PB85-18Q859
Combined Sewer Overflow Sediment Transport Model
Documentation and Evaluation
Sutron Corp.» Fairfax, Vfi
Prepared for
Environmental Protection Agency, Cincinnati, OH
Mar 85
L
of Commerce
InfofiiuiUon Service
-------
PB85-180859
EPA/600/2-85/024
March 1985
COMBINED SEWER OVERFLOW
TRANSPORT MODEL:
DOCUMENTATION AND EVALUATION
Thomas N. Reefer
Eric S. Clyde
The Sutron Corporation
Fairfax, Virginia 22030
Contract No. 68-03-2869
Project Officer
Lewis A. Rossman
Wastewater Research Division
Water Engineering Research Laboratory
Cincinnati, Ohio 45268
WATER ENGINEERING RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI. QSI0 45268
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1, REPORT NO,
EPA/600/2-85/024
2.
3. RECIPIENT'S ACCESSION NO.
4, TITLE AND SUBTITLE
Combined Sewer Overflow Sediment Transport
Model: Documentation and Evaluation
5. REPORT DATE
March 1985
6. PERFORMING ORGANIZATION CODE
7. AUTHORISE
Thomas N. Keefer and Eric S. Clyde
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
The Sutron Corporation
Fairfax, Virginia 22030
10. PROGRAM ELEMENT NO.
IBC822
11. CONTRACT/GRANT NO.
68-03-2869
12. SPONSORING AGENCY NAME AND ADDRESS
Water Engineering Research Laboratory-Cinti., Ohio
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13, TYPE OF REPORT AND PERIOD COVERED
Final 9/79 to 8/82
14, SPONSORING AGENCY CODE
EPA/600/14
IS. SUPPLEMENTARY NOTES
Project Officer: Lewis A. Rossman Telephone: (513)684-7603
16. ABSTRACT
A modeling package for studying the movement and fate of combined sewer overflow
(CSO) sediment in receiving waters is described. The package contains a linear,
implicit, finite-difference flow model and an explicit, finite-difference sediment
transport model. The sediment model is coupled to the flow model by means of a file
containing velocity, depth, and discharge at each model cross-section at each time step
The operation & utility of the model package were tested using data from a 20-km reach
of the Scioto River below the Whittier Street outfall in Lolumbus, Ohio. A preliminary
field investigation of the study reach in July 1980 collected sufficient data to parti-
ally calibrate the flow model. Data from a CSO event in September 1981 were used to
further calibrate the flow model & evaluate the sediment transport model operation.
The flow model reproduced stages & discharges with sufficient accuracy for linkage
with the sediment model. The sediment model produced smoothed estimates of sediment
concentrations that fell within the scatter of observed data in most instances. CSO
sediment sizes & the armored nature of the Scioto River channel were such that all
solids discharged from the CSO were convected through the reach with no deposition
even at low flow. Experiments with the sediment model indicate that it can be used for
qualitative assessments of the fate of various size sediment size fractions if proper-
ly calibrated.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Combined Sewers
**Sediments
**Mathematical Models
Water Quality
Scioto River
Sediment Transport
Sediment Sampling
Flow Routing
13B
t8. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (TMs Report)
Unclassified
20. SECURITY CLASS (Thispage)
Unclassified
21. NO. OF PAGES
__ 232
22. PRICE
EPA F«™ 2220-1 (R»». 4-77} PREVIOUS EDITION is OBSOLETE
-------
DISCLAIMER
The information in this dociuient has been funded wholly or
in part by the United States Environmental Protection Agency under
Contract No. 68-03-2869 to The Sutron Corporation. It has been
subject to the Agency's peer and administrative review, and it has
been approved for publication as an EPA document. Mention of trade
names or eomnercial products does not constitute endorsement or
recommendation for use.
11
-------
FOREWORD
The U.S. Environmental Protection Agency is charged by Congress with
protecting the Nation's land, air, and water systems. Under a mandate of
national environmental laws, the agency strives to formulate and Imple-
ment actions leading to a compatible balance between human activities and
the ability of natural systems to support and nurture life. The Clean
Water Act, the Safe Drinking Water Act, and the Toxics Substances Control
Act are three of the major congressional laws that provide the framework
for restoring and maintaining the integrity of our Nation's water, for
preserving and enhancing the water we drink, and for protecting the
environment fron toxic substances. These laws direct the EPA to perform
research to define our environmental problens, measure the Impacts, and
search for solutions.
The Water Engineering Research Laboratory Is that component oi: BPA's
Research and Development progran concerned with preventing, treating ,tnd
managing municipal and industrial wastewater discharges; establishing
practices to control and remove contaminants frora drinking water and to
prevent Its deterioration during storage and distribution; and assessing
the nature and controllability of releases of toxic substances to the
air, water, and land from manufacturing processes and subsequent product
uses. This publication is one of the products of that research and
provides a vital cosmunleation link between the researcher and the user
community.
This report documents the development and field application of a flow
and sediment transport model specifically designed to study the movement and
fate of sediment material from combined sewer overflows. The modeling package
reported on here will assist In the assessment of water quality Impacts from
urban non-point pollution sources.
Francis T, Mayo, Director
Water Engineering Research Laboratory
ill
-------
ABSTRACT
A modeling package for studying the movement and fate of combined sewer
overflow (CSO) sediment in receiving waters is described. The package con-
tains a linear, implicit, finite-difference flow model and an explicit,
finite-difference sediment transport nodel. The sediment model is coupled
to the flow model by means of a file containing velocity, depth, and discharge
at each nodel cross-section at each time step. The operation and utility of
the model package were tested using data from a 20-km reach of the Scioto
liver below the Whlttler Street outfall in Columbus, Ohio. A preliminary
field .Investigation of the study reach in July 1980 collected sufficient data
to partially calibrate the flow model. Data from a CSO event in September
1981 were used to further calibrate the flow model and evaluate the sediment
transport model operation. The flow model reproduced stages and discharges
with sufficient accuracy for linkage with the sediment model. The sediment
model produced smoothed estimates of sediment concentrations that fell within
the scatter of observed data in most Instances. CSO sediment sizes and the
armored nature of the Scioto River channel were such that all solids discharged
from the CSO were convected through the reach with no deposition even at low
flow. Experiments with the sediment model indicate that It can be used for
qualitative assessments of the fate of various size sediment size fractions
if properly calibrated.
This report was submitted In fulfillment of contract No. 68-03-2869 by
the Sutron Corporation under subcontract to W. E. Gates and Associates under
the sponsorship of the U.S. Environmental Protection Agency. This report
covers the period September 11, 1979 to December 31, 1981, and work was
completed as of July 30, 1981'.
iv
-------
CONTENTS
Foreword ............... .... til
Abstract .......................... lv
Figures ..................... vi
Tables vll
Acknowledgements .. ...... .......
1. Introduction .......... ............. 1
Background 1
Objectives ........ ........... 4
Scope ........... ............. 5
2. Summary of Findings 6
3. Conclusions and lecouaaendatlons 8
Conclusions ........................... 8
Recommendations ......................... 8
4. Sediment Model Theory ....... . ..... 9
Model Background .... ....... 9
Model Theory ........... . 14
Model Operation ................. . 28
5. Scloto liver Study ... ......... 40
Description of Study Reach ................... 40
Data Collection and Analysis Procedures 43
Model Results ........... .......... 53
6. Analysis of Results .. ................ 56
Flow Model 56
Sedinent Model ..... ........... 57
References . .............. .. 69
Appendix A: User Coding Information ...... ....... 72
Appendix B: Flow Model Source Code 94
Appendix C: Sediment Transport Model Source Code ...........123
Appendix D: Data for Scloto River Study ............... 146
Flow Model Input ................... 146
Flow Model Output ....... 154
Sediment Model Input ... ........ 184
Sediment Model Output 191
-------
FIGURES
Unaber Page
4-1 Coaputational Stencil for the Linear, Implicit
Finite-Difference Solution of the Flow Equations ......... 13
4-2 Computational Stencil for the Explicit Solution
of the Sediment transport Equations ...,..» 24
5-1 Scioto River Study Reach ...,...,....., 41
5-2 A Schematic Diagram of the Scioto River Study Reach «,..... 42
5-3 WMttler Street Contained Sewer Overflow Outlet 43
5-4 Typical teach of the Scioto liver ................ 44
5-5 Typical Cross Section of the Scioto River ..... 45
5-6 Bottom Profile of Scioto River and Model Cross Section Locations . 46
5-7 DH-59 Sediment Sampler Being Lowered off Frank Road Bridge , , , . 49
5-8 Scioto River Stage Hydrographs Between 4:00 p.m., 14 September
and 8:00 a.m., 16 September 1981 ................. 52
5-9 Variation of Suspended Solids with Time ...... 55
6-1 Deposition and Erosion at Section 2, Scioto River ........ 64
6-2 Model Results from Storm Hydrograph with CSO Sediment, Scioto River 65
6-3 Correlation of Suspended Solids, COD, BOD, and DO
at Route 762 Bridge 67
6-4 Correlation of Suspended Solids, COD, BOD, and DO
at Route 665 Bridge ........................ 68
vi
-------
TABLES
Umber Pag£
5-1 Bed Material Size Distributions ................. 47
6-1 Typical Particle Size Distributions ............... 59
6-2 Particle Size Distribution of Suspended Solids
In CSO's in San Francisco, California . « . . 59
6-3 Particle Size Distribution of Suspended Solids
in CSO's in Lancaster, Pennsylvania ............... 60
i-4 Particle Size Distribution for Street Solids
Samples from Washington, B.C. ..»..,.*,.,..«.... 61
6-5 Typical Particle Concentrations for Samples In This Study . . . , 61
6-6 Typical Parameter Concentrations for Sanitary Sewage,
Urban Surface Runoff, and Combined Sewer Overflows ...,,.* 62
vii
-------
ACKNOWLEDGMENTS
Sutron gratefully acknowledges the cooperation of federal, state, and
private organizations in obtaining data for this study. The U.S. Geological
Survey district office in Coltmbus, Ohio, was most helpful in providing flow
data. The Ohio Environmental Protection Agency provided much of the needed
cross-section information. The efforts of Burgess and Siple, Inc., of
Columbus in collecting the sediment samples and tf.l. Gates of Fairfax,
Virginia, the prime contractor, in coordinating the study are also Acknow-
ledged.
viil
-------
ENGLISH TO METRIC UNITS
cubic feet per second (cfs) x 0.02832
feet (ft) x 0.3048
Inches (in.) x 2.54
miles (mi) x 1.609
square miles (sq mi) x 2.590
cubic meters per second (in /s)
meters (m)
centimeters (cm)
kilometers (km)
2
square kilometers (km )
ix
-------
SECTION 1
INTRODUCTION
BACKGROUND
The model development and verification described in this report trace
their origin back to a number of previous Environmental Protection Agency
(EPA) studies. These studies and their influence are described briefly here.
Considerable effort has gone into the study of sewer systems, treat-
ment, and control. Less is known, however, about the impact on receiving
waters of material which escapes the sewers via urban stormwater runoff and
combined sewer overflows during storm events.
One of the early pieces of research indicating the impact of runoff
on receiving waters is described in a 1974 EPA report authored by the North
Carolina Water Resources Research Institute (1), An intensive study was
2
made of the runoff from a 4.33 km urban watershed in Durham, North Carolina.
The urban runoff yield of chemical oxygen demand (COD) was equal to 91
percent of the raw sewage yield. The biochemical oxygen demand (BOD) was
equal to 67 percent, and the urban runoff suspended solids yield was 20
times that contained in raw municipal waters for the same area. The study
identified the "first flush" phenomena, wherein water quality may deteriorate
drastically in the early period storm runoff as built-up pollutants are
flushed from the system. The importance of sediment as a pollutant was em-
phasized by the facts that plain sedimentation of the runoff resulted in 60
percent COD removal, 77 percent suspended solids removal, and 53 percent
turbidity reduction.
The Durham study was limited to direct urban land runoff. When this
runoff is collected in a combined sewer system and routed to a treatment
plant, additional problems are encountered. It is obviously uneconomical to
1
-------
design treatment facilities large enough to handle all of, say, the once in
100 years storm flow plus the normal municipal sewage load. Thus, at some
high flow rate provisions must be made to bypass the treatment facilities
with a mixture of sanitary sewage plus urban runoff. This combined sewer
overflow (CSO) material is characteristically dumped directly into a receiv-
ing water. The Durham study provides ample evidence that discharging the
CSO mixture is not very different from discharging raw sewage in the re
eeiving water. Strong evidence is present suggesting that CSO discharges in-
tensify dissolved oxygen sag and increase fecal coliform concentration.
The adsorptive and absorptive capacities of CSO sediments has a
significant effect on the pollution potentials of these sediments during
periods of re-entraimaent. Pitt and Field (3) have reported that little
is known about either the short- or long-term toxic effects of urban storm-
water runoff in a variety of waters and ecosystems. Since large amounts of
toxic materials such as heavy metals, pesticides, and PCBs may be dis-
charged along with nontoxie biological and chemical materials, it is
desirable to trace the route of these materials taken through a receiving
water system. Understanding the paths of sediment-related pollutants along
with their effects would permit the determination of the most cost effective
solution to the problm. This information would allow the selective treat-
meat of critical items while natural disposal means might be suitable for
other parameters. The results would be an improved determination of the
actual amount of treatment needed.
The need for studying the final resting place or "fate" of CSO
sediments has been fairly well established by previous and ongoing EPA
research. For example. Field, et al. (2) note that most urban street
runoff is sand and silt with pollutant loads attached to the fine (<43
micron) portion. Donigan and Crawford (4) established the principle of
computing transport of pesticides and other pollutants by multiplying the
sediment transport rate by a factor. An EPA (September 1977) contract with
Tetra Tech, Inc., of Pasadena, California, further establishes the correla-
tion between sediments and pollutant transport.
-------
The immediate precursor studies of the study described in this re-
port were conducted in 1979 and 1980 by the Sutron Corporation and Colorado
State University (CSD). In the study, "Dissolved Oxygen Impact from Urban
Storm Runoff (5)," a major study of recorded dissolved oxygen (DO) levels
below cities was undertaken. The results of the study Identified 11 sites
with strone correlation between DO deficits below the EPA 1978 needs survey
recommendations and urban runoff. The hypothesis was advanced that some of
the deficits might be related to entrainment of benthic sediments. In a
follow-on effort supported by a grant to CSU, the movement and effects of CSO
sediments in receiving waters were Investigated (6).
CSU conducted an extensive literature search for information on set-
tling velocity, size distribution, pollutant loading and other properties
nf C^O sediments. Sutron made use of this information to evaluate a modified
watershed-sediment model for determining the fate of CSO sediments. In ad-
dition to characterizing the sediments, a preliminary assessment was made
of the state of knowledge concerning the interaction between the sediments
and the receiving water and the impact of the biological community.
The evaluation of the sediment transport model was conducted on a
reach of the Cuyahoga River between Akron and Cleveland, Ohio, This reach
harf been identified in the DO study as one with a strong correlation bet-
ween urban runoff and DO deficits. Data on streamflow into and out of the
reach were provided by the U.S. Geological Survev (USGS), The USGS also
provided instream sediment discharge at upstream end. Sediment discharges
from the Akron raunlciBal treatment plant bypass, located near the upstream
end of the reach, were estimated f^om existing data. The model was used to
predict the movement and resting place of the sediments.
It was concluded from the model studv that qualitative predictions
of the fate of CSO sediments could be made. When combined with flood-fre-
quency analysis, the model coul^ be <»se^ to evaluate the resting time of
deposits, the concentration of sediments in the flow, and other facts useful
for impact analvsis.
-------
The Cuyahoga River study was not an adequate model verification be-
cause no data were available on sediment outflow from the study reach con-
current with sediment inflow data; no actual data on settling characteristics
or flow rates of the sewaee treatment plant (STP) bypass sediments were
available; no data were available to verify the buildup and erosion at the
locations oredicted by the model; and no data were available to determine
whether the sediments from the STP byoass behave as inert, noneohesive
particles as assumed and, if not, what the effect of this assumption is on
model results.
The results of the movements and effects studies (6) led to reconmen-
dations for further study of both sites with strong DO deficits after runoff
events and the potential of sediment models for fate and effects studies. The
Scioto River below Columbus, Ohio, was identified as a suitable site for
further study.
EPA responded to the recommendation for further study of the DO
deficit problem by initiating a request for proposals (RFP) for a detailed
study of the Scioto River from Columbus to Chillicothe, Ohio. A contract for
the studv was awarded to W.E, Gates and Associates of Fairfax, Virginia, in
the spring of 1980. Sutron Corporation and W.E. Gates nrooosed a modification
of the study to allow simultaneous study of sediment movement. The modifica-
tion was approved and the resultant effort is described in this report.
OBJECTIVES
The primary objectives of the research were to document and further
verifv the sediment model package develooed on an exoerimental basis in
Reference (6). The intent of the research was twofold. First, it was hoped
that an Improved data set from the Scioto River studv would allow better
verification of the theorv used in the model nackage. Second, a tool will be
made available to other researchers for USP in studying the fate of sediment
materials in streams.
-------
SCOPE
The effort was divided into two separate parts. The first cart in~
volved those tasks necessary to imnrove, test, and document the sediment
model package, and the second part involved those tasks necessary to apply
the model to data from the Scioto River study.
The tasks involved in the first part included
* complete restructuring of channel representation and storage in
sediment model;
• modification of the armoring and settling computations in sediment
model;
• improvement of coding structure in sediment model;
• testing of sediment model on simple cases for reasonable behavior;
• preparation of coding instructions for flow and sediment models;
• preparation of program lists for flow and sediment models; and
• writing operating procedures and calibration instructions.
The tasks involved in model testing using Scioto River data
include
* selecting the study reach;
* acquiring and processing cross-section data;
* studying the selected reach at low flow conditions;
* setting up and preliminary testing of the flow model;
* acquiring and analyzing the storm runoff data;
* calibrating the flow model;
•* testing the sediment model; and
* evaluating the model package.
-------
Section 2
SUMMARY AND FINDINGS
Findings Concerning the Model Package
A major part of the work conducted under this study consisted of
testing and documenting a flow-sediment transport model package. The
flow and sediment models are separable. The flow model builds a file of
discharge, velocity, and depth Information that is used by the sediment
model. The following should be noted;
* the flow model is of the linear, implicit type based on
full equations of unsteady flow;
• the flow model is flexible and will provide detailed
velocity, depth, and discharge information at 40 cross
sections in a stream reach;
» the flow model is generally stable but sensitive to the
accuracy of the downstream boundary condition when observed
stages are used as input;
• the sediment transport model is an explicit solution of the
governing equation of sedinent continuity;
* the sediment model will route multiple siie fractions
with variable specific gravities and will simulate
armoring by large size class material;
• the complex nature of explicit solution and large amount
of output demands graphical output for interpretation;
• the lower size limit of theory in model of 0,063 ma,
noncohesive sediments may restrict the model's use;
* the independent nature of the flow and sediment models
require that only small changes in cross-section geometry
take place for realisitic answers;
Findings ConcerningSediment Movement in the Scioto River
The model package utility was verified by modeling a 20-km reach
of the Scioto River below Columbus, Ohio. A specially designed data set
was collected for use in the model package as part of a companion general
water quality study. Findings from the Scioto River study are as follows;
-------
of two storm events sampled; the first provided only
sediment size information;
the second storm event data set was good and provided
most of the information needed for the model package;
the flow model was rapidly set up and calibrated;
the flow model reproduced observed stage variations on
the river with maximum errors of 1 foot and mean error
of 4 to 6 inches;
the size distribution of sediment materials from the
Wilttier Street CSO is smaller than the considered
lower limit of the sediment model technology;
material from the two events sampled is flushed through
the reach with no aggradation, even at low flow;
the predicted concentration of sediment are qualitative
in nature but well within the 20 to 50 percent errors
associated with sediment data; and
modeled, and observed variations in sediment transport
are closely in phase with variations in other water
quality parameters such as BOD and COD.
-------
SECTION 3
CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS
The following conclusions were drawn with respect to the model
package and its application:
* The model package is a useful tool for qualitative
assessment of the movement of nonporous, noncohesive,
biologically inert sediments In receiving waters.
* Considerable knowledge of hydraulics and hydrology may
be required to set up, run, and Interpret model output.
* Hie sediment-transport in the Scioto River Is similar
to that in a rigid boundary channel.
• All the sediment material from the Whittier Street
CSO is fine enough to be transported by the Scioto
River even at low flow,
* Sufficient correlation exists between variations in
sediment-transport and variations in other water-quality
parameters to suggest a close connection between the two.
RECOMMENDATIONS
The following recommendations are made concerning further use and
improvement in the model package:
• A study to test the operation of the model under actual
conditions in a sand-bed stream would be worthwhile. To date,
only hypothetical tests have been made.
• A study In which the model was used to estimate the fate
of some toxic materials associated with sediments would be
an easy extension of the package.
* Research into the transport characteristics of materials
finer than 0.063 nan should be incorporated in the model
to extend its range of utility.
* A small-scale experiment should be conducted with tracers,
possibly in a laboratory, to verify the fate predictions
of the model under controlled conditions.
-------
SECTION 4
THEORY
MODEL BACKGROUND
The model package described in this report consists of two components,
a one-dltnensional flow model and a one-dimensional sediment transport model.
The flow model Is based on technology developed through research of the U.S.
Geological Survey (USGS). The sediment model is based on research at CSU
sponsored by the EPA and the U.S. Forest Service. The models are run sep-
arately so that a variety of sediment boundary conditions may be tested
without rerunning the flow model. The models are coupled by data written
to files.
The flow model was originally used by USGS personnel to simulate
highly unsteady flows on the ChattahoocMe River above Atlanta, Georgia (7).
The solution method used in the model is called fully-forward, linear, im-
plicit and is based on complete, one-dimensional forms of the continuity
and momentum equations describing open-channel flow. The model proved highly
effective in USGS applications. On the Chattahoochie River, a factor of 16
variations In flow occurring in 10 minutes was nodeled. The model flow data
were used as a basis for an accurate heat and mass transport model, Sutron
used the model with good success in thf study «f the Cuyahoga liver (6).
The URGS has available a siwpHfied version of the model that it calls
J-879 (8).
The sediment transport routines were originally develoned by Colorado
State University for the U.S. Forest Service (9) under sponsorship of the
EPA Athens, Georgia, research facility. A model was developed for use in
estimating sediment yield from forested areas. By varying ground and tree
canopy cover coefficients, the effects on sediment vield of various forest
management practices could be determined.
-------
The GSU sediment transport routines were chosen because of their
physical base. That Is, the routines are based primarily on the equations
that describe sediment transport and very little on empirical relationships.
This approach should produce a more generally useful taodel.
The next two sections of the report describe in detail the theory
and coratmtatloital techniques used hy the flow ?md «edimer»t models. Following
the discussion of theory, a general section on the use and limitations is
ptwr< ded.
MODEL THEORY
This section describes in detail the theory on which the flow and
sediment model are based. The numerical computation techniques used in
the models and model coupling are also discussed. The flow node! is des-
cribed first, followed by the sediment model.
Flow Model Theory
Techniques available for modeling unsteady open-channel flow have
advanced rapidly in the past 10 to 15 years, but almost all isodels are
based on the same basic equations. These are continuity equations describing
the conservation of mags.
and the conservation of momentun
M . n 9U
3t * U 3x
10
-------
»»
where
U - cross-sectional average velocity,
A " cross-sectional area,
x m longitudinal distance,
t a time ,
q « lateral Inflow per unit length,
g a acceleration of gravity,
y = depth of flow,
z * elevation of the bed above some datum, and
S, = friction slope,
This friction slope nay be evaluated from either the Chezy or the Manning equa-
tion, The Manning equation
s
where
n •» Mannings roughness coefficient,
Q » discharge, and
j» » hydraulic radius.
will be used In this report, Equation 3 is not dimensionless but is expressed
in SI units, fo convert to the Inch-pound system of units, a nuraerlcal value
of 2.22 must be placed in the denominator.
Equations 1 and 2 are nonlinear in velocity, and no practical analytic
solutions are available for unsteady flow. Early efforts to develop computer-
based numerical solutions centered around the method of characteristics [Lai,
(10), Yevjevlch and Barnes (11), Wylie (12)]. More recent efforts have
centered around direct finite-difference solutions. Explicit techniques, an
11
-------
example of which was pioneered by Garrison, Granju, and Price (13), are
bounded by rigid stability criteria and tend to be expensive. Probably the
earliest truly practical solution technique was the nonlinear, implicit,
finite-difference scheme of Miein and Pang (14) which is unconditionally
stable for any time step and allows an accurate and economical solution for
most flow problems.
The solution technique chosen here, called linear, Implicit, is a sub-
set of the Araein and Fang technique which eliminates the need for iteration
when advancing from time step to tine step. In Figure 4-1, which illustrates
the f inite~diff ereiice grid, the solid black circles represent points where
all variables in Equations 1 and 2 are known, and the open circles represent
points at which variables are unknown. The subscript j designates the time
grid point, and the subscript i designates the space grid point.
In viewing Figure 4-1, it is helpful to think of the stream as flowing
from left to right and of time as advancing from bottom to top. Time and
space derivatives are represented by the following respective finite-dif-
ference approximations:
fj
3t ~ 2At i + I i + 1
(4)
and
. ff
Ax i + 1 "
where
At » time step,
Ax * distance step, and
f » the variable whose derivative is sought, that is, U, A, or y,
12
-------
12 ~ K-t K
•/T-* O O eoet Q tfQ O), O ooo DOS
S r-^
Figure 4-1. COMPUTATION STENCIL FOR THE LINEAR, IMPLICIT
FINITE-DIFFERENCE SOLUTION OF THl FLOW EQUATIONS
The approximation of the space derivative at the unknown tine level (j+1)
gives this scheme the name "fully forward" implicit. According to Fread (15),
this scheme is the most stable of the four-point difference techniques. It
must, however, be operated with a reasonably small grid size to maintain
accuracy.
When the difference approximations, Equations 4 and 5, are applied to
Equations 1 and 2, a system of equatijns of the following form is obtained:
and
4- (C )V+I + (C >JUJ+I +
* tL;y + tC;U
where B, C, D, and E are coefficients which are functions of fix. At, U, y, and
Manning n at the known time level, The friction slope at the new time step
was approximated by use of a. Taylor series expansion about the old tine-step
value. For a given number of grid points, Nt there are N-2 such equations,
Two additional equations must be provided at the upstream and downstream
boundaries of the modeled stream reach (1*1 , i=N, right and left of Figure 4-1),
The flow model documented here provides several options for both these upstream
and downstream boundaries. The options are discussed in the final part of
Section 4 of this report,
13
-------
When all N linear equations have been defined for a single time step,
a pentadiagonal matrix results. The model is advanced from the known (j)
time level to the unknown (j+1) time level by Inverting the pentadiagonal
matrix and thus solving for U., j+1, and y± ,+1 for all N values of i. Von
Rosenberg's (16) technique for pentadiagonal matrices (a double-sweep al-
gorithm) is used in the inversion.
The lateral inflow term, q, is important to many modeling applications.
It can be used to handle small tributaries (negligible momentum contribution)
as well as positive and negative seepage.
Sediment Transport Model Theory
The theory of the sediment transport routines used in the model
package is presented in Reference (6). No substantial changes were made
for this study. A great deal of effort, however, was placed in revising the
numerical calculation procedures. The theory from Reference (6) is reviewed
here so that both flow and transport theories are available in one reference.
The computational technique for the sediment model is described (allowing
the theoretical review).
The movement of sediment in a channel is governed by the equation of
continuity for sediment and sediment transport equations (such as fall
velocity and critical shear stress). The amount of sediment that could be
transported is described by equations of sediment detachment by the flow.
The equations used In the model are described below. They assume sediment
particles are noncohesive, have constant specific weight, and are biologically
inert.
The equation of continuity for sediment can be expressed as (Reference
(9)).
+ + m g (volume/unit length/time) (8)
3x 3 ti 3 1 s
14
-------
where
G
(volume/volume), (9)
G = the total sediment transport rate by volume,
C = the sediment concentration by volume,
z = the net depth of loose soil,
p = the wetted perimeter,
g = the lateral sediment inflow, and
s
A = the flow area.
The sedloent load can be broken into two main categories, bed
material load and suspended load. Bed material load consists of sediment
particles that move by saltation (jumping) or rolling along the stream bed.
Suspended load consists of particles that are transported above the bed by
the turbulent nature of the flow.
To simulate the actual grain size distribution found in soil samples,
the sediment load may be broken into any specified numbers of size fractions.
The sediment continuity equation is then written using arrayed variables
according to sediment size. The percentage of sediment in each size fraction
is accounted for in the transport equations.
9G (I)
—§_— + —__ + —!____ = g(i) (volume/unit length/time) ,
where I indicates the size fraction that is being calculated (1=1 number
of size fractions, currently limited to 10 in the model).
The sediment transport equations are used to determine the sediment
transporting capacity of a specific flow condition. Different transporting
capacities are expected for different sediment sizes. The transporting rate
of each sediment size can be divided Into the bedload transport rate and the
suspended-load transport rate. Before a particle can be transported, however,
15
-------
it mist be detached from the channel bed, (In all cases, "particle" will
refer to spheres with specific gravities of 2.65. The model will accept
other specific gravities, but this will be discussed later.)
When a river flows over its bed, It exerts a tractive force on the
bed in the general direction of the flow. This force is called the boundary
shear stress and may or may not be large enough to cause sediment particles
of varioi'S sizes to move. The shear stress at which a given particle begins
to aiove is the critical shear stress. Critical shear stress depends mainly
on the specific gravity and diameter of the particle and is given by the
following equation:
T = S (Y - y)d (force/area), (11)
ess s
where
T - critical shear stress
c
Y B the specific weight of sediment,
y - specific weight of water,
d ~ particle diameter, and
6 = a constant,
s
The general form of this equation Is attributed to Shields, who com-
pared the ratio of gravitational forces holding a particle down to the in~
ertial forces of the flow wanting to carry it away. Analyses comparing
the ratio of the energy to cause particle motion and to resist motion give
similar results. Laboratory experiments have shown that this beginning of
motion criteria Is valid for particles with specific gratlvities from 0.25
UD to 8. There is little reason to suspect heavier particles would not also
follow this relationship. The constant, 6 , h*»s bf-en reported to be 0.06 by
Shields (17) and 0.047 by Meyer-Peter and Muller (18).
Shields1 critical shear criterion is generally accepted for cohesion-
less particles of 0.0675 mm or greater sand sizes. Sediment that consists
of silt and clay particles shows greater resistance to erosion.
16
-------
Equations describing the bed load transport generally follow the form
given by BuBoys (19) and is closely related to the critical shear stress
criteria. These equations are written as:
q, « a(t - T ) (volume/unit width/time) (12)
o o c
where
Q - the bed load transport rate in volume per unit width.
b
T - the boundary shear stress acting on a sediment particle and
o
a and b « constants.
The boundary shear stress can be expressed by:
T - 4- pfV2 (force/area)
o o
where
f « a Darcy-Weisbach friction factor due to grain resistance,
p = the density of water, and
V = the average flow velocity.
numerous laboratory experiments have been conducted to determine the
values of a and b. A simple and widely used bed load transport equation is
the Meyer-Peter Muller equation (20):
» . § _ (T _ T )1*5 (volume/unit width) (14)
b r ( ~\ ° c
/p (Y - Y)
s
A discussion of various bed load equations is found in Reference (19).
The Meyer-Peter Muller bed load equation is incorporated in the mwdel at
present but any other formulation could be used if proven more acceptable
17
-------
for the particular type of modeling to be done. Reference (20) gives a
complete description of numerous other formulations and their limitations.
The suspended load plus the bed load gives the total sediment load
carried by the stream. Sediment that is carried in suspension consists
usually of smaller sized particles continuously supported by turbulence.
Settling velocities for suspended loads are usually quite small.
One of the most widely recognized methods for estimating suspended load
was developed by Einstein (22) and was modified by Colby and Hembree (23).
The modified Einstein procedure is incorporated in the model and Is described
below.
The sediment concentration profile which relates the sediment concen-
tration with distance above the bed (9) can be written as
Bw
(dimensionless), (15)
Ca*
where
C
| = the sediment concentration at a distance 5 from the bed,
C ... * the known concentration at a distance "a*" above the bed,
a*
IL, *> the hydraulic radius, and
w ** parameter defined as
V
____ (dimensionless) (16)
Here, V is the settling velocity of the sediment particles, and IL is the
S:
shear velocity defined as:
(length/time)t (17)
18
-------
1m which specific shearing stress, TA, is defined as:
T - - fpV2 (force/area), (18)
A logarithmic velocity profile is commonly adopted to describe the
velocity distribution of turbulent flow and can be written
ue e
=*• - B. + 2.5 An (-&-) (dimensionless), (19)
U* l ns
where
U = point mean velocity at a distance £ above the bed,
B. - a constant dependent on roughness, and
n = the roughness height.
The integral of suspended load above "a*1* level in the flow is obtained by
combining Equations (15) and (19) as follows;
R
q - / U C dC (volume/unit length/time)
s a* I ^
(20)
+ 2.5 i (-S-;"1
n n
s
Let
o = ~- (dimensionless), and
R
G - ~~— (dimensionless)
R
19
-------
and substitute them into Equation 20 :
q » C JLa* ——
S ** * (1 - G)W
,s , - ,5
£no
(volume/unit length/time) (21)
According to Einstein (22), the sediment concentration near the bed layer,
C *, is related to the bed load transport rate, q, , as:
9 D
q. = 11.6 C .U,a (volume/unit width/time) (22)
D 3" "
where a is redefined as the thickness of the bed layer, which is twice the
size of the sediment.
The average flow velocity, V, is defined by the equation:
/R u d£
V « °_—§— (length/time). (23)
/R dC
o
Using Equation 12 ,
V =B + 2.5 £n /R \ (dimensionless). (24)
+ 2.5 £n /R \
hr)
Vs/
Einstein (41) defined the two integrals in Equation 21 as
T \w
I ~ Q 1 ,ja (dimensionless) (25)
and
/ \w
iii _ « i
(dimensionless) (26)
20
-------
Since the integrals J and J_ cannot be integrated in closed form for most
values of wt a numerical method of determining J. and J- developed by Li
(9) is adopted in this study.
Substitution cf Equations (22), (24), (25), and (26) into Equation (21)
yields the following expression given by Simons et al., (24):
W
+ 2.5 J
2
(27)
11.6 (1 - G)
(volume/unit width/time)
The total sediment load per unit width is
q = q + q (volume/unit width /time), (28)
CDS
and the sediment transporting capacity of the section G is:
G = Pq. (volume/time), (29)
where
P = the wetted perimeter of the section.
The value of P can be approximated as the top width in wide channels.
When considering transport by different sizes, Equation (29) should
be modified as follows:
G (I) = PF (I) q (I) (volume/time), (30)
c at
where F (I) - the adjusted fraction of the sediment in the i size.
21
-------
The percentage In each size fraction on the surface changes over time
because of armoring. Armoring occurs when the water transports the smaller
sizes more easily and leaves the larger size fractions behind. Thus, the
percentages of surface material need adjustment each time step. If the
total loose soil depth is greater than D0» (the size of sediment for which
o*t
84 percent of the sample is finer), the adjusted percentages, F (I),
3
can be written as
(!) , (dimensionless) . (31)
a
1-1
M
If the total loose soil depth. _ , Z(I), la less than B_, , the adjusted
I™! I5*»
percentages must account for the layer of undisturbed soil that is dis-
tributed according to the original percentages plus the loose soil that
covers it :
MD
1
a
Dr
M
D -I Z(I)
8* I-1
(dimenslonless) (32)
Often a size class or type of sediment particle is not found initially
in the bed material but is transported into the reach of the water flowing in
the channel. For exanple, the transport of heavy metals In a CSO may affect
material into a channel reach are used to further modify the adjusted per-
centages of size classes found in the bed. This modification was added by
Sutron as part of this study.
The amount of sediment detachment from surface bed runoff is deter-
mined by comparing the sediment transporting capacity of the total available
amount of loose soil. By substituting the sum of the transporting capacities,
M
I G (I), (given by summing the transport rates for M size fractions) into
1=1 c
the transporting rate given by Equation (8), the total potential changes
in loose soil storage *re determined as
22
-------
p
If SZ >_ -2, the loose soil storage is enough for transport and no detach-
P
aent of soil by surface runoff is expected. Soil is detached if £2 < -Z and
the amount of detachment is
D - -D£[AZP -I- 7,j (length), (34)
where
D •» the total amount of detached solid and
Dj » s detachment coefficient with values ranging from 0.0 to 1.0
depending on soil erodibillty
In flow over a nonerodible surface, the value for D,» is zero; in a river
where the riverbed is always loose, the value for D,. is unity.
The new amount of loose soil is further modified as follows:
Z(I) - Z(I) + D F(I) (length), (35)
where £(I) is calculated for each size fraction of sediment.
The basic theory used in the sediment model has now been presented,
and the computational procedure used in the model can be discussed. The
differences between the model as documented here and the original CSU
model are discussed.
In contrast to the flow model, the sediment transport model uses
explicit calculations. That is, no matrix of linear equation constants
must be created and Inverted to advance from time step to time step.
Instead, a series of algrebraic equations based on known values at three
points in space and time is used to compute values at one unknown point
in space and time. The computational stencil is illustrated in Figure 4
-------
T »•*••»
o «
12 J l+t CO*»UTAT«>N POINTS
• ALL VALUES KNOWN
a v*
Figure 4-2.. COMPUTATIONAL STENCIL FOR THE EXPLICIT
SOLUTION OF TIE
The calculation of derivatives can be weighted in both time and space by
the factors UFA and WFB, respectively (Figure 4-^2), The coefficients are
generally set to 0.5 and roust be 0.5 or less for model stability.
In the original CSU model, as described in References (6) and (9),
computation was specifically designed for watershed modeling. Storage
was allocated for the four general computation points, and values were
moved into and out of the four general points from auxilary storage
arrays. No subscripted variables were used in the calculations. This
computation method worked well In watersheds because of channel branching
and a wide variety of watershed segmentation. In stream reaches, however,
the technique of four general points was exceptionally difficult to follow.
As part of this contract, the computation scheme was modified so
that the sediment model storage and computation were similar to those in
the flow model. In the model presented here, all required values at the
known (j) time level are stored in one-dimensional, subscripted arrays.
Similar arrays are defined for the unknown (j-fl) time level. The explicit
calculations for the values at the unknown level proceed downstream by
means of computational loops that advance from i=2 to i=N-l. When one time
step is completed, the known level, j, is exchanged with the newly computed
time level, j+1, and the process repeated.
24
-------
Changing from the watershed format to the array format involved
changing most of the variable names in the program. The resulting model,
however, is much easier to diagnose and much more compatible with stream
app*ications.
At this point, it is appropriate to discuss the coupling between
the flow and sediment models. The flow model produces for each tine step
a value of velocity and depth at the grid pcints (cross sections), which
represet.^ the stream reach under study. The flow model writes the velocity
and depth for each time step to a file. The sediment model reads the
depth and velocity information for each time step as required. Thus, the
sediment model can be run with a wide variety of boundary conditions with-
out rerunning the flow model. This inherently implies that no major changes
in cross-section geometry occur because of sediment transport. In practice,
this means that the model must be used over reasonably short tine periods
such as one week to one month.
It is feasible to combine the two models and change the flow model
cross-section geonsetry between time steps based on the results of the
sediment calculations. In practice, this often results in an unstable
model and is seldom justified,
The mechanics of the sediment model calculations are as follows.
For a given set of four grid points [(i,j), (i,j+l), (i+l,j), (1+1,j-H)] ,
the transporting capacity is first determined by using Equation 30
and the computed flow conditions from the water routing model. The poten-
tial sediment load concentration for a given size, fraction is then
P Gc(I)
C ,,..> = (volume/volume), (36)
These qualities are at time N 4- 1 and space j + 1 in the space-time plan.
When computing the potential sediment transport, the excess shear may be
zero or less, indicating that at that section of channel that particular
25
-------
sediment particle will settle out. Even though the excess shear is nega-
tive, some particles may be transported downstream because their settling
time may be too slow ma compared with the time it takes the particle to
move downstream at the average stream velocity. Thus, a certain, minimum
transport rate is maintained for that particular class of particles, This
minimum rate may be near zero when settling velocities are large enough.
This capability was also added to the model by Sutron as part of this study.
"Hie potential change in loose soil storage for sediment in a given
size fraction is
_ 9
- a)
(1 - b) 4 (CCI^A^1 - C(I)J Aj) ]}
(length) (37)
If &Z (I) is positive, that size of sediment is aggrading on the bed; if
it is negative, that size of sediment is being transported off the bed.
The actual transport rate depends on both the availability of material
P
and the transporting capacity of the flow. If dZ (I) >_ -Z(I), the avail-
ability is greater than the transporting capacity, Thus» the transport rate
for material in size fraction I is equal to its transporting capacity or
" CP(I) (volume/volume), (38)
and the actual change in Z(I) is:
AZ(I) - AZP (I) (length) (39)
26
-------
If AZ (I) < -Z(I), the availability of material is less than the
transporting capacity. The transport rate is limited by the availability
of loose soil, and the bed material concentration is, therefore,
""1"1
(b) - g(I)At - e-G(I>* (1 - a) +
, a)
- ^ (length;
and
AZ(I) = ~Z(I) (length). (41)
The sediment transport rate Gg(I) is determined by Equation 9 as
(volume/time), (42)
and the amount of loose soil available at the next time increment is
Z(I) » Z(I) + AZ(I) (length) (43)
The computation of the transport capacity, armoring and loose soil
percentages, and the routing computations are in separate subroutines.
This allows the program to be more easily understood and changes to dif-
ferent transport capacity calculations or routing schemes to be more
easily accomplished.
27
-------
MODEL OPERATION
The preceding sections of this report described the general theories
and equations on which the model package is based. This section describes
operational features, limitations, and operating procedures. Model coding
instructions are presented in Appendix A.
Flow Model Features andLimitations
The flow model included in the package is a thoroughly tested and
reliable tool that incorporates a nuraber of features for flexibility and
ease of use. The model has the following general features:
• it is based on complete continuity and momentum equations
describing unsteady flow;
• stream reach geometry is represented by up to 40 cross sections;
• cross sections are depicted by point pairs of distance and
elevation above arbitrary datum;
• it has a single value of resistance to flow at any cross
section;
• resistance to flow at each section is constant or up to second
degree polynomial function of depth of flow;
* it has arbitrary cross-section spacing;
• it can handle up to 20 tributaries;
« the lateral inflow or seepage is specified for each subreach
(up to 39 subreaches);
* initial conditions are calculated automatically from upstream
inflow and lateral and tributary flows at time equal zero by a
step backwater subroutine;
• a variety of upstream boundary conditions are available, In-
cluding single valued rating curve, specified stage, and speci-
fied discharge with model computing stage;
* a variety of downstream boundary conditions are available, in-
cluding constant depth (lake or ocean), self-setting based on
previous time step, and specified stage;
28
-------
a variety of output options are available, including sup-
pression of cross-section properties printout, selection of
cross sections for depth/discharge output, and skipped time
steps between printouts;
no limit is placed on the number of time steps that can be run
at once;
velocity, depth, discharge, and water surface elevation are
predicted at each cross section for each time step;
it is applicable to stages ranging from zero to the onset of
supercritical flow with short subreaches (one or two cross
sections) of supercritical or adverse slopes acceptable; and
it is exceptionally stable and will accept time steps from
minutes to hours with maximum accuracy being achieved when
the product of the time step and the average velocity equals
the average crass-section spacing.
The general limitations of the flow model are as follows:
* the cross-section spacing must be chosen carefully around
sudden changes in slope or channel slope (see operating pro-
cedures section);
• it is not unconditionally stable since instabilities may be
caused by drastic changes in flow (say factors of 5 or 6)
between time steps or by drastic changes in cross-section
properties over snail changes in depth;
* it will not handle long reaches of supercritical flow (un-
common in applications in any case);
» it uses a single value of roughness at each cross section, but
the value may be a function of depth;
• the momentum of tributary flows is not considered;
• it is not directly coupled to sediment model, and its cross-
section geometry must be reasonably constant over the study
period; and
* the backwater subroutine will occasionally not converge around
rapid changes in slope and will require addition of supplemental
cross sections.
29
-------
Sediment, Model Featuresand Limitations
The sediment model included in the package has been thoroughly
tested as part of the study described here. It has been designed for
compatibility with the flow model described above. The general features
of the model are as follows:
• it is based on physical process equations rather than on
empirical relations;
* it provides simultaneous routing of up to 10 size fractions with
consideration of channel armoring;
« it handles variable specific gravity for each size class;
* the stream reach geometry is represented by up to 40 cross
sections and all geometry data are passed from the flow model;
• it permits a variety of channel boundary conditions including
uniform sediment size distributions at all sections or arbitary
size distributions at some or all sections;
* it handles a variety of sediment inflow boundary conditions at
the upstream end of the reach, including steady input and input
as a function of flow for each size class (rating curves);
« it handles up to five sources of lateral sediment inflow (this
is less than the allowed number of tributaries in the flow
model);
* it handles steady or unsteady lateral sediment inflows;
• it has the ability to start the sediment model at an arbitary
point within the time range of the flow model calculations and
allows periods of steady flow or flow model Initialization to
be omitted;
• it has the ability to set upstream sediment inflow to zero below
a specified minimum discharge;
• it has a variable soil detachment coefficient;
* it handles a variety of output options including English or
metric units, skipped time steps between printouts,and suppression
of general information printout;
* the number of time steps is less than or equal to the number
of time steps available from the flow model;
30
-------
It predicts total transport rate, cumulative aggradation/
degradation, concentration, and aggradation/degradation by
size class at e-
-------
model. Items marked with an asterisk (*) are desirable but not absolutely
necessary;
* naps of study reach;
« cross-section geometry (nay be taken from maps if no other
sources are available);
* estimates of resistance to flow (Manning's n value) at each
cross section (may be calculated if depth profiles are avail-
able - - see following data items)|
(*)» depth discharge rating curves for points in the reach and at
the upstream boundary;
(*)» flow depth at each cross section for one or more steady flows;
(*)* information on tributary inflows [_A combined sewer overflow (CSO)
entering within a model reach will be considered a tributary.] j
• stage-discharge hydrographs at the upstream boundary for periods
of interest; and
(*)• stage-discharge hydrographs at intermediate points in the reach
for the same period as the input hydrography.
The flow model can be set up and run with nothing more than geo-
metry and roughness data. The less information that is available, the
less accurate the results will be. For truly accurate transport modeling,
steady flow depth profiles (depth at each cross section for steady flow)
at several discharges are highly desirable. Roughness variations with
depth and reach storage cannot be accurately modeled without such infor-
mation.
The following steps must be taken to process the data and prepare
the flow model for calibration. Optional steps are marked with asterisks (*)
* code the geometry data (cross sections) in point pair form
according to instructions given in Appendix A;
* code the estimated roughness data;
• determine Ax's between cross sections from maps. Note that in
typical streams a Ax of 0.25 to 1.0 mile is usually satisfactory.
32
-------
Use close spacing around constrictions or downstream of sudden
expansions. Use close spacing upstream of points at which the
slope of the bed increases or decreases greatly;
• select a model time step. In typical streams 20 minutes to 1
hour is satisfactory. Maximum accuracy occurs when, on the
average, the product of the velocity and the^time step is equal
to the average Ax. Maximum accuracy usually requires small time
steps with a tradeoff in cost;
• select upstream and downstream boundary conditions for the model.
Obtain an upstream rating curve if needed;
• determine any tributary and lateral inflows for periods of in-
terest or functions of time;
• code a period of low steady flow following the coding instruc-
tions on Appendix A;
• run the flow model for sufficient time steps at steady flow to
check for stability;
(*)• if the model is unstable at steady flow, first check the up-
stream inflow and rating curves (if used) for accuracy; if they
are correct, plot the unstable water surface and the longitudinal
channel bottom profile. Locate the point at which instabilities
originate and add cross sections upstream of that point. Reducing
of the time step size may also help;
(*)• continue to add cross sections or change the time step until
the model will run a low, steady flow with no instability.
Increasing values also helps in some cases. In most cases the
model will run on the first attempt;
• proceed with calibration if data are available.
The following steps should be taken to calibrate the flow model so
that it accurately reproduces observed flow events. The amount of calibra-
tion that can be achieved depends on the available data. Maximum accuracy
occurs when steady flow profiles are available. Optional steps are marked
with asterisks (*). The steps for calibration are
• calculate the roughness coefficients (n values) at each cross
section based c.i known depths at steady flow (25) ;
2
(*)• fit second-order equations of the form n - n + n-y + n»y
through the n values calculated; °
33
-------
(*)» run the flow model with the calculated roughnesses at the ap-
propriate steady flows to ensure Its accuracy;
* in the absense of the first three steps, compare the depths or
elevations predicted by the flow model at steady flow to known
values at upstream and downstream boundaries, bridges, or other
known points;
* adjust the roughness values at each cross section until the model
matches observed conditions at steady flowj
« when adjusting n values, proceed upstream. Match the downstream
boundary first and work upstream section by section. Plots of
the modeled versus observed water surface are very useful. The
model is extremely sensitive to n values near changes in slope
and almost insensitive in reaches where ponding occurs. In
most cases 0 values much larger than expected will be required
around slope changes - - values of 0,1 are not unusual for short
reaches;
* code up on an unsteady-flow hydrograph. At the same time it is
useful to store files containing observed outflow or stage at
points in the model reach if such data are available,
• run the flow model over the period for unsteady flow and chfcck
for stability;
(*)» If the model is unstable, first check the input data for
accuracy, particularly for shifted decimal points that change
depth or discharge by factors of 10 or more;
(*)* if the input data are correct, experiment with shorter or larger
time steps;
(*)» if the model is still unstable, add cross sections upstream of
the•instability and repeat the steady flow calibration. In-
stabilities will most often occur at the downstream boundary or
at breaks in bed slope. If the self-setting downstream boundary
condition is being used, make sure that the water surface
slope is sufficient to move the specified quantities of water
through the last reach at the given bed slope;
* compare the output stage and/or discharge from the model with
known values. Plots of stage/discharge versus time are vital
to this step;
(*)* if depth profiles are available, initial comparisons will be
quite good. Stage predictions will be good, but timing may be
off. To correct timing errors it may be necessary to increase
or decrease Ax values slightly. Steady-flow calibration must
then be repeated. Adjusting Ax can usually be justified be-
cause of short-circuiting of channel meanders at high flow, or
34
-------
conversely too-short estimates of &x at low flow. Some timing
errors can be corrected by changing n values, but such changes
cannot be justified if depth profiles were used to compute
roughness; and
(*)• if depth profiles were not used to compute roughness, it is
likely that both stage and timing errors will be present,
Correct the stage errors first by increasing or decreasing
the n values. Work upstream. Adjust the depths in the lower
portion of the reach first. Rerun the model and keep adjusting
until the stages are all reasonable. Just as for steady flow,
the model is very sensitive to n values at changes in bed slope.
Timing errors are corrected after stage errors by adjusting
6x values slightly (see previous step for calibration with depth
profiles);
The flow model can be used without calibration. Comparison of
different hydrographs will be correct relative to one another, but may
have little relation to the real world. Every effort should be made to
obtain all required data for accurate setup and calibration.
Flow model calibration is an iterative process. Most changes will
force the user to return to the steady-flow calibration. It is not unusual
for several weeks to be required for an extensive and accurate setup and
calibration.
Sediment Model - -
The following data should be obtained In order to run the sediment
model. Items marked with an asterisk (*) are desirable, but not absolutely
necessary. Note that data required by the flow model are assumed to be
at hand and are not repeated here. The data are
(*)• sediment samples from the channel bed and banks at each model
cross section or for representative reaches. In the absence
of such data it is necessary to estimate;
(*)* size class analysis of bed material samples. Again, in the
absence of data it is necessary to estimate;
« sediment inflow data ["quantity and size distribution (*)J at
upstream end of reach;
35
-------
• sediment Inflow data fquantity and size distribution (*)J
for major reach tributaries, A CSO entering within the model
reach is treated as a tributary; and
(*)» sediment outflow data [^quantity and size distribution(*)J at
intermediate points and the downstream end of the reach for use
in calibration.
The sediment model may be run with purely hypothetical data. In
many cases, sediment data are nonexistent and must be estimated from
research papers describing average values. Under the best of circum-
stances, it is not unusual to have only a single daily value of the total
sediment load with no size distribution data. Accurate sediment modeling
almost always involves a special data collection effort.
