v>EPA
   United States
   Environmental Protection
   Agency
               Solar Water Heating
     SPECIFICATION, CHECKLIST AND GUIDE
                                                n
                            Renewable Energy Ready Home

-------
Table of  Contents
About the Renewable Energy Ready Home Specifications
Assumptions of the RERH Solar Water Heating Specification	 1
Builder and Specification Limitations	2

Renewable Energy Ready Home Solar Water Heating Checklist	3

1 Building/Array Site Assessment
1.1   Designate future/proposed array location	4
1.2  Identify orientation (azimuth) of proposed array location	4
1.3  Identify inclination (tilt or roof pitch) of proposed array location	5
1.4  Conduct a solar shading study on proposed array location	6
1.5  Document the solar resource potential at the designated array location	7

2 RERH Structural and  Safety Considerations
2.1   Document the maximum allowable dead and live load ratings of the existing roof	8
2.2  Document the maximum allowable floor load rating of non-concrete floors
     for proposed solar storage tank areas	8
2.3  Install permanent  roof anchor fall safety system on sloped roofs	9

3 RERH Infrastructure:  Solar Water Heating
3.1   Dedicate a space  in the utility room adjacent to the existing water heater for a solar storage tank	  10
3.2  Dedicate a wall space adjacent to the solar storage tank for the mounting of the controls
     and pump package	  10
3.3  Install an electrical outlet within 6' of the wall space designated in 3.2	  11
3.4  Install a solar bypass valve on the cold water feed of the existing water heater 	  11
3.5  Install pipe chase  from utility room to the attic space below designated array location	  12
3.6  Provide  architectural drawing and plumbing riser diagrams of the RERH SWH system components	  13

4 Homeowner Education
4.1   For all RERH homes, develop and provide a homeowner education  packet	  14

5 Builder Best Practices (Optional Elements)
5.1   Landscape Plan	  15
5.2  Placement of non-array roof penetrations and structural building elements	  15

Appendix A: RERH Labeling Guidance	16
                               Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
About the  Renewable  Energy  Ready  Home Specifications
The Renewable Energy Ready Home (RERH) specifications were developed by the U.S. Environmental
Protection Agency (EPA) to assist builders in designing and constructing homes equipped with a set
of features that make the installation of solar energy systems after the completion of the home's
construction easier and  less expensive. The specifications were developed with significant input from
stakeholders including policymakers, code officials, solar installers, and successful RERH builders. The
specifications are based on best management practices and balanced with practical issues of cost,
benefits to homeowners, builder production process compatibility, and marketability.  Homebuilders that
outfit houses that comply with the RERH  specifications can assure homebuyers that, when they are
ready, solar renewable energy systems can quickly and easily be integrated into their house with minimal
retrofit installation costs.
The RERH specification  and checklist take a builder and  a project design team through the steps of
assessing  a home's solar resource potential  and  defining the minimum structural and  system components
needed to support a solar energy system. The following document also provides recommendations on
aspects of homeowner education as it applies to the renewable energy ready concept. Satisfying the
elements of the RERH specification may not be possible in all homebuilding situations due to factors such
as excessive shading on the proposed array location.
To assist in evaluating each home, EPA has developed an online Renewable Energy Ready Home Solar
Site Assessment Tool (RERH SSAT), which compares the solar resource potential of a proposed array
site to an optimal solar resource potential for the same location. Under this specification, proposed array
locations that demonstrate  a minimum solar resource potential are considered good candidates to be
outfitted with the necessary structural and system components to make the home RERH. Builders should
use this tool to assess each property prior to making the home renewable energy ready.
It should be noted that this guide was developed to assist builders from across the country and that
regional or local building practices and codes may differ from what is presented. It is advisable to consult
code and solar energy professionals when planning a project to  avoid issues that may impact the future
installation of a renewable energy system. By following the specification, a builder should feel confident
that the proposed  array location on a home, built to the RERH specification, will  provide  a suitable
installation environment for a fully operational solar energy system in the future.

