>vEPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EMB Report 86-CEP-1
March 1986
Air
Chromium
Electroplaters
Test Report
Greensboro
Industrial Platers
Greensboro,
North Carolina
-------
EMISSION TEST REPORT
GREENSBORO INDUSTRIAL PLATERS
GREENBORO, NORTH CAROLINA
ESED 85/02
EMB NO. 86-CEP-01
Prepared By
ENTROPY ENVIRONMENTALISTS, INC.
POST OFFICE BOX 12291
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709
CONTRACT NO. 68-02-4336
WORK ASSIGNMENT NOS. 3 and
PN: 3503 and 3505
EPA TASK MANAGER
FRANK CLAY
U.S. ENVIRONMENTAL PROTECTION AGENCY
EMISSION MEASUREMENT BRANCH
EMISSION STANDARDS AND ENGINEERING DIVISION
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
OCTOBER 1986
-------
document Information
Page
Document Number;
0
Expiration Date: 12/31/99
Document Title: NESHAPS Development Chromium and Particle Sizing Emissions
Testing - Greensboro Industrial Platers, Greensboro, North
Carolina
Program/Organization:
1 EPA/EMB
Publication Date:
10/01/86
EMB Test Report Number:
Industry Code:
Document Code:
Pollutant Code:
Source Code:
86-CBP-01
CEP Chromium Electroplating
92 Tests to Support NESHAPS Standard-Setting
14 Chromium
269 Chromium Electroplating
Contact:
Telephone:
Author:
Telephone:
FRANK CLAY
(919)541-5236
ENTROPY ENVIRONMENT. NA
Description (Method, Pollutants, etc.):
EPA Methods 1-5 & Method 13-EMB Contract No. 68-02-4336; W.A. No, 385
Abstract:
A testing program was conducted at the Greensboro Industrial Platers facility in
Greensboro, North Carolina on the No. 6 hard chromium plating tank whose
emissions are controlled by a mist eliminator.
The purpose of this program was to provide data to support a possible chromium
standard under the National Emissions Standards for Hazardous Air Pollutants
(NESHAPS).
The chromium (total and hexavalent) mass emission rate tests and chromium
particle size distribution tests were conducted at the inlet and outlet of the
No.6 plating tank chevron-blade mist eliminator. In addition to the testing for
possible emissions standard setting, several series of paired sample train test
runs were conducted to evaluate Method 13-type "impinger train" sampling train
for use in a potential reference method for collecting and measuring hexavalent
and/or total chromium emissions.
RESULTS FOR IMPINGER TRAIN TESTING:
The uncontrolled emissions from the tank averaged 0.057 Ib/h of hexavalent
chromium and 0.064 Ib/h total chromium.
The controlled emissions averaged 0.007 Ib/h of hexavalent chromium and 0.008
Ib/h of total chromium.
-------
document Information Page
Document Number: 0 Expiration Date; 12/31/99
Document Titles NESHAPS Development Chromium and Particle Sizing Emissions
Testing - Greensboro Industrial Platers, Greensboro, North
Carolina
The resulting collection efficiency on a mass emission rate basis was 87,1%
for hexavalent chromium and 86.8% for total chromium.
PARTICLE SIZE DISTRIBUTION RESULTS:
Particle size distribution tests showed that about 25% by weight of the
uncontrolled emissions were greater 10 um and about 36% by weight of the
controlled emissions were greater than 10 um.
In conclusion:
The methods evaluation tests demonstrated the impinger train quantitatively
collects both the hexavalent chromium and total chromium with an average of
99.9% of emissions being collected prior to the backup filter.
As a result of quantitative removal of all the chromium by the impingers, the
backup filter would not be required in the sampling train.
The use of a Method 5 (front filter) type train for chromium emissions at this
level showed some low bias, but would not be considered acceptable for a.
reference method.
The tests on the impinger train to detect possible conversion of the hexavalent
chromium during and after sample collection, indicated that some conversions may
take place during testing when distilled water is used in the impingers. No
significant conversion was evident over time after the sample was collected.
Therefore, the impinger reagents should be 0.1N NaOH or equivalent to fix the
sample immediately upon collection.
Based on the results of the paired trains evaluation, the sampling and
analytical method has a precision similar to that of EPA Method 5 and would be
considered suitable for consideration as the reference method.
Refer to the report for additional data and results.
-------
CONTENTS
Page
Figures , iv
Tables v
1.0 INTRODUCTION 1-1
2.0 PROCESS OPERATION 2-1
2.1 Process Description 2-1
2.2 Air Pollution Control 2-1
2.3 Process Conditions During Testing 2-4
3.0 SUMMARY OF RESULTS 3-1
3.1 Hexavalent Chromium and Total Chromium 3"3
3.1.1 Mist Eliminator Inlet 3-3
3.1.2 Mist Eliminator Outlet 3-4
3.2 Emissions in Units of Process Rate and Control 3"7
Equipment Collection Efficiency
3.2.1 Emissions in Units of Process Rate 3~7
3.2.2 Control Equipment Collection Efficiency 3-9
3-3 Particle Size Distribution 3-9
3.4 Analysis of Chrome Plating Solutions . 3~9
3.5 Summary of Analytical Results for Hexavalent and 3-13
Total Chromium
3-6 Summary of Evaluations and Results for Methods 3~13
Development Test
3.6.1 Sample Train Collection Efficiency and 3-20
Evaluation of Hexavalent Chromium Conversion
to Trivalent Chromium
3.6.2 Evaluation of the Method 5 Sample Train for 3-23
Collection of Chromium
3.6.3 Methods Evaluations Conclusions 3-25
3.6.4 Summary of Analytical Results for Methods 3-25
Evaluation Runs
4.0 SAMPLING LOCATIONS AND TEST METHODS 4-1
4.1 No. 6 Plating Tank Mist Eliminator Inlet 4-1
(Test Location A)
4.2 No. 6 Plating Tank Mist Eliminator Outlet 4-5
(Test Location B)
ii
-------
CONTENTS (continued)
4.3 No. 6 Plating Tank Mist Eliminator Wash Down 4-8
Drain Pipe (Test Location C)
4.4 No. 6 Plating Tank Anode, Cathode, and Bath Solution 4-8
(Test Location D)
4.5 No. 6 Plating Tank Rinse Tank (Test Location E) 4-8
4.6 No. 5 Plating Tank Exhaust (Test Location F) 4-8
4.7 Velocity and Gas Temperature 4-10
4.8 Molecular Weight 4-10
4.9 Sampling Trains 4-10
4.10 Hexavalent Chromium Content 4-11
4.11 Total Chromium Content 4-11
5.0 QUALITY ASSURANCE 5-1
APPENDICES
A TEST RESULTS AND EXAMPLE CALCULATIONS A-l
Hexavalent Chromium and Total Chromium A-3
Example Calculaitons A-7
Particle Size for Hexavalent Chromium and Total A-90
Chromium
B FIELD AND ANALYTICAL DATA , B-l
Chromium Field Data B-3
Particle Size Distribution Field Data 6-56
Moisture Catch Analysis B-59
Chromium Sample Inventory B-72
Hexavalent and ICP Chromium Analysis B-83
NAA Total Chromium Analysis B-91
C SAMPLING AND ANALYTICAL PROCEDURES C-l
Determination of Hexavalent Chromium Emissions C-3
Determination of Total Chromium Content C-15
Determination of Particle Size Distribution C-21
Methods Development - Variations in Sampling; Train C-25
Configuration, Sample Recovery, and Sample Analysis
D CALIBRATION AND QUALITY ASSURANCE DATA D-l
E MRI PROCESS DATA E-l
F TEST PARTICIPANTS AND OBSERVERS F-l
111
-------
FIGURES
Number Page
2-1 Schematic Diagram of Hard Chromium Plating Tanks at
Greensboro Industrial Platers 2-2
2-2 Schematic of Exhaust System for Tank 6 2-5
3-1 Graphic Summary of Particle Sizing Data 3~10
4-1 Process Air Flow Schematic, No. 6 Plating Tank and Control 4-2
Equipment Showing Test Locations
4-2 • Mist Eliminator Inlet (Test Location A) 4-4
4-3 Cross Section of Mist Eliminator Inlet Showing Locations of 4-6
Six Points Traversed On Axis Perpendicular To Single Point
<
4-4 Mist Eliminator Outlet Stack (Test Location B) 4-?
4-5 Exhaust Duct on No. 5 Plating Tank (Methods Development 4-9
Test Location E)
C-l Method 13-Type Impinger Train C-4
C-2 Andersen Mark III Cascade Impactor Loading Sequence C-23
C-3 Sample Splits for Train #2 C-26
IV
-------
TABLES
Number Page
2.1 Dimensions and Operating Parameters of Hard Chromium
Plating Tanks 5 and 6 at Greensboro Industrial Platers 2-3
2.2 Average Operating Parameters Recorded for Four Emissions
Source Test Runs on Tank 6 2-7
2,3 Total -Current Supplied to Tank 6 During Four Emissions
Source Test Runs 2-9
3.1 Testing Schedule for Greensboro Industrial Platers 3~2
3.2 Summary of Flue Gas Conditions 3"5
3 . 3 Summary of Hexavalent Chromium and Total Chromium Emissions 3~6
3.4 Summary of Emission Rates in Units of Process Rate and 3~8
Efficiency
3-5 Summary of Particle Size Distribution 3~H
3,6 Summary of Chrome Plating Solutions for Tank No. 6 3-12
3-7 Summary of Analytical Results for Hexavalent Chromium and 3~1^
Total Chromium
3.8 Summary of Flue Gas Conditions 3-17
3-9 Summary of Hexavalent Chromium and Total Chromium Emissions 3~19
3.10 Sample Train (Impinger) Collection Efficiency 3-21
3-11 Evaluation of Hexavalent to Trivalent Chromium Conversion 3-22
Both During and After Sample Collection
3.12 Method 5 Type Sample Train Collection Efficiency and 3-24
Comparison With Impinger Type Sample Train
3.13 Method 5 Type Sample Train Collection Efficiency and 3-26
Comparison With Impinger Type Sample Train
3.14 Summary of "A" and "B" Train Analytical Results for 3-27
Helavalent and Total Chromium
4 . 1 Sampling Plan for Greensboro Industrial Platers 4-3
5-1 Field Equipment Calibration 5-2
5-2 Audit Report Chromium Analysis 5-3
C . 1 Summary of Sampling Trains Used C-28
-------
1.0 INTRODUCTION
During the weeks of March 17 and 24, 1986, Entropy Environmentalists, Inc.
conducted an emission measurement program at Greensboro Industrial Platers'
facility located,in Greensboro, North Carolina. The purpose of this program
was to provide data to support a possible chromium standard under the National
Emissions Standards for Hazardous Air Pollutants (NESHAPS).
Comprehensive testing was conducted on the No. 6 hard chromium plating tank
whose emissions are controlled by a mist eliminator. This source was selected
for source sampling for the following reasons:
• The plant is representative of a medium-sized job shop that
performs hard chromium electroplating. Hard chromium plate is
applied to textile, hydraulic, woodworking, end laundry machinery
parts. Also, based on operating parameters such as current,
voltage, plating time, and chromic acid concentration, the plating
tank selected for testing appears to be typical of other hard
chromium plating tanks in the electroplating industry.
* The plating tank is large and operates at relatively high
workloads. A substantial amount of chromic acid mist is evident
across the entire surface of the plating bath when operated at full
capacity. Although polypropylene balls are added to the bath, they
are used primarily to retain heat and have only a minor effect on
reducing misting. Chemical fume suppressants are not used in the
bath to control misting. These factors assure an adequate emission
sample to characterize the uncontrolled emissions and the
performance of the mist eliminator.
• The emission capture system applied appears to be effective in
directing fumes from the plating tank to the control device. The
tank is equipped with two-sided lateral exhaust hoods that have
2-inch slots. An induction fan pulls a total of 226 cubic meters
per second (7,970 cubic feet per minute) of air through the exhaust
hoods. The ventilation rate of the exhaust hoods is 39 cubic
meters per minute per square meter (126 cubic feet per minute per
square foot) of liquid surface.
* The mist eliminator appears to be well-maintained and -operated.
The chevron-blade mist eliminator is typical of the
impingement-type mist eliminators in use at other hard chromium
plating facilities. The mist eliminator is washed down on a
routine schedule to ensure proper operating performance.
1-1
-------
* The design operating parameters of the mist eliminator includes a
gas flow rate of 283 cubic meters per minute (10,000 cubic feet per
minute) and a pressure drop of 0.89 kilopascals (3-5 inches of
water column), The mist eliminator is made of polyvinyl chloride
and contains 31 chevron-blades spaced 3-18 centimeters (1.25
inches) apart. The curl on the front of the blades is 0.36
centimeters (0.38 inches) long.
Hexavalent chromium and total chromium concentrations were measured at
the inlet and outlet of the mist eliminator serving the No. 6 plating tank.
The measurements were made to characterize the capability of the mist
eliminator for controlling chromium emissions from chromium electroplating
facilities. Additional measurements were made at the No. 5 plating tank
exhaust for methods development. Testing was performed using U.S.
Environmental Protection Agency (EPA) Reference Method 5 procedures and a
Method 13-type impinger train*, and the alternate sample preparation and
analytical procedures described in Appendix C. Flue g€is flow rates,
temperature, and moisture content were measured in conjunction with the
chromium testing.
Mr. Randy Strait [Midwest Research Institute (MRI)] monitored the
process operation throughout the test period. Mr. Frank Clay (EPA Task
Manager) of the Emissions Measurement Branch (EMB) and Mr. Al Vervaert of the
Industrial Studies Branch (ISB) observed the test program. Mr. Robert Hester
served as the contact for Greensboro Industrial Platers.
This report is organized into several sections addressing various
aspects of the testing program. Immediately following this introduction is
the "Process Operation" section which includes a description of the process
and control device tested. Following this is the "Sumaary of Results"
section which presents table summaries of the test data and discusses these
results. The next section, "Sampling Locations and Test Methods" describes
and illustrates the sampling locations used for emissions testing and then
explains the sampling strategies used. The final section, "Quality
Assurance," notes the procedures used to ensure the integrity of the sampling
program. The Appendices present the Test Results and Example Calculations
(Appendix A); Field and Analytical Data (Appendix B); Sampling and Analytical
Procedures (Appendix C); Calibration and Quality Assurance Data (Appendix D);
MRI Process Data (Appendix E); and Test Participants and Observers
(Appendix F).
^3 Federal Register 11984, 3/23/78 (Method 5) and 43 Federal Register
6/20/80 (Method 13).
1-2
-------
2.0 PROCESS OPERATION
2.1 PROCESS DESCRIPTION
The Greensboro Industrial Platers plant is a medium-sized job shop
that performs hard chromium electroplating of textile, hydraulic,
woodworking, and laundry machinery parts. Hard chromium plating of these
parts provides a wear-resistant surface and protection from corrosion.
The plant also performs decorative chromium plating with a trivalent bath
as well as copper and cadmium plating. The plant has been operated since
1955 and presently employs 22 workers. Operating hours are 10 hours per
day, 4 days per week.
The hard chromium plating facility consists of six tanks, arranged as
shown in Figure 2-1. Based on size; operating parameters such as
current, voltage, and plating time; and chromic acid concentration, all
six tanks are typical of other hard chromium plating tanks used in the
electroplating industry. The dimensions and operating parameters for
Tanks 5 and 6, which were the only tanks at which tests were conducted,
are presented in Table 2-1. The plating solution used in the six tanks is
a conventional chromic acid solution containing about 255 grams of chromic
acid per liter (g/fc) (34 ounces per gallon [oz/galj) of plating solu-
tion. About 454 kilograms (1,000 pounds) of chromic acid are consumed per
month. Sulfuric acid in a concentration of about 2.55 g/a (0.34 oz/gal)
of solution is added as a catalyst.
During plating, chromium is deposited at a rate of about
0.025 millimeter (0.001 inch [in.]) per hour or 1 mil per hour, which
requires a current density of approximately 0.35 amperes per square
centimeter (2.25 amperes per square inch) of surface area plated. As much
as 10 to 12 mils of chromium are deposited on some parts.
2.2 AIR POLLUTION CONTROL
Two lateral exhaust hoods are installed on each side of Tank 5. The
hoods are approximately 1.7 meters (m) (5.7 feet [ft]) in length and
contain six slots each. The slots are 27 centimeters (cm) (10.5 in.) in
length and 5 cm (2 in.) in width. The two hoods on each side of the tank
are spaced 7.6 cm (3 in) apart at the center of the tank. The gas flow
rate for the entire ventilation system was not measured during the test.
2-1
-------
HOOD ON
BACK
SIDE OF
TANKS
ONLY
TANK
4
TANK
3
TANK
2
RINSE
TANK
(H20)
,
TANK
6
HOODS ON TWO
SIDES OF TANK
TANK
i™
ME
J
i h
— 1 5
HOODS ON TWO
SIDES OF TANK
Figure 2-1. Schematic diagram of hard chromium plating
tanks at Greensboro Industrial Platers,
2-2
-------
TABLE 2-1. DIMENSIONS AND OPERATING PARAMETERS OF HARD CHROMIUM PLATING
TANKS 5 AND 6 AT GREENSBORO INDUSTRIAL PLATERS
ro
i
CO
Tank Mo.
5
6
j|l = length,
Dimensions
0. w, d)a
m (ft)
3.6, 1.2, 1.8
(11.8, 4, 6)
6.4, 0.9, 1.8
(21, 3, 6)
w = width, d =
Capacity, Voltage,
n (gal) volts0
8,020 15
(2,120)
10,710 15
(2,830)
depth.
Constituents,
Current- Method g/si (oz/gal)
amperes fC of cooling Cr03
10,000 Water 255
(34)
8,000 Water 255
(34)
H2SOH
2.55
(0.34)
2.55
(0.34)
^Direct current.
°Cr03 = Chromic add, H2SOM = sulfuric acid.
-------
The National Institute for Occupational Safety and Health conducted a
study of the ventilation system installed on Tank 5 in November 1981 and
measured the gas flow rate to be 332 actual cubic meters per minute (acmm)
(11,730 actual cubic feet per minute [acfm]) and the ventilation rate to
be 74 acmm per square meter (/m ) (240 acfm per square foot {/ft ]) of
surface area. Only one of the exhaust hoods on Tank 5 was tested for the
test methods development phase of the test program. The sampling location
is described in Section 4.6 of this report.
A schematic of the exhaust system for Tank 6 is shown in Figure 2-2.
Two lateral exhaust hoods are installed on each side of Tank 6. The hoods
are approximately 3.1 m (10.3 ft) in length and contain 12 slots each.
The slots are 27 cm (10.5 in.) in length and 5 cm (2 in.) in width. The
two hoods on each side of the tank are spaced 7.6 cm (3 in.) apart at the
center of the tank. The gas flow rate through the hoods is 225 acmm
(7,970 acfm), and the ventilation rate 1s 39 acmm/in (126 acfm/ft ) of
surface area.
Emissions that are captured by the exhaust system are vented to a
chevron-blade mist eliminator suspended from the ceiling of the plating
shop. The mist eliminator was manufactured and installed by KCH Services,
Incorporated, in 1980. The design operating parameters of the mist
eliminator include a gas flow rate of 283 acmm (10,,000 acfm) and a
pressure drop of 0.19 kilopascals (kPa) (0.75 inches of water column [in.
w.c.]). However, the gas flow rate to the mist eliminator was 226 acmm
(7,970 acfm) and the pressure drop was 0.02 kPa (Q.,1 in. w.c.), during the
mass emissions tests. The mist eliminator is made of polyvinyl chloride
and contains 31 chevron blades spaced 3.18 cm (1.25 in.) apart. The curl
on the front of the blades is 0.96 cm (0.38 in.) in length. The chevron
blades are arranged to change the direction of gas flow four times at 30°
angles. The mist eliminator is periodically washed with water, and the
wash water drains into the plating tank.
2.3 PROCESS CONDITIONS DURING TESTING
Emission testing was conducted at the inlet and outlet of the mist
eliminator on Tank 6 to characterize the performance of the mist
eliminator and uncontrolled emissions from the hard chromium plating
2-4
-------
STACK
i
en
MIST
ELIMINATOR
— 21 ft —
PLATING TANK NO. 6
Figure 2-2. Schematic of exhaust system for Tank 6.
-------
tank. The process was operating normally during the test. Process
operating parameters such as the voltage, current, and temperature were
monitored and recorded during each test run. Descriptions (dimensions and
surface area) and plating requirements (current and plating time) of each
individual part plated and the pressure drop across the mist eliminator
also were recorded during each test run. Process data sheets documenting
the process and control device operating parameters during mass emission
testing (test run Nos. MI-1 through 4 and MO-1 through 4) and particle
size distribution testing (test run Nos. MI-SI through 3 and MO-SI through
3) are presented in Appendix E. Data on the average operating parameters
recorded during the mass emission test runs are presented in Table 2-2.
Grab samples were taken from Tank 6 and the rinse tank to determine
the chromic acid concentration of the plating solution and the rinse water
during each mass emission test run. Grab samples of the mist eliminator
wash water also were taken to determine the chromic acid concentration of
the wash water. The mist eliminator was washed down after the first and
second and the third and fourth mass emission test runs and after the
second and third particle size distribution test runs. The chromic acid
concentration of the grab samples is reported in Section 3.4 of this
report.
Test run No. 1 was interrupted three times, run No. 2 was interrupted
one time, and run Nos. 3 and 4 were interrupted two times each to change
parts. Testing was stopped during each interruption. During test run
No. 2, three fuses were blown in the rectifier, which caused the rectifier
to operate at or near its maximum current capacity of 8,000 amperes.
Emissions testing was not discontinued because the plant manager stated
that the higher amount of current applied was within normal operating
conditions for the type and number of parts being plated. However, some
mist was observed escaping above the capture system before the rectifier
was repaired during test run No. 4.
Polypropylene balls that float on the surface of the plating solution
are used in the plating tank to reduce heat loss, evaporation, and, to
some limited extent, misting. The balls are approximately 3.2 cm
(1.25 in.) in diameter. During plating, the polypropylene balls cover
only about 50 percent of the surface area of the plating tank because they
2-6
-------
TABLE 2-2. AVERAGE OPERATING PARAMETERS RECORDED FOR FOUR EMISSIONS
SOURCE TEST RUNS ON TANK 6
Test No.
Inlet/
Outlet
MI-l/MO-1
MI-2/MO-2
MI-3/MO-3
MI-4/MO-4
Operating
voltage,
volts
9.3
8.1
10.0
8.7
Operating
current,
amperes
5,955
5,563
7,931
5,444
Temperature
of plating
solution, °C (°F)
49 (120)
46 (114)
50 (122)
62 (143)
Pressure drop
across mist
eliminator,
kPa (in. w.c,)a
0.02 (0.1)
0.02 (0.1)
0.02 (0.1)
0.02 (0.1)
*kPa = Kilopascal, in. w.c. = inches of water column.
2-7
-------
are pushed away from the anodes and cathodes where the surface of the bath
is agitated by gassing. Consequently, the polypropylene balls do not
reduce misting in the active area of the tank where plating, and
consequently misting, actually occurs.
The total amount of current supplied to the tank during each test run
is calculated in terms of ampere-hours. The ampere-hour calculations are
included in Appendix E and a summary of the total current values is
presented in Table 2-3.
Process operating parameters also were monitored for Tanks 5 and 6
during methods development testing. Operating conditions for both tanks
were normal during the tests. Process data sheets documenting process
operating parameters for Tank 5 (test run Nos. TE-1 A and B through TE-14
A and B) and Tank 6 (MO-5A and B through MO-7A and 13) also are presented
in Appendix E.
References
1. Spottswood, Stephanie E. In-Depth Survey Report of Greensboro
Industrial Plating, Greensboro, North Carolina. National Institute
for Occupational Safety and Health. Cincinnati, Ohio.
November 1981. p. 13-15.
2-8
-------
TABLE 2-3. TOTAL CURRENT SUPPLIED TO TANK 6
DURING FOUR EMISSIONS SOURCE TEST RUNS
Test No. Total current, ampere-hour
Inlet/Outlet Inlet Outlet
MI-l/MO-1 15,885 15,851
MI-2/MO-2 11,653 11,453
MI-3/MO-3 16,809 17,968
MI-4/MO-4 11,586 11,961
2-9
-------
3.0 SUMMARY OF RESULTS
The chromium (total and hexavalent) mass emission rate tests and chromium
particle size distribution tests were conducted at the inlet and outlet of the
No. 6 plating tank chevron-blade mist eliminator. In addition to the testing
for possible emissions standard setting, several series of paired sample train
test runs were conducted to evaluate a Method 13-type "impinger train" sampling
train for use in a potential reference method for collecting and measuring
hexavalent and/or total chromium emissions. Table 3-1 summarizes the testing
schedule.
In brief, from the results of the Impinger Train testing, the uncontrolled
emissions from the tank averaged 0.057 pounds per hour of hexavalent chromium
and 0.064 pounds per hour of total chromium. The controlled emissions averaged
0.007 pounds per hour of hexavalent chromium and 0.008 pounds per hour of total
chromium. The resulting collection efficiency on a mass emission rate basis
was 87»1% for hexavalent chromium and 86.8$ for total chromium. The particle
size distribution tests were only calculated for total chromium due to the
problems encountered with the extraction of the hexavalent chromium from the
filters. The particle size distribution tests for tank No. 6 showed that about
25% by weight of the uncontrolled emissions were greater 10 urn and about 36% by
weight of the controlled emissions were greater than 10 um.
The methods evaluation tests demonstrated that the Impinger Train
quantitatively collects both the hexavalent chromium and total chromium with an
average of 99-9% of the emissions being collected prior to the backup filter.
As a result of quantitative removal of all the chromium by the impingers, the
backup filter would not be required in the sampling train. The use of a Method
5 (front filter) type train for chromium emissions at this level showed some
low bias, but would not be considered acceptable for a reference method due to
the fact that (1) the front filter could not quantitatively remove all the
chromium from the emissions and (2) the potential for conversion of the
hexavalent chromium to another valence during the sample collection phase. The
tests on the impinger train to detect possible conversion of the hexavalent
chromium during and after sample collection, indicated that some conversion may
take place during testing when distilled water is used in the impingers. No
significant conversion was evident over time after the sample was collected.
3-1
-------
TABLE 3.1. TESTING SCHEDULE FOR GREEMSBORO INDUSTRIAL PLATERS
Date
(1986)
3/18
3/19
3/24
3/25
3/26
Sample Type
+6
Cr , Total Cr
11
a
»'
w
+6
Cr , Total Cr
» ,
it
w
M
*»
+6
Cr , Total Cr
ii
"
n
Particle Size
+6
Cr , Total Cr
"
H
M
"
n
"
Particle Size
w
+6
Cr , Total Cr
"
«
"
"
**
i*o. 6 Plating Tank
Mist Eliminator
Inlet
Run
No.
MI-1
MI-2
MI-3
MI-4
MI-SI
MI-S2
MI-S3
Teat Time
24 h clock
0838-1207
1310-1532
0804-1042
1110-1600
1304-1614
0832-1206
1419-1638
No. 6 Plating Tank
Mist Eliminator
Outlet
Run
No.
MO-1
MO-2
MO-3
MO-4
MO-SI
MO-S2
MO-S3
MO-5A
MO-5B
MO- 6 A
MO-6B
MO- 7 A
TE-7B
Test Time
24 h clock
0836-1150
1310-1530
0805-1052
1110-1606
1304-1614
0832-1339
1420-1632
0831-1054
0834-1055
1150-1356
1151-1357
1408-1628
1409-1629
No. 5 Plating Tank
Exhaust
Run
No.
TE-1A
TE-1B
TE-2A
TE-2B
TE-3A
TE-3B
TE-4A
TE-4B
TE-5A
TE-5B
TE-6A
TE-6B
TE-7A
TE-7B
TE-8A
TE-8B
TE-9A
TE-9B*
TE-10A
TE-10B*
TE-11A
TE-11B
TE-12A
TE-12B
TE-13A
TE-13B
TE-14A
TE-14B
Test Time
24 h clock
0915-1021
0915-1022
1253-1400
1254-1402
1429-1533
1430-1534
0924-1031
0926-1032
1105-1211
1105-1211
1305-1410
1306-1411
1305-1410
1306-1411
1442-1545
1443-1546
0820-0925
0821-0926
1016-1119
1017-1120
1332-1436
1333-1437
1511-1616
1512-1617
0829-0949
0830-0950
1022-1127
1023-1128
* Runs 9B and 10B are not included in this report due to unacceptable post-test meterbox calibrations;
runs 13B and 14B (respectively) were performed as replacements.
3-2
-------
Therefore, the impinger reagents should be 0.1N NaOH or equivalent to fix the
sample immediately upon collection. Based on the results of the paired
trains evaluation, the sampling and analytical method has a precision similar
to that of EPA Method 5 and would be considered suitable for consideration as
the reference method.
In the following sections, the results addressed above and additional
results are presented and discussed in detail. The results are presented
according to the emission type and sampling location for the control device
and according to the type of evaluation for the methods performance tests,
The computer printouts of the emission calculations can be found in
Appendix A. The original field data sheets and the analytical data are
located in Appendix B.
3.1 HEXAVALENT CHROMIUM AND TOTAL CHROMIUM
Chromium concentration measurements along with the; determination of the
associated flue gas flow rates were conducted at both inlet and outlet of the
mist eliminator on tank No. 6. The samples were collected isokinetically
using an impinger-type sample train. For analysis, the samples were
initially filtered to remove all the chromium (residue) other than hexavalent
chromium (in filtrate). An aliquot of the filtrate was then analyzed for
hexavalent chromium and the residue (that filtered from the filtrate) was
analyzed for chromium. The total chromium results for each sample were the
sum of the hexavalent chromium in the filtrate and the chromium in the
residue. A complete description of each sampling location and the sampling
and analytical procedures are given in Chapter k and Appendix C.
3-1.1 Mist Eliminator Inlet
The mist eliminator inlet results represent the uncontrolled emissions
from the No. 6 tank. The circular horizontal inlet duct was traversed
through a single port due to the restrictions imposed by the location. As a
result, a complete traverse was conducted in the horizontal direction and a
partial traverse was conducted in the vertical direction (more fully
described in Chapter 4). Prior to the testing, a pitot tube traverse was
conducted to determine the amount of flow misalignment. The results
demonstrated that the flow was fairly uniform (less than an average flow
misalignment angle of 10°) despite the fact that it did not meet the
requirements of Method 1 for length of duct before and after the sampling
location.
3-3
-------
Flue Gas Conditions and IsokineticSampling Rate - A summary of the Flue
gas conditions at the mist eliminator inlet and outlet is presented in
Table 3.2, The volumetric flow rates were fairly consistent at the inlet and
averaged 13,500 actual cubic meters per hour (478,000 actual cubic feet per
hour). The flow rate at the inlet was approximately 1B% greater than the
outlet flow rate; this was likely due to the measurement error in the inlet
flow rate measurements which were conducted in nonparallel flow (disturbed
flow), The flue gas temperture averaged 21 C (71 F). with a moisture content
of 1.7 percent. The oxygen, carbon dioxide, and carbon monoxide content was
that of ambient air at 20.9, 0.0, and 0.0 percent, respectively. The
volumetric flow rate at standard conditions averaged 12,900 dry standard
cubic meters per hour (^55»000 dry standard cubic feet per hour). Standard
conditions are 20°C (68°), 760 mm Hg (29.92 in. Hg), and dry basis. The
isokinetic sampling rates were well within the allowable for all four sample
runs.
Hexavalent Chromium Emissions - A summary of the hexavalent chromium and
total chromium emissions for each inlet and outlet test run are presented in
Table 3-3- The uncontrolled hexavalent chromium emissions averaged 2.03
milligrams per dry standard cubic meter (0.0009 grains per dry standard cubic
foot) and 0.026 kilograms per hour (0.057 pounds per hour).
Total Chromium Emissions - The total chromium emissions for each test
run were consistent with their corresponding hexavalent chromium emissions
and averaged about 12% higher. The uncontrolled emissions averaged 2.27
milligrams per dry standard cubic meter (0.001 grains per dry standard cubic
foot) and 0.029 kilograms per hour (0.06^ pounds per hour).
3.1.2 Mist Eliminator Outlet
The mist eliminator outlet represents the controlled emissions from the
No. 6 tank. The sampling location was nearly ideal due to the fact that a
temporary stack extension was added for the tests. Two ports were installed
in the stack extension and two complete horizontal traverses were performed
during each test run.
Flue Gas Conditions and Isokinetic Sampling Rate - A summary of the flue
gas conditions at the mist eliminator outlet is presented in Table 3.2, The
3-4
-------
TABLE 3.2. SUMMARY OF FLUE GAS CONDITIONS
UJ
Run
No.
Date
(1986)
Test Time
24 h clock
Volumetric Flow Rate
Actual*
acmh
x 103
acfh
x 103
Standard
dscmh
xlO3
dscfh
x I03
Stack
Tenoerature
°C
°F
Moisture
'2
co2
*
Isoklnetlc
No. 6 Plating Tank Mfst Eliminator Inlet
No. <5 Plating Tank Mist Eliminator Outlet
Ml-l
MI-2
MI-3
Ml -4
3/18
3/18
3/19
3/19
0838-1207
1310-1532
0804-1042
1110-1600
Average
13.8
13.3
13.7
13.3
13.5
489
471
484
469
478
13.4
12.8
12.9
12.5
12.9
473
450
456
441
455
18
21
23
23
21
65
70
74
74
71
1.0
1.3
2.1
2.3
1.7
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
99.6
99.8
100.9
99.8
100.0
MO-I
MO-2
MO-3
MO-4
3/18
3/18
3/19
3/19
0836-1150
1310-1530
0805-1052
1110-1606
Average
11.4
11.6
11.5
11.5
11.5
402
411
407
407
407
10.9
11.0
10.8
10.8
10.9
385
389
381
380
384
22
23
27
27
25
71
74
80
80
76
1.1
1.6
1.5
1.8
1.5
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
97.9
99.3
98.5
100.2
99.0
aVolumetrtc flow rate In actual cubic meters per hour (acmh) and actual cubic feet per hour (acfh) at stack conditions.
Volumetric flow rate In dry standard cubic meters per hour (dscmh) and dry standard cubic feet per hour (dscfhK
-------
TABLE 3.3. SUMMARY OF HEXAVALENT CHROMIUM WTO TOTAL CHROMIUM EMISSIONS
Run
No.
Date
(1986)
Hexavalent Chromium
concentration
nig/deem
gr/Sscf
x 10"
mass emissions
kg/h
-3
x 10
Ib/h
x 10"
Total Chromium
concentration
IT. g/ do cm
gr/dsef
x 10"
mass emissions
kg/h
x 10*
Ib/h
x 10~
No. 6 Plating Tank Mist Eliminator Inlet
MI-1
Ml-2
MI-3
MI -4
3/18
3/18
3/19
3/19
Average
1.517
2.446
1.546
2.590
2.03
0.663
1.069
0.676
1.132
0.89
20.3
31.2
20.0
32.3
26.0
44.8
68.8
44.0
7.1.2
57.2
1.718
2.729
1.687
2.936
2.27
0.751
1.193
0,737
1.283
0.99
23.0
34.8
21.8
36.6
29.1
50,8
76.7
48.0
80.7
64,1
No. 6 Plating Tank Hist Eliminator Outlet
MO-1
HO-2
MO- 3
MO-4
3/18
3/18
3/19
3/19
Average
0.168
0.377
0.173
0.507
0.31
0.0736
0.1647
0.0758
0.2214
0.13
1.83
4.15
1.87
5.45
3.3
4.05
9.15
4.13
12.01
7.3
0.221
0.436
0.188
0.565
O.ilS
0.091
0.190
0.082
0.247
0.15
2.41
4.80
2.03
6.07
3.82
5.31
10.58
4.47
13.38
8.4
3-6
-------
volumetric flow rate averaged 11,500-actual cubic meters per hour (407,000
actual cubic feet per hour) with a flue gas temperture average of 25 C
(?6°F) and a moisture content of 1.5 percent. The oxygen, carbon dioxide,
and carbon monoxide content was that of ambient air at 20.9, 0.0, and 0.0
percent, respectively. The volumetric flow rate at standard conditions
averaged 10,900 dry standard cubic meters per hour (384,000 dry standard
cubic feet per hour). Standard conditions are 20°C (68°), ?60 mm Hg (29.92
in. Hg), and dry basis. The isokinetic sampling rates were well within the
allowable for all four sample runs.
Hexavalent Chromium Emissions - The controlled hexavalent chromium
emissions for each test run were fairly consistent when compared to the
simultaneous inlet runs and averaged 0.31 milligrams per dry standard cubic
meter (0.00013 grains per dry standard cubic foot) and 0.0033 kilograms per
hour {0.007 pounds per hour).
Total Chromium Emissions - The controlled total chromium emissions for
each test run was consistent with the corresponding hexavalent chromium
emissions and averaged about 16% higher. The total chromium emissions
averaged 0.35 milligrams per dry standard cubic meter (0.00015 grains per dry
standard cubic foot) and 0.0038 kilograms per hour (0,008 pounds per hour).
3,2 EMISSIONS IN UNITS OF PROCESS RATE AND CONTROL EQUIPMENT COLLECTION
EFFICIENCY
The emission rates in units of process rate are presented in terms of
grams of emissions per hour per square foot of tank surface area and in units
of milligrams emissions per amperage input to the plating operation. To
determine the collection efficiency of the mist eliminator, the milligrams
per hour per square foot (uncontrolled emissions and controlled emissions)
were used for the calculations.
3.2.1 Emissions in Units of Process Rate - The emissions in terms of units
of process rate are expressed in relation to two process parameters, as shown
in Table 3-^- The first is milligrams of emissions per amp-hour input into
the plating operation. The second is grams of emissions per hour per
3-7
-------
TABLE 3-4. SUMMARY OF EMISSION RATES IN UNITS OF PROCESS RATE AND EFFICIENCY
UJ
I
Co
Date
(1986)
Run
Nos.
Process
Rate
arap™hr
Uncontrolled Emissions
hexavalent
chromium
rng
amp-hr
g/h
ft2»
total
chromium
ng
aap-hr
g/h
ft2*
Controlled Emissions
hexavalent
chromium
ntg
• arap-hr
B/h
f t2*
total
chromium
mg
arap-hr
g/h
ft2*
Collection Efficiency**
hexavalent
chromium
I
total
chromium
%
No. 6 Plating Tank Mist Eliminator Inlet
No. 6 Plating Tank Mist Eliminator Outlet
3/18
3/18
3/19
3/19
MI-1
MI-2
Ml-3
Ml-4
Average
5.9"
5.327
7.927
5-316
6,129
3-42
5.86
2-52
6.08
4.*7
0.322
0.495
0-317
0.513
0.412
3-87
6-53
2-75
6.88
5-01
0.365
0.552
0.3*6
0.581
0.461
-_
—
—
—
—
- -
--
_.
--
--
..
--
--
..
._
--
—
--
3/18
3/18
3/18
3/18
MO-1
MO- 2
MO- 3
MO- ft
Average
5.9'ift
5.327
7,927
5,316
6.129
.
—
--
--
--
_ _
--
_.
--
--
_ —
--
--
--
--
--
_.
—
--
0.308
0.779
0.236
1.025
0.587
0.029
0.066
0.030
0.087
0.053
0.405
0.901
0.256
1.1*2
0.676
0.038
0.076
0.032
0.096
0.061
91.0
86.7
90.5
83-0
87.1
89.6
86.2
90.8
83.5
86.8
* Emission rate in units of grams per hour per square foot of tank surface (gr/hr/ft2) using tank surface of 63.0 ft2.
* Collection efficiency of control equipment Is based on the uncontrolled and controlled emission rate in units of
emissions per hour per ft2 of tank surface.
-------
2
square foot of tank surface area. The surface area of the tank was 63.0 ft
for all tests.
3.2.2 Control Equipment Collection Efficiency - The collection efficiency of
the Chevron-blade type mist eliminator (see Table 3-^) averaged 87.! % by
weight for hexavalent chromium and 86.8 % by weight for total chromium. The
higher emission rates appeared to produce a slight reduction in control
efficiency. The collection efficiencies for both hexavalent and total
chromium were fairly consistent.
3.3 PARTICLE SIZE DISTRIBUTION
Particle size distribution runs were conducted simultaneously at both
the inlet and outlet of the mist eliminator. Each run was conducted at a
point of average velocity. Each stage of the impaetor was recovered and
analyzed separately. Hexavalent chromium analysis was performed on each
stage, however, the results indicate that there was a problem extracting all
the hexavalent chromium with the small amount of liquid that had to be used
due to the small amount of chromium on each filter. Therefore, only particle
size distribution results for total chromium are shown,. The results for
hexavalent chromium should be similar since most of the emissions were
actually hexavalent chromium. The summary of particle size distribution is
shown in Table 3-5. a summary graph is presented in Figure 3.1 and the graphs
for each run can be found in Appendix A.
The particle size distribution results for the uncontrolled emissions
showed that approximately 25 % by weight of the chromium was less than 10 um
in diameter, 10 % by weight less than 5 um. and O.J % by weight less than 1
um. The particle size distribution results for the controlled emissions
showed that approximately 36 % by weight of the chromium was less than 10 um,
23 % by weight was less than 5 uffl» and 5 % by weight was less than 1 um.
3.4 ANALYSIS OF CHROME PLATING SOLUTIONS
Samples of the chrome plating solution were taken from plating tank
No. 6 at points near the anode, cathode, and towards the center of the bath.
Samples of the mist eliminator wash down and the rinse tank were also taken
for each test day. A summary of the results for these samples is shown in
Table 3-6. There were no significant differences between any of the tank and
rinse solutions with respect to chromium content.
3-9
-------
1 0
tn
o
e
o
I
' o
0.
u
u
N
UI
K
D.
90—;
8 0—-
7 0 **•
6
5 0—|
4 0—=
3 0-
2 0 —
1 0
B-
7-
e.
5-
4—5-
3—~
a-
5-3
. 2 -
*
s/\
_
A
55"j
Y
// A
7/1 1
t li
If
i i
i
1 1
i
1
i i i
i i i i i
I I ' °'5 I I 1
0,01 O.I J 2 5 JO 20 30405060 70 80 90 35 9'89S '99.9 92'.99
PERCENT OF PART ICULATE MASS LESS THAN 1NDICATED S1ZE
A MI-SI
MI-S2
MI-S3 © MO-SI
MO-S2 © MO-S3
Figure 3-1- Graphic summary of particle sizing data.
3-10
-------
TABLE 3.5. SUMMARY OF PARTICLE SIZE DISTRIBUTION*
Run
No.
Date
(1986)
Test
24 h
Time
clock
wt
1
Total
. less
urn
Chromium
than size
5 urn
10
%
urn
No. 6 Plating Tank Mist Eliminator Inlet
MI-SI
MI-S2
MI-S3
3/24
3/25
3/25
1304-1614
0832-1206
1419-1638
Average
0.15
0.75
0.70
0.73
2.5
8.5
11.0
9.8
7.0 **
25
25
25
No. 6 Plating Tank Mist Eliminator Outlet
MO-SI
MO-S2
MO-S3
3/24
3/25
3/25
1304-1614
0832-1339
1420-1632
Average
5-5
3-5
5.0
4.7
21
18
30
23
33
29
47
36
* Due to inadequate hexavalent chromium extraction,
results for hexavalent chromium are considered not
valid and are not presented.
** Value not included in average.
3-11
-------
TABLE 3-6. SUMMARY OF CHROME PLATING SOLUTIONS FOR TANK NO. 6
Date
(1986)
3/18
3/18
3/19
3/19
3/25
3/25
Run
No.
MO/MI-1
KO/mi-2
MO/MI-3
MO /MI -It
MO/MI-S2
MO /MI -S3
Chromium Concentration of Solution at Location in Percent (J!)*
Rinse Tank
Cr*6
_
0.1
_
0.1
Cr
_
0.1
_
0.1
Tank Anode
Cr + 6
13.7
13-4
12.9
13.0
Cr
15-3
14.7
1ft. 1
lft.4
Tank Bath
Cr+6
13-6
13-5
12.8
13-1
Cr
lft-9
13.8
13-9
13-9
Tank Cathode
Cr + 6
13-2
13.3
12,7
12.8
Cr
14.2
14.2
13-4
13-*
Mist Eliminator Wash
Cr + 6
7-7
4.0
6.2
2.2
6.0
1.2
Cr
8.6
4.2
6.6
1.6
6.2
1.0
"One percent chromium is equivalent to 2.578 ounces of Cr03 per gallon.
-------
3-5 SUMMARY OF ANALYTICAL RESULTS FOR HEXAVALENT AND TOTAL CHROMIUM
The summary of the analytical results for hexavalent and total chromium
for all the samples collected across the mist eliminator serving tank No. 6
is presented in Table 3-7- The results shown in Table 3-7 for hexavalent and
total chromium are the results obtained by the EPA tentative method for
"Determination of Hexavalent Chromium Emissions from Stationary Sources" and
the "EPA Protocol for Emissions Sampling for Both Hexavalent and Total
Chromium" (see Appendix C). When, for total chromium analysis, the table
indicates that the sample "residue" was analyzed, then the value presented
for total chromium content are a sum of (1) the hexavalent chromium in the
sample filtrate from the extraction of the sample measured by the tentative
method and {2} the chromium in the sample residue from the extraction as
measured by Neutron Activation Analysis or Inductively Coupled Argon Plasma
Analysis. When the table indicates that the "total" sample was analyzed,
then the value presented for total chromium content is from direct analysis
of an aliquot of the sample for total chromium by Inductively Coupled Argon
Plasma Analysis.
Quality assurance audit samples were analyzed using both the hexavalent
and total chromium methods; the results are shown in the Quality Assurance
Section {5-0}. As can be seen in Table 5-2, no bias was present using either
of the methods and, thus, the results are considered accurate.
3.6 SUMMARY OF EVALUATIONS AND RESULTS FOR METHODS DEVELOPMENT TESTING
All methods development testing was conducted using paired sample trains
(two trains). Fourteen paired trains tests were conducted on an exhaust
pickup duct on tank No. 5 and three paired trains tests were conducted at the
outlet of tank No. 6. In each case, paired samples were collected at a
single point within the duct. The sampling was conducted specifically to
coompare different sampling and/or sample recovery procedures.
As shown in Table 3-8. the flue gas conditions were fairly consistent
for all test runs. The isokinetic sampling rates were also within the
allowable limits with the exception of runs TE-9A and TE-10B. For these two
runs, the dry gas meter had an unaccetable post-test calibration and the
results are not used in the evaluations. Table 3-9 presents the calculated
emissions for all method evaluation runs. The individual evaluations and
results are described below.
3-13
-------
TABLE 3,?. SUMMARY OF ANALYTICAL RESULTS FOR HEXAVALENT AND TOTAL CHROMIUM
Run
No.
Date
(1986)
Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
Wo. 6 Plating Tank Mist Eliminator Inlet
MI-1
MI-1
MI-2
MI-2
MI-3
MI- 3
MI-4
MI-4
MI-SI
"
ft
»
ti
"
11
"
11
11
MI-S2
(I
II
II
fl
11
«
H
«
ft
MI -S3
"
"
11
ii
ii
11
"
it
"
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/24
"
"
I,
ii
11
ii
"
ti
»i
3/25
ii
••
"
*,
ti
"
"
"
ti
3/25
11
11
M
ti
it
ii
"
"
,i
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Iropinger MaOH
Teflon Filter
Irapinger NaOH
Teflon Filter
Preeutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Preeutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Preeutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
G-ll?
G-118
G-119
B-120
G-121
6-122
G-123
6-124
G-186
G-187
6-188
6-189
G-190
G-191
G-192
G-193
6-194
G-195
G-196
G-197
G-198
6-199
G-200
0-201
G-202
6-203
G-204
6-205
G-206
G-207
6-208
6-209
G-210
6-211
G-212
G-213
G-214
6-215
4,490
4.2
7,300
4-3
4,46o
" 7.2
7.560
< 2
8,810
85.5
19.0
149
103
34.7
9-5
1.4
0.4
< 0.2
2,650
•19.1
59-3
181
136
43.4
12,4
5-6
3.6
0.4
2,040
14.8
47.3
134
82.2
33.3
8.2
1.3
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
0.2 ' Residue
< 0.2 Residue
5.090
5.5
8,148
4.7
4,874
7.6
8,570
< 2
9.320
164
48.5
320
230
76.2
21.5
9-9
7-9
< 1
2,780
43
130
372
270
85
30
18
13-6
2.4
2,040
36.8
84.3
279
228
94.3
28.2
15-8
11.2
< 0.2
(continued).
3-2.4
-------
TABLE 3.7. (continued) SUMMARY OF AHALYTICAL RESULTS FOR HEXAVALWfT AND TOTAL CHROMIUM
Run
No.
Date
(1986)
Sample Type
Sample
No,
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results , ug
No. 6 Plating Tank Mist Eliminator Outlet
MQ-1
MO-1
MO- 2
MO-2
MO- 3
MO- 3
MO- 4
MO- 4
MO- SI
«
"
"
tl
.1
tl
It
II
11
MO-S2
ft
»
II
I)
*I
tl
tl
(I
ft
MO- S3
tt
ft
«
"
ti
ii
11
tt
"
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/24
tl
it
»
It
tl
11
tl
tl
11
3/25
ft
K
«
ft
It
"
It
ft
tl
3/25
"
«'
ti
tt
*t
«
ti
tt
ti
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Precutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Precutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Precutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
G-91
G-92
G-93
G-94
e-95
6-96
G-97
G-98
G-156
6-157
6-158
6-159
G-160
G-161
G-1&2
G-163
6-164
6-165
G-166
G-167
G-168
6-169
G-170
6-171
6-172
6-173
6-174
6-175
6-176
6-177
G-178
6-179
6-180
6-181
G-182
6-183
6-184
6-185
672
3-0
1,160
1.8
685
8.0
1,536
2,0
169
0-5
0.8
7-5
8.5
4.7
1.9
0.4
0.3
< 0.2
354
0.9
6.6
20.0
14.5
7-9
7.2
3-3
2.3
0.2
127
1-3
6.0
20.4
15-7
8.9
4.7
1.5
0-5
< 0.2
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
886
4.8
1,343
3-3
750
8.4
1.714
2.3
198
11.5
10.3
26.0
23-0
16.2
9.4
9-4
10.8
< 1
397
14.9
18.3
38.5
41.5
30.4
14.2
15-3
11.8
0.2
141
5.5
17.0
38.9
30.7
25.4
15-7
9-5
8.5
< i
(continued) .
3-15
-------
TABLE 3.7. (continued) SUMMARY OF ANALYTICAL RESULTS FOB HEXAVALEiri' AND TOTAL CHROMIUM
Run
No.
Date
(1986)
Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Concentration , %*
Amount of
Sample
Analyzed
Total
Chromium
Concentration. **
No. 6 Plating Tank Solution Samples
6A-1
6A-2
6A-3
6A-4
6B-1
6B-2
6B-3
6B-4
6C-1
6C-2
6C-3
6C-4
3/18
3/19
3/18
3/18
3/19
3/19
3/18
3/18
3/19
3/19
3/18
3/18
3/19
3/19
3/18
3/19
Rinse Tank
Rinse Tank
Plating Tank Anode
Plating Tank Anode
Plating Tank Anode
Plating Tank Anode
Plating Tank Bath
Plating Tank Bath
Plating Tank Bath
Plating Tank Bath
Plating Tank Cathode
Plating Tank Cathode
Plating Tank Cathode
Plating Tank Cathode
Miet Eliminator Hash
Mist Eliminator Wash
G-130
G-131
G-132
G-133
G-134
G-135
G-136
G-137
G-138
G-139
G-140
G-141
G-142
G-143
G-144
G-149
0.1
0.1
13.7
13.4
12.9
13.0
13.6
13.5
12.8
13.1
13.2
13.3
12.7
12.8
8.7
6.2
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
0.1
0.1
15.3
14.7
14,1
14.4
14.9
13.8
13.9
13.9
14.2
14.2
13.4
13.4
9.8
6.6
*0ne percent chromium is e
-------
TABUE 3.8. SUMMARY OF FLUE GAS CONDITIONS
Run
No.
Date
(1986)
Test Time
24 h clock
Volumetric Flow Rate
Actual8
actnh
x 103
acfh
x I03
Standard
dscmh
x I03
dscfh
x 103
Stack
Temperature
°C
°F
Mol sture
%
I2
co2
Isoklnettc
%
No. 5 Plating Tank Exhaust
TE-1A
TE-1B
TE-2A
TC-2B
TE-3A
TE-3B
7E-4A
7E-4B
TE-5A
TC-58
TE-6A
TE-6B
TE-7A
TE-7B
TE-8A
TE-8B
TE-9A
TE-9B
TE-10A
TE-10B
TE-IJA
TE-t 18
TC-12A
TE-128
7E-13A
TC-13B
TE-14A
TE-14B
3/18
3/18
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/19
3/19
3/24
3/24
3/24
3/24
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/26
3/26
3/26
3/26
0915-1021 "
0915-1022
1253-1400
1254-1402
1429-1533
1430-1534
0924-1031
0926-1032
1104-1210
1105-1211
1305-1410
1306-1411
1305-1410
1306-1411
1442-1545
1443-1546
0820-0925
0821-0926
1016-1119
1017-1120
1332-J436
1333-1437
1511-1616
1512-1617
0829-0949
0830-0950
1022-1127
1023-1128
1.76
1.78
1.80
1.78
1.86
1.84
1.79
1.76
1.82
1.87
1.79
1.72
1.83
1.86
1.80
1.75
1.76
1.83
1.82
1.76
1.85
1.93
1.85
1.83
1.78
1.78
1.81
1.78
62.0
62.9
63.5
62.8
65.5
64.9
63.1
62.0
64.4
66.0
63.3
60.8
64.5
65.6
63.7
61.9
62.1
64.6
64.2
62.0
65.3
68.0
65.3
64.5
62.8
62.8
63.8
62.8
1.69
1.70
1.71
1.69
1.75
1.74
1.68
1.66
1.72
1.76
1.70
1.62
1.76
1.78
1.74
.69
.71
.79
.76
.72
.79
1.87
1.79
.76
.71
.71
.74
.72
59.5
60.2
60.4
59.5
61.9
61.5
59.3
58.6
60.9
62.2
60.0
57.2
62.3
62.9
61.4
59.6
60.5
63.3
62.3
60.8
63.2
66,2
63.2
62.3
60.5
60.5
61.6
60.6
19
20
22
22
22
22
22
22
22
22
23
23
22
22
22
22
19
IV
21
21
22
22
22
22
22
22
22
22
67
68
71
71
72
72
72
72
72
72
74
74
72
72
72
72
66
66
70
70
72
72
72
72
72
72
72
72
1.5
1.8
1.7
2.1
2.1
2.0
2.7
2.3
2.2
2.4
1.5
2.4
1.1
1.7
1.2
1.4
1.3
0.8
1.0
0.0
0.9
0.3
.0
.1
.3
.4
.2
.1
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20,9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
Of\
f V
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
96.1
100.0
98.1
102.5
96.0
101.9
98.3
108.6
97.0
105.6
96.4
106.6
96.4
98.0
97.2
99.8
98.0
ft* y»
Q** *\J
95.3
83.3
96.6
105.3
96.7
103.1
101.8
99.1
101.7
99.5
(continued).
-------
TABLE 3.8. (continued) SUMMARY OF FLUE GAS CONDITIONS
Run
No.
Date
(1986)
Test Time
24 h clock
Volumetric Flow Rate
Actual8
acmh
x 103
acfh
x 103
Standard
dscmh
x I03
dscfh
x 103
Stack
Temper atura
°C
°F
Mol sture
%
°2
co2
%
Isoklnettc
1
No. 6 Plating Tank Mist Eliminator Outlet
M0-5A
MO-5B
MO-6A
MO-68
MO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
0831-1054
0834-1055
1150-1356
1151-1357
1408-1628
1409-1629
12.2
12.2
12.2
11.7
12.3
12.4
432
430
430
412
436
438
1.8
1.7
1.6
1.1
1.7
1.7
417
412
411
393
415
415
24
24
26
25
27
27
75
75
78
77
80
80
0.4
1.1
0.9
1.2
0.7
1.5
20.9
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
0.0
99.9
98.8
99.6
98.5
98.9
100.4
I
(->
CD
a¥olumetrle flow rate In actual cubic meters per hour {acmh) and actual cubic feet per hour (acfh) at stack conditions-
Volumetric flow rate In dry standard cubic meters per hour (dscmh) and dry standard cubic feet per hour (dscfh).
-------
TABLE 3.9. SWMARY OF HEXAVALEHT CHROMIUM AND TOTAL CHHOMIUM EMISSIOHS
Run
No.
Date
(1986)
Hexavalent Chromium
concent rat ion
mg/dacm
gr/dscf
xio'3
mass emissions
kg/h
x 10~
Ib/h
x 10"
Total Chromium
concentration
mg/decm
gr/dacf
x 1C"
mass emissions
ke/h
x 10"3
Ib/h
x 10*
No. S Plating Tank Exhaust
TE-1A
TS-1B
TE-2A
TE-2B
TE-3A
TS-3B
TE-4A
TE-4B
TE-5A*
TE-5B*
TE-6A
TE-6B
TE-7A
TE-7B
TE-8A
TE-8B
TE-9A
TE-9B
TE-10A
TE-10B
TE-11A
TE-11B
TE-12A
TE-12B
TE-13A
TE-13B
TE-14A
TE-14B
3/18
3/18
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/19
3/19
3/24
3/24
3/24
3/24
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/26
3/26
3/26
3/26
2.302
2.104
2.122
1.766
2.217
1.697
2.441
1.761
2.437
1.766
2.380
2.065
4.405
4.035
2.750
2.823
2.367
2.836
2.500
3.918
4.150
3.762
4.274
4.129
4,648
3.602
3.744
3.314
1.006
0.919
0.929
0.772
0.969
0.741
1.067
0.769
1.065
0.772
1.040
0.903
1.925
1.763
1.202
1.234
1.034
1.239
1.092
1.712
1.813
1.644
1.868
1.804
2.119
1.574
1.636
1.448
3.88
8.55
3.59 7.91
3.63
2.98
3.89
2.95
4.10
2.92
4.30
3.04
4.04
3.35
7.77
7.19
4.78
4.77
4.06
5.08
4.41
6.74
7.43
7.06
7.64
7.28
8.31
6.17
6.53
5.69
8.00
6.56
8.57
6.51
9.04
6.44
9.47
6.71
8.91
7.38
17.12
15.86
10.54
10.51
8.95
11.20
9.72
14.66
16.37
15.56
16.85
16.05
18.32
13.60
14.39
12.54
2.234
2.063
2.064
1.745
2.173
1.676
2.390
0.976
0.901
0.902
0.763
0.950
0.732
1.044
1.773 | 0.775
2.431 1,062
1.723 0.753
2.395 1,047
2.065 0,903
4.167 1,821
4.012 1,753
2.265 1.165
2.987 1.305
2.287
2.730
2.381
3.957
4.064
3.786
4.133
4.063
4.817
3.522
3.606
3.119
0.999
1.193
1,040
1.729
1.776
1,654
1,806
1.776
2,105
1,539
1.576
1,363
3.77
3.52
3.53
2.94
3.81
2.92
4.02
2.94
4.29
2.97
4.07
3.35
7.35
7.15
4.63
5.04
3.92
4.89
4.20
6.81
7.27
7.10
7.39
7.16
8.26
6.03
6.29
5.35
8.30
7.75
7.78
6.49
8.40
6.44
8.85
6.48
9.45
6.55
8.97
7,38
16.20
15.76
10,21
11.12
8.64
10.78 "•
9.26
15.01 **
16.04
16.66
16,30
15.79
18.20
13.30
13.86
11.80
No. 6 Plating Tank Mist Eliminator Outlet
MO-5A
MO-5B
MO-6A
MO-68
KO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
0.221
0.218
0.366
0.191
0.262
0.215
0.096
0.095
0.160
0.084
0.115
0.094
2.60
2.55
4.25
2.13
3.08
2.53
5.74
5.61
9.38
4.69
6.79
5.57
0.212
0.205
0.349
0.194
0.250
0.210
0.093
0.090
0.153
0.085
0.109
0.092
2.50
2.39
4.06
2.16
2.94
2.46
5.52
5.28
8.95
4.76
6.47
5.42
* Results revised flue to a likely labeling error.
** Results not considered valid due to dry gas meter loss of calibration.
3-19
-------
3,6,1 Sample Train Collection Efficiency and Evaluation of Hexavalent
Chromium Conversionto Trivalent Chromium - The first six paired sample runs
(TE-1A through TE-6B, as shown in Table 3-9) were run in one exhaust duct on
Tank No. 5, to evaluate both the collection efficiency of the impinger train
(ability to quantitatively collect both hexavalent and total chromium) and to
examine the potential for conversion of hexavalent chromium to trivalent
chromium in solution after collection. The results of a previous test had
shown an appreciable amount of trivalent chromium, which suggested a
possibility of conversion during sample collection and/or storage. One of
the paired trains (Train A) had 0.1N NaOH in the impingers and the sample was
recovered into ^ separate sample jars as follows: 1) fronthalf rinse and
first impinger contents, 2) second impinger contents and rinse, 3) third
impinger contents and rinse, and 4) backup Teflon filter. The results in
Table 3-10 show that about 99$ of both the hexavalent and total chromium was
collected in the fronthalf (nozzle and probe) and first impinger. By the
time the flue gas had passed through the last impinger, an average of 99-9%
of the chromium had been removed. Since the amount collected in the last
impinger averaged less than one percent, the impinger train is considered to
be acceptable with respect to collection efficiency (sample collected and
recovered). Also, the results indicate that it is not necessary to have a
backup Teflon filter.