The following steps must be taken to process the data and prepare
the sediment model for calibration optional steps are marked with
asterisks (*) :
• select the number of size classes to be used in the model. If
no size class data are available, use three to five with a
fairly broad range or estimate based on observation of the
channel. For example, it is possible to determine visually
whether a stream has a sand or gravel bed and the approximate
range of particle sizes. It is always wise to include one
very large size class (say, 10 or 20 mm) for reasons noted
below;
• develop a sediment inflow graph for the upstream boundary of
the reach for the period of interest. The model requires in-
flow in pounds or kilograms per second by size class;
(*)» develop sediment inflow graphs for any tributaries considered
in the model. In the absence of data, these graphs can be
estimated or simply assumed to be zero. Recall again that CSOs
in the reach are tributaries;
* determine the percentage of material in each size class at each
cross section (bed and bank material). It Is good to include
one very large size class that cannot be eroded for use at
geologic control points. That is, when the bed is solid rock,
100 percent of the bed should be larger than some size such
as, say, 10 mm;
• code the model as instructed in Appendix A;
36
-------
• run the flow model for the period of interest;
• run the sediment model;
• plot the modeled sediment outflow versus observed values as a
function of time if data are available; and
• proceed with calibration steps.
The following steps may be taken to calibrate the sediment model
if data are available to do so. The amount and accuracy of calibration
is directly proportional to the data available. Optional steps are marked
with asterisks (*). The steps are:
• examine the aggradation/degradation values (Az) at each cross
section at the end of the model period. It is useful to plot
the results as functions of both time and space;
• if the smallest size class is eroding badly at breaks in channel
slope (usually areas of high velocity), increase the percentage
of bed material at these points in the larger size 'lasses and
decrease the percentage (possible to zero) in the smaller sizes.
Such adjustments are perfectly realistic from a physical stand-
point. The channel would be unstable over long time periods if
too much material continually eroded from "high spots";
• when aggradation/degradation has been stabilized, compare the
predicted sediment concentrations with observed values;
• if concenI rations are too high, decrease the soil detachment
factor (ADF). Conversely, if values are too low, increase ADF.
The range is 0 to 1. If calibration cannot be achieved using
ADF, it is necessary to increase the percentage of small size
materials in either the upstream and tributary input or in the
bed (at points not subject to unrealistic erosion); and
(*)• adjust for timing errors. Timing errors are not likely if the
flow model can be accurately calibrated. However, if the flow
model is inaccurate, large timing errors may appear in the
sediment model. Arrival times of sediment peaks can be slowed
by increasing Ax values in the flow model or by increasing
the depth in reaches where it is not accurately known (increased
n values). Arrival times can be apeeded by the inverse process.
The process is iterative and time consuming because of the
changes and possible requirement to recalibrate the flow model.
The following general information on using the model and the results
of the model may be useful.
37
-------
* Fate studies. The. model package presented here is an effective
cool for determining how sediments noire through a stream and
where they come to rest. The best visual tools for fate studies
are plots of aggradation as a function of channel length after
passage of a hydrograph. Plots of flow and aggradation/degrada-
tion at a single cross section as a function of time are useful
for determining the conditions under which various sediment
materials change location. Scour studies can be conducted by
forming deposits) with observed events and then following the
observed events with synthetic floods of various frequencies.
Such studies are valuable in assessing residence time of deposits
and probability of movement.
* _Separajting^effecte. If the stream being modeled carries a high
background sediment load, it may be difficult to determine the
effects of smaller loads from CSOs and tributaries. In such
cases, the model may be run "with and without" the tributary or
CSO load and the results compared. Differences in the aggradation-
degradation pattern can be attributed to the missing tributary.
It is not wise to set the upstream inflow sediment load to zero
in streams with high background transport. The model will then
predict a great deal of scour because the stream will always
try to carry at capacity if material is available for it to do
so.
* Estimating missing data. Sediment data are difficult to find.
The best initial source for most studies is the local district
offices of the U.S. Geological Survey. However, in most ir~
stances only dally total loads with no size data will be avail-
able. Sample locations are also very limited. Klemetson et
al. (6), presents a good deal of information useful for esti~
mating sediment loads for CSO type studies. Excellent general
references on sediment transport process are (25) and (26),
which contain considerable basic sediment theory along with many
practical calibration procedures.
* Learning the model. New users of the model should use the model
package on simple, trial cases before attempting a major stream
study. Begin with a simple, trapezoidal channel at moderate
slope. Study equilibrium transport in steady and moderately
unsteady flows. Experiment with roughness coefficients and
sediment sizes. Then proceed to more complex cases. The model
package presented here has a great many adjustable parameters.
This flexibility allows the model to cover a broad range of
conditions and also allows the user to obtain the same answer
several ways. Considerable knowledge of sediment transport
processes and unsteady flow mechanics may be required to
correctly interpret results.
• The importance ofgraphics. It is imperative that users learn
to plot results quickly and in a variety of ways. Access to
38
-------
some form of computer graphics Is Ideal. Both calibration and
operation will produce hundreds of pages of tables on aggrada-
tion, degradation, flow, and concentration of sediments. Only
by producing effective comparison or display graphs can the
model output be used effectively. Plots of the stream bed,
water surface profile, and aggradation/degradation by size
class on a single sheet are most effective ways to view
fate-type results. Aggradation In trap (low velocity) areas
can be clearly* seen.
39
-------
SECTION 5
SCIOTO RIV1R STUDY
This section describes the experimental work carried out on the
Scioto River in order to provide teat data for the model package. A des-
cription of the study reach is presented, and then data collection and
analysis procedures are discussed and setup, calibration, and output from the
model package are presented. An analysis of the study results and comparison'
of results with those from other investigations is presented in Section 6,
DESCRIPTION OF STUDY REACH
The water quality investigation conducted by W. E. Gates covers a
reach of the Scioto River from Columbus, Ohio, south to Chilllcothe. The
southern portion of the Scioto River drainage basin is illustrated In
Figure 5-1. For purposes of this study it was not economically feasible
to collect detailed sediment data over the entire reach from Columbus to
Chillicothe. Based on a steady-state estimate of dissolved oxygen (DO)
sag in the river, it was felt that maximum changes in water quality would
occur above Circleville. A 22-km reach from Columbus half way to
Circleville was selected. The general location of the reach is illustrated
in Figure 5-1. A schematic diagram of the reach is given in Figure 5-2.
The study reach begins at the Wiittler Avenue combined sewer over-
flow (CSO). The CSO is located just upstream of the dam in Figure 5-3.
Office buildings in downtown Columbus can be seen in the background.
Over most of the length of the study reach the channel banks are
tree-lined. The channel width varies from 200 to 500 ft with 200 to 250 ft
being typical south of the 1-270 Bridge, The channel bed consists of
course gravel. At low flow conditions (300 cfs or less) flow is a series of
40
-------
Figure 5-1. SCIOTO RIVER STUDY REACH
41
-------
«hittur St. cso
Creenlawn Ave.
RM129
XS#3'
xs#4 JtSE!?, . „
Frank Rd.
Gaging Sta*V|Bjll27
XS#5
j&tf/*Xl26
Big Walnut Cr.
XS#IB -YBMiie
XS#19
Rt. 762
Figure 5-2. A SCHEMATIC DIAGRAM OF THE SCIOTO RIVER STUDY
1EACH
42
-------
Figure 5-3. WHITTIER STREET COMBINED SEWER OVERFLOW
OUTLET (DARK SQUARE IMMEDIATELY BELOW WEIR)
chutes and pools. The overall slope over the study reach Is fairly con-
stant at 0.33m/km. One major tributary, Big Walnut Creek, enters the river
from the east between Shadeville and Route 762 (Figure 5-2). A typical
river reach is illustrated In Figure 5-4.
DATA COLLECTION AND ANALYSIS PROCEDURES
Data were collected for the study in two phases. The initial phase
consisted of investigation of the nonstorm characteristics of the river.
The second phase consisted of actual storm event sampling.
The initial investigation of the nonstonn characteristics of the
Scioto River was conducted in July 1980, Sutron personnel met with represen-
tatives of the EPA and W. E. Gates Associates in Columbus. Burgess and
Niple, Inc., provided two boats and crews for use in the investigation.
43
-------
Figure 5-4.
TYPICAL REACH OF THE SCIOTO RIVER
SOUTH OF 1-270
The boats were used to investigate in detail the reach from the
junction with Big Walnut Creek south of Shadeville north to the 1-270 Bridge.
The river was not traversable by boat above 1-270. Approximate river cross
sections were taken at points where significant changes occurred in the channel
geometry such as chutes or pools. Cross sections were obtained by means of
a fiberglass surveying rod immersed in the stream. Cross-section locations
were recorded on a USGS topographic map.
Bed material deposit samples were obtained at a. number of the cross-
section locations. The nature of the channel and its bed are reasonably
uniform over the study reach. Figure 5-5 illustrates a typical river cross
section. The channel is incised in a layer of gravel (2 cm and up diameter)»
It behaves, for all practical purposes, as a rigid boundary. No significant
deposits of sand size material were noted in the Investigation. The nature
of the channel indicated that it does not act as a source of sediment until
44
-------
Figure 5-5. TYPICAL CROSS SECTION OF SCIOTO RIVER
very high flows are reached. No previous studies had ever indicated dis-
charge of gravel size material from a CSO. Thus, no difficulty was
anticipated in modeling the interaction of CSO materials and the channel bed.
At the conclusion of the channel investigation, efforts were made to
locate supplementary cross-section data for the study reach as well as a
longitudinal bed profile. The Columbus district office of the USGS and the
Columbus office of Ohio EPA were contacted. The USGS provided some useful
flow data but had no cross-section information; the Ohio EPA provided a
number of surveyed cross sections, but most were located south of Circleville
outside the study reach. The U.S. Army Corps of Engineers (COE) district in
Huntington, West Virginia, provided several flood studies and an approximate
channel bed profile. The flood studies provide detailed cross sections at
the Greenlawn Avenue, 1-270, Frank Road, and Shadeville (Route 665) bridges.
From the first phase data collection, it was possible to develop the
data set for the flow model and initial sediment model. First, data from
20 cross sections were prepared for the entire reach. Cross Section 1
through 7 represent the reach from the CSO (Greenlawn Avenue) to the 1-270
bridge; Cross Sections 8 through 13 represent the reach from below 1-270 to
the Shadeville (Route 665) bridge; and the remaining cross sections represent
45
-------
the reach, from below Shadeville to the Route 762 bridge. The distance
between cross sections varied from 0.5 to 1 km. With depths at each cross
section known at a given steady flow, it is possible to compute the bed
elevation at all intermediate points between the known points. The final
bed profile used in the model along with the cross-section locations is
illustrated in Figure 5-6.
ROAD BRIDGE
APPROXIMATE WATER SURFACE
SHAOEVILLE Bfl,
•7S2M.
O B « 3
"DISTANCE BELOW GREENLAWN AVE. BRIDGE ck*,>
Figure 5-6. BOTTOM PROFILE OF SCIOTO RIVER AND
MODEL CROSS SECTION LOCATIONS
In the summer of 1980 no overflow event occurred, and thus sampling
was not done until fall of that year. In the intervening period, necessary
modifications to the sediment transport model described by Kleoetson, et al.
(6) were undertaken. The model computational procedure was completely
modified and the coding improved as described in Section 4. The model was
tested on a variety of prismatic (constant trapezoidal section) channels
tinder various slope and sediment boundary conditions. After proper model
behavior had been verified, the model was coded for use In this study.
Based oa the bed material samples taken during the first phase data
collection, the sediment model was coded to route ten size classes of
sediments, the largest of which was 20 mm. The remaining size classes were
46
-------
15, 6, 1.3, , 0.32, 0.18, 0.11, 0.06, and 0.04 mm. The bed material dis-
tributions (p,2. ge in each size class) are given In Table 5-1. The
heavy weighting of the larger size classes reflects the armored condition of
the channel bed.
Table 5-1. BED MATERIAL SIZE DISTRIBUTIONS USED IN
MODEL (PERCENT)
Cross Section No.
1,2,3,5,6,8.9,
10,12,15,16,17,
18,19,20
4,7,11,13,14
Size C
20
60
80
15
25
20
6
10
0
1.3
3
0
0.5
2
0
lusts m nun
0.32
0
0
0.18
0
0
0.11
0
0
0.06
0
0
0.04
0
0
After coding, several synthetic flow events were routed through the
reach to determine how sediment from the CSO might behave. Preliminary
analysis indicated that particles smaller than 0.06 mm could be carried
through the reach even at very low flows (500 cfs or less). Flows equal to
the average annual high flow of 10,000 cfs would move sediments 0.18 nan
or smaller through the reach. No further tests were made until actual data
became available.
The second phase of data collection, the storm event sampling, was
carried out by personnel from Burgess and Kiple (B&N). B & N had the
responsibility of determining appropriate weather and flow conditions for
initiation of sample runs, Inltially,plans were made to sample three storm
events.
47
-------
The work effort required to collect sediment samples was Included in
the B & N subcontract to W. E. Gates. The sample program consisted of three
elements;
* grab samples at the CSO;
• depth-integrated samples within the CSO slug as it moved
downstream; and
• stage measurements at bridge crossings.
the intent of the stage measurements was to provide data for calibration
of the flow model.
The grab samples from the CSO were collected at the same time as
samples for other water-quality constituents. The depth-integrated
sediment samples were collected as follows:
* at the Frank Road Bridge and at the State Route 762
Bridge commencing prior to the arrival of the CSO
slug at the station and continuing until the entire
CSO plug has passed that station at an interval
between 1 and 2 hours; and
• at the 1-270 Bridge and at the Shadeville Bridge at
irregular intervals during the passage of the CSO slug
as the availability of the samplers allowed.
Water surface elevation measurements were taken at Frank load and at State
Route 762 when integrated depth samples were taken.
Sutron provided two standard DH-59 hand-held, depth-integrating
sediment samplers to B & N for use in this study. Sutron personnel instructed
B & N personnel in their use during the first phase data collection effort.
The sediment sampler being operated off the Frank Road Bridge is Illustrated
In Figure 5-7. B & N shipped the collected samples to Sutron for concentra-
tion and size analysis following each event.
48
-------
Storm event data were ultimately collected for two periods over the
course of the study. The first sampling event occurred on 24 and 25 November
1980. The second event occurred on 14 through 16 September 1981.
The first storm event did not produce sufficient data for model
calibration. Flow from CSO reached 200 cfs (the peak value was not recorded).
Twelve sediment samples were collected but insufficient stage data were avail-
able. These samples provided preliminary data on the size distribution of
material in the CSO.
Figure 5-7.
DH-59 SEDIMENT SAMPLER BEING LOWERED OFF
FRANK ROAD BRIDGE
49
-------
The second storm event sampling was successful. Sufficient flow,
stage, and sediment data were obtained to allow calibration of the flow and
sediment models. Fourteen samples and flow readings were obtained at the
Whittier Street CSO, Excellent definition of the outflow hydrograph and its
quality was possible. The USGS gage below the Frank load Bridge operated
continuously and provided a complete record of hourly stage at that point.
Water surface measurements from the Frank Road, 1-270, and Routes 665 and
762 bridges taken coincidently with sediment samples provided 16 usable
points for calibration of the flow model. Sufficient sediment samples were
obtained in the CSO and in the Scloto liver to define quantity and size dis-
tribution of the sediment load.
The Initial step in the data analysis was to analyze the sedluent
samples for concentration and size distribution. The results of the analysis
are presented in graphic form along with model results in Section 6.
The second step in the data analysis was to prepare input for the flow
model. The discharge in the Scioto River at the Whittier Street CSO was
determined by advancing in time the discharge hydrograph from the USGS
Columbus gage. The advance was equal to the travel time from Whittier Street
to the gage, approximately 2 hours. The discharge from the CSO was added
to form the upstream input hydrograph.
The third step la preparing the flow model was to develop the flows
from Big Walnut Creek. Base flow was estimated by examining several years
of USGS records, fhen, the storm flow was estimated by adding two-thirds
of the difference in flow between the Columbus and the Circleville gages.
The difference was computed after offsetting one record in time by the value
of the travel time between the gages. The two-thirds factor was based on the
historic ratio of the flows in Big Darby and Big Walnut Creek, both of which
enter the reach above Circleville. The complete inflow can be found in the
input list in Appendix D.
50
-------
The flow model was set up to use a discharge rating curve for the
upstream boundary condition. The rating curve was developed by using the
step-backwater portion of the flow model at a number of steady flows. The
rating curve is also part of the model input data given in Appendix D.
The flow model was set up to use known stages as the downstream
boundary condition. Insufficient measurements were available for the entire
period of interest, but reasonable values were easily estimated from the
measurement and the shape of upstream hydrographs. The complete downstream
stage hydrograph is included in the flow model input in Appendix D.
Under flat slope conditions, the flow model is extremely sensitive to
the downstream boundary condition. Care must be taken when using observed
stages to ensure that they are accurate to + 0.1 ft. Timing is also critical;
if adverse water surface slopes are created by Improper stages, the model
usually "blows up."
The flow model was coded to create flows for the period between
1:00 a.m. on 13 September and 12:00 N 16 September 1981. Eighty-four
1-hour time steps were taken.
Following preparation of the flow model, the model was calibrated.
As originally (first run) configured, the model predicted stages slightly
low at the Route 665 (Shadeville) and Frank Road Bridges. The roughness
coefficients at several points below each bridge were increased until
best fit was determined visually.
The results of the flow model calibration are illustrated in Figure 5-8.
In the figure, the solid lines are model values and the plus signs are observed
values. The smallest change in stage occurs at the 1-270 Bridge where the
cross section of the channel is very wide. The flow model results are reason-
able. The Shadeville Bridge data are the least accurate in comparison to
the observations.
51
-------
673.,
I TT++++
' USQSOAOE
1-270 BRIDGE
FRANK ROAD BRIDGE
+ -OBSERVED VALUE
--MODELED VALUE
ROUTE 665
-------
Following flow model calibrating, the direct access file that couples
the flow and sediment models was generated. No further runs of the flow
model were required.
Much of the input data for the sediment model is generated directly
by the flow model. The user, however, must prepare the sediment input for
the upstream boundary as well as all tributaries. One input value is re-
quired for each size class for each time step for the upstream boundary and
tributaries, fhe option of using a sediment rating curve for the upstream
boundary condition is included in the model. fhe inflow of the i sediment
size class is computed as a constant, a., times the streamflow, Q, raised
to the b. power. The constants and b. may be determined from sediment
discharge measurements by size class at various discharges.
fhe upstream sediment Inflow from the Scioto River was estimated to
be 30 mg/1 of the smallest size fraction based on "before CSO slug" samples
at downstream locations. The solids content of the CSO flow was known from
the samples. Again, loads were of the smallest size class. All other size
class loads were set to zero at each time step. The upstream loads, along
with control codes, (see coding Instructions in Appendix A) are edited
into the file produced by the flow model (see the example in Appendix D).
No sediment data were available from Big Walnut Creek. Accordingly,
the sediment loads for all size classes were set to zero. The study results
in the Section 6 indicate that the loading from Big Walnut Creek Increases
the concentration at the Route 762 Bridge,
After completion of loading input the sediment model was coded to
simulate the period between 1 a.tu 14 September and noon 16 September. This
time period coincided with the period of the CSO flow event.
MODEL RESULT
The results of the sediment model are presented primarily In Appendix D,
Hie model generates a large volume of numbers and is difficult to interpret
53
-------
without the aid of graphics. At each tine step, the model produces
* total sediment load, mass/time at each cross section;
• total concentration at each cross section; and
• cumulative aggradation or degradation for each size
class at each cross section.
The data can be used to analyze concentration versus tine at a point, total
load versus tine, and fate of each size class via the aggradation/degrada-
tion figures.
Figure 5-9 illustrates the variation of total sediment concentration
versus time at the upstream boundary, Frank Road Bridge, 1-270 Bridge, and
the Route 655 and 762 bridges. Also, illustrated on the figure are the
observed concentrations. The observed values came from the sediment samples
plus the total settleable solids data from the water quality samples.
An unfortunate aspect of the Scioto River from a computer modeler's
standpoint is that all the material discharged by the CSO is fine (much
smaller than 0..063 mm) and that the channel boundary is armored. The normal
flow of the Scioto River is capable of carrying 100 percent of such small
size material. As a result, there is no accumulation of the CSO material
within the reach. The fate of the material is to be convected out of the
reach and on to Chillicothe and beyond. In the terminology of sediment
transport, the CSO sediments are "wash load." The stream will carry all it is
supplied. A conservative mass transport model would be sufficient for routing
the CSO load. It would have to be carefully configured, however, to account
for further entrainment.
The convective nature of the fine material transport can be seen by
studying the early portion of the output data in Appendix D, The input
concentration travels down the reach and stabilizes with no variation except
the dilution of Big Walnut Creek.
54
-------
§
i ~
CREENLAWN AVE
FRANK TO MIDGC
HOURS
Ul
1-270 BRIDGE
MUMS
ROUTE 885 BRIDGE
§
i -
ROUTE 7O2 BRIDGE
observed value
modeled value
Figure 5-9. VARIATION OF SUSPENDED SOLIDP WITH TIME
-------
SECTION 6
ANALYSIS OF RESULTS
FLOW MODEL
While the flow model results are not perfect, they serve the purpose
of this study and are reasonable from the data available. The work of USGS
researchers, particularly leference (7), has demonstrated the ability of the
flow model to reproduce stage to tenths of feet and timing to within 10 to
15 minutes when sufficient calibration data are available.
The flow model calibration for this study worked well because a depth
profile was available at low flow and sufficient stage data were available
fcotn bridges at other flows to allow adjustment. Model results could be
improved by the addition of the following data, both for operation and
calibration:
* continuously recorded stage at the route 762 and all Intermediate
bridges|
* one or more longitudinal depth profiles at intermediate to high
flow to allow accurate computation of roughness variation with
depth; and
* surveyed cross section geometry and bed elevations.
The cost of such additional data would be substantial. Continuous recorded
stage at route 762 and a 24 hour period of stage at all other bridges plus
one additional depth profile would be a good compromise.
56
-------
Concentrati
-------
tude (550 versus 650 mg/1 peak) but inaccurate in time. The apparent
explanation is the phasing of the modeled sediment load with the one hour
time steps used. Note that a plus or minus one hour error here would not
result in 5 or 6 hour errors elsewhere.
Overall it seems safe to say that the model gives order of magnitude
results which will be much smoother than the data used for comparision.
Professionals in the USGS acknowledge the difficulty and erratic nature of
sediment concentration measurements. Sediment samples taken at nearly the
same time at the same point often vary in concentration by 50 percent or
more.
Comparison With Other Studies
A number of other researchers have published concentration and size
distribution data from CSO flows. Data from this study, along with several
tables from other reports are reproduced below. Note in the tables that
1000 microns.
It was noted earlier that the technology in the sediment model is
traceable to a watershed model developed at Colorado State University. The
model was primarily designed to route noncohesive materials with fall dia-
meters greater than 0.063mm, the border between sands and silts and clays.
The material discharged by the Whittier Street CSO was mostly finer than
0.063mm.
Table 6-1 lists the particle size distribution of the samples taken in
this study. Table 6-2 lists the particle size distribution of samples from
CSO's in San Francisco, California. Note in Table 6-2 that slightly over
50 percent of the particles were greater than 0.063mm with some significant
amounts greater than 0.25mm. Table 6-3 lists size distributions of CSO
solids discharged into a catch basic and Lancaster, Pennsylvania. In Table
6-3 nearly 56 percent of the material is finer than 0.074mm. The writers
58
-------
Table 6-1. TYPICAL PARTICLE DISTRIBUTIONS
FOR SAMPLES IN THIS STUDY
Size Range
Microns
74-149
44-74
less than
44
Percent Distribution byjfeight
Prior to CSO
Flow in River
0
1
99
During CSO Flow
ia River
1
2
97
Alter CSO Flow
in Siver
0
1
99
CSO Flow
at Peak
1
2
97
Table 6-*2- PARTICLE SIZE DISTRIBUTION OF SUSPENDS SOLIDS IN
CSO'S IS SAN FRANCISCO, CALIFORNIA
Size Range
Percent
Distribution
by
Weight
3,327 microns
991 to 3,327
295 to 991
74 to 295
74
5.1
8,8
15.9
21.8
48,3
Source; Envlrogenlcs Co., (28); from Dalrywple et al., (29)
-------
Table 6-3 , PAlflCLl DISTRIBUTION OF SOLIDS IK
CSO'S IK LANCASTER, PENNSYLVANIA
Size Range
9,525 microns
4,760 to 9,525
2,000 to 4,760
1,190 to 2,000
590 to 1,190
420 to 590
210 to 420
149 to 210
74 to 149
44 to 74
44
Percent Distribution by Weight
1.77
1.06
1.40
1.88
3,10
2.78
7,01
5.19
20.10
23.80
31.90
Rote: These data represent material retained in a catch basin rather than
actual CSO's.
Source; Rrants and Russell, (30); from Balrymple et al., (29)
used the distribution of material in urban street solids for estimating
CSO loads in previous studies. Table 6-4 lists typical percentage values
for various size classes. Note that over 50 percent of the material is in
the size range 0.075mm to 0.85nm. Streets solids are nttch larger and more
widely distributed in size than the material in this study (fable 6-1).
The sediment concentrations found in this study are listed in Table
6-5. The concentrations of solids discharged from the CSO reach the 500-
600 mg/1 levels. These concentrations compares well with values reported
by Manning, et al. (31) and Metcalf and Eddy consultants (33) in Table 6-6.
60
-------
fable 6-*4. PARTICLE SIZE DISTRIBUTION FOR STREET SOLIDS
SAMPLES PROM WASHINGTON, D.C.
Size Range
1,700 to 3,350
microns
850 to 1,700
420 to 850
250 to 420
150 to 250
75 to 150
45 to 75
45
Arterial
Roadway
3.2
7.1
19.4
25.2
19.1
17.6
7.6
0.6
Percent
Urban
Highway
8.7
9.6
14.4
14.3
12.3
17.2
13.4
10.0
Distribution
Shopping
Center
1.8
6.3
19.7
25.4
15.4
16.4
10.8
4.3
by Weight
Commercial
Street
«
5.5
8.0
18.6
23.0
16.3
17.0
10.6
1.0
Average
4.8
7.8
18.0
22.0
15.8
17.0
10.7
4.0
Source: Shaheen, (32); from Manning et al., (31)
Table 6-5. TYPICAL PARTICLE CONCENTRATIONS FOR SAMPLES
IN THIS STUDY
Tine of Sample
Suspended Sediment Concentration, mg/£
Prior to CSO flow in river
Peak flow in CSO
Peak flow in river below CSO
Peak flow at 1-270 bridge
Peak flow at Route 665 bridge
Peak flow at Route 762 bridge
After CSO flow in river
30
575
650
50
350
100
30
61
-------
Table 6-*, TYPICAI FOR SANIfASY SWAGE,
ROTQFF, AND OVMFJLOWS
Parameter
TS
TSS
BOD5
COD
Total N
Orthor PQ^ as P
Concentration, mg/£
Sanitary
Sewage
700
200
200
500
40
7
Urban
Surface Runoff
496
415
20
115
3 to 10
0.6
Combined
Overflows
589
370
115
375
9 to 10
1.9
Source: Manning et al., (32), Metcalf and Eddy (33)
The general observation concerning the Scioto River data set used here
is that the size distribution of CSO material lies toward the lower end of
previous studies and that the concentrations of material discharged are
comparable to other studies.
Use of Model With Other Size °f
anjL_Flow Rates
The reader should not be left with the impression that all CSOs would
discharge material fine enough to be carried long distances, "The data in
fables 6-2 through 6-5 demonstrate that materials as large as several mm can
be discharged.
An experiment was conducted with the sediment model to illustrate how
the model could be used to study the fate of larger size materials. Hypothe-
tical sediment loads for an actual overflow event into a seasonal low flow in
August 1978 were routed through the reach. The overflow event was followed
by a flow equal in magnitude to one which might reasonably occur once a
62
-------
year at Columbus. The larger flow event was sufficient to scour deposits
of larger size materials and move them downstream.
The results of the fate experiment are Illustrated in Figures 6-1 and
6-2, Figure 6-1 illustrates the accumulation and erosion of five size classes
of materials as the CSO flow (48-65 hours) and the large flow (110-145 hours)
pass model cross section 1 (below Greenlawn avenue). The large flow flushes
all but the 0.315ram sizes downstream.
Figure 6-2 illustrates the location of the deposits of six size
classes of material before, during, and after the CSO flow illustrating how
materials of large size remain at cross section 2 and the smaller sizes
(.059, .040mm) move along the channel.
The experiment presents the basic concept for a fate study. Flood
frequency analysis could be used to determine what type flood events scoured
out various channel areas. Note that aggradation-degradation amounts are
extremely small. The accuracy of such predictions must be assured by good
model calibration and verification. The model accurately conserves mass. If
inflow-outflow concentrations are reasonable and the bed profile is accurate,
the fate predictions will be reasonable. Measurement of deposits of this
magnitude is out of the question. Tracer particles might be used to help
verify accuracy.
63
-------
SCIOTO RIVER SEDIMENT MODEL
215 _
FPRDXIHATE WATER SURFACE
DISTANCE BELOW GREENLAWN AVE. BRIDGE Ck«J
B.Q815
H5.0015 1
B.0B1S T
-fl.1015 .,
-EL 0015 i
B.BZ15..
-B.0B15 1
B.B015,
-0.B015 I
1 3001
100"
0
e.
a_3i:
ID
TIME
Figure 6-1. DEPOSITION AND EROSION AT SECTION 2, SCIOTO RIVER
64
-------
SCIOTO RIVER SEDIMENT MODEL
215 v
APPROXIMATE WATER SURFACE
IBS
eo m s en HJ
-•-•01
DISTANCE BELOW GREENLAWN AVE, BRIDGE
•.0BI5
-B.0015 I
-B, 0215 ,.
1 2. miS »
3
** -8. SBIS 1
-< B.0015^
B. 178—.
B.0B15 T
a. si:
e.0015 ,
-B.0015 1
.TIME - 4i
TIME - 58
JTIME - 72
Figure 6-2.
MODEL RESULTS FROM STORM 1YDROGRAPH WITH
CSO SEDIMENT, SCIOTO SIVER
65
-------
Correlation of Sediment With Other Quality Parameters
It has been mentioned in this study background that the sediments and
sediment-like materials form an important source of organic and inorganic
pollutants, A 1974 report of the North Carolina Water Resources Research
Insitute (1) indicated that plain sedimentation of urban runoff resulted in
60 percent COD removal. Thus, although general water quality is the domain
of the companion study by W.E. Gates, the timing of sediment loads with other
water quality constituents is of Interest.
The general water quality analysis of samples taken over the storm
event studied here was provided to Sutron by the Cincinnati, Ohio,office of
Gates. Figure 6-3 and 6-4 illustrate the variation of several key water
quality parameters along with the modeled sediment discharge.
Figure 6-3 illustrates the variation of COD, DO, and BOD at the lotite
762 bridge. Recall that the predicted sediment concentration here are rea-
sonable (Figure 5-9). The observed COD peak and DO minimum coincide with the
peak sediment discharge. The observed BOB is a minimum at the sediment peak.
Figure 6-4 illustrates the variation of COB and BOD at the Route 665
birdge. Here, both the BOD and COD peaks trail the sediment discharge. If the
observed data point at 50 hours of Figure 5-9 is Interpreted as an outliar
It might Indicate that the arrival of the sediment discharge as predicted by
the model is early. If so, the sediment discharge and COD/BOD Increases
would be nearly in phase.
The data and model results emphasize the complexity of transport in
unsteady flow and the value of data over hydrographs»
66
-------
BQDCng/D
i—i—i—i—i—i—•*—
S
Figure 6-3,
C01EELATION OF SOLIDS, COD, BOD, AND DO
AT ROUTE 762 BRIDGE
67
-------
DOCmg/1)
BQfK»g/i>
w
I 4 1—*. 4 ^-.^n,^^,^^^^
§i
• t
L £
W X
CS S3 V
Q CO Q X
M (9 - X
Cg . (VI X
in in T-I j<
to oo oo j.
CO 1 I x
tL Q. r-
ui yj in f
»- w o» I
a 4- in "*>. /
E^ T< ^
/
/
/
V
I x" N\
>** i
\
' \ '
""^-s.
•Si
\
i
1
1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1
8
w w
as B S
|S
1
I i
I
*tt&.
i i 8 H
Figure 6-4.
CORRELATION OF SUSPENDED SOLIDS, COD» BOD MO) DO AT
ROUTE 665 BRIDGE
68
-------
REFERENCES
(1) Colston, N« V., Jr., Characterization and Treatment of Urban Land
Runoff, EPA-670/2~74~Q96, December 1974, 157 pp.
(2) Field, R., A. K. Tafuri, and H» E, Masters, Urban lunoff Follution
Control Technology Overview, EPA 600/2-77-047, March 1977, 90 pp.
(3) Pitt, R. and R. Field, Water Quality Effect from Urban Runoff,
American Water Works Association J., 69_ (8), 1977, pp. 432-436.
(4) Donigaa, A. and N. Crawford, Modeling Nonpoint Pollution From
the Land Surface, IPA-600/3/76/083, July 1976, 279 pp.
(5) Keefer, !. N., R. K. Simons, and R. S. McQuivey, Dissolved Oxygen
Impact from Urban Storm Runoff, EPA-600/2-79-156, November 1979,
237 pp.
(6) Klemetson, S. L., T. N. Keefer, and R. K. Simons, Movement and
Effects of Combined Sewer Overflow Sediments in Receiving Waters,
EPA-600/2-80-126, August 1980.
(7) Keefer, T. N. and H. E. Jobson, River Transport Modeling for
Unsteady flows, Hyd. Div» J., ASCE, Volume 104, No. H¥5, Proceedings
Paper No. 13735, May 1978.
(8) Land, L. I., Unsteady Streamflow Simulation Using a Linear Implicit
Finite-Difference Model, U.S. Geological Survey, Water Resources
Investigation 78-59, Bay St. Louis, MS., Kay 1978, 59 pp.
(9) Simons, D. B., R. M. Li, and M. A. Stevens, Development of Models
for Predicting Water and Sediment Routing and Yield from Storms
on Small Watersheds, USDA Forest Service, Rocky Mountain Forest
and Range Experiment Station, Flagstaff, Arizona, August 1975.
(10) Lai, C.» Computation of Transient Flows in Rivers and Estuaries
by the Multiple Reach Method of Characteristics, in Geological
Survey Research 1967, U.S. Geological Survey Professional Paper
575-D, 1967, pp. D273-D280.
(11) fevjevich, V. and H. H. Barnes, Flood Routing Through Storm
Drains, Part 1, Solution of Problems of Unsteady Free Surface
Flow in Storm Drains, Colorado State University Hydrology Paper
No. 43, Fort Collins, 1970, 108 pp.
(12) Wylie, E. Benjamin, Unsteady Free-Surface Flow Computations,
Journal of the Hydraulics Division, ASCE, ¥oluoe 96, lo. Hill,
1970, pp. 2241-2251.
69
-------
(13) Garrison, J. M,, J. P. Granju, and J. T, Price, Unsteady Flow
Simulation in Rivers and Reservoirs, Journal of the Hydraulics
Division, ASCE, ¥oluse 95, No. HY5, 1969, pp. 1559-1576.
(14) Aoein, M. M. and C» S. Fang, Implicit Flood Routing in Natural
Channels, Hyd. Dlv. J., ASCE, Volume 96, No. HY12, Proceedings
Paper 7773, December 1970.
(15) Fread, D. L., Numerical properties of Inplicit Four-Point Finite
Difference Equations of Unsteady Flow, National Oceanic and Atmospheric
Administration, U.S. Department of Commerce, Technical Memorandum NWS
WDRO-18, March 1974, 38 pp.
(16) Von Rosenberg, D. W,» Methods for the Numerical Solution of Partial
Differential Equations, Elsevier, New York, 1969, 128 pp.
(17; Shields, A., An»endung der Aehnliehkeitsmechanlk und Turbulenz forschung
auf die Geschiebewegtmg, Mitteilung Preussischen Versuchanstalt Wasser,
Ird, Schiffbau, Berlin, No. 26, 1936 (in German).
(18) Meyer-Peter, E, and R. Muller, Formulas for Bed-Load Transport,
Proceedings, III Cong. IAHR, Stockholm, 1948, pp. 39-64.
(19) Simons, D, B. and F. Senturk, Sediment Transport Technology, Water
Resources Publications, Fort Collins, Colorado, 1977.
(20) U.S. Bureau of Reclamation, Investigation of Meyer-Peter, Muller
Bedload Formulas, Sedimentation Section, Hydrology Branch. Division
of Project Investigations, U.S. Department of the Interior, Bureau
of Reclamation, June 1960.
(21) Shulits, S. and R. D. Hill, Jr., Bed Load Formulas, Part A, A
Selection of Bedload Formulas* Part B, Program Listing for Bedload
Formulas, NfIS, PB-194, 950 Pennsylvania State University, December
1968.
(22) Einstein, H. A., The Bedload Function for Sediment Transportation In
Open Channel Flows, U.S. Department of Agriculture, Soil Conservation
Service, T. B. No. 1026, 1950.
(23) Colby, B. R. and C. H. Hembree, Computation of Total Sediment Discharge,
Niobrara River near Cody Nebraska, U.S. Geological Survey, Water Supply
Paper No. 1357, 1955.
(24) Li, R. M, Mathematical Modeling of Response from Small Watersheds,
Ph.D. Dissertation, Dept. of Civil Engineering, Colorado State
University, Fort Collins, CO, 1974, 212 pp.
70
-------
(25) Jobsoti, H. E., and T. N. Keefer, Ose of Depth Profiles for Flow
Model Calibration, Proe. of the Symposium on Inland Waters for
Navigation* Flood Control, and Water Diversion (Rivers 76, Colorado
State Univ.), ASCE, 1976, pp. 641-649.
(26) Simons, Daryl B. and F, Senturk, Sediment Tranaport Technology*
Water Resources Publications, Fort Collins, Colorado, 1977, 807 pp.
(27) Vanoni, V. A. (editor), Sedimentation Engineering, Prepared by the
ASCE task Committee for Preparation of the Manual on Sedimentation
of the Sedimentation Committee of the Hydraulics Division, ASCE,
New York, New York, 1975.
(28) Invirogenics Company, In-Sewer Fixed Screening of Combined Sewer
Overflows, EPA 11-24, FKJ 10/70, 1970.
(29) Dalrymple, R» J.t S. L. Hood, and D. C. Marin, Physical and Settling
Characteristics of Particulates in Storm and Sanitary Wastewaters,
EPA 670/2-75-011, April 1975.
(30) Krantz, J, and D. L. Russell, Lancaster Silo Project: Particle
Sizing and Density Study, Meridian Engineers, Philadelphia,
Pennsylvania, January 1973.
(31) Manning, M. J., R. H. Sullivan, and f. M. Kipp, Nationwide Evaluation
of Combined Sewer Overflows and Urban Stonawater Discharges: ¥olume
III, Characterization of Discharges, EPA 600/2-77-0640, August 1977,
(32) Shaheen, D. G., Contributions of Urban Roadway Usage to Water
Pollution, IPA-600/2-75-004, April 1975.
71
-------
Appendix A
USER CODING INFORMATION
72
-------
This appendix presents the user coding instruction for
the linked flow model - sediment model. First, the general
operation of each of the models is illustrated. The first
six flow charts show the operation of the linear implicit,
finite difference flow model and associated subroutines; the
next five flow charts show the operation of the sediment model
and its associated subroutines.
Currently, the models can handle up to 40 cross sections,
This limit can be raised by changing the appropriate dimension
statements, with a corresponding increase in required computer
memory and time required for solution. The current model will
run on a minicomputer with a 64-kbyte memory partition.
Among the many features of the models are
• depth, velocity and discharge output for each
model timestep;
* English or metric units output;
• up to ten sediment size classes each having a
different specific gravity and percentage of
bed material if required;
• cross section print suppression;
• steady or unsteady sediment input at the upstream
boundary and at any tributaries;
• steady or unsteady flows at the upstream boundary
and at all tributaries; and
• no limit to the length of time simulated except
budget.
73
-------
FLOWCHART PROGRAM SEDMOD
:1WDA»UKD TO INPUT THE
MAJORITY OF THE DATA
; IMITL INITIALIZE! IMPORTANT
VANIASLEt TO ZCTO
: KOINMMQ OF MAIN TWK LOOP
: ROUTE MOVES lEOMMEKT
DOMN THE HEACH
: BUD OF MAIN TMK LOOT
-------
FlONCHMtr «UBROUT1N€ INPDA
INPUT
Tm.CtANO
(UGH
ANOLOCATMMJ
MUCfMt
: X4£C DATA lltCLUDES
MVfiMMUi TMALWtO ELCV.; tUNMIMM N;
AMD A HtfteD KIINirrtll TAH.E
f MCTUMN J
75
-------
FtOWCHAHT
•UMOUTINE 1MITL
•UeROUTINE POWER
f ITAIIT j
SUMWMITiNf TAIL
f 9fMtt J
76
-------
FLOWCHART SUBROUTINE ROUTE
iOINMMC OP X-iEC LOOP
NMCT omNMNW* MMUKTID
KHMIMT PE'HCINTMltt DOE TO
MWKMINS
TMUH IXTIMIimS THE TMMtfOHT
CAPACITY or me FLOW
: mo of x«te LOOP
77
-------
FLOWCHART *JMt0tmNE SMOUf
I emir J
—i—
CAUCUtAfK dUHM
Hwrrrai iLCv*T«n
fOMAWCCtPC
78
-------
FLOWCHART SUBROUTINE TRAMS?
: TAW, RETURNS A WETTED PERIMETER
VALUE FROM A TAM.E WHIN OiVEN
ADiFTH
CALL
•MMUTIME
CALCULATE
MOMENT
LOAD CAPACITY
CALCULATE
KD MATERIAL
ttOMttNT
LOAD CAPACITY
J_
CALCULATE
TOTAL IEDIMENT
CAPACITY
KACINTAOES
DUE TO UP
tTHEAMi.
LATERAL
INFLOW
CALCULATE
MMMMJMTKAMfr
KMTMWOON
•CDiMEirr
FALL
VELOCITIEt
f MCTUHN J
: POMER EVALUATES THE INTIBRALS
IN MODIFIED EIIMTCIN1U1PEMDED
KOWKMT LOAD EQUATION
: UMS MODIFIED EHWTEIN
EOLMTIOW
: UUBMEYER4CTER-MULLE1I
EOUATION
79
-------
FLOWCHART PROG RAM FLOHMOD
UK HBP MCKWATIII
MfTHOOTO
CAUCULATI
INITIAL CONDiTIOWS
i •UMOUTINE TAW.I RETURKS
VALUW f ROM THE TABI.M AMD
HIAR CALCUUkTES FRtCTION
•LOK AMU VELOCITY HEAD
80
-------
FLOWCHART PROGRAM FLOKWOO
(HUBS
mrruu.
•WTH.O
A?
FILE
OFUtCTMEAM
•MD OP HMT BiACH
COMPUTE X«C
OOMMCTmAH fND
OF HEACM
COMPUTE
CMPflCltNTS
KM MOII»ITUII
•QUATfONS
MOW
X«EC PffOKKTIES
•mucnms
ecwmciiNr MAtmx
LOW
: CALLS TO •UMQUTMti
TAIL* II" REQUIRED
: PILL COHVICMHT IMTMIX
: ICALLSTOtUmoUTINf TAH.1
: • CALLS TO MMMOUTNME TABLE
: COCFFICieKT (**TRIX FILLED
81
-------
FLOWCHART PROGRAM FtOWMOO (C«irt*ni*»
-------
FLOWCHAHT «UMOUTIN£ CHANNEL
•TART
MAO
XAHB V
POMT
wuw
AMOXAMD V
HMWT HUM
nunsiM
AKtwiwa
QN0CH
cut
•UMHXJTIME
QIOM
: 0!«« CALCULATE* X-WC
MOMNTtiS (AHEA, WTTeD WHfOTTSR
AMD TOT NtffTH) FCW A GIVEN HATER
HMPACI ELEVAT10K
AHOM
Momma to
manm
TABLES
I neriNiN 1
83
-------
FLOWCHART SUBROUTINE GEOM
( tTAHT J
LOCATE
ftTEHMHIFACE
iPAMV
AREA NETTED
KMMWTER
AMD TOT MOTH
KM MCMMEMTAL
AREAS. NETTED
miMETtttAND
TOPW1PTMS
»» sS' lJttT ^V
»' * "C WHIT m X-MEGT ^
YES
I METUMN \
84
-------
FLOW MODEL
Input data requirements for the flow model are given in
the table on the following three pages. The majority of
the variables are entered in a "list directed" format which
specifies that all numbers will be separated by either a space
or spaces or a comma. The use of this type of input format
makes it much easier to enter the required data and eliminate
errors caused by misaligned data.
The input data for the model are entered into a computer
disk file using the standard file editor. The input file name
is specified to the computer by interactive responses when the
flow model is run. The user also specifies the names of the
output file, and the direct access and sequential files
created by the flow model which are used by the sediment model.
In the input data file after the run title, various model
control parameters are the first data used by the flow model.
These data include number of cross sections} number of time-
steps; number of timesteps to be skipped before beginning
printout, and the upstream and downstream boundary conditions.
It is recommended that c her the rating curve or depth only
boundary condition be used at the upstream boundary. The down-
stream boundary of a flow model is particularly sensitive. If
the data are available, depths varying with time is the
recommended boundary conditions.
Several variables such as DRAT, DSDEP and NP are only
used if particular boundary condition options are selected.
Following the control and boundary condition data the
model requires cross section data. Input data numbers 8-11
are required for each cross section. These data are
85
-------
FLOW MODEL INPUT
REQUIREMENTS
NO.
PARAMETERS
DESCRIPTIONS
FORMAT
1. TITLE
2. DT
3, NX, IQ, NOUT, INIT,
NTRIB, IUBC, IDBC,
IPNT, IXSP, OP
TITLE « Run title
DT = TImestep in seconds
NX = Number of x-secs
IQ = Number of timesteps taken
NOUT = Number of cross sections to
be printed - 0=all x-secs
INIT = Number of timesteps to skip
before beginning printout of
results
NTRIB -No. of tributaries <_ 20
IUBC = Upstream boundary condition
1 = self setting
2 = rating curve
3 = depth only
IDBC = Downstream boundary condition
1 = self setting
2 = constant depth
3 = read in depth with dis-
charges
IPNT = Number of timesteps between
printouts >^ 1
LTCSP = X-sec properties printout
0 = no printout
1 = printout
OP = Input data printout
0 = no printout
1 = printout
20A4
List Directed
List Directed
IF IUBC = 3
QINIT
QINIT = Assumed initial discharge
. IF IDBC = 1
List Directed
DRAT
DRAT = For self setting downstream
depth - constant relating
depth at last and next to
last x-secs
List Directed
DSDEP
_ _ _ IF IDBC =2
DSDEP = Constant downstream depth
List Directed
86
-------
FLOW MODEL INPUT
REQUIREMENTS
NO.
PARAMETERS
DESCRIPTIONS
FORMAT
7.
IF NOUT > 0
HP (I to NOUT)
NP - Numbers of x-secs to be printed
out
List Directed
8.*
9.*
XSEC
X, 2, FNQ, mi, FN2,
QLAT, LT1IB
10.*
11.*
*NOTE;
RMILE, NPTS
X, Y(l to NPfS)
Number 8-11 are inpt
XSEC - 20 character x-sec title
X = Distance in miles
Z = Thalweg elevation
FNQ»FN1»FN2 - Coefficients in
Manniags "n" equation
n = FNO+FN1*Y+FN2*Y2
QLAT = Lateral inflow between x-secs
given in cfs/ft
LfllB = Tributary number (flow in
tributary is assumed to enter
between this x-see and the
preceding x-sec
RMILE = Rivermile of x-sec
NPTS = Number of points in the x-sec
X ~ x-sec point coordinate
Y = x-sec point coordinate
t for each cross section.
List Directed
List Directed
List Directed
List Directed
IF IUBC
12.
YPT, QPT
YPf
Depths for use in upstream
boundary condition rating table-
20 points required
QPT = Discharge corresponding to
depths in rating table - 20
points required
List Directed
List Directed
13.**
14.**
Q (1 to 12)
TRIBQ (1 to 12)
(1 to NTRIB)
Q = Main channel upstream discharge
TRIBQ - Tributary discharges
List Directed**
List Directed**
87
-------
FLOW MODEL INPUT
RIQUIREMQifS
NO.
PARAMETERS
DESCRIPTIONS
FOHMT
15,** DSY (1 to 12)
Number 13-15 are r
been input. Quant
. _ _ IF IDBC = 3
DSY - Downstream depth
List Directed**
timestc ps
jpeated until discharges for all
.ties (Q.TRIBQ & DSY) must be input In
have
I roups of 12.
88
-------
used by the flow model to set X distances, roughness
coefficients tributary and lateral inflows, and cross section
shapes.
Input data items 13-15 supply the unsteady flow for the
flow model. These data are entered in groups of 12, i.e.,
twelve upstream discharges, twelve lateral inflows and twelve
downstream depths. They may be repeated as many times as
wanted to extend the flow simulation as long as desired.
Tributary and down stream boundary condition cards are omitted
if not required by the option used. Refer to Appendix D for
codino of the Scioto River flow model.
Sediment Model
The input data file for the sediment model is partially
created by the flow model. The title and control cards
must be inserted at the front of the file. Inflow and tributary
flows are added to the end of the file.
The sediment model also has a title as the first item
on the data list shown in the table on the following three pages,
This title can be used to easily identify a particular set of
data. Next, model parameters are entered. As noted, all of
the required cross section data for the sediment model is
created and put in the file by the flow model. The rest of
the required data are then appended to either the beginning or
the end of the file as required. This can be accomplished
using a standard file editor.
Many of the input data requirements for the sediment
model are very similar to the data required by the flow model.
NREC is a variable giving the number of timesteps to skip
before beginning the sediment model. Thus, the computationally
89
-------
MODEL INPUT
REQUIREMENTS
NO,
PARAMETERS
DESCRIPTIONS
FORMAT
1.
2.
TITLE
NX, IfCOM, DTM, ADF
NTRIB, IQUT, IPNT,
NREC, IOTYPE
ITRBX
TITLE •= 80 character title
NX « Number of x-secs
ITCOM = Number of time increments
DTM « Time increment in minutes
ADF * Soil detachment coefficient
for channels (0 to 1)
NTRIB = Number of tributary
sediment inflows <_ 5
IQUf - General input information
Q = No printout
1 = Printout
IPNT <=• Number of time increments
between printouts
NREC » Number of tlmesteps to skip
before beginning of sediment
run
IOTYPE = Output units
0 = English
1 - Metric (SI)
20A4
List Directed
List Directed
IF NTRIB > 0
ITRBX = X-sec numbers where
tributary inflows enter
(in ascending order)
List Directed
WFA, WFB
NSIZES, IBED
DM1
(1 to NSIZES}
SPGRAV
(1 to NSIZES)
PP1 - PP10
UFA « Space weighting factor £ ,5
WFB - Time weighting factor <_ .5
NSIZES = Number of sediment size
fractions £ 10
IBED = Number of x-sec with specific
size distributions
OMB - Size of sediment particles in
millimeters
SPGRAV = Specific gravity of
sediment particles
PP - Bed material size fraction
ratios
90
List Directed
List Directed
List Directed
List Directed
List Directed
-------
SEDIMENT MODEL INPUT
REQUIREMENTS
NO.
PARAMETERS
DESCRIPTIONS
FORMAT
10,
11.*
12.*
13.*
14.*
*NQTE
15.
IMS, P
(1 to NSIZES)
(1 to IBED)
XSEC
X, Z, FNQ, FN1» FN2
IBXS = x-s*,;C number to which specific
bed material size distribution
apply
P = X-sec specific bed material size
distribution
XSEC = 20 character X-sec title
X = distance in miles
Z = Thalweg elevation
FNO, FN1, FS2 = Coefficients in
Mannings
equation
List Directed
5A4
List Directed
"n"
RMILE, NPTS
YTBL, PTBL
(1 to NPTS)
11-14 are from a fi
for each x-sec.
IFLOW, ISED, ILAT,
IRAT, Q1AT
j} = FNOJ-FHl*Y-t-FN2*Y":
1MILE = Rivertnile of X-sec
NPTS = Number of points in the depth
vs wetted perimeter table
= Depth
PTBL = Wetted Perimeter
e created by the flow model. They are
IFLOW = flow type
0 = Unsteady flow
1 « Steady flow
ISED = Upstream sediment inflow type
0 - Unsteady
1 = Steady
ILAT = Lateral sediment inflow type
0 - Unsteady
1 = Steady
IRAT m Upstream sediment inflow
0 = No rating curve
1 = Rating curve
QRAT = Upstream sediment curve
cutoff point (0 if no rating
curve)
List Directed
List Directed
read
List Directed
91
-------
SEDIMENT MODEL INPUT
REQUIREMENTS
NO,
DESCRIPTIONS
FORMAT
16.
17.
18.
