MIDWEST RESEARCH INSTITUTE
STATIONARY SOURCE TESTING OF A COUNTRY GRAIN ELEVATOR
at
The Great Bend Cooperative Association
Elevator B
Great Bend, Kansas
FINAL REPORT
April 29, 1976
EPA Contract No. 68-02-1403
MRI Project No. 3927-C(i9)
For
National Air Data Branch
Office of Air Quality Planning and Standards
Environmental Protection Agency
Research Triangle Park, North Carolina 27711
Attn: Mr. Thomas F. Lahre
MIDWEST RESEARCH INSTITUTE 425
CIT.Y. MISSOURI 64110 • 816 561-0202
-------
STATIONARY TESTING OF A COUNTRY
The Great Cooperative Association
Elevator B
Great Bend, Kansas
by
William H. Maxwell
Midwest Research Institute
FINAL
April 29, 1976
EPA Contract No. 68-02-1403
MRI Project Mo. 3927-0(19)
For
national Air Data Branch
Office of Air Quality Planning and Standards
Environmental protection Agency
Research Triangle ?ark» North Carolina 27711
ACtn: Mr* Thomas F. Lafare
MIDWEST RESEARCH INSTITUTE 425 VOLnbH BOULLVAHO KANSAS Crr MiSSOUHl 64110 • 816561-0202
-------
PREFACE
The work reported herein was conducted by Midwest Research In-
stitute (MRI) under Environmental Protection. Agency (EPA) Contract No.
68-02-1403, Task So* 19.
The project was tinder the technical supervision of Mr. Saul C«
Constant* Jr., Head, Environmental Measurements Section of the Physical
Sciences Division* Mr« William H« Maxwell served as crew chief and was
assisted by Mr» Thomas Merrifield. The analysis of the samples was done
by Ms® Carol Green® Mr# Thomas Merrifield responsible for the data
reduction computer analysis.
iul C« Constant, Jr«
Program Manager
Approved!
L. J»f Shannon, Assistant Director
Sciences Division
-------
1® Introduction • ••••*•*••••...«••*..•» 1
II • Stannary and Discussion of Results* ••••«»••••• I
A« Soybeans • ******«****»»**»«®. 1
B* Wheat * • * • • ».•««»**•••••»*• 4
C® Cora* • »•»*.•*••»•*•••*•... 8
D. Milo. ......*...«.......*,. 8
III* Process Description and Operation* «**»««.«»»* 13
A* Process Description •»*«*.><>*. .***» 13
B* Process Operation .......**...... 15
IV. Location of Sample Points* ..«*...*•*••..• 21
V* Sampling and Analytical Procedures ••••»*•••»• 21
Appendix A - Results of Analysis - Printout of Computer
Computations »*•••* .6®^*«»»*»*»»».»s.«» 23
Appendix B - Sample Calculations *»•••••••.••••*•« 52
TiMe
1 Schematic of Process Operation— Great Bend, Kansas,
Cooperative Association, Elevator B«*«.9«*.»<.» 14
2 Schematic of Sampling Site— .Load-Out .*»»...•«* 16
3 Schematic of Sampling Site— Tunnel Belt* <••**•*• 1?
4 Schematic of Sampling Site— Bin Vent »««»•••••* 18
iii
-------
Losto£Table
TabjLe SMS.
1 Suonaary of Emission Factors and Approximate Catch
Size Fractions • **•**»*•••»»».•••*« 2
2 Summary of Particulate Results - Soybeans. •••»*•• 3
3 Approximate Particulate Catch «• Probe-Cyclone Versus
Filter (Soybeans). .*•.•««»***•••«».• 5
4 Summary of Particuiate Results - Wheat ••••«•••• 6
5 Approximate Particulate Catch - Probe-Cyclone Versus
Filter (Wheat) ...........«.*.....* 7
6 Summary of Particulate Results - Corn* <»*»»*®.»* 9
7 Approximate Particulate Catch •» Probe-Cyclone Versus
Filter (Corn). .»*««»*«>««««»«,*.»*„* 10
8 Sunsaary of Particulate Results - Milo® ••••+•**. 11
9 Approximate Particulate Catch - Probe-Cyclone Versus
Filter (Milo). .......*.....**..*.. 12
10 Suntaary of Grain Data Versus Sampling Time »»»»».. 19
11 Location of Sample Points« «•••••»*•••»••* 22
A-l Particulate Data and Calculated Values - Run 1-LOS . • . 24
A- 2 Particulate Data and Calculated Values - Run 2-LOS ... 25
A-3 Particulate Data and Calculated Values - Run 3-LOW . * * 26
A-4 Particulate Data and Calculated Values - Run 4-TB¥ » * » 27
A-5 Particulate Data and Calculated Values - Run 5-BVW . * » 28
A-6 Particulate Data and Calculated Values - Run 6-LOW * • • 29
A-7 Particulate Data and Calculated Values - Run 7-BW « * * 30
A- 8 Partieulate Data and Calculated Values - Run 8-TBC « * * 31
A-9 Particulate Data and Calculated Values - Run 9-TBG . * * 32
-------
(Concluded)
Table Title
A-10 Partiexilate Data and Calculated Values - Sun 10-TBM • • • 33
A- 11 Particulate Data and Calculated Values - Run 11-BVM ... 34
A- 12 Particulate Data and Calculated Values - Sun 12-TBM * « * 35
A-13 Particulate Baisslofi Data »••*»••**»*»*••* 36
A- 14 Particulate Emission Data (Metric Results)* *•*.**» 40
A-15 Si^ncaary of Results* «»«.**«»»*»**»««*»» 44
A-16 Suamary of Results—Metric Units « **»»»*.«»««<>» 48
-------
This report presents the results of source testing performed dur-
ing the period October 29 to 31, 1975, by Midwest Research Institute (MRI)
on three activities of the Great Bend Cooperative Association, Elevator B»
at Great Bend, Kansas* Testing for particulate emissions was conducted on
the ducts of the dust emission handling system during periods of grain
load-out, bin transfer, and bin loading (venting), all batch or semiconttn-
uous processes*
All tests were conducted on the ducts prior to the cyclone con-
trol device* Tests were conducted in accordance with the
Vol. 36, Mo, 247, Part 11, December 23, 1971, except as nay be defined
later in this report*
The following sections of this report present:
I* The summary and discussion of results,
2» The process description and operation;
3» The location of the sampling points; and
4» The sampling and analytical procedures*
II. AND DISCUSSION OF
Table I presents a summary o£ the emission factors and approxi-
mate catch size fractions for all of the tests.
Table 2 presents a summary of the particulate load results and
the calculated emission factors for the dust-handling system during soy-
bean load-out. Data are given only for the "front half" of the sampling
train as specified in the referenced ^£de£al_^egiiisteir and in the task or-
der* These data are presented as grains per dry standard cubic foot (gr/
dscf), milligrams per normal cubic meter (tag/ncra), pounds per hour (lb/hr)»
kilograms per hour (kg/hr)» pounds emissions per ton grain handled (Ib/ton),
aad kilograms missions per metric ton grain handled (kg/Mton)« Computer
printouts of the field data and reductions are found in Appendix A* Sample
calculations are found in Appendix B*
-------
TABLE I
Grain
Soybeans
Wheat
Corn
Hllo
Soybeans
Uh«*t
Carn
Hit*
d/
1-U1S
a-ws
4-TBW
5-BTO
6-LOU
I-8W
8-TBC
9-TBC
10-fBM
tl-BVM
12-TBM
Asrewge
Average
A«r.8e
Average
load-Out ~
Approxiaate
___talss|QO_FK£Or_--_^ percent Catch
Jfc£tj»n|£""J I&iiii2=£ > 5 p
3,40 I, JO 96
2,05 1.03 97
O.I? Q.38 91
0,58 0.2* 97
-
-
2,72 1,36 %
0.66 0.34 9?
-
«
Tunnel Eclt'
a»is»ion Factor
; ;
o,3i o.ta
O.W 0,45
0,92 0.48
0,58 0.29
0.68 0.3*
«
0,}7 0.18
0.91 0.4S
11,63 0.3Z
!•/
Appfoieiiaate
F*«c*nt Cuech
__2;_Ui__
-
91
99
99
99
99
*»
97
99
99
Mm Vent
Approximte
___^|»$l^M|«ct2_i<_^ f«rc«nt Catch
J(tZiL£fiaSZ — __£_3_M___
: :
0,02 e»0i 85
0.02 0.01 It
»» TO «
0,0} 0,02 40
M «• »»
0,02 O.W 83
d* ** «8
0.03 0,02 tO
jl/ Includes tunnel belt drop point, pullky h«od», lag cross b«te, lag bootii wjd grain tc*t*>
^/ Includes £n?m^t h$lt Ur&p poia£^ putlsy !io@d^» 1^^ crotn b^l£« *n*t lag hoot*
j^/ Bl?% went ®t^y; gr^ln ^calt l>in far wMe«£& scasiElarsI hin for »tl<&«
ji/ ^1,0* ™ Lead-out
__-TB_ = Tunnel belt (Bio transfer)
^~BV^ ^ Bin ¥«;nt
_-__S «= Soybuafts
_- U = Sfceai
„- C «* Corn
_-__M => Mllo
n = KHogrwu. «ii«
ions per tsetrfc Ion
in handled.
-------
TABLE 2
OF PARTICULATE -
P articulate Load Eraission Factor
Run Date
b/
Load-Out
1-LOS October 29
2-LOS October 29
Average
QL^SSsiL
4.691 10,700 340 154 3,40
2,886 6,600 205 93 2.05
3.789 8»6?0 272 124 . 2,72
^^^^^^2,
1.70
1,03
1.36
a/ gr/dscf = Grains per dry standard cubic foot
«ig/ncm = Mtliigraras per normal cybtc meter
Ib/hr = Pounds per hour
kg/hr » Kilograms per hour
ib/ton » Pounds emissions per ton grain handled
kg/Me on »? Kilograms canissions per metric ton grain handled
Jb/ Includes tunnel belt drop point, pulley hoods, leg cross belt, leg boots, and grain scale.
-------
Sampling volumes were 31.42 dscf (0*89 tiem.) and 30,72 dscf (0,87
noa)« Values for the percent Isokinetie sampling rate were 98»5 98*6.
As no combustion was involved, no Orsat analyses were performed
on the stream* Ambient air values of 20.9X oxygen, 79.11 nitrogen,
and 0.0% carbon dioxide and carbon monoxide were used for the stream
composition. Percent moisture determinations were obtained using a sling
psychrometer and a psychrometric chart. The value for the volume of water
collected needed for entry into the computer program was back-calculated
from this percent raoisty.re value using the standard equation. The moisture
percentage used was 0,61 for both runs.
Table 3 presents an approximate breakdown of the weight of mate-
rial collected in the probe-cyclone and filter for each run and the approx-
imate size fraction this weight represents* Information obtained from the
Research Appliance Company indicates that the cyclone will retain particles
greater than 5 y, diameter, irrespective of flow rate. From this information,
it appears that approximately 96% of the material collected during the load-
out tests is of size greater than 5 \j,»
B. jfheat,
Table 4 presents a suamary of the participate load results and
the calculated emission factors for the dust handling system during wheat
load-out, tunael belt, and bin venting operations* Data are presented as
for soybeans. Computer printouts of the field data and reductions are
found in Appendix A. Sample calculations are found in Appendix B*
Sampling volumes ranged from 20.41 dscf (0.58 nan) to 47.96 dscf
(1*36 ncrn). Values for the percent isokinetic sampling rate varied from
97.7 to 99.5.
