United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
EPA-454/R-00-004
February 2000
Air
EMISSION TEST EVALUATION OF A
E PA PATHOLOGICAL WASTE INCINERATOR AT
THE UNIVERSITY OF GEORGIA
-------
DISCLAIMER
This report presents the results of a single test
program at a single cremation facility. It should
not be assumed that these results would
characterize emissions at other cremation
facilities without further study.
-------
Emission Testing Report
EMC WA-2-09
Revision: 0
Date: 2/14/00
Preface
This document was prepared by Midwest Research Institute (MRI) for the
U.S. Environmental Protection Agency (EPA) under EPA Contract No. 68-D-98-027,
Work Assignment No. 2-09. Mr. Foston Curtis is the EPA Work Assignment Manager. In
this test report, MRI presents a description of the source tested, the sampling and analysis
procedures used, quality assurance and quality control activities, reporting and data
reduction, and sample and data handling procedures, for the test program. This report
contains 536 pages.
The test program was conducted in MRI's Applied Engineering Division under the
leadership of Ms. April Carender, Work Assignment Leader. Mr. John Hosenfeld,
Program Manager, provided oversight to technical and administrative aspects of this work
assignment.
MIDWEST RESEARCH INSTITUTE
\
^ ' '
John Hosenfeld
Program Manager
Approved:
Thomas J. Grant, Ph.D., P.E.
Director
Applied Engineering
February 14, 2000
MRl-AED\R4952-01.wpd 111
-------
Emission Testing Report
EMC WA-2-09
Revision: 0
Date: 2/14/00
Contents
Preface iii
Figures vii
Tables ix
Section 1. Introduction xiii
1.1 Summary of Test Project 1
1.2 Test Project Organization 2
Section 2. Source Description 1
2.1 Process Description 1
2.2 Control Equipment 1
Section 3. Test Project Description 1
3.1 Objectives and Test Matrix 1
3.2 Test Schedule Sampling Scheme 4
3.3 Field Test Changes and Problems 4
3.4 Summary of Test Results 6
Section 4. Sampling Process Data 1
4.1 Process Data 1
4.2 Emission Sampling Location 1
4.3 Sampling Procedures 3
4.4 Analytical Procedures 14
Section 5. Quality Assurance (QA)/Quality Control (QC) Activities 1
5.1 Equipment Calibration 1
5.2 Emission Measurement and Data Quality Objectives 1
5.3 Data Audit 7
5.4 Data Assessment 7
Appendices
Appendix A—List of Samples Collected and Sample Traceability Forms
Appendix B—Process Data
Appendix C—Field Sampling Data
Appendix D—Modified Method 5 Calculations
Appendix E—Calibration Data for Sampling Equipment
Appendix F—Paniculate Matter Analysis Results
Appendix G—Galbraith Laboratory Chloride Analysis Results
Appendix H—Metals Analysis Results
Appendix I—PCDDs/PCDFs Analysis Results
Appendix J—Continuous Emission Monitoring Data
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Revision: 0
Date: 2/14/00
Figures
Figure 1-1. Test Project Organization 3
Figure 2-1. Pathological Waste Incinerator Unit 2
Figure 4-1. Stack Outlet Sampling Location 2
Figure 4-2. Method 23 Sampling Train for PCDDs and PCDFs 6
Figure 4-3. Sample Recovery Scheme for the Method 23 Train 7
Figure 4-4. Method 29 Sampling Train for Metals 9
Figure 4-5. Sample Recovery Scheme for the Method 29 Train 10
Figure 4-6. Method 26A Train for Paniculate Matter and HC1 11
Figure 4-7. Instrumental Measurement System for CO2, O2, CO, NOX, and SO2 13
Figure 4-8. Analytical Scheme for PCDDs and PCDFs 15
Figure 4-9. Analytical Scheme for Metals 17
MRI-AEDVR4952-Ot.wpd Vll
-------
Emission Testing Report
EMC WA-2-09
Revision: 0
Date: 2/14/00
Tables
Table 3-1. Test Matrix—Summary of Emission Sampling and Analytical Parameters and
Methods per Test Run 2
Table 3-2. List of Target Analytes 3
Table 3-3. Stack Sampling Run Times 5
Table 3-4. Summary Test Data 7
Table 3-5. Summary Process Data 8
Table 3-6. Summary Stack Velocity, Flow Rate, and Sampling Data 9
Table 3-7. Particulate Matter Test Results 10
Table 3-8. Hydrogen Chloride Emission Results 13
Table 3-9. Metal Emission Results 14
Table 3-10. PCDD/PCDF Homologue Emissions 15
Table 3-11. 2,3,7,8-Substituted PCDD/PCDF Emissions 16
Table 3-12. 2,3,7,8-TCDD Equivalent Results 17
Table 3-13. Summary of Instrumental Analysis Results 18
Table 5-1. Calibration Procedures and QC Criteria for Sampling Equipment 2
Table 5-2. Criteria for Emission Measurement and Data Quality 3
Table 5-3. Chloride QC Analysis Results 5
Table 5-4. Metals Spike and Blank Results 6
Table 5-5. Dioxin/Furan Lab Control Spike Results 9
Table 5-6. Dioxin/Furan Blank Results (total pg) 10
Table 5-7. Toluene Rinse Dioxin/Furan Results 11
Table 5-8. Dioxin/Furan Surrogate Recoveries (%) 12
Table 5-9. Dioxin/Furan Independent Spike Check Results 13
MRl-AED\R4952-01.wpd IX
-------
Emission Testing Report
EMC WA-2-09
Section 1
Revision: 0
Date: 2/14/00
Page 1 of 3
Section 1.
Introduction
1.1 Summary of Test Project
1.1.1 Background
EPA is required to set emission standards for the "other solid waste incinerators"
(OSWI) category referenced under Section 129(a)(l)(E) of the amended Clean Air Act.
This category currently contains pathological waste incinerators and human crematories. A
representative pathological waste incinerator was tested to support the setting of these
emission standards.
The purpose of the work assignment was to test a pathological waste incinerator. The
incinerator tested was the University of Georgia Animal Health Research Center's (AHRC)
pathological waste (cattle and horses) incinerator. The test was conducted by EPA with the
Georgia Environmental Protection Division (GA DEP) observing. Under this work
assignment, MRI tested for dioxons/furans, metals (Hg, Cd, and Pb), total particulate
matter, HCl, NOX, SO2, and CO. The incinerator was evaluated with the secondary
chamber temperature at one setting.
1.1.2 Scope
The Emission Measurement Center (EMC) presented MRI with Work Assignment
No. 2-09 to conduct the emissions test on a pathological waste incinerator unit at the
University of Georgia. Under the work assignment MRI conducted emissions testing for
polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs),
total particulate matter (PM), hydrogen chloride (HCl), cadmium (Cd), mercury (Hg), lead
(Pb), sulfur dioxide (SO2), oxides of nitrogen (NOX), carbon monoxide (CO), opacity, as
well as monitored and recorded primary and secondary chamber temperatures, charge
weights, fuel flow rates, batch cycle times, presence of outdoor ambient odors, outdoor
ambient temperatures, outdoor relative humidity, and barometric pressure.
One test consisting of four runs, was conducted while the secondary chamber
temperature was maintained at a setting of approximately 1,800°F. Each test run was
performed over a 4-hour period.
MRI-AED\R4952-01.wpiJ
-------
Emission Testing Report
EMC WA-2-09
Section 1
Revision: 0
Date: 2/14/00
Page 2 of 3
1.1.3 Purpose
The purpose of this project was to test a pathological waste incinerator. Results from
this project will assist EPA in developing emission standards under Section 129 of the
Clean Air Act. The data and information collected may help EPA justify restrictions on
temperatures in its rulemaking package.
Apart from the Section 129 rulemaking requirements, EPA would benefit from having
a well-documented test of a representative incinerator to help address public concerns
expressed about these types of units, which are often located in urban areas. Also, given
emphasis placed by EPA on stakeholder involvement in the rulemaking process, EPA
would like to respond positively on stakeholder testing recommendations that testing of
certain types of incinerators be conducted.
1.2 Test Project Organization
The following individuals were the key personnel in the management and execution of
this test project:
The EPA Work Assignment Manager (WAM) was
Mr. Foston Curtis
U.S. Environmental Protection Agency; Office of Air Quality Planning and Standards;
Emissions, Monitoring, and Analysis Division;
Source Measurement Technology Group, MD-19
Research Triangle Park, NC 27711
Phone: (919) 541-1063
The state of Georgia observer was
Mr. Frank A. Nederhand
Environmental Engineer
Stationary Source Permitting Program
Georgia Environmental Protection Division
The primary contacts assisting MRI and EPA at the University of Georgia Incinerator,
(as Facility Test Site Coordinator) on this test project were
Dr. Michael Mispagel, AHRC Facility Manager
Glen Caldwell, Necropsy Laboratory Manager
MR1-AED\R4952-01 .wpd
-------
Emission Testing Report
EMC WA-2-09
Section 1
Revision: 0
Date: 2/14/00
Page 3 of 3
College of Veterinary Medicine
The University of Georgia
Athens, Georgia 30602
The MRI Work Assignment Leader (WAL) for this test project was
Ms. April Carender
Midwest Research Institute
425 Volker Blvd.
Kansas City, MO 64110-2299
Phone: (816) 753-7600, ext. 1730
Additional support for CEMs and opacity came from MRI's subcontractor ETS, Inc.
(Mr. Andy Hetz).
Figure 1-1 presents the test project organization, lines of communication, and names of
responsible individuals.
Figure 1-1. Test Project Organization
MR].AED\R4952-Ol.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 2
Revision: 0
Date: 2/14/00
Page 1 of 2
Section 2.
Source Description
2.1 Process Description
The incineration unit tested is a new installation at the University of Georgia
Veterinary School as shown in Figure 2-1. The purpose of the unit is to dispose of cattle
(mostly cows and horses) used in experimentation, although the state permit also allows
disposal of up to 10% medical waste.
Pathological waste is fed in a semicontinuous process at a maximum feed rate of
400 Ib/hr; the unit is kept hot through several batch cycles and is not shut down to remove
ash until a maximum total charge is achieved (about 10,000 pounds)
The incinerator unit is a Svedala Model TL75. It consists of a primary combustion
chamber with a secondary combustion chamber located above it. The secondary
combustion chamber further incinerates the products of combustion from the primary
chamber to reduce emissions. The primary and secondary chamber sizes are 191 and
206 cubic feet, respectively. A forced air blower (about 2,100 acfm) supplies air to both
chambers. Combustion gases and products are vented through a refractory-lined circular,
vertical stack.
Emissions were measured from a platform above the roof of the facility at a location
approximately seven duct diameters upstream from any flow disturbances, and 20 duct
diameters downstream of any flow disturbances. Additional ports were installed
approximately 24 inches above existing ports, offset by 45 degrees and approximately
12 inches below existing ports, offset by 180°degrees for testing. Each test run was
performed near the maximum charge rate and lasted about four hours.
2.2 Control Equipment
Incinerator emissions are uncontrolled with the exception of an NFPA spark screen at
the stack outlet.
MR]-AEDW4952-01 .wjxt
-------
Sampling Platform
Emission Testing Report
EMC WA-2-09
Section 2
Revision: 0
Date: 2/14/00
Page 2 of 2
Wall
Support
990364-2
Figure 2-1. Pathological Waste Incinerator Unit
MRI-AEDVR4952-01 .wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 1 of 18
Section 3.
Test Project Description
3.1 Objectives and Test Matrix
The purpose of this test project was to obtain emission data from a pathological waste
incinerator at the University of Georgia to assist EPA in developing emission standards
under Section 129 of the Clean Air Act. The specific objectives were to:
• Measure polychlorinated dibenzodioxin (PCDD) and polychlorinated
dibenzofuran (PCDF), non-fine paniculate matter (PM), hydrogen chloride (HC1),
cadmium (Cd), mercury (Hg), lead (Pb), sulfur dioxide (SO2), oxides of nitrogen
(NOX), and carbon monoxide (CO) emissions along with observations of opacity
at the stack during one operating condition where the secondary combustion
chamber temperature was approximately 1,800°F, and
• Monitor and record primary and secondary chamber temperatures, charge weights,
batch cycle times, fuel flow rates, presence of outdoor ambient odors, outdoor
ambient temperatures, outdoor relative humidity, and barometric pressure during
each test run.
Testing for the pollutants specified in the work assignment was done with the
secondary chamber temperature maintained at a setting of approximately 1,800°F. Testing
was composed of four test runs. Each test run was performed over about a 4-hour period.
The test matrix, which includes the number of samples or sample component sets collected
during each run is presented in Table 3-1. The target pollutants are listed in Table 3-2.
Opacity readings of stack emissions were taken during the test. All sample analyses for
target pollutants, except HC1, were performed at MRI's laboratories in Kansas City,
Missouri. Samples analyzed for HC1 were transferred to Galbraith Laboratories, Inc., in
Knoxville, Tennessee, for chloride analysis. ETS, Inc. of Roanoke, VA performed the EPA
instrumental analyzer methods for CO2, O2, SO2, NOX, and CO, and opacity observations.
Process operating data were collected by EPA during each test run.
MR[-AED\R4952-OI.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 2 of 18
Table 3-1. Test Matrix—Summary of Emission Sampling and Analytical Parameters and Methods per Test Run
Sampling
location
Stack
outlet
Sampling or
measurement
time
4 hours
Test method and
sample size
40 CFR 60, Appendix A,
Method 23, s2.4 m3
40 CFR 60, Appendix A,
Method 29, 22m3
40 CFR 60, Appendix A,
Method 26A, 22m3
40 CFR 60, Appendix A,
Method 2
40 CFR 60, Appendix A,
Methods 3 and 3B, 220L
40 CFR 60, Appendix A,
Method 4, 22-2.4 m3
40 CFR 60, Appendix A,
Method 3A
40 CFR 60, Appendix A,
Method 6C
40 CFR 60, Appendix A,
Method 7E
40 CFR 60, Appendix A,
Method 10
40 CFR 60, Appendix A,
Method 9
Emission Parameters
Dioxins and furans
Metals
(Cd, Hg, and Pb)
Paniculate matter
HCI
Velocity, pressure,
temperature, volumetric flow
rate
CO2 and O2
(Molecular weight; and
emission rate correction factor
for dioxins and furans)
Moisture
CO2 and O2(to normalize SO2,
NOX, and CO results)
SO2
NOX
CO
Opacity
Total number of
samples or sample
component sets per run
& location
1 set emission samples
and 1 set QA samples
1
1
1
NA
3
3
1 continuous
1 continuous
1 continuous
1 continuous
1 data set
Preparation method
Solvent extraction
Method 29 microwave
and hotplate digestion
Desiccation
NA
NA
NA
NA
Particulate matter and
moisture removal
Particulate matter and
moisture removal
Particulate matter and
moisture removal
Particulate matter and
moisture removal
NA
Analytical method
HRGC/HRMS
(SW-846, Method 8290)
GFAAS (SW-846,
Methods 7000A, 71 31 A,
and 7421; and CVAAS
(SW-846, Method 7470A)
Gravimetric
1C (Method 26A)
Pilot tube,
thermocouple
Orsat
Gravimetric
NDIR for C02
Micro-fuel cell for O2
UV spectrophotometry
Chemiluminescense
Gas filter correlation
NDIR
Visual observation
MR[-AF.D\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 3 of 18
Table 3-2. List of Target Analytes
Compound or Group
CAS No.
Dioxin/Furans:
2,3,7,8-TCDD 1746-01-6
Total TCDD 41903-57-5
2,3,7,8-TCDF 51207-31-9
Total TCDF 55722-27-5
1,2,3,7,8-PeCDD 40321-76-4
Total PeCDD 36088-22-9
1,2,3,7,8-PeCDF 57117-41-6
2,3,4,7,8-PeCDF 57117-31 -4
Total PeCDF 30402-15-4
1,2,3,4,7,8-HxCDD 39227-28-6
1,2,3,6,7,8-HxCDD 57653-85-7
1,2,3,7,8,9-HxCDD 19408-74-3
Total HxCDD 34465-46-8
1,2,3,4,7,8-HxCDF 70648-26-9
1,2,3,6,7,8-HxCDF 57117-44-9
1,2,3,7,8,9-HxCDF 72918-21-9
2,3,4,6,7,8-HxCDF 60851-34-5
Total HxCDF 55684-94-1
1,2,3,4,6,7,8-HpCDD 35822-46-9
Total HpCDD 37871 -00-4
1,2,3,4,6,7,8-HpCDF 67562-39-4
1,2,3,4,7,8,9-HpCDF 55673-89-7
Total HpCDF 38998-75-3
OCDD 3268-87-9
OCDF 39001-02-0
Metals:
Cadmium 7440-43-9
Lead 7439-92-1
Mercury 7439-97-6
Other Pollutants:
Sulfur dioxide 7446-09-5
Oxides of nitrogen (NOX)
Carbon monoxide 630-08-0
Hydrogen chloride 7647-01-0
Particulate matter (per Method 5)
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 4 of 18
3.2 Test Schedule Sampling Scheme
Testing began August 17 with a 3-day delay for incinerator repair. Testing was then
resumed on the 21st day of August and continued through the 23rd. Table 3-3 presents the
test run times. Testing was preceded by preliminary velocity measurements. Once
preliminary measurements were completed and final preparations were in progress, the site
coordinator and other personnel were notified of run start times.
Sampling for all pollutants was conducted simultaneously during each run. Each run
lasted approximately 4 hours to ensure adequate sample collection. The incinerator was
charged at the maximum feed rate of 400 Ib/hour.
Sampling was started with 2 trains immediately when the primary chamber door was
closed after the carcass was placed in the chamber. The other train started two minutes
later. This allowed train operators time to record data and set isokinetic sampling rates and
probe tenders time to move and position probes during traversing.
Port changes at the middle of each run were done as quickly and as safely as possible
to minimize lost sampling time. The sequence for resumption of sampling after all port
changes were completed was the same as at the start of the run. Leak checks were
conducted during port changes.