19*
20*
A5, B5
(1 to NSI2ES)
GNOW
(1 to NSIZES)
GLAT
(1 to NSIZES)
(1 to NTRIB)
GNEXT
(1 to NSIZES)
(NRIC to ITCOM)
GLAT
(1 to NSIZES)
(NREC to ITCOM)
IF I1AT = 1
A5 & B5 - Coefficients for upstream
sediment inflow rating
curve euation
List Directed
Wiere Q = Upstream water
inflow
= Lbs/sec
IF IRAT = 0
GNOW - Initial upstream sediment
inflow by size class in
Ibs/sec
List Directed
-IF NfRIB > 0
GLAT = Initial tributary sediment
inflow by si*-e class for each
tributary in Ibs/sec
List Directed
- IF ISED & IRAT = 0
GNEXT = Upstream sediment inflow by
size class in Ibs/sec for
next time step
List Directed
IF NfRIB > 0 & ILAT = 0
GLAT = Next time step tributary
sediment inflow by size class
in Ibs/sec for each tributary.
List Directed
*NGTE:
NOTE:
Steps 19-20 are rep
YNOW, YNEXT, QNOW, I
access file which
.ated for each time step, If required.
NEXT, VNOW and VUEXT are input through
created by program FLOWMOD.
92
a direct
-------
faster flow model can be run for a longer period than the
sediment model which allows the flow model to be run at a
steady flow to stablize before beginning hydrograph simulation.
This stabilization period can then be skipped when usirjg the
sediment model.
The space and time weighting factors WFA and WFB are
used in the computational scheme of the sediment model.
Experience has shown that values of 0.5 for each factor give
best results. Another variable with a given values is ADF
which is used in sediment bedload equation. This variable
is usually set at 0.75. Increasing ADF increases transport
and decreasing it has the opposite effect. The range is
0
-------
GNOW and GLAT are input as Initial upstream and
tributary sediment inflows. All sediment inflows must
be specified in the Ibs/sec for each size class of sediment,
After the initial sediment inflows, GNEXT and GLAT are input
to provide sediment inflow information for each sediment size
class at each timestep modelled.
Other important parameters of depth, velocity and dis-
charge for each timestep at each cross section are from the
direct access computer disk file created by the flow model.
94
-------
Appendix B
FLOW MODEL SOURCE CODE
NOTE: Features of code specific to the Digital
Equipment Corporation version of FORTRAN
are underlined.
-------
c
C SUTRON CORPORATION
c
C EPA SriOTIl kJYI-k
C - - LXNfcrtR IMPLICIT KIMII'K DJKKfcRKNOK H.OU MODEL
r,
C yfRSJClN DAT* - i'3 UKLt flttt.K JVH1
C
C ACTFII. =b ftfti)) MftXBIIF-rtOO
C
cc«;<:t:i:ccccr.ct:i:i:cu:t:c:i:(:c;(:cccccccccccci:t:c:«:i:i:(:(:(:(:i:(:(:(:t-.c:c(:t:(;<:t:(:n:t:c
KRtlliKAH H.OUMiJD
Dim-NSlHN Y(8Q> t YNOO) T/.(40)
ctinmiK/rt/ MHO*?)) fKW» iNx. jx
COMMON/ R/ PEL (HCU rKLAK »ir i »i, { 40 , ;>o ) > A VM. ( ^o > vo > i PT»I. 1 4« ( -^o > ,
COMMON
JJAMKNS ,(ON l>( la > » ttSY ( V2 >
DIMI-NSJON TRIBQ(20. I ?) H.
(JIIM1 (40) ih-NOMO) »KHt (4D> t KN2 ( 40 >
X(40) tK(40);(-L EVC!0) rNPCIO)
I) X MKNSIDM ypftiiH ( 40 ) i YH'rtSh < 40 )
COMMON rPI ) .HPT (20)
l.l)ji ICflLJH (It-'K U. IK ( B> tJiF*-' Xl.,1- { 8 ) rST.K ILK ( B ) t INK U.K. ( 8_>
LOG) I A) *4 Til Lt'( 1H) tlDATEO) t J TJMK 12)
PflTft OKFfl bt 1 ) .UPl- j.l.M > TIPy ] I E(3) tflEFIl fc(4 >
DATfi SiHLEd) ,ji)h-M-KC;;) >PiFILE(3) ,S JFIi.tr < 4 )/
l_jH_g 1. 1 : 1 4 H i: i! o Q > -; H t ;>. o 4 > i H ,j/
DAI ft SPfr It E< 1 ) tSPF > I.F( 2 ) rW ] t.E< 3 ) t SPF II E( 4 ) /
DAT ft XNh M.Ld ) rlNHLKt?) tjtHHI.h t3)tIHFILE<-iJ/
SIFTLt
SKh n,t-:(B)=0
= • TI ;
399 FOKHAI'dH »' KHTKK JNh'U'l H.IE NA.Mj
KKA» C 3 t 4J)t) ) U HK X L.H ( I) , X .-a f 7 )
400 FORMAT <4ft4j
' ENTFR (IUIPUI
:i:i Xl.^ ( X > » X~bt />
HKt rfc(.i>40 O
403 KikHflt'C FWlER NAME 0^ INPHI F-H.K TU Sti
96
-------
3 1 4')Q) ( Sir- ILfc ( I ) r I-S t / >
5t>SM < UN 'i r4"i f VPS."* ' at-m ' F NftHjFTfff i i ,EI
_
OPiN < UN II ^4 t TTKK " ' MEM ' • NftHK" S I K H.F
R*-:AB AMD PRINT rx rte
49H> TITLE
t»ft1)
CALL lififr:
~AU. HHf (
-IDATE.ITIHE
y R 1 1> t A , 1 ¥7 ) X DA It . 1 1 ) . H E
4V7 KlKHftl ( 1H! i ' ******»*f «**»*****»«*»****#*»***************' »
1'**$*******' ,/,
2' f. ' » J 7X» ' 5UTRON CIIRKOKftTKW . 1 7X t '*'./»
3" * LIHKAk IHH'LlCn FJNITt; 13 IKKKKKNO: ' ,
4 ' H UU HUllh L *. ' » / F
5'
6'
7 '
8 '**#***»**»**«»'//)
HRITfcl AF 4VV) ni'l.E
URITM3F4VV) II1LK
4VV FDRHftl < 1H0.1HA4 )
C PROH! t.H
C I))--|"J!MK 8Tt:P JH
REAIMS.t )»T
c NX=NUMPER UK X-SM:K IN THF REACH.
C HVNO. tlK I'lMK S I KKH IflKEN
C NOU1 - NIIMKttN l»r X-PFCS 1 () UK KK,(NTh» (MM.
c o- ALL x-st:i;s ftK*-, 03 »t: PRJIMTKII.
C INJ I - NUHfJKR Uh i;i)NSlANl H UU liHKSfkPS Ttl SKIP BEFORE
C bttilNNINU PN.fMTOUl" Of Ktr.SUl.TS.
C NTKIft-NO. »K THmiTARIhS
C IlfWt:^UPSrK^AM BlMIHlHlKY Ct(H)i f, I' KIN SKI>;i;M)K i;i)DE
C IsKr-.l h t'S HUOKKN PR ( N I UIHS
C IXHP 5S PAkAHI-rKK 'HI SlIPh'KHKS X-5EC PROPFKtlhH PK » N f
C SM j.,xHk in o id HUPPK»-:;HI SKI IXSP K) '. HIK PKJHC i
C OP I^ A PftKrtrtfltiK HI StIKTRFSS INPUT Jiftlft PKIHttHIT
E D-^NI) PKlHHHiV OF ) Mh'ltl l-'tTA
C i=PRJNTnil( OH JNPD'I PftTA
)MX> JtUrNIUJI F INJ I jHIHJ »») 1) BC F ; »»i; > tPNV r IXHPf OP
-KPF I l.t-1 1 fiCCh SK~ ' H I HFC I " >
C IF DEPTH (INLY ft f UPSTREAM HOUNMAKYr KhAH IN ASSUMKn INITIAL
C lUSUHfthOE
IF( IfUklC.m.jORFAIKf.FtJUIN] T
97
-------
C If SH.f StrTIHB 0,8, MffHt MvA» iN CONKTANT WHICH RKLATK5
C Y KkftlH S t * » M*rt¥
c IF UINHIAMI WKPiHf NEAP IN DtKiRKi) VAI.HK
xr ( IMC . eu . a )
RI-.A» NOKBCKS M X-8fcUS » » BK KRINri-.l) HUT .
C READ IN X-SH: I.DCAflONS AHU PROPERTIES
c x-st.t; unift SHHULB UK KHIIIJ IN STAKTXNI; AT IHI-: IIKSTRKAM END
C MITH 1MK X'S INORkASING FROH UfWTHtAH T(t BOWNS'lKKrtM
c x =1 niHi'ANce: IN MII,>:S.
u 2 = 'iHAtUKG ELEMATION
C KWO»KH1»* FN2 ?-. CWt»'XUX^NT8 II8KO XW THE
C EOUATJOH M-FKO-l-hHJ*¥+FN2*Y*ir2
C MLftl - IM*Ttrtl. LftTKKftl, XNKU1US OS tIKS/PT
C SLAT 2 *«PPI IhS 1(1 KEftCH 1-X ETCi. aLftT(l>=0.0 AI.HAYS
C JK iRIBillAKY t.rfl>'K8 Al X-S>.C»
C LI (OK = MO. Uh TKXKUlflKY :
C »-"lltt JlSt XH I'HK SE))I«feMT KltUrXNIi KROIfKAH.
C
h.O) UK-J (F£ At :!
286 FORflft'K'O XMKU1 CKIISH SKC1 ItiNKS ' >
C l.OHk IHKOOIiH 1HI-: NltNKKM 1)1- X-SKCS.
PO 1 1=1. NX
it:- 1
C X-SM; " 20 CHAKACTfcK X-SKC (XILE
HKftX tCi»SaO> XSEC
500 ^PNHfll <5A4>
REftPCS,»)X< U»/CI>tt-K(»(I>ff-Nlll» trNI'CX) tULAKDf I.TKXIc-t57MO.«XNi')
C WRrfk X-KJ-Cf RXVfcRMILE AN!" PCUK'I KliMWk RS FOR U8h. JN Si
HKf 1't:(3>M)t I XSEC
UR!ll-<4tS01J XSEC
4.*) X( < » f XO S ikMOC I ) tKHKI) t»-Ni»
-------
00 40 J«liN2
C CHftNW" Y1W F«iH f.l>.VAVIUN HI MKP1M
YTBt. ( I».l>«YY»l.«I>.»>-YttlN
C UKXTK MEPTH M«. M-lItD P>K)Hfl>R TftBI.K FUR «Sf IN SEIMfOB
MRir£{4f*> YVJH.(X»J>»l»TIH.
>OV H'kHA'l <» tfl.2>
40 W1NTINtȣ
NP1S< J)=N2
1 KOHl'KHtlE
RUJ-0.0
DIJ 7, \ -*\t NX
2 R(I>a«X CUM U HUE
DYtTSTUP
25 htiKHAl <1HO»'TIHE INCREMFNIf BKODMDS' s¥ 12, 1 »5Xt 'THf ftt.
WKIli- (A»X6> 10
26 ftiRrtAf (IHOr'NH (IK (iklONATF.S RUinHll'tlV)
IKHIHIJ ,t.H»0)«0 fU 1066
MRITF^tS^AKN^tDil.'-lrNIHX 1
HVA FORHflKtHOf'Slftiifcf WKt.OCXlY. AH» »1SC;HA«(*K (IUTVUT Ai X-'f
CONTINUE
t-ilKHA'l OMOf 'HOitNUftKY CIINPXTtltM TYPfcB'f/t' UKS1 KKflM --),-'»
2' SKl.K SKYVIH»i '/. " HrtVlHli CURVt.i S » Dt-IFTH ONl,Y'./»
3'IMlMNSTREftM - - 1 " KKI>' KETrlMH» V - rilNtilANT UfcPYHi H = Y
4/»' (YPfr SKl.KCTED"' »!;(»' HIR UfSTRKftN ftHI) '»I,(f' H)R PIIUNS I RU
t(Af 4/.AHHNJ T
ifti. a
IFODMC.KU.DUkX ik(
«H1 HlKflAI (IHOr fYyKl TK { ft »tt«a >BSDKP
FIIHMA1 (IHUi 'CONSI'ftNl' DtlMHSVRt.AH JJKP1H- ' » K7 , i
HIRMftl (1H<>» 'NU, fIF 1'K 1 »U 1 ARIKSi" ' » 15 )
UR1U (Ar^O! >
H»KHftT2 I "If NX
IFtl.lklHd >,tU. BO TO
99
-------
HIKMAIUH »'UPJ*TRFftM RATIK6
t JHOt ' Bfc.HH [HM:HARMK.'>
HK1 1>:!A»H/V) UY^H J) >»PJ t,t» » J'-l»'*»i>>
HtRMATC'.H
V.1A CIIHTINtlE
*S»A HWMAIUM1.' CROSS ttf.crXOH PRORKR I'IKS' // >
c INJTIAI lit y
CO A }-J p
A YU>--0.0
i-'nK«ftviiHO»'x-st:c: pRtiPhRTTts PRJWJ '»X4t' ),8'»FA»l't
2 ' t>'S KfcR f 00 V ' )
URllfc (A»HS) t-NOO ) »KN1 ( X) t¥H2t.\ )
3» FDKMftl' tlH P 'BJUAntW MSCK1 BiNH N IS'i^/.,'**' PLUH ' f >•"» ,4 ,
1' flHES T fl US'tfV.S. ' IXMtS Y H«tlftRK.n')
WKlrt. (Ap7i<») /.U>
34 FURHAT (1H » ' hLf.Uftt KIN W (.OUtST POINT (IN X-SHC' »K9 , ?)
M*RKAT( JHOtlOXi ' DF.K1H ARt.rt U KKK TUP WXU'IHV)
Ml-NFTStU
UR J i H ( A, 3;»S > < YTWI. ( 1 1 .0 i ft'l Bl. ( I » ,J > » KT BL ( I » .1 > t 'I THI- 1 I » .1 ) » J= 1 1 « X )
i-tmHfti (JH
7
v.\
(JHl)
C RfA» 1ST H2 BXSCHARBI- Vftt.UhS KOR MAIM CHAtiNKl. AH)t At,,l. TRXNS
C i> - rtftIM I'.HftNNtl. UPSIRtlAM IHSr.HftKGE
C N01K 1HAT UU » IS TftKfcN Til UK fit 1!MF=H»f NtIT Al TKHH ^ HI
C HfcAHINB THAV THE HMMBEH OF U'S HUS1 »E OMK OKt.ftl'ER
C THAN 'I HE NimUHR (IF 'OnHSIKKS.
C M.8« NDI'K THrtJ IF XUi«C -- .1 THft'f I HE il ARRAY UJLL
C CONlftXH liKetHtNOT 1KSCMARUF
HKAI) < S » * H «J ( I > , I « J > ). 2 )
IFJMJKJK.hW.OmtJ HI 1JU3
Dtl Hii! 1-1 tHI'KIB
C REAH K!R?*T IS! 1JISCMAKHKS FOR HftCH TRimiTARY
C IRISH - 1RJBUIARY IIJ.Si:HftRKE
REAtK!i»»)
-------
in rm-; KKSI iv,
XNlTlrtt.IZe ft MAFRIX
DO 10 I*-lrJX
»n 10 J--i»5
10 At) ». I >••<>. 0
K-l
6*3?. 2
C APH.Y 8TITP »AY(^*NX)-BS»KP
IF t J HBC , tM» ? > V < ?f.NX ) -~»«Y < 1 >
C t.SlftM.lSH INXTIftt DX^CHARIJES
C OOU1 - H*Tfll MlSCHARHt-, fOR REftCH
J K I UBC 1 1,0 . :J ) «t!» I « i ) -U I H IT
I F < HIKf. , Nl- . 3 >(»!» I ( J > -«C 1 )
0(1 H«3 X»XiNX
C flOH I.ATFKAl. KKHJIW
uuuTd j-umn ti-i)+ut,rti 1 1 >*-xu-i»
C ADM TRIBUTARY FLOW. X
FINU CRtl'lUAl Pt-.PTH AT X-8EO NX IV Y *U»»m < NX ) /G
Yi: = CRITXCM. WKPTH
YC=0,0
»» «HS I -1.1000
YOYC+0,1
ufti.i. r ABI.K ( HX 1 1 > TI: » mm r , tJF»Y >
-8HU NX
,U,!J«W !0
«BS CONTINUE
CflLl MKftli (Y<2*NX,)»l»llin tKNO(HX)
CVAY*,» = «U»flVKYANi;f AT X-Bti: NX
;>-UlHI I *NX > /SUKT ( HF2 J
APUANI:K: «iPHTRHft« X-SKC BY X-
L=l -1
..«XO.-H )-XtL>
ASKUHt. U.S. Hli.PTH -B.S* MKPTH
C USK NkttTON'S X'IKRft'flDN HMHIin II! ZKRO XH ON UPHIRI-flH
C Mtt IWKfc IHAH 100 II'KRAMDNS ni
DO WHH Nll»l»100
101
-------
ELEMd >»
C
C
C
C
C
C
C
C
C
C
C
C
FI«» HKAH AT HPSTRtftH X-SHC PAKKH IIK AHSUHfcH »K»TM
UK 1JKPVH PROJtXVKW BY HfrHHIN HWHSJLA
CAU. HKAU rfrNOO-) »I-NI U.)
CVAY1 » nilNVKYANCI- AT U.S. M-
Olll'tD/SORnHF I )
GF.OMUlKJtt: Mh'ftN Ht-
Kt-'OOH M L. > tUlH! 1 1 1. + 1 > / < UWAY 1 SI1VAY2 )
HLOSS» * HliAB L08R
ELUBK - t.HWY I.USS
S-0. »*A8SlMW2-HWl )
DSHEB <* 1UTAI. U.S. HKAO
.B-/2+HVX+Hl.HS8+El,WSS
ySHt-'l) - 10TAI. U.fi.
W-t/ltHVl
ERHOU = 1-kkOk 'JMI8
HR»SMKn->JSME»
EXIT LOW !»•
ti.O.Ot Mill II! 8H9
I^ HKKT nrKRA'l JCtlKt NkMinM NH1 AI*Pl.X«:A»LKi VAKt SKCUNP
UUCKS ftN» MCTUftN
TO WO
IF'
lit) tl» HH8
ftt*ii SIH:I>,F»IWH
- APKI.Y N^UTON
HV«) SSLY21, -YC,'*t)
Y(?*L)--Y-l-«4N
c <;Hfcr,K urn r«o TIBHI
IFtAHJ*-IM YT'L) .I.T
KK YC.'ft > .)>. .«. Y(2*». >->«). /V SO' Y 21. + M( 1*0,0 J
IFCAHHdll Y?l./Y(i**l. » ) ,«H, ;*.(») Y tl'tl. J^O.Htlll UY + 0.01»N)T
C EXKHftNHE III,)) AND MfcW KKKtIKS ftHB Ilf.KATE
EROI H-KKNII«
UI,»Y-IH,Y2L
WPP i:(iN1]NUe
C COMVKtUifcNO Cim(>l>.lK - AMWANt:f Ui NI-Xl X-SKC
C tXCHAMBt; U.S. rtMM »,S. PKOI'UKT «.ES
CPMTIKUE
PRXWI (HIT INl'llAL t (IN1»1 i
HH7 CIWIJHUE
C 8Ai:KUA'IKk ^
1 I IHt-l 1HKK/IJT
IF(MllUT.(<1,0)tilt
IMJ HV2 l^liNX
HV1
102
-------
ninn -NX
tm m*i
M2-J3
WKll'V (A»h;>> TllHE
52 HiKrtATOH0»/'Xr'TiMK = 'tM.Ot' HIMIKS' )
XMN2.K1 ,MIHJDH*->'NUtlT
HIKMAI OH »/X»
yRITf <6»1AS1 CX(NPt Jt)
HmrtMUH j/Xf'Xtt »'
C1H i?Xi 'Kl.fcV ilSKV.2)
t«^*NK( J ) »» JC-H!r«;'>
FDKMfll (1H f AXf'WfcPrH1 r1 JfV»2)
«RITF ( 61 4A J { f < I'fl'll-'U >-l > » I-
'wti.iHJirv f i.^
Rti TH BV4
MJ -M24-1
M2-H;f+i3
I, (I ID H93
C SET UH WH.tlUXTV ANH l»KKTM ftKKftYS TO (-'ftHS TH SICUTHKNT IttlPEL
C YMSsS ftMB WPAKS AHE WSJ TTKH TO MJRKUT ACCESS JllSK
Hi) *tt3 I -t»MX
WPAHSO )*T(i?tl-l )
YHftSHU )-'
313 CliNUNIIE
10 ;»83
» (,Y«;MK-iY(2)
C f«t***»*t»»t **«*****«*********************<*******«
C HA I M II HJ 5J t tK I
Mil 11 JN-lrlO
JNFJ = JN41
Tlwt.R» i fns-.R+wr
ft«l. O
c uPSTKKAtt hnoMHAKt r.»wnn HIM
Af( )!)><(;.«* . I >GO 111 15*
C TYPh 1 » KH-K Stir(«C> - HfcKH BUT ft< H*U HI- l.tHIK OR
C »!- IHt. I HOP
Cfll I. fftW.K (t f :?t TCHKfAK. Hl-'JJt S
103
-------
YN< J I--KO :
1FC lUBC.N* . ;•»«(! HI
TYPfc 1? - N/n INli WIKVE
CftLI IrtW.K (I il >U(IO tVCHK
YN< t>*K t >
YNC?>»Y«;H
«» MI ise
45?
C TYPS .4 « OKPTH
C ftLI, KKT UK PIINU rtFTUR X-bki: I. HOP
1!)H CONTINUE
C FIIL CUFf-^TlMKNi MftlKKX
C UUHPUTK X-SKi: PHOCKKflKS ftl UHSTRKftM I-.NU UK KXRSV RfiACM
12=2
FY-KNOO J+FN1 (D»Ycr;>
f.pRHY=KM» Cl>+'«».*FN:m J*Y( J2)
CAl.i. TftMI I- (1 tVt Y«Ki WPUYJ
DO 1A I»>U»WX
I \M~1
PX"-X
FP«MYi' -FM) C i ) *'f. , *<•«;»< .( ) * Y 1 1 0 >
CALl IftBit- < J fftHrarYC XtlJ t fttWti)H*»:!5
UAt.l IftWl.fc (IIA»f*»Y( u))» l'»t>.
IftWk O IA»i3»Y<)0> tJ-'Xtl
3 + < »PK
COf.H- ,«;]!• NTS «K « ,H.S, «f
At i;»»2> — ^YCll )-Y(I,4J + »Vi>A*B*Yt X.O O.i
t ,/ A,
2+Y(r3» + ,yoA*iJ*Y«»'Y;i
« >
, yo**«* Y< j i »»YI i ,,u*if- Vi'*HiVHA?**< i. /:*.)#!• PRUT ;:*nx
CO€»-Hll,JKMfS W l.N.S,
ft< tt »l>
104
-------
OF k.H,S4. IIP MOMENTUM
Y*l-y*Pn
> * Y I C» 5 + R ( O *Y < T t
,y-/,( X-l > J +
C COfFFJCIF.Nl C1K R.M.S. W t:(lNT) «»»f Y KUUftl'lON
M It >fR( I)*(ftR+flR'.!)--(R( 11
l< Y < M >4Y t < ftR2-l(IK2» Y { 10 » +2 . *!JI. A I ( 1 ) f MX
IFU.TRI»< X) .M(-:,0)K J JD'-F ( II ) +i!. fTKfBU (I. IRtU( () .K)
C EXf:HftK(ih UFSTKtfiH ftNl* LKiyNSTKHftH X-SKC; fROPKKl IKS
TOP
C STRUtriURI- MAIK'IX CKOPKKl.Y K«K UKS'lRlriAN HnUNHARY rONUMXON
IF { ItlHU.Mtl. t )(}» )«) 4tl9
C TYPt 1 - 8M.K BUTTING - Nl) CHrtNHH RKUUXRKD
HI) H) Jtll
IF CTURC.NK.2)iiM Ml AfO
TYPt: 2 i RftlXNIi i:tlKVE
ft r-!,j>> ^o.o
A(2»3)=J .0
rti"^»D -0.0
A<2i5>=0.0
Hai^YCHK
60 TO 1111
CUHTKHUE
TYKK ;< = HFKIH
-'ft < v> i ri } /A ( :4 p 4 )
ft( j ., 4 > -^rt< ;> ,.o -jCRft n »*ft t .1 1 2 >
A( l»5>
f- (J )-|-
f»(2f 1 )=C,0
ft(">f'.'>-0.0
A(2i3)=l .0
rt 1 1' t 1 > -0 . 0
A<2»5)=0,0
1111 tnMTINHE
C DOWNS IKtAM
4 > -1 . 0
.Efl.UF
tF < i im:. tu, ^) n a* MX > --ws
105
-------
i-:u, t> ih.x-Jx-3
IFUUSC.FO.2nKX--.IX~4
IK timi:.MJ..;oiKX'!.JX-2
00 17 I-l.lKX
,1-KX-I + l
TN( J»-Rft«rM nw HSXT tine STKP.
IFdllHd F.R.I >TCHK»rN(2)
C
C »*»*t»t**t**** »****»*
C Vf-.LUIMIV IS (»>» Y'S
C DEPTH IS MKN t'S
c *********************
c
C CALCULATE. AUSOLUTtC
HI) 1» 1--1 »WX
CALL IftWK (JTAHi»iY«*X)
IS ELfcV=ZU J+tN<2*J J
Tl »«t
SKIP OHKI«NOTK» NIJNM.R OF rXHt.ST(C»*S BEKUKK «Kfl IHNtMH MiHTOUT,
IFCINJT.GY ..IN) Mil HI 10?
IK(NOUI'rKT.i»UU III 1?
00 M J-)»NX
NOUI'-NX
UK j I°E-:( A>:>2) IT (Mr
SO IF(M2.RT ,N|iHI >Ht
UN( »KA».iA) H2)
) >iI-KI tlli!)
Hftl II C A. ?H> I YN< J!fNP< J ) ) » I --fit
t J »-t»
102
C PflSS VFI.Oi:iTT AMU PkF-'lH TO J-HIUHHHT HI»>KL
C Ut-'ftSS AN» YPAKB HKt- WKITU.N (IN IHlKKin ftiT.KBS OTSh
oo id f^
Hf1 til*
106
-------
CONTINUE
IFt JM.HJ, )u/ tip TO ?0
I)* 1*1 r NX)
BO fit 'r»f5
282 WMlTf t;*iZ«J ) NKKC
KHMTINIJE
fXCHrtNW, III |i ftHli NUI (IHf LINfS
OH IV I=J»JX
Y
READ MURE DATA It-
If (.INtt:U.XU)t>0 TO 20
lF(K.LT.iy>(i|l II! II
»X=-J*J?)
IKfHRIh.^O.OJCil) Til 1U6
DO H^ I~l »NIRIB
R^rtl»(b»*> OR1BIH i .,»)»,)-!» 12)
1 113 irONDNUE
111* CrttTJMUe
lF 'MS VI. I) . ,1'J. t H^>
C »»**»S**»***4i*»*» *»**»»*«***»**«!»*«*«•«* »**»$***$
c inn m- MAIN HHEstfp I.IMIP
C **»**»»**««****»*«**** *»**#*****M»#»»* !*•»*««****
11 CPN11NUE
-.« I:»N i »
CftU. ri UK Or I HE)
MRIfF
-------
sn» VE
» JX
f!iAM(P(»> rRWK RO) . RFTrt CPO )
NK Slll.i/K INWRTS ft MATRIX
BETAC1 >=0.0
DEI (1 )»ft(J 1 4>/A(1 f 3J
)»F
RMU ( ,! ) -ft C 7 1 3 » -A t ^ » 2 ) .KlJtll, ( 1 )
KLftM C «» ) • A t 7 . 5 ) /KHIH 2 )
)/RK!t<2)
DO 7 J-?»IX
Btvrftd )=rtt x «^>-.i( i > i )*nt-i,t ,i-2»
RMU( I)»A( If3)-BK(A( X )*U(-.H l-l )-ft< J> I )*RI AH( J-
OKI. t I)- (At I p1)-»tlft( 1 >*KL.rtH{ I-l> )/RMU( T >
RLAM( I >=A< J .5)/k«y( 1 >
CONTINUE
BETAt JX-1 >»fl( JX-) . 2)-ft(.IX-l 1 1 leDFl. *R1 AH< JX-3 )
DEI (,IX-) ) = {ft(,IX-i t4)-PFTA{JX-] ) «RI. ft«( ,IX-X'» /K(1U< JX-J )
x-^>-ri( ,ix-t . \ >#fiftMc.jx-i
BETAC JX)=A( JXp?.>-A( JXt 1 > *BFJ, ( JX-H )
KHiM JX)-A< .IX>,l)-»FTrt( JX)tl)t:i.(JX-l)-At-IXp 1>«RKAH< IX- 2)
6AH( JXt»(F( JX)-PF,Tfi( JX)*PAM( JX-J )-A< JXi \ JtPAHt JX-"^) J/RM(I(,)X)
RLftH(JX>--«>.0
DEL*0.0
RtlURN
END
108
-------
«ll
C SUIMMUfINK IftMf USES fHI Tft»».tS f.RF.AiEn JJY SUBROUTINES
C CMAMNI ANI» BtOH ANM ftETFRMtlO-'S VARIOUS CHftNNH. PRUPfcNTIKS
C KUK UtKKtRKNr El.fcVATlONS HS1NH l.lNKfttt INTKKPOI.n U(JW.
CONHHN/XSFlVNKTRCiO) » YTBI <4 »ATI<1 IF,
9 lifl TO ( Jf)»2<)>«(Qi 1Q) ITYP
1O IF »»« I'll 13
NTit l^HTBl.-l
no tt JtT-l.NfBLi
IF«OPT.(»T.O.) fiO Tt> II
UrtJUM3»100> 1T + 1
100 FflRHATl' PRPPLEH EMCOUNIFkKri IN KAflNij r.UkVK AT Q<
Kll I'll ?50
11 IF•»•(( (YfTt J1>1>-YP1 IITi)/(OPT(TT + l ) -QPTC ? I )
+ GO TO -»2
22 Xf-'ftlBl ( It IT)f( t (fiiei, (I i U + l >-Al'»l
-------
tYTB«.(lflT»)*(YT-YTBUTtm»
nPt>Y-*'rtm U » tl +1 >~XT>/-YT>
RETURN
23 XT=-M < Y V-YTBM J »NTBI.»*TTBI. < J >NTBL) )
IK(YV.t:Q.YTBI.< I jNfBL ) > till TO 26
DPDY=(XT-ATBL (liNTBL) ) / ( YT-YTPI < I > NTBI, > >
VIA BtriJRN
30 rF(YT,PT.YTRL( JfNTBD) KO TH 35
JEF «>l> »"() 33
NTBI 1-NTPI -1
Ufl 31 n-lfNIPLl
IFCYTBI (ItTT* 1 ).BT.O.» liO TO 31
WRS. •|£(3flQ2> IrH + l
10? FORMftTC PRPPLFIM FNrdUNTKRKi IN UKTTFH PFRIHkTFR TrtKLK AT'./.
1' YT»l.( ' i£2f ' . ' tl'.ir ' ) ' )
HO TH 50
31 IF•»•(( (fiBLt ir.u+i>-pm.< [»;T»/{YT»»I.< utT + t )-
+ YTBL (It IT)) )*< Yl-YTW,(Xt IT) ) )
RFTIIRN
33 XT=-(PTP1,CI » J )/Yl Bf.( I ? ) ) >*YT
DPJf.-'-;:.YrBL. Rll TO 42
4i> XI- I IftL.dilTJ-H «1TBI <1 > IT+U -T lUL { T f I T )
+ YTBL(liIT) »*(Y
RETURN
43 XT=(TTPL /Yr»L(Xil) >»YT
BPJ)Y^XI/(YT-YT8H J rl »
RETURN
1^i X l-TTBl.C tfNTBL)
SO RETURN
f-ND
110
-------
SUBROUTINE HKrtP
COMHUH/XStC/Hf>fSt4«)) tYIBt.t 40.20) rft r»l.< 40»20> rPT»l.<
2TTW
ElC-O.l
CALl TABLE < I »
CAiJ, TftBLt! (J»
HYDRAlH.Jt
c u = w
C HM - VKI.SICI1Y HUAD
HK - KRTCTTUM SI DPt
Kt; TURN
END
111
-------
£HANKMNl»lrOF-tN2>
C ttUftKOUTINt: ttHAHNl. CUNWireS S-86C «»-;»» TOPMlftTH, flNO HETTEP
C PERIMtTPR FRtW X-SF.C ftftf^ nNDTNC rn
C PTBl = X-8EC W^TTkn PERIMtTlFR rOKRffSPON!*JN6 TO TTPL
C TTBl. =•• X-SEK TUPVSIDTH CimR^SPDNDINO ft) YTBL
ATBI.-0
C REft» S5>Y PfllHT PftlRS.
C UK W1 IHJFPUT I*F THE INPUT IJATft XS UANTFtJ (OP=0) ISO TO 10
IFtOP.FO.O) Btl Tfl 1O
C PRIHT IMIT THfcl HCftDKR ftNft X»Y POtHT PAIRS.
<1HO»//. ' CRllBS «KC ftON '»I2»
X8EC
RMJtE
ADO FURMftl'ClH fTOX
MRITF(At6(VL) Nl
FflRHATUH jiOXi ' NUHSHK CIF POIHT??- ' f 14 >
AO.I FflRHATtlHOtlOX* 'X»Y POIMf PftI«S J'J
DO ? Jsl.Nl
MRli€<6tA04} X
*04 FORHATdH .20Xi?FI0.4J
*^ CONTINUE
10 ?«AX=-JOOOO,
DU i J"lfNl
8 IF(Y
-------
PQ 6 J=2»K
NY-NftCJ>
C ry« » HftTER SIMM-AC*. FOR llfih BY FU«R.
IKYys*,eO.Y«NY» litt TO 6
C CftLCULATK THfe X-PEC PRHPERTTPS USiMW SlfPR, GEOH
£ ASSIGN X-SF.C PRnPCRTIEfi Til PfW'KK TftMI.ES.
& CONTINUE
DO 7 J«ltK
NY--K/K J>
RO T« 7
7 COMTfNUE
RETWRM
113
-------
SUPROUTJNf-
CnMHttN/ftEttHt: T/X ( 5»«J J » Y C ;»» >
C SWUROUTINf". PI-OB MIU Kftl.tttJLftTK 1 Hfe X-SEf: PRnPtRT ff:S
C IIF ARKftf MCrrff PKRlNtil'KKi ANO TlJPMWH MR BtWN WftTER
C SURFACE EI.EWftTJONS,
C Yt»5 = HftTFR SURFACE ELEVATIONS FOR USE IN Cftl r;MI,ftTItmS,
C ftRKA ~ X-RF.C ftREft
C MPEft = X-SEC Uk.TT&D PER1HETER
C TH « X-SEC HIPMTDTH
C DX = INCRFHKNTAl. X HISTAHrE
C DY * XHrRKHKNTAL. Y OtSlftNCE
C Dft » TNCREHEN1AI. ftkf'A
C DP - IHCRfeMKNTAl. WETTKD PKRTHETER
TU=0»
IF vys unypft TH^SN FJRST PT. - GU TO 5
IF(YHS.f,t:.Y«X)} 0(1 I'll 5
DP-YWS-Y<»>
LOPP "IHROII6M MIIMHKR OF X-PEC PIS,
BO tO N-
C IK PT. IS MOW. YUH - 110 TD 6
IF(Y.RF,YMS) RO TO 10
C FIW» JCHTKKKtCCTION PT ON HPSt.OPt:* AHO BX*DY
C COMPOTF Dftp
V »rt-!0,
C SUM ftRF.fttUPKk ftNri TN
8
TU=T«4IlX
10 CONTINUE
C IF YUB l.nUkR THftN Lft?T PT - lid Til 70
60 I i) 20
7,0 K
END
114
-------
Appendix C
SOURCE CODE
115
-------
c
C SUTRON
c F.PA scinrn RTWKR STUDY
C CHANNEL PFPIMFNT ROUTING HOIJEL
C
C MATFR ROtlTTHfl IK HOW*. BY A PF.PARrtTE LINFAR IMPLICIT MDDFL ,
C ttftlHR DISCHftRKtt UKPTH AND VKUICITY rtRF RF.ftl) INff} ) HF. HOPEL
C SEDIMENT IS ROUTED BY SIZE USING HEYEK-PEl Ek-Mill.L PR PKULOftD
C EQUATION AND HWJIFlfcl) EINSTEIH PKflCEWIRF FUR SUSPt-.NREn LOAD
C
C VERSION PATE I 23 DET.FKBt-.R 1V81
C
C HftXBUF=(t.OO
C
ccccrnr.rcrcccccc:cccccccccrccrr;r.t;r;r;r,r;r;r;i:r;i;f;(:cr.c(:cr;r;cr,rccccccr.r.r.cr:r(,cc
c
PROGRAM PEPMOD
» I fl > T Prt < 4t) » iO ) F n«B( 10 » i DftRHOK ( -10)
Z( 10> >AI)f iHP«»SftV( 10>» I)KNS( tO) »FU»< 10)
10) .PNKXTMO, JO) .TRNCAPf 10) fCE(IO>
TSB/NPTSl *0> f YTJJM 1»»20> >PTBU<40t 20)
7(4f»>.FNO(flO)ffNi(40) tFN?< 40 J t SI.P
t:OHmiH/HYDR/YNt)UC»0) iDHOUt 10) >VN()M( 40) . YHHXT( 40 ) .ONEXT ( 40) ,
rnnM»N/pi;oN/ jrpN r f PF»,AO
INTRGER DJAGTiDTAtiN
DIMENSION AT( ia>iB?( 10)
l.«HiIi:AL*1 I T I ME < 7 ) > X PftTt: < 3 > , 0.1>'It.K (.tf lA
! BEEP
Cftll gRRSHT(74> .TMKjJ' .1M S^* ' .f ftl.SK. i .FAl SE. t
r.ftiJ. KRR8KT< AA> .TRtlK. • .FALSK. . .FALSF.. t .Fftl.iiF . r
DATA OTf II.EOTH I. F (5 ) tPTFH E(4 i /
1 H 37
DATA SIFI I.E (1 ) i SI FI I.EI ?. 1»S IF I I.K 3), *> IF 11 E14) /
l'4HOi II i
PATft SFF I I.E (TT t gPFT I. E ( ? ) » SPjF I I.E 1 3 ) * SPF T I.C ( 4 1 /
HHDl t
sPFJLf t a i . RIF T Tg < P ) t on- 1 LC ( e ) xo r o * o/
»PKM
401 ? (SIP I]:E( I ) f J=ST 7 > ~
40? FORHATdH T7" FNTER MflljE OIK PIKECT ft^CF.SS FII E FROM
116
-------
»Fftrt« • -JQl ) (8«>Oi.Et I ) f .(-ri , 7 )
C
405 FORMAT (' F.NTF.R MO. W TJMFSTFPS TO FKIP 8EFORF EKBINHIN6' »/»
1' MftftNnSTtC PRIHTOUTSt ANB NO. OK TIHE8TEPS FiW Bt AGNOSTIC',, ' )
C READM»*> PtftfiTtPJAPN
C INPUT NROFSSrtRY INFORMATION
Cftl.L INPBA (ITCUHJ
IPHTl-'IPNT
IREC°NX*3
C INITI6LIZF VARIABLES
MLL 1NITL
C ROUTING FOR FACH TIM*
TIMKH-0.
C
C IFLOW - Ft.OW TYPE
C 0 « UNSTEADY KLOH
C 1 * STFADt FLOW
C ISt:» - UfSTRKAH SKBIHKNT INFLOW TYPt:
C 0 s UNSTEADY INFLOW
C i - STKAWY INFLOW
C ILAT - LA1F.RAL SF.BIMtNl INFLOW TYPE
C 0 * UNSTKA0Y INFL.QU
C I » STFAny INH.OW
C t«Af -• tiPSVRKAh Kt;»IHt:MT INKLUW RATINQ CURWt
C 0 » NO RATINP rilKUE
C 1 * RATING CURVE IS IJSEft
C ORAT - UPSTRF.AM SEfilMEWT RAT1NR CURWF CtlTOFF POINT
C IF IKUKAT THK UPSTRKAM SKnlHKNT INFLOW IS 7.ERO
C
REAP <5,«) IFfOUtISKri.JlATtTRAT.QKAT
IF
-------
410 rORMftTCO'.IOX.'RATrMB PlHtVfc UCfiTfcFftH SfilUHfKT INFLOW)
22 MttTF. (At Alt! ORftT
611 FORMAT CO' .10Xi 'UPSTREAM SEIUWItl RATIN6 CtlRWR CUTOFK" ft*"' »F1»»2»
C RKftB 1M SEBINKHT RftTINU fillftWE ftT U.S. BOIINUftRY*
C OS£B-A5*tl*»»S WHFRF Q IS UPKIREAM UftTEK INFLOW AMD
C 08F.D IS IM l,»S/«EC.
IF ORftT,Efi»lJ RfM (S»t» tft!5{»l>f»?i
C
C 6NOU » INITJfti SFniMENl I f»Afi (LBS/8ECJ
E ftl.l. SCDIMKNT UJftOS ftRK CHftNUHJ TO FT.I/iifU: TO BE
t COHPATIBiE WITH W TRANSPORT «N0 CONnENTRflTION
c eatirtfioNti TH«T ARS IISKO IN SF.DIWCNT ROUTING.
c
IF H)
GO TO 83
«B If «tl) .l.r.QRrtf > BB tO S7
DO 89 Ma-I
60 TO 85
87 OH «4 «->l»NSX7ES
85
BLATM - INITIftl TRlBUTftRY PCDrHENT FUlMB, It- ANT
tF(NTRIB,l,F, . 0)ttO
DO 31* I*l,ll»KIS
DO 97 H-ltMSJZES
».l rttfV f < M P I) sfil.flT < « . 1 i / JM-.NR < M )
516 CONTINUE
513 CONTINUE
TIHESMNRFC-l )*PTM
C THIS IS THE iPBINNIWfi OF THf HftIN TIHfc
C *»»t».tt*»*«****H*t***t**»* + *t#*** ******** *******
DO I4fl IT=NREC»ITf;OH
C 1TOOH ISi IHH Htm»Ktt OF TTMESTEPS,
C ¥»FXT» QNF.XT » VNFX1 «KF TMf- HEfTHt niSl;HAR(>£ * WkLOCJTY
C ftT EftCH rltHE S fFP
C
C MRITE TM6 TIME
WRITFMtlflO) TIMFS.IIWS/AO.
' »H0.2. ' KIN IW.F7.2,' MRS')
118
-------
CHECK FOR niAMMIISfll; PKJINI
IT
C IFUTT.FH.IUABT) IPNT-1
t iFdTT.Br.DIAr.T + DIftiiN) IPNT^IPNTl
C SET PRINT FLAG IF T1MF. t-OK OUTPUT
IF(Bl)»UTTf IPHn.t:u.O>PFl.A«-1.0
C FOR STFAm FLOW Sf.T YNKX1 i RNFXT R VNfXT TO INITIAL VALUES
IF < m.llW.PG. U t»n I'll 90
C REAP IN YNt.XT.BKFXT.gNF.XT
»RF,C=NRFr,+ l
RE An (3 'HRFD «YNFXT tT») iNX) r
t(VNIiXT(I)r l»liNX»
t?0 TH 91
C COPY 'NOU' FI.OM PftRftMfcTh.RS TO 'NOT' FCIR STtrtliY FLOW.
»0 »0 9? l-l »NX
I)
92
C
C GNEXT t GNDM " SKIUHFNT LOAD (l.RS/Str } AT HftCH TIHF. STkP
*1 IK t I SI-ID. F.Q.I > IU» TO 93
IF ( JRAT.F.H.) > PO TO 95
REAU (S»*>
C CHANGF LBS/StC TO FT?/SFC.
Ml HM M.^iHSI7ES
103 GNFXTC1 ,rt)=RNFXT(1 >M)/DFNB(H)
)»n T«1 96
C SET SFOIHt.Nl I.OAH UlR STEADY 1NKI.HU
9» DH 94 H-l.NSIZFS
94 GNfXTd .«)=GNnH( ItH)
Un TO 96
93 CONTINUE
IF (QNEXTO >.LT.ORAI) CH TO 99
C Cftl.r.Ul.A\E UNtXT USING SKBIHF.NT RATING TrtBI.E,
DO 97 «^
50 TO 96
C IF NO SFDTMFNT LOAIlt ZhRfl liNKXT ,
99 tlO 99 H-tfNSi7ES
99 GNFXK 1 th)=0.
9A COMTINUE
C
C GLAT *• TRIPUlftRY PFDIMfNT Fl Oil THIS PT> IF ANY,
C UNITS AftF I.HS/riFC.
IFtNTRJCB.I F,0)PO Tn 517
IF tltAT.ru.!> tiO TO 51>
DO PJP l = ).NTRm
REAn<5>») (RLAT(.I» T } t 1=1 »NSI/.ES5
C CMANRfc i BR/SF.r. TO FT3/RFC.
»l» 104 M=
104 PI.AT<«iI)
S1H CnNTINUE
517 CONTINUE
C WRITE TITI FS FOR RF.SUI TS TF FI-I.AM IS SFT
119
-------
tF Tints. 1 IrtFS/AO,
ItO FORHftTOtHli' Jim:*' •flQ.y.t* MIEN im'iK7.2f' MRS')
MCOHW-1,
IF(JOTYf»E,£Q.O» Bfl TO 105
W.nmj--,4S339
HCQNV2-304.8
H=S »N5TZF.S>
r,fj tn 10?
103 yRITE (6ift07> F,f".) ! ' »6X* IOF8 ,4
409 FRRMfcTdH »'WSTRF,AK srwiMKNT INFLOW (Kfi/SKO ! ' .6Xt IOFB.4 »
»07 CONTINUE
IF (MTRlft.LE.OJ BO TO J01
tF(tnitPK,F,0,l) t!0 Tit 108
DO 102 I»1»NTKTB
102 WRITE (6»606» ITRBXI D f *:iF.N5 iH=*l »NS1/FS)
A08 fOR»,1T<' 'f '8Ki:t'»t3»' i.ftT, 8HOIH»-:NT IMFLOU (1.1S/SF.C) I ' f 3Xt
RO TO tOi
10B DO 109 1=»»NTRJB
101 CONTINUE
C WRITE SFDIMLNT SI7.C FRACTIONS,
IFttllTTPE.EQ.O)
IFUQTrPE.Ea. J >
AOS FORMrtTC ' , 'Sf.lt. ' f 1X» '0' »»X»'Wkl. t ' r^X » 'US' »4X , 'CHH.D? ' >3X»
2'ffl»NC,'f I0«' CUr. 117' »)
FORNftTC '»' NO . ' ?!X» 'CKS' >.*X» 'KT/8EC' »2X* ' t/SF.r' t^X. 'FT' 1
*I3 FORMATdH »' NCI. ' .2X. 'M3/S' »3X» 'H/SEC' tWXt 'Kfi/SKC' »5X»'CM'f4X»
R33 CONTINUE
CALL ROUTE
C OtftRNlJ^TIC PRINTOUT
C IFCDiaGT.tU.ITT.nR.JUftfiT + DIftSN.LE.lTT} BS! TO 702
C WRITE (1rA99»
Ikff FORMATUH t3X»'J H PHOU ONFXT')
C 00 701 l^tpHX
C DO 701 M=»l iNSIZFS
C URXTK(4r700> I >M?r3H»)W« ( (N>«f5MfiXT( l.MJ
700 FORMAT C1H »2Xt If., 1 X» I2»3F«» i >
701 CONTINUE
702 CONTINUE
C EXCHANGF THf TJ«F I
»f) ,400 l-J^tNX
ONMIU >«DNKXTC t>
VHOUCI )«UNFXT( I >
DO
120
-------
301 CMOU< T» «)"T.N* XI U »n>
300 cnMUMUE
C 9**|t***i**tt*tt*t***tttttt*t***»******t***ttt*N
C f,H!) OF HflJH rtHF. LOOP.
C
HO C
HI
«RITF«4fl42)
1*2 rORWftTC SRMKENT HOItEi RUN COMPt.ETFn f ' >
l. 1IMMITIHI')
SX . 2
CAM, KX1T
END
121
-------
StlfcROII T INf INKlirt ( Jt I t.Urt ;
t/.l «UH.I)7(10) rACF.SPfiRftVt 10}fD*--f^5( 10) .Fy8( 10)
2»BWCMi<40pl8»»t»l«:XT(40f 1 0> »TK«CftPC J 0> .CE < 10 >
CTHHOM/TAB/NPTSCIQ) t tl »l, (40»? tPTBM 10>20)
CDHUQN/XPROP/X t 40 » F 1 1 10 1 »FNCK *,Q > » FM J ( 40 J f FN2 ( 40 J » PLP
COHHON/PCON/I f'NT f Hf LAG
C
C 17S FORHATUH »' f?»HRWITIMI- IKPIW' )
C
c INPUT «NP cinmn TITLE
C
REAP (5»1?OJ TITIE
FORHftT (2«>*|4)
EftH.
179 » IDftTFt IT I HE
HJL1 IE < A > 1 79 > I BftTF. t IT I HE
J' * SUTRON CflRPORftTION - CHftNWL RUiTHt-NT ROUTIWG MOPFl *'»/
t»' *'
2, '
»RlTe«4»lBO> TITLE
WRTTF, (At 180) TITLE
FORHftT ClHOr?Oft4>
C
C IHPUT AND PUTI'lJT REWFRftl,
C
C ITCOM » NO. OF TIME IHCRFHfNiS TU ROiJTF gftTFR AND SkPIHKNT
C »1H -> Tint, lMf,RKHF,HT tHIN»T^S>
C SNU « KIMFMATIf, yiRCOSITY OF UrtTEK X F.05 < FF.F l**^XSEt;»
C fl»K-Fl.»y SIIII, irtrfftCH, CUKK. FtJR CHftHNF.i >5 (0,0 TO l.OJ
C NX»NU«BER Pf^
SHO * 1.0/J 00000.
612 FORHftTC' 't'tHAHNH. SOIL WTftHHMF.NT CflEFMCIF.NT" ' i F?.* )
C HfRIB-NU, HF IRJmiTfiRV KtninKMf IHH,OMS<=5
C IOHT = CFHKRftl, I«PI»T J«FQR«ftTIQN
C i) * MO PRIM TOUT
C 1 * f-RFHlOUT
C IPNT «• MO. OF Tf«£ J?TFP8 BK.TMkF.N PRrNrPUTG
C HRE*: * NO. OF T1HF. STKFS UNT .M. STF.rtOY FLOW (SMP NREC
C TIHESTFPS IN PIRF.CT At.rFSS FILE)
c lortpF = oiifp»r UMITS
C 0 * ENPI.ISH UNTTS
122
-------
t * fit (METRIC) IIHTTS
Q.Oi *I«ITKf A»
613 FORMAT (' OFKFRAL JWKIU INFORMATION OUTPUT HAS PF^N SIJFPRI-.SBfi U ' )
WRI iKA.MOJTPNT
410 FORMATUH »*RfcS»t.TS tlRl §E PRINTED FWEKY'ilIt' T IMf-STEPtRJ ' )
»RtTFCAt*t*> NRCC
*J« FORHATUH i!4.' TIHFSTF.P8 ARE SMf-PKn 10 AH Ml FIOUffltDEI.'i
1' OUTPUT TO STErtl»Y'>
iFtNTtrp.efl.o) r»n T» j?s
C RF.fttl H0«. flF X-Stt:S UHV.Kf. TRIBUTftRY HOWS FMTER
C READ IN ASr.EKPIMG ORDFR* r.F, If 3t &t f>? ETC,
J 1 > KTRIBM f TR»X
1*S
61B FORMAT (i HO » 'OUTPUT IS FXFRfcRSF-P IS FNBI FSH UNITS'!
IF < 10 1 YPF..K0.1 > «Rt IF, (At AOiJ
*QS FOR««T<1HO» 'OUTPUT ifi fXHRfRSFn IN SI (HFIRTO UMITfi')
C SEf FI.AMS WHICH iW.NTIFY X-SFCS yilH TRJB SFE INFLOW
00 51? T=l»40
5i» CONTINUE
BO 530 l>!»NfRIB
HRITF (6*200) NX.ITr.OM.JiTM
FlfRrtftT (' ' »///tl*>X* 'NOM^tR liF CROSS RfcC.TIOMS » ' »1St/>IQX»
2 *«UHHFR OF TIHii IKCKfeMFNTB -'fJS»/»lOXi'TIME JNCRFMFNT (MIH) »'.
3FS.2>
t;
C INF-M1 ftNfl PUTWIT ytTBHT FACTORS FOR THF 4 POINT
C EXPLICIT HEMHt-.Nf KOIJTTNli SCMI-HE .
