PB85-18Q859
       Combined Sewer Overflow Sediment Transport Model
       Documentation and Evaluation
       Sutron Corp.» Fairfax, Vfi
       Prepared for

       Environmental Protection Agency,  Cincinnati, OH
       Mar 85
L
               of Commerce
                InfofiiuiUon Service

-------
                                           PB85-180859

                                    EPA/600/2-85/024
                                    March 1985
       COMBINED SEWER OVERFLOW
               TRANSPORT MODEL:
     DOCUMENTATION AND EVALUATION
           Thomas N. Reefer
            Eric S. Clyde
        The Sutron Corporation
       Fairfax, Virginia 22030
       Contract No. 68-03-2869
           Project Officer

           Lewis A. Rossman
     Wastewater Research Division
Water Engineering Research Laboratory
        Cincinnati, Ohio  45268
WATER ENGINEERING RESEARCH LABORATORY
  OFFICE OF RESEARCH AND DEVELOPMENT
 U.S. ENVIRONMENTAL PROTECTION AGENCY
       CINCINNATI. QSI0  45268

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
1, REPORT NO,

  EPA/600/2-85/024
                             2.
                                                          3. RECIPIENT'S ACCESSION NO.
4, TITLE AND SUBTITLE
    Combined  Sewer Overflow Sediment Transport
    Model:  Documentation and Evaluation
             5. REPORT DATE
               March 1985
             6. PERFORMING ORGANIZATION CODE
7. AUTHORISE
    Thomas  N.  Keefer and Eric S. Clyde
                                                          8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS

    The  Sutron Corporation
    Fairfax,  Virginia 22030
                                                           10. PROGRAM ELEMENT NO.
                  IBC822
             11. CONTRACT/GRANT NO.

               68-03-2869
12. SPONSORING AGENCY NAME AND ADDRESS
    Water  Engineering Research Laboratory-Cinti.,  Ohio
    Office of Research and Development
    U.S. Environmental Protection Agency
    Cincinnati,  Ohio 45268	
             13, TYPE OF REPORT AND PERIOD COVERED
               Final   9/79 to 8/82
             14, SPONSORING AGENCY CODE
               EPA/600/14
IS. SUPPLEMENTARY NOTES
    Project  Officer:   Lewis A. Rossman   Telephone:   (513)684-7603
16. ABSTRACT
    A modeling  package for studying the movement  and fate of combined sewer  overflow
(CSO) sediment  in receiving waters is described.   The package contains a  linear,
implicit,  finite-difference flow model and  an  explicit,  finite-difference  sediment
transport  model.   The sediment model is coupled to the flow model by means of  a file
containing velocity,  depth, and discharge at each model  cross-section at  each  time  step
The operation & utility of the model package were tested using data from  a 20-km  reach
of the Scioto River below the Whittier Street  outfall  in Lolumbus, Ohio.  A preliminary
field investigation of the study reach in July 1980 collected sufficient  data  to  parti-
ally calibrate  the flow model. Data from a  CSO event in  September 1981 were  used  to
further calibrate the flow model & evaluate the sediment transport model  operation.
The flow model  reproduced stages & discharges  with sufficient accuracy for linkage
with the sediment model. The sediment model produced smoothed estimates of sediment
concentrations  that fell within the scatter of observed  data in most instances. CSO
sediment sizes  &  the  armored nature of the  Scioto River  channel were such  that all
solids discharged from the CSO were convected  through the reach with no deposition
even at low flow. Experiments with the sediment model  indicate that it can be  used  for
qualitative assessments of the fate of various size sediment size fractions  if proper-
ly calibrated.
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                             b.lDENTIFIERS/OPEN ENDED TERMS
                          c.  COSATI Field/Group
    Combined  Sewers
  **Sediments
  **Mathematical  Models
    Water Quality
  Scioto River
  Sediment Transport
  Sediment Sampling
  Flow Routing
       13B
t8. DISTRIBUTION STATEMENT

    Release  to  Public
19. SECURITY CLASS (TMs Report)
  Unclassified
                                              20. SECURITY CLASS (Thispage)
                                                Unclassified
21. NO. OF PAGES

__  232    	
22. PRICE
EPA F«™ 2220-1 (R»». 4-77}   PREVIOUS EDITION is OBSOLETE

-------
                             DISCLAIMER

     The information in this dociuient has been funded wholly or
in part by the United States Environmental Protection Agency under
Contract No. 68-03-2869 to The Sutron Corporation.  It has been
subject to the Agency's peer and administrative review, and it has
been approved for publication as an EPA document.  Mention of trade
names or eomnercial products does not constitute endorsement or
recommendation for use.
                                  11

-------
                                   FOREWORD

     The U.S. Environmental Protection Agency is charged by Congress with
protecting the Nation's land, air, and water systems.  Under a mandate of
national environmental laws, the agency strives to formulate and Imple-
ment actions leading to a compatible balance between human activities and
the ability of natural systems to support and nurture life.  The Clean
Water Act, the Safe Drinking Water Act, and the Toxics Substances Control
Act are three of the major congressional laws that provide the framework
for restoring and maintaining the integrity of our Nation's water, for
preserving and enhancing the water we drink, and for protecting the
environment fron toxic substances.  These laws direct the EPA to perform
research to define our environmental problens, measure the Impacts, and
search for solutions.

     The Water Engineering Research Laboratory Is that component oi: BPA's
Research and Development progran concerned with preventing, treating ,tnd
managing municipal and industrial wastewater discharges; establishing
practices to control and remove contaminants frora drinking water and to
prevent Its deterioration during storage and distribution; and assessing
the nature and controllability of releases of toxic substances to the
air, water, and land from manufacturing processes and subsequent product
uses.  This publication is one of the products of that research and
provides a vital cosmunleation link between the researcher and the user
community.

     This report documents the development and field application of a flow
and sediment transport model specifically designed to study the movement and
fate of sediment material from combined sewer overflows.  The modeling package
reported on here will assist In the assessment of water quality Impacts from
urban non-point pollution sources.
                                       Francis T, Mayo, Director
                                       Water Engineering Research Laboratory
                                     ill

-------
                                   ABSTRACT

     A modeling package for studying the movement and fate of combined sewer
overflow (CSO) sediment in receiving waters is described.  The package con-
tains a linear, implicit, finite-difference flow model and an explicit,
finite-difference sediment transport nodel.  The sediment model is coupled
to the flow model by means of a file containing velocity, depth, and discharge
at each nodel cross-section at each time step.  The operation and utility of
the model package were tested using data from a 20-km reach of the Scioto
liver below the Whlttler Street outfall in Columbus, Ohio.  A preliminary
field .Investigation of the study reach in July 1980 collected sufficient data
to partially calibrate the flow model.  Data from a CSO event in September
1981 were used to further calibrate the flow model and evaluate the sediment
transport model operation.  The flow model reproduced stages and discharges
with sufficient accuracy for linkage with the sediment model.  The sediment
model produced smoothed estimates of sediment concentrations that fell within
the scatter of observed data in most Instances.  CSO sediment sizes and the
armored nature of the Scioto River channel were such that all solids discharged
from the CSO were convected through the reach with no deposition even at low
flow.  Experiments with the sediment model indicate that It can be used for
qualitative assessments of the fate of various size sediment size fractions
if properly calibrated.

     This report was submitted In fulfillment of contract No. 68-03-2869 by
the Sutron Corporation under subcontract to W. E. Gates and Associates under
the sponsorship of the U.S. Environmental Protection Agency.  This report
covers the period September 11, 1979 to December 31, 1981, and work was
completed as of July 30, 1981'.
                                      iv

-------
                                    CONTENTS

Foreword  ...............  	  ....  til

Abstract  ..........................  	   lv

Figures   	  .....................  	   vi

Tables	vll

Acknowledgements  ..  	  ......  	  .......

1.  Introduction  ..........  	  .............    1
       Background			    1
       Objectives   ........  	  ...........    4
       Scope  ...........  	  .............    5

2.  Summary of Findings	    6

3.  Conclusions and lecouaaendatlons	    8
       Conclusions  ...........................    8
       Recommendations  .........................    8

4.  Sediment Model Theory   .......  	  .  	  .....    9
       Model Background   ....  	  .......    9
       Model Theory   	  ...........  	  .   14
       Model Operation  .................  	  .   28

5.  Scloto liver Study  ... 	  .........  	   40
       Description of Study Reach   ...................   40
       Data Collection and Analysis Procedures	   43
       Model Results  ...........  	  ..........   53

6.  Analysis of Results   .. 	  ................   56
       Flow Model	   56
       Sedinent Model   .....  	  ...........   57

References .  	  ..............  	  ..   69

Appendix A:  User Coding Information  ......  	  .......   72
Appendix B:  Flow Model Source Code	   94
Appendix C:  Sediment Transport Model Source Code   ...........123
Appendix D:  Data for Scloto River Study    ...............  146
                 Flow Model Input   ...................  146
                 Flow Model Output  	  .......  154
                 Sediment Model Input   ...  	  ........  184
                 Sediment Model Output		191

-------
                                   FIGURES


Unaber                                                                  Page

4-1  Coaputational Stencil for the Linear, Implicit
     Finite-Difference Solution of the Flow Equations  .........    13

4-2  Computational Stencil for the Explicit Solution
     of the Sediment transport Equations  ...,..»  	    24

5-1  Scioto River Study Reach 	 ...,...,.....,    41

5-2  A Schematic Diagram of the Scioto River Study Reach   «,.....    42

5-3  WMttler Street Contained Sewer Overflow Outlet	    43

5-4  Typical teach of the Scioto liver  ................    44

5-5  Typical Cross Section of the Scioto River  	  .....    45

5-6  Bottom Profile of Scioto River and Model Cross Section  Locations  .    46

5-7  DH-59 Sediment Sampler Being Lowered off Frank Road Bridge  ,  ,  ,  .    49

5-8  Scioto River Stage Hydrographs Between 4:00 p.m., 14  September
     and 8:00 a.m., 16 September 1981 .................    52

5-9  Variation of Suspended Solids with Time  ......  	    55

6-1  Deposition and Erosion at Section 2, Scioto River   ........    64

6-2  Model Results from Storm Hydrograph with CSO Sediment,  Scioto River   65

6-3  Correlation of Suspended Solids, COD, BOD, and DO
     at Route 762 Bridge		67

6-4  Correlation of Suspended Solids, COD, BOD, and DO
     at Route 665 Bridge ........................   68
                                      vi

-------
                                    TABLES

Umber                                                                 Pag£

5-1  Bed Material Size Distributions .................   47

6-1  Typical Particle Size Distributions ...............   59

6-2  Particle Size Distribution of Suspended Solids
     In CSO's in San Francisco, California . « .	 .   59

6-3  Particle Size Distribution of Suspended Solids
     in CSO's in Lancaster, Pennsylvania ...............   60

i-4  Particle Size Distribution for Street Solids
     Samples from Washington, B.C. ..»..,.*,.,..«....   61

6-5  Typical Particle Concentrations for Samples In This Study . . . ,   61

6-6  Typical Parameter Concentrations for Sanitary Sewage,
     Urban Surface Runoff, and Combined Sewer Overflows  ...,,.*   62
                                     vii

-------
                             ACKNOWLEDGMENTS
       Sutron gratefully acknowledges the cooperation of federal, state, and
private organizations in obtaining data for this study. The U.S.  Geological
Survey district office in Coltmbus, Ohio, was most helpful in providing flow
data. The Ohio Environmental Protection Agency provided much of the needed
cross-section information. The efforts of Burgess and Siple, Inc., of
Columbus in collecting the sediment samples and tf.l. Gates of Fairfax,
Virginia, the prime contractor, in coordinating the study are also Acknow-
ledged.
                                   viil

-------
                    ENGLISH TO METRIC             UNITS
cubic feet per second  (cfs) x 0.02832



feet (ft) x 0.3048



Inches (in.) x 2.54



miles (mi) x 1.609



square miles (sq mi) x 2.590
cubic meters per second  (in /s)



meters (m)



centimeters (cm)



kilometers (km)


                     2
square kilometers (km )
                                      ix

-------
                                SECTION 1
                               INTRODUCTION
BACKGROUND

       The model development and verification described in this report trace
their origin back to a number of previous Environmental Protection Agency
(EPA) studies. These studies and their influence are described briefly here.

       Considerable effort has gone into the study of sewer systems, treat-
ment, and control. Less is known, however, about the impact on receiving
waters of material which escapes the sewers via urban stormwater runoff and
combined sewer overflows during storm events.

       One of the early pieces of research indicating the impact of runoff
on receiving waters is described in a 1974 EPA report authored by the North
Carolina Water Resources Research Institute (1), An intensive study was
                                 2
made of the runoff from a 4.33 km  urban watershed in Durham, North Carolina.
The urban runoff yield of chemical oxygen demand (COD) was equal to 91
percent of the raw sewage yield. The biochemical oxygen demand (BOD) was
equal to 67 percent, and the urban runoff suspended solids yield was 20
times that contained in raw municipal waters for the same area. The study
identified the "first flush" phenomena, wherein water quality may deteriorate
drastically in the early period storm runoff as built-up pollutants are
flushed from the system. The importance of sediment as a pollutant was em-
phasized by the facts that plain sedimentation of the runoff resulted in 60
percent COD removal, 77 percent suspended solids removal,  and 53 percent
turbidity reduction.

       The Durham study was limited to direct urban land runoff. When this
runoff is collected in a combined sewer system and routed to a treatment
plant, additional problems are encountered.  It is obviously uneconomical to
                                     1

-------
design treatment facilities large enough to handle all of, say, the once in
100 years storm flow plus the normal municipal sewage load. Thus, at some
high flow rate provisions must be made to bypass the treatment facilities
with a mixture of sanitary sewage plus urban runoff. This combined sewer
overflow (CSO) material is characteristically dumped directly into a receiv-
ing water. The Durham study provides ample evidence that discharging the
CSO mixture is not very different from discharging raw sewage in the re
eeiving water. Strong evidence is present suggesting that CSO discharges in-
tensify dissolved oxygen sag and increase fecal coliform concentration.

       The adsorptive and absorptive capacities of CSO sediments has a
significant effect on the pollution potentials of these sediments during
periods of re-entraimaent. Pitt and Field  (3)  have reported that little
is known about either the short- or long-term toxic effects of urban storm-
water runoff in a variety of waters and ecosystems. Since large amounts of
toxic materials such as heavy metals, pesticides, and PCBs may  be  dis-
charged along with nontoxie biological and chemical materials, it is
desirable to trace the route of these materials taken through a receiving
water system. Understanding the paths of sediment-related pollutants along
with their effects would permit the determination of the most cost effective
solution to the problm. This information would allow the selective treat-
meat of critical items while natural disposal means might be suitable for
other parameters. The results would be an improved determination of the
actual amount of treatment needed.

       The need for studying the final resting place or "fate" of CSO
sediments has been fairly well established by previous and ongoing EPA
research. For example.  Field,  et  al.  (2)   note that most urban street
runoff is sand and silt with pollutant loads attached to the fine (<43
micron) portion. Donigan and Crawford (4)  established the principle of
computing transport of pesticides  and other pollutants by multiplying the
sediment transport rate by a factor. An EPA (September 1977)  contract with
Tetra Tech, Inc., of Pasadena, California, further establishes the correla-
tion between sediments and pollutant transport.

-------
       The  immediate precursor studies of the study described in this re-
port were conducted in 1979 and 1980 by the Sutron Corporation and Colorado
State University  (CSD). In the study, "Dissolved Oxygen Impact from Urban
Storm Runoff  (5)," a major study of recorded dissolved oxygen (DO) levels
below cities was undertaken. The results of the study Identified 11 sites
with strone correlation between DO deficits below  the EPA  1978 needs survey
recommendations and urban runoff.   The hypothesis was advanced that some of
the deficits might be related to entrainment of benthic sediments.   In a
follow-on effort supported by a grant to CSU, the movement and effects of CSO
sediments in receiving waters were Investigated (6).

       CSU conducted an extensive literature search for information on set-
tling velocity, size distribution, pollutant loading and other properties
nf C^O sediments. Sutron made use of this information to evaluate a modified
watershed-sediment model for determining the fate of CSO sediments. In ad-
dition to characterizing the sediments, a preliminary assessment was made
of the state of knowledge concerning the interaction between the sediments
and the receiving water and the impact of the biological community.

        The evaluation of the sediment transport model was conducted on a
reach of the Cuyahoga River between Akron and Cleveland, Ohio, This reach
harf been identified in the DO study as one with a strong correlation bet-
ween urban runoff and DO deficits. Data on streamflow into and out of the
reach were provided by the U.S. Geological Survev (USGS),  The USGS also
provided instream sediment discharge at upstream end. Sediment discharges
from the Akron raunlciBal treatment plant bypass, located near the upstream
end of the reach, were estimated f^om existing data.  The model was used to
predict the movement and resting place of the sediments.

       It was concluded from the model studv that qualitative predictions
of the fate of CSO sediments could be made.  When combined with flood-fre-
quency analysis, the model coul^ be <»se^ to evaluate the resting time of
deposits, the concentration of sediments in the flow, and other facts useful
for impact analvsis.

-------
       The Cuyahoga River study was not an adequate model verification be-
cause no data were available on sediment outflow from the study reach con-
current with sediment inflow data; no actual data on settling characteristics
or flow rates of the sewaee treatment plant (STP) bypass sediments were
available; no data were available to verify the buildup and erosion at the
locations oredicted by the model; and no data were available to determine
whether the sediments from the STP byoass behave as inert, noneohesive
particles as assumed and, if not, what the effect of this assumption is on
model results.

       The results of the movements and effects studies (6) led to reconmen-
dations for further study of both sites with strong DO deficits after runoff
events and the potential of sediment models for fate and effects studies. The
Scioto River below Columbus, Ohio, was identified as a suitable site for
further study.

       EPA responded to the recommendation for further study of the DO
deficit problem by initiating a request for proposals (RFP) for a detailed
study of the Scioto River from Columbus to Chillicothe,  Ohio. A contract for
the studv was awarded to W.E,  Gates and Associates of Fairfax, Virginia, in
the spring of 1980. Sutron Corporation and W.E. Gates nrooosed a modification
of the study to allow simultaneous study of sediment movement. The modifica-
tion was approved and the resultant effort is described in this report.
OBJECTIVES

       The primary objectives of the research were to document and further
verifv the sediment model package develooed on an exoerimental basis in
Reference (6). The intent of the research was twofold. First, it was hoped
that an Improved data set from the Scioto River studv would allow better
verification of the theorv used in the model nackage. Second, a tool will be
made available to other researchers for USP in studying the fate of sediment
materials in streams.

-------
SCOPE
       The effort was divided into two separate parts. The first cart in~
volved those tasks necessary to imnrove, test, and document the sediment
model package, and the second part involved those tasks necessary to  apply
the model to data from the Scioto River study.

       The tasks involved in the first part included

       *  complete restructuring of channel representation and storage in
          sediment model;
       •  modification of the armoring and settling computations in sediment
          model;
       •  improvement of coding structure in sediment model;
       •  testing of sediment model on simple cases for reasonable behavior;
       •  preparation of coding instructions for flow and sediment models;
       •  preparation of program lists for flow and sediment models; and
       •  writing operating procedures and calibration instructions.

       The tasks involved in model testing using Scioto River data
include

       *  selecting the study reach;
       *  acquiring and processing cross-section data;
       *  studying the selected reach at low flow conditions;
       *  setting up and preliminary testing of the flow model;
       *  acquiring and analyzing the storm runoff data;
       *  calibrating the flow model;
       •*  testing the sediment model;  and
       *  evaluating the model package.

-------
                                Section 2

                          SUMMARY AND FINDINGS



Findings Concerning the Model Package


      A major part of the work conducted under this study consisted of

testing and documenting a flow-sediment transport model package.  The

flow and sediment models are separable.  The flow model builds a file of

discharge, velocity, and depth Information that is used by the sediment

model.  The following should be noted;
      *    the flow model is of the linear, implicit type based on
           full equations of unsteady flow;
      •    the flow model is flexible and will provide detailed
           velocity, depth, and discharge information at 40 cross
           sections in a stream reach;

      »    the flow model is generally stable but sensitive to the
           accuracy of the downstream boundary condition when observed
           stages are used as input;

      •    the sediment transport model is an explicit solution of the
           governing equation of sedinent continuity;

      *    the sediment model will route multiple siie fractions
           with variable specific gravities and will simulate
           armoring by large size class material;
      •    the complex nature of explicit solution and large amount
           of output demands graphical output for interpretation;
      •    the lower size limit of theory in model of 0,063 ma,
           noncohesive sediments may restrict the model's use;
      *    the independent nature of the flow and sediment models
           require   that only small changes in cross-section geometry
           take place for realisitic answers;
Findings ConcerningSediment Movement in the Scioto River


      The model package utility was verified by modeling a 20-km reach

of the Scioto River below Columbus, Ohio.  A specially designed data set

was collected for use in the model package as part of a companion general

water quality study.  Findings from the Scioto River study are as follows;

-------
of two storm events sampled; the first provided only
sediment size information;
the second storm event data set was good and provided
most of the information needed for the model package;
the flow model was rapidly set up and calibrated;

the flow model reproduced observed stage variations on
the river with maximum errors of 1 foot and mean error
of 4 to 6 inches;

the size distribution of sediment materials from the
Wilttier Street CSO is smaller than the considered
lower limit of the sediment model technology;

material from the two events sampled is flushed through
the reach with no aggradation, even at low flow;

the predicted concentration of sediment are qualitative
in nature but well within the 20 to 50 percent errors
associated with sediment data; and
modeled, and observed variations in sediment transport
are closely in phase with variations in other water
quality parameters such as BOD and COD.

-------
                                 SECTION 3


                      CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS


       The following conclusions were drawn with respect to the model

package and its application:


       *    The model package is a useful tool for qualitative
            assessment of the movement of nonporous, noncohesive,
            biologically inert sediments In receiving waters.

       *    Considerable knowledge of hydraulics and hydrology may
            be required to set up, run, and Interpret model output.

       *    Hie sediment-transport in the Scioto River Is similar
            to that in a rigid boundary channel.

       •    All the sediment material from the Whittier Street
            CSO is fine enough to be transported by the Scioto
            River even at low flow,

       *    Sufficient correlation exists between variations in
            sediment-transport and variations in other water-quality
            parameters to suggest a close connection between the two.
RECOMMENDATIONS


       The following recommendations are made concerning further use and

improvement in the model package:
       •    A study to test the operation of the model under actual
            conditions in a sand-bed stream would be worthwhile.  To date,
            only hypothetical tests have been made.
       •    A study In which the model was used to estimate the fate
            of some toxic materials associated with sediments would be
            an easy extension of the package.

       *    Research into the transport characteristics of materials
            finer than 0.063 nan should be incorporated in the model
            to extend its range of utility.

       *    A small-scale experiment should be conducted with tracers,
            possibly in a laboratory, to verify the fate predictions
            of the model under controlled conditions.

-------
                                SECTION 4
                                         THEORY
MODEL BACKGROUND

       The model package described in this report consists of two components,
a one-dltnensional flow model and a one-dimensional sediment transport model.
The flow model Is based on technology developed through research of the U.S.
Geological Survey (USGS). The sediment model is based on research at CSU
sponsored by the EPA and the U.S. Forest Service. The models are run sep-
arately so that a variety of sediment boundary conditions may be tested
without rerunning the flow model. The models are coupled by data written
to files.

       The flow model was originally used by USGS personnel to simulate
highly unsteady flows on the ChattahoocMe River above Atlanta, Georgia (7).
The solution method used in the model is called fully-forward, linear, im-
plicit and is based on complete, one-dimensional forms of the continuity
and momentum equations describing open-channel flow. The model proved highly
effective in USGS applications. On the Chattahoochie River, a factor of 16
variations In flow occurring in 10 minutes was nodeled. The model flow data
were used as a basis for an accurate heat and mass transport model, Sutron
used the model with good success in thf study «f the Cuyahoga liver  (6).
The URGS has available a siwpHfied version of the model that it calls
J-879 (8).

       The sediment transport routines were originally develoned by Colorado
State University for the U.S. Forest Service (9) under sponsorship of the
EPA Athens, Georgia, research facility. A model was developed for use in
estimating sediment yield from forested areas. By varying ground and tree
canopy cover coefficients, the effects on sediment vield of various forest
management practices could be determined.

-------
       The GSU sediment transport routines were chosen because of their
physical base. That Is, the routines are based primarily on the equations
that describe sediment transport and very little on empirical relationships.
This approach should produce a more generally useful taodel.

       The next two sections of the report describe in detail the theory
and coratmtatloital techniques used hy the flow ?md «edimer»t models. Following
the discussion of theory, a general section on the use and limitations is
ptwr< ded.
MODEL THEORY

       This section describes in detail the theory on which the flow and
sediment model are based. The numerical computation techniques used in
the models and model coupling are also discussed. The flow node! is des-
cribed first, followed by the sediment model.
Flow Model Theory

       Techniques available for modeling unsteady open-channel flow have
advanced rapidly in the past 10 to 15 years, but almost all isodels are
based on the same basic equations. These are continuity equations describing
the conservation of mags.
and the conservation of momentun
       M . n 9U
       3t * U 3x
                                     10

-------
                                                                                     »»
where

       U   -  cross-sectional average velocity,
       A   "  cross-sectional area,
       x   m  longitudinal distance,
       t   a  time ,
       q   «  lateral Inflow per unit length,
       g   a  acceleration of gravity,
       y   =  depth of flow,
       z   *  elevation of the bed above some datum, and
       S,  =  friction slope,

This friction slope nay be evaluated from either the Chezy or the Manning equa-
tion, The Manning equation
       s
where
       n   •»  Mannings roughness coefficient,
       Q   »  discharge, and
       j»   »  hydraulic radius.

will be used In this report, Equation 3 is not dimensionless but is expressed
in SI units, fo convert to the Inch-pound system of units, a nuraerlcal value
of 2.22 must be placed in the denominator.

       Equations 1 and 2 are nonlinear in velocity, and no practical analytic
solutions are available for unsteady flow. Early efforts to develop computer-
based numerical solutions centered around the method of characteristics [Lai,
(10), Yevjevlch and Barnes (11), Wylie (12)].  More recent efforts have
centered around direct finite-difference solutions. Explicit techniques, an
                                      11

-------
example of which was pioneered by Garrison, Granju, and Price  (13), are
bounded by rigid stability criteria and tend to be expensive. Probably the
earliest truly practical solution technique was the nonlinear, implicit,
finite-difference scheme of Miein and Pang (14) which is unconditionally
stable for any time step and allows an accurate and economical solution for
most flow problems.

       The solution technique chosen here, called linear, Implicit, is a sub-
set of the Araein and Fang technique which  eliminates the need for iteration
when advancing from time step to tine step. In Figure 4-1, which illustrates
the f inite~diff ereiice grid, the solid black circles represent points where
all variables in Equations 1 and 2 are known, and the open circles represent
points at which variables are unknown. The subscript j designates the time
grid point, and the subscript i designates the space grid point.

       In viewing Figure 4-1, it is helpful to think of the stream as flowing
from left to right and of time as advancing from bottom to top. Time and
space derivatives are represented by the following respective finite-dif-
ference approximations:
                           fj
       3t ~ 2At    i + I    i + 1
(4)
and
              .   ff
            Ax    i + 1 "
where
       At  »  time step,
       Ax  *  distance step, and
       f   »  the variable whose derivative is sought, that is, U, A, or y,
                                     12

-------
                       12             ~            K-t K
                   •/T-*  O  O  eoet  Q tfQ O), O ooo DOS
                                      S r-^
         Figure  4-1.   COMPUTATION STENCIL FOR THE LINEAR, IMPLICIT
              FINITE-DIFFERENCE SOLUTION OF THl FLOW EQUATIONS

The approximation of  the space  derivative  at  the  unknown tine level  (j+1)
gives this scheme the name "fully forward" implicit. According to  Fread  (15),
this scheme is  the most stable  of the four-point  difference  techniques.  It
must, however,  be operated with a reasonably  small grid  size to maintain
accuracy.

       When the difference approximations,  Equations 4 and 5,  are  applied to
Equations 1 and 2, a  system of  equatijns of the following form is  obtained:
and

                 4- (C )V+I + (C >JUJ+I +
                 * tL;y    + tC;U
where B, C, D, and E are coefficients which are functions of fix. At, U, y, and
Manning n at the known time level, The friction slope at the new time  step
was approximated by use of a. Taylor series expansion about the old tine-step
value. For a given number of grid points, Nt there are N-2 such equations,

       Two additional equations must be provided at the upstream and downstream
boundaries of the modeled stream reach (1*1 , i=N, right and left of Figure 4-1),
The flow model documented here provides several options for both these upstream
and downstream boundaries. The options are discussed in the final part of
Section 4 of this report,
                                     13

-------
       When all N linear equations have been defined for a single time step,
a pentadiagonal matrix results. The model is advanced from the known (j)
time level to the unknown (j+1) time level by Inverting the pentadiagonal
matrix and thus solving for U., j+1, and y±  ,+1 for all N values of  i. Von
Rosenberg's (16) technique for pentadiagonal matrices (a double-sweep al-
gorithm) is used in the inversion.

       The lateral inflow term, q, is important to many modeling applications.
It can be used to handle small tributaries (negligible momentum contribution)
as well as positive and negative seepage.
Sediment Transport Model Theory

       The theory of the sediment transport routines used in the model
package is presented in Reference (6).  No substantial changes were made
for this study. A great deal of effort, however, was placed in revising the
numerical calculation procedures. The theory from Reference (6) is reviewed
here so that both flow and transport theories are available in one reference.
The computational technique for the sediment model is described (allowing
the theoretical review).

       The movement of sediment in a channel is governed by the equation of
continuity for sediment and sediment transport equations (such as fall
velocity and critical shear stress). The amount of sediment that could be
transported is described by equations of sediment detachment by the flow.
The equations used In the model are described below.  They assume sediment
particles are noncohesive, have constant specific weight, and are biologically
inert.
       The equation of continuity for sediment can be expressed as (Reference
(9)).
           +     +     m g  (volume/unit length/time)                 (8)
       3x    3 ti    3 1     s
                                     14

-------
where
           G
               (volume/volume),                                         (9)
       G   =  the total sediment transport rate by volume,
       C   =  the sediment concentration by volume,
       z   =  the net depth of loose soil,
       p   =  the wetted perimeter,
       g   =  the lateral sediment inflow, and
        s
       A   =  the flow area.

       The sedloent load can be broken into two main categories, bed
material load and suspended load. Bed material load consists of sediment
particles that move by saltation (jumping) or rolling along the stream bed.
Suspended load consists of particles that are transported above the bed by
the turbulent nature of the flow.

       To simulate the actual grain size distribution found in soil samples,
the sediment load may be broken into any specified numbers of size fractions.
The sediment continuity equation is then written using arrayed variables
according to sediment size. The percentage of sediment in each size fraction
is accounted for in the transport equations.

       9G (I)
       —§_— + —__ + —!____ = g(i)  (volume/unit length/time) ,

where I indicates the size fraction that is being calculated (1=1   number
of size fractions, currently limited to 10 in the model).

       The sediment transport equations are used to determine the sediment
transporting capacity of a specific flow condition. Different transporting
capacities are expected for different sediment sizes. The transporting rate
of each sediment size can be divided Into the bedload transport rate and the
suspended-load transport rate. Before a particle can be transported, however,

                                     15

-------
 it mist be detached from  the channel bed,  (In all cases, "particle" will
 refer  to spheres with specific gravities of 2.65. The model will accept
 other  specific gravities, but this will be discussed later.)

       When a river flows over its bed, It exerts a tractive force on  the
 bed in the general direction of the flow. This force is called the boundary
 shear  stress and may or may not be large enough to cause sediment particles
 of varioi'S sizes to move. The shear stress at which a given particle begins
 to aiove is the critical shear stress. Critical shear stress depends mainly
 on the specific gravity and diameter of the particle and is given by the
 following equation:
       T  = S (Y  - y)d   (force/area),                                 (11)
        ess      s
where
       T    -  critical shear stress
        c
       Y   B  the specific weight of sediment,
       y   -  specific weight of water,
       d   ~  particle diameter, and
       6   =  a constant,
        s

       The general form of this equation Is attributed to Shields, who com-
pared the ratio of gravitational forces holding a particle down to the in~
ertial forces of the flow wanting to carry it away. Analyses comparing
the ratio of the energy to cause particle motion and to resist motion give
similar results. Laboratory experiments have shown that this beginning of
motion criteria Is valid for particles with specific gratlvities from 0.25
UD to 8. There is little reason to suspect heavier particles would not also
follow this relationship. The constant, 6 , h*»s bf-en reported to be 0.06 by
Shields (17) and 0.047 by Meyer-Peter and Muller (18).

       Shields1 critical shear criterion is generally accepted for cohesion-
less particles of 0.0675 mm or greater sand sizes. Sediment that consists
of silt and clay particles shows greater resistance to erosion.

                                     16

-------
        Equations describing the bed load transport generally follow the form
 given by BuBoys (19) and is closely related to the critical shear stress
 criteria. These equations are written as:

        q,  « a(t  - T )   (volume/unit width/time)                      (12)
         o      o    c
 where
        Q   -  the bed load transport rate in volume per unit width.
         b
         T       -  the boundary shear stress acting on a sediment particle and
         o
       a and b  «  constants.
The boundary shear stress can be expressed by:
       T  - 4- pfV2 (force/area)
        o   o
where
       f   «  a Darcy-Weisbach friction factor due to grain resistance,
       p   =  the density of water, and
       V   =  the average flow velocity.

       numerous laboratory experiments have been conducted to determine  the
values of  a and b. A  simple and widely used bed load transport  equation  is
the Meyer-Peter Muller  equation  (20):

           » .	§	_ (T  _ T  )1*5  (volume/unit width)               (14)
        b    r  (      ~\   °    c
            /p  (Y  -  Y)
                 s
 A discussion of various bed load equations is found in  Reference (19).
 The Meyer-Peter Muller bed load equation is incorporated in the mwdel at
 present but any other formulation could be used if proven more acceptable
                                      17

-------
for the particular type of modeling to be done. Reference  (20) gives a
complete description of numerous other formulations and their limitations.

       The suspended load plus the bed load gives the total sediment load
carried by the stream.  Sediment that is carried in suspension consists
usually of smaller sized particles continuously supported  by turbulence.
Settling velocities for suspended loads are usually quite  small.

       One of the most widely recognized methods for estimating suspended load
was developed by Einstein (22) and was modified by Colby and Hembree (23).
The modified Einstein procedure is incorporated in the model and Is described
below.

       The sediment concentration profile which relates the sediment concen-
tration with distance above the bed (9) can be written as
                               Bw
               	    (dimensionless),                     (15)
       Ca*
where
       C
        |  =  the sediment concentration at a distance 5 from the bed,
       C ... *  the known concentration at a distance "a*" above the bed,
        a*
       IL,  *>  the hydraulic radius, and
       w   **  parameter defined as
            V
             ____ (dimensionless)                                       (16)
Here, V  is the settling velocity of the sediment particles, and IL is the
       S:
shear velocity defined as:
                     (length/time)t                                    (17)
                                     18

-------
1m which specific shearing stress,  TA,  is  defined as:





       T  -  - fpV2  (force/area),                                       (18)
       A logarithmic velocity profile  is  commonly  adopted to describe the


velocity distribution of turbulent  flow and  can be written
       ue                 e
       =*• - B. + 2.5 An  (-&-)  (dimensionless),                          (19)

       U*    l           ns
where
       U   =  point mean velocity at a distance £  above  the bed,


       B.  -  a constant dependent on roughness, and


       n   =  the roughness height.





The integral of suspended load above "a*1* level in the flow is  obtained by


combining Equations (15) and  (19) as follows;




              R
       q  -  /  U C dC (volume/unit length/time)

        s   a*   I ^

                                                                       (20)




                          + 2.5 i  (-S-;"1
                                 n  n
                                     s
Let
       o = ~- (dimensionless), and
           R
       G - ~~— (dimensionless)
           R
                                     19

-------
and substitute them into Equation  20 :
      q  » C JLa* ——	

       S    ** *   (1 - G)W
                                    ,s ,                  -      ,5
           £no
                            (volume/unit length/time)               (21)
According to Einstein (22), the sediment concentration near the bed layer,


C *, is related to the bed load transport rate,  q, ,  as:
 9                                               D





      q.  = 11.6 C .U,a (volume/unit width/time)                    (22)
       D         3" "





where a is redefined as the thickness of the bed layer, which is twice  the


size of the sediment.






      The average flow velocity, V, is defined by the equation:






           /R u d£

      V « °_—§— (length/time).                                  (23)


           /R dC
          o






Using Equation  12 ,






      V  =B  + 2.5 £n /R \       (dimensionless).                 (24)
              + 2.5 £n /R \
                       hr)
                       Vs/
Einstein (41) defined the two integrals  in Equation  21   as






             T        \w

       I ~ Q	1   ,ja (dimensionless)                        (25)







and



               /     \w
             iii  _ « i

                              (dimensionless)                       (26)
                                   20

-------
Since the integrals J  and J_ cannot be integrated  in  closed  form for most
values of wt a numerical method of determining J. and  J- developed by Li
(9) is adopted in this study.

      Substitution cf Equations (22),  (24),  (25), and  (26)  into  Equation (21)
yields the following expression given  by Simons et  al.,  (24):
                       W
                                        + 2.5 J
                                                2
(27)
           11.6 (1 - G)

           (volume/unit width/time)

The total sediment load per unit width is

      q  = q  + q  (volume/unit width /time),                       (28)
       CDS
and the sediment transporting capacity of the section G  is:

      G  = Pq. (volume/time),                                       (29)

where
      P = the wetted perimeter of the section.

The value of P can be approximated as the top width in wide channels.

      When considering transport by different sizes, Equation  (29)  should
be modified as follows:
      G  (I) = PF (I) q  (I) (volume/time),                         (30)
       c         at

where F  (I) - the adjusted fraction of the sediment in the i   size.
                                     21

-------
      The percentage In each size fraction on the surface changes over  time
because of armoring. Armoring occurs when the water transports the smaller
sizes more easily and leaves the larger size fractions behind. Thus,  the
percentages of surface material need adjustment each time step. If the
total loose soil depth is greater than D0» (the size of sediment for  which
                                        o*t
84 percent of the sample is finer), the adjusted percentages, F  (I),
                                                               3
can be written as
        (!) ,          (dimensionless) .                             (31)
       a
              1-1
                                M
If the total loose soil depth. _ , Z(I), la less than B_, , the adjusted
                               I™!                     I5*»
percentages must account for the layer of undisturbed soil that is dis-
tributed according to the original percentages plus the loose soil that
covers it :
      MD
               1
       a
              Dr
      M
D   -I  Z(I)
 8*  I-1
(dimenslonless)    (32)
      Often a size class or type of sediment particle is not found initially
in the bed material but is transported into the reach of the water flowing in
the channel. For exanple, the transport of heavy metals In a CSO may affect
material into a channel reach are used to further modify the adjusted per-
centages of size classes found in the bed. This modification was added by
Sutron as part of this study.

      The amount of sediment detachment from surface bed runoff is deter-
mined by comparing the sediment transporting capacity of the total available
amount of loose soil. By substituting the sum of the transporting capacities,
 M
 I  G (I), (given by summing the transport rates for M size fractions) into
1=1  c
the transporting rate given by Equation (8), the total potential changes
in loose soil storage *re determined as

                                    22

-------
     p
If SZ  >_ -2, the loose soil storage is enough  for  transport  and  no  detach-
                                                                  P
aent of soil by surface runoff is expected. Soil is detached if  £2   <  -Z  and
the amount of detachment is

      D - -D£[AZP -I- 7,j (length),                                    (34)
where

      D   •»  the total amount of detached solid and
      Dj  »  s detachment coefficient with values ranging  from  0.0  to  1.0
             depending on soil erodibillty

In flow over a nonerodible surface, the value for D,» is zero; in a  river
where the riverbed is always loose, the value for D,. is unity.

      The new amount of loose soil is further modified as  follows:

      Z(I) - Z(I) + D F(I)  (length),                               (35)

where £(I) is calculated for each size fraction of sediment.

      The basic theory used in the sediment model has now  been  presented,
and the computational procedure used in the model can be discussed. The
differences between the model as documented here and the original CSU
model are discussed.

      In contrast to the flow model, the sediment transport model uses
explicit calculations. That is, no matrix of linear equation constants
must be created and Inverted to advance from time step to  time  step.
Instead, a series of algrebraic equations based on known values at  three
points in space and time is used to compute values at one  unknown point
in space and time. The computational stencil is illustrated in  Figure 4
-------
T    »•*••»
                                                                 o   «
             12           J    l+t         CO*»UTAT«>N POINTS


                       • ALL VALUES KNOWN

                       a v*
         Figure 4-2..  COMPUTATIONAL STENCIL FOR THE EXPLICIT
               SOLUTION OF TIE
The calculation of derivatives can be weighted  in both  time  and  space  by
the factors UFA and WFB, respectively (Figure 4-^2), The coefficients are
generally set to 0.5 and roust be 0.5 or less for model  stability.

      In the original CSU model, as described in References  (6)  and  (9),
computation was specifically designed for watershed modeling.  Storage
was allocated for the four general computation  points,  and values were
moved into and out of the four general points from auxilary  storage
arrays. No subscripted variables were used  in the calculations.  This
computation method worked well In watersheds because of channel  branching
and a wide variety of watershed segmentation. In stream reaches, however,
the technique of four general points was exceptionally  difficult to follow.

      As part of this contract, the computation scheme  was modified so
that the sediment model storage and computation were similar to  those  in
the flow model. In the model presented here, all required values at the
known (j) time level are stored in one-dimensional, subscripted  arrays.
Similar arrays are defined for the unknown  (j-fl) time level.  The explicit
calculations for the values at the unknown  level proceed downstream by
means of computational loops that advance from  i=2 to i=N-l.  When one  time
step is completed, the known level, j, is exchanged with the newly computed
time level, j+1, and the process repeated.

                                   24

-------
      Changing from the watershed format to the array format  involved
changing most of the variable names in the program. The resulting model,
however, is much easier to diagnose and much more compatible  with stream
app*ications.

      At this point, it is appropriate to discuss the coupling between
the flow and sediment models. The flow model produces for each tine  step
a value of velocity and depth at the grid pcints (cross sections), which
represet.^ the stream reach under study. The flow model writes the velocity
and depth for each time step to a file. The sediment model reads the
depth and velocity information for each time step as required. Thus, the
sediment model can be run with a wide variety of boundary conditions with-
out rerunning the flow model. This inherently implies that no major  changes
in cross-section geometry occur because of sediment transport. In practice,
this means that the model must be used over reasonably short  tine periods
such as one week to one month.

      It is feasible to combine the two models and change the flow model
cross-section geonsetry between time steps based on the results of the
sediment calculations. In practice, this often results in an  unstable
model and is seldom justified,

      The mechanics of the sediment model calculations are as follows.
For a given set of four grid points [(i,j), (i,j+l), (i+l,j), (1+1,j-H)] ,
 the transporting capacity is first determined by using Equation  30
and the computed flow conditions from the water routing model. The poten-
tial sediment load concentration for a given size, fraction is then
       P      Gc(I)
      C ,,..> = 	  (volume/volume),                               (36)
These qualities are at time N 4- 1 and space j + 1 in the space-time plan.
When computing the potential sediment transport, the excess shear may be
zero or less, indicating that at that section of channel that particular

                                     25

-------
sediment particle will settle out. Even  though the excess  shear  is  nega-
tive, some particles may be transported  downstream because their settling
time may be too slow ma compared with the time it takes  the particle  to
move downstream at the average stream velocity. Thus, a  certain,  minimum
transport rate is maintained for that particular class of  particles,  This
minimum rate may be near zero when settling velocities are large enough.
This capability was also added to the model by Sutron as part of this study.

      "Hie potential change in loose soil storage for sediment in a  given
size fraction is
                           _  9
                                                         - a)
             (1 - b) 4  (CCI^A^1   - C(I)J Aj) ]}

                              (length)                              (37)
If  &Z (I) is positive, that size of sediment is aggrading on the bed;  if
it is negative, that size of sediment is being transported off the bed.
      The actual transport rate depends on both the availability of material
                                                P
and the transporting capacity of the flow. If dZ (I) >_ -Z(I), the avail-
ability is greater than the transporting capacity, Thus» the transport rate
for material in size fraction I is equal to its transporting capacity or
              " CP(I) (volume/volume),                              (38)
and the actual change in Z(I) is:

      AZ(I) -  AZP (I)  (length)                                      (39)
                                    26

-------
      If AZ  (I) < -Z(I),  the availability of material  is  less  than the
transporting capacity. The transport rate is limited by the availability
of loose soil, and the bed material concentration  is,  therefore,
          ""1"1

                  (b)  -   g(I)At  - e-G(I>*   (1 - a) +
                                                   , a)
                    - ^        (length;

and

      AZ(I) = ~Z(I) (length).                                       (41)

      The sediment transport rate Gg(I)    is determined by Equation   9  as
                              (volume/time),                        (42)
and the amount of loose soil available at the next time increment is

      Z(I) » Z(I) + AZ(I) (length)                                  (43)

      The computation of the transport capacity, armoring and loose soil
percentages, and the routing computations are in separate subroutines.
This allows the program to be more easily understood and changes to dif-
ferent transport capacity calculations or routing schemes to be more
easily accomplished.
                                    27

-------
MODEL OPERATION


      The preceding sections of this report described the general theories

and equations on which the model package is based. This section describes

operational features, limitations, and operating procedures. Model coding

instructions are presented in Appendix A.
Flow Model Features andLimitations


      The flow model included in the package is a thoroughly tested and

reliable tool that incorporates a nuraber of features for flexibility and

ease of use. The model has the following general features:
      •  it is based on complete continuity and momentum equations
         describing unsteady flow;

      •  stream reach geometry is represented by up to 40 cross sections;

      •  cross sections are depicted by point pairs of distance and
         elevation above arbitrary datum;

      •  it has a single value of resistance to flow at any cross
         section;

      •  resistance to flow at each section is constant or up to second
         degree polynomial function of depth of flow;

      *  it has arbitrary cross-section spacing;

      •  it can handle up to 20 tributaries;

      «  the lateral inflow or seepage is specified for each subreach
         (up to 39 subreaches);

      *  initial conditions are calculated automatically from upstream
         inflow and lateral and tributary flows at time equal zero by a
         step backwater subroutine;

      •  a variety of upstream boundary conditions are available, In-
         cluding single valued rating curve, specified stage, and speci-
         fied discharge with model computing stage;

      *  a variety of downstream boundary conditions are available, in-
         cluding constant depth (lake or ocean), self-setting based on
         previous time step, and specified stage;

                                    28

-------
   a variety of output options are available, including sup-
   pression of cross-section properties printout, selection of
   cross sections for depth/discharge output, and skipped time
   steps between printouts;

   no limit is placed on the number of time steps that can be run
   at once;

   velocity, depth, discharge, and water surface elevation are
   predicted at each cross section for each time step;

   it is applicable to stages ranging from zero to the onset of
   supercritical flow with short subreaches (one or two cross
   sections) of supercritical or adverse slopes acceptable; and

   it is exceptionally stable and will accept time steps from
   minutes to hours with maximum accuracy being achieved when
   the product of the time step and the average velocity equals
   the average crass-section spacing.
The general limitations of the flow model are as follows:


*  the cross-section spacing must be chosen carefully around
   sudden changes in slope or channel slope (see operating pro-
   cedures section);

•  it is not unconditionally stable since instabilities may be
   caused by drastic changes in flow (say factors of 5 or 6)
   between time steps or by drastic changes in cross-section
   properties over snail changes in depth;

*  it will not handle long reaches of supercritical flow (un-
   common in applications in any case);

»  it uses a single value of roughness at each cross section, but
   the value may be a function of depth;

•  the momentum of tributary flows is not considered;

•  it is not directly coupled to sediment model, and its cross-
   section geometry must be reasonably constant over the study
   period; and

*  the backwater subroutine will occasionally not converge around
   rapid changes in slope and will require addition of supplemental
   cross sections.
                              29

-------
Sediment, Model	Featuresand Limitations


      The sediment model included in the package has been thoroughly
tested as part of the study described here. It has been designed for
compatibility with the flow model described above. The general features
of the model are as follows:
      •  it is based on physical process equations rather than on
         empirical relations;

      *  it provides simultaneous routing of up to 10 size fractions with
         consideration of channel armoring;

      «  it handles variable specific gravity for each size class;

      *  the stream reach geometry is represented by up to 40 cross
         sections and all geometry data are passed from the flow model;

      •  it permits a variety of channel boundary conditions including
         uniform sediment size distributions at all sections or arbitary
         size distributions at some or all sections;

      *  it handles a variety of sediment inflow boundary conditions at
         the upstream end of the reach, including steady input and input
         as a function of flow for each size class (rating curves);

      «  it handles up to five sources of lateral sediment inflow (this
         is less than the allowed number of tributaries in the flow
         model);

      *  it handles steady or unsteady lateral sediment inflows;

      •  it has the ability to start the sediment model at an arbitary
         point within the time range of the flow model calculations and
         allows periods of steady flow or flow model Initialization to
         be omitted;

      •  it has the ability to set upstream sediment inflow to zero below
         a specified minimum discharge;

      •  it has a variable soil detachment coefficient;

      *  it handles a variety of output options including English or
         metric units, skipped time steps between printouts,and suppression
         of general information printout;

      *  the number of time steps is less than or equal to the number
         of time steps available from the flow model;

                                    30

-------
         It predicts total transport rate, cumulative aggradation/
         degradation, concentration, and aggradation/degradation by
         size class at e-
-------
model. Items marked with an asterisk  (*) are desirable but not absolutely
necessary;

      *  naps of study reach;
      «  cross-section geometry  (nay be taken from maps if no other
         sources are available);
      *  estimates of resistance to flow (Manning's n value) at each
         cross section (may be calculated if depth profiles are avail-
         able - - see following data items)|
    (*)»  depth discharge rating curves for points in the reach and at
         the upstream boundary;
    (*)»  flow depth at each cross section for one or more steady flows;
    (*)*  information on tributary inflows [_A combined sewer overflow  (CSO)
         entering within a model reach will be considered a tributary.]  j
      •  stage-discharge hydrographs at the upstream boundary for periods
         of interest; and
    (*)•  stage-discharge hydrographs at intermediate points in the reach
         for the same period as the input hydrography.

      The flow model can be set up and run with nothing more than geo-
metry and roughness data. The less information that is available, the
less accurate the results will be. For truly accurate transport modeling,
steady flow depth profiles (depth at each cross section for steady flow)
at  several discharges are highly desirable. Roughness variations with
depth and reach storage cannot be accurately modeled without such infor-
mation.

      The following steps must be taken to process the data and prepare
the flow model for calibration. Optional steps are marked with asterisks (*)

      *  code the geometry data  (cross sections) in point pair form
         according to instructions given in Appendix A;
      *  code the estimated roughness data;
      •  determine Ax's between cross sections from maps. Note that in
         typical streams a Ax of 0.25 to 1.0 mile is usually satisfactory.

                                    32

-------
         Use close spacing around constrictions or downstream of sudden
         expansions. Use close spacing upstream of points at which the
         slope of the bed increases or decreases greatly;

      •  select a model time step. In typical streams 20 minutes to 1
         hour is satisfactory. Maximum accuracy occurs when, on the
         average, the product of the velocity and the^time step is equal
         to the average Ax. Maximum accuracy usually requires small time
         steps with a tradeoff in cost;

      •  select upstream and downstream boundary conditions for the model.
         Obtain an upstream rating curve if needed;

      •  determine any tributary and lateral inflows for periods of in-
         terest or functions of time;

      •  code a period of low steady flow following the coding instruc-
         tions on Appendix A;

      •  run the flow model for sufficient time steps at steady flow to
         check for stability;

   (*)•  if the model is unstable at steady flow, first check the up-
         stream inflow and rating curves (if used) for accuracy; if they
         are correct, plot the unstable water surface and the longitudinal
         channel bottom profile. Locate the point at which instabilities
         originate and add cross sections upstream of that point. Reducing
         of the time step size may also help;

   (*)•  continue to add cross sections or change the time step until
         the model will run a low, steady flow with no instability.
         Increasing values also helps in some cases. In most cases the
         model will run on the first attempt;

      •  proceed with calibration if data are available.
      The following steps should be taken to calibrate the flow model so
that it accurately reproduces observed flow events. The amount of calibra-

tion that can be achieved depends on the available data. Maximum accuracy
occurs when steady flow profiles are available. Optional steps are marked

with asterisks (*). The steps for calibration are
      •  calculate the roughness coefficients (n values) at each cross
         section based c.i known depths at steady flow (25) ;
                                                                  2
   (*)•  fit second-order equations of the form n - n  + n-y + n»y
         through the n values calculated;            °
                                    33

-------
(*)»  run the flow model with the calculated roughnesses at the ap-
      propriate steady flows to ensure Its accuracy;

   *  in the absense of the first three steps, compare the depths or
      elevations predicted by the flow model at steady flow to known
      values at upstream and downstream boundaries, bridges, or other
      known points;

   *  adjust the roughness values at each cross section until the model
      matches observed conditions at steady flowj

   «  when adjusting n values, proceed upstream. Match the downstream
      boundary first and work upstream section by section. Plots of
      the modeled versus observed water surface are very useful. The
      model is extremely sensitive to n values near changes in slope
      and almost insensitive in reaches where ponding occurs. In
      most cases 0 values much larger than expected will be required
      around slope changes - - values of 0,1 are not unusual for short
      reaches;

   *  code up on an unsteady-flow hydrograph. At the same time it is
      useful to store files containing observed outflow or stage at
      points in the model reach if such data are available,

   •  run the flow model over the period for unsteady flow and chfcck
      for stability;

(*)»  If the model is unstable, first check the input data for
      accuracy, particularly for shifted decimal points that change
      depth or discharge by factors of 10 or more;

(*)*  if the input data are correct, experiment with shorter or larger
      time steps;

(*)»  if the model is still unstable, add cross sections upstream of
      the•instability and repeat the steady flow calibration. In-
      stabilities will most often occur at the downstream boundary or
      at breaks in bed slope. If the self-setting downstream boundary
      condition is being used, make sure that the water surface
      slope is sufficient to move the specified quantities of water
      through the last reach at the given bed slope;

   *  compare the output stage and/or discharge from the model with
      known values. Plots of stage/discharge versus time are vital
      to this step;

(*)*  if depth profiles are available, initial comparisons will be
      quite good. Stage predictions will be good, but timing may be
      off.  To correct timing errors it may be necessary to increase
      or decrease Ax values slightly. Steady-flow calibration must
      then be repeated. Adjusting Ax can usually be justified be-
      cause of short-circuiting of channel meanders at high flow, or

                                34

-------
         conversely too-short estimates of &x at low flow. Some timing
         errors can be corrected by changing n values, but such changes
         cannot be justified if depth profiles were used to compute
         roughness; and

    (*)•  if depth profiles were not used to compute roughness, it is
         likely that both stage and timing errors will be present,
         Correct the stage errors first by increasing or decreasing
         the n values. Work upstream. Adjust the depths in the lower
         portion of the reach first. Rerun the model and keep adjusting
         until the stages are all reasonable. Just as for steady flow,
         the model is very sensitive to n values at changes in bed slope.
         Timing errors are corrected after stage errors by adjusting
         6x values slightly (see previous step for calibration with depth
         profiles);
      The flow model can be used without calibration. Comparison of

different hydrographs will be correct relative to one another, but may

have little relation to the real world. Every effort should be made to

obtain all required data for accurate setup and calibration.


      Flow model calibration is an iterative process. Most changes will

force the user to return to the steady-flow calibration. It is not unusual

for several weeks to be required for an extensive and accurate setup and

calibration.
Sediment Model - -


      The following data should be obtained In order to run the sediment

model. Items marked with an asterisk (*) are desirable, but not absolutely

necessary. Note that data required by the flow model are assumed to be

at hand and are not repeated here. The data are
   (*)•  sediment samples from the channel bed and banks at each model
         cross section or for representative reaches. In the absence
         of such data it is necessary to estimate;

   (*)*  size class analysis of bed material samples. Again, in the
         absence of data it is necessary to estimate;

      «  sediment inflow data ["quantity and size distribution (*)J at
         upstream end of reach;

                                   35

-------
      •  sediment Inflow data fquantity and size distribution  (*)J
         for major reach tributaries, A CSO entering within the model
         reach is treated as a tributary; and

   (*)»  sediment outflow data [^quantity and size distribution(*)J at
         intermediate points and the downstream end of the reach for use
         in calibration.
      The sediment model may be run with purely hypothetical data. In

many cases, sediment data are nonexistent and must be estimated from

research papers describing average values. Under the best of circum-

stances, it is not unusual to have only a single daily value of the total

sediment load with no size distribution data. Accurate sediment modeling

almost always involves a special data collection effort.


      The following steps must be taken to process the data and prepare

the sediment model for calibration  optional steps are marked with

asterisks (*) :
      •  select the number of size classes to be used in the model. If
         no size class data are available, use three to five with a
         fairly broad range or estimate based on observation of the
         channel. For example, it is possible to determine visually
         whether a stream has a sand or gravel bed and the approximate
         range of particle sizes. It is always wise to include one
         very large size class (say, 10 or 20 mm) for reasons noted
         below;

      •  develop a sediment inflow graph for the upstream boundary of
         the reach for the period of interest. The model requires in-
         flow in pounds or kilograms per second by size class;

   (*)»  develop sediment inflow graphs for any tributaries considered
         in the model. In the absence of data, these graphs can be
         estimated or simply assumed to be zero. Recall again that CSOs
         in the reach are tributaries;

      *  determine the percentage of material in each size class at each
         cross section (bed and bank material). It Is good to include
         one very large size class that cannot be eroded for use at
         geologic control points. That is, when the bed is solid rock,
         100 percent of the bed should be larger than some size such
         as, say, 10 mm;

      •  code the model as instructed in Appendix A;

                                   36

-------
      •  run the flow model for the period of interest;

      •  run the sediment model;

      •  plot the modeled sediment outflow versus observed values as a
         function of time if data are available; and

      •  proceed with calibration steps.


