ATMOSPHERIC DEPOSITION OF  TOXIC
       SUBSTANCES TO  THE GREAT LAKES:
                    IADN RESULTS TO 1996
                            tateertfc '•
                                 U
 Elisabeth Galarneau
                       Air Quality Research Branch, Meteorological Service of Canada,
                       Environment Canada
 Celine V. Audette
 Angela Bandemehr
                       Centre for Atmospheric Research Experiments, Meteorological Service of
                       Canada, Environment Canada
                       Office of International Activities,
	US Environmental Protection Agency	
 Dora Basu              School of Public and Environmental Affairs and Department of Chemistry,
	Indiana University	
 Terry F. Bidleman
                       Air Quality Research Branch, Meteorological Service of Canada,
                       Environment Canada
 Kenneth A. Brice
                       Air Quality Research Branch, Meteorological Service of Canada,
                       Environment Canada
 Deborah A. Burniston
                       National Water Research Institute,
                       Environment Canada
 C.H. Chan
                       Ecosystem Health Division, Ontario Region,
                       Environment Canada
 Frank Froude           Centre for Atmospheric Research Experiments, Meteorological Service of
	Canada, Environment Canada	
 Ronald A. Kites          School of Public and Environmental Affairs and Department of Chemistry,
	Indiana University	
                       Environmental Careers Organization/Great Lakes National Program Office,
                       US Environmental Protection Agency	
                       Ecosystem Health Division, Ontario Region,
                       Environment Canada	
                       Environmental Monitoring and Reporting Branch,
	Ontario Ministry of the Environment	
 Matt F. Simcik          Division of Environmental and Occupational Health, School of Public Health,
                       University of Minnesota
 Melissa L. Halting
 Melanie Neilson
 DanOrr
 William M.J. Strachan
                       National Water Research Institute,
                       Environment Canada
 Raymond M Hoff
                       Department of Physics and Joint Center for Earth Systems Technology,
                       University of Maryland Baltimore County	

-------
Atmospheric Deposition of Toxic Substances to the Great Lakes: IADN Results to 1996

Published by
Environment Canada and the United States Environmental Protection Agency, 2000
ISBN: 0-662-29005-4
Public Works and Government Services Canada Catalogue Number: En56-156/2000E-IN
US EPA Report Number: EPA 905-R-00004
Report available in printed form from

Air Quality Research Branch
Environment Canada
4905 Dufferin Street
Toronto ON
M3H 5T4
Canada

and in electronic form at

www.tor.ec.gc.ca/IADN/
Great Lakes National Program Office
U.S. Environmental Protection Agency
77 West Jackson Boulevard (G17-J)
Chicago IL
60604
U.S.A.
www.epa.gov/glnpo/iadn/

-------
Map of the IADN Network
                           lilt e grill eel Atmospheric Pep owl Ion Nctwoilc
                                               M  e i" St at   s
                                                           -:=
                                            ^Sturgeon Point
IADN Results to 1996
Page i

-------
IADN Results to 1996                                                     Page ii

-------
   ATMOSPHERIC DEPOSITION OF TOXIC SUBSTANCES TO
            THE GREAT LAKES: IADN RESULTS TO 1996

Executive Summary

The primary objective of this document is to report biennial loadings estimates for the
atmospheric deposition of toxic substances to the Great Lakes for the years 1995 to 1996.
Atmospheric deposition is the phenomenon by which airborne substances are transferred to
water, soil or vegetation at ground level. In IADN, three deposition processes to the Great
Lakes are considered: wet deposition by precipitation, dry particle deposition by sedimentation,
and net diffusive gas exchange that combines the effects of absorption from air to water with
volatilisation from water to air.

The loading estimates presented herein are based on measurements taken largely at the IADN
Master Stations, of which there is one per lake. Substances considered include those
traditionally tracked by IADN,
•  a- and y-hexachlorocyclohexane, dieldrin,p,p '-DDE, p,p '-DDT, andp,p '-DDD
•  hexachlorobenzene (HCB) and polychlorinated biphenyls expressed as £PCB and four
   individual PCBs: 18, 44, 52 and 101
•  four poly cyclic aromatic hydrocarbons (PAHs): phenanthrene, pyrene,
   benzo(k)fluoranthene, and benzo(a)pyrene
•  four trace elements: lead, arsenic, selenium and cadmium,
as well as others reported here for the first time,
•  trans- and c/'s-chlordane and trans-nonadtior
•  a- and p-endosulphan and endosulphan sulphate
•  an expanded suite of PAHs.

The loadings have been determined in a manner consistent with previous IADN reports,
although refinements to the model include an update to the database of physicochemical
parameters used in the calculations and the use of measured rather than estimated wind speeds.
As a result of these refinements, loadings presented here are not strictly comparable to those
presented in previous reports. In order to develop a uniform picture of network loadings over
time, results have been recalculated for the period 1992-1994 using the same model
assumptions and parameters as used for 1995-96. Temporal trends discussed in this report are
based on those recalculated values.

In examining the loadings of toxic substances to the Great Lakes, three fundamental issues are
considered: the magnitude of the loadings, the manner in which each loading component
contributes to the total, and the variation or trends in the loadings across the basin and over
IADN Results to 1996                                                        Page iii

-------
many years. These loadings are presented in terms effluxes (mass/unit area/unit time; viz.
ng/m2/d) in order to account for differences between lakes due to their areas.

Typical fluxes of banned organochlorine pesticides are on the order of 0.1 to 1 ng/m2/d and only
regularly exceed 10 ng/m2/d for the gas exchange of a-HCH and dieldrin.  Fluxes of individual
PCB congeners tracked by IADN are typically between 0.1 and 1 ng/m2/d for each loading
component, similar to many of the banned organochlorine pesticides, although seasonal
volatilisation fluxes of £PCB can be higher than 50 ng/m2/d. HCB gas exchange fluxes are in
the 1 to 10 ng/m2/d range and fluxes of current-use pesticides y-HCH and the endosulphans are
on the order of 1 to 5 ng/m2/d.

Inputs to the lakes of pesticides and PCBs are dominated by gas exchange and wet deposition.
Dry particle concentration measurements ceased after 1995 due to low reported levels, but
loading estimates presented here show that dry particle deposition of dieldrin, p,p '-DDD and
PCBs may be significant when compared to the other deposition processes.  Rates of dieldrin
and £PCB volatilisation are greater than gas absorption so the lakes are acting as sources of
these substances to the atmosphere.

Inputs of PAHs and metals are larger than those of pesticides and PCBs as expected by their
continued emission to the environment. PAH fluxes range from 1 to 1000 ng/m2/d depending
on species and loading process, and fluxes of trace metals reach values as high as 2000
ng/m2/d. Since metals are non-volatile, they are subject only to wet and dry deposition with the
wet fluxes typically being the larger of the two. Available data indicate that PAH volatilisation
from the lakes  is small compared to the other flux terms, and gas absorption is substantial for
phenanthrene and pyrene while the higher molecular weight  PAHs are delivered mostly by wet
and dry particle deposition.

As part of its quality assurance program, IADN has begun a new set of intercomparison studies
between its participating agencies. Until results are available, comparisons of depositional
behaviour between lakes and over time have been limited to those situations where data were
generated by the same operating agency.

Wet deposition fluxes are generally decreasing in time for the banned OC pesticides while dry
deposition and gas exchange fluxes have been  variable. The temporal trend in gas exchange is
generally toward air-water equilibrium. For PCBs, wet deposition is steady in time while dry
deposition was increasing before measurements ceased in 1995. Gas exchange of PCBs is in
the direction of volatilisation from all lakes but is generally approaching air-water equilibrium.

Wet and dry particle deposition of PAHs show no consistent trends in time though levels
increase from west to east across the basin. Little net gas exchange flux information is
IADN Results to 1996                                                          Page iv

-------
presented for PAHs since water concentration data are sparse.  Deposition of metals is limited
to wet and dry deposition with wet deposition declining in time and dry deposition being
variable.

Loading estimates produced by IADN have traditionally been based on the assumption that
Master Stations located at remote sites on the lakes are characterizing the regional background
deposition.  However, strong inputs with more limited geographic influence are also likely to
exist near cities  and industrial areas. Using the case of Chicago on Lake Michigan as an
example, data from 1996 were used to assess the impact of air pollution from urban centres on
the deposition to the lakes. The IADN calculation was modified to include a small lake sub-
area influenced by the high concentrations measured at Chicago and, though results should be
viewed as lower-bound estimates when compared to other studies, deposition from Chicago
sources is still estimated to be substantial for certain pesticides and PCBs and for all PAHs.
Further work is needed to correctly characterize the lake area affected by urban air pollution
and deduce effective ways of incorporating significant urban centres in IADN loading estimates.
IADN Results to 1996                                                          Page v

-------
                   IADN Loadings (kg/yr) From 1992 to 1996
                                Lake Superior

a-HCH




Y-HCH




dieldrin




P.P'-DDD




P.P'-DDE




P,P'-DDJ




HCB




PCB18




PCB44




PCB52





1QQ9
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
Wet
Deoosition
78
33
38
28
71
62
14
19
95
38
21
69
11
34
20

17
in
0.89
OS
2.6
3.8
4
4.6
2.1
6.2
59
48
1 7
32
53
25
1 9
1.5
1.2
0 92
3.1
1.6
2
34
1.4
9 1
1.7
9 9
1.9
1 1
1.8
2.1
26
2.6
Drv
Deoosition
1 1
56
19
4.7

0 65
2.7
2.4
1.9
_
7.4
63
25
15
_
6 1
0.1

0.5

0 39
1.2

0.96

1.6
1 9

94

0 67
19
0 37
0 42

0 26
0 39
29
1.9

0 45
0 99
2.8
1 7

0 31
0 56
3.1
2.4

Net Gas
Exchanae
390
450
710
-230
-940
140
47
95
65
43
-500
-540
-500
-940
-200

_

-9.3
43

_

-18
-14
21
19

9
7.8
47
15
16
24
22
-71
-74
-71
-14
14
-19
-14
-7.3
-8 3
51
-13
-8
5
-99
34
Total
Deoosition
470
490
760
-200

200
64
120
76
_
-470
-470
-460
-190
_

_

-7.9


_

-12

29
73

6 1

53
59
IS
26

-70
-71
-67
-10

-17
-4
-2.8
-44

-19
-56
10
-4.9





















































PCB101




SPCB




phenan-
threne



pvrene




B(k)F
B(k)F
B(k)F
B(b+k)F
Bfb+k~lF
B(a)P




Pb




As




Se




Cd





1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
Wet
Deposition
1 7
1.6
1 6
3.1
96
58
110
63
70
90
260
ISO
130
500
190
160
140
910
460
190
120
130
92
640
219
140
160
92
170
49


















_

Drv
Deposition
0 45
0.74
93
1.4

27
25
86
47
_
100
60
310
59
100
190
74
990
54
91
52
13
58
159
152
58
14
39
17
35

16000
96000



5600
2900



1SOO
3100



2100
4400
_

Net Gas
Exchanae
-49
-39
-95
-094
99
-1300
-1200
-1000
-300
-380
-5500
-6SOO
-6800
5700
2200
9SO
67
-5S
2600
910
140
20
70
190
98
22
91
35
76
34


















_

Total
Deposition
-40
-37
-91
36

-1200
-1100
-850
-180
_
-5100
-6600
-6400
6300
2500
1300
280
370
3100
490
310
160
220
990
470
220
900
170
960
120




















IADN Results to 1996
Page vi

-------
                   IADN Loadings (kg/yr) From 1992 to 1996
                               Lake Michigan

o^HCH




Y-HCH




dieldrin




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





10Q9
iqq3
10Q4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Wet
69
44
qs
56
1 S
65
190
47
96
66
58
55
62
47
30

6.4
16
1 6
1 8
3 8
1 1
3 S
74
3q
99
56
58
q7
q
96
13
1 1
1 4
0.91
091
1.3
1.6
2.6
1.7
1.4
1 9
q i
1 8
oq?
1 9
1 1
9 3
3
9 9
Drv
1 5
4
63
4 S

1 1
9
1 4
9 9

8
7.2
23
20
_
3.8
oqs

i q

048
1 4

1 4

93
69

067

038
13
0 19
035
_
018
0.46
1.2
1.1
_
032
067
1 4
1 1

094
055
1 4
9

Net Gas
FxAancm
59
81
190
350
300
870
950
4qo
190
110
_



_
_









44
35



94
1 9
-10
8 3
8.3
-69
-74
-75
-24
-24
-44
-49
-59
-90
-99
-56
-55
-60
3
9 9
Total
190
130
990
410

q40
370
540
990

_



_
_









68
q?



97
97
-8 7
10
_
-68
-72
-72
-20
_
-42
-40
-49
-17

-55
-53
-56
8





















































PCB101




SPCB




phenan-
threne



pyrene




BlYlF
BflflF
BiVlF
Bfb+k)F
Rili+FiF
BfalP




Pb




As




Se




Cd





iqq9
iqq3
iqq4
iqqs
iqq6
iqq9
iqq3
iqq4
iqqs
iqq6
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Wet
1 4
081
1 7
9 1
1 4
59
86
71
78
48
350
230
160
360
220
220
220
130
340
140
130
110
73
480
958
170
170
77
160
84




_


_
_
_










Drv
033
066
1 1
1 6

16
94
3q
41

110
100
160
82
100
140
140
170
qs
110
56
43
63
19S
197
77
49
63
37
41

16000


_

820
1300
_
_

910




4500



Net Gas
F.mVianoB
-96
-93
-99
.q 3
_q i
-1300
-1900
-1400
-330
-390




_



















_




_










Total
-94
-99
-96
-5 6

-1900
-1100
-1300
-910





_



















_




_










IADN Results to 1996
Page vii

-------
                   IADN Loadings (kg/yr) From 1992 to 1996
                                Lake Huron

o^HCH




Y-HCH




dieldrin




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





10Q9
iqq3
10Q4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Wet
170
140
ISO
990
160

960
190
110
q3

13
15
19
41


1 8
3 8
67
10

3 4
qe
78
99

4 1
10
IS
S X
1 1
3 3
3 6
1.3
17
4
oq4

_
20
S 9
9 S


76
1 1
9 6


Drv










_



_
_


















_


_
_
_










Net Gas
FxAancm

-SOO
-4qo
-SO
-fi3

-34
-19
39
9q
_
-760
-720

_
_










9 S
9 S


-35
-14
-IS
-35
-28

-28
-29
-14
-15

-10
-10
-17
-15

-fi S
-67
-73
-5 5
Total










_



_
_


















_


_
_
_






























































PCB101




SPCB




phenan-
threne



pyrene




BlYlF
BflflF
BiVlF
Bfb+k)F
Rili+FiF
BfalP




Pb




As




Se




Cd





iqq9
iqq3
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqfi
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Wet
11
e
i q


ISO
130
no


_
640
320
250
3qo
_
350
iqo
990
350



eio




350

100000
64000
47000
15000
18000
11000
7500
6500
2200
2700
17000
19000
10000
9700
3100
6600
9qoo
9300
1400
9000
Drv










_
qo
71
63
110
_
130
77
61
130

S3
48

957

110
56

100
11000
8000
11000
7600
13000
2200
1700
1200
710
2qoo
2700
9400
9600
110
1100
470
310
410
170
310
Net Gas
F.mVianoB

077
074
-77
-6 1

-4qo
-460
-940
-930




_



















_




_










Total














_















1 1 0000
79000
58000
93000
31000
13000
q20o
7700
2qoo
5600
20000
14000
13000
9SOO
4900
7100
3900
9700
1600
9300
IADN Results to 1996
Page viii

-------
                   IADN Loadings (kg/yr) From 1992 to 1996
                                Lake Erie

o^HCH




Y-HCH




dieldrin




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





10Q9
iqq3
10Q4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Wet
84
35
1Q
9q
63
46
93
99
13
1 7
28
32
sq
12
9.4
1.9
3.4
1 4
1 7
9
46
46
3 6
7 8
96
34
qs
1 5
14
4q
oss
S4
04
073
0.34
034
0.57
056
1.4
0.43
055
081
1 6
oqe
039
049
0 79q
1
1 7
Ofi5
Drv
1 9
9
34
oq

045
1 3
083
06

56
3.7
18
11
_
2
0.21

1 9

053
065

1 9

43
9 1

1 5

09
64
091
099
_
0.12
0.21
0.74
06
_
023
043
083
1 9

098
033
085
1 3

Net Gas
FxAancm
140
9qo
300
190
44
60
S3
68
45
47
-300
-120
-110
-110
-110
_









90
30
14


-17
076
-7
-1
-5.7
-17
-15
-15
-22
-26
-54
-1 1
-5 9
-11
-16
-5 8
9 9
-5 9
-8 6
-13
Total
930
330
390
150

110
110
91
sq

-270
-84
-83
-87
_
_









58
130



-16
13
-64
-005
_
-17
-14
-14
-20
_
-46
0 14
-9 8
-8 8

-5 1
-1 1
-3 4
-56





















































PCB101




SPCB




phenan-
threne



pyrene




BlYlF
BflflF
BiVlF
Bfb+k)F
Rili+FiF
BfalP




Pb




As




Se




Cd





iqq9
iqq3
iqq4
iqqs
iqq6
iqq9
iqq3
iqq4
iqqs
iqq6
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Wet
048
081
1 1
1 4
051
91
96
41
58
18
500
360
210
530
91
330
310
160
360
58
150
140
81
560
158
180
iqo
q7
iqo
50




_


_
_
_










Drv
098
037
073
1 4

16
14
9q
^9

86
100
190
160
190
110
130
950
910
960
60
84
100
580
430
63
57
qs
100
190

13000
13000

_

1500
1400
_
_

9800
9400



1 100
1500


Net Gas
F.mVianoB
-9 9
1
-96
-5 9
-66
-900
-100
-900
-990
-310



1600
-770



9qo
-SO



59
15



-075
-8




_




_










Total
-1 4
9 9
-077
-9 4

-160
-60
-130
-130




2300
-4qo



S60
940



1900
600



9qo
160




_




_










IADN Results to 1996
Page k

-------
                   IADN Loadings (kg/yr) From 1992 to 1996
                               Lake Ontario

a-HCH




Y-HCH




dieldrin




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
Wet
Deoosition
52
39
33
21
31
50
37
24
13
96
11
54
•^
39
4.5
9 9
036
049
049
059
4.4
2
061
53
2
33
79
1.1
14
4 1
6.1
3
069
073
087
9 5
098
035
081
071
3.6
5.7
066
9
1.4
1.6
1 4
093
2.5
9 5
Drv
Deoosition










_


_
_

_










_
_

_
_












_
_

_
_
_
Net Gas
Exchanae
-80
-54
-93
-5.7
-1 1
-89
-1.5
7.9
19
17
-330
-900
-180
-230
-210

_



-96
-99
-SO


44
S 5
8.2
_

-170
-190
-150
39
-28
-19
99
-19
-18
-16
-19
-21
-IS
-90
-19
-18
99
-18
-11
-9 5
Total
Deoosition










_


_
_

_










_
_

_
_












_
_

_
_
_




















































PCB101




SPCB




phenan-
threne








B(k)F
B(k)F
BfkW
B(b+k)F
B(b+k)F
Bfa~lP




Pb




As




Se




Cd





1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
Wet
Deposition
1.7
9 3
069
1.8
1 3
56
89
15
38
96
70
540
380
110
250
64
470
220
130
960
33


173
311
54

_
63
110
40000
27000
15000
7600
5000
9900
3100
2100
970
580
5500
5000
3900
1300
1100
2600
1300
550
530
390
Drv
Deposition










41
95
44
28
63
88
55
48
46
83
92
79
99
105
249
86
79
43
29
60
4500
5300
6100
3300
5100
570
790
630
210
610
1000
1600
1800
150
340
96
99
130
49
100
Net Gas
Exchanae
-1.6
-94
-0 84
-62
-54
-450
-570
-450
-930
-930
-510



_
-46




-9.7























_




_
Total
Deposition










-400



_
110




120









45000
32000
91000
11000
10000
3500
3800
2700
1200
1900
6500
6600
5700
1500
1400
2700
1400
680
580
490
IADN Results to 1996
Pagex

-------
 DEPOT ATMOSPHERIQUE DE SUBSTANCES TOXIQUES DANS
  LES GRANDS LACS : RESULTATS DU RMDA JUSQU'EN 1996

Resume

L'objectif premier de ce document consiste a signaler les estimations biennales de charges pour
le depot atmospherique des substances toxiques dans les Grands Lacs sur la periode allant de
1995 a 1996. Le depot atmospherique est le phenomene suivant lequel les substances en
suspension dans 1'air sont transferees dans 1'eau, le sol ou la vegetation au niveau du sol. Dans
le RMDA, on examine trois processus de depots dans les Grands Lacs: depot humide par
precipitations, depot de particules seches par sedimentation et echange gazeux net de diffusion
qui combine les effets de 1'absorption de 1'air a 1'eau avec volatilisation de 1'eau a 1'air.

Les estimations de charges presentees ici reposent sur les mesures prises en grande partie aux
stations principals du RMDA, a raison d'une de celles-ci par lac.  Les substances examinees
comprennent celles que suit traditionnellement le RMDA,
•  a- et y-hexachlorocyclohexane, dieldrine,p,p '-DDE, p,p '-DDT etp,p '-DDD
•  hexachlorure de benzene (HCB) et polychlorobiphenyles exprimes sous forme de £PCB et
   quatre PCB individuels : 18, 44, 52 et 101
•  quatre hydrocarbures aromatiques polycycliques (HAP): phenanthrene, pyrene,
   benzo(k)fluoranthene et benzo(a)pyrene
•  quatre elements a 1'etat de traces : plomb, arsenic, selenium et cadmium,
ainsi que d'autres signales ici pour la premiere fois,
•  trans- et c/s-chlordane et ^raw^-nonachlore
•  a- et |3-endosulphane et sulphate d'endosulphane
•  une serie etendue de HAP.

On a determine les charges d'une fa9on compatible avec les rapports anterieurs du RMDA,
mais des ameliorations du modele comprennent une mise a jour de la base de donnees des
parametres physico-chimiques utilises dans les calculs et 1'utilisation des vitesses de vent
mesurees plutot qu'estimees. Par suite de ces raffmements, les charges presentees ici ne sont
pas strielement comparables a celles que presentent les rapports precedents. Pour uniformiser
la situation des charges du reseau dans le temps, on a recalcule les resultats pour la periode
1992-1994 et utilisant les memes hypotheses et les memes parametres de modele que pour
1995-1996. Les tendances temporelles examinees dans ce rapport reposent sur les valeurs
recalculees.

En examinant les charges de substances toxiques dans les Grands Lacs, on a aborde trois
questions fondamentales: 1'ampleur des charges, la fa9on dont chaque element de charge
contribue au total et la variation ou les tendances des charges dans le bassin et au cours de
IADN Results to 1996                                                       Page xi

-------
nombreuses annees. Ces charges sont presentees sous forme de flux (masse/zone unitaire/duree
unitaire; c'est-a-dire ng/m2/j), afin de tenir compte des differences entre les lacs du fait de leur
zone.

Les flux types des pesticides d'organochlore interdits sont d'environ 0,1 a 1 ng/m2/j et ne
depassent regulierement 10 ng/m2/j que pour 1'echange gazeux de a-HCH et de dieldrine. Les
flux des elements congeneres de PCB se situent en principe entre 0,1 et 1 ng/m2/j par element
de charge, de fa9on analogue a bien des pesticides d'organochlore interdits, meme si les flux de
volatilisation saisonniere de £PCB peuvent etre superieurs a 50 ng/m2/j. Les flux d'echange
gazeux de HCB sont entre 1 et 10 ng/m2/j et les flux de pesticides d'utilisation actuelle de y-
HCH et d'endosulphans se situent entre 1 et 5 ng/m2/j.

L'apport de pesticides et de PCB dans les lacs est domine par 1'echange gazeux et le depot
humide. Les mesures des concentrations de particules seches ont cesse apres 1995 du fait des
faibles niveaux signales, mais les estimations des charges presentees ici revelent que le depot
des parti cules seches de dieldrine, dep,p  '-DDD et de PCB peut etre important par rapport aux
autres processus de depot. La volatilisation de dieldrine  et de £PCB est superieure a
1'absorption gazeuse, de sorte que les lacs servent de sources de ces substances a
1'atmosphere.

Les apports de HAP et de metaux sont plus importants que ceux de pesticides et de PCB,
comme on s'y attend du fait de leur emission continue dans l'environnement. Les flux de HAP
se situent entre 1 a 1000 ng/m2/j suivant les especes et le processus de charge et les flux de
metaux a 1'etat de traces atteignent jusqu'a 2000 ng/m2/j. Comme les metaux ne sont guere
volatils, il ne subissent qu'un depot humide et sec, les flux humides etant en principe les plus
importants des deux types. Les donnees disponibles signalent que la volatilisation de HAP des
lacs est faible par rapport aux autres termes de flux et que 1'absorption gazeuse est substantielle
pour le phenanthrene et du pyrene, alors que les HAP a poids moleculaire plus eleve sont
achemines surtout par le depot des particules humides et seches.

En vertu de son programme d'assurance-qualite, le RMDA a commence une nouvelle serie
d'etudes d'intercomparaison entre ses organismes participants. Jusqu'a ce que les resultats
soient disponibles, les comparaisons du comportement de depot entre les lacs et dans le temps
se sont limitees aux situations ou les donnees ont ete engendrees par le meme organisme
d'exploitation.

Les flux de depot humide baissent generalement dans le temps pour les pesticides d'OC
interdits, alors que les flux du depot sec et de 1'echange gazeux ont ete  variables. La tendance
temporelle de 1'echange gazeux s'oriente en general vers 1'equilibre air-eau. Pour les PCB, le
depot humide est regulier dans le temps, alors que le depot sec s'est accru avant que les
IADN Results to 1996                                                          Page xii

-------
mesures ne cessent en 1995. L'echange gazeux de PCB est dans 1'orientation de la volatilisation
sur tous les lacs, mais s'approche generalement de 1'equilibre air-eau.

Le depot humide et de particules seches de HAP ne revele pas de tendances nettes dans le
temps, meme si les niveaux augmentent de 1'ouest a Test dans le bassin. On ne presente guere
de renseignements sur les flux d'echanges gazeux nets, car les  donnees de concentration en eau
sont clairsemees. Le depot des metaux est limite aux depots humides et sees, les depots
humides baissant dans le temps et le depot sec etant variable.

