir* and
*Wlwd anc
vtUiMibv
itet »»r« BK lo mtU-
-------
PI. MlAftoa. A.
ISA
40 CM Ch.
)
PI. «0.
ISA
*r m*rvmm.*^mm" »«fn.iiH« for affected MMJrcv catofloclee lii
no* UeiBB • Ihe applicable pan ol Ihe regulation* Toe
epan value to otaMtohed In In* applicable
reiulailon arid to unialir I & 10 1 & llnvrv it*
_ applteabMmitoalun llmjl If no loan value to
-^^^^£irt^ ssrr±r«::s^s£^£
aanTtnimx. Uw apan value eltoutd cure
Ala, .,-.." /-^__,J. "Bond lo 14* peveenl o| Ihe recorder icale.
TIM oonoanu^Llr^r^ " C^"""0" °"» * ••">-•» eonewira
i-"—srjKs.. ;s^^srairrrs
•i or B ma 01 aMa*a»aa»*i«l araua* napmiee lo a arm
ii -MA. A „..».,.,. „,«** ±^'±^0£^"E^.nfctn:
**• «.» OUftaraUon Drill. The different* hi
i | Orcanlc ConottMraUon Analrecr, A • I Puel A 4O percent H./M pen*** He
ran IP1A) eapohto of or M percent H./M percent N. aaa I
UM aparlflcaliam In to reeoatonende* to avoid an oiyavn i _
into eaeUMHl, atom effect thai leportcoly ootwre when
l.t neamlr Prone nielnVa* aucl. or omen caneenirailaB vartoi alcnUleanUy
nolee ahaU be t OMB h> ittoaniw of aamiler 4 t Zero Oa> Hlch puiny air Mlh teae
MM) totalled al HI. H, and U.I pcrnml of lhan a I part* 9ft teUUan br mlietoie (ppaivl
lh* cejajvajenl ala«-fc daMaeMr, AMcmallvc- of onianle natertal (propane or
~ an eoulvalenli or kai lhan • I guinea:!
thai a Caa eaeaate to BoUectoi Iraea Ihe cm- anao value, •ttlchcvn Ii |r*al«.
•LMb 4 J LAV level Cainbrallon ON- An oraantc
caiavratlom aai wlih a ooncvnUaUoo <
I.I flwepM UM. auMeai eleel or lent lo M la IB pcrecnl «f UM
TafleA* tabbaej lo tranaport UM amaolc iae epan valun
M UM kJaalvaer The aeaapte Une vhowld be 4.4 Mid level Calibration Oa> An >
U nooeeaary, lo puna* oomawiioB- caJtbvatfcHi >ai »ilh a i
ami lo «• lo AS pertem af UM appHraatr
4.1 Hkjh tevei CaHbtaUon OM An organ
mccoi- Ic ckUbraUon eai aUn a ooBoeaUailon
•aulvaleM U> •• to M percent of UM appll
la UM cable epan value.
•I Sultm rVi/toiaMaof Sptcl
11 Zero Drill. Lam lhan tl ptronu of
the epmn ralue.
•.I CaoDnilon Drill. Leva lhan i) per
—tfjf.ifr cent ol apoj> value.
^,1 ™ t.l (aaUbralun Error Leva lhan 11 per
mmt cent ol UM cattbrukei fa* value
in- 41. fnUtl Pnrparahou
Hot*. Thto eaeUiod a | aetontem of SMBpllaa Slta The taea
••jiloitM area*, tion «f UK •aMptbw atlc to eeaeraft
•n fted by UM -rP"r«%>- rt«ulaUan or |
ol Uw lev*. !.«., fihaiMI aucfc. featM Une. vtc
eadOOwrOaK* The uuopte port ttuiU tee totaled al toa« 11
I far caiavfattaeax fuel and GO •• aMfen or 1 couivale.nl
a* ill noniivitl an eonlaJom In of ir<« aaa dtochan» ila UM i
•AT ill lewHMii are dpuaian. m ^ goo*** at aejaple Probe InaUII UM
, >. aMBBte piiitot ao that UM ptejbe to eeotrmllr
• ihacd hi localM bi the uact, pfev. « dnrt and to
•afavoeje •! AdonMeaaMF. UM OMaufiic- eeaktl UfhUy al the Mack port oonnertkuj.
turn tf UM crllndw ehotild orovtdc a (IK «"Mc>fttn
I ehell Uf« lor oach OkUbraUan |aa "*• *•_ «"«
k«iwurccncnl mint fa
ora^UM^ToBIWBDUrroto^lM '•««*""• ejmieti mamdlOtia IB i
OBrUJMeTveiuTl'tarcaa^rattaMtw^iiai "*• •»*"* toHrrfecr ind UM area** analyr
IM* avanaUy avaUabte tl*. omnfce !•> •»i*****'"V"'**"lloef**le „»„._, .„
la*n> I and If oenM b, MfeuMl aUma "* •«*-«'» f TL^'.^S^.J!'
Uv« OMtbotto tor pvaparlM eaUbrmUor. lee •*1^*"PiJ'•«* ^ J^J^S?!6!/'^!!"
—1,1,..-- OM* aa flkiUon enlaaat. B«r lav tr»Uor» Pot huh cnmotojimioaa of onjan-
^^^^^^^^* ^^^™ ^* ^BilW^^Bl *P^^^^^^ ^^*r ^* ^^ at mu^ ,M. kk.i BMlBi^^B ^M fWMB]A2M|
UM>| ortUi Mh» •iM^nvai of the AdBaa^aUa- Ha 1 > I a perecm ov VORIOIB ^ m»*^nei
—— -«« •"•"• «ew»w»«- •••« • ModMleaWon* u> OMBII iiMiainnlr avalteblr'
Calibrmuon MOB> ueua(>» oanatM ol pto analnere are neraawy One erraalert
I^MTaU^^SSTand ,*?Z*~£« —•»•* •« «.«*««* —-*<•««"» «• f «»
to leroM ol the apan value. Orcanlc caa-
PoiuMto other lhan nropane can be uaed t<*
lo*tn« UM above euldcllnea and Matin* U«
•PproprtaM eorrotUone lor uaiiiiiMl facbr.
U UM analran
ereaw the OBK u( Ihe
lrtrou«h the uat ol a
aunptc capuiarr Direct
Bwauirencni ol oreuitc oBe»enl»mUnti to
nertMrr muldrraitan a>heo
anr momricallon tiatvn
• • Callbralton biw T«M.
• Mention of Hade namri or *p*cl(tr pro! _
m;U doea not oomlNuU cndonenitnl br ll« pilor to ihr l«l eerUa. ivHhln J noure or
I Protection Aaciic*. tlx mi+i\ of HM- l«i r Inlraduee *f» cat Uid
043
iJ
-------