&EPA
United S*i6
EiKviraimenlal Protection
Agency
Example Moisture Mass Balance Calculations
for Bioreactor Landfills
-------
EPA-456/R-05-004
August 2005
Example Moisture Mass Balance Calculations for Bioreactor Landfills
Prepared for:
Mary Ann Warner, Project Officer
Information Transfer and Program Integration Division
Contract No. 68-D-02-0079
Work Assignment Numbers 1-03 and 2-04
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Information Transfer and Program Integration Division
Research Triangle Park, NC
-------
1.0 INTRODUCTION
The purpose of this memorandum is to demonstrate example mass balance calculations that can
be performed to estimate the moisture content of the waste mass in a bioreactor landfill. The
Municipal Solid Waste Landfills NESHAP (40 CFR part 63, subpart AAAA) requires timely
control of bioreactor landfills. As defined in the NESHAP, a bioreactor is a MSW landfill or a
portion of a MSW landfill where any liquid, other than leachate or landfill gas condensate, is
added in a controlled fashion to accelerate the anaerobic (without oxygen) biodegradation of the
waste. The average moisture content of the waste in the area into which the liquid is added must
be at least 40 percent (by weight) for the landfill or portion of the landfill to be considered a
bioreactor. We have presented the example mass balance calculations based on the wet weight
of waste. This is consistent with the approach detailed in the book, Landfill Bioreactor Design
and Operation, by Debra Reinhart and Timothy Townsend and documented in the EPA Docket
A-98-28 (Item IV-K-9).
The only two situations where the NESHAP requires a landfill owner/operator to calculate
percent moisture content are:
1. If the landfill owner/operator adds liquids (other than leachate and condensate) and does
NOT comply with the bioreactor control requirements. In this case, they must keep a
record of calculations showing that the percent moisture content expected in the waste
mass to which the liquid is added is less than 40 percent. If the moisture content is less
than 40 percent, the landfill would not meet the definition of a bioreactor, and timely
control would not be required. See section 63.1980(g) of subpart AAAA.
2. If the landfill owner/operator chooses to begin operating the bioreactor gas collection and
control system within 180 days after achieving 40 percent moisture content instead of
within 180 days after initiating liquids addition, as allowed under section 63.1947 (a)(2)
or (c)(2). In this case, they must calculate percent moisture content to determine when
the bioreactor reaches 40 percent moisture, keep records, and submit a report within 90
days of achieving 40 percent moisture content. See section 63.1980(h) of subpart
AAAA. Note that a landfill owner/operator who adds liquids does NOT have to calculate
percent moisture content if they meet the bioreactor control requirements within 180 days
of initiating liquids addition (or by January 17, 2006 for existing landfills with
bioreactors).
The NESHAP allows moisture content to be determined using a variety of methods, as long as
the procedures and assumptions are documented and appropriate. A range of appropriate
methods exist. For example, the landfill owner/operator can perform a simple mass balance
calculation. The calculation must take into account the waste mass, moisture content of the
incoming waste, mass of liquids added to the bioreactor (including recirculated leachate),
precipitation falling on the bioreactor surface, and mass of water removed as leachate. The
landfill can perform more complex mass balances using models that take into account additional
factors such as surface runoff, landfill cover types that reduce the amount of precipitation
1
-------
entering the waste mass, and water loss mechanisms such as evapotranspiration. Another
possible method for an established bioreactor would include sampling the moisture content of
the waste at multiple locations within the bioreactor, and performing statistical calculations to
determine the average percent moisture. However, it is expected that in most cases, a mass
balance approach will be adequate to determine whether the moisture content is above or below
40 percent and comprehensive sampling will not be needed.
This memorandum provides two example mass balance calculation procedures, a simple method
and a more complex method. However, landfill owners/operators are free to use other methods
to take into account site-specific characteristics of their landfill. Many landfills may already
have performed moisture balance calculations, and these can be used assuming the procedures
and assumptions are documented, appropriate, and representative of current landfill conditions.
2.0 WATER BALANCE METHOD
The Water Balance Method was chosen to represent the example calculations used to model the
mass balance of moisture within a bioreactor landfill because it is a relatively basic computation.
The Hydrologic Evaluation of Landfill Performance (HELP) model is another, more advanced
model that can be used as an alternative to the Water Balance Method. However, the HELP
model is based on a volumetric moisture content of waste. Because the NESHAP specifies that
the 40 percent moisture content is by weight, we do not recommend using the HELP model to
conduct bioreactor mass balance calculations to meet the requirements of the NESHAP.
The Water Balance Method performs several calculations in sequence on a monthly time basis to
estimate the average moisture content of the waste. It was originally designed to measure
evapotranspiration from soils and was then adapted for landfill conditions. Our suggested
procedure for using the Water Balance Method involves a two-tiered approach. Method A is a
simplified equation that only incorporates factors which most significantly affect the average
moisture content of the waste mass. The simplified equation also assumes that all precipitation
falling directly on the landfill's surface will become moisture in the waste mass. The primary
factors that are accounted for in the simplified equation are:
• Incoming waste moisture,
• Precipitation (only precipitation that falls directly on the landfill's surface; assuming that
all surface runoff from adjacent areas is diverted around the landfill surface),
Liquids addition (recirculated leachate, water, etc.), and
Leachate production.
If landfill owners/operators are satisfied with the results of the Method A equation, then no
further calculations are needed. However, if further analysis is required, then landfill
owners/operators can proceed to Method B which comprises a more advanced set of
calculations. This more complex procedure takes into account the four factors included in the
simplified equation of Method A plus the following four elements:
-------
• Moisture retained in the landfill surface or cover material,
• Surface runoff,
• Surface evaporation, and
Evapotranspiration.
A detailed description of each step is discussed in Sections 2.1 and 2.2, respectively.
2.1 Method A: Simplified Equation
The potential moisture content of the waste mass in the bioreactor landfill can be estimated using
the following simplified equation of the Water Balance Method:
(Lo * M) + P + LA - LCH .,
PMC = * 100 (Equation 1)
M + P + LA - LCH
Where,
PMC = estimated potential moisture content of the waste mass (% moisture content on a wet
weight basis);
L0 = moisture entering with the waste mass (kg moisture/kg total waste mass as received);
M= total waste mass in bioreactor cell on an as received basis (kg total waste mass as received);
P = total precipitation (kg total precipitation);
LA = total liquids added to the waste mass, including recirculated leachate (kg total liquids); and
LCH = total leachate collected (kg total leachate).