      The following steps may be taken to calibrate the sediment model
if data are available to do so. The amount and accuracy of calibration

is directly proportional to the data available. Optional steps are marked

with asterisks (*). The steps are:
      •  examine the aggradation/degradation values (Az) at each cross
         section at the end of the model period. It is useful to plot
         the results as functions of both time and space;

      •  if the smallest size class is eroding badly at breaks in channel
         slope (usually areas of high velocity), increase the percentage
         of bed material at these points in the larger size  'lasses and
         decrease the percentage (possible to zero) in the smaller sizes.
         Such adjustments are perfectly realistic from a physical stand-
         point. The channel would be unstable over long time periods if
         too much material continually eroded from "high spots";

      •  when aggradation/degradation has been stabilized, compare the
         predicted sediment concentrations with observed values;

      •  if concenI rations are too high, decrease the soil detachment
         factor (ADF). Conversely, if values are too low, increase ADF.
         The range is 0 to 1. If calibration cannot be achieved using
         ADF, it is necessary to increase the percentage of small size
         materials in either the upstream and tributary input or in the
         bed (at points not subject to unrealistic erosion); and

   (*)•  adjust for timing errors. Timing errors are not likely if the
         flow model can be accurately calibrated. However, if the flow
         model is inaccurate, large timing errors may appear in the
         sediment model. Arrival times of sediment peaks can be slowed
         by increasing Ax values in the flow model or by increasing
         the depth in reaches where it is not accurately known (increased
         n values). Arrival times can be apeeded by the inverse process.
         The process is iterative and time consuming because of the
         changes and possible requirement to recalibrate the flow model.
      The following general information on using the model and the results

of the model may be useful.

                                    37

-------
*  Fate studies. The. model package presented here is an effective
   cool for determining how sediments noire through a stream and
   where they come to rest. The best visual tools for fate studies
   are plots of aggradation as a function of channel length after
   passage of a hydrograph. Plots of flow and aggradation/degrada-
   tion at a single cross section as a function of time are useful
   for determining the conditions under which various sediment
   materials change location. Scour studies can be conducted by
   forming deposits) with observed events and then following the
   observed events with synthetic floods of various frequencies.
   Such studies are valuable in assessing residence time of deposits
   and probability of movement.

*  _Separajting^effecte. If the stream being modeled carries a high
   background sediment load, it may be difficult to determine the
   effects of smaller loads from CSOs and tributaries. In such
   cases, the model may be run "with and without" the tributary or
   CSO load and the results compared. Differences in the aggradation-
   degradation pattern can be attributed to the missing tributary.
   It is not wise to set the upstream inflow sediment load to zero
   in streams with high background transport. The model will then
   predict a great deal of scour because the stream will always
   try to carry at capacity if material is available for it to do
   so.

*  Estimating missing data. Sediment data are difficult to find.
   The best initial source for most studies is the local district
   offices of the U.S. Geological Survey. However, in most ir~
   stances only dally total loads with no size data will be avail-
   able. Sample locations are also very limited. Klemetson et
   al. (6), presents a good deal of information useful for esti~
   mating sediment loads for CSO type studies. Excellent general
   references on sediment transport process are (25) and (26),
   which contain considerable basic sediment theory along with many
   practical calibration procedures.

*  Learning the model. New users of the model should use the model
   package on simple,  trial cases before attempting a major stream
   study. Begin with a simple, trapezoidal channel at moderate
   slope. Study equilibrium transport in steady and moderately
   unsteady flows. Experiment with roughness coefficients and
   sediment sizes. Then proceed to more complex cases. The model
   package presented here has a great many adjustable parameters.
   This flexibility allows the model to cover a broad range of
   conditions and also allows the user to obtain the same answer
   several ways. Considerable knowledge of sediment transport
   processes and unsteady flow mechanics may be required to
   correctly interpret results.

•  The importance ofgraphics. It is imperative that users learn
   to plot results quickly and in a variety of ways. Access to
                              38

-------
some form of computer graphics Is Ideal. Both calibration and
operation will produce hundreds of pages of tables on aggrada-
tion, degradation, flow, and concentration of sediments. Only
by producing effective comparison or display graphs can the
model output be used effectively. Plots of the stream bed,
water surface profile, and aggradation/degradation by size
class on a single sheet are most effective ways to view
fate-type results. Aggradation In trap (low velocity) areas
can be clearly* seen.
                           39

-------
                                SECTION 5
                           SCIOTO RIV1R STUDY
      This section describes the experimental work carried out on the
Scioto River in order to provide teat data for the model package.  A des-
cription of the study reach is presented, and then data collection and
analysis procedures are discussed and setup, calibration, and output from the
model package are presented.  An analysis of the study results and comparison'
of results with those from other investigations is presented in Section 6,
DESCRIPTION OF STUDY REACH

      The water quality investigation conducted by W. E. Gates covers a
reach of the Scioto River from Columbus, Ohio, south to Chilllcothe.  The
southern portion of the Scioto River drainage basin is illustrated In
Figure 5-1.  For purposes of this study it was not economically feasible
to collect detailed sediment data over the entire reach from Columbus to
Chillicothe.  Based on a steady-state estimate of dissolved oxygen (DO)
sag in the river, it was felt that maximum changes in water quality would
occur above Circleville.  A 22-km reach from Columbus half way to
Circleville was selected.  The general location of the reach is illustrated
in Figure 5-1.  A schematic diagram of the reach is given in Figure 5-2.

      The study reach begins at the Wiittler Avenue combined sewer over-
flow (CSO).  The CSO is located just upstream of the dam in Figure 5-3.
Office buildings in downtown Columbus can be seen in the background.

      Over most of the length of the study reach the channel banks are
tree-lined.  The channel width varies from 200 to 500 ft with 200 to 250 ft
being typical south of the 1-270 Bridge,  The channel bed consists of
course gravel.  At low flow conditions (300 cfs or less) flow is a series of
                                    40

-------
Figure 5-1.  SCIOTO RIVER STUDY REACH
                  41

-------
                               «hittur St.  cso
                                Creenlawn Ave.
                               RM129
                      XS#3'
                     xs#4 JtSE!?,   . „
                                 Frank Rd.
               Gaging Sta*V|Bjll27
                       XS#5
                       j&tf/*Xl26
                                    Big Walnut Cr.
                    XS#IB -YBMiie
                     XS#19
                                    Rt. 762
Figure 5-2.  A SCHEMATIC DIAGRAM OF THE SCIOTO  RIVER STUDY
                            1EACH
                           42

-------
          Figure  5-3.   WHITTIER STREET  COMBINED SEWER OVERFLOW
                OUTLET  (DARK  SQUARE IMMEDIATELY BELOW WEIR)
chutes and pools.   The  overall slope over the study reach Is fairly  con-
stant at 0.33m/km.   One major tributary, Big Walnut Creek, enters  the river
from the east between Shadeville and Route 762 (Figure 5-2).  A  typical
river reach is illustrated  In Figure 5-4.
DATA COLLECTION AND ANALYSIS PROCEDURES

      Data were collected for the study in two phases.   The initial  phase
consisted of investigation of the nonstorm characteristics of the  river.
The second phase consisted of actual storm event sampling.

      The initial investigation of the nonstonn characteristics  of the
Scioto River was conducted in July 1980,  Sutron personnel met with  represen-
tatives of the EPA and W. E. Gates Associates in Columbus.  Burgess  and
Niple, Inc., provided two boats and crews for use in the investigation.
                                   43

-------
        Figure  5-4.
TYPICAL  REACH  OF THE SCIOTO RIVER
     SOUTH  OF 1-270
      The boats were used to investigate  in detail  the reach  from  the
junction with Big Walnut Creek south of Shadeville  north  to the 1-270 Bridge.
The river was not traversable by boat above 1-270.   Approximate river cross
sections were taken at points where significant  changes occurred in  the channel
geometry such as chutes  or pools.   Cross sections  were obtained by  means of
a fiberglass surveying rod immersed  in the stream.   Cross-section locations
were recorded on a USGS topographic map.

      Bed material deposit samples  were obtained at a. number  of the  cross-
section locations.  The nature of the channel and its bed are reasonably
uniform over the study reach.  Figure 5-5 illustrates a typical river cross
section.  The channel is incised in a layer of gravel  (2  cm and up diameter)»
It behaves, for all practical purposes, as a rigid  boundary.  No significant
deposits of sand size material were noted in the Investigation.  The nature
of the channel indicated that it does not act as a  source of  sediment until
                                   44

-------
      Figure  5-5.   TYPICAL CROSS  SECTION OF  SCIOTO RIVER
very high flows are reached.  No previous studies had ever indicated  dis-
charge of gravel size material from a CSO.   Thus, no difficulty was
anticipated in modeling the interaction of  CSO materials  and  the  channel bed.

      At the conclusion of the channel investigation, efforts were made to
locate supplementary cross-section data for the study reach as well as a
longitudinal bed profile.   The Columbus district office of the USGS and the
Columbus office of Ohio EPA were contacted.  The USGS provided some useful
flow data but had no cross-section information; the Ohio  EPA  provided a
number of surveyed cross sections, but most were located  south of Circleville
outside the study reach.  The U.S. Army Corps of Engineers (COE)  district in
Huntington, West Virginia, provided several flood studies and an  approximate
channel bed profile.  The flood studies provide detailed  cross sections at
the Greenlawn Avenue, 1-270, Frank Road, and Shadeville  (Route 665) bridges.

      From the first phase data collection, it was possible to develop the
data set for the flow model and initial sediment model.   First, data  from
20 cross sections were prepared for the entire reach. Cross  Section  1
through 7 represent the reach from the CSO  (Greenlawn Avenue) to  the  1-270
bridge; Cross Sections 8 through 13 represent the reach from  below 1-270 to
the Shadeville (Route 665) bridge; and the  remaining cross sections represent
                                  45

-------
the reach, from below Shadeville to the Route  762 bridge.  The distance
between cross sections varied from 0.5 to  1 km.  With depths at each cross
section known at a given steady flow,  it is possible to compute the bed
elevation at all intermediate points between  the known points.  The final
bed profile used in the model along with the  cross-section locations is
illustrated in Figure 5-6.
                             ROAD BRIDGE
                                      APPROXIMATE WATER SURFACE
                                                 SHAOEVILLE Bfl,
                                                                •7S2M.
                         O          B         «          3
              "DISTANCE BELOW GREENLAWN  AVE.  BRIDGE  ck*,>
           Figure 5-6.   BOTTOM PROFILE  OF SCIOTO  RIVER  AND
                       MODEL  CROSS SECTION LOCATIONS
      In the summer of 1980 no  overflow event occurred, and thus sampling
was not done until fall of that year.   In the intervening period, necessary
modifications to the sediment transport model described by Kleoetson, et al.
(6) were undertaken.  The  model computational procedure was completely
modified and the coding improved  as  described in Section 4.  The model was
tested on a variety of prismatic  (constant trapezoidal section) channels
tinder various slope and sediment  boundary conditions.  After proper model
behavior had been verified, the model was coded for use In this study.
      Based oa the bed material  samples  taken during the first phase data
collection, the sediment model was  coded to route ten size classes of
sediments, the largest of which  was 20 mm.  The remaining size classes were
                                   46

-------
15, 6, 1.3,    , 0.32, 0.18, 0.11, 0.06,  and 0.04 mm.  The bed material dis-
tributions (p,2.     ge in each size class)  are  given  In Table 5-1.  The
heavy weighting of the larger size classes  reflects the armored condition of
the channel bed.
     Table 5-1.   BED MATERIAL  SIZE  DISTRIBUTIONS USED IN
                           MODEL  (PERCENT)
Cross Section No.
1,2,3,5,6,8.9,
10,12,15,16,17,
18,19,20
4,7,11,13,14
Size C
20


60
80
15


25
20
6


10
0
1.3


3
0
0.5


2
0
lusts m nun
0.32


0
0
0.18


0
0
0.11


0
0
0.06


0
0
0.04


0
0
      After coding,  several synthetic flow events were routed through the
reach to determine how sediment  from the  CSO might behave.  Preliminary
analysis indicated that particles  smaller than  0.06 mm could be carried
through the reach even at very low flows  (500 cfs or less).  Flows equal to
the average annual high flow of  10,000  cfs would move sediments 0.18 nan
or smaller through the reach.  No  further tests were made until actual data
became available.
      The second phase of data collection,  the  storm event sampling, was
carried out by personnel from Burgess  and Kiple (B&N).  B & N had the
responsibility of determining appropriate weather and flow conditions for
initiation of sample runs,   Inltially,plans were made to sample three storm
events.
                                  47

-------
      The work effort required to collect sediment samples was Included in
the B & N subcontract to W. E. Gates.  The sample program consisted of three
elements;
      *    grab samples at the CSO;
      •    depth-integrated samples within the CSO slug as it moved
           downstream; and
      •    stage measurements at bridge crossings.

the intent of the stage measurements was to provide data for calibration
of the flow model.

      The grab samples from the CSO were collected at the same time as
samples for other water-quality constituents.  The depth-integrated
sediment samples were collected as follows:
      *    at the Frank Road Bridge and at the State Route 762
           Bridge commencing prior to the arrival of the CSO
           slug at the station and continuing until the entire
           CSO plug has passed that station at an interval
           between 1 and 2 hours; and
      •    at the 1-270 Bridge and at the Shadeville Bridge at
           irregular intervals during the passage of the CSO slug
           as the availability of the samplers allowed.
Water surface elevation measurements were taken at Frank load and at State
Route 762 when integrated depth samples were taken.

      Sutron provided two standard DH-59 hand-held, depth-integrating
sediment samplers to B & N for use in this study.  Sutron personnel instructed
B & N personnel in their use during the first phase data collection effort.
The sediment sampler being operated off the Frank Road Bridge is Illustrated
In Figure 5-7.  B & N shipped the collected samples to Sutron for concentra-
tion and size analysis following each event.
                                    48

-------
      Storm event data were  ultimately collected for two periods over the
course of the study.   The  first sampling event occurred on 24 and 25 November
1980.  The second event occurred on 14 through 16 September 1981.

      The first storm event  did not produce sufficient data for model
calibration.  Flow from CSO  reached 200 cfs (the peak value was not recorded).
Twelve sediment samples were collected but insufficient stage data were avail-
able.  These samples  provided preliminary data on the size distribution of
material in the CSO.
       Figure 5-7.
DH-59 SEDIMENT  SAMPLER BEING LOWERED OFF
       FRANK ROAD BRIDGE
                                    49

-------
      The second storm event sampling was successful.  Sufficient flow,
stage, and sediment data were obtained to allow calibration of the flow and
sediment models.  Fourteen samples and flow readings were obtained at the
Whittier Street CSO,  Excellent definition of the outflow hydrograph and its
quality was possible.  The USGS gage below the Frank load Bridge operated
continuously and provided a complete record of hourly stage at that point.
Water surface measurements from the Frank Road, 1-270, and Routes 665 and
762 bridges taken coincidently with sediment samples provided 16 usable
points for calibration of the flow model.  Sufficient sediment samples were
obtained in the CSO and in the Scloto liver to define quantity and size dis-
tribution of the sediment load.

      The Initial step in the data analysis was to analyze the sedluent
samples for concentration and size distribution.  The results of the analysis
are presented in graphic form along with model results in Section 6.

      The second step in the data analysis was to prepare input for the flow
model.  The discharge in the Scioto River at the Whittier Street CSO was
determined by advancing in time the discharge hydrograph from the USGS
Columbus gage.  The advance was equal to the travel time from Whittier Street
to the gage, approximately 2 hours.  The discharge from the CSO was added
to form the upstream input hydrograph.

      The third step la preparing the flow model was to develop the flows
from Big Walnut Creek.  Base flow was estimated by examining several years
of USGS records,  fhen, the storm flow was estimated by adding two-thirds
of the difference in flow between the Columbus and the Circleville gages.
The difference was computed after offsetting one record in time by the value
of the travel time between the gages.  The two-thirds factor was based on the
historic ratio of the flows in Big Darby and Big Walnut Creek, both of which
enter the reach above Circleville.   The complete inflow can be found in the
input list in Appendix D.
                                    50

-------
      The flow model was set up to use a discharge rating curve for the
upstream boundary condition.  The rating curve was developed by using the
step-backwater portion of the flow model at a number of steady flows.  The
rating curve is also part of the model input data given in Appendix D.

      The flow model was set up to use known stages as the downstream
boundary condition.  Insufficient measurements were available for the entire
period of interest, but reasonable values were easily estimated from the
measurement and the shape of upstream hydrographs.  The complete downstream
stage hydrograph is included in the flow model input in Appendix D.

      Under flat slope conditions, the flow model is extremely sensitive to
the downstream boundary condition.  Care must be taken when using observed
stages to ensure that they are accurate to + 0.1 ft.  Timing is also critical;
if adverse water surface slopes are created by Improper stages, the model
usually "blows up."

      The flow model was coded to create flows for the period between
1:00 a.m. on 13 September and 12:00 N 16 September 1981.  Eighty-four
1-hour time steps were taken.

      Following preparation of the flow model, the model was calibrated.
As originally (first run) configured, the model predicted stages slightly
low at the Route 665 (Shadeville) and Frank Road Bridges.  The roughness
coefficients at several points below each bridge were increased until
best fit was determined visually.

      The results of the flow model calibration are illustrated in Figure 5-8.
In the figure, the solid lines are model values and the plus signs are observed
values.  The smallest change in stage occurs at the 1-270 Bridge where the
cross section of the channel is very wide.  The flow model results are reason-
able.  The Shadeville Bridge data are the least accurate in comparison to
the observations.
                                    51

-------
673.,
                     I     TT++++
                     '	USQSOAOE
                        1-270 BRIDGE
                                                    FRANK ROAD BRIDGE
                                                       + -OBSERVED VALUE
                                                       --MODELED VALUE
                                                  ROUTE 665 
-------
      Following flow model calibrating, the direct access file that couples
the flow and sediment models was generated.  No further runs of the flow
model were required.

      Much of the input data for the sediment model is generated directly
by the flow model.  The user, however, must prepare the sediment input for
the upstream boundary as well as all tributaries.  One input value is re-
quired for each size class for each time step for the upstream boundary and
tributaries,  fhe option of using a sediment rating curve for the upstream
boundary condition is included in the model.   fhe inflow of the i   sediment
size class is computed as a constant, a., times the streamflow, Q, raised
to the b.   power.  The constants and b. may be determined from sediment
discharge measurements by size class at various discharges.

      fhe upstream sediment Inflow from the Scioto River was estimated to
be 30 mg/1 of  the smallest size fraction based on "before CSO slug" samples
at downstream locations.  The solids content of the CSO flow was known from
the samples.  Again, loads were of the smallest size class.  All other size
class loads were set to zero at each time step.  The upstream loads, along
with control codes, (see coding Instructions in Appendix A) are edited
into the file produced by the flow model (see the example in Appendix D).

      No sediment data were available from Big Walnut Creek.  Accordingly,
the sediment loads for all size classes were set to zero.  The study results
in the Section 6 indicate that the loading from Big Walnut Creek Increases
the concentration at the Route 762 Bridge,

      After completion of loading input the sediment model was coded to
simulate the period between 1 a.tu 14 September and noon 16 September.  This
time period coincided with the period of the CSO flow event.
MODEL RESULT

      The results of the sediment model are presented primarily In Appendix D,
Hie model generates a large volume of numbers and is difficult to interpret

                                   53

-------
without the aid of graphics.  At each tine step, the model produces

      *    total sediment load, mass/time at each cross section;
      •    total concentration at each cross section; and
      •    cumulative aggradation or degradation for each size
           class at each cross section.

The data can be used to analyze concentration versus tine at a point, total
load versus tine, and  fate  of each size class via the aggradation/degrada-
tion figures.

      Figure 5-9 illustrates the variation of total sediment concentration
versus time at the upstream boundary, Frank Road Bridge, 1-270 Bridge, and
the Route 655 and 762 bridges.  Also, illustrated on the figure are the
observed concentrations.  The observed values came from the sediment samples
plus the total settleable solids data from the water quality samples.

      An unfortunate aspect of the Scioto River from a computer modeler's
standpoint is that all the material discharged by the CSO is fine (much
smaller than 0..063 mm) and that the channel boundary is armored.  The normal
flow of the Scioto River is capable of carrying 100 percent of such small
size material.  As a result, there is no accumulation of the CSO material
within the reach.  The fate of the material is to be convected out of the
reach and on to Chillicothe and beyond.  In the terminology of sediment
transport, the CSO sediments are "wash load."  The stream will carry all it is
supplied.  A conservative mass transport model would be sufficient for routing
the CSO load.  It would have to be carefully configured, however, to account
for further entrainment.

      The convective nature of the fine material transport can be seen by
studying the early portion of the output data in Appendix D,  The input
concentration travels down the reach and stabilizes with no variation except
the dilution of Big Walnut Creek.
                                    54

-------
      §
      i  ~
                             CREENLAWN AVE
                                                                                        FRANK TO MIDGC
                                 HOURS
Ul
                             1-270 BRIDGE
                                 MUMS
                                                                                        ROUTE 885 BRIDGE
       §
       i  -
                             ROUTE 7O2 BRIDGE
observed value

modeled  value
                                Figure 5-9.  VARIATION OF SUSPENDED SOLIDP WITH TIME

-------
                                SECTION 6
                           ANALYSIS OF RESULTS
FLOW MODEL

       While the flow model results are not perfect, they serve the purpose
of this study and are reasonable from the data available. The work of USGS
researchers, particularly leference (7), has demonstrated the ability of the
flow model to reproduce stage to tenths of feet and timing to within 10 to
15 minutes when sufficient calibration data are available.

       The flow model calibration for this study worked well because a depth
profile was available at low flow and sufficient stage data were available
fcotn bridges at other flows to allow adjustment. Model results could be
improved by the addition of the following data, both for operation and
calibration:
       *  continuously recorded stage at the route 762 and all Intermediate
          bridges|
       *  one or more longitudinal depth profiles at intermediate to high
          flow to allow accurate computation of roughness variation with
          depth; and
       *  surveyed cross section geometry and bed elevations.
The cost of such additional data would be substantial. Continuous recorded
stage at route 762 and a 24 hour period of stage at all other bridges plus
one additional depth profile would be a good compromise.
                                    56

-------
Concentrati
-------
tude (550 versus 650 mg/1 peak) but inaccurate in time.  The apparent
explanation is the phasing of the modeled sediment load with the one hour
time steps used.  Note that a plus or minus one hour error here would not
result in 5 or 6 hour errors elsewhere.

      Overall it seems safe to say that the model gives order of magnitude
results which will be much smoother than the data used for comparision.
Professionals in the USGS acknowledge the difficulty and erratic nature of
sediment concentration measurements.  Sediment samples taken at nearly the
same time at the same point often vary in concentration by 50 percent or
more.
Comparison With Other Studies

      A number of other researchers have published concentration and size
distribution data from CSO flows.  Data from this study, along with several
tables from other reports are reproduced below.  Note in the tables that
1000 microns.

      It was noted earlier that the technology in the sediment model is
traceable to a watershed model developed at Colorado State University.  The
model was primarily designed to route noncohesive materials with fall dia-
meters greater than 0.063mm, the border between sands and silts and clays.
The material discharged by the Whittier Street CSO was mostly finer than
0.063mm.

      Table 6-1 lists the particle size distribution of the samples taken in
this study.  Table 6-2 lists the particle size distribution of samples from
CSO's in San Francisco, California.  Note in  Table 6-2 that slightly over
50 percent of the particles were greater than 0.063mm with some significant
amounts greater than 0.25mm.  Table 6-3 lists size distributions of CSO
solids discharged into a catch basic and Lancaster, Pennsylvania.  In Table
6-3 nearly 56 percent of the material is finer than 0.074mm.  The writers

                                    58

-------
              Table 6-1.  TYPICAL PARTICLE      DISTRIBUTIONS
                         FOR SAMPLES IN THIS STUDY
Size Range
Microns
74-149
44-74
less than
44
Percent Distribution byjfeight
Prior to CSO
Flow in River
0
1
99
During CSO Flow
ia River
1
2
97
Alter CSO Flow
in Siver
0
1
99
CSO Flow
at Peak
1
2
97
       Table 6-*2-  PARTICLE SIZE DISTRIBUTION OF SUSPENDS SOLIDS IN
                   CSO'S IS SAN FRANCISCO, CALIFORNIA
Size Range
Percent
Distribution
by
Weight
       3,327  microns
         991  to 3,327
         295  to 991
          74  to 295
             74
 5.1
 8,8
15.9
21.8
48,3
Source;  Envlrogenlcs Co., (28); from Dalrywple et al., (29)

-------
      Table 6-3 ,  PAlflCLl      DISTRIBUTION OF           SOLIDS IK
                     CSO'S IK LANCASTER, PENNSYLVANIA
Size Range
9,525 microns
4,760 to 9,525
2,000 to 4,760
1,190 to 2,000
590 to 1,190
420 to 590
210 to 420
149 to 210
74 to 149
44 to 74
44
Percent Distribution by Weight
1.77
1.06
1.40
1.88
3,10
2.78
7,01
5.19
20.10
23.80
31.90
Rote:  These data represent material retained in a catch basin rather than
       actual CSO's.
Source;  Rrants and Russell, (30); from Balrymple et al., (29)
 used the  distribution of material in urban street solids for estimating
 CSO loads in previous studies.   Table 6-4 lists typical percentage values
 for various size classes.   Note that over 50 percent of the material is in
 the size  range 0.075mm to 0.85nm.  Streets solids are nttch larger and more
 widely distributed in size than the material in this study (fable 6-1).

       The sediment concentrations found in this study are listed in Table
 6-5.  The concentrations of solids discharged from the CSO reach the 500-
 600 mg/1  levels.  These concentrations compares well with values reported
 by Manning, et al. (31) and Metcalf and Eddy consultants (33) in Table 6-6.
                                     60

-------
      fable  6-*4.    PARTICLE SIZE DISTRIBUTION FOR STREET SOLIDS
                      SAMPLES PROM WASHINGTON, D.C.


Size Range
1,700 to 3,350
microns
850 to 1,700
420 to 850
250 to 420
150 to 250
75 to 150
45 to 75
45

Arterial
Roadway

3.2
7.1
19.4
25.2
19.1
17.6
7.6
0.6
Percent
Urban
Highway

8.7
9.6
14.4
14.3
12.3
17.2
13.4
10.0
Distribution
Shopping
Center

1.8
6.3
19.7
25.4
15.4
16.4
10.8
4.3
by Weight
Commercial
Street
«

5.5
8.0
18.6
23.0
16.3
17.0
10.6
1.0


Average

4.8
7.8
18.0
22.0
15.8
17.0
10.7
4.0
Source:  Shaheen, (32); from Manning et al., (31)
            Table  6-5.   TYPICAL PARTICLE CONCENTRATIONS FOR SAMPLES
                                    IN THIS  STUDY
   Tine  of  Sample
Suspended Sediment Concentration, mg/£
  Prior to CSO flow in river
  Peak  flow in CSO
  Peak flow in river below CSO
  Peak flow at 1-270 bridge
  Peak flow at Route 665 bridge
  Peak flow at Route 762 bridge
  After CSO flow in river
                 30
                575
                650
                 50
                350
                100
                 30
                                     61

-------
 Table  6-*,    TYPICAI                          FOR SANIfASY SWAGE,
                          ROTQFF, AND                OVMFJLOWS
Parameter
TS
TSS
BOD5
COD
Total N
Orthor PQ^ as P
Concentration, mg/£
Sanitary
Sewage
700
200
200
500
40
7
Urban
Surface Runoff
496
415
20
115
3 to 10
0.6
Combined
Overflows
589
370
115
375
9 to 10
1.9
Source:  Manning et al., (32), Metcalf and Eddy (33)
      The general observation concerning  the  Scioto River data  set  used  here
is that the size distribution of CSO material lies toward the lower end  of
previous studies and  that  the concentrations  of material discharged are
comparable to other studies.
Use of Model With Other Size  °f
                                           anjL_Flow Rates
      The reader should not be  left with  the  impression  that  all  CSOs  would
discharge material fine enough  to be carried  long distances,  "The data in
fables 6-2 through 6-5 demonstrate that materials as  large  as several  mm can
be discharged.
      An experiment was conducted with  the sediment model  to  illustrate how
the model could be used to study the fate of  larger size materials.   Hypothe-
tical sediment loads for an actual  overflow event  into  a seasonal low flow in
August  1978 were routed through the reach.  The  overflow event was followed
by a flow equal in magnitude to one which might  reasonably occur  once a
                                     62

-------
 year at Columbus.  The larger flow event was sufficient to scour deposits
 of larger size materials and move them downstream.

       The results of the fate experiment are Illustrated in Figures 6-1 and
6-2, Figure 6-1 illustrates the accumulation and erosion of five size classes
of materials as the CSO flow (48-65 hours) and the large flow (110-145 hours)
pass model cross section 1 (below Greenlawn avenue). The large flow  flushes
all but the 0.315ram sizes downstream.

       Figure 6-2 illustrates the location of the deposits of six size
classes of material before, during, and after the CSO flow illustrating how
materials of large size remain at cross section 2 and the smaller sizes
(.059, .040mm) move along the channel.

       The experiment presents the basic concept for a fate study. Flood
frequency analysis could be used to determine what type flood events scoured
out various channel areas. Note that aggradation-degradation amounts are
extremely small. The accuracy of such predictions must be assured by good
model calibration and verification. The model accurately conserves mass. If
inflow-outflow concentrations are reasonable and the bed profile is accurate,
the fate predictions will be reasonable. Measurement of deposits of this
magnitude is out of the question. Tracer particles might be used to help
verify accuracy.
                                     63

-------
          SCIOTO RIVER SEDIMENT MODEL
      215 _
                               FPRDXIHATE WATER SURFACE
          DISTANCE BELOW  GREENLAWN  AVE.  BRIDGE Ck«J
    B.Q815
   H5.0015 1
    B.0B1S T
   -fl.1015 .,
   -EL 0015 i
    B.BZ15..
   -B.0B15 1
    B.B015,
   -0.B015 I

 1    3001
       100"
         0
                                                       e.
                                                       a_3i:
                                ID
                               TIME
Figure 6-1.  DEPOSITION AND EROSION AT SECTION 2, SCIOTO RIVER
                          64

-------
         SCIOTO  RIVER SEDIMENT MODEL
      215 v
                              APPROXIMATE WATER SURFACE
      IBS
         eo         m        s         en         HJ
                            -•-•01
         DISTANCE  BELOW GREENLAWN  AVE,  BRIDGE  
   •.0BI5
  -B.0015 I
  -B, 0215 ,.
1 2. miS »
3

** -8. SBIS 1
-< B.0015^
                                                       B. 178—.
   B.0B15 T
                                                       a. si:
   e.0015 ,
  -B.0015 1
                              .TIME - 4i
                              TIME - 58
                              JTIME - 72
    Figure 6-2.
MODEL RESULTS FROM STORM 1YDROGRAPH WITH
      CSO SEDIMENT, SCIOTO SIVER
                         65

-------
Correlation of Sediment With Other Quality Parameters

       It has been mentioned in this study background that the sediments and
sediment-like materials form an important source of organic and inorganic
pollutants, A 1974 report of the North Carolina Water Resources Research
Insitute (1) indicated that plain sedimentation of urban runoff resulted in
60 percent COD removal. Thus, although general water quality is the domain
of the companion study by W.E. Gates, the timing of sediment loads with other
water quality constituents  is of Interest.

       The general water quality analysis of samples taken over the storm
event studied here was provided to Sutron by the Cincinnati, Ohio,office of
Gates. Figure 6-3 and 6-4 illustrate the variation of several key water
quality parameters along with the modeled sediment discharge.

       Figure 6-3 illustrates the variation of COD, DO, and BOD at the lotite
762 bridge. Recall that the predicted sediment concentration here are rea-
sonable (Figure 5-9). The observed COD peak and DO minimum coincide with the
peak sediment discharge. The observed BOB is a minimum at the sediment peak.

       Figure 6-4 illustrates the variation of COB and BOD at the Route 665
birdge. Here, both the BOD and COD peaks trail the sediment discharge. If the
observed data point at 50 hours of Figure 5-9 is Interpreted as an outliar
It might Indicate that the arrival of the sediment discharge as predicted by
the model is early. If so, the sediment discharge and COD/BOD Increases
would be nearly in phase.

       The data and model results emphasize the complexity of transport in
unsteady flow and the value of data over hydrographs»
                                      66

-------
                  BQDCng/D
               i—i—i—i—i—i—•*—
                                               S

Figure 6-3,
C01EELATION OF           SOLIDS,  COD,  BOD,  AND DO
      AT ROUTE 762 BRIDGE
                             67

-------
           DOCmg/1)
           BQfK»g/i>
              w
I	4	1—*.	4	^-.^n,^^,^^^^
                               §i
• t
L £
W X
CS S3 V
Q CO Q X
M (9 - X
Cg . (VI X
in in T-I j<
to oo oo j.
CO 1 I x
tL Q. r-
ui yj in f
»- w o» I
a 4- in "*>. /
E^ T< ^






/
/
/
V
I x" N\
>** i
\

' \ '

""^-s.
•Si
\
i
1
1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1




8
w w

as B S
|S
1

I i
I



*tt&.
           i     i     8    H
Figure 6-4.
 CORRELATION OF  SUSPENDED SOLIDS, COD» BOD MO) DO AT
               ROUTE 665 BRIDGE
                       68

-------
                                REFERENCES
 (1)  Colston, N«  V., Jr., Characterization and Treatment of Urban Land
      Runoff, EPA-670/2~74~Q96, December 1974,  157 pp.

 (2)  Field, R., A. K. Tafuri,  and H»  E, Masters,  Urban lunoff Follution
      Control Technology Overview, EPA 600/2-77-047,  March 1977,  90 pp.

 (3)  Pitt, R. and R. Field,  Water Quality Effect  from  Urban Runoff,
      American Water Works Association J., 69_ (8), 1977, pp. 432-436.

 (4)  Donigaa, A.  and N. Crawford, Modeling Nonpoint  Pollution From
      the Land Surface, IPA-600/3/76/083, July  1976,  279 pp.

 (5)  Keefer, !. N., R. K. Simons, and R. S. McQuivey,  Dissolved  Oxygen
      Impact from  Urban Storm Runoff,  EPA-600/2-79-156, November  1979,
      237 pp.

 (6)  Klemetson, S. L., T. N. Keefer,  and R. K.  Simons, Movement  and
      Effects of Combined Sewer Overflow Sediments in Receiving Waters,
      EPA-600/2-80-126, August 1980.

 (7)  Keefer, T. N. and H. E. Jobson,  River Transport Modeling for
      Unsteady flows, Hyd. Div» J., ASCE, Volume 104, No.  H¥5, Proceedings
      Paper No. 13735, May 1978.

 (8)  Land, L. I., Unsteady Streamflow Simulation  Using a Linear  Implicit
      Finite-Difference Model,  U.S. Geological  Survey,  Water Resources
      Investigation 78-59, Bay St. Louis, MS.,  Kay 1978, 59 pp.

 (9)  Simons, D. B., R. M. Li,  and M.  A. Stevens,  Development of  Models
      for Predicting Water and Sediment Routing and Yield from Storms
      on Small Watersheds, USDA Forest Service,  Rocky Mountain Forest
      and Range Experiment Station, Flagstaff,  Arizona, August 1975.

(10)  Lai, C.» Computation of Transient Flows in Rivers and Estuaries
      by the Multiple Reach Method of  Characteristics,  in Geological
      Survey Research 1967, U.S. Geological Survey Professional Paper
      575-D, 1967, pp. D273-D280.

(11)  fevjevich, V. and H. H. Barnes,  Flood Routing Through Storm
      Drains, Part 1, Solution of Problems of Unsteady  Free Surface
      Flow in Storm Drains, Colorado  State University Hydrology Paper
      No. 43, Fort Collins,  1970, 108 pp.

(12)  Wylie, E. Benjamin, Unsteady Free-Surface Flow  Computations,
      Journal of the Hydraulics Division, ASCE,  ¥oluoe  96, lo. Hill,
      1970, pp. 2241-2251.

                                   69

-------
(13)  Garrison, J. M,, J. P. Granju, and J. T, Price,  Unsteady Flow
      Simulation in Rivers and Reservoirs, Journal of  the Hydraulics
      Division, ASCE, ¥oluse 95, No. HY5, 1969, pp.  1559-1576.

(14)  Aoein, M. M. and C» S. Fang, Implicit Flood Routing in Natural
      Channels, Hyd. Dlv. J., ASCE, Volume 96, No. HY12,  Proceedings
      Paper 7773, December 1970.

(15)  Fread, D. L., Numerical properties of Inplicit Four-Point Finite
      Difference Equations of Unsteady Flow, National  Oceanic and Atmospheric
      Administration, U.S. Department of Commerce, Technical Memorandum NWS
      WDRO-18, March 1974, 38 pp.

(16)  Von Rosenberg, D. W,» Methods for the Numerical  Solution of Partial
      Differential Equations, Elsevier, New York, 1969,  128 pp.

(17;  Shields, A., An»endung der Aehnliehkeitsmechanlk und Turbulenz forschung
      auf die Geschiebewegtmg, Mitteilung Preussischen Versuchanstalt Wasser,
      Ird, Schiffbau, Berlin, No. 26, 1936 (in German).

(18)  Meyer-Peter, E, and R. Muller, Formulas for Bed-Load Transport,
      Proceedings, III Cong. IAHR, Stockholm, 1948,  pp.  39-64.

(19)  Simons, D, B. and F. Senturk, Sediment Transport Technology, Water
      Resources Publications, Fort Collins, Colorado,  1977.

(20)  U.S. Bureau of Reclamation, Investigation of Meyer-Peter, Muller
      Bedload Formulas, Sedimentation Section, Hydrology  Branch. Division
      of Project Investigations, U.S. Department of  the  Interior, Bureau
      of Reclamation, June 1960.

(21)  Shulits, S. and R. D.  Hill, Jr., Bed Load Formulas, Part A, A
      Selection of Bedload Formulas* Part B, Program Listing for Bedload
      Formulas, NfIS, PB-194, 950 Pennsylvania State University, December
      1968.

(22)  Einstein, H. A.,  The Bedload Function for Sediment  Transportation In
      Open Channel Flows, U.S. Department of Agriculture, Soil Conservation
      Service, T. B. No. 1026, 1950.

(23)  Colby, B. R. and C. H. Hembree, Computation of Total Sediment Discharge,
      Niobrara River near Cody Nebraska,  U.S.  Geological  Survey, Water Supply
      Paper No. 1357, 1955.

(24)  Li, R. M, Mathematical Modeling of  Response from Small Watersheds,
      Ph.D. Dissertation, Dept.  of Civil  Engineering,  Colorado State
      University, Fort  Collins,  CO, 1974, 212 pp.
                                     70

-------
(25)   Jobsoti,  H.  E.,  and T.  N.  Keefer,  Ose of Depth Profiles  for  Flow
      Model Calibration, Proe.  of  the Symposium on Inland  Waters  for
      Navigation* Flood Control, and Water Diversion (Rivers  76,  Colorado
      State Univ.), ASCE, 1976, pp.  641-649.

(26)   Simons,  Daryl B.  and F,  Senturk,  Sediment Tranaport  Technology*
      Water Resources Publications,  Fort Collins,  Colorado, 1977,  807  pp.

(27)   Vanoni,  V.  A.  (editor),  Sedimentation Engineering, Prepared by  the
      ASCE task Committee for  Preparation  of  the Manual on Sedimentation
      of the Sedimentation Committee of the Hydraulics Division,  ASCE,
      New York, New York, 1975.

(28)   Invirogenics Company,  In-Sewer Fixed Screening of Combined  Sewer
      Overflows,  EPA  11-24,  FKJ 10/70,  1970.

(29)   Dalrymple,  R» J.t S. L.  Hood,  and D. C. Marin, Physical and Settling
      Characteristics of Particulates in Storm  and Sanitary Wastewaters,
      EPA 670/2-75-011, April  1975.

(30)   Krantz,  J,  and  D. L. Russell,  Lancaster Silo Project:   Particle
      Sizing and  Density Study, Meridian Engineers, Philadelphia,
      Pennsylvania, January 1973.

(31)   Manning, M. J., R. H.  Sullivan, and  f.  M.  Kipp, Nationwide  Evaluation
      of Combined Sewer Overflows  and Urban Stonawater Discharges:  ¥olume
      III, Characterization of Discharges, EPA  600/2-77-0640, August  1977,

(32)   Shaheen, D. G., Contributions  of  Urban  Roadway Usage to Water
      Pollution,  IPA-600/2-75-004, April 1975.
                                    71

-------
      Appendix A





USER CODING INFORMATION
           72

-------
      This appendix presents the user coding instruction for
the linked flow model - sediment model.  First, the general
operation of each of the models is illustrated.  The first
six flow charts show the operation of the linear implicit,
finite difference flow model and associated subroutines; the
next five flow charts show the operation of the sediment model
and its associated subroutines.

      Currently, the models can handle up to 40 cross sections,
This limit can be raised by changing the appropriate dimension
statements, with a corresponding increase in required computer
memory and time required for solution.  The current model will
run on a minicomputer with a 64-kbyte memory partition.

      Among the many features of the models are

      •   depth, velocity and discharge output for each
          model timestep;
      *   English or metric units output;
      •   up to ten sediment size classes each having a
          different specific gravity and percentage of
          bed material if required;
      •   cross section print suppression;
      •   steady or unsteady sediment input at the upstream
          boundary and at any tributaries;
      •   steady or unsteady flows at the upstream boundary
          and at all tributaries; and
      •   no limit to the length of time simulated except
          budget.
                              73

-------
FLOWCHART PROGRAM SEDMOD
                      :1WDA»UKD TO INPUT THE
                       MAJORITY OF THE DATA
                     ; IMITL INITIALIZE! IMPORTANT
                      VANIASLEt TO ZCTO
                     : KOINMMQ OF MAIN TWK LOOP
                       : ROUTE MOVES lEOMMEKT
                        DOMN THE HEACH
                       : BUD OF MAIN TMK LOOT

-------
    FlONCHMtr «UBROUT1N€ INPDA
     INPUT
  Tm.CtANO
        (UGH
 ANOLOCATMMJ

  MUCfMt
                          : X4£C DATA lltCLUDES
                           MVfiMMUi TMALWtO ELCV.; tUNMIMM N;
                           AMD A HtfteD KIINirrtll TAH.E
f  MCTUMN  J
 75

-------
           FtOWCHAHT
         •UMOUTINE 1MITL
        •UeROUTINE POWER
          f   ITAIIT  j
        SUMWMITiNf TAIL
          f  9fMtt  J
76

-------
   FLOWCHART SUBROUTINE ROUTE
                         iOINMMC OP X-iEC LOOP
                       NMCT omNMNW* MMUKTID
                       KHMIMT PE'HCINTMltt DOE TO
                       MWKMINS
                       TMUH IXTIMIimS THE TMMtfOHT
                       CAPACITY or me FLOW
                       : mo of x«te LOOP
77

-------
           FLOWCHART *JMt0tmNE SMOUf
I    emir    J


  —i—

 CAUCUtAfK dUHM
Hwrrrai iLCv*T«n
  fOMAWCCtPC
          78

-------
     FLOWCHART SUBROUTINE TRAMS?
                        : TAW, RETURNS A WETTED PERIMETER
                         VALUE FROM A TAM.E WHIN OiVEN
                         ADiFTH
     CALL
  •MMUTIME
  CALCULATE


   MOMENT
 LOAD CAPACITY
  CALCULATE
 KD MATERIAL
   ttOMttNT
 LOAD CAPACITY
      J_
  CALCULATE
TOTAL IEDIMENT
   CAPACITY
  KACINTAOES
   DUE TO UP
   tTHEAMi.
   LATERAL
    INFLOW
  CALCULATE
MMMMJMTKAMfr
 KMTMWOON
   •CDiMEirr
     FALL
  VELOCITIEt



f  MCTUHN  J
: POMER EVALUATES THE INTIBRALS
 IN MODIFIED EIIMTCIN1U1PEMDED
 KOWKMT LOAD EQUATION
 : UMS MODIFIED EHWTEIN
 EOLMTIOW
 : UUBMEYER4CTER-MULLE1I
 EOUATION
    79

-------
FLOWCHART PROG RAM FLOHMOD
   UK HBP MCKWATIII
       MfTHOOTO
       CAUCULATI
    INITIAL CONDiTIOWS
                                 i •UMOUTINE TAW.I RETURKS
                                   VALUW f ROM THE TABI.M AMD
                                   HIAR CALCUUkTES FRtCTION
                                   •LOK AMU VELOCITY HEAD
80

-------
FLOWCHART PROGRAM FLOKWOO
      (HUBS
      mrruu.
      •WTH.O
      A?
       FILE

    OFUtCTMEAM
  •MD OP HMT BiACH
   COMPUTE X«C
  OOMMCTmAH fND
     OF HEACM
      COMPUTE
    CMPflCltNTS
    KM MOII»ITUII
     •QUATfONS
  MOW
   X«EC PffOKKTIES
     •mucnms
 ecwmciiNr MAtmx
                              LOW
                             : CALLS TO •UMQUTMti
                              TAIL* II" REQUIRED
                             : PILL COHVICMHT IMTMIX


                             : ICALLSTOtUmoUTINf TAH.1


                             : • CALLS TO MMMOUTNME TABLE
                              : COCFFICieKT (**TRIX FILLED
   81

-------
FLOWCHART PROGRAM FtOWMOO (C«irt*ni*»
-------
   FLOWCHAHT «UMOUTIN£ CHANNEL
         •TART
         MAO
        XAHB V
         POMT
         wuw
     AMOXAMD V
     HMWT HUM
       nunsiM
      AKtwiwa
       QN0CH
        cut
     •UMHXJTIME
        QIOM
: 0!«« CALCULATE* X-WC
 MOMNTtiS (AHEA, WTTeD WHfOTTSR
 AMD TOT NtffTH) FCW A GIVEN HATER
 HMPACI ELEVAT10K
       AHOM
     Momma to
       manm
       TABLES
  I    neriNiN     1
83

-------
  FLOWCHART SUBROUTINE GEOM
            (    tTAHT     J
                 LOCATE
               ftTEHMHIFACE
                 iPAMV
               AREA NETTED
                KMMWTER
              AMD TOT MOTH
             KM MCMMEMTAL
              AREAS. NETTED
             miMETtttAND
               TOPW1PTMS
        »» sS'    lJttT  ^V
     »'  * "C  WHIT m X-MEGT ^
                      YES
            I    METUMN     \
84

-------
                          FLOW MODEL
      Input data requirements for the flow model are given  in
the table on the following three pages.  The majority of
the variables are entered in a "list directed"  format which
specifies that all numbers will be separated by either a  space
or spaces or a comma.  The use of this type of  input format
makes it much easier to enter the required data and eliminate
errors caused by misaligned data.

      The input data for the model are entered  into a computer
disk file using the standard file editor.  The input file name
is specified to the computer by interactive responses when  the
flow model is run.  The  user also specifies the names of the
output file, and the direct access and sequential files
created by the flow model which are used by the sediment model.

      In the input data file after the run title, various model
control parameters are the first data used by the flow model.
These data include number of cross sections} number of time-
steps; number of timesteps to be skipped before beginning
printout, and the upstream and downstream boundary conditions.
It is recommended that c  her the rating curve  or depth only
boundary condition be used at the upstream boundary.  The down-
stream boundary of a flow model is particularly sensitive.  If
the data are available, depths varying with time is the
recommended boundary conditions.

      Several variables such as DRAT, DSDEP and NP are only
used if particular boundary condition options are selected.

      Following the control and boundary condition data the
model requires cross section data.  Input data  numbers 8-11
are required for each cross  section.   These data are

                              85

-------
                                FLOW MODEL  INPUT

                                  REQUIREMENTS
NO.
PARAMETERS
DESCRIPTIONS
FORMAT
 1.     TITLE

 2.     DT

 3,     NX,  IQ,  NOUT,  INIT,
       NTRIB,  IUBC,  IDBC,
       IPNT, IXSP, OP
                TITLE « Run title

                DT = TImestep in seconds

                NX = Number of x-secs
                IQ = Number of timesteps taken
                NOUT = Number of cross sections to
                       be printed - 0=all x-secs
                INIT = Number of timesteps to skip
                       before beginning printout of
                       results
                NTRIB -No. of tributaries <_ 20
                IUBC = Upstream boundary condition
                       1 = self setting
                       2 = rating curve
                       3 = depth only
                IDBC = Downstream boundary condition
                       1 = self setting
                       2 = constant depth
                       3 = read in depth with dis-
                           charges
                IPNT = Number of timesteps between
                       printouts >^ 1
                LTCSP = X-sec properties printout
                       0 = no printout
                       1 = printout
                OP = Input data printout
                     0 = no printout
                     1 = printout
                               20A4

                               List Directed

                               List Directed
                                   IF  IUBC =  3
       QINIT
                QINIT = Assumed initial discharge

                	. IF IDBC = 1	
                               List Directed
       DRAT
                DRAT = For self setting downstream
                       depth - constant relating
                       depth at last and next to
                       last x-secs
                               List Directed
       DSDEP
                _ _ _ IF IDBC =2 	

                DSDEP = Constant downstream depth
                               List Directed
                                       86

-------
                                FLOW MODEL  INPUT

                                 REQUIREMENTS
 NO.
      PARAMETERS
         DESCRIPTIONS
                                        FORMAT
 7.
                                   IF NOUT  >  0
HP (I to NOUT)
 NP  - Numbers  of  x-secs  to be printed
     out
                                                                   List Directed
 8.*

 9.*
XSEC

X, 2, FNQ, mi, FN2,
QLAT, LT1IB
10.*


11.*


*NOTE;
RMILE, NPTS


X, Y(l to NPfS)


 Number 8-11 are inpt
 XSEC  - 20  character  x-sec  title

 X = Distance  in miles
 Z = Thalweg elevation
 FNQ»FN1»FN2 - Coefficients in
               Manniags  "n" equation
               n = FNO+FN1*Y+FN2*Y2
 QLAT  = Lateral inflow between  x-secs
        given  in cfs/ft
 LfllB = Tributary number (flow in
         tributary is assumed to  enter
         between  this x-see and the
         preceding x-sec

 RMILE = Rivermile of x-sec
 NPTS  = Number of  points in the x-sec

 X ~ x-sec  point  coordinate
 Y = x-sec  point  coordinate

t for  each  cross  section.
                                       List  Directed

                                       List  Directed
                                                                    List Directed
                                       List Directed
                                   IF IUBC
12.
YPT, QPT
 YPf
      Depths for use in upstream
      boundary condition rating table-
      20 points required
QPT = Discharge corresponding to
      depths in rating table - 20
      points required
                                                                    List Directed
                                                                    List Directed
13.**

14.**
Q  (1  to 12)

TRIBQ (1  to  12)
(1 to NTRIB)
 Q = Main channel upstream discharge

 TRIBQ - Tributary discharges
                                       List Directed**

                                       List Directed**
                                       87

-------
                                FLOW MODEL INPUT

                                  RIQUIREMQifS
NO.
PARAMETERS
         DESCRIPTIONS
  FOHMT
15,**  DSY (1 to 12)
         Number 13-15 are r
         been input.  Quant
                . _ _  IF  IDBC =  3	

                DSY -  Downstream depth
                                                                    List Directed**
                                                timestc ps
jpeated until discharges for all
.ties  (Q.TRIBQ & DSY) must be  input  In
    have
I roups of 12.
                                         88

-------
used by the flow model to set X distances, roughness
coefficients tributary and lateral inflows, and cross section
shapes.

      Input data items 13-15 supply the unsteady flow for the
flow model.  These data are entered in groups of 12, i.e.,
twelve upstream discharges, twelve lateral inflows and twelve
downstream depths.  They may be repeated as many times as
wanted to extend the flow simulation as long as desired.
Tributary and down stream boundary condition cards are omitted
if not required by the option used.  Refer to Appendix D for
codino of the Scioto River flow model.
                        Sediment Model

      The input data file for the sediment model is partially
created by the flow model.  The title and control cards
must be inserted at the front of the file.  Inflow and tributary
flows are added to the end of the file.

      The sediment model also has a title as the first item
on the data list shown in the table on the following three pages,
This title can be used to easily identify a particular set of
data.  Next,  model parameters are entered.  As noted, all of
the required cross section data for the sediment model is
 created and put in the file by the flow model.  The rest of
the required data are then appended to either the beginning or
the end of the file as required.  This can be accomplished
using a standard file editor.

      Many of the input data requirements for the sediment
model are very similar to the data required by the flow model.
NREC is a variable giving the number of timesteps to skip
before beginning the sediment model.  Thus, the computationally

                              89

-------
                                      MODEL  INPUT

                                 REQUIREMENTS
NO,
      PARAMETERS
        DESCRIPTIONS
FORMAT
 1.

 2.
TITLE

NX, IfCOM, DTM, ADF
       NTRIB,  IQUT,  IPNT,
       NREC,  IOTYPE
       ITRBX
TITLE •= 80 character title

NX « Number of x-secs
ITCOM = Number of time increments
DTM « Time increment in minutes
ADF * Soil detachment coefficient
      for channels (0 to 1)

NTRIB = Number of tributary
        sediment inflows <_ 5
IQUf - General input information
       Q = No printout
       1 = Printout
IPNT <=• Number of time increments
       between printouts
NREC » Number of tlmesteps to skip
       before beginning of sediment
       run
IOTYPE = Output units
         0 = English
         1 - Metric (SI)
20A4

List Directed
                                                                    List Directed
                                  IF NTRIB > 0
                       ITRBX = X-sec numbers where
                              tributary  inflows enter
                              (in ascending order)
                                                                    List Directed
       WFA, WFB
       NSIZES, IBED
       DM1
       (1 to NSIZES}

       SPGRAV
       (1 to NSIZES)

       PP1 - PP10
                      UFA «  Space weighting  factor £ ,5
                      WFB -  Time weighting factor <_  .5

                      NSIZES =  Number  of  sediment size
                                fractions  £ 10
                       IBED = Number of x-sec with specific
                              size distributions

                      OMB -  Size of sediment particles  in
                             millimeters

                       SPGRAV =  Specific gravity  of
                                sediment particles

                       PP - Bed  material size fraction
                           ratios
                                        90
                                       List  Directed


                                       List  Directed
                                        List Directed


                                        List Directed


                                        List Directed

-------
                              SEDIMENT MODEL INPUT

                                  REQUIREMENTS
NO.
      PARAMETERS
         DESCRIPTIONS
 FORMAT
10,
11.*

12.*
13.*
14.*
*NQTE
15.
IMS, P
(1 to NSIZES)
(1 to IBED)
XSEC

X, Z, FNQ, FN1» FN2
 IBXS = x-s*,;C number to which specific
        bed material size distribution
        apply
 P = X-sec specific bed material size
     distribution

 XSEC = 20 character X-sec title

 X = distance in miles
 Z = Thalweg elevation
 FNO, FN1, FS2 = Coefficients in
                 Mannings
                 equation
                                                                    List Directed
 5A4
 List Directed
                                                      "n"
RMILE, NPTS
YTBL, PTBL
(1 to NPTS)


 11-14 are from a fi
 for each x-sec.


IFLOW, ISED, ILAT,
IRAT, Q1AT
 j} = FNOJ-FHl*Y-t-FN2*Y":

 1MILE = Rivertnile of X-sec
 NPTS = Number of points in the depth
        vs wetted perimeter table

      = Depth
 PTBL = Wetted Perimeter

e created by the flow model.  They are
 IFLOW = flow type
         0 = Unsteady flow
         1 « Steady flow
 ISED = Upstream sediment inflow type
        0 - Unsteady
        1 = Steady
 ILAT = Lateral sediment inflow type
        0 - Unsteady
        1 = Steady
 IRAT m Upstream sediment inflow
        0 = No rating curve
        1 = Rating curve
 QRAT = Upstream sediment curve
        cutoff point (0 if no rating
        curve)
 List Directed
 List Directed
read
 List Directed
                                       91

-------
                              SEDIMENT MODEL INPUT

                                  REQUIREMENTS
NO,
                              DESCRIPTIONS
                                         FORMAT
16.
17.
18.
19*
20*
A5, B5
(1 to NSI2ES)
GNOW
(1 to NSIZES)
GLAT
(1 to NSIZES)
(1 to NTRIB)
GNEXT
(1 to NSIZES)
(NRIC to ITCOM)
GLAT
(1 to NSIZES)
(NREC to ITCOM)
                                   IF I1AT = 1
 A5 & B5 - Coefficients for upstream
           sediment inflow rating
           curve euation
                                                                    List Directed
                                       Wiere Q = Upstream water
                                                 inflow
                                               = Lbs/sec
                                   IF IRAT = 0
 GNOW - Initial upstream sediment
        inflow by size class in
        Ibs/sec
 List Directed
                                  -IF NfRIB > 0
 GLAT = Initial tributary sediment
        inflow by si*-e class for each
        tributary in Ibs/sec
 List Directed
                             - IF ISED & IRAT = 0
 GNEXT = Upstream sediment inflow by
         size class in Ibs/sec for
         next time step
 List Directed
                            IF NfRIB  > 0 & ILAT = 0
 GLAT = Next time step tributary
        sediment inflow by size class
        in Ibs/sec for each tributary.
 List Directed
*NGTE:
 NOTE:
 Steps 19-20 are rep
 YNOW, YNEXT, QNOW, I
 access file which
.ated for each time step, If required.
NEXT, VNOW and VUEXT are input through
 created by program FLOWMOD.
                                       92
a direct

-------
faster flow model can be run for a longer period than the
sediment model which allows the flow model to be run at a
steady flow to stablize before beginning hydrograph simulation.
This stabilization period can then be skipped when usirjg the
sediment model.

