>vEPA
           United States
           Environmental Protection
           Agency
           Office of Air Quality
           Planning and Standards
           Research Triangle Park NC 27711
EMB Report 86-CEP-1
March 1986
           Air
Chromium
Electroplaters
Test Report

Greensboro
Industrial Platers
Greensboro,
North Carolina

-------
             EMISSION TEST REPORT
        GREENSBORO INDUSTRIAL PLATERS
          GREENBORO, NORTH CAROLINA
                  ESED 85/02
              EMB NO. 86-CEP-01
                 Prepared By
       ENTROPY ENVIRONMENTALISTS, INC.
            POST OFFICE BOX 12291
RESEARCH TRIANGLE PARK, NORTH CAROLINA  27709
           CONTRACT NO. 68-02-4336
         WORK ASSIGNMENT NOS. 3 and
              PN:  3503 and 3505
               EPA TASK MANAGER
                  FRANK CLAY
     U.S. ENVIRONMENTAL PROTECTION AGENCY
         EMISSION MEASUREMENT BRANCH
 EMISSION STANDARDS AND ENGINEERING DIVISION
RESEARCH TRIANGLE PARK, NORTH CAROLINA  27711
                 OCTOBER 1986

-------
document  Information
                                                    Page
Document Number;
0
                                 Expiration Date: 12/31/99
   Document Title:  NESHAPS Development Chromium and Particle Sizing Emissions
                    Testing - Greensboro Industrial Platers,  Greensboro,  North
                    Carolina
    Program/Organization:
   1  EPA/EMB
                                                        Publication Date:
10/01/86
    EMB Test Report Number:
             Industry Code:

    Document Code:
    Pollutant Code:
    Source Code:
 86-CBP-01
 CEP   Chromium Electroplating

  92   Tests  to Support NESHAPS Standard-Setting
  14   Chromium
 269   Chromium Electroplating
    Contact:
    Telephone:
    Author:
    Telephone:
FRANK CLAY
(919)541-5236
ENTROPY ENVIRONMENT.  NA
    Description (Method,  Pollutants,  etc.):
       EPA Methods 1-5 & Method 13-EMB Contract No.  68-02-4336;  W.A.  No,  385

   Abstract:

        A testing  program was  conducted at the Greensboro Industrial Platers facility in
        Greensboro, North Carolina on the No. 6 hard chromium plating tank whose
        emissions  are  controlled by a mist eliminator.

        The  purpose of this  program was to provide data to support a possible chromium
        standard under the National Emissions Standards for Hazardous Air Pollutants
        (NESHAPS).

        The  chromium  (total  and hexavalent) mass emission rate tests and chromium
        particle size  distribution tests were conducted at the inlet and outlet of the
        No.6 plating tank chevron-blade mist eliminator.  In addition to the testing for
        possible emissions standard setting, several series of paired sample train test
        runs were  conducted  to evaluate Method 13-type "impinger train" sampling train
        for  use in a potential reference method for collecting and measuring hexavalent
        and/or total chromium  emissions.

        RESULTS FOR IMPINGER TRAIN TESTING:

        The  uncontrolled  emissions from the tank averaged 0.057 Ib/h of hexavalent
        chromium and 0.064 Ib/h total chromium.

        The  controlled emissions averaged 0.007 Ib/h of hexavalent chromium and 0.008
        Ib/h of total  chromium.

-------
document Information                                                    Page
    Document Number:         0     Expiration Date;  12/31/99

    Document Titles   NESHAPS Development  Chromium  and Particle Sizing Emissions
                     Testing -  Greensboro Industrial Platers, Greensboro, North
                     Carolina
        The resulting collection efficiency on a mass emission rate  basis  was  87,1%
        for hexavalent chromium and 86.8% for total chromium.

        PARTICLE SIZE DISTRIBUTION RESULTS:

        Particle size distribution tests showed that about  25% by weight of  the
        uncontrolled emissions were greater 10 um and about 36% by weight  of the
        controlled emissions were greater than 10 um.

        In conclusion:

        The methods evaluation tests demonstrated the impinger train quantitatively
        collects both the hexavalent chromium and total chromium with an average  of
        99.9% of emissions being collected prior to the backup filter.

        As a result of quantitative removal of all the chromium by the impingers,  the
        backup filter would not be required in the sampling train.

        The use of a Method 5 (front filter)  type train for chromium emissions at this
        level showed some low bias, but would not be considered acceptable for a.
        reference method.

        The tests on the impinger train to detect possible  conversion of the hexavalent
        chromium during and after sample collection,  indicated that  some conversions may
        take place during testing when distilled water is used in the impingers.   No
        significant conversion was evident over time after  the sample was  collected.
        Therefore, the impinger reagents should be 0.1N NaOH or equivalent to  fix the
        sample immediately upon collection.

        Based on the results of the paired trains evaluation,  the sampling and
        analytical method has a precision similar to that of EPA Method 5  and  would be
        considered suitable for consideration as the reference method.

        Refer to the report for additional data and results.

-------
                                    CONTENTS

                                                                     Page

Figures ,                                                             iv

Tables                                                                v

1.0  INTRODUCTION                                                    1-1

2.0  PROCESS OPERATION                                               2-1

     2.1  Process Description                                        2-1

     2.2  Air Pollution Control                                      2-1

     2.3  Process Conditions During Testing                          2-4

3.0  SUMMARY OF RESULTS                                              3-1

     3.1  Hexavalent Chromium and Total Chromium                     3"3
          3.1.1  Mist Eliminator Inlet                               3-3
          3.1.2  Mist Eliminator Outlet                              3-4

     3.2  Emissions in Units of Process Rate and Control             3"7
             Equipment Collection Efficiency
          3.2.1  Emissions in Units of Process Rate                  3~7
          3.2.2  Control Equipment Collection Efficiency             3-9

     3-3  Particle Size Distribution                                 3-9

     3.4  Analysis of Chrome Plating Solutions                     .  3~9

     3.5  Summary of Analytical Results for Hexavalent and           3-13
           Total Chromium

     3-6  Summary of Evaluations and Results for Methods             3~13
           Development Test
          3.6.1  Sample Train Collection Efficiency and              3-20
                  Evaluation of Hexavalent Chromium Conversion
                  to Trivalent Chromium
          3.6.2  Evaluation of the Method 5 Sample Train for         3-23
                  Collection of Chromium
          3.6.3  Methods Evaluations Conclusions                     3-25
          3.6.4  Summary of Analytical Results for Methods           3-25
                  Evaluation Runs

4.0  SAMPLING LOCATIONS AND TEST METHODS                             4-1

     4.1  No. 6 Plating Tank Mist Eliminator Inlet                   4-1
           (Test Location A)

     4.2  No. 6 Plating Tank Mist Eliminator Outlet                  4-5
           (Test Location B)

                                       ii

-------
                              CONTENTS (continued)

     4.3  No.  6 Plating Tank Mist Eliminator Wash Down               4-8
           Drain Pipe (Test Location C)

     4.4  No.  6 Plating Tank Anode,  Cathode, and Bath Solution       4-8
           (Test Location D)

     4.5  No.  6 Plating Tank Rinse Tank (Test Location E)            4-8

     4.6  No.  5 Plating Tank Exhaust (Test Location F)               4-8

     4.7  Velocity and Gas Temperature                               4-10

     4.8  Molecular Weight                                           4-10

     4.9  Sampling Trains                                            4-10

     4.10 Hexavalent Chromium Content                                4-11

     4.11 Total Chromium Content                                     4-11

5.0  QUALITY ASSURANCE                                               5-1


APPENDICES

     A    TEST RESULTS AND EXAMPLE CALCULATIONS                      A-l

          Hexavalent Chromium and Total Chromium                     A-3
          Example Calculaitons                                       A-7
          Particle Size for Hexavalent Chromium and Total            A-90
            Chromium

     B    FIELD AND ANALYTICAL DATA             ,                     B-l

          Chromium Field Data                                        B-3
          Particle Size Distribution Field Data                      6-56
          Moisture Catch Analysis                                    B-59
          Chromium Sample Inventory                                  B-72
          Hexavalent and ICP Chromium Analysis                       B-83
          NAA Total Chromium Analysis                                B-91

     C    SAMPLING AND ANALYTICAL PROCEDURES                         C-l

          Determination of Hexavalent Chromium Emissions             C-3
          Determination of Total Chromium Content                    C-15
          Determination of Particle Size Distribution                C-21
          Methods Development - Variations in Sampling; Train         C-25
           Configuration, Sample Recovery, and Sample Analysis

     D    CALIBRATION AND QUALITY ASSURANCE DATA                     D-l

     E    MRI PROCESS DATA                                           E-l

     F    TEST PARTICIPANTS AND OBSERVERS                            F-l
                                      111

-------
                                   FIGURES

Number                                                               Page

2-1     Schematic Diagram of Hard Chromium Plating Tanks at
        Greensboro Industrial Platers                                2-2

2-2     Schematic of Exhaust System for Tank 6                       2-5

3-1     Graphic Summary of Particle Sizing Data                      3~10

4-1     Process Air Flow Schematic, No. 6 Plating Tank and Control   4-2
        Equipment Showing Test Locations

4-2  •   Mist Eliminator Inlet (Test Location A)                      4-4

4-3     Cross Section of Mist Eliminator Inlet Showing Locations of  4-6
        Six Points Traversed On Axis Perpendicular To Single Point
                                 <
4-4     Mist Eliminator Outlet Stack (Test Location B)               4-?

4-5     Exhaust Duct on No. 5 Plating Tank (Methods Development      4-9
        Test Location E)

C-l     Method 13-Type Impinger Train                                C-4

C-2     Andersen Mark III Cascade Impactor Loading Sequence          C-23

C-3     Sample Splits for Train #2                                   C-26
                                      IV

-------
                                    TABLES
Number                                                               Page

2.1    Dimensions and Operating Parameters of Hard Chromium
       Plating Tanks 5 and 6 at Greensboro Industrial Platers        2-3
2.2    Average Operating Parameters Recorded for Four Emissions
       Source Test Runs on Tank 6                                    2-7

2,3    Total -Current Supplied to Tank 6 During Four Emissions
       Source Test Runs                                              2-9

3.1    Testing Schedule for Greensboro Industrial Platers            3~2

3.2    Summary of Flue Gas Conditions                                3"5

3 . 3    Summary of Hexavalent Chromium and Total Chromium Emissions   3~6

3.4    Summary of Emission Rates in Units of Process Rate and        3~8
       Efficiency

3-5    Summary of Particle Size Distribution                         3~H

3,6    Summary of Chrome Plating Solutions for Tank No. 6            3-12

3-7    Summary of Analytical Results for Hexavalent Chromium and     3~1^
       Total Chromium

3.8    Summary of Flue Gas Conditions                                3-17

3-9    Summary of Hexavalent Chromium and Total Chromium Emissions   3~19

3.10   Sample Train  (Impinger) Collection Efficiency                 3-21

3-11   Evaluation of Hexavalent to Trivalent Chromium Conversion     3-22
       Both During and After Sample Collection

3.12   Method 5 Type Sample Train Collection Efficiency and          3-24
       Comparison With Impinger Type Sample Train

3.13   Method 5 Type Sample Train Collection Efficiency and          3-26
       Comparison With Impinger Type Sample Train

3.14   Summary of "A" and "B" Train Analytical Results for           3-27
       Helavalent and Total Chromium

4 . 1    Sampling Plan for Greensboro Industrial Platers               4-3

5-1    Field Equipment Calibration                                   5-2

5-2    Audit Report Chromium Analysis                                5-3

C . 1    Summary of Sampling Trains Used                               C-28

-------
                               1.0  INTRODUCTION


    During the weeks of March 17 and 24, 1986, Entropy Environmentalists, Inc.

conducted an emission measurement program at Greensboro Industrial Platers'

facility located,in Greensboro, North Carolina.  The purpose of this program

was to provide data to support a possible chromium standard under the National

Emissions Standards for Hazardous Air Pollutants (NESHAPS).

    Comprehensive testing was conducted on the No. 6 hard chromium plating tank

whose emissions are controlled by a mist eliminator.  This source was selected

for source sampling for the following reasons:


     •    The plant is representative of a medium-sized job shop that
          performs hard chromium electroplating.  Hard chromium plate is
          applied to textile, hydraulic, woodworking, end laundry machinery
          parts.  Also, based on operating parameters such as current,
          voltage, plating time, and chromic  acid concentration, the plating
          tank selected for testing appears to be typical of other hard
          chromium plating tanks in the electroplating industry.

     *    The plating tank is large and operates at relatively high
          workloads.  A substantial amount of chromic acid mist is evident
          across the entire surface of the plating bath when operated at full
          capacity.  Although polypropylene balls are added to the bath, they
          are used primarily to retain heat and have only a minor effect on
          reducing misting.  Chemical fume suppressants are not used in  the
          bath to control misting.  These factors assure an adequate emission
          sample to characterize the uncontrolled emissions and the
          performance of the mist eliminator.

     •    The emission capture system applied appears to be effective in
          directing fumes from the plating tank to the control device.   The
          tank is equipped with two-sided lateral exhaust hoods that have
          2-inch slots.  An induction fan pulls a total of 226 cubic meters
          per second  (7,970 cubic feet per minute) of air through the exhaust
          hoods.  The ventilation rate of the exhaust hoods is 39 cubic
          meters per minute per square meter  (126 cubic feet per minute  per
          square foot) of liquid surface.

     *    The mist eliminator appears to be well-maintained and -operated.
          The chevron-blade mist eliminator is typical of the
          impingement-type mist eliminators in use at other hard chromium
          plating facilities.  The mist eliminator is washed down on a
          routine schedule to ensure proper operating performance.
                                      1-1

-------
     *    The design operating parameters of the mist eliminator includes a
          gas flow rate of 283 cubic meters per minute (10,000 cubic feet per
          minute) and a pressure drop of 0.89 kilopascals (3-5 inches of
          water column),   The mist eliminator is made of polyvinyl chloride
          and contains 31 chevron-blades spaced 3-18 centimeters (1.25
          inches) apart.   The curl on the front of the blades is 0.36
          centimeters  (0.38 inches) long.

     Hexavalent chromium and total chromium concentrations were measured at
the inlet and outlet of the mist eliminator serving the No. 6 plating tank.
The measurements were made to characterize the capability of the mist
eliminator for controlling chromium emissions from chromium electroplating
facilities.  Additional measurements were made at the No. 5 plating tank
exhaust for methods development.  Testing was performed using U.S.
Environmental Protection Agency (EPA) Reference Method 5 procedures and a
Method 13-type impinger train*, and the alternate sample preparation and
analytical procedures  described in Appendix C.  Flue g€is flow rates,
temperature, and moisture content were measured in conjunction with the
chromium testing.
     Mr. Randy Strait  [Midwest Research Institute (MRI)] monitored the
process operation throughout the test period.  Mr. Frank Clay (EPA Task
Manager) of the Emissions Measurement Branch  (EMB) and Mr. Al Vervaert of  the
Industrial Studies Branch (ISB) observed the  test program.  Mr. Robert Hester
served as the contact  for Greensboro Industrial Platers.
     This report is organized into several sections addressing various
aspects of the testing program.  Immediately  following this introduction is
the "Process Operation" section which includes a description of the process
and control device tested.  Following this is the "Sumaary of Results"
section which presents table summaries of the test data and discusses these
results.  The next section, "Sampling Locations and Test Methods" describes
and illustrates the sampling locations used for emissions testing and then
explains the sampling  strategies used.  The final section, "Quality
Assurance," notes the  procedures used to ensure the integrity of the sampling
program.  The Appendices present the Test Results and Example Calculations
(Appendix A); Field and Analytical Data  (Appendix B); Sampling  and Analytical
Procedures  (Appendix C); Calibration and Quality Assurance Data (Appendix  D);
MRI Process Data  (Appendix E); and Test Participants and Observers
(Appendix F).
 ^3 Federal Register  11984, 3/23/78  (Method 5) and 43 Federal Register
 6/20/80  (Method 13).
                                      1-2

-------
                          2.0  PROCESS OPERATION
2.1  PROCESS DESCRIPTION
     The Greensboro Industrial Platers plant is a medium-sized job shop
that performs hard chromium electroplating of textile, hydraulic,
woodworking, and laundry machinery parts.  Hard chromium plating of these
parts provides a wear-resistant surface and protection from corrosion.
The plant also performs decorative chromium plating with a trivalent bath
as well as copper and cadmium plating.  The plant has been operated since
1955 and presently employs 22 workers.  Operating hours are 10 hours per
day, 4 days per week.
     The hard chromium plating facility consists of six tanks, arranged as
shown in Figure 2-1.   Based on size; operating parameters such as
current, voltage, and plating time; and chromic acid concentration, all
six tanks are typical of other hard chromium plating tanks used in the
electroplating industry.  The dimensions and operating parameters for
Tanks 5 and 6, which were the only tanks at which tests were conducted,
are presented in Table 2-1.  The plating solution used in the six tanks is
a conventional chromic acid solution containing about 255 grams of chromic
acid per liter (g/fc) (34 ounces per gallon [oz/galj) of plating solu-
tion.  About 454 kilograms (1,000 pounds) of chromic acid are consumed per
month.  Sulfuric acid in a concentration of about 2.55 g/a (0.34 oz/gal)
of solution is added as a catalyst.
     During plating, chromium is deposited at a rate of about
0.025 millimeter (0.001 inch [in.]) per hour or 1 mil per hour, which
requires a current density of approximately 0.35 amperes per square
centimeter (2.25 amperes per square inch) of surface area plated.  As much
as 10 to 12 mils of chromium are deposited on some parts.
2.2  AIR POLLUTION CONTROL
     Two lateral exhaust hoods are installed on each side of Tank 5.  The
hoods are approximately 1.7 meters (m) (5.7 feet [ft]) in length and
contain six slots each.  The slots are 27 centimeters (cm) (10.5 in.) in
length and 5 cm (2 in.) in width.  The two hoods on each side of the tank
are spaced 7.6 cm (3 in) apart at the center of the tank.  The gas flow
rate for the entire ventilation system was not measured during the test.
                                    2-1

-------
 HOOD ON
 BACK
 SIDE OF
 TANKS
 ONLY
            TANK
             4
TANK
 3
           TANK
            2
               RINSE
               TANK
               (H20)
                                           	,
                                         TANK
                                          6
                                                HOODS ON TWO
                                                SIDES OF TANK

TANK
i™
ME
J
i h
— 1 5
                                                 HOODS ON TWO
                                                 SIDES OF TANK
Figure 2-1.   Schematic diagram of hard chromium plating
         tanks at Greensboro Industrial  Platers,
                           2-2

-------
                     TABLE 2-1.   DIMENSIONS AND OPERATING PARAMETERS OF HARD  CHROMIUM  PLATING

                                  TANKS 5 AND 6 AT GREENSBORO INDUSTRIAL PLATERS
ro
i
CO
Tank Mo.
5
6
j|l = length,
Dimensions
0. w, d)a
m (ft)
3.6, 1.2, 1.8
(11.8, 4, 6)
6.4, 0.9, 1.8
(21, 3, 6)
w = width, d =
Capacity, Voltage,
n (gal) volts0
8,020 15
(2,120)
10,710 15
(2,830)
depth.
Constituents,
Current- Method g/si (oz/gal)
amperes fC of cooling Cr03
10,000 Water 255
(34)
8,000 Water 255
(34)

H2SOH
2.55
(0.34)
2.55
(0.34)

^Direct current.

°Cr03 = Chromic add, H2SOM = sulfuric acid.

-------
The National Institute for Occupational Safety and Health conducted a
study of the ventilation system installed on Tank 5 in November 1981 and
measured the gas flow rate to be 332 actual cubic meters per minute (acmm)
(11,730 actual cubic feet per minute [acfm]) and the ventilation rate to
be 74 acmm per square meter (/m ) (240 acfm per square foot {/ft ]) of
surface area.   Only one of the exhaust hoods on Tank 5 was tested for the
test methods development phase of the test program.  The sampling location
is described in Section 4.6 of this report.
     A schematic of the exhaust system for Tank 6 is shown in Figure 2-2.
Two lateral exhaust hoods are installed on each side of Tank 6.  The hoods
are approximately 3.1 m (10.3 ft) in length and contain 12 slots each.
The slots are 27 cm (10.5 in.) in length and 5 cm (2 in.) in width.  The
two hoods on each side of the tank are spaced 7.6 cm (3 in.) apart at the
center of the tank.  The gas flow rate through the hoods is 225 acmm
(7,970 acfm), and the ventilation rate 1s 39 acmm/in  (126 acfm/ft ) of
surface area.
     Emissions that are captured by the exhaust system are vented to a
chevron-blade mist eliminator suspended from the ceiling of the plating
shop.  The mist eliminator was manufactured and installed by KCH Services,
Incorporated, in 1980.  The design operating parameters of the mist
eliminator include a gas flow rate of 283 acmm (10,,000 acfm) and a
pressure drop of 0.19 kilopascals (kPa) (0.75 inches of water column [in.
w.c.]).  However, the gas flow rate to the mist eliminator was 226 acmm
(7,970 acfm) and the pressure drop was 0.02 kPa (Q.,1 in. w.c.), during the
mass emissions tests.  The mist eliminator is made of polyvinyl chloride
and contains 31 chevron blades spaced 3.18 cm (1.25 in.) apart.  The curl
on the front of the blades is 0.96 cm (0.38 in.) in length.  The chevron
blades are arranged to change the direction of gas flow four times at 30°
angles.  The mist eliminator is periodically washed with water, and the
wash water drains into the plating tank.
2.3  PROCESS CONDITIONS DURING TESTING
     Emission testing was conducted at the inlet and outlet of the mist
eliminator on Tank 6 to characterize the performance of the mist
eliminator and uncontrolled emissions from the hard chromium plating
                                    2-4

-------
              STACK
i
en
                          MIST
                        ELIMINATOR
                                                                        —  21 ft  —
                                                                       PLATING TANK NO.  6
                               Figure 2-2.  Schematic of  exhaust  system for Tank 6.

-------
tank.  The process was operating normally during the test.  Process
operating parameters such as the voltage, current, and temperature were
monitored and recorded during each test run.  Descriptions (dimensions and
surface area) and plating requirements (current and plating time) of each
individual part plated and the pressure drop across the mist eliminator
also were recorded during each test run.  Process data sheets documenting
the process and control device operating parameters during mass emission
testing (test run Nos. MI-1 through 4 and MO-1 through 4) and particle
size distribution testing (test run Nos. MI-SI through 3 and MO-SI through
3) are presented in Appendix E.  Data on the average operating parameters
recorded during the mass emission test runs are presented in Table 2-2.
     Grab samples were taken from Tank 6 and the rinse tank to determine
the chromic acid concentration of the plating solution and the rinse water
during each mass emission test run.  Grab samples of the mist eliminator
wash water also were taken to determine the chromic acid concentration of
the wash water.  The mist eliminator was washed down after the first and
second and the third and fourth mass emission test runs and after the
second and third particle size distribution test runs.  The chromic acid
concentration of the grab samples is reported in Section 3.4 of this
report.
     Test run No. 1 was interrupted three times, run No. 2 was interrupted
one time, and run Nos. 3 and 4 were interrupted two times each to change
parts.  Testing was stopped during each interruption.  During test run
No. 2, three fuses were blown in the rectifier, which caused the rectifier
to operate at or near its maximum current capacity of 8,000 amperes.
Emissions testing was not discontinued because the plant manager stated
that the higher amount of current applied was within normal operating
conditions for the type and number of parts being plated.  However, some
mist was observed escaping above the capture system before the rectifier
was repaired during test run No. 4.
     Polypropylene balls that float on the surface of the plating solution
are used in the plating tank to reduce heat loss, evaporation, and, to
some limited extent, misting.  The balls are approximately 3.2 cm
(1.25 in.) in diameter.  During plating, the polypropylene balls cover
only about 50 percent of the surface area of the plating tank because they
                                    2-6

-------
   TABLE 2-2.  AVERAGE OPERATING PARAMETERS RECORDED FOR FOUR EMISSIONS
                        SOURCE TEST RUNS ON TANK 6
Test No.
Inlet/
Outlet
MI-l/MO-1
MI-2/MO-2
MI-3/MO-3
MI-4/MO-4
Operating
voltage,
volts
9.3
8.1
10.0
8.7
Operating
current,
amperes
5,955
5,563
7,931
5,444
Temperature
of plating
solution, °C (°F)
49 (120)
46 (114)
50 (122)
62 (143)
Pressure drop
across mist
eliminator,
kPa (in. w.c,)a
0.02 (0.1)
0.02 (0.1)
0.02 (0.1)
0.02 (0.1)
*kPa  =  Kilopascal,  in.  w.c.  = inches of water column.
                                   2-7

-------
are pushed away from the anodes and cathodes where the surface of the bath
is agitated by gassing.  Consequently, the polypropylene balls do not
reduce misting in the active area of the tank where plating, and
consequently misting, actually occurs.
     The total amount of current supplied to the tank during each test run
is calculated in terms of ampere-hours.  The ampere-hour calculations are
included in Appendix E and a summary of the total current values is
presented in Table 2-3.
     Process operating parameters also were monitored for Tanks 5 and 6
during methods development testing.  Operating conditions for both tanks
were normal during the tests.  Process data sheets documenting process
operating parameters for Tank 5 (test run Nos. TE-1 A and B through TE-14
A and B) and Tank 6 (MO-5A and B through MO-7A and 13) also are presented
in Appendix E.
References
1.  Spottswood, Stephanie E.  In-Depth Survey Report of Greensboro
    Industrial Plating, Greensboro, North Carolina.  National Institute
    for Occupational Safety and Health.  Cincinnati, Ohio.
    November 1981.  p. 13-15.
                                    2-8

-------
       TABLE 2-3.  TOTAL CURRENT SUPPLIED TO TANK 6
          DURING FOUR EMISSIONS SOURCE TEST RUNS
  Test No.                      Total current, ampere-hour
Inlet/Outlet	Inlet	Outlet

MI-l/MO-1                       15,885             15,851

MI-2/MO-2                       11,653             11,453

MI-3/MO-3                       16,809             17,968

MI-4/MO-4                       11,586             11,961
                            2-9

-------
                            3.0  SUMMARY OF RESULTS

    The chromium (total and hexavalent) mass emission rate tests and chromium
particle size distribution tests were conducted at the inlet and outlet of the
No. 6 plating tank chevron-blade mist eliminator.  In addition to the testing
for possible emissions standard setting, several series of paired sample train
test runs were conducted to evaluate a Method 13-type "impinger train" sampling
train for use in a potential reference method for collecting and measuring
hexavalent and/or total chromium emissions.  Table 3-1 summarizes the testing
schedule.
    In brief, from the results of the Impinger Train testing, the uncontrolled
emissions from the tank averaged 0.057 pounds per hour of hexavalent chromium
and 0.064 pounds per hour of total  chromium.  The controlled emissions averaged
0.007 pounds per hour of hexavalent chromium and 0.008 pounds per hour of  total
chromium.  The resulting collection efficiency on a mass emission rate basis
was 87»1% for hexavalent chromium and 86.8$ for  total chromium.  The particle
size distribution tests were only calculated for total chromium due to the
problems encountered with the extraction of the hexavalent  chromium from the
filters.  The particle size distribution tests for tank No.  6 showed that  about
25% by weight of the uncontrolled emissions were greater 10 urn and  about 36% by
weight of the controlled emissions  were  greater  than 10 um.
    The methods evaluation tests demonstrated  that the Impinger Train
quantitatively collects both the hexavalent chromium and total chromium  with an
average of 99-9% of the emissions being  collected prior to  the backup  filter.
As a result of quantitative removal of all the chromium by  the impingers,  the
backup filter would not be required in the sampling train.   The use of a Method
5  (front filter) type train for chromium emissions at this  level showed  some
low bias, but would not be considered acceptable for a reference method  due to
the fact that  (1) the front filter  could not quantitatively remove  all the
chromium from the emissions and  (2) the  potential for conversion of the
hexavalent chromium to another valence during  the sample collection phase.  The
tests on the impinger train to detect possible conversion of the hexavalent
chromium during and after sample collection, indicated that some conversion may
take place during testing when distilled water is used in the impingers.   No
significant conversion was evident  over  time after the sample was collected.

                                      3-1

-------
                TABLE 3.1.  TESTING SCHEDULE FOR GREEMSBORO INDUSTRIAL PLATERS


Date
(1986)


3/18






3/19






3/24





3/25










3/26







Sample Type


+6
Cr , Total Cr
11
a
»'

w
+6
Cr , Total Cr
» ,
it
w
M
*»
+6
Cr , Total Cr
ii
"
n
Particle Size
+6
Cr , Total Cr
"
H
M
"
n

"
Particle Size
w
+6
Cr , Total Cr
"
«
"
"
**
i*o. 6 Plating Tank
Mist Eliminator
Inlet
Run
No.

MI-1
MI-2





MI-3
MI-4









MI-SI









MI-S2
MI-S3







Teat Time
24 h clock

0838-1207
1310-1532





0804-1042
1110-1600









1304-1614









0832-1206
1419-1638







No. 6 Plating Tank
Mist Eliminator
Outlet
Run
No.

MO-1
MO-2





MO-3
MO-4









MO-SI









MO-S2
MO-S3

MO-5A
MO-5B
MO- 6 A
MO-6B
MO- 7 A
TE-7B
Test Time
24 h clock

0836-1150
1310-1530





0805-1052
1110-1606









1304-1614









0832-1339
1420-1632

0831-1054
0834-1055
1150-1356
1151-1357
1408-1628
1409-1629

No. 5 Plating Tank
Exhaust
Run
No.

TE-1A
TE-1B
TE-2A
TE-2B
TE-3A
TE-3B

TE-4A
TE-4B
TE-5A
TE-5B
TE-6A
TE-6B

TE-7A
TE-7B
TE-8A
TE-8B


TE-9A
TE-9B*
TE-10A
TE-10B*
TE-11A
TE-11B
TE-12A
TE-12B



TE-13A
TE-13B
TE-14A
TE-14B


Test Time
24 h clock

0915-1021
0915-1022
1253-1400
1254-1402
1429-1533
1430-1534

0924-1031
0926-1032
1105-1211
1105-1211
1305-1410
1306-1411

1305-1410
1306-1411
1442-1545
1443-1546


0820-0925
0821-0926
1016-1119
1017-1120
1332-1436
1333-1437
1511-1616
1512-1617



0829-0949
0830-0950
1022-1127
1023-1128


*  Runs 9B and 10B are not included in this report due to unacceptable post-test meterbox calibrations;
   runs 13B and 14B (respectively)  were performed as replacements.
                                                3-2

-------
Therefore, the impinger reagents should be 0.1N NaOH or equivalent to fix the
sample immediately upon collection.  Based on the results of the paired
trains evaluation, the sampling and analytical method has a precision similar
to that of EPA Method 5 and would be considered suitable for consideration as
the reference method.
     In the following sections, the results addressed above and additional
results are presented and discussed in detail.  The results are presented
according to the emission type and sampling location for the control device
and according to the type of evaluation for the methods performance tests,
The computer printouts of the emission calculations can be found in
Appendix A.  The original field data sheets and the analytical data are
located in Appendix B.

3.1  HEXAVALENT CHROMIUM AND TOTAL CHROMIUM
     Chromium concentration measurements along with the; determination of  the
associated flue gas flow rates were conducted at both inlet and outlet of the
mist eliminator on tank No. 6.  The samples were collected isokinetically
using an impinger-type sample train.  For analysis, the samples were
initially filtered to remove all the chromium  (residue) other  than hexavalent
chromium  (in filtrate).  An aliquot of  the filtrate was then analyzed for
hexavalent chromium and the residue  (that filtered from the filtrate) was
analyzed for chromium.  The total  chromium results for each sample were  the
sum of  the hexavalent chromium in  the filtrate and the chromium in the
residue.  A complete description of each sampling location and the sampling
and analytical procedures are given in  Chapter k and Appendix  C.

3-1.1   Mist Eliminator Inlet
     The mist eliminator inlet results  represent the uncontrolled emissions
from the No. 6 tank.  The circular horizontal inlet duct was traversed
through a single port due to the restrictions imposed by the location.   As a
result, a complete traverse was conducted in  the horizontal direction and a
partial traverse was conducted in  the vertical direction  (more fully
described in Chapter 4).  Prior to the  testing, a pitot tube traverse was
conducted to determine the amount  of flow misalignment.  The results
demonstrated that the flow was fairly uniform  (less than an average flow
misalignment angle of 10°) despite the  fact that it did not meet the
requirements of Method 1 for length of duct before and after the sampling
location.
                                      3-3

-------
     Flue Gas Conditions and IsokineticSampling Rate - A summary of the Flue
gas conditions at the mist eliminator inlet and outlet is presented in
Table 3.2,  The volumetric flow rates were fairly consistent at the inlet and
averaged 13,500 actual cubic meters per hour (478,000 actual cubic feet per
hour).  The flow rate at the inlet was approximately 1B% greater than the
outlet flow rate; this was likely due to the measurement error in the inlet
flow rate measurements which were conducted in nonparallel flow (disturbed
flow),  The flue gas temperture averaged 21 C (71 F). with a moisture content
of 1.7 percent.  The oxygen, carbon dioxide, and carbon monoxide content was
that of ambient air at 20.9, 0.0, and 0.0 percent, respectively.  The
volumetric flow rate at standard conditions averaged 12,900 dry standard
cubic meters per hour (^55»000 dry standard cubic feet per hour).  Standard
conditions are 20°C (68°), 760 mm Hg (29.92 in. Hg), and dry basis.  The
isokinetic sampling rates were well within the allowable for all four sample
runs.

     Hexavalent Chromium Emissions - A summary of the hexavalent chromium and
total chromium emissions for each inlet and outlet  test run are presented in
Table 3-3-  The uncontrolled hexavalent chromium emissions averaged 2.03
milligrams per dry standard cubic meter (0.0009 grains per dry standard cubic
foot) and 0.026 kilograms per hour  (0.057 pounds per hour).

     Total Chromium Emissions - The total chromium  emissions for each  test
run were consistent with their corresponding hexavalent chromium emissions
and averaged about 12% higher.  The uncontrolled emissions averaged 2.27
milligrams per dry standard cubic meter (0.001 grains per dry standard cubic
foot) and 0.029 kilograms  per hour  (0.06^ pounds per hour).

3.1.2  Mist Eliminator Outlet
     The mist eliminator outlet represents  the controlled emissions from  the
No. 6 tank.  The sampling  location was nearly ideal due to the  fact that  a
temporary stack extension  was added for the tests.  Two ports were installed
in the stack extension and two complete horizontal  traverses were performed
during each test run.

     Flue Gas Conditions and Isokinetic Sampling Rate - A summary of the  flue
gas conditions at the mist eliminator outlet is presented in Table 3.2,  The

                                      3-4

-------
                                                         TABLE 3.2.  SUMMARY OF FLUE GAS CONDITIONS
UJ
Run
No.
Date
(1986)
Test Time
24 h clock
Volumetric Flow Rate
Actual*
acmh
x 103
acfh
x 103
Standard
dscmh
xlO3
dscfh
x I03
Stack
Tenoerature
°C
°F
Moisture
'2
co2
*
Isoklnetlc
                                                              No. 6 Plating Tank Mfst Eliminator Inlet
No. <5 Plating Tank Mist Eliminator Outlet
Ml-l
MI-2
MI-3
Ml -4
3/18
3/18
3/19
3/19
0838-1207
1310-1532
0804-1042
1110-1600
Average
13.8
13.3
13.7
13.3
13.5
489
471
484
469
478
13.4
12.8
12.9
12.5
12.9
473
450
456
441
455
18
21
23
23
21
65
70
74
74
71
1.0
1.3
2.1
2.3
1.7
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
99.6
99.8
100.9
99.8
100.0
MO-I
MO-2
MO-3
MO-4
3/18
3/18
3/19
3/19
0836-1150
1310-1530
0805-1052
1110-1606
Average
11.4
11.6
11.5
11.5
11.5
402
411
407
407
407
10.9
11.0
10.8
10.8
10.9
385
389
381
380
384
22
23
27
27
25
71
74
80
80
76
1.1
1.6
1.5
1.8
1.5
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
97.9
99.3
98.5
100.2
99.0
                aVolumetrtc flow rate In actual  cubic meters per hour (acmh)  and actual  cubic feet per hour  (acfh)  at stack conditions.
                 Volumetric flow rate In dry standard cubic meters per hour (dscmh)  and  dry standard cubic feet per hour (dscfhK

-------
TABLE 3.3.  SUMMARY OF HEXAVALENT CHROMIUM WTO TOTAL CHROMIUM EMISSIONS
Run
No.
Date
(1986)
Hexavalent Chromium
concentration
nig/deem
gr/Sscf
x 10"
mass emissions
kg/h
-3
x 10
Ib/h
x 10"
Total Chromium
concentration
IT. g/ do cm
gr/dsef
x 10"
mass emissions
kg/h
x 10*
Ib/h
x 10~
                     No. 6 Plating Tank Mist Eliminator Inlet
MI-1
Ml-2
MI-3
MI -4
3/18
3/18
3/19
3/19
Average
1.517
2.446
1.546
2.590
2.03
0.663
1.069
0.676
1.132
0.89
20.3
31.2
20.0
32.3
26.0
44.8
68.8
44.0
7.1.2
57.2
1.718
2.729
1.687
2.936
2.27
0.751
1.193
0,737
1.283
0.99
23.0
34.8
21.8
36.6
29.1
50,8
76.7
48.0
80.7
64,1
                    No. 6 Plating Tank Hist Eliminator Outlet
MO-1
HO-2
MO- 3
MO-4
3/18
3/18
3/19
3/19
Average
0.168
0.377
0.173
0.507
0.31
0.0736
0.1647
0.0758
0.2214
0.13
1.83
4.15
1.87
5.45
3.3
4.05
9.15
4.13
12.01
7.3
0.221
0.436
0.188
0.565
O.ilS
0.091
0.190
0.082
0.247
0.15
2.41
4.80
2.03
6.07
3.82
5.31
10.58
4.47
13.38
8.4
                                   3-6

-------
volumetric flow rate averaged 11,500-actual cubic meters per hour (407,000
actual cubic feet per hour) with a flue gas temperture average of 25 C
(?6°F) and a moisture content of 1.5 percent.  The oxygen, carbon dioxide,
and carbon monoxide content was that of ambient air at 20.9, 0.0, and 0.0
percent, respectively.  The volumetric flow rate at standard conditions
averaged 10,900 dry standard cubic meters per hour (384,000 dry standard
cubic feet per hour).  Standard conditions are 20°C (68°), ?60 mm Hg (29.92
in. Hg), and dry basis.  The isokinetic sampling rates were well within the
allowable for all four sample runs.
     Hexavalent Chromium Emissions - The controlled hexavalent chromium
emissions for each test run were fairly consistent when compared to the
simultaneous inlet runs and averaged 0.31 milligrams per dry standard cubic
meter  (0.00013 grains per dry standard cubic foot) and 0.0033 kilograms per
hour {0.007 pounds per hour).

     Total Chromium Emissions - The controlled total chromium emissions for
each test run was consistent with the corresponding hexavalent chromium
emissions and averaged about 16% higher.  The total chromium emissions
averaged 0.35 milligrams per dry standard cubic meter  (0.00015 grains per dry
standard cubic foot) and 0.0038 kilograms per hour (0,008 pounds per hour).

3,2  EMISSIONS IN UNITS OF PROCESS RATE AND CONTROL EQUIPMENT COLLECTION
     EFFICIENCY
     The emission rates in units of process rate  are presented in  terms of
grams  of emissions per hour per square foot of tank surface area and in units
of milligrams emissions per amperage input to the plating operation.  To
determine the collection efficiency of the mist eliminator, the milligrams
per hour per square foot  (uncontrolled emissions  and controlled emissions)
were used for the calculations.

3.2.1  Emissions in Units of Process Rate - The emissions in terms of units
of process rate are expressed in relation to two  process parameters, as shown
in Table 3-^-  The first is milligrams of emissions per amp-hour input into
the plating operation.  The second is grams of emissions per hour  per
                                      3-7

-------
                                       TABLE  3-4.   SUMMARY OF  EMISSION RATES IN UNITS OF PROCESS RATE AND EFFICIENCY
UJ
 I
Co
Date
(1986)
Run
Nos.
Process
Rate
arap™hr
Uncontrolled Emissions
hexavalent
chromium
rng
amp-hr
g/h
ft2»
total
chromium
ng
aap-hr
g/h
ft2*
Controlled Emissions
hexavalent
chromium
ntg
• arap-hr
B/h
f t2*
total
chromium
mg
arap-hr
g/h
ft2*
Collection Efficiency**
hexavalent
chromium
I
total
chromium
%
                                                         No. 6 Plating Tank Mist Eliminator Inlet
No. 6 Plating Tank Mist  Eliminator  Outlet
3/18
3/18
3/19
3/19
MI-1
MI-2
Ml-3
Ml-4
Average
5.9"
5.327
7.927
5-316
6,129
3-42
5.86
2-52
6.08
4.*7
0.322
0.495
0-317
0.513
0.412
3-87
6-53
2-75
6.88
5-01
0.365
0.552
0.3*6
0.581
0.461
-_
—
—
—
—
- -
--
_.
--
--
	
..
--
--
..
	
._
--
—
--










3/18
3/18
3/18
3/18
MO-1
MO- 2
MO- 3
MO- ft
Average
5.9'ift
5.327
7,927
5,316
6.129
	 .
—
--
--
--
_ _
--
_.
--
--
_ —
--
--
--
--
	
--
_.
—
--
0.308
0.779
0.236
1.025
0.587
0.029
0.066
0.030
0.087
0.053
0.405
0.901
0.256
1.1*2
0.676
0.038
0.076
0.032
0.096
0.061
91.0
86.7
90.5
83-0
87.1
89.6
86.2
90.8
83.5
86.8
                * Emission rate in units of grams per hour per square foot of tank surface (gr/hr/ft2) using tank surface of 63.0 ft2.



                *  Collection efficiency of control equipment Is based on the uncontrolled and controlled emission rate in units of

                  emissions per hour per ft2 of tank surface.

-------
                                                                           2
square foot of tank surface area.  The surface area of the tank was 63.0 ft
for all tests.
3.2.2  Control Equipment Collection Efficiency - The collection efficiency of
the Chevron-blade type mist eliminator  (see Table 3-^) averaged 87.! % by
weight for hexavalent chromium and 86.8 % by weight for total chromium.  The
higher emission rates appeared to produce a slight reduction in control
efficiency.  The collection efficiencies for both hexavalent and total
chromium were fairly consistent.

3.3  PARTICLE SIZE DISTRIBUTION
     Particle size distribution runs were conducted simultaneously at both
the inlet and outlet of the mist eliminator.  Each run was conducted at a
point of average velocity.  Each stage  of the impaetor was recovered and
analyzed separately.  Hexavalent chromium analysis was performed on each
stage, however, the results indicate that there was a problem extracting all
the hexavalent chromium with the small  amount of liquid that had to be used
due to the small amount of chromium on  each filter.  Therefore, only particle
size distribution results for total chromium are shown,.  The results for
hexavalent chromium should be similar since most of the emissions were
actually hexavalent chromium.  The summary of particle size distribution is
shown in Table 3-5. a summary graph is  presented in Figure 3.1 and the graphs
for each run can be found in Appendix A.
     The particle size distribution results for the uncontrolled emissions
showed that approximately 25 % by weight of the chromium was less than 10 um
in diameter, 10 % by weight less than 5 um. and O.J % by weight less than 1
um.  The particle size distribution results for the controlled emissions
showed that approximately 36 % by weight of the chromium was less than 10 um,
23 % by weight was less than 5 uffl» and  5 % by weight was less than 1 um.

3.4  ANALYSIS OF CHROME PLATING SOLUTIONS
     Samples of the chrome plating solution were taken from plating tank
No. 6 at points near the anode, cathode, and towards  the center of the bath.
Samples of the mist eliminator wash down and the rinse tank were also taken
for each test day.  A summary of the results for these samples is shown in
Table 3-6.  There were no significant differences between any of the tank and
rinse solutions with respect to chromium content.
                                       3-9

-------
     1 0
tn

o
e
o
I

' o
 0.
 u
 u
 N
 UI
K



D.

      90—;

      8 0—-

      7 0  **•


      6
       5 0—|



       4 0—=
       3 0-
       2 0 —
      1 0
       B-

       7-


       e.


       5-
        4—5-
         3—~
         a-
         5-3
        . 2 -
                      *
                                  s/\
                   _
A
                              55"j
                            Y

                              // A
                             7/1   1
                            t    li
                    If

                                    i  i
                            i
                                      1  1

                                                               i


                                                                1
                                                                        i   i  i

                                                            i   i    i   i  i

            I      I  '  °'5 I   I    1
           0,01   O.I      J  2    5  JO  20 30405060 70 80  90  35  9'89S    '99.9  92'.99



                     PERCENT OF PART ICULATE MASS LESS  THAN 1NDICATED S1ZE
      A MI-SI
                       MI-S2
            MI-S3      © MO-SI
MO-S2      © MO-S3
               Figure  3-1-   Graphic  summary of particle sizing data.
                                           3-10

-------
    TABLE 3.5.   SUMMARY OF PARTICLE SIZE DISTRIBUTION*
Run
No.
Date
(1986)
Test
24 h
Time
clock
wt
1
Total
. less
urn
Chromium
than size
5 urn
10
%
urn
         No.  6 Plating Tank Mist Eliminator Inlet
MI-SI
MI-S2
MI-S3
3/24
3/25
3/25
1304-1614
0832-1206
1419-1638
Average
0.15
0.75
0.70
0.73
2.5
8.5
11.0
9.8
7.0 **
25
25
25
        No.  6 Plating Tank Mist Eliminator Outlet
MO-SI
MO-S2
MO-S3
3/24
3/25
3/25
1304-1614
0832-1339
1420-1632
Average
5-5
3-5
5.0
4.7
21
18
30
23
33
29
47
36
 * Due to inadequate hexavalent chromium extraction,
   results for hexavalent chromium are considered not
   valid and are not presented.
** Value not included in average.
                    3-11

-------
                 TABLE 3-6.  SUMMARY OF CHROME PLATING SOLUTIONS FOR TANK NO. 6
Date
(1986)

3/18
3/18
3/19
3/19
3/25
3/25
Run
No.

MO/MI-1
KO/mi-2
MO/MI-3
MO /MI -It
MO/MI-S2
MO /MI -S3
Chromium Concentration of Solution at Location in Percent (J!)*
Rinse Tank
Cr*6
_
0.1
_
0.1


Cr
_
0.1
_
0.1


Tank Anode
Cr + 6
13.7
13-4
12.9
13.0


Cr
15-3
14.7
1ft. 1
lft.4


Tank Bath
Cr+6
13-6
13-5
12.8
13-1


Cr
lft-9
13.8
13-9
13-9


Tank Cathode
Cr + 6
13-2
13.3
12,7
12.8


Cr
14.2
14.2
13-4
13-*


Mist Eliminator Wash
Cr + 6
7-7
4.0
6.2
2.2
6.0
1.2
Cr
8.6
4.2
6.6
1.6
6.2
1.0
"One percent chromium is equivalent to 2.578 ounces of Cr03 per gallon.

-------
3-5  SUMMARY OF ANALYTICAL RESULTS FOR HEXAVALENT AND TOTAL CHROMIUM
     The summary of the analytical results for hexavalent and total chromium
for all the samples collected across the mist eliminator serving tank No. 6
is presented in Table 3-7-  The results shown in Table 3-7 for hexavalent and
total chromium are the results obtained by the EPA tentative method for
"Determination of Hexavalent Chromium Emissions from Stationary Sources" and
the "EPA Protocol for Emissions Sampling for Both Hexavalent and Total
Chromium" (see Appendix C).  When, for total chromium analysis, the table
indicates that the sample "residue" was analyzed, then the value presented
for total chromium content are a sum of (1) the hexavalent chromium in the
sample filtrate from the extraction of the sample measured by the tentative
method and  {2} the chromium in the sample residue from the extraction as
measured by Neutron Activation Analysis or Inductively Coupled Argon Plasma
Analysis.  When the table indicates that the "total" sample was analyzed,
then the value presented for total chromium content is from direct analysis
of an aliquot of the sample for total chromium by Inductively Coupled Argon
Plasma Analysis.
     Quality assurance audit samples were analyzed using both the hexavalent
and total chromium methods; the results are shown in the Quality Assurance
Section  {5-0}.  As can be seen in Table 5-2, no bias was present using either
of the methods and, thus, the results are considered accurate.

3.6  SUMMARY OF EVALUATIONS AND RESULTS FOR METHODS DEVELOPMENT TESTING
     All methods development testing was conducted using paired sample trains
(two trains).  Fourteen paired trains tests were conducted on an exhaust
pickup duct on tank No. 5 and three paired trains tests were conducted at the
outlet of tank No. 6.  In each case, paired samples were collected at a
single point within the duct.  The sampling was conducted specifically to
coompare different sampling and/or sample recovery procedures.
     As  shown in Table 3-8. the flue gas conditions were fairly consistent
for all  test runs.  The isokinetic sampling rates were also within the
allowable limits with the exception of runs TE-9A and TE-10B.  For these two
runs, the dry gas meter had an unaccetable post-test calibration and the
results  are not used in the evaluations.  Table 3-9 presents the calculated
emissions for all method evaluation runs.  The individual evaluations and
results  are described below.
                                       3-13

-------
        TABLE  3,?.   SUMMARY OF ANALYTICAL RESULTS FOR HEXAVALENT AND TOTAL CHROMIUM

Run
No.

Date
(1986)


Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
                           Wo.  6  Plating  Tank Mist Eliminator  Inlet
MI-1
MI-1
MI-2
MI-2
MI-3
MI- 3
MI-4
MI-4
MI-SI
"
ft
»
ti
"
11
"
11
11
MI-S2
(I
II
II
fl
11
«
H
«
ft
MI -S3
"
"
11
ii
ii
11
"
it
"
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/24
"
"
I,
ii
11
ii
"
ti
»i
3/25
ii
••
"
*,
ti
"
"
"
ti
3/25
11
11
M
ti
it
ii
"
"
,i
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Iropinger MaOH
Teflon Filter
Irapinger NaOH
Teflon Filter
Preeutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Preeutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Preeutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
G-ll?
G-118
G-119
B-120
G-121
6-122
G-123
6-124
G-186
G-187
6-188
6-189
G-190
G-191
G-192
G-193
6-194
G-195
G-196
G-197
G-198
6-199
G-200
0-201
G-202
6-203
G-204
6-205
G-206
G-207
6-208
6-209
G-210
6-211
G-212
G-213
G-214
6-215
4,490
4.2
7,300
4-3
4,46o
" 7.2
7.560
< 2
8,810
85.5
19.0
149
103
34.7
9-5
1.4
0.4
< 0.2
2,650
•19.1
59-3
181
136
43.4
12,4
5-6
3.6
0.4
2,040
14.8
47.3
134
82.2
33.3
8.2
1.3
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
0.2 ' Residue
< 0.2 Residue
5.090
5.5
8,148
4.7
4,874
7.6
8,570
< 2
9.320
164
48.5
320
230
76.2
21.5
9-9
7-9
< 1
2,780
43
130
372
270
85
30
18
13-6
2.4
2,040
36.8
84.3
279
228
94.3
28.2
15-8
11.2
< 0.2
(continued).
                                             3-2.4

-------
  TABLE 3.7.  (continued)  SUMMARY OF AHALYTICAL RESULTS FOR HEXAVALWfT AND TOTAL CHROMIUM

Run
No.

Date
(1986)


Sample Type
Sample
No,
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results , ug
                         No. 6 Plating Tank Mist Eliminator Outlet
MQ-1
MO-1
MO- 2
MO-2
MO- 3
MO- 3
MO- 4
MO- 4
MO- SI
«
"
"
tl
.1
tl
It
II
11
MO-S2
ft
»
II
I)
*I
tl
tl
(I
ft
MO- S3
tt
ft
«
"
ti
ii
11
tt
"
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/24
tl
it
»
It
tl
11
tl
tl
11
3/25
ft
K
«
ft
It
"
It
ft
tl
3/25
"
«'
ti
tt
*t
«
ti
tt
ti
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Precutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Precutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
Precutter Rinse
First Stage Filter
Second Stage Filter
Third Stage Filter
Fourth Stage Filter
Fifth Stage Filter
Sixth Stage Filter
Seventh Stage Filter
Eighth Stage Filter
Solid Filter
G-91
G-92
G-93
G-94
e-95
6-96
G-97
G-98
G-156
6-157
6-158
6-159
G-160
G-161
G-1&2
G-163
6-164
6-165
G-166
G-167
G-168
6-169
G-170
6-171
6-172
6-173
6-174
6-175
6-176
6-177
G-178
6-179
6-180
6-181
G-182
6-183
6-184
6-185
672
3-0
1,160
1.8
685
8.0
1,536
2,0
169
0-5
0.8
7-5
8.5
4.7
1.9
0.4
0.3
< 0.2
354
0.9
6.6
20.0
14.5
7-9
7.2
3-3
2.3
0.2
127
1-3
6.0
20.4
15-7
8.9
4.7
1.5
0-5
< 0.2
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Total
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
Residue
886
4.8
1,343
3-3
750
8.4
1.714
2.3
198
11.5
10.3
26.0
23-0
16.2
9.4
9-4
10.8
< 1
397
14.9
18.3
38.5
41.5
30.4
14.2
15-3
11.8
0.2
141
5.5
17.0
38.9
30.7
25.4
15-7
9-5
8.5
< i
(continued) .
                                            3-15

-------
  TABLE 3.7.  (continued)   SUMMARY OF ANALYTICAL RESULTS FOB HEXAVALEiri' AND TOTAL CHROMIUM

Run
No.

Date
(1986)


Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Concentration , %*
Amount of
Sample
Analyzed
Total
Chromium
Concentration. **
                                   No.  6 Plating Tank Solution Samples


6A-1
6A-2
6A-3
6A-4
6B-1
6B-2
6B-3
6B-4
6C-1
6C-2
6C-3
6C-4


3/18
3/19
3/18
3/18
3/19
3/19
3/18
3/18
3/19
3/19
3/18
3/18
3/19
3/19
3/18
3/19
Rinse Tank
Rinse Tank
Plating Tank Anode
Plating Tank Anode
Plating Tank Anode
Plating Tank Anode
Plating Tank Bath
Plating Tank Bath
Plating Tank Bath
Plating Tank Bath
Plating Tank Cathode
Plating Tank Cathode
Plating Tank Cathode
Plating Tank Cathode
Miet Eliminator Hash
Mist Eliminator Wash
G-130
G-131
G-132
G-133
G-134
G-135
G-136
G-137
G-138
G-139
G-140
G-141
G-142
G-143
G-144
G-149
0.1
0.1
13.7
13.4
12.9
13.0
13.6
13.5
12.8
13.1
13.2
13.3
12.7
12.8
8.7
6.2
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
0.1
0.1
15.3
14.7
14,1
14.4
14.9
13.8
13.9
13.9
14.2
14.2
13.4
13.4
9.8
6.6
*0ne percent chromium is e
-------
                                             TABUE 3.8.  SUMMARY OF FLUE GAS CONDITIONS
Run
No.
Date
(1986)
Test Time
24 h clock
Volumetric Flow Rate
Actual8
actnh
x 103
acfh
x I03
Standard
dscmh
x I03
dscfh
x 103
Stack
Temperature
°C
°F
Mol sture
%
I2
co2
Isoklnettc
%
                                                     No. 5 Plating Tank Exhaust
TE-1A
TE-1B
TE-2A
TC-2B
TE-3A
TE-3B
7E-4A
7E-4B
TE-5A
TC-58
TE-6A
TE-6B
TE-7A
TE-7B
TE-8A
TE-8B
TE-9A
TE-9B
TE-10A
TE-10B
TE-IJA
TE-t 18
TC-12A
TE-128
7E-13A
TC-13B
TE-14A
TE-14B
3/18
3/18
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/19
3/19
3/24
3/24
3/24
3/24
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/26
3/26
3/26
3/26
0915-1021 "
0915-1022
1253-1400
1254-1402
1429-1533
1430-1534
0924-1031
0926-1032
1104-1210
1105-1211
1305-1410
1306-1411
1305-1410
1306-1411
1442-1545
1443-1546
0820-0925
0821-0926
1016-1119
1017-1120
1332-J436
1333-1437
1511-1616
1512-1617
0829-0949
0830-0950
1022-1127
1023-1128
1.76
1.78
1.80
1.78
1.86
1.84
1.79
1.76
1.82
1.87
1.79
1.72
1.83
1.86
1.80
1.75
1.76
1.83
1.82
1.76
1.85
1.93
1.85
1.83
1.78
1.78
1.81
1.78
62.0
62.9
63.5
62.8
65.5
64.9
63.1
62.0
64.4
66.0
63.3
60.8
64.5
65.6
63.7
61.9
62.1
64.6
64.2
62.0
65.3
68.0
65.3
64.5
62.8
62.8
63.8
62.8
1.69
1.70
1.71
1.69
1.75
1.74
1.68
1.66
1.72
1.76
1.70
1.62
1.76
1.78
1.74
.69
.71
.79
.76
.72
.79
1.87
1.79
.76
.71
.71
.74
.72
59.5
60.2
60.4
59.5
61.9
61.5
59.3
58.6
60.9
62.2
60.0
57.2
62.3
62.9
61.4
59.6
60.5
63.3
62.3
60.8
63.2
66,2
63.2
62.3
60.5
60.5
61.6
60.6
19
20
22
22
22
22
22
22
22
22
23
23
22
22
22
22
19
IV
21
21
22
22
22
22
22
22
22
22
67
68
71
71
72
72
72
72
72
72
74
74
72
72
72
72
66
66
70
70
72
72
72
72
72
72
72
72
1.5
1.8
1.7
2.1
2.1
2.0
2.7
2.3
2.2
2.4
1.5
2.4
1.1
1.7
1.2
1.4
1.3
0.8
1.0
0.0
0.9
0.3
.0
.1
.3
.4
.2
.1
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20,9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
Of\
f V
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
96.1
100.0
98.1
102.5
96.0
101.9
98.3
108.6
97.0
105.6
96.4
106.6
96.4
98.0
97.2
99.8
98.0
ft* y»
Q** *\J
95.3
83.3
96.6
105.3
96.7
103.1
101.8
99.1
101.7
99.5
(continued).

-------
                                                        TABLE 3.8. (continued)  SUMMARY OF FLUE GAS CONDITIONS
Run
No.
Date
(1986)
Test Time
24 h clock
Volumetric Flow Rate
Actual8
acmh
x 103
acfh
x 103
Standard
dscmh
x I03
dscfh
x 103
Stack
Temper atura
°C
°F
Mol sture
%
°2
co2
%
Isoklnettc
1
                                                              No. 6 Plating Tank Mist Eliminator Outlet
M0-5A
MO-5B
MO-6A
MO-68
MO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
0831-1054
0834-1055
1150-1356
1151-1357
1408-1628
1409-1629
12.2
12.2
12.2
11.7
12.3
12.4
432
430
430
412
436
438
1.8
1.7
1.6
1.1
1.7
1.7
417
412
411
393
415
415
24
24
26
25
27
27
75
75
78
77
80
80
0.4
1.1
0.9
1.2
0.7
1.5
20.9
20.9
20.9
20.9
20.9
20.9
0.0
0.0
0.0
0.0
0.0
0.0
99.9
98.8
99.6
98.5
98.9
100.4
 I
(->
CD
a¥olumetrle flow rate In actual cubic meters per hour {acmh) and actual cubic feet per hour (acfh) at stack conditions-

 Volumetric flow rate In dry standard cubic meters per hour (dscmh) and dry standard cubic feet per hour (dscfh).

-------
                   TABLE 3.9.  SWMARY OF HEXAVALEHT CHROMIUM AND TOTAL CHHOMIUM EMISSIOHS
Run
No.
Date
(1986)
Hexavalent Chromium
concent rat ion
mg/dacm
gr/dscf
xio'3
mass emissions
kg/h
x 10~
Ib/h
x 10"
Total Chromium
concentration
mg/decm
gr/dacf
x 1C"
mass emissions
ke/h
x 10"3
Ib/h
x 10*
                                          No. S Plating Tank Exhaust
TE-1A
TS-1B
TE-2A
TE-2B
TE-3A
TS-3B
TE-4A
TE-4B
TE-5A*
TE-5B*
TE-6A
TE-6B
TE-7A
TE-7B
TE-8A
TE-8B
TE-9A
TE-9B
TE-10A
TE-10B
TE-11A
TE-11B
TE-12A
TE-12B
TE-13A
TE-13B
TE-14A
TE-14B
3/18
3/18
3/18
3/18
3/18
3/18
3/19
3/19
3/19
3/19
3/19
3/19
3/24
3/24
3/24
3/24
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/26
3/26
3/26
3/26
2.302
2.104
2.122
1.766
2.217
1.697
2.441
1.761
2.437
1.766
2.380
2.065
4.405
4.035
2.750
2.823
2.367
2.836
2.500
3.918
4.150
3.762
4.274
4.129
4,648
3.602
3.744
3.314
1.006
0.919
0.929
0.772
0.969
0.741
1.067
0.769
1.065
0.772
1.040
0.903
1.925
1.763
1.202
1.234
1.034
1.239
1.092
1.712
1.813
1.644
1.868
1.804
2.119
1.574
1.636
1.448
3.88
8.55
3.59 7.91
3.63
2.98
3.89
2.95
4.10
2.92
4.30
3.04
4.04
3.35
7.77
7.19
4.78
4.77
4.06
5.08
4.41
6.74
7.43
7.06
7.64
7.28
8.31
6.17
6.53
5.69
8.00
6.56
8.57
6.51
9.04
6.44
9.47
6.71
8.91
7.38
17.12
15.86
10.54
10.51
8.95
11.20
9.72
14.66
16.37
15.56
16.85
16.05
18.32
13.60
14.39
12.54
2.234
2.063
2.064
1.745
2.173
1.676
2.390
0.976
0.901
0.902
0.763
0.950
0.732
1.044
1.773 | 0.775
2.431 1,062
1.723 0.753
2.395 1,047
2.065 0,903
4.167 1,821
4.012 1,753
2.265 1.165
2.987 1.305
2.287
2.730
2.381
3.957
4.064
3.786
4.133
4.063
4.817
3.522
3.606
3.119
0.999
1.193
1,040
1.729
1.776
1,654
1,806
1.776
2,105
1,539
1.576
1,363
3.77
3.52
3.53
2.94
3.81
2.92
4.02
2.94
4.29
2.97
4.07
3.35
7.35
7.15
4.63
5.04
3.92
4.89
4.20
6.81
7.27
7.10
7.39
7.16
8.26
6.03
6.29
5.35
8.30
7.75
7.78
6.49
8.40
6.44
8.85
6.48
9.45
6.55
8.97
7,38
16.20
15.76
10,21
11.12
8.64
10.78 "•
9.26
15.01 **
16.04
16.66
16,30
15.79
18.20
13.30
13.86
11.80
                                   No.  6 Plating Tank  Mist  Eliminator  Outlet
MO-5A
MO-5B
MO-6A
MO-68
KO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
0.221
0.218
0.366
0.191
0.262
0.215
0.096
0.095
0.160
0.084
0.115
0.094
2.60
2.55
4.25
2.13
3.08
2.53
5.74
5.61
9.38
4.69
6.79
5.57
0.212
0.205
0.349
0.194
0.250
0.210
0.093
0.090
0.153
0.085
0.109
0.092
2.50
2.39
4.06
2.16
2.94
2.46
5.52
5.28
8.95
4.76
6.47
5.42
 * Results revised flue to a likely labeling error.





** Results not considered valid due to dry gas meter loss of calibration.
                                                     3-19

-------
3,6,1  Sample Train Collection Efficiency and Evaluation of Hexavalent
Chromium Conversionto Trivalent Chromium - The first six paired sample runs
(TE-1A through TE-6B, as shown in Table 3-9) were run in one exhaust duct on
Tank No. 5,  to evaluate both the collection efficiency of the impinger train
(ability to quantitatively collect both hexavalent and total chromium) and to
examine the potential for conversion of hexavalent chromium to trivalent
chromium in solution after collection.  The results of a previous test had
shown an appreciable amount of trivalent chromium, which suggested a
possibility of conversion during sample collection and/or storage.  One of
the paired trains  (Train A) had 0.1N NaOH in the impingers and the sample was
recovered into ^ separate sample jars as follows: 1) fronthalf rinse and
first impinger contents, 2) second impinger contents and rinse,  3) third
impinger contents  and rinse, and 4) backup Teflon filter.  The results in
Table 3-10 show that about 99$ of both the hexavalent and total  chromium was
collected in  the fronthalf  (nozzle and probe) and first impinger.  By the
time the flue gas  had passed through the last impinger, an average of 99-9%
of the chromium had been removed.  Since the amount collected in the last
impinger averaged  less  than one percent, the impinger train is considered to
be acceptable with respect to collection efficiency  (sample collected and
recovered).   Also, the  results indicate that it is not necessary to have a
backup Teflon filter.
     The second evaluation was the check on possible conversion  of hexavalent
chromiuo to trivalent chromium.  In conducting this evaluation,  the other
paired sample train  (Train B) was used.  In this case, the impingers were
charged with  distilled  water.  Immediately upon completion of the sample
recovery from the  train, NaOH was added to half of the sample to produce
approximately a 0.1N NaOH solution.  These samples were then stored for 28
days and subsequently analyzed for hexavalent and trivalent chromium.
Results are shown  in Table 3-H-
     The other halves of the samples containing distilled water  only were to
be analyzed for hexavalent chromium within 24 hours of sample collection.
Due  to an inadvertent error, the distilled water samples from only the first
three runs were analyzed for hexavalent chromium within 2^ hours, as
planned.  All six  distilled water samples along with the six samples with
NaOH added were analyzed as planned 28 days after initial sample collection
(see Table 3.11)-  The  results for the paired train which had NaOH in the
                                       3-20

-------
TABLE 3.10.   SAMPLE THAIN (IKPINGER)  COLLECTION  EFFICIENCY
Date
(1966)
Run
No.
Sample Catch and Collection Efficiency
1st Imp .
Catch, ug
* of Total
2nd Imp .
Catch, ug
% of Total
3rd Imp.
Catch, ug
% of Total
Filter
Catch, ug
                   Hexavalent  Chromium
3/18
3/18
3/18
3/19
3/19
3/19
TE-1A
TE-2A
TE-3A
TE-4A
TE-5A
TE-6A
2,764
2,480
2,750
2,790
2,050
2,680
99.9
99.6
99.3
99.0
93.6
98.3
< 4
10.4
13
20
96
22
99.9
100
99.8
99.7
98.0
99,1
< 4
< 4
5
9
35
24
99.9
100
100
100
99.6
100
2.0
< 2
< 2
< 2
9
< 2
                      Total Chromium
3/18
3/18
3/18
3/19
3/19
3/19
TE-1A
TE-2A
TE-3A
TE-4A
TE-5A
TE-6A
2,680
2,420
2,700
2,740
2.000
2,700
99.8
99.9
99.5
99.3
93.6
98.4
< 2
< 2
13.6
13
86
20
99.8
99.9
100
99.7
97.7
99.2
< 2
< 2
< 2
7
32
23
99.8
99.9
100
100
99.2
100
5.5
2.0
< 2
< 2
17
< 2
                        3-21

-------
                                        TABLE 3.11.   EVALUATION OF HEXAVALENT TO TRIVALENT CHROMIUM CONVERSION

                                                     BOTH DURING AND AFTER SAMPLE COLLECTION
Run
No.
Sample
Train A
Emission Hate, lb/hr x 10-3 (Train B)
Distilled Water Halves
1st Analysis
2nd Analysis
Difference, %
NaOll
Halves
Between Train Difference, %
Distilled Water Halves
1st Analysis
2nd Analysis
NaOH
Halves
                                                                 Hexavalent Chromium
UJ
 I
TE-1
TE-2
TE-3
TE-4
TE-5
TE-6
8.55
8,00
8.57
9.0
-------
impingers during testing (Train A) are also shown in Table 3-H-  The results
of the analysis of the distilled water halves showed no significant
difference between the first analysis and the second analysis conducted 28
days later.  The results of the distilled water samples when compared to the
split samples with NaOH added also showed no significant differences, again
suggesting that conversion over time is not a problem.  The between train
results  {comparison of Train A results to Train B results) do indicate that a
significant amount of chromium is unaccounted for when only water is used in
the impingers during testing.

3.6.2  Evaluation of the Method 5 Sample Train for Collection of Chromium -
The use  of the Method 5 sample train for collecting both hexavalent and total
chromium emissions from a chrome plating operation with very low chromium
concentrations had, in an earlier study, proved to be questionable.  To
determine the suittability of data obtained using EPA Method 5  from points
sources  with moderate to high chromium concentrations, paired sample runs
were conducted both at the Tank No. 5 exhaust and the Tank No.  6 mist
eliminator outlet.  One sample train (Train A) used impingers only for sample
collection and the other was a standard Method 5 train with filter.  This was
done to  evaluate the collection of chromium at two concentration levels.  The
results  are shown in Table 3.12 and 3-13-  Train A represents the impinger
train results and the Train B represents the Method 5 train results.  At the
uncontrolled emission levels  (Tank No. 5 exhaust) with a Cr   concentration
of about 3 mg/dscm, it appears that about 99$ of the emissions  are collected
by the fronthalf of the Method 5  (front filter) train.  However, when the
Method 5 sample train is compared with the impinger train, it appears that
about 10% of the emissions are not recoverable from the train.  It is likely
that this material gets caught in the frit and then cannot be recovered.  The
results  are, however, relatively similar at these highcjr levels and any data
collected at uncontrolled emission levels using the Method 5 train should be
acceptable for data comparisons.  There was a problem with the  dry gas meter
during runs TE-9A and TE-10B and  the runs are not considered valid.
     The second comparison was conducted on controlled emissions with a
concentration of about 0.2 mg/dscm.  As shown in Table 3-13. the Method 5
train showed less percent recovery in the fronthalf with about  $B%.  The
comparison of the Method 5 and impinger trains at these lower concentration
                                       3-23

-------
UO

js-
                                           TABLE 3.12.  METHOD 5 TYPE SAMPLE TRAIN COLLECTION EFFICIENCY
                                                        AND COMPARISON WITH  IMP INGER TYPE SAMPLE TRAIN
Run
No.
Date
(1986)
Analytical Results, u§
Front
Rinse
Front
Filter
Front
Total

% of Total
Frit
Rinse
Implnger
Contents
Back
Filter

Total
Emission Rate

Ib/hr
x 1Q~3
Dl f ference
Percent
                                                                Haxavatent Chromium
TE-7A
TE-7B
TE-8A
TE-88
TE-9A
TE-9B
TE-10A
TE-108
TE-IIA
TE-11B
TE-12A
TE-12B
TE-13A
TE-13B
TE-I4A
TE-14B
3/24
3/24
3/24
3/24
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/25
3/26
3/26
3/26
3/26
_
4,210
-
2,650
-
2,700
-
3,580
-
4,892
-
1,070
-
3,960
_
3,470
—
981
-
351
-
442
-
249
-
582
_
510
-
520
_
395
-
5,191
-
3,201
_
3,142
-
3,829
-
5,474
-
1,580
-
4,480
-
3,865
_
99.9
-
93.1
_
100
-
99.5
-
100
-
**
-
99.5
-
99.6
_
3
-
< 2
_
< 4
-
< 3
-
< 3
-
5
-
< 4
_
4
5,550
< 6
3,250
61
2,950
< 8
2.940
20
5,320
< 8
5,170
3,560
6,270
23
4,890
12
< 2
-
< 2
_
< 2
-
< 2
-
< 2
-
< 2
-
< 2
-
< 2
—
5,550
5,194
3,250
3,262
2,950
3,142
2,940
3,849
5,320
5,474
5,170
5,140
6,270
4,503
4,890
3,881
16.20
15.76
10.21
11.12
8.64
9.06
9.26
12.50
16.04
16.66
16.30
15.79
18.20
13.30
13.86
11.80
_
-2.7
-
+8.9
_
*
-
«
-
+3.7
-
-3.1
-
-26.9
-
-14.7
                     * Results not shown due to the problem with the dry gas meter calibration on these runs*

                    ** Apparently, the fronthalf train rinse was combined with the Implnger contents during cleanup.

-------
levels showed a greater difference than at the higher concentration levels.
In general, the impinger train measured  emission levels about 25% greater
than the Method 5 train.  The chromium data previously collected using the
Method 5 train on controlled emissions at these levels could be considered
valid if the results were increased slightly.  However, if the concentrations
measured are substantially below 0.2 ug/dscm, the data suggests that the EPA
Method 5 results may be questionable.

3.6.3  Methods Evaluation Conclusions - The combination of the impinger train
with 0.1N NaOH as the reagent for sample collection and the EPA draft method
for hexavalent chromium analysis proved acceptable as the EPA Reference
Method for sampling and analysis of hexavalent chromium.  Although the
reference  trains were not run in pairs, the data clearly demonstrates that
this sampling and analytical method has very good precision, and  the analysis
of the quality assurance samples shows  (as with previous tests) that the
method has good accuracy.  The precision seems to be very similar to that
shown for  EPA Method 5-
     Based on these studies, no further evaluation of  this method needs to  be
made at chromium concentrations equal to or greater than those evaluated.