C BFA « SPftt;F Wf:IKHT KACTtlRtHUST BK LkSS THAN OR EBIIAI TO 0,5)
C MFR ^ Tt«F! WrlKiHT FACTOR
C
READ (5>t! UFAtUFB
C
C INPUT AND OUIPtrT S«II». UrtTA
C
IFUOUT.FR.l* Uk-ITF t.4»M9>
lit FORMAT (* ' t//»|(JXf'SOI», T»ATA'>
C NSI7EH s NUMBFR flf RI^F FKACTION?
c t»en - NiiHRtR OF X-SK;H utin SPECIFIC RFD MATERIAL
C SI2F
REAW (3»*1
FORHftT (' ' »//» )OX» 'HI»«»ER (IF St/.F. FRACTIONS »'»I5)
C 9HH - RIZF Of SkPIMENT PARTICLES
-------
IFttOtlT.EO.O y«ITf (*,11SJ < 0«B{ 1 > r I -"I f ft* I <*.*>>
115 FORMAT (' '.fXf'SfeniHfXI SIZFB 'V*-SF»)!MKMT FrtLI, VELOCITY
RD TO 20A
201 F«RCH) = (SC1RT( C2./3.)*X3,2*-l . >*nMB(«) **343A.t HNU**2)
20* CONTINUE
Q.ft) wo rn 207
HCONV-,3046
207 JF< TOUT. Efl.l .AND, IOTYPF.Ffi.0) HRITH (Ati^OA) ( FUB (H > *MCPNMf
604 FORBAT <' '»fX»'Fftl,l. Mf.1 WfTY (FT/Sfet^J I ' » 10F?.5>
IM-lrNSIZES)
607 FORMATCIH t9Xf'Fft(l WFJ OCITY CN/SEP) J'»JOr9.S)
C PSPP -i BKIJ MATERIAL ST7F! FRflCftHN RftTIlJS,
C PP rtPPLIFS TO ftl.L SHCTIOMS. P IS X-SFC SPECIFIC.
KEflO C 5 » * ) ff \ , ff'l i fp$ »PP <» » PP5 i PP4 » f»P? » ^PH p PP9 »PMO
C SET Al.l TRflfSS SECTIONS TO BrtHK SIZK IHSTKI BUTXCW
C PRIMT HEADER
IF( JCHiT.f.H.1 J MRITF<6i614)
FORMATCtH »9X»'Bt:i> Hftiehirtl, ST7^ T)I?5TRl6lJTtONS' )
DO 150 J^J.NX
P( ItlO
CONTINUE
iF(n*cn.ra.o) sn TO 112
HO t,U ,1-^HBEIi
IXS * X-SEC HUMSfcR FOR PhJt Mrt'lERlfil
131 REAIX',1**) XXSi (?<. IXS»M) »H-1 iMSJ7VS)
1?2 PO 133 1*1 tNX
J33 IF(lnUT.FR.l) MKITE <6.plS?) I r ( PC I tH) »«-i
J«2 FHRMrtf <' ' »9X* 'X-«PC'»IA> ' PFRCENTftfiES I'»10F9,5)
oo ion r«-i»NX
124
-------
IF CNSI7ES.EO.J ) R<1 TO 106
C SPKR^mw tIF HFBIHEHT 81/6
SPER-0.
C DARHRR^ftRMOR MPTH AT EflC.H
c SET ARMOR BHPTH rn f> 84.
00 104 H=1fNSJ7FS
IF (SPFR.er.o.R4> PO TO 105
RPKR JASPER
104 CONTINUE
103 Hl^H-1
DARMORt I) =084
60 TO 107
to* OB4=tiHIMN?nZFS>
DARMPRt n*-lt04
107 CONTINUE
108 CONTINUE
WStTF, (4,598)
5?8 FORMAT C INPUT CROSS SECTIONS!')
C
C READ IN X-Brn LOCATTnNS ft«n PRflPKRTIF.S.
on lot i-=t»Nx
C XSFC-20 CHARftCTFR X-SF.C P^SHRIPTJON
RFftO (Hf500) XSEC
500 FORMAT (Sft4}
C X-SEC DATA BF-PINS AT THF UFSTRFftM FNH OF
C THF. STIIBt RFftCH,
€ X => DISTANCE IN MILFS,
C / - THF. THAI.«Ff> Htl.VftTtON,
C THE COEFFJCIFNTS CtKf FOR THI- F«ltA1ION -
C N=KNOtFHl*Y+FNS*Y2
REAFi <5,*> X( J)t7CI) rFNO
NI»NPTS<1 )
I REAP IN TAKS.F PF UI-.TTFD PEKIHhTFR VS DFPTH
C FOR EACH X-SEC.
C YT?'
c PT»I =
REAP (S.t)
-------
417 FnRHATdH t/*?fX»'f?Pt '.AXt'PTW,
l30Xf'(N)'»7Xf '<«)')
WRITF (6tA03) «VfBJ.(J»JH.»COW
60S FORMftT (' '*5»2X»1>Fil».2>
301 Cn«TIM»E
CF(IOHT.EQ.O) HO TO 304
WRITF <6.600)
iOO FORHftT (' 'i///» J7Xi' X-SF.C X »I8T fLEM'/J
tin 303 I-tcNX
WRITE <6ȣoi> i r x< I tJMrnNVt?. < r
302 CONTINUE
IIRITF. <4»«05>
A05 FORMftT (' ' r t/t lOXt 'RFSISTftNRE TO FI.OU IS DF.SCRIBI-.n Bf'
2' MftNNtNlfS'/lttXt 'EO))ftT10N, HrtNNINfiS N IS EXPRESSED ftS
3' niWORATJC FUMCTrON OF OKPTH' !
00
(4
2Ffl,;«t' TIMES flEPTH PIUP'iFB«3r' Tl«ftS HKVTH
301 CONTINUE
304 CONTINUE
RETURN
END
126
-------
SUBROUTINE INITL
CQHHW/SFIMP « 40 . 1 P ) » PA t 40 . ] 0 ) t DMP ( 1 0 ) i D ARMOR ( 40 )
10) >ANKXT< SHU » w EPPR » NX
r.OHK»H/l,SF!.0/t.TRIB(40) i NTRIBifii.ftT< 10 >5> F ITRBX ( 5)
COMHON/HE4 7/7CUH < 40 r 1 0 ) * TTl.D? < 40 J
C WRITE! Ai200)
C ?00 FORHATdH i' SUBROUTINF IK1TI.')
C
C INITIALIZE VftRIftRLFS
C
C LOOP TMR01IRH M.I SIZE CLASSES
UQ IS X->tfH5TZF:S
C LOOP THRQUPH NO, W TK1BUTAR1ES
Ptl IA J-1»RTRIB
C GLAT=) ATFRftl, SF.HIHPWT INFL.PU
BI.flTJi i J>=0.0
IA CONTINUE
t5 CONTINUE
C LOnP TMRPtlPH NUHPER OF X-8FXS.
DO HO i:-Jl»NX
DO 103 M»1»NSJ7F.S
J)7CH)=0,
ZLUiH)=0.
7CUH(X»M)=0.0
TTLDZCJ 3=0.0
CONTINUE
10 CONTINUE
ZERO OUT ftTUNSTEn PERCENTAGE PER SIZF CLASS
DO 30 I-'lrNX
DO 30 H=iTNST.?r:S
30 Pft( t rM)
RETURN
KND
127
-------
J rtc, RUM i r
tCE<10»
1 . NS11FS . HREC r IOTYPE
COHHOH/TftB/MPTS 1 40 ) » Y TBl. ( 40 » ?fi ) * PTBI, ( 40t 20 J
CO««nN/XPROP/X(40)t?<40>fFNP<40)iFN1 MO) t FN2< 40 > »St P
CO«MCW/»ELZ/ZCUH<4Qf J 0» rTTU)Z<40>
REAL*4
IHTKHKR
C
C fOO FQtMftTUH i' BHBROtlTIMF RIIUTK')
C tt*tt*t*Ht**>t***«t***K<*f*itH***t ******** ********
C LOOP THROIIBM THE NMHBCR OF X-SrHS
C »*********»•» Jt***********»*t**«* **•***********-»*****
DO 10 I«
OLftT^O,
fiftVF « AVERABF X-SFf ftRF.A,
-!>/ VHt:Xf = »«TT»« Sl.tJPK »>•'
so=F.D BY DX
1-1 J 5/HX
c m;i".i •= DtRiyftTjtMv: IIP Y KITH RESPECT rn x
,S*-BNFXTt£-J »*WNEXT(I-J » )/(HX*HX)
At*C2 = DPRIVflTIME OF M WITH RESPECT TO T.
, 5* ( OMF.XT < r- 1 J -ONOU < I-i » /»TS ) / < »2 »2*ftflVE )
Sl.F - Sl.tlPF. HK THi; KM€RRY ORAOE LINE
c mAffHOSTic PRINTOUT
C IFSO
IF SLP^O.OOPOOOl
KALI. PI:SI:T «tx>
CALi TRANSP
CALL SROi»T
-------
*T * PARTICUUMt X~SF.i:.
BO 21 H-]fNSI7CS
C BEL? - TOTAL CHftNBF IN X-fiHr, BF.n El EM THIS T1MESTKP.
23 nHI,Z-»KI,Z+OZ fiO TO 1600
C «RITE<4iiA01) (DFKSCMJ i H=J fKRIII.S J
1A01
C
1602
1600 DO 200 M=l rNSIZES
GTD l'
SOO CTOT=CTOT+SPGRA« CM) * < KM XT ( 1 1 M )/ONFXT ( I »*10 .
HCONW-i.
WCONM2-1 .
HCONV481.
IFnOTYPF,.EQ,0) 110 TO 201
MCRNW4-30.4B
201 MRITF{*f 600)1 *IMIF.XT< I ItHKP^VtyNEXTl f
600 FQRMATi' ' .I3»F8, 2»F7,?f F8.a»FS, 3.F7, ?»IX> 10FR.4)
25 HOMTINUE
E ENft OF X-SfiK LOOP
C *»********««»***** *»*»»*»» ***»*»*»«»««** *»»******»*
tO CfJHTINyE
RETURN
F.ND
129
-------
i i inr. rn.ni. i
l.Zl < «Q,tO>»7l BUMtn7< 10) fflOF.HPtlRAVt •LOJ.OKNSUO) .KVB< 10)
^tGKOU<40,10)»PNFXT(40t 10),TRNt;ftP( iO> t(;f:( 10)
COHHON/BEM/OTH t » T8 » BTX t WFft * MFB f SWI t WEPER t NX
1 »M8IZFSt»fRf:fif rOTWE
e
C BETFRtllKAtTON Or AUJUfiTFD PRWtEMIftGES DUE Tit
C
W» I «->
1 2LSUM*Zi Stm+21
-------
SUBROUTIHf TRAHSP (JtPX)
CnM«aN/HYn«/YHOW(40) ,QmiU«0) t VHtTW! *0) , YNKXT ( ^0) , QHEXT (40) .
SVNfiXI (405
If ZI.(40»lQ)»Zt.Stin>nZ(l9) FftOFrSPfiRAUCWfOl-NSdO) .FVtUOJ
»YTM <40»2Q>
BIHfe NSION SHEX ' 10). KCAP< 10 » iflSIISP < 1 0 > p f".F < 10)
IWTF.fiKR etaBfrOIAON
COHMON/DIAG/nrftfil .DlftfiNi n T
C WRITEtft.ZQO)
C 200 FORMAT* 1M .' 5UKR01ITIHI- TRftNSP')
C
C DETFRHINF. TRANSPORT CftPftCITY OF Fl.Oy
C BPTKRBIMnflOH »r FLOW i;OM»1TI«NS» SUCH AS HYDRAULIC
C HEAN yELOCITYt rtNC BOWDftRY SHF.fiR STRESS
C NdTF.l EQtIATIlIN RKFKRKNKES ARK FROM 'BF.MELnPHKNT OF HlJOELS
C FOR PRF.niCTJNB WATER ANB SEPIHENT ROUTINR AND Ylfel D FKO«
C STORMS ON SMALL WATERSHEDS!* r BY St«0»S» Lit ANO STEVENS >
C 1975,
D
CALL TAiL /VMfXT { I ) /M^PER
C OIABMOSTJC PRINTOUT
C IF
C UR!rM4f301) IiOHKXT(X).YMKXT-X
C HANNTNfSS N
FN*FHO( I >+FMi ( I >*YW-,XT< I )tFN2( I)*YNFXT( J >*YNEXT< I )
C FtiRK « FRUIT J OH FACTOR
C RBI) - MASS OKMStTY DF WATER
C TAU » TAU STAR*flVFRAl L SHEAR STRF.SS
TAM-tRHO/H. )«KnKR*VHKAN*VMKAN
C TAU=-*2.'"«*HYRAP«RI P
C SW=SHFAR VELOCITY (F.OTN f.,li - S.»l.t5.>
SW^SOS T IT AU/RHO »
C TAyO «• WJUNftARY SHFftR HTHkSti
-------
C 0,047 *Y fitSSUlR. KUR OVKRLftNl) Fl.DH SC HAS KEEN (SET AS LOW
SO, 047
00 10* H^lfWStZES
C TAUC « CRITICS SMtftft STRESS 60 TO JOS
C
C DETERMINATION Of- RftTJO OF SUSfENPfn Bfctt HATKRXAI.
C
C AR » E1NSTF.IWF "B* COEFFICIFNT <
IF (AR.6T.0.9J GO TO 103
C DIAliNUSTtC PRtNmOT
C lF-:(
J03 FORMAT risysp'OKT CftPftt.ITY ft! Fl.iiH tfSOLIP VOLUHF/TTHF.)
c learns s»,o s ».,<<> - »»! .,*,«,»
132
-------
GO 10 106
103 tJBUSrcm-O,
TRMCAP <*>-«,
106 CONTINUE
C OIARMOSITtC PRINTOUT
C IFJDIA6T.PT. JTT.OR.KIACT-i-BIABIM fc.ITT) 50 TO 598
c uiutKMrsyy) UJUHNIIAIMM} jM«i»Hsm:j;»
S?f FQRMATUH f'RAM TRAXS, f.AP.f ' f I2i5X» 10E10.3*
5*8 CONfitmtE
C
C ADJUST THE TRANSPORT CAPACITY
CO t08 N-l.NSTZES
IFCI TRIR.W;,0) QLATM-BLAT J
IKtfRJtBC JtKKU.OJ «LftiN-0.0
C RGAP = TRftMSPORT tftHrttilTt CORRECTS FOR U^STRHAM AND
C LftTCRft!. INH.OM
C IF NO ftWMl.ft)H.K l.Oll-SE SOJLi RCAP •* 0,
C IF«1LU»MJ.LK.O,>
C FIOURE OUT MIN 'IKANSPOKT Bft«E» OK SETTLINS
C
C CF-CONCENTRflTIDN SFTTUNG Fftf.TPR
,t.T,fl, ) C^'(
IF>
!F(LTRIBtI>»FO,tU 01 ATH-0,
C TRftK-fRftNS5l»«)RT CAPACITY BftRKJ) OH SF.TTLINO
C SKK IF THK T^ftHSl^ORT CrtPACITY (TRNCftP) tS f}OW€RN«i BY I
C ftRMORING (Pft5» SETTLING (TRAN)» OR RF.HfllNING TRANSPORT
C CAPACITY
IF « Pft < I »H > *TRNC«P < H » • GT . TRAN ) TRAM-PA < 1 1 H } ITRNCftP < H )
IF«KCAPCM> .BT.TRAH) 1RAH=RCAP(M>
TRHCAP««J»TRfttl
108 CONTINUE
C OIAGMOBTir PRINTOUTS
C IKCUIAGT.OT. jrT.Oft.DSAHT + rHARH.I.K.t IT) HO T»J 60S
C MRITE(4»607) «CF< J) » J=J f KSI7EH 5 »TRAN)
*07 FORNATUH »tOX» 'CF<«)«' f ^X» lOFlO.-lf /• lOXt 'TRAM-' »ElOi3)
C WRITF<4t&00>
400 FOKMATUH « 10X» 'PA(M)-'' , 7X. 10E10 . 3)
C yRI¥F<4t601MRCAIMH>»H=3l»MSJ7.FS>
601 FDRMATC ' r tOX > 'RCAP(H)^' P^XP tOEt 0,3)
C WRITF«iA02HSH
A02 FOKMAK' ' . 1»X» '8HKX(M>-»'
C MRITIf(4»*03HTRIICA«-'(«)»M-
603 FllRMATC ' t lOXr 'TRNCAP{«> = ' »,1X» 10E10 ,3)
C WRIfF.t4f*04H8KFXTCr-if«»f M=l»NRI7Ef5>
404 FflRHATC ' 1 10X» 'ISMKXT < 1-1 »M )«' 1 10F.10 . 3 >
C yRITE<4i605HHWUB< 1-1 iH) »«>••! iN8IZKS>
AOS FURMATt' ' t t«X »
C WRITt<4»60
406 FORMATC ' i U»X» 'BNO»< I »M)« *rlOEtO,3>
608 RETURN
RND
133
-------
SUBROUTINE TAHI (I,Yt,XT)
Cn«WOH/TflB/«PTS«0) »YT»t( 40^0 J .PTRI.( 40^20)
NTBL-NPTSU)
IF (YT.UF.O.) «H TH 103
IF :.YTBl.(Ijl» 00 TU 103
NTBL1»NTBI,-1
DO 101 TT^ltHTBLl
IF
150 TO 104
103 XTMPTBLUtl)/YYI>i (Itl))*YT
101 K^fURN
105 IF CYT.IE.O, ) XT=0.
IF t2,*>
?00 RfflJRN
END
134
-------
C IS DFTFRHINFJl, INCRFAHIT 1 (lOSf ROIL BUE TO Ft OM DFTACHHfWT
C nSOTL. « OtPfH OF UHI8K 8«ltl, AOBKD BY DHACHMFMT
DSim,«APFtZCA»P< J fH>
lFSQtO.t.T.QMB(M» BSfJU.=0.
ZL ( I • M > «Zl. U > M > -0SO It
C COHPUTE THE CONCENTRATION BASED ON THE AVAILABLE LOOSE SOU.
U ,-Wf fi)«/VN()W< J > + <1 . -Ml- A)*GMf}H U -1 i M> /VNOWC 1-1 >> ) +
3<1 ,-UFB)*GNOU(I-3 , H) » » / UGNEXTU > /WNFXT U ) j + (RMEXT ( I )*PTX) )
C OtAfiMQSTIC PRINTOUT
C IF(DIflBT.GT,JTT.OR.niAfiT40IAR«.LE.ITT} PO TO 607
C IHUfl- «tAOA) IiHfZl(lrH)
606 FORhftTUH ilOXi'RAU 71 < ' t f?f ' » ' r 12. ' )* 'fF10.3>
C mUTF.d.AOS) (Rf (,J>t.)-)ltHSI7KS)
ACS FORMftTUM tlOX.'RftM CF.(M) = ' .SXt 10F10 . 3)
607 CONTINUE
IF tTFCrt) ,1 E,0. ) CF(M)»0.
r,NHXTI--UF. (M)*«1NEXT(I)
C COHPUTE D7 BftSED DN cnNCEN TRAT10M FRItM ABOVE
1(1 .-yFBJ*liNPH.lT,0.) ZL(I»H)«0.
GO TO 113
US CONTINUE
1 > + WMEXT< T-l »»PT5/PX»S780,
RNEXTt irN) -»Nl)W(I >M)+linTX*
l tM)+PMOW< J-l
IFtllDlX.RT.1.0) nNeXT(I»M)-
DZ(M)=0.0
C UtftfiNOSTTC PRINTOUT
C IF(DIAST.RT.1T1 . t)R . B T ABTiJJI ARM . I F.ITT) PP TO 1V3
C WRITE(4iU»S> IiMfUDTX>RNF,XT( t.M»
1115 FORMATUH • 10X. 'ttPTX rGNFXTt ' t !?,• ' i ' » 17,, ' >= ' t 71, 1 0.3)
C NKIYK(4»ltl6>WNl)M(I-l » > UHF.XT ( X-l ) r DTX r DX
1114 FORMATdM » ' WNOUC 1-1 > . VNEXT ( 1-1 ) • PTX • PX= ' t 4F 10 . 3)
ttl CONTINUE
C DIAfiNORTIf PRINTOUT
C tFfDIAlVr.fiT.irT.OK.nXAfil+ntAnN.tF, .ITT) OO TO
C WRITE(4t601»«R7--' ,!5X. 10F.IO. 3)
C MftJT*<4i*03) pH"l.«8l7FB)
A03 FTOHftTC' 'tlOXr T.K
C URITF<4,604)
A08 RKTilftN
C
END
135
-------
SUBROUTINE SROUT (I*HX>
»VNi!H<4O) , YMFXK »0>
10)
t.S»Hi»Z(10)>ft
2«6ttnU(4Qf 10)
NX
IO F!»
INTFPF.R DIAGTrPIASN
r.mwtiM/iHAo/oiftBT . nt ABM » i TT
C WRITEt*f200>
C ZOO FORMAT UH •' SUHRQUTINE SRflUT ' >
C
C DETERMINE SEfllHF.HT rflNCENTRfiTIGN ftNP TRANSPORT R(\TE RY
C COMPftRIHW THt; TRANSPORT CAPftCITY OF THE Fl.OM TO THE
C OVAILAiJLJTY (IF SCIJt.
C
DO 113 M*i>NSIZES
C 5? " CHANflfl 1M BOTfOW KI.EV. DUF rO CFPOSITION OR RCOOR
CNEXTI«TRMCAF-/yNKXr( ^-1 ) + (! , -UF»»*«yFft*flNOtK If H»/WNOM< I >t
3U,~WFft»*6NQW/VNOU(I-U ) ) > + < Gl, ATHtDTB) »
C DlftttMOSTIC PRINTOUT
C IFfBIABT.BT.ITT.nR.prflCT+niflSN.LP.ITTJ BO T« 399
C UR[fF<«,400) M»IH AVM,n7
399 CONTINUE
C
C IF 01>0i ABflRADATICW OIXURR «MP TNftNSfPRT RftTF 18 AT CAPACITY
C
IFCDZ RO TO 40",'
C URITE(4f401) ZCft
401 FORMAT (' ' 1 10X, ' ZCA-s' .EtO,3>
402 CONTINUE
C
C IF ZCA>0J AVftII.ftHII.ITf PF I.IM1PF SMI IB ORfATFR THftN
C TRANSPORT RAPACITY HF FMW AMI) THKREFORE TRftNSPnftT RftIF IS
C AT CAPACITY
€
IFC2CA.OF.O, » GP TR 114
1F(P •t.F.O.O.ftNDtZM IiM> .1 .f.O. S fid TH 113
C TRANSPORT CAPACITY IS 6REATFR THAN AVAII.ABI.F SUPPLY OF
C 1.DOSF, SDTi, ftKDIHgMT CONCiiNTRATMIN UNDER 1H)!S CONDITION
136
-------
SUBROUTINE POWER < 7. A, X.ll t X.I
RICAI.*8 AEX
C URJTF-( A.?00)
C 200 RJRMflTUH .' SlIMtnUUNF PBUER' >
C
C THIS SUBRClimNF. EVAUIATFS JI AND J2 IMTFJrRALS
C NOTATIONS
C XJ1 = VAI.Ut: OF J1 INTFRRAL
C X.12 = WAHIF »r J3 INTEfiRAL
C N * ORDER OF APPROX JHATI 0« * 1
C COKU = CnNVtRtifNCP CRITERION
C
N'i
xji=o.
XJ2=0.
AI.QB
C-l.
t<=-z
GO TO 102
101 N=N41
D=E
F=D
FH=FLOAT(N>
AEX=A**E
102 IF (ABS<£> .IE. 0.001) GO TO 103
XJ2«XJ2 + C*( IMK-l . »/E!**2-ftFX*At G/FJ
BO TO 104
103 XJ1=XJ1-C*ALG
X J3«XJ3-0,S*n*Al 0**2
104 IF (N.EQ.l) GO TCI 105
.-FJt/x.u »
IF
-------
Appendix D
PART 1; FLOW MODEL INPUT
138
-------
SCIOTO RIMER FLOMMOWL - 2ND STORJt EWENT
3600
20 83 0 24 1 2 3 2 0 0
GREENLAUN AUE BRIDGE
0 683.36 0,01 0000
129.5 20
0 714,
40 701,
200 692,04
220 691.28
260 688,32
230 697.63
300 687,47
320 687,2
340 686.4
360 684,35
380 687,3
400 686.92
420 694.00
440 686.45
460 685,42
400 683.36
500 685.15
S20 687,45
530 668,45
670 714.
SYNTHETIC X-SEC #1
0.77 683.9 0,01 0000
128,65 11
0 693.9
S 692,9
14 691.9
57 688,9
8? 687,9
248 6B3,9>
410 687.9
438 688.9
402 6f1.9
491 £92.9
495 693,9
SYNTHETIC X-SEC *2
1.16 684.28 0.01 0000
1?8.21 11
0 694,28
5 693.28
14 692,28
57 689,28
119 688.28
248 684.28
410 688.21
43B 609.28
4P2 692,28
4VI 693,28
4"?S 694,28
FliftHK ROAD DRItiGE
1,56 6B3.66 0,04 0000
127.77 16
60 698.65
80 688,1
100 6B6.74
120
139
-------
160
180 685.06
200 686.28
220 686.2
240 685.76
260 685.51
280 685.15
300 636.69
327 686.1
MO 691.65
400 692,67
RAILROAD BKIB6E
2.52 67S.2 0.120 §000
124.7 12
85 693. S
100 690.
105 687.6
120 £34,6
140 687.8
180 661.5
240 67B.
268 67B.5
300 675.2
337 6B1.B
360 68B.
370 694.
SYNTHETIC X-SEC §3
3.510000
125.600
240.0000
280.0000
300.0000
320.0000
340.0000
360.0000
360.0000
400.0000
440.0000
460.0000
480.0000
520.0000
540.0000
540,0000
580,0000
600.0000
620.0000
X-SEC B 1-270
4.570000
124,4200
240.0000
280.0000
300,0000
320,0000
340,0000
360.0000
380,0000
400.0000
440,0000
460.0000
480,0000
520,0000
540,0000
560.0000
seo.oooo
600.0000
677.9000
17
6S2,*SOOO
682,6000
682,2000
680.6000
A78,9000
677,9000
679,6000
681.1000
661.1000
681,2000
681 .6000
681,7000
682.2000
681.9000
681.8000
482,3000
682,8000
675,9000
17
680.8000
680.6000
680.2000
678.6000
676,9000
675.9000
677,6000
679.1000
679,1000
67?. 2000
67f ,6000
679.7000
680,2000
*79,VOOO
679,8000
680.3000
0.120 0000
6.6999994E-02 0000
140
-------
X-btL til
5.460000
121.4300
0.0000000
20.00000
40,00000
AO, 00000
80,00000
100.0000
120.0000
140.0000
160.0000
180.0000
206.0000
220.0000
240.0000
260. 0000
X-SEC flO
6.040000
122.7900
0,0000000
20.00000
40,00000
60,00000
80,00000
100.0000
120.0000
140,0000
160.0000
180.0000
200,0000
220.0000
X-SEC *y
6.9300000
121.8000
0.0000000
20.0C-000
40,00000
60.00000
80.00000
100,0000
J 20. 0000
no.oooo
160.0000
180,0000
200,0000
220,0000
X-SEC *8
7.800000
120.8300
0.0000000
17.00000
34.00000
51.00000
68.00000
85.00000
102,0000
119,0000
136.0000
153,0000
170.0000
187,0000
204.0000
221.0000
230.0000
471. 474?
14
677,7747
672,5747
671,9747
471.6747
672.1747
47*. 6747
673.0747
673,3747
673,7747
674.7747
675,1747
474,7717
674,8747
677.7747
672,1674
12
676,6874
473,5875
673.1874
672,4874
672,2874
672,1874
672,4874
673.4874
674.0875
674.8875
675,4874
676.6874
668.1746
12
675.5746
670.5746
670,6746
468.1746
66B.6746
668.4744
663,3746
648.5746
66B.4746
669,1746
672,5746
675.5746
670,6470
16
673.7469
472.8470
672.5470
671.7469
470.9470
670.6470
670.8470
671.7469
671.B470
671.6470
670.9470
670,9470
471.4470
671.746?
672.0470
A.699f?94E-02 0000
6.6999994E-02 0000
4.6999994E-02 0000
6.69999f4E-02 0000
141
-------
X-SEC *7
8,510090
120.0400
0,0000000
20.00000
40.00000
40.00000
80.00000
100.0000
120.0000
140.0000
160,0000
180.0000
200.0000
220,0000
SHACEVILLE
8.55000&
120.0000
160.0000
180.0000
200.0000
220.0000
240,0000
260.0000
300.0000
320.0000
343,0000
X-SEC *6
9.1BOOO
119.3000
0.0000000
20.00000
40.00000
60.00000
BO. 00000
100.0000
120,0000
140.0000
160,0000
180.0000
200.0000
X-SEC *5
9.90000
lie. 5000
0.0000000
17.00000
34.00000
51.00000
63.00000
as, ooooo
102,0000
119.0000
136.0000
153,0000
170.0000
187.0000
204 .0000
221 .0000
X-SEC *4
10.61000
117.7100
0,0000000
18.00000
36.00000
54.00000
662.2869
12
672.3B69
671,5869
669.1B70
666.3869
664.4869
663.3869
662.2869
662.7869
664.1670
666.6870
669.1870
672.3869
BRIDGE
665.5000
9
672.3000
669.7599
668.2599
670.1SOO
665.4900
670.0200
667.7800
670.5400
672.2500
665.2422
11
670.2422
667,3422
666.3422
665,7422
665.2422
665.3422
665.4422
665.5422
665.9422
666.4422
670.2422
661.6813
14
668,9813
667,2913
667.0813
666.0813
665.1313
664.4813
663,9813
663.1813
662,5813
662.0813
661 .7313
661.6813
662.4813
668.9813
661.3325
12
667.2323
664.3325
663.8325
663.232S
6,49999946-02 0000
.100 0000
,100 0000
,100 0000
0.100 0000
142
-------
CO, 00000
108.0000
136.0000
144.0000
162.0000
180.0000
199.0000
X-SEC 13
11.30000
116.9500
0.0000000
20.00000
40.00000
60.00000
80.00000
100.0000
120.0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
240,0000
X-SEC *2
12.060000
116.1000
0,0000000
20.00000
40.00000
60.00000
30,00000
100,0000
120.0000
140.0000
160.0000
180,0000
200.0000
220.0000
X-SEC *1
12.72000
115.3600
0.0000000
20.00000
40.00000
60.00000°
80,00000
100.0000
120,0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
260,0000
280,0000
300.0000
320.0000
ROUTE 762
12.76000
115,3200
0.0000000
1 OS. 0000
120.0000
662,2325
661 f 3325
661.9324
662.4324
663.2325
664,6324
667 ,"2325
657,9i37
14
665.4837
662.7837
661.6837
660,4937
661.8837
661.0837
660.6837
659,7837
6S9.2837
658.4837
657,9837
658,3837
659,2837
665,4837
654.78SS
12
664.4855
660.9B5S
661.1835
660.48S5
659.0B55
657,6855
656.1855
654,1855
65S.6B55
6S4.785S
654,2855
664.4855
657,2754
17
663.6754
660.8754
639.3754
659.1754
658.9754
658,5754
658.7754
658,7754
658.5754
657.7754
6S7.2754
657.2754
65i,3754
658.5754
659.2754
661,0754
663.6754
BRIDCE
654,6000
16
680.0000
663,6000
661,5000
7.4999998E-02 0001
6.4999998E-02 0000
6.4999998E-02 0000
6.499999BE-02 0000
143
-------
t AC. 0000
180 . 0000
200.0000
220.0000
240.0000
260.0000
280.0000
300.^000
320.0000
340,0000
355.0000
480.0000
3.309012
3.757741
4.168474
4.5151&0
4.907350
5.249875
5.945729
A. 597774
7.218794
7.320313
8.401876
B.9762A4
9,545540
10.04592
11,50799
12,92955
14,34632
15.76280
17.21004
19,72922
385 385 38S 385
38S 3iS 385 3B5
155 155 155 155
155 1SS 155 135
8.4 8.4 3.4 8,4
R.4 B.4 8,4 8.4
657.0600
660.9000
662.4000
ASA i 4000
654.6000
635.3000
A5B.SOOO
458.9000
661 .6000
661.6000
663,6000
680.0000
150,0000
300.0000
4EO.OOOO
£00.0000
800.0000
1000.000
1500,000
2000.000
2500,000
3000.000
3500.000
4000.000
4500,000
3000.000
6500.000
8000.000
9500.000
11000,00
12500.00
15000.00
3B5 385
385 385
155 155
155 135
8,4 B.4
8. 4 B.4
385 3C5 385 335 3flS "5
385 385 385 383 38' .. ,
155 155 155 150 I .5
ins 155 155 155 15
B.4 8.4 8.4 8.4 8.4 f
8.4 3.4 8.4 8.4 8.4 8.-,
372 362.6 360.3 358.0 355,7 353.4
35A.9 360.4 343.8 3A7.3 377,9 388.4
155 155 155 155 155 153
140 165 170 175 1BQ 185
8.4 8.4 B.4 S.4 fl.4 8,4
8.4 8,4 8,4 8.4 8,4 Q,4
399,2 409,8 417.2 424.5 450,2 475.9
475.9 969.1 1095 1242 1249 1244
190 195 200 205 210 220
234 244 295 325 355 386
8,4 8.4 R.4 8,4 8.4 0,4
8.4 8.4 0.4 8,4 8.5 8,7
1235 1228 1143 1001 1008 950
826.8 833 724 741,7 718,3 701.
416 447 477 519 531 537
325.7 521,5 49S 444 44? 423
9,0 9,3 9.6 9.8 10.0 10.2
144
-------
A8S.4 46V.8 454.3 438,7 632.4 426,2
619.9 413.i «!&.? 619.8 419.8 619.S
3§3 375 343 328 321 315
308 302 29* 2B7 284 281
10.IS 10,1 10*0 9,95 9.9 9,B
?,« 9,45 9.3 9.2 9,i 9,05
619.8 619,B £13,7 607.5 601.4 595.3
S§9.2 283,1 5?? 570.9 564.8 558.7
279 274 274 274 276 276
273 272 271 270 2&B 265
9,0 8.95 i.9 8,9 i.f i.f
9.9 8.9 8.9 8,9 S.9 8.9
145
-------
Appendix D
FART 21 FLOW OUTPUT
146
-------
*It*«**l***«*M**t*»*tl***ttB**t******»tt*S*iM«*t*St*
t KM (ROM CORPORATION »
* t INEAR i«n,icn piNirr nirrMSTNce FHJW HODCL t
t DftfFS 2¥-l*:«-il t
t»M»l«ttt»t***t»t****«i***»***i***»»**»t*t»$t til **»»*»
SCICITQ RSWER flBHWJUKl. -
INPUT CRtfSR Sff. r
STORM £VFNT
CROSS SECTION 1
GREENLAMN AVF XMTG
RlUtKMlLK" 12V.SO
NUHHtfi UF FtHHTS- 20
Xtt MllWf I»*IRS
0
40
0(100
OllOR
20d.OOOO
220.0000
260,0000
280.0000
300.0000
330.0000
340.0000
340.0000
380.0900
400.0000
420.0000
440.0000
460.0000
480.0000
500,0000
520.0000
530.0000
670.000O
<>OO9
OOOO
7J4.
701.
AVI
ABB
AS7,
6P6
AS 7
AHA
AlS.lf.OO
,2800
,3199
,4700
,4000
,3000
. V20Q
A9S.4SOO
711.0000
CROSS SECTION 2
SYNTHETIC X-6FX »l
RIVKKHILC* 1
-------
-Kiu; 12
ISH.tl
HUHBfcR OF POINTS- II
x.if mini
O.ddOO
s.ooeo
14.0003
57.0000
69.0000
Z4H.OUOO
410,0000
692.
AHV
iSi
ASS. 2000
?POO
'.TBOO
2800
491. 0000
4?S.OO§0
694.J80Q
CKOSS SKCTKIN 4
FRANK KOMB DKltHiE
R1WERHIH> 127.7?
OF POINTS* 16
XiY WIIHT PM«S J
60.00OG
eo.onoij
100.0000
ito.oooo
14«,0000
160.0000
1 BO, 0000
200,0000
22O.0000
240.0000
240,0000
280,0000
300.0000
AVH, ATiOO
-------
STNUtlfJC X-SK *3
MIVKKNltiB IJta.iO
NUMBER OF PtllNTS* 17
240.0000
2BO.COOO
300,0000
340.0000
340.00OO
360.0000
400.0000
440.0000
< ISO. 0000
4BW.OOOO
320.0000
54(1.0000
360.0000
580.0000
600,0000
620.0000
AH7.BOOO
AK'^.ISOOO
AHO.fcOOO
678.9000
679.6000
AH1.1000
491.1OOO
AFU ,,'QOO
AB1.6006
«HJ.7000
*8),HOOO
*«;».,woo
CROSS SfCTiOM 7
X-8EC P 1-270
RIWf.KMII-f» 124.42
NU«J»ER OF POINTS- 17
X.t PRIMt PAIKS {
24O.IKJ00
280.0000
300.0000
320,00(50
340.0OOO
340. 00«
3SO.OOOO
400.000C
440,0000
4*0.0000
480.0OQO
3211.0000
540.0000
540.0000
S80.00OO
600.QOOO
62(1.0000
A»0,iiOOO
tttin . AOOO
-|»0 . ?«t««
A7H.AOOO
476.?OOO
A7H.f 000
677.6003
ft? V, 1 000
^7? . 1 OOO
A7V.2000
67¥,4000
A7V.7000
6B0.70CO
A7V.9000
*79.BOOO
ABO.SOOO
4BO.SOOO
CROSS
S
X-SEC til
« 1S!3.43
OF PMNT8= 14
Xtt PIHHT C*I«» t
0,0000
20.0000
40.0000
60.0000
80.0000
100,4000
120.0000
AV7.7747
67J.7/47
A71.A747
*73,O744
149
-------
140.0000 *75,7747
1311.0000 *?4./747
200.0009 *7S.1747
2?rt.OOOO A71./74?
24(1,0000 A74.P747
2AO.OOOO W/.7747
CROSS
X-Pfcf: 110
RIWF.RH!U> 122.79
NUMPfR PF POINTS- 12
P1I1HT PftlRS I
0.0000 A7
20.0000 A73.SB73
AO.OOOO A7'»,««74
80.0000 «
100.0000 *7
120,0000 <5?2,4«74
140.0000 674.0P75
200.0000 i75.4874
220.0000 A7
CROSS
10
X-SEC tf
RIVtRHItt:* 121,80
HUMPS K {IF FDIHTSs 12
PAIRS !
0.0000
20.0000
40.000O
*75.5746
A/O.S746
BO.MOO MS, 6746
1?0«OOOO
140.0OOO
140, 0000
220.0000
668.3744
AAH.S744
AA8,i746
Aftf.1744
472.5746
CROSS SFCTJUN 11
x-src *a
NUHMKk OF fplMfS-
14
O.OOOO
17,0000
34,0000
31,O«WU
fiS.OCOO
102.0000
1 IV. 0000
15*. 0000
*73.74A9
&72.H470
A7J.7469
*70.9470
470.8470
A/1,7449
A71.B470
150
-------
17(1.00011
187.0000
2Q4.00OO
221.0OOO
23R.OOOO
23S.OOOQ
470.9470
A70.V470
A/1.744?
A77.O47O
A73.7449
CROSS SECTION 12
X-JiKC 17
NUMHFk OF POINTS-
Xtlf PlIINf
KfllKS 1
0,0000
20.0000
40.0000
40.001)0
80,0000
100.OOOO
120,0000
140.0000
160.OOOO
20C.OOOO
220.0000
A77,
A71.
AA9
38A8
S849
1B70
AA4.4HA9
AA4.
AAA.
1P70
AH70
CROSS SECTION 13
SHADF-.VIU t BK1DHE
KUMBtR OF POINTS-
X>Y
PUIHT PAIRS t
lAO.OdOO
180.0000
200.0000
220.0000
240,0000
2AO.OOOO
300,0000
330.0000
343.0000
A7J.3POO
AAV. 7599
66P.2S99
A70.1300
6*5.4*00
*70.0?00
W7.7BOO
A70,li4l>0
i7?.2SOO
CRUSS SfCTTON 14
X-SEC *4
RtVERnit» 11V.30
NUKBER OF POINTS*
11
XiY PDINI
PAIRS i
o.oooo
20.0000
40, (1(100
60.00DO
eo.oooo
120.0000
140.001)0
160.00OO
*70
AA7
(SA6
A4S
**5
AA^
4A3
,i422
3472
7422
2422
:<422
>}»422
9422
4422
20". 0000
151
-------
CROSS 8KCT1DM 13
X-SKI; ts
RtVtCRHIl H» 11H.50
HUUBFR OF POINT?!
XtT PfllHT PAIRS !
O.OOOO
17.OOOO
34. HA.95
OF PUINT8*
J4
X»T POINf PAIRS I
O.OflOP
20.OOOO
40 . OOOO
80.0000
J20.0000
140. OOOO
140.0000
180.0000
200,0000
220 , OOUO
740.0000
AA5.4K34
6M.BP37
AA1 .OB37
6A0.6B37
A5V.7S37
152
-------
;V 0.0000 MS, 4034
IB
X-SKC §2
* 11A.10
OF POINTS"
12
XfY PIIIMT PftIRS I
O.OttfrO
20.0OOH
40.O(i(lO
60.0QOO
BO. 0000
12II.CSC10O
140 .now
1*C. nooo
200.0000
350.0000
A*4,4N53
**<>.fH5S
661,1653
AA«K4RS5
W9.0B54
AS/.AH55
A55. 4853
CROSS SECTIliH 1?
X-SKC tl
NUHUF.R OF POINtS
17
X>Y PWINT PAIRS s
0,0000
40,
63,
BO,
100,
120,
140,
160.
180.
200,
240,0000
260.0000
280.0000
300,0000
320.0000
OOOO
OOOO
oooo
0000
0000
0000
0000
0000
oooo
AA«.H754
*?i? . 3754
A5V.17S4
ASH.S754
«8.7?54
4SP.3754
AS/.7754
#57.3754
ASH.3754
AS?.5754
CROSS s
20
ROUTE 7*2
RIUE«flII,i:« llfi.32
HUHKFR OF POINTS" 16
X.T POINT rftIKH
105.0000
120,0000
ABO.OOCO
A*4.AOOO
6A1.5000
AS/.t000
657.0000
AAO.9000
C. A 2.6000
ASA.4000
«%".. »t)f>0
280.0000 A5P.5OQO
300.00OO ASS.VOOO
32ft.OMKI AA1.&000
340.OOOO A41.AOOO
351.0000 A63.6000
480,0000 AHO.OOOO
160,0000
ISO.0000
200.OOOO
220,0000
153
-------
HODFI tttPllf
MO OF X-St€« 20
TIME IMCREHFNI* SFTOHliS 3600.6 TOTAL TIKE
MO OF MniMATES KOUTE9 83
CtNMflflH TYPES
-- I - Sfl r SfTUHfi ? » NHIINli t.HKVf, 3
--|E SRtr SI'THHtif V •" C«HK1«MT
TYPE SElCCTtB" 2 FOR IIPbTREAK «HTI J fOM
HO. OF TKlHlUAHlfS- 1
TRIP. NO. AT X-?f.T. NO.
i 17
RATINC TABLE
BCPTH DISCHARGE
3.31 ISO.
3,74 300,
4,t? 456.
4,52 *OO.
4.91 BOO.
5. 25 1OOO,
5.VS 150O,
6-60 20OO.
7.22 2SOO,
7 . 82 3000 .
8.40 3500.
8,98 4000.
?»35 4500,
10*05 SOOO.
ll.f.l 6300.
12.93 SOOO.
14. 3S fSOO.
15.74 11000.
17. VI 12300.
If ,73 15OOO.
154
-------
CR4ISS SECTION ftiOffmt JT.S
X-SSC HWNBF.R 1 AT «« Fl. O.OO H1I.ES
tATFAAL IMFtOy FOR REACH 010 1 IS 0,0(1 CFS ff.K FOOT
EOUAT1DM f'F,S!:KI*HNU M ISi 0.010 KtUH <).OI)t)0 flMtS t h-UIS
ELEVATION OF LOWEST MUNI OH X-SF.C «.«*3,36
0,000 TINES Y SQUARED
BEPTH
0,00
1.7?
2,06
3,04
3.O9
3.4*
3.S*
3,84
3.94
4.09
4. Jl
4.27
4.9A
5.09
7.92
B.6B
10.64
17.64
30.64
0.
13.
44.
99,
103.
139.
147.
1H4.
200.
226.
230,
-'61,
415.
446.
1227.
1474.
2193.
SS33.
13520.
M PKH TUP UIPTH
0.
39.
43.
70.
75.
107,
113.
151.
170,
193.
18f.,
.108.
239.
342.
313,
.142,
399,
SA3,
676.
0.
37.
43.
70.
75.
107.
113,
1S1.
149.
H33.
IS4.
207.
238.
?41.
3U.
339.
39S»
55«9>
670.
x-sec KMHBSH 2 «T «»>**. KT, 0.77 rin.es
LftTERAJ. INFLOW FOR REACH 1 TO 2 IS O.OO CF8 PF.R FOOT
EOUArinH ftKfiCftlftlHIi H IS O.OJO PIJI8 0.044O TIH£S t PLUS
EL€W*TJI1N OF tpyrst PUIM1 HH X-SFC 6«S,9Q
0.000 TJHES t SQUARED
DEPTH
0.00
4.00
5.00
8.00
9.0O
10.00
AREA
0.
642.
993.
2247*
2744.
3234.
V PER
0.
371.
381.
4*3.
486.
196,
TOP Wl. OTH
0.
321.
381.
448,
486,
195.
X-SEC MJHiER 3 AT *125, FT, 1.1* HILES
LATERAL INFLOW FUR KKfttH 2 TO J IS 0,00 CFS PKR FOOT
EOy*T!ON BESCRIBItlP H IS O.O10 PLUS O.OOOO TIMES Y Pl.OS
ELEVATION UK 1.0WEBT POINT (IN I-SEC AH4.28
0.000 TIMER Y S
BEPTH
ARfft
U PFR TOP MldTH
0.00
4.0O
3.00
8.00
9.00
10.00
0,
64?,
¥93.
22A7.
3234.
0,
321.
,m.
46S.
486.
0.
321.
.181.
468.
436.
495.
X-Kf. WUM*CR 4 AT H237. FT. I.S6 HII.EB
LATERAL INFLOII FOR RF.ACM 3TO 4 IS O.OO CFS PER FOOT
EflUATIRH DCMKIBIHti N 18 O.04A HUMS 'l.nOOO Tjnt.S T Pl.tlfi
ELFVATIOK Of LOUEST PfllNI BM X-SCC 6H3,4>«
(f, 000 TIMES Y >il)MftRED
155
-------
0.00
0,40
0.49
0.65
0.*S
1.10
1.54
1.42
l.P?
2.03
2.011
3.44
6.V9
8.01
13. 99
0,
i.
9.
27.
31 •
4f,
104.
1U.
143.
189.
199.
304,
1451,
IMS.
3764.
0.
29.
32,
71.
78.
1O4.
145,
1*?.
178.
1V5.
201.
,?47,
288.
,130.
349,
0
2f
32
?l
78
»03
145
1*9
ITS
175
SOI
247
287
:I3V
340
X-SKi; NUHBF.R » AT U40A. FT. Z.32 BILES
LATFRAL 1NFI.GV FOR REACH 4 Ti 5 IS 0,00 CFS PFR FOOT
EOiiAttiiH M:S<:AI»IHM * is 0,120 cms i»,o<»w tint-is Y PHIS
ELEVATION OF LOWEST F-OIH1 ON X-SKC ^75,2O
0.000 TIHKS V StfllAREU
PEPTM
AREA
TOP WIDTH
0,00
2.80
3.30
6.30
A. 60
9.40
12.40
12.60
12. SO
14.80
IS. 30
IB. 80
0.
*0.
92.
«6.
503.
981.
1637.
lAil.
1734.
2«3,
3211.
assi.
0,
43.
SB.
ISA.
159.
ias.
253.
i?57.
259.
2*7.
289.
291.
0
*3
a?
155
139
133
251
ass
256
;*63
284
'283
X-SfC WUH6ER * AT JBS33. Ft, 3,51 rtlLfS
LdTERAL INFLOW FflR R€»CH S Tn A 18 O.OO CFS PtR FOOT
EQUATION DESCRIBrNft H IS 0.120 PtU» O.OOOO TIRES Y PLUS
ELEWATlllN OF I (IHKS1 HOIWT UN X-BRK A77.90
0.000 TIKES ¥ S
DEPTH
AREA
U PKR
TOP WJOTH
0.00
1.00
1.70
2,70
3,20
3.30
3,70
3. BO
3.90
4.00
4.30
4.40
4.70
4.¥0
0.
:*.
•44.
103,
115.
ise.
222,
242.
»43,
287.
^«a.
396.
494.
545.
0.
32,
4B.
74.
B£.
148,
173.
214,
'.(19,
24?,
K9S.
3 OS.
332.
380.
0.
32.
4i.
73.
H6.
147.
(73.
214,
219,
246.
29*.
305.
'J32.
380,
X-SEt NUMBER 7 AT- 2113O, ft. 4.S7 Ht».ES
LATERAL INFLOU FOR REACH £ TO 7 IS 0.00 CFS PF.fC FUUT
EQUATION BOCRIBIMH N IS O.OA7 Pl.UK O.OOOO TIMES T ¥»UIS
ELEVATION OF LOWEST POINT ON X-SEC 679.90
0.000 TIMES Y SQUARED
ARC A
II PI-H
TOP yin?H
156
-------
49.
296.
105.
332.
.ISO.
O.
:<2.
40.
73,
86.
147.
113.
;*14.
219.
i»48.
296.
SOS,
332.
»HO.
X-SrC MUHBER S At 285*29. F1 . 5.4* MltES
LATERAL (NFLOU FOR KtrtCH 7 TO » IS O.OO «'fi P*R FOOT
EClUATlfiM tlESTRlFlNG « IS O.OA7 PLUS (i.GOOO TFMFS Y P1.M6
»F KOUEST flllHI' ON X-SE£ A71.A7
0,000 TIMES t S
DEPTH
AREA
U FtR
TOP yr»TH
0.00
0,30
0.50
0.90
1,00
1.40
1,70
2.10
3,10
3.20
3. SO
6,10
0.
5.
13,
37.
43.
ei ,
in.
169.
325.
344.
40ft,
104B.
0.
32.
47.
74,
80.
102,
123,
14S,
1*?,
19?,
•432,
2*1 ,
0.
32.
47.
74.
BO.
102.
123.
145,
168.
19?.
232.
260.
K-SEC NUUBFJ* # AT ItlttVI. FT. 4.04 MIt.ES
LATERAL IttFLOU FOR RfrtCH B TO 9 Ifi 0.00 CFS ffK FOOT
EQUATION (iKSr.KlhINt; H IS I>,OA"/ PHIS «,«<>«» TIHES Y PLUS
ELEVATION OF iOHEST POINT C»N X-SEf 672.19
0,000 T1WES Y SOUftREO
P6PTH
AREA
CKR
TUP UIPTH
0.00
0,10
0.30
1.00
1.30
1.40
1.V0
2.70
3.30
4.50
0.
1.
10,
-------
2.SO
4.40
7.40
249.
1236.
14t,
170.
Iff?,
I*?,
149,
1HR,
220,
X-SCC NimPKK 11 ftT 411114. FT, 7»«0 Utt.ES
LATtRlH. lUFl.tHI FOR REftl M 10 TO II IS 0.00 CFK PER F»T
EQUATION D£Si:RIBlMH N IS I».OA/ PI (IS 0.01)00 TIHKS Y PUtS
ELEVATION Or LOyCST rillNT W* X-SCr *70,AS
0.000 TIMES T SQUARED
DEPTH
O.Ofl
0.20
0.30
0,80
l.flO
1,10
1.20
1.40
l.VO
2.20
3,10
X-SGU NIM8KR 12 At
LATERAL INFLOW FOR KEAIH
EQUATION rifSllRIHIMi M IK
OF
AREA
0.
3.
4,
45.
*S.
81.
?7.
134.
235.
301,
SIB.
FT.
1 1 TO 1
O.0*7 Cl.
OH X-SF.C
U PER
28.
3*.
102.
126.
145,
»7B.
1*3.
209,
'Z39.
2S5.
1WP yit»TH
2B.
36.
102.
124.
144.
178.
193,
20? ,
2?,V,
255.