Assumptions of the  RERH Solar Water  Heating Specification

These specifications were created with certain assumptions about the house and the proposed solar
energy system. They are designed for builders constructing single family  homes with pitched roofs,
which offer adequate access to the attic after construction. It is assumed that flat plate  collector type
systems, the most common in the industry today,  will be installed by the homeowner. While metering
the system is encouraged, the specification  does not address system wiring elements for associated
system sensors or monitoring equipment.
For builders that desire to meet  the elements of  these specifications  but are constructing multifamily
buildings,  flat roof residential structures, or buildings without attic access, or using alternatives to the
roof mounted flat plate system  (i.e., other solar  water heating (SWH) technologies or ground mount
systems),  EPA recommends that an installer certified by the North American Board of Certified Energy
Practitioners (NABCEP) determine the ideal system for the project's unique building environment. The
NABCEP installer should also ensure that the system design is in compliance with all  applicable codes:
plumbing, electrical, and structural.
                            Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
Builder and Specification Limitations

EPA has developed the following RERH specification as an educational resource for interested builders.
EPA does  not conduct third-party verification of the site data or the online site assessment results,
or verify whether the  home has been properly outfitted with a set of features that comply with this
specification. The RERH specifications are not currently part of or recognized  under any EPA program.
Builders should avoid  making implied or explicit claims that homes meeting this specification are EPA
verified, recognized, labeled, or endorsed. Conformance to this specification is not predictive of future
energy system performance. Homeowners are encouraged to seek assistance from a certified solar
energy professional when installing an on-site solar energy system.
                             Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
Renewable Energy Ready Home Solar Water Heating Checklist
Home Location: City: State:
RERH Checklist Builder m
(See Renewable Energy Ready Home (RERH) specifications for details) Verified
1 Building/Array Site Assessment
1.1
1.2
1.3
1.4
1.5
Designate a proposed array location and square footaae on architectural diagram: sq. ft.
Identify orientation (azimuth) of proposed array location: degrees.
Identify inclination of proposed array location: degrees.
Conduct a shading study documenting impacts on proposed array location: % adjusted annual shading impact.
If using monthly values as verified through the solar path assessments, check here:
Assess if proposed array location supports a solar resource potential of more than 75 percent of the optimal solar resource potential
for the same location using the online RERH Solar Site Assessment Tool (SSAT).
Yes Q This home meets the minimum recommended solar resource potential per the RERH SSAT Results; continue with Section 2 below.
No Q This array location does not meet the recommended solar resource potential per the RERH SSAT Results; this location is not a
good host for a future solar energy system and should not be made renewable energy ready.
a
a
a
a
a





2 Structural and Safety Considerations: Solar Water Heating
2.1
2.2
2.3
Provide code-compliant documentation of the maximum allowable dead load and live load ratings of the existing roof; dead load rating
should support an additional 6 Ibs/sq. ft. for future solar system.
Provide code-compliant documentation of the maximum allowable floor load rating for storage tanks installed on non-concrete floors.
Install permanent roof anchor fall safety system (NAfor roof pitch <3:12).
a
a
a


a
3 Renewable Energy Ready Home Infrastructure: Solar Water Heating
3.1
3.2
3.3
3.4
3.5
3.6
Dedicate and label a 3' x 3' x 7'area in the utility room adjacent to the existing water heater for a solar hot water tank.
Dedicate and label a 3' x 2' plywood panel area adjacent to the solar hot water tank for the balance of system
components/pumping package.
Install an electrical outlet within 6' of the designated wall area (3.2).
Install a solar bypass valve on the cold water feed of the water heater (cap and label both ends).
Install a single 4" chase or 2-2"chases from utility room to the attic space below designated array location (cap and label both ends).
Provide architectural drawing and plumbing riser diagram of RERH SWH system components.
a
a
a
a
a
a