      The space and time weighting factors WFA and WFB are
used in the computational scheme of the sediment model.
Experience has shown that values of 0.5 for each factor give
best results.  Another variable with  a given values is ADF
which is used in sediment bedload equation.  This variable
is usually set at 0.75.  Increasing ADF increases transport
and decreasing it has the opposite effect.  The range is
0
-------
      GNOW and GLAT are input as Initial upstream and
tributary sediment inflows.   All sediment inflows must
be specified in the Ibs/sec for each size class of sediment,
After the initial sediment inflows, GNEXT and GLAT are input
to provide sediment inflow information for each sediment size
class at each timestep modelled.

      Other important parameters of depth, velocity and dis-
charge for each timestep at each cross section are from the
direct access computer disk file created by the flow model.
                               94

-------
                 Appendix B


           FLOW MODEL SOURCE CODE
NOTE:  Features of code specific to the Digital
       Equipment Corporation version of FORTRAN
       are underlined.

-------
c
C           SUTRON CORPORATION
c
C           EPA   SriOTIl  kJYI-k
C            - -  LXNfcrtR  IMPLICIT KIMII'K  DJKKfcRKNOK H.OU MODEL
r,
C           yfRSJClN DAT*  - i'3  UKLt flttt.K JVH1
C
C           ACTFII. =b ftfti))  MftXBIIF-rtOO
C
cc«;<:t:i:ccccr.ct:i:i:cu:t:c:i:(:c;(:cccccccccccci:t:c:«:i:i:(:(:(:(:i:(:(:(:t-.c:c(:t:(;<:t:(:n:t:c
       KRtlliKAH H.OUMiJD
       Dim-NSlHN  Y(8Q> t YNOO) T/.(40)
       ctinmiK/rt/  MHO*?)) fKW» iNx. jx
       COMMON/ R/  PEL (HCU rKLAK »ir i »i, { 40 , ;>o ) > A VM. ( ^o > vo > i PT»I. 1 4« ( -^o > ,
       COMMON
       JJAMKNS ,(ON  l>( la > » ttSY ( V2 >
       DIMI-NSJON  TRIBQ(20. I ?) H.
                   (JIIM1 (40) ih-NOMO) »KHt (4D> t KN2 ( 40 >
                   X(40) tK(40);(-L EVC!0) rNPCIO)
       I) X MKNSIDM  ypftiiH ( 40 ) i YH'rtSh < 40 )
       COMMON rPI ) .HPT (20)
       l.l)ji ICflLJH  (It-'K U. IK ( B> tJiF*-' Xl.,1- { 8 ) rST.K ILK ( B ) t INK U.K. ( 8_>
       LOG) I A) *4  Til Lt'( 1H) tlDATEO) t J TJMK 12)
       PflTft  OKFfl bt 1 ) .UPl- j.l.M  > TIPy ] I E(3) tflEFIl fc(4 >
       DATfi  SiHLEd) ,ji)h-M-KC;;) >PiFILE(3) ,S JFIi.tr < 4 )/
      l_jH_g 1. 1 : 1 4 H i: i! o Q > -; H t ;>. o 4 > i H ,j/
       DAI ft  SPfr It E< 1 ) tSPF > I.F( 2 ) rW ] t.E< 3 ) t SPF II E( 4 ) /
       DAT ft  XNh M.Ld ) rlNHLKt?) tjtHHI.h t3)tIHFILE<-iJ/
       SIFTLt
       SKh n,t-:(B)=0

                                           = • TI ;
  399 FOKHAI'dH »'  KHTKK  JNh'U'l  H.IE  NA.Mj
      KKA» C 3 t 4J)t) ) U HK X L.H ( I) , X .-a f 7 )
  400 FORMAT <4ft4j
               '   ENTFR (IUIPUI
                             :i:i  Xl.^ ( X > » X~bt />
      HKt rfc(.i>40 O
  403 KikHflt'C   FWlER NAME  0^  INPHI  F-H.K TU  Sti
                                         96

-------
             3 1 4')Q)  ( Sir- ILfc ( I ) r I-S t / >
       5t>SM < UN 'i r4"i f VPS."* ' at-m ' F NftHjFTfff i i ,EI
                                _
       OPiN < UN II ^4 t TTKK " ' MEM ' • NftHK" S I K H.F
            R*-:AB AMD PRINT  rx rte
               49H>  TITLE
               t»ft1)
       CALL  lififr:
       ~AU.  HHf (
                       -IDATE.ITIHE
       y R 1 1> t A , 1 ¥7 )  X DA It . 1 1 ) . H E
   4V7 KlKHftl ( 1H! i ' ******»*f «**»*****»«*»****#*»***************' »
      1'**$*******' ,/,
      2' f. ' » J 7X» ' 5UTRON CIIRKOKftTKW . 1 7X t '*'./»
      3" *     LIHKAk IHH'LlCn  FJNITt;  13 IKKKKKNO: ' ,
      4 ' H  UU  HUllh L     *. ' » / F
      5'
      6'
      7 '
      8 '**#***»**»**«»'//)
       HRITfcl AF 4VV)  ni'l.E
       URITM3F4VV)  II1LK
   4VV FDRHftl < 1H0.1HA4 )
C           PROH! t.H
C           I))--|"J!MK  8Tt:P JH
       REAIMS.t )»T
c           NX=NUMPER UK X-SM:K IN  THF REACH.
C           HVNO. tlK I'lMK  S I KKH  IflKEN
C           NOU1 - NIIMKttN  l»r  X-PFCS 1 () UK  KK,(NTh»  (MM.
c               o- ALL x-st:i;s ftK*-,  03 »t:  PRJIMTKII.
C           INJ I - NUHfJKR  Uh  i;i)NSlANl  H UU  liHKSfkPS  Ttl  SKIP  BEFORE
C                  bttilNNINU  PN.fMTOUl"  Of Ktr.SUl.TS.
C           NTKIft-NO. »K THmiTARIhS
C           IlfWt:^UPSrK^AM  BlMIHlHlKY  Ct(H)i f, I' KIN SKI>;i;M)K  i;i)DE
C              IsKr-.l h t'S  HUOKKN  PR ( N I  UIHS
C           IXHP 5S  PAkAHI-rKK 'HI  SlIPh'KHKS  X-5EC PROPFKtlhH PK » N f
C           SM  j.,xHk  in o  id  HUPPK»-:;HI SKI  IXSP  K)  '.  HIK PKJHC i
C           OP  I^  A  PftKrtrtfltiK HI  StIKTRFSS  INPUT Jiftlft  PKIHttHIT
E              D-^NI)  PKlHHHiV  OF ) Mh'ltl  l-'tTA
C              i=PRJNTnil(  OH  JNPD'I  PftTA
                )MX> JtUrNIUJI F INJ I jHIHJ »») 1) BC F ; »»i; > tPNV r IXHPf OP

                                      -KPF I l.t-1 1 fiCCh SK~ ' H I HFC I " >
C           IF DEPTH  (INLY  ft f UPSTREAM HOUNMAKYr  KhAH  IN ASSUMKn INITIAL
C           lUSUHfthOE
       IF( IfUklC.m.jORFAIKf.FtJUIN] T
                                           97

-------
C          If SH.f  StrTIHB  0,8,  MffHt  MvA» iN CONKTANT WHICH  RKLATK5
C          Y KkftlH S t * » M*rt¥
c          IF UINHIAMI WKPiHf  NEAP IN DtKiRKi) VAI.HK
       xr ( IMC . eu . a )
           RI-.A»  NOKBCKS M  X-8fcUS » »  BK  KRINri-.l) HUT .
C          READ  IN  X-SH: I.DCAflONS AHU  PROPERTIES
c          x-st.t;  unift SHHULB  UK KHIIIJ  IN STAKTXNI; AT  IHI-: IIKSTRKAM END
C          MITH  1MK  X'S INORkASING FROH UfWTHtAH T(t  BOWNS'lKKrtM
c          x =1 niHi'ANce: IN  MII,>:S.
u          2 = 'iHAtUKG ELEMATION
C          KWO»KH1»* FN2 ?-.  CWt»'XUX^NT8  II8KO XW THE
C          EOUATJOH   M-FKO-l-hHJ*¥+FN2*Y*ir2
C          MLftl  - IM*Ttrtl. LftTKKftl, XNKU1US OS tIKS/PT
C          SLAT  2 *«PPI IhS 1(1  KEftCH 1-X  ETCi. aLftT(l>=0.0 AI.HAYS
C          JK  iRIBillAKY t.rfl>'K8 Al X-S>.C»
C          LI (OK  =  MO.  Uh TKXKUlflKY :
C          »-"lltt JlSt  XH I'HK SE))I«feMT KltUrXNIi KROIfKAH.
C
              h.O)  UK-J (F£ At :!
  286  FORflft'K'O  XMKU1 CKIISH  SKC1 ItiNKS ' >
C          l.OHk IHKOOIiH 1HI-: NltNKKM 1)1-  X-SKCS.
       PO 1 1=1. NX
       it:- 1
C          X-SM;  "  20 CHAKACTfcK X-SKC  (XILE
       HKftX tCi»SaO> XSEC
  500  ^PNHfll <5A4>
       REftPCS,»)X< U»/CI>tt-K(»(I>ff-Nlll» trNI'CX) tULAKDf I.TKXIc-t57MO.«XNi')
C          WRrfk  X-KJ-Cf RXVfcRMILE AN!"  PCUK'I KliMWk RS FOR U8h.  JN  Si
       HKf 1't:(3>M)t I XSEC
       UR!ll-<4tS01J XSEC
             4.*) X( < » f XO S ikMOC I ) tKHKI) t»-Ni»
-------
       00 40 J«liN2
C          CHftNW"  Y1W  F«iH f.l>.VAVIUN  HI  MKP1M
       YTBt. ( I».l>«YY»l.«I>.»>-YttlN
C          UKXTK MEPTH M«. M-lItD P>K)Hfl>R TftBI.K FUR  «Sf IN SEIMfOB
       MRir£{4f*>  YVJH.(X»J>»l»TIH.
  >OV  H'kHA'l <» tfl.2>
   40  W1NTINtȣ
       NP1S< J)=N2
    1  KOHl'KHtlE
       RUJ-0.0
       DIJ 7, \ -*\t NX
    2  R(I>a«X  CUM U HUE
                DYtTSTUP
   25 htiKHAl <1HO»'TIHE INCREMFNIf  BKODMDS' s¥ 12, 1 »5Xt 'THf ftt.
      WKIli- (A»X6>  10
   26 ftiRrtAf (IHOr'NH (IK (iklONATF.S RUinHll'tlV)
      IKHIHIJ ,t.H»0)«0 fU 1066
      MRITF^tS^AKN^tDil.'-lrNIHX 1
  HVA FORHflKtHOf'Slftiifcf WKt.OCXlY.  AH» »1SC;HA«(*K (IUTVUT Ai X-'f
      CONTINUE
       t-ilKHA'l OMOf  'HOitNUftKY CIINPXTtltM TYPfcB'f/t' UKS1 KKflM --),-'»
     2'  SKl.K SKYVIH»i  '/. " HrtVlHli CURVt.i   S  » Dt-IFTH  ONl,Y'./»
     3'IMlMNSTREftM  -  - 1 " KKI>'  KETrlMH»   V  - rilNtilANT UfcPYHi   H  = Y
     4/»'  (YPfr SKl.KCTED"' »!;(»'  HIR UfSTRKftN ftHI)  '»I,(f'  H)R PIIUNS I RU
                         t(Af 4/.AHHNJ T
                         ifti. a
       IFODMC.KU.DUkX ik(
  «H1  HlKflAI (IHOr fYyKl TK { ft »tt«a >BSDKP
       FIIHMA1 (IHUi 'CONSI'ftNl' DtlMHSVRt.AH JJKP1H- ' » K7 , i
       HIRMftl (1H<>» 'NU, fIF 1'K 1 »U 1 ARIKSi" ' » 15 )
       UR1U (Ar^O! >
       H»KHftT2 I "If NX
       IFtl.lklHd >,tU.  BO TO
                                         99

-------
       HIKMAIUH  »'UPJ*TRFftM  RATIK6
             t JHOt '    Bfc.HH       [HM:HARMK.'>
       HK1 1>:!A»H/V) UY^H J) >»PJ t,t» » J'-l»'*»i>>
       HtRMATC'.H
  V.1A  CIIHTINtlE
  *S»A  HWMAIUM1.'  CROSS ttf.crXOH PRORKR I'IKS' // >
c          INJTIAI lit  y
       CO A }-J p
    A  YU>--0.0
       i-'nK«ftviiHO»'x-st:c: pRtiPhRTTts PRJWJ  '»X4t'  ),8'»FA»l't
     2 '  t>'S KfcR  f 00 V ' )
       URllfc (A»HS)  t-NOO ) »KN1 ( X) t¥H2t.\ )
   3»  FDKMftl' tlH P 'BJUAntW  MSCK1 BiNH  N IS'i^/.,'**'  PLUH ' f >•"» ,4 ,
     1'  flHES  T  fl US'tfV.S. '  IXMtS Y H«tlftRK.n')
       WKlrt. (Ap7i<»)  /.U>
   34  FURHAT (1H » ' hLf.Uftt KIN  W (.OUtST  POINT (IN X-SHC' »K9 , ?)
       M*RKAT( JHOtlOXi '       DF.K1H       ARt.rt      U  KKK   TUP  WXU'IHV)
       Ml-NFTStU
       UR J i H ( A, 3;»S > < YTWI. ( 1 1 .0 i ft'l Bl. ( I » ,J > » KT BL ( I » .1 > t 'I THI- 1 I » .1 ) » J= 1 1 « X )
       i-tmHfti (JH
    7
   v.\
              (JHl)
C          RfA»  1ST  H2 BXSCHARBI-  Vftt.UhS  KOR MAIM  CHAtiNKl. AH)t  At,,l. TRXNS
C          i> - rtftIM  I'.HftNNtl.  UPSIRtlAM IHSr.HftKGE
C          N01K  1HAT UU »  IS TftKfcN Til  UK fit 1!MF=H»f  NtIT Al  TKHH ^ HI
C          HfcAHINB  THAV THE  HMMBEH OF  U'S HUS1 »E OMK OKt.ftl'ER
C          THAN  'I HE  NimUHR (IF 'OnHSIKKS.
C          M.8«  NDI'K THrtJ  IF XUi«C -- .1   THft'f  I HE il ARRAY UJLL
C          CONlftXH  liKetHtNOT 1KSCMARUF
       HKAI) < S » * H «J ( I > , I « J > ). 2 )
       IFJMJKJK.hW.OmtJ HI 1JU3
       Dtl Hii! 1-1 tHI'KIB
C          REAH  K!R?*T IS!  1JISCMAKHKS FOR  HftCH  TRimiTARY
C          IRISH -  1RJBUIARY IIJ.Si:HftRKE
       REAtK!i»»)
-------
                in  rm-; KKSI  iv,
           XNlTlrtt.IZe ft MAFRIX
       DO 10 I*-lrJX
       »n 10 J--i»5
    10  At) ». I >••<>. 0
       K-l
       6*3?. 2
C          APH.Y 8TITP »AY(^*NX)-BS»KP
       IF t J HBC , tM» ? > V < ?f.NX ) -~»«Y < 1 >
C          t.SlftM.lSH INXTIftt DX^CHARIJES
C          OOU1 - H*Tfll  MlSCHARHt-, fOR REftCH
       J K I UBC 1 1,0 . :J ) «t!» I « i ) -U I H IT
       I F < HIKf. , Nl- . 3 >(»!» I ( J > -«C 1 )
       0(1 H«3 X»XiNX
C          flOH I.ATFKAl.  KKHJIW
       uuuTd j-umn ti-i)+ut,rti 1 1   >*-xu-i»
C          ADM TRIBUTARY  FLOW. X
           FINU CRtl'lUAl  Pt-.PTH AT  X-8EO NX  IV  Y *U»»m < NX ) /G
           Yi: = CRITXCM.  WKPTH
       YC=0,0
       »» «HS I -1.1000
       YOYC+0,1
       ufti.i. r ABI.K ( HX 1 1 > TI: » mm r , tJF»Y >
                                               -8HU NX
                ,U,!J«W !0
  «BS  CONTINUE
       CflLl  MKftli  (Y<2*NX,)»l»llin tKNO(HX)
           CVAY*,» = «U»flVKYANi;f AT  X-Bti: NX
           ;>-UlHI I *NX > /SUKT ( HF2 J
           APUANI:K: «iPHTRHft« X-SKC BY X-
       L=l -1
          ..«XO.-H )-XtL>
           ASKUHt. U.S.  Hli.PTH -B.S*  MKPTH
C          USK NkttTON'S X'IKRft'flDN  HMHIin  II!  ZKRO XH ON UPHIRI-flH
C          Mtt IWKfc  IHAH 100 II'KRAMDNS ni
       DO WHH Nll»l»100
                                        101

-------
       ELEMd >»
C
C
C

C

C

C

C

C

C

C

C
C
           FI«» HKAH AT  HPSTRtftH  X-SHC PAKKH IIK AHSUHfcH »K»TM
           UK  1JKPVH PROJtXVKW BY  HfrHHIN  HWHSJLA
       CAU. HKAU  rfrNOO-) »I-NI U.)
           CVAY1  » nilNVKYANCI- AT  U.S. M-
               Olll'tD/SORnHF I )
           GF.OMUlKJtt: Mh'ftN Ht-
           Kt-'OOH M L. > tUlH! 1 1 1. + 1 > / < UWAY 1 SI1VAY2 )
           HLOSS»  * HliAB  L08R
           ELUBK - t.HWY  I.USS
           S-0. »*A8SlMW2-HWl )
           DSHEB <* 1UTAI. U.S. HKAO
           .B-/2+HVX+Hl.HS8+El,WSS
           ySHt-'l) - 10TAI. U.fi.
           W-t/ltHVl
           ERHOU = 1-kkOk 'JMI8
           HR»SMKn->JSME»
           EXIT  LOW !»•
                       ti.O.Ot Mill  II!  8H9
           I^ HKKT nrKRA'l JCtlKt  NkMinM NH1  AI*Pl.X«:A»LKi  VAKt  SKCUNP
           UUCKS  ftN» MCTUftN
                       TO  WO
       IF'
       lit) tl» HH8
                   ftt*ii SIH:I>,F»IWH
                                                - APKI.Y  N^UTON
  HV«)  SSLY21, -YC,'*t)
       Y(?*L)--Y-l-«4N
c          <;Hfcr,K  urn r«o  TIBHI
       IFtAHJ*-IM YT'L) .I.T
       KK YC.'ft > .)>. .«.  Y(2*». >->«). /V SO' Y 21. + M( 1*0,0 J
       IFCAHHdll Y?l./Y(i**l. » ) ,«H, ;*.(»)  Y tl'tl. J^O.Htlll UY + 0.01»N)T
C          EXKHftNHE III,)) AND MfcW KKKtIKS ftHB  Ilf.KATE
       EROI H-KKNII«
       UI,»Y-IH,Y2L
  WPP  i:(iN1]NUe
C          COMVKtUifcNO  Cim(>l>.lK -  AMWANt:f  Ui NI-Xl X-SKC
C          tXCHAMBt; U.S.  rtMM »,S.  PKOI'UKT «.ES
       CPMTIKUE
                                          PRXWI  (HIT  INl'llAL t (IN1»1 i
  HH7  CIWIJHUE
C          8Ai:KUA'IKk ^
       1 I IHt-l 1HKK/IJT
       IF(MllUT.(<1,0)tilt
       IMJ  HV2  l^liNX
                            HV1
                                        102

-------
       ninn -NX
  tm  m*i
       M2-J3
       WKll'V (A»h;>>  TllHE
   52  HiKrtATOH0»/'Xr'TiMK =  'tM.Ot' HIMIKS' )
       XMN2.K1 ,MIHJDH*->'NUtlT
       HIKMAI OH  »/X»
       yRITf <6»1AS1 CX(NPt Jt)
       HmrtMUH  j/Xf'Xtt »'
              C1H  i?Xi 'Kl.fcV ilSKV.2)
                     t«^*NK( J ) »» JC-H!r«;'>
       FDKMfll (1H  f AXf'WfcPrH1 r1 JfV»2)
       «RITF ( 61 4A J { f < I'fl'll-'U >-l > » I-
                      'wti.iHJirv f i.^
                      Rti TH  BV4
       MJ -M24-1
       M2-H;f+i3
       I, (I  ID H93
C          SET UH  WH.tlUXTV ANH  l»KKTM ftKKftYS TO (-'ftHS  TH SICUTHKNT  IttlPEL
C          YMSsS ftMB WPAKS AHE  WSJ TTKH TO  MJRKUT ACCESS JllSK
       Hi) *tt3 I -t»MX
       WPAHSO )*T(i?tl-l )
       YHftSHU )-'
  313  CliNUNIIE
          10 ;»83
           » (,Y«;MK-iY(2)
C          f«t***»*t»»t **«*****«*********************<*******«
C          HA I M  II HJ 5J t tK I
       Mil 11 JN-lrlO
       JNFJ = JN41
       Tlwt.R» i fns-.R+wr
       ft«l. O
c          uPSTKKAtt hnoMHAKt  r.»wnn HIM
       Af( )!)><(;.«* . I >GO      111 15*
C          TYPh  1  » KH-K Stir(«C> - HfcKH BUT ft< H*U HI- l.tHIK  OR
C          »!- IHt.  I HOP
       Cfll I.  fftW.K  (t f :?t TCHKfAK. Hl-'JJt S
                                        103

-------
       YN< J I--KO :
       1FC lUBC.N* . ;•»«(! HI
           TYPfc  1?  - N/n INli  WIKVE
       CftLI  IrtW.K  (I il >U(IO tVCHK
       YN< t>*K t >
       YNC?>»Y«;H
       «» MI ise
  45?
C          TYPS  .4  « OKPTH
C          ftLI, KKT UK PIINU  rtFTUR X-bki:  I. HOP
  1!)H  CONTINUE
C          FIIL  CUFf-^TlMKNi  MftlKKX
C          UUHPUTK X-SKi: PHOCKKflKS ftl  UHSTRKftM  I-.NU UK KXRSV  RfiACM
       12=2
       FY-KNOO J+FN1 (D»Ycr;>
       f.pRHY=KM» Cl>+'«».*FN:m J*Y( J2)
       CAl.i. TftMI  I-  (1 tVt Y«Ki WPUYJ
       DO 1A I»>U»WX
       I \M~1
       PX"-X
       FP«MYi' -FM) C i ) *'f. , *<•«;»< .( ) * Y 1 1 0 >
       CALl  IftBit-  < J fftHrarYC XtlJ t fttWti)H*»:!5
       UAt.l  IftWl.fc  (IIA»f*»Y( u))» l'»t>.
            IftWk  O IA»i3»Y<)0> tJ-'Xtl
                               3 + < »PK
           COf.H- ,«;]!• NTS «K « ,H.S, «f
       At i;»»2> — ^YCll )-Y(I,4J + »Vi>A*B*Yt X.O O.i
                                           t ,/ A,
          2+Y(r3» + ,yoA*iJ*Y«»'Y;i
         « >
       , yo**«* Y< j i »»YI i ,,u*if- Vi'*HiVHA?**< i. /:*.)#!• PRUT ;:*nx
           CO€»-Hll,JKMfS W  l.N.S,
       ft< tt »l>
                                        104

-------
                         OF  k.H,S4.  IIP MOMENTUM
                                                 Y*l-y*Pn
                                                         > * Y I C» 5 + R ( O *Y < T t
                                                              ,y-/,( X-l > J +
C          COfFFJCIF.Nl  C1K R.M.S.  W  t:(lNT) «»»f Y KUUftl'lON
       M It >fR( I)*(ftR+flR'.!)--(R( 11
      l< Y < M >4Y t < ftR2-l(IK2» Y { 10 » +2 . *!JI. A I ( 1 ) f MX
       IFU.TRI»< X) .M(-:,0)K J JD'-F ( II ) +i!. fTKfBU (I. IRtU( () .K)
C          EXf:HftK(ih UFSTKtfiH ftNl*  LKiyNSTKHftH  X-SKC; fROPKKl IKS
       TOP
C          STRUtriURI- MAIK'IX CKOPKKl.Y  K«K UKS'lRlriAN HnUNHARY rONUMXON
       IF { ItlHU.Mtl. t )(}»  )«)  4tl9
C          TYPt  1  - 8M.K BUTTING -  Nl) CHrtNHH  RKUUXRKD
       HI)  H) Jtll
       IF CTURC.NK.2)iiM  Ml  AfO
           TYPt:  2  i RftlXNIi i:tlKVE
       ft r-!,j>> ^o.o
       A(2»3)=J .0
       rti"^»D -0.0
       A<2i5>=0.0
       Hai^YCHK
       60 TO 1111
       CUHTKHUE
           TYKK ;<  = HFKIH
             -'ft < v> i ri } /A ( :4 p 4 )
       ft( j ., 4 > -^rt< ;> ,.o -jCRft n »*ft t .1 1 2 >
       A( l»5>
       f- (J )-|-
       f»(2f 1 )=C,0
       ft(">f'.'>-0.0
       A(2i3)=l .0
       rt 1 1' t 1 > -0 . 0
       A<2»5)=0,0
 1111  tnMTINHE
C          DOWNS IKtAM
               4 > -1 . 0
               .Efl.UF
       tF < i im:. tu, ^) n a* MX > --ws
                                       105

-------
               i-:u, t> ih.x-Jx-3
       IFUUSC.FO.2nKX--.IX~4
       IK timi:.MJ..;oiKX'!.JX-2
       00 17 I-l.lKX
       ,1-KX-I + l
       TN( J»-Rft«rM  nw HSXT  tine STKP.
       IFdllHd F.R.I >TCHK»rN(2)
C
C           »*»*t»t**t**** »****»*
C          Vf-.LUIMIV  IS (»>» Y'S
C          DEPTH IS MKN t'S
c           *********************
c
C          CALCULATE.  AUSOLUTtC
       HI) 1» 1--1 »WX
       CALL IftWK  (JTAHi»iY«=ZU J+tN<2*J J
       Tl »«t
           SKIP OHKI«NOTK» NIJNM.R OF rXHt.ST(C»*S BEKUKK  «Kfl IHNtMH MiHTOUT,
       IFCINJT.GY ..IN)  Mil HI 10?
       IK(NOUI'rKT.i»UU III 1?
       00 M J-)»NX
       NOUI'-NX
       UK j I°E-:( A>:>2)  IT (Mr
   SO  IF(M2.RT ,N|iHI >Ht
       UN( »KA».iA)  H2)
                           ) >iI-KI tlli!)
       Hftl II C A. ?H> I YN< J!fNP< J ) ) » I --fit
                           t J »-t»
                            102
C          PflSS VFI.Oi:iTT AMU  PkF-'lH TO J-HIUHHHT HI»>KL
C          Ut-'ftSS  AN» YPAKB HKt-  WKITU.N (IN  IHlKKin ftiT.KBS OTSh
       oo id f^
       Hf1 til*
                                         106

-------
       CONTINUE
       IFt JM.HJ, )u/  tip TO ?0
                                                          I)* 1*1 r NX)
       BO fit 'r»f5
  282  WMlTf t;*iZ«J )  NKKC
       KHMTINIJE
           fXCHrtNW,  III |i ftHli NUI  (IHf LINfS
       OH IV I=J»JX
       Y
           READ MURE DATA It-
       If (.INtt:U.XU)t>0 TO 20
       lF(K.LT.iy>(i|l II! II
           »X=-J*J?)
       IKfHRIh.^O.OJCil) Til 1U6
       DO H^ I~l »NIRIB
       R^rtl»(b»*> OR1BIH i .,»)»,)-!» 12)
 1 113  irONDNUE
 111*  CrttTJMUe
       lF 'MS VI. I) . ,1'J. t H^>
C          »»**»S**»***4i*»*» *»**»»*«***»**«!»*«*«•«* »**»$***$
c          inn m-  MAIN  HHEstfp  I.IMIP
C          **»**»»**««****»*«**** *»**#*****M»#»»* !*•»*««****
   11  CPN11NUE
   -.«  I:»N i »
       CftU. ri UK Or I HE)
       MRIfF
-------
            sn» VE
                             » JX
                             f!iAM(P(»> rRWK RO) . RFTrt CPO )
             NK  Slll.i/K INWRTS ft MATRIX
BETAC1 >=0.0
DEI (1 )»ft(J 1 4>/A(1 f 3J
      )»F
RMU ( ,! ) -ft C 7 1 3 » -A t ^ » 2 ) .KlJtll, ( 1 )
KLftM C «» ) • A t 7 . 5 ) /KHIH 2 )
                             )/RK!t<2)
DO 7  J-?»IX
Btvrftd )=rtt x «^>-.i( i > i )*nt-i,t ,i-2»
RMU( I)»A( If3)-BK(A( X )*U(-.H l-l )-ft< J> I )*RI AH( J-
OKI. t I)- (At I p1)-»tlft( 1 >*KL.rtH{ I-l> )/RMU( T >
RLAM( I >=A< J .5)/k«y( 1 >
CONTINUE
BETAt JX-1 >»fl( JX-) . 2)-ft(.IX-l 1 1 leDFl.  *R1 AH< JX-3 )
DEI (,IX-) ) = {ft(,IX-i t4)-PFTA{JX-] ) «RI. ft«( ,IX-X'» /K(1U< JX-J )
                                      x-^>-ri( ,ix-t . \ >#fiftMc.jx-i
BETAC JX)=A( JXp?.>-A( JXt 1 > *BFJ, ( JX-H )
KHiM JX)-A< .IX>,l)-»FTrt( JX)tl)t:i.(JX-l)-At-IXp 1>«RKAH< IX- 2)
6AH( JXt»(F( JX)-PF,Tfi( JX)*PAM( JX-J )-A< JXi \ JtPAHt JX-"^) J/RM(I(,)X)
RLftH(JX>--«>.0
DEL*0.0
RtlURN
END
                                  108

-------
                         «ll
C          SUIMMUfINK IftMf  USES fHI  Tft»».tS f.RF.AiEn JJY SUBROUTINES
C          CMAMNI  ANI» BtOH ANM ftETFRMtlO-'S VARIOUS  CHftNNH.  PRUPfcNTIKS
C          KUK  UtKKtRKNr El.fcVATlONS HS1NH l.lNKfttt  INTKKPOI.n U(JW.
       CONHHN/XSFlVNKTRCiO) » YTBI <4 »ATI<1 IF,
    9  lifl TO ( Jf)»2<)>«(Qi 1Q)  ITYP
   1O  IF »»«  I'll  13
       NTit l^HTBl.-l
       no tt JtT-l.NfBLi
       IF«OPT.(»T.O.)  fiO  Tt> II
       UrtJUM3»100>  1T + 1
  100  FflRHATl'   PRPPLEH EMCOUNIFkKri  IN  KAflNij r.UkVK AT Q<
       Kll I'll ?50
   11  IF•»•(( (YfTt J1>1>-YP1 IITi)/(OPT(TT + l ) -QPTC ? I )
     +  GO TO -»2
   22 Xf-'ftlBl ( It IT)f( t (fiiei, (I i U + l >-Al'»l 
-------
   tYTB«.(lflT»)*(YT-YTBUTtm»
    nPt>Y-*'rtm U » tl +1 >~XT>/-YT>
    RETURN
 23 XT=-M < Y V-YTBM J »NTBI.»*TTBI. < J >NTBL) )
    IK(YV.t:Q.YTBI.< I jNfBL ) >  till TO 26
    DPDY=(XT-ATBL (liNTBL) ) / ( YT-YTPI < I > NTBI, > >
 VIA BtriJRN
 30 rF(YT,PT.YTRL( JfNTBD)  KO TH 35
    JEF «>l>  »"() 33
    NTBI 1-NTPI -1
    Ufl  31  n-lfNIPLl
    IFCYTBI (ItTT* 1 ).BT.O.»  liO TO 31
    WRS. •|£(3flQ2> IrH + l
10? FORMftTC   PRPPLFIM  FNrdUNTKRKi  IN  UKTTFH PFRIHkTFR TrtKLK AT'./.
   1'  YT»l.( ' i£2f ' . ' tl'.ir ' ) ' )
    HO  TH  50
 31 IF•»•(( (fiBLt ir.u+i>-pm.< [»;T»/{YT»»I.< utT + t )-
   + YTBL (It IT)) )*< Yl-YTW,(Xt IT) ) )
    RFTIIRN
 33 XT=-(PTP1,CI » J )/Yl Bf.( I ? ) ) >*YT
    DPJf.-'-;:.YrBL. Rll  TO 42
 4i> XI- I IftL.dilTJ-H «1TBI <1 > IT+U -T lUL { T f I T )
   + YTBL(liIT) »*(Y
    RETURN
 43 XT=(TTPL /Yr»L(Xil) >»YT
    BPJ)Y^XI/(YT-YT8H J rl »
    RETURN
 1^i X l-TTBl.C tfNTBL)
 SO RETURN
    f-ND
                                       110

-------
       SUBROUTINE HKrtP
       COMHUH/XStC/Hf>fSt4«)) tYIBt.t 40.20) rft r»l.< 40»20> rPT»l.<
     2TTW
       ElC-O.l
       CALl  TABLE  < I »
       CAiJ,  TftBLt!  (J»
               HYDRAlH.Jt
c          u = w
C          HM - VKI.SICI1Y  HUAD
           HK - KRTCTTUM SI DPt
       Kt; TURN
       END
                                        111

-------
                  £HANKMNl»lrOF-tN2>
C         ttUftKOUTINt: ttHAHNl. CUNWireS  S-86C «»-;»» TOPMlftTH, flNO HETTEP
C         PERIMtTPR FRtW X-SF.C ftftf^  nNDTNC rn
C         PTBl  =  X-8EC W^TTkn PERIMtTlFR rOKRffSPON!*JN6 TO  TTPL
C         TTBl.  =••  X-SEK TUPVSIDTH CimR^SPDNDINO ft) YTBL
      ATBI.-0
C         REft»  S5>Y PfllHT PftlRS.
C          UK W1  IHJFPUT I*F THE INPUT  IJATft XS UANTFtJ (OP=0) ISO  TO 10
      IFtOP.FO.O)  Btl Tfl 1O
C          PRIHT  IMIT THfcl HCftDKR ftNft X»Y  POtHT PAIRS.
             <1HO»//. '   CRllBS «KC ftON  '»I2»
                    X8EC
                    RMJtE
  ADO FURMftl'ClH  fTOX
      MRITF(At6(VL)  Nl
      FflRHATUH  jiOXi ' NUHSHK CIF POIHT??- ' f 14 >
  AO.I FflRHATtlHOtlOX* 'X»Y POIMf PftI«S  J'J
      DO ? Jsl.Nl
      MRli€<6tA04}  X
  *04 FORHATdH  .20Xi?FI0.4J
    *^ CONTINUE
   10 ?«AX=-JOOOO,
      DU i J"lfNl
    8 IF(Y
-------
      PQ  6  J=2»K
      NY-NftCJ>
C         ry« » HftTER SIMM-AC*.  FOR llfih BY FU«R.
      IKYys*,eO.Y«NY» litt TO  6
C          CftLCULATK THfe X-PEC  PRHPERTTPS USiMW SlfPR,  GEOH

£          ASSIGN X-SF.C PRnPCRTIEfi  Til PfW'KK TftMI.ES.
    & CONTINUE
      DO  7  J«ltK
      NY--K/K J>
                        RO T«  7
    7 COMTfNUE
      RETWRM
                                     113

-------
       SUPROUTJNf-
       CnMHttN/ftEttHt: T/X ( 5»«J J » Y C ;»» >
C          SWUROUTINf". PI-OB  MIU  Kftl.tttJLftTK  1 Hfe X-SEf: PRnPtRT ff:S
C          IIF ARKftf MCrrff  PKRlNtil'KKi ANO  TlJPMWH MR  BtWN WftTER
C          SURFACE EI.EWftTJONS,
C          Yt»5 = HftTFR SURFACE  ELEVATIONS  FOR USE IN Cftl r;MI,ftTItmS,
C          ftRKA ~ X-RF.C  ftREft
C          MPEft = X-SEC  Uk.TT&D  PER1HETER
C          TH « X-SEC HIPMTDTH
C          DX = INCRFHKNTAl.  X HISTAHrE
C          DY * XHrRKHKNTAL.  Y OtSlftNCE
C          Dft » TNCREHEN1AI.  ftkf'A
C          DP - IHCRfeMKNTAl.  WETTKD PKRTHETER
       TU=0»
           IF vys unypft  TH^SN  FJRST PT. -  GU  TO 5
       IF(YHS.f,t:.Y«X)} 0(1  I'll  5
       DP-YWS-Y<»>
           LOPP "IHROII6M MIIMHKR OF X-PEC PIS,
      BO  tO N-
C          IK PT. IS MOW.  YUH - 110 TD 6
       IF(Y.RF,YMS)  RO  TO 10
C          FIW» JCHTKKKtCCTION PT ON HPSt.OPt:*  AHO BX*DY
C          COMPOTF Dftp
    V  »rt-!0,
C          SUM ftRF.fttUPKk  ftNri  TN
    8
       TU=T«4IlX
   10  CONTINUE
C          IF YUB l.nUkR  THftN  Lft?T PT - lid  Til 70
                           60  I i) 20
   7,0 K
      END
                                      114

-------
Appendix C
            SOURCE  CODE
    115

-------
c
C          SUTRON
c          F.PA  scinrn  RTWKR STUDY
C          CHANNEL PFPIMFNT ROUTING  HOIJEL
C
C          MATFR ROtlTTHfl IK HOW*. BY  A PF.PARrtTE  LINFAR IMPLICIT  MDDFL ,
C          ttftlHR DISCHftRKtt UKPTH AND VKUICITY  rtRF  RF.ftl) INff}  ) HF. HOPEL
C          SEDIMENT  IS  ROUTED BY SIZE USING HEYEK-PEl Ek-Mill.L PR  PKULOftD
C          EQUATION  AND HWJIFlfcl) EINSTEIH PKflCEWIRF FUR SUSPt-.NREn LOAD
C
C          VERSION PATE I 23 DET.FKBt-.R 1V81
C
C          HftXBUF=(t.OO
C
ccccrnr.rcrcccccc:cccccccccrccrr;r.t;r;r;r,r;r;r;i:r;i;f;(:cr.c(:cr;r;cr,rccccccr.r.r.cr:r(,cc
c
      PROGRAM PEPMOD
                      » I fl > T Prt < 4t) » iO ) F n«B( 10 » i DftRHOK ( -10)
                          Z( 10> >AI)f iHP«»SftV( 10>» I)KNS( tO) »FU»< 10)
                10) .PNKXTMO, JO) .TRNCAPf 10) fCE(IO>
              TSB/NPTSl *0> f YTJJM 1»»20> >PTBU<40t 20)
                           7(4f»>.FNO(flO)ffNi(40) tFN?< 40 J t SI.P
      t:OHmiH/HYDR/YNt)UC»0) iDHOUt 10) >VN()M( 40) . YHHXT( 40 ) .ONEXT ( 40) ,
      rnnM»N/pi;oN/ jrpN r f PF»,AO
      INTRGER DJAGTiDTAtiN
      DIMENSION AT( ia>iB?( 10)
      l.«HiIi:AL*1 I T I ME < 7 ) > X PftTt: < 3 > , 0.1>'It.K (.tf lA
               ! BEEP
      Cftll  gRRSHT(74> .TMKjJ' .1M S^* ' .f ftl.SK. i .FAl SE. t
      r.ftiJ.  KRR8KT< AA> .TRtlK. • .FALSK. . .FALSF.. t .Fftl.iiF . r
      DATA  OTf II.EOTH I. F (5 ) tPTFH E(4 i /
                             1 H 37
      DATA  SIFI I.E (1 ) i SI FI I.EI ?. 1»S IF I I.K 3), *> IF 11 E14) /
     l'4HOi II i
      PATft  SFF I I.E (TT t gPFT I. E ( ? ) » SPjF I I.E 1 3 ) * SPF T I.C ( 4 1 /
     HHDl t
            sPFJLf t a i . RIF T Tg < P ) t on- 1 LC ( e ) xo r o * o/
      »PKM
              401 ? (SIP I]:E( I ) f J=ST 7 >       ~
  40? FORHATdH T7" FNTER  MflljE OIK PIKECT ft^CF.SS FII E  FROM
                                        116

-------
      »Fftrt« • -JQl )  (8«>Oi.Et I ) f .(-ri , 7 )
C
  405     FORMAT ('   F.NTF.R MO. W TJMFSTFPS  TO FKIP 8EFORF EKBINHIN6' »/»
     1'  MftftNnSTtC  PRIHTOUTSt ANB NO.  OK TIHE8TEPS FiW Bt AGNOSTIC',, ' )
C         READM»*>  PtftfiTtPJAPN
C         INPUT  NROFSSrtRY INFORMATION
      Cftl.L  INPBA  (ITCUHJ
      IPHTl-'IPNT
      IREC°NX*3
C         INITI6LIZF  VARIABLES
      MLL  1NITL
C         ROUTING  FOR FACH TIM*
      TIMKH-0.
C
C         IFLOW -  Ft.OW TYPE
C             0 « UNSTEADY KLOH
C             1 * STFADt FLOW
C         ISt:» - UfSTRKAH SKBIHKNT INFLOW  TYPt:
C             0 s UNSTEADY INFLOW
C             i - STKAWY INFLOW
C         ILAT - LA1F.RAL SF.BIMtNl INFLOW TYPE
C             0 * UNSTKA0Y INFL.QU
C             I » STFAny INH.OW
C         t«Af -• tiPSVRKAh Kt;»IHt:MT INKLUW  RATINQ CURWt
C             0 » NO RATINP rilKUE
C             1 * RATING CURVE IS IJSEft
C         ORAT - UPSTRF.AM SEfilMEWT RAT1NR  CURWF  CtlTOFF POINT
C         IF  IKUKAT THK UPSTRKAM SKnlHKNT  INFLOW IS 7.ERO
C
      REAP  <5,«) IFfOUtISKri.JlATtTRAT.QKAT

      IF
-------
  410  rORMftTCO'.IOX.'RATrMB  PlHtVfc UCfiTfcFftH SfilUHfKT  INFLOW)
    22  MttTF. (At Alt! ORftT
  611  FORMAT CO' .10Xi 'UPSTREAM SEIUWItl RATIN6 CtlRWR  CUTOFK" ft*"' »F1»»2»
C              RKftB 1M  SEBINKHT  RftTINU fillftWE ftT U.S.  BOIINUftRY*
C              OS£B-A5*tl*»»S WHFRF Q IS UPKIREAM UftTEK  INFLOW AMD
C                 08F.D  IS  IM l,»S/«EC.
       IF  ORftT,Efi»lJ RfM  (S»t»  tft!5{»l>f»?i
C
C          6NOU » INITJfti SFniMENl  I f»Afi (LBS/8ECJ
E             ftl.l. SCDIMKNT UJftOS  ftRK CHftNUHJ TO FT.I/iifU:  TO BE
t             COHPATIBiE WITH  W  TRANSPORT «N0 CONnENTRflTION
c             eatirtfioNti TH«T ARS  IISKO IN SF.DIWCNT ROUTING.
c
       IF  H)
       GO  TO  83
   «B  If  «tl) .l.r.QRrtf > BB tO S7
       DO  89  Ma-I
      60  TO  85
   87 OH  «4  «->l»NSX7ES
   85
           BLATM - INITIftl  TRlBUTftRY  PCDrHENT FUlMB, It- ANT
       tF(NTRIB,l,F, . 0)ttO
       DO 31*  I*l,ll»KIS
      DO 97  H-ltMSJZES
   ».l rttfV f < M P I) sfil.flT < « . 1 i / JM-.NR < M )
  516 CONTINUE
  513 CONTINUE
      TIHESMNRFC-l )*PTM
C          THIS  IS THE  iPBINNIWfi OF  THf  HftIN TIHfc
C          *»»t».tt*»*«****H*t***t**»* + *t#*** ******** *******
      DO  I4fl IT=NREC»ITf;OH
C              1TOOH ISi IHH Htm»Ktt OF  TTMESTEPS,
C          ¥»FXT»  QNF.XT » VNFX1 «KF  TMf-  HEfTHt niSl;HAR(>£  *  WkLOCJTY
C          ftT  EftCH rltHE S fFP
C
C          MRITE  TM6 TIME
      WRITFMtlflO)  TIMFS.IIWS/AO.
                         ' »H0.2. ' KIN  IW.F7.2,' MRS')
                                      118

-------
           CHECK FOR niAMMIISfll;  PKJINI
           IT
C          IFUTT.FH.IUABT)  IPNT-1
t          iFdTT.Br.DIAr.T + DIftiiN)  IPNT^IPNTl
C          SET  PRINT FLAG IF  T1MF.  t-OK  OUTPUT
      IF(Bl)»UTTf IPHn.t:u.O>PFl.A«-1.0
C          FOR  STFAm FLOW Sf.T YNKX1 i  RNFXT R VNfXT  TO  INITIAL VALUES
      IF  < m.llW.PG. U t»n I'll  90
C          REAP IN YNt.XT.BKFXT.gNF.XT
      »RF,C=NRFr,+ l
      RE An (3 'HRFD «YNFXT tT») iNX) r
     t(VNIiXT(I)r l»liNX»
      t?0  TH 91
C          COPY 'NOU' FI.OM PftRftMfcTh.RS  TO  'NOT'  FCIR  STtrtliY FLOW.
   »0 »0  9? l-l »NX
                     I)
   92
C
C          GNEXT  t GNDM " SKIUHFNT  LOAD (l.RS/Str } AT  HftCH TIHF. STkP
   *1 IK t I SI-ID. F.Q.I > IU» TO 93
      IF  ( JRAT.F.H.) >  PO TO 95
      REAU  (S»*>  
C          CHANGF  LBS/StC TO FT?/SFC.
      Ml  HM  M.^iHSI7ES
  103 GNFXTC1 ,rt)=RNFXT(1 >M)/DFNB(H)
      )»n  T«1 96
C          SET SFOIHt.Nl I.OAH UlR  STEADY 1NKI.HU
   9» DH  94 H-l.NSIZFS
   94 GNfXTd .«)=GNnH( ItH)
      Un  TO 96
   93 CONTINUE
      IF  (QNEXTO >.LT.ORAI) CH TO  99
C          Cftl.r.Ul.A\E UNtXT USING  SKBIHF.NT RATING TrtBI.E,
      DO  97 «^
      50 TO 96
C          IF  NO  SFDTMFNT LOAIlt ZhRfl  liNKXT ,
   99 tlO 99 H-tfNSi7ES
   99 GNFXK 1 th)=0.
   9A COMTINUE
C
C          GLAT  *• TRIPUlftRY PFDIMfNT  Fl Oil THIS PT>  IF  ANY,
C          UNITS  AftF  I.HS/riFC.
      IFtNTRJCB.I F,0)PO Tn 517
      IF  tltAT.ru.!> tiO TO 51>
      DO PJP  l = ).NTRm
      REAn<5>») (RLAT(.I» T } t 1=1 »NSI/.ES5
C          CMANRfc i BR/SF.r. TO FT3/RFC.
      »l» 104  M=
  104 PI.AT<«iI)
  S1H CnNTINUE
  517 CONTINUE
C          WRITE  TITI FS FOR RF.SUI TS  TF  FI-I.AM IS SFT
                                      119

-------
      tF  Tints. 1 IrtFS/AO,
  ItO FORHftTOtHli'  Jim:*' •flQ.y.t* MIEN im'iK7.2f'  MRS')
      MCOHW-1,
      IF(JOTYf»E,£Q.O»  Bfl TO 105
      W.nmj--,4S339
      HCQNV2-304.8
                                               H=S »N5TZF.S>
      r,fj  tn  10?
  103 yRITE  (6ift07>  F,f".) ! ' »6X* IOF8 ,4
  409 FRRMfcTdH  »'WSTRF,AK srwiMKNT INFLOW  (Kfi/SKO   ! ' .6Xt IOFB.4 »
  »07 CONTINUE
      IF  (MTRlft.LE.OJ  BO TO J01
      tF(tnitPK,F,0,l)  t!0 Tit 108
      DO  102  I»1»NTKTB
  102 WRITE  (6»606»  ITRBXI D f *:iF.N5 iH=*l »NS1/FS)
  A08 fOR»,1T<'  'f '8Ki:t'»t3»' i.ftT, 8HOIH»-:NT  IMFLOU  (1.1S/SF.C) I ' f 3Xt
      RO TO  tOi
  10B DO 109  1=»»NTRJB
  101 CONTINUE
C             WRITE SFDIMLNT SI7.C FRACTIONS,
      IFttllTTPE.EQ.O)
      IFUQTrPE.Ea. J >
  AOS FORMrtTC  ' , 'Sf.lt. ' f 1X» '0' »»X»'Wkl. t ' r^X » 'US' »4X , 'CHH.D? ' >3X»
     2'ffl»NC,'f  I0«'  CUr. 117' »)
      FORNftTC  '»'  NO . ' ?!X» 'CKS' >.*X» 'KT/8EC' »2X* ' t/SF.r' t^X. 'FT' 1
  *I3 FORMATdH  »'  NCI. ' .2X. 'M3/S' »3X» 'H/SEC' tWXt 'Kfi/SKC' »5X»'CM'f4X»
  R33 CONTINUE
      CALL ROUTE
C         OtftRNlJ^TIC PRINTOUT
C         IFCDiaGT.tU.ITT.nR.JUftfiT + DIftSN.LE.lTT}  BS! TO 702
C         WRITE  (1rA99»
  Ikff     FORMATUH t3X»'J  H   PHOU   ONFXT')
C         00  701  l^tpHX
C         DO  701  M=»l iNSIZFS
C         URXTK(4r700> I >M?r3H»)W« ( (N>«f5MfiXT( l.MJ
  700     FORMAT C1H »2Xt If., 1 X» I2»3F«» i >
  701     CONTINUE
  702     CONTINUE
C             EXCHANGF THf TJ«F I
      »f) ,400  l-J^tNX
      ONMIU >«DNKXTC t>
      VHOUCI )«UNFXT( I >
      DO
                                      120

-------
  301 CMOU< T» «)"T.N* XI U »n>
  300 cnMUMUE
C         9**|t***i**tt*tt*t***tttttt*t***»******t***ttt*N
C             f,H!)  OF  HflJH rtHF. LOOP.
C
  HO C
  HI
      «RITF«4fl42)
  1*2 rORWftTC  SRMKENT  HOItEi  RUN COMPt.ETFn f ' >
         l. 1IMMITIHI')
                       SX . 2
      CAM, KX1T
      END
                                     121

-------
       StlfcROII T INf INKlirt  ( Jt I t.Urt ;
                 t/.l «UH.I)7(10) rACF.SPfiRftVt 10}fD*--f^5( 10) .Fy8( 10)
     2»BWCMi<40pl8»»t»l«:XT(40f 1 0> »TK«CftPC J 0> .CE < 10 >
      CTHHOM/TAB/NPTSCIQ) t tl »l, (40»? tPTBM 10>20)
      CDHUQN/XPROP/X t 40 » F 1 1 10 1 »FNCK *,Q > » FM J ( 40 J f FN2 ( 40 J » PLP
      COHHON/PCON/I f'NT f Hf LAG
C
C 17S FORHATUH »'  f?»HRWITIMI-  IKPIW' )
C
c          INPUT «NP cinmn  TITLE
C
      REAP (5»1?OJ TITIE
      FORHftT (2«>*|4)
      EftH.
               179 »  IDftTFt IT I HE
      HJL1 IE < A > 1 79 >  I BftTF. t IT I HE
     J'  *     SUTRON CflRPORftTION  - CHftNWL RUiTHt-NT  ROUTIWG MOPFl     *'»/
     t»' *'
     2, '
      »RlTe«4»lBO> TITLE
      WRTTF,  (At 180) TITLE
      FORHftT  ClHOr?Oft4>
C
C          IHPUT  AND PUTI'lJT REWFRftl,
C
C          ITCOM  » NO. OF TIME  IHCRFHfNiS TU ROiJTF  gftTFR AND SkPIHKNT
C          »1H ->  Tint, lMf,RKHF,HT  tHIN»T^S>
C          SNU «  KIMFMATIf, yiRCOSITY OF UrtTEK X F.05 < FF.F l**^XSEt;»
C          fl»K-Fl.»y SIIII, irtrfftCH,  CUKK. FtJR CHftHNF.i >5 (0,0 TO l.OJ
C          NX»NU«BER Pf^
      SHO  *  1.0/J 00000.
  612 FORHftTC'  't'tHAHNH. SOIL  WTftHHMF.NT CflEFMCIF.NT" ' i F?.* )
C          HfRIB-NU, HF IRJmiTfiRV KtninKMf IHH,OMS<=5
C          IOHT  = CFHKRftl,  I«PI»T  J«FQR«ftTIQN
C             i)  * MO PRIM TOUT
C             1  * f-RFHlOUT
C          IPNT  «• MO. OF  Tf«£  J?TFP8 BK.TMkF.N PRrNrPUTG
C          HRE*:  * NO. OF  T1HF.  STKFS UNT .M. STF.rtOY  FLOW (SMP NREC
C                 TIHESTFPS  IN PIRF.CT At.rFSS FILE)
c          lortpF = oiifp»r UMITS
C             0  * ENPI.ISH UNTTS
                                       122

-------
              t  * fit (METRIC) IIHTTS
                Q.Oi *I«ITKf A»
  613 FORMAT ('   OFKFRAL JWKIU  INFORMATION OUTPUT HAS PF^N  SIJFPRI-.SBfi U ' )
      WRI iKA.MOJTPNT
  410 FORMATUH »*RfcS»t.TS tlRl §E  PRINTED FWEKY'ilIt' T IMf-STEPtRJ ' )
      »RtTFCAt*t*> NRCC
  *J« FORHATUH i!4.' TIHFSTF.P8 ARE  SMf-PKn 10 AH Ml FIOUffltDEI.'i
     1' OUTPUT  TO STErtl»Y'>
      iFtNTtrp.efl.o) r»n T» j?s
C          RF.fttl  H0«. flF X-Stt:S  UHV.Kf.  TRIBUTftRY HOWS FMTER
C          READ  IN ASr.EKPIMG ORDFR*  r.F,  If 3t &t f>? ETC,
                J 1 > KTRIBM f TR»X
  1*S
  61B FORMAT (i HO » 'OUTPUT IS FXFRfcRSF-P  IS FNBI FSH UNITS'!
      IF < 10 1 YPF..K0.1 > «Rt IF, (At AOiJ
  *QS FOR««T<1HO» 'OUTPUT ifi fXHRfRSFn  IN SI (HFIRTO UMITfi')
C          SEf  FI.AMS WHICH iW.NTIFY  X-SFCS yilH TRJB SFE  INFLOW
      00  51?  T=l»40
  5i» CONTINUE
      BO  530  l>!»NfRIB
      HRITF  (6*200)  NX.ITr.OM.JiTM
      FlfRrtftT  ('  ' »///tl*>X* 'NOM^tR liF  CROSS RfcC.TIOMS » ' »1St/>IQX»
     2  *«UHHFR  OF  TIHii IKCKfeMFNTB -'fJS»/»lOXi'TIME JNCRFMFNT  (MIH)  »'.
     3FS.2>
t;
C          INF-M1  ftNfl  PUTWIT ytTBHT FACTORS FOR THF 4 POINT
C          EXPLICIT HEMHt-.Nf KOIJTTNli  SCMI-HE .
C          BFA « SPftt;F Wf:IKHT KACTtlRtHUST  BK  LkSS THAN OR EBIIAI  TO  0,5)
C          MFR ^ Tt«F! WrlKiHT FACTOR  
C
      READ (5>t! UFAtUFB
C
C          INPUT AND  OUIPtrT S«II». UrtTA
C
      IFUOUT.FR.l*  Uk-ITF t.4»M9>
  lit FORMAT  (*  ' t//»|(JXf'SOI», T»ATA'>
C          NSI7EH s NUMBFR flf RI^F FKACTION?
c          t»en  - NiiHRtR OF X-SK;H utin  SPECIFIC RFD MATERIAL
C                SI2F
      REAW (3»*1
      FORHftT  ('  ' »//» )OX» 'HI»«»ER (IF  St/.F.  FRACTIONS »'»I5)
C          9HH -  RIZF Of  SkPIMENT PARTICLES  
-------
       IFttOtlT.EO.O y«ITf (*,11SJ  < 0«B{ 1 > r I -"I f ft* I <*.*>>
  115  FORMAT  ('  '.fXf'SfeniHfXI SIZFB  'V*-SF»)!MKMT FrtLI, VELOCITY
      RD TO  20A
  201 F«RCH) = (SC1RT( C2./3.)*X3,2*-l . >*nMB(«) **343A.t HNU**2)
  20* CONTINUE

                  Q.ft) wo rn 207
      HCONV-,3046
  207 JF< TOUT. Efl.l .AND, IOTYPF.Ffi.0)  HRITH  (Ati^OA) ( FUB (H > *MCPNMf
  604 FORBAT  <'  '»fX»'Fftl,l. Mf.1 WfTY  (FT/Sfet^J I ' » 10F?.5>
     IM-lrNSIZES)
  607 FORMATCIH  t9Xf'Fft(l  WFJ OCITY  CN/SEP)  J'»JOr9.S)
C         PSPP -i  BKIJ MATERIAL ST7F!  FRflCftHN RftTIlJS,
C             PP  rtPPLIFS TO ftl.L SHCTIOMS. P IS X-SFC SPECIFIC.
      KEflO C 5 » * ) ff \ , ff'l i fp$ »PP <» » PP5 i PP4 » f»P? » ^PH p PP9 »PMO
C         SET Al.l  TRflfSS  SECTIONS TO BrtHK  SIZK IHSTKI BUTXCW
C         PRIMT HEADER
      IF( JCHiT.f.H.1 J  MRITF<6i614)
      FORMATCtH  »9X»'Bt:i> Hftiehirtl, ST7^  T)I?5TRl6lJTtONS' )
      DO 150 J^J.NX
      P( ItlO
      CONTINUE
      iF(n*cn.ra.o)  sn TO 112
      HO t,U  ,1-^HBEIi
           IXS *  X-SEC HUMSfcR FOR PhJt Mrt'lERlfil
  131 REAIX',1**)  XXSi (?<. IXS»M) »H-1 iMSJ7VS)
  1?2 PO 133  1*1 tNX
  J33 IF(lnUT.FR.l)  MKITE <6.plS?) I r ( PC I tH) »«-i
  J«2 FHRMrtf  <'  ' »9X* 'X-«PC'»IA> ' PFRCENTftfiES  I'»10F9,5)
      oo ion  r«-i»NX
                                     124