The second evaluation was the check on possible conversion of hexavalent
chromiuo to trivalent chromium. In conducting this evaluation, the other
paired sample train (Train B) was used. In this case, the impingers were
charged with distilled water. Immediately upon completion of the sample
recovery from the train, NaOH was added to half of the sample to produce
approximately a 0.1N NaOH solution. These samples were then stored for 28
days and subsequently analyzed for hexavalent and trivalent chromium.
Results are shown in Table 3-H-
The other halves of the samples containing distilled water only were to
be analyzed for hexavalent chromium within 24 hours of sample collection.
Due to an inadvertent error, the distilled water samples from only the first
three runs were analyzed for hexavalent chromium within 2^ hours, as
planned. All six distilled water samples along with the six samples with
NaOH added were analyzed as planned 28 days after initial sample collection
(see Table 3.11)- The results for the paired train which had NaOH in the
3-20
-------
TABLE 3.10. SAMPLE THAIN (IKPINGER) COLLECTION EFFICIENCY
Date
(1966)
Run
No.
Sample Catch and Collection Efficiency
1st Imp .
Catch, ug
* of Total
2nd Imp .
Catch, ug
% of Total
3rd Imp.
Catch, ug
% of Total
Filter
Catch, ug
Hexavalent Chromium
3/18
3/18
3/18
3/19
3/19
3/19
TE-1A
TE-2A
TE-3A
TE-4A
TE-5A
TE-6A
2,764
2,480
2,750
2,790
2,050
2,680
99.9
99.6
99.3
99.0
93.6
98.3
< 4
10.4
13
20
96
22
99.9
100
99.8
99.7
98.0
99,1
< 4
< 4
5
9
35
24
99.9
100
100
100
99.6
100
2.0
< 2
< 2
< 2
9
< 2
Total Chromium
3/18
3/18
3/18
3/19
3/19
3/19
TE-1A
TE-2A
TE-3A
TE-4A
TE-5A
TE-6A
2,680
2,420
2,700
2,740
2.000
2,700
99.8
99.9
99.5
99.3
93.6
98.4
< 2
< 2
13.6
13
86
20
99.8
99.9
100
99.7
97.7
99.2
< 2
< 2
< 2
7
32
23
99.8
99.9
100
100
99.2
100
5.5
2.0
< 2
< 2
17
< 2
3-21
-------
TABLE 3.11. EVALUATION OF HEXAVALENT TO TRIVALENT CHROMIUM CONVERSION
BOTH DURING AND AFTER SAMPLE COLLECTION
Run
No.
Sample
Train A
Emission Hate, lb/hr x 10-3 (Train B)
Distilled Water Halves
1st Analysis
2nd Analysis
Difference, %
NaOll
Halves
Between Train Difference, %
Distilled Water Halves
1st Analysis
2nd Analysis
NaOH
Halves
Hexavalent Chromium
UJ
I
TE-1
TE-2
TE-3
TE-4
TE-5
TE-6
8.55
8,00
8.57
9.0
-------
impingers during testing (Train A) are also shown in Table 3-H- The results
of the analysis of the distilled water halves showed no significant
difference between the first analysis and the second analysis conducted 28
days later. The results of the distilled water samples when compared to the
split samples with NaOH added also showed no significant differences, again
suggesting that conversion over time is not a problem. The between train
results {comparison of Train A results to Train B results) do indicate that a
significant amount of chromium is unaccounted for when only water is used in
the impingers during testing.
3.6.2 Evaluation of the Method 5 Sample Train for Collection of Chromium -
The use of the Method 5 sample train for collecting both hexavalent and total
chromium emissions from a chrome plating operation with very low chromium
concentrations had, in an earlier study, proved to be questionable. To
determine the suittability of data obtained using EPA Method 5 from points
sources with moderate to high chromium concentrations, paired sample runs
were conducted both at the Tank No. 5 exhaust and the Tank No. 6 mist
eliminator outlet. One sample train (Train A) used impingers only for sample
collection and the other was a standard Method 5 train with filter. This was
done to evaluate the collection of chromium at two concentration levels. The
results are shown in Table 3.12 and 3-13- Train A represents the impinger
train results and the Train B represents the Method 5 train results. At the
uncontrolled emission levels (Tank No. 5 exhaust) with a Cr concentration
of about 3 mg/dscm, it appears that about 99$ of the emissions are collected
by the fronthalf of the Method 5 (front filter) train. However, when the
Method 5 sample train is compared with the impinger train, it appears that
about 10% of the emissions are not recoverable from the train. It is likely
that this material gets caught in the frit and then cannot be recovered. The
results are, however, relatively similar at these highcjr levels and any data
collected at uncontrolled emission levels using the Method 5 train should be
acceptable for data comparisons. There was a problem with the dry gas meter
during runs TE-9A and TE-10B and the runs are not considered valid.
The second comparison was conducted on controlled emissions with a
concentration of about 0.2 mg/dscm. As shown in Table 3-13. the Method 5
train showed less percent recovery in the fronthalf with about $B%. The
comparison of the Method 5 and impinger trains at these lower concentration
3-23
-------
UO
js-
TABLE 3.12. METHOD 5 TYPE SAMPLE TRAIN COLLECTION EFFICIENCY
AND COMPARISON WITH IMP INGER TYPE SAMPLE TRAIN
Run
No.
Date
(1986)
Analytical Results, u§
Front
Rinse
Front
Filter
Front
Total
% of Total
Frit
Rinse
Implnger
Contents
Back
Filter
Total
Emission Rate
Ib/hr
x 1Q~3
Dl f ference
Percent
Haxavatent Chromium
TE-7A
TE-7B
TE-8A
TE-88
TE-9A
TE-9B
TE-10A
TE-108
TE-IIA
TE-11B
TE-12A
TE-12B
TE-13A
TE-13B
TE-I4A
TE-14B
3/24
3/24
3/24
3/24
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/26
3/26
3/26
3/26
_
4,210
-
2,650
-
2,700
-
3,580
-
4,892
-
1,070
-
3,960
_
3,470
—
981
-
351
-
442
-
249
-
582
_
510
-
520
_
395
-
5,191
-
3,201
_
3,142
-
3,829
-
5,474
-
1,580
-
4,480
-
3,865
_
99.9
-
93.1
_
100
-
99.5
-
100
-
**
-
99.5
-
99.6
_
3
-
< 2
_
< 4
-
< 3
-
< 3
-
5
-
< 4
_
4
5,550
< 6
3,250
61
2,950
< 8
2.940
20
5,320
< 8
5,170
3,560
6,270
23
4,890
12
< 2
-
< 2
_
< 2
-
< 2
-
< 2
-
< 2
-
< 2
-
< 2
—
5,550
5,194
3,250
3,262
2,950
3,142
2,940
3,849
5,320
5,474
5,170
5,140
6,270
4,503
4,890
3,881
16.20
15.76
10.21
11.12
8.64
9.06
9.26
12.50
16.04
16.66
16.30
15.79
18.20
13.30
13.86
11.80
_
-2.7
-
+8.9
_
*
-
«
-
+3.7
-
-3.1
-
-26.9
-
-14.7
* Results not shown due to the problem with the dry gas meter calibration on these runs*
** Apparently, the fronthalf train rinse was combined with the Implnger contents during cleanup.
-------
levels showed a greater difference than at the higher concentration levels.
In general, the impinger train measured emission levels about 25% greater
than the Method 5 train. The chromium data previously collected using the
Method 5 train on controlled emissions at these levels could be considered
valid if the results were increased slightly. However, if the concentrations
measured are substantially below 0.2 ug/dscm, the data suggests that the EPA
Method 5 results may be questionable.
3.6.3 Methods Evaluation Conclusions - The combination of the impinger train
with 0.1N NaOH as the reagent for sample collection and the EPA draft method
for hexavalent chromium analysis proved acceptable as the EPA Reference
Method for sampling and analysis of hexavalent chromium. Although the
reference trains were not run in pairs, the data clearly demonstrates that
this sampling and analytical method has very good precision, and the analysis
of the quality assurance samples shows (as with previous tests) that the
method has good accuracy. The precision seems to be very similar to that
shown for EPA Method 5-
Based on these studies, no further evaluation of this method needs to be
made at chromium concentrations equal to or greater than those evaluated.
3.6.4 Summary of Analytical Results for Methods Evaluation Runs - The
summary of the analytical results for hexavalent and total chromium for
all samples collected for methods evaluation purposes is shown in
Table ^.±^. The results shown in Table 3-1^ for hexavalent chromium are the
results obtained by the EPA tentative method for "Determination of Hexavalent
Chromium Emissions from Stationary Sources" and the results for total
chromium are results obtained by analyzing an aliquot of the liquid sample
for total chromium by Inductively-Coupled Argon Plasmography (ICP). When the
total chromium sample shows "Residue" as the amount of sample analyzed, then
the filter residue was analyzed by ICP and these results were added to the
results for hexavalent chromium to give the total chromium results.
The Quality Assurance audit samples for these results are the same as
for the standards setting runs and are shown in the Quality Assurance
Section 5.0.
3-25
-------
U)
1
I\J
TABLE 3.13. METHOD 5 TYPE SAMPLE TRAIN COLLECTION EFF 1C IENCT
AND COMPARISON WITH IW IMGER TYPE SAMPLE TRAIN
Run
No.
Date
(1986)
Analytical Results, ug
Front
Rinse
Front
Filter
Front
Total
* of Total
Frit
Rinse
tmplnger
Contents
Back
Fllter
Total
Emission Rate
Ib/hr
x 10~3
01 f ference
Percent
Haxavalent Chromium
Total Chromium
MO-5A
MO-58
MO-6A
MO-6B
MO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
_
757
_
720
-
767
_
26
_
9
-
< 1
.»
783
.
729
-
767
_
99.1
.
98.6
-
96.2
_
< 3
-
3
-
< 3
897
7
1,460
7
1,050
30
< I
-
< 2
-
< 2
-
897
790
1,460
739
1,050
797
17.79
17.38
29.05
14.54
21.05
17.26
m.
-2.3
_
-49.9
..
-18.0
MO-5A
MO-5B
MO-6A
MO-6B
MO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
«.
707
-
733
-
754
—
36
-
9
-
< 2
*
743
-
742
_
754
«,
100
-
98.9
_
97.2
.*
< 2
-
2
_
< 2
862
< 4
1,380
6
1,000
22
< 1
-
13
-
< 1
-
862
743
1,393
750
1,000
776
17.09
16.35
27.72
14.76
20.05
16.81
«.
-4.3
-
-46.8
_
-16,2
-------
TABLE 3.14.
SUMMARY OF "A" ASD "B"
AND TOTAL CHROMIUM
TRAIN ANALYTICAL RESULTS FOR HEXAVALENT
Run
No,
Date
(1966)
Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
No. 5 Plating Tank Exhaust
TE-1A
"
•*
«
TE-2A
"
••
"
T£-3ft
"
"
"
TE-4A
"
«
**
TE-5A
••
"
"
TE-6A
«
••
"
3/18
•
"
**
3/18
•
"
**
3/18
M
**
"
3/19
"
••
"
3/19
"
••
"
3/19
•>
•
"
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
G-l
G-2
0-3
G-4
G-5
G-6
G-7
0-8
G-9
G-10
G-ll
G-12
G-13
G-14
G-15
G-16
G-17
6-18
G-19
G-20
G-21
G-22
G-23
G-24
2.764
< 4
< 4
2.0
2,480
10.4
< 4
< 2
2,750
13.0
5.0
< 2
2,790
20
9
< 2
2,050
96
35
9
2,680
22
24
< 2
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
2.680
< 2
< 2
5.5
2,420
< 2
< 4
2.0
2,700
13.6
< 2
< 2
2,740
13
7
< 2
2,000
88
32
17
2,700
20
23
< 2
(continued). .
3-27
-------
TABLE 3.14. (continued) SUlWiARY OF "A" AND "B" TRAIN ANALYTICAL RESULTS FOR HEXAVALENT
AND TOTAL CHROMIUM
Run
No.
Date
(1966)
Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
No. 5 Plating Tank Exhaust
TE-7A
ft
TE-8A
M
TE-9A
**
TE-10A
**
TE-11A
**
TE-12A
"
TE-13A
"
TE-14A
M
3/24
*'
3/24
**
3/25
**
3/25
"
3/25
**
3/25
3/26
**
3/26
"
Inipinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Irr.pinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
G-25
G-26
G-27
G-28
G-29
G-30
G-31
G-32
G-33
G-34
G-35
G-36
G-37
G-38
G-39
G-40
5,550
< 2
3,250
< 2
2.950
< 2
2.940
< 2
5,320
< 2
5,170
< 2
6,270
< 2
4,890
< 2
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
5,250
< 2
3.150
< 2
2,850
< 2
2,800
< 2
5,210
< 2
5,000
< 2
6,230
< 2
4,710
< 2
No. 6 Plating Tank Hist Eliminator Outlet
MO-5A
"
MO-6A
**
MO-7A
f*
3/26
11
3/26
n
3/26
"
Inipinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
G-99
G-100
G-105
G-106
G-lll
G-112
897
< 1
1.460
< 2
1,050
< 2
Total
Residue
Total
Residue
Total
Residue
862
< 1
1,380
12.9
1.000
< 2
(continued).
3-28
-------
TABLE 3.14, (continued)
SUMMARY OF "A" AND
AND TOTAL CHROMIUM
"B" TRAIN ANALYTICAL RESULTS FOR HEXAVALE8T
Run
No.
Date
(1966)
Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
No. 5 Plating Tank Exhaust
TE-1B
**
TE-2B
"
"
TE-3B
"
**
TE-4B
"
"
TE-5B
"
**
IE-SB
"
**
TE-7B
»
"
**
3/18
»
**
3/18
"
"
3/18
"
"
3/19
"
**
3/19
«
*
3/19
*
"
3/24
"
«
"
Imping, 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. NaOH
Pronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
G-41
G-42
G-43
G-44
6-45
G-46
G-4?
G-48
G-49
G-50
G-51
G-52
G-53
-G-S4
G-55
G-56
G-57
G-58
6-59
G-60
G-61
G-62
2,566/2,473*
2,644
< 2
2.018/2,018*
2,093
< 1
2,201/2.236*
2,218
< 1
2,093
2,175
< 1
2,907
3,342
< 1
2,703
2,445
< 1
< 6
4,210
3
981
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Total
Residue
2.574
2,582
10
2.065
2,065
4
2,340
2,184
7
2,175
2,190
< 1
3,018
3,334
< 1
2,690
2,445
< 1
< 6
4,060
< 2
1,104
(continued). . .
Represents the analysis conducted on day 1 and day 28 on the same sample.
3-29
-------
TABLE 3.14. (continued)
SUMMARY OF "A" AND
AND TOTAL CHROMIUM
'B* TRAIN ANALYTICAL RESULTS FOR HEXAVALENT
Run
No.
Date
(1986)
Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
No. 5 Plating Tank Exhaust
TE-8B
"
"
"
TE-9B
••
«
"
TE-10B
»
••
"
TE-11B
«!
«
TE-12B
"
••
*<
TE-13B
«
"
"
TE-14B
"
•1
~
3/24
"
-
"
3/25
-
»
"
3/25
»
"
"
3/25
c
"
"
3/25
"
••
"
3/26
"
»
•*
3/26
"
"
"
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinae NaOH
Glass Filter
Impinger NaOH
Fronthalt Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinsu NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOK
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
G-63
G-64
G-65
G-66
G-67
G-68
G-69
G-70
G-71
G-72
G-73
G-74
G-75
G-76
G-77
G-78
G-79
G-80
G-81
G-82
G-83
G-84
G-85
G-86
G-87
G-88
G-89
G-90
61
2,650
< 2
551
< 8
2,700
< 4
442
20'
3 . 580
< 3
249
< »
4 , 892
< 3
58;:
3,560
1 . 070
s
510
23
3.960
< 4
520
12
3 , 470
4
395
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
50
2,610
< 2
992
7
2.530
< 4
488
13
3,600
< 3
274
B
4,845
2
656
3,440
1.040
8
575
18
3.790
< 4
595
< 4
3,210
. < 2
443
(continued).
3-30
-------
4.0 SAMPLING LOCATIONS AND TEST METHODS
This section describes the sampling locations and test methods used to
characterize emissions from hard chromium plating tank No. 6 at the Greensboro
Industrial Platers' facility in Greensboro, North Carolina. It also includes a
section describing the testing location, sampling procedures, and analytical
techniques used in the methods development testing conducted in one of the
exhaust ducts from plating tank No. 5. Three sampling locations were used in
the emissions testing program: the inlet and outlet of the No. 6 plating tank
mist eliminator and the No. 5 plating tank exhaust duct. At the No. 6 plating
tank mist eliminator inlet and outlet, emissions testing was performed for
hexavalent chromium content, total chromium content, and chromium distribution
with respect to particle size distribution. At the No. 5 plating tank exhaust,
emissions testing was performed for hexavalent chromium content and total
chromium content only. From the No. 6 plating tank, grab samples of the anode,
cathode, and bath solutions were collected for hexaval€jnt and total chromium
analysis. Grab samples were also collected from the No. 6 rinse tank for
hexavalent and total chromium analysis. The relative positions and the type of
testing conducted at each location are shown in a simplified process flow
diagram (see Figure 4-1) and accompanying Table 4.1. The subsections which
follow further describe each sampling location and applicable test methods.
4.1 NO. 6 PLATING TANK MIST ELIMINATOR INLET (TEST LOCATION A)
Hexavalent chromium, total chromium, and chromium distribution with respect
to particle size distribution were measured at the inlet of the mist eliminator
on tank No. 6, as shown in Figure 4-2. One sampling port was installed on the
side of the horizontal circular duct (24.75 inches in diameter). This port was
located 9 inches (0.40 duct diameters) upstream from a bend in the duct to the
scrubber and 8 inches (0,35 duct diameters) downstream from an expansion in the
duct. Because of the close proximity of flow disturbances, this location did
not meet EPA Method 1 sampling requirements; however, there was no other
location available for inlet testing. Prior to testing, a cyclonic flow check
was performed to determine if any cyclonic flow existed at the sampling
location. An average yaw angle of 9.5 was measured, indicating an acceptable
sampling location with respect to EPA Method 1 requirements.
4-1
-------
ATMOSPHERE
t
STACK
TEST LOCATION
(C)
1
TEST LOCATION
(B)
MIST
ELIMINATOR
WASH
DOWN
TEST LOCATION
(A)
PLATING
TANK *6
TEST LOCATION
CD)
FIGURE 4-1, PROCESS AIR FLOW SCHEMATIC, PLATIN6 TANK
CONTROL EQUIPMENT SHOWING TEST LOCATIONS.
•6 AND
-------
TABLE 4.1. SAMPLING PLAN FOR GREENSBORO INDUSTRIAL PLATERS
Sample Type
Sampling
Locations
Number
of Samples
Methods*
Standards Setting
Hexavalent Cr
Total Cr
Hexavalent &.
Total Cr
A & B
A & B
C
D
E
4 each
4 each
11 grab
3 sets of 4 grab
2 grab
Method 13~Type Impinger "
Train & Tentative Method
for Hexavalent Cr
Method 13~Type Impinger
Train & EPA Protocol for
Total Cr
Tentative EPA Method
for Hexavalent Cr & ICP
Particle Sizing
Hexavalent &
Total Cr
Distribution
by Particle
Size
A &. B
3 each
Impactor using
Tentative EPA Method
for Hexavalent Cr & ICP
Methods Development
Hexavalent &,
Total Cr
B
F
3 pairs
14 pairs
Various Paired Sampling
Trains (see Appendix C)
using Tentative EPA
Method for Hexavalent Cr
& ICP
ICP: Inductively-Coupled Argon Plasmography
4-3
-------
23.75" DIA.-
SECTION l-L
TRAVERSE POINTS
1 AXIS
12 POINTS/AXIS
12 TOTAL POINTS
ROOF LINE
FAN
/
/
MIST
ELIMINATOR
\
\
t
2
1
L
r
<
r»
I
DA
/ (HEIGHT « 15')
»t
^""""•"--^ 1 F001
<4 jJ TANK
^P T , T -, J
-7
^
9'
FROM TANK
DRAIN PIPE
FOR
WASH DOWN
RECYCLE
TO TANK
FLOOR
FIGURE 4-2. MIST ELIMINATOR INLET (TEST LOCATION A).
-------
For the Method 13-type impinger train testing (refer to Appendix C for
further discussion of sampling train and sample analysis procedures),
sampling was conducted along two axes through the single port (labeled "A" in
Figure 4-2). The axis perpendicular to the sampling port axis (labeled "B")
was sampled by inserting the probe through the available port at a
predetermined angle for a predetermined distance, both of which were
calculated geometrically,
A total of 12 points were sampled for 5 minutes each on the "A" axis;
however, only 6 points (see Figure 4-3) were sampled on the "B" axis due to
the size of the port limiting the angle with which the probe could be
inserted. Points 1 and 6 were sampled for 20 minutes each, while points 2
through 5 were sampled for 5 minutes each. The total test time for each run
was 120 minutes. Each run was performed concurrently with the outlet
testing.
For the particle size tests (including hexavalent and total chromium
distribution by particle size) the first run of the three-run series was
conducted at a sampling point representing the average velocity in the duct.
To ensure consistent cut-sizes on the impactor plates, the remaining two runs
were conducted at points having the same velocity as the first run. The
three particle size runs ranged from 123 to 180 minutes in duration.
4.2 NO. 6 PLATING TANK MIST ELIMINATOR OUTLET (TEST LOCATION B)
Hexavalent chromium, total chromium, and chromium distribution with
respect to particle size distribution were measured at the outlet of the
No. 6 mist eliminator, as shown in Figure 4-4. Two sampling ports were
installed 90 apart on the 13•5 inch diameter stack extension. The ports
were located 36 inches (2.5 stack diameters) upstream from the stack exit and
89 inches (6.5 stack diameters) downstream from the expansion in the duct
leading from the induction fan.
For the Method 13~type impinger train (refer to Appendix C for further
discussion of sampling train and sample analysis procedures), a total of 16
points, as per Method 1, were sampled. Each point was sampled for 8 minutes
for a total sampling time of 128 minutes.
For the particle size tests (including hexavalent and total chromium
distribution by particle size) the first run of the three-run series was
4-5
-------
23.75"
i
\
\
i
t
I
f
4.5" 4
ii
FIGURE 4-3. CROSS SECTION OF MIST ELIMINATOR INLET SHOVING LOCATIONS OF SIX POINTS
TRAVERSED ON AXIS PERPENDICULAR TO SINGLE PORT.
_
-------
13.5" DIA,
TRAVERSE POINTS
2 AXES
6 POINTS/AXIS
16 TOTAL POINTS
SECTION S-S
T
3'
7
i
o
A
\.
•ROOF
FROM FAN
FIGURE 4-4. MIST ELIMINATOR OUTLET STACK (TEST LOCATION B),
-------
conducted at a sampling point representing the average velocity in the duct.
To ensure consistent cut-sizes on the impactor plates, the remaining two runs
were conducted at points having the same velocity as the first run. The
three particle size runs ranged from 123 to 240 minutes in duration.
4.3 NO. 6 PLATING TANK MIST ELIMINATOR WASH DOWN DRAIN PIPE (TEST LOCATION C)
During each day of sampling, grab samples were collected during the mist
eliminator wash down cycles. The samples were collected by holding a sample
jar beneath the drain pipe as the wash down cycle was in progress. Five
samples were collected on March 18, three samples were collected on March 19,
and three samples were collected on March 25. At the end of each day, the
samples were combined into a single sample for analysis of hexavalent and
total chromium content.
4.4 NO. 6 PLATING TANK ANODE, CATHODE, AND BATH SOLUTION (TEST LOCATION D)
During each set of runs, grab samples of the tank solution were collected
near the anode area and the cathode area, and from the bath. The samples were
collected at a point showing the most turbulence and bubbling. Each sample
was analyzed for hexavalent and total chromium content.
4.5 NO. 6 PLATING TANK RINSE TANK (TEST LOCATION E)
During each day of sampling, a grab sample was collected from the rinse
tank which supplies the water used to rinse off the parts as they are lifted
from the No. 6 plating tank. The parts are rinsed directly over the plating
tank. The samples were analyzed for hexavalent and total chromium content.
4.6 NO. 5 PLATING TANK EXHAUST (TEST LOCATION F)
Hexavalent and total chromium methods evaluation tests were conducted in
one of the exhaust ducts coming off plating tank No. 5. as shown in
Figure 4-5- Two sampling ports were installed side-by-side on the side of the
angled circular duct (11.5 inches in diameter). The main port (A) was located
14 inches (1.22 duct diameters) upstream of a bend in the duct and 30 inches
(2.6l duct diameters) downstream of another bend in the duct from the plating
tank. Since the methods evaluation sampling was .conducted at two "single
points" it was not imperative that this location meet EPA Method 1
requirements.
4-8
-------
11.5"
SECTION R-R
TO MIST
ELIMINATOR
R
TRAVERSE POINTS
I AXIS
3 POINTS/AXIS
3 TOTAL POINTS
FROM TANK
FIGURE 4-5. EXHAUST DUCT ON PLATING TANK «5 (METHODS DEVELOPMENT TEST LOCATION E).
4-9
-------
For the method development testing (refer to Appendix C for a detailed
discussion of the sampling trains and analytical procedures used), paired
train sampling was conducted through the two ports. The nozzles of the two
trains were staggered in the duct and halfway through each run the train and
probe positions were reversed. The total test time for each run was 60
minutes.
4.? VELOCITY AND TEMPERATURE
A type S pitot tube and magnehelic gauges were used to measure the gas
velocity pressure (delta P). Velocity pressures were measured at each
sampling point across the duct or stack to determine an average value
according to the procedures outlined in Method 2. The temperature at each
sampling point was measured using a thermocouple and digital readout.
4.8 MOLECULAR WEIGHT
The flue gas composition and molecular weight were assumed to be those
of ambient air,
4.9 SAMPLING TRAINS
Hexavalent Chromium and Total Chromium - A Method 13-type impinger train
was used to capture chromium emissions at locations A and B. All tests were
conducted isokinetically by traversing the cross-sectional area of the duct
or stack and regulating the sample flow rate relative to the flue gas flow
rate as measured by the pitot tube attached to the sample probe. The
sampling train consisted of a heated, glass-lined probe, a filter bypass,
four impingers (the first three containing 100 mL of 0.1N NaOH each and the
fourth containing silica gel). A Teflon filter was also employed between the
third and fourth impingers. A 0.1N NaOH rinsing of the nozzle, probe, and
first three impingers (the contents of each impinger and its rinse was kept
separate for efficiency testing) was made at the end of each test. The
Teflon filter was kept dry and separate.
Particle Size Distribution - Particle size samples were collected using
Andersen Mark III cascade impactors. These in-stack, multi-stage cascade
impactors have a total of eight stages followed by a back-up filter stage and
particle size cut-offs ranging from 0.5 to 15 microns. Substrates were 64 mm
diameter glass fiber filters. A constant sampling rate was maintained
4-10
-------
through the test period. Sampling rates were set for isokinetic sampling as
long as the sampling rate did not exceed the recommended flow rate for the
impaetor. See Appendix C for detailed sampling procedures. At the locations
sampled, a point of average velocity was sampled. With the exception of the
selection of the sampling point locations, the procedures used followed those
recommended in the "Procedures Manual for Inhalable Particulate Sampler
Operation" developed for EPA by the Southern Research Institute.
4.10 HEXAVALENT CHROMIUM CONTENT
Hexavalent chromium content was determined utilizing procedures
described in the tentative EPA Method "Determination of Hexavalent Chromium
Emissions from Stationary Sources" (see Appendix C). At the end of each
Method 13~type impinger train run, the impinger reagent and rinsings were
combined into one sample. The impinger reagents and rinsings as well as the
Teflon filter were analyzed for hexavalent chromium content using this
method. It was also used to determine the hexavalent content of the process
samples which were collected.
Two different sample preparation techniques were used. For the
standards setting testing presented in Subsections 3-0 through 3*5t the
samples were first filtered. The filtered residue was sent for total
chromium analysis and the filtrate was sent for hexavalent chromium
analysis. For the methods development testing described in Subsection 3-6
and the process samples, two separate aliquots of the Eiample were analyzed,
one for total chromium and one for hexavalent chromium.
4.11 TOTAL CHROMIUM CONTENT
Total chromium content was determined using procedures described in the
"EMB Protocol for Sample Preparation and Emission Calculation of Field
Samples for Total Chromium" which includes Neutron Acti.vation Analysis (NAA)
and using Inductively-Coupled Argon Plasaography (ICAP) (see Appendix C). As
described above and in Appendix C, the standards setting impinger samples
were prepared one way and analyzed using NAA and the methods development and
process samples were prepared another way and analyzed using ICAP.
4-11
-------
5.0 QUALITY ASSURANCE
Because the end product of testing is to produce representative emission
results, quality assurance is one of the main facets of stack sampling.
Quality assurance guidelines provide the detailed procedures and actions
necessary for defining and producing acceptable data. Two such documents were
used in this test program to ensure the collection of acceptable data and to
provide a definition of unacceptable data. These documents are: the EPA
Quality Assurance Handbook Volume III, EPA-600/4-77-02? and Entropy's "Quality
Assurance Program Plan" which has been approved by the U.S. EPA, EMB.
Relative to this test program, the following steps were used to ensure that
the testing and analytical procedures produced quality data.
* Calibration of field sampling equipment. (Appendix D describes
calibration guidelines in more detail.)
• Checks of train configuration and on calculations.
* On-site quality assurance checks such as sampling train, pitot tube,
and quality assurance checks of all test equipment prior to use.
» Use of designated analytical equipment and sampling reagents.
Table 5•1 summarizes the on-site audit data sheets for the sampling
equipment used for the testing at each sampling location, including deviation
limits. In addition to the pre- and post-test calibration audits, a field
audit was performed on the meter boxes used for sampling. Entropy used the
procedures described in the December 14, 19&3 Federal Register (48FR55670).
In addition, the analytical balance used for filter weighing was audited with
Class "S" weights. Appendix D includes the audit run data sheets for each
dry gas meter used for the testing and audit data sheets for the other
sampling equipment.
Audit solutions prepared by the EPA were used to check the analytical
procedures of the laboratories conducting the hexavalent chromium and total
chromium analyses. Table 5-2 presents the results of these analytical
audits. The audit tests show the analytical techniques were accurate.
The sampling equipment, reagents, and analytical procedures for this
test series were in compliance with all necessary guidelines set forth for
accurate test results as described in Volume III of the Quality Assurance
Handbook,
5-1
-------
TABLE 5.1. FIELD EQUIPMENT CALIBRATION
Equipment
Meter box (N-5)
Meter box (N-9)
Meter box (N-?)
Meter box (N-7)
Meter box (N-l4)
Meter box (R-2)
Meter box (N-8)
Reference
Field Audit (3/25)
Field Audit (3/25)
Field Audit (3/25)
Field Audit (3/26)
Field Audit (3/26)
Field Audit (3/26)
Field Audit (3/26)
Allowable
Error
Y + 0.05Y
Y + 0.05Y
Y + 0.05Y
Y +_ 0.05Y
Y +_ 0.05Y
Y + 0.05Y
Y + 0.05Y
Actual
Error
+0.02?
-0.005
+0.002
+0.008
+0.003
+0.019
+0.042
Within
Allowable
Limits
s
,/
^
I/
^'
^
5-2
-------
TABLE 5-2, AUDIT REPORT CHROMIUM ANALYSIS
Plant:
Date Samples Received:
Samples Analyzed By: _
Reviewed By: re
z> / $*&
*%
Task No.: 3SO3
Date Analyzed:
Date of Review: f-/66»
Sample
Number
£-12-1
b-123
6-121
ug/mL
Cr""6 or Cr
fOOA*4 Cr ^
l-tOO/AH Cr+3
•/
n
It
Source of
Sample
Q^t>
QAJ>
6|/H>
Analytical
Technique
//AA
Cr*
TtP
Audit
Value
ZOie^l
9(*4
Iff
Relative
Error, %
i-S.?
-3.6
-3.0
5-3
-------
APPENDIX A
TEST RESULTS AND EXAMPLE CALCULATIONS
A-l
-------
A-2
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., ir».H2Q
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
Ho.
A-4
A-4
A-4
B-5
B-5
B-5
FINAL
Sample
Tim*
(Min.)
0/0
10
20
30
40
50
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
SI .652
89.11
95.86
102.40
110.46
118.57
126.78
GREENSBORO !». PLATERS
COATING TANK *3-EXHAUST
29.2
-0.75
0.002
8
Velocity
Head
(in.H20)
0.175
0.131
0.132
0.204
0.206
0.213
DATE: 03/18/86 OPERATOR:
RUN NUMBER TE-1A
NOZZLE * , NOZZLE 0 1 AM . 508 ,.313
METER BOX iHf' 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
B. RUDD
ASSUMED MOISTURE 2
Orifice iH
(in. H20)
Desired Actual
1.89 1
1.42 1
1.43 1
•*> *^l < <~r
2:23 2
2.31 2
.89
.42
.43
.21
--,.-,
..J-.~'
.31
Gas Meter
Temp.
(deq.F)
81
37
83
88
SO
90
Pump
Vac.
-------
PLANT
SAMPLING LOCATION
FILTER NUMEER(S)
B AR. PRESS., in. Hq
STATICPRESS.,in"H2Q
LEAK RATE, CFM
LEAK TEST VACUUM., in Hg
Trov .
Point
No.
B-5
B-5
B-5
A-4
A-4
A-4
FINAL
DIFF/
Sample
Time
(Min.)
0/0
10
20
30
40
50
60/OFF
AVG.
Gas Meter
Reading
(Cu.Ft.)
327.000
334.54
342.68
351.132
358.41
365.67
372.88
GREENSBORO (NO. PLATERS
COATING TANK *5-EXHAUST
29.2
-0.75
0.016
8
Velocity
Head
(in.H20)
0.175
0.217
0.224
0.155
0.156
0.157
Orifice
Cin.H
Desired
1.6Q
2.10
2.17
1.50
1.51
1 .52
4H
20;
Actual
1 .69
2.10
A, - 1 t'
1.5C
1.51
1.32
DATE: 03/18/86 OPERATOR:
RUN NUMBER TE-1E
NOZZLE *, NOZZLE DIAM. 50Q ,.31 2
METER BOX i,H® 1 .53
SAMPLE BOX NUMBER 13
METER BOH NUMBER N-1 0
ASSUMED MOISTURE 2
Gas Meter-
Temp .
(deci, F)
Tt1
74
76
76
78
81
Pump
Vac.
(in.Hq)
cr
J
6
6
IT
c
-J
5
Fitter
Box Temp .
(deg.r)
121
120
122
122
126
128
Imp. Exit
Temp.
(deq.F)
66
67
66
65
65
66
B.RUDD
Stack Leak
Temp. Check
(e)*g.F)
67
58
67
68
68
67
45.38'
0.180
76 32
67.50
A-4
-------
PARTICULATE FIELD DATA fi RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North
RUN f DATE SAMPLING LOCATION
TE-1A 03/18/86 Coating Tank #5 - Outlet
TE-1B 03/18/86 Coating Tank #5 - Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF HETERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
M£d DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MQLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
ws FLUE GAS VELOCITY. FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F -- 29.92 Inches of Mercury (Hg)
Carolina
TEST TEAM LEADER
Barry F.
Barry F.
TE-1A
915
1021
2
60.00
0.313
0.840
0.994
29.20
1.920
45.121
87
42.438
14.0
0.659
1.5
0.985
28,84
28.67
-0.75
29.14
67
0.1750
23,86
103.9
992.2
1,033
96.1
Rudd
Rwdd
TE-1B
915
1022
2
60.00
0.312
0.840
1.002
29.20
1.750
45.883
76
44.376
17.0
0.800
1.8
0.982
28.84
28.64
-0,75
29.14
68
0.1800
24.23
103.9
1,003
1,049
100.0
(continued next page)
A-5
-------
jg
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/H0UR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION. GRAINS PER DSCF*
Lb/Hr EMISSION HATE, LBS/HOUE
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dsem*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscra*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TE-1A
TE-1B
[ 2,766,0 ) ( 2,644.0 J
•»
{ 1.006 ) { 0.9195 )
( 8.554 ) ( 7.907 )
( 2,684.0 ) ( 2,592.0 )
JO.9760 ) ( 0.9014 )
{ 8.300 } ( 7.752 }
67
19
0.0018
0.0620
0.0017
0.0595
( 2301.7691 )
( 1.005842 )
{ 3.8800 J
( 8.5540 )
( 2233.5315 )
( 0.976024 )
(3.7650)
(8.3004)
68 deg. F
20 deg. C
0.0018 acmh
0.0629 acfh
0.0017 dscmh
0.0602 dscfh
'2104.1618) mg/flscm
[ 0.919491) gr/dscf
( 3.5866 ) kg/hr
( 7.9072 ) Ib/hr
!2062.7789) mg/dscm
(0.901407) gr/dscf
(3.5161) kg/hr
( 7.7516) Ib/hr
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
( ) = X 10~3
A-6
-------
EXAMPLE PARTICULATE TEST CALCULATIONS NO. TE-1A
Coating Tank #5 - Outlet
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
(Pbar + Delta H/13.6)
Vm(std) = 17.64 * Y * Vm *
(460 + tm)
(29.20 -i- 1.920/13.6)
Vra(std) = 17.64 * 0.994 * 45.121 * = 42.438 DSCF
(460 + 87)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
Vw(std) = 0.04707 * VlC
Vw(std) = 0.04707 * 14.0 = 0.659 SCF
PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS
%H20 = 100 * Vw(std) / (Vw(std) + Vm(std))
0.659
%H2O = * 100 = 1.5 %
0.659 + 42.438
DRY MOLE FRACTION OF FLUE GAS
Mfd = 1 - %H20/100
Mfd = 1 - 1.5/100 = 0.985
WET MOLECULAR WEIGHT OF FLUE GAS
Ms = (Md * Mfd) + (0.18 * %H2O)
Ms = 28.84 * 0.985 + (0.18 * 1.5) = 28.67 LB/LB-MOLE
A-7
-------
ABSOLUTE FLUE GAS PRESSURE
Ps = Pbar + Pg / 13.6
Ps = 29.20 + ( -0.7 / 13.6) = 29.14 IN. HG.
AVERAGE FLUE GAS VELOCITY [Note: (Delta p)avg is square of avg sq. root]
(Delta p)avg * (460 + ts)
vs = 85.49 * Cp * SQRT[ ]
Ps * Ms
0.1750 * (460 + 67)
vs - 85.49 * 0.840 * SQRT[ ] = 23.9 FT/SEC
29.14 * 28.67
DRY VOLUMETRIC FLUE GAS FLOW RATE @ STANDARD CONDITIONS
60 Tstd Ps
Qsd = * Mfd * vs * A * *
144 ts + 460 Pstd
60 528 29.14
Qsd = * 0.985 * 23.9 * 103.9 * *
144 67 + 460 29.92
Qsd = 992 SCFM
WET VOLUMETRIC STACK GAS FLOW RATE @ FLUE GAS CONDITIONS
Qaw = 60 / 144 * vs * A
Qaw = 60 / 144 * 23.9 * 103.9 = 1,033 ACFM
PERCENT ISOKINETIC OF SAMPLING RATE
Pstd 100 (ts + 460) * Vm(std)
= * * .
Tstd 60 Ps * vs * Mfd * Theta * Area-nozzle, sq.ft.
29.92 100 ( 67 + 460) * 42.438
_ * ___ *
528 60 29.14 * 23.9 * 0.985 * 60.00 * 0.0005343
= 96.1 %
A-J
-------
GRAINS PER DRY STANDARD CUBIC FOOT
7000 mgs
gr/DSCF = *
453,592 Vm(std)
7000 2,766.0
gr/DSCF = * — = 1.0058 gr/DSCF
453,592 42.438
— POUNDS PER HOUR
Lb/Hr = 60 / 7000 * gr/DSCF * Qsd
Lb/Hr e 60/7000 * 1.0058 * 992 = 8.55 LB/HR
A-9
-------
PLANT
SAMFLIN0 LOCATION
FILTER NUMBER(S)
BAR. PRESS.,, in. Hg
STATIC PRESS,, in. H20
LEAKRMI.CFM
LEAK TEST VACUUM, in H
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS,, in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov,
Point,
No.
B-5
B-5
B-5
A-4
A-4
A-4
FINAL
Sompie
Tim?
(Min.)
0/0
10
20
30
40
50
60 /OFF
Cos Meter
Reading
(CuJFt.)
373.102
3S0.98
383.18
393.648
402.61
409.42
416.227
GREENSBORO 1ND. PLATERS
COATING TANK *3-EXHAUST
29.2
-0.75
0.000
10
Velocity
Head
(m.H20)
0.196
0.193
0.1 '32
0.157
0.162
0.162
Orifice
(in. H
Desired
1.39
1.61
1.6!
1.40
1.35
1.33
4H
20)
Actual
1 .39
1.6!
1.61
1.40
1.35
1.35
DATE: 03/18/86 OPERATOR:
RUN NUMBER TE-2B
NOZZLE *, NOZZLE DIAM. 1 0S ...301
METER BOX iH@ i ,63
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-10
ASSUMED MOISTURE 2
Gas Meter
Temp.
(dea., F)
65
59
73
78
82
35
Pump
Vac.
Cin.Hg)
3
8
8
™r
7
•?
Filter
Box Temp.
CdegJ)
128
129
130
127
127
125
Imp. Exit
Temp.
(d»g.F)
63
56
66
53
62
63
B. RUDD
Stock Leak
Temp. Check
(d»g.F)
71
71
71
70
70
70
DIFFMVG.
43.
0.178
1.54
75.33
70.50
A-ll
-------
PARTICULATE FIELD DATA K RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-2A
TE-2B
03/18/86 Coating Tank #5 - Outlet
03/18/86 Coating Tank #5 - Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dis NOZZLE DIAMETER, INCHES
Cp PITDT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD. INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Dsd VOLUMETRIC AIR FLOW RATE, DEY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%! ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
Barry F,
Barry F.
TE-2A
1253
1400
2
60.00
0.304
0.840
0.994
29.20
1.760
43.518
80
41.444
15.0
0.706
1.7
0.983
28.84
28.65
-0.75
29.14
71
0.1820
24.43
103.9
1.007
1,058
98.1
Ruda
Rudel
TE-2B
1254
1402
2
60.00
0.301
0.840
1.002
29.20
1.540
43.225
75
41.861
19.0
0.894
2.1
0.979
28.84
28.61
-0.75
29.14
71
0.1780
24.18
103.9
992.2
1,047
102.5
(continued next page)
A-12
-------
TE-2A
TE-2B
HEXAVALEMT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION. GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PEK DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscni*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
{ 2,490.0 ) ( 2,093.0 )
(0.9272 ) ( 0,7716 )
( 8.001 ) ( 6.562 )
(2,422.0 ) ( 2,069.0 )
( 0.9019 ) ! 0.7627 )
{ 7.783 ) ( 6.487 )
71
22
0.0018
0.0635
0.0017
0.0604
( 2121.7750 )
( 0.927187 )
(3.6293 )
( 8.0012 )
( 2063,8309 )
( 0.901867 )
(3.5302 )
{ 7.7827 )
71 deg, F
22 dog. C
0.0018 acmh
0.0628 acfh
0.0017 dsctnh
0.0595 dscfh
1765.7183 ) mg/dscm
0.771595 ) gr/flscf
( 2.9766 ) kg/hr
( 6.5622 ) Ib/hr
1745.4711 ) mg/dscm
(0.762748 ) gr/dscf
j 2.9424 ) kg/hr
{ 6.4870 ) Ib/hr
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
-3
) = X 10
A-13
-------
PLAT4T
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC. PRESS,, in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov,
Point.
No.
A-4
A-4
A-4
B-5
B-5
B-5
FINAL
Sample
Time
(Min.)
0/0
10
20
30
40
30
60 /OFF
Gas Meter
Reading
(Cu.FO
170.642
173.01
185.29
! 92.337
201 .28
209.87
218.448
GREENSBORO IND. PLATERS
CO AT ING TANK »3-EXHAUST
29.2
-0.73
0.005
7
Velocity
Head
(in.H20)
0.170
0.167
0.167
0.218
0.222
0.217
Orifice iH
(in. H20)
Desired Actuai
1 .32 1 ,
1 .73 1 .
1.33 1
2.39 2.
2.43 2
2.38 2
.82
.78
.83
.39
.43
.33
DATE; 03/18/86 OPERATOR:
RUN NUMBER TE-3A
NOZZLE *, NOZZLE DIAM. 508 ,.31 3
METER BOX AHd 1 .32
SAMPLE BOX NUMBER 11
METER BOX NUMBER N-3
ASSUMED
Gas Meter
Temp.
(d»g. F)
32
97
98
96
100
102
DR
MOISTURE 2
Pump
Vac.
(irt.Hq)
6
5
6
•?
7
T
Filter
Box Temp.
\ d'SKi .F )
120
117
118
120
120
117
Imp. Exit
Temp.
(deci.F)
66
83
63
05
61
82
Stack
Temp.
(de<3.F)
72
72
71
72
72
71
Leak
Check
DIFF/AVG.
47.806
0.193
2.11
97.50
71.67
A-U
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in." H20
LEAKRATEjCFM
LEAK TEST VACUUM, in Hq
GREENSBORO IND. PLATERS
COATING TANK *3-EXHAUST
29.2
-0,59
0.090
D ATE: 03/18/86 OPER ATOR:
RUN NUMBER TE-3E
NOZZLE *, NOZZLE CHAM. 509,.312
METER BOX iHi? 1.63
SAMPLE BOX NUMBER 11
METER BOX NUMBER N-10
ASSUMED MOISTURE 2
DR
Trav.
Point.
No.
B-5
B-5
B-5
A-4
A-4
A-4
FINAL
Sample
Time
(Mm.)
0/0
10
20
30
40
50
60 /OFF
Gas Meter
Readinq
(Cu.Ft.)
416.608
425.50
424,42
443.520
450 .38
458.24
465.660
Velocity
Head
(m.H20)
0.232
0.227
0.232
0.154
0.154
0.153
Orifice
AH
(in. H20)
Desired
2.35
2.29
2.35
1.55
1.55
1.55
Actual
2.35
2.29
2.35
1.55
1.55
1.55
Gas Meter
Temp.
(•teg. F)
88
91
93
90
91
91
Pump
Vac.
(m.Hg)
7
r'
7
cr
5
5
Filter
Box Temp .
(d«g.F)
125
125
122
!20
120
120
imp. Exit
Temp.
(4*9 .F)
56
52
62
55
62
64
Stack
Temp.
(
-------
PARTICULATE FIELD DATA fi RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
HUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-3A 03/18/86 Coating Tank f5 - Outlet
TE-3B 03/18/86 Coating Tank #5 - Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vtn(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS fi SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Kfd DRY MOLE FRACTION
Kd ESTIMATED DRY MOLECULAR KT. LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS,, INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
VB FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE. DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B , Dwain
TE-3A
1429
1533
2
60.00
0.313
0.840
0.994
29.20
2.110
47.806
98
44 . 098
20.0
0,941
2.1
0.979
28.84
28.61
-0.73
29.15
72
0.1930
25.20
103.9
1.032
1,091
96.0
Ritchie
Ritchie
TE-3B
1430
1534
2
60.00
0.312
0.840
1.002
29.20
1.940
49.052
91
46.171
20.0
0.941
2.0
0.9BO
28.84
28,62
-0.59
29.16
72
0.1900
24 .99
103.9
1.025
1,082
101.9
(continued next page)
A-16
-------
TE-3A
TE-3B
X^*3*
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION. GRAINS PER DSCF*
Lb/Hr EMISSION RATE. LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCP CONCENTRATION. GRAINS PEE DSCF*
Lb/Hr EMISSION RATE. LBS/HOUR
{ 2,768.0 } ( 2,218.0)
«"*
(0.9687) ( 0.7413)
(8,571) ( 6.514)
(2,714.0) ( 2,191.0 )
( 0.9498 ) ( 0.7323 )
( 6,404 ) ( 6.435 )
FLUE GAS TEMPERATURE:
Degrees Fahrenheit 72
Degrees Centigrade 22
AIR FLOW RATES x million:
Actual Cubic Meters/hr 0.0019
Actual Cubic Feet/hr 0.0655
Dry Std. Cubic Meters/hr* 0.0018
Dry Std. Cubic Feet/hr* 0.0619
HEXAVALENT CHROMIUM:
Concentration, mg/dscm* (2216.7265]
Concentration, gr/dscf* (0.968680]
Emissions, kg/hr { 3.8876
Emissions, Ib/hr ( 8.5707
TOTAL CHROMIUM:
Concentration, ntg/dsran* ( 2173.4811
Concentration, gr/dscf* ( 0.949782
Emissions, kg/hr { 3.8118
Emissions, Ib/hr ( 8.4035
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
( ) = X 10~3
72 deg, F
22 deg. C
0.0018 acmh
0.0649 acfh
0.0017 dscmh
0.0615 dscfh
( 1696.5017 ) mg/dscm
( 0.741349 ) gr/dscf
( 2.9548 ) kg/hr
( 6.5143 ) Ib/hr
(1&75.8499) mg/dscm
( 0.732324) gr/dscf
( 2.9189) kg/hr
( 6.4350) Ib/hr
A-17
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STAT!CPRESS,,in,H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
GREENSBORO IND. PLATERS
COATING TANK *5 EXHAUST
N/A
29.2
-0.73
0.003
DATE: 03/1Q/86
RUN NUMBER
NOZZLE *, NOZZLE OIAM.
METER BOX *H(f>
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
OPERATOR:
TE-4A
507,.304
1.82
24
N-5
DR
Trav .
Point.
No.
A-4
A-4
A-4
B-5
B-5
B-5
A-4
FINAL
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
DIFFMV6.
Gas Meter
Reading
(CU.FO
213.623
225.34
232.16
239.01
246.49
254.04
261.610
42.987
Velocity
Heod
(in.H20)
0.162
0.163
0.163
0.197
0.197
0.197
0.179
Orifice
4H
(in, H20)
Desired Actual
1.54
1.55
1.55
1,33
1.88
1.88
1.54
1.55
1.55
1.88
1.88
1.88
1.71
Gas Meter
Temp,
(de^. F)
78
79
81
32
85
37
82.00
Pump
Vac.
(in. Ha)
6
6
g
7
7
i
Filter
Box Temp.
(deq.F)
120
120
122
125
125
125
Imp. Exit
Temp,
(deq.F)
65
62
63
65
62
62
Stack
Temp.
72
72
-t^
s *_
"7""s
i *-.
71
72
71.8;
Check
A-18
-------
PLANT
SAMPLING LOCATION
FILTER NLIMBER(S)
BAR. PRESS.., in. Hg
STATICPRESS..in.H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Troy.
Point,
No.
B-5
B-5
B-5
A-4
A-4
A-4
FINAL
Samcle
Time
(Mm.)
0/0
10
20
30/0
10
20
60 /OFF
DIFF/AVG.
Gas Meier
Reading
(Cu.FU
465.837
473.75
481.71
489.573
496.94
304.22
51 1 .424
45.537
GREENSBORO IND. PLATERS
COATING TANK *5 EXHAUST
N/A
29.2
-0.73
0.020
11
Velocity
Head
(in.H20)
0.187
0.193
0.100
0.162
0.157
0.152
0.173
Orifice i
(in. H20)
iH
Desired Actual
1.75
1,81
1,78
1.32
1,47
1,47
1.75
1.31
1.78
1.52
1.47
1.47
1.63
DATE: 03/19/96 OPERATOR:
RUN NUMBER TE-4B
NOZZLE *, NOZZLE DIAM. 1 08, .301
METER BOX AH@ 1 .63
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-10
ASSUMED MOISTURE 2
Gos Meter
Temp.
(deg. F)
75
78
82
82
84
85
81.03
Pump
Vac.
(in.Hg)
11
11
10
g
Q
g
Filter
Box Temp.
(deq.F)
120
120
125
125
125
125
Imp. Exit
Temp.
Cdeg.F)
65
60
62
05
64
05
DR
Stack Leak
Temp. Check
(dea.F)
72
~?">
72
i i.
71
1 i.
71.33
A-19
-------
PARTICULATE FIELD DATA £ RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-4A 03/19/86 Coating Tank #5 - Outlet
TE-4B 03/19/86 Coating Tank #5 - Outlet
RUN START TIKE
RUN FINISH TIME
Theta
Dia
Cp
y
Pbar
Delta H
Vm
tm
Vm(std)
Vic
Vw(stdj
%H20
Mta
Md
Ms
Pg
Ps
ts
Delta p
vs
A
Qsd
Qaw
*I
NET SAMPLING POINTS
NET RUN TIME, MINUTES
NOZZLE DIAMETER, INCHES
PITOT TUBE COEFFICIENT
DRY GAS METER CALIBRATION FACTOR
BAROMETRIC PRESSURE, INCHES KG
AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
VOLUME OF METERED GAS SAMPLE, DRY ACF
DRY GAS METER TEMPERATURE, DEGREES F
VOLUME OF METERED GAS SAMPLE, DRY SCF*
TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
VOLUME OF WATER VAPOR, SCF*
MOISTURE CONTENT, PERCENT BY VOLUME
FROM MEASURED WATER CATCH
SATURATION AT FLUE GAS TEMPERATURE
DRY MOLE FRACTION
ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
WET MOLECULAR WEIGHT , LB/LB-MOLE
FLUE GAS STATIC PRESSURE, INCHES H20
ABSOLUTE FLUE GAS PRESS . , INCHES HG
FLUE GAS TEMPERATURE, DEGREES F
AVERAGE VELOCITY HEAD, INCHES H20
FLUE GAS VELOCITY, FEET/SECOND
STACK/DUCT AREA, SQUARE INCHES
VOLUMETRIC AIR FLOW RATE, DEY SCFM*
VOLUMETRIC AIR FLOW RATE, WET ACFM
ISOKINETIC SAMPLING RATE, PERCENT
B. Dwain Ritchie
B. Dwain Ritchie
TE-4A TE-4B
924
1031
2
60.00
0.304
0.840
0.994
29.20
1.710
42.98?
82
40.782
29.5
1.389
3.3
2.7**
0.973
28.84
28.54
-0.73
29.15
72
0.1790
24.30
103.9
988.9
1,052
98.3
926
1032
2
60.00
0.301
0.840
1.002
29.20
1.630
45.537
81
43.621
21.5
1.012
2.3**
2.7
0.977
28.84
28.59
-0.73
29.15
72
0.1730
23.87
103.9
975.9
1,033
108.6
* 68 Degrees F -- 29.92 Inches of Mercury (Hg)
** ACTUAL %H20 USED IB CALCULATIONS
(continued next page)
A-20
-------
TE-4A
TE-4B
HEXAVALENT CHROMIUM:
rag CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIH FLOW KATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
BnisBions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dsem*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F — 29.92 Inches of
( ) = x 10~3
( 2,819.0 J ( 2.175.0)
( 1.067 ! ( 0.7695)
( 9.042 j ( 6.436 )
{ 2,760.0 | ( 2.190.0 )
( 1.044 ) ( 0.7748)
( 8.B53 ) ( 6.481)
72
22
0.0018
0.0631
0.0017
0.0593
(2441.1070)
( 1.066731)
( 4.1014)
( 9.0421 }
( 2390.0160)
( 1.044405)
( 4.0156)
{ 8.8529)
Mercury (Hg)
72 deg. F
22 deg. C
0.0018 acmh
0.0620 acfh
0.0017 dscmh
0.0586 dscfh
{1760.870?) mg/dscra
[ 0.769477) gr/dscf
( 2.9195) kg/hr
( 6.4363) Ib/hr
( 1773.0147) rng/dscm
( 0.774784 ) gr/dscf
( 2.9396 ) kg/hr
( 6.4807 )Ib/hr
A-21
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS,, in, H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
GREENSBORO IND. PLATERS
COATING TANK *5 EXHAUST
N/A
29.2
-0.73
0.016
DATE: 03/19/86 OPERATOR:
RUN NUMBER TE-5A
NOZZLE «, NOZZLE DI AM. 508 ,.313
METER BOX AH@ 1.32
SAMPLE BOX NUMBER 11
METER BOX NUMBER N-5
ASSUMED MOISTURE 2
m
Trov,
Point.
No.
A-4
A-4
A-4
B-5
B-5
B-5
FINAL
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
50 /OFF
DIFF/AVO.
Gas Meter
Reading
(CU.FO
261 .804
268.96
275,40
233.91
292.12
300.32
308.541
46.737
Velocitq
Head
(in.H20)
0.162
0.171
0.171
0.20S
0.207
0.207
0.137
Qrific* t
M
(in. H20)
Desired Actual
1.72
1.S2
1.82
2.21
2.20
220
1.72
1.82
1.82
2.21
2.20
2.20
2.00
Gas Meter
Temp.
(
71.67
A-22
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
L£AKRATE,CFM
LEAK TEST VACUUM, in Hg
GREENSBORO IND. PLATERS
COATING TANK »5 EKHAUST
N/A
29.2
-0.73
0.003
DATE: 03/19/86 OPERATOR:
RUN NUMBER TE-5B
NOZZLE *, NOZZLE DiAM. 509,.312
METER BOX AH® 1 ,53
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-10
ASSUMED MOISTURE 2
DR
Tray.
Point.
Ho,
B-5
B-5
B-5
A-4
A-4
A-4
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft)
513.293
522.20
531.37
540.55
548.50
556.23
564.152
Velocity
Head
(in.H20)
0.225
0.225
0.227
0.171
0.165
0.168
Orifice
(in.H20)
Desired I
2.33
4- -O»_*
2.40
1.31
1.74
1. 78
AH
actual
2.38
2.38
2.40
1.31
1.74
1.78
Gas Meter
Temp.
(
-------
PARTICULATE FIELD DATA fi RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN f DATE SAMPLING LOCATION
TEST TEAK LEADER
TE-SA 03/19/86 Coating Tank #5 - Outlet
TE-5B 03/19/86 Coating Tank #5 - Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vtn VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METSHED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H2G MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD. INCHES H20
VS FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsfl VOLUMETRIC AIH FLOW RATE. DRY SCFK*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFH
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F -- 29.92 Inches of Mercury (Hg)
B , Dwain
B . Dwain
TE-SA
1104
1210
2
60.00
0.313
0.840
0.994
29.20
2.000
46.737
89
43.807
21.0
0.988
2.2
0.978
28.84
28.60
-0.73
29.15
72
0.1870
24.81
103.9
1,015
1,074
97.0
Ritchie
Ritchie
TE-5B
1105
1211
2
60.00
0.312
0.840
1.002
29.20
2.080
50.869
85
48.426
25.5
1.200
2.4
0.976
28.84
28.57
-0.73
29.15
72
0.1960
25.41
103.9
1,037
1.100
105.6
(continued next page)
A-24
-------
TE-5A
TE-5B
HEXAVALENT CHROMIUM:
mg CATCH. MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUH
TOTAL CHROMIUM:
mg TOTAL CATCH. MILLIGRAMS
gr/DSCF CONCENTRATION. GRAINS PER DSCP*
Lb/Hr EMISSION IRATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions. Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
{ 2,190.0) ( 3,342.0 )
( 0.7715) ( 1.065 )
( 6.713 } ( 9.470 )
( 2,137.0 ] (3,334.0)
( 0.7528 ) ( 1.062 )
(6.550 J ( 9.446 )
72
22
0.0018
0.0644
0.0017
0.0609
( 1765.5074
( 0.771503
{ 3.0448
{ 6.7127
( 1722.7805
( 0.752832
( 2.9711
( 6.5502
72 deg. F
22 deg. C
0.0019 acmh
0,0660 acfh
0.0018 dsctnh
0.0622 dscfh
[ 2437,2231 ) mg/dscm
( 1.065034 ) gr/dscf
{ 4.2956 ) kg/hr
{ 9.4702 J Ib/hr
{ 2431.3889 ) mg/dscm
(1.062485 ) gr/dscf
( 4.2853 ) kg/hr
( 9.4476 ) Ib/hr
* 68 Degrees F -- 29.92 Inches of Mercury (Hg)
-3
) = x 10
A-25
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LE AK TEST VACUUM., in Hg
Trov.
Point,
No.
A-4
A-4
A-4
B-5
B-5
B-5
FINAL
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
D1FF/AVG.
Gas Meter
Readinq
CCu.FU
308.732
316.03
322.77
329.57
337.00
344.42
351.995
43.263
GREENSBORO INO, PLATERS
COATING TANK *5 EXHAUST
H/A
23.2
-0.73
0.000
7
Velocity
Head
(in.H20)
0.190
0.158
0.158
0.190
0.190
0.195
0.180
Orifice
4H
(in. H20)
Desired
1.79
1.49
1.49
1.79
1.79
1.84
Actual
1.70
1.49
1.49
1.79
1.79
1.84
1.70
DATE: 03/19/86
RUN NUMBER
NOZZLE *,, NOZZLE OIAM.
METER BOX AH@
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
Gas M*ter Pump
Temp.
Cdeq.F)
85
89
92
90
90
91
59.50
Vac .
(in.Hci)
7
&
§
T
7
i1
Filter
Box Temp.
(deq.F)
120
120
118
120
120
122
OPERATOR: OR
TE-6A
507 ,.304
1.S2
24
N-5
2
Imp. Exit
Temp.
(d*g.F)
56
60
61
55
62
53
Stack Leak
Temp. Check.
(deg.F)
75
75
75
75
72
71
73.83
A-26
-------
PLANT
SAMPLwHOCATlGN
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATICPRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trav.
Point.
Ho.
B-5
B-5
B-5
A-4
A-4
A-4
FINAL
Sampl*
Time
(Min.)
0/0
10
20
30/0
10
20
SO/OFF
DIFF/AVG.
Gas M*t?r
Reading
(Cu.Ft.)