B,Sl HII.ES
IB 0,00 CFS PER FOOT
TIHKS T PI.II9
C.OOO TIMES T «OHBRED
DEPTH
0.00
o.so
1.10
1.90
2.20
4.10
4.40
6.90
f .30
10,10
AREA
0.
7.
31.
SO.
103,
293.
329,
A82.
1108.
1274.
U PEW TDP UIDTH
29.
4f.
75,
ei,
118.
123.
UK
19*.
221.
0.
39.
49.
75.
62.
UB.
122.
1AO.
195,
220.
X-SEC NUMBER 13 AT 45141. FT. 8.55 HTt.ES
LftTfRftl, INKI.OU F*W RKftCH 12 TO 13 13 0.00 KFS PKR FOOT
CQUftTION fiESf.RIUMB H IP 6.100 PLUS 0,0000 TJMt'S Y PI.UB
ELEVATION W iWEST t>IIINT 0» X-SKC A6S.30
0.000 TIMES t SliUAKED
DEPTH
0.00
2.?9
2.77
4.27
4.33
4.6A
S.03
4.7*
6.81
AREA
0.
23.
36.
15S.
189.
207.
U63.
544.
SS3.
U PER TOP WIDTH
0.
20.
37.
124.
13B,
142.
14S.
1S4.
185.
0.
20.
36,
123,
U*,
140,
146.
183.
183,
X-SEC MUHREft 14 AT 48470, FT, ¥.16 rtll.FS
LATERAL IMFLiJW FOR Kt-ACH 13 TO 14 IB 0.00 O'S PER FOOT
EQUATION DESCRIBING M IS 0.100 PLUS O.OOOO TIMES Y Pl.UB
ELCVATtON (IF l.UUEST POIMf UK X-Kf.C AAK.24
0,000 TlHKfi T SfalAREP
y PK5
ymrw
158
-------
0.00
0.10
0.20
0.3O
0.30
0.70
1.10
t .20
2.10
5. on
0.
i.
s.
11.
27.
47.
93.
109,
•247. .
776,
0.
24.
46.
72,
to.
107.
134.
142.
163.
201.
a.
24,
48.
72.
90.
507,
116,
142.
1&5.
200,
is «T sa2?;», FT. ?,»o Hti.es
LATERAL INFLOW F0« RfATH J4 TO 15 IS O.OO CFS PER FOOT
eatJAritMf M.QCRlKINCi « IS 0,100 PLUS «).tli)«>0 1 trlFS t PLIIH
ELfVAlION OF IOUFRT POINT OH X-SFC 6A1.A8
0,000 TIHF.S
SQUARED
BEPTH
AREA
U PKR T«P tlltlTH
0.00
0.10
0.40
0.80
0.90
1.50
2,30
2,80
3.50
4,40
S.40
5.60
7.30
0.
1.
10.
:«.
38,
83,
162,
219.
313.
450.
623,
641.
ioia.
0.
1*.
43.
AS.
68.
97.
106.
135.
144,
163.
183.
201.
222.
0.
19.
43.
AS.
AS.
87,
106.
124.
t43.
142.
182.
200.
221.
X-SEC NUH8EK 1* AT ttAOi'.l. FT. 10, AI HII.ES
LftTERftt 1HFLOU FOR BFACH IS TO Ifr IS 0,00 CFS PKR FOtlT
EOUAT1QH OKSCRIBINH N IS 0.100 PLUS O.OOOO TtnKS t PHIS
ELEWftTIOH Or LOUEST POINT OH X-SEC A*1.33
0,O,
0.
36.
42.
SO,
102.
lt>.
131,
1 ««
159
-------
a.ta
417,
A17,
12S4.
213,
232.
212.
231,
260,
X-SEC HUHSEU l« *» *3A?7. FT. W.OA MItiS
LATERAL iNFLQii FOR RFACH 17 TO IB IS 0.00 CFS fttt FMflT
fOUATIOH »F.SPRI»tMI) * li 0.«A5 PUBi 0»t)0«Kl TJHtS t PLUS
CLEMAII8N OF LOWEST FOIMT 0« X-SEC 654.7?
o.ooo Tinrs r SQUARED
DEPTH
AREA
u pei* TOP MHTH
0,00
O.iO
o.*o
1.40
1.50
2.90
4.30
3.70
6.70
6,40
9.70
0.
0.
27.
A3.
71.
;»o.
362.
556.
&3S.
*70,
13S7.
0.
4.
64.
7V.
ait
3.04.
128.
151.
IA7.
l?4.
222.
0.
4.
A4>
7f ,
Bl.
103.
127.
150.
164.
m.
220.
X-SCC WUN8ER 19 AT A7162. Fr. 1^.72 MILES
LATERAL IHFUjy FOR REftOt IB TO I? IS 0.00 CFB P£R FOOT
EOUAf lllN nKSCttiDTHii K IS Q. OAS Pi UK 0.0000 TIHtS T PLUS
ELF.UAT10N OF LOMKST PIlTMt OH X-SEC AS?.21
0.000 TIMES Y RQUflftED
BEPTH
W PER TOP UIOTH
o.oo
O.IO
1. 10
1.30
1.50
1.70
1,*0
2.00
2.10
3.40
3. BO
4.40
6.
17,
54.
72.
90.
134.
175.
197.
221.
610.
666.
1448.
0,
4?.
75.
too.
13&.
m.
217.
230,
241 .
278.
282.
321,
0.
4?,
73.
too.
ISA.
m.
217.
3:10.
741.
278,
2S1,
320.
X-SEC NUMBER 20 AT £7373. FT. 12.7* MILES
LATERAL INPI.I1B FOR RKftCH J9 HI 20 IS Q.OO Ci-S PKR FOOT
EQUATION DESCRIBING W IS O.OAS PLUS 0.0000 TIHES Y PLUS
ELEWHTIOH OF LOWEST PlItNf UN X-SEC A54.4Q
0.000 TIMES Y SUIIftRFB
DEPTH
U PER TOP
0.00
0.70
1,80
2.40
2.80
3.fO
4,30
6.30
6.90
7.00
8.0O
».»
29.40
0.
10.
51.
tt.
107.
205.
WO.
54! .
646.
665.
ens.
112B,
7114.
0.
28.
47.
53.
79,
101.
126.
148.
183,
180.
,'3B,
253.
495.
0,
28.
47.
53.
78.
100.
V?5,
166,
183.
186,
235.
JSO,
490,
160
-------
*» 1 1
ELEV
BfPTH
DISCHARGE
VELOCITY
XSFC
XI 1»
ELFV
BEPTH
DISCHARGE
VF.MICITY
TIHE - 32,
XSFC
XII)
EiFU
06PTH
E'I?f. HARGF
VELOCITY
XSfC
x< n
ELEU
DEPTH
DISCHARGE
VELOCITY
TIME • 34,
XSEC
X< 1 >
ELfiU
DEPTH
DI?(.fiARGE
VELOCITY
XSFC
X( I )
EtEV
B5PTH
VlfSRMARBE
TIMf « 36.
XSEf.
xc n
ELFM
PEPTH
DISCHARGE
vei.uciTv
JtSEC
XI IS
Etfy
PEPTM
OI?rHftRGC
VELOCITY
TIMK - 38,
xsrc
XII)
ELFW
HEPTH
DI?( HORCE
VELOCITY
M7.37
.1,?!
354 , fO
t.82
14
411470 ,
669.0?
J.78
382,92
0«4f
HOURS
1
I).
*B7.?9
'A*,
487.39
4,03
399,20
1.85
14
4H17I>.
6*9,94
3,70
368.33
0,68
HOURS
1
">«
6B7.44
4 ,0ft
417,20
t,B4
ASA.VO
3.00
33*, W
*,74
15
5'*!?!72! ,
667. AJ>
S.94
384.34
0.53
2
40AA,
*BA.¥1
,1.01
341 ,30
f>,?5
15
5i227/>.
6A7.AO
5,91
380,94
0.52
2
4i)/>6.
6i4.93
:<,03
369,77
0.76
IS
52272.
AA7.S7
S.89
374,25
0.52
2
40AA ,
686.97
3,07
387, A9
0,79
15
5.J272.
647.54
5,06
371 ,45
0,52
J
1'JAA.
6B7.03
H, 13
40*. 35
4.81
A8A.S7
3.S*
357. OS
O.BA
16
KAO*!1 «
663,61
4.27
3H5.0S
0,82
3
A 1 '43 ,
AHA. PH
a. so
3*0 , RV
O.B6
t&
SAO21 .
66'. 6!
4.27
3H2.'I^
O.B2
3
A 1 ?'' .
AHA. 70
a, 62
34ft, 19
0,88
16
SAOi»l ,
4*5, 60
4,27
378,27
0.81
3
A i .as .
6(1 A. 94
a, 64
3H4.B1
0,?0
14
S60i?l .
AA5.S9
4,26
37?. 53
O.BO
3
A 1 I'll .
AB7.00
^,72
403.40
U.93
ANA , .IN
31.72
3H7.J7
1,05
17 ,
S9AA1.
663, 'i'H
5.73
544,^5
0.64
4
B23?<
AflA i 3«
2,72
3A0.1B
1.05
17
liVAA'* •
643,/S
5.75
ftBl ,40
0.65
4
H2r<7,
6RA.40
2.74
367,72
1.04
17
5VAA4,
AA^ ,74
5,74
S57,6*
0.65
4
H^-17.
AR6.44
2.78
382,99
1.07
17
159AA4.
463,/S
n,77
567 ,9f
0.66
4
,B4
4O1 ,J>1
( .09
iwl'o*
9,0*
360.42
• 0,33
IB
A 5 4 7 7 •
*A,1»2I
ft. -42
843.47
0,50
5
HI.IIM.
6flS,05
9,85
3*0,86
0,33
IB
A;iA77.
A*?.??
8.43
550.94
0,31
5
13306.
6P5.07
9.87
365 , 1 ,?
0.34
J8
A.4A77,
AA3.22
9.43
557.11
0.51
5
13,!OA.
685,10
9,90
374, 9S
0,33
IB
A3A77,
*63.2y
R, 44
5*2.47
0,52
3
I:I.II>A,
6R5. M
9,96
3V2 , 4<»
0,34
AB4.5S
4.45
34.1.V4
0.30
19
4 7 1 A Vt *
HA.i.02
5.74
843, BO
0,43
6
iHs.i;< .
6B4.54
4,64
Mi. 02
0,29
19
A71A?,
6*3,02
S.74
551.09
0.44
A
iBs:n.
6B4.55
4.6S
3*2. 2S
0.29
19
4714?,
6*3,02
5,74
^^7 'J"^
0,45
6
!H!iT<.
6R4.50
4 ,6B
3Af , ?0
0,30
19
47142.
643.02
5,74
SA2.5B
0.45
6
1BS.I3.
AHt.Al
4,7!
3B2.99
0,31
*w'"j
4.33
3 AH. 04
O.f?
20
A7373.
6*3 i 00
fl.40
543,17
0.35
7
'(HI 30,
AB0.2M
4.32
347.66
0.97
20
A7373 ,
AA? .00
9.40
5SO . 23
0.36
7
'i. 4 1 .10 ,
ABO . ?1
4.91
3*1,04
0,9?
20
A7373,
643.00
S.40
S*i* SI
0,57
7
241M.
6KHB;»9 ,
67*. A3
4.94
3*3. A2
0.47
a
;;iii29 ,
A7A.A5
4,98
3*9.50
0.48
.Him.
A7A.O*
3.8Q
37S.04
».7i
9
11891.
676.04
3,84
368, 85
0.71
9
11H91.
676,03
3.84
3*4.44
0.70
9
31B91,
676.02
3,84
M3,44
0.70
9
.UB91.
676.04
3.83
3*7,34
0.71
A75.33
7,14
174, SI
0,32
10
14590 ,
475.30
7.13
370,29
0,31
10
3*390.
*75,79
7.12
365.30
0.31
10
34590.
*75.29
7,12
3*3.33
0.31
10
3*590.
675.30
7.13
344.00
0.31
41IM4,
A73.31
2,67
379,21
0,»2
It
41184.
473. ?9
2,45
373,23
O.fl
11
41104.
673,27
2,63
367,38
0.91
I 1
411B4,
673,76
2.61
344, 0«
0.91
11
41184.
673<26
2,41
9*4.44
0,91
44YJJ.
*?f ,*f
f.41
381,22
0.34
12
44933,
671.67
9.38
375.98
0,33
12
44933.
671,64
9.36
370.44
0.33
12
44933.
67J .*2
9.33
3*6 . 2*
0.33
12
44933.
671.61
9.32
3*5,06
0.33
4ft 144.
A , 0'
311.4?
o.te
*
11
43144.
671 .53
6.03
374.20
o.sa
13
45144.
67t ,52
6,02
370.54
0.88
13
43144.
671.50
4.00
3*6 , 1 8
O.t7
13
45144.
671.4V
5.f 9
3*4.74
-------
ON
Is)
Tinr * o.
XSEC
XCII
EtEW
PFPTH
DISCHARGE
VCl.HCtTT
xSFt;
xi n
ELEV
BEPTH
DlSTHflRGE
VKU1CITV
tint • 24.
XSEC
X( 1 »
ELEW
tiFf'TH
BIBfHftKGE
Uft.llCITY
xsrc
XCI)
fe'LEW
PCPTH
DIBCHflftDE
ucLiicm
Tiwr « 26.
XSEC
XI I >
ELEW
HEpTH
HBCHARGE
VEUICITT
XSFC
XH>
EiFU
PEf'TH
BISCHARGE
veUlCUY
T1HK » 28.
XSEC
xi n
ELEV
DEPTH
BISCHftRCE
W€I.«01TT
XSFC
X( 1 1
ELCV
t»?f'TH
DISr.HAftGE
VK! tlfilT*
HnuRS
1
0.
666,65
A. 29
3H5.00
.4,18
14
4*470.
4*0 ,9?
,1 .AS
3BS.OO
0,72
HOURS
t
O,
687,31
.1.95
372.OO
t ,84
14
4B47I),
669.03
.*. 79
38*. 60
0.70
HOURS
I
0,
687.28
3.92
360 . 30
1,83
14
4M4?0>
669,04
3,79
366.99
0,70
HOURS
1
0.
6B7.27
,1,71
355,70
1,62
14
1H17O,
6A9.03
4,79
385. f 3
0.6V
1
4OAA,
6ftA. J»2
i' .42
3R5 . 00
0.92
IS
31*3 /I*.
667.43
a. 75
3BTS.OO
0,56
2
4()AA«
AHA. V7
3,07
379.95
0.77
ts
X,!,?71>.
667,*!
S.93
3P4.5S
0.53
2
40AA.
A PA ,93
4,OJ
3*5,97
0.73
IS
Sit?7^,
6*7, A2
h,94
306.19
0.33
2
4 06 A i
6flA«Vl
.1.01
35?, 3f.
rt.74
IS
S?7'/!(.
AA7.A (
5.94
3Q6.03
0.53
3
AtXS,
68*. 4V
i',19
3fl5.00
1,09
16
SA021 .
665.37
4,04
385.00
0,90
3
6128,
AR* , 94
2,66
3P1. »7
•>,a?
16
SAO;;! ,
66P.S9
4,26
382.82
«J.82
3
A 1 ?5 ,
6R*,9I
a. 63
367< B7
U.17
16
560'H.
6*5. AO
4.27
3S5.44
O.B2
3
Af.'S.
6RA.RR
X« 60
SA0.4K
O.B6
16
Hft'ti*! .
AC,' .il
4.27
3«* , O7
0,82
4
ny.n7 1
696,^1
i?,55
JflS,00
1.24
17
5¥AA4,
663.*?
S.64
?4(I,(K>
0,66
4
fti»,<7 ,
ABA. 46
a, BO
3H1 ,BA
i.06
17
SV4A4,
663.70
S.72
536. VH
0,64
4
H',1.!*/ ,
Afl6»4?
a. 74
3AV.1?
1,03
17
hyA64,
663,71
5 . 73
540. OS
0.64
4
B«>37.
ARA.K9
i*,73
3A1,^6
t.05
17
SVA64,
663. /I
5.73
S40.V9
O.64
5
133QA.
6B4.94
9.74
3ns. oo
0,36
IB
63677,
6*3,20
8,42
S40.00
0,50
S
13.J06,
6H5.15
9,95
3S3.2A
fl.33
IB
A1A77,
663,20
fl.42
536, 52
0,49
S
13.106,
6B5, >2
9.92
373,44
0,34
IB
/MA77,
6A.1. 21
fl.42
53f ,Hl
0,50
5
U,««6.
6Hf? ,0V
9.69
365.77
0.34
IB
A.4A77,
AA;i./!j
9.42
540,94
0,50
6
1BS.1J.
AP4 i 79
4.39
3B5.00
0.34
19
47142.
A A3. 01
5,74
54O.OO
0.43
6
1833H,
*f>4 .60
6,70
384.74
0.31
19
67142.
*63,<»a
5,74
53A, 64
0,43
6
1HSM,
634,59
6.6B
37B.17
0,30
19
471A?,
6A3.O?
5,74
539, PA
0.43
6
1 HS13.
AB4.5&
6.66
370. SV
0.30
19
A71A?,
AA;«.OS
5,74
S40.95
0.43
7
5!4l3t>,
679. 7fi
1,08
3BS.W1
1,49
20
67373,
6*3 , 00
Q.40
540,00
0,55
J
?tl'M>
&BQ.78
4.3S
;\B5, yi
0.9B
30
A7373.
663.00
B.4O
535,98
D.53
7
^4130.
6HO.K7
4,37
3B?,15
0,98
?0
67173.
AA3.00
fl.40
M9.S3
O.Sfi
7
J!4I'.IO.
ABO, 25
4.35
375.4O
D.9B
30
A7.173.
AA3.00
H.40
540>fl6'
o.sa
8 V
?HH29. 31B91,
AM,;i« 675,24
4,71 :i,06
;(H'p.OO 3H3iOO
0.55 1.06
8 9
2MB29. 31H9J,
676.73 67A.I1
3,06 3,92
3HA,fi3 3ft6>PO
0,49 0.72
S 9
2H829. 3l«9l,
A/6,73 67*. 10
5.05 1.91
3H4,>4 3H5.14
0.4? 0,72
B 9
2BHM. 31R9t»
6/6.71 A7A.OB
^.03 X.90
379.?? 381,03
0.48 0.72
*
10
365f 0 ,
A74. J9
6,21
385,00
0.39
10
36590,
675,35
7,17
3H7.55
0,33
10
34590.
675,34
7.17
3B5.87
0,32
to
36S9O,
675,33
7.16
3B2, 13
0.32
11
41181.
677,65
2.00
3HS.DO
I. SO
11
41184.
473,34
2,6?
3R7.96
0.92
it
41104.
673,34
3.69
3RA.HO
0.92
11
U1B4.
673,33
2.68
SB3.99
0.92
12
44933.
671 .57
9,29
JflS.OO
0,38
12
44933.
671.72
9,43
3B7.39
0.34
12
44933.
671,72
9,43
387.00
0,34
12
44933.
671,7!
9,42
383,03
0.34
13
43144.
671, SI
6.01
385.00
O.tl
13
45144.
671.60
A, 1O
387. At
0.99
13
45144.
471,60
6,10
3R7. tfl
0.89
13
45 144.
671,39
6,09
3B5.24
O.B9
TIMR • 30, HOURS
xsrr i
-------
xsr r
~ Ei,rw
BCPIM
DISCHARGE
TIMF « 40
XSEC
X! 1 )
ILEV
Blf TH
OISfNftRGC
UCI.ItCITY
XSEC
XI 1 >
ELFV
BEFTH
DISCHARGE
MEI OCITV
flHK * 42
KSf.C
X( I >
ELEU
BEPTH
DlSfHftRGE
wtunmr
XSEC
Xn J
ELEV
PEPTH
DISCHARGE
VCI.HCtTV
fl«r * 44
XSEC
Kill
CLEW
I
ELEV
BEftH
DISCHARGE
VfA IIC ITt
14
4*0.92
,4,68
0.66
, HOURS
1
t).
407. S3
1,17
450.70
1 .66
14
1H17O,
4At,92
I.AB
3*6,95
«.69
. HOURS
1
<>,
687.59
4.23
475,90
1 .88
14
4R170,
Ail. 94
3.70
3/2, 7B
0,69
. HOURS
1
i).
ABB, 74
jj,3B
1095.00
a. oa
14
4H470.
AAft.99
1.75
304, 9ft
0,70
. HOURS
1
0,
ASP. 9*
W.60
1249,00
•A. 11
14
469,11
1.B6
412.31
0.72
15
447, Rl
«,B3
0.52
2
4<>AA.
4R7.0H
,1.18
4ZA.35
O.B3
15
5JJ73.
6*7, hO
5. §2
3*7,45
0,52
2
40AA.
*R7,1 H
t«28
4A1 .98
U.OB
IS
5,!?72.
6AV.5P
S . 92
371 ,37
0.53
2
40AA.
6B7.9S
4, OS
B69.2B
1 , J2
15
53?72,
AA7.S?
5.B4
3B1 ,77
O.S4
2
41>AA.
6PB.S5
4>65
1154.11
1.33
IS
S327M.
**7,!i*
•j.fl
401 ,46
0.5S
14
AAS.M
4.23
3*9 , 54
0,79
3
Al ',!!>»
*B7,OS
.!. 77
472. *R
0.95
16
SAOl'l,
*A5,5V
4.26
3*7,75
0.79
3
AIMS,
487, 14
i',B4
457,39
0.99
16
5AO.U.
4A5.A?
4.28
3*9,7*
0.79
3
6tV?i.
AB7.S9
•i.Al
792, V!i
1.37
14
SAO2J.
*A5.70
4,37
37A.94
0.78
3
A13S.
483,47
4,19
1125.77
1.59
16
54Q2K
AA5.B2
4,49
3f I.»S
0,77
17
•S.7B
0,64
4
H;MV ,
686 . Ft*
a, 90
4I'0,43
1. 10
17
H9AA4 ,
AAJS.7B
S.79
57A.71
0,67
4
H^;i7(
ABA, A*
S.OO
4fi4 >4A
1,12
17
S9AA4.
AA3.B?
5.84
400.31
0,69
4
H?A'f.
AR7.;iH
3, /I,
?BO,OX
1.35
17
59AA4,
AA3.94
5.95
443 .95
0,74
4
HM7»
AHH.OH
4,42
1073. 4?
1 .40
17
S9444.
A64, 10
6. It
733.03
0.78
li
4UA77,
0.44
0.52
5
l.l.tOA i
*H?S,!;(
»0,03
409,89
0,37
IB
*;«477,
4*3,23
8.45
575, PA
O.S3
S
1330&,
AH5.31J
10, 13
43B.9A
0.39
ie
A.1477.
4A7.25
B.47
S97.39
0.54
5
1330A ,
AH5.SA
tO, 66
645,92
0.51
18
A.IA77.
6*3,30
B.51
*W,9fl
0,59
S
J33B6,
AHA. AH
11,49
904.29
O.A3
IB
AJA77.
6*3,41
0,63
709,44
0.63
If
463.07
S.74
0,45
*
iHS.ir*.
AH4.6S
A, 75
399.24
0,31
19
A7162 i
*A3,ft?
5.74
576,01
0.46
6
10533,
AR4 , 71
A, 01
423.97
0.33
If
A71M.
AA3.02
^,75
597. B2
0.4B
&
lrt^3»
*R4 , 9A
7,06
545,40
0.39
1?
471A2.
A*3,0?
S.75
656.55
0,52
6
IflnlO,
AB5.52
7,42
741 ,7*
O.44
19
47t42,
A A3, 13
5, BS
4B2.AO
0.53
20
47,173,
AA.1 , 00
ft. 40
5*7,43
O.SB
7
"Ml 30,
AHO.Zi
4.3B
3BB.79
0.99
20
A7.573.
AA3.00
Q.40
S75.03
0,59
7
SN13<)«
AH0.33
4,43
409.59
1,00
20
A7373,
6A3.00
fl.40
5*4,74
0,61
7
•f. 1 1 30 ,
AflO.47
4.57
4/1 ,03
1,03
20
47.173.
663.00
B.40
A4B.95
D.66
7
2413«),
4 fiO.fi 7
4.97
A13.4A
\ ,09
20
A7373,
6*3.10
fi.SU
AH9.7P
0,49
8
yw/.v ,
A7*,A9
JI.02
380. 4?
0,49
8
28H29.
47A.7S
5,00
39A.A9
O.SO
8
3W029 •
A7A.HH
5.21
43S.7A
O.S3
B
2BHH9 »
67/, 18
5.51
577,40
O.SB
f
31091,
676,07
3.BB
374.43
0.72
9
31B91 ,
A7A.12
1,93
390,71
0.73
9
31B91.
674.21
4.02
420. 8*
0,76
9
31B91,
A76.44
4,25
497,77
Q.B3
10
36-590.
A7S.32
7.15
373. BA
0,32
to
36590.
675.35
7,18
3S7.0B
0.33
10
36590,
675.41
7,23
413,94
0,34
10
36890.
675,54
7,37
47M.4*
0,39
It
411B4.
673,37
2,63
3A9.D5
0,92
11
41184.
673,31
2,66
3K0.3A
0.92
11
41 1R4,
A73.37
2,72
40O.5O
0,94
11
411B4,
473,51
2,86
448. 7A
0,97
11
44933.
4?t ,62
9.34
3AB.ZO
0.33
12
44933.
671 .AA
9,37
374. 26
0.34
12
44933.
A71.73
9,44
392.04
0.34
12
44933,
A7I .8B
9,59
42B.S7
0.37
13
45144.
671,3$
4.00
347 ,4»
0.8B
13
45144.
671.54
4.04
373,44
O.SB
13
45144.
671,60
6.10
390. as
0,90
13
45144.
671.74
6,26
424.10
0.9?
-------
TINF - 4*.
xstc
XU>
EUF y
DEPTH
BISCHftRBE
tffUtClTt
XSEC
XII)
ELEM
DEPTH
DISTHAKGE
VELOCITY
TIHf. " 30.
XSEC
X( 1 )
ELEM
DEPTH
BISCHAROE
VEUWITY
XSEC
X< I)
ELEVi
DEPTH
DISCHARGE
UEI.IICITY
TlNf " 52.
XSFC
XU>
ElEV
bEF'TH
iHSCHftRGC
MEl.Iir.lTf
XSEC
X( I >
EUV
PEPTH
DISCHARGE
WEUICITY
TIHF • 54,
XSEC
Xtl)
EtFM
t'EPTH
BITOHftRGE
WfLiir.lTY
XSFC
XI I >
CLEM
BEPTH
BISOHftROf
VEUICITY
llnf. - 34.
XSEC
)t ( 1 J
F.LCW
PEPIH
HOURS
1
0,
408,94
3,58
123S.OO
». 13
14
4B470,
469, 3fl
4, 13
479.30
0.7B
HOURS
1
0,
480.61
5,45
1143,00
2,10
14
4H4/0,
469.95
4,71
630.06
O.B7
HOURS
1
<>«
488.42
5.24
inoe.oo
«J.S4
14
1H470.
670,65
^5,40
819.46
0.96
HOURS
1
0,
ABB. 31
4.95
026.80
a, oo
14
4H4/«,
671 ,17
5,93
955.25
0,97
HOURS
1
f>»
488,12
4,74
2
40A4,
688, B4
4,94
1188,47
1 ,22
15
S227%>
6*7.77
A, 09
450. B2
0.39
2
40A6,
6Bt,9S
5,03
1153. 66
1,14
IS
S2272 .
6AH.Z1
6. 53
565.0I
0.64
2
4
-------
iilSCHAhlit
VELOCITY
XSEC
X(U
ELFV
HEPTH
SISCtHflRGE
VEU1CITY
TIME " 58.
XSFC
X< 1 >
ELEV
DEPTH
DISCHARGE
V£U»em
XSEC
xm
ELEV
DEPTH
DISCHARGE
VELOCITY
TtHE - 60.
XSEC
xtn
ELEV
DEPTH
DISCHARGE
VI-l.nClTT
XSEC
X< I >
ELEU
DEPTH
DISCHARGE
VEI.UCITY
TIME • 62,
XSEC
X( I )
ELEV
DEPTH
DISCHARGE
VEI-HCITf
XSEC
X< I)
ELFV
DEPTH
DIKfHARCE
VEUJCITY
TIME - 64.
XSEC
XII)
ELEV
tiEf TH
DISCHARGE
VELllCtTY
XSFC
XIU
ELEV
7?4»00
1.94
14
1H170 .
671.44
A. 20
1011.62
1.00
HOURS
1
i>.
6B8.I1
4,75
718.30
1.96
14
4H470.
A7j .49
6.24
1005.45
0.96
HOURS
1
0.
668,04
4.6B
6K5.40
1.94
14
4H470.
671.39
6.15
962.24
0.96
HOURS
1
0.
687, 9B
4.62
634.30
1.93
14
4H470.
671.23
9. 98
904,03
0.93
HOURS
1
0.
667.94
4.58
637., 40
l.?Z
14
4H47I).
671.04
1)00,44
t.OD
13
K'f.Z't'Ji ,
669,83
H.14
981 .07
O.B1
2
4046.
68H.17
4.27
759,64
1 .03
S3
SH272 ,
669.93
H.25
1000. S4
0,81
2
4OA6.
6HR.02
4.12
7tfp,13
1 .03
15
3^27;?.
669. Elf)
H.19
972.73
0.80
2
1046,
6B7.HV
.< . 99
679.05
1.06
15
5,*77?.
669.74
D.06
922.10
0,78
2
4066,
6B7.79
,4 . B9
655.20
1 .05
IS
52? 7V,
669, SA
B21 .A.,
1.26
14
SA021 .
667, BH
6,54
9SS.3S
1,07
3
M'/fi.
6Rft.il
,i,83
7B5.71
1,28
16
$A!)^1 .
667,93
6.60
996,16
1.10
3
AIM .
687,96
3,66
737,59
1.25
16
SA021 .
667.86
A. 52
981.63
I. 11
3
til'j.'.i ,
687. R4
11.56
696.26
1.22
16
S601U .
667.73
4.40
937.06
1.09
3
AIM.
687,74
.4.46
660. BB
1.19
16
?tAO?t ,
6*7. SH
RS4.61
1.12
17
?iy6A4 .
666. OH
B.JO
1447.13
1.01
4
H737.
6B7.R3
4.17
7B7.79
1,13
17
3VA44.
666.08
fl, 10
1444. 6S
1.01
4
B2'.t7 .
6B7.65
T! ,V7
73P.40
t .13
17
HV6A4.
666,00
H.01
1373,?5
0,97
4
8^17 ,
6B7.51
1 ,Hri
697. OJ
1.14
17
S9AA4.
6 AS .90
7.V1
1390.75
0,93
4
MM/.
6B7.39
3,7.1
661 .64
1.14
17
HV6A4.
665,79
914.6!)
0.61
IB
41477 .
6A5.27
, 10.49
1439.65
0.94
5
IXtflA,
686,74
11.54
83P,5ii
0.56
IB
43A77.
665.27
V0.49
144S.72
0.95
S
13.t04.
6P6.54
It. 34
779, 4A
0.56
18
4
6H6, 73
11 .03
6B8.S1
0.52
18
AU77,
66f>. 14
934,41
0,61
19
67142.
664, B3
7 • ^6
1443,65
0.79
6
1H53.1.
68?>,33
7.43
873, SO
0.57
19
67162.
664.8.1
7."iA
1445.39
0.79
6
IBS 3 3.
6ft5 , 23
7.33
B06.33
0.54
19
671A2.
664. H.I
7 . W
1,"«79 . OS
0.74
6
1BM3.
6B5.16
7.26
7S1 .45
0.51
19
67162.
664. fn<
7.5-4
1295.70
0.71
6
IB!! 3:i.
6B5.10
7.20
705.71
0.49
19
471A2,
664. B'^
997,14
1.20
20
A7173.
AA4.BO
10,20
t437,04
0.92
7
V!4i;«).
6HI ,37
5.47
908,73
1,16
70
67,173,
664,30
1">,20
1445.91
0.92
7
24t;ii>.
681.25
!5,3S
BJG.4S
1 . 14
20
47173.
644. BO
10.20
13B3.67
0.88
7
?1 i;to.
681.15
5,25
775.75
1.11
20
47173.
644. PO
10.20
1302.90
0,83
7
;>4i;(0 ,
681.06
5.16
726.20
1.09
70
47173.
664. KO
1014.47
0.79
a
2HB29.
678.52
4.84
941,54
0,76
B
?fiH^9 ,
67B.3S
6.66
A6B.61
0.73
8
3rtft29 .
6 /B.I A
6.48
805.14
0.70
8
23B2V.
A7B.CH
A. 33
751 .56
0.6B
i oar., 7 7
1.14
9
31891 .
677.66
3,47
lfSB.27
1.10
9
31Q91.
6/7.49
5.30
BK5.64
1.07
9
11991.
677.32
5.14
B20.55
1.03
9
11H91,
677. IN
4.99
765.06
1,00
1031. IP
0.70
10
16590.
676.54
8.36
974. B7
0.67
10
16590.
676.39
S.22
906.02
0.64
10
36590.
674.24
8,07
B39.97
0.61
10
3A590.
676.11
7.94
7BI .70
O.SS
1038,18
1.19
tl
41184.
67S ,0fl
4.43
993.71
1,16
11
41184.
674.94
4,39
929.18
1 ,13
11
41184.
674,78
4.13
662,77
1,10
11
41184.
474,67
J.97
002.30
I.OB
10?7. 66
0.63
12
44933.
673.9*
11.67
1000.05
0.62
12
44933.
673.87
11.53
947.80
0,60
12
44933.
673.64
11.35
R85.9B
0.57
12
44933.
673,45
11,16
025.63
0.55
IOSB.77
1,21
13
45144.
673. B4
8.34
I004.J9
. 1,31
13
45144,
673.70
6.20
950.22
l.IB
13
45144,
673. S3
8.03
B87.1B
1.14
13
45144.
673.33
7.B3
626.21
t .IS
"^-
-------
UfcMH
D1FCHAROE
VELOCITY
11 HE * 66.
XSEC
XCIJ
ELFU
DEfTH
DISCHARGE
VltnCITY
XSEC
X( I )
EtEW
HEPTH
PISCHARGC
UEI.nCITY
TIME - 48.
XSEC
X( ! J
ELEM
DEPTH
DISCHARGE
VEUIfilTY
XSEC
X( 1 )
ELEV
BEPTH
DISCHARGE
uEi.or.uif
Tine » 70.
XSEC
XII)
ELEU
DEPTH
BISCHftRCF
VF.Lnr.lir
XSEC
xc i)
ELEM
Kf TH
DISCHARGE
vetnciTY
TIHf « 72.
XSEC
X< I)
ELEM
B£f"TH
BISr.HARf.E
VF.I.OCITY
XSEC
xtn
ELEtf
IiEPtH
BISCHftRBF
WEI nctTY
TIME • 74,
*SEC
•44.16
0.90
HOURS
I
i) .
487,91
1.55
619.90
1.91
14
4B47«>.
&70.BS
S.wO
780.91
o.ao
HOURS
t
0,
407,91
•1,55
616,70
1,91
14
4B470.
670,67
S,43
740,96
O.B4
HOURS
1
It
6B7.9J
4.55
619.00
1.91
14
4H*(•. 94
7.26
606.00
0,68
2
6.23
101,63
1,06
3
61i>3.
A87.6P
S.40
630.4ft
1.17
16
K601 «
667,44
6.11
026,04
1.03
3
AIMS.
687.64
.1.36
624,44
1.16
16
SAO21,
667,32
5.98
775, IS
0,99
3
6i as.
687.63
;i, 35
6??. 1 A
1.16
14
S6021.
*A7,2O
5.87
731,77
0.97
3
Al,Tf>.
687,62
3,34
A?l ,03
1 , 16
16
JiSrt.'l ,
447.10
?f ,77
697.7?
0.94
3
7.B1
0,89
4
KM7, t
6B7.3I
a. AS
639,1 4
1 ,14
17
59AA4,
665,71
7,73
i JM9.1A
0.85
4
H237 i
AB7»?A
3, Alt
674,91
1,14
17
f)9444 ,
665.63
7.6S
1 07"> . 1.1
0.82
4
i?,3/.
Afl7,24
H,f,H
A27.40
1.1S
17
$iVAA4,
445. S7
7.H8
10J8.43
0,78
4
M5M'/»
AB7.23
3.S7
A? I . I 1
1.15
17
SV6A4,
6AS.SK
7. J>4
V7B.A7
0.76
4
10,16
t?ifS.<44
0.81
k
5
1MOA,
ABA, J7
10.92
6T.fl.49
0,50
IB
A-SA77,
4*S,11
10.32
1144.97
0,7?
5
1MOA ,
6HA,Ofi
10.85
437.71
0.49
18
4;
-------
_ xtn
~* ELtW
IiIflH
DIS( HflRBF
vEi.cir m
xscc
Illl
ELFV
l«Ef*f*4
B1SCMAKGC
VEt.nrm
TIIIE « 74,
KSKC
XI 1)
Ei£W
KEf'TN
BlSr.MflRCE
W£t IWITY
XSEC
X(t>
ELEV
MPtH
HSfHAKGE
VELOCITY
TIME ' 7H,
%Sft
X< 1 )
ELE«
DEPTH
DISCHARGE
V€l liniTV
XSEC
XC1 »
ELEV
DEPTH
UlSCHftRGE
VEI.QCITY
Ttnr. • BO,
XSFC
X ( 1 )
ELEU
DEPTH
DISCHARGE
VF.IJlCtTY
XSEC
X< 1)
ELFV
DEPTH
DISCHARGE
MEi.nr.trir
T1HF m 82.
xssc
X( I )
Etrv
BCf-TH
OISCHARGC
VIUJCITY
i).
4*7.90
4,54
413,70
1,91
14
4A47D,
670,31
5.06
449.97
(J.B2
HOURS
1
0.
487, BO
4.52
601.40
1.90
14
4*473.
670,24
4.99
635,67
O.B2
MftltRS
1
0.
687,85
4,49
589.20
1.90
14
4.8470.
470,19
4,94
624.67
O.B2
HOURS
t
0.
6B7.82
4,44
577 . 00
1,90
14
4B47«>.
670.15
4,90
619.20
0,82
HOURS
1
0,
687.79
4,43
544.90
1.90
40AA.
687,66
,1,74
417,79
1,02
IS
3.*?72«
6AR.B3 -
7,15
461 .HH
0,67
2
40AA.
487,64
3,74
607, 87
1.01
15
S2272.
646.75
7.07
644,16
0.66
2
4066.
687.62
-1.72
597.15
1,00
IS
SU'272.
44B.69
7,01
632, 3d
0.66
2
4D66,
487.59
3.49
SBS.42
0,99
IS
52272.
64B.6S
4.97
623.55
fl,44
2
4064,
.1.**
573 , J8
0,91
61?*,
687,41
(.33
AIH.4A
1,14
14
SAW1.
467.03
5,69
(.70,94
0,92
3
A1SS.
687.59
^1.31
609.35
1,15
16
Sftxn,
6ft6 . 97
H,44
6^0.00
•>.9»
3
A1H5.
*B7.57
»*.29
59B.78
1,13
14
3AOi!l,
666,9,1
5.60
437.01
0,90
3
*1?H ,
687.55
3,27
567,20
1,12
14
56021.
666,90
5.37
627.03
o.et
3
At 23,
487,52
.t.24
875.21
t.ll
HM7 ,
AB7« ?2
3 . KA
6iO*Sl
I. IS
17
S9AA4,
A65.49
7, !5II
94S.13
0,74
4
H?.t7.
6H7.20
3,ti4
609.45
1,15
17
S9AA4.
AA5.4A
7.4H
927,75
0,73
4
H?37,
6H 7 , 1 7
3, HI
59B.96
U14
17
59AA4,
AftS.44
7.44
911,00
0,72
4
H237.
687.14
3.4B
*»ft? 4^
1.14
17
396A4,
6A5.43
7.44
fl9B,60
fl.71
4
B237.
487.11
J.4,1
3/5.50
1,14
1 .1.WA .
685,99
10,79
620,00
0.4B
18
43*77,
6A5»OS
tO, 23
949,70
0,65
5
H.10A.
483.97
10.77
617, 8B
0.48
IB
43*77,
665.01
10,22
928,75
0,63
5
13,104.
685, 93
10,75
6,
AKfl.R/
4.97
A«;> ,3.1
i.oa
20
A7173,
664,00
10.20
94?, to
11.61
7
24131),
AKO.Rf.
4.94
617.26
1.0S
20
47373,
A64.RO
10,20
92R.72
0,5»
7
24130,
6HO,B!I
4.7S
611,17
1 .03
20
A7173.
A44.PO
1 ft , 20
911.87
0»5M
7
MU(0»
4BO . 03
4,93
607. 7?
1.04
20
67373.
AA4.BO
10.20
899. U
0,57
7
24i;tO.
ABO. 02
4.92
59?, *0
1.04
^«Ba9.
6/7.* I
S.93
625,41
0,42
8
2S029.
677. S9
S,?l
620.07
0,42
a
2BH29.
677.57
5.90
6)4.33
0,62
ft
2H829,
677.55
fi.ee
604, KB
0.41
i
e
2UH29,
677.52
3.B5
597.44
0.61
31H91,
476.81
4,62
4?7,66
0,92
f
11H91.
674.79
4,60
621,56
0.92
9
31B91,
676,78
4.59
615,95
0,91
9
31B91.
676,74
4,37
60R.97
0.91
9
31B91,
676,74
4.5S
600.24
0.90
34590,
675.79
7.42
450.03
0,49
10
34590,
475,78
7.4O
422.71
0.49
to
36590.
475,77
7,39
616. Bl
O.48
10
34590,
675.74
7,58
610,23
0,48
10 •
34590.
675.74
7.57
40?, 06
0.47
4I1A4,
674,14
3,49
634,34
1.03
11
411134,
674,11
3,44
62S. SB
1.03
11
4U84.
674.08
3.44
61H.99
1.02
11
41184,
474.07
3.42
612,75
1,02
* 11
4HB4,
674,04
3.40
405.27
1.02
44»3J,
677. B2
10.34
442,51
0.47
12
44933,
472, 7B
10, 49
43Q.SX
0,46
12
44933.
672.75
10,46
6?;;,P3
0,46
12
44933.
672,72
10,41
615,96
0,46
12
44933,
472.69
10,41
608,41
0,45
43144.
472, 71
7,21
647,14
1,01
13
4S144,
672,4*
7,14
630.20
1.02
13
41144,
672,63
7.13
422,35
1,03
13
45144,
672,60
7.10
615,73
1.02
13
43144,
672. S7
7,07
60R.54
1,01
-------
o i»r I*
!%»»*
« x •* in
fi -c •«
*- S Ul >•
iu ^* t» I*- £3 *-
iO «-> J i.
-------
ELEW
DEPTH
DIWiHAROC
VSLUCttV
XSEC;
X< I)
EtEV
C*!PTH
DIBCHARGE
VEI.
ELEV
BEPTH
DIBI;HARGE
VELUC1TY
XSEC
X( I )
ELF.V
DEPTH
DIBCHARDE
vetociTV
TIME « 34.
XSEC
X ( I )
ELEW
DEPTH
DISCHARGE
VEMICtTY
xsre
XU)
ELEV
BEPTO
DISCHARGE
VELOCITY
TINE - 38.
XSEC
X( I }
EiF.W
DEPTH
DISCHARGE
VELOCITY
687, ?7
S.91
336. fO
1,82
14
1H470,
669,0?
3,78
3i2,92
0,49
HOURS
1
0.
6(57,29
,t . 93
363.80
1.B3
14
4H470,
669.00
3.76
378,41
0.49
HOURS
1
D.
487.33
,!.97
377.90
1.04
14
4H470,
66B.97
3.73
3*3,08
0.69
HOURS
1
i).
487.39
4.03
399.20
1.85
14
4H170.
A AS, 94
3,70
368 . 33
0.68
HOURS
1
0,
6B7.44
4,08
417, 2O
1,84
4PA.VO
3,00
SflA.M
«J,74
13
3*^275 .
6*7.6?
«j,f4
304,34
O.S3
2
1066,
6HA .91
.4,01
341 ,30
«,73
15
92
684.94
<>.66
3B4.BI
0.90
16
SAOai ,
A6S.5V
4.24
373,53
O.SO
3
Al'.IS.
6B7.00
2.72
403.40
O.93
AHA,:fB
J.72
3S7.27
1,03
17
S9A61.
663 <'/"£
-,,73
544, K5
0.64
4
war/.
AHA.,lf<
3. 72
3A0.1B
1,03
17
'Tl'Jtlfll.
6A3 ,V3
5,73
H51.60
0.65
4
H237.
6H6.40
a, 74
347. ?2
1.06
17
3V444.
64^.74
5,74
557, A*
0.63
4
H'JM7.
6RA.44
5,78
382,99
1.0?
17
H9A44.
463, 75
5.77
567.99
0.66
4
BV17,
6B4.50
f. . 84
401. hi
I. ft?
6R1.06
9.84
360,62
0.33
ts
41477.
44S.J1
S.42
343,47
0,50
5
i:).<06,
ABS.OS
9.85
360. RA
0,33
IB
63477 ,
AM. 2?
8.43
550.94
0,51
5
I, 130 A.
685.07
9.87
345.14
0,34
!«
4.1677.
AA3.22
8. 43
557.11
0.51
5
13,f06.
685.10
9,90
374,9:*
0,35
IB
A3477.
643. 22
fi.44
362.4?
0.32
5
iXfi)6 .
6fl5> 16
9.94
3V2.60
0,34
684.55
4.63
34ft » V4
0,3§
19
4714V!.
66A.02
5,74
343,80
0,43
6
183,U.
484.54
4.64
3*1 .03
0.29
19
47162.
663,0?
•5.74
551.09
0.44
6
1 85113.
684,55
4,63
362, J3
ft. 29
19
47162.
663.02
5.74
537 . it 3
0,43
6
18333.
4B4.5B
6,68
349.90
0.30
19
47142,
663,0?!
S.74
562.3ft
0,43
6
IHS.iS.
6(44.61
4, 7|
382. ?9
0.31
ABO,?,1
4.33
36fl,O«
0,97
20
47173.
663.00
5,40
543.17
0,88
7
1MOO,
AHO.jy
4,32
347, A A
0,97
20
67173,
663.00
3.40
5S0.23
0.56
7
M41.iO*
iSKO. yi
4,31
361 ,04
0.97
20
67,173.
663.00
9,40
5SA.51
0,37
7
941.10.
6B0.22
4.32
3A4.66
0,97
20
67373,
663,00
K.40
561.93
0,57
7
'i, 1 1 M •
680.25
4.35
374.44
0.98
476,40
3,01
372,69
0,48
8
fnnyf .
476,66
4.?a
946,6?
0,47
e
:'SR,'9.
676.64
4,96
363.13
0.47
a
281129.
676.63
4.96
363,42
0,47
B
;jrt8«"9.
476.65
4.9B
3 A?, !50
0,48
674.06
.l.BB
37S.04
0.71
9
11R91 ,
476.04
3.84
36H.BS
0,71
?
31H91,
676, 03
3.84
364,44
0,70
9
31891.
676.02
3, 84
343,44
0,70
f
-UB91.
676.04
3,85
347.34
0.71
475.32
7.J4
376.31
0.32
10
.34590.
475.30
7.13
370, »f
0,31
10
. 34590.
675.29
7.12
365,30
0.31
10
14590.
675,79
7, 12
363.33
0.3t
10
34590.
678,30
7,13
366.00
0.31
#73.51
S«47
37f .22
0,92
1 t
41194.
673. ?9
2.65
373,23
0.91
11
41184.
673,27
2.63
367. SB
0,91
11
41184,
673.76
2.61
364 .OB
0,91
11
41184,
673.26
2.61
344.46
0,91
671 ,49
9«41
381 , n
0.34
12
44933.
671,67
9,38
375 . f *
0.33
12
44933.
471,64
9.34
370.46
0,33
12
44933,
67] .62
9, S3
366.26
0,33
12
44933.
67) .41
9.32
343.06
0,33
471 *37
4.67
3il.47
0,83
13
43144,
671. S3
6. OS
374.20
0,18
13
43144.
471.32
6.02
370.36
0,88
13
4S144.
671 .30
4.00
3*6. IB
O.t7
13
43144.
671,49
3.99
364.76
0.17
-------
X 40.
xscc
XI I >
ELEW
DEPTH
DISCHARGE
UfiUKtTt
XSEC
X( I )
ELF.U
DEPTH
DtWHARQE
VtMICW
rim: » 42,
XSEC
X( I)
ELEM
DEPTH
BI6CHARGE
VELOCITY
XSEC
X(t>
ELEW
DEPTH
0I8CHftR6E
WEUlRITt
Tint' » 44,
XSEC
X( t >
1LEM
SIPTH
DISCHARGE
VELOCITY
xsec
X( 1)
ELEU
DEPTH
DISCHARGE
tffLOCITY
TIME " 46.
XSEC
X< 1)
ELEV
BEPTH
DISCHARGE
VELOCITY
X.SET,
XII)
ELEV
OEPTH
DltiCMAftaC
VELOCITY
4H4/0,
6*11.92
( , 6«
345,79
0.48
HOURS
1
i>.
*P7.53
4,17
4S0.20
1,86
14
1H170 ,
668.92
4.68
366,95
0,69
HOURS
1
0.
687 , 59
4,23
475.90
1.88
14
4»47t».
663.94
3.70
372 . 78
0.49
HOURS
1
0,
68S.74
S.38
1095.00
7.08
14
4B470,
46B.99
3.75
384,9ft
0,70
HOURS
1
0,
*Bf . 96
Ji.40
1249,00
•i. 13
14
4B47O,
669.11
3. 86
412,31
0,72
647. 51
5,83
3AB.O?
0,32
2
40AA.
*»7.0H
.1,10
474.35
0.83
15
52-27-;!.
6*7. SO
5.82
367.45
0.52
2
4OA6.
687
-------
rinr • «0.
XSEC
mit
ELCU
DEPTH
DISCHftRBf
WEUIC1TY
XSEC
X<1)
SLEW
DEPTH
8ISCHARSE
VELOCITY
rim. - so.
XSEC
XUI
ELEV
DEPTH
DISCHARGE
VELIKI TY
XSEC
xu>
EiEV
BEPTH
OIHCHftRGE
VEJ.UCITV
lint • 52.
XSCC
X
ELfW
BEfTH
DISCHARGE
VEtnctTY
TIRE » 36.
XSEC
X(I>
ELEM
BtPTH
HOURB
i
0,
688,94
•i.sa
1233.00
i»,I3
14
4H170,
669,38
4.13
479.30
0.78
HOURS
1
0.
APS. PI
5,45
1143,00
a. 10
14
4M4/0.
649.95
4,71
630.06
Q.07
HOURS
]
0.
688.62
S»26
100B.OO
a. 04
14
4»4/«.
670,65
5.40
81?. 46
0.94
HOURS
I
0,
688.31
4.95
926.80
<>,a0
14
4H4/6.
671.17
S.93
955.25
0.9?
HOMES
1
i).
688.12
4.74
2
4046.
688,84
4.94
118B. 47
1,22
IS
5i!27a.
667.77
A. OS
450.62
0.39
2
4064.
688.95
8.05
1153.66
1.14
IS
S2273,
66H.21
6.53
S4S.OJ
0,6*
2
41)6 A.
Ase.er
4.92
1031.50
1,07
15
S3272.
A6M,eft
7,20
731 .39
0,73
2
19*6.
ASH. 63
1.73
9J9.S6
1.02
15
!W27;>.
669,49
7.81
B92.47
0.79
2
4066,
6Hfi.37
4,47
9
M««.
6BB<7H
«.SO
1IHH,0,<
t.45
16
tiAOV!!.
666.09
4.71
4?7,3«
0.78
3
612S.
68B.fO
4.62
1156.17
1,35
16
s*
I15S.46
1.32
17
S?M4,
664.45
6.46
R06,^4
0,79
4
8KB7.
6HR.6R
4.V9
1M6.40
1.25
17
5V664.
665,00
7.02
936.30
0,81
4
8337.
6B8.53
4.SJ7
1030,96
1.19
17
!WM,
665 ,56
7.S7
1 JS1.76
0.89
4
8?.3V.
6BH.34
4.6H
96) ,46
1.15
17
SM64.
6*5,94
7.V6
1346.89
0.96
4
H/3V.
6Rfl,06
4.40
5
1 S.WA .
6«7.«a
12,02
1042,99
0.67
16
6,*677,
663, Bil
9,04
736,14
0,61
5
13306,
687,44
12.24
1102.89
0.69
18
A3677,
6M,oy
9,64
849,19
0,63
5
13306.
687,39
12.19
1066.99
0,67
18
6:!A77,
664,90
10.11
1087. 6B
0.7S
5
13,106,
6fl7.34
13,04
J005.32
0.65
18
6.1677,
665, ?0
10,42
1318.72
0,87
5
I riO 4.
