United States Environmental Protection Agency National Risk Management Research Laboratory Research Triangle Park, NC 27711 Research and Development EPA/600/SR-97/058 July 1997 SEPA Project Summary Comparison of CFC-114 and HFC-236ea Performance in Shipboard Vapor Compression Systems D. T. Ray, M. B. Pate, and H. N. Shapiro In compliance with the Montreal Pro- tocol and Department of Defense di- rectives, alternatives to the refrigerant 1,2-dichloro-tetrafluoroethane (CFC-114) are being investigated by the U.S. Navy and the U.S. EPA for use in shipboard chillers. The refrigerant 1,1,1,2,3,3- hexafluoropropane (HFC-236ea) has emerged as a candidate for drop-in re- placement. A computer model was developed for comparing these two refrigerants in a simulated 440-kW centrifugal chiller system. Equations for modeling each system component were developed and solved using the Newton-Raphson method for multiple equations and un- knowns. Correlations were developed for CFC-114 and HFC-236ea boiling and condensing coefficients taken at the Iowa State Heat Transfer Test Facility. The model was tested for a range of inlet condenser water temperatures and evaporator loads. The results are pre- sented and compared with data pro- vided by the Naval Surface Warfare Center (NSWC) in Annapolis, MD. The experimental data provided by the NSWC sufficiently validate the model, and the simulation model pre- dicts that HFC-236ea would perform fa- vorably as a drop-in substitute for CFC- 114. Several recommendations are dis- cussed which may further improve the performance of HFC-236ea in Navy chill- ers. Recommendations include adjust- ing the load of the evaporator to achieve positive gage pressure, use of a purge device, use of a variable speed com- pressor, further testing with azeotropic mixtures, and use of high performance tubes in the heat exchangers. The work represented by the report was funded by the Department of Defense's Strategic Environmental Re- search and Development Program (SERDP). This Project Summary was developed by EPA's National Risk Management Research Laboratory's Air Pollution Prevention and Control Division, Re- search Triangle Park, NC, to announce key findings of the research project that is fully documented in a separate report of the same title (see Project Report ordering information at back). Introduction Background Fully halogenated chlorofluorocarbons (CFCs) are manufactured chemicals with properties that make them useful for such applications as aerosol propellents, foam blowing agents, solvents, and refrigerants for automotive, residential, and commer- cial applications. CFCs became popular in part because they were chemically stable, nonflammable, and nontoxic. Ironically, the chemical stability of CFCs is the cause for their present perceived threat to the environment. Scientific evi- dence suggests that the harmful alterations of the Earth' s atmosphere occurring from the use of CFCs are of regional and glo- bal proportions. As early as 1974, con- cerns about the potential harmful environ- mental effects associated with the use of CFCs were raised when it was suggested that the chlorine from these compounds could efficiently destroy stratospheric ozone. Additionally, there is a growing con- sensus among scientists that CFCs may contribute to global warming. ------- CFC-114 has been in use on Navy ships since 1969 and has demonstrated excel- lent reliability. However, design improve- ments have often lagged behind commer- cial advancements in compressor tech- nology, advanced heat transfer surface technology, and intelligent control system technology. Trichlorofluoromethane (CFC- 11), used extensively on commercial ships, was found to be unsatisfactory to the Navy because of problems unique to surface craft and submarine applications. For ex- ample, CFC-11 decomposes at high tem- peratures causing toxicity problems on submarines as the air is recycled in high- temperature air purification equipment. In contrast, CFC-114 remains stable at high temperatures. Other requirements unique to the Navy include the need for small inventory and small components due to space con- straints. Energy efficiency has been a low priority in the past, but with shrinking de- fense budgets, it has become more im- portant. Additionally, surface craft and sub- marines need to operate silently in tactical situations, and recycle air in living spaces. Cooling systems must be able to operate at as low as 10% of maximum capacity during normal peacetime operations yet handle dramatic increases in load when firing weapons in combat or training situa- tions. Fully halogenated refrigerants, such as CFC-114, generally exhibit the best compatibility and impose the least restric- tion in choice of materials; a suitable re- placement must display similar material compatibility. Other requirements for a suit- able replacement include meeting safety and environmental standards for toxicity, flammability, ozone depletion potential, and global warming potential. A need exists for a suitable near-term replacement for existing equipment using CFC-114 . Because industry attention has been focused on CFC-11 and dichlorodif- luoromethane (CFC-12) replacements, the Navy must devote substantial resources to address the CFC-114 problem. Current potential alternatives for CFC-114 are not well developed, and significant modifica- tions to system equipment will likely be necessary in order to accommodate them. At one time, 