3.6.4  Summary of Analytical Results for Methods Evaluation Runs  - The
summary of the analytical results  for hexavalent and total chromium  for
all samples  collected  for methods  evaluation purposes  is shown in
Table ^.±^.  The results shown in  Table 3-1^ for hexavalent chromium are  the
results obtained by the EPA tentative method for "Determination of Hexavalent
Chromium Emissions from Stationary Sources" and the results for total
chromium are results obtained by analyzing an aliquot  of the liquid  sample
for total  chromium by  Inductively-Coupled Argon Plasmography  (ICP).  When  the
total chromium sample  shows "Residue" as the amount of  sample analyzed, then
the filter residue was analyzed by ICP and these results were added  to the
results for  hexavalent chromium to give the total chromium results.
     The Quality Assurance audit samples for these results are the same as
for the standards setting runs and are shown in the Quality Assurance
Section 5.0.
                                       3-25

-------
U)
 1
I\J
                                             TABLE 3.13.  METHOD 5 TYPE SAMPLE TRAIN COLLECTION EFF 1C IENCT

                                                          AND COMPARISON WITH  IW IMGER TYPE SAMPLE TRAIN
Run
No.
Date
(1986)
Analytical Results, ug
Front
Rinse
Front
Filter
Front
Total

* of Total
Frit
Rinse
tmplnger
Contents
Back
Fllter

Total
Emission Rate

Ib/hr
x 10~3
01 f ference
Percent
                                                                  Haxavalent Chromium
Total Chromium
MO-5A
MO-58
MO-6A
MO-6B
MO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
_
757
_
720
-
767
_
26
_
9
-
< 1
.»
783
.
729
-
767
_
99.1
.
98.6
-
96.2
_
< 3
-
3
-
< 3
897
7
1,460
7
1,050
30
< I
-
< 2
-
< 2
-
897
790
1,460
739
1,050
797
17.79
17.38
29.05
14.54
21.05
17.26
m.
-2.3
_
-49.9
..
-18.0
MO-5A
MO-5B
MO-6A
MO-6B
MO-7A
MO-7B
3/26
3/26
3/26
3/26
3/26
3/26
«.
707
-
733
-
754
—
36
-
9
-
< 2
*
743
-
742
_
754
«,
100
-
98.9
_
97.2
.*
< 2
-
2
_
< 2
862
< 4
1,380
6
1,000
22
< 1
-
13
-
< 1
-
862
743
1,393
750
1,000
776
17.09
16.35
27.72
14.76
20.05
16.81
«.
-4.3
-
-46.8
_
-16,2

-------
       TABLE  3.14.
                     SUMMARY OF  "A" ASD  "B"
                     AND TOTAL CHROMIUM
TRAIN ANALYTICAL RESULTS FOR HEXAVALENT

Run
No,

Date
(1966)


Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
                                No.  5 Plating Tank Exhaust
TE-1A
"
•*
«
TE-2A
"
••
"
T£-3ft
"
"
"
TE-4A
"
«
**
TE-5A
••
"
"
TE-6A
«
••
"
3/18
•
"
**
3/18
•
"
**
3/18
M
**
"
3/19
"
••
"
3/19
"
••
"
3/19
•>
•
"
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
1st Impinger NaOH
2nd Impinger NaOH
3rd Impinger NaOH
Teflon Filter
G-l
G-2
0-3
G-4
G-5
G-6
G-7
0-8
G-9
G-10
G-ll
G-12
G-13
G-14
G-15
G-16
G-17
6-18
G-19
G-20
G-21
G-22
G-23
G-24
2.764
< 4
< 4
2.0
2,480
10.4
< 4
< 2
2,750
13.0
5.0
< 2
2,790
20
9
< 2
2,050
96
35
9
2,680
22
24
< 2
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
2.680
< 2
< 2
5.5
2,420
< 2
< 4
2.0
2,700
13.6
< 2
< 2
2,740
13
7
< 2
2,000
88
32
17
2,700
20
23
< 2
(continued).  .
                                           3-27

-------
  TABLE  3.14.  (continued)   SUlWiARY OF  "A" AND  "B" TRAIN ANALYTICAL RESULTS FOR HEXAVALENT
                           AND  TOTAL CHROMIUM

Run
No.

Date
(1966)


Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
                               No.  5 Plating Tank  Exhaust
TE-7A
ft
TE-8A
M
TE-9A
**
TE-10A
**
TE-11A
**
TE-12A
"
TE-13A
"
TE-14A
M
3/24
*'
3/24
**
3/25
**
3/25
"
3/25
**
3/25

3/26
**
3/26
"
Inipinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Irr.pinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
G-25
G-26
G-27
G-28
G-29
G-30
G-31
G-32
G-33
G-34
G-35
G-36
G-37
G-38
G-39
G-40
5,550
< 2
3,250
< 2
2.950
< 2
2.940
< 2
5,320
< 2
5,170
< 2
6,270
< 2
4,890
< 2
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
Total
Residue
5,250
< 2
3.150
< 2
2,850
< 2
2,800
< 2
5,210
< 2
5,000
< 2
6,230
< 2
4,710
< 2
                        No.  6 Plating Tank Hist Eliminator Outlet
MO-5A
"
MO-6A
**
MO-7A
f*
3/26
11
3/26
n
3/26
"
Inipinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
Impinger NaOH
Teflon Filter
G-99
G-100
G-105
G-106
G-lll
G-112
897
< 1
1.460
< 2
1,050
< 2
Total
Residue
Total
Residue
Total
Residue
862
< 1
1,380
12.9
1.000
< 2
(continued).
                                            3-28

-------
  TABLE 3.14,  (continued)
SUMMARY OF "A" AND
AND TOTAL CHROMIUM
"B" TRAIN ANALYTICAL RESULTS FOR HEXAVALE8T

Run
No.

Date
(1966)


Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
                                   No. 5 Plating Tank Exhaust
TE-1B

**
TE-2B
"
"
TE-3B
"
**
TE-4B
"
"
TE-5B
"
**
IE-SB
"
**
TE-7B
»
"
**
3/18
»
**
3/18
"
"
3/18
"
"
3/19
"
**
3/19
«
*
3/19
*
"
3/24
"
«
"
Imping, 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. 1st Split DI
Imping. 2nd Split NaOH
Teflon Filter
Imping. NaOH
Pronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
G-41
G-42
G-43
G-44
6-45
G-46
G-4?
G-48
G-49
G-50
G-51
G-52
G-53
-G-S4
G-55
G-56
G-57
G-58
6-59
G-60
G-61
G-62
2,566/2,473*
2,644
< 2
2.018/2,018*
2,093
< 1
2,201/2.236*
2,218
< 1
2,093
2,175
< 1
2,907
3,342
< 1
2,703
2,445
< 1
< 6
4,210
3
981
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Residue
Total
Total
Total
Residue
2.574
2,582
10
2.065
2,065
4
2,340
2,184
7
2,175
2,190
< 1
3,018
3,334
< 1
2,690
2,445
< 1
< 6
4,060
< 2
1,104
(continued).  .  .
              Represents the analysis  conducted  on  day 1 and  day  28 on  the same sample.
                                           3-29

-------
  TABLE 3.14. (continued)
SUMMARY OF "A" AND
AND TOTAL CHROMIUM
                   'B* TRAIN ANALYTICAL RESULTS  FOR HEXAVALENT

Run
No.

Date
(1986)


Sample Type
Sample
No.
Analyzed
Hexavalent
Chromium
Results, ug
Amount of
Sample
Analyzed
Total
Chromium
Results, ug
                                 No. 5 Plating Tank Exhaust
TE-8B
"
"
"
TE-9B
••
«
"
TE-10B
»
••
"
TE-11B
«!
«

TE-12B
"
••
*<
TE-13B
«
"
"
TE-14B
"
•1
~
3/24
"
-
"
3/25
-
»
"
3/25
»
"
"
3/25
c
"
"
3/25
"
••
"
3/26
"
»
•*
3/26
"
"
"
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinae NaOH
Glass Filter
Impinger NaOH
Fronthalt Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinsu NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOH
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
Impinger NaOK
Fronthalf Rinse NaOH
Frit Rinse NaOH
Glass Filter
G-63
G-64
G-65
G-66
G-67
G-68
G-69
G-70
G-71
G-72
G-73
G-74
G-75
G-76
G-77
G-78
G-79
G-80
G-81
G-82
G-83
G-84
G-85
G-86
G-87
G-88
G-89
G-90
61
2,650
< 2
551
< 8
2,700
< 4
442
20'
3 . 580
< 3
249
< »
4 , 892
< 3
58;:
3,560
1 . 070
s
510
23
3.960
< 4
520
12
3 , 470
4
395
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
Total
Total
Total
Residue
50
2,610
< 2
992
7
2.530
< 4
488
13
3,600
< 3
274
B
4,845
2
656
3,440
1.040
8
575
18
3.790
< 4
595
< 4
3,210
. < 2
443
(continued).
                                            3-30

-------
                    4.0  SAMPLING LOCATIONS AND TEST METHODS

    This section describes the sampling locations and test methods used to
characterize emissions from hard chromium plating tank No. 6 at the Greensboro
Industrial Platers' facility in Greensboro, North Carolina.  It also includes a
section describing the testing location, sampling procedures, and analytical
techniques used in the methods development testing conducted in one of the
exhaust ducts from plating tank No. 5.  Three sampling locations were used in
the emissions testing program: the inlet and outlet of the No. 6 plating tank
mist eliminator and the No. 5 plating tank exhaust duct.  At the No. 6 plating
tank mist eliminator inlet and outlet, emissions testing was performed for
hexavalent chromium content, total chromium content, and chromium distribution
with respect to particle size distribution.  At the No. 5 plating tank exhaust,
emissions testing was performed for hexavalent chromium content and total
chromium content only.  From the No. 6 plating tank, grab samples of the anode,
cathode, and bath solutions were collected for hexaval€jnt and total chromium
analysis.  Grab samples were also collected from the No. 6 rinse tank for
hexavalent and total chromium analysis.  The relative positions and the type of
testing conducted at each location are shown in a simplified process flow
diagram (see Figure 4-1) and accompanying Table 4.1.  The subsections which
follow further describe each sampling location and applicable test methods.

4.1  NO. 6 PLATING TANK MIST ELIMINATOR INLET  (TEST LOCATION A)
    Hexavalent chromium, total chromium, and chromium distribution with respect
to particle size distribution were measured at the inlet of  the mist eliminator
on tank No. 6, as shown in Figure 4-2.  One sampling port was installed on the
side of the horizontal circular duct  (24.75 inches in diameter).  This port was
located 9 inches (0.40 duct diameters) upstream from a bend  in the duct to the
scrubber and 8 inches  (0,35 duct diameters) downstream from  an expansion in the
duct.  Because of the close proximity of flow  disturbances,  this location did
not meet EPA Method 1 sampling requirements; however, there  was no other
location available for inlet testing.  Prior to testing, a cyclonic flow check
was performed to determine if any cyclonic flow existed at the sampling
location.  An average yaw angle of 9.5  was measured, indicating an acceptable
sampling location with respect to EPA Method 1 requirements.
                                      4-1

-------
                         ATMOSPHERE
                              t
                           STACK
TEST LOCATION
    (C)
1
                                               TEST LOCATION
                                                   (B)
                            MIST
                         ELIMINATOR
        WASH
        DOWN
          TEST LOCATION
               (A)

                           PLATING
                          TANK *6
                  TEST LOCATION
                       CD)
          FIGURE 4-1, PROCESS  AIR FLOW SCHEMATIC, PLATIN6 TANK
                    CONTROL  EQUIPMENT SHOWING TEST LOCATIONS.
                            •6 AND

-------
        TABLE 4.1.   SAMPLING PLAN FOR GREENSBORO INDUSTRIAL PLATERS
Sample Type
Sampling
Locations
Number
of Samples
Methods*
Standards Setting
Hexavalent Cr

Total Cr

Hexavalent &.
Total Cr
A & B

A & B

C
D
E
4 each

4 each

11 grab
3 sets of 4 grab
2 grab
Method 13~Type Impinger "
Train & Tentative Method
for Hexavalent Cr
Method 13~Type Impinger
Train & EPA Protocol for
Total Cr
Tentative EPA Method
for Hexavalent Cr & ICP
Particle Sizing
Hexavalent &
Total Cr
Distribution
by Particle
Size
A &. B


3 each


Impactor using
Tentative EPA Method
for Hexavalent Cr & ICP

Methods Development
Hexavalent &,
Total Cr

B
F

3 pairs
14 pairs

Various Paired Sampling
Trains (see Appendix C)
using Tentative EPA
Method for Hexavalent Cr
& ICP
ICP: Inductively-Coupled Argon Plasmography
                                   4-3

-------
   23.75" DIA.-
                     SECTION l-L
                                             TRAVERSE POINTS

                                             1  AXIS
                                             12 POINTS/AXIS
                                             12 TOTAL POINTS
                                                ROOF LINE












FAN



/
/








MIST
ELIMINATOR



\
\




t
2

1




L

r

<



r»
I

DA

/ (HEIGHT « 15')

»t

^""""•"--^ 1 F001
<4 	 jJ TANK
^P T , T -, J
  -7
   ^
                                 9'
                                           FROM TANK
               DRAIN PIPE
                  FOR
              WASH DOWN
RECYCLE
TO TANK
                                          FLOOR
FIGURE 4-2.  MIST ELIMINATOR INLET (TEST LOCATION A).

-------
     For the Method 13-type impinger train testing (refer to Appendix C for
further discussion of sampling train and sample analysis procedures),
sampling was conducted along two axes through the single port (labeled "A" in
Figure 4-2).  The axis perpendicular to the sampling port axis (labeled "B")
was sampled by inserting the probe through the available port at a
predetermined angle for a predetermined distance, both of which were
calculated geometrically,
     A total of 12 points were sampled for 5 minutes each on the "A" axis;
however, only 6 points (see Figure 4-3) were sampled on the "B" axis due to
the size of the port limiting the angle with which the probe could be
inserted.  Points 1 and 6 were sampled for 20 minutes each, while points 2
through 5 were sampled for 5 minutes each.  The total test time for each run
was 120 minutes.  Each run was performed concurrently with the outlet
testing.
     For the particle size tests  (including hexavalent and total chromium
distribution by particle size) the first run of the three-run series was
conducted at a sampling point representing the average velocity in  the duct.
To ensure consistent cut-sizes on the impactor plates, the remaining two runs
were conducted at points having the same velocity as the  first run.  The
three particle size runs ranged from 123 to 180 minutes in duration.

4.2  NO. 6 PLATING TANK MIST ELIMINATOR OUTLET  (TEST LOCATION B)
     Hexavalent chromium, total chromium, and chromium distribution with
respect  to particle size distribution were measured at the outlet of the
No. 6 mist eliminator, as shown in Figure 4-4.  Two sampling ports  were
installed 90  apart on the 13•5 inch diameter stack extension.  The ports
were located 36 inches (2.5 stack diameters) upstream from the stack exit  and
89 inches  (6.5 stack diameters) downstream from  the expansion in the duct
leading  from the induction fan.
     For the Method 13~type impinger train (refer to Appendix C for further
discussion of sampling train and  sample analysis procedures), a total of 16
points,  as per Method 1, were sampled.  Each point was sampled for  8 minutes
for a total sampling time of 128 minutes.
     For the particle size tests  (including hexavalent and total chromium
distribution by particle size) the first run of the three-run series was
                                      4-5

-------
 23.75"
               i
                 \
                   \
   i
 t
I
                                   f
4.5" 4

ii
FIGURE  4-3.  CROSS SECTION OF MIST ELIMINATOR INLET SHOVING LOCATIONS OF SIX POINTS
                  TRAVERSED ON  AXIS  PERPENDICULAR TO SINGLE PORT.

                                         _

-------
                          13.5"  DIA,
                                              TRAVERSE POINTS

                                              2 AXES
                                              6 POINTS/AXIS
                                              16 TOTAL POINTS
SECTION S-S
         T
          3'
          7
          i
                            o
                            A
                                          \.
                                                    •ROOF
                           FROM FAN
 FIGURE 4-4. MIST  ELIMINATOR OUTLET STACK (TEST  LOCATION B),

-------
conducted at a sampling point representing the average velocity in the duct.
To ensure consistent cut-sizes on the impactor plates, the remaining two runs
were conducted at points having the same velocity as the first run.  The
three particle size runs ranged from 123 to 240 minutes in duration.

4.3  NO. 6 PLATING TANK MIST ELIMINATOR WASH DOWN DRAIN PIPE  (TEST LOCATION C)
     During each day of sampling, grab samples were collected during the mist
eliminator wash down cycles.  The samples were collected by holding a sample
jar beneath the drain pipe as the wash down cycle was in progress.  Five
samples were collected on March 18, three samples were collected on March 19,
and three samples were collected on March 25.  At the end of each day, the
samples were combined into a single sample for analysis of hexavalent and
total chromium content.

4.4  NO. 6 PLATING TANK ANODE, CATHODE, AND BATH SOLUTION (TEST LOCATION D)
     During each set of runs, grab samples of the tank solution were collected
near the anode area and the cathode area, and from the bath.  The samples were
collected at a point showing the most turbulence and bubbling.  Each sample
was analyzed for hexavalent and total chromium content.

4.5  NO. 6 PLATING TANK RINSE TANK (TEST LOCATION E)
     During each day of sampling, a grab sample was collected from  the rinse
tank which supplies the water used to rinse off the parts as  they are lifted
from the No. 6 plating tank.  The parts are rinsed directly over the plating
tank.  The samples were analyzed for hexavalent and total chromium  content.

4.6  NO. 5 PLATING TANK EXHAUST  (TEST LOCATION F)
     Hexavalent and total chromium methods evaluation tests were conducted  in
one of the exhaust ducts coming off plating tank No. 5. as shown in
Figure 4-5-  Two sampling ports were installed side-by-side on  the  side of  the
angled circular duct  (11.5 inches in diameter).  The main port  (A)  was located
14 inches  (1.22 duct diameters) upstream of a bend in the duct  and  30 inches
(2.6l duct diameters) downstream of another bend in the duct  from  the plating
tank.  Since the methods evaluation sampling was .conducted at two  "single
points" it was not imperative that this location meet EPA Method 1
requirements.
                                      4-8

-------
                                                   11.5"
                          SECTION R-R
       TO MIST
      ELIMINATOR
                                         R
                                                          TRAVERSE POINTS

                                                          I AXIS
                                                          3 POINTS/AXIS
                                                          3 TOTAL POINTS
                                                FROM TANK
FIGURE 4-5. EXHAUST DUCT  ON PLATING TANK  «5 (METHODS DEVELOPMENT TEST LOCATION E).
                                      4-9

-------
     For the method development testing (refer to Appendix C for a detailed
discussion of the sampling trains and analytical procedures used),  paired
train sampling was conducted through the two ports.  The nozzles of the two
trains were staggered in the duct and halfway through each run the train and
probe positions were reversed.  The total test time for each run was 60
minutes.

4.?  VELOCITY AND TEMPERATURE
     A type S pitot tube and magnehelic gauges were used to measure the gas
velocity pressure (delta P).  Velocity pressures were measured at each
sampling point across the duct or stack to determine an average value
according to the procedures outlined in Method 2.  The temperature at each
sampling point was measured using a thermocouple and digital readout.

4.8  MOLECULAR WEIGHT
     The flue gas composition and molecular weight were assumed  to be those
of ambient air,

4.9  SAMPLING TRAINS
     Hexavalent Chromium and Total Chromium - A Method 13-type impinger train
was used to capture chromium emissions at locations A and B.  All tests were
conducted isokinetically by traversing the cross-sectional area  of the duct
or stack and regulating the sample flow rate relative to the flue gas flow
rate as measured by the pitot tube attached to the sample probe.  The
sampling train consisted of a heated, glass-lined probe, a filter bypass,
four impingers (the first three containing 100 mL of 0.1N NaOH each and the
fourth containing silica gel).  A Teflon filter was also employed between the
third and fourth impingers.  A 0.1N NaOH rinsing of the nozzle,  probe, and
first three impingers  (the contents of each impinger and its rinse was kept
separate for efficiency testing) was made at the end of each test.  The
Teflon filter was kept dry and separate.

     Particle Size Distribution - Particle size samples were collected using
Andersen Mark III cascade impactors.  These in-stack, multi-stage cascade
impactors have a total of eight stages followed by a back-up filter stage and
particle size cut-offs ranging from 0.5 to 15 microns.  Substrates were 64 mm
diameter glass fiber filters.  A constant sampling rate was maintained
                                       4-10

-------
through the test period.  Sampling rates were set for isokinetic sampling as
long as the sampling rate did not exceed the recommended flow rate for the
impaetor.  See Appendix C for detailed sampling procedures.  At the locations
sampled, a point of average velocity was sampled.  With the exception of the
selection of the sampling point locations, the procedures used followed those
recommended in the "Procedures Manual for Inhalable Particulate Sampler
Operation" developed for EPA by the Southern Research Institute.

4.10  HEXAVALENT CHROMIUM CONTENT
     Hexavalent chromium content was determined utilizing procedures
described in the tentative EPA Method "Determination of Hexavalent Chromium
Emissions from Stationary Sources" (see Appendix C).  At the end of each
Method 13~type impinger train run, the impinger reagent and rinsings were
combined into one sample.  The impinger reagents and rinsings as well as the
Teflon filter were analyzed for hexavalent chromium content using this
method. It was also used to determine the hexavalent content of the process
samples which were collected.
     Two different sample preparation techniques were used.  For the
standards setting testing presented in Subsections 3-0 through 3*5t the
samples were first filtered.  The filtered residue was sent for total
chromium analysis and the filtrate was sent for hexavalent chromium
analysis.  For the methods development testing described in Subsection 3-6
and the process samples, two separate aliquots of  the Eiample were analyzed,
one for  total chromium  and one for hexavalent chromium.

4.11  TOTAL CHROMIUM CONTENT
     Total chromium content was determined using procedures described in the
"EMB Protocol for Sample Preparation and  Emission  Calculation of Field
Samples  for Total Chromium" which includes Neutron Acti.vation Analysis  (NAA)
and using Inductively-Coupled Argon Plasaography (ICAP)  (see Appendix C).   As
described above and in  Appendix C, the standards setting impinger samples
were prepared one way and analyzed using  NAA and the methods development and
process samples were prepared another way and analyzed using ICAP.
                                      4-11

-------
                             5.0  QUALITY ASSURANCE

    Because the end product of testing is to produce representative emission
results, quality assurance is one of the main facets of stack sampling.
Quality assurance guidelines provide the detailed procedures and actions
necessary for defining and producing acceptable data.  Two such documents were
used in this test program to ensure the collection of acceptable data and to
provide a definition of unacceptable data.  These documents are:  the EPA
Quality Assurance Handbook Volume III, EPA-600/4-77-02? and Entropy's "Quality
Assurance Program Plan" which has been approved by the U.S. EPA, EMB.
    Relative to this test program, the following steps were used to ensure that
the testing and analytical procedures produced quality data.

     *   Calibration of field sampling equipment.  (Appendix D describes
         calibration guidelines in more detail.)
     •   Checks of train configuration and on calculations.
     *   On-site quality assurance checks such as sampling train, pitot tube,
         and quality assurance checks of all test equipment prior to use.
     »   Use of designated analytical equipment and sampling reagents.
     Table 5•1 summarizes the on-site audit data sheets for the sampling
equipment used for the testing at each sampling location, including deviation
limits.  In addition to the pre- and post-test calibration audits, a field
audit was performed on the meter boxes used for sampling.  Entropy used the
procedures described in the December 14, 19&3 Federal Register  (48FR55670).
In addition, the analytical balance used for filter weighing was audited with
Class "S" weights.  Appendix D includes the audit run data sheets for each
dry gas meter used for the testing and audit data sheets for the other
sampling equipment.
     Audit solutions prepared by the EPA were used to check the analytical
procedures of the laboratories conducting the hexavalent chromium and total
chromium analyses.  Table 5-2 presents the results of these analytical
audits.  The audit tests show the analytical techniques were accurate.
     The sampling equipment, reagents, and analytical procedures for this
test series were in compliance with all necessary guidelines set forth for
accurate test results as described in Volume III of the Quality Assurance
Handbook,
                                      5-1

-------
TABLE 5.1.  FIELD EQUIPMENT CALIBRATION
Equipment
Meter box (N-5)
Meter box (N-9)
Meter box (N-?)
Meter box (N-7)
Meter box (N-l4)
Meter box (R-2)
Meter box (N-8)
Reference
Field Audit (3/25)
Field Audit (3/25)
Field Audit (3/25)
Field Audit (3/26)
Field Audit (3/26)
Field Audit (3/26)
Field Audit (3/26)
Allowable
Error
Y + 0.05Y
Y + 0.05Y
Y + 0.05Y
Y +_ 0.05Y
Y +_ 0.05Y
Y + 0.05Y
Y + 0.05Y
Actual
Error
+0.02?
-0.005
+0.002
+0.008
+0.003
+0.019
+0.042
Within
Allowable
Limits
s
,/
^

-------
TABLE 5-2,  AUDIT REPORT CHROMIUM ANALYSIS
Plant:
Date Samples Received:



Samples Analyzed By:  _



Reviewed By: re
z> / $*&
                                *%
                       Task No.:    3SO3
                       Date Analyzed:
                       Date of Review:    f-/66»
Sample
Number

£-12-1
b-123
6-121





ug/mL
Cr""6 or Cr

fOOA*4 Cr ^
l-tOO/AH Cr+3
•/
n
It





Source of
Sample

Q^t>
QAJ>
6|/H>





Analytical
Technique

//AA
Cr*
TtP





Audit
Value

ZOie^l
9(*4
Iff





Relative
Error, %

i-S.?
-3.6
-3.0





                   5-3

-------
              APPENDIX A




TEST RESULTS AND EXAMPLE CALCULATIONS
                  A-l

-------
A-2

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., ir».H2Q
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
Ho.
A-4
A-4
A-4
B-5
B-5
B-5

FINAL
Sample
Tim*
(Min.)
0/0
10
20
30
40
50
60 /OFF

Gas Meter
Reading
(Cu.Ft.)
SI .652
89.11
95.86
102.40
110.46
118.57
126.78

GREENSBORO !». PLATERS
COATING TANK *3-EXHAUST
29.2
-0.75
0.002
8
Velocity
Head
(in.H20)
0.175
0.131
0.132
0.204
0.206
0.213


DATE: 03/18/86 OPERATOR:
RUN NUMBER TE-1A
NOZZLE * , NOZZLE 0 1 AM . 508 ,.313
METER BOX iHf' 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
B. RUDD

ASSUMED MOISTURE 2
Orifice iH
(in. H20)


Desired Actual
1.89 1
1.42 1
1.43 1
•*> *^l < <~r
2:23 2
2.31 2


.89
.42
.43
.21
--,.-,
..J-.~'
.31


Gas Meter
Temp.
(deq.F)
81
37
83
88
SO
90


Pump
Vac.

-------
PLANT
SAMPLING LOCATION
FILTER NUMEER(S)
B AR. PRESS., in. Hq
STATICPRESS.,in"H2Q
LEAK RATE, CFM
LEAK TEST VACUUM., in Hg
Trov .
Point
No.
B-5
B-5
B-5
A-4
A-4
A-4

FINAL
DIFF/
Sample
Time
(Min.)
0/0
10
20
30
40
50
60/OFF

AVG.
Gas Meter
Reading
(Cu.Ft.)
327.000
334.54
342.68
351.132
358.41
365.67
372.88


GREENSBORO (NO. PLATERS
COATING TANK *5-EXHAUST
29.2
-0.75
0.016
8
Velocity
Head
(in.H20)
0.175
0.217
0.224
0.155
0.156
0.157



Orifice
Cin.H
Desired
1.6Q
2.10
2.17
1.50
1.51
1 .52



4H
20;
Actual
1 .69
2.10
A, - 1 t'
1.5C
1.51
1.32



DATE: 03/18/86 OPERATOR:
RUN NUMBER TE-1E
NOZZLE *, NOZZLE DIAM. 50Q ,.31 2
METER BOX i,H® 1 .53
SAMPLE BOX NUMBER 13
METER BOH NUMBER N-1 0
ASSUMED MOISTURE 2
Gas Meter-
Temp .
(deci, F)
Tt1
74
76
76
78
81



Pump
Vac.
(in.Hq)
cr
J
6
6
IT
c
-J
5



Fitter
Box Temp .
(deg.r)
121
120
122
122
126
128



Imp. Exit
Temp.
(deq.F)
66
67
66
65
65
66



B.RUDD
Stack Leak
Temp. Check
(e)*g.F)
67
58
67
68
68
67



45.38'
0.180
76 32
67.50
                                   A-4

-------
                    PARTICULATE FIELD DATA fi RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North

RUN f        DATE     SAMPLING LOCATION
TE-1A     03/18/86    Coating Tank #5 - Outlet
TE-1B     03/18/86    Coating Tank #5 - Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF HETERED GAS SAMPLE, DRY  ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY  SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS & SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     M£d       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MQLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     ws        FLUE GAS VELOCITY. FEET/SECOND

     A         STACK/DUCT AREA, SQUARE  INCHES

     Qsd       VOLUMETRIC AIR FLOW  RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW  RATE, WET ACFM

     %I        ISOKINETIC SAMPLING  RATE, PERCENT


      * 68  Degrees F -- 29.92 Inches of Mercury  (Hg)
                                                        Carolina
TEST TEAM LEADER
Barry F.
Barry F.
TE-1A
915
1021
2
60.00
0.313
0.840
0.994
29.20
1.920
45.121
87
42.438
14.0
0.659
1.5
0.985
28,84
28.67
-0.75
29.14
67
0.1750
23,86
103.9
992.2
1,033
96.1
Rudd
Rwdd
TE-1B
915
1022
2
60.00
0.312
0.840
1.002
29.20
1.750
45.883
76
44.376
17.0
0.800
1.8
0.982
28.84
28.64
-0,75
29.14
68
0.1800
24.23
103.9
1,003
1,049
100.0
                                                                (continued next page)
                                      A-5

-------
               jg
          HEXAVALENT CHROMIUM:

mg           CATCH, MILLIGRAMS

gr/DSCF      CONCENTRATION, GRAINS PER DSCF*

Lb/Hr        EMISSION RATE, LBS/H0UR

          TOTAL CHROMIUM:

mg           TOTAL CATCH, MILLIGRAMS

gr/DSCF      CONCENTRATION. GRAINS PER DSCF*

Lb/Hr        EMISSION HATE, LBS/HOUE


          FLUE GAS TEMPERATURE:

             Degrees Fahrenheit

             Degrees Centigrade

          AIR FLOW RATES x million:

             Actual Cubic Meters/hr

             Actual Cubic Feet/hr

             Dry Std. Cubic Meters/hr*

             Dry Std. Cubic Feet/hr*

          HEXAVALENT CHROMIUM:

             Concentration, mg/dsem*

             Concentration, gr/dscf*

             Emissions, kg/hr

             Emissions, Ib/hr

          TOTAL CHROMIUM:

             Concentration, mg/dscra*

             Concentration, gr/dscf*

             Emissions, kg/hr

             Emissions, Ib/hr
                                                         TE-1A
                                                                      TE-1B
  [ 2,766,0 )    ( 2,644.0 J
     •»
   { 1.006 )     { 0.9195 )

   ( 8.554 )      (  7.907 )




  ( 2,684.0 )    ( 2,592.0  )

   JO.9760 )     ( 0.9014 )

   { 8.300 }     (   7.752  }
         67

         19



     0.0018

     0.0620

     0.0017

     0.0595



(  2301.7691 )

 ( 1.005842 )

   {  3.8800 J

   (  8.5540 )



(  2233.5315 )

 ( 0.976024 )

    (3.7650)

    (8.3004)
        68  deg.  F

        20  deg.  C



    0.0018  acmh

    0.0629  acfh

    0.0017  dscmh

    0.0602  dscfh



'2104.1618)  mg/flscm

[  0.919491)  gr/dscf

  (  3.5866 ) kg/hr

  (  7.9072 ) Ib/hr



!2062.7789)  mg/dscm

 (0.901407)  gr/dscf

   (3.5161)  kg/hr

  (  7.7516)  Ib/hr
           * 68  Degrees F — 29.92 Inches of Mercury  (Hg)

           (         )  = X  10~3
                                 A-6

-------
           EXAMPLE PARTICULATE TEST CALCULATIONS NO. TE-1A

                     Coating Tank #5 - Outlet


VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS


                              (Pbar + Delta H/13.6)
   Vm(std) = 17.64 * Y * Vm *	
                                   (460 + tm)

                                      (29.20 -i- 1.920/13.6)
   Vra(std) = 17.64 * 0.994 * 45.121 *	=  42.438 DSCF
                                          (460 +  87)


VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
   Vw(std) = 0.04707 * VlC

   Vw(std) = 0.04707 *   14.0 =   0.659  SCF


PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS


   %H20 = 100 * Vw(std) / (Vw(std) + Vm(std))

                 0.659
   %H2O =	* 100 =   1.5 %
            0.659 +  42.438


DRY MOLE FRACTION OF FLUE GAS
   Mfd =  1 - %H20/100

   Mfd =  1 -   1.5/100 =  0.985


WET MOLECULAR WEIGHT OF FLUE GAS


   Ms = (Md * Mfd) + (0.18 * %H2O)

   Ms = 28.84 * 0.985  +  (0.18 *  1.5) = 28.67  LB/LB-MOLE
                                   A-7

-------
ABSOLUTE FLUE GAS PRESSURE


   Ps = Pbar  +  Pg / 13.6

   Ps = 29.20  + ( -0.7 / 13.6) =  29.14  IN. HG.


AVERAGE FLUE GAS VELOCITY [Note: (Delta p)avg is square of avg sq. root]


                          (Delta p)avg * (460 + ts)
   vs = 85.49 * Cp * SQRT[	]
                                   Ps * Ms

                             0.1750 * (460 +   67)
   vs - 85.49 * 0.840 * SQRT[	] =  23.9  FT/SEC
                                 29.14 * 28.67


DRY VOLUMETRIC FLUE GAS FLOW RATE @ STANDARD CONDITIONS


          60                      Tstd      Ps
   Qsd =	* Mfd * vs * A *	*	
          144                  ts + 460    Pstd

          60                                   528       29.14
   Qsd =	  * 0.985 *  23.9 *     103.9 *	*	
         144                                  67 + 460   29.92

   Qsd =       992  SCFM


WET VOLUMETRIC STACK GAS FLOW RATE @ FLUE GAS CONDITIONS


   Qaw = 60 / 144  *  vs  *  A

   Qaw = 60 / 144  *   23.9  *      103.9  =     1,033  ACFM


PERCENT ISOKINETIC OF SAMPLING RATE
        Pstd   100              (ts + 460) * Vm(std)
      =	*	*	.	
        Tstd    60   Ps * vs * Mfd * Theta * Area-nozzle, sq.ft.

        29.92   100             (  67 + 460) *  42.438
      _	* ___ *	
         528     60   29.14 *  23.9 * 0.985 *  60.00 * 0.0005343

      =  96.1  %
                                   A-J

-------
     GRAINS PER DRY STANDARD CUBIC FOOT
                   7000       mgs
        gr/DSCF =	*	
                  453,592   Vm(std)

                   7000      2,766.0
        gr/DSCF =	*	— =  1.0058  gr/DSCF
                  453,592    42.438
—    POUNDS PER HOUR
        Lb/Hr = 60 / 7000  *  gr/DSCF  *  Qsd

        Lb/Hr e 60/7000  *   1.0058  *        992  =       8.55  LB/HR
                                       A-9

-------
PLANT
SAMFLIN0 LOCATION
FILTER NUMBER(S)
BAR. PRESS.,, in. Hg
STATIC PRESS,, in. H20
LEAKRMI.CFM
LEAK TEST VACUUM, in H
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS,, in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov,
Point,
No.
B-5
B-5
B-5
A-4
A-4
A-4

FINAL
Sompie
Tim?
(Min.)
0/0
10
20
30
40
50
60 /OFF

Cos Meter
Reading
(CuJFt.)
373.102
3S0.98
383.18
393.648
402.61
409.42
416.227

GREENSBORO 1ND. PLATERS
COATING TANK *3-EXHAUST
29.2
-0.75
0.000
10
Velocity
Head
(m.H20)
0.196
0.193
0.1 '32
0.157
0.162
0.162


Orifice
(in. H
Desired
1.39
1.61
1.6!
1.40
1.35
1.33


4H
20)
Actual
1 .39
1.6!
1.61
1.40
1.35
1.35


DATE: 03/18/86 OPERATOR:
RUN NUMBER TE-2B
NOZZLE *, NOZZLE DIAM. 1 0S ...301
METER BOX iH@ i ,63
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-10
ASSUMED MOISTURE 2
Gas Meter
Temp.
(dea., F)
65
59
73
78
82
35


Pump
Vac.
Cin.Hg)
3
8
8
™r
7
•?


Filter
Box Temp.
CdegJ)
128
129
130
127
127
125


Imp. Exit
Temp.
(d»g.F)
63
56
66
53
62
63


B. RUDD
Stock Leak
Temp. Check
(d»g.F)
71
71
71
70
70
70


DIFFMVG.
43.
0.178
1.54
75.33
70.50
                       A-ll

-------
                    PARTICULATE FIELD DATA K RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION
                                                                 TEST TEAM LEADER
TE-2A
TE-2B
          03/18/86    Coating Tank #5 - Outlet
          03/18/86    Coating Tank #5 - Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dis       NOZZLE DIAMETER, INCHES

     Cp        PITDT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS & SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD. INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Dsd       VOLUMETRIC AIR FLOW RATE, DEY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %!        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
Barry F,
Barry F.
TE-2A
1253
1400
2
60.00
0.304
0.840
0.994
29.20
1.760
43.518
80
41.444
15.0
0.706
1.7
0.983
28.84
28.65
-0.75
29.14
71
0.1820
24.43
103.9
1.007
1,058
98.1
Ruda
Rudel
TE-2B
1254
1402
2
60.00
0.301
0.840
1.002
29.20
1.540
43.225
75
41.861
19.0
0.894
2.1
0.979
28.84
28.61
-0.75
29.14
71
0.1780
24.18
103.9
992.2
1,047
102.5
                                                                (continued next page)
                                       A-12

-------
                                                         TE-2A
                                                                      TE-2B
          HEXAVALEMT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION. GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PEK DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr*
             Dry Std. Cubic Feet/hr*
          HEXAVALENT CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
          TOTAL CHROMIUM:
             Concentration, mg/dscni*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
  { 2,490.0 )    ( 2,093.0 )
   (0.9272 )     ( 0,7716 )
   ( 8.001 )     (  6.562 )


  (2,422.0 )    ( 2,069.0 )
   ( 0.9019 )    ! 0.7627 )
   { 7.783 )     (  6.487 )
         71
         22


     0.0018
     0.0635
     0.0017
     0.0604


(  2121.7750 )
 ( 0.927187 )
    (3.6293 )
   ( 8.0012 )


(  2063,8309 )
 ( 0.901867 )
    (3.5302 )
   { 7.7827 )
       71   deg,  F
       22   dog.  C


   0.0018   acmh
   0.0628   acfh
   0.0017   dsctnh
   0.0595   dscfh


1765.7183  ) mg/dscm
 0.771595  ) gr/flscf
 ( 2.9766  ) kg/hr
 ( 6.5622  ) Ib/hr


1745.4711  ) mg/dscm
(0.762748  ) gr/dscf
 j 2.9424  ) kg/hr
 { 6.4870  ) Ib/hr
            *  68  Degrees F  —  29.92  Inches of Mercury  (Hg)
                               -3
                    )  = X   10
                               A-13

-------
PLAT4T
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC. PRESS,, in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov,
Point.
No.
A-4
A-4
A-4
B-5
B-5
B-5

FINAL
Sample
Time
(Min.)
0/0
10
20
30
40
30
60 /OFF

Gas Meter
Reading
(Cu.FO
170.642
173.01
185.29
! 92.337
201 .28
209.87
218.448

GREENSBORO IND. PLATERS
CO AT ING TANK »3-EXHAUST
29.2
-0.73
0.005
7
Velocity
Head
(in.H20)
0.170
0.167
0.167
0.218
0.222
0.217



Orifice iH
(in. H20)



Desired Actuai
1 .32 1 ,
1 .73 1 .
1.33 1
2.39 2.
2.43 2
2.38 2


.82
.78
.83
.39
.43
.33


DATE; 03/18/86 OPERATOR:
RUN NUMBER TE-3A
NOZZLE *, NOZZLE DIAM. 508 ,.31 3
METER BOX AHd 1 .32
SAMPLE BOX NUMBER 11
METER BOX NUMBER N-3
ASSUMED
Gas Meter
Temp.
(d»g. F)
32
97
98
96
100
102


DR

MOISTURE 2
Pump
Vac.
(irt.Hq)
6
5
6
•?
7
T


Filter
Box Temp.
\ d'SKi .F )
120
117
118
120
120
117


Imp. Exit
Temp.
(deci.F)
66
83
63
05
61
82


Stack
Temp.
(de<3.F)
72
72
71
72
72
71


Leak
Check









DIFF/AVG.
47.806
0.193
2.11
97.50
71.67
                                  A-U

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in." H20
LEAKRATEjCFM
LEAK TEST VACUUM, in Hq
GREENSBORO IND. PLATERS
COATING TANK *3-EXHAUST

  29.2
  -0,59
  0.090
D ATE:   03/18/86         OPER ATOR:
RUN NUMBER                TE-3E
NOZZLE *, NOZZLE CHAM.      509,.312
METER BOX iHi?             1.63
SAMPLE BOX NUMBER         11
METER BOX NUMBER           N-10
ASSUMED MOISTURE          2
                                                                                         DR
Trav.
Point.
No.
B-5
B-5
B-5
A-4
A-4
A-4

FINAL
Sample
Time
(Mm.)
0/0
10
20
30
40
50
60 /OFF

Gas Meter
Readinq
(Cu.Ft.)
416.608
425.50
424,42
443.520
450 .38
458.24
465.660

Velocity
Head
(m.H20)
0.232
0.227
0.232
0.154
0.154
0.153


Orifice
AH
(in. H20)
Desired
2.35
2.29
2.35
1.55
1.55
1.55


Actual
2.35
2.29
2.35
1.55
1.55
1.55


Gas Meter
Temp.
(•teg. F)
88
91
93
90
91
91


Pump
Vac.
(m.Hg)
7
r'
7
cr
5
5


Filter
Box Temp .
(d«g.F)
125
125
122
!20
120
120


imp. Exit
Temp.
(4*9 .F)
56
52
62
55
62
64


Stack
Temp.
(
-------
                    PARTICULATE FIELD DATA fi RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

HUN #        DATE     SAMPLING LOCATION
TEST TEAM LEADER
TE-3A     03/18/86    Coating Tank f5 - Outlet
TE-3B     03/18/86    Coating Tank #5 - Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vtn(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS fi SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     Kfd       DRY MOLE FRACTION

     Kd        ESTIMATED DRY MOLECULAR KT. LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS,, INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     VB        FLUE GAS VELOCITY,  FEET/SECOND

     A         STACK/DUCT AREA, SQUARE  INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE. DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury  (Hg)
B . Dwain
B , Dwain
TE-3A
1429
1533
2
60.00
0.313
0.840
0.994
29.20
2.110
47.806
98
44 . 098
20.0
0,941
2.1
0.979
28.84
28.61
-0.73
29.15
72
0.1930
25.20
103.9
1.032
1,091
96.0
Ritchie
Ritchie
TE-3B
1430
1534
2
60.00
0.312
0.840
1.002
29.20
1.940
49.052
91
46.171
20.0
0.941
2.0
0.9BO
28.84
28,62
-0.59
29.16
72
0.1900
24 .99
103.9
1.025
1,082
101.9
                                                                (continued next page)
                                    A-16

-------
                                                                                    TE-3A
                                                                                                 TE-3B
X^*3*
          HEXAVALENT CHROMIUM:


mg           CATCH,  MILLIGRAMS

gr/DSCF      CONCENTRATION. GRAINS PER DSCF*


Lb/Hr        EMISSION RATE. LBS/HOUR


          TOTAL CHROMIUM:


mg           TOTAL CATCH, MILLIGRAMS


gr/DSCP      CONCENTRATION. GRAINS PEE DSCF*


Lb/Hr        EMISSION RATE. LBS/HOUR
                                                                                 { 2,768.0 }    ( 2,218.0)
                                                                                                      «"*
                                                                                  (0.9687)     ( 0.7413)


                                                                                  (8,571)     (  6.514)




                                                                                 (2,714.0)    ( 2,191.0 )


                                                                                  ( 0.9498 )     ( 0.7323 )


                                                                                  ( 6,404 )     (  6.435 )
          FLUE GAS TEMPERATURE:

             Degrees Fahrenheit                             72

             Degrees Centigrade                             22

          AIR FLOW RATES x million:

             Actual Cubic Meters/hr                     0.0019

             Actual Cubic Feet/hr                       0.0655

             Dry Std. Cubic Meters/hr*                  0.0018

             Dry Std. Cubic Feet/hr*                    0.0619

          HEXAVALENT CHROMIUM:

             Concentration, mg/dscm*                (2216.7265]

             Concentration, gr/dscf*                 (0.968680]

             Emissions, kg/hr                          { 3.8876

             Emissions, Ib/hr                          ( 8.5707

          TOTAL CHROMIUM:

             Concentration, ntg/dsran*                ( 2173.4811

             Concentration, gr/dscf*                (   0.949782

             Emissions, kg/hr                          { 3.8118

             Emissions, Ib/hr                          ( 8.4035

           * 68  Degrees F —  29.92 Inches of Mercury  (Hg)


            (        )  = X 10~3
                                                                                                    72  deg, F


                                                                                                    22  deg. C




                                                                                                0.0018  acmh


                                                                                                0.0649  acfh


                                                                                                0.0017  dscmh


                                                                                                0.0615  dscfh




                                                                                            ( 1696.5017 ) mg/dscm


                                                                                            ( 0.741349 ) gr/dscf


                                                                                               ( 2.9548 ) kg/hr


                                                                                               ( 6.5143 ) Ib/hr




                                                                                            (1&75.8499) mg/dscm


                                                                                            ( 0.732324) gr/dscf


                                                                                              (  2.9189) kg/hr


                                                                                               ( 6.4350) Ib/hr
                                                          A-17

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STAT!CPRESS,,in,H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
GREENSBORO IND.  PLATERS
COATING TANK *5 EXHAUST
   N/A
  29.2
  -0.73
  0.003
DATE:    03/1Q/86
RUN NUMBER
NOZZLE *, NOZZLE OIAM.
METER BOX *H(f>
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
OPERATOR:
TE-4A
507,.304
1.82
24
N-5
DR
Trav .
Point.
No.
A-4
A-4
A-4
B-5
B-5
B-5
A-4
FINAL
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF

DIFFMV6.
Gas Meter
Reading
(CU.FO
213.623
225.34
232.16
239.01
246.49
254.04
261.610

42.987
Velocity
Heod
(in.H20)
0.162
0.163
0.163
0.197
0.197
0.197


0.179
Orifice
4H
(in, H20)
Desired Actual
1.54
1.55
1.55
1,33
1.88
1.88



1.54
1.55
1.55
1.88
1.88
1.88


1.71
Gas Meter
Temp,
(de^. F)
78
79
81
32
85
37


82.00
Pump
Vac.
(in. Ha)
6
6
g
7
7
i



Filter
Box Temp.
(deq.F)
120
120
122
125
125
125



Imp. Exit
Temp,
(deq.F)
65
62
63
65
62
62



Stack
Temp.
72
72
-t^
s *_
"7""s
i *-.
71
72


71.8;
                                                                                                     Check
                                                A-18

-------
PLANT
SAMPLING LOCATION
FILTER NLIMBER(S)
BAR. PRESS.., in. Hg
STATICPRESS..in.H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Troy.
Point,
No.
B-5
B-5
B-5
A-4
A-4
A-4

FINAL
Samcle
Time
(Mm.)
0/0
10
20
30/0
10
20
60 /OFF

DIFF/AVG.
Gas Meier
Reading
(Cu.FU
465.837
473.75
481.71
489.573
496.94
304.22
51 1 .424

45.537
GREENSBORO IND. PLATERS
COATING TANK *5 EXHAUST
N/A
29.2
-0.73
0.020
11
Velocity
Head
(in.H20)
0.187
0.193
0.100
0.162
0.157
0.152


0.173
Orifice i
(in. H20)
iH

Desired Actual
1.75
1,81
1,78
1.32
1,47
1,47



1.75
1.31
1.78
1.52
1.47
1.47


1.63
DATE: 03/19/96 OPERATOR:
RUN NUMBER TE-4B
NOZZLE *, NOZZLE DIAM. 1 08, .301
METER BOX AH@ 1 .63
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-10
ASSUMED MOISTURE 2
Gos Meter
Temp.
(deg. F)
75
78
82
82
84
85


81.03
Pump
Vac.
(in.Hg)
11
11
10
g
Q
g



Filter
Box Temp.
(deq.F)
120
120
125
125
125
125



Imp. Exit
Temp.
Cdeg.F)
65
60
62
05
64
05



DR
Stack Leak
Temp. Check
(dea.F)
72
~?">
72
i i.
71
1 i.


71.33
A-19

-------
                    PARTICULATE FIELD DATA £ RESULTS TABULATION






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina




RUN #        DATE     SAMPLING LOCATION
                                                                 TEST TEAM LEADER
TE-4A 03/19/86 Coating Tank #5 - Outlet
TE-4B 03/19/86 Coating Tank #5 - Outlet
RUN START TIKE
RUN FINISH TIME

Theta
Dia
Cp
y
Pbar
Delta H
Vm
tm
Vm(std)
Vic
Vw(stdj
%H20

Mta
Md
Ms
Pg
Ps
ts
Delta p
vs
A
Qsd
Qaw
*I
NET SAMPLING POINTS
NET RUN TIME, MINUTES
NOZZLE DIAMETER, INCHES
PITOT TUBE COEFFICIENT
DRY GAS METER CALIBRATION FACTOR
BAROMETRIC PRESSURE, INCHES KG
AVG. PRESSURE DIFFERENTIAL OF
ORIFICE METER, INCHES H20
VOLUME OF METERED GAS SAMPLE, DRY ACF
DRY GAS METER TEMPERATURE, DEGREES F
VOLUME OF METERED GAS SAMPLE, DRY SCF*
TOTAL VOLUME OF LIQUID COLLECTED
IN IMPINGERS & SILICA GEL, ML
VOLUME OF WATER VAPOR, SCF*
MOISTURE CONTENT, PERCENT BY VOLUME
FROM MEASURED WATER CATCH
SATURATION AT FLUE GAS TEMPERATURE
DRY MOLE FRACTION
ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE
WET MOLECULAR WEIGHT , LB/LB-MOLE
FLUE GAS STATIC PRESSURE, INCHES H20
ABSOLUTE FLUE GAS PRESS . , INCHES HG
FLUE GAS TEMPERATURE, DEGREES F
AVERAGE VELOCITY HEAD, INCHES H20
FLUE GAS VELOCITY, FEET/SECOND
STACK/DUCT AREA, SQUARE INCHES
VOLUMETRIC AIR FLOW RATE, DEY SCFM*
VOLUMETRIC AIR FLOW RATE, WET ACFM
ISOKINETIC SAMPLING RATE, PERCENT
B. Dwain Ritchie
B. Dwain Ritchie
TE-4A TE-4B
924
1031
2
60.00
0.304
0.840
0.994
29.20
1.710
42.98?
82
40.782
29.5
1.389
3.3
2.7**
0.973
28.84
28.54
-0.73
29.15
72
0.1790
24.30
103.9
988.9
1,052
98.3
926
1032
2
60.00
0.301
0.840
1.002
29.20
1.630
45.537
81
43.621
21.5
1.012
2.3**
2.7
0.977
28.84
28.59
-0.73
29.15
72
0.1730
23.87
103.9
975.9
1,033
108.6
      * 68  Degrees F -- 29.92 Inches of Mercury (Hg)




     ** ACTUAL %H20 USED IB CALCULATIONS
(continued next  page)
                                    A-20

-------
                                                         TE-4A
                                                                      TE-4B
          HEXAVALENT CHROMIUM:




rag           CATCH,  MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR




          TOTAL CHROMIUM:




mg           TOTAL CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR






          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIH FLOW KATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std. Cubic Meters/hr*




             Dry Std. Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             BnisBions,  kg/hr




             Emissions,  Ib/hr




          TOTAL CHROMIUM:




             Concentration, mg/dsem*




             Concentration, gr/dscf*




             Emissions,  kg/hr




             Emissions,  Ib/hr




            * 68  Degrees F —  29.92 Inches of




           (       ) =  x  10~3
        ( 2,819.0 J    ( 2.175.0)




         ( 1.067 !    (  0.7695)




         ( 9.042 j    (   6.436 )









       { 2,760.0 |    ( 2.190.0 )




         ( 1.044 )    (  0.7748)




         (  8.B53 )     (  6.481)
              72




              22









          0.0018




          0.0631




          0.0017




          0.0593









      (2441.1070)




      ( 1.066731)




         ( 4.1014)




         ( 9.0421 }









     (  2390.0160)




      ( 1.044405)




         ( 4.0156)




         { 8.8529)




Mercury  (Hg)
        72  deg. F




        22  deg. C








    0.0018  acmh




    0.0620  acfh




    0.0017  dscmh




    0.0586  dscfh








{1760.870?) mg/dscra




[ 0.769477) gr/dscf




  ( 2.9195) kg/hr




  ( 6.4363) Ib/hr








( 1773.0147) rng/dscm




(  0.774784 ) gr/dscf




   ( 2.9396 ) kg/hr




   ( 6.4807 )Ib/hr
                               A-21

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS,, in, H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
GREENSBORO IND.  PLATERS
COATING TANK *5 EXHAUST
   N/A
  29.2
  -0.73
  0.016
DATE:    03/19/86        OPERATOR:
RUN NUMBER               TE-5A
NOZZLE «, NOZZLE DI AM.      508 ,.313
METER BOX AH@            1.32
SAMPLE BOX NUMBER         11
METER BOX NUMBER          N-5
ASSUMED MOISTURE         2
m
Trov,
Point.
No.
A-4
A-4
A-4
B-5
B-5
B-5

FINAL
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
50 /OFF

DIFF/AVO.
Gas Meter
Reading
(CU.FO
261 .804
268.96
275,40
233.91
292.12
300.32
308.541

46.737
Velocitq
Head
(in.H20)
0.162
0.171
0.171
0.20S
0.207
0.207


0.137
Qrific* t
M
(in. H20)
Desired Actual
1.72
1.S2
1.82
2.21
2.20
220



1.72
1.82
1.82
2.21
2.20
2.20


2.00
Gas Meter
Temp.
(


71.67
                                                A-22

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
L£AKRATE,CFM
LEAK TEST VACUUM, in Hg
       GREENSBORO IND. PLATERS
       COATING TANK »5 EKHAUST
           N/A
          29.2
          -0.73
          0.003
     DATE:    03/19/86         OPERATOR:
     RUN NUMBER                TE-5B
     NOZZLE *, NOZZLE DiAM.      509,.312
     METER BOX AH®             1 ,53
     SAMPLE BOX NUMBER         13
     METER BOX NUMBER          N-10
     ASSUMED MOISTURE          2
                                 DR
Tray.
Point.
Ho,
B-5
B-5
B-5
A-4
A-4
A-4

Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft)
513.293
522.20
531.37
540.55
548.50
556.23
564.152
Velocity
Head
(in.H20)
0.225
0.225
0.227
0.171
0.165
0.168

Orifice
(in.H20)
Desired I
2.33
4- -O»_*
2.40
1.31
1.74
1. 78

AH
actual
2.38
2.38
2.40
1.31
1.74
1.78

Gas Meter
Temp.
(
-------
                    PARTICULATE FIELD DATA fi RESULTS TABULATION


PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

RUN f        DATE     SAMPLING LOCATION
TEST TEAK LEADER
TE-SA     03/19/86    Coating Tank #5 - Outlet
TE-5B     03/19/86    Coating Tank #5 - Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER,  INCHES H20

     Vtn        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METSHED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS &  SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H2G      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD. INCHES H20

     VS        FLUE GAS VELOCITY,  FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsfl       VOLUMETRIC AIH FLOW RATE. DRY SCFK*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFH

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F -- 29.92 Inches of Mercury (Hg)
B , Dwain
B . Dwain
TE-SA
1104
1210
2
60.00
0.313
0.840
0.994
29.20
2.000
46.737
89
43.807
21.0
0.988
2.2
0.978
28.84
28.60
-0.73
29.15
72
0.1870
24.81
103.9
1,015
1,074
97.0
Ritchie
Ritchie
TE-5B
1105
1211
2
60.00
0.312
0.840
1.002
29.20
2.080
50.869
85
48.426
25.5
1.200
2.4
0.976
28.84
28.57
-0.73
29.15
72
0.1960
25.41
103.9
1,037
1.100
105.6
                                                                (continued next  page)
                                   A-24

-------
                                                         TE-5A
                                                                      TE-5B
          HEXAVALENT CHROMIUM:
mg           CATCH. MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUH
          TOTAL CHROMIUM:
mg           TOTAL CATCH. MILLIGRAMS
gr/DSCF      CONCENTRATION. GRAINS PER DSCP*
Lb/Hr        EMISSION IRATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr*
             Dry Std. Cubic Feet/hr*
          HEXAVALENT CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions, kg/hr
             Emissions. Ib/hr
          TOTAL CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions, kg/hr
             Emissions, Ib/hr
 { 2,190.0)   (  3,342.0 )
   ( 0.7715)     ( 1.065 )
    ( 6.713 }     ( 9.470 )


 ( 2,137.0 ]    (3,334.0)
   ( 0.7528 )      ( 1.062 )
    (6.550 J     ( 9.446 )
        72
        22


    0.0018
    0.0644
    0.0017
    0.0609


( 1765.5074
(  0.771503
  { 3.0448
  { 6.7127


( 1722.7805
 ( 0.752832
   ( 2.9711
  ( 6.5502
         72   deg. F
         22   deg. C


     0.0019   acmh
     0,0660   acfh
     0.0018   dsctnh
     0.0622   dscfh


[  2437,2231 ) mg/dscm
 ( 1.065034 ) gr/dscf
   {  4.2956 ) kg/hr
   { 9.4702 J Ib/hr


{ 2431.3889 ) mg/dscm
  (1.062485 ) gr/dscf
   ( 4.2853 ) kg/hr
   ( 9.4476 ) Ib/hr
            * 68  Degrees F  -- 29.92  Inches of Mercury  (Hg)
                              -3
                    )  = x 10
                               A-25

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LE AK TEST VACUUM., in Hg
Trov.
Point,
No.
A-4
A-4
A-4
B-5
B-5
B-5

FINAL
Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF

D1FF/AVG.
Gas Meter
Readinq
CCu.FU
308.732
316.03
322.77
329.57
337.00
344.42
351.995

43.263
GREENSBORO INO, PLATERS
COATING TANK *5 EXHAUST
H/A
23.2
-0.73
0.000
7
Velocity
Head
(in.H20)
0.190
0.158
0.158
0.190
0.190
0.195


0.180
Orifice
4H
(in. H20)
Desired
1.79
1.49
1.49
1.79
1.79
1.84



Actual
1.70
1.49
1.49
1.79
1.79
1.84


1.70
DATE: 03/19/86
RUN NUMBER
NOZZLE *,, NOZZLE OIAM.
METER BOX AH@
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
Gas M*ter Pump
Temp.
Cdeq.F)
85
89
92
90
90
91


59.50
Vac .
(in.Hci)
7
&
§
T
7
i1



Filter
Box Temp.
(deq.F)
120
120
118
120
120
122



OPERATOR: OR
TE-6A
507 ,.304
1.S2
24
N-5
2
Imp. Exit
Temp.
(d*g.F)
56
60
61
55
62
53



Stack Leak
Temp. Check.
(deg.F)
75
75
75
75
72
71


73.83
A-26

-------
PLANT
SAMPLwHOCATlGN
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATICPRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trav.
Point.
Ho.
B-5
B-5
B-5
A-4
A-4
A-4

FINAL
Sampl*
Time
(Min.)
0/0
10
20
30/0
10
20
SO/OFF

DIFF/AVG.
Gas M*t?r
Reading
(Cu.Ft.)
564.992
572.71
580.40
588.35
505.23
602.07
609.048

44.056
GREENSBORO !ND PLATERS
COATING TANK *5 EXHAUST
N/A
29.2
-0.73
0.003
11
Velocity
Head
(in,H20)
0.187
0.180
0.192
0.148
0.144
0.147


0.166
Orifice &H
(in. H20)

D?sired Actual
1.72
1.66
1.77
1.35
1.32
1.35



1.72
1.66
1.77
1.36
1.32
1.33


1.53
DATE: 03/19/86 OPERATOR:
RUN NUMBER TE-6B
NOZZLE *, NOZZLE DIAM. 108 ,.301
METER BOX iHf 1 .63
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-1Q
ASSUMED MOISTURE 2
Gas Meter
Temp.
(
-------
                    PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION
TEST TEAM LEADER
TE-6A     03/19/86    Costing Tank #5 - Outlet
TE-6B     03/19/86    Coating Tank #5 - Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE. DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS £ SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H2Q      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Mfl        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE  INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B . Dwain
TE-6A
1305
1410
2
60.00
0.304
0.840
0.994
29.20
1.700
43.263
90
40.446
13.5
0.635
1.5
0.985
28.84
28.67
-0.73
29.15
74
0.1800
24.36
103.9
999.5
1,054
96.4
Ritchie
Ritchie
TE-6B
1306
1411
2
60.00
0.301
0.840
1.002
29.20
1.S30
44.056
86
41.805
21.5
1.012
2.4
0.976
28.84
28.58
-0.73
29.15
74
0.1660
23.43
103.9
953.4
1,014
106.6
                                                                (continued next page)
                                    A-28

-------
                                                         TE-6A
                                                                      TE-6B
          HEXAVALENT CHROMIUM:




mg           CATCH. MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION HATE, LBS/HOUR




          TOTAL CHROMIUM:




mg           TOTAL CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR






          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIR FLOW RATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std, Cubic Meters/hr*




             Dry Std, Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dacm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions, Ib/hr




          TOTAL CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions, Ib/hr
 (  2,726.0 }   (  2,445,0 )




    (  1.040 )    [   0.9026 J




    (  8.911)     |  7.375 )









 (  2,743.0)    ( 2,445.0 )




    (  1.047)     ( 0.9026 J




    ( 8.966)      { 7.375 )
         74




         23









     0.0018




     0,0633




     0,0017




     0.0600









(  2380.1941)




 (  1.040113)




   !  4.0419)




    ( 8,9108)









(  2395.0376)




 ( 1.046600)




    ( 4.0671)




   (  8.9664)
        74  deg. F




        23  deg. C








    0.0017  acmh




    0,0608  acfh




    0.0016  dscmh




    0.0572  dscfh








| 2065.4312 ) mg/dscm




(  0.902566 ) gr/ascf




  ( 3.3454 ) kg/hr




  ( 7.3754 )Ib/hr








! 2065,4312 1 mg/dscm




(  0.902566 ) gr/dscf




  ( 3.3454 ) kg/hr




  ( 7,3754 ) Ib/hr
           * 68  Degrees F — 29.92 Inches of Mercury  (Hg)




            (        )  = X 10~3
                               A-29

-------
PLANT
SAMPLING LOCATION
FILTER NUM8ER(S)
BAR. PRESS., in. Hg
ST ATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
B-5


A-4



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
GasMeter
Reading
(CuJt.)
352.403
350.40
368.47
376.63
384.02
391 .48
399.048
GREENSBORO WD. PLATERS
COATWG TANK *5 EXHAUST
29.5
-0.73
0.000
7
Velocity
Head
(in.H2C)
0.206
0207
0.207
0.170
0.176
0.176

Orifice &
(in. H20)
H

Desired Actual
2.23
224
224
1.84
1.90
1.90

223
224
2.24
1.84
1.90
1.90

DATE : 03/24 /86 OPERATOR :
RUN NUMBER TE-7A
NOZZLE*, NOZZLE DIAM. 508, .313
METER BOX AH@ 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deg.F)
81
84
86
85
87
87

Pump
Vac.
(in-Hg)
7
7
7
6
6
6

Filter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(degj)
86
56
55
63
55
55

DR
Stack Leak
Temp. Check
(deg.F)
72
72
72
72
72
71

FINAL
DIFF/AVG,
40.645    0.190
2.038
71.833
                                                 A-30

-------
PLANT
SAMPLWG LOCATION
FLTER NUMBER(S)
BAR. PRESS., in.Bg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hq
Trov,
Pomt.
No.
A-4


B-5



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
CCuJt.)
482.724
489.99
4Q7.24
504.86
513.34
522.08
530.907
GREENSBORO INO. PLATERS
COATING TANK *5 EXHAUST
29.3
-0.78
0.000
5
Velocity
Head
(in«20)
0.166
0.168
0.175
0220
0227
0.227

Orifice ,&H
(in.
H20)
Desired Actual
1.59
1.57
1.65
2.08
2.14
2.14

1.59
1.57
1.65
2.08
2.14
2.14

DATE: 03/24/86 OPERATOR:
RUN NUMBER TE-78
NOZZLE*, NOZZLE DIAM. 509, .312
METER BOX 4H@ 1 .58
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-2
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deg. F)
91
92
93
92
94
95

Pump
Voc.
(w.Hg)
3
3
3
4
4
4

Filter
Box Temp,
(deg.F)
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(de«.F)
66
57
57
62
56
56

DR
Stack Leak
Temp. Check
(d*g,F)
72
72
72
72
72
71

FINAL
DFF/AVG.
48.183    0.196
1.862    92.83
71.833
                                                A-31

-------
                    PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT; Greensboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION
TEST TEAM LEADER
TE-7A     03/24/86    Coating Tank #5 Exhaust
TE-7B     03/24/86    Coating Tank #5 Exhaust
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET HUN TIME, MINUTES

     Dia       NOZZLE DIAMETER,  INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION  FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES  HG

     Delta H   AVG, PRESSURE DIFFERENTIAL OF
                   ORIFICE METER,  INCHES  H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS MSTER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF  LIQUID COLLECTED
                   IN IMPINGERS &  SILICA  GEL,  ML

     Vw(std)   VOLUME OF WATER  VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT  BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT,  LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC  PRESSURE,  INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS.,  INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES K20

     vs        FLUE GAS VELOCITY,  FEET/SECOND

     A         STACK/DUCT AREA,  SQUARE INCHES

     Q.SCI       VOLUMETRIC AIR FLOW RATE,  DRY SCFM*

     gaw       VOLUMETRIC AIR FLOW RATE,  WET ACFM

     *1        ISOKINETIC SAMPLING RATE,  PERCENT


      * 68  Degrees F — 29.92  Inches of  Mercury (Hg!
B . Dwain
B . Dwain
TE-7A
1305
1410
2
60.00
0.313
0.840
0.994
29.50
2.060
46.645
85
44.498
10.5
0.494
1.1
0.989
28.84
28.72
-0.73
29.45
72
0.1900
24.83
103.9
1,038
1,075
96,4
Ritchie
Ritchie
TE-7B
1306
1411
2
60.00
0.312
0.840
0.998
29.50
1.860
48.183
93
45.460
16.5
0.777
1.7
0.983
28.84
28.65
-0.78
29.44
72
0.1960
25.25
103.9
1,049
1,093
98.0
                                                                (continued next page)
                                   A-32

-------
                                                                                    TE-7A
                                                                                                 TE-7B
D
          HEXAVALENT CHROMIUM:




mg           CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR




          TOTAL CHROMIUM:




mg           TOTAL CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR







          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIR FLOW RATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std. Cubic Meters/hr*




             Dry Sta. Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions,  kg/hr




             Emissions,  Ib/hr




          TOTAL CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions,  kg/hr




             Emissions,  Ib/hr




            * 68  Degrees F — 29.92 Inches




           (       ) = X Kf3
5,550.0 J   { 5,194.0 j




(  1.925J      (1.763 )




( 17.12 J     ( 15.86 ]









5,250.0 j  ( 5.164.0 )




 (1.821 )      { 1.753 ]




 (16.20)      ( 15.76 )


0
0
0
0
72
22
.0018
.0645
.0018
.0623


0.
0,
0
0
72
22
.0019
,0656
.0018
.0629
cleg. F
deg. C
acmh
acfh
dscroh
dscfh
                                                                               (4404.7031)  ( 4034.9372 ) mg/dscrn




                                                                                (  1.924797)    ( 1.763214 ) gr/dscf




                                                                                  ( 7.7673}      (7.1917} kg/hr




                                                                                 ( 17.1241  )   ( 15.8551 ) Ib/hr








                                                                                (4166.6111)  { 4011.6319 1 mg/dscw




                                                                                f 1.820754  )   ( 1.753030 ) gr/dscf




                                                                                  ( 7.3475  )     ( 7.1502 ) kg/hr




                                                                                 ( 16.1984  )    (15.7635 ) Ib/hr




                                                                       of  Mercury  (Hg)
                                                          A-33

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR, PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
A-4


B-5



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
Gas Meter
Reading
(CuJt.)
399.372
406.18
413.1 1
420.01
427.62
43550
443.307
GREENSBORO WD. PLATERS
COATING TANK »5 EXHAUST
29.3
0.007
7
Velocity
Head
(in,H2Q)
0.165
0.166
0.164
0.205
0.207
0207

DATE: 03/24/86 OPERATOR:
RUN NUMBER TE-8A
NOZZLE * , NOZZLE DIAM. 507 , .304
MFTERBOXAHf 1.82
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-3
DR

ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
1.61
1.62
1.60
2.00
2.04
2.04

Actual
1.61
1.62
1.60
2.00
2.04
2.04

Gos Meter
Temp.
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR, PRESS., in. Hg
ST ATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Bg
Trav.
Point.
No.
B-5


A-4



FINAL
Sample
Tim*
(Min.)
0/0
10
20
30/0
10
20
60/OFF

DtFF/AVG.
Gas Meter
Reading
(Cu.Ft.)
531 .108
538.58
54623
553.95
550.78
567.67
574.562

43.454
GREENSBORO IND. PLATERS DATE: 03/24/86
COATING TANK *5 EXHAUST RUN NUMBER
NOZZLE *, NOZZLE D1AM.
29.3 METER BOX iH@
SAMPLE BOX NUMBER
0.000 METER BOX NUMBER
7 ASSUMED MOISTURE
Velocity
Head
(m.H20)
0,
0,
0
0.
0.
0,


0.
194
,198
,108
,135
,155
,155


,175
Orifice 4H Gos Meter
(in. H20) Temp.
Desired Actual (deg.F)
1.60
1.63
1.63
128
128
128



1.60
1.53
1.63
1.28
128
128


1.45
93 '
94
05
94
95
96


94.5
Pump
Vac.
(in.H
-------
                    PARTICULATE FIELD DATA S RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North

RUN #        DATE     SAMPLING LOCATION
TE-8A     03/24/86    Coating Tank #5 Exhaust
TE-8B     03/24/86    Coating Tank #5 Exhaust
               RUW START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER. INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Phar      BAROMETRIC PRESSURE. INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tn\        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(stdS   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS & SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT. PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLU1 GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY. FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Caw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
                                                        Carolina
TEST TEAM LEADER
B , Dwain
B . Dwain
TE-8A
1442
1545
2
60.00
0,304
0.840
0.994
29.50
1.820
43.935
8?
41.735
11. 0
0.518
1.2
0.988
28.84
28.70
-0.75
29.44
72
0.1850
24.51
103.9
1,023
1,061
97.2
Ritchie
Ritchie
TE-8B
1443
1546
2
60.00
0.301
0.840
0.998
29.50
1.450
43.454
95
40.809
12,0
0.565
1.4
0.986
28.84
28.69
-0.75
29.44
72
0.1750
23.84
103.9
993.9
1,032
99.8
                                                                (continued next page)
                                    A-36

-------
                                                         TE-SA
                                                                      TE-8B
          HEXAVALENT CHROMIUM:




mg           CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR




          TOTAL CHROMIUM:




mg           TOTAL CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATS, LBS/HOUR







          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIR FLOW RATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std. Cubic Meters/hr*




             Dry Std. Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions,  kg/hr




             Emissions,  Ib/hr




          TOTAL CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions.  kg/hr




             Emissions,  Ib/hr
  I 3,250.0 )




    (1.202 }




   ( 10.54 }
 (  3,262.0 )




   (  1.234 )




   (10.51  )
  ( 3,150.0 )    ( 3,452.0 )




    ( 1.165 )      { 1.305 )




   ( 10.21 )      ( 11.12 )
        72




        22









    0.0018




    0.0637




    0.0017




    0.0614









(  2750.1150 )




 ( 1.201764 )




   { 4.7803 )




   | 10.5387 )









(  2665.4961 )




 ( 1.164786 )




   ( 4.6332 )




   ( 10.2144 )
        72   deg. F




        22   deg. C









    0.0018   acmh




    0.0619   acfh




    0.0017   dscmh




    0.0596   dscfh









(2822.8820  ) mg/dscm




 ( 1.233562  ) gr/dscf




  ( 4.7668  ) kg/hr




 ( 10.5090  ) Ib/hr









{2987.3049} mg/dscm




 (1.305412) gr/dscf




  ( 5.0444  )kg/hr




 ( 11.1211) Ib/hr
            *  68  Degrees F  --  29.92 Inches of Mercury  (Hg)



           {        )  = x 10~3
                               A-37

-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Troy.
Point.
No.
A-4


B-5



Sample
Time
(Hin.)
0/0
10
20
30/0
10
20
60 /OFF
Qos Meter
Reading
(CU.FU
443.783
450.48
457.36
464.08
472.18
480.36
488.91 1
GREENSBORO WD. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.75
0.018
7
Velocity
Head
(in.H2Q)
0.147
0.147
0.147
0.212
0.213
0214

DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-9A
NOZZLE «, NOZZLE DIAM. 508, .313
METER BOX AH$ 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
DR
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
1.59
1.59
1.50
229
2.X
2.32

Actual
1.59
1.59
1.50
2.29
2.30
2.32

Gas Meter
Temp.
(deg. F)
66
71
73
73
76
78

Pwnp
Vac.
(in.Hg)
5
5
5
7
1
7

Fitter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(d«M,jO
62
54
56
56
57
57