4 Homeowner Education
4.1
Provide to the homeowner a copy of this checklist and all the support documents listed below (to be provided to future solar designer).
- Copy of the Renewable Energy Ready Home Specification guide
- Fully completed RERH checklist (all sections)
- Architectural drawings detailing proposed array location and square footage
- Plumbing riser diagram of RERH solar water heating system components and their locations
- Shading study with percent monthly or adjusted annual shading impact(s)
- Site assessment record generated by the online RERH SSAT indicating that the proposed site meets a minimum solar resource
potential of 75 percent of optimal
- Code-compliant documentation of the maximum allowable dead load and live load ratings of the roof
- Code-compliant documentation of the maximum allowable floor load rating for storage tanks installed on non-concrete floors
a
a
a
a
a
a
a
a








5 Builder Best Practices (Optional Elements)
5.1
5.2
Develop a detailed landscape plan with a clear emphasis on low-growth vegetation
Place roof penetrations above or north of the proposed array to prevent casting shadows on the array
a
a
a
a
Builder Completion Date: Builder Company Name:
Builder Employee Name: Builder Employee Signature:
                   Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
1     Building/Array Site Assessment

   1. 1   Designate future/proposed  array location

   Builders should detail the location and the square footage of the proposed solar array area relative to
   the home on a project specific site plan (see Figure 1). (Horizontal or flat roof =  0°, Vertical root =
   180°. See Table 2J
   There are several options for locating a solar array in  a residential setting, including mounting the
   array on the roof or on the ground. If the proposed solar array location is on a surface that does
   not fall under the specification's basic assumption of a single family home with a pitched roof that
   offers adequate attic access, EPA recommends that the builder consult with a certified solar energy
   professional when evaluating the home.
   Builders that intend to meet both the solar photovoltaic (PV) and SWH RERH specifications  should
   detail the location and the square footage of the roof area to accommodate both technologies.
   Although the RERH specification does not set a minimum array area requirement, most SWH systems
   require a minimum of 60 to 120 square feet (one/two 6' x 10' collectors) to meet the water heating
   needs for a three-person family, not including a buffer area for fire access. However, homes with
   a higher than average level of energy efficiency, such as those meeting ENERGY STAR® Homes
   Standards,  may not necessitate an average-sized system.

   1.2   Identify orientation (azimuth) of proposed  array  location

   Builders should detail the orientation of the roof plane(s) for the proposed array location on  an
   architectural diagram (see Figure 1). (South facing orientation = 180°, East = 90°, West = 270°.
   See Table 1.)
   The energy output of a solar energy system is optimized by siting the array where the roof is oriented
   due south at an 180° azimuth (on a compass dial that is corrected for magnetic declination). For the
   purposes of this specification and checklist, proposed orientations that deviate from an 180° azimuth
   are acceptable. Depending  on the home's location, azimuths that deviate more than +- 45° off of due
         Table 1. Orientation of the system and
         corresponding azimuth angle which should
         be recorded in the RERH Checklist.
Orientation Azimuth Angle (°)
N
NE
E
SE
S
SW
W
NW
0 or 360
45
90
135
180
225
270
315
                                                    Figure 1: Site Plan. The site plan should detail
                                                    the location, orientation, and the square
                                                    footage of the proposed solar array area.
                            Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
south can result in unacceptable performance losses. For the purpose of this specification, building
mounted arrays will be assumed to be mounted flush with the  roof surface found at the proposed
array location.

1.3   Identify inclination (tilt  or roof pitch) of proposed array location

Builders should detail the inclination (tilt or roof pitch) for the proposed array location on an
architectural diagram (see Figure 2) and record the inclination in degrees on the Checklist in 7.3.
(Horizontal or flat roof = 0°, Vertical roof = 180°. See Table 2.)
The energy output of a solar energy system is optimized by designing the  array to be tilted on an
incline that approximately matches the degrees of the geographic latitude  at the array's location;
significant deviations from this tilt can result in system performance losses. Although system arrays
(panels or collectors)  can be racked up to meet the inclination/tilt needed for optimal system output,
this specification is based on and limited to the known building attributes (roof pitch) at the time of
construction. For the purpose of this specification and checklist:
  •   Building mounted arrays will be assumed to be mounted  flush with the roof surface found  at
     the proposed array location.
  •   Builders should only assume an inclination/tilt other than  that of the  existing roof pitch if
      alternative design drawings have been completed by a NABCEP solar professional.
           Table 2. Existing roof pitch and
           corresponding tilt angle should be
           recorded in the RERH Checklist.
Roof Pitch Tilt Angle (°)
Flat
4:12
5:12
6:12
7:12
8:12
9:12
10:12
11:12
12:12
0
18.4
22.6
26.6
30.3
33.7
36.9
39.8
42.5
45.0
                                                     Figure 2: Roof Pitch Detail. The
                                                     inclination (roof pitch or tilt) for the
                                                     proposed array location should be
                                                     detailed in an architectural diagram.
                          Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
1.4   Conduct a solar shading study on proposed array location