If the bioreactor landfill has been at steady state (i.e., no fluctuations in any of the factors above)
since the bioreactor cell or entire bioreactor landfill opened, thenM, P, LA, and LCH can be
calculated as monthly averages instead of totals. However, this scenario is not likely to occur.
When using Equation 1, landfill owners/operators must keep records of data and assumptions
used to determine values ofL0, M, P, LA, and LCH for their bioreactor landfill. The following
bullet points provide potential guidelines for determining and recording these values.
• L0. According to Tchobanoglous' Integrated Solid Waste Management: Engineering
Principles and Management Issues, most MSW in the United States has a moisture
content of 15 to 40 percent, with 25% as typical. Moisture content of MSW depends
primarily on the composition of the waste, the season of the year, and the humidity and
weather conditions of the surrounding environment. For example, the moisture content
of 100 kilograms of incoming wet waste can be estimated as: [(100 kg - d)/WO kg],
where dis the total dry weight in kilograms of the solid waste components within the 100
kilograms of wet waste received.
M: To calculate total waste mass, waste acceptance or waste placement data is needed
and should be documented accordingly.
-------
• P: Total precipitation in inches of water can be obtained from precipitation
measurements at the landfill or from nearby weather station data. Convert the
precipitation from inches to kilograms of moisture using the following equation:
Total precipitation (P) = (in. of total precipitation) * (1 ft/12 in) * (ft2 of bioreactor
landfill surface) * (1 gal/0.134 ft3) * (3.78 kg/gal water)
• LA: The total amount of liquids added can be estimated using measurements currently
taken at the bioreactor site for design and operational purposes. For example, if a closed-
loop bioreactor with horizontal trenches uses a flow meter to measure the amount of
leachate recirculated, then flow meter reading records can be used to estimate total
leachate addition (e.g., converting the flow rate each month to kilograms of leachate per
month and then summing the monthly readings to obtain a total liquids added amount).
Water introduced at the surface of the landfill via truck could be measured using a simple
volume displacement calculation, such as: (gallons of water stored per tank truck) *
(number of tank trucks emptied onto landfill surface) * (3.78 kilograms per gallon of
water). The types of liquid addition methods vary by bioreactor landfill site, therefore,
the types of measurement methods will differ as well. We recommend that each landfill
owner/operator calculate total liquids using methods most appropriate for their bioreactor
design.
LCH: Similar to liquids addition, the total amount of leachate produced can be estimated
using leachate collection records generated at the landfill bioreactor for design,
operational, and possibly regulatory purposes. For example, if a bioreactor landfill uses a
flow meter to measure the amount of leachate produced or collected, then flow meter
reading records can be used to estimate total leachate generation (e.g., converting the
total flow rate each month to kilograms of leachate per month and then summing the
monthly readings to obtain a total leachate amount). The leachate value used in Equation
1 should include leachate that is recirculated as well as any excess leachate that may be
treated or disposed of by other means. We recommend that each landfill owner/operator
calculate total leachate generated using methods most appropriate for their leachate
collection system design.
2.2 Method B: Advanced Set of Calculations
The following items are required inputs for Method B of the Water Balance Method calculations:
• Average monthly temperatures in degrees Fahrenheit (°F)
• Site latitude
• Average monthly precipitation in inches of water
• Landfill surface conditions
Soil & vegetation type for final cover (if any)
The 17 calculation steps of the advanced Water Balance Method procedure are listed below.
Steps 1 through 16 of the sequence calculate and confirm the percolation of precipitation into the
-------
bioreactor landfill considering moisture contained in the landfill surface or final cover, surface
runoff, evaporation losses, and evapotranspiration. Step 17 is very similar to Equation 1 for
Method A. The only difference between Step 17 and Equation 1 is that Step 17 replaces the
amount of precipitation with the amount of moisture that percolates into the waste mass.
Attachment B contains a Microsoft Excel spreadsheet that provides example calculations for
Steps 1 through 16. The foundation for this sequence of calculations and example spreadsheet
comes directly from McBean's Solid Waste Landfill Engineering and Design.
Sequence of Calculations for the Advanced Water Balance Method (Method B):
Steps 1-5: Determine potential evapotranspiration
1. Collect average monthly temperatures (7) in °F for the area surrounding the bioreactor
landfill. Enter this information in the spreadsheet.
2. Using the monthly temperatures, determine the monthly heat index (h) for each month.
Monthly heat indices can be determined using Table Al in Attachment A. For months where
the temperature is less than 32 °F, set h to zero. Sum the monthly heat indices to obtain a
yearly heat index (H).
3. Using the monthly temperatures and yearly heat index, find the Unadjusted Potential
Evapotranspiration (UPET) for each month using Table A.2 in Attachment A.
4. Using the latitude at the bioreactor landfill site, find the monthly correction factor for
sunlight duration (r) in Table A.3 in Attachment A.
5. Multiply the monthly UPETby the monthly r to result in the monthly Adjusted Potential
Evapotranspiration (PET) for each month in inches of water.
Steps 6-9: Determine amount of precipitation that infiltrates the bioreactor landfill
6. Enter the average monthly precipitation (P) in inches of water for the bioreactor landfill site.
7. Enter the appropriate runoff coefficient (Cr/0) to calculate the runoff for each month. Table
A.4 in Attachment A can be used to determine the most appropriate runoff coefficient based
on the landfill surface conditions.
8. Multiply the monthly precipitation by the monthly runoff coefficient to obtain the runoff
(r/d) for each month in inches of water.
9. Subtract the monthly r/o from the monthly P to obtain the monthly infiltration (7) in inches of
water.
Steps 10 -13: Calculate moisture storage in the landfill surface cover material
-------
10. Subtract the monthly PET from the monthly /to determine the moisture available for storage
at the landfill surface (I - PET) in inches of water.
11. For negative (I - PET) values only, add the (I - PET) value for the preceding month to the
current month to calculate the Cumulative Water Loss (ACCWL}. Begin the summation with
zero accumulated water loss for the last month having a positive (I - PET) value.
12. Determine the monthly Soil Moisture Storage (ST) in inches of water for the landfill surface
by following the steps outlined below:
a. Determine the initial 5Tfor the soil depth and type. Table A.5 can be used to
configure the initial ST (retention) value.
b. Assign the initial ST value to the months having a positive (I - PET) value, prior to
months that have a negative (I - PET) value.
c. Determine the ST for each subsequent month having a negative (I - PET) value. Use
the monthly ACCWL values and Table A.6 to obtain the ST.
d. For subsequent months having an (I - PET) value greater than or equal to zero, add
the (I - PET) value for each month to the preceding month's ST. Be careful not to
exceed the soil field capacity (i.e., fraction of water in the soil based on the dry
weight of the soil). Enter the soil field capacity for monthly soil moisture storage if
the sum exceeds the field capacity.