Stack Leak
Temp. Check
(deg.F)
65
66
66
66
67
68

FINAL
DFF/AVG.
45.128    0.178
1.947    72.83
66.333
                                                A-38

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
B-5


A-4



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF
Gas Meter
Reading
(Cuft.)
577.360
534.44
591 .68
598.85
605.01
611.40
617.714
GREENSBORO IND. PLATERS
COATING TANK «5 EXHAUST
29.5
-0.73
0.000
5
Velocity
Head
(inKZO)
0222
0219
0222
0.168
0.168
0.165

DATE: 03/2S/86 OPERATOR:
RUN NUMBER TE-9B
NOZZLE*, NOZZLE DIAM. 509, .312
METER BOX iHf 1 .58
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-2
DR

ASSUMED MOISTURE 2
Orifice
AH
(tt.H20)
Desired
2.09
2.07
2.09
1.59
1.59
1.56

Actual
2.09
2.07
2.09
1.59
1.59
1.56

Cos Meter
Temp.
(deg. F)
64
74
79
80
83
85

Pump
Vac.
(in-Hq)
4
4
4
3
3
3

Filter
Box Temp.
(degJ)
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(d*9.F)
62
53
54
55
56
56

Stock
Temp.
(degj)
65
66
66
66
67
68

Leak
Check








FINAL
DIFF/AVG.
40.354    0.193
1.832
77.5
65.333
                                                 A-39

-------
                    PARTICULATE FIELD DATA S RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro. North Carolina

RUN #        DATE     SAMPLING LOCATION
TEST TEAM LEADER
TE-9A     03/25/86    Coating Tank #5 Exhaust
TE-9B     03/25/86    Coating Tank #5 Exhaust
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIKE. MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METES CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG, PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tin        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN 1MPINGERS & SILICA GEL, HL

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE. INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE. DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B , Dwain
TE-9A
820
925
2
60.00
0.313
0.840
0.994
29.50
1.950
45.128
73
44.008
12.0
0.565
1.3
0.987
28.84
28.70
-0.75
29.44
66
0.1780
23.90
103.9
1.009
1,035
98.0
Ritchie
Ritchie
TE-9B
821
92S
2
60.00
0.312
0.840
0.998
29.50
1.830
40.354
78
39.132
7.0
0.329
0.8
0.992
28.84
28.75
-0.73
29.45
66
0.1930
24.87
103.9
1,054
1,077
84.0
                                                                (continued next page)
                                    A -40

-------
                                                         TE-9A
                                                                      TE-9B
          HEXAVALENT CHROMIUM:




mg           CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, LBS/HOUR




          TOTAL CHROMIUM:




mg           TOTAL CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATS, LBS/HOUS
                                           (  2,950.0 )   f 3,142,0 )




                                              ( 1,034 J    {  1.239 }




                                              { 8.946 )     (  11.20 )









                                           (  2,850.0 )   { 3,025.0 )




                                             ( 0.9994 )    {  1.193 )




                                              ( 8.643 )    {  10,78 }
FLUE GAS TEMPERATURE:




   Degrees Fahrenheit                             66




   Degrees Centigrade                             19




AIR FLOW RATES x million:




   Actual Cubic Meters/hr                     0.0018




   Actual Cubic Feet/hr                       0.0621




   Dry Std. Cubic Meters/hr*                  0.0017




   Dry Std. Cubic Feet/hr*                    0.0605




HEXAVALENT CHROMIUM:




   Concentration, mg/dscm*                (2367.3031)




   Concentration, gr/dscf*                 (1.034480)




   Emissions, kg/hr                          ( 4.0578 )




   Emissions, Ib/hr                          ( 8.9459 )




TOTAL CHROMIUM:




   Concentration, mg/dscm*                (2287.0556)




   Concentration, gr/dscf*                 (0.999413)




   Emissions, kg/hr                          ( 3.9203 )




   Emissions, Ib/hr                          ( 8.6427 J




 * 68  Degrees F —  29.92 Inches of Mercury  (Kg)




(        } = X Kf3
                                                                         66  deg, F




                                                                         19  deg. C









                                                                     0.0018  acmh




                                                                     0.0646  acfh




                                                                     0.0018  dscinh




                                                                     0.0633  dscfh









                                                                 ( 2835.5S28) mg/dscm




                                                                  (1.239099 ) gr/dscf




                                                                   (  5.0792 ) kg/hr




                                                                   (  11.1978 ) Ib/hr









                                                                 ( 2729.9641 ) mg/dscm




                                                                  ( 1.192958 ) gr/dscf




                                                                     ( 4.8901) kg/hr




                                                                   (  10.7808 ) Ib/hr
                               A-41

-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Ho
Trov.
Point.
No.
A-4


B-5



Somple
Time
(Mm.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
488-769
495.35
502.06
308.87
516.61
524.18
531 .773
GREENSBORO MX PLATERS
COATING TANK *5 EXHAUST
29.5
0,000
8
Velocity
Head
(in.H20)
0,166
0.166
0.170
0.218
0.211
0208

DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-10A
NOZZLE «, NOZZLE DIAM. 507, .304
METER BOX *H
-------
PLANT
SAMPLHG LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. H^
STATIC PRESS., m. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
B-5






Sompi*
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
GoiMtttr
Reoding
(CuJO
624.041
630.44
637.02
643.73
649.30
654.92
660,450
GREENSBORO 1ND. PLATERS
COATING TANK »5 EXHAUST
29.5
0.000
6
V«locny
Head
(in.H20)
0202
0202
0207
0.135
0.151
0.131
0.148
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-10B
NOZZLE », NOZZLE DIAM. 1 08, .301
METERBOXAH? 1.58
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-2
OR

ASSUMED MOISTURE 2
Orifie*
iH
(In. H20)
D«sir«d
1.65
1.65
1.69
127
123
121

Aciud
1.65
1.65
1.6S
127
123
121

Gas Meter
Temp.
(
-------
                    PARTICULATE FIELD DATA S RESULTS TABULATION
PLANT; Greensboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION
                                                       TEST TEAM LEADER
TE-10A
TE-10B
03/25/86    Coating Tank #5 Exhaust
03/25/86    Coating Tank #5 Exhaust
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME. MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H2O

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE. DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS 6 SILICA GEL, ML

     Vwfstd)   VOLUME OF WATER VAPOR, SCF*

     %K20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsfl       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFK

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29,92 Inches of Mercury  (Hg)
3. Dwain
B. Dwain
TE-10A
1016
1119
2
60.00
0,304
0.840
0.994
29.50
1.830
43.004
78
41.535
8.5
0.400
1.0
0.990
28.84
28.73
-0.73
29.45
70
0.1890
24.71
103.9
1,038
1,070
95.3
Ritchie
Ritchie
TE-10B
1017
1120
1
60.00
0.301
0.840
0.998
29.50
1.450
36.409
87
34.693
0.0
0.000
0.0
1.000
28.84
28.84
-0.73
29.45
70
0.1770
23.87
103.9
1,013
1,033
83.3
                                                                (continued  next  page)
                                    A-44

-------
                                                        TE-10A
                                                                     TE-10B
          HEXAWALENT CHROMIUM:




mg           CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCP*




Lb/Hr        EMISSION SATE, LBS/HOUR




          TOTAL CHROMIUM:




ing           TOTAL CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION RATE, IBS/HOUR






          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIR FLO« RATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std. Cubic Meters/hr*




             Dry Std, Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions, Ib/hr




          TOTAL CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions. Ib/hr
  I2.S40.0 )   ( 3,849.0 )




   ( 1.092 )      { 1.712 j




   ( 9.723 )      (14.86 )









   2,800.0 )    (3,887.0 )




    (1.040 )      ( 1.729 )




    (9.260 S      ( 15.01 )
        70




        21









    0.001B




    0.0642




    0.0018




    0.0623









 {2499.7742




  {1.092368




   ( 4.4101




   ( 9.7225









( 2380.7373




  [ 1.040351




   { 4.2000




   { 9.2595
          70  cleg. F




          21  deg. C








      0.0018  acmh




      0.0620  acfh




      0.0017  dscmh




      0.0608  dscfh








)  (3918.0685 ) mg/dscm




}  { 1.712144 ) gr/dscf




)     ( 6.7415 ) kg/hr




)    ( 14.8624 ) Ib/hr









)  (3956.7504 ) mg/dscm




)  ( 1.729047 ) gr/dscf




)     ( 6.8080 ) kg/hr




)    ( 15.0091 I Ib/hr
           * 68  Degrees F — 29.92 Inches of Mercury  (Hg)




           (        }  = X 10"3
                               A-45

-------
PLANT
SAMPLING LOCATION
FILTER NUM6ERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov,
Point.
No.
B-5


A-4



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
540.873
549.00
557.34
505.75
573.37
581 .07
588.757
GREEN680RO HMD. PLATERS
COATINC TANK *5 EXHAUST
29.5
-0.73
0.000
7
Vetoeity
Head
(inJGO)
0,204
0.221
0214
0,178
0.177
0.177

Orifice 4H
(in.
H20)
DATE: O3/25/86 OPERATOR:
RUN NUMBER TE-11A
NOZZLE •, NOZZLE DIAM. 508, .313
METER BOX iH$ 1 .82
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-5
ASSUMED MOISTURE 2
Gos Meter Pump Filter
Temp.
Desired Actual (d*
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Troy.
Point.
No.
A-4


B-5



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu.Ft.)
472.318
480.51
489.08
437.57
506,99
516.50
525.1 37
GREENSBORO WD. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.56
0.018
3
Velocity
told
(inKZO)
0.188
0.192
0.190
0235
0233
0237

DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-11B
NQZ21E*, NOZZLE Dl AM. 509,. 312
METER BOX AH@ 1 .60
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-9
DR

ASSUMED MOISTURE 2
Orifice
AH
(in.H20)
Desired Actual
1,85
1.89
1.87
2.31
229
2.33

1.85
1.89
1.87
2.31
2.29
2.33

Gas Meter
Temp.
(d*q. F)
86
88
89
88
90
91

Pump
Vac.
2
2
2
3
3
3

Filter
Box Temp .
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
66
60
57
65
58
57

Stack
Temp.
72
72
72
72
72
72

Leak
Check







FINAL
DIFF/AV6.
53.819    0.212
2.09   88.67
72
                                                  A-47

-------
                    FARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION
                                                       TEST TEAM LEADER
TE-11A
TE-11B
03/25/86    Coating Tank 15 Exhaust
03/25/86    Coating Tank #5 Exhaust
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Fbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METES, INCHES H20

     Vm        VOLUME OF METEHED GAS SAMPLE, DRY ACF

     tin        DRY GAS METER TEMPERATURE, DEGREES F

     Vtn(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS & SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRV MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT. LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE. INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qas       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
B.
B.
TE-11A
1332
1436
2
60.00
0.313
0.840
0,994
29.50
2.150
47.884
90
45.275
8.5
0.400
0.9
0.991
28.84
28.74
-0.73
29.45
72
0.1950
25.14
103.9
1,053
1.088
96.6
Dwain Ritchie
Dwain Ritchie
TE-11B
1333
1437
2
60.00
0.312
0.840
1.002
29.50
2.090
53.819
89
51.382
3.0
0.141
0.3
0.997
28.84
28.81
-0.56
29.46
72
0.2120
26.18
103.9
1,104
1.133
105.3
                                                                (continued next page)
                                   A-48

-------
                                                        TE-11A
                                                                     TE-11B
          HtXAVALENT CHROMIUM:




mg           CATCH. MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        MISSION RATE, LBS/HOUR




          TOTAL CHROMIUM;




mg           TOTAL CATCH. MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION HATE. LBS/HOUR






          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIB FLOW RATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std. Cubic Meters/hr*




             Dry Std. Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dsef*




             Emissions, kg/hr




             Emissions. Xb/hr




          TOTAL CHROMIUM:




             Concentration, reg/flscm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions, Ib/hr
           (5,320.0)     (5.474.0)




            (  1.813)      {  1.644)




            (  16.37)       (15.56)









           (5.210.0)     (5.508.0)




            (  1.776)      (  1.654)




            (  16.04)      (  15.66)
                 72




                 22









             0.0018




             0.0653




             0,0018




             0.0632









         (4149.7243)




          (1.813374)




           ( 7.4269)




          ( 16.3736)
            *  68   Degrees  F  —  29.92  Inches




            (        )  = x 1 0~3
         (4063.9217)




          (1.775880)




            ( 7.2734)




          ( 16.0350)




of Mercury {Hg)
        72   deg,  F




        22   deg.  C








    0.0019   acwh




    0,0680   acfh




    0.0019   dscmh




    0.0662   dscfh








(3762.3581)  mg/dscm




(  1.644100)  gr/dscf




 (  7.0572 )  kg/hr




 ( 15.5584 )  Ib/hr








(3785.7267 )  mg/dscm




(  1.654312)  gr/dscf




   ( 7.1010 )  kg/hr




  ( 15.6550 )  Ib/hr

-------
PLANT
SAMPLING LXATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in.H20
LEAK RATE, CFM
LEAK TEST VACUUM , in Hq
Tray.
Point.
No.
B-5


A-4



FINAL
Somple
Time
(Min.)
0/0
10
20
30/0
10
20
60/OFF

DFF/AVC.
Gas Meter
Reading
(Cu.Ft.)
589,063
596.93
604.73
612.52
619.86
C27.13
634.438

43.373
GREENSBORO (ND. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.73
0.004
10
Velocity
Head
(in.H20)
0513
0207
0.210
0.180
0.180
0.182


0.193
DATE: 03/25/86 OPERATOR:
RUN NUMBER TE-12A
NOZZLE «,NQ221EDIAM. 507, .304
METER BOX iH(? 152
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-5
OR

ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
2.06
2.00
2.03
1.74
1.74
1.76



Actual
2.06
2.00
2.03
1.74
1.74
1.76


1.888
Gas Meter
Temp.
(deo. F)
39
92
94
92
93
94


92.33
Pump
Voc.
(in.Hg)
9
9
9
8
8
8



Filter
Box Temp .
(degJ)
NA
NA
NA
NA
NA
NA



Imp. Exit
Temp.
(deaf)
66
50
56
67
58
55



Stock
Temp.
(deg.F)
72
72
72
72
73
73


72.333
Leak
Check











-------
PLANT
S AMR. ING LOCATION
FILTER NUMBEWS)
BAR. PRESS., in. Hg
STATE PRESS,, in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trov.
Point.
No.
A-4


B-5



Sampt*
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas M«t*r
Reading
(Cult.)
527.888
53526
542.76
550.31
558.30
566.32
574.477
GSKNS80RO WO PLATERS
COATING TANK *5 EXHAUST
295
-0.75
0.008
5
V«toeity
Head
(in.H20)
0.175
0.178
0.178
0205
0200
0205

Orifice AH
(in. H20)
Desired Actual
1.46
1.49
1.49
1.71
1.67
1.71

1.46
1.49
1.49
1.71
1.67
1.71

DATE: 03/25/86
RUN NUMBER
NOZZLE *,NOZa.EDIAM.
METER BOX AH@
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
Cos M*tw Pump
Ttmp. Vac.
(
-------
C-
                                          PARTICULATE FIELD DATA & RESULTS TABULATION


                      PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

                      RUN I        DATE     SAMPLING LOCATION
                                                                                       TEST TEAM LEADER
                      TE-12A
                      TE-12B
03/25/86    Coating Tank #5 Exhaust
03/25/86    Coatinfl Tank #5 Exhaust
                                     RUN START TIME
                                     RUN FINISH TIME

                                     NET SAMPLING POINTS

                           Theta     NET RUN TIME, MINUTES

                           Dia       NOZZLE DIAMETER, INCHES

                           Cp        PITOT TUBE COEFFICIENT

                           Y         DRY GAS METER CALIBRATION FACTOR

                           Pbar      BAROMETRIC PRESSURE, INCHES HG

                           Delta H   AVG, PRESSURE DIFFERENTIAL OF
                                         ORIFICE METER, INCHES H20

                           Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

                           tm        DRY GAS METER TEMPERATURE, DEGREES F

                           Vm(std)   VOLUME OF HETERED GAS SAMPLE, DRY SCF*

                           Vic       TOTAL VOLUME OF LIQUID COLLECTED
                                         IN IMPINGERS K SILICA GEL. ML

                           Vw(std)   VOLUME OF WATER VAPOR, SCF*

                           %H20      MOISTURE CONTENT, PERCENT BY VOLUME

                           Mf<3       DRY MOLE FRACTION

                           Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

                           Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

                           fg        FLUE GAS STATIC PRESSURE. INCHES H20

                           Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

                           ts        FLUE GAS TEMPERATURE, DEGREES F

                           Delta p   AVERAGE VELOCITY HEAD, INCHES H20

                           vs        FLUE GAS VELOCITY, FEET/SECOND

                           A         STACK/DUCT AREA, SQUARE INCHES

                           Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

                           Qaw       VOLUMETRIC AIS FLOW RATE, WET ACFM

                           %I        ISOKINETIC SAMPLING RATE, PERCENT


                            * 68  Degrees F — 29.92 Inches of Mercury (Hg)
B . Dwain
B . Dwain
TE-12A
1511
1616
2
60.00
0.304
0.840
0.994
29.50
1.890
45.375
92
42.720
9.0
0.424
1.0
0.990
28.84
28.73
-0.73
29.45
72
0.1950
25.15
103.9
1,053
1.089
96.7
Ritchie
Ritchie
TE-12B
1512
1617
2
60.00
0.301
0.840
0.998
29.50
1.590
46.589
92
44.006
10.5
0.494
1.1
0.989
28.84
28.72
-0.75
29.44
72
0.1900
24.83
103.9
1,038
1.075
103.1
                                                                                      (continued next page)
                                                            A-52

-------
                                                        TE-12A
                                                                     TE-12B
          HEXAVALERT CHROMIUM:




mg           CATCH, MILLIGRAMS




gr/DSCF      CONCENTRATION, GRAINS PER DSCF*




Lb/Hr        EMISSION HATE, LBS/HOUR




          TOTAL CHROMIUM:




mg           TOTAL CATCH, MILLIGRAMS




gr/OSCF      CONCENTRATION. GRAINS PER DSCF*




Lb/Hr        EMISSION SATE, LBS/HOUR






          FLUE GAS TEMPERATURE:




             Degrees Fahrenheit




             Degrees Centigrade




          AIR FLOW RATES x million:




             Actual Cubic Meters/hr




             Actual Cubic Feet/hr




             Dry Std, Cubic Meters/hr*




             Dry Std. Cubic Feet/hr*




          HEXAVALENT CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions, Ib/hr




          TOTAL CHROMIUM:




             Concentration, mg/dscm*




             Concentration, gr/dscf*




             Emissions, kg/hr




             Emissions, Ib/hr
  (5,170.0)    { 5.145.0)




   (  1.868)      (  1.804)




   {  16.85)       (16.05)









  (5,000.0)    ( 5,063.0)




   (  1.806)      {  1.776)




   {  16.30)      {  15.79)
        72




        22









    0.0018




    0.0653




    0.0018




    0.0632









(4273.9394 )




(  1.867655 )




   ( 7.6426 )




 ( 16.8490 )









(4133.4037)




 (l. 806242 }




   ( 7.3913 )




 ( 16.2950 )
        72   deg.  F




        22   deg.  C








    0.0018   acmh




    0.0645   acfh




    0.0018   dscmh




    0.0623   dscfh








(4128.9121)  mg/dscm




(  1.804280 )  gr/dscf




   ( 7.2801 )  kg/hr




  ( 16,0499 )  Ib/hr








(4063.1063 )  mg/dsctn




(  1.775523 )  gr/dscf




   ( 7.1641 )  kg/hr




  ( 15.7941 )  Ib/hr
            * 68  Degrees F — 29.92 Inches of Mercury  (Hg)



            {        ) = x icf3
                                 A-53

-------
PLANT
SAMPLING LOCATfON
FILTER NUMBERS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
B-5


A-4



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Gas Meter
Reading
(Cu,Ft.)
959.538
967.67
975.98
984.34
991.90
999.47
1007.060
GREENSBORO INO. PLATERS
COATWG TANK *5 EXHAUST
29.3
-0.70
am o
6
Velocity
Head
 1 .75
SAMPLE BOX NUMBER 1 1
METER BOX NUMBER N-7
ASSUMED
Das Meter
Temp.
(deg. F)
75
81
85
86
39
90

BOB

MOISTURE 2
1 Pump
Voc.
(in.Hg)
6
6
6
3
5
5

Filter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA

imp. Exit
Temp.
(deg/)
67
58
55
65
56
35

Stack
Temp.
(degf)
71
71
71
72
72
72

Leak
Check








FINAL
DIFF/AVG,
47.322
0.180
1.895    84.33
71.3
                                                   A-54

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER®
BAR. PRESS,, in.Hg
STATIC PRESS., in, H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav,
Point,
No.
A-4


B-5



Sample
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF
Cos Meter
Reading
(CuJt.)
601.619
608.46
61534
622.30
630.59
839.02
647,524
GREENSBORO MO. PLATERS
COATING TANK »5 EXHAUST
29.3
-0.80
0.010
3
Velocity
Heed
(in.H20)
0.147
0.148
0.148
0.211
0218
0218

Orifice 4
(in. H20)
H

Desired Actud
1.42
1,43
1,43
2.04
2.11
2.11

1.42
1.43
1.43
2.04
2.11
2.11

DATE: 03/26/86 OPERATOR:
RUN NUMBER TE-13B
NOZZLE *, NOZZLE DIAM. 5M,.312
METER BOX AHf 1 .61
SAMPLE BOX NUMBER 13
METER BOX NUMBER N-8
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deq. F)
83
87
90
90
94
95

Pump
Vac.
(in-Hg)
2
3
3
3
3
3

Filter
Box Temp.
(deg.F)
NA
NA
NA
NA
NA
NA

tap. Exit
Temp,
(*flf)
66
57
54
65
56
56

BDR
Stack Leak
Temp. Check
(deg.F)
71
71
71
72
72
72

FINAL
DIFF/AVG.
43.903
0.180
! .757    8i.83
71.3
                                                t  A_55

-------
                    PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North

RUN #        DATE     SAMPLING LOCATION
                                                        Carolina
                                                       TEST TEAM LEADER
TE-13A
TE-13B
03/26/86    Coating Tank #5 Exhaust
03/26/86    Coating Tank #5 Exhaust
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIKE, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE. INCHES HG

     Delta H   AVG. PRESSURE DIFFEBENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tin        DRY GAS METER TEMPERATURE. DEGREES F

     Vm(std)   VOLUME OF KETERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGEHS & SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury  (Hg)
B . Dwain
B . Dwain
TE-13A
829
949
2
60.00
0.313
0.840
1.000
29.50
1.900
47.522
84
45.674
12.5
0.588
1.3
0.987
28.84
28.70
-0.70
29.45
72
0.1800
24.17
103.9
1,009
1,046
101.8
Ritchie
Ritchie
TE-13B
830
950
2
60.00
0.312
0.840
1.012
29.50
1.760
45.905
90
44.147
13.0
0.612
1.4
0.986
28.84
28.69
-0.80
29.44
72
0.1800
24,18
103.9
1,008
1,047
99.1
                                                                (continued  next  page)
                                      A-56

-------
                                                        TE-13A
                                                                     TE-13B
'.•;'<;•:!
          HEXAVALENT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std, Cubic Meters/hr*
             Dry Std. Cubic Feet/hr*
          HEXAVALENT CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/ascf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
          TOTAL CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
            * 68  Degrees F — 29.92 Inches  of
                              -3
                                                                               ( 6,270.0)    ( 4,503.0 )
                                                                                 (2.119)      (1.574)
                                                                                (  18.32)      (13.60)


                                                                               ( 6,230.0)    ( 4,403.0 )
                                                                                 (2.105)     (   1.539)
                                                                                 (18.20)     (   13.30)


0
0
0
0
(4848
72
22
.0018
.0628
.0017
.0605
.0012)
( 2,118512)
(8
( 18
.3095)
.3193}


0,
0,
0,
0,
(3602.
72
22
.0018
.0628
.0017
,0605
.1847)
{ 1.574107 )
(6,
( 13,
.1685)
.5993 J
<3eg. F
deg. C
acmh
acfh
dscmh
dscfh
mg/dscm
gr/dscf
kg/hr
Ib/hr
                                                                              (4817.0730)
                                                                              (  2.104997)
                                                                                ( 8.2565)
                                                                               ( 18.2024)
                                                                        Mercury  (Hg)
i 3522.1895) mg/dscm
(  1.539150) gr/ascf
  ( 6.0315) kg/hr
 ( 13.2973 ) Ib/hr
                      =  X 10
                                A-57

-------
PLANT
SAMPLING LOCATION
FLTER'NUMBWS)
BAR. PRESS., in. Hg
ST ATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
TroY,
Point.
No.
B-5


A-4



FINAL
Time
(Min.)
0/0
10
20
30/0
10
20
60 /OFF

DIFF/AVG,
Gas Meter
Reading
(Cu.Ft.)
7.188
15.80
24.38
33.07
40.61
4820
55.790

48.602
GREENSBORO WD. PLATERS
COATING TANK »5 EXHAUST
29.3
-0.73
0.000
8
Velocity
Hwd
(in.H20)
0213
0212
0212
0.152
0.160
0.160


0.186
DATE: 03/26/86 OPERATOR;
RUN NUMBER TE-14A
BDC
NOZZLE «, NOZZLE OIAM. 509,.312
METER BOX iHf 1 .75
SAMPLE BOX NUMBER 24
METER BOX NUMBER N-7
ASSUMED MOISTURE 2
Orifice AH
(in. H20)
Desired Actual
227
225
225
1.72
1.70
1.70



227
225
225
1.72
1.70
1.70


1.982
Gas Meter
Temp.
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trov.
Point.
No.
A-4






FINAL
Sample
Twne
(Min.)
0/0
10
20
30/0
10
20
60 /OFF

DIFF/AVO.
Gas Metw
Reading
(Cu.Ft.)
647.639
654.42
66124
868.04
675.57
68323
690.825

43.188
GREENSBORO IND. PLATERS
COATING TANK *5 EXHAUST
29.5
-0.75
0.00ft
a
Velocity
Heed
(in.H20)
0.163
0.163
0.160
0.197
0201
0.200


0.180
DATE: 03/26/86 OPERATOR:
RUN NUMBER TE-14B
NOZZLE*, NOZZLE DIAM. 108,301
METER BOX iH@ 1.61
SAMPLE BOX NUMBER 5
METER BOX NUMBER N-8
BDR

ASSUMED MOISTURE 2
Orifice
AH
(in.H20)
D*sir*d
1.39
1.39
1.37
1.69
1.72
1.71



Actual
1.39
1.39
1.37
1.69
1.72
1.71


1.345
Gas Meter
Temp,
(d*
-------
                    PARTICULAT! FIELD DATA fi RESULTS TABULATION
PLANT; Greensboro Industrial Platers, Greensboro, North

RUN #        DATE     SAMPLING LOCATION
                                                        Carolina
                                                       TEST TEAM LEADER
TE-14A
TE-14B
03/26/86    Coating Tank #5 Exhaust
03/26/86    Coating Tank #5 Exhaust
               RUN START TIME
               RUN FINISH TIKE

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF  LIQUID COLLECTED
                   IN IMPINGERS & SILICA GEL,  ML

     Vw(std)   VOLUME OF WATER  VAPOR, SCF*

     %H20      MOISTURE CONTENT. PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR  WT, LB/LB-MOLE

     Ms        MET MOLECULAR HEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC  PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE  INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     fiaw       VOLUMETRIC AIR FLOW RATE, WET ACFK

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F -- 29.92  Inches of Mercury (Hg)
B . Dwain
B. Dwain
TE-14A
1022
1127
2
60.00
0.312
0.840
1.000
29.50
1.980
48.602
91
46.128
12.0
0.565
1.2
0.988
28.84
28.70
-0.73
29.45
72
0.1860
24.57
103.9
1,026
1,064
101.7
Ritchie
Ritchie
TE-14E
1023
1128
1
60.00
0.301
0.840
1.012
29.50
1.550
43.186
92
41.360
10.0
0.471
1.1
0.989
28.84
28.71
-0.75
29.44
72
0.1800
24.17
103.9
1.010
1,046
99.5
                                                                (continued  next  page)

-------
                                                        TE-14A
                                                                     TE-14B
          HEXAVALENT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, L8S/HOUR

          FLUE GAS TEMPERATURE;
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr*
             Dry Sta. Cubic Feet/hr*
          HEXAVALEMT CHROMIUM:
             Concentration, rng/dseni*
             Concentration, gr/dsef*
             Emissions.  kg/hr
             Emissions,  Ib/hr
          TOTAL CHROMIUM;
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
            * 68  Degrees F  — 29.92 Inches of
                               -3
       {  4,890.0)    (3,881.0)
          (1.636 )     (  1.448)
          (14.39 )     (12.54)

       (  4,710.0 )    (3,653.0)
          {1.576 )     (  1.363)
          (13.86 )     (  11.80)
              72
              22


          0.0018
          0.0638
          0.0017
          0.0616


      (3743.7869)
       (1.635985)
         ( 6.5260)
       ( 14.3874)


     ( 3605.9788 )
       ( 1.575765 )
         (6.2858 )
        (13.8578 )
Mercury  (Hg)
       72  deg, F
       22  deg. C

   0.0018  acmh
   0.0628  acfh
   0.0017  dscmh
   0.0606  dscfh

(3313.8089 ) mg/dscir,
{  1.448090 ) gr/dscf
   ( 5.6864 ) kg/hr
  ( 12.5363 ) Ib/hr

(3119.1301) mg/dscm
(  1.363018 ) gr/dscf
   ( 5.3523 ) kg/hr
  ( 11.7999 ) Ib/hr
                     )  = X 10

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., m.H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trov.
Point.
No.
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
B-1



B-2
B-3
B-4
B-5
B-6




FINAL
DIFF..'
Sarnpte
Tim?
(Min.)
0/0
5
10
15
20
25
30
35
40
45
50
35
60/0
5
10
15
20
25
30
35
40
45
50
55
120/'OFF

AVG.
Gas Meter
Readinq
(CU.FO
268.153
272.47
276 .76
281.19
235.48
290.13
294.78
299.38
304.23
309.11
314.02
318.96
323.658
323,56
332.61
337.18
341 .58
346.10
351 .29
355.04
359,29
363.49 -
367.88
372.24
376.597


GREENSBORO WO. PLATERS
MIST ELIM. INLET
29.2
-1 .35
0,009
3
Velocity
Head
(in.H20)
0.56
0.55
0.54
0.58
0.64
0.64
0.64
0.56
0.70
0.72
0.72
0.70
0.58
0.58
0.60
0.60
0.62
0.52
0.56
0.50
0.54
0.54
0.54
0.56




Orifiee

AH
(in. H20)
Desired
2.32
2.30
2.28
2.42
2.70
2.70
2.70
2.78
2.32
2,98
2, Q8
2.92
2.42
2.42
2.50
2,50
2.58
2.58
2.32
2.10
2.28
2.28
f$ ^f\
2.32



Actual
2.32
2.30
2.28
2.42
2.70
2.70
2,70
2.73
2.92
2.98
2.08
2 92
2.42
2,42
2.50
2.50
2.58
2,58
2.32
2.10
228
228
22.B
2.32



DATE: 03/1S/86 OPERATOR:
RUN NUMBER MM
NOZZLE * , NOZZLE D! AM. 1 06 ,.250
METER BOX iH@ 1 .75
SAMPLE BOX NUMBER 4
METER BOX NUMBER N-7
ASSUMED
Gas Meter
Temp.
(deq, F)
69
70
74
74
76
77
75
76
76
7S
73
77
75
78
79
80
T7
78
78
81
78
80
83
84



WSN
MOISTURE 2
Pump
Vac.
Cm.Hq)
6
6
6
-r
7
T
-7
-?
8
8
8
8
•?
7
"7
7
-?
-r
7
6
•j
7
7
-t



Filter
Box Temp.
(d»9-F)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200



Imp. Exit
Temp.
(teg F)
57
57
IT"?
57
58
59
59
59
60
60
60
50
60
60
60
62
62
52
62
52
63
63
63
63



Stack Leak
Temp. Check
(deq.F.)
62
52
63
64
64
64
63
54
62
63
64
64 323.Q03
66 323.656
57
66
57
66
66
66
66
66
57
66
66



108.389
0.602
2.52   75,92
0.035
                                   A-6 2

-------
PLANT GREENSBORO INO. PLATERS
SAMPLING LOCATION MIST ELIM. OUTLET
FILTER NUMBER(S)
BAR. PRESS,, in. Hg 29.2
ST AT 1C PRESS . , in . H20 - 1 .33
LEAKRATE,CFM 0.000
LE AK TEST V ACUUM , in Hg 20
Trov.
Point.
No.
A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8


Sample
Tim*
(Min.)
0/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
•„'*»
56/0
60
64/0
4
8/0
12
16/0
20
24/0
23
32/0
36
40/0
44
48/0
52
56/0
50
128 /OFF
Gas Meter
Reading
(Cu .FO
509,389
514,101
517.403
521 .808
525.004
531.901
533.802
537.505
542.401
546.802
550.773
338.202
563.203
558.010
572.710
573.105
582.510
386.710
590.806
595.401
599.404
604.205
609.103
513.307
618.310
623.902
628.006
633.107
637.908
642,605
652.401
652.410
657.238
Velocity
Head
Cm.H20)
3.10
3.10
3,30
3.39
3.30
3.30
3.60
3.60
3.60
4.20
4.30
4.30
4.41
4.50
4.40
4.40
3,00 '
3.00
3.60
3.60
4.20
4.20
4.30
4.30
4.00
4.00
4.10
4.10
4.30
4.30
4.39
4.39

Orifice
(in.H
Desired
3.19
3.19
3.48
3.48
3.39
3.39
3.70
3.70
3.70
4.31
4.42
4.42
4.53
4.52
4.52
4.52
3.03
3. OS
3.70
3.70
4.32
4.32
4.42
4.42
4.11
4.11
4.21
4.21
4.42
4.42
4.51
4.51

4H
20.)
Actual
3.19
3.19
3.48
3.48
3.39
3.39
3.70
3.70
3.70
4,31
4.42
4.42
4.53
4.02
4.52
4.52
3.08
3. as
3,70
3.70
4.32
4.32
4,42
4.42
4.11
4.11
4.21
4.21
4.42
4.42
4.51
4.51

D ATE : 03 / 1 8 /So OPER ATOP. ;
RUN NUMBER MO-1
NOZZLE * , NOZZLE Dl AM. 702 ,.1 79
METER BOX AW? 1 .75
SAMPLE BOX NUMBER 18
METER BOX NUMBER N-14
ASSUMED MOISTURE 2
Gos Meter
Temp,
(deg.F)
52
52
60
62
64
64
62
62
64
64
60
50
63
03
63
65
64
D4
69
69
69
69
*?•">
"T-?
78
SO
80
80
80
81
81
81

Pump
Vac.
(in.Hg)
14
13
14
14
14
14
14
14
14
14
13
13
13
13
13
13
11
11
14
14
14
14
14
14
14
15
15
15
15
15
15
15

Filter
Box Temp,
(deq.F)
130
130
130
130
130
130
130
130
130
130
130
130
130
130
135
135
135
135
135
135
135
135
135
135
135
133
135
135
135
135
135
135

Imp. Exit
Temp,
(eteg-F)
50
50
50
48
48
48
48
43
50
50
55
35
55
35
58
58
58
38
58
53
58
58
58
38
58
60
60
60
60
60
60
60

ST
Stack
Temp.
(d*g.F)
70
70
70
69
69
69
69
69
70
70
70
70
70
70
TO
f~r
72
70
70
71
7"'
"7?
72
73
73
( <£
73
"!">
72
i'*»
72
72


Leak
Chec-k











550.773
334.003





















FINAL
DIFF/AVG.
144,619
3,864
4.003
70.906
                                                 A-6 3

-------
                    PARTICULATE FIELD DATA t RESULTS TABULATION


PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

BUN #        DATE     SAMPLING LOCATION
TEST TEAM LEADER
MI-1      03/18/86    Mist Eliminator Inlet
MO-1      03/18/86    Mist Eliminator Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       N02ZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tin        DRY GAS METER TEMPERATURE, DEGREES  F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPIMGERS & SILICA BEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF«

     %H20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     M«J        ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     81        ISOKINBTIC SAMPLING RATE, PERCENT


      • 68  Degrees F -- 29-92 Inches of Mercury (Kg)
Willis
Steve
MI-1
838
120?
18
120.00
0.250
0.840
1.000
29.20
2.520
108.389
77
104.626
22. 0
1.036
1.0
0.990
28.84
28.73
-1.35
29 .10
65
0.6020
44.15
443.0
7.891
8,150
99-6
S. Nesbit
Terll
MO-1
836
1150
16
128.00
0.179
0.840
0.993
29.20
4.003
144.619
68
141.507
33.0
1-553
1.1
0.989
28.84
28.72
-1.33
29.10
71
3-8640
112.5
143.0
6,411
6,704
97-9
                                                                (contiimed  next  pageJ
                                    A-64

-------
                                                          MI-1
                                                                       MO-1
          HEXAVALENT CHROMIUM:

mg           CATCH, MILLIGRAMS

gr/BSCF      CONCENTRATION, GRAINS PER DSCF*

Lb/Hr        EMISSION RATE, LBS/HOUR

          TOTAL CHROMIUM:

mg           TOTAL CATCH, MILLIGRAMS

gr/DSCF      CONCENTRATION, GRAINS PER DSCF*

Lb/Hr        EMISSION RATE, LBS/HODR

          FLUE GAS TEMPERATUBE:
             Degrees Fahrenheit

             Degrees Centigrade

          AIR FLOW RATES x million:

             Actual Cubic Meters/hr

             Actual Cubic Feet/hr

             Dry Std, Cubic Meters/hr*

             Dry Std, Cubic Feet/hr*

          HEXAVALENT CHROMIUM:

             Concentration, mg/dscm*

             Concentration, gr/dscf*

             Emlsslons, kg/hr

             Emissions, Ib/hr

          TOTAL CHROMIUM:

             Concentration, rog/dscm*

             Concentration, gr/dscf*

             Emlss i cms, kg/hr

             Emissions,  Ib/hr

            * 68  Degrees F —  29.92 Inches  of
                              3
        { 4,494.0 )     (  675.0 )
         (0.6629 )    10.07361 )
         (  44.83 )     (  4.045 )


        ( 5.090.0 )     (  886.0 )
         (0.7508 )    (0.09662 )

         (  50-78 J     (  5.310 1
              65
              18


          0.0138
          0.4890
          0.0134
          0.4734


     (  1516.9001)
      (  0.662865)
        ( 20.3356)
        ( 44.8324)


     ( 1718.0733 )
      | 0.750775 )
      (  23,0326 )
      (  50.7781 )
Mercury (Hg)
       71  deg. F

       22  deg. C


   0.0114  acmh

   0.4022  acfh

   0.0109  dscmh

   0.3847  dscfh


(  368.4571 ) mg/dscm

{  0.073614 ) gr/dscf

  ( 1.8349 ) kg/hr

   (4.0452 ) Ib/hr


(  221.1155 ) mg/dscm

(  0.096625 ) gr/dscf

  ( 2.4085 ) kg/hr

  ( 5-3097
                     =  X 10
                               A-65

-------
PLANT GREENSBORO 1ND. PLATERS
SAMPLING LOCATION MIST ELIM. INLET
FILTER NUMBER(S)
BAR. PRESS., in, Hg 29.2
STATIC PRESS., in. H20 -1.30
LEAK RATE, CFM 0.000
LE AK TEST V ACUUM , in Hg 3
Trav.
Point.
No.
A-1
A-2
< -~i
M-w
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A- 11
A-12
B-1



B-2
B-3
B-4
B-5
B-6




FINAL
Sample
Time
(Min.)
0/0
5
10
15
20
?c
30
*^c
Ow
40
45
50
55
60/0
5
10
15
20
25
30
35
40
45
50
35
120 /OFF

Gas Meter
Reading
(CuJt.j
376.958
381 .30
385.53
389.97
394.45
399.29
404.14
408.56
413.32
418.29
423.10
427.96
432.80
437.28
441 .80
446.42
450.74
455.28
460.15
464.83
469.36
473.88
478.27
482.70
487.183

Velocity
Head"
(inH20)
0.45
0.52
0.54
0.54
0.60
0.62
0.54
0.5S
0.53
0.65
0.62
0.62
0.52
0.52
0.55
0.54
0.52
0.5S
0.56
0.54
0.50
0.52
0.52
0.52


Orifice
AH
(in. H20)
Desired
2.09
2.38
2.50
2.50
2. 78
2.85
2.50
2.70
2.90
2.98
2.S5
2.85
2.38
2.38
2.57
2.52
2.42
2.70
2.62
2.52
2,35
2.42
2.42
2.42


Actual
2.09
2,38
2.50
2.50
2.7S
2.85
2.50
2.70
2.90
2.98
2.85
2.85
2.38
^ <3O
iL.'jO
2.57
2.52
2.42
2.70
2.62
2.52
2.35
2.42
2.42
2.42


DATE: 03/18/86
RUM NUMBER
NOZZLE «, NOZZLE DIAM.
METER BOX £Hf
SAMPLE BOX NUMBER
METER BOX NUMBER
ASSUMED MOISTURE
Gas Meter
Temp.
(deg, F)
71
"?*>
74
76
78
80
82
83
33
85
86
86
82
34
86
86
84
81
83
85
84
87
88
88


Pump
Vac.
(in.Hg)
6
7
•?
~?
"7
-?
!
8
8
3
8
o
w
8
->
7
•7
1
7
7
-?
7
7
"7
7
_,
7


Filter
Box Temp .
(deg-F)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200


OPERATOR:
Mi-2
104,. 257
1.75
16
N-7
*>
Imp. Exit
Temp.
(d*q.F)
62
62
62
62
62
62
82
62
62
62
52
62
62
63
63
S3
63
63
53
63
53
63
63
63


VSN
Stack Leak
Temp . Check
(d*g.F)
66
88
I=.O
\Jf-.<
69
69
67
69
69
69
70
69
70
71
70
70
70
70
71
71
71
72
72
71
71


DIFF/AVG.
110.225
0.553
2.57    82.29
6Q.708

-------
PLANT
SAMPLING LOG AT ION
FILTER NUMBER(S)
BAR. PRESS,, in, Hg
STATICPRESS., in.H20
LEAKRATE..CFM
LEAK TEST VACUUH., in Hg
Trov.
Point,
No,
B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8


FINAL
Sampl*
Tim*
(Min.)
0/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
60
64/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
32
56/0
60
\ 28 /OFF

Bus M«t*r
Reading
(Cu.Ft.)
657 .707
660.905
564.108
863.006
671 .005
574.710
673.307
582.103
685.902
689.606
693.303
697.007
700.803
704.502
708.303
71 1 .901
715.555
7 13. 704
721 .806
725.110
728.201
731 .302
734.801
738.201
741 .903
745.606
748.602
75220S
756.105
760.202
763.905
767.703
771 .268

GREENSBORO IND, PLATERS
MIST EL IM. OUTLET
292
-1.48
0.000
10
Velocity
Head
(in.H20)
3.30
3.30
3,80
3.80
4.30
4.30
4.60
4.50
4.30
4.20
4.39
4.39
4,40
4,40
4,20
4.30
2.99
2.99
3.20
3.20
3.40
3.40
3.70
3.70
4.40
4.40
4.60
4.70
4,70
4.70
4,30
4.39


Orifice AH
(in. H20)

Desired Actual
1,99
1 .99
2.29
2.29
2.59
2.59
2.77
2.71
2.59
2.53
2,55
2.65
2.55
2.65
2.53
2.59
1.80
1.30
1.93
1.93
2.05
2.05
*> O1
4_ .^o
!-, ^J«5
fc. .dLW
2.65
2.65
A. , i' f
2.33
2.83
2.S3
2.50
4.83


1 .99
1.99
2.29
2.29
2.59
2.59
2.77
2.71
2.59
2.53
2.65
2.55
2.65
2.65
2.53
2.59
1.80
1.SO
1.93
1.93
2.05
2.05
2.23
*-i -»*-,
*~.j»W
2.65
2.55
2.77
2.33
2.33
2.83
2.59
4.55


DATE: 02/18/86 OPERATOR:
RUM DUMBER MO-2
NOZZLE * , NOZZLE DIAM. 502, .155
METER BOX iW? 1 .76
SAMPLE BOX NUMBER 1
METER BOX NUMBER N-14
ASSUMED MOISTURE 2
Gas Meier
T?mp,
(
73
73
74
75
75
70
74
74
76
76
76
77
76
76
76
76
76
77
77
77
77


DIFF/AVG,
113.561
4.008
2.496
7.41
5.656
                                  A-6 7

-------
                    PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North

RUN #        DATE     SAMPLING LOCATION
                                                        Carolina
                                                                 TEST TEAM LEADER
MI-2      03/18/86    Mist Eliminator Inlet
MO-2      03/18/86    Mist Eliminator Outlet
               ROT START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METEH CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AV6. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER. INCHES H2O

     Vn        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm{std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS &. SILICA 6EL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF«

     ZH20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT. LB/LB-MOLE

     Pg        FLUE 6AS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     XI        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29-92 Inches of Mercury  (Hg)
Willis
Steve
MI-2
1310
1532
18
120.00
0.257
0.840
1 .000
29.20
2,570
110.225
82
105.430
30.0
1.412
1.3
0.98?
28.84
28.69
-1.30
29.10
70
0.5530
42.54
443.0
7,506
7,853
99-8
S. Mesbit
Terll
MO-2
1310
1530
16
128.00
0.155
0.840
0.993
29.20
2.496
113.561
7?
108.845
38.0
1.789
1.6
0.984
28.84
28.66
-1.48
29.09
74
4.0080
115-1
143.0
6,481
6,855
99-3
                                                                (continued next page)
                                   A-68.

-------
                                                          MJ-2
                                                                       MO-2
          HEXAVALENT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION,  GRAINS PER DSCF*
Lb/Hr        EMISSION RATE,  LBS/HQTO
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION,  GRAINS PER DSCF«
Lb/Hr        EMISSION HATE,  LBS/H00R

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr*
             Dry Std. Cubic Feet/hr*
          HEXAVALENT CHROMIUM:
             Concentration,  mg/dscm*
             Concentration,  gr/dscf*
             Emissions, kg/hr
             Emissions, Ib/hr
          TOTAL CHROMIUM;
             Concentration,  mg/dscm*
             Concentration,  gr/dscf*
             Emissions, kg/hr
             Emissions, Ib/hr
          (7,304.0)    ( 1,162,0)
             (1.069J      (0.1648)
             (68.79)      (  9-153)

          (  8,148.0 }     ( 1,343.0  )
             (1.193)     (  0.1904  )
             (76.74)      (  10.58  )


0.
0.
0.
0
2446
70
21
.0133
.4712
.0128
.4504
. 5858 )
1.069125 )
( 31.
( 68,
.2014 )
.7873)


0.
0,
0,
0,
( 377.
74
23
0116
.4113
.0110
.3889
.0187)
{ 0.164752)
( 4.
(9.
.1516)
.1528)
deg. F
deg. C
acmh
acfh
dscmh
dscfh
mg/dscm
gr/dscf
kg/hr
Ib/hr
             68  Degrees F -- 29.92 Inches
                   )  -  X 10"3
         (2729.2964)
         (  1.192666)
          ( 3^.8068)
          ( 76.7358)
of Mercury (Hg)
(  435.7*53) mg/dscm
{  0,190415 ) gr/dscf
  (  4.7983) kg/hr
  ( 10.5785 ) Ib/hr
                               A-69

-------
PLANT GREENSBORO IND, Pi
SAMPLING LOCATION MIST ELIM. INLET
FILTER wuMBERvs)
BAR. PRESS., in. Hq 29.2
ST AT 1C PRESS . , in . H20 - 1 .35
LEAKRATC,CFM 0.003
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
A-1
A-2
A-3
A-4
A-5
A-D
A-7
A-8
A-a
A-10
A-11
A-12
B-1



B-2
B-3
B-4
B-5
B-6




FINAL
Sompte
Time
(Min.)
0/0
5
10
15
20
25
30
35
40
45
50
55
60/0
5
10
15
20
23
30
35
40
43
50
55
120/OFF

Gas Meter
Reading
CCu.Ft.)
487.748
491.77
495,98
500,30
504 .S3
509.38
514.53
518.74
523,54
528,44
533.35
533.48
543,23
547.73
552,40
556.47
560.80
565.63
570.28
574.91
579.24
383.42
587.21
591 .29
595.235

8
Velocity
Head
(in.H20)
0.45
0.52
0.54
0.60
0.64
0.66
0.63
0.67
0.67
0.70
0.72
0.70
0.55
0.55
0.55
0.57
0.62
0.60
0.64
0.56
0.47
0.45
0.44
0.44


.ATERS
DATE: 03/19/86 OPERATOR: VStN
RUN NUMBER MI-3
NOZZLE * , NOZZLE DIAM. 106 ,.250
METER BOX AH@ 1 .75
SAMPLE BOX NUMBER 4
METER BOX NUMBER N-7
ASSUMED MOISTURE 2
Orifice iH
(in.
Desired
1.S8
2.17
2.26
2.51
2.67
2.76
2.63
2.80
2.90
2.93
3.01
2.93
2.30
2.30
2.30
2.38
2.59
2.51
2.68
2.34
1.97
1.SS
1.84
1.84


H20)
Actyal
1.8S
2.17
2.26
2.51
2.67
2.75
2.53
2.80
2.90
2.93
3.01
2.93
2,30
2.30
2.30
2.33
2.59
2.31
2.68
2.34
1.97
1.88
1.84
1.84


Gas Meter
Temp.
(d*g. F)
71
"'S
76
73
82
30
84
86
38
89
90
92
88
89
91
91
92
52
92
85
84
85
87
87


Pump
Vac.
Cm.Hci)
6
6
6
-?
~r
~f
1
"7
7
S
B
rt
7
7
7
~!
f
-f
7
-t
6
6
6
6


Filter
Box Temp .
(»g.F)
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200


Imp. Exit
Temp.
(*9.F)
62
62
62
62
62
62
62
62
62
52
62
62
62
62
62
62
62
52
62
62
62
62
62
62


Stack Leak
Temp. Check
(deg.F)
72
73
74
74
75
74
74
75
75
"re;
75
75
74
74
75
74
•7B;
75
75
74
74
74
74
75


DIFF/AVG.
107.487
0,578
2.43
83.34
74.375
                                 A-70

-------
PLANT GREENSBORO INC. PLATERS
SAMPLING LOCATION MIST ELIM. OUTLET
FILTER NUMBER(S)
BAR. PRESS., in. Hq 29.2
STATIC PRESS,, in. H20 -1.70
LEAKRATE.CFM 0.001
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
e-1

e-2

B-3

8-4

B-5

B-6

B-7

B-8

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8


FINAL
Sample
Time
(Min.)
0/0
4
8/0
12
16/0
20
24/0
23
32/0
36
40/0
44
48/0
32
56/0
60
64/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
60
128/OFF

Gas Meter
Reading
(Cu.FO
771.314
775.710
730.010
784.102
733.705
793.404
798.107
302.906
807.803
812.605
817.505
822,503
826.905
331 .907
836.810
841.710
846.363
850.403
854.702
858.704
862.805
869.107
371.206
S73.305
880.007
B83.302
890.304
894.602
309.005
903.803
MS .704
913210
913.366

20
Velocity
Head
(m.H20)
3.60
3.50
3.40
4.00
4.20
4.20
4.00
4.00
4.20
4.20
4.30
4.30
4.20
4.10
4.20
4.20
2.60
3.00
3.10
3.10
3.40
3.40
3.60
3. CO
4.20
4.20
4.40
4.40
4.40
4.40
4.40
4.40


DATE: 03/19/86
RUN NUMBER
NOZZLE*, NOZZLE DIAM.
METER BOX dHt
SAMPLE BOX NUMBER.
METER BOX NUMBER
OPERATOR:
MO-3
702,. 175
1.76
IS
N-14
ST
ASSUMED MOISTURE 2
Orifice
(1n.H
Desired
3.70
3.70
3.4Q
4.11
4.31
4.31
4.11
4.11
4.31
4.31
4.42
4.42
4.31
421
4.31
4.31
2.67
3.08
3.10
3.19
3.49
3.49
3.70
3.70
4.31
4.31
4.52
4.52
4.52
4.32
4.52
4.52


4H
20)
Actual
3.70
3.70
3.49
4.11
4.31
4.31
4.11
4.11
4.31
4.31
4.42
4.42
4.31
421
4.31
4.31
2.67
3.08
3.19
3.19
3.49
3.49
3.70
3.70
4.31
4.31
4.52
4.52
4.52
4.52
4.52
4.52


Gas Meter
Temp.
(d»q. F)
60
60
60
63
64
66
66
66
70
70
78
79
79
82
86
36
80
82
86
88
86
86
88
88
84
83
83
83
S3
84
84
84


Pump
Vac.
(in.Hg)
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
13
13
13
14
14
14
14
14
14
16
16
16
16
16
16
16


Filter
Box Temp.
(d*q.F)
100
100
100
100
100
100
110
no
110
110
120
120
130
130
130
130
130
130
130
130
130
130
131
131
131
130
130
130
130
130
130
130


Imp, Exit
Temp.

-------
                    PARTICULATE FIELD DATA t RESULTS TABULATION


PLANT: Greeasboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION
                                                                 TEST TEAM LEADER
MI-3      03/19/86    Hist Eliminator Inlet
MO-3      03/19/86    Mist Eliminator Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Die       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES  F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMP1NQERS 8< SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     IH20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LE/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H2Q

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H2O

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW RATE, WET ACFM

     %I        ISOKINETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
Willis
Steve
MI-3
804
1042
18
120.00
0.250
0.840
1.000
29.20
2.430
107.48?
86
102.022
46.5
2.189
2.1
0.979
28.84
28.61
-1.35
29.10
74
o . 5780
43-73
443-0
7.596
8,071
100.9
S. Nesbit
Terll
MO-3
805
1052
16
128.00
0.179
0.840
0.993
29.20
4.022
146.903
78
Hi. 077
44.5
2.095
1.5
0.985
28.84
28.68
-1.70
29.08
80
3.8840
113-9
143-0
6,351
6,786
98.5
                                                                (continued next page)
                                    A-7 2

-------
                                                          MI-3
                        MO-3
          HEXAVALENT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr*
             Dry Std. Cubic Feet/hr*
          HEXAVALENT CHROMIUM:
             Concentration, mg/dsem*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
          TOTAL CHRQMIOM:
             Concentration, mg/decrn*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
            • 68  Degrees F  -- 29-92 Inches  of
            (       ) =  X 10"3
        (4,467.0 )     {  693-0 )
        (  0.6757 )   ( 0,07581 )
         (  43-99 )     (  4.12? )

        (4,874,0  )     {  750.0 )
        (  0-7373  )   (0.08204 )
         ( 48.00  )      (4.466 )
              74
              23

          0.0137
          0.4843
          0.0129
          0.4557

     [  1546.2699)
      ( 0.675699}
        ( 19,9544)
        ( 43.9919 J

     (  1687.1546)
      ( 0.737264}
        ( 21.7725)
        J 48.0002 )
Mercury (Hg)
       80  deg. F
       27  deg. C

   0.0115  acmh
   0.4072  acfh
   0,0108  dscmh
   0.3811  dscfh

(  173.4767) mg/dsem
(  0.075807 ) gr/dscf
 { 1.8719) kg/hr
   ( 4.1268 ) Ib/hr

{  187.7454 ) mg/dscm
(  0.082042 ) gr/dscf
   ( 2.0258 ) kg/hr
   ( 4.4662 ) Ib/hr
                               A-73

-------
PLANT
GREENSBORO INO. PLATERS
SAMPLING LOCATIOW
FILTER NUMBER(S)
BAR. PRESS,, in. Hg
STATIC PRESS., in.
LEAKRATE.CFM


H20

LEAK TEST VACUUM, in Hg
Trav. Samol* Gas Meter
Point . Time
No. (Min.)
A-1 0/0
A-2 5
A-3 VO
A-4 15
A-5 20
A-6 25
A-7 30
A-S 35
A-9 40
A-10 45
A-11 50
A-1 2 55
B-1 60/0
5
10
13
B-2 20
B-3 25
B-4 30
B-5 35
B-6 40
45
50
33
120 /OFF
FINAL
DIFF/AVG.
Readinq
(Cu.Ft.j
595.868
600.14
504.48
508,97
613.32
613.17
522.80
527.59
532.51
637.44
642.37
647.27
652.17
550 .61
660.77
685.24
660.53
674.16
678.63
682.85
687.1 1
591 .48
695.64
700.02
704.286


MIST ELIM.

29.2
-1.33
0.000
8
Velocity
Head
(in.H20)
0.48
0.45
0.48
0.55
0.58
0.52
0.62
0.53
0.65
0.65
0.63
0.64
0.47
0.50
0.50
0.32
0.56
0.57
0.48
0.48
0.48
0.50
0.49
0.30



INLET

DATE:
03/19/86

RUN NUMBER

NOZZLE *
, NOZZLE OIAM.
METER BOX AH®
SAMPLE BOX NUMBER


Orifice
(in. H
Desired
2.15
2.02
2.15
2.47
2.60
2.78
2.78
2.92
2.92
2.92
2.83
2.87
2.11
2.24
2.24
2.33
2.51
2.56
2.15
2.15
2.15
2.24
2.20
224





M
20)
Actual
2.15
2.02
2.15
2.47
2.60
2.78
2.78
2.92
2.92
2 92
2. S3
2.37
2.11
2.24
2.24
2.33
2.51
2.55
2.15
2.15
2.15
2.24
2.20
2.24



METER BO
ASSUMED
Gas Meter
Temp.
(deq.F)
81
S3
81
S3
85
S7
88
39
90
92
92
92
90
73
74
75
70
31
84
85
86
88
88
S9



X NUMBER
MOISTURE
Pump


Filter
Vac. Box Temo.
(in .Ha.)
g
6
6
"7
7
*?
7
*T
8
S
3
8
7
7
7
7
~l
"j
6
6
6
e
c
5



Cde<3.F)
200
200
200
200
20C
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200



OPERATOR :
MI-4
104, .257
1.75
16
M-7
2
Imp. Exit
Temp.
Cdea.F)
63
53
63
64
64
54
6-1
54
64
64
64
64
64
83
63
63
64
85
65
65
65
65
65
03



VSN






Stock Leak
Temp. Check
(d*q.F)
75
i' -j
74
74
74
74
l' sJ
75
75
75
"JST
1 •„'
76
74
72
73
73
73
74
74
74
73
74
74
74



108.418    0.542
>.44    84.83
74.125
                                A-74

-------
PLANT
SAMPLING LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in.H20
LEAK RATE, CFM
LEAK TEST VACUUM , in Hg
TraY.
Point.
No.
A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8


FINAL
DIFF/
Sample
Tim?
(Min.)
0/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
60
64/0
4
8/0
12
16/0
20
24/0
28
32/0
36
40/0
44
48/0
52
56/0
CO
128/OFF

AVG.
Gas M«t?r
Reading
(Cu.Ft.)
913.508
921.610
•324.804
923.502
931.102
934.307
937.710
941.102
944 .506
947.805
351 .402
953.302
958.808
952.507
066.403
970.202
974.085
977.506
980.503
933.808
887.210
990.504
994.303
997.904
1001.903
1005.210
1008.807
1012.310
1016.210
1019.304
1022.502
1024.103
1 030 .797


GREENSBORO IND. PLATERS
MIST EL !M. OUTLET
29.2
-1.40
0.000
12
Velocity
Head
(w.H20)
3.00
3.00
3.10
3.10
3.40
3.40
3.60
3.60
4.40
4.40
4.60
4.50
4.60
4.60
4.40
4.40
2.99
2.99
3.40
3.40
4.00
4.00
4.40
4.40
4.00
4.00
4.20
4.20
4.20
4.20
4.20
4.20



Orifice A.
(in. H20)
H

Desired Actual
1.81
1.31
1.87
1.87
2.65
2.65
2.17
2.17
2.65
2.85
2.77
2.77
2.77
2.77
2.65
2.65
1.80
1.80
2.05
2.03
2.41
2.41
2.65
2.65
2.41
2.41
2.53
2.33
2.53
2.53
2.53
2.53



1.81
1.81
1.87
1.87
2.65
2.55
2.17
2.17
2.65
2.65
2.77
2.77
,£.. >' if
2.77
2.65
2.65
1.80
1.80
2.05
2.05
2.41
2.41
2.65
2.65
2.41
2.41
2.53
2.33
2.53
2.33
2.53
2.53



DATE: 03/19/86 OPERATOR:
RUN NUMBER MO-4
NOZZLE *, NOZZLE DIAM. 502..155
METER BOX AH<§> 1 .75
SAMPLE BOX NUMBER 30
METER BOX NUMBER N-14
ASSUMED MOISTURE 2
Gas Meter
Temp.
(d«j, F)
80
80
80
80
80
3!
84
84
84
84
80
89
89
92
90
90
84
64
66
66
70
70
70
72
74
75
78
73
78
78
78
78



Pump
Vac.
(in.Hg)
7
*?
7
8
8
8
8
8
8
S
10
10
10
10
10
10
10
o
V
8
8
8
8
8
8
8
9
9
9
a
g
Q
9



Filter
Box Temp ,
(deg.F)
125
125
125
130
130
130
130
130
130
130
120
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130
130



Imp . Exit
Temp.
(d*g.F)
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
55
55
55
35
55
55
55
55
55
33
55
35
55
55



ST
Stack Leak
Temp. Check
(deg.F)
80
30
81
80
81
81
81
81
82
82
82
82
82
82
81
81
80
76
77
T"?
7S
79
75
79
7Q
79
79
79
79
79
70
79



112.289    3.875
2.391
79.25
79.906
                                 A-75

-------
                    PARTICULATE FIELD DATA b RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, Korth

RUN #        DATE     SAMPLING LOCATION
                                                        Carolina
TEST TEAM LEADEB
MI-4      03/19/86    Mist Eliminator Inlet
MO-4      03/19/86    Mist Eliminator Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET BUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF»

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPIN0ERS & SILICA GEL, ML

     Vw(std)   VOLtlME OF WATER VAPOR, SCF»

     XH20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DSY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE SAS PRESS., INCHES H6

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FUJE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Q«w       VOLUMETRIC AIR FLOW HATE, WET ACFM

     %l        ISOK1NETIC SAMPLING RATE, PERCENT


      * 68  Degrees F — 29.92 Inches of Mercury (Hg)
Willis
Steve
MI-4
1110
1600
18
120.00
0.257
0.840
1.000
29.20
2.440
108.418
85
103.097
51-5
2.424
2.3
0.977
28.84
28.59
-1-33
29.10
74
0.5420
42.36
443.0
7,343
7,818
99-8
S, Nesbit
Terll
MQ-4
1110
1606
16
128.00
0.155
0.840
0.993
29.20
2.391
112.289
79
107.198
42.5
2.000
1.8
0.982
28.84
28.64
-1.40
29.10
80
3.8750
113-8
143.0
6,327
6,780
100.2
                                                                (continued next page)
                                    A-76

-------
                                                          MI-4
                        MO-4
          HEXAVALENT CHROMIUM;
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION,  GRAINS PER DSCF*
Lb/Hr        EMISSION RATE.  LBS/HOTJR
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION,  GRAINS PER DSCF*
Lb/Hr        EMISSION RATE,  LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr*
             Dry Std. Cubic Feet/hr*
          HEXAVALEUT CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions, kg/hr
             Emissions, Ib/hr
          TOTAL CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions, kg/hr
             Emissions,  Ib/hr
            * 68  Degrees F  --  29,92 Inches  of
            (       )  =  X 10~3
       (  7,560.0  )   (  1,538.0)
         (  1.132  )   !   0.2214)
         {  71.23  )     (  12.01 )

        (8,570.0  )   (  1,714.0 )
         {  1.283  )     (0.2467)
         (  80.75  )      (13.38)
              74
              23

          0,0133
          0.0125
          0.4406

      ( 2589.6358 )
       ( 1.131636 )
        (32.3092 )
        (71.2296 J

      ( 2935.6056 )
       ( 1.282821 )
        (36.6256 ]
       (  80.7458 )
Mercury (Hg)
        80   deg.  F
        27   deg.  C

    0.0115   acrnh
    0,4068   acfh
    0.0108   dscmh
    0.3796   dscfh

(  506.6799!  mg/dscm
(  0.221412)  gr/dscf
 (  5-4464)  kg/hr
 ( 12.0072 )  Ib/hr

(  564.6615)  mg/dscm
(  0.246750 )  gr/dscf
 (  6.0696 )  kg/hr
 ( 13-3812)  Ib/hr
                               A-77

-------
PLANT
SAMPL ING LOCATION
FILTER NUMBERtS)
BAR, PRESS., in. Hg
STATIC PRESS., in.H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Tray.
Point.
No.
B-5





A-4






Sample
Tim*
(Min.)
0/0
10
20
30
40
50
eo/o
10
20
30
40
50
120/OFF
Gas Meter
Reading
(CU.FU
339.575
351 .46
303.37
375.71
387.73
399.84
412.03
424.62
437.34
450.06
462.74
475.48
487.820
GREENSBORO BND. PLATERS
COATING TANK «6 HIST
ELIMINATOR OUTLET
29.5
-1.75
0.000
10
Velocity
Head
(in,H20)
4.30
4.30
428
4.30
4.30
4.25
4.65
4.70
4.70
4.70
4.50
4.60

Orifice AH
(in. H20)

Desired Actual
4.40
4.40
4.38
4.40
4.40
4.44
4.73
4.80
4.80
4.80
4.70
4.70

440
4.40
4.38
4,40
4.40
4.44
4.75
4.80
4.80
4.80
4.70
4.70

DATE: 03/26/86 OPERATOR:
RUN NUMBER MQ-5A
NOZZLE ", NOZZLE Dl AM, 103, .177
METER BOX ihk§> 1 .76
S AMPLE BOX NUMBER 1 2
METER BOX NUMBER N- 1 4
ASSUMED MOISTURE 2
Gas Meter
T«mp.
(deg. F)
62
71
78
79
81
82
75
82
86
87
88
89

Pump
Vac.
(in.Hg)
9
9
9
9
9
9
9
9
9
9
9
9

Filter
Box Temp,
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR, PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hq
Trov,
Point,
No.
A-2





8-7






Sample
Tim*
(Mln.)
0/0
10
20
30
40
50
§0/0
10
20
30
40
50
120/OFF
Gas Meier
Reading
(CuJt.)
809.402
820,37
831.77
842,94
854,08
865.36
878.51
887.99
899.38
910.69
921.97
933.29
944.420
GREENSBORO WO, PLATERS
COATING TANK *6 MIST
ELIMINATOR OUTLET
29.5
-1.73
0.000
7
Velocity
Head
(iftH203
4.60
4.58
4.65
4.40
4.40
4.40
4.60
4.40
4.30
4.30
420
4.20

DATE: 03/26/86 OPERATOR:
RUN NUMBER MO-5B
NOZZLE *, NOZZLE DIAM. ?03/.169
METER BOX AH@ 1.75
SAMPLE BOX NUMBER 16
METER BOX NUMBER R-2
VSN
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
3.98
3,95
4.02
3.82
3.82
3.82
3.98
3.82
3.78
3.78
3.S5
3.65

Actual
3.98
3.95
4.02
3.82
3.82
3.82
3.98
3.82
3.78
3.78
3.55
3.55

Gas Meter
Temp.
(fteg.F)
72
80
92
95
98
98
82
92
96
102
104
109

Pump
Vac.
(in.Hg)
6
6
6
6
6
6
6
6
6
6
8
6

Filter
Box Temp,
(deg.F)
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(degJ)
62
63
63
64
64
64
64
64
64
64
64
64

Stack Leak
Temp. Check
(deg,F)
73
73
74
74
75
75
74
75
75
75
75
77

FINAL
DFF/AVG.
135.018
4.418
3.839   93.33
74.583
                                                 A-79

-------
                    PARTICULATE FIELD DATA & RESULTS TABULATION
PLAKT: Greensboro Industrial Platers, Greensboro, North Carolina
RTO
             DATE
                      SAMPLING LOCATION
                                                                 TEST TEAM LEADER
MO-5A
MO- 5B
03/26/86    Coating Tank #6 Mist Eliminator Outlet
03/26/86    Coating Tank #6 Mist Eliminator Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     MET RUN TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG, PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VQUJME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF»

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS fc SILICA GEL, ML

     Vw(std)   VOLUME OF WATER VAPOR, SCF*

     ZH20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT, LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE 8AS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS,, INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Qsd       VOLUMETRIC AIR FLOW RATE, DRY SCFM«

     Qew       VOLUMETRIC AIR FLOW RATE, WET ACFM

     21        ISOKINETIC SAMPLING RATE, PERCENT


      • 68  Degrees F — 29-92 Inches of Mercury (Hg)
Willie
Willis
MO-5A
831
1054
2
120,00
0.17?
0.840
0.993
29.50
4.580
148.245
80
143.479
11.0
0.518
0.4
0.996
28.84
28.80
-1.75
29-37
75
4.4710
120.8
143.0
6,943
7.196
99-9
S. Nesbit
S. Nesbit
MQ-5B
834
1055
2
120.00
0.169
0.840
0.996
29.50
3.840
135.018
93
127-757
30.5
1.436
l.l
0.989
28.84
28.72
-1-73
29.37
75
4,4180
120.2
143.0
6,860
7.163
98.8
                                                                (continued next page)
                                   A-80

-------
                                                         MO-5A
                 MO-5B
          HEXAVALENT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HQUR
          TOTAL CHROMIOM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std, Cubic Meters/hr*
             Dry Std- Cubic Feet/hr*
          HEXAVALENT CHROMIUM;
             Concentration, mg/dscm*                 j
             Concentration, gr/dscf*                 (
             Emissions, kg/hr
             Emissions, Ib/hr
          TOTAL CHBOMI0M:
             Concentration, mg/dscm*                 (
             Concentration, gr/dscf*                 (
             Emissions, kg/hr
             Emissions, Ib/hr
            * 68  Degrees F --  29-92 Inches of Mercury
            (       }  =  x 10"3
  ( 897-0  J     (  790.0 )
[  0.09648  )    ( 0.09543 )
  (5-742  }     (  5.611 )

 (  862.0  )     (  743.0 )
(  0,09272  )    (0.08975 )
 (  5.518  )     (  5.277 )
       75
       24

   0,0122
   0.4317
   O.OH8
   0.41&6

 220.7852 )
 0.096480 )
 (  2.6045 )
 (  5-7419 S

 212.1704 )
 0.092716 )
  (2.5029 )
  (5.5179 )
 (Hg)
        75   deg. F
        24   deg. C

    0.0122   acmh
    0.4298   acfh
    0.0117   dscmh
    0.4116   dscfh

(  218.3771 )  mg/dscm
(  0.095428 )  gr/dscf
  (  2-5451 )  kg/far
   (5-6111 )  Ib/hr

(  205-3850)  mg/dscm
(  0.089751 )  gr/dscf
   ( 2.3937 ]  kg/hr
   ( 5-2772 )  Ib/hr
                               A-81

-------
PLANT
SAMPLING LOCATION
FILTER NUMBER(S)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, In Hg
Trav.
Point,
No.
A-4





B-5






Sample
Tim*
(Min.)
0/0
10
20
30
40
50
60/0
10
20
30
40
50
120/OFF
Gas Meter
Reading
(Cu.Ft.)
488.438
501,02
513.45
525,86
538.73
550.88
563.22
575.47
587.42
599.54
611.63
624.32
535.922
GREENSBORO IND, PLATERS
COATWG TANK »6 MIST
ELIMINATOR OUTLET
29.5
-1.73
0.000
12
Velocity
Head
(in.H20)
4.50
4.45
4.60
4.60
4.50
4.50
4.20
4.30
4.30
4.30
4.30
4.30

DATE: 03/26/86 OPERATOR:
RUN NUMBER MO-6A
NOZZLE », NOZZLE Dl AM. 103 ,.177
METER BOX iH@ 1 .76
SAMPLE BOX NUMBER 12
METER BOX NUMBER N- 1 4
VSN
ASSUMED MOISTURE 2
Orifk»
iri
(in.H20)
Desired
4.60
4.55
4.70
4.70
4.60
4.50
4.29
4.40
4,40
4.40
4.40
4.40

Actual
4.50
4,55
4.70
4.70
4.60
4.60
4.29
4,40
4.40
4.40
4.40
4.40

Oas Meter
Temp.
(deg. F)
73
79
83
89
89
90
83
90
92
93
93
92

Pump
Vac.
(in.Hg)
11
11
11
11
11
11
11
11
11
11
11
11

Fitter
Box Temp.
(
-------
PLANT
SAMPLING LOCATION
FILTER NUMBERCS)
BAR. PRESS., in. Hg
STATIC PRESS., in. H20
LEAK RATE, CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
B-5





A-4






Sample
Tim?
(Min.)
0/0
10
20
30
40
50
60/0
10
20
30
40
50
120 /OFF
Gas Meter
Reading
(CU.FU
944,712
957.09
969.63
981 .76
994.35
1006.34
1018.71
1030.43
1042.18
1053.63
1085.45
1078.03
1090.646
GREENSBORO IND. PLATERS
COATWG TANK *6 MIST
ELIMINATOR OUTLET
29.5
-1.75
0.000
8
Velocity
Head
(in.H20)
4.20
4.20
4.10
4.10
4.15
4.15
3.70
3.80
3.80
4.10
420
4.10

DATE; 03/26/86 OPERATOR:
RUN NUMBER MO-6B
NOZZLE *, NOZZLE DIAM. 702,,179
METER BOX AH«> 1 .75
SAMPLE BOX NUMBER 14
METER BOX NUMBER R-2
WSN
ASSUMED MOISTURE 2
Orifice
AH
(in. H20)
Desired
4.68
4.68
4.55
4.55
4.62
4.62
4.06
420
420
4.55
4.68
4.55