686 , 9H
11,78
6
mr»,ia.
6BB.73
7.83
98?. 07
0,59
19
47162,
663,62
6,34
646.29
0.45
6
lflS3J,
6BS.79
7.8f
1086.45
0.64
19
671A2,
664 , 22
6,94
766.22
0,47
6
JflS33,
685.72
7,82
1085, $2
0.65
19
47162.
664.62
7.34
1036.90
0.59
6
1B5.J3.
6iS.6t
7.71
103B.OO
0.64
19
67l«,
664, f*3
7,55
1336,52
0,74
6
1SSM,
A8S.47
7. 37
7
.HIM,
ABI .»
5,33
i*¥0.2;<
1.22
20
67373,
663.60
9.00
669.79
0,59
7
5HI30.
6WI.50
5.60
1«49.17
1.26
20
47173,
664,20
9.60
706,61
0.58
7
24130,
6H1.60
5.70
1090.62
1,26
20
47373,
664,60
It). 00
1042.70
0,70
7
2*130.
6«t ,5»
3.68
J 061. 76
1.23
20
47373.
664 . 90
10,20
1 3»9 , 1 7
0.84
7
24130,
AH1 ,4V
5.59
H
a»H^9,
6/7. B6
4. 18
760,38
0.71
8
mnzt ,
670,40
4,72
962,15
0.80
8
2UB29.
678.69
7,02
1054,65
0.82
8
2»fJ29,
671,74
7,08
1061 .S3
0.81
a
2HBi!9.
678,68
7,01
9
31H91,
676,97
4.78
697,51
0,98
9
11B91,
677.46
5,27
915,20
1.11
9
31891.
677.76
5,57
1035.5ft
1.16
9
318ft.
677. 8S
5.66
1061.07
1.17
9
aiBfl.
677.80
S.A1
19
34590.
675. H«
7.70
641.82
0.49
10
16590,
676.27
8.10
H59.83
0.62
10
36590,
676. S5
8.38
1001 ,18
0.69
10
34590,
476.66
8.49
1049,45
0.71
JO
36590.
476.65
ft, 47
11
411A4.
673. flf.
3.20
S7I.SI
1.05
11
4lli4,
6?4.37
3.72
7BS , 75
1,34
11
41184.
674,81
4,17
957. IS
1.21
11
411B4.
675.07
4,42
IO35.7O
1,21
1 1
411R4.
67S.14
4.50
12
449J3.
677.. 24
9.95
517, 5»
0.42
12
44933,
672, BA
10.39
707,08
0,31
12
44933.
673,47
11 .19
881.91
0.58
12
44933.
673.85
11.56
9B9.8S
0.62
12
44933,
473,99
11,70
11
43144.
672,11
4,61
512, Sf
0,99
13
4S144,
47?, 75
7.25
497.73
1.10
13
43144.
673.34
7. 84
883.80
1,19
13
43144.
673.72
8.22
996.37
1,23
13
45144.
673,87
9.37
-------
FO
vet.ncttY
XSEC
K( 1 )
EiCM
DEPTH
BISr.MflRGE
VII.IIBITY
TIHE • 58,
XSfC
X(U
ELCM
DEPTH
DISCHARGE
VELOCITY
XSEC
X( J)
EtEV
BiPTH
DISCHARGE
WttttCITY
TIHE * 60.
XSEC
X( I )
EiEM
DEPTH
DISCHARGE
VELOCITY
XSEC
X(t>
ELEV
DEPTH
DISCHARGE
VELOCITY
TIHf • 62.
XSEC
X ( I )
ELEV
DEPTH
DISCHARGE
VELOCITY
XSEC
X ( I )
ELEW
HEPTH
DJSCMftROE
VELOCITY
TJHE « 44,
XSEC
Xtl)
CLEV
DEPTH
DISCHARGE
VELDCITY
XSEC
X(U
CLEW
1.94
14
4H470.
47 1 , 4 4
4.20
1011.62
t ,00
HflURS
1
0,
688,11
4,75
718,30
1.96
14
4B47Q.
671 ,49
4,24
1005,45
0.98
HOURS
1
0.
688,04
4,68
685.40
t.94
14
48470.
671, S9
4.15
962.24
0,?6
HOURS
1
0,
687,98
4.62
654 . 30
1.93
14
48470.
671.23
5.98
904.03
0,93
HOURS
1
0.
687,94
4.58
632,40
1.92
14
4H470.
671.04
1.00
IS
JW27K,
669, P3
H.14
9BI.07
0.81
2
4O4A ,
60S. 17
4,27
759,64
1,03
IS
SX272,
669,93
a, 25
1000.54
0.81
2
406 A.
6H8.C12
4,12
715,13
1.05
15
52272.
469. 8B
H.19
972.73
o.eo
2
1064.
687. «9
J.99
679,05
1.06
15
52277.
669,74
Hi 06
922,10
0,78
2
10AA.
687,79
< . B9
655.20
1 .03
15
S2?7'«>«
469.5*
1.26
14
940X1.
667, BB
A. 54
9SS.35
1.07
3
41!! it.
6BK.11
3.83
785.71
1-28
16
f(A02t .
4*7.93
4,60
9?6,14
t.ie
3
61JJS.
AB7.9*
3. 68
737,59
1,25
16
S4021 .
667,84
4,32
981,63
1,11
3
4 1 a>s .
687.84
a. 56
696.2*
1,22
16
hAOi'l ,
667,73
4,40
937.06
1,09
3
A12S,
AU7. 74
S.46
460, BB
1, 19
16
5A021,
667. 58
t.12
17
HV444.
AA* .OK
fl.lO
1447,13
1 ,01
4
8737,
6B7.B3
4,1?
767,29
t,13
17
SVA44.
666.08
rt.io
1444,48
1.01
4
8237.
687,65
3.V9
738.40
1,13
17
SV444.
666.00
fl.Ol
1373, ?S
0.97
4
8X37.
687,51
:i.Ht>
697,03
1.14
17
59644,
AA5.90
7. VI
1??0.75
0.93
4
H237 ,
487,39
3.73
661 .64
1.14
17
SVA44,
665.79
0,41
18
4,4477.
645.27
10,49
1439,61
O.V4
5
13.,20
1445,91
0,92
7
24130,
661,23
5.35
835.65
1,14
20
A7373.
644,80
10,20
13B5.67
0.88
7
24130.
681,15
5.25
775,75
1. 11
20
67:i?3.
6A4.(<0
to. 20
1302,90
0,83
7
24130.
681.06
5.14
726,20
1.09
20
47373,
664.80
0,79
8
?HR?9 .
67B.3?
4,84
941.34
0.76
a
2»8af,
67D.33
6,66
RAH. 61
0.73
B
anew ,
67H.1A
6.48
80S . 1 4
0.70
a
28SSV.
A7SU01
4.33
751,16
0.4B
1,14
7
51891,
677,64
3,47
VSB.27
1,10
9
11891.
677 , 4»
5.30
BBS. 64
1.07
9
31891,
677, 3a
3.14
§20.55
4.03
9
31891.
A77.IB
4.?9
765,06
t.OO
0,70
10
34590,
676,94
Q. 36
974,87
0.67
10
36590,
676,39
B.22
906.02
0.64
10
34390,
676.24
8.07
839.97
0,61
10
34590,
676,11
7.94
7S1 .70
0.5B
1.19
11
41184.
675.. OB
4,43
993. '/I
1.1A
Jl
41194,
674,94
4.29
929.18
1.13
11
431B4.
474,78
4.13
86?. 77
1. 10
11
411R4.
674.62
3.97
B02.30
1.08
O.A3
12
44933.
67*, 96
11.67
1000. OS
0.62
12
44933,
673,82
11,53
947,60
0,60
12
44933,
673.64
11,35
885.98
0.57
12
44933,
673.45
11,14
B2S.63
0,55
t.*a
13
43144.
473. «4
8.J4
1004, JO
1,21
13
4S144.
673.76
8. 2O
950.12
1.18
13
4S144.
673.32
a, 02
837.18
1.14
13
45144.
673,31
7.83
826,21
1.12
-------
ttlSCHftftOE
TIHf* « 66,
XSEC
xu»
ELFV
DEPTH
DISCHARGE
VCIQCITV
xsec
Jttll
ELEW
6EPTH
niSCHAftOE
VELOCITY
tl*t * 48.
XSEC
xtu
ELEV
DEPTH
DISCHARGE
VCLOCITV
XSEC
xtu
Et£U
DEPTH
DISCHARGE
VELOCITY
fIHE • 70.
XSEC
XII)
EiEW
BEPTH
DISCHARGE
WELBCITY
XSEC
Xt t >
ELEV
DEPTH
DISCHARGE
VELOCITY
TIHf » 72.
XSiC
X( I )
ELEM
BEPTK
DISCHARGE
VKUmTY
XSEC
Xt 1>
ELEV
DEPTH
BIETHARGF
WEi.nCITf
"tlHt * 74.
xsec
0,90
HOURS
1
0.
487.91
4,35
419,90
t,?l
14
4B47U,
670. BS
5,40
7f 8.91
0.88
HOURS
t
0.
487,91
4.33
416.70
1,91
14
48470.
670,67
5.43
740.96
0.86
HOURS
1
0,
487.91
4.55
419.80
1,91
14
1H4/0.
470.53
S.28
701.52
0.84
HOURS
1
0.
487.91
4.55
619.80
1.91
14
4H47Q,
670,40
S.I4
671.32
0.83
HOURS
1
•64, fO
2
40AA,
6B7.73
1.83
634,94
1 .03
IS
5«7;»,
469.39
7.71
809.46
0,73
2
4OAA.
487,4?
3.79
422,60
1,02
15
32272,
469.22
7.54
759.85
0.71
2
1OAA.
687.60
:j.78
621,75
1.03
IS
3237i! »
669,07
7.39
717,94
O.69
2
4OAA.
487,67
3.77
620.78
1.03
13
5~«!27?,
6* {(,94
7.26
686.OO
0.68
2
•01.63
1.06
3
Atl!5,
687.68
3.40
6JP. 4H
1,17
16
SAO^l,
667.44
A, 11
026,04
1,03
3
4125,
687 , 44
.'.36
624.44
1.16
14
8AO21.
667.32
S.9B
775. IS
0.9?
3
412!»>
687,63
'.4 . 33
67?, 16
1.14
16
SAoai,
467.20
5.87
731.77
0.97
3
A US.
487,42
3.34
621.02
1.14
16
S40»U ,
467.10
5.77
697. 72
0.?4
3
1*011. A*
4
M3? »
6R?« ?1
J.AS
639.14
1,14
17
M4A4.
663.71
7.731
I1OT.14
0.85
4
aajv ,
4S7.3A
3,40
624,91
t .14
17
59444 ,
645.63
7.6S
1(175.43
O.S2
4
8237.
6P7.34
-1.SH
4?2.40
1.13
17
SVAA4,
4*5,57
7. SB
101R.4?
0,78
4
H2.V/ .
6P7.23
3,57
6?t .11
1.15
17
59AA4.
*65.S2
7.S4
V7B.67
0.76
4
l?15.44
0.81
5
1330*.
684,1?
IO.92
45«.49
0.50
18
A 1*77.
663.11
10.32
1144,97
0.77
3
13, tO A.
4RA.QS
10.85
437.71
0,49
18
43*77.
64S.OH
10,29
1080,21
O.73
5
l.HWA.
68A.O1
10.81
628.34
0,49
IB
63A77.
6A5.0!t
10.26
1021,94
0,49
s
llllOA.
6R6.QO
JO. BO
423.50
0.49
IB
A.1A77.
AAS.o;t
10.25
981, 1O
0,67
3
1211 .12
0.47
6
1851"!.
685.06
7.14
470.55
0,47
19
471*2.
6*4. H;-
7, S3
1140.75
0.63
6
18SM.
685,04
7.14
645,23
0.46
19
47142,
664, S2
7.34
1076,14
0.59
4
18SM,
605,03
7.13
630,77
0,45
19
A71A2,
A64.D2
7,^4
101ft, 37
0.36
6
ifis^it.
485.03
7.13
623.67
0.44
19
A71AS.
4*4,8?
7.14
97S.37
0.54
6
1216.83
7
24130,
6R0.99
5,09
6B4.4Z
1,08
20
A7373.
664.00
10.20
1145.91
0.73
7
241JO.
480,94
5.04
4S6. SB
1,06
20
47.173,
644.60
10.20
1080,79
0,4?
7
24130.
6H0.90
5.00
A3A.94
1.06
20
A7373,
464. BO
10.20
102S.20
*.45
7
241,tO«
6H0.8H
4.98
42A.3/
1.03
?0
47173.
444.80
10.20
9R1.19
0.63
7
8
2SB29,
677,87
6,20
7O7.47
0.66
8
aHB29.
*"/7 «'/7
4,09
473.16
O,64
t
2H829.
477,69
6.01
649. O3
0.63
8
28829.
677,64
5,96
633. 80
0.63
8
9
31B91,
677,0*
4,B7
7t8. an
0,98
9
31891.
476,94
4.77
682,22
0.94
9
11891.
676, an
4,70
655.38
0,94
9
31B91.
476,83
4.63
637.81
0,93
?
10
54590.
474.01
7.83
732,39
0,35
10
3*590.
675,92
7,74
692.60
0,53
10
34590.
675,86
7, SB
662.71
0.51
10
3459O.
675.81
7.64
642.37
0.30
10
It
41184,
474, 4ft
3.83
750,14
1 ,94
11
41184,
674.35
3.71
707. IS
l.OS
11
41184,
674.54
3.41
673,7?
1,04
11
41184,
474.19
3.54
649.87
1.03
It
12
44933.
673.27
10,99
771.50
0.33
12
44933.
673.12
10.83
725.53
0.31
12
44933.
*72,99
10.71
686.49
0,49
12
44933.
472,89
10.41
661 .22
0.4B
Ti
13
45144,
473.16
7,44
771.79
1.0»
13
45144,
673.00
7.30
725,68
1.97
13
45144.
472,88
7.38
688.47
l.OS
13
45144.
672.78
7,28
641.03
1.03
13
-------
ELEV
DEPTH
&IS<;HARPC
VELOCITY
XSEC
X( 1 )
ELfV
DEPTH
DISCHARGE
Vil.nCJTY
TIHE » 74.
XSEC
X( 1)
ELCV
DEPTH
DISCHARGE
VELOCITY
XSEC
X
ELEW
DEPTH
DISCHARGE
VELOCITY
TIHE " 78.
XSFC
X
ELEV
DEPTH
DISCHARGE
VELOCITY
XSEC
X
ELEV
DEPTH
DISCHARGE
VELOCITY
TINE, = 80,
XSFC
XC1 J
ELEV
DEPTH
DISCHARGE
VF.LOr.tT*
XSEC
x< t >
ELEV
DEPTH
DISCHARGE
VEI.nCUlf
TINE - 82,
XSEC
X( I >
ELEV
DEPTH
DISCHARGE
VELOCITY
6t?,»0
4. 34
613.70
1,91
14
4S47O,
670.31
S.06
649,97
Q.i2
HOURS
1
0.
687,8ft
4.52
601,40
1.90
14
48470.
670,24
4.99
635.67
0.82
HOURS
1
0.
687,85
4.49
S89.20
1.90
14
4«470,
670.19
4,94
626.67
0,82
HOURS
1
O.
487.82
4.44
377.00
1.90
14
4»47i>.
470,15
4.90
6i9. 20
0.82
HOURS
1
i),
687.79
4.43
564.80
1.90
A87.AA
3.74
417.79
1.02
15
52272 ,
AAP.K3
7,15
461 .SB
ft. 67
2
40*4.
687.64
3,74
407,87
1.01
15
S2272.
668.75
7.07
644.16
0,46
2
406*.
48?, A2
3.72
597.15
1.00
15
S"«J27X.
468.69
7.O1
633.36
0.66
2
4
4.95
All, 17
1.05
20
*7,173,
464,80
10. 20
911. B7
0,58
7
24140.
680,63
4.93
607, 79
1.04
20
47373,
AA4.AO
10,20
899,11
0.57
7
24130,
AflO.P?
4,92
59?. 60
1.04
A/7. A I
5.93
625,41
0.62
8
?8fl?9 .
677,59
5,91
620,07
0.42
B
2HS29.
677.57
5.90
614.33
0,62
B
S«839,
*77,55
S.BB
604.88
0.61
a
2R829.
677.52
5.85
597,64
0.61
47A.81
4,62
A?7.*A
0.92
9
11B91,
674,79
4.40
621, SA
0,92
9
-11B91.
676. 7B
4.59
415,95
0.91
9
31891.
676.76
4.57
606,97
O.fl
9
31891 .
476,74
4.55
600,24
0.90
*75.7f
7.4Z
A 30, 03
0,4?
10
34596.
475. 7f
7.60
622.71
0.49
10
34590,
475.77
7.59
616,61
0.4B
10
3A590 .
475,76
7,58
610,23
0.49
10
3A590.
A75.74
7,57
402.04
0,47
A74.14
3.49
6S4.54
1,03
11
41184,
674,11
3.44
425,38
1.03
11
4U84,
674. OS
3.44
618.99
1,02
11
41184.
674.07
3.42
612.75
1,02
11
41184.
674.04
3.40
405.27
1.02
*7?.»2
10.54
442.51
0,47
12
44933,
472.78
10.49
630, S3
0.46
12
44933,
*72.75
10.46
622.83
0,44
12
44933.
672,72
10.43
MS.96
0.46
12
44933.
472.49
IO.41
A08.61
0.45
473.71
7,21
6*7.14
1 ,01
13
45144,
672.44
7.14
430.20
1.02
13
45144,
472,43
7.13
422,33
1.02
13
43144,
672.40
7.10
615.73
1 .02
13
451 44.
672.57
7,07
608.56
t.Ol
-------
*. * ««
*« *
•e
•»
f>.
•c
* * tsm o
w « •• B
-C < IB
• tv r» * G
e «
u- -c s
« iv » r. 9-
— ec mat a
c- -t i- a o
~ n« M
-c »• *HK -e
M * -em o
pi -a -i
*? « *
O « «» CD
IS • * * *
•• O »«* O
* fs. »
— j a. * •->
X tol lid «S 45
OX O
o -
in u)
175
-------
Appendix D
PART 3: SEDIMENT MODEL INPUT
176
-------
SC10TD RIVER SEBlHrMT HOWL - 2NH S10RH EVEMT
20 SJL AO .75
0 1 1 24 0
.5 .2
10 5
20 IS 5.8 1.3 ,JiO ,315 .179 .1115 .0S9 ,0?0
2,65 .'.AS a,AS 8.AS ».AS 2.AS V..AS S.Atr 2.AS 2,
,60 ,75 ,1 0,03 0.0?0 00000
4 ,HO . i!0 0 O «) 0 0 0 0 0
7 ,BO .20 00000000
11 .«« .20 00000000
000000
000000
13 .«0 ,70 0 0
14 .80 ,'40 0 0
GRFFNLAUN AVE
0,0000000
0,0000000
1.789978
3,049978
3.0B9966
3.V40002
4.0H99A6
663. JiAOO
19
0.0000000
37.53033
42,549?4
70,18X56
75.0A396
t07.4»97
113.1644
131.1451
170.0170
4.9^9961
S.WH9966
7.9I99B3
8.479993
10.A400J
17.A4001
30.A400I
X~J
5.AOO
0.0000000
4.000000
a,oftoooo
9.OOOOOO
9,000000
10.00000
SrNTHFTlC X-SF.C
6124,800
0.0000000
4.000000
3.000000
8,000000
9.000000
10.00000
FRANK ROAD
8236.800
12/.7700
0,00(10000
0,4000244
0.4B99902
0.8499756
185.1131
2O/.AS37
238.A215
>!4V>.4473
313.0S17
399,J243
5A4.3094
677.7782
683.¥000
6
0.0000000
421.0997
381.1332
4AH.349Q
486.4506
49S.A727
t2
684.21*00
0.0000000
321.0997
381.1332
486.4506
49r»,A72?
BRIUBE
15
0.0000000
2tt.90-.tl9
32.3B102
70,99437
9.999999BE-03 0,0000000
0,0060000
9.9V99V9HK-03 0.0000000
O.QOOOOOO
0.0000000
0.0000000
3,9999999E-Oa O.OflOOOOO
0.0000000
177
-------
1 i '>VV976
i.ssftft
1.&179V3
1.H900IS
2.0HCJ017
3,440002
6,9«9?fO
8,010010
13.98999
RfiURUAfl BKIUGE
13305,60
12A.7000
O.POOOOOO
2.H00049
3.XOO049
6.300049
6.600037
9,400024
12.4000?
12,40004
12.80003
14.M0005
18.30005
IB. 30005
SYNTHETIC X-SFC
1853?, 80
12S.AOOO
0,0000000
1,000000
1.700012
2./00012
3.200012
3 . 399988
3.700012
3. 799988
3.V00024
4,000000
4,?9998B
4,100024
4.700012
4,yi)0024
X-SFf e 1-270
24Ji-9.60
121.4200
O.OOOOOOO
i ,000000
1,70001?
2.700012
3,700012
3.299918
3.700012
3./VV988
3,900024
4.000000
4,:-V9988
4, 400024
4,70001?
4,900024
X-SF.t *11
20Bi>B,RO
12-1.4300
0.0000000
10J.S1S1
145*3779
t*y. 3S31
178,3319
201,1155
247.2318
2B3.0379
3,<0, 'f.'A72
349,0341
673,?000
12
0,0000000
43.34052
87,55.238
ISA.1W19
1S9.4I32
1H1 ./i462
253.4409
7.S7.4486
23B.6992
'«?A7 • 2083
289,4)40
.''VO, H858
*3
477,9000
14
0,0000000
.11 ,83,»03
48.3A71S
/a,s4«>oi
86.49547
11/, 7494
172.769i
'^14,0236
219.2i08
24ii.fi353
29*. 3060
30S.,ltl2
337.?J59
3H0.3194
675.9000
14
0,0000000
.J1.83203
48.36218
/4, S4001
86.4954?
14/.7494
172.7*98
«;i4,0J4*3&
219.2BQ6
34U»t(353
296.3060
,<05.3tl2
332.3159
:iBl>,-Jl94
67J ,6747
12
0,0000000
0.1700000 0.0000000
o.ooooooo
0,1200000 0,0000000
0,0000000
A.6999987F-02 0.0000000
0,0000000
0,0000000
0,0000000
0,5000000
" i
178
-------
l.OOOOOO
t, -VVV9A3
1.7WOJ2
2,099976
3.099976
3.300012
3.5000OO
60.4V130
X-SFC tlO
31891,20
121,7900
O.OOOOOOO
0,2999878
1.000000
1.299988
1.400085
1.900085
2.700073
3,?99988
4.300000
X-SKi; t9
36S90.40
121,8000
0,«000000
0,2000122
0»?999878
0.4000244
0.3000000
1,000000
2.400074
2.SOOOOO
4.400024
7,400024
x-spr, ta
41JB4.00
120,8300
0,0000000
0,2000122
1.000000
1,099915
1,200012
1.100024
1.V00024
2.700012
3.0999J5
X-SI-'f: *7
449X2,80
120,0400
O.OOOOOOO
0,5000000
1.VO0085
2.200012
4.099976
4,400085
6.900085
9,?¥9988
10.0999B
SMftMWILLE
45144.00
120,0000
O.OOOOOOO
123,?094
144.HU29
168.B019
199,2047
232.4904
67?,I174
10
0,0000000
60,00350
94,03M?
115.0399
U3.3H23
192.4H79
66§.1746
10
0,0000000
9.A1S538
44.41954
49,23588
104.0399
12«,0773
147,7182
188,7041
670,6470
11
0.0000000
2H.3H743
35,89510
126,3909
144.SA36
177.8725
193.45B5
^t)V,1190
229.1367
66?.2869
10
0.0000000
29,1). 110
82.33374
I}/.9418
122.SZ5B
tA«),7121
196,0462
221•1259
BRIDGE
665.SOOO
9
0.0000000
A.69999B7E-02 0,0000000
O.OOOOOOO
6.6999987E-0?
0,0000000
6.A9V99HVE-02 0.0000000
0.0000000
0, (1000(100
0.0000000
f ,9?99994E-0?. O.«»00000
0.0000000
179
-------
2./A9897
*.yj
4.A*t9973
5.04998R
6. MOO 10
&.H09998
X-SEC «6
484/0.40
119.3000
0,0000000
0.2000122
0.299997B
0.5000000
0.7000122
1.099976
1.200012
2.099976
S.000000
X-SFC *5
522/2,00
llrt.5000
0.0000000
0.4000744
0.7999978
«.V000244
1,^00000
2.299988
2.79998B
3.SOOOOO
4.400024
5.4(>0024
S.SV9976
X-SEC *4
560^0.BO
11/.7100
0.0(100000
0.5999146
0.9000244
1.099915
1.4P0024
1.900024
2,f-(>0000
3.000000
3.299927
5.900024
X-SfC *3
59AA4.00
O.OOOOOOO
0.4000244
O.SOOOOOO
1,300049
2.SOOOOO
2.700012
3.1000*7
3.700017
3.9000^4
4.B00049
7.SQOOOO
x-si:r *2
36,63953
124,0497
137.7453
141.AH29
147.A313
184.7139
10
0.0000000
24.00QS2
48.00349
7S.00401
90.00900
10A.AH13
136.0235
164.B726
200.A182
13
0.0000000
42.51300
A4.A2A39
68,30921
B6.99976
106.2586
143.A404
183.0138
222.4197
66i ,,«;<:
10
0.0000000
46.84061
78.80458
10H.O/11
133.H1P9
13H.2743
19B.SA13
12
0.0000000
42.234J2
f)0.(HA49
10]./4J4
t19.A/61
131.0048
JA4.7A73
200.4146
21V.A007
232.02B6
9.99V9994F-0? 0.0000000
O.OOOOflOC
9.99V9994F-02 0.0000000
0,0000000
9.9999V94F-(>^ 0.0000000
0.0000000
7.499999AE-0;,' 0.0000000
0.0000000
180
-------
UA,1000
0»O0000
0,1000346
0,9000244
1.400034
1,500000
2.900024
4.2*9988
5.700012
It
0.0000000
3.SA2793
64.40385
7«.79/86
81,47137
104.8B13
127.6207
6,400024
9.700012
X-SKO 11
671AJ,59
115,4400
0,0000000
194.S790
222,7216
A37.27M
12
0«0000000
1.29998B
1.SC'0000
78.04H09
tOO,0535
tSS.7770
1.M99963
2.000000
2,099976
3.799988
6..WV963
ROUTf 762 BRIDGE
11^,3200
0,0000000
0.7000122
1.7999B8
2,400024
241,1891
,177.9794
281
654,6000
13
),0000000
47,05535
2,799988
3.1*00024
6.900024
7.000000
B, 000000
9.000000
25.40002
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
,71
.71
.75
,73
.78
,7B
,84
.84
,90
.95
43.6
6.4999VVBE-02 0,0000000
0,0000000
0,0000000
181
-------
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
o
0
0
0
p
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
o
ft
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CI
0
0
o
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t)
0
0
0
«)
0
o
0
0
0
0
0
0
0
r
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(*
0
0
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
o
0
0
(J
0
0
0
0
l>
0
!)
0
0
0
0
0
t)
0
0
0
0-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
/,
f»
h »
4,
4,
1 .
J .
1 ,
1 ,
I,
9
t
,
,
•
,
J, .
1 ,
1 «
1,
J ,
J.
t ,
i .
1.
1 .
1 .
1 .
1,
I ,
1 ,
1 .
J, ,
3 ,
>. .
i.
I,
1 ,
J ,
1 ,
J ,
t.
1.
,3
I>
5
4
2
1
P8
SB
55
35
36
36
35
35
38
2B
22
22
la
18
16
16
16
16
16
16
)6
16
15
15
13
13
JO
10
08
08
06
06
06
04
06
06
06
06
182
-------
•*•***« Ml tt******M****»«*M*MM***t**t*trt*Mtt*t***t***M
* siiTKiiN i:cmt»cmft;fii»N - cHftNNM. SKUWNT mmriNs HOOEI. t
* BATfi 30-DCt:-H1 «
i r irtf :«>/{»¥! je *
scinro RJLWR skium-Hi Hiiotx - ,>N« SKIKH H/KNT
CHfcNNFL Son HF1rtfH«FNT COEFFICIENT" 0.7MK»00
R!SM!,'1« UIU. UK PRINI't.D tVKKY 1 T I«*HTKP! 8>
21 1IMESTFPS ftRF PKJPPFH TJl AI.LIlW FLPHMODfL OMTflU TO
OUTPUr IS fcXPRKSSfcl) IS KNlil.tSH UNITS
NUHDt'K OF tRUSS KF.tTlOMS » ?O
NUflfiKtt m Wttt. INOKhNFNTS ' 82
TIME INCREHF.NT
SPECll-Ii: HRAVITY
FAl.l VELOCITY (FI/SKC!
BED HATERIAt. KIZK IJKill
X-SFC I FFRCFNTAbEK
x-sti: 'i PtRCfcNTfiGb-s
X-SFC 3 PERCEMTftPFR
X-HKi; t Pl.RCl'NTAOtH
X-SKC 5 PERCENTAGES
X-SF.I; * HKRt:F.wTrtnt;s
X-MC 7 pfc'RfFNTAGFS
X-SFj; H Pt.RClNTAUf.S
X-SF.f 9 PFR(.F.NTA(iFS
X-SKI: H> ptKuoiTfiitt.K
X-PFC 11 rFRr:FNTA(«r(i
X-Hti: 12 PrrHCt'MTftltfS
X-bKC 13 PFRCFNTAOF.S
X-SEC 11 PERCKNlfttlKS
X-bFP 15 PFRt;ENTAGFS
X-Sti; I A KtRCt.MTftliKS
X-HtT, 1? Pt.R»:EN! A(«FS
X-HKi: IS F/feKC*.NTrtMKS
X-SFC 1? Pf:Rt,F«TACI:S
X-SKC '£•» PtKCKNTMIKS
20,0000"
2.A50UO
1 . &P3AO
UWUIHIHS
0 , AOOOO
4. A0440
0»A(H)«0
O.HOOOO
(i . AOCMH1
0 , AOO44
0, FKKHH)
0, 601)00
0,60000
0. A0440
(S.BOOOO
O.A0400
O.BOOOO
O.U4004
0 , frOQOO
0 . A0444
0.600OO
0 , 64. 404
0,60000
O.AOOOO
15
'7.
1
0
O
0
0
(I
0
0
0
0
1)
0
0
0
0
0
4
0
0
0
0
,00000
, ASOOO
,3J?05
.JTiOOCI
, :>S400
,75000
, <"t>
,:'S(ioo
.i';>'*4rt
, ;M>'
,'.!H<)i)0
i 750 0(1
.7SO4I)
,20000
.2%f)t»0
,20000
,:'oooo
,35000
. i'.SOOl)
,?f(OOO
,;"5i)oo
, 7W)O(»
, ;>h40o
s.floooo
'.T.ASOOO
0,fiJ'/H3
o. 10000
4. 1001)0
0, JOOOO
o.ooooo
o. ioooo
4 . 1 OO40
0,00000
• - 10000
o , > * 100
o. loo.. '
o.odooo
O, 10044
o.odooo
o.ooooo
0.1OOQO
4.10000
o.ioooo
1), IOOOO
0,10000
0, 10040
1 ,30000
:».ASOOO
0,374dA
O.OAOOO
D. 010 04
o.o;«io(i
o.ooooo
Q.O.KHW
O.D^OOO
0.00000
0,O3Oi>0
o.ojooo
o.osnuo
ooooo
4, "'>!>»
0 , 0(H. .
O.OOOOO
OiCMOOQ
O.O.IOQO
OtO.iooo
o.i), woo
o.osooo
o.o;ti>oi)
0 , S00(»0
2 . AWOO
o,?o<>i<;<
0,0?000
0.07040
0.02000
4.40000
0,02000
0.0?OiJO
0,00000
O , O200B
o.o?ooo
0.42004
0,00000
4*03000
0 , 00(H»0
OOOOO
O.v *>«
0,420(/>,
0,02000
t>. 07000
o.ooooo
0,02000
(J.4ISOO
'^.ASOOO
(1. 1 41H8
o.ooooo
0,00000
0,00000
0.00040
0.00000
<», ooooo
(i.ooooo
0,00000
(i.ooood
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
•>, ooooo
(1 , u . ^A0
0,00000
<>.<>0
0.00000
0.00000
0.00000
0,00000
DEPTH WS HCTTFB PEftlHETFR I'AfU.F AT
X-SihC 1
RIVFRfllLE » 129,SO
YTBL
(FT>
0.00
(FT >
0,00
37,55
CREENtAUN AVE BR1DG
-------
3,01
3.09
70.IB
107.4?
11 :*. I 6
4.V*
i.OV
B.6K
10.**
17.*4
30,A4
1 vil, 02
1M.31
t «. 11
207.65
24-/.4S
7H.1.03
341,73
0.00
4.0(1
s.oo
OO
10.00
<»,00
3?J , 1O
SHI. 13
4<«.a,3i
4BA.45
493.6?
ISTNTHFTIC X-SFC *1
V8 UKTO.M PKklH^TKR tftW.K ft!
x-sfcc: 3
HTNTHKTIC X-SKC »2
VTB1,
PfBI
.CHI
.00
.00
8.0(1
10,00
0,00
:m .10
301 .13
4AH.34
48A.43
iy»,67
DEPTH US WFTTFP PFRlHETfR TAB!F AT FRANK ROAB
X-SEC 4
= 177.77
0,00
28,90
;«'.!. 38
70,99
7/.5S
103,32
1 /H.33
194,89
185
-------
J. H
A,??
e.oi
28H.04
330.24
-HV.03
BEfTM US UFI»rt> PFRIHETER TABLF AT
X-St.t: 5
RIVf-.ftHILF • 124.70
KAK HIIAM PKIDGE
YTtL
O.OO
2.80
3.30
6.3M
6,*0
9 i 411
12.40
12.60
1?.H»
14, HO
1B.30
19. HO
HTBL
O.10
43,24
H/.55
ISA, IS
15f .41
IH4.67
753,44
257,4?
,'SH,?0
267.21
2Bf ,41
DEPTH VS WrTTEB rERIflFTJR TAHI..F AT
x-stt: a
KIVI-'RHJIF « 1?S.60
hYNTHF.Ut
*3
fTBL
(FT)
0.00
1.00
1.70
2.VO
3. •«
3.70
3.80
3.VO
4 , <»<»
4.30
4,40
4.70
4. VI)
PTBL
0.32
DEPTH WS HFTTFP pfRTHFTFR TftBl F AT
x-s»-;i: 7
x-SF,r e 1-270
tTBL
0,00
1,00
1.70
2.70
3.20
3.30
3.70
3, MO
(FTi
u.eo
31 ,B3
1H.36
73.34
H4.50
147,75
i?2,n
•••t 1.02
186
-------
4,10
4.40
4.70
332,32
,1HO,32
DEPTH WS HFTTtn FFKIMEfER TABlf AT
X~Ht:<: B
* 1?3.41
X-Kkf til
tTBL
i FT)
0,00
0.30
PTBL
(FT)
<>»00
32, 61
0.90
1.00
1.4O
l./(V
2.10
3.10
3.20
3. Ml
6.10
74.02
80.42
IOV',01
1J3.ZI
144,80
t*»,ao
Iff, 20
732,^9
VA0.94
DEPTH MS UETTfD PKRINFTER TftBl E AT
X-SFt: 9
RIMf-'BHIlf = 122.79
X-SKC 110
YTBL
0.00
0.30
1.00
1 , JKI
1.10
1.90
2,70
4. SO
PT6L
0.00
2A.67
AO.OO
US.04
1^.36
•43.32
220.3S
DE?rH MS UFTTEP
TAWLE BT
X-HEI: to
= 17! .HO
X-SEC t?
YTBL
(FI)
0.00
0.?(»
O.JO
i.0,40
0.50
i.oo
2.10
2. SO
4,40
7,1<>
-------
BEPTM VS tlfffFIl PFRIHFTER TftPI F ftl X-BfC IB
X-Si:t: 11
HlWFRfULC - 1?0,K3
»TBL
CFT>
0.00
o.?t»
0.30
0.81)
1.00
1.10
J , VU
1,40
1.90
2,, ?0
3.10
PT6L
(FT)
o.Oo
28,!*
35, 90
10'", 15
12*. 39
144, 5A
1/7.87
193. 4A
209.12
as*. 14
255.70
DEPTH VS HFTTFli PFRIHETFR TftM I? «1 X-f
0,00
0.50
1.10
1,90
2.70
1.10
4.40
6.90
9,30
10.10
t>TBL
(FT>
o.oo
29.11
4i.43
/4.4S
82.53
117.94
133. S3
140.71
19&.OS
321,13
DEPTH VS MFTTKD PFRJHFTFR TftSI.F flT SHAPFVll l.K PKlBBE
x-sti: 13
KIVFRHILE » 120,00
YTIL PTBL
(FT) 20.46
2.77 36.84
4.27 124.04
4.5,1 13?, 75
4.AA 141,68
5.OK 147,63
4,76 184,27
«.Ht IH4.71
DEP1H WS yETTED PtRIMFII-R IflBLl Al X-SFC
x-8*;r. 14
^IWFRMILE * 119,30
TTBL KTiL
0,00 O.OO
0,10 24.00
188
-------
IU t ^|j <||f ^y^j
0,30 ?,».0/Q
e.J.» fO.Ol
'J,?0 tO&.AB
i , 1O t4*>,02
I.JO 142.03
2,10 144.8?
3,00 ?OO>*2
DCPTH WS WF.TTF.O PFR1HF1FR TAIU F AT X-SFC *5
X-SKt: 15
RIUkRHIlE » I 18,SO
TT8L PTSL
O.OO tKOO
0,to t?«13
0.40 42.51
0,80 44,43
O.«» 68,31
1.50 a/,oo
2,,<0 104.26
2.80 124,47
3.bO 14-J.64
4,40 1*7.18
3,40 183.01
3,As) -WO,57
7,M 227.42
DEVTM MS MITTEB PFRTHFUR I AW f. AI X-BfC §4
X-Sfn IS
RIUFRHJIF » 117,71
YTBL CT»L
fFTJ 30,02
0.90 4*.84
I.10 61,24
1,40 7H.BO
l.V<» 108.07
2,so iti.aa
3,00 158,2?
3.3O 144.03
S.VO IfM.SA
DEPTH WS WFTTFP PFUIHFTFK TAWE AT X-SFC
X-SfeC 1?
TfTBL KTBL
-------
3,70 200.4}
3.90 i»t,',40
d.BO 232.03
7. SO -JM.33
BEFTH US UFTTFD PfRIIWTEft f«BLF *f X-fit-C t2
x-sti: ia
116,10
YTBL CTRL
0,00 «tOO
0,10 3.36
0,9«> 41,40
1,*Q /H.80
1 . 5(1 81.^7
2.VO 103,88
4. JO rt7>62
5.70 151,34
6,20 1A6.97
4.10 1*4,38
f,7<» 227,22
DEPTH WS UFTTCD PFRIMFlFR TABLE AT X-BFE tl
X-SfcC 19
115,3A
¥TW_
l.SO
1 .70
1,90
2.00
2.10
3.*0
3. BO
4, 40
fTBL
(FT)
0. 00
49.11
75.05
too. os
155,78
1*1. 4V
717.21
2.-O.OB
1J , 19
»/7.98
2B1 .65
-WO.S7
BEFTH MS HETTEB FFRIMCTfR TAftl-F. ftT Klltlfk X6? URIOGE
x-sti; 20
RIWFRHIIC = 115.32
TTPL
tFT) (FT)
0.00 0.00
0.70 27,8?
1.80 I/. 06
2.40 52.88
2.BP 78. B6
3.VO 10". 74
4 , M 1 24 . 1 9
A..Vt 16B.31
6.9O IH4.B*
7,O« 1B7.88
8.00 237,84
7.00 2?..*. 62
23,40 «4,?«
190
-------
x-str.
x HIST
n F
1
• 2
3 6174.POO
5 J3303.600
6 lHbM.799
7 ','4179.600
9 .U B» I , 199
10 SA?i*o,:t98
11 411H4.000
13 4S144.000
14 1H1/O.J98
15 52272.000
17 596*4,000
IB A.JA76.797
19 #7161.586
20 A7.«7^,797
6P4.7R
AH;t,66
67?.70
A7/.90
475,90
ft/1 ,A7
672.19
6AH.17
AAV.29
A6S.50
661.33
657.98
AM. 79
6S7.7P
AS*.60
RESISTANCE
EQUATION.
x-str.
X-SM:
X-SFC
x-s.ui:
X-SFC
X-KKC
X-SFC
X-SFC
X-SFT
X-SKC
X-6FC
X-SKC
X-SFC
X-SKI:
X-SFC
X-SKI;
X-SFC
x-sti:
X-SFC
x-st.i:
i
^
3
1
5
A
7
H
9
10
11
1',!
13
14
15
1 4
17
>H
19
?0
TP Fl.OU IH
HAHNimiS N
MANNINGS
MftNNJNI.S
ttANNINIJS
MAHHINIiS
MANNINGS
HANFUNliS
HANNINI.S
rtANNHNOS
MAHttlNliS
HANHINltS
HANtJlNliK
MANNINGS
MANNIN1 MANNINGS
is E:
N =
N •-
tl z
N -
N »
N --
N =
N =
N »
M '
N «
N '
N =
N -
N =
N =
H *
N -'
N =
N ~
00
0.075
O.D6h
0.065
0 ,06%
1 AS A
PI US
PLUS
PLUS
PI, US
PLUS
PLUS
PLUS
PLUS
PLUS
PI US
PLUS
PI US
PI US
PLUS
PIUS
PLUS
PI US
PLUS
PI MS
PLUS
UUrtllKATli: FIINC.TIIIN
0.00(1
0.000
0.000
o.ooo
0,000
0,000
o.ooo
(1.000
0,000
0,000
0,000
o.ooo
0.0(10
o.ooo
0,000
0 ,1)00
o.ooo
o.ooo
o.Odo
O.ODO
TIMtS
Tints
TTMFS
TTMtS
TIMKS
TIMfcS
TIMKS
TIMKS
TIMtS
TlHhS
TIMKS
Tints
TIMh-S
TIMKS
T.IMES
TIMtS
TJHhS
T IMKS
llMh'S
TIMKS
lihPTM
Bf.PTM
IJUPfH
MF.PIH
DEPTH
OKPTH
liKPTH
nt:prH
DKP1H
CIF.PTH
DFPTH
DVPIH
DKPIH
riF.PiH
DFPTH
ntPTH
Pt-.PVH
TIKPTH
DFPTH
DKPIH
(IF OFCfTH
PI. UK
PHIS
PI US
PLUS
PLUS
PLUS
PLUS
PI US
PLUS
PLUS
PI US
PLUS
PLUS
PLUS
PI us
PLUS
PI US
PLUS
PIUS
PLUS
o.ooo
0.000
0,000
o.ooo
0,000
0,01)0
0,000
0,000
0,000
o.ooo
o.ooo
o.ooo
o.ooo
0.000
O.O(H)
o.ooo
0,00(1
0 , 000
0 . 00!)
0.000
T1MFS
TIMES
TIMES
TIMFS
TIMES
TIHFS
TIMES
T I Mt-'.S
TIMKS
TIMKS
VJMES
TIMF.S:
TIMKS
TIMES
TIMKS
TIM1-S
1 1 nt h
TIMF.S
TIMKS
TIMKS
PFPTH
DF.PTH
PKPTH
nEPTH
Pf.PTH
OF.PTH
PKPTH
OtP IH
PhPTH
IISPTH
PKPTH
DEPTH
DtPTH
DEPTH
DEPTH
DEPTH
DtPTH
DEPTH
DKPTH
DEPTH
SdUA^tD
SQUARED
RIIIIARFD
SQUARED
SlUIAKtD
SQUARED
SmiAKf D
SQUARED
SOUARED
SQUARED
SnilAKF. D
SDUARF.D
SQUARFD
SQUARED
SQUARFD
SQUARED
SQUARE B
SQUARED
SQUARED
SQUARED
UNSTEADY Fi Ciy
UNSTEADY UPSTRFAM StPIHfcNT INKI OU
UNSrHAUY l.AO.Rfll. StfUMt.NT INH.OU
UPSTRFAM SEIUHfNT RATING CLIftVf CUTOFF PT =
0.00
191
-------
O N K
COO
> * c
« c e
- 3 O
o u -
c
O l»l »
o a —
O • 5
o c c
O « O
0*0
* ~ o
o o o o o o o o o o o o o o o c* o o o
o o o o o o o o o o o o o o e» o a> o o
o © o -Ss o o o 00*000 o o o o c o o
ooooocooooocooocooo
O d ® 0 Q C G OOCSOOOOOOODO
Oj^OOO'SOCOCOiC'O C-OOOOO
OsO^OOQCOC-CioC' 3 O C O C O
oc.ooec.coacacQ oooooo
OctCoOCOC-OQ-COQ C Q C O C C
OQOQOQOCOC o c o^c SQCO
CrQOoQoceo&eco coc-oco
OOO-OOGCed C © C O G O Q O O O
OQ.OOOOOO© cos is o o o o s o
O M 1^
COO
rv . e
•CCA
• JB C
.
o ~
c •
o 5
> o > et
x <«r -i IT.-
3i-w^K>^eitr:5C-cco^ocrc-cc;c
&£ O ^ %.
a ^ *
^ /: «r r^ v a. ^t ^ «•",«-« GOt?OC OCJOS1
< «c *"; i", r» —i o QOO e? o c? o c- o c-oo
GQCC eocoso c-oooc?c c-o-c
.*v CD C Ki r, J
OQ"""0 C-
• -^ »*? o i.™ -o > — c-
~
c •- * *
•"* «ft "X O
- iv U I
A IX
JC r- « •
<-< tA £ G
— 4. u.; X
^ to
192
-------
K * o
* c c
* » c
0000000000000000 o o o
oooooooeoooooooo ooo
*>" o
o *s
01^0
O C' *
o
O a «
O • O
-
QOOOQQQ £. Q C O^5-pOO^ COO
OoOOOOOCOOOCCCOCQOO
coooooocoo c-ccooscoo
c * o
o r o
* 2r o
o u -
c-coco 5,000
ooo o oc oco
e is *;
o £s c-
o - *-t
O at o
O *«: •
©COOOO3OOOGOOOOOGOO
OOQOOoOOOGOOdOOQOOO
O CCCCOO
CCCOCOC
C C C GCOQCO^OCOOOCOOOOOO
o **- «r
o o •<§
O 3C C
- ss c
e ^ *
cccocccoo
occ occ
CCS
O *-J "
occcec e^c
CCS'C-^GCCC
000-0 o c ceo
C -sec-
" -
.
s-cco-s-sc oco s- o &os
OQ^CCC s?^j?c — .*-.? i* /: > .-* ?x r- ^ © <* M ^* --« c
oi-.*^'sr**:B'>^ ^r:-iO'2ocos-
IT. «• Pi »", — C C CO2-Q3-OCOC1
i V T *"N. •— N .*t f, r- — C O
K, r»««— ccccocoo
'OCO CCCCCOC'Q'C
O Z j. V ...
O li 3» ** O O ^ «
, K i,.
O "-
.
-C Lu
1
*• if.
t
at
193
-------
o n rv
c e c
*e> jc c
* s- o
oooooooooooooooo o o o
OOOOOQOOO0 OCOOOOCfcOO
QOCOOQQOOOQOCCOC-OOO
O Nt K
O a o
OC5C3C-C. CO©
«S# "N >,
C St A
c. * «r
O £ C
» ™ o
o u -
-c-cs ooococ
^o coo
'OC-CffiC-C'C-C-S-CSS-SCtJC'C'GO
C >. r j
o * «c
o * **.
O 3C •<
o i3 "
cccg-c&osco^&cec coc-c
-coc^o cooc cccccccco
COOCC-O — CC'S C--CSOCCCCC?
"Sc^OCfCSC'S'CC-CCJZ'oScC
OoCrO— OCC^C — OS — C. Cr O CC-22
-
C'OC'OCOC'OC?
O V S
Q y, tj
<£ o •£ oc-o c-o™
r. -**•** ^ «* o s < *s x ffi ^ ^- f. -d -c f*. —
tt 3C CD z < **. F; ?n ?;r»-'^ ocococ
— t;
u
3 X tfc
(X C
<« u.
— V,
«r o- c- >*; r, «• o K *?
""
t 80 < **•* > o r*
** o r-* 4.1 *" CO O Hi t* 5D *• «> — CD «-• O
** fci > sa C1 — r. co f* ***j t'1 e* ^ K x ac
i-* as •£ o
H- 4, U' Z
194
-------
O M fs.
Ofi C
•SO
O U -
O
O C. »-
O * O
© 3C O
* ^ O
O t: *
0QOOOOCS OOOOOOOOOOOO
•o- © © o oeo cooooooooooo
ooooeeacooecoeoceeo
-
© O O C O Si C CDAOCOC-OOOOO
c © © © © o cs coo c cocoooco
O 1-4 ^
c - c
o c c
oooooooooo Q s o c © coco
OOOoOOOOOOCOOwOCOC-O
O CGOOOO OOOOCQCOC-QCO
oocoooo oooooeeococo
C £S n
o • o
oco
- ~ ©
o u* •
-
oooooooooo ooo coeooO
ooooooooooooo qto^oeo
OOOOOOOOOOOOOCOC.OOO
ooocoo-oocoooo ooc ooo
C K; 0-
CS3 tf
o * c
c a: c
* ™ C
O l»T »
O »si **»
© 2E, C
o - «•»
G 3t O
• re
c u *
c ~ "r
G. = *
o x e
C ™ «
c
c •« n.
» z ."s;
-S- * «•
Si C C
ocooooo cooooooooooo
ccococo COOOOOOOCCGO
c ococoocoooocoo cooo
OCOCOOO QQCOOOOOQCOQ
OCCOCOCGOCOOCQOOCOO
cci-oc-oco co s ooooooooo
cscc-osoceoeocoCocsoc
QOCCOCCiO^CC-CCCJcsOOC
ooooocoooo ccooooooo
OC-CCOOC
ore
-re
o u -
c
O frC I*V
» c- e
o - *«
o c o
* s c
ococ.o©oooooooooocpo
O COC.OCQOOQOOQQOOQOO
OOOOOOOOOOOOCOOOOOO
OOCO C
oocoocooccococooooo
CQ^COO — OCOOCOCOCOOC
ec'ioccoccccecsscooee
c-csrco^^-c^eoccooocoo
c-sc— ^CSCCC-OCCOCQCOC
C- — r*
© - 3"
O 4C *
• C^ O
o i; -
o at -c
• s? o
o - •
cooo cc-Gccoccccc-eooo
cococcoccc cc-cocccoc
O ->w -H
O » M
o * >
o £ -r
• ~ c
O V *
c
o ** r j
O A -0
-
c-oc-o oocoo o
' SO C;O™O ^C- 2 o O
*€ fc* *^ * -4S in /: i*. *
"s •% "v «r —. CD <- o *-•- rt x ec ^ r-i r* —• j~ -^ <•
U) -
iT U
Z U-
C G O C O J
IT* *1 It", /: C -« **? ."*- *N O f- —• C2 * T *•*
fflXCC.XEi.-cr"-. < o. r»
-------
O M fv
o o o
O
O
O r*J o--
•o a -«
O » C
©to
» ^ c
o u *
o o © o e e Q oooooooooooo
OO0OOG 0QOOOOOOOOQQ©
o c o c o c o coo ocooooooo
ooooooo ecc oc-c o a © o c o
CO® © 0 OOOOOC-O
coooosoooc Ococococ©
o Q *D o a © © ^ o c- © cooosoco
O © O O G © Q OO£ OS.QCOOOC©
o INI rv
o& o
rt , O
F*- C O
* C5 O
*0
O
OOOOOOOOOOOOOQOOOOO
ooocooocoooc o o o o ooo
OOOCOCOSOOOOQOOCOOO
OOOCOCOOOCOC OOOC-ODO
OOOCOOOOOOOS- OOC2O OOC
OOOOOO'OOOC-Oio C.OCOC-O
OOOOOOOOQCOCOQ.OOOOO
O mr>
O St rt
O • c
O X C
* IT c
c
O N O-
C- O f.