564.992
572.71
580.40
588.35
505.23
602.07
609.048
44.056
GREENSBORO !ND PLATERS
COATING TANK *5 EXHAUST
N/A
29.2
-0.73
0.003
11
Velocity
Head
(in,H20)
0.187
0.180
0.192
0.148
0.144
0.147
0.166
Orifice &H
(in. H20)
D?sired Actual
1.72
1.66
1.77
1.35
1.32
1.35
1.72
1.66
1.77
1.36
1.32
1.33
1.53
DATE: 03/19/86 OPERATOR:
RUN NUMBER TE-6B
NOZZLE *, NOZZLE DIAM. 108 ,.301
METER BOX iHf 1 .63
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-1Q
ASSUMED MOISTURE 2
Gas Meter
Temp.
(
-------
PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-6A 03/19/86 Costing Tank #5 - Outlet
TE-6B 03/19/86 Coating Tank #5 - Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE. DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS £ SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H2Q MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Mfl ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B . Dwain
TE-6A
1305
1410
2
60.00
0.304
0.840
0.994
29.20
1.700
43.263
90
40.446
13.5
0.635
1.5
0.985
28.84
28.67
-0.73
29.15
74
0.1800
24.36
103.9
999.5
1,054
96.4
Ritchie
Ritchie
TE-6B
1306
1411
2
60.00
0.301
0.840
1.002
29.20
1.S30
44.056
86
41.805
21.5
1.012
2.4
0.976
28.84
28.58
-0.73
29.15
74
0.1660
23.43
103.9
953.4
1,014
106.6
(continued next page)
A-28
-------
TE-6A
TE-6B
HEXAVALENT CHROMIUM:
mg CATCH. MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION HATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std, Cubic Meters/hr*
Dry Std, Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dacm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
( 2,726.0 } ( 2,445,0 )
( 1.040 ) [ 0.9026 J
( 8.911) | 7.375 )
( 2,743.0) ( 2,445.0 )
( 1.047) ( 0.9026 J
( 8.966) { 7.375 )
74
23
0.0018
0,0633
0,0017
0.0600
( 2380.1941)
( 1.040113)
! 4.0419)
( 8,9108)
( 2395.0376)
( 1.046600)
( 4.0671)
( 8.9664)
74 deg. F
23 deg. C
0.0017 acmh
0,0608 acfh
0.0016 dscmh
0.0572 dscfh
| 2065.4312 ) mg/dscm
( 0.902566 ) gr/ascf
( 3.3454 ) kg/hr
( 7.3754 )Ib/hr
! 2065,4312 1 mg/dscm
( 0.902566 ) gr/dscf
( 3.3454 ) kg/hr
( 7,3754 ) Ib/hr
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
( ) = X 10~3
A-29
-------
PLANT
SAMPLING LOCATION
FILTER NUM8ER(S)
BAR. PRESS., in. Hg
ST ATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
B-5
A-4
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
GasMeter
Reading
(CuJt.)
352.403
350.40
368.47
376.63
384.02
391 .48
399.048
GREENSBORO WD. PLATERS
COATWG TANK *5 EXHAUST
29.5
-0.73
0.000
7
Velocity
Head
(in.H2C)
0.206
0207
0.207
0.170
0.176
0.176
Orifice &
(in. H20)
H
Desired Actual
2.23
224
224
1.84
1.90
1.90
223
224
2.24
1.84
1.90
1.90
DATE : 03/24 /86 OPERATOR :
RUN NUMBER TE-7A
NOZZLE*, NOZZLE DIAM. 508, .313
METER BOX AH@ 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deg.F)
81
84
86
85
87
87
Pump
Vac.
(in-Hg)
7
7
7
6
6
6
Filter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(degj)
86
56
55
63
55
55
DR
Stack Leak
Temp. Check
(deg.F)
72
72
72
72
72
71
FINAL
DIFF/AVG,
40.645 0.190
2.038
71.833
A-30
-------
PLANT
SAMPLWG LOCATION
FLTER NUMBER(S)
BAR. PRESS., in.Bg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hq
Trov,
Pomt.
No.
A-4
B-5
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
CCuJt.)
482.724
489.99
4Q7.24
504.86
513.34
522.08
530.907
GREENSBORO INO. PLATERS
COATING TANK *5 EXHAUST
29.3
-0.78
0.000
5
Velocity
Head
(in«20)
0.166
0.168
0.175
0220
0227
0.227
Orifice ,&H
(in.
H20)
Desired Actual
1.59
1.57
1.65
2.08
2.14
2.14
1.59
1.57
1.65
2.08
2.14
2.14
DATE: 03/24/86 OPERATOR:
RUN NUMBER TE-78
NOZZLE*, NOZZLE DIAM. 509, .312
METER BOX 4H@ 1 .58
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-2
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deg. F)
91
92
93
92
94
95
Pump
Voc.
(w.Hg)
3
3
3
4
4
4
Filter
Box Temp,
(deg.F)
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(de«.F)
66
57
57
62
56
56
DR
Stack Leak
Temp. Check
(d*g,F)
72
72
72
72
72
71
FINAL
DFF/AVG.
48.183 0.196
1.862 92.83
71.833
A-31
-------
PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT; Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-7A 03/24/86 Coating Tank #5 Exhaust
TE-7B 03/24/86 Coating Tank #5 Exhaust
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET HUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG, PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS MSTER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES K20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Q.SCI VOLUMETRIC AIR FLOW RATE, DRY SCFM*
gaw VOLUMETRIC AIR FLOW RATE, WET ACFM
*1 ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg!
B . Dwain
B . Dwain
TE-7A
1305
1410
2
60.00
0.313
0.840
0.994
29.50
2.060
46.645
85
44.498
10.5
0.494
1.1
0.989
28.84
28.72
-0.73
29.45
72
0.1900
24.83
103.9
1,038
1,075
96,4
Ritchie
Ritchie
TE-7B
1306
1411
2
60.00
0.312
0.840
0.998
29.50
1.860
48.183
93
45.460
16.5
0.777
1.7
0.983
28.84
28.65
-0.78
29.44
72
0.1960
25.25
103.9
1,049
1,093
98.0
(continued next page)
A-32
-------
TE-7A
TE-7B
D
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Sta. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F — 29.92 Inches
( ) = X Kf3
5,550.0 J { 5,194.0 j
( 1.925J (1.763 )
( 17.12 J ( 15.86 ]
5,250.0 j ( 5.164.0 )
(1.821 ) { 1.753 ]
(16.20) ( 15.76 )
0
0
0
0
72
22
.0018
.0645
.0018
.0623
0.
0,
0
0
72
22
.0019
,0656
.0018
.0629
cleg. F
deg. C
acmh
acfh
dscroh
dscfh
(4404.7031) ( 4034.9372 ) mg/dscrn
( 1.924797) ( 1.763214 ) gr/dscf
( 7.7673} (7.1917} kg/hr
( 17.1241 ) ( 15.8551 ) Ib/hr
(4166.6111) { 4011.6319 1 mg/dscw
f 1.820754 ) ( 1.753030 ) gr/dscf
( 7.3475 ) ( 7.1502 ) kg/hr
( 16.1984 ) (15.7635 ) Ib/hr
of Mercury (Hg)
A-33
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR, PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
A-4
B-5
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
Gas Meter
Reading
(CuJt.)
399.372
406.18
413.1 1
420.01
427.62
43550
443.307
GREENSBORO WD. PLATERS
COATING TANK »5 EXHAUST
29.3
0.007
7
Velocity
Head
(in,H2Q)
0.165
0.166
0.164
0.205
0.207
0207
DATE: 03/24/86 OPERATOR:
RUN NUMBER TE-8A
NOZZLE * , NOZZLE DIAM. 507 , .304
MFTERBOXAHf 1.82
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-3
DR
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
1.61
1.62
1.60
2.00
2.04
2.04
Actual
1.61
1.62
1.60
2.00
2.04
2.04
Gos Meter
Temp.
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR, PRESS., in. Hg
ST ATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Bg
Trav.
Point.
No.
B-5
A-4
FINAL
Sample
Tim*
(Min.)
0/0
10
20
30/0
10
20
60/OFF
DtFF/AVG.
Gas Meter
Reading
(Cu.Ft.)
531 .108
538.58
54623
553.95
550.78
567.67
574.562
43.454
GREENSBORO IND. PLATERS DATE: 03/24/86
COATING TANK *5 EXHAUST RUN NUMBER
NOZZLE *, NOZZLE D1AM.
29.3 METER BOX iH@
SAMPLE BOX NUMBER
0.000 METER BOX NUMBER
7 ASSUMED MOISTURE
Velocity
Head
(m.H20)
0,
0,
0
0.
0.
0,
0.
194
,198
,108
,135
,155
,155
,175
Orifice 4H Gos Meter
(in. H20) Temp.
Desired Actual (deg.F)
1.60
1.63
1.63
128
128
128
1.60
1.53
1.63
1.28
128
128
1.45
93 '
94
05
94
95
96
94.5
Pump
Vac.
(in.H
-------
PARTICULATE FIELD DATA S RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North
RUN # DATE SAMPLING LOCATION
TE-8A 03/24/86 Coating Tank #5 Exhaust
TE-8B 03/24/86 Coating Tank #5 Exhaust
RUW START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER. INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Phar BAROMETRIC PRESSURE. INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tn\ DRY GAS METER TEMPERATURE, DEGREES F
Vm(stdS VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT. PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLU1 GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY. FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Caw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
Carolina
TEST TEAM LEADER
B , Dwain
B . Dwain
TE-8A
1442
1545
2
60.00
0,304
0.840
0.994
29.50
1.820
43.935
8?
41.735
11. 0
0.518
1.2
0.988
28.84
28.70
-0.75
29.44
72
0.1850
24.51
103.9
1,023
1,061
97.2
Ritchie
Ritchie
TE-8B
1443
1546
2
60.00
0.301
0.840
0.998
29.50
1.450
43.454
95
40.809
12,0
0.565
1.4
0.986
28.84
28.69
-0.75
29.44
72
0.1750
23.84
103.9
993.9
1,032
99.8
(continued next page)
A-36
-------
TE-SA
TE-8B
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATS, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions. kg/hr
Emissions, Ib/hr
I 3,250.0 )
(1.202 }
( 10.54 }
( 3,262.0 )
( 1.234 )
(10.51 )
( 3,150.0 ) ( 3,452.0 )
( 1.165 ) { 1.305 )
( 10.21 ) ( 11.12 )
72
22
0.0018
0.0637
0.0017
0.0614
( 2750.1150 )
( 1.201764 )
{ 4.7803 )
| 10.5387 )
( 2665.4961 )
( 1.164786 )
( 4.6332 )
( 10.2144 )
72 deg. F
22 deg. C
0.0018 acmh
0.0619 acfh
0.0017 dscmh
0.0596 dscfh
(2822.8820 ) mg/dscm
( 1.233562 ) gr/dscf
( 4.7668 ) kg/hr
( 10.5090 ) Ib/hr
{2987.3049} mg/dscm
(1.305412) gr/dscf
( 5.0444 )kg/hr
( 11.1211) Ib/hr
* 68 Degrees F -- 29.92 Inches of Mercury (Hg)
{ ) = x 10~3
A-37
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Troy.
Point.
No.
A-4
B-5
Sample
Time
(Hin.)
0/0
10
20
30/0
10
20
60 /OFF
Qos Meter
Reading
(CU.FU
443.783
450.48
457.36
464.08
472.18
480.36
488.91 1
GREENSBORO WD. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.75
0.018
7
Velocity
Head
(in.H2Q)
0.147
0.147
0.147
0.212
0.213
0214
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-9A
NOZZLE «, NOZZLE DIAM. 508, .313
METER BOX AH$ 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
DR
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
1.59
1.59
1.50
229
2.X
2.32
Actual
1.59
1.59
1.50
2.29
2.30
2.32
Gas Meter
Temp.
(deg. F)
66
71
73
73
76
78
Pwnp
Vac.
(in.Hg)
5
5
5
7
1
7
Fitter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(d«M,jO
62
54
56
56
57
57
Stack Leak
Temp. Check
(deg.F)
65
66
66
66
67
68
FINAL
DFF/AVG.
45.128 0.178
1.947 72.83
66.333
A-38
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
B-5
A-4
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
Gas Meter
Reading
(Cuft.)
577.360
534.44
591 .68
598.85
605.01
611.40
617.714
GREENSBORO IND. PLATERS
COATING TANK «5 EXHAUST
29.5
-0.73
0.000
5
Velocity
Head
(inKZO)
0222
0219
0222
0.168
0.168
0.165
DATE: 03/2S/86 OPERATOR:
RUN NUMBER TE-9B
NOZZLE*, NOZZLE DIAM. 509, .312
METER BOX iHf 1 .58
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-2
DR
ASSUMED MOISTURE 2
Orifice
AH
(tt.H20)
Desired
2.09
2.07
2.09
1.59
1.59
1.56
Actual
2.09
2.07
2.09
1.59
1.59
1.56
Cos Meter
Temp.
(deg. F)
64
74
79
80
83
85
Pump
Vac.
(in-Hq)
4
4
4
3
3
3
Filter
Box Temp.
(degJ)
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(d*9.F)
62
53
54
55
56
56
Stock
Temp.
(degj)
65
66
66
66
67
68
Leak
Check
FINAL
DIFF/AVG.
40.354 0.193
1.832
77.5
65.333
A-39
-------
PARTICULATE FIELD DATA S RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro. North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-9A 03/25/86 Coating Tank #5 Exhaust
TE-9B 03/25/86 Coating Tank #5 Exhaust
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIKE. MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METES CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG, PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tin DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN 1MPINGERS & SILICA GEL, HL
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE. INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE. DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B , Dwain
TE-9A
820
925
2
60.00
0.313
0.840
0.994
29.50
1.950
45.128
73
44.008
12.0
0.565
1.3
0.987
28.84
28.70
-0.75
29.44
66
0.1780
23.90
103.9
1.009
1,035
98.0
Ritchie
Ritchie
TE-9B
821
92S
2
60.00
0.312
0.840
0.998
29.50
1.830
40.354
78
39.132
7.0
0.329
0.8
0.992
28.84
28.75
-0.73
29.45
66
0.1930
24.87
103.9
1,054
1,077
84.0
(continued next page)
A -40
-------
TE-9A
TE-9B
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATS, LBS/HOUS
( 2,950.0 ) f 3,142,0 )
( 1,034 J { 1.239 }
{ 8.946 ) ( 11.20 )
( 2,850.0 ) { 3,025.0 )
( 0.9994 ) { 1.193 )
( 8.643 ) { 10,78 }
FLUE GAS TEMPERATURE:
Degrees Fahrenheit 66
Degrees Centigrade 19
AIR FLOW RATES x million:
Actual Cubic Meters/hr 0.0018
Actual Cubic Feet/hr 0.0621
Dry Std. Cubic Meters/hr* 0.0017
Dry Std. Cubic Feet/hr* 0.0605
HEXAVALENT CHROMIUM:
Concentration, mg/dscm* (2367.3031)
Concentration, gr/dscf* (1.034480)
Emissions, kg/hr ( 4.0578 )
Emissions, Ib/hr ( 8.9459 )
TOTAL CHROMIUM:
Concentration, mg/dscm* (2287.0556)
Concentration, gr/dscf* (0.999413)
Emissions, kg/hr ( 3.9203 )
Emissions, Ib/hr ( 8.6427 J
* 68 Degrees F — 29.92 Inches of Mercury (Kg)
( } = X Kf3
66 deg, F
19 deg. C
0.0018 acmh
0.0646 acfh
0.0018 dscinh
0.0633 dscfh
( 2835.5S28) mg/dscm
(1.239099 ) gr/dscf
( 5.0792 ) kg/hr
( 11.1978 ) Ib/hr
( 2729.9641 ) mg/dscm
( 1.192958 ) gr/dscf
( 4.8901) kg/hr
( 10.7808 ) Ib/hr
A-41
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Ho
Trov.
Point.
No.
A-4
B-5
Somple
Time
(Mm.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
488-769
495.35
502.06
308.87
516.61
524.18
531 .773
GREENSBORO MX PLATERS
COATING TANK *5 EXHAUST
29.5
0,000
8
Velocity
Head
(in.H20)
0,166
0.166
0.170
0.218
0.211
0208
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-10A
NOZZLE «, NOZZLE DIAM. 507, .304
METER BOX *H 1 .82
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-5
DR
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired Actual
1.56
1.56
1.60
2.05
1.98
1.95
1.56
1.56
1.60
2.05
1.98
1.95
Gas Meter
Temp.
(d«9- F)
71
73
76
78
83
85
Purnp
Voc.
6
6
6
8
8
8
Filter
Box Temp.
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
65
58
57
82
56
57
Stack
Temp,
70
71
70
70
70
71
Leak
Check
FINAL
DIFF/AVG.
43.004
0.189
1.783 77.57
70.333
A-42
-------
PLANT
SAMPLHG LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. H^
STATIC PRESS., m. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
B-5
Sompi*
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
GoiMtttr
Reoding
(CuJO
624.041
630.44
637.02
643.73
649.30
654.92
660,450
GREENSBORO 1ND. PLATERS
COATING TANK »5 EXHAUST
29.5
0.000
6
V«locny
Head
(in.H20)
0202
0202
0207
0.135
0.151
0.131
0.148
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-10B
NOZZLE », NOZZLE DIAM. 1 08, .301
METERBOXAH? 1.58
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-2
OR
ASSUMED MOISTURE 2
Orifie*
iH
(In. H20)
D«sir«d
1.65
1.65
1.69
127
123
121
Aciud
1.65
1.65
1.6S
127
123
121
Gas Meter
Temp.
(
-------
PARTICULATE FIELD DATA S RESULTS TABULATION
PLANT; Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-10A
TE-10B
03/25/86 Coating Tank #5 Exhaust
03/25/86 Coating Tank #5 Exhaust
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME. MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H2O
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE. DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS 6 SILICA GEL, ML
Vwfstd) VOLUME OF WATER VAPOR, SCF*
%K20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsfl VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFK
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29,92 Inches of Mercury (Hg)
3. Dwain
B. Dwain
TE-10A
1016
1119
2
60.00
0,304
0.840
0.994
29.50
1.830
43.004
78
41.535
8.5
0.400
1.0
0.990
28.84
28.73
-0.73
29.45
70
0.1890
24.71
103.9
1,038
1,070
95.3
Ritchie
Ritchie
TE-10B
1017
1120
1
60.00
0.301
0.840
0.998
29.50
1.450
36.409
87
34.693
0.0
0.000
0.0
1.000
28.84
28.84
-0.73
29.45
70
0.1770
23.87
103.9
1,013
1,033
83.3
(continued next page)
A-44
-------
TE-10A
TE-10B
HEXAWALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCP*
Lb/Hr EMISSION SATE, LBS/HOUR
TOTAL CHROMIUM:
ing TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, IBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLO« RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std, Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions. Ib/hr
I2.S40.0 ) ( 3,849.0 )
( 1.092 ) { 1.712 j
( 9.723 ) (14.86 )
2,800.0 ) (3,887.0 )
(1.040 ) ( 1.729 )
(9.260 S ( 15.01 )
70
21
0.001B
0.0642
0.0018
0.0623
{2499.7742
{1.092368
( 4.4101
( 9.7225
( 2380.7373
[ 1.040351
{ 4.2000
{ 9.2595
70 cleg. F
21 deg. C
0.0018 acmh
0.0620 acfh
0.0017 dscmh
0.0608 dscfh
) (3918.0685 ) mg/dscm
} { 1.712144 ) gr/dscf
) ( 6.7415 ) kg/hr
) ( 14.8624 ) Ib/hr
) (3956.7504 ) mg/dscm
) ( 1.729047 ) gr/dscf
) ( 6.8080 ) kg/hr
) ( 15.0091 I Ib/hr
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
( } = X 10"3
A-45
-------
PLANT
SAMPLING LOCATION
FILTER NUM6ERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov,
Point.
No.
B-5
A-4
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
540.873
549.00
557.34
505.75
573.37
581 .07
588.757
GREEN680RO HMD. PLATERS
COATINC TANK *5 EXHAUST
29.5
-0.73
0.000
7
Vetoeity
Head
(inJGO)
0,204
0.221
0214
0,178
0.177
0.177
Orifice 4H
(in.
H20)
DATE: O3/25/86 OPERATOR:
RUN NUMBER TE-11A
NOZZLE •, NOZZLE DIAM. 508, .313
METER BOX iH$ 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
ASSUMED MOISTURE 2
Gos Meter Pump Filter
Temp.
Desired Actual (d*
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Troy.
Point.
No.
A-4
B-5
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
472.318
480.51
489.08
437.57
506,99
516.50
525.1 37
GREENSBORO WD. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.56
0.018
3
Velocity
told
(inKZO)
0.188
0.192
0.190
0235
0233
0237
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-11B
NQZ21E*, NOZZLE Dl AM. 509,. 312
METER BOX AH@ 1 .60
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-9
DR
ASSUMED MOISTURE 2
Orifice
AH
(in.H20)
Desired Actual
1,85
1.89
1.87
2.31
229
2.33
1.85
1.89
1.87
2.31
2.29
2.33
Gas Meter
Temp.
(d*q. F)
86
88
89
88
90
91
Pump
Vac.
2
2
2
3
3
3
Filter
Box Temp .
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
66
60
57
65
58
57
Stack
Temp.
72
72
72
72
72
72
Leak
Check
FINAL
DIFF/AV6.
53.819 0.212
2.09 88.67
72
A-47
-------
FARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-11A
TE-11B
03/25/86 Coating Tank 15 Exhaust
03/25/86 Coating Tank #5 Exhaust
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Fbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METES, INCHES H20
Vm VOLUME OF METEHED GAS SAMPLE, DRY ACF
tin DRY GAS METER TEMPERATURE, DEGREES F
Vtn(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRV MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT. LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE. INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qas VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
B.
B.
TE-11A
1332
1436
2
60.00
0.313
0.840
0,994
29.50
2.150
47.884
90
45.275
8.5
0.400
0.9
0.991
28.84
28.74
-0.73
29.45
72
0.1950
25.14
103.9
1,053
1.088
96.6
Dwain Ritchie
Dwain Ritchie
TE-11B
1333
1437
2
60.00
0.312
0.840
1.002
29.50
2.090
53.819
89
51.382
3.0
0.141
0.3
0.997
28.84
28.81
-0.56
29.46
72
0.2120
26.18
103.9
1,104
1.133
105.3
(continued next page)
A-48
-------
TE-11A
TE-11B
HtXAVALENT CHROMIUM:
mg CATCH. MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr MISSION RATE, LBS/HOUR
TOTAL CHROMIUM;
mg TOTAL CATCH. MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION HATE. LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIB FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dsef*
Emissions, kg/hr
Emissions. Xb/hr
TOTAL CHROMIUM:
Concentration, reg/flscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
(5,320.0) (5.474.0)
( 1.813) { 1.644)
( 16.37) (15.56)
(5.210.0) (5.508.0)
( 1.776) ( 1.654)
( 16.04) ( 15.66)
72
22
0.0018
0.0653
0,0018
0.0632
(4149.7243)
(1.813374)
( 7.4269)
( 16.3736)
* 68 Degrees F — 29.92 Inches
( ) = x 1 0~3
(4063.9217)
(1.775880)
( 7.2734)
( 16.0350)
of Mercury {Hg)
72 deg, F
22 deg. C
0.0019 acwh
0,0680 acfh
0.0019 dscmh
0.0662 dscfh
(3762.3581) mg/dscm
( 1.644100) gr/dscf
( 7.0572 ) kg/hr
( 15.5584 ) Ib/hr
(3785.7267 ) mg/dscm
( 1.654312) gr/dscf
( 7.1010 ) kg/hr
( 15.6550 ) Ib/hr
-------
PLANT
SAMPLING LXATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in.H20
LEAK RATE, CFM
LEAK TEST VACUUM , in Hq
Tray.
Point.
No.
B-5
A-4
FINAL
Somple
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
DFF/AVC.
Gas Meter
Reading
(Cu.Ft.)
589,063
596.93
604.73
612.52
619.86
C27.13
634.438
43.373
GREENSBORO (ND. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.73
0.004
10
Velocity
Head
(in.H20)
0513
0207
0.210
0.180
0.180
0.182
0.193
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-12A
NOZZLE «,NQ221EDIAM. 507, .304
METER BOX iH(? 152
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-5
OR
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
2.06
2.00
2.03
1.74
1.74
1.76
Actual
2.06
2.00
2.03
1.74
1.74
1.76
1.888
Gas Meter
Temp.
(deo. F)
39
92
94
92
93
94
92.33
Pump
Voc.
(in.Hg)
9
9
9
8
8
8
Filter
Box Temp .
(degJ)
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(deaf)
66
50
56
67
58
55
Stock
Temp.
(deg.F)
72
72
72
72
73
73
72.333
Leak
Check
-------
PLANT
S AMR. ING LOCATION
FILTER NUMBEWS)
BAR. PRESS., in. Hg
STATE PRESS,, in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trov.
Point.
No.
A-4
B-5
Sampt*
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas M«t*r
Reading
(Cult.)
527.888
53526
542.76
550.31
558.30
566.32
574.477
GSKNS80RO WO PLATERS
COATING TANK *5 EXHAUST
295
-0.75
0.008
5
V«toeity
Head
(in.H20)
0.175
0.178
0.178
0205
0200
0205
Orifice AH
(in. H20)
Desired Actual
1.46
1.49
1.49
1.71
1.67
1.71
1.46
1.49
1.49
1.71
1.67
1.71
DATE: 03/25/86
RUN NUMBER
NOZZLE *,NOZa.EDIAM.
METER BOX AH@
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
Cos M*tw Pump
Ttmp. Vac.
(
-------
C-
PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN I DATE SAMPLING LOCATION
TEST TEAM LEADER
TE-12A
TE-12B
03/25/86 Coating Tank #5 Exhaust
03/25/86 Coatinfl Tank #5 Exhaust
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG, PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF HETERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS K SILICA GEL. ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mf<3 DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
fg FLUE GAS STATIC PRESSURE. INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIS FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B . Dwain
TE-12A
1511
1616
2
60.00
0.304
0.840
0.994
29.50
1.890
45.375
92
42.720
9.0
0.424
1.0
0.990
28.84
28.73
-0.73
29.45
72
0.1950
25.15
103.9
1,053
1.089
96.7
Ritchie
Ritchie
TE-12B
1512
1617
2
60.00
0.301
0.840
0.998
29.50
1.590
46.589
92
44.006
10.5
0.494
1.1
0.989
28.84
28.72
-0.75
29.44
72
0.1900
24.83
103.9
1,038
1.075
103.1
(continued next page)
A-52
-------
TE-12A
TE-12B
HEXAVALERT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION HATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/OSCF CONCENTRATION. GRAINS PER DSCF*
Lb/Hr EMISSION SATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std, Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
(5,170.0) { 5.145.0)
( 1.868) ( 1.804)
{ 16.85) (16.05)
(5,000.0) ( 5,063.0)
( 1.806) { 1.776)
{ 16.30) { 15.79)
72
22
0.0018
0.0653
0.0018
0.0632
(4273.9394 )
( 1.867655 )
( 7.6426 )
( 16.8490 )
(4133.4037)
(l. 806242 }
( 7.3913 )
( 16.2950 )
72 deg. F
22 deg. C
0.0018 acmh
0.0645 acfh
0.0018 dscmh
0.0623 dscfh
(4128.9121) mg/dscm
( 1.804280 ) gr/dscf
( 7.2801 ) kg/hr
( 16,0499 ) Ib/hr
(4063.1063 ) mg/dsctn
( 1.775523 ) gr/dscf
( 7.1641 ) kg/hr
( 15.7941 ) Ib/hr
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
{ ) = x icf3
A-53
-------
PLANT
SAMPLING LOCATfON
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
B-5
A-4
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu,Ft.)
959.538
967.67
975.98
984.34
991.90
999.47
1007.060
GREENSBORO INO. PLATERS
COATWG TANK *5 EXHAUST
29.3
-0.70
am o
6
Velocity
Head
1 .75
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-7
ASSUMED
Das Meter
Temp.
(deg. F)
75
81
85
86
39
90
BOB
MOISTURE 2
1 Pump
Voc.
(in.Hg)
6
6
6
3
5
5
Filter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA
imp. Exit
Temp.
(deg/)
67
58
55
65
56
35
Stack
Temp.
(degf)
71
71
71
72
72
72
Leak
Check
FINAL
DIFF/AVG,
47.322
0.180
1.895 84.33
71.3
A-54
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER®
BAR. PRESS,, in.Hg
STATIC PRESS., in, H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav,
Point,
No.
A-4
B-5
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Cos Meter
Reading
(CuJt.)
601.619
608.46
61534
622.30
630.59
839.02
647,524
GREENSBORO MO. PLATERS
COATING TANK »5 EXHAUST
29.3
-0.80
0.010
3
Velocity
Heed
(in.H20)
0.147
0.148
0.148
0.211
0218
0218
Orifice 4
(in. H20)
H
Desired Actud
1.42
1,43
1,43
2.04
2.11
2.11
1.42
1.43
1.43
2.04
2.11
2.11
DATE: 03/26/86 OPERATOR:
RUN NUMBER TE-13B
NOZZLE *, NOZZLE DIAM. 5M,.312
METER BOX AHf 1 .61
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-8
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deq. F)
83
87
90
90
94
95
Pump
Vac.
(in-Hg)
2
3
3
3
3
3
Filter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA
tap. Exit
Temp,
(*flf)
66
57
54
65
56
56
BDR
Stack Leak
Temp. Check
(deg.F)
71
71
71
72
72
72
FINAL
DIFF/AVG.
43.903
0.180
! .757 8i.83
71.3
t A_55
-------
PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North
RUN # DATE SAMPLING LOCATION
Carolina
TEST TEAM LEADER
TE-13A
TE-13B
03/26/86 Coating Tank #5 Exhaust
03/26/86 Coating Tank #5 Exhaust
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIKE, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE. INCHES HG
Delta H AVG. PRESSURE DIFFEBENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tin DRY GAS METER TEMPERATURE. DEGREES F
Vm(std) VOLUME OF KETERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGEHS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B . Dwain
TE-13A
829
949
2
60.00
0.313
0.840
1.000
29.50
1.900
47.522
84
45.674
12.5
0.588
1.3
0.987
28.84
28.70
-0.70
29.45
72
0.1800
24.17
103.9
1,009
1,046
101.8
Ritchie
Ritchie
TE-13B
830
950
2
60.00
0.312
0.840
1.012
29.50
1.760
45.905
90
44.147
13.0
0.612
1.4
0.986
28.84
28.69
-0.80
29.44
72
0.1800
24,18
103.9
1,008
1,047
99.1
(continued next page)
A-56
-------
TE-13A
TE-13B
'.•;'<;•:!
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std, Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/ascf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F — 29.92 Inches of
-3
( 6,270.0) ( 4,503.0 )
(2.119) (1.574)
( 18.32) (13.60)
( 6,230.0) ( 4,403.0 )
(2.105) ( 1.539)
(18.20) ( 13.30)
0
0
0
0
(4848
72
22
.0018
.0628
.0017
.0605
.0012)
( 2,118512)
(8
( 18
.3095)
.3193}
0,
0,
0,
0,
(3602.
72
22
.0018
.0628
.0017
,0605
.1847)
{ 1.574107 )
(6,
( 13,
.1685)
.5993 J
<3eg. F
deg. C
acmh
acfh
dscmh
dscfh
mg/dscm
gr/dscf
kg/hr
Ib/hr
(4817.0730)
( 2.104997)
( 8.2565)
( 18.2024)
Mercury (Hg)
i 3522.1895) mg/dscm
( 1.539150) gr/ascf
( 6.0315) kg/hr
( 13.2973 ) Ib/hr
= X 10
A-57
-------
PLANT
SAMPLING LOCATION
FLTER'NUMBWS)
BAR. PRESS., in. Hg
ST ATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
TroY,
Point.
No.
B-5
A-4
FINAL
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
DIFF/AVG,
Gas Meter
Reading
(Cu.Ft.)
7.188
15.80
24.38
33.07
40.61
4820
55.790
48.602
GREENSBORO WD. PLATERS
COATING TANK »5 EXHAUST
29.3
-0.73
0.000
8
Velocity
Hwd
(in.H20)
0213
0212
0212
0.152
0.160
0.160
0.186
DATE: 03/26/86 OPERATOR;
RUN NUMBER TE-14A
BDC
NOZZLE «, NOZZLE OIAM. 509,.312
METER BOX iHf 1 .75
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-7
ASSUMED MOISTURE 2
Orifice AH
(in. H20)
Desired Actual
227
225
225
1.72
1.70
1.70
227
225
225
1.72
1.70
1.70
1.982
Gas Meter
Temp.
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
A-4
FINAL
Sample
Twne
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
DIFF/AVO.
Gas Metw
Reading
(Cu.Ft.)
647.639
654.42
66124
868.04
675.57
68323
690.825
43.188
GREENSBORO IND. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.75
0.00ft
a
Velocity
Heed
(in.H20)
0.163
0.163
0.160
0.197
0201
0.200
0.180
DATE: 03/26/86 OPERATOR:
RUN NUMBER TE-14B
NOZZLE*, NOZZLE DIAM. 108,301
METER BOX iH@ 1.61
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-8
BDR
ASSUMED MOISTURE 2
Orifice
AH
(in.H20)
D*sir*d
1.39
1.39
1.37
1.69
1.72
1.71
Actual
1.39
1.39
1.37
1.69
1.72
1.71
1.345
Gas Meter
Temp,
(d*
-------
PARTICULAT! FIELD DATA fi RESULTS TABULATION
PLANT; Greensboro Industrial Platers, Greensboro, North
RUN # DATE SAMPLING LOCATION
Carolina
TEST TEAM LEADER
TE-14A
TE-14B
03/26/86 Coating Tank #5 Exhaust
03/26/86 Coating Tank #5 Exhaust
RUN START TIME
RUN FINISH TIKE
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
%H20 MOISTURE CONTENT. PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms MET MOLECULAR HEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
fiaw VOLUMETRIC AIR FLOW RATE, WET ACFK
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F -- 29.92 Inches of Mercury (Hg)
B . Dwain
B. Dwain
TE-14A
1022
1127
2
60.00
0.312
0.840
1.000
29.50
1.980
48.602
91
46.128
12.0
0.565
1.2
0.988
28.84
28.70
-0.73
29.45
72
0.1860
24.57
103.9
1,026
1,064
101.7
Ritchie
Ritchie
TE-14E
1023
1128
1
60.00
0.301
0.840
1.012
29.50
1.550
43.186
92
41.360
10.0
0.471
1.1
0.989
28.84
28.71
-0.75
29.44
72
0.1800
24.17
103.9
1.010
1,046
99.5
(continued next page)
-------
TE-14A
TE-14B
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, L8S/HOUR
FLUE GAS TEMPERATURE;
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Sta. Cubic Feet/hr*
HEXAVALEMT CHROMIUM:
Concentration, rng/dseni*
Concentration, gr/dsef*
Emissions. kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM;
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F — 29.92 Inches of
-3
{ 4,890.0) (3,881.0)
(1.636 ) ( 1.448)
(14.39 ) (12.54)
( 4,710.0 ) (3,653.0)
{1.576 ) ( 1.363)
(13.86 ) ( 11.80)
72
22
0.0018
0.0638
0.0017
0.0616
(3743.7869)
(1.635985)
( 6.5260)
( 14.3874)
( 3605.9788 )
( 1.575765 )
(6.2858 )
(13.8578 )
Mercury (Hg)
72 deg, F
22 deg. C
0.0018 acmh
0.0628 acfh
0.0017 dscmh
0.0606 dscfh
(3313.8089 ) mg/dscir,
{ 1.448090 ) gr/dscf
( 5.6864 ) kg/hr
( 12.5363 ) Ib/hr
(3119.1301) mg/dscm
( 1.363018 ) gr/dscf
( 5.3523 ) kg/hr
( 11.7999 ) Ib/hr
) = X 10
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., m.H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trov.
Point.
No.
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
B-1
B-2
B-3
B-4
B-5
B-6
FINAL
DIFF..'
Sarnpte
Tim?
(Min.)
0/0
5
10
15
20
25
30
35
40
45
50
35
60/0
5
10
15
20
25
30
35
40
45
50
55
120/'OFF
AVG.
Gas Meter
Readinq
(CU.FO
268.153
272.47
276 .76
281.19
235.48
290.13
294.78
299.38
304.23
309.11
314.02
318.96
323.658
323,56
332.61
337.18
341 .58
346.10
351 .29
355.04
359,29
363.49 -
367.88
372.24
376.597
GREENSBORO WO. PLATERS
MIST ELIM. INLET
29.2
-1 .35
0,009
3
Velocity
Head
(in.H20)
0.56
0.55
0.54
0.58
0.64
0.64
0.64
0.56
0.70
0.72
0.72
0.70
0.58
0.58
0.60
0.60
0.62
0.52
0.56
0.50
0.54
0.54
0.54
0.56
Orifiee
AH
(in. H20)
Desired
2.32
2.30
2.28
2.42
2.70
2.70
2.70
2.78
2.32
2,98
2, Q8
2.92
2.42
2.42
2.50
2,50
2.58
2.58
2.32
2.10
2.28
2.28
f$ ^f\
2.32
Actual
2.32
2.30
2.28
2.42
2.70
2.70
2,70
2.73
2.92
2.98
2.08
2 92
2.42
2,42
2.50
2.50
2.58
2,58
2.32
2.10
228
228
22.B
2.32
DATE: 03/1S/86 OPERATOR:
RUN NUMBER MM
NOZZLE * , NOZZLE D! AM. 1 06 ,.250
METER BOX iH@ 1 .75
SAMPLE BOX NUMBER 4
METER BOX NUMBER N-7
ASSUMED
Gas Meter
Temp.
(deq, F)
69
70
74
74
76
77
75
76
76
7S
73
77
75
78
79
80
T7
78
78
81
78
80
83
84
WSN
MOISTURE 2
Pump
Vac.
Cm.Hq)
6
6
6
-r
7
T
-7
-?
8
8
8
8
•?
7
"7
7
-?
-r
7
6
•j
7
7
-t
Filter
Box Temp.
(d»9-F)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
Imp. Exit
Temp.
(teg F)
57
57
IT"?
57
58
59
59
59
60
60
60
50
60
60
60
62
62
52
62
52
63
63
63
63
Stack Leak
Temp. Check
(deq.F.)
62
52
63
64
64
64
63
54
62
63
64
64 323.Q03
66 323.656
57
66
57
66
66
66
66
66
57
66
66
108.389
0.602
2.52 75,92
0.035
A-6 2
-------
PLANT GREENSBORO INO. PLATERS
SAMPLING LOCATION MIST ELIM. OUTLET
FILTER NUMBER(S)
BAR. PRESS,, in. Hg 29.2
ST AT 1C PRESS . , in . H20 - 1 .33
LEAKRATE,CFM 0.000
LE AK TEST V ACUUM , in Hg 20
Trov.
Point.
No.
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
Sample
Tim*
(Min.)
0/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
•„'*»
56/0
60
64/0
4
8/0
12
16/0
20
24/0
23
32/0
36
40/0
44
48/0
52
56/0
50
128 /OFF
Gas Meter
Reading
(Cu .FO
509,389
514,101
517.403
521 .808
525.004
531.901
533.802
537.505
542.401
546.802
550.773
338.202
563.203
558.010
572.710
573.105
582.510
386.710
590.806
595.401
599.404
604.205
609.103
513.307
618.310
623.902
628.006
633.107
637.908
642,605
652.401
652.410
657.238
Velocity
Head
Cm.H20)
3.10
3.10
3,30
3.39
3.30
3.30
3.60
3.60
3.60
4.20
4.30
4.30
4.41
4.50
4.40
4.40
3,00 '
3.00
3.60
3.60
4.20
4.20
4.30
4.30
4.00
4.00
4.10
4.10
4.30
4.30
4.39
4.39
Orifice
(in.H
Desired
3.19
3.19
3.48
3.48
3.39
3.39
3.70
3.70
3.70
4.31
4.42
4.42
4.53
4.52
4.52
4.52
3.03
3. OS
3.70
3.70
4.32
4.32
4.42
4.42
4.11
4.11
4.21
4.21
4.42
4.42
4.51
4.51
4H
20.)
Actual
3.19
3.19
3.48
3.48
3.39
3.39
3.70
3.70
3.70
4,31
4.42
4.42
4.53
4.02
4.52
4.52
3.08
3. as
3,70
3.70
4.32
4.32
4,42
4.42
4.11
4.11
4.21
4.21
4.42
4.42
4.51
4.51
D ATE : 03 / 1 8 /So OPER ATOP. ;
RUN NUMBER MO-1
NOZZLE * , NOZZLE Dl AM. 702 ,.1 79
METER BOX AW? 1 .75
SAMPLE BOX NUMBER 18
METER BOX NUMBER N-14
ASSUMED MOISTURE 2
Gos Meter
Temp,
(deg.F)
52
52
60
62
64
64
62
62
64
64
60
50
63
03
63
65
64
D4
69
69
69
69
*?•">
"T-?
78
SO
80
80
80
81
81
81
Pump
Vac.
(in.Hg)
14
13
14
14
14
14
14
14
14
14
13
13
13
13
13
13
11
11
14
14
14
14
14
14
14
15
15
15
15
15
15
15
Filter
Box Temp,
(deq.F)
130
130
130
130
130
130
130
130
130
130
130
130
130
130
135
135
135
135
135
135
135
135
135
135
135
133
135
135
135
135
135
135
Imp. Exit
Temp,
(eteg-F)
50
50
50
48
48
48
48
43
50
50
55
35
55
35
58
58
58
38
58
53
58
58
58
38
58
60
60
60
60
60
60
60
ST
Stack
Temp.
(d*g.F)
70
70
70
69
69
69
69
69
70
70
70
70
70
70
TO
f~r
72
70
70
71
7"'
"7?
72
73
73
( <£
73
"!">
72
i'*»
72
72
Leak
Chec-k
550.773
334.003
FINAL
DIFF/AVG.
144,619
3,864
4.003
70.906
A-6 3
-------
PARTICULATE FIELD DATA t RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
BUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
MI-1 03/18/86 Mist Eliminator Inlet
MO-1 03/18/86 Mist Eliminator Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia N02ZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tin DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPIMGERS & SILICA BEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF«
%H20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
M«J ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
81 ISOKINBTIC SAMPLING RATE, PERCENT
• 68 Degrees F -- 29-92 Inches of Mercury (Kg)
Willis
Steve
MI-1
838
120?
18
120.00
0.250
0.840
1.000
29.20
2.520
108.389
77
104.626
22. 0
1.036
1.0
0.990
28.84
28.73
-1.35
29 .10
65
0.6020
44.15
443.0
7.891
8,150
99-6
S. Nesbit
Terll
MO-1
836
1150
16
128.00
0.179
0.840
0.993
29.20
4.003
144.619
68
141.507
33.0
1-553
1.1
0.989
28.84
28.72
-1.33
29.10
71
3-8640
112.5
143.0
6,411
6,704
97-9
(contiimed next pageJ
A-64
-------
MI-1
MO-1
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/BSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HODR
FLUE GAS TEMPERATUBE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std, Cubic Meters/hr*
Dry Std, Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emlsslons, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, rog/dscm*
Concentration, gr/dscf*
Emlss i cms, kg/hr
Emissions, Ib/hr
* 68 Degrees F — 29.92 Inches of
3
{ 4,494.0 ) ( 675.0 )
(0.6629 ) 10.07361 )
( 44.83 ) ( 4.045 )
( 5.090.0 ) ( 886.0 )
(0.7508 ) (0.09662 )
( 50-78 J ( 5.310 1
65
18
0.0138
0.4890
0.0134
0.4734
( 1516.9001)
( 0.662865)
( 20.3356)
( 44.8324)
( 1718.0733 )
| 0.750775 )
( 23,0326 )
( 50.7781 )
Mercury (Hg)
71 deg. F
22 deg. C
0.0114 acmh
0.4022 acfh
0.0109 dscmh
0.3847 dscfh
( 368.4571 ) mg/dscm
{ 0.073614 ) gr/dscf
( 1.8349 ) kg/hr
(4.0452 ) Ib/hr
( 221.1155 ) mg/dscm
( 0.096625 ) gr/dscf
( 2.4085 ) kg/hr
( 5-3097
= X 10
A-65
-------
PLANT GREENSBORO 1ND. PLATERS
SAMPLING LOCATION MIST ELIM. INLET
FILTER NUMBER(S)
BAR. PRESS., in, Hg 29.2
STATIC PRESS., in. H20 -1.30
LEAK RATE, CFM 0.000
LE AK TEST V ACUUM , in Hg 3
Trav.
Point.
No.
A-1
A-2
< -~i
M-w
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A- 11
A-12
B-1
B-2
B-3
B-4
B-5
B-6
FINAL
Sample
Time
(Min.)
0/0
5
10
15
20
?c
30
*^c
Ow
40
45
50
55
60/0
5
10
15
20
25
30
35
40
45
50
35
120 /OFF
Gas Meter
Reading
(CuJt.j
376.958
381 .30
385.53
389.97
394.45
399.29
404.14
408.56
413.32
418.29
423.10
427.96
432.80
437.28
441 .80
446.42
450.74
455.28
460.15
464.83
469.36
473.88
478.27
482.70
487.183
Velocity
Head"
(inH20)
0.45
0.52
0.54
0.54
0.60
0.62
0.54
0.5S
0.53
0.65
0.62
0.62
0.52
0.52
0.55
0.54
0.52
0.5S
0.56
0.54
0.50
0.52
0.52
0.52
Orifice
AH
(in. H20)
Desired
2.09
2.38
2.50
2.50
2. 78
2.85
2.50
2.70
2.90
2.98
2.S5
2.85
2.38
2.38
2.57
2.52
2.42
2.70
2.62
2.52
2,35
2.42
2.42
2.42
Actual
2.09
2,38
2.50
2.50
2.7S
2.85
2.50
2.70
2.90
2.98
2.85
2.85
2.38
^ <3O
iL.'jO
2.57
2.52
2.42
2.70
2.62
2.52
2.35
2.42
2.42
2.42
DATE: 03/18/86
RUM NUMBER
NOZZLE «, NOZZLE DIAM.
METER BOX £Hf
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
Gas Meter
Temp.
(deg, F)
71
"?*>
74
76
78
80
82
83
33
85
86
86
82
34
86
86
84
81
83
85
84
87
88
88
Pump
Vac.
(in.Hg)
6
7
•?
~?
"7
-?
!
8
8
3
8
o
w
8
->
7
•7
1
7
7
-?
7
7
"7
7
_,
7
Filter
Box Temp .
(deg-F)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
OPERATOR:
Mi-2
104,. 257
1.75
16
N-7
*>
Imp. Exit
Temp.
(d*q.F)
62
62
62
62
62
62
82
62
62
62
52
62
62
63
63
S3
63
63
53
63
53
63
63
63
VSN
Stack Leak
Temp . Check
(d*g.F)
66
88
I=.O
\Jf-.<
69
69
67
69
69
69
70
69
70
71
70
70
70
70
71
71
71
72
72
71
71
DIFF/AVG.
110.225
0.553
2.57 82.29
6Q.708
-------
PLANT
SAMPLING LOG AT ION
FILTER NUMBER(S)
BAR. PRESS,, in, Hg
STATICPRESS., in.H20
LEAKRATE..CFM
LEAK TEST VACUUH., in Hg
Trov.
Point,
No,
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
FINAL
Sampl*
Tim*
(Min.)
0/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
60
64/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
32
56/0
60
\ 28 /OFF
Bus M«t*r
Reading
(Cu.Ft.)
657 .707
660.905
564.108
863.006
671 .005
574.710
673.307
582.103
685.902
689.606
693.303
697.007
700.803
704.502
708.303
71 1 .901
715.555
7 13. 704
721 .806
725.110
728.201
731 .302
734.801
738.201
741 .903
745.606
748.602
75220S
756.105
760.202
763.905
767.703
771 .268
GREENSBORO IND, PLATERS
MIST EL IM. OUTLET
292
-1.48
0.000
10
Velocity
Head
(in.H20)
3.30
3.30
3,80
3.80
4.30
4.30
4.60
4.50
4.30
4.20
4.39
4.39
4,40
4,40
4,20
4.30
2.99
2.99
3.20
3.20
3.40
3.40
3.70
3.70
4.40
4.40
4.60
4.70
4,70
4.70
4,30
4.39
Orifice AH
(in. H20)
Desired Actual
1,99
1 .99
2.29
2.29
2.59
2.59
2.77
2.71
2.59
2.53
2,55
2.65
2.55
2.65
2.53
2.59
1.80
1.30
1.93
1.93
2.05
2.05
*> O1
4_ .^o
!-, ^J«5
fc. .dLW
2.65
2.65
A. , i' f
2.33
2.83
2.S3
2.50
4.83
1 .99
1.99
2.29
2.29
2.59
2.59
2.77
2.71
2.59
2.53
2.65
2.55
2.65
2.65
2.53
2.59
1.80
1.SO
1.93
1.93
2.05
2.05
2.23
*-i -»*-,
*~.j»W
2.65
2.55
2.77
2.33
2.33
2.83
2.59
4.55
DATE: 02/18/86 OPERATOR:
RUM DUMBER MO-2
NOZZLE * , NOZZLE DIAM. 502, .155
METER BOX iW? 1 .76
SAMPLE BOX NUMBER 1
METER BOX NUMBER N-14
ASSUMED MOISTURE 2
Gas Meier
T?mp,
(
73
73
74
75
75
70
74
74
76
76
76
77
76
76
76
76
76
77
77
77
77
DIFF/AVG,
113.561
4.008
2.496
7.41
5.656
A-6 7
-------
PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North
RUN # DATE SAMPLING LOCATION
Carolina
TEST TEAM LEADER
MI-2 03/18/86 Mist Eliminator Inlet
MO-2 03/18/86 Mist Eliminator Outlet
ROT START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METEH CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AV6. PRESSURE DIFFERENTIAL OF
ORIFICE METER. INCHES H2O
Vn VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm{std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS &. SILICA 6EL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF«
ZH20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT. LB/LB-MOLE
Pg FLUE 6AS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
XI ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29-92 Inches of Mercury (Hg)
Willis
Steve
MI-2
1310
1532
18
120.00
0.257
0.840
1 .000
29.20
2,570
110.225
82
105.430
30.0
1.412
1.3
0.98?
28.84
28.69
-1.30
29.10
70
0.5530
42.54
443.0
7,506
7,853
99-8
S. Mesbit
Terll
MO-2
1310
1530
16
128.00
0.155
0.840
0.993
29.20
2.496
113.561
7?
108.845
38.0
1.789
1.6
0.984
28.84
28.66
-1.48
29.09
74
4.0080
115-1
143.0
6,481
6,855
99-3
(continued next page)
A-68.
-------
MJ-2
MO-2
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HQTO
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF«
Lb/Hr EMISSION HATE, LBS/H00R
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM;
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
(7,304.0) ( 1,162,0)
(1.069J (0.1648)
(68.79) ( 9-153)
( 8,148.0 } ( 1,343.0 )
(1.193) ( 0.1904 )
(76.74) ( 10.58 )
0.
0.
0.
0
2446
70
21
.0133
.4712
.0128
.4504
. 5858 )
1.069125 )
( 31.
( 68,
.2014 )
.7873)
0.
0,
0,
0,
( 377.
74
23
0116
.4113
.0110
.3889
.0187)
{ 0.164752)
( 4.
(9.
.1516)
.1528)
deg. F
deg. C
acmh
acfh
dscmh
dscfh
mg/dscm
gr/dscf
kg/hr
Ib/hr
68 Degrees F -- 29.92 Inches
) - X 10"3
(2729.2964)
( 1.192666)
( 3^.8068)
( 76.7358)
of Mercury (Hg)
( 435.7*53) mg/dscm
{ 0,190415 ) gr/dscf
( 4.7983) kg/hr
( 10.5785 ) Ib/hr
A-69
-------
PLANT GREENSBORO IND, Pi
SAMPLING LOCATION MIST ELIM. INLET
FILTER wuMBERvs)
BAR. PRESS., in. Hq 29.2
ST AT 1C PRESS . , in . H20 - 1 .35
LEAKRATC,CFM 0.003
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
A-1
A-2
A-3
A-4
A-5
A-D
A-7
A-8
A-a
A-10
A-11
A-12
B-1
B-2
B-3
B-4
B-5
B-6
FINAL
Sompte
Time
(Min.)
0/0
5
10
15
20
25
30
35
40
45
50
55
60/0
5
10
15
20
23
30
35
40
43
50
55
120/OFF
Gas Meter
Reading
CCu.Ft.)
487.748
491.77
495,98
500,30
504 .S3
509.38
514.53
518.74
523,54
528,44
533.35
533.48
543,23
547.73
552,40
556.47
560.80
565.63
570.28
574.91
579.24
383.42
587.21
591 .29
595.235
8
Velocity
Head
(in.H20)
0.45
0.52
0.54
0.60
0.64
0.66
0.63
0.67
0.67
0.70
0.72
0.70
0.55
0.55
0.55
0.57
0.62
0.60
0.64
0.56
0.47
0.45
0.44
0.44
.ATERS
DATE: 03/19/86 OPERATOR: VStN
RUN NUMBER MI-3
NOZZLE * , NOZZLE DIAM. 106 ,.250
METER BOX AH@ 1 .75
SAMPLE BOX NUMBER 4
METER BOX NUMBER N-7
ASSUMED MOISTURE 2
Orifice iH
(in.
Desired
1.S8
2.17
2.26
2.51
2.67
2.76
2.63
2.80
2.90
2.93
3.01
2.93
2.30
2.30
2.30
2.38
2.59
2.51
2.68
2.34
1.97
1.SS
1.84
1.84
H20)
Actyal
1.8S
2.17
2.26
2.51
2.67
2.75
2.53
2.80
2.90
2.93
3.01
2.93
2,30
2.30
2.30
2.33
2.59
2.31
2.68
2.34
1.97
1.88
1.84
1.84
Gas Meter
Temp.
(d*g. F)
71
"'S
76
73
82
30
84
86
38
89
90
92
88
89
91
91
92
52
92
85
84
85
87
87
Pump
Vac.
Cm.Hci)
6
6
6
-?
~r
~f
1
"7
7
S
B
rt
7
7
7
~!
f
-f
7
-t
6
6
6
6
Filter
Box Temp .
(»g.F)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
Imp. Exit
Temp.
(*9.F)
62
62
62
62
62
62
62
62
62
52
62
62
62
62
62
62
62
52
62
62
62
62
62
62
Stack Leak
Temp. Check
(deg.F)
72
73
74
74
75
74
74
75
75
"re;
75
75
74
74
75
74
•7B;
75
75
74
74
74
74
75
DIFF/AVG.
107.487
0,578
2.43
83.34
74.375
A-70
-------
PLANT GREENSBORO INC. PLATERS
SAMPLING LOCATION MIST ELIM. OUTLET
FILTER NUMBER(S)
BAR. PRESS., in. Hq 29.2
STATIC PRESS,, in. H20 -1.70
LEAKRATE.CFM 0.001
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
e-1
e-2
B-3
8-4
B-5
B-6
B-7
B-8
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
FINAL
Sample
Time
(Min.)
0/0
4
8/0
12
16/0
20
24/0
23
32/0
36
40/0
44
48/0
32
56/0
60
64/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
60
128/OFF
Gas Meter
Reading
(Cu.FO
771.314
775.710
730.010
784.102
733.705
793.404
798.107
302.906
807.803
812.605
817.505
822,503
826.905
331 .907
836.810
841.710
846.363
850.403
854.702
858.704
862.805
869.107
371.206
S73.305
880.007
B83.302
890.304
894.602
309.005
903.803
MS .704
913210
913.366
20
Velocity
Head
(m.H20)
3.60
3.50
3.40
4.00
4.20
4.20
4.00
4.00
4.20
4.20
4.30
4.30
4.20
4.10
4.20
4.20
2.60
3.00
3.10
3.10
3.40
3.40
3.60
3. CO
4.20
4.20
4.40
4.40
4.40
4.40
4.40
4.40
DATE: 03/19/86
RUN NUMBER
NOZZLE*, NOZZLE DIAM.
METER BOX dHt
SAMPLE BOX NUMBER.
METER BOX NUMBER
OPERATOR:
MO-3
702,. 175
1.76
IS
N-14
ST
ASSUMED MOISTURE 2
Orifice
(1n.H
Desired
3.70
3.70
3.4Q
4.11
4.31
4.31
4.11
4.11
4.31
4.31
4.42
4.42
4.31
421
4.31
4.31
2.67
3.08
3.10
3.19
3.49
3.49
3.70
3.70
4.31
4.31
4.52
4.52
4.52
4.32
4.52
4.52
4H
20)
Actual
3.70
3.70
3.49
4.11
4.31
4.31
4.11
4.11
4.31
4.31
4.42
4.42
4.31
421
4.31
4.31
2.67
3.08
3.19
3.19
3.49
3.49
3.70
3.70
4.31
4.31
4.52
4.52
4.52
4.52
4.52
4.52
Gas Meter
Temp.
(d»q. F)
60
60
60
63
64
66
66
66
70
70
78
79
79
82
86
36
80
82
86
88
86
86
88
88
84
83
83
83
S3
84
84
84
Pump
Vac.
(in.Hg)
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
13
13
13
14
14
14
14
14
14
16
16
16
16
16
16
16
Filter
Box Temp.
(d*q.F)
100
100
100
100
100
100
110
no
110
110
120
120
130
130
130
130
130
130
130
130
130
130
131
131
131
130
130
130
130
130
130
130
Imp, Exit
Temp.
-------
PARTICULATE FIELD DATA t RESULTS TABULATION
PLANT: Greeasboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION
TEST TEAM LEADER
MI-3 03/19/86 Hist Eliminator Inlet
MO-3 03/19/86 Mist Eliminator Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Die NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMP1NQERS 8< SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
IH20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LE/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H2Q
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H2O
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
%I ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
Willis
Steve
MI-3
804
1042
18
120.00
0.250
0.840
1.000
29.20
2.430
107.48?
86
102.022
46.5
2.189
2.1
0.979
28.84
28.61
-1.35
29.10
74
o . 5780
43-73
443-0
7.596
8,071
100.9
S. Nesbit
Terll
MO-3
805
1052
16
128.00
0.179
0.840
0.993
29.20
4.022
146.903
78
Hi. 077
44.5
2.095
1.5
0.985
28.84
28.68
-1.70
29.08
80
3.8840
113-9
143-0
6,351
6,786
98.5
(continued next page)
A-7 2
-------
MI-3
MO-3
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dsem*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHRQMIOM:
Concentration, mg/decrn*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
• 68 Degrees F -- 29-92 Inches of
( ) = X 10"3
(4,467.0 ) { 693-0 )
( 0.6757 ) ( 0,07581 )
( 43-99 ) ( 4.12? )
(4,874,0 ) { 750.0 )
( 0-7373 ) (0.08204 )
( 48.00 ) (4.466 )
74
23
0.0137
0.4843
0.0129
0.4557
[ 1546.2699)
( 0.675699}
( 19,9544)
( 43.9919 J
( 1687.1546)
( 0.737264}
( 21.7725)
J 48.0002 )
Mercury (Hg)
80 deg. F
27 deg. C
0.0115 acmh
0.4072 acfh
0,0108 dscmh
0.3811 dscfh
( 173.4767) mg/dsem
( 0.075807 ) gr/dscf
{ 1.8719) kg/hr
( 4.1268 ) Ib/hr
{ 187.7454 ) mg/dscm
( 0.082042 ) gr/dscf
( 2.0258 ) kg/hr
( 4.4662 ) Ib/hr
A-73
-------
PLANT
GREENSBORO INO. PLATERS
SAMPLING LOCATIOW
FILTER NUMBER(S)
BAR. PRESS,, in. Hg
STATIC PRESS., in.
LEAKRATE.CFM
H20
LEAK TEST VACUUM, in Hg
Trav. Samol* Gas Meter
Point . Time
No. (Min.)
A-1 0/0
A-2 5
A-3 VO
A-4 15
A-5 20
A-6 25
A-7 30
A-S 35
A-9 40
A-10 45
A-11 50
A-1 2 55
B-1 60/0
5
10
13
B-2 20
B-3 25
B-4 30
B-5 35
B-6 40
45
50
33
120 /OFF
FINAL
DIFF/AVG.
Readinq
(Cu.Ft.j
595.868
600.14
504.48
508,97
613.32
613.17
522.80
527.59
532.51
637.44
642.37
647.27
652.17
550 .61
660.77
685.24
660.53
674.16
678.63
682.85
687.1 1
591 .48
695.64
700.02
704.286
MIST ELIM.
29.2
-1.33
0.000
8
Velocity
Head
(in.H20)
0.48
0.45
0.48
0.55
0.58
0.52
0.62
0.53
0.65
0.65
0.63
0.64
0.47
0.50
0.50
0.32
0.56
0.57
0.48
0.48
0.48
0.50
0.49
0.30
INLET
DATE:
03/19/86
RUN NUMBER
NOZZLE *
, NOZZLE OIAM.
METER BOX AH®
SAMPLE BOX NUMBER
Orifice
(in. H
Desired
2.15
2.02
2.15
2.47
2.60
2.78
2.78
2.92
2.92
2.92
2.83
2.87
2.11
2.24
2.24
2.33
2.51
2.56
2.15
2.15
2.15
2.24
2.20
224
M
20)
Actual
2.15
2.02
2.15
2.47
2.60
2.78
2.78
2.92
2.92
2 92
2. S3
2.37
2.11
2.24
2.24
2.33
2.51
2.55
2.15
2.15
2.15
2.24
2.20
2.24
METER BO
ASSUMED
Gas Meter
Temp.
(deq.F)
81
S3
81
S3
85
S7
88
39
90
92
92
92
90
73
74
75
70
31
84
85
86
88
88
S9
X NUMBER
MOISTURE
Pump
Filter
Vac. Box Temo.
(in .Ha.)
g
6
6
"7
7
*?