Again;, no Orsat values were obtained, ambient air composition
values being used as before. Percent moisture values, as obtained for soy-
beans, ranged from 0,8 to 1.3%.
Table 5 presents an approximate breakdown of the weight of mate-
rial collected in the probe-cyclone and filter for eacb run and the approx-
imate size fraction chis weight represents* It appears that approximately
97% of the material collected during the load-out tests* 97% of the material
collected during the bin transfer test, and 837, of the material collected
during the bin vent tests is of size greater than 5 (j,»
-------
TABLE 3
Run Date
b/
Load-Out
I -LOS October 29
2-LOS October 29
Average
Probe-Cyclone Filter (og)
5 v&l jLil^{
9,149 422
5,584 173
7,366 29?
Probe-Cyclone
Versus Total
(1)
96
97
96
ji/ Size fraction Information obtained from Research Appliance Company,
Jb/ Includes tunnel belt drop point, pulley hoods, leg cross belt, leg boots, and
grain scale.
-------
c: 4
OF PARTICULATE -
Run
3 -LOW
S-LQW
Date
b/
Load-Out """
October 29 1,040
October 31 0,849
Average 0*944
Particulate Load
mg£ncn^^ .iizZliSiiu. }$&D;£tii.
2,380 76,6 34*7
1,940 58.3 26*7
2,160 67.7 30.7
Emission Factor
0,766 0.383
0,583 0.292
0.677 0,338
c/
Tunnel Belt "~
4-TBW
5-BVW
7-BVW
October 29 G«S87
Average 0,587
Bin ¥ent ~
October 30 0*469
October 31 0.674
Average 0.572
1,340 43*9 19.9
1,340 43,9 19*9
1,070 1.5 G*7
1,540 2.1 0,9
1,300 1.8 0*8
0*366 0,183
0,366 0.183
0,015 0.008
0.02L 0.011
0.018 0.009
_a/ gr/dscf = Grains per dry standard cubic foot.
tng/ncm = Milligrams per normal cubic meter
Ib/hr = Pounds per hour
kg/hr = Kilograms per hour
Lb/ton = Pounds tanissions per ton grain handled
kg/Mton = Kilograms emissions per metric ton grain handled.
b/ Includes tunnel belt drop point, pulley hoods, leg cross belt, leg boots, and grain scale,
c/ Includes tunnel belt drop point, pulley hoods, leg cross belt» and leg boot.
d/ Bin vent only (grain scale bin).
-------
TABLE 5
Run
Date
Probe-Cyclone
Filter (mg)
< 5 p. > 0.3
Probe-Cyclone
Versus Total
ill
b/
Load-Out
3-LQtf October 29 2,080 74
6-LOW October 31 1,59? " 43
Average i»838 58
, , £/
Tunnel Beit
4-TBW October 29 1,192 39
Average 1,192 39
d/
Bin Vent "~
5-BVW October 30 1,239 222
7-BVH Octobec 31 706 186
Average 972 205
9?
9?
9?
97
97
85
79
83
jaj Size fraction information obtained from Research Appliance Company.
jj/ Includes tunnel belt drop point* pulley hoods, leg cross belt* teg boots* and grain scale.
_e/ Includes tunnel belt drop point, pulley hoods, leg cross belt, and leg boot
_d/ Bin vent only (grain scale bin).
-------
C» Com
fable 6 presents a summary of the participate load results and
the calculated emission factors for the duct-handling system during com
bin transfer. Data are presented as for soybeans. Computer printouts of
the field data and reductions are found in Appendix A» Sample calculations
aye found in Appendix B*
Sampling volumes were 28.09 dscf (0*30 ncm) and 29.51 dscf (0.84
ncm}* Values for the percent isokinetic sampling rate were 97*9 and 97*8.
Ambient air composition -values were again used, and the percent
moisture values were 1*5 and l»3> for the first and second runs, respec-
tively.
Table 7 presents the approximate breakdown of the weight of ma-
terial collected in the probe-cyclone and filter for each run and the ap-
proximate size fraction this weight represents. It appears that approxi-
mately 99Z of the material collected during the bin transfer tests is of
size greater than 5 p,»
D» Milo
Table 3 presents a summary of the particuiate load results and
the calculated emission factors for the dust-handling systes during mile
(grain sorghum) tunnel belt bin venting operations* Data are presented
as for soybeans• Computer printouts of the field data and reductions are
found in Appendix A« Sample calculations are found in Appendix B*
Sampling volumes ranged from 17*18 dscf (0»49 nan) to 28*93 dscf
(0.82 ncai). Values for the percent isokinetie sampling rate ranged frota
98*0 to 99.0.
Ambient air composition values were again used and the percent
moisture values ranged from 1*2 to 1.7%.
Table 9 presents an approximate breakdown of the weight of ma-
terial collected in the probe-cyclone and filter for each run and the ap-
proximate size fraction this weight represents. It appears that approxi-
mately 99 and 907. of the material collected during the tunnel belt and
bin vent tests, respectively, is of size greater than 5 y,»
-------
6
OF PARTICULATE -
Particulate Load Emission Factor
Run fijlES £E/£2£^^
b/
Tunnel Belt
8-TBG October 31 1.644 3,760
9-TBC October 31 1*602 3,660
Average 1,623 3,710
^Ib/hri/ lb/ton£f^
10? 48,7 0,892
110 49.9 0.917
109 49,3 0.908
0.446
0,459
0,454
aj gr/dse£ — Grains per dry standard cubic foot
mg/ncm = Milligrams per normal cubic meter
Ib/hr = Pounds per hour
kg/hr = Kilograms per hour
Ib/ton = Pounds emissions per ton grain handled
kg/Mton = Kilograms emissions per metric ton grain handled
bl Includes tunnel belt drop point, pulley hoods, leg cross belt, and leg boot.
-------
?
Probe-Cyclone
Probe-Cyclone Filter (rag) Versus total
Run Date l2ii_>5Pr' <5pj>0,3 v&.'
a/ Size fraction information obtained from Research Appliance Company*
jb/ Includes tunnel belt drop point, pulley hoods, leg cross belt* and leg boot.
Tunnel Belt-*
8-TBC October 31 2,982 1?
9-TBG October 31 3,051 " 19
Average 3,016 18
99
99
99
-------
TABLE 8
OF PAKTICULATE -
P articulate Load Emission Factor
Run
Date gr/ttsc£2/ raR/ncnfi/ ib/hrj?/ kg/hra/ Ib/tonjy
HtonF"
Tunnel Belt"2
10-TBM
12 -IBM
il-BVM
October 31 1,043 2,390 70,1 31 .8 0,584
October 31 1,244 2,850 81.9 37.1 0.683
Average 1.144 2,620 76.0 34.5 0,633
Bin Vent^
October 31 0,72? 1,660 4.0 1.8 0.033
Average 0.721 1,660 4,0 1*8 0*033
0.292
0,341
0.317
0,01?
0,017
of gr/dsc£ = Grains per dry standard cubic foot
mg/ncm = Milligrams per notnmai cubic meter
Ib/hr — Pounds per hour
kg/hr = Kilograms per hour
Ib/ton = Pounds emissions per ton grain handled
kg/Mton =s Kilograms emissions per metric ton grain handled
js/ Includes tunnel belt drop point* pulley hoods> leg cross belt, and leg boot*
c/ Bin vent oaiy (standard bin).
-------
TABLE 9
^^
Probe-Cyclone
Probe-Cycloae Filter (mg) ¥ersus Total
(mg) > 5 P^/ < 5 p..
b/
Tunnel Belt—
10-TBM October 31 1,946 14
12-TBM October 31 2 ,270 20
Average 2S108 17
c/
Bin Vent""
11-BVM October 31 733 78
Average . 733 78
99
99
99
90
90
a/ Size fraction information obtained from Research Appliance Company*
jj/ Includes tunnel belt drop point, pulley hoods, leg cross belt, and leg boot.
cj Bin vent only (standard bin).
-------
AND
The Great Bend Cooperative Association's Elevator B operates as
a typical country grain elevator* It has a storage capacity of 570,000
bushels of grain® The agricultural area chat the elevator serves primarily
grows four grain crops: wheat, tailo (grain sorghum), soybeans, and com.
A
The elevator receives grain direct from the farmer aad immediately
transfers it into fains* The grain may be held in storage for the farmer or
processed for sale and shipment to a feed mill, grain mill, or terminal ele-
vator* The grain may be dried at the elevator If wet, or handled as received*
It also may be treated chemically if wet or to control insects.
A schematic diagram of the operation of Elevator B is shown in
Figure I. The grain is transported by the farmer to the elevator and dumped
into the truck dump hopper. The elevator legs transport the 'grain to the
headhouse where it is distributed Into one of the several bins* Grain may
also be circulated from bin to bin during treatment or cooling operations
utilizing the tunnel belts and elevator legs*
Most grain handling activities are connected to the dust emission
control system, thought by elevator personnel to have been constructed in
the mid-19401 s» All dust collection points are ducted to a contaon duct run-
ning from the basement area to the cyclone on the roof*
The ducting begins at the far eads of the tunnel belts with, small
hoods serving the belt pulleys. The ducts run the length of the tunnel belts
to the center of the elevator building* Along this length, ducts serving the
small dust hoods at each bin tunnel belt drop point join the comaon duct at
intervals* At the center of the elevator building, ducts serving the eleva-
tor leg boots, leg cross belt, belt pulleys, and grain scale join, the conroon
duct. The dust duct then runs up the building wall to the fan at the elevator
leg head level* Just below, at the gallery belt level, further ductiag joins
the system. Two ducts begin at the far end of the gallery belts at the pulley
hoods* Running the length of the gallery* they are joined by the bin vent
ducts at intervals* The bin vents are ducts Inserted into the bin near the
grain entry hole, flush with the bin roof. Other ducts serving the elevator
leg transfer points (gallery belt hoods) also meet the common duct ac this
point» Just before the fan, the duct serving the one controlled elevator
leg head joins the system* From the fait, the dust control ducting is di-
rected to two cyclones in parallel* However* as one cyclone Is almost com-
pletely filled with dust, essentially oaly one cyclone is in operation.
The collected dust is trucked to landfill but is not weighed or estimated
as to amount*
13
-------
Atmosphere
Load-Out
to Raft Cars
Figure 1 - Schematic of Process Operation--Great Bend, Kansas,
Cooperative Association, Elevator B
14
-------
The dust control fan Is run at all times that grain handling Is
taking place. Eadh separate duct is equipped with a slide valve so that
those ducts serving inactive operations may be closed off, providing ade-
quate air flow for active operations.
B
The purpose of the tests was to measure uncontrolled emission
levels duriag normal elevator operation and use these data to compute un-
controlled emission factors* Standard operation of the elevator is to give
priority to grain load-out operations over grain turning or creating. Load-
out operations Involve the tunnel belt, leg cross belt,, two of the three
elevator legs, and the grain scale* The third elevator leg may be used to
handle grain received by the elevator from farmers , if necessary. After
load-out, the tunnel belt, leg cross belt, one elevator teg» and gallery
belt way be used for grain turning (bin transfer) used to treat, aerate,
or cool scored grain.