13. Calculate the change in the ST, or AST, for each month in inches of water by subtracting the
5Tfor the preceding month from the current month's ST.
Steps 14 -16: Calculate actual evapotranspiration and percolation of moisture into the
bioreactor landfill waste mass
14. Calculate the Actual Evapotranspiration (AET) by following the steps outlined below:
a. For wet months where the (I - PET) value is greater than or equal to zero, set the AET
equal to the PET.
b. For dry months where the (I - PET) value is negative, use the following equation for
the AET: AET = PET + ((I - PET) - AST). This equation represents the fact that the
evapotranspired amount is the amount potentially evapotranspired plus that available
from excess infiltration that would otherwise add to soil moisture storage plus that
available from previously stored soil moisture.
15. Calculate the monthly percolation (PERC) as follows:
-------
a. For wet months where the (I - PET) value is greater than or equal to zero, use the
following equation for the PERC: PERC = ((I - PET) - AST).
b. For dry months where the (I - PET) value is negative, set the PERC equal to zero.
16. As a check for Steps 7 through 15, calculate the average monthly precipitation (P) in inches
of water to be sure they match the original precipitation values entered in Step 6. The
precipitation calculation is as follows: P = PERC + AET + AST + r/o.
Step 17: Estimate moisture content of the waste mass in the bioreactor landfill
17. Convert PERC from inches of moisture to kilograms of moisture per kilogram of waste (e.g.,
[PERC (in) * (1 ft/12 in) * (ft2 of bioreactor landfill surface) * (1 gal/0.134 ft3) * (3.78 kg/gal
water)] / (total kg wet waste mass in bioreactor)). Then, estimate the potential moisture
content of the waste mass, on a monthly wet weight basis, using the following equation:
PMC =L0 + PERC + LA - LCH (Equation 2)
Where,
PMC = estimated potential moisture content of the waste mass (kg moisture/kg wet waste);
L0 = average amount of moisture in the initial waste added each month (kg moisture/kg wet
waste);
PERC = monthly percolation (kg moisture/kg wet waste);
LA = amount of liquids added to the waste each month, including recirculated leachate
(kg liquids/kg wet waste); and
LCH = amount of leachate produced each month (kg leachate/kg wet waste).
Lm LA, and LCH should be estimated and documented similarly to Method A procedures
described under Equation 1 in Section 2.1. The difference between Equations 1 and 2 is that Lm
LA, and LCH are monthly values per kilogram of waste in Equation 2, not total values.
Therefore, for Equation 2, monthly values will need to be determined and then divided by the
amount of waste added each month.
-------
3.0 REFERENCES
1. McBean, E.A., Rovers, F.A., and Farquhar, GJ. Solid Waste Landfill Engineering and
Design. Prentice-Hall: New Jersey, 1995. Chapter 7 and Appendix C.
2. Tchobanoglous, G., Theisen, H., and Vigil, S. Integrated Solid Waste Management:
Engineering Principles and Management Issues. McGraw-Hill: New York, 1993. pp.
70-73, 421-424.
-------
Attachment A
Reference Tables for Water Balance Method Calculations
A-l
-------
Table A.I. Monthly Values of Heat Indices Corresponding to Monthly Mean Temperatures
Tf
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
.0
.00
.04
.10
.19
.29
.41
.54
.68
.83
1
1.17
1.35
1.54
1.74
1.95
2.17
2.39
2.62
2.86
3.11
3.35
3.6
3.87
4.14
4.41
4.69
4.98
5.28
5.58
5.88
6.19
6.50
6.82
7.15
7.48
7.82
8.16
8.51
8.85
.1
.00
.04
.10
.20
.30
.42
.55
.70
.85
1.01
1.19
1.37
1.56
1.76
1.97
2.19
2.41
2.64
2.89
3.13
3.38
3.63
3.89
4.16
4.44
4.72
5.01
5.31
5.61
5.91
6.22
6.53
7.85
7.18
7.52
7.85
8.19
8.54
8.89
2
.00
.05
.11
.21
.32
.43
.56
.71
.86
1.03
1.21
1.39
1.58
1.78
2.00
2.21
2.43
2.67
2.91
3.16
3.40
3.65
3.92
4.19
4.47
4.75
5.04
5.34
5.64
5.94
6.25
6.56
6.88
7.22
7.55
7.89
8.23
8.57
8.92
.3
.00
.05
.12
.22
.33
.44
.58
.73
.88
1.05
1.23
1.41
1.60
1.80
2.02
2.23
2.46
2.69
2.93
3.18
3.43
3.68
3.95
4.22
4.50
4.77
5.07
5.37
5.67
5.97
6.28
6.59
6.92
7.25
7.58
7.92
8.26
8.61
8.96
.4
.01
.06
.13
.23
.34
.46
.59
.74
.90
1.07
1.24
1.43
1.62
1.82
2.04
2.26
2.48
2.71
2.96
3.21
3.45
3.71
3.97
4.25
4.52
4.80
5.10
5.40
5.70
6.00
6.31
6.62
6.95
7.28
7.62
7.95
8.30
8.64
8.99
.5
.01
.06
.14
.24
.35
.47
.60
.76
.91
1.08
1.26
1.45
1.64
1.85
2.06
2.28
2.50
2.74
2.98
3.23
3.48
3.73
4.00
4.27
4.55
4.83
5.13
5.43
5.73
6.03
6.34
6.66
6.98
7.32
7.65
7.99
8.33
8.68
9.03
.6
.02
.07
.15
.25
.36
.48
.62
.77
.93
1.10
1.28
1.47
1.66
1.87
2.08
2.30
2.53
2.76
3.01
3.25
3.50
3.76
4.03
4.30
4.57
4.86
5.15
5.46
5.76
6.06
6.38
6.69
7.02
7.35
7.68
8.02
8.37
8.71
9.06
.7
.02
.08
.16
.26
.37
.50
.63
.79
.95
1.12
1.30
1.49
1.68
1.89
2.10
2.32
2.55
2.79
3.03
3.28
3.53
3.79
4.06
4.33
4.60
4.89
5.19
5.49
5.79
6.10
6.41
6.72
7.05
7.38
7.72
8.05
8.40
8.75
9.10
.8
.03
.09
.17
.27
.39
.51
.65
.80
.96
1.14
1.32
1.50
1.70
1.91
2.13
2.34
2.57
2.81
3.06
3.30
3.55
3.81
4.08
4.35
4.63
4.92
5.22
5.52
5.82
6.13
6.44
6.75
7.08
7.42
7.75
8.09
8.44
8.78
9.13
.9
.03
.09
.18
.28
.40
.52
.66
.82
.98
1.16
1.33
1.52
1.72
1.93
2.15
2.37
2.60
2.84
3.08
3.33
3.58
3.84
4.11
4.38
4.66
4.95
5.25
5.55
5.85
6.16
6.47
6.79
7.12
7.45
7.78
8.12
8.47
8.82
9.17
A-2
-------
Table A.I. Monthly Values of Heat Indices Corresponding to Monthly Mean Temperatures
(Continued)
rp
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
.0
9.2
9.57
9.93
10.30
10.67
11.05
11.43
11.82
12.21
12.61
13.01
13.41
13.81
14.22
14.64
15.07
15.49
15.92
16.36
16.79
17.23
17.67
18.12
18.57
19.03
19.48
19.95
20.42
20.88
21.36
21.84
22.33
22.81
23.30
.1
9.24
9.60
9.97
10.34
10.71
11.09
11.47
11.85
12.25
12.65
13.05
13.45
13.85
14.26