7
*T
8
S
3
8
7
7
7
7
~l
"j
6
6
6
e
c
5
Cde<3.F)
200
200
200
200
20C
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
OPERATOR :
MI-4
104, .257
1.75
16
M-7
2
Imp. Exit
Temp.
Cdea.F)
63
53
63
64
64
54
6-1
54
64
64
64
64
64
83
63
63
64
85
65
65
65
65
65
03
VSN
Stock Leak
Temp. Check
(d*q.F)
75
i' -j
74
74
74
74
l' sJ
75
75
75
"JST
1 •„'
76
74
72
73
73
73
74
74
74
73
74
74
74
108.418 0.542
>.44 84.83
74.125
A-74
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in.H20
LEAK RATE, CFM
LEAK TEST VACUUM , in Hg
TraY.
Point.
No.
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
FINAL
DIFF/
Sample
Tim?
(Min.)
0/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
60
64/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
CO
128/OFF
AVG.
Gas M«t?r
Reading
(Cu.Ft.)
913.508
921.610
•324.804
923.502
931.102
934.307
937.710
941.102
944 .506
947.805
351 .402
953.302
958.808
952.507
066.403
970.202
974.085
977.506
980.503
933.808
887.210
990.504
994.303
997.904
1001.903
1005.210
1008.807
1012.310
1016.210
1019.304
1022.502
1024.103
1 030 .797
GREENSBORO IND. PLATERS
MIST EL !M. OUTLET
29.2
-1.40
0.000
12
Velocity
Head
(w.H20)
3.00
3.00
3.10
3.10
3.40
3.40
3.60
3.60
4.40
4.40
4.60
4.50
4.60
4.60
4.40
4.40
2.99
2.99
3.40
3.40
4.00
4.00
4.40
4.40
4.00
4.00
4.20
4.20
4.20
4.20
4.20
4.20
Orifice A.
(in. H20)
H
Desired Actual
1.81
1.31
1.87
1.87
2.65
2.65
2.17
2.17
2.65
2.85
2.77
2.77
2.77
2.77
2.65
2.65
1.80
1.80
2.05
2.03
2.41
2.41
2.65
2.65
2.41
2.41
2.53
2.33
2.53
2.53
2.53
2.53
1.81
1.81
1.87
1.87
2.65
2.55
2.17
2.17
2.65
2.65
2.77
2.77
,£.. >' if
2.77
2.65
2.65
1.80
1.80
2.05
2.05
2.41
2.41
2.65
2.65
2.41
2.41
2.53
2.33
2.53
2.33
2.53
2.53
DATE: 03/19/86 OPERATOR:
RUN NUMBER MO-4
NOZZLE *, NOZZLE DIAM. 502..155
METER BOX AH<§> 1 .75
SAMPLE BOX NUMBER 30
METER BOX NUMBER N-14
ASSUMED MOISTURE 2
Gas Meter
Temp.
(d«j, F)
80
80
80
80
80
3!
84
84
84
84
80
89
89
92
90
90
84
64
66
66
70
70
70
72
74
75
78
73
78
78
78
78
Pump
Vac.
(in.Hg)
7
*?
7
8
8
8
8
8
8
S
10
10
10
10
10
10
10
o
V
8
8
8
8
8
8
8
9
9
9
a
g
Q
9
Filter
Box Temp ,
(deg.F)
125
125
125
130
130
130
130
130
130
130
120
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
Imp . Exit
Temp.
(d*g.F)
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
55
55
55
35
55
55
55
55
55
33
55
35
55
55
ST
Stack Leak
Temp. Check
(deg.F)
80
30
81
80
81
81
81
81
82
82
82
82
82
82
81
81
80
76
77
T"?
7S
79
75
79
7Q
79
79
79
79
79
70
79
112.289 3.875
2.391
79.25
79.906
A-75
-------
PARTICULATE FIELD DATA b RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, Korth
RUN # DATE SAMPLING LOCATION
Carolina
TEST TEAM LEADEB
MI-4 03/19/86 Mist Eliminator Inlet
MO-4 03/19/86 Mist Eliminator Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET BUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF»
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPIN0ERS & SILICA GEL, ML
Vw(std) VOLtlME OF WATER VAPOR, SCF»
XH20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DSY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE SAS PRESS., INCHES H6
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FUJE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Q«w VOLUMETRIC AIR FLOW HATE, WET ACFM
%l ISOK1NETIC SAMPLING RATE, PERCENT
* 68 Degrees F — 29.92 Inches of Mercury (Hg)
Willis
Steve
MI-4
1110
1600
18
120.00
0.257
0.840
1.000
29.20
2.440
108.418
85
103.097
51-5
2.424
2.3
0.977
28.84
28.59
-1-33
29.10
74
0.5420
42.36
443.0
7,343
7,818
99-8
S, Nesbit
Terll
MQ-4
1110
1606
16
128.00
0.155
0.840
0.993
29.20
2.391
112.289
79
107.198
42.5
2.000
1.8
0.982
28.84
28.64
-1.40
29.10
80
3.8750
113-8
143.0
6,327
6,780
100.2
(continued next page)
A-76
-------
MI-4
MO-4
HEXAVALENT CHROMIUM;
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE. LBS/HOTJR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr*
Dry Std. Cubic Feet/hr*
HEXAVALEUT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F -- 29,92 Inches of
( ) = X 10~3
( 7,560.0 ) ( 1,538.0)
( 1.132 ) ! 0.2214)
{ 71.23 ) ( 12.01 )
(8,570.0 ) ( 1,714.0 )
{ 1.283 ) (0.2467)
( 80.75 ) (13.38)
74
23
0,0133
0.0125
0.4406
( 2589.6358 )
( 1.131636 )
(32.3092 )
(71.2296 J
( 2935.6056 )
( 1.282821 )
(36.6256 ]
( 80.7458 )
Mercury (Hg)
80 deg. F
27 deg. C
0.0115 acrnh
0,4068 acfh
0.0108 dscmh
0.3796 dscfh
( 506.6799! mg/dscm
( 0.221412) gr/dscf
( 5-4464) kg/hr
( 12.0072 ) Ib/hr
( 564.6615) mg/dscm
( 0.246750 ) gr/dscf
( 6.0696 ) kg/hr
( 13-3812) Ib/hr
A-77
-------
PLANT
SAMPL ING LOCATION
FILTER NUMBERtS)
BAR, PRESS., in. Hg
STATIC PRESS., in.H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Tray.
Point.
No.
B-5
A-4
Sample
Tim*
(Min.)
0/0
10
20
30
40
50
eo/o
10
20
30
40
50
120/OFF
Gas Meter
Reading
(CU.FU
339.575
351 .46
303.37
375.71
387.73
399.84
412.03
424.62
437.34
450.06
462.74
475.48
487.820
GREENSBORO BND. PLATERS
COATING TANK «6 HIST
ELIMINATOR OUTLET
29.5
-1.75
0.000
10
Velocity
Head
(in,H20)
4.30
4.30
428
4.30
4.30
4.25
4.65
4.70
4.70
4.70
4.50
4.60
Orifice AH
(in. H20)
Desired Actual
4.40
4.40
4.38
4.40
4.40
4.44
4.73
4.80
4.80
4.80
4.70
4.70
440
4.40
4.38
4,40
4.40
4.44
4.75
4.80
4.80
4.80
4.70
4.70
DATE: 03/26/86 OPERATOR:
RUN NUMBER MQ-5A
NOZZLE ", NOZZLE Dl AM, 103, .177
METER BOX ihk§> 1 .76
S AMPLE BOX NUMBER 1 2
METER BOX NUMBER N- 1 4
ASSUMED MOISTURE 2
Gas Meter
T«mp.
(deg. F)
62
71
78
79
81
82
75
82
86
87
88
89
Pump
Vac.
(in.Hg)
9
9
9
9
9
9
9
9
9
9
9
9
Filter
Box Temp,
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR, PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trov,
Point,
No.
A-2
8-7
Sample
Tim*
(Mln.)
0/0
10
20
30
40
50
§0/0
10
20
30
40
50
120/OFF
Gas Meier
Reading
(CuJt.)
809.402
820,37
831.77
842,94
854,08
865.36
878.51
887.99
899.38
910.69
921.97
933.29
944.420
GREENSBORO WO, PLATERS
COATING TANK *6 MIST
ELIMINATOR OUTLET
29.5
-1.73
0.000
7
Velocity
Head
(iftH203
4.60
4.58
4.65
4.40
4.40
4.40
4.60
4.40
4.30
4.30
420
4.20
DATE: 03/26/86 OPERATOR:
RUN NUMBER MO-5B
NOZZLE *, NOZZLE DIAM. ?03/.169
METER BOX AH@ 1.75
SAMPLE BOX NUMBER 16
METER BOX NUMBER R-2
VSN
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
3.98
3,95
4.02
3.82
3.82
3.82
3.98
3.82
3.78
3.78
3.S5
3.65
Actual
3.98
3.95
4.02
3.82
3.82
3.82
3.98
3.82
3.78
3.78
3.55
3.55
Gas Meter
Temp.
(fteg.F)
72
80
92
95
98
98
82
92
96
102
104
109
Pump
Vac.
(in.Hg)
6
6
6
6
6
6
6
6
6
6
8
6
Filter
Box Temp,
(deg.F)
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(degJ)
62
63
63
64
64
64
64
64
64
64
64
64
Stack Leak
Temp. Check
(deg,F)
73
73
74
74
75
75
74
75
75
75
75
77
FINAL
DFF/AVG.
135.018
4.418
3.839 93.33
74.583
A-79
-------
PARTICULATE FIELD DATA & RESULTS TABULATION
PLAKT: Greensboro Industrial Platers, Greensboro, North Carolina
RTO
DATE
SAMPLING LOCATION
TEST TEAM LEADER
MO-5A
MO- 5B
03/26/86 Coating Tank #6 Mist Eliminator Outlet
03/26/86 Coating Tank #6 Mist Eliminator Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta MET RUN TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG, PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VQUJME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF»
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS fc SILICA GEL, ML
Vw(std) VOLUME OF WATER VAPOR, SCF*
ZH20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE 8AS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS,, INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM«
Qew VOLUMETRIC AIR FLOW RATE, WET ACFM
21 ISOKINETIC SAMPLING RATE, PERCENT
• 68 Degrees F — 29-92 Inches of Mercury (Hg)
Willie
Willis
MO-5A
831
1054
2
120,00
0.17?
0.840
0.993
29.50
4.580
148.245
80
143.479
11.0
0.518
0.4
0.996
28.84
28.80
-1.75
29-37
75
4.4710
120.8
143.0
6,943
7.196
99-9
S. Nesbit
S. Nesbit
MQ-5B
834
1055
2
120.00
0.169
0.840
0.996
29.50
3.840
135.018
93
127-757
30.5
1.436
l.l
0.989
28.84
28.72
-1-73
29.37
75
4,4180
120.2
143.0
6,860
7.163
98.8
(continued next page)
A-80
-------
MO-5A
MO-5B
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HQUR
TOTAL CHROMIOM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std, Cubic Meters/hr*
Dry Std- Cubic Feet/hr*
HEXAVALENT CHROMIUM;
Concentration, mg/dscm* j
Concentration, gr/dscf* (
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHBOMI0M:
Concentration, mg/dscm* (
Concentration, gr/dscf* (
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F -- 29-92 Inches of Mercury
( } = x 10"3
( 897-0 J ( 790.0 )
[ 0.09648 ) ( 0.09543 )
(5-742 } ( 5.611 )
( 862.0 ) ( 743.0 )
( 0,09272 ) (0.08975 )
( 5.518 ) ( 5.277 )
75
24
0,0122
0.4317
O.OH8
0.41&6
220.7852 )
0.096480 )
( 2.6045 )
( 5-7419 S
212.1704 )
0.092716 )
(2.5029 )
(5.5179 )
(Hg)
75 deg. F
24 deg. C
0.0122 acmh
0.4298 acfh
0.0117 dscmh
0.4116 dscfh
( 218.3771 ) mg/dscm
( 0.095428 ) gr/dscf
( 2-5451 ) kg/far
(5-6111 ) Ib/hr
( 205-3850) mg/dscm
( 0.089751 ) gr/dscf
( 2.3937 ] kg/hr
( 5-2772 ) Ib/hr
A-81
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, In Hg
Trav.
Point,
No.
A-4
B-5
Sample
Tim*
(Min.)
0/0
10
20
30
40
50
60/0
10
20
30
40
50
120/OFF
Gas Meter
Reading
(Cu.Ft.)
488.438
501,02
513.45
525,86
538.73
550.88
563.22
575.47
587.42
599.54
611.63
624.32
535.922
GREENSBORO IND, PLATERS
COATWG TANK »6 MIST
ELIMINATOR OUTLET
29.5
-1.73
0.000
12
Velocity
Head
(in.H20)
4.50
4.45
4.60
4.60
4.50
4.50
4.20
4.30
4.30
4.30
4.30
4.30
DATE: 03/26/86 OPERATOR:
RUN NUMBER MO-6A
NOZZLE », NOZZLE Dl AM. 103 ,.177
METER BOX iH@ 1 .76
SAMPLE BOX NUMBER 12
METER BOX NUMBER N- 1 4
VSN
ASSUMED MOISTURE 2
Orifk»
iri
(in.H20)
Desired
4.60
4.55
4.70
4.70
4.60
4.50
4.29
4.40
4,40
4.40
4.40
4.40
Actual
4.50
4,55
4.70
4.70
4.60
4.60
4.29
4,40
4.40
4.40
4.40
4.40
Oas Meter
Temp.
(deg. F)
73
79
83
89
89
90
83
90
92
93
93
92
Pump
Vac.
(in.Hg)
11
11
11
11
11
11
11
11
11
11
11
11
Fitter
Box Temp.
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
B-5
A-4
Sample
Tim?
(Min.)
0/0
10
20
30
40
50
60/0
10
20
30
40
50
120 /OFF
Gas Meter
Reading
(CU.FU
944,712
957.09
969.63
981 .76
994.35
1006.34
1018.71
1030.43
1042.18
1053.63
1085.45
1078.03
1090.646
GREENSBORO IND. PLATERS
COATWG TANK *6 MIST
ELIMINATOR OUTLET
29.5
-1.75
0.000
8
Velocity
Head
(in.H20)
4.20
4.20
4.10
4.10
4.15
4.15
3.70
3.80
3.80
4.10
420
4.10
DATE; 03/26/86 OPERATOR:
RUN NUMBER MO-6B
NOZZLE *, NOZZLE DIAM. 702,,179
METER BOX AH«> 1 .75
SAMPLE BOX NUMBER 14
METER BOX NUMBER R-2
WSN
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
4.68
4.68
4.55
4.55
4.62
4.62
4.06
420
420
4.55
4.68
4.55
Actual
4,68
4.68
4.55
4.55
4.52
4,62
4.06
420
420
4,55
4.68
4.55
Gas Meter
Temp.
(deg. F)
82
91
101
103
106
108
96
104
105
106
107
108
Pump
Vac.
(in.Hg)
7
7
7
7
7
7
7
7
7
7
7
7
Filter
Box Temp.
(deaf)
MA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(degl)
64
64
64
64
84
54
64
64
64
64
65
65
Stock Leak
Temp. Chtek
(deg.F)
77
77
77
78
77
77
77
75
76
77
79
79
FINAL
DIFF/AVG.
145.934 4.048
4.495 101.4
77.167
A-83
-------
PARTICULATE FIELD DATA fc RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
RUN # DATE SAMPLING LOCATION TEST TEAM LEADER
MQ-6A
MO-6B
03/26/86 Coating Tank #6 Mist Eliminator Outlet
03/26/86 Coating Tank #6 Mist Eliminator Outlet
RUK START TIME
BUS FINISH TIME
NET SAMPLING POINTS
Theta NET RUN TIME, MINUTES
Die NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
Y DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
Vm VOLUME OF METERED GAS SAMPLE, DRY ACF
tm DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IK IMPINGERS & SILICA GEL, ML
.Vw(std) VOLUME OF MATER VAPOR. SCF*
2H2O MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES K20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Qsd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOW RATE, WET ACFM
XI ISOKINETIC SAMPLING RATE, PERCENT
* 68 Degrees F -- 29,92 Inches of Mercury (Hg)
Willis
Willis
MQ-bA
1150
1356
2
120.00
0.177
0.840
0.993
29-50
4,500
147.484
8?
140.888
27.0
1.271
0.9
0,991
28.84
28.74
-1.73
29.37
78
4.4030
120-3
143-0
6,841
7,168
99-6
S. Nesbit
S. Nesbit
MO-6B
1151
135?
2
120.00
0.179
0.840
0.996
29-50
4.500
145.934
101
136-339
36.5
1,718
1.2
0.988
28.84
28.70
-1.75
29.37
77
4.0480
115-3
143-0
6,547
6,871
98.5
(continued next page)
A-84
-------
MO-6A
MO-6B
HEXAVALENT CHROMIUM:
mg CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCP«
Lb/Hr EMISSION RATE, LBS/HOUR
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER BSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/far
Actual Cubic Feet/hr
Dry Std. Cubic Meters/hr"
Dry Std. Cubic Feet/hr»
HEXAVALENT CHROMIUM:
Concentration, itig/dscro*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F -- 29.92 Inches of
( ) = x 10~3
(i,46o.o ) (739.oj
( 0.1599 ) { 0.08365 )
( 9-378 ) ( 4.694}
( 1,393-0 ) (750.0)
( 0.1526 ) ( 0.08489 )
I 8.948 ) [ 4.764 )
78
0.0122
0.4301
0.0116
0,4105
( 365,9694)
f 0.159924)
{ 4.2537)
( 9-3779)
E 3^9-1749)
( 0.152585)
( 4.0585}
( 8,9475)
Mercury (Hg)
77 deg. F
25 deg. C
0.0117 acmh
0.4123 acfh
0.0111 dscrah
0.3928 dscfh
( 191.4213 ) mg/dscm
( 0.083649 ) gr/dscf
{2,1291 ) kg/hr
(4.6939
( 194.2706 ) mg/dscm
( 0.084894 ) gr/dscf
( 2. 1608) kg/hr
( 4 . 7638 ) Ib/hr
A-85
-------
PLANT GREENSBORO IND. PLATERS
SAMPLWG LOCATION COATWC TANK *6 MIST
ELIMINATOR OUTLET
FILTER NUMBER(S)
BAR. PRESS., in. Bg 29.5
STATIC PRESS., in. H20 -1 .70
LEAK RATE, CFH 0.000
LEAK TEST VACUUM, in Hg 12
Trov. Sample
Point. Time
No. (Min.)
8-4 0/0
10
20
30
40
50
A-4 60/0
10
20
30
40
50
120 /OFF
Gas Met? r
Reading
-------
PLANT
SAMPLING LOCATION
F1TER NUMBERCS)
BAR. PRESS. , in. Hg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
A-4
B-4
Sample
Time
(Min.)
0/0
10
20
30
40
50
00/0
10
20
30
40
50
120 /OFF
Gas Meter
Reading
(Co .Ft.)
90.722
102.20
113.90
125.98
137.0?
149.74
161.51
173.38
184.82
196.29
208.13
220.00
231 .839
GREENSBORO IND. PLATERS
COATING TANK «6 MIST
ELIMINATOR OUTLET
20.5
-1.72
0.000
8
Velocity
Head
(in.H20)
4.40
4.50
4,40
4.40
4,50
4,40
4.80
4.50
4.30
4.80
4.70
4,70
Orifice &
(in. H20)
H
Desired Actual
3.85
3.92
3.85
3.85
3.92
3.85
4.20
3.92
3.32
420
4.10
4.10
3.83
3.92
3.85
3.85
3.92
3.85
4.20
3.92
3.92
420
4.10
4.10
DATE: 03/26/86 OPERATOR: ¥SN
RUN NUMBER MO-7B
NOZZLE *, NOZZLE DIAM. ~m,.\m
METER BOX AH$ 1 .75
SAMPLE BOX NUMBER 14
METER BOX NUMBER R-2
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deg. F)
92
99
106
108
109
110
94
104
108
109
110
110
Pump
Vac.
(in,Hg)
7
7
7
7
7
7
1
1
7
7
7
7
Filter
Box Temp.
(degJ)
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Imp. Exit
Temp.
(deg.F)
63
63
53
63
53
63
63
63
63
63
63
63
Stock Leak
Temp. Check
(deg JO
77
79
80
30
80
79
30
30
80
80
80
80
FINAL
DIFF/AVG,
141,117
4.549
3.973 104.9
79.583
A-87
-------
PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
HUH # DATE SAMPLING LOCATION TEST TEAM LEADER
MO-7A
MO-7B
03/26/86 Coating Tank #6 Mist Eliminator Outlet
03/26/86 Coating Tank #6 Mist Eliminator Outlet
RUN START TIME
RUN FINISH TIME
NET SAMPLING POINTS
Theta NET ROT TIME, MINUTES
Dia NOZZLE DIAMETER, INCHES
Cp PITOT TUBE COEFFICIENT
¥ DRY GAS METER CALIBRATION FACTOR
Pbar BAROMETRIC PRESSURE, INCHES HG
Delta H AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
V» VOLUME OF METERED GAS SAMPLE, DRY ACF
tra DRY GAS METER TEMPERATURE, DEGREES F
Vm(std) VOLUME OF METERED GAS SAMPLE, DRY SCF*
Vic TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS t. SILICA GEL, ML
Vw(Std) VOLUME OF WATER VAPOR, SCF*
ZH20 MOISTURE CONTENT, PERCENT BY VOLUME
Mfd DRY MOLE FRACTION
Md ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE
Ms WET MOLECULAR WEIGHT, LB/LB-MOLE
Pg FLUE GAS STATIC PRESSURE, INCHES H20
Ps ABSOLUTE FLUE GAS PRESS., INCHES HG
ts FLUE GAS TEMPERATURE, DEGREES F
Delta p AVERAGE VELOCITY HEAD, INCHES H20
vs FLUE GAS VELOCITY, FEET/SECOND
A STACK/DUCT AREA, SQUARE INCHES
Osd VOLUMETRIC AIR FLOW RATE, DRY SCFM*
Qaw VOLUMETRIC AIR FLOS RATE, WET ACFM
SI ISOKINETIC SAMPLING RATE, PERCENT
« 68 Degrees F -- 29.92 Inches of Mercury (Hg)
Willis
Willis
MO-7A
1408
1628
2
120.00
0.177
0.840
0-993
29.50
4.600
148,718
90
141 .326
22,5
1.059
0.7
0.993
28.84
28.76
-1.70
29-38
80
4.5020
121 .8
1*3-0
6,914
7.259
98.9
S. Nesbit
S, Nesbit
MO-7B
1409
1629
2
120.00
0,169
0.840
0.996
29.50
3-970
141.117
105
130,73^
4i.O
1.930
1-5
0.985
28.84
28.68
-1.72
29-37
80
4.5490
122.6
143.0
6,909
7,307
100.4
(continued next page)
A-88
-------
MO-7A
MO-7B
HEXAVALENT CHROMIUM:
rag CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PE8 DSCF"
Lb/Hr EMISSION RATE, LBS/HOUB
TOTAL CHROMIUM:
mg TOTAL CATCH, MILLIGRAMS
gr/DSCF CONCENTRATION, GRAINS PER DSCF*
Lb/Hr EMISSION RATE, LBS/HOUR
FLUE GAS TEMPERATURE:
Degrees Fahrenheit
Degrees Centigrade
AIR FLOW RATES x million:
Actual Cubic Meters/hr
Actual Cubic Feet/hr
Dry Std, Cubic Meters/hr*
Dry Std, Cubic Feet/hr*
HEXAVALENT CHROMIUM:
Concentration, mg/dscm*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
TOTAL CHROMIUM:
Concentration, mg/dscin*
Concentration, gr/dscf*
Emissions, kg/hr
Emissions, Ib/hr
* 68 Degrees F -- 29.92 Inches of
( ) = X ID"3
( 1,050.0 ) (797.0;
t o.ii4? ) ( 0.09408;
( 6.795 ) (5-572
( 1,000.0 ) (776.0
( 0.1092 ) ( 0.09160
( 6.471 ) ( 5-425
80
27
0.0123
0.4355
0.0117
0.4148
( 262.3801)
( 0.114657)
( 3.0820)
( 6.79^6)
( 249.8858)
( 0.109197)
! 2.9352)
( 6.4710)
Mercury (Hg)
80 deg. F
27 deg, C
0.0124 acmh
0.4384 acfh
0.0117 dscmh
0.4145 dscfh
( 215.2953) mg/dscm
( 0.094081 ) gr/dscf
( 2,5272) kg/hr
(5-5715) Ib/hr
( 209.6225 ) mg/dscm
( 0.091602 ) gr/dscf
( 2,4606 ) kg/hr
( 5-4247 )Ib/hr
A-89
-------
PARTICLE SIZING FIELD DATA & RESULTS TABULATION
RUN MO-SI
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
SAMPLING LOCATION: Tank #6 Mist Eliminator Outlet DATE: 032486
START-FINISH TIME: 1304-1614
SR) SAMPLING RATE, ACFM 0.597
ST) SAMPLING TIME, MINUTES: 152.53
PB) BARO. PRESS,,IN.HG.: 29.50
PSI) STATIC PRESS., IN. H20: -1.76
VOLUME METERED, ACF: 89.231
NOZZLE DIA., INCHES: 0.126
Y) METER CAL. FACTOR: 0.993
TM) METER TEMP., DEG F: 76
DH) DELTA H AVG., IN. H20: 1.05
S) STACK GAS
•MV) MOISTURE 3
TEMP . , DEG F
fe BY VOLUME:
CF) DENSITY CORE. FACTOR:
ISOKINETICS, %
: 76
2.0
1.000
101.1
- PARTICLE DIAMETER -
S T AGE ( mi crons )
NO. FROM GRAPH AERODYNAMIC
PreSep
0
1
2
3
4
5
6
7
FILTER <
10.99
12.48
7.82
5.23
3.62
2.28
1.17
0.72
0.49
0.49 <
11.03
12.53
7.85
5.25
3.63
2.29
1.17
0.72
0.49
0.49
DEN) PARTICLE
VCF) VISCOSITY
DENSITY,
GM/CC: l.O1
CORR. FACTOR: 1.00
MD) MOL WT, DRY LB/LB-MOLE: 28. 8
CONCENT . ,
CATCH
WEIGHT
(jug)
198.00
11.50
10.30
26.00
23.00
16.20
9.40
9.40
10.80
0.00
GR/DSCF:
PERCENT
OF TOTAL
(%)
62.9
3.7
3.3
8.3
7.3
5.1
3.0
3.0
3.4
0.0
0.056
CUM. %
LESS THAN
GIVEN DIA
37.1
33.4
30.1
21.8
14.5
9.4
6.4
3.4
0.0
TOTAL CATCH
314.60
A-90
-------
PARTICLE SIZING FIELD DATA & RESULTS TABULATION
RUN MI-SI
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
SAMPLING LOCATION: Tank #6 Mist Eliminator Inlet DATE: 032486
START-FINISH TIME: 1304-1614
SR) SAMPLING RATE, ACFM 0.533
ST) SAMPLING TIME, MINUTES: 156.00
PB) BARO, PRESS.,IN.HG.: 29.50
PSI) STATIC PRESS., IN. H20: -1.35
VOLUME METERED, ACF: 82.077
NOZZLE DIA., INCHES: 0.190
Y) METER CAL. FACTOR: 1.000
TM) METER TEMP., DEC F: 80
DH) DELTA H AVG,, IN. H20: 0.77
S) STACK GAS
MV) MOISTURE
TEMP . , DEG F
% BY VOLUME:
CF) DENSITY CORE. FACTOR:
ISOKINETICS, %
: 73
2.0
1.000
104.4
- PARTICLE DIAMETER -
STAGE (microns)
NO. FROM GRAPH AERODYNAMIC
PreSep
0
1
2
3
4
5
6
7
FILTER <
11.66
13.23
8.28
5.54
3.83
2.42
1.24
0.76
0.52
0.52 <
11.68
13.26
8.30
5.55
3.84
2.42
1.24
0.76
0.52
0.52
DEN) PARTICLE
DENSITY, GM/CC
VCF) VISCOSITY CORR. FACTOR:
MD) MOL WT,
CONCENT .
CATCH
WEIGHT
(jjg)
9,320.00
164.00
48.50
320.00
230.00
76.20
21.50
9.90
7.90
0.00
DRY LB/LB-MOLE:
, GR/DSCF:
: 1.0(
i.oo:
28.8-
1.985'
PERCENT CUM. %
OF TOTAL LESS THAN
(%) GIVEN DIA
91.4
1.6
0.5
3.1
2.3
0.7
0.2
0.1
0.1
0.0
8.6
7.0
6 . 5
3.4
1.1
0.4
0.2
0.1
0.0
TOTAL CATCH
10,198.00
A-91
-------
w
0
u
I
o
0.
H
u
u
N
U
c
L
4 i _g
• 3 0—~
20—~
I 0
I~i
T_f
a
S-
3—2
3—:
9—=
a—=
«~i
a^—_.
5— :
3_=
3
"3"
,2 —
DENSITY =1.0 GM/CM"
g t) fl. _,„,;_, r f • • i i •
20 = I ; ' I 1 . I I • , I 1 1 l 1
7 g = i 1 1 1 1 1 j i 1 1 1 t 1 1 i
,/, i 1 I 1 I 1 1 1 i 1 I 1 [ 1 I 1
^^ i i
' 7 1 ; . t !
i 1
1 1 1
iii 111
1 1 -t III
it 1 1 I 1 i t I
3 0 —^ ; ' i i '. i TANV ttr, MTC-T FT TMTW7, ^TiR
—
ATTT'T.FT 1
ORUN MO- si
Z^
RUN MI-SI
t
I
1 ui
r i
/i
y
i/
I f
1
0.3
| !
0.01 0.1
1 2 3 10 ZO3Q4QSQiO7030 90 95 9899
9 9. S 98.39
PERCENT OF FAflTftCULATE MASS LESS THAN INDICATED SIZE
TANK #6 MIST ELIMINATOR OUTLET PARTICLE SIZE DISTRIBUTION
A-92
-------
PARTICLE SIZING FIELD DATA & RESULTS TABULATION
RUN MO-S2
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
SAMPLING LOCATION: Tank #6 Mist Eliminator Outlet DATE: 032586
START-FINISH TIME: 0832-1339
SR) SAMPLING RATE, ACFM 0.606
ST) SAMPLING TIME, MINUTES: 240.00
PB) BARO. PRESS.,IN.HG.: 29.50
PSI) STATIC PRESS., IN. H20: -1.73
VOLUME METERED, ACF: 143.029
NOZZLE DIA., INCHES: 0.126
Y) METER CAL. FACTOR: 0.993
TM) METER TEMP., DEC F: 73
DH) DELTA H AVG., IN. H20: 1,07
S) STACK GAS
MV) MOISTURE '
TEMP . , DEG F
fr BY VOLUME:
CF) DENSITY CORR. FACTOR:
ISOKINETICS, %
: 71
2.0
1.000
101.3
- PARTICLE DIAMETER -
STAGE ( microns )
NO. FROM GRAPH AERODYNAMIC
PreSep
0
1
2
3
4
5
6
7
FILTER <
10.90
12.39
7.76
5.19
3.59
2.27
1.16
0.71
0.48
0.48 <
10.90
12.39
7.76
5.19
3.59
2.27
1.16
0.71
0.48
0.48
DEN) PARTICLE
DENSITY,
GM/CC: 1.01
VCF) VISCOSITY CORR. FACTOR: 1.00'
MD) MOL WT,
CONCENT .
CATCH
WEIGHT
(pg)
397.00
14.90
18.30
38.50
41.50
30.40
14.20
15.30
11.80
0.20
DRY LB/LB-MOLE: 28.8'
. GR/DSCF:
PERCENT
OF TOTAL
(%)
68.2
2.6
3.1
6.6
7.1
5.2
2.4
2.6
2.0
0.0
0.064
CUM. %
LESS THAN
GIVEN DIA
31.6
29.0
25.9
19.3
12.2
7.0
4.6
2.0
0.0
TOTAL CATCH
582.10
A-93
-------
PARTICLE SIZING FIELD DATA & RESULTS TABULATION
RUN MI-S2
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
SAMPLING LOCATION; Tank #6 Mist Eliminator Inlet DATE: 032586
START-FINISH TIME: 0832-1206
SR) SAMPLING RATE, ACFM 0.545
ST) SAMPLING TIME, MINUTES: 180.00
PB) BARO. PRESS.,IN.HG.: 29.50
PSI) STATIC PRESS., IN. H20: -1.33
VOLUME METERED, ACF: 97.160
NOZZLE DIA., INCHES: 0.190
Y) METER CAL. FACTOR: 1.000
TM) METER TEMP., DEC F: 73
DH) DELTA H AVG., IN. H20: 0.83
S ) STACK
GAS TEMP . , DEG F
MV) MOISTURE % BY VOLUME:
CF) DENSITY CORR. FACTOR:
ISOKINSTICS, %
STAGE
NO.
PreSep
0
1
2
3
4
5
6
7
FILTER
: 65
2.0
1.000
104.9
- PARTICLE DIAMETER -
( microns )
FROM GRAPH AERODYNAMIC
11.52
13.08
8.18
5.48
3.79
2.39
1.23
0.75
0.51
< 0.51 <
11.47
13.03
8.15
5.46
3.77
2.38
1.23
0.75
0.51
0.51
DEN) PARTICLE
VCF) VISCOSITY
DENSITY,
GM/CC: 1.01
CORR. FACTOR: 0.99i
MD) MOL WT, DRY LB/LB-MOLE: 28.8'
CONCENT . ,
CATCH
WEIGHT
(jig)
2,780.00
43.10
129.80
372.00
270.00
85.40
30.40
18.10
13.60
2.40
GR/DSCF
PERCENT
OF TOTAL
(%)
74.2
1.2
3.5
9.9
7.2
2.3
0.8
0.5
0.4
0.1
: 0.6081
CUM. %
LESS THAN
GIVEN. DIA
25.9
24.7
21.2
11.3
4.1
1.8
1.0
0.5
0.1
TOTAL CATCH
A-94
3,744.80
-------
tn
5
c
u
Q
0.
5
3
I 0 i
o
•a
U
N
U
-t
U
e
<
a.
70_=
so—r
50—2
30-3-
20—"
I 0
ft ^..a
8—~
H
a ••iii_
s—i
3—:
2—
3—
a— ~
5—S
-3-
.2 —
DENSITY =1.0 GM/CM"
1 1
I ! i
1 i
TANK #6 MIST ELIMINATOR OUTLET
O RUN MO-S2
A RUN MI-S2
/ I/
0.3
Q .0 I 0,1
1 Z 5 10 2O304Q50807080 3Q 93 9899
3 9. 9 9S . 3 9
PCRCENT OF I»AHTICUUATE MASS LESS THAN INDICATED SIZE
TANK #6 MIST ELIMINATOR OUTLET PARTICLE SIZE DISTRIBUTION
A-95
-------
PARTICLE SIZING FIELD DATA & RESULTS TABULATION
RUN MO-S3
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
SAMPLING LOCATION: Tank #6 Mist Eliminator Outlet DATE: 032586
START-FINISH TIME: 1420-1632
SR) SAMPLING RATE, ACFM 0.606
ST) SAMPLING TIME, MINUTES: 123.00
PB) BARO. PRESS.,IN.HG.: 29.50
PSI) STATIC PRESS., IN. H20: -1.73
VOLUME METERED, ACF: 73.203
NOZZLE DIA., INCHES: 0.126
Y) METER CAL, FACTOR: 0.993
TM) METER TEMP., DEG F: 79
DH) DELTA H AVG., IN. H20: 1.07
'S ) STACK
GAS TEMP . , DEC F
•MV) MOISTURE % BY VOLUME:
-------
PARTICLE SIZING FIELD DATA & RESULTS TABULATION
RUN MI-S3
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina
SAMPLING LOCATION: Tank #6 Mist Eliminator Inlet DATE: 032586
START-FINISH TIME: 1419-1638
SR) SAMPLING RATE, ACFM 0.535
ST) SAMPLING TIME, MINUTES: 123.00
PB) BARO. PRESS.,IN.HG.: 29.50
PSI) STATIC PRESS., IN. H20: -1.35
VOLUME METERED, ACF: 65.101
NOZZLE DIA., INCHES: 0.190
Y) METER CAL. FACTOR: 1.000
TM) METER TEMP., DEC F: 81
DH) DELTA H AVG., IN. H20: 0.81
TS ) STACK GAS TEMP . , DEC F
PMV) MOISTURE
DCF) DENSITY
% BY VOLUME:
CORR . FACTOR :
ISOKINETICS, %
N
: 73
2.0
1.000
101.6
- PARTICLE DIAMETER -
STAGE
(microns
)
DEN) PARTICLE
DENSITY,
GM/CC: l.Oi
VCF) VISCOSITY CORR. FACTOR: 1.00:
MD) MOL WT,
CONCENT .
CATCH
WEIGHT
DRY LB/LB-MOLE: 28.8.
, GR/DSCF:
PERCENT
OF TOTAL
NO. FROM GRAPH AERODYNAMIC (jig) (%)
PreSep
0
1
2
3
4
5
6
7
;, FILTER
11.63
13.20
8.26
5.53
3.83
2.41
1.24
0.76
0.52
< 0.52 <
11.65
13.23
8.28
5.54
3.84
2.41
1.24
0.76
0.52
0.52
2,040.00
36.80
94.30
279.00
228.20
94.30
28.20
15.80
11.20
0.00
72.1
1.3
3.3
9.9
8.1
3.3
1.0
0.6
0.4
0.0
0.695:
CUM. %
LESS THAN
GIVEN DIA
27.9
26.6
23.3
13.4
5.3
2.0
1.0
0.4
0.0
TOTAL CATCH
2,827.80
A-97
-------
BJ
o
u
j-
o
i
H
U
u
N
ca
ui
_i
u
I 0'
90.
3 0.
7 0.
50.
5 0_3-
4 0 =_
3 0—-
ZQ—'
! 0
s—=
3—1
3——-
7—3-
DENSITY 1.0 GM/CM"
1 i
I I
i i
TANK #6 MIST ELIMINATOR OUTLEI
O RUN MO-S3
A RUN MI-S3
A.
/I
i i i/ i i / i i
7
!/=< I
i i •
0.3
a.0i Q.I
12 310 203040 SO iO 70 SO 90 93 9839
99.3 99
.99
PERCENT OF PAfTTlCULATE MASS LESS THAN INDICATED SIZE
TANK #6 MIST ELIMINATOR OUTLET PARTICLE SIZE DISTRIBUTION
A-98
-------
APPENDIX B
FIELD AND ANALYTICAL DATA
B-:
-------
B-2
-------
Preliminary Field Data
PLANT N;
LOCATO
SAMPLM
MvE'
^ ^
; LC
DUCT DEPTH
FROM INSOE FAR W
zM ' f^lC^RfftJSSf^d^ fi(.ri~i
^?£t=ti£"Bl>12& . AJ.C -
>r.ATinw TAM*' ^Yfi4il
ALL TO OUTSOE OF PORT
NIPPLE LENGTH
n
^1
DEPTH OF DUCT __/_
WIDTH I RECTANGULAR DUCT>
A-
>"'
//-
h
tyuc.
•£"
£-'
£
Ti
t
EQUIVALENT DIAMETER:
p 2« DEPTH *WOTH 2( K )
UE DEPTH + WOTH ( * )
DISTANCE FRO
TO NEAREST F
DISTURBANCE;
STACK
STACK AREA::
LOCATION
i
rf
1
4
S
1
*
10
11
15
if.
17
11
30
21
2J
24
4 6
25.0 14.
9J.3 70.
•5.
M.*
M PORTS IFSTREAM
LOW - —
FFFT £• • ^
DIAMCTFRS "2..^
TTJ»/5.75)''1' =
^ ^
DOWNSTREAM
1,17
i
(A FbKT)
OF TRAVERSE POINTS W CRCULAR
f* \
19.4
32.3
•Q.C
10 13 14 16 IB
14.6 11.* 9. 8.5 1.5
34. 20.0 20. 16.9 14.6
61. IS .6 26. 22.0 11.1
77. 64.4 36. 2B.3 23.6
B%. 75.0 63. J7.5 29.6
91. 12.1 73. 62.S M.2
»7. M.2 7». 71.7 «.*
93.3 15. 71.0 70.4
97.9 90. S3.1 76.4
94. 17.5 81. J
9*. 2 91.5 BS. 4
95.1 19.1
98.4 92. S
95.6
•B.6
/.
D
z-
3.9
W
2
U
STACKS
20
6
12
16
20
25
JO
38
il
6S
75
79
•3
•7
W
93
K
98
.7
.9
.5
.4
.0
.6
.(
.2
,4
.0
.6
.5
,1
.1
.3
.1
.7
2:
6.0
11.
14.
1*.
21.
26.
31.
n.
60.
6*.
73.
n,
•2.
15.
•«.
91.
M.O
96.5
9* .9
24
S.
10.
13.
16.
19.
23.
27.
12.
39.
60.
67,
72.
77.
•0.
B3.
M.
•9.
92.
94.
9*.
1
2
S
9
5
2
1
4
0
2
3
1
3
1
*
0
6
9
*
S
1
5
9
LOCATION OF TRAVERSE POIMTS N RECTANGULAR STACKS
i
2
i
*
5
6
J
It
!
to
11
12
•1 J 4
25.0 14.? 11
7S.C 50.0 17
•1.3 42
• 7
.i
.5
.5
.S
5
)6
3d
50
70
90
.t
.0
.0
.0
.0
6
1.1
25.0
41.7
Sl.l
75.0
tl.J
J
7.1
21.4
35.7
50.0
64.3
71.6
92.9
1
6.i
It.*
31.
43.
56.
*«.
•1.
H.
9
i.^
It. 7
27.1
31. »
50.0
H.J
72.5
13.3
94.4
10
5.0
li.O
25.0
35.0
45.0
55.0
65-0
r$.o
ti.o
55.0
11
i.i
13.6
22.7
11.
40.
SO.
51.
4».
77.
•6.
tS.5
12
*.2
12.5
20. »
29.2
37.5
45. •
54.2
62.5
70. •
79.2
•7.5
95rt
DMXrfCM - POINTS
^.t»« *-«.«—
« -
7 .
6 .
5 ,
4 .
I •
2 .
• 2.0
.1.75
• 1.50
• 1.25 \ \ "
^- \ .
- 1.0 ^
• 0.75 «
• 0.5 I
. 4(
_ 44
- 40
I J6
. 32
- 2«
- 24
- 20
- 16
- 12
. B
Poiac
I
2
3
4
5
6
7
8
9
10
II
\Z
13
14
15
S
17
18
19
20
21
22
23
24
X OF
DIAMTTM
3/Z-
/<9.5
/e>.4-
32.3
67.7
00.^
0a^
5^,6
DISTANCE
RUM INSIDE
HALL
DISTANCE
rxon DUTSIDI
or poit
/"
/•*"
24"
3^4"
73^"
^^"
ID&-
I&JC
IMTWOPIf
B-3
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss
ING LO
0V
F E^S / CxtGCKissa^c X*jous.r/u&<_ TLAT«TW RUN NUMBER "T6 - I A
«"^fC<5£W*Aa*0 tfC TIME START ^5 *\ tS~"
CAT ION C^Annf c "T%»Ak *** IF- £^«-Au*r- T IME n N isw 1^12 I
16-fcV* TEAM LEADER §,?««OO TECMNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
PIT
""'PIT
toRS
TED
*^ TMB"
. MG 2.
^ • Z^ STAT I C PRESSURE
ST VACUUM, IN. HG '"^
TE, CU. FT. /MIN. G>.O>
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG ^__ SAMPLE BOX
OMOrOUPLE <3 &S °F PROBE
F I LTER # TARE
A!//?- A/M"
f
IANS
, IN. H
,0 —- O , "V>~
Q> C.E.PZ.
IDENTIFICATION NUMBERS
If Ot. NOZn.E- St>€> niAMETER fi.S 63"
/J • 1aT T
A T
1! 0
/C READ!
/C PROS
RSAT PU1
3UT f.S~
MP ^M 1 ^
t.-**> TEDLAR BAG *J A
NOMOGRAPH SET-UP
AH/a 1 ' & *~ C
i METER TEMP
% MOISTURE
SAMPLE
PQLIMT
1- 4
••
»*
'.'• k- • S~~
t t
,i
\
CLOCK
TIME,
MIN.
9/0
' /£»
to
>i
4*
S~c
ics^R.
'
DRY GAS
METER
READING,
CU . FT .
6l.<.v.-t_
fi10! -l\
^>"« 6^f
1Ci2, ^«?«,
f|-£s.^^»
ll^L.5^
fa..^-6.-J
4 . . . ,.
PI TOT
READING
UP),
IN. H20
ei.iT-'T
D U (
5, j^t
o 2.0^
fi.l-o^
Ci .i l^
NOMOORAPH # fce*1-
FACTQR '
.06
8"S STACK TEMP ^*^»
Z REF, AP &. 11
^
ORIFICE
SETT 1 NG ( AH ) ,
IN. H2_O
IDEAL
L €H
1 Wt_
I.W3
2..t.\
•L.ty
t..i (
ACTUAL
f.&°l
(.^ L
f .*/i
2., LI
L-tJ
2.3(
GAS
METER
TEMP.
61
&3-
8&
&&
8*\
^0
-
^ r
PUMP
VACUUM
IN. HG
GAUGE
t '
-s~
S~
Q,
Ca
Ca
£>. P^Pf'LJ^
FILTER
BOX
TEMP.
°F
H€
/z.^/
\L^
Itl
liA
f 28
IMP,
EXIT
TEMP.
°F
t V
^> d.!!.,,,,
f_ ku/
^. ^
^^0
CoQ,
STACK
TEMP.
t 6
Q"V
tq.
t?
C6
4 ?-
LK . CHECK
READINGS
M
to* _ T
M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPAI
ADORE.
&L
DATE
NY MAM
SR
ING L.CH
p fc M-fc / i tt.S-S'^^-CXtJP J«—M'?M>*i*TV6l/SL ( */*TiS"fti RUN NUMBER 1 C- ~ I Sj>
Cf fX^aiikoRCs /J V T IME START O *H "S~
CATION ^»/*riAi*. T~h»*it **£• **~ - E.*n,r>u.s-r TIME FINISH \0i-i.
•tC*%^» ^ TEAM LEADER TECHNICIANS
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
•^PIT
_i£ViT
X|4 gas
MINTED
^TWT
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ _CP.'g" '
F I LTER # TARE
MK
Zl.-l. STATIC PRESSURE
5T VACUUM, IN.
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
DF IWJOBE
AH a
MQ 1ST
ft
IN. H.
-C.3S-
,0 -
IDENTIFICATION NUMBERS
X Ot...... NOZZLE
IJ -\£> T
e T
1 ^ 01
O O 1 D 1 AMI
fC REAJX
/C PROBI
SSAT PW
rTSR O.tflL
3UT ijOO *\
r
£D
3o
^.0
So
k<*(W
1
DRY GAS
METER
READING,
CU . FT .
•323-.£>oo
5;K.S"4
3«^U t.-B
351. 1 32_
S^i..^ (
3^-S".i»q-
3?-i.6g^
_
PI TOT
READING
UP),
IN, H20
J>. If
D. -tl^-
fl.tl«/
O. l"?^
o , l*5^»
n. r-STr
1
FACTOR
4OMOSRAI
t>
5H # fcF-fZ.
It
6S» STACK TEMP t
1 .(q-
l.^-o
|-S"l
/•T«-
ACTUAL
{-<-*
Z- is
2.O
1,S"Cs
\-S"l
i.su
GAS
METER
TEMP.
°F
I-3
^4
"T^P
rL(.
•^•s
61
/ 1_
I
Iwr
PUMP
VACUUM
IN. HG
GAUGE
T
<„
X^
5~
s-
5~
-; v
D . •ooRb6'^2_
F I LTER
BOX
TEMP.
°F
(i\
/2_,e=
IZ£-
Jtt.
uv
12,^
IMP.
EXIT
TEMP.
°F
td
c.^-
^Q>
vr
t-5"
<, V
STACK
TEMP.
°F
(>"?•
Cfe,
^4
(.6
Q6
t >
LK. CHECK
READINGS
*M
AH B-5 TM
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
s*s
ING LO
r H fl«€Al^oto H>JCXii.VTVl_\AL_ ft-OT"JS&Ot*>> A)^ ' TIME START U'5
CAT 1 ON * "S" ^LOIV ' w ^ 1 /^ ^ «- (^ x «*J3d.\-T T I ME F I N I SH i,1!^
& € ^> TEAM LEADER fc . R^OO TECHNIC
BAROMETRIC PRESSURE. IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
V/ PIT
PIT
ipLTED
*/ THF
. HG t
-S."«~ STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG _ SAMPLE BOX
RMOCOUPLE @ '**'* °F PROBE
F I LTER # TARE
fill A. A»/ fr
HG 15~
/h
IANS "
, IN. H
»o — .r5~
IDENTIFICATION NUMBERS
X ^NOZZLE
/T f
2.V 0
.. ,5Q"V- DIAMI
/C READ!
/C PROS]
RSAT PUI
ETER 0>J^
3UT C,£>O=i
MP >J| iJ"
t. ' *? TEDLAR BAG A)//*
NOMOGRAPH SET-UP
!.*»-
/ / METER TEMP
% MOISTURE
SAMPLE
POINT
A- <{
"
•>
< D-'T"
M
•M
>
CLOCK
TIME,
MIN,
C/CJ
/o
2x0
la/tib
' */Q
^e>
(WofF
'
DRY GAS
METER
READING,
CU . FT .
/n.^s>
/^, (DT-
'45- Z8
14-7. fl 1*5
/54-.7Z-
lLc>2~-52-,
\7O.4*£~>I
4 I . a ^ s
PI TOT
READING
UP),
IN. H2O
fc.C-SXo
•£>. \5%
n./5B
1- R
OR 1 F I CE
SETTING ( AH) ,
IN. H2O
IDEAL
I.**
/.•92.
1.52-
2,flO
2.O2-
Z.O2-
ACTUAL
LS<=»
i.-sz.
J.52-
GAS
METER
TEMP.
°F
r|sD
*3-s
~T7
2.CO 1 62-
2-.O2-J
2.^02-
/, ?6
-': - j
- ^"7
SO
•*• -y
< .
EF. &P
K* 0
PUMP
VACUUM
IN. HG
GAUGE
4
t
/„
^>
43
^
6,?J6
fc.tll
• C>-C> t^C. 5^5^
FILTER
BOX
TEMP.
°F
(2.1
/2.1-
(1^,
/2_£,
iZ--5
/2S
»i
IMP.
EXIT
TEMP.
OF
tv
^v
{#&
j £2}
i*&~£^~ -
(cfy-
STACK
TEMP.
°F
q^i
^1
"71
7£>
~7b
7D
7 :'
LK. CHECK
READINGS
'M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA1
ADDRE.
) SAMPL
DATE
NY NAM
ses
ING LOI
e ^I^Lo / £T &,Eg
C,^«,£*A4^» '
F I LTER # TARE
^(flr *4/A;
°F
i
SAMPLE
POINT
6-T
-
t«
Jt „ <£
V
»
CLOCK
TIME,
MIN.
•C/0
(C,
ZJ2
So/*.
Vo
S-Q
m#
'
DRY GAS
METER
READING,
CU . FT .
} te.lj>2—
3&o ,^g>
366. (6
•3,^.5. (^#"
2- • 6> 1
4e^. 42^-
4-1^,32^7
^ 2 . i i- 5
PI'
REAI
Ui
IN,
>il.dUi"~J1^-4 RUN NUMBER l^C " 'Z- ft
^^ TIME START US«£
•«*»\ *t'ift*/i«v l±X**»!»~»T- TIME riNiSH /4^Z— -
TEAM LEADER tS -R.-l^> TECHNIC
g.1 , i-
ACUUM, IN.
CU. FT, /MIN
REA
MET
UMB
SAM
PRO
GENT BO
ER BOX
1L1CAL
PLE BOX
BE
STATIC PRESSURE
HG ^*>~
JO ..
. ^•.•fiQ>^» D.QOO
IANS
, IN. H
^_
,O -C.fi
IDENTIFICATION NUMBERS
x D2.3 1-
Ai-^
NOZZLE
' T
^ T
c; Ol
2-1 n
NOMOGRAPH SET-UP
J ' C
METER TEMP
% MOISTURE
ror
3 ING
= ),
HgO
fc- l^^
0. 1 J
o. lt3t-
o./4?7
O-/6Z-
£). /L2^
feCs «•
1 &K D 1 AM!
/C READ!
/C PROB1
%SAT PUI
EDLAR B-
-r«C 31
I. (&I
/.f£>
I ,"Z$S>
l."2>6
ACTUAL
1,%^
t.^l
1*1*1
/,^S>
/ ,?>$
U-^^
>' , t
-^
UP 1-0
0. Z2.Cs
c,. &£>e "s^3C.x<»
F I LTER
BOX
TEMP.
°F
ue
/2-1
I3<6
J2-7
^7
iz£
• ".T""
IMP.
EXIT
TEMP.
°F
13
Q>%
lp(s
L^3^3
t^?^—
6?3>
,
STACK
TEMP.
oF
3-(
^ (
7/
"7o
7
7 /
LK, CHECK
READINGS
*M
B-7TM
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
««5 &
ING LO
F Frt&/£!&3=*&&fyzD k^ R/TE^ i
/?eeiJsA£)?2£5 /i) £_ •
3UN NUMJ
riME STV
3ER T^~" 2s4-
• piniLiim 1 jrt — X rf*^>
«?T iTT*---1®1^
cATioN^bMr/Aj^TAiJ/C* S ~ExH-Al!!ST TIME FINISH /<=,•:*, 3
•*! •"€>£> TEAM LEADER "X>K~ TECHN1C
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
i/prfT
"^ PIT
AiA. TED
'""' 'TMP;
M« 7<=?> .^^
ST VACUUM, IN.
TE, CU. FT. /MIN
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAP BAG SAMPLE BOX
RMOCOUPLE @ 7& °F PROBE
FILTER # TARE
AJ/A *J/A
STATIC PRESSURE
HG IS
7
IANS
, IN. H
,o —D.~73
. O.O/D O.OD3
IDENTIFICATION NUMBERS
X.B.2-S/,. NOZZLE
A)-S T
A T
// 0
Z-3 T
NOMOGRAPH SET-UP
AH « — L.H2r c
METER TEMP
% MOISTURE
SAMPLE
POINT
4-4-
13-5
\
CLOCK
TIME,
MIN,
0/D
ID
2o
_3D/C>
/b
2o
(ptjbfp
DRY GAS
METER
READING,
CU. FT.
170.^2^
/76.0/
!<£>£,. 255
^Z»S3ZL
2z>/ , 2^>
•£.O<=5 . 7
Z/S.4^8
4") ""X^
PI TOT
READING
IN. HgO
£U70
0,/^7
OJ^>7
o.z/s
O.2Z2—
0.2J7
50® D I AMETER D -3 / B
/C REAEX
/C PROBI
RSAT PUI
EDLAR B;
1
FACTOR
3UT 2.5
MP AJ A
IU5 /UA
'4OMOGRA1
PM # ^K—
/,C7 ->/./£>
^D -^ /OD STACK- TEMP ~7
ORIFICE
SETTING (AH),
IN. H2O
IDEAL
i.sz-
/,7S
/,g=,
'2-.'^^.
"2-.4-3>
Z.3&
ACTUAL
/.6^
/.72>
1.2)3
2.. 355
2..4^>
Z.B8
J,' !
GAS
METER
TEMP.
OF
^•2.
37
^&
S>d=>
IDD
102-
ii'H
PUMP
VACUUM
IN. HG
GAUGE
6
la
k>
7
"7
-7
FILTER
BOX
TEMP.
°F
/2^
//7
/l<3
/2£)
J_2,£t
1/7
IMP.
EXIT
TEMP.
°F
&(s,
^B
4»3
^ ^
Ly\
Le»7-
„
STACK
TEMP.
OF
72-
"7"/1
~7I
"7Z
~27
7/
V-
**
LK. CHECK
READINGS
K30MO.
i
'M
B-8 TM
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
, SAMPL
DATE
NY NAM
ING LO
3-/
e ^Mtt &&£&&&£& l&'T&TfcK- RUN NUMBER T^ -3B
-jg/zfEAl^fZDgD U.C,. TIME e-ra-wr /£3Q '
CATION (LoATti&p ~TAtJK- ff~S - E£x.HA4y=>"r TIME Fli
S,1SM /53^
8 ~ 55£T TEAM LEADER "£>f£~ TECHNICIANS -^"
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQ
o^pIT
*"""(»IT
Mt^ ORfi
*M TED
V-^TMF
. HG ZS."Z«D STATIC PRESSURE
BT VACUUM, IN. HG / Q.Q9&
IDENTIFICATION NUMBERS
X °£3/ NOZZLE
JL) - to T
B T
/3> o
,o -D.SS
SD^> DIAMETER i3J2-
/C REACK
/C PROBI
RSAT PUI
3ur noo^
— j^—~~~ i x*s
«p i 1 A
Z.-2- TEDLAR HAG /V ^
NOMOGRAPH SET-UP
/•43 . c
METER TEMP
% MOISTURE
SAMPLE
POINT
Q - g>
•M-4-
A
CLOCK
TIME,
MIN.
%/D
ID
2o
B&1&
ff>
2b
6>a/6F?^
DRY GAS
METER
READING,
CU. FT.
•4-/&J,£?£>l3
425. &?O
4Z4- .42-
44B.&2.
^£&,*&&
45S • Zf
4{^5.1^^>D
A '^ ••:.* '
PITOT
READING
!AP),
IN. H2O
Q.Z3Z
0.12^7
O.Z32.
O./Sf
0./54-
O./53
1
FACTOR
MOMOGRAI
#\J? i^
5
S?£> STACK TEMP "7/b
£>2L REF . AP
ORIFICE
SETT 1 NG ( AH J ,
IN. H2O
IDEAL
2.2S
Z.35
j.cyc,
/ .€5S
(.55
ACTUAL
^.3S
2-2^
"Z-.35
/.S5
/ .€£5
/ 5^
/,«i./
GAS
METER
TEMP.
°F
^^
*3l
S>3
^T)
^>|
<=)/
!< /
PUMP
VACUUM
IN. HG
GAUGE
1
__,
7
5
£?
^
D./8Z-
F I LTER
BOX
TEMP.
°F
^2-5
/Z5
/22^
/ZO
I2L>
L>7~-
101-
65
^2
^r4—
STACK
TEMP.
OF
72-—
7"2_-
"7/
"72-
V2—
"7^
•••-
LK. CHECK
READINGS
'M
AH B-9 T,,
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADORE
j SAMPL
DATE-
NY NAM
SB £?%
INS LO
,r £MB/G>££EUSEfi
^e^iUSB^^D AJ.£_-
^ AP- H^ 7E>eS RUN NUMBER ~TE "4A
TIME ST*HT r®2&—
CAT I ON&DATJtJSn ~TAl4.K~~ H-^S ~- £ij&fArt}&T
^>'&la TEAM LEADER "X?f2- TECHNIC
BAROMETRIC PRESSURE. IN
HC 2S.ZO
SAMPLING TRAIN LEAK TEST VACUUM, IN.
SAMPLING TRAIN LEAK RATE, CU . FT. /MIN
EQUIPMENT CHECKS
— ^PIT
-x' PJT
(9,^5
IDENTIFICATION NUMBERS
K O2. /O NOZZLE
AJ-S- T
A T
24- o
NOMOGRAPH SET-UP
l.'&2— c
METER TEMP
% MOISTURE
SAMPLE
POJNT
A--T-
•*&'•£>
CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU. FT.
e/o
10
ZO
SO/-D
Id
2D
le&faFp
if
|
;
Z/g>.£?Z1?>
"2.7-5 . 3^-
Z3Z. /^
Z-3^5.0^3
2-4^? .4^
•2J54-, €>4-
?y^>/ . Lin
4i-,«^7
PI TOT
READING
(APJ.
IN. HzO
£)./(^^
D, /^?3
£»./£=3
C./^"7
^./S>7
n./^7
S ^/A
MOMOGRAI
PW # 43/2.
/.0"7
©S STACK TEMP , TO
"2~ REF . AP . - ^3
ORIFICE
SETTING (AH),
IN. H2O
IDEAL
1.54-
/ 3S"
/,^5
/^g
/.B©
/,^g
ACTUAL
I-B4-
i 5"^
I .£>€>
/.g>g
/.^0
/.f^B
/.?/
—
-lA
(
GAS
METER
TEMP.
°F
"75
7^>
£> !
^B"2-
/Z-Z-
/2.^
IZJS
I'Z-'B
\
IMP.
EXIT
TEMP.
°F
^^
l£>"2~~
^3,
66
L 6=2.
£2—
STACK
TEMP.
°F
72-
72- •
72-
72-
7/
"7Z.
?Z
1
LK. CHECK
READINGS
I
ENTROPY
-------
PARTICULATE FIELD DATA
MM
-*£
mm
MM*
MW
MM
MM
mm
mm
mm
MM
M*
COMPA
ADDRE
| SAMPL
DATE
NY NAM
s»s qhf
ING LO
e £MS/d32^eM5a5^>JjJ>.R4rsS5 i
RUN NUMBER TE,~4&
efiETAtefiaSD M-t • TIME START <9^2£>
CATION £&AT>iJ(~> TAi^^L WS -Eyjj^tJS T TIME FINISH J/O2>'2_-
>'S^ TEAM LEADER 2>£L TECHNICIANS —
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
«-""PJT
t-^VlT
AJA QBE
AJ A TEP
t^TWE
. MG 2^.2-^> STATIC PRESSURE
ST VACUUM, IN.
re, CU. FT. /MIN
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ "JO °F PROBE
FILTER # TARE
H/A fJ/A
AH a
we /O
if
, IN. H
.,0 "f>-7r^>
D.OOO &• DZ£>
IDENTIFICATION NUMBERS
xO?,2$T NOZZLE
AJ-/£> T
B> T
S 0
/DC5 DIAMETER . 3D /
/C READI
/C PROBI
RSAT PU1
3LTT OOZS
r &-»/
^ wM
£' / TEDLAR BAG Ai/A
NOMOGRAPH SET- UP
/ m /.j) *^J — .