This priority system was followed during the test series* Mo
grain was received during load-out tests* Every effort was made to have
open only those ducts serving active operations. The dusc ducts used dur-
ing load-out tests were chose controlling the bin tinmel belt drop point,
tunael belt pulleys* elevator bootSj leg cross belt, and grata scale.
Those used for the tunnel belt (bin transfer) tests were the same with
the exclusion of one elevator leg boot and the grain scale* The bin vent
tests involved only chat vent serving the bin being filled* Figures 2, 3,
and 4 show schematics of these operations* Note that neither the load-out
nor the bin transfer tests included either the leg transfer points (gal-
lery belt hoods) or lone leg head duet thac are shown meeting the conraon
duct above the, sampling sites In Figure !•
Grain handling rates were obtained from elevator personnel* These
were approximately 200,000 Ib/hr (90,720 kg/hr) for load-out operations and
240,000 Ib/hr (108,360 kg/hr) for bin transfer operations. Table 10 presents
a summary of the grain data versus the sampling periods*
Cursory observation of the dust emission control system indicates
a fairly good capture efficiency. The hoods seem, to trap most of the dust
with liccle encrainment of grain. So observations could be made on the
closed systems, such as the elevator leg, boots and heads*
15
-------
o. Plan
To Cyclone
b. Elevation
Sampi ing
Ports
23-3/4" ID
Building
Wall
North
Tunnel Belt Drop Point
'Cross Belt
•Elevator Leg
Figure 2 - Schematic of Sampling Slte--Load-Out
16
Tunnel Belt
Pulley
-------
a. Plan
To Cyclone
b. Elevation
Sampling
Ports
23-3/4" ID
Building
Wa!i
North
Building Wall
is^e Dust Control
System Duct
\
Tunnel Belt Drop Point
Cross Belt
E ievator Leg
Slide Valve
J
Tunnel Belt
'Pul
ey
Figure 3 - Schematic of Sampling Site--Tunnel Belt
17
-------
To Fan 4 Cyclone
a. Standard 8in
^•»''*^*> To Fan &
I -*•••* Cyclone
Sampling
Port
Grain
Duit
Bin
b, Gfoin $«!« Sin
Figure 4 - Schematic of Sampling Site—Bin Vent
18
-------
10
VERSUS
Soybeans: Load-Out
I-LOS
2-LOS
3-LOW
6-LOff
4-TBW
October 29
October 29
Wheati Load-Out
October 29
October 31
Wheat: Tunnel Belt
October 29
Wheat: Bin Vent
October 30
^^^-o-^SEli^H;
Ttoe
t
9 0929-0959
1004-1034
9 1054-1124
1127-115?
9 1535-1605
1609-1639
1 0903-0933
0937-100?
9 1653-1723
1727-1757
3
0937-100?
Duration
(min).
30
30
60
30
30
60
30
30
60
30
30
60
30
30
60
30
30
60
Grain
Ib
100,000
200,000
(100 tons)
100,000
200,000
(100 tons)
100,000
200,000
(100 tons)
100,000
200,000
(100 tons)
120,000
240^000
(120 tons)
100,000
200,000
(100 tons)
JMsiyL—-
M
45,360
90,720
(90,7 Mtons)
45,360
90,720
(90.7 Mtons)
45,360
90,720
(90.7 MCORS)
45,360
90,720
(90.7 Mtons)
54,430
108,860
(108. 9 Mtons)
45,360
90,720
(90.7 Mtons}
19
-------
TABLE 10 (Concluded)
Sapling
7-BW October 31
Corn; Tunnel Bele
October 31
9-IBC October 31
Milo: Tunnel Beic
10-TBM October 31
12-TBM October 31
Miloj Bin Vent
11-BVM October 31
1515-1545
1549-1619
1645-1715
1719-1749
1527-1557
1603-1633
Duration
GrainWeight
Time
0902-0907
0918-0943
0949-1019
5
25
30
80
Ib
16,667
83,333
200,000
(100 tons)
M
7,560
37S800
90,720
(90.7 Mtons)
1200-1205
1235-1300
1305-1335
1349-1419
1422-1452
5
25
30
60
30
30
60
20,000
100,000
240,000
(120 tons)
120,000
240,000
(120 tons)
30
30
60
30
30
60
30
30
60
120,000
240,000
(120 tons)
120fOOO
240,000
(120 cons)
120,000
240,000
(120 tons)
9,070
45,360
103,860
(108,9 Mtons}
54,430
108,360
(108.9 Mtons}
54,430
34,430
108,860
(108,9 Mtons)
54,430
108,860
(108.9 Mtons)
54,430
108,860
(108,9 Mtons)
20
-------
IV. OF
Figures 2 and 3 show a schematic of the load-out and tunnel belt
sampling sites, respectively. Figure 4 presents a similar layout for the
bin vent system. The location of the sampling sites in accordance with
guidelines*
Table 11 presents the sampling point locations for the ducts.
V. AND
Fartictilate samples were taken with Research Appliance Company
Model 2243 "Stacksanplr" equipment, modified by MRI» Sampling traia speci-
fications were in compliance with the £ederal^tegis^tgri Vol. 36» Mo* 247,
Part II, December 23, 1971.
A preliminary velocity traverse was made for each duct* A stain-
less steel probe liner was used for all tests* Since the gas stream, was
ambient air at near ambient temperature, no probe or filter lieaters were
used*
Due to space limitations on the bin vent ducts, a right-angle,
stainless steel extension was made for use on one traverse. As the bin
vent ducts were of small diameter, velocity traverses were taken separately
prior to the sampling traverses for each traverse in order to lessen the
flow disturbances possible from the large pitob in. the small duct.
Sampling times were chosen as 1 hr upon, the request and approval
o£ the project monitor* Five-minute sample times per point were used on
the load-out and tunnel belt tests while 7-1/2 rain sample tines per point
were used on the bin, vent tests»
As has been mentioned previously in the report, percent moisture
values for the gas stream were obtained using a sling psychroaeter and a
psychroraetric chart. The composition of the stream was taken to be that
of ambient air..
Analysis of the samples was In compliance with the referenced
FederalReeister.
21
-------
TABLE 11
"Loud-Out funnel Belt
Duct ID = 23.75 its.
1
2
3
4
5
6
Fraction of
Duet ID
4.4
14,7
29*5
70.5
85,3
95.6
Duct ID = 4»G in.
1
2
3
4
Duct ID ~ 5.375 iru
I
2
3
4
6,7
25.0
?S»0
93*3
6,7
25.0
75.0
93,3
Distance From
Inside Wall
1-0
3-1/2
7-0
16-3/4
20-1/4
22-3/4
1-0
1-1/4
2-3/4
3-0
1-0
1-1/2
4-3/8
4-7/8
22
-------
OF - OF
23
-------
ta
*-
TABLE A-l
PART1CULATE DATA AND CALCULATED VALUES
RUN-
l-LOS DATE- 10-Z9-7S
ATMOS
TEMP
06, F 1
50*0
PORT-
POINT
N 1
N 2
N 3
H 4
N 5
N 6
I" 1
E 2
E 3
E 4
fc 5
F 6
ATMOS
U.HG)
Z8.44
SAMP
TIME
(MINI
5.00
S-OG
5, SO
5®00
5*00
5.00
5.00
5,00
S»§0
5,00
5^00
5.00
STACK
VAC
U.H20)
-3*90
METER
VOt
IOCFJ f
324,59
326,75'
329, E7
332.2?
335*22
33?, 96
340.98
343.68
346,04
348,78
351,99
354,63
H>0
CON0
(ML)
4*6
DELTA
P
i.Haoi
.660
,560
1.100
1.000
-910
.980
• 700
.736
«*>7Q
1,000
.940
PART1C
WT-PTL
IMS)
95TQ*QO
OEiTA
H
(I.HPOi
^940
,,800
»9TQ
1.550
1»420
1.300
1,400
1.000
1,050
1,386
1 ®420
U3SO
PARTIC STACK
WT-TTL AHEA
IFT?)
9570
TEMP
IN
<0,F)
48*0
54.0
6
66.0
76.0
76,0
76,0
76® 0
76*0
18,0
80*0
04.0
,00
TEMP
OUT
CD.F)
48*0
4.9®C
58,0
52^0
54,0
56.0
60.0
62*0
62,0
64,0
66*0
66 .0
3,68
TRAIN
V/^C
322,24
STACK
TEMP
' (O.F)
4§,0
46*0
46,0
46,0
46^0
46.0
46,0
46*0
46,0
46»0
46*0
46,0
PERC PITOT
Q'l C02 CO TUBE
OR¥
20. .9
S.6EL
TEMP
10, f)
§0*0
50.0
50*0
SO.Q
50»0
50^0
50,0
50,0
50.0
50,0
50,0
SQ«0
DRY DRY
§,0 0
PROBE
T DIA
(IN)
,188
.188
• 188
.188
• iaa
,188
ass
.186
.188
,188
.108
.188
*0 »T4ft
VEI.
(F-M)
2439,0
2239^6
246S»0
3t3fi,9
2992.8
2^62,8
2504,0
2557.1
294?, 6
2992,6
2901,7
-------
TABLE A-2
PARTICULATE DATA AND CALCULATED VALUES
HUN- 2-LOS
lft-29-7t>
U»
TEMP
OG.F)
50*0
PORT-
POINT
E 1
IT 2
t: 3
F 4
f 5
F. 6
N I
N 2
N 3
N 4
N 5
N "6
A TWOS
PRES
CI.HG)
?8,48
SUMP
TIMK
(HIM)
5*00
5,00
5.06
5.00
5,00
5.00
5,00
5.00
S.OO
5,00
5*80
5*00
STACK H?0
VAC
(T.M20) IMll
-3*90
VOl,
<0-. F> <
351,31
3S9»?T
362.4?
365*47
368*38
371.11
313,87
375,69
378,24
381.20
384,56
387.41
3.9
DELTA
p
EI.H20) i
«640
*teo
1.000
.930
®84§
«56§
,510
^660
1.100
1.100
.900
PART1C PART1C STACK INIT
WT-PTL MT-TTL VOL
IFT«?I CDCFJ
5757.10 STST.IO
DELTA
H
(I.H?0)
.810
.930
1.400
I, 400
1.320
1,200
.810
,820
.940
1,580
1.580
JU280
TEMP
IN
•CO. Ft
61^0
72,0
??«,0
84,0
86.0
84,0
8&»8
flfe^O
88,0
92*0
94«i
TEMP
oyi
fD.fi
61,0
67.0
67,0
68,0
69.0
10*0
71.0
72,0
72.0
72,0
72,0
7ft,, 0
3,08
TRAIN
VsC
11. HG!
2. ft
2,0
2.5
2.5
2*5
a. 5
2*0
2*0
2*5
2.5
2,5
2«»S
STACK
TEMP
CO. Ft
49*0
51.0
80*0
49,0
50.0
sue
50.0
SQ.O
51.0
51,0
51.0
51.0
P1TOT
02 COB CO TUBE
DRV DRY DRY COEF
20,9
TEMP
10, PI
54»§
S«t-»S
§4«§
54^0
54.0
54.0
54»0
54*0
S4®0
54.0
54,0
54.0
0*0 0.0 #7*6
PROBE
T OlA
(INI
,188
.188
«iaa
• isa
«188
.iaa
.188
* 188
.iaa
• iaa
,188
,188
¥E«
IFf^'J
2323,5
24-04**
2972,4
2999.6
2855.5
2134^6
22*6,9
2266^9
2441*1
3152,2
3152.2
2851.3
-------
TABLE A-3
PARTICIPATE AND CALCULATED
3-LOW DATE- 10-29-7S
to
ATMOS
TEMP
38?»4l
STACK
TEMP
i (O.F)
58tO
60*0
60»§
60,0
61.0
61,0
61.0
f»2n0
62^0
62,0
63^0
63.0
P!T«
O2 C02 CO TUl
DRY
?0,9
S.-EL
TEMF"
(O.F)
60^0
60^0
fcfisO
60^0
60,0
60,0
60tO
60*0
60.0
60.0
60,0
6§»0
DRY DRY HOI
0*0 0
PrtOBf
T DlA
I1N»
.198
.188
,186
.186
.188
ass
.188
.188
.168
.188.