Les estimations de charges etablies par le RMDA reposent traditionnellement sur 1'hypothese
voulant que les stations principales situees aux stations reculees sur les lacs caracterisent le
depot de fond regional. Toutefois, il est fort probable que de forts apports avec une influence
geographique plus limitee existent pres de villes et de zones industrielles. Si Ton cite I'exemple
de Chicago sur le lac Michigan, on constate que les donnees de 1996 ont servi a evaluer 1'effet
de la pollution atmospherique des centres urbains sur les depots survenant dans les lacs.  On a
modifie le calcul du RMDA, en incluant une region secondaire de petit lac influenced par les
fortes concentrations mesurees a Chicago et,  meme si Ton doit voir dans les resultats des
estimations de limite inferieure par rapport a d'autres  eludes, le depot des sources de Chicago
reste substantiel,  d'apres les estimations, pour certains pesticides et PCB et tous les HAP. II
faut d'autres travaux pour caracteriser correctement la zone lacustre touchee par la pollution de
1'air urbain et deduire des moyens efficaces d'incorporer les centres urbains aux estimations de
charges du RMDA.
IADN Results to 1996                                                         Page xffi

-------
                   Charges (kg/an) du RMDA de 1992 a 1996
                                Lac Superieur

a-HCH




Y-HCH




dieldrine




P.P'-DDD




P.P'-DDE




P,P'-DDJ




HCB




PCB18




PCB44




PCB52





1QQ9
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
Deoot
humide
78
33
38
28
71
62
14
19
95
38
21
69
11
34
20

17
in
0.89
OS
2.6
3.8
4
4.6
2.1
6.2
59
48
1 7
32
53
25
1 9
1.5
1.2
0 92
3.1
1.6
2
34
1.4
9 1
1.7
9 9
1.9
1 1
1.8
2.1
26
2.6
Deoot
sec
1 1
56
19
4.7

0 65
2.7
2.4
1.9
_
7.4
63
25
15
_
6 1
0.1

0.5

0 39
1.2

0.96

1.6
1 9

94

0 67
19
0 37
0 42

0 26
0 39
29
1.9

0 45
0 99
2.8
1 7

0 31
0 56
3.1
2.4

Echanae
aazeux net
390
450
710
-230
-940
140
47
95
65
43
-500
-540
-500
-940
-200

_

-9.3
43

_

-18
-14
21
19

9
7.8
47
15
16
24
22
-71
-74
-71
-14
14
-19
-14
-7.3
-8 3
51
-13
-8
5
-99
34
Deoot
total
470
490
760
-200

200
64
120
76
_
-470
-470
-460
-190
_

_

-7.9


_

-12

29
73

6 1

53
59
IS
26

-70
-71
-67
-10

-17
-4
-2.8
-44

-19
-56
10
-4.9





















































PCB101




SPCB




phenan-
threne



pvrene




B(k)F
B(k)F
B(k)F
B(b+k)F
Bfb+k~lF
B(a)P




Pb




As




Se




Cd





1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
Deoot
humide
1 7
1.6
1 6
3.1
96
58
110
63
70
90
260
ISO
130
500
190
160
140
910
460
190
120
130
92
640
219
140
160
92
170
49


















_

Deoot
sec
0 45
0.74
93
1.4

27
25
86
47
_
100
60
310
59
100
190
74
990
54
91
52
13
58
159
152
58
14
39
17
35

16000
96000



5600
2900



1SOO
3100



2100
4400
_

Echanae
aazeux net
-49
-39
-95
-094
99
-1300
-1200
-1000
-300
-380
-5500
-6SOO
-6800
5700
2200
9SO
67
-5S
2600
910
140
20
70
190
98
22
91
35
76
34


















_

Deoot
total
-40
-37
-91
36

-1200
-1100
-850
-180
_
-5100
-6600
-6400
6300
2500
1300
280
370
3100
490
310
160
220
990
470
220
900
170
960
120




















IADN Results to 1996
Page xiv

-------
                   Charges (kg/an) du RMDA de 1992 a 1996
                               Lac Michigan

o^HCH




Y-HCH




dieldrine




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





10Q9
iqq3
10Q4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Depot
hiimidc
69
44
qs
56
1 S
65
190
47
96
66
58
55
62
47
30

6.4
16
1 6
1 8
3 8
1 1
3 S
74
3q
99
56
58
q7
q
96
13
1 1
1 4
0.91
091
1.3
1.6
2.6
1.7
1.4
1 9
q i
1 8
oq?
1 9
1 1
9 3
3
9 9
Depot
1 5
4
63
4 S

1 1
9
1 4
9 9

8
7.2
23
20
_
3.8
oqs

i q

048
1 4

1 4

93
69

067

038
13
0 19
035
_
018
0.46
1.2
1.1
_
032
067
1 4
1 1

094
055
1 4
9

Echanae
59
81
190
350
300
870
950
4qo
190
110
_



_
_









44
35



94
1 9
-10
8 3
8.3
-69
-74
-75
-24
-24
-44
-49
-59
-90
-99
-56
-55
-60
3
9 9
Depot
total
190
130
990
410

q40
370
540
990

_



_
_









68
q?



97
97
-8 7
10
_
-68
-72
-72
-20
_
-42
-40
-49
-17

-55
-53
-56
8





















































PCB101




SPCB




phenan-
tbrene



pyrene




BlYlF
BflflF
BiVlF
Bfb+k)F
Rili+FiF
BfalP




Pb




As




Se




Cd





iqq9
iqq3
iqq4
iqqs
iqq6
iqq9
iqq3
iqq4
iqqs
iqq6
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Depot
hnmidc
1 4
081
1 7
9 1
1 4
59
86
71
78
48
350
230
160
360
220
220
220
130
340
140
130
110
73
480
958
170
170
77
160
84




_


_
_
_










Depot
033
066
1 1
1 6

16
94
3q
41

110
100
160
82
100
140
140
170
qs
110
56
43
63
19S
197
77
49
63
37
41

16000


_

820
1300
_
_

910




4500



Echanae
-96
-93
-99
.q 3
_q i
-1300
-1900
-1400
-330
-390




_



















_




_










Depot
total
-94
-99
-96
-5 6

-1900
-1100
-1300
-910





_



















_




_










IADN Results to 1996
Page xv

-------
                   Charges (kg/an) du RMDA de 1992 a 1996
                                Lac Huron

o^HCH




Y-HCH




dieldrine




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





10Q9
iqq3
10Q4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Depot
hiimidc
170
140
ISO
990
160

960
190
110
q3

13
15
19
41


1 8
3 8
67
10

3 4
qe
78
99

4 1
10
IS
S X
1 1
3 3
3 6
1.3
17
4
oq4

_
20
S 9
9 S


76
1 1
9 fi


Deoot










_



_
_


















_


_
_
_










Echanae

-SOO
-4qo
-SO
-fi3

-34
-19
39
9q
_
-760
-720

_
_










9 S
9 S


-35
-14
-IS
-35
-28

-28
-29
-14
-15

-10
-10
-17
-15

-fi S
-67
-73
-5 5
DeDOt
total










_



_
_


















_


_
_
_






























































PCB101




SPCB




phenan-
threne



pyrene




BlYlF
BflflF
BiVlF
Bfb+k)F
ROvHrlF
BfalP




Pb




As




Se




Cd





iqq9
iqq3
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqfi
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqfi
iqq9
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Depot
hnmidc
11
e
i q


ISO
130
no


_
640
320
250
3qo
_
350
iqo
990
350



eio




350

100000
64000
47000
15000
18000
11000
7500
6500
2200
2700
17000
19000
10000
9700
3100
6600
9qoo
9300
1400
9000
Depot










_
qo
71
63
110
_
130
77
61
130

S3
48

957

110
56

100
11000
8000
11000
7600
13000
2200
1700
1200
710
2qoo
2700
9400
9600
110
1100
470
310
410
170
310
Echanae

077
074
-77
-6 1

-4qo
-460
-940
-930




_



















_




_










Depot
total














_















1 1 0000
79000
58000
93000
31000
13000
q20o
7700
2qoo
5600
20000
14000
13000
9SOO
4900
7100
3900
9700
1600
9300
IADN Results to 1996
Pagexvi

-------
                   Charges (kg/an) du RMDA de 1992 a 1996
                                 Lac Erie

o^HCH




Y-HCH




dieldrine




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





10Q9
iqq3
10Q4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq?
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Depot
hiimidc
84
35
iq
9q
63
46
93
99
13
1 7
28
32
sq
12
9.4
1.9
3.4
1 4
1 7
9
46
46
3 6
7 8
96
34
qs
1 5
14
4q
oss
S4
04
073
0.34
034
0.57
056
1.4
0.43
055
081
1 6
oqe
039
049
0 79q
1
1 7
Ofi5
Depot
1 9
9
34
oq

045
1 3
OS3
06

56
3.7
18
11
_
2
0.21

1 9

053
065

1 9

43
9 1

1 5

09
64
091
099
_
0.12
0.21
0.74
06
_
023
043
083
1 9

098
033
085
1 3

Echanae
140
9qo
300
190
44
60
S3
68
45
47
-300
-120
-110
-110
-110
_









90
30
14


-17
076
-7
-1
-5.7
-17
-15
-15
-22
-26
-54
-1 1
-5 9
-11
-16
-5 8
9 9
-5 9
-8 6
-13
DeDOt
total
930
330
390
150

110
110
91
sq

-270
-84
-83
-87
_
_









58
130



-16
13
-64
-005
_
-17
-14
-14
-20
_
-46
0 14
-9 8
-8 8

-5 1
-1 1
-3 4
-56





















































PCB101




SPCB




phenan-
threne



pyrene




BlYlF
BflflF
BiVlF
Bfb+k)F
Rili+FiF
BfalP




Pb




As




Se




Cd





iqq9
iqq3
iqq4
iqqs
iqq6
iqq9
iqq3
iqq4
iqqs
iqq6
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
iqq2
iqqs
iqq4
iqqs
iqqe
iqq2
iqq3
iqq4
iqqs
iqqe
iqq9
iqq3
iqq4
iqqs
iqqe
Depot
hnmidc
048
081
1 1
1 4
051
91
96
41
58
18
500
360
210
530
91
330
310
160
360
58
150
140
81
560
158
180
iqo
q7
iqo
50




_


_
_
_










Depot
098
037
073
1 4

16
14
9q
^9

86
100
190
160
190
110
130
950
910
960
60
84
100
580
430
63
57
qs
100
190

13000
13000

_

1500
1400
_
_

9800
9400



1 100
1500


Echanae
-9 9
1
-96
-5 9
-66
-900
-100
-900
-990
-310



1600
-770



9qo
-SO



59
15



-075
-8




_




_










Depot
total
-1 4
9 9
-077
-9 4

-160
-60
-130
-130




2300
-4qo



S60
940



1900
600



9qo
160




_




_










IADN Results to 1996
Pagexvii

-------
                   Charges (kg/an) du RMDA de 1992 a 1996
                                 Lac Ontario

a-HCH




Y-HCH




dieldrine




P.P' -ODD




P.P' -DDE




P.P' -DDT




HCB




PCB18




PCB44




PCB52





1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
Deoot
humide
52
39
33
21
31
50
37
24
13
96
11
54
•^
39
4.5
9 9
036
049
049
059
4.4
2
061
53
2
33
79
1.1
14
4 1
6.1
3
069
073
087
9 5
098
035
081
071
3.6
5.7
066
9
1.4
1.6
1 4
093
2.5
9 5
Deoot
sec










_


_
_

_










_
_

_
_












_
_

_
_
_
Echanae
aazeux net
-80
-54
-93
-5.7
-1 1
-89
-1.5
7.9
19
17
-330
-900
-180
-230
-210

_



-96
-99
-SO


44
S 5
8.2
_

-170
-190
-150
39
-28
-19
99
-19
-18
-16
-19
-21
-IS
-90
-19
-18
99
-18
-11
-9 5
Deoot
total










_


_
_

_










_
_

_
_












_
_

_
_
_




















































PCB101




SPCB




phenan-
threne








B(k)F
B(k)F
BfkW
B(b+k)F
B(b+k)F
Bfa~lP




Pb




As




Se




Cd





1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1999
1993
1994
1995
1996
1992
1993
1994
1995
1996
1992
1993
1994
1995
1996
Deoot
humide
1.7
9 3
069
1.8
1 3
56
89
15
38
96
70
540
380
110
250
64
470
220
130
960
33


173
311
54

_
63
110
40000
27000
15000
7600
5000
9900
3100
2100
970
580
5500
5000
3900
1300
1100
2600
1300
550
530
390
Deoot
sec










41
95
44
28
63
88
55
48
46
83
92
79
99
105
249
86
79
43
29
60
4500
5300
6100
3300
5100
570
790
630
210
610
1000
1600
1800
150
340
96
99
130
49
100
Echanae
aazeux net
-1.6
-94
-0 84
-62
-54
-450
-570
-450
-930
-930
-510



_
-46




-9.7























_




_
Deoot
total










-400



_
110




120









45000
32000
91000
11000
10000
3500
3800
2700
1200
1900
6500
6600
5700
1500
1400
2700
1400
680
580
490
IADN Results to 1996
Pagexviii

-------
IADN Results to 1996                                                    Page xix

-------
IADN Results to 1996                                                   Page xx

-------
Table of Contents

Map of the IADN Network                                                      i

Executive Summary                                                           iii

Resume                                                                      xi

1. Introduction                                                                1

2. Methods                                                                   1
2.1 Substances Considered                                                     2
2.2 Calculation of Mass Flux and Corresponding Lake-wide Loading               2
2.3 Model Refinements for 1995-96                                             3
2.4 Sources of Data                                                           3

3. Results and Discussion                                                      5
3.1 Master Station Loadings for 1995 and 1996                                   5
       3.1.1 Banned Organochlorine Pesticides                                     7
       3.1.2 Current-use Pesticides                                               7
       3.1.3 Banned Organochlorine Commercial Chemicals                           8
       3.1.4 Currently-Emitted PAHs and Metals                                    8
3.2 Expanding Spatial Information beyond IADN Master Stations                 9
3.3 Temporal and Spatial Trends in Master Station Loadings                      9
       3.3.1 Organochlorine Pesticides                                            11
       3.3.2 PCBs                                                            11
       3.3.3 PAHs                                                           12
       3.3.4 Metals                                                           12
3.4 Applicability of IADN Method to Estimating Urban Impacts: Case of Chicago  13

4. Conclusions                                                               19

Acknowledgements                                                           21

References                                                                 23

Appendix A: Derivation of Simplified Mass Transfer Coefficients                       27
Appendix B: Selected Data Used in Calculating IADN Loadings                        3 3
Appendix C: IADN Mass Loadings for  1995 and 1996                               37
Appendix D: Relative Loadings of IADN Substances                                 69
Appendix E: Variation in Precipitation and Air Concentration within Lake Basins for 1996   81
Appendix F: Annual Mass Fluxes to the Great Lakes form 1992 to 1996                87
IADN Results to 1996                                                   Page xxi

-------
List of Tables

Table 1: Henry' s Law Constants used in IADN Calculation of Gas Exchange               4
Table 2: Mass Fluxes (ng/m2/d) of Atmospheric Deposition at Sleeping Bear Dunes         14
      Master Station (SBD) and Chicago
Table 3: Lakewide Loadings to Lake Michigan: Effect of Adding Loadings from Chicago    17
      to Master Station Estimates of Regional Background (BG) Loadings
Table 4: Comparison of Additional Loading to Lake Michigan (kg/yr) due to Air from      18
      Chicago as Calculated by IADN and Other Studies

Table B1: Summary of Meteorological Data at IADN Master Stations, 1992-1996         35
Table B2: Lake Water Concentrations for IADN Loadings Estimates of 1995-96          36

Table Cl: Atmospheric Fluxes to Lake Superior for 1995                              39
Table C2: Atmospheric Fluxes to Lake Superior for 1996                              42
Table C3: Atmospheric Fluxes to Lake Michigan for 1995                              45
Table C4: Atmospheric Fluxes to Lake Michigan for 1996                              48
Table C5: Atmospheric Fluxes to Lake Huron for 1995                                51
Table C6: Atmospheric Fluxes to Lake Huron for 1996                                54
Table C7: Atmospheric Fluxes to Lake Erie for 1995                                  57
Table C8: Atmospheric Fluxes to Lake Erie for 1996                                  60
Table C9: Atmospheric Fluxes to Lake Ontario for 1995                               63
Table CIO: Atmospheric Fluxes to Lake Ontario for  1996                              66

Table El: 1996 Annual Volume-Weighted Mean Pesticide Concentrations in              83
      Precipitation (ng/L)
Table E2: 1996 Annual Volume-Weighted Mean HCB, PCB and PAH Concentrations     84
      in Precipitation (ng/L)
Table E3: 1996 Annual Pesticide Concentrations in Air (pg/m3)                          85
Table E4: 1996 Annual HCB and PCB Concentrations in Air (pg/m3)                    85
Table E5: 1996 Annual PAH Concentrations in Air (pg/m3)                             86
IADN Results to 1996                                                      Page xxii

-------
List of Figures

Figure D1: Loadings as a Proportion of Total Deposition to Lake Superior in 1995          71
Figure D2: Loadings as a Proportion of Total Deposition to Lake Superior in 1996          72
Figure D3: Loadings as a Proportion of Total Deposition to Lake Michigan in 1995         73
Figure D4: Loadings as a Proportion of Total Deposition to Lake Michigan in 1996         74
Figure D5: Loadings as a Proportion of Total Deposition to Lake Huron in 1995            75
Figure D6: Loadings as a Proportion of Total Deposition to Lake Huron in 1996            76
Figure D7: Loadings as a Proportion of Total Deposition to Lake Erie in 1995              77
Figure D8: Loadings as a Proportion of Total Deposition to Lake Erie in 1996              78
Figure D9: Loadings as a Proportion of Total Deposition to Lake Ontario in 1995          79
Figure D10: Loadings as a Proportion of Total Deposition to Lake Ontario in 1996         80

Figure F1: Annual Average Wet Deposition Flux (ng/m2/d) of Organochlorine Pesticides     89
Figure F2: Annual Average Dry Deposition Flux (ng/m2/d) of Organochlorine Pesticides     90
Figure F3: Annual Average Net Gas Exchange Flux (ng/m2/d) of Organochlorine            91
       Pesticides
Figure F4: Annual Average Wet Deposition Flux (ng/m2/d) of PCBs                      92
Figure F5: Annual Average Dry Deposition Flux (ng/m2/d) of PCBs                       93
Figure F6: Annual Average Net Gas Exchange Flux (ng/m2/d) of PCBs                    94
Figure F7: Annual Average Wet Deposition Flux (ng/m2/d) of PAHs                      95
Figure F8: Annual Average Dry Deposition Flux (ng/m2/d) of PAHs                       96
Figure F9: Annual Average Net Gas Exchange (ng/m2/d) of PAHs                        97
Figure F10: Annual Average Wet Deposition Flux (ng/m2/d)  of Metal s                     98
Figure F11: Annual Average Dry Deposition Flux (ng/m2/d) of Metals                     99
IADN Results to 1996                                                      Page xxiii

-------
IADN Results to 1996                                                   Page xxiv

-------
1. Introduction

In response to growing concerns on the part of the International Joint Commission, a workshop
investigating the role of atmospheric deposition in the delivery of toxic substances to the Great
Lakes was held in Scarborough, Ontario, Canada in 1986.  That workshop culminated in two
major products: the first-ever collection of data and consequent development of loading
estimates to the Lakes based on data from the 1980-1985 period (Strachan and Eisenreich,
1988) and the development of "The Plan" (Voldner and Eisenreich, 1987) aimed at improving
those estimates in the future. Four years after that first report, an update to the loadings was
prepared (Eisenreich and Strachan, 1992) in which many of the needed improvements called for
in "The Plan" were implemented.  Although IADN in its current form was taking shape, mass
loading estimates were still available only for wet and dry particle deposition, with gas-particle
partitioning in air determined by ascribing a temperature-dependent partitioning factor after the
Junge-Pankow model (Junge, 1977; Pankow, 1987) rather than direct measurement. In 1996,
the first set of loading estimates including gas exchange and using measured values of gas and
particle-phase concentrations in air was published. (Hoff et al., 1996) This was followed by the
first formal biennial loadings report for the period 1993-1994. (Ffillery et al., 1998)  The current
report builds on these efforts and delivers results for data collected in 1995 and 1996.

The biennial reporting schedule for IADN is mandated by Annex 15  of the Canada-U.S. Great
Lakes Water Quality Agreement.  That annex describes two activities relating to airborne toxic
substances: monitoring and surveillance for the estimation of loadings to the lakes, and research
into atmospheric processes and sources of contaminants responsible for those loadings. These
two activities are conducted separately even though some scientists and managers are involved
in both. The present report addresses only the monitoring and surveillance component of Annex
15 and presents the scientific details of lADN's atmospheric loading estimates for 1995-96.
Since pathways other than atmospheric deposition contribute to the entry of toxic substances to
the lakes, the loadings estimates reported through IADN provide only part of the information
needed to develop a complete understanding of toxic substances in the Great Lakes basin.

2. Methods

Loading estimates are calculated as the sum of three process-related terms: wet deposition, dry
particle deposition, and net gas exchange. The latter is defined as the sum of an absorption term
(from air to water, defined herein as positive gas  exchange) and a volatilisation term (from water
to air, defined herein as negative gas exchange).  Each loading term is determined on an average
seasonal basis after regular measurements of the various parameters of interest.  An  estimate of
the variability associated with that average is also made.
IADN Results to 1996                                                           Page 1

-------
2.1: Substances Considered

Loadings results have traditionally been reported through IADN for 20 substances.  These are
a- and y-hexachlorocyclohexane, dieldrin,/?,/? '-DDE, p,p '-DDT, andp,p '-ODD, HCB, four
PCBs: 18, 44, 52 and 101, as well as £PCB as estimated by each analytical laboratory, 4
PAHs: phenanthrene, pyrene, benzo(k)fluoranthene, and benzo(a)pyrene, and 4 trace elements:
lead, arsenic, selenium and cadmium.  The 1995-96 results reported here include those 20
substances and,  in addition, loadings of trans-  and c/'s-chlordane, rram--nonachlor, a- and |3-
endosulphan, endosulphan sulphate and an expanded suite of PAHs.  The PAHs are those
suggested for reporting under the UN ECE LRTAP Convention's 1998 Aarhus Protocol on
Persistent Organic Pollutants: benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and
indeno(l,2,3-cd)pyrene. (UN ECE, 1998)

A modified suite of PCBs is also under development within IADN. This class of substances has
presented a particular challenge to the network due to methodology differences between
participating laboratories that result in variations in the individual PCBs reported and,
consequently, the sum of PCBs calculated.  The resulting suite is being designed to meet two
criteria: (a) individual congeners in the suite are to be detected the majority of the time at the
majority of sites, (b) the resulting £PCB is to represent a significant fraction of the calculated
total of all measured congeners.  At the time of writing, an initial suite of approximately 60
congeners is being tested for consistency across lakes and sampled media.

2.2: Calculation of Mass Flux and Corresponding Lake-wide Loading

The calculation method for IADN loadings has been described in detail elsewhere (Hoff 1994,
Hoff et al. 1996, Hillery et al., 1998) and is only summarized here. The wet deposition estimate
is the most straightforward, with the mass flux being the product of the volume-weighted mean
concentration of the  substance of interest in precipitation and the rate of precipitation.  The dry
deposition estimate is obtained by  multiplying the concentration of the substance of interest
associated with airborne particles by an assumed deposition velocity.  The use of this constant
deposition velocity is estimated to incorporate  substantial error (Hoff, 1994), but available
information on dry deposition has  not yet been translated into an improved method for use in
the network. Finally, the net gas exchange is calculated as the product of the mass transfer
velocity and the concentration gradient between air and water as scaled by Henry's Law.

The gas exchange component of the total loading is estimated by use of a model describing
diffusive transfer through thin films forming the interface between the bulk liquid of the lake
water and the overlying air. (Schwarzenbach et al., 1993) Mass transfer coefficients (inverse
resistances to transfer) are determined by taking established relationships for wind speed-
dependent mass transfer of CC>2 to quantify the resistance in the water phase and H2O to
quantify the resistance in the vapour phase (Hornbuckle, 1994), and adjusting for differences in


IADN Results to 1996                                                          Page 2

-------
diffusivities between the sample substance (CC>2 or H20) and the toxic chemical of interest.  In
preparing the latest round of IADN results, and consequently updating the computer programs
used in the calculations, it was seen that the methods used to determine those dimensionless
multipliers can be significantly simplified compared to previously reported calculations of the
same nature. The simplifications are presented in Appendix A.

2.3: Model Refinements for 1995-96

Three refinements were made to the IADN model for the calculation of results for 1995-96.
Because of these changes, the Master Station loadings presented in the remainder of this report
are not directly comparable to previously published results.  An analysis of mass loadings over
several years is presented in Section 3.2 and includes revised loadings for previous years
calculated by the model as modified for 1995-96.

The first modification made was an update to the database of Henry's Law constants used in
the calculation of gas exchange and, in particular, inclusion of recently determined temperature-
dependent estimates.  The values used are listed in Table 1.

H values were also updated for many PCB congeners in anticipation of the newly defined PCB
suite. However, since the suite is still under development, these 1995-96 results use physico-
chemical parameters for £PCB from previous calculations.

The second change made to the model was to use measured wind speeds in determining the gas
exchange term of the fluxes rather than the constant wind speed of 5 m/s that was used in
previous calculations. For 1995-96, those varied from 3 m/s to 5 m/s on an annual average
basis. Such a variation has a significant effect on mass transfer estimates.  For example, at
15°C and using the Henry's Law constants shown in Table 1 above, reducing the wind speed
from 5 m/s to 3 m/s results in decreases in overall mass transfer coefficient for gas exchange
with respect to water, koL, of 31% for B(k)F and 60% for PCB 101.

The final change made is a typographic correction to the coding involved in calculating the air-
side mass transfer coefficient, ka  That correction increases ka by approximately 12% relative to
previously published IADN values for all substances regardless of environmental  conditions.

2.4: Sources of Data
Concentration data for the vapour and particle fractions of air were obtained from
measurements made every 12 days at each of the IADN Master Stations. At the Lake Huron
and Ontario  sites, each sample draws approximately 350 m3 over 24 hours and at the Lake
Superior, Michigan and Erie sites, 815m3 of air are sampled over the same time  period.
IADN Results to 1996                                                         Page 3

-------
Table 1: Henry's Law Constants used in IADN Calculation of Gas Exchange
Substance
a-HCH
dieldrin
c/'s-chlordane
trans-chlordane
trans-nonachlor
p,p '-ODD
p,p '-DDE
p,p '-DDT
y-HCH
a-endosulphan
|3-endosulphan
HCB
PCB 18(tri)
PCB 44 (tetra)
PCB 52 (tetra)
PCB 101 (penta)
phenanthrene
pyrene
benzo[b]fluoranthene
benzo[k]fluoranthene
benzo[a]pyrene
indeno[l,2,3-
cd] pyrene
Parameters m
and b for
Henry's Law
Constant,
H (Pa-m3/mol),
logw H = m/T+b
m
-3054
-3416
-3416
-3416
-3416
-3416
-3416
-3416
-2694
-876
-3416
-2559
-2611
-2716
-2716
-3416
-2469
-2239
-3416
-3416
-3416
-3416
b
10.1
12.2
12.5
12.7
13.2
11.3
12.6
11.7
8.54
0.446
8.18
10.4
10..4
10.5
10.4
12.9
8.89
7.59
10.4
10.7
10.8
6.95
Source
Gotham and Bidleman (1991); Jantunen and
Bidleman (2000)
Cotham and Bidleman (1991)
Iwataetal. (1995)
Iwataetal. (1995)
Iwataetal. (1995)
Suntioetal. (1987); Tateya et al. , (1988); as
perHoSetal. (1996)
Iwataetal. (1995)
Cotham and Bidleman (1991)
Cotham and Bidleman (1991); Jantunen and
Bidleman (2000)
Rice etal. (1997)
Rice etal. (1997)
Ten Hulscher et al. (1992)
Murphy et al. (1987); Ten Hulscher et al.
(1992)
Murphy et al. (1987); Ten Hulscher et al.
(1992)
Mackay et al. (1992); Ten Hulscher et al.
(1992)
Murphy et al. (1987); Ten Hulscher et al.
(1992)
Bamfordetal. (1999)
Bamfordetal. (1999)
Ten Hulscher et al. (1992)
Ten Hulscher et al. (1992)
Ten Hulscher et al. (1992)
Ten Hulscher et al. (1992)
IADN Results to 1996
Page 4

-------
Whole precipitation concentrations were determined at all Master Stations.  Composite samples
were collected every 14 days for Lake Huron and every 28 days at the other Master Stations.