METER TEMP
% MOISTURE
SAMPLE
POINT
B-S
^
M*4-
j
CLOCK
TIME,
MIN.
O/o
ID
1o
2>o}e>
/£
ZO
Lbfb^f
I
DRY GAS
METER
READING,
CU. FT.
PITOT
READING
l^P},
IN. HzO
445. 6B7
•4-73 • "7S
\4GI . "?/
Q%~5 £,73
4^^, 0^
504^, "22-
5// -QzA^
\
45. f '3')
O./&7
O.tt*?>
O,l^f>
D.I&Z.
D IB7
O./BZ
;
1
NOMOGRAPH # _dP^=. ,
FACTOR ./.P?
t
^5> STACK" TEMP "7D
£?2_ UEF. AP ,^L^
ORIFICE
SETTING (to),
IN. H2O
IDEAL
/.75
t.&f
/.7g»
/.52-
I.4--7
1 1.4=7
ACTUAL
/ 75"
/.0/
/.7@
/. 5Z
/.-f-7
/••f7
/• 63
GAS
METER
TEMP.
°F
75
7fi
02-
S2-
&h
®*p
£ i
^•y^Vr
|
1
1
PUMP
VACUUM
IN. HG
GAUGE
n
a
ID
^
s>
a^,
—
^ — -A
FILTER
BOX
TEMP,
°F
12D
rz-D
12*5
l~2£~,
l"2Jz>
/25
—
9 (T<+*
^
1
IMP.
EXIT
TEMP,
°F
&6
&o
(&1L
STACK
TEMP.
°F
72-
72—
72-
Lfte 72--
6,^ ! 7/
^'6
«• IHIIIII II-
72.
?2-
LK. CHECK
READINGS
*M
ENTROPY
-------
PARTICULATE FIELD DATA
-"""*
/<*••
H,
COMPA
ADORE
| SAMPL
QATE
NY NAN
'SP Vs
ING LO
r £^Ey&£££3USE5Cf%O/i^'bOZ>7£JAL. Hx72rf"$ RUN NLJMBER "7E-" ^^
tJ2£€^^V^K£> . A).£~ • TIME START //Qjj£;m _
CATION £llAT/K36s 7AHJ£- *f 5 - £XW. t>&7^ TIME FINIS-I tZJD
~&fc> TEAM LEADER 3>£-_ TECHNICIANS
.BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
"^ JPIT
/
': -/ PIT
ISA ORS
14* TED
*rl, •»«£
. HO Z£
?.2/o
it>
?D
t3-£> J3»/o
/o
Z£
LSsCM&iF/^
I
DRY GAS
METER
READING,
CU. FT.
2&s>/ '-8c>4~^
"2L&S-* ^L£>
2-~7£?,%£>
Z£>:3.&&~2^
"2.^2-. /2^
3oo< ^Z-
Z^C-1* C? **&! '/
y / / "™1 "5 "^7
PITOT
READING
IN. H20
O./^Z-
0.171
0-17!
D.Z&®
G.~2-£>~7
o.Z£>7
1
BO& DIAMETER -3/3
/C READ*
/C PROH
RSAT PU
EDLAR B,
3UT OG'Z-S
j|D /O **|
ac MA
NOMOGRA
M i :z>ei-
7
. - r?^ STACK TEMP "70
®2~ REF . AP Q • £7^7
ORIFICE
SETTING ( AH) ,
IN, H2O
IDEAL
/.-?z
/.^Z-
/, g2-
2-.Z-/
"2-.Z
*3®
&$@
^^
^>o
jq
PUMP
VACUUM
IN. HG
GAUGE
(f
(^
_Lz
7
•7
-7
ft, *")£'
FILTER
BOX
TEMP.
°F
in
l"2-O
17-1
/ / ^5
/ / e^
fZD
IMP.
EXIT
TEMP.
°F
^^
&^ ^L
jyp j&Lr-
(7
f^s-4-
104-
STACK
TEMP.
°F
72,
72.
7/
"7 /
"7Z-
72^
i
\
ff>
\
7s-
I
LK. CHECK
READINGS
»
V,
M
^ B-12TM
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
} SAMPL
DATE
NY NAM
ss Up
ING LO
S-f
f EH73 /&&££JJS&Df&!lJPL&TfaA^ttAre£5> RUN NUMBER T£f-£?B
1ZC.&l5>i0ZSjZ£>.M,C. . TIME START /IOT
CATIONC&AT/jJiCbTAAjjtL^S ~^MJ-JAt»T TIME FINISH /Z-^/
5_'.&6» TEAM LEADER "ZPfZ^ TECMNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
>^PIT
l_XpIT
r^TED
<< THE
Orf5
_ MG /^
?."Z^b STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX.
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE & "}&„„ °F PROBE
F I LTER # TARE
U / A. /0/U
Hfi /4
. 0-7
IANS
, IN. H
,a - £ _~23
IDENTIFICATION NUMBERS
X £^23*7" NOZZLE
AJ-/0 T
S T
/3 o
2-X TI
NOMOGRAPH SET-UP
AH,;, £:,,4*;3 c
' METER TEMP
% MOISTURE
SAMPLE
POINT
R-5
f
*'k~^
CLOCK
TIME,
MIN.
z>/a
/O
•£-C*
3-S/D
L
2t>
L&loEf
L
DRY GAS
METER
READING,
CU. FT.
5/3 -2^^
5 22-. ZC1
SS>/ • "37
5ff).^^2-
5^f0. 5^>
554s>. 20
5 £04-. !Ls2~
"^ O '*'"•,'
\
PI TOT
READING
l^f),
IN. HjO
C.ZZ*^
n.zzs
0.227
*~>
O./6^
-
\
5^^ niAMi
/C READ*
/C PROS
RSAT PUI
EDLAR a
™ ,312.
3UT DOD^
p ^^ ~~ / &
UP /O4
&G MA
NOMOORAPM |_3^C___._ .
PACTQR / .C
7
?55 STACK TEMP "?
2,"^g
'2..4Q
/ .£>/
/.74~
j,7p>
tJ'ft'
GAS
METER
TEMP.
°F
S4-
Bdb7
^7
^3
£3:5
Q4—
^5
PUMP
VACUUM
IN. HG
GAUGE
-7
~z
7
CP
^
l^y
f°.^o^
FILTER
BOX
TEMP.
°F
/2^>
/2/>
/ZZ
I2J
]2£)
12^
IMP.
EXIT
TEMP.
°F
UL>
fef
4?3
fafj
(/>^~
L?*5>
\
STACK
TEMP.
°F
7Z-
72_
71
~7 f
72-
72_-
~7 X
LK, CHECK
READINGS
'M
(/AP)
ENTROPY
-------
PARTICULATE FIELD DATA
f
COMPA
ADDRE
SAMPL
DATE
NY NAME ^MS/CaiZgE
«« &12Et:t&e&Rt
ING LO
U^BOpr> ItjT^ f^TS-JAf^ iL
D./J.C •
/^TfegS RUN NUMJ
TIME ST;
3ER "TE ~i&P STATIC PfffiSSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
OTs , PRE - TEST REA
OTS, POST -TEST MET
AT SAMPLING SYSTEM UMB
LAR BAG SAM
RMOCOUPLE § .."/ffi: °F PRO
FILTER # TARE
/si IjA jj -jA
GENT .BO
ER BOX
ILICAL
PLE BOX
BE
HG X^
rt-7
IN. H
jO -G.T^
. &.D&&O.OQD
IDENTIFICATION NUMBERS
X Q2r& NOZZLE
AJ-S T
4
24" r, ,-.T-.- °
2-4- T
NOMOGRAPH SET-UP
AHQ ''£%jL= c
METER TEMP
% MOISTURE
SAMPLE
PO|NT
A -4
'}&-£?
.;
CLOCK
TIME,
MIN.
£vfc>
/O
2=
3>t>jo
/£>
ZS
wi/oPF"
'
DRY GAS
METER
READING,
CU. FT.
3£>^."23'Z-
rB>/&>,D"3
3ZZ--77
32^, $7
337 ^iD
344-, 42U-
35 / .e^^
4^,2 41
1
PI TOT
READING
UP),
IN. HzO
D.-i&M-
o.l€€>
G.JS&
o./3o
G *l<5&
a/*j5
5^0 7 r> i AMI
/C REACK
/C PROBI
RSAT PUI
EDLAR Bi
r™, «^^
3UT ^,,Of)O^
- jtQ — ^
KP *3/A
IVG A>7^
NOMOORAPH # 2^&
FACTOR / . £
57
*85 STACK" TEMP 7^
2- REF . AP
ORIFICE
SETTING (AH),
IN. H2O
IDEAL
l,4&
/•45>
/.79
l,~l^>
/.84-
ACTUAL
/•70
/i4£9
1-43
/-7^
/.7^
/J0*£>
^>2-
/Z-2-
)
IMP.
EXIT
TEMP.
°F
{,Lt>
1-^
(#{
ipb
fe>~2^
b»lS>
STACK
TEMP.
°F
"76
75
•7^
75
7*2^--
*7 /
74-
LK. CHECK
READINGS
'M
M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPANY NAM
ADDRESS
SAMPLING LO
E fcMKj£nE!££.
qi.j^W^) ijS&il&TiZjA^ f
DSD Aj.£-.
CXT^^S RUN NUMBER ~T"fL~fc^
TIME START C3O(e>___
CATION££>XTMJ& *M«J/C-*^5 - £3ftMU£>f' TIME FINISH 14-11
3>-S£s> TEAM LEADER 3>K— TECHNIC
BAROMETRIC PRESSURE, IN
. HG 2^.2Z) STATIC PRESSURE
SAMPLING TRAIN LEAK TEST VACUUM, IN.
SAMPLING TRAIN LEAK RATE, CU . FT./MIN
EQUIPMENT CHECKS
i— <^IT
_!/£ PIT
fcJ/A ORS
iJ/M TED
—''THE:
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE & /*J °F PROBE!
F I LTER # TARE
HG /4-
It
IANS "^
, IN. H
,0 ~o,73
. o,ooc> n.oo'3
1 DENT 1 F I CAT 1 ON NUMBERS
xQfc?4rT NOZZLE
M-/G r
J5 T
5 o
Z-/ T
NOMOGRAPH SET-UP
U/A jjU. AHfl /• £"3 c
METER TEMP
% MOISTURE
SAMPLE
POINT
20""5
•~-/L *"" -mmi"-
*T_ /
CLOCK
TIME,
MIN.
ek
lt>
"2-D
2&I&
/o
•ZJb
60/6 ff
1
I
DRY GAS
METER
READING,
CU . FT .
5<£?4,9S!2-
57Z--7/
£?g£).4£)
5«®,3^
/ f~»^2R r~*. ^\f^
I >3 f J ygffJl LJ^TTj
43 , £>:>(-
PI TOT
READING
UP),
IN. H20
0 /S>7
o./Sb
£>, /£?2-
^- /^3
g^=-
/OlO D 1 AMETER « ^SD /
/C READ!
/C PROB
RSAT PU1
EDLAR B
3UT f)D"2~£>
E ^-/7
MP AJ/4
AG AJ*^
NOMOGRAPH # ^^
FACTOR /-C>
7
W^ STACK TEMP 7O
D2~ REF. AP D-*"2^ffO
OR I F I CE
SETT 1 NG ( AH j ,
IN. H2O
IDEAL
/.7Z^
/ ,£,£,
-/.77
l^*£,
l.^>~L
L3&
ACTUAL
/,7Z-
/ .<£>£>
/•"77
£."•5^
/.32-
/.^.^
1,^3
GAS
METER
TEMP.
°F
*£>4--
S"7
•g£3
S>6?
"r?^
IS&y
$G
PUMP
VACUUM
IN. HG
GAUGE
//
/£
^
^
^
13
°),^o
F I LTER
BOX
TEMP.
°F
/ / ^2
* /
/2£>
/Z2^
/"2_'2_.
/zo
B 1
IMP.
EXIT
TEMP.
°F
I0fe
(f I
If I
iff*
c^^
STACK
TEMP.
°F
7-S
75
"7^
7^
T/
74
LK . CHECK
READINGS
FMTROPY
-------
PARTICULATE FIELD DATA
COMPANY NAM
) SAMPLING LO
r {^&!&l2£.&J6zECl2£> ltiDU£>~T$llAL- FLATEJZf? RUN NUMBER T£" ~ 7 A
f"r~^P^AJ^>Pairf^'.k\'C • TIME START I^D^
CATION r£MT//L}{~.7Af^4l'5" EyMAU=*~7* TIME FINISH /4-/O
-4-" S£? TEAM LEADER T?£- TECHNICIANS """
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
Y PIT
-Lx'PIT
A-M ORS
MA. TED
•^ THE
, MIS II.S STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT./MIN
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ "7/ °F PROBE
FILTER # TARE
V T
HC /4-
07
, IN. H
,o— O-73
. O.OO2- O.OOD
IDENTIFICATION NUMBERS
XOZZO f«TTLE 508 DIAMETER '3/3
AJ'^ T
// 0
2-3
NOMOGRAPH SET-UP
i • < |-3 X, -r f*
METER TEMP
•k MOISTURE
SAMPLE
POINT
B-B
I- 4-
CLOCK
TIME,
MIN.
o/o
h
"2D
3DJb
/6
2J3
^Hlbff
\
j
t
.,-9
DRY GAS
METER
READING,
CU. FT.
BS2-.4O3
3£»o.4£>
3&e3, 47
3>7£> U^=>
3f^.f , £>2-~
^?<£5* / *£-£*£
^*^tf^C^ /Ny? /^,
-
PI TOT
READING
IN. HzO
o.2o<^
O.Z07
O.2c?7
dD./7«D
0./7&
0./76
/C READ!
/C PROB1
RSAT PU
EDLAR B
3UT 2-5
C 4-/
WP AJ/.
UK AJA;
MOMOGWAPW # J2>^-
^Ar-rn,, /.D7
00 STACK TEMR 7^
^Z- REF . AP D.' /7(9
ORIFICE
SETT I NG { tM j ,
IN. H2O
IDEAL
;z.zs
7-."Z4~
^y ~~j/ -A—^
t.&4^
I C_3J j**s
t £S% Jf\
ACTUAL
?.?=*,
2,~24~
z.z-f-
jj*4~-
f-*3&
t.S>ft
•J.
GAS
METER
TEMP.
£2) /
^4-
S6?
(s
(*
FILTER
BOX
TEMP.
°F
—
—
—
__
—
IMP.
EXIT
TEMP.
°F
6.6»
s^.
S6
6?3
STACK
TEMP.
°F
72-
7Z
72-
72^-
SS 72-
S'B
,
"?/ .
LK. CHECK
READINGS
"M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
| SAMPL
QATE ,..
NY NAM
s*s
ING LO
3-24
(£~J&SlzA}S&£>f?r>tf^*C^ • TIME START /r37?3
. O.OOO D.DOD
IDENTIFICATION NUMBERS
K.Q231 NOZZLE
Aj - JL.*?" <2- T
R T
/3
2.-Z T.
NOMOGRAPH SET-UP
WrB^-5B C
METER TEMP
SD9 OIAMI
/C READC
/C PROBI
RSAT PUI
EDLAR BJ
1
,-rrp .3/2-
•sin- DnO^)
dp \J4
se W*
MOMOSRA1
/ ^/_^
&|H| 4£ mJLrKL.
0,35
~*"~-^\/~^ efirjk j**!^- Ttrmji"* f^/j
% MOI«T"»F t->4n- R
EF. AP
, /S5
"2f = D.^e^ fc- <3.f-3C,S<5
SAMPLE
POINT
^~4
33-5
CLOCK
TIME,
MIN.
0/0
/D
20
,30/fo
/D
"Zjb
(&,%/£}• r
DRY GAS
METER
READING,
CU. FT.
4^2.724
^f5<5i.<3f5
4^37 • 2^f-
SD4-. 0^?
5/3 ."34-
SZX. - OS
S'SD.'SDT7
1
-
PI TOT
READING
UP),
IN. H2O
0./6£>
(O./^^
o.n^
/),Z2O
O.~2^Z7
IO,72~~7
OR I F 1 CE
SETTING ( AH) ,
IN. H2O
IDEAL
l,5&
L<5~7
/,&€?
2.D&
2 .14^
•2J4-
ACTUAL
/.se
/,S~7
).Lff*5
"2 O*£>
Z./4-
"Z.I4-
GAS
METER
TEMP.
°F
^/
^2
•S'S
^52.
<^^t-
^^•
PUMP
VACUUM
IN. HG
GAUGE
3
3
3
4-
4.
~7
<&~~\ /
i£*~^y ,f
B^
^£?
STACK
TEMP.
or
72L--
72
7Z--
72.
"72
7;
I .
1
LK. CHECK
READINGS
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
| SAMPL
naTE
NY NAM!
ss t
INC LO<
3-
v O^B/A^£j£^/SBO^O//J2)/JS75E7AfL rtATE^^ RUN NUM
3ER T3E1'SA-
£>i£&J=jbs33nj£'£> AJ . £- • TIME «T«.BT >^~^r%—
PBTION <£1OA7-;AJ^£ 7A>4I<^*#5 EX.H*dJBT TIME riwissw i&4*Z>
24-0^c TEAM LEADER 2>£L TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
i^ PIT
""^ P*IT
MA ORS
*JA TED
,,vr THE
OTS , PRE • TtiST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ 7Z-
FILTER #
5 '£
ST VACUUM, IN.
TE, CU. FT./MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
°F PROBE 2-
TARE
s
MG 1 £>
TAT1C PRESSURE
^7
IANS
, IN. H
,o -£P."7S
. o.oio 0.007
IDENTIFICATION NUMBERS
Jf O2-2-O NQ77X.E ^^ "7 D I AMETER • -3£>f-
A-' - £> T
/4 T
24 0
-^ Tl
NOMOGRAPH SET-UP
/C READ*
/C PROB
RSAT PU
EDLAR a
3UT D&C)^
e -4-3
MP» AJ/*
aG Aj^
MOMOKWAPW t 2?£L
METER TEMP
% MOISTURE
SAMPLE
POINT
A-4-
fc-S
CLOCK
TIME,
MIN,
oh
/£>
2.D
Bo/o
to
Z£>
ffffi/DfF
DRY GAS
METER
READING,
CU. FT.
SS^.372-
4o^> . /S>
•4/3 . //
•4-7.O.&1
-42.7- 6?2_
4^j£?.5D
•443.3ZT7
*r J * 1
PI TOT
READING
UP),
IN. H2O
O.I(eS
o./bt.
O-I6>4~
D.~££>&
C.Z£>7
O.ZO7
j
4-
Z-.O4
ACTUAL
/-6/
/. ^>2-^
i.Lb
"2-OD
2- C4-
2-.o4-
GAS
METER
TEMP,
°F
j^x^jL—
/"""SC^-*
S7
7
7
1
0./88
FILTER
BOX
TEMP.
°F •
— -
—
_
_-
—
IMP.
EXIT
TEMP.
°F
L£
£5
5€;
(&4-~
E~>t&
£te
STACK
TEMP.
°F
72.
"72--
72-
!ZZ
72-
72.
\
LK. CHECK
READINGS
^> Tt>pp£,£>
F*/zoc£?=>&
'M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPAI
ADORE!
) SAMPL
NY NAM
ING LO
3-.
r E:M&J&E££Ji&f&]2C>/^L&rej&^KATEJZ5> RUN NLMHER "T£'&&>
iSEGEWSao^o. x/./^. TIME STABT I4+&
24r-@(t? _ TEAM LEADER 3B£S-- _ TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQ
•^ PIT
~/ PMTi
M4 ORS
AM TED
J^ THE
. HC "Z^.SD , STATIC PRESSURE
5T VACUUM, IN.
TE, CU, FT, /MIN
UIPMENT CHECKS
OTS, PRE-TEST REAGENT BO.
OTS, POST-TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG . SAMPLE BOX
RMQCOUPLE & , „__ °F PROBE
F I LTER # TARE
MG /O
* i^ jraJL
oy
1ANS
, IN. H_
,o -£5."75?
9 f),OOO
IDENTIFICATION NUMBERS
X!-2iZ_ NOZZLE
AJ-2. T
.^3" T
^ _ 0
z-; T
NOMOGRAPH SET-UP
/ ~5f^> c
METER TEMP
% MOISTURE
SAMPLE
POINT
B-S
'M -4-
>
CLOCK
TIME,
MIN.
O/o
ID
"Z.O
£>0/0
ID
2£5
t,6/CfP
f
DRY GAS
METER
READING,
CU. FT.
!&5>l.lC>te>
£53^ £5^
^•4^ . 'Z'^
5^-^.<=3£,
SC&& •~?<£>
$47 . ls~7
S74-. S^Z^
» . " „
PITOT
READING
(AP),
IN, HzO
.2- REF. Ae» P. ZZ5
ORIFICE
SETTING (AH),
IN, H2O
IDEAL
/ ^O
/-63
/,^3
/ 2_g,
l,2Jg>
I-Z&
\
ACTUAL
GAS
METER
TEMP.
°F
x.^3
/.1
5^,
STACK
TEMP.
°F
72_
72-
72-
"72—-
72-^
72—
' ;
1
I
LK. CHECK
READINGS
M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
CJATE
NY NAN
as C
ING LO
T £MS/&E£eX/5'BO£?1o- iMbUST&JAiL 1 LA TEES' RUN NUMBER TE " ^M.
DC^F^X/SBC/C/o AJ.<± • TIME START OSuit?
CATION AT/AJT TIME P i N i ^H H^^f?
25 ~S<£» TEAM LEADER -2?JZ. TECMNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
S PIT
PIT
*J A ORE
*gA: TED
_^THE
. HG •<
Z5.5i> STATIC PRESSURE
ST VACUUM , IN.
TE , CU . FT . / M 1 N
OTS, pRg.TEST REA
OTS, POST -TEST MET
AT SAMPLING SYSTEM UME
LAR BAG SAN
RMOCOUPLE @ fa^> °F PRO
F 1 LTER # TARE
AHc
CENT BO
ER BOX
ILICAL
IPLE BOX
BE
HG /^
07
. Q^/^o.Q^
IANS
, IN. H
*=«^?6r
2o -0^7^
3
I DENT I F 1 CAT 1 ON NUMBERS
xQ23^- NOZZLE
AJ-5 T
A r
It 0
Z-^ T
NOMOGRAPH SET-UP
/.8Z-
METER TEMP
% MOISTURE
-
SAMPLE
j»OINT
A-4
"B-S
B-5
CLOCK
TIME,
M1N.
O/b
^J&
•20
3&/h
fa
2£>
bo/ott
'
\
\
DRY GAS
METER
READ I NG ,
CU . FT .
44S.7?B3
4*~,C> .<4£>
•4^~7 • '"""$i_1*>
4£y<$-; &Q
472., /©
4QO.3&1
4*P£>.<=5} )
\
PITOT
READING
UP),
IN. HzO
OJ4~7
vn^/4-~?
0. 14-7 •
O.Z/2--
Z.Z^
2- 3D
2-32-1
GAS
METER
TEMP.
°F
(+£s>
~7 1
73
^^^
~7&3
7S
, '
|
I
PUMP
VACUUM
IN. HG
GAUGE
5
5
€?
£7
7
7
0./76
F I LTER
BOX
TEMP.
°F
—
_~
—
—
• —
—
IMP.
EXIT
TEMP.
6.Z-
g^-
£&,
^.^
5~?
57
1
i
STACK
TEMP.
°F
^-E>
LoLs
(s&
&£*
Li7
Cpfc^
LK . CHECK
READ I NGS
AH B-20TM
ENTROPY
-------
PARTICIPATE FIELD DATA
COMPA
ADDRE
SAMPL
BUTE
NY NAMJ
*"* (/
ING LO
F ^"Af B/£>/2£EJJS&&gEz, /->^E>i}BrT£/AiL- Tt-ATE£?5> RUN NUMBER TE^-'^S
>^££X^teox=^ M •£- • TIME START O8Z/
CAT i ON £«QA?nhc=> ~TAM^#~£ £>JJAL)£>T TIME FiNiswO^Z^o
25-^6. TEAM LEADER 2?<£- TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE.
SAMPLING TRAIN LEAK RA'
EQU 1 PMENT CHECKS
tXpIT
*-^ PIT
AJ.4 ORS
AJA TED
'-""THE
. HG 22
?.S^2> STATIC PRESSURE
5T VACUUM, IN.
TE, CU. FT. /MIN
OTS, PRE-TEST REA
OTS, POST- TEST MET
AT SAMPL 1 NG SYSTEM UMB
LAR BAG SAM
RMOCOUPLE @ (J5 °F PRO
F I LTER # TARE
AHc
SENT BO
ER BOX
ILICAL
PLE BOX
BE
HG /Z
ftCy
1ANS
, IN. H
,o — n -7-52
. o.ooo 0,000
IDENTIFICATION NUMBERS
X D2-"77 NOZZLE
AJ '^ 2- T
B T
_^3-.-, ^,- o
2-2. T
NOMOGRAPH SET-UP
/.-&fir/.Sg> c
METER TEMP
% MOISTURE
SAMPLE
PO INT
B-6
CLOCK
TIME,
MIN.
o/o
It
2£>
A- 4- teo/o
ID
-?o
&6/&FF
I
I
DRY GAS
METER
READING,
CU . FT .
S77.36-^
S^^-,4^-
^7^/ . ^2)
sss.^^
L>nB . Of
&>/ / ' 4&
6»/7 '. 7/^f"
PI TOT
READING
UP),
IN. HzO
0,22^-
O.2/^
£5 .2Z2-
O./^P)
O./te>8
Q.lit>£>
i
75 s
<9/,S R
ORIFICE
SETT 1 NG ( AH } ,
IN. H2O
IDEAL
2,0^
X.^?7
2.CS1
/ S^
/,6"S>
/. 5^?
ACTUAL
"2-<02!
2-£>7
2-.£>3
/ "5^
/•&*3
1 .5(
GAS
METER
TEMP.
°F
64-
-74^
•755
go
S3
^5
I
j
1
1 |
:
Sd^J DIAMETER .3/2-
/C READ*
/C PROS
RSAT PUI
EDLAR a
aur OD££3
sdP AJ^
ft.G AJ4
NOIMO GRAPH fl .IP^L
FACTI3R O-S2
TACK TE
EF . AP.
5^
PUMP
VACUUM
IN. HG
GAUGE
5
WHO 45
F 1 LTER
BOX
TEMP.
°F
IMP.
EXIT
TEMP.
°F
4--
4-
4L
3
3
3
_^
—
. —
—
—-
—
62L
S3
S4-
£?£"
S^f
S<4
STACK
TEMP.
°F
4-S
C^Lo
&?£»
&fe
6p~7
Ur^
I
LK . CHECK
READ I NGS
AH B-21TM
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
«R <£
ING LO
5-2.
F £M&/(&12E£U£Q&7&>lMplj~>TK~/A-L PtAT&&S> RUN NUMBER T^'^4
12.£1Sc>T2^> A\ £, • TIME START tOKr
CAT i ON C.OA7ltJ&> 7AAJ£1 ^-5 £-Xj-fAiJ£>T TIME FINISH 1 1 1*2
5-&>L? TEAM LEADER 2>£L_ TECHN I C
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPL I NG TRA I N LEAK RA
EQUIPMENT CHECKS
"•"""^PJT
"""''PIT
fJA ORS
tJA TFO
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE i ~]Q
F 1 LTER # TARE
. HG 2^5. SZ> STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT./M1N
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
°F PROBE
AHffl
MET
HG 1 4- 0^>
IANS --
, IN. H
,0 -O/7*?
o.ocf2~ O.GZJ&
IDENTIFICATION NUMBERS
X G2^7 NOZZLE
Al'& T
A T
Z4 o
^&C^Z_. DIAMETER • 3f-
/C REAW
/C PROS
RSAT PUI
3UT ODC^
r -7-3
WP W^_
-7-4.- TEDLAR BAG
NOMOGRAPH SET-UP
/.ae/.-gz c
ER TEMP
% MOISTURE
SAMPLE
POINT
A -4
&>-£>
CLOCK
TIME,
M1N.
O/o
'lo
2£>
3o/fc
I'D
•ZD
fcol&'F-
/
DRY GAS
METER
READING,
CU , FT .
-^£38.7^
4^g> ,3S
5<98. B7
£T ; /, / „ /
— ->/ i^5 • iff /
&Z4-. /§>
32>f.~7~?3>
-
PI TOT
READ I NC
UP).
IN. H2O
o./^
O- /<£>6>
O • 1 7&
o.zfS
D-2J/
o-2fl9
MOMOGJ7APW i, 3?&- ,_
FACTOR /.jG'
I>
^^ V£? STACK TEMP /O
1 . 5 REF _ ^p
OR I F I CE GAS
SETT 1 NG { AH ) , METER
IN. H20 TEMP.
IDEAL
/.£&
/-5<£?
1.1*6
Z.0£>
l.<3&
t.S&
ACTUAL °F
!,£&> ~7I
l.S£t> "73
l.d>O -74
2.6S 7g
/.eg 0^
/.S>S ^5
- . ." s
PUMP
VACUUM
IN. HG
GAUGE
&>.
<^
6
f?
??
0
O.^(f,
¥ 1 LTER
BOX
TEMP.
°F
—
—
—~
~-
_
—
•
|
{
j
IMP.
EXIT
TEMP.
°F
STACK
TEMP.
°F
^^
££>
<5"7
fe>"2-
B^y
5-7
7b
71
~7£?
7£>
~7D
~7/
. , 0
LK . CHEC
READ I NGS
'M
ENTROPY
-------
PARIICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
ss cr>/i
F £^FV(7»2£jri*-i //UPL>S 7J£jj4-L~ f^ATff^^ RUN NUMBER 7~£T~/DS>
SpCA^S^e^ A)£ • TIME START JDll
ING L.OCAT lt»tC.OAr/fJC=> "lAtitL^ 5 £-><•*{ 4V&~?~ TIME FINISH //Z©
£5-Z^-f56> TEAM LEADER JZ>/CL TECHN1C
BAROMETRIC PRESSURE, IN
. HG "2,^'SZ> STATIC PRESSURE
SAMPLING TRAIN LEAK TEST VACUUM, IN.
SAMPLING TRAIN LEAK RATE, CU . FT./MIN
EQU I PMENT CHECKS
\S PIT
JJA ORS
MA T ED
U-" THE
OTS, PRZ-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPL I NG SYSTEM UMB I L 1 CAL
LAR BAG SAMPLE BOX
RMOCOLJPLE fl / °F PROBE
FILTER #
TARE
MET
HG /O
n/^,
1ANS
, IN, H
,O -Q^J-lZy
. O.ooo o/y^D
IDENTIFICATION NUMBERS
X OZ/1^ NOZZLE
A/-2- T
yU^ ^,
5 o
/O© DIAMETER -SO /
/C REAEX
/C PROS
RSAT PUI
DLTT 2-5
P 5-//
MP
2 - / TEDLAR BAG
NOMOGRAPH SET-UP
/. 58 <=
ER TEMP
% MOISTURE
SAMPLE
POINT
B-S
CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU . FT .
DJD
fO
2£>
ISOyfe
\ /6
Z£>
£>A/AFP
/ "7 <4~~-£~°y^f~{
/ '•^O sf^/~
637.02-
6?43."?&
6y4^ ."£>£>
'&}6>D.4££>
PI TOT
READING
IN. H2O
n -zr$?
\D.~2£>'Z-
O.Z07
OJS^-
0-151
O./4&
| -
|
NOMOORAPH fJ2>^--
P ACTOR O-^
vs
0S STACK TEMP ~?O
/-5 REF . AP O."2^Z.^
OR I F 1 CE
SETT I NG { AH 1 ,
I N . H2O
IDEAL
Z-6S
/.(*><->
/.Cff^>
/.Z7
/.Z-3>
/.Z/
ACTUAL
LLa£>
1 .(f>*~>
/ 4>S>
/.Z.7
/.zs
I-ZI
'_ . • •
GAS
METER
TEMP.
°F
& I
'84-
07
©??>
^iP
9/
PUMP
VACUUM
IN. HG
GAUGE
F I LTER
BOX
TEMP.
°F
£?
6
<^
£T
~£>
5
—-
__-
—
"',;.' "' ' '
IMP.
EXIT
TEMP.
°F
&>*=>
57
.SS>
^"5
S"7
^•-7
»
STACK
TEMP.
or
~7
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ING LO
3-2
f £M&^E£f/^5SD?2O lUDL&TTZ/At- ffi.AT&&< RUN NUMBER T"£E> 1 '/ A
2JZ£jJz>B£>tZO , A/ £- • TIME START l3"&"2-
r AT i ON ^ZMTml^ TAAXti *#"£> £^XHAU£>T TIME FINISH /4"5f£r
*S-"&£e> TEAM LEADER 3?EL- TECHNIC
BAROMETR 1 C PRESSURE , I N
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
i/^PIT
'•"''PIT
AJA ORS
f4j< TED
-"""THE
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ ; IZ--
F 1 LTER #
, HG 25
%.'££> STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMB 1 L I CAL
SAMPLE BOX
TARE
HG 'T^
0~7
. P-flQp o,ox
IANS
, IN. H
,0 -0.^73
)
IDENTIFICATION NUMBERS
X °7^ / NOZZLE
>(/ —5 T
A T
// 0
2-3 T
NOMOGRAPH SET-UP
AHfl /'3Z- C
METER TEMP
% MOISTURE
SAMPLE
POINT
&-S
CLOCK
TIME,
MIN.
t>fa
\ ID
A- 4-
2£>
3c/fc
ID
2£>
$>OJ£>F?
DRY GAS
METER
READ I NG ,
CU . FT .
.5^.873
S-f-^?. OD
SS7. 3^"
S£s,5-7£>
S73.BT
S&>$. £>~?
• see .-re?
' .
\
PI TOT
READING
UP) ,
IN. H20
D.Z£>^
O.23-1
D.2J4-
D.I7B
0,177
O-l~77
^^>?? DIAMETER ' 3/3 _
/C READt
/C PROBI
RSAT PUI
EDLAR BJ
3UT 25
*«P A<4
HG A/A
MOMOtSHAPM # 2>^—
FACTOR /.Oi
S>
,35 STACK TEMP ~?D
/.5 REF. AP Q'(L~7
y = D.'9(2>fo
ORIFICE
SETT I NG ( AH ) ,
IN. H2O
I DEAL j ACTUAL
2.Z-5T
"Z.-^S
Z.3S
j es)^
l.<^<£>
i-*=2£L
2.2S
Z-43
Z-35"
/.<*>£,,
iSS'Z
J •<$$
GAS
METER
TEMP.
°F
C?^5
gj^l
^/
^2^
S>Z—
^2-
\
\
PUMP
VACUUM
IN. HG
GAUGE
^
-7
"7
L*
C*
6?
F 1 LTER
BOX
TEMP.
—
—
—
—
—
—
/.5 •- '---
IMP.
EXIT
TEMP.
°F
(*&?
&%>
£>&,
(*>£
5g»
SB
i
STACK
TEMP.
°F
7^
72
7Z-
72-
72,
•72-
' _
1
LK . CHECi%
READ 1 NGS
ait IM
ENTRO^V
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
„«, ATllJ&>
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPL I NG TRA 1 N LEAK RATE ,
EQUIPMENT CHECKS
""^ PIT
V pif
&M.ORS
A/X TED
^ THE
OTS, PRE-TEST
OTS, poST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ ~12-i
FILTER # TARE
SAMPLE
POINT
A-4
B-S
CLOCK
TIME,
MIN,
o/o
JO
2£>
3£>/fe
ID
2o
(ffO/tfF
I
\
DRY GAS
METER
READ I NG ,
CU . FT .
^72.. 3/8
•4-0£> . £5/
•4^3. O
4^-7 ^-7
pr
REAC
(AF
IN.
Boee> Jut>tJs,Te/jiL.-FUTw*
,c~ ,
; RUN NUMI
TIME STJ
^R .Tfe ~ II B>
urr 7333
'TAfJfiL rrS £-** rfbU&'T" TIME FINISH /^3"7
TEAM LEADER "3)&~ TECHN1C
"2S>.£O
STATIC PRESSURE
IANS
, IN. H
o -o.^.,
ACUUM, IN. HG ID £X3
CU. FT . /MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
AH
• O-D/8
IDENTIFICATION NUMBERS
XC>2,''5 NOZZLE- SO^) niAMi
Aj - ^5 T
£5 T
/B o
1C READ!
/C PROBI
RSAT PU1
™ .3/2^
3UT ODO*^
E -#"/0
MP A)A
2-2- TEDLAW BAK A^A
NOMOCRAPH SET-UP
l.foO C
METER TEMP
% MOISTURE
POT
3 ING
3).
HzO
O./flft
o- /^2Ld
D.l
O. '2=6'
£?£>£,, ,e3'=5 1&.ZB3
SI&7" SO
S7A> /B7
.»• ' • , .
0.237
NOMOGRAPH £ "L>f?—
V ACTOR 0.S
?e>
S^"^O STACK TEMP ~7
0^3
SO
«5/
.^ ,;
PUMP
VACUUM
IN, HG
GAUGE
2_
Z-
2-
3
3
3
0-/S7
F I LTER
BOX
TEMP.
°F
IMP.
EXIT
TEMP.
°F
_
—
—
.
—
—
//. . ;•-
6<^
^o
57
6s>*~>
S&
57
STACK
TEMP.
°F
72-
72
7$
72_
-72.
"72-
LK. CHECK
READINGS
B-25"<"M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRC
SAMPL
nATE
NY NAM
ss <£
ING LO
F F MB te££JEjJS&Gft£> lti3>uSTJZJAt^ iLAT£f& RUN NUMBER t£L'f2A
^/^EMS-e^SO ; /J.C • TIME START tS'j j
eATioN^rsj477>i)& TAiJ/C $^& £^^.4jJfs~T TIME FINISH 16? '((e
3-25'0^ TEAM LEADER 2*£L TECHNICIANS
BAROMETR 1 C PRESSURE , 1 N
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
-"XP1-T
^-F>1T
AJA ORS
A V4 . TgQ
S THE
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE & 72-;
FILTER # TARE
. HG .2'
"3.*=>C>___ STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
°F RROBE
MG ;^-
to
, IN. H
,0 -0.73
. o.oco o.o&4-
IDENT1F1CATION NUMBERS
X °2£)'Z NOZZLE
AJ-5 T
X
£^T O
SlbfF
DRY GAS
METER
READING,
CU . FT .
s@ao£3>
SS6.-S3
(0 o4~.~73
6-/2.<^2-
6>/5 . S£»
PI TOT
READING
SAP),
IN. H2O
FACTOR
NOMOGRA
PW ^ 23^
7
05 STACK TEMP "7fe_ ^
/•5 REF. AP O./SO
OR 1 F 1 CE
SETT 1 NG ( AH ) ,
IN. H20
IDEAL
0 ?VS
o.'zcn
&-"2jO*
OJ&D
o.fQo
y-, «i —-7 / 52 I —v /C3"^7
/^»> £—r * ' — ^ ( v_> » / ^.3 ^L— -
«^>34r43g\
,4 ,« > -, r
\
Z.OL*
ZL.&O
Z.O3
/.7«f
/.74-
/.?<£
ACTUAL
2,D<^
Z.,££>
2-, 03
1.74-
1.74-
/.76>
i
GAS
METER
TEMP.
°F
S3
^Z_
34-
^"Z-
^3
«3«5t~
*»-
PUMP
VACUUM
IN. HG
GAUGE
^
^
%
&
<3
I
i
i
F 1 LTER
BOX
TEMP.
°F
^—
—
—
__
—
IMP.
EXIT
TEMp
°F
lp(e
L&&
^£4?
£7
s&>
5*5
I
"
1
)
|
STACK
TEMP.
°F
72^
•7Z-
72^
72^
73
75
'•'I.
j
|
LK. CHEC.t
READ I NGS
to B-26TM
ENTROPY
-------
IARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
MY NAME- £M&/&J2EEMS>KD£2£3 lkJDLJ^Tl2JAi, ^XTS^S I
RS /3*5 . \}C^-
RUN NUMJ
FIME STi
^R T~E, /Z ~/IS
M?T 15'. f 2^.
ING LOCATie>N£ 7A *JK- -4££ £)&fAt)£*T TIME FINISH /Z-,-77
3-Z£"-S(£» TEAM LEADER ~D>f£— TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
V^-PITOTS. PRE-TEST
(— ^P I TOTS, POST- TEST
A/4 ORSAT SAMPL 1 NO SYSTEM
AM- TEDLAR BAG
***^ A ""77
FILTER # TARE
. HG ,2S
"),££> STATIC PRESSURE
1ANS
. IN. H
o — D,7*~>
ST VACUUM, IN. HG "i^~ /4- OS
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMB I L I CAL
SAMPLE BOX
°F PROBE
AHfl
•«-r©©©'42_£? DIAMETER « r3£) /
/C READt
/C PROBI
RSAT PUI
3UT 25
~ & ~~ / /
MP AM
2- " / TEDLAR BAG
-ZO 54^. "7C&
30/& 5S0.3/
1 16 £5<& .~5>C>
2D S&L? , 22-
PI TOT
READING
IN. H2O
o.n&
OJ7S>
o.iJB
o ."£&=>
(D.2CO
O-ZO&
(ec/zri^ ST4--.4 7"7
.. •
i
i
MOMOCiRAPM # 2>^
FACTOR D^i
*o
05 STACK" TEMP ~~?C>
/ . 5 REF . AP ^ • Z-2—
OR I F 1 CE
SETT I NO ( AH ) ,
IN. H2O
IDEAL
t.4L*
I >*7.,^S^i
/ ^fjS^\
t.~7/
I.Ln
i .7;
ACTUAL
l.*K*
1 ,4^
/.4^
t-7/
/.67
/ .77
/ •' '
GAS
METER
TEMP.
°F
SS;
<5>f
^•^
<=5l
33
93
PUMP
VACUUM
IN. HG
GAUGE
s
B
S
*=>
&
5
i ;•.
FILTER
BOX
TEMP,
°F
^
^
—
—
IMP.
EXIT
TEMP.
°F
^^
STACK
TEMP.
°F
72_
^»O 1 "72—
^•67
^^
7z_
72^
• — i ^
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
OATE
NY NAM
*5S (^
ING LO
3-Z
f ErfJ\(i>F&l£££fiJ£>&i
O&n /Al£>L?&T/ZjAL- PiATEJZ?$ RUN NUMBER 7£l'/3A-
Z££JJS&£P/~>. AA.C-. TIME START &lg}'2f%>
<-aTiON GoATlt-tfe "
{--&
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
y/ PIT
PIT
MA ORS
L*A, TEC
* THE
•OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ 7J °r
F I LTER t TARE
SAMPLE
POINT
CLOCK
TIME,
MIN.
ojo
/£>
ze>
A-4~ l3»/o
DRY GAS
METER
READING,
CU . FT .
959.630
7 • -6>7
<3~7S, ^S>
<3g>4_,34-
/b \<3f^l .^>D
2£>
feofoFp
i
j
...
S'SS',^r7
noJ.QLffO
-~
1 '
1
TA^/tL^^ ^Tx/^jJST" TIME FINISH O£$4€5
TEAM LEADER ZSCL TECHNIC
2.*^ -*= STAT I C PRESSURE
ACUUM , IN.
CU. FT. /MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
»f*OBE
^H(c
HG ^
ofo
IANS —
, IN. H
,o -0-70
O>OGC> D-OfD
IDENTIFICATION NUMBERS
xQl^kfZ NOZ23L.E
A/-7 T
A
// 0
€*D£^> DIAMETER • 3/t3
/C READ
1C PROS
RSAT PUI
OUT 25
E «f -/
MR WA
2 " 5 TEDLAR HAtl K>/^
NOMOGRAPH SET-UP
/•75 c
MOMOKRAPW | .2E™
rArTOR /.04
MrTITR TEMP &O STACK TEMP "7&
•k MO 1 STURE 2- REF . AP
PI TOT
READING
UP),
IN. H2O
O./SB
o./es
O.Z£?c?
5./^^
O./^3>
O.H03
7f -t.DOO
OR I F 1 CE
SETTING ( &H) ,
IN. H2O
IDEAL
2.03
2.£>£>
2 JO
1.74-
1.71
171
ACTUAL
2.^3
Z.«SiB
2./^>
1.74-
1.71
1.71
GAS
METER
TEMP.
°F
75
€>/
0£>
£_^L*&
<^**%d^ )
<3o
«...
\
PUMP
VACUUM
IN. HG
GAUGE
L
(a
tjftS
£•«*»}
S
£>
0.175
F I LTER
BOX
TEMP.
—
__
—
—
_^
—
IMP.
EXIT
TEMP.
°F
6*7
^&
£->!%
L**?
&(?
5£S
|
1 !
I ' '
j
1
|
STACK
TEMP.
°F
7;
71
~7t
"7-2^-
72~
72-
•
LK . CHEC
READINGS
£>ToPPC£>&
teZ&J*
*M
AH B-28TM
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss .,,£»
ING LO
*• £M&\GK££ti<£
3JEJEu'<>*3c>£2c>f AJ
&?b ItibUSTPUAL FiAT£ES i
.C.
RUN NUM
riME STJ
3ER 77&/3S
\RT OS3O
GATioN^tMr/jUG, ~7~AHAL&fS £^O4AL>
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPL 1 NG TRA I N LEAK RATE ,
EQUIPMENT CHECKS
-/ PIT
»— PIT
MA ORS
KlA.TED
V/ THE
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAC
RMOCOUPLE @ *7/ °F
F I LTER # TARE
_ ^
SAMPLE
POINT
A-4-
B-B
CLOCK
TIME,
MIN.
D/@
/D
2D
3f>lo
IV
2o
boltiFF-
1
\
DRY CAS
METER
READ 1 NG ,
CU. FT.
(af>l.(*l<&
LirfP>.4te
Cel4-
di72-. 2O
Lf3£> , -S^
&:*><&, O~2-
(sA~7, 524-
""f *
TEAM LEADER Z3S. TECHNIC
2fl .?"
STATIC PRESSURE
ACUUM , 1 N . HG ** 1-4-
CU. FT. /MIN
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
PROBE
&H£
. ggq
03
IANS
, IN. H
,0 -CJ.^3D
J- O.O/D
IDENTIFICATION NUMBERS
M-S T
B T
/3 0
^'S' 0 1 AMETER « 3/2-
/C READ*
/C PROBI
RSAT PUI
3UT OG&3
- 4—/£)
«p AJA
2 "Z- TEDLAR BAG *M
NOMOGRAPH SET- UP
/•6>/ c
METER TEMP
% MOISTURE
1
PI TOT
READ 1 NG
UP).
IN!
H2O
0.14-7
0./4&
O. i4£-
Z.//
-£.//
I
j
\
ACTUAL
1.47-
1+-3
/.T~>
2 Of-
z,//
2-J/
,
GAS
METER
TEMP.
°F
0-3
o
*3o
«^t
^s
j
|
1
PUMP
VACUUM
IN. HG
GAUGE
2
=3
3
^
3
a
rt./SD
F I LTER
BOX
TEMP.
°F
_
—
—
—
—
. —
il .
IMP.
EXIT
TEMP.
°F
66
S7
B4-~
65"
S^
51*
STACK
TEMP.
LK. CHECK
READINGS
vy
"7!
-71
•72^
72-
•72.
•> -_
1
i
i
!
1
^B?/
A^S7
M
ENTROPY
-------
.1
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss <£
ING LO
3^2
F EME>/£~£3E^*l£'E>z>/3£> AJZ>6&7£^£~ FLA-rz^s, RUN NUMBER TiE,'f4A
)JE£.E:U^&£>J2£> . AJ.C,. TIME START //7-"Z2-
raTlON £O477AJ£> TAfJJt^ *ff~£ £.\fH^O^>T TIME FINISH / / -"2-T7
(o~ &>(/>: TEAM LEADER H^^~ TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
w-'PIT
i^" PIT
AM ORS
jdA TED
_IB^"THE
*pTy*
. HG ^-=
?. £^D STATIC PRESSURE
ST VACUUM, IN.
TE , CU . FT . / M 1 N
OTS, PRE-TEST REASEMT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE I 72-: °F PROBE *
FILTER # TARE
HG ;*#-
o€>
IANS -
, IN. H
,0 -0.7S
D
IDENTIFICATION NUMBERS
yOZ3^ NOZZLE
Aj ~7 T
4 T
2,-f o
2--^ T
NOMOORAPM SET-UP
/.75
METER TEMP
% MOISTURE
SAMPLE
POINT
&~5
4~"f"
CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU . FT .
O/D
lf>
2o
$C>/D
ID
2£>
(ediDff'
'
.7./0S
/^. f2?^
34-. 3^
S=B.7
4c. ^/
^tg "Ec?
55,^-7^^
-i :-.
PI TOT
READ 1 NG
SAP),
IN. H2O
D.2/3
O.Z/Z^
0,'2-l'i--
o.i&z.
O.ILO
D. 16?D
SC>^ D 1 AMETER , 3/2-
/C READ<
/C PROB
RSAT PU1
EDLAR a
3ur Dno^>
m ,*£jLr" j f*\
MP /JA
&G ^JA
MOMOGRA
I.O^
PH # ^P^-
3
•S^ STACK TEMP 7D
£32^ REF . AP C"-/7j3
OR 1 F I CE
SETT 1 NG { AH ) ,
IN. H2O
IDEAL
2.27
2, "2-5
Z,Z£"
/.72-
/.7D
f .~7D
\
|
j
1
ACTUAL
2.27
"Z.'Z-'S
2-ZS
/•7Z-
f.~7O
1-~70
j
GAS
METER
TEMP.
°F
PUMP
VACUUM
IN. HG
GAUGE
•37
S/
S»3
S>l
^5,
S-2-
&
e>
B
4-
Lf>
FILTER
BOX
TEMP.
°F
—
—
__
—
. —
£* —
IMP.
EXIT
TEMP.
°F
65
S^
S^?
Lj2^2
~z$b?
S~7
STACK
TEMP.
°F
72-
72-
TV
72-^
~7 1
~7~2-
LK.
READ
B-30TM
ENTROPY
-------
PAR7ICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE _
NY NAM
ss G>
ING LO
3-2J.
f FJ^i f% l{">!? f^fZJj^yKr^Rf} JjJ£)f!f~iT££JA-L-* /^xtT"£-J? *•?.
GZez£M£&n/Zc> Al £. •
RUN NUM
FIME STi
SER TEE,-l4&
wn- /<0:23
CATiON<_!£!<47VAJiS> 7AtJf<~?F& ^ZXHAtfeT" TIME FINISH //-"Z^
e-0£? TEAM LEADER J2JZ— TECHN1C
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
... .^PIT
•/ PIT
jj^ ORS
AJA TED
•^ THE
. HG 4.
!^. &O STATIC PRESSURE
ST VACUUM, FN. HG 14- fti/P
TE, CU. FT. /MIN
OTg pRE_TEST REAGENT BO
OTS, POST- TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPL.E & ~T^- °F PROBE
F I LTER # TARE
AHc
. g^og Q.OQ^
ANS
, IN. H
jO --O.~7*~>
y
IDENTIFICATION NUMBERS
yOZ-Z'f- NOZZLE
Al-S T
*-? T1
£5 o
/Oft D1AMTTER -3<9/
/C READ*
JC PROS
RSAT PU1
3UT ZS"
" £3 -"/ /
WP A//<
2'/ TEDLAR BAG AJA
NOMOGRAPH SET-UP
f.i*1 C
METER TEMP
% MOISTURE
SAMPLE
POINT
4~f
CLOCK
TIME,
MIN.
0/c,
10
2£>
3o/D
fa
2o
DRY GAS
METER
READ I NG ,
CU. FT.
f J "•* f "*"> f*\
v^gj&P^
^,^-,^-2-
&(*>/ • Z^
(rtofc. &4-
Li7S . S 7
/ «z.=a. "S75?
lS3 ClJ5^!? . <~~-**
W0fpj (ff&O.&2£>
— » • - '•
!
PI TOT
READING
UP),
IN. H20
<£>
<^~, STACK TFMP 7D
DZ— REF . AP
OR 1 F I CE
SETTING ( AH) ,
IN. H2O
IDEAL
/.3S>
/.3^
/.37
LL*3
! ."72,
(.1 (
ACTUAL
/.39
J !^^
;.37
t.C/3
! .72-
/.7/
GAS
METER
TEMP.
°F
g^>
<25^**7
/
^5>
S>4-
. -
PUMP
VACUUM
IN. HG
GAUGE
o.Z/5
F I LTER
BOX
TEMP,
°F
IMP.
EXIT
TEMP.
°F
&
£^
S
Cs>
f
L
j
—
—
—
—
' 7 . •'
^^
6»^
STACK
TEMP.
°F
72^-
"72^
7/
7"2~~
"7/
"72^
LK . CHECK
READ 1 NGS
B-31T«
ENTROPY
-------
Preliminary Field Data
PLANT
LOCATION
SAMPLING LOG ATI
DUCT DEPTH
FROM NSOE FAR WALL TO OUTSDE OF PORT
NIPPLE LENGTH
DEPTH OF DUCT
WIDTH (RECTANGULAR DUCT)
EQUIVALENT DIAMETER:
n - 2« DEPTH « WPT.H _ 2(_
UE~ DEPTH*WOTH ~
)_
DISTANCE FROM PORTS
TO NEAREST FLOW
DISTURBANCE; ff^f
STACK DIAMETERS
UPSTREAM DOWNSTREAM
oAo
STATK
Tr
LOCATION OF TRAVERSE POINTS N CIRCULAR STACKS
I
2
J
4
5
^
7
a
9
10
11
li
^-.
i-i
15
l*i
17
18
19
70
21
22
23
24
468
6.7 4.4 3.2
25.T 14.6 10.5
JS.O 29.6 19.4
fJ.J 70.4 12.3
85.4 67.7
35.6 80. t
89.5
96.8
10
2.*>
8.2
14.6
22.6
14.2
6S.8
77,4
85,4
91.8
97.4
/ 12 \ U 16 18 20 J2 24
~T~Ll 1.8 1.6 1.4 1.1 1.1 1.1
/ 6.7 5.7 4.9 4.4 J.9 3.5 3.2
/ 11.9 9.9 8.5 7.5 6.7 6.0 S.S
17.7 14.6 12.5 1Q.9 9.7 8.7 7.9
25.0 20.1 16.9 14.6 12.9 11.6 10,5
15.6 26.9 22.0 18. B 16.} 14.6 13,2
<<4.4 36.6 28. 3 23.6 20.4 13.0 16,1
75.0 61.4 37.5 29.6 25.0 21.9 19,4
82.) 73.1 62.5 38.2 30. 6 26.2 23.0
88.2 79.9 71.7 61.8 3S.« 31.5 37.2
93.3 85. 4 78. 0 70.4 61.2 39.3 32.3
\97.9J 90.1 83.1 76.4 69.4 60.7 39. B
\^^S 94.3 87.5 81.2 75.0 68.5 60.2
98.2 91. S 85.4 79.6 73.8 67.7
95. 1 89.1 83.5 78.2 72.8
96.4 92.5 87. 1 82.0 77.0
95.6 90.1 85. 4 SO, 6
98. 6 93.1 88.4 83.9
96.1 91.3 86.8
98.7 94.0 69.5
96.5 92.1
98.9 94,5
96.8
98.9
LOCATION OF TRAVERSE FONTS W RECTANGULAR STACKS
1
•J
1
.,
5
6
?
H
9
10
11
1}
2 3 * 5
25.0 16. J 12.5 10
75,0 50.0 37.5 30
83.3 62.5 50
87.5 70
9O
.0
.0
.0
.0
.0
6
8.
25.
41.
58.
75.
91.
J
0
7
3
0
7
7
3.1
21.4
35.7
50.0
64.3
78. t
92.9
8
6.3
IB. 8
31.3
43.8
54.3
68.8
81.3
S3. 8
i
16
27
38
50
61
72
83
94
9
.6
.7
.8
.9
.0
.1
.2
.3
.4
10
s.o
15.0
25.0
35.0
45.0
55.0
65.0
15.0
85.0
95.0
11
4.5
13. i
12.7
31. »
40.9
50.0
59.1
68.2
77.3
M.4
95.5
12
4.2
n.5
20.8
29.2
37.5
45.8
54.2
62.5
70.8
79.2
87.5
95.8
DIAMETIRS POIHTS
vpmt£m*m 4c*mMtr«*ik
8 .
7 .
6 .
5 -
4 .
3 •
2 -
. 2.0
.1.75
.1.50
\ V OT*r J<"
- 1.25 \ \
4"
4%"
^>"
s-t"
15^-
l73/4"
(IV
7i"
2Z%"
-*»^
?&&t.
B-32
MVMOMMBNTAUSTV, INC •
-------
YAW ANGLE DATA
FOR CASES OF NON-STREAMLINED FLOW
Plant name
Date
Plant location
Initials
WA/
Measurement site /Htsf
Pi tot type 5
POINT
1
2
3
4
5
6
7
8
9
10
11
12
PORT
A
-/o
"10
-r
c)
*r
^"10
r IT-
^(^
^
^-/o
^r
^ r
PORT
B
-r lo
^ir
t- j^
-f-^
^,
-------
PARTICULATE FIELD DATA
COMPANY NAME
ADDRESS
TIME START
TIME
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST VACUUM, IN. H<
SAMPLING TRAIN LEAK RATE, CU. FT./MIN.
15
TECHNICIANS .
STATIC PRESSURE, IN.
H,0
EQUIPMENT CHECKS
PITOTS, PRE-TEST
PITOTS, POST-TEST
ORSAT SAMPLING SYSTEM
EDLAR BAG
THERMOCOUPLE @
FILTER #
TARE
IDENTIFICATION NUMBERS
REAGENT BOX.
METER BOX
UMBILICAL
SAMPLE BOX_
PROBE
NOZZLE
DIAMETER -2-60
4- -3
T/C READOUT
T/C PROBE _
ORSAT PUMP_
TEDLAR BAG _
A/ A
NOMOGRAPH SET-UP
METER TEMP
% MOISTURE
C FACTOR
STACK TEMP.
REF. AP
SAMPLE
PO|NT
CLOCK
TIME,
MIN,
DRY GAS
METER
READING,
CU . FT .
PI TOT
READING
( AP) i
IN. M2O
ORIFICE
SETTING { AH) ,
IN. H2O
IDEAL ACTUAL
GAS
METER
TEMP,
°
PUMP
VACUUM
IN. HG
GAUGE
FILTER
BOX
TEMP.
°F
IMP.
EXIT
TEMP.
°
STACK
TEMP.
LK. CHECK
READINGS
£L±
2r&Z,
5
272-, 47
Jk
re?
O.
74
(5
7
2.
76
b
25
. (3
0-
2 -to
V7
-7
7
3,0
o,
7-$
6.3
3$
0.
7-7^
V
u
0.7^
I/
02,
o.
73
0-
77
CeO
<
)
1
32-3.
o.
75
7
5
2-42
loo
10
,.\
O.
too
2 2J • 6 6 6
15
337-
O. bO
&Z-
67
2-O
o.
77
7
7
2.3-2-
Zero
IS
O-
I\'-J
-------
PARTICULATE FIELD DATA
COMPANY NAME
ADDRESS
SAMPLING LOCATION.
DATE I
RUN
TIME START ._
TIME FINISH
TEAM LEADER U.) S
BAROMETRIC PRESSURE, IN. HG .
SAMPS-ING TRAIN LEAK TEST VACUUM, IN. HG.
SAMPLING TRAIN LEAK RATE, CU. FT./MIN.
TECHNICIANS _
STATICUPRESSURE, IN.
a
H20
o, ooo
EQUIPMENT CHECKS
PSE-TEST
PITOTS, POST-TEST
ORSAT SAMPLING SYSTEM
TEDLAR BAG
THERMOCOUPLE
FILTER #
TARE
IDENTIFICATION NUMBERS
REAGENT BOX
METER BOX _
UMBILICAL _
SAMPLE BOX_
PROBE
W-7
.NOZZLE.
1C? 4"
DIAMETER
-2-S7
0 -
T/C READOUT
T/C PROBE _
ORSAT PUMP_
TEDLAR BAG _
NOMOGRAPH SET-UP
NOMOORAPI-I
(.75
METER TEMP
% MOISTURE
"2-
C FACTOR
STACK
REF. £P
SAMPLE
OINT
CLOCK
TIME,
MIN.
DRY SAS
METER
READING,
CU . FT .
PJTOT
READING
IN. H2O
OR I F I CE
SETTING (AH),
IN. H2O
IDEAL ACTUAL
GAS
METER
TEMP.
°
PUMP
VACUUM
IN. HG
GAUGE
FILTER
BOX
TEMP.
IMP.
EXIT
STACK
TEMP.
°
LK. CHECK
READINGS
A >
Z-of
Z-oo
0-
74-
7
0
Co'L
0. 54-
7
10
7
0.
80
7
67-
H4
Ic?
C?.
. \o
.*[(,
K
<&>
2.59-
7
37.
YP
to
Z.S7
7
64-
2-SZ-
7
gf
7
70
O.
7
I C-
0.
7
71
3$
o.
7-S2-
7
71
O.So
7
2--4Z-
9-7
7
63
72.
t-7ft ?SI
7
7!
T?,
(Zcfoff
'M
AH B-35TM
PMTDODV
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
^ DATE
NY NAM
«ss
ING, LC
f ^Kz^LJZ&'y^sft ~0 ^
£W**-r-ft'Wi«
CAT I ON /TUVf* £
BAROMETRIC 'PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
""'PIT
^ P»1T
,A/A- one
A/A TeD
-"THE
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
iLAJR BAG
RMOCOUPUE @ 1 ?