.188
, IftS
,0 ,7-
VCI
IFP^j
293f,0
2252*4
??33<,S
3037,2
3024^9
2835,6
2T5E.9
3564*1
2902^9
3191.6
3336,7
3045,9
-------
TABLE A-4
^ARTICULATE AND CALCULATED ¥AtUES
4--TBW t)"T£> 10-2l><-75
ATMOS
f)6,Fi
61,0
PORT
E
E
K.
e
F
f"
N
N'
N
N
N
iij
f
1
2
3
4
5
6
1
2
3
4
S
6
ATMOS
il.HSI
28,35
TIME
(MINI
5*00
5.00
5.00
5.00
5*80
5.00
S.QQ
5,00
5,00
5.00
5,00
§,,§0
STACK
VftC
-3.90
METER
VOL
(DrF) **0
64.0
64.0
64*0
64i,0
63,0
6%»0
64^0
65.0
64,0
64*0
P1TOT
02 C02 CO
ORY DRY OW¥ ry£F
20. <
S.6EL
TEMP
(O.F)
53,8
53.0
53,0
53.0
53,0
53,0
53*6
53»0
53,0
53.0
53.0
53.0
0«0 0»§ ,746
PROBE
T 014
f IN!
.186
• IBB
.188
.188
.186
.168
.188
% 188
.186
.188
VEl
IFP«I
2813,4
2S71.3
2846,3
3?0fl%5
2^42^8
333^,6
2553.1
2926*9
3039*1
2989*9
£1113.4
-------
TABLE A-5
PART1CULATE DATA AND CALCULATED VAIUES
5-BVW DATE- 10-30-fS
ATHOS
TEMP
DG.F)
§S»0
PORT-
POINT
E 1
£ 1
e 2
H 2
lr 3
F, 3
f 4
£ 4
N 1
N I
N 2
N 2
N 3
N 3
N 4
N 4
ATMOS
TOES
U«HG)
28.17
SAMP
TIME
{MINI
s.eo
2®50
2,50
5,00
5,00
2,50
?«50
S,00
5.00
2.50
i>*50
5,00
5,00
?«S0
?«S0
5. 00
STACK
(I.HPOl
-2.60
METER
VOI.
IDcfl <;
144.22
146*29
148,35
1SE.57
156*42
1511*40
160.60
164^02
Ib9»30
171.46
173,59
177.93
182.30
164.48
186*65
191,03
f«L»
9,2
DELTA
P
UH20)
1.600
1,600
1.600
1,600
1.500
1.500
1,500
1.500
1,700
1.700
1.6Q0
U&OO
1.600
1.600
1.600
1®60U
PARTIC PART1C STACK 1MT
WT-PTL KT-TTL AREA VOL
(MGt {FT?! COCFi
1460,80 1460^88
DELTA
H
(I.H20)
2^300
2*300
2.300
2.300
2*100
2.100
2, l§0
2.100
2,400
?»48§
2,300
2. 300
2*360
2,300
a, 300
2,300
TEMP
IN
10. F)
54*0
61,0
f»6.Q
70*0
78,0
82,0
ftf»,0
§7*0
Ui*#0
88*0
92*0
94, 0
98,0
100. 0
10?, 0
102.0
TEMP
OUT
tO.f!
S2»0
52^0
53,0
53.0
56,0
58*0
60»§
61.0
64»0
66.0
67^0
68,0
7Q»0
72^0
74«0
74.9
.09 140*10
TRAIN
V4C
-------
TABLE A-6
PARTICUIATE AMD CALCULATED VALUES
6-1OW PftTE* 10-31-75
AT«OS
TEMP
06. FI
61,0
PORT-
POINT
N i
N 2
N 3
N 4
N 5
n 6
f 1
E a
e 3
f 4
F 5
F 6
ATHOS
Pft€S
(I, HOI
37,74
SAMF
TIME
CHIN)
5.00
5.QO
5,00
5.00
5.00
5.00
5»OQ
5,00
5*00
5,00
5*00
5,00
STACK
VAC
n.H?o)
-3.90
rtETER
VOi
(o«T) t;
459*99
461.42
464® GO
466*83
469,64
47?«Sl
474. 78
477,26
480*09
483, Of
4ft6.?S
488*98
M.>0
IML)
8.3
DELTA
P
f jLl J*"| f*| *
1 @ «f 4" W f
^610
»7iO
«**00
1.000
,930
.830
.580
.720
*B'(Q
U100
^950
»790
PARTIC PARTIC STACK INIT
WT-PtL Wf-TTL ¥01.
IM6I IMGI (FT'') I0CFI
1639.90 1639*90
DELTA
H
(I.HPOI
I. 018
1.276
1.410
1.30C
1,200
0840
1.030
l»2SO
1.570
1.360
1 .120
TEMP
IN
60. 0
62,0
66*0
73.0
BO* 0
84*0
78*0
85.0
88.0
91.0
95,6
9t».0
TEMP
OUT
10. F)
60,11
60»§
62,0
63,0
65.0
6-fl^O
70*0
72»0
7.».0
75,9
76,0
78,0
3, OS 456*73
TRAIN
VAC
U,HG»
2,0
2,0
2.0
?*0
2,0
2*0
2.0
2,»0
2.0
2»0
2.0
2.0
STAC/
TEMP
l§*Fi
62.0
63%0
63*0
63*0
63, 0
63.0
63.0
63.0
63.0
63*0
63.0
63*0
PIT'
0? C02 CO "tlii
DRY DRY DRY roi
20,9
S.GEi
TEMP
fO^F)
51.0
bl.O
51,0
51. 0
51,0
51.0
51.0
">1 .0
51.6
51.0
51.0
51.0
§,0 8,0 ,7>
PROBE
T DIA
(IN)
.188
. i§8
.IB8
. IBS
.188
.188
'
.188
.188
.188
.188
,188
VEi
(FP---J
2406. 8
erS9%» 1
2^26,3
30ft4,6
?974,6
2810»?
2349,1
2^17.3
2877*1
3235.1
30§6«S
2741.6
-------
O
TABLE A-7
^ARTICULATE DATA AND CALCULATED VALUES
7-BVW
- JO-31-7«»
ATHOS
TEMP
OG.F)
61.0
PORT-
POINT
N 1
N 1
N 2
N 2
N 3
N 3
N 4
n 4
W 1
W &
W 1
W 3
W 2
W 3
W 3
Lyf A
W 4
ATMOS
a, HO)
g7.74
SAMP
TIME
(HIM)
5,00
2, SO
2®50
5,00
5*00
2*50
2®SQ
§*§e
5*00
2*50
z.so
5.00
5.00
2,50
2*50
5.00
STACK H/'O
VAC
(l.H?0) CMLl
-2,60
MEIER
¥01.
torn
192.62
193.82
194.56
196,38
198.30
199*18
200.18
204.16
E04.88
£05®6Q
207.67
20 -'»4S
210.34
211,29
?13* 1 1
-..7
DELTA
P
U500
1,500
1*500
1*500
1.600
1.600
1*700
1.700
U500
1*500
1.500
1. 500
1 »500
1.500
1,500
1,500
PA«TIC PARTIC STACK iNlT
WT-PTL WT-TTL AMEA VOL
-------
u>
TABLE A-8
PAkTlCULATE AND VALUES
8-TBC
- 10-31-76
06, Fl
65.0
PORT-
POINT
f: i
e 2
K 3
F 4
fc 5
F 6
M 1
N 2
N 3
N 4
N 5
N 6
ATMOS
PRES
U,HG)
27.71
SAMP
TIME
5.00
5,60
5.00
5®00
5,00
5.00
5*00
5,60
5.05
5^00
5. 00
S.,60
STACK
VAC
tl.HZO)
-3.90
METER
VOi
CChTJ I
490*93
493.18
495^84
498.41
501.16
503.7?
506.18
508,35
510.8?
513,8?
516, ftS
519. a**
fMLI
9*0
DELTA
P
I.H20)
.640
®?60
,790
,800
«740
.460
,,550
.660
,980
1*000
,950
PART ic
wet
}.«
,640
,810
1*100
1,130
1,150
1*070
.940
,790
.940
1,380
1.410
1.360
PARTIC 5
WT-TTL
•
IfT^J
299S
TEMP
IN
C0*Fi
68,0
70.0
72.0
78*0
04,0
89 .0
88,0
92.0
94*0
96*0
100,0
102«,Q
.90
OUT
CO^FI
69 . 8
70.0
71.0
72*0
74.0
76.0
18,0
79.0
80*0
B3.0
e.4,,0
3*0«
TRAIN
v&c
(I.HOJ
2.0
2,0
2,0
?»Q
2.0
2*0
2«0
H® §
2*0
2,0
2«0
2*0
IMIT
VOL
kCOCFJ
488. 98
STftCl^
TEMP
' «D»(r)
65*0
fcS.O
65«&
65,0
65.0
65*0
65,8
65»0
65,0
65*0
65*0
65,0
PITOT
02 C02 CO rOBE
DRY
30,9
S.CiEL
TEMP
(O.F)
52*0
52*0
52.0
5E.O
52*0
52,0
52®0
52,0
82. ,8
52*0
52,0
52*0
f)«Y DR¥ COEF
0. 0 §
PROBE
T DIA
f IN)
.188
• 168
.188
.188
^188
,188
* IS8
.188
,188
.188
.188
.188
,0 *74/,
¥ffi
IFPt-*}
2051.8
J4T4S6
2696,6
??49^3
2766,7
2660.9
2512*9
2294^0
2512»9
3062,1
3093. Z
3014*9
-------
TABLE A-9
PARTICIPATE DATA AND CALCULATED VALUES
»U'.i- 9-TBC DATE- ln-31-75
TEMP
£}6,F»
65.0
PORT-
POINT
N 1
N 2
M 3
N 4
N §
N 6
t 1
fJ 2
f 3
t 4
1- 5
*•' 6
STACK
VAC
IUH8J IUHPOI
27.11
TIME
(MINI
5»00
5,00
5*00
5,00
5,00
5,00
5,00
5.00
5»§f>
5.00
5«,8Q
5,00
-3*90
METER
VOL
(Dm (]
522*63
524*84
5Z7.26
530.24
S33.45
536*52
538*9?