Many of the meteorological data necessary to the determination of mass flux were collected on-
site.  Seasonal and annual statistics for wind speed and precipitation were computed for the
entire season or year in question rather than the times when samplers were operating.  Lake
water surface temperatures, assumed to equal the temperature of the air film involved in air-
water exchange, were obtained from the National Oceanic Atmospheric Administration's
(NOAA) Great Lakes Environmental Research Laboratory (GLERL) satellite data. (NOAA,
1999)  Annual meteorological data are presented in Table Bl of Appendix B.

All air and precipitation concentrations and meteorological data from IADN sites were
submitted to quality control through the Research Data Management and Quality Control
System™ (Sukloff et al., 1995) administered at the Centre for Atmospheric Research
Experiments of Environment Canada.

Lake water concentrations are not measured directly in IADN. Rather, available data were
pooled from cruises taken over recent years. Cruise data were available from the US R/V
Lake Guardian cruise of the five lakes in spring 1996 as well as from CCGV Limnos cruises of
Lakes Superior (1996), Erie (1995) and Ontario (1998). Some samples on the Limnos cruises
were collected and analysed by two different agencies of Environment Canada: the National
Water Research Institute and the Ecosystem Health Division of Ontario Region with some
overlap of analytes. If more than one data source was available, pooling of concentration data
was performed by weighting inversely by variance to account for different sample sizes and
precisions.  (Taylor, 1990) Final values are compiled in Table B2 of Appendix B. It is evident
that lake concentration data useful to IADN loading estimates are sparse, and this problem has
been identified in previous loading reports as well. (Hoff et al., 1996; Hillery et  al., 1998)
Where no values are available, no estimate of the volatilisation from lake water to air can be
made.  This is a serious detriment to the production of loading estimates since volatilisation is a
significant process in the atmospheric cycling of most of these substances.

3. Results and Discussion

3.1: Master Station Loadings for 1995 and 1996

In examining the loadings of toxic substances to the Great Lakes, three fundamental issues are
considered:  the magnitude of the loadings, the manner in which each loading component
contributes  to the total, and the variation or trends in the loadings across the basin and over
many years. The first two issues are considered in this section, and spatial and temporal trends
are discussed separately in Section 3.3.
IADN Results to 1996                                                         Page 5

-------
Although previous IADN reports have reported lakewide loadings (kg/yr), the following
discussion is based on mass fluxes (ng/m2/d) so that direct between-lake comparisons of the
deposition can be conducted.  To obtain the lakewide loading, the flux can simply be multiplied
by the appropriate lake area and the resulting units converted from ng/d to kg/yr. The lake
areas are 82,100 km2, 57,800 km2, 59,600 km2, 25,700 km2 and 18,960 km2 for Lakes
Superior, Michigan, Huron, Erie and Ontario, respectively  As a result, the annual loading in
kg/yr can be obtained by multiplying the annual mass flux in ng/m2/d by 30, 21, 22, 9.4 or 6.9.

Atmospheric loadings to the five Master Stations for 1995 and 1996 are presented in Appendix
C in Tables Cl to CIO. Each table is divided into 4 sub-tables (a-d) by chemical group:
banned organochlorine pesticides, current-use pesticides, banned organochlorine commercial
chemicals, and currently-emitted PAHs and metals.

The measured concentrations in air and precipitation exhibit marked variation over the annual
cycle. As such, it is important to determine if the reported atmospheric loadings are likely
different from zero. To do so, each loading term is assigned a coefficient of variation (COV)
following the error propagation analysis conducted by Hoff (1994). Then, assuming the data
are normally distributed, dry deposition and gas exchange loadings are said to be significantly
different from zero if the reported COV is less than 267% for annual values and less than 120%
for seasonal values. This result is based on a 95% confidence interval for annual sample sizes of
30 and seasonal sample sizes of 8. For wet deposition on Lake Huron, where samples are
collected every 14 days, loadings are different from zero if the COV is less than 108% on a
seasonal basis or 248% on an annual basis. For the other lakes, wet deposition is significantly
different from zero if the COV is less than 40% on a seasonal basis or 165% annually.

A series of graphs depicting the relative magnitude of each loading component as fraction of the
total input to the lake is presented in Appendix D.  The total inputs in these graphs are
normalized to 100% and represent the total "downward" loading from air to water. Gas
exchange graphs include a negative component representing "upward" loading through
volatilisation.  The magnitude of the volatilisation term is expressed as a fraction of the net
downward loading. If a negative loading component is greater than 100%, the lake under
discussion is subject to net loss of contaminant to the atmosphere and is thus behaving as a
contaminant source.

The amount of information generated by IADN is large. For example, 290 mass fluxes are
presented for each lake each year in Appendix C alone.  Since this document is aimed at
reporting rather than exhaustive analysis, the following discussion will present a general overview
of results and point out interesting features in the data.  The loading values themselves are
presented in the appendices for readers wanting a greater degree of detail.
IADN Results to 1996                                                          Page 6

-------
3.1.1: Banned Organochlorine Pesticides

Typical values for annual fluxes of banned organochlorine pesticides are on the order of 0.1 to 1
ng/m2/d and only regularly exceed 10 ng/m2/d for gas exchange of a-HCH and dieldrin. The
inputs are dominated by gas exchange on Lakes Superior and Ontario whereas wet deposition
plays a significant role on the other lakes, particularly Lake Huron where wet deposition
dominates delivery.  For this group of substances, water data are available on all lakes only for
a-HCH and cis- and trans-chlordane. In general, a-HCH and c/s-chlordane are close to air-
water equilibrium in Lakes Superior and Ontario while the other lakes are net recipients of these
banned substances.

The behaviour of rram--chlordane is the most variable of this class of substances across the
basin. In Lakes Superior and Michigan, levels are such that the water is a net recipient, but the
balance is not far from air-water equilibrium. In Lake Ontario, the opposite is true, with
volatilisation being about twice the net inputs.  Lake Erie shows a net input situation but, unlike
Lakes Superior and Michigan, it is far from air-water equilibrium.  No rram--chlordane data are
available for Lake Huron for either wet or dry particle deposition, but gas exchange shows
about 2 times more volatilisation than absorption.

Dieldrin undergoes net volatilisation in all lakes for which water data exists, with outputs ranging
from 3 to 4 times net inputs for Lakes Superior and Erie and more than 10 times net inputs for
Lake Ontario. Inputs of dieldrin consist of a significant wet deposition component on all lakes.
Except for Lake Superior, which was monitored during CCGV Limnos cruises, p,p '-DDT and
its metabolites, p,p '-ODD andp,p '-DDE, can only be assessed on the input side since the
available lake water data from the Lake Guardian cruises were judged unreliable by the
originating lab. In general, inputs of the DDTs are comprised of significant fractions of wet
deposition, dry particle deposition and gas absorption.

It is interesting to note that ODD has a substantial contribution by dry particles for Lakes
Superior, Michigan and Erie in 1995. This cannot be assessed on other lakes or years due to a
network-wide decision to abandon particle-phase analysis of air samples for the banned
organochlorines.  This decision may warrant re-evaluation given results presented here for
dieldrin, ODD and PCBs (see subsequent section on banned organochlorine commercial
chemicals).

3.1.2: Current-use Pesticides

lADN's list of current-use pesticides is limited to y-HCH and endosulphan. Daily fluxes of
these pesticides are of the order of 1  to 5 ng/m2/d. Lake water data are available for y-HCH
which, in all cases, is still being delivered to the lakes at a rate greater than its removal by
volatilisation. That input is largely driven by gas absorption although wet deposition is important
IADN Results to 1996                                                          Page 7

-------
on Lake Ontario and even more so on Lake Huron, a-endosulphan is similar to y-HCH in that
its delivery to the lakes is dominated by gas absorption. Wet and dry deposition are more
important in delivering p-endosulphan and endosulphan sulphate to the lakes than they are for
a-endosulphan.

3.1.3:  Banned Organochlorine Commercial Chemicals

This class of compounds includes hexachlorobenzene (HCB) and the poly chlorinated biphenyls
(PCBs). Average daily fluxes for individual reported PCB congeners are of the same order of
magnitude as the banned organochlorine pesticides and fall between 0.1 and 1 ng/m2/d for each
loading component. HCB in the gas phase tends to fall in the 1 to 10 ng/m2/d range and
seasonal £PCB can be higher than 50 ng/m2/d, albeit in the volatilisation direction.  In general, it
is the gas-phase processes of absorption and volatilisation that are dominating the atmospheric
delivery of these substances to the lakes although wet deposition plays an important role on
Lakes Michigan and Ontario.  With the exception of Lake Superior, large volatilisation terms
are leading to a net loss of PCBs from the lakes. HCB is close to air-water equilibrium in the
lakes except Lakes Huron and Ontario where volatilisation is occurring.

As was the case for the banned organochlorine pesticides, PCB analysis of airborne particles
ceased after  1995 for Lakes Superior, Michigan and Erie, and had ceased even earlier on
Lakes Huron and Ontario. An examination of the PCB data presented for 1995 on Lakes
Superior, Michigan and Erie shows that, even though particle-bound PCB concentrations may
be low, the contribution made by dry deposition can be significant at 8% to 21% of the total
downward loading.

3.1.4:  Currently-Emitted PAHs and Metals

These substances are treated together because of their continued emission to the atmosphere in
the Great Lakes region from a variety of industrial, transportation and residential sources.  Mass
fluxes of PAHs are variable with values in the 1 -100 ng/m2/d range except for phenanthrene
which exhibits gas exchange terms typically in the 100 -1000 ng/m2/d range.  Lake water data
were available for Lakes Superior and Erie and volatilisation is small there compared to net
downward fluxes.  Inputs of phenanthrene are dominated by gas absorption and pyrene is more
evenly split between the downward deposition modes. The heavier PAHs are delivered mostly
by wet and dry particle deposition.

Metals are measured only on  Lakes Huron and Ontario.  Fluxes of these substances are larger
than those of most of the other substances in this report with values in the 100 ng/m2/d range for
As, Se and Cd and close to 2000  ng/m2/d for Pb.  Being relatively non-volatile, the atmospheric
deposition of these substances is limited to wet and dry particle deposition with the former
generally contributing more than half of the total downward flux.
IADN Results to 1996                                                         Page 8

-------
3.2: Expanding Spatial Information beyond IADN Master Stations

The preceding results described mass fluxes based on measurements taken at one Master
Station per lake.  However, participating agencies operate other sites in the Great Lakes that
are considered satellite stations in IADN.  As a step toward exploring the spatial variation within
lake basins as an indication of the representativeness of the Master Stations, annual average
concentrations of some IADN chemicals measured at satellite stations were compared as
presented in Appendix E.

Annual volume-weighted mean precipitation concentrations for 1996 are presented in Tables El
and E2.  There is good agreement between average annual concentrations measured on the
same lake for sites operated by the same agency(all-substance average relative standard
deviations of 21% to 54% depending on the lake in question) except for the large difference in
concentrations measured on Lake Michigan as expected due to the urban location of the
Chicago site.  Agreement within a given lake basin declines when results from different agencies
are compared; relative standard deviations of same-lake  measurements by all agencies are
10% to 39% higher (RSD units) than those taken by only one agency.

Air measurements are compared in Tables E3, E4 and E5. Only Lake Superior has multiple
sites operated by the same agency.  As with precipitation, those within-agency results show
good comparability with an all-substance average RSD of 32%.  Unfortunately, it is not possible
to conduct an inter-agency analysis to compare to the intra-agency result since no two agencies
are measuring air the same way on any given lake.

In order to proceed with estimating the spatial variation within the lake basins, it is first
necessary to quantify and adjust the differences that exist between the  agencies in their
measurements. With this goal, IADN is enhancing its quality assurance activities with a renewed
set of field audits and laboratory intercomparisons already underway. Additionally, Indiana
University is hosting a meeting of the IADN precipitation analytical chemists to review analytical
protocols with the goal of harmonizing methodologies. Finally, all agencies involved in IADN
are presently engaged in a side-by-side intercomparison  study at Point Petre to estimate total
(sampling  and analytical) variability among agencies.

3.3: Temporal and Spatial Trends in Master Station Loadings

Over recent years, scientists associated with IADN have conducted several studies examining
the manner in which toxic substance concentrations in air and precipitation are changing with
time. (Hillery  et al., 1997;  Cortes et al., 1998; Simcik et al, 1999; Cortes et al., 1999; Cortes
et al., 2000; Simcik et al., 2000) Those studies have shown that the rates at which
concentrations are decreasing are generally consistent between the atmospheric compartments
and other media  such as lake water and biota.  Furthermore, a variety of techniques has


IADN Results to 1996                                                          Page 9

-------
successfully been applied to discriminate between continued local emission of a substance and
its presence in the Great Lakes atmosphere through regional background or long-range
transport. (Hoffet al, 1998; Cortes et al., 1999)

lADN's formal mandate goes beyond the characterisation of trends in atmospheric
concentrations to the determination of trends in loadings to the lakes.  The distinction arises from
the fact that the exposure pathway for these contaminants is primarily through the aquatic food
chain.  Previous IADN reports have included estimates of changes in  loadings to the lakes,
(Eisenreich and Strachan, 1992; Hoffet al., 1996; Hillery et al., 1998) although interannual
variability has been difficult to  quantify with certainty.

Uniform quality control of IADN data and incorporation in a common database have only
recently been achieved. As a result, it is possible for the first time to report results determined
with consistent treatment of the data collected over the five years from 1992 to 1996 at all sites.
Full results for the substances  reported consistently since 1992 are presented in Appendix F
with points of interest discussed in Sections 3.3.1-3.3.4.

Wet deposition  and dry particle deposition can change in magnitude with time, but gas exchange
can also change direction from net absorption to net volatilisation or vice versa.  Since
uncertainties in gas exchange can be particularly large near equilibrium, the fugacity ratio has
been considered when describing temporal trends in gas exchange. As described by Mackay
(1991), fugacity is a measure  of the tendency of a substance to escape from the phase in which
it resides; phases in equilibrium with each other have equal fugacities.  Applying this concept to
gas exchange leads to a fugacity ratio of unity being the descriptor of equilibrium between
absorption and volatilisation.  The ratio of gas exchange mass fluxes calculated by IADN is
equivalent to the ratio of fugacities because the mass transfer coefficient is the same for the
diffusive transport in both directions.  All fugacity ratios are reported for air divided by water
and are presented as fRyear (e.g. fugacity ratio in 1995 = fRi995). A ratio greater than one
indicates net absorption by the water and a ratio less than one indicates net volatilisation from
the water to the air.

As a result of the lack of agreement between measurements conducted by different agencies
operating sites on the same lake (see Section 3.2), results from Master Stations operated by
different agencies on different lakes cannot be compared directly with confidence. As a result,
comparisons in  space and time should only be made for measurements made by the same
agency. Air and precipitation  measurements made on Lakes Superior, Michigan and Erie are
comparable in space, but a change of analytical laboratory in 1994 makes results comparable
in time over two distinct periods: from 1992-1994 and 1995-1996. Air measurements made
on Lakes Huron and Ontario are comparable in space and over the entire period from 1992-
1996.  Over 1992-1994, precipitation measurements on Lakes Huron and Ontario were made
IADN Results to 1996                                                         Page 10

-------
by the same agency but a change occurred on Lake Huron in 1995. Therefore, results are fully
comparable between the two lakes only from 1992-1994.

3.3.1: Organochlorine Pesticides

Annual wet deposition fluxes are generally decreasing in time for the OC pesticides, including
lindane at sites in Canada where it is still used.  The exceptions to this trend are dieldrin and the
p,p '-DDT group whose wet deposition is increasing on Lake Huron. For the comparable sites
at Lakes Superior, Michigan and Erie, wet deposition fluxes of the HCHs are lower at Lake
Superior than at the other two lakes.

Information needed for the estimation of dry deposition fluxes of OC pesticides is only available
on Lakes  Superior, Michigan and Erie. At these sites, the airborne particle phase  ceased to be
analysed for OCs in 1995. Dry deposition fluxes of the HCHs are similar for all three lakes.
Dieldrin values increase from west to east by a factor of 2. p,p '-DDD, p,p '-DDE andp,p '-
DDT fluxes are only available for 1992 and 1995; they are similar on Lakes Superior and
Michigan  and higher on Lake Erie. A temporal comparison of these fluxes cannot be made
since measurements were made by different agencies.

Gas exchange fluxes of OC pesticides are variable across the basin. This is reasonable given
the complexity inherent in a flux term driven by the gradient between concentrations in air and
lake water. In general, the temporal trend is toward air-water equilibrium although some
substances appear to have reversed from one direction of air-water exchange to the other over
1992-1996. For example, y-HCH on Lakes Huron (fRi992 not available, fRi993 = 0.69, fRi996
= 1.94) and Ontario (fRi992 = 0.82, fRi996 = 1.89) is now in net absorption.  The gas exchange
of dieldrin is in the direction of volatilisation for all lakes.

3.3.2: PCBs

Four congeners of PCBs are investigated (trichlorinated PCB18, tetrachlorinated PCB44 and
PCB52, and pentachlorinated PCB101) in IADN as well as IPCB, and the behaviours of all
five PCB parameters are generally similar to each other. In wet deposition, the change in time is
not steady except on Lake Huron, where fluxes decreased decisively until 1994 when the last
PCB precipitation measurements were taken there. Wet deposition fluxes of £PCB are similar
at the spatially comparable sites on Lakes Superior, Michigan and Erie.
Depositional fluxes for dry particle PCBs are available only for Lakes Superior, Michigan and
Erie up to 1995. Particle deposition to these lakes generally increased from 1992-94, the
period over which the same laboratory was analysing samples at those sites.  Over all years, flux
values are similar on Lakes Superior and Michigan and are approximately 50% higher on Lake
Erie.
IADN Results to 1996                                                        Page 11

-------
Gas exchange of £PCB is in the volatilisation direction on all lakes but approaching air-water
equilibrium everywhere but Lake Erie, where the rate of volatilisation is steady and may be
increasing. Individual congeners are generally behaving in a fashion similar to £PCB over time.
The 4IADN congeners appear to have reversed from volatilisation to absorption on Lake
Superior as has PCB52 on Lake Michigan, but the apparent reversal takes place at the time of
laboratory changeover on those lakes. PCB101  has reversed from absorption to volatilisation
on Lakes Huron and Ontario (e.g. Ontario: fRi992 = 1.3, fRi996 = 0.52) although net flux values
are small and therefore highly uncertain.

3.3.3: PAHs

Wet deposition of PAHs shows no consistent trends over the five years presented in Appendix
F, and this is compatible with the fact that they continue to be emitted unlike other IADN
substances that have been banned.  Levels increase from west to east when looking at spatially
comparable data for Lakes Superior, Michigan and Erie  and for Lakes Huron and Ontario.
Wet deposition is generally greater for phenanthrene and pyrene than it is for
benzo(k)fluoranthene and benzo(a)pyrene, with the difference increasing from west to east.

The dry deposition of PAHs appears steady in time for same-agency time periods on Lakes
Superior, Michigan and Huron. As with wet deposition,  fluxes tend to increase from west to
east across the basin. Dry deposition fluxes on Lake Erie are up to 5 times greater than those
on Lake Superior.

Little gas exchange flux information is presented  since water concentration data were  available
only on Lake Superior and Lake Erie, with Lake Superior being the only lake with 5 years of
gas exchange flux estimates. The change in direction of gas exchange is different on the two
lakes, with Lake Superior switching from volatilisation to absorption at the same time as the
change in analytical laboratory  for that site while Lake Erie phenanthrene gas exchange reversed
from absorption to volatilisation between 1995 and 1996 (fRiggs =  1.3, fRigge = 0.84). For
pyrene, the direction and magnitude of the gas  exchange  is variable for both lakes.  The air-
water gas exchange of the heavier PAHs is considerably smaller than for phenanthrene and
pyrene.

3.3.4: Metals

Deposition of metals is limited to wet and dry deposition. Five years of flux estimates  are
available only on Lakes Huron and Ontario and more limited information is available for the
early years on the other lakes.  The trend in time  for wet  deposition is decidedly downward with
1996 fluxes on Lake Ontario being 8  times lower for lead than 1992 values.
IADN Results to 1996                                                         Page 12

-------
No consistent trend is evident from year to year for the dry deposition of metals. Deposit!onal
fluxes are higher on Lake Ontario than Lake Huron for Pb and Se and they are similar for As
and Cd.

3.4: Applicability oflADN Method to Estimating Urban Impacts: Case of
Chicago

Over recent years, several studies in the Great Lakes have shown that elevated concentrations
of airborne toxic contaminants in urban areas are associated with higher-than-background
deposition over adjacent waters. (Caffrey et al., 1996; Offenberg and Baker, 1997; Paode et
al., 1998; Franz et al., 1998; Zhang et al, 1999; Offenberg and Baker, 1999) The IADN
Master Stations were originally sited to capture only the regional background signal and
therefore ignore large sources posited to have relatively limited geographic influence.  Since the
characterization of such sources was deemed necessary to the original long-term design of the
network, (Voldner and Eisenreich, 1987) this report assesses whether the IADN approach can
be used to estimate the significance of these concentrated inputs to the lakes.

A full assessment of urban impacts to the Great Lakes would have to consider densely
populated regions  such as those at Chicago, Detroit/Windsor, Cleveland, Buffalo/Niagara Falls,
Hamilton and Toronto.  IADN has only one satellite station in an urban area (HT-Chicago) so
loadings  estimates have been prepared for 1996 data collected at LIT and at Sleeping Bear
Dunes (SBD), LADN's Master Station on Lake Michigan. This comparison is not intended as
an evaluation of the total urban impact to Lake Michigan but rather as a first step in using
LADN's existing infrastructure to gain information about urban impacts on atmospheric
deposition.

To begin, the relative magnitudes of the estimated fluxes at the two sites  are compared as if they
occurred, undiminished, just over adjacent waters. Then, those results are extrapolated to
loadings over the lake by accounting for factors such as area of influence of the urban plume.

Water concentration data were unavailable for Lake Michigan for dieldrin, p,p'-DDT and
metabolites, and the PAHs. In order to determine volatilisation fluxes, data from other lakes
were used as estimates. p,p '-DDT water concentrations were taken from Lake Superior as it
was the only lake with available data.  For dieldrin and the PAHs, the higher Lake Erie data
were used in order to develop conservative estimates of net downward deposition by
maximising the estimated volatilisation flux. The average lakewide water surface temperature
was used for both SBD and Chicago.

Results are presented in Table 2. As one would expect from the elevated concentrations
measured in Chicago, depositional mass fluxes from Chicago air are elevated relative to the
background site. This is true for every compound and every deposition  process except cis-
IADN Results to 1996                                                         Page 13

-------
Table 2: Mass Fluxes (ng/m2/d) of Atmospheric Deposition at Sleeping Bear Dunes Master Station (SBD) and Chicago.
Species


a-HCH
dieldrin
cis-chlordane
trans-chlordane
trans-nonachlor
ODD
DDE
DDT
g-HCH
a-endosulphan
b-endosulphan
endosulphan
sulphate
HCB
PCB18
PCB44
PCB52
PCB101
Sum-PCB
PHEN
PYR
B(b+k)F
B(a)P
I(l,2,3-cd)P
Sum-PAH (UN
ECE)
Wet Deposition

SBD
0.71
1.4
0.18
0.45
0.045
0.084
0.19
0.43
0.31
0.65
0.37
0.33

0.043
0.08
0.046
0.1
0.064
2.3
10
6.8
12
4
6.3
23

Chicago
3.2
4.2
0.11
1.5
0.46
0.38
1.3
3.9
2.9
1.4
1.3
24

0.11
0.24
0.27
0.38
0.44
13
330
400
390
210
230
840

Dry Deposition

SBD
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
5
5.1
9.2
1.9
4.8
16

Chicago
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
180
340
340
130
180
650

Gas Exchange
Gas Absorption
SBD
19
1.9
0.52
0.36
0.11
0.34
0.62
0.61
5.9
17
1.7
-

2.2
0.18
0.21
0.31
0.16
4.4
140
12
4.1
1.5
0.96
6.7

Chicago
38
24
6.6
5.9
1.5
0.93
5.5
8
15
22
1.9
-

5.9
4.2
8.7
8.6
5.4
130
18000
2200
71
19
23
110

Volatilisation
SBD
-4.9
-12
-0.68
-0.51
-0.82
-0.12
-0.75
-0.35
-0.78
-0.033
-0.00095
-

-1.9
-1.3
-1.3
-0.21
-0.59
-20
-480
-57
-1.6
-1.7
-0.00037
-3.2

Chicago
-6
-17
-1
-0.78
-1.4
-0.15
-1.1
-0.44
-0.95
-0.039
-0.0011
-

-3.2
-2.2
-2.1
-0.33
-0.94
-33
-670
-73
-1.9
-2
-0.00044
-3.9

Net Gas Exchange
SBD
14
-10
-0.15
-0.14
-0.7
0.22
-0.13
0.26
5.1
17
1.7
-

0.39
-1.1
-1
0.1
-0.43
-15
-340
-45
2.6
-0.12
0.96
3.4

Chicago
32
6.5
5.6
5.1
0.1
0.78
4.4
7.6
14
22
1.9
-

2.6
2
6.7
8.3
4.4
97
17000
2100
70
17
23
110

Total Mass Flux

SBD
15
-8.6
0.03
0.31
-0.66
0.3
0.06
0.69
5.4
18
2.1
-

0.43
-1
-0.95
0.2
-0.37
-13
-330
-33
24
5.8
12
42

Chicago
35
11
5.7
6.6
0.56
1.2
5.7
12
17
23
3.2
-

2.7
2.2
7
8.7
4.8
110
18000
2800
800
360
430
1600

 * Mass fluxes have been calculated directly from measurements at the overland sites at SBD and Chicago. Volatilisation estimates are based on average
water concentrations in Lake Michigan; they differ due to the use of meteorological data specific to each site.
IADN Results to 1996
Page 14

-------
chlordane in wet deposition though Chicago values for that compound and process
demonstrated atypically large variability.  All substances that show net volatilisation at the
regional background site show net absorption near Chicago. The reversal in gas exchange is
driven by the elevated gas-phase concentrations in Chicago air which overcome the increased
volatilisation there due to higher wind speeds relative to SBD.

Although it seems logical that polluted atmospheres on the shores of the lakes will induce
enhanced deposit!onal fluxes to waters adjacent to overland sources, a further step must be
taken to determine if those enhanced fluxes are significant on a lake-wide basis.  Evaluating the
latter issue requires that the mass fluxes measured at the overland sites be extended to the entire
lake surface beyond the immediate proximity of the shoreline.

In their work on gaseous PCB fluxes from Chicago to Lake Michigan, Zhang et al. (1999)
estimated that the "urban plume" affects as much as the entire southern quarter of the lake while
other studies have used more conservative estimates of 5% or less. (Offenberg  and Baker,
1997; Franz et al., 1998) Measurements have shown that air and precipitation concentrations
are lower over the lake than they are in Chicago,  even when airflow originates in the urban area.
(Offenberg and Baker, 1997; Simcik et al.,  1997; Paode et al., 1998; Franz et  al., 1998) For
the IADN estimates, it was desired to keep the calculation simple by assigning a sub-area within
the lake over which the elevated concentrations measured in Chicago could be assumed to hold
and beyond which they immediately dropped to background levels as measured at SBD.
Naturally, this sub-area would be smaller than the estimated plume effect area to compensate
for the higher input concentration being used in the mass loading calculation. A rectangular sub-
area bounded by 100km of shoreline and 10 km of adjacent water for wet and  dry deposition
and 20 km for gas exchange was selected.  This corresponds to wet and dry particle deposition
areas of 1,000  km2 (1.7% of total lake area) and a gas exchange area of 2,000 km2 (3.5% of
total lake area).