-------
      IF CNSI7ES.EO.J )  R<1 TO 106
C         SPKR^mw  tIF  HFBIHEHT 81/6
      SPER-0.
C         DARHRR^ftRMOR MPTH AT EflC.H
c         SET  ARMOR BHPTH rn f> 84.
      00 104 H=1fNSJ7FS
         IF  (SPFR.er.o.R4>  PO TO 105
         RPKR JASPER
  104 CONTINUE
  103 Hl^H-1
      DARMORt I) =084
      60 TO  107
  to* OB4=tiHIMN?nZFS>
      DARMPRt n*-lt04
  107 CONTINUE
  108 CONTINUE
      WStTF, (4,598)
  5?8 FORMAT C   INPUT  CROSS SECTIONS!')
C
C         READ  IN  X-Brn LOCATTnNS ft«n PRflPKRTIF.S.
      on lot  i-=t»Nx
C         XSFC-20  CHARftCTFR X-SF.C P^SHRIPTJON
      RFftO  (Hf500) XSEC
  500 FORMAT  (Sft4}
C         X-SEC  DATA BF-PINS AT THF UFSTRFftM FNH  OF
C             THF. STIIBt RFftCH,
€         X  => DISTANCE IN MILFS,
C         /  - THF.  THAI.«Ff> Htl.VftTtON,
C         THE COEFFJCIFNTS CtKf FOR THI- F«ltA1ION  -
C         N=KNOtFHl*Y+FNS*Y2
      REAFi  <5,*> X( J)t7CI) rFNO
      NI»NPTS<1 )
I         REAP  IN  TAKS.F PF UI-.TTFD PEKIHhTFR VS DFPTH
C         FOR EACH X-SEC.
C         YT?'
c         PT»I =
      REAP  (S.t) 
-------
417 FnRHATdH  t/*?fX»'f?Pt '.AXt'PTW,
   l30Xf'(N)'»7Xf '<«)')
    WRITF  (6tA03)  «VfBJ.(J»JH.»COW
60S FORMftT  ('  '*5»2X»1>Fil».2>
301 Cn«TIM»E
    CF(IOHT.EQ.O)  HO  TO  304
    WRITF  <6.600)
iOO FORHftT  ('  'i///» J7Xi'      X-SF.C    X »I8T      fLEM'/J
    tin 303  I-tcNX
    WRITE <6ȣoi>  i r x< I tJMrnNVt?. < r
302 CONTINUE
    IIRITF. <4»«05>
A05 FORMftT  ('  ' r t/t lOXt 'RFSISTftNRE TO FI.OU IS DF.SCRIBI-.n  Bf'
   2' MftNNtNlfS'/lttXt 'EO))ftT10N,   HrtNNINfiS N IS EXPRESSED  ftS
   3' niWORATJC FUMCTrON  OF  OKPTH' !
    00
                                              (4
   2Ffl,;«t' TIMES flEPTH  PIUP'iFB«3r' Tl«ftS HKVTH
301 CONTINUE
304 CONTINUE
    RETURN
    END
                                  126

-------
      SUBROUTINE  INITL
      CQHHW/SFIMP « 40 . 1 P ) » PA t 40 . ] 0 ) t DMP ( 1 0 ) i D ARMOR ( 40 )
                10) >ANKXT< SHU » w EPPR » NX
      r.OHK»H/l,SF!.0/t.TRIB(40) i NTRIBifii.ftT< 10 >5> F ITRBX ( 5)
      COMHON/HE4 7/7CUH < 40 r 1 0 ) * TTl.D? < 40 J
C     WRITE! Ai200)
C ?00 FORHATdH  i'   SUBROUTINF IK1TI.')
C
C         INITIALIZE VftRIftRLFS
C
C         LOOP TMR01IRH M.I  SIZE CLASSES
      UQ  IS X->tfH5TZF:S
C          LOOP  THRQUPH NO, W TK1BUTAR1ES
      Ptl  IA J-1»RTRIB
C         GLAT=) ATFRftl, SF.HIHPWT INFL.PU
      BI.flTJi i J>=0.0
   IA CONTINUE
   t5 CONTINUE
C         LOnP TMRPtlPH NUHPER OF X-8FXS.
      DO  HO i:-Jl»NX
      DO  103  M»1»NSJ7F.S
      J)7CH)=0,
      ZLUiH)=0.
      7CUH(X»M)=0.0
      TTLDZCJ 3=0.0
      CONTINUE
   10 CONTINUE
          ZERO  OUT  ftTUNSTEn PERCENTAGE  PER  SIZF CLASS
      DO 30  I-'lrNX
      DO 30  H=iTNST.?r:S
   30 Pft( t rM)
      RETURN
      KND
                                     127

-------
              J rtc,  RUM i r
                                            tCE<10»
     1 . NS11FS . HREC r IOTYPE
      COHHOH/TftB/MPTS 1 40 ) » Y TBl. ( 40 » ?fi ) * PTBI, ( 40t 20 J
      CO««nN/XPROP/X(40)t?<40>fFNP<40)iFN1 MO) t FN2< 40 > »St P
      CO«MCW/»ELZ/ZCUH<4Qf J 0» rTTU)Z<40>
      REAL*4
      IHTKHKR
C
C fOO FQtMftTUH  i'   BHBROtlTIMF RIIUTK')
C         tt*tt*t*Ht**>t***«t***K<*f*itH***t ******** ********
C         LOOP THROIIBM THE NMHBCR OF  X-SrHS
C         »*********»•» Jt***********»*t**«* **•***********-»*****
      DO  10  I«
      OLftT^O,
          fiftVF  «  AVERABF X-SFf ftRF.A,
                          -!>/ VHt:Xf  =  »«TT»« Sl.tJPK »>•'
      so=F.D  BY  DX
                                                            1-1 J 5/HX
c         m;i".i  •=  DtRiyftTjtMv: IIP Y KITH RESPECT rn x
             ,S*-BNFXTt£-J »*WNEXT(I-J » )/(HX*HX)
          At*C2  =  DPRIVflTIME OF M WITH RESPECT TO T.
       , 5* ( OMF.XT < r- 1 J -ONOU < I-i » /»TS ) / < »2 »2*ftflVE )
           Sl.F  -  Sl.tlPF.  HK THi; KM€RRY ORAOE  LINE
c         mAffHOSTic  PRINTOUT
C         IFSO
      IF   SLP^O.OOPOOOl
      KALI. PI:SI:T  «tx>
      CALi TRANSP
      CALL SROi»T
-------
            *T  *  PARTICUUMt X~SF.i:.
      BO 21 H-]fNSI7CS
C         BEL?  -  TOTAL CHftNBF IN X-fiHr, BF.n El EM THIS  T1MESTKP.
   23 nHI,Z-»KI,Z+OZ fiO TO  1600
C         «RITE<4iiA01)  (DFKSCMJ i H=J fKRIII.S J
1A01
C
1602
 1600 DO 200 M=l rNSIZES
      GTD l'
  SOO CTOT=CTOT+SPGRA« CM) * < KM XT ( 1 1 M )/ONFXT ( I »*10 .
      HCONW-i.
      WCONM2-1 .
      HCONV481.
      IFnOTYPF,.EQ,0)  110  TO  201
      MCRNW4-30.4B
  201 MRITF{*f 600)1 *IMIF.XT< I ItHKP^VtyNEXTl f
  600 FQRMATi'  ' .I3»F8, 2»F7,?f F8.a»FS, 3.F7, ?»IX> 10FR.4)
   25 HOMTINUE
E         ENft OF X-SfiK  LOOP
C         *»********««»***** *»*»»*»» ***»*»*»«»««** *»»******»*
   tO CfJHTINyE
      RETURN
      F.ND
                                      129

-------
            i i inr. rn.ni. i
     l.Zl < «Q,tO>»7l BUMtn7< 10) fflOF.HPtlRAVt •LOJ.OKNSUO) .KVB< 10)
     ^tGKOU<40,10)»PNFXT(40t 10),TRNt;ftP( iO> t(;f:( 10)
      COHHON/BEM/OTH t » T8 » BTX t WFft * MFB f SWI t WEPER t NX
     1 »M8IZFSt»fRf:fif rOTWE
e
C          BETFRtllKAtTON Or AUJUfiTFD  PRWtEMIftGES DUE  Tit
C
      W»  I «->
    1 2LSUM*Zi Stm+21 
-------
       SUBROUTIHf TRAHSP (JtPX)
       CnM«aN/HYn«/YHOW(40) ,QmiU«0) t VHtTW! *0) , YNKXT ( ^0) , QHEXT (40) .
     SVNfiXI (405
     If ZI.(40»lQ)»Zt.Stin>nZ(l9) FftOFrSPfiRAUCWfOl-NSdO) .FVtUOJ
                          »YTM <40»2Q>
      BIHfe NSION SHEX ' 10). KCAP< 10 » iflSIISP < 1 0 > p f".F < 10)
      IWTF.fiKR  etaBfrOIAON
          COHMON/DIAG/nrftfil .DlftfiNi n T
C     WRITEtft.ZQO)
C 200 FORMAT* 1M .'   5UKR01ITIHI- TRftNSP')
C
C         DETFRHINF. TRANSPORT CftPftCITY OF Fl.Oy
C         BPTKRBIMnflOH »r FLOW i;OM»1TI«NS»  SUCH AS HYDRAULIC
C         HEAN yELOCITYt rtNC BOWDftRY SHF.fiR  STRESS
C         NdTF.l EQtIATIlIN RKFKRKNKES  ARK  FROM  'BF.MELnPHKNT OF HlJOELS
C            FOR PRF.niCTJNB WATER ANB SEPIHENT ROUTINR AND Ylfel D FKO«
C            STORMS  ON  SMALL WATERSHEDS!* r  BY  St«0»S» Lit ANO STEVENS >
C            1975,
D
      CALL  TAiL  /VMfXT { I ) /M^PER
C         OIABMOSTJC PRINTOUT
C         IF
C         UR!rM4f301)  IiOHKXT(X).YMKXT-X
C         HANNTNfSS  N
      FN*FHO( I >+FMi ( I >*YW-,XT< I )tFN2( I)*YNFXT( J >*YNEXT< I )
C         FtiRK  « FRUIT J OH FACTOR
C         RBI)  -  MASS OKMStTY DF WATER
C          TAU  »  TAU STAR*flVFRAl L SHEAR STRF.SS
      TAM-tRHO/H. )«KnKR*VHKAN*VMKAN
C     TAU=-*2.'"«*HYRAP«RI P
C          SW=SHFAR  VELOCITY (F.OTN f.,li -  S.»l.t5.>
      SW^SOS T IT AU/RHO »
C          TAyO «• WJUNftARY SHFftR HTHkSti 
-------
C          0,047  *Y fitSSUlR. KUR OVKRLftNl) Fl.DH SC HAS KEEN (SET  AS  LOW
      SO, 047
      00  10* H^lfWStZES
C          TAUC « CRITICS  SMtftft STRESS   60 TO  JOS
C
C          DETERMINATION Of- RftTJO OF SUSfENPfn Bfctt HATKRXAI.
C
C          AR » E1NSTF.IWF "B* COEFFICIFNT <
          IF  (AR.6T.0.9J GO TO 103
C          DIAliNUSTtC PRtNmOT
C          lF-:(
  J03      FORMAT risysp'OKT CftPftt.ITY ft!  Fl.iiH tfSOLIP  VOLUHF/TTHF.)
c              learns s»,o s ».,<<> - 
-------
         GO  10  106
  103 tJBUSrcm-O,
      TRMCAP <*>-«,
  106 CONTINUE
C         OIARMOSITtC  PRINTOUT
C         IFJDIA6T.PT. JTT.OR.KIACT-i-BIABIM fc.ITT) 50 TO 598
c         uiutKMrsyy)  UJUHNIIAIMM} jM«i»Hsm:j;»
  S?f     FQRMATUH f'RAM TRAXS,  f.AP.f ' f I2i5X» 10E10.3*
  5*8     CONfitmtE
C
C         ADJUST THE  TRANSPORT CAPACITY
      CO t08 N-l.NSTZES
      IFCI TRIR.W;,0)  QLATM-BLAT J
      IKtfRJtBC JtKKU.OJ  «LftiN-0.0
C         RGAP  = TRftMSPORT tftHrttilTt CORRECTS FOR U^STRHAM  AND
C                LftTCRft!. INH.OM
C         IF NO ftWMl.ft)H.K l.Oll-SE SOJLi RCAP •* 0,
C     IF«1LU»MJ.LK.O,>
C         FIOURE OUT  MIN 'IKANSPOKT Bft«E» OK SETTLINS
C
C         CF-CONCENTRflTIDN  SFTTUNG Fftf.TPR
               ,t.T,fl, )  C^'(
      IF>
      !F(LTRIBtI>»FO,tU  01 ATH-0,
C         TRftK-fRftNS5l»«)RT CAPACITY BftRKJ) OH SF.TTLINO
C         SKK IF THK  T^ftHSl^ORT CrtPACITY (TRNCftP) tS f}OW€RN«i  BY I
C         ftRMORING  (Pft5»  SETTLING (TRAN)» OR RF.HfllNING  TRANSPORT
C         CAPACITY  
      IF « Pft < I »H > *TRNC«P < H » • GT . TRAN )  TRAM-PA < 1 1 H } ITRNCftP < H )
      IF«KCAPCM> .BT.TRAH) 1RAH=RCAP(M>
      TRHCAP««J»TRfttl
  108 CONTINUE
C         OIAGMOBTir  PRINTOUTS
C         IKCUIAGT.OT. jrT.Oft.DSAHT + rHARH.I.K.t IT) HO T»J  60S
C         MRITE(4»607)  «CF< J) » J=J f KSI7EH 5 »TRAN)
  *07     FORNATUH »tOX» 'CF<«)«' f ^X» lOFlO.-lf /• lOXt 'TRAM-' »ElOi3)
C         WRITF<4t&00>  
  400     FOKMATUH « 10X» 'PA(M)-'' , 7X. 10E10 . 3)
C         yRI¥F<4t601MRCAIMH>»H=3l»MSJ7.FS>
  601     FDRMATC  ' r tOX > 'RCAP(H)^' P^XP tOEt 0,3)
C         WRITF«iA02HSH
  A02     FOKMAK'  ' . 1»X» '8HKX(M>-»'
C         MRITIf(4»*03HTRIICA«-'(«)»M-
  603     FllRMATC  ' t lOXr 'TRNCAP{«> = ' »,1X» 10E10 ,3)
C         WRIfF.t4f*04H8KFXTCr-if«»f M=l»NRI7Ef5>
  404     FflRHATC  ' 1 10X» 'ISMKXT < 1-1 »M )«' 1 10F.10 . 3 >
C         yRITE<4i605HHWUB< 1-1 iH) »«>••! iN8IZKS>
  AOS     FURMATt'  ' t t«X »
C         WRITt<4»60
  406     FORMATC  ' i U»X» 'BNO»< I »M)«   *rlOEtO,3>


  608 RETURN
      RND
                                     133

-------
    SUBROUTINE TAHI  (I,Yt,XT)
    Cn«WOH/TflB/«PTS«0) »YT»t( 40^0 J .PTRI.( 40^20)
    NTBL-NPTSU)
    IF (YT.UF.O.)  «H  TH  103
    IF :.YTBl.(Ijl»  00 TU 103
    NTBL1»NTBI,-1
    DO 101 TT^ltHTBLl
    IF 
    150 TO 104
103 XTMPTBLUtl)/YYI>i (Itl))*YT
101 K^fURN
105 IF CYT.IE.O, )  XT=0.
    IF t2,*>
?00 RfflJRN
    END
                                 134

-------
C         IS  DFTFRHINFJl,   INCRFAHIT 1 (lOSf  ROIL  BUE TO Ft OM DFTACHHfWT
C         nSOTL.  «  OtPfH OF UHI8K 8«ltl, AOBKD  BY DHACHMFMT
      DSim,«APFtZCA»P< J fH>
      lFSQtO.t.T.QMB(M» BSfJU.=0.
      ZL ( I • M > «Zl. U > M > -0SO It
C         COHPUTE  THE  CONCENTRATION BASED ON THE AVAILABLE LOOSE  SOU.
       U ,-Wf fi)«/VN()W< J > + <1 . -Ml- A)*GMf}H U -1 i M> /VNOWC 1-1 >> ) +
     3<1 ,-UFB)*GNOU(I-3 , H) » » / UGNEXTU > /WNFXT U ) j + (RMEXT ( I )*PTX) )
C         OtAfiMQSTIC PRINTOUT
C         IF(DIflBT.GT,JTT.OR.niAfiT40IAR«.LE.ITT}  PO TO 607
C         IHUfl- «tAOA)  IiHfZl(lrH)
  606     FORhftTUH ilOXi'RAU 71 < ' t f?f ' » ' r 12. ' )*  'fF10.3>
C         mUTF.d.AOS)  (Rf (,J>t.)-)ltHSI7KS)
  ACS     FORMftTUM tlOX.'RftM CF.(M) = ' .SXt 10F10 . 3)
  607     CONTINUE
      IF tTFCrt) ,1 E,0. )  CF(M)»0.
      r,NHXTI--UF. (M)*«1NEXT(I)
C         COHPUTE D7 BftSED DN cnNCEN TRAT10M  FRItM  ABOVE
     1(1 .-yFBJ*liNPH.lT,0.)  ZL(I»H)«0.
      GO TO  113
  US CONTINUE
                        1 > + WMEXT< T-l »»PT5/PX»S780,
                       RNEXTt irN) -»Nl)W(I >M)+linTX*
                       l tM)+PMOW< J-l
      IFtllDlX.RT.1.0)  nNeXT(I»M)-
      DZ(M)=0.0
C         UtftfiNOSTTC PRINTOUT
C         IF(DIAST.RT.1T1 . t)R . B T ABTiJJI ARM . I F.ITT) PP TO 1V3
C         WRITE(4iU»S>  IiMfUDTX>RNF,XT( t.M»
1115      FORMATUH • 10X. 'ttPTX rGNFXTt ' t !?,• ' i ' » 17,, ' >= ' t 71, 1 0.3)
C         NKIYK(4»ltl6>WNl)M(I-l » > UHF.XT ( X-l ) r DTX r DX
1114      FORMATdM » ' WNOUC 1-1 > . VNEXT ( 1-1 ) • PTX • PX= ' t 4F 10 . 3)
  ttl CONTINUE
C         DIAfiNORTIf PRINTOUT
C         tFfDIAlVr.fiT.irT.OK.nXAfil+ntAnN.tF, .ITT) OO TO
C         WRITE(4t601»«R7--' ,!5X. 10F.IO. 3)
C         MftJT*<4i*03)  pH"l.«8l7FB)
  A03     FTOHftTC'  'tlOXr T.K
C         URITF<4,604)  
  A08 RKTilftN
C
      END

                                      135

-------
      SUBROUTINE  SROUT (I*HX>
                                    »VNi!H<4O) , YMFXK »0>
                                 10)
                   t.S»Hi»Z(10)>ft
     2«6ttnU(4Qf 10)
                                                 NX

                                         IO F!»
      INTFPF.R DIAGTrPIASN
          r.mwtiM/iHAo/oiftBT . nt ABM » i TT
C     WRITEt*f200>
C ZOO FORMAT UH  •'   SUHRQUTINE SRflUT ' >
C
C         DETERMINE  SEfllHF.HT  rflNCENTRfiTIGN ftNP  TRANSPORT R(\TE RY
C         COMPftRIHW  THt; TRANSPORT CAPftCITY OF THE  Fl.OM TO THE
C         OVAILAiJLJTY (IF SCIJt.
C
      DO 113 M*i>NSIZES
C         5?  "  CHANflfl 1M BOTfOW KI.EV. DUF  rO CFPOSITION OR RCOOR
      CNEXTI«TRMCAF-/yNKXr( ^-1 ) + (! , -UF»»*«yFft*flNOtK If H»/WNOM< I >t
     3U,~WFft»*6NQW/VNOU(I-U ) ) > + < Gl, ATHtDTB) »
C         DlftttMOSTIC  PRINTOUT
C         IFfBIABT.BT.ITT.nR.prflCT+niflSN.LP.ITTJ  BO  T« 399
C         UR[fF<«,400)  M»IH AVM,n7
  399     CONTINUE
C
C         IF 01>0i  ABflRADATICW OIXURR «MP TNftNSfPRT  RftTF 18  AT CAPACITY
C
      IFCDZ  RO  TO 40",'
C         URITE(4f401)  ZCft
  401     FORMAT ('  ' 1 10X, ' ZCA-s' .EtO,3>
  402     CONTINUE
C
C         IF ZCA>0J AVftII.ftHII.ITf PF I.IM1PF SMI IB ORfATFR  THftN
C         TRANSPORT RAPACITY HF FMW AMI) THKREFORE TRftNSPnftT RftIF IS
C         AT CAPACITY
€
      IFC2CA.OF.O, » GP  TR 114
      1F(P •t.F.O.O.ftNDtZM IiM> .1 .f.O. S fid TH 113
C         TRANSPORT CAPACITY IS 6REATFR THAN AVAII.ABI.F SUPPLY OF
C         1.DOSF, SDTi,   ftKDIHgMT CONCiiNTRATMIN UNDER  1H)!S CONDITION
                                     136

-------
      SUBROUTINE  POWER < 7. A, X.ll t X.I
      RICAI.*8  AEX
C     URJTF-( A.?00)
C 200 RJRMflTUH  .'   SlIMtnUUNF PBUER' >
C
C         THIS SUBRClimNF. EVAUIATFS  JI  AND J2 IMTFJrRALS
C         NOTATIONS
C         XJ1 =  VAI.Ut: OF J1 INTFRRAL
C         X.12 =  WAHIF »r J3 INTEfiRAL
C         N * ORDER OF APPROX JHATI 0«  *  1
C         COKU =  CnNVtRtifNCP CRITERION
C
      N'i
      xji=o.
      XJ2=0.
      AI.QB
      C-l.
      t<=-z
      GO TO  102
  101 N=N41
      D=E
      F=D
      FH=FLOAT(N>
      AEX=A**E
  102 IF  (ABS<£> .IE. 0.001) GO TO  103
      XJ2«XJ2 + C*( IMK-l . »/E!**2-ftFX*At G/FJ
      BO TO  104
  103 XJ1=XJ1-C*ALG
      X J3«XJ3-0,S*n*Al 0**2
  104 IF (N.EQ.l)  GO TCI 105
                .-FJt/x.u »
      IF  
-------
       Appendix D






PART 1;  FLOW MODEL INPUT
            138

-------
  SCIOTO RIMER FLOMMOWL - 2ND STORJt EWENT
3600
20 83 0 24 1 2 3 2 0 0
GREENLAUN AUE BRIDGE
0 683.36 0,01 0000
129.5 20
0 714,
40 701,
200 692,04
220 691.28
260 688,32
230 697.63
300 687,47
320 687,2
340 686.4
360 684,35
380 687,3
400 686.92
420 694.00
440 686.45
460 685,42
400 683.36
500 685.15
S20 687,45
530 668,45
670 714.
SYNTHETIC X-SEC #1
0.77 683.9 0,01 0000
128,65 11
0 693.9
S 692,9
14 691.9
57 688,9
8? 687,9
248 6B3,9>
410 687.9
438 688.9
402 6f1.9
491 £92.9
495 693,9
SYNTHETIC X-SEC *2
1.16 684.28 0.01 0000
1?8.21 11
0 694,28
5 693.28
14 692,28
57 689,28
119 688.28
248 684.28
410 688.21
43B 609.28
4P2 692,28
4VI 693,28
4"?S 694,28
FliftHK ROAD DRItiGE
1,56 6B3.66 0,04 0000
127.77 16
60 698.65
80 688,1
100 6B6.74
120
                         139

-------
160
180 685.06
200 686.28
220 686.2
240 685.76
260 685.51
280 685.15
300 636.69
327 686.1
MO 691.65
400 692,67
RAILROAD BKIB6E
2.52 67S.2 0.120 §000
124.7 12
85 693. S
100 690.
105 687.6
120 £34,6
140 687.8
180 661.5
240 67B.
268 67B.5
300 675.2
337 6B1.B
360 68B.
370 694.
SYNTHETIC X-SEC §3
3.510000
125.600
240.0000
280.0000
300.0000
320.0000
340.0000
360.0000
360.0000
400.0000
440.0000
460.0000
480.0000
520.0000
540.0000
540,0000
580,0000
600.0000
620.0000
X-SEC B 1-270
4.570000
124,4200
240.0000
280.0000
300,0000
320,0000
340,0000
360.0000
380,0000
400.0000
440,0000
460.0000
480,0000
520,0000
540,0000
560.0000
seo.oooo
600.0000
677.9000
17
6S2,*SOOO
682,6000
682,2000
680.6000
A78,9000
677,9000
679,6000
681.1000
661.1000
681,2000
681 .6000
681,7000
682.2000
681.9000
681.8000
482,3000
682,8000

675,9000
17
680.8000
680.6000
680.2000
678.6000
676,9000
675.9000
677,6000
679.1000
679,1000
67?. 2000
67f ,6000
679.7000
680,2000
*79,VOOO
679,8000
680.3000
                               0.120  0000
                               6.6999994E-02   0000
                               140

-------
X-btL til
5.460000
121.4300
0.0000000
20.00000
40,00000
AO, 00000
80,00000
100.0000
120.0000
140.0000
160.0000
180.0000
206.0000
220.0000
240.0000
260. 0000
X-SEC flO
6.040000
122.7900
0,0000000
20.00000
40,00000
60,00000
80,00000
100.0000
120.0000
140,0000
160.0000
180.0000
200,0000
220.0000
X-SEC *y
6.9300000
121.8000
0.0000000
20.0C-000
40,00000
60.00000
80.00000
100,0000
J 20. 0000
no.oooo
160.0000
180,0000
200,0000
220,0000
X-SEC *8
7.800000
120.8300
0.0000000
17.00000
34.00000
51.00000
68.00000
85.00000
102,0000
119,0000
136.0000
153,0000
170.0000
187,0000
204.0000
221.0000
230.0000

471. 474?
14
677,7747
672,5747
671,9747
471.6747
672.1747
47*. 6747
673.0747
673,3747
673,7747
674.7747
675,1747
474,7717
674,8747
677.7747

672,1674
12
676,6874
473,5875
673.1874
672,4874
672,2874
672,1874
672,4874
673.4874
674.0875
674.8875
675,4874
676.6874

668.1746
12
675.5746
670.5746
670,6746
468.1746
66B.6746
668.4744
663,3746
648.5746
66B.4746
669,1746
672,5746
675.5746

670,6470
16
673.7469
472.8470
672.5470
671.7469
470.9470
670.6470
670.8470
671.7469
671.B470
671.6470
670.9470
670,9470
471.4470
671.746?
672.0470
      A.699f?94E-02  0000
      6.6999994E-02  0000
       4.6999994E-02  0000
      6.69999f4E-02  0000
141

-------
X-SEC *7
8,510090
120.0400
0,0000000
20.00000
40.00000
40.00000
80.00000
100.0000
120.0000
140.0000
160,0000
180.0000
200.0000
220,0000
SHACEVILLE
8.55000&
120.0000
160.0000
180.0000
200.0000
220.0000
240,0000
260.0000
300.0000
320.0000
343,0000
X-SEC *6
9.1BOOO
119.3000
0.0000000
20.00000
40.00000
60.00000
BO. 00000
100.0000
120,0000
140.0000
160,0000
180.0000
200.0000
X-SEC *5
9.90000
lie. 5000
0.0000000
17.00000
34.00000
51.00000
63.00000
as, ooooo
102,0000
119.0000
136.0000
153,0000
170.0000
187.0000
204 .0000
221 .0000
X-SEC *4
10.61000
117.7100
0,0000000
18.00000
36.00000
54.00000

662.2869
12
672.3B69
671,5869
669.1B70
666.3869
664.4869
663.3869
662.2869
662.7869
664.1670
666.6870
669.1870
672.3869
BRIDGE
665.5000
9
672.3000
669.7599
668.2599
670.1SOO
665.4900
670.0200
667.7800
670.5400
672.2500

665.2422
11
670.2422
667,3422
666.3422
665,7422
665.2422
665.3422
665.4422
665.5422
665.9422
666.4422
670.2422

661.6813
14
668,9813
667,2913
667.0813
666.0813
665.1313
664.4813
663,9813
663.1813
662,5813
662.0813
661 .7313
661.6813
662.4813
668.9813

661.3325
12
667.2323
664.3325
663.8325
663.232S
     6,49999946-02  0000
     .100  0000
     ,100  0000
     ,100  0000
     0.100  0000
142

-------
CO, 00000
108.0000
136.0000
144.0000
162.0000
180.0000
199.0000
X-SEC 13
11.30000
116.9500
0.0000000
20.00000
40.00000
60.00000
80.00000
100.0000
120.0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
240,0000
X-SEC *2
12.060000
116.1000
0,0000000
20.00000
40.00000
60.00000
30,00000
100,0000
120.0000
140.0000
160.0000
180,0000
200.0000
220.0000
X-SEC *1
12.72000
115.3600
0.0000000
20.00000
40.00000
60.00000°
80,00000
100.0000
120,0000
140.0000
160.0000
180.0000
200.0000
220.0000
240.0000
260,0000
280,0000
300.0000
320.0000
ROUTE 762
12.76000
115,3200
0.0000000
1 OS. 0000
120.0000
662,2325
661 f 3325
661.9324
662.4324
663.2325
664,6324
667 ,"2325

657,9i37
14
665.4837
662.7837
661.6837
660,4937
661.8837
661.0837
660.6837
659,7837
6S9.2837
658.4837
657,9837
658,3837
659,2837
665,4837

654.78SS
12
664.4855
660.9B5S
661.1835
660.48S5
659.0B55
657,6855
656.1855
654,1855
65S.6B55
6S4.785S
654,2855
664.4855

657,2754
17
663.6754
660.8754
639.3754
659.1754
658.9754
658,5754
658.7754
658,7754
658.5754
657.7754
6S7.2754
657.2754
65i,3754
658.5754
659.2754
661,0754
663.6754
BRIDCE
654,6000
16
680.0000
663,6000
661,5000
       7.4999998E-02   0001
        6.4999998E-02  0000
       6.4999998E-02   0000
       6.499999BE-02  0000
143

-------
t AC. 0000
180 . 0000
200.0000
220.0000
240.0000
260.0000
280.0000
300.^000
320.0000
340,0000
355.0000
480.0000
3.309012
3.757741
4.168474
4.5151&0
4.907350
5.249875
5.945729
A. 597774
7.218794
7.320313
8.401876
B.9762A4
9,545540
10.04592
11,50799
12,92955
14,34632
15.76280
17.21004
19,72922
385 385 38S 385
38S 3iS 385 3B5
155 155 155 155
155 1SS 155 135
8.4 8.4 3.4 8,4
R.4 B.4 8,4 8.4
657.0600
660.9000
662.4000
ASA i 4000
654.6000
635.3000
A5B.SOOO
458.9000
661 .6000
661.6000
663,6000
680.0000
150,0000
300.0000
4EO.OOOO
£00.0000
800.0000
1000.000
1500,000
2000.000
2500,000
3000.000
3500.000
4000.000
4500,000
3000.000
6500.000
8000.000
9500.000
11000,00
12500.00
15000.00
3B5 385
385 385
155 155
155 135
8,4 B.4
8. 4 B.4
385 3C5 385 335 3flS "5
385 385 385 383 38' ..   ,
155 155 155 150 I     .5
ins 155 155 155 15
B.4 8.4 8.4 8.4 8.4 f
8.4 3.4 8.4 8.4 8.4 8.-,

372 362.6 360.3 358.0  355,7 353.4
35A.9 360.4 343.8 3A7.3 377,9 388.4
155 155 155 155 155 153
140 165 170 175 1BQ 185
8.4 8.4 B.4 S.4 fl.4 8,4
8.4 8,4 8,4 8.4 8,4 Q,4

399,2 409,8 417.2 424.5 450,2 475.9
475.9 969.1 1095 1242  1249 1244
190 195 200 205 210 220
234 244 295 325 355 386
8,4 8.4 R.4 8,4 8.4 0,4
8.4 8.4 0.4 8,4 8.5 8,7

1235 1228 1143 1001 1008 950
826.8 833 724 741,7 718,3 701.
416 447 477 519 531 537
325.7 521,5 49S 444 44? 423
9,0 9,3 9.6 9.8 10.0 10.2
                           144

-------
A8S.4 46V.8 454.3 438,7 632.4 426,2
619.9 413.i «!&.? 619.8 419.8 619.S
3§3 375 343 328 321 315
308 302 29* 2B7 284 281
10.IS 10,1 10*0 9,95 9.9 9,B
?,« 9,45 9.3 9.2 9,i 9,05

619.8 619,B £13,7 607.5 601.4 595.3
S§9.2 283,1 5?? 570.9 564.8 558.7
279 274 274 274 276 276
273 272 271 270 2&B 265
9,0 8.95 i.9 8,9 i.f i.f
9.9 8.9 8.9 8,9 S.9 8.9
                           145

-------
       Appendix D





FART 21 FLOW       OUTPUT
           146

-------
 *It*«**l***«*M**t*»*tl***ttB**t******»tt*S*iM«*t*St*
t                 KM (ROM  CORPORATION                 »
*    t INEAR i«n,icn piNirr  nirrMSTNce FHJW HODCL    t
t                  DftfFS  2¥-l*:«-il                    t
t»M»l«ttt»t***t»t****«i***»***i***»»**»t*t»$t til **»»*»
   SCICITQ RSWER flBHWJUKl.  -

 INPUT CRtfSR Sff. r
                                 STORM £VFNT
 CROSS SECTION  1
           GREENLAMN AVF  XMTG
          RlUtKMlLK"   12V.SO
          NUHHtfi UF FtHHTS-   20
          Xtt MllWf I»*IRS
                        0
                        40
                          0(100
                          OllOR
                      20d.OOOO
                      220.0000
                      260,0000
                      280.0000
                      300.0000
                      330.0000
                      340.0000
                      340.0000
                      380.0900
                      400.0000
                      420.0000
                      440.0000
                      460.0000
                      480.0000
                      500,0000
                      520.0000
                      530.0000
                      670.000O
 <>OO9
 OOOO
7J4.
701.
                                 AVI
                                 ABB
                                 AS7,

                                 6P6
                                 AS 7
                                 AHA
                                 AlS.lf.OO
,2800
,3199

,4700

,4000
,3000
. V20Q
                                 A9S.4SOO
                                 711.0000
CROSS SECTION  2
          SYNTHETIC  X-6FX  »l
         RIVKKHILC*   1
-------
                     -Kiu; 12
                     ISH.tl
         HUHBfcR OF POINTS-  II

         x.if mini
  O.ddOO
  s.ooeo
 14.0003
 57.0000
 69.0000
Z4H.OUOO
410,0000
          692.
          AHV
          iSi
                                ASS. 2000
                                    ?POO
                                    '.TBOO
                                    2800
                     491. 0000
                     4?S.OO§0
                               694.J80Q
CKOSS SKCTKIN  4
          FRANK KOMB DKltHiE
         R1WERHIH>  127.7?
                OF POINTS*   16
XiY WIIHT PM«S J
60.00OG
eo.onoij
100.0000
ito.oooo
14«,0000
160.0000
1 BO, 0000
200,0000
22O.0000
240.0000
240,0000
280,0000
300.0000

AVH, ATiOO

-------
          STNUtlfJC  X-SK  *3
         MIVKKNltiB   IJta.iO
         NUMBER OF PtllNTS*  17
                      240.0000
                      2BO.COOO
                      300,0000
                      340.0000
                      340.00OO
                      360.0000
                      400.0000
                      440.0000
                      < ISO. 0000
                      4BW.OOOO
                      320.0000
                      54(1.0000
                      360.0000
                      580.0000
                      600,0000
                      620.0000
                       AH7.BOOO
                       AK'^.ISOOO
                       AHO.fcOOO
                       678.9000
                       679.6000
                       AH1.1000
                       491.1OOO
                       AFU ,,'QOO
                       AB1.6006
                       «HJ.7000
                       *8),HOOO
                       *«;».,woo
CROSS SfCTiOM  7
           X-8EC P  1-270
         RIWf.KMII-f»   124.42
         NU«J»ER OF  POINTS-   17

         X.t PRIMt  PAIKS  {
24O.IKJ00
280.0000
300.0000
320,00(50
340.0OOO
340. 00«
3SO.OOOO
400.000C
440,0000
4*0.0000
480.0OQO
3211.0000
540.0000
540.0000
S80.00OO
600.QOOO
62(1.0000
A»0,iiOOO
tttin . AOOO
-|»0 . ?«t««
A7H.AOOO
476.?OOO
A7H.f 000
677.6003
ft? V, 1 000
^7? . 1 OOO
A7V.2000
67¥,4000
A7V.7000
6B0.70CO
A7V.9000
*79.BOOO
ABO.SOOO
4BO.SOOO
CROSS
               S
           X-SEC til
                  «   1S!3.43
                OF PMNT8=  14
Xtt PIHHT C*I«»  t
              0,0000
             20.0000
             40.0000
             60.0000
             80.0000
            100,4000
            120.0000
                                AV7.7747
                                67J.7/47
                                A71.A747
                                *73,O744
                        149

-------
                      140.0000   *75,7747
                      1311.0000   *?4./747
                      200.0009   *7S.1747
                      2?rt.OOOO   A71./74?
                      24(1,0000   A74.P747
                      2AO.OOOO   W/.7747
CROSS
           X-Pfcf: 110
         RIWF.RH!U>   122.79
         NUMPfR PF POINTS-   12
             P1I1HT PftlRS  I
                       0.0000   A7
                      20.0000   A73.SB73
                      AO.OOOO   A7'»,««74
                      80.0000   «
                      100.0000   *7
                      120,0000   <5?2,4«74
                      140.0000   674.0P75
                     200.0000   i75.4874
                     220.0000   A7
CROSS
              10
           X-SEC tf
         RIVtRHItt:*  121,80
         HUMPS K {IF FDIHTSs  12
PAIRS !
    0.0000
   20.0000
   40.000O
                               *75.5746
                               A/O.S746
                      BO.MOO   MS, 6746
  1?0«OOOO
  140.0OOO
  140, 0000
                     220.0000
                                668.3744
                                AAH.S744
                                AA8,i746
                                Aftf.1744
                                472.5746
CROSS SFCTJUN 11
           x-src *a
         NUHMKk OF fplMfS-
                             14
    O.OOOO
   17,0000
   34,0000
   31,O«WU
   fiS.OCOO
  102.0000
  1 IV. 0000
  15*. 0000
                               *73.74A9
                               &72.H470
                               A7J.7469
                               *70.9470
                                470.8470
                                A/1,7449
                                A71.B470
                        150

-------
                      17(1.00011
                      187.0000
                      2Q4.00OO
                      221.0OOO
                      23R.OOOO
                      23S.OOOQ
470.9470
A70.V470
A/1.744?
A77.O47O
A73.7449
CROSS SECTION  12
           X-JiKC 17
         NUMHFk OF POINTS-
         Xtlf PlIINf
                   KfllKS  1
                        0,0000
                       20.0000
                       40.0000
                       40.001)0
                       80,0000
                      100.OOOO
                      120,0000
                      140.0000
                      160.OOOO
                      20C.OOOO
                      220.0000
A77,
A71.
AA9
38A8
S849
1B70
AA4.4HA9
                                AA4.
                                AAA.
    1P70
    AH70
CROSS SECTION  13
           SHADF-.VIU t  BK1DHE
         KUMBtR OF POINTS-
X>Y









PUIHT PAIRS t
lAO.OdOO
180.0000
200.0000
220.0000
240,0000
2AO.OOOO
300,0000
330.0000
343.0000

A7J.3POO
AAV. 7599
66P.2S99
A70.1300
6*5.4*00
*70.0?00
W7.7BOO
A70,li4l>0
i7?.2SOO
CRUSS SfCTTON  14
           X-SEC  *4
         RtVERnit»   11V.30
         NUKBER OF POINTS*
                             11
         XiY PDINI
                    PAIRS i
                        o.oooo
                       20.0000
                       40, (1(100
                       60.00DO
                       eo.oooo
                      120.0000
                      140.001)0
                      160.00OO
*70
AA7
(SA6
A4S
**5
AA^
4A3
 ,i422
 3472
 7422
 2422
 :<422
>}»422
 9422
 4422
                      20". 0000
                       151

-------
CROSS 8KCT1DM  13
           X-SKI;  ts
         RtVtCRHIl H»  11H.50
         HUUBFR OF  POINT?!
XtT PfllHT PAIRS  !
              O.OOOO
              17.OOOO
              34.   HA.95
                OF PUINT8*
                             J4
X»T POINf PAIRS  I
              O.OflOP
             20.OOOO
                       40 . OOOO
                       80.0000
                      J20.0000
                      140. OOOO
                      140.0000
                      180.0000
                      200,0000
                      220 , OOUO
                      740.0000
                                AA5.4K34
                       6M.BP37
                       AA1 .OB37
                       6A0.6B37
                       A5V.7S37
                            152

-------
                      ;V 0.0000  MS, 4034
     IB
  X-SKC §2
         *   11A.10
       OF POINTS"
                             12
XfY PIIIMT PftIRS  I
              O.OttfrO
              20.0OOH
              40.O(i(lO
              60.0QOO
              BO. 0000
                      12II.CSC10O
                      140 .now
                      1*C. nooo
                      200.0000
                      350.0000
                                A*4,4N53
                                **<>.fH5S
                                661,1653
                                AA«K4RS5
                                W9.0B54
                                AS/.AH55
                                A55. 4853
CROSS SECTIliH 1?
           X-SKC tl
         NUHUF.R OF POINtS
                             17
         X>Y PWINT PAIRS s
                        0,0000
                       40,
                       63,
                       BO,
                      100,
                      120,
                      140,
                      160.
                      180.
                      200,
                      240,0000
                      260.0000
                      280.0000
                      300,0000
                      320.0000
                 OOOO
                 OOOO
                 oooo
                 0000
                 0000
                 0000
                 0000
                 0000
                 oooo
AA«.H754
*?i? . 3754
A5V.17S4
ASH.S754
«8.7?54
4SP.3754
AS/.7754
#57.3754
                       ASH.3754
                       AS?.5754
CROSS s
              20
           ROUTE  7*2
         RIUE«flII,i:«   llfi.32
         HUHKFR OF POINTS"  16
         X.T POINT  rftIKH
                      105.0000
                      120,0000
                       ABO.OOCO
                       A*4.AOOO
                       6A1.5000
                       AS/.t000
                       657.0000
                       AAO.9000
                       C. A 2.6000
                       ASA.4000
                                «%".. »t)f>0
                      280.0000  A5P.5OQO
                      300.00OO  ASS.VOOO
                      32ft.OMKI  AA1.&000
                      340.OOOO  A41.AOOO
                      351.0000  A63.6000
                      480,0000  AHO.OOOO
                      160,0000
                      ISO.0000
                      200.OOOO
                      220,0000
                          153

-------
                HODFI  tttPllf

MO OF X-St€«   20

TIME IMCREHFNI* SFTOHliS       3600.6     TOTAL TIKE

MO OF MniMATES KOUTE9       83

         CtNMflflH TYPES
         -- I - Sfl r  SfTUHfi  ? » NHIINli t.HKVf,  3
          --|E SRtr SI'THHtif  V •" C«HK1«MT
TYPE SElCCTtB"  2 FOR  IIPbTREAK «HTI   J fOM

HO. OF TKlHlUAHlfS-    1

TRIP. NO.      AT X-?f.T.  NO.
     i               17
         RATINC TABLE
   BCPTH      DISCHARGE
   3.31         ISO.
   3,74         300,
   4,t?         456.
   4,52         *OO.
   4.91         BOO.
   5. 25        1OOO,
   5.VS        150O,
   6-60        20OO.
   7.22        2SOO,
   7 . 82        3000 .
   8.40        3500.
   8,98        4000.
   ?»35        4500,
  10*05        SOOO.
  ll.f.l        6300.
  12.93        SOOO.
  14. 3S        fSOO.
  15.74       11000.
  17. VI       12300.
  If ,73       15OOO.
                        154

-------
 CR4ISS SECTION ftiOffmt JT.S
X-SSC HWNBF.R     1  AT        «« Fl.    O.OO H1I.ES
tATFAAL IMFtOy FOR REACH   010   1 IS  0,0(1  CFS ff.K FOOT
EOUAT1DM f'F,S!:KI*HNU M ISi  0.010 KtUH  <).OI)t)0  flMtS t h-UIS
ELEVATION OF LOWEST MUNI OH X-SF.C   «.«*3,36
                                      0,000 TINES Y  SQUARED
                BEPTH

                 0,00
                 1.7?
                 2,06
                 3,04
                 3.O9
                 3.4*
                 3.S*
                 3,84
                 3.94
                 4.09
                 4. Jl
                 4.27
                 4.9A
                 5.09
                 7.92
                 B.6B
                10.64
                17.64
                30.64
    0.
   13.
   44.
   99,
  103.
  139.
  147.
  1H4.
  200.
  226.
  230,
  -'61,
  415.
  446.
 1227.
 1474.
 2193.
 SS33.
13520.
           M PKH    TUP  UIPTH
   0.
  39.
  43.
  70.
  75.
 107,
 113.
 151.
 170,
 193.
 18f.,
 .108.
 239.
 342.
 313,
 .142,
 399,
 SA3,
 676.
     0.
    37.
    43.
    70.
    75.
   107.
   113,
   1S1.
   149.
   H33.
   IS4.
   207.
   238.
   ?41.
   3U.
   339.
   39S»
   55«9>
   670.
x-sec KMHBSH     2  «T    «»>**. KT,    0.77 rin.es
LftTERAJ. INFLOW  FOR REACH   1 TO   2 IS  O.OO  CF8  PF.R FOOT
EOUArinH ftKfiCftlftlHIi H IS  O.OJO PIJI8  0.044O  TIH£S t PLUS
EL€W*TJI1N OF tpyrst PUIM1  HH X-SFC   6«S,9Q
                                      0.000 TJHES t  SQUARED
                DEPTH

                 0.00
                 4.00
                 5.00
                 8.00
                 9.0O
                10.00
  AREA

    0.
  642.
  993.
 2247*
 2744.
 3234.
V PER

   0.
 371.
 381.
 4*3.
 486.
 196,
TOP Wl. OTH

     0.
   321.
   381.
   448,
   486,
   195.
X-SEC MJHiER     3  AT     *125, FT,    1.1* HILES
LATERAL INFLOW  FUR KKfttH   2 TO   J IS  0,00  CFS  PKR FOOT
EOy*T!ON BESCRIBItlP H IS  O.O10 PLUS  O.OOOO  TIMES Y Pl.OS
ELEVATION UK 1.0WEBT POINT (IN I-SEC   AH4.28
                                      0.000 TIMER Y S
                BEPTH
                           ARfft
                                    U PFR    TOP  MldTH
                 0.00
                 4.0O
                 3.00
                 8.00
                 9.00
                10.00
    0,
  64?,
  ¥93.
 22A7.
                          3234.
   0,
 321.
 ,m.
 46S.
 486.
     0.
   321.
   .181.
   468.
   436.
   495.
X-Kf. WUM*CR     4  AT    H237. FT.     I.S6 HII.EB
LATERAL INFLOII  FOR RF.ACM   3TO   4 IS  O.OO  CFS  PER FOOT
EflUATIRH DCMKIBIHti N 18  O.04A HUMS  'l.nOOO  Tjnt.S T Pl.tlfi
ELFVATIOK Of  LOUEST PfllNI BM X-SCC    6H3,4>«
                                      (f, 000 TIMES Y  >il)MftRED
                                        155

-------
0.00
0,40
0.49
0.65
0.*S
1.10
1.54
1.42
l.P?
2.03
2.011
3.44
6.V9
8.01
13. 99
0,
i.
9.
27.
31 •
4f,
104.
1U.
143.
189.
199.
304,
1451,
IMS.
3764.
0.
29.
32,
71.
78.
1O4.
145,
1*?.
178.
1V5.
201.
,?47,
288.
,130.
349,
0
2f
32
?l
78
»03
145
1*9
ITS
175
SOI
247
287
:I3V
340
X-SKi; NUHBF.R    » AT    U40A.  FT.     Z.32 BILES
LATFRAL 1NFI.GV FOR REACH    4 Ti   5 IS  0,00 CFS PFR FOOT
EOiiAttiiH M:S<:AI»IHM *  is   0,120 cms  i»,o<»w tint-is Y PHIS
ELEVATION OF LOWEST F-OIH1  ON X-SKC   ^75,2O
                                                               0.000 TIHKS V StfllAREU
               PEPTM
                           AREA
                                            TOP WIDTH
0,00
2.80
3.30
6.30
A. 60
9.40
12.40
12.60
12. SO
14.80
IS. 30
IB. 80
0.
*0.
92.
«6.
503.
981.
1637.
lAil.
1734.
2«3,
3211.
assi.
0,
43.
SB.
ISA.
159.
ias.
253.
i?57.
259.
2*7.
289.
291.
0
*3
a?
155
139
133
251
ass
256
;*63
284
'283
X-SfC WUH6ER    * AT    JBS33.  Ft,    3,51 rtlLfS
LdTERAL INFLOW FflR R€»CH    S Tn   A 18  O.OO CFS PtR FOOT
EQUATION DESCRIBrNft H IS   0.120 PtU»  O.OOOO TIRES Y PLUS
ELEWATlllN OF I (IHKS1 HOIWT  UN X-BRK   A77.90
                                                               0.000 TIKES ¥ S
               DEPTH
                           AREA
                                    U PKR
                                            TOP WJOTH
0.00
1.00
1.70
2,70
3,20
3.30
3,70
3. BO
3.90
4.00
4.30
4.40
4.70
4.¥0
0.
:*.
•44.
103,
115.
ise.
222,
242.
»43,
287.
^«a.
396.
494.
545.
0.
32,
4B.
74.
B£.
148,
173.
214,
'.(19,
24?,
K9S.
3 OS.
332.
380.
0.
32.
4i.
73.
H6.
147.
(73.
214,
219,
246.
29*.
305.
'J32.
380,
X-SEt NUMBER    7 AT-   2113O,  ft.     4.S7 Ht».ES
LATERAL INFLOU FOR REACH   £ TO   7 IS  0.00 CFS PF.fC FUUT
EQUATION BOCRIBIMH  N IS  O.OA7 Pl.UK  O.OOOO TIMES T ¥»UIS
ELEVATION OF LOWEST  POINT  ON X-SEC   679.90
                                                               0.000 TIMES Y SQUARED
                           ARC A
                                    II PI-H
                                            TOP yin?H
                                          156

-------
49.
296.
105.
332.
.ISO.
O.
:<2.
40.
73,
86.
147.
113.
;*14.
219.
i»48.
296.
SOS,
332.
»HO.
X-SrC MUHBER     S  At    285*29. F1 .    5.4* MltES
LATERAL  (NFLOU FOR KtrtCH   7 TO   » IS  O.OO  «'fi  P*R FOOT
EClUATlfiM tlESTRlFlNG « IS  O.OA7 PLUS  (i.GOOO  TFMFS Y P1.M6
          »F KOUEST flllHI' ON X-SE£   A71.A7
0,000 TIMES t  S
                DEPTH
                           AREA
                                    U FtR
                                             TOP  yr»TH
0.00
0,30
0.50
0.90
1,00
1.40
1,70
2.10
3,10
3.20
3. SO
6,10
0.
5.
13,
37.
43.
ei ,
in.
169.
325.
344.
40ft,
104B.
0.
32.
47.
74,
80.
102,
123,
14S,
1*?,
19?,
•432,
2*1 ,
0.
32.
47.
74.
BO.
102.
123.
145,
168.
19?.
232.
260.
K-SEC NUUBFJ*    #  AT   ItlttVI. FT.    4.04 MIt.ES
LATERAL IttFLOU FOR RfrtCH   B TO   9 Ifi  0.00  CFS  ffK FOOT
EQUATION (iKSr.KlhINt; H IS  I>,OA"/ PHIS  «,«<>«»  TIHES Y PLUS
ELEVATION OF iOHEST POINT C»N X-SEf   672.19
0,000 T1WES Y SOUftREO
               P6PTH
                           AREA
                                      CKR
                                            TUP  UIPTH
0.00
0,10
0.30
1.00
1.30
1.40
1.V0
2.70
3.30
4.50
0.
1.
10,

-------
                 2.SO
                 4.40
                 7.40
                           249.
                          1236.
            14t,
            170.
            Iff?,
          I*?,
          149,
          1HR,
          220,
X-SCC NimPKK    11  ftT   411114. FT,    7»«0  Utt.ES
LATtRlH.  lUFl.tHI  FOR REftl M  10 TO  II IS  0.00  CFK PER F»T
EQUATION D£Si:RIBlMH N IS  I».OA/ PI (IS  0.01)00  TIHKS Y PUtS
ELEVATION Or LOyCST rillNT W* X-SCr   *70,AS
                                     0.000 TIMES T  SQUARED
               DEPTH

                O.Ofl
                0.20
                0.30
                0,80
                l.flO
                1,10
                1.20
                1.40
                l.VO
                2.20
                3,10

X-SGU NIM8KR   12  At
LATERAL INFLOW FOR KEAIH
EQUATION rifSllRIHIMi M IK
          OF
                           AREA

                             0.
                             3.
                             4,
                            45.
                            *S.
                            81.
                            ?7.
                           134.
                           235.
                           301,
                           SIB.
     FT.
 1 1 TO  1
 O.0*7 Cl.
 OH X-SF.C
                                    U PER
            28.
            3*.
           102.
           126.
           145,
           »7B.
           1*3.
           209,
           'Z39.
           2S5.
                                             1WP  yit»TH
           2B.
           36.
           102.
           124.
           144.
           178.
           193,
           20? ,
           2?,V,
           255.
                                      B,Sl  HII.ES
                                     IB  0,00  CFS  PER FOOT
                                               TIHKS T PI.II9
                                                               C.OOO TIMES T «OHBRED
                DEPTH

                 0.00
                 o.so
                 1.10
                 1.90
                 2.20
                 4.10
                 4.40
                 6.90
                 f .30
                10,10
 AREA

   0.
   7.
  31.
  SO.
 103,
 293.
 329,
 A82.
1108.
1274.
                                    U PEW    TDP  UIDTH
 29.
 4f.
 75,
 ei,
118.
123.
UK
19*.
221.
                                                  0.
                                                 39.
                                                 49.
                                                 75.
                                                 62.
                                                UB.
                                                122.
                                                1AO.
                                                195,
                                                220.
X-SEC NUMBER    13  AT   45141. FT.    8.55 HTt.ES
LftTfRftl, INKI.OU  F*W RKftCH  12 TO  13 13  0.00  KFS PKR FOOT
CQUftTION fiESf.RIUMB H IP  6.100 PLUS  0,0000  TJMt'S Y PI.UB
ELEVATION W iWEST t>IIINT 0» X-SKC   A6S.30
                                     0.000 TIMES t SliUAKED
               DEPTH

                 0.00
                 2.?9
                 2.77
                 4.27
                 4.33
                 4.6A
                 S.03
                 4.7*
                 6.81
 AREA

   0.
  23.
  36.
 15S.
 189.
 207.
 U63.
 544.
 SS3.
                                    U PER    TOP  WIDTH
  0.
 20.
 37.
124.
13B,
142.
14S.
1S4.
185.
                                                  0.
                                                 20.
                                                 36,
                                                123,
                                                U*,
                                                140,
                                                146.
                                                183.
                                                183,
X-SEC MUHREft    14  AT   48470, FT,    ¥.16  rtll.FS
LATERAL IMFLiJW  FOR Kt-ACH  13 TO  14  IB  0.00  O'S PER FOOT
EQUATION DESCRIBING M IS  0.100 PLUS  O.OOOO  TIMES Y Pl.UB
ELCVATtON (IF l.UUEST POIMf UK X-Kf.C   AAK.24
                                     0,000 TlHKfi T SfalAREP
                                    y PK5
                                                 ymrw
                                            158

-------
0.00
0.10
0.20
0.3O
0.30
0.70
1.10
t .20
2.10
5. on
0.
i.
s.
11.
27.
47.
93.
109,
•247. .
776,
0.
24.
46.
72,
to.
107.
134.
142.
163.
201.
a.
24,
48.
72.
90.
507,
116,
142.
1&5.
200,
                is «T   sa2?;», FT.     ?,»o Hti.es
LATERAL  INFLOW F0« RfATH  J4 TO   15  IS  O.OO CFS PER FOOT
eatJAritMf  M.QCRlKINCi « IS  0,100 PLUS  «).tli)«>0 1 trlFS t PLIIH
ELfVAlION OF  IOUFRT POINT OH X-SFC    6A1.A8
0,000 TIHF.S
               SQUARED
                BEPTH
                           AREA
                                     U PKR   T«P tlltlTH
0.00
0.10
0.40
0.80
0.90
1.50
2,30
2,80
3.50
4,40
S.40
5.60
7.30
0.
1.
10.
:«.
38,
83,
162,
219.
313.
450.
623,
641.
ioia.
0.
1*.
43.
AS.
68.
97.
106.
135.
144,
163.
183.
201.
222.
0.
19.
43.
AS.
AS.
87,
106.
124.
t43.
142.
182.
200.
221.
X-SEC NUH8EK    1* AT   ttAOi'.l. FT.    10, AI HII.ES
LftTERftt  1HFLOU FOR BFACH  IS TO   Ifr  IS  0,00 CFS PKR FOtlT
EOUAT1QH OKSCRIBINH N IS  0.100 PLUS  O.OOOO TtnKS t PHIS
ELEWftTIOH Or  LOUEST POINT OH X-SEC    A*1.33
0,O,
0.
36.
42.
SO,
102.
lt>.
131,
1 ««
                                            159