Sampling and analysis for CO2, O2, CO, SO2, and NOX using the EPA instrumental
analyzer methods was continuous over each cycle as was visual observations for opacity.
These activities did not stop during port changes for the traversing trains.
3.3 Field Test Changes and Problems
3.3.1 Sampling
Sampling changes encountered consisted of an unscheduled delay due to incinerator
malfunctions. In addition to the malfunctions encountered, incinerator control settings
were such that no air was going to the secondary combustion chamber during the first run.
However, emission gas O2 and CO concentrations seem to indicate that sufficient air was
introduced to the incinerator for complete combustion. The measured stack gas flow rate
and particulate matter concentration for run 1 were higher than runs 2-4. Only three test
runs were scheduled, but a fourth test run was performed in order to ensure samples were
collected that reflected proper incinerator operation. The fourth run only lasted 3 hours due
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 5 of 18
Table 3-3. Stack Sampling Run Times
Run
Number
1
2
3
4
Stack Sampling Intervals (in minutes per 24-hour clock)
Date (PM/HCI/CI2)
08/17/1999 11:10-
13:52-
08/21/1999 12:30-
15:10-
08/22/1999 10:10-
13:15-
08/23/1999 12:40-
14:40-
13:10
15:52
14:30
17:10
12:10
15:15
14:10
16:10
(Metals)
11:12-
13:54-
12:32-
15:12-
10:12-
13:17-
12:42-
14:42-
13:12
15:54
14:32
17:12
12:12
15:17
14:12
16:12
(Semivolatiles)
11:10-
13:52-
12:30-
15:10-
10:10-
13:15-
12:40 -
14:40 -
13:10
15:52
14:30
17:10
12:10
15:15
14:10
16:10
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 6 of 18
to a shortage of feed material. This shortened run time did not compromise analytical
detection limits and should be indicative of normal operation emissions.
3.3.2 Analysis
Data for TCDF, PeCDF, and TCDD isomers on the XAD reagent blank were lost due
to lock-mass variance during the analysis run, however, the remaining data are consistent
with other reagent blanks and the method blank for the batch. The acetone reagent blank
did not receive silica clean-up because the silica column was broken during sample
preparation. It was processed directly through alumina following splitting because it was
expected to lack matrix interferences.
3.4 Summary of Test Results
Results of testing at the AHRC are presented here. Summary test data are presented in
Table 3-4. A list of all samples collected for laboratory analysis along with sample
traceability sheets are included in Appendix A.
3.4.1 Process Data
Process and test data gathered are summarized in Table 3-5. All data gathered are
found in Appendix B.
3.4.2 Modified Method 5 and Participate Matter Results
Data obtained from sampling trains are summarized in Table 3-6. Each sampling train
provided data on gas velocity, temperature, pressure, O2, CO2, and volumetric flow rates.
Field sampling data are included in Appendix C, and modified Method 5 calculations are
given in Appendix D. Sampling calibration data are included in Appendix E.
Results of testing for particulate matter are presented in Table 3-7. As indicated from
the data, inlet and outlet concentrations for each run were very similar, regardless of
condition. Data from particulate matter testing are found in Appendix F.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 7 of 18
Table 3-4. Summary Test Data
Run
No.
1
2
3
4
Avg.'
sec
Temp
°F
-
1828
1841
1828
1832
PMto, Cone.,
corr. to 7% O2
(mg/dscm)
82.8
25.4
40.5
29.2
31.7
HCI
(ppm)
18.7
11.1
15.4
11.8
12.8
Metals
(ug/dscm)
Cd
1.39
1.41
1.48
0.65
1.18
Pb
133
107
104.0
68
93
Hg
1.05
0.95
0.90
0.89
0.91
PCDD/PCDF
Homologues
(ng/dscm, total)
0.508
1.204
0.781
0.769
0.918
Visible emissions
02
(%dv)
13.84
12.70
12.98
12.61
12.76
CO2
(%dv)
4.57
4.88
4.95
5.16
5.00
SO2
(ppm*,)
45.65
46.16
51.23
45.97
47.79
NOX
(ppmdv)
66.48
119.27
55.89
92.92
89.36
(% Opacity)
6-min max
0.00
0.00
0.00
0.00
0.00
avg.
0.00
0.00
0.00
0.00
0.00
* Averages do not include Run 1 values where secondary combustion air damper was not properly operated.
MRI-AED\R4952-Ol.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 8 of 18
Table 3-5. Summary Process Data
Waste Average Average Gas Vol. Barometric Outdoor
Charge PCCTemp. SCCTemp. Burned Pressure Air Temp.
Run No. Date Rate(lb/hr) (°F) (°F) (cu. Ft.) (in. Hg) (°F)
1 08/17/1999
2 08/21/1999
3 08/22/1999
4 08/23/1999
400 - - 1191 - 95
402 1506 1828 1748 29.26 88
419 1648 1841 1770 - 82
672 1600 1828 1268 - 90
Outdoor
Rel. Humidity Presence
(%) of Odors
49
47
43
52
Tarring on roof
Smokey
Slight odor in
Incinerator room
-
Note: the "-" symbol indicates data not obtained.
MRI-AED\R4952-Ol.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 9 of 18
Table 3-6. Summary Stack Velocity, Flow Rate, and Sampling Data
Run1*
MM
PH
SV
Average =
Run 2
MM
PH
SV
Average =
Run3
MM
PH
SV
Average =
Run 4
MM
PH
SV
Average =
Sampling
time
(min)
240
240
240
240
240
240
240
240
240
180
180
180
Gas
volume
(dscm)
3.761
3.503
3.507
4.155
4.179
4.072
4.242
4.005
3.961
3.017
3.046
3.096
Orsat Analysis
Oxygen
(%)
14.9
14.8
15.0 ,
14.9
13.1
13.1
12J.
13.1
13.2
13.2
13.2
13.2
12.8
12.8
12.8
12.8
CO2
(%)
4.9
4.9
43
4.9
4.9
4.9
4£
4.9
5.0
5.0
5£
5.0
5.1
5.1
5J.
5.1
Water
(%)
11.8
11.7
±LS
11.8
12.2
12.0
12.0
12.1
11.8
10.8
1L2
11.5
12.8
12.4
12.6
12.6
Avg. Stack
Temp.
(F)
1015
995
SZI
996
1183
1164
1149
1165
1188
1172
1149
1170
1178
1169
1147
1165
Iso-
kinetic
(%)
100.0
100.1
100.0
100.4
100.3
100.3
100.0
99.3
99.9
100.7
100.6
100.6
Stack
velocity
(ft/min)
1,735
1,605
1.576
1639
2,174
2,129
2.055
2119
2,194
2,062
2.006
2087
2,105
2,078
2.088
2090
Stack
flow rate
(dscfm)
1,623
1,524
1.513
1553
1,810
1,797
1.752
1786
1,831
1,757
1.711
1766
1,748
1,741
1.770
1753
(dscm/min)
46
43
43
44
51
51
5Q
51
52
50
4S
50
49
49
50.
49
During Run 1, secondary combustion air damper was not properly operated.
MM = Multiple metals sampling train.
PH = Particulate/HCI sampling train.
SV = Semivolatile sampling train.
-------
Table 3-7. Particulate Matter Test Results
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 10 of 18
Parameter
Amount found in probe rinse (mg
Rinse Blank amount (mg)
Amount found on filter (mg)
Filter Blank amount (mg)
Total particulate weight (mg)
Gas sample volume (dscm)
Oxygen concentration (%)
Particulate Matter Cone.,
Corr. to 7% O2 (mg/dscm)
Run1a
43.2
2.2
87.4
QSL
128.4
3.503
14.8
82.8
Run 2
25.5
1.7
36.1
OJi
59.9
4.179
13.1
25.4
Run 3
34.8
1.6
57.3
OJl
90.5
4.005
13.2
40.5
Run 4
23.8
2.1
30.4
M
52.1
3.046
12.8
29.2
8 Secondary Combustion Chamber damper was not operated property during Run 1.
MRI-AED\R4952-01.wpU
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 11 of 18
3.4.3 Hydrogen Chloride Analysis Results
Hydrogen chloride emission results are presented in Table 3-8 in units of both grams
per minute and pounds per hour. HC1 analytical data are included in Appendix G.
3.4.4 Metals Analysis Results
Metals results, blank corrected results and emission rates are shown in Table 3-9. The
metals narrative report with analysts' results are included in Appendix H.
3.4.5 Dioxin and Furan Results
Dioxin and furan results are provided in Tables 3-10 through 3-12. Results are
presented first by total amount found within a given homologue, next by the 2,3,7,8-
substituted compounds, then by the corresponding equivalent toxicity of 2,3,7,8-
tetrachloro-dibenzo-dioxin. The dioxin and furan narrative report with analysts' results are
included in Appendix I.
Native 2,3,7,8-TCDF values were confirmed by re-analysis of the extracts on an
alternative column. These values are comparable with the initial analysis; however, the
values for the sample trains are reported as EMPCs because of diphenyl ether interference.
The higher of the two values (i.e., primary or confirmation data) have been reported here to
provide a conservative estimate emission concentrations.
3.4.6 Results of O2, CO2, SO2, NOX, and CO Analysis and Opacity
Observations
Continuous Emissions Monitoring Systems (CEMS) were used during the incinerator
tests to measure stack emissions of O2, CO2, S02, NOX, and CO. A concurrent visible
emissions evaluation for opacity was also performed at the stack outlet. Results of CEMS
monitoring and opacity observations are presented in Table 3-13.
The SO2 monitor occasionally recorded gas concentration spikes that exceeded the
100 ppmdv span. The linearity of the analyzer at higher concentrations was demonstrated
by using a 905 ppm calibration gas in addition to the normal three-point calibration prior to
each test (see Section 4.2). The concentration of this calibration gas was greater than the
highest one-minute average spike measured during the test program. Linearity was
demonstrated to meet the accuracy and calibration error requirements of Method 6C in
Appendix A to 40 CFR 60. Linearity check data are contained in Appendix E.
MRI-AEDVR49S2-01 .wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 12 of 18
The span of the NOX monitor was 250 ppmdv for the first run, but was changed to 500
ppmdv before the second run in anticipation of higher NOx concentrations resulting from
incinerator burner maintenance. NOX concentrations during the second test run were higher
than those measured during the first, but were well within span, so the span was lowered to
250 ppmdv for runs three and four. The NOX monitor demonstrated linearity for both the
250 ppmdv and 500 ppmdv spans during calibrations prior to runs two, three and four.
Data from the linearity checks are contained in Appendix J.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 13 of 18
Table 3-8. Hydrogen Chloride Emission Results
Run
1a
2
3
4
Chloride
cone.
(mg/L)
152
97.0
140
84.8
Impinger Quantity
volume found
(L) (mg)
0.6520
0.7208
0.6669
0.6400
99.1
69.9
93.0
54.2
black gas
sample
volume
(dscm)
3.503
4.179
4.005
3.046
HCI Stack
cone. flow
(mg/dscm) (ppm) (dscm/min)
28.3 18.7 43
16.7 11.1 51
23.2 15.4 50
17.8 11.8 49
HCI
emission
(g/min) (Ib/h)
1.3 0.17
0.88 0.12
1.2 0.16
0.90 0.12
8 Secondary Combustion Chamber damper was not operated properly during Run 1.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 14 of 18
Table 3-9. Metal Emission Results
Metal
Cd
Measured
Run 1 "
Rinse and filter, ug
HNO3 impinger, ug
Fourth impinger, ug
KMnO4 impinger, ug
HCI rinse, ug
Total, ug
Concentration, ug/dscm
Emissions, g/hr
Run 2
Rinse and filter, ug
HNO3 impinger, ug
Fourth impinger, ug
KMnO4 impinger, ug
HCI rinse, ug
Total, ug
Concentration, ug/dscm
Emissions, g/hr
Run 3
Rinse and filter, ug
HNO3 impinger. ug
Fourth impinger, ug
KMnO4 impinger, ug
HCI rinse, ug
Total, ug
Concentration, ug/dscm
Emissions, g/hr
Run 4
Rinse and filter, ug
HNO3 impinger, ug
Fourth impinger, ug
KMnO4 impinger, ug
HCI rinse, ug
Total, ug
Concentration, ug/dscm
Emissions, g/hr
5.1
0.298
NA
NA
NA
5.4
5.92
0.15
NA
NA
NA
6.07
6.00
0.480
NA
NA
NA
6.48
2.60
0.348
NA
NA
NA
2.95
Blank Correct
5.0
0.223
NA
NA
NA
5.2
1.39
0.0038
5.80
0.08
NA
NA
NA
5.88
1.41
0.0043
5.88
0.405
NA
NA
NA
6.29
1.48
0.0046
2.48
0.273
NA
NA
NA
2.75
0.65
0.0020
Pb
Measured
500
0.762
NA
NA
NA
501
446
0.57
NA
NA
NA
447
442
0.82
NA
NA
NA
443
286
1.36
NA
NA
NA
287
Hg
Blank Correct Measured
499
0.582
NA
NA
NA
500
133
0.37
445
0.39
NA
NA
NA
446
107
0.33
441
0.64
NA
NA
NA
442
104
0.33
285
1.18
NA
NA
NA
286
68
0.21
< 0.400
< 1.28
< 0.190
< 1.00
101
< 3.94
< 0.400
< 1.36
< 0.195
< 1.00
< 1.00
< 3.96
< 0.400
< 1.38
< 0.201
< 1.00
< 1.00
< 3.98
< 0.400
< 1.20
< 0.194
< 1.00
< 1.00
< 3.79
Blank Correct
0.400
1.28
0.190
1.00
1QZ
3.94
1.05
0.0029
0.400
1.36
0.195
1.00
1.00
3.96
0.95
0.0029
0.400
1.38
0.201
1.00
1.00
3.98
0.9
0.0029
0.400
1.20
0.194
1.00
1.00
3.79
0.89
0.0028
* Secondary Combustion Chamber damper was not operated properly during Run 1.
MR!.AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 15 of 18
Table 3-10. PCDD/PCDF Homologue Emissions
Analyte
. Sample votums (dscm)
Stack fiow rate (dscm/min)
Tofol DtoJflfis (pg)
TCDD
PeCDD
HxCDD
HpCDD
OCDD
Total amount (pg)
Total amount (ng)
Concentration (ng/dsem)
Emission rate (ng/min)
Total Furans f pg)
TCDFb
PsCDF
HxCDF
HpCDF
OCDF
Total amount (pg)
Total amount (ng)
Concentration (ng/dscm)
Emission rate (ng/min)
Total Dioxin/Furans
Concentration (ng/dscm)
Emission rate (ng/min)
Run1*
3-503
43
50.2
184
325
230
308
1097.3
1.0973
0.3133
13.5
181.0
183
235
60.4
41,5
681
0.681
0.194
8.4
0.508
21.8
Run 2
4:1 79
50
99.4
325
303
308
320
1355
1.355
0.324
16
1111
764
1220
502
78.6
3676
3.676
0.880
44
1.204
60
Run 3
. .4005
48
94.9
514
938
414
254
2215
2.215
0.553
27
306
199
206
150
53.2
914
0.914
0.228
11
0.781
37
Run 4
. 3.046
50
79.2
240
222
120
172
833
0.833
0.273
14
538
357
427
152
35.4
1510
1.510
0.496
25
0.769
38
* Secondary Combustion Chamber damper was not operated properly during Run 1.
b Values confirmed by reanalysis. To be conservative, the higher of the too values are reported here.
MRI-AEDVR4952.01.wjxt
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 16 of 18
Table 3-11. 2,3,7,8-Substituted PCDD/PCDF Emissions
Analyte
Sample vafcmie (dscm)
Stack flow rate ftscmtrnin)
2.3 7.8-SubstitutedDioxins (ptfi
2,3,7,8-TCDD <
1,2,3,7,8-PeCDD <
1.2,3.4,7.8-HxCDD
1 ,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
1.2.3,4,6.7,8.9-OCDD
Total amount (pg)
Total amount (ng)
Concentration (ng/dscm)
Emission rate (ng/min)
2.3 7.8-Substituted Furans Cpgl
2,3,7,8-TCDF b
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDF <
1,2,3,4,7,8.9-HpCDF
1,2.3,4,6,7,8,9-OCDF
Total amount (pg)
Total amount (ng)
Concentration (ng/dscm)
Emission rate (ng/min)
Total "2.3.7.8-" Dioxin/Furans
Concentration (ng/dscm)
Emission rate (ng/min)
Run1'
3.503
4$
3.57 J1
9.46
11.1
20.5
30.8
118
3Qfl
501
0.501
0.143
6.2
25.7
16.3
37.3
18.2 J1
27.5
85.0
23.1
111
44.1 J1
4L5
430
0.430
0.1226
5.3
0.266
11.4
Run 2
*f79
50
7.71 J1
21.8
12.7
30.1
< 31.6
160
320
584
0.584
0.140
7.0
90.6
75.8
153
66.9 J1
99.1 J2
492
159
261 J2
199 J1
ZSJJ
1674
1.674
0.401
20
0.540
27
Run 3
4.005
48
< 3.27 J1
11.7
14.4
27.4
27.9
179
254
518
0.518
0.129
6.2
24.3
17.7
43.7
18.3 J1
25.4
65.3
18.7
87.2
37.3 J1
53^2
391
0.391
0.0976
5
0.227
11
Run 4
3,046
• so.
< 4.48 J1
12.5
8.89
15.0
17.2
69.6
1Z2
300
0.300
0.098
4.9
50.8
32.9
64.3
32.8 J1
44.3
140
48.6
101
51.3 J1
35.4
602
0.602
0.198
10
0.296
15
' Secondary Combustion Chamber damper was not operated properly during Run 1.
b Values confirmed by reanalysis. To be conservative, the higher of the two values are reported here.
J1 = The corresponding field surrogate was outside the 70 -130% recovery criteria.
J2 - The corresponding internal quantitation standard was outside the recovery criteria.