Not only does the lake area need to be divided to assess the effect of Chicago,  but a temporal
modification needs to be made as well. The IADN loading calculation normally uses the Master
Station data as  representative of typical conditions over the entire lake regardless of the
direction of airflow. This approach does not translate directly to examining a particular source.
Instead, a "time of influence" has to be devised so that only those times when the airflow is
moving from the city to the water are considered for the urban influence. By examining the
hourly meteorological observations made at the Chicago site, it was determined that winds were
from the southwest only 32% of the time in 1996. The use of Chicago wind speeds as
estimates over the adjacent water is justified by the fact that wind speeds measured from a
tower anchored on a drinking water intake crib 15-km off shore from Chicago were
comparable to those measured at the permanent air monitoring site on land. (Zhang et al,
1999)
IADN Results to 1996                                                        Page 15

-------
Adjusting the fluxes found in Table 2 in accordance with the conditions stated above results in
the annual mass loadings presented in Table 3. The percent increases in lakewide loading due
to inclusion of the urban input (termed the urban effect) are also included in the table, and
negative values indicate that net background lakewide volatilisation is reduced by including high
inputs from Chicago.

Since lADN's mandate is to determine loadings on a lakewide basis, the network can justifiably
ignore an urban influence if it is small compared to the lakewide background estimates normally
calculated from Master Station data. Results in Table 3 show that wet deposition of pesticides
and banned commercial chemicals over the small lake area near Chicago is not having a large
lakewide effect. The one exception to this observation is for endosulphan sulphate whose
elevated precipitation concentration at Chicago serves to increase the total lakewide loading by
50%. Dry particle deposition for these  substances cannot be assessed because airborne
particle concentrations were not measured in 1996. For gas exchange, the urban effect is more
pronounced than for wet deposition, with Chicago contributing substantially to lakewide
loadings for cis- and ^ram--chlordane,/\p'-DDE andp,p '-DDT, and PCB 52.  Combining the
influence of all deposition processes leads to large overall lakewide urban  effects for cis-
chlordane, DDE and PCB 52 originating in Chicago air.

The urban plume loadings for PAHs are so much larger than background values that current
emissions from Chicago are substantial for all modes of deposition, even with the reduced lake
area and time of influence of the city used in the estimates. For wet and dry particle deposition,
lakewide loadings are increased by 20% to 40% when accounting for urban inputs.  For gas
exchange, results are even more dramatic, with net volatilisation of the more volatile PAHs,
phenanthrene and pyrene, being reduced by more than 50%.  The overall  effect of Chicago-
generated PAHs is to increase total mass loadings of the less volatile PAHs by 20% to 40%, to
cut phenanthrene's net volatilisation in half, and to bring the entire lake close to air-water
equilibrium for pyrene.

The preceding discussion relies on the assumption that these IADN estimates obtained by
measuring urban concentrations and extending them to a small over-lake area are reasonable.
Recent studies on Lake Michigan have examined the effect of the Chicago area's urban plume
on depositional loadings. (Offenberg and Baker,  1997; Franz et al.,  1998; Zhang et al., 1999)
The drawback of these studies has typically been the small number of measurements taken over
short time periods relative to lADN's regular, long-term measurements. These other studies
have also incorporated rough assumptions about the area influenced by the urban plume and
they have operated with spatial coverage that is only marginally better than the two sites used by
IADN.
IADN Results to 1996                                                        Page 16

-------
Table 3: Lakewide Loadings to Lake Michigan: Effect of Adding Loadings from Chicago to Master Station Estimates of
Regional Background (BG) Loadings.
Species


a-HCH
dieldrin
cis-chlordane
trans-chlordane
trans-nonachlor
p,p'-DDD
p,p'-DDE
p,p'-DDT
g-HCH
a-endosulphan
b-endosulphan
endosulphan
sulphate
HCB
PCB18
PCB44
PCB52
PCB101
Sum-PCB
PHEN
PYR
B(b+k)F
B(a)P
I(l,2,3-cd)P
Sum-PAH (UN
ECE)
Wet Deposition
BG
(kg/yr)
15
30
3.9
9.6
0.95
1.8
3.9
9
6.6
14
7.7
7

0.91
1.7
0.97
2.2
1.4
48
220
140
258
84
130
480

Chicago
(kg/yr)
0.41
0.52
0.012
0.16
0.064
0.05
0.16
0.53
0.34
0.16
0.15
3.7

0.014
0.029
0.033
0.047
0.056
1.6
46
57
53
29
32
110

Urban
Effect
2.7%
1.7%
0.3%
1.7%
6.7%
2.8%
4.1%
5.9%
5.2%
1.1%
1.9%
52.9%

1.5%
1.7%
3.4%
2.1%
4.0%
3.3%
20.9%
40.7%
20.5%
34.5%
24.6%
22.9%

Dry Deposition
BG
(kg/yr)
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
100
110
197
41
100
340

Chicago
(kg/yr)
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
23
43
42
15
22
79

Urban
Effect
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
23.0%
39.1%
21.3%
36.6%
22.0%
23.2%

Net Gas Exchange
BG
(kg/yr)
300
-220
-3.3
-3
-15
4.7
-2.7
5.6
110
360
36
-

8.3
-24
-22
2.2
-9.1
-320
-7200
-950
55
-2.4
20
72

Chicago
(kg/yr)
8
1.6
1.3
1.2
0.023
0.2
1
1.8
3.2
5
0.41
-

0.66
0.45
1.4
1.9
0.98
22
3800
500
18
4.6
6.3
29

Urban
Effect
2.7%
-0.7%
-39.4%
-40.0%
-0.2%
4.3%
-37.0%
32.1%
2.9%
1.4%
1.1%
-

8.0%
-1.9%
-6.4%
86.4%
-10.8%
-6.9%
-52.8%
-52.6%
32.7%
-191.7%
31.5%
40.3%

Total Mass Loading
BG
(kg/yr)
320
-190
0.6
6.6
-14
6.5
1.2
15
120
370
44
-

9.2
-22
-21
4.4
-7.7
-270
-6900
-700
510
120
250
890

Chicago
(kg/yr)
8.4
2.1
1.3
1.4
0.087
0.25
1.2
2.3
3.5
5.2
0.56
-

0.67
0.48
1.4
1.9
1
24
3900
600
110
49
60
220

Urban
Effect
2.6%
-1.1%
216.7%
21.2%
-0.6%
3.8%
100.0%
15.3%
2.9%
1.4%
1.3%
-

7.3%
-2.2%
-6.7%
43.2%
-13.0%
-8.9%
-56.5%
-85.7%
21.6%
40.8%
24.0%
24.7%

IADN Results to 1996
Page 17

-------
Results from these studies are compared in Table 4, where it can be seen that IADN estimates
of urban-source deposition are lower than those reported elsewhere. For dry deposition of
PAHs, IADN loadings are 30%-70% those estimated by Franz et al. (1998), who used smaller
fluxes measured over water and a relatively larger lake area assumed to be influenced by the
plume. lADN's gas exchange estimates for PCBs are only 16% of those estimated by Zhang et
al. (1999), who assumed that a large portion of the lake (25%) was affected by the urban
plume. For wet deposition of PCBs, it appears that the events sampled during the short study
reported (Offenberg and Baker, 1997) were not representative of average values. That study
reported a volume-weighted mean concentration of PCBs in Chicago rainwater of 29.3 ng/L
compared to the annual IADN average of 3.46 ng/L for 1996, the only Chicago data year
available in IADN. Using the summer storm data reported by Offenberg and Baker (1997)
may lead to overestimates of the annual average lakewide  effect of wet deposition of PCBs
originating in Chicago.

Table 4: Comparison of Additional Loading to Lake Michigan (kg/yr) due to Air from
Chicago as Calculated by IADN and Other Studies
Substance



PAHs






PCBs










PCBs





Deposition
Type


Dry particle






Gas
exchange









Wet





Urban Loading Estimate (kg/yr)

IADN

Phenanthrene
23
Pyrene
43
UNECE4
79

22










1.6





Comparison
Study
Phenanthrene
75
Pyrene
62
UNECE4
114

140










50





Comparison Source and Comments

Franz etal., 1998
• lake area used is 2.6% vs. 1 .7% in
IADN
• individual PAH loadings estimated
by pro-rating published ZPAH
fluxes by mass weights presented
later in same publication
Zhang etal., 1999
• limited AEOLOS sampling extended
to a full year model set
• estimated fluxes (35 ug/mVyr IADN
at Chicago, 9 ug/m2/yr for AEOLOS
over-water) are consistent with
observed AEOLOS decrease of 69%
in concentration from Chicago to
over-water sites
• lake area used is 25% vs. 3.5% for
IADN
Offenberg and Baker, 1997
• AEOLOS results for small number
of precipitation events; IADN long-
term concentrations much lower
• lake area used is 5% vs. 1 .7% for
IADN
IADN Results to 1996
Page 18

-------
In light of these results and the uncertainty behind loading calculations extrapolated from limited
measurements of concentration or mass flux, it appears that the IADN estimates  produce
results about the urban impact that are low when compared to other reported studies.
Nonetheless, the results are reasonable given that they are comparable in terms of order of
magnitude and reflect the differences that might be expected for lADN's consideration of
Chicago versus the other studies focus on the entire urban area on the southern shores of Lake
Michigan. IADN values should be viewed as lower-bound estimates at this time, providing a
conservative assessment of the effect of one urban  centre's air pollution on the adjacent lake's
loadings of toxic substances.

Even with the conservative nature of the loadings produced by this exercise, lADN's results
show that an urban centre can have a significant impact on atmospheric deposition to an
adjacent lake.  This is true for certain banned pesticides and PCBs as well as all tested PAHs.
The scenario reported here estimated the effect of only one urban centre and, in reality, that
effect would likely be increased on lakes with many cities along their shores.  Given current
resources, further work is needed to determine an effective way for IADN to account for urban
sources in its loading estimates without greatly increasing the number of routine measurements
made in the network.

4.  Conclusions

In examining the loadings of toxic substances to the Great Lakes, three fundamental issues are
considered: the magnitude of the loadings, the manner in which each loading component
contributes to the total, and the variation or trends in the loadings across the basin and over
many years.

For 1995-96, typical fluxes of banned organochlorine pesticides are on the order of 0.1  to 1
ng/m2/d and only regularly exceed 10 ng/m2/d for the gas exchange of a-HCH and dieldrin.
Fluxes of individual PCB congeners are typically between 0.1 and 1 ng/m2/d for each loading
component, similar to many of the banned organochlorine pesticides, although seasonal
volatilisation fluxes of £PCB are sometimes higher  than 50 ng/m2/d.  HCB gas exchange fluxes
are in the 1 to 10 ng/m2/d range and fluxes of current-use pesticides y-HCH and the
endosulphans are on the order of 1 to 5 ng/m2/d.

Inputs to the lakes of pesticides and PCBs are dominated by gas exchange and wet deposition.
Dry particle concentration measurements ceased after 1995 due to low reported levels, but
loading estimates presented here showed that dry particle deposition of dieldrin, p,p '-ODD and
PCBs may be significant when compared to the other deposition processes.  Dieldrin and
£PCB volatilisation rates are greater than gas absorption so the lakes are acting as sources of
these substances to the atmosphere.
IADN Results to 1996                                                       Page 19

-------
Inputs of PAHs and metals are larger than those of pesticides and PCBs as expected by their
continued emission to the environment. PAH fluxes range from 1 to 1000 ng/m2/d depending
on species and loading process, and fluxes of trace metals reach values as high as 2000
ng/m2/d. Since metals are non-volatile, they are subject only to wet and dry deposition with the
wet fluxes typically being the larger of the two.  Available data indicate that PAH volatilisation
from the lakes is small compared to the other flux terms, and gas absorption is substantial for
phenanthrene and pyrene while the higher molecular weight PAHs are  delivered mostly by wet
and dry particle deposition.

As part of its quality assurance program, IADN has begun a new set of intercomparison studies
between its participating agencies.  Until results are available, comparisons of depositional
behaviour between lakes and over time have been limited to those situations where data were
generated by the same operating agency.

Wet deposition fluxes are generally decreasing in time for the banned  OC pesticides while dry
deposition and gas exchange fluxes have been variable. The temporal  trend in gas exchange is
generally toward air-water equilibrium. For PCBs, wet deposition is steady in time while dry
deposition was increasing before measurements ceased in 1995.  Gas  exchange of PCBs is in
the direction of volatilisation on all lakes but generally approaching air-water equilibrium.

Wet and dry particle deposition of PAHs show no consistent trends in time.  Levels increase
from west to east across the basin.  Little net gas exchange flux information is presented for
PAHs since water concentration data are sparse. Deposition of metals is limited to wet and dry
deposition with wet deposition declining in time and dry deposition being variable.

Loading estimates produced by IADN have traditionally been based on the assumption that
Master Stations located at remote sites on the lakes are characterizing the regional background
deposition. However, strong inputs with more limited geographic influence are also likely to
exist near cities and industrial areas. Using the case of Chicago on  Lake Michigan as an
example, data from 1996 were used to assess the impact of air pollution from an urban centre
on deposition to the lakes.  The IADN calculation was modified to include a small lake sub-area
influenced by the high concentrations measured at Chicago and, though results should be viewed
as lower-bound estimates when compared to other studies, deposition from Chicago sources is
still estimated to be substantial for certain pesticides and PCBs and for all PAHs. Further work
is needed to correctly characterize the lake area affected by urban air pollution and deduce
effective ways of incorporating significant urban centres in IADN loading estimates.
IADN Results to 1996                                                       Page 20

-------
Acknowledgements

Special thanks go to the many people whose work supports the production of IADN loadings
results.

•   Site operators on Lake Superior - Don Keith and Pat Keith (Eagle Harbor), Ron Perala
    (Brule River), Kurt Nead (Wolf Ridge), Carl Neilson (Sibley) and Larry Barnett (Turkey
    Lakes)
•   Site operators on Lake Michigan - Tom van Zoeren and Alice Van Zoeren (Sleeping Bear
    Dunes), Shelley Thomas (UT-Chicago)
•   Site operators on Lake Huron - Mark Witty, Nancy Witty, Bonnie Bailey, Floyd Orford
    and Colleen Blackburn (Burnt Island), Terry Romphf (Grand Bend for Ecosystem Health
    Division of Environment Canada's Ontario Region), Scott Kennedy and Mike Parker
    (Grand Bend for the Ontario Ministry of the Environment)
•   Site operators on Lake Erie - Lynn Romano (Sturgeon Point), Gary Mouland (Pelee
    Island), Scott Kennedy (Port Stanley), Tony Bucsis (Rock Point)
•   Site operator on Lake Ontario - Darrel Smith (Point Petre)

•   Nick Alexandrou, Ky Su, Richard Park and Kulbir Banwait at the Organics Analysis
    Laboratory of Environment Canada's Meteorological Service of Canada
•   Helena Dryfhout-Clark, Chris Green, Brian Martin, Frank MacLean and Jim Woods at the
    Centre for Atmospheric Research Experiments of Environment Canada's Meteorological
    Service of Canada
•   Bruce Harrison and MaryLou Archer at the Ecosystem Health Division of Environment
    Canada's Ontario Region
•   the Organic Analysis Laboratory at Environment Canada's National Laboratory for
    Environmental Testing
•   Matt O'Dell and Karen Arnold at Indiana University, and
•   Sylvia Cussion, Paul Yang, Dan Toner, Mike Sage, Louis Au and Renee Luniewski at the
    Ontario Ministry of the Environment

•   Bill Sukloff of Environment Canada's Meteorological Service of Canada for RDMQ™
    support
•   Laura Hanson-Smith of AQTS and Greg Skelton of G.B. Skelton Technical Services for
    data entry and quality control

•   Marvin Palmer at the US EPA's Great Lakes National Program Office and Serge L'ltalien
    at Environment Canada's Ontario Region Ecosystem Health Division for generous provision
    of lake water concentration data used in this report
IADN Results to 1996                                                     Page 21

-------
IADN Results to 1996                                                 Page 22

-------
References

Bamford, H.A., D.L. Poster and I.E. Baker. (1999) Temperature dependence of the HLC of
thirteen PAHs between 4°C and 3l°C. Environ. Toxicol. Chem. 18(9): 1905-1912.

Brunner, S., E. Hornung, H. Santl, E. Wolff, O.G. Piringer, J. Altschuh and R. Bruggemann.
(1990) Henry's law constants for poly chlorinated biphenyls: experimental determination and
structure-property relationships. Environ. Sci. Technol. 24(11): 1751-1754.

Caffrey, P.P., A.E. Suarez, J.M. Ondov and M. Han. (1996) Importance of fine particle
loading to fluxes of trace elements dry deposition onto Lake Michigan. J. Aerosol Sci.
27(Suppl.  1): S32-S32.

Cortes, D.R., I. Basu, C.W. Sweet, K.A. Brice, R.M. Hoff and RA. Kites. (1998) Temporal
trends in gas-phase concentrations of chlorinated pesticides measured at the shores of the Great
Lakes. Environ. Sci. Technol. 32(13): 1920-1927.

Cortes, D.R., R.M. Hoff, K.A. Brice and R.A. Kites. (1999) Evidence of current pesticide use
from temporal and Clausius-Clapeyron plots: a case  study from the Integrated Atmospheric
Deposition Network. Environ. Sci.  Technol. 33(13):2145-2150.

Cortes, D.R., I. Basu, C.W. Sweet and R.A. Kites.  (2000) Temporal trends in and influence of
wind on PAH concentrations measured near the Great Lakes. Environ. Sci. Technol.
34(3):356-360.

Gotham, W.E., Jr. and T.F. Bidleman. (1991) Estimating the atmospheric deposition of
organochlorine contaminants to the Arctic. Chemosphere 22(1-2): 165-188.

Eisenreich, S.J. and W.MJ. Strachan. (1992) Estimating atmospheric deposition of toxic
substances to the Great Lakes: an update. Report of the Workshop at Burlington, ON,
Canada, January 31-February 2, 1992.

Franz, T.P., S.J. Eisenreich and T.M. Holsen.  (1998) Dry deposition of particulate
polychlorinated biphenyls and  polycyclic aromatic hydrocarbons to Lake Michigan. Environ.
Sci. Technol. 32(23):3681-3688.

Hillery, B.R., I. Basu, C.W. Sweet and R.A. Kites. (1997) Temporal and spatial trends in a
long-term study of gas-phase PCB concentrations near the Great Lakes. Environ. Sci.
Technol. 31(6):1811-1816.
IADN Results to 1996                                                     Page 23

-------
Hfflery, B.R., M.F. Simcik, I. Basu, R.M. Hoff, W.MJ. Strachan, D. Burniston, C.H. Chan,
K.A. Brice, C.W. Sweet, and R.A. Kites. (1998) Atmospheric deposition of toxic pollutants to
the Great Lakes as measured by the Integrated Atmospheric Deposition Network. Environ.
Sci. Technol. 32(15):2216-2221.

Hoff, R.M. (1994) An error budget for the determination of the atmospheric mass loading of
toxic chemicals in the Great Lakes. J. Great Lakes Res. 20(l):229-239.

Hoff, R.M., W.MJ.  Strachan, C.W. Sweet, C.H. Chan, M. Shackleton, T.F. Bidleman, K.A.
Brice, D.A. Burniston, S. Cussion, D.F. Gatz, K. Harlin, and W.H Schroeder. (1996)
Atmospheric deposition of toxic chemicals to the Great Lakes: a review of data through 1994.
Atmos. Env. 30(20):3505-3527.

Hoff, R.M., K.A. Brice and C. J. Halsall.  (1998) Nonlinearity in the slopes of Clausius-
Clapeyron plots for SVOCs. Environ. Sci.  Technol. 32(12): 1793-1798.

Holsen, T.M., K.E. Noll, S. Liu and W. Lee. (1991) Dry deposition of polychlorinated
biphenyls in urban areas. Environ. Sci. Technol. 25(6): 1075-1081.

Hornbuckle, K.C., J.D. Jeremiason, C.W. Sweet and SJ. Eisenreich. (1994) Seasonal
variations in air-water exchange of polychlorinated biphenyls in Lake Superior. Environ. Sci.
Technol. 28(8):1491-1501.

Iwata, H, S. Tanabe, K.Ueda and R. Tatsukawa. (1995) Persistent organochlorine residues in
air, water, sediments  and soils in the Lake Baikal region, Russia. Environ. Sci. Technol.
29(3):792-801.

Jantunen, L.M.M. and T.F. Bidleman. (2000) Temperature dependent Henry's law constant for
technical toxaphene.  Chemosphere-Global Change Science 2:225-231.

Junge, C.E. (1977) Basic considerations about trace constituents in the atmosphere as related
to the fate of global pollutants. In Fate of Pollutants in the Air and Water Environments,
I.H. Suffet, ed. Part I, pp 7-26. John Wiley, New York.

Mackay, D. (1991) Multimedia Environmental Models: The Fugacity Approach. Lewis
Publishers, Chelsea, Michigan.

Mackay, D., W.Y. Shiu and K.C. Ma. (1992) Illustrated Handbook of Physical-chemical
Properties and Environmental Fate for Organic Chemicals. Volume I: Monoaromatic
Hydrocarbons, Chlorobenzenes, and PCBs. Lewis Publishers, Boca Raton, Florida.
IADN Results to 1996                                                     Page 24

-------
Murphy, T.J., M.D. Mullin and J.A. Meyer. (1987) Equilibration of polychlorinated biphenyls
and toxaphene with air and water. Environ. Sci. Technol. 21(2): 155-162

NOAA. (1999) Great Lakes Environmental Research Laboratory Data Library.
http://www.glerl.noaa.gov/data/data.html

Offenberg, J.H. and I.E. Baker. (1997) Polychlorinated biphenyls in Chicago precipitation:
enhanced wet deposition to near-shore Lake Michigan. Environ. Sci. Technol. 31(5): 1534-
1538.

Offenberg, J.H. and I.E. Baker. (1999) Aerosol size distributions of polycyclic aromatic
hydrocarbons in urban and over-water atmospheres. Environ. Sci.  Technol. 33(19):3324-
3331.

Paode, R.D.,  S.C. Sofuoglu, J. Sivadechathep, K.E. Noll, T.M. Holsen and GJ. Keeler.
(1998) Dry deposition fluxes and mass size distributions of Pb, Cu, and Zn measured in
southern Lake Michigan during AEOLOS. Environ. Sci. Technol. 32(11): 1629-1635.

Pankow, J.F. (1987) Review and comparative analysis of the theories on partitioning between
the gas and aerosol particulate phases in the atmosphere. Atmos. Env. 21(11):2275-2283.

Reid, R.C., J.M. Prausnitz and B.E. Poling. (1987) The Properties of Gases and Liquids.
McGraw-Hill, Toronto.

Rice, C.P., S.M. Chernyak, C. J. Hapeman and S. Bilboulian. (1997) Air-water distribution of
the endosulfan isomers. J. Environ. Qual. 26(4): 1101-1106.

Schwarzenbach, R.P., P.M. Gschwend and D.  M. Lnboden. (1993) Environmental Organic
Chemistry. Wiley Interscience, New York.

Simcik, M.F., H. Zhang, SJ. Eisenreich and T.P. Franz. (1997) Urban contamination of the
Chicago/coastal Lake Michigan atmosphere by PCBs and PAHs during AEOLOS. Environ.
Sci. Technol.  31(7):2141-2147.

Simcik, M.F., I. Basu, C.W.  Sweet and R.A. Kites. (1999) Temperature dependence and
temporal trends of polychlorinated biphenyl congeners in the Great Lakes atmosphere.
Environ. Sci.  Technol. 33(12): 1991-1995.

Simcik, M.F., R.M. Hoff, W.MJ. Strachan, C.W.  Sweet, I. Basu and RA. Kites. (2000)
Temporal trends of semivolatile organic contaminants in Great Lakes precipitation. Environ.
Sci. Technol.  34(3):361-367.

IADN Results to 1996                                                     Page 25

-------
Strachan, W.M.J. and S J. Eisenreich. (1988) Mass balancing of toxic chemicals in the Great
Lakes: the role of atmospheric deposition.  Appendix I from the Workshop on the Estimation of
Atmospheric Loadings of Toxic Chemicals to the Great Lakes Basin, Scarborough, ON,
Canada, October 29-31, 1986.

Sukloff, W.B., S. Allan and K. Ward. (1995) RDMQ User Manual. Environment Canada,
Toronto, ON.

Suntio, L.R., W.Y. Shiu, D. Mackay, J.N. Sieber and D. Glotfelty. (1987) A critical review of
Henry's law constants. Rev. Envir. Contain. Toxicol. 103:1-59.

Tateya, S., S. Tanabe and R. Tatsukawa. (1988) PCBs on the globe: possible trend of future
levels in the open ocean. In Toxic Contamination in Large Lakes, Volume HI: Sources, Fate
and Controls of Toxic Contaminants. N.W. Schmidtke, ed. Lewis Publishers, Chelsea,
Michigan.

Taylor, J.K. (1990) Statistical techniques for data analysis. Lewis Publishers, Boca Raton,
Florida.

Ten Hulscher, T.E.M., L.E. Van Der Velde and W. A. Bruggeman. (1992) Temperature
dependence of FtLCs for selected chlorobenzenes, PCBs and PAHs. Environ. Toxicol.
Chem. 11(11):1595-1603.

United Nations Economic Commission for Europe. (1998) 1998 Aarhus Protocol on Persistent
Organic Pollutants (POPs). Protocol to the 1979 Convention on Long-range Transboundary
Air Pollution. http://www.unece.org/env/lrtap/protocol/98pop_a/annex3 .htm

Voldner, E.G. and SJ. Eisenreich. (1987) A plan for assessing atmospheric deposition to the
Great Lakes: scientific background. Report of the Atmospheric Deposition Monitoring Task
Force to The Surveillance Work Group, Water Quality Board, International Joint Commission.

Zhang, H., SJ. Eisenreich, T.R. Franz, I.E. Baker and J.H. Offenberg. (1999) Evidence for
increased gaseous PCB fluxes to Lake Michigan from Chicago. Environ. Sci. Technol.
33(13):2129-2137.
IADN Results to 1996                                                      Page 26

-------
Appendix A: Derivation of Simplified Mass Transfer
Coefficients
IADN Results to 1996                                       Page 27

-------
IADN Results to 1996                                                 Page 28

-------
Starting with the formulations presented in Hornbuckle et al. (1994), the water-side mass
transfer coefficient for CO2 can be expressed as
                                                                                    (1)

where kW:Co2 = water-side mass transfer coefficient of CC>2 (cm/h)
       UIQ = wind speed measured at 10 m above ground level (m/s).

kw, co2 is related to the mass transfer coefficient for another substance, x, by

               rt  \ -0.5             /• 0   N -0.5                                       fy\
               Sex  }             .,.(  Sc*  }                                          (2)
             - -     = 0.4W'64  - -
             iccoi/                \SccoiJ

where kw>x = water-side mass transfer coefficient of substance x (cm/h)
       Sc =  Schmidt number (-).

Schmidt number is the dimensionless ratio of kinematic viscosity to diffusivity. With windspeeds
measured directly, one need only determine the ratio of Schmidt numbers for CO2 and the
substance of concern to arrive at an estimate of the water-side mass transfer coefficient as in
Equation (2).

Previous work has sought to determine Schmidt numbers directly (e.g. Hornbuckle et al. ,
1994) , but an examination of the desired ratio shows that this is an unnecessary operation since
the viscosity term relates only to the solvent and is unaffected by the solute under consideration.
As a result, viscosities in numerator and denominator of Equation (3) cancel out and make the
ratio of Schmidt numbers equivalent to the ratio of diffusivities.