-------
                a.ta
                           417,
                           A17,
                          12S4.
          213,
          232.
212.
231,
260,
X-SEC HUHSEU   l« *»    *3A?7.  FT.   W.OA MItiS
LATERAL iNFLQii FOR RFACH   17  TO  IB IS  0.00 CFS fttt FMflT
fOUATIOH »F.SPRI»tMI) *  li   0.«A5 PUBi  0»t)0«Kl TJHtS t PLUS
CLEMAII8N OF LOWEST FOIMT  0«  X-SEC   654.7?
                                    o.ooo Tinrs r SQUARED
               DEPTH
AREA
                                    u pei*   TOP MHTH
0,00
O.iO
o.*o
1.40
1.50
2.90
4.30
3.70
6.70
6,40
9.70
0.
0.
27.
A3.
71.
;»o.
362.
556.
&3S.
*70,
13S7.
0.
4.
64.
7V.
ait
3.04.
128.
151.
IA7.
l?4.
222.
0.
4.
A4>
7f ,
Bl.
103.
127.
150.
164.
m.
220.
X-SCC WUN8ER    19 AT    A7162.  Fr.    1^.72 MILES
LATERAL IHFUjy  FOR REftOt   IB TO  I? IS  0.00 CFB P£R FOOT
EOUAf lllN nKSCttiDTHii K  IS   Q. OAS Pi UK  0.0000 TIHtS T PLUS
ELF.UAT10N OF LOMKST PIlTMt  OH X-SEC   AS?.21
                                    0.000 TIMES Y RQUflftED
               BEPTH
                                    W PER   TOP UIOTH
o.oo
O.IO
1. 10
1.30
1.50
1.70
1,*0
2.00
2.10
3.40
3. BO
4.40
6.
17,
54.
72.
90.
134.
175.
197.
221.
610.
666.
1448.
0,
4?.
75.
too.
13&.
m.
217.
230,
241 .
278.
282.
321,
0.
4?,
73.
too.
ISA.
m.
217.
3:10.
741.
278,
2S1,
320.
X-SEC NUMBER   20 AT    £7373.  FT.    12.7* MILES
LATERAL INPI.I1B FOR RKftCH   J9 HI  20 IS  Q.OO Ci-S PKR FOOT
EQUATION DESCRIBING W  IS   O.OAS PLUS  0.0000 TIHES Y PLUS
ELEWHTIOH OF LOWEST PlItNf  UN X-SEC   A54.4Q
                                    0.000 TIMES Y SUIIftRFB
               DEPTH
                                    U PER   TOP
0.00
0.70
1,80
2.40
2.80
3.fO
4,30
6.30
6.90
7.00
8.0O
».»
29.40
0.
10.
51.
tt.
107.
205.
WO.
54! .
646.
665.
ens.
112B,
7114.
0.
28.
47.
53.
79,
101.
126.
148.
183,
180.
,'3B,
253.
495.
0,
28.
47.
53.
78.
100.
V?5,
166,
183.
186,
235.
JSO,
490,
                                           160

-------
*» 1 1
ELEV
BfPTH
DISCHARGE
VELOCITY
XSFC
XI 1»
ELFV
BEPTH
DISCHARGE
VF.MICITY
TIHE - 32,
XSFC
XII)
EiFU
06PTH
E'I?f. HARGF
VELOCITY
XSfC
x< n
ELEU
DEPTH
DISCHARGE
VELOCITY
TIME • 34,
XSEC
X< 1 >
ELfiU
DEPTH
DI?(.fiARGE
VELOCITY
XSFC
X( I )
EtEV
B5PTH
VlfSRMARBE

TIMf « 36.
XSEf.
xc n
ELFM
PEPTH
DISCHARGE
vei.uciTv
JtSEC
XI IS
Etfy
PEPTM
OI?rHftRGC
VELOCITY
TIMK - 38,
xsrc
XII)
ELFW
HEPTH
DI?( HORCE
VELOCITY
M7.37
.1,?!
354 , fO
t.82
14
411470 ,
669.0?
J.78
382,92
0«4f
HOURS
1
I).
*B7.?9
'A*,
487.39
4,03
399,20
1.85
14
4H17I>.
6*9,94
3,70
368.33
0,68
HOURS
1
">«
6B7.44
4 ,0ft
417,20
t,B4
ASA.VO
3.00
33*, W
*,74
15
5'*!?!72! ,
667. AJ>
S.94
384.34
0.53

2
40AA,
*BA.¥1
,1.01
341 ,30
f>,?5
15
5i227/>.
6A7.AO
5,91
380,94
0.52

2
4i)/>6.
6i4.93
:<,03
369,77
0.76
IS
52272.
AA7.S7
S.89
374,25
0.52

2
40AA ,
686.97
3,07
387, A9
0,79
15
5.J272.
647.54
5,06
371 ,45
0,52

J
1'JAA.
6B7.03
H, 13
40*. 35
4.81
A8A.S7
3.S*
357. OS
O.BA
16
KAO*!1 «
663,61
4.27
3H5.0S
0,82

3
A 1 '43 ,
AHA. PH
a. so
3*0 , RV
O.B6
t&
SAO21 .
66'. 6!
4.27
3H2.'I^
O.B2

3
A 1 ?'' .
AHA. 70
a, 62
34ft, 19
0,88
16
SAOi»l ,
4*5, 60
4,27
378,27
0.81

3
A i .as .
6(1 A. 94
a, 64
3H4.B1
0,?0
14
S60i?l .
AA5.S9
4,26
37?. 53
O.BO

3
A 1 I'll .
AB7.00
^,72
403.40
U.93
ANA , .IN
31.72
3H7.J7
1,05
17 ,
S9AA1.
663, 'i'H
5.73
544,^5
0.64

4
B23?<
AflA i 3«
2,72
3A0.1B
1.05
17
liVAA'* •
643,/S
5.75
ftBl ,40
0.65

4
H2r<7,
6RA.40
2.74
367,72
1.04
17
5VAA4,
AA^ ,74
5,74
S57,6*
0.65

4
H^-17.
AR6.44
2.78
382,99
1.07
17
159AA4.
463,/S
n,77
567 ,9f
0.66

4
,B4
4O1 ,J>1
( .09
iwl'o*
9,0*
360.42
• 0,33
IB
A 5 4 7 7 •
*A,1»2I
ft. -42
843.47
0,50

5
HI.IIM.
6flS,05
9,85
3*0,86
0,33
IB
A;iA77.
A*?.??
8.43
550.94
0,31

5
13306.
6P5.07
9.87
365 , 1 ,?
0.34
J8
A.4A77,
AA3.22
9.43
557.11
0.51

5
13,!OA.
685,10
9,90
374, 9S
0,33
IB
A3A77,
*63.2y
R, 44
5*2.47
0,52

3
I:I.II>A,
6R5. M
9,96
3V2 , 4<»
0,34
AB4.5S
4.45
34.1.V4
0.30
19
4 7 1 A Vt *
HA.i.02
5.74
843, BO
0,43

6
iHs.i;< .
6B4.54
4,64
Mi. 02
0,29
19
A71A?,
6*3,02
S.74
551.09
0.44

A
iBs:n.
6B4.55
4.6S
3*2. 2S
0.29
19
4714?,
6*3,02
5,74
^^7 'J"^
0,45

6
!H!iT<.
6R4.50
4 ,6B
3Af , ?0
0,30
19
47142.
643.02
5,74
SA2.5B
0.45

6
1BS.I3.
AHt.Al
4,7!
3B2.99
0,31
*w'"j
4.33
3 AH. 04
O.f?
20
A7373.
6*3 i 00
fl.40
543,17
0.35

7
'(HI 30,
AB0.2M
4.32
347.66
0.97
20
A7373 ,
AA? .00
9.40
5SO . 23
0.36

7
'i. 4 1 .10 ,
ABO . ?1
4.91
3*1,04
0,9?
20
A7373,
643.00
S.40
S*i* SI
0,57

7
241M.
6KHB;»9 ,
67*. A3
4.94
3*3. A2
0.47







a
;;iii29 ,
A7A.A5
4,98
3*9.50
0.48
.Him.
A7A.O*
3.8Q
37S.04
».7i







9
11891.
676.04
3,84
368, 85
0.71







9
11H91.
676,03
3.84
3*4.44
0.70







9
31B91,
676.02
3,84
M3,44
0.70







9
.UB91.
676.04
3.83
3*7,34
0.71
A75.33
7,14
174, SI
0,32







10
14590 ,
475.30
7.13
370,29
0,31







10
3*390.
*75,79
7.12
365.30
0.31







10
34590.
*75.29
7,12
3*3.33
0.31







10
3*590.
675.30
7.13
344.00
0.31
41IM4,
A73.31
2,67
379,21
0,»2







It
41184.
473. ?9
2,45
373,23
O.fl







11
41104.
673,27
2,63
367,38
0.91







I 1
411B4,
673,76
2.61
344, 0«
0.91







11
41184.
673<26
2,41
9*4.44
0,91
44YJJ.
*?f ,*f
f.41
381,22
0.34







12
44933,
671.67
9.38
375.98
0,33







12
44933.
671,64
9.36
370.44
0.33







12
44933.
67J .*2
9.33
3*6 . 2*
0.33







12
44933.
671.61
9.32
3*5,06
0.33
4ft 144.
A , 0'
311.4?
o.te
*






11
43144.
671 .53
6.03
374.20
o.sa







13
45144.
67t ,52
6,02
370.54
0.88







13
43144.
671.50
4.00
3*6 , 1 8
O.t7







13
45144.
671.4V
5.f 9
3*4.74


-------
ON
Is)
Tinr * o.
XSEC
XCII
EtEW
PFPTH
DISCHARGE
VCl.HCtTT
xSFt;
xi n
ELEV
BEPTH
DlSTHflRGE
VKU1CITV
tint • 24.
XSEC
X( 1 »
ELEW
tiFf'TH
BIBfHftKGE
Uft.llCITY
xsrc
XCI)
fe'LEW
PCPTH
DIBCHflftDE
ucLiicm
Tiwr « 26.
XSEC
XI I >
ELEW
HEpTH
HBCHARGE
VEUICITT
XSFC
XH>
EiFU
PEf'TH
BISCHARGE
veUlCUY
T1HK » 28.
XSEC
xi n
ELEV
DEPTH
BISCHftRCE
W€I.«01TT
XSFC
X( 1 1
ELCV
t»?f'TH
DISr.HAftGE
VK! tlfilT*
HnuRS
1
0.
666,65
A. 29
3H5.00
.4,18
14
4*470.
4*0 ,9?
,1 .AS
3BS.OO
0,72
HOURS
t
O,
687,31
.1.95
372.OO
t ,84
14
4B47I),
669.03
.*. 79
38*. 60
0.70
HOURS
I
0,
687.28
3.92
360 . 30
1,83
14
4M4?0>
669,04
3,79
366.99
0,70
HOURS
1
0.
6B7.27
,1,71
355,70
1,62
14
1H17O,
6A9.03
4,79
385. f 3
0.6V

1
4OAA,
6ftA. J»2
i' .42
3R5 . 00
0.92
IS
31*3 /I*.
667.43
a. 75
3BTS.OO
0,56

2
4()AA«
AHA. V7
3,07
379.95
0.77
ts
X,!,?71>.
667,*!
S.93
3P4.5S
0.53

2
40AA.
A PA ,93
4,OJ
3*5,97
0.73
IS
Sit?7^,
6*7, A2
h,94
306.19
0.33

2
4 06 A i
6flA«Vl
.1.01
35?, 3f.
rt.74
IS
S?7'/!(.
AA7.A (
5.94
3Q6.03
0.53

3
AtXS,
68*. 4V
i',19
3fl5.00
1,09
16
SA021 .
665.37
4,04
385.00
0,90

3
6128,
AR* , 94
2,66
3P1. »7
•>,a?
16
SAO;;! ,
66P.S9
4,26
382.82
«J.82

3
A 1 ?5 ,
6R*,9I
a. 63
367< B7
U.17
16
560'H.
6*5. AO
4.27
3S5.44
O.B2

3
Af.'S.
6RA.RR
X« 60
SA0.4K
O.B6
16
Hft'ti*! .
AC,' .il
4.27
3«* , O7
0,82

4
ny.n7 1
696,^1
i?,55
JflS,00
1.24
17
5¥AA4,
663.*?
S.64
?4(I,(K>
0,66

4
fti»,<7 ,
ABA. 46
a, BO
3H1 ,BA
i.06
17
SV4A4,
663.70
S.72
536. VH
0,64

4
H',1.!*/ ,
Afl6»4?
a. 74
3AV.1?
1,03
17
hyA64,
663,71
5 . 73
540. OS
0.64

4
B«>37.
ARA.K9
i*,73
3A1,^6
t.05
17
SVA64,
663. /I
5.73
S40.V9
O.64

5
133QA.
6B4.94
9.74
3ns. oo
0,36
IB
63677,
6*3,20
8,42
S40.00
0,50

S
13.J06,
6H5.15
9,95
3S3.2A
fl.33
IB
A1A77,
663,20
fl.42
536, 52
0,49

S
13.106,
6B5, >2
9.92
373,44
0,34
IB
/MA77,
6A.1. 21
fl.42
53f ,Hl
0,50

5
U,««6.
6Hf? ,0V
9.69
365.77
0.34
IB
A.4A77,
AA;i./!j
9.42
540,94
0,50

6
1BS.1J.
AP4 i 79
4.39
3B5.00
0.34
19
47142.
A A3. 01
5,74
54O.OO
0.43

6
1833H,
*f>4 .60
6,70
384.74
0.31
19
67142.
*63,<»a
5,74
53A, 64
0,43

6
1HSM,
634,59
6.6B
37B.17
0,30
19
471A?,
6A3.O?
5,74
539, PA
0.43

6
1 HS13.
AB4.5&
6.66
370. SV
0.30
19
A71A?,
AA;«.OS
5,74
S40.95
0.43

7
5!4l3t>,
679. 7fi
1,08
3BS.W1
1,49
20
67373,
6*3 , 00
Q.40
540,00
0,55

J
?tl'M>
&BQ.78
4.3S
;\B5, yi
0.9B
30
A7373.
663.00
B.4O
535,98
D.53

7
^4130.
6HO.K7
4,37
3B?,15
0,98
?0
67173.
AA3.00
fl.40
M9.S3
O.Sfi

7
J!4I'.IO.
ABO, 25
4.35
375.4O
D.9B
30
A7.173.
AA3.00
H.40
540>fl6'
o.sa

8 V
?HH29. 31B91,
AM,;i« 675,24
4,71 :i,06
;(H'p.OO 3H3iOO
0.55 1.06







8 9
2MB29. 31H9J,
676.73 67A.I1
3,06 3,92
3HA,fi3 3ft6>PO
0,49 0.72







S 9
2H829. 3l«9l,
A/6,73 67*. 10
5.05 1.91
3H4,>4 3H5.14
0.4? 0,72







B 9
2BHM. 31R9t»
6/6.71 A7A.OB
^.03 X.90
379.?? 381,03
0.48 0.72


*




10
365f 0 ,
A74. J9
6,21
385,00
0.39







10
36590,
675,35
7,17
3H7.55
0,33







10
34590.
675,34
7.17
3B5.87
0,32







to
36S9O,
675,33
7.16
3B2, 13
0.32







11
41181.
677,65
2.00
3HS.DO
I. SO







11
41184.
473,34
2,6?
3R7.96
0.92







it
41104.
673,34
3.69
3RA.HO
0.92







11
U1B4.
673,33
2.68
SB3.99
0.92







12
44933.
671 .57
9,29
JflS.OO
0,38







12
44933.
671.72
9,43
3B7.39
0.34







12
44933.
671,72
9,43
387.00
0,34







12
44933.
671,7!
9,42
383,03
0.34







13
43144.
671, SI
6.01
385.00
O.tl







13
45144.
671.60
A, 1O
387. At
0.99







13
45144.
471,60
6,10
3R7. tfl
0.89







13
45 144.
671,39
6,09
3B5.24
O.B9






      TIMR •  30, HOURS
           xsrr      i

-------
xsr r
~ Ei,rw
BCPIM
DISCHARGE
TIMF « 40
XSEC
X! 1 )
ILEV
Blf TH
OISfNftRGC
UCI.ItCITY
XSEC
XI 1 >
ELFV
BEFTH
DISCHARGE
MEI OCITV
flHK * 42
KSf.C
X( I >
ELEU
BEPTH
DlSfHftRGE
wtunmr
XSEC
Xn J
ELEV
PEPTH
DISCHARGE
VCI.HCtTV
fl«r * 44
XSEC
Kill
CLEW
I
ELEV
BEftH
DISCHARGE
VfA IIC ITt
14
4*0.92
,4,68
0.66
, HOURS
1
t).
407. S3
1,17
450.70
1 .66
14
1H17O,
4At,92
I.AB
3*6,95
«.69
. HOURS
1
<>,
687.59
4.23
475,90
1 .88
14
4R170,
Ail. 94
3.70
3/2, 7B
0,69
. HOURS
1
i).
ABB, 74
jj,3B
1095.00
a. oa
14
4H470.
AAft.99
1.75
304, 9ft
0,70
. HOURS
1
0,
ASP. 9*
W.60
1249,00
•A. 11
14

469,11
1.B6
412.31
0.72
15
447, Rl
«,B3
0.52

2
4<>AA.
4R7.0H
,1.18
4ZA.35
O.B3
15
5JJ73.
6*7, hO
5. §2
3*7,45
0,52

2
40AA.
*R7,1 H
t«28
4A1 .98
U.OB
IS
5,!?72.
6AV.5P
S . 92
371 ,37
0.53

2
40AA.
6B7.9S
4, OS
B69.2B
1 , J2
15
53?72,
AA7.S?
5.B4
3B1 ,77
O.S4

2
41>AA.
6PB.S5
4>65
1154.11
1.33
IS
S327M.
**7,!i*
•j.fl
401 ,46
0.5S
14
AAS.M
4.23
3*9 , 54
0,79

3
Al ',!!>»
*B7,OS
.!. 77
472. *R
0.95
16
SAOl'l,
*A5,5V
4.26
3*7,75
0.79

3
AIMS,
487, 14
i',B4
457,39
0.99
16
5AO.U.
4A5.A?
4.28
3*9,7*
0.79

3
6tV?i.
AB7.S9
•i.Al
792, V!i
1.37
14
SAO2J.
*A5.70
4,37
37A.94
0.78

3
A13S.
483,47
4,19
1125.77
1.59
16
54Q2K
AA5.B2
4,49
3f I.»S
0,77
17
•S.7B
0,64

4
H;MV ,
686 . Ft*
a, 90
4I'0,43
1. 10
17
H9AA4 ,
AAJS.7B
S.79
57A.71
0,67

4
H^;i7(
ABA, A*
S.OO
4fi4 >4A
1,12
17
S9AA4.
AA3.B?
5.84
400.31
0,69

4
H?A'f.
AR7.;iH
3, /I,
?BO,OX
1.35
17
59AA4,
AA3.94
5.95
443 .95
0,74

4
HM7»
AHH.OH
4,42
1073. 4?
1 .40
17
S9444.
A64, 10
6. It
733.03
0.78
li
4UA77,
0.44
0.52

5
l.l.tOA i
*H?S,!;(
»0,03
409,89
0,37
IB
*;«477,
4*3,23
8.45
575, PA
O.S3

S
1330&,
AH5.31J
10, 13
43B.9A
0.39
ie
A.1477.
4A7.25
B.47
S97.39
0.54

5
1330A ,
AH5.SA
tO, 66
645,92
0.51
18
A.IA77.
6*3,30
B.51
*W,9fl
0,59

S
J33B6,
AHA. AH
11,49
904.29
O.A3
IB
AJA77.
6*3,41
0,63
709,44
0.63
If
463.07
S.74
0,45

*
iHS.ir*.
AH4.6S
A, 75
399.24
0,31
19
A7162 i
*A3,ft?
5.74
576,01
0.46

6
10533,
AR4 , 71
A, 01
423.97
0.33
If
A71M.
AA3.02
^,75
597. B2
0.4B

&
lrt^3»
*R4 , 9A
7,06
545,40
0.39
1?
471A2.
A*3,0?
S.75
656.55
0,52

6
IflnlO,
AB5.52
7,42
741 ,7*
O.44
19
47t42,
A A3, 13
5, BS
4B2.AO
0.53
20
47,173,
AA.1 , 00
ft. 40
5*7,43
O.SB

7
"Ml 30,
AHO.Zi
4.3B
3BB.79
0.99
20
A7.573.
AA3.00
Q.40
S75.03
0,59

7
SN13<)«
AH0.33
4,43
409.59
1,00
20
A7373,
6A3.00
fl.40
5*4,74
0,61

7
•f. 1 1 30 ,
AflO.47
4.57
4/1 ,03
1,03
20
47.173.
663.00
B.40
A4B.95
D.66

7
2413«),
4 fiO.fi 7
4.97
A13.4A
\ ,09
20
A7373,
6*3.10
fi.SU
AH9.7P
0,49


8
yw/.v ,
A7*,A9
JI.02
380. 4?
0,49







8
28H29.
47A.7S
5,00
39A.A9
O.SO







8
3W029 •
A7A.HH
5.21
43S.7A
O.S3







B
2BHH9 »
67/, 18
5.51
577,40
O.SB








f
31091,
676,07
3.BB
374.43
0.72







9
31B91 ,
A7A.12
1,93
390,71
0.73







9
31B91.
674.21
4.02
420. 8*
0,76







9
31B91,
A76.44
4,25
497,77
Q.B3








10
36-590.
A7S.32
7.15
373. BA
0,32







to
36590.
675.35
7,18
3S7.0B
0.33







10
36590,
675.41
7,23
413,94
0,34







10
36890.
675,54
7,37
47M.4*
0,39








It
411B4.
673,37
2,63
3A9.D5
0,92







11
41184.
673,31
2,66
3K0.3A
0.92







11
41 1R4,
A73.37
2,72
40O.5O
0,94







11
411B4,
473,51
2,86
448. 7A
0,97








11
44933.
4?t ,62
9.34
3AB.ZO
0.33







12
44933.
671 .AA
9,37
374. 26
0.34







12
44933.
A71.73
9,44
392.04
0.34







12
44933,
A7I .8B
9,59
42B.S7
0.37








13
45144.
671,3$
4.00
347 ,4»
0.8B







13
45144.
671.54
4.04
373,44
O.SB







13
45144.
671,60
6.10
390. as
0,90







13
45144.
671.74
6,26
424.10
0.9?







-------
TINF - 4*.
xstc
XU>
EUF y
DEPTH
BISCHftRBE
tffUtClTt
XSEC
XII)
ELEM
DEPTH
DISTHAKGE
VELOCITY
TIHf. " 30.
XSEC
X( 1 )
ELEM
DEPTH
BISCHAROE
VEUWITY
XSEC
X< I)
ELEVi
DEPTH
DISCHARGE
UEI.IICITY
TlNf " 52.
XSFC
XU>
ElEV
bEF'TH
iHSCHftRGC
MEl.Iir.lTf
XSEC
X( I >
EUV
PEPTH
DISCHARGE
WEUICITY
TIHF • 54,
XSEC
Xtl)
EtFM
t'EPTH
BITOHftRGE
WfLiir.lTY
XSFC
XI I >
CLEM
BEPTH
BISOHftROf
VEUICITY
llnf. - 34.
XSEC
)t ( 1 J
F.LCW
PEPIH
HOURS
1
0,
408,94
3,58
123S.OO
». 13
14
4B470,
469, 3fl
4, 13
479.30
0.7B
HOURS
1
0,
480.61
5,45
1143,00
2,10
14
4H4/0,
469.95
4,71
630.06
O.B7
HOURS
1
<>«
488.42
5.24
inoe.oo
«J.S4
14
1H470.
670,65
^5,40
819.46
0.96
HOURS
1
0,
ABB. 31
4.95
026.80
a, oo
14
4H4/«,
671 ,17
5,93
955.25
0,97
HOURS
1
f>»
488,12
4,74

2
40A4,
688, B4
4,94
1188,47
1 ,22
15
S227%>
6*7.77
A, 09
450. B2
0.39

2
40A6,
6Bt,9S
5,03
1153. 66
1,14
IS
S2272 .
6AH.Z1
6. 53
565.0I
0.64

2
4
-------
iilSCHAhlit
VELOCITY
XSEC
X(U
ELFV
HEPTH
SISCtHflRGE
VEU1CITY
TIME " 58.
XSFC
X< 1 >
ELEV
DEPTH
DISCHARGE
V£U»em
XSEC
xm
ELEV
DEPTH
DISCHARGE
VELOCITY
TtHE - 60.
XSEC
xtn
ELEV
DEPTH
DISCHARGE
VI-l.nClTT
XSEC
X< I >
ELEU
DEPTH
DISCHARGE
VEI.UCITY
TIME • 62,
XSEC
X( I )
ELEV
DEPTH
DISCHARGE
VEI-HCITf
XSEC
X< I)
ELFV
DEPTH
DIKfHARCE
VEUJCITY
TIME - 64.
XSEC
XII)
ELEV
tiEf TH
DISCHARGE
VELllCtTY
XSFC
XIU
ELEV
7?4»00
1.94
14
1H170 .
671.44
A. 20
1011.62
1.00
HOURS
1
i>.
6B8.I1
4,75
718.30
1.96
14
4H470.
A7j .49
6.24
1005.45
0.96
HOURS
1
0.
668,04
4.6B
6K5.40
1.94
14
4H470.
671.39
6.15
962.24
0.96
HOURS
1
0.
687, 9B
4.62
634.30
1.93
14
4H470.
671.23
9. 98
904,03
0.93
HOURS
1
0.
667.94
4.58
637., 40
l.?Z
14
4H47I).
671.04
1)00,44
t.OD
13
K'f.Z't'Ji ,
669,83
H.14
981 .07
O.B1

2
4046.
68H.17
4.27
759,64
1 .03
S3
SH272 ,
669.93
H.25
1000. S4
0,81

2
4OA6.
6HR.02
4.12
7tfp,13
1 .03
15
3^27;?.
669. Elf)
H.19
972.73
0.80

2
1046,
6B7.HV
.< . 99
679.05
1.06
15
5,*77?.
669.74
D.06
922.10
0,78

2
4066,
6B7.79
,4 . B9
655.20
1 .05
IS
52? 7V,
669, SA
B21 .A.,
1.26
14
SA021 .
667, BH
6,54
9SS.3S
1,07

3
M'/fi.
6Rft.il
,i,83
7B5.71
1,28
16
$A!)^1 .
667,93
6.60
996,16
1.10

3
AIM .
687,96
3,66
737,59
1.25
16
SA021 .
667.86
A. 52
981.63
I. 11

3
til'j.'.i ,
687. R4
11.56
696.26
1.22
16
S601U .
667.73
4.40
937.06
1.09

3
AIM.
687,74
.4.46
660. BB
1.19
16
?tAO?t ,
6*7. SH
RS4.61
1.12
17
?iy6A4 .
666. OH
B.JO
1447.13
1.01

4
H737.
6B7.R3
4.17
7B7.79
1,13
17
3VA44.
666.08
fl, 10
1444. 6S
1.01

4
B2'.t7 .
6B7.65
T! ,V7
73P.40
t .13
17
HV6A4.
666,00
H.01
1373,?5
0,97

4
8^17 ,
6B7.51
1 ,Hri
697. OJ
1.14
17
S9AA4.
6 AS .90
7.V1
1390.75
0,93

4
MM/.
6B7.39
3,7.1
661 .64
1.14
17
HV6A4.
665,79
914.6!)
0.61
IB
41477 .
6A5.27
, 10.49
1439.65
0.94

5
IXtflA,
686,74
11.54
83P,5ii
0.56
IB
43A77.
665.27
V0.49
144S.72
0.95

S
13.t04.
6P6.54
It. 34
779, 4A
0.56
18
4 
6H6, 73
11 .03
6B8.S1
0.52
18
AU77,
66f>. 14
934,41
0,61
19
67142.
664, B3
7 • ^6
1443,65
0.79

6
1H53.1.
68?>,33
7.43
873, SO
0.57
19
67162.
664.8.1
7."iA
1445.39
0.79

6
IBS 3 3.
6ft5 , 23
7.33
B06.33
0.54
19
671A2.
664. H.I
7 . W
1,"«79 . OS
0.74

6
1BM3.
6B5.16
7.26
7S1 .45
0.51
19
67162.
664. fn<
7.5-4
1295.70
0.71

6
IB!! 3:i.
6B5.10
7.20
705.71
0.49
19
471A2,
664. B'^
997,14
1.20
20
A7173.
AA4.BO
10,20
t437,04
0.92

7
V!4i;«).
6HI ,37
5.47
908,73
1,16
70
67,173,
664,30
1">,20
1445.91
0.92

7
24t;ii>.
681.25
!5,3S
BJG.4S
1 . 14
20
47173.
644. BO
10.20
13B3.67
0.88

7
?1 i;to.
681.15
5,25
775.75
1.11
20
47173.
644. PO
10.20
1302.90
0,83

7
;>4i;(0 ,
681.06
5.16
726.20
1.09
70
47173.
664. KO
1014.47
0.79







a
2HB29.
678.52
4.84
941,54
0,76







B
?fiH^9 ,
67B.3S
6.66
A6B.61
0.73







8
3rtft29 .
6 /B.I A
6.48
805.14
0.70







8
23B2V.
A7B.CH
A. 33
751 .56
0.6B



i oar., 7 7
1.14







9
31891 .
677.66
3,47
lfSB.27
1.10







9
31Q91.
6/7.49
5.30
BK5.64
1.07







9
11991.
677.32
5.14
B20.55
1.03







9
11H91,
677. IN
4.99
765.06
1,00



1031. IP
0.70







10
16590.
676.54
8.36
974. B7
0.67







10
16590.
676.39
S.22
906.02
0.64







10
36590.
674.24
8,07
B39.97
0.61







10
3A590.
676.11
7.94
7BI .70
O.SS



1038,18
1.19







tl
41184.
67S ,0fl
4.43
993.71
1,16







11
41184.
674.94
4,39
929.18
1 ,13







11
41184.
674,78
4.13
662,77
1,10







11
41184.
474,67
J.97
002.30
I.OB



10?7. 66
0.63







12
44933.
673.9*
11.67
1000.05
0.62







12
44933.
673.87
11.53
947.80
0,60







12
44933.
673.64
11.35
R85.9B
0.57







12
44933.
673,45
11,16
025.63
0.55



IOSB.77
1,21







13
45144.
673. B4
8.34
I004.J9
. 1,31







13
45144,
673.70
6.20
950.22
l.IB







13
45144,
673. S3
8.03
B87.1B
1.14







13
45144.
673.33
7.B3
626.21
t .IS

"^-


-------
UfcMH
D1FCHAROE
VELOCITY
11 HE * 66.
XSEC
XCIJ
ELFU
DEfTH
DISCHARGE
VltnCITY
XSEC
X( I )
EtEW
HEPTH
PISCHARGC
UEI.nCITY
TIME - 48.
XSEC
X( ! J
ELEM
DEPTH
DISCHARGE
VEUIfilTY
XSEC
X( 1 )
ELEV
BEPTH
DISCHARGE
uEi.or.uif
Tine » 70.
XSEC
XII)
ELEU
DEPTH
BISCHftRCF
VF.Lnr.lir
XSEC
xc i)
ELEM
Kf TH
DISCHARGE
vetnciTY
TIHf « 72.
XSEC
X< I)
ELEM
B£f"TH
BISr.HARf.E
VF.I.OCITY
XSEC
xtn
ELEtf
IiEPtH
BISCHftRBF
WEI nctTY
TIME • 74,
*SEC
•44.16
0.90
HOURS
I
i) .
487,91
1.55
619.90
1.91
14
4B47«>.
&70.BS
S.wO
780.91
o.ao
HOURS
t
0,
407,91
•1,55
616,70
1,91
14
4B470.
670,67
S,43
740,96
O.B4
HOURS
1
It
6B7.9J
4.55
619.00
1.91
14
4H*(•. 94
7.26
606.00
0,68

2
6.23
101,63
1,06

3
61i>3.
A87.6P
S.40
630.4ft
1.17
16
K60.
687,62
3,34
A?l ,03
1 , 16
16
JiSrt.'l ,
447.10
?f ,77
697.7?
0.94

3
7.B1
0,89

4
KM7, t
6B7.3I
a. AS
639,1 4
1 ,14
17
59AA4,
665,71
7,73
i JM9.1A
0.85

4
H237 i
AB7»?A
3, Alt
674,91
1,14
17
f)9444 ,
665.63
7.6S
1 07"> . 1.1
0.82

4
i?,3/.
Afl7,24
H,f,H
A27.40
1.1S
17
$iVAA4,
445. S7
7.H8
10J8.43
0,78

4
M5M'/»
AB7.23
3.S7
A? I . I 1
1.15
17
SV6A4,
6AS.SK
7. J>4
V7B.A7
0.76

4
10,16
t?ifS.<44
0.81
k
5
1MOA,
ABA, J7
10.92
6T.fl.49
0,50
IB
A-SA77,
4*S,11
10.32
1144.97
0,7?

5
1MOA ,
6HA,Ofi
10.85
437.71
0.49
18
4;
-------
_ xtn
~* ELtW
IiIflH
DIS( HflRBF
vEi.cir m
xscc
Illl
ELFV
l«Ef*f*4
B1SCMAKGC
VEt.nrm
TIIIE « 74,
KSKC
XI 1)
Ei£W
KEf'TN
BlSr.MflRCE
W£t IWITY
XSEC
X(t>
ELEV
MPtH
HSfHAKGE
VELOCITY
TIME ' 7H,
%Sft
X< 1 )
ELE«
DEPTH
DISCHARGE
V€l liniTV
XSEC
XC1 »
ELEV
DEPTH
UlSCHftRGE
VEI.QCITY
Ttnr. • BO,
XSFC
X ( 1 )
ELEU
DEPTH
DISCHARGE
VF.IJlCtTY
XSEC
X< 1)
ELFV
DEPTH
DISCHARGE
MEi.nr.trir
T1HF m 82.
xssc
X( I )
Etrv
BCf-TH
OISCHARGC
VIUJCITY
i).
4*7.90
4,54
413,70
1,91
14
4A47D,
670,31
5.06
449.97
(J.B2
HOURS
1
0.
487, BO
4.52
601.40
1.90
14
4*473.
670,24
4.99
635,67
O.B2
MftltRS
1
0.
687,85
4,49
589.20
1.90
14
4.8470.
470,19
4,94
624.67
O.B2
HOURS
t
0.
6B7.82
4,44
577 . 00
1,90
14
4B47«>.
670.15
4,90
619.20
0,82
HOURS
1
0,
687.79
4,43
544.90
1.90
40AA.
687,66
,1,74
417,79
1,02
IS
3.*?72«
6AR.B3 -
7,15
461 .HH
0,67

2
40AA.
487,64
3,74
607, 87
1.01
15
S2272.
646.75
7.07
644,16
0.66

2
4066.
687.62
-1.72
597.15
1,00
IS
SU'272.
44B.69
7,01
632, 3d
0.66

2
4D66,
487.59
3.49
SBS.42
0,99
IS
52272.
64B.6S
4.97
623.55
fl,44

2
4064,

.1.**
573 , J8
0,91
61?*,
687,41
(.33
AIH.4A
1,14
14
SAW1.
467.03
5,69
(.70,94
0,92

3
A1SS.
687.59
^1.31
609.35
1,15
16
Sftxn,
6ft6 . 97
H,44
6^0.00
•>.9»

3
A1H5.
*B7.57
»*.29
59B.78
1,13
14
3AOi!l,
666,9,1
5.60
437.01
0,90

3
*1?H ,
687.55
3,27
567,20
1,12
14
56021.
666,90
5.37
627.03
o.et

3
At 23,
487,52
.t.24
875.21
t.ll
HM7 ,
AB7« ?2
3 . KA
6iO*Sl
I. IS
17
S9AA4,
A65.49
7, !5II
94S.13
0,74

4
H?.t7.
6H7.20
3,ti4
609.45
1,15
17
S9AA4.
AA5.4A
7.4H
927,75
0,73

4
H?37,
6H 7 , 1 7
3, HI
59B.96
U14
17
59AA4,
AftS.44
7.44
911,00
0,72

4
H237.
687.14
3.4B
*»ft? 4^
1.14
17
396A4,
6A5.43
7.44
fl9B,60
fl.71

4
B237.
487.11
J.4,1
3/5.50
1,14
1 .1.WA .
685,99
10,79
620,00
0.4B
18
43*77,
6A5»OS
tO, 23
949,70
0,65

5
H.10A.
483.97
10.77
617, 8B
0.48
IB
43*77,
665.01
10,22
928,75
0,63

5
13,104.
685, 93
10,75
6,
AKfl.R/
4.97
A«;> ,3.1
i.oa
20
A7173,
664,00
10.20
94?, to
11.61

7
24131),
AKO.Rf.
4.94
617.26
1.0S
20
47373,
A64.RO
10,20
92R.72
0,5»

7
24130,
6HO,B!I
4.7S
611,17
1 .03
20
A7173.
A44.PO
1 ft , 20
911.87
0»5M

7
MU(0»
4BO . 03
4,93
607. 7?
1.04
20
67373.
AA4.BO
10.20
899. U
0,57

7
24i;tO.
ABO. 02
4.92
59?, *0
1.04
^«Ba9.
6/7.* I
S.93
625,41
0,42







8
2S029.
677. S9
S,?l
620.07
0,42







a
2BH29.
677.57
5.90
6)4.33
0,62







ft
2H829,
677.55
fi.ee
604, KB
0.41






i
e
2UH29,
677.52
3.B5
597.44
0.61
31H91,
476.81
4,62
4?7,66
0,92







f
11H91.
674.79
4,60
621,56
0.92







9
31B91,
676,78
4.59
615,95
0,91







9
31B91.
676,74
4,37
60R.97
0.91







9
31B91,
676,74
4.5S
600.24
0.90
34590,
675.79
7.42
450.03
0,49







10
34590,
475,78
7.4O
422.71
0.49







to
36590.
475,77
7,39
616. Bl
O.48







10
34590,
675.74
7,58
610,23
0,48







10 •
34590.
675.74
7.57
40?, 06
0.47
4I1A4,
674,14
3,49
634,34
1.03







11
411134,
674,11
3,44
62S. SB
1.03







11
4U84.
674.08
3.44
61H.99
1.02







11
41184,
474.07
3.42
612,75
1,02







* 11
4HB4,
674,04
3.40
405.27
1.02
44»3J,
677. B2
10.34
442,51
0.47







12
44933,
472, 7B
10, 49
43Q.SX
0,46







12
44933.
672.75
10,46
6?;;,P3
0,46







12
44933.
672,72
10,41
615,96
0,46







12
44933,
472.69
10,41
608,41
0,45
43144.
472, 71
7,21
647,14
1,01







13
4S144,
672,4*
7,14
630.20
1.02







13
41144,
672,63
7.13
422,35
1,03







13
45144,
672,60
7.10
615,73
1.02







13
43144,
672. S7
7,07
60R.54
1,01

-------
o i»r  I*
   !%»»*
   « x •* in
   fi -c    •«
   *-   S Ul >•
iu ^*  t»  I*- £3 *-
iO «->  J  i. 
-------
ELEW
DEPTH
DIWiHAROC
VSLUCttV
XSEC;
X< I)
EtEV
C*!PTH
DIBCHARGE
VEI.
ELEV
BEPTH
DIBI;HARGE
VELUC1TY
XSEC
X( I )
ELF.V
DEPTH
DIBCHARDE
vetociTV
TIME « 34.
XSEC
X ( I )
ELEW
DEPTH
DISCHARGE
VEMICtTY
xsre
XU)
ELEV
BEPTO
DISCHARGE
VELOCITY
TINE - 38.
XSEC
X( I }
EiF.W
DEPTH
DISCHARGE
VELOCITY
687, ?7
S.91
336. fO
1,82
14
1H470,
669,0?
3,78
3i2,92
0,49
HOURS
1
0.
6(57,29
,t . 93
363.80
1.B3
14
4H470,
669.00
3.76
378,41
0.49
HOURS
1
D.
487.33
,!.97
377.90
1.04
14
4H470,
66B.97
3.73
3*3,08
0.69
HOURS
1
i).
487.39
4.03
399.20
1.85
14
4H170.
A AS, 94
3,70
368 . 33
0.68
HOURS
1
0,
6B7.44
4,08
417, 2O
1,84
4PA.VO
3,00
SflA.M
«J,74
13
3*^275 .
6*7.6?
«j,f4
304,34
O.S3

2
1066,
6HA .91
.4,01
341 ,30
«,73
15
92
684.94
<>.66
3B4.BI
0.90
16
SAOai ,
A6S.5V
4.24
373,53
O.SO

3
Al'.IS.
6B7.00
2.72
403.40
O.93
AHA,:fB
J.72
3S7.27
1,03
17
S9A61.
663 <'/"£
-,,73
544, K5
0.64

4
war/.
AHA.,lf<
3. 72
3A0.1B
1,03
17
'Tl'Jtlfll.
6A3 ,V3
5,73
H51.60
0.65

4
H237.
6H6.40
a, 74
347. ?2
1.06
17
3V444.
64^.74
5,74
557, A*
0.63

4
H'JM7.
6RA.44
5,78
382,99
1.0?
17
H9A44.
463, 75
5.77
567.99
0.66

4
BV17,
6B4.50
f. . 84
401. hi
I. ft?
6R1.06
9.84
360,62
0.33
ts
41477.
44S.J1
S.42
343,47
0,50

5
i:).<06,
ABS.OS
9.85
360. RA
0,33
IB
63477 ,
AM. 2?
8.43
550.94
0,51

5
I, 130 A.
685.07
9.87
345.14
0,34
!«
4.1677.
AA3.22
8. 43
557.11
0.51

5
13,f06.
685.10
9,90
374,9:*
0,35
IB
A3477.
643. 22
fi.44
362.4?
0.32

5
iXfi)6 .
6fl5> 16
9.94
3V2.60
0,34
684.55
4.63
34ft » V4
0,3§
19
4714V!.
66A.02
5,74
343,80
0,43

6
183,U.
484.54
4.64
3*1 .03
0.29
19
47162.
663,0?
•5.74
551.09
0.44

6
1 85113.
684,55
4,63
362, J3
ft. 29
19
47162.
663.02
5.74
537 . it 3
0,43

6
18333.
4B4.5B
6,68
349.90
0.30
19
47142,
663,0?!
S.74
562.3ft
0,43

6
IHS.iS.
6(44.61
4, 7|
382. ?9
0.31
ABO,?,1
4.33
36fl,O«
0,97
20
47173.
663.00
5,40
543.17
0,88

7
1MOO,
AHO.jy
4,32
347, A A
0,97
20
67173,
663.00
3.40
5S0.23
0.56

7
M41.iO*
iSKO. yi
4,31
361 ,04
0.97
20
67,173.
663.00
9,40
5SA.51
0,37

7
941.10.
6B0.22
4.32
3A4.66
0,97
20
67373,
663,00
K.40
561.93
0,57

7
'i, 1 1 M •
680.25
4.35
374.44
0.98
476,40
3,01
372,69
0,48







8
fnnyf .
476,66
4.?a
946,6?
0,47







e
:'SR,'9.
676.64
4,96
363.13
0.47







a
281129.
676.63
4.96
363,42
0,47







B
;jrt8«"9.
476.65
4.9B
3 A?, !50
0,48
674.06
.l.BB
37S.04
0.71







9
11R91 ,
476.04
3.84
36H.BS
0,71







?
31H91,
676, 03
3.84
364,44
0,70







9
31891.
676.02
3, 84
343,44
0,70







f
-UB91.
676.04
3,85
347.34
0.71
475.32
7.J4
376.31
0.32







10
.34590.
475.30
7.13
370, »f
0,31







10
. 34590.
675.29
7.12
365,30
0.31







10
14590.
675,79
7, 12
363.33
0.3t







10
34590.
678,30
7,13
366.00
0.31
#73.51
S«47
37f .22
0,92







1 t
41194.
673. ?9
2.65
373,23
0.91







11
41184.
673,27
2.63
367. SB
0,91







11
41184,
673.76
2.61
364 .OB
0,91







11
41184,
673.26
2.61
344.46
0,91
671 ,49
9«41
381 , n
0.34







12
44933.
671,67
9,38
375 . f *
0.33







12
44933.
471,64
9.34
370.46
0,33







12
44933,
67] .62
9, S3
366.26
0,33







12
44933.
67) .41
9.32
343.06
0,33
471 *37
4.67
3il.47
0,83







13
43144,
671. S3
6. OS
374.20
0,18







13
43144.
471.32
6.02
370.36
0,88







13
4S144.
671 .30
4.00
3*6. IB
O.t7







13
43144.
671,49
3.99
364.76
0.17

-------
X 40.
xscc
XI I >
ELEW
DEPTH
DISCHARGE
UfiUKtTt
XSEC
X( I )
ELF.U
DEPTH
DtWHARQE
VtMICW
rim: » 42,
XSEC
X( I)
ELEM
DEPTH
BI6CHARGE
VELOCITY
XSEC
X(t>
ELEW
DEPTH
0I8CHftR6E
WEUlRITt
Tint' » 44,
XSEC
X( t >
1LEM
SIPTH
DISCHARGE
VELOCITY
xsec
X( 1)
ELEU
DEPTH
DISCHARGE
tffLOCITY
TIME " 46.
XSEC
X< 1)
ELEV
BEPTH
DISCHARGE
VELOCITY
X.SET,
XII)
ELEV
OEPTH
DltiCMAftaC
VELOCITY
4H4/0,
6*11.92
( , 6«
345,79
0.48
HOURS
1
i>.
*P7.53
4,17
4S0.20
1,86
14
1H170 ,
668.92
4.68
366,95
0,69
HOURS
1
0.
687 , 59
4,23
475.90
1.88
14
4»47t».
663.94
3.70
372 . 78
0.49
HOURS
1
0,
68S.74
S.38
1095.00
7.08
14
4B470,
46B.99
3.75
384,9ft
0,70
HOURS
1
0,
*Bf . 96
Ji.40
1249,00
•i. 13
14
4B47O,
669.11
3. 86
412,31
0,72
647. 51
5,83
3AB.O?
0,32

2
40AA.
*»7.0H
.1,10
474.35
0.83
15
52-27-;!.
6*7. SO
5.82
367.45
0.52

2
4OA6.
687 
-------
rinr • «0.
XSEC
mit
ELCU
DEPTH
DISCHftRBf
WEUIC1TY
XSEC
X<1)
SLEW
DEPTH
8ISCHARSE
VELOCITY
rim. - so.
XSEC
XUI
ELEV
DEPTH
DISCHARGE
VELIKI TY
XSEC
xu>
EiEV
BEPTH
OIHCHftRGE
VEJ.UCITV
lint • 52.
XSCC
X
ELfW
BEfTH
DISCHARGE
VEtnctTY
TIRE » 36.
XSEC
X(I>
ELEM
BtPTH
HOURB
i
0,
688,94
•i.sa
1233.00
i»,I3
14
4H170,
669,38
4.13
479.30
0.78
HOURS
1
0.
APS. PI
5,45
1143,00
a. 10
14
4M4/0.
649.95
4,71
630.06
Q.07
HOURS
]
0.
688.62
S»26
100B.OO
a. 04
14
4»4/«.
670,65
5.40
81?. 46
0.94
HOURS
I
0,
688.31
4.95
926.80
<>,a0
14
4H4/6.
671.17
S.93
955.25
0.9?
HOMES
1
i).
688.12
4.74

2
4046.
688,84
4.94
118B. 47
1,22
IS
5i!27a.
667.77
A. OS
450.62
0.39

2
4064.
688.95
8.05
1153.66
1.14
IS
S2273,
66H.21
6.53
S4S.OJ
0,6*

2
41)6 A.
Ase.er
4.92
1031.50
1,07
15
S3272.
A6M,eft
7,20
731 .39
0,73

2
19*6.
ASH. 63
1.73
9J9.S6
1.02
15
!W27;>.
669,49
7.81
B92.47
0.79

2
4066,
6Hfi.37
4,47

9
M««.
6BB<7H
«.SO
1IHH,0,<
t.45
16
tiAOV!!.
666.09
4.71
4?7,3«
0.78

3
612S.
68B.fO
4.62
1156.17
1,35
16
s*
I15S.46
1.32
17
S?M4,
664.45
6.46
R06,^4
0,79

4
8KB7.
6HR.6R
4.V9
1M6.40
1.25
17
5V664.
665,00
7.02
936.30
0,81

4
8337.
6B8.53
4.SJ7
1030,96
1.19
17
!WM,
665 ,56
7.S7
1 JS1.76
0.89

4
8?.3V.
6BH.34
4.6H
96) ,46
1.15
17
SM64.
6*5,94
7.V6
1346.89
0.96

4
H/3V.
6Rfl,06
4.40

5
1 S.WA .
6«7.«a
12,02
1042,99
0.67
16
6,*677,
663, Bil
9,04
736,14
0,61

5
13306,
687,44
12.24
1102.89
0.69
18
A3677,
6M,oy
9,64
849,19
0,63

5
13306.
687,39
12.19
1066.99
0,67
18
6:!A77,
664,90
10.11
1087. 6B
0.7S

5
13,106,
6fl7.34
13,04
J005.32
0.65
18
6.1677,
665, ?0
10,42
1318.72
0,87

5
I riO 4.
686 , 9H
11,78

6
mr»,ia.
6BB.73
7.83
98?. 07
0,59
19
47162,
663,62
6,34
646.29
0.45

6
lflS3J,
6BS.79
7.8f
1086.45
0.64
19
671A2,
664 , 22
6,94
766.22
0,47

6
JflS33,
685.72
7,82
1085, $2
0.65
19
47162.
664.62
7.34
1036.90
0.59

6
1B5.J3.
6iS.6t
7.71
103B.OO
0.64
19
67l«,
664, f*3
7,55
1336,52
0,74

6
1SSM,
A8S.47
7. 37

7
.HIM,
ABI .»
5,33
i*¥0.2;<
1.22
20
67373,
663.60
9.00
669.79
0,59

7
5HI30.
6WI.50
5.60
1«49.17
1.26
20
47173,
664,20
9.60
706,61
0.58

7
24130,
6H1.60
5.70
1090.62
1,26
20
47373,
664,60
It). 00
1042.70
0,70

7
2*130.
6«t ,5»
3.68
J 061. 76
1.23
20
47373.
664 . 90
10,20
1 3»9 , 1 7
0.84

7
24130,
AH1 ,4V
5.59

H
a»H^9,
6/7. B6
4. 18
760,38
0.71







8
mnzt ,
670,40
4,72
962,15
0.80







8
2UB29.
678.69
7,02
1054,65
0.82







8
2»fJ29,
671,74
7,08
1061 .S3
0.81







a
2HBi!9.
678,68
7,01

9
31H91,
676,97
4.78
697,51
0,98







9
11B91,
677.46
5,27
915,20
1.11







9
31891.
677.76
5,57
1035.5ft
1.16







9
318ft.
677. 8S
5.66
1061.07
1.17







9
aiBfl.
677.80
S.A1

19
34590.
675. H«
7.70
641.82
0.49







10
16590,
676.27
8.10
H59.83
0.62







10
36590,
676. S5
8.38
1001 ,18
0.69







10
34590,
476.66
8.49
1049,45
0.71







JO
36590.
476.65
ft, 47

11
411A4.
673. flf.
3.20
S7I.SI
1.05







11
4lli4,
6?4.37
3.72
7BS , 75
1,34







11
41184.
674,81
4,17
957. IS
1.21







11
411B4.
675.07
4,42
IO35.7O
1,21







1 1
411R4.
67S.14
4.50

12
449J3.
677.. 24
9.95
517, 5»
0.42







12
44933,
672, BA
10.39
707,08
0,31







12
44933.
673,47
11 .19
881.91
0.58







12
44933.
673.85
11.56
9B9.8S
0.62







12
44933,
473,99
11,70

11
43144.
672,11
4,61
512, Sf
0,99







13
4S144,
47?, 75
7.25
497.73
1.10







13
43144.
673.34
7. 84
883.80
1,19







13
43144.
673.72
8.22
996.37
1,23







13
45144.
673,87
9.37

-------
FO
vet.ncttY
XSEC
K( 1 )
EiCM
DEPTH
BISr.MflRGE
VII.IIBITY
TIHE • 58,
XSfC
X(U
ELCM
DEPTH
DISCHARGE
VELOCITY
XSEC
X( J)
EtEV
BiPTH
DISCHARGE
WttttCITY
TIHE * 60.
XSEC
X( I )
EiEM
DEPTH
DISCHARGE
VELOCITY
XSEC
X(t>
ELEV
DEPTH
DISCHARGE
VELOCITY
TIHf • 62.
XSEC
X ( I )
ELEV
DEPTH
DISCHARGE
VELOCITY
XSEC
X ( I )
ELEW
HEPTH
DJSCMftROE
VELOCITY
TJHE « 44,
XSEC
Xtl)
CLEV
DEPTH
DISCHARGE
VELDCITY
XSEC
X(U
CLEW
1.94
14
4H470.
47 1 , 4 4
4.20
1011.62
t ,00
HflURS
1
0,
688,11
4,75
718,30
1.96
14
4B47Q.
671 ,49
4,24
1005,45
0.98
HOURS
1
0.
688,04
4,68
685.40
t.94
14
48470.
671, S9
4.15
962.24
0,?6
HOURS
1
0,
687,98
4.62
654 . 30
1.93
14
48470.
671.23
5.98
904.03
0,93
HOURS
1
0.
687,94
4.58
632,40
1.92
14
4H470.
671.04
1.00
IS
JW27K,
669, P3
H.14
9BI.07
0.81

2
4O4A ,
60S. 17
4,27
759,64
1,03
IS
SX272,
669,93
a, 25
1000.54
0.81

2
406 A.
6H8.C12
4,12
715,13
1.05
15
52272.
469. 8B
H.19
972.73
o.eo

2
1064.
687. «9
J.99
679,05
1.06
15
52277.
669,74
Hi 06
922,10
0,78

2
10AA.
687,79
< . B9
655.20
1 .03
15
S2?7'«>«
469.5*
1.26
14
940X1.
667, BB
A. 54
9SS.35
1.07

3
41!! it.
6BK.11
3.83
785.71
1-28
16
f(A02t .
4*7.93
4,60
9?6,14
t.ie

3
61JJS.
AB7.9*
3. 68
737,59
1,25
16
S4021 .
667,84
4,32
981,63
1,11

3
4 1 a>s .
687.84
a. 56
696.2*
1,22
16
hAOi'l ,
667,73
4,40
937.06
1,09

3
A12S,
AU7. 74
S.46
460, BB
1, 19
16
5A021,
667. 58
t.12
17
HV444.
AA* .OK
fl.lO
1447,13
1 ,01

4
8737,
6B7.B3
4,1?
767,29
t,13
17
SVA44.
666.08
rt.io
1444,48
1.01

4
8237.
687,65
3.V9
738.40
1,13
17
SV444.
666.00
fl.Ol
1373, ?S
0.97

4
8X37.
687,51
:i.Ht>
697,03
1.14
17
59644,
AA5.90
7. VI
1??0.75
0.93

4
H237 ,
487,39
3.73
661 .64
1.14
17
SVA44,
665.79
0,41
18
4,4477.
645.27
10,49
1439,61
O.V4

5
13.,20
1445,91
0,92

7
24130,
661,23
5.35
835.65
1,14
20
A7373.
644,80
10,20
13B5.67
0.88

7
24130.
681,15
5.25
775,75
1. 11
20
67:i?3.
6A4.(<0
to. 20
1302,90
0,83

7
24130.
681.06
5.14
726,20
1.09
20
47373,
664.80
0,79







8
?HR?9 .
67B.3?
4,84
941.34
0.76







a
2»8af,
67D.33
6,66
RAH. 61
0.73







B
anew ,
67H.1A
6.48
80S . 1 4
0.70







a
28SSV.
A7SU01
4.33
751,16
0.4B



1,14







7
51891,
677,64
3,47
VSB.27
1,10







9
11891.
677 , 4»
5.30
BBS. 64
1.07







9
31891,
677, 3a
3.14
§20.55
4.03







9
31891.
A77.IB
4.?9
765,06
t.OO



0,70







10
34590,
676,94
Q. 36
974,87
0.67







10
36590,
676,39
B.22
906.02
0.64







10
34390,
676.24
8.07
839.97
0,61







10
34590,
676,11
7.94
7S1 .70
0.5B



1.19







11
41184.
675.. OB
4,43
993. '/I
1.1A







Jl
41194,
674,94
4.29
929.18
1.13







11
431B4.
474,78
4.13
86?. 77
1. 10







11
411R4.
674.62
3.97
B02.30
1.08



O.A3







12
44933.
67*, 96
11.67
1000. OS
0.62







12
44933,
673,82
11,53
947,60
0,60







12
44933,
673.64
11,35
885.98
0.57







12
44933,
673.45
11,14
B2S.63
0,55



t.*a







13
43144.
473. «4
8.J4
1004, JO
1,21







13
4S144.
673.76
8. 2O
950.12
1.18







13
4S144.
673.32
a, 02
837.18
1.14







13
45144.
673,31
7.83
826,21
1.12




-------
ttlSCHftftOE
TIHf* « 66,
XSEC
xu»
ELFV
DEPTH
DISCHARGE
VCIQCITV
xsec
Jttll
ELEW
6EPTH
niSCHAftOE
VELOCITY
tl*t * 48.
XSEC
xtu
ELEV
DEPTH
DISCHARGE
VCLOCITV
XSEC
xtu
Et£U
DEPTH
DISCHARGE
VELOCITY
fIHE • 70.
XSEC
XII)
EiEW
BEPTH
DISCHARGE
WELBCITY
XSEC
Xt t >
ELEV
DEPTH
DISCHARGE
VELOCITY
TIHf » 72.
XSiC
X( I )
ELEM
BEPTK
DISCHARGE
VKUmTY
XSEC
Xt 1>
ELEV
DEPTH
BIETHARGF
WEi.nCITf
"tlHt * 74.
xsec
0,90
HOURS
1
0.
487.91
4,35
419,90
t,?l
14
4B47U,
670. BS
5,40
7f 8.91
0.88
HOURS
t
0.
487,91
4.33
416.70
1,91
14
48470.
670,67
5.43
740.96
0.86
HOURS
1
0,
487.91
4.55
419.80
1,91
14
1H4/0.
470.53
S.28
701.52
0.84
HOURS
1
0.
487.91
4.55
619.80
1.91
14
4H47Q,
670,40
S.I4
671.32
0.83
HOURS
1
•64, fO

2
40AA,
6B7.73
1.83
634,94
1 .03
IS
5«7;»,
469.39
7.71
809.46
0,73

2
4OAA.
487,4?
3.79
422,60
1,02
15
32272,
469.22
7.54
759.85
0.71

2
1OAA.
687.60
:j.78
621,75
1.03
IS
3237i! »
669,07
7.39
717,94
O.69

2
4OAA.
487,67
3.77
620.78
1.03
13
5~«!27?,
6* {(,94
7.26
686.OO
0.68

2
•01.63
1.06

3
Atl!5,
687.68
3.40
6JP. 4H
1,17
16
SAO^l,
667.44
A, 11
026,04
1,03

3
4125,
687 , 44
.'.36
624.44
1.16
14
8AO21.
667.32
S.9B
775. IS
0.9?