Note: a "<" symbol indicates analyte not observed above the detection limit.
MRI-AED\R4952-01.wpd
-------
Table 3-12. 2,3,7,8-TCDD Equivalent Results
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 17 of 18
Toxicity
Equivalence
Analyte Factor*
Sample volume (dsctn)
Stack fawfafc (dscm/min)
Dioxins
2,3,7,8-TCDD (J1) 1
1,2,3,7,8-PeCDD 0.5
1,2,3,4,7,8-HxCDD 0.1
1,2,3,6,7,8-HxCDD 0.1
1,2,3,7,8,9-HxCDD 0.1
1,2,3,4,6,7,8-HpCDD 0.01
1,2,3,4,6,7,8,9-OCDD 0.001
Total
Furans
2,3,7,8-TCDF 0.1
1,2,3,7,8-PeCDF 0.05
2,3,4,7,8-PeCDF 0.5
1,2,3,4,7,8-HxCDF(J1) 0.1
1, 2,3,6, 7,8-HxCDF 0.1
2,3,4,6,7,8-HxCDF 0.1
1,2,3,7,8,9-HxCDF 0.1
1,2,3,4,6,7,8-HpCDF 0.01
1 ,2,3,4,7,8,9-HpCDF (J1 ) 0.01
1,2,3,4,6,7,8,9-OCDF 0.001
Total
Total 2.3.7.8-TCDD/F Equivalent
Concentration (ng/dscm)
Emission rate (ng/min)
Run1b
Amount
(ng)
<0.00357
<0.00473
0.00111
0.00205
0.00308
0.00118
QJJQQ3QS
0.0160
0.00257
0.000815
0.0186
0.00182
0.00275
0.00231
0.00850
<0.00111
0.000441
0.0000415
0.0390
Cone.
(ng/dscm)
3,503
43
<0.00102
O.00135
0.000316
0.000586
0.000879
0.000336
0.0000879
0.00458
0.000734
0.000233
0.00532
0.000518
0.000784
0.000659
0.00243
<0.000317
0.000126
0.0000118
0.0111
0.0157
0.68
Run 2
Amount
(ng)
0.00771
0.0109
0.00127
0.00301
O.00316
0.00160
(LQQQ32Q
0.0280
0.00906
0.00379
0.0766
0.00669
0.00991 J2
0.0159
0.0492
0.00261 J2
0.00199
0.000079
0.1758
Cone.
(ng/dscm)
4<179
50
0.00184
0.00261
0.000305
0.000721
<0.000756
0.000383
Q.QQ0077
0.00669
0.00217
0.000907
0.0183
0.00160
0.00237 J2
0.00379
0.0118
0.000624 J2
0.000476
0.000019
0.0421
0.0488
2.4
Run 3
Amount
(ng)
<0.00327
0.00584
0.00144
0.00274
0.00279
0.00179
0.000254
0.0181
0.00243
0.000883
0.0218
0.00183
0.00254
0.00187
0.00653
0.000872
0.000373
0.000053
0.0392
Cone.
(ng/dscm)
4,005
48
<0.000816
0.00146
0.000360
0.000685
0.000696
0.000447
0.0000635
0.00453
0.000607
0.000220
0.00545
0.000457
0.000635
0.000467
0.00163
0.000218
0.0000931
0.0000133
0.0098
0.0143
0.69
Run 4
Amount
(ng)
<0.00448
0.00624
0.000889
0.00150
0.00172
0.000696
0.000172
0.0157
0.00508
0.00164
0.0322
0.00328
0.00443
0.00486
0.0140
0.00101
0.000513
Q 0000354
0.0671
Cone.
(ng/dscm)
3,046
SO
<0.00147
0.00205
0.000292
0.000494
0.000565
0.000228
0.000056
0.00516
0.00167
0.000540
0.0106
0.00108
0.00145
0.00160
0.00461
0.000332
0.000169
0.000012
0.0220
0.0272
1.4
'1989 EPA Factors.
b Secondary Combustion Chamber damper was not operated property during Run 1.
J1 - The corresponding field surrogate was outside the 70 -130% recovery criteria.
J2 = The corresponding internal quantitation standard was outside the recovery criteria.
Note: a "<" sign indicates analyte not observed above the detection limit.
-------
Emission Testing Report
EMC WA-2-09
Section 3
Revision: 0
Date: 2/14/00
Page 18 of 18
Table 3-13. Summary of Instrumental Analysis Results
Analyte
Oxygen (%dv)
Carbon dioxide (%dv)
Sulfur dioxide (ppmdv)
Nitrogen oxides (ppmdv)
Carbon monoxide (ppmdv)
Visible emissions (% opacity)
max. 6-min value
run average
Run1a
13.84
4.57
45.65
66.48
0.04
0.00
0.00
Run 2
12.70
4.88
46.16
119.27
0.00
0.00
0.00
Run 3
12.98
4.95
51.23
55.89
0.02
0.00
0.00
Run 4
12.61
5.16
45.97
92.92
0.05
0.00
0.00
TestAvg.
12.76
5.00
47.79
89.36
0.02
0.00
0.00
1 Secondary Combustion Chamber damper was not operated properly during Run 1.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 1 of 17
Section 4.
Sampling Process Data
The process data, sampling procedures, and analytical procedures used for this test
project are described in this section. The published methods and MRI Standard Operating
Procedures (SOPs) used are cited. Details providing clarification and any modifications to,
or deviations from, the published methods are presented in this section. Otherwise, the
cited methods were followed.
4.1 Process Data
During the tests, process time and temperature profiles were monitored and recorded.
Process equipment identifiers (i.e., manufacturer, model, serial number, etc.), design or
rating criteria, and installation dates were noted. Routine process operations were also
observed and noted.
Process operating parameters necessary to characterize process conditions were
monitored and recorded during each test run. Data was recorded manually every 15 to
30 minutes to provide a record depicting process operations. Parameters logged were:
primary and secondary chamber temperatures, charge weight, any noticeable changes or
fluctuations during each test run, and fuel flow (consumption) rate. Additionally, presence
or lack of any ambient odors at the facility, outdoor ambient temperature and relative
humidity were noted and documented during each run.
4.2 Emission Sampling Location
Sampling was conducted for uncontrolled emissions at the outlet stack. The existing
test platform was used for the sampling trains and test personnel. The platform encircles
the stack in a pentagonal configuration and sits about nine feet above the roof of the
facility. Metering boxes (consoles) were located and operated approximately 15 feet away,
on the roof. Gas sampling and analytical instrumentation for CO2,02, CO, NOX, and SO2
was located and operated approximately 50 feet away, outdoors in a mobile unit.
The sampling location was in the vertical run of the outlet stack. Sampling was
conducted on the platform, approximately 14 feet upstream of the nearest flow
disturbances. This location is presented in Figure 4-1. Two 4-inch ports were already
installed at approximately 39 inches above the platform. Two additional 4-inch ports were
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 2 of 17
West-
Top View
CEMS Port
1 Cross-Section
ffimgwEw.tjfcitt- *aR*'au»iMiiiimi'iMi» j^Mnrgm^KHM^iiiBMi
Top View
Ports C & D
Cross-Section
Top View
Ports A & B
Cross-Section
Outlet Stack
12 in.
JL
Note:
CEMS port is 2" Nipple All ports are nominal 4" pipe Nipples.
All ports are 6" long from outside 14 ft.
edge of port to face of duct. .
Sampling Platform -
Roof
37 tt.
Ports >.
C&D "
24 in.
B
Ports > •
A&B "
39 in.
ftt
; $
West-
f*3\mf* •>$"" -'i
.& * •» , "•
f,^ „„* " { ',* ^
^,;|l^gfi .'¥*
;-;
i'' ",' "^t-','. *f
9903«4-»
Figure 4-1. Stack Outlet Sampling Location
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 3 of 17
installed at approximately 24 feet above these existing ports to accommodate all sampling
trains for simultaneous sampling. The top rail of existing platform railing was removed
9 inches on either side of the additional ports to accommodate train movement on the
platform. A small 2-inch port was installed to accommodate CEMS sampling 12 inches
below and offset 180° from the existing ports.
The internal diameter of the cross-sectional sampling area inside the refractory was
approximately 24 inches. A total of 12 traverse (sampling) points were used by each
traversing sampling train, six on each traverse (through each port) across the internal
diameter of the duct. Each point was sampled for 20 minutes (a total of 240 minutes per
cross-sectional area during each 4-hour run) with each traversing sampling train.
4.3 Sampling Procedures
The samples collected required the use of four (4) sampling systems at the test
location:
• EPA Method 23 isokinetic sampling train for PCDDs and PCDFs, along with an
integral EPA Method 3B integrated gas sampling train for carbon dioxide (CO2) and
oxygen (O2).
• EPA Method 29 isokinetic sampling train for metals (Cd, Hg, and Pb), along with an
integral EPA Method 3B integrated gas sampling train.
• EPA Method 26A isokinetic sampling train for PM and HC1, along with an integral
EPA Method 3B integrated gas sampling train.
• EPA Instrumental Analyzer Methods 6C, 7E, and 10 sampling and analytical system
for SO2, NOX, and CO. Method 3A instrumentation was used for CO2 and O2 to
provide data for normalizing the SO2, NOX, and CO results if needed.
The following methods were employed in the use and operation of these sampling
trains and systems.
4.3.1 Sample and Velocity Traverses
Method 1 in Appendix A of 40 CFR 60 (basis for MRI SOP MRI-8401) was used to
establish traverse (sampling) points at the test conducted locations for the traversing
sampling trains. A check for absence of cyclonic flow was not done prior to the start of
sampling since no flow disturbances were in the vicinity of the test location.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 4 of 17
4.3.2 Determination of Gas Velocity and Volumetric Flow Rates
Method 2 in Appendix A of 40 CFR 60 (basis for MRI SOP MRI-8402) was used to
measure gas velocities and volumetric flow rates using Type S pitot tubes that are
components of the traversing sampling trains. Pitot tubes meeting the dimensional
specifications in the method were used. However, the pitot tube coefficients were adjusted
for blockage in the gas stream caused by the probe assemblies used during sampling in
ducts having internal diameters (or equivalent internal diameters) of 36 inches or less. An
average adjusted coefficient for each such pitot tube was calculated in a spreadsheet using
procedures cited in Method 2.
An aneroid barometer calibrated against a mercury barometer was used to measure
atmospheric pressure at the sampling locations.
Determination of dry gas molecular weight and moisture content of the gas is
described below.
4.3.3 Determination of Dry Gas Molecular Weight and Emission Rate
Correction Factors
Method 3B in Appendix A of 40 CFR 60 (basis for MRI SOP MRI-8406) was used to
collect multi-point, integrated gas bag samples simultaneously with the
traversing/isokinetic sampling for determination of dry gas molecular weight and emission
rate correction factors. The integrated gas sampling apparatus used to collect the samples
was a component of each traversing sampling train. Integrated gas samples were extracted
at a constant rate from the exhaust of a traversing sampling train just upstream from the
outlet of the dry gas meter outlet orifice.
The trains were purged for one minute with stack gas and then integrated gas sampling
was started. Sampling was conducted at a constant rate throughout the run while the
traversing/isokinetic sampling was in progress. Each integrated gas sampling apparatus
was leak checked before and after each test run. The tubing at the connection to the dry gas
meter outlet orifice was closed off, the integrated sampling apparatus pump was turned on,
and the integrated sampling apparatus flow control valve fully opened. No flow or
bubbling at the tubing outlet (i.e., where the gas sample bag would be connected during
sampling), when submerged just below the surface of some water, indicated the apparatus
was leak-free. Gas samples were analyzed with an Orsat analyzer.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 5 of 17
4.3.4 Determination of Moisture Content
Method 4 in Appendix A of 40 CFR 60 incorporated as part of Methods 23, 26A,
and 29 was used to determine the moisture (water vapor) content of the gas stream.
Moisture collected during sampling was determined gravimetrically from the difference
between the initial and final weights of all of the impingers in a train, including the resin
cartridge, where used.
4.3.5 Sampling of PCDDs and PCDFs
Method 23 in Appendix A of 40 CFR 60 (basis for MRI SOP MRI-8404) was used to
collect samples analyzed for dioxins and furans. A schematic of a sampling train is
presented in Figure 4-2. Clarifications of and modifications to the method are included in
the following discussion.
Quartz glass nozzles and probe liners were used in water-cooled probes. The internal
surface of the compression fittings used for connecting nozzles to probe liners was
permanently coated with abrasion-resistant Teflon® to prevent sample gas contact with the
stainless steel.
A cyclone/flask assembly was not used in front of the filter holder to prevent
overloading the filter since no significant quantities of paniculate matter were collected.
Filter supports in the filter holders were Teflon®-coated, stainless steel screening.
Quartz fiber filters having the same specifications described in the method were used.
Each cartridge (sorbent trap) was loaded with approximately 65 grams of XAD-2 resin.
Two silica gel impingers were used in each train. This minimized any need to swap
those components during a test run.
Sample recovery procedures followed those specified in the method using acetone and
methylene chloride for rinsing train components. The toluene QA rinses were also
analyzed for dioxins and furans. The sample recovery scheme used for the trains is
presented in Figure 4-3. The condensate collected in the impingers was weighed, but not
recovered. All samples were stored and shipped cold at ice water temperature.
4.3.6 Sampling for Metals
Method 29 in Appendix A of 40 CFR 60 (basis for MRI SOP MRI-8405) was used to
collect samples for metals analysis. A schematic of a sampling train is
MR1-AEWR4952-01 .w
-------
Condenser and
XADSorbentTrap
Quartz Liner
(100 irU Oigaric-Fne Water each)
Emission Testing Report
WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 6 of 17
RedioJation
Purp
Themvcouile* Bypass Vacuun
Vah* Main
Valve
Q
Figure 4-2. Method 23 Sampling Train for PCDDs and PCDFs
MRNAED\R4952-01.wpd
-------
Emission Testing Report
WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 7 of 17
QA Rinses
1st Implnger (empty
2nd & 3rd Implngera
(H,O). 4th Implnger
(empty) -
at start of run)
•
Sth&6th
Implngera
(Silica gel)
Measure Implnger
contents - weigh
Implngers and
subtract weighs
from Initial weight!
Measure Implnger
contents - weigh
Implngera and
subtract weights
from initial weight
Discard contents.
Save contents for
regeneration and
reuse.
Figure 4-3. Sample Recovery Scheme for the Method 23 Train
MRI-AED\R4952-Ol.wpd
-------
EmissionTesting Report
WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 8 of 17
shown in Figure 4-4. Clarifications of, and modifications to, the method are included in
the following discussion.
Quartz glass nozzles and probe liners were used in water-cooled probes. The internal
surface of the compression fittings used for connecting nozzles to probe liners was
permanently coated with abrasion-resistant Teflon® to prevent sample gas contact with the
stainless steel.
A cyclone/flask assembly was not used in front of the filter holder to prevent
overloading the filter, since no significant quantities of particulate matter were collected.
Filter supports in the filter holders were 100% Teflon®. Quartz fiber filters having the
same specifications described in the method were used.
Two silica gel impingers were used in each train. This minimized any need to swap
those components during a test run.
Sample recovery procedures followed those specified in the method. Adequate
quantities of recovery reagents used during recovery were saved for analysis for blank
correction purposes. The sample recovery scheme used for the trains is presented in
Figure 4-5. All samples were stored cold at ice water temperature at the test site (not
required by the method), and were shipped to the laboratory at room temperature.
4.3.7 Sampling for Particulate Matter and HCI
Method 26A in Appendix A of 40 CFR 60 was used to collect samples for particulate
matter and HCI analysis. A schematic of a sampling train is presented in Figure 4-6.
Clarifications of and modifications to the method are included in the following discussion.
Quartz glass nozzles and probe liners were used in water-cooled probes. The internal
surface of the compression fittings used for connecting nozzles to probe liners were
permanently coated with abrasion-resistant Teflon® to prevent sample gas contact with the
stainless steel.
A cyclone/flask assembly was not used in front of the filter holder to prevent
overloading the filter since no significant quantities of particulate matter were collected.
MRI-AED\R4952-01 .w
-------
Thermocouple
Quartz
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 9 of 17
Thermocouple
T Check
L-^lValve
990994-2
©
© MoetfiedOreei*uvSn«i,100iri.5%HNCW10%aO,
© Qreenburt^Sn*!, 100 mL6% HMO/10% Hrfh
ModffiedQre«*u»«tT«i,100mL4%KMnOV10%HiSO.
McxiliedOre«*u^Sn«i,2C»gSBcaOel
MoaffiedOieeii)uv«ii«\200gSicaOel
Figure 4-4. Method 29 Sampling Train for Metals
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 10 of 17
Nozzle, Probe
Liner, Sample
Transfer line
(if used), Bypass
Filter Holder
Front
Filter
Rinse with
brushing three
times or more.
Use a total of
100 mLs, or a
larger, measured
volume, if
needed, of
0.1 N HMO,.
Remove filter from
filter holder and
transfer to the
sample bottle.
Quantitatively
remove all filter
fragments and
paniculate matter
remaining in filter
holder and transfer
to the bottle.
Filter Support,
Filter Holder
Back, 90°
Connector
\
1st Impinger
(empty at start of
run), and 2nd &
3rd Impingers
(HNO^HjOJ
4th Impinger
(empty at
start of run)
+ *
Measure impinger
contents - weigh
impingers and
subtract weights
from initial weights.
Measure impinger
contents • weigh
impinger and
subtract weight
from initial weight.
* *
Transfer contents
to a tared bottle
and weigh
the bottle.
i
Using a total of 100 mLs of
0.1 N HNOa, rinse components,
impingers, and U-connectors
A-C twice.
i
1
Transfer rinses
to the bottle
and reweigh
the bottle.
Transfer contents
to a tared bottle
and weigh
the bottle.