Actual
4,68
4.68
4.55
4.55
4.52
4,62
4.06
420
420
4,55
4.68
4.55

Gas Meter
Temp.
(deg. F)
82
91
101
103
106
108
96
104
105
106
107
108

Pump
Vac.
(in.Hg)
7
7
7
7
7
7
7
7
7
7
7
7

Filter
Box Temp.
(deaf)
MA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(degl)
64
64
64
64
84
54
64
64
64
64
65
65

Stock Leak
Temp. Chtek
(deg.F)
77
77
77
78
77
77
77
75
76
77
79
79

FINAL
DIFF/AVG.
145.934    4.048
4.495    101.4
77.167
                                                 A-83

-------
                    PARTICULATE FIELD DATA fc RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

RUN #        DATE     SAMPLING LOCATION                          TEST TEAM LEADER
MQ-6A
MO-6B
03/26/86    Coating Tank #6 Mist Eliminator Outlet
03/26/86    Coating Tank #6 Mist Eliminator Outlet
               RUK START TIME
               BUS FINISH TIME

               NET SAMPLING POINTS

     Theta     NET RUN TIME, MINUTES

     Die       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     Y         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     Vm        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tm        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IK IMPINGERS & SILICA GEL, ML

    .Vw(std)   VOLUME OF MATER VAPOR. SCF*

     2H2O      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES K20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE  INCHES

     Qsd       VOLUMETRIC AIR FLOW  RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOW  RATE, WET ACFM

     XI        ISOKINETIC SAMPLING  RATE, PERCENT


       * 68  Degrees F -- 29,92 Inches of Mercury  (Hg)
Willis
Willis
MQ-bA
1150
1356
2
120.00
0.177
0.840
0.993
29-50
4,500
147.484
8?
140.888
27.0
1.271
0.9
0,991
28.84
28.74
-1.73
29.37
78
4.4030
120-3
143-0
6,841
7,168
99-6
S. Nesbit
S. Nesbit
MO-6B
1151
135?
2
120.00
0.179
0.840
0.996
29-50
4.500
145.934
101
136-339
36.5
1,718
1.2
0.988
28.84
28.70
-1.75
29.37
77
4.0480
115-3
143-0
6,547
6,871
98.5
                                                                (continued  next  page)
                                   A-84

-------
                                                         MO-6A
                        MO-6B
          HEXAVALENT CHROMIUM:
mg           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCP«
Lb/Hr        EMISSION RATE, LBS/HOUR
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER BSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/far
             Actual Cubic Feet/hr
             Dry Std. Cubic Meters/hr"
             Dry Std. Cubic Feet/hr»
          HEXAVALENT CHROMIUM:
             Concentration, itig/dscro*
             Concentration, gr/dscf*
             Emissions, kg/hr
             Emissions, Ib/hr
          TOTAL CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions, kg/hr
             Emissions, Ib/hr
            * 68  Degrees F -- 29.92 Inches of
            (       )  = x 10~3
        (i,46o.o )      (739.oj
        (  0.1599 )   { 0.08365 )
         ( 9-378 )     (  4.694}

       (  1,393-0 )      (750.0)
        (  0.1526 )   ( 0.08489 )
          I 8.948 )     [  4.764 )
              78
          0.0122
          0.4301
          0.0116
          0,4105

      ( 365,9694)
      f 0.159924)
        {  4.2537)
         ( 9-3779)

      E 3^9-1749)
      ( 0.152585)
      (   4.0585}
        (  8,9475)
Mercury (Hg)
        77  deg. F
        25  deg. C

    0.0117  acmh
    0.4123  acfh
    0.0111  dscrah
    0.3928  dscfh

(  191.4213 ) mg/dscm
(  0.083649 ) gr/dscf
  {2,1291 ) kg/hr
  (4.6939
(  194.2706 ) mg/dscm
(  0.084894 ) gr/dscf
  (  2. 1608) kg/hr
   ( 4 . 7638 ) Ib/hr
                             A-85

-------
PLANT GREENSBORO IND. PLATERS
SAMPLWG LOCATION COATWC TANK *6 MIST
ELIMINATOR OUTLET
FILTER NUMBER(S)
BAR. PRESS., in. Bg 29.5
STATIC PRESS., in. H20 -1 .70
LEAK RATE, CFH 0.000
LEAK TEST VACUUM, in Hg 12
Trov. Sample
Point. Time
No. (Min.)
8-4 0/0
10
20
30
40
50
A-4 60/0
10
20
30
40
50
120 /OFF
Gas Met? r
Reading

-------
PLANT
SAMPLING LOCATION
F1TER NUMBERCS)
BAR. PRESS. , in. Hg
STATIC PRESS., in. H20
LEAKRATE,CFM
LEAK TEST VACUUM, in Hg
Trav.
Point.
No.
A-4





B-4






Sample
Time
(Min.)
0/0
10
20
30
40
50
00/0
10
20
30
40
50
120 /OFF
Gas Meter
Reading
(Co .Ft.)
90.722
102.20
113.90
125.98
137.0?
149.74
161.51
173.38
184.82
196.29
208.13
220.00
231 .839
GREENSBORO IND. PLATERS
COATING TANK «6 MIST
ELIMINATOR OUTLET
20.5
-1.72
0.000
8
Velocity
Head
(in.H20)
4.40
4.50
4,40
4.40
4,50
4,40
4.80
4.50
4.30
4.80
4.70
4,70

Orifice &
(in. H20)
H

Desired Actual
3.85
3.92
3.85
3.85
3.92
3.85
4.20
3.92
3.32
420
4.10
4.10

3.83
3.92
3.85
3.85
3.92
3.85
4.20
3.92
3.92
420
4.10
4.10

DATE: 03/26/86 OPERATOR: ¥SN
RUN NUMBER MO-7B
NOZZLE *, NOZZLE DIAM. ~m,.\m
METER BOX AH$ 1 .75
SAMPLE BOX NUMBER 14
METER BOX NUMBER R-2
ASSUMED MOISTURE 2
Gas Meter
Temp.
(deg. F)
92
99
106
108
109
110
94
104
108
109
110
110

Pump
Vac.
(in,Hg)
7
7
7
7
7
7
1
1
7
7
7
7

Filter
Box Temp.
(degJ)
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Imp. Exit
Temp.
(deg.F)
63
63
53
63
53
63
63
63
63
63
63
63

Stock Leak
Temp. Check
(deg JO
77
79
80
30
80
79
30
30
80
80
80
80

FINAL
DIFF/AVG,
141,117
4.549
3.973    104.9
79.583
                                                 A-87

-------
                    PARTICULATE FIELD DATA & RESULTS TABULATION
PLANT: Greensboro Industrial Platers, Greensboro, North Carolina

HUH #        DATE     SAMPLING LOCATION                          TEST TEAM LEADER
MO-7A
MO-7B
03/26/86    Coating Tank #6 Mist Eliminator Outlet
03/26/86    Coating Tank #6 Mist Eliminator Outlet
               RUN START TIME
               RUN FINISH TIME

               NET SAMPLING POINTS

     Theta     NET ROT TIME, MINUTES

     Dia       NOZZLE DIAMETER, INCHES

     Cp        PITOT TUBE COEFFICIENT

     ¥         DRY GAS METER CALIBRATION FACTOR

     Pbar      BAROMETRIC PRESSURE, INCHES HG

     Delta H   AVG. PRESSURE DIFFERENTIAL OF
                   ORIFICE METER, INCHES H20

     V»        VOLUME OF METERED GAS SAMPLE, DRY ACF

     tra        DRY GAS METER TEMPERATURE, DEGREES F

     Vm(std)   VOLUME OF METERED GAS SAMPLE, DRY SCF*

     Vic       TOTAL VOLUME OF LIQUID COLLECTED
                   IN IMPINGERS t. SILICA GEL, ML

     Vw(Std)   VOLUME OF WATER VAPOR, SCF*

     ZH20      MOISTURE CONTENT, PERCENT BY VOLUME

     Mfd       DRY MOLE FRACTION

     Md        ESTIMATED DRY MOLECULAR WT. LB/LB-MOLE

     Ms        WET MOLECULAR WEIGHT, LB/LB-MOLE

     Pg        FLUE GAS STATIC PRESSURE, INCHES H20

     Ps        ABSOLUTE FLUE GAS PRESS., INCHES HG

     ts        FLUE GAS TEMPERATURE, DEGREES F

     Delta p   AVERAGE VELOCITY HEAD, INCHES H20

     vs        FLUE GAS VELOCITY, FEET/SECOND

     A         STACK/DUCT AREA, SQUARE INCHES

     Osd       VOLUMETRIC AIR FLOW RATE, DRY SCFM*

     Qaw       VOLUMETRIC AIR FLOS RATE, WET ACFM

     SI        ISOKINETIC SAMPLING RATE, PERCENT


      « 68  Degrees F -- 29.92 Inches of Mercury (Hg)
Willis
Willis
MO-7A
1408
1628
2
120.00
0.177
0.840
0-993
29.50
4.600
148,718
90
141 .326
22,5
1.059
0.7
0.993
28.84
28.76
-1.70
29-38
80
4.5020
121 .8
1*3-0
6,914
7.259
98.9
S. Nesbit
S, Nesbit
MO-7B
1409
1629
2
120.00
0,169
0.840
0.996
29.50
3-970
141.117
105
130,73^
4i.O
1.930
1-5
0.985
28.84
28.68
-1.72
29-37
80
4.5490
122.6
143.0
6,909
7,307
100.4
                                                                (continued  next  page)
                                   A-88

-------
                                                         MO-7A
                        MO-7B
          HEXAVALENT CHROMIUM:
rag           CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PE8 DSCF"
Lb/Hr        EMISSION RATE, LBS/HOUB
          TOTAL CHROMIUM:
mg           TOTAL CATCH, MILLIGRAMS
gr/DSCF      CONCENTRATION, GRAINS PER DSCF*
Lb/Hr        EMISSION RATE, LBS/HOUR

          FLUE GAS TEMPERATURE:
             Degrees Fahrenheit
             Degrees Centigrade
          AIR FLOW RATES x million:
             Actual Cubic Meters/hr
             Actual Cubic Feet/hr
             Dry Std, Cubic Meters/hr*
             Dry Std, Cubic Feet/hr*
          HEXAVALENT CHROMIUM:
             Concentration, mg/dscm*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
          TOTAL CHROMIUM:
             Concentration, mg/dscin*
             Concentration, gr/dscf*
             Emissions,  kg/hr
             Emissions,  Ib/hr
            * 68  Degrees F  -- 29.92 Inches  of
            (       ) =  X  ID"3
       (  1,050.0 )      (797.0;
        t o.ii4? )   ( 0.09408;
         ( 6.795 )     (5-572

       (  1,000.0 )     (776.0
        ( 0.1092 )   ( 0.09160
         ( 6.471 )     (  5-425
              80
              27

          0.0123
          0.4355
          0.0117
          0.4148

      ( 262.3801)
      ( 0.114657)
        (  3.0820)
         ( 6.79^6)

      ( 249.8858)
      ( 0.109197)
         ! 2.9352)
         ( 6.4710)
Mercury (Hg)
       80  deg. F
       27  deg, C

    0.0124  acmh
    0.4384  acfh
    0.0117  dscmh
    0.4145  dscfh


(  215.2953) mg/dscm
(  0.094081 ) gr/dscf
 (  2,5272) kg/hr
   (5-5715) Ib/hr

(  209.6225 ) mg/dscm
(  0.091602 ) gr/dscf
  (  2,4606 ) kg/hr
  (  5-4247 )Ib/hr
                              A-89

-------
         PARTICLE SIZING FIELD DATA & RESULTS TABULATION




                          RUN MO-SI






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina




SAMPLING LOCATION: Tank #6 Mist Eliminator Outlet            DATE:  032486
     START-FINISH TIME:   1304-1614




SR)  SAMPLING RATE, ACFM      0.597




ST)  SAMPLING TIME, MINUTES: 152.53




PB)  BARO. PRESS,,IN.HG.:     29.50




PSI) STATIC PRESS., IN. H20:  -1.76
     VOLUME METERED, ACF:   89.231




     NOZZLE DIA., INCHES:    0.126




Y)   METER CAL. FACTOR:      0.993




TM)  METER TEMP., DEG F:        76




DH)  DELTA H AVG., IN. H20:   1.05
S) STACK GAS
•MV) MOISTURE 3
TEMP . , DEG F
fe BY VOLUME:
CF) DENSITY CORE. FACTOR:
ISOKINETICS, %
: 76
2.0
1.000
101.1
- PARTICLE DIAMETER -
S T AGE ( mi crons )
NO. FROM GRAPH AERODYNAMIC
PreSep
0
1
2
3
4
5
6
7
FILTER <
10.99
12.48
7.82
5.23
3.62
2.28
1.17
0.72
0.49
0.49 <
11.03
12.53
7.85
5.25
3.63
2.29
1.17
0.72
0.49
0.49
DEN) PARTICLE
VCF) VISCOSITY
DENSITY,
GM/CC: l.O1
CORR. FACTOR: 1.00
MD) MOL WT, DRY LB/LB-MOLE: 28. 8
CONCENT . ,
CATCH
WEIGHT
(jug)
198.00
11.50
10.30
26.00
23.00
16.20
9.40
9.40
10.80
0.00
GR/DSCF:
PERCENT
OF TOTAL
(%)
62.9
3.7
3.3
8.3
7.3
5.1
3.0
3.0
3.4
0.0
0.056
CUM. %
LESS THAN
GIVEN DIA
37.1
33.4
30.1
21.8
14.5
9.4
6.4
3.4
0.0

                       TOTAL CATCH
   314.60
                                 A-90

-------
         PARTICLE SIZING FIELD DATA & RESULTS TABULATION




                          RUN MI-SI






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina



SAMPLING LOCATION: Tank #6 Mist Eliminator Inlet            DATE:  032486
     START-FINISH TIME:   1304-1614




SR)  SAMPLING RATE, ACFM      0.533




ST)  SAMPLING TIME, MINUTES: 156.00




PB)  BARO, PRESS.,IN.HG.:     29.50




PSI) STATIC PRESS., IN. H20:  -1.35
     VOLUME METERED, ACF:   82.077




     NOZZLE DIA., INCHES:    0.190




Y)   METER CAL. FACTOR:      1.000




TM)  METER TEMP., DEC F:        80




DH)  DELTA H AVG,,  IN. H20:   0.77
S) STACK GAS
MV) MOISTURE
TEMP . , DEG F
% BY VOLUME:
CF) DENSITY CORE. FACTOR:
ISOKINETICS, %
: 73
2.0
1.000
104.4
- PARTICLE DIAMETER -
STAGE (microns)
NO. FROM GRAPH AERODYNAMIC
PreSep
0
1
2
3
4
5
6
7
FILTER <
11.66
13.23
8.28
5.54
3.83
2.42
1.24
0.76
0.52
0.52 <
11.68
13.26
8.30
5.55
3.84
2.42
1.24
0.76
0.52
0.52
DEN) PARTICLE
DENSITY, GM/CC
VCF) VISCOSITY CORR. FACTOR:
MD) MOL WT,
CONCENT .
CATCH
WEIGHT
(jjg)
9,320.00
164.00
48.50
320.00
230.00
76.20
21.50
9.90
7.90
0.00
DRY LB/LB-MOLE:
, GR/DSCF:
: 1.0(
i.oo:
28.8-
1.985'
PERCENT CUM. %
OF TOTAL LESS THAN
(%) GIVEN DIA
91.4
1.6
0.5
3.1
2.3
0.7
0.2
0.1
0.1
0.0
8.6
7.0
6 . 5
3.4
1.1
0.4
0.2
0.1
0.0

                       TOTAL  CATCH
10,198.00
                                 A-91

-------
w


0


u
I

o
0.
H

u
u
N
U
c


L
4 i _g
      • 3 0—~

       20—~
     I 0
I~i

T_f
  a
S-
 3—2
        3—:
        9—=

        a—=
        «~i
        a^—_.
        5— :
        3_=
          3
          "3"
       ,2 —
                                       DENSITY  =1.0 GM/CM"
g t) fl. 	 _,„,;_, r f • • i i •
20 = I ; ' I 1 . I I • , I 1 1 l 1
7 g = i 1 1 1 1 1 j i 1 1 1 t 1 1 i
,/, i 1 I 1 I 1 1 1 i 1 I 1 [ 1 I 1
^^ i i
' 7 1 ; . t !
i 1
1 1 1
iii 111
1 1 -t III
it 1 1 I 1 i t I

3 0 —^ ; ' i i '. i TANV ttr, MTC-T FT TMTW7, ^TiR
—
ATTT'T.FT 	 1
                                             ORUN MO- si
                                             Z^
                                         RUN MI-SI
                                t
                                    I
                               1  ui
                                r  i
                       /i
                     y
                            i/
           I   f
           1

                     0.3
                                                                  |   !
         0.01   0.1
                  1  2    3   10   ZO3Q4QSQiO7030  90  95  9899
                                                                            9 9. S  98.39
                    PERCENT OF  FAflTftCULATE MASS LESS THAN  INDICATED SIZE




                    TANK #6 MIST  ELIMINATOR OUTLET PARTICLE SIZE  DISTRIBUTION
                                         A-92

-------
         PARTICLE SIZING FIELD DATA & RESULTS TABULATION




                          RUN MO-S2






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina




SAMPLING LOCATION: Tank #6 Mist Eliminator Outlet           DATE:  032586
     START-FINISH TIME:   0832-1339




SR)  SAMPLING RATE, ACFM      0.606




ST)  SAMPLING TIME, MINUTES: 240.00




PB)  BARO. PRESS.,IN.HG.:     29.50




PSI) STATIC PRESS., IN. H20:  -1.73
     VOLUME METERED, ACF:  143.029




     NOZZLE DIA., INCHES:    0.126




Y)   METER CAL. FACTOR:      0.993




TM)  METER TEMP., DEC F:        73




DH)  DELTA H AVG., IN. H20:   1,07
S) STACK GAS
MV) MOISTURE '
TEMP . , DEG F
fr BY VOLUME:
CF) DENSITY CORR. FACTOR:
ISOKINETICS, %
: 71
2.0
1.000
101.3
- PARTICLE DIAMETER -
STAGE ( microns )
NO. FROM GRAPH AERODYNAMIC
PreSep
0
1
2
3
4
5
6
7
FILTER <
10.90
12.39
7.76
5.19
3.59
2.27
1.16
0.71
0.48
0.48 <
10.90
12.39
7.76
5.19
3.59
2.27
1.16
0.71
0.48
0.48
DEN) PARTICLE
DENSITY,
GM/CC: 1.01
VCF) VISCOSITY CORR. FACTOR: 1.00'
MD) MOL WT,
CONCENT .
CATCH
WEIGHT
(pg)
397.00
14.90
18.30
38.50
41.50
30.40
14.20
15.30
11.80
0.20
DRY LB/LB-MOLE: 28.8'
. GR/DSCF:
PERCENT
OF TOTAL
(%)
68.2
2.6
3.1
6.6
7.1
5.2
2.4
2.6
2.0
0.0
0.064
CUM. %
LESS THAN
GIVEN DIA
31.6
29.0
25.9
19.3
12.2
7.0
4.6
2.0
0.0

                       TOTAL CATCH
   582.10
                                  A-93

-------

         PARTICLE SIZING FIELD DATA & RESULTS TABULATION




                          RUN MI-S2






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina




SAMPLING LOCATION; Tank #6 Mist Eliminator Inlet            DATE:  032586
     START-FINISH TIME:   0832-1206




SR)  SAMPLING RATE, ACFM      0.545




ST)  SAMPLING TIME, MINUTES: 180.00




PB)  BARO. PRESS.,IN.HG.:     29.50




PSI) STATIC PRESS., IN. H20:  -1.33
     VOLUME METERED, ACF:   97.160




     NOZZLE DIA., INCHES:    0.190




Y)   METER CAL. FACTOR:      1.000




TM)  METER TEMP., DEC F:        73




DH)  DELTA H AVG., IN. H20:   0.83
S ) STACK
GAS TEMP . , DEG F
MV) MOISTURE % BY VOLUME:
CF) DENSITY CORR. FACTOR:
ISOKINSTICS, %
STAGE
NO.
PreSep
0
1
2
3
4
5
6
7
FILTER
: 65
2.0
1.000
104.9
- PARTICLE DIAMETER -
( microns )
FROM GRAPH AERODYNAMIC
11.52
13.08
8.18
5.48
3.79
2.39
1.23
0.75
0.51
< 0.51 <
11.47
13.03
8.15
5.46
3.77
2.38
1.23
0.75
0.51
0.51
DEN) PARTICLE
VCF) VISCOSITY
DENSITY,
GM/CC: 1.01
CORR. FACTOR: 0.99i
MD) MOL WT, DRY LB/LB-MOLE: 28.8'
CONCENT . ,
CATCH
WEIGHT
(jig)
2,780.00
43.10
129.80
372.00
270.00
85.40
30.40
18.10
13.60
2.40
GR/DSCF
PERCENT
OF TOTAL
(%)
74.2
1.2
3.5
9.9
7.2
2.3
0.8
0.5
0.4
0.1
: 0.6081
CUM. %
LESS THAN
GIVEN. DIA
25.9
24.7
21.2
11.3
4.1
1.8
1.0
0.5
0.1

                       TOTAL CATCH




                                 A-94
 3,744.80

-------
tn

5
c
u
Q
0.

5

3
     I 0 i
 o
 •a
U

N
U

-t

U
e
<
a.
      70_=


      so—r
      50—2
      30-3-
      20—"
     I 0
ft ^..a

8—~



H
a ••iii_
s—i
        3—:
        2—
        3—
        a— ~
        5—S
         -3-
       .2 —
                                   DENSITY =1.0 GM/CM"
                        1   1
                                                       I  !  i
                                                                   1   i
                                  TANK #6 MIST  ELIMINATOR OUTLET



                                           O RUN MO-S2



                                           A RUN MI-S2
                                    / I/
                     0.3
         Q .0 I   0,1
                        1   Z    5   10  2O304Q50807080  3Q  93  9899
                                                                            3 9. 9  9S . 3 9
                    PCRCENT OF I»AHTICUUATE MASS LESS THAN INDICATED  SIZE



                  TANK  #6 MIST ELIMINATOR  OUTLET PARTICLE SIZE DISTRIBUTION
                                        A-95

-------
         PARTICLE SIZING FIELD DATA & RESULTS TABULATION




                          RUN MO-S3






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina




SAMPLING LOCATION: Tank #6 Mist Eliminator Outlet           DATE:  032586
     START-FINISH TIME:   1420-1632




SR)  SAMPLING RATE, ACFM      0.606




ST)  SAMPLING TIME, MINUTES: 123.00




PB)  BARO. PRESS.,IN.HG.:     29.50




PSI) STATIC PRESS., IN. H20:  -1.73
     VOLUME METERED, ACF:   73.203




     NOZZLE DIA., INCHES:    0.126




Y)   METER CAL, FACTOR:      0.993




TM)  METER TEMP., DEG F:        79




DH)  DELTA H AVG., IN. H20:   1.07
'S ) STACK
GAS TEMP . , DEC F
•MV) MOISTURE % BY VOLUME:

-------
         PARTICLE SIZING FIELD DATA & RESULTS TABULATION




                          RUN MI-S3






PLANT: Greensboro Industrial Platers, Greensboro, North Carolina




SAMPLING LOCATION: Tank #6 Mist Eliminator Inlet             DATE:  032586
     START-FINISH TIME:   1419-1638




SR)  SAMPLING RATE, ACFM      0.535




ST)  SAMPLING TIME, MINUTES: 123.00




PB)  BARO. PRESS.,IN.HG.:     29.50




PSI) STATIC PRESS., IN. H20:  -1.35
     VOLUME METERED, ACF:   65.101




     NOZZLE DIA., INCHES:    0.190




Y)   METER CAL. FACTOR:      1.000




TM)  METER TEMP., DEC F:        81




DH)  DELTA H AVG., IN. H20:   0.81
TS ) STACK GAS TEMP . , DEC F
PMV) MOISTURE
DCF) DENSITY
% BY VOLUME:
CORR . FACTOR :
ISOKINETICS, %
N

: 73
2.0
1.000
101.6

- PARTICLE DIAMETER -
STAGE
(microns
)
DEN) PARTICLE
DENSITY,
GM/CC: l.Oi
VCF) VISCOSITY CORR. FACTOR: 1.00:
MD) MOL WT,
CONCENT .

CATCH
WEIGHT
DRY LB/LB-MOLE: 28.8.
, GR/DSCF:

PERCENT
OF TOTAL
NO. FROM GRAPH AERODYNAMIC (jig) (%)
PreSep
0
1
2
3
4
5
6
7
;, FILTER
11.63
13.20
8.26
5.53
3.83
2.41
1.24
0.76
0.52
< 0.52 <
11.65
13.23
8.28
5.54
3.84
2.41
1.24
0.76
0.52
0.52
2,040.00
36.80
94.30
279.00
228.20
94.30
28.20
15.80
11.20
0.00
72.1
1.3
3.3
9.9
8.1
3.3
1.0
0.6
0.4
0.0
0.695:

CUM. %
LESS THAN
GIVEN DIA
27.9
26.6
23.3
13.4
5.3
2.0
1.0
0.4
0.0

                       TOTAL CATCH
 2,827.80
                                 A-97

-------
BJ
o
u
j-

o
i
H
U
u
N
ca
ui
_i
u
     I 0'
      90.
      3 0.
      7 0.
      50.
      5 0_3-
      4 0	=_
      3 0—-
      ZQ—'
     ! 0
s—=
        3—1
3——-
7—3-

                                  DENSITY 1.0 GM/CM"
                           1  i
       I  I
              i   i
                                  TANK #6 MIST ELIMINATOR OUTLEI

                                          O  RUN MO-S3

                                          A  RUN MI-S3
                                   A.
                             /I
                      i  i   i/  i    i / i   i
                 7
                           !/=< I
                                            i   i  •
                     0.3
         a.0i   Q.I
                        12    310  203040 SO iO 70 SO  90  93  9839
                                                                            99.3  99
                                                                                   .99
                    PERCENT OF  PAfTTlCULATE MASS  LESS THAN INDICATED  SIZE

                  TANK #6 MIST  ELIMINATOR OUTLET PARTICLE SIZE DISTRIBUTION
                                        A-98

-------
        APPENDIX B




FIELD AND ANALYTICAL DATA
           B-:

-------
B-2

-------
           Preliminary  Field  Data

PLANT N;
LOCATO
SAMPLM
MvE'
^ ^
; LC
DUCT DEPTH
FROM INSOE FAR W
zM ' f^lC^RfftJSSf^d^ fi(.ri~i
^?£t=ti£"Bl>12& . AJ.C -
>r.ATinw TAM*' ^Yfi4il

ALL TO OUTSOE OF PORT
NIPPLE LENGTH
n

^1



DEPTH OF DUCT __/_
WIDTH I RECTANGULAR DUCT>
A-

>"'

//-
	
h



tyuc.

•£"

£-'

£

Ti





t

EQUIVALENT DIAMETER:
p 2« DEPTH *WOTH 2( K )
UE DEPTH + WOTH ( * ) 	
DISTANCE FRO
TO NEAREST F
DISTURBANCE;
STACK
STACK AREA::

LOCATION

i
rf
1
4
S
1
*
10
11
15
if.
17
11
30
21
2J
24
4 6
25.0 14.
9J.3 70.
•5.
M.*
M PORTS IFSTREAM
LOW - —
FFFT £• • ^
DIAMCTFRS "2..^

TTJ»/5.75)''1' =
^ ^
DOWNSTREAM
1,17


i

(A FbKT)
OF TRAVERSE POINTS W CRCULAR
f* \

19.4
32.3
•Q.C
10 13 14 16 IB

14.6 11.* 9. 8.5 1.5
34. 20.0 20. 16.9 14.6
61. IS .6 26. 22.0 11.1
77. 64.4 36. 2B.3 23.6
B%. 75.0 63. J7.5 29.6
91. 12.1 73. 62.S M.2
»7. M.2 7». 71.7 «.*
93.3 15. 71.0 70.4
97.9 90. S3.1 76.4
94. 17.5 81. J
9*. 2 91.5 BS. 4
95.1 19.1
98.4 92. S
95.6
•B.6
/.

D

z-

3.9



W


2
U
STACKS
20

6
12
16
20
25
JO
38
il
6S
75
79
•3
•7
W
93
K
98

.7
.9
.5
.4
.0
.6
.(
.2
,4
.0
.6
.5
,1
.1
.3
.1
.7
2:

6.0
11.
14.
1*.
21.
26.
31.
n.
60.
6*.
73.
n,
•2.
15.
•«.
91.
M.O
96.5
9* .9
24

S.
10.
13.
16.
19.
23.
27.
12.
39.
60.
67,
72.
77.
•0.
B3.
M.
•9.
92.
94.
9*.

1
2
S
9
5
2
1
4
0
2
3
1
3
1
*
0
6
9
*
S
1
5
9


LOCATION OF TRAVERSE POIMTS N RECTANGULAR STACKS

i
2
i
*
5
6
J
It
!
to
11
12
•1 J 4
25.0 14.? 11
7S.C 50.0 17
•1.3 42
• 7









.i
.5
.5
.S








5
)6
3d
50
70
90








.t
.0
.0
.0
.0







6
1.1
25.0
41.7
Sl.l
75.0
tl.J






J
7.1
21.4
35.7
50.0
64.3
71.6
92.9





1
6.i
It.*
31.
43.
56.
*«.
•1.
H.




9
i.^
It. 7
27.1
31. »
50.0
H.J
72.5
13.3
94.4



10
5.0
li.O
25.0
35.0
45.0
55.0
65-0
r$.o
ti.o
55.0


11
i.i
13.6
22.7
11.
40.
SO.
51.
4».
77.
•6.
tS.5

12
*.2
12.5
20. »
29.2
37.5
45. •
54.2
62.5
70. •
79.2
•7.5
95rt
DMXrfCM - POINTS
^.t»« *-«.«—
« -

7 .
6 .
5 ,

4 .

I •

2 .
• 2.0

.1.75
• 1.50
• 1.25 \ \ "
^- \ .
- 1.0 ^

• 0.75 «

• 0.5 I
. 4(
_ 44
- 40
I J6
. 32
- 2«
- 24
- 20
- 16

- 12
. B
Poiac
I
2
3
4
5
6
7
8
9
10
II
\Z
13
14
15
S
17
18
19
20
21
22
23
24
X OF
DIAMTTM
3/Z-
/<9.5
/e>.4-
32.3
67.7
00.^
0a^
5^,6
















DISTANCE
RUM INSIDE
HALL
























DISTANCE
rxon DUTSIDI
or poit
/"
/•*"
24"
3^4"
73^"
^^"
ID&-
I&JC
















                      IMTWOPIf
                             B-3

-------
        PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss
ING LO
0V
F E^S / CxtGCKissa^c X*jous.r/u&<_ TLAT«TW RUN NUMBER "T6 - I A
«"^fC<5£W*Aa*0 tfC TIME START ^5 *\ tS~"
CAT ION C^Annf c "T%»Ak *** IF- £^«-Au*r- T IME n N isw 1^12 I
16-fcV* TEAM LEADER §,?««OO TECMNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
PIT
""'PIT
toRS
TED
*^ TMB"
. MG 2.
^ • Z^ STAT I C PRESSURE
ST VACUUM, IN. HG '"^
TE, CU. FT. /MIN. G>.O>

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG ^__ SAMPLE BOX
OMOrOUPLE <3 &S °F PROBE
F I LTER # TARE
A!//?- A/M"
f

IANS
, IN. H

,0 —- O , "V>~

Q> C.E.PZ.

IDENTIFICATION NUMBERS

If Ot. NOZn.E- St>€> niAMETER fi.S 63"
/J • 1aT T
A T
1! 0
/C READ!
/C PROS
RSAT PU1
3UT f.S~

MP ^M 1 ^
t.-**> TEDLAR BAG *J A
NOMOGRAPH SET-UP
AH/a 1 ' & *~ C
i METER TEMP
% MOISTURE

SAMPLE
PQLIMT

1- 4
••
»*
'.'• k- • S~~
t t
,i



















\
CLOCK
TIME,
MIN.

9/0
' /£»
to
>i
4*
S~c
ics^R.
'


















DRY GAS
METER
READING,
CU . FT .

6l.<.v.-t_
fi10! -l\
^>"« 6^f
1Ci2, ^«?«,
f|-£s.^^»
ll^L.5^
fa..^-6.-J

4 . . . ,.

















PI TOT
READING
UP),
IN. H20

ei.iT-'T
D U (
5, j^t
o 2.0^
fi.l-o^
Ci .i l^




















NOMOORAPH # fce*1-
FACTQR '
.06
8"S STACK TEMP ^*^»
Z REF, AP &. 11
^
ORIFICE
SETT 1 NG ( AH ) ,
IN. H2_O
IDEAL

L €H
1 Wt_
I.W3
2..t.\
•L.ty
t..i (



















ACTUAL

f.&°l
(.^ L
f .*/i
2., LI
L-tJ
2.3(



















GAS
METER
TEMP.

61
&3-
8&
&&
8*\
^0


-
















^ r
PUMP
VACUUM
IN. HG
GAUGE

t '
-s~
S~
Q,
Ca
Ca



















£>. P^Pf'LJ^
FILTER
BOX
TEMP.
°F

H€
/z.^/
\L^
Itl
liA
f 28



















IMP,
EXIT
TEMP.
°F

t V
^> d.!!.,,,,
f_ ku/
^. ^
^^0
CoQ,



















STACK
TEMP.

t 6
Q"V
tq.
t?
C6
4 ?-





















LK . CHECK
READINGS














M
              to* _ T
                  M
        ENTROPY

-------
        PARTICULATE FIELD DATA
COMPAI
ADORE.
&L
DATE
NY MAM
SR
ING L.CH
p fc M-fc / i tt.S-S'^^-CXtJP J«—M'?M>*i*TV6l/SL ( */*TiS"fti RUN NUMBER 1 C- ~ I Sj>
Cf fX^aiikoRCs /J V T IME START O *H "S~
CATION ^»/*riAi*. T~h»*it **£• **~ - E.*n,r>u.s-r TIME FINISH \0i-i.
•tC*%^» ^ TEAM LEADER TECHNICIANS
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
•^PIT
_i£ViT
X|4 gas
MINTED
^TWT
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ _CP.'g" '
F I LTER # TARE

MK
Zl.-l. STATIC PRESSURE
5T VACUUM, IN.
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
DF IWJOBE
AH a
MQ 1ST
ft

IN. H.
-C.3S-
,0 -


	

IDENTIFICATION NUMBERS
X Ot...... NOZZLE
IJ -\£> T
e T
1 ^ 01
O O 1 D 1 AMI
fC REAJX
/C PROBI
SSAT PW
rTSR O.tflL
3UT ijOO *\
r 
£D
3o
^.0
So
k<*(W
1


















DRY GAS
METER
READING,
CU . FT .

•323-.£>oo
5;K.S"4
3«^U t.-B
351. 1 32_
S^i..^ (
3^-S".i»q-
3?-i.6g^



_















PI TOT
READING
UP),
IN, H20

J>. If
D. -tl^-
fl.tl«/
O. l"?^
o , l*5^»
n. r-STr




















1
FACTOR
4OMOSRAI
t>
5H # fcF-fZ.
It
6S» STACK TEMP t
1 .(q-
l.^-o
|-S"l
/•T«-



















ACTUAL

{-<-*
Z- is
2.O
1,S"Cs
\-S"l
i.su


















GAS
METER
TEMP.
°F

I-3
^4
"T^P
rL(.
•^•s
61




/ 1_













I
Iwr
PUMP
VACUUM
IN. HG
GAUGE

T
<„
X^
5~
s-
5~




-; v














D . •ooRb6'^2_
F I LTER
BOX
TEMP.
°F

(i\
/2_,e=
IZ£-
Jtt.
uv
12,^



















IMP.
EXIT
TEMP.
°F

td
c.^-
^Q>
vr
t-5"
<, V



















STACK
TEMP.
°F

(>"?•
Cfe,
^4
(.6
Q6
t >




















LK. CHECK
READINGS















*M
      AH B-5 TM
ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
s*s
ING LO
r H fl«€Al^oto H>JCXii.VTVl_\AL_ ft-OT"JS&Ot*>> A)^ ' TIME START U'5
CAT 1 ON * "S" ^LOIV ' w ^ 1 /^ ^ «- (^ x «*J3d.\-T T I ME F I N I SH 	 	 	 i,1!^ 	
& € ^> TEAM LEADER fc . R^OO TECHNIC
BAROMETRIC PRESSURE. IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
V/ PIT
PIT
ipLTED
*/ THF
. HG t
-S."«~ STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG _ SAMPLE BOX
RMOCOUPLE @ '**'* °F PROBE
F I LTER # TARE
fill A. A»/ fr

HG 15~

/h

IANS "
, IN. H

»o —  .r5~



IDENTIFICATION NUMBERS
X ^NOZZLE
/T f
2.V 0
.. ,5Q"V- DIAMI
/C READ!
/C PROS]
RSAT PUI
ETER 0>J^
3UT C,£>O=i

MP >J| iJ"
t. ' *? TEDLAR BAG A)//*
NOMOGRAPH SET-UP
!.*»-
/ / METER TEMP
% MOISTURE

SAMPLE
POINT
A- <{
"
•>
< D-'T"
M
•M



















>
CLOCK
TIME,
MIN,
C/CJ
/o
2x0
la/tib
' */Q
^e>
(WofF
'


















DRY GAS
METER
READING,
CU . FT .
/n.^s>
/^, (DT-
'45- Z8
14-7. fl 1*5
/54-.7Z-
lLc>2~-52-,
\7O.4*£~>I

4 I . a ^ s

















PI TOT
READING
UP),
IN. H2O
fc.C-SXo
•£>. \5%
n./5B

1- R

OR 1 F I CE
SETTING ( AH) ,
IN. H2O
IDEAL
I.**
/.•92.
1.52-
2,flO
2.O2-
Z.O2-



















ACTUAL
LS<=»
i.-sz.
J.52-
GAS
METER
TEMP.
°F
r|sD
*3-s
~T7
2.CO 1 62-
2-.O2-J
2.^02-


/, ?6

-': - j














- ^"7
SO


•*• -y


< .













EF. &P
K* 0
PUMP
VACUUM
IN. HG
GAUGE
4
t
/„
^>
43
^




6,?J6














fc.tll
• C>-C> t^C. 5^5^
FILTER
BOX
TEMP.
°F
(2.1
/2.1-
(1^,
/2_£,
iZ--5
/2S




»i














IMP.
EXIT
TEMP.
OF
tv
^v
{#&
j £2}
i*&~£^~ -
(cfy-



















STACK
TEMP.
°F
q^i
^1
"71
7£>
~7b
7D


7 :'


















LK. CHECK
READINGS













'M
        ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA1
ADDRE.
) SAMPL
DATE
NY NAM
ses
ING LOI
e ^I^Lo / £T &,Eg
C,^«,£*A4^» '

F I LTER # TARE
^(flr *4/A;
°F

i


SAMPLE
POINT

6-T
-
t«
Jt „ <£
V
»




















CLOCK
TIME,
MIN.

•C/0
(C,
ZJ2
So/*.
Vo
S-Q
m#
'


















DRY GAS
METER
READING,
CU . FT .

} te.lj>2—
3&o ,^g>
366. (6
•3,^.5. (^#"
2- • 6> 1
4e^. 42^-
4-1^,32^7


^ 2 . i i- 5
















PI'
REAI
Ui
IN,
>il.dUi"~J1^-4 RUN NUMBER l^C " 'Z- ft
^^ TIME START US«£
•«*»\ *t'ift*/i«v l±X**»!»~»T- TIME riNiSH /4^Z— -
TEAM LEADER tS -R.-l^> TECHNIC
g.1 , i-
ACUUM, IN.
CU. FT, /MIN
REA
MET
UMB
SAM
PRO

GENT BO
ER BOX
1L1CAL
PLE BOX
BE
STATIC PRESSURE
HG ^*>~
JO ..

. ^•.•fiQ>^» D.QOO 	
IANS
, IN. H
^_
,O -C.fi



IDENTIFICATION NUMBERS
x D2.3 1-
Ai-^
NOZZLE
' T
^ T
c; Ol
2-1 n

NOMOGRAPH SET-UP
J ' C
METER TEMP
% MOISTURE
ror
3 ING
= ),
HgO

fc- l^^
0. 1 J
o. lt3t-
o./4?7
O-/6Z-
£). /L2^
















feCs «•
1 &K D 1 AM!
/C READ!
/C PROB1
%SAT PUI
EDLAR B-
-r«C 31
I. (&I
/.f£>
I ,"Z$S>
l."2>6




















ACTUAL

1,%^
t.^l
1*1*1
/,^S>
/ ,?>$
U-^^



>' , t 
-^
UP 1-0
0. Z2.Cs
c,. &£>e "s^3C.x<»
F I LTER
BOX
TEMP.
°F

ue
/2-1
I3<6
J2-7
^7
iz£






• ".T""












IMP.
EXIT
TEMP.
°F

13
Q>%
lp(s
L^3^3
t^?^—
6?3>






,












STACK
TEMP.
oF

3-(
^ (
7/
"7o
7



7 /
















LK, CHECK
READINGS















*M
B-7TM
         ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
««5 &
ING LO
F Frt&/£!&3=*&&fyzD k^ R/TE^ i
/?eeiJsA£)?2£5 /i) £_ •
3UN NUMJ
riME STV
3ER T^~" 2s4-
• piniLiim 1 jrt — X rf*^>
«?T iTT*---1®1^
cATioN^bMr/Aj^TAiJ/C* S ~ExH-Al!!ST TIME FINISH /<=,•:*, 3
•*! •"€>£> TEAM LEADER "X>K~ TECHN1C
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
i/prfT
"^ PIT
AiA. TED
'""' 'TMP;
M« 7<=?> .^^
ST VACUUM, IN.
TE, CU. FT. /MIN

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAP BAG SAMPLE BOX
RMOCOUPLE @ 7& °F PROBE
FILTER # TARE
AJ/A *J/A

STATIC PRESSURE
HG IS
7

IANS
, IN. H

,o —D.~73

. O.O/D O.OD3

IDENTIFICATION NUMBERS
X.B.2-S/,. NOZZLE
A)-S T
A T
// 0
Z-3 T
NOMOGRAPH SET-UP
AH « 	 — 	 L.H2r 	 c
METER TEMP
% MOISTURE

SAMPLE
POINT
4-4-


13-5





















\
CLOCK
TIME,
MIN,
0/D
ID
2o
_3D/C>
/b
2o
(ptjbfp



















DRY GAS
METER
READING,
CU. FT.
170.^2^
/76.0/
!<£>£,. 255
^Z»S3ZL
2z>/ , 2^>
•£.O<=5 . 7
Z/S.4^8

4") ""X^

















PI TOT
READING
IN. HgO
£U70
0,/^7
OJ^>7
o.z/s
O.2Z2—
0.2J7





















50® D I AMETER D -3 / B
/C REAEX
/C PROBI
RSAT PUI
EDLAR B;
1
FACTOR
3UT 2.5

MP AJ A
IU5 /UA
'4OMOGRA1
PM # ^K—
/,C7 ->/./£>
^D -^ /OD STACK- TEMP ~7

ORIFICE
SETTING (AH),
IN. H2O
IDEAL
i.sz-
/,7S
/,g=,
'2-.'^^.
"2-.4-3>
Z.3&



















ACTUAL
/.6^
/.72>
1.2)3
2.. 355
2..4^>
Z.B8


J,' !
















GAS
METER
TEMP.
OF
^•2.
37
^&
S>d=>
IDD
102-


ii'H

















PUMP
VACUUM
IN. HG
GAUGE
6
la
k>
7
"7
-7




















FILTER
BOX
TEMP.
°F
/2^
//7
/l<3
/2£)
J_2,£t
1/7



















IMP.
EXIT
TEMP.
°F
&(s,
^B
4»3
^ ^
Ly\
Le»7-











„







STACK
TEMP.
OF
72-
"7"/1
~7I
"7Z
~27
7/


V-






**











LK. CHECK
READINGS

K30MO.









i

'M
B-8 TM
         ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
, SAMPL
DATE
NY NAM
ING LO
3-/
e ^Mtt &&£&&&£& l&'T&TfcK- RUN NUMBER T^ -3B
-jg/zfEAl^fZDgD U.C,. TIME e-ra-wr /£3Q '
CATION (LoATti&p ~TAtJK- ff~S - E£x.HA4y=>"r TIME Fli
S,1SM /53^
8 ~ 55£T TEAM LEADER "£>f£~ TECHNICIANS -^"
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQ
o^pIT
*"""(»IT
Mt^ ORfi
*M TED
V-^TMF
. HG ZS."Z«D STATIC PRESSURE
BT VACUUM, IN. HG / Q.Q9& 	
IDENTIFICATION NUMBERS
X °£3/ NOZZLE
JL) - to T
B T
/3> o
,o -D.SS




SD^> DIAMETER i3J2-
/C REACK
/C PROBI
RSAT PUI
3ur noo^
— j^—~~~ i x*s
«p i 1 A
Z.-2- TEDLAR HAG /V ^
NOMOGRAPH SET-UP
/•43 . c
METER TEMP
% MOISTURE

SAMPLE
POINT

Q - g>

•M-4-





















A
CLOCK
TIME,
MIN.

%/D
ID
2o
B&1&
ff>
2b
6>a/6F?^



















DRY GAS
METER
READING,
CU. FT.

•4-/&J,£?£>l3
425. &?O
4Z4- .42-
44B.&2.
^£&,*&&
45S • Zf
4{^5.1^^>D


A '^ ••:.* '
















PITOT
READING
!AP),
IN. H2O

Q.Z3Z
0.12^7
O.Z32.
O./Sf
0./54-
O./53




















1
FACTOR
MOMOGRAI
#\J? i^
5
S?£> STACK TEMP "7/b
£>2L REF . AP

ORIFICE
SETT 1 NG ( AH J ,
IN. H2O
IDEAL

2.2S
Z.35
j.cyc,
/ .€5S
(.55



















ACTUAL

^.3S
2-2^
"Z-.35
/.S5
/ .€£5
/ 5^



/,«i./















GAS
METER
TEMP.
°F

^^
*3l
S>3
^T)
^>|
<=)/



!< /
















PUMP
VACUUM
IN. HG
GAUGE

1
__,
7
5
£?
^



















D./8Z-

F I LTER
BOX
TEMP.
°F

^2-5
/Z5
/22^
/ZO
I2L>
L>7~-
101-
65
^2 	
^r4—



















STACK
TEMP.
OF

72-—
7"2_-
"7/
"72-
V2—
"7^



•••-
















LK. CHECK
READINGS















'M
               AH B-9 T,,
         ENTROPY

-------
PARTICULATE FIELD DATA
COMPA
ADORE
j SAMPL
DATE-
NY NAM
SB £?%
INS LO
,r £MB/G>££EUSEfi
^e^iUSB^^D AJ.£_-
^ AP- H^ 7E>eS RUN NUMBER ~TE "4A

TIME ST*HT r®2&—
CAT I ON&DATJtJSn ~TAl4.K~~ H-^S ~- £ij&fArt}&T
^>'&la TEAM LEADER "X?f2- TECHNIC
BAROMETRIC PRESSURE. IN
HC 2S.ZO
SAMPLING TRAIN LEAK TEST VACUUM, IN.
SAMPLING TRAIN LEAK RATE, CU . FT. /MIN
EQUIPMENT CHECKS
— ^PIT
-x' PJT


(9,^5

IDENTIFICATION NUMBERS
K O2. /O NOZZLE
AJ-S- T
A T
24- o

NOMOGRAPH SET-UP
l.'&2— c
METER TEMP
% MOISTURE

SAMPLE
POJNT

A--T-


•*&'•£>











CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU. FT.

e/o
10
ZO
SO/-D
Id
2D
le&faFp
if







|









;










Z/g>.£?Z1?>
"2.7-5 . 3^-
Z3Z. /^
Z-3^5.0^3
2-4^? .4^
•2J54-, €>4-
?y^>/ . Lin

4i-,«^7

















PI TOT
READING
(APJ.
IN. HzO

£)./(^^
D, /^?3
£»./£=3
C./^"7
^./S>7
n./^7





















S ^/A

MOMOGRAI
PW # 43/2.
/.0"7
©S STACK TEMP , TO
"2~ REF . AP . - ^3

ORIFICE
SETTING (AH),
IN. H2O
IDEAL

1.54-
/ 3S"
/,^5
/^g
/.B©
/,^g














ACTUAL

I-B4-
i 5"^
I .£>€>
/.g>g
/.^0
/.f^B


/.?/
—
-lA









(








GAS
METER
TEMP.
°F

"75
7^>
£> !
^B"2-

/Z-Z-
/2.^
IZJS
I'Z-'B




\














IMP.
EXIT
TEMP.
°F

^^
l£>"2~~
^3,
66
L 6=2.
£2—







STACK
TEMP.
°F

72-
72- •
72-
72-
7/
"7Z.

?Z





1























LK. CHECK
READINGS








I






ENTROPY

-------
        PARTICULATE FIELD DATA
MM
-*£
mm
MM*
MW
MM
MM
mm
mm
mm
MM
M*
COMPA
ADDRE
| SAMPL
DATE
NY NAM
s»s qhf
ING LO
e £MS/d32^eM5a5^>JjJ>.R4rsS5 i
RUN NUMBER TE,~4&
efiETAtefiaSD M-t • TIME START <9^2£>
CATION £&AT>iJ(~> TAi^^L WS -Eyjj^tJS T TIME FINISH J/O2>'2_-
>'S^ TEAM LEADER 2>£L TECHNICIANS —
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
«-""PJT
t-^VlT
AJA QBE
AJ A TEP
t^TWE
. MG 2^.2-^> STATIC PRESSURE
ST VACUUM, IN.
re, CU. FT. /MIN

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ "JO °F PROBE
FILTER # TARE
H/A fJ/A
AH a
we /O
if

, IN. H
.,0 "f>-7r^>

D.OOO &• DZ£>


IDENTIFICATION NUMBERS
xO?,2$T NOZZLE
AJ-/£> T
B> T
S 0

/DC5 DIAMETER . 3D /
/C READI
/C PROBI
RSAT PU1
3LTT OOZS
r &-»/
^ wM
£' / TEDLAR BAG Ai/A
NOMOGRAPH SET- UP
/ m /.j) *^J — .
METER TEMP
% MOISTURE

SAMPLE
POINT

B-S

^
M*4-





















j
CLOCK
TIME,
MIN.

O/o
ID
1o
2>o}e>
/£
ZO
Lbfb^f
I


















DRY GAS
METER
READING,
CU. FT.
PITOT
READING
l^P},
IN. HzO

445. 6B7
•4-73 • "7S
\4GI . "?/
Q%~5 £,73
4^^, 0^
504^, "22-
5// -QzA^
\
45. f '3')

O./&7
O.tt*?>
O,l^f>
D.I&Z.
D IB7
O./BZ



















;


1

NOMOGRAPH # _dP^=. ,
FACTOR ./.P?
t
^5> STACK" TEMP "7D
£?2_ UEF. AP ,^L^

ORIFICE
SETTING (to),
IN. H2O
IDEAL

/.75
t.&f
/.7g»
/.52-
I.4--7
1 1.4=7



















ACTUAL

/ 75"
/.0/
/.7@
/. 5Z
/.-f-7
/••f7

/• 63












GAS
METER
TEMP.
°F

75
7fi
02-
S2-
&h
®*p

£ i


^•y^Vr









|
1




1

PUMP
VACUUM
IN. HG
GAUGE

n
a
ID
^
s>
a^,



—
^ — -A



FILTER
BOX
TEMP,
°F

12D
rz-D
12*5
l~2£~,
l"2Jz>
/25



—
9 (T<+*
^

1






















IMP.
EXIT
TEMP,
°F

&6
&o
(&1L
STACK
TEMP.
°F

72-
72—
72-
Lfte 72--
6,^ ! 7/
^'6




«• IHIIIII II-














72.

?2-


















LK. CHECK
READINGS















*M
        ENTROPY

-------
         PARTICULATE FIELD DATA
-"""*
/<*••
H,
COMPA
ADORE
| SAMPL
QATE
NY NAN
'SP Vs
ING LO
r £^Ey&£££3USE5Cf%O/i^'bOZ>7£JAL. Hx72rf"$ RUN NLJMBER "7E-" ^^
tJ2£€^^V^K£> . A).£~ • TIME START //Qjj£;m _
CATION £llAT/K36s 7AHJ£- *f 5 - £XW. t>&7^ TIME FINIS-I tZJD
~&fc> TEAM LEADER 3>£-_ TECHNICIANS
.BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
"^ JPIT
/
': -/ PIT
ISA ORS
14* TED
*rl, •»«£
. HO Z£
?.2/o
it>
?D
t3-£> J3»/o






















/o
Z£
LSsCM&iF/^
I


















DRY GAS
METER
READING,
CU. FT.

2&s>/ '-8c>4~^
"2L&S-* ^L£>
2-~7£?,%£>
Z£>:3.&&~2^
"2.^2-. /2^
3oo< ^Z-
Z^C-1* C? **&! 	 '/


y / / "™1 "5 "^7
PITOT
READING
IN. H20

O./^Z-
0.171
0-17!
D.Z&®
G.~2-£>~7
o.Z£>7




1













BO& DIAMETER -3/3
/C READ*
/C PROH
RSAT PU
EDLAR B,

3UT OG'Z-S

j|D /O **|
ac MA
NOMOGRA
M i :z>ei-
7
. - r?^ STACK TEMP "70
®2~ REF . AP Q • £7^7

ORIFICE
SETTING ( AH) ,
IN, H2O
IDEAL

/.-?z
/.^Z-
/, g2-
2-.Z-/
"2-.Z
*3®
&$@
^^
^>o


jq

















PUMP
VACUUM
IN. HG
GAUGE

(f
(^
_Lz
7
•7
-7




ft, *")£'





FILTER
BOX
TEMP.
°F

in
l"2-O
17-1
/ / ^5
/ / e^
fZD

IMP.
EXIT
TEMP.
°F

^^
&^ ^L
jyp j&Lr-
(





\

























7s-







I


















LK. CHECK
READINGS




»









V,
 M
      ^ B-12TM
ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
} SAMPL
DATE
NY NAM
ss Up
ING LO
S-f
f EH73 /&&££JJS&Df&!lJPL&TfaA^ttAre£5> RUN NUMBER T£f-£?B
1ZC.&l5>i0ZSjZ£>.M,C. . TIME START /IOT
CATIONC&AT/jJiCbTAAjjtL^S ~^MJ-JAt»T TIME FINISH /Z-^/
5_'.&6» TEAM LEADER "ZPfZ^ TECMNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
>^PIT
l_XpIT
	 r^TED
<< THE
Orf5
_ MG /^
?."Z^b STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX.
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE & 	 "}&„„ °F PROBE
F I LTER # TARE
U / A. /0/U
Hfi /4

. 0-7

IANS
, IN. H

,a - £ _~23



IDENTIFICATION NUMBERS
X £^23*7" NOZZLE
AJ-/0 T
S T
/3 o
2-X TI
NOMOGRAPH SET-UP
AH,;, 	 £:,,4*;3 c
' METER TEMP
% MOISTURE

SAMPLE
POINT

R-5

f
*'k~^






















CLOCK
TIME,
MIN.

z>/a
/O
•£-C*
3-S/D
L
2t>
L&loEf
L


DRY GAS
METER
READING,
CU. FT.

5/3 -2^^
5 22-. ZC1
SS>/ • "37
5ff).^^2-
5^f0. 5^>
554s>. 20
5 £04-. !Ls2~


"^ O '*'"•,'
\






PI TOT
READING
l^f),
IN. HjO

C.ZZ*^
n.zzs
0.227
*~>
O./6^
-







\
























5^^ niAMi
/C READ*
/C PROS
RSAT PUI
EDLAR a
™ ,312.
3UT DOD^
p ^^ ~~ / &
UP /O4
&G MA
NOMOORAPM |_3^C___._ .
PACTQR / .C
7
?55 STACK TEMP 	 "?
2,"^g
'2..4Q
/ .£>/
/.74~
j,7p>

tJ'ft'







GAS
METER
TEMP.
°F

S4-
Bdb7
^7
^3
£3:5
Q4—

^5

























PUMP
VACUUM
IN. HG
GAUGE

-7
~z
7
CP
^
l^y



f°.^o^
















FILTER
BOX
TEMP.
°F

/2^>
/2/>
/ZZ
I2J
]2£)
12^




IMP.
EXIT
TEMP.
°F

UL>
fef
4?3
fafj
(/>^~
L?*5>





\























STACK
TEMP.
°F

7Z-
72_ 	
71
~7 f
72-
72_-



~7 X
















LK, CHECK
READINGS















'M
     (/AP)
         ENTROPY

-------
        PARTICULATE FIELD DATA
            f
COMPA
ADDRE
SAMPL
DATE
NY NAME ^MS/CaiZgE
«« &12Et:t&e&Rt
ING LO
U^BOpr> ItjT^ f^TS-JAf^ iL
D./J.C •
/^TfegS RUN NUMJ
TIME ST;
3ER "TE ~i&P STATIC PfffiSSURE
ST VACUUM, IN.
TE, CU. FT. /MIN

OTs , PRE - TEST REA
OTS, POST -TEST MET
AT SAMPLING SYSTEM UMB
LAR BAG SAM
RMOCOUPLE § .."/ffi: 	 °F PRO
FILTER # TARE
/si IjA jj -jA
GENT .BO
ER BOX
ILICAL
PLE BOX
BE
HG X^
rt-7

IN. H
jO -G.T^


. &.D&&O.OQD


IDENTIFICATION NUMBERS
X Q2r& NOZZLE
AJ-S T
4
24" r, ,-.T-.- °
2-4- T

NOMOGRAPH SET-UP
AHQ ''£%jL= 	 c
METER TEMP
% MOISTURE

SAMPLE
PO|NT

A -4


'}&-£?





















.;
CLOCK
TIME,
MIN.

£vfc>
/O
2=
3>t>jo
/£>
ZS
wi/oPF"
'








DRY GAS
METER
READING,
CU. FT.

3£>^."23'Z-
rB>/&>,D"3
3ZZ--77
32^, $7
337 ^iD
344-, 42U-
35 / .e^^

4^,2 41







1


















PI TOT
READING
UP),
IN. HzO

D.-i&M-
o.l€€>
G.JS&
o./3o
G *l<5&
a/*j5




















5^0 7 r> i AMI
/C REACK
/C PROBI
RSAT PUI
EDLAR Bi
r™, «^^
3UT ^,,Of)O^
- jtQ — ^
KP *3/A
IVG A>7^

NOMOORAPH # 2^&
FACTOR / . £
57
*85 STACK" TEMP 7^
2- REF . AP

ORIFICE
SETTING (AH),
IN. H2O
IDEAL


l,4&
/•45>
/.79
l,~l^>
/.84-



















ACTUAL

/•70
/i4£9
1-43
/-7^
/.7^
/J0*£>
^>2-

/Z-2-



)















IMP.
EXIT
TEMP.
°F

{,Lt>
1-^
(#{
ipb
fe>~2^
b»lS>



















STACK
TEMP.
°F

"76
75
•7^
75
7*2^--
*7 /



74-
















LK. CHECK
READINGS















'M
M
        ENTROPY

-------
PARTICULATE FIELD DATA
COMPANY NAM
ADDRESS 	
SAMPLING LO
E fcMKj£nE!££.
qi.j^W^) ijS&il&TiZjA^ f
DSD Aj.£-.
CXT^^S RUN NUMBER ~T"fL~fc^
TIME START C3O(e>___
CATION££>XTMJ& *M«J/C-*^5 - £3ftMU£>f' TIME FINISH 14-11
3>-S£s> TEAM LEADER 3>K— TECHNIC
BAROMETRIC PRESSURE, IN
. HG 2^.2Z) STATIC PRESSURE
SAMPLING TRAIN LEAK TEST VACUUM, IN.
SAMPLING TRAIN LEAK RATE, CU . FT./MIN
EQUIPMENT CHECKS
i— <^IT
_!/£ PIT
fcJ/A ORS
iJ/M TED
—''THE:

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE & /*J °F PROBE!
F I LTER # TARE

HG /4-
It

IANS "^
, IN. H

,0 ~o,73

. o,ooc> n.oo'3

1 DENT 1 F I CAT 1 ON NUMBERS
xQfc?4rT NOZZLE
M-/G r
J5 T
5 o
Z-/ T
NOMOGRAPH SET-UP
U/A jjU. AHfl 	 /• £"3 	 c
METER TEMP
% MOISTURE

SAMPLE
POINT

20""5


•~-/L *"" -mmi"-
*T_ /





















CLOCK
TIME,
MIN.

ek
lt>
"2-D
2&I&
/o
•ZJb
60/6 ff
1

















I
DRY GAS
METER
READING,
CU . FT .

5<£?4,9S!2-
57Z--7/
£?g£).4£)
5«®,3^

/ f~»^2R r~*. ^\f^
I >3 f J ygffJl LJ^TTj

43 , £>:>(-

















PI TOT
READING
UP),
IN. H20

0 /S>7
o./Sb
£>, /£?2-
^- /^3
g^=-





















/OlO D 1 AMETER « ^SD /
/C READ!
/C PROB
RSAT PU1
EDLAR B
3UT f)D"2~£>
E ^-/7
MP AJ/4
AG AJ*^
NOMOGRAPH # ^^
FACTOR /-C>
7
W^ STACK TEMP 7O
D2~ REF. AP D-*"2^ffO

OR I F I CE
SETT 1 NG ( AH j ,
IN. H2O
IDEAL

/.7Z^
/ ,£,£,
-/.77
l^*£,
l.^>~L
L3&



















ACTUAL

/,7Z-
/ .<£>£>
/•"77
£."•5^
/.32-
/.^.^


1,^3







GAS
METER
TEMP.
°F

*£>4--
S"7
•g£3
S>6?
"r?^
IS&y


$G























PUMP
VACUUM
IN. HG
GAUGE

//
/£
^
^
^
13



°),^o
















F I LTER
BOX
TEMP.
°F

/ / ^2
* / 
/2£>
/Z2^
/"2_'2_.
/zo



B 1















IMP.
EXIT
TEMP.
°F

I0fe
(f I
If I
iff*

c^^



















STACK
TEMP.
°F

7-S
75
"7^
7^

T/


74

















LK . CHECK
READINGS















 FMTROPY

-------
        PARTICULATE FIELD DATA
COMPANY NAM
) SAMPLING LO
r {^&!&l2£.&J6zECl2£> ltiDU£>~T$llAL- FLATEJZf? RUN NUMBER T£" ~ 7 A
f"r~^P^AJ^>Pairf^'.k\'C • TIME START I^D^
CATION r£MT//L}{~.7Af^4l'5" EyMAU=*~7* TIME FINISH /4-/O
-4-" S£? TEAM LEADER T?£- TECHNICIANS """
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
Y PIT
-Lx'PIT
A-M ORS
MA. TED
•^ THE
, MIS II.S 	 STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT./MIN

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ "7/ °F PROBE
FILTER # TARE
V T

HC /4-
07

, IN. H
,o— O-73

. O.OO2- O.OOD

IDENTIFICATION NUMBERS

XOZZO f«TTLE 508 DIAMETER '3/3
AJ'^ T

// 0
2-3
NOMOGRAPH SET-UP
i • < |-3 X, -r f*
METER TEMP
•k MOISTURE

SAMPLE
POINT

B-B


I- 4-





CLOCK
TIME,
MIN.

o/o
h
"2D
3DJb
/6
2J3
^Hlbff






\


j
t







.,-9








DRY GAS
METER
READING,
CU. FT.

BS2-.4O3
3£»o.4£>
3&e3, 47
3>7£> U^=>
3f^.f , £>2-~
^?<£5* / *£-£*£
^*^tf^C^ /Ny? /^,

-

















PI TOT
READING
IN. HzO

o.2o<^
O.Z07
O.2c?7
dD./7«D
0./7&
0./76




















/C READ!
/C PROB1
RSAT PU
EDLAR B
3UT 2-5
C 4-/
WP AJ/.
UK AJA;
MOMOGWAPW # J2>^-
^Ar-rn,, /.D7
00 STACK TEMR 7^
	 ^Z- 	 REF . AP D.' /7(9

ORIFICE
SETT I NG { tM j ,
IN. H2O
IDEAL

;z.zs
7-."Z4~
^y ~~j/ -A—^
t.&4^
I C_3J j**s
t £S% Jf\



















ACTUAL

?.?=*,
2,~24~
z.z-f-
jj*4~-
f-*3&
t.S>ft


•J.
















GAS
METER
TEMP.

£2) /
^4-
S6?

(s
(*




















FILTER
BOX
TEMP.
°F

	
—
—
—
__
—











IMP.
EXIT
TEMP.
°F

6.6»
s^.
S6
6?3
STACK
TEMP.
°F

72-
7Z
72-
72^-
SS 72-
S'B














,





"?/ .





















LK. CHECK
READINGS














"M
        ENTROPY

-------
PARTICULATE FIELD DATA
COMPA
ADDRE
| SAMPL
QATE ,..
NY NAM
s*s
ING LO
3-24

(£~J&SlzA}S&£>f?r>tf^*C^ • TIME START /r37?3

. O.OOO D.DOD

IDENTIFICATION NUMBERS
K.Q231 NOZZLE
Aj - JL.*?" <2- T
R T
/3
2.-Z T.
NOMOGRAPH SET-UP
WrB^-5B C
METER TEMP
SD9 OIAMI
/C READC
/C PROBI
RSAT PUI
EDLAR BJ
1
,-rrp .3/2-
•sin- DnO^)

dp \J4
se W*
MOMOSRA1
/ ^/_^
&|H| 4£ mJLrKL.
0,35
~*"~-^\/~^ efirjk j**!^- Ttrmji"* f^/j
% MOI«T"»F 	 t->4n- 	 R
EF. AP
, /S5
"2f = D.^e^ fc- <3.f-3C,S<5
SAMPLE
POINT
^~4


33-5






















CLOCK
TIME,
MIN.
0/0
/D
20
,30/fo
/D
"Zjb
(&,%/£}• r





DRY GAS
METER
READING,
CU. FT.
4^2.724
^f5<5i.<3f5
4^37 • 2^f-
SD4-. 0^?
5/3 ."34-
SZX. - OS
S'SD.'SDT7





1


-



















PI TOT
READING
UP),
IN. H2O
0./6£>
(O./^^
o.n^
/),Z2O
O.~2^Z7
IO,72~~7

















OR I F 1 CE
SETTING ( AH) ,
IN. H2O
IDEAL
l,5&
L<5~7
/,&€?
2.D&
2 .14^
•2J4-



















ACTUAL
/.se
/,S~7
).Lff*5
"2 O*£>
Z./4-
"Z.I4-



















GAS
METER
TEMP.
°F
^/
^2
•S'S
^52.
<^^t-
^^•



















PUMP
VACUUM
IN. HG
GAUGE
3
3
3
4-
4.
~7
<&~~\ /
i£*~^y ,f
B^
^£?


STACK
TEMP.
or
72L--
72
7Z--
72.
"72
7;


I .
1































LK. CHECK
READINGS














 ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
| SAMPL
naTE
NY NAM!
ss 	 t
INC LO<
3-
v O^B/A^£j£^/SBO^O//J2)/JS75E7AfL rtATE^^ RUN NUM
3ER T3E1'SA-
£>i£&J=jbs33nj£'£> AJ . £- • TIME «T«.BT >^~^r%—
PBTION <£1OA7-;AJ^£ 7A>4I<^*#5 EX.H*dJBT TIME riwissw i&4*Z>
24-0^c TEAM LEADER 2>£L TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
i^ PIT
""^ P*IT
MA ORS
*JA TED
,,vr THE
OTS , PRE • TtiST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ 7Z-
FILTER #


5 '£
ST VACUUM, IN.
TE, CU. FT./MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
°F PROBE 2-
TARE
s
MG 1 £>
TAT1C PRESSURE
^7
IANS
, IN. H

,o -£P."7S

. o.oio 0.007
	

IDENTIFICATION NUMBERS

Jf O2-2-O NQ77X.E ^^ "7 D I AMETER • -3£>f-
A-' - £> T
/4 T
24 0
-^ Tl
NOMOGRAPH SET-UP
/C READ*
/C PROB
RSAT PU
EDLAR a
3UT D&C)^
e -4-3
MP» AJ/*
aG Aj^
MOMOKWAPW t 2?£L

METER TEMP
% MOISTURE

SAMPLE
POINT

A-4-


fc-S






















CLOCK
TIME,
MIN,

oh
/£>
2.D
Bo/o
to
Z£>
ffffi/DfF



















DRY GAS
METER
READING,
CU. FT.

SS^.372-
4o^> . /S>
•4/3 . //
•4-7.O.&1
-42.7- 6?2_
4^j£?.5D
•443.3ZT7

*r J * 1





PI TOT
READING
UP),
IN. H2O

O.I(eS
o./bt.
O-I6>4~
D.~££>&
C.Z£>7
O.ZO7









j




















4-
Z-.O4



















ACTUAL

/-6/
/. ^>2-^
i.Lb
"2-OD
2- C4-
2-.o4-



















GAS
METER
TEMP,
°F

j^x^jL—
/"""SC^-*
S7

7
7
1



















0./88

FILTER
BOX
TEMP.
°F •

— -
—
_
_-
—
	 	



















IMP.
EXIT
TEMP.
°F

L£
£5
5€;
(&4-~
E~>t&
£te













STACK
TEMP.
°F

72.
"72--
72-
!ZZ
72-
72.













\











LK. CHECK
READINGS




^> Tt>pp£,£>
F*/zoc£?=>&










'M
        ENTROPY

-------
PARTICULATE FIELD DATA
COMPAI
ADORE!
) SAMPL
NY NAM
ING LO
3-.
r E:M&J&E££Ji&f&]2C>/^L&rej&^KATEJZ5> RUN NLMHER "T£'&&>
iSEGEWSao^o. x/./^. TIME STABT I4+&

24r-@(t? _ TEAM LEADER 	 3B£S-- _ TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQ
•^ PIT
~/ PMTi
M4 ORS
AM TED
J^ THE
. HC "Z^.SD , STATIC PRESSURE
5T VACUUM, IN.
TE, CU, FT, /MIN
UIPMENT CHECKS
OTS, PRE-TEST REAGENT BO.
OTS, POST-TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG . SAMPLE BOX
RMQCOUPLE & , „__ 	 °F PROBE
F I LTER # TARE


MG /O
* i^ jraJL
oy

1ANS
, IN. H_

,o -£5."75?

9 f),OOO

IDENTIFICATION NUMBERS
X!-2iZ_ NOZZLE
AJ-2. T
.^3" T
	 ^ _ 0
z-; T
NOMOGRAPH SET-UP
/ ~5f^> c
METER TEMP
% MOISTURE

SAMPLE
POINT

B-S


'M -4-





















>
CLOCK
TIME,
MIN.

O/o
ID
"Z.O
£>0/0
ID
2£5
t,6/CfP
f


















DRY GAS
METER
READING,
CU. FT.

!&5>l.lC>te>
£53^ £5^
^•4^ . 'Z'^
5^-^.<=3£,
SC&& •~?<£>
$47 . ls~7
S74-. S^Z^


» . " „
















PITOT
READING
(AP),
IN, HzO



.2- REF. Ae» P. ZZ5

ORIFICE
SETTING (AH),
IN, H2O
IDEAL

/ ^O
/-63
/,^3
/ 2_g,
l,2Jg>
I-Z&






\












ACTUAL
GAS
METER
TEMP.
°F


x.^3
/.1
5^,









STACK
TEMP.
°F

72_
72-
72-
"72—-
72-^
72—



' ;





1












I





LK. CHECK
READINGS















            M
 ENTROPY

-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
CJATE
NY NAN
as C
ING LO
T £MS/&E£eX/5'BO£?1o- iMbUST&JAiL 1 LA TEES' RUN NUMBER TE " ^M.
DC^F^X/SBC/C/o AJ.<± • TIME START OSuit?
CATION AT/AJT TIME P i N i ^H H^^f?
25 ~S<£» TEAM LEADER -2?JZ. TECMNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
S PIT
PIT
*J A ORE
*gA: TED
_^THE
. HG •<
Z5.5i> STATIC PRESSURE
ST VACUUM , IN.
TE , CU . FT . / M 1 N

OTS, pRg.TEST REA
OTS, POST -TEST MET
AT SAMPLING SYSTEM UME
LAR BAG SAN
RMOCOUPLE @ fa^> °F PRO
F 1 LTER # TARE

AHc
CENT BO
ER BOX
ILICAL
IPLE BOX
BE
HG /^
07
. Q^/^o.Q^

IANS
, IN. H
*=«^?6r
2o -0^7^

3

I DENT I F 1 CAT 1 ON NUMBERS
xQ23^- NOZZLE
AJ-5 T
A r
It 0
Z-^ T

NOMOGRAPH SET-UP
/.8Z-
METER TEMP
% MOISTURE
-
SAMPLE
j»OINT
A-4


"B-S
B-5






CLOCK
TIME,
M1N.
O/b
^J&
•20
3&/h
fa
2£>
bo/ott
'



\
\



















DRY GAS
METER
READ I NG ,
CU . FT .
44S.7?B3
4*~,C> .<4£>
•4^~7 • '"""$i_1*>
4£y<$-; &Q
472., /©
4QO.3&1
4*P£>.<=5} )


















\





PITOT
READING
UP),
IN. HzO
OJ4~7
vn^/4-~?
0. 14-7 •
O.Z/2--

Z.Z^
2- 3D
2-32-1


GAS
METER
TEMP.
°F
(+£s>
~7 1
73
^^^
~7&3
7S


, '


|






I


















PUMP
VACUUM
IN. HG
GAUGE
5
5
€?
£7
7
7


















0./76

F I LTER
BOX
TEMP.
°F
—
_~
—
—
• —
—









IMP.
EXIT
TEMP.
6.Z-
g^-
£&,
^.^
5~?
57















1



i




STACK
TEMP.
°F
^-E>
LoLs
(s&
&£*
Li7
Cpfc^




















LK . CHECK
READ I NGS














       AH B-20TM
 ENTROPY

-------
PARTICIPATE FIELD DATA
COMPA
ADDRE
SAMPL
BUTE
NY NAMJ
*"* (/
ING LO
F ^"Af B/£>/2£EJJS&&gEz, /->^E>i}BrT£/AiL- Tt-ATE£?5> RUN NUMBER TE^-'^S
>^££X^teox=^ M •£- • TIME START O8Z/
CAT i ON £«QA?nhc=> ~TAM^#~£ £>JJAL)£>T TIME FiNiswO^Z^o
25-^6. TEAM LEADER 2?<£- TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE.
SAMPLING TRAIN LEAK RA'
EQU 1 PMENT CHECKS
tXpIT
*-^ PIT
AJ.4 ORS
AJA TED
'-""THE

. HG 22
?.S^2> STATIC PRESSURE
5T VACUUM, IN.
TE, CU. FT. /MIN

OTS, PRE-TEST REA
OTS, POST- TEST MET
AT SAMPL 1 NG SYSTEM UMB
LAR BAG SAM
RMOCOUPLE @ (J5 °F PRO
F I LTER # TARE

AHc
SENT BO
ER BOX
ILICAL
PLE BOX
BE
HG /Z
ftCy

1ANS
, IN. H

,o — n -7-52

. o.ooo 0,000

IDENTIFICATION NUMBERS
X D2-"77 NOZZLE
AJ '^ 2- T
B T
_^3-.-, ^,- o
2-2. T

NOMOGRAPH SET-UP
/.-&fir/.Sg> c
METER TEMP
% MOISTURE
SAMPLE
PO INT

B-6


CLOCK
TIME,
MIN.

o/o
It
2£>
A- 4- teo/o









ID
-?o
&6/&FF
I





I
DRY GAS
METER
READING,
CU . FT .