3
412!»>
687,63
'.4 . 33
67?, 16
1.14
16
SAoai,
467.20
5.87
731.77
0.97

3
A US.
487,42
3.34
621.02
1.14
16
S40»U ,
467.10
5.77
697. 72
0.?4

3
1*011. A*

4
M3? »
6R?« ?1
J.AS
639.14
1,14
17
M4A4.
663.71
7.731
I1OT.14
0.85

4
aajv ,
4S7.3A
3,40
624,91
t .14
17
59444 ,
645.63
7.6S
1(175.43
O.S2

4
8237.
6P7.34
-1.SH
4?2.40
1.13
17
SVAA4,
4*5,57
7. SB
101R.4?
0,78

4
H2.V/ .
6P7.23
3,57
6?t .11
1.15
17
59AA4.
*65.S2
7.S4
V7B.67
0.76

4
l?15.44
0.81

5
1330*.
684,1?
IO.92
45«.49
0.50
18
A 1*77.
663.11
10.32
1144,97
0.77

3
13, tO A.
4RA.QS
10.85
437.71
0,49
18
43*77.
64S.OH
10,29
1080,21
O.73

5
l.HWA.
68A.O1
10.81
628.34
0,49
IB
63A77.
6A5.0!t
10.26
1021,94
0,49

s
llllOA.
6R6.QO
JO. BO
423.50
0.49
IB
A.1A77.
AAS.o;t
10.25
981, 1O
0,67

3
1211 .12
0.47

6
1851"!.
685.06
7.14
470.55
0,47
19
471*2.
6*4. H;-
7, S3
1140.75
0.63

6
18SM.
685,04
7.14
645,23
0.46
19
47142,
664, S2
7.34
1076,14
0.59

4
18SM,
605,03
7.13
630,77
0,45
19
A71A2,
A64.D2
7,^4
101ft, 37
0.36

6
ifis^it.
485.03
7.13
623.67
0.44
19
A71AS.
4*4,8?
7.14
97S.37
0.54

6
1216.83

7
24130,
6R0.99
5,09
6B4.4Z
1,08
20
A7373.
664.00
10.20
1145.91
0.73

7
241JO.
480,94
5.04
4S6. SB
1,06
20
47.173,
644.60
10.20
1080,79
0,4?

7
24130.
6H0.90
5.00
A3A.94
1.06
20
A7373,
464. BO
10.20
102S.20
*.45

7
241,tO«
6H0.8H
4.98
42A.3/
1.03
?0
47173.
444.80
10.20
9R1.19
0.63

7


8
2SB29,
677,87
6,20
7O7.47
0.66







8
aHB29.
*"/7 «'/7
4,09
473.16
O,64







t
2H829.
477,69
6.01
649. O3
0.63







8
28829.
677,64
5,96
633. 80
0.63







8


9
31B91,
677,0*
4,B7
7t8. an
0,98







9
31891.
476,94
4.77
682,22
0.94







9
11891.
676, an
4,70
655.38
0,94







9
31B91.
476,83
4.63
637.81
0,93







?


10
54590.
474.01
7.83
732,39
0,35







10
3*590.
675,92
7,74
692.60
0,53







10
34590.
675,86
7, SB
662.71
0.51







10
3459O.
675.81
7.64
642.37
0.30







10


It
41184,
474, 4ft
3.83
750,14
1 ,94







11
41184,
674.35
3.71
707. IS
l.OS







11
41184,
674.54
3.41
673,7?
1,04







11
41184,
474.19
3.54
649.87
1.03







It


12
44933.
673.27
10,99
771.50
0.33







12
44933.
673.12
10.83
725.53
0.31







12
44933.
*72,99
10.71
686.49
0,49







12
44933.
472,89
10.41
661 .22
0.4B







Ti


13
45144,
473.16
7,44
771.79
1.0»







13
45144,
673.00
7.30
725,68
1.97







13
45144.
472,88
7.38
688.47
l.OS







13
45144.
672.78
7,28
641.03
1.03







13

-------
ELEV
DEPTH
&IS<;HARPC
VELOCITY
XSEC
X( 1 )
ELfV
DEPTH
DISCHARGE
Vil.nCJTY
TIHE » 74.
XSEC
X( 1)
ELCV
DEPTH
DISCHARGE
VELOCITY
XSEC
X
ELEW
DEPTH
DISCHARGE
VELOCITY
TIHE " 78.
XSFC
X
ELEV
DEPTH
DISCHARGE
VELOCITY
XSEC
X
ELEV
DEPTH
DISCHARGE
VELOCITY
TINE, = 80,
XSFC
XC1 J
ELEV
DEPTH
DISCHARGE
VF.LOr.tT*
XSEC
x< t >
ELEV
DEPTH
DISCHARGE
VEI.nCUlf
TINE - 82,
XSEC
X( I >
ELEV
DEPTH
DISCHARGE
VELOCITY
6t?,»0
4. 34
613.70
1,91
14
4S47O,
670.31
S.06
649,97
Q.i2
HOURS
1
0.
687,8ft
4.52
601,40
1.90
14
48470.
670,24
4.99
635.67
0.82
HOURS
1
0.
687,85
4.49
S89.20
1.90
14
4«470,
670.19
4,94
626.67
0,82
HOURS
1
O.
487.82
4.44
377.00
1.90
14
4»47i>.
470,15
4.90
6i9. 20
0.82
HOURS
1
i),
687.79
4.43
564.80
1.90
A87.AA
3.74
417.79
1.02
15
52272 ,
AAP.K3
7,15
461 .SB
ft. 67

2
40*4.
687.64
3,74
407,87
1.01
15
S2272.
668.75
7.07
644.16
0,46

2
406*.
48?, A2
3.72
597.15
1.00
15
S"«J27X.
468.69
7.O1
633.36
0.66

2
4
4.95
All, 17
1.05
20
*7,173,
464,80
10. 20
911. B7
0,58

7
24140.
680,63
4.93
607, 79
1.04
20
47373,
AA4.AO
10,20
899,11
0.57

7
24130,
AflO.P?
4,92
59?. 60
1.04
A/7. A I
5.93
625,41
0.62







8
?8fl?9 .
677,59
5,91
620,07
0.42







B
2HS29.
677.57
5.90
614.33
0,62







B
S«839,
*77,55
S.BB
604.88
0.61







a
2R829.
677.52
5.85
597,64
0.61
47A.81
4,62
A?7.*A
0.92







9
11B91,
674,79
4.40
621, SA
0,92







9
-11B91.
676. 7B
4.59
415,95
0.91







9
31891.
676.76
4.57
606,97
O.fl







9
31891 .
476,74
4.55
600,24
0.90
*75.7f
7.4Z
A 30, 03
0,4?







10
34596.
475. 7f
7.60
622.71
0.49







10
34590,
475.77
7.59
616,61
0.4B







10
3A590 .
475,76
7,58
610,23
0.49







10
3A590.
A75.74
7,57
402.04
0,47
A74.14
3.49
6S4.54
1,03







11
41184,
674,11
3.44
425,38
1.03







11
4U84,
674. OS
3.44
618.99
1,02







11
41184.
674.07
3.42
612.75
1,02







11
41184.
674.04
3.40
405.27
1.02
*7?.»2
10.54
442.51
0,47







12
44933,
472.78
10.49
630, S3
0.46







12
44933,
*72.75
10.46
622.83
0,44







12
44933.
672,72
10.43
MS.96
0.46







12
44933.
472.49
IO.41
A08.61
0.45
473.71
7,21
6*7.14
1 ,01







13
45144,
672.44
7.14
430.20
1.02







13
45144,
472,43
7.13
422,33
1.02







13
43144,
672.40
7.10
615.73
1 .02







13
451 44.
672.57
7,07
608.56
t.Ol

-------
*. * ««
*«    *
•e
•»
f>.
•c
* * tsm o
w « •• B
-C <    IB
 • tv r» * G
e    «
u- -c    s
 « iv » r. 9-
— ec mat a
c- -t i- a o
   ~ n« M
   -c »• *HK -e
M * -em o
pi -a    -i
*? «    *
O « «»  CD

IS  •  *  *   *

•• O »«*  O
* fs.    »
— j a. * •->
X tol lid «S 45
      OX O
         o -
         in u)
                                                                                 175

-------
         Appendix D





PART 3: SEDIMENT MODEL INPUT
               176

-------
SC10TD RIVER SEBlHrMT HOWL - 2NH S10RH EVEMT
20 SJL AO .75
0 1 1 24 0
.5 .2
10 5
20 IS 5.8 1.3 ,JiO ,315 .179 .1115 .0S9 ,0?0
2,65 .'.AS a,AS 8.AS ».AS 2.AS V..AS S.Atr 2.AS 2,
,60 ,75 ,1 0,03 0.0?0 00000
4 ,HO . i!0 0 O «) 0 0 0 0 0
7 ,BO .20 00000000
11 .«« .20 00000000
               000000
               000000
13 .«0 ,70 0 0
14 .80 ,'40 0 0
GRFFNLAUN AVE
 0,0000000
 0,0000000
  1.789978
  3,049978
  3.0B9966
  3.V40002
  4.0H99A6
                 663. JiAOO
                   19
                0.0000000
                 37.53033
                 42,549?4
                 70,18X56
                 75.0A396
                 t07.4»97
                 113.1644
                 131.1451
                 170.0170
  4.9^9961
  S.WH9966
  7.9I99B3
  8.479993
  10.A400J
  17.A4001
  30.A400I
          X~J
     5.AOO
 0.0000000
  4.000000
  a,oftoooo
  9.OOOOOO
  9,000000
  10.00000
SrNTHFTlC X-SF.C
  6124,800
 0.0000000
  4.000000
  3.000000
  8,000000
  9.000000
  10.00000
FRANK ROAD
  8236.800
  12/.7700
 0,00(10000
 0,4000244
 0.4B99902
 0.8499756
 185.1131
 2O/.AS37
 238.A215
 >!4V>.4473
 313.0S17

 399,J243
 5A4.3094
 677.7782

 683.¥000
    6
0.0000000
 421.0997
 381.1332
 4AH.349Q
 486.4506
 49S.A727
t2
 684.21*00

0.0000000
 321.0997
 381.1332
                 486.4506
                 49r»,A72?
           BRIUBE
                   15
                0.0000000
                 2tt.90-.tl9
                 32.3B102
                 70,99437
                               9.999999BE-03   0,0000000
                                                              0,0060000
                               9.9V99V9HK-03  0.0000000
                                                              O.QOOOOOO
                                               0.0000000
                                                              0.0000000
                               3,9999999E-Oa   O.OflOOOOO
                                                              0.0000000
                                    177

-------
1 i '>VV976
i.ssftft
1.&179V3
1.H900IS
2.0HCJ017
3,440002
6,9«9?fO
8,010010
13.98999
RfiURUAfl BKIUGE
13305,60
12A.7000
O.POOOOOO
2.H00049
3.XOO049
6.300049
6.600037
9,400024
12.4000?
12,40004
12.80003
14.M0005
18.30005
IB. 30005
SYNTHETIC X-SFC
1853?, 80
12S.AOOO
0,0000000
1,000000
1.700012
2./00012
3.200012
3 . 399988
3.700012
3. 799988
3.V00024
4,000000
4,?9998B
4,100024
4.700012
4,yi)0024
X-SFf e 1-270
24Ji-9.60
121.4200
O.OOOOOOO
i ,000000
1,70001?
2.700012
3,700012
3.299918
3.700012
3./VV988
3,900024
4.000000
4,:-V9988
4, 400024
4,70001?
4,900024
X-SF.t *11
20Bi>B,RO
12-1.4300
0.0000000
10J.S1S1
145*3779
t*y. 3S31
178,3319
201,1155
247.2318
2B3.0379
3,<0, 'f.'A72
349,0341

673,?000
12
0,0000000
43.34052
87,55.238
ISA.1W19
1S9.4I32
1H1 ./i462
253.4409
7.S7.4486
23B.6992
'«?A7 • 2083
289,4)40
.''VO, H858
*3
477,9000
14
0,0000000
.11 ,83,»03
48.3A71S
/a,s4«>oi
86.49547
11/, 7494
172.769i
'^14,0236
219.2i08
24ii.fi353
29*. 3060
30S.,ltl2
337.?J59
3H0.3194

675.9000
14
0,0000000
.J1.83203
48.36218
/4, S4001
86.4954?
14/.7494
172.7*98
«;i4,0J4*3&
219.2BQ6
34U»t(353
296.3060
,<05.3tl2
332.3159
:iBl>,-Jl94

67J ,6747
12
0,0000000
                              0.1700000      0.0000000
                                                            o.ooooooo
                              0,1200000      0,0000000
                                                            0,0000000
                              A.6999987F-02  0.0000000
                                                            0,0000000
                                             0,0000000
0,0000000
0,5000000
                                                                       "  i
                                178

-------
l.OOOOOO
t, -VVV9A3
1.7WOJ2
2,099976
3.099976
3.300012
3.5000OO
                60.4V130
X-SFC tlO
 31891,20
 121,7900
O.OOOOOOO
0,2999878
 1.000000
 1.299988
 1.400085
 1.900085
 2.700073
 3,?99988
 4.300000
X-SKi; t9
 36S90.40
 121,8000
0,«000000
0,2000122
0»?999878
0.4000244
0.3000000
 1,000000
 2.400074
 2.SOOOOO
 4.400024
 7,400024
x-spr, ta
 41JB4.00
 120,8300
0,0000000
0,2000122
 1.000000
 1,099915
 1,200012
 1.100024
 1.V00024
 2.700012
 3.0999J5
X-SI-'f: *7
 449X2,80
 120,0400
O.OOOOOOO
0,5000000
 1.VO0085
 2.200012
 4.099976
 4,400085
 6.900085
 9,?¥9988
 10.0999B
SMftMWILLE
 45144.00
 120,0000
O.OOOOOOO
                123,?094
                144.HU29
                168.B019
                199,2047
                232.4904
               67?,I174
                 10
              0,0000000
               60,00350
               94,03M?
               115.0399
               U3.3H23
               192.4H79
               66§.1746
                 10
              0,0000000
               9.A1S538
               44.41954
               49,23588
               104.0399
               12«,0773
               147,7182
               188,7041
                670,6470
                  11
               0.0000000
                2H.3H743
                35,89510
               126,3909
               144.SA36
               177.8725
               193.45B5
               ^t)V,1190
               229.1367
               66?.2869
                 10
              0.0000000
               29,1). 110
     82.33374
     I}/.9418
     122.SZ5B
     tA«),7121
     196,0462
     221•1259
BRIDGE
     665.SOOO
        9
    0.0000000
                             A.69999B7E-02  0,0000000
                                                           O.OOOOOOO
                             6.6999987E-0?
                                                            0,0000000
                             6.A9V99HVE-02  0.0000000
                                                           0.0000000
                                            0, (1000(100
                                                           0.0000000
                             f ,9?99994E-0?.  O.«»00000
                                                            0.0000000
                                179

-------
 2./A9897
 *.yj
 4.A*t9973
 5.04998R
 6. MOO 10
 &.H09998
X-SEC «6
 484/0.40
 119.3000
0,0000000
0.2000122
0.299997B
0.5000000
0.7000122
 1.099976
 1.200012
 2.099976
 S.000000
X-SFC *5
 522/2,00
 llrt.5000
0.0000000
0.4000744
0.7999978
«.V000244
 1,^00000
 2.299988
 2.79998B
 3.SOOOOO
 4.400024
 5.4(>0024
 S.SV9976
X-SEC *4
 560^0.BO
 11/.7100
0.0(100000
0.5999146
0.9000244
 1.099915
 1.4P0024
 1.900024
 2,f-(>0000
 3.000000
 3.299927
 5.900024
X-SfC *3
 59AA4.00
O.OOOOOOO
0.4000244
O.SOOOOOO
 1,300049
 2.SOOOOO
 2.700012
 3.1000*7
 3.700017
 3.9000^4
 4.B00049
 7.SQOOOO
x-si:r *2
36,63953
124,0497
137.7453
141.AH29
147.A313
                184.7139
                  10
               0.0000000
                24.00QS2
                48.00349
                7S.00401
                90.00900
                10A.AH13
                136.0235
                164.B726
                200.A182
                  13
               0.0000000
                42.51300
                A4.A2A39
                68,30921
                B6.99976
                106.2586
                143.A404

                183.0138

                222.4197
                66i ,,«;<:
                   10
               0.0000000
                46.84061
                78.80458
                10H.O/11
                133.H1P9
                13H.2743
                19B.SA13
                  12
               0.0000000
                42.234J2
                f)0.(HA49
                10]./4J4
                t19.A/61
                131.0048
                JA4.7A73
                200.4146
                21V.A007
                232.02B6
                              9.99V9994F-0?   0.0000000
                                                             O.OOOOflOC
                               9.99V9994F-02   0.0000000
                                                             0,0000000
                              9.9999V94F-(>^   0.0000000
                                                             0.0000000
                               7.499999AE-0;,'   0.0000000
                                                             0.0000000
                                 180

-------
 UA,1000
0»O0000
0,1000346
0,9000244
 1.400034
 1,500000
 2.900024
 4.2*9988
 5.700012
                  It
               0.0000000
                3.SA2793
                64.40385
                7«.79/86
                81,47137
                104.8B13
                127.6207
 6,400024
 9.700012
X-SKO 11
 671AJ,59
 115,4400
0,0000000
 194.S790
 222,7216

 A37.27M
   12
0«0000000
 1.29998B
 1.SC'0000
                78.04H09
                tOO,0535
                tSS.7770
 1.M99963
 2.000000
 2,099976
 3.799988
 6..WV963
ROUTf 762 BRIDGE

 11^,3200
0,0000000
0.7000122
 1.7999B8
 2,400024
 241,1891
 ,177.9794
 281
                654,6000
                  13
               ),0000000
                47,05535
2,799988
3.1*00024
6.900024
7.000000
B, 000000
9.000000
25.40002
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
,71
.71
.75
,73
.78
,7B
,84
.84
,90
.95
43.6
                              6.4999VVBE-02  0,0000000
                                                            0,0000000
                                                            0,0000000
                                181

-------
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
o
0
0
0
p
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
o
ft
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CI
0
0
o
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t)
0
0
0
«)
0
o
0
0
0
0
0
0
0
r
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(*
0
0
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
o
0
0
(J
0
0
0
0
l>
0
!)
0
0
0
0
0
t)
0
0
0
0-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
/,
f»
h »
4,
4,
1 .
J .
1 ,
1 ,
I,
9
t
,
,
•
,
J, .
1 ,
1 «
1,
J ,
J.
t ,
i .
1.
1 .
1 .
1 .
1,
I ,
1 ,
1 .
J, ,
3 ,
>. .
i.
I,
1 ,
J ,
1 ,
J ,
t.
1.
,3
I>
5
4
2
1
P8
SB
55
35
36
36
35
35
38
2B
22
22
la
18
16
16
16
16
16
16
)6
16
15
15
13
13
JO
10
08
08
06
06
06
04
06
06
06
06
182

-------
     •*•***« Ml tt******M****»«*M*MM***t**t*trt*Mtt*t***t***M
     *    siiTKiiN  i:cmt»cmft;fii»N - cHftNNM.  SKUWNT mmriNs HOOEI.     t
     *                      BATfi 30-DCt:-H1                         «
     i                      r irtf :«>/{»¥! je                         *
     scinro RJLWR  skium-Hi Hiiotx  -  ,>N«  SKIKH H/KNT
     CHfcNNFL  Son  HF1rtfH«FNT COEFFICIENT"  0.7MK»00
     R!SM!,'1«  UIU.  UK PRINI't.D tVKKY    1  T I«*HTKP! 8>
       21  1IMESTFPS  ftRF PKJPPFH TJl  AI.LIlW FLPHMODfL OMTflU  TO

     OUTPUr IS  fcXPRKSSfcl) IS KNlil.tSH UNITS
              NUHDt'K OF  tRUSS KF.tTlOMS  »    ?O
              NUflfiKtt m  Wttt. INOKhNFNTS '    82
              TIME  INCREHF.NT 
SPECll-Ii: HRAVITY
FAl.l VELOCITY (FI/SKC!
BED HATERIAt. KIZK IJKill
X-SFC I FFRCFNTAbEK
x-sti: 'i PtRCfcNTfiGb-s
X-SFC 3 PERCEMTftPFR
X-HKi; t Pl.RCl'NTAOtH
X-SKC 5 PERCENTAGES
X-SF.I; * HKRt:F.wTrtnt;s
X-MC 7 pfc'RfFNTAGFS
X-SFj; H Pt.RClNTAUf.S
X-SF.f 9 PFR(.F.NTA(iFS
X-SKI: H> ptKuoiTfiitt.K
X-PFC 11 rFRr:FNTA(«r(i
X-Hti: 12 PrrHCt'MTftltfS
X-bKC 13 PFRCFNTAOF.S
X-SEC 11 PERCKNlfttlKS
X-bFP 15 PFRt;ENTAGFS
X-Sti; I A KtRCt.MTftliKS
X-HtT, 1? Pt.R»:EN! A(«FS
X-HKi: IS F/feKC*.NTrtMKS
X-SFC 1? Pf:Rt,F«TACI:S
X-SKC '£•» PtKCKNTMIKS
20,0000"
2.A50UO
1 . &P3AO
UWUIHIHS
0 , AOOOO
4. A0440
0»A(H)«0
O.HOOOO
(i . AOCMH1
0 , AOO44
0, FKKHH)
0, 601)00
0,60000
0. A0440
(S.BOOOO
O.A0400
O.BOOOO
O.U4004
0 , frOQOO
0 . A0444
0.600OO
0 , 64. 404
0,60000
O.AOOOO

15
'7.
1

0
O
0
0
(I
0
0
0
0
1)
0
0
0
0
0
4
0
0
0
0

,00000
, ASOOO
,3J?05

.JTiOOCI
, :>S400
,75000
, <"t>
,:'S(ioo
.i';>'*4rt
, ;M>'
,'.!H<)i)0
i 750 0(1
.7SO4I)
,20000
.2%f)t»0
,20000
,:'oooo
,35000
. i'.SOOl)
,?f(OOO
,;"5i)oo
, 7W)O(»
, ;>h40o

s.floooo
'.T.ASOOO
0,fiJ'/H3

o. 10000
4. 1001)0
0, JOOOO
o.ooooo
o. ioooo
4 . 1 OO40
0,00000
• - 10000
o , > * 100
o. loo.. '
o.odooo
O, 10044
o.odooo
o.ooooo
0.1OOQO
4.10000
o.ioooo
1), IOOOO
0,10000
0, 10040

1 ,30000
:».ASOOO
0,374dA

O.OAOOO
D. 010 04
o.o;«io(i
o.ooooo
Q.O.KHW
O.D^OOO
0.00000
0,O3Oi>0
o.ojooo
o.osnuo
ooooo
4, "'>!>»
0 , 0(H. .
O.OOOOO
OiCMOOQ
O.O.IOQO
OtO.iooo
o.i), woo
o.osooo
o.o;ti>oi)

0 , S00(»0
2 . AWOO
o,?o<>i<;<

0,0?000
0.07040
0.02000
4.40000
0,02000
0.0?OiJO
0,00000
O , O200B
o.o?ooo
0.42004
0,00000
4*03000
0 , 00(H»0
OOOOO
O.v *>«
0,420(/>,
0,02000
t>. 07000
o.ooooo
0,02000

(J.4ISOO
'^.ASOOO
(1. 1 41H8

o.ooooo
0,00000
0,00000
0.00040
0.00000
<», ooooo
(i.ooooo
0,00000
(i.ooood
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
•>, ooooo
(1 , u . ^A0
0,00000
<>.<>0
0.00000
0.00000
0.00000
0,00000
               DEPTH WS HCTTFB PEftlHETFR I'AfU.F AT
                                      X-SihC  1
                               RIVFRfllLE » 129,SO
                                   YTBL
                                   (FT>
                                   0.00
 (FT >
 0,00
37,55
                                                    CREENtAUN  AVE  BR1DG

-------
                    3,01
                    3.09
                             70.IB
                            107.4?
                            11 :*. I 6
                    4.V*
                    i.OV

                    B.6K
                  10.**
                  17.*4
                  30,A4
1 vil, 02
1M.31
t «. 11
207.65

24-/.4S
7H.1.03
341,73

                    0.00
                    4.0(1
                    s.oo
                     OO
                  10.00
  <»,00
3?J , 1O
SHI. 13
4<«.a,3i
4BA.45
493.6?
                                     ISTNTHFTIC X-SFC *1
      V8 UKTO.M PKklH^TKR  tftW.K ft!
                      x-sfcc:   3
                                     HTNTHKTIC X-SKC »2
                   VTB1,
                              PfBI
                     .CHI
                     .00
                     .00
                   8.0(1
                  10,00
  0,00
:m .10
301 .13
4AH.34
48A.43
iy»,67
DEPTH US WFTTFP PFRlHETfR  TAB!F  AT  FRANK ROAB
                       X-SEC   4
                           =  177.77
                              
                              0,00
                             28,90
                             ;«'.!. 38
                             70,99
                             7/.5S
                            103,32
                            1 /H.33
                            194,89
                              185

-------
                    J. H
                    A,??
                    e.oi
28H.04
330.24
-HV.03
BEfTM US UFI»rt> PFRIHETER  TABLF AT
                       X-St.t:  5
                RIVf-.ftHILF  • 124.70
                                     KAK HIIAM PKIDGE
                    YTtL
                    O.OO
                    2.80
                    3.30
                    6.3M
                    6,*0
                    9 i 411
                   12.40
                   12.60
                   1?.H»
                   14, HO
                   1B.30
                   19. HO
                              HTBL
  O.10
 43,24
 H/.55
ISA, IS
15f .41
IH4.67
753,44
257,4?
,'SH,?0
267.21
2Bf ,41
DEPTH VS WrTTEB rERIflFTJR TAHI..F AT
                       x-stt:  a
                KIVI-'RHJIF « 1?S.60
                                     hYNTHF.Ut
                                                      *3
                    fTBL
                    (FT)
                    0.00
                    1.00
                    1.70
                    2.VO
                    3. •«
                    3.70
                    3.80
                    3.VO
                    4 , <»<»
                    4.30
                    4,40
                    4.70
                    4. VI)
  PTBL
  0.32
DEPTH WS HFTTFP pfRTHFTFR TftBl F AT
                       x-s»-;i:  7
                                      x-SF,r e  1-270
                    tTBL
                    
                    0,00
                    1,00
                    1.70
                    2.70
                    3.20
                    3.30
                    3.70
                    3, MO
  (FTi
  u.eo
 31 ,B3
 1H.36
 73.34
 H4.50
147,75
i?2,n
•••t 1.02
                              186

-------
                   4,10
                   4.40
                   4.70
                           332,32
                           ,1HO,32
DEPTH WS HFTTtn FFKIMEfER TABlf AT
                      X~Ht:<:   B
                          *  1?3.41
                                      X-Kkf til
 tTBL
 i FT)
 0,00
 0.30
                              PTBL
                              (FT)
                              <>»00
                             32, 61
 0.90
 1.00
 1.4O
 l./(V
 2.10
 3.10
 3.20
 3. Ml
 6.10
                             74.02
                             80.42
                            IOV',01
                            1J3.ZI
                            144,80
                            t*»,ao
                            Iff, 20
                            732,^9
                            VA0.94
DEPTH MS UETTfD PKRINFTER TftBl E AT
                      X-SFt:   9
                RIMf-'BHIlf =  122.79
                                      X-SKC  110
                   YTBL
                   0.00

                   0.30
                   1.00
                   1 , JKI
                   1.10
                   1.90
                   2,70

                   4. SO
           PT6L
           
           0.00
          2A.67
          AO.OO

         US.04
         1^.36
         •43.32
                           220.3S
DE?rH MS UFTTEP
                           TAWLE  BT
                      X-HEI:  to
                           =  17! .HO
                                      X-SEC t?
 YTBL
 (FI)
 0.00
 0.?(»
 O.JO
i.0,40
 0.50
 i.oo
 2.10
 2. SO
 4,40
 7,1<>
                              
-------
BEPTM VS tlfffFIl PFRIHFTER TftPI F ftl   X-BfC IB
                       X-Si:t: 11
                HlWFRfULC - 1?0,K3
»TBL
CFT>
0.00
o.?t»
0.30
0.81)
1.00
1.10
J , VU
1,40
1.90
2,, ?0
3.10
PT6L
(FT)
o.Oo
28,!*
35, 90
10'", 15
12*. 39
144, 5A
1/7.87
193. 4A
209.12
as*. 14
255.70
DEPTH VS HFTTFli PFRIHETFR TftM I? «1   X-f
0,00
0.50
1.10
1,90
2.70
1.10
4.40
6.90
9,30
10.10
t>TBL
(FT>
o.oo
29.11
4i.43
/4.4S
82.53
117.94
133. S3
140.71
19&.OS
321,13
DEPTH VS MFTTKD PFRJHFTFR  TftSI.F  flT   SHAPFVll l.K PKlBBE
                       x-sti: 13
                KIVFRHILE  » 120,00

                    YTIL       PTBL
                    (FT)             20.46
                    2.77      36.84
                    4.27     124.04
                    4.5,1     13?, 75
                    4.AA     141,68
                    5.OK     147,63
                    4,76     184,27
                    «.Ht     IH4.71
DEP1H WS yETTED PtRIMFII-R  IflBLl  Al    X-SFC
                       x-8*;r. 14
                ^IWFRMILE  * 119,30

                    TTBL      KTiL
                    
                    0,00      O.OO
                    0,10     24.00
                            188

-------
                    IU t ^|j      <||f ^y^j
                    0,30      ?,».0/Q
                    e.J.»      fO.Ol
                    'J,?0     tO&.AB
                    i , 1O     t4*>,02
                    I.JO     142.03
                    2,10     144.8?
                    3,00     ?OO>*2
DCPTH WS WF.TTF.O PFR1HF1FR  TAIU F AT   X-SFC *5
                       X-SKt: 15
                RIUkRHIlE  » I 18,SO

                    TT8L       PTSL
                    
                    O.OO       tKOO
                    0,to      t?«13
                    0.40      42.51
                    0,80      44,43
                    O.«»      68,31
                    1.50      a/,oo
                    2,,<0     104.26
                    2.80     124,47
                    3.bO     14-J.64
                    4,40     1*7.18
                    3,40     183.01
                    3,As)     -WO,57
                    7,M     227.42
DEVTM MS MITTEB PFRTHFUR  I AW f. AI    X-BfC §4
                       X-Sfn  IS
                RIUFRHJIF  »  117,71

                    YTBL       CT»L
                    fFTJ             30,02
                    0.90      4*.84
                    I.10      61,24
                    1,40      7H.BO
                    l.V<»     108.07
                    2,so     iti.aa
                    3,00     158,2?
                    3.3O     144.03
                    S.VO     IfM.SA
DEPTH WS WFTTFP PFUIHFTFK  TAWE AT   X-SFC
                       X-SfeC 1?
                    TfTBL       KTBL
                          3*.01
                    0,50      42.23
                    1,30      BO,05
                    l.PO     101,74
                    2.SO     115.48
                    2./0     Itil.OO
                           189

-------
                   3,70     200.4}
                   3.90     i»t,',40
                   d.BO     232.03
                   7. SO     -JM.33
BEFTH US UFTTFD PfRIIWTEft  f«BLF  *f    X-fit-C t2
                       x-sti:  ia
                             116,10
                   YTBL       CTRL
                   
                   0,00       «tOO
                   0,10       3.36
                   0,9«>      41,40
                   1,*Q      /H.80
                   1 . 5(1      81.^7
                   2.VO     103,88
                   4. JO     rt7>62
                   5.70     151,34
                   6,20     1A6.97
                   4.10     1*4,38
                   f,7<»     227,22
DEPTH WS UFTTCD PFRIMFlFR  TABLE  AT    X-BFE tl
                      X-SfcC  19
                             115,3A
¥TW_

l.SO
1 .70
1,90
2.00
2.10
3.*0
3. BO
4, 40
fTBL
(FT)
0. 00
49.11
75.05
too. os
155,78
1*1. 4V
717.21
2.-O.OB
1J , 19
»/7.98
2B1 .65
-WO.S7
BEFTH MS HETTEB FFRIMCTfR  TAftl-F.  ftT   Klltlfk X6? URIOGE
                       x-sti;  20
                RIWFRHIIC  =  115.32
                   TTPL
                   tFT)       (FT)
                   0.00       0.00
                   0.70      27,8?
                   1.80      I/. 06
                   2.40      52.88
                   2.BP      78. B6
                   3.VO     10". 74
                   4 , M     1 24 . 1 9
                   A..Vt     16B.31
                   6.9O     IH4.B*
                   7,O«     1B7.88
                   8.00     237,84
                   7.00     2?..*. 62
                   23,40     «4,?«
                               190

-------
       x-str.
                x HIST
                            n F
          1
        •  2
          3    6174.POO

          5   J3303.600
          6   lHbM.799
          7   ','4179.600

          9   .U B» I , 199
         10   SA?i*o,:t98
         11   411H4.000
         13  4S144.000
         14  1H1/O.J98
         15  52272.000

         17  596*4,000
         IB  A.JA76.797
         19  #7161.586
         20  A7.«7^,797
6P4.7R
AH;t,66
67?.70
A7/.90
475,90
ft/1 ,A7
672.19
6AH.17

AAV.29
A6S.50
661.33
657.98
AM. 79
6S7.7P
AS*.60
RESISTANCE
EQUATION.
x-str.
X-SM:
X-SFC
x-s.ui:
X-SFC
X-KKC
X-SFC
X-SFC
X-SFT
X-SKC
X-6FC
X-SKC
X-SFC
X-SKI:
X-SFC
X-SKI;
X-SFC
x-sti:
X-SFC
x-st.i:
i
^
3
1
5
A
7
H
9
10
11
1',!
13
14
15
1 4
17
>H
19
?0
TP Fl.OU IH
HAHNimiS N
MANNINGS
MftNNJNI.S
ttANNINIJS
MAHHINIiS
MANNINGS
HANFUNliS
HANNINI.S
rtANNHNOS
MAHttlNliS
HANHINltS
HANtJlNliK
MANNINGS
MANNIN1 MANNINGS
is E:
N =
N •-
tl z
N -
N »
N --
N =
N =
N »
M '
N «
N '
N =
N -
N =
N =
H *
N -'
N =
N ~
00
0.075
O.D6h
0.065
0 ,06%
1 AS A
PI US
PLUS
PLUS
PI, US
PLUS
PLUS
PLUS
PLUS
PLUS
PI US
PLUS
PI US
PI US
PLUS
PIUS
PLUS
PI US
PLUS
PI MS
PLUS
UUrtllKATli: FIINC.TIIIN
0.00(1
0.000
0.000
o.ooo
0,000
0,000
o.ooo
(1.000
0,000
0,000
0,000
o.ooo
0.0(10
o.ooo
0,000
0 ,1)00
o.ooo
o.ooo
o.Odo
O.ODO
TIMtS
Tints
TTMFS
TTMtS
TIMKS
TIMfcS
TIMKS
TIMKS
TIMtS
TlHhS
TIMKS
Tints
TIMh-S
TIMKS
T.IMES
TIMtS
TJHhS
T IMKS
llMh'S
TIMKS
lihPTM
Bf.PTM
IJUPfH
MF.PIH
DEPTH
OKPTH
liKPTH
nt:prH
DKP1H
CIF.PTH
DFPTH
DVPIH
DKPIH
riF.PiH
DFPTH
ntPTH
Pt-.PVH
TIKPTH
DFPTH
DKPIH
(IF OFCfTH
PI. UK
PHIS
PI US
PLUS
PLUS
PLUS
PLUS
PI US
PLUS
PLUS
PI US
PLUS
PLUS
PLUS
PI us
PLUS
PI US
PLUS
PIUS
PLUS
o.ooo
0.000
0,000
o.ooo
0,000
0,01)0
0,000
0,000
0,000
o.ooo
o.ooo
o.ooo
o.ooo
0.000
O.O(H)
o.ooo
0,00(1
0 , 000
0 . 00!)
0.000
T1MFS
TIMES
TIMES
TIMFS
TIMES
TIHFS
TIMES
T I Mt-'.S
TIMKS
TIMKS
VJMES
TIMF.S:
TIMKS
TIMES
TIMKS
TIM1-S
1 1 nt h
TIMF.S
TIMKS
TIMKS
PFPTH
DF.PTH
PKPTH
nEPTH
Pf.PTH
OF.PTH
PKPTH
OtP IH
PhPTH
IISPTH
PKPTH
DEPTH
DtPTH
DEPTH
DEPTH
DEPTH
DtPTH
DEPTH
DKPTH
DEPTH
SdUA^tD
SQUARED
RIIIIARFD
SQUARED
SlUIAKtD
SQUARED
SmiAKf D
SQUARED
SOUARED
SQUARED
SnilAKF. D
SDUARF.D
SQUARFD
SQUARED
SQUARFD
SQUARED
SQUARE B
SQUARED
SQUARED
SQUARED
UNSTEADY Fi Ciy

UNSTEADY UPSTRFAM  StPIHfcNT INKI OU

UNSrHAUY l.AO.Rfll. StfUMt.NT INH.OU

UPSTRFAM SEIUHfNT  RATING CLIftVf CUTOFF PT =
                                                 0.00
                                            191

-------
    O N K
    COO
    >  * c
    « c e
     - 3 O
    o u  -
          c

    O l»l »
    o a —
    O  • 5
    o c c
    O  « O
    0*0
     * ~ o
               o o o o o o o o o o o o  o o o c* o o o
               o o o o o o o o o o o o  o o e» o a> o o
               o © o -Ss o o o 00*000  o o o o c o o
               ooooocooooocooocooo

               O d ® 0 Q C G OOCSOOOOOOODO
               Oj^OOO'SOCOCOiC'O  C-OOOOO
               OsO^OOQCOC-CioC'  3  O C O C O
               oc.ooec.coacacQ  oooooo

               OctCoOCOC-OQ-COQ  C  Q C O C C


               OQOQOQOCOC o c  o^c SQCO
               CrQOoQoceo&eco  coc-oco
               OOO-OOGCed C © C  O  G  O Q O O O
               OQ.OOOOOO© cos  is  o  o o o s o
O M 1^
COO
rv  . e
•CCA
 • JB C
.
                                                                                                      o ~
                                                                                                      c  •
                                                                                                      o 5

                                                                                                                     > o > et
                                                                                                                     x <«r -i IT.-
                                                                                                                     3i-w^K>^eitr:5C-cco^ocrc-cc;c
&£  O ^ %.
a  ^    *
               ^ /: «r r^ v a. ^t ^  «•",«-«  GOt?OC OCJOS1
               < «c *"; i", r» —i o QOO  e? o c? o c- o  c-oo

               GQCC eocoso  c-oooc?c  c-o-c
                   .*v CD C  Ki  r, J


                   OQ"""0  C-
                                                                                                                                  • -^ »*? o i.™ -o > — c-
                                                                                                                                        ~
c •-   *  *
•"* «ft  "X O
- iv  U  I
                                                                                                A  IX
                                                                                                JC  r-  «  •
                                                                                                <-<  tA £ G
                                                                                                —  4. u.; X
                                                                                                   ^ to
                                                                               192

-------
  K  * o
  * c c
   * » c
                 0000000000000000 o o o
                 oooooooeoooooooo ooo
                 *>"  o
o  *s
01^0

O C'  *
      o
  O a «
  O  • O
                       -
QOOOQQQ £. Q C O^5-pOO^  COO
OoOOOOOCOOOCCCOCQOO
coooooocoo c-ccooscoo
c  * o
o r o
 * 2r o
o u  -
                                                                                                                                                    c-coco 5,000

                                                                                                                                                    ooo o oc oco
  e is *;
  o £s c-
  o  - *-t
  O at o

  O *«:  •
                 ©COOOO3OOOGOOOOOGOO



                 OOQOOoOOOGOOdOOQOOO
O CCCCOO


CCCOCOC
                                                                                       C C C       GCOQCO^OCOOOCOOOOOO
                                                                                                        o **- «r
                                                                                                        o o •<§

                                                                                                        O 3C C
                                                                                                         - ss c
                                                                                                        e ^  *
                                                                                                                                                    cccocccoo
                                                                                                                                                     occ  occ
                                                                                                        CCS


                                                                                                        O *-J  "
                                                                                                                                                     occcec  e^c
                                                                                                                                                     CCS'C-^GCCC
                                                                                                                                                     000-0 o  c  ceo
                                                           C     -sec-
                                                           "             -
                                                                                                                 .
                                                                                                       s-cco-s-sc oco s- o &os
                                                                                                       OQ^CCC s?^j?c  — .*-.? i*  /: > .-* ?x r- ^ © <* M ^* --« c
                          oi-.*^'sr**:B'>^ ^r:-iO'2ocos-
                          IT. «• Pi »",  — C C CO2-Q3-OCOC1
                                                                                                                          i V T *"N.  •— N  .*t f,  r-  —  C O 
-------
   o n rv
   c e c
   *e> jc c
    * s- o
                oooooooooooooooo o o  o
                OOOOOQOOO0  OCOOOOCfcOO
                   QOCOOQQOOOQOCCOC-OOO
                                                                                                              O Nt K
                                                                                                              O a o
                                                                                                              OC5C3C-C.  CO©
                                                                                                              «S# "N >,
                                                                                                              C St A
                                                                                                              c.  * «r
                                                                                                              O £ C
                                                                                                               » ™ o
                                                                                                              o u   -
                                                  -c-cs  ooococ
                                                                                                                                                                           ^o  coo
                     'OC-CffiC-C'C-C-S-CSS-SCtJC'C'GO
C >. r j
o * «c
o  * **.
O 3C •<

o i3 "

                                                                                                                              cccg-c&osco^&cec  coc-c

                                                                                                                              -coc^o  cooc cccccccco

                                                                                                                              COOCC-O  —  CC'S C--CSOCCCCC?
                                                                                                                              "Sc^OCfCSC'S'CC-CCJZ'oScC
                                                                                                                              OoCrO— OCC^C —  OS  —  C. Cr  O CC-22
                                                                                                                                                                -
                                                   C'OC'OCOC'OC?
                                                                                                           O V  S
                                                                                                           Q y,  tj
                                                                                                                                                               <£ o •£  oc-o c-o™
                      r. -**•**  ^ «* o  s  < *s x  ffi  ^  ^- f. -d  -c  f*. —
                      tt 3C CD  z < **.  F;  ?n ?;r»-'^  ocococ
                                                                                                           —     t;
                                                                                                                  u
                                                                                                           3  X  tfc
(X C
<« u.
— V,
                                                   «r  o- c- >*; r, «•  o  K *?
                                                   ""
                 t 80 < **•* > o r*
                                                                                                                                   ** o  r-* 4.1 *" CO O Hi  t* 5D *• «>  —  CD «-• O
                                                                                                                                  ** fci  > sa C1 — r. co  f* ***j t'1 e*  ^  K x ac
                                                                                                           i-*  as •£ o
                                                                                                           H-  4, U' Z
                                                                                           194

-------
   O M fs.
   Ofi C
    •SO
   O U   -
         O
   O C. »-
   O  * O
   © 3C O
    * ^ O
   O t:   *
0QOOOOCS OOOOOOOOOOOO
•o- © ©  o oeo cooooooooooo
ooooeeacooecoeoceeo
                                                -
© O  O C O Si C CDAOCOC-OOOOO
c ©  © © © o cs coo c  cocoooco
O 1-4 ^
   c  - c
   o c c
oooooooooo Q  s  o c ©  coco
OOOoOOOOOOCOOwOCOC-O
O  CGOOOO OOOOCQCOC-QCO
oocoooo oooooeeococo
C £S n
o   • o
oco
 - ~ ©
o u*  •
                                                  -
oooooooooo  ooo coeooO
ooooooooooooo qto^oeo
OOOOOOOOOOOOOCOC.OOO

ooocoo-oocoooo ooc ooo
   C K;  0-
   CS3  tf
   o  *  c
   c a:  c
    * ™  C
   O l»T   »
   O »si **»
   © 2E, C
   o  - «•»
   G 3t O
    • re
   c u   *
   c ~  "r
   G. =  *

   o x  e

   C ™   «
          c

   c •«  n.
   » z  ."s;
   -S-  *  «•
   Si C  C
ocooooo cooooooooooo
ccococo COOOOOOOCCGO
c  ococoocoooocoo  cooo
OCOCOOO QQCOOOOOQCOQ

OCCOCOCGOCOOCQOOCOO
cci-oc-oco co  s ooooooooo
cscc-osoceoeocoCocsoc
QOCCOCCiO^CC-CCCJcsOOC
ooooocoooo ccooooooo
                   OC-CCOOC
ore
 -re
o u  -
       c

O frC I*V
» c- e
o  - *«
o c o
 * s c
                 ococ.o©oooooooooocpo
                 O COC.OCQOOQOOQQOOQOO
                 OOOOOOOOOOOOCOOOOOO
                                                                                                                                                            OOCO  C
                                                                                                           oocoocooccococooooo


                                                                                                           CQ^COO —  OCOOCOCOCOOC







                                                                                                           ec'ioccoccccecsscooee
                   c-csrco^^-c^eoccooocoo
                   c-sc— ^CSCCC-OCCOCQCOC
   C-  —  r*
   ©   -  3"
   O  4C  *
    •  C^  O
   o  i;   -
   o  at -c
    •  s? o
   o  -  •
cooo cc-Gccoccccc-eooo

cococcoccc  cc-cocccoc

 O ->w -H
 O » M
 o  * >
 o £ -r
  • ~ c
 O V   *
       c

 o ** r j
 O A -0
                                                                                                                                                               -
                                                                                                                                c-oc-o  oocoo o
                                                                                                                                          ' SO  C;O™O  ^C- 2 o  O
                   *€  fc*  *^ * -4S in /:  i*. *
                   "s  •%  "v «r —. CD <- o  *-•- rt x ec ^ r-i r*  —•  j~ -^ <•
                                                                                                           U) -
                                                                                                           iT U
                                                                                                           Z U-
                   C  G O C O  J
                             IT* *1  It", /:  C  -« **? ."*- *N O f-  —•  C2 * T *•*
                             fflXCC.XEi.-cr"-.  < o. r» 
-------
   O M  fv
   o o  o
          O
          O
   O r*J  o--
   •o a  -«
   O   »  C
   ©to
    » ^  c
   o u   *
o o © o e e Q oooooooooooo
OO0OOG 0QOOOOOOOOQQ©
o c o c o c o coo ocooooooo
ooooooo ecc oc-c  o  a © o c  o

                     CO® © 0  OOOOOC-O
coooosoooc Ococococ©
o Q *D o a © © ^ o c- ©  cooosoco
O © O O G © Q OO£ OS.QCOOOC©
o INI rv
o& o
rt  , O
F*- C O
 * C5 O
                                                                                     *0
                                                                                       O
                                                                                                               OOOOOOOOOOOOOQOOOOO
                                                                                                               ooocooocoooc o o o o  ooo
                                                                                                               OOOCOCOSOOOOQOOCOOO
                                                                                                               OOOCOCOOOCOC OOOC-ODO

                                                                                                               OOOCOOOOOOOS- OOC2O  OOC
               OOOOOO'OOOC-Oio C.OCOC-O
               OOOOOOOOQCOCOQ.OOOOO
O mr>
O St rt
O  • c
O X C
 * IT c

      c

O N O-
C- O f.
   O K K
   O 65 C
   C>  * -<
   o x: o
                  ooooooo  oooooos^oooc o
                  OOOOOQO  ococoo^oc-ooo
                  ocooooo  o^oooococ oc-o
                  COOOOOO  oOQiOOOOO C CCO

                  OGOOOOOOOO  oo^oooooo
                  ooocooo  coo  oooooooo o
                  O-SOOCOO  OOOOOOOCOOCO
                  C-SOC-OOO  OOC  OOOC5OOOO O
                  coooooc  ooo  oocooo^o©
oococco c-ococooooco©
oocooco ccsc ocooooooo
                                                                                 C rsi r%
                                                                                 & £* M
                                                                                 ©  • 5
                                                                                 O X O
                                                                                  * ±7 C
                                                                                 o c  *
                                                                                       o

                                                                                 O fs4 Q"
                                                                                 o a irt
                                                                                 0*0
                                                                                 o ac o
                                                                                  * 5" O
Q IN' fi
O £* C
o  - ^
o ac o
               oo©o^o©o^c>ocoe oo o^o
               0000000000000000050
               OOdQQOO'GOOOcOC-OO OCO
                                                                                                                                                       o o  OQOOO
                                                                                                               OOO^.O^OCOOC'OOoOO  C-OC
                                                                                                               OC-OCOC-©  OOOOoOOOO  OOO
                                                                                                               ccocooo  ooooooooo  ooo

                                                                                                               ocooooooooooooocooo


                                                                                                               OOOOOC-OCCC-OOCOOOOOO
                                                                                                               coocoooocoocoooeooo
   o  c c
    -  J£ C
   c  u   -
                                                                                                    o  c  *
                                                                                                    o   .,»
                                                 cococcccc
                                                                                                c-occooco-oococooo
                                                                       ,
                                 so  CC-OOOCQC ocao
                                                                                 o a M
                                                                                 C-  * «(P
                                                                                 c c c
                                                                                                    C-  ?si »^

                                                                                                    £  ~ >
                                                                                                                   s c ^? o  ^
   ON.*.
   c e r.
                                                       «
                                        occ  occoccoco
                                                                                                    O  >i —
                                                                                                    oar;
                                                                                                                                                              SO  coo
   O >;
   O E
   ©   * i
                                                                                                    o  " u^
                                                                                                    o  ac <
   wi ac
o ^ r
                                                                                                    3 ^ y>
                                                                                                    o sr s.
e 25 ^ x
o u. s H
 • 5C    U.
o »-
      u* »i > r*. 3; ** *•» r* v IB > f% -^ b-/ o •*• •<
      O w •, cp. •«• fv ^, CN ^- m -c bi x S5 j" ^ *"

      -^oco c ooo fi-oooc-oc-oo
                                                                                                o  *-*
                                                                                                02  a

                                                                                                 U.  <£
                                                                                                 C  *-  -  "
                                                                                                 *•  m-so
                                                                                    196

-------
           T!Hf»    2100,00 HIM OR  35,00 MRS
          UPSTREAM  SFPIFIfHT INFl OU (LBR/SFC)  t
          SClt.    0     MM,,    US    »;IIH,M    CtUIC
           MO.    CFS    FT/PFt".  I/RET     Ft     «li/l
 0.0000  0,0000   0,00(10  0.0000  O.OOOO  0.0000  0.0000  0»00(Mi  0.0000   0,7500
 i:im.ii7  rtm.ti?.   I:UH,B/  cim.nz  mn.i)7  cim.nz  CUH.DZ  r.un.pz  eim.iii   CUM.DZ
0.4AT162 0.049JI  O.OlVOa 0.004M/ O.OOIA4 0,00)03 O.OOOSf 0.00037 0,00019  0,00007
**

4
A
7
1 A
1 v
1 1
12
1 3
1 4
1 5
1 6
1?
1 8
I 9
20
t f* H

3/4
170
,1A?I
3*2
4 At*
',*f J
' '
•«*B
*, .
373

540

•!39
5SV

' 93
, 3H
, 28
»;'A
,07
. /A
.40
* '
*ll
"*S 1
. 77

,34
. Hv1

.27
O , /A
0, 8R
t .Oft
0,97
0.70
0 , H I
0,91
0 ,88
0 , A 9
0,52
4, HI
0 .65
4 .M
0,45
4 . 5 7
0 , 7'^J*
0, 715
O, 7 JO
0,706
4.702
O.A9B
f) . A^ti
0.69?
tj , ^,¥0
0 * 689
ij. AHH
0 ,AB7
t!, AHA
O.AB5
O.AB1
O.A73
4 , ASV
0.A3A

0 . 004
0,000
4.404
0,000
0,000
(i , ooo
Q.OO4
O.OOO
0 , 000
() , 000
0,000
o.ooo
O.O44
o.ooo
4.O04
0,000
i), 000
0.000
0,400
30, /O
3
0
o
0
w
0
1)
,0000
,0000
.0400
,0000
,4004
,0000
,4004
,QQ(H>
,0001)
,0000
,0004
,OOOO
.OO04
,0(100
.0000
. (I'.Kl'l
.DO ISO
, OOC>0
, 0001)
o.oooo
o.oooo
o.oono
o.oooo
o ,0000
0.0000
o.oooo
0 , OOOO
0,0000
0,00(10
0,0001}
O.OOOO
0,0000
o , oooo
o.oooo
0,0000
O,OOO4
0,0000
0,0000
t) , oooo
0,0000
0.0440
o.oooo
i), oooo
0 , OOOO
0.0000
0,000(1
o.oooo
o.oooo
0.0044
o.oooo
o.oooi)
O.OOOQ
O , 4404
0,0000
O.ODOO
o.oooo
0,4000
o , oooo
0,0000
0,0000
0 , OOOO
i). OD DO
o.odoo
4.OQOO
o.oooo
o.oono
0,0000
0 , OOOO
0,0000
4,0040
0,0000
0,0000
o.oooo
4,04114
0,0000
0,0000
0,01)00
0.0000
0 . OOOO
0,0000
0,0000
0,0000
0,0000
0,0000
O.onoo
0,0000
0»l)OOO
0,0000
0 , OftOO
0.0000
0 , (WOO
0,0000
O.OOOQ
O.OOOD
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0.0000
0.0000
0,0000
o.onoo
ft. OOOO
o.oooo
0,0000
n.oooo
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0.0000
0.0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0.0000
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
o.oooo
0.0000
0,0000
0,0000
O.OOOO
0,0000
o.oooo
0.0000
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.o OOP
o.oooo
(i,oo(i(i
o.oooo
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
0,0000
o.oooo
o.oooo
0.0000
0.0000
0.0000
o ,0000
0,0000
o.oooo
c.oooo
o.oooo
0,0000
0.0000
0.0000
0.0000
O.O'iOO
0.0000
0,0000
0,0000
0,0000
0.0000
(t.oooe
0,0000
0,0000
0,0000
O.QOOO
0,0000
0.0000
0.0000
0.0000
0 . OOOO
SO
Tine* 2040.00 niN OR 34.00 MRS
UPSTRFAH BrrUHENT IHFI.OU (LBS/SI-C)
SEO, o via. us t:itH.D7.
MO. CFS FT/SEC I/SFC FT
2
3
4
s
A

3
^
10
11
12
13
14
IS
1A
17
IB
19
20
•tft»
,<*8
34V
365
,*A2
3*1
:tA3
'4 A 4
.*A:>
3*7
H/4
370

376
.«7fl
557
SS7
S57
SS4
,77
,19

,13

!04
, IS
.44
.30
,58
,4A
,36
,08
,25
,'.'/
,64
,1 1
,23
.hi
0.
0,
1 ,
0.

0,
0,
0,
<),
0,
0,
0,
o.
0,
1),
0.
I),
0.
0,
75
87
«>s
34

f 7
47
71
'A I
?1
:t;i
88
A¥
52
HI
AS
til
44
SA
1)
0
4
0
0
0
I)
0
4
0
I)
o
0
u


o
0
I)
.70S
.70S
.741
,A?B
.AV-)
.692
. AVI)
,6BB
,AH7
.687
, AH6
• *J*5
. A«3
,A7«
, AAA
A4H
, fit '.\
.571
,Si»D
0
0
0
0
0
0
4
0
4
0
0
0
l>
 >
0,
0000
oooo
oooo
oooo
oooo
oooo
0000
oooo
1)1)1)11
oooo
ooo1)
oooo
oooo
00(10
00i)ti
0(KIO
oooo
0(i(>0
oooo
0,0000
I:IIH.DZ
f).
0.
4.
0,
0.
0,
1),
0.
0,
0,
0.
0.
0.
0,
0,
0,
0,
0,
0,
oooo
oooo
OdOO
oooo
oooo
OOOO
oooo
oooo
oooo
0000
oooo
OOdO
oooo
00(10
oooo
000(1
oooo
oooo
oooo
O.OOOQ
I11H1.UX.
O.OJV03
0,0000
0.0000
o.oooo
0 , OOOO
f> , oooo
o.oono
0.0004
0 , «OOO
4.0000
0,flO
-------
  ©  M IV
  ©  o e
  K»   • C
  *«  f o
    «  a c
  o  u  •
        c

  O  *M &•
  o  c- **
  0-0
  o  c o
    *  ™ o
   e. N r.
   © G **
   o  » e
               o  © o © © o o ooo oooooooo  o
               ooocooococooooooooo
               <3SQS©C-OJ2OC©©©©OO©©^>cC'S©CO©©



                                                                            o^o       ^^^"^^^  *,.»-,*.».,.*
                                                                            ou°       ©oO©
                                                                                               3  e  tv
                                                                                               o   *  v
                                                                                               sec-
                                                                                                                                 CQCO OOOOCOOOO



                                                                                                                                -^COo^OOOCOOCffl
                                                                                                                                 -O — CCCCCOCOOC
                  ce-occccsc-c  ?eoe=o = oc
                  CCCOOOG3CCCCCCOOCCO
                                                                                                0  E ~
                                                                                                ©  E "
                                                                                                            COOSCCCi-^i— 'COcCOCOC
                                                                                                            CC™OWO-CCCOGCOCOCCC-
                                                                                                            5oOC^'C»^C-C'O^C^4>CO^OO
   O N. —
   o = r,
   o  * >
   o c o-
    • S c
eccoeocooocccccccoo
                                                                                             O V —
                                                                                             o s- c
    - = o
   O ii  -
                                                                                             c  » »-.
                                                                                             O C -c
                                                                                              , — o
                  >S=-CC — CiCOCO!>-9->»->».aD
                  ;*. r. •**» **; n r*. -^  "•. ^ in  >n ri ^« r^ r« -« ~ ^ ^i
   Ul X
o ^ ~
& ta a
                                                                                             yi  «
                                                                                             JC  t!