5th & 6th
Impingers
(KMnO«/H2SO<)
i
Measure impinger
contents - weigh
impingers and
subtract weights
from initial weights
1
7th & 8th
Impingers
(Silica gel)
V
Measure impinger
contents - weigh
impingers and
subtract weights
from initial weights.
' i
Transfer contents
to a tared bottle
and weigh
the bottle.
Save contents
for regeneration
and reuse.
* t
Rinse the impinger
twice with a total
of 100 mLs of
0.1 N HNO,.
'
1
Transfer rinses
to the bottle
and reweigh
the bottle.
Rinse impingers
and U-connectors
D-E three times
with a total
volume of 100
mLs of acidified
KMnO, and
transfer rinses to
tared bottle.
Rinse components
three times with a
total volume of
100 mLs of ASTM
Type 1 water to
remove all
pink color.
i
r
Add water rinses
to acidified
KMnO, rinses
and reweigh
the bottle.
Measure 200 mLs
ASTM Type 1
water and transfer
100 mLs to a
tared bottle.
Using a total
of 25 mLs 8 N
HCI, remove all
residue from
impingers.
Transfer HCI
rinses to bottle.
Rinse impingers
with the other
100 mLs
of water.
*
Add water rinses
to other rinses in
the bottle and
weigh the bottle.
Figure 4-5. Sample Recovery Scheme for the Method 29 Train
MRI-AED\R4952-Ol.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 11 of 17
Themnocoifile
Qmtz Liner
(2 Oreenbu»Sinttv100ni.0.1NHiSO<
5
ModffiedOreeri)ui^Sn«\1IX)ni.0.1NNaOHvwth»odOntHc«JWe
MocilledQteei*u»SinH\200gSilcaQel
Figure 4-6. Method 26A Train for Particulate Matter and HCI
MRI-AED\R4952-Ot.wpcJ
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 12 of 17
Filter supports in the filter holders were 100% Teflon®. Quartz fiber filters having the
same specifications described in Method 5 were used.Two silica gel impingers were used
in each train. This minimized any need to swap those components during a test run. One
additional empty impinger was inserted between the last acidic impinger and the first
caustic impinger. The additional impinger was inserted as a precaution to avoid any
potential backflow which might have occurred during leak checks. Material recovered
from that impinger was treated as if from a caustic impinger.
Sample recovery procedures followed those specified in the method. However, if
acetone did not recover all of the sample collected in the train front half components, water
was used as a second recovery reagent. Volumes of recovery reagents used during
recovery were measured for blank correction purposes.
4.3.8 Sampling and Analysis for CO2, O2, CO, NOX, and SO2
CEMs systems were setup and operated by MRFs subcontractor, ETS, Inc. Methods
3A, 6C, 7E, and 10 in Appendix A of 40 CFR 60 were used to sample and analyze for CO2,
O2, CO, NOX, and SO2. A schematic of the sampling and analytical system is presented in
Figure 4-7. Clarifications of and modifications to the methods are included in the following
discussion. All calibration gases used were certified by the EPA traceability protocol for
assay and certification of gaseous calibration standards.
Gas was extracted through stainless steel probes (not water-cooled) fitted with
calibration valves at their outlets. Sampled gas was directed through a heated glass-fiber
filter and a heated Teflon® sample transfer line to a gas conditioner for moisture removal.
Conditioned sample gas was then passed through an unheated Teflon® sample line to a
sampling and distribution manifold system. The system contains a pump that distributes
sample gas to the analyzers.
The SO2 analyzer used was a Western Research Model 721 AT photometric analyzers
operating on the principle of differential absorption. The NOX analyzer system used was a
Thermo Electron Model 10AR chemiluminescent NO/NOX analyzer with associated
vacuum and bypass pumps. The CO analyzer used was a Thermo Electron Model 48 gas
filter correlation NDIR analyzer utilizing gas filter correlation. The CO2 analyzer used was
a Horiba Model PIR-2000 NDIR analyzer. The O2 analyzer used was a Teledyne Model
320A chemical cell analyzer.
The data acquisition system used was a Campbell Scientific Model CR10WP multi-
channel system operating at a rate of 60 Hz and storing 1-minute average values.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 13 of 17
Flow/meter
Heated stainless 3-way valve
steel probe
I E
Heated
filter
Heated Teflon
sample ine
Condensate
Unheated Teflon
sample line
To Individual analyzer.
calibration manifold
Figure 4-7. Instrumental Measurement System for CO2, O2, CO, NOX, and SO2
MRI-AED\R4952-01 .wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 14 of 17
All operating, calibration, and QC procedures and QC performance criteria specified
in the methods were used. CO analyzers were operated in accordance with applicable
procedures specified in Methods 6C and 10. Calibration of the CO analyzers were
conducted with zero and the high level gases, and with two mid-level gases during the
calibration error test.
4.4 Analytical Procedures
The analytical methodology and procedures used by MRI for this project were
standardized methods and EPA-approved procedures. The analytical methods used on this
project are described below. The MRI SOPs pertaining to the methods are cited.
4.4.1 Analysis for PCDDs and PCDFs
The sample components recovered from the Method 23 trains (i.e., XAD-2 resin and
filter) were combined and extracted in the laboratory using Soxhlet extraction according to
MRI SOP CS154. The procedure for extraction involved placing the XAD-2 resin and
filter samples in the Soxhlet apparatus, spiking with I3C12 PCDD/PCDF internal
quantitation standards, and extracting with toluene for a minimum of 16 hours.
The train rinses were extracted with methylene chloride using a separatory funnel.
Following extraction, the methylene chloride was concentrated to a volume of 1 to 5 mL
and combined with the corresponding XAD-2/filter extract for each train. The combined
extract was split, with one-half being analyzed for dioxins and furans, and one-half being
archived. The sample split for dioxins and furans was taken through the clean-up steps in
Method 23 modified per MRI SOP CS154, concentrated to 10 /iL with the addition of a
recovery standard, and provided for analysis by HRGC/HRMS.
Extracts were analyzed for dioxins and furans by MRI SOP MRI-5405 based on the
procedures specified in Method 8290, "Polychlorinated Dibenzodioxins (PCDDs) and
Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-
Resolution Mass Spectrometry (HRGC/HRMS)," in "Test Methods for Evaluating Solid
Waste, Physical/Chemical (SW-846)." This analytical procedure includes the separation of
isomers of dioxin and furan using high resolution gas chromatography followed by high
resolution mass spectrometry. Initial and continuing calibration criteria adhered to
Method 23 criteria. The target analyte amounts and surrogate and internal standard
recoveries were quantitated according to Method 23. A schematic of the analytical process
is presented in Figure 4-8. No modifications of these procedures were necessary.
MR]-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 15 of 17
XAD-2 resin and filter
Acetone and
methylene chloride
rinses
Toluene QA rinses
Concentrate to 1-5 mL
at <37°C in rotary
evaporator
Combine in
Soxhlet Apparatus
Add internal I
quantitation standards |
Add internal standards
Extract for 16 hours
Transfer to Rapid-Vap®|
and concentrate to 10 mL 1
Split sample
Concentrate to
near dryness in
N2 evaporative
concentrator
and bring to
5 mL with hexane
Archive 1/2 of extract
Concentrate to near
dryness at <37° C
in rotary evaporator
and bring to
5 mL with hexane
Perform clean-up and
fractionization:
silica gel column,
acid alumina column,
Carbopack C/Celite
545® column
Perform clean-up and
fractionization:
silica gel column,
acid alumina column,
Carbopack C/Celite
545® column
Add recovery standards
Add recovery standards
Analyze by
HRMS using the
DB-5 MS column
If TCDF is found,
reanalyze using the
DB-Dioxin column
Analyze by
HRMS using the
DB-5 MS column
I
If TCDF is found,
reanalyze using the
DB-Dioxin column
Figure 4-8. Analytical Scheme for PCDDs and PCDFs
MRI-AED\R4952-01 wpd
-------
Emission Testing Report
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 16 of 17
4.4.2 Analysis for Metals
The sample components recovered from the Method 29 trains (i.e., rinses, filter, and
impinger contents) were digested, combined, and analyzed according to the procedures
specified in Method 29. A schematic of the sample preparation and analytical process is
presented in Figure 4-9. Method 29 incorporates analytical methods published in "Test
Methods for Evaluating Solid Waste, Physical/Chemical (SW-846)." The SW-846
methods and MRI SOPs used for analysis are:
• Method 7000A and MRI SOP ASF-602 for graphite furnace atomic absorption
spectroscopy (GFAAS) with Method 7131A for cadmium and Method 7421 for
lead, and
Method 7470A with MRI SOPs ASF-420 (preparation) and ASF-603 (analysis)
for cold vapor atomic absorption spectroscopy (CVAAS) for mercury.
No modifications of these procedures were necessary.
4.4.3 Analysis for Particulate Matter and HCI
The sample components recovered from the Method 26A trains (i.e., train front half
rinses and filter) were evaporated, desiccated, and weighed, as appropriate, according to the
procedures referred to in Method 26A and specified in Method 5 in Appendix A of
40 CFR 60.
The impinger contents recovered from the Method 26A trains were analyzed at
Galbraith Laboratories by ion chromatography (1C) using the procedures specified in
Method 26A. The contents of the first three impingers were combined and analyzed for
chloride to determine HCI emissions. Analysis of the fourth through sixth impingers was
not within the scope of work for this project.
No modifications of these procedures were necessary.
MRI-AED\R4952-01.wpd
-------
Emission Testing Plan
EMC WA-2-09
Section 4
Revision: 0
Date: 2/14/00
Page 17 of 17
Acetone & water
rinses of nozzle,
probe liner, bypass,
and filter holder front
0.1 N HNO, rinses
of nozzle, probe
liner, bypass, and
filter holder front
Filter
Contents of 1st-3rd
impingers and
0.1 N HNO, rinses
of impingers, filter
support, filter holder
back, 45/90°
connector (or STL
If used), and
U-connectors A-C
Remove Aliquot
for Hg analysis
Contents and
0.1 N HNO, rinses
of 4th impingers.
i
Digest with acid and
permanganate
for2hr. at95°C
in water bath
and analyze by
CVAAS for Hg
Contents of 5th-6th
impingers and
KMnOJ water rinses
of impingers and
U-connectors D-E
>
F
Filter Through Whatman
No. 40 filter paper
1
Digest filtrate
with acid and
permanganate
for2hr. at95°C
in water bath
and analyze by
CVAAS for Hg
>
\,
Digest filter
with 8 N HCI
Filte
What
filter
1
f
r through
man No. 40
paper and
i filter paper
8 N HCI/water
rinses of 5th-6th
impingers
i
f
Filter through
Whatman No. 40
filter paper and
discard filter paper
Digest with acid and
permanganate for
2hr.at95°Cin
water bath and
analyze by
CVAAS for Hg
Figure 4-9. Analytical Scheme for Metals
MRI-AED\R4952-01.wpd
-------
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 1 of 13
Section 5.
Quality Assurance (QA)/Quality Control (QC)
Activities
The QA/QC requirements and emission measurement and data quality objectives for
this test project are summarized in this section. The QC procedures and acceptance criteria
specified in the EPA methods and MRI SOPs were used. The procedures included, but
were not limited to, (1) sampling equipment calibrations, (2) procedural elements of the
methods such as leak checks, proper traversing, placement of sampling probes, verification
of the integrity of metering systems prior to the start of sampling, etc., and (3) the use of
QC samples and analytical approaches such as reagent blank samples, method blanks,
matrix spike samples, duplicate analysis, and surrogate spiking. The performance and
results of all QC procedures were recorded on appropriate forms, data sheets, field logs,
and laboratory notebooks, as appropriate.
5.1 Equipment Calibration
QC procedures, acceptability limits for sampling equipment calibrations, and
calibration results are presented in Table 5-1. Calibration data sheets and equipment
condition checklists used during calibration are provided in Appendix E. Equipment used
for sample analysis was calibrated according to the procedures in the approved standard
methods and manufacturers' manuals.
5.2 Emission Measurement and Data Quality Objectives
Specific QC procedures were followed to ensure the continuous production of useful
and valid data. Table 5-2 presents a summary of specific criteria for assessing overall
emission measurement and data quality along with the results of these determinations.
5.2.1 Spikes, Blanks, and Toluene Rinse Results
The results for chloride matrix spikes and relative percent difference for duplicate
analysis are summarized in Table 5-3. The results for the metals laboratory reagent and
field blanks as well as the metals matrix spikes, spiked laboratory reagents, and reference
material results are presented in Table 5-4.
MR1-AEDVR4952-01 .wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 2 of 13
Table 5-1. Calibration Procedures and QC Criteria for Sampling Eq
Parameter
1 . Sampling nozzle
2. Metering
system-volume
3. Gas meter
temperature
4. Gas stream (stack)
temperature sensor
(thermocouple)
5. Final impinger outlet
temperature sensor
(thermocouple)
6. Filter temperature
sensor (thermocouple)
7. Aneroid barometer
8. Type S pilot tube
Calibration technique
Measure 3 diameters to nearest
0.001 in. and average measurements
Compare with calibrated critical
orifices, 40 CFR 60, Appendix A,
Method 5, Section 7.2
Compare to mercury-in-glass
thermometer
Heated block monitored with
potentiometer thermocouple system
Compare to mercury-in-glass
thermometer
Compare to mercury-in-glass
thermometer
Compare to mercury barometer
Measure dimensions according to 40
CFR 60, Appendix A,
Method 2 for baseline coefficient of
0.84
Reference standard
Micrometer
Calibrated critical
orifice
ASTM thermometer
NIST traceable
potentiometer
thermocouple
system
ASTM thermometer
ASTM thermometer
Mercury column
barometer
Micrometer and
angle finder
Acceptance limit
Difference between high and low
measurements, < 0.004 in.
Difference between individual
calibration factor values and
average value, < ±0.02
< ±5% of initial calibration factor
< ±5°F difference from reference
Difference of < ±1 .5% of minimum
absolute stack temperature from
absolute reference temperature
(unsaturated gas streams);
< ±1 °F difference from reference
(saturated gas streams)
< ±2°F difference from reference
< ±5°F difference from reference
< ±0.1 in. Hg difference from
reference
Meets dimensional criteria specified
in Method 2, Section 4.1 and
Figures 2-2 and 2-3.
uipment
Frequency
Prior to sampling
Prior to test series
After test series
Before and after test
series
Before and after test
series
Before and after test
series
Before and after test
series
Before and after test
series
Before and after test
series
Objective met?
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
MR|.AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 3 of 13
Table 5-2. Criteria for Emission Measurement and Data Quality
Test
parameters
Dioxin/Furan
Metals
Particulate
matter
Matrix
Method 23 train
samples
Method 29 train
samples
Method 26A
filter & front half
rinses
Method of
determination
-ield surrogates (spiked in
ab during preparation of
XAD for sampling trains)
Lab surrogates (internal
quantitation standards)
Laboratory reagent blank
Laboratory control sample
(blank reagents spiked with
independent standards of
native Dioxin/Furan)
Independent (second
source) check standard
(EPA or certified
Dioxin/Furan reference
standards)
Analysis of train sample
components prepared from
field reagent blanks
QC check standard
(certified standard,
independent of working
calibration standards)
Spiked lab reagent blanks
simulating front-half and
back-half train components
Balance calibration check
with ASTM Class 1 weights
Frequency
Each field sample
and blank
Each field sample
and blank
One XAD/filter
One spiked XAD/filter
After initial calibration
Once to demonstrate
system control (no
gross contamination)
and to determine
blank correction
values
After each initial
calibration
Two control spikes
for each component
(or combined
components) at least
1 0X the estimated
detection limit
Prior to and after all
tare weighings and
gravimetric
determinations
Accuracy objective
70% to 130% recovery
40% to 130% recovery (for
tetra-hexa)
25% to 130% recovery (for
hepta-octa)
Levels less than lowest
calibration standard
50% to 150% recovery
80% to 120% difference
NA
90% to 110% accuracy
(GFAAS), 90% to 110%
accuracy (CVAAS)
65% to 135% recovery or
analyzed by standard
addition
±0.2 mg of standard
weights approximating
object being weighed
Precision
objective
NA
NA
NA
NA
NA
NA
NA
<40% RPD
Two
weighings,
6 hr apart
must agree
within 0.5 mg
Objective
met?
Notel
Yes— Note 2
Yes
Yes
Yes— Note 3
Yes
Yes
Yes
Yes
Note 1—Recoveries were outside the criteria for the HxCDF and HpCDF in the emission test samples; and for the PeCDF and HxCDF in the
blank samples.
Note 2—With few minor exceptions, as noted in Table 5-5, the IQS recoveries were within the criteria.
Note 3—Recoveries were slightly below the criteria of 80% (75-79%) for four compounds.
MR]-AED\R4952-01.»'jx(
-------
Table 5-2 (Continued)
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 4 of 13
Test
parameters
Chloride
Moisture (water
vapor)
Moisture
pressure
temperature
velocity
SO2, NOX, and
CO, plus CO2
and O2, by
instrumental
analyzer on site
O2, CO2, and
CO by Orsat
Matrix
Method 26A
impinger
contents
Impinger
contents
Gas stream
being measured
Flue gas
Gas bag
samples
Method of
determination
Duplicate analysis
Spiked matrix samples
(0.1NH2SO,)
Balance calibration check
with calibration weight
Secondary technical
review of field test data
and equipment calibration
records relative to EPA
Methods 1-5
Analyzer calibration error
check with zero, mid-
range, and high-range
calibration gases
Sampling system bias
check with zero and either
of the upscale calibration
gases
Response time
determination
Zero and calibration drift
tests
Analysis of ambient air
Triplicate analysis of bag
sa September 29,
1999mples
Frequency
Each sample
2 samples
(1 matrix)
Prior to initial and
final gravimetric
determinations and
whenever balance
drift is apparent
Ongoing during
testing
After system setup
each day and more
often when needed
After the calibration
error check, during
calibration drift tests,
and more often when
needed
During the initial bias
check each day;
determines when
acceptable data
begins to be recorded
Repeat the bias
check after each run
or more often if
needed
Once prior to bag
sample analysis
Each bag sample
Accuracy objective
NA
90% to 1 1 0% accuracy
±0.1g
Validated by meeting
posttest equipment
calibration tolerances
s±2% of span for the
difference between system
response and calibration
gas value for any of the
calibration gases
s±5% of span for the
difference between
analyzer response for the
initial calibration error
check and system
response for the initial bias
check for either of the
calibration gases
NA
s±5% of span for the
difference between
analyzer response for the
nitial calibration error
check and system
esponse for the final bias
check for either of the
calibration gases
±0.2 percent by volume for
ambient air oxygen
NA
Precision
objective
<5% RPD,
otherwise
repeat
duplicate
analysis
NA
NA
NA, but
multiple test
runs may be
used as
indication of
overall
operation
variability
NA
NA
NA
s±3% of span
or the
difference
between final
and initial
system
responses for
either of the
calibration
gases
Method 3B
criteria
Method 3B
criteria
Objective
met?