Builders should conduct a comprehensive shading study that documents the impacts of permanent
and seasonal shading on the proposed array location. The builder should record the site's monthly
and/or annual percent shading impacts from each solar shading study (see Figure 3) in the RERH
Checklist and for use in the online RERH SSAT. (No shading = 0%, Site is fully shaded =  100%)
The energy output of a solar energy system is optimized by siting  a solar array where there is little to
no current or anticipated shading. (See section 5.1 for landscaping shading considerations.) Shading
potentially represents the largest impact on a site's suitability to support a solar energy system. A solar site
assessment study helps to ensure that permanent and seasonal shading impacts are accounted for under
actual site conditions. With minimal equipment and training, builders can easily conduct a shading study or
choose to have a solar professional provide this service. For the purpose of this specification and checklist:
  •   Builders or designers must conduct a solar shading study using an industry accepted sunpath tool
      such  as a Solar Pathfinder, Solmetric SunEye, or a solar industry-accepted equivalent approach  to
      determine the seasonal shading impacts on the proposed array location.
  •   The solar shading study should  identify the percent of available solar radiation (or conversely
      the percent shading impact for the proposed array location) on a monthly and/or adjusted
      annual basis.  Refer to the directions of the solar sunpath tool on how to  make this
      determination. The RERH SSAT will accept either annual or monthly percent  shading values.
      The estimated shading impact will  contribute to a system output derate factor, which  will affect
      the site's suitability to support a system.
      If the proposed array location is
      particularly large in square footage, or
      is divided between two different roof
      planes, then the builder should conduct
      multiple shading studies at various
      points across the proposed array area(s).
                                                                              •Mt
                                                                              0»
                                                                              VTt
                                             Figure 3: Solar Pathfinder Report. The sunpath tool report
                                             identifies the percent shading impact for the proposed
                                             array location on a monthly and/or adjusted annual basis.
                          Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
1.5   Document the solar resource potential at the designated  array location

Builders should use EPA's online RERH SSA T to demonstrate that each proposed system site location
meets a minimum solar resource potential.
EPA has developed  an online site assessment tool, which assists builders in assessing whether a
new home offers  an appropriate installation environment for the future installation of a solar energy
system. The RERH SSAT takes into account known factors of the proposed array location (azimuth,
tilt/inclination, and shading) and compares the solar resource potential of the proposed array location
to an optimally sited solar system in the same location. The results of the tool should not be
interpreted as  an estimation of the future energy generation.  The builder will need the following site
information for each proposed home assessment (see Figure  4):
   •   Location of  home (ZIP code or latitude and longitude coordinates)
   •   Orientation of proposed array surface (azimuth in degrees)
   •   Roof inclination/pitch at proposed array surface (degrees off of horizontal)
   •   Percent shading at  proposed array location (monthly or annual input options)
The builder can access the RERH SSAT at http://www.energystar.gov/index.cfmPC = b/drs_/enders_
raters.pt_b/dr.  Proposed array sites that demonstrate a minimum of 75 percent of the optimal solar
resource potential are considered good candidates for making a home renewable energy ready. The
RERH SSAT results page can be printed to provide to homeowners (see Figure  5).
For sites that fail to provide a suitable solar resource potential, builders and project design teams are
encouraged to propose alternate or improved  site locations. The data inputs (orientation, inclination,
and  shading) used in the  RERH SSAT to estimate the solar resource opportunity have a cumulative
impact on the  site assessment results. Shading tends to have the largest impact, whereas orientation
and  inclination tend to have less of an impact on the solar site assessment results. Builders are
encouraged to design the home  with these factors in mind.
RnuIrM Stt uxMca taemaon
        G Pormir XXXXXor
ZIP**
              O FormK OOO 
-------
2    RERH Structural and Safety  Considerations