                                                                                             X  i4»
                                                                                                                c © c c- -— c  eoc*o  ccdoc©-c©s
   3 "Jt «
   O S V
                               e 4  r;  a «  x, •< a- •£ i*. < «-, * » n
                               iO£i>>i>->uxoizx-><>;
                                                                                              a v: us
                                                                                          K  o as -^
      —   -
C X a> *•»
O u. > •-
                  CO — OC-
                                              e? •« CD .^ ia x,
                                                                                              »- _; s,
                                                                                           O  X 'j: •*.
                                                                                           ©  u* > *"
                                                                                            •  C    It
                                                                                           o  ^«
                                                                                              rj B)     if,
                                                                                                    o  u.
                                                                                                 c     u
                                                                                                 «c
                                                                                              »  w
                                                                                              u ec
                                                                                              i "-   -   -
                                                                                              x U> S  O
                                                                                                                                          5 o- "50-emce-a  ,
                                                                                                                                                n  -c  D.  —  « ,TI
                                                                                                                                              t'C-c-c'vo-c
                                                                                                                                              : K.  rt  n  K  if. rt
                                                                                        198

-------
         O
         O
   e> =. •*
   O  ' O
   OHO
OOOOOO OOOOCSQOQOOQOO
oooooo ocooooooooooo

o o o c a o o eooocooocooo

oooooo c oooooooooooo


ooooooooooococo  GOOO
                                                                           *  . o
                                                                           03 I O
                                                                            •30
                                                                           o u  •
                                                                                 o

                                                                           O r*i fr
                                                                           O w ••
                                                                           O  - o
                                                                           ceo
                                                                            -so
                                                                           C u%  «
                                                                                                           ooooooooooooooooooo
                                                                                                           ocooooooocooo  oo oooo
                                            ooooooooo


                                            OCQC OCOOO
                                           -OCC3 COCOCO
                                            ooo co-*oso
                                            oco cooooo
   e ZL o
    "1C
   ft u  •
    * 2 C
   o c.-  •
         o
   C>=s O
   O  • —
   O X o
    • — O
   oc  -
         o

   OK : »
   CO *

   c c c
    • 3 &
   e i;  •
    •30
   C U  "
QOOOOOOOOOOoOCOCOC©
OOOOOOOoOOOOOCOOQSO
ooooooooooooos-oeoso
ooooocooooooocooooo

ocooocooooocooooooo
OOOGOOOCOOCOOOOOOOO
0000000^00000000000
OOO^OOOC-GiC-OOOOOOOO©
OC-OOOOOCOOOOCOOOOOO

ooooooococooooooooo
OOOOOOOCOCOG-OOOOOoO


OOOOOOO COCOOCC-OOOOO

oocooocoooc-oeooo — co



ccoeooooooooooocoSo
OGOOC  c- OC  OC-CCOOO oOOQOO
               occcctcooccc-c-c o cccoe
               COOC-OOO1'I'OC-OO0C' OOCoO
                                                                                             C  N  •*:
                                                                                             C  C-  Cr
   o i-. —
   oar*
   O  • 6-
   O E T
    - 3 O
   O —  -
         O
                                                                           o s rj
                                                                           O  • O-
                                                                           o x:  %~

   0 5 i
   O LJ  «
CCCO-OOOCOCOCCCCC'C©
                                                                                                                       ^n —, x i*v r« is r* 65 O  rt  *-* *r o fci  "^
                                                                                                                       % OG ••; -"• r* r-a •-. &- x  1(1  f*: ^ <• 1*1  r*:
o •%, s
O tt> V
                                                                                             3 "Ji Wl
                                                                                         &  o sx
                                                                                         c  _    *
o «
CD ffi
ft u.
                                                                               199

-------
        TinC"   2400.00  H1N OR  40,00 HR1
       UPSTREftN SEOIMfNT INFLOW (LBR/SFC) !
       sea.    o      VF.I..     us    iHin.ny   now;.
        HO,   CFS    FT/FFC  l/SCf,     FI    Wi/l
 0,0000  0,0000   0.0000  O.POOO  0.0000  O.OOOO   0.0000  O.»00«  O.OJOO  0.8400
 cwt.ir/  r.im.ti7   r.tm.M  i:im.»7  r.un.n?  run.ox   eim.ftz  CIIN.DZ  run.fiz  CUN.BZ
0,O*S«2 0,04*21 O.01VOS 0.00177 0,0
,sa
, i:t
,89
. .**
,79
,11'
,43
.8*
.B5
, ','.*)
. 6?
«v%
,45
.71}
,71
.BA
.Ot
,0*
0.«:>
0.94
1 .0V
0.3&
o , ;< t
0,99
0.4H
0,71
0 . ,1 1
0,91
0.13
0.87
I), AS
0,52
0,7V
0.67
i) . a;'
O.4*
U.SH
*)
0
1)
0
0
0
0
0
o
0
0
0
0
0
o
0
0
0
0
.770
,770
,7M
,755
»71H
,743
»73H
,733
,7.1V
.7?4
. 7'.!0
,7ir.
,711
,707
. 703
,700
• A?*1
.495
,A¥3
0,000
0,000
0 , OOO
0.000
o.oofl
o.ooo
0 , OOO
0,000
0.000
0,000
0,000
o.ooo
O.OOO
0,000
(> , ooo
o.ooo
0,0<10
0.000
0 . OOT
;'H
:»v
;>y
2V
,tO
3O
.It
31
,U
at
.11
31
,U
30
,4 1)
19
19
19
19
.V4
. 19
.OA
.5?
.01
.42
,<>B
,ai
. ;» ;»
,37
.3.'
.17
.Oh
.63
.AS
.45
, 40
, 33
..10
O.OOtJO
0.0000
0.0000
0.0000
0,0000
0.0000
Q.U'iOO
o.oooo
O.OOlM)
o.oooo
o.onon
Q.OOOO
O.OODO
0,0000
o.oooo
<» . OPOO
n . <»<>
0,O000
oooo
oooo
OOPO
OOOO
oooo
oooo
oooo
oooo
oooo
POOO
oooo
oooo
oooo
o«>oo
0
0
0
0
0
0
0
o
0
0
o
0
0
0
0
0
<>
0
o
.oooo
,0000
,0000
,0(K«i
,00«>i>
, ()OO(l
.0000
,0«iOO
. oooo
.0000
.0000
,0000
,0000
,0000
,0000
,0000
,00i>0
.0000
,0000
o.oooo
o.oooo
o . oooo
o.oooo
o.oooo
0,0000
o.oooo
0*0000
o.oooo
0,0000
0,00«>0
0.0000
o.oooo
o.oooo
o . own
0,0000
o.oooo
o.oooo
n.oooo
0.
0.
0,
0,
0.
0,
0,
0,
0,
0.
1),
0.
o,
(1,
0,
0.
0.
0.
0.
oooo
oooo
oooo
oooo
oooo
0000
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oono
oooo
oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
o.oooo
a. oooo
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
0,0000
g.oooo
0.0000
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
.0000
,0000
,0000
,0000
.0000
,0000
,0000
,OOO(t
,0000
0.
0,
0,
0,
0.
0,
0,
0.
0,
0.
0,
0,
0,
0.
0,
0.
0,
n.
0,
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
OOOO
oooo
oooo
oooo
oooo
oooo
ocioo
oooo
o.oooo
0.0000
0.0000
0.0000
o.oooo
O.OOOO
0.0000
o.oooo
0.0000
0.0000
0,0000
o.oooo
o.oooo
d.oooo
0,0000
0,0000
0,0000
0 , OOOO
0.0000
o
o
                                 11,00 HRS
TIHI
IPSTI
itfi.
NO.
3
4
5
6
7
9
9
11
12
13
1 4
15
14
17
18
19
JO
F* 24ov,uv run I*K ii,uu nws
SEftH SEDIMENT INFLOW tLBS/SfC)
0 WM . l»« (UIH.1'7
cts FT/'PFC t/sec Ft
443,55
4S9.AA
425,36
398*. 07
3H7.74
J79.74
374,31
371. H9
371 ,01
348,82
SftH.VU
585.99
SHI. IV
584, 4B
0,95
). , 1 0
0.37
0,99
0,1V
0.72
0,92
olee
0,52
0,79
0,67
0.46
0.59
0.800
0,785
0.77B
0.770
0.7 A3
0,735
0.749
0,743
0,733
0.72V
0 . 71*0
0.715
0,711
0,707
0,704
0,700
0.4VH
OtOOO
0.000
0 . OOO
0,000
o . ooo
o.ooo
0 , 000
o.ooo
0 » 00$
0.000
0,000
0.000
0 . OOO
o.ooo
o.ooo
0,000
0 , 1)00
0.000
o.ooo
1 LINI .
','H
2V
30
31
4 1
.1 1
31
,11
31
,11
31
19
\V
19
,4H
.01
.41
.13
1 A
* I ft
.38
, V»
,28
.OS
,34
..to
.20
0,0000 O.OOOO 0,0000
cun.u/ r,»n.B/ ntiH.t;?.
O.OAKA? 0.04931 0.01VM i
0,0000
o.oooo
r ,0000
o.oooo
0,0000
0,0000
O.OQOO
0,0000
O.OOOO
o.oooo
o.oooo
0,0(1 (Mi
0.00114
(i,OU(iO
o.oow>
o.onoo
0,0000
0,0000
O.OOOO
o.oooo
o.oooo
0.0000
0,0000
O.OOOO
o . oooo
0.0(10(1
o.oooo
(i . oodd
o . oooo
o.oooo
o.oooo
0,0000
o.oooo
0.0000
o.ooon
0 « OOOO
0.0000
0,000(1
a.oooo
o.odtHi
0 , OOOO
o.oooo
o.ouoo
o.oooo
O.OOPO
o , oooo
o.oooo
0,0000
o.oooo
0,0000
0,0000
o.oooo
0,0030 0.0000 O.OQOO 0.0000 0.0000 0.0000 0.9000
cun.nr IHIM.M am.Tiz C»IM.M cun.iiz cun.nz CUK.PZ
[i.004::7 0.00164 0,00!O3 O.OOOS9 O.OOO.iV 0,00019 0.00007
O.OOOO
o.oooo
o.oooo
» , oooo
o.odoo
0.0000
o.oooo
0,0000
0.0000
o.oooo
0.0000
o.oooo
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
o.oooo
0.0000
0,0000
0.0000
0.0000
0.0000
0,0000
0,0000
o.tiooo
0.0000
0.0000
0,0000
0.0000
0,0000
o.oooo
O.OQOd
o.oooo,
0,0000
0.0000
o.oooo
0.0000
o.oooo
o.oooo
0.0000
0.0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
o . oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0.0000
0 , OOOO
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0, 000
0,0000
0,0000
0,0000
0.0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
O.OOOQ
0,0000
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0.0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
0.0000
0*0000
0,0000
O.OOPO
0,0000
o.oooo
o.oooo
0.0000
0,0000
o.oooo
0.0000
0,0000
0.0000
o.oodo
0.0000
0 . OOOO
o.oooo
0,0000
0.0000
0.0000
O.OdOO
0.0000
0,0000
o.oooo
O.QOOO
o.oooo
O.OdOO
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
0.0000

-------
 1IHE=   2520,00 HIM  OR  4S.OO MRS
UPBTREftM SEHIMEMT  1NFI OU (tJS/SEO
                                                0,0000   0.0000
Eli,
0

MO, CFS
2
3
4
5
4
V
e
V
10
11
12
13
14
15
14
17
16
19
20
1M.
437,

438.
12.1.
409,

.190,
.ley.
380,
37*.
375.

371,
,4 A?,
AOO.
597.
397,
Sf4.
9H
39

96
97
59
A9
71
OH
54
•ijl
64
7H
37
74
31
.IV
82
'/1
VFl..
Fl/SFC
o.n?
0.9B
1,11
0.30
o.:t3
1 ,00
0.19
0.72
0.3 a
0,92
0.33
O.S8
O.AV
0,52
0.79
O.Afl
0.53
0,4?
O.HV

us
t/sec
0
0
0
0
o
0
!)
0
t)
0
0
0
(>
0
t)
0
o
0
u
,u.»s
,*812
.799
.7B8
,77V
,771
, /AS
.756
, 7 TO
,744
,739
.734
.7-J9
.721
.720
,7!f.
.711
,707
,704
CttM.M
FT
tS, 000
o.ooo
0,001)
0.000
O .1)01}
o.ooo
0 , DOO
o . ooo
7
0.04921
0,0000
0.0000
0 , OOOO
0.0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0»0«(M»
o.oooo
o.oooo
>.oono
J.OtlOO
o , oooo
0,0000
0 , OOOO
0,0000
0,0000
r.im.o/
0.
0
0
0
0
0
0
0
o
0
0
0
0
0
o
0
0
5
0
0
01*03
,0000
.oooo
,0000
.oood
,QQO*}
, 0OSJ0
, oooo
,O<)
, oooo
,ooo«
.oooo
, oooo
.0000
,0000
.0000
,0000
.oooo
,0000
.0000
am.ri7
O,0
I **
1 3
14
IS
16
17
18
19
20
A2/, 1 A

^ JLIK A L
SI 3, 05
^ A K\ , 53
429 , 40

401 .77
197,***'
Sifl.SA

3P1 .09
377. HO
375.69
37",!. AV
629,92

624,42
AIM. 3*
(j.Hri
0,99
t , 12
0 .39

1,00
0*!iO
0.73
0 , 3 .1
0.92
0,34
0.8B
0. (it
0,53
0.79
0.69
O.ril
0.48
O.A1
W.l'.iO
11 ,487
A . 1 SO
3,474
2,131
1 ,455
1 . 1 1 S
0,938
o * H 4 v
0,798
0 ,77t
0.75S
0,714
0, ?3/
0 . 730
0. 725
<».7'.'0
0,71*
0,712
0 , 000
0,000
0, »!<)!>
0,000
0 ,000
0,000
0 , «H!l)
o.ooo
O.OtJO
0.000
o ,000
o.ooo
o.oon
0,000
o.ooo
0.000
0 , Oi)O
0,000
0.000
MA
313
174
JOB

54

37
.11

3'.!

Ml
31
31
18
IX
IB
ia
,<)<>
.8?
.,<«!
.53
.40
.50

.42
. i H

,,10
,&e
.V7
.42
,41
.45
.SI
.37
,44
0,0000
0,0000
o.oooo
o.oooo
O.OODO
0.0000
o.ooon
o.oooo
o.oooo
0,0000
o . oooo
0,0000
0,0000
o.oooo
o , 1)01)0
o.oooo
0.0000
o.ooai)
0.0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
o.oooo
0,00110
0,0000
0 , OOOO
0 . OOOO
0 , OOOO
o.oooo
0,0000
0,0 dOO
0.0000
o, net oo
0,0000
0,0000
0,0000
0,0000
o.oodo
0,0000
0,0000
0,0000
O.OOOd
O.OOOO
o.oooo
0 , OOOO
0,0000
a, oooo
0,0000
0 , OOOO
o.oooo
o.oooo
0,0000
0,0000

-------
  0*0
  ** JC O
   * 3 Q
oooooooooooooosoooo
ooooooooococooooooo
OGOCOOOOOCOCO&OCOOO
oooooooooooeocooooo

OOOOOOOO^C-OOOCOQOOO


Qoooooooooooococoeo
                o o -o o o- o o  ooo » o o o o o o c

                O O) C Q O O ®  O O o O O C ROCOC
                                                                                           O fc O
                                                                                           o  - ©
                                                                                           o a **
                                                                                           o  - o
                                                                                                       o©o>0c3O®o©oo oooooo
                                                                                                       o o o o © o o c © C © o o o © o  o © ©
                                                                                                       OOOOOQOC-OCQC O *& O C  © C? ©
                                                                                                                                              '
                                                                                                       © © Q O  © O © OQ©<3OO©OC  OOO
                                                                                                       o © © o  ©o^Qooooooo c  oco
                                                                                                       OoOCOOOOOCOO OQOOOCQ
                                                                                                          o © o o o © c  ©o0©o©oo©oc©
                ocooococooooooooooo
                                                                                                          OOOCOCOOOOOOOOOOOOO
O *** £h      OOO^OOOOOOOOOoOOOOO
O a fc"       OOOGOCOOOCQOOOQOPO©
O  * ©      OOOCOuOOOOOOOOOOOOO
O^5>      OOOOOCOCOQOOOOOOOOO
 - = o	
                 CC-OCOOOOOCOPCGOCOC-O
                 oocooooooocscoooccoo
                 OOOOOOO OOOOOOOO J^OOO
  (5^«T       CCCOCOCCOOOOCSOCCOOC*
  fcc-^       i^COOCOOO^OOOCOOOOKO




  C"^  *       C^OCOOOOOOOOOOQOOOO
                                                                           O IV ^
                                                                           o o r.
                                                                           o  - c
                                                                           O f O
                                                                            « : o
                                                                           Of-
                                                                                 o

                                                                           O K K
                                                                           e B a
                                                                           o  * *^
                                                                           o zc
                                                                            * « o
                                                                           O CJ  -
                                                                                 o

                                                                           O PC T
                                                                           c. c <
                                                                                                          oooo CGOQOC  QOOOOOOOO
                                                                                                          cooocoo coooc- ooo oooo
                                                                                                          COOOOC.OC-OCOC OCOOOO©
                                                                                                          oooo coo oooooo cooooo

                                                                                                          oooo ©oooococooooooo
                                                                                                        OOOOOO&OOOOCO0QCCOO
                                                                                                        cooocoocoooc o ooooo©
                                                                                                        o©oc ooc ooocoooccooc*
                                                                                                        oooo ooooooooo cooooo

                                                                                                        CQCQ e-ocooooc ooooooo


                                                                                                        ooooooocoooo c ooooeo
                                                                                                        ooe-csoocfoooeooooo^oo
                                                                                                        CC.OC OOOCC-OCOCOOOOCO
                                                                                                               -i
                                                                                                                      o«c«oc oococoooo
                                                                                                                      ^OOCCCiCOOoC  OOCSO
                                                                                                                      CiiCCC-OOC.C'CCOC'OO
                                                                                                                      oc™ cco-oo-s  osocoo
   ox: —
    * ^ o
                                                                                           ^  TC —
                                                                                             ±3 O
   O is •"*
   O ff CM
   o  -  --.
   O 3C  "C
    * C  C
   o —  *
                                                                                          O r* »-
                                                                                          O <^J fj
                                                                                            O £ *
                                                                                             * — o
                                                                                            o u  *
                                                                                                                                                      -
                                                                                                                      ooo  ooo  oooooo  croo
                                                                                                         coco coc-o^ococ-oc/ccoc
                                                                                                         coc*o-c-oc  oco  coo oco  cs<5
                                                                                                         ccoc c-oo-ooo  coo ooc  oc-s?
                                                                                                         coco cccoco  coeococco
                 — oc >• •"  ^ »* s? fv < tc — eo •"•? rs  "^rs
                 rao<'^r--«^»"3K>.^OESD«*%.r'i^

                               fx <<<-££? in r^ ri  r; r*. -
                                                                                                            ^Kii^i":
                                                                                                           >. « fs fc *c v? f- ^
                                                                                                              « — • r-i N r . N — *
                                                                                                                                        CC-CO^ffi S
                 is- o c- o ™ o  G  oc*o cooo  q-ococ'
                                                                                          u> *
                                                                                       o •* ~
                                                                                       O Ifl t^
                 c? o »• Q" r-* r-»  -e  «•*-(> t
                 ^ wi •« o ^ w  >  o^-mif
                                                                                         V  «    O
   >- —«
es 2: i*; v
O u< 3«-
 * E    !>.
O f
r 4
MI US I? O
^ i. LJ I
                                                                             202

-------
O fJf*       OOOOOOOOOOOOOOOOOOO
ooo       ooococooooooococooo
o  « o       ooocoooooooc-oc-oooeo
te°SCO       OOOOQOGOOOOOOS-OGOOO

P*-U  *       GOOOOOOOOOCQOCOCsGOO
                                                                                                    O  M N
                                                                                                    ooo
                                                                                                    o   « o
                                                                                                    «  c o
                                                                                                     «  a o
                                                                                                    •60-
                                                                                                           o
                                                                                                  OCJOOOOOOOOOOO O  O O9OO
                                                                                                  OGCOOOOOOOOCOCOCOCO
                                                                                                  OGOOOOOOOOO O-OCO COOO
                                                                                                  ooooooooooooo cooooo
   C & K
   C  • C
   O C C
    - 3 e
   o <_«  •
   o  • c
   O X O
    " ^ O
   o sr  *
         o

   O f*> K
   one
   G  ~ ^
   o c e
    • so
   o u  -
         o
                  o ooooocooo  ooc c o c- o  50
©COCOOCCOCOOGOOOQOO
OCOCOOOSCOOOOoCoOOO
OOOCOGOOOOOOOOOOOOC:


ooocooooooooooooooo
CCOCCOOC-GCGCCOQOOOC*
coccocostosoccoooooo
©O^OOOOOOQOOGOOOOOO
                                                      -
cooococcococc^ccooo
ccococooooooesosceo
ooooooooooooocosteco
                  ccccooeooooooocceco
                  OOCCOOOOCOOOOC'SOCCC
                  ccoococcc-ocecocccoo-
                                                                                                    c  a —
                                                                                                    s-   * c
                                                                                                    o  c c
                                                                                                  S  >V fv
                                                                                                  O  a «
                                                                                                  s   - c
                                                                                                  o a t-.
                                                                                                  o  • o
                                                                                                  o z o
                                                                                  O  X O
                                                                                    *  « c
                                                                                   C  Zi <€

                                                                                   fc  E C

                                                                                   o  ^3 t
ooooooo  ooo  ooo oooooo

OOG*GOOO  QOO  oooo  ooooo




ocooococooooooooooo
cooo-cscc-oooooooooooo

OCOOOOO  OO«3  OOOoO  OOOO
c*ooooco  cooooooooooo
CCCQOC-OCOOOCOO  OOOOO
ooooocoo-cc  OCOOOOQOO
ooooooooooocooo  oooo

OCOsQ'OOOOOOOCOOOoOCO
                                                                                                                 OOOOOOOOOO  OOCfCOfirf OOO
                                                                                                                 C ©COC-QO  CQOCCOCOC OC-O
                                                                                                                 cooooocooo  oc-oooceao
                                                                                                                 OOOOOOO  OOO  OOO^O*TO
                                                                                                                                  O *"j ^ 1*5

      „
O X 4iS -v
O U 3">-
 - ac    i*
o *»*
                                                                               o  u- :> *-
                                                         " "0 j~ K» < O  SC
                                                         : if JK o "8" >$ fN
                                                                                                   l*5fH."r|D-«,.*'l9r"N,^'"
                                                                                                   •c».«>r>---iwsiNf^it
                        PS.  o <^  *r
                                                        ^ o > rt er co x
— 4. W
   3 CO
                                                                                       203

-------
  ©  » ©
  w 3C o
   •3 O
  © a  -*
  c  •  o
  O 3C  O
   - ™  o
ooooooooooooooooooo
ooooooooooooooooo^o
ooooooo o o o  o o o ^. o c o c o
© Q  o o Q o  o o©oQe©oo0oco

O OOOOOQOOOOOOOO £. O C ©
OQOo©o©QO©QQQo©.o©c-©
OCOOOOOOOOQOOOOQOO©
o  C  © o © ©  G Q©©O©C©OQ©SO
OOOQOOOOOOOQOOQOOC-O
O rM r,
o o o
o  - o
(N !C O
 * 3 O

c   • o
O JC O
 -so
o t?  .
       o
                                                                                       o o o
                                                                                       c  » «
                                                                                       O S C
©  O © Q © ©  C5 C Q ©  G © © QOOOOO



Q©Q©Q©©©OO©Q© G© O©C©


O  O O G O C  O Q © ©  O O O O  O OCCO


oo©oo©ooo©oocoo ooc©

co©csooo©c©  ©oooo©oo©
   e fs v
   o =. -c
                  ©eeC.CQG-COQGOQCGOO.GC
                                                                                                                         .
                                                                                                       ©ccccccooococooocc-o
                                                                                                                                         -
                                                                                                                                                                      C CCfflO
                                                         c  cc-ococ
 ©CC©QCC-©OC'


 •SOCoOOCCCC1
                                                                                                         ©EC
                                                                                                          » ™ c
                                                                                                         o c  .
                                                                                                                                                                      C!"C  CO©
                                                                                                         O N rt
                                                                                                         o «. o
                                                                                                         0*0-
                                                                                                         o c -.
                                                                                                          - — ©
                                                                                                         o *-*  *
                                                                                                                                                         c©c©c
                                                                                                                         CDCCC©©OC©GOCO©CCOO
                                                                                                                                                   GC  ©ce©-c©occ-
                                                                                                         ©
                                                                                                         O
                                                                                                         o c   •
                                                                                                                c
                                                                                                                          CCOOC3
                                                                "v    © i
                                                                                           x -x        c «- cc  a-  ^ K, G - r  **  -^ f. -  ii-  > a.  <  a •
                                                                                                                          ?»? MI «• ^r j; <
as  — K
^  t- D *
X  fefc  •
    W IK
©  X ^
C-  it u
                                          oc©  coccc-occ©
                                                                                                                               «  ^  ^ f-J r. c, r%  ;N

                                                                                                              C©  ©O "O *~
                                                                                    X  X

                                                                                    3C     ' ' £
                                                                                        "H- -S V*
                                                                                    O  X it V
                                                                                    o  w > *-
                                                                                                                          "i ir/  N  rv >• c* ^
CD  A
C9  U
       O U.
          y
                                                                                                      D-  UJ
                                                                                                      IN  tft
w oe
3C *-
»-* «5 S
*- £*.
                                                                                         204

-------
 <&  Nt K
 O  O 0
 ©   * O
 *«  « O
  C r* >
  c a -*
  £  - O
oooooooooooo^oococo
OOOOOOOOOOOOOOOC-OCO
o o o o o o Q o o oOOCOQQOOO

OQOOOOOOOOOOOOQOOOQ
oooooco  eooooooooooo
o o o c o. c o  eooooooooooo
o is* r*       OOOOOOQOQOOQOQOQQOO
ooo       oooooooooooooooooco

OSKO       ooooooooooooooooooo

»«* o  «       G0OCOOOOOOOOG-OOOO0O
      o

C f*i 0*       OoOOOOOOOOOOOoOoOoO
O C* *"*       QOOOOOOOOOOOCOOoOoO

O3CO       OOOOOOOOOOOOOOOOOOO
  o f»s rv
  o •= rt
  o  * c
  o c o
   • :? o
  o u  •
  o  - e
  o ac o
   » ±3 o
  £. U  -
        o
  o c •«

  O JC C.
oooc o c o  cooOoQcooooo
ooococo  oocooocOQOoo
O Q O O O C O  COCOCOOOOOOQ
oooocoo  QOQOOOCOQGOO

oooo oco  coo  ooooooooo
eoooooooooooooooooo
O C O O O O O  O0OOCOOOOOOO
OQOOOOO-OOOOOOOOOO^O
e* o a o cccoooooQQOceco

oooo OOQQOOQOOQOOQOO
                 Q o Q o ooo  ©oooooooooc o
                 COCO C1 Q O  QCQOOOOO c C G O
                 o c « o cooc-oooooooocoo
                 oeooocrsoooooooociOoQ
                    c. o s c o c  SC-
OMIV       osocococooocoeoc-ooo
O£3W       OOOCOOOOOOOCOCOGOOO
o  «o       ooooooooooooocoooeo

 *rro        «.*..»,»«•-»**.»,*,*
OU  -       OOOOOOOOOOOOOOOOOOO
      o

O TNI £*-       OOOOOOOOOOOOOCOCOCO

c  *o       coooooooooooccocooo
OKO       oocoooooooooooOoooo
 *S?O        *»*.*«.•»»•*"**•«»**
S- U  -       OOOOOOOOOOOOOOOOOOO
      o

GIX*K       ocooooooooooooooooo
SCG       oeeeceeccoooecoeooo
c>  «*«<       OOOOOCO.OOOOOOOOQOOO


c £•  -       ooc-oooooooooooooooo



                S coccocccoc-oo  ccoooo
                                                                                  SrS       coocc-o
  o — r.
  o  * «r
                                                                                  O IS is.
                                                                                  o Si f\
                                                                                  o  * »
                                                                                  oco
                                                                                   • 3 O
                                                                                  o u  •
                                                                                        o
                QCOC.S-OOCOC-CCiOoCG.GCO
                oocccccc-srocooocroooo
                CCOOCCCC-CC'OCC'GCC C-^O
                cooo™o  OQOO  ocoooo ooo
                                                                                                  O *  P«
                                                                                                   -so
                                                                                                  © 4.-   .
   C  iK —
   C  £ .N
   o   • &•
   c-  z *«r
    -  s c
   o  c  -
         o
   o ac <
    - — O
 sococoocoo  coc-ocoeeo
 coooooc ooococooocoo
 C  Ki *-.

 c   * >
 O  E T
  *  3; c
                                                                                                   o  -  ei
                                                                                                 o ooocooooo
                                                                                                 cooeoooooo
                                                                                                 c ocooooooo
                                                                                                 c^c-ocd  c-csco-Ooc ooocoo
                                                                                                 •-'VOC--SOC  C'CCO^'QOOCOC'OO
                                                                                                 c  ooccc  CGCG&OCOCOCOO
                                                                                                 oocooc  cc-oo coooeo  croc
                        .  •"* i.*  u-r SC t-- r", C ^ «• < X
                                                                                                                                            * r",  TJ *«  r; -^ < EC
                                                                                                                                            *o*"s'K:i^i^^cr",

                                                                                                                                              f4  X IT-  "/3 rs. *C b-
                                                                                                                                                    *
                                                                                               at  u:  • u.
                                                                                                   Cfi 3d
c _J                                                              Jft_

          2       C  fv- < it*  ^ »t
o  —
O  B
O  Ltf
                                                                                                X 7


                                                                                                £
                                                                               o *-»
                                                                               -o o
                                                                               C -Li
                                                                                                                                                             OO  COC
    •I
 «  yj
UJ  £C
                                                                                                1C i-  *  *
                                                                                                « to e a
                                                                                                *- a. ui z
                                                                                     205

-------
 O  a  o
  o  a *•>
  c   • c
  O  3t C
              OOOOOOOOOO  OOO-OOOQOO
              o o © o o o  o  oooooooooooo
              o o o o a o  o  o o  o  o QOOOOOSQ
              o o© ^ o o  o  OOOQOOOOOOOQ
                 o o o o o c c ooo ooooo
                                                                 o o  o
Ofsil*.       OOO-OOOOOOOOOOOOOOOO
ooo       oooooooooooooooooos*

fc'I K C       COOOOOOOOOOOOOOOOOO
 •30        *•***»«***»**»*»*«»
•t- u  -       ooooooooooooooooooo
      o
              O O O O Q- O O Q O O O O 0 Q O Q O O O
              o c, o e o c oc-oo o c ooooooo
              c s o e o c. o oco oc o o Q a o o o
o a —
o  • c
o :t G
 - ±3 O
o u  -
                                                                                                         o  oooooococoo  ooooooo
                                                                                                         c-c-oc ooooocooooooooo
                                                                                                         OCOCrOQCCQOCC-  OOOOOOO
                                                                                                         o  oooooooccoo  oooo  ooo
  o c o
   • z? o
  © u  *
              oooo-oco ce-coc-oooc-ooo
              ocoooco oeooecccc-ooo
              oooeocococ oeocQ'SOOQ'
              coooooo coo QOOCOQCQC

              ooooooooooOQdooc ooo
                                                                                                           ooooooooooooocsooooo
   -so
  C- L?  -
              O O O O O Q COOKS' OOOOGCOCO
              <3 O Q O O C? O COG CSQQOOOOCO
              o o o c o o o c o o c o oooodoo
              o o o o o o o ooo ©ooooooeo

              ooooooo oooooooooooo-
                                                                                             C- IV 
  o  —  c
  O   *  D-
  O  £  -*
                                                                                          o ^ m
                                                                                          o as o
                                                                                          O   * E>
                                                                                          O 3C P»
                                                                                            -so
                                                                                                            •^ C — O O
                                                                                                                                           OOOOOO  OOO
c*£t%       ccSEcccooococococoo

C 3C «P       QOCOCCOOCOOOOOOOCOO
                                                                                                            cc.cc oo^ooooooocoooo
                                                                                                            ecc-cc-ooocooococoooo
                                                                                             o r >«r
                                                                                              * ™ C
                                                                                             o u  -
O £. <,
 • He
C ™   •
                                                                                             O rv r-
                                                                                             C " *
                                                                                             O  " ^7
                                                                                             O £ <
                                                                                              •:? o
                                                                                             O V  *
                                                                                                   -o
                                                                                                                            c  cc-oe  •c
X UJ  -
   if- C
© •% ±
C «ft -
                  •C CCGCOCOC-O  COC^OO
                  COCCC-O  ^O-SO  COC CC'
                                                                                        X UJ  -
                                                                                           tft ac
                                                                                        O X S
                                                                                        o w u
                                                                                                          OOCO C-C5-  COC-O C-OCOOO « •CS- O
                                                                                                          c? o •— o co  coco "oooisocc-c
                                                                                                                              -
                                   coso  oococo  ooo
                        ^ < *-c fr. < < 31- &• r; o ffi
                       . *'C>-*««'rs.c
                                                                                        m a
                                                                                                             oooooocooo
                                                                                   206

-------
                1IMF*   3240400 HIH OR  54.00  HRS
               UPSTREAM SEOIHENT IHFl OU C I.BK/SfC I  J
               SEfl,     0     -JFI ,     t)S    r.im.n/    r.ONC.
                wo,    CFS   FT/*EC  t/SF.r      rr     HR/L
  0.0000  0.0000   O.OOOO  0.0000  0.0000  O.OOOO   0,0000  0.0000  0,0000   1,5500
  CtlN.fiZ  r.HM.bZ   CtlM.tiZ  Clin.ll/  CUM.O?  CIIH.DZ   CtJM.BZ  CUR. I>1  tUM.PZ   CUM,PZ
 O.O*f«A? 0.04921 0.01903 0,0042? O.O01A4 0.00103  0,00059 0.0003? 0,00«19 0.00007
2
3
4
S
4
7
i
9
ID
11
12
13
14
15
16
17
IB
19
20
9l9,hA
fl<5,4B
9AJ ,4H
1005,32
1018,00
1061 ,76
10A1 , 3!>
1061 .07
1049, 4ft
1035,70
939, US
9?6.37
ys'i,;1?}
892,47
a v6 , A,I
1346.B9
1. it A. TV
1336.52
I, Toy, 17
1 , OA
1.2R
I . 1R
0, 64
0.41
1 • 24
O.H.''
1.17
0.71
1 , 21
O.AJ
1 .22
O.VB
0,7*
0,94
0,9?
0, /¥
0,42
0,7,*
J , l,»h
, 1?S
, 1 AA
,?07
,",*7f
.391
.rttit
) ,751
1 «VH4
7,733
,'.51 1
?>82A
,{,3O6
3,476
1.24S
4.B6?
S . 5S,»
4.157
6,42?
<»,(>
0,000
IKOISO
o.ooo
o.ooo
0,000
0.004
0,000
O»0<)i>
0,000
0 , 0«0
Q.OOO
0,000
0,000
o.ooo
19. Al
If .25
19. 44
19.25
19,71
20,99
','3,4?
2A.45
M, ,*4
34,55
40. f,%
4S.4K
S3. 7V
6A,Ot
HI .3.'
?B, ) B
A7.4?
73. BJ
M 1 , 1 S
0,0000
0,0000
o.oooo
0,0000
o.oooo
O.OOOd
o.onoo
0>00CM>
o.oooo
OtOOOO
0,0000
o, oooo
O ,OtM)0
0,0000
O.OOItO
o.oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
0,0000
0,0000
o.oono
0,0000
0,0000
0.0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
o.oooo
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
0.0000
0,0000
0,0000
o.oooo
0 , 0000
O.OOOd
o.oooo
0,0000
o.oooo
o.oooo
0.0000
0,0000
0,0000
0,1)040
0,0000
0,0000
o.oooo
0.0040
o.oooo
o.oooo
o.oti (>o
o,oono
o , 000(1
0,0040
0,0000
0 , IJ4OO
o.oooo
0.0000
0,0000
o.ooco
0.00013
p.cHiou
0,0000
0,000(1
0,0000
o.oooo
O.t)00<)
o.oooo
0.0000
0.0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,03(10
o.oooo
0,0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0,000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0.0000
o.oooo
0.0000
0.0000
0,0000
0,0000
0.0000
0,0000
0.0000
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
o.oooo
o . oo(i(>
0.0000
0,0000
0.0000
0.0000
o.oono
o.oooo
o.oooo
o.oooo
0,0000
0,0000
O.OOOO
o.oooo
0,0000
0,0000
o.oooo
o.oooo
o.oooo
o.oooo
0.0000
0,0000
o.oooo
0.0000
0,0000
0,0000
0.0000
0.0000
o , oooo
0,0000
0,0000
0,0000
0.0000
0,0000
0.0000
0.0000
0.0000
0.0009
0.0000
0.0000
0,0000
o.oooo
0.0000
NJ
O
              TIME"    3300,00 «1N OR  SS.OO MRS
             UPStREAH  SEDIHEMT 1HFLOV URS/PFf.J  !
             sen.    o     VKI. .     ,«54;t
7.B7S
3.375
3.760
4 , 3 ;!IS
4.93S
B.S4H
'),<><>«
0.000
o.ono
0,000
o.ooo
0.000
0 . 000
0,000
O.OQO
0,000
0.044
0.000
0 .OOO
0,000
O , OOO
0.000
o.ooo
0,000
o.ooo
lit
If
1 V
IP
1 H
Jf
1*0
21
24
27
:n
3T5
H
4H
S?
42
If
56
63
.HI
,4&
, 3 1
. R4
, /;s
,0?
.OH
,B3
,.M
, 39
, 7"A
,4*
,or»
.49
.1?
,4B
»4'.i
,10
.67
11,0000
0.0000
4 . 0004
O.OOOO
G,»o<>n
0.0000
4.0440
0.0000
o.onoo
o.oooo
o.ooon
0,0000
o.nooo
0,0000
0,0000
o.oooo
o.onoo
0,0000
fl.OOOO
fi, 01)00
O.OPOO
o.oooo
o.oooo
o.oooo
0,0000
0.0000
0,0000
4.OOOO
0,0000
0.0000
0,0000
o.onoo
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0.0000
0.0000
i> , oooo
0,0000
O.OO04
0,0000
0,0000
0,0000
o.ouoo
0,0000
O.DOOO
0,0000
0,0000
0.0000
0.01)00
0,0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0. 0000
0.4000
0,0000
O.040O
0,0000
O.OOTO
o.oooo
0,0000
0.0000
0,0000
o.oooo
0,1)000
0.0000
0.40OO
0 , 0000
0,0000
0.0000
0,0000
4.0000
o.oooo
0.0000
0,0000
o.oooo
o.onoo
o.oooo
0.0000
o.oooo
0,0000
o.nooo
0,0000
o.oooo
0,0000
o.oono
0,0000
0,0000
0,0000
0,0000
<) ,00^0
o.oooo
0,0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0.0000
0,0000
0.0000
o.oooo
o.oooo
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.onoo
o.oooo
0.0000
o.oooo
0.0000
0,0000
0.0000
0.0000
0,0000
0,0000
0.0000
o.oooo
0,0000
0,0000
o.oooo
0.0000
0.0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
0.0000
o.oooo
0.0000
o.oooo
0.0000
0,0000
0,0000
0.0000
o.oooo
fi.QQOQ
0,0000
0,0000
o.onoo
0,0000
0.0000
0.0000
0,0000
0,0000
o.oooo
Q.OOOO
0,0000
o.ooop
ft, 0000
0,0000
o.oooo
0,0000
o.oooo
0,0000
o.oooo
0.0000
o.oooo
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0,0000
0,0000
0.0000
o.oooo
0.0000

-------
                  OOO&OOOOOOO-O O
                  OOQ0OQO0GOOOQOOOOOO
                                                                                o Nr fs
                                                                                O A O
                                                                                <«  - o
                                                                                — 3C O
                                                                                 - at o
                                                                                — ' U   •
                                                                                               ooooooooooooo  o o o o o o
                                                                                               OOOOOO OOOOO'OO  OO O O O O
                                                                                               OcOoOOO^fOcOOooOOOoO
                                                                                               oooooooooo  o o  ooo oooo

                                                                                               ooooooooooooooooooo
         0*
         tr.
       *0
         o

   O KJ «
   00©
   O  - —
   OE ©
    * r ©
   C V  *
         o
                  © © © ©  O O © OOOOOOOOQOOO
                  OOOOQCOOGOOOQCOQ-DOO
                  OO'OC&O©OQCQC©OOQ©J£©
                  ooooooooooooooooooo

                  O O © ©  © © OOOOOOOOOOOOO
                  c-oococ-oeoooc a o o c o o o
                  OCOCOc  OCOC-OCOOOCOOO
OOOOOOOOC"OO©O©CiOO©O



e © © © ©/ c c oooocooocQO-o
ooocooococooooooooo


00000© o.©oooo©o©oooo>
                                                                                O
                                                                                c
                                                                                c
ccococc coc«?c©c-oooco
ocooccocococcco-coco
OOOC'O ©OOOOOOOOOOOOO

OQCCOO C OOCOOOOOCOCO
                  oocooo  o oc ©OQCOOCCOC
                  CO-COC.OOcOoCCiCOi3O.CCC2
                  c  ccocooococ-ooooooeo
                                                                                O IM Fv
                                                                                c a K,
                                                                                o  - c
                                                                                o t c
                                                                                 -30
                                                                                O U   *
                                                                                      o

                                                                                o IM o*.
                                                                                O =. fc~
                                                                                «  * c
                                                                                ore
                                                                                 - I? O
                                                                                o o   -
                                                                                O *sl f*
                                                                                c c. o
                                                                                C   * vi
                                                                                S £ C
                                                                                  • s? c
                                                                                               o-oC|c©o©Q©QQ©Q  c o © o c ©
                                                                                               ©CCCOOOO-OC  ©  O  ©  ©CJOOOO
                                                                                               ooocoooooc  occ  c © © o c o
                                                                                               O  OCCO© OoO©  OO©  OO ©OO©

                                                                                               o©©oooo  oooooo  coo o©o


                                                                                               Ooocoooooo  ©o©  oo ooco




                                                                                               o  c©ooooo©o-o©oooooo©


                                                                                               OoOoOcOOOO  O©O  C-OOOOO


                                                                                               ocooooo  oooooc  o© oooo

                                                                                               ooo-oooooooooo  ©ooooo


                                                                                               o  coooo oc©c  ooo  o oo ©>©©

                                                                                               OOOO^1''^1 OCOO  ©CO  O O OOOO


                                                                                               C-OOQQO©QQOac©©OGQC©.
                                                                                               oocc^rooooo QCO oooo'oo
                                                                                               Oooocoooco coo coocoo
                                                                                               eoeoee.©QOQ-.' K
   Oft C
   O  ' O-
   ox: —
    -30
   o u  •
   G Z «r
    *r- c
   ©u  -
   O £ -C
   C  - lit
   O E <
    -3 C
   o —  -
         c
c-occeoccc-ccoccccccc



c ococ oocsooooooooeoo


£©COCOCOOOCOCCCCCCO

c-ecococ-ccc eoe-ooccCiC





© ccccc c-cooo©cooci£cc




COCOCO C'SOOOC'S'O^SOC'OS
                                                                                 c  s  c
                                                                                 O   •  fr
                                                                                 O  3C  —
                                                                                 •So
                                                                                 Q  C   *
                                                                                       o

                                                                                 C  K  *-
                                                                                 c  c  c,
                                                                                 <•   -  &-
                                                                                 O  E  V
                                                                                 *  s  o
                                                                                                                                    OC-OC  OOO  O'C
                                                                                                CQCCCO  OCCQ csecoc-coccn
                                                                                                o  GCOCOOOOO ©ooocooo©
                                                                                                •coccoc  cccc- cccooccoc
                                                                                                COCOOOOGCO oooooocoo

                                                                                                cocooo  ooco oooocoooo
                  rt K. « IK. ft r; r* -i -^ — o *-: c c c w r*t p^ w
                  *» f^ *, r, r, r-i f; rs. ** ?•* fi r* ** r-j -*4 -- *« «^ »<
                                                                                                                         -.  BE.  e o  c1 cc * ec   I
                                                                                               «^  Ul
                                                                                               
-------
 O A O
 <  * C
 ^C O
  e a •*
  ©   « c
OOOOOOOOOOOOOOOOOCO

o oc©o©oooooocooo  o o o

ooooooooooooooooooo


O © © O O O  ©OOOO'OOOOOOOO

ocococ-Goooooooococo
                                                                                      O a o
                                                                                      -c  * o
                                                                                      *« X O
                                                                                       * 3 O
                                                                                      »* o  «
                                                                                            o
                                                                                                     OO0-OOOOOQO O O O O O O OOO
                                                                                                     oooc*ooo©ooooooooo©o
                                                                                                     ©ooooooooo ooo QOOOO©
                                                                                                     ooococ-ococ  ©oococ  ©co
                                                                                                     ecoo^cococ.00©  coccco
                                                                                                     c  ooooc oooo  ooooooooo

                                                                                                     GOOOOO© oooooooooooes
o x c       cooo©o©c-oo©ocoocoo©
 - 3 C        *»*...,...»..,.»..*

      o

<2> fsi O-       Oo©©O©O©O©©QO©O©OoO

©  * O       OC©CCCOOOGOC©OCGO©O
O-3EO       OO©©©OOOGOO©OOOO©O©
                                                                                                                                    oc o  co©  oo©
     U  •
                o oooococooo© ocooooo
©£©       O©COOO©O<5OOCOO©OOGO
 • so        .,...«.,..*,.*...*..
                                                                                        C- ^ F".
                                                                                        Q  * C
                                                                                        © c c
                                                                                         - 5 O
                                                                                        O U  *
                                                                                              ©
                                                                                       * a ©
                                                                                      © U  -
                                                                                            c
                                                                                        o  • +~-
                                                                                        O £ O
                                                                                         -so
                                                                                                       OC-OOOOOOOC  ©OOCOO  O©O
                                                                                                       ©  OOOOCOCGOO<5-C<2.©OOOO
                                                                                                       ©OOC©c.OC5OCOCOiSO©OOO
                                                                                                       oo©ooc©ooo©o©©©o©©c>
                                                                                                       OOOOOG-OOOO OCOOOOOOO
                                                                                                                                  OOOOOOOO©

                                                                                                                                  ©ccoooooo
  O O <
  O  - —
  CCS
   * s o
  <©*-;*
        o
                                     ocooc-o
                CCOC-OOC'CCOOOCCCOCO O
                CC^OCO^'COOC'OCCsCOCCC'
                oo^c-coc-  ccccoc- occ  coc
                                                                                       o  *s  --c

                                                                                       ©  *  c
                                                                                        •F  !3  G
                                                                                       G  U   -
                                                                                             o

                                                                                       O  N  (s-
                                                                                       c  c  r i
                                                                                       C   *  V
                                                                                       ©re
                                                                                        -  s  c
                                                                                       o  —   -
                                                                                             o
                                                                                         O
  O 3C -*
   • 3 C
               C


               O
                                                                                       O  *
                                                                                       C 3K
                                                                                        * —
                                                                                       O LJ3
                                                                                               K
                                                                                               o
                                                                                             * 0-
   C E «"
    » ±2 O
   O U  -
                 C--OCGOOC ©OGCCCOCCGOC
                 co^ceccccoececo&ec-c
                 cccooccc^co^ccoc-oc  co
                 GOCOC-OCCCOOOC.-OCCOCO
                                                                                                      oocococoe©  coco©ccec
                                                                                                      ocooooooco  cooo-cooo©

                                                                                                      OCCOCOCOCQ  CaOQ©QQ©C
   c- fv. r^
   C -= <
   o  * t:
   o c -c
    * c c
   O U  *
                                                                                       C* **• r*       OCOOCCCCO'OCOO'OOOO'OO
                                                                                       C M *£       COOGC'OOC'C'O'OO'C'GOC'OO©
                                                                                       G-  * **       CoCOCC-C^COOOtoCOOOC'
                                                                                       Ofi<       CCOCCCCOOfflCOOOOOCOO



                                                                                             o
                                                                                                                                      » rv r-  n  *-=  **  *^ «-* -™1
X U.1  * t
   un 2:
© X *
                                                                                      as L* -S; i—
                                                                                      XL.  » u.
  .v    ^      cowtf*xr*<»™is.*-i;ci
      t» (fl
ec c ^ v
c _    *
                                                                                        3
                                                                                    a;  o
     i    iff      «K «r — ^r if? •
      ou.       .....
                                                                                      O  *1
                                                                                      r,  s.
                                                                                      O  U

                                                                         213

-------
   O H*1"
   o «s o
   QL  • G
   — 3C C
   © O <-<
   o  * o
   o je o-
    - 3 c
   C U  *
ooooooooooooooooooo
ooooococjoo e> Q o  o © ©  ©©©
o©oo©ooo©©oo©ooooo©

OGGO©OOOOO OOOOO©OG©






©  ©OOO©QO©GGGOCO©OOO
© tt O
«4*  * O
••« ae ©
                                                                                    G INT &•
                                                                                    c G. »«
                                                                                    O  » C-
                                                                                    occ
                                                                                                    OOOOOOOOOOOOOOOOQOO
                                                                                                    OOOOQOQO00OCOOQOGGO
                                                                                                    OOOOOQOOOOOOOCSOOOOO
    * D O
   O O  -
         O
oooeocoooe  ececocooo
O O©OO©OOOGCsQ©QOOGO  O

OCCJQGQOOOO  oooooooo  o
   O S5 1^
   C  * O
   O C CS
    » 3 O
OCOCOdCOOOGGOC  G ©  O ©  O
^OOOOQOOOCOOOOCOCOO


OOOOOOOoOOOCOCOOOOO
                                                                                    o   *c
                                                                                    (blCC
                                                                                     • DO
                                                                                    ou   •
                OOOOOOOOQOOOOOOOOOO
                 ****.**.**»**.*»«**

                ooooooocoooooooooo©
   © IN" «
   ©c ©
   O)  " •«"
                                                                                                       o c o
                                                                                                        * ^ o
                                                                                                       O 4JI  -
                                                                                                                                             ooooo
                   Oococccoooccc-cocesio
                                                                                                                                   ooc  oco
                                                                                                                                                       ooc ©cocoo
                                                                                                                                                       cocoeococ-
   o a: o
    • " O
   o u  -
                                                                                    O £
                                                                                     . —
                                                                                    o *»
   O C O
   o  - o*
ccccc-ceccccccccoooc
cococococ-occcooceoc
                           -                         -
                                                                                    C  ff. C
                                                                                    o   - &*
                                                                                    o  ac *"
                   coeoeococccoccc-ceoe
                   CoCOOOOOCOGOCOOOOOC

                   c-oooooceoooocococcc
                                                                                    O  C «r
                                                                                      -so
                                                                                    o  u  *
                                                                                                                 COO  OOC  C'OCOOOC'O O
                                                                                                                 coo  oooccccc-occic
                                                                                                               .  COCOCO  CO  COCCCCC-
                                                                                                                                    COOOCOOO OOC  OCO C
                                                                                                       o  - y".
                                                                                                       O JC -C
                                                                                                        . » c
                                                                                                       o a  *
                                                                                                    c-cc-c *
                                                                                                    coc-oc
                                                                                                    •c  occ c
                                    .
                         y, •*•*  IN r: -c v *-* f^ *n i»* «**• o
                   •--. r* r-* ra  *- •». c? © c  Gf- »* SK (K 
-------
   o TSJ rs
   o o o
   Ft  - O
   « « o
    • so
   — o  -
         o
   C  ffi —
   c   * c
   ore
                   ooooooo  ooo c o  o o o o ooo
                   o o o o o o o  ooo ooo ooo ooo
                   ooooooooocoooooeooo
                   oooooooooooocoocooo

                   OCOOOOOOOOOOGOOCOOO
                   OOOOOCOGOGOOOOOOOCrO
                   OOOCQCQOOOOOOOOOOCO
                   ococococCoocc.  coooc-o
                   O o O O C O C  OCC O o  o  o G O OOO

                   OOOOCOOOOCCOOOOOOOO
                                                                                                   O N N       OOQOOOOOOOCOCOOOOOO
                                                                                                   ooo       QQaooooooooocoooooo
                                                                                                   IE  +C       QOQOOOOCOOOCCCOCOQO
                                                                                                   *•« i: o       GQOOOQOOOOOOOOCOOOO
                                                                                                    - 3 C        ,.*....».-»»..»..,.