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 5 of 13
Table 5-3. Chloride QC Analysis Results
Precision and Accuracy Results
Result Duplicate
(mg/L) (mg/L)
Run 1
Run 2
Run 3
Run 4
Blank
152
96.8
140,0
84.5
<2.5
Audit Sample Results
Result
(mg/L)
MRI Audit 5071
MRI Audit 5072
71.0
427.0
152
i7.2
13i.O
85.0
<2.5
Duplicate
(mg/L.)
72.0
401.0
RPD
<%)
0%
0.4%
1%
1%
NA
RPD
(%)
1%
6%
Spike
(%)
104%
Theoretical
Cone. (mg/L)
59.2
361.9
Spike
Duplicate
(%)
102%
Accuracy
(%)
121%
114%
MRI-AED\R49S2-01.wpd
-------
Table 5-4. Metals Spike and Blank Results
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 6 of 13
Field Reagent Blank
Rinse and filter, ug
HNO3 impingers, ug
Fourth impinger, ug
KMnO4 impingers, ug
HCI rinse, ug
Method Blank, Front Half
Method Blank, Back Half
Check Standard
Matrix Spike
•
Standard Reference Material
Spiked Lab Reagent Blanks
Front Half
Back Half
Cadmium
(ug)
0.120
O.075
NA
NA
NA
< 0.100
< 0.050
Recovery
-
-
-
-
104.0%
Duplicate
Recovery Recovery RPD
118.0% 110.0% 7.0%
90.5% 89.5% 1.1%
Lead
(ug)
0.74O
0.180
NA
NA
NA
0.720
0.100
Recovery
-
-
-
-
96.2%
Duplicate
Recovery Recovery RPD
113.3% 98.9% 13.6%
92.1% 92.5% 0.4%
Mercury
(ug)
0.400
3.00
0.200
0.800
1.00
< 0.400
< 1 .20*
MS MSD
106.2% 104.3%
102.7% 104.7%
105.0% 105.4%
104.4% 103.6%
-
MS MSD
100.0% 99.8%
-
RPD
1.8%
1.9%
0.4%
0.8%
—
RPD
0.2%
-
RPD = Relative percent difference.
MS/MSD = Matrix spike/ matrix spike duplicate.
A "-" symbol indicates "not applicable".
* This is the Batch Hg-1 method blank result, calculated using nominal values to simulate actual Impingers volumes.
MRl-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 7 of 13
The PCDD/PCDF Lab Control Spike met the objective for all native analytes as
presented in Table 5-5. Laboratory control spike recoveries were within objectives for all
native analytes. IQS recoveries were low for this sample, but the isotope dilution
calculations corrected the native concentrations to within the required accuracy. An
independent spike check was analyzed to validate the accuracy of the calibration curve and
QC spike concentrations
The PCDD/PCDF blank results are summarized in Table 5-6. The laboratory method
blank and all field reagent blanks exhibited non-detect or very trace levels of PCDD/PCDF,
an order of magnitude lower than concentrations determined in the composite train samples
and slightly less than the toluene QA rinse samples. Data for TCDF, PeCDF, and TCDD
isomers on the XAD reagent blank were lost due to lock-mas variance during the analysis
run; however, the remaining data are consistent with the other reagent blanks and the
method blank for the batch.
The PCDD/PCDF toluene rinse results are summarized in Table 5-7. The majority of
PCDD/PCDF data from the Toluene QA Rinse samples were non-detect, indicating that the
train recoveries were effectively performed. Reagent blank results were also generally
below method detection limits indicating emission results are not biased by any
background levels.
Method detection limits are based on 2.5 times signal-to-noise response. Estimated
Maximum Possible Concentrations (EMPCs) are values that were above the MDL but did
not meet the ion ratio criteria. Only the Method 23 emission test samples exhibited values
above the reporting limit (i.e., concentrations above the least concentrated calibration
standard).
5.2.2 Surrogate PCDD/PCDF Recoveries
Surrogate recoveries are presented in Table 5-8. With few minor exceptions, the IQS
recoveries were all within the criteria of the method. Recoveries were outside the 70-130%
criteria for the HxCDF (53-65%) and HpCDF (139-294%) field surrogates in the emission
test samples; the PeCDF and HxCDF field surrogates were low (58 and 61%, respectively)
in the method blank. These values were consistent with the method blank and control
spike field surrogate recoveries. The field surrogates are calculated the same as the native
congeners (i.e., by isotope dilution technique) and the recoveries based relative to the
theoretical spiked amounts. The implication is that corresponding native values may have
similar precision and accuracy qualifications.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 8 of 13
5.2.3 Audit Sample Results
Results of the MRI audit samples for chlorides were included in Table 5-3 along with
other analytical QC information. An independent spike check was performed for
PCDD/PCDFs. Results for the independent check are presented in Table 5-9. Recoveries
were slightly below the minimum criteria of 80% for four compounds ranging from 75% to
79%.
5.3 Data Audit
The data audit was conducted to evaluate the analytical data generated during this
work assignment. The quality of the analytical data was evaluated against the quality
objectives for the measurement process, which were presented in the QAPP and the
specified test methods. The analytical data generated by MRI for this work assignment
were audited by the QAU. The MRI data met the DQO and measurement objectives for
this work assignment as noted in Tables 5-1 and 5-2.
5.4 Data Assessment
The data assessment included a review of the sample preparation and analysis data,
including the criteria found in Tables 5-1 and 5-2. With the few exceptions noted in Table
5-2, the data generated for this report are traceable and of known and acceptable quality.
The few exceptions noted do not significantly impact the intended use of the data.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 9 of 13
Table 5-5. Dioxin/Furan Lab Control Spike Results
2r3.7r8-Substituted Dioxins
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
2.3.7.8-Substituted Furans
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
234678HXCDF
123789HXCDF
1234678HPCDF
1234789HPCDF
12346789OCDF
Spike Level
(Total pg)
200
1000
1000
1000
• 1000
1000
2000
200
1000
1000
1000
1000
1000
1000
1000
1000
2000
LCS
162
836
810
811
893
905
1895
200
837
684
544
802
716
638
909
1014
1855
% Recovery
81.0
83.6
81.0
81.1
89.3
90.5
94.8
100.0
83.7
68.4
54.4
80,2
71.6
63.8
90.9
101.4
92.8
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 10 of 11
Table 5-6. Dioxin/Furan Blank Results (total pg)
Description
2.3.7.8-Substituted Dioxins
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
2 3.7.8-Substituted Furans
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
123789HXCDF
234678HXCDF
1234678HPCDF
1234789HPCDF
12346789OCDF
Dioxin Homologs fpg)
Total TCDD
Total PeCDD
Total HxCDD
Total HpCDD
12346789OCDD
Furan Homologs (pg^
Total TCDF
Total PeCDF
Total HxCDF
Total HpCDF
12346789OCDF
Method Blank
XAD
fpg)
U
U
U
U
U
(p
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 11 of 13
Table 5-7. Toluene Rinse Dioxin/Furan Results
Description
2,3,7,8-Substituted Dioxins (pg)
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
2.3 7.8-Substituted Furans fpgl
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
234678HXCDF
123789HXCDF
1234678HPCDF
1234789HPCDF
12346789OCDF
Dioxin Homologs (pgl
Total TCDD
Total PeCDD
Total HxCDD
Total HpCDD
123467890CDD
Furan Homologs (pg)
Total TCDF
Total PeCDF
Total HxCDF
Total HpCDF
12346789OCDF
Runt
U2.55
2.72
U 2.2 EMPC
2.92
U 3.08 EMPC
6.55
18.7
U4.75
2.29
2.26
U 3.46 EMPC
4.56
4.47
3.50
U 6.75 EMPC
U 4.57 EMPC
6.32
U2.55
2.72
2.92
6.55
18.7
U3.98
4.56
12.5
U1.54
6.32
Run 2
U3.13
U2.85
U2.15
U2.05
U2.11
U 5.30 EMPC
15.4
U3.68
U1.2
U1.45
U2.67
U 2.42 EMPC
3.98
U3.38
U5.26
U7.41
U 3.63 EMPC
U3.13
U2.85
U2.10
U4.46
15.4
U3.73
U1.39
7.35
5.91
U 3.63 EMPC
Run 3
U2.20
U3.94
U1.98
U1.88
U1.94
U 5.23 EMPC
22.4
U3.19
U 1.72 EMPC
U 1.73 EMPC
U 1.83EMPC
U 3.24 EMPC
U 3.75 EMPC
2.70
4.84
U 4.41 EMPC
U 5.42 EMPC
U2.20
U3.94
U1.93
6.76
22.4
U3.22
U1.13
2.70
4.84
U 5.42 EMPC
Run 4
U2.81
U2.30
U2.08
U1.98
U2.03
U 3.51 EMPC
U 14.1 EMPC
U2.98
U 0.800
U 0.970
U2.43
U2.09
U 2.79 EMPC
U3.07
4.13
U3.83
U 2.26 EMPC
U2.81
U2.30
U2.03
U3.37
U 14.1 EMPC
U2.91
U 0.880
2.39
4.13
U 2.26 EMPC
U- Undetected above the corresponding noise-based detection limit.
EMPC - Estimated Maximum Possible Concentration.
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 12 of 13
Table 5-8. Dioxin/Furan Surrogate Recoveries (%)
Method
Description
Blank
Run1
M23 Trains
Run 2
Run 3
Run 4
Run 1
Toluene Rinses
Run 2
Run 3
Run 4
Lab Surrogates (IQS)
13C2378TCDF
13C2378TCDD
13C12378PeCDF
13C12378P6CDD
13C123678HxCDF
13C123678HXCDD
13C1234678HpCD
13C1234678HpCD
13C12OCDD
Field Surrogates
37CL2378TCDD
13C23478PeCDF
13C123478HxCDF
13C123478HXCDD
13C1234789HpCD
84.5
88.8
146 J
90.1
118
111
79.6
108
113
48.7 J
58.4 J
60.5 J
82.4
TBD
65.2
48.0
62.5
43.2
43.0
54.2
25.6
85.1
94.2
48.7 J
106
56.7 J
80.4
192 J
61.9
60.1
86.9
62.6
36.7 J
76.5
23.9 J
108
107
48.6 J
84.7
58.5 J
83.0
294 J
62.4
58.5
95.6
72.8
72.1
89.4
46.9
108
107
42.8 J
72.6
52.6 J
79.1
139 J
78.6
73.8
98.8
70.8
54.3
80.2
39.8
109
108
47.4 J
81.6
65.4 J
85.9
1901 J
51.8
56.6
102
76.8
67.3
99.3
50.0
116
109
NA
NA
NA
NA
NA
48.0
48.3
84.3
58.3
45.8
71.1
32.1
81.9
82.7
NA
NA
NA
NA
NA
56.3
59.3
98.1
69.0
60.9
95.8
45.0
106
97.8
NA
NA
NA
NA
NA
60.0
62.6
92.4
72.7
68.1
96.4
59.8
109
104
NA
NA
NA
NA
NA
Reagent Blank
Description
LCS
Acetone
MeCI
Toluene
Filter
XAD
Type II
Water
Lab Surrogates (IQS)
13C2378TCDF
13C2378TCDD
13C12378PeCDF
13C12378PeCDD
13C123678HXCDF
13C123678HxCDD
13C1234678HpCDF
13C1234678HpCDD
13C12OCDD
Field Surrogates
37CL2378TCDD
13C23478PeCDF
13C123478HxCDF
13C123478HxCDD
13C1234789HpCDF
16.6J
18.2J
35.6 J
24.1J
40.6
31. OJ
25.8
30.7
29.8
48.1 J
66.1 J
63.5 J
86.4
TBD
50.4
50.2
96.5
81.4
138 J
103
102
110
105
NA
NA
NA
NA
NA
59.2
61.5
99.2
80.6
115
104
89.4
120
102
NA
NA
NA
NA
NA
40.8
42.3
90.2
68.7
99.7
93.6
68.4
101
106
NA
NA
NA
NA
NA
46.0
44.6
67.9
51.6
32.6 J
58.7
24.6 J
88.2
90.1
NA
NA
NA
NA
NA
NC
NC
NC
NC
62.5
91.2
39.3
117
111
NC
NC
55.5J
83.9
213 J
50.7
52.4
96.7
72.1
126
89.7
80.8
96.1
97.1
NA
NA
NA
NA
NA
NC - Not calculated due to lock mass fluctuation.
J - Recovery outside criteria: 70%-130% (field surrogates), 40%-130% (tetra-hexa IQS}, 25%-130% (hepta-octa IQS)
NA - not applicable
TBD - To be determined
MRI-AED\R4952-01.wpd
-------
Emission Testing Report
EMC WA-2-09
Section 5
Revision: 0
Date: 2/14/00
Page 13 of 13
Table 5-9. Dioxin/Furan Independent Spike Check Results
2.3.7.8-Substituted Dioxins
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
2.3.7r8-Substituted Furans
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
123789HXCDF
234678HXCDF
1234678HPCDF
1234789HPCDF
123467890CDF
Spike Level
(Total pg)
200
1000
1000
1000
1000
1000
2000
200
1000
1000
1000
1000
1000
1000
1000
1000
2000
ICS
159
832
846
792
844
910
1915
191
805
751
788
891
853
764
894
891
1901
% Recovery
80
83
85
79"
84
91
96
96
81
75"
79 b
89
85
76 b
89
89
95
b Outside objective of 80-120% accuracy.
MR!-AED\R4952-01.wpd
-------
Appendices
Appendix A List of Samples Collected and Sample Traceability Forms
Appendix B Process Data
Appendix C Field Sampling Data
Appendix D Modified Method 5 Calculations
Appendix E Calibration Data for Sampling Equipment
Appendix F Particulate Matter Analysis Results
Appendix G Galbraith Laboratory Chloride Analysis Results
Appendix H Metals Analysis Results
Appendix I PCDDs/PCDFs Analysis Results
Appendix J Continuous Emission Monitoring Data
MRl- AEDVR4952-01 .wpd
-------
Appendix A
List of Samples Collected
and Sample Traceability Forms
MRl-AEWR49St.09-05.wpd
-------
List of Samples Collected for Laboratory Analysis
For Participate Analysis
Front Rinses
Filter
Acetone
ASTM Type II Water
Run 1
1001
1002
Run 2
2001
2002
Run3
3001
3002
Run 4
4001
4001
Field Blank
1024
1023
1025
For Chloride Analysis
0.1NH2SO4 diluted with
gas condensate and
recovery rinses
MRI Audit Samples
Run 1
10047
Run 2
2004
Run3
3004
Run 4
4004
Field Blank
1026
5071
5072
For PCDD/PCDF Analysis
Front Rinses
Back Rinses
Filter
XAD Cartridge
Toluene Rinse
Acetone
Methylene Chloride
ASTM Type II Water
Run 1
1006
1008
1007
1009
1010
Run 2
2006
2008
2007
2009
2010
RunS
3006
3008
3007
3009
3010
Run 4
4006
4008
4007
4009
4010
Field Blank
1030
1031
1029
1027
1028
1032
For Metals Analysis
Front 0.1NHNO3 rinses
Filter
Impingers 1-3, HNO3/H2O2
Impinger 4
Impingers 5-6,
KMn04/H2SO4
ASTM Type I Water
HCI rinses (Impingers 5-6)
Run 1
1013
1014
1015
1016
1017
1018
Run 2
2013
2014
2015
2016
2017
2018
RunS
3013
3014
3015
3016
3017
3018
Run 4
4013
4014
4015
4016
4017
4018
Field Blank
1034
1035
1036
1037
1038
1039
-------
D CHAIN OF CUSTODY RECORD
S^ SAMPLE TRACEABILITY RECORD
Container (Cooler) No
Page
of
Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
Field Sample Custodian:
c
Storage Requirements:
d Ice water. < 4°C
[ZLDry ice
CSjRoom Temp., < 26°C
Other:
104951-009 AHRC 1OOJ.
M26A FRONT-HALF RINSES
EMISSION TEST SAMPLE
104951-009 AHRC 1OOS2
M26A FILTER * ___/_X_
EMISSION TEST SAMPLE
r!04951-OO9 AHRC
] M26A FRONT-HALF RINSES
EMISSION TEST SAMPLE
"104951-009 AHRC ^ 12 C
M26A FILTER # _J?^2_
EMISSION TEST SAMPLE
104951-009 AHRC C3 O O J_
M26A FRONT-HALF RINSES
EMISSION TEST SAMPLE
104951-009 AHRC C3 O O S
M26A FILTER # £^/
EMISSION TEST SAMPLE
"104951-009 AHRC 1 O ^ 3
M26A ACETONE
FIELD REAGENT SAMPLE
104951-009 AHRC JLOS4
M26A FILTER # _J±^
FIELD REAGENT SAMPLE
104951-OO9 AHRC -
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabiiitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
P 1
2
3
4
Storage Requirements:
d Ice water, < 4°C
D- Dry ice
xS Room Temp., < 26°C
CU Other:
Reason for Transfer:
/Ps PsryJ^/S^J
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRP and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
Code: MRI-5003
Revision: 1
Effective: 3/27/98
Page: 8 of 17
SAMPLE RECEIPT CHECKLIST
MRI Project No. 10 V °( ? I I
Samples Received by: VQ^ L. Lcr,^ Date:.