 Sc*     (n/D)*    (Deo 2}                                                         (3)
 Scco2    (nl D)co2  V  D:

where  n = kinematic viscosity, [L2/T], e.g. (cm2/s)
       D = diffusivity, [L2/T], e.g. (cm2/s)

The Wilke-Chang method (see Reid et al., 1987) can be used to determine diffusivities as

   ~~        nV °-6
           fM' m

where  D = diffusion coefficient of solute x in solvent S (cm2/s)
       O = association factor of solvent S (-)
       Ms = molecular weight of solvent S (g/mol)

IADN Results to 1996                                                         Page 29

-------
       T = temperature (K)
       ]i = dynamic viscosity of solvent S (cP)
       Vm = molar volume of solute at its normal boiling temperature (cmVmol).

Since the solvent properties and temperature are the same for the solvent S whether diffusion of
substance x or the reference substance CC>2 is being considered, several terms cancel out when
calculating the ratio of diffusivities needed to solve Equation (3). That ratio reduces to the ratio
of molar volumes of the solutes raised to the power 0.6. With the molar volume of CC>2 being
29.6 cffiVmol (Reid et a/., 1987),

 Sc*     Dco^   fF»,*Y'6                                                            (5)
 Scco2     D*    \29.6;

and then substituting back into (2) leads to the water-side mass transfer coefficient (cm/h)
                                 ,,
                       = 0.45mo     -         = 0.45mo
                                           0.6
   ,      ,                  .                          .
            \Scco                  \\.29.6J                   \29.6

Similar simplifications can be made for ka, the air-side mass transfer coefficient.
                  .3                                                                 (7)

where ka = air-side mass transfer coefficient of water (cm/s) and

            (  Da,,  V-61                                                             (8)


where DajX = diffiisivity of compound x in air, [L2/T], e.g. (cm2/s)
       Da,H2o = diffiisivity of water in air, [L2/T], e.g. (cm2/s)

The diffusivities here are typically calculated by the Fuller et al. method (see Reid et a/., 1987)
for diffusion of solute x in solvent S as

   	0.001437'75                                                           (9)
where P = pressure (bar)
       MxS = inverse weighted average mass of solute x and solvent S
               = 2(Mx-1+Ms-1)-1(g/mol)

IADN Results to 1996                                                       Page 3 0

-------
           d) = sum of atomic diffusion volumes for compound constituents
When taking the ratio necessary to the air-side mass transfer coefficient calculation, many of the
terms cancel out so that
Da,x

                                 \LVd)air   I
                                                               (10)
and, substituting values from Reid et al. (1987),
     air = 19.7 and fcVjmo =13.1
M air = 29 g/mol andMff2o =18 g/mol,
leads to
  Da,*
l/29)°5(l3.11/3+19.71/3)2   _      (l/M + 1/29)
                           — 85.3
                                                                     0.5
                l/29)05((ZFdy/3+19.71/3)2
                                                                19.7173)'
                                                                                 (11)
which requires knowledge only of the molecular mass and sum of molecular diffusion volumes
for the compound of interest in order to estimate its diffusivity in air relative to that of water.
The air-side mass transfer coefficient, expressed in cm/s, then reduces to
 ka,x = ka.
         H2O
             Da,x

            Da,Hit
                     0.61
     = 15(0.2wio
                                                    1/29)C
                                          ((ZF,V/3+19.71/3)2
                                                               0.61
                                                                                 (12)
IADN Results to 1996
                                                                          Page 31

-------
IADN Results to 1996                                                  Page 3 2

-------
Appendix B: Selected Data Used in Calculating IADN Loadings
IADN Results to 1996                                     Page 3 3

-------
IADN Results to 1996                                                  Page 3 4

-------
Table Bl: Summary of Meteorological Data at IADN Master Stations, 1992-1996
Lake
Superior
Michigan
Huron
Erie
Ontario
Parameter
Annual Precipitation (mm)
Average Water Surface Temperature (K)
Average Wind Speed (m/s)
Annual Precipitation (mm)
Average Water Surface Temperature (K)
Average Wind Speed (m/s)
Annual Precipitation (mm)
Average Water Surface Temperature (K)
Average Wind Speed (m/s)
Annual Precipitation (mm)
Average Water Surface Temperature (K)
Average Wind Speed (m/s)
Annual Precipitation (mm)
Average Water Surface Temperature (K)
Average Wind Speed (m/s)
1992
665
278.4
3.02
866
280.0
2.88
1110
280.8
2.85
1073
283.6
2.85
1021
281.8
4.78
1993
990
278.4
3.09
1214
280.0
2.94
1110
280.8
3.50
1389
283.6
2.77
1021
281.8
4.98
1994
665
278.4
2.99
866
280.0
2.90
896
280.8
3.38
1073
283.6
2.63
837
281.1
4.66
1995
904
279.2
3.20
1182
282.5
3.04
931
281.8
3.69
933
284.2
2.99
816
282.9
4.71
1996
1148
277.7
2.84
1200
280.8
2.89
908
280.4
3.36
823
283.4
2.78
1000
281.7
4.51
IADN Results to 1996
Page 35

-------
Table B2: Lake Water Concentrations for IADN Loadings Estimates of 1995-96
Substance
cc-HCH
dieldrin
CK-chlordane
trans -chlordane
p,p'-DDD
p,p'-DDE
p,p'-DDT
y-HCH
cc-endosulphan
P-endosulphan
HCB
PCB18
PCB44
PCB52
PCB101
S-PCB
phenanthrene
pyrene
B(b+k)F
B(a)P
I(l,2,3-cd)P
^PAH(UNECE)
Lake Superior
Cone.
fna/LI
1.8988
0.1184
0.0070
0.0042
0.0079
0.0060
0.0100
0.3277
0.0138
0.0038
0.0071
0.0025
0.0038
0.0048
0.0027
0.0705
0.5481
0.1298
0.0863
0.0355
0.0467
0.1684
n
67
64
64
37
37
37
37
67
64
64
66
3
3
3
3
3
27
27
27
27
27
-
COV
(%)
17
14
43
136
21
57
176
30
104
187
172
13
33
30
42
24
52
110
40
70
100
-
Source
1,2,3,4,5
1,2,3,4,5
2,3,4,5
2,3
2,3
2,3
2,3
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1
1
1
1
1
4,5
4,5
4,5
4,5
4,5
4,5
Lake Michigan
Cone.
fna/LI
0.2342
-
0.0059
0.0037
_
_
-
0.0686
-
_
0.0074
0.0058
0.0063
0.0011
0.0034
0.0969
_
-
-
_
-
-
n
3
-
3
3
_
_
-
3
-
_
3
3
3
3
3
3
_
-
-
_
-
-
COV
(%1
9
-
22
18
_
_
-
6
-
_
16
25
13
147
13
3
_
-
-
_
-
-
Source
1
.
1
1
_

.
;
.
_
;
;
;
;
;
;

.



-
Lake Huron
Cone.
fna/LI
0.5519
-
0.0033
0.0023
_
_
-
0.1158
-
_
0.0095
0.0039
0.0030
0.0019
0.0017
0.0500
_
-
-
_
-
-
n
3
-
3
3
_
_
-
3
-
_
3
3
3
3
3
3
_
-
-
_
-
-
COV
<%)
20
-
18
19
_
_
-
22
-
_
22
15
8
12
5
9
_
-
-
_
-
-
Source
1
.
1
1
_

.
;
.
_
;
;
;
;
;
;

.



-
Lake Erie
Cone.
fna/LI
0.5397
0.1531
0.0046
0.0033
_
_
-
0.1747
0.1300
0.0700
0.0107
0.0120
0.0101
0.0093
0.0052
0.1662
4.6821
1.2482
0.6433
0.2660
0.4555
1.3648
n
30
26
3
3
_
_
-
30
21
8
18
3
3
3
3
3
27
25
18
21
13
-
COV
(%1
33
32
25
21
_
_
-
94
92
86
277
41
31
69
82
64
95
72
161
105
231
-
Source
1,6
1,6
1
1



1,6
1,6
1,6
1,6
1
1
1
1
1
6
6
6
6
6
6
Lake Ontario
Cone.
fna/LI
0.4660
0.2416
0.0054
0.0049
_
_
-
0.1658
0.0260
0.0400
0.0140
0.0072
0.0076
0.0057
0.0032
0.0979
1.4180
0.5584
0.3031
0.1758
-
-
n
27
24
3
3
_
_
-
27
24
24
26
3
3
3
3
3
24
24
24
24
-
-
COV
<%)
25
27
4
8
_
_
-
41
65
100
81
9
4
24
19
11
64
69
84
30
-
-
Source
1,7
1,7
1
1



1,7
1,7
1,7
1,7
1
1
1
1
1
7
j
•j
7

-
Data Sources:
7 US R/VLake Guardian cruise of 1996 analysed by US EPA GLNPO; 2 CCGVLimnos cruise of spring 1996 analysed by EC NWRI; 3 CCGVLimnos
cruise of summer 1996 analysed by EC NWRI; 4 CCGVLimnos cruise of spring 1996 analysed by EC EHD; 5 CCGVLimnos cruise of summer 1996
analysed by EC EHD; 6 CCGVLimnos cruise of 1995 analysed by EC EHD; 7 CCGV Limnos cruise of 1998 analysed by EC EHD.

N.B. Multiple source measurements have been pooled with adjustment for sample sizes and precisions. (Taylor, 1990)
IADN Results to 1996
Page 36

-------
Appendix C: IADN Mass Loadings for 1995 and 1996
IADN Results to 1996                                    Page 3 7

-------
IADN Results to 1996                                                  Page 3 8

-------
Table Cl: Atmospheric Fluxes to Lake Superior for 1995
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Superior 1995
Wet Deposition

Mean
ng/m2/d
1.5
0.12
0.6
1.6
0.94
0.34
0.76
0.53
2.9
1.1
0.21
0.015
0.031
0.066
0.079
0.1
0.16
0.061
0.31
0.16
0.016
0.017
0.011
0.099
0.036
0.05
0.025
0.016
0.027
0.03
0.2
0.07
0.042
0.31
0.15
0.027
0.055
0.052
0.093
0.057
cov
%
120
210
100
100
140
54
18
55
54
68
160
100
54
100
270
150
120
180
170
120
32
240
100
-
390
150
130
140
150
150
130
74
59
96
150
26
230
120
71
150
Dry Deposition

Mean
ng/m2/d
0.54
0.015
0.0085
0.064
0.16
0.3
0.77
0.66
0.33
0.51
0.083
0.056
0.021
0.025
0.046
0.061
0.04
0.026
0.024
0.038
0.046
0.017
0.02
0.016
0.022
0.0092
0.032
0.016
0.01
0.017
0.063
0.022
0.029
0.013
0.032
0.02
0.036
0.24
0.022
0.079
COV
%
100
110
100
140
200
140
100
110
100
110
100
100
120
130
120
160
100
110
110
130
150
120
110
110
130
100
140
120
100
140
100
100
100
120
120
100
140
150
100
210
Gas Exchange
Gas Absorption
Mean
ng/m2/d
29
26
30
32
29
0.33
1.5
4.4
1.3
1.9
0.74
0.51
0.83
0.39
0.62
2.5
0.3
0.54
0.22
0.9
0.13
0.1
0.21
0.064
0.13
0.057
0.13
0.25
0.14
0.14
0.16
0.21
0.4
0.33
0.27
0.32
0.67
0.45
0.17
0.4
COV
%
59
64
77
79
72
190
140
91
100
150
130
81
88
83
110
160
96
100
65
170
190
100
92
81
140
93
120
110
140
130
69
100
92
93
110
120
140
100
110
140
Volatilisation
Mean
ng/m2/d
-30
-23
-46
-49
-37
-8.6
-6.6
-11
-13
-9.8
-0.81
-0.62
-0.89
-1.1
-0.86
-0.61
-0.47
-0.6
-0.8
-0.62
-0.41
-0.31
-0.32
-0.46
-0.38
-0.082
-0.063
-0.14
-0.15
-0.11
-0.77
-0.59
-0.82
-1.1
-0.81
-0.26
-0.2
-0.41
-0.45
-0.33
COV
%
53
53
53
53
53
52
52
52
52
52
66
66
66
66
66
140
140
140
140
140
140
140
140
140
140
54
54
54
54
54
76
76
76
76
76
180
180
180
180
180
Net Gas Exchange
Mean
ng/m2/d
-0.28
2.7
-16
-17
-7.5
-8.3
-5.1
-6.6
-12
-7.9
-0.077
-0.11
-0.054
-0.74
-0.24
1.9
-0.17
-0.063
-0.58
0.27
-0.27
-0.21
-0.12
-0.4
-0.25
-0.025
0.069
0.11
-0.0067
0.037
-0.61
-0.38
-0.42
-0.73
-0.54
0.063
0.47
0.042
-0.28
0.074
COV
%
3800
410
130
140
290
52
67
75
53
70
1200
390
1300
90
390
210
410
1500
200
3300
220
210
400
160
250
200
210
230
2800
310
88
110
140
100
130
920
210
2000
290
820
IADN Results to 1996
Page 39

-------
(b) Current-use Pesticides
Species Season
g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Superior 1995
Wet Deposition
Mean
ng/m2/d
0.31
0.044
0.58
0.34
0.32
3.4
0.028
0.6
1
1.3
0.41
2.3
1.4
0.072
1
1.7
0.65
0.64
0.11
0.79
cov
%
110
35
160
130
180
140
63
150
150
270
78
87
140
110
110
11
60
58
-
84
Dry Deposition
Mean
ng/m2/d
0.093
0.057
0.031
0.066
0.062
0.53
0.82
1.4
0.56
0.83
0.009
0.075
0.57
0.096
0.19
-
-
-
-
-
COV
%
100
110
130
130
120
150
100
110
120
120
100
150
140
170
200
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2 2
8.6
7.8
4
5.6
0.22
1.6
31
3.3
9.1
0.058
0.16
1.8
0.26
0.57
-
-
-
-
-
COV
%
64
75
75
80
97
120
130
110
120
220
100
120
96
200
190
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-2.9
-2.3
-4.2
-4.5
-3.5
-0.0035
-0.003
-0.0035
-0.004
-0.0035
-3.3E-05
-2.5E-05
-5.9E-05
-6.1E-05
-4.5E-05
-
-
-
-
-
COV
%
58
58
58
58
58
120
120
120
120
120
190
190
190
190
190
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
-0.7
6.3
3.6
-0.51
2.2
0.21
1.6
31
3.3
9.1
0.058
0.16
1.8
0.26
0.57
-
-
-
-
-
COV
%
180
92
140
560
250
120
130
110
120
220
100
120
97
200
190
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Superior 1995
Wet Deposition

Mean
ng/m2/d
0.044
0.042
0.021
0.09
0.049
0.045
0.04
0.039
0.14
0.066
0.053
0.055
0.039
0.15
0.075
0.016
0.068
0.037
0.23
0.087
0.081
0.083
0.047
0.2
0.1
2.2
1.7
1
4.4
2.3
COV
%
42
56
40
41
68
12
90
47
27
140
35
110
55
45
130
110
60
130
120
320
14
160
27
19
140
54
150
36
44
140
Dry Deposition

Mean
ng/m2/d
0.024
0.014
0.011
0.0067
0.014
0.061
0.066
0.088
0.034
0.062
0.036
0.084
0.058
0.055
0.058
0.072
0.11
0.089
0.05
0.08
0.054
0.052
0.049
0.032
0.047
1.6
9
1.8
0.93
1.6
COV
%
110
110
100
110
120
100
100
110
100
110
110
110
100
130
110
110
100
100
100
110
100
100
100
100
100
100
100
100
100
110
Gas Exchange
Gas Absorption
Mean
ng/m2/d
3.7
3.6
1.9
1.8
2.7
0.16
0.2
0.17
0.14
0.17
0.21
0.79
0.64
0.53
0.54
0.36
0.82
0.77
0.59
0.63
0.19
0.76
0.6
0.36
0.48
6.6
16
12
8.9
11
COV
%
59
63
60
70
64
76
74
73
94
85
79
100
98
100
110
90
83
96
94
110
88
97
89
94
110
88
82
88
94
97
Volatilisation
Mean
ng/m2/d
-2.2
-1.7
-1.6
-2.3
-1.9
-0.7
-0.54
-0.52
-0.76
-0.63
-0.89
-0.69
-0.71
-1
-0.82
-1
-0.8
-0.86
-1.2
-0.97
-0.52
-0.4
-0.46
-0.64
-0.51
-24
-19
-16
-24
-21
COV
%
180
180
180
180
180
52
52
52
52
52
60
60
60
60
60
58
58
58
58
58
65
65
65
65
65
55
55
55
55
55
Net Gas Exchange
Mean
ng/m2/d
1.5
1.9
0.28
-0.49
0.8
-0.54
-0.35
-0.35
-0.62
-0.46
-0.68
0.1
-0.066
-0.47
-0.28
-0.66
0.025
-0.09
-0.6
-0.33
-0.33
0.35
0.14
-0.28
-0.031
-18
-2.9
-3.9
-15
-9.9
COV
%
260
180
1000
840
490
55
62
59
55
60
69
710
900
130
430
79
2400
760
110
350
92
190
360
150
790
65
390
250
78
67
IADN Results to 1996
Page 40

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Superior 1995
Wet Deposition

Mean
ng/m2/d
6.7
3.6
3.5
53
17
5.4
2.3
1.7
51
15
9.4
5.6
2.8
67
21
2.1
1.8
0.78
18
5.6
5.3
2.4
0.97
31
9.9
17
9.7
4.6
120
37
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cov
%
95
43
36
65
190
100
61
35
67
230
54
45
33
-
150
86
79
54
71
170
110
14
61
-
190
48
31
28
-
100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
3.3
1.3
1.7
1.5
2
2.4
1.2
2.2
1.4
1.8
8.1
1.7
4.6
6.8
5.3
0.38
0.56
0.81
0.47
0.55
1.4
0.73
1.6
1.3
1.3
10
3
7
8.7
7.2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
100
100
100
120
110
110
130
110
140
120
110
72
81
140
120
100
100
100
100
110
150
100
110
150
130
110
100
100
140
120
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
87
95
140
670
250
3.9
3.3
98
260
91
4
4.2
3.5
15
6.7
4.2
1.6
1.3
3.8
2.7
0.97
0.98
0.8
0.98
0.93
9.2
6.7
5.6
20
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
91
110
70
230
280
130
95
240
250
350
61
64
58
150
160
150
66
58
160
150
58
66
58
59
61
76
44
40
120
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-56
-44
-61
-75
-59
-5.4
-4.3
-6.6
-7.5
-6
-0.14
-0.11
-0.24
-0.25
-0.18
-0.15
-0.11
-0.26
-0.27
-0.2
-2.5E-05
-1.9E-05
-4.4E-05
-4.5E-05
-3.3E-05
-0.29
-0.22
-0.5
-0.52
-0.38
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
72
72
72
72
72
120
120
120
120
120
64
64
64
64
64
86
86
86
86
86
110
110
110
110
110
54
54
54
54
54
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
31
50
82
590
190
-1.5
-1
91
250
85
3.9
4.1
3.3
15
6.5
4.1
1.5
1
3.5
2.5
0.97
0.98
0.8
0.98
0.93
8.9
6.5
5.1
19
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
240
190
110
250
360
510
530
260
250
370
62
65
60
160
170
160
69
65
170
160
58
66
58
59
61
78
44
42
120
120
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 41

-------
Table C2: Atmospheric Fluxes to Lake Superior for 1996
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Superior 1996
Wet Deposition

Mean
ng/m2/d
3.2
2.3
2.1
1.8
2.4
0.71
0.58
0.63
0.74
0.66
0.082
0.0099
0.062
0.19
0.087
0.072
0.036
0.37
0.87
0.34
0.087
0.018
0.037
0.037
0.045
0.026
0.0059
0.011
0.065
0.027
0.15
0.036
0.04
0.052
0.069
0.1
0.087
0.21
0.032
0.11
cov
%
63
69
68
91
78
170
57
42
39
69
330
81
110
90
190
410
110
190
75
180
430
57
81
48
180
320
35
68
120
240
46
90
21
22
82
280
150
130
120
130
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
20
21
25
21
22
0.21
0.29
3.2
2 2
1.5
0.19
0.25
0.61
0.6
0.41
0.31
0.15
0.28
0.36
0.27
0.05
0.067
0.16
0.13
0.1
0.19
0.031
0.26
0.43
0.23
0.089
0.13
0.27
0.29
0.19
0.069
0.2
1.5
0.35
0.52
COV
%
76
62
61
67
68
170
110
120
92
130
130
92
94
76
90
160
100
97
69
96
140
110
120
84
96
150
58
120
170
180
140
100
75
72
110
62
180
110
80
150
Volatilisation
Mean
ng/m2/d
-27
-20
-30
-43
-30
-7.9
-5.6
-7.4
-11
-8.1
-0.75
-0.53
-0.62
-0.98
-0.72
-0.57
-0.4
-0.43
-0.69
-0.52
-0.38
-0.26
-0.24
-0.39
-0.32
-0.074
-0.053
-0.088
-0.13
-0.086
-0.71
-0.5
-0.58
-0.91
-0.68
-0.24
-0.17
-0.26
-0.39
-0.26
COV
%
53
53
53
53
53
52
52
52
52
52
66
66
66
66
66
140
140
140
140
140
140
140
140
140
140
54
54
54
54
54
76
76
76
76
76
180
180
180
180
180
Net Gas Exchange
Mean
ng/m2/d
-7.1
1.8
-4.8
-22
-8
-7.6
-5.3
-4.3
-9.3
-6.6
-0.56
-0.28
-0.01
-0.38
-0.31
-0.26
-0.24
-0.16
-0.33
-0.25
-0.33
-0.2
-0.083
-0.27
-0.22
0.12
-0.022
0.17
0.3
0.14
-0.62
-0.37
-0.31
-0.62
-0.48
-0.17
0.031
1.2
-0.038
0.26
COV
%
180
490
220
75
240
52
52
99
56
58
86
120
5400
150
180
350
230
410
290
270
160
190
430
200
190
230
84
180
240
250
84
97
130
100
92
250
1400
140
1900
480
IADN Results to 1996
Page 42

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Superior 1996
Wet Deposition

Mean
ng/ni2/d
1
1.6
2.1
0.3
1.3
0.41
0.65
2.9
0.44
1.1
0.077
0.69
5
0.84
1.6
0.12
0.34
1.9
0.067
0.6
COV
%
65
180
68
130
140
250
93
72
93
87
250
100
110
19
120
300
81
81
100
100
Dry Deposition

Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
1.5
3.6
8.7
3.4
4.3
0.42
0.49
16
5.2
5.5
0.034
0.046
1.1
0.4
0.39
-
-
-
-
-
COV
%
100
71
89
64
98
170
97
140
150
190
70
92
150
170
170
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-2.7
_9
-2.9
-4.1
-2.9
-0.0034
-0.0028
-0.0029
-0.0037
-0.0032
-0.00003
-2.1E-05
-3.7E-05
-5.3E-05
-3.5E-05
-
-
-
-
-
COV
%
58
58
58
58
58
120
120
120
120
120
190
190
190
190
190
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
-1.1
1.6
5.9
-0.62
1.4
0.41
0.48
16
5.2
5.5
0.034
0.046
1.1
0.4
0.39
-
-
-
-
-
COV
%
150
130
120
300
500
180
97
140
150
190
70
92
150
170
170
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Superior 1996
Wet Deposition

Mean
ng/m2/d
0.046
0.026
0.044
0.045
0.04
0.1
0.024
0.11
0.22
0.11
0.087
0.016
0.048
0.099
0.063
0.17
0.032
0.051
0.085
0.086
0.17
0.032
0.059
0.089
0.087
4.4
0.68
2.3
4.7
3
COV
%
260
63
35
40
57
340
35
130
63
130
410
63
93
44
150
510
76
86
89
200
270
45
82
35
110
240
46
110
31
110
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
2.8
2.6
1.9
2.4
2.4
0.096
0.072
0.096
3.8
1
0.17
0.12
0.11
9.2
2.4
0.2
0.21
0.21
7.3
2
0.15
0.18
0.21
4.1
1.2
4.3
6
4.3
6.1
5.2
COV
%
69
61
61
59
63
78
72
68
79
97
120
100
85
93
110
81
78
76
76
90
90
86
83
80
100
82
75
110
72
94
Volatilisation
Mean
ng/m2/d
-2.1
-1.4
-1.2
_9
-1.7
-0.67
-0.46
-0.4
-0.65
-0.54
-0.84
-0.59
-0.53
-0.86
-0.7
-0.96
-0.68
-0.64
-1
-0.83
-0.49
-0.34
-0.34
-0.55
-0.43
-23
-16
-12
-20
-18
COV
%
180
180
180
180
180
52
52
52
52
52
60
60
60
60
60
58
58
58
58
58
65
65
65
65
65
55
55
55
55
55
Net Gas Exchange
Mean
ng/m2/d
0.66
1.1
0.75
0.45
0.74
-0.57
-0.39
-0.3
3.2
0.47
-0.67
-0.47
-0.42
8.3
1.7
-0.77
-0.46
-0.42
6.2
1.1
-0.34
-0.16
-0.13
3.5
0.72
-19
-9.8
-7.9
-14
-13
COV
%
580
240
290
770
280
53
53
55
89
61
70
69
68
100
73
65
72
74
83
79
85
130
160
89
130
60
72
80
64
70
IADN Results to 1996
Page 43

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Superior 1996
Wet Deposition

Mean
ng/m2/d
14
2.7
3.2
6.2
6.4
7.2
2.2
2.9
3.5
3.9
13
3.5
4.4
7.9
7.3
1.7
1.1
1.5
2.2
1.6
5.6
1.7
2.5
3.7
3.4
21
6.4
8.3
14
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cov
%
260
52
44
120
180
210
59
88
120
140
160
57
44
69
140
180
68
53
82
87
220
67
66
93
160
120
39
33
49
88
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
7.2
2.8
1.2
2.8
3.5
3.8
3.3
1.1
3.9
3
5.5
4.5
2.1
7.8
5
0.73
1.2
0.57
2.1
1.2
2.3
2.6
1.1
4.6
2.6
8.6
8.3
3.8
15
8.8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
140
130
100
130
140
120
130
110
140
140
93
93
73
100
100
110
130
110
130
140
110
140
100
130
140
100
110
100
110
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
150
55
140
150
120
6.6
5
18
19
12
4.1
3.5
2.9
3.2
3.4
1.5
1.3
1
1.4
1.3
0.93
0.78
0.64
0.88
0.81
6.5
5.5
4.6
5.5
5.5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
90
80
89
80
100
120
99
92
72
110
58
58
62
65
61
58
58
65
58
60
58
58
70
58
61
40
40
43
42
41
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-52
-38
-44
-66
-50
-5
-3.8
-4.7
-6.7
-5.1
-0.12
-0.089
-0.15
-0.22
-0.15
-0.13
-0.096
-0.16
-0.24
-0.16
-2.2E-05
-1.6E-05
-2.7E-05
-0.00004
-2.6E-05
-0.26
-0.19
-0.31
-0.46
-0.3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
72
72
72
72
72
120
120
120
120
120
64
64
64
64
64
86
86
86
86
86
110
110
110
110
110
54
54
54
54
54
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
94
17
96
82
72
1.5
1.2
13
12
7.1
4
3.4
2.7
3
3.3
1.4
1.2
0.88
1.2
1.1
0.93
0.78
0.64
0.88
0.81
6.3
5.3
4.2
5
5.2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
130
240
120
130
160
580
500
120
110
180
59
59
63
67
62
60
60
71
63
63
58
58
70
58
61
41
40
44
44
42
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 44