S77.36-^
S^^-,4^-
^7^/ . ^2)
sss.^^
L>nB . Of
&>/ / ' 4&
6»/7 '. 7/^f"










PI TOT
READING
UP),
IN. HzO

0,22^-
O.2/^
£5 .2Z2-
O./^P)
O./te>8
Q.lit>£>









i






























75 s
<9/,S R
ORIFICE
SETT 1 NG ( AH } ,
IN. H2O
IDEAL

2,0^
X.^?7
2.CS1
/ S^
/,6"S>
/. 5^?






ACTUAL

"2-<02!
2-£>7
2-.£>3
/ "5^
/•&*3
1 .5(





GAS
METER
TEMP.
°F

64-
-74^
•755
go
S3
^5






I


j





1
1 |


:










Sd^J DIAMETER .3/2-
/C READ*
/C PROS
RSAT PUI
EDLAR a
aur OD££3

sdP AJ^
ft.G AJ4

NOIMO GRAPH fl .IP^L
FACTI3R O-S2
TACK TE
EF . AP.
5^
PUMP
VACUUM
IN. HG
GAUGE
5
WHO 45

F 1 LTER
BOX
TEMP.
°F
IMP.
EXIT
TEMP.
°F

4--
4-
4L
3
3
3






















_^
—
. —
—
—-
—













62L
S3
S4-
£?£"
S^f
S<4












STACK
TEMP.
°F

4-S
C^Lo
&?£»
&fe
6p~7
Ur^













I
















LK . CHECK
READ I NGS















       AH B-21TM
 ENTROPY

-------
        PARTICULATE FIELD DATA

COMPA
ADORE
SAMPL
DATE
NY NAM
«R <£
ING LO
5-2.
F £M&/(&12E£U£Q&7&>lMplj~>TK~/A-L PtAT&&S> RUN NUMBER T^'^4
12.£1Sc>T2^> A\ £, • TIME START tOKr
CAT i ON C.OA7ltJ&> 7AAJ£1 ^-5 £-Xj-fAiJ£>T TIME FINISH 1 1 1*2
5-&>L? TEAM LEADER 2>£L_ TECHN I C
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPL I NG TRA I N LEAK RA
EQUIPMENT CHECKS
"•"""^PJT
"""''PIT
fJA ORS
tJA TFO

OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE i ~]Q
F 1 LTER # TARE

. HG 2^5. SZ> STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT./M1N
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
°F PROBE
AHffl
MET
HG 1 4- 0^>

IANS --
, IN. H

,0 -O/7*?

o.ocf2~ O.GZJ&

IDENTIFICATION NUMBERS
X G2^7 NOZZLE
Al'& T
A T
Z4 o

^&C^Z_. DIAMETER • 3f-
/C REAW
/C PROS
RSAT PUI
3UT ODC^
r -7-3
WP 	 W^_ 	
-7-4.- TEDLAR BAG
NOMOGRAPH SET-UP
/.ae/.-gz c
ER TEMP
% MOISTURE

SAMPLE
POINT

A -4


&>-£>






















CLOCK
TIME,
M1N.

O/o
'lo
2£>
3o/fc
I'D
•ZD
fcol&'F-
/


















DRY GAS
METER
READING,
CU , FT .

-^£38.7^
4^g> ,3S
5<98. B7
£T ; /, / „ /
— ->/ i^5 • iff /
&Z4-. /§>
32>f.~7~?3>

-

















PI TOT
READ I NC
UP).
IN. H2O

o./^
O- /<£>6>
O • 1 7&
o.zfS
D-2J/
o-2fl9




















MOMOGJ7APW i, 3?&- ,_
FACTOR /.jG'
I>
^^ V£? STACK TEMP /O
1 . 5 REF _ ^p

OR I F I CE GAS
SETT 1 NG { AH ) , METER
IN. H20 TEMP.
IDEAL

/.£&
/-5<£?
1.1*6
Z.0£>
l.<3&
t.S&








ACTUAL °F

!,£&> ~7I
l.S£t> "73
l.d>O -74
2.6S 7g
/.eg 0^
/.S>S ^5


- . ." s















PUMP
VACUUM
IN. HG
GAUGE

&>.
<^
6
f?
??
0





O.^(f,

¥ 1 LTER
BOX
TEMP.
°F

—
—
—~
~-
_
—





•







|
{






j












IMP.
EXIT
TEMP.
°F
STACK
TEMP.
°F

^^
££>
<5"7
fe>"2-
B^y
5-7



















7b
71
~7£?
7£>
~7D
~7/


. , 0


















LK . CHEC
READ I NGS














'M
        ENTROPY

-------
        PARIICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
ss cr>/i
F £^FV(7»2£jri*-i //UPL>S 7J£jj4-L~ f^ATff^^ RUN NUMBER 7~£T~/DS>
SpCA^S^e^ A)£ • TIME START JDll 	
ING L.OCAT lt»tC.OAr/fJC=> "lAtitL^ 5 £-><•*{ 4V&~?~ TIME FINISH //Z©
£5-Z^-f56> TEAM LEADER JZ>/CL TECHN1C
BAROMETRIC PRESSURE, IN
. HG "2,^'SZ> STATIC PRESSURE
SAMPLING TRAIN LEAK TEST VACUUM, IN.
SAMPLING TRAIN LEAK RATE, CU . FT./MIN
EQU I PMENT CHECKS
\S PIT
JJA ORS
MA T ED
U-" THE

OTS, PRZ-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPL I NG SYSTEM UMB I L 1 CAL
LAR BAG SAMPLE BOX
RMOCOLJPLE fl /
ISOyfe
\ /6





















Z£>
£>A/AFP
/ "7 <4~~-£~°y^f~{
/ '•^O sf^/~
637.02-
6?43."?&
6y4^ ."£>£>

'&}6>D.4££>
PI TOT
READING
IN. H2O

n -zr$?
\D.~2£>'Z-
O.Z07
OJS^-
0-151
O./4&


| -























|





















NOMOORAPH fJ2>^--
P ACTOR O-^
vs
0S STACK TEMP ~?O
/-5 REF . AP O."2^Z.^

OR I F 1 CE
SETT I NG { AH 1 ,
I N . H2O
IDEAL

Z-6S
/.(*><->
/.Cff^>
/.Z7
/.Z-3>
/.Z/



















ACTUAL

LLa£>
1 .(f>*~>
/ 4>S>
/.Z.7
/.zs
I-ZI

'_ . • •











GAS
METER
TEMP.
°F

& I
'84-
07
©??>
^iP
9/





















PUMP
VACUUM
IN. HG
GAUGE

F I LTER
BOX
TEMP.
°F

£?
6
<^
£T
~£>
5
—-



__-
—



















"',;.' "' ' '

















IMP.
EXIT
TEMP.
°F

&>*=>
57
.SS>
^"5
S"7
^•-7



»















STACK
TEMP.
or

~7
-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ING LO
3-2
f £M&^E£f/^5SD?2O lUDL&TTZ/At- ffi.AT&&< RUN NUMBER T"£E> 1 '/ A
2JZ£jJz>B£>tZO , A/ £- • TIME START l3"&"2-
r AT i ON ^ZMTml^ TAAXti *#"£> £^XHAU£>T TIME FINISH /4"5f£r
*S-"&£e> TEAM LEADER 3?EL- TECHNIC
BAROMETR 1 C PRESSURE , I N
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
i/^PIT
'•"''PIT
AJA ORS
f4j< TED
-"""THE
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ ; IZ--
F 1 LTER #

, HG 25
%.'££> STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMB 1 L I CAL
SAMPLE BOX
TARE
HG 'T^
0~7
. P-flQp o,ox

IANS
, IN. H

,0 -0.^73

)

IDENTIFICATION NUMBERS
X °7^ / NOZZLE
>(/ —5 T
A T
// 0
2-3 T
NOMOGRAPH SET-UP
	 AHfl /'3Z- C
METER TEMP
% MOISTURE

SAMPLE
POINT

&-S
CLOCK
TIME,
MIN.

t>fa
\ ID

A- 4-






















2£>
3c/fc
ID
2£>
$>OJ£>F?












DRY GAS
METER
READ I NG ,
CU . FT .

.5^.873
S-f-^?. OD
SS7. 3^"
S£s,5-7£>
S73.BT
S&>$. £>~?
• see .-re?


' .









\






PI TOT
READING
UP) ,
IN. H20

D.Z£>^
O.23-1
D.2J4-
D.I7B
0,177
O-l~77


























^^>?? DIAMETER ' 3/3 _
/C READt
/C PROBI
RSAT PUI
EDLAR BJ
3UT 25

*«P A<4
HG A/A
MOMOtSHAPM # 2>^—
FACTOR /.Oi
S>
,35 STACK TEMP ~?D
/.5 REF. AP Q'(L~7
y = D.'9(2>fo
ORIFICE
SETT I NG ( AH ) ,
IN. H2O
I DEAL j ACTUAL

2.Z-5T
"Z.-^S
Z.3S
j es)^
l.<^<£>
i-*=2£L



















2.2S
Z-43
Z-35"
/.<*>£,,
iSS'Z
J •<$$
GAS
METER
TEMP.
°F

C?^5
gj^l
^/
^2^
S>Z—
^2-



\
\




























PUMP
VACUUM
IN. HG
GAUGE

^
-7
"7
L*
C*
6?




















F 1 LTER
BOX
TEMP.

—
—
—
—
—
—



/.5 •- '---








IMP.
EXIT
TEMP.
°F

(*&?
&%>
£>&,
(*>£
5g»
SB












i











STACK
TEMP.
°F

7^
72
7Z-
72-
72,
•72-



' _














1

LK . CHECi%
READ 1 NGS















      ait   IM
ENTRO^V

-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
„«, ATllJ&>

BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPL I NG TRA 1 N LEAK RATE ,
EQUIPMENT CHECKS
""^ PIT
V pif
&M.ORS
A/X TED
	 ^ THE
OTS, PRE-TEST
OTS, poST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ ~12-i
FILTER # TARE






SAMPLE
POINT

A-4


B-S










CLOCK
TIME,
MIN,

o/o
JO
2£>
3£>/fe
ID
2o
(ffO/tfF
I






\






















DRY GAS
METER
READ I NG ,
CU . FT .

^72.. 3/8
•4-0£> . £5/
•4^3. O
4^-7 ^-7
pr
REAC
(AF
IN.
Boee> Jut>tJs,Te/jiL.-FUTw*
,c~ ,
; 	 RUN NUMI
TIME STJ
^R .Tfe ~ II B>
urr 7333
'TAfJfiL rrS £-** rfbU&'T" TIME FINISH /^3"7
TEAM LEADER "3)&~ TECHN1C
"2S>.£O
STATIC PRESSURE
IANS
, IN. H

o -o.^.,
ACUUM, IN. HG ID £X3
CU. FT . /MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
AH
•  O-D/8

IDENTIFICATION NUMBERS
XC>2,''5 NOZZLE- SO^) niAMi
Aj - ^5 T
£5 T
/B o
1C READ!
/C PROBI
RSAT PU1
™ .3/2^
3UT ODO*^
E -#"/0
MP A)A
2-2- TEDLAW BAK A^A
NOMOCRAPH SET-UP
l.foO C
METER TEMP
% MOISTURE
POT
3 ING
3).
HzO

O./flft
o- /^2Ld
D.l
O. '2=6'
£?£>£,, ,e3'=5 1&.ZB3
SI&7" SO
S7A> /B7

.»• ' • , .



0.237






NOMOGRAPH £ "L>f?—
V ACTOR 0.S
?e>
S^"^O STACK TEMP ~7
0^3
SO
«5/


.^ ,;

















PUMP
VACUUM
IN, HG
GAUGE

2_
Z-
2-
3
3
3



















0-/S7

F I LTER
BOX
TEMP.
°F
IMP.
EXIT
TEMP.
°F

_
—
—
. 	
—
—


//. . ;•-










6<^
^o
57
6s>*~>
S&
57
























STACK
TEMP.
°F

72-
72
7$
72_
-72.
"72-




















LK. CHECK
READINGS















        B-25"<"M
ENTROPY

-------
PARTICULATE FIELD DATA
COMPA
ADDRC
SAMPL
nATE
NY NAM
ss <£
ING LO
F F MB te££JEjJS&Gft£> lti3>uSTJZJAt^ iLAT£f& RUN NUMBER t£L'f2A
^/^EMS-e^SO ; /J.C • TIME START tS'j j
eATioN^rsj477>i)& TAiJ/C $^& £^^.4jJfs~T TIME FINISH 16? '((e
3-25'0^ TEAM LEADER 2*£L TECHNICIANS
BAROMETR 1 C PRESSURE , 1 N
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
-"XP1-T
^-F>1T
AJA ORS
A V4 . TgQ
S THE
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE & 72-;
FILTER # TARE

. HG .2'
"3.*=>C>___ STATIC PRESSURE
ST VACUUM, IN.
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
°F RROBE

MG ;^-
to

, IN. H
,0 -0.73

. o.oco o.o&4-

IDENT1F1CATION NUMBERS
X °2£)'Z NOZZLE
AJ-5 T
X
£^T O
SlbfF














DRY GAS
METER
READING,
CU . FT .

s@ao£3>
SS6.-S3
(0 o4~.~73
6-/2.<^2-
6>/5 . S£»
PI TOT
READING
SAP),
IN. H2O

FACTOR
NOMOGRA
PW ^ 23^
7
05 STACK TEMP "7fe_ ^
/•5 REF. AP O./SO

OR 1 F 1 CE
SETT 1 NG ( AH ) ,
IN. H20
IDEAL

0 ?VS
o.'zcn
&-"2jO*
OJ&D
o.fQo
y-, «i —-7 / 52 I —v /C3"^7
/^»> £—r * ' — ^ ( v_> » / ^.3 ^L— -
«^>34r43g\


,4 ,« > -, r











\



























Z.OL*
ZL.&O
Z.O3
/.7«f
/.74-
/.?<£







ACTUAL

2,D<^
Z.,££>
2-, 03
1.74-
1.74-
/.76>







i






















GAS
METER
TEMP.
°F

S3
^Z_
34-
^"Z-
^3
«3«5t~



*»-

PUMP
VACUUM
IN. HG
GAUGE


^
^
%
&
<3




I














i


i

F 1 LTER
BOX
TEMP.
°F

^—
—

—
__
—



IMP.
EXIT
TEMp
°F

lp(e
L&&
^£4?
£7
s&>
5*5



I

"
1
)




|





STACK
TEMP.
°F

72^
•7Z-
72^
72^
73
75



'•'I.









j

|













LK. CHEC.t
READ I NGS














      to B-26TM
ENTROPY

-------
        IARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
MY NAME- £M&/&J2EEMS>KD£2£3 lkJDLJ^Tl2JAi, ^XTS^S I
RS /3*5 . \}C^-
RUN NUMJ
FIME STi
^R T~E, /Z ~/IS
M?T 15'. f 2^.
ING LOCATie>N£ 7A *JK- -4££ £)&fAt)£*T TIME FINISH /Z-,-77
3-Z£"-S(£» TEAM LEADER ~D>f£— TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
V^-PITOTS. PRE-TEST
(— ^P I TOTS, POST- TEST
A/4 ORSAT SAMPL 1 NO SYSTEM
AM- TEDLAR BAG
***^ A ""77
FILTER # TARE

. HG ,2S
"),££> STATIC PRESSURE
1ANS
. IN. H

o — D,7*~>
ST VACUUM, IN. HG "i^~ /4- OS
TE, CU. FT. /MIN
REAGENT BO
METER BOX
UMB I L I CAL
SAMPLE BOX
°F PROBE
AHfl
•«-r©©©'42_£? DIAMETER « r3£) /
/C READt
/C PROBI
RSAT PUI
3UT 25
~ & ~~ / /
MP AM
2- " / TEDLAR BAG 
-ZO 54^. "7C&
30/& 5S0.3/
1 16 £5<& .~5>C>
2D S&L? , 22-




PI TOT
READING
IN. H2O
o.n&
OJ7S>
o.iJB
o ."£&=>
(D.2CO
O-ZO&
(ec/zri^ ST4--.4 7"7

.. •
















i





i



















MOMOCiRAPM # 2>^
FACTOR D^i
*o
05 STACK" TEMP ~~?C>
/ . 5 REF . AP ^ • Z-2—

OR I F 1 CE
SETT I NO ( AH ) ,
IN. H2O
IDEAL
t.4L*
I >*7.,^S^i
/ ^fjS^\
t.~7/
I.Ln
i .7;



















ACTUAL
l.*K*
1 ,4^
/.4^
t-7/
/.67
/ .77


/ •' '
















GAS
METER
TEMP.
°F
SS;
<5>f
^•^
<=5l
33
93


PUMP
VACUUM
IN. HG
GAUGE
s
B
S
*=>
&
5


i ;•.













FILTER
BOX
TEMP,
°F
^
^
—
—
IMP.
EXIT
TEMP.
°F
^^
STACK
TEMP.
°F
72_
^»O 1 "72—
^•67
^^
7z_
72^
• — i ^
-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
OATE
NY NAM
*5S (^
ING LO
3-Z
f ErfJ\(i>F&l£££fiJ£>&i
O&n /Al£>L?&T/ZjAL- PiATEJZ?$ RUN NUMBER 7£l'/3A-
Z££JJS&£P/~>. AA.C-. TIME START &lg}'2f%>
<-aTiON GoATlt-tfe "
{--
ze>
A-4~ l3»/o













DRY GAS
METER
READING,
CU . FT .

959.630
7 • -6>7
<3~7S, ^S>
<3g>4_,34-
/b \<3f^l .^>D
2£>
feofoFp
i












j



...


S'SS',^r7
noJ.QLffO

-~ 	













1 '
1


TA^/tL^^ ^Tx/^jJST" TIME FINISH O£$4€5
TEAM LEADER ZSCL TECHNIC
2.*^ -*= STAT I C PRESSURE
ACUUM , IN.
CU. FT. /MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
»f*OBE
^H(c
HG ^
ofo

IANS —
, IN. H

,o -0-70

O>OGC> D-OfD

IDENTIFICATION NUMBERS
xQl^kfZ NOZ23L.E
A/-7 T
A
// 0

€*D£^> DIAMETER • 3/t3 	
/C READ
1C PROS
RSAT PUI
OUT 25
E «f -/
MR WA
2 " 5 TEDLAR HAtl K>/^
NOMOGRAPH SET-UP
/•75 c
MOMOKRAPW | .2E™
rArTOR /.04

MrTITR TEMP &O STACK TEMP "7&
•k MO 1 STURE 2- REF . AP

PI TOT
READING
UP),
IN. H2O

O./SB
o./es
O.Z£?c?
5./^^
O./^3>
O.H03















7f -t.DOO
OR I F 1 CE
SETTING ( &H) ,
IN. H2O
IDEAL

2.03
2.£>£>
2 JO
1.74-
1.71
171













ACTUAL

2.^3
Z.«SiB
2./^>
1.74-
1.71
1.71













GAS
METER
TEMP.
°F

75
€>/
0£>
£_^L*&
<^**%d^ )
<3o


«...



















\






PUMP
VACUUM
IN. HG
GAUGE

L
(a
tjftS
£•«*»}
S
£>

0.175

F I LTER
BOX
TEMP.

—
__
—
—
_^
—
IMP.
EXIT
TEMP.
°F

6*7
^&
£->!%
L**?
&(?
5£S
|
1 !
I ' '
j








































1
|




STACK
TEMP.
°F

7;
71
~7t
"7-2^-
72~
72-




















•
LK . CHEC
READINGS

£>ToPPC£>&
teZ&J*











*M
      AH B-28TM
ENTROPY

-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss .,,£»
ING LO
*• £M&\GK££ti<£
3JEJEu'<>*3c>£2c>f AJ
&?b ItibUSTPUAL FiAT£ES i
.C.
RUN NUM
riME STJ
3ER 77&/3S
\RT OS3O
GATioN^tMr/jUG, ~7~AHAL&fS £^O4AL>
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPL 1 NG TRA I N LEAK RATE ,
EQUIPMENT CHECKS
-/ PIT
»— PIT
MA ORS
KlA.TED
V/ THE

OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAC
RMOCOUPLE @ *7/ °F
F I LTER # TARE
_ ^




SAMPLE
POINT

A-4-


B-B





CLOCK
TIME,
MIN.

D/@
/D
2D
3f>lo
IV
2o
boltiFF-
1

\







DRY CAS
METER
READ 1 NG ,
CU. FT.

(af>l.(*l<&
LirfP>.4te
Cel4-
di72-. 2O
Lf3£> , -S^
&:*><&, O~2-
(sA~7, 524-

""f *




TEAM LEADER Z3S. TECHNIC
2fl .?"
STATIC PRESSURE
ACUUM , 1 N . HG ** 1-4-
CU. FT. /MIN
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
PROBE
&H£
. ggq
03

IANS
, IN. H

,0 -CJ.^3D

J- O.O/D

IDENTIFICATION NUMBERS
M-S T
B T
/3 0

^'S' 0 1 AMETER « 3/2-
/C READ*
/C PROBI
RSAT PUI
3UT OG&3
- 4—/£)
«p AJA
2 "Z- TEDLAR BAG *M
NOMOGRAPH SET- UP
/•6>/ c
METER TEMP
% MOISTURE
1
PI TOT
READ 1 NG
UP).
IN!
H2O

0.14-7
0./4&
O. i4£-
Z.//
-£.//








I
j










\








ACTUAL

1.47-
1+-3
/.T~>
2 Of-
z,//
2-J/


,







GAS
METER
TEMP.
°F

0-3
o
*3o
«^t
^s
















j

|




1









PUMP
VACUUM
IN. HG
GAUGE

2
=3
3
^
3
a










rt./SD

F I LTER
BOX
TEMP.
°F

_
—
—
—
—
. —


il .
























IMP.
EXIT
TEMP.
°F

66
S7
B4-~
65"
S^
51*










STACK
TEMP.

LK. CHECK
READINGS

vy
"7!
-71
•72^
72-
•72.


•> -_







1
i
i

!
1







^B?/
A^S7











          M
ENTROPY

-------
.1
 PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss <£
ING LO
3^2
F EME>/£~£3E^*l£'E>z>/3£> AJZ>6&7£^£~ FLA-rz^s, RUN NUMBER TiE,'f4A
)JE£.E:U^&£>J2£> . AJ.C,. TIME START //7-"Z2-
raTlON £O477AJ£> TAfJJt^ *ff~£ £.\fH^O^>T TIME FINISH / / -"2-T7
(o~ &>(/>: TEAM LEADER H^^~ TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
w-'PIT
i^" PIT
AM ORS
jdA TED
_IB^"THE
*pTy*
. HG ^-=
?. £^D STATIC PRESSURE
ST VACUUM, IN.
TE , CU . FT . / M 1 N

OTS, PRE-TEST REASEMT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE I 72-: °F PROBE *
FILTER # TARE


HG ;*#-
o€>


IANS -
, IN. H

,0 -0.7S

D

IDENTIFICATION NUMBERS
yOZ3^ NOZZLE
Aj ~7 T
4 T
2,-f o
2--^ T
NOMOORAPM SET-UP
/.75
METER TEMP
% MOISTURE

SAMPLE
POINT

&~5


4~"f"






















CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU . FT .

O/D
lf>
2o
$C>/D
ID
2£>
(ediDff'
'


















.7./0S
/^. f2?^
34-. 3^
S=B.7
4c. ^/
^tg "Ec?
55,^-7^^

-i :-.
PI TOT
READ 1 NG
SAP),
IN. H2O

D.2/3
O.Z/Z^
0,'2-l'i--
o.i&z.
O.ILO
D. 16?D


SC>^ D 1 AMETER , 3/2-
/C READ<
/C PROB
RSAT PU1
EDLAR a

3ur Dno^>
m ,*£jLr" j f*\
MP /JA
&G ^JA
MOMOGRA
I.O^
PH # ^P^-
3
•S^ STACK TEMP 7D
£32^ REF . AP C"-/7j3

OR 1 F I CE
SETT 1 NG { AH ) ,
IN. H2O
IDEAL

2.27
2, "2-5
Z,Z£"
/.72-
/.7D
f .~7D
\
|

j
1







































ACTUAL

2.27
"Z.'Z-'S
2-ZS
/•7Z-
f.~7O
1-~70












j












GAS
METER
TEMP.
°F

PUMP
VACUUM
IN. HG
GAUGE

•37
S/
S»3
S>l
^5,
S-2-



















&
e>
B
4-
Lf>

FILTER
BOX
TEMP.
°F

—
—
__
—
. —
£* —





































IMP.
EXIT
TEMP.
°F

65
S^
S^?
Lj2^2
~z$b?
S~7



















STACK
TEMP.
°F

72-
72-
TV
72-^
~7 1
~7~2-




















LK.
READ















         B-30TM
 ENTROPY

-------
PAR7ICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE _
NY NAM
ss G>
ING LO
3-2J.
f FJ^i f% l{">!? f^fZJj^yKr^Rf} JjJ£)f!f~iT££JA-L-* /^xtT"£-J? *•?.
GZez£M£&n/Zc> Al £. •
RUN NUM
FIME STi
SER TEE,-l4&
wn- /<0:23
CATiON<_!£!<47VAJiS> 7AtJf<~?F& ^ZXHAtfeT" TIME FINISH //-"Z^
e-0£? TEAM LEADER J2JZ— TECHN1C
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
... .^PIT
•/ PIT
jj^ ORS
AJA TED
•^ THE
. HG 4.
!^. &O STATIC PRESSURE
ST VACUUM, FN. HG 14- fti/P
TE, CU. FT. /MIN

OTg pRE_TEST REAGENT BO
OTS, POST- TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPL.E & ~T^- °F PROBE
F I LTER # TARE
	 	 	 	
AHc
. g^og Q.OQ^
ANS
, IN. H

jO --O.~7*~>

y

IDENTIFICATION NUMBERS
yOZ-Z'f- NOZZLE
Al-S T
*-? T1
£5 o

/Oft D1AMTTER -3<9/
/C READ*
JC PROS
RSAT PU1
3UT ZS"
" £3 -"/ /
WP A//<
2'/ TEDLAR BAG AJA
NOMOGRAPH SET-UP
f.i*1 C
METER TEMP
% MOISTURE

SAMPLE
POINT

4~f











CLOCK
TIME,
MIN.

0/c,
10
2£>
3o/D
fa
2o
DRY GAS
METER
READ I NG ,
CU. FT.
f J "•* f "*"> f*\
v^gj&P^
^,^-,^-2-
&(*>/ • Z^
(rtofc. &4-
Li7S . S 7
/ «z.=a. "S75?
lS3 ClJ5^!? . <~~-**
W0fpj (ff&O.&2£>








— » • - '•



!


































PI TOT
READING
UP),
IN. H20

<£>
<^~, STACK TFMP 7D
DZ— REF . AP

OR 1 F I CE
SETTING ( AH) ,
IN. H2O
IDEAL

/.3S>
/.3^
/.37
LL*3
! ."72,
(.1 (



















ACTUAL

/.39
J !^^
;.37
t.C/3
! .72-
/.7/














GAS
METER
TEMP.
°F

g^>
<25^**7
/
^5>
S>4-



. -


PUMP
VACUUM
IN. HG
GAUGE
o.Z/5

F I LTER
BOX
TEMP,
°F
IMP.
EXIT
TEMP.
°F

&
£^
S
Cs>
f
L


















j














	
	
—
—
—
—



' 7 . •'















^^
6»^



















STACK
TEMP.
°F

72^-
"72^
7/
7"2~~
"7/
"72^





















LK . CHECK
READ 1 NGS














        B-31T«
ENTROPY

-------
                Preliminary  Field  Data

 PLANT
 LOCATION
 SAMPLING LOG ATI
 DUCT DEPTH
 FROM NSOE FAR WALL TO OUTSDE OF PORT
               NIPPLE LENGTH
              DEPTH OF DUCT
         WIDTH (RECTANGULAR DUCT)
 EQUIVALENT DIAMETER:
 n - 2« DEPTH « WPT.H _ 2(_
 UE~  DEPTH*WOTH ~
                            )_
DISTANCE  FROM PORTS
TO NEAREST FLOW
DISTURBANCE;    ff^f
         STACK DIAMETERS
                     UPSTREAM  DOWNSTREAM
                      oAo
STATK
                       Tr
   LOCATION OF TRAVERSE POINTS N CIRCULAR STACKS

I
2
J
4
5
^
7
a
9
10
11
li
^-.
i-i
15
l*i
17
18
19
70
21
22
23
24
468
6.7 4.4 3.2
25.T 14.6 10.5
JS.O 29.6 19.4
fJ.J 70.4 12.3
85.4 67.7
35.6 80. t
89.5
96.8
















10
2.*>
8.2
14.6
22.6
14.2
6S.8
77,4
85,4
91.8
97.4














/ 12 \ U 16 18 20 J2 24
~T~Ll 1.8 1.6 1.4 1.1 1.1 1.1
/ 6.7 5.7 4.9 4.4 J.9 3.5 3.2
/ 11.9 9.9 8.5 7.5 6.7 6.0 S.S
17.7 14.6 12.5 1Q.9 9.7 8.7 7.9
25.0 20.1 16.9 14.6 12.9 11.6 10,5
15.6 26.9 22.0 18. B 16.} 14.6 13,2
<<4.4 36.6 28. 3 23.6 20.4 13.0 16,1
75.0 61.4 37.5 29.6 25.0 21.9 19,4
82.) 73.1 62.5 38.2 30. 6 26.2 23.0
88.2 79.9 71.7 61.8 3S.« 31.5 37.2
93.3 85. 4 78. 0 70.4 61.2 39.3 32.3
\97.9J 90.1 83.1 76.4 69.4 60.7 39. B
\^^S 94.3 87.5 81.2 75.0 68.5 60.2
98.2 91. S 85.4 79.6 73.8 67.7
95. 1 89.1 83.5 78.2 72.8
96.4 92.5 87. 1 82.0 77.0
95.6 90.1 85. 4 SO, 6
98. 6 93.1 88.4 83.9
96.1 91.3 86.8
98.7 94.0 69.5
96.5 92.1
98.9 94,5
96.8
98.9
   LOCATION OF TRAVERSE FONTS W RECTANGULAR STACKS

1
•J
1
.,
5
6
?
H
9
10
11
1}
2 3 * 5
25.0 16. J 12.5 10
75,0 50.0 37.5 30
83.3 62.5 50
87.5 70
9O








.0
.0
.0
.0
.0







6
8.
25.
41.
58.
75.
91.







J
0
7
3
0
7






7
3.1
21.4
35.7
50.0
64.3
78. t
92.9





8
6.3
IB. 8
31.3
43.8
54.3
68.8
81.3
S3. 8





i
16
27
38
50
61
72
83
94



9
.6
.7
.8
.9
.0
.1
.2
.3
.4



10
s.o
15.0
25.0
35.0
45.0
55.0
65.0
15.0
85.0
95.0


11
4.5
13. i
12.7
31. »
40.9
50.0
59.1
68.2
77.3
M.4
95.5

12
4.2
n.5
20.8
29.2
37.5
45.8
54.2
62.5
70.8
79.2
87.5
95.8
DIAMETIRS POIHTS
vpmt£m*m 4c*mMtr«*ik
8 .

7 .

6 .

5 -

4 .


3 •

2 -
. 2.0

.1.75

.1.50
\ V OT*r J<"
- 1.25 \ \
4"
4%"
^>"
s-t"
15^-
l73/4"
(IV
7i"
2Z%"
-*»^
?&&t.












                                      B-32
                             MVMOMMBNTAUSTV, INC •

-------
                        YAW ANGLE DATA
              FOR  CASES OF NON-STREAMLINED FLOW
Plant name
Date
Plant location
Initials
              WA/
Measurement site /Htsf
Pi tot type  5
POINT
1
2
3
4
5
6
7
8
9
10
11
12
PORT
A
-/o
"10
-r
c)
*r
^"10
r IT-
^(^
^
^-/o
^r
^ r
PORT
B
-r lo
^ir
t- j^
-f-^
^,
-------
                              PARTICULATE FIELD DATA
  COMPANY NAME
  ADDRESS
                                                    TIME START
                                                    TIME
  BAROMETRIC PRESSURE, IN. HG
   SAMPLING TRAIN LEAK TEST VACUUM, IN. H<
   SAMPLING TRAIN LEAK RATE, CU. FT./MIN.
                                           15
                                              TECHNICIANS .
                                      STATIC PRESSURE,  IN.
                                                              H,0
 EQUIPMENT CHECKS

PITOTS,  PRE-TEST
PITOTS,  POST-TEST
ORSAT SAMPLING SYSTEM
 EDLAR BAG
THERMOCOUPLE @
    FILTER  #
          TARE
                                          IDENTIFICATION NUMBERS
                REAGENT BOX.
                METER BOX 	
                UMBILICAL 	
                SAMPLE BOX_
                PROBE 	
                                               NOZZLE
                                                              DIAMETER -2-60
                                          4- -3
                          T/C READOUT
                          T/C PROBE _
                          ORSAT PUMP_
                          TEDLAR BAG _
                                                            A/ A
                                NOMOGRAPH SET-UP
                             METER TEMP
                             % MOISTURE
                                             C FACTOR
                                             STACK TEMP.
                                             REF.  AP
SAMPLE
PO|NT
CLOCK
TIME,
MIN,
            DRY GAS
             METER
            READING,
             CU .  FT .
 PI TOT
READING
 ( AP) i
IN. M2O
                                    ORIFICE
                                 SETTING { AH) ,
                                    IN.  H2O
                              IDEAL ACTUAL
                                   GAS
                                  METER
                                  TEMP,
                                   °
                             PUMP
                            VACUUM
                            IN. HG
                            GAUGE
    FILTER
     BOX
    TEMP.
     °F
                                                   IMP.
                                                   EXIT
                                                   TEMP.
                                                   °
STACK
TEMP.
LK.  CHECK
READINGS
£L±
      2r&Z,
        5
      272-, 47
                                                   Jk
        re?
                  O.
                                             74
        (5
                                                 7
                                 2.
                                         76
    b
 25
. (3
                      0-
                     2 -to
                       V7
-7
   7
 3,0
                      o,
                                    7-$
                                                  6.3
        3$
                  0.
                                     7-7^
                                           V
                   u
                  0.7^
   I/
           02,
                      o.
                                    73
                          0-
                                          77
                                                                  CeO
                                                        <
                                                        )
                                                        1
             32-3.
                  o.
                                             75
                                            7
         5
                                 2-42
                                                                  loo
         10
    ,.\
                  O.
                                                                  too
                                                                                  2 2J • 6 6 6
         15
337-
O. bO
                                                               &Z-
                                                                         67
        2-O
                   o.
                                             77
                                            7
                                                        7
                                 2.3-2-
                                                      Zero
         IS
                  O-
                                                                               I\'-J


-------
                               PARTICULATE FIELD DATA
 COMPANY NAME
 ADDRESS 	
SAMPLING LOCATION.
DATE	I
                                                           RUN
                                                           TIME START ._
                                                           TIME FINISH

                              TEAM LEADER  U.) S
BAROMETRIC PRESSURE,  IN. HG .
 SAMPS-ING TRAIN LEAK TEST VACUUM, IN. HG.
 SAMPLING TRAIN LEAK RATE, CU. FT./MIN.
                                                 	  TECHNICIANS _
                                              STATICUPRESSURE,  IN.
                                                    a
                                                     H20
                                                  o, ooo
   EQUIPMENT CHECKS
          PSE-TEST
  PITOTS, POST-TEST
  ORSAT SAMPLING SYSTEM
  TEDLAR BAG
  THERMOCOUPLE
    FILTER #
                TARE
                                           IDENTIFICATION NUMBERS
                REAGENT BOX
                METER BOX _
                UMBILICAL _
                SAMPLE BOX_
                PROBE 	
                                          W-7
                                               .NOZZLE.
                                                        1C? 4"
                                                                DIAMETER
                                                                        -2-S7
                                          0 -
                                  T/C READOUT
                                  T/C PROBE _
                                  ORSAT PUMP_
                                  TEDLAR BAG _
                                   NOMOGRAPH SET-UP
                                                             NOMOORAPI-I
                                          (.75
                            METER TEMP
                            % MOISTURE
                                             "2-
                                       C FACTOR
                                       STACK
                                       REF. £P
SAMPLE
 OINT
      CLOCK
      TIME,
      MIN.
  DRY SAS
   METER
  READING,
   CU .  FT .
                          PJTOT
                         READING
                        IN.  H2O
                 OR I F I CE
              SETTING (AH),
                  IN. H2O
                     IDEAL ACTUAL
 GAS
METER
TEMP.
 °
 PUMP
VACUUM
IN. HG
GAUGE
FILTER
 BOX
TEMP.
                                                                    IMP.
                                                                    EXIT
STACK
TEMP.
 °
                                                                                   LK.  CHECK
                                                                                   READINGS
A  >
                                       Z-of
                                                Z-oo
                          0-
                                                74-
                                            7
                                               0
                      Co'L
                          0. 54-
                                                        7
         10
                                                        7
                         0.
                                                80
                                            7
                                                    67-
                 H4
    Ic?
                        C?.
                  . \o
                  .*[(,
K
<&>
                                       2.59-
                                            7

               37.
                                                                            YP
        to

                                       Z.S7
                                                          7
               64-
                                         2-SZ-
                                                        7
                                                  gf
                                                         7
                                                                70
                          O.
                                                                            7
                  I C-
                          0.
                                                         7
                                                                71
        3$
                        o.
                          7-S2-
                                       7
                              71
                          O.So
                                                         7
                                  2--4Z-
                                                9-7
                                            7
                                                     63
                             72.
t-7ft ?SI
                                                         7
                                                                            7!
                                                                              T?,
       (Zcfoff
                'M
                                         AH B-35TM
                              PMTDODV

-------
PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
^ DATE
NY NAM
«ss
ING, LC
f ^Kz^LJZ&'y^sft ~0 ^
£W**-r-ft'Wi«
CAT I ON /TUVf* £

BAROMETRIC 'PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
""'PIT
^ P»1T
,A/A- one
A/A TeD
-"THE
OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
iLAJR BAG
RMOCOUPUE @ 1 ?
FILTER # TARE






SAMPLE
POINT

A f
Z-
3
, f
? 5
£
7
£
^
fO
If
IZ-
1> f



2-
"5
4
$
4



i
^-N
CLOCK
TIME.
MIN.

tfo
S
{0
IS
-zs
Z-S
Je
3s
to
&
5O
££
&/C
S
tO
(s
z&
7^>
3o
35
£-f? • 5?
«^/^. ^3,
Sf£. "74"
$2^3. ^4
5-2-g;, «fif
533 . 3<$
53 S- 4^S
643, 2-3
^47- 73-
^2. 4-<^
5^fe?. 47
56 C?, "gef
5^S- ^-S"
^?7c, •z-g'
S74- ^?i
57/^f, 24-
5^3 • 4"2-
^7, 2-t
5^(. 2-^
5^5- ^3,^

,/^,-J^
D f-4-^-4^. -^MjjV^-A RUN NUMBER " •*" 5
> ML,
j2*^^-*-*£&-
TEAM LEADER
/i^r * "Z-""
ACUUM, IN. H<
CU. FT. /MIN.
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
X



TIME START 0&'C><{
^K-^h TIME riMfsw (C?'.42-
' LjS N/ TECHNICIANS ^UR
STATIC PRESSURE
s 15"

S

, IN. H
,o { * B>^

i0 o. ot>3

IDENTIFICATION NUMBERS
	 NOZZLE
fJ -7 T
U ' 5 G f
4 Q

106 DIAMETER • ZS C?
/C READi
/C PROBI
RSAT PUI
OUT Z ^
E ft> ^*-f

T " ^ TEDLAR HAS,, 	 -,,,'^ "~
NOMOGRAPH SET-UP
AHff
	
METER TEMP .
% MOISTURE

PI TOT
READING
IN. H2O

0. 4£
<5- Sz-
p.^4
£?. £?£>
O. W-
£7 . (D\C
o. 6??
o. k>7
O- (07
o. -70
O.'JT^-
0, 1 Q
D.1^*-?
O-S1^
4
?.'5t7
/.?T
( -%t
l.^t

GAS
METER
TEMP.
°F

71
73
7h
— 7*g~~
S"2-
*SP

^7
'S'''?

2,-t,
VM <"^»
7}Z
AH B-36TM

PUMP
VACUUM
IN. HG
GAUGE

^

2-0 O
•Zoo
•Z-QG
"Z-OQ
l^rV
TOO
~2~OQ
Z^rtD
~2*"&-o
~2*oO
^-O"t/
^-^Cr'
^O"TP
2X?O

n.' •»?'•
IMP.
EXIT
TEMP.
°F

(01-
kz~
6z_~
62-
65"^-
(b-2-
62-
6Z
(b 2^
62-
£•
67-
&Z~
k>"^
C.2-

73
74-
74
75>
74
1t
7S
75
7«5
75
75
74
74
7S
74

•7^
75
"74
7
-------
                              PARTICULATE FIELD DATA
 COMPANY NAME
 ADDRESS 	
                                                               NUMBER
                                                           TIME START
                                                                         »*tX "4
SAMPLING,LOCATION.
DATE	
                             TEAM  LEADER
                                      	  TIME FINISH   I&-O&
                                      TECHNICIANS   _^-w B	
BAROMETRIC PRESSURE, IN. HG  ^'^
 SAMPLING TRAIN LEAK TEST VACUUM, IN. HG.
 SAMPLING TRAIN LEAK RATE, CU.  FT./MIN.  .
                                              STATIC PRESSURE, IN. H,O
                                            15     r	
                                           -
                                                  c.
   EQUIPMENT CHECKS
  ^
  PITOTS, PRE-TEST
  p|TOTS, POST-TEST
  ORSAT SAMPLING SYSTEM
   EDLAR BAG
  THERMOCOUPLE  @  /^*  C
    FILTER #
                TARE
              REAGENT BOX
              METER BOX _
              UMBILICAL _
              SAMPLE BOX_
              PROBE 	
                                           IDENTIFICATION NUMBERS
                                                          Of    DIAMETER .2?S7
                                                     T/C READOUT   _ .2-3	
                                ,NOZZLE,
                                           tf.f
                                                     T/C PROBE .
                                                     ORSAT PUMP.
                     NOMOGRAPH SET-UP
                                    NOMOGRAPH # .
              METER TEMP
              % MOISTURE
                                            2"
                            C FACTOR  .
                            STACK TEMP,
                            REF.  AP
                                                                     75
                                                                   0,4-1
SAMPLE
POINT
      CLOCK
      TIME,
      MIN.
DRY OAS
 METER
READING,
 CU. FT.
 PITOT
READING
 JAP),
IN. H2O
                                    ORIFICE
                                 SETTING (AH).
                                    IN, HZO
                                 IDEAL  ACTUAL
                        GAS
                       METER
                       TEMP.
                        °
 PUMP
VACUUM
IN. HG
GAUGE
                                   FILTER
                                    BOX
                                   TEMP.
                                    °F
IMP.
EXIT
TEMP.
 °F
STACK
TEMP.
LK. CHECK
READINGS
        Of
                                2. (6
                                                             75
             t-co. 14
                                        , 02-
                                                              75
                         0.
                                 2^47
                                       2-4-7
         1ft
                                                        7
                                               "2,00
                                                     '*r
   . 4-7
                    . 11
                                 7
                        •7
                                  Z-24
                                       2-74-
                                          T
                   77
                        O,
                                  -74
                                -7
                       73
                         o*
                                       2. "5, 3-
                                          ,7
                                                    .73
                                  2.-
                                       2-
                                          7
                                     "2-0 <7
                       73
   3
a S7
                                                        y
                                                        65
                         o.
                                Z,
                         o.
                                       2-
                                               '2^00
        to
                  n
          Q, M-
                        o. sc?
                                 2-7-4-
                                                    ^2
        So
                         O-So
                                7-1,4
                                               1&8
                                                    7
-------
        PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
BATE
NY NAM
$s 	 ,,.
ING LO
jr Qffa&^&^f&fa® tTVv«r . lAjt&A^ RUN NUMBER W£- Si
/CR-e^iA-tr©Tx) , W ^ TIME START 1 3'.O4;
<-AT i ON /T^-HA? ££.4^^***«£&\-- ^~^tejT TIME FINICM 1 «> • /*r
f / §^> TEAM LEADER lA^SM TECHN I C
- i i
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
*^*PIT
^ RIT
fJrf ORS
_^O"TED
--THE
. HG 'Z^f-S STATIC PRESSURE
ST VACUUM, IN.
TE , CU . FT . / M 1 N

OTS, PRE-TEST REAGENT BO
OTS, POST- TEST METER BOX
AT SAMPL I NG SYSTEM UMB 1 L i GAL
LAR BAG SAMPLE BOX
RMOCOUPLE 0 I 2, °F PROBE
F I LTER #

TARE
AHfi
ft ^^~5> MET
NG 15
. _£i±
*?

1ANS
, IN. H
•-•
2o . — /• 3>^ .

 {?.JW^

I DENT 1 F I CAT I ON NUMBERS
XT~ . NOZZLE
[y . ^y
i$ 7(3.3,0
3-0,
*&/e
^
1o
*\tjff
15
30
li5/<*


&•&"*>


Cx . ™*^ ,0

NOMOCWIAPW | 1/V"£/V/
rACTOR <
?.^S
^S STACK TEMP /€?
2- REF . AP \ '? £

ORIFICE
SETT I NG ( AH ) ,
IN. H2O
IDEAL

O.T7








.*7'7
0-77
GAS
METER
TEMP.
°F

7S
^<
79"
7^
&o^
<9t7
7^
-7^
<^-£7
^i
D-^ft ?2-


, -








PUMP
VACUUM
IN. HG
GAUGE

•2-
"3>
-2,
-Z-,

FILTER
BOX
TEMP.
°F

NAr



3 I
3>
3
^
-z,
-5,
"3






4^





1


1


1

i


























IMP.
EXIT
TEMP.
°F

fel.
62-
^Z
^2-
63.
fo 5>
6?3
4s><-f-
^4-
1^4-
fc4-














STACK
TEMP.
°F

V3
V3
73>
74-
7^
7"2>
72-
73.
72-
72.
72-
















LK . CHEC. ,
READ I NG5


- DOWN*
13'. 3 1
title'**'

— S6WW
14:51

-^1^
£N!>






'M
         ENTROPY

-------
PARTICULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
ss
ING/LO
P •4*TL£#'MA'tr*PT^ <^v~i
4-^e^^-^lreT^o
CATION, fH>^~, C^*^-^~-

j/' I * f SfJ /te
^£r < f VX-pi/VcXW^ KM HU
^C TIM
NUM
E ST,
BEM mr - sz-
MJT fg-!3Z_
«^?U 3-Uid: TIME FINISH 12-^04*
TEAM LEADER lt?£ M TECHNIC
BAROMETRIC PRESSURE , IN. HG 	 2i;5
SAMPLING TRAIN LEAK TEST VACUUM,
SAMPLING TRAIN LEAK RATE, CU. FT.
EQUIPMENT CHECKS
vXPIT
-"'*»1T
^/'tjf'EQ
^THE

OTS, PHE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
CAR BAG
RMOCOUPLE @ (frZ- °F
FILTER #

TARE
A "765


SAMPLE
POINT

A-- 4-


-7
y

T?, -1


6>
















CLOCK
TIME,
MIN,

%
[5
So
^Jo
1$
!>€i
<^Q(O
'$
3>Z-
Vt?^ 7£
£12. %£>
F^L 07
^2^!, '7
§-37, 2^}
 "^^
^53. *k?
*S^>1» 4-7 -
•j^j&f.. ^^
^77. ^>^7














IN.
/MIN
s
MC J5
T*TIC, PRESSURE
IANS -
, IN. H
O, Q$@ f) ^ fifty

	 «•*
?o -f.33-



IDENTIFICATION NUMBERS
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE

^f NOXXLIC c»«>'w' ^>
l i '"^7
1) . ^\ Q "f
«f 0
/C READt
/C PROS]
RSAT PU1
aur
e
(*p
DIAM
erg,* . /^fC?
2"t
Ar •'f-
A/A-
A • 4 TEDLAR HAG V A-
NOMOGRAPH SET-UP
1-79
NQMDORAPH # Ul^fJ
rACTOR
METER TEMP S^ STACK TEMP
% MOISTURE
PI TOT
READING
(APJ.
IN, HzO

O. to®


O . *->
1
\
3

ORIFICE
SETTING (AH).
IN. H20
IDEAL

c?-?3»










\
























ACTUAL

^,fc£
£?- &3
o. &3
(?-2^
C'^i
^?.£3>
/O Cx ^L
/*"? t^" ^\
O C- ?
(X- w ^*
^-S^"














GAS
METER
TEMP.
°F

b
£?&
(p ^\
1~7 I
lo
72-
7^
76?
77
*7(*>
"7%

"?»
3.
3
3
3>
S
•z,















FILTER
BOX
TEMP.
°F

AJ4










,
























IMP.
EXIT
TEMP.
°F

^^
6?5-
£7 >
£7-2,
(fc?*,
j^?^,
^3>
feS
(fe'S
^?S
t >
^3>













STACK
TEMP.
°F

6?f
6? I
6 f
^"2-
^3^
fc'f
4?S
^7
^^
^'f
lo
~7
-------
            PARTICULATE  FIELD  DATA
COMPANY NAM
ADDRESS
SAMPL I NG iLO
p ^jL-d^-^O^fr^lj^ tTV
/3-i_e^-^U'?ea^
CATION Tr\AJrf~ C*&-s<*—
JP. tJLtifo^ ,
=IUN NUM
ar* mx-si*
WC. TIME «STA«T I'f'll
' rru-&-7"
riME FII
SI1SH lfc>' 3**
l&y TEAM LEADER wSw TEd-WICIANS
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
'^"r.lT
>-^ PIT
A/A-OWS
A^fTO
-"THE
_ MC -2-^f-S STATIC PRESSURE
ST VACUUM1,
re, cu. FT.
1N_ MS 15
/M1N

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ 7( Op PROBE
FILTER # TARE
"B !So
AHffl
A- V53 MET
ER
s

, IN. H
o — i .3>5

c9,»irf 0-07^

IDENTIFICATION NUMBERS

ye NOf-nv S '5 niiur-rro -He?
AJ-*7 T
i/ " ^ "f
f
/C READ)
/C PROBI
RSAT PU
aur Z^
E -^ *H"
MP A^A
A "4 TEDLAR HAG ^^
NOMOGRAPH SET-UP
175
TEMP
Sf" S2-t % MOISTURE



NOMOGRAPM # WShJ
FACTOR
d.1*
C^C^ STACK TEM^ ^ O
2^- REF. AP ^^1?




SAMPLE
POINT

4- -3,


•-. 7


% [


6
















CLOCK
TIME,
MIN.

•/e
i5
3«?
4-y^
iS
^«
"lO/e
f5
3o
ii$yc
!6/
3. j^
Rl'S, ^7
^2-k. Pfe,
f S4. ("i>
^f2.^&
^••yO. OQ
tflc>%. Ok
^5*f- 5.34
r^^/oF^^
"














PI TOT
READING
UP),
IN. H20

^<^g
f
I
<5.fc>4


d?- 6?^
j

jpTgZ*.
• 	 JL,














ORIFICE
SETTING (6HJ,
IN. H2O
tDEAL

^.g£










-Ji








—> -K















ACTUAL

O.S"!
«?.£{
(7, SI
£?,€!

&6>
















PUMP
VACUUM
IN. HG
GAUGE

•z,
"Z-5
3
3>
S
3
3
-2,
3
















FILTER
BOX
TEMP.
°F

A/A-








	
-^ —
—4 —













IMP.
EXIT
TEMP.
°F

Cc4r
fof-
&4
6
b*>
fc>3»
64
















STACK
TEMP.
°F

ry |
7 Z~~
7z--
75>
73>
75
73>
7^
73


















LK. CHECK
READINGS



(*- *.*7
I ifif * »j A!

^ *T"O P








                    0.8}
'M
M

-------
                Preliminary   Field   Data
PLANT NAME
LOCATION fc"
                         g&
                          gv
 SAMPLING I nnATinhi
 DUCT DEPTH
 FROM INSCE FAR WALL TO OUTSDE OF PORT
               NIPPLE LENGTH
                               f3  'A
              DEPTH OF  DUCT J.lJi
         WIDTH (RECTANGULAR DUCT) 	
 EQUIVALENT DIAMETER:
   _ 2«DEPTH« WDTH _ gt
   ~  DEPTH + WDTH ~~ (
D,
                             )
DISTANCE FROM  PORTS
TO NEAREST FLOW
DISTURBANCE:     FEET
         STACK DIAMETERS
                     UPSTREAM  DOWNSTREAM
                       fe.S
 STACK
   LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

4 6 l» \ 10
I 6,7 4.4 f 3.V \ 2.
•£
25.0 14. § 10.5 8.
1 1 7«.0 29.6 19.4 14.
4
5
I
7
»
3
10
11
li
1 ;
].;
15
;e.
17
IB
19
30
21
22
23

6
2
6
93.3 70.4 12.1 22.6
85.4 67.7 24.
95. •> 80. € 65.
«9.5 77.
96.8 J85.
Vy' 9i.
97.













24 |
2
6
4
4
8
4














12
2.
fi.
11.
17.
25.
15.
',4,
75.
82.
88.
93.
97.













1
7
a
7
5
6
4
0
J
2
3
9












14
1.8
5.7
9.9
14.6
20.1
26.9
36.6
63.4
73.1
79.9
B&.4
90.1
94.3
98.2










16
1.6
4.9
8.5
12.5
16.9
22.0
28.3
37.5
62. S
71.7
78.0
83.1
87. 5
91.5
95.1
98.4








18
1.4
4,4
7.5
10.9
14.6
IB. 8
23.6
29.6
38.2
61.8
70.4
76.4
81.2
85.4
89.1
92.5
95.6
98.6






20
1
1
6
9
12
16
20
25
JO
38
61
61
75
79
B3
87
90
93
96
98




. 3
.9
.7
.7
.9
.5
.4
.0
.«
.8
.2
.4
.O
.6
.5
.1
.)
.3
.1
.7




22
1.1
3.5
6.0
8.7
11.6
14.6
18.0
21.8
26.2
31.5
39. J
60.7
68.5
73. S
78.2
82.0
as. 4
88.4
91.3
94.0
94.5
98.9


24
1.1
3.2
5.5
7.9
10.5
13.2
16.1
19.4
23.0
27.2
32.3
39,8
60.2
67.7
72.8
77.0
80.6
83.9
86.8
89.5
92.1
94.5
96.8
98.9
   LOCATION OF TRAVERSE POt4TS W RECTANGULAR STACKS

I
2
1
'<
5
6
7
8
9
10
11
1?
214
2S.O 16.! 12,5
75.0 50,0 37.5
Si. 3 62. S
87.5








5
JO
30
SO
70
90








.0
.0
.0
.0
.0







6
8.3
2S.O
41.7
58.3
75.0
91.7






7
T.I
21.4
15.7
x».o
64.1
78.6
92.9






6
18
31
43
36
68
81
93




8
.1
.S
.3
.8
.3
.1
.3
.8




9
5.6
16.7
27.8
38.9
50.0
61.1
72.2
•3.3
94.4



10
5.6
15.0
25,0
35.0
*5.0
55.0
45. 0
75,0
•S.O
SS.O


11
4~.3
13.6
12.7
31.1
*O.S
50.0
59.1
61.2
7J.3
86.4
»S.S

12
*.i
12.5
20.8
21.2
37. 5
45.!
54.2
62.5
70. 1
79.2
87.5
95.8
DtAMZTEKS POIHTS
Up.tr...
8 .

7 .
6 .

5 .

4 .

3 -

2 .
dovnitrtu
• 2.0

. 1.75
-1.50
^ \ ov«r 24-
- 1.25 ^ \
$• \ I2.3t. -
•1.0 «

-0.75

- 0.5
. 48
1 44
_ 40
1 2b
- 12
- 28

. 24
- 20
- 16

- 12
. 8
Point.

2
3
4
5
6
7
8
9
10
II
12
!3
14
15
!6
17
18
19
20
21
22
23
24
i or
DtAKETER
3-*-
10. «5
n-s
3Z-3
fcl-T
«gp.^
e#y-s
%-B
















DISTANCE
ntOH INSIDE
WALL










DISTANCE
FROM OUTSIDE
Q- POUT
1 "
1 %
^ Vg |
^ 
-------
    '• L--I * J- I" 1 L L i,' jj--\. j. j-V
COMPANY NAM
ADDRESP
SAMPLING LO
J PATE ^ -
BAROMETRIC
SAMPLING T
SAMPLING T
"T~ tSul(^v^AT°?
^ 'fWSTttR,i? RUN NUMBER pflW^f'
TIME START ofe'iV
tXCP-t-T TIME F1NIBW /( "« 5^
* 8 ' ?»4> TEAM LEADER ^^ TECHN I C
RRF_«;SIJRE , IN, HG "Z- ' ftflZ- ^-"2-0 V"?/
C 'V^e j ^ 5 t? .7 7 7 4 - 3o H • *t"Z-
"ff
1 ^/°
St-
8 5Vo
55"B.ZJ=2_ H-3o 4- H"Z-
545 tzc>3 *^ -T / ^-53
^^Suo IT) H-S-3 "f.Cz-
57Z'T/ts H-H-o H-5"t-
4?° ! 57^-1 •=>£ ' 4> H-t> "f. ST
0- i i-*-^
•f
582_,sit} 3.o£» j >.og
.5S/,*7;"O 3-oo 3. oft
2- ^o S^o,^"^ £' i£° 3.1,0
11- "S^S-HtJi 3-C.o -3.70
"> Jfe/o Siq .^OT" H-l-to _*t-32.
Itt
4- H/o
if
s sr.


4,0 4- .2,oS 4-2-° M"32-
^o*f . ? 03 4-3^ i ^12-
fa ( 3 - 5"o 7 7^-30 ^-.M 2.
^/&.3ID 4-- OC7 ^f.fl
i

VM i /AP)
STATIC PRESSURE
HG ,5 20

IANS t~^-
, IN, H?O — 1 -3 "S



IDENTIFICATION NUMBERS
X MOTZLC 7»T.
niAMETER . ( _7 1
^ - ^ ^ T / C READOUT 5
U.-SO T/C PROBE 	 T -S
V & ORSAT PUMP ~
' " H TEDLAR BAG
OGRAPH SET-UP NOMOGRAPH # *T
1- 7^5 C FACTOR
J. o i - .05 - o.«^ 4
7° STACK TEMP 1o
2- REF . AP
i-i'r

" 1 CE GAS PUMP
; ( AH ) , METER VACUUM
HZO TEMP, IN. HG
ACTUAL °F GAUGE

3.i1 ST- \H
3 -IS $2- »3
IJH'S ^° IT-
3.*¥B Li~ 1 f"
3-3*1 ^T- /f
3- l9
I3o fS> fe.<7
1 3D H-& i bS
/ 3-a 4-8 ! 6H II
3.70 ^ ;v
3.70 (o'i | H-
^f ^2-i 45*7 ' >H-
US ^g 7z^
|3S 5fc 7'z-
i3s se 7-0
/J5 59. 7t>
1-35 Sf) ~7^
/JS *£>B Iz.
^•3"Z- CcR i fy' /35" ^B 7"2_
4.4-74 7j if
- vfsi 77 14-
4, // 76 i H-
/35 S8 _j?t^.
I3*b t^rl 73
US S1^ 73

AHB_42 TM
Ts





5£g.777








ENTROPY

-------
                 PARTICULATE FIELD DATA
                       PAGE 2
 COMPANY NAME
                                     RUN
/•SAMPLING
A: -}
              t\Al5T
3-
•%'
SAMPLE
POINT

4.

T

S












-.£/





















.: i.
CLOCK
TIME,
*iNf
^4
^»/0
^
IS^^
5%
A^9
^
'^»f

































DRY QAS
METER
READ I NO.
cu. rr.
4=2- 3,*0 2-
t-LBooC,
fo33 , ' c"?
fe37 * "76 8
6HZ.405
6^7.^ol
6 S 2- ,4 / 0
£> S7 '2_36

































f»ITOT
READING
(AP),
IN, H2°
4. 00
4- ID
4. It)
S-30
•4*. 30
H'3*7
4-39

































ORIFICE
SETTING (AH) .
IN, HzO
IDEAL
«+-//
^/
•4 .TI
W-42
f»f2
M-^f
M-Sf

































ACTUAL
H //
H.ci
q.ti
-f W2
v/-»fi
^•^f
^.$f

































GAS
METER
TEMP.
Op
8*
Bo
So
B°
e>/
8f
6f

































PUMP
VACUUM
IN. HG
GAUGE
I «
'5"
»s
«s
(S
' S
IS

































FILTER
BOX
'TEMP.
°F
13S
•35
'35
'3^
yo.c,
I3S
J JS

































IMP,
EXIT
TEMP.
»F
4,0
4.0
(9 0
(*•»
60
fe
-------
PARTICULATE FIE]
COMPA
ADDRE
SAMPL
1 PATE
NY NAM
R«5
ING LO
"? -I
BAROMETRIC
SAMPLING T
SAMPLING T
E 6«e6hiS35o1to X(4DMSQ^4. ^AT£.(^S
(SALtCj^^ofSo HC
r-aTit3N }-f^5T tM M |i°»FV1cA- OU-T^CT
RUN NUMBER f»A D -*Z~
T 1 ME START / > •' / °
TIME FINISH )S":3O
e ' %>*> TEAM LEADER ^< TECHN 1 C I ANS <^
PRESSURE , I N . HG "^ • "I" STAT I C PRESSURE
RAIN LEAK TEST VACUUM, IN. HG '5
IO
RAIN LEAK RATE, CU . FT. /MIN. 0-OoZ O,ve>


, IN. H
?o -(,<+£>,

G

EQUIPMENT CHECKS IDENTIFICATION NUMBERS
/ PIT
S PIT
-~" ORS
	 ' TED

OTS, P
OTS, P
AT SAM
LAR BA
RMOCOU
RE -TEST REASENT POX 	 „_ 	 NOZZLE
OCiy.TPST METER BOX 	 14 - 1 «+ T
PLING SYSTEM UMBILICAL v\ -^ S^ T
, fc.O3T-T&l
SAMPLE
POINT
CLOCK
TIME,
MIN.

R - \ °/°

Z.

J

•4

5
H
8/0
DRY GAS P I TOT OR I F 1 CE
METER READING SETTING (AH),
READ 1 NG , ( AP ) . ' N • H2O
CU. FT. IN. H20 IDEAL ACTUAL

£>S7.7o7 3.30 /• 9 9 /-9?
k&o.^b 5 S • 3o J- 9^ ^'99
fcj&4-/oB 3.Bc> 'z-.^'j 2 -"2-1
\"L (aCr>& ,°O6 3- £0 2.-Z0 1-Z*? 2-5^
t»
rVo
-2.B
*Vo
1 3fc
£

7

M-j/o
^> ^J
,», Ct /
$1*
81 ^S*

Av- i

2_

<2

6=0
fc/0 2..4<^ Z-^5
ltsq.501- 4;.4o; 2- -&>S Z.-foS'
ToSiI^n 4-.ZO j "z,.S3 '2--9J
ll 1 .CfG 1 4 3® j l.fiC/ j I.S^
7i5-?S5 Z-^l/'^o /-So
l/B,7oi- 7_.9o
^o "7 2./ , 6o£> 3 'i-b / #/ 3 / • 7_?
(7. 7J2-S f / o I 3.10 ^3 /.^3
l^/0
•Z.O
t' -^,
1-8.
GAS
METER
TEMP.
p"
PUMP
VACUUM
IN, HG
GAUGE

72. -^
72. j 1
72. §>
72-
B
7_2 1 S
7f
_77
ifc
D°
B
8
£)
S
^fic B
e 6
So
go
Bo
ft
p?
8.
a
So a
9^0 ^
So 7
&o -7
So 7
feo
IZfe-xo/ 3-¥» 7.0^ i.e^ 78
731-5 o-Z- 3-4-*> 2_.o5 Z.^5 7&
73T-.B&/ 3 -I'D' 2.2-3 2-7-3
738 2,01 3. To X -X3 2.23
5 ?Vb 7lr/.<7's>3 ^.^o 2..&S z.4,5




7
7
F 1 LTER
BOX
TEMP.
°F

I ^o
i^fo
1 4-0
;4o
Ho
f *f 0
IS-D
iao
IMP.
EXIT STACK
TEMP . TEMP .
°F °F

S6 ^5
55 ^=fe
S1-, C*4,
55 70
s& 72^
5^ 7 2_
5=7 1L
S^ 7"2-
I vf-o S9 7 4
/^t) g6! 7^-
IHO! «R 73
l 5S
135
i bo 74
/ 35
/ 3S
/35
/ !?5
/ 35
4=,o i 7L
/^^i ^ 74
7 /?<
7fi 7 /-jc^
70 1 /"?<
77

(TApl2 AHB-4A TM
7
/?S

foo 74
60 71
(b<9 i 7 £>
4,0 74,

Ts

LK . CHECK
READ I N6S














 ENTROPY

-------
              PARTICULATE FIELD DATA
                    PAGE 2
COMPANY NAME
                                  RUN *
AMPLINO LOCATlQiy M«
SAMPLE
POINT
fi-
fe -

7

S


































!
CLOCK
TIME,
MIN.
34
^
ft
tS/o
Sz.
5<-
4»o
l«/-ft

































DRY OAS
METER
READ ma,
CU. FT.
7^5 • 4o£
7t8 .fee^-
7 5 z. , -20 B
756 ,/o5
7^0 .Z.OZ.
7^3 -9-oS
7^7 -7o3
77/ .ZtS

































PI TOT
READING
(APJ,
IN. M?0
f.f*
f , 40
^.T-O
<4 ,-?o
^•7*
^•Jo
1«3^

































ORIFICE
SETTING (AH) ,
1 N , H2O
IDEAL
Z..t,5
2-17
z. 83
Z.&-?
2,^3
•^-.S^
H-tS

































ACTUAL
2,4^
1.77
z-83
Z-A3
2.83
2.^7
4.4S

































GAS
METER
TEMP.
OF
77
77
77
77
77
n
77

































PUMP
VACUUM
IN, HO
GAUGE
7
7
7
7
7
1
7

































FILTER
BOX
TEMP.
°F
f3 5
i>5
( 3S
f 5S,
/3«5
135
/3S

































IMP.
EXIT
TEMP.
0F
4a
£oO
L.6
to
4,0
bo
Uo

































STACK
TEMP.
0F
~1&
74
-J £f
-71
77
~7-7
-77

































LEAK
TEST
READINGS





















                         B-45 M
                   ENTROPY

-------
PART IC U LAT L FIL L D  J AT A
<***>
'''--•-'t
COMPA
ADDRE
SAMPL
) DATE
NY NAM
s^
ING LO
"5-
E GRpENSBo-Ro
£*-R-f-,tJJS 3e>R.o N
CAT i ON M t ST C- U/ M
I^DuST^-lPr*- ^t-ATEK.^ RUN NUMBER IWD-'S
•C' TIME START O&0 5
I'AlA-TQft r^UtTLS-T TIME riMICM 10'ST-
R- 9sfc TEAM LEADER ->T TECHNICIANS ^F
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
/ PIT
PIT
"""• ORS
"TED
V THE
. HG ^
£)."L.
ST VACUUM, IN.
TE, CU. FT. /MIN

OTS, PRE-TEST REAGENT BO
OTS, POST -TEST METER BOX
AT SAMPL I NG SYSTEM UMB I L I CAL
LAR BAG SAMPLE BOX
RMOCOUPLE @ 6& °F PROBE
FILTER 4 TARE
___
iH^r
STATIC PRESSURE, IN, H-.O — I-7D
MG I«5 2-0


IDENTIFICATION NUMBERS
Tf N07-ZLC 7d2- DIAMETER • t l^f
(J-''4 T/C READOUT S
U, - ^3 C> T/C PROBE "1 - f»
^ ft ORSAT PUMP
Mr -4: TEDLAR BAG —
fJOMnflBftl^W «?PT.I1P NOMOSRAPH ^ ST
l'7£> c FACTOR 1 -O\ - 0.*5 OJ^o
METER TEMP
% MO I STURE

SAMPLE
POINT

g" 1

•z.

CLOCK
TIME,
MIN.
DRY GAS
METER
READ 1 NG ,
CU. FT.
PI TOT
READ 1 NG
IN. HjO

\

4

5

4

7

fe

& I

t.

3
la
f-{/o
-Z.uj
J^©
?£>
T^/k
t4
H&/O
*?L*
^/o
to
44/0
4
ft/ -M-64 4-2-oj 4-3f
79© - loi
^6Z- .S
^tl -5aS
@2JZ.5o3
•dZ^.^toS
Q31 -Sol
&3k ,fe!0
84) .HO
84 b-3^3
6So. 4o3
SS^f ,7o"l_
4-00
4-oo
H.zo
4-il
N-ll
ACTUAL °F

3.70 (^30
i.7o <*6
3-4^ CoD
4-11 fc3
431 t-4
4-31 fc,(o
4-. j| ^4,
PUMP F 1 LTER I MP .
VACUUM BOX EXIT STACK
IN. HG TEMP. TEMP. TEMP,
GAUGE °F °F °F

14- fo* S3 'Bo
(^ / oe 5 H- b^
1 4 i oo 554 S>^
1 5 1 oQ 5^ S I
15 i c=> ^4, ^^-
15 1 oo 1 51 flD
15 110 S7 ^ 7=7
H.fi (o^ i 5 |io 58 8D
M-31 4-31 7o IS HO 5
4.. 30 M-rtZ
H-3o >4-4'2
4-Eo
M; i o
H-31
M.3t 7o j is no 5S BO
4 -Yd 16
H-4Z 71
4.3, -j<5
4.^1 4^J R2-
4zo 431
4'-2o
"L.UO
43/
Z--(o7
3.oo_ 5- 0*8
3-ffi 3.i°i
\ i- 8S£> -7of- ! 3. \ o
u^/i? 84>Z-.fto5 3.4-0
"ta $£>*!./ c7 i».^o
4 l^y^? £> 1. fco

5

"£B T3>7 5 . 5"o^ 3.6o
3Vk S>©0,007 4.7.0



j

VM ( /A?) 2
3-19
"5-4-*?
15 CUO CaO B^i
/6 i L2o foo i SO
15 1 3o 4£? SO
1 c, [ 3^ (,,0 i f^o
4-1,1 ftL IS I3o bo 90
H-31 8£> /5 13o 1 to: 80
2-. t>7 ^>o
3,ofi 8z
"2s. Is? 9fc
Ti.i^ 8t>
3-^! R£=
(3 (30 jfeo ^t
(3 /j0 1 foo kft
/ .-5 / 3o I to 80
ff /3"0 ^Z- B2-
/ T" /3C1 ' CST^- ! £A
3-¥? ,1-^1 ft6 t *+ / 30 ^"^i Si
3-7P ^1-?ol ftf? (4- 13; <^2_ Q>(
3-T®
•4^.3 ^

3.'7/O ^S (-f 13' £1, 8(

LK. CHECK
READINGS









S£;f£



4.?/ ^H- IS- (3 6,7- 7^

AH TM TS


-------
               PARTICULATE FIELD DATA
                     PAGE 2
COMPANY NAME
                                   RUN »
AMPLING LOCAT I QM fV\\ 5T
SAMPLE
POINT

£»

7

fc



































CLOCK
TIME,
M|NT
36*
*^
*i
>48A
SZ-
Si^/o
uo
ll^
sf
































DRY OAS
METER
READING,
CU. FT.
as s 3o7_
89o.3cH-
8^ f. fcOT
fi^qr.oos
5n3.fto3
^08-70^-
*?/ 3 .2-IO
:9*8 34
GO -T>
C-) *— *
S
81-
fi4
&4-

•7 .^































PUMP
VACUUM
IN. HO
GAUGE
1C,
14>
«0
1 U
\b
! b
\k



-' ~ «p





























FILTER
BOX
'TEMP.
°F
i 5o
l3o
<3o
(3o
[3o
/3o
l<3o



•' i r





























IMP.
EXIT
TEMP.
OF
(.0
CoO
feo
60
4>^
fco
fo^


























.