1,1,1-trifluoro-2,2- dichloroethane (HCFC-123) and 1,1,1,2- tetrafluoro-2-chloroethane (HCFC-124) were leading alternatives for CFC-11 and CFC-114, respectively. When it became apparent that these HCFCs would also be phased out as environmentally unsuitable, the EPA began investigating "backup" al- ternatives. As a result, a series of propanes have emerged as candidate replacements for CFC-114. HFC-236ea is a promising candidate for replacing CFC-114 for several reasons. First, a commercial production route is available for large quantities through the use of hexafluoropropylene. Second, ini- tial modeling conditions appear favorable as a drop-in substitute, with modeled per- formance being within 1% of CFC-114 and operating capacities, pressures, and temperatures matching closely. Flamma- bility tests, materials compatibility tests, and oil miscibility tests appear favorable. Acute inhalation test results indicate lower acute toxicity than CFC-114. In addition, estimates predict that HFC-236ea has a short atmospheric lifetime. Objective The objective of this work is to evaluate HFC-236ea as a potential near-term re- placement for CFC-114 in shipboard chill- ers using a computer-simulated system with data from the Iowa State University Heat Transfer Test Facility and also using data provided by the NSWC. With the information gathered, appropriate design recommendations to accommodate the use of HFC-236ea in shipboard chillers are offered. Scope A computer program has been devel- oped that simulates the performance of a 440-kW capacity, single-stage, centrifugal, chilled-water air-conditioning plant. The design conditions shown in Table 1 are based on the design of a typical air-condi- tioning plant in use on Navy surface craft and submarines. Given the entering and leaving tem- peratures of the chilled water, the enter- ing temperature of the condenser water, and the flowrates of the chilled water and condenser water, the model predicts the required compressor power and the re- frigerant saturation temperatures in the heat exchangers. With knowledge of fluid properties and tube geometries, the per- formance of the system with different re- frigerants and enhanced surface tubes can be compared under similar operating con- ditions. For this study, the model is used to compare refrigerants CFC-114 and HFC-236ea using 10.23 fins per centime- ter (fpc) tubes in the condenser and evapo- rator. The results are presented with de- sign recommendations. Model and Experimental Results Comparison The NSWC, in cooperation with the U.S. EPA, has tested CFC-114 and HFC-236ea in a 440-kW laboratory centrifugal chiller representative of those used in the U.S. Navy's fleet of surface craft and subma- rines. The laboratory chiller is fully instru- mented. Modeled and measured performance values were compared for both refriger- ants. The measured compressor power provided by the NSWC was calculated from measurements of torque and angu- lar velocity of the compressor shaft. The modeled value of compressor power is the rate of work performed directly on the fluid and does not include the mechanical or heat losses as the power is transferred from the compressor shaft to the impeller and ultimately to the working fluid. A lin- ear relationship was found to exist be- tween the shaft power and the power trans- ferred to the working fluid for the data provided by the NSWC. The correlation was applied to the results of the model as an assumed mechanical efficiency. Even with an efficiency factor applied, the model underpredicts the amount of compressor power required to meet the specified load by 6 to 26%. This could be related to the use of inlet guide vanes to the compressor which are not modeled in this study. Table 1. Simulated Design Conditions Component Design Condition Value Evaporator Evaporator Evaporator Condenser Condenser Chilled Water Flowrate Entering Chilled Water Temperature Leaving Chilled Water Temperature Water Flowrate Entering Water Temperature 28.4 L/s 10.7°C 7.0°C 31 .5 L/s 31 .4°C ------- A comparison of the system coefficient of performance calculated using NSWC's measurements and that predicted using the model developed in this study shows that the model overpredicts the coefficient of performance for HFC-236ea by as much as 38%. The result is consistent with what one would expect when comparing mod- eled with measured results. Since models often make use of simplifying assump- tions, the results tend to be idealized. One would expect to see the actual re- sults to be less favorable than modeled results. A comparison of modeled and mea- sured refrigerant temperatures in the con- denser shows that the model predictions compare well with CFC-114 data; how- ever, it underpredicts the condenser tem- perature for most HFC-236ea data by as much as 9°C. This difference could be caused, in part, by poor heat transfer in the condenser with HFC-236ea. If this were the case, it would take a higher condenser temperature to overcome whatever ther- mal resistance is present. More compres- sor power would be required to provide this additional temperature lift, resulting in lower system performance. Because the refrigerant temperature in the condenser is closely tied to the condensing coeffi- cient by use of the log mean temperature difference equation for heat transfer in the condenser, one would also expect to see a difference in a comparison of the mea- sured and modeled condensing coeffi- cients. As the condensing