   2.1   Document the maximum allowable dead and live load ratings of the existing roof

   The builder should submit code-compliant documentation of the structural capacity of the roof and
   of the current dead loads on the roof. This documentation should demonstrate that the roof has the
   capacity to support a minimum of 6 pounds per square foot additional dead load above code for the
   installation of a future SWH system.
   Conventional SWH flat plate collector systems can add approximately 6 pounds per square foot of
   dead load to the roof or structure. Wind will add live loads; the magnitude of live  loads will depend on
   the geographic region and the SWH system type and integration approach used for the final system.
   It is recommended that the roof has the capacity to support a minimum of 6 pounds additional dead
   load for a future SWH system. The builder should ensure that these future loads are accounted
   for in the design of the roof and should provide design drawings and/or calculations, prepared  in
   conformance and in a format that is acceptable to the permitting agency. At a minimum, these
   documents must include specific documentation of dead loads, live loads, wind loads, and, where
   applicable, snow loads for the existing roof design. These plans will provide important information
   for the solar designer when the homeowner decides to install a system. Please note that a low sloped
   roof, a 4:1 2 pitch or lower, may require additional reinforcement beyond what is typically found in a
   conventional framing or truss design.

   2.2   Document the maximum allowable floor load rating of non-concrete floors for
         proposed solar storage tank areas

   The builder should provide the homeowner with code-compliant documentation of the maximum
   dead weight load rating for all non-concrete floor assemblies in the designated location of the  solar
   hot water storage tank. The designated location of the future hot water storage tank should be able
   to support 1,200 pounds additional dead load.
   Solar hot water storage tanks typically  hold 80 to 1 20 gallons of water and weigh approximately
   800 Ibs to 1,200 Ibs when filled. Generally, basement and concrete floors will not be damaged by
   this additional loading; however, homes without basements and homes that use on-demand water
   heaters may not have the water heater installed in a utility room with a concrete floor. The builder
   should ensure that the designated location of the solar water tank can withstand the increased
   floor loading and should provide to the  homeowner design drawings and/or calculations, prepared in
   conformance and in a format that is acceptable to the local permitting agency.
                           Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
2.3   Install permanent roof anchor fall safety system on sloped roofs

It is recommended that the builder install a fall safety system on roofs with a pitch greater than 3:12.
The process of installing a solar energy system on a sloped roof carries inherent risk. To provide
adequate protection to installers, it is recommended that a permanent roof anchor fall safety system
be installed on roof pitches steeper than 3:12 (see  Figure 6).1 The system should include a permanent
roof anchor designed to provide fall protection for a single user when securely installed on a roof
subsurface or vertical wall (see Figure 7).2
The permanent roof anchor should meet the federal requirements of the Occupational Safety and
Health Administration.  The fall safety system should also be compliant with ANSI standard AW. 14:
Construction and Demolition Operations—Requirements for Safety Belts, Harnesses, Lanyards, and
Lifelines for Construction and Demolition Use.
                             Figure 6: Miller
                             Single-D roof
                             anchor before
                             installation.
Figure 7: Roof
anchor should
be installed on a
roof subsurface or
vertical wall.
1 Image courtesy of Miller Fall Protection.
2 Image courtesy of Miller Fall Protection.
                          Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
3     RERH  Infrastructure: Solar  Water  Heating
   3.1    Dedicate a space in the  utility room adjacent to the existing water heater for a
          solar storage tank