541*58
544.42
5%7»4T
SSe.43
553,00
H?0
COM?'
(ML I
7.5
OELTA
p
t.H20) i
,850
t540
%620
1.000
1.100
• 970
.600
.750
®8feO
,960
»92Q
,710
PHRTIC PAKTIC STACK JNIT
WT-PTL WT-TTL AREA VOL
(PTf) fOCfl
3069,30 3069,30
DELTA
H
I!*H?€»
1*200
®7iO
«,880
1.400
I. 550
1*300
,866
1.050
1,200
1,400
1*300
1,060
TEMP
IN
fD*F»
86 .0
91.0
94*8
96^,0
ioe.o
104.0
98*0
101,0
iO%*0
107,0
110,0
111*0
TEMP
OUT
CO.F)
83. §
84 .0
84,0
H4.0
BS»0
fl6®0
tt6«0
87,0
88^0
90*0
^0,0
PERC PIT
OE C02 CO TU
DRY DRY 0«Y C,d
519,84- ?Q*9
TRAI--
VAC
II^HGl
1.0
1.0
1.0
uo
1.0
uo
uo
uo
1*0
uo
1.0
uo
STACf*
TEHP
to, ft
65.0
65^0
66*0
66*0
66.0
66.0
66.0
66,0
68»6
68.0
68.0
68.0
S^GEL
TEMP
10, Fi
52*0
52.0
52,0
52^0
52.0
52«0
52.0
52® 0
52.0
52®0
52.0
52*0
0,0 9.0 ,7-
PH08E
T I") I ft
(IN)
,188
.188
,188
,188
.188
• 188
,180
*188
• 188
.188
»188
,188
VEL
{fp?,)
2850,2
2271.7
243fe€S
3094,4
3H4S.4
3047.6
3396^9
2679»8
2875.1
303?, 6
F973.7
2612.3
-------
TABLE A-10
PARTICULATE AND CALCULATED VALUES
RUN- 10-TB't i>ATE- 10-31-7S
TEMP
DG.F1
69, 0
POST-
POINT
,: i
t" 2
F 3
fc 4
f 5
f 6
N 1
M 2
sy "i
N 4
h 5
N 6
n.Hoi
27^65
SAMP
TIME
CHIN!
5,00
5.00
*>*QQ
5,00
5,00
5*00
5,00
5,00
5.00
5,00
§»GQ
5*00
STAC- H?0
¥AC
fl*H?OJ CMl!
-3.90
METER
VOt
555*29
SSI® 73
S60.71
563.68
546 «,48
569, 1ft
571.45
573. 92
5T6»52
579,60
582,61
SEiS.59
7,4
DELTA
p
(J,H20> i
.570
*67fl
.680
.980
.816
®Q00
,540
,640
^76t
1,000
1,000
• ftSO
PART1C STACw IMIT
WT-PTL WT-TTL AREA VOL
(FT?) IOf.F»
1959*7§ 1959»70 3.08 553,00
i I
U.H20)
,826
,950
1,250
1*380
1.170
1.150
®?8§
,910
1.090
1 *4<*Q
1.420
1.230
TEMP
IN
tD»F»
88*0
89.0
96,0
102*0
104,0
105.0
100.0
160.0
100,0
IQQdQ
102,0
105. §
TEMP
our
(O.FI
86.0
86,0
86^0
87,0
88,0
90.0
88^0
88^0
88,0
88*6
H9.0
89,0
TRAIN
V.e>C
(I.H6)
2.0
2,6
2»,6
2.0
2,0
2,0
2.0
2.0
2.0
2»fi
2.0
2,0
STACK
TEMP
tD*Fi
S8-0
68*0
68,0
68*0
68%0
68*0
68. 0
68,0
68,0
68®0
68^0
68.0
PERC PI TOT
02 CQ2 CO
DRY DRY DRY LOEF
20.9
S.6€L
TEMP
10. Fl
52.0
52*0
52*0
52,0
52.0
5?®Q
52.0
52.0
52*0
52«Q
52.0
S2.0
0,0 0,0 »T*6
FROBC
T OlA
UN!
• 188
.188
.188
.188
* 188
% 188
• 1 88
.188
,188
^188
.188
.188
VEi
M)
2343,2
?5*0®4
29H.&
3072*4
?793«3
?776.0
2280,1
?482®9
270^.7
3103.6
3103.6
2861,4
-------
TABLE A-LI
fARTlCULATE DATA AND CALCULATED VALUES
RUN- 11-8VH U'-Tfc- liS-3i-?H
ATHOS
TEMP
06. F I
70.0
PORT-
POINT
E i
t! 1
t 2
6 2
E 3
t 3
fc* %
F. 4
N I
N I
N 2
N 2
N J
N 3
N 4
H 4
ATHOS
PRES
27.65
TIME
WIN}
5,80
2.50
2*50
5,00
5,00
2*50
2*50
Ss§§
5*00
2*50
2*50
5® 00
5*00
£.50
2®50
5* 00
STACK
-1*60
METEK
¥0!
torn i
?1S»§&
215,12
216*59
210.35
220,01
2HO»TB
221,55
223^01
224,35
22*. 90
225*4-7
2?6,R?
2«?b«!i?
2H9, 42
230, ??
232.07
IMLi
4.4
DELTA
P
1.H20) I
1.300
1.300
l.SQO
1.500
1.200
1.200
,880
%• o ™^ CJF
a 0 *3f 0
,900
t900
1.300
U300
1.200
1.200
PARTI C PART1C STACK IMIT
MT-PTL WT-TTL AftEA VOL
fMG) (FT?) fOCF)
811.60 ail. 60 ,19 213.11
DELTA
H
Jjtj "2« rf% h
^ ff jT \J S
,360
. 356
,410
®4i 0
• 320
,,320
,240
»240
. 180
,180
o£4Q
,240
,366
.360
*320
,320
TEMP
IN
72,0
74.0
75.0
80,0
82,0
84*0
86S0
86, §
8%cO
86,0
86^0
88®0
92,0
94^8
9S*Q
96,0
TE«P
OUT
(O.F)
7Q*G
?0«0
70^0
T2.0
72.0
74,0
TS»0
?5»0
78^6
79® 0
B0®§
80.0
fl2®0
J*2.0
»4.0
64® 0
TRAIN
Vflf
CI.H6J
UO
UO
UO
1.0
uo
uo
uo
uo
uo
uo
uo
1.0
uo
uo
uo
uo
STACK
TEMP
CD.FI
65^0
65, §
65,0
65^0
65.0
65,0
65,0
65.0
6S«0
65^0
45^0
65,0
65,6
6S*0
65.0
P1TOT
02 CO? CO TUBE
ORY DRY ORY COEF
20,9 0,0 0^0 *S38
s.eet
TEMP
10. F)
52,0
52,6
§2,0
52*0
52.0
52..0
52.0
52,0
52*0
52*0
se.o
52,0
52.0
52,0
52.0
T 01 ft
'>
3975««
3975.8
4270,7
4270.7
3619*9
3819,9
3371,1
3271.1
2H11.3
2811. i
330^.1
330M.1
3975,8
3975, »
3H19,9
3*' 19,9
-------
UJ
tn
A-12
AND CALCULATEO VALUES
«U-- 12-TBM DATE- lft-31-/b
TFMP
06, PJ
PORT-
N
N
N
N
W
N
e
t:
E
€
F
t
i
2
3
4.
5
6
1
2
3
4
B
6
ATMOS
PfCS
SAMP
TIME
(MIN)
§»§§
5.00
5*00
St»o§
5,00
s.oo
5,90
5*00
§,,00
5. 06
5.00
5.00
STACK
(IT i^i *5 f*% i
^ # l» ^ %* f
METfR
V0».
(0. F! I
881*66
589*9?
592..S5
595*61
£* j*\ jtj jt *ji
«3t rf O"
-------
A-13 '
PttRTICULATE EMISSION DATA
NAME DESCRIPTION UNITS
P&TE Of RUM
ON TIP DIAMETER IN
TT NET TIME OF RUN
P8 BAROMETRIC
PH AVG ORIFICE
VH VOL DRY OfcS-HETER CGND DCF
TM AVS SAS METEfi TEPP DE0®F
VOL OPY 6AS-STD QSCF
VW TOTAL H20 COLLECTED ML
VW¥ VOL H2G W^PQR-STO SCF
MOISTUPE IJY VOL
MO MOLE FRACTION 0«?Y GAS
PC02 PERCE.MT C02 «Y ¥OL * DRY
P02 02 ,-»Y VOLt DRY
PCO PERCENT CO «Y VOL* DRY
PN2 PERCENT N8 :»Y VOLt DRY
M\*0 HOLECULA" -VT-ORY ST< GAS
MW WOLECUlA^ 'IT-STK 6AS
CP PITOT TU^E COEFFICIENT
OPS AVB STK VELOCITY HEAD IN.H20
TS 4¥G STA-'r TEMPERATURE 0€6*F
*JP M€T SdWPi JMG POINTS
PST STATIC PRKS OF STftCK !\.H6
PS STACrf PRESSURE, ABSOLUTE IN.HG
VS AV6 STACK 6AS VELOCITY FPM
AS STACK A'"'£A IN?
QAM ACTUAL STACs FLOWRATE M3/M1M
QS STK FLOwRAT^t ORYtSTO CN OSCfH
ftA ACTUAL STACK fLOteRATE ACFM
I^OKlNETlC
HF PARTICULATE «T-»ART1AL MG
MT PAPT1CULATS WT-TOTAL Mfi
1C PERC I^PIMGER C^TCH
CAN PART* LOAO-PTL.STO CN GR/DSCf
CAO PART, LOAO-TTL.STO CN 6R/DSCF
CAT PART* LOAO-PTL.ST^ CN 6R/ACF
CAU PARTS LOAD-TIL.STK CN SR/ACf
CAW PART1C EMIS-PARTIAL L8/NR
CAM PARTIC £H!S-TOTAL L8/HR
1-LOS
10-29-75
,188
60-0
28,44-
1 . 2 1 c
3?^59
64.?
31,42
4. )
.19
0- fr
ft rt, A
o»§
20*9
0..0
79.1
28,84
2B&77
,746
*8C>2
45. «
R
®Z9
?8*73
?750
444
239*8
8467
04^9
98. r
^570,00
^570.00
0,00
4*69079
4.69079
4*68981
4.6898]
340*3?
340^37
2-LOS
10-29-75
*188
60»§
28,48
1*177
33. SH
?-*i«7
3: .72
.^ ss ^
.?-.
,99*
G ®0
20,9
0.0
79,1
28,84
28*7?
*?46
.^O
5- .1
12
.29
28.77
37 06
444
23fe» i
827 >
8333
98,6
5757.10
5757.10
08,00
2^88629
2*88629
2.86474
2*86474
204.5*
20^»S^
3-LOJ
10-Z9-75
*188
60. 0
28.4
1 »?98
33,99
77.8
31. -»1
5,4
*2T
.99 •"
0.0
?^»°
0.0
79,, 1
?8.ft%
£8,7''-
,74o
.9 -P
61.1
12
,^a
?8.~*5
2886
4-44
251.6
8597
888?