14.69
15.11
15.53
15.97
16.40
16.83
17.27
17.72
18.16
18.62
19.07
19.53
20.00
20.46
20.93
21.41
21.89
22.38
22.86
2
9.27
9.64
10.01
10.37
10.75
11.13
11.51
11.89
12.29
12.69
13.09
13.49
13.89
14.31
14.73
15.15
15.58
16.01
16.44
16.88
17.32
17.76
18.21
18.66
19.12
19.58
20.04
20.51
20.98
21.46
21.94
22.42
22.91
.3
9.31
9.67
10.04
10.41
10.78
11.17
11.54
11.93
12.33
12.73
13.13
13.53
13.94
14.35
14.77
15.19
15.62
16.05
16.49
16.92
17.36
17.81
18.25
18.71
19.16
19.62
20.09
20.56
21.03
21.51
21.99
22.47
22.96
.4
9.34
9.71
10.08
10.45
10.82
11.20
11.58
11.97
12.37
12.77
13.17
13.57
13.98
14.39
14.81
15.23
15.66
16.10
16.53
16.96
17.41
17.85
18.30
18.75
19.21
19.67
20.14
20.60
21.08
21.56
22.03
22.52
23.00
3
9.38
9.75
10.12
10.48
10.86
11.24
11.62
12.01
12.41
12.81
13.21
13.61
14.02
14.43
14.85
15.28
15.71
16.14
16.57
17.01
17.45
17.89
18.34
18.80
19.25
19.71
20.18
20.65
21.13
21.60
22.08
22.57
23.05
.6
9.42
9.78
10.15
10.52
10.89
11.28
11.66
12.05
12.45
12.85
13.25
13.65
14.06
14.47
14.90
15.32
15.75
16.18
16.62
17.05
17.49
17.94
18.39
18.84
19.30
19.76
20.23
20.70
21.17
21.65
22.13
22.62
23.10
.7
9.45
9.82
10.19
10.56
10.93
11.31
11.70
12.09
12.49
12.89
13.29
13.69
14.10
14.52
14.94
15.36
16.79
16.23
16.66
17.09
17.54
17.98
18.43
18.89
19.34
19.81
20.28
20.74
21.22
21.70
22.18
22.67
23.15
.8
9.49
9.85
10.22
10.60
10.97
11.35
11.74
12.13
12.53
12.93
13.33
13.73
14.14
14.56
14.98
15.40
15.84
16.27
16.70
17.14
17.58
18.03
18.48
18.93
19.39
19.86
20.32
20.79
21.27
21.75
22.23
22.71
23.20
J
9.53
9.89
10.26
10.64
11.01
11.39
11.76
12.17
12.57
12.97
13.37
13.77
14.18
14.60
15.02
15.45
15.88
16.31
16.75
17.18
17.63
18.07
18.52
18.98
19.44
19.90
20,37
20.84
21.32
21.79
22.29
22.76
23.25
"Example - for a temperature of 77.5°F, I * 11.62"
A-3
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
t vaue(25.o-ao)
FF
32
325
33
335
34
345
35
355
36
365
37
375
38
385
39
395
25
0
0
0
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.03
0.03
0.04
275
0
0
0
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.03
0.03
0.03
30 325 35 375 40 425 45 475 50 525 55 575 60 62.5
00000000000000
00000000000000
00000000000000
00000000000000
0.01 0.01 0.01 00000000000
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0000000
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 00000
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0000
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 000
0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 ,0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
65
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
0.01
675
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
70
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
725
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
75
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0.01
0.01
775
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
80
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
re
32
325
33
335
34
345
35
355
36
365
37
375
38
385
39
395
>
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I VALUE(825-40)
T°F
32
325
33
335
34
345
35
355
36
365
37
375
38
385
39
395
825
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
85
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
875
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
90
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
925
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
95 975 100 1025 105 1075 110 1125 115 1175 120 1225 125 1275 130
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
00000000. 0000000
0 0 0 0 0 0 0 0 0 000 0 00
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
1325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
135
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1375
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
140
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T°F
32
325
33
335
34
345
35
355
36
365
37
375
38
385
39
395
>
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
40
40.5
41
415
42
425
^ 43
435
44
445
45
45.5
46
465
47
475
1 Value (25.0- 80)
25 27.5 30 32* 35 37.5 40 425 45 47.5 50 52.5 55 57.5 60 62* 65 67.5 70 725 75 77.5 60
0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.05 0.05 0.05 004 004 004 004 004 004 004 003 003 003 003 002 002 002 002 002 002
0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02
40
405
41
415
42
425
43
435
44
445
46
455
46
465
47
475
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
VALUE (87.5-140)
rp
40
405
41
415
42
425
43
435
44
445
45
455
46
4S5
47
475
825 85 875 90 925 95 975 100 1025 105 1075 110 1125 115 1175
0.01 0.01 0 0 0 0 00 0 0 0 0 00 0
0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0
0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0
0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0 0
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0 0
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 000 0 0
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0000
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 051 0.01 0.01 000
0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0
0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 051 0.01 0.01 0.01 0.01 0
o.oe 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 o
0.02 OJ02 052 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
052 0.02 052 052 052 0.02 0.02 052 0.01 0.01 0.01 0.01 0.01 0.01 0.01
120
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
0.01
1225
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
125
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
1275
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
130
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