   The builder should designate a dedicated space for the future solar hot water storage tank. A 3' x 3' x 7'
   area, located adjacent to the home's hot water heater, should be designated and clearly labeled as an
   RERH component (see labeling suggestions in Appendix A) and recorded on the utility room floor plan
   (see Figure 8) to be provided to the homeowner. This dedicated space should match the area referenced
   in section 2.2 for the floor load calculation.
   The solar hot water storage tank is one of two
   major components of an SWH system that are
   installed in the utility room. Typically, a domestic
   hot water solar system with an 80 to 1 20 gallon
   storage tank will require approximately 9 square
   feet of floor space with 7 feet of total vertical
   clearance. The builder should designate a space
   no less than 3' x 3' x 7' and locate it near the
   home's hot water heater so that pipe that runs
   between the two components can be kept to a
   minimum.  Since the pipe run or pipe  chase of the
   solar energy system will terminate directly above
   this space, it should be free of all electrical wiring
   and service panels as well as windows. Labeling
   this area as an RERH component is recommended,
   as is recording its location on a plumbing  riser
   diagram. Once installed, the solar hot water
   storage tank should become the primary source
   of hot water, whereas the home's existing water
   heater should serve as a backup heating source.
                    Future Hot Water
                    Storage Tank 3'x3'
Figure 8: Utility Room Floor Plan. This plan should
include the location of existing hot water heater,
designated space for future hot water storage tank,
electrical outlet, and pump package mounting panel.
   3.2   Dedicate a wall space adjacent to the solar storage tank for the mounting of the
          controls and  pump package

   The builder should dedicate a wall space for mounting the balance of system components, known as
   the pumping package. The area should include at a minimum a 3' x 2' plywood panel backing that
   is clearly labeled as the "Balance of System Board" and on the plumbing riser diagram as an RERH
   component (see Figure 10).
   The pumping  package is the second of the  two major components of an  SWH system that are
   installed in the utility room. The builder must designate an area to  facilitate the future installation of
   the pumping package. This area should include a 3' x 2' piece of finished plywood that is fastened to
   the wall studs. The purpose of the plywood backing is to:
     •   Ensure a dedicated space for these components.
     •   Provide a secure foundation for mounting future equipment.
     •   Facilitate the future installation of these components by the  installer.
   The plywood  backed area should be clearly labeled to indicate its purpose to the homeowner.
   (See labeling guidance in Appendix A.)
                            Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
3.3   Install an  electrical outlet within 6' of the wall space designated in 3.2

The builder should install a code-compliant 110V electrical outlet within 6' of the dedicated wall
space referenced in section 3.2 (see Figure 8) to service the electric needs of the balance of system
components.
There must  be an  110V electrical outlet within 6' of the plywood  backed pump package mounting
area to provide power to the solar controls and pump.

3.4   Install a solar bypass valve on the cold  water feed of the existing water heater

The builder should install a code-compliant valve assembly (solar bypass valve) on the cold water
feed of the existing water heater to be used to connect the solar storage tank (see Figure 9)3. The
solar bypass valve should be capped and labeled as an RERH component. (See Appendix A tor
labeling guidance.)
Most SWH systems will require the installation of a separate hot water storage tank. The solar bypass
valve requirement is to make future connections to this storage tank  simple and affordable without having
to drain the home's existing plumbing system. The solar bypass valve should be installed on the cold-
water feed of the existing water heater and should be configured in the following manner (see Figure 9):
   •   Install  two "T" fittings in the "Cold Water Inlet"  pipe that supplies cold water to the existing
      water  heater.
   •   Install shut-off valves on  each of the "T" fittings and one in  the main pipe between the two
      "T" fittings.
   •   Stub-off and cap the two open-ended shut-off valves to prevent leakage should the valves  be
      accidentally  opened.
Builders should be aware that many
municipal building  codes now require
that a backflow  valve and pressure tank
be installed  on the cold water feed. A
professional plumber  should do this work.
Also worth considering, but not defined by
this specification,  is the installation of a
floor drain.
                                              Standard   Future
                                              Hot Water   Solar Hot
                                              Tank      WaterTank
Shut Off Valve
                                           Figure 9: Solar Bypass Plumbing Detail. The cold water feed
                                           of the existing water heater should have a code-compliant
                                           valve assembly installed to connect to the future solar storage
                                           tank. Solar bypass valve assembly includes shut-off valves on
                                           each of the stubbed and capped "T" fittings, and one shut off
                                           valve in the main pipe between the two "T" fittings.
1 Image courtesy of Natural Resources Canada.
                          Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
3.5   Install pipe chase from utility room to the attic space  below designated
       array location