O K K
O 65 C
C> * -<
o x: o
ooooooo oooooos^oooc o
OOOOOQO ococoo^oc-ooo
ocooooo o^oooococ oc-o
COOOOOO oOQiOOOOO C CCO
OGOOOOOOOO oo^oooooo
ooocooo coo oooooooo o
O-SOOCOO OOOOOOOCOOCO
C-SOC-OOO OOC OOOC5OOOO O
coooooc ooo oocooo^o©
oococco c-ococooooco©
oocooco ccsc ocooooooo
C rsi r%
& £* M
© • 5
O X O
* ±7 C
o c *
o
O fs4 Q"
o a irt
0*0
o ac o
* 5" O
Q IN' fi
O £* C
o - ^
o ac o
oo©o^o©o^c>ocoe oo o^o
0000000000000000050
OOdQQOO'GOOOcOC-OO OCO
o o OQOOO
OOO^.O^OCOOC'OOoOO C-OC
OC-OCOC-© OOOOoOOOO OOO
ccocooo ooooooooo ooo
ocooooooooooooocooo
OOOOOC-OCCC-OOCOOOOOO
coocoooocoocoooeooo
o c c
- J£ C
c u -
o c *
o .,»
cococcccc
c-occooco-oococooo
,
so CC-OOOCQC ocao
o a M
C- * «(P
c c c
C- ?si »^
£ ~ >
s c ^? o ^
ON.*.
c e r.
«
occ occoccoco
O >i —
oar;
SO coo
O >;
O E
© * i
o " u^
o ac <
wi ac
o ^ r
3 ^ y>
o sr s.
e 25 ^ x
o u. s H
• 5C U.
o »-
u* »i > r*. 3; ** *•» r* v IB > f% -^ b-/ o •*• •<
O w •, cp. •«• fv ^, CN ^- m -c bi x S5 j" ^ *"
-^oco c ooo fi-oooc-oc-oo
o *-*
02 a
U. <£
C *- - "
*• m-so
196
-------
T!Hf» 2100,00 HIM OR 35,00 MRS
UPSTREAM SFPIFIfHT INFl OU (LBR/SFC) t
SClt. 0 MM,, US »;IIH,M CtUIC
MO. CFS FT/PFt". I/RET Ft «li/l
0.0000 0,0000 0,00(10 0.0000 O.OOOO 0.0000 0.0000 0»00(Mi 0.0000 0,7500
i:im.ii7 rtm.ti?. I:UH,B/ cim.nz mn.i)7 cim.nz CUH.DZ r.un.pz eim.iii CUM.DZ
0.4AT162 0.049JI O.OlVOa 0.004M/ O.OOIA4 0,00)03 O.OOOSf 0.00037 0,00019 0,00007
**
4
A
7
1 A
1 v
1 1
12
1 3
1 4
1 5
1 6
1?
1 8
I 9
20
t f* H
3/4
170
,1A?I
3*2
4 At*
',*f J
' '
•«*B
*, .
373
540
•!39
5SV
' 93
, 3H
, 28
»;'A
,07
. /A
.40
* '
*ll
"*S 1
. 77
,34
. Hv1
.27
O , /A
0, 8R
t .Oft
0,97
0.70
0 , H I
0,91
0 ,88
0 , A 9
0,52
4, HI
0 .65
4 .M
0,45
4 . 5 7
0 , 7'^J*
0, 715
O, 7 JO
0,706
4.702
O.A9B
f) . A^ti
0.69?
tj , ^,¥0
0 * 689
ij. AHH
0 ,AB7
t!, AHA
O.AB5
O.AB1
O.A73
4 , ASV
0.A3A
0 . 004
0,000
4.404
0,000
0,000
(i , ooo
Q.OO4
O.OOO
0 , 000
() , 000
0,000
o.ooo
O.O44
o.ooo
4.O04
0,000
i), 000
0.000
0,400
30, /O
3
0
o
0
w
0
1)
,0000
,0000
.0400
,0000
,4004
,0000
,4004
,QQ(H>
,0001)
,0000
,0004
,OOOO
.OO04
,0(100
.0000
. (I'.Kl'l
.DO ISO
, OOC>0
, 0001)
o.oooo
o.oooo
o.oono
o.oooo
o ,0000
0.0000
o.oooo
0 , OOOO
0,0000
0,00(10
0,0001}
O.OOOO
0,0000
o , oooo
o.oooo
0,0000
O,OOO4
0,0000
0,0000
t) , oooo
0,0000
0.0440
o.oooo
i), oooo
0 , OOOO
0.0000
0,000(1
o.oooo
o.oooo
0.0044
o.oooo
o.oooi)
O.OOOQ
O , 4404
0,0000
O.ODOO
o.oooo
0,4000
o , oooo
0,0000
0,0000
0 , OOOO
i). OD DO
o.odoo
4.OQOO
o.oooo
o.oono
0,0000
0 , OOOO
0,0000
4,0040
0,0000
0,0000
o.oooo
4,04114
0,0000
0,0000
0,01)00
0.0000
0 . OOOO
0,0000
0,0000
0,0000
0,0000
0,0000
O.onoo
0,0000
0»l)OOO
0,0000
0 , OftOO
0.0000
0 , (WOO
0,0000
O.OOOQ
O.OOOD
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0.0000
0.0000
0,0000
o.onoo
ft. OOOO
o.oooo
0,0000
n.oooo
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0.0000
0.0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0.0000
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
o.oooo
0.0000
0,0000
0,0000
O.OOOO
0,0000
o.oooo
0.0000
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.o OOP
o.oooo
(i,oo(i(i
o.oooo
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
0,0000
o.oooo
o.oooo
0.0000
0.0000
0.0000
o ,0000
0,0000
o.oooo
c.oooo
o.oooo
0,0000
0.0000
0.0000
0.0000
O.O'iOO
0.0000
0,0000
0,0000
0,0000
0.0000
(t.oooe
0,0000
0,0000
0,0000
O.QOOO
0,0000
0.0000
0.0000
0.0000
0 . OOOO
SO
Tine* 2040.00 niN OR 34.00 MRS
UPSTRFAH BrrUHENT IHFI.OU (LBS/SI-C)
SEO, o via. us t:itH.D7.
MO. CFS FT/SEC I/SFC FT
2
3
4
s
A
3
^
10
11
12
13
14
IS
1A
17
IB
19
20
•tft»
,<*8
34V
365
,*A2
3*1
:tA3
'4 A 4
.*A:>
3*7
H/4
370
376
.«7fl
557
SS7
S57
SS4
,77
,19
,13
!04
, IS
.44
.30
,58
,4A
,36
,08
,25
,'.'/
,64
,1 1
,23
.hi
0.
0,
1 ,
0.
0,
0,
0,
<),
0,
0,
0,
o.
0,
1),
0.
I),
0.
0,
75
87
«>s
34
f 7
47
71
'A I
?1
:t;i
88
A¥
52
HI
AS
til
44
SA
1)
0
4
0
0
0
I)
0
4
0
I)
o
0
u
o
0
I)
.70S
.70S
.741
,A?B
.AV-)
.692
. AVI)
,6BB
,AH7
.687
, AH6
• *J*5
. A«3
,A7«
, AAA
A4H
, fit '.\
.571
,Si»D
0
0
0
0
0
0
4
0
4
0
0
0
l>
>
0,
0000
oooo
oooo
oooo
oooo
oooo
0000
oooo
1)1)1)11
oooo
ooo1)
oooo
oooo
00(10
00i)ti
0(KIO
oooo
0(i(>0
oooo
0,0000
I:IIH.DZ
f).
0.
4.
0,
0.
0,
1),
0.
0,
0,
0.
0.
0.
0,
0,
0,
0,
0,
0,
oooo
oooo
OdOO
oooo
oooo
OOOO
oooo
oooo
oooo
0000
oooo
OOdO
oooo
00(10
oooo
000(1
oooo
oooo
oooo
O.OOOQ
I11H1.UX.
O.OJV03
0,0000
0.0000
o.oooo
0 , OOOO
f> , oooo
o.oono
0.0004
0 , «OOO
4.0000
0,flO
-------
© M IV
© o e
K» • C
*« f o
« a c
o u •
c
O *M &•
o c- **
0-0
o c o
* ™ o
e. N r.
© G **
o » e
o © o © © o o ooo oooooooo o
ooocooococooooooooo
<3SQS©C-OJ2OC©©©©OO©©^>cC'S©CO©©
o^o ^^^"^^^ *,.»-,*.».,.*
ou° ©oO©
3 e tv
o * v
sec-
CQCO OOOOCOOOO
-^COo^OOOCOOCffl
-O — CCCCCOCOOC
ce-occccsc-c ?eoe=o = oc
CCCOOOG3CCCCCCOOCCO
0 E ~
© E "
COOSCCCi-^i— 'COcCOCOC
CC™OWO-CCCOGCOCOCCC-
5oOC^'C»^C-C'O^C^4>CO^OO
O N. —
o = r,
o * >
o c o-
• S c
eccoeocooocccccccoo
O V —
o s- c
- = o
O ii -
c » »-.
O C -c
, — o
>S=-CC — CiCOCO!>-9->»->».aD
;*. r. •**» **; n r*. -^ "•. ^ in >n ri ^« r^ r« -« ~ ^ ^i
Ul X
o ^ ~
& ta a
yi «
JC t!
X i4»
c © c c- -— c eoc*o ccdoc©-c©s
3 "Jt «
O S V
e 4 r; a « x, •< a- •£ i*. < «-, * » n
iO£i>>i>->uxoizx-><>;
a v: us
K o as -^
— -
C X a> *•»
O u. > •-
CO — OC-
e? •« CD .^ ia x,
»- _; s,
O X 'j: •*.
© u* > *"
• C It
o ^«
rj B) if,
o u.
c u
«c
» w
u ec
i "- - -
x U> S O
5 o- "50-emce-a ,
n -c D. — « ,TI
t'C-c-c'vo-c
: K. rt n K if. rt
198
-------
O
O
e> =. •*
O ' O
OHO
OOOOOO OOOOCSQOQOOQOO
oooooo ocooooooooooo
o o o c a o o eooocooocooo
oooooo c oooooooooooo
ooooooooooococo GOOO
* . o
03 I O
•30
o u •
o
O r*i fr
O w ••
O - o
ceo
-so
C u% «
ooooooooooooooooooo
ocooooooocooo oo oooo
ooooooooo
OCQC OCOOO
-OCC3 COCOCO
ooo co-*oso
oco cooooo
e ZL o
"1C
ft u •
* 2 C
o c.- •
o
C>=s O
O • —
O X o
• — O
oc -
o
OK : »
CO *
c c c
• 3 &
e i; •
•30
C U "
QOOOOOOOOOOoOCOCOC©
OOOOOOOoOOOOOCOOQSO
ooooooooooooos-oeoso
ooooocooooooocooooo
ocooocooooocooooooo
OOOGOOOCOOCOOOOOOOO
0000000^00000000000
OOO^OOOC-GiC-OOOOOOOO©
OC-OOOOOCOOOOCOOOOOO
ooooooococooooooooo
OOOOOOOCOCOG-OOOOOoO
OOOOOOO COCOOCC-OOOOO
oocooocoooc-oeooo — co
ccoeooooooooooocoSo
OGOOC c- OC OC-CCOOO oOOQOO
occcctcooccc-c-c o cccoe
COOC-OOO1'I'OC-OO0C' OOCoO
C N •*:
C C- Cr
o i-. —
oar*
O • 6-
O E T
- 3 O
O — -
O
o s rj
O • O-
o x: %~
0 5 i
O LJ «
CCCO-OOOCOCOCCCCC'C©
^n —, x i*v r« is r* 65 O rt *-* *r o fci "^
% OG ••; -"• r* r-a •-. &- x 1(1 f*: ^ <• 1*1 r*:
o •%, s
O tt> V
3 "Ji Wl
& o sx
c _ *
o «
CD ffi
ft u.
199
-------
TinC" 2400.00 H1N OR 40,00 HR1
UPSTREftN SEOIMfNT INFLOW (LBR/SFC) !
sea. o VF.I.. us iHin.ny now;.
HO, CFS FT/FFC l/SCf, FI Wi/l
0,0000 0,0000 0.0000 O.POOO 0.0000 O.OOOO 0.0000 O.»00« O.OJOO 0.8400
cwt.ir/ r.im.ti7 r.tm.M i:im.»7 r.un.n? run.ox eim.ftz CIIN.DZ run.fiz CUN.BZ
0,O*S«2 0,04*21 O.01VOS 0.00177 0,0
,sa
, i:t
,89
. .**
,79
,11'
,43
.8*
.B5
, ','.*)
. 6?
«v%
,45
.71}
,71
.BA
.Ot
,0*
0.«:>
0.94
1 .0V
0.3&
o , ;< t
0,99
0.4H
0,71
0 . ,1 1
0,91
0.13
0.87
I), AS
0,52
0,7V
0.67
i) . a;'
O.4*
U.SH
*)
0
1)
0
0
0
0
0
o
0
0
0
0
0
o
0
0
0
0
.770
,770
,7M
,755
»71H
,743
»73H
,733
,7.1V
.7?4
. 7'.!0
,7ir.
,711
,707
. 703
,700
• A?*1
.495
,A¥3
0,000
0,000
0 , OOO
0.000
o.oofl
o.ooo
0 , OOO
0,000
0.000
0,000
0,000
o.ooo
O.OOO
0,000
(> , ooo
o.ooo
0,0<10
0.000
0 . OOT
;'H
:»v
;>y
2V
,tO
3O
.It
31
,U
at
.11
31
,U
30
,4 1)
19
19
19
19
.V4
. 19
.OA
.5?
.01
.42
,<>B
,ai
. ;» ;»
,37
.3.'
.17
.Oh
.63
.AS
.45
, 40
, 33
..10
O.OOtJO
0.0000
0.0000
0.0000
0,0000
0.0000
Q.U'iOO
o.oooo
O.OOlM)
o.oooo
o.onon
Q.OOOO
O.OODO
0,0000
o.oooo
<» . OPOO
n . <»<>
0,O000
oooo
oooo
OOPO
OOOO
oooo
oooo
oooo
oooo
oooo
POOO
oooo
oooo
oooo
o«>oo
0
0
0
0
0
0
0
o
0
0
o
0
0
0
0
0
<>
0
o
.oooo
,0000
,0000
,0(K«i
,00«>i>
, ()OO(l
.0000
,0«iOO
. oooo
.0000
.0000
,0000
,0000
,0000
,0000
,0000
,00i>0
.0000
,0000
o.oooo
o.oooo
o . oooo
o.oooo
o.oooo
0,0000
o.oooo
0*0000
o.oooo
0,0000
0,00«>0
0.0000
o.oooo
o.oooo
o . own
0,0000
o.oooo
o.oooo
n.oooo
0.
0.
0,
0,
0.
0,
0,
0,
0,
0.
1),
0.
o,
(1,
0,
0.
0.
0.
0.
oooo
oooo
oooo
oooo
oooo
0000
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oono
oooo
oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
o.oooo
a. oooo
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
0,0000
g.oooo
0.0000
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
.0000
,0000
,0000
,0000
.0000
,0000
,0000
,OOO(t
,0000
0.
0,
0,
0,
0.
0,
0,
0.
0,
0.
0,
0,
0,
0.
0,
0.
0,
n.
0,
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
OOOO
oooo
oooo
oooo
oooo
oooo
ocioo
oooo
o.oooo
0.0000
0.0000
0.0000
o.oooo
O.OOOO
0.0000
o.oooo
0.0000
0.0000
0,0000
o.oooo
o.oooo
d.oooo
0,0000
0,0000
0,0000
0 , OOOO
0.0000
o
o
11,00 HRS
TIHI
IPSTI
itfi.
NO.
3
4
5
6
7
9
9
11
12
13
1 4
15
14
17
18
19
JO
F* 24ov,uv run I*K ii,uu nws
SEftH SEDIMENT INFLOW tLBS/SfC)
0 WM . l»« (UIH.1'7
cts FT/'PFC t/sec Ft
443,55
4S9.AA
425,36
398*. 07
3H7.74
J79.74
374,31
371. H9
371 ,01
348,82
SftH.VU
585.99
SHI. IV
584, 4B
0,95
). , 1 0
0.37
0,99
0,1V
0.72
0,92
olee
0,52
0,79
0,67
0.46
0.59
0.800
0,785
0.77B
0.770
0.7 A3
0,735
0.749
0,743
0,733
0.72V
0 . 71*0
0.715
0,711
0,707
0,704
0,700
0.4VH
OtOOO
0.000
0 . OOO
0,000
o . ooo
o.ooo
0 , 000
o.ooo
0 » 00$
0.000
0,000
0.000
0 . OOO
o.ooo
o.ooo
0,000
0 , 1)00
0.000
o.ooo
1 LINI .
','H
2V
30
31
4 1
.1 1
31
,11
31
,11
31
19
\V
19
,4H
.01
.41
.13
1 A
* I ft
.38
, V»
,28
.OS
,34
..to
.20
0,0000 O.OOOO 0,0000
cun.u/ r,»n.B/ ntiH.t;?.
O.OAKA? 0.04931 0.01VM i
0,0000
o.oooo
r ,0000
o.oooo
0,0000
0,0000
O.OQOO
0,0000
O.OOOO
o.oooo
o.oooo
0,0(1 (Mi
0.00114
(i,OU(iO
o.oow>
o.onoo
0,0000
0,0000
O.OOOO
o.oooo
o.oooo
0.0000
0,0000
O.OOOO
o . oooo
0.0(10(1
o.oooo
(i . oodd
o . oooo
o.oooo
o.oooo
0,0000
o.oooo
0.0000
o.ooon
0 « OOOO
0.0000
0,000(1
a.oooo
o.odtHi
0 , OOOO
o.oooo
o.ouoo
o.oooo
O.OOPO
o , oooo
o.oooo
0,0000
o.oooo
0,0000
0,0000
o.oooo
0,0030 0.0000 O.OQOO 0.0000 0.0000 0.0000 0.9000
cun.nr IHIM.M am.Tiz C»IM.M cun.iiz cun.nz CUK.PZ
[i.004::7 0.00164 0,00!O3 O.OOOS9 O.OOO.iV 0,00019 0.00007
O.OOOO
o.oooo
o.oooo
» , oooo
o.odoo
0.0000
o.oooo
0,0000
0.0000
o.oooo
0.0000
o.oooo
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
o.oooo
0.0000
0,0000
0.0000
0.0000
0.0000
0,0000
0,0000
o.tiooo
0.0000
0.0000
0,0000
0.0000
0,0000
o.oooo
O.OQOd
o.oooo,
0,0000
0.0000
o.oooo
0.0000
o.oooo
o.oooo
0.0000
0.0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
o . oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0.0000
0 , OOOO
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0, 000
0,0000
0,0000
0,0000
0.0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
O.OOOQ
0,0000
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0.0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
0.0000
0*0000
0,0000
O.OOPO
0,0000
o.oooo
o.oooo
0.0000
0,0000
o.oooo
0.0000
0,0000
0.0000
o.oodo
0.0000
0 . OOOO
o.oooo
0,0000
0.0000
0.0000
O.OdOO
0.0000
0,0000
o.oooo
O.QOOO
o.oooo
O.OdOO
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
0.0000
-------
1IHE= 2520,00 HIM OR 4S.OO MRS
UPBTREftM SEHIMEMT 1NFI OU (tJS/SEO
0,0000 0.0000
Eli,
0
MO, CFS
2
3
4
5
4
V
e
V
10
11
12
13
14
15
14
17
16
19
20
1M.
437,
438.
12.1.
409,
.190,
.ley.
380,
37*.
375.
371,
,4 A?,
AOO.
597.
397,
Sf4.
9H
39
96
97
59
A9
71
OH
54
•ijl
64
7H
37
74
31
.IV
82
'/1
VFl..
Fl/SFC
o.n?
0.9B
1,11
0.30
o.:t3
1 ,00
0.19
0.72
0.3 a
0,92
0.33
O.S8
O.AV
0,52
0.79
O.Afl
0.53
0,4?
O.HV
us
t/sec
0
0
0
0
o
0
!)
0
t)
0
0
0
(>
0
t)
0
o
0
u
,u.»s
,*812
.799
.7B8
,77V
,771
, /AS
.756
, 7 TO
,744
,739
.734
.7-J9
.721
.720
,7!f.
.711
,707
,704
CttM.M
FT
tS, 000
o.ooo
0,001)
0.000
O .1)01}
o.ooo
0 , DOO
o . ooo
7
0.04921
0,0000
0.0000
0 , OOOO
0.0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0»0«(M»
o.oooo
o.oooo
>.oono
J.OtlOO
o , oooo
0,0000
0 , OOOO
0,0000
0,0000
r.im.o/
0.
0
0
0
0
0
0
0
o
0
0
0
0
0
o
0
0
5
0
0
01*03
,0000
.oooo
,0000
.oood
,QQO*}
, 0OSJ0
, oooo
,O<)
, oooo
,ooo«
.oooo
, oooo
.0000
,0000
.0000
,0000
.oooo
,0000
.0000
am.ri7
O,0
I **
1 3
14
IS
16
17
18
19
20
A2/, 1 A
^ JLIK A L
SI 3, 05
^ A K\ , 53
429 , 40
401 .77
197,***'
Sifl.SA
3P1 .09
377. HO
375.69
37",!. AV
629,92
624,42
AIM. 3*
(j.Hri
0,99
t , 12
0 .39
1,00
0*!iO
0.73
0 , 3 .1
0.92
0,34
0.8B
0. (it
0,53
0.79
0.69
O.ril
0.48
O.A1
W.l'.iO
11 ,487
A . 1 SO
3,474
2,131
1 ,455
1 . 1 1 S
0,938
o * H 4 v
0,798
0 ,77t
0.75S
0,714
0, ?3/
0 . 730
0. 725
<».7'.'0
0,71*
0,712
0 , 000
0,000
0, »!<)!>
0,000
0 ,000
0,000
0 , «H!l)
o.ooo
O.OtJO
0.000
o ,000
o.ooo
o.oon
0,000
o.ooo
0.000
0 , Oi)O
0,000
0.000
MA
313
174
JOB
54
37
.11
3'.!
Ml
31
31
18
IX
IB
ia
,<)<>
.8?
.,<«!
.53
.40
.50
.42
. i H
,,10
,&e
.V7
.42
,41
.45
.SI
.37
,44
0,0000
0,0000
o.oooo
o.oooo
O.OODO
0.0000
o.ooon
o.oooo
o.oooo
0,0000
o . oooo
0,0000
0,0000
o.oooo
o , 1)01)0
o.oooo
0.0000
o.ooai)
0.0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
o.oooo
0,00110
0,0000
0 , OOOO
0 . OOOO
0 , OOOO
o.oooo
0,0000
0,0 dOO
0.0000
o, net oo
0,0000
0,0000
0,0000
0,0000
o.oodo
0,0000
0,0000
0,0000
O.OOOd
O.OOOO
o.oooo
0 , OOOO
0,0000
a, oooo
0,0000
0 , OOOO
o.oooo
o.oooo
0,0000
0,0000
-------
0*0
** JC O
* 3 Q
oooooooooooooosoooo
ooooooooococooooooo
OGOCOOOOOCOCO&OCOOO
oooooooooooeocooooo
OOOOOOOO^C-OOOCOQOOO
Qoooooooooooococoeo
o o -o o o- o o ooo » o o o o o o c
O O) C Q O O ® O O o O O C ROCOC
O fc O
o - ©
o a **
o - o
o©o>0c3O®o©oo oooooo
o o o o © o o c © C © o o o © o o © ©
OOOOOQOC-OCQC O *& O C © C? ©
'
© © Q O © O © OQ©<3OO©OC OOO
o © © o ©o^Qooooooo c oco
OoOCOOOOOCOO OQOOOCQ
o © o o o © c ©o0©o©oo©oc©
ocooococooooooooooo
OOOCOCOOOOOOOOOOOOO
O *** £h OOO^OOOOOOOOOoOOOOO
O a fc" OOOGOCOOOCQOOOQOPO©
O * © OOOCOuOOOOOOOOOOOOO
O^5> OOOOOCOCOQOOOOOOOOO
- = o
CC-OCOOOOOCOPCGOCOC-O
oocooooooocscoooccoo
OOOOOOO OOOOOOOO J^OOO
(5^«T CCCOCOCCOOOOCSOCCOOC*
fcc-^ i^COOCOOO^OOOCOOOOKO
C"^ * C^OCOOOOOOOOOOQOOOO
O IV ^
o o r.
o - c
O f O
« : o
Of-
o
O K K
e B a
o * *^
o zc
* « o
O CJ -
o
O PC T
c. c <
oooo CGOQOC QOOOOOOOO
cooocoo coooc- ooo oooo
COOOOC.OC-OCOC OCOOOO©
oooo coo oooooo cooooo
oooo ©oooococooooooo
OOOOOO&OOOOCO0QCCOO
cooocoocoooc o ooooo©
o©oc ooc ooocoooccooc*
oooo ooooooooo cooooo
CQCQ e-ocooooc ooooooo
ooooooocoooo c ooooeo
ooe-csoocfoooeooooo^oo
CC.OC OOOCC-OCOCOOOOCO
-i
o«c«oc oococoooo
^OOCCCiCOOoC OOCSO
CiiCCC-OOC.C'CCOC'OO
oc™ cco-oo-s osocoo
ox: —
* ^ o
^ TC —
±3 O
O is •"*
O ff CM
o - --.
O 3C "C
* C C
o — *
O r* »-
O <^J fj
O £ *
* — o
o u *
-
ooo ooo oooooo croo
coco coc-o^ococ-oc/ccoc
coc*o-c-oc oco coo oco cs<5
ccoc c-oo-ooo coo ooc oc-s?
coco cccoco coeococco
— oc >• •" ^ »* s? fv < tc — eo •"•? rs "^rs
rao<'^r--«^»"3K>.^OESD«*%.r'i^
fx <<<-££? in r^ ri r; r*. -
^Kii^i":
>. « fs fc *c v? f- ^
« — • r-i N r . N — *
CC-CO^ffi S
is- o c- o ™ o G oc*o cooo q-ococ'
u> *
o •* ~
O Ifl t^
c? o »• Q" r-* r-» -e «•*-(> t
^ wi •« o ^ w > o^-mif
V « O
>- —«
es 2: i*; v
O u< 3«-
* E !>.
O f
r 4
MI US I? O
^ i. LJ I
202
-------
O fJf* OOOOOOOOOOOOOOOOOOO
ooo ooococooooooococooo
o « o ooocoooooooc-oc-oooeo
te°SCO OOOOQOGOOOOOOS-OGOOO
P*-U * GOOOOOOOOOCQOCOCsGOO
O M N
ooo
o « o
« c o
« a o
•60-
o
OCJOOOOOOOOOOO O O O9OO
OGCOOOOOOOOCOCOCOCO
OGOOOOOOOOO O-OCO COOO
ooooooooooooo cooooo
C & K
C • C
O C C
- 3 e
o <_« •
o • c
O X O
" ^ O
o sr *
o
O f*> K
one
G ~ ^
o c e
• so
o u -
o
o ooooocooo ooc c o c- o 50
©COCOOCCOCOOGOOOQOO
OCOCOOOSCOOOOoCoOOO
OOOCOGOOOOOOOOOOOOC:
ooocooooooooooooooo
CCOCCOOC-GCGCCOQOOOC*
coccocostosoccoooooo
©O^OOOOOOQOOGOOOOOO
-
cooococcococc^ccooo
ccococooooooesosceo
ooooooooooooocosteco
ccccooeooooooocceco
OOCCOOOOCOOOOC'SOCCC
ccoococcc-ocecocccoo-
c a —
s- * c
o c c
S >V fv
O a «
s - c
o a t-.
o • o
o z o
O X O
* « c
C Zi <€
fc E C
o ^3 t
ooooooo ooo ooo oooooo
OOG*GOOO QOO oooo ooooo
ocooococooooooooooo
cooo-cscc-oooooooooooo
OCOOOOO OO«3 OOOoO OOOO
c*ooooco cooooooooooo
CCCQOC-OCOOOCOO OOOOO
ooooocoo-cc OCOOOOQOO
ooooooooooocooo oooo
OCOsQ'OOOOOOOCOOOoOCO
OOOOOOOOOO OOCfCOfirf OOO
C ©COC-QO CQOCCOCOC OC-O
cooooocooo oc-oooceao
OOOOOOO OOO OOO^O*TO
O *"j ^ 1*5
„
O X 4iS -v
O U 3">-
- ac i*
o *»*
o u- :> *-
" "0 j~ K» < O SC
: if JK o "8" >$ fN
l*5fH."r|D-«,.*'l9r"N,^'"
•c».«>r>---iwsiNf^it
PS. o <^ *r
^ o > rt er co x
— 4. W
3 CO
203
-------
© » ©
w 3C o
•3 O
© a -*
c • o
O 3C O
- ™ o
ooooooooooooooooooo
ooooooooooooooooo^o
ooooooo o o o o o o ^. o c o c o
© Q o o Q o o o©oQe©oo0oco
O OOOOOQOOOOOOOO £. O C ©
OQOo©o©QO©QQQo©.o©c-©
OCOOOOOOOOQOOOOQOO©
o C © o © © G Q©©O©C©OQ©SO
OOOQOOOOOOOQOOQOOC-O
O rM r,
o o o
o - o
(N !C O
* 3 O
c • o
O JC O
-so
o t? .
o
o o o
c » «
O S C
© O © Q © © C5 C Q © G © © QOOOOO
Q©Q©Q©©©OO©Q© G© O©C©
O O O G O C O Q © © O O O O O OCCO
oo©oo©ooo©oocoo ooc©
co©csooo©c© ©oooo©oo©
e fs v
o =. -c
©eeC.CQG-COQGOQCGOO.GC
.
©ccccccooococooocc-o
-
C CCfflO
c cc-ococ
©CC©QCC-©OC'
•SOCoOOCCCC1
©EC
» ™ c
o c .
C!"C CO©
O N rt
o «. o
0*0-
o c -.
- — ©
o *-* *
c©c©c
CDCCC©©OC©GOCO©CCOO
GC ©ce©-c©occ-
©
O
o c •
c
CCOOC3
"v © i
x -x c «- cc a- ^ K, G - r ** -^ f. - ii- > a. < a •
?»? MI «• ^r j; <
as — K
^ t- D *
X fefc •
W IK
© X ^
C- it u
oc© coccc-occ©
« ^ ^ f-J r. c, r% ;N
C© ©O "O *~
X X
3C ' ' £
"H- -S V*
O X it V
o w > *-
"i ir/ N rv >• c* ^
CD A
C9 U
O U.
y
D- UJ
IN tft
w oe
3C *-
»-* «5 S
*- £*.
204
-------
<& Nt K
O O 0
© * O
*« « O
C r* >
c a -*
£ - O
oooooooooooo^oococo
OOOOOOOOOOOOOOOC-OCO
o o o o o o Q o o oOOCOQQOOO
OQOOOOOOOOOOOOQOOOQ
oooooco eooooooooooo
o o o c o. c o eooooooooooo
o is* r* OOOOOOQOQOOQOQOQQOO
ooo oooooooooooooooooco
OSKO ooooooooooooooooooo
»«* o « G0OCOOOOOOOOG-OOOO0O
o
C f*i 0* OoOOOOOOOOOOOoOoOoO
O C* *"* QOOOOOOOOOOOCOOoOoO
O3CO OOOOOOOOOOOOOOOOOOO
o f»s rv
o •= rt
o * c
o c o
• :? o
o u •
o - e
o ac o
» ±3 o
£. U -
o
o c •«
O JC C.
oooc o c o cooOoQcooooo
ooococo oocooocOQOoo
O Q O O O C O COCOCOOOOOOQ
oooocoo QOQOOOCOQGOO
oooo oco coo ooooooooo
eoooooooooooooooooo
O C O O O O O O0OOCOOOOOOO
OQOOOOO-OOOOOOOOOO^O
e* o a o cccoooooQQOceco
oooo OOQQOOQOOQOOQOO
Q o Q o ooo ©oooooooooc o
COCO C1 Q O QCQOOOOO c C G O
o c « o cooc-oooooooocoo
oeooocrsoooooooociOoQ
c. o s c o c SC-
OMIV osocococooocoeoc-ooo
O£3W OOOCOOOOOOOCOCOGOOO
o «o ooooooooooooocoooeo
*rro «.*..»,»«•-»**.»,*,*
OU - OOOOOOOOOOOOOOOOOOO
o
O TNI £*- OOOOOOOOOOOOOCOCOCO
c *o coooooooooooccocooo
OKO oocoooooooooooOoooo
*S?O *»*.*«.•»»•*"**•«»**
S- U - OOOOOOOOOOOOOOOOOOO
o
GIX*K ocooooooooooooooooo
SCG oeeeceeccoooecoeooo
c> «*«< OOOOOCO.OOOOOOOOQOOO
c £• - ooc-oooooooooooooooo
S coccocccoc-oo ccoooo
SrS coocc-o
o — r.
o * «r
O IS is.
o Si f\
o * »
oco
• 3 O
o u •
o
QCOC.S-OOCOC-CCiOoCG.GCO
oocccccc-srocooocroooo
CCOOCCCC-CC'OCC'GCC C-^O
cooo™o OQOO ocoooo ooo
O * P«
-so
© 4.- .
C iK —
C £ .N
o • &•
c- z *«r
- s c
o c -
o
o ac <
- — O
sococoocoo coc-ocoeeo
coooooc ooococooocoo
C Ki *-.
c * >
O E T
* 3; c
o - ei
o ooocooooo
cooeoooooo
c ocooooooo
c^c-ocd c-csco-Ooc ooocoo
•-'VOC--SOC C'CCO^'QOOCOC'OO
c ooccc CGCG&OCOCOCOO
oocooc cc-oo coooeo croc
. •"* i.* u-r SC t-- r", C ^ «• < X
* r", TJ *« r; -^ < EC
*o*"s'K:i^i^^cr",
f4 X IT- "/3 rs. *C b-
*
at u: • u.
Cfi 3d
c _J Jft_
2 C fv- < it* ^ »t
o —
O B
O Ltf
X 7
£
o *-»
-o o
C -Li
OO COC
•I
« yj
UJ £C
1C i- * *
« to e a
*- a. ui z
205
-------
O a o
o a *•>
c • c
O 3t C
OOOOOOOOOO OOO-OOOQOO
o o © o o o o oooooooooooo
o o o o a o o o o o o QOOOOOSQ
o o© ^ o o o OOOQOOOOOOOQ
o o o o o c c ooo ooooo
o o o
Ofsil*. OOO-OOOOOOOOOOOOOOOO
ooo oooooooooooooooooos*
fc'I K C COOOOOOOOOOOOOOOOOO
•30 *•***»«***»**»*»*«»
•t- u - ooooooooooooooooooo
o
O O O O Q- O O Q O O O O 0 Q O Q O O O
o c, o e o c oc-oo o c ooooooo
c s o e o c. o oco oc o o Q a o o o
o a —
o • c
o :t G
- ±3 O
o u -
o oooooococoo ooooooo
c-c-oc ooooocooooooooo
OCOCrOQCCQOCC- OOOOOOO
o oooooooccoo oooo ooo
o c o
• z? o
© u *
oooo-oco ce-coc-oooc-ooo
ocoooco oeooecccc-ooo
oooeocococ oeocQ'SOOQ'
coooooo coo QOOCOQCQC
ooooooooooOQdooc ooo
ooooooooooooocsooooo
-so
C- L? -
O O O O O Q COOKS' OOOOGCOCO
<3 O Q O O C? O COG CSQQOOOOCO
o o o c o o o c o o c o oooodoo
o o o o o o o ooo ©ooooooeo
ooooooo oooooooooooo-
C- IV
o — c
O * D-
O £ -*
o ^ m
o as o
O * E>
O 3C P»
-so
•^ C — O O
OOOOOO OOO
c*£t% ccSEcccooococococoo
C 3C «P QOCOCCOOCOOOOOOOCOO
cc.cc oo^ooooooocoooo
ecc-cc-ooocooococoooo
o r >«r
* ™ C
o u -
O £. <,
• He
C ™ •
O rv r-
C " *
O " ^7
O £ <
•:? o
O V *
-o
c cc-oe •c
X UJ -
if- C
© •% ±
C «ft -
•C CCGCOCOC-O COC^OO
COCCC-O ^O-SO COC CC'
X UJ -
tft ac
O X S
o w u
OOCO C-C5- COC-O C-OCOOO « •CS- O
c? o •— o co coco "oooisocc-c
-
coso oococo ooo
^ < *-c fr. < < 31- &• r; o ffi
. *'C>-*««'rs.c
m a
oooooocooo
206
-------
1IMF* 3240400 HIH OR 54.00 HRS
UPSTREAM SEOIHENT IHFl OU C I.BK/SfC I J
SEfl, 0 -JFI , t)S r.im.n/ r.ONC.
wo, CFS FT/*EC t/SF.r rr HR/L
0.0000 0.0000 O.OOOO 0.0000 0.0000 O.OOOO 0,0000 0.0000 0,0000 1,5500
CtlN.fiZ r.HM.bZ CtlM.tiZ Clin.ll/ CUM.O? CIIH.DZ CtJM.BZ CUR. I>1 tUM.PZ CUM,PZ
O.O*f«A? 0.04921 0.01903 0,0042? O.O01A4 0.00103 0,00059 0.0003? 0,00«19 0.00007
2
3
4
S
4
7
i
9
ID
11
12
13
14
15
16
17
IB
19
20
9l9,hA
fl<5,4B
9AJ ,4H
1005,32
1018,00
1061 ,76
10A1 , 3!>
1061 .07
1049, 4ft
1035,70
939, US
9?6.37
ys'i,;1?}
892,47
a v6 , A,I
1346.B9
1. it A. TV
1336.52
I, Toy, 17
1 , OA
1.2R
I . 1R
0, 64
0.41
1 • 24
O.H.''
1.17
0.71
1 , 21
O.AJ
1 .22
O.VB
0,7*
0,94
0,9?
0, /¥
0,42
0,7,*
J , l,»h
, 1?S
, 1 AA
,?07
,",*7f
.391
.rttit
) ,751
1 «VH4
7,733
,'.51 1
?>82A
,{,3O6
3,476
1.24S
4.B6?
S . 5S,»
4.157
6,42?
<»,(>
0,000
IKOISO
o.ooo
o.ooo
0,000
0.004
0,000
O»0<)i>
0,000
0 , 0«0
Q.OOO
0,000
0,000
o.ooo
19. Al
If .25
19. 44
19.25
19,71
20,99
','3,4?
2A.45
M, ,*4
34,55
40. f,%
4S.4K
S3. 7V
6A,Ot
HI .3.'
?B, ) B
A7.4?
73. BJ
M 1 , 1 S
0,0000
0,0000
o.oooo
0,0000
o.oooo
O.OOOd
o.onoo
0>00CM>
o.oooo
OtOOOO
0,0000
o, oooo
O ,OtM)0
0,0000
O.OOItO
o.oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
0,0000
0,0000
o.oono
0,0000
0,0000
0.0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
o.oooo
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
0.0000
0,0000
0,0000
o.oooo
0 , 0000
O.OOOd
o.oooo
0,0000
o.oooo
o.oooo
0.0000
0,0000
0,0000
0,1)040
0,0000
0,0000
o.oooo
0.0040
o.oooo
o.oooo
o.oti (>o
o,oono
o , 000(1
0,0040
0,0000
0 , IJ4OO
o.oooo
0.0000
0,0000
o.ooco
0.00013
p.cHiou
0,0000
0,000(1
0,0000
o.oooo
O.t)00<)
o.oooo
0.0000
0.0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,03(10
o.oooo
0,0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0,000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0.0000
o.oooo
0.0000
0.0000
0,0000
0,0000
0.0000
0,0000
0.0000
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
o.oooo
o . oo(i(>
0.0000
0,0000
0.0000
0.0000
o.oono
o.oooo
o.oooo
o.oooo
0,0000
0,0000
O.OOOO
o.oooo
0,0000
0,0000
o.oooo
o.oooo
o.oooo
o.oooo
0.0000
0,0000
o.oooo
0.0000
0,0000
0,0000
0.0000
0.0000
o , oooo
0,0000
0,0000
0,0000
0.0000
0,0000
0.0000
0.0000
0.0000
0.0009
0.0000
0.0000
0,0000
o.oooo
0.0000
NJ
O
TIME" 3300,00 «1N OR SS.OO MRS
UPStREAH SEDIHEMT 1HFLOV URS/PFf.J !
sen. o VKI. . ,«54;t
7.B7S
3.375
3.760
4 , 3 ;!IS
4.93S
B.S4H
'),<><>«
0.000
o.ono
0,000
o.ooo
0.000
0 . 000
0,000
O.OQO
0,000
0.044
0.000
0 .OOO
0,000
O , OOO
0.000
o.ooo
0,000
o.ooo
lit
If
1 V
IP
1 H
Jf
1*0
21
24
27
:n
3T5
H
4H
S?
42
If
56
63
.HI
,4&
, 3 1
. R4
, /;s
,0?
.OH
,B3
,.M
, 39
, 7"A
,4*
,or»
.49
.1?
,4B
»4'.i
,10
.67
11,0000
0.0000
4 . 0004
O.OOOO
G,»o<>n
0.0000
4.0440
0.0000
o.onoo
o.oooo
o.ooon
0,0000
o.nooo
0,0000
0,0000
o.oooo
o.onoo
0,0000
fl.OOOO
fi, 01)00
O.OPOO
o.oooo
o.oooo
o.oooo
0,0000
0.0000
0,0000
4.OOOO
0,0000
0.0000
0,0000
o.onoo
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0.0000
0.0000
i> , oooo
0,0000
O.OO04
0,0000
0,0000
0,0000
o.ouoo
0,0000
O.DOOO
0,0000
0,0000
0.0000
0.01)00
0,0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0. 0000
0.4000
0,0000
O.040O
0,0000
O.OOTO
o.oooo
0,0000
0.0000
0,0000
o.oooo
0,1)000
0.0000
0.40OO
0 , 0000
0,0000
0.0000
0,0000
4.0000
o.oooo
0.0000
0,0000
o.oooo
o.onoo
o.oooo
0.0000
o.oooo
0,0000
o.nooo
0,0000
o.oooo
0,0000
o.oono
0,0000
0,0000
0,0000
0,0000
<) ,00^0
o.oooo
0,0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0.0000
0,0000
0.0000
o.oooo
o.oooo
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.onoo
o.oooo
0.0000
o.oooo
0.0000
0,0000
0.0000
0.0000
0,0000
0,0000
0.0000
o.oooo
0,0000
0,0000
o.oooo
0.0000
0.0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
0.0000
o.oooo
0.0000
o.oooo
0.0000
0,0000
0,0000
0.0000
o.oooo
fi.QQOQ
0,0000
0,0000
o.onoo
0,0000
0.0000
0.0000
0,0000
0,0000
o.oooo
Q.OOOO
0,0000
o.ooop
ft, 0000
0,0000
o.oooo
0,0000
o.oooo
0,0000
o.oooo
0.0000
o.oooo
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0,0000
0,0000
0.0000
o.oooo
0.0000
-------
OOO&OOOOOOO-O O
OOQ0OQO0GOOOQOOOOOO
o Nr fs
O A O
<« - o
— 3C O
- at o
— ' U •
ooooooooooooo o o o o o o
OOOOOO OOOOO'OO OO O O O O
OcOoOOO^fOcOOooOOOoO
oooooooooo o o ooo oooo
ooooooooooooooooooo
0*
tr.
*0
o
O KJ «
00©
O - —
OE ©
* r ©
C V *
o
© © © © O O © OOOOOOOOQOOO
OOOOQCOOGOOOQCOQ-DOO
OO'OC&O©OQCQC©OOQ©J£©
ooooooooooooooooooo
O O © © © © OOOOOOOOOOOOO
c-oococ-oeoooc a o o c o o o
OCOCOc OCOC-OCOOOCOOO
OOOOOOOOC"OO©O©CiOO©O
e © © © ©/ c c oooocooocQO-o
ooocooococooooooooo
00000© o.©oooo©o©oooo>
O
c
c
ccococc coc«?c©c-oooco
ocooccocococcco-coco
OOOC'O ©OOOOOOOOOOOOO
OQCCOO C OOCOOOOOCOCO
oocooo o oc ©OQCOOCCOC
CO-COC.OOcOoCCiCOi3O.CCC2
c ccocooococ-ooooooeo
O IM Fv
c a K,
o - c
o t c
-30
O U *
o
o IM o*.
O =. fc~
« * c
ore
- I? O
o o -
O *sl f*
c c. o
C * vi
S £ C
• s? c
o-oC|c©o©Q©QQ©Q c o © o c ©
©CCCOOOO-OC © O © ©CJOOOO
ooocoooooc occ c © © o c o
O OCCO© OoO© OO© OO ©OO©
o©©oooo oooooo coo o©o
Ooocoooooo ©o© oo ooco
o c©ooooo©o-o©oooooo©
OoOoOcOOOO O©O C-OOOOO
ocooooo oooooc o© oooo
ooo-oooooooooo ©ooooo
o coooo oc©c ooo o oo ©>©©
OOOO^1''^1 OCOO ©CO O O OOOO
C-OOQQO©QQOac©©OGQC©.
oocc^rooooo QCO oooo'oo
Oooocoooco coo coocoo
eoeoee.©QOQ-.' K
Oft C
O ' O-
ox: —
-30
o u •
G Z «r
*r- c
©u -
O £ -C
C - lit
O E <
-3 C
o — -
c
c-occeoccc-ccoccccccc
c ococ oocsooooooooeoo
£©COCOCOOOCOCCCCCCO
c-ecococ-ccc eoe-ooccCiC
© ccccc c-cooo©cooci£cc
COCOCO C'SOOOC'S'O^SOC'OS
c s c
O • fr
O 3C —
•So
Q C *
o
C K *-
c c c,
<• - &-
O E V
* s o
OC-OC OOO O'C
CQCCCO OCCQ csecoc-coccn
o GCOCOOOOO ©ooocooo©
•coccoc cccc- cccooccoc
COCOOOOGCO oooooocoo
cocooo ooco oooocoooo
rt K. « IK. ft r; r* -i -^ — o *-: c c c w r*t p^ w
*» f^ *, r, r, r-i f; rs. ** ?•* fi r* ** r-j -*4 -- *« «^ »<
-. BE. e o c1 cc * ec I
«^ Ul
-------
O A O
< * C
^C O
e a •*
© « c
OOOOOOOOOOOOOOOOOCO
o oc©o©oooooocooo o o o
ooooooooooooooooooo
O © © O O O ©OOOO'OOOOOOOO
ocococ-Goooooooococo
O a o
-c * o
*« X O
* 3 O
»* o «
o
OO0-OOOOOQO O O O O O O OOO
oooc*ooo©ooooooooo©o
©ooooooooo ooo QOOOO©
ooococ-ococ ©oococ ©co
ecoo^cococ.00© coccco
c ooooc oooo ooooooooo
GOOOOO© oooooooooooes
o x c cooo©o©c-oo©ocoocoo©
- 3 C *»*...,...»..,.»..*
o
<2> fsi O- Oo©©O©O©O©©QO©O©OoO
© * O OC©CCCOOOGOC©OCGO©O
O-3EO OO©©©OOOGOO©OOOO©O©
oc o co© oo©
U •
o oooococooo© ocooooo
©£© O©COOO©O<5OOCOO©OOGO
• so .,...«.,..*,.*...*..
C- ^ F".
Q * C
© c c
- 5 O
O U *
©
* a ©
© U -
c
o • +~-
O £ O
-so
OC-OOOOOOOC ©OOCOO O©O
© OOOOCOCGOO<5-C<2.©OOOO
©OOC©c.OC5OCOCOiSO©OOO
oo©ooc©ooo©o©©©o©©c>
OOOOOG-OOOO OCOOOOOOO
OOOOOOOO©
©ccoooooo
O O <
O - —
CCS
* s o
<©*-;*
o
ocooc-o
CCOC-OOC'CCOOOCCCOCO O
CC^OCO^'COOC'OCCsCOCCC'
oo^c-coc- ccccoc- occ coc
o *s --c
© * c
•F !3 G
G U -
o
O N (s-
c c r i
C * V
©re
- s c
o — -
o
O
O 3C -*
• 3 C
C
O
O *
C 3K
* —
O LJ3
K
o
* 0-
C E «"
» ±2 O
O U -
C--OCGOOC ©OGCCCOCCGOC
co^ceccccoececo&ec-c
cccooccc^co^ccoc-oc co
GOCOC-OCCCOOOC.-OCCOCO
oocococoe© coco©ccec
ocooooooco cooo-cooo©
OCCOCOCOCQ CaOQ©QQ©C
c- fv. r^
C -= <
o * t:
o c -c
* c c
O U *
C* **• r* OCOOCCCCO'OCOO'OOOO'OO
C M *£ COOGC'OOC'C'O'OO'C'GOC'OO©
G- * ** CoCOCC-C^COOOtoCOOOC'
Ofi< CCOCCCCOOfflCOOOOOCOO
o
» rv r- n *-= ** *^ «-* -™1
X U.1 * t
un 2:
© X *
as L* -S; i—
XL. » u.
.v ^ cowtf*xr*<»™is.*-i;ci
t» (fl
ec c ^ v
c _ *
3
a; o
i iff «K «r — ^r if? •
ou. .....
O *1
r, s.
O U
213
-------
O H*1"
o «s o
QL • G
— 3C C
© O <-<
o * o
o je o-
- 3 c
C U *
ooooooooooooooooooo
ooooococjoo e> Q o o © © ©©©
o©oo©ooo©©oo©ooooo©
OGGO©OOOOO OOOOO©OG©
© ©OOO©QO©GGGOCO©OOO
© tt O
«4* * O
••« ae ©
G INT &•
c G. »«
O » C-
occ
OOOOOOOOOOOOOOOOQOO
OOOOQOQO00OCOOQOGGO
OOOOOQOOOOOOOCSOOOOO
* D O
O O -
O
oooeocoooe ececocooo
O O©OO©OOOGCsQ©QOOGO O
OCCJQGQOOOO oooooooo o
O S5 1^
C * O
O C CS
» 3 O
OCOCOdCOOOGGOC G © O © O
^OOOOQOOOCOOOOCOCOO
OOOOOOOoOOOCOCOOOOO
o *c
(blCC
• DO
ou •
OOOOOOOOQOOOOOOOOOO
****.**.**»**.*»«**
ooooooocoooooooooo©
© IN" «
©c ©
O) " •«"
o c o
* ^ o
O 4JI -
ooooo
Oococccoooccc-cocesio
ooc oco
ooc ©cocoo
cocoeococ-
o a: o
• " O
o u -
O £
. —
o *»
O C O
o - o*
ccccc-ceccccccccoooc
cococococ-occcooceoc
- -
C ff. C
o - &*
o ac *"
coeoeococccoccc-ceoe
CoCOOOOOCOGOCOOOOOC
c-oooooceoooocococcc
O C «r
-so
o u *
COO OOC C'OCOOOC'O O
coo oooccccc-occic
. COCOCO CO COCCCCC-
COOOCOOO OOC OCO C
o - y".
O JC -C
. » c
o a *
c-cc-c *
coc-oc
•c occ c
.
y, •*•* IN r: -c v *-* f^ *n i»* «**• o
•--. r* r-* ra *- •». c? © c Gf- »* SK (K
-------
o TSJ rs
o o o
Ft - O
« « o
• so
— o -
o
C ffi —
c * c
ore
ooooooo ooo c o o o o o ooo
o o o o o o o ooo ooo ooo ooo
ooooooooocoooooeooo
oooooooooooocoocooo
OCOOOOOOOOOOGOOCOOO
OOOOOCOGOGOOOOOOOCrO
OOOCQCQOOOOOOOOOOCO
ococococCoocc. coooc-o
O o O O C O C OCC O o o o G O OOO
OOOOCOOOOCCOOOOOOOO
O N N OOQOOOOOOOCOCOOOOOO
ooo QQaooooooooocoooooo
IE +C QOQOOOOCOOOCCCOCOQO
*•« i: o GQOOOQOOOOOOOOCOOOO
- 3 C ,.*....».-»»..»..,.
— LS • OOOOOOOOOOOOOOOOOOO
o *j fr oooocooo^>oooocooooo
O i^ •" OOOOOOOCOCOOOOOCOCO
C *C OOOOCCCfOOOOCOO'OCOCO
O3CC OOC'i5OOC*OOOOOCoCC*OOO
»^c .».*.,
cu * oooocccoooooocooooo
o a •<-
C - C
etc
" ~ C
O I.' -
o
O IS! 0-
C C 1-.