temperature in- creases while entering and leaving, cool- ing water temperatures remain constant and the log mean temperature difference increases. This would result in a modeled decrease in the condensing coefficient. An example of when conditions may exist in the condenser that hamper heat transfer is when noncondensable gases, left unpurged, accumulate in the upper vapor space of the condenser. This is a plausible explanation for the differences in condenser saturation temperatures ob- served. For HFC-236ea, both the mea- sured and modeled evaporator tempera- tures are near 2°C. The corresponding saturation pressures for these saturation temperatures are less than atmospheric pressure. This could cause nonconden- sable gases to leak into the evaporator due to negative gage pressure. These gases would migrate and collect in the condenser and could significantly degrade the performance of the condenser and the entire system. If air, in fact, was present in the condenser, it would drive the out- side heat transfer coefficient down, result- ing in a high condenser saturation tem- perature. A comparison of modeled and mea- sured cooling water temperatures leaving the condenser shows that modeled val- ues are within 0.2°C of measured values. This is consistent with trends observed for condenser capacity. This is expected, since the rate of heat transfer and the temperature of the water leaving the con- denser are the two variables in the water- side heat transfer equation for the con- denser. A comparison of modeled and mea- sured evaporator temperature shows that modeled and measured boiling coefficients compare well despite some variance. One would therefore expect to see a variance in a comparison of boiling coefficients since these variables must balance in the log mean temperature difference equation for the heat transfer in the evaporator. A comparison of modeled and mea- sured evaporator capacity shows that the values match because the capacity is cal- culated based on three common inputs: entering and leaving evaporator water tem- peratures, and evaporator water flowrate. Thus, the evaporator capacity remains fixed as long as these three input values are held constant. A comparison of modeled and mea- sured refrigerant flowrate shows that the model consistently predicts the flowrate for both refrigerants within +5%. This sug- gests that the enthalpy differences also compare favorably since the rate of heat transfer in the evaporator is constant and is equal to the refrigerant mass flowrate times the enthalpy difference across the evaporator. Comparison of CFC-114 and HFC-236ea Performance The model is used to predict the perfor- mance of both refrigerants, CFC-114 and HFC-236ea, through a range of operating conditions. This is done by using the fleet design point as the default and varying one parameter at a time over an appropri- ate range to see the effects on the sys- tem. The results yield additional insight as to the possible suitability of HFC-236ea as a drop-in substitute for CFC-114. Entering Condenser Water Temperature As the Navy operates its fleet around the world, ships encounter a wide range of condenser water temperatures because sea water is used directly in the heat exchanger to remove heat from the work- ing fluid. Chillers for Navy ships are de- signed for a condenser water temperature of 31.4°C; however, temperatures encoun- tered may range from -1.3 to 35.3°C de- pending on where the ship is operating. Since heat transfer in the condenser is driven by the temperature difference be- tween heat transfer fluids, a condenser water temperature that is too high could hamper the performance of the condenser and subsequently the entire refrigeration cycle. Thus, the entering condenser water temperature is significant to the perfor- mance of the overall system. The predicted power required to drive the compressor more than doubles for both refrigerants as the water tempera- ture entering the condenser increases from 16 to 38°C. The trend is expected since better heat transfer occurs as the tem- perature of the cooling water entering the condenser decreases. The efficiency of the refrigeration cycle should thereby im- prove, resulting in less power input re- quired to the compressor. Additionally, the model predicts that HFC-236ea used as a drop-in substitute for CFC-114 may result in energy savings. At the design point of operation, the predicted power required to drive the compressor using HFC-236ea is 91.4% of the power required using CFC- 114. The model predicts that, for any cool- ing water temperature, the power required for a refrigeration cycle using HFC-236ea as a drop-in will be significantly less than the same cycle using CFC-114 as the working fluid. The predicted savings in power consumption by using HFC-236ea at the design point of operation is 550 kW. The NSWC data for CFC-114 show nearly constant compressor power over the range of entering condenser water temperatures. The data for HFC-236ea show significant scatter. Both the CFC- 114 and HFC-236ea measured values of required compressor power are above the predicted values for the range of entering condenser water temperatures. The coefficient of performance is pre- dicted to decrease as the inlet condenser water temperature increases. Additionally, at the design point of 31.4°C, the pre- dicted coefficient of performance for HFC- 236ea is 4.25 compared to 3.91 for CFC- 114. The model predicts better perfor- mance