135
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1375
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
140
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T°F
40
405
41
415
42
425
43
435
44
445
45
455
46
465
47
475
>
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
48
485
49
495
SO
> 505
» 5t
515
52
525
53
535
54
543
55
555
1 VALUE(825-140)
825 85 875 90 925 95 975 100 1025 105 1075 110 1125 115 1175 120 1225 125 1275 130 1325 135 1375 140
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 000
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0
0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
I
0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0,02 0.02 0.02
0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 002 0.02 0.02
T°F
48
485
49
495
50
505
51
515
52
525
53
535
54
545
55
555
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I Value(25.0-80)
T°F
48.5
49
495
SO
50.5
SI
515
52
525
S3
535
54
545
55
555
2527530325353754042545475505255557560625656757072575775 60
0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03
0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03
0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04
008 008 007 007 007 007 007 006 006 006 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04
0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04
0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04
0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05
0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
140
485
49
495
50
505
51
515
52
525
53
535
54
545
55
555
>
-------
AYililurH>(>llmdiliJNMil(l^
>
o
I Value ps.0-80)
T°F
56
565
57
575
58
585
58
59.5
60
60S
61
615
62
625
63
635
25
009
0.1
ai
at
HI
an
an
an
an
an
an
0.12
0.12
0.12
0.12
0.12
275
009
O09
ai
ai
ai
ai
ai
an
an
an
an
an
an
0.12
0.12
0.12
30
009
0.09
009
009
ai
ai
at
ai
an
an
an
an
an
an
an
0.12
325
009
009
aw
009
009
ai
ai
01
ai
an
an
an
an
an
an
0.12
35
009
O09
O09
009
O09
0.09
ai
ai
ai
ai
an
an
an
an
an
an
375
aw
009
O09
009
ao»
009
009
01
ai
01
01
on
an
an
an
an
40
008
aos
009
009
0.09
009
009
009
ai
01
01
01
0.11
an
0.11
an
42545475505255557560625655757072575
008008007007007007007007006006 006 006 006 006
008 aos aoB aos oo? 007 007 007 0.07 aos 006 aos oos 006
aOS 0.08 O08 0.08 O07 a07 0.07 0.07 0.07 0.07 O07 0* 0.06 O06
009 007 0.08 00> O08 007 O07 007 007 007 007 007 006 006
009 009 a08 008 O08 008 007 007 007 007 007 007 007 O06
009 OO9 0.09 O09 O08 O08 0.08 007 O07 007 007 007 007 007
tt09 009 009 009 008 0« 0.08 OX« 0.07 OJ07 007 007 007 007
009 O09 009 009 O09 009 0.08 O08 008 007 007 007 007 007
a09 O09 009 009 O09 009 0.08 008 O08 0.08 007 OB7 007 007
01 009 009 009 009 009 0.09 009 008 0.08 006 0.08 007 007
01 01 0090090090090090090080118008008008008
0.1 Ol 01 01 009 009 O09 O09 009 0.08 O08 008 008 008
01 01 01 01 Ol 009 009 009 009 009 OOB 008 008 008
an ai ai ai 01 ai 009 009 009 009 ox» 009 OOB OOB
an an at ai 01 ai 01 009 009 ao» 0.09 009 009 009
an an an an ai ai ai ai 009 009 009 009 009 009
775
006
006
006
006
006
006
007
007
007
007
007
007
066
008
OOB
009
80
aos
006
006
006
006
006
006
007
007
007
007
007
008
008
on
009
T°F
56
515
57
575
51
585
58
595
60
605
61
615
62
625
63
635
-------
I VALUE (015-140)
825 85 87.5 90 92.5 95 97.5 100 1025 105 1073 110 1123 115 1175 120 1225 125 1275 130 1325 135 1375 140
T°F
56
565
57
575
58
585
59
595
GO
605
61
615
62
625
63
635
0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02
0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03
0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03
0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04
0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04
0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04
0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
565
57
575
58
585
59
595
605
61
615
62
625
63
635
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I Value (25.0-80)
T°F
25 275 30 325 35 375 40 425 45 475 50 525 55 575
625 66 675 70 725 75 775 80
T°F
>
64 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 64
645 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 645
65 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 65
655 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 655
0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1
665 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 665
67 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 67
675 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 675
0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11
685 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 6B5
0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 69
695 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0;.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 695
70
705
71
715
0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12
0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12
0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
70
705
71
715
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
64
643
65
653
66
663
> 67
_i
jj
673
68
683
69
683
70
703
71
713
1 VALUERS- 140)
823 85 873 90 925 95 973 100 1023 105 1073 110 1123 115 1173 120 1223 125 1273 130 1323 135 1373 140
0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06
0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06
0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06
0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06
0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07
0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07
0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08