-------
Table C3: Atmospheric Fluxes to Lake Michigan for 1995
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
.ake Michigan 1995
Wet Deposition

Mean
ng/m2/d
2
1.6
0.33
6.6
2.6
1.2
3
1.9
2.8
2.2
0.38
0.42
0.12
0.55
0.37
0.99
0.27
0.29
0.12
0.42
0.034
0.042
0.025
0.068
0.042
0.086
0.023
0.12
0.072
0.074
0.18
0.76
0.11
0.36
0.35
0.19
0.77
0.16
0.72
0.46
cov
%
130
270
250
52
210
21
21
77
62
110
27
290
110
27
300
140
50
89
73
120
12
30
100
60
71
45
110
280
40
220
28
75
59
49
140
110
120
180
78
150
Dry Deposition

Mean
ng/m2/d
0.29
0.068
0.46
0.042
0.21
1.3
1.2
0.65
0.71
0.97
0.25
0.069
0.091
0.058
0.12
0.15
0.053
0.012
0.034
0.061
0.07
0.029
0.05
0.022
0.046
0.026
0.043
0.21
0.074
0.089
0.079
0.075
0.067
0.039
0.065
0.029
0.019
0.028
0.051
0.032
COV
%
150
190
200
140
210
110
110
130
110
110
120
100
140
160
130
100
110
110
160
140
100
120
120
120
120
140
140
130
120
160
110
110
150
100
120
100
100
100
130
130
Gas Exchange
Gas Absorption
Mean
ng/m2/d
28
28
13
20
22
0.3
11
3
1.7
4
0.54
1.4
0.47
0.54
0.74
0.31
0.96
0.3
0.34
0.48
0.078
0.35
0.087
0.099
0.15
0.072
0.096
0.087
0.093
0.087
0.3
1.3
0.67
0.71
0.74
0.56
0.74
0.54
0.28
0.53
COV
%
61
65
88
70
69
130
180
140
120
220
78
130
110
90
130
130
140
110
99
130
100
140
120
83
58
120
93
81
110
160
86
120
74
87
120
100
100
100
85
120
Volatilisation
Mean
ng/m2/d
-3.6
-3.2
-8.5
-7.6
-5.7
-
-
-
-
-
-0.65
-0.58
-0.71
-1
-0.74
-0.51
-0.46
-0.48
-0.75
-0.55
-0.9
-0.8
-0.62
-1.1
-0.85
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
51
51
51
51
51
-
-
-
-
-
55
55
55
55
55
53
53
53
53
53
68
68
68
68
68
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
24
25
4.7
13
17
-
-
-
-
-
-0.11
0.83
-0.24
-0.49
-0.0051
-0.21
0.51
-0.18
-0.41
-0.072
-0.82
-0.45
-0.53
-0.99
-0.7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
64
68
210
93
81
-
-
-
-
-
330
200
220
110
3600
190
260
190
92
1600
72
140
76
72
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 45

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual

Wet Deposition

Mean
ng/m2/d
0.43
1.2
0.81
2.5
1.2
0.84
0.59
0.7
1
0.8
0.35
1
0.9
1.4
0.91
4.6
0.69
0.76
0.72
1.7
cov
%
120
120
310
20
130
18
87
230
53
130
66
96
250
30
120
59
81
140
65
97
Dry Deposition

Mean
ng/m2/d
0.062
0.2
0.11
0.045
0.1
1.1
1.6
1.2
0.83
1.2
0.046
1.5
2.9
0.26
1.2
-
-
-
-
-
COV
%
110
120
140
130
130
100
110
130
150
120
140
160
190
130
230
-
-
-
-
-
jake Michigan 1995
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2 2
19
15
3.9
9.9
0.27
23
74
3.5
25
0.11
1.2
4.3
0.21
1.5
-
-
-
-
-
COV
%
65
140
88
72
160
96
190
130
120
240
91
170
130
120
230
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-0.6
-0.54
-1.3
-1.2
-0.9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
50
50
50
50
50
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
1.6
18
14
2.7
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
76
150
93
90
170
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
.ake Michigan 1995
Wet Deposition

Mean
ng/m2/d
0.064
0.072
0.049
0.076
0.065
0.13
0.11
0.16
0.088
0.12
0.12
0.084
0.066
0.076
0.086
0.22
0.12
0.11
0.12
0.14
0.14
0.098
0.066
0.088
0.098
4.7
4.1
3.6
2.5
3.7
COV
%
27
22
35
44
72
19
46
45
92
100
23
68
76
49
130
13
55
47
64
180
35
42
70
65
120
18
27
44
80
87
Dry Deposition

Mean
ng/m2/d
0.0097
0.018
0.03
0.009
0.017
0.082
0.041
0.049
0.042
0.053
0.088
0.018
0.03
0.065
0.05
0.13
0.08
0.11
0.061
0.093
0.2
0.038
0.04
0.025
0.075
3.8
1.8
1.2
0.95
1.9
COV
%
140
110
150
120
140
100
100
110
100
110
150
130
100
140
150
130
100
120
100
120
170
100
110
100
210
140
110
100
100
140
Gas Exchange
Gas Absorption
Mean
ng/m2/d
3.4
3.7
0.69
1.2
2.3
0.16
0.33
0.072
0.2
0.19
0.16
0.64
0.26
0.42
0.37
0.27
0.56
0.16
0.43
0.36
0.15
0.32
0.079
0.2
0.19
3.2
8.6
1.8
5
4.7
COV
%
59
65
76
65
72
68
110
69
96
100
100
84
150
150
140
66
100
67
98
98
71
110
63
110
100
87
110
80
120
110
Volatilisation
Mean
ng/m2/d
-2.1
-1.9
-1.3
-2.3
-1.9
-1.5
-1.3
-0.93
-1.7
-1.3
-1.4
-1.2
-0.96
-1.7
-1.3
-0.22
-0.2
-0.17
-0.28
-0.22
-0.63
-0.56
-0.5
-0.83
-0.63
-22
-19
-15
-26
-20
COV
%
53
53
53
53
53
56
56
56
56
56
52
52
52
52
52
150
150
150
150
150
52
52
52
52
52
50
50
50
50
50
Net Gas Exchange
Mean
ng/m2/d
1.3
1.9
-0.58
-1.1
0.39
-1.3
-0.97
-0.86
-1.5
-1.2
-1.2
-0.58
-0.7
-1.2
-0.93
0.047
0.37
-0.0047
0.16
0.14
-0.48
-0.23
-0.42
-0.63
-0.44
-18
-11
-13
-21
-16
COV
%
99
97
92
78
1500
58
70
57
59
59
53
94
76
71
70
740
170
5400
350
360
55
160
53
62
64
52
96
51
57
57
IADN Results to 1996
Page 46

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
.ake Michigan 1995
Wet Deposition

Mean
ng/m2/d
22
14
7.3
25
17
20
17
4.3
24
16
32
24
7.8
27
22
9.1
7
2.4
12
7.7
16
9.8
3.1
19
12
58
41
13
58
42
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cov
%
83
66
37
74
190
98
32
99
57
150
70
36
62
45
120
76
36
84
35
140
83
55
110
26
110
48
27
48
26
73
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
5.6
3
3.1
3.8
3.9
6.2
4.5
3.1
4.2
4.5
15
7.7
7.3
7.7
9.4
1.9
2.4
1.2
1.6
1.8
6.7
2.4
1.8
3.6
3.6
24
12
10
13
15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
110
110
110
130
110
100
120
100
120
110
84
83
75
110
95
100
130
100
120
120
100
110
110
130
120
100
100
100
110
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
250
130
70
110
140
13
9.5
7.1
11
10
3.7
3.3
3.6
3.6
3.5
1.4
1.3
1.2
1.3
1.3
0.85
0.81
0.83
0.87
0.84
5.9
5.4
5.6
5.8
5.7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
70
130
81
80
93
120
190
95
77
120
59
61
66
61
69
59
60
72
61
66
59
60
72
59
64
40
41
46
41
47
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 47

-------
Table C4: Atmospheric Fluxes to Lake Michigan for 1996
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
.ake Michigan 1996
Wet Deposition

Mean
ng/m2/d
1.7
0.0082
0.82
0.37
0.71
3.1
0.41
1.6
0.48
1.4
0.3
0.0082
0.096
0.33
0.18
0.18
0.49
0.95
0.19
0.45
0.016
0.03
0.11
0.025
0.045
0.098
0.0055
0.1
0.13
0.084
0.15
0.13
0.16
0.31
0.19
0.089
0.19
0.65
0.78
0.43
cov
%
120
150
180
120
260
87
62
38
180
120
97
120
150
110
190
190
140
88
140
130
31
-
130
58
130
100
110
110
50
110
100
79
58
32
79
56
190
330
88
220
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
23
22
18
13
19
0.48
0.75
3.7
2.8
1.9
0.31
0.5
0.65
0.63
0.52
0.26
0.31
0.4
0.49
0.36
0.074
0.14
0.13
0.12
0.11
0.46
0.035
0.22
0.65
0.34
0.17
0.73
0.7
0.9
0.62
0.11
0.17
1.5
0.71
0.61
COV
%
66
61
72
68
72
110
160
89
120
150
87
88
87
100
120
180
87
89
110
130
96
74
99
110
120
120
58
110
130
180
98
120
82
130
130
81
110
88
130
160
Volatilisation
Mean
ng/m2/d
-3.3
-2.9
-6.3
-6.9
-4.9
-
-
-
-
-
-0.64
-0.56
-0.62
-0.9
-0.68
-0.51
-0.45
-0.43
-0.64
-0.51
-0.96
-0.82
-0.57
-0.92
-0.82
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
51
51
51
51
51
-
-
-
-
-
55
55
55
55
55
53
53
53
53
53
68
68
68
68
68
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
20
19
11
5.8
14
-
-
-
-
-
-0.33
-0.055
0.031
-0.27
-0.15
-0.25
-0.14
-0.034
-0.15
-0.14
-0.88
-0.69
-0.44
-0.81
-0.7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
71
64
95
110
86
-
-
-
-
-
94
710
1500
220
2200
190
170
880
350
840
71
76
82
74
410
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 48

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual

Wet Deposition

Mean
ng/m2/d
0.69
0.03
0.5
0.036
0.31
0.35
0.085
1.9
0.28
0.65
0.33
0.011
1.1
0.033
0.37
0.24
0.016
0.89
0.18
0.33
cov
%
71
190
310
110
290
110
150
190
280
230
77
230
390
90
460
70
-
280
270
300
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
jake Michigan 1996
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2 2
5.8
12
3.3
5.9
0.84
1.3
54
12
17
0.068
0.26
2.7
3.9
1.7
-
-
-
-
-
COV
%
72
88
100
85
140
120
170
110
200
230
100
140
160
260
300
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-0.56
-0.5
-0.98
-1.1
-0.78
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
50
50
50
50
50
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
1.7
5.3
11
2.2
5.1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
86
93
110
110
160
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
.ake Michigan 1996
Wet Deposition

Mean
ng/m2/d
0.058
0.014
0.057
0.044
0.043
0.14
0.016
0.087
0.073
0.08
0.075
0.014
0.031
0.065
0.046
0.19
0.033
0.092
0.1
0.1
0.12
0.014
0.048
0.076
0.064
3
0.48
3
2.6
2.3
COV
%
69
61
55
35
48
100
73
46
15
65
160
120
72
46
75
140
96
54
24
55
81
81
83
58
93
110
80
54
37
44
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
2.8
3.4
1.4
1.5
2 2
0.15
0.17
0.21
0.17
0.18
0.11
0.13
0.2
0.4
0.21
0.24
0.31
0.39
0.29
0.31
0.11
0.17
0.2
0.16
0.16
3
4.2
5.7
4.6
4.4
COV
%
71
61
75
62
74
89
79
120
100
150
80
100
110
190
190
80
74
90
110
120
79
80
84
110
130
83
83
100
110
140
Volatilisation
Mean
ng/m2/d
-2.3
-2
-1.2
_9
-1.9
-1.6
-1.4
-0.87
-1.4
-1.3
-1.5
-1.3
-0.89
-1.4
-1.3
-0.23
-0.2
-0.15
-0.24
-0.21
-0.65
-0.56
-0.45
-0.71
-0.59
-23
-20
-14
-22
-20
COV
%
53
53
53
53
53
56
56
56
56
56
52
52
52
52
52
150
150
150
150
150
52
52
52
52
52
50
50
50
50
50
Net Gas Exchange
Mean
ng/m2/d
0.5
1.4
0.16
-0.48
0.39
-1.4
-1.2
-0.66
-1.3
-1.1
-1.4
-1.1
-0.68
-1
-1
0.011
0.1
0.24
0.058
0.1
-0.54
-0.39
-0.25
-0.55
-0.43
-20
-16
-8
-17
-15
COV
%
300
100
490
140
340
58
58
69
59
66
52
53
60
92
80
3400
330
160
770
280
54
60
78
61
89
51
53
80
57
75
IADN Results to 1996
Page 49

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
jake Michigan 1996
Wet Deposition

Mean
ng/m2/d
36
1.7
3.4
1.1
10
23
1.4
2
0.85
6.8
30
4.4
11
3.7
12
10
1.5
3.4
0.82
4
15
2.5
5.8
1.7
6.3
55
8.4
20
6.2
23
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cov
%
55
140
230
92
340
65
110
150
130
340
47
-
31
180
140
84
73
63
220
160
38
-
66
250
160
33
-
29
130
89
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
10
5
1.7
2.9
5
9.7
6
1.5
3.3
5.1
19
8.9
2.6
6.5
9.2
2.7
2.5
0.65
1.9
1.9
7.7
6.4
1.4
3.5
4.8
29
18
4.5
12
16
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
110
120
110
110
130
110
130
110
130
140
95
95
73
85
110
130
120
100
120
130
120
140
100
110
130
110
110
100
100
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
240
80
160
94
140
14
5.7
22
8.7
12
6.9
3.9
2.6
3.1
4.1
2
1.7
1
1.5
1.5
0.94
1.3
0.65
0.98
0.96
9.8
6.9
4.3
5.6
6.7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
87
76
160
90
150
100
91
120
100
150
77
58
61
70
68
66
74
61
71
68
58
100
61
69
82
56
42
41
45
45
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 50

-------
Table C5: Atmospheric Fluxes to Lake Huron for 1995
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Huron 1995
Wet Deposition

Mean
ng/m2/d
7.8
11
6.9
15
10
0.17
1.8
0.62
0.93
0.88
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.15
0.17
0.13
0.25
0.18
0
0.76
0.58
0.21
0.44
0
0.21
1.2
0.29
0.47
cov
%
160
140
120
88
140
220
88
87
160
200
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
310
400
60
550
400
0
140
220
410
190
0
380
240
550
1200
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
13
13
12
12
13
0.87
0.8
1.9
1.9
1.4
0.28
0.2
0.28
0.43
0.3
0.24
0.16
0.16
0.26
0.21
0.098
0.093
0.084
0.14
0.1
0.024
0.037
0.082
0.044
0.047
0
0.41
0.26
0.45
0.4
0
0.098
0.34
0.23
0.2
COV
%
58
63
67
62
67
78
77
95
130
130
-
64
94
120
120
72
67
90
120
110
80
66
99
120
130
-
100
-
64
87
0
61
71
81
78
0
68
76
100
110
Volatilisation
Mean
ng/m2/d
-9.9
-7.9
-21
-21
-15
-
-
-
-
-
-0.49
-0.35
-0.49
-0.85
-0.55
-0.45
-0.32
-0.38
-0.72
-0.47
-0.69
-0.45
-0.39
-0.9
-0.61
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
54
54
54
54
54
-
-
-
-
-
53
53
53
53
53
54
54
54
54
54
52
52
52
52
52
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
3.1
4.7
-8.6
-8.4
-2.3
-
-
-
-
-
-0.21
-0.15
-0.21
-0.42
-0.25
-0.2
-0.16
-0.22
-0.46
-0.26
-0.59
-0.36
-0.31
-0.77
-0.51
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
290
160
180
180
1100
-
-
-
-
-
-
170
190
180
330
190
150
130
130
180
93
94
97
91
100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 51

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Huron 1995
Wet Deposition

Mean
ng/ni2/d
0.93
9.8
3.1
5.8
4.9
0.27
5.1
3
0.61
2.2
1.3
4.8
4.6
1.7
3.1
-
-
-
-
-
COV
%
110
68
82
130
100
180
170
65
260
170
100
98
74
120
97
-
-
-
-
-
Dry Deposition

Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2
3
4.9
2.6
3.1
1.3
1.5
12
2.8
4.3
-
0.14
1.6
0.32
-
-
-
-
-
-
COV
%
58
81
82
72
98
59
84
110
92
170
-
100
130
120
-
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-1.2
-0.95
-2.3
-2.3
-1.7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
55
55
55
55
55
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
0.83
2
2.6
0.38
1.5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
140
110
140
540
170
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Huron 1995
Wet Deposition

Mean
ng/m2/d
0.13
0.17
0.3
0.05
0.16
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
160
99
210
130
210
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
3.6
2.3
0.33
1.8
2
0
0.9
0.26
0.71
0.69
0.18
0.083
0.061
0.15
0.12
0
0.19
0.11
0.24
0.18
0
0.073
0.052
0.1
0.08
6.2
4.8
1.8
4.4
4.3
COV
%
59
61
64
61
66
0
59
61
75
67
63
63
71
93
83
0
63
68
97
81
0
61
76
110
97
65
63
63
77
68
Volatilisation
Mean
ng/m2/d
-4.4
-2.9
-2.2
-5.1
-3.6
-1.6
-1
-0.83
-1.9
-1.3
-1
-0.67
-0.6
-1.3
-0.89
-0.56
-0.39
-0.37
-0.76
-0.52
-0.45
-0.31
-0.32
-0.65
-0.43
-17
-12
-10
-22
-15
COV
%
55
55
55
55
55
52
52
52
52
52
51
51
51
51
51
51
51
51
51
51
50
50
50
50
50
51
51
51
51
51
Net Gas Exchange
Mean
ng/m2/d
-0.72
-0.52
-1.9
-3.3
-1.6
-0.66
-0.13
-0.57
-1.2
-0.63
-0.82
-0.59
-0.53
-1.1
-0.77
-0.37
-0.2
-0.26
-0.52
-0.34
-0.36
-0.24
-0.26
-0.55
-0.35
-11
-6.9
-8.3
-17
-11
COV
%
530
420
95
120
130
200
540
100
120
140
89
78
77
78
79
120
130
99
110
110
89
81
77
78
82
120
110
84
86
91
IADN Results to 1996
Page 52

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Huron 1995
Wet Deposition

Mean
ng/m2/d
14
12
3.6
15
11
11
10
2.5
16
10
21
23
18
51
28
13
16
11
23
16
27
33
23
44
32
60
73
53
120
76
840
730
290
910
690
140
110
51
97
100
130
130
58
190
130
90
50
41
78
65
cov
%
79
140
53
360
380
88
110
79
190
400
220
290
43
300
240
310
380
60
520
380
310
380
60
580
390
170
210
34
270
200
56
68
57
71
180
85
61
54
17
210
58
64
80
34
190
75
44
43
14
180
Dry Deposition

Mean
ng/m2/d
3.3
4.6
1.6
9
2.9
2.6
4
1.9
2.8
2.8
-
-
-
-
-
-
-
-
-
-
3.8
3.1
3.3
3.6
3.5
-
-
-
-
-
590
430
160
210
350
18
44
21
47
33
-
-
5.5
16
5.3
6.2
16
3.5
5.4
7.7
COV
%
120
130
110
110
130
140
140
120
140
140
-
-
-
-
-
-
-
-
-
-
130
130
130
130
130
-
-
-
-
-
110
160
160
190
150
170
150
180
200
190
-
-
170
250
360
160
170
260
200
210
Gas Exchange
Gas Absorption
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 53

-------
Table C6: Atmospheric Fluxes to Lake Huron for 1996
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Huron 1996
Wet Deposition

Mean
ng/m2/d
13
12
2.7
2.5
7.4
1.2
1
3.2
2.1
1.9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.29
0.23
0.22
0.49
0.31
0
0.14
0.13
0.35
0.36
0
0.45
0.26
0.18
0.82
cov
%
94
190
63
100
240
410
210
140
92
160
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
280
530
2500
260
960
0
170
2600
92
1900
0
210
2500
36
2500
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
9.2
12
7.9
8.9
9.5
0.73
0.87
1.5
1.9
1.2
0.14
0.26
0.25
0.36
0.25
0.14
0.18
0.14
0.32
0.2
0.057
0.12
0.076
0.12
0.094
0.036
0.039
0.034
0.047
0.039
0
0.33
0.17
0.33
0.29
0
0.15
0.16
0.21
0.14
COV
%
68
62
62
61
66
110
100
84
74
100
96
84
79
83
97
110
84
97
74
110
88
88
81
75
100
70
74
89
77
84
0
89
100
84
96
0
100
97
81
100
Volatilisation
Mean
ng/m2/d
-9.5
-7.1
-15
-18
-12
-
-
-
-
-
-0.48
-0.32
-0.42
-0.59
-0.45
-0.44
-0.29
-0.33
-0.49
-0.39
-0.71
-0.42
-0.35
-0.56
-0.51
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
54
54
54
54
54
-
-
-
-
-
53
53
53
53
53
54
54
54
54
54
52
52
52
52
52
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
-0.25
4.8
-7.6
-8.6
-2.9
-
-
-
-
-
-0.34
-0.059
-0.17
-0.23
-0.2
-0.3
-0.11
-0.19
-0.17
-0.19
-0.65
-0.31
-0.28
-0.43
-0.42
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
3500
140
150
150
360
-
-
-
-
-
120
460
190
200
310
130
220
140
230
200
86
100
96
96
100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 54

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Huron 1996
Wet Deposition

Mean
ng/ni2/d
1.9
8.8
3.8
2.5
4.3
0.92
0.92
2.6
0.99
1.4
0.77
2.4
4.6
2.2
2.5
-
-
-
-
-
COV
%
94
110
140
63
160
94
82
220
68
230
130
140
110
60
140
-
-
-
-
-
Dry Deposition

Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
1.3
3.2
4.4
2
2.7
0.99
1.2
5.2
3.2
2.7
0.025
0.13
0.53
0.24
0.23
-
-
-
-
-
COV
%
66
93
86
66
110
68
96
96
130
140
-
96
89
130
120
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-1.1
-0.85
-1.7
-1.9
-1.4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
55
55
55
55
55
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
0.18
2.4
2.7
0.098
1.3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
600
120
130
1600
190
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Huron 1996
Wet Deposition

Mean
ng/m2/d
0.23
0.0077
0.0072
0.0049
0.062
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
180
350
2800
51
490
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
3.3
2.5
0.49
0.94
1.8
0
0.51
0.14
0.31
0.46
0.11
0.093
0.046
0.1
0.088
0
0.22
0.11
0.24
0.19
0
0.1
0.057
0.081
0.079
4.1
2.7
1.1
2.7
2.6
COV
%
61
61
67
64
65
0
77
62
97
77
64
74
64
90
86
0
77
67
76
82
0
78
63
70
80
61
71
65
90
81
Volatilisation
Mean
ng/m2/d
-4.6
-2.7
-2
-3.2
-3.1
-1.6
-0.99
-0.75
-1.2
-1.1
-1
-0.64
-0.53
-0.83
-0.76
-0.58
-0.37
-0.33
-0.5
-0.44
-0.45
-0.29
-0.28
-0.43
-0.36
-18
-11
-9
-14
-13
COV
%
55
55
55
55
55
52
52
52
52
52
51
51
51
51
51
51
51
51
51
51
50
50
50
50
50
51
51
51
51
51
Net Gas Exchange
Mean
ng/m2/d
-1.3
-0.23
-1.5
-2.2
-1.3
-0.77
-0.47
-0.6
-0.88
-0.68
-0.92
-0.54
-0.49
-0.73
-0.67
-0.39
-0.15
-0.22
-0.26
-0.25
-0.38
-0.19
-0.22
-0.34
-0.28
-14
-8.4
-7.8
-11
-10
COV
%
310
910
110
110
140
170
150
92
100
110
81
80
76
79
78
110
180
110
140
130
84
95
79
79
84
96
90
80
86
86
IADN Results to 1996
Page 55

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Huron 1996
Wet Deposition

Mean
ng/m2/d
31
13
14
14
18
36
13
6.3
8.4
16
-
-
-
-
-
-
-
-
-
-
44
35
38
28
36
-
-
-
-
-
1400
1400
320
250
840
240
79
100
66
120
280
79
100
120
140
100
160
65
39
91
cov
%
190
160
520
77
290
190
160
1100
90
290
-
-
-
-
-
-
-
-
-
-
320
390
2600
37
1500
-
-
-
-
-
160
1100
210
82
1600
97
74
200
46
140
210
2700
150
14
90
120
1600
150
27
1900
Dry Deposition

Mean
ng/m2/d
9
2.9
2.8
6.2
5.2
7.4
4.1
4.9
7.4
5.9
15
8.7
8.1
16
12
6.1
3.3
3.8
5.7
4.7
13
5.4
5.7
13
9.3
34
17
18
35
26
650
660
230
790
580
160
280
16
78
130
14
80
1.9
100
49
14
14
2.8
26
14
COV
%
110
120
130
130
130
110
110
120
130
120
83
85
93
110
99
120
120
120
140
130
100
110
130
140
130
100
100
110
110
110
170
150
130
130
150
210
240
130
140
240
210
260
310
160
230
240
210
180
170
190
Gas Exchange
Gas Absorption
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 56

-------
Table C7: Atmospheric Fluxes to Lake Erie for 1995
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Erie 1995
Wet Deposition

Mean
ng/m2/d
9.5
1
0.46
1.3
3.1
2
0.81
0.87
1.6
1.3
2.6
0.34
0.51
0.93
1.1
5.6
0.64
1
0.38
1.9
0.11
0.035
0.074
0.068
0.072
0.43
0.065
0.097
0.12
0.18
2.1
0.31
0.28
0.59
0.83
1.5
0.2
0.52
4
1.5
cov
%
190
93
110
220
280
41
22
23
86
180
11
130
68
93
110
95
140
82
100
470
180
130
60
19
110
31
140
89
170
1100
74
130
56
120
140
19
31
83
310
280
Dry Deposition

Mean
ng/m2/d
0.23
0.031
0.1
0.025
0.096
1.4
2.1
0.58
0.72
1.2
1
0.15
0.023
0.22
0.35
0.25
0.14
0.049
0.072
0.13
0.19
0.078
1.3
0.18
0.43
0.18
0.073
0.21
0.065
0.13
0.21
0.12
0.12
0.064
0.13
0.023
0.45
0.11
0.046
0.16
COV
%
160
150
180
130
190
120
130
140
100
130
160
110
150
140
200
130
100
170
110
130
120
100
180
170
250
110
120
120
130
130
120
110
110
100
120
140
190
160
140
240
Gas Exchange
Gas Absorption
Mean
ng/m2/d
28
28
22
34
28
1.1
3.9
3.3
4
3.1
1.7
1.4
0.83
1.2
1.3
0.94
1.1
0.47
0.85
0.84
0.21
0.3
0.11
0.25
0.22
0.42
0.19
0.19
0.16
0.24
1.2
1.9
1.2
1.9
1.6
0.68
1
1.3
1.6
1.1
COV
%
68
62
66
65
67
83
110
110
100
140
78
84
84
83
100
81
93
80
90
100
96
96
85
90
130
68
100
91
120
180
120
91
92
79
120
160
99
72
83
100
Volatilisation
Mean
ng/m2/d
-8.6
-8.3
-22
-21
-15
-11
-10
-15
-22
-15
-0.54
-0.48
-0.52
-0.84
-0.6
-0.5
-0.43
-0.4
-0.69
-0.5
-0.47
-0.38
-0.26
-0.5
-0.4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
60
60
60
60
60
59
59
59
59
59
56
56
56
56
56
54
54
54
54
54
52
52
52
52
52
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
19
20
-0.13
13
13
-10
-6.5
-12
-18
-12
1.2
0.96
0.31
0.37
0.7
0.45
0.69
0.069
0.16
0.34
-0.26
-0.074
-0.16
-0.25
-0.19
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
77
78
14000
170
130
96
140
110
110
120
96
120
220
280
170
160
140
580
490
230
150
470
130
150
160
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 57