The builder should install either a single 4" or two 2" PVC chases from the utility room to the roof space.
(See Figure 10.) The pipe chase should be installed as a straight run and be clearly labeled as an RERH
component.
A single straight 4" pipe chase or two 2" pipe chases installed in a straight run from the utility  room
to the underside, or attic side, of the designated solar array roof area will allow for the installation of
the solar pipes and pipe insulation during the solar system installation. The pipe chase can be made
of lightweight PVC or any other code-compliant material that is favored in the local housing market. It
is not recommended to use a boxed-in open chase in the wall as other contractors may inadvertently
install wires, plumbing, and ductwork through it. The use of a boxed-in open chase may also
compromise the integrity of the home's thermal shell. With this in mind, the chase should be capped
on both ends and sealed at all floor and ceiling penetrations to maintain air tightness and mandatory
fire ratings.
A straight pipe chase  between the utility room and the  attic is the recommended  method. Minor
horizontal pipe runs at either end of the pipe chase are  allowable. However, in situations where the
pipe chase between the attic space  and  the utility room travels at a slope, bends, or terminates in an
area lacking  sufficient access or in a way that would prevent the continuation of  the pipe run to the
collector area or solar storage tank,  it is  recommended  that the actual  system water pipes be installed
between the utility room and the roof area. A certified  NABCEP solar professional should be consulted
when installing  the actual pipe run as opposed to a pipe chase.
The termination of the pipe chase or pipes should extend beyond the attic insulation by 6 inches  and
be located in an area that provides sufficient accessibility and clearance: 18 inches from the top of the
chase to the underside of the roof deck. This is so a solar installer can continue the pipe run above the
roof deck to  the solar array at a future point in time. If the actual pipes are run to the roof, they must
terminate at  a universally convenient location relative to  the proposed solar array location. The end of
the pipe chase or pipes should be labeled to indicate its purpose and intended use.  (See Appendix A for
labeling guidance.)
                         Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
3.6   Provide architectural drawing and plumbing  riser diagrams of the RERH SWH
       system components

The builder should develop architectural drawings and plumbing riser diagrams that summarize the
installed system equipment (pipe chase, etc.). The drawings should accurately represent the installed
elements of the system during the final inspection of the house and be included in the homeowner
education packet.
The builder should provide a basic architectural drawing to the homeowner summarizing where the
equipment is located within the house (see Figure 10). The builder should also provide the homeowner
with a plumbing riser detail of the SWH system components. This diagram should have  sufficient detail
to clearly identify:
   •   Pipe chase size and type
   •   Length of chase from the designated roof/attic termination point to the utility room
   •   Designated  location and allotted space size of future  hot water tank
   •   Designated  location and allotted space size of pump package mounting panel
      (see Figures 8 and 10)
                          Proposed Solar
                          Thermal Pancl(s)
                          7:12 Pit*
                             rarer
                                        !, 2" PVC "ip« Omn

                                     ml
                      Figure 10: Plumbing Riser Detail. The plumbing riser detail
                      should include the pipe chase location and size and balance
                      of system component locations.
                         Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
   Homeowner  Education