STACK
TEMP.
L_ °P
^0
B!
Sf
€>t
BO
to
o



' 0





























LEAK
TEST
READ 1 NOB





















                       ^H B-47 TM
                    ENTROPY

-------
COMPANY NAME
ADDRESS 	
SAMPLING LOCATION.
PATE   : ^ ~. ^--"S fe
                         TEAM LEADER
                                       &T"
                                       RUN NUMBER ,
                                       TI ME START
                                       TIME FINISH
                                 TECHN IC 1ANS   C f"
                                                               / /  " I*
 BAROMETRIC PRESSURE,  IN. HG 	
  SAMPLING TRAIN LEAK  TEST VACUUM,  IN, HG
  SAMPLING TRAIN LEAK  RATE, CU. FT./MIN.
                                      STATIC PRESSURE,
   EQUIPMENT CHECKS
  PITOTS,  PRE-TEST
  PI TOTS,  POST-TEST
  ORSAT SAMPLING SYSTEM
        BAG
  THERMOCOUPLE  @	 C
   F 1 LTER  #
              TARE
                                     IDENTIFICATION NUMBERS
            REAGENT BOX 	
            METER BOX   f4-
            UMB I L I CAL   U-
            SAMPLE BOX	
            PROBE 	Vf.. " £
                                        .NOZZLE
                       T/C READOUT
                       T/C PROBE _
                       ORSAT PUMP_
                       TEDLAR BAG _
                             "2-  DIAMETER  ./t/SS
                                                          1--5
                         AH@
                        METER TEMP
                        % MOISTURE
                  NOMOGRAPH SET-UP
                      J- ?&      C
                                STACK TEMP
                                    AP.
                                                    NOMOGRAPH
                                    70
                                                          ~1°
                                             REF .
SAMPLE
POINT
     CLOCK
     TIME,
     MIN.
DRY GAS
 METER
READ 1 NG ,
 CU , FT .
                      PI TOT
                      READ I NG
         OR 1 F I CE
       SETT 1 NG ( AH
         IN.  H2O
IN, H20J  IDEAL ACTUAL
                    GAS
                   METER
                   TEMP.
                    °
 PUMP
VACUUM
 IN. HG
) GAUGE
F I LTER
 BOX
TEMP.
 °F
IMP,
EXIT
TEMP.
 °
STACK
TEMP.
 °
                                                                       LK. CHECK
                                                                       READ I NGS
        U,
                      "3.0O
                                  i-B(  I  Bo
                                         fto
  T~ IB/o
                                   (.87
                             1
  \ . to"2_| J ,-)-D ! 2-.6SI
                                            O
       l-o
3.'
                                                8
                                                            So
                                         ;3o
                                             B/
                       •Co  jLLi
                                                 Q
                                                             5 o
                      H-
                                                 6
             H 7
                       ±1
                            1-77
                              Z.-T7
                                                           60
                            X.77JX-77
                         •4,0
                                  "L-77
                                                             S o
                                                5o
                             z.
                                  -1.65
                                   ( o
                                   z -fos
                                            0
                                                            So
 5-
 Z.99I /.go
                                                JO
                                                So
                     2,-^^ ! /• &o| f  -go
                                                 0
                                         ^_o
         i:
                                   2-05
                                                                  77
                       3 .-40
                                                B
                                         t3o
       2JO
                .2.f
                                         7o
                                   8
          ^f 9 o ,
           \l-yi
                             -jo
                                       SB
                                            7?
                                                         0
                                            -7
                                            0
                                                &
                                                            55
                                   2..
                                          7Z-
                                                 ex
                                         3o
                                            7
            00/^03   O-.o'Dl "2-»
                                      LJ	X
             V
              M
                                    AH B-48T
                                           M
                           ENTROPY

-------
                PARTICULATE FIELD DATA
                      PAGE 2
COMPANY NAME
                                    RUN I
C
"*'.!
       LoeiTiOM
SAMPLE
POINT

(t>

1

&












..*





















-y
CLOCK
TIME,
MIN.
34.
jj dfj^
vj-*^
^JL g")t y
ST.
Sy-o
CD
ixe^f
'
































DRY GAS
METER
READING,
CU. FT.
°o «5 .7.|t>
DQg. g>o -7
Ota., S It3
0( 4- Z-lO
o r 3 0 H97

' / := , ', -' •































PITOT
READING
(AP),
IN. H,0
4 -e>o
H-2.0
v^ -20
u/."Z-o
^.to
»-t, -2.0
4- 2.0

































ORIFICE
SETTING (AH),
IN. H2O
IDEAL
L-M-f
Z--S3
T.-S1
•z.,^^
1-.^3
"!• ^3
t-^3

































ACTUAL
m-i
*-53
-j-.g-j
2-53
"L-^3
2. S3
z .$j

^ . ;-































GAS
METER
TEMP.
OF
-JL
78
7»
78
18
78
78

- c*































PUMP
IN. HG
GAUGE
s
*t
^
9
1
C|
C|



4(5",'S'DI





























FILTER
BOX
TEMP.
°F
lTj0
!3o
1 3c2
f3o
»3o
\-3e
/"So



:>





























IMP.
EXIT
TEMP.
OF
55
"SS
55
S61
^•s
55
1 9S

































STACK
TEMP.
OF
71
7«t
"TC^
1 1
74
7^!
~l*\



(J'O





























LEAK
TEST
READINGS





















                     ENTROPY

-------
vRilCULATE FIELD DATA
COMPA
ADDRE
SAMPL
DATE
NY NAM
SS
I NG i LO
F 'U/L'tJ^JrV-ft
~L*,,^3r
CATION //\Af~ €.

BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPL I NG TRA I N LEAK RATE ,
EQUIPMENT CHECKS
*-^PIT
'--'"PIT
/^TEO
THE

OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE @ 7^ °F
F I LTER # TARE





SAMPLE
POINT

"g <3





A i





CLOCK
TIME,
M!N,
]
ff/#
(ff
2£>
•$0
4o
So
frO/0
iff
-w
3o
if -o
c^0
\u0/ott
1
DRY GAS
METER
READ I NG ,
CU . FT .

T)-Z>(^_ 57*^
2.61. Q-k
34?3. ^.7
V7S • ^7 <
^^7. I"3?
3-~z~ T
/ 1^, 	 o
( 0 ^ DIAMETER -'7 /
/C REAX>
/C PROB
RSAT PU1
3UT
«P

4t *5
-7,4
A/A-
4 ' / TEQLAR BAG Mfr
NOMOGRAPH SET-UP
AH
—
( . ' v' C
METER TEMP
% MO I STURE
PI TOT
READING
!AP],
IN. H2O

4-

-2,0
3/p
42% •
4-
30
tf. 5 1?
^7-5
4.^
4.?^
4-7^
4.7^
4. fe£?
4-. &o


i











\: -






MOMOfW?APH 3 U,^1^
FACTOR 0-
0® STACK TEMP
£***"' pj

OR I F I CE
SETT 1 NG ( AH ) ,
IN. H2O
IDEAL

4-40
cf. 4o
cf-S£'
4-.4o






i


i













ACTUAL

4-. ik?
^•4£?
4. ^
-^T-i^
4-, 4c?
4-44-
4.7-5,
4,91?
•£-&•*2-
7 i
"?<§
7^
*S"(
•Srzd
7^
8"2-
^•4,
"?=>
<^3,
6"^
fe?c/
^
6,6
b^
faZy
65
fo^














STACK
TEMP.
°F

7^
74
7 *jL
T^^g^*
7^
76
'7C
76,
7^
7(c>
76
7£»















L.K , CHEC»r%
READ I NGS




3%









ENTROPY

-------
        PARTICULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
RR
ING.LO
i/Z-6
F /4^-^6«xvv^r1rf
AAstt^t*
f*AT 1 ON //l*^Xi" L
/k
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
"PIT
v-^PIT
M&-ORS
M*[ TFD
^THE

OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPL.E & / p °F
FILTER # TARE





SAMPLE
POINT

A 2-





K 7



CLOCK
TIME,
MIN.

6/0
\e
~Le>
J^
"fo
io
5a
\tK/*?e
DRY GAS
METER
READING,
CU. FT.

S^f 4(• 77
?4-z. ^4"
. 5fc
^7^, 51
^^7.4^
f
*i-*Wxl~fiC»^ fclteJ^ TIME FINI»4 /O-6'^
TEAM LEADER w£ W TECHNIC
"Z-^f - 5
STAT 1 C PRESSURE
ACUUM, IN. MS ft?
CU. FT. /MIN
REA6ENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE

. ff.<7B
7

IANS ^
, IN. H
^r
o —(.'7 -a,

Z-' C'.CTO

IDENTIFICATION NUMBERS
X NOZZLE
TC.-Z- T
P_ • "Z- 5 • 1 T
I if O
H- ^ T
NOMOGRAPH SET-UP
/-7*5 c
METER TEMP
% MOISTURE
PI TOT
READING
(APj,
IN. HaO

t^.foO
<4-£>
.20
'^c.W













£o s

7^3 DIAMETER - ' fe>"
/C READ!
/C PROS
RSAT PUI
EDLAR B,
3UT It* 2 3

jo K/A"
ac A/A"
NOMOGRAPH # ^SM
FACTOR
TACK TE
n-
^g
15
2- REF . AP Z . ( S

OR I F 1 CE
SETT J NG ( AH ] ,
IN. H2O
IDEAL

%.^9
5".*?^
4. oz-
5-SE-
"5-fcl-
5 .8-Z,
5-lg-
!) .%"7-
3.7k
1-7^
$-^*S
?.t?6>



'. ,-









ACTUAL

S,1?
3-^5
4, #2,
L.fez-
"^.'£2-
S-72-
3-1V
?.-&2^
3-7?
3-7g"
3-feS
5,^5"













GAS
METER
TEMP.
°F

"72,
*&&
^Z-
^e,
^9-
*\%
•S2-
£{•£*-
^
\ O2-
104
(&<\



i :










PUMP
VACUUM
IN. HG
GAUGE

fo
£
6
Q,
b
(e>
(z?
(ff
b
&
6
(c














F 1 LTER
BOX
TEMP.
°F

A/4














•4 '' -• ' '









IMP.
EXIT
TEMP.
°F

fo-^
^?3>
<^3>
^? T*
&?t£~
(f>*4-
fe«4
^4
^^
r^j £/
w^'-t.
^4r



*"y "









STACK
TEMP.
°F

rj^
75>
74
74-
15
75>
74
7S
7^"
7*5
^7$
77



— r










LK . CHECK
READ I NGS




01'. 32-










V,
 M
AH B-51T
                   M
         ENTROPY

-------
  PARTICULATE FIELD DAT
COMPA
ADDRE
SAMPL
PATE
NY NAM
^S rr
ING LO
**> '
A (J
F rnlj£^tvQ\r€

KAT I ON //Uv*

BAROMETRIC PRESSURE, IN. h
SAMPLING TRAIN LEAK TEST
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
L_^"^P1T
' PIT
T THE
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG _^
RMOCOUPLE @ f7
F 1 LTER # TARE

°F




SAMPLE
POINT

A- {





"B ^



















CLOCK
TIME,
M1N.

Ho
Iff
-1C
^
V>
So
l.s/0
10
1&
3.0

i*>/#r







DRY GAS
METER
READING,
CU . FT .
H-O rk-J' , IJi&tfj^ RUN NUMBER M 0 - &> 4
4

4-«TX> WC, TIME START i\'*SO
?~0,^ 	 . . Af~Z*JL TIME FINISH f3;i^6'
TEAM LEADER U/S ^ TECHNICIANS
us "2J? •**
VACUUM, IN.
CU. FT./MIN


REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
A.HC
STATIC PRESSURE
HG iS
12-

, IN. H
,O —1 -~7~*r

o.e«^ /9,oo»

IDENTIFICATION NUMBERS

if t*3ZZLE ^"^ DIAMETER -J^^
AJ >c4 T
u • ?-5 • 2- T
'Z- o
4. | T
NOMOGRAPH SET-UP

METER TEMP
% MOISTURE
PI TOT
READING
(API.
IN.
H20

.. 46>
C72*S- *%&
*?*& - 73
%<9. t"&
5^5. ^-z^
cr;^ 4.7
tfi^**7 ~"~ / < £, *7
"Tjjp ^ . ^^ ^^-
£5^.5,4
6?/t. 6^3
j^Z-1!-. 32-
^35. f 2-1-


' -- "••




4-5^
4 45>
4,
be
4.^? c?
4.
/C READ!
/C PROB
RSAT PUI
EDLAR B,
3UT #P 5
E -7-4
^IP /d/*^~

NOMOCRAPM £ trt/i M
O OC'
FACTOR ^P
4' 3^
4. ^^
t| ."7 &
4- ."7C7
4, fee?
4-.t?o
GAS
METER
TEMP.
°F

PUMP
VACUUM
IN, HG
GAUGE

75 //
7^
*&*?> ^
^^
<£e\
*\C
4.2^1 g^S
4,4s?
f<4c>
4,4£P
4.4-i?! 4-«4-<7
4.4^






j













i/-4c?





t\o
&12^
°l 3
^3
3z-j









i








i
II
(
M
M
ft
i\
ft
K.
n
1 1
K













/. o*--z-
F 1 LTER
BOX
TEMP.
°F

A/A-














-! '









IMP.
EXIT
TEMP.
°F

^3>
^? i-r"
C^ ^5
(£>£->
fj/£Z?*~~P
^*?~^
fi^-S
^s
^>6
fc5
i&c?
fo*?







STACK
TEMP.
°F

71
77
77
77
77
77
T7
"77
7^
79
-71
~79



-i •



1











LK . CHEC
READ 1 NGS















/'API'
AHB-52 T
             M
   ENTROPY

-------
 i1CULATE FIELD DATA
COMPA
ADORE
SAMPL
BATE
NY NAM
S5
ING LO
Sh
r QA ^^V^frf^f ,J

CAT i ON /4il Jvl rJfjJ^.
"V«^ . rxlii'tS'L- RUN
NUMBER MO ~&B
( /VC _ TIME START //-'St

(HLt&- TIME FINISH ("S-'S^
X./S* TEAM LEADER U4 W TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
PIT
-''PIT
tyA ORS
_AfA TED
i/THE
• HG 2^
? ^ STAT I C PRESSURE
ST VACUUM,
TE , CU . FT
IN.
, /MIN
HfS If?
f
. Q.gp^ o.gr

IANS
, IN, H
p


?0 — I >~7$



IDENTIFICATION NUMBERS
OTS, PRE-TEST REAGENT BO
OTS, POST- TEST METER BOX
AT SAMPL I NG SYSTEM UMB I L I CAL
LAR BAG SAMPLE BOX
RMOCOUPLE S 77 °F PROBE
FILTER # TARE

AHc
MET

V • ' NOZZLE; *\ QT- DIAMETTER • '7 ^f
R-2- T
U-25.1 T
f4 o
/C READ)
/C PROB
RSAT PUI
3UT
F
^P
4*"IT TEDLAR BAG
NOMOGRAPH SET-UP
1,75
ER TEMP
% MOISTURE

SAMPLE
POINT

•^ !=,





ft 4







CLOCK
TIME,
MIN.

o/o
1,0
1£>
1o
<4o
So
kb/O
Ic
2*7
DRY GAS
METER
READ 1 NG ,
CU . FT ,

444- . 7f2-
^57- 
1^ |. ~7£>
G\CI\^ . "1,%
loofc. 54-
1«". 7|
3,^?. 4^
4-2-. I*?
$o \ 53, fc>3
^0
,vs-
*$U/,FC

j


i
i






tS. 4^
7f. 03
/bf t?, {?4^



/ -; ~
PI TOT
READ I NG
(APJ,
IN. H2O


4.. c»
yUft.
A;A-
>SRA1
PH # UllM
^ 00
7^
"L- REF . AP ( • ^ S

ORIFICE
SETT I NG ( AH ) ,
IN. H2O
IDEAL

4^5-
4.4.?
f-5-5
^•"SS
^. ^ tf, t 2^
4.ts
3.-7C?
3, .%o
5 -Si?
tf-, ^
4: "Z^?
*f.i<»




4-fcZ-
tf.Ofe
t/.u?
4'2£>
«/-•«*;
4,ir?
4-S5



ACTUAL

4,6?
4x«»S
A-^
tJL-s ^-f^-\
C/- / *"?
4.&.Z-
4-_e>fc
4. 2£?
4-2-

1 1 i 1 1 I 1 i «-• GAS METER TEMP. °F ^Z- ^ 1 I 0( t o3> I O(o ; p^_ It- (04 1 O^ /o^ 1 4- ^


-------
        u
         PARTICIPATE FIELD DAT
COMPA
ADDRE
SAMPL
DATE
NY NAM
=;=;
ING LO
"S '.
/f i/
F \~bs\ji£si*v(y
X^LILe^U^l
CATION bfyw£~ C.
lA/tl
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
f^PlT
PIT
fi/fi- ORS
fffc TEC
•'THE

DTS, P
OTS , P
AT SAM
LAR BA
RMOCOU
RE- TEST
OST-TEST
PL ING SYSTEM
C
RLE 0 &Q

FILTER # TARE

°F




SAMPLE
POINT

B>-4





A-- f







CLOCK
TIME,
MIN.

tfo
(f)
z&
jo
•40
3£>, O^j
(e>^%. <53
fo(0\ - Z-C7
fe>73. 
*7t?-. 4j^
72-4. ££-
73^. ^
14i?. &o
7^P. "7(5
T172.,*7<6.
"7^*f- '^fe'^

i / •-' -'" " ,-'

\
i
I
i
i

















\
1 1
•WO (f^^eP, P Vfifes^l RUN
yi« . AJc 1 TIME
?2J>*- • $£***& TIME
TEAM LEADER ^S ^ TECHNIC
' 2^ -6
ACUUM , IN.
CU. FT. /MIN
RCA
MET
UMB
SAM
PRO
*..
(SENT BO
ER BOX
ILICAL
PLE BOX
BE
STATIC PRESSURE
HG !*?
. Q'Q
ii-

IANS
NUMBER /1f£? ""754
START 1 4; O &
FINISH !(y • Z-**-

, IN. H
5d cP.-Jnx?

IDENTIFICATION NUMBERS
v NOZZLE / ° ^ 0
>/' l4- T
Crf'* ^^ • £**- Y
lZ- 0
^. 1 / T

NOMOGRAPH SET-UP
f.~7k c
/C READ!
/C PROB
RSAT PU1
EDLAR B
3UT .
E
MP
AC


2o -(.7d



1AM!
j
rrER .(77

"T- 1/
A/A
//A-

NOMOGRAPH # WS^J
FACTOR 0 , ^
MITTB-R TEMP ^^ STACK TEMP
-7$
«*. MOISTURE 2- REF. AP ^

PI TOT
READING
(AP),
IN. H2O

4-. 70
4--7O
4-. "7
4,*7£?
4. 7P
t|,7c>
4.3<2
•4.36-
4--^^
f-2-S
f -30
tf-.-^c,




OR I F I CE
SETT I NG { AH ) ,
IN. H2O
IDEAL

4.9-y
4,&o
4-&ti
4-^y
t| -St3
4-".^o
4-4c?
4.4s
4-4c?
4-^
4.4^
4. 4-c?
4-^4
4,4c?
4-. i|-*5


.—
9f j U
<%'&'
<£*?"&'
ex C
^ 4
64
64
6»4
64
6-4
^4
^s
yz,


. „










STACK
TEMP.
°F

S*
^o
<2%>
Srb
g^7
"7^
VI
^0
7^
7cj
"vo
9ro


;: --












LK . CHEC. -
READ I NGS




bow









'M
         ENTROPY

-------
        PARTICULATE FIELD DATA
COMPAI
ADDRE.
SAMPL
DATE
NY NAM
«3S
ING LOi
F QfUUZn-l^*3^0 tT^r&ir -l-fachtt^ -, RUN NUMBER W0~ 7~B
/{Vv^C^-i-***VO A< C T I ME START t ^ • 0 *1
NATION l/h^yt ££jw. /dU^U TIME FINISH f^'^-f
l£ iS^a TEAM LEADER I*>S*J TECHNIC
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE!
SAMPLING TRAIN LEAK RA*
EQUIPMENT CHECKS
U-XPIT
PIT!
S/frottS
A/A TED
^-"W
OTS, PRE-TEST
OTS , POST - TEST
AT SAMPLING SYSTEM
LAR BAG
»Mr»rrf>UP!_E & Srt? '
F I LTER # TARE

. HG
Z*f-^ STATIC PRESSURE
5T VACUUM , i N . HG 15" S
re, cu, FT./MIN
REAGENT BO
METER BOX
UMB 1 L 1 CAL
SAMPLE BOX

lANS
, IN. H

,0 -(.-72-

O'CX'X' t5 . d^f

IDENTIFICATION NUMBERS
X ^-./^l. 	 NOZZLE
R-2- T
V-l1?-! T
(* o
^f.Z- T,
NOMOGRAPH SET -UP
1.7% c
METER TEMP
% MOISTURE

SAMPLE
POINT
V t





B> ' tf



















CLOCK
TIME,
WIN.
44
fc?
2X>
1-0
*&?
So
&«>/£,
^
•Zp
s«>
<£*
DRY GAS
METER
READING,
CU . FT ,
^0, 7X-^
1 O"2-. I^O
1 i ?», ^0
/•^. ^
/37- ^7
/<£^ , ^tf
J^(. c^{
f73. SS
l^tf, 9"z-
(^, "Z^t
•2_i92. l^
•Jp | 2JSU) -00
/a^/iff-













•2-J.f. ^3^1

; "











PI TOT
READ 1 NG
(AP),
IN. HjO
C/' t^L /^7
{L r ^^ £)
.&S
5 .«?z-
^ -S^
5-S9
•§ .iz-
5-SS
•f.^o
3 •'"i^-
^-^fZ
4.2^
4- U?
4-f,ES
V2>
6*5








i


1

9o
*?!?
*5T>














LK, CHECK
READ 1 NQS



CS'.ZT










V
 M
;      AH B-55TM
ENTROPY

-------
         PAFUILULATE FIELD UATA
COMPA
ADORE
SAMPL
pftTE
NY NAM
?S „-
ING LO
E 4^£0JS5oKG XisJDUSTfc
l;3OR.o |J C,
f-4T i ON wvt 4T f Ll »A| f^Wb*i
3-"Z-4 — &t* TEAM LEADER
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
* PIT
""""" PIT
"""" OHS
"""" TED


OTS, PRE-TEST
OTS, POST -TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCQUR1_E (3 °F
F I LTER # TARE
P IZH' *>f "Ml
2<».S
ACUUM , IN.
CU . FT . / M 1 N
REAGENT BO
METER BOX
UMB I L 1 CAL
SAMPLE BOX
PROBE (

HG
^M- ?^l«J2.S RUN NUMBER *»*> ' S \

riME ST/
&RT /3'. a«f
O«4JUCT TIME FINISH l?>:'*f
yf TECHN I C
STATIC PRESSURE
I ANS
, IN. H

,0 - /•?*

O.oe>f>


X




1 DENT ! F I CAT I ON NUMBERS

NOZZLE T"4> DIAMETER * J '%-(*

\**» «**% O Y
1 § 0
/C RE ATX
/C PROS
RSAT PUI
3UT 5

*P *^'
^ -- 5 TEDLA» BA - 8



?- - 4

wsz \yt.
*
, 	
ty ••» -&



CLOCK
TIME,
MIN.
DRY GAS
METER
READING,
CU . FT .

°/o
i «;
"So
H«5
"Xa
IS
•30
+<$
v-s/o
,c,
•jc,
J ,
r
"^^
fr-
_ t-B.
^5
4.v**g^a


















£3| .7"? t
040 . <5ocj
04^ . 4^t
°$c> . SID
o fe"1 . ^-o <5
°7 & (Oo^)
°8S.ae> 5
& ^3 -?>f 5
/» t. 4 /^
n i r i a i
I'Ll '0 o3
i5^ff-






AH
/•
METER TEMP
•h MOISTURE
PI TOT
READ I NG
UP),
IN, H20

3.60


\

76 c
MOMOfiRAPW # $>T"
FACTOR ) »O 5
«• o^st • oo
B& STACK TEMP *7D
	 2- 	 	 	 REF . AP.


OR 1 F 1 CE
SETT 1 NG { AH ) ,
IN. H2O
IDEAL
ACTUAL

i.«s

•1
/ i
H.2.C-


\


^
J. ?o
1
i








"*?"., if**") —




*S^-«
—



»-0
1

|

5






I










i




















GAS
METER
TEMP.
°F

70
73
72.
74,
77
76
7fc
77
7^
7^
7ft
I


tV


— -

/ — •



1
~l

" '.: .







PUMP
VACUUM
IN. HG
GAUGE
7
K c- • 2-fe 3
F I LTER
BOX
TEMP.
°F

-L
2.
Z-
1*.
-L,
2.
M
^
H
3,
3



_
^*
—
-
—
-
_
—
—
—
_


















IMP.
EXIT
TEMP.
°F

4.0
5-8
__55
5fo
SR
gg,
Sft
4>D
C^o
(e>o
Co





STACK
TEMP.
°F

7fo
16,
7^
ih
~l£
•73
1L
75
73
Tl
7?





j



i
1


i












LK. CHEC
READ I NGS















*M
( /Sip)       AH B-56TM
   ENTROPY

-------
       PARIJCULATE FIELD DATA
COMPA
ADORE
SAMPL
DATE
NY NAM
ss
ING LO
p uiT<
&«.«.t*/&8ea« fjc
uM- ?kAT«Jkt, RUN NUMBER J/IA O - 5" 2.
TIME START OQ3~2~
CATION tf'MjT <£U*K.i|i>A.1bA 6Ot\«*X TIME FINISH |, > * "3 *7
"-St» TEAM LEADER 'W TECHNIC
BAROMETRIC PRESSURE, IN. HG
SAMPLING TRAIN LEAK TEST V
SAMPLING TRAIN LEAK RATE,
EQUIPMENT CHECKS
~~ PIT
_ — PIT
—- ORS
•*"" TED
-aL- THE

OTS, PRE-TEST
OTS, POST- TEST
AT SAMPLING SYSTEM
LAR BAG
RMOCOUPLE 0 	 	 	 °F
F I LTER # TARE
V 744 3f -yz-5

A 74.1


SAMPLE
ft - ^



fa - &



&- *•



B- S









CLOCK
TIME,
M1N.
£>/
,5
3o
4-5
^/O
•S
•30
<*€
\™/*>
IS
3o
HS
v6«/0
iS
v5«>
45
M^fpr





DRY GAS
METER
READ 1 NG ,
CU . FT ,
JZ 3 . oo-Z.
f 31 . ^ 06
l 40 .4-07
/ 4 t . A o 3
/5 8 . "3*>&

STATIC PRESSURE
ACLJUM , ! N . HG 1 S
CU. FT./MIN
REAGENT BO
METER BOX
UMBILICAL
SAMPLE BOX
PROBE
AH @
METER T
% MOIST
PI TOT
READING
UP),
1 N . HzO
v*a


\


f
M-Xo
 S
/9V -3^5
Z-O "5 , 4oZ.
1/2. Sol
iZ-V , S of
Z.3o,5c? 5
2-3*i. Hoi
2-^1 ft -^oft
£57, /o«f-
Z-C-fe- e 3 /

.;• --












t|


t
J. 7^



v •>*>


^,
1

/









I ANS
, IN. H

,o-f -7-3

o.oof

IDENTIFICATION NUMBERS
«• »«"OZffl.r ^~k niAMi
H-vMt T
M. - S ° T
1 *> o
A-' '3 T
NOMOGRAPH SET-UP
J-76 r
EMP
URE
/C READ!
/C PROS
R5AT PUI
EDLAR B.
FACTOR
.IT.4,
3UT ^
E S" V*
MP
a« "
MOMOGfiA
PH # — sr
, ~.o$* j.oo
fiO STACK TEMP 7*
"*- REF . AP

OR I F I CE
SETTING (AH),
IN, H2O
IDEAL
i .0 7
\
\



















ACTUAL
1,07
1
\







GAS
METER
TEMP.
°F
to
4.Z.
&6
(2=7
tat.
69
7 £>
1L

PUMP
VACUUM
IN. HG
GAUGE
-L
2.
Z-
•z-
5
5
S
^
74 ! 5"
7A
78
f I B^>
4,

)






g;
8^
7^
6
5
S
•Cj
5
5
1 Bo S
1 *™^ i «*j


|

1














|

T
K-- .Z-43
FILTER
BOX
TEMP.
°F
—
-
-
— -
—
-~
--
—

^
_
—
-
—
-
—


4 • - .-






IMP.
EXIT
TEMP.
°F
4-8
-i-o
40
tf-0
45
STACK
TEMP.
°F
6,7
£>7
Co7
^7
t5
ag, | 47
**• ft
48
S3
•5S
4,0
(tf.0
fe>p
fco
^'Z-
42.









fe 7
4, ft
£?7
i^0!
7?
7^.
"77
71
77
"?







LK . CHECK
READINGS














-&Z 9
       ENTROPY

-------
  PARTICULATE FIELD DATA

COMPA
ADDRE
SAMPL
DATE
NY NAM
ss __
ING LO
F G^Et^SBoRO J-UtXASTT
C-^S.'e&N S"RjORO fO,C.
CATION V\A,\ 5>T" ^UnAAlNlfVT^^-
"' 8S» TEAM LEADER
BAROMETRIC PRESSURE, IN
SAMPLING TRAIN LEAK TE
SAMPLING TRAIN LEAK RA
EQUIPMENT CHECKS
I»1T
PIT
OPR
TEC
THE
. HG
Z*J- 5
ST VACUUM, IN.
TE, CU. FT. /MIN

HG
O

2-V^- r^/VT^lZ-S RUN NUMBER \*>* ~ i -3
TIME START i^ -xO
6U3TUET TIME riMi«W (^."3*-
t?V TECHN I C 1 ANS
STATIC PRESSURE
I &
, IN. H
o - ; . 73

. OOD

I DENT I F 1 CAT I ON NUMBERS
OTS, PWE-TEST REABENT BO
OTS, POST -TEST METER BOX
AT SAMPLING SYSTEM UMBILICAL
LAR BAG SAMPLE BOX
RMOCOUPLE (3 , °f PROBE
F 1 LTER # TARE
£5- 7=>2. & 3-9
If



n •
NOZZLE H-fc DIAMETER ^"Z-£"
f- T
U, * $0 T
R 0
• 3 T
NOMOGRAPH SET-UP
AH/?

Ul
Av - 7o ^ METER TEMP
% MOISTURE

SAMPLE
POINT
CLOCK
TIME,
MIN.

Ar- 4: °/*



^ - fe



S z
1 2.3,4?^



S— S-


\%
3«.
HS
*y0
vc,
3t>
^S
DRY OAS
METER
READ I NG ,
CU . FT ,

Z4>4. / f <5
^"H- 'i ^ 9
2-^ 3 .9 o i
2-*t Z ,%e»f
30 1 , 704.
3 (D - t I'D
31-1. -7o , fcil)
izo^ 3^7 , £.04^
>- *'-

H-^
fUiS.




ftAggr




7 3- -
















PI TOT
READING
UP).
IN. H2O

"3. efi


t-
vf-tx»
/
j
4
i. Tf



^-1 T f_
1 , *w ^







t c
/C REA»
/C PROB
RSAT PU1
EDLAR B
DUT 5
E 4 - VI
MP ~~

NOMOtSBAPW ff ^T"
F^TOR l«e<&
- r,S ^ i. no
10 STACK TEMP T»
"^- REF . &P

ORIFICE
SETT I NG ( AH ) ,
IN, H2O
IDEAL

1 .01





I






,!• 	













MMHHHllMi
^,.,.111.11111.1













ACTUAL

l.»T












F=











- 	 - 	 1
- •' "• 	 j



J ( : -,







1



GAS
METER
TEMP.
OF

14
"»<=>
77
«o

PUMP
VACUUM
1 N. HG
GAUGE

3
"S
5:
•?>
b-2. 6
Ao
8»o
-]<^
€>o







-/. '









C,
5
c,
5
















1

F I LTER
BOX
TEMP.
°F

-~
-
«—
-
—
-
. 	 .
-
—






5 r" .' *









IMP.
EXIT
TEMP.
°F

So
So
^©
So
$-0
55
S*>
55
f S"






r>









STACK
TEMP.
°F

7fe
71
71
Bo
fyo
SD
76
">fe
78
















I

LK . CHEC. .
READINGS














            79
•AP)
             M
   ENTROPY

-------
                 LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name Ge,ggKJ5>BCag£j> XMDOS>T^4
Sampling Location ..,CP%T}.h^ JO^y,^
Date Received	 Date Analyzed
                                                             EEI R«f.
                                                      Reagent Routes )
   Run Number
   Run Date
   Reaent f
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica 6el:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                           3OQ.O
                            - Z.,0
                            ZOO- O
                                              3118
                                              SOZ. O
                                              3OO-O
                                                 z.o
                                                  -o
                              140
Sampling Location
Date Received	
                        Date Analyzed
                                                     Reagent Box(es)
   Run Number
   Run Date
   Reagent (
    Final Weight, g.
    Tared Weight, g.

CONDENSED WATER, g.

   Silica Gel:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                             3CO .
                            •2OO -O
                          Zoo,
                               . O
                                              304.0
                                              3CO.Q
                                               4-0
                                              Z.IS. O
                                              ZQQ.O
                                     B-59

-------
                 LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
Sampling Location  Coty-nuG
Date Received
                                                            EEI Ref.
                                 K.  *£» - COTL£X-
                         Date Analyzed
                                                     Reagent Routes)
   Run Number
   Run Date
   Reagent (
     Final Weight, g.
     Tared Weight. 9.
                            TE-2A
                                . O
                           3CO-O
                                             3Q~7. o
                                            3>CO.O
 CONDENSED WATER, g.

   Silica Gel:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                               . O
                           zoo.o
                            14.o
                            2.0-0
                                               ~7.O
                                                 . o
                                            Z.OO.
                                                 . O
                                             2.0-O
Sampling Location
Date Received
                                       - OOTLJO"
                        Date Analyzed
                                                    Reagent ftox(es)
   Ron Number
   Run Date
   Reaoeni  C
                   >:
    Final Weight, g.
    Tared Weight, g.
                                . o
                           3CO-O
                                            TE-4P,
                                                 . o
                                            300.0
CONDENSED WATER, g.

   Silica 6et:
     Final  Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                           ZOQ.Q
                            13.5
                                     B-60

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant Name  <=^-£gjsl5 eoiELD  V.M DPSafg/t A«I,
 Sampling Location  Cc*vnufe> "0^4^^^-
 Date Received	 Date Analyzed	
                                                             EEI Raf,
                                                      Reagent &ox(es)
   Run Number
   Run Date
   Reaeent (
                   >:
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   SIHca 6el:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                           3CO. O
                             (c- O
                                . O
                               . O
 3CO- Q
   6-0
 z.r?.«b
                                                  . o
  n.'b
                            ZI-0
Sampling Location Co/vrtUG TiMOlL =*t £
Date Received	 Date Analyzed
                                                     Reagent 6ox{es )
   Run Number
   Run Date
   Reagent  (
                   >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica Get:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                            TE-feA
                            3CO.Q
                            300.0
                           Zoo, o
                              IB.5
304. Q
3CO.O
                                               4.0
                                             ZOO .
 Zt-S
                                     B-61

-------
                 LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant Name
 Sampling Location  Co*MiMG TA^ilC  ** 5>
 Date Received	  Date Analyzed	
                                                            EEI R*f.
                                                     Reagent Boxtes)
   Run Number
   Run Date
   Reanent (
                   >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

  Slilca Gel:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                            3IZ4-
                                . o
                            -z.o
                               . s
                           ZOO .
                                             3Z.4
                                             "ZXDQ. Q
                                             Z-CQ.Q
                                               0-0
                                            "ZKc.. 6
                                            ZOO .Q
                            IZ.S
                            IO
Sampling Location
Date Received
                           TAKlE.
                        Date Analyzed
                                                    Reagent Boxtes )
   Run Number
   Run Date
   Reaoent (
                            TE-BA
                   >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica Get:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                                 o
                           2CQ.O
                            -3.Q
                              .  O
                          £00.0
                            I4.O
                                           ZCQ.Q
                                              O-O
                                                . O
                                             IZ..O
                              . D
                                      B-62

-------
                 LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant Mam*
                                    EEI Ref.
 Sampling Location
 Data Received	
                         Data Analyzed
                              Reagent 5ox(es )
   Run Number
   Run Date
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica 6ei:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
     -2..0
    2-14-0
     14-0
      IZ-.O
                     "ZOO-O
                                               -S.Q
                      ZOQ.Q
                                                ~?.0
Samoling Location
Date Received
                           T7VKJV-.
Date Analyzed
                                                     Reagent Boxtes )
   Run Number
   Run Date
   Reaoent (
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica 6el:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                              q-7.
    ZOO.O
   -Z.M. 3
     B.5
                                             TE JOB


                                              lecp.o
                                              zcxxo

                                              -14.Q

                                             Z14-. O
                                             ZOO-O
                                                o. o
                                     B-63

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant Name
 Sampling Location
 Date Received	
                         Date Analyzed
                                    EEI
                              Reagent Doxies )
   Run Number
   Run Dale
   Reacent (
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica Set:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
    -<=>. o
        . Q
     '3.
                       188.0
                           . Q
                                              -  12 -O
                                                  >. O
                       B. O
Sampling Location
Date Received
Date Analyzed
                                                     Reagent BoxCes )
   Run Number
   Run Date
   Reagent (
     Final Weight, g.
     Tared Weight, g.
                            TB-1ZA
                     TE.-IZB
                                                  . o
CONDENSED WATER, g.

   Silica 6el:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g,

TOTAL WATER COLLECTED, g.
    Z15. D
    ZOQ.O
                                             Z13. 3
                       IS. 5
                                     B-64

-------
                 LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant N
 Sampling Location
 Date Received
                                   **
                                    EEI R«f.
                         Date Analyzed
                              Reagent Box(es)
   Run Number
   Run Date
   Reeoent C
    TE-PbA
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica 6et:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g .
                            •zoo . o
    ZOD-O
      O .0
                                                O.Q
                         ,. Q
                       13. O
Sampling Location
Date Received
Date Analyzed
                                                     Reagent Boxtes )
   Run Number
   Run Date
   Reagent (
     Final Weight, g.
     Tared Weight, g.
                     TE-I4B
                                                  >. O
CONDENSED WATER, g.

   Silica Get:
     Final  Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
   200.O
     n.o
     [-Z--0
                          . D
                                             zco-o
                                    B-65

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
                             >MDOS-T"g>J ArC-
Plant Name
Sampling Location MI«=>T-   €U ** tK»*VTPgL   IMUCT
Date Received	  Date Analyzed	
                                                           EE1 R*f.
                                                      Reagent Box(es)
   Run Number
   Run Date
   Reaoent (  H?£> ):
     Final Weight, p.
     Tared Weight, g.

 CONDENSED WATER, g.

   Siilca Ceh
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                          M I -
                          31
                         2OO. O
                           -s.o
                          -Z.-Z.-1. Q
                         •zoo, o
                           Z.-7.0
                           zz.o
Sampling Location MiST  &UM>M/vrpg.
Date Received	 Date Analyzed
                                                   Reagent Box(es )
Run Number
Run Date
Reauent (
                   >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica Get:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                             MO-I
                             3!f6
                          302.0
                          3CO.O
                            Zl.O
                          Z3I.O
                                     B-66

-------
                 LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant N
Sampling Location
Date Received	
Date Analyzed
                                                            EEI Ref. *
                                                      Reagent Bex(es)
   Run Number
   Run Date
   Raaoentf JJ7-O  >:
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica Set:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                           3CO-O
                             S. O
                           "ZOO. Q
                                . o
Sampling Location  IMISF
Date Received	 Date Analyzed
                                                     Reagent BoxCes )
   Run Number
   Run Date
   Reaoent
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica 6et:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g,
                            3QQ-0
                              D.Q
                            zoQ-o
                             36.0
                                     B-67

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
 Plant N*me
Sampling Location
Date Received	
                         Date Analyzed
                                                             EEI Ref. *
                                                      Reagent Box(es)
   Run Number
   Run Dele
   Reagent {
                   >:
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica Set:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                            3ZO.O
                            300.0
                             Zo-o
Sampling Location
Date Received
                        EL4K/UKJM"g£
                        Date Analyzed
                                                     Reagent BoxCes )
   Run Number
   Run Date
   Reagent (
                   >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica Get:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                             3M-0
                              II.0
                            zoo, o
                             33.5
                                    B-68

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
Sampling Location
Dale Received
                                            T>i^vrifLgL£>     EEI Ref. *
                         Dale Analyzed
                                                      Reagent Bextes )
   Run Number
   Run Dale
   Reaoent ( \4Z-O ):
     Final Weight, g.
     Tared Weight, g.

 CONDENSED WATER, g.

   Slilca Set:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED. §.
                             3 in
                                  O
                            3OO.O
Sampling Location MIST
Date Received _ Date Analyzed
                                                     Reagent &ox(es )
   Run Number
   Ron Date
   Reaoenl ( HZ.O  >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica Get:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED. §.
                            3 IS .o
                           300. o
                             is.o
                                     B-69

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Nwne
 Sampling Location
 Date Received
                                                             EEJ Ref . *
                            T7vt4^
                                          MIST BL-i^iKlftrT£€L  COTLCT"
                        Date Analyzed
                                                      Reagent Boxtes )
   Run Number
   Run Date
   Reagent f
     Final Weight, g,
     Tared Weight, g.

 CONDENSED WATER,  g.

   Silica Gel:
     Final Weight, g.
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g,
                           -Z.OQ. o
                                                   . o
                                             zoo .o
                                               -z-o
                                                   O
Sampling Location
Date Received
                                        MIST
                        Date Analyzed
                                                     Reagent Doxies
   Run Number
   Run Date
   Reaoent C  1-teO >:
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER. . o
                           "ZOO .0
                           Z32. 0
                                . O
                                • O
                                                   . Q
                                                  -O
                                                O.Q
                                            ZOO .Q
                                     B-70

-------
                  LABORATORY ANALYSIS OF MOISTURE CATCH
Plant Name
                                          R-ATQga
Sampling Location
Date Received
                               , 4Hg  Mlt>T
                                                             ££| R«f. *
                                                             OL>Tt-CT"
                         Date Analyzed
                                                      Reagent Box(es )
   Run Number
   Run Date
           f
     Final Weight, p.
     Tared Weight, g.

 CONDENSED WATER,  p.

   Sliica 6el:
     Final Weight, g,
     Tared Weight, g.
 ABSORBED WATER, g.

 TOTAL WATER COLLECTED, g.
                                 . O
                              - "5.0
                            -ZOQ.O
                                              MO-'
                                                   . o
                                              zoo.o
                                                 "7. O
                                              "Z54--0
                                               "34.0
                                               4-1.0
Sampling Location
Date Received	
                        Date Analyzed,
                                                     Reagent BoxCes )
   Run Number
   Run Date
   Reagent (	]^
     Final Weight, g.
     Tared Weight, g.

CONDENSED WATER, g.

   Silica 6et:
     Final Weight, g.
     Tared Weight, g.
ABSORBED WATER, g.

TOTAL WATER COLLECTED, g.
                                      B-71

-------
ENTROPY
         INC
                                    POST OFFICE BOX 12291
                                  RESEARCH TRIANGLE PARK
                                 NORTH CAROLINA 27709-2291
                                         9-SS-7B1-3S50
                       REQUEST FOR ANALYSIS
   PURCHASE
   ORDER t
     1503
                 JOB NAME:
                         Cjfl
                                              OF
   LABORATORY:  "R  I -L-    ATT
   DATE SAMPLES       .
   WERE TRANSMITTED: 4 /
                  EXPECTED DATE
               86, OF RESULTS:
   SAMPLE MATRIX:
   TTPE OF ANALYSIS REQUESTED:
                               KPA
               COWTA/WS THE
                                     BASIS
            TE- IA
    G
2.
TE- JA
                 "2.
      •e •  i A
                             3
      4-R
      TE
    q
 -
      TE- 1A
    G, 5
         2A
    G, G.
      TE
                 1.
                                           I i
TE"-2.4
                    -TTf^UDN
                                      TcP
      6- F
Tc- ZA
              TcFLOK
                3A
                                             Cr
       10
      TE - 3A
                                          i f

-------
                      REQUEST-'FOR ANALYSIS
PURCHASE

ORDER *   35OB
                                                   PAGE  7_  OF
                COMTA/MS
                                           BASIS
            TE* 3A
                               FtL-TER^KsSrcUp"
GI 1*2-- F
G) 13
Gi K
G 15
G, \(* -K
G) lfe-F
G n
Q IB
G IS
<5 ZO-K
£ 2O F
TE- 3A
Tc • ^A
TE • A A
Tc '^A
TE • ^A
Tt • 4 A
Tc • SA
Tc" • 5A
Tf" • SA
Tc -5A
TE. SA
TETLDKI FiL-mni^
IMPIN^ER ! ftoioO
Z (AJflDHl)
3 (Kk£H^
TrF?LOM FlUTtR^eW
TEFUD^1 F l CTR.fi Tfc"
|MPlW€,E^ 1 CAkiliH )
"2. (KaDH)
" 3 (MaD^ )
-|-;=-pLDN nL.THR.^e&«t!iJ
"TCFl_X>w, pcctTS.fiTt"
Cr-f(,
Cr"*0 t I.C.P FDR Cr
K
II
£• TCP ror C^
Cr^u
Cr^fo 4 XCP -For O
/[
•/ i
z IICP R)^ C^
Cr "'"k
           I   n: " 6»A
                                                 XCP
                                                              Cr
             Tc
     23
                                                    1 1
     2.4-Kl  TE - tA  ! TEFLOW
     2.4-F[  TE-C^A  I  TEFUDM
     25
                 7A
                                  /*«*> | p-.i
                                   ' i  1 W'
                 XGP For Cr"
              ic-lA
                                               XCP
     •Z.CD-F
         Tc -7A
                               RllTEiftTE
, zi
              E-SA
         CrJ
                                                    XCP
vX G ZB-X   TE-6A
                                               XCP  ^


     2.6- F|  Tc • 6A
                                                    Cr
     29
                      JMPIU6S2.
                                                xcP  «>r Cr
            Tc
                        EFLON
                                           XCP
                          Cr
    30-1
             TE. JA
              c • IDA
                                                   i XTP  For Cr
         TE- lOA 1 -T^FLDK  Fi
                                              XCP
                                                          Cr
  G, 32.
             re*. IDA
                    T^Ft-O K\
CTELPi
  SENT
                                  B-73

-------
                       REQUEST FOR ANALYSIS
PURCHASE
ORDER *   350^3
                                                  PAGE 3   OF
V/G S3
    34 -
          TE •  11 A I
                                        (uo-Oi-
          Tt
 G, 34
     -
    35
          re- HA
          TEPLDKi
    12 A
                                             BASIS
                                                       Cr
                                                         For
          TE-1ZA ITEF-LDW  ricrre^Resnxj^     A-CP
                                                            Cr
               12. A
    37
                        T0FUDN
                                       "! Cr"~   t  xcP
  G, 38 -f
            £f ' !-^>A 1  "TtTFLOKi
                                                 TCP
              . (3 A
    39
           TE • K A
                                        TCP «>r
f, 4o-"?N i  TE-I4A   TrT-LQu FicirR,
                                                             Cr
    40 -  F   TE- I4A i
          TE • /B
                                                    *  XCP

                 13
                                SPU
  £43 -"
 C ' 1 2>  \ TFPLDKl
                                               XC"P.  For
  G,
    44
               IB
TE ' ZB
                                T  id |  Cr4""  i xcP
                                                              Cr
  q 45
            'E ' 2.B  mPji4&eR_ Z. ^ SsfUT
  G
46-"*»  I TE -2B  1 TcRo^
                         N
                                               -TCP
                                                Cr
       • F  I  TE • ZB
           TC-3B
                                                     TCP
  ^46
           -r-  •s'=s,
  b 49 -TV
                                               X'CP  ft>r   Cr-
             re-
    So
                  ST       T-V—i rv-*<-  >  -r/-p
                  ,— IsPUT  -U-i-1 V	I     Z  JL_v_ I
                                                              Cr
              I •- . a K
              t <—   i *—^
                                   r /JfiDt4l
  G,
         TE -4
                B  TH^UDU
                                                Cr
    SZ-F
              ,4B
                             c IB
                                             TE
                       B~74
                 T£)
                                        VOLUMCD.  TH6
                                                                 . TW
                                                                 J -Ri
                                                                     UJftS
                                                                or ,

-------
                       REQUEST'-" FOR ANALYSIS
PURCHASE
ORDER *
                                             PAGE  4   OF
                      "R
                        im
                                     BASIS
    53
     TE- 5B
                                        X5J.
    54
      E • 5B
                                               it
    55-K
     TE • 5B
                                     "RFSitauE
TCP
Ci
 G,  57
       E' GB
             Tt
             TE • 7B
                                        aoH
             T£- IB
               FRONT -'/2.
                                                       ,(
             TE-75
                FRI
                                                       / 1
             TE- 7B
 e,
      T£ -IB
    (.3
     T€ • S B
                                                      XCP FOR
                       Ftowr VT. Rtw&F
              TE - 8 B   P*IT
                                   KiaOH
                                               ; /
        -X  TE • B B  16,tfts& FICTC^.
                                                XCP
                                                     Cr
 (q
• F
             TE -9B
                                            i  XCP  FOR
X/G,  G6
             TE. 9B
                                              n
             TE.9B
               pen-
    70 -"
      TE
                                                 XC° For
  & 10. F
      Tt
     7/
          IO

                                                                 Cr
     7Z
      "E -IOB i FEOUT Yz. Riwsr
             T£T • lOB
j$ 74 -Xl
^74-F I
TE -IDB
Tr • IDB
fcuRSS FU.TE5S. "Rescue-
e,L.BSS FCLt^nTe
XCP for Cr
Cr"^
                                   -75

-------
                       BEQUEST FOR ANALYSIS
PURCHASE
ORDER *   3503>
                                       PAGE
                                                OF
                      "R
                        im
                                B AS 15
    75
TE- MB
                                 6V"
    7-7
    76-R
    79
                     FRONT !2,
                     WaOt-i
Tt • !! 3  i G,L«SS
                                  ITCP
    81
  Q 8Z-F
    54
    65
     6(0 •
    67
     85
    69
v/G
  (S, 90.
  b Qj
    92.-
  £ ?3
 TE • IZB
                                      ICP  per  C<"

                                                   /r
     12-B
             -r-- 1-
             j CT- i *
                     AJ&oH
 TE, 13 B
            IT Vz
 Tc. • 13 B t FRrr
    Sfe-^   TE-I3B
                                             XCP
                                              Or
                                        icP
                                    CP  For   Gr
   c"- M B
                      AlouOM
     ^  XCP
          FRcw-r '/z R.iusr   MuOHJ
 Tc" • M B i ^err
                                  XCP
         !  bu^ss
                    i crk
 flQ •
                        WoDt-
) ) y^J}  GtJ(t*,
<-
 no-
 MC • Z
                      AjaOh
            no
         ! TE-
    Q
  G, 94
    . 3
                                  B_?6

-------
                     REQUEST FOR ANALYSIS
PURCHASE
ORDER f  35O3
                                                 PAGE
                                             OF
           "Ruw •*=
                                                           "yt>rf-
 G,  98
    99
                                                   (D
    100
            no-sA
     0!
            no- SB
            AID- 55   FROKT
                                                   n
    103
.10-55  (RUT
                                 KiaGt4
x/G IO4-R I  «C>. 55
                                            XCP
    104- F    MO-SB
    IDS
                                                           Cr
                                             X CP Foe.  Cr
  G
   ,
             MO
     107
              /10-(p5
t CrH" 4 rcP
                                               Cr
     06
             MO. GB  FRDKT- l/2. T5LIMSE
                     FRiT
      o-R
                      &uft£S Pt
                                TCCTP
     IIO-F    MO-
                      G,
                                                 ICP
            /10- 7A   TTFuDKi
                      TcRDK
                                                  Cr
                                                    -
            MO. "75
                                                   TCP   FDT C>
            MO- IB  FTO«T '/z
     ns    !  MO.IB
                                Msd^j
 G, Ufc-F 1   HO -IB
                                B-77

-------
                          REQUEST FOR ANALYSIS
  PURCHASE
  ORDER *
                                                PAGE  "I  OF
   G
   G,
 s
    G, M
    G
    6  IZ3
4
       1*23
   G
       13
                         "Run -
       MX
           • z
              Ml- 3
                  *
                           ^LDSi
       MI • 4
[24   \ ni • 4   i TcTLDKi Pn
   UT'l'LS   1&.AMK TCFJLON  P
               Hfc
                                        BASIS
CD
                                                          r€)
                        TAWK
    /""*
     G,  135
                                                         ft/
                                                           iff ***** #4,
                                                                O.S
! 1
G 132. CpAl i TAM£ , Asior^
G, 133 GAZ
b i'34 6 AS
G IBS GA4
! TANK , Awcycc"
i TANK, , AWOT>£"
1 TAWK , .AKIDD=
< i
H
j«
;/
                                                                     §
                                                                     e ^
                                                                     d 3
                                                                     3 o

           PROM
                                    B-78
                          CrPa"Tr^/-'\m%r

-------
                         REQUEST FOR ANALYSIS
PURCHASE
ORDER j    35O3
                                                         PAGE  &  OF
SAMPCE*
f%UKl ^^
KUH ziX;
BASIS

G, 139

G NO
(*>B4-

£>C I
TA^K, , "BATH

TAHK , CATHCTOE
C^/ , -^ ** f* s
r*** -f-j~cP Jw-Cf

n
Gi 142.
(q 43

e

/'
//

            I5.IB
                          1ST
  G,  H5    is-IB
            S3-16
             s-ie
            13-18
              3-2.5



*,'
W
G,
G

'G
^
ISO
15f

152.
153
3-1^
3- W

3-25
3-ZS
i^

1
B ES JNMIWC wiOB
MIDDLE" 14 -'OS
I/
f/

"
/'
V^_IB.
                       jSCRuBSGR
                                    B-79

                              r -T- r> ^\ r>\ r

-------
                       REQUEST FOR ANALYSIS
PURCHASE

ORDER j   35O3
                                                    PAGE  P   OF
                                            BASIS
            MO. 5
                                                    ~hJ-C
                                 SJ
                                                  FOR.
                                                              Cr
            no. s
                                z-d
            MO- Si
                                *-r f C
            MO- Si
                                i to
                                                      n
            MO-SI
                                5*
*
            MO- Si
             MO-S
                                                       i (
             MO- Si
                                                       ,/
             MO- SI
                                6F
                                                        n
            MO- Sz.  ?Acr. size neaurrge.
                                                    XCP
            no- sz

                                 SJ

            MO • SZ
                                2 &
            MO- SZ
            MO-SZ
                                                       n
               ' SZ
      12.
MO -52.
» «• g!5
" " SF

/10 • S3 IPABT £>rz«: TRsicnttL "Rs ws£T
/x
y,

Cr^fc i XC? FO^ C r-
               - SB
                                JST  STAG^
                                                 Foe-

                                                      n

     11 Y~? \ HO - S3
VxC
            MO- S3
                                                      if
            MO-  S3
                                                      if
            MO-  S3
                                 B-80

-------
                         REQUEST FOR ANALYSIS
PURCHASE
ORDER  *    35O3
                                                        PAGE  10  OF
 UiT
                                                                   = t
Uq 184< £
u£r l£5<5

MO- ^3 | - gt^
MO- S3

Sf


/ •


             All • 5(    P/ORT Size 7E.ECWTBC,
                                              Cf ^^  ?  33CP
                                             i
                                            *™'
             MI-  5
                                    7*
                                           "
             All' S
                                     SF
                       PART Site
                                        EiuSE"
      i XCP
\J/^" 1 Qf^^r flT • *> 1
v^j i cj'«_i \ p i ; i j_ O 1
i£r i89- $i*
i^^^" ] yO\ p
iGs /^KF
u^ !9z.
-------
REQUEST FOR ANALYSIS
PURCHASE
ORDER I   35O3
                             PAGE
OF  11

SAMPLED
KUK,^
Ku^4 — 3i
BASIS

usr 209
US'" ZiCKf
Ig"' Z Me f
< 2.'*£
UgTz.'3-l
MI' 53
HI -S3
AIT -S3
HI-S3
,M I • SS
L^'' 2. ) ^xp| M I • S3
tg^ Z.'5<|| ,M J. 53
/
P/^ET S!^E 3 - ST«C,€
4^
5^ ,.
fe- ,.
71* ,
gra „
SP= "

\% ZlCdxJ? &LAHC. TAE.TC4_r S1Z.IWC, PiLTERS
Q^ *•'*• k ic.P FO«2U (2_,r
I g£^»tooE. PO2, V£-P Foe-C»'
^ >L-T^^uJT^ P<3Z« C^'*'*
( ,
./
/,
/ )
»l

4

j




[



I





















i


1
I I


           B-32

-------
    ,    c*-***  y
JU/A--—^-— MOT -
                  Cr
                    +6
  Cr  (ICP1 DATA,  GREENSBORO  INDUSTRIAL PLATERS

  >^A*ft»* L~


±Cfi&L&^,$_

-------
B-84

-------
\M
\«" £-77
5- 7*
7?
^1" ! £t>
fY
s- ; f z ,
i n
<^ I rf;
rr
H «
(i® f7
/Oi **
# 1 ^
 \ L y&
5 ?f
/V'° ( /&&
:.._-V -/"/-..
Hl A_ /"*-,
^0?
	 1 / ^ >
..._5o.._. V ^ Oy
MDbA- \ ^ r_f~
(To |/« £
; 	 _...)_/* 7.
^ou«> f /^>
5o /*f
\ IS '
^ SQ_V ./y

i MDTf s. ///
i )
j SQ \ f/L
! /^
i MO ife 1 -// /

L _ I//-'/
B5" *.«/?-
ro ^. ^ 7
54,7 ?/^^
IIS" ;^/ o*
35- t>,o*7
fro ' /, P f
-x- ( /
385" o.oi>
5T£> A 5"»
3*)^ A;Z>
O6, /r.ty
ZO5" A^ />_
5~c c,f4
s;or- /, ^>

c*o -
._ rs^ /• ?4..
no
/ D f^ n 9 / (/
to B 57 ° • f i " „

o
Sis' / . ? /

'
38s- z.t*/
<4o ;J £>
.. 3SfT _ *>/>_
_/3o ! s".v£
/So i^'^

5"£> ! o. / 7*
5"3s^ t.rf
. J"^ . [ £>. 2 r $
_3S5T^. ! ti.oi'j
i 5"5- /

5?r" /, 7^

5^ A^P
V9^ ^^^

LJio ^r^jf
/,6i. ^.OZ :
7 v s ?-.. « s n /7 -i
_; IBaO i ol. '<
>• ' i " '
yi. ? ,.;^.oz.
_ SJo._.. o.oa_.
733 ^3^7F
/. 7 D. 0&

; < / 	 ^Q^

foon Al?

<• / )  2%. Q j O. Ofo

: 7tT£..£
5" -\
.5/0
. LSL34

^2.' °
^ £97
£. /
^^. 7...-
..7^7._
^3

Ha4
/f&o

-------
.£	42
                B-86

-------
TCP ,
                              .i-K

-------
            Vet
                   3 .
                          12"?
L  I

S/

\*
_ C*
_ 4
              u

                   0.17
                   «•
       /.*?
_,r"_
/
l_
 J._mj

 '5^^
                         70,
                                      /<*._/
                                       T9.
                                      /I/
                   fi.._2=
       J^TX
               \o^
                          2Z  AW
  r
/
       t/2.
       ..2V 7-
       -VJ
              >!/•
                  _.;,.
                   0. ¥0
      _-^£

-------
                          WET CHEMICAL ANALYSIS SHEETS
DATE RECEIVED:       $ / / 6 / 8 £>        DATE ANALYZED
                        /    /

ANALYST: 	^AW?f 
-------
                                                     ATCM 1C SPECTROSCOPY ,,
                                                       SAMPLE ANALYSIS
RTI No. Client Absorbance^ In tensity
t,, r _f.
c~-n ' T?
G- 5"
Test Test XrU?
Solution Solution Dilution Analyte Sample
Mean Cone, Volume Factor Quantity Volum^Mass
2, -I**' ('~' L< -2 } S
f. (f ^~ /$$ / (, ^
/.'/'/ 100 1 f'/
Final
M
Sample/
Concentration



c-w AST /00 /£**
^ .i-*i " (^"'
i ~7 «•>' > -Z (


/ / "7
/ -
r //

-------
          NUCLEAR  ENERGY SERVICES
                    ACTIVATION ANALYSIS REPORT
CLIENT Dr. William G. DeWees
Entropy Environmentalists, Inc.
_ Box 12291
Research Triangle Park, N.C. 27709-2291

P. O. No.
Report No.
Date of Report
Phone

03-4336-01
333240-1
4/22/86
781-3550
EXPERIMENTAL PARAMETERS
       18 Hr.  Irradiation
       Monitored Decav
       13    2
1.5 x 10 n/cm -sec.
       1500 Sec. Counts On An Ortec 35% GeLi Detector Coupled To An ND6620
       Computerized Gamma Detection System
ANALYSIS RESULTS
                        DATA TABLE ATTACHED
                               issued by:	
                                     /^Jack N. Weaver
                               B-91     Head, Nuclear Services
     LOCATED AT;
     NUCLEAR

-------
                               TABLE 1
                 NAA Of Cr In Filters And Solutions
       Sample Description
              G93
              G94
              G95
              G96
              G91
              G92
              G97
              G98
              G99
              G100
              G117
              G118
              Gil 9
              G120
              G121
              G122
              G123
              G124
              G125
              G128
              G129
          NBS SRM 1084
          NBS SRM 1084 -
          NBS SRM 1572
          NBS SRM 1575
          NBS SRM 1575
                         ugrams Cr/sample
                           1.634 ±  5.1%
                           1.451 ±  4.2%
                           0.988 +  9.5%
                           0.352 ±  8.8%
                           0.941 ±  9.8%
                           1.839 ±  2.5%
                           1.742 ±  6.4%
                           0.294 ± 14.7%
                           1.844 ±  4.6%
                           0.591 ±  9.6%
                           5.931 +  1.9%
                           1.314 ±  3.7%
                          11.946 ±  1.2%
                           0.380 ± 12.5%
                           5.788 ±  1.8%
                           0.371 ± 12.6%
                           8.774 ±  1.5%
                           0.276 ± 15.0%
                           0.261 ± 20.0%
                           0.063 ± 20.0%
                          20.691 ±  0.5%
                   102.25 ppm
                   102.33 ppm
                    0.807 ppm
                    2.580 ppm
                    2.630 ppm
{100.0  ±  3.0  ppm)
(100.0  ±  3.0  ppm)
  (0.8  ±  0.2  ppm)
  (2.6  ±  0.2  ppm)
  (2.6  ±  0.2  ppm)
NOTES:  (1.)
        (2.)
The values shown in brackets are the certified or best
known values for Chromium in these NBS Standard Reference
Materials analyzed together with these samples.
The Chromium Standards used in this analyses are Environ-
mental Protection Agency Standard No. SPEX Ind., NCSL-1,
Lot No. 182.
                                  B-92

-------
                        NOTES Continued
(3.)   Other elements easily detected in the filter samples were
      Hg,  Cd,  Sb,  Br,  Na,  Ni,  Co,  Fe,  Se,  Zn,  and Sc.

(4.)   A longer decay time  to allow high Na-24  gamma activity to
      decay would  provide  lower error  limits on the Cr results.
                              B-93

-------

-------
            APPENDIX C




SAMPLING AND ANALYTICAL PROCEDURES
               C-l

-------
C-2

-------
                DETERMINATION OF HEXAVALENT CHROMIUM EMISSIONS


     Samples were collected using an EPA Method 13-type impinger train, and
Method 5 sampling procedures, as described in the FederalRegis ter* or
particle sizing equipment (see section on "Determination of Particle Size
Distribution"),  These samples were analyzed for hexavalent chromium using
the tentative method "Determination of Hexavalent Chromium Emissions from
Stationary Sources" (dated December 13, 1984) by digesting in an alkaline
solution and assaying with the diphenylcarbazide colorimetric method.


SAMPLING APPARATUS
     The EPA Method 13-type impinger train used in these tests met design
specifications established by the EPA (see Figure C-l).  The sampling
apparatus, which was assembled by Entropy personnel, consisted of the
following:

     Nozzle - Stainless steel (316) with sharp, tapered leading edge and
     accurately measured round opening.

     Probe - Borosilicate glass with a heating system capable of maintaining a
     minimum gas temperature of 121 C (250 F) at the exit end during sampling.

     PitotTube - A type S pitot tube that met all geometric standards was
     attached to a probe to monitor stack gas velocity pressure.
 *43 FR 11984, 3/23/78  (Method 5) and 43 FR 41852, 6/20/80  (Method 13)
                                      C-3

-------
 Nozzle
                                           Pltot tube
                                           ProBe
                                           Thermocouple
                                                              Temoeratura
                                                          I   Indicator
                    Hiatid Probe •
"S" Type-
Pilot TuOe
                Thermocouple (oemnd)
        Stack Wall
                                      ttagnaha I i c® Gauges
                                Filter Holder
                                With Teflon
                                                Thermometer
                    09  Tfl  OS
_ ,._    Jm ,
Caliorsted Orifice
                     — 7
                               Thermometars
                                h\     G\
                                       Flow Control Valves
                                                   fin*
                                               aves —7   ..
                                               .      /   Vacuum
                                               ir"          Gauga
    I °\  '51 P\ 21°\ 10I
       Mognene lie*8 Gauges
                 Figure C-l.   Method 13-Type Ifflpinger Train,
                                       C-4

-------
     Temperature Gauge - A Chromel/Alumel type-K thermocouple was attached to
     the pitot tube, in an interference-free arrangement, to monitor stack gas
     temperature within 1,5 C (5 F) using a digital readout.

     Filter Holder - The filter holder was made of Pyrex glass.

     Filter - A nominal 85-mm (3-in.) diameter Teflon filter was used.

     Draft Gauge - The draft was measured with an inclined manometer.

     Impingers - Four Greenburg-Smith design impingers were connected in series
     with screw-type connectors.  The third and fourth impingers were modified
     by removing the tip and extending the tube to within 1.3 cm (0,5 in.) of
     the bottom of the flask.

     Metering System - The metering system consisted of a vacuum gauge, a
     leak-free pump, thermometers capable of measuring temperature to within
     1.5 C (5 F), a calibrated dry gas meter, and related equipment, to
     maintain an isokinetic sampling rate and to determine sample volume.

     Barometer - An aneroid type barometer was used to measure atmospheric
     pressures to 0.3 kPa {0.1 in. Hg).

SAMPLING PROCEDURES
     After the sampling site and minimum number of traverse points were
selected, the stack pressure, temperature, moisture, and range of velocity head
were measured according to procedures described in the FederalRegister.*
     Approximately 200 grams of silica gel was weighed and placed in a sealed
impinger prior to each test.  One hundred (100) milliliters of 0.1N sodium
    FR 11984, 3/23/78 (Methods 1-5).
                                      c-5

-------
hydroxide (NaOH) was placed in each of the first three impingers; the Teflon




filter in the filter holder followed by the third impinger; and the fourth




impinger containing the silica gel was placed after the filter.  The train was




set up as shown in Figure C-l.  The sampling train was leak-checked at the




sampling site prior to each test run by plugging the inlet to the nozzle and




pulling a 50 kPa (15 in- Hg) vacuum, and at the conclusion of the test by




plugging the inlet to the nozzle and pulling a vacuum equal to the highest




vacuum reached during the test run.




     The pitot tube and lines were leak-checked at the test site prior to each




test run and at the conclusion of each test run.  The check was made by blowing




into the impact opening of the pitot tube until 7-6 cm (3 in.) or more of water




was recorded on the Magnehelic® gauge and then capping the impact opening and




holding it for 15 seconds to assure it was leak-free.  The same procedure was




used to leak-check the static pressure side of the pitot tube, except suction




was used to obtain the 7-6 cm  (3 in.) H?0 manometer reading.  Crushed ice was




placed around the impingers to ensure that the temperature of the gases leaving




the last impinger was at 20 C  (68 F) or less.




     During the sampling, stack gas and sampling train data were recorded at




each sampling point and whenever significant changes in stack flow conditions




occurred.  Isokinetic sampling rates were set throughout the sampling period




with the aid of a nomograph or calculator.  All sampling data were recorded on




the field data sheets.








SAMPLE RECOVERY PROCEDURES




     The sampling train was carefully moved from the test site to the cleanup




area.  The volume of reagent from the first three impingers was measured, and
                                      c-6

-------
the silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:

     ContainerNo.1 - The Teflon filter was removed from its holder and placed
     in a petri dish and sealed,

     Container No. 2 - After being measured, the contents of the first impinger
     of the sampling train were placed in a glass or polyethylene container.
     The impinger was rinsed with 0.1N NaOH and this rinse added to the
     container.  All sample-exposed surfaces prior to the first impinger
     (including the nozzle, probe, filter bypass, and glass "L") were rinsed
     with 0.1N NaOH and these rinses were also added to the container.  The
     probe was brushed while rinsing to remove any adhered chromium,

     Container No. 3 - After being measured, the contents of the second
     impinger were placed in a glass or polyethylene container.  The impinger
     was rinsed with 0.1N NaOH and this rinse was added to the container.

     Container No. 4 - After being measured, the contents of the third
     impinger  were placed in a glass or polyethylene container.  The impinger
     and the front half of the filter holder were rinsed with 0.1N NaOH and
     these rinses were added to the container.

     Container No. 5 ~ A minimum  of 200 mL  of 0.IN NaOH was taken for blank
     analysis.  The blank was obtained and  treated in a manner similar to  the
     impinger rinsings.

     Container No. 6 - An unused  Teflon filter was taken for blank analysis.

Data was recorded on the appropriate sample recovery and laboratory data
sheets.
                                       C-7

-------
SAMPLE AND REAGENT PREPARATION
     Samples for analysis and reagents were prepared as described in the
Following subsections.
Reagents
     All reagents conformed to the specifications established by the Committee
on Analytical Reagents of the American Chemical Society.  In all cases, the
water used was deionized and distilled and met the ASTM specifications for
type 2 reagent - ASTM Test Method D 1193~77«  Solutions were made as follows:
     Digestion Solution - 20.0 g of NaOH and 30.0 g anhydrous Na?CO, were
     dissolved in water in a 1-liter volumetric flask, and this solution
     diluted to the mark.  It was stored in a tightly capped polyethylene
     bottle and was prepared fresh monthly.

     Potassium Bichromate StockSolution - 141.4 mg of analytical reagent grade
     K~CroO_ was dissolved in water, and this solution diluted to 1 liter
      £.  £ {          f
     (1 mL = 50 ug Cr  ).

     Potassium Bichromate Standard Solution - 10.00 mL of K^Cr-0^
     stock solution was diluted to 100 mL  (1 mL = 5 ug Cr  ) with water,

     Sulfuric Acid - A ten percent (v/v) solution was made by diluting  10 mL
     H-SQj. to 100 mL in water.

     Acetone - Same as Method 5-

     Diphenylcarbazide Solution - 250 mg of 1,5~diphenylcarbizide was dissolved
     in 50 mL acetone and stored in a brown bottle.  The solution was discarded
     whenever it became discolored.
                                      c-8

-------
Sample Preparation




     To prevent the possibility of sample deterioration, all samples were




protected from extreme heat, were kept dry, and were analyzed within one month




of collection.  Sample preparation procedures varied depending upon whether the




sample was a filter sample, impinger sample, or process sample.




     Filter sample preparation involved digestion and filtration.  The contents




of Container No. 1 (the Teflon filter) was cut into small pieces and put into a




beaker; digestion solution  (40 mL) was added and the beaker covered with a




watch glass.  Using a hot plate, this solution was heated to near boiling with




constant stirring for 30 minutes; it was not allowed to evaporate to dryness.




The solution was then cooled and transferred quantitatively to the filtration




apparatus with water.  This apparatus consisted of a vacuum unit constructed of




plastic or glass accomodating a 47 mm diameter, 3-0 urn pore size Teflon




filter.  The solution was filtered and transferred quantitatively to a 100 mL




volumetric flask which was  then filled to  the mark with water.




     Impinger samples were  prepared by two different techniques.  For the




standards setting tests (runs MO-1 through MO-4 and MI-1 through MI-4), each




sample was initially filtered.  The filtered residue was analyzed for total




chromium using Neutron Activation Analysis (described in the section on Total




Chromium Determination) and the filtrate was analyzed for hexavalent chromium




using the tentative method  for hexavalent  chromium.  The total chromium results




were then calculated by summing the results for the hexavalent chromium in the




filtrate and the results for the chromium  in the filtered residue.  For all the




methods development tests,  two aliquots were taken from each impinger sample.




One unfiltered aliquot was  analyzed for hexavalent chromium by the tentative




method described previously; the other unfiltered aliquoted was  analyzed
                                      C-9

-------
directly for total chromium using Inductively-Coupled Argon Plasmagraphy




(ICAP) .   The use of ICAP for analysis of total chromium in the method




development samples was not as accurate as NAA; however this technique was used




for a time and cost savings.




     The liquid process samples were not filtered.  They required significant




dilution prior to analysis by the diphenylcarbazide eolorimetric method.  For




the tank and demister rinse process samples, 1 mL of the sample was first




diluted to 100 mL in a volumetric flask using deionized distilled water.  Then,




depending upon the concentration of chromium in the particular sample, 1, 5.




and 10 mL aliquots of the diluted sample were diluted to 100 mL with deionized




water in another volumetric flask.