using HFC-236ea over the range of condenser water temperatures simu- lated. The measured values of coefficient of performance for both CFC-114 and HFC- 236ea are less than predicted values. As the entering condenser water temperature increases, the measured and predicted values of the coefficient of performance move toward better agreement. ------- Modeled trends predict that both perfor- mance indicators—compressor power re- quirement and coefficient of performance— improve as the inlet condenser water tem- perature decreases from 38 to 16°C since the required power consumption decreases and the coefficient of performance in- creases. These are expected trends since lower condenser water temperatures pro- vide a higher temperature difference be- tween the heat transfer fluids, resulting in increased cooling potential in the con- denser. HFC-236ea is also predicted to outperform CFC-114 over a range of inlet condenser water temperatures, partly be- cause measured heat transfer coefficients for HFC-236ea were found to be greater than those of CFC-114. The predicted values for CFC-114 and HFC-236ea saturation temperature in the condenser for a given temperature of the cooling water entering the condenser are nearly identical. The measured values of condenser saturation temperature for CFC- 114 agree with the predicted values, while the HFC-236ea data show the same trend but are generally higher than predicted. The predicted saturation temperature for HFC-236ea in the evaporator as a func- tion of the entering condenser water tem- perature is higher than predicted for CFC- 114 over the range of entering condenser water temperatures. The HFC-236ea data compare well with predicted values, while there appears to be less agreement be- tween measured and modeled values for CFC-114. The evaporator capacity is compared with the temperature of the water entering the condenser. Since the evaporator ca- pacity is fixed by holding the water-side conditions constant, the predicted capac- ity values for HFC-236ea and CFC-114 are identical. Scatter is shown in the mea- sured values of HFC-236ea, while the measured values of CFC-114 agree well with predicted values. The condenser capacity is also com- pared with the entering condenser water temperature. Predicted values for CFC- 114 and HFC-236ea are nearly equal. For both CFC-114 and HFC-236ea, measured capacity values are higher than predicted, with significant scatter observed in the HFC-236ea data. The refrigerant mass flowrate is com- pared with the temperature of the water entering the condenser. The measured and predicted values for CFC-114 are in close agreement, while there is significant scatter in the data for the flowrate of HFC- 236ea. As condensing water temperature increases, an increasing trend is predicted in refrigerant mass flowrate. Entering Evaporator Water Temperature In this situation, the evaporator load is defined by a constant chilled water flowrate of 28.4 L/s, a chilled water inlet tempera- ture of 7°C, and a chilled water exit tem- perature ranging from 9.2 to 12.6°C. Addi- tionally, the temperature of the water en- tering the condenser is held constant at 31.4°C, and the flowrate of the condenser water is held constant at 31.5 L/s. As the cooling load is systematically varied, the effect on various performance indicators may be observed. As the temperature of the chilled water returning from the load and entering the evaporator increases while other design operating conditions remain constant, in- creasing power is required to drive the compressor. This is an expected trend because, as the water temperature enter- ing the evaporator increases, the load is increased in the evaporator. In order to accommodate this increased load, either the refrigerant mass flowrate must increase or the enthalpy difference across the evaporator must increase in order to pro- vide enough heat transfer to maintain a constant chilled water exit temperature. The result is the need for more power to drive the compressor. A comparison of HFC-236ea and CFC-114 shows that, for the compared range of chilled water tem- peratures entering the evaporator, HFC- 236ea always required less compressor power than CFC-114 when modeled as the working fluid. A comparison of the coefficient of per- formance as a function of chilled water temperature entering the evaporator shows that as the temperature increases the co- efficient of performance decreases. This means that as temperature increases, the rate of increase of power required by the compressor is greater than the increase in cooling capacity. Additionally, the coef- ficient of performance for HFC-236ea is higher than that for CFC-114 for the range of temperatures modeled. Design Recommendations One way to improve the performance of the fleet's 440-kW chiller and allow the use of HFC-236ea as an alternative work- ing fluid is to reduce the load on the evaporator by increasing the temperatures of the chilled water entering and leaving the evaporator by a few degrees. This would allow the refrigerant temperature in the evaporator to rise slightly, which, in turn, would result in an evaporator pres- sure that is above atmospheric pressure. With a positive gage pressure in the evapo- rator, there is less possibility of noncondensable gases and contaminants leaking into the system where they can accumulate in the condenser and reduce performance. The low evaporator tempera- tures and high condenser temperatures reported