^ft t "-
2153.60
2153*6^
0,00
i ®&3Q5C
1.03950
1,9056*
1,90564
76.59
T6.59
36
-------
TABLE A-13 (Continued)
PARTlCUtftTE DATA
ON
TT
VM
TM
VMSTO
VW
MO
P02
PCO
PNZ
CP
DPS
TS
NP
PST
PS
V5
AS
«AM
OS
OA
MF
HT
1C
CAM
CAO
CAT
CAU
DESCRIPTION
0«TE Of W'
TIP DIAMETER
NET TIME Of SUM
BAROMETRIC
dV6 ORIFICE PRES
VOL ORT G*S-M£TE«
AVS SA?
VOL DWY G»S-STD CONO
TOTiL H^O COLLECTED
VOL H?0 VAPO&-STD CQNQ*
MOISTURE -Y VOL
MOLE FRACTrON DRV GAS
PERCENT cos RY VOL. DRY
02 F-Y V0>,» DRY
CO -Y VOL* DRY
PERCENT N2 f¥ VOL » O^Y
MOLECULAR «
6 .0
12
»?**
28.64
?949
444
257.2
8722
9 -a?
98. >
1230.40
1230,49
0.00
• SS?*^
,587.54
.56394
.56394
43. S9
4.1.89
,99'
Q*§
20.9
0.0
79. 1
28*34
28*74
.8-8
1,587
56.0
lo
. S9
23,36
4308
.'3
11. -
374
388
99. v
14&0*BO
I460sfl0
0,00
*46905
,46905
.45ZS7
^45257
us--
1.5',
* 9rt ••
0,0
?()„ Q
0.0
79. I
28,8*
28.69
.746
,832
6 3. -;
! 2
.29
28,, .1
?M3
444
2%4,5
8 "8**
8- 33
97,7
Ifi3<»,90
i*»39.90
0,00
,S485i>
.§486^'
. 7^5 ' 5
.795:5
S 8 . 8 "<
58. 8^
3?
-------
A-13 (Continued)
PANICULATE DATA
ON
TT
PB
PM
VH
TM
VMSTO
VW
VWV
MO
P02
PCO
MWO
OPS
TS
MP
PST
PS
VS
AS
GS
OA
HF
MT
1C
CAN
CAO
CAT
CAU
CAX
DESCRIPTION UNITS
DATE OF RUN
TIP DIw-*ETEft IN
NET TfME 0? RUN M1M
BAROMETRIC IN.HG
AVG ORIFICE IM.H2Q
VOL DRY 655-METER OCP
AVG GAS TEHP PE6.F
VOI, DRY S^S-STD
TOTAL ^20 COLLECTED ML
VOi H?0 ¥AP0«~;T
AVS STK VELOCITY IN.H20
AVS STA' •* TEMPERATURE OE8,F
NET ?;.Mf»» INS POINTS
STATIC. PRUS OF STACK IN. MS
STACK PRESSURE. ABSOLUTE IhUHG
AVG STACK SAS VELOCITY FPH
STACK A">t"A IN2
ACTUAL STACK FLOWft4TK M3/MIN
STK FLOWR'.TE* DRYfSTD CN OSCfM
ACTUAL -sTAC^. FLC^RATE ACFM
PERCENT I^QKlMfETlC
PARTICULATE wT-PARTIAL MS
F-^RTICUtATE WT-TOTAL MG
I«fP!NGeft C* TCH
PART. LOAO-PTL.STO CN 8^/OSCF*
PART, LOaO-TTL.STO C«
PAf?T9 LOAD-PTL.STy CN 6R/ACF
PAffT« LOAO-TTL.ST-' CN SR/ACF
PARTIC EM1S-PARTIAL L8/HR
PARTIC -MIS-TOTAL LB/HR
7-ev»
i 0-3 1-75
.ia<
60«0
27. 74
«4i2
22.08
7E.3
20.41
= .7
*?7
1.3
.987
0*0
20 »9
0*0
79.1
28,
0.0
79,1
Z8.7
.74%
«i23
66,^
12
28,00
279^
44*
24 :i . •
863°
as .•--
97»?
30f9.3'>
30^-9^30
0^00
1.60158
1.60158
1,49-64
1 .49' 64
109. «»3
109^3
38
-------
TABLE A-13 (Concluded)
PARTICULATE DATA
NAME
ON
TT
PB
PM
VM
TM
VWSTD
v«
VW¥
PMOS
MO
peo2
PO2
PCO
PN2
MWO
MK
CP
OPS
TS
NP
PST
PS
VS
AS
QAM
as
C3A
PERI
NF
HT
1C
CAN
CAO
CAT
CAU
CAW
CAX
DESCRIPTION
DATE Of KU-N
TIP DIMETER
NET TIME OF RUN
BdROf'ETftlC PRESSURE
&VG ORIFI'E
VOt ORY 8*.S-M£TER
A ¥6 GAb METER TEWP
VOt, CRY 6/-S-STO
TOTAL «20 COLLECTED
VOL H20 V".POR-STO
PERCENT MOf^TUwE P-Y VOt,
MOLE FRACTION DRY SAS
C02 <-T92
68*0
12
»2^
2T,^4
2749
444-
239,7
7839
8465
9e«»0
1959.7(1
19-.9.7C
0^00
l.f-4335
1 ®t,4335
.96617
."6617
78.09
TO, 09
11-BVM
10-31-15
a2s.
60^0
2?®6S
,303
18.96
a. ,e
J7»18
4.4
.2
1.2
»988
8*0
20*9
8,0
79.1
28.84
28. tl
.8.18
U116
6^.0
16
» ! 2
27. T7
3658
??
1^.7
643
695
99, G
811,60
811.60
0«00
»72?32
•72732
.673E6
»fr?326
4,01
4.01
u-m*
10-31-75
.188
60.0
2?»6?
1.1M
31 .^fi
93.**
28*3^
1 '.
»4-
1,7
.98-
0,0
29,°
0«0
79,1
28.84
28, 6K-
«,746
^ ?oS
66,0
12
.2'^
^7 ,94
27, ,7
444
23^. '
7ft8 '
3336
9B.P
2289*6-1
2289.60
0,00
1.24368
1^24368
1.1459!
1.14591
81. 8*
Si, 8'-
-------
A-14
PART1CULATE EMISSION DATA
(METRIC RESULTS)
NA"»*E
ON
TT
PS
PM
V«
TW
VMSTM
¥^
VWM
MO
P02
PCO
PN2
MWO
H^
CP
DPS
TSM
Hf
PST
PS
VSH
AS
QSM
HF
MT
ic
DESCRIPTION
DATE OF RUN
TIP D
NET T1HE OF
BAROMETRIC
&VG ORIFICE DROP
VOL DRY G.iS-METER
4VG GAS
VOL DRY SftS-STD
TOTAL H20 COLLECTED
VOL H20 V«P0«-5TD COND
PERCEMT NOISTUPE «ty VOL
MOLE FRACTION ORf GAS
COS BY VOL « DRY
PERCENT 02 '••¥ VOL, DRY
PERCENT CO f-y VOL. DRY
PERCENT N2 --»r VOL» 0»Y
MOLECULAR irfT-DRY STK GAS
WOLECUL^S WT-STK GAS
PITOT TU^E: COEFFICIENT
AVG STK VELOCITY HEAD
AVS STAC*. TEMPERATURE
NET SAMPLING f»OJNTS
ST4T1C Of STACK
STACK ABSOLUTE
AVS STACK 6AS VELOCITY
STACK AS-EA
ACTUAL
STK FLOwRiTEt ORY»$TQ
PARTICULATE
PARTICULATE WT-TOTAL
CAUM
CAXM
PART, LOAO-PTL.STO CM
LOAO-TTL^STO CN
LOAD-PTL.STK CN
PART. LOAD-TTUSTK CN
PART1C fMIS-PARTlAl.
PAfiTIC F.MIS-TOTAt
UNITS
IN
»IH
IN.H6
!N^H20
DCF
NCM
ML
NMJ
!N^H20
DEQ.C
IM.HS
!M*HG
M/MIN
IN>
M3/MIN
NM3/MIM
MO
M<3
M*i/NM3
M<>/NM3
MP/H3
M-VM3
-------
A-14 (Continued)
PARTICUl ATE DATA
{METRIC RESULTS)
DESCRIPTION
04TE OF
ON TIP DIAMETER
IT NET TIME OF »UN
P8 B/-R01- ETR1C
?>M AVG ORIFICE
VM VOL DRY GAS-METER
TW AVS GAS TEMP
¥«STM VOL DRY CUS-STD
VW TOTAL H?0 COLLECTED
VWM VOL «20 ¥ftPOR~STD CONP
PERCENT MOISTURE «4y VOL
MO FRaCTlON DRY C5AS
COE £Y VOL* D»Y
P02 02 RY VOL^ DRY
PCO PERCENT CO !-Y VOLt DRY
FN2 PERCENT N2 -f VOL* ORY
MWO MOLECULAR i«T-ORY ST«, r,AS
MU MOLECULAR WT-ST", 6AS
CP PITOT TUPE COEFFICIENT
OPS AVQ STK VELOCITY HEAD
TSM AV6 STACK TEMPERATURE
MP NFT S/'MPl INS POINTS
f»ST STATIC PRF.S OF STACK
PS STACK PRESSURE* ABSOLUTE
VSW A¥G STACf? GAS vetOClTY
AS STACK A-'fA
OAH ACTUAL STACK FLOrtRATE
OSM STK FLO'^RnTE* ORYiSTD CN
PERCENT XSOKINETIC
MF PA^TICULATE KT-PARTIAL
MT PARTICUl ATE ^T-TOTAL
1C 1MPINGER CATCH
CAN« PART, L0AD-PTL.STD CN
CAOM PART* LOAD-TTL«STD CN
CATM PART* LOAD-PTLfSTK CH
CAUM PA«T, LOAO-TTL'.STf CM
PA»T1C SMIS-PARTIAL
CAXK PARTIC EWIS-TOTAL
UNITS
IN
IN.HG
1N.H20
OCF
OE0.F
NCM
ML
M/MJN
IN2
W3/MIN
MM3/MIM
MO/NM3
MG/NM3
MG/M3
MQ/M3
K6/HR
a ea
60*0
28,35
1.338
35.32
91, A
.91
5,5
.01
,992
0.0
0.0
79.1
28, 64
2S.75
17,8
12
28.64
898.9
4*4
257*2
247*0
98 ^ y
1230.40
1230*4-0
0^09
13*3»«1
1343*81
1290^48
iO-30-TS
.186
60.0
28.' 7
2.262
5'- .93
73, r
1,36
.01
.9
,99>
0,0
0*0
79.1
28.84
28,74
®§"?8
use?
13.3
28.36
1313.1
! 3
11 *
10,6
99.-^
1468. BO
1460,30
0® 00
1073,36
1*73.36
1035.62
1335,62:
,602
.682
6- OW
10-31-75
,188
€0*0
?7»74
1,187
32*25
74,2
.6
.'Hi
1 . ^
.98 •
0.0
0,0
79» 1
?8.tt^
B8.69
.746
®d3?
17,2
29,'' 3
654^4
444
244,5
22U® 1
97,7
1639^90
1639.90
0,00
19*1. rtT
1941,8?
1819^58
- 1819, SB
26^^^^
26.68'.
41
-------
TABLE A-14 (Continued)
PART1CULATE DATA
CMETRIC RESULTS!