     To serve as blanks, (1) a representative amount of 0.1N NaOH and  (2) an




unused Teflon filter were prepared in the same manner as the samples described




above.  The spent silica gel was weighed to the nearest 0.5 g using a balance.








SAMPLE ANALYSIS




     Analysis of the samples involved four basic elements:  (1) color




development and measurement, (2) a check for matrix results on the Cr
results,  (3) calibration of the spectrophotometer , and  (4) calculation of the




results .




Color Development and Measurement




     An aliquot of the prepared sample 50 mL or smaller was  transferred  to a




100 mL volumetric flask and diluted with sufficient water  to bring  the volume




to approximately 80 mL.  The pH was adjusted to 2 +_ 0.5 with 10 percent  ELSOj.,




2.0 mL of diphenylcarbazide solution was added, and this solution diluted to




volume with water.  The solution then stood about 10 minutes for color



development.  For each set of  samples analyzed, an identical
                                      C-10

-------
aliquot of reagent blank solution was treated in the same way.



     To measure, a portion of the sample was transferred to a 1-cm absorption



cell, and the absorbance read at the optimum wavelength as determined during



spectrophotometer calibration.  After each sample measurement, the reagent



blank absorbance reading, if any, was subtracted to obtain a net reading.  If



the absorbance of the sample exceeded the absorbance of the 100 ug Cr



standard as determined during calibration, the sample and the reagent blank



were diluted with equal volumes of water.



Check for Matrix Effects on the Cr*  Results



     Since the analysis for Cr   by colorimetry is sensitive  to the chemical



composition of the sample (matrix effects), at least one sample from each



source was checked using the method of additions as follows:



     Two equal volume aliquots of the same sample solution were taken; each



contained between 30 and 50 ug of Cr   (less if that was not  possible).



One of the aliquots was spiked with an aliquot of standard solution containing



30 to 50 ug of Cr  .  Then both the spiked and unspiked sample aliquots were



readied for measurement as described in the previous section.



     The Cr   mass, C , in ug in the aliquot of the unspiked  sample solution
                     s


was then calculated using the following equation:
                                                     Equation C-l
               C  = C
                s    a
                         A  - A
                          t    s
Where:
    C  = Cr   in the standard solution, ug.
     a

    A  = Absorbance of the unspiked sample solution.
     S

    A  = Absorbance of the spiked sample solution.
     O
                                      C-ll

-------
    Volume corrections were not required since the solutions as analyzed were




made to the same final volume.  When the results of the method of additions




procedure used on the single source sample did not agree within 10 percent of




the value obtained by the routine spectrophotometric analysis, all samples from




the source were reanalyzed using the method of additions procedure,








SPECTROPHOTOMETER CALIBRATION




    Calibration of the spectrophotometer involved two basic sets of operations




and these are described below.




Optimum Wavelength Determination




    Every 6 months, the wavelength scale of the spectrophotometer was




calibrated using an energy source with an intense line emission or a series of




glass filters spanning the measuring range of the spectrophotometer.  The



spectrophotometer was checked to see that the wavelength scale read within




+5 run at all calibration points.  After confirming that the wavelength scale




ofthe spectrophotometer was in proper calibration, 5^0 nm was used as the




optimum wavelength for the measurement of the absorbance of the standards and




samples.




    In some cases, a scanning procedure was employed to determine  the proper




measuring wavelength.  For both the blank and a 50 ug Cr   standard solution,




the spectrum was scanned between 530 and 550 nm.  The optimum wavelength was




chosen as the wavelength at which the maximum difference in absorbance between




the standard and the blank occurred.








Spectrophotometer Calibration




    To calculate the spectrophotometer calibration factor, 0.0 mL, 1 mL, 2 mL,




5 mL, 10 mL, 15 oL, and 20 mL of the working standard solution  (1  mL = 5 ug
                                     C-12

-------
Or* )  were added to a series of seven 100-mL volumetric flasks.  These
calibration standards were analyzed as described in the section on color
development and measurement.  The calibration procedure was repeated on each
day that samples were analyzed.  The spectrophotometer calibration factor, K ,
was calculated using the following equation:
              A, + 2A0 + 5A_ + 10A,. + 15AC + 20A.,    Equation C-2
               1     d.     3      H      D      O
         _ C  __ _ _ __ «••« _w _ WM_ *• _ — .»_ n_ » MV M— Ml M w««— n M
              A2   A2   .2   .2   .2   .2
              Al  * A2  + A3  * A4  * A5  * A6
Where:
    K  = Calibration factor,
    A1 = Absorbance of the 5 ug Cr   standard.
    A_ = Absorbance of the 10 ug Cr   standard.
                                    /-
    A  = Absorbance of the 25 ug Cr   standard.
    AK = Absorbance of the 50 ug Cr   standard.
    A  = Absorbance of the 75 uf Cr   standard.
    A/- = Absorbance of the 100 ug Cr   standard.
     o

Spectrophotometer Calibration Quality Control
    The absorbance value obtained for each standard was multiplied by  the
K  factor  (least squares slope) to determine the distance each  calibration
point was  from the theoretical calibration line.  To maintain quality  control,
it was assured that  these concentration values did not  differ from the  actual
concentrations  (i.e.,  5, 10, 25, 50, 75,  and  100 ug Cr   )  by more  than  7
percent  (to be determined)  for  five of the  six standards.
EMISSION CALCULATIONS
    All emission  calculations were done  retaining  at  least  one  extra decimal
figure beyond that of  the  acquired data.  Figures  were  rounded  off after  final
calculations.
                                     C-13

-------
Total Cr*  in Sample
     The total ug Cr   in each sample, m, was calculated as follows:
                  100 K  AF             Equation C-3
                       c
              m =	
                     v
                      a

Where:
     100   = Volume in mL of total sample.
     A     = Absorbance of sample.
     F     = Dilution factor (required only if sample dilution was needed to
             reduce the absorbance into the range of calibration.)
     v     = Volume in mL of aliquot analyzed.
      a

Average Dry Gas Meter Temperature and Average Orifice PressureDrop
     The average dry gas meter temperature and average orifice pressure drop
was calculated as described in Method 5.
Dry Gas Volume.Volume of MaterVapor, Moisture Content
     The dry gas volume, volume of water vapor, and moisture content was
calculated as described in Method 5«
Cr   Emission Concentration
     The Cr   concentration in  the stack gas, C   (g/dscm) , dry basis,  corrected
to standard conditions was calculated  as follows:

        Cg =  (10"6g/ug)  (m/V)                           Equation C-4
Isokinetic Variation, Acceptable Results
     Isokinetic variation and acceptable results were calculated as described
in Method 5-
                                     C-14

-------
                    DETERMINATION OF TOTAL CHROMIUM CONTENT



     Samples were collected using an EPA Method 13-type impinger train and

Method 5 sampling procedures as described in the Federal Register* or particle

sizing equipment (see section on "Determination of Particle Size

Distribution"),  These samples were prepared and then analyzed for total

chromium content using Neutron Activation Analysis (NAA).  This was done

following the procedures in the "EPA Protocol for Emissions Sampling for Both

Hexavalent and Total Chromium," dated February 22, 1985.**



SAMPLING APPARATUS

     The sampling train used in these tests was the same as described in the

previous section, "Determination of Hexavalent Chromium Emissions".  No

sample-exposed stainless steel or chrome-plated equipment was used with the

exception of  the sample nozzle.  Teflon filters were used as backup filters and

paper filters were used for particle size testing.  These trains met design

specifications established by the U. S. EPA and were assembled by Entropy

personnel.



SAMPLING PROCEDURES

     The sampling procedures were performed as described in the previous

section, "Determination of Hexavalent Chromium Emissions" (or as described in
 *M3 PR 11984, 3/23/78  (Method 5) and 43 FR 41852, 6/20/80  (Method 13).

**For Chromium Screening Study ESED No. 85/02 and 85/02a, U. S. Environmental
  Protection Agency, Emission Measurement Branch, Research Triangle Park,
  North Carolina.

                                      C-15

-------
the section on particle size determination sampling procedures).   All sampling
data were recorded on the field data sheets.


SAMPLE RECOVERY PROCEDURES
    Following sample recovery, all samples were kept dry, protected from extreme
heat, and analyzed within one month of collection.


SAMPLE PREPARATION
    In the case of the filter samples collected using the EPA Method 13-type
impinger train, they were analyzed first for hexavalent chromium content (as
described in the previous section) and then for total chromium content using NAA.
    For the impinger and process samples, two sample preparation techniques were
used.  The standard setting samples were filtered and the filtered residue was
analyzed by NAA.  The total chromium results were then calculated by summing the
results for the total chromium in the filtered residue and the hexavalent chromium
in the filtrate (see previous section on Determination of Hexavalent Chromium).
An aliquot of the methods development samples were analyzed directly for total
chromium by ICAP.
    All samples prepared for NAA were put into suitable sample vials which had
been properly prepared.  Procedures for this are described below.  The subsections
which follow describe the sample and blank preparation procedures used for the
various categories of sample states.
Sample Preparation Apparatus
    No chrome-plated or stainless steel equipment was used.  The following items
were also required:

    Analytical Balance - To determine weight of material submitted for total
    chromium analysis to within 0.1 mg.

                                      C-16

-------
     Polyethylene Sample Vials - Five (5)  nL size to contain samples submitted
     for total chromium.

     Teflon Spatula - To assist in sample transfer.

     Teflon Gloves - To be used for sample handling.

Preparation of Sample Vials
     For use in the analytical phase, sample vials were prepared in the
following manner.  All vials were initially cleaned with soap and water, rinsed
with tap water, soaked for 48 hours in a rinse solution of 1 to 1 (v/v) water
and concentrated nitric acid, and finally rinsed with deionized-distilled
water.  After the vials dried, each was marked on both sides with the
appropriate sample identification number using a permanent pen (water
insoluble).  All sample identification numbers, volumes, and weights were
recorded on the Sample Preparation and Analysis Data Forms.
Preparation and Analysis for Filter Samples
     Initially, the entire sample was analyzed for hexavalent chromium by the
EPA Cr   Method described in the previous section.  The sample residue  (Teflon
sample filter, filtration filter, and insoluble materials) for each run was
then transferred to a separate cleaned and marked sample vial,
     The filter blank consisted of the blank residue, a blank Teflon sample
filter, and a solution  filtration filter that had been prepared in the  same
manner as  the field samples.  This was transferred  to a separate cleaned/marked
sample vial.
     All samples were analyzed for total chromium in terms of ug of total
chromium per sample vial.
Preparation and Analysis for Impinger and Liquid Process Samples
     Initially, a representative portion of the prepared impinger or liquid
                                      C-17

-------
process sample (50 or 5 mL, respectively) was analyzed for hexavalent chromium




by the EPA Cr*  method.  For total chromium analysis, a separate representative
portion of the impinger or process sample  (1 to 5 ffiL ^d generally < 2 ml)




containing greater than 1 ug/mL of total chromium was transferred to a sample




vial for analysis.  Representative portions were taken according to EPA Method




160.2  (EPA-6GQ/4-79-02Q, March 1974).  No  sample blank was required.




Procedures to Reduce NAA Time




     For all samples that were placed  in sample vials, an estimate of the mass




of chromium was included on  the sample log to provide the NAA  facility with  the




information necessary  to select the proper sample irradiation  time and




strength.  When possible, all samples  were added to  the  sample vials in amounts




that ensured the  mass  of chromium per  sample was between 10  ug and 5tOQQ ug.




When the total chromium value was not  known, samples were prepared so that each




sample vial contained  between 5 ug and 100 ug of hexavalent  chromium.  These




procedures were followed to  allow all  known value samples to be irradiated at




the same time and strength.




     When the sample concentration was unknown or possibly could have exceeded




5,000 ug of total chromium,  such was noted on the sample log sheet.  A




preliminary run on the material was then made to estimate the  sample



concentration .




     When liquid  impinger or process samples or the  1.0  mL aliquot of the




filtrate from the hexavalent analysis  were below the 10  ug of  total chromium




value, total mass of chromium was recorded on the data sheet to allow these




samples to be irradiated separately for a  longer time and to allow for the



selection of a lower concentration standard.




Quality Assurance Sample Analysis



     One audit sample  was submitted with the field samples to  check the




analytical technique .
                                       c-18

-------
SAMPLE ANALYSIS



     Sample analysis for total chromium content was done using Neutron



Activation Analysis (NAA) and was conducted by the Department of Nuclear



Engineering at North Carolina State University in Raleigh.  In brief, NAA is



based on the determination of the number and energy of gamma and/or x-rays



emitted by radioisotopes produced in a sample matrix by neutron irradiation.



Quantitative analysis is obtained by comparing the x- or gamma-rays of the



sample with the number determined for a standard that has been subjected to the



identical irradiation.



     The samples  (prepared as described) were heat-sealed in the 25-mL



polyethylene vials.  Chromium standards were similarly sealed in identical



vials.  Sets of samples and standards were irradiated for a predetermined



neutron fluence.  They were then allowed to radiate for a minimum of 10 days



prior to analysis to eliminate possible inference from sodium and cobalt which



have short half-lives.  After this time, samples and standards were counted on



a solid state detector connected to a multichannel analyzer.



     Results were reported for samples in terms of total ug of chromium for the



sample.







CALCULATIONS



     Chromium emissions and concentrations were calculated as described below,



Emission Calculations for Hexavalent Chromium



     Hexavalent chromium emissions were calculated as described in the EPA



Cr   Method (see previous section).



Emission Calculations for Total Chromium



     The total chromium emissions, C   (ug/dscm), were calculated as follows:
                                    s
                                      c-19

-------
        Cs = (mr - mfc) + (mh) /                       Equation C-5
Where:
     C     = Stack gas concentration, g/dscm.
      S
     m     = Mass of Cr in residue and impinger samples, ug.
     m     = Mass of Cr in residue and NaOH blanks, ug.
     m,     = Mass of Cr in filtrate solution (Cr  ) minus blank, ug.
     V  ,   ,v = Volume of gas sampled, corrected to standard conditons, dscm.
      mlsta;
Note:  In some cases, the mass of Cr was calculated separately, for the
filter/rinse sample and impinger contents sample, or the masses of both samples
and both blanks were added to obtain the total concentration.
Calculation of Chromium in Solid Process Samples
     The chromium concentration in solid process samples, C  (ug/g), was
calculated as follows:
     C  = {m  - m, )/wt                           Equation C-6
      o     so
Where:
     C  = Concentration of chromium in process sample, ug/g.
     m  = Mass of Cr in process sample, ug.
      S
     m.  = Mass of Cr in blank sample (if applicable), ug.
     wt = Weight of sample analyzed, g.
Calculation of Chromium in Liquid Process Samples
     The chromium concentration in liquid process samples, C1 (ug/mL), was
calculated as follows:
     C1 = (mg/2) (Vf/V±)                         Equation C-?

Where:
     C1 = Concentration of chromium in liquid sample, ug/mL.
     m  = Mass of Cr in liquid process sample, ug.
     2  = 2.0 mL aliquot analyzed.
     V_ = Final volume if a sample is concentrated, mL.
     V. = Initial volume of sample concentrated, mL.
                                     C-20

-------
                 DETERMINATION OF PARTICLE SIZE DISTRIBUTION


     In-stack, multistage, cascade impaetors were used to collect samples for
particle size distribution measurements.  The following sampling and
analytical procedures were used.


SAMPLING APPARATUS
     The source sampling train used in these tests met design specifications
established by the U. S. EPA.  Assembled by Entropy personnel, it consisted
of:

     Nozzle - Stainless steel  (316) with sharp tapered leading edge and
     accurately measured round opening.

     Impactor - An Andersen Mark III with eight stages and a backup filter
     was used.  The Andersen impactor uses 6.4 cm (2.5 in.) diameter
     filters.  A right angle nozzle/preseparator was attached to the front of
     the impactor.

     Condenser - A moisture-removal device capable of maintaining a
     temperature less than 20 C (68 F) and an attached thermometer to monitor
     temperature.

     Temperature Gauge - A Chromel/Alumel type K thermocouple (or equivalent)
     was attached to the probe to monitor stack gas (impactor) temperature to
     within 1.5 C (5 P) using a digital readout.

     Metering System - Vacuum gauge, leak-free pump, thermometers capable of
     measuring temperature to within 1.5 C  (5 F), a dry gas meter
                                     C-21

-------
     with 2 percent accuracy, and related equipment to maintain an isokinetic
     sampling rate and to determine sample volume.  The dry gas meter was
     made by Rockwell, and the fiber vane pump was made by Gast.

     Barometer - An aneroid type barometer to measure atmospheric pressures
     to 0.3 kPa {0.1 in. Hg).

     Collection Substrate (Filters) - Schleicher & Schuell® #30 glass fiber
     filters heated 1 to 2 hours at 20zf°C (400°F) and desiccated 2*f hours to
     a constant weight.

SAMPLING PROCEDURES
     The stack pressure, temperature, moisture, and velocity pressure of the
selected sampling sites were measured with Method 5 equipment according to
procedures described in the  Federal Register*.
     Assembly of the Andersen Mark III involved starting with the solid filter
backup stage and then alternating the stage plates, collection media, and
Inconel spacer rings so as to provide eight cut-sizes (see Figure C-2).  The
collection substrates  (filters) had been heated to a 204 C (400 F) oven for 1
or 2 hours, conditioned in a dessicator for 24 hours to a constant weight, and
weighed to the nearest 0.01 mg on an analytical balance.  The preseparator was
threaded together and attached to the front of the impactor.
     The sampling train was  then assembled.  It was leak-checked at the
sampling site prior to each  test run by plugging the inlet to the impactor or
preseparator and pulling a 50-kPa  (15-in. Hg) vacuum.  Once the desired vacuum
was reached, the leakage rate was checked at the dry gas meter for 1 minute.
If the leak rate was less than 0.6 liter/min  (0.02 cfm), the train was
    FR 1198^4, 3/23/78 (Methods 1-5).
                                      C-22

-------
 Loading Sequence
                                     Ring Cross Section
 Ring
 *0 Stage
 Ring
 Lowest  #B  Filter
 #1 Stage

 Ring
 Lowest  #A  Filter
 *2 Stage

 Ring
 3rd Highest #B Filter
 *3 Stage

 Ring
 3rd Highest fA Filter
 *4  Stage

 Ring
 2nd Highest SB Filter
 §5  Stage

 Ring
 2nd Highest £A Filter
 #6  Stage

 Ring
Highest  #B Filter
 $1  Stage

 Ring
 Highest   IA Filter
 *8  Stage

 Ring
 Solid  Filter
 Extra  Stage
 Ring
0
J-l
JJ
0
o

0
•B
m
                              Short-edge
                             (goes  toward filter)
              Plate - Stage Holder Allignraent
                               Stage Holder
Notch
              Stage Holder
                                         Solid
                                         X-shaped
                                         Area
  Figure C-2,  Andersen  Mark III Cascade Impactor Loading  Sequence.
                               C-23

-------
considered ready for sampling.  Any excessive leaks were corrected before the



train was used.  The impactor was then placed at the selected sampling point



and allowed to preheat for several minutes before sampling began.  While the



impactor was preheating, the nozzle was capped or pointed away from the gas



flow,  A leak-check was not performed after the test run so as to avoid the



possibility of dislodging the particles on individual stages.
                                      C-24

-------
                              METHODS DEVELOPMENT
                  VARIATIONS IN SAMPLING TRAIN CONFIGURATION,
                      SAMPLE RECOVERY, AND SAMPLE ANAYSIS


     As part of the sampling program conducted at Greensboro Industrial

Platers, a number of methods development test runs were conducted using the

"paired train" sampling technique.  The paired train technique utilizes two

trains sampling simultaneously at the same point in the stack so that

comparisons may be made between the values obtained from the two trains; the

assumption is made that the two trains are sampling essentially the same

emissions.

     During the first week of testing, standards setting emissions testing was

conducted at the mist eliminator inlet and outlet using an impinger train

(backup filter between the third and fourth impingers) with 0.1N NaOH as the

impinger reagent.  It was designated "Train A" for the week of testing  (but

redesignated Train #1 for the purposes of clarity in this explanation).  The

train configuration and sample recovery and analysis is described in the

previous sections of this appendix.

     During the same week, paired train method development testing was

conducted at the uncontrolled exhaust duct of plating tank No. 5 using  (1) the

train described previously (Train #1) and (2) an identical train with the

substitution of distilled water for the 0.1N NaOH in the impingers (Train B for

•the week of testing, but Train #2 in this explanation).  Samples in the

impingers from Train #1 were analyzed separately to measure collection

efficiency; samples from  Train #2 were split (see Figure C-3) to study the

effect of addition of NaOH and sample standing time on the conversion of

hexavalent to trivalent chromium.
                                      C-25

-------
                                                  Combined Impinger Reagent
                                                          For One Run
o
!
fo
                                        Add
                                       NaOH
                    No
                 Additions
                        Analyze
                     After 28 Days
  Analyze
Immediately
   Analyze
After 28 Days
                                            Figure C-3.  Sample Splits for Train #2

-------
     During the second week, "paired train" testing was conducted at the




exhaust duct of tank No. 5 aiwi the mist eliminator outlet using two




additional trains.  The First of these, designated "Train A" for the week




(but redesignated Train #3 so as not to be confused with Train #1, also




Train A), was similar to the Train A (Train #1) used the first week.  The




difference was that 0.1N NaOH was used as the reagent only in the first two




impingers with the third impinger remaining dry.  The second train used




during the second week of testing, Train #4 (Train B for the week) had a




Method 5 train configuration with a glass fiber filter, 0.1N NaOH in the




first two impingers, the third impinger dry, and silica gel in the fourth




impinger.  See Table C.I for a tabular summary of the sampling trains, test




locations, and train designations.




     In general, methods development samples were collected using the




Method 5 sampling procedures described in the Federal Regis ter*.  One




important exception was that the paired train sampling was only conducted at




a single point within the duct since it was not necessary to obtain samples




representative of the actual emissions.  Other train-specific modifications,




configuration, and sampling procedures are described in the following




sections.  Samples collected were generally analyzed for hexavalent and total




chromium as described in the first two sections of this appendix.  Any




variations in sample recovery or analytical procedures required for the




specific methods development trains are also detailed in the following three




sections.







TRAIN 2: CONFIGURATION AND SAMPLE RECOVERY AND ANALYSIS




Sampling Apparatus andProcedures



     The EPA Method 13-type impinger train used met design specifications
  43 PR 11984, 3/23/78.



                                     C-27

-------
                                                      TABLE  C.I.   SUMMARY OF SAMPLING TRAINS USED
O
1
t-o
00

Date
3/18
3/18
3/19
3/19
3/24
3/25
3/26
3/26

Test Location
Tank 15 Exhaust Duct
Tank 16 Mist Eliminator Inlet
Tank 16 Mist Eliminator Outlet
Tank 15 Exhaust Duct
Tank 16 Mist Eliminator Inlet
Tank 16 Mist Eliminator Outlet
Tank 15 Exhaust Duct
Tank #5 Exhaust Duct
Tank 15 Exhaust Duct
Tank IS Mist Eliminator Outlet

Type of Testing
Methods Development
Methods Development
Standards Setting
Standards Setting
Methods Development
Methods Development
Standards Setting
Standards Setting
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Methods Development
Train
Dur i ng
Testing
A
B
A
A
A
8
A
A
A
B
A
B
A
B
A
B
Jeslgnatlon
In
Description
11
#2
»\
11
11
12
11
11
13
14
13
14
13
#4
13
#4

Implnger
Reagent
NaOH
H20
NaOH
NaOH
NaOH
H20
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH
NaOH

F 1 1 ter
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
Backup Teflon
M5 Glass Fiber
Backup Tef ton
M5 Glass Fiber
Backup Teflon
M5 Glass Fiber
Backup Teflon
M5 Glass Fiber

Number
of Runs
3 Paired
2
2
3 Paired
2
2
2 Paired
4 Paired
2 Paired
3 Paired

-------
established by the EPA,  The sampling apparatus was assembled by Entropy
personnel and was the same as that described in the section entitled
"Determination of Hexavalent Chromium Emissions",  Approximately 200 grams of
silica gel was weighed and placed in the fourth impinger.  One hundred  (100)
milliliters of deionized distilled water was placed in each of the first two
impingers; the third impinger was left dry; and a Teflon filter was placed in
the filter holder located in between the third and fourth impingers.


Sample Recovery^ Procedures
     The volume of reagent in the first two impingers was measured, and the
silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:


     Container No. 1 - The Teflon filter was removed from its holder and
placed in a petri dish and sealed.

     Container No. 2 - After being measured, the distilled water and moisture
collected in the first three impingers of the sampling train were placed in a
glass or polyethylene container.  The impingers were rinsed with distilled
water and these rinses were added to the container.  All sample-exposed
surfaces prior to the first impinger including the nozzle, probe, filter
bypass, and glass "L" were rinsed with distilled water and these rinses were
also added to the container.  The probe was brushed while rinsing to remove
any adhered chromium.

     Container No. 3 ~ A minimum of 200 mL of distilled water was taken for
blank analysis.  The blank was obtained and treated in a manner similar to
the impinger washings.

     Container No. 4 - An unused Teflon filter was taken for blank analysis.

                                     C-29

-------
     Container No. 5 ~ A minimum of 200 mL of 0.1N NaOH was taken for blank
analysis.

     As previously described, the combined impinger and rinse sample from
each run was initially split two ways and to one-half was added solid NaOH
(approximately 0.6 g to make the solution basic, as confirmed with litmus
paper).  Nothing was added to the other half.  Each of these two portions was
then further split resulting in a total of four split samples.  As shown in
Figure C-2, a portion of the impinger reagent with NaOH added and a portion
with nothing added were each analyzed immediately.  A second portion with and
without NaOH added was put aside and then analyzed after 30 days.


Sample Preparation and Analysis
     The impinger and filter samples were prepared for analysis and analyzed
for hexavalent chromium as described previously in this appendix in the
section on "Determination of Hexavalent Chromium Emissions" and analyzed for
total chromium content as described in the section on "Determination of Total
Chromium Emi s s i ons".


TRAIN #3:  CONFIGURATION AND SAMPLE RECOVERY AND ANALYSIS
Sampling Apparatus and Procedures
     The EPA Method 13-type impinger train used met design specifications
established by the EPA.  The sampling apparatus was assembled by Entropy
personnel and was the same as that described in the section entitled
"Determination of Hexavalent Chromium Emissions".  Approximately 200 grams of
silica gel was weighed and placed in the fourth impinger.  One hundred (100)
milliliters of 0.1N NaOH was placed in each of the first two impingers; the
                                     C-30

-------
third impinger was left dry; and a Teflon Filter was placed in the filter
holder located in between the third and fourth impingers.


SampleRecovery Procedures
     The volume of reagent in the first three impingers was measured, and the
silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:


     Container No. 1 - The Teflon filter was removed from its holder and
placed in a petri dish and sealed.

     Container No. 2 - After being measured, the 0.1N NaOH and moisture
collected in the first three impingers of the sampling train were placed in a
glass or polyethylene container.  The impingers were rinsed with 0.1N NaOH
and these rinses were added to the container.  All sample-exposed surfaces
prior to the first impinger including the nozzle, probe, filter bypass, and
glass "L" were rinsed with 0.1N NaOH and these rinses were also added to the
container.  The probe was brushed while rinsing to remove any adhered
chromium.

     Container No. 3 ~ An unused Teflon filter was taken for blank analysis.

     Container No. 4 - A minimum of 200 mL of 0.1N NaOH was taken for blank
analysis.

SamplePreparation and Analysis
     The impinger and filter samples were prepared for analysis and analyzed
for hexavalent chromium as described previously in this appendix in the
section on "Determination of Hexavalent Chromium Emissions" and analyzed for
total chromium content as described in the section on "Determination of Total
Chromium Emissions".
                                     c-31

-------
TRAIN #4:  CONFIGURATION AND SAMPLE RECOVERY AND ANALYSIS
Sampling Apparatus and Procedures
     The EPA Method 5~type impinger train used met design specifications
established by the EPA.  The sampling apparatus was assembled by Entropy
personnel and was the same as that described in the section entitled
"Determination of Hexavalent Chromium Emissions" with the exception that a
nominal J^-mm (3~in.) diameter glass fiber filter was used.  Approximately
200 grams of silica gel was weighed and placed in the fourth impinger.  One
hundred (100) milliliters of 0.1N NaOH was placed in each of the first two
impingers and the third iopinger was left dry.  A glass fiber filter was
placed on a clean frit in the unheated filter holder located between the
probe and the first impinger.


Sample Recovery Procedures
     The volume of reagent in the first two impingers was measured, and the
silica gel from the fourth impinger was weighed to the nearest 0.1 gram.
Sample fractions were recovered as follows:


     Container No. 1 - The glass fiber filter was removed from its holder and
placed in a petri dish and sealed and labeled.

     ContainerNo. 2 - All sample-exposed surfaces prior to the filter
including the nozzle, probe, and front half of the filter holder were rinsed
with 0.1N NaOH and these rinses were placed in a glass or polyethylene
container.  The probe was brushed while rinsing to remove any adhered
chromium.   The jar was sealed and labeled.

     Container No. 3 - The frit was washed with Q.1N NaOH and these washings
were placed in a glass or polethylene jar, sealed, and labeled.

                                     C-32

-------
     Container No. 4 - After being measured, the NaOH and moisture in the
impinger section of the sampling train was placed in a glass or polyethylene
container.  The impingers and connecting glassware were rinsed with 0.1N NaOH
and this rinse was added to the container for shipment to the laboratory.

     Container No. 5 - A minimum of 200mL of 0.1N NaOH was taken for the
blank analysis.  The blank was obtained and treated in a manner similar to
the water rinse.

     Container No. 6 - An unused glass fiber filter was taken for blank
analysis.

Sample Preparation_and Analysis
     The impinger and filter samples were prepared for analysis and analyzed
for hexavalent chromium as described previously in this appendix in the
section on "Determination of Hexavalent Chromium Emissions" and analyzed for
total chromium content as described in the section on "Determination of Total
Chromium Emissions".
                                     C-33

-------

-------
              APPENDIX D




CALIBRATION AND QUALITY ASSURANCE DATA
                 D-l

-------
D-2

-------
                                  CALIBRATIONS



    All measuring equipment Entropy uses is initially calibrated before  use.

Equipment which can change calibration is both checked upon  return  from  each

field use and is also periodically recalibrated in full.  When an instrument  is

found out of calibration, it is so noted in the report and appropriate

adjustments are made to the final results.  The equipment is then repaired and

recalibrated or retired as needed.  Specific equipment is handled as  follows:

          Pitot Tube - All pitot tubes used by Entropy, whether separate
    or attached to a sampling probe, are constructed in-house or by Nutech
    Corporation.  Prior to their initial usage, they are  calibrated using
    EPA geometry standards.  In general, if a type "S" pitot tube is
    assembled correctly, and positioned properly  in relation to the probe
    nozzle, it will have an average Cp of 0.84.   As long  as  it is not
    damaged, it should not change its calibration.  She recalibration
    schedule for pitot tubes is related to the physical condition and
    usage of the pitot tube, not a fixed time schedule.   Each pitot tube
    is inspected upon return to the laboratory from each  field use.

          Dry Gas Meter and Orif_iee_Met_er - All Entropy meter boxes are
    calibrated upon purchase and at least once every six  months against  a
    secondary test meter  (one calibrated against  a wet test  meter)
    according to their usage history.  Basic procedures are  outlined  in
    the EPA Publication No. APTD—0576.  !Uie only  differences are in the
    choice of flow rates used and the volumes metered at  each flow  rate.
    After each field use, quick checks are performed to ensure  delta  H@
    changes of less than 5%.  HSiese cheeks compare the orifice  against the
    dry gas meter.  If greater than 5% changes occur, recalibration and
    repair are instituted.

          Nozzles - Each nozzle is calibrated upon purchase, and
    thereafter whenever it becomes apparent that  the nozzle  has become
    damaged.  Each nozzle is inspected upon return to  laboratory from each
    field use.  Ihe diameter is measured on five  different  axes, with the
    high and low readings differing by no more than 0.004 inches as a
    tolerence.

          Temperature Measuring Instruments - After each  field  use, the
    thermocouples or thermometers are  calibrated  against  an ASTM precision
    mercury-in-glass thermometer across a wide range  of  temperatures.  If
    the initial reading is not within +_ 1.5%  of the  absolute temperature
    reading of the standard thermometer, the  instrument  is  adjusted until
    it is in the acceptable range.
                                   D-3

-------
                p                                               -p
      Kagnehelic  Gauges - After each field use, each Magnehelic
Gauge is calibrated against an inclined manometer at three different
settings (low, medium, high) over the range of the individual  gauges.
If the readings differ more than + 5% from the manometer readings, the
           *p                     *""
Magnehelics  are recalibrated,

      Barometer - After each field use, each barometer is checked
against a mercury barometer.
                                D-4

-------
 CALIBRATION  BY;   1
                                                              METER BOX NUMBER:
 DATE: }.
 BAROMETRIC  PRESSURE  |P  J:

                            5   i
*DAT£;
*SAROMETR!C  PRESSURE  ( P  ) :
            IN.  HG





            IN.  HG
 STANDARD METER  NUMBER:
                                                      COEFFICIENT
NOMINAL
FLOW
RATE
("Q)
CFM





STANDARD DRY GAS METER
GAS
VOLUME
FT3
TEMP.
DCJ
C p*
/j-lfc?! 7-O
Ij. JL^/f' ^O
0
To
TIME
( e j
MIN.
IQ'-ad
/& '• Of)
to*, oo
/o : o o
/£) -' OO
L2. • f£ l/o '_f]f\












METER BOX METER !NG SYSTEM
ORIFICE
SETT I NG
{ AH]
O -S~<3
O -_5~"O
o2-/c>
.z./o
4- frn
4-s-o




GAS
VOLUME
FT3
^•3^*
^.369
ff-'S-S-f
^-,46?
TEMP.
°F
?r
*t
        	 4«   et»     a         b


   -fi   V '  U   «6fl) • (f,  •>• 4K/11.6)
         d     
-------
 CALIBRATION BY;





 DATE: taL-t^f. -££




*DATE;
                   "V. YV\ ^l^ ^ a J 

G>
TIME
( 0 !
MIN.
fO '0 £>
//> "^)O
tn • nr^
<» ~?~ I/O "rtO
6,>
6, •?-




to .'no
/^ 'oa




METER BOX METERING SYSTEM
OR 1 F 1 CE
SETTING
{ AH)
IN. H20
*-9• $~£>
GAS
VOLUME
FT3
IA.i>tf
,a.3a 1 LL ' fo3s"i 9 A












*K0 -
      0.0311 • AH
  «   *  " tt i- *60)
     b    d  •
                      d*
^J
        Y^ * V, * tt. » 460) • T.
  »  .    ds   ds    d        b

  -d   V, • (t. » 460) « {p •>• 4K/13.6!
       tt    es        a
                                   NOMINAL

                                    FLOW

                                    RATE
                                     CFH
                                                  METER BOX METERING  SYSTEM
                   FLOW
                   RATE

                   (QD)
                                               CFM
                                                        ORIFICE

                                                         FACTOR
                            (OF)
                                                                  COEFF
                                                                            A Hi
                                                                           IN.  H  0
                                                                           /.pas'
                                                  AVERAGE
                                     0.99^-
                                    D-6

-------
~£'  ^
 CALIBRATION BY:




 DATE:  0 ^i f. e/



*DATE:
                                                METER BOX NUMBER: /I/ - "?-
                               BAROMETRIC PRESSURE (P ):




                              *BAROMETRIC PRESSURE (P j;
IN. HG

    C5-97^0
           STANDARD METER NUMBER; / Q / ~JO
                                 COEFF1CIENT
NOMINAL
FLOW
RATE
CFM
04
o.?
1.^


STANDARD DRY GAS METER
GAS
VOLUME
FT3
U.lo>
a • i>f
*•.*O
^ f? ,' f J f~>
/O .'
/ o ; o rt




METER BOX METERING SYSTEM
ORIFICE
SETT I NG
{ AH)
!N.H20
0-£0
o ,^G
.3 , /£>
A-/C2>
i|. ^^
4 • S&




GAS
VOLUME
FT 3
ii.\°cs-
l4.\
                             ^
                             ds _]
       T  * V  " (t * 460) * »,
       ds  cis	i	  b

     V, * (t. * 46C! * fe?2--
ff. 794*^1 /(j, n
1-ooiZ
o.9??t
/. OD¥o
AC?02 7




/.OOO
/•7ff?-
/•?
-------
 CALIBRATION BY:_

 DATE: jj .

•DATE:
STANDARD METER NUMBER:
                                      .
          c,    tt    e        b
        J    -^
        a    as
                                      NOMINAL
                                        FLOW
                                        RATS
                                         fa)

                                         CFM
                                                      METER BOX METERING SYSTEM
                       FLOW
                       RATS
                                                   CFM
                                                             OR I F i CE
                                                              FACTOR
                                 |OF)
                                                      AVERAGE
                                           COEFF
                                                                                    A H@
                                                                                  IK. H 0
                                                                       I. 01*3 if I
                                      D-8

-------
CALIBRATION H
DATE; /£.j--f-s
*DATE:
STANDARD METE.



-•






.












0.0317 * M
t f * (t T 46

* *>
dS ^
,Q V * it. 4
d ds

Y: T.me>Aj.+ 1o 3-

STANDARI
CAS
VOLUME
FT 3
*f-/33
h , 15,0
? • XSlT
f'J.?^
j»^ • i w'T'
12.^3-4













2
4Soi a I
* Vds I

•?b
AH/13. 6)


IETR1C PRI
IETRIC PR!
>

3 DRY GAS
TEMP.
°F
4S-
fc^
6v
^
4V
6 ^





NOM I NAL
f-| OW
RATE
("5)
CFM
lL-
°'l

0,?

{ < 2**








3SURE (P
^SURE (P
COEFF

METER
TIME
{ e j
MIN.
/0.VO
/O lOO
fO '. Gr>
/c} too
fO ', O O
/ O : c> d





METE
FLOW
RATE
(QD)
CFM
Q . tf&ff
o.f^7f
O.F^>/
o, r/ P9
(-tf33
/*"? L> ? r/,
^ fcxp *~**Y





AVE

METER BO3
g' : C.5?-^

IC1ENT (

METER B03
ORIFICE
SETTING
{ A H}
<5-3-<9
O -T-o^f
(5,0^9
^-^(i^
^•H-Lt





RAGE

C NUF4BER:
IN. HG
IN. HS
Y _h '9

C METER INC
GAS
VOLUME
I V )
^.«|-3
*4>\^Z-
^,142-
V -^i
^•4VO
/'s-'^ro
,3.s&5





ERING SYS
COEFF .
M)0ff
/,0/2?
A0o3y
0.9999
o^fVo
0-7?2t



-

j/.poj. /

/t/-f


f*2

i SYSTEM
TEMP.
°F
f^L
ft/
fr:T
P>

-------
CALIBRATION BY: PpgPP'f .Jf-lkJESi
DATE; \'2,ll~ll
f
*DATE :
STANDARD METE
0,0317 * iK
R NUMBER:
NOMINAL
FLOW
RATE
CFM





BAROMETR I C PRESSURE ( P
*BAROMETRIC PRESSURE (P
1 Ol ~~IO^1 COEFF


STANDARD DRY GAS METER
GAS
VOLUME
FT3
4/^1
4.1"2f5
8x41-8
64-1 -2.
iZ.^17
\2Bi^"




|~(t » 460] ' 9
iH* P " (t, » 4601 Y ' V
b d ,_ ds ds _]
Y. "V. * tt * 460) * P
., . ./
9./
^z.




AVERAGE
COEFF.
/,07Z*
o.?y
i,OQl^




1,007-
A H@
IN. H 0
2
/.£tc,~?
l.t»ZC
1,6,^7
!,(*££'
I.&-21
/-4Zc?




/ i (_/y ~\_


     D-10



ENTROPY

-------
CALIBRATION B
DATE:J-/C-SJ<
*DAT£|
STANDARD METE










.












0.0317 * SH
"'"* fb ' Ud " *6

v # y
•A v. * (t. *
4 da

Y: T. l>\
f
z>

R NUMBER:

NOMINAL
RATE
fo)
CFM

O-H"

a, (f
/ -"I
/•£














'*d« *
0) Y

. • ctd * "0!
460) " b *

e^_A ,,
BAROI
*BARO»
1 O \ *?-O £

STANDARI
GAS
VOLUME

/a%-
5.. as-}
f - ^3

D DRY GAS
TEMP.
°F
L 1
/ (C
y? /
C^ p«
c. ^
£?
6|





NOM ! NAL
FLOW
RATE
CFM

&**?-

0< if

/•5-








ASSURE (P
ASSURE ( P
COEFF

METER
TIME
( 8 )
MIN.
/o:an
/0:&o
'O too
/O ''a <*>
/c *OA
XC> VV>





METE
FLOW
RATE
(QD)
CFM











AVE

METER BO:
J*tf'\
B55
[ CIENT

METER BO3
OR I F I CE
SETTING
( A Hj
£> --S~O
6-S-&
-?. /O
J . /£>
// -fa
x/-s?n





R BOX MET
ORIFICE
FACTOR
(OF)











RAGE

< NUMBER:
IN. HC
IN. HG
fL

< METER INC
GAS
VOLUME
rT3
Lj.MU
if- /?7
^, ^-46
s^. a-jf
J2-Tf£
I O . T"_3 «<
1 me. ' -^ ty £





ER1NG SYS
COEFF.
frCfjqy
0. ?7ft
0.973¥
o.9?J6>
I.OoT^
f-OOlo^



-

0,973

A! -m

o it
G C *J.JN
"T fl rC*

; SYSTEM
TEMP.
(TD|
°F
.- ?
-------
CALIBRATION STY: /wf.p
DATE: 3^17,-'
&_
•DATE;
STANDARD METE
0.03V • w
R NUMSERj
NOMINAL
FLOW
RATE
CFM





BAROMETRIC PRESSURE (P
•BAROMETRIC PRESSURE (_p
lQlflQ£"t COEFF


STANDARD DRY GAS METER
GAS
FT 3
+ .10^
4. no
t£,Q~L-7
^,&4"i^
11A11
(1.11*




f™ "") 2
* *> " U4 * **°l 1 T4. "' V*i " J
** st«. * ***" a. *
TEMP.
°F
^
^
&*
fifi
W
(*




TIME
1 9 J
MIN.
/9--00
10: oo
METER BOX NUMBER: 'VtC- "^^
) ; 7"?, -f-2/«N. HS
H): IN. HG
ICIENT [
Y \'


METER SOX METERING SYSTEM
OKIFICS.
SETTING
( AH)
IN.H.O
Q.£D
GAS
VOLUME
4.E16
, -^ \ 4,13-4'
(Q'
-------
                   NOZZLE NUMBER:
  Date
Initials
Dia .  1
Dia .  2
Dia .  3
Dia .  4
Dia .  5
Average
                                •171
                                .m
         ST
                        ./73
                                     0./7/
                                .nt
                 113
                        .174
?-£••* V
TT A7
.3-;* •
                  174
                  175
                ns
               • 111
                nt
                                                      o-ni
                            D-13



                   i N viRorsirv!EisrrAUSTs,irsic.

-------
NOZZLE NUMBER:
Date
1-30-Bz,
8-3 f 8 3
3-y-yy
!> 1^8^
7-j - * ?
3-tf- tf
10.I3.8S
2-«3 -£fe




















Initials
TbJfr
sr
JVC
^67^
rr M
Atftt
(SU2L-
Tit"



























Dia . 1
•114
. /72
. /7±
*ns
./J> 7
,l\,°l
. I7fc
•/71















Dia . 2
•174
./?£>
./?r
.\li
./>«/
,/^i
•ITS
•/?*










Dia . 3
•H3
./73
./?y
•m
. />7
,/7^>
• >73
•;?r







Dia . 4
• 172-
./?2
./72
,11L.
// >5
. /?/
• |7fc
J7b










1




i










































Dia . 5
. 174
./?£
./7i
- 73
,/^^
./ n
• 177
./?jf
























Average
^•n3"
&*/?z*
(?./*?$"
o-m "
«?,/:>* *|
^ , /7c? *
6- 175
o.ni









i














          D-14

-------
                     NOZZLE NUMBER:   IDA
  Date
Initials
Dia .  1
Dia .  2
Dia .  3
Dia . 4
Dia . 5
Average
                  •243
                                   24
                                          24 /
                                                                "
                                                         0- E 5
                                                                "
8-3/-B3
 sr
.24^3
                . 24*3
        CT4/C
        rr
                          •ZSZ
                          .  ZS4
                        . 2.S2-
                        - ZS3
                            D-15
                     IMTROPY
                     i^MMMMl

                     IM VIROrMMEMTALJSTS, INC,

-------
                    NOZZLE NUMBER:
 Date
Initials
Dia .  1
                          Dia .  2
Dia . 3
Dia . 4
Dia .  5
Average
tl-io-n
l-i-8i> \
                                  ,260
                                  ,252,
                                        $-26!"
        5T
                                          .24*5"
                                        0
                                                          O.IS'O
        TT
                   1. S
                 2 JO
                                          - 2
                                                    z s o
                                                                f
                  2^5
                                   347
                                       O-2.44
                  246
                                   iso
                                  ZSI
                                                          6 -25P
                  250
                                                  O.ZS'o
                    PJTROPY   D-16
                    ••••••
                    N VIRONrviEMTAUSTS, IMC,

-------
                    NOZZLE  NUMBER
                         =   toB
 Date
Initials
Dia. 1
Dia. 2
Dia .  3
Dia .  4
                                                Dia . 5
Average
        5T"
                                  3(99
                                       a 307
        r r
3 •#•?$'
I0.r3.85
                  • Boo
                •2*71
                                 3^2
                                  30^
                    raVIBOMMEfWTAUSTS, IMC.

-------
                       NOZZLE  NUMBER:
2,
Date
\Z'2-8l
S-t^-lH
3-K-f<
2.-W'?l*




























Initials

f£




























Dia . 1
,tf£
./sV
,/O
./5-f




























Dia . 2
./5/
./<»
./$i
. /5-r




























Dia . 3
-/5b
,^r^
./^rv
•tf7




























Dia . 4
.162.
•t*t
.1*1
.16%















Dia . 5
./&?
, /<"i
, K$
•/6"3















\
























Average
G-lSl
0- 161
0.trt''

-------
                     NOZZLE NUMBER
                          :   501
  Date
Initials
Dia .  1
Dia . 2
Dia . 3
Dia .  4
Dia . 5
Average
                                   303
                                                           O.
                           ,300
         Ibi
                                   ,302.
NOTE:  All diameters measured in inches.


                     i Nrraop>Y  D-19
                     ••••••
                     IMVIBOMMEIVTAUBTS, IMC.

-------
                     NOZZLE NUMBER:   50$	
  Date
Ini t ial s
Dia .  1
Dia . 2
Dia . 3
                                          Dia .  4
Dia .  5
Average
                                                  , 3/2.
         PLO
          . 3/c?
 £-1144
                   -3/3
                  •3/5"
                        •3/3
                        • 3/2.
                        0.3/1
NOTE:  All diameters measured in inches.
                              D-20
                     I NViRONIVIErsrTAUBTS,iNC.

-------
                     NOZZLE NUMBER:
                              60?
  Date
initials
Dia .  1
Dia. 2
Dia. 3
Dia . 4
Dia .  5
Averag e
                                          •J//
                                                          0.
         iht
                  •3/3
                          .317.
                        .311
                                0.V2-
NOTE:  All diameters measured in inches.

                             D-21
                     INV1ROIMMENTAUSTS, INC.

-------
                    NOZZLE NUMBER
                         :  70P-
  Date
Initials
Dia .  1
Dia .  2
Dia .  3
Dia .  4
Dia .  5
Average
 4-7-03
                         • 185
                                  .1A7
                                                  /ev
            m
! 023 -
 Arm
         18
                 19
 10- Z4- 8S
           185
         184
                 183
                 184
                   /BO
                   78
                 8o
                 /79
                       o,n°i
NOTE:   All  diameters measured in inches.
                     NV!RONME!MTAUSTS,INC.

-------
                      NOZZLE NUMBER:
Date
/2,-l'Sn
4-1-B3
t-b-03
Ii-1%'%^
3 -1
ATfY]
6C
r. /#*/>.























Dia . 1
•/*/
.102,
•110
•IftS-
:JG/
Dia . 2
./^/
.//^
-I8o
M
.l$0
.1*1 I ./7
< 17-7
.11}























Dia . 3 .
.IP/
J&l,
• n®
.m
./?/
" ./^^
, 173
•174
.111























Dia . 4
/ P3
•/^
-/99
•fftl
./fl
.131
.173
. \77
.)(*&























Dia . 5
,/7^
./^/
./i
-------
                      NOZZLE NUMBER:

Date
7 -7-84-
(*Mi$






























Initial s
ST~
TV
















Dia . 1
.17-1
/K
















1

















i
i




Dia . 2
,/zz*
. t is
























Dia . 3
7



















Dia . 5
, /zz.
. /3f



















i

i





i

\










Average
^'/LZx
iT. / 3-6






























NOTE:  All diameters  measured in inches
                      IIMTRO*»Y  D-24

-------
                     NOZZLE NUMBER:
  Date
Initials
Dia .  1
Dia . 2
Dia . 3
Dia .  4
Dia .  5
Average
          5-r
                                                  0-I&4-
3-L -B4-
          ,/<&
          Tit/
                                                  I.
NOTE:  All diameters measured in  inches.

                             D-25
                     IPJVIROMMEIMTAUSTS.IMC.

-------
                                    <— ^ •r >-"1 ^
                TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
    TRIG PRESSURE:  a? A 5" d)     DATE: ^-cSo-^b    CALIBRATED BY:   77""
RCURY-IN-GLASS REFERENCE NUMBER;
                                          AMBIENT TEMP.;
                       11.



CALIBRATION
SYSTEM USED
/&> b>
0 0 <"
<><3 5"
0/3
01 >
o/3
0£>r
o 
7-2^
r-/;
r-//
s--//
^-3
4-3
4-3
£-/
6-/
^-/
>/
1-1
?-;
£--foo
4o o
^60
*/oo
^/60
^•6$
^a&

Q
ttos
ICE
IETER
kTURE
Tc (°F)
VID
V/o
v/o
*tfZ>
V/t>
ViO
mo
mo
V01
4/P
f/t?
MD'I
HfD
HID
TfO
VfO
^/o
4)0
MiO
ffO
MJO
4iO
¥/0
4(O
mo
^W)

mo
mo
4<0
MEAN
TEMPERATURE
OF Hg COLUMN
Tm (°F)
j zo
/•Z-2--
H^
/2^6
/2-D
X/Z--
//4
/Z'Z-
/2^>
//^
/Z Z--
/2n£
//^
/ ZZ-
//I-
//&
/2.Z-
AZ-
tf?
//z.
/Z-o
//F
ifL*-
i 2xJ
/'/
//^
/of
)i
-------
                   TEMPERATURE SENSING EQUIPMENT CALIBRATION  DATA
    /«OMETRIC PRESSURE: o? %

*~ /ylERCURY-IN-GLASS REFERENCE NUMBER;
 //
^
DATE: e*?-.2g-j'fc    CALIBRATED BY:

           	 AMBIENT TEMP.;

           I	£_



CAL 1 BRAT f ON
SYSTEM USED
{jot Ait e WifT&t-
1

























\
\
\











\
V





/
f

POTENT 1 OMETER
1 ,D. NUMBER
£o:T
C0^~
Q6^~
0/3
&l%
o> 3
Off 5"
oa JT
O03~
Of$
C1/^
0/3

ef3

1,to 2/0 Z-fQ Zto 2/0 i/ s 2Lf 0 Z./O 2.10 2JQ Z/€> ICE P-/Z- ait^ P-/-2-- 5k/ 2^ "Z-fL- •2,/t- -*?|2- Q-/-Z- 5V jx Ps/2- ~Zi*~- "7" 11^ *LI^ "Z>t"t- t,\1~ A^ -ZA-L- MEAN TEMPERATURE OF Hg COLUMN T (°F) Ara I r / //O /^2_ //O //O //•t- 1/6 I zo lit //o / EO //O //o //o /to It* /fS l"Z~o t/tf } ! a //6 //(& /'O //<5 ///6 //o Iff tf* It 6 Iff /re THERMOCOUPLE/ THERMOMETER TEMPERATURC £// Z/J 2/3 Jd ? 2^«> Z/-0 2/2- 2/t- ZfZ- z// 2-fl 2. a 1i 2- 2-/ ^ 2/0 Zti z/o z/z. ZiZ- 2/Z, Z-f/ Z/~2— Z/"2— Z/5 2/3 2/3 Z// 2-// Z,// • AT8 51.! ,/S" ' /5<5 ,/_S_e <^S£ . 3 « '? 9- a D o ,/5"° ,/S y- . / D D D . /£ <^ «C> • / i> ^t ./s% •/S% CORRECTED TEMPERATURE = TC = To •+>•-. 00009 (TO-2O) TEMPERATURE DIFFERENCE = AT = [_(Tc.,_°F 4^*60) - (Tt,°F + 4«O)] x 100 <_!.»* T,»,OF + 480 D-27 L ENTROPY


-------
r
         TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA



ic PRESSURE: <£'••$()     DATE: c2~ <£/-£ &   CALIBRATED BY: _


                         / / , r- I
                                ___ AMBIENT TEMP. ;
,RCURY-lN-«aLASS REFERENCE NUMBER;  / /
                               il I 3 S
I



CAL I BRAT 1 ON
SYSTEM USED

Tce'-fat/




















]

I
\
i
1
|
M'

POTENT I OMETER
1 . D . NUMBER

DO\^
c-o^>
co^
c /?
•i ' 3
>-•' / _7
o ; 3
Co ST
00 r
00 r
o/i
0/3
o/3
8? C>£"
00 f
00^
o/3
o/3
o/3
0(7 S~
00>"
00^
c?/3
013
^/I
<7^r
00 C
c?e S"

r-/^
0-5
6-s
/,-3
^-y
X--/
^-/
i-o
6-C
6-6
r-7
5"- 7
S-7
4-T
£/-r
^-5*
6-2
4-2-
6-^
4-/o
4-10
M-lo
1-1
1-1
1-t
REFEREf
THERfcW*
TEMPERS
TQ (°F)

34
3V
&y.
3«/
?>M
3V
34
5<^
3^
39i
3^
3V
3^
5f
3^
3V^
34
3¥,
3?
$t
3¥
3i
{,£
^
t£
^
46
6&
(,&
U
6 &
{*£
u.
46
It if
(,(*
u
u
{£
^
{,£
<^6
U
U
U
u
66
rHERMOCOUPI. E /
THERMOMETER
TEMPERATURE
Tt (°F)

Sf
3/
2!
3/
3/
31
3/
3 /"
a/
3/
5 /
J/
J?/
•5/
J9/
3/
3/
3/
S/
J/
3/
3/
SI
31
31
3^
J/
37
31
3/ ,
ATE
51. u,

.6,/0/
• L,/
• 6/ '..
. /„/ »/
.fj
.{,/ ,.
./0/ V
,LI
• (*l ,
.L>] *(
,(*!
.1*1 ',
.£/ 1
.&/
• &/ •,
• ^/ •;
,Ll
.1*1 ,
,Llffi
(*{
. (.1 .
. &/ '
• t»l et
,{,/
• k>l
.w «
.to/
- fc/
CORRECTED TEMPERATURE «= TC « TQ 4- .00009  (i:o-20) (TQ-TJ,,)
TEMPERATURE DIFFERENCE = AT = [ jTg_f °JL*_ -1* ^1 ~  ( T fc , °F •<• * SO ) ] K 10O 
-------
                TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA




  BAROMETRIC PRESSURE: O?7 Vj    DATE! $~(2-!-¥to   CALIBRATED BY:   //
MERCURY- IN- GLASS REFERENCE NtWSER : /tfv/v^j AMBIENT TEMP.: 4^



«
CALIBRATION
SYSTEM USED
ICG &nij



























\

DORREC*
rEMPERj



























/
w

POTENT IOMETER
I . D , NUMBER
00^
oo 5"
oo S*~
Of3
o/3
01$
00$
OO *i
o o ^
^"

fED TEMPERATURE « "I'c =»
MURE DIFFERENCE » AT =
4-r^
t^^z-
i/-"L-
(C/_2^
4-3
4-3
4/-S
^-z.
g-i-
$-2,
6-£
.4 5
f ^~
/*v-i
tictl I fY7
y ^-;K
'*7-"1
•7... 7
"?*"7
REFEREf
THERMOK
TEMPER/
T/OtM
O * '
34^
3 V
^J»4
3 ¥
3<£
3 */
? 4^
34
3^
3*f
3^
3^
J2yf
34.
34
*><$
34-
~ld-
T>4.
14-
14-
?4
zk-
14.
"^t^-
^
J^.
34
7-4
34
ICE
IETER
ITURE
rti / O fj1 1
64
34
-3M
^
— -T Cf
*^M
"tZ(J
"I1/
""5^
•3*4
"34
-34
"S1/
-2,t|
-^Lf-
-Zyl/
Vf
'SM
•z,^
f */
^4
^H
-Z,!_f
•^14



^14
"^U
"3^
MEAN
TEMPERATURE
OF Hg COLUMN
/, C
6 k
& b
(,_h
(fb
(,$,
, 	 (. C
Is £
I/ (y
itL
& &
^ 4
(£>&
(j?\£?
($ (^
(f W
(*(r.
(&( f~.
&&
Ctf-?
&&
&>&
(e£?
6(0
\(J
&L
2^
T
bf«
&(t
THERMOCOUPLE/
THERMOMETER
TEMPERATURE
m /OT?\
TV
31
3f
3!
37
3)
3 /
2>f
31
^31
B f
3/
S /
3 /
^2-
^x-
S/
-3;
1
?i
If
Tf
"?/
37,
72.



3/
52.
32-

ATE
• fol '
it °
ib c
,6 C
rt C
. r( C
,6 c
,bi '
,fal !
,{? £
-bi '
,(s>( '
• ill c,
^ 0^
, ^/ C/
/ I 0
.(P/ "/
,6/ fl/
,A/ *y
i fe/ °
i W «?"
ft?/ °/
*•¥ ^
• ^d0/



•t/ °/i
,14 %
•V 5/t
T0 -f- .oooo» (T0-2o) (T0-Tm)
{(Tc,°F + *8O) - (Tt,°F + €80)] X 100 <1.S%
1
  TC,°F + 4«0






ENTROPY

-------
              TEMPERATURE  SENSING EQUIPMENT CALIBRATION DATA

BAROMETRIC PRESSURE:  "Z.1? . 4%    DATE:  "2. -2, 1 - X/?  CALIBRATED BY:
1

































XERCURY- IN-GL.A


CALIBRATION
SYSTEM USED
ICf "Z.A.TH:





























SS REFERENCE NU


POTENT I OMETER
1 . D , NUMBER
nil
0 [ 1
Oil

09 C

,0<9s'
0.0*
00*
0/3
_,)J-j
oil
00^
o^T
00 1
.--)(?
d/l
£(1.
^r
,00 C
-<
-z^-C
i$n\
\ Zo )
/S'CiL
•9-y
/-/
-/-ir
7,0-1
Z£>'"5
•ZD-1
1O -6,
to^fo
~ZD-(?
I6?~^D
/6"^
/A - Cx?
^-4-
4-4
<£-4-
\5-i
\C-\
/r-r
?r/


REFEREh
THERMOf-
TEMPERJ
T/OT?\
o
34
24
^4-
3-4
34

34-
34
S4-
34-
"34-
^S"
j;<"
2J
35"
?£
l£
3^
3^
J^
AMBIE


ICE
ETER
ITURE
-^L/
•2,4
3M
-54
•^cj
-2,(|
"5.4
-$f
••^4
•^q
3M
"34
3^
'ji^
34
"34
"5M
•3^
3M
3H
/% -c,
35"
-3S
•^L CT
x? "C^
"^5
^S
3S
"5S
NT TEMP. ; £»{


MEAN
TEMPERATURE
OF Hg COLUMN
M
^"7
^7

hG
&&
&&
^g
6C
fob
&£
t>C
6s"
,//
^6>
i-6
^-±L
31
13
r?
•>4-
7^
24-



A-
• If i '
.1*1
/(ol "
,fc( °
•V1'
.faf "
*^ '
•H
•H p,
-() " (Tt>°F + 48O) ] X 100 <1 . S%
                              TC,°P 4- 480
                               D-30
                           ENTROPY

-------
                   TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

   BAROMETRIC PRESSURE :<=??•'A"      DATE: 2~3-(,~8(/   CALIBRATED BY:  "77
   MERCURY- IN-GLASS REFERENCE NUMBER: -3O/a*. *r5 (f
            AMBIENT TEMP.:

                   S"
                          72"



CAJL 1 BRAT ION
SYSTEM USED
fo;//Ji vJ/)tz£-
\


s
j
I









I










i
I
\|/
4-
POTENT I OMETER
I . D . NUMBER
0^<
o 0 ^
o o r"
0/5
0/3.
0/3
oo<
oo^
o d S"
o/3
<9/3
n/3
oo^"
o""
GO:?"
Or 3
o/3
0/1
0 0"*"

O0 <
o o C"
oo *r
0(1
0' 3
o/3
THERMOCOUPLE/
THERMOMETER
1 .D, NUMBER
;z-r
/i-T
/a~-r
//-J
//-3
//-3
9.7

/r-sTj
/sr-V'o
//-s-z-
;/-TZ-
//- 5"Z-
6-^
^-4^
*-T*
REFERE^
THERMOS
TEMPERA
TQ (°F)
Z/o
z/«
2-/ o
2,1 o
2./0
2./0
2-/«
2- /O
£/ 0
2,10
2-io
Z-/6
2-lQ
L 2V «»
2^-C
2-10
2,16
z>to
2,10
2-ro
2-^o
2^S
2-fO
^/
//O
//t-
/!-.«
//O
/r -z-
/to
/ae
//c
//^
y zo
//o
IfO
//o
/^.o
/6 C»
fio
, 2,cJ
/o C
//i.
l?.o
IL*
//3-
/z-o
/E.O
//S/
/2.Z-
>I2~
Jt*t
f&
//2^
THERMOCOUPU E /
THERMOMETER
TEMPERATURE
Tt (°P)
2-/6
2^i-
2,/ *f
£/Z--
2,/2—
5./Z—
&Z
2-/J
^f?
2.//
2.t(
2-/0
Zt ^
2-/«/
2./V
^-//
2,^-^—
Z/2^
^5
2.rJ
2,/S
2-/a
2V/
£//.
z./y-
Z./4^
2,/=/
Z,tf
2,1 1
•Z,lf
AT£

,'S '
, IS a
.1-5'
• s ^
,1? °
,|S «;
."^ °,
,^ ^
(3 */
.15 ^
.IS ^
,ts-,
   CORRECTED TEMPERATURE • Tc = To 4- .00009 (TO-2O> (To-Tm)
   TEMPERATURE DIFFERENCE = AT «= [(Tc,°F + *€0_) - (Tt,°F » *60)] x 100 <_! . S*
j
   D-31
ENTROPY

-------
              TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

BAROMETRIC PRESSURE : <7?0. f /     DATE!  2>~-2 7~o(e   CALIBRATED BY!   //
MERCURY-IN-GLASS REFERENCE NUMBER;
                                      AMBIENT TEMP.
                                 i.



CALIBRATION
SYSTEM USED
BoiliAk idtJSK-
I


























\
r



























/

POTENT I OMETER
I.D. NUMBER
oo>"
cor
03 <"
Cd>"
0/3

6 OS~
oo$~
of S
<9/2.
o /S
C?6f"
00<"
£)0*f
oil
€3/3
o/3






THERMOCOUPl-E /
THERMOMETER
I.D. NUMBER
^-r
6-5*
^-r
s'-z-
y-z-
F-z-
&-fr
6-6
6-6
^-2-
4-Z
V-2.
4^-3
4^-5
^-3
4-1
4-1
4-(
¥-¥
4-{
4-¥
4-r
4-5
u~~






REFERE>
THERMO*
TEMPER/
TQ (°F)
Z/o
2,/tf
2^o
2-/0
a/is^
i/Zx-
tl-Z^
til-
x-z.
t\i.
1\Ts
t-f-z-
Q-/^
2 /t,-
3-1 ?-
%i-^
P-lt.
"Z-I1-
w-z.
1A1^
Z/^-
-Lll-
Irlt^
'Ut'
^\^
m*






MEAN
TEMPERATURE
OF Hg COLUMN
Tm (°F)
/^O
' //^
//tf
/20
//
Z/B
z/s
2of
2-09
Zc?1^
2V
•Z,f
Zf/
2/o
Z-^d
•Z./O
2.«-2-
i/7.
2-tl-
2 if
2-1 f
^//






AT

JS
•f2?',
.15 cf






CORRECTED TEMPERATURE = Tc = To +• . OOOO8 (To-20) CTo-Tm)
TEMPERATURE DIFFERENCE = &T = [(Te/°F
                                            X 100 <^1 .5%
                                   460
                               D-32
                           ENTROPY

-------
                TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA





BAROMETRIC PRESSURES "2 ?• 4°      DATE:  c3'c2%-f£    CALIBRATED BY:  ' 7/7"
MERCURY-IN-GLASS REFERENCE NUMBER;
AMBIENT TEMP.•



CALIBRATION
SYSTEM USED
r/fT faL^
i
\


















































\!'
V
POTENT 1 OMETER
I . D , NUMBER
OoT
oo 5"
GO 5""
0/5
0/3
c /3
& o 5"~
OC3 ~>
S>O^T
0/3
o/3
c/i
oo "T
(so r

4/0 /
X/OO

i- 5£
I.D4
CORRECTED TEMPERATURE * Tc = To +• .00009  (To-20) (To~Ta)
TEMPERATURE DIFFERENCE = AT = [ (Tc • °F •*" *«°) "_ (Tt > °F_ + <8 a) J  x 100
                                  D-33
                              ENTROPY

-------
                TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

BAROMETRIC PRESSURE ; o?ff °F +
                         - (Tt,°F 4- 480)] x 100 51 .5%
                        :,°F + 460
                                   D-34
                                ENTROPY

-------
                                           cl
                  TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA
BAROMETRIC PRESSURE: o?^. r ^      DATE:  S'S"**'     CALIBRATED BY:     //
MERCURY-IN-GLASS REFERENCE NUMBER;  /
                                 AMBIENT TEMP.;
  CALIBRATION
  SYSTEM USED
POTENT I OMETER
I . D . NUMBER
THERMOCOUPLE /
THERMOMETER
1 .D. NUMBER
REFERENCE
THERMOMETER
TEMPERATURE
   MEAN
TEMPERATURE
OF Kg COLUMN
IHERMOCOUPL E /
THERMOMETER
TEMPERATURE
                                                                             l.S
               DOS
                                       It Ob
                               - 8
                          f/00
               GfS
                                       4^06
                                                               I - L«S
                                              40°!
                                       4*00
                                       4^00
                                                      / 30
                                                                            .Ul
                o o f
                9-7
                   HID
                                              1ID
                                                                             .2.7
                                       ¥00
                                 M/O
                             tZc
                                                                             n
                                              mo
                               - ¥
                                             MID
                                              MO6!
                oaf
                /i-5"
                             /So
                0/3
                                 MID
                             /z*
                Of 2,
                          4/Co
CORRECTED TEMPERATURE = T_ = TD 4- . OOOOS  (TD-20) (To-Tm5
                      c  •'•o
TEMPERATURE DIFFEREI«*CE <• AT = [{Tci°F 4- 460) - (TtrOF + *6P) ]  x 100
                                     PC.
                       TC,°F + 460
                                 ENTROPY

-------
        PRESSURE:
               TZMPSHATUEE SENSING EQUIPMENT CALIBRATION DATA

                  -/7     DATE:  3 ~/
-------
                    TEMPERATURE SENSING EQUIPMENT CALIBRATION DATA

            PRESSURE: ___c2__J,_ ...... / " ...................  BATE: 3~ I T"/ £   CALIBRATED BY:
*ERCURY- IN-SLASS .REFERENCE NUMBER ;
                                                 AMBIENT TEMP. ;
    CALIBRATION
    SYSTEM USED
             POTENT 1 QMETER
             1 . Q . NUMBER
(THERMOCOUPLE/)
 THERMOMETER
          D
                                 NUMBER
REFSRENCS
THERMOMETER
TEMPERATURE
   MEAN      (THERMOCOUPLE/
TEMPERATURE /JTHERMOMS
OF Hg COLUMN I TEMPERATURE
  AT8
                               3-0
                                               -Z-/-Z-I    I/O
                            2/1
,/S%
                                                 2./2-I   //Q
                                                                              ¥5%
                 6Z?
                            3-0
         1 2- i   if a
— CORRECTED TEMPERATURE « Tc » To 4- -.00009 (TQ-20) (To-Tm)
	   1PERATURE DIFFERENCE
                                       - fTt>°? ^
                                          -J. ^ 4SO
                                                        X 100 .
                                    ENTROPY

-------
                 TEMPSKATUKE SENSING EQUIPMENT CALIBRATION DATA

—COMETH 1C PRESSURE i a? f- / °l     DATE:  ^'/V'fa    CALIBRATEO BY:  V/ "
MERCURY. IN-GLASS .REFERENCE NUMBER:
                                             AMBIENT TEMP. :    *7 0
  CALIBRATION
  SYSTEM USED
POTENT1OMETER(
I.D. NUMBER
                         THERMOMETER
                         1 . D . NUMBE
                                 R^
REFERENCE
THERMOMETER
TEMPSRATURE
                                                     MEAN
                                                              frHERMOCOUPU S /
TEMPERATURE  /frHERMOMETER
OF Hg COLUMN(
                                                 TEMPERATURE
                                                      7o
                                                                 33
CORRECTED TEMPERATURE » TP » TQ -P-.QOOOS  (T--ZO) (T0-T_)
 •"MPSRATURE DIFFERENCE
                                   -C'  -
                                          450
                                     D-38
                                ENTROPY
                                                    X 100 <1 . 3*

-------
                 PITOT TUBE INSPECTION DATA SHEET

                                      Pre7 sample

                   •"	'         Date •
                                                                    Post Sample
                                            0
                                           0
                                           •6°
                                            0
                                            t>
                                                                Date
                                                  level?


                                                obstructions?

                                                  damaged?

                                               -10°. < a! < +10° .


                                               -10° < az < +10°


                                                -5° < Bi < +5°


                                                -5° < 82 < +5°


                                                       Y

                                                       8

                                                       A


                                              1.05  Dt < Pa < 1-5 Dt

                                              1.05  Dt < Pfa < 1.5 Dt

                                                3/16" « Dt * 3/8"

                                              A tan 7 < 0.125"


                                              A tan 6 < 0.03125"


                                              Pa -  Pfa ± 0.063"
 Comments:
                                              ^i
. __._.,„  	 r	r	      — \    meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor  of 0.84. /?

                                                 /M^
                                       Signature
                                             Date
•Sec 40 CfS 50, Vol. 42, Ho. 160, Hethod 2. Verify the mini
 Z Inch setback of the tfiermocouale and the minimum 3/4 inch
 *epjr*tton between the pitot tube *n
-------
                 PITOT TUBE INSPECTION DATA SHEET

                                      Pre-sample

                   •	-      '  JDate
                                                                    Post Sample
                                                                Date
                                          All
                                                  level?

                                                obstructions?

                                                  damaged?

                                                -10°.< Ol < -HO0  -

                                                -10° < 0.2 < 410°

                                                -5° < Bi < +5°

                                                -5° < 02 < +5°

                                                       T

                                                       8

                                                       A

                                               1.05 Dt < Pa < 1-5 Dt

                                               1.05 Dt < Pfa < 1-5 Dt

                                                3/16" '< Dt * 3/8"

                                               A tan y < 0.125"

                                               A tan 6 < 0.03125"

                                               Pa  = Pfa ± 0.063"
 Comments:
! certify that pi tot tube/probe number
                                                        meets  or exceeds  all
     specifications, criteria  and/or applicable design features'and  is  hereby
     assigned a pitot tube calibration  factor of 0.84.       ,
                                        Signature
                                             Date
*Set 40 CfJ SO, Vol. 42, He. 160, Method 2.  Verify the minimum
 2 inch setback of the thentiocouole and the minimum 3/4 inch
 separation between the pilot lube »nd the nozzle *s shown it
 the top of this page.
                                        D-40
                               ENTROPY

-------
                      PITOT TUBE  INSPECTION DATA SHEET
	 - - - 	
fi**"ac9u«u -— - — ^^ !
| 	 	 ~TS[ 	 "^«- 	 1 	 *-"
r~T~" i J-
X - (CO) i '" '••
1 i r wwuw wmt \S-y-J —
U t \ •*. 	 »i
~ s^ _>u - 	 i i
r-Tn ^ ^^\ .
I j — - - - ; c" ^- \ I
0Si h r~" 	 ""^-ok i*
no u»«r ntsiuif oroiw IUM w i*c »iref DM I 1
j 	 f * ~f$?\ ' , ITT/ * ~/ff*
g=p=^.X'; (ff/ ) \W /HY I
^^"^"^^ I \\ V \ m III i V\\ 1
'•« B»fI^»i«iPV Y ?»*• C*1(H^'?IM£ I KCIH IM*iCJTtMC ilWU
feKtflM PM WltU«l«iM« •
Jl-i


yl 4
A ^xL-y
^) \J .^'V y^A

E> V
»te*fr i*«ic*ri»4 s.t*tt
& ^X^ ^- ^>— M
« 	 _>rC- ^-^ '
Prejsam
Date ?//f /
?le Post Sample •
^^ Date
/ ^
^53"
/^fe
f^d
0'
1°
0°
0°
0°
0°
.7ff
/ 35f
.77$"
£3J2f
0
0
Jg%
level?
obstructions?
damaged?
-10°. < 0! < +10° -
-10° < 0.2 < -i-l 0°
-5° < Si < +5°
-5° < 82 < +5°
Y
8
A
1.05 Dt < Pa < 1-5 Dt
1.05 Dt < Pfa < 1.5 Dt
3/16" <: Dt * 3/8"
A tan T < 0.125"
A tan 8 < 0.03125"
Pa * Pfa + 0-063"
















Mu« .....»»« urn ft....* '
Comments ;
.--. -
I certify that pitot tube/probe number L^ ' meets or exceeds all
specifications, criteria and/or applicable design features'and is hereby
assigned a pitot tube calibration factor of 0.84. ,
Signature j^V^CC^ l^&Vifa 	 •

Date /1{#A^/L~ j/
-------
PITOT TUBE INSPECTION DATA SHEET

                     Pre-sample
  -  	   '  -   ' 'Date
                                                                       Post  Sample
•"&"•—•"
                                                                   Date
                                            .375
                                 level?