by the NSWC suggest the possi- bility of this occurrence. This solution avoids the cost of redesigning system com- ponents. A purge device at the high point of the condenser would allow purging of noncondensable gases that might accu- mulate there. If noncondensables are a persistent problem, the purge unit may be malfunctioning or the system may have an air leak larger than the purge unit can handle. A variable-speed compressor would eliminate the need for hot gas by-pass or the extensive use of inlet guide vanes in the compressor to control the refrigerant flow. A variable-speed chiller would allow maximum system performance to be real- ized over a broad range of operating con- ditions, resulting in maximum energy sav- ings. Another possible improvement might be to mix HFC-236ea with other non-CFC refrigerants to form an azeotropic mixture with properties that allow the saturation point in the evaporator to stay above at- mospheric pressure. The mixture could be chosen so as to maintain the desired properties of HFC-236ea. Additionally, better performance in the Navy's fleet air-conditioning units could be realized by investing in commercially available high performance heat exchanger tubes. While not reported in this study, Turbo B tubes were simulated with CFC- 114 and HFC-236ea under fleet design conditions and were predicted to perform significantly better than 10.23 fpc tubes in both the evaporator and the condenser. Finally, the model predicts that HFC- 236ea used as a drop-in substitute for CFC-114 without any design modifications may result in energy savings. The model predicts that, for any set of conditions, the power required for a refrigeration cycle using HFC-236ea as a drop-in will be sig- nificantly less than the same cycle using CFC-114 as the working fluid. The pre- dicted savings in power consumption by using HFC-236ea at the design point of operation is 8.6%. If HFC-236ea is to be used only as a near-term replacement, it may be appropriate to use it without mak- ing any significant design changes to the system. ------- Conclusion The Montreal Protocol began a world- wide drive to eliminate the production of CFCs and other chemicals which are thought to be harmful to the environment. As a result of the restrictive legislation that followed, there is an immediate need to replace CFC-114 which is used exten- sively in U.S. Navy surface craft and sub- marines. Preliminary research conducted by the EPA suggested that HFC-236ea might perform suitably as a near-term drop- in replacement for CFC-114. However, at the time of this study, heat transfer data for HFC-236ea were not available. For this reason, a computer model was developed for comparing CFC-114 and HFC-236ea in a simulated 440-kW labo- ratory centrifugal chiller system represen- tative of those found in the U.S. fleet. The model is semi-empirical, combining ther- modynamic and heat transfer theory, as well as boiling and condensing heat trans- fer coefficient data measured at the Iowa State University Heat Transfer Test Facil- ity. The NSWC in Annapolis, MD, also pro- vided data for this study. A 440-kW labo- ratory centrifugal air-conditioning plant and HFC-236ea were used for the data collec- tion. The experimental data provided by the NSWC were compared with the mod- eled results. The model was tested for a range of inlet condenser water temperatures, en- tering and leaving chilled water tempera- tures, and evaporator and condenser wa- ter flowrates. The simulation model pre- dicts that HFC-236ea would perform fa- vorably as a drop-in substitute for CFC- 114 . Additionally, several recommendations were provided for improved performance using HFC-236ea in centrifugal chiller sys- tems. Design recommendations discussed in this study include manipulating the evaporator load to achieve positive gage pressure in the evaporator, ensuring the absence of noncondensable gases in the system, using a variable-speed compres- sor with a fixed inlet guide vane angle to the impeller, conducting further research using azeotropic mixtures with HFC-236ea as the major component, and installing high-performance enhanced surface tubes in both the evaporator and the condenser. In summary, the simulation developed in this study provides results that are con- sistent with the expected behavior of a 440-kW refrigeration system. The results provided by the NSWC sufficiently vali- date the model. Finally, the results sug- gest that HFC-236ea would perform well in existing CFC-114 centrifugal chillers, although design modifications should be considered for optimal performance. ------- D. T. Ray, M. B. Pate, and H. N. Shapiro are with Iowa State University, Ames, IA 50011. Theodore G. Brna is the EPA Project Officer (see below). The complete report, entitled "Comparison of CFC-114 and HFC-236ea Perfor- mance in Shipboard Vapor Compression Systems," (Order No. PB97-178735; Cost: $25.00, subject to change) will be available only from: National Technical Information Service 5285 Port Royal Road Springfield, VA22161 Telephone: 703-487-4650 The EPA Project Officer can be contacted at: Air Pollution Prevention and Control Division National Risk Management Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, NC 27711 United States Environmental Protection Agency Center for Environmental Research Information Cincinnati, OH 45268 Official Business Penalty for Private Use $300 BULK RATE POSTAGE & FEES PAID EPA PERMIT NO. G-35 EPA/600/SR-97/058 ------- |