CP
OPS
TSH
MP
PST
PS
VSM
AS
OAH
QS«
MF
MT
1C
DESCRIPTION
PATE OF RUN
ON TIP DIVETEft
TT NET TIME OF RtJW
PS BAHQNETRIC
PM AVG ORIFICE PRES OPOP
VM VOL DRY GAS-METER CONO
TM AVS GAS METER TEMP
VOL OPY SAS-STO
¥¥ TOTAL H30 COLLECTED
VW VOL H2Q VtPOR-STD CONO
MOISTURE ?Y VOL
m FRACTION DRY QAS
COS BY VOL» DRY
P02 PERCENT 02 «Y VOLt DRY
'PCO PERCENT CO ^Y VOLt DPY
PN2 PERCENT N2 '4Y VOL » DRY
MOLECULAR wT-ORY STK GAS
MOLECULAR wT-SIX 6AS
PITOT TU&E COEFFICIENT
AVG STK VELOCITY HEAD
A¥G STACK TEMPERATURE
NET SAMPLING POINTS
STATIC OF STACK
STACK PRESSURE t ABSOLUTE
AVS STACK GAS VELOCITY
STACK Af^EA
ACTUAL. STAC^ FLOWRAT*'
STi FLOW^ATE* ORVtSTO CN
!>ORIN£TIC
PARTICULATE WT-PARTIAL
PA«TICUIATE WT-TOTAL
PERC IMPIN/SER CftTCH
tOAD-PTuSTD CN
LOAD-TfL*STD CM
LOAO-PTL.STK CN
CAUM PAST* LOAO-TTL.STK CM
CAWM PARTIC EMIS-PARTlAL
CAXM PASTIC CMIS-TOTA*.
PART
PAr
0.0
79,1
28,34
23.?^
. ?4*j
.823
19.?
12
.2*
28*00
8SU7
444
243, •'
22b»8
97.8
30f-9«3Q
30f 9,30
0*00
3664^96
3664,96
3411,00
3411.0°
49.86*
49,86*
-------
TABLE A-14 (Concluded)
^ARTICULATE OAT*
RESULTS)
ON
TT
PI
PF
VM
TH
VMSTW
MO
PC02
P02
PCO
PN2
OPS
TSW
NP
PST
PS
¥SM
AS
QAM
wr
MT
1C
CATM
DESCRIPTION
E OF
TIP 01A-ETER
NET T!«£ Of RUN
BAROMETRIC PRESSURE
.4V6 ORIFICE
VOL DRY GaS-METER
ftVG GAS
VOL DRY G^S-STD CONO
TOTAL H30 COLLECTED
¥OL *20 V'iPO^-STO
MOISTUPE ?Y VOL
FRACTION DRY GAS
PERCENT C02 RY VOL.
PCTCENT 02 ^Y VOL»
PERCENT CO ^Y ¥OL»
PERCENT M3 PY VOL * DHY
MOLECULAR WT-OftY STK. GAS
MOLECULA» WT-STK GAS
PITOT TU*-E coeFFicie.vT
AVG ST". VELOCITY HE&0
AV8 STACK TEMOERATURC
-N€T SAMPLING POINTS
STATIC P'-ES OF STACK
STACK PRESSURE. ABSOLUTE
AVG STACK GAS VELOClTf
UM1TS
IN
MIN
XN.HG
IN.HZG
OCF
HES.F
NCM
ML
MM3
IN.H20
0EG*C
1 --T8M
10-31-T5
,188
6S»0
27.65
1.131
32*59
93*S
• 8?
" *4
.01
1.2
.988
0.0
20.9
0,0
79,1
28,84
28.71
.792
20.0
12
11-8VM
10-31-75
»12S
80«,Q
2T»65
»3C3
1 .96
O ft O
-.49
4,4
.01
1*2
4.988
0,0
30,9
0,0
79.1
28*84
28,11
llliG
1^.3
16
12-THM
10-31-75
.188
60. 0
27 .^^
1 . 1 n 1
31.06
V'l.fl
®fti
1 .3
»al
1 „ r
.98
0.0
20 »**
0*0
79. 1
28.84
28. r.
.7^8
20*')
12
M/HIN
D«YfSTD
CAXM
ACTUAL STAC-C
STK FLO^R*T£
ISOx
PARTICULATF:
^ARTICULATE WT-TOTAL
PERC I^PINGER C^TCH
LOAO-PTL^STO CN
LOAO-TTL*STD CM
PART. LGAP-PfLtST* CM
PA«T. LOAO~TTL»ST* CN
PARTIC EM1S-PARTIAL
PftRTIC PHIS-TOTAL
M3/MIN
CN NM3/M1N
MG
HP
M6/NM3
H3/NM3
KG/143
fCB/HR
K6/HP
837*8
444
339*?
222,3
0*00
2387,54
Z7.77
19^7
18,2
99.0
811,60
an.60
o.os
31.793
31.793
1540*65
1540.65
1,819
1.819
27.*4
825. •
44*
21^1-
22H9.60
0.00
2845^96
2622.23
2622.23
37.131
37.131
43
-------
TABLE A-15
OF Rt SUITS
UNITS
OSCt-
OSCFM
DESCRIPTION
DATE OF HUN
VOL DRY GOS-STO
PERCENT MOISTURE r>Y VOi
TS AV6 STACK TEMPERATURE
US STK FLOMR'TEt DRYtSTQ CN
QA ACTUAL STACK PlOWRATE
PERCENT ISOKIMET1C
PART1CULATES — PARTIAL CATCH
MF PARTlCULATl7 WT-PARTIAL MG
CAN PART* iOAO-PTLfSTD CN r»R/OSCf
CAT PART, LGAD-PTUSTK CM 6«/ACF
CAW PARTIC EMIS~PARTIAL LB/HR
PARTICOI.ATES — TOTAL CATCH
WT PARTICULATf WT-TOTAL Mr
CAO PART, LOAD-TTL»STO CN GR/OSCf
CAU PART. LOAD-TTL,STK CM 6R/ACF
CAX PAftTIC t-MIS-TOTAL L8/HR
1C PERC U:PIN<;ER CATCH
1-LOS 2-LOS 3-LOW
10-29-75 10-Ef-TS 10-29-75
31.42
,6
45»'i
8%6?
8*69
98^5
9SIO.OO
4,69019
4*6StS!
340t3T
9510,00
4*69079
4»689il
30,7?
.6
5<" »°l
82 7 \
S333
98,6
5TST.10
2,88629
2*66474>
204.59
5?5?»10
2»flft629
2.&64T4
31.41
«.^
61,1
859?
88S7
98,-*
3153,60
1,03950
1.0056*
16.69
21S3.60
1.03950
1*00564
340,31
C.OO
§,§0
-------
TABLE A-15 (Continued)
OF RfcSUITS
NAME
TS
as
Oft
DESCRIPTION
DATE OF wU'i
VOl DWV O^S-STP
PERCENT MOISTURE H¥ VOl
AV6 STACK
ST* FtOwRATEt 0RY»STO CN
ACTUAL '^TACn FL'^RATE
IsOKXMETlC
UMITS
OSCF
<,-TB*l
IO-29-7i>
32,2?
,»i
64,0
8722
9- 82
98-,:^
5-UVW
I0-30«?5
41^96
.9
56, 0
374
388
99*=,
6- OW
10-31-TS
?9.76
i ,3
6?,«»
ft. 89
'8^:33
97,?
PARTICULARS — PARTIAL CATCH
MF
CAN
CAT
CAM
PARTICULATt, WT-PART1AL"
PART. LOAO-PTL»STD CM
PAST. LOAO-PTLfSTK CM
PARTIC EM1S-PART1AL
H6
68/OSCF
SR/ACF
L8/HR
123§,%0
,58??4
«.56394
43.B9
1460. 80
.4-6905
,,4525?
1,50
1639^90
»S4860
»?95 (5
58.81
PARTfCyiATES • — TOTAL CATCH
MT
CA0
CM
CAX
1C
PARTICUIATC WT-TOTAL
PART, LOAD-TTl.»STD CM
PAKT, tOAO-TTL,STK CN
PAWriC EMIS-TOTAL
tHpINGER Cft 1CH
N6
6W/OSCF
GR/ACF
LB/HR
1230.40
»58??4
,5639%
43, a9
0.00
1460.80
,46905
,4525?
KSfi
0,00
1639,90
.8486^
, 7*>5l 5
58*81
O^OC
-------
TABLE A-15 (Continued)
SUMMARY OF R
NAME DESCHIPT10M
GATE OF RU-S-
UNITS ?-BVW 8-TBC 9-T8C
IO-31-T5 10-31-75 10-31-75
VMSTO ¥OL DttY 6ftS-STO CONG-
PMOS
IS
QS
OA
PERI
PART
MF
CAN
CAT
CAW
PART
MT
CA0
CAU
CAK
1C
PERCENT MOISTURE l-'Y VOl.
AV6 STACK TEMPERATURE
STK fLO^RATCf DRY.STO CN
ACTUAL ^TACrt FLOWRATE
PERCENT ISOK1NETIC
ICULATES — PARTIAL CATCH
PARTICULATK WT-PARTIAL
PART. LO*D-PTL«STD CN
FART^ LOAO-PTttSTK CN
PARTIC FMIS-PARTIAL
ICULATES ~ TOTAL CATCH
PA«TlCULATli WT-TOTAL
PART« LOAO-TTL»STO CN
FART^ LOAO-TTLiSTK CN
FA«T!C FMJS-TC'-TAL
PFRC IMPINGEH CATCH
OSCF
OEO.F
MO
CR/OSCf
6H/ACF
L.8/HR
m
GW/OSCF
GR/ACr
LB/HR
20»*l
1.3
67,0
H60
389
99*4
§93,10
,67403
«6?453
a, 08
893^-0
,67403
,62453
2.08
0*08
2--..U9
1.5
6*>« 0
TftiQ
818?
97,9
e99e^to
1,64391
1 ,52^6"?
107.32
3990,90
1. 64391
1.5296?
1 0? »32
0*00
2t,5l
1.2
66. H
8009
86 '<•"•
97tB
3069.30
1.60158
1 ,49 «' ft 4
109,^3
3Q^9t30
1,60158
1 ,49,i64
109,93
0«,§6
-------
TABLE A-15 (Concluded)
SUMMARY OF TS
DESCRIPTION
UNITS
DATE OF
VOL DRY 8A5-ST0
PERCENT HOlSTURf :»Y VOl
TS A¥Q STACK TEMPERATURE
OS STf< FLOwRtTEt DRYtSTO CN
QA ACTUAL *-TACK FLOWRATE
PERCENT ISO«!NETIC
PARTICULATES — PARTIAL CATCH
Mf PARTICULATE WT -PARTIAL
CAN PART. LOAD-PTL,STO CN
CAT PART« LOAO-PTL.STK CN
CM PARTIC F.W1S-PARTIAL
pARTicytAies — TOTAL CATCH
MT PARTICUI^ATt- WT-TOTAL
CAO PART. LOAD-TTL*STO CN
CM PftRT* LOAO-TTL.STK CN
CAK PARTIC twis-TOTAt
1C 1NP!N(JER C".TCH
OSCF
oce.r
OSCFM
MS
6R/OSCF
OH/ACF
LS/HR
M6
GR/DSCF
SP-/ACF
LP/MR
OSCF
OSCFM
10-31-75 •
20.93
1*2
60.0
7839
8465
9P.O
10-31-7S
IT, 18
1.2
6S. 0
643
695
99,0
11-BVM 12-TW
2S.3H
1,'f
6ft, 0
768
1.04335
.96617
70*09
0.00
811.60
•T273H
,67326
4^01
0,00
MS
6R/OSCF
OH/ACF
LS/HR
191>9«TO
1.04335
,9661?