Airbill No. AJA Chain-of-Custody No. ?Jz
/TS
Airbill present? Yes I© Chain-of-Custody present? M|sJ No
Shipping container intact? fe£) No Container type 1 c*
Custody seals present? Yes tfcT) Seals intact? /u^es No Seal Location:
C-O-C properly filled out? (?e^ No Does C-O-C indicate sample type? <^ej) No
Ice packs orijcefrozen?) "(e^ No Samples cold? Xejj) No Temperature °C: cct> I
^*^-~ ^"*^
Sample containers intact? tfes) No Labels permanently affixed? X®®) ^o
Sample containers leaking? Yes (Nc) Container type indicated? Yes @
Are all samples properly labeled and accounted for? ''(e^) No
Are samples stored as indicated by the project leader? ^es) No
Is the C-O-C filled out completely, signed, and dated? ^es) No
If pH check upon receipt is required, indicate where it is recorded.
Sample storage location: 1^0-£, _ H0- 4E. m< j- -( U
COMMENTS
>r Alb«<'. ^ r£.4,r.'
-------
Code: MRI-5003
Revision: 1
Effective: 3/27/98
Page: 9 of 17
_ INSTRUCTIONS
1. Fill in the form completely If the question is not"applicable to the samples or
the specific project, mark the area "NA".
2. Wherever possible, indicate any problems on the chain-of-custody form or
sample inventory. Any negative answers to the questions on this form must
be explained on the chain-of custody or the sample receipt form.
Explanations on the sample receipt form should be cross-referenced with an
identifier and described in the comments section. Fill out a PAR as needed.
3. Check off each sample received on the chain-of-custody or sample inventory.
If the client did not provide a chain-of-custody or sample inventory, generate
a sample inventory by listing:
a) MRI Project number
b) Client and/or field shipper
c) Field sample ID or sample name
d) Sample type
e) Sample container type and number per sample
f) Sample collection date
4. Indicate on the Sample Receipt checklist where samples are stored.
5. If there are any problems that affect the integrity of the sample (e.g., broken,
leaking, or mislabeled samples) or improper documentation (e.g., unsigned or
errors in the chain-of-custody form) inform the project leader. The project
leader or designee must:
a) Inform the client immediately
b) Take any action indicated by the client
c) Document the action in a telephone contact report and telefax
the report to the client that day
d) File the phone contact report in the sample receipt file.
6. Create a sample receipt file. Place this form, any accompanying comments
or PAR'S, the sample inventory or chain-of-custody, the airbill, and any other-
paperwork received from the client into this file and deliver it to the document
control officer. Retain a copy of the sample receipt form and the chain-of-
custody in the sample control files.
MW-QA\MRI-3003.DOC
-------
D CHAIN OF CUSTODY RECORD
Bf SAMPLE TRACEABILITY RECORD
HnntflinAr (Cnoler) No. /V//4
Paqe / of ^ Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
/104951-009 AHRC JL O O 4
M26A ALIQUOT OF XXOO3 ( HC1 )
EMISSION TEST SAMPLE
^04951-009 AHRC 2OO4
M26A ALIQUOT OF XXO03 ( HC1 )
EMISSION TEST SAMPLE
/4.O4951-OO9 AHRC C3 O O -1
M26A ALIQUOT OF XXOO3 ( HC1 >
EMISSION TEST SAMPLE
/iO4951-009 AHRC 1 O 2 &
M26A 0. IN H2S04
FIELD REAGENT SAMPLE
/L 04951 -009 AHRC 4 O O 4
M26A ALIQUOT OF XXOO3 ( HC1 )
EMISSION TEST SAMPLE
For disposal call: A. Carender
MIDWEST RESEARCH INSTITUTE
Relinquished By: Received By:
i^/i^-^r JQ^ua^-^
jOtZO*^, ^ j A-
J f)
OA&C^ C/. ^Y-
Field Sample Custodian:
^ /l/li/s'0t ^ /
Remarks:
gA?/f-7 1 ' /
lemarks:
^ $'A*jJ/'?V *^~
lemarks:
0//&>/f9\ ^ /
Remarks:
Cij 2 1/ li'y I/ s
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Sample Transfers:
Date Time No.
ffk'f/'Ff /do CD
P/W?f ?<* <3>
Z/JY/0!0! l5'^5 3
thify )w
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2} Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MR!"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
MSAMPLE TRACEABILITY RECORD
Container (Cooler) No. AV/V
Paae 2- Of 9 Transfer No.
Checked by (Initials)/Date
^ Lock or Seal Intact (Yes or No)/Time
'104951-009 AHRC JLOOC3
M26A H2S04 IMPINGERS 1-3
EMISSION TEST SAMPLE
AO4951-OO9 AHRC 2 O O C3 "
M26A H2S04 IMPINGERS 1-3
EMISSION TEST SAMPLE
I)Xl04951-009 AHRC 3OOC3
1 M26A H2S04 IMPINGERS 1-3
EMISSION TEST SAMPLE
/£O4951-OO9 AHRC -3= O O C3
M26A H2S04 IMPINGERS 1-3
EMISSION TEST SAMPLE
r or aaepoeaj. caJ-J. : A. Carender
MIDWEST RESEARCH INSTITUTE
Relinquished By: Received By:
^f^/7i/^^^A /O.t&favJ^
jQ.a^^- ,i_ j A>^
Field Sample Custodian:
/
,04 J-/^
/J/A
e/nCff ^
Storage Requirements:
D Ice water, < 4°C
n,.Dry ice
E Room Temp., < 26°C
CD Other:
Remarks:
5/>^/ff c^
Remarks:
g /;»>/?? S
Remarks:
g/*?/^?
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Sample Transfers:
Date Time No.
0/iy/ff /^3^ (3)
3-/U/11 01** ®
3
4
Reason for Transfer:
-ft «*«.,**< i*"^
&«~s^r ^^.^
93-4 SEV surmwkshl 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if'the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
'E_3 SAMPLE TRACEABILITY RECORD
Container (Cooler) No. /tX^1
Parje . ^ Of 7 Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
10.4Q^1 -009 AHRC__ A
jg# iff?
Storage Requirements:
S Ice water, < 4°C
CI] Dry ice
CD Room Temp., < 26°C
d Other:
Remarks: / / /
3/nftf */
Remarks:
s/n/7? ^
Remarks:
3>//7 /V'7 t/
Remarks:
g//?/f? -/
Remarks:
*S// 7 A/ ^
Remarks:
%/n/f? */
Remarks:
o /// / r,t\
lU-ibjl OO5 ftHRC _L O d3 , — \ -'ot/94\ S
Remarks:
Sample Transfers:
Date Time No.
•£&. £>/2-'//^t " /o3o CU
^/^/ff ^5S« ^
3
4
Reason for Transfer:
-7? A^>
&«~**-r etMBK.,4
93-4 SEV surmwkshl 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTC
"0 SAMPLE TRACE;
Container (Cooler) 1
Paqe tf of 7
)DY RECORD
ABILITY RECORD
Mo ^/^
Transfer No.
Checked by (Initials)/Date
Lock or Seal Ir
/5.04951-OO9 AHRC
M29 4% KMn04/10
FIELD REAGENT S<
yl04951-009 AHRC
M29 ASTM TYPE I
FIELD REAGENT S
F^,v ,-M o^^^-s 1 „„
^104951 -009 AHRC
M29 8N HC1 IN V
FIELD REAGENT £
itact (Yes or No)/Time
J. 0:3-7
Y. H2S04
AMPLE
1 OC3Q
WATER
AMPLE
11. A r n«A»_in»
: i O3s>
•/ATER
SAMPLE
Field Sample Custodian:
/
J^^9& C^/ "5 ^^
C^^\ rf / ^^\
r*/A
&/I1/CJ3 S
Storage Requirements:
GS Ice water, < 4°C
CH Dry ice
CD Room Temp., < 26°C
CD Other:
Remarks:
a//(p/9f \ */
Remarks:
Qllttftf \ ^
Remarks:
1O4931-OO9 AHKC 12 O J. lg*' ..gJ^ffa-f
-M29 FRQHT — liALr ACETONE
JFMISSTQN TEST SAMPI F
Remarks: .J^
//-/-/ -y
"/104951-009 AHRC 2O13"
M29 FRONT-HALF O. IN HNO3
EMISSION TEST SAMPLE
/.04951-009 AHRC 201 4
M29 FILTER
EMISSION TEST SAMPLE
/1O4951-OO9 AHRC SOl's
M29 HN03/H2O2 IMPINGERS 1-3
EMISSION TEST SAMPLE
/1O4951-OO9 AHRC C2. O JL f
T_ ^ j_
X *
No.
d?
0
3
4
Reason for Transfer:
r? S^A.I Cti/>~*^
&W~e- <**•<=*- <-<
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
gf SAMPLE TRACEABILITY RECORD
Container (Cooler) No. ^ Sft
Paae ^ of f Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
xo^Q^i-nnQ AHRC C3JDLJ-JS.
&S3-FRONT-HALF ACETONE
T~*M T ff T OH — T* TT T T — crAMP»LE
/104951-009 AHRC C3O1C3
M29 FRONT-HALF 0. IN HN03
EMISSION TEST SAMPLE
/104951-009 AHRC C3 O 1 4 "
M29 FILTER
EMISSION TEST SAMPLE
•C1^— _IJ •> -11. » ,-._
/1O4951-O09 AHRC C3 O JL 5 ~
M29 HN03/H202 IMPINGERS 1-3
EMISSION TEST SAMPLE
/104951-009 AHRC C3 O JL e,
M29 IMPINGER 4
EMISSION TEST SAMPLE
/1 04951 -009 AHRC CBOJ.^
M29 KMn04/H2S04 IMPINGRS 5-6
EMISSION TEST SAMPLE
/104951-009 AHRC C3 O 1 O
M29 HC1 RINSES IMPINGERS 5-6
EMISSION TEST SAMPLE
/104951-OO9 AHRC 4 O JL C3
M29 FRONT-HALF O. IN HNO3
EMISSION TEST SAMPLE
yiO4951-O09 AHRC 4: O J_ 4 '
M29 FILTER
EMISSION TEST SAMPLE
/1O4951-OO9 AHRC 4O1S
M29 HN03/H202 IMPINGERS 1-3
EMISSION TEST SAMPLE
y£o4951-OO9 AHRC -4= O JL &
M29 IMPINGER 4
EMISSION TEST SAMPLE
For disposal call: A.Carende:
MIDWEST RESEARCH INSTITUTE
Relinquished By: Received By:
1^^/iAA^n^A^^ & V^^
{Q.AUT.^ ^ J £^
*
Field Sample Custodian:
/
^ f/ZSf
**/*•
Remarks:
fVO'f CG/fi'fyfCf
S>/y.J/Tr\ ^
Remarks:
g/a*/ff S
Remarks:
£>/2 » faf \^/
Remarks:
g/*^-/ff (^
Remarks:
8/W?y -/^ tX
Remarks:
g/3-> /f f tX
Remarks:
gAo,/** -^
Remarks:
' g/>7/?# /n-t/ P"» /*""
5^«^r ^t/^c: ,,J
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom twp lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv, only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
^SAMPLE TRACEABILITY RECORD
Container (Cooler) No. X/5"?
Page b Of f Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
T.04951-009 AHRC -4= O JL "7
M29 KMnQ4/H2S04 IMPINGRS 5-6
EMISSION TEST SAMPLE
/404951-009 AHRC -4 O i. Q,
M29 HC1 RINSES IMPINGERS 5-6
EMISSION TEST SAMPLE
For disposal call: A. Carender
MIDWEST RESEARCH INSTITUTE
Relinquished By: Received By:
rA/})1^n^^1 jfi^Mr
/9. tU£~~t _!_ j ^^
v ft y
Field Sample Custodian:
f/flusecvrfi'o^-
/
*3A ^.¥
/^
&h tfff
Remarks:
g/2-//ff ^
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Sample Transfers:
Date Time No.
$/*/?? /#Zo 03
^V^^/ff 0<)<™ ®
3
4
Storage Requirements:
/H Ice water, < 4°C
tZl Dry ice
CU Room Temp. ,<26°C
CD Other:
Reason for Transfer:
"Jl /^\*-\ p> ft 0( * 4 *—
/*x1^HPtxtr" dMftrCK. cr>
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
j£ SAMPLE TRACEABILITY RECORD
Container (Cooler) No. AJ /A
Page ~7 of
Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
Field Sample Custodian:
Storage Requirements:
e water, < 4°C
CD Dry ice
CD Room Temp., <26°C
CD Other:
O
/104951-OQ9 AHRC J_ O O
M23 TRAIN FRONT RINSES
EMISSION TEST SAMPLE
Xo495V-~009 AHRC J_ O O
M23 TRAIN BACK RINSES
EMISSION TEST SAMPLE
^104951-009 AHRC
M23 TOLUENE QA RINSES
EMISSION TEST SAMPLE
/104951-Q09 AHRC 1
M23 ACETONE
FIELD REAGENT SAMPLE
/104951-009 AHRC J_
M23 METHYLENE CHLORIDE
FIELD REAGENT SAMPLE
/1O4951-OO9 AHRC J_
M23 TOLUENE
FIELD REAGENT SAMPLE
'/104951-009 AHRC 2
M23 TRAIN FRONT RINSES
EMISSION TEST SAMPLE
/104951-OO9 AHRC S
M23 TRAIN BACK RINSES
EMISSION TEST SAMPLE
Remarks:
Remarks:
Remarks:
Remarks:
O ^ <=>
Remarks:
Remarks:
Remarks:
Remarks:
104951-009 AHRC SOJLO
M23 TOLUENE QA RINSES
EMISSION TEST SAMPLE
7lO4951-OO9 AHRC 3 O O »=,
M23 TRAIN FRONT RINSES
EMISSION TEST SAMPLE
'/O4951-O09 AHRC SO OS
M23 TRAIN BACK RINSES
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
Remarks:
Remarks:
Relinquished By:
Received By:
Remarks:
Sample Transfers:
Date
Time
No.
Reason for Transfer:
J^-«. 0. nUrw-^
0
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTC
J2f SAMPLE TRACE/
Container (Cooler)
Page / of f
Che
Lock or Seal Ir
/1O4951-OO9 AHR(
M23 FILTER
. EMISSION TEST !
XlO4951-O09 AHR(
M23 XAD CARTRII
EMISSION TEST <
/104951-009 AHRC
M23 FILTER
FIELD REAGENT S
/104951-GG9 AHRC
M23 XAD CARTRID
FIELD REAGENT S
/1O4951-009 AHRC
M23 ASTM TYPE I
FIELD REAGENT S
/.04951-009 AHRC
M23 FILTER
EMISSION TEST S
/104951-OOS AHRC
M23 XAD CARTRID
EMISSION TEST £
/104951-OQ9 AHR
M23 FILTER
_ EMISSION TEST
/1O4951-OO9 AHRC
M23 XAD CARTRID
EMISSION TEST S
•AG4951-009 AHRC
, M23 FILTER
EMISSION TEST £
/1O4951-009 AHRC
M23 XAD CARTRII
EMISSION TEST £
For disposal ct
MIDWEST RESEARC
k
Relinquished By:
^/hu^f^i^(
/Q.Ot*^J&
AJ/A
Ql^lTI I/
Storage Requirements:
S Ice water, < 4°C
CH Dry ice
CD Room Temp., < 26°C
CD Other:
Remarks:
3/n /'?? | ^
Remarks:
i o 3 o r £>fi(f- /GE
SAMPLE
ill: A. Carender
3H INSTITUTE
Received By:
O.M+^c
^) U
Remarks:
0/lklW -^
Remarks:
&/ lip lit \*s^
Remarks:
,- /„ /->.-< s
2/11 /'If l^
Remarks:
&/3//tf\ ^
Remarks:
'ef&ln | >/
Remarks:
1 5A^^"I ^
rtemarks:
g/t-S/T? 1 ^
Remarks:
^A-7 /f */
Remarks:
Sample Transfers:
Date Time No.
&/2.S/?? &3C) <3>
£y*6/w <>?*< (2
3
4
Reason for Transfer:
7* t^n-i ^e<. f^ XVXHV_^
_^ "'4*^' 'L ~ C(f-££f. f/°
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceabilitv as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
D CHAIN OF CUSTODY RECORD
]ZJ SAMPLE TRACEABILITY RECORD
Container (Cooler) No. ^/A
Page^
''__ of 7 Transfer No.
Checked by (Initials)/Date
Lock or Seal Intact (Yes or No)/Time
/i04951-OOS AHRC C3O 1 O
M23 TOLUENE QA RINSES
EMISSION TEST SAMPLE
Field Sample Custodian:
Remarks:
Storage Requirements:
JZu Ice water, < 4°C
D Dry ice
CD Room Temp., < 26°C
d Other:
AHRC 4OO£i
M23 TRAIN BACK RINSES
EMISSION TEST SAMPLE
'/104951-009 AHRC -4 O JL O ^
M23 TOLUENE QA RINSES
EMISSION TEST SAMPLE
/104951-OO9 AHRC 4 O O & "
M23 TRAIN FRONT RINSES
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Remarks:
Sample Transfers:
Relinquished By:
Received By:
Date
Time
No.
Reason for Transfer:
^ ^
93-4 SEV surmwksht 020293
-------
FILLING OUT SAMPLE CUSTODY RECORD
1. Check off Chain of Custody or Sample Traceability as applicable.
2. Enter the storage container (ice chest or other) number or the sample group code normally written
on the container.
3. Enter (print) your (field sample custodian) name.
4. Check off the appropriate storage requirement. If "other", write in the storage condition.
5. Position the top of first label at the top of the first space for labels. The bottom two lines of that
label are to be covered with the top of the second label, and so on down the column to the last label
which will show the redundant information on the last two lines. If preprinted labels are not
available, enter the project number in the first space along with the sample number and sample
description. Enter appropriate sample numbers and descriptions in the remaining spaces.