-------
(b) Current-use Pesticides
Species Season
g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Erie 1995
Wet Deposition
Mean
ng/m2/d
2.6
2.2
0.38
0.37
1.4
1.5
0.85
1.3
0.24
0.98
1.9
1.3
0.64
0.15
0.99
7.8
0.7
1.3
0.25
2.5
cov
%
190
96
77
230
200
170
110
200
280
190
75
66
73
330
140
220
81
110
55
300
Dry Deposition
Mean
ng/m2/d
0.054
0.12
0.044
0.04
0.064
1.5
1.8
3.4
0.88
1.9
0.61
0.82
4.6
0.45
1.6
-
-
-
-
-
COV
%
140
140
180
130
140
110
130
150
120
150
160
120
160
130
220
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
3.1
11
9.3
6.1
7.4
1.5
9.8
110
10
32
0.64
2.4
9
0.83
3.2
-
-
-
-
-
COV
%
80
120
70
67
110
79
130
90
120
200
77
170
98
130
180
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-1.6
-1.5
-3.8
-3.5
-2.6
-0.033
-0.03
-0.035
-0.041
-0.035
-0.00064
-0.00063
-0.0026
-0.0019
-0.0014
-
-
-
-
-
COV
%
110
110
110
110
110
100
100
100
100
100
99
99
99
99
99
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
1.5
9.6
5.5
2.6
4.8
1.5
9.8
110
10
32
0.64
2.4
9
0.83
3.2
-
-
-
-
-
COV
%
160
140
120
180
160
62
130
90
120
200
58
170
98
130
180
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Erie 1995
Wet Deposition

Mean
ng/m2/d
0.18
0.033
0.037
0.057
0.078
0.29
0.057
0.17
0.075
0.15
0.22
0.069
0.083
0.039
0.1
0.37
0.092
0.16
0.11
0.18
0.34
0.065
0.095
0.078
0.14
15
2.6
4.7
2.2
6.2
COV
%
12
51
27
88
91
120
32
34
100
79
56
27
40
38
97
61
27
23
72
91
64
30
29
96
94
36
28
28
97
80
Dry Deposition

Mean
ng/m2/d
0.044
0.019
0.016
0.014
0.023
0.11
0.047
0.063
0.037
0.064
0.22
0.055
0.099
0.12
0.12
0.3
0.096
0.1
0.064
0.14
0.43
0.05
0.051
0.049
0.14
8.2
9
1.7
1.5
3.4
COV
%
100
110
100
100
110
100
100
100
100
110
180
100
110
160
160
160
100
100
110
170
180
100
100
110
250
150
100
100
100
180
Gas Exchange
Gas Absorption
Mean
ng/m2/d
4.6
3.3
0.79
1.6
2.6
0.48
0.49
0.24
0.31
0.38
0.85
1
0.84
0.93
0.91
0.76
0.96
0.91
0.82
0.86
0.38
0.47
0.39
0.37
0.41
12
12
9
9.3
11
COV
%
65
62
61
61
64
86
72
68
79
94
120
76
72
110
120
82
69
81
80
120
88
71
84
82
130
86
70
72
78
110
Volatilisation
Mean
ng/m2/d
-3.3
-2.6
-1.6
-3.2
-2.7
-3.4
-2.6
-1.7
-3.3
-2.8
-2.4
-1.9
-1.4
-2.6
-2.1
-2
-1.6
-1.2
-2.3
-1.8
-1
-0.87
-0.69
-1.3
-0.97
-40
-32
-23
-42
-34
COV
%
280
280
280
280
280
65
65
65
65
65
59
59
59
59
59
85
85
85
85
85
96
96
96
96
96
82
82
82
82
82
Net Gas Exchange
Mean
ng/m2/d
1.2
0.77
-0.83
-1.6
-0.11
-2.9
-2.2
-1.5
-3
-2.4
-1.5
-0.91
-0.53
-1.6
-1.2
-1.2
-0.67
-0.33
-1.4
-0.92
-0.66
-0.39
-0.3
-0.89
-0.56
-29
-20
-14
-33
-24
COV
%
340
460
260
260
630
110
110
110
100
110
150
180
210
140
180
160
240
380
160
320
160
220
240
150
280
140
160
160
130
160
IADN Results to 1996
Page 58

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Erie 1995
Wet Deposition

Mean
ng/m2/d
170
6.9
14
35
57
100
8
12
31
39
160
16
25
41
60
52
4.8
8.5
15
20
100
6.8
8.6
21
35
310
27
42
78
120
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cov
%
59
65
93
190
170
59
68
140
180
130
50
52
85
84
99
59
73
110
110
110
59
58
110
110
150
34
36
62
60
70
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
32
13
8.1
16
17
36
21
13
23
23
110
47
42
50
62
15
10
8
11
11
41
13
13
27
23
160
70
63
88
96
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
110
120
130
110
120
120
110
120
100
120
99
80
120
92
97
120
100
130
100
110
130
110
140
110
130
110
100
120
100
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
1000
570
730
590
720
120
52
120
99
98
11
11
3.7
5.5
7.8
2.6
3.5
1.4
2
2.4
2 2
1.2
0.94
1.3
1.4
16
16
5.9
8.7
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
68
82
69
90
95
120
100
69
140
110
100
88
64
64
93
71
84
68
68
82
100
69
68
68
84
72
65
44
44
65
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-480
-430
-520
-740
-550
-53
-49
-78
-91
-68
-1.1
-1
-4.1
-3.2
-2.3
-1.1
-1.1
-4.2
-3.4
-2.4
-0.00025
-0.00024
-0.00099
-0.00075
-0.00056
-2.2
-2.2
-8.2
-6.5
-4.8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
110
110
110
110
110
88
0 0
oo
0 0
oo
o O
OO
88
170
170
170
170
170
120
120
120
120
120
240
240
240
240
240
100
100
100
100
100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
520
140
210
-160
180
67
3.4
44
7.8
31
9.9
10
-0.43
2.3
5.5
1.5
2.4
-2.8
-1.4
-0.08
2.2
1.2
0.93
1.3
1.4
14
14
-2.3
2.2
6.8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
130
410
300
540
380
210
1900
220
2000
350
110
95
1500
240
130
120
120
160
260
1100
100
69
68
68
84
82
74
350
310
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 59

-------
Table C8: Atmospheric Fluxes to Lake Erie for 1996
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Erie 1996
Wet Deposition

Mean
ng/m2/d
1
0.9
0.4
0.38
0.67
1.2
2
0.67
0.12
1
0.39
0.18
0.022
0.057
0.16
2
2.1
1.2
0.033
1.4
0.016
0.1
0.02
0.0063
0.036
0.78
0.041
0.0028
0.011
0.21
0.18
0.76
0.13
0.032
0.28
0.26
1.3
0.5
0.063
0.52
cov
%
190
100
140
120
130
500
75
77
350
120
180
63
63
61
130
830
110
24
69
120
260
45
86
57
93
840
430
100
140
330
140
94
20
30
160
11
110
120
110
150
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
25
21
16
12
19
0.74
3.7
2.3
2
2 2
0.63
0.92
0.57
0.7
0.7
0.4
0.74
0.33
0.44
0.48
0.15
0.32
0.11
0.12
0.17
1.4
0.033
0.19
0.59
0.55
0.61
2.4
1.1
1.2
1.3
0.58
1.5
5.5
0.84
2.1
COV
%
72
63
70
67
74
140
160
63
87
120
97
100
62
85
92
130
130
66
95
100
120
120
69
90
85
120
58
150
140
160
110
120
74
85
110
170
100
84
110
160
Volatilisation
Mean
ng/m2/d
-7.8
-7.6
-21
-20
-14
-11
-9.7
-16
-20
-14
-0.55
-0.45
-0.54
-0.8
-0.59
-0.53
-0.4
-0.42
-0.65
-0.5
-0.57
-0.37
-0.28
-0.47
-0.42
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
60
60
60
60
60
59
59
59
59
59
56
56
56
56
56
54
54
54
54
54
52
52
52
52
52
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
17
14
-4.3
-7.8
4.7
-10
-6
-13
-18
-12
0.074
0.47
0.026
-0.098
0.12
-0.13
0.33
-0.089
-0.21
-0.024
-0.42
-0.045
-0.17
-0.35
-0.25
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
86
89
410
210
280
93
160
100
97
110
940
200
1700
760
310
510
270
360
270
900
110
940
120
100
99
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 60

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Erie 1996
Wet Deposition

Mean
ng/ni2/d
0.4
0.28
0.025
0.0078
0.18
0.25
1.3
0.3
0.45
0.57
0.16
2.1
0.1
0.017
0.59
0.37
0.062
0.17
0.023
0.16
COV
%
350
54
130
350
140
440
100
110
150
180
440
130
210
430
300
620
90
120
300
170
Dry Deposition

Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2 2
7.1
17
3.4
7.4
0.62
7.6
56
7.4
18
0.18
0.71
3.8
1.1
1.4
-
-
-
-
-
COV
%
69
95
110
71
160
120
170
66
120
150
120
130
84
130
150
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-1.4
-1.4
-3.6
-3.4
-2.4
-0.033
-0.029
-0.035
-0.04
-0.034
-0.00056
-0.00057
-0.0023
-0.0018
-0.0013
-
-
-
-
-
COV
%
110
110
110
110
110
100
100
100
100
100
99
99
99
99
99
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
0.8
5.8
13
0.027
5
0.58
7.6
56
7.4
18
0.18
0.71
3.8
1.1
1.4
-
-
-
-
-
COV
%
220
110
130
14000
220
120
170
66
120
150
110
130
84
130
150
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Erie 1996
Wet Deposition

Mean
ng/m2/d
0.033
0.086
0.017
0.0085
0.036
0.044
0.092
0.036
0.012
0.046
0.022
0.072
0.025
0.017
0.034
0.084
0.12
0.053
0.024
0.069
0.055
0.079
0.062
0.02
0.054
1.4
2.8
2.8
0.71
1.9
COV
%
270
120
84
84
150
230
140
93
120
130
32
190
90
180
190
400
180
85
150
150
350
210
140
130
140
300
130
110
190
140
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
4.3
2.7
0.77
1.1
2 2
0.28
0.26
0.057
0.18
0.19
0.64
0.37
0.084
0.61
0.43
0.57
0.46
0.11
0.46
0.4
0.3
0.48
0.087
0.23
0.27
7.3
0.35
0.081
5.7
3.3
COV
%
60
63
60
61
64
79
75
75
70
86
190
75
75
110
110
81
75
75
88
100
86
75
75
110
110
80
75
75
80
94
Volatilisation
Mean
ng/m2/d
-4.1
-2.5
-1.7
-3
-2.8
-4.1
-2.6
-1.8
-3.1
-2.9
-2.8
-1.9
-1.5
-2.4
-2.1
-2.3
-1.6
-1.3
-2.1
-1.8
-1.2
-0.83
-0.73
-1.2
-0.98
-48
-31
-24
-40
-36
COV
%
280
280
280
280
280
65
65
65
65
65
59
59
59
59
59
85
85
85
85
85
96
96
96
96
96
82
82
82
82
82
Net Gas Exchange
Mean
ng/m2/d
0.19
0.21
-0.96
-1.9
-0.61
-3.8
-2.3
-1.8
-3
-2.7
-2.2
-1.5
-1.4
-1.8
-1.7
-1.7
-1.1
-1.2
-1.7
-1.4
-0.87
-0.35
-0.64
-0.96
-0.71
-41
-31
-24
-34
-33
COV
%
2600
1600
240
210
390
96
100
97
99
100
120
110
93
120
110
130
140
110
130
160
130
240
120
130
160
110
100
100
120
120
IADN Results to 1996
Page 61

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Erie 1996
Wet Deposition

Mean
ng/m2/d
25
11
3.1
0.45
9.7
16
6.9
1.5
0.35
6.2
27
30
7.4
1.8
17
8.2
11
2.3
0.38
5.3
11
16
3.7
0.65
8
47
57
13
2.9
30
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cov
%
15
58
110
230
210
28
55
73
210
210
130
43
30
360
120
210
63
51
400
110
320
71
50
420
120
120
34
25
260
76
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dry Deposition

Mean
ng/m2/d
39
29
7.1
6.7
20
48
44
11
8.9
28
66
70
22
24
46
13
25
6.3
5.8
13
29
51
11
12
26
110
150
39
42
84
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
100
150
100
100
140
100
150
110
100
140
91
110
79
84
110
100
160
110
100
150
110
150
110
110
150
100
120
100
100
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
780
400
350
270
450
93
40
44
51
57
4.5
3.7
2.6
4
3.7
1.8
1.3
0.93
1.4
1.4
1.1
0.84
0.61
0.93
0.88
7.5
5.9
4.1
6.4
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
89
78
65
92
84
100
100
65
97
100
70
58
61
66
66
69
58
64
71
67
69
58
70
70
69
46
40
42
45
45
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-480
-410
-530
-710
-530
-51
-46
-77
-87
-65
-0.92
-0.94
-3.7
-3
-2.1
-1
-1
-3.8
-3.2
-2.2
-0.00022
-0.00022
-0.00089
-0.00071
-0.00051
-1.9
-2
-7.5
-6.2
-4.4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
110
110
110
110
110
88
0 0
oo
0 0
oo
o O
OO
88
170
170
170
170
170
120
120
120
120
120
240
240
240
240
240
100
100
100
100
100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
300
-12
-180
-440
-82
42
-6.2
-33
-37
-8.6
3.6
2.8
-1.1
1
1.6
0.85
0.33
-2.9
-1.7
-0.85
1.1
0.84
0.61
0.93
0.88
5.6
3.9
-3.3
0.22
1.6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
250
3800
310
170
1100
220
880
230
250
18000
89
84
550
500
180
160
340
140
200
390
69
58
70
70
69
64
67
220
2800
180
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 62

-------
Table C9: Atmospheric Fluxes to Lake Ontario for 1995
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Ontario 1995
Wet Deposition

Mean
ng/m2/d
3.3
1.9
0.96
6.1
3.1
0.3
0.98
0.35
0.64
0.57
0.055
0.038
0.017
0.021
0.033
0.025
0.089
0.017
0.033
0.041
0.045
0.016
0.03
0.012
0.026
0.045
0.11
0.041
0.045
0.06
0.45
2.1
0.27
0.23
0.77
4.9
2.4
0.47
0.14
2
cov
%
30
60
29
47
55
120
31
25
59
93
150
47
76
81
160
110
56
35
76
140
56
450
72
230
330
65
35
50
92
140
180
52
42
160
160
87
87
84
57
250
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
19
13
12
19
16
1.8
3.2
3.1
3.7
2.9
0.7
0.77
0.48
0.98
0.73
0.7
0.65
0.29
0.81
0.61
0.38
0.41
0.15
0.38
0.33
0.083
0.043
0.13
0.16
0.1
2.1
2 2
1.4
3.2
2.2
0.77
0.61
1.1
1.1
0.9
COV
%
69
60
62
65
64
110
98
93
91
120
110
84
93
97
110
120
87
97
95
110
110
82
94
95
110
110
98
81
110
110
140
87
110
98
120
150
88
110
100
130
Volatilisation
Mean
ng/m2/d
-11
-8.3
-23
-23
-16
-30
-21
-37
-58
-37
-1.1
-0.81
-1
_9
-1.2
-1.4
-0.95
-1
-2.2
-1.4
-1.5
-1
-0.7
-1.9
-1.3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
56
56
56
56
56
57
57
57
57
57
50
50
50
50
50
51
51
51
51
51
54
54
54
54
54
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
7.5
4.9
-11
-4.7
-0.83
-28
-18
-34
-54
-34
-0.44
-0.04
-0.55
-1
-0.51
-0.67
-0.31
-0.71
-1.4
-0.77
-1.1
-0.6
-0.55
-1.6
-0.96
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
170
160
160
390
4400
91
100
93
92
95
66
1600
120
130
230
190
230
96
110
130
110
130
100
99
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 63

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Ontario 1995
Wet Deposition

Mean
ng/ni2/d
1.4
4.3
1.4
0.64
1.9
0.33
7
2.2
0.86
2.6
0.5
6.6
5.6
0.62
3.3
-
-
-
-
-
COV
%
48
64
15
59
110
77
83
61
53
140
42
75
120
74
140
-
-
-
-
-
Dry Deposition

Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2.7
6.4
5.7
4.4
4.8
2.7
39
40
6.6
22
0.68
4.9
12
2.5
5
-
-
-
-
-
COV
%
74
89
70
70
90
95
230
120
110
220
190
220
150
120
230
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-2.2
-1.7
-4.2
-4.3
-3.1
-0.0095
-0.0075
-0.0086
-0.011
-0.0092
-0.00054
-0.0004
-0.0015
-0.0013
-0.00093
-
-
-
-
-
COV
%
64
64
64
64
64
82
82
82
82
82
110
110
110
110
110
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
0.47
4.7
1.5
0.19
1.7
2.7
38
40
6.6
22
0.68
4.9
12
2.5
5
-
-
-
-
-
COV
%
520
110
290
2100
210
81
230
120
110
220
180
220
150
120
230
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Ontario 1995
Wet Deposition

Mean
ng/m2/d
0.2
0.075
0.078
0.066
0.11
0.23
0.095
0.056
0.087
0.12
0.41
0.36
0.13
0.24
0.28
0.65
0.36
0.18
0.27
0.37
0.46
0.27
0.15
0.16
0.26
8.9
6.5
2.3
4.5
5.6
COV
%
100
64
57
82
160
93
200
63
82
180
140
57
28
130
120
130
200
14
110
210
140
140
42
110
170
110
78
31
88
150
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
6
4.1
0.33
2.4
3.2
1.5
1.1
0.31
1.1
0.99
0.42
0.45
0.14
0.35
0.34
0.69
0.82
0.33
0.77
0.65
0.34
0.36
0.12
0.31
0.28
10
12
3.6
11
9.1
COV
%
59
61
66
65
69
68
64
67
64
67
81
63
73
81
81
81
65
72
82
83
98
65
79
88
91
71
61
70
79
76
Volatilisation
Mean
ng/m2/d
-10
-6.5
-3.9
-11
-7.9
-4.5
-3
-1.9
-5.2
-3.6
-3.8
-2.6
-1.9
-4.8
-3.3
-2.5
-1.7
-1.3
-3.3
-2.2
-1.3
-0.87
-0.74
-1.8
-1.2
-51
-34
-24
-63
-43
COV
%
96
96
96
96
96
51
51
51
51
51
50
50
50
50
50
55
55
55
55
55
53
53
53
53
53
51
51
51
51
51
Net Gas Exchange
Mean
ng/m2/d
-4
-2.4
-3.6
-8.7
-4.7
-3
-1.9
-1.6
-4.1
-2.6
-3.4
-2.1
-1.7
-4.4
-2.9
-1.8
-0.87
-1
-2.5
-1.5
-0.93
-0.51
-0.62
-1.5
-0.89
-41
-23
-20
-52
-34
COV
%
250
260
120
130
150
110
100
83
87
92
75
73
69
69
70
120
150
110
110
120
110
130
94
95
100
96
100
85
87
91
IADN Results to 1996
Page 64

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Ontario 1995
Wet Deposition

Mean
ng/m2/d
20
12
11
22
16
28
13
11
21
18
38
19
14
29
25
10
8.2
6.8
11
9.1
15
8
8
11
10
64
35
29
51
45
1400
800
780
1400
1100
150
120
73
210
140
190
150
96
300
190
110
47
79
66
76
cov
%
75
92
29
450
160
66
100
45
340
160
38
91
22
240
120
58
99
44
400
160
57
120
34
450
190
30
60
20
190
89
410
76
700
140
600
240
110
910
150
400
190
160
570
160
590
170
70
690
88
660
Dry Deposition

Mean
ng/m2/d
7
3.7
1.9
3.4
4
13
6.4
2.8
4.6
6.7
31
13
6.6
9
15
6.2
4.3
2.9
3.6
4.2
17
11
5.1
7.7
10
55
28
15
20
30
630
630
360
260
470
34
34
22
31
30
27
5.2
32
23
22
14
10
3.6
-
7.1
COV
%
120
140
100
120
140
150
180
140
120
160
140
110
100
85
140
140
160
140
110
140
140
140
120
110
140
120
110
110
100
120
140
120
130
110
130
160
120
150
120
170
240
170
190
190
220
180
150
180
-
200
Gas Exchange
Gas Absorption
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-240
-180
-240
-390
-260
-36
-27
-46
-59
-42
-0.74
-0.55
_9
-1.7
-1.3
-1.1
-0.83
-3
-2.6
-1.9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
81
81
81
81
81
86
86
86
86
86
98
98
98
98
98
59
59
59
59
59
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 65

-------
Table CIO: Atmospheric Fluxes to Lake Ontario for 1996
(a) Banned Organochlorine Pesticides
Species Season




a-HCH W
Sp
Su
F
Annual
dieldrin W
Sp
Su
F
Annual
cis- W
chlordane Sp
Su
F
Annual
trans- W
chlordane Sp
Su
F
Annual
trans- W
nonachlor Sp
Su
F
Annual
p,p'-DDD W
Sp
Su
F
Annual
p,p'-DDE W
Sp
Su
F
Annual
p,p'-DDT W
Sp
Su
F
Annual
Lake Ontario 1996
Wet Deposition

Mean
ng/m2/d
5
5.2
9
5.7
4.5
0.34
0.83
0.34
1.1
0.65
0.046
0.085
0.033
0.091
0.063
0.057
0.07
0.026
0.07
0.056
0.098
0.55
0.089
0.36
0.27
0.096
0.11
0.035
0.1
0.086
0.34
0.46
0.17
0.18
0.29
0.45
0.98
0.28
0.63
0.59
cov
%
27
25
47
42
55
260
26
39
91
74
230
31
31
100
64
120
97
120
32
72
270
110
93
130
160
210
22
17
70
53
43
58
44
14
67
150
100
85
53
91
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
17
12
11
11
13
1.4
2.7
2.9
2
2.3
0.41
0.82
0.71
0.66
0.65
0.41
0.71
0.43
0.4
0.49
0.24
0.38
0.19
0.17
0.25
0.04
0.17
0.17
0.097
0.12
1.1
2.3
2 2
1.1
1.7
0.3
1.2
2.6
0.99
1.3
COV
%
61
61
59
60
62
88
100
70
91
99
79
100
69
77
97
87
110
70
76
96
83
110
71
84
100
60
74
71
78
93
86
110
80
78
120
94
130
77
79
130
Volatilisation
Mean
ng/m2/d
-10
-7.9
-19
-20
-14
-27
-21
-36
-48
-33
-1.1
-0.8
-1
-1.6
-1.1
-1.3
-0.95
-1
-1.7
-1.3
-1.5
-1.1
-0.76
-1.5
-1.2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
56
56
56
56
56
57
57
57
57
57
50
50
50
50
50
51
51
51
51
51
54
54
54
54
54
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
6.6
4.4
-8.4
-8.7
-1.5
-26
-18
-33
-46
-31
-0.67
0.022
-0.33
-0.95
-0.48
-0.89
-0.25
-0.62
-1.3
-0.77
-1.3
-0.69
-0.57
-1.3
-0.96
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
160
170
170
180
620
90
98
93
90
94
66
3600
180
98
260
110
350
110
87
130
98
130
100
91
110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 66

-------
(b) Current-use Pesticides
Species Season




g-HCH W
(lindane) Sp
Su
F
Annual
a- W
endosulphan Sp
Su
F
Annual
b- W
endosulphan Sp
Su
F
Annual
endosulphan W
sulphate Sp
Su
F
Annual
Lake Ontario 1996
Wet Deposition

Mean
ng/ni2/d
1.9
6.7
2.3
4
3.7
0.55
1.7
5.9
0.85
2.3
0.64
2.2
1.6
1.1
1.4
-
-
-
-
-
COV
%
21
41
95
30
63
230
45
180
49
220
49
66
250
55
150
-
-
-
-
-
Dry Deposition

Mean
ng/ni2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/ni2/d
2.3
4.7
11
2.6
5.2
1.7
11
51
6.1
18
0.077
1.9
9.2
1
3
-
-
-
-
-
COV
%
63
97
100
69
150
64
170
85
180
170
88
130
82
170
160
-
-
-
-
-
Volatilisation
Mean
ng/ni2/d
-2.1
-1.6
-3.5
-3.7
-2.7
-0.0095
-0.0077
-0.0084
-0.0099
-0.0089
-0.00049
-0.00037
-0.0012
-0.0011
-0.00079
-
-
-
-
-
COV
%
64
64
64
64
64
82
82
82
82
82
110
110
110
110
110
-
-
-
-
-
Net Gas Exchange
Mean
ng/ni2/d
0.27
3.1
7.5
-1.1
2.5
1.6
11
51
6.1
17
0.076
1.9
9.2
1
3
-
-
-
-
-
COV
%
750
140
150
290
270
40
170
85
180
170
73
130
82
170
160
-
-
-
-
-
(c) Banned Organochlorine Commercial Chemicals
Species Season




HCB W
Sp
Su
F
Annual
PCB18 W
Sp
Su
F
Annual
PCB44 W
Sp
Su
F
Annual
PCB52 W
Sp
Su
F
Annual
PCB101 W
Sp
Su
F
Annual
Sum-PCB W
Sp
Su
F
Annual
Lake Ontario 1996
Wet Deposition

Mean
ng/m2/d
0.16
0.12
0.16
0.066
0.13
0.12
0.082
0.13
0.077
0.1
0.27
0.21
0.15
0.16
0.2
0.51
0.32
0.31
0.29
0.36
0.26
0.21
0.12
0.19
0.19
5.1
3.7
3
3.3
3.8
COV
%
210
300
89
24
130
180
300
80
56
110
190
280
56
44
130
200
300
62
41
110
230
270
41
33
130
230
270
52
29
120
Dry Deposition

Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gas Exchange
Gas Absorption
Mean
ng/m2/d
6.9
4.8
0.59
1.5
3.4
1.9
1.2
0.45
0.72
1.1
0.34
0.36
0.21
0.24
0.29
0.69
0.94
0.51
0.58
0.68
0.25
0.46
0.23
0.27
0.3
9.9
7.6
4.2
5.5
6.8
COV
%
59
61
67
64
67
61
79
69
110
83
74
84
71
97
91
74
81
69
86
88
75
93
69
72
91
69
82
71
110
90
Volatilisation
Mean
ng/m2/d
-10
-7.1
-4.3
-8.3
-7.5
-4.6
-3.2
-2.1
-3.9
-3.4
-3.8
-2.7
_9
-3.7
-3
-2.4
-1.8
-1.4
-2.5
_9
-1.2
-0.89
-0.79
-1.4
-1.1
-51
-36
-26
-48
-40
COV
%
96
96
96
96
96
51
51
51
51
51
50
50
50
50
50
55
55
55
55
55
53
53
53
53
53
51
51
51
51
51
Net Gas Exchange
Mean
ng/m2/d
-3.4
-2.3
-3.7
-6.8
-4.1
-2.7
-2
-1.6
-3.2
-2.4
-3.5
-2.4
-1.8
-3.4
-2.8
-1.8
-0.82
-0.93
_9
-1.4
-0.98
-0.43
-0.56
-1.1
-0.78
-41
-29
-22
-43
-34
COV
%
300
310
120
130
150
130
110
88
87
94
73
72
70
69
70
120
170
120
110
130
100
170
110
96
120
95
90
86
83
87
IADN Results to 1996
Page 67