FILTER # TARE
SAMPLE
POINT
A f
Z-
3
, f
? 5
£
7
£
^
fO
If
IZ-
1> f
2-
"5
4
$
4
i
^-N
CLOCK
TIME.
MIN.
tfo
S
{0
IS
-zs
Z-S
Je
3s
to
&
5O
££
&/C
S
tO
(s
z&
7^>
3o
35
£-
•4r$
St?
•£f£r«?
DRY GAS
METER
READING,
CU. FT.
4*7. 74^
4-f {. 77
4£ -^s
5£)CP, 3o
So^Ks?^?
5>f? • 5?
«^/^. ^3,
Sf£. "74"
$2^3. ^4
5-2-g;, «fif
533 . 3<$
53 S- 4^S
643, 2-3
^47- 73-
^2. 4-<^
5^fe?. 47
56 C?, "gef
5^S- ^-S"
^?7c, •z-g'
S74- ^?i
57/^f, 24-
5^3 • 4"2-
^7, 2-t
5^(. 2-^
5^5- ^3,^
,/^,-J^
D f-4-^-4^. -^MjjV^-A RUN NUMBER " •*" 5
> ML,
j2*^^-*-*£&-
TEAM LEADER
/i^r * "Z-""
ACUUM, IN. H<
CU. FT. /MIN.
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
X
TIME START 0&'C><{
^K-^h TIME riMfsw (C?'.42-
' LjS N/ TECHNICIANS ^UR
STATIC PRESSURE
s 15"
S
, IN. H
,o { * B>^
i0 o. ot>3
IDENTIFICATION NUMBERS
NOZZLE
fJ -7 T
U ' 5 G f
4 Q
106 DIAMETER • ZS C?
/C READi
/C PROBI
RSAT PUI
OUT Z ^
E ft> ^*-f
T " ^ TEDLAR HAS,, -,,,'^ "~
NOMOGRAPH SET-UP
AHff
METER TEMP .
% MOISTURE
PI TOT
READING
IN. H2O
0. 4£
<5- Sz-
p.^4
£?. £?£>
O. W-
£7 . (D\C
o. 6??
o. k>7
O- (07
o. -70
O.'JT^-
0, 1 Q
D.1^*-?
O-S1^
-£5S
0-^7
Q. b~L
9. bo
O, fai\-
D- S&
O- 4"7
D, i&,
^7.^-4
^7,44
1-75
NOMOGRAPH f Uj ^ ^
FACTOR y
,03
StP STACK TEMP 66
"2-" REF . AP , O- 44'
ORIFICE
SETTING (&HJ,
IN. H2O
IDEAL
!.%%
2-^7
2. -2^
^91
2, foT
^c*'* » £•?
^ * /^ "*
2-gT?
*p" S^""T5
Z-^3.
3.0^
2.<5T3,
?. 30
Z2^-~;.
M^iiX
2-|>
Z-3,?
s..*-^
2-*5(
2-6S
•^."54
/ c'^''*?
/ * IS O
/.^
(-94
ACTUAL
•SS"
Z.f7
2-2-fo
-3-St"
z:-fc7
z-'ffc
2-fc"?.
2-- gO
2. '&d
Z.T3-
3-o{.
2.^3
2-i
2-"5c?
Z. '^'O
2-. S^'
S'.S*?
Z-5/
Z- 6?
^.^>4
?.'5t7
/.?T
( -%t
l.^t
GAS
METER
TEMP.
°F
71
73
7h
— 7*g~~
S"2-
*SP
^7
'S'''?
2,-t,
VM <"^»
7}Z
AH B-36TM
PUMP
VACUUM
IN. HG
GAUGE
^
2-0 O
•Zoo
•Z-QG
"Z-OQ
l^rV
TOO
~2~OQ
Z^rtD
~2*"&-o
~2*oO
^-O"t/
^-^Cr'
^O"TP
2X?O
n.' •»?'•
IMP.
EXIT
TEMP.
°F
(01-
kz~
6z_~
62-
65"^-
(b-2-
62-
6Z
(b 2^
62-
£•
67-
&Z~
k>"^
C.2-
73
74-
74
75>
74
1t
7S
75
7«5
75
75
74
74
7S
74
•7^
75
"74
7
-------
PARTICULATE FIELD DATA
COMPANY NAME
ADDRESS
NUMBER
TIME START
»*tX "4
SAMPLING,LOCATION.
DATE
TEAM LEADER
TIME FINISH I&-O&
TECHNICIANS _^-w B
BAROMETRIC PRESSURE, IN. HG ^'^
SAMPLING TRAIN LEAK TEST VACUUM, IN. HG.
SAMPLING TRAIN LEAK RATE, CU. FT./MIN. .
STATIC PRESSURE, IN. H,O
15 r
-
c.
EQUIPMENT CHECKS
^
PITOTS, PRE-TEST
p|TOTS, POST-TEST
ORSAT SAMPLING SYSTEM
EDLAR BAG
THERMOCOUPLE @ /^* C
FILTER #
TARE
REAGENT BOX
METER BOX _
UMBILICAL _
SAMPLE BOX_
PROBE
IDENTIFICATION NUMBERS
Of DIAMETER .2?S7
T/C READOUT _ .2-3
,NOZZLE,
tf.f
T/C PROBE .
ORSAT PUMP.
NOMOGRAPH SET-UP
NOMOGRAPH # .
METER TEMP
% MOISTURE
2"
C FACTOR .
STACK TEMP,
REF. AP
75
0,4-1
SAMPLE
POINT
CLOCK
TIME,
MIN.
DRY OAS
METER
READING,
CU. FT.
PITOT
READING
JAP),
IN. H2O
ORIFICE
SETTING (AH).
IN, HZO
IDEAL ACTUAL
GAS
METER
TEMP.
°
PUMP
VACUUM
IN. HG
GAUGE
FILTER
BOX
TEMP.
°F
IMP.
EXIT
TEMP.
°F
STACK
TEMP.
LK. CHECK
READINGS
Of
2. (6
75
t-co. 14
, 02-
75
0.
2^47
2-4-7
1ft
7
"2,00
'*r
. 4-7
. 11
7
•7
Z-24
2-74-
T
77
O,
-74
-7
73
o*
2. "5, 3-
,7
.73
2.-
2-
7
"2-0 <7
73
3
a S7
y
65
o.
Z,
o.
2-
'2^00
to
n
Q, M-
o. sc?
2-7-4-
^2
So
O-So
7-1,4
1&8
7
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
BATE
NY NAM
$s ,,.
ING LO
jr Qffa&^&^f&fa® tTVv«r . lAjt&A^ RUN NUMBER W£- Si
/CR-e^iA-tr©Tx) , W ^ TIME START 1 3'.O4;
<-AT i ON /T^-HA? ££.4^^***«£&\-- ^~^tejT TIME FINICM 1 «> • /*r
f / §^> TEAM LEADER lA^SM TECHN I C
- i i
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
*^*PIT
^ RIT
fJrf ORS
_^O"TED
--THE
. HG 'Z^f-S STATIC PRESSURE
ST VACUUM, IN.
TE , CU . FT . / M 1 N
OTS, PRE-TEST REAGENT BO
OTS, POST- TEST METER BOX
AT SAMPL I NG SYSTEM UMB 1 L i GAL
LAR BAG SAMPLE BOX
RMOCOUPLE 0 I 2, °F PROBE
F I LTER #
TARE
AHfi
ft ^^~5> MET
NG 15
. _£i±
*?
1ANS
, IN. H
•-•
2o . — /• 3>^ .
{?.JW^
I DENT 1 F I CAT I ON NUMBERS
XT~ . NOZZLE
[y . ^y Y
4 0
^"S DIAMETER • '^^
/C READ!
/C PROS
RSAT PlU
3LTT 'f'% ---
F 4-4-
MP A/A
A llf TEDLAR BAC VA
hOMOGRAPH SET-UP
f • / ^ ^
ER TEMP
^f "SUo * MOISTURE
SAMPLE
POINT
CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU . FT .
4" 3
7
B. l
&
IS£y4ff*
6(0
1o<4-, 7s»>
i$ 7(3.3,0
3-0,
*&/e
^
1o
*\tjff
15
30
li5/
t£
" 5
($c£ff
W • So
7^9. Ofc
73fo ,<*
&•&"*>
Cx . ™*^ ,0
NOMOCWIAPW | 1/V"£/V/
rACTOR <
?.^S
^S STACK TEMP /€?
2- REF . AP \ '? £
ORIFICE
SETT I NG ( AH ) ,
IN. H2O
IDEAL
O.T7
- ^r*?
I
\ /
ACTUAL
0.77
a 77
i?.77
iiP.77
£7. -77
P. 77
O,7*l
0,77
£>.*7'7
0-77
GAS
METER
TEMP.
°F
7S
^<
79"
7^
&o^
<9t7
7^
-7^
<^-£7
^i
D-^ft ?2-
, -
PUMP
VACUUM
IN. HG
GAUGE
•2-
"3>
-2,
-Z-,
FILTER
BOX
TEMP.
°F
NAr
3 I
3>
3
^
-z,
-5,
"3
4^
1
1
1
i
IMP.
EXIT
TEMP.
°F
fel.
62-
^Z
^2-
63.
fo 5>
6?3
4s><-f-
^4-
1^4-
fc4-
STACK
TEMP.
°F
V3
V3
73>
74-
7^
7"2>
72-
73.
72-
72.
72-
LK . CHEC. ,
READ I NG5
- DOWN*
13'. 3 1
title'**'
— S6WW
14:51
-^1^
£N!>
'M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
ss
ING/LO
P •4*TL£#'MA'tr*PT^ <^v~i
4-^e^^-^lreT^o
CATION, fH>^~, C^*^-^~-
j/' I * f SfJ /te
^£r < f VX-pi/VcXW^ KM HU
^C TIM
NUM
E ST,
BEM mr - sz-
MJT fg-!3Z_
«^?U 3-Uid: TIME FINISH 12-^04*
TEAM LEADER lt?£ M TECHNIC
BAROMETRIC PRESSURE , IN. HG 2i;5
SAMPLING TRAIN LEAK TEST VACUUM,
SAMPLING TRAIN LEAK RATE, CU. FT.
EQUIPMENT CHECKS
vXPIT
-"'*»1T
^/'tjf'EQ
^THE
OTS, PHE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
CAR BAG
RMOCOUPLE @ (frZ- °F
FILTER #
TARE
A "765
SAMPLE
POINT
A-- 4-
-7
y
T?, -1
6>
CLOCK
TIME,
MIN,
%
[5
So
^Jo
1$
!>€i
<^Q(O
'$
3>
'^V^
16
?^
M/ttf-
DRY GAS
METER
READING,
CU . FT .
7£i. $23»
T^fc. fc>Z-
Vt?^ 7£
£12. %£>
F^L 07
^2^!, '7
§-37, 2^}
"^^
^53. *k?
*S^>1» 4-7 -
•j^j&f.. ^^
^77. ^>^7
IN.
/MIN
s
MC J5
T*TIC, PRESSURE
IANS -
, IN. H
O, Q$@ f) ^ fifty
«•*
?o -f.33-
IDENTIFICATION NUMBERS
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
^f NOXXLIC c»«>'w' ^>
l i '"^7
1) . ^\ Q "f
«f 0
/C READt
/C PROS]
RSAT PU1
aur
e
(*p
DIAM
erg,* . /^fC?
2"t
Ar •'f-
A/A-
A • 4 TEDLAR HAG V A-
NOMOGRAPH SET-UP
1-79
NQMDORAPH # Ul^fJ
rACTOR
METER TEMP S^ STACK TEMP
% MOISTURE
PI TOT
READING
(APJ.
IN, HzO
O. to®
O . *->
1
\
3
ORIFICE
SETTING (AH).
IN. H20
IDEAL
c?-?3»
\
ACTUAL
^,fc£
£?- &3
o. &3
(?-2^
C'^i
^?.£3>
/O Cx ^L
/*"? t^" ^\
O C- ?
(X- w ^*
^-S^"
GAS
METER
TEMP.
°F
b
£?&
(p ^\
1~7 I
lo
72-
7^
76?
77
*7(*>
"7%
"?»
3.
3
3
3>
S
•z,
FILTER
BOX
TEMP.
°F
AJ4
,
IMP.
EXIT
TEMP.
°F
^^
6?5-
£7 >
£7-2,
(fc?*,
j^?^,
^3>
feS
(fe'S
^?S
t >
^3>
STACK
TEMP.
°F
6?f
6? I
6 f
^"2-
^3^
fc'f
4?S
^7
^^
^'f
lo
~7
-------
PARTICULATE FIELD DATA
COMPANY NAM
ADDRESS
SAMPL I NG iLO
p ^jL-d^-^O^fr^lj^ tTV
/3-i_e^-^U'?ea^
CATION Tr\AJrf~ C*&-s<*—
JP. tJLtifo^ ,
=IUN NUM
ar* mx-si*
WC. TIME «STA«T I'f'll
' rru-&-7"
riME FII
SI1SH lfc>' 3**
l&y TEAM LEADER wSw TEd-WICIANS
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
'^"r.lT
>-^ PIT
A/A-OWS
A^fTO
-"THE
_ MC -2-^f-S STATIC PRESSURE
ST VACUUM1,
re, cu. FT.
1N_ MS 15
/M1N
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ 7( Op PROBE
FILTER # TARE
"B !So
AHffl
A- V53 MET
ER
s
, IN. H
o — i .3>5
c9,»irf 0-07^
IDENTIFICATION NUMBERS
ye NOf-nv S '5 niiur-rro -He?
AJ-*7 T
i/ " ^ "f
f
/C READ)
/C PROBI
RSAT PU
aur Z^
E -^ *H"
MP A^A
A "4 TEDLAR HAG ^^
NOMOGRAPH SET-UP
175
TEMP
Sf" S2-t % MOISTURE
NOMOGRAPM # WShJ
FACTOR
d.1*
C^C^ STACK TEM^ ^ O
2^- REF. AP ^^1?
SAMPLE
POINT
4- -3,
•-. 7
% [
6
CLOCK
TIME,
MIN.
•/e
i5
3«?
4-y^
iS
^«
"lO/e
f5
3o
ii$yc
!6/
3. j^
Rl'S, ^7
^2-k. Pfe,
f S4. ("i>
^f2.^&
^••yO. OQ
tflc>%. Ok
^5*f- 5.34
r^^/oF^^
"
PI TOT
READING
UP),
IN. H20
^<^g
f
I
<5.fc>4
d?- 6?^
j
jpTgZ*.
• JL,
ORIFICE
SETTING (6HJ,
IN. H2O
tDEAL
^.g£
-Ji
—> -K
ACTUAL
O.S"!
«?.£{
(7, SI
£?,€!
. Si
0 -<&(
0 .91
^?,Sr|
£?. V{
GAS
METER
TEMP.
74"
7^
&6>
PUMP
VACUUM
IN. HG
GAUGE
•z,
"Z-5
3
3>
S
3
3
-2,
3
FILTER
BOX
TEMP.
°F
A/A-
-^ —
—4 —
IMP.
EXIT
TEMP.
°F
Cc4r
fof-
&4
6
b*>
fc>3»
64
STACK
TEMP.
°F
ry |
7 Z~~
7z--
75>
73>
75
73>
7^
73
LK. CHECK
READINGS
(*- *.*7
I ifif * »j A!
^ *T"O P
0.8}
'M
M
-------
Preliminary Field Data
PLANT NAME
LOCATION fc"
g&
gv
SAMPLING I nnATinhi
DUCT DEPTH
FROM INSCE FAR WALL TO OUTSDE OF PORT
NIPPLE LENGTH
f3 'A
DEPTH OF DUCT J.lJi
WIDTH (RECTANGULAR DUCT)
EQUIVALENT DIAMETER:
_ 2«DEPTH« WDTH _ gt
~ DEPTH + WDTH ~~ (
D,
)
DISTANCE FROM PORTS
TO NEAREST FLOW
DISTURBANCE: FEET
STACK DIAMETERS
UPSTREAM DOWNSTREAM
fe.S
STACK
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
4 6 l» \ 10
I 6,7 4.4 f 3.V \ 2.
•£
25.0 14. § 10.5 8.
1 1 7«.0 29.6 19.4 14.
4
5
I
7
»
3
10
11
li
1 ;
].;
15
;e.
17
IB
19
30
21
22
23
6
2
6
93.3 70.4 12.1 22.6
85.4 67.7 24.
95. •> 80. € 65.
«9.5 77.
96.8 J85.
Vy' 9i.
97.
24 |
2
6
4
4
8
4
12
2.
fi.
11.
17.
25.
15.
',4,
75.
82.
88.
93.
97.
1
7
a
7
5
6
4
0
J
2
3
9
14
1.8
5.7
9.9
14.6
20.1
26.9
36.6
63.4
73.1
79.9
B&.4
90.1
94.3
98.2
16
1.6
4.9
8.5
12.5
16.9
22.0
28.3
37.5
62. S
71.7
78.0
83.1
87. 5
91.5
95.1
98.4
18
1.4
4,4
7.5
10.9
14.6
IB. 8
23.6
29.6
38.2
61.8
70.4
76.4
81.2
85.4
89.1
92.5
95.6
98.6
20
1
1
6
9
12
16
20
25
JO
38
61
61
75
79
B3
87
90
93
96
98
. 3
.9
.7
.7
.9
.5
.4
.0
.«
.8
.2
.4
.O
.6
.5
.1
.)
.3
.1
.7
22
1.1
3.5
6.0
8.7
11.6
14.6
18.0
21.8
26.2
31.5
39. J
60.7
68.5
73. S
78.2
82.0
as. 4
88.4
91.3
94.0
94.5
98.9
24
1.1
3.2
5.5
7.9
10.5
13.2
16.1
19.4
23.0
27.2
32.3
39,8
60.2
67.7
72.8
77.0
80.6
83.9
86.8
89.5
92.1
94.5
96.8
98.9
LOCATION OF TRAVERSE POt4TS W RECTANGULAR STACKS
I
2
1
'<
5
6
7
8
9
10
11
1?
214
2S.O 16.! 12,5
75.0 50,0 37.5
Si. 3 62. S
87.5
5
JO
30
SO
70
90
.0
.0
.0
.0
.0
6
8.3
2S.O
41.7
58.3
75.0
91.7
7
T.I
21.4
15.7
x».o
64.1
78.6
92.9
6
18
31
43
36
68
81
93
8
.1
.S
.3
.8
.3
.1
.3
.8
9
5.6
16.7
27.8
38.9
50.0
61.1
72.2
•3.3
94.4
10
5.6
15.0
25,0
35.0
*5.0
55.0
45. 0
75,0
•S.O
SS.O
11
4~.3
13.6
12.7
31.1
*O.S
50.0
59.1
61.2
7J.3
86.4
»S.S
12
*.i
12.5
20.8
21.2
37. 5
45.!
54.2
62.5
70. 1
79.2
87.5
95.8
DtAMZTEKS POIHTS
Up.tr...
8 .
7 .
6 .
5 .
4 .
3 -
2 .
dovnitrtu
• 2.0
. 1.75
-1.50
^ \ ov«r 24-
- 1.25 ^ \
$• \ I2.3t. -
•1.0 «
-0.75
- 0.5
. 48
1 44
_ 40
1 2b
- 12
- 28
. 24
- 20
- 16
- 12
. 8
Point.
2
3
4
5
6
7
8
9
10
II
12
!3
14
15
!6
17
18
19
20
21
22
23
24
i or
DtAKETER
3-*-
10. «5
n-s
3Z-3
fcl-T
«gp.^
e#y-s
%-B
DISTANCE
ntOH INSIDE
WALL
DISTANCE
FROM OUTSIDE
Q- POUT
1 "
1 %
^ Vg |
^
-------
'• L--I * J- I" 1 L L i,' jj--\. j. j-V
COMPANY NAM
ADDRESP
SAMPLING LO
J PATE ^ -
BAROMETRIC
SAMPLING T
SAMPLING T
"T~ tSul(^v^AT°?
^ 'fWSTttR,i? RUN NUMBER pflW^f'
TIME START ofe'iV
tXCP-t-T TIME F1NIBW /( "« 5^
* 8 ' ?»4> TEAM LEADER ^^ TECHN I C
RRF_«;SIJRE , IN, HG "Z- ' ftflZ- ^-"2-0 V"?/
C 'V^e j ^ 5 t? .7 7 7 4 - 3o H • *t"Z-
"ff
1 ^/°
St-
8 5Vo
55"B.ZJ=2_ H-3o 4- H"Z-
545 tzc>3 *^ -T / ^-53
^^Suo IT) H-S-3 "f.Cz-
57Z'T/ts H-H-o H-5"t-
4?° ! 57^-1 •=>£ ' 4> H-t> "f. ST
0- i i-*-^
•f
582_,sit} 3.o£» j >.og
.5S/,*7;"O 3-oo 3. oft
2- ^o S^o,^"^ £' i£° 3.1,0
11- "S^S-HtJi 3-C.o -3.70
"> Jfe/o Siq .^OT" H-l-to _*t-32.
Itt
4- H/o
if
s sr.
4,0 4- .2,oS 4-2-° M"32-
^o*f . ? 03 4-3^ i ^12-
fa ( 3 - 5"o 7 7^-30 ^-.M 2.
^/&.3ID 4-- OC7 ^f.fl
i
VM i /AP)
STATIC PRESSURE
HG ,5 20
IANS t~^-
, IN, H?O — 1 -3 "S
IDENTIFICATION NUMBERS
X MOTZLC 7»T.
niAMETER . ( _7 1
^ - ^ ^ T / C READOUT 5
U.-SO T/C PROBE T -S
V & ORSAT PUMP ~
' " H TEDLAR BAG
OGRAPH SET-UP NOMOGRAPH # *T
1- 7^5 C FACTOR
J. o i - .05 - o.«^ 4
7° STACK TEMP 1o
2- REF . AP
i-i'r
" 1 CE GAS PUMP
; ( AH ) , METER VACUUM
HZO TEMP, IN. HG
ACTUAL °F GAUGE
3.i1 ST- \H
3 -IS $2- »3
IJH'S ^° IT-
3.*¥B Li~ 1 f"
3-3*1 ^T- /f
3- l9
I3o fS> fe.<7
1 3D H-& i bS
/ 3-a 4-8 ! 6H II
3.70 ^ ;v
3.70 (o'i | H-
^f ^2-i 45*7 ' >H-
US ^g 7z^
|3S 5fc 7'z-
i3s se 7-0
/J5 59. 7t>
1-35 Sf) ~7^
/JS *£>B Iz.
^•3"Z- CcR i fy' /35" ^B 7"2_
4.4-74 7j if
- vfsi 77 14-
4, // 76 i H-
/35 S8 _j?t^.
I3*b t^rl 73
US S1^ 73
AHB_42 TM
Ts
5£g.777
ENTROPY
-------
PARTICULATE FIELD DATA
PAGE 2
COMPANY NAME
RUN
/•SAMPLING
A: -}
t\Al5T
3-
•%'
SAMPLE
POINT
4.
T
S
-.£/
.: i.
CLOCK
TIME,
*iNf
^4
^»/0
^
IS^^
5%
A^9
^
'^»f
DRY QAS
METER
READ I NO.
cu. rr.
4=2- 3,*0 2-
t-LBooC,
fo33 , ' c"?
fe37 * "76 8
6HZ.405
6^7.^ol
6 S 2- ,4 / 0
£> S7 '2_36
f»ITOT
READING
(AP),
IN, H2°
4. 00
4- ID
4. It)
S-30
•4*. 30
H'3*7
4-39
ORIFICE
SETTING (AH) .
IN, HzO
IDEAL
«+-//
^/
•4 .TI
W-42
f»f2
M-^f
M-Sf
ACTUAL
H //
H.ci
q.ti
-f W2
v/-»fi
^•^f
^.$f
GAS
METER
TEMP.
Op
8*
Bo
So
B°
e>/
8f
6f
PUMP
VACUUM
IN. HG
GAUGE
I «
'5"
»s
«s
(S
' S
IS
FILTER
BOX
'TEMP.
°F
13S
•35
'35
'3^
yo.c,
I3S
J JS
IMP,
EXIT
TEMP.
»F
4,0
4.0
(9 0
(*•»
60
fe
-------
PARTICULATE FIE]
COMPA
ADDRE
SAMPL
1 PATE
NY NAM
R«5
ING LO
"? -I
BAROMETRIC
SAMPLING T
SAMPLING T
E 6«e6hiS35o1to X(4DMSQ^4. ^AT£.(^S
(SALtCj^^ofSo HC
r-aTit3N }-f^5T tM M |i°»FV1cA- OU-T^CT
RUN NUMBER f»A D -*Z~
T 1 ME START / > •' / °
TIME FINISH )S":3O
e ' %>*> TEAM LEADER ^< TECHN 1 C I ANS <^
PRESSURE , I N . HG "^ • "I" STAT I C PRESSURE
RAIN LEAK TEST VACUUM, IN. HG '5
IO
RAIN LEAK RATE, CU . FT. /MIN. 0-OoZ O,ve>
, IN. H
?o -(,<+£>,
G
EQUIPMENT CHECKS IDENTIFICATION NUMBERS
/ PIT
S PIT
-~" ORS
' TED
OTS, P
OTS, P
AT SAM
LAR BA
RMOCOU
RE -TEST REASENT POX „_ NOZZLE
OCiy.TPST METER BOX 14 - 1 «+ T
PLING SYSTEM UMBILICAL v\ -^ S^ T
, fc.O3T-T&l
SAMPLE
POINT
CLOCK
TIME,
MIN.
R - \ °/°
Z.
J
•4
5
H
8/0
DRY GAS P I TOT OR I F 1 CE
METER READING SETTING (AH),
READ 1 NG , ( AP ) . ' N • H2O
CU. FT. IN. H20 IDEAL ACTUAL
£>S7.7o7 3.30 /• 9 9 /-9?
k&o.^b 5 S • 3o J- 9^ ^'99
fcj&4-/oB 3.Bc> 'z-.^'j 2 -"2-1
\"L (aCr>& ,°O6 3- £0 2.-Z0 1-Z*? 2-5^
t»
rVo
-2.B
*Vo
1 3fc
£
7
M-j/o
^> ^J
,», Ct /
$1*
81 ^S*
Av- i
2_
<2
6=0
fc/0 2..4<^ Z-^5
ltsq.501- 4;.4o; 2- -&>S Z.-foS'
ToSiI^n 4-.ZO j "z,.S3 '2--9J
ll 1 .CfG 1 4 3® j l.fiC/ j I.S^
7i5-?S5 Z-^l/'^o /-So
l/B,7oi- 7_.9o
^o "7 2./ , 6o£> 3 'i-b / #/ 3 / • 7_?
(7. 7J2-S f / o I 3.10 ^3 /.^3
l^/0
•Z.O
t' -^,
1-8.
GAS
METER
TEMP.
p"
PUMP
VACUUM
IN, HG
GAUGE
72. -^
72. j 1
72. §>
72-
B
7_2 1 S
7f
_77
ifc
D°
B
8
£)
S
^fic B
e 6
So
go
Bo
ft
p?
8.
a
So a
9^0 ^
So 7
&o -7
So 7
feo
IZfe-xo/ 3-¥» 7.0^ i.e^ 78
731-5 o-Z- 3-4-*> 2_.o5 Z.^5 7&
73T-.B&/ 3 -I'D' 2.2-3 2-7-3
738 2,01 3. To X -X3 2.23
5 ?Vb 7lr/.<7's>3 ^.^o 2..&S z.4,5
7
7
F 1 LTER
BOX
TEMP.
°F
I ^o
i^fo
1 4-0
;4o
Ho
f *f 0
IS-D
iao
IMP.
EXIT STACK
TEMP . TEMP .
°F °F
S6 ^5
55 ^=fe
S1-, C*4,
55 70
s& 72^
5^ 7 2_
5=7 1L
S^ 7"2-
I vf-o S9 7 4
/^t) g6! 7^-
IHO! «R 73
l 5S
135
i bo 74
/ 35
/ 3S
/35
/ !?5
/ 35
4=,o i 7L
/^^i ^ 74
7 /?<
7fi 7 /-jc^
70 1 /"?<
77
(TApl2 AHB-4A TM
7
/?S
foo 74
60 71
(b<9 i 7 £>
4,0 74,
Ts
LK . CHECK
READ I N6S
ENTROPY
-------
PARTICULATE FIELD DATA
PAGE 2
COMPANY NAME
RUN *
AMPLINO LOCATlQiy M«
SAMPLE
POINT
fi-
fe -
7
S
!
CLOCK
TIME,
MIN.
34
^
ft
tS/o
Sz.
5<-
4»o
l«/-ft
DRY OAS
METER
READ ma,
CU. FT.
7^5 • 4o£
7t8 .fee^-
7 5 z. , -20 B
756 ,/o5
7^0 .Z.OZ.
7^3 -9-oS
7^7 -7o3
77/ .ZtS
PI TOT
READING
(APJ,
IN. M?0
f.f*
f , 40
^.T-O
<4 ,-?o
^•7*
^•Jo
1«3^
ORIFICE
SETTING (AH) ,
1 N , H2O
IDEAL
Z..t,5
2-17
z. 83
Z.&-?
2,^3
•^-.S^
H-tS
ACTUAL
2,4^
1.77
z-83
Z-A3
2.83
2.^7
4.4S
GAS
METER
TEMP.
OF
77
77
77
77
77
n
77
PUMP
VACUUM
IN, HO
GAUGE
7
7
7
7
7
1
7
FILTER
BOX
TEMP.
°F
f3 5
i>5
( 3S
f 5S,
/3«5
135
/3S
IMP.
EXIT
TEMP.
0F
4a
£oO
L.6
to
4,0
bo
Uo
STACK
TEMP.
0F
~1&
74
-J £f
-71
77
~7-7
-77
LEAK
TEST
READINGS
B-45 M
ENTROPY
-------
PART IC U LAT L FIL L D J AT A
<***>
'''--•-'t
COMPA
ADDRE
SAMPL
) DATE
NY NAM
s^
ING LO
"5-
E GRpENSBo-Ro
£*-R-f-,tJJS 3e>R.o N
CAT i ON M t ST C- U/ M
I^DuST^-lPr*- ^t-ATEK.^ RUN NUMBER IWD-'S
•C' TIME START O&0 5
I'AlA-TQft r^UtTLS-T TIME riMICM 10'ST-
R- 9sfc TEAM LEADER ->T TECHNICIANS ^F
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
/ PIT
PIT
"""• ORS
"TED
V THE
. HG ^
£)."L.
ST VACUUM, IN.
TE, CU. FT. /MIN
OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPL I NG SYSTEM UMB I L I CAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ 6& °F PROBE
FILTER 4 TARE
___
iH^r
STATIC PRESSURE, IN, H-.O — I-7D
MG I«5 2-0
IDENTIFICATION NUMBERS
Tf N07-ZLC 7d2- DIAMETER • t l^f
(J-''4 T/C READOUT S
U, - ^3 C> T/C PROBE "1 - f»
^ ft ORSAT PUMP
Mr -4: TEDLAR BAG —
fJOMnflBftl^W «?PT.I1P NOMOSRAPH ^ ST
l'7£> c FACTOR 1 -O\ - 0.*5 OJ^o
METER TEMP
% MO I STURE
SAMPLE
POINT
g" 1
•z.
CLOCK
TIME,
MIN.
DRY GAS
METER
READ 1 NG ,
CU. FT.
PI TOT
READ 1 NG
IN. HjO
\
4
5
4
7
fe
& I
t.
3
la
f-{/o
-Z.uj
J^©
?£>
T^/k
t4
H&/O
*?L*
^/o
to
44/0
4
ft/
~V\ !> -M-64 4-2-oj 4-3f
79© - loi
^6Z- .0fc
Bo7 ,&o3
& ! 2. . 4 e>S
^tl -5aS
@2JZ.5o3
•dZ^.^toS
Q31 -Sol
&3k ,fe!0
84) .HO
84 b-3^3
6So. 4o3
SS^f ,7o"l_
4-00
4-oo
H.zo
4-il
N-ll
ACTUAL °F
3.70 (^30
i.7o <*6
3-4^ CoD
4-11 fc3
431 t-4
4-31 fc,(o
4-. j| ^4,
PUMP F 1 LTER I MP .
VACUUM BOX EXIT STACK
IN. HG TEMP. TEMP. TEMP,
GAUGE °F °F °F
14- fo* S3 'Bo
(^ / oe 5 H- b^
1 4 i oo 554 S>^
1 5 1 oQ 5^ S I
15 i c=> ^4, ^^-
15 1 oo 1 51 flD
15 110 S7 ^ 7=7
H.fi (o^ i 5 |io 58 8D
M-31 4-31 7o IS HO 5
4.. 30 M-rtZ
H-3o >4-4'2
4-Eo
M; i o
H-31
M.3t 7o j is no 5S BO
4 -Yd 16
H-4Z 71
4.3, -j<5
4.^1 4^J R2-
4zo 431
4'-2o
"L.UO
43/
Z--(o7
3.oo_ 5- 0*8
3-ffi 3.i°i
\ i- 8S£> -7of- ! 3. \ o
u^/i? 84>Z-.fto5 3.4-0
"ta $£>*!./ c7 i».^o
4 l^y^? £> 1. fco
5
"£B T3>7 5 . 5"o^ 3.6o
3Vk S>©0,007 4.7.0
j
VM ( /A?) 2
3-19
"5-4-*?
15 CUO CaO B^i
/6 i L2o foo i SO
15 1 3o 4£? SO
1 c, [ 3^ (,,0 i f^o
4-1,1 ftL IS I3o bo 90
H-31 8£> /5 13o 1 to: 80
2-. t>7 ^>o
3,ofi 8z
"2s. Is? 9fc
Ti.i^ 8t>
3-^! R£=
(3 (30 jfeo ^t
(3 /j0 1 foo kft
/ .-5 / 3o I to 80
ff /3"0 ^Z- B2-
/ T" /3C1 ' CST^- ! £A
3-¥? ,1-^1 ft6 t *+ / 30 ^"^i Si
3-7P ^1-?ol ftf? (4- 13; <^2_ Q>(
3-T®
•4^.3 ^
3.'7/O ^S (-f 13' £1, 8(
LK. CHECK
READINGS
S£;f£
4.?/ ^H- IS- (3 6,7- 7^
AH TM TS
-------
PARTICULATE FIELD DATA
PAGE 2
COMPANY NAME
RUN »
AMPLING LOCAT I QM fV\\ 5T
SAMPLE
POINT
£»
7
fc
CLOCK
TIME,
M|NT
36*
*^
*i
>48A
SZ-
Si^/o
uo
ll^
sf
DRY OAS
METER
READING,
CU. FT.
as s 3o7_
89o.3cH-
8^ f. fcOT
fi^qr.oos
5n3.fto3
^08-70^-
*?/ 3 .2-IO
:9*8 345
j i.' • ^'_, — .
PI TOT
READING
(AP),
IN. H,0
•^ -ZO
H-Ho
4-^fo
H .^o
V y^
4- ^o
^.cfO
ORIFICE
SETTING (AH) ,
IN, H2O
IDEAL
H-?i
4.52
H-S2
H-S2
462
H.S2
4-.&7J
ACTUAL
^'
4-52,
. 4-^'Z-
H-S2
4-5-2.
. 4-Sz
T-^t
*- . " . ~^
GAS
METER
TEMP.
Op
fV»>
GO -T>
C-) *— *
S
81-
fi4
&4-
•7 .^
PUMP
VACUUM
IN. HO
GAUGE
1C,
14>
«0
1 U
\b
! b
\k
-' ~ «p
FILTER
BOX
'TEMP.
°F
i 5o
l3o
<3o
(3o
[3o
/3o
l<3o
•' i r
IMP.
EXIT
TEMP.
OF
(.0
CoO
feo
60
4>^
fco
fo^
.
STACK
TEMP.
L_ °P
^0
B!
Sf
€>t
BO
to
o
' 0
LEAK
TEST
READ 1 NOB
^H B-47 TM
ENTROPY
-------
COMPANY NAME
ADDRESS
SAMPLING LOCATION.
PATE : ^ ~. ^--"S fe
TEAM LEADER
&T"
RUN NUMBER ,
TI ME START
TIME FINISH
TECHN IC 1ANS C f"
/ / " I*
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST VACUUM, IN, HG
SAMPLING TRAIN LEAK RATE, CU. FT./MIN.
STATIC PRESSURE,
EQUIPMENT CHECKS
PITOTS, PRE-TEST
PI TOTS, POST-TEST
ORSAT SAMPLING SYSTEM
BAG
THERMOCOUPLE @ C
F 1 LTER #
TARE
IDENTIFICATION NUMBERS
REAGENT BOX
METER BOX f4-
UMB I L I CAL U-
SAMPLE BOX
PROBE Vf.. " £
.NOZZLE
T/C READOUT
T/C PROBE _
ORSAT PUMP_
TEDLAR BAG _
"2- DIAMETER ./t/SS
1--5
AH@
METER TEMP
% MOISTURE
NOMOGRAPH SET-UP
J- ?& C
STACK TEMP
AP.
NOMOGRAPH
70
~1°
REF .
SAMPLE
POINT
CLOCK
TIME,
MIN.
DRY GAS
METER
READ 1 NG ,
CU , FT .
PI TOT
READ I NG
OR 1 F I CE
SETT 1 NG ( AH
IN. H2O
IN, H20J IDEAL ACTUAL
GAS
METER
TEMP.
°
PUMP
VACUUM
IN. HG
) GAUGE
F I LTER
BOX
TEMP.
°F
IMP,
EXIT
TEMP.
°
STACK
TEMP.
°
LK. CHECK
READ I NGS
U,
"3.0O
i-B( I Bo
fto
T~ IB/o
(.87
1
\ . to"2_| J ,-)-D ! 2-.6SI
O
l-o
3.'
8
So
;3o
B/
•Co jLLi
Q
5 o
H-
6
H 7
±1
1-77
Z.-T7
60
X.77JX-77
•4,0
"L-77
S o
5o
z.
-1.65
( o
z -fos
0
So
5-
Z.99I /.go
JO
So
2,-^^ ! /• &o| f -go
0
^_o
i:
2-05
77
3 .-40
B
t3o
2JO
.2.f
7o
8
^f 9 o ,
\l-yi
-jo
SB
7?
0
-7
0
&
55
2..
7Z-
ex
3o
7
00/^03 O-.o'Dl "2-»
LJ X
V
M
AH B-48T
M
ENTROPY
-------
PARTICULATE FIELD DATA
PAGE 2
COMPANY NAME
RUN I
C
"*'.!
LoeiTiOM
SAMPLE
POINT
(t>
1
&
..*
-y
CLOCK
TIME,
MIN.
34.
jj dfj^
vj-*^
^JL g")t y
ST.
Sy-o
CD
ixe^f
'
DRY GAS
METER
READING,
CU. FT.
°o «5 .7.|t>
DQg. g>o -7
Ota., S It3
0( 4- Z-lO
o r 3 0 H97
' / := , ', -' •
PITOT
READING
(AP),
IN. H,0
4 -e>o
H-2.0
v^ -20
u/."Z-o
^.to
»-t, -2.0
4- 2.0
ORIFICE
SETTING (AH),
IN. H2O
IDEAL
L-M-f
Z--S3
T.-S1
•z.,^^
1-.^3
"!• ^3
t-^3
ACTUAL
m-i
*-53
-j-.g-j
2-53
"L-^3
2. S3
z .$j
^ . ;-
GAS
METER
TEMP.
OF
-JL
78
7»
78
18
78
78
- c*
PUMP
IN. HG
GAUGE
s
*t
^
9
1
C|
C|
4(5",'S'DI
FILTER
BOX
TEMP.
°F
lTj0
!3o
1 3c2
f3o
»3o
\-3e
/"So
:>
IMP.
EXIT
TEMP.
OF
55
"SS
55
S61
^•s
55
1 9S
STACK
TEMP.
OF
71
7«t
"TC^
1 1
74
7^!
~l*\
(J'O
LEAK
TEST
READINGS
ENTROPY
-------
vRilCULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
SS
I NG i LO
F 'U/L'tJ^JrV-ft
~L*,,^3r
CATION //\Af~ €.
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPL I NG TRA I N LEAK RATE ,
EQUIPMENT CHECKS
*-^PIT
'--'"PIT
/^TEO
THE
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ 7^ °F
F I LTER # TARE
SAMPLE
POINT
"g <3
A i
CLOCK
TIME,
M!N,
]
ff/#
(ff
2£>
•$0
4o
So
frO/0
iff
-w
3o
if -o
c^0
\u0/ott
1
DRY GAS
METER
READ I NG ,
CU . FT .
T)-Z>(^_ 57*^
2.61. Q-k
34?3. ^.7
V7S • ^7 <
^^7. I"3?
3-~z~ T
/ 1^, o
( 0 ^ DIAMETER -'7 /
/C REAX>
/C PROB
RSAT PU1
3UT
«P
4t *5
-7,4
A/A-
4 ' / TEQLAR BAG Mfr
NOMOGRAPH SET-UP
AH
—
( . ' v' C
METER TEMP
% MO I STURE
PI TOT
READING
!AP],
IN. H2O
4-
-2,0
3/p
42% •
4-
30
tf. 5 1?
^7-5
4.^
4.?^
4-7^
4.7^
4. fe£?
4-. &o
i
\: -
MOMOfW?APH 3 U,^1^
FACTOR 0-
0® STACK TEMP
£***"' pj
OR I F I CE
SETT 1 NG ( AH ) ,
IN. H2O
IDEAL
4-40
cf. 4o
cf-S£'
4-.4o
i
i
ACTUAL
4-. ik?
^•4£?
4. ^
-^T-i^
4-, 4c?
4-44-
4.7-5,
4,91?
•£-&•
4-£T7
4--7*2-
7 i
"?<§
7^
*S"(
•Srzd
7^
8"2-
^•4,
^7
^?
"?=>
<^3,
6"^
fe?c/
^
6,6
b^
faZy
65
fo^
STACK
TEMP.
°F
7^
74
7 *jL
T^^g^*
7^
76
'7C
76,
7^
7(c>
76
7£»
L.K , CHEC»r%
READ I NGS
3%
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
RR
ING.LO
i/Z-6
F /4^-^6«xvv^r1rf
AAstt^t*
f*AT 1 ON //l*^Xi" L
/k
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
"PIT
v-^PIT
M&-ORS
M*[ TFD
^THE
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPL.E & / p °F
FILTER # TARE
SAMPLE
POINT
A 2-
K 7
CLOCK
TIME,
MIN.
6/0
\e
~Le>
J^
"f
So
1*0/0
[0
to
*>o
io
5a
\tK/*?e
DRY GAS
METER
READING,
CU. FT.
S^f 4(• 77
?4-z. ^4"
6»4. i^
S<^<>. 5fc
^7^, 51
^^7.4^
f
*i-*Wxl~fiC»^ fclteJ^ TIME FINI»4 /O-6'^
TEAM LEADER w£ W TECHNIC
"Z-^f - 5
STAT 1 C PRESSURE
ACUUM, IN. MS ft?
CU. FT. /MIN
REA6ENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
. ff.<7B
7
IANS ^
, IN. H
^r
o —(.'7 -a,
Z-' C'.CTO
IDENTIFICATION NUMBERS
X NOZZLE
TC.-Z- T
P_ • "Z- 5 • 1 T
I if O
H- ^ T
NOMOGRAPH SET-UP
/-7*5 c
METER TEMP
% MOISTURE
PI TOT
READING
(APj,
IN. HaO
t^.foO
<4-£>
.20
'^c.W
£o s
7^3 DIAMETER - ' fe>"
/C READ!
/C PROS
RSAT PUI
EDLAR B,
3UT It* 2 3
jo K/A"
ac A/A"
NOMOGRAPH # ^SM
FACTOR
TACK TE
n-
^g
15
2- REF . AP Z . ( S
OR I F 1 CE
SETT J NG ( AH ] ,
IN. H2O
IDEAL
%.^9
5".*?^
4. oz-
5-SE-
"5-fcl-
5 .8-Z,
5-lg-
!) .%"7-
3.7k
1-7^
$-^*S
?.t?6>
'. ,-
ACTUAL
S,1?
3-^5
4, #2,
L.fez-
"^.'£2-
S-72-
3-1V
?.-&2^
3-7?
3-7g"
3-feS
5,^5"
GAS
METER
TEMP.
°F
"72,
*&&
^Z-
^e,
^9-
*\%
•S2-
£{•£*-
^
\ O2-
104
(&<\
i :
PUMP
VACUUM
IN. HG
GAUGE
fo
£
6
Q,
b
(e>
(z?
(ff
b
&
6
(c
F 1 LTER
BOX
TEMP.
°F
A/4
•4 '' -• ' '
IMP.
EXIT
TEMP.
°F
fo-^
^?3>
<^3>
^? T*
&?t£~
(f>*4-
fe«4
^4
^^
r^j £/
w^'-t.
^4r
*"y "
STACK
TEMP.
°F
rj^
75>
74
74-
15
75>
74
7S
7^"
7*5
^7$
77
— r
LK . CHECK
READ I NGS
01'. 32-
V,
M
AH B-51T
M
ENTROPY
-------
PARTICULATE FIELD DAT
COMPA
ADDRE
SAMPL
PATE
NY NAM
^S rr
ING LO
**> '
A (J
F rnlj£^tvQ\r€
KAT I ON //Uv*
BAROMETRIC PRESSURE, IN. h
SAMPLING TRAIN LEAK TEST
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
L_^"^P1T
' PIT
T THE
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG _^
RMOCOUPLE @ f7
F 1 LTER # TARE
°F
SAMPLE
POINT
A- {
"B ^
CLOCK
TIME,
M1N.
Ho
Iff
-1C
^
V>
So
l.s/0
10
1&
3.0
i*>/#r
DRY GAS
METER
READING,
CU . FT .
H-O rk-J' , IJi&tfj^ RUN NUMBER M 0 - &> 4
4
4-«TX> WC, TIME START i\'*SO
?~0,^ . . Af~Z*JL TIME FINISH f3;i^6'
TEAM LEADER U/S ^ TECHNICIANS
us "2J? •**
VACUUM, IN.
CU. FT./MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
A.HC
STATIC PRESSURE
HG iS
12-
, IN. H
,O —1 -~7~*r
o.e«^ /9,oo»
IDENTIFICATION NUMBERS
if t*3ZZLE ^"^ DIAMETER -J^^
AJ >c4 T
u • ?-5 • 2- T
'Z- o
4. | T
NOMOGRAPH SET-UP
METER TEMP
% MOISTURE
PI TOT
READING
(API.
IN.
H20
.. 46>
C72*S- *%&
*?*& - 73
%<9. t"&
5^5. ^-z^
cr;^ 4.7
tfi^**7 ~"~ / < £, *7
"Tjjp ^ . ^^ ^^-
£5^.5,4
6?/t. 6^3
j^Z-1!-. 32-
^35. f 2-1-
' -- "••
4-5^
4 45>
4,
be
4.^? c?
4.
/C READ!
/C PROB
RSAT PUI
EDLAR B,
3UT #P 5
E -7-4
^IP /d/*^~
NOMOCRAPM £ trt/i M
O OC'
FACTOR ^P
4' 3^
4. ^
^-^ °
^.7J\
4.4s?
4. 4ip
4. 4o
ACTUAL
M (#(J
4 -^>^
t| ."7 &
4- ."7C7
4, fee?
4-.t?o
GAS
METER
TEMP.
°F
PUMP
VACUUM
IN, HG
GAUGE
75 //
7^
*&*?> ^
^^
<£e\
*\C
4.2^1 g^S
4,4s?
f<4c>
4,4£P
4.4-i?! 4-«4-<7
4.4^
j
i/-4c?
t\o
&12^
°l 3
^3
3z-j
i
i
II
(
M
M
ft
i\
ft
K.
n
1 1
K
/. o*--z-
F 1 LTER
BOX
TEMP.
°F
A/A-
-! '
IMP.
EXIT
TEMP.
°F
^3>
^? i-r"
C^ ^5
(£>£->
fj/£Z?*~~P
^*?~^
fi^-S
^s
^>6
fc5
i&c?
fo*?
STACK
TEMP.
°F
71
77
77
77
77
77
T7
"77
7^
79
-71
~79
-i •
1
LK . CHEC
READ 1 NGS
/'API'
AHB-52 T
M
ENTROPY
-------
i1CULATE FIELD DATA
COMPA
ADORE
SAMPL
BATE
NY NAM
S5
ING LO
Sh
r QA ^^V^frf^f ,J
CAT i ON /4il Jvl rJfjJ^.
"V«^ . rxlii'tS'L- RUN
NUMBER MO ~&B
( /VC _ TIME START //-'St
(HLt&- TIME FINISH ("S-'S^
X./S* TEAM LEADER U4 W TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
PIT
-''PIT
tyA ORS
_AfA TED
i/THE
• HG 2^
? ^ STAT I C PRESSURE
ST VACUUM,
TE , CU . FT
IN.
, /MIN
HfS If?
f
. Q.gp^ o.gr
IANS
, IN, H
p
?0 — I >~7$
IDENTIFICATION NUMBERS
OTS, PRE-TEST REAGENT BO
OTS, POST- TEST METER BOX
AT SAMPL I NG SYSTEM UMB I L I CAL
LAR BAG SAMPLE BOX
RMOCOUPLE S 77 °F PROBE
FILTER # TARE
AHc
MET
V • ' NOZZLE; *\ QT- DIAMETTER • '7 ^f
R-2- T
U-25.1 T
f4 o
/C READ)
/C PROB
RSAT PUI
3UT
F
^P
4*"IT TEDLAR BAG
NOMOGRAPH SET-UP
1,75
ER TEMP
% MOISTURE
SAMPLE
POINT
•^ !=,
ft 4
CLOCK
TIME,
MIN.
o/o
1,0
1£>
1o
<4o
So
kb/O
Ic
2*7
DRY GAS
METER
READ 1 NG ,
CU . FT ,
444- . 7f2-
^57- *t
^6*?- £3>
1^ |. ~7£>
G\CI\^ . "1,%
loofc. 54-
1«". 7|
3,^?. 4^
4-2-. I*?
$o \ 53, fc>3
^0
,vs-
*$U/,FC
j
i
i
tS. 4^
7f. 03
/bf t?, {?4^
/ -; ~
PI TOT
READ I NG
(APJ,
IN. H2O
4.. c»
yUft.
A;A-
>SRA1
PH # UllM
^ 00
7^
"L- REF . AP ( • ^ S
ORIFICE
SETT I NG ( AH ) ,
IN. H2O
IDEAL
4^5-
4.4.?
f-5-5
^•"SS
^. ^ tf, t 2^
4.ts
3.-7C?
3, .%o
5 -Si?
tf-, ^
4: "Z^?
*f.i<»
4-fcZ-
tf.Ofe
t/.u?
4'2£>
«/-•«*;
4,ir?
4-S5
ACTUAL
4,6?
4x«»S
A-^
tJL-s ^-f^-\
C/- / *"?
4.&.Z-
4-_e>fc
4. 2£?
4-2-
1
1 i
1
1
I
1 i
«-•
GAS
METER
TEMP.
°F
^Z-
^ 1
I 0(
t o3>
I O(o
; p^_
It-
(04
1 O^
/o^
1 7
/o2
PUMP
VACUUM
IN. HG
GAUGE
7
7
7
-7
7
7
7
T
*j
7
7
7
;
I
F I LTER
BOX
TEMP.
°F
fjA-
-1 .
IMP.
EXIT
TEMP.
°F
^4-
o4
6"f
64
6 4
6"f
fo4
h*{
(s>4-
^
-------
u
PARTICIPATE FIELD DAT
COMPA
ADDRE
SAMPL
DATE
NY NAM
=;=;
ING LO
"S '.
/f i/
F \~bs\ji£si*v(y
X^LILe^U^l
CATION bfyw£~ C.
lA/tl
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
f^PlT
PIT
fi/fi- ORS
fffc TEC
•'THE
DTS, P
OTS , P
AT SAM
LAR BA
RMOCOU
RE- TEST
OST-TEST
PL ING SYSTEM
C
RLE 0 &Q
FILTER # TARE
°F
SAMPLE
POINT
B>-4
A-- f
CLOCK
TIME,
MIN.
tfo
(f)
z&
jo
•40
0
(")/o
I 0
IP
^c
tiff
5o
ll~!efc-
DRY GAS
METER
READING,
CU . FT .
.G>3£>, O^j
(e>^%. <53
fo(0\ - Z-C7
fe>73.
*7t?-. 4j^
72-4. ££-
73^. ^
14i?. &o
7^P. "7(5
T172.,*7<6.
"7^*f- '^fe'^
i / •-' -'" " ,-'
\
i
I
i
i
\
1 1
•WO (f^^eP, P Vfifes^l RUN
yi« . AJc 1 TIME
?2J>*- • $£***& TIME
TEAM LEADER ^S ^ TECHNIC
' 2^ -6
ACUUM , IN.
CU. FT. /MIN
RCA
MET
UMB
SAM
PRO
*..
(SENT BO
ER BOX
ILICAL
PLE BOX
BE
STATIC PRESSURE
HG !*?
. Q'Q
ii-
IANS
NUMBER /1f£? ""754
START 1 4; O &
FINISH !(y • Z-**-
, IN. H
5d cP.-Jnx?
IDENTIFICATION NUMBERS
v NOZZLE / ° ^ 0
>/' l4- T
Crf'* ^^ • £**- Y
lZ- 0
^. 1 / T
NOMOGRAPH SET-UP
f.~7k c
/C READ!
/C PROB
RSAT PU1
EDLAR B
3UT .
E
MP
AC
2o -(.7d
1AM!
j
rrER .(77
"T- 1/
A/A
//A-
NOMOGRAPH # WS^J
FACTOR 0 , ^
MITTB-R TEMP ^^ STACK TEMP
-7$
«*. MOISTURE 2- REF. AP ^
PI TOT
READING
(AP),
IN. H2O
4-. 70
4--7O
4-. "7
4,*7£?
4. 7P
t|,7c>
4.3<2
•4.36-
4--^^
f-2-S
f -30
tf-.-^c,
OR I F I CE
SETT I NG { AH ) ,
IN. H2O
IDEAL
4.9-y
4,&o
4-&ti
4-^y
t| -St3
4-".^o
4-4c?
4.4s
4-4c?
4-^
4.4^
4. 4-c?
4-^4
4,4c?
4-. i|-*5
.—
9f j U
<%'&'
<£*?"&'
ex C
^
^ 2.
1 2-
cT y^
12-
C'f ^L'
^•3
4
64
64
6»4
64
6-4
^4
^s
yz,
. „
STACK
TEMP.
°F
S*
^o
<2%>
Srb
g^7
"7^
VI
^0
7^
7cj
"vo
9ro
;: --
LK . CHEC. -
READ I NGS
bow
'M
ENTROPY
-------
PARTICULATE FIELD DATA
COMPAI
ADDRE.
SAMPL
DATE
NY NAM
«3S
ING LOi
F QfUUZn-l^*3^0 tT^r&ir -l-fachtt^ -, RUN NUMBER W0~ 7~B
/{Vv^C^-i-***VO A< C T I ME START t ^ • 0 *1
NATION l/h^yt ££jw. /dU^U TIME FINISH f^'^-f
l£ iS^a TEAM LEADER I*>S*J TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE!
SAMPLING TRAIN LEAK RA*
EQUIPMENT CHECKS
U-XPIT
PIT!
S/frottS
A/A TED
^-"W
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG
»Mr»rrf>UP!_E & Srt? '
F I LTER # TARE
. HG
Z*f-^ STATIC PRESSURE
5T VACUUM , i N . HG 15" S
re, cu, FT./MIN
REAGENT BO
METER BOX
UMB 1 L 1 CAL
SAMPLE BOX
lANS
, IN. H
,0 -(.-72-
O'CX'X' t5 . d^f
IDENTIFICATION NUMBERS
X ^-./^l. NOZZLE
R-2- T
V-l1?-! T
(* o
^f.Z- T,
NOMOGRAPH SET -UP
1.7% c
METER TEMP
% MOISTURE
SAMPLE
POINT
V t
B> ' tf
CLOCK
TIME,
WIN.
44
fc?
2X>
1-0
*&?
So
&«>/£,
^
•Zp
s«>
<£*
DRY GAS
METER
READING,
CU . FT ,
^0, 7X-^
1 O"2-. I^O
1 i ?», ^0
/•^. ^
/37- ^7
/<£^ , ^tf
J^(. c^{
f73. SS
l^tf, 9"z-
(^, "Z^t
•2_i92. l^
•Jp | 2JSU) -00
/a^/iff-
•2-J.f. ^3^1
; "
PI TOT
READ 1 NG
(AP),
IN. HjO
C/' t^L /^7
{L r ^^ £)
.&S
5 .«?z-
^ -S^
5-S9
•§ .iz-
5-SS
•f.^o
3 •'"i^-
^-^fZ
4.2^
4- U?
4-f
1>,ES
V2>
6*5
i
1
9o
*?!?
*5T>
LK, CHECK
READ 1 NQS
CS'.ZT
V
M
; AH B-55TM
ENTROPY
-------
PAFUILULATE FIELD UATA
COMPA
ADORE
SAMPL
pftTE
NY NAM
?S „-
ING LO
E 4^£0JS5oKG XisJDUSTfc
l;3OR.o |J C,
f-4T i ON wvt 4T f Ll »A| f^Wb*i
3-"Z-4 — &t* TEAM LEADER
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
* PIT
""""" PIT
"""" OHS
"""" TED
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCQUR1_E (3 °F
F I LTER # TARE
P IZH' *>f "Ml
2<».S
ACUUM , IN.
CU . FT . / M 1 N
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
PROBE (
HG
^M- ?^l«J2.S RUN NUMBER *»*> ' S \
riME ST/
&RT /3'. a«f
O«4JUCT TIME FINISH l?>:'*f
yf TECHN I C
STATIC PRESSURE
I ANS
, IN. H
,0 - /•?*
O.oe>f>
X
1 DENT ! F I CAT I ON NUMBERS
NOZZLE T"4> DIAMETER * J '%-(*
\**» «**% O Y
1 § 0
/C RE ATX
/C PROS
RSAT PUI
3UT 5
*P *^'
^ -- 5 TEDLA» BA - 8
?- - 4
wsz \yt.
*
,
ty ••» -&
CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU . FT .
°/o
i «;
"So
H«5
"Xa
IS
•30
+<$
v-s/o
,c,
•jc,
J ,
r
"^^
fr-
_ t-B.
^5
4.v**g^a
£3| .7"? t
040 . <5ocj
04^ . 4^t
°$c> . SID
o fe"1 . ^-o <5
°7 & (Oo^)
°8S.ae> 5
& ^3 -?>f 5
/» t. 4 /^
n i r i a i
I'Ll '0 o3
i5^ff-
AH
/•
METER TEMP
•h MOISTURE
PI TOT
READ I NG
UP),
IN, H20
3.60
\
76 c
MOMOfiRAPW # $>T"
FACTOR ) »O 5
«• o^st • oo
B& STACK TEMP *7D
2- REF . AP.
OR 1 F 1 CE
SETT 1 NG { AH ) ,
IN. H2O
IDEAL
ACTUAL
i.«s
•1
/ i
H.2.C-
\
^
J. ?o
1
i
"*?"., if**") —
*S^-«
—
»-0
1
|
5
I
i
GAS
METER
TEMP.
°F
70
73
72.
74,
77
76
7fc
77
7^
7^
7ft
I
tV
— -
/ — •
1
~l
" '.: .
PUMP
VACUUM
IN. HG
GAUGE
7
K c- • 2-fe 3
F I LTER
BOX
TEMP.
°F
-L
2.
Z-
1*.
-L,
2.
M
^
H
3,
3
_
^*
—
-
—
-
_
—
—
—
_
IMP.
EXIT
TEMP.
°F
4.0
5-8
__55
5fo
SR
gg,
Sft
4>D
C^o
(e>o
Co
STACK
TEMP.
°F
7fo
16,
7^
ih
~l£
•73
1L
75
73
Tl
7?
j
i
1
i
LK. CHEC
READ I NGS
*M
( /Sip) AH B-56TM
ENTROPY
-------
PARIJCULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss
ING LO
p uiT<
&«.«.t*/&8ea« fjc
uM- ?kAT«Jkt, RUN NUMBER J/IA O - 5" 2.
TIME START OQ3~2~
CATION tf'MjT <£U*K.i|i>A.1bA 6Ot\«*X TIME FINISH |, > * "3 *7
"-St» TEAM LEADER 'W TECHNIC
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
~~ PIT
_ — PIT
—- ORS
•*"" TED
-aL- THE
OTS, PRE-TEST
OTS, POST- TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE 0 °F
F I LTER # TARE
V 744 3f -yz-5
A 74.1
SAMPLE
ft - ^
fa - &
&- *•
B- S
CLOCK
TIME,
M1N.
£>/
,5
3o
4-5
^/O
•S
•30
<*€
\™/*>
IS
3o
HS
v6«/0
iS
v5«>
45
M^fpr
DRY GAS
METER
READ 1 NG ,
CU . FT ,
JZ 3 . oo-Z.
f 31 . ^ 06
l 40 .4-07
/ 4 t . A o 3
/5 8 . "3*>&
STATIC PRESSURE
ACLJUM , ! N . HG 1 S
CU. FT./MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
AH @
METER T
% MOIST
PI TOT
READING
UP),
1 N . HzO
v*a
\
f
M-Xo
S
/9V -3^5
Z-O "5 , 4oZ.
1/2. Sol
iZ-V , S of
Z.3o,5c? 5
2-3*i. Hoi
2-^1 ft -^oft
£57, /o«f-
Z-C-fe- e 3 /
.;• --
t|
t
J. 7^
v •>*>
^,
1
/
I ANS
, IN. H
,o-f -7-3
o.oof
IDENTIFICATION NUMBERS
«• »«"OZffl.r ^~k niAMi
H-vMt T
M. - S ° T
1 *> o
A-' '3 T
NOMOGRAPH SET-UP
J-76 r
EMP
URE
/C READ!