6. Sample container preprinted label format is usually as follows:
Line 1) Abbreviated Plant or Client Name / Project Number / Sample Number
Line 2) Description of Sample
Line 3) Sampling Location, Type of Sample, or Additional Information
Line 4) "FOR DISPOSAL CALL:" Name of Project Leader
Line 5) "MIDWEST RESEARCH INSTITUTE"
7. Up to four VOST trap labels can be placed in each normal label space. Write the VOST tube number
on or beside each respective label.
8. Six columns are provided for storage container integrity and sample inventory checks.
a. For chain of custody, this information should be entered each time a storage container is
unlocked or the signed and dated seal is broken to check the samples within, to add more
samples, to replace ice, etc. Initial and date the second box at the top of each column. In the
third box, indicate if the lock or seal is intact and enter the time. The storage containers and
samples should be checked each day in the field. Containers may remain unlocked or unsealed
only while in view of the custodian. If samples are inventoried, place a check mark in the
appropriate box (beside each sample label) below the inventory date.
b. For sample traceabilitv. only inventory checks need to be entered during sample transfers to
the next custodian. Storage containers do not have to be locked or sealed, but they must be
placed in a secure location at all times. When samples are inventoried, place a check mark in
the appropriate box (beside each sample label) below the transfer number which is entered in
the first box at the top of the column.
9. Each time the custodian is changed (samples are transferred), the samples must be inventoried and
signed off at the bottom of the form. Each transfer is assigned a number which is to be entered in
the first box at the top of the column for the respective inventory. When samples are shipped by
common carrier, the applicable "received by" and "relinquished by" spaces for the carrier are left
blank. In this case, the reason for transfer could be "shipped Fed Ex to MRI" and "received at MRI"
respectively.
10. Remarks regarding abnormal or undesirable conditions of samples known or discovered by the
custodian(s) are to be entered on the form. Such remarks may include special precautions (e.g.,
"sample must be vented"), or undesirable conditions (e.g., "bottle broken", "all ice melted", etc.).
Remarks must be initialed and dated. The fate of any collected samples as a result of field analysis,
discarding, loss, etc. must be documented.
11. If a second (continuation) form becomes necessary for a particular set of samples listed on one form
due to extended time or other reasons in the field, use spare labels or write in the required
information to set up the form. Enter the page number of this form and the number of all forms
listing this set of samples, e.g., page 2 of 2.
12. Original forms, sealed in plastic, must be placed in each storage container having only those samples
listed on the forms. Forms for samples shipped by common carrier must be copied prior to shipment
and be retained by the sampling team leader as part of the sample log in the event a shipment is lost.
After the final transfer to the analytical laboratory sample custodian, the completed original forms
are given to the sampling task leader for the project file and copies are given to the laboratory sample
custodian.
-------
Appendix B
Process Data
MRI-AEDSR495l-C»-05.Wf>d
-------
PROCESS AND SUPPORTING TEST DATA
MRI Project No. 104951.1.009.04.01
Emissions Test Evaluation of a Pathological Waste Incinerator at The University of Georgia
Date:
Emission Test Run No.
Data Recorded By.
page.
of
24-Hr
Time
(1-0(0
//:3(.
l2,'Ot>
ii-y*
/S.'tfc
r^-
£'4G
I4a6
I4'f£
is:&
/s 4-6
Primary
Chamber
Temperature,
°F
f L'VA. &«*- c
0
Secondary
Chamber
Temperature,
°F
3>3o^ci
332,/g
S3 3 5^
?S4^
J3 62 1
<^
3^€>n
S3^Z
34^ 1Z
*>+W$o
3'4-2.s^>
Gas Meter
Reading,
cu.ft.
Barometric
Pressure,
in. Hg
Outdoor Air
Temperature,
°F
&r-
°ii
q*r
q-r
%
3£
96
94,
9^
?9
96
Outdoor
Relative
Humidity,
percent
LA
6%
&.
«
5^
^
44
43
4f
4i
40
Presence
of Odors
Remarks
"£tV/i ,v; U.OKS fOCH duviv^t "/£•$"/
j r/ ^
-------
PROCESS AND SUPPORTING TEST DATA
MRI Project No. 104951.1.009.04.01
Emissions Test Evaluation of a Pathological Waste Incinerator at The University of Georgia
oaae ' of '
Date: d?/2/'^^ Emission Test Run No. •-£. Data Recorded Bv / /W'.
1610
/5Vc
16 10
1^0
'7/0
n>£
Primary
Chamber
Temperature,
°F
/^O
V(L(MLto»6
'$00
//
1 fj fj )
' / £•••"
'J4b
fi>rt #k
fall
/V00
i(£0{
.'•fbt-
tjOt
£K/ o-f
Secondary
Chamber
Temperature,
°F
/&co
£ftfi£i $ttf fa}
s&oo
/ &, £) O
/£/
!&&
W
/ ^ i-/<^~
/QkO
Ifcl
/B^d
IW
&*
Gas Meter
Reading,
cu.ft.
fy!>$:*°o
WC ^,S
t/.W/oo
,'&,&<>
V//74-^
<,,ie.2f
x' / 7!; 'Z 0'
—
—
_
2-i I/ far /i '~/2--f *(- C
_^> (/ iltjd f >V( ~fy^ti^\ /Off Ci/']6*l$p
-•V fad f/n fa;* fo/h/t/ff/fc/
-------
PROCESS AND SUPPORTING TEST DATA
MRI Project No. 104951.1.009.04.01
Emissions Test Evaluation of a Pathological Waste Incinerator at The University of Georgia
page.
of
Date: £"'/2'2-/ < / Emission
'
24-Hr
Time
/D: ID
1C 'At
il-iC
ii:4t
(2./0
T?v
Bl-5"
/3-ir
/f/t
/44£
^/<
19^\
i&^l
•
/636
/tf'^
/£^f
/<35^
f^l>
"-?
Test Run No. ^ D;
Gas Meter
Reading,
cu.ft.
44£si
^ Sc^ <7
46220
4 ^ i>\ i\\c cui'^-fTn-^ ^c7N^v
-------
PROCESS AND SUPPORTING TEST DATA
MRI Project No. 104951.1.009.04.01
Emissions Test Evaluation of a Pathological Waste Incinerator at The University of Georgia
page.
of
Date: f~/2^/n Emission Test Run No. I. Data Recorded Bv ' ' v.CtYi^
24-Hr
Time
ill?
I'icg
/:33g
/4*e
'P^v-(
/4'37
f£07
/S3?
/6#7
Primary
Chamber
Temperature,
°F
CS7£
1441
R6G
t(*70
rl -
V^ xV VtX V-v-A
n^
M1
1(010
/^7^
Secondary
Chamber
Temperature,
°F
/7?6
n$'£
i E'<3
I&5D
<_
/^-:^2,
1&5&
l&^O
(247
Gas Meter
Reading,
cu.ft.
^.^/l^"-^.
xi^ (j-v/j "y
/\9"\&cl
/[•^^3
4rU2c.<
4-H 4^'Z
1 ^ L Lx c^
xf^^T
4?7J4
Barometric
Pressure,
in. Hg
Outdoor Air
Temperature,
°F
87
£f;
e-/
'1 ^>
12.
P r-Ct-e.itT AU5CW-,
TV.y/vA = /CT/W/r,,,, (^Uu(>f
5? t^5 /P ,v,,n.
f^L-LVy 4 6>1 L^-l .r> IW^ -~l(\CllL£(£
- J
^Urm'c-ij^,^- r e~td -hv 4-r\\
Y^
-------
-------
O, J j
pvtv-fN It |
4
- [if
Ub
' I
'^ :/^
i^l<1
it
s
3- ^
f
53
/3
70.
/f-2^
H-?f
M'fl
4 ( xyo.O
z.
J
Ci
rrfcwM
O
#/-
q
J
5
7
-------
I en
/SI
/ I
-------
I JJ{ _
\»(^ JcPA
w
I
^ Si.o
^/i
i
4
7
5
i^T
5
o />
7
5
A/
A/
3
3
5,,, 02- 1 ^:
,H.t> 5*7.4
/"
/I/
/v
/•
A/
-------
—\..:
I A; IT-/
•Act». L
^^
**0~
-------
&*.
*>
^ ^
\^
0,
5
T
x
H
S
3
c.
V
y
y
y
\
^/
\
/
5
3
q
5
b
1
3
63.
/*' JJ /
0,2.0
r
/
/V
/v
K-
*"
/'
-------
-------
(00-
^
V
So /d^o
1
u
S5*
•55 3
«,,• M
5
5-
A/
V
,
A/
/1
3 —
^ /Ob
5 "•
(D
-------
Appendix C
Field Sampling Data
-------
VELOCITY TRAVERSE DATA
Project No.
Run No.
Plant
Date
Sampling Location
Operator(s)
Barometric Pressure, in. Hg
Site to Barometer Elevation
Corrected Barometric Pressure
Pitot No. Pitot Cp
T/C No. Temp. Meter No.
Stack Area, sq.ft.
Static Pressure, in. H2O
Assumed Moisture, %
Assumed %C02
Initial Pitot Leak Check
Final Pitot Leak Check
Comments: /7^ >,,
ft.
Assumed %02
/?. f/~
Traverse Point Layout
TRAVERSE
POINT
NUMBER
c-t
s\
/-
J
y
r
^
x5- /
n
/^
J?
y
J"
<<
VELOCITY
HEAD, Ap
in. H,0
~r>£
.-W
,oB
.01
. 10
> n
.10
,0$
, / 0
. 10
.//
./&
.01
STACK
TEMP.
°F .
f/v/
•<&f
?fc
Or'-A
/J c
9^
f^
9jcO
GI*
9'fr
in'
1+0
730
T#>
*-- —
ROTATION
ANGLE
a
^r
•i 2*
* *
\ ^-0
-?*
-}3~
+fri'
•' .'-
-S
v -/r
^^5"
^?r
"^r^
y ./>-
r,^^^-
^J
Start Time H'Jo End Time /&f/}
*>*.*-„*;
TRAVERSE
POINT
NUMBER
* '?Y
VELOCITY
•HEAD.AP
in. H20
STACK
TEMP.
°F
ROTATION
ANGLE
a
93-3 SEV surfrm 020393
-------
VELOCITY TRAVERSE DATA
Project No.
Run No. _
Plant
Date
Sampling Location
Operator(s)
Barometric Pressure, in. Hg
Site to Barometer Elevation
Corrected Barometric Pressure
Pitot No. Ufc 1'^y Pitot Cp A&: 3-
T/C No. u}C*-*-?> Temp. Meter No.
Stack Area, sq.ft.
Static Pressure, in. H2O
Assumed Moisture, %
Assumed'
ft.
J 2, /
Assumed %O2
Initial Pitot Leak Check
Final Pitot Leak Check
Comments:
&
Traverse Point Layout ^
Start Time H?~? End Time
TRAVERSE
POINT
NUMBER
c t
C
VELOCITY
HEAD. Ap
in. H20
.015
-alo
J0
STACK
TEMP.
"F
9*1
ROTATION
ANGLE
a
+24
-ff*
--7
((*
\
TRAVERSE
POINT
NUMBER
VELOCITY
HEAD, Ap
in. H20
STACK
TEMP.
°F
ROTATION
ANGLE
a
83-3 SEV surfrm 020393
-------
40 CFR 60, APPENDIX A, METHOD 1 -
LOCATION OF TRAVERSE POINTS IN A CIRCULAR DUCT
MRI Project No. 4951.09
Client/Source: U.S. EPA OAQPS / AHRC Incinerator
Source Location: Athens, Georgia
Sampling Location: Outlet Stack
Date: 05/04/99 For Run Numbers:
Dimensions obtained by/from: Direct measurement and blueprints
Data recorded by: J. Surman
Port- A
Inside of far wall to outside reference point (distance Li):
Inside of near wall to outside reference point (distance Lo):
Duct inside diameter (Li - Lo):
Port- B
Inside of far wall to outside reference point (distance Li):
Inside of near wall to outside reference point (distance Lo):
Duct inside diameter (Li - Lo):
Nearest flow disturbance upstream from ports:
Nearest flow disturbance downstream from ports:
Minimum number of points for velocity (nonparticulate) traverses:
Minimum number of points for participate traverses:
Inside diameter of the duct:
Number of traverse points to be used on a diameter:
Length of port from reference point to inside surface of duct:
32.500 inches
9.000 inches
23.500 inches
32.500 inches
9.000 inches
23.500 inches
170 inches, ( 7.2 D)
478 inches, ( 20.3 D )
12
12
23.50 inches
6
9.00 inches
Cross sectional area of sampling location: 3.012 ft2
Traverse
Point
1
2
3
4
5
6
Percent of
Duct Diameter
from Wall to
Traverse Point
4.4%
14.6%
29.6%
70.4%
85.4%
95.6%
Distance from
Reference
Point to
Traverse Point,
inches
10.02
12.44
15.95
25.55
29.06
31.48
Port A
Port B
Compass Direction
West
Vertical Duct - Top View
Comments:
M1CIRCD.WK4 10/13/98 (rev. M1CIRC.WK4 07/30/99 01:52 PM)
-------
PITOT COEFFICIENT ADJUSTMENTS FOR GAS FLOW INCREASES CAUSED
BY PROBE ASSEMBLY BLOCKAGE DURING SAMPLING IN CIRCULAR DUCTS
Sampling Location: AHRC Incinerator Outlet Stack
Duct I.D., inches =
Duct cross sectional area, square inches =
Probe #1 sheath O.D., inches, A =
Probe #2 sheath O.D., inches, A =
Probe #1 pilot tube face opening-to-sheath cap distance, inches, B =
Probe #2 pitot tube face opening-to-sheath cap distance, inches, B =
Probe #1 pitot tube coefficient according to dimensional specification
or calibration against standard pitot tube as applicable =
Probe #2 pitot tube coefficient according to dimensional specification
or calibration against standard pitot tube as applicable =
Theoretical blockage (in.1) = (duct wall at port-to-pitot tube tip distance - B) x A
Number of sampling points on a diameter =
SAMPLING LOCATION USING ONE TRAIN
AT A CROSS SECTIONAL AREA OF THE DUCT
Theoretical blockage (in.2) at each sampling time interval during one half of a run:
23.5
433.74
2.5
2.5
3.750
3.750
0.840
0.840
Probe #
#1
#1
*1
#1
#1
#1
Sampling
Point
1
2
3
4
5
6
Sampling Time Interval
1 I 2
0.0
0.0
3
8.0
4
32.0
5
40.8
6
46.8
I
% of duct diameter
from duct wall
4.4%
14.6%
29.6%
70.4%
85.4%
95.6%
Theoretical average blockage across one diameter = 4.90%
Decrease in probe #1 pitot tube coefficient from curve* = 2.84%
Average adjusted probe #1 pitot tube coefficient = 0.816
SAMPLING LOCATION USING 2 CONCURRENT TRAINS, EACH AT ONE PORT
ON THE SAME CROSS SECTIONAL AREA OF THE DUCT
Theoretical blockage (in.1) at each sampling time interval during one half of a run:
Probe # and
Traverse
#1 - port A
#1 - port A
#1 - port A
#1 - port A
#1 - port A
#1 - port A
#2 - port B
#2 - port B
#2 - port B
#2 - port B
#2 - port B
#2 - port B
Sampling
Point
1
2
3
4
5
6
1
2
3
4
5
6
Sampling Time Interval
1
0.0
46.8
2
0.0
40.8
3
8.0
32.0
4
32.0
8.0
5
40.8
0.0
6 I
46.8
0.0
I
Theoretical average blockage across both diameters = 9.81 %
Decrease in probe #1 pitot tube Coefficient from curve* = 7.63%
Average adjusted probe #1 pitot tube coefficient = 0.776
Decrease in probe #2 pitot tube coefficient from curve* = 7.63%
Average adjusted probe #2 pitot tube coefficient = 0.776
* Percentage decrease in pitot coefficient vs percent blockage is taken from the curve in Figure 9b
presented in Citation 9 of 40 CFR 60, Appendix A, Method 2
BLKGCALC.WK4 04/12/99 (rev. BLKGAHRC.WK4 07/30/99)
-------
Eagle-Picher
Certificate of Analysis
Organic and Inorganic Quality Assurance
For Assistance Call 800-331-7425
Bottle Type t QA Level:Z Laval 1
Approved:
Description:250 nff. Amber Boston Round Lot No. :Z8342050
Eagle-Picher Laval 1 products have been tested and found to comply with or to
b« lower than the EPA detection limits as stated in OSWER Directive # 9240.0-05A
"Specifications And Guidance For Contaminant-Free Sample Containers 12/92". Eagle-
Picher pass/fail criteria considers all significant non-target compounds.