                                                                                                   — LS  •       OOOOOOOOOOOOOOOOOOO


                                                                                                   o *j fr       oooocooo^>oooocooooo
                                                                                                   O i^ •"       OOOOOOOCOCOOOOOCOCO
                                                                                                   C  *C       OOOOCCCfOOOOCOO'OCOCO
                                                                                                   O3CC       OOC'i5OOC*OOOOOCoCC*OOO
                                                                                                    »^c        .».*.,	

                                                                                                   cu  *       oooocccoooooocooooo
   o a •<-
   C  - C
   etc
    " ~ C
   O I.'  -
         o

   O IS! 0-
   C C 1-.
   O  * C
   o r o
    • 3 O
   o u  •
   O K" ri
   O C: o
   o  - ~
   CEO
    • e: o
   C (-•  .
                   ococooocococ.C'eooooo
                   ococccc&ccococoocoo
                   OGOCOCC-COCOC.OCOOOO O
                   OOOOOOOCCCOOCcOOOoO

                   ocoooco  coo ooo  ooc ooo
                   ocooococococooooooo
                   c-cocococcceeecoccco
                   dooGcc-ococoooooecoo
                   OOOOOOCOOGCOCOOOCOO

                   OOOOOCOOOOOOOOOOOCO
                   oocooo^rococoocoocoo
                   OOOOOC5TCCCCCOCOC-OOC
                   coooooc  ooo ococoooco

                   cooococococcccooooo
                                                                                                   O >
                                                                                                   c
                                                                                                   e
                                                                                                   O ft h~j
                                                                                                   C  • C
                                                                                                   01:0
                                                                                                    • = o
                                                                                                   o u  -
                                                                                                         o

                                                                                                   O M P)
                                                                                                   o a o
                                                                                                   c  * «
                                                                                                   e z o
                                                                                                    - = o
OOOCOCOOOCOOCOOCOOO
OCCOOOOCOCCCCOOOOOO
OCCG-CC-C-COOOCOCOOOOO
ooocoocooooocoooooo


OOOOOOOOOOOoocOOOOO
Ooooccooocooocooooo
OoCc  CO CCOOOC  c COO  OOO
ccooccooocccccocooo
ooooooooooocooooooo

ooooooooooooooooooo
oooocooooooeoeoeoco
cococccoococccoocco
OOOOOOOOOOOCOoOoOOO
ooooooooooooocooooo

&OOOOOOOOOOOOOOOOOO
   c a -c
   C  * —
   o z c
    • ~ c
   O U'  -
         o

   O fs Ps
   c =< c^
   e  • T
   ore
    * — c
   o «;  -
         o

   Of-".
   o =. c
   0-0-
   o r —
    - = c
   C. i -:
   c  - o-
   o 3: T
   C- I"- r;
   c c <
   C   * l^
   c a: <:
                   CCCOOOCOOOOOOOCOCOO
                   ccoococccoeoecccecc
                   ceoe^ococoooccecccc
                   cooo^ococococoocooc


                   ccoccoeccc oocccoccc

                   ccccocGcCc oocc-oc c c c
                   occcoce  cocccccc-ocoo
                   cocecoccccecccecccc
                   cccoccc-cocccccecccc
C 0
c- o
c o
c c
C C
c c
c c
0 C
c- c
c c
-""- c
c c
c o
c c
c c-
c c
c o
C 0
c c
c c-
c c
c o
o o
o o
o o
c c
o c
0 C
o c
c c
c c
c e
c o
c-
o
c
c
c
c
c
c
o
e
c
c
c
c
c
c
c
c
C C
c o
Q C
c c
c c
c o
C o
e c
c c
0 o
c c
c-
c
o
c
c-
o
c
o
c
c
c
o 2-
c- e
c c
c c
c a
o e
o c
c c
c c
e o
c c
o o
c o
e o
c c
c o
0 O
o c
c c
c. o
c c
o c
c
o
c
o
c
c
o
c
c
c
o
c-
c
o
c
c-
o
c
c-
c-
e
o o
o c
c o
c c
c- o
c c
o o
c c
o c
c c
C C1
                                                                                                   O IV V
                                                                                                   C US <
                                                                                                   c  - —
                                                                                                   C f O
                                                                                                    • 3 e
                                                                                                   o 1st rs
                                                                                                   C c r:
                                                                                                   O  • *r
                                                                                                   C E C
                                                                                                    - ™ C
                                                                                                   C U  -
                                                                                                         o

                                                                                                   o »^ re
                                                                                                   o e c-
                                                                                                   o  • o.
                                                                                                   o i: —
                                                                                                    • = c
                                                                                                   O i-f  •
                                                                                                         o

                                                                                                   O >s —
                                                                                                   car.
                                                                                                   c  . o-
                                                                                                   c is r.
                                                                                                   c- ™ -c
                                                                                                   c   - tr,
                                                                                                   O E <
                                                                                                    * - C
                                                                                                   O w  -
                                                                                                         e
cooococsoooocooooooo
occococoooooccooooo
ccoccocoooc-ocooocco
CoCoOoOOOOOOCOOOOOO


OOCOfrOOCOOOOOoOOOOO
oecececoeccccocooco
c-oc-ooococcccccoocoo
OOCOOCOOOOCCCOOOOOO

oocooocooofrocococoo


ococceccococccoccoo
occcC'c^oc-cC'Ccocccco
oococccocco&oooccoc
                   "
COCOCOCOOOCCCCCG  COO
coco  oc co&cccccc-ccoc
CCCOCCCCCOlTOCCCOC'CQ
e ooocooocO'OOcooococ

cocococoeocococoocc


cococc cocccccooocoo

cccoocccccooeoc-oooo
                                                                                                                   c  o oo o o
   •Jl  £
C ^  ^
C 1.1  ^
                   COOOC02  CCCCCCCCCCOS
                   ccce  jococcecoooo^oo

                   c-oeo^ococo  occeoc-cco
                                                                                                                  oococccocooceocoioc
                                                                                                                  ooooocccccoccc-oooca
                                                                                                                  coco coococ'Cocc.ocooe

                                                                                                                  COCO COCCOOCOCOCOOCO
                                                                                                                   o  o b-. —
                                                                                                                          ~
OC C,  3 '
   L!
z z
O Z  j. X
O i_  » —
                   C o C O C O
                                                   X  *O «r fr C fs  -- fs.  c
                                                                                                   3 o; UO

                                                                                               Li  C (I X
                                                                                                   «- _j in
                                                                                               O  Z 'j. X
                                                                                               O  U> ^ I-
                                                                                                                                 ; r>  cc c.»- &- O ^ ^ i


                                                                                                                  eoe-o c-ococ^^^.
                                                                                                                       igin in—'rso-c^uT-i

                                                                                                                       t^oo—10 — o*HC?-*
                                                                                                                                                   *- H3  r; o r:
PS tn     ui
       a u.
« u>  c o
I- t  u 2
   3  tn
                   one — •j-t
                                                         o-  a> •* tn  •» o  •

                                                         r:^r^-4Fsin
                                                       ocr, nor, ti«
                                                                                                      C li.
                                                                                                    :    u
                                                                                                n  u
                                                                                               u  fie
                                                                                               *-• to c o
                                                                                               >- &. u z
                                                                                                   O tn
                                                                                    211

-------
ISJ
O
SO
            11Kf»    34BO.OO WIN OR  fiB.OO  HUE
          UPSTREftH SEDIMENT INFI OH  ,ono
0,000
0 ,OOC)
0.000
0 , ODO
0,000
fi.ooo
o.ooo
O.i>00
O.OOQ
0, 000
0,000
•*> . ooo
0,000
0.000
r.tiHc.
MO /I
.') .A?
20.91
2O ,H7
I 9 . /.4
JH.VH
JB.4A
in. 13
in, :. ?
1ft,.',',i
t R , (' 4
I V . 4'J
?f> , ST>
; .; . t. 7
24,40
27,1).
20, ft?
;*3« ,;y
7A.2I
i!9. AS
(.OH, H7
o.oAr.A"-"1
o.oooo
0,0000
0,0000
o.o noo
o.nouQ
o.onoo
<>,OOi>0
o , oooo
0.0000
O,00«)0
0 . 00
0,0000
o.oooo
o , oooo
0.1 0«0
O.OOOO
0 ,0000
0,00 of
4. OOOO
CIIH.M
o,o4?rli
0 . OOOO
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0, OOOO
o.oooo
o.oooo
0,0000
0,0000
O.OO'JO
0 . OOOO
0,0050
0,0000
0.0000
o.oooo
o.oooo
run, iif
O.O19O3
0,0000
o.oooo
o.ot no
0 >OQQO
o, no oo
O.OOOO
0.0000
o.oooo
o.oooo
0,0000
o.nooo
O.OOPO
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
um.nz
0,004;'?
0,0000
0,0000
0 > nOOO
o.oooo
0,0000
o.oooe
O.ODOO
0,0000
0,0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
O.DOOO
e.oooo
0,0000
0,0000
O.DOOO
rim. ft/
0.001*4
0, OOOi)
0,0000
0.4000
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
O.DOOO
0,0000
0.0000
o.oooo
o.oooo
0,0000
0,«000
CIIH, ni
0,0010*
o.oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
o , r»ooo
O.OQflO
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
CUM, 07
O.OOOT.9
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
O-.ObOO
o.oooo
0.0000
o.oooo
0,0000
0,0000
o.oono
0.0000
0,0000
0,0000
0,0000
o.oooo
0,0000
run. nz
o.ftofn?
o.oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
o.oooo
0.0090
o.oooo
0.0000
o.oooo
O.OCiOO
o.oooo
0.0000
o.oooo
0.0000
0,0000
0.0000
C'lfl.PZ
O.OOO 19
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
O.OtirtO
o.ooO'i
o.oooo
0. OOOO
0,0000
0,0000
o, oooo
0,0000
o.oooo
0,0000
0,0000
0,0000
r.un.iM
0.000(57
0.0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0.0000
o.oooo
0.0000
PS1
EH.
NO,
2
3
4

.
7
g

i li
i w
1 1
12
13
14
15
14
17
18
19
20
REftfl SEDIHENT INFLOW (IftS/SFC)
Q VFI.. US nilH.nZ.
CFB rr/src t/sr.c FT
7.15
740
7A1
B07

fl70
904
921
940
9A2
97A
979
9fl6
990

142?
J 1?7
1425
MSB
.21
. 77
,57
,52
, 09
,43
, 1 4
, 43
. 72
,53
, 1 A
,43
.93
,95
. 02
,77
, 1J
.51
,J9
Ot
1 .28
J ,13
0,5P
e) . S7
1 , 1*

1,10

1 . 16
0 .A?
1 ,21

0,81
1 ,10
1. 01
4.9ri
0,79
0,*2
^
1

1
t
1
J
1
I
1

1

1
1
1
I
I
•Ji
V»D
.007
,01 A
.021
.024
,029
.0.18
, OS1

,093

• 1AB

.309
,41A
,SK!
,71 4
,?on
,1,JA
O.OOO
o.ooo
o.ooo
0.000
0,001)
o.ooo
0,000
0,000
0,000
o.ooo
O.ODO
o.ooo
o . noo
0,000
0.000
o.ooo
O,O«f>
o.ooo
0,000
Hli/l.
'1
?J
!S

1.9
IB
ia
is

is
if

t?
21
Tl
J7
19
71
21
,f,B
. 22
.SB

,T)9
.95
.40

.;','
,20
.4*
, IO
.VI
, t?
,H3
,47
,,'t.
,4f,
,97
o.oooo
r:i)M.n7
O.O-IIO
o.oooo
o.oooo
0,0000
0.0000
0,0000
O.OOnO
0,0000
o.oooo
0,0000
>>,oooo
o.oooo
0,*>0»0
0,0000
0,0(100
o.oioo
<* , oooo
0,0000
0,001)0
0,0000 0,0000
0,049?) 0,01903
0,
0.
0,
0,
0,
0,
o .
0,
0,
0,
0.
0,
0 ,
0,
0.
0.
0,
0.
0.
oooo
oooo
oooo
oooo
oooo
OOOO
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
ftOOO
00(40
oooo
0,0000
Q.OOOO
O.OOOO
0,0000
o.oooo
o.oooo
O.OQflfJ
0.0000
O.OOOO
o.oooo
0.0000
0,0000
0,0000
0,0000
o.oooo
O.OOOO
0,0000
fl.OOOO
0,0000
0,0000
iiim.i)?.
0,00437
0 , 0004
o.oooo
O.ODOO
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
is, oooo
o»ooiio
0.0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
0,0000
0,0000 0,0000 0,0000 0,0000
ruh.i>7 mm. uz run.oz cun.nz
O,001*4 O. 00103 0,00059 O.O0037
o.oooo
O .0000
0.0000
0,0000
o.oooo
0,0000
o.ooao
0,0000
o.oooo
o.oooo
0.0040
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0.0000
0,0000
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
.0000
,0000
.0000
,0000
.0000
.0000
,0000
,0000
.oooo
,0000
,0000
,0000
.oooo
.oooo
,0000
,0000
,0000
,0000
,0000
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
0,0000
o.oooo
O.OOOO
0.0000
o.oooo
0.0000
0,0000
0.0000
0,0000
0.0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0,0000 1 ,2flOO
cn«, PI cun.uz
O.OOOJ9 O, 0(1007
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
,0000
,0000
,0000
,0000
,0000
,0000
,0000
.cooo
,0000
,0000
,0000
,0000
,0000
,0000
,0000
,0000
.oooo
.oooo
,0000
0,0000
O.OOOO
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
O.QOOO
o.oooo
0.0000
0.0000
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
O.onoo
0,0000

-------
             )1MF»   3360.00  HIM  OR  './..OP MRS
            UPSTWflN SEBJWEWT  IUFI 0« !l,BS/SFC> i
            SEn.    o     MFL.     r,s    r.tiH.Dz   i.ttm:,
             NO.   crs   FT/prc   t/srr     FT    «r./i
        0.0000  0,0000   0,0000  0,0000  0,00*0  O.OOOO
i:iin.»*  riiH.u?.  cim.iir   CIJH.O?:  mm. a?  COM.M  cim.nz
.oATn'.r1 0,049m o, 0190:1  0.004?? 0,001*4 0,0010? o. 00039
O.OOOO  0,0000   1,3600
con.nz  CUH.DZ   CUM.DZ
       o.oooif 0,0000?
M
O
00
2 SOU. 44
3 S2I.63
4 ns4,Ai
S 914,40
A MA. 4)
7 992,54
8 1014. ft?
9 1025,77
10 1031. 4H
11 1038.18
If. 102;'. AA
13 1028.77
14 101.1 .A.'
IS 981.07
14 9f,«i,3?>
17 1447,13
18 143?, AS
19 1442.65
20 H.1/,04
T1HF = 342
1 . 0.i
1.2A
1 . M
0,63
O.A,'
1,22
O.HO
1.1*
0.71
1.20
0. A,i
1.23
1 »(n)
0,81
1 ,
0.000 ?0.09
IS , OtSO 1 V , 7A
0.000 Ifl.BR
O.OOO (B.S.I
0,000 IB,, IB
o.ow in.Att
O.OOO 19.43
O.noo 2i),/7
o.ooo r>:-,s9
i), oiiO ?*i,i;,
O.OOO ^B.JO
0,0(H> .(:'.?»
0,000 37,4?
O.OOT 4.^,3'.'
0,000 3^.44
ft.HOO 37,2.?
O.OOO 42. AO
O.OOO 1«,9.>
,OO MRS
UPSTRFAN SEDIMENT INFl m UPR/SFO ;
SEfi. 0
NO, CFS
2 777.9O
3 BOS. 25
4 H J 3 , *> K
3 P72.10
6 9 J 2 . SB

8 979.1".'
9 994 . 16
10 t OOiS .21
11 1020,04
12 1O1A.A4
13 I0?l .87
14 1011.78
15 998.30
I A 9H4.SO
17 USD,/?
18 1449. ?A
19 5449,94
20 1449. S4
UFl .
FT/srr
I .00
1 ,2*
1.'.'
O.At
O * Al
1 ,20
0,7'*
1,14
0, ?O
1,19

1 '.23
t , 0 0
c.ni
J .07
1. 01
0 . V *
0,79
0,9,>
fis
t/BFt
I .0,'fr
1 ,077

,O41
,0'if
,082
, no

1 **
,2&A
,3*:.
.494
t ,4-,A
1 ,847
•7.0A9
2.32A
2 . A ,' 7
?,?flA
3.410
run. [i/ rnwr. .
FT Hfi/1.
0,000 '.'i . 1.'
0.000 70. SO
O.OOO '.">..* A
0.000 19. 13
0, M<> »H,A1
0,000 1ft. 2A
o.ano t;i.i7
0.000 tf.'l?
0,0«IO 3
o.oop i9,nn
(5.OIH) ,M .SI
O.OOO 2^.44
o.non ;'A.i:i
O.POO 7V. AS
0.000 33. AH
O.OOO ?•", . A9
O.OOO .•V.D'.i
O.POO 13.00
0.000 37.73
o.oooo
o.oooo
0.0000
0,0000
O.O'tOA
o.oooo
r) .OOOO
o.oooo
0 . OOOO
0,0000
o. of)oo
o.oooo
O,OfH>0
0 .OOOO
0,0000
o.oooo
<» , AOOO
o.oooo
o.oooo

0,0000
rtm,f"7
O.OASA7
D.OOI.'J
0 ,0OOO
0 , OO«)0
o . oooo
O.OOOO
0,0000
O.OOdO
o.oooo
o ,00^0
0,0000
O.OOO!)
o , oooo
o.oooo-
O.O'lOO
0,0000
o.oooo
o.oooo
O.OOOO
0 . 00»0
«.oooo
o.oooo
0 , <}O
0,0000
0,0000
o.oooo
0, OflOO
O.OOOfl
o.oooo
O.OOOO
0,0000
0 , OOOO
o, oooo
0,0000
o.oooo
0.0000
0,0000
0,0000
0,0000

o.oooo
rim ,i'Z
A. 04921
o.rooo
O.OCHIO
0 , OOOO
o.oooo
n.?
0.004.0
o.oooo
o.nooo
0 .0000
o.oooo
o.oooo
o.oooo
o.oooo
O.OODO
o.oooo
0,0000
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
i) , o«»oo
0,0000
0,0001
o.onoo
0,0000
0,000(5
o.oooo
0,0000
O.OirPO
fl.OOOO
0,0000
0,0000
0,0000
o.nooo
0.0000
0,0000
O.OOOO
0,11000
o.oooo
o.oooo
O.OOOO
0,0000

0,0000
KUft. 07
0,oni*4
,»,m,oo
o.oooo
o,oo«o
0,0000
0,0000
o.oooo
0,0000
o.oooo
O.OOQO
0,0000
0,0000
0,0000
0, OflOO
0,0000
0,i)000
0.0000
O.OOOO
0,0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0.0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo

o.oooo
CUM. 07
O.OOIOJ
o.oooo
o.oooo
0,0000
0,0000
0,0000
o.oooo
0,0000
o.oooo
o , oooo
O.OOOO
0,0000
o.oooo
o.oooo
0 , OOOO
0.0000
o.oooo
o.oooo
0,0000
0,0000
0.0000
0,0000
o.oooo
O.OOQO
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o. oooo
O.OOOO
0,0000
o.oooo
0,0000
o.oooo
0,0000

0,0000
cun.nz
0,0005?
0,0000
O.OQOO
0,0000
o.oooo
o.oooo
0.0000
0,0000
o.oooo
o.oooo
0.0000
n.oono
o,0oon
o ,0000
o.oaaet
0,0000
o.oooo
O.OOOO
O.OOOfl
0,0000
0,0000
0,0000
o.oooo
0,0000
0,0000
O.OM1
0.0000
0,00(1(1
0.0000
0,0100
0,0000
o.oooo
0.0000
0 . OOOO
0.0000
0,0000
o.oooo
0,0000
0,0000

o.oooo
CUM. HZ
O.OOOS7
5.0000
o.oooo
o.oooo
0,0000
o.oooo
o, oil oo
O.MOO
o . ooro
0 .OOOO
0,0000
O.OOOO
o.oooo
O.OOOO
O.OTOP
o.oooo
0,0000
0 , oooo
0,0000
0,0000
0,0000 0,0000
0,0000 0,0000
0,0000 0,0000
0.0000 O.OOOO
0.0000 0,C>OOO
0,0000 0.0000
0.0000 0,0050
0,0000 0,0000
0,0000 0,0000
0.0000 0,0000
0.0000 0,0000
0. OflOO 0.0000
O.OOOO 0,0000
0,0000 o.oooo
0,0000 o.oooo
O.OOOO O.OOOO
0.0000 0,0000
o.oooo o.oooo
0.0000 0,0000

O.O'iOO 1 ,3500
ctm.pz cun.cz
0,OOO19 O.OOOQ7
S.OOOT 0,0000
o. ofloo o.ooeo
0,0000 O.OOQC
O.OOO1 O.OOO'J
0,0000 o.oooo
O.OQOO 0.0000
C».f»000 0.0000
o.oooo o.oooo
C>,C000 0.0000
0,0000 0,0000
O.O&OO 0.0000
o.oooo o.oooo
o.oooo o.oooo
O-.GrtOO 0.0000
o.nooo o.oooo
0,0000 o.oooo
0.0090 0.0000
0,0000 0,0000
O.OOOO O.OOOO

-------
           Tl«r*   3600,00  HIM PR  60,00 HRS
          UPSTREAH SEtltHEWT IttFI OM   I
          sin.    o     VH. .     «s    i:tiH.t>7    tuiNn
           MO.   CFS   rT/SFT   I/SFT     FT     HO/1
                                             0,0000   0,0000  0,0000  S.OOOO   O.OOOO  O.OOOO  O.OOOO   0.0000  0,0000   1.2800
                                             MIH.II?   nuH.n?  ram.117  nim.n^.   CUH.O*  r.im.oi  KIJM.DZ   cun.oz  CUH.BI   cun.pz
                                            O.a/>r>A? 0.04??1 O.0190.1 O.OO4B7  O.OP1A4 O,00103 O.OOOH9  O.OOO.17 fl.Oflfl19 0,0000?
2
3
4
S
i
7
0
V
10
11
12
13
14
J5
16
17
IS
19
20
/)',
19
I, H
in
)H
Ift
IB
Ifl
IS
jf
,".o
If.
IA
17
19
. 1 V
.M
,AH
,71
, 1A
,f,f,
,90
,AA
. 1K
,no
,14
.Si
,HH
, 45
,'.S,»
.49
,57
.9?
, V;1
O.
0.
0,
o.
0.
0,
0,
o.
0,
0.
o.
0.
0,
0,
1).
0,
0,
0,
0,
OOOO
OOOO
OODO
nooo
OOOfl
0000
0000
OOOO
«»ooo
oooo
oooo
ottoo
OODO
oooo
OfjDO
OOCVO
nooo
oooo
oooo
0.
0,
** ,
0.
0,
0,
0.
o.
0,
0,
0,
0.
0.
0,
0,
0,
0,
0.
0.
oooo
oopo
oooo
0000
oooo
0000
oooo
oooo
nnnn
oooo
OOOO
oooo
onoo
oooo
oooo
oooo
(KM»O
oooo
oooo
n
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
o
0
0
. oooo
,0000
.oooo
.oooo
,0000
,0000
.oooo
.0000
.0000
.oflfto
,*>  J
SEI,    o      vr.\..     HR    r.un,»7.    ci»»c,
 NO.   Crs    FT/PFF  l/SFf     FT     Mf./l
                                                         0.0000  O.OOOO   0.0000  0,0000  0,0000   0,0000  0.0000   0,0000  0,0000   1.2200
                                                         PJM.M  P1M.II?   rUh.H7  CUM.1)7  RDH.B7.   CIIH.tlT.  Cyn,D2   CUH.ftZ  CUH.M   CUfl.OZ
                                                        fl.OA"*.? 0.04921  O.OI9O.1 0,00427 0.001A4  0,0010* 0,OOOf-9 «.000717 O.O0019 0,00007
2
3
4
5
^
y
9
9
10
1 1
j 2
13
14
IS
14
17
IB
19
20
A9A.01
71&.2S
/I.7 .05
753 , 83
77 7 * ^0
R04 .21
?M5. 5H
P51 ,89
R7? * 1 B
S95, S3-
9 1 / . 1 9
918,93
?M,f A
949. 14
941 ,51
134P.21
tKAH.Rf
1374.54
C<73.3?
1 ,03
I.?5
1 . J 3
0 .5*
0,*i4
1 . 14
0. 7.1
1 .07
0 i A4
1 , 13
q , AO
1, 18
0.9 A
o.eo
I . U
0,9«
0.9?
0.7B
0.91
«,9AO
0,975
o.9fl;»
O.?91
0.999
1 ,007
1 ,01ft
1,019
l .OKri
1,033
1 .044
1 ,059
J ,079
1 . )OA
1 .143
1 ,194
I , ?.(>?.
1,351
1.4A4
0.000
0.000
0 . 00<>
o.ooo
O.OOO
O.OC'O
o,tm<)
0,000
0,000
o.ooo
0,01)0
0,000
O.ODO
o.ooo
o.flrto
0,000
O.ODO
0,000
O.OOD
*?, 10
21 ,B2
^1 ,?A
?] ,CVA
?0.59
SO.Ofr
If ,13
19,16
18,fl.»
IB. 49
JR,?S
1H.47
tH,!5;»
JR. AB
19, 1) A
14,19
14.H3
15,73
1/.0»
o.oooo
0.0000
O.OOOO
0.0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
0,0000
o .oooo
o.oooo
D , oooo
o.oooo
0,0<)OO
o.oooo
0.0000
0,0000
0,0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
0.0000
0.0000
o.oooo
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0,0000
o.oooo
o.oooo
0.0000
0,0000
O.OOdO
0,0000
i, oooo
0,0000
O.DOOO
O.OOOP
U. OOOO
o.oooo
o.oooo
0,0000
o.onoo
0.0000
O.i>0<»0
0.0000
0.0000
o.oooo
0,0000
0.0000
0,0000
o.otjoo
0,0000
0 , OOOO
0,0000
0,001)0
0.0000
0,0000
o.oooo
0,0000
0,0000
o.ijoot)
0,0000
O.DOOO
o.oooo
O.ilOOO
o.oooo
0,0000
o , oooo
o.oooo
0,0000
0,0000
0,0000
0.0000
o.oooo
0,0000
0.0000
o.oooo
0,0000
0.0000
0,0000
0,0000
0,0000
0.0000
0»0000
0,0000
O.DOOO
0,0000
0.0000
o.oooo
o.oooo
o.oooo
0.0000
0.0000
0.0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0.0000
0.4000
o.oooo
0,0000
o.oooo
i), OOOO
0,0000
0.0000
0,0000
0,0000
o.oooo
0.0000
0.0000
0.0000
0,0000
o.oooo
O.OOOO
o.oooo
0,0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0,0000
0,0000
0.0000
0.0000
0,
-------
              TIME*    4200,00  BIN OR   70.00 MRS
            UPSTRCAH  SEOIHEH1  IWFl OH ItRP/SFO I
            SEH.    o     VEI .     BS    am. o/   none.
              «o,   crs    FT/src   */SEC      Ft     «r,/t
 O.OMO  0,0000  0,0000  0,0000  0,0000  0,0000   0.0008   0,000(1  0.0000  1.1AOQ
 njHUi?  rtm.t>7  cim.n?  C.UK.IIZ  ruH.nr  cim.nz   CUM,02   CIJH.D?  CUH.PJ  CUH.PZ
O.Oftf.A? O.O477I O.O17O3 0,0043? 0,001*4 0.00103  O.OOOS9  O.OOA3? 0,0001* 0,00007
K!
2
3
4
5
&
7
8
9
10
11
12
13
14
15
16
17
IB
19
20
A:'i.7T>
«2.1*
*??,«!)
*28,34
A SO. 7 7
A36.74
A47.Q1
A5f,.3e
4A?.7'.<
673,74
AH8.7;'
AB8.A9
701 .M
718.73
734.OO
1037.48
IQA.I.ATi
108?, 12
1075.78
1.03
l.l*.
l,»f,
0.4?
0.4S
1.06
O.A4
o.«
O.H?
1,04
0.50
1 .06
o.as
0.70
I .01!
0,90
o.fts
0.7S
0.7J
0,9.50
0,930
o,93fl
0,930
0,9,10
0.930
0.7:iQ
0,931
0.93?
0,933
0.9SS
0,?37
0,941
0.944
0.719
0.9Ti4
0,9*j9
0.7A5
O.V71
O.OOO
0,000
OirtOO
0,000
o.ooo
0,000
o.ooo
0,000
i) , 000
0,000
0,000
0.000
0,000
0,000
0,000
0,000
o.ooo
O.OOfl
0,001)
y. 3 . ? 7
?3,9fi
?'1 . 75
?3.72
SI. V»
23,40
22.97
?r.7A
?;r,M
2?. 17
at .77.
21 ,0)
2 1 . •» B
21 ,0<4
JO. 71
1 4 . 7 S
H.1S
14,30
14.17
o.oooo
0,0000
0,0000
0,6000
o.oooo
O.OOOO
o.oooo
o.oooo
o.onoi}
0,0000
o.ooiso
o.oooo
0,0000
0,0000
o.oooo
o.oooo
0,0000
0,000(3
o.oooo
0.0000
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0.0000
0,0000
o.oooo
0,0000
o.oono
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
o.onoo
0,0000
o.oooo
0,0000
O.tiOOO
o.oooo
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
O.OOOO
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
o.oooo
0.0000
0,0000
o.oooo
0,0000
0,0000
0.0000
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0.0000
o.onoo
0.0000
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
0.0000
o.oooo
0,0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0,0000
o.oooo
0.0000
0,0000
0,0000
0.0000
0,0000
o.oooo
o.oooo
0,0000
0,0000
0,0000
o.oooo
o.ofloo
0.0000
0,0000
0,0000
O.OflOO
o.oooo
0.0000
0,0000
0,0000
0,0000
O.OOPO
o.onoo
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
o.oooo
o.cooo
0.0000
0,0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
0,0000
0,0000
0 , OOOO
o.oooo
0,0000
0,'iOOO
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0.0000
0 , 0000
0.0000
0,0000
0.0000
0,0000
0 , OOOO
O.OOOO
0,0000
0,0000
0,0000
0.0000
0,0000
0 , 0000
0,0000
0,0000
0,0000
             TIME*   4240.00 HIM OR  71.00 HRS
            UPSTREflH SEDIMENT INFLOW CLBS/SECJ
            SCR,    D     yet.,    fiR    cim.iiz
             MO,   Crs   FT/RFC  t/SET     FT
time.
 0,0000   0,0000  0,0000  0,0000  0.0000  0,0000  0,0000  0.0000   0.0000   1,1*00
 (1UH.U7   CIIM.F)/  r.tiH.fiZ  CUH.M  CIIH.OZ  CIJH.DZ  cun.oz  CUH.DZ   cun.fj;   CUM, or
        0,049?} 0,01903 0,00437 0,001*4 0,00103 0 . OOO59 O.OOOS7 0,00019  O.OO007
2
3
4
s
7
a
9
10
11
12
13
1 4
1«^
ij
1 7
1 R
I o
19
20
431.30
431 .48
A2A.SA
A39, 73
440 .37
A43.51
451,41
460. 65
A73.B5
A73.71
4BS* 40
70 1.19
71 JS « 1 1
1 01 1 , 5£
1030 , Al
4043 , 00
1041 •/»
1,03
1,16
1.15
0.4?
11.4s!!
1 .06
0.74
O.HI
1 ,04
0.49
1.05
0 , H4

1 .02
0,90
0.82
0.74
0,92
0.7.10
0,930
0 i 930
0.710
0,930
0,930
0.93O
0.93O
0,931
ol933
0 . 7 .IS
0.93P
0.941
0.?45
1) , 74V
0.754
0.7AO
0 . 000
0,000
0,000
0,000
0.000
0.000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
o.ooo
0,000
o.ooo
0,000
?3
S3
7,1
73
23
22
z?
21
?1

14
14
14
14
.98
.97
,79
,87
, 14
.20
.87
,44

.97
.74
.66
,7«
o.oooo
o.oooo
0.00 DO
o.oooo
o.oooo
0.0000
0,0000
0,0000
o.oooo
o.oooo
O.OOOO
0.0000
0,0000
0,0000
o.oooo
0,0000
O.OOrtO
o.oooo
0.0000
0.0000
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
O.OOOO
0,0000
0,0000
0.0000
o .0000
0.0000
0,0000
o.oooo
O.GOOO
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
o.oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0,0000
0 , 0000
o.oooo
o.oooo
0.0000
o.oooo
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0,0000
o.oooo
0.0000
0,0000
o.oooo
o.oooo
0.0000
0,0000
0.0000
O.OQOO
o.oooo
0.0000
0,0000
0,0000
0,0000
0,0000
0 . 0000
0.0000
O.OOOO
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0.0000
0,0000
o.oooo
0.0000
0,0000
0,0000
o.oooo
o.oooo
0.0000
0.0000
0,0000
0.0000
o.oooo
0.0000
0,0000
0.0000
o.oooo
0.000©
0,0000
0,0000
0.0000
0.0000
0,0000
0.0000
o.oooo
0,0000
0,0000
o.oooo
0.0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
0.0000
0.0000
1.0000
0,0000
0,0000
0,0000
o.oooo
O.OQOO
0,0000
0,0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0.0000
O.OQOO
0.0000
0,0000
0,0000
o.oooo
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
0,0000
0.0000
o . oooo
0,0000
0.0000
0,0000
0,0000
o.oooo
0,0000
0.0000
0,0000
o.oooo
0,0000
o.oooo
o.oooo
0 , 0000
0,0000
0,0000
0,0000
0,0000
O.OQOO
o.oooo
0,0000
0.0000
0.0000
0 . OOOO
0.0000
0,0000
0,0000
0 . 0000
0.0000
o.oooo
0,0000

-------
  Q-fiftCJ       OOOOOOO  OQOOQOOOOOQ©
  •«*   - c       ooocooococooocoooo©
  w»  JE O       OOOOOOOOOOOOOOOOOOO
  •"*  U
                  OOOOOOOO'&OOOOOOOOOO
                                                                                                OS©       OOOOOOOOOOOOOOOOOOO
                                                                                                (ft  * c       OOOOOOOOOOOOOOOOOOO

                                                                                                 * 3 Q        .««»**.*****•*«.**  +   »»
                  OOOOOC-O
                  oooo^oo

                  •ocoooco
                                                             OOOCO
  oar:        P-4 Ch
  O ca *™
  e  * c*
   o c o
    * D ©
   C- 4J  *
               Oooc©eooooOoooooooo

               OOOOOCOOOC  OfflOCOOOOO


               oooooooooo  OOOOQOOOO


               ooooooococococooooo
               ooc-cocecooocooocooo
                  00^0000000
                  •c- ocfooococc
                  -c e c o c o  c  ooo
                                                                                                ©CO       OoOOOOOOOOOOO^OOOOO

                                                                                                ©ui  *       OOOOOOOOOOOCOOOQOOO


                                                                                                CrvfN.       OOOCOOOCOCOOOOOOOOO
                                                                                                esc,       ocococ-ooooococooooo
                                                                                                c  *o       oo©c©c-oc.oooooo©ooco
                                                                                                O £ O
                                                                                                 -30
o^c       ooooocococoooooooc©
gijjg^j.       ©OOOOQOOOQCrOOCOOOOO
 *^O         *.»*****»»»***••***
ou   *       ooooooooocooooooooo
      ©

                            CCCCOOOOOOOGOCO
                                                                                                o  - **
                                                                                                o * o       o
                                                                                                cC°       o
                                                                                                O is. w
                                                                                                c s <
                                                                                                O  - i"
                                                                                                O K, C
                                                                                                 •:? c
                                                                                                C (L*  *
                                                                                                                   OOOC
                                                                                                                                                                  oco
   C K **•
   e ft w
   C  « *
   O 3C C;
    * 3 O
   O L.  -
                                                                                                                   oooooo
                                   -  CCC.COOOOOGOO
                                   -c-oocccooocoo
                                     coo COC-OCOCGO
                                                                                                                                                  oococ-o
   Q-9-       COCCC-OC
                                        OCO *

                                        ooo
                                                     occcccoo
                                                   '
                                                                                                O-=C        CCCCCOOC-OC-COOCCCCOC
                                                                                                0*0-        oooococooooccrocoooc


                                                                                                o i»r
                                                                                                                oosooooooo ©ocooococ
C Z f
 * ™ o
© L;  -
                   cooocococccccocccoc

                   occooococc cocoooooo
                   oooo-cc-c ceo
                                                        c  cooooo
 O^-~       OO©GCOCOCsC©(SoOOOO©©
 o^r;       ooccoocccoooccooC'O©
 o  *s>       ooc-ococcccooocc-ccc©
 OZ'V       OCOOCOCJOOOCOCOCOCO©


       c

 C f* r,       £?CCO©eC-C-OOC©C*CC;GC'OC
 OS'C       CCCCC'CC'C-C-OS'OCOOGC-CO
 O  -1,1       C-COOCOCCOOCGCC-OCG&©


 €2U  *       OOCOC©^'©'^'©£5©S'COOCCCr
                                                                                                                          ee  -3s  •* o
                                        r*1. Kl T»  f J f-.f' ^ f K*i L* *P *
                                      - r;. C-. *s  r; r; r^ r* r. -H »•* ^
   LT  «
c x  s
                                                                                                                 X  E>*'3h't>*  ^*Ot -CiT.^Cil  9* O*  "C»«^Ci5*T *v O •*"

                                                                                                                 pr  r; n «  r; m «
                                                                                                                 r.  f* ?« M  f- t4 r»


                                                                                                                 OOOOOOCsOC-CO*
                                                                                                                                                M r^ r« r»  TV w b" j**!  bi *1
                                                                                                                                                                      occ
                                                                                                                                                                      a  * o
                                                                                                                    eoeoccocccoccccc-coo
                                       - ccc  *"•«"•• v-
«: c  s^
O ™i     •*>
                                                                                                                    oooo r
                   „ ^ r- O
                                                                                                 »- -," tr*
                                                                                              © S U' N
                                                                                              o yj r> t^
                                                                                               - C    U.
                                                                                              O "**
                                                                                              CL O
                                                                                              M Ul
                                                                                              «*• in    m
u»  ct
ft  *-
i-  a. •
                                                                                                  H  LJ
                                                                                                 Ml  &
                                                                                   216

-------
 TIME"   4440,00 HIM OR   74.OO  HRS
UPSTREAM SEMMFNT INFIOU  (IPS/SEC)  t
SEfi.    0     WEI..     I>B    r.UH • »7    mNC,
 NO,   CFS   FT/SF.C  I/SF.C      FT     MR/1.
Q.OOOO  0,0000  0.0000   0.0000  O.OdOO  O.OOOO  0.0000  0,0000   0.0000   I,1100
i:iiH,M7  njn.t>7  ctin.nz   CIIH.D*  r.tm.M  cim.nz  CUN.DZ  CMH.DZ   CUH.DZ   cu»,»z
'       0.049S1 O.OtfOJ  O.QO427 O.OOJM 0.00103 O.OOOS9 0.00037 0,0001"?  0.00007
2




Q
9
1 O
1 V
1 2
« T
* J
1 4
1 3

17
1ft
19
20
At 7. 7V
£ J B , 46
A 1 B , f s t
*?0« 00
i*t* 0 . 04
A21 ,33
A7S , 4 1
A?7.6S
A30 . O3
#•34 ,S4
£42 ,51
A4 2 » 14
449 , 91
661 ,54

9S6. 72
970-3*
983 .94
9«?»87
1 . 16

0.48
0,44
1,05

0.93
0 , 49
1 . 03
0, 47
i , 03
O»B3
0.47
1 .00
O.B7

0, 70
O.B9
0,9,'r,
0,925
0.9',* A
O.92H
0,9.'B
0,929
0,939
0.930
0,930
0,931}
0 ,930

0,930
0 , 9 J J
0.932
O.9.M
O.93P
O.V37
0 . OOO
0,000
0.000
0,000
o, ooo
0,000
o.ooo
O.OOO
o.ooo
o.ooo
0,000
o.ooo
o , ooo
0,000
0.000
o.ooo
o.ooo
0,000
0,000
•.'3.99
7.3.97
24.00

? 1 .0')
23,?*
.'3,a?
73.74
23.49
?3.?t>
?3 . ?(
?3 ,¥1
?? .M
?? i.'fi
1 R . A ]
*5, 41
15,2^
15. SB
O.OOOO
0,0000

o.ooco
o . o'joo
O.OMO
O.OOOO
O. 000(1
O , OOttO
O.onoo
o.oooo
0 . OOOO
0 , f)Oi>0
o.oooo
o.oono
0,0000
o.oooo
o.oooo
o.oooo
o.ooflo
0,0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
o.onoo
0,0000
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
0.0000
O.OOOO
o.onoo
o.ooon
•o.oooo
0,0000
0.0000
o.oooo
0 . 0<»0
o.oooo
o .oooo
o.oono
O.DOOO
o.oooo
0.4000
o.oooo
o.oooo
0,0000
o.uooo
o.oooo
o.onoo
0,0000
0,00(10
0.0000
o , oooo
0,0000
o.oooo
o.oooo
0,0000
0.0000
o.oooo
0,0000
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
O.OOOf)
0,0000
o.oooo
0,0(100
0,0000
o.oooo
0,0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0.0000
0,0000
0.0000
O.QttOQ
0,0000
o.oooo
o.oooo
o.oooo
0.0000
0,0000
0.0000
O.OOCSO
0.0000
o.ooon
0,0000
0,0000
o.oooo
o.oooo
0,0000
0.0000
0,0000
o.oooo
o.oooo
0,0000
0.0000

'M 00
?4 ,OA
24.02
24.02
23.99

S3.P4
23,79
23, #7
i'3.41
73, 4S
'J3.72
22.86
27, AO
15,83
15.72
15.74
J5.A4
0,0000
nttN.n?
0.0*5*3
0,0000
o.ooon

o.oooo
0,0000
o.oooo
i> , oooo
0,0000
o.oooo
0,0000
o.oooo
0,0000
tl , 0«OO
o.oooo
o.oooo
0.0000
0.0000
0,0000
0 . OOOO
0.0000
CUM . fi7
0.049?!
0,5000
0,0000
0,0000
o.oono
o.oooo
0.0000
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
O.OOOP
0,0000
0.0000
ft, 0000
0,0000
o.oooo
0.0000
0,0000
o.oooo
CltH.flZ
O.O1903
o.oooo
0.0000
0,0000
0.0000
I), 000(1
0.001)0
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
O.OOOO
0,0000
0.0000
0.0000
0,0000
o.ooon
0,0000
0,0000
r.uH.n?
0.004J7
I). 0000
o.ocioo
0,0000
o.oooo
o.oooo
0,0000
o.oooo
o.oooo
0,0000
o.onoo
0.0000
0,0000
o.oono
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.ooon
CMK, I>£
0,001*4
0,0000
0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
0,0000
ruiH.oz
0,00103
0,0000
0.0000
o.oooo
o.oooo
0,0000
0,0000
o.oooo
0,0000
0.0000
0.0000
0.0000
0.0000
0,0000
0,0000
0.0000
o.ooon
0,0000
0.0000
0.0900
0,0000
cun.oz
0,000f.9
0,0000
0,0000
0.0000
o.oooo
0,0000
o.oooo
o.oooo
o .0000
0.0000
o.oooo
0.0000
o.oooo
0.0000
0,0000
0,0000
0,0000
0.0000
o.oooo
0,0000
0,0000
CUM.fiZ
0,00037
0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
0,0000
0.0000
0,0000
o.onoo
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
0.0000
0,0000
0,0000
CUM.DZ
0.00019
o.oooo
0,0000
o.oooo
o.oooo
0,0000
0.0000
0,0000
o.QooQ
o.oooo
0,0000
0.0000
0.0000
0.0000
0,0000
0,0000
0.0000
0,0000
0,0000
0.0000
1.1300
CUM . B2
O.OOO07
0.0000
0.0000
0.0000
0,0000
0,0000
o.oooo
0,0000
0 .0000
0,0000
0,0000
0,0000
0.0000
0,0000
o.oooo
0,0000
0,0000
0,0000
0.0000
0,0000

-------
   © SM r*
   « e o
•• * O
 -S> O
*»u  .
               ooooooeooooooooo ooo
               OO&OOOOOOO£»OOOOOOOO
               OOOOOOOOOOOOQOOOOOQ
                                                                                              o  FM rv
                                                                                              O  a o
                                                                                              O*o
                                                                                              -*  c o
               oooo-ooooooooooooooo
               OOOOOOOOQO OQQ«3>OOOOO
               oooooooooo ©oooooooo
               oooooooooo ©OOGOOCSOO
   O *» ©*
   e o -
   O  " C
   O C 45
    • a o
   O V  *
                 OOOOOOOOOOOOOOOOGOO
              oooooooooooooooo^oo
O r- o
o a •>»
c  * c
o c o
 * 3 O
                                                                                                          oooooooooo  ooooooooo
                                                                                                          ooocoo oooc  ooooooooo
                                                                                                          OcOOOOOOOcOOO  G  OOOOO
   O ** K
   e ea K
   c  « c
   o x c
    • D c
   o u  •
         o

   o ** e*
   O G. f.
   o  - c
   o c c
    • a o
   o o  •
   O B O
   o  » •-
   O X O
      —
              QCOCOOCKOOOOOOOCOCO
              ceOC<^C-O«iOOOC.Oc:O©OOC>
              ocoooeooooooooocooo
              ©OCOOCCJOOOOOOQOO  ooo

              ocooooooooooooooooo
o
o
o
o
o
o
e
c
o
o
c
c
c
c
0
c c
0 C
c o
o o
o o
o o
e o
c o
00
oo
O Q
o c
c c
o o
0 C
e o
c o
c o
o o
e> o
a o
c o
0 C
c o
0 O
o es
o o
O 0
0 C
o c
C 0
C 0
c o
o o
o o
c o
c e
C 0
c o
o o
O 0
C 0
c c
o c
o o
c o
c o
c o
O G
C 0
C 0
e c
o c
o o
o o
oc
oc
o e
0 O
0 0
o
o
o
o
c
e
c
c
c
o
c
c
o
o
o
o
o
o
o
o
o
o
c
o
o
c
o
o
c?
c
o
c
c?
o
c
c
c
o
c
c
c
c
c
o
o
o o
c o
o o
o o
o o
o c
c e
c o
o o
o c
o c
o c
e c
0 0
C o  ooo  ooooocoocooo

               oooo  oooooo *s«soo©o ooo
               OOOC-OOGC.OO
               oc-cccooooc
               OOOOOOOOOO
                                                                                                                                                 a  ooooo
                                                                                                                                                 ooocoo
                                                                                                                                                 oGcoOO
                                                                                                                                                 OOO  OOO
                                                                                                             OOOOOOOOOO
                                                                                                                                      •  ooocoocco
                                                                                                                                      'ooooeooco
   O K' f.
   o a fi
   o  * ^
   o c c
                                                                                              O 3E  C
                                                                                                • 3  O
                                                                                                           cocoooccoo
                                                                                                           ccccce "oco
                                                                                                           QOOC OOOCOO
   O »Ni rt
   o c c
   O  - 0-
   0 $ *•

   o C  -
                                                              COO
                                                              ooc
                                                                                            O J*4 K
                                                                                            O c O
   o * «•
    -so
   o c  -
         o
   c  - tr,
   o x <
    * — C
   O (J  -
                 ocooooeooc occcocc  cc
                 c-ococccocoeocccocoe
              oocococococoooco  e-oc
                                                -
              c ocooe ccccc-oc  ooo  wC>c
              crocoooc ocococ  oc-oooc
                                                                                               O  !"£ **
                                                                                               o  c r*[
                                                                                               C   - Ch
                           ceocco
               oooo ooc-ooo

               oooooooooo
                                                                                                                                        OOOCGOCCO
                                                                                                                                        co^c-cceoo
                                                                                                                                        occc-oooco
                                                                                                                                        oooooocoo
               ococ cccccc  occcc-ooce
               cccoocc-coo  coco-s-occo
               C'OCOC-COOOC  OOC2OOOCOO
               OQC?O COCOQOCOCOOOCOO

               "oooccecoo  -ffic-cococroc
   u « t-
   UJ  * (^
   at se
   o e
   A

   UJ
   •fi
   LJ
                                                     0020  coo
                                                                                                                         OOOOOC C'CCOC'COOQ
                                                                                                                         coc-cc-o COC-G.COOOO
                  OoC"OCoi:ocooccooo  coo
                                                                                           O  (/) !
                                                                                            «  £&

                                                                                           K  ™l
                                                                                           «  O ^ X
                                                                                           c  —    »
                                                                                           r;      * u;
                                                                                               *- — ' in
                                                                                           O  Z -jhi **.
                                                                                           O  UJ > k-
                                                                                            M  C
                                                                                            *o  u
                                                                                            •W  Ifl
                                                                                                                                           OOCOOGCOO
                                                                                                            ih^^SED  W IT*  
-------
  O  !>• I*-
  o  e o
  o   * e
  *«  * o
    *sa e
                 OOQOOOOOOOO©  a o o o o o o
                 OOOOOQOOO©o oo o o o o © o
                 OOOOOOOCOOOCOOoOOOOO
fit  * Q        ©O0OOOOOOOOOOOOOOOO



** U  *        OOOOOOOOOOOOOOOOOOO
      3C  O
    • 30
                  OQQOOO ocoo  ©ocooooo©

                  o  o © a-  o o o ©OOOG-OQGOOG-O
o r*  *x
C a  «
e   -  o
ore
 - Z3  O
C U   •
ooooooooooooo o G  ooco
QCO-eoooGOooooGo  oooo
ooooooocoooooooc  coo
©O-OCOOOOO©OG-O oooooo

o © © o © c -©-  oooooo oooooo
                  ©OQCOC.QOQOOC  OOOQCO<5
                  •OGOOOOO GOOOCOCOOOGO

                  oooooo ooooooooooooo
                                                                                                 O « «
                                                                                                 C  * O
                                                                                                 ££ K 0
                                                                                                  * S c
                                                                                                 O U  '
                OCOC-OC-OCOOOOO  c© ©CO©
                ococococ©c ©oo  ©00000
                ©c-OGoeooo© oco  cocoeo
                ©QOCOOOCOQGOQ  o o © Q  Q o

                OoOCOOOOOO OOO  G O O O  O O
   O **J fr
   O i- k
   o  - o
   ON K
   coo
   o  • ••
   O £ ©
    * ^ c
   o c-  •
                  ooooooo ooooooooooco
                  OCOCOOO GOC  OC-  O©OOO©O
                  ooocooococooooooooo
                  oooooo ooooo©  o©o©o©o

                  OOOOOO OOOOOOOOOOOCO
                  oococc ococooooococo
                  ooooooo oocoooooooc-o
C  rj  fr
o  a  r.
o   -  o
                                                                                                 oco
                                                                                                  * 3 O
                                                                                                 o u  -
ococ©c©oooooooooc-oo
ocficocccoc-oooeoooc-o
ocoeOcocOe  ooooococ©
OOOO©OOOOOOQ© o OO OO©

oooooooooo  oooo o  coo©
                OOOQOOOOOOOOO QOO  ooo

                ooooooco©cooooooeco
                  cooococccccoccoooco
                  coooc©coooc?oooc "-'.coo
                                      -
                  c ccoooooc  ©GO ©oooocc
   0*0
    - 3 C
                                                                                                 c c -e
                                                                                                 G.  » -^
                                                                                                 C 3C C
                                                                                                  -so
                                                                                                 O A 1^
                                                                                                 O  • f
                                                                                                 o c c
                                                                                                  -3 C
                                                                                                 o t-i  *
                ooooc©c  ooococ c Oc
                                                                                                                 eo-ccc-oecc  ccc-ocococ
                                                                                                                 cc?c?oe©ccooccc  ceococ
                                                                                                                 c cCooo^^^c-  GCCOC Q-COO
                                                                                                                 •CQCOOOOOC©  COC  OC OOOCf

                                                                                                                 O GC-QC-OOGO-Q  CJO^GO QCSOO
                                                                                                                 ocoo ooco-co  OCOOOOGC©
                                                                                                                 oococoocoo  cce  COG  oc©
                                                                                                                 eooocooeoo
   o -A: <
   O  "t"
                  CCCOG-CCCOCSC-©COC©COC
                                                                                                  o x:
                                                                                                   -r
                                                                                                  O U
                                   -  r,  r * *r *« •
                                                      - -* r* ce e% EC
                                                                                                                 <•-.  r* ". r.  TV c^ r* c. "••; r^ r; f^ r; j
                  © ©cocc
a _j

         ta       o o c o —• *-•  *-  **• t^ 4 f * r, r- r* r* ri r^  m K

oe o c x        ».*..  +   -*...»*..*...
e.*-    »       oocooococococo'coeoc-
   u.
Z X
   *» — 6*       c««ii-'rtro
05TU.S,        .***.*
OU>H-       »<*^*-iOC*«*i
 * C    I*.
o «
a 0
<4} yj             l»T CD *^ fl (N IX  i
•T6S    <«       ^ps.(?,Eh«r»-
      O i*.        *,.»**


   •C             (^- ®* &• O G ***
a  lil             a^ *" "/i MS -C -C
Lkt 6e
x *•   -  «


>- fit- M* X
                                                                                               !»* M    U
                                                                                                                           PN m irt r* -* x rJ  -c
                                                                                                                                            '
                                                                                               It  UJ
                                                                                               lu £
                                                                                                                                                         m  *o f\ oo 0" o
                                                                            219

-------
             UNE"    4BOO.OO HIM OR  BO,00 MRS
            UPSTR£*H SEBIBEH1 l«FI Oy (IHS/SFT.I
            SEfi.     0     Met ,     r.r,    niiH.n?
             »*o,    crs   Fir/src  I/SEC     Ft
                                            0,0000  0.0000  0,0000  0,0000   0,0000   0.0000  0,0000  O.OTOO  0,0000  1.0800
                                            am.n?  riiH.oz  run. fir  nm.nz   r,u«,nz   CIIH.DZ  euH.BZ  curt.oz  CUH.BZ  cuw.liz
                                           O.Ofcf.*? 0,049?! 0.01903 O.O0477  O.CIOIA4  Q.0010J O.OOO59 0.90O37 0,00619 0.O00O7
2
3
4
S
&
V
a
 , \ rt
42J.43
67A.71
i99,48
V01 .09
900.94
»O?.5i>
<5,9?
1.13
1.14
0,47
0,43
1,05
0. At
0,91
0.4H
1.02
0.4A
1,02
o.fl;'
0.64
0,97
0,64
0,74
0,65
O.H2
O.B90
O.B90
O.B9J.»
0 , B9S
O.B9H
0,901
0,904
0.90B
0,911
0,914
0.91A
0.919
0.971
0,*?J
0.9?4
0.92A
0.9?/
0.97R
0,97,9
0.01)0
0,000
0.000
0.000
0,000
0.000
0,000
0,000
u.ooo
o.ooo
o , ooo
o.ooo
0,000
0,000
0,000
0,000
o.ooo
0,000
o.ouo
*.'4,1A
74.79
3 1 . 3 S
74,17
«"4««A
73. 9S
23. US
7,1 , HP
7.1, V?
S3 . P9
73. B4
73,91
I'l.fll
J3.72
"»>3 .44
It. 4?
1A.4D
1£.50
IA.4H
O.OOOO
0.0000
0,0000
o.oooo
o.oooo
O , OftOO
o , oooo
0,0000
0,0000
0,0000
0,0000
0,0000
0 . OOOO
0,0000
0,0000
o.oooo
0.0000
o.oooo
o , o^i'^o
o.oooo
0,0000
0,0000
0,0000
o.oooo
o.oooo
o.oooo
o.oooo
0.0000
o.oooo
0,0000
0,0000
o.oooo
0,0000
o.oooo
O.OOOO
o,oof>o
0,0000
o.oooo
0 . OtmO
0,0000
0.0000
0,0000
o.oooo
0,0080
0.0000,
0,0000
0 , OOOO
o.oooa
0,0000
o.oooo
(S.IJOOO
o.oooo
o.oooo
o.oooo
G.OQfio
0,0000
o.oooa
f* , ijOOO
0 P 0 O fff'"
o.ooot
o.oooo
0,0000
o.oooo
0,0000
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
o.oooo
0,0000
o.oooo
0,0000
O.OOOft
<3,n[(OO
'(,(1000
O.OOOO
0,0000
0,0000
o.oooo
4. OOOO
0.0000
Q,OO?Q
0,000-3
o.oooo
0,0000
0,*JOO<1
0.0006
O.OOO'i
0 , 00f*0
0 . (10 )0
o.ooo.i
o. oooo
0,0000
0,0000
0.0000
o.oooo
0,0000
0,0000
O.OOflO
o.oooo
0,0000
0,0000
o.oooo
o.oooo
0,0000
o.oooo
ft. oooo
0.0000
o.oooo
0.0000
Q.oooo
0,0000
0.0000
O.QOOO
0,0000
0,0000
0,0000
0,0000
0,0000
0,0000
O.OOOO
o.oooo
0.0000
o.oooo
0,0000
0,0000
0,0000
Q.OOOO
o.oooo
0,0000
o.oooo
O.oooo
0,0000
O.OOOO
o.oooo
Q.OOOO
o.oooo
0,0000
0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
o.oooo
o.oooo
0,0000
o.oooo
0,0000
o.oooo
0,0000
0 . OOOO
0,0000
0,0000
0,0000
o.oooo
0,0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
0.0000
0.0000
o.oooo
0.0000
o.oooo
0.0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
o.oooo
0.0000
0.0000
o.eooo
o.oooo
0.0000
0.0000
0.0400
0.0000
0.0000
o.oooo
0.0000
0.0900
0.0000
0.0000
o.oooo
ro
o
 TIME*   4BAO.OO KIN OR  P1.00 MRS
OPSTRE&H SEDlttENT IMF I OU 
-------
             riHE»   4920,00 HIM OR  fl?,00  MRS
            UPStREIWI SOINENT SNFi.PM 7   nMH.D7  CMH.IIZ  cim.n?   Kim, n  CIIH.BI  CUH.DZ  cun.oz  CUH.BZ
O.O^SA? 0.049?!  O.O19O3 0.004S7 0.001*4 0.0010* O.OOO59 0,00037 0,0001? O.OOO07
KJ
2
3

5
4
7
B
V
10
11
12
13
14
15
14
17
18
19
20
57:1.38
575.21
S'/S.SO
5B2, 18
SB / . HH
615,64
ti\n,S9
B8B.24
HB9.74
889,60
890.79
0,¥H
l.U

0,47
o. tz
1 ,04
O.AI
0.91
0, 4fl
1.02
0.1A
1 .01
!>,8l
O.fiS
0.9A
0.84
0,7,1
0»*4
0,81
O.HHO
O.BBO
O.HH?
O.B8S
0.8H7
0.890
a. fit A
0.895
O.B9R
0.901
0.904
0.707
O.910
0,913
0.91A
0,918
0.720
0,93?
0.9S4
0.001
0,000
0,000
o.ooo
0,000
0,000
0.000
0.000
0,000
0,000
o.ooo
0,000
0.01)0
O.OOd
n.ooo
'" .000
o,o«>o
0,000
0,000
"'4.AO
34 ,??
J4.57
74, M
?4,?,1
?4.07
?S»93
?S.90
i!3»91
?S,flA
Vl.Hl
Z^.90
:'i,«^
^3,77
^S.73
1 A , P 7
1A.SB
l*«il
14. A3
0,0000
0,0000
o.oooo
0,0000
n.oooo
O.QOOd
O.OQOO
0,0000
o.oooo
o.oooo
O.OOOO
O.OtiOO
(J.OOJIO
0,0000
o.oooo
O.OOQO
(5.0000
0,0000
0.0000
o.oooo
o.nooo
o.oooo
0,0000
o.oooo
o.oooo
ft, 0000
0,0000
o.oooo
0,0000
0,0000
0,0000
o.oono
o.oooo
0 , 0000
0.0000
0,0000
O.oono
0.0000
0.
0,
0.
0,
0,
0.
0.
0,
0,
0,
0.
0,
ft.
0,
0,
0.
I),
0,
0,
oooo
0000
0000
oooo
0000
oooo
oooo
OOOO
oooo
oooo
OOOO
OOOR
onoo
OOOO
0(K>0
oooo
OOOO
oooo
oooo
0,0000
0.0000
0.0000
0.0000
0,1*000
0,0000
o.oooo
o.ooon
0.0000
0,0000
o.oooo
0,0000
0.0000
0.0000
o.oooo
0,0000
fl-QOOO
0,0000
o.oooo
0,0000
0,0000
0,0000
o.oooo
0.0000
0.0000
U.00OT
0,0000
o.oooo
0,0000
0,0000
0,0000
0,0000
o.oooo
0.0000
o.oooo
0.0000
o.oooo
0,0000
o.oooo
0.0000
0.0000
0,0000
0,0000
0.0000
0.0000
o.oooo
Oi &000
o.oono
0,0000
0.0000
0,0000
0.0000
0.0000
0,0000
o.oono
0,0000
0.0000
0.0000
0,0000
0,0000
O.OOOO
0.0000
0,0000
0.0000
0,0000
0.0000
0.0000
0.0000
0,0000
0.0000
o.oooo
0,0000
0.0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
o.oooo
0,0000
o.oooo
0,0000
0,0000
0.0000
O.OOOP
0,0000
0.0000
0,0000
0.0000
0,0000
o.oooo
0,0000
o.oooo
0.0000
0,0000
o.oooo
0 ,00fit
o.oooo
0,0000
0,0000
0.0000
O.OOGO
o.oooo
0.0000
0.0000
0.0000
o.oooo
0,0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . OOOO
0,0000
0.0000
o.oooo
0.0000
0.0000
0,0000
0,0000
0.0000
0.0000
0.0000
0.0000
0 , OOOO
0.0000
0 . OOOO
0.0000
0.0000
o.oooo
0.0000

-------