                               obstructions?

                                 damaged?

                              -10°.< a! < +10°

                              -10° < a2 < +10°

                               -5° < 61 < +5°

                               -5° < B2 < +5°

                                      Y

                                      6

                                      A

                             1.05 Dt < Pa < 1.5 Dt

                             1.05 Dt < Pb < 1-5 Dt

                               3/16" ^ Dt ^ 3/8"

                             A tan i < 0.125"

                             A tan 6 < 0.03125"

                             Pa = Pfa ± 0-063"
    Comments:
        I certify that pi tot tube/probe number
                      -Z--4-
meets or exceeds all
        specifications, criteria and/or applicable design features'and is hereby
        assigned a pitot tube calibration factor of 0.84.

                                          Signature
                                               Date
   *Se* 40 CFS~60,~ilol7~42, Ho. 16D. Hethod 2, Verify the »iniimjm
    2 Inch setback af the thermocouple »nd the minimum 3/4 inch
    separation between the pitot tube and the nozzie as shown at
    the top of this page.
                                         D-42
                                 ENTROPY

-------
PITOT TUBE INSPECTION  DATA SHEET

                 j    Pre.-saiipl!
   '  "   """ ""    !
             	Date
                                                                     Post  Sample  •
                                                                 Date
                                             i
^
«00 -
^
/'
I3
r
r
e
o<
•^
-45-7
.4ifc>
,375
ft. 016
f) -
fo
level?
obstructions?
damaged?
-10°. < Ol < +10°
-10° < o2 < +10°
-5° < Qi < +5°
-5° < 82 < +5°
Y
8
A
1.05 Dt < Pa < 1-5 Dt
1,05 Dt < ?b < 1.5 Dt
3/16" •% Dt * 3/8"
A tan Y < 0.125"
A tan 6 < 0.03125"
Pa s Pb ± Q.063"
i
i
i













 Comments:
     I certify that pitot tube/probe  number  i*f   /    meets or exceeds all
     specifications, criteria and/or  applicable design features'and is hereby
     assigned a pitot tube calibration  factor of 0.84,

                                        Signature '
                                             Date
*iee 40 '£'"5 60, Vol. 42, Ho. 150, Method 2.  Verify the minimum
 2 Inch setwck of the thermocouple and the minimum 3/4 inch
 separation Bet***n the pi tot tube and the nozzle is shown at
 the top of this p*ge.
                                       D-43
                               ENTROPY

-------
                      PITOT TUBE  INSPECTION DATA SHEET
iwBpocount ___-M-^--w^> i
L^a _^*-"**" * ~

A 1- (CTP "•
I \ i' yw.l*C NQnif V*r>' — *~—
^ 	 1. 	 > s>~~~~^,[
t 	 p 	 1 ^ ^^/\ '.
1 * ; -•- ,_ 	 _ 	 -^-^.-V-! | -t
I ,) _ B t~~ ^>^ *" '
tfcf IMfJtCT l>niSW| OrCMlME n.*W Of t!MC »ITOT TUIl I
$MMi If t*U MUM 01 MOift T^ KJIILE CM'** »^M( . '
tf .H ^ ^
9* afttiiMtHiM t ttw» C*fctVL*riM« 1 MM(f *>OiC4tiHe ifvft
* ' POSIfiOM fOi OttllutlNtMi «

"0 V_ ^X ft 	 , m_ -— -^t,,,, ^
y X
C ^/\~~r
a ^ -. j^X. — ^Jf>
^ — }^£2(
rf~j- -t*' ( — "" 	 '..!*!

ft ^S*-*.. ^BiiiiS
^ ^>-|T ^~"
?/ I 4 1 ff(L
Date ^ ) 7//T i Date
•
yo>
M5
Ut?
A ^
/'
/v|
/V
0'
0"
0^(1 Q
- ^93
. ^7fo




level?
obstructions?
damaged?
-10°. < ai < +10°
-10° < az < +10°
-5° < 61 < +5°
-5° < B2 < +5°
T
6
A
1.05 Dt < Pa < 1.5 Dt
1.05 Dt < Pb < 1-5 Dt
3/16" 
-------
                        PITOT  TUBE INSPECTION DA.TA SHEET
7H£ IMPACT PRESSURE OPCNtWC Pi^ANC Or THE F*YX3T TUBC


SMALL BC EVCH WITH Q* ABOVE TNC NOZZLE CKTRY Ft-ANC.
                                                           level?


                                                        obstructions?


                                                         damaged?

                                                         o           o
                                                      -10  < a  < 4-10

                                                         0           0
                                                      -10  < a  < +10


                                                       -5° < 8, < +5°


                                                       -5° < S2 < +5°



                                                              Y


                                                              6


                                                              A



                                                     1.05 D. 


-------
                PITOT TUBE  INSPECTION  DATA SHEET

                                     Pre-sample
                                  Date
                                                                    Post  Sample
                                          A/o
                                          AJG
                                         ,77%
                                         • 39%
                                         . 3f o
                                         •376
                                                                Date
                                                  level?

                                                obstructions?

                                                  damaged?

                                               -10°  <  cii  < +10°

                                               -10°  <  a2  < +10°

                                                -5°  <  Bi  < +5°

                                                -5°  <  62  < +5°

                                                       Y

                                                       6

                                                       A

                                              1.05 Dt  < Pa <  1.5  Dt

                                              1.05 D+  < Pb <  1-5  Dt

                                                3/16"  '< Dt '<  3/8"

                                              A tan  y  < 0.125"

                                              A tan  6  < 0.03125"

                                              Pa " Pfa  1 0.063"
 Comments:
I  certify that  pi tot tube/probe number
                                                       meets or exceeds all
     specifications,  criteria and/or applicable design features'and is hereby
     assigned a pitot tube calibration factor of 0.84.

                                       Signature
                                            Date       ///f/W
•See	56 CfS 60, Vo"!.'	42, No, 160. Method 2.  Verify the minimum
 2 inch setDaek of the therrocauole and the minimum 3/4 inch
 sep»ration between the pitot tybe and the nozzle is slrown at
 the top of this page.
                                       D-46
                              ENTROPY

-------
                      PITOT TUBE INSPECTION DATA  SHEET

                                           Pre-sample

                                       Date
                 Post Sample
                                           AJo
                                           A/o
                                          -375"
             Date
    level?

  obstructions?

    damaged?

 -10° < 01 < +10°

 -10° < a2 < -HO0

  -5° < Bi < +5°

  -5° < 82 < +5°

         Y
1.05 Dt < Pa < 1.5 Dt

1.05 Dt < Pb < 1-5 Dt

  3/16" "< Dt '< 3/8"

A tan Y < 0.125"

A tan 8 < 0.03125"

Pa = P  ± 0.063"
 Comments:
     I certify that pitot tube/probe number    
-------
  Dry Gas Heter Identification:  	| O | "7.O _5""7        Calibration by: 	
  Date:
•Date:
                Barometric Pressure (P|j)
                            "Barometric  Pressure
                                                                     in.
                                                        in.  Hg
                                                                                    IMTBOPY
Approx .
 Flow
 Rate
 (Q)
 cfm
   Spirometer
  Gas
Volume
 
-------
C ' . ' ' ' ' ' ' fe1 • • • ' i . y
Dry Gas Meter Identification: lOl'70'Sl Calibration by:
Date: 2—" '/• &L&
"Date :

Approx .
Flow
Rate
(Q)
cfm
1
\. Llo

Barometric Pressure (
"Barometric Pressure (
Spi rometer r+ Z-*5O2~
Gas
Volume
l-l.'aSSI
!CL,3p_iq
I a.T-S'L.o
H. "3M43*
14.1-^0!
IM. 3^y i










Temp.
(ts)
°F
11
11
11
11
*r**t *™*l
"™ *H ~Tf










Ph): ^-ST" in. Hg

•••M NITROPV


. ]lHMNVinONIV1EIMTAUBT8,IIMC,
Ph> = in. Hg

Pry (l;iy llcitc.-r
Gas
Volume
ft*
I-JL. ni^
1^.156
»-^-.lzq
m.^^
IH.°*»9
IM.H^-4










Temp.
°F
7b
-70
It*
7U
1L.
16>


\ *
Y^
\f\ <*
"




Pressure
(Ap)
in. H2O
- S.3-
~S.->-
^S.u-
-u.g
-t.«i
-U^



, i

? V-





Time
(0)
min.
/i). 0
/£>•£>
/O.D
/l).D
JO.O
J 0,0










Flow
Rate
(Q)
cfm
i.jqs-i.
l,lAHci
i. 1^14
».^<1lO
l.^^t
i.-i^n




9 /?*/)






Meter
Meter
Coeff .
l).^!!/
o.))
(tn  *
(9)

-------
CALIBRATION BY: m^J<-
DATE : <^.-f3 "" £"
&_
"DATE:
STANDARD METE
R NUMBER;
NOMINAL
FLOW
RATE
CFM





BAROMETRIC PRESSURE (P
•BAROMETRIC PRESSURE (P
*
/0/7DS7 COEFF


STANDARD DRY GAS METER
CAS
VOLUME
FT 2
4-.Z4&
4-.2S7
<8.3^>
9.350
7^,503
/2.£S£>




_r"-.—'"T
. T .... 4tOS . f
^* T * (x - 4*0) • ?5 "** ^*^
) : IK. HG
IC1ENT {
Y }• /
DD1-0

METER SOX METERING SYSTEM
OR 1 F 1 CE
SETTING
( AH)
JN.HjO
O.50
CAS
VOLUME
FT*
4-.3/^T
TEMP.
I'D )
°F
7fe
O.SD \4-,3'3e3\"7L,D
10. 0 \2.fO
/D.D
£.-474-
2. /O 16,4^^
IQ.b \4-.9>0 \12.L,^I
10. D




4r9D
tzntsz
I





Boe
05"
i^{7
~3.DC>%>
\p32BB\L. IB (
0.&24&\£s,.l$8>
1.244-f
1.2A2S




^3*57
<3.
-------
Meter Box Number
           :  MS"
                                Calibration by:
                                                          in.  Hg
Standard Meter
Gas
Volume
(Vds}
ft3
1.S40
1.1 \°i
i, qui/
Temp.
'W
•F
11-
m.
T2-
Time
(e)
min.
JO .O
IO-O
10*0
Meter Box Metering System
Orifice
Setting
(AH)
in. H20
\AB
L^
l.<»5
Gas
Volume
^
ft3
•7-S^l
7. ?zr
7. U>0$:
Temp.

-------
Metar Box Number:  N"T
               Calibration by:
Meter Box vacuum:
           in. Hg
Standard Metar Number:  I OHoSI  Standard Meter Gamma:
Date:  ^f"3~ S"L?    Barometric Pressure (Pb): O<:1.'7Q   in.  Hg
Standard Meter
Gas
Volume
(Vds}
ft3
-7. £54
-7.-SZ3
-],t;q(
Temp.
(tdS>
»F
-72,
1Z
-77.
Time
(e)
min.
10. V
lO.O
10, O
Meter Box Metering System
Orifice
Setting
(AH)
in. HO
/.<70
^
1. 5
Gas
Volume
^d^
ft3
^- f35
^.^6^
-9.^05
Temp.
(td)
*F

,^?°\
, ^f-^l^
AH@
in. H20
l-f?
).?3
I. ?£-
f.'gS
            Yd -
                   ,   * V,  * (t. + 460)  * P.
                    s   «     d          o
Vd *  (tds * 460) *
                                           . 6)
           i
                0.0317 * AH
                   (td + 460)
                 (td + 460) *  Q



                     Y   * V
                     ds   vds _
                      ENTROPY

-------
Meter Box Number:  f\l  o
                                Calibration by:
Meter Box Vacuum:
                    (f
                           in.  Hg
Standard Meter Number:  t Ol "?OS"1   Standard Meter Gamma
Date:
        " *3~ %"[#   Barometric Pressure (PH):   "2.5. ~~)O  in. Hg
Standard Meter
Gas
Volume
(Vds}
ft 3
l.Odl
7.D7/
7.£5f
Temp.
(tas>
"F
1 I
1 \
1 1
Time
(9)
min.
to. o
to.t>
fO-O
Meter Box Metering System
Orifice
Setting
(AH)
in. H20
/. (#
-------
Meter Box Number:
              Calibration by:
                                                        I
Standard Meter Number:  iDI~?oS"7   Standard Meter GaJmma:
Date:
Barometric Pressure
                                         :     '
                                                     in-
*Date:
*Barometric Pressure
                                                       in. Hg
Standard Meter
Gas
Volume

fz-
Average
Coeff .
(V
I.a/Z
/, d//
/. ^07
.
-------
Meter Box. Number
;   MlD
                                Calibration by:   I .   M
Standard Meter Number:  U "a" 3 §"321?  Standard Meter Catena:  }. O
Date:   —  -
    Barometric  Pressure
                                        :   "2. ^ . 2Q   in. Hg
*Date:
    *Barometric Pressure (P. ):
                                                     in. Hg
Standard Meter
Gas
Volume
(Vds>
ft3
¥.|U4
^ir

-------
     Box Number:  fsj \ Mr
     Calibration by:

Meter Box Vacuum:
in.  Hg
Standard Meter Number:  lolloS"?   Standard Meter Gamma
Date:   M— ^l " \t*   Barometric Pressure (Pb):   *£ 9, ?"D   in, Hg
Standard Meter
Gas
Volume
(Vds}
ft 3
U.UST
\l.^1S
ji.L»"72~
Temp.
(tds'
•y
-70
"70
^0
Time
(Q)
min.
/ to.O
/C?,Q
10-0
Meter Box Metering System
Orifice
Setting
(AH)
in. H.O
4.s*r
^^^
i/. 55
Gas
Volume
(V
ft3
I-L. 1-z.to
CZ-.i^l,
fi.it*i
Temp.
(td)
"F
s-n
rf
?*\
Average
Coeff .
(Yd)
-S?-51
• ^fV-2.
. 5?S1
O.^^^o
AHa
in. H20
I. ?t
1. SI
l.*l
l.frl
            •y*  =
                      * v,  * (t,  f 460) * P.
                   ds   ds     d           b
                   * (tds + 460)  *  (Pb
                0.0317 * AH
              Pb * (td * 460)
      (td  +  460) * Q
          Y ,  * V ,
           ds    ds
                           D-56


                       ENTROPY

-------
Meter Box Number:  "R/* ^  2-
                                 Calibration by:   i .
Meter Box Vacuum;
                            in. Hg
Standard Meter Number;  I Of "7O*S"7   Standard Meter. Gamma:  I . po"Z-.
Date:    M -M -$U    Barometric Pressure  (Pfa):  "2-
                                                      in. Hg
Standard Meter
Gas
Volume
(Vd.>
ft3
Il-OD^I
to-<\trt.
JM3r
Temp.
<*<),>
• F
-7O
ID
-7£
Time
(e)
min.
/o. o
10.0
IO.O
Meter Box Metering System
Orifice
Setting
(AH)
in. H20
W.I
V. (
v. /
Gas
Volume
(Vd}
ft3
ll.c/75
n *•$&*(
(fl. 5Zt
Temp.
(td)
"F
ID^
/D"7
l£?^^
Average
Coeff .

-------
Date:
Client:
Pbar:
                (.re
in. Hg.
               Time:
               Auditor:
               Meter  Box No.
               Pretest Y:
                                   
-------
Date: OS
Client: £T^£>
P « - /1Q3.
£,£u90
o. : /j. S"
^,^^

Duration
of
run
e
min.
10

Dry Gas
meter
volume
ft3
*.««
Meter
t empe ratur e
average
°F
«,

Pretest
Y
0.97Y
1.03Y
O.SW'4'2.
|.<*38

Calculated
yc

' •

Audit
0.97Y < Y < 1.03Y
Acceptable


                             Calculated
10
.0319  (tro + 460)
  -  pbar
1/2
10
I.0319C
+ 460:
1/2
                        Figure 5.2.  Meter box audit.
                                 D-59

-------
Date:
Client:
Pbar:
in. Hg.
                 Tine;
                 Auditor:
                 Meter Box No.
                 Pretest Y:
                       KJ-7
Orifice
gauge
reading
A H§
in. H^O
/••*
Dry gas
meter
reading
Vi/Vf
ft3
*Sfc. &$
W*. 2*>l
Meter
T emperatures

Ti/^f


S3,
Duration
of
run
a
min.
10
Dry Gas
meter
volume
Vm
ft3
7t "2^*7
. y? X '
Meter
temper atur e
average
t^
°F
Cx I C-,
O * * /

Pretest
Y
0.97Y
1.03Y
D.q^o
1.^t,o

Calculated
Yc


I.O.Z.

Audit
0.97Y |i

19 ( SL6.+ 460)\ '"•^"^
( ^.3 ^ )
Fi gure 5.2.
Meter box audit.
         D-60

-------
Date:    3-2£?-
Client:
Time:
Auditor:
      in.  Hg.
                                ~Df2—
Meter Box No. ;  M -7
Pretest Y:     l.t>oo
Orifice
gauge
reading
A H@
in. BnO
Dry gas
meter
reading
ft3
i
/.75
SLp*&!2^

Meter
Temperatures
V*f


£>/ °
94°
Duration
of
run
0
min.

10
Dry Gas
meter
volume
ft3
7.«6
Meter
temperature
average
°F


Pretest
Y
0.97Y
1.03Y
IiA>^
I. O*P*

Calculated
Yc

1.0066

Audit
0.97Y < Yc < 1.03Y
Acceptable

*

10
Vm

/°
(
Calculated
.0319 (tm -I- 460) \ 1/2 = 10
bar f '
Yc
/0.0319( 02-. i
) \ ( Z3.

5 + 460 )\ 1/2
•s ) /
Figure 5.2.  Meter box audit.
          D-61

-------
Date:
Client;
/ C.
                 in.  Hg.
Time:
Auditor:
Meter Box No.
Pretest Y:
Orifice
gauge
reading
A HS
in. H2O

'
Dry gas
meter
reading
v±/vf
ft3
c
-------
Date:
Client:
                              in. Hg.
Time:'
Auditors
Meter Box No.
Pretest Y:
Orifice
gauge
reading
A Hi
in. HoO
/ ^

Dry gas
meter
reading
Vi/?f
ft3
44 -
£3
Duration
of
run
e
min.
10

Dry Gas
meter
•volume
vm
ft3
^6,
Meter
temperature
average
tjj
°F
««

Pretest
Y
0.97Y
1.03Y
O.^^-i-O
L&^

Calculated
Yc


««*

fiudit
0.97Y < Yc < 1.03Y
Acceptable

\v
                             Calculated
10  /0.0319 (tm + 460)\  1/2
                                    10
0.0319(
                 -t- 460 )
                                                             )
1/2
                        Figure  5.2.   Meter box audit.
                                 D-63

-------
Date:
Client:
pbar:
                              in.  Hg.
               Times
               Auditor:
               Meter  Box Mo.
               Pretest Ys
Orifice
gauge
reading
A Hi
in. I^O
,.n
Dry gas
meter
reading
ft3 f
T&4-. ^^
90Z.Z55
Meter
Temperatures
Vr
7D6
7^*
Duration
of
run
e
min.
10
Dry Gas
meter
volume
vm
ft3
7-56*6
Meter
temperature
average
tjj
Op
73e

Pretest
Y
0.97Y
1.03Y
0.«3"g3l.
/.omts

Calculated
Yc


,.«»+

Audit
0.97Y < Yc < 1.03Y
Acceptable

*
                             Calculated Y
10
1.0319  (tm •» 460)
     bar
1/2
                                   10
1.0319<
+ 460
                                                   23-
1/2
                        Figure 5,2.   Meter box audit.
                                  D-64

-------
 Date:
 Client:
 Pbar:
AH§:
                              in. Hg.
               Time:
               Auditor:
               Meter Box No,
               Pretest Y:
Orifice
gauge
reading
A Hi
in. ^O
I.*?
Dry gas
meter
reading
V*f
ft3
Z = €^
/x>y/^-- n
Duration
of
run
6
min.
10
Dry Gas
meter
volume
Vm
ft3
W
Meter
tempe ratur e
average
*»
°F
n

Pretest
Y
0.97Y
1.03Y
^.ICo^l
l.tf&^

Calculated
Yc


1.^

audit
0.97Y < Yc < 1.03Y
teceptable


                             Calculated Y,
10
.0319  (tm +  460)
    Pbar
1/2
                                    10
0.0319
460 )\  1/2
                        Figure 5.2.   Meter box audit.
                                  D-65

-------
                      CUSTODY SHEET FOR REAGENT BOX  i
Date of Makeup
                          Initials
                                                         Locked?
Individual Tare of  Reagent;      2,QO -O

Individual Tare of  Reagent:   	
                                      gms.  of

                                       gms. °f
Individual Silica  Gel Tare Weight
                                             -O
                                            gins,
PLANT NAME
SAMPLING LOCATION  ' ~% S~

           / £j
                       
Run
Number
Date
Used
                 Initials
Locked?
Date
CleanutJ
% S. Gel
 Soent
Initials
Locked"
                                       Cft
Received in Lab
                   Date,     Initials  Lockad?
                             Lockad
                             ;  v<
                                                 Zero  & Span Balance
                                                 Initials
Sampling Method-
                                        Filter   Tare    Used
                                           * .   Weight    on
                                                 (mgms)  Test
Remarks
                           IMTT3OPV
                                            IMC,

-------
                      CUSTODY SHEET FOR REAGENT  BOX #
Date of Makeup   ?~ 2 / '- % 6

Individual Tare of Reagent:

Individual Tare of Reagent:
                                   Initials               Locked?

                                 z 
-------
                      CUSTODY  SHEET FOR REAGENT BOX #  0^0 7
Date of Makeup  j7^ S_ / •
Individual Tare of  Reagent:

Individual Tare of  Reagent:
                                   Initials

                                2 0#- 0
                                        //
                           Locked?
Individual Silica Gel Tare Weight
                                      mis.  of  e./ A) ;L

                                      mis.  of
                             2-00. O
                                                     gms.
PLANT NAME
            C
             *
                               IrO
SAMPLING LOCATION
Run
Number
Date
Used
                 Initials
Locked?
Date
Cleanup
% S. Gel
 Spent.
Initials
Locked?
                                                                       7
                  Date
                  Initials  Locked?
Received in Lab
                                                 Zero  &  Span Balance
                                                 Initials
Sampling Method;
                                        Filter    Tare     Used
                                           I     Weight    on
                                                 (mgms)   Test
Remarks:
                                    D-68

                          I fsl VIRDMMEMTAUSTS, INC.

-------
                       CUSTODY SHEET FOR REAGENT  BOX #
Date of Makeup
                       / - f
                 Initials
  Individual Tare of Reagent:

  Individual Tare of Reagent:
Individual Silica Gel Tare Weight
                                        2. &f) -
                 5
                 Locked?
                                               mls- of

                                               mis. of
                                    gins,
  PLANT NAME
  SAMPLING LOCATION
  RUO
  Number
         Date
         Used
Initials
Locked?
Date
Cleanup
% S. Gel
_Sp_ent
Initials
Locked?
-re-
                    Date
                           Initials   Locked?
  Received in Lab
                                Zero & Span Balance
                                Initials
  Sampling Method:
                                                 Filter   Tare    Used,
                                                    I    Weight    on
                                                          (mgrns)  Test
  Remarks:
                             IMTHOPY  D-69
                             i^MMi
                             ISI VIROrj MEIMTAUSTTS, INC.

-------
                 **'
                     CUSTODY  SHEET FOR REAGENT BOX I
Date of Makeup   3
                                   Initials
Individual Tare of Reagent:

Individual Tare of Reagent;  	

Individual Silica Gel Tare Weight 	^>0 -'
                                                         Locked?
                                               gras.  of
                                               gms.
                                                     gms,
PLANT NAME  'EM&
                 I
                                                   fJA T£T£<$
SAMPLING LOCATION ~7v3X/fel
Run
Number
         Date
         Used
                 •Initials
Locked?
Date
Cleanuo
% S. Gel
 Soent
Initials
Locked'
                                                   [£>
                  Date/
Received in Lab
                           Initials   Lock
                             ftp-
Sampling Method:
                                                 Zero's  Span Balance
                                                 Initials
                                                 Filter -  Tare     Used
                                                    *    Weight    on
                                                          (mgms)   Test
Remarks :
                           rvrraoPY   D-70
                           «BMMBM
                           M V! HO MM E PJTALJSTS, IN C.

-------
                     CUSTODY  SHEET  FOR REAGENT BOX i
Date of Makeup    3 / /4y
                                   Initials
                                        Locked?
Individual Tare of Reagent:

Individual Tare of Reagent:
                                               mis. of

                                               mis, of
Individual Silica Gel Tare Weight
                                        200 .
                                                     gms
PLANT NAME
SAMPLING LOCATION
                        S Qa/>T i A)C.  TNAJ >c ~T^
Run
Number
         Date
         Used
Initials
Locked?
Date
Cleanup
% S.  Gel
 Spent
Initials
Locked?
                                                   10
                   C-3T
                                                           CTf
        3 -as-
                  c.
                  Date
                            Initials   Locked?
Received in Lab
                                2ero  &  Span Balance
                                Initials
Sampling Method:
                                                 Filter   Tare    Used
                                                    i    Weight    on
                                                          (mgms)  Test
Remarks:
                                   D-71
                           IN VIRONMEIMTAUSTB, INC.

-------
                      CUSTODY  SHEET  FOR REAGENT BOX I
Date of Makeup   J ' "2 / -

Individual Tare of Reagent;

Individual Tare of Reagent:
Individual Silica Gel Tare Weight
PLANT NAME
                                   Initials    .T^//     Locked?

                                2BO. 0 _ mis. of  0-lfj  A/» 0 f~/
SAMPLING LOCATION
                                               mis.  of
                                                     gms.
Run
Number
         Date
         Used
Initials
Locked?
Date
Cleanup
\  S.'  Gel
Soent
Initials
Locked?
 - n
                                                  5"
                  Date
                           Initials   Locked?
Received in Lab
                               Zero  & Span Balance
                               Initials
Sampling Method;
                                                 Filter   Tare    Used
                                                    I     Weight    on
                                                          (mgmsl   Test
Remarks:
                           IMTRQPY  D-72
                           ••••••
                           IMVf ROIMMENTAUSTS, INC.

-------
                      CUSTODY SHEET FOR REAGENT BOX  f
Date of Makeup 3- 2 /-/£
Individual Tare of Reagent: j?
Individual Tare of Reagent;
Individual Silica Gel Tare Weight
Initials
Off- 0

2, Off. /:
£ £ /•/ Locked? «**^
mis. of Q.Jf\l Ne^. Of/
mis. of
> gms.
PLANT NAME
SAMPLING LOCATION
                      ^4 xJ/f
Run
Number
         Date
         Used
Initials
Locked?
Date
Cleanup
% S. Gel
 Spent
Initials
Locked?
                  c.
                   Date
                            Initials  Locked?
Received in Lab
                                Zero & Span Balance
                                Initials
Sampling Method:
                         H?
                                Filter   Tare    Used,
                                   t    Weight    on
                                         (mgms)  Test
Remarks:
                           IMTROPY  D-73

                           MVIROIMMEIVTAIJSTS,INC,

-------
Date of Makeup
                     CUSTODY SHEET FOR REAGENT BOX I
                          Initials
                                        Locked?
Individual Tare of Reagent:

Individual Tare of Reagent:
                               J?
-------
                      CUSTODY SHEET FOR REAGENT BOX  I  Q2 02
Date of Makeup
  ' 2 I - £^ £
Individual Tare of  Reagent:

Individual Tare of  Reagent:
                                   Initials

                                   QQ , 0
Individual Silica Gel Tare Weight __._2_0_o_. o
PLANT NAME
                                               Sj
                 Locked?
                              mis.  of

                              mis.  of
                                                     gins.
SAMPLING LOCATION
Run
Number
         Date
         Used
Initials
                              Locked?
Date
Cleanuo
% S. Gel
 Spent
Initials
Locked?
                 C.J-P.
                  Date
                            Initials   Locked?
Received in Lab
                                Zero & Span Balance
                                Initials
Sampling Method:
                                                 Filter   Tare     Used,
                                                    t    Weight     on
                                                          (mgms)   Test
Remarks:
                                   D-75

                           MVinONMEISTTAUSTS,INC.

-------

-------
   APPENDIX E




MRI PROCESS DATA
      E-l

-------
E-2

-------
 AMPERE-HOUR CALCULATIONS
         TEST NO.
INLET:  MI-1;  OUTLET:   MO-1
Time
(24-h clock)
Inlet
08:38
08:46
08:56
09:06
09:16
09:19
Subtotal
09:29
09:39
09:43
Subtotal
10:07
10:17
10:27
10:37
10:47
10:57
11:07
11:17
11:27
11:30
Subtotal
11:46
11:56
12:06
12:07
Subtotal
TOTAL
Outlet
08:36
08:46
08:56
09:06
09:16
09:19

09:29
09:39
09:43

10:02
10:17
10:27
10:37
10:47
10:57
11:07
11:17
11:27
11:30

11:46
11:50




Time
interval , min
Inlet

8
10
10
10
1
39

10
_4
14

10
10
10
10
10
10
10
10
7
87

10
10
1
21
161
Outlet

10
10
10
10
3
43

10
_4
14

15
10
10
10
10
10
10
10
7
92

6
0
0
6
155
Current,
amperes

7,000
7,000
7,000
7,000
7,000


5,000
6,000


6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000


4,000
4,000
4,000


Ampere-hours
Inlet

933
1,167
1,167
1,167
117
4,551

833
400
1,233

1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
700
8,700

667
667
67
1,401
15,885
Outlet

1,167
1,167
1,167
1,167
350
5,018

833
400
1,233

1,500
1,000
1,000
1,000
1,000
1,000
1,000
1,000
700
9,200

400
0
	 0
400
15,851
           E-3

-------
 AMPERE-HOUR CALCULATIONS
         TEST NO.
INLET;   MI-2;  OUTLET:   MO-2
Time
(24-h clock)
Inlet
13:10
13:20
13:30
13:40
13:50
14:00
14:10
14:20
14:30
14:40
14:43
Subtotal
14:54
15:04
15:14
15:24
15:32
Subtotal
TOTAL
Outlet
13:10
13:20
13:30
13:40
13:50
14:00
14:10
14:20
14:30
14:40
14:43

14:54
15:04
15:14
15:24
15:30


Time
interval, min
Inlet

10
10
10
10
10
10
10
10
10
3
93

10
10
10
8
38
131
Outlet

10
10
10
10
10
10
10
10
10
3
93

10
10
10
6
36
129
Current,
amperes

4,000
4,000
4,000
4,000
4,000
4,000
7,000
7,000
7,000
7,000


6,000
6,000
6,000
6,000


Amgere-hours
Inlet

667
667
667
667
667
667
1,167
1,167
1,167
350
7,853

1,000
1,000
1,000
800
3,800
11,653
Outlet

667
667
667
667
667
667
1,167
1,167
1,167
350
7,853

1,000
1,000
1,000
600
3,600
11,453
           E-4

-------
 AMPERE-HOUR CALCULATIONS
         TEST NO.
INLET:   MI-3;  OUTLET:   MO-3
Time
(24-h clock)
Inlet
08:04
08:14
08:24
08:28
Subtotal
08:45
08:55
09:05
09:15
09:25
09:35
09:45
09:55
09:59
Subtotal
10:13
10:23
10:33
10:42

Subtotal
TOTAL
Outlet
08:05
08:14
09:24
08:28

08:45
08:55
09:05
09:15
09:25
09:35
09:45
09:55
09:59

10:13
10:23
10:33
10:43
10:52


Time
interval, min
Inlet

10
10
4
24

10
10
10
10
10
10
10
4
74

10
10
9
0
29
127
Outlet

9
10
4
23

10
10
10
10
10
10
10
4
74

10
10
10
9
39
136
Current,
amperes

8,000
8,000
8,000


8,000
8,000
8,000
8,000
8,000
8,000
8,000
8,000


7,750
7,750
7,750
7,750


Ampere-hours
Inlet

1,333
1,333
533
3,199

1,333
1,333
1,333
1,333
1,333
1,333
1,333
533
9,864

1,292
1,292
1,162
0
3,746
16,809
Outlet

1,200
1,333
533
3,066

1,333
1,333
1,333
1,333
1,333
1,333
1,333
533
9,864

1,292
1,292
1,292
1,162
5,038
17,968
            E-5

-------
 AMPERE-HOUR CALCULATIONS
         TEST NO.
INLET:   MI-4;  OUTLET:   MO-4
Time
(24-h clock)
Inlet
11:10
11:19
Subtotal
11:34
11:44
11:54
12:04
12:14
12:24
12:34
12:36
Subtotal
15:02
15:12
15:22
15:32
15:42
15:52
16:00

Subtotal
TOTAL
Outlet
11:10
11:19

11:34
11:44
11:54
12:04
12:14
12:24
12:34
12:36

15:02
15:12
15:22
15:32
15:42
15:52
16:02
16:06


Time
interval, m1n
Inlet

9
9

10
10
10
10
10
10
2
62

10
10
10
10
10
8
0
58
129
Outlet

9
9

10
10
10
10
10
10
2
62

10
10
10
10
10
10
_4
64
135
Current,
amperes

7,750


7,000
6,500
6,500
6,500
6,500
6,500
6,500


3,750
3,750
3,750
3,750
3,750
3,750
3,750


Ampere-hours
Inlet

1,162
1,162

1,167
1,083
1,083
1,083
1,083
1,083
217
6,799

625
625
625
625
625
500
0
3,625
11,586
Outlet

1,162
1,162

1,167
1,083
1,083
1,083
1,083
1,083
217
6,799

625
625
625
625
625
625
250
4,000
11,961
            E-6

-------
SQUKE sm.m mam
 Process Mi itieet
Placet ereensboro Industrial Platers
D«ti: 3/11/86
Tank No. i 6
Sasple type: Total and heiavelent chroeius
Test Run No.
Inlet i M-l
Outlet! m-l
Test Start Tie*
Inlet j 8:38
Outlet! Bi36
Test Stop Tiee
Inlet: 12:07
Outlet: 11:50
1 Tiee ! Teeper-
(24-h clock)
Inlet ! Outlet
B>38 8:36

8)46 Ii46

8:56 6:36
9:06 9:06

9:16 9:16
9:19 9:19

9:29 i 9:29

9:39

9:43
10:07

iOil?
10i27

10i37

10l*7

10:57
Ili07

11 -.17

ll!27

11:30

11:46

11:56

12107

9i39

ature,
F
120

121

121
121

121
121

120

120

9:43 ! 120
icioe : 120

10il7
10:27

10:37

10i47

10:57
Ili07

11:17

11:27

11:30

11:46

11:50



120
120

120

120

120
120

120

120

120

118

11B

116
Operating
voltage,
volts
10.5

10.5

10.5
10.5

10.5
10.5

8.0

10.0

10.0
10.0

3.5
3.5

3.5

3.5

9.5
9.5

9.5

9.5

9.5

5.4

£.5

6.3
Operating
Current,
7,000

7,000

7,000
7,000

7,000
7,000

5,000

6,000

Pressare i
Drop, !
in. •. e. ! Notes
0.1 {Started testing. Started plating at 7:20.
1
0.1 iUork plated! 3 textile machine rods.
EDieemion of rodsi 13.5 ft. long, 1 in. outside diaeeter (OD)
0.1 ! Surf ace area of rods » 10.60 iq. ft.
0.1 JBrab saeples of plating solution taken at anode, cathode, and
! control area.
0.1 !
i
i
0.1 'Stopped testing.
(Stopped plating. Hods rinsed with clean Mater over plating tank.
0.2 (Started testing. Started plating at 9iH.
iHorfc plated: 3 textile eachine rods.
0.1 [Dimension of rodsi 13.5 ft. long, 1 in. O.D,
[Surface area of rods * 10.6 sq. ft.
6,000 i 0.1 [Stopped testing. Vacuuei of iepinger at outlet plugged.
6,000 ! 0.1 ! Started testing.
I !
6,000
6.000

6,000

6,000

6,000
6,000

6,000

6,000

6,000

4,000

4,000

4,000
! 0.2 ! Visible Minions (VE) at stack outlet » 0
0,2 !VE » 0. Bran saeples of plating solution taken at 9:29
! and 11:46.
0.2 !VE » 0
1
I
0. 1 IVE = 0
1
0. 1 ! VE « 0
i
i
0.1 IVE » 0
1
1
0.1 i VE « 0
1
0. 1 i VE « 0
1
0. 1 [Stopped testing.
EStopped plating. Rods rinsed with clean Mater over plating tank.
0.1 [Started testing. Started plating at 11:46. VE * 0
!Uork plated! 4 textile machine rods.
0.1 [Dimension of rods: 14 ft. 10 in. long, 1.44 in. 0,2. VE » 0
! Surf ace area of rods • 22.37 sq. ft. [Observed list escaping
0.1 ! Stopped testing, over capture hoods,]
  E-7

-------
                                                         SOURCE SflHPUNG  PBOGSfiK
                                                           Proem  Data Sheet
Place: Breensaoro Industrial Platirs               Test Run No.           Test Start Tin
Diti;  3/18/86                                      Inlet;  HI-2           Inlets  13:10
Tank No,: 6                                         Outlet: W-2           Outltt: 13:10
Saeple type:   Total and hexavalent cfiroaiui
Test Stop TUB
   Inltti  13:32
   Outlet: 15:30
TIM
(24-h clock!


Inlit
13:10
13:20

13:30
13>40

13:30

11:00
14:10

14:20

14:30
141+0
14143

14:54
15:04

15:14
15:24
15:32


Outlet
13:10
13:20

13:30
13:40

13:50

14)00
14:10

14:20

14:30
14:40
14)43

14i54
15:04

15! 14
15:24
15:30



Temper-
ature,
F
113
115

114
114

114

114
114

114

114
115
115

114
114

114
114
114



Operating
Voltage,
volt*
6.5
6.5

6.5
6.3

6.5

6.5
8.75

8.75

8.75
«. 75
8.75

9.5
9.5

9.5
9.5
t.l



Operating
Current,
aepvres
4,000
4,000

4,000
4,000

4,000

4,000
7,000

7,000

7,000
7,000
7,000

6,000
6,000

6,000
6,000
6,000



Pressure
Drop,
in. N. c.
0.2
0.1

0.1
0,1

0.1

0,1
0.1

0.1

0.1
0.1
0.1

0.1
0.1

0.1
0.1
0.1




Note*

Started testing. Started plating at 13:10.
Work plated: 4 textile «achine rods.
Dimension of rote! 14 ft. 10 in. long, 1.44 in. O.D.
Surface area of rods » 22.37 §q. ft.
Brab samples of plating solution taken at anode, cathode, and
control area at 13:20.
At 13:21 filled plating tank «ith approximately 50 gallons of
Mter free) rime tank.

Rectifier proolen started to occur. Plating) operator Hid that
he could not control current at 4,000 a*percs.

Grab wapiti of plating solution taken taken at 14:10,


Stopped testing.
Stopped plating. Rods rimed «ith Mater over tank for 50 sec.
Started testing. Started plating at 14:54.
Work plated: 4 textile eaehine rods.
Dieension of rods: 14 ft. 10 in. long, 1.44 in. 0.0.
Surface area of rods « 12.37 sq. ft.
Brab saaples of plating solution taken taken at 15:24.
Stopped testing.
Stopped plating at 15:55.
Rods rinsed Nith Mter over plating tank.
                                                            E-8

-------
                                                         SOURCE SflNPLIfJ) PROGRAM
                                                           Process Data Sheet

Plan: ireensboro Industrial Plater*               Test Run No.           Tr»t Start TIM
Datt:  3/19/16                                      Inlets  Nl-3           Inltt:  Bt04
T«* No.: 6                                         Outlet: HO-3           Outlet: 6:03
Saeple types  Total  and heKavalent enroiiue
Test Stop Tii*
  Met!   10:42
  Outlet: 10:58
Tiee
(24-n clock)


Inlet
8:04

2:14

8i24

8:28

6:45

8:33

9:05

9:15
9:25
9:35

9:45
9:55

9:59

10:13

10:23

10:33
10i42

Outlet
8:03

a> 14

3:24

B:2B

8:45

8:55

9iOS

isiS
9:25
9:35

9i43
9:55

9:59

10:13

10:23

10:33
10)43
! 10:S£

Ts*pir-
ature,
F
117

118

120

120

126

130




















Operating
Voltage,
VOlti
10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0
10.0
10.0

10.0
10.0

10.0

10.0

10.0

10.0
10.0
10.0

Operating
Current,
aBperei
8,000

8,000

8,000

8,000

8,000

8,000

8,000

8,000
8,000
8,000

8,000
8,000

8,000

7,730

7,750

7,750
7,730
7,730
!
Pressure i
Drop, ! Notes
in. H. c. !
0.1 ! Started testing. Started plating at 7:15.
!lkrk plated! 4 textile eadiine rods.
0.1 iDieension of rods! 14 ft, 10 in. long, 1.44 in. O.D.
! Surface area af rodi » 22.37 *q. ft.
0.1 iBrab sables of plating solution taken at anode, cathode, and
! control area at 8:05,
0. 1 ! Stopped testing.
'Stopped plating. Rods rinsed with eater over tank.
0.1 i Started testing. Started pUting at Bi45,
iUork plated; 4 textile eachine rods.
0.1 IDieension of rods: 14 ft. 10 in. long, 1.44 in. ID. VE » 0
! Surf ace area of rods » 22.37 sq. ft.
0.1 EVE * 0. Thenoeeter in tank ealfunctioned.
! Three grab Map lei of plating solution taken at 9:03.
o. i m • o
0.1 !
0.1 :
1
0.1 :
0. 1 ! Observed eist escaping over capture hoods.
i
0.1 ! Stopped testing.
! Stopped plating. Rods rinsed with Hater over tank for 33 sec.
0.1 ! Started testing. Started plating at 10:13.
iUork plated; 4 textile ladiine rods.
0.1 IDieension of rods: 14 ft. 10 in. long, 1.44 in. 0.9. VE * 0
! Surf ace area of rods = 22.3? sq. ft.
0.1 'Three grab neples of plating solution taken at 10:20. VE * 0
0. i 'Stopped testing at inlet.
0.1 EStopped testing at outlet.
                                                           E-9

-------
                                                      SOURCE SM&IN6 PKHWI
                                                        Praam Data Sheet
Plan: Breensbaro Industrial Platers
Datii  3/19/86
Tank No.; 6
Saaple type:  Total  ami htxavalmt  chrowui
lest Run No.
  Met; Ml-4
  Outleti KM
Test Start Ti»
  Inltt:  lliiO
  Outlet) 11:10
Tett Stop Tim
  Inlet;  16:00
  Outlet: 16:06
TIM
124-h clock)


Inlet
11:10

11:19
11:34
11:44

11:54

12:04
12:14

12:24
12134
12:36

12:45
15:02
15:12

15s22


15:32
15:42

15:52


16:00



Outlet
11:10

11:19
11:34
11:44

11:54

12:04
12:14

12:24
12:34
12:36

12:45
15:02
15:12

15:22


15:32
15:42

15:52


16:02

16:06


Tteper-
ature,
F
130

130
150
150

150

150
150

150
IS)
150


140
140

140


140
140

140


140

140


Operating
Voltage,
volts
10.0

10.0
10.0
10.0

10.0

10.0
10.0

10.0
10.0
10.0


7.0
7.0

7.0


7.0
7.0

7.0


7.0

7.0


Operating
Current,
aeperes
7,750

7,750
7,000
6,500

6,500

6,500
6,500

6,500
6,500
6,500


3,750
3,750

3,730


3,750
3,750

3,750


3,750

3,750


Pressure
Drop,
in. N. c.
0.1

0.1
0.1
0.1

0.1

0.1
0.1

0.1
0.1
0.1



Notes

Started testing. Started plating at 11:10.
Work plated: 3 textile eachine rods 14 ft. 10 in. long and
1.44 in. O.D. Surface area of rods » 16.75 tq. ft.
Started testing.
Grab saaples of plating solution taken at anode, cathode, and
control area at 13:20.
ftt 13:21 filled plating tank with approximately 50 gallons of
Mater fro* rinse tank.

Grab samples of plating solution taken taken at 11:16
and 15:06.


Stopped testing.
Stopped plating. Rods rinsed Hith Hater over tank for 12 sec.
! Rectifier repaired. Replaced tno of three bad fuses.
0.1 ! Started testing. Started plating at 15:02.
0.1 SHork plated: 4 textile Bachine rods.
iDieension of rods: 11 ft, 9 in. long, 0,87 in. O.D.
0.1 ISurfact area of rods = 10.70 sq. ft.
1
i
0.1 ;
0.1 :
(Three grab samples taken at 15:50.
0.1 ;VE*O
1
1
0. 1 .'Stopped testing at inlet.
1
0.1 ! Stopped testing at outlet.
IStopped plating. Rods rinsed Hith water over plating tank.
                                                       E-10

-------
                                                      SOURCE SWUNB WOW*
                                                        Process Data Sheet
Plan;  Breenshrc Industrial Platers
Dili:   3/24/86
Tank to,i &
Saeplt  typs  Pirticlt sizi
Tut  Run No.
  Inlttt  HI-SI
  Outlet: ND-S1
Test Start TIM
  Inlet:  13:0*
  Outltt: 13:04
Test  Stop Ties
  Initt:  16:14
  Outlet; 16:14
Tie*
«4-h clock)
Inlet ! Outlet
13:04 !
13:14
13:24
13:32
13:90
14:00
14:10
14:30
14t30
14140
14:50
14:51
15i06
J5il6
15:26
15:36
15i46
15:56
16s06
16:14
13! 04
13il4
13i24
S3i32
13:50
14:00
14)10
14:20
14:30
14:40
14:50
14:51
15:06
15ilS
15:26
15:36
15:46
15i56
16:06
16:14

Tiiper
iturt,
F
140
140
140
140
140
140
140
140
140
140
140
140
135
135
135
135
135
135
135
135

Operating
Voltage,
VOlt I
6,0
5.5
5.5
5.5
6.0
5.5
5.5
5.5
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0

Operating
Currtnt,
a*perts
2,250
2,250
2,250
2,250
2,250
1,750
1,750
1,750
2,250
2,250
2,250
2,250
2,250
2,250
2,250
2,250
2,250
2,250
2,250
2,250
*
i
Pressure !
Drop, ! Notes
in. M. c. !
0.4 ISttrted tut ing. Started plating at 12:45.
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.5
0.4
0.4
0.5
0.4
0.4
0.4
0.4
Work plated: 4 rods 11 ft. 2 in. long and 0.25 in. O.D.
Surface are* of rod* = 2. 92 iq. ft.
Stopoed terling.
Slopped plat ing. Rods rinwd with water over tank for* 45 we.
Started ttsting. VE « 0.
UoHi pUttdi 4 rods 11 ft. 2 in. long and 0.25 in. O.D.
Surface area of rods * 2.9£ »o. ft.
VE »0.
VI »0.


Stopped teiting.
Stopped plating. Rods rimed with water over tank for 21 sec.
Started testing. VE » 0.
Work platedt 4 rods 11 ft. 2 in. long and 0.25 in, Q.D.
Surface are* of rods » 2.32 sq. ft.

«»0.
VE * 0.
'
Stopped testing.
Stopped plating. Rods rinsed with water over tank for 53 sec.
                                                           E-ll

-------
SOURCE SMUNi PflCSWH
  Process Data Shett
Plant ireenshoro Industrial Platen
Datti 3/25/66
T*nk to.! S
Saeplt type: Particle flit
Test Run N&.
Inlet > HI-S2
Outlet; KH2
Int Start Tie*
Inlets Ss32
Out 1ft! 8:3£
Test Stop Ti«
Inlet: 12:06
Outlet! 13:39
TiM i
(34-li clock)
Inlet
8:32
8)42
8:52
9:02
9il2
9»E2
9:25
Si 41
9:51
10:01
10:11
10:21
10:31
10:41
10:51
11:06
iitlB
11 128
11138
in48
11:56
18:06

Outlet
8:32
8»42
8:52
9)02
9:12
3:22
9:25
9:41
9:51
lOiOl
10:11
10:21
10:31
10»4i
10:S1
11:08
llilB
1U28
11:38
11:48
11:SB
12:08
12:10
	 —
••pw^
aturt,
F
12S
125
12S
125
12S
125
125
130
130
130
130
130
130
130
130
115
135
135
135
135
135
135
135

Operating
Voltefh
volt*
£.0
6.0
6.C
6.0
6.0
6.0
6.0
6.S
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5

Operating
Cumntf
MOVTM
2,000
£,000
2,000
2,000
2,000
2,000
2,000
4,000
3,750
3,750
3,750
3,750
3,750
3,750
3,750
4,250
4,000
4,000
4,000
4,000
4,000
4,000
4,000
!
PrMiwv
Dropi
in. M. c.
0.6
0.5
O.S
0.6
0.3
0.5
0.5
NotH
Start »d ticting.
Uork plated! 8 rod* 11 ft. 2 in. long and 0.25 in. Q.D.
Sarface area of rods * 5. 85 »q. ft.
VE *0.
VE « 0.


Stopped tilting. Stopped plating.
Mods rimed with water over plating tank for 50 MC.
0.6 ! Star-tot tutinj.
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.6
0.5
0.6
0.6
0.5
0.6
Work plated: 4 rods 16 ft. 4 in. long and 1.125 in. Q.D.
Surface area of rod* * 19.24 tq, ft.
Visible Mission! (VE) at stack outlet « 0



Stopped testinf. Stopped plating.
ftoOt r inwd with water over plating tank for SB tec.
Started testing.
Murk plated: 4 rods 16 ft. 4 in. long and 1.125 in. Q.D.
Surface area of rods * 19.24 »q. ft.
'


Stopped testing at inlet.
Continued
    E-12

-------
SOUND: SMFUN6 PTOHfH
  Proem Data Sheet
Plaeti OreeMboro Imtetrial Plater* Twt Run No. Ttct Start TIM Tert Stop Tie*
tett; 3/25/86
Tank No.: 6
Saaplt typei Pirticlt lilt
i














12i2fl

12i34

12:39


13>OT

13U9
!3ia
I
135 ;

135

133


inliti «!-« Inltt: Bt32 ]nlct: 12:06
Out 1ft i NO-S2 Out 1ft: 8:32 Outltt: 13:39

t

6.5

6.3

6.0


133 ! 6.0

135
133
I3i39 ! 135
: :

6.0
6.0
6.0

4,000

4,000

8,730


2,730

2,730
2,730
2,730
"
0.6 1
*
0.6 IStopptd Inrting at outlet. Stoppw) plating.
tRotJi riM«i Kith water over pitting tank for 61 we.
0.9 ! Started tnting at out lit.


O.S

0.3
0.6
0.6
: :


Work plattdi S flutter bar* for tMtilt «artir*ry 11 ft. 3.5 in.
long ami 1 in. Hid*; on* fid* plattd.
Surfact arta of rods * 7.S6 14. ft. VE * 0.

Stopfwi tnting at outlet. Stopped plating.
Rods rin»«d with Mater over plating tank.
   E-13

-------
                                                       SOURCE SRMRJNB PflOGfWH
                                                         Process Data Sheet
Placet  Breensboro Industrial Platers
Dates   3/25tf6
T«*No.i 6
Saaple  typ*i  Particle tin
Test Run No.
  Inlet:  M-53
  Outiiti  HJ-S3
Test SUrt Tiw
  Inlet!  14.-19
  Out 1ft: 14iS>
Test  Stop TiM
  Inlet:  16;38
  Outlet: 16:32
TIM
(£*-h clock)
Inlet
14: 19
14i29
14:39
14i49
14:59
15:09
15s 19
ISiCT
13:43
15i53
16)03
16il3
16i23
16:33
16(38
Out lit
14(20
1427
15:43
15:53
16i03
16:13
16:23
16:3£

ature,
F
133
133
135
135
135
135
135
135
135
135
135
135
135
135
135
Operating
Voltap,
volti
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
Dperiting
Currwrt,
aoptrtf
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
3,750
3,750
3,750
3,750
3,750
3,750
3,750
Prwiur*
Drop,
in. H. c.
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
Note*
Starttd testing.
Work alitid: 6 flutter tan for twtile Hdiiivry 11 ft. 9.5 in.
and 0.5 in. Hide; one tidi plated.
Surf an ana of ban * 3.93 tq. ft.




Stopped tMtinf.
Stopped plating. Rods rinMd with water over tank for 84 HC.
0.5 [Started tnting.
0.5
0.5
0.5
0.6
0.6
0.6
Uork plated i 4 rod* 17 ft. 9.5 in. long and 3.186 in. D.D.
Surface area of rod* » 59.40 K). ft.



Stoppmi testing.
Stopped pUtinj. Rods rinsed with Hater over tank for 30 tec.
                                                          E-14

-------
                                          SOURCE SflWUNB PRQSRflM
                                             Process Data Sheet
Place! Greensboro Industrial Platers
Date;  3/16/86
Tank No.:  5
Test Run
   No.
Test Start
   TIM
Test  Stop
   Tine
Simple type: Total and hexavalent chromui Inlet A: TE-iA 9:15 10:21
Inlet B: Ti-lB 9:15 10:22
TiH
(24-h clock>
Inlet fl
9:15
9:25
9:35
9:45
9:55
10:05
10:15
10:21
Inlet B
9:15
9:25
9:35
9:45
9s55
10:05
10:15
10:22
Temper-
ature,
F
Not
Recorded






Doer at ing
Voltage,
volts
B.5
8.5
8.5
8.5
6.5
B.5
8.5
8.5
Operating
Current,
ameres
3,100
3,100
3,100
3,100
3,100
3,100
3,100
3.100
Notes
Started testing.
Work plated: 1 laundry Mtt press head.





Stopped testing. Stopped plating.
                                                       E-15

-------
Place:  Brwisboro Industrial Platers
Date.*  3/18/66
Tank No.:  5
SOURCE SAMPLINB PRQBRAM
   Process Data Sheet

              Test Run
                 No.
Test Start
   TiK
Test  Stoc
Sarnie type: Total and hexavalent cttnwiui Inlet ft: TE-2fi 12:53 14:00
Inlet B; TE-2B 12:54 14:02
TiK
(24-h clock)
Inlet fl
12:53
13:03
13:13
13i23
13:33
13:43
12:53
14:00
Inlet B
12:54
13:03
13:13
13:23
13:33
13:43
13:53
14:02
Teaper-
ature,
F
135
135
135
135
135
135
135
135
Operating
Voltage,
volts
a.5
6.5
8.5
8.5
8.5
a. 5
8.5
8.5
Operating
Current,
» ceres
3,300
3,300
3,300
3,300
3,300
3,300
3,300
3,300
Notes
Started testing.
Work plated: 1 laundry «tt press head.





Stopped testing.
                                               E-16

-------
                                         SOURCE SflKPLINS M06RP*
                                            Process Data Sheet
Plan:  Greensboro Industrial Platers
Date:  3/18/86
Tank No.;  5
Test Run
   Ho.
Test Start
   TiK
Test  Stop
   TlBt
Swple type: Total and hexavalent cnrauia Inlet A: TE-3fi 14:29 15:33
Inltt B: TE-38 14:30 15:34
TiK
(24-h clock)
Inlet fl
14:29
14s39
14:49
14:59
15.-09
15:19
15:29
15:33
Inlet B
14:30
14s39
14i49
14:59
15:09
15:19
15:29
15! 34
Temper-
ature,
F
Not
ft—— _ — j— ^
ncoraea





Operating
Voltage,
volts
4.5
B.S
8.5
a. s
8.S
8.5
8.5
8.5
Ooerat ing
Current,
aaperes
1,000
3,100
3,100
3,100
3,100
3,100
3,100
3,100
Notes
Started testing. Turned current on
because wrk had old chroniui
plating on it.
Uork plated: 1 laundry «att press head.




Stooped testing.
                                              E-17

-------
Plan:  Greensboro Industrial Platers
Date:   3/19/86
Tank No.:  5
SOURCE SflKPUNB PROGRf*
   Process Data Sheet

              Tret Run
                No.
Test Start
   TiM
Test  Stop
   TtK
Saiple type: Total and hexavalent chromui Inlet ft! TE-4A 9:24 10:31
Inlet Bi TE-4B 9:26 10:32
TIM
(24-h clock)
Inlet fl
9:24
9:34
9:44
9:54
10:04
10-.14
10:24
10:31
Inlet 8
9:26
9:34
9:44
9:5*
10:04
10:14
10:24
10:32
Te*oer-
ature,
F
130
130
130
130
130
130
130
130
Operating
Voltage,
volts
3.0
3.0
3.0
3.0
3.0
3,0
3.0
3.0
Ooerit ing
Current,
£RPf£ffMg
1,800
1,600
1,600
1,600
1,600
1,600
1,600
1,600
Notes
Started testing.
Work plated: 1 steel part for furniture
industry 60 in. long and U in. wide;
one side plated.
Surface area of part = 4.58 sq. ft.



Stopped testing.
                                             E-18

-------
Place:  Greensboro Industrial  Platers
Date:   3/19/86
Tank No.: 5
SOURCE SWPLIN6 PR06RM
   Process  Data Sheet

             Test Run
                No.
Ttst Start
   TIM
Test   Stoo
   TIM
Saaple type: Total and hexavalent ehromu* Inlet A: TE-5A 11:05 12:11
Inlet B: TE-5B 11 :05 12:11
Ti«e
(24-h clock)


Inlet ft
11:05

11:15

11:25

11:35
11:45
11:55
12:05
12:11
Inlet B
11:05

11:15

11:25

11:35
11:45
11:55
12:05
12:11
Temper-
ature,
F

Not
Record fid









Operating
Voltage,
volts

3.0

3.0

3.0

3.0
3.0
3.0
3.0
3.0
Operating
Current,
aaperts

1,600

1,600

1,£OC

1,600
1,600
1,600
1,600
1,600


Notes

Started test inf.

Work plated: 1 stwl oart for furniture
industry SO in. long and 11 in. wioe;
one side plated.
Surface area of part * 4.58 sq. ft.




Stopped testing.
                                              E-19

-------
                                         SOURCE SWPUfG PRQ6KW
                                            Process Data Sheet
Place:  Grfgniboro Industrial Platers
Date:   3/19/66
Tank No.: 5
Test  Run
   No.
Test Start
   TIK
Test  Stoo
   TIK
Saipie type: Total and hexavalent chronui Inlet ft: TE-ofl 13:05 14:10
Inltt 8; TE-€1 13:06 14:11
TIK
(24-h clock)


Inlet A
13:05

13:15

13:25

13:35
13:45
13:55
14:05
14:10
Inlet B
13:01

13:15

13:25

13:35
13:45
13:55
14:05
14:11
leaper-
ature,
F

Not
Recorded









Operating
Voltage,
volts

£>.0

6.0

&.0

6.0
6.0
B.O
8.0
B.O
Operating
Current,
aiperes

2,000

2,000

2,000

i,000
2,000
2,100
E,100
2,100


Notes

Started testing.

Work plated: 1 steel part for furniture
industry 60 in. long and 11 in. Hide;
one side plated.
Surface area of part = 4.56 sa. ft.




Stoaaed testing.
                                               E-20

-------
Place:  Breensboro Industrial Platers
Date:   3/24/K
Tank No.: 5
SOURCE SANPL1NB  PROBMPI
   Process Data  Sheet

              Test Run
                No.
Test Start
   TIM
Test  StoD
   Tin
Sample type: Total and hexavalent chroma Inlet ft.- TE-7fl 13:05 14:10
Inlet i: TE-7B 13:06 14:11
TiK
(24-h clock)
Inlet ft
13:05
13:15
13:25
13:35
13:45
13:55
14:05
14:10
Inlet B
13:06
13:15
13:25
13:35
13:45
13:55
14:05
14:11
Tewer-
ature,
F
ftet
Recorded





Operating
Voltage,
volts
3. a
7 3
*)« Cm
3.E
3. a
3.2
3.2
3.2
3.2
Operating
Current,
aaperes
900
900
900
900
900
900
900
900
Notes
Started testing.
Work plateti: 1 steel mod panel roil
50 in. long and & in. fl. D.
Surface area of part = 6.54 so. ft.




Stopped test inf.
                                               E-21

-------
Place:  Brccnsboro Industrial Platers
Date:  3/14/86
Tank No.:  5
SOURCE S»PUJ*
   Process Data Sheet

              Test Run
                No.
Test  Start
   TIM
Test  Stoo
   TIK
Sample type: Total and hexavalent ehn*iui Inlet A: TE-8A 14:42 15:45
Inlet B: TT-8B 14:43 15:46
TIM
(24-h clock)
Inlet ft
14:42
14:53
15:03
15il3
15:£3
15:33
15:43
15:45
Inlet B
14:43
14:53
15:03
15:13
15:23
15:33
15:43
15:46
Te»per~
ature,
F
Not
Recorded




Operat ing
Voltage,
volts
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
Operating
Current,
aaperes
8,000
8,000
8,000
6,000
8,000
8,000
8,000
8,000
Notes
Started testing.
Wortt plated: 1 industrial roll
50 in. long and & in- Q.D.
Surface area of part = 6.54 so,, ft.
Industrial roll is used fro* BO to
100 hours and then chroviiui plated
again.


Stopped testing.
                                               E-22

-------
                                           SOURCE  SAMPLING PHOSfiflH
                                              Process Cati Sheet
Place: Brwnsboro Industrial  Platers
Date;  3/25/86
Tank No.:  5
Saiple type:  Total and htxavalent  cnrt»iu>
Inlet ft:
Inlet B:
Test Run
  TE-9fl
  TE-9B
Test Start    Test   Stoo
   TIN          TIN
   a -.20
   8:21
9:25
Ti*e
(24-h clock)
Inlet ft
fl:20

8:30

8:40

8:50
9:00
9:10
9:20
9:25
Inlet B
8:81

8:30

S:*0

8:50
9:00
f:10
9:20
9:26
Te»oer-
at ure,
F
Not
Recorded









Operating
Voltage,
volts
6.5

6.5

6.5

6.5
6.5
6.5
6.5
6.5
Ooerat ing
Current,
anperts
3,700

3,700

3,700

3,700
3,700
3,700
3,700
3,700
Notes
Started testing.

yorft plated: 2 steel woodworking Machine
slates 29 in, long and 15 in. Hide;
one side plated.
Surface area of part = 6.04 sq. ft.




Stoqoed testing.
Note: Results of test run No.  TE-iB are not included in the test  report  because the  post-test aeterbox
      calibrations were unacciptaoli.   This test  ryn Mas replaced with test run No,  TE-13B.
                                                   E-23

-------
                                          SOURCE SW.IN6 PROGRfiM
                                             Process Data Sheet
Place: Sretmboro Industrial  Platers
Date:  3/25/86
Tank No.; 5
Sa*ple type:  Total and hexavalent  chrwuui


Inlet ft:
Inlet B:
Ttst Run
No.
TE-lOft
TE-10B
Test Start
Tine
10; 16
10:17
Ttst 5too
Tiee
11:19
11:80
TIM
(24-h clock)
Inlet fi I Inlet B
10:16 ! 10:17
10:26 ! 10:26
s
10:36 ! 10:36
i
10:46 ! 10:46
10:56 ! 10:56
11:06 ! 11:06
11:16 i 11:16
I
i
11:19 ! 11:20
Te*per—
at ure.

Not
Recorded






Operating
Voltage,

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
Operating
Current,

2,100
2,100
2,100
1,700
1,700
1,700
1,700
1,700


Started testing.
MOT* elated: 4 rods.





Stopped testing.
Note: Results of test run No.  TE-10B are  not  included  in the test report because the post-test neterbox
      calibrations were unacceptable.   This test run was replaced with test run No. TE-146.
                                                 I-2 4

-------
Place: Breensboro  Industrial Platers
Date:  3/25/66
Tank No.;  5
SOURCE SAMPLING PR06IVM
   Process Data Sheet

              Test  Run
                 No.
Test Start
   TIM
Test  Stop
   TIM
Sample type; Total and hexavalent ehro»iu« Inlet fi: TE-llfl 13:32 14:36
Inlet BJ TE-11B 13:33 14:37
lime
(24-h clock)
Inlet fl
13:32
13s42
13:52
14:02
14:12
14:22
14:32
14:36
Inlet B
13:33
13:42
13:52
14:02
14:12
14:22
14:32
14:37
Temper-
ature,
p
Not
Recorded





Operating
Voltage,
volts
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
Operating
Current,
aiperes
1,300
1,300
1,300
1,300
1,300
1,300
1,300
1,300
Notes
Started testing.
Work platefl: 1 steel cylinder 3 ft. 4 in. long
and 4.5 in. 0.0.
Surface area of cylinder = 3.93 SQ, ft.




Stopped testing.
                                                    E-25

-------
                                          SOURCE SAWL1N5  PROGRAM
                                             Process Data  Sheet
Place: Breensboro Industrial Platers
Date:  3/35/86
Tank to.:  5
Test Run
   No.
Tsst  Start
   Tl«6
Test  Stop
   Ti«e
Siiple type: Total and hexavalent ehromui Inlet ft: TE-12H 15:11 16:16
Inlet B! TE-121 15; 12 16; I?
TiM
(24-h clock)


Inlet fl
15:11

15:21

15:31
15:41
15:51
16:01
16:11
16:16
Inlet B
15:12

15:21

15:31
15>M
15:51
16:01
11:11
IS: 17
Te»per-
ature,
F

Not
Reconjed








Operating
Voltage,
volts

3.0

3.0

3.0
3.0
3.0
3.0
3.0
3.0
Operating
Current,
aaperes

1,600

1,600

1,600
1,600
1,600
1,600
1,600
1,600


Notes

Started testing.

Hork plated: 1 steel industrial roll 6 ft. 6 in,"
long and 4 in. O.D.
Surface area of cylinder = 6.81 sq. ft.




Stooped test inc.
                                                    E-26

-------
Place: Greensboro  Industrial Platers
Date:  3/26/66
Tank No.: 5
SOURCE SRHH.IN6 PR06RW
   Process Data Sheet

              Test  Rim
                 No.
Test Start
   TIK
Test  Stoo
   Tine
Sa»ple type: Total and hexavalent chrouui Inlet ft: TE-13fl 8:29 9;«
Inlst B: TI-I3B 8:30 9:50
TIM
124-h clock)
Inlet A
8:29
8:39
8:49
8:59
9:09
9i 19
9s29
9:39
9:49
Inlet B
3:30
1:39
8:49
8:59
9:09
9-. 19
9:39
9:39
9:50
Temper-
ature,
Not
Recorded






Operating
Voltage,
volts
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
2.6
Qoerat ing
Current,
aaperes
aoo
BOO
BOO
900
900
900
900
900
900
Notes
Started testing.
*ork plated: 1 part 52 in. long and
6 in. wide; one side plated.
Surface area of part = 2. 17 sq. ft.





Stopped testing.
                                              E-27

-------
                                         SOURCE SflKPUNB PRQBWW
                                            Process Data Sheet
Place:  Breensboro Industrial Platers
Date:   3/26/86
Tank No.:  5
Siflole type: Total and hen aval ent cnro*i
-------
                                                      souse sewn.!* mmm
                                                        Proceti Data Shvtt
Piacti Bretwtero Industrial Plater*
Date.  3/a^K
Tank No. t 6
Sae|ile typei  Total  and hexavalent
Test Dun No.
  Inlet At  W~5fl
  Outlet Bi MO-9B
Test  Start TIM
  Inlet ft:  8:31
  Outlet B: 8:34
Tnt  Stop TtH
  Inlet A:  10:54
  Outlet B; 10:55
Tin
(24-ti clock)
Outlet fl ! Out let B
Bill
8:35
8:45
8:55
9:05
9s 15
f!ffl
9:35
9:38
9iS
lOiOS
10:19
ioi25
10z3S
10:45
10:54
8i34
8:35
8r43
8:53
9;05
9il5
9:25
9:35
9:38
9:55
10:05
10:15
10:35
10:35
10:45
10:55
T^Mt^n«
••fiKT^
atwf,
F
14S
14S
140
140
140
140
140
140
140
140
135
135
135
135
135
! 135
Operating
Voltaic,
volts
fi.5
a. 5
6.S
6.5
6.5
6.3
6.2
6.a
&.2
6.2
6-£
6.2
&.£
6.2
6.2
! 6.2
Oo«r»t!ng
Current,
mftrm
2,400
2,400
2,400
2,400
2,300
2,200
2,200
2,300
2,300
4,000
3,900
3,900
4,000
4,000
4,000
4,000
Prtffurt
Drop,
in. m, c.
0.8
0.9
0,8
0.8
0.8
0,8
0.8
0.8
0.8
Motes
Starttd test ing.
Work plated: 1 cylinder 108 in. Ion] and 5 in. O.D.
Surface area of rod! * 11.78 sq. ft.





Estopped testing.
1,0 : Started testing.
0.9 Work plated: 4 pi pet 216 in. long and 1,18 in, D.D.
Surface area of rods « 22,24 K>. ft.
0.8
0,8
0.8 .
0.8
0.8 IStopped testing.
                                                       E-29

-------
SOURCE 9WIINB PROSftAH
  Praam Data Sheet

Ditt: 3/26/66
Tank No, : £
Satealt typi ToUl mt h«*v«lent chrtmui
Tut Run No.
Inlet As KO-fifi
Outlet 8: NO-SB
Test Start Tat
Mtt A: 11:50
Outlet B: it:51
Test Stop TIM
Inltt ft! 13:56
Outlet I: 13:57
Tie*
<24-h clock)
ftrtlrt fl
lliSO
11 iH
12:05
12H5
12:25
12:35
12i4S
12i55
13:05
13sl5
13j25
13:35
13i45
13:55
13i5S
Outlrt B
11:51
Ih55
12:05
12il5
12:35
12:35
12i4S
12:55
13:05
13H5
13i 25
13i35
13t45
13:55
13:57
Twpnr-
iturt,
F
135
135
135
135
135
130
13S
135
135
130
130
130
130
130
130
Operating
Voltage,
volti
6.5
6.2
6.3
6.2
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5,5
5.5
5.5
Dparatim)
Csrrfnt,
MpW*f
2,200
2,200
2,200
2,200
2,200
1,800
1,700
1,700
1,700
1,700
1,600
1,400
1,400
1,400
1,400
Prtswirt
Drop,
in. w, c.
0.8
O.fi
o.a
O.S
O.fi
0.6
0.9
0.6
0.6
0.8
0.8
O.S
0.6
0.8
0.8
Notts
Started tKting.
Work plated: ftodc approxiaatily 160 in. long.












Stopped teiting.
E-30

-------
SOURCE SMPLIN6 PR06WW
  ProceM Data Sheet
Place) GreeneJwro Industrial Platen
Dates 3/26/dfi
Tank No, i g
Sample type: Total and hexavalent chroMuei
Test Run No.
Inlet fls *0-7fl
Outlet 8: HJ-7I

Tect Start Tiee
Inlet A: 14:08
Outlet B; 14:09

Test Stop Tie*
Inlet ft: 16:28
Outlet B: 16s29

Tiw i
(8*-h clock!
Outlvt fl
14i06
14iiO
14i£0
14i30
Hr+0
14:50
! 15«00
15:30
15:40
ISiSO
1&:00
16z 10
1B:30
16>28
Outltt B
14:09
Hi 10
14:20
14130
14:40
14:50
15:00
15:30
15:40
15:50
16:00
16:10
16) K
ilia
T««ptr-
iturt,
F
m
130
130
130
130
130
130
125
125
IBS
123
125
125
125
Operating
Voltaje,
volt i
6.5
6,5
6.5
6.5
6.5
6.5
6.5
6,5
£.5
6.5
6.5
6.5
6.5
6.5
Operating
Current,
Mfwrti
3,800
3,800
3,300
3,800
3,800
3,800
3,700
3,800
3,800
3,900
3,800
3,800
3,800
3,800
PrwMin
Drop,
in. M. c.
0.8
0.8
0.8
0.8
0.8
0.8
O.B
o.a
0.8
0.8
0.8
0.8
0.8
o.a
Notes
Started testing.
Work plated; 4 parts 214 in. long and 1.18 in. 0.0.
Surface arci of parts « £2.04 KJ. ft.



Stopped testing.
Started testing.





Stopped test in§.
  E-31

-------

-------
           APPENDIX F




TEST PARTICIPANTS AND OBSERVERS
              F-l

-------
F-2

-------
                         TEST PARTICIPANTS AND OBSERVERS
   Name
         Organization
    Responsibility
Barry Rudd




Prank Phoenix




Willis Nesbit




Dwain Ritchie




Steve Terll




Chris Franklin




Robert Bridges




Hung Dang




Bill DeWess




Randy Strait




Frank Clay




Ron Myers




Robert Hester
Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc,




Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc.




Entropy Environmentalists, Inc.




Midwest Research Institute




EPA, Emission Measurement Branch




EPA, Industrial Studies Branch




Greensboro Industrial Platers
Field Coordinator




Field Coordinator




Sampling Team Leader




Sampling Team Leader




Sampling Team Leader




Engineering Technician




Engineering Technician




Engineering Technician




Quality Assurance Observer




Process Operation Observer




EPA Task Manager




EPA Task Manager




Facility Contact
                                      F-3

-------