0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.12 0.12 0.12 0.12 0.11 0.11 0.11 Oil 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09
0 13 0.13 0 12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09
0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0 11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1
T°F
64
643
65
653
66
663
67
673
68
683
69
693
70
703
71
713
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
72
725
73
735
74
745
75
>
^ 755
76
76.5
77
775
78
785
79
795
80
1 VALUE (254-80)
25 275 30 325 35 375 40 425 45 475 50 525 55 575 60 625 65 675 70 725 75 775 80
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0,17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
T°F
72
725
73
735
74
745
75
755
76
765
77
775
78
785
79
795
80
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
72
725
73
735
74
745
> 75
n 755
76
765
77
775
78
785
79
795
80
1 VALUE (825 -140)
825 85 875 90 925 95 975 100 102.5 105 1075 110 1125 115 1175 120 1225 125 1275 130 1325 135 1375 140
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1
0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 Oil
0.14 0.14 013 0.13 0.13 0.13 0.13 0.13 012 012 0.12 0.12 0.12 0.13 0.12 0.12 012 012 012 0 12 0 12 0.11 0.11 Oil
0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0 12 0.12 0.12 0.12
0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0 13 0 13 0 13 0 13 0 13 0 13
0.15 0.15 0.15 0.15 0.15 0.15 0^15 0.15 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
r°p
72
72.5
73
735
74
745
75
755
76
765
77
775
78
78.5
79
795
80
-------
Table A.3. Mean Possible Monthly Duration of Sunlight in the Northern Hemisphere (12 hours)
Northern Lati-
tudes
0
1
2
3
4
5
6
7
8
; 9
^ 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
January
31.2
31.2
31.2
30.9
30.9
30.6
30.6
30.3
30.3
30.0
30.0
29.7
29.7
29.4
29.4
29.1
29.1
28.8
28.8
28.5
28.5
28.2
28.2
27.9
27.9
February
28.2
28.2
28.2
28.2
27.9
27.9
27.9
27.6
27.6
27.6
27.3
27.3
27.3
27.3
27.3
27.3
27.3
27.3
27.0
27.0
27.0
27.0
26.7
26.7
26.7
March
31.2
31.2
31.2
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
April
30.3
30.3
30.3
30.3
30.6
30.6
30.6
30.6
30.9
30.9
30.9
30.9
31.2
31.2
31.2
31.2
31.2
31.5
31.5
31.5
31.5
31.5
31.8
31.8
31.8
Hay
31.2
31.2
31.5
31.5
31.8
31.8
31.8
32.1
32.1
32.4
32.4
32.7
32.7
33.0
33.0
33.3
33.3
33.9
33.9
33.9
33.0
33.0
34.2
34.2
34.5
June
30.3
30.3
30.5
30.5
30.9
30.9
31.2
31.2
31.5
31.5
31.8
31.8
32.1
32.1
32.4
32.4
32.7
32.7
33.0
33.0
33.3
33.3
33.9
33.9
34.2
July
31.2
31.2
31.2
31.5
31.5
31.8
31.8
32.1
32.1
32.4
32.4
32.7
33.0
33.0
33.3
33.6
33.6
33.9
33.9
34.2
34.2
34.5
34.5
34.8
34.8
August
31.2
31.2
31.2
31.2
31.5
31.5
31.5
31.8
31.8
31.8
32.1
32.1
32.1
32.4
32.4
32.4
32.7
32.7
33.0
33.0
33.3
33.3
33.3
33.6
33.6
September
30.3
30.3
30.3
30.3
30.3
30.3
30.3
30.3
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
October
31.2
31.2
31.2
31.2
30.9
30.9
30.9
30.9
30.9
30.9
30.8
30.8
30.8
30.8
30.8
30.8
30.8
30.0
30.0
30.0
30.0
29.9
29.7
29.7
29.7
November
33.3
33.3
33.3
30.9
30.9
29.7
29.7
29.7
29.4
29.4
29.4
29.1
29.1
28.8
28.8
28.5
28.5
28.2
28.2
27.9
27.9
27.9
27.9
27.9
27.3
D8€6fliD6f
,31.2
31.2
30.9
30.9
30.6
30.6
30.3
30.3
30.0
30.0
29.7
27.9
27.4
27.4
29.1
29.1
28.8
28.8
28.5
28.5
28.2
28.2
27.9
27.9
27.9
-------
Table A.3. Mean Possible Monthly Duration of Sunlight in the Northern Hemisphere (12
(Continued)
Northern Lati-
tudes
25
26
27
28
29
30
31
32
33
34
>
35
-1 36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
January
27.9
27.6
27.6
27.3
27.3
27.0
27.0
26.7
26.4
26.4
26.1
26.1
25.8
25.5
25.5
25.2
24.9
24.6
24.3
24.3
24.0
23.7
23.1
22.0
22.9
22.2
February
26.7
26.4
26.4
26.4
26.1
26.1
26.1
25.8
25.8
25.8
25.5
25.5
25.5
25.2
25.2
24.9
24.9
24.6
24.6
24.3
24.3
24.0
24.0
23.7
23.7
23.4
March
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
April
31.8
32.1
32.1
32.1
32.1
32.4
32.4
32.4
32.7
32.7
32.7
33.0
33.0
33.0
33.3
33.3
33.3
33.6
33.6
33.6
33.9
33.9
34.2
34.2
34.5
34.5
May
34.5
34.8
34.8
35.1
35.1
35.4
35.4
35.7
35.7
36.0
36.3
36.3
36.9
36.9
36.9
37.5
37.5
37.8
37.9
38.1
38.4
38.7
39.0
39.3
39.3
39.9
June
34.2
34.5
34.5
34.8
34.8
35.1
35.1
35.4
35.7
36.0
36.3
36.6
36.9
37.2
37.2
37.5
37.8
38.1
38.4
38.7
38.7
39.0
39.0
39.6
41.2
40.8
July
35.1
35.1
35.4
35.4
35.7
36.0
36.0
36.3
36.3
36.6
36.9
37.5
37.5
37.8
37.8
38.1
38.1
38.4
38.7
38.7
39.3
39.6
39.9
40.2
40.8
41.1
August
33.6
33.6
33.9
33.9
33.9
34.2
34.2
34.5
34.5
34.8
34.8
34.8
35.1
35.1
35.4
35.4
35.7
35.7
36.0
36.3
36.3
36.3
37.0
37.0
37.2
37.5
September
30.6
30.6
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
31.2
31.2
31.2
31.2
31.2
31.2
31.2
31.2
31.2
31.5
31.5
31.5
31.8
October
29.7
29.7
29.7
29.4
29.4
29.4
29.4
29.4
29.1
29.1
29.1
29.1
29.1
28.8
28.8
28.8
28.8
28.5
28.5
28.5
28.2
28.2
27.9
27.9
27.9
27.9
hours)
November
27.3
27.3
27.0
27.0
26.7
26.7
26.4
26.4
26.1
26.1
25.8
25.8
25.5
25.2
25.2
24.9
24.9
24.9
24.3
24.3
23.7
23.7
23.4
23.1
22.8
22.8
December
27.3
27.3
27.3
27.3
26.7
26.4
26.4
26.1
25.9
25.8
25.5
25.2
24.9
24.9
24.6
24.3
24.0
23.7
23.1
23.0
22.5
22.2
21.9
21.9
21.3
21.0
-------
Table A.4. Runoff Coefficients
Surface Conditions:
Grass cover (slope) Runoff Coefficient
Sandy soil, flat, 2% 0.05 - 0.10
Sandy soil, average, 2-7% 0.10 - 0.15
Sandy soft, steep, 7% 0.15 - 0.20
Heavy soil, flat, 2% 0.13 - 0.17
Heavy soil, average, 2-7% 0.18 - 0.22
Heavy soil, steep, 7% 0.25 - 0.35
Source: Fenn et al., 1975
A-18
-------
Table A.5. Provisional Water Holding Capacities for Combinations of Soil and Vegetation
Soil Type
Available Water
aim/in inJft
Root Zone
in. ft
Applicable Soil
Moisture Retention
Table
mm In.
Shallow-Rooted Crops (spinach, peas, beans, beets, carrots, etc.)