4.1   For all RERH homes, develop and provide a homeowner education packet

For homes that satisfy the elements of the RERH specification, it is recommended that the builder
develop a homeowner education packet to be left on-site that includes this guide and companion
checklist, all necessary architectural drawings, shading study, code-compliant load documentation, as
well as electrical drawings and riser diagrams.
A renewable energy ready home not only involves important design considerations and additions to
the building itself but a transfer of this information to the future  homeowner. Builders are encouraged
to  provide the homeowner the following documents:
  •  Copy of the Renewable Energy Ready Home Specification  guide
  •  Fully completed RERH checklist
  •  Architectural drawings detailing  the proposed  array location and square footage
     (see Figures 1 and 2)
  •  Plumbing riser diagram of RERH  SWH system  components that details the dedicated location for
     the mounting of the  balance of system components (see Figures 8 and 10)
  •  Shading study with percent monthly or adjusted annual shading impact(s)  (see Figure 3)
  •  Site assessment record generated by EPA's online RERH SSAT indicating  that the proposed site
     meets a minimum solar resource potential of  75 percent of optimal
  •  Code-compliant documentation of the maximum allowable dead load and live load ratings of the
     existing  roof
  •  Code-compliant documentation of the maximum allowable floor load rating for storage tanks
     installed on non-concrete floors
If a builder sites a system that falls outside of the assumptions outlined in this specification (see the
Assumptions section), an NABCEP installer should update the diagrams and/or provide homeowner
education information that documents the RERH components of the proposed future system.
                        Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
5    Builder Best  Practices  (Optional  Elements)

   5.1   Landscape Plan

   The builder should avoid implementing landscaping that has the potential to shade the proposed
   array location at the time of home construction or in future years. As a rule of thumb, vegetation
   with a mature specie height should adhere to a distance-to-height ratio of 2.6 to the nearest point
   of the proposed array location. Builders  and/or landscape architects should seek input from state
   or local agricultural agents if they are unsure about the expected height of the vegetation they are
   considering. The builder should submit a detailed landscape plan with a clear emphasis on low-growth
   vegetation.

   5.2   Placement of non-array roof penetrations and structural building elements

   Careful placement of roof penetrations will maximize the available roof space for and facilitate the
   eventual installation of the proposed array. If the proposed array is to be located on a roof, care must
   be taken to ensure that the proposed array location is not affected by typical plumbing or mechanical
   roof penetrations. The placement of such penetrations should be above or north of the proposed
   array so that shadows  are not cast on the array location. Typical plumbing and  mechanical roof
   penetrations  can hinder the installation of a flush-mounted system on the proposed roof  area.
                           Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
Appendix  A: RERH Labeling Guidance
EPA does not provide labels for labeling the RERH components described in the specification. However,
guidance is provided below for the builder about the suggested application and size of labels for each
applicable item in the specification.

General Guidance:

EPA suggests using a weatherproof label to ensure that the components stay labeled until the time of
renewable energy system installation. Avery® White WeatherProof™ Labels for Laser Printers 5520 may
be a good choice.
The size and placement of the labels listed below are merely suggestions. Builders are encouraged to
use their best judgment to ensure that the elements are clearly labeled to avoid confusion, damage, or
duplication for the solar installer or other contractors working in the home.
 Table 3. Label suggestions for the RERH components to ensure appropriate use upon installation of the RE system.
Items
Future Hot Water
Storage Tank
SolarThermal
Balance of
System Board
SolarThermal
Bypass Valve
SolarThermal
Pipe Chase or
Pipes
Approximate
Label Size
10"x6"
10"x6"
3"x1"
3"x1"
Labeling
Guidance
RENEWABLE ENERGY
READY HOME Future
Hot Water Storage
Tank
RENEWABLE ENERGY
READY HOME Solar
Thermal Balance of
System Board
RENEWABLE ENERGY
READY HOME Solar
Thermal Bypass Valve
RENEWABLE ENERGY
READY HOME Solar
Thermal Pipe Chase
Label Placement
Label can be placed on
the wall area by the
space with an arrow
indicating the location
of the future hot water
tank.
Label can be placed
on the wall area in the
center of the plywood
panel.
Label can be wrapped
around the bypass valve
so the text is visible and
upright (if possible).
Label can be wrapped
around the pipe/chase
so the text is visible and
upright.
#of
Labels
1
1
2
2 to 4 labels
depending on
chase or pipe
application
Section Reference
3.1
3.2
3.4
3.5
                           Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------
United States
Environmental Protection
Agency

    EPA-430-D-1 10-01

    May 2011
                         Renewable Energy Ready Home SOLAR WATER HEATING SPECIFICATION, CHECKLIST AND GUIDE

-------