/C PROS
R5AT PUI
EDLAR B.
FACTOR
.IT.4,
3UT ^
E S" V*
MP
a« "
MOMOGfiA
PH # — sr
, ~.o$* j.oo
fiO STACK TEMP 7*
"*- REF . AP
OR I F I CE
SETTING (AH),
IN, H2O
IDEAL
i .0 7
\
\
ACTUAL
1,07
1
\
GAS
METER
TEMP.
°F
to
4.Z.
&6
(2=7
tat.
69
7 £>
1L
PUMP
VACUUM
IN. HG
GAUGE
-L
2.
Z-
•z-
5
5
S
^
74 ! 5"
7A
78
f I B^>
4,
)
g;
8^
7^
6
5
S
•Cj
5
5
1 Bo S
1 *™^ i «*j
|
1
|
T
K-- .Z-43
FILTER
BOX
TEMP.
°F
—
-
-
— -
—
-~
--
—
^
_
—
-
—
-
—
4 • - .-
IMP.
EXIT
TEMP.
°F
4-8
-i-o
40
tf-0
45
STACK
TEMP.
°F
6,7
£>7
Co7
^7
t5
ag, | 47
**• ft
48
S3
•5S
4,0
(tf.0
fe>p
fco
^'Z-
42.
fe 7
4, ft
£?7
i^0!
7?
7^.
"77
71
77
"?
~ , >
LK . CHECK
READINGS
-&Z 9
ENTROPY
-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
ss __
ING LO
F G^Et^SBoRO J-UtXASTT
C-^S.'e&N S"RjORO fO,C.
CATION V\A,\ 5>T" ^UnAAlNlfVT^^-
"' 8S» TEAM LEADER
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
I»1T
PIT
OPR
TEC
THE
. HG
Z*J- 5
ST VACUUM, IN.
TE, CU. FT. /MIN
HG
O
2-V^- r^/VT^lZ-S RUN NUMBER \*>* ~ i -3
TIME START i^ -xO
6U3TUET TIME riMi«W (^."3*-
t?V TECHN I C 1 ANS
STATIC PRESSURE
I &
, IN. H
o - ; . 73
. OOD
I DENT I F 1 CAT I ON NUMBERS
OTS, PWE-TEST REABENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE (3 , °f PROBE
F 1 LTER # TARE
£5- 7=>2. & 3-9
If
n •
NOZZLE H-fc DIAMETER ^"Z-£"
f- T
U, * $0 T
R 0
• 3 T
NOMOGRAPH SET-UP
AH/?
Ul
Av - 7o ^ METER TEMP
% MOISTURE
SAMPLE
POINT
CLOCK
TIME,
MIN.
Ar- 4: °/*
^ - fe
S z
1 2.3,4?^
S— S-
\%
3«.
HS
*y0
vc,
3t>
^S
DRY OAS
METER
READ I NG ,
CU . FT ,
Z4>4. / f <5
^"H- 'i ^ 9
2-^ 3 .9 o i
2-*t Z ,%e»f
30 1 , 704.
3 (D - t I'D
31-1. -7o , fcil)
izo^ 3^7 , £.04^
>- *'-
H-^
fUiS.
ftAggr
7 3- -
PI TOT
READING
UP).
IN. H2O
"3. efi
t-
vf-tx»
/
j
4
i. Tf
^-1 T f_
1 , *w ^
t c
/C REA»
/C PROB
RSAT PU1
EDLAR B
DUT 5
E 4 - VI
MP ~~
NOMOtSBAPW ff ^T"
F^TOR l«e<&
- r,S ^ i. no
10 STACK TEMP T»
"^- REF . &P
ORIFICE
SETT I NG ( AH ) ,
IN, H2O
IDEAL
1 .01
I
,!•
MMHHHllMi
^,.,.111.11111.1
ACTUAL
l.»T
F=
- - 1
- •' "• j
J ( : -,
1
GAS
METER
TEMP.
OF
14
"»<=>
77
«o
PUMP
VACUUM
1 N. HG
GAUGE
3
"S
5:
•?>
b-2. 6
Ao
8»o
-]<^
€>o
-/. '
C,
5
c,
5
1
F I LTER
BOX
TEMP.
°F
-~
-
«—
-
—
-
. .
-
—
5 r" .' *
IMP.
EXIT
TEMP.
°F
So
So
^©
So
$-0
55
S*>
55
f S"
r>
STACK
TEMP.
°F
7fe
71
71
Bo
fyo
SD
76
">fe
78
I
LK . CHEC. .
READINGS
79
•AP)
M
ENTROPY
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name Ge,ggKJ5>BCag£j> XMDOS>T^4
Sampling Location ..,CP%T}.h^ JO^y,^
Date Received Date Analyzed
EEI R«f.
Reagent Routes )
Run Number
Run Date
Reaent f
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica 6el:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3OQ.O
- Z.,0
ZOO- O
3118
SOZ. O
3OO-O
z.o
-o
140
Sampling Location
Date Received
Date Analyzed
Reagent Box(es)
Run Number
Run Date
Reagent (
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Gel:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3CO .
•2OO -O
Zoo,
. O
304.0
3CO.Q
4-0
Z.IS. O
ZQQ.O
B-59
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
Sampling Location Coty-nuG
Date Received
EEI Ref.
K. *£» - COTL£X-
Date Analyzed
Reagent Routes)
Run Number
Run Date
Reagent (
Final Weight, g.
Tared Weight. 9.
TE-2A
. O
3CO-O
3Q~7. o
3>CO.O
CONDENSED WATER, g.
Silica Gel:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
. O
zoo.o
14.o
2.0-0
~7.O
. o
Z.OO.
. O
2.0-O
Sampling Location
Date Received
- OOTLJO"
Date Analyzed
Reagent ftox(es)
Ron Number
Run Date
Reaoeni C
>:
Final Weight, g.
Tared Weight, g.
. o
3CO-O
TE-4P,
. o
300.0
CONDENSED WATER, g.
Silica 6et:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
ZOQ.Q
13.5
B-60
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name <=^-£gjsl5 eoiELD V.M DPSafg/t A«I,
Sampling Location Cc*vnufe> "0^4^^^-
Date Received Date Analyzed
EEI Raf,
Reagent &ox(es)
Run Number
Run Date
Reaeent (
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
SIHca 6el:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3CO. O
(c- O
. O
. O
3CO- Q
6-0
z.r?.«b
. o
n.'b
ZI-0
Sampling Location Co/vrtUG TiMOlL =*t £
Date Received Date Analyzed
Reagent 6ox{es )
Run Number
Run Date
Reagent (
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Get:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
TE-feA
3CO.Q
300.0
Zoo, o
IB.5
304. Q
3CO.O
4.0
ZOO .
Zt-S
B-61
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
Sampling Location Co*MiMG TA^ilC ** 5>
Date Received Date Analyzed
EEI R*f.
Reagent Boxtes)
Run Number
Run Date
Reanent (
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Slilca Gel:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3IZ4-
. o
-z.o
. s
ZOO .
3Z.4
"ZXDQ. Q
Z-CQ.Q
0-0
"ZKc.. 6
ZOO .Q
IZ.S
IO
Sampling Location
Date Received
TAKlE.
Date Analyzed
Reagent Boxtes )
Run Number
Run Date
Reaoent (
TE-BA
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Get:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
o
2CQ.O
-3.Q
. O
£00.0
I4.O
ZCQ.Q
O-O
. O
IZ..O
. D
B-62
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Mam*
EEI Ref.
Sampling Location
Data Received
Data Analyzed
Reagent 5ox(es )
Run Number
Run Date
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica 6ei:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
-2..0
2-14-0
14-0
IZ-.O
"ZOO-O
-S.Q
ZOQ.Q
~?.0
Samoling Location
Date Received
T7VKJV-.
Date Analyzed
Reagent Boxtes )
Run Number
Run Date
Reaoent (
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica 6el:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
q-7.
ZOO.O
-Z.M. 3
B.5
TE JOB
lecp.o
zcxxo
-14.Q
Z14-. O
ZOO-O
o. o
B-63
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
Sampling Location
Date Received
Date Analyzed
EEI
Reagent Doxies )
Run Number
Run Dale
Reacent (
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Set:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
-<=>. o
. Q
'3.
188.0
. Q
- 12 -O
>. O
B. O
Sampling Location
Date Received
Date Analyzed
Reagent BoxCes )
Run Number
Run Date
Reagent (
Final Weight, g.
Tared Weight, g.
TB-1ZA
TE.-IZB
. o
CONDENSED WATER, g.
Silica 6el:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g,
TOTAL WATER COLLECTED, g.
Z15. D
ZOQ.O
Z13. 3
IS. 5
B-64
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant N
Sampling Location
Date Received
**
EEI R«f.
Date Analyzed
Reagent Box(es)
Run Number
Run Date
Reeoent C
TE-PbA
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica 6et:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g .
•zoo . o
ZOD-O
O .0
O.Q
,. Q
13. O
Sampling Location
Date Received
Date Analyzed
Reagent Boxtes )
Run Number
Run Date
Reagent (
Final Weight, g.
Tared Weight, g.
TE-I4B
>. O
CONDENSED WATER, g.
Silica Get:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
200.O
n.o
[-Z--0
. D
zco-o
B-65
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
>MDOS-T"g>J ArC-
Plant Name
Sampling Location MI«=>T- €U ** tK»*VTPgL IMUCT
Date Received Date Analyzed
EE1 R*f.
Reagent Box(es)
Run Number
Run Date
Reaoent ( H?£> ):
Final Weight, p.
Tared Weight, g.
CONDENSED WATER, g.
Siilca Ceh
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
M I -
31
2OO. O
-s.o
-Z.-Z.-1. Q
•zoo, o
Z.-7.0
zz.o
Sampling Location MiST &UM>M/vrpg.
Date Received Date Analyzed
Reagent Box(es )
Run Number
Run Date
Reauent (
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Get:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
MO-I
3!f6
302.0
3CO.O
Zl.O
Z3I.O
B-66
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant N
Sampling Location
Date Received
Date Analyzed
EEI Ref. *
Reagent Bex(es)
Run Number
Run Date
Raaoentf JJ7-O >:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Set:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3CO-O
S. O
"ZOO. Q
. o
Sampling Location IMISF
Date Received Date Analyzed
Reagent BoxCes )
Run Number
Run Date
Reaoent
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica 6et:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g,
3QQ-0
D.Q
zoQ-o
36.0
B-67
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant N*me
Sampling Location
Date Received
Date Analyzed
EEI Ref. *
Reagent Box(es)
Run Number
Run Dele
Reagent {
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Set:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3ZO.O
300.0
Zo-o
Sampling Location
Date Received
EL4K/UKJM"g£
Date Analyzed
Reagent BoxCes )
Run Number
Run Date
Reagent (
>:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Get:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
3M-0
II.0
zoo, o
33.5
B-68
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
Sampling Location
Dale Received
T>i^vrifLgL£> EEI Ref. *
Dale Analyzed
Reagent Bextes )
Run Number
Run Dale
Reaoent ( \4Z-O ):
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Slilca Set:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED. §.
3 in
O
3OO.O
Sampling Location MIST
Date Received _ Date Analyzed
Reagent &ox(es )
Run Number
Ron Date
Reaoenl ( HZ.O >:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica Get:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED. §.
3 IS .o
300. o
is.o
B-69
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Nwne
Sampling Location
Date Received
EEJ Ref . *
T7vt4^
MIST BL-i^iKlftrT£€L COTLCT"
Date Analyzed
Reagent Boxtes )
Run Number
Run Date
Reagent f
Final Weight, g,
Tared Weight, g.
CONDENSED WATER, g.
Silica Gel:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g,
-Z.OQ. o
. o
zoo .o
-z-o
O
Sampling Location
Date Received
MIST
Date Analyzed
Reagent Doxies
Run Number
Run Date
Reaoent C 1-teO >:
Final Weight, g.
Tared Weight, g.
CONDENSED WATER. . o
"ZOO .0
Z32. 0
. O
• O
. Q
-O
O.Q
ZOO .Q
B-70
-------
LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
R-ATQga
Sampling Location
Date Received
, 4Hg Mlt>T
££| R«f. *
OL>Tt-CT"
Date Analyzed
Reagent Box(es )
Run Number
Run Date
f
Final Weight, p.
Tared Weight, g.
CONDENSED WATER, p.
Sliica 6el:
Final Weight, g,
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
. O
- "5.0
-ZOQ.O
MO-'
. o
zoo.o
"7. O
"Z54--0
"34.0
4-1.0
Sampling Location
Date Received
Date Analyzed,
Reagent BoxCes )
Run Number
Run Date
Reagent ( ]^
Final Weight, g.
Tared Weight, g.
CONDENSED WATER, g.
Silica 6et:
Final Weight, g.
Tared Weight, g.
ABSORBED WATER, g.
TOTAL WATER COLLECTED, g.
B-71
-------
ENTROPY
INC
POST OFFICE BOX 12291
RESEARCH TRIANGLE PARK
NORTH CAROLINA 27709-2291
9-SS-7B1-3S50
REQUEST FOR ANALYSIS
PURCHASE
ORDER t
1503
JOB NAME:
Cjfl
OF
LABORATORY: "R I -L- ATT
DATE SAMPLES .
WERE TRANSMITTED: 4 /
EXPECTED DATE
86, OF RESULTS:
SAMPLE MATRIX:
TTPE OF ANALYSIS REQUESTED:
KPA
COWTA/WS THE
BASIS
TE- IA
G
2.
TE- JA
"2.
•e • i A
3
4-R
TE
q
-
TE- 1A
G, 5
2A
G, G.
TE
1.
I i
TE"-2.4
-TTf^UDN
TcP
6- F
Tc- ZA
TcFLOK
3A
Cr
10
TE - 3A
i f
-------
REQUEST-'FOR ANALYSIS
PURCHASE
ORDER * 35OB
PAGE 7_ OF
COMTA/MS
BASIS
TE* 3A
FtL-TER^KsSrcUp"
GI 1*2-- F
G) 13
Gi K
G 15
G, \(* -K
G) lfe-F
G n
Q IB
G IS
<5 ZO-K
£ 2O F
TE- 3A
Tc • ^A
TE • A A
Tc '^A
TE • ^A
Tt • 4 A
Tc • SA
Tc" • 5A
Tf" • SA
Tc -5A
TE. SA
TETLDKI FiL-mni^
IMPIN^ER ! ftoioO
Z (AJflDHl)
3 (Kk£H^
TrF?LOM FlUTtR^eW
TEFUD^1 F l CTR.fi Tfc"
|MPlW€,E^ 1 CAkiliH )
"2. (KaDH)
" 3 (MaD^ )
-|-;=-pLDN nL.THR.^e&«t!iJ
"TCFl_X>w, pcctTS.fiTt"
Cr-f(,
Cr"*0 t I.C.P FDR Cr
K
II
£• TCP ror C^
Cr^u
Cr^fo 4 XCP -For O
/[
•/ i
z IICP R)^ C^
Cr "'"k
I n: " 6»A
XCP
Cr
Tc
23
1 1
2.4-Kl TE - tA ! TEFLOW
2.4-F[ TE-C^A I TEFUDM
25
7A
/*«*> | p-.i
' i 1 W'
XGP For Cr"
ic-lA
XCP
•Z.CD-F
Tc -7A
RllTEiftTE
, zi
E-SA
CrJ
XCP
vX G ZB-X TE-6A
XCP ^
2.6- F| Tc • 6A
Cr
29
JMPIU6S2.
xcP «>r Cr
Tc
EFLON
XCP
Cr
30-1
TE. JA
c • IDA
i XTP For Cr
TE- lOA 1 -T^FLDK Fi
XCP
Cr
G, 32.
re*. IDA
T^Ft-O K\
CTELPi
SENT
B-73
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER * 350^3
PAGE 3 OF
V/G S3
34 -
TE • 11 A I
(uo-Oi-
Tt
G, 34
-
35
re- HA
TEPLDKi
12 A
BASIS
Cr
For
TE-1ZA ITEF-LDW ricrre^Resnxj^ A-CP
Cr
12. A
37
T0FUDN
"! Cr"~ t xcP
G, 38 -f
£f ' !-^>A 1 "TtTFLOKi
TCP
. (3 A
39
TE • K A
TCP «>r
f, 4o-"?N i TE-I4A TrT-LQu FicirR,
Cr
40 - F TE- I4A i
TE • /B
* XCP
13
SPU
£43 -"
C ' 1 2> \ TFPLDKl
XC"P. For
G,
44
IB
TE ' ZB
T id | Cr4"" i xcP
Cr
q 45
'E ' 2.B mPji4&eR_ Z. ^ SsfUT
G
46-"*» I TE -2B 1 TcRo^
N
-TCP
Cr
• F I TE • ZB
TC-3B
TCP
^46
-r- •s'=s,
b 49 -TV
X'CP ft>r Cr-
re-
So
ST T-V—i rv-*<- > -r/-p
,— IsPUT -U-i-1 V I Z JL_v_ I
Cr
I •- . a K
t <— i *—^
r /JfiDt4l
G,
TE -4
B TH^UDU
Cr
SZ-F
,4B
c IB
TE
B~74
T£)
VOLUMCD. TH6
. TW
J -Ri
UJftS
or ,
-------
REQUEST'-" FOR ANALYSIS
PURCHASE
ORDER *
PAGE 4 OF
"R
im
BASIS
53
TE- 5B
X5J.
54
E • 5B
it
55-K
TE • 5B
"RFSitauE
TCP
Ci
G, 57
E' GB
Tt
TE • 7B
aoH
T£- IB
FRONT -'/2.
,(
TE-75
FRI
/ 1
TE- 7B
e,
T£ -IB
(.3
T€ • S B
XCP FOR
Ftowr VT. Rtw&F
TE - 8 B P*IT
KiaOH
; /
-X TE • B B 16,tfts& FICTC^.
XCP
Cr
(q
• F
TE -9B
i XCP FOR
X/G, G6
TE. 9B
n
TE.9B
pen-
70 -"
TE
XC° For
& 10. F
Tt
7/
IO
Cr
7Z
"E -IOB i FEOUT Yz. Riwsr
T£T • lOB
j$ 74 -Xl
^74-F I
TE -IDB
Tr • IDB
fcuRSS FU.TE5S. "Rescue-
e,L.BSS FCLt^nTe
XCP for Cr
Cr"^
-75
-------
BEQUEST FOR ANALYSIS
PURCHASE
ORDER * 3503>
PAGE
OF
"R
im
B AS 15
75
TE- MB
6V"
7-7
76-R
79
FRONT !2,
WaOt-i
Tt • !! 3 i G,L«SS
ITCP
81
Q 8Z-F
54
65
6(0 •
67
85
69
v/G
(S, 90.
b Qj
92.-
£ ?3
TE • IZB
ICP per C<"
/r
12-B
-r-- 1-
j CT- i *
AJ&oH
TE, 13 B
IT Vz
Tc. • 13 B t FRrr
Sfe-^ TE-I3B
XCP
Or
icP
CP For Gr
c"- M B
AlouOM
^ XCP
FRcw-r '/z R.iusr MuOHJ
Tc" • M B i ^err
XCP
! bu^ss
i crk
flQ •
WoDt-
) ) y^J} GtJ(t*,
<-
no-
MC • Z
AjaOh
no
! TE-
Q
G, 94
. 3
B_?6
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER f 35O3
PAGE
OF
"Ruw •*=
"yt>rf-
G, 98
99
(D
100
no-sA
0!
no- SB
AID- 55 FROKT
n
103
.10-55 (RUT
KiaGt4
x/G IO4-R I «C>. 55
XCP
104- F MO-SB
IDS
Cr
X CP Foe. Cr
G
,
MO
107
/10-(p5
t CrH" 4 rcP
Cr
06
MO. GB FRDKT- l/2. T5LIMSE
FRiT
o-R
&uft£S Pt
TCCTP
IIO-F MO-
G,
ICP
/10- 7A TTFuDKi
TcRDK
Cr
-
MO. "75
TCP FDT C>
MO- IB FTO«T '/z
ns ! MO.IB
Msd^j
G, Ufc-F 1 HO -IB
B-77
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER *
PAGE "I OF
G
G,
s
G, M
G
6 IZ3
4
1*23
G
13
"Run -
MX
• z
Ml- 3
*
^LDSi
MI • 4
[24 \ ni • 4 i TcTLDKi Pn
UT'l'LS 1&.AMK TCFJLON P
Hfc
BASIS
CD
r€)
TAWK
/""*
G, 135
ft/
iff ***** #4,
O.S
! 1
G 132. CpAl i TAM£ , Asior^
G, 133 GAZ
b i'34 6 AS
G IBS GA4
! TANK , Awcycc"
i TANK, , AWOT>£"
1 TAWK , .AKIDD=
< i
H
j«
;/
§
e ^
d 3
3 o
PROM
B-78
CrPa"Tr^/-'\m%r
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER j 35O3
PAGE & OF
SAMPCE*
f%UKl ^^
KUH ziX;
BASIS
G, 139
G NO
(*>B4-
£>C I
TA^K, , "BATH
TAHK , CATHCTOE
C^/ , -^ ** f* s
r*** -f-j~cP Jw-Cf
n
Gi 142.
(q 43
e
/'
//
I5.IB
1ST
G, H5 is-IB
S3-16
s-ie
13-18
3-2.5
*,'
W
G,
G
'G
^
ISO
15f
152.
153
3-1^
3- W
3-25
3-ZS
i^
1
B ES JNMIWC wiOB
MIDDLE" 14 -'OS
I/
f/
"
/'
V^_IB.
jSCRuBSGR
B-79
r -T- r> ^\ r>\ r
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER j 35O3
PAGE P OF
BASIS
MO. 5
~hJ-C
SJ
FOR.
Cr
no. s
z-d
MO- Si
*-r f C
MO- Si
i to
n
MO-SI
5*
*
MO- Si
MO-S
i (
MO- Si
,/
MO- SI
6F
n
MO- Sz. ?Acr. size neaurrge.
XCP
no- sz
SJ
MO • SZ
2 &
MO- SZ
MO-SZ
n
' SZ
12.
MO -52.
» «• g!5
" " SF
/10 • S3 IPABT £>rz«: TRsicnttL "Rs ws£T
/x
y,
Cr^fc i XC? FO^ C r-
- SB
JST STAG^
Foe-
n
11 Y~? \ HO - S3
VxC
MO- S3
if
MO- S3
if
MO- S3
B-80
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER * 35O3
PAGE 10 OF
UiT
= t
Uq 184< £
u£r l£5<5
MO- ^3 | - gt^
MO- S3
Sf
/ •
All • 5( P/ORT Size 7E.ECWTBC,
Cf ^^ ? 33CP
i
*™'
MI- 5
7*
"
All' S
SF
PART Site
EiuSE"
i XCP
\J/^" 1 Qf^^r flT • *> 1
v^j i cj'«_i \ p i ; i j_ O 1
i£r i89- $i*
i^^^" ] yO\ p
iGs /^KF
u^ !9z.
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER I 35O3
PAGE
OF 11
SAMPLED
KUK,^
Ku^4 — 3i
BASIS
usr 209
US'" ZiCKf
Ig"' Z Me f
< 2.'*£
UgTz.'3-l
MI' 53
HI -S3
AIT -S3
HI-S3
,M I • SS
L^'' 2. ) ^xp| M I • S3
tg^ Z.'5<|| ,M J. 53
/
P/^ET S!^E 3 - ST«C,€
4^
5^ ,.
fe- ,.
71* ,
gra „
SP= "
\% ZlCdxJ? &LAHC. TAE.TC4_r S1Z.IWC, PiLTERS
Q^ *•'*• k ic.P FO«2U (2_,r
I g£^»tooE. PO2, V£-P Foe-C»'
^ >L-T^^uJT^ P<3Z« C^'*'*
( ,
./
/,
/ )
»l
4
j
[
I
i
1
I I
B-32
-------
, c*-*** y
JU/A--—^-— MOT -
Cr
+6
Cr (ICP1 DATA, GREENSBORO INDUSTRIAL PLATERS
>^A*ft»* L~
±Cfi&L&^,$_
-------
B-84
-------
\M
\«" £-77
5- 7*
7?
^1" ! £t>
fY
s- ; f z ,
i n
<^ I rf;
rr
H «
(i® f7
/Oi **
# 1 ^
\ L y&
5 ?f
/V'° ( /&&
:.._-V -/"/-..
Hl A_ /"*-,
^0?
1 / ^ >
..._5o.._. V ^ Oy
MDbA- \ ^ r_f~
(To |/« £
; _...)_/* 7.
^ou«> f /^>
5o /*f
\ IS '
^ SQ_V ./y
i MDTf s. ///
i )
j SQ \ f/L
! /^
i MO ife 1 -// /
L _ I//-'/
B5" *.«/?-
ro ^. ^ 7
54,7 ?/^^
IIS" ;^/ o*
35- t>,o*7
fro ' /, P f
-x- ( /
385" o.o i>
5T£> A 5"»
3*)^ A;Z>
O6, /r.ty
ZO5" A^ />_
5~c c,f4
s;or- /, ^>
c*o -
._ rs^ /• ?4..
no
/ D f^ n 9 / (/
to B 57 ° • f i " „
o
Sis' / . ? /
'
38s- z.t*/
<4o ;J £>
.. 3SfT _ *>/>_
_/3o ! s".v£
/So i^'^
5"£> ! o. / 7*
5"3s^ t.rf
. J"^ . [ £>. 2 r $
_3S5T^. ! ti.oi'j
i 5"5- /, /
5^0 ! ^3 /
' '
5« A/^>
5?r" /, 7^
5^ A^P
V9^ ^^^
LJio ^r^jf
/,6i. ^.OZ :
7 v s ?-^ ;
! 3//.. £
:_ ?. ri ^.24_.._
i - o>« s n /7 -i
_; IBaO i ol. '<
>• ' i " '
yi. ? ,.;^.oz.
_ SJo._.. o.oa_.
733 ^3^7F
/. 7 D. 0&
; < / ^Q^
foon Al?
<• / ) 2%. Q j O. Ofo
: 7tT ^-5?
<-2.7
^5^.
JS'^O
to jo
,& |
r"/ o
2.3, /
S? 60
^ ¥
5" 2,0
//•^
3^70
.....^ '
... 5 ^ r
__.^74-.
, 0
_JIA ®....
A 8- .
_>£..£
5" -\
.5/0
. LSL34
^2.' °
^ £97
£. /
^^. 7...-
..7^7._
^3
Ha4
/f&o
-------
.£ 42
B-86
-------
TCP ,
.i-K
-------
Vet
3 .
12"?
L I
S/
\*
_ C*
_ 4
u
0.17
«•
/.*?
_,r"_
/
l_
J._mj
'5^^
70,
/<*._/
T9.
/I/
fi.._2=
J^TX
\o^
2Z AW
r
/
t/2.
..2V 7-
-VJ
>!/•
_.;,.
0. ¥0
_-^£
-------
WET CHEMICAL ANALYSIS SHEETS
DATE RECEIVED: $ / / 6 / 8 £> DATE ANALYZED
/ /
ANALYST: ^AW?f _ CLIENT:
ANALYTE:
RTI # CLIENT # SAMPL£
Total ug utj/s us/nL
. 2.*?
B-89
-------
ATCM 1C SPECTROSCOPY ,,
SAMPLE ANALYSIS
RTI No. Client Absorbance^ In tensity
t,, r _f.
c~-n ' T?
G- 5"
Test Test XrU?
Solution Solution Dilution Analyte Sample
Mean Cone, Volume Factor Quantity Volum^Mass
2, -I**' ('~' L< -2 } S
f. (f ^~ /$$ / (, ^
/.'/'/ 100 1 f'/
Final
M
Sample/
Concentration
c-w AST /00 /£**
^ !
*,// '• 'Jf«
6- ^3 Ar5 - a-*
6- f ^
o /: «» 7
t>.i-*i " (^"'
i ~7 «•>' > -Z (
/ / "7
/ -
r //
-------
NUCLEAR ENERGY SERVICES
ACTIVATION ANALYSIS REPORT
CLIENT Dr. William G. DeWees
Entropy Environmentalists, Inc.
_ Box 12291
Research Triangle Park, N.C. 27709-2291
P. O. No.
Report No.
Date of Report
Phone
03-4336-01
333240-1
4/22/86
781-3550
EXPERIMENTAL PARAMETERS
18 Hr. Irradiation
Monitored Decav
13 2
1.5 x 10 n/cm -sec.
1500 Sec. Counts On An Ortec 35% GeLi Detector Coupled To An ND6620
Computerized Gamma Detection System
ANALYSIS RESULTS
DATA TABLE ATTACHED
issued by:
/^Jack N. Weaver
B-91 Head, Nuclear Services
LOCATED AT;
NUCLEAR
-------
TABLE 1
NAA Of Cr In Filters And Solutions
Sample Description
G93
G94
G95
G96
G91
G92
G97
G98
G99
G100
G117
G118
Gil 9
G120
G121
G122
G123
G124
G125
G128
G129
NBS SRM 1084
NBS SRM 1084 -
NBS SRM 1572
NBS SRM 1575
NBS SRM 1575
ugrams Cr/sample
1.634 ± 5.1%
1.451 ± 4.2%
0.988 + 9.5%
0.352 ± 8.8%
0.941 ± 9.8%
1.839 ± 2.5%
1.742 ± 6.4%
0.294 ± 14.7%
1.844 ± 4.6%
0.591 ± 9.6%
5.931 + 1.9%
1.314 ± 3.7%
11.946 ± 1.2%
0.380 ± 12.5%
5.788 ± 1.8%
0.371 ± 12.6%
8.774 ± 1.5%
0.276 ± 15.0%
0.261 ± 20.0%
0.063 ± 20.0%
20.691 ± 0.5%
102.25 ppm
102.33 ppm
0.807 ppm
2.580 ppm
2.630 ppm
{100.0 ± 3.0 ppm)
(100.0 ± 3.0 ppm)
(0.8 ± 0.2 ppm)
(2.6 ± 0.2 ppm)
(2.6 ± 0.2 ppm)
NOTES: (1.)
(2.)
The values shown in brackets are the certified or best
known values for Chromium in these NBS Standard Reference
Materials analyzed together with these samples.
The Chromium Standards used in this analyses are Environ-
mental Protection Agency Standard No. SPEX Ind., NCSL-1,
Lot No. 182.
B-92
-------
NOTES Continued
(3.) Other elements easily detected in the filter samples were
Hg, Cd, Sb, Br, Na, Ni, Co, Fe, Se, Zn, and Sc.
(4.) A longer decay time to allow high Na-24 gamma activity to
decay would provide lower error limits on the Cr results.
B-93
-------
-------
APPENDIX C
SAMPLING AND ANALYTICAL PROCEDURES
C-l
-------
C-2
-------
DETERMINATION OF HEXAVALENT CHROMIUM EMISSIONS
Samples were collected using an EPA Method 13-type impinger train, and
Method 5 sampling procedures, as described in the FederalRegis ter* or
particle sizing equipment (see section on "Determination of Particle Size
Distribution"), These samples were analyzed for hexavalent chromium using
the tentative method "Determination of Hexavalent Chromium Emissions from
Stationary Sources" (dated December 13, 1984) by digesting in an alkaline
solution and assaying with the diphenylcarbazide colorimetric method.
SAMPLING APPARATUS
The EPA Method 13-type impinger train used in these tests met design
specifications established by the EPA (see Figure C-l). The sampling
apparatus, which was assembled by Entropy personnel, consisted of the
following:
Nozzle - Stainless steel (316) with sharp, tapered leading edge and
accurately measured round opening.
Probe - Borosilicate glass with a heating system capable of maintaining a
minimum gas temperature of 121 C (250 F) at the exit end during sampling.
PitotTube - A type S pitot tube that met all geometric standards was
attached to a probe to monitor stack gas velocity pressure.
*43 FR 11984, 3/23/78 (Method 5) and 43 FR 41852, 6/20/80 (Method 13)
C-3
-------
Nozzle
Pltot tube
ProBe
Thermocouple
Temoeratura
I Indicator
Hiatid Probe •
"S" Type-
Pilot TuOe
Thermocouple (oemnd)
Stack Wall
ttagnaha I i c® Gauges
Filter Holder
With Teflon
Thermometer
09 Tfl OS
_ ,._ Jm ,
Caliorsted Orifice
— 7
Thermometars
h\ G\
Flow Control Valves
fin*
aves —7 ..
. / Vacuum
ir" Gauga
I °\ '51 P\ 21°\ 10I
Mognene lie*8 Gauges
Figure C-l. Method 13-Type Ifflpinger Train,
C-4
-------
Temperature Gauge - A Chromel/Alumel type-K thermocouple was attached to
the pitot tube, in an interference-free arrangement, to monitor stack gas
temperature within 1,5 C (5 F) using a digital readout.
Filter Holder - The filter holder was made of Pyrex glass.
Filter - A nominal 85-mm (3-in.) diameter Teflon filter was used.
Draft Gauge - The draft was measured with an inclined manometer.
Impingers - Four Greenburg-Smith design impingers were connected in series
with screw-type connectors. The third and fourth impingers were modified
by removing the tip and extending the tube to within 1.3 cm (0,5 in.) of
the bottom of the flask.
Metering System - The metering system consisted of a vacuum gauge, a
leak-free pump, thermometers capable of measuring temperature to within
1.5 C (5 F), a calibrated dry gas meter, and related equipment, to
maintain an isokinetic sampling rate and to determine sample volume.
Barometer - An aneroid type barometer was used to measure atmospheric
pressures to 0.3 kPa {0.1 in. Hg).
SAMPLING PROCEDURES
After the sampling site and minimum number of traverse points were
selected, the stack pressure, temperature, moisture, and range of velocity head
were measured according to procedures described in the FederalRegister.*
Approximately 200 grams of silica gel was weighed and placed in a sealed
impinger prior to each test. One hundred (100) milliliters of 0.1N sodium
FR 11984, 3/23/78 (Methods 1-5).
c-5
-------
hydroxide (NaOH) was placed in each of the first three impingers; the Teflon
filter in the filter holder followed by the third impinger; and the fourth
impinger containing the silica gel was placed after the filter. The train was
set up as shown in Figure C-l. The sampling train was leak-checked at the
sampling site prior to each test run by plugging the inlet to the nozzle and
pulling a 50 kPa (15 in- Hg) vacuum, and at the conclusion of the test by
plugging the inlet to the nozzle and pulling a vacuum equal to the highest
vacuum reached during the test run.
The pitot tube and lines were leak-checked at the test site prior to each
test run and at the conclusion of each test run. The check was made by blowing
into the impact opening of the pitot tube until 7-6 cm (3 in.) or more of water
was recorded on the Magnehelic® gauge and then capping the impact opening and
holding it for 15 seconds to assure it was leak-free. The same procedure was
used to leak-check the static pressure side of the pitot tube, except suction
was used to obtain the 7-6 cm (3 in.) H?0 manometer reading. Crushed ice was
placed around the impingers to ensure that the temperature of the gases leaving
the last impinger was at 20 C (68 F) or less.
During the sampling, stack gas and sampling train data were recorded at
each sampling point and whenever significant changes in stack flow conditions
occurred. Isokinetic sampling rates were set throughout the sampling period
with the aid of a nomograph or calculator. All sampling data were recorded on
the field data sheets.
SAMPLE RECOVERY PROCEDURES
The sampling train was carefully moved from the test site to the cleanup
area. The volume of reagent from the first three impingers was measured, and
c-6
-------
the silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:
ContainerNo.1 - The Teflon filter was removed from its holder and placed
in a petri dish and sealed,
Container No. 2 - After being measured, the contents of the first impinger
of the sampling train were placed in a glass or polyethylene container.
The impinger was rinsed with 0.1N NaOH and this rinse added to the
container. All sample-exposed surfaces prior to the first impinger
(including the nozzle, probe, filter bypass, and glass "L") were rinsed
with 0.1N NaOH and these rinses were also added to the container. The
probe was brushed while rinsing to remove any adhered chromium,
Container No. 3 - After being measured, the contents of the second
impinger were placed in a glass or polyethylene container. The impinger
was rinsed with 0.1N NaOH and this rinse was added to the container.
Container No. 4 - After being measured, the contents of the third
impinger were placed in a glass or polyethylene container. The impinger
and the front half of the filter holder were rinsed with 0.1N NaOH and
these rinses were added to the container.
Container No. 5 ~ A minimum of 200 mL of 0.IN NaOH was taken for blank
analysis. The blank was obtained and treated in a manner similar to the
impinger rinsings.
Container No. 6 - An unused Teflon filter was taken for blank analysis.
Data was recorded on the appropriate sample recovery and laboratory data
sheets.
C-7
-------
SAMPLE AND REAGENT PREPARATION
Samples for analysis and reagents were prepared as described in the
Following subsections.
Reagents
All reagents conformed to the specifications established by the Committee
on Analytical Reagents of the American Chemical Society. In all cases, the
water used was deionized and distilled and met the ASTM specifications for
type 2 reagent - ASTM Test Method D 1193~77« Solutions were made as follows:
Digestion Solution - 20.0 g of NaOH and 30.0 g anhydrous Na?CO, were
dissolved in water in a 1-liter volumetric flask, and this solution
diluted to the mark. It was stored in a tightly capped polyethylene
bottle and was prepared fresh monthly.
Potassium Bichromate StockSolution - 141.4 mg of analytical reagent grade
K~CroO_ was dissolved in water, and this solution diluted to 1 liter
£. £ { f
(1 mL = 50 ug Cr ).
Potassium Bichromate Standard Solution - 10.00 mL of K^Cr-0^
stock solution was diluted to 100 mL (1 mL = 5 ug Cr ) with water,
Sulfuric Acid - A ten percent (v/v) solution was made by diluting 10 mL
H-SQj. to 100 mL in water.
Acetone - Same as Method 5-
Diphenylcarbazide Solution - 250 mg of 1,5~diphenylcarbizide was dissolved
in 50 mL acetone and stored in a brown bottle. The solution was discarded
whenever it became discolored.
c-8
-------
Sample Preparation
To prevent the possibility of sample deterioration, all samples were
protected from extreme heat, were kept dry, and were analyzed within one month
of collection. Sample preparation procedures varied depending upon whether the
sample was a filter sample, impinger sample, or process sample.
Filter sample preparation involved digestion and filtration. The contents
of Container No. 1 (the Teflon filter) was cut into small pieces and put into a
beaker; digestion solution (40 mL) was added and the beaker covered with a
watch glass. Using a hot plate, this solution was heated to near boiling with
constant stirring for 30 minutes; it was not allowed to evaporate to dryness.
The solution was then cooled and transferred quantitatively to the filtration
apparatus with water. This apparatus consisted of a vacuum unit constructed of
plastic or glass accomodating a 47 mm diameter, 3-0 urn pore size Teflon
filter. The solution was filtered and transferred quantitatively to a 100 mL
volumetric flask which was then filled to the mark with water.
Impinger samples were prepared by two different techniques. For the
standards setting tests (runs MO-1 through MO-4 and MI-1 through MI-4), each
sample was initially filtered. The filtered residue was analyzed for total
chromium using Neutron Activation Analysis (described in the section on Total
Chromium Determination) and the filtrate was analyzed for hexavalent chromium
using the tentative method for hexavalent chromium. The total chromium results
were then calculated by summing the results for the hexavalent chromium in the
filtrate and the results for the chromium in the filtered residue. For all the
methods development tests, two aliquots were taken from each impinger sample.
One unfiltered aliquot was analyzed for hexavalent chromium by the tentative
method described previously; the other unfiltered aliquoted was analyzed
C-9
-------
directly for total chromium using Inductively-Coupled Argon Plasmagraphy
(ICAP) . The use of ICAP for analysis of total chromium in the method
development samples was not as accurate as NAA; however this technique was used
for a time and cost savings.
The liquid process samples were not filtered. They required significant
dilution prior to analysis by the diphenylcarbazide eolorimetric method. For
the tank and demister rinse process samples, 1 mL of the sample was first
diluted to 100 mL in a volumetric flask using deionized distilled water. Then,
depending upon the concentration of chromium in the particular sample, 1, 5.
and 10 mL aliquots of the diluted sample were diluted to 100 mL with deionized
water in another volumetric flask.
To serve as blanks, (1) a representative amount of 0.1N NaOH and (2) an
unused Teflon filter were prepared in the same manner as the samples described
above. The spent silica gel was weighed to the nearest 0.5 g using a balance.
SAMPLE ANALYSIS
Analysis of the samples involved four basic elements: (1) color
development and measurement, (2) a check for matrix results on the Cr
results, (3) calibration of the spectrophotometer , and (4) calculation of the
results .
Color Development and Measurement
An aliquot of the prepared sample 50 mL or smaller was transferred to a
100 mL volumetric flask and diluted with sufficient water to bring the volume
to approximately 80 mL. The pH was adjusted to 2 +_ 0.5 with 10 percent ELSOj.,
2.0 mL of diphenylcarbazide solution was added, and this solution diluted to
volume with water. The solution then stood about 10 minutes for color
development. For each set of samples analyzed, an identical
C-10
-------
aliquot of reagent blank solution was treated in the same way.
To measure, a portion of the sample was transferred to a 1-cm absorption
cell, and the absorbance read at the optimum wavelength as determined during
spectrophotometer calibration. After each sample measurement, the reagent
blank absorbance reading, if any, was subtracted to obtain a net reading. If
the absorbance of the sample exceeded the absorbance of the 100 ug Cr
standard as determined during calibration, the sample and the reagent blank
were diluted with equal volumes of water.
Check for Matrix Effects on the Cr* Results
Since the analysis for Cr by colorimetry is sensitive to the chemical
composition of the sample (matrix effects), at least one sample from each
source was checked using the method of additions as follows:
Two equal volume aliquots of the same sample solution were taken; each
contained between 30 and 50 ug of Cr (less if that was not possible).
One of the aliquots was spiked with an aliquot of standard solution containing
30 to 50 ug of Cr . Then both the spiked and unspiked sample aliquots were
readied for measurement as described in the previous section.
The Cr mass, C , in ug in the aliquot of the unspiked sample solution
s
was then calculated using the following equation:
Equation C-l
C = C
s a
A - A
t s
Where:
C = Cr in the standard solution, ug.
a
A = Absorbance of the unspiked sample solution.
S
A = Absorbance of the spiked sample solution.
O
C-ll
-------
Volume corrections were not required since the solutions as analyzed were
made to the same final volume. When the results of the method of additions
procedure used on the single source sample did not agree within 10 percent of
the value obtained by the routine spectrophotometric analysis, all samples from
the source were reanalyzed using the method of additions procedure,
SPECTROPHOTOMETER CALIBRATION
Calibration of the spectrophotometer involved two basic sets of operations
and these are described below.
Optimum Wavelength Determination
Every 6 months, the wavelength scale of the spectrophotometer was
calibrated using an energy source with an intense line emission or a series of
glass filters spanning the measuring range of the spectrophotometer. The
spectrophotometer was checked to see that the wavelength scale read within
+5 run at all calibration points. After confirming that the wavelength scale
ofthe spectrophotometer was in proper calibration, 5^0 nm was used as the
optimum wavelength for the measurement of the absorbance of the standards and
samples.
In some cases, a scanning procedure was employed to determine the proper
measuring wavelength. For both the blank and a 50 ug Cr standard solution,
the spectrum was scanned between 530 and 550 nm. The optimum wavelength was
chosen as the wavelength at which the maximum difference in absorbance between
the standard and the blank occurred.
Spectrophotometer Calibration
To calculate the spectrophotometer calibration factor, 0.0 mL, 1 mL, 2 mL,
5 mL, 10 mL, 15 oL, and 20 mL of the working standard solution (1 mL = 5 ug
C-12
-------
Or* ) were added to a series of seven 100-mL volumetric flasks. These
calibration standards were analyzed as described in the section on color
development and measurement. The calibration procedure was repeated on each
day that samples were analyzed. The spectrophotometer calibration factor, K ,
was calculated using the following equation:
A, + 2A0 + 5A_ + 10A,. + 15AC + 20A., Equation C-2
1 d. 3 H D O
_ C __ _ _ __ «••« _w _ WM_ *• _ — .»_ n_ » MV M— Ml M w««— n M
A2 A2 .2 .2 .2 .2
Al * A2 + A3 * A4 * A5 * A6
Where:
K = Calibration factor,
A1 = Absorbance of the 5 ug Cr standard.
A_ = Absorbance of the 10 ug Cr standard.
/-
A = Absorbance of the 25 ug Cr standard.
AK = Absorbance of the 50 ug Cr standard.
A = Absorbance of the 75 uf Cr standard.
A/- = Absorbance of the 100 ug Cr standard.
o
Spectrophotometer Calibration Quality Control
The absorbance value obtained for each standard was multiplied by the
K factor (least squares slope) to determine the distance each calibration
point was from the theoretical calibration line. To maintain quality control,
it was assured that these concentration values did not differ from the actual
concentrations (i.e., 5, 10, 25, 50, 75, and 100 ug Cr ) by more than 7
percent (to be determined) for five of the six standards.
EMISSION CALCULATIONS
All emission calculations were done retaining at least one extra decimal
figure beyond that of the acquired data. Figures were rounded off after final
calculations.
C-13
-------
Total Cr* in Sample
The total ug Cr in each sample, m, was calculated as follows:
100 K AF Equation C-3
c
m =
v
a
Where:
100 = Volume in mL of total sample.
A = Absorbance of sample.
F = Dilution factor (required only if sample dilution was needed to
reduce the absorbance into the range of calibration.)
v = Volume in mL of aliquot analyzed.
a
Average Dry Gas Meter Temperature and Average Orifice PressureDrop
The average dry gas meter temperature and average orifice pressure drop
was calculated as described in Method 5.
Dry Gas Volume.Volume of MaterVapor, Moisture Content
The dry gas volume, volume of water vapor, and moisture content was
calculated as described in Method 5«
Cr Emission Concentration
The Cr concentration in the stack gas, C (g/dscm) , dry basis, corrected
to standard conditions was calculated as follows:
Cg = (10"6g/ug) (m/V) Equation C-4
Isokinetic Variation, Acceptable Results
Isokinetic variation and acceptable results were calculated as described
in Method 5-
C-14
-------
DETERMINATION OF TOTAL CHROMIUM CONTENT
Samples were collected using an EPA Method 13-type impinger train and
Method 5 sampling procedures as described in the Federal Register* or particle
sizing equipment (see section on "Determination of Particle Size
Distribution"), These samples were prepared and then analyzed for total
chromium content using Neutron Activation Analysis (NAA). This was done
following the procedures in the "EPA Protocol for Emissions Sampling for Both
Hexavalent and Total Chromium," dated February 22, 1985.**
SAMPLING APPARATUS
The sampling train used in these tests was the same as described in the
previous section, "Determination of Hexavalent Chromium Emissions". No
sample-exposed stainless steel or chrome-plated equipment was used with the
exception of the sample nozzle. Teflon filters were used as backup filters and
paper filters were used for particle size testing. These trains met design
specifications established by the U. S. EPA and were assembled by Entropy
personnel.
SAMPLING PROCEDURES
The sampling procedures were performed as described in the previous
section, "Determination of Hexavalent Chromium Emissions" (or as described in
*M3 PR 11984, 3/23/78 (Method 5) and 43 FR 41852, 6/20/80 (Method 13).
**For Chromium Screening Study ESED No. 85/02 and 85/02a, U. S. Environmental
Protection Agency, Emission Measurement Branch, Research Triangle Park,
North Carolina.
C-15
-------
the section on particle size determination sampling procedures). All sampling
data were recorded on the field data sheets.
SAMPLE RECOVERY PROCEDURES
Following sample recovery, all samples were kept dry, protected from extreme
heat, and analyzed within one month of collection.
SAMPLE PREPARATION
In the case of the filter samples collected using the EPA Method 13-type
impinger train, they were analyzed first for hexavalent chromium content (as
described in the previous section) and then for total chromium content using NAA.
For the impinger and process samples, two sample preparation techniques were
used. The standard setting samples were filtered and the filtered residue was
analyzed by NAA. The total chromium results were then calculated by summing the
results for the total chromium in the filtered residue and the hexavalent chromium
in the filtrate (see previous section on Determination of Hexavalent Chromium).
An aliquot of the methods development samples were analyzed directly for total
chromium by ICAP.
All samples prepared for NAA were put into suitable sample vials which had
been properly prepared. Procedures for this are described below. The subsections
which follow describe the sample and blank preparation procedures used for the
various categories of sample states.
Sample Preparation Apparatus
No chrome-plated or stainless steel equipment was used. The following items
were also required:
Analytical Balance - To determine weight of material submitted for total
chromium analysis to within 0.1 mg.
C-16
-------
Polyethylene Sample Vials - Five (5) nL size to contain samples submitted
for total chromium.
Teflon Spatula - To assist in sample transfer.
Teflon Gloves - To be used for sample handling.
Preparation of Sample Vials
For use in the analytical phase, sample vials were prepared in the
following manner. All vials were initially cleaned with soap and water, rinsed
with tap water, soaked for 48 hours in a rinse solution of 1 to 1 (v/v) water
and concentrated nitric acid, and finally rinsed with deionized-distilled
water. After the vials dried, each was marked on both sides with the
appropriate sample identification number using a permanent pen (water
insoluble). All sample identification numbers, volumes, and weights were
recorded on the Sample Preparation and Analysis Data Forms.
Preparation and Analysis for Filter Samples
Initially, the entire sample was analyzed for hexavalent chromium by the
EPA Cr Method described in the previous section. The sample residue (Teflon
sample filter, filtration filter, and insoluble materials) for each run was
then transferred to a separate cleaned and marked sample vial,
The filter blank consisted of the blank residue, a blank Teflon sample
filter, and a solution filtration filter that had been prepared in the same
manner as the field samples. This was transferred to a separate cleaned/marked
sample vial.
All samples were analyzed for total chromium in terms of ug of total
chromium per sample vial.
Preparation and Analysis for Impinger and Liquid Process Samples
Initially, a representative portion of the prepared impinger or liquid
C-17
-------
process sample (50 or 5 mL, respectively) was analyzed for hexavalent chromium
by the EPA Cr* method. For total chromium analysis, a separate representative
portion of the impinger or process sample (1 to 5 ffiL ^d generally < 2 ml)
containing greater than 1 ug/mL of total chromium was transferred to a sample
vial for analysis. Representative portions were taken according to EPA Method
160.2 (EPA-6GQ/4-79-02Q, March 1974). No sample blank was required.
Procedures to Reduce NAA Time
For all samples that were placed in sample vials, an estimate of the mass
of chromium was included on the sample log to provide the NAA facility with the
information necessary to select the proper sample irradiation time and
strength. When possible, all samples were added to the sample vials in amounts
that ensured the mass of chromium per sample was between 10 ug and 5tOQQ ug.
When the total chromium value was not known, samples were prepared so that each
sample vial contained between 5 ug and 100 ug of hexavalent chromium. These
procedures were followed to allow all known value samples to be irradiated at
the same time and strength.
When the sample concentration was unknown or possibly could have exceeded
5,000 ug of total chromium, such was noted on the sample log sheet. A
preliminary run on the material was then made to estimate the sample
concentration .
When liquid impinger or process samples or the 1.0 mL aliquot of the
filtrate from the hexavalent analysis were below the 10 ug of total chromium
value, total mass of chromium was recorded on the data sheet to allow these
samples to be irradiated separately for a longer time and to allow for the
selection of a lower concentration standard.
Quality Assurance Sample Analysis
One audit sample was submitted with the field samples to check the
analytical technique .
c-18
-------
SAMPLE ANALYSIS
Sample analysis for total chromium content was done using Neutron
Activation Analysis (NAA) and was conducted by the Department of Nuclear
Engineering at North Carolina State University in Raleigh. In brief, NAA is
based on the determination of the number and energy of gamma and/or x-rays
emitted by radioisotopes produced in a sample matrix by neutron irradiation.
Quantitative analysis is obtained by comparing the x- or gamma-rays of the
sample with the number determined for a standard that has been subjected to the
identical irradiation.
The samples (prepared as described) were heat-sealed in the 25-mL
polyethylene vials. Chromium standards were similarly sealed in identical
vials. Sets of samples and standards were irradiated for a predetermined
neutron fluence. They were then allowed to radiate for a minimum of 10 days
prior to analysis to eliminate possible inference from sodium and cobalt which
have short half-lives. After this time, samples and standards were counted on
a solid state detector connected to a multichannel analyzer.
Results were reported for samples in terms of total ug of chromium for the
sample.
CALCULATIONS
Chromium emissions and concentrations were calculated as described below,
Emission Calculations for Hexavalent Chromium
Hexavalent chromium emissions were calculated as described in the EPA
Cr Method (see previous section).
Emission Calculations for Total Chromium
The total chromium emissions, C (ug/dscm), were calculated as follows:
s
c-19
-------
Cs = (mr - mfc) + (mh) / Equation C-5
Where:
C = Stack gas concentration, g/dscm.
S
m = Mass of Cr in residue and impinger samples, ug.
m = Mass of Cr in residue and NaOH blanks, ug.
m, = Mass of Cr in filtrate solution (Cr ) minus blank, ug.
V , ,v = Volume of gas sampled, corrected to standard conditons, dscm.
mlsta;
Note: In some cases, the mass of Cr was calculated separately, for the
filter/rinse sample and impinger contents sample, or the masses of both samples
and both blanks were added to obtain the total concentration.
Calculation of Chromium in Solid Process Samples
The chromium concentration in solid process samples, C (ug/g), was
calculated as follows:
C = {m - m, )/wt Equation C-6
o so
Where:
C = Concentration of chromium in process sample, ug/g.
m = Mass of Cr in process sample, ug.
S
m. = Mass of Cr in blank sample (if applicable), ug.
wt = Weight of sample analyzed, g.
Calculation of Chromium in Liquid Process Samples
The chromium concentration in liquid process samples, C1 (ug/mL), was
calculated as follows:
C1 = (mg/2) (Vf/V±) Equation C-?
Where:
C1 = Concentration of chromium in liquid sample, ug/mL.
m = Mass of Cr in liquid process sample, ug.
2 = 2.0 mL aliquot analyzed.
V_ = Final volume if a sample is concentrated, mL.
V. = Initial volume of sample concentrated, mL.
C-20
-------
DETERMINATION OF PARTICLE SIZE DISTRIBUTION
In-stack, multistage, cascade impaetors were used to collect samples for
particle size distribution measurements. The following sampling and
analytical procedures were used.
SAMPLING APPARATUS
The source sampling train used in these tests met design specifications
established by the U. S. EPA. Assembled by Entropy personnel, it consisted
of:
Nozzle - Stainless steel (316) with sharp tapered leading edge and
accurately measured round opening.
Impactor - An Andersen Mark III with eight stages and a backup filter
was used. The Andersen impactor uses 6.4 cm (2.5 in.) diameter
filters. A right angle nozzle/preseparator was attached to the front of
the impactor.
Condenser - A moisture-removal device capable of maintaining a
temperature less than 20 C (68 F) and an attached thermometer to monitor
temperature.
Temperature Gauge - A Chromel/Alumel type K thermocouple (or equivalent)
was attached to the probe to monitor stack gas (impactor) temperature to
within 1.5 C (5 P) using a digital readout.
Metering System - Vacuum gauge, leak-free pump, thermometers capable of
measuring temperature to within 1.5 C (5 F), a dry gas meter
C-21
-------
with 2 percent accuracy, and related equipment to maintain an isokinetic
sampling rate and to determine sample volume. The dry gas meter was
made by Rockwell, and the fiber vane pump was made by Gast.
Barometer - An aneroid type barometer to measure atmospheric pressures
to 0.3 kPa {0.1 in. Hg).
Collection Substrate (Filters) - Schleicher & Schuell® #30 glass fiber
filters heated 1 to 2 hours at 20zf°C (400°F) and desiccated 2*f hours to
a constant weight.
SAMPLING PROCEDURES
The stack pressure, temperature, moisture, and velocity pressure of the
selected sampling sites were measured with Method 5 equipment according to
procedures described in the Federal Register*.
Assembly of the Andersen Mark III involved starting with the solid filter
backup stage and then alternating the stage plates, collection media, and
Inconel spacer rings so as to provide eight cut-sizes (see Figure C-2). The
collection substrates (filters) had been heated to a 204 C (400 F) oven for 1
or 2 hours, conditioned in a dessicator for 24 hours to a constant weight, and
weighed to the nearest 0.01 mg on an analytical balance. The preseparator was
threaded together and attached to the front of the impactor.
The sampling train was then assembled. It was leak-checked at the
sampling site prior to each test run by plugging the inlet to the impactor or
preseparator and pulling a 50-kPa (15-in. Hg) vacuum. Once the desired vacuum
was reached, the leakage rate was checked at the dry gas meter for 1 minute.
If the leak rate was less than 0.6 liter/min (0.02 cfm), the train was
FR 1198^4, 3/23/78 (Methods 1-5).
C-22
-------
Loading Sequence
Ring Cross Section
Ring
*0 Stage
Ring
Lowest #B Filter
#1 Stage
Ring
Lowest #A Filter
*2 Stage
Ring
3rd Highest #B Filter
*3 Stage
Ring
3rd Highest fA Filter
*4 Stage
Ring
2nd Highest SB Filter
§5 Stage
Ring
2nd Highest £A Filter
#6 Stage
Ring
Highest #B Filter
$1 Stage
Ring
Highest IA Filter
*8 Stage
Ring
Solid Filter
Extra Stage
Ring
0
J-l
JJ
0
o
0
•B
m
Short-edge
(goes toward filter)
Plate - Stage Holder Allignraent
Stage Holder
Notch
Stage Holder
Solid
X-shaped
Area
Figure C-2, Andersen Mark III Cascade Impactor Loading Sequence.
C-23
-------
considered ready for sampling. Any excessive leaks were corrected before the
train was used. The impactor was then placed at the selected sampling point
and allowed to preheat for several minutes before sampling began. While the
impactor was preheating, the nozzle was capped or pointed away from the gas
flow, A leak-check was not performed after the test run so as to avoid the
possibility of dislodging the particles on individual stages.
C-24
-------
METHODS DEVELOPMENT
VARIATIONS IN SAMPLING TRAIN CONFIGURATION,
SAMPLE RECOVERY, AND SAMPLE ANAYSIS
As part of the sampling program conducted at Greensboro Industrial
Platers, a number of methods development test runs were conducted using the
"paired train" sampling technique. The paired train technique utilizes two
trains sampling simultaneously at the same point in the stack so that
comparisons may be made between the values obtained from the two trains; the
assumption is made that the two trains are sampling essentially the same
emissions.
During the first week of testing, standards setting emissions testing was
conducted at the mist eliminator inlet and outlet using an impinger train
(backup filter between the third and fourth impingers) with 0.1N NaOH as the
impinger reagent. It was designated "Train A" for the week of testing (but
redesignated Train #1 for the purposes of clarity in this explanation). The
train configuration and sample recovery and analysis is described in the
previous sections of this appendix.
During the same week, paired train method development testing was
conducted at the uncontrolled exhaust duct of plating tank No. 5 using (1) the
train described previously (Train #1) and (2) an identical train with the
substitution of distilled water for the 0.1N NaOH in the impingers (Train B for
•the week of testing, but Train #2 in this explanation). Samples in the
impingers from Train #1 were analyzed separately to measure collection
efficiency; samples from Train #2 were split (see Figure C-3) to study the
effect of addition of NaOH and sample standing time on the conversion of
hexavalent to trivalent chromium.
C-25
-------
Combined Impinger Reagent
For One Run
o
!
fo
Add
NaOH
No
Additions
Analyze
After 28 Days
Analyze
Immediately
Analyze
After 28 Days
Figure C-3. Sample Splits for Train #2
-------
During the second week, "paired train" testing was conducted at the
exhaust duct of tank No. 5 aiwi the mist eliminator outlet using two
additional trains. The First of these, designated "Train A" for the week
(but redesignated Train #3 so as not to be confused with Train #1, also
Train A), was similar to the Train A (Train #1) used the first week. The
difference was that 0.1N NaOH was used as the reagent only in the first two
impingers with the third impinger remaining dry. The second train used
during the second week of testing, Train #4 (Train B for the week) had a
Method 5 train configuration with a glass fiber filter, 0.1N NaOH in the
first two impingers, the third impinger dry, and silica gel in the fourth
impinger. See Table C.I for a tabular summary of the sampling trains, test
locations, and train designations.
In general, methods development samples were collected using the
Method 5 sampling procedures described in the Federal Regis ter*. One
important exception was that the paired train sampling was only conducted at
a single point within the duct since it was not necessary to obtain samples
representative of the actual emissions. Other train-specific modifications,
configuration, and sampling procedures are described in the following
sections. Samples collected were generally analyzed for hexavalent and total
chromium as described in the first two sections of this appendix. Any
variations in sample recovery or analytical procedures required for the
specific methods development trains are also detailed in the following three
sections.