Fine sand
Fine sandy loam
Silt loam
Clay loam
Clay
Moderately Deep
Fine sand
Fine sandy loam
Silt loam
Clay loam
Clay
100
150
200
250
300
1.2
1.8
2.4
3.0
3.6
.50
.50
.62
.40
.25
1.67
1.67
2.08
1.33
.83
50
75
125
100
75
2.0
3.0
5.0
4.0
3.0
•Rooted Crops (corn, cotton, tobacco, cereal grains)
100
150
200
250
300
1.2
1.8
2.4
3.0
3.6
.75
1.00
1.00
.80
.50
2.50
3.33
3.33
2.67
1.67
75
150
200
200
50
3.0
6.0
8.0
8.0
6.0
Deep-Rooted Crops (alfalfa, pastures, shrubs)
Fine sand
Fine sandy loam
Silt loam
Clay loam
Clay
Orchards
Fine sand
Fine sandy loam
Silt loam
Clay loam
Clay
100
150
200
250
300
100
150
200
250
300
1.2
1.8
2.4
3.0
3.6
1.2
1.8
2.4
3.0
3.6
1.00
1.00
1.25
1.00
.67
1.50
1.67
1.50
1.00
.67
3.33
3.33
4.17
3.33
2.22
5.00
5.55
5.00
3.33
2.22
100
150
250
250
200
150
250
300
250
200
4.0
6.0
10.0
10.0
8.0
6.0
10.0
12.0
10.0
8.0
Closed Mature Forest
Fine sand
Fine sandy loam
Silt loam
Clay loam
Clay
100
150
200
250
300
1.2
1.8
2.4
3.0
3.6
2.50
2.00
2.00
1.60
1.17
8.33
6.66
6.66
5.33
3.90
250
300
400
400
350
10.0
12.0
16.0
16.0
14.0
Notes:
These figures are for mature vegetation. Young cultivated crops, seedlings, and other imma-
ture, vegetation will have shallower root zones and, hence, have less water available for the
use of. the vegetation. As the plant develops from a seed or a young sprout to the mature
form, the root, zone will increase progressively from only a few inches to the values listed
above. Use of a series ofsoil moisture retention tables with successively increasing values of
available moisture permits the soil moisture to be determined throughout the growing sea-
A-19
-------
to
o
Table A.6.
PET
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.9
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
0.00
4.00
3.90
3.80
3.70
3.61
3.52
3.43
3.34
3.26
3.18
3.10
3.02
2.94
2.86
2.79
2.72
2.65
2.58
2.51
2.45
2.39
0.01
3.99
3.89
3.79
3.69
3.60
3.51
3.42
3.33
3.25
3.17
3.09
3.02
2.94
2.86
2.78
2.71
2.64
2.58
2.51
2.45
2.38
0.02
3.98
3.88
3.78
3.68
3.59
3.50
3.41
3.32
3.24
3.16
3.09
3.01
2.93
2.85
2.77
2.70
2.64
2.57
2.50
2.44
2.38
0.03
3.97
3.87
3.77
3.67
3.58
3.49
3.40
3.31
3.23
3.16
3.08
3.00
2.92
2.84
2.76
2.70
2.63
2.57
2.49
2.43
2.37
0.04
3.96
3.86
3.76
3.66
3.57
3.48
3.39
3.30
3.23
3.15
3.07
2.99
2.91
2.83
2.75
2.69
2.62
2.56
2.49
2.43
2.36
0.05
3.95
3.85
3.75
3.65
3.56
3.47
3.38
3.30
3.22
3.14
3.06
2.98
2.90
2.82
2.75
2.68
2.62
2.55
2.48
2.42
2.36
0.06
3.94
3.84
3.74
3.64
3.55
3.46
3.38
3.29
3.21
3.13
3.05
2.98
2.90
2.82
2.74
2.68
2.61
2.54
2.48
2.41
2.35
0.07
3.93
3.83
3.73
3.63
3.54
3.46
3.37
3.28
3.20
3.12
3.05
2.97
2.89
2.81
2.73
2.67
2.60
2.54
2.47
2.40
2.35
0.08
3.92
3.82
3.72
3.62
3.54
3.45
3.36
3.27
3.19
3.12
3.04
2.96
2.88
2.80
2.73
2.66
2.60
2.53
2.47
2.40
2.34
0.09
3.91
3.81
3.71
3.62
3.53
3.44
3.35
3.26
3.19
3.11
3.03
2.95
2.87
2.79
2.72
2.66
2.59
2.52
2.46
2.39
2.34
-------
>
Table A.6. Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
PET
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
0.00
2.33
2.27
2.21
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
1.76
1.71
1.67
1.63
1.59
1.55
1.51
1.47
1.43
1.39
1.36
1.32
1.29
1.26
0.01
2.33
2.27
2.21
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.66
1.62
1.58
1.54
1.50
1.46
1.42
L39
1.35
1.32
1.29
1.26
0.02
2.32
2.26
2.20
2.14
2.09
2.04
1.99
1.94
1.89
1.84
1.79
1.75
1.70
1.66
1.62
1.58
1.54
1.50
1.46
1.42
1.38
1.35
1.32
1.28
1.25
0.03
2.32
2.25
2.19
2.14
2.09
2.04
1.99
1.94
1.89
1.84
1.79
1.74
1.69
1.65
1.61
1.57
1.53
1.49
1.45
1.41
1.38
1.35
1.31
1.28
1.25
0.04
2.31
2.25
2.19
2.13
2.08
2.03
1.98
1.93
1.88
1.83
1.78
1.73
1.69
1.65
1.61
1.57
1.53
1.49
1.45
1.41
1.38
1.34
1.31
1.28
1.25
0.05
2.30
2.24
2.18
2.13
2.08
2.03
1.98
1.93
1.88
1.83
1.78
1.73
1.69
1.65
1.61
1.57
1.53
1.49
1.45
1.41
1.37
1.34
1.31
1.28
1.25
0.06
2.29
2.24
2.18
2.12
2.07
2.02
1.97
1.92
1.87
1.82
1.78
1.72
1.68
1.64
1.60
1.56
1.52
1.48
1.44
1.40
1.37
1.34
1.30
1.27
1.24
0.07
2.29
2.23
2.17
2.12
2.07
2.02
1.97
1.89
1.87
1.82
1.77
1.72
1.68
1.64
1.60
1.56
1.52
1.48
1.44
1.40
1.37
1.33
1.30
1.27
1.24
0.08
2.28
2.22
2.16
2.11
2.06
2.01
1.96
1.91
1.86
1.81
1.77
1.71
1.67
1.63
1.59
1.55
1.51
1.47
1.43
1.40
1.36
1.33
1.30
1.27
1.24
0.09
2.28
2.22
2.16
2.11
2.06
2.01
1.96
1.91
1.86
1.81
1.76
1.71
1.67
1.63
1.59
1.55
1.51
1.47
1.43
1.39
1.36
1.33
1.29
1.26
1.23
-------
Table A.6. Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
to
to
PET
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
0.00
1.23
1.20
1.17
1.14
1.11
1.08
1.05
1.02
1.00
0.98
0.95
0.92
0.90
0.88
0.86
0.84
0.82
0.80
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.01
1.23
1.20
1.17
1.14
1.11
1.08
1.05
1.02
1.00
0.97
0.95
0.92
0.90
0.88
0.86
0,84
0.82
0.79
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.02
1.22
1.19
1.16
1.13
1.10
1.08
1.05
1.02
0.99
0.97
0.95
0.92
0.90
0.88
0.86
0.84
0.82
0.79
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.03
1.22
1.19
1.16
1.13
1.10
1.07
1.04
1.01
0.99
0.97