O * C
o r o
• 3 O
o u •
O K" ri
O C: o
o - ~
CEO
• e: o
C (-• .
ococooocococ.C'eooooo
ococccc&ccococoocoo
OGOCOCC-COCOC.OCOOOO O
OOOOOOOCCCOOCcOOOoO
ocoooco coo ooo ooc ooo
ocooococococooooooo
c-cocococcceeecoccco
dooGcc-ococoooooecoo
OOOOOOCOOGCOCOOOCOO
OOOOOCOOOOOOOOOOOCO
oocooo^rococoocoocoo
OOOOOC5TCCCCCOCOC-OOC
coooooc ooo ococoooco
cooococococcccooooo
O >
c
e
O ft h~j
C • C
01:0
• = o
o u -
o
O M P)
o a o
c * «
e z o
- = o
OOOCOCOOOCOOCOOCOOO
OCCOOOOCOCCCCOOOOOO
OCCG-CC-C-COOOCOCOOOOO
ooocoocooooocoooooo
OOOOOOOOOOOoocOOOOO
Ooooccooocooocooooo
OoCc CO CCOOOC c COO OOO
ccooccooocccccocooo
ooooooooooocooooooo
ooooooooooooooooooo
oooocooooooeoeoeoco
cococccoococccoocco
OOOOOOOOOOOCOoOoOOO
ooooooooooooocooooo
&OOOOOOOOOOOOOOOOOO
c a -c
C * —
o z c
• ~ c
O U' -
o
O fs Ps
c =< c^
e • T
ore
* — c
o «; -
o
Of-".
o =. c
0-0-
o r —
- = c
C. i -:
c - o-
o 3: T
C- I"- r;
c c <
C * l^
c a: <:
CCCOOOCOOOOOOOCOCOO
ccoococccoeoecccecc
ceoe^ococoooccecccc
cooo^ococococoocooc
ccoccoeccc oocccoccc
ccccocGcCc oocc-oc c c c
occcoce cocccccc-ocoo
cocecoccccecccecccc
cccoccc-cocccccecccc
C 0
c- o
c o
c c
C C
c c
c c
0 C
c- c
c c
-""- c
c c
c o
c c
c c-
c c
c o
C 0
c c
c c-
c c
c o
o o
o o
o o
c c
o c
0 C
o c
c c
c c
c e
c o
c-
o
c
c
c
c
c
c
o
e
c
c
c
c
c
c
c
c
C C
c o
Q C
c c
c c
c o
C o
e c
c c
0 o
c c
c-
c
o
c
c-
o
c
o
c
c
c
o 2-
c- e
c c
c c
c a
o e
o c
c c
c c
e o
c c
o o
c o
e o
c c
c o
0 O
o c
c c
c. o
c c
o c
c
o
c
o
c
c
o
c
c
c
o
c-
c
o
c
c-
o
c
c-
c-
e
o o
o c
c o
c c
c- o
c c
o o
c c
o c
c c
C C1
O IV V
C US <
c - —
C f O
• 3 e
o 1st rs
C c r:
O • *r
C E C
- ™ C
C U -
o
o »^ re
o e c-
o • o.
o i: —
• = c
O i-f •
o
O >s —
car.
c . o-
c is r.
c- ™ -c
c - tr,
O E <
* - C
O w -
e
cooococsoooocooooooo
occococoooooccooooo
ccoccocoooc-ocooocco
CoCoOoOOOOOOCOOOOOO
OOCOfrOOCOOOOOoOOOOO
oecececoeccccocooco
c-oc-ooococcccccoocoo
OOCOOCOOOOCCCOOOOOO
oocooocooofrocococoo
ococceccococccoccoo
occcC'c^oc-cC'Ccocccco
oococccocco&oooccoc
"
COCOCOCOOOCCCCCG COO
coco oc co&cccccc-ccoc
CCCOCCCCCOlTOCCCOC'CQ
e ooocooocO'OOcooococ
cocococoeocococoocc
cococc cocccccooocoo
cccoocccccooeoc-oooo
c o oo o o
•Jl £
C ^ ^
C 1.1 ^
COOOC02 CCCCCCCCCCOS
ccce jococcecoooo^oo
c-oeo^ococo occeoc-cco
oococccocooceocoioc
ooooocccccoccc-oooca
coco coococ'Cocc.ocooe
COCO COCCOOCOCOCOOCO
o o b-. —
~
OC C, 3 '
L!
z z
O Z j. X
O i_ » —
C o C O C O
X *O «r fr C fs -- fs. c
3 o; UO
Li C (I X
«- _j in
O Z 'j. X
O U> ^ I-
; r> cc c.»- &- O ^ ^ i
eoe-o c-ococ^^^.
igin in—'rso-c^uT-i
t^oo—10 — o*HC?-*
*- H3 r; o r:
PS tn ui
a u.
« u> c o
I- t u 2
3 tn
one — •j-t
o- a> •* tn •» o •
r:^r^-4Fsin
ocr, nor, ti«
C li.
: u
n u
u fie
*-• to c o
>- &. u z
O tn
211
-------
ISJ
O
SO
11Kf» 34BO.OO WIN OR fiB.OO HUE
UPSTREftH SEDIMENT INFI OH ,ono
0,000
0 ,OOC)
0.000
0 , ODO
0,000
fi.ooo
o.ooo
O.i>00
O.OOQ
0, 000
0,000
•*> . ooo
0,000
0.000
r.tiHc.
MO /I
.') .A?
20.91
2O ,H7
I 9 . /.4
JH.VH
JB.4A
in. 13
in, :. ?
1ft,.',',i
t R , (' 4
I V . 4'J
?f> , ST>
; .; . t. 7
24,40
27,1).
20, ft?
;*3« ,;y
7A.2I
i!9. AS
(.OH, H7
o.oAr.A"-"1
o.oooo
0,0000
0,0000
o.o noo
o.nouQ
o.onoo
<>,OOi>0
o , oooo
0.0000
O,00«)0
0 . 00
0,0000
o.oooo
o , oooo
0.1 0«0
O.OOOO
0 ,0000
0,00 of
4. OOOO
CIIH.M
o,o4?rli
0 . OOOO
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0, OOOO
o.oooo
o.oooo
0,0000
0,0000
O.OO'JO
0 . OOOO
0,0050
0,0000
0.0000
o.oooo
o.oooo
run, iif
O.O19O3
0,0000
o.oooo
o.ot no
0 >OQQO
o, no oo
O.OOOO
0.0000
o.oooo
o.oooo
0,0000
o.nooo
O.OOPO
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
um.nz
0,004;'?
0,0000
0,0000
0 > nOOO
o.oooo
0,0000
o.oooe
O.ODOO
0,0000
0,0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
O.DOOO
e.oooo
0,0000
0,0000
O.DOOO
rim. ft/
0.001*4
0, OOOi)
0,0000
0.4000
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
O.DOOO
0,0000
0.0000
o.oooo
o.oooo
0,0000
0,«000
CIIH, ni
0,0010*
o.oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
o , r»ooo
O.OQflO
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
CUM, 07
O.OOOT.9
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
O-.ObOO
o.oooo
0.0000
o.oooo
0,0000
0,0000
o.oono
0.0000
0,0000
0,0000
0,0000
o.oooo
0,0000
run. nz
o.ftofn?
o.oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
o.oooo
0.0090
o.oooo
0.0000
o.oooo
O.OCiOO
o.oooo
0.0000
o.oooo
0.0000
0,0000
0.0000
C'lfl.PZ
O.OOO 19
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
O.OtirtO
o.ooO'i
o.oooo
0. OOOO
0,0000
0,0000
o, oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
r.un.iM
0.000(57
0.0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0.0000
o.oooo
0.0000
PS1
EH.
NO,
2
3
4
.
7
g
i li
i w
1 1
12
13
14
15
14
17
18
19
20
REftfl SEDIHENT INFLOW (IftS/SFC)
Q VFI.. US nilH.nZ.
CFB rr/src t/sr.c FT
7.15
740
7A1
B07
fl70
904
921
940
9A2
97A
979
9fl6
990
142?
J 1?7
1425
MSB
.21
. 77
,57
,52
, 09
,43
, 1 4
, 43
. 72
,53
, 1 A
,43
.93
,95
. 02
,77
, 1J
.51
,J9
Ot
1 .28
J ,13
0,5P
e) . S7
1 , 1*
1,10
1 . 16
0 .A?
1 ,21
0,81
1 ,10
1. 01
4.9ri
0,79
0,*2
^
1
1
t
1
J
1
I
1
1
1
1
1
I
I
•Ji
V»D
.007
,01 A
.021
.024
,029
.0.18
, OS1
,093
• 1AB
.309
,41A
,SK!
,71 4
,?on
,1,JA
O.OOO
o.ooo
o.ooo
0.000
0,001)
o.ooo
0,000
0,000
0,000
o.ooo
O.ODO
o.ooo
o . noo
0,000
0.000
o.ooo
O,O«f>
o.ooo
0,000
Hli/l.
'1
?J
!S
1.9
IB
ia
is
is
if
t?
21
Tl
J7
19
71
21
,f,B
. 22
.SB
,T)9
.95
.40
.;','
,20
.4*
, IO
.VI
, t?
,H3
,47
,,'t.
,4f,
,97
o.oooo
r:i)M.n7
O.O-IIO
o.oooo
o.oooo
0,0000
0.0000
0,0000
O.OOnO
0,0000
o.oooo
0,0000
>>,oooo
o.oooo
0,*>0»0
0,0000
0,0(100
o.oioo
<* , oooo
0,0000
0,001)0
0,0000 0,0000
0,049?) 0,01903
0,
0.
0,
0,
0,
0,
o .
0,
0,
0,
0.
0,
0 ,
0,
0.
0.
0,
0.
0.
oooo
oooo
oooo
oooo
oooo
OOOO
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
ftOOO
00(40
oooo
0,0000
Q.OOOO
O.OOOO
0,0000
o.oooo
o.oooo
O.OQflfJ
0.0000
O.OOOO
o.oooo
0.0000
0,0000
0,0000
0,0000
o.oooo
O.OOOO
0,0000
fl.OOOO
0,0000
0,0000
iiim.i)?.
0,00437
0 , 0004
o.oooo
O.ODOO
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
is, oooo
o»ooiio
0.0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
0,0000
0,0000 0,0000 0,0000 0,0000
ruh.i>7 mm. uz run.oz cun.nz
O,001*4 O. 00103 0,00059 O.O0037
o.oooo
O .0000
0.0000
0,0000
o.oooo
0,0000
o.ooao
0,0000
o.oooo
o.oooo
0.0040
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0.0000
0,0000
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
.0000
,0000
.0000
,0000
.0000
.0000
,0000
,0000
.oooo
,0000
,0000
,0000
.oooo
.oooo
,0000
,0000
,0000
,0000
,0000
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
0,0000
o.oooo
O.OOOO
0.0000
o.oooo
0.0000
0,0000
0.0000
0,0000
0.0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0,0000 1 ,2flOO
cn«, PI cun.uz
O.OOOJ9 O, 0(1007
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
,0000
,0000
,0000
,0000
,0000
,0000
,0000
.cooo
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
.oooo
.oooo
,0000
0,0000
O.OOOO
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
O.QOOO
o.oooo
0.0000
0.0000
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
O.onoo
0,0000
-------
)1MF» 3360.00 HIM OR './..OP MRS
UPSTWflN SEBJWEWT IUFI 0« !l,BS/SFC> i
SEn. o MFL. r,s r.tiH.Dz i.ttm:,
NO. crs FT/prc t/srr FT «r./i
0.0000 0,0000 0,0000 0,0000 0,00*0 O.OOOO
i:iin.»* riiH.u?. cim.iir CIJH.O?: mm. a? COM.M cim.nz
.oATn'.r1 0,049m o, 0190:1 0.004?? 0,001*4 0,0010? o. 00039
O.OOOO 0,0000 1,3600
con.nz CUH.DZ CUM.DZ
o.oooif 0,0000?
M
O
00
2 SOU. 44
3 S2I.63
4 ns4,Ai
S 914,40
A MA. 4)
7 992,54
8 1014. ft?
9 1025,77
10 1031. 4H
11 1038.18
If. 102;'. AA
13 1028.77
14 101.1 .A.'
IS 981.07
14 9f,«i,3?>
17 1447,13
18 143?, AS
19 1442.65
20 H.1/,04
T1HF = 342
1 . 0.i
1.2A
1 . M
0,63
O.A,'
1,22
O.HO
1.1*
0.71
1.20
0. A,i
1.23
1 »(n)
0,81
1 ,
0.000 ?0.09
IS , OtSO 1 V , 7A
0.000 Ifl.BR
O.OOO (B.S.I
0,000 IB,, IB
o.ow in.Att
O.OOO 19.43
O.noo 2i),/7
o.ooo r>:-,s9
i), oiiO ?*i,i;,
O.OOO ^B.JO
0,0(H> .(:'.?»
0,000 37,4?
O.OOT 4.^,3'.'
0,000 3^.44
ft.HOO 37,2.?
O.OOO 42. AO
O.OOO 1«,9.>
,OO MRS
UPSTRFAN SEDIMENT INFl m UPR/SFO ;
SEfi. 0
NO, CFS
2 777.9O
3 BOS. 25
4 H J 3 , *> K
3 P72.10
6 9 J 2 . SB
8 979.1".'
9 994 . 16
10 t OOiS .21
11 1020,04
12 1O1A.A4
13 I0?l .87
14 1011.78
15 998.30
I A 9H4.SO
17 USD,/?
18 1449. ?A
19 5449,94
20 1449. S4
UFl .
FT/srr
I .00
1 ,2*
1.'.'
O.At
O * Al
1 ,20
0,7'*
1,14
0, ?O
1,19
1 '.23
t , 0 0
c.ni
J .07
1. 01
0 . V *
0,79
0,9,>
fis
t/BFt
I .0,'fr
1 ,077
,O41
,0'if
,082
, no
1 **
,2&A
,3*:.
.494
t ,4-,A
1 ,847
•7.0A9
2.32A
2 . A ,' 7
?,?flA
3.410
run. [i/ rnwr. .
FT Hfi/1.
0,000 '.'i . 1.'
0.000 70. SO
O.OOO '.">..* A
0.000 19. 13
0, M<> »H,A1
0,000 1ft. 2A
o.ano t;i.i7
0.000 tf.'l?
0,0«IO 3
o.oop i9,nn
(5.OIH) ,M .SI
O.OOO 2^.44
o.non ;'A.i:i
O.POO 7V. AS
0.000 33. AH
O.OOO ?•", . A9
O.OOO .•V.D'.i
O.POO 13.00
0.000 37.73
o.oooo
o.oooo
0.0000
0,0000
O.O'tOA
o.oooo
r) .OOOO
o.oooo
0 . OOOO
0,0000
o. of)oo
o.oooo
O,OfH>0
0 .OOOO
0,0000
o.oooo
<» , AOOO
o.oooo
o.oooo
0,0000
rtm,f"7
O.OASA7
D.OOI.'J
0 ,0OOO
0 , OO«)0
o . oooo
O.OOOO
0,0000
O.OOdO
o.oooo
o ,00^0
0,0000
O.OOO!)
o , oooo
o.oooo-
O.O'lOO
0,0000
o.oooo
o.oooo
O.OOOO
0 . 00»0
«.oooo
o.oooo
0 , <}O
0,0000
0,0000
o.oooo
0, OflOO
O.OOOfl
o.oooo
O.OOOO
0,0000
0 , OOOO
o, oooo
0,0000
o.oooo
0.0000
0,0000
0,0000
0,0000
o.oooo
rim ,i'Z
A. 04921
o.rooo
O.OCHIO
0 , OOOO
o.oooo
n.?
0.004.0
o.oooo
o.nooo
0 .0000
o.oooo
o.oooo
o.oooo
o.oooo
O.OODO
o.oooo
0,0000
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
i) , o«»oo
0,0000
0,0001
o.onoo
0,0000
0,000(5
o.oooo
0,0000
O.OirPO
fl.OOOO
0,0000
0,0000
0,0000
o.nooo
0.0000
0,0000
O.OOOO
0,11000
o.oooo
o.oooo
O.OOOO
0,0000
0,0000
KUft. 07
0,oni*4
,»,m,oo
o.oooo
o,oo«o
0,0000
0,0000
o.oooo
0,0000
o.oooo
O.OOQO
0,0000
0,0000
0,0000
0, OflOO
0,0000
0,i)000
0.0000
O.OOOO
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0.0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
CUM. 07
O.OOIOJ
o.oooo
o.oooo
0,0000
0,0000
0,0000
o.oooo
0,0000
o.oooo
o , oooo
O.OOOO
0,0000
o.oooo
o.oooo
0 , OOOO
0.0000
o.oooo
o.oooo
0,0000
0,0000
0.0000
0,0000
o.oooo
O.OOQO
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o. oooo
O.OOOO
0,0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
cun.nz
0,0005?
0,0000
O.OQOO
0,0000
o.oooo
o.oooo
0.0000
0,0000
o.oooo
o.oooo
0.0000
n.oono
o,0oon
o ,0000
o.oaaet
0,0000
o.oooo
O.OOOO
O.OOOfl
0,0000
0,0000
0,0000
o.oooo
0,0000
0,0000
O.OM1
0.0000
0,00(1(1
0.0000
0,0100
0,0000
o.oooo
0.0000
0 . OOOO
0.0000
0,0000
o.oooo
0,0000
0,0000
o.oooo
CUM. HZ
O.OOOS7
5.0000
o.oooo
o.oooo
0,0000
o.oooo
o, oil oo
O.MOO
o . ooro
0 .OOOO
0,0000
O.OOOO
o.oooo
O.OOOO
O.OTOP
o.oooo
0,0000
0 , oooo
0,0000
0,0000
0,0000 0,0000
0,0000 0,0000
0,0000 0,0000
0.0000 O.OOOO
0.0000 0,C>OOO
0,0000 0.0000
0.0000 0,0050
0,0000 0,0000
0,0000 0,0000
0.0000 0,0000
0.0000 0,0000
0. OflOO 0.0000
O.OOOO 0,0000
0,0000 o.oooo
0,0000 o.oooo
O.OOOO O.OOOO
0.0000 0,0000
o.oooo o.oooo
0.0000 0,0000
O.O'iOO 1 ,3500
ctm.pz cun.cz
0,OOO19 O.OOOQ7
S.OOOT 0,0000
o. ofloo o.ooeo
0,0000 O.OOQC
O.OOO1 O.OOO'J
0,0000 o.oooo
O.OQOO 0.0000
C».f»000 0.0000
o.oooo o.oooo
C>,C000 0.0000
0,0000 0,0000
O.O&OO 0.0000
o.oooo o.oooo
o.oooo o.oooo
O-.GrtOO 0.0000
o.nooo o.oooo
0,0000 o.oooo
0.0090 0.0000
0,0000 0,0000
O.OOOO O.OOOO
-------
Tl«r* 3600,00 HIM PR 60,00 HRS
UPSTREAH SEtltHEWT IttFI OM I
sin. o VH. . «s i:tiH.t>7 tuiNn
MO. CFS rT/SFT I/SFT FT HO/1
0,0000 0,0000 0,0000 S.OOOO O.OOOO O.OOOO O.OOOO 0.0000 0,0000 1.2800
MIH.II? nuH.n? ram.117 nim.n^. CUH.O* r.im.oi KIJM.DZ cun.oz CUH.BI cun.pz
O.a/>r>A? 0.04??1 O.0190.1 O.OO4B7 O.OP1A4 O,00103 O.OOOH9 O.OOO.17 fl.Oflfl19 0,0000?
2
3
4
S
i
7
0
V
10
11
12
13
14
J5
16
17
IS
19
20
/)',
19
I, H
in
)H
Ift
IB
Ifl
IS
jf
,".o
If.
IA
17
19
. 1 V
.M
,AH
,71
, 1A
,f,f,
,90
,AA
. 1K
,no
,14
.Si
,HH
, 45
,'.S,»
.49
,57
.9?
, V;1
O.
0.
0,
o.
0.
0,
0,
o.
0,
0.
o.
0.
0,
0,
1).
0,
0,
0,
0,
OOOO
OOOO
OODO
nooo
OOOfl
0000
0000
OOOO
«»ooo
oooo
oooo
ottoo
OODO
oooo
OfjDO
OOCVO
nooo
oooo
oooo
0.
0,
** ,
0.
0,
0,
0.
o.
0,
0,
0,
0.
0.
0,
0,
0,
0,
0.
0.
oooo
oopo
oooo
0000
oooo
0000
oooo
oooo
nnnn
oooo
OOOO
oooo
onoo
oooo
oooo
oooo
(KM»O
oooo
oooo
n
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
o
0
0
. oooo
,0000
.oooo
.oooo
,0000
,0000
.oooo
.0000
.0000
.oflfto
,*> J
SEI, o vr.\.. HR r.un,»7. ci»»c,
NO. Crs FT/PFF l/SFf FT Mf./l
0.0000 O.OOOO 0.0000 0,0000 0,0000 0,0000 0.0000 0,0000 0,0000 1.2200
PJM.M P1M.II? rUh.H7 CUM.1)7 RDH.B7. CIIH.tlT. Cyn,D2 CUH.ftZ CUH.M CUfl.OZ
fl.OA"*.? 0.04921 O.OI9O.1 0,00427 0.001A4 0,0010* 0,OOOf-9 «.000717 O.O0019 0,00007
2
3
4
5
^
y
9
9
10
1 1
j 2
13
14
IS
14
17
IB
19
20
A9A.01
71&.2S
/I.7 .05
753 , 83
77 7 * ^0
R04 .21
?M5. 5H
P51 ,89
R7? * 1 B
S95, S3-
9 1 / . 1 9
918,93
?M,f A
949. 14
941 ,51
134P.21
tKAH.Rf
1374.54
C<73.3?
1 ,03
I.?5
1 . J 3
0 .5*
0,*i4
1 . 14
0. 7.1
1 .07
0 i A4
1 , 13
q , AO
1, 18
0.9 A
o.eo
I . U
0,9«
0.9?
0.7B
0.91
«,9AO
0,975
o.9fl;»
O.?91
0.999
1 ,007
1 ,01ft
1,019
l .OKri
1,033
1 .044
1 ,059
J ,079
1 . )OA
1 .143
1 ,194
I , ?.(>?.
1,351
1.4A4
0.000
0.000
0 . 00<>
o.ooo
O.OOO
O.OC'O
o,tm<)
0,000
0,000
o.ooo
0,01)0
0,000
O.ODO
o.ooo
o.flrto
0,000
O.ODO
0,000
O.OOD
*?, 10
21 ,B2
^1 ,?A
?] ,CVA
?0.59
SO.Ofr
If ,13
19,16
18,fl.»
IB. 49
JR,?S
1H.47
tH,!5;»
JR. AB
19, 1) A
14,19
14.H3
15,73
1/.0»
o.oooo
0.0000
O.OOOO
0.0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
0,0000
o .oooo
o.oooo
D , oooo
o.oooo
0,0<)OO
o.oooo
0.0000
0,0000
0,0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
0.0000
0.0000
o.oooo
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
o.oooo
o.oooo
0.0000
0,0000
O.OOdO
0,0000
i, oooo
0,0000
O.DOOO
O.OOOP
U. OOOO
o.oooo
o.oooo
0,0000
o.onoo
0.0000
O.i>0<»0
0.0000
0.0000
o.oooo
0,0000
0.0000
0,0000
o.otjoo
0,0000
0 , OOOO
0,0000
0,001)0
0.0000
0,0000
o.oooo
0,0000
0,0000
o.ijoot)
0,0000
O.DOOO
o.oooo
O.ilOOO
o.oooo
0,0000
o , oooo
o.oooo
0,0000
0,0000
0,0000
0.0000
o.oooo
0,0000
0.0000
o.oooo
0,0000
0.0000
0,0000
0,0000
0,0000
0.0000
0»0000
0,0000
O.DOOO
0,0000
0.0000
o.oooo
o.oooo
o.oooo
0.0000
0.0000
0.0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0.0000
0.4000
o.oooo
0,0000
o.oooo
i), OOOO
0,0000
0.0000
0,0000
0,0000
o.oooo
0.0000
0.0000
0.0000
0,0000
o.oooo
O.OOOO
o.oooo
0,0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0,0000
0,0000
0.0000
0.0000
0,
-------
TIME* 4200,00 BIN OR 70.00 MRS
UPSTRCAH SEOIHEH1 IWFl OH ItRP/SFO I
SEH. o VEI . BS am. o/ none.
«o, crs FT/src */SEC Ft «r,/t
O.OMO 0,0000 0,0000 0,0000 0,0000 0,0000 0.0008 0,000(1 0.0000 1.1AOQ
njHUi? rtm.t>7 cim.n? C.UK.IIZ ruH.nr cim.nz CUM,02 CIJH.D? CUH.PJ CUH.PZ
O.Oftf.A? O.O477I O.O17O3 0,0043? 0,001*4 0.00103 O.OOOS9 O.OOA3? 0,0001* 0,00007
K!
2
3
4
5
&
7
8
9
10
11
12
13
14
15
16
17
IB
19
20
A:'i.7T>
«2.1*
*??,«!)
*28,34
A SO. 7 7
A36.74
A47.Q1
A5f,.3e
4A?.7'.<
673,74
AH8.7;'
AB8.A9
701 .M
718.73
734.OO
1037.48
IQA.I.ATi
108?, 12
1075.78
1.03
l.l*.
l,»f,
0.4?
0.4S
1.06
O.A4
o.«
O.H?
1,04
0.50
1 .06
o.as
0.70
I .01!
0,90
o.fts
0.7S
0.7J
0,9.50
0,930
o,93fl
0,930
0,9,10
0.930
0.7:iQ
0,931
0.93?
0,933
0.9SS
0,?37
0,941
0.944
0.719
0.9Ti4
0,9*j9
0.7A5
O.V71
O.OOO
0,000
OirtOO
0,000
o.ooo
0,000
o.ooo
0,000
i) , 000
0,000
0,000
0.000
0,000
0,000
0,000
0,000
o.ooo
O.OOfl
0,001)
y. 3 . ? 7
?3,9fi
?'1 . 75
?3.72
SI. V»
23,40
22.97
?r.7A
?;r,M
2?. 17
at .77.
21 ,0)
2 1 . •» B
21 ,0<4
JO. 71
1 4 . 7 S
H.1S
14,30
14.17
o.oooo
0,0000
0,0000
0,6000
o.oooo
O.OOOO
o.oooo
o.oooo
o.onoi}
0,0000
o.ooiso
o.oooo
0,0000
0,0000
o.oooo
o.oooo
0,0000
0,000(3
o.oooo
0.0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0.0000
0,0000
o.oooo
0,0000
o.oono
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
o.onoo
0,0000
o.oooo
0,0000
O.tiOOO
o.oooo
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
O.OOOO
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
o.oooo
0.0000
0,0000
o.oooo
0,0000
0,0000
0.0000
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0.0000
o.onoo
0.0000
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
0.0000
o.oooo
0,0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0,0000
o.oooo
0.0000
0,0000
0,0000
0.0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0,0000
o.oooo
o.ofloo
0.0000
0,0000
0,0000
O.OflOO
o.oooo
0.0000
0,0000
0,0000
0,0000
O.OOPO
o.onoo
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
o.cooo
0.0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0,0000
0 , OOOO
o.oooo
0,0000
0,'iOOO
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0.0000
0 , 0000
0.0000
0,0000
0.0000
0,0000
0 , OOOO
O.OOOO
0,0000
0,0000
0,0000
0.0000
0,0000
0 , 0000
0,0000
0,0000
0,0000
TIME* 4240.00 HIM OR 71.00 HRS
UPSTREflH SEDIMENT INFLOW CLBS/SECJ
SCR, D yet., fiR cim.iiz
MO, Crs FT/RFC t/SET FT
time.
0,0000 0,0000 0,0000 0,0000 0.0000 0,0000 0,0000 0.0000 0.0000 1,1*00
(1UH.U7 CIIM.F)/ r.tiH.fiZ CUH.M CIIH.OZ CIJH.DZ cun.oz CUH.DZ cun.fj; CUM, or
0,049?} 0,01903 0,00437 0,001*4 0,00103 0 . OOO59 O.OOOS7 0,00019 O.OO007
2
3
4
s
7
a
9
10
11
12
13
1 4
1«^
ij
1 7
1 R
I o
19
20
431.30
431 .48
A2A.SA
A39, 73
440 .37
A43.51
451,41
460. 65
A73.B5
A73.71
4BS* 40
70 1.19
71 JS « 1 1
1 01 1 , 5£
1030 , Al
4043 , 00
1041 •/»
1,03
1,16
1.15
0.4?
11.4s!!
1 .06
0.74
O.HI
1 ,04
0.49
1.05
0 , H4
1 .02
0,90
0.82
0.74
0,92
0.7.10
0,930
0 i 930
0.710
0,930
0,930
0.93O
0.93O
0,931
ol933
0 . 7 .IS
0.93P
0.941
0.?45
1) , 74V
0.754
0.7AO
0 . 000
0,000
0,000
0,000
0.000
0.000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
o.ooo
0,000
o.ooo
0,000
?3
S3
7,1
73
23
22
z?
21
?1
14
14
14
14
.98
.97
,79
,87
, 14
.20
.87
,44
.97
.74
.66
,7«
o.oooo
o.oooo
0.00 DO
o.oooo
o.oooo
0.0000
0,0000
0,0000
o.oooo
o.oooo
O.OOOO
0.0000
0,0000
0,0000
o.oooo
0,0000
O.OOrtO
o.oooo
0.0000
0.0000
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
O.OOOO
0,0000
0,0000
0.0000
o .0000
0.0000
0,0000
o.oooo
O.GOOO
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
o.oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0 , 0000
o.oooo
o.oooo
0.0000
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0,0000
o.oooo
0.0000
0,0000
o.oooo
o.oooo
0.0000
0,0000
0.0000
O.OQOO
o.oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0 . 0000
0.0000
O.OOOO
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0.0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
o.oooo
0.0000
0.0000
0,0000
0.0000
o.oooo
0.0000
0,0000
0.0000
o.oooo
0.000©
0,0000
0,0000
0.0000
0.0000
0,0000
0.0000
o.oooo
0,0000
0,0000
o.oooo
0.0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
0.0000
0.0000
1.0000
0,0000
0,0000
0,0000
o.oooo
O.OQOO
0,0000
0,0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0.0000
O.OQOO
0.0000
0,0000
0,0000
o.oooo
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
0,0000
0.0000
o . oooo
0,0000
0.0000
0,0000
0,0000
o.oooo
0,0000
0.0000
0,0000
o.oooo
0,0000
o.oooo
o.oooo
0 , 0000
0,0000
0,0000
0,0000
0,0000
O.OQOO
o.oooo
0,0000
0.0000
0.0000
0 . OOOO
0.0000
0,0000
0,0000
0 . 0000
0.0000
o.oooo
0,0000
-------
Q-fiftCJ OOOOOOO OQOOQOOOOOQ©
•«* - c ooocooococooocoooo©
w» JE O OOOOOOOOOOOOOOOOOOO
•"* U
OOOOOOOO'&OOOOOOOOOO
OS© OOOOOOOOOOOOOOOOOOO
(ft * c OOOOOOOOOOOOOOOOOOO
* 3 Q .««»**.*****•*«.** + »»
OOOOOC-O
oooo^oo
•ocoooco
OOOCO
oar: P-4 Ch
O ca *™
e * c*
o c o
* D ©
C- 4J *
Oooc©eooooOoooooooo
OOOOOCOOOC OfflOCOOOOO
oooooooooo OOOOQOOOO
ooooooococococooooo
ooc-cocecooocooocooo
00^0000000
•c- ocfooococc
-c e c o c o c ooo
©CO OoOOOOOOOOOOO^OOOOO
©ui * OOOOOOOOOOOCOOOQOOO
CrvfN. OOOCOOOCOCOOOOOOOOO
esc, ocococ-ooooococooooo
c *o oo©c©c-oc.oooooo©ooco
O £ O
-30
o^c ooooocococoooooooc©
gijjg^j. ©OOOOQOOOQCrOOCOOOOO
*^O *.»*****»»»***••***
ou * ooooooooocooooooooo
©
CCCCOOOOOOOGOCO
o - **
o * o o
cC° o
O is. w
c s <
O - i"
O K, C
•:? c
C (L* *
OOOC
oco
C K **•
e ft w
C « *
O 3C C;
* 3 O
O L. -
oooooo
- CCC.COOOOOGOO
-c-oocccooocoo
coo COC-OCOCGO
oococ-o
Q-9- COCCC-OC
OCO *
ooo
occcccoo
'
O-=C CCCCCOOC-OC-COOCCCCOC
0*0- oooococooooccrocoooc
o i»r
oosooooooo ©ocooococ
C Z f
* ™ o
© L; -
cooocococccccocccoc
occooococc cocoooooo
oooo-cc-c ceo
c cooooo
O^-~ OO©GCOCOCsC©(SoOOOO©©
o^r; ooccoocccoooccooC'O©
o *s> ooc-ococcccooocc-ccc©
OZ'V OCOOCOCJOOOCOCOCOCO©
c
C f* r, £?CCO©eC-C-OOC©C*CC;GC'OC
OS'C CCCCC'CC'C-C-OS'OCOOGC-CO
O -1,1 C-COOCOCCOOCGCC-OCG&©
€2U * OOCOC©^'©'^'©£5©S'COOCCCr
ee -3s •* o
r*1. Kl T» f J f-.f' ^ f K*i L* *P *
- r;. C-. *s r; r; r^ r* r. -H »•* ^
LT «
c x s
X E>*'3h't>* ^*Ot -CiT.^Cil 9* O* "C»«^Ci5*T *v O •*"
pr r; n « r; m «
r. f* ?« M f- t4 r»
OOOOOOCsOC-CO*
M r^ r« r» TV w b" j**! bi *1
occ
a * o
eoeoccocccoccccc-coo
- ccc *"•«"•• v-
«: c s^
O ™i •*>
oooo r
„ ^ r- O
»- -," tr*
© S U' N
o yj r> t^
- C U.
O "**
CL O
M Ul
«*• in m
u» ct
ft *-
i- a. •
H LJ
Ml &
216
-------
TIME" 4440,00 HIM OR 74.OO HRS
UPSTREAM SEMMFNT INFIOU (IPS/SEC) t
SEfi. 0 WEI.. I>B r.UH • »7 mNC,
NO, CFS FT/SF.C I/SF.C FT MR/1.
Q.OOOO 0,0000 0.0000 0.0000 O.OdOO O.OOOO 0.0000 0,0000 0.0000 I,1100
i:iiH,M7 njn.t>7 ctin.nz CIIH.D* r.tm.M cim.nz CUN.DZ CMH.DZ CUH.DZ cu»,»z
' 0.049S1 O.OtfOJ O.QO427 O.OOJM 0.00103 O.OOOS9 0.00037 0,0001"? 0.00007
2
Q
9
1 O
1 V
1 2
« T
* J
1 4
1 3
17
1ft
19
20
At 7. 7V
£ J B , 46
A 1 B , f s t
*?0« 00
i*t* 0 . 04
A21 ,33
A7S , 4 1
A?7.6S
A30 . O3
#•34 ,S4
£42 ,51
A4 2 » 14
449 , 91
661 ,54
9S6. 72
970-3*
983 .94
9«?»87
1 . 16
0.48
0,44
1,05
0.93
0 , 49
1 . 03
0, 47
i , 03
O»B3
0.47
1 .00
O.B7
0, 70
O.B9
0,9,'r,
0,925
0.9',* A
O.92H
0,9.'B
0,929
0,939
0.930
0,930
0,931}
0 ,930
0,930
0 , 9 J J
0.932
O.9.M
O.93P
O.V37
0 . OOO
0,000
0.000
0,000
o, ooo
0,000
o.ooo
O.OOO
o.ooo
o.ooo
0,000
o.ooo
o , ooo
0,000
0.000
o.ooo
o.ooo
0,000
0,000
•.'3.99
7.3.97
24.00
? 1 .0')
23,?*
.'3,a?
73.74
23.49
?3.?t>
?3 . ?(
?3 ,¥1
?? .M
?? i.'fi
1 R . A ]
*5, 41
15,2^
15. SB
O.OOOO
0,0000
o.ooco
o . o'joo
O.OMO
O.OOOO
O. 000(1
O , OOttO
O.onoo
o.oooo
0 . OOOO
0 , f)Oi>0
o.oooo
o.oono
0,0000
o.oooo
o.oooo
o.oooo
o.ooflo
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
o.onoo
0,0000
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
0.0000
O.OOOO
o.onoo
o.ooon
•o.oooo
0,0000
0.0000
o.oooo
0 . 0<»0
o.oooo
o .oooo
o.oono
O.DOOO
o.oooo
0.4000
o.oooo
o.oooo
0,0000
o.uooo
o.oooo
o.onoo
0,0000
0,00(10
0.0000
o , oooo
0,0000
o.oooo
o.oooo
0,0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
O.OOOf)
0,0000
o.oooo
0,0(100
0,0000
o.oooo
0,0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
O.QttOQ
0,0000
o.oooo
o.oooo
o.oooo
0.0000
0,0000
0.0000
O.OOCSO
0.0000
o.ooon
0,0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
'M 00
?4 ,OA
24.02
24.02
23.99
S3.P4
23,79
23, #7
i'3.41
73, 4S
'J3.72
22.86
27, AO
15,83
15.72
15.74
J5.A4
0,0000
nttN.n?
0.0*5*3
0,0000
o.ooon
o.oooo
0,0000
o.oooo
i> , oooo
0,0000
o.oooo
0,0000
o.oooo
0,0000
tl , 0«OO
o.oooo
o.oooo
0.0000
0.0000
0,0000
0 . OOOO
0.0000
CUM . fi7
0.049?!
0,5000
0,0000
0,0000
o.oono
o.oooo
0.0000
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
O.OOOP
0,0000
0.0000
ft, 0000
0,0000
o.oooo
0.0000
0,0000
o.oooo
CltH.flZ
O.O1903
o.oooo
0.0000
0,0000
0.0000
I), 000(1
0.001)0
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
O.OOOO
0,0000
0.0000
0.0000
0,0000
o.ooon
0,0000
0,0000
r.uH.n?
0.004J7
I). 0000
o.ocioo
0,0000
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
0,0000
o.onoo
0.0000
0,0000
o.oono
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.ooon
CMK, I>£
0,001*4
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
ruiH.oz
0,00103
0,0000
0.0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
0.0000
0.0000
0,0000
0,0000
0.0000
o.ooon
0,0000
0.0000
0.0900
0,0000
cun.oz
0,000f.9
0,0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
o .0000
0.0000
o.oooo
0.0000
o.oooo
0.0000
0,0000
0,0000
0,0000
0.0000
o.oooo
0,0000
0,0000
CUM.fiZ
0,00037
0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
0,0000
0.0000
0,0000
o.onoo
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
0.0000
0,0000
0,0000
CUM.DZ
0.00019
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0.0000
0,0000
o.QooQ
o.oooo
0,0000
0.0000
0.0000
0.0000
0,0000
0,0000
0.0000
0,0000
0,0000
0.0000
1.1300
CUM . B2
O.OOO07
0.0000
0.0000
0.0000
0,0000
0,0000
o.oooo
0,0000
0 .0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
-------
© SM r*
« e o
•• * O
-S> O
*»u .
ooooooeooooooooo ooo
OO&OOOOOOO£»OOOOOOOO
OOOOOOOOOOOOQOOOOOQ
o FM rv
O a o
O*o
-* c o
oooo-ooooooooooooooo
OOOOOOOOQO OQQ«3>OOOOO
oooooooooo ©oooooooo
oooooooooo ©OOGOOCSOO
O *» ©*
e o -
O " C
O C 45
• a o
O V *
OOOOOOOOOOOOOOOOGOO
oooooooooooooooo^oo
O r- o
o a •>»
c * c
o c o
* 3 O
oooooooooo ooooooooo
ooocoo oooc ooooooooo
OcOOOOOOOcOOO G OOOOO
O ** K
e ea K
c « c
o x c
• D c
o u •
o
o ** e*
O G. f.
o - c
o c c
• a o
o o •
O B O
o » •-
O X O
—
QCOCOOCKOOOOOOOCOCO
ceOC<^C-O«iOOOC.Oc:O©OOC>
ocoooeooooooooocooo
©OCOOCCJOOOOOOQOO ooo
ocooooooooooooooooo
o
o
o
o
o
o
e
c
o
o
c
c
c
c
0
c c
0 C
c o
o o
o o
o o
e o
c o
00
oo
O Q
o c
c c
o o
0 C
e o
c o
c o
o o
e> o
a o
c o
0 C
c o
0 O
o es
o o
O 0
0 C
o c
C 0
C 0
c o
o o
o o
c o
c e
C 0
c o
o o
O 0
C 0
c c
o c
o o
c o
c o
c o
O G
C 0
C 0
e c
o c
o o
o o
oc
oc
o e
0 O
0 0
o
o
o
o
c
e
c
c
c
o
c
c
o
o
o
o
o
o
o
o
o
o
c
o
o
c
o
o
c?
c
o
c
c?
o
c
c
c
o
c
c
c
c
c
o
o
o o
c o
o o
o o
o o
o c
c e
c o
o o
o c
o c
o c
e c
0 0
C o ooo ooooocoocooo
oooo oooooo *s«soo©o ooo
OOOC-OOGC.OO
oc-cccooooc
OOOOOOOOOO
a ooooo
ooocoo
oGcoOO
OOO OOO
OOOOOOOOOO
• ooocoocco
'ooooeooco
O K' f.
o a fi
o * ^
o c c
O 3E C
• 3 O
cocoooccoo
ccccce "oco
QOOC OOOCOO
O »Ni rt
o c c
O - 0-
0 $ *•
o C -
COO
ooc
O J*4 K
O c O
o * «•
-so
o c -
o
c - tr,
o x <
* — C
O (J -
ocooooeooc occcocc cc
c-ococccocoeocccocoe
oocococococoooco e-oc
-
c ocooe ccccc-oc ooo wC>c
crocoooc ocococ oc-oooc
O !"£ **
o c r*[
C - Ch
ceocco
oooo ooc-ooo
oooooooooo
OOOCGOCCO
co^c-cceoo
occc-oooco
oooooocoo
ococ cccccc occcc-ooce
cccoocc-coo coco-s-occo
C'OCOC-COOOC OOC2OOOCOO
OQC?O COCOQOCOCOOOCOO
"oooccecoo -ffic-cococroc
u « t-
UJ * (^
at se
o e
A
UJ
•fi
LJ
0020 coo
OOOOOC C'CCOC'COOQ
coc-cc-o COC-G.COOOO
OoC"OCoi:ocooccooo coo
O (/) !
« £&
K ™l
« O ^ X
c — »
r; * u;
*- — ' in
O Z -jhi **.
O UJ > k-
M C
*o u
•W Ifl
OOCOOGCOO
ih^^SED W IT*
-------
O !>• I*-
o e o
o * e
*« * o
*sa e
OOQOOOOOOOO© a o o o o o o
OOOOOQOOO©o oo o o o o © o
OOOOOOOCOOOCOOoOOOOO
fit * Q ©O0OOOOOOOOOOOOOOOO
** U * OOOOOOOOOOOOOOOOOOO
3C O
• 30
OQQOOO ocoo ©ocooooo©
o o © a- o o o ©OOOG-OQGOOG-O
o r* *x
C a «
e - o
ore
- Z3 O
C U •
ooooooooooooo o G ooco
QCO-eoooGOooooGo oooo
ooooooocoooooooc coo
©O-OCOOOOO©OG-O oooooo
o © © o © c -©- oooooo oooooo
©OQCOC.QOQOOC OOOQCO<5
•OGOOOOO GOOOCOCOOOGO
oooooo ooooooooooooo
O « «
C * O
££ K 0
* S c
O U '
OCOC-OC-OCOOOOO c© ©CO©
ococococ©c ©oo ©00000
©c-OGoeooo© oco cocoeo
©QOCOOOCOQGOQ o o © Q Q o
OoOCOOOOOO OOO G O O O O O
O **J fr
O i- k
o - o
ON K
coo
o • ••
O £ ©
* ^ c
o c- •
ooooooo ooooooooooco
OCOCOOO GOC OC- O©OOO©O
ooocooococooooooooo
oooooo ooooo© o©o©o©o
OOOOOO OOOOOOOOOOOCO
oococc ococooooococo
ooooooo oocoooooooc-o
C rj fr
o a r.
o - o
oco
* 3 O
o u -
ococ©c©oooooooooc-oo
ocficocccoc-oooeoooc-o
ocoeOcocOe ooooococ©
OOOO©OOOOOOQ© o OO OO©
oooooooooo oooo o coo©
OOOQOOOOOOOOO QOO ooo
ooooooco©cooooooeco
cooococccccoccoooco
coooc©coooc?oooc "-'.coo
-
c ccoooooc ©GO ©oooocc
0*0
- 3 C
c c -e
G. » -^
C 3C C
-so
O A 1^
O • f
o c c
-3 C
o t-i *
ooooc©c ooococ c Oc
eo-ccc-oecc ccc-ocococ
cc?c?oe©ccooccc ceococ
c cCooo^^^c- GCCOC Q-COO
•CQCOOOOOC© COC OC OOOCf
O GC-QC-OOGO-Q CJO^GO QCSOO
ocoo ooco-co OCOOOOGC©
oococoocoo cce COG oc©
eooocooeoo
o -A: <
O "t"
CCCOG-CCCOCSC-©COC©COC
o x:
-r
O U
- r, r * *r *« •
- -* r* ce e% EC
<•-. r* ". r. TV c^ r* c. "••; r^ r; f^ r; j
© ©cocc
a _j
ta o o c o —• *-• *- **• t^ 4 f * r, r- r* r* ri r^ m K
oe o c x ».*.. + -*...»*..*...
e.*- » oocooococococo'coeoc-
u.
Z X
*» — 6* c««ii-'rtro
05TU.S, .***.*
OU>H- »<*^*-iOC*«*i
* C I*.
o «
a 0
<4} yj l»T CD *^ fl (N IX i
•T6S <« ^ps.(?,Eh«r»-
O i*. *,.»**
•C (^- ®* &• O G ***
a lil a^ *" "/i MS -C -C
Lkt 6e
x *• - «
>- fit- M* X
!»* M U
PN m irt r* -* x rJ -c
'
It UJ
lu £
m *o f\ oo 0" o
219
-------
UNE" 4BOO.OO HIM OR BO,00 MRS
UPSTR£*H SEBIBEH1 l«FI Oy (IHS/SFT.I
SEfi. 0 Met , r.r, niiH.n?
»*o, crs Fir/src I/SEC Ft
0,0000 0.0000 0,0000 0,0000 0,0000 0.0000 0,0000 O.OTOO 0,0000 1.0800
am.n? riiH.oz run. fir nm.nz r,u«,nz CIIH.DZ euH.BZ curt.oz CUH.BZ cuw.liz
O.Ofcf.*? 0,049?! 0.01903 O.O0477 O.CIOIA4 Q.0010J O.OOO59 0.90O37 0,00619 0.O00O7
2
3
4
S
&
V
a
, \ rt
42J.43
67A.71
i99,48
V01 .09
900.94
»O?.5i>
<5,9?
1.13
1.14
0,47
0,43
1,05
0. At
0,91
0.4H
1.02
0.4A
1,02
o.fl;'
0.64
0,97
0,64
0,74
0,65
O.H2
O.B90
O.B90
O.B9J.»
0 , B9S
O.B9H
0,901
0,904
0.90B
0,911
0,914
0.91A
0.919
0.971
0,*?J
0.9?4
0.92A
0.9?/
0.97R
0,97,9
0.01)0
0,000
0.000
0.000
0,000
0.000
0,000
0,000
u.ooo
o.ooo
o , ooo
o.ooo
0,000
0,000
0,000
0,000
o.ooo
0,000
o.ouo
*.'4,1A
74.79
3 1 . 3 S
74,17
«"4««A
73. 9S
23. US
7,1 , HP
7.1, V?
S3 . P9
73. B4
73,91
I'l.fll
J3.72
"»>3 .44
It. 4?
1A.4D
1£.50
IA.4H
O.OOOO
0.0000
0,0000
o.oooo
o.oooo
O , OftOO
o , oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0 . OOOO
0,0000
0,0000
o.oooo
0.0000
o.oooo
o , o^i'^o
o.oooo
0,0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
o.oooo
0.0000
o.oooo
0,0000
0,0000
o.oooo
0,0000
o.oooo
O.OOOO
o,oof>o
0,0000
o.oooo
0 . OtmO
0,0000
0.0000
0,0000
o.oooo
0,0080
0.0000,
0,0000
0 , OOOO
o.oooa
0,0000
o.oooo
(S.IJOOO
o.oooo
o.oooo
o.oooo
G.OQfio
0,0000
o.oooa
f* , ijOOO
0 P 0 O fff'"
o.ooot
o.oooo
0,0000
o.oooo
0,0000
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
0,0000
O.OOOft
<3,n[(OO
'(,(1000
O.OOOO
0,0000
0,0000
o.oooo
4. OOOO
0.0000
Q,OO?Q
0,000-3
o.oooo
0,0000
0,*JOO<1
0.0006
O.OOO'i
0 , 00f*0
0 . (10 )0
o.ooo.i
o. oooo
0,0000
0,0000
0.0000
o.oooo
0,0000
0,0000
O.OOflO
o.oooo
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
ft. oooo
0.0000
o.oooo
0.0000
Q.oooo
0,0000
0.0000
O.QOOO
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
O.OOOO
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
Q.OOOO
o.oooo
0,0000
o.oooo
O.oooo
0,0000
O.OOOO
o.oooo
Q.OOOO
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
o.oooo
0,0000
0 . OOOO
0,0000
0,0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
o.oooo
0.0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
o.eooo
o.oooo
0.0000
0.0000
0.0400
0.0000
0.0000
o.oooo
0.0000
0.0900
0.0000
0.0000
o.oooo
ro
o
TIME* 4BAO.OO KIN OR P1.00 MRS
OPSTRE&H SEDlttENT IMF I OU
-------
riHE» 4920,00 HIM OR fl?,00 MRS
UPStREIWI SOINENT SNFi.PM 7 nMH.D7 CMH.IIZ cim.n? Kim, n CIIH.BI CUH.DZ cun.oz CUH.BZ
O.O^SA? 0.049?! O.O19O3 0.004S7 0.001*4 0.0010* O.OOO59 0,00037 0,0001? O.OOO07
KJ
2
3
5
4
7
B
V
10
11
12
13
14
15
14
17
18
19
20
57:1.38
575.21
S'/S.SO
5B2, 18
SB / . HH
615,64
ti\n,S9
B8B.24
HB9.74
889,60
890.79
0,¥H
l.U
0,47
o. tz
1 ,04
O.AI
0.91
0, 4fl
1.02
0.1A
1 .01
!>,8l
O.fiS
0.9A
0.84
0,7,1
0»*4
0,81
O.HHO
O.BBO
O.HH?
O.B8S
0.8H7
0.890
a. fit A
0.895
O.B9R
0.901
0.904
0.707
O.910
0,913
0.91A
0,918
0.720
0,93?
0.9S4
0.001
0,000
0,000
o.ooo
0,000
0,000
0.000
0.000
0,000
0,000
o.ooo
0,000
0.01)0
O.OOd
n.ooo
'" .000
o,o«>o
0,000
0,000
"'4.AO
34 ,??
J4.57
74, M
?4,?,1
?4.07
?S»93
?S.90
i!3»91
?S,flA
Vl.Hl
Z^.90
:'i,«^
^3,77
^S.73
1 A , P 7
1A.SB
l*«il
14. A3
0,0000
0,0000
o.oooo
0,0000
n.oooo
O.QOOd
O.OQOO
0,0000
o.oooo
o.oooo
O.OOOO
O.OtiOO
(J.OOJIO
0,0000
o.oooo
O.OOQO
(5.0000
0,0000
0.0000
o.oooo
o.nooo
o.oooo
0,0000
o.oooo
o.oooo
ft, 0000
0,0000
o.oooo
0,0000
0,0000
0,0000
o.oono
o.oooo
0 , 0000
0.0000
0,0000
O.oono
0.0000
0.
0,
0.
0,
0,
0.
0.
0,
0,
0,
0.
0,
ft.
0,
0,
0.
I),
0,
0,
oooo
0000
0000
oooo
0000
oooo
oooo
OOOO
oooo
oooo
OOOO
OOOR
onoo
OOOO
0(K>0
oooo
OOOO
oooo
oooo
0,0000
0.0000
0.0000
0.0000
0,1*000
0,0000
o.oooo
o.ooon
0.0000
0,0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
0,0000
fl-QOOO
0,0000
o.oooo
0,0000
0,0000
0,0000
o.oooo
0.0000
0.0000
U.00OT
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
o.oooo
0.0000
o.oooo
0,0000
o.oooo
0.0000
0.0000
0,0000
0,0000
0.0000
0.0000
o.oooo
Oi &000
o.oono
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
o.oono
0,0000
0.0000
0.0000
0,0000
0,0000
O.OOOO
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
0.0000
0,0000
0.0000
o.oooo
0,0000
0.0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
0.0000
O.OOOP
0,0000
0.0000
0,0000
0.0000
0,0000
o.oooo
0,0000
o.oooo
0.0000
0,0000
o.oooo
0 ,00fit
o.oooo
0,0000
0,0000
0.0000
O.OOGO
o.oooo
0.0000
0.0000
0.0000
o.oooo
0,0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . OOOO
0,0000
0.0000
o.oooo
0.0000
0.0000
0,0000
0,0000
0.0000
0.0000
0.0000
0.0000
0 , OOOO
0.0000
0 . OOOO
0.0000
0.0000
o.oooo
0.0000
------- |