70»09
811.60
t72?32
,67 ;26
*.01
2289.60
U24366
U 1*591
81.8'-
2289,60
1,2436B
1,14591
§.§0
-------
TABLE A-16
SUMMARY OF RESULTS—METRIC UNITS
NAME
TSW
§SM
0AM
PERI
DESCRIPTION
DATE OF HUM
VOt DRY fiAS-STfl
PERCENT MGISTURK wy V0|
AV6 STACK TEMPERATURE
STK FLOwRATE* oftY»sTO CM
ACTUAL STACK FLO««AfE
PERCENT ISOKXNETIC
UNITS
NCM
DEG.C
NM3/MIN
M3/MIN
I-LOS
1Q-29-T5
«6
7,7
?39«H
239,8
9ft, 5
2-LOS
10-Z9-75
,870
^6
l'H2
234*2
236. .1
98.6
3-1 Ok-
10-29-75
*9fTi
«H
1 ^ , 2
243,4
2SK6
98. «*•
PARTICULATES — PARTIAL CATCH
HF
CAWM
PARTI
HT
GA0M
CAUM
CAXM
1C
PAftTICyLATE WT-PAHTIAL
PART. LOAO-PTLtSTD CM
PART« LOAO-PTL-tSTK CM
PA^TIC EMIS-PARTIAL
CULATES « TOTAL CATCH
PAPTICULATF WT-TOTAL
PART. LOAO-TTLtSTD CN
PART, tOAO-TTL»STK CN
PAfffIC t«!S-TOTAL
PERC I^PINGER C/.TCH
MS
M6/NM3
Mf»/M3
K6/HR
H6
M(VNM3
Md/M3
KH/Hft
9570,06
10734.13
10731*68
154.391
9STO.OO
IOT34.13
10T3i»S8
154,391
0,00
5757,10
6604*80
6555-* 49
93. 798
5I5T.IO
6604.80
65S5t49
92* 1-98
0*60
2153,60
2318,73
23»l,E5
34,739
aiS3»6o
23?«^73
23H1.25
34,739
0.00
-------
TABLE A-16 (Continued)
SUMMARY Of RESULTS—METRIC UNITS
NftME
VMSTM
TSM
QSM
0AM
PERI
DESCRIPTION
DATE OF HUM
UNITS
VOL DRY C»fiS-STD
PERCENT MOISTURE *Y VOt.
AV6 STAC* TEMPERATURE 0E6*C
STK FLO*RAT£t ORYtSTD CM NM3/MIN
ACTUAL STACK FLOWRATC
PERCENT ISOKINFTIC
PARTICULATFS — PARTIAL CATCH
MF PARTICULAR WT-PART1AL M<5
PART, lQAO-PTt_»STD CN
CATM PART^ LOAO-PTL^STi^ CN HG/M3
CftWM PART1C EHIS-PftRTlAL K6/HR
PARTICyLATES — TOTAL CATCH
MT PARTICULATt '-'iT-TOTAL M6
CAOM PART. LOAD-TTl. »STO CN M^/NM3
CAUM PART, LOAD-TTL,»STh CN M6/M3
CAXM PART1C EMIS-TOTAL KG/HR
1C PERC iMFlNttER CATCH
4-TflW
10-29-75
,914
#«
17,8
247.0
25?, 2
98 »?
1E30.40
1343^81
1290^48
19.910
1230.40
13*3,81
1290*40
19.910
OtOO
5-BVW
10-30-75
U358
,9
13^3
10.6
11.0
99. S
146CU8Q
10?3*36
1035*62
*6S2
1460.80
1073.36.
1035,62
*682
0^00
6-1 OW
10-31-T3
,843
i „"•»
17.2
22^.1
244.5
97,7
1639.10
1941.87
iS!9«5tt
26«6S4
1639.90
1941.87
1819.58
26S68«.
0,60
-------
TABLE A-16 (Continued)
OF RESULTS—METRIC UNITS
o
HAHE
VMSTM
PWOS
TSH
asw
QAM
PERI
DESCRIPTION
DATE OF
VOL. OPV G/sS-STD CONO
MOISTURE <;¥ VOi
AV6 STACK TEMPERATURE
STK FUOtriRATE* OR¥»$TE> f
ACTUAL STACH FLOWKATE
PERCENT I*iOKlNETi€
PARTICULATES — PARTIAL CATCH
MF PARTICULATF WT-PAftTlAt
PART, LOAO-PTLtSTO CN
CATM PART. LOAD-PTL»STK C11!
CAWM PARTIC t'MlS-PARTIAL
PARTICULATES — TOTAL CATCH
MT
CAUM
CAXM
1C
«T*TOTAL
LOAO-TTL.STD CN
PART. iOAO-TTL»ST^- CN
PART 1C fc'MIS-TOTAL
PE'RC iMPINCiER C.«TCH
UNITS
NCM
DE6.C
NM3/HIN
M3/MIN
M6
HC./M3
K6/HR
M6
MC--/M3
KG/HR
r-BVw -
10-31-75
»S?8
1,3
19.4
1C, 2
1UU
99,4
893.10
15*2.40
1429.15
*^44
893,10
i542*4i)
1429.15
.944
G»0§
8-TBC
10-31-75
.196
US
111,3
215,7
231.8
97*9
3761*84
3506,40
4fl,6?9
3761,84
3500.40
48.679
U,0§
9-TMC
10-31-75
.6 -6
1,2
19,2
326, S
243.7
§7*8
30t>9»30
3664,96
341Uuf»
49.864
3069.30
36«i4»9&
3411.0"
49,864
0*00
-------
TABLE A-16 (Concluded)
OF RESULTS—METRIC
TSM
OSW
QAM
PERI
DESCRIPTION
DATE OF
VOL DRY GAS-STD CONO
MOISTURE H¥ VOl
A¥6 STACn TEMPERATURE DES.C
STK FLO*ft'.T£t DRYtSTO CM
ACTUAL STACK FLOWRATE
PERCENT ISOKINET1C
I'-TBM 11-8VM 12-TBH
10-31-75 10-31*75 10-31-7S
PARTICIPATES — PARTIAL CATCH
MF PARTI CUt, ATff WT-PART1AL
PART* tGAD-PTLtSTO CN
PART, LOAO-PTL»ST^ CN
CAWM PART1C f MIS-PARTIAL
PARTICUI.ATES — TOTAL CATCH
MT
CAOH
CAUM
CAKM
1C
LOAO-TTt«STD CM
PART^ LOAO-TTLtSTlt CN
PART1C EM1S-TOTAL
PERC IwPlNC4£R CAICH
MG/M3
K(}/HR
M«t/NM3
Mfi/«3
KG/HH
,819
1.2
20,0
222»-
239.7
6jL? fi
| Qii^, C| *T f|
a38T»§4
2210,42
31,793
19S9.70
?3RT,54
2210,^?
31.793
Q8 §0
,487
1,2
lf»3
18,2
19,7
SH.60
1684,3?
IS4§.§5
1,819
811.60
1 f»&«*-»37
1S4Q.6S
1,819
0,00
,8- 3
1,7
20,0
217,'
236,"
,2845,96
2622«?3
3T*13!
2289,60
28*5,96
2622,23
37.131
8,00
-------
B
52
-------
PASTICULATE CALCULATIONS
1. VOLUME OF DRY SAS SAMPLED AT CONDITIONS tt>
P*-, * PM/13«t>»
17.71* 32,59*128*44* 1*215/13*6)
*» •s^f^«^am,a^fm^^^mxmiS£&. «tst* tara «-' "S " &'*3SriO1'J"*
"* ^-^w^w*^^^^^ «™ ^^M™^^™*™^^™^^^^.^™™^^^ — ^ a 4 ^ iC U av r
64*2*46 •*
3 V«STO*0, 028317- 31 •42«0*02B317* .89 DNM3
^. VOLUHE OF WATER AT STANDARD CONDITIONS
VWV at 0^04?4«VM a 0.04?4» 4,0 - ,19 5CF
= »190»6.0?93l? = ,0034 N<>3
3* PERCENT WOISTURE IN STACK SAS
100.«
««„«
31,42
MOLE FRACTIOM OF ORr STACK GAS
{ 0,0 » 44/100) * I30.9 * 32/100)
*<79.1 * 28/1001
100, 100,
5, HOLECULAR w€ISHT Of DRY STAC.X GAS
* <«»r.02 * 44/100) * (PQ? * 32/100)
-* 29/100)
-------
6, MOLECULAR OF STACK GAS
MM = * I8*tl-MD)
* 28»8» ,994 * 18*U~ .9941 s 28»?7
7. STACK GAS VELOCITY AT STACK CONDITIONS
VS a 51E9*CP»ftSQRT{0PS»fTS**6ft) )»
.7*6 « 2-
*SQRT»aw««i*^««»Mi9.«w*s,^
17*71 # PS *
17. 71*28. 7.S* .994
0. §38317 = 24« NM3/M1N
54
-------
10, PERCENT. ISOKIfCTlC
1032*{TS+4*jO)*V«STr-
OCOT - ««,»•,«..,_«,•,«,...,«_.,,__.__.__.«,,
"^ I » ™ 4 ** ™*r™™™"™"H"*<'""('e"'B>™t'*™'™'fca™*(*«°«iw*»»**««»'««»**»««»«
VS*TT*PS»»-»D*
60*0»a8*
* ,188
11, PARTICUtATE LOAD1M6 — CYCLONE*
CAT STANOA«0 CONDITIONS)
CAN- = 0*0154 «
-------
14. PART1CULATE LOADING « TOTAL
CONDITIONS!
I?»?1*CAO«PS*«0
CAU * —«—.—. -,--«.
IT.n* 4.6908*28.73* .994
— >ii»i»«.«*«>lw.<>i.*l«>.>»«>«il«i>i>>_>w«.«.<>^> — /i
45„9*460
CAUH * CAU«2288.34. « 4.68981*2280,34 » In731.88
IS. PAftTICULATE EMISSION RATE
— CYCLONE« AND FILLER
= G'.GQSST* 4.6908* 8467 s 340,3? :
= CA^»0, » 340.37*0.45359 = 154.3*9 K
PART1CULATE EMISSION
.. TO I it.
CAX s 0.008si7»CAO*QS
= 0^0085?* 4.6908* 8467 a 340.37 L /
CAXM s CAX»0.4S359 » 340.3?«0,*5359 s 154.19 -"./
17. EMISSION FACTOR— TOTAL
E =
Tons Grain Handled
=s 76»6 := 0*?66 Ib
100 ton
EM = (E) X (0.5)
= (0,766) x (0,5) = 0.383
Mton
56
-------
18.
KG «= (lb grain) x
«* x
* kg
III AT 7n DE8 F (31.1 OES r.j . IM MS
fTM MM H5I
5?
------- |