0.94
0.92
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.76
0.73
0.72
0.70
0.68
0.66
0.04
1.22
1.19
1.16
1.13
1.10
1.07
1.04
1.01
0.99
0.97
0.94
0.91
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.70
0.67
0.66
0.05
1.22
1.19
1.16
1.13
1.10
1.07
1.04
1.01
0.99
0.97
0.94
0.91
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.69
0.67
0.66
0.06
1.21
1.18
1.15
1.12
1.09
1.07
1.04
1.01
0.98
0.96
0.94
0.91
0.89
0.87
0.85
0.83
0.81
0.78
0.77
0.75
0.73
0.71
0.69
0.67
0.66
0.07
1.21
1.18
1.15
1.12
1.09
1.06
1.03
1.00
0.98
0.96
0.93
0.91
0.89
0.87
0.85
0.83
0.80
0.78
0.77
0.75
0.73
0.71
0.69
0.67
0.66
0.08
1.21
1.18
1.15
1.12
1.09
1.06
1.03
1.00
0.98
0.96
0.93
0.90
0.88
0.86
0.84
0.82
0.80
0.78
0.76
0.74
0.72
0.71
0.68
0.67
0.65
0.09
1.20
1.17
1.14
1.11
1.09
1.06
1.03
1.00
0.98
0.96
0.93
0.90
0.88
0.86
0.84
0.82
0.80
9.78
0.76
0.74
0.72
0.70
0.68
0.67
0.65
-------
Table A.6. Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
PET
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
>•
l
PET
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
0.00
0.65
0.63
0.61
0.60
0.58
0.57
0.56
0.54
0.54
0.05
0.52
0.50
0.49
0.48
0.47
0.45
0.44
0.43
0.42
0.41
0.01
0.65
0.63
0.61
0.60
0.58
0.57
0.56
0.54
0.53
0.05
0.51
0.50
0.48
0.47
0.46
0.45
0.44
0.43
0.42
0.41
0.02
0.65
0.63
0.61
0.60
0.58
0.57
0.56
0.54
0.53
0.03
0.64
0.63
0.61
0.59
0.58
0.57
0.55
0.54
0.53
PET
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
0.04
0.64
0.63
0.61
0.59
0.58
0.57
0.55
0.54
0.53
0.00
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.34
0.33
0.32
0.05
0.64
0.62
0.61
0.59
0.58
0.56
0.55
0.54
0.52
0.05
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.33
0.32
0.32
0.06 0.07
0.64 0.64
0.62 0.62
0.60 0.60
0.59 0.59
0.58 0.57
0.56 0.56
0.55 0.55
0.54 0.54
0.52 0.52
PET
10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
0.08
0.54
0.62
0.60
0.58
0.57
0.56
0.55
0.53
0.52
0.00
0.31
0.30
0.30
0.29
0.28
0.27
0.27
0.26
0.25
0.25
0.09
0.63
0.61
0.60
0.58
0.57
0.56
0.55
0.53
0.52
0.05
0.31
0.30
0.29
0.28
0.28
0.27
0.26
0.26
0.25
0.24
Note: A storage ability equal to 4 in. of water is the combination of the ability of a given soil to store water
and the thickness of the soil layer that provides the equivalent of 4 in. of water
-------
Attachment B
Microsoft Excel Spreadsheet Showing Method B Water Balance Example Calculation
B-l
-------
TECHNICAL REPORT DATA
(Please read Instructions on reverse before completing)
1. REPORT NO.
EPA-456/R-05-004
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Example Moisture Mass Balance Calculations for Bioreactor
Landfills
5. REPORT DATE
August 2005
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Amy Alexander
Eastern Research Group, Inc.
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Office of Air Quality Planning and Standards
Mail Drop El43-02
Research Triangle Park, NC 27711
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-D-02-0079
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Research Triangle Park, NC 27711
Final Report
14. SPONSORING AGENCY CODE
EPA/200/04
15. SUPPLEMENTARY NOTES
To be published at: http://www.epa.gov/ttn/atw/landfill/landflpg.html
16. ABSTRACT
This document contains example mass balance calculations for estimating the moisture content of the waste
mass in a bioreactor landfill. Under the National Emission Standards for Hazardous Air Pollutants for
Municipal Solid Waste Landfills (landfills NESHAP), a portion of a landfill operated as a bioreactor has
timely control requirements. The landfills NESHAP allows moisture content to be determined using a variety
of methods, as long as the procedures and assumptions are documented and appropriate. Although a range of
appropriate measures exist, a mass balance approach is expected to be adequate in determining whether the
moisture content of the waste is above or below 40 percent. Two example mass balance calculations are
presented, a simple method and a more complex method. The simplified equation incorporates factors such
as incoming waste moisture, liquids addition, and leachate production, which most significantly affect the
average moisture content of the waste mass. The more complex procedure accounts for additional factors
such as moisture retained in the landfill, surface runoff and evaporation, and evapotranspiration.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Bioreactor landfill
Air pollution
Clean Air Act
NESHAP
Moisture content
Air Pollution control
Nonmethane organic compounds
Methane
18. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (Report)
Unclassified
21. NO. OF PAGES
36
20. SECURITY CLASS (Page)
Unclassified
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
-------
United States Office of Air Quality Planning and Standards Publication No. EPA-456/R-05-004
Environmental Protection Information Transfer and Program Integration Division August 2005
Agency Research Triangle Park, NC
------- |