-------
(d) Currently-Emitted PAHs and Metals
Species Season




PHEN W
Sp
Su
F
Annual
PYR W
Sp
Su
F
Annual
B(b+k)F W
Sp
Su
F
Annual
B(a)P W
Sp
Su
F
Annual
I(l,2,3-cd)P W
Sp
Su
F
Annual
sum-PAH W
(UN ECE) Sp
Su
F
Annual
Pb W
Sp
Su
F
Annual
As W
Sp
Su
F
Annual
Se W
Sp
Su
F
Annual
Cd W
Sp
Su
F
Annual
Lake Ontario 1996
Wet Deposition

Mean
ng/m2/d
39
64
7.8
35
37
28
75
7.8
40
38
42
79
11
46
44
18
27
2.7
14
15
26
51
3.2
15
24
85
160
16
76
84
1000
680
700
460
720
110
82
59
84
84
360
82
82
120
160
62
51
49
63
56
cov
%
130
110
77
170
140
210
140
160
89
170
160
210
28
64
200
180
240
100
36
230
200
150
110
48
260
110
120
34
42
150
810
310
190
68
210
430
250
41
39
150
710
200
75
51
84
390
190
72
25
110
Dry Deposition

Mean
ng/m2/d
19
5.1
3.5
8.5
9.1
26
4.8
4.4
13
12
56
10
12
63
36
14
3.4
3.8
13
8.6
29
6.7
4.6
37
19
99
21
20
110
63
790
500
800
880
740
150
46
82
77
88
32
14
79
74
50
14
8.6
10
26
15
COV
%
120
170
130
130
150
120
150
130
140
150
100
110
130
170
170
110
140
140
170
160
110
120
210
160
170
110
110
130
140
140
120
110
110
120
120
120
140
110
130
130
270
180
110
140
150
140
130
130
150
150
Gas Exchange
Gas Absorption
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Volatilisation
Mean
ng/m2/d
-230
-180
-240
-320
-240
-34
-27
-43
-51
-39
-0.67
-0.51
-1.6
-1.5
-1.1
-1
-0.78
-2.4
-2.3
-1.6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
81
81
81
81
81
86
86
86
86
86
98
98
98
98
98
59
59
59
59
59
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Net Gas Exchange
Mean
ng/m2/d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
COV
%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IADN Results to 1996
Page 68

-------
Appendix D: Relative Loadings of IADN Substances
IADN Results to 1996                                     Page 69

-------
IADN Results to 1996                                                 Page 70

-------
Figure Dl: Loadings as a Proportion of Total Deposition to Lake Superior in 1995.
                                                          Lake Superior 1995
   100
    50
   -50
  -100 -•
  -150 --
  -200 - -
  -250 - -
  -300
                                  D Volatilisation D Gas Absorption D Wet Deposition D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
IADN Results to 1996
Page 71

-------
Figure D2: Loadings as a Proportion of Total Deposition to Lake Superior in 1996.
                                                         Lake Superior 1996
  -400
                                  D Volatilisation Q Gas Absorption D Wet Deposition D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
IADN Results to 1996
Page 72

-------
Figure D3: Loadings as a Proportion of Total Deposition to Lake Michigan in 1995.
                                                          Lake Michigan 1995
   -400
                                  D Volatilisation  Q Gas Absorption D Wet Deposition D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
Page 73

-------
Figure D4: Loadings as a Proportion of Total Deposition to Lake Michigan in 1996.
                                                           Lake Michigan 1996
   100



    50



     0



   -50 -•



   -100 -•



   -150 -•



   -200 - -



   -250 - -
         |l   M I   I M, Ml   I ir~i| ^—M	1	1	1
   -350
                          0
                          •3

                                                        -519%-
-484%
                                    ] Volatilisation Q Gas Absorption D Wet Deposition Q Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
                                                   Page 74

-------
Figure D5: Loadings as a Proportion of Total Deposition to Lake Huron in 1995.
                                                            Lake Huron 1995
   -50
   -100 -•
   -150 -•
   -200
                    1	1	11 + 'I' +  'I1 + 'I
                                                                   H	1	1	1	1	1	1	1	1
                          o
                          •3
Q   w

Q   Q

Q   Q


"i,   la
                                                        •a

                                                        i
                                                        •a
                                                        1
                                   D Volatilisation Q Gas Absorption D Wet Deposition Q Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.

* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
                                                                                                 Page 75

-------
Figure D6: Loadings as a Proportion of Total Deposition to Lake Huron in 1996.
                                                            Lake Huron 1996
   100
    50 -•
   -50 -•
   -100 --
   -150 -•
   -200
                       -I	1'   Ml  M

                                                                                         -I	1-
                          0
                          •3
                                    ] Volatilisation D Gas Absorption  D Wet Deposition D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake.  Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
Page 76

-------
Figure D7: Loadings as a Proportion of Total Deposition to Lake Erie in 1995.
                                                              Lake Erie 1995
    50
   -50
   -100 -•
   -150 -•
   -200 - -
   -250
   -300
                              *    *   *
                          0
                          •3
                                                        -464%
                                    ] Volatilisation D Gas Absorption D Wet Deposition  D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
Page 77

-------
Figure D8: Loadings as a Proportion of Total Deposition to Lake Erie in 1996.
                                                            Lake Erie 1996
                                  D Volatilisation  Q Gas Absorption D Wet Deposition D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
Page 78

-------
Figure D9: Loadings as a Proportion of Total Deposition to Lake Ontario in 1995.
   -400
                                                           Lake Ontario 1995
                                    ] Volatilisation  Q Gas Absorption D Wet Deposition Q Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimate could be made due to lack of water concentration data
IADN Results to 1996
Page 79

-------
Figure DIG: Loadings as a Proportion of Total Deposition to Lake Ontario in 1996.
                                                            Lake Ontario 1996
   100

    50

     0

   -50

   -100 --

   -150 -•

   -200 - -

   -250

   -300 - -

   -350 -•
   -400

                   -1122%
R
                                                            -618%-
R
ffl
                                   D Volatilisation D Gas Absorption D Wet Deposition D Dry Deposition
N.B. Positive values denote deposition from atmosphere to lake. Negative values denote volatilisation from lake to atmosphere.
* indicates substances for which no volatilisation estimates could be made due to lack of water concentration data
IADN Results to 1996
                                                           Page 80

-------
Appendix E: Variation in Precipitation and Air Concentration
within Lake Basins for 1996
IADN Results to 1996                                       Page 81

-------
IADN Results to 1996                                                 Page 82

-------
Table El: 1996 Annual Volume-Weighted Mean Pesticide Concentrations in Precipitation (ng/L)
Lake
Superior
Michigan
rluron
irie
Ontario
Station
Eagle Harbor
Brule River
Wolf Ridge
Siblev
Turkey Lakes
Mean
Master-Mean
Sleeoine Bear Dun
IIT (Chicago)
Mean
Master-Mean
Burnt Island
Grand Bend
Grand Bend
Mean
Master-Mean
Sturgeon Point
Pelee Island
Port Stanley
Rock Point
Mean
Master-Mean
Point Petre
Point Petre
Burlington
Metro Zoo (Toront
Mean
Master-Mean
Agency
EPA/IU
EPA/IU
OME
ECEHD
ECEHD
all
all
EPA/IU
EPA/IU
all
all
ECEHD
ECEHD
OME
all
all
EPA/IU
ECEHD
OME
ECEHD
all
all
ECEHD
ECNWRI
ECEHD
ECEHD
all
all
0-HCH
0.76
0.77
1.2
1.6
1 8
1.2
0.62
0.18
0.88
0.53
0.34
2.4
1.9
1.2
1.9
1.3
0.31
2.4
1.3
23
1.6
0.2
2.1
1.5
3.3
2.3
2.3
0.92
dieldrin
0.22
0.2
1.5
0.49
03
0.54
0.41
0.32
1.3
0.82
0.39
0.92
0.92
0.083
0.64
1.4
0.31
1.2
1.2
052
0.82
0.38
0.56
0.22
0.78
0.59
0.54
1
os-chlordane
0.024
0.043
0.018
0.073
0081
0.048
0.5
0.047
0.14
0.095
0.49
0.081
0.083
0.02
0.06;
1.3
0.054
0.092
0.026
006
0.0 58
0.93
0.69
0.022
0.059
0.067
0.21
3.3
ra»s-chlordan
0.11
0.034
0.018
0.066
0044
0.054
2
0.15
0.55
0.35
0.43
0.086
0.068
0.02
0.058
1.5
0.33
0.076
0.026
0057
0.12
2.7
0.073
0.019
0.051
0.061
0.051
1.4
p,p' -ODD
0.0068
0.0052
0.018
0.076
0089
0.039
0.17
0.024
0.11
0.065
0.37
0.13
0.13
0.02
0.092
1.4
0.0091
0.21
0.13
008
0.11
0.084
0.085
0.029
0.14
0.2
0.11
0.76
p,p' -DDE
0.016
0.024
0.1
0.19
0 12
0.091
0.18
0.052
0.4
0.23
0.23
0.13
0.28
0.032
0.15
0.88
0.097
2.2
0.85
036
0.87
0.11
0.37
0.1
0.69
4.5
1.4
0.26
p,p' -DDT
0.041
0.02
0.018
0.13
0087
0.059
0.69
0.14
1
0.59
0.24
0.18
0.77
0.12
0.36
0.51
0.2
2.7
0.026
0 18
0.77
0.26
0.23
0.21
1.7
1.1
0.83
0.28
THCH
0.52
0.91
0.055
1.8
15
0.94
0.55
0.086
0.89
0.49
0.18
1.8
3.3
0.073
1.7
1.1
0.039
2.6
0.073
14
;
0.038
1.3
1.5
2.7
2.4
2
0.66
tt-endosulphar
0.49
0.43
-
0.48
045
0.46
1.1
0.25
0.46
0.35
0.7
0.6
0.91
_
0.75
0.79
0.33
0.91
_
07
0.65
0.5;
1
1.6
2.4
1.2
;.5
0.66
P-endosulphar
0.77
0.54
-
0.74
1 1
0.78
0.98
0.13
0.39
0.26
0.52
1.1
1.7
_
1.4
0.77
0.19
1.6
_
13
;
0.18
2.1
0.72
4.4
2
2.3
0.91
IADN Results to 1996
Page 83

-------
Table E2: 1996 Annual Volume-Weighted Mean HCB, PCS and PAH Concentrations in Precipitation (ng/L)
Lake
Superior






Michigan



Huron




Erie





Ontario





Station
Eagle Harbor
Brule River
Wolf Ridge
Sibley
Turkey Lakes
Mean
Master-Mean
Sleeping Bear Duns
IIT (Chicago)
Mean
Master: Mean
Burnt Island
Grand Bend
Grand Bend
Mean
Master-Mean
Sturgeon Point
Pelee Island
Port Stanley
Rock Point
Mean
Master-Mean
Point Petre
Point Petre
Burlington
Metro Zoo (Toront(
Mean
Master-Mean
Agency
EPA/IU
EPA/IU
OME
ECEHD
ECEHD
all
all
EPA/IU
EPA/IU
all
all
ECEHD
ECEHD
OME
all
all
EPA/IU
ECEHD
OME
ECEHD
all
all
ECEHD
EC NWRI
ECEHD
ECEHD
all
all
HCB
0.013
0.014
0.024
0.004
0.012
0.013
0.96
0.012
0.034
0.023
0.51
0.018
0.002
0.02
0.013
1.4
0.013
0.15
0.096
0.073
0.083
0.16
0.076
0.043
0.002
0.05
0.043
1.8
PCB18
0.033
0.028
-
-
-
0.031
1.1
0.019
0.079
0.049
0.4
-
-
-
-
-
0.018
_
-
-
0.018
1
-
0.036
-
-
0.036
-
PCB44
0.016
0.0099
-
-
-
0.013
1.2
0.011
0.095
0.053
0.2
-
-
-
-
-
0.017
_
-
-
o.o;/
;
-
0.06
-
-
0.06
-
PCB52
0.018
0.032
-
-
-
0.025
0.72
0.023
0.13
0.075
0.31
-
-
-
-
-
0.028
_
-
-
0.028
1
-
0.11
-
-
0.11
-
PCB101
0.021
0.018
-
-
-
0.019
1.1
0.015
0.13
0.074
0.2
-
-
-
-
-
0.023
_
-
-
0.023
;
-
0.055
-
-
0.055
-
PHEN
1.4
1.4
10
14
7.2
6.8
0.21
1.6
87
44
0.036
6.1
7.2
8
7.1
0.86
2.5
15
18
9.7
;;
0.22
7.8
11
16
14
12
0.64
PYR
1
0.81
2.5
3.3
8.4
3.2
0.32
1
99
50
0.02
7.2
10
3
6.7
1.1
1.5
12
8.4
7.1
7.4
0.21
5.7
11
19
13
12
0.47
B(k)F
0.63
0.63
3.6
4.7
4.1
2.7
0.23
0.84
38
19
0.043
5.4
5.1
4.1
4.9
1.1
1.6
8
5.9
4.8
5.1
0.32
5.6
3.7
12
5.8
6.7
0.84
B(a)P
0.51
0.49
0.71
6.7
5.1
2.7
0.19
0.79
60
30
0.026
8
5.6
0.82
4.8
1.7
1.5
7.7
2.3
5.3
4.2
0.36
6.2
4
9.5
7.4
6.8
0.92
IADN Results to 1996
Page 84

-------
Table E3: 1996 Annual Pesticide Concentrations in Air (pg/m3)
Lake Basin
Superior
Michigan
Huron
H.rie
Ontario
Station
Eaale Harbor
Rmle River
Mean
Master:Mean
Sleeoina Bear Dunes
IIT (Chicaso"!
Mean
Master:Mean
Burnt Island
Stiiroeon Point
Point Petre
Asencv
EPA/IU
F.PA/TTI
all
all
EPA/IU
EPA/IU
all
all
AES
F.PA/TTI
AES
Medium
XAD
XAD


XAD
XAD


PUF
YAD
PUF
0-HCH
78
86
82
0.95
64
99
82
0.79
30
67
32
dieldrin
9.8
7 9
8.5
1.2
15
140
78
0.2
7.7
IS
11
cifi -chlordane
3.4
3 1
3.3
1
5 3
45
25
0.21
2.1
8
4
runs -chlordan
2.4
9
2.2
1.1
4.5
47
26
0.18
1.8
6 8
3.4
P.p'-DDD
0.86
1 9
1
0.84
1.1
2 9
2
0.57
0.13
1 9
0.38
V,v' -DDE
1.6
1
1.3
1.2
6.7
36
21
0.31
1.9
15
11
P.p'-DDT
2.8
064
1.7
1.6
3 3
36
19
0.17
0.6
14
5
TFHCH
16
19
14
1.2
21
52
36
0.58
93
30
15
Gtendosulohan
24
15
20
1.2
65
83
74
0.88
10
77
58
P-endosulohan
1.7
1 4
7.5
1.1
6.8
6.7
6.8
1
1.2
6
12
Table E4: 1996 Annual HCB and PCB Concentrations in Air (pg/m3)
T.nkp Rnsin
Superior
Michigan
Huron
Erie
Ontario
STATION
Eagle Harbor
Brule River
Mean
Master:Mean
Sleeping Bear Dunes
IIT (Chicago)
Mean
Master:Mean
Burnt Island
Sturgeon Point
Point Petre
A Qpnrv
EPA/IU
EPA/IU
all
all
EPA/IU
EPA/IU
all
all
AES
EPA/IU
AES
Medium
XAD
XAD
_
-
XAD
XAD
_
-
PUF
XAD
PUF
HCR
63
70
66
0.95
65
100
84
0.78
31
62
35
PCR18
2.8
3.4
3.1
0.91
5.5
61
33
0.16
6.6
6.1
11
PCR44
2.3
3
2.6
0.86
5
110
59
0.085
1.1
8.5
2.7
PCRS2
3.2
3.9
3.5
0.89
5.3
80
43
0.12
1
10
5.4
prRim
2.3
2.1
2.2
1
3.1
52
27
0.11
0.92
5.5
2.7
IADN Results to 1996
Page 85

-------
Table E5: 1996 Annual PAH Concentrations in Air (pg/m3)
Lake Rnsin
Superior
Michigan
Huron
Erie
Ontario
STATION
Eagle Harbor
Brule River
Mean
Master.Mean
Sleeping Bear Dunes
IIT (Chicago)
Mean
Master.Mean
Burnt Island
Sturgeon Point
PtPetre
A Qpnrv
EPA/IU
EPA/IU
all
all
EPA/IU
EPA/IU
all
all
AES
EPA/IU
AES
Medium
GEE
GEE
_
-
GEE
GEE
_
-
GEE
GEE
GEE
PHFN
18
84
51
0.35
23
1000
520
0.045
26
100
52
PVR
18
68
43
0.42
24
2000
7000
0.02J
32
140
72
RfkW
9.4
24
17
0.56
12
620
J20
0.038
19
76
58
Rfa'lP
8.2
18
13
0.63
11
780
400
0.027
26
65
57
IADN Results to 1996
Page 86

-------
Appendix F: Annual Mass Fluxes to the Great Lakes from 1992
to 1996
IADN Results to 1996                                    Page 87

-------
IADN Results to 1996                                                  Page 8 8

-------
Figure Fl: Annual Average Wet Deposition Flux (ng/m2/d) of Organochlorine Pesticides
                      Lake Superior
                                                                             Lake Michigan
  S 6
        a-HCH    g-HCH    dieldrin   p,p'-DDD   p,p'-DDE   p,p'-DDT
                 D1»2 g 1993 D1994 D 1995 g 1996
I
a
                                                              a-HCH    g-HCH    dieldrin    p,p'-DDD   p,p'-DDE   p,p'-DDT
                                                                       IB 1992 B1993 Q1994 Q1995 g1996 I
                                                                                                               16

                                                                                                               I 5
f-^
                                                                                                                                                            rfl
                                                                                                                     a-HCH    g-HCH    dieldrin    p,p'-DDD    p,p'-DDE   p,p'-DDT
                                                                                                                              |B1992 B 1993 n 1994 g 1995 J19
                                   a-HCH     g-HCH    dieldrin    p,p'-DDD    p,p'-DDE   p,p'-DDT
                                                                                    I
                                                                                    E
                                                                                                                      n  n.
                                                                                          a-HCH    g-HCH    dieldrin   p,p'-DDD   p,p'-DDE   p,p'-DDT
IADN Results to 1996
                                                                         Page 89

-------
Figure F2: Annual Average Dry Deposition Flux (ng/m2/d) of Organochlorine Pesticides

                    Lake Superior
                                           n
        a-HCH    g-HCH    dieldrin   p,p'-DDD   p,p'-DDE  p,p'-DDT
                J1992 H1993 Q 1994 Q 1995 11996
                                                                      Lake Michigan

e
SI
1
o
!





a
rli




•
,rTHl ,





, n ,„ n .PI rn
                                                          a-HCH   g-HCH    dieldrin   p,p'-DDD  p,p'-DDE   p,p'-DDT
                                                                 1^1992 H1
                                                                       1993 Q 1994 Q 1995 H19
                                                                                                    Data not available for Lake Huron
                           s
                           S
                                   I.Jlh
n..  n.ll n
                                 a-HCH    g-HCH   dieldrin    p,p'-DDD  p,p'-DDE   p,p'-DDT
                                         |g1992 J1993 Q1994 Q1995
                                                                           Data not available for Lake Ontario
IADN Results to 1996
                                                                                    Page 90

-------
Figure F3: Annual Average Net Gas Exchange Flux (ng/m2/d) of Organochlorine Pesticides

(Positive values denote net gas absorption, negative values denote net volatilisation)
                    Lake Superior
                                                                    Lake Michigan
  a  -1=
tj
        a-HCH   g-HCH   dieldrin   p,p'-DDD   p,p'-DDE  p,p'-DDT
                 1992 H1993 Q 1994 D 1995 Q 1996 I
                                                  e
                                                  si
                                                  E  5
                                                  E -5
& -<5
                                                                                       n
                                                        a-HCH   g-HCH    dieldrin   p,p'-DDD  p,p'-DDE   p,p'-DDT
                                                               1^1992 B1993 Q 1994 Q 1995 g1996 I



j
••







a-HCH g-HCH dieldrin p,p'-DDD p,p'-DDE p,p'-DDT

|B 1992 H1993 Q 1994 n 1995 • 1996 |
                             5
                            -15


                          i

                            -25
                                                              .n n
                                a-HCH   g-HCH   dieldrin   p,p'-DDD  p,p'-DDE   p,p'-DDT
                                                                          £  5
                                                                          £ -1


,-rm . . ._ r.
IIK^
if

-48— •

a-HCH g-HCH dield

-U


n p,p'-DDD p,p'-DDE p,p'-DDT
JQ1992 Q1993Q1994Q1995 >1996 |
IADN Results to 1996
                                                                                                                             Page 91

-------
Figure F4: Annual Average Wet Deposition Flux (ng/m2/d) of PCBs
                     Lake Superior
                                                                        Lake Michigan
               i-l l-m
r-rTTTI. rrr-Th
                         PCB52     PCB101
                                          Sum-
                                         PCB'0.1
                 31992 •1993D1994D1995 H19!
                                                     1
                                                     3 0.!
r-*Tb.ra  "L .n-lTh.nJTb
                                                                            PCB52    PCB101
                                                                    • 1992 •1993 01994 D1995 D1996 I
                                                                                                                                        PCB101      Sum-
                                                                                                                                                PCB'0.1
                                                                                                                       ID1992 D1993 O1994 Q1995
                                                Lake Erie
                                                                                                  Lake Ontario
                            I1
                            I O.i
                                         rffh,. HT  n.i-rTfL
                                                                                                              PCB101     Sum-
                                                                                                                      PCB'0.1
                                                                                              31992 D1993 a1994 Q1995 Q19
IADN Results to 1996
                                                                                                                        Page 92

-------
Figure F5: Annual Average Dry Deposition Flux (ng/m2/d) of PCBs
  I
                    Lake Superior
                                PCB101     Sum-
                                       PCB'0.1
                • 1992 B1993 O1994 D1995 Bigg6 I
                                                                    Lake Michigan
                                                                 31992 01993 O1994 O1995 •19961
                                                                                                 Data not available for Lake Huron
                          I
                                              Lake Erie
                                        [•1992 •1993 D1994 O1995 O19
                                                                         Data not available for Lake Ontario
IADN Results to 1996
Page 93

-------
Figure F6: Annual Average Net Gas Exchange Flux (ng/m2/d) of PCBs
(Positive values denote net gas absorption, negative values denote net volatilisation)
                  Lake Superior
                                                              Lake Michigan
                                                                   -oo
                                                   PCB18    PCB44    PCB52    PCB101   SumPCB'0.1
                                                                                               PCB18     PCB44    PCB52    PCB101   SumPCB'0.1
                                                          If 1992 g 1993 Q 1994 []1995 g1996 \
|n1992 •1993Q19&4 Q1995 g1996 I
1 .
e
SI
|
!
1 -5.
i
-9.


l|||||'LrLL|'LrLL|l^rLLLjl|L||||
il|J ^1 ^ [U{||




e
SI
1 "1'
_£_
^ -3
I
i







h


—
1


III ^^
L




1

1
PCB18 PCB44 PCB52 PCB101 SumPCB'0.1 PCB18
PCB44 PCB52 PCB101 SumPCB'0.1
IADN Results to 1996
                      Page 94

-------
Figure F7: Annual Average Wet Deposition Flux (ng/m2/d) of PAHs
* 7992 -1994: B(b)F; 1995 - 1996: B(b+k)F
 t
               Lake Superior
            11992 • 1993 Q1994 Q 1995 11
                                                   Lake Michigan
                              Sv^t
                                                               rrvrh
                                           PHEN     PYR     B(k)For     B(a)P
                                                         B(b+k)F*
                                                11992 11993 Q 1994 Q1995 |19!
                                                                         I 20
                                                                   PYR      B(k)For     B(a)P
                                                                          B(b+k)F'
                                                                                    Q1992 B1993 Q1994 Q1995 11996
8-
Q
£
                                          HHE
                                       B(k)For     B(a)P
                                       B(b+k)F*
                                                                  11992 B1993 Q1994 n 1995 B 1996
IADN Results to 1996
                                                                                 Page 95

-------
Figure F8: Annual Average Dry Deposition Flux (ng/m2/d) of PAHs
* 7992 -1994: B(b)F; 1995 - 1996: B(b+k)F
                    Lake Superior
                                                                      Lake Michigan
                                                   s
                                                   S
                                                                        n
                                                           PHEN       PYR
rtn-n
                                                                               B(k)For       B(a)P
                                                                              B(b+k)F*
                11992 • 1993 Q 1994 Q 1995 11
                                                                   1992 g 1993 Q 1994 Q1995 |1996 I
      a.
                                                                                                            PHEN        PYR
                         B(k)For       B(a)P
                         B(b+k)F'
                                                                                                                   H 1992 • 1993 Q1994 Q1995 >1996
                                             PYR       B(k)For       B(a)P
                                                      B(b+k)F*
                                                                                    PHEN        PYR
B(k)For
B(b+k)F'
                                                                                           11992 B1993 Q1994 n 1995 B 1996
IADN Results to 1996
                                    Page 96

-------
Figure F9: Annual Average Net Gas Exchange Flux (ng/m2/d) of PAHs
(Positive values denote net gas absorption, negative values denote net volatilisation)  * 1992 -1994: B(b)F; 1995 - 1996: B(b+k)F
    -50

   -100

   -150

   -200

   -250
                  Lake Superior
,n_
                   ft
                          B(k)For
                          B(b+k)P
              |1992 • 1993 Q1994 Q1995 11996
                        I
                        £
                        B)
                        ^


                        IL.
                        &
                        O -150

                          -200

                          -250
                                              Data not available for Lake Michigan
                                                                             Data not available for Lake Huron
                                                 B(k)For
                                                 B(b+k)F*
                                      1992 11993 Q 1994 FJ1995 ^1996 I
                                                                   Data not available for Lake Ontario
IADN Results to 1996
                                                                                                              Page 97

-------
Figure F10: Annual Average Wet Deposition Flux (ng/m2/d) of Metals
                    Lake Superior
                                   .n
                31992 D1993 D1994 D1995 D19
                                                 Data not available for Lake Michigan
n-i-L.
                                                                                                               • 1992 B1993 O1994 D1995 B19!
                        Data not available for Lake Erie
                                                                                           Lake Ontario
                                                                                       • 1992 •199301994 D1995 119961
IADN Results to 1996
                     Page 98

-------
Figure Fll: Annual Average Dry Deposition Flux (ng/m2/d) of Metals
                    Lake Superior
                                                                   Lake Michigan
                 n h    ,r-d~i    .nTI
II


£
C
g
1
Q
O





-



-
-



rh-i-ri rn~L«
                        1994 Q1995 a 1996 I
                                                               n1992 B1993 O1994 O1995 • 1996
                                             Lake Erie
                                                                                           Lake Ontario
                          *  800
                          u.
                          c

                          I  600
                          S 400. _
                                                   fcE
                                       [•1992 J1993 g1994 g1995 g1996 |
                                                                                       • 1992 H1993 Q1994 Q1995 ^1996 I
IADN Results to 1996
                                                 Page 99

-------
IADN Results to 1996                                                                                        Page 100

-------