TRAIN 2: CONFIGURATION AND SAMPLE RECOVERY AND ANALYSIS
Sampling Apparatus andProcedures
The EPA Method 13-type impinger train used met design specifications
43 PR 11984, 3/23/78.
C-27
-------
TABLE C.I. SUMMARY OF SAMPLING TRAINS USED
O
1
t-o
00
Date
3/18
3/18
3/19
3/19
3/24
3/25
3/26
3/26
Test Location
Tank 15 Exhaust Duct
Tank 16 Mist Eliminator Inlet
Tank 16 Mist Eliminator Outlet
Tank 15 Exhaust Duct
Tank 16 Mist Eliminator Inlet
Tank 16 Mist Eliminator Outlet
Tank 15 Exhaust Duct
Tank #5 Exhaust Duct
Tank 15 Exhaust Duct
Tank IS Mist Eliminator Outlet
Type of Testing
Methods Development
Methods Development
Standards Setting
Standards Setting
Methods Development
Methods Development
Standards Setting
Standards Setting
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Train
Dur i ng
Testing
A
B
A
A
A
8
A
A
A
B
A
B
A
B
A
B
Jeslgnatlon
In
Description
11
#2
»\
11
11
12
11
11
13
14
13
14
13
#4
13
#4
Implnger
Reagent
NaOH
H20
NaOH
NaOH
NaOH
H20
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
F 1 1 ter
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
M5 Glass Fiber
Backup Tef ton
M5 Glass Fiber
Backup Teflon
M5 Glass Fiber
Backup Teflon
M5 Glass Fiber
Number
of Runs
3 Paired
2
2
3 Paired
2
2
2 Paired
4 Paired
2 Paired
3 Paired
-------
established by the EPA, The sampling apparatus was assembled by Entropy
personnel and was the same as that described in the section entitled
"Determination of Hexavalent Chromium Emissions", Approximately 200 grams of
silica gel was weighed and placed in the fourth impinger. One hundred (100)
milliliters of deionized distilled water was placed in each of the first two
impingers; the third impinger was left dry; and a Teflon filter was placed in
the filter holder located in between the third and fourth impingers.
Sample Recovery^ Procedures
The volume of reagent in the first two impingers was measured, and the
silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:
Container No. 1 - The Teflon filter was removed from its holder and
placed in a petri dish and sealed.
Container No. 2 - After being measured, the distilled water and moisture
collected in the first three impingers of the sampling train were placed in a
glass or polyethylene container. The impingers were rinsed with distilled
water and these rinses were added to the container. All sample-exposed
surfaces prior to the first impinger including the nozzle, probe, filter
bypass, and glass "L" were rinsed with distilled water and these rinses were
also added to the container. The probe was brushed while rinsing to remove
any adhered chromium.
Container No. 3 ~ A minimum of 200 mL of distilled water was taken for
blank analysis. The blank was obtained and treated in a manner similar to
the impinger washings.
Container No. 4 - An unused Teflon filter was taken for blank analysis.
C-29
-------
Container No. 5 ~ A minimum of 200 mL of 0.1N NaOH was taken for blank
analysis.
As previously described, the combined impinger and rinse sample from
each run was initially split two ways and to one-half was added solid NaOH
(approximately 0.6 g to make the solution basic, as confirmed with litmus
paper). Nothing was added to the other half. Each of these two portions was
then further split resulting in a total of four split samples. As shown in
Figure C-2, a portion of the impinger reagent with NaOH added and a portion
with nothing added were each analyzed immediately. A second portion with and
without NaOH added was put aside and then analyzed after 30 days.
Sample Preparation and Analysis
The impinger and filter samples were prepared for analysis and analyzed
for hexavalent chromium as described previously in this appendix in the
section on "Determination of Hexavalent Chromium Emissions" and analyzed for
total chromium content as described in the section on "Determination of Total
Chromium Emi s s i ons".
TRAIN #3: CONFIGURATION AND SAMPLE RECOVERY AND ANALYSIS
Sampling Apparatus and Procedures
The EPA Method 13-type impinger train used met design specifications
established by the EPA. The sampling apparatus was assembled by Entropy
personnel and was the same as that described in the section entitled
"Determination of Hexavalent Chromium Emissions". Approximately 200 grams of
silica gel was weighed and placed in the fourth impinger. One hundred (100)
milliliters of 0.1N NaOH was placed in each of the first two impingers; the
C-30
-------
third impinger was left dry; and a Teflon Filter was placed in the filter
holder located in between the third and fourth impingers.
SampleRecovery Procedures
The volume of reagent in the first three impingers was measured, and the
silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:
Container No. 1 - The Teflon filter was removed from its holder and
placed in a petri dish and sealed.
Container No. 2 - After being measured, the 0.1N NaOH and moisture
collected in the first three impingers of the sampling train were placed in a
glass or polyethylene container. The impingers were rinsed with 0.1N NaOH
and these rinses were added to the container. All sample-exposed surfaces
prior to the first impinger including the nozzle, probe, filter bypass, and
glass "L" were rinsed with 0.1N NaOH and these rinses were also added to the
container. The probe was brushed while rinsing to remove any adhered
chromium.
Container No. 3 ~ An unused Teflon filter was taken for blank analysis.
Container No. 4 - A minimum of 200 mL of 0.1N NaOH was taken for blank
analysis.
SamplePreparation and Analysis
The impinger and filter samples were prepared for analysis and analyzed
for hexavalent chromium as described previously in this appendix in the
section on "Determination of Hexavalent Chromium Emissions" and analyzed for
total chromium content as described in the section on "Determination of Total
Chromium Emissions".
c-31
-------
TRAIN #4: CONFIGURATION AND SAMPLE RECOVERY AND ANALYSIS
Sampling Apparatus and Procedures
The EPA Method 5~type impinger train used met design specifications
established by the EPA. The sampling apparatus was assembled by Entropy
personnel and was the same as that described in the section entitled
"Determination of Hexavalent Chromium Emissions" with the exception that a
nominal J^-mm (3~in.) diameter glass fiber filter was used. Approximately
200 grams of silica gel was weighed and placed in the fourth impinger. One
hundred (100) milliliters of 0.1N NaOH was placed in each of the first two
impingers and the third iopinger was left dry. A glass fiber filter was
placed on a clean frit in the unheated filter holder located between the
probe and the first impinger.
Sample Recovery Procedures
The volume of reagent in the first two impingers was measured, and the
silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:
Container No. 1 - The glass fiber filter was removed from its holder and
placed in a petri dish and sealed and labeled.
ContainerNo. 2 - All sample-exposed surfaces prior to the filter
including the nozzle, probe, and front half of the filter holder were rinsed
with 0.1N NaOH and these rinses were placed in a glass or polyethylene
container. The probe was brushed while rinsing to remove any adhered
chromium. The jar was sealed and labeled.
Container No. 3 - The frit was washed with Q.1N NaOH and these washings
were placed in a glass or polethylene jar, sealed, and labeled.
C-32
-------
Container No. 4 - After being measured, the NaOH and moisture in the
impinger section of the sampling train was placed in a glass or polyethylene
container. The impingers and connecting glassware were rinsed with 0.1N NaOH
and this rinse was added to the container for shipment to the laboratory.
Container No. 5 - A minimum of 200mL of 0.1N NaOH was taken for the
blank analysis. The blank was obtained and treated in a manner similar to
the water rinse.
Container No. 6 - An unused glass fiber filter was taken for blank
analysis.
Sample Preparation_and Analysis
The impinger and filter samples were prepared for analysis and analyzed
for hexavalent chromium as described previously in this appendix in the
section on "Determination of Hexavalent Chromium Emissions" and analyzed for
total chromium content as described in the section on "Determination of Total
Chromium Emissions".
C-33
-------
-------
APPENDIX D
CALIBRATION AND QUALITY ASSURANCE DATA
D-l
-------
D-2
-------
CALIBRATIONS
All measuring equipment Entropy uses is initially calibrated before use.
Equipment which can change calibration is both checked upon return from each
field use and is also periodically recalibrated in full. When an instrument is
found out of calibration, it is so noted in the report and appropriate
adjustments are made to the final results. The equipment is then repaired and
recalibrated or retired as needed. Specific equipment is handled as follows:
Pitot Tube - All pitot tubes used by Entropy, whether separate
or attached to a sampling probe, are constructed in-house or by Nutech
Corporation. Prior to their initial usage, they are calibrated using
EPA geometry standards. In general, if a type "S" pitot tube is
assembled correctly, and positioned properly in relation to the probe
nozzle, it will have an average Cp of 0.84. As long as it is not
damaged, it should not change its calibration. She recalibration
schedule for pitot tubes is related to the physical condition and
usage of the pitot tube, not a fixed time schedule. Each pitot tube
is inspected upon return to the laboratory from each field use.
Dry Gas Meter and Orif_iee_Met_er - All Entropy meter boxes are
calibrated upon purchase and at least once every six months against a
secondary test meter (one calibrated against a wet test meter)
according to their usage history. Basic procedures are outlined in
the EPA Publication No. APTD—0576. !Uie only differences are in the
choice of flow rates used and the volumes metered at each flow rate.
After each field use, quick checks are performed to ensure delta H@
changes of less than 5%. HSiese cheeks compare the orifice against the
dry gas meter. If greater than 5% changes occur, recalibration and
repair are instituted.
Nozzles - Each nozzle is calibrated upon purchase, and
thereafter whenever it becomes apparent that the nozzle has become
damaged. Each nozzle is inspected upon return to laboratory from each
field use. Ihe diameter is measured on five different axes, with the
high and low readings differing by no more than 0.004 inches as a
tolerence.
Temperature Measuring Instruments - After each field use, the
thermocouples or thermometers are calibrated against an ASTM precision
mercury-in-glass thermometer across a wide range of temperatures. If
the initial reading is not within +_ 1.5% of the absolute temperature
reading of the standard thermometer, the instrument is adjusted until
it is in the acceptable range.
D-3
-------
p -p
Kagnehelic Gauges - After each field use, each Magnehelic
Gauge is calibrated against an inclined manometer at three different
settings (low, medium, high) over the range of the individual gauges.
If the readings differ more than + 5% from the manometer readings, the
*p *""
Magnehelics are recalibrated,
Barometer - After each field use, each barometer is checked
against a mercury barometer.
D-4
-------
CALIBRATION BY; 1
METER BOX NUMBER:
DATE: }.
BAROMETRIC PRESSURE |P J:
5 i
*DAT£;
*SAROMETR!C PRESSURE ( P ) :
IN. HG
IN. HG
STANDARD METER NUMBER:
COEFFICIENT
NOMINAL
FLOW
RATE
("Q)
CFM
STANDARD DRY GAS METER
GAS
VOLUME
FT3
TEMP.
DCJ
C p*
/j-lfc?! 7-O
Ij. JL^/f' ^O
0
To
TIME
( e j
MIN.
IQ'-ad
/& '• Of)
to*, oo
/o : o o
/£) -' OO
L2. • f£ l/o '_f]f\
METER BOX METER !NG SYSTEM
ORIFICE
SETT I NG
{ AH]
O -S~<3
O -_5~"O
o2-/c>
.z./o
4- frn
4-s-o
GAS
VOLUME
FT3
^•3^*
^.369
ff-'S-S-f
^-,46?
TEMP.
°F
?r
*
T6
T^1
ia-^?id 5-3
/%-o^4
s-*r
, . o.«^««- .P^ -*"'•'"['
t r " (:, ^ **0i » " '•'
id !_ dt ds J
T * V 'it. * «C! * >t
4« et» a b
-fi V ' U «6fl) • (f, •>• 4K/11.6)
d
-------
CALIBRATION BY;
DATE: taL-t^f. -££
*DATE;
"V. YV\ ^l^ ^ a J
G>
TIME
( 0 !
MIN.
fO '0 £>
//> "^)O
tn • nr^
<» ~?~ I/O "rtO
6,>
6, •?-
to .'no
/^ 'oa
METER BOX METERING SYSTEM
OR 1 F 1 CE
SETTING
{ AH)
IN. H20
*-9
M-.'vO
^•10
J^-lD
£>• $~£>
GAS
VOLUME
FT3
IA.i>tf
,a.3a
g-.|?\
t.^c1
^-•OD"
TEMP,
(TD!
OF
7^
^9
s-a
?i
^o
o • $~£> 1 LL ' fo3s"i 9 A
*K0 -
0.0311 • AH
« * " tt i- *60)
b d •
d*
^J
Y^ * V, * tt. » 460) • T.
» . ds ds d b
-d V, • (t. » 460) « {p •>• 4K/13.6!
tt es a
NOMINAL
FLOW
RATE
CFH
METER BOX METERING SYSTEM
FLOW
RATE
(QD)
CFM
ORIFICE
FACTOR
(OF)
COEFF
A Hi
IN. H 0
/.pas'
AVERAGE
0.99^-
D-6
-------
~£' ^
CALIBRATION BY:
DATE: 0 ^i f. e/
*DATE:
METER BOX NUMBER: /I/ - "?-
BAROMETRIC PRESSURE (P ):
*BAROMETRIC PRESSURE (P j;
IN. HG
C5-97^0
STANDARD METER NUMBER; / Q / ~JO >
COEFF1CIENT
NOMINAL
FLOW
RATE
CFM
04
o.?
1.^
STANDARD DRY GAS METER
GAS
VOLUME
FT3
U.lo>
a • i>f
*•.* 7-
g-.idr
,a-^j^.
I A. '(W-S-
TEMP,
63-
6
6*f
6 f
6
C, 1
TIME
( 8 )
MIN.
IO -G>O
^ f? ,' f J f~>
/O .'
/ o ; o rt
METER BOX METERING SYSTEM
ORIFICE
SETT I NG
{ AH)
!N.H20
0-£0
o ,^G
.3 , /£>
A-/C2>
i|. ^^
4 • S&
GAS
VOLUME
FT 3
ii.\°cs-
l4.\
^
ds _]
T * V " (t * 460) * »,
ds cis i b
V, * (t. * 46C! * „ » iK/L3.
d 4s ^
NCM I NAL
FLOW
RATE
("5)
CFM
o-y
o.g-
/-3L
METER BOX METERING SYSTEM
FLOW
RATE
(QD3
CFM
OR I F I C£
FACTOR
(OFJ
|
AVERAGE
COEFF .
0-7961
A Hi
IN. H 0
/. fe>fe?2--
ff. 794*^1 /(j, n
1-ooiZ
o.9??t
/. OD¥o
AC?02 7
/.OOO
/•7ff?-
/•??
/•797
/•"79^
A 7^
D-7
ENTROPY
-------
CALIBRATION BY:_
DATE: jj .
•DATE:
STANDARD METER NUMBER:
.
c, tt e b
J -^
a as
NOMINAL
FLOW
RATS
fa)
CFM
METER BOX METERING SYSTEM
FLOW
RATS
CFM
OR I F i CE
FACTOR
|OF)
AVERAGE
COEFF
A H@
IK. H 0
I. 01*3 if I
D-8
-------
CALIBRATION H
DATE; /£.j--f-s
*DATE:
STANDARD METE.
-•
.
0.0317 * M
t f * (t T 46
* *>
dS ^
,Q V * it. 4
d ds
Y: T.m
R NUMBER:
NOMINAL
RATE
CFM
o.f
f- 2-
0) i Ydj|
* e>Aj.+ 1o 3-
STANDARI
CAS
VOLUME
FT 3
*f-/33
h , 15,0
? • XSlT
f'J.?^
j»^ • i w'T'
12.^3-4
2
4Soi a I
* Vds I
•?b
AH/13. 6)
IETR1C PRI
IETRIC PR!
>
3 DRY GAS
TEMP.
°F
4S-
fc^
6v
^
4V
6 ^
NOM I NAL
f-| OW
RATE
("5)
CFM
lL-
°'l
0,?
{ < 2**
3SURE (P
^SURE (P
COEFF
METER
TIME
{ e j
MIN.
/0.VO
/O lOO
fO '. Gr>
/c} too
fO ', O O
/ O : c> d
METE
FLOW
RATE
(QD)
CFM
Q . tf&ff
o.f^7f
O.F^>/
o, r/ P9
(-tf33
/*"? L> ? r/,
^ fcxp *~**Y
AVE
METER BO3
g' : C.5?-^
IC1ENT (
METER B03
ORIFICE
SETTING
{ A H}
<5-3-<9
O -T-o^f
(5,0^9
^-^(i^
^•H-Lt
RAGE
C NUF4BER:
IN. HG
IN. HS
Y _h '9
C METER INC
GAS
VOLUME
I V )
^.«|-3
*4>\^Z-
^,142-
V -^i
^•4VO
/'s-'^ro
,3.s&5
ERING SYS
COEFF .
M)0ff
/,0/2?
A0o3y
0.9999
o^fVo
0-7?2t
-
j/.poj. /
/t/-f
f*2
i SYSTEM
TEMP.
°F
f^L
ft/
fr:T
P>
-------
CALIBRATION BY: PpgPP'f .Jf-lkJESi
DATE; \'2,ll~ll
f
*DATE :
STANDARD METE
0,0317 * iK
R NUMBER:
NOMINAL
FLOW
RATE
CFM
BAROMETR I C PRESSURE ( P
*BAROMETRIC PRESSURE (P
1 Ol ~~IO^1 COEFF
STANDARD DRY GAS METER
GAS
VOLUME
FT3
4/^1
4.1"2f5
8x41-8
64-1 -2.
iZ.^17
\2Bi^"
|~(t » 460] ' 9
iH* P " (t, » 4601 Y ' V
b d ,_ ds ds _]
Y. "V. * tt * 460) * P
., . ./
9./
^z.
AVERAGE
COEFF.
/,07Z*
o.?^
/•OOfO
o,y
i,OQl^
1,007-
A H@
IN. H 0
2
/.£tc,~?
l.t»ZC
1,6,^7
!,(*££'
I.&-21
/-4Zc?
/ i (_/y ~\_
D-10
ENTROPY
-------
CALIBRATION B
DATE:J-/C-SJ<
*DAT£|
STANDARD METE
.
0.0317 * SH
"'"* fb ' Ud " *6
v # y
•A v. * (t. *
4 da
Y: T. l>\
f
z>
R NUMBER:
NOMINAL
RATE
fo)
CFM
O-H"
a, (f
/ -"I
/•£
'*d« *
0) Y
. • ctd * "0!
460) " b *
e^_A ,,
BAROI
*BARO»
1 O \ *?-O £
STANDARI
GAS
VOLUME
/a%-
5.. as-}
f - ^3
D DRY GAS
TEMP.
°F
L 1
/ (C
y? /
C^ p«
c. ^
£?
6|
NOM ! NAL
FLOW
RATE
CFM
&**?-
0< if
/•5-
ASSURE (P
ASSURE ( P
COEFF
METER
TIME
( 8 )
MIN.
/o:an
/0:&o
'O too
/O ''a <*>
/c *OA
XC> VV>
METE
FLOW
RATE
(QD)
CFM
AVE
METER BO:
J*tf'\
B55
[ CIENT
METER BO3
OR I F I CE
SETTING
( A Hj
£> --S~O
6-S-&
-?. /O
J . /£>
// -fa
x/-s?n
R BOX MET
ORIFICE
FACTOR
(OF)
RAGE
< NUMBER:
IN. HC
IN. HG
fL
< METER INC
GAS
VOLUME
rT3
Lj.MU
if- /?7
^, ^-46
s^. a-jf
J2-Tf£
I O . T"_3 «<
1 me. ' -^ ty £
ER1NG SYS
COEFF.
frCfjqy
0. ?7ft
0.973¥
o.9?J6>
I.OoT^
f-OOlo^
-
0,973
A! -m
o it
G C *J.JN
"T fl rC*
; SYSTEM
TEMP.
(TD|
°F
.- ?
-------
CALIBRATION STY: /wf.p
DATE: 3^17,-'
&_
•DATE;
STANDARD METE
0.03V • w
R NUMSERj
NOMINAL
FLOW
RATE
CFM
BAROMETRIC PRESSURE (P
•BAROMETRIC PRESSURE (_p
lQlflQ£"t COEFF
STANDARD DRY GAS METER
GAS
FT 3
+ .10^
4. no
t£,Q~L-7
^,&4"i^
11A11
(1.11*
f™ "") 2
* *> " U4 * **°l 1 T4. "' V*i " J
** st«. * ***" a. *
TEMP.
°F
^
^
&*
fifi
W
(*
TIME
1 9 J
MIN.
/9--00
10: oo
METER BOX NUMBER: 'VtC- "^^
) ; 7"?, -f-2/«N. HS
H): IN. HG
ICIENT [
Y \'
METER SOX METERING SYSTEM
OKIFICS.
SETTING
( AH)
IN.H.O
Q.£D
GAS
VOLUME
4.E16
, -^ \ 4,13-4'
(Q'
-------
NOZZLE NUMBER:
Date
Initials
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
•171
.m
ST
./73
0./7/
.nt
113
.174
?-£••* V
TT A7
.3-;* •
174
175
ns
• 111
nt
o-ni
D-13
i N viRorsirv!EisrrAUSTs,irsic.
-------
NOZZLE NUMBER:
Date
1-30-Bz,
8-3 f 8 3
3-y-yy
!> 1^8^
7-j - * ?
3-tf- tf
10.I3.8S
2-«3 -£fe
Initials
TbJfr
sr
JVC
^67^
rr M
Atftt
(SU2L-
Tit"
Dia . 1
•114
. /72
. /7±
*ns
./J> 7
,l\,°l
. I7fc
•/71
Dia . 2
•174
./?£>
./?r
.\li
./>«/
,/^i
•ITS
•/?*
Dia . 3
•H3
./73
./?y
•m
. />7
,/7^>
• >73
•;?r
Dia . 4
• 172-
./?2
./72
,11L.
// >5
. /?/
• |7fc
J7b
1
i
Dia . 5
. 174
./?£
./7i
- 73
,/^^
./ n
• 177
./?jf
Average
^•n3"
&*/?z*
(?./*?$"
o-m "
«?,/:>* *|
^ , /7c? *
6- 175
o.ni
i
D-14
-------
NOZZLE NUMBER: IDA
Date
Initials
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
•243
24
24 /
"
0- E 5
"
8-3/-B3
sr
.24^3
. 24*3
CT4/C
rr
•ZSZ
. ZS4
. 2.S2-
- ZS3
D-15
IMTROPY
i^MMMMl
IM VIROrMMEMTALJSTS, INC,
-------
NOZZLE NUMBER:
Date
Initials
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
tl-io-n
l-i-8i> \
,260
,252,
$-26!"
5T
.24*5"
0
O.IS'O
TT
1. S
2 JO
- 2
z s o
f
2^5
347
O-2.44
246
iso
ZSI
6 -25P
250
O.ZS'o
PJTROPY D-16
••••••
N VIRONrviEMTAUSTS, IMC,
-------
NOZZLE NUMBER
= toB
Date
Initials
Dia. 1
Dia. 2
Dia . 3
Dia . 4
Dia . 5
Average
5T"
3(99
a 307
r r
3 •#•?$'
I0.r3.85
• Boo
•2*71
3^2
30^
raVIBOMMEfWTAUSTS, IMC.
-------
NOZZLE NUMBER:
2,
Date
\Z'2-8l
S-t^-lH
3-K-f<
2.-W'?l*
Initials
f£
Dia . 1
,tf£
./sV
,/O
./5-f
Dia . 2
./5/
./<»
./$i
. /5-r
Dia . 3
-/5b
,^r^
./^rv
•tf7
Dia . 4
.162.
•t*t
.1*1
.16%
Dia . 5
./&?
, /<"i
, K$
•/6"3
\
Average
G-lSl
0- 161
0.trt''
-------
NOZZLE NUMBER
: 501
Date
Initials
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
303
O.
,300
Ibi
,302.
NOTE: All diameters measured in inches.
i Nrraop>Y D-19
••••••
IMVIBOMMEIVTAUBTS, IMC.
-------
NOZZLE NUMBER: 50$
Date
Ini t ial s
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
, 3/2.
PLO
. 3/c?
£-1144
-3/3
•3/5"
•3/3
• 3/2.
0.3/1
NOTE: All diameters measured in inches.
D-20
I NViRONIVIErsrTAUBTS,iNC.
-------
NOZZLE NUMBER:
60?
Date
initials
Dia . 1
Dia. 2
Dia. 3
Dia . 4
Dia . 5
Averag e
•J//
0.
iht
•3/3
.317.
.311
0.V2-
NOTE: All diameters measured in inches.
D-21
INV1ROIMMENTAUSTS, INC.
-------
NOZZLE NUMBER
: 70P-
Date
Initials
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
4-7-03
• 185
.1A7
/ev
m
! 023 -
Arm
18
19
10- Z4- 8S
185
184
183
184
/BO
78
8o
/79
o,n°i
NOTE: All diameters measured in inches.
NV!RONME!MTAUSTS,INC.
-------
NOZZLE NUMBER:
Date
/2,-l'Sn
4-1-B3
t-b-03
Ii-1%'%^
3 --
-J-b'M
10-23-94
I0.24-8*
2-/3-#k
Initials
1
ATfY]
6C
r. /#*/>.
Dia . 1
•/*/
.102,
•110
•IftS-
:JG/
Dia . 2
./^/
.//^
-I8o
M
.l$0
.1*1 I ./7
,1-74
•174=
./fc7
• \~i(j>
< 17-7
.11}
Dia . 3 .
.IP/
J&l,
• n®
.m
./?/
" ./^^
, 173
•174
.111
Dia . 4
/ P3
•/^
-/99
•fftl
./fl
.131
.173
. \77
.)(*&
Dia . 5
,/7^
./^/
./i
-------
NOZZLE NUMBER:
Date
7 -7-84-
(*Mi$
Initial s
ST~
TV
Dia . 1
.17-1
/K
1
i
i
Dia . 2
,/zz*
. t is
Dia . 3
7
Dia . 5
, /zz.
. /3f
i
i
i
\
Average
^'/LZx
iT. / 3-6
NOTE: All diameters measured in inches
IIMTRO*»Y D-24
-------
NOZZLE NUMBER:
Date
Initials
Dia . 1
Dia . 2
Dia . 3
Dia . 4
Dia . 5
Average
5-r
0-I&4-
3-L -B4-
,/<&
Tit/
I.
NOTE: All diameters measured in inches.
D-25
IPJVIROMMEIMTAUSTS.IMC.
-------
<— ^ •r >-"1 ^
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
TRIG PRESSURE: a? A 5" d) DATE: ^-cSo-^b CALIBRATED BY: 77""
RCURY-IN-GLASS REFERENCE NUMBER;
AMBIENT TEMP.;
11.
CALIBRATION
SYSTEM USED
/&> /£•
/
!
!
I
s
r
I
1
i
(
j
\
/
/
POTENTIOMETER
I .D. NUMBER
6O~-T
GO *?
0 O S"
0/3
0/3
o/3
b>
0 0 <"
<><3 5"
0/3
01 >
o/3
0£>r
o <"
odS^"
a/3
o/^
orb
0c V"
oa ~T~
o <»~"
0/5
or3
e/S
/9or"
oo r
oa^T
0/5
eri
o/l
THERMOCOUPLE/
THERMOMETER
I .O. NUMBER
£-£•
7-2^
r-/;
r-//
s--//
^-3
4-3
4-3
£-/
6-/
^-/
>/
1-1
?-;
£-
6-0
/c--foo
4o o
^60
*/oo
^/60
^•6$
^a&
Q
ttos
ICE
IETER
kTURE
Tc (°F)
VID
V/o
v/o
*tfZ>
V/t>
ViO
mo
mo
V01
4/P
f/t?
MD'I
HfD
HID
TfO
VfO
^/o
4)0
MiO
ffO
MJO
4iO
¥/0
4(O
mo
^W)
-/z>
mo
mo
4<0
MEAN
TEMPERATURE
OF Hg COLUMN
Tm (°F)
j zo
/•Z-2--
H^
/2^6
/2-D
X/Z--
//4
/Z'Z-
/2^>
//^
/Z Z--
/2n£
//^
/ ZZ-
//I-
//&
/2.Z-
AZ-
tf?
//z.
/Z-o
//F
ifL*-
i 2xJ
/'/
//^
/of
)i
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
/«OMETRIC PRESSURE: o? %
*~ /ylERCURY-IN-GLASS REFERENCE NUMBER;
//
^
DATE: e*?-.2g-j'fc CALIBRATED BY:
AMBIENT TEMP.;
I £_
CAL 1 BRAT f ON
SYSTEM USED
{jot Ait e WifT&t-
1
\
\
\
\
V
/
f
POTENT 1 OMETER
1 ,D. NUMBER
£o:T
C0^~
Q6^~
0/3
&l%
o> 3
Off 5"
oa JT
O03~
Of$
C1/^
0/3
ef3
1,to
2/0
Z-fQ
Zto
2/0
i/ s
2Lf 0
Z./O
2.10
2JQ
Z/€>
ICE
P-/Z-
ait^
P-/-2--
5k/ 2^
"Z-fL-
•2,/t-
-*?|2-
Q-/-Z-
5V jx
Ps/2-
~Zi*~-
"7" 11^
*LI^
"Z>t"t-
t,\1~
A^
-ZA-L-
MEAN
TEMPERATURE
OF Hg COLUMN
T (°F)
Ara I r /
//O
/^2_
//O
//O
//•t-
1/6
I zo
lit
//o
/ EO
//O
//o
//o
/to
It*
/fS
l"Z~o
t/tf
} ! a
//6
//(&
/'O
//<5
///6
//o
Iff
tf*
It 6
Iff
/re
THERMOCOUPLE/
THERMOMETER
TEMPERATURC
£//
Z/J
2/3
Jd ?
2^«>
Z/-0
2/2-
2/t-
ZfZ-
z//
2-fl
2. a
1i 2-
2-/ ^
2/0
Zti
z/o
z/z.
ZiZ-
2/Z,
Z-f/
Z/~2—
Z/"2—
Z/5
2/3
2/3
Z//
2-//
Z,// •
AT8
51.!
,/S" '
/5<5
,/_S_e
<^S£
. 3 «
'? 9-
a
D
o
,/5"°
,/S y-
. /
./^^
^)
7?
•3 %
•3 14
. s °>
D
D
D
. /£ <^
«C>
• / i> ^t
./s%
•/S%
CORRECTED TEMPERATURE = TC = To •+>•-. 00009 (TO-2O)
TEMPERATURE DIFFERENCE = AT = [_(Tc.,_°F 4^*60) - (Tt,°F + 4«O)] x 100 <_!.»*
T,»,OF + 480
D-27
L
ENTROPY
-------
r
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
ic PRESSURE: <£'••$() DATE: c2~ <£/-£ & CALIBRATED BY: _
/ / , r- I
___ AMBIENT TEMP. ;
,RCURY-lN-«aLASS REFERENCE NUMBER; / /
il I 3 S
I
CAL I BRAT 1 ON
SYSTEM USED
Tce'-fat/
]
I
\
i
1
|
M'
POTENT I OMETER
1 . D . NUMBER
DO\^
c-o^>
co^
c /?
•i ' 3
>-•' / _7
o ; 3
Co ST
00 r
00 r
o/i
0/3
o/3
8? C>£"
00 f
00^
o/3
o/3
o/3
0(7 S~
00>"
00^
c?/3
013
^/I
<7^r
00 C
c?e S"
r-/^
0-5
6-s
/,-3
^-y
X--/
^-/
i-o
6-C
6-6
r-7
5"- 7
S-7
4-T
£/-r
^-5*
6-2
4-2-
6-^
4-/o
4-10
M-lo
1-1
1-1
1-t
REFEREf
THERfcW*
TEMPERS
TQ (°F)
34
3V
&y.
3«/
?>
3^
3^
3
^d
3^
3r
3M
3V
34
5<^
3^
39i
3^
3V
3^
5f
3^
3V^
34
3¥,
3?
$t
3¥
3
ICE
i
{,£
^
t£
^
46
6&
(,&
U
6 &
{*£
u.
46
It if
(,(*
u
u
{£
^
{,£
<^6
U
U
U
u
66
rHERMOCOUPI. E /
THERMOMETER
TEMPERATURE
Tt (°F)
Sf
3/
2!
3/
3/
31
3/
3 /"
a/
3/
5 /
J/
J?/
•5/
J9/
3/
3/
3/
S/
J/
3/
3/
SI
31
31
3^
J/
37
31
3/ ,
ATE
51. u,
.6,/0/
• L,/
• 6/ '..
. /„/ »/
.fj
.{,/ ,.
./0/ V
,LI
• (*l ,
.L>] *(
,(*!
.1*1 ',
.£/ 1
.&/
• &/ •,
• ^/ •;
,Ll
.1*1 ,
,Llffi
(*{
. (.1 .
. &/ '
• t»l et
,{,/
• k>l
.w «
.to/
- fc/
CORRECTED TEMPERATURE «= TC « TQ 4- .00009 (i:o-20) (TQ-TJ,,)
TEMPERATURE DIFFERENCE = AT = [ jTg_f °JL*_ -1* ^1 ~ ( T fc , °F •<• * SO ) ] K 10O
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE: O?7 Vj DATE! $~(2-!-¥to CALIBRATED BY: //
MERCURY- IN- GLASS REFERENCE NtWSER : /tfv/v^j AMBIENT TEMP.: 4^
«
CALIBRATION
SYSTEM USED
ICG &nij
\
DORREC*
rEMPERj
/
w
POTENT IOMETER
I . D , NUMBER
00^
oo 5"
oo S*~
Of3
o/3
01$
00$
OO *i
o o ^
^"
fED TEMPERATURE « "I'c =»
MURE DIFFERENCE » AT =
4-r^
t^^z-
i/-"L-
(C/_2^
4-3
4-3
4/-S
^-z.
g-i-
$-2,
6-£
.4 5
f ^~
/*v-i
tictl I fY7
y ^-;K
'*7-"1
•7... 7
"?*"7
REFEREf
THERMOK
TEMPER/
T/OtM
O * '
34^
3 V
^J»4
3 ¥
3<£
3 */
? 4^
34
3^
3*f
3^
3^
J2yf
34.
34
*><$
34-
~ld-
T>4.
14-
14-
?4
zk-
14.
"^t^-
^
J^.
34
7-4
34
ICE
IETER
ITURE
rti / O fj1 1
64
34
-3M
^
— -T Cf
*^M
"tZ(J
"I1/
""5^
•3*4
"34
-34
"S1/
-2,t|
-^Lf-
-Zyl/
Vf
'SM
•z,^
f */
^4
^H
-Z,!_f
•^14
^14
"^U
"3^
MEAN
TEMPERATURE
OF Hg COLUMN
/, C
6 k
& b
(,_h
(fb
(,$,
, (. C
Is £
I/ (y
itL
& &
^ 4
(£>&
(j?\£?
($ (^
(f W
(*(r.
(&( f~.
&&
Ctf-?
&&
&>&
(e£?
6(0
\(J
&L
2^
T
bf«
&(t
THERMOCOUPLE/
THERMOMETER
TEMPERATURE
m /OT?\
TV
31
3f
3!
37
3)
3 /
2>f
31
^31
B f
3/
S /
3 /
^2-
^x-
S/
-3;
1
?i
If
Tf
"?/
37,
72.
3/
52.
32-
ATE
• fol '
it °
ib c
,6 C
rt C
. r( C
,6 c
,bi '
,fal !
,{? £
-bi '
,(s>( '
• ill c,
^ 0^
, ^/ C/
/ I 0
.(P/ "/
,6/ fl/
,A/ *y
i fe/ °
i W «?"
ft?/ °/
*•¥ ^
• ^d0/
•t/ °/i
,14 %
•V 5/t
T0 -f- .oooo» (T0-2o) (T0-Tm)
{(Tc,°F + *8O) - (Tt,°F + €80)] X 100 <1.S%
1
TC,°F + 4«0
ENTROPY
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE: "Z.1? . 4% DATE: "2. -2, 1 - X/? CALIBRATED BY:
1
XERCURY- IN-GL.A
CALIBRATION
SYSTEM USED
ICf "Z.A.TH:
SS REFERENCE NU
POTENT I OMETER
1 . D , NUMBER
nil
0 [ 1
Oil
09 C
,0<9s'
0.0*
00*
0/3
_,)J-j
oil
00^
o^T
00 1
.--)(?
d/l
£(1.
^r
,00 C
££"
fill
on
on
00 £
fr;g
tiOZ
oil
01 J
013
MBER; / *f6/ 1
THERMOCOUPLE/
THERMOMETER
1 . D . NUMBER
^-f
"/~4
7-4
7-t,
7-6
ZO-C
•z£>-<
-z^-C
i$n\
\ Zo )
/S'CiL
•9-y
/-/
-/-ir
7,0-1
Z£>'"5
•ZD-1
1O -6,
to^fo
~ZD-(?
I6?~^D
/6"^
/A - Cx?
^-4-
4-4
<£-4-
\5-i
\C-\
/r-r
?r/
REFEREh
THERMOf-
TEMPERJ
T/OT?\
o
34
24
^4-
3-4
34
34-
34
S4-
34-
"34-
^S"
j;<"
2J
35"
?£
l£
3^
3^
J^
AMBIE
ICE
ETER
ITURE
-^L/
•2,4
3M
-54
•^cj
-2,(|
"5.4
-$f
••^4
•^q
3M
"34
3^
'ji^
34
"34
"5M
•3^
3M
3H
/% -c,
35"
-3S
•^L CT
x? "C^
"^5
^S
3S
"5S
NT TEMP. ; £»{
MEAN
TEMPERATURE
OF Hg COLUMN
M
^"7
^7
hG
&&
&&
^g
6C
fob
&£
t>C
6s"
,//
^6>
i-6
^-±L
31
13
r?
•>4-
7^
24-
A-
• If i '
.1*1
/(ol "
,fc( °
•V1'
.faf "
*^ '
•H
•H p,
-(( *
i»t
,(„{ <
.n '
•^l
.fei '
, fci *
.(.I
.61 '
. y?i •
, tj.
. \fi c
0
d
0
.4*
(/ c
-7=9
A^ '
t Z-
,1/0
CORRECTED TEMPERATURE - Tc = To 4--.OOO09 (To-20)(To-Tm)
TEMPERATURE DIFFERENCE = AT = [(Te»°F ^ •*«<>) " (Tt>°F + 48O) ] X 100 <1 . S%
TC,°P 4- 480
D-30
ENTROPY
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE :<=??•'A" DATE: 2~3-(,~8(/ CALIBRATED BY: "77
MERCURY- IN-GLASS REFERENCE NUMBER: -3O/a*. *r5 (f
AMBIENT TEMP.:
S"
72"
CAJL 1 BRAT ION
SYSTEM USED
fo;//Ji vJ/)tz£-
\
s
j
I
I
i
I
\|/
4-
POTENT I OMETER
I . D . NUMBER
0^<
o 0 ^
o o r"
0/5
0/3.
0/3
oo<
oo^
o d S"
o/3
<9/3
n/3
oo^"
o >""
GO:?"
Or 3
o/3
0/1
0 0"*"
O0 <
o o C"
oo *r
0(1
0' 3
o/3
THERMOCOUPLE/
THERMOMETER
1 .D, NUMBER
;z-r
/i-T
/a~-r
//-J
//-3
//-3
9.7
'?
f-7
30-
/r-sTj
/sr-V'o
//-s-z-
;/-TZ-
//- 5"Z-
6-^
^-4^
*-T*
REFERE^
THERMOS
TEMPERA
TQ (°F)
Z/o
z/«
2-/ o
2,1 o
2./0
2./0
2-/«
2- /O
£/ 0
2,10
2-io
Z-/6
2-lQ
L 2V «»
2^-C
2-10
2,16
z>to
2,10
2-ro
2-^o
2^S
2-fO
^/
//O
//t-
/!-.«
//O
/r -z-
/to
/ae
//c
//^
y zo
//o
IfO
//o
/^.o
/6 C»
fio
, 2,cJ
/o C
//i.
l?.o
IL*
//3-
/z-o
/E.O
//S/
/2.Z-
>I2~
Jt*t
f&
//2^
THERMOCOUPU E /
THERMOMETER
TEMPERATURE
Tt (°P)
2-/6
2^i-
2,/ *f
£/Z--
2,/2—
5./Z—
&Z
2-/J
^f?
2.//
2.t(
2-/0
Zt ^
2-/«/
2./V
^-//
2,^-^—
Z/2^
^5
2.rJ
2,/S
2-/a
2V/
£//.
z./y-
Z./4^
2,/=/
Z,tf
2,1 1
•Z,lf
AT£
,'S '
, IS a
.1-5'
• s ^
,1? °
,|S «;
."^ °,
,^ ^
(3 */
.15 ^
.IS ^
,ts-,
CORRECTED TEMPERATURE • Tc = To 4- .00009 (TO-2O> (To-Tm)
TEMPERATURE DIFFERENCE = AT «= [(Tc,°F + *€0_) - (Tt,°F » *60)] x 100 <_! . S*
j
D-31
ENTROPY
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE : <7?0. f / DATE! 2>~-2 7~o(e CALIBRATED BY! //
MERCURY-IN-GLASS REFERENCE NUMBER;
AMBIENT TEMP.
i.
CALIBRATION
SYSTEM USED
BoiliAk idtJSK-
I
\
r
/
POTENT I OMETER
I.D. NUMBER
oo>"
cor
03 <"
Cd>"
0/3
/5
d3
oo •>
6 OS~
oo$~
of S
<9/2.
o /S
C?6f"
00<"
£)0*f
oil
€3/3
o/3
THERMOCOUPl-E /
THERMOMETER
I.D. NUMBER
^-r
6-5*
^-r
s'-z-
y-z-
F-z-
&-fr
6-6
6-6
^-2-
4-Z
V-2.
4^-3
4^-5
^-3
4-1
4-1
4-(
¥-¥
4-{
4-¥
4-r
4-5
u~~
REFERE>
THERMO*
TEMPER/
TQ (°F)
Z/o
2,/tf
2^o
2-/0
a/
2ve
2-/O
2./O
2^g?
2/0
Z/
2/0
2/O
Zf&
Z-f&
2/O
Z/&
2-/O
2/o
^('c1
Z{0
ZlO
2.10
7*tff
JCE
ilETER
ITURE
Tc (°F)
Z;^
2-\1
r>is^
i/Zx-
tl-Z^
til-
x-z.
t\i.
1\Ts
t-f-z-
Q-/^
2 /t,-
3-1 ?-
%i-^
P-lt.
"Z-I1-
w-z.
1A1^
Z/^-
-Lll-
Irlt^
'Ut'
^\^
m*
MEAN
TEMPERATURE
OF Hg COLUMN
Tm (°F)
/^O
' //^
//tf
/20
//
lib
H(o
J2*
fff*
/^
/ 2-
Z/B
z/s
2of
2-09
Zc?1^
2V
•Z,f
Zf/
2/o
Z-^d
•Z./O
2.«-2-
i/7.
2-tl-
2 if
2-1 f
^//
AT
JS
•f2?',
.15 cf
CORRECTED TEMPERATURE = Tc = To +• . OOOO8 (To-20) CTo-Tm)
TEMPERATURE DIFFERENCE = &T = [(Te/°F
X 100 <^1 .5%
460
D-32
ENTROPY
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURES "2 ?• 4° DATE: c3'c2%-f£ CALIBRATED BY: ' 7/7"
MERCURY-IN-GLASS REFERENCE NUMBER;
AMBIENT TEMP.•
CALIBRATION
SYSTEM USED
r/fT faL^
i
\
\!'
V
POTENT 1 OMETER
I . D , NUMBER
OoT
oo 5"
GO 5""
0/5
0/3
c /3
& o 5"~
OC3 ~>
S>O^T
0/3
o/3
c/i
oo "T
(so r
4/0 /
X/OO
00
vS 9J~"
3 9r'
3?r
4^50
^/62^
*fo{
4/00
A/e3
^/63
3?"?
J1??
jfQQ '
39e7
^oa
•^<3d
AT
|^C,
,1^
. S'
\ -M^
[. S
1-15°
1, S'
1 .15 '
!.^7(
l.S £
.^§
1 • S^
•9Z-
|.f)i/
I .O1^'
I-'?! '
/.(of '
I'M '
| .04'
./ ?
.Oil"*
_l,l34
.(9<9 <:
'b^'5
/- 24?
L<1b
1 .()4
1 -2>
i- 5£
I.D4
CORRECTED TEMPERATURE * Tc = To +• .00009 (To-20) (To~Ta)
TEMPERATURE DIFFERENCE = AT = [ (Tc • °F •*" *«°) "_ (Tt > °F_ + <8 a) J x 100
D-33
ENTROPY
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE ; o?ff <) DATE: o£-o3|'/fo CALIBRATED BY: //"
MERCURY-IN-GLASS REFERENCE NUMBER;
AMBIENT TEMP.; £"£_
3
CALIBRATION
SYSTEM USED
POTENT i OMETER
I . D , NUMBER
THERMOCOUPLE/
THERMOMETER
1 . D . NUMBER
THERMOMETER
TEMPERATURE
T0 C°F)
(°F5
MEAN
TEMPERATURE
OF Hg COI_UM<
THERMOCOUPLE/
THERMOMETER
TEMPERATURE
6
CO?"
/Jo
oof
/ io
V
/It
/Jo
foof
^00
/Jo
/Jo
.
c/5
MM
317
-•3
Vo c,
Ur/i
(P/5
3 ft,
0/3
/3o
*/<>•
0/3
/r-/
4/00
MM
1?,
/r-/
4/Co
60
IT-)
3o
/3
-L/Ofc
¥00
. r
O os
/Zg
i/OQ
oo
.f5
^00
/2.ST
4
Ji.
6/5
CORRECTED TEMPERATURE = TC =» To +• .00009 (TO~ZO) (To-Ta)
TEMPERATURE DIFFERENCE = AT = [(Te>°F +
- (Tt,°F 4- 480)] x 100 51 .5%
:,°F + 460
D-34
ENTROPY
-------
cl
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE: o?^. r ^ DATE: S'S"**' CALIBRATED BY: //
MERCURY-IN-GLASS REFERENCE NUMBER; /
AMBIENT TEMP.;
CALIBRATION
SYSTEM USED
POTENT I OMETER
I . D . NUMBER
THERMOCOUPLE /
THERMOMETER
1 .D. NUMBER
REFERENCE
THERMOMETER
TEMPERATURE
MEAN
TEMPERATURE
OF Kg COLUMN
IHERMOCOUPL E /
THERMOMETER
TEMPERATURE
l.S
DOS
It Ob
- 8
f/00
GfS
4^06
I - L«S
40°!
4*00
4^00
/ 30
.Ul
o o f
9-7
HID
1ID
.2.7
¥00
M/O
tZc
n
mo
- ¥
MID
MO6!
oaf
/i-5"
/So
0/3
MID
/z*
Of 2,
4/Co
CORRECTED TEMPERATURE = T_ = TD 4- . OOOOS (TD-20) (To-Tm5
c •'•o
TEMPERATURE DIFFEREI«*CE <• AT = [{Tci°F 4- 460) - (TtrOF + *6P) ] x 100
PC.
TC,°F + 460
ENTROPY
-------
PRESSURE:
TZMPSHATUEE SENSING EQUIPMENT CALIBRATION DATA
-/7 DATE: 3 ~/-|6 CAL. IBRATEO BY: "7T
MERCURY-IN-GLASS .REFERENCE NUMBER;
AMBIENT TEMP.;
CAJL I BRAT I ON
SYSTEM USED
i OMETER (
1,D. NUMBER
JT-JERMOCOUPS.
JT-ERMpMETER
I.O. NUMBER
REFERENCE
THERMOMETER
TEMPERATURE
MEAN
TEMPERATURE
OF Hg COLUMN
:QUPLS/
far
00
4
ft [ T
/eo
03RRECTED TEMPERATURE - T,. - T0 - -.OOOOS (To-20) (TO-T.
a -*m
MRERATURE DIFFERENCE = iT
460
X tOO < t
ENTROPY
-------
TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
PRESSURE: ___c2__J,_ ...... / " ................... BATE: 3~ I T"/ £ CALIBRATED BY:
*ERCURY- IN-SLASS .REFERENCE NUMBER ;
AMBIENT TEMP. ;
CALIBRATION
SYSTEM USED
POTENT 1 QMETER
1 . Q . NUMBER
(THERMOCOUPLE/)
THERMOMETER
D
NUMBER
REFSRENCS
THERMOMETER
TEMPERATURE
MEAN (THERMOCOUPLE/
TEMPERATURE /JTHERMOMS
OF Hg COLUMN I TEMPERATURE
AT8
3-0
-Z-/-Z-I I/O
2/1
,/S%
2./2-I //Q
¥5%
6Z?
3-0
1 2- i if a
— CORRECTED TEMPERATURE « Tc » To 4- -.00009 (TQ-20) (To-Tm)
1PERATURE DIFFERENCE
- fTt>°? ^
-J. ^ 4SO
X 100 .
ENTROPY
-------
TEMPSKATUKE SENSING EQUIPMENT CALIBRATION DATA
—COMETH 1C PRESSURE i a? f- / °l DATE: ^'/V'fa CALIBRATEO BY: V/ "
MERCURY. IN-GLASS .REFERENCE NUMBER:
AMBIENT TEMP. : *7 0
CALIBRATION
SYSTEM USED
POTENT1OMETER(
I.D. NUMBER
THERMOMETER
1 . D . NUMBE
R^
REFERENCE
THERMOMETER
TEMPSRATURE
MEAN
frHERMOCOUPU S /
TEMPERATURE /frHERMOMETER
OF Hg COLUMN(
TEMPERATURE
7o
33
CORRECTED TEMPERATURE » TP » TQ -P-.QOOOS (T--ZO) (T0-T_)
•"MPSRATURE DIFFERENCE
-C' -
450
D-38
ENTROPY
X 100 <1 . 3*
-------
PITOT TUBE INSPECTION DATA SHEET
Pre7 sample
•" ' Date •
Post Sample
0
0
•6°
0
t>
Date
level?
obstructions?
damaged?
-10°. < a! < +10° .
-10° < az < +10°
-5° < Bi < +5°
-5° < 82 < +5°
Y
8
A
1.05 Dt < Pa < 1-5 Dt
1.05 Dt < Pfa < 1.5 Dt
3/16" « Dt * 3/8"
A tan 7 < 0.125"
A tan 6 < 0.03125"
Pa - Pfa ± 0.063"
Comments:
^i
. __._.,„ r r — \ meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84. /?
/M^
Signature
Date
•Sec 40 CfS 50, Vol. 42, Ho. 160, Hethod 2. Verify the mini
Z Inch setback of the tfiermocouale and the minimum 3/4 inch
*epjr*tton between the pitot tube *n
-------
PITOT TUBE INSPECTION DATA SHEET
Pre-sample
• - ' JDate
Post Sample
Date
All
level?
obstructions?
damaged?
-10°.< Ol < -HO0 -
-10° < 0.2 < 410°
-5° < Bi < +5°
-5° < 02 < +5°
T
8
A
1.05 Dt < Pa < 1-5 Dt
1.05 Dt < Pfa < 1-5 Dt
3/16" '< Dt * 3/8"
A tan y < 0.125"
A tan 6 < 0.03125"
Pa = Pfa ± 0.063"
Comments:
! certify that pi tot tube/probe number
meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84. ,
Signature
Date
*Set 40 CfJ SO, Vol. 42, He. 160, Method 2. Verify the minimum
2 inch setback of the thentiocouole and the minimum 3/4 inch
separation between the pilot lube »nd the nozzle *s shown it
the top of this page.
D-40
ENTROPY
-------
PITOT TUBE INSPECTION DATA SHEET
- - -
fi**"ac9u«u -— - — ^^ !
| ~TS[ "^«- 1 *-"
r~T~" i J-
X - (CO) i '" '••
1 i r wwuw wmt \S-y-J —
U t \ •*. »i
~ s^ _>u - i i
r-Tn ^ ^^\ .
I j — - - - ; c" ^- \ I
0Si h r~" ""^-ok i*
no u»«r ntsiuif oroiw IUM w i*c »iref DM I 1
j f * ~f$?\ ' , ITT/ * ~/ff*
g=p=^.X'; (ff/ ) \W /HY I
^^"^"^^ I \\ V \ m III i V\\ 1
'•« B»fI^»i«iPV Y ?»*• C*1(H^'?IM£ I KCIH IM*iCJTtMC ilWU
feKtflM PM WltU«l«iM« •
Jl-i
yl 4
A ^xL-y
^) \J .^'V y^A
E> V
»te*fr i*«ic*ri»4 s.t*tt
& ^X^ ^- ^>— M
« _>rC- ^-^ '
Prejsam
Date ?//f /
?le Post Sample •
^^ Date
/ ^
^53"
/^fe
f^d
0'
1°
0°
0°
0°
0°
.7ff
/ 35f
.77$"
£3J2f
0
0
Jg%
level?
obstructions?
damaged?
-10°. < 0! < +10° -
-10° < 0.2 < -i-l 0°
-5° < Si < +5°
-5° < 82 < +5°
Y
8
A
1.05 Dt < Pa < 1-5 Dt
1.05 Dt < Pfa < 1.5 Dt
3/16" <: Dt * 3/8"
A tan T < 0.125"
A tan 8 < 0.03125"
Pa * Pfa + 0-063"
Mu« .....»»« urn ft....* '
Comments ;
.--. -
I certify that pitot tube/probe number L^ ' meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84. ,
Signature j^V^CC^ l^&Vifa •
Date /1{#A^/L~ j///(-L
'See 40 CFa 60, Vol. 42, No. 160. Method 2. Verify the winiwum
2 inch setoack of the thermocouple and the minimum 3^4 incft
separation between the pitot tube »nd the nozzle »» shewn it
the top of this page.
D-41 .
ENTROPY
-------
PITOT TUBE INSPECTION DATA SHEET
Pre-sample
- ' - ' 'Date
Post Sample
•"&"•—•"
Date
.375
level?
obstructions?
damaged?
-10°.< a! < +10°
-10° < a2 < +10°
-5° < 61 < +5°
-5° < B2 < +5°
Y
6
A
1.05 Dt < Pa < 1.5 Dt
1.05 Dt < Pb < 1-5 Dt
3/16" ^ Dt ^ 3/8"
A tan i < 0.125"
A tan 6 < 0.03125"
Pa = Pfa ± 0-063"
Comments:
I certify that pi tot tube/probe number
-Z--4-
meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84.
Signature
Date
*Se* 40 CFS~60,~ilol7~42, Ho. 16D. Hethod 2, Verify the »iniimjm
2 Inch setback af the thermocouple »nd the minimum 3/4 inch
separation between the pitot tube and the nozzie as shown at
the top of this page.
D-42
ENTROPY
-------
PITOT TUBE INSPECTION DATA SHEET
j Pre.-saiipl!
' " """ "" !
Date
Post Sample •
Date
i
^
«00 -
^
/'
I3
r
r
e
o<
•^
-45-7
.4ifc>
,375
ft. 016
f) -
fo
level?
obstructions?
damaged?
-10°. < Ol < +10°
-10° < o2 < +10°
-5° < Qi < +5°
-5° < 82 < +5°
Y
8
A
1.05 Dt < Pa < 1-5 Dt
1,05 Dt < ?b < 1.5 Dt
3/16" •% Dt * 3/8"
A tan Y < 0.125"
A tan 6 < 0.03125"
Pa s Pb ± Q.063"
i
i
i
Comments:
I certify that pitot tube/probe number i*f / meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84,
Signature '
Date
*iee 40 '£'"5 60, Vol. 42, Ho. 150, Method 2. Verify the minimum
2 Inch setwck of the thermocouple and the minimum 3/4 inch
separation Bet***n the pi tot tube and the nozzle is shown at
the top of this p*ge.
D-43
ENTROPY
-------
PITOT TUBE INSPECTION DATA SHEET
iwBpocount ___-M-^--w^> i
L^a _^*-"**" * ~
A 1- (CTP "•
I \ i' yw.l*C NQnif V*r>' — *~—
^ 1. > s>~~~~^,[
t p 1 ^ ^^/\ '.
1 * ; -•- ,_ _ -^-^.-V-! | -t
I ,) _ B t~~ ^>^ *" '
tfcf IMfJtCT l>niSW| OrCMlME n.*W Of t!MC »ITOT TUIl I
$MMi If t*U MUM 01 MOift T^ KJIILE CM'** »^M( . '
tf .H ^ ^
9* afttiiMtHiM t ttw» C*fctVL*riM« 1 MM(f *>OiC4tiHe ifvft
* ' POSIfiOM fOi OttllutlNtMi «
"0 V_ ^X ft , m_ -— -^t,,,, ^
y X
C ^/\~~r
a ^ -. j^X. — ^Jf>
^ — }^£2(
rf~j- -t*' ( — "" '..!*!
ft ^S*-*.. ^BiiiiS
^ ^>-|T ^~"
?/ I 4 1 ff(L
Date ^ ) 7//T i Date
•
yo>
M5
Ut?
A ^
/'
/v|
/V
0'
0"
0^(1 Q
- ^93
. ^7fo
level?
obstructions?
damaged?
-10°. < ai < +10°
-10° < az < +10°
-5° < 61 < +5°
-5° < B2 < +5°
T
6
A
1.05 Dt < Pa < 1.5 Dt
1.05 Dt < Pb < 1-5 Dt
3/16"
-------
PITOT TUBE INSPECTION DA.TA SHEET
7H£ IMPACT PRESSURE OPCNtWC Pi^ANC Or THE F*YX3T TUBC
SMALL BC EVCH WITH Q* ABOVE TNC NOZZLE CKTRY Ft-ANC.
level?
obstructions?
damaged?
o o
-10 < a < 4-10
0 0
-10 < a < +10
-5° < 8, < +5°
-5° < S2 < +5°
Y
6
A
1.05 D.
-------
PITOT TUBE INSPECTION DATA SHEET
Pre-sample
Date
Post Sample
A/o
AJG
,77%
• 39%
. 3f o
•376
Date
level?
obstructions?
damaged?
-10° < cii < +10°
-10° < a2 < +10°
-5° < Bi < +5°
-5° < 62 < +5°
Y
6
A
1.05 Dt < Pa < 1.5 Dt
1.05 D+ < Pb < 1-5 Dt
3/16" '< Dt '< 3/8"
A tan y < 0.125"
A tan 6 < 0.03125"
Pa " Pfa 1 0.063"
Comments:
I certify that pi tot tube/probe number
meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84.
Signature
Date ///f/W
•See 56 CfS 60, Vo"!.' 42, No, 160. Method 2. Verify the minimum
2 inch setDaek of the therrocauole and the minimum 3/4 inch
sep»ration between the pitot tybe and the nozzle is slrown at
the top of this page.
D-46
ENTROPY
-------
PITOT TUBE INSPECTION DATA SHEET
Pre-sample
Date
Post Sample
AJo
A/o
-375"
Date
level?
obstructions?
damaged?
-10° < 01 < +10°
-10° < a2 < -HO0
-5° < Bi < +5°
-5° < 82 < +5°
Y
1.05 Dt < Pa < 1.5 Dt
1.05 Dt < Pb < 1-5 Dt
3/16" "< Dt '< 3/8"
A tan Y < 0.125"
A tan 8 < 0.03125"
Pa = P ± 0.063"
Comments:
I certify that pitot tube/probe number -jT meets or exceeds all
specifications, criteria and/or applicable design features*and is hereby
assigned a pitot tube calibration factor of 0.84.
Signature
Date
*iee""40 CrR SO, Vo'i. 12, No. 160, Method 2. Vtrify Che minimyu
2 inch setbacs of the thermocouple and the minimum 3/4 inch
separation between the pilot tube and the nonle as shown at
the top of this page.
D-47
ENTROPY
-------
Dry Gas Heter Identification: | O | "7.O _5""7 Calibration by:
Date:
•Date:
Barometric Pressure (P|j)
"Barometric Pressure
in.
in. Hg
IMTBOPY
Approx .
Flow
Rate
(Q)
cfm
Spirometer
Gas
Volume
-------
C ' . ' ' ' ' ' ' fe1 • • • ' i . y
Dry Gas Meter Identification: lOl'70'Sl Calibration by:
Date: 2—" '/• &L&
"Date :
Approx .
Flow
Rate
(Q)
cfm
1
\. Llo
Barometric Pressure (
"Barometric Pressure (
Spi rometer r+ Z-*5O2~
Gas
Volume
l-l.'aSSI
!CL,3p_iq
I a.T-S'L.o
H. "3M43*
14.1-^0!
IM. 3^y i
Temp.
(ts)
°F
11
11
11
11
*r**t *™*l
"™ *H ~Tf
Ph): ^-ST" in. Hg
•••M NITROPV
. ]lHMNVinONIV1EIMTAUBT8,IIMC,
Ph> = in. Hg
Pry (l;iy llcitc.-r
Gas
Volume
ft*
I-JL. ni^
1^.156
»-^-.lzq
m.^^
IH.°*»9
IM.H^-4
Temp.
°F
7b
-70
It*
7U
1L.
16>
\ *
Y^
\f\ <*
"
Pressure
(Ap)
in. H2O
- S.3-
~S.->-
^S.u-
-u.g
-t.«i
-U^
, i
? V-
Time
(0)
min.
/i). 0
/£>•£>
/O.D
/l).D
JO.O
J 0,0
Flow
Rate
(Q)
cfm
i.jqs-i.
l,lAHci
i. 1^14
».^<1lO
l.^^t
i.-i^n
9 /?*/)
Meter
Meter
Coeff .
l).^!!/
o.))
(tn *
(9)
-------
CALIBRATION BY: m^J<-
DATE : <^.-f3 "" £"
&_
"DATE:
STANDARD METE
R NUMBER;
NOMINAL
FLOW
RATE
CFM
BAROMETRIC PRESSURE (P
•BAROMETRIC PRESSURE (P
*
/0/7DS7 COEFF
STANDARD DRY GAS METER
CAS
VOLUME
FT 2
4-.Z4&
4-.2S7
<8.3^>
9.350
7^,503
/2.£S£>
_r"-.—'"T
. T .... 4tOS . f
^* T * (x - 4*0) • ?5 "** ^*^
) : IK. HG
IC1ENT {
Y }• /
DD1-0
METER SOX METERING SYSTEM
OR 1 F 1 CE
SETTING
( AH)
JN.HjO
O.50
CAS
VOLUME
FT*
4-.3/^T
TEMP.
I'D )
°F
7fe
O.SD \4-,3'3e3\"7L,D
10. 0 \2.fO
/D.D
£.-474-
2. /O 16,4^^
IQ.b \4-.9>0 \12.L,^I
10. D
4r9D
tzntsz
I
Boe
05"
i^{7
~3.DC>%>
\p32BB\L. IB (
0.&24&\£s,.l$8>
1.244-f
1.2A2S
^3*57
<3.
-------
Meter Box Number
: MS"
Calibration by:
|