. 'ft • .-;;•:••:. jmavmiKXXtiS: : AHAKOTW:;;; • .;
Phenol
bis- (2 -Chloroethyl) ether
2-Chlorophenol
2-Methylphenol
2,2'-oxybi* (1-Chloropropana)
4-Uethylphenol
N-Nitroso-di-n-propy lamina
Kexachloroethane
Nitrobenzene
Xsophorone
2 -Nitrophenol
2 , 4-Dimethylphenol
bis- (2 -Chloroethoxy) methane
2 , 4-Oichlorophenol
1,2, 4-Trichlorobenzene
Naphthalene
4 -Chloroaniline
Hexachlorobutadiene
4-Chloro-3-methylphenol
2 -Methylnaphthalene
Hexachloxooyclopentadiene
2,4, 6-Trichlorophenol
2 , 4 , 5-Trichlorophenol
2 -Chloronaphthalene
2-Nitroaniline
Dimathylphthalate
Acenaphthylene
2 , 6-Dinitrotoluene
3-Hitroaniline
Acenaphthene
Benzyl alcohol*
1 , 2 -Dichlorobenzene*
Benzoic Acid*
N-Nitrosodimathylamine*
FT tvj/Vi f
< 5
< S
< S
< S
< S
< 5
< 5
< 5
< 5
< S
< 5
< 5
< S
< 5
< 5
< 5
< S
< S
< 5
< 5
< S
< 5
< 20
< 5
< 20
< S
< 5
< 5
< 20
< S
< 5
< S
< S
< 5
• • :; ; : • ; swovpiAiiw] : ANALYSES •-•-•-.- • - \ K
2 , 4-Dinitrophenol
4-Nitrophenol
Dibenzofuran
2 , 4-Dinitrotoluene
Diethylphthalate
4-Chlorophenyl-phenylether
Fluorene
4-Nitroaniline
4 , 6-Dinitro-2-methylphenol
N-Nitrosodiphenylamine
4-Bromophenyl-phenylether
Hexachlorobenzene
Pentachlorophenol
Phenanthrene
Anthracene
Di-n-butylphthalate
Fluoran thane
Pyrene
Butylbenzylphthalate
3,3' -Diohlorobenzidine
Banzo (a) anthracene
Chrysene
bis- (2-Ethylhexyl)phthalate
Di-n-octylphthalate
Benzo (b) f luoranthene
Benzo (k) fluoranthene
Benzo (a) pyrene
Zndeno (1/2 , 3-cd) pyrene
Dibenz (a , h) anthracene
Benzo (g,h, ijperylene
1 , 3-Dichlorobenzene*
Carbazole*
1 , 4-Dichlorobenzene*
Azobenzene*
v-JtW/Wv:::
< 20
< 20
< 5
< 5
< 5
< 5
< 5
< 20
< 20
< 5
< 5
< 5
< 20
< 5
< 5
< 5
< S
< 5
< 5
< 5
< S
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
EMT
138
INORGANIC ANALYTES
Ag
Al
Aa
Ba
Be
Ca
Cd
CN
Co
Cr
Cu
P
Fa
Kg
K
Mg
Mn
Na
Ni
Pb
Sb
Se
Tl
V
Zn
(Silver)
(Aluminum)
(Arsenic)
(Barium)
(Beryllium)
(Calcium)
(Cadmium)
(Cyanide)
(Cobalt)
(Chromium)
(Copper)
(Fluoride)
(Iron)
(Mercury)
(Potassium)
(Magnesium)
(Manganese)
(Sodium)
(Nickel)
(Lead)
(Antimony)
(Selenium)
(Thallium)
(Vanadium)
(Zino)
-------
QC-B-001
Rev. 0
Eagle-Picher
Certificate of Analysis
Organic and Inorganic Quality Assurance
For Assistance Call 800-331-7425
Bottle Type £ QA Level:H Level 1
Approved:
: ~jA^m~- i.
Besoription: 1 Liter Amber Boston Round Lot No. :H9166020
Eagle-Piaher Laval 1 products have been tested and found to oorrply with or to
be lower than the EPA detection limits as stated in OSWER Directive » 9240.0-05A
"Specifications And Guidance For Contaminant-Free Sample Containers 12/92". Eagle-
Picher pass/fail criteria considers all significant non-target compounds.
SEMTVOLATILES ANA1YTES •
Phenol
bis- (2-Chloroethyl) ether
2 -Chlorophenol
2-Methylphenol
2,2'-oxybi« (1-Chloropropane)
4 -Hethylphenol
H-Kitroso-di-n-propylanvine
Kexachloroe thane
Nitrobenzene
Xaophorone
2-Nitrophenol
2 , 4-Diraethylphenol
bis- (2 -Chloroethoxy) methane
2 , 4-Dichlorophenol
1,2, 4-Srichlorobenzene
Naphthalene
4-Chloroaniline
Hexachlorobutadiene
4-Chloro-3-mathylphenol
2 -Me thy Inaphthalene
Kexachlorocyclopentadiene
2,4, 6-Trichlorophenol
2 , 4 , 5-Trichlorophenol
2 -Chloronaphthalene
2-Nitroaniline
Dimathylphthalate
Acenaphthylene
2 , £-Dinitrotolu»ne
3-Nitroaniline
Acenaphthene
Benzyl alcohol*
1 , 2-Dichlorobenzene*
Benzoic Acid*
N-Nitrosodimethylamine*
(W/W
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< S
< S
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< S
< 5
< 20
< 5
< 20
< S
< 5
< 5
< 20
< 5
< 5
< 5
< 5
< 5
SEMIVOLATILE AHALYTES
2 , 4-Dinitrophenol
4-Nitrophenol
Dibenzofuran
2 ,4-Dinitrotoluene
Diethylphthalate
4-Chlorophenyl-phenylether
Fluorene
4-Nitroaniline
4 , 6-Dinitro-2-methylphenol
N-Nitrosodiphenylamine
4-Bromophenyl-ph«nyleth«r
Hexachlorobenzene
Pentaohlorophenol
Phenanthrene
Anthracene
Di-n-butylphthalate
Fluoranthana
Pyrene
Butylbenzylphthalate
3,3' -Dichlorobenzidine
Benzo (a) anthracene
Chrysene
bis- (2-Ethylhexyl) phthalate
Di -n-octylphthalate
Benzo (b) fluoranthene
Benzo (k) £ luoranthene
Benzo(a)pyrene
Indeno (1,2, 3-cd) pyrene
Dibenz (a,h) anthracene
Banzo (g,h, ijperylene
1 , 3-Dichlorobenzene*
Carbazole*
1 , 4-Dichlorobenzene*
Azobenzene*
tPSf/L)
< 20
< 20
< 5
< 5
< 5
< 5
< 5
< 20
< 20
< 5
< 5
< 5
< 20
< 5
< 5
< S
< 5
< S
< S
< 5
< 5
< S
< 5
< 5
< 5
< S
< 5
< 5
< 5
< 5
< 5
< 5
< S
< 5
IHORGANIC AKALVTES :
Ag
Al
As
Ba
Be
Ca
Cd
CN
Co
Cr
Cu
F
Fe
Hg
K
M?
Mn
Na
Hi
Pb
Sb
Se
Tl
V
Zn
(Silver)
(Aluminum)
(Arsenic)
(Barium)
(Beryllium)
(Calcium)
(Cadmium)
(Cyanide)
(Cobalt)
(Chromium)
(Copper)
(Fluoride)
(Iron)
(Mercury)
(Potassium)
(Magnesium)
(Manganese)
(Sodium)
(Hickel)
(Lead)
(Antimony)
(Selenium)
(Thallium)
(Vanadium)
(Zinc)
(ug/L)
< 5
< SO
< 1
< 10
< 0.5
< 500
< 1
< 10
< 5
< 5
< 5
< 200
< 50
< 0.2
< 100
< 50
< 5
< 5000
< 10
< 1
< 2
< 2
< S
< 5
< 10
*Analyte not listed as a target compound in the OSWER Directive.
PESTICIDE AKALYTES
alpha-BHC
beta-BHC
delta-BHC
gaimta-BHC (Lindane)
Heptachlor
Aldrin
Heptachlor epoxida
Endosulfan I
Dieldrin
4, 4' -DDE
Endrin
Endosulfan II
4,4'-DDD
Endosulfan sulfate
4,4'-DDT
Methoxychlor
Endrin ketone
Endrin aldehyde
alpha-Chlordana
gamna-Chlordane
Toxaphene
Axoclor-1016, Aroclor-1232
Aroolor-1242, Aroclor-1248
Aroclor-1254, Aroclor-1260
Aroolor-12:.'l
Aroclor-1262*, Aroelor-1268*
(Uff/1)
< 0.01
< 0.01
< 0.01
< o.oi
< 0.01
< 0.01
< 0.01
< 0.01
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.10
< 0.02
< 0.02
< 0.01
< 0.01
< 1.0
< 0.20
< 0.20
< 0.20
< 0.40
< 0.20
Eagle-Picher Technologies Division
200 B.J. Tunnel 1 Blvd. Miami, OK 74354
Fax (918)540-1659
-------
Certificate of Analysis
Organic and Inorganic Quality Assurance For Assistance Call 800-351-7425
Bottle Type t QA Level:Z Level 1
Wash A Description:2SO ML. Aaber K.R.
Lot Mo
.:*oCZ«J20
This Certificate verifies that this lot of bottles has been cleaned according to the
EPA wash procedure set forth in the EPA Statement of Work "Specifications and
Guidance for Obtaining Contaminant-Free Sample Containers" and that this lot has
been tested and found to comply with or to be lower than the EPA specifications as
set forth in the EPA Statement of Work "Superfund Analytical Methods For Low
Concentration Water For Organics Analysis 6/91", (Document #OLC02.0).
SanVOLATlLES AXALYTES
Phenol
bis-(2-Chloroethyl)ether
2-Chlorophenol
2-Methytphenol
2,2ioxybis (1-Chloropropane)
4-Methylphenol
N-Nitroso-di -n-propylamine
Hexachloroethane
Nitrobenzene
1 sophorone
2-Nitrophenol
2,4-Dimethylpherwl
bis-(2-Chloroethoxy)methane
2j A -D i ch I oropheno I
1,2,4-Trichlorobenzene
Naphthalene
4-Chloroani line
Hexach I orobutadi ene
4-Chloro-3-methytphenol
2-Methylnaphthalene
Hexach 1 orocyc I opentadi ene
2,4,6-Trichlorophenol
2,4,5-Trichloroohenol
2- Ch 1 oronaph tfia I ene
2-Nitroaniline
Dimethylphthalete
Acenaphthylene
2,6-Dinitrotoluene
3-Nitroani I ine
Acenaphthene
tng/L>
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 20
< 5
< 20
< 5
< 5
< 5
< 20
< 5
^SEHIVOLATILE ANALYTES s:; -H
2,4-Dinitrophenol
4-Nitrophenol
Dibenzofuran
2,4-Dinitrotoluene
Diethylphthelate
4-Chlorophenyl-phenylether
Fluorene
4-Nitroaniline
4 , 6-D ini tro-2-methy I phenol
M-M i trosodi pheny I ami ne
4-Bromophenyl -phenylether
Hexach I orobenzene
Pentachlorophenol
Phenanthrene
Anthracene
Di-n-butylphthalate
FLuoranthene
Pyrene
Butylbenzylphthalate
3,3iDichlorobenridine
Benzo(a>anthracene
Chrysene
bis-(2-EthylhexyDphthalate
Di -n-octylphthalate
Benzo(b)f luoranthene
Benzo(k)f luoranthene
Benzo(a)pyrene
Indenod ,2,3-cd)pyrene
Dibenz(a,h)anthracene
Benzo(g,h, i >perylene
t^tg/L)
< 20
< 20
< 5
< 5
< 5
< 5
< 5
< 20
< 20
< 5
< 5
< 5
< 20
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
•;:w:*.;::-* IHORGAN 1C <«IAimS'™%:-~*--:£
Ag
Al
As
Ba
Be
Ca
Cd
CN
Co
Cr
Cu
F
Fe
Hg
1C
Mg
Hn
Na
Ni
Pb
Sb
Se
Tl
V
2n
(Silver)
(Aluminum)
(Arsenic)
(Barium)
(Beryllium)
(Calcium)
(Cadmium)
(Cyanide)
(Cobalt)
(Chromium)
(Copper)
(Fluoride)
(Iron)
(Mercury)
(Potassium)
(Magnesium)
(Manganese)
(Sodium)
(Nickel)
(Lead)
(Antimony)
(Selenium)
(Thallium)
(Vanadium)
(Zinc)
< 5
< 50
< 0.5
< 10
< 0.5
< 500
< 1
< 10
< 5
< 5
< 5
< 200
< 50
< 0.2
< 100
< 50
< 5
< 5000
< 10
< 1
< 2
< 2
< 5
< 5
< 10
: •*. ^:-xv*s:sl>£STlCIDE-A)IAL'nES -; s;v i::: w •:
alpha-BHC
bete-BHC
delta-BHC
gamme-BHC (Lindane)
Heptachlor
Aldrin
Heptachlor epoxide
Endosulfan I
Dieldrin
A.^DDE
Endrin
Endosulfan I!
Aj^DDD
Endosulfan sulfate
A.^DDT
Methoxychlor
Endrin ketone
Endrin aldehyde
alpha-Chlordane
gamma-Chlordane
Toxaphene
Aroclor-1016LAroclor-1232
Aroclor-1242LAroclor-1248
Aroclor-1254, Aroclor-1260
Aroclor-1221
t*g/D
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.10
< 0.02
< 0.02
< 0.01
< 0.01
< 1.0
< 0.20
< 0.20
< 0.20
< 0.40
-------
QC-B-001
Rev. 0
Eagle-Picher
Certificate of Analysis
Organic and Inorganic Quality Assurance
For Assistance Call 800-331-7425
Bottle Type t QA Laval:H Laval 1
Approved:
: jA«ftn~- 4.
Description: 1 Liter Amber Boston Round Lot No. :H9166020
Eagle-Piahex Laval 1 products have baan tasted and found to cortply with or to
be lower than the EPA dataotion limits as stated in OSWER Directive f 9240.0-05A
"Specifications And Guidance For Contaminant-Free Sanple Containers 12/92". Eagle-
Plcher pass/fail criteria considers all significant non-target compounds.
SEMtVOLATILBS ANALYTES -•
Phenol
bis- <2-Chloroethyl> ether
2 -Chlorophenol
2-Methylphenol
2,2' -oxybis (1-Chloropropane)
4-Methylphenol
N-Hitroso-di-n-propylamine
Kexachloroe thane
nitrobenzene
Isophorone
2-Nitrophenol
2 ,4-DLmethylphenol
bis- (2-Chloroethoxy) me thane
2 , 4-Dichlorophenol
1,2, 4-Trichlorobenzene
Naphthalene
4 -Chloro aniline
Haxachloxobutadiene
4-Chloro-3-methylphenol
2 -Methylnaphthalene
Hexachlorooyclopentadiene
2,4, 6-Trichlorophenol
2,4, 5-Trichlorophenol
2 -Chloronaphthalene
2-Nitroaniline
Dimethylphthalate
Aeenaphthylene
2 , €-Dinitrotoluene
3-Hitroaniline
Aconaphthene
Benzyl alcohol*
1 , 2-Dichlorobenzene*
Benzoic Acid*
H-Nitrosodimethylamine*
CM/*).
< S
< 5
< 5
< S
< S
< 5
< S
< S
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 20
< S
< 20
< 5
< 5
< 5
< 20
< 5
< 5
< 5
< S
< 5
SEMIVOLATI1E AHALXTES
2 , 4-Dinitrophenol
4 -Hitrophenol
Dibenzofuran
2 ,4-Dinitro toluene
Ciethylphthalata
4 -chlorophenyl -phenylether
Fluorena
4-Hitroaniline
4 , 6-Dinitro-2 -xnethylphenol
H-Hitro9Odiphenylamine
4-Bromophenyl -phenylether
Hexachlorobenzene
Pentachlorophenol
Fhenanthxene
Anthracene
Di-n-butylphthalate
Fluoranthena
Fyrena
Butylbenzylphthalate
3 ,3' -Dichlorobenzidine
Benzo (a) anthracene
Chrysene
bis- (2-Ethylhexyl)phthalate
Di-n-ootylphthalate
Benzo (b) fluoranthene
Benzo (X) fluoranthene
Benzo (a) pyrene
Indeno (1,2 ,3-cd)pyrene
Dibenz (a,h)anthracene
Benzo (g , h , i ) perylene
1 , 3-Dichlorobenzene*
Carbazole*
1 , 4-Dichlorobenzene*
Azobenzene*
Cwr/D
< 20
< 20
< S
< S
< 5
< 5
< 5
< 20
< 20
< 5
< 5
< 5
< 20
< 5
< S
< S
< 5
< 5
< S
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< 5
< S
< 5
INORGANIC ANAL-TIES
Ag
Al
As
Ba
Be
Ca
Cd
CH
Co
Cr
Cu
F
Fe
Kg
K
Kg
Mn
Ha
Hi
Pb
Sb
Se
Tl
V
En
(Silver)
(Aluminum)
(Arsenic)
(Barium)
(Beryllium)
(Calcium)
(Cadmium)
(Cyanide)
(Cobalt)
(Chromium)
(Copper)
(Fluoride)
(Iron)
(Mercury)
(Potassium)
(Magnesium)
(Manganese)
(Sodium)
(Nickel)
(Lead)
(Antimony)
(Selenium)
(Thallium)
(Vanadium)
(Zina)
(W/l)
< 5
< SO
< 1
< 10
< o.s
< 500
< 1
< 10
< 5
< 5
< S
< 200
< 50
< 0.2
< 100
< 50
< 5
< 5000
< 10
< 1
< 2
< 2
< 5
< 5
< 10
*Analyte not listed as a target conpound in the OSWER Directive.
, ••••••: 2ESTICIDE ANALYTES
alpha-BKC
beta-BHC
delta-BHC
ganma-BHC (Ziindane)
Heptachlor
Aldrin
Heptachlor epoxide
Bndosulfan I
Dieldrin
4, 4' -DDE
Endrin
Endosulfan II
4,4'-DDD
Endosulfan sulfate
4, 4' -DDT
Kethoxychlor
Endrin Xetone
Endrin aldehyde
alpha-Chlordane
gaima-Chlordane
Toxaphene
Aroclor-1016, Aroolor-1232
Aroolor-1242, Aroclor-1248
Aroclor-1254, Aroclor-1260
Aroolor-1221
Aroclor-1262*, Aroclor-1268*
(Hff/L)
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.02
< 0.10
< 0.02
< 0.02
< 0.01
< 0.01
< 1.0
< 0.20
< 0.20
< 0.20
< 0.40
< 0.20
Eagle-Picher Technologies Division
200 B.J. Tunnell Blvd. Miami, OK 74354
Fax (918)540-1659
-------
Section 1
EPA Method 23 for PCDD/PCDF Sampling and
Recovery
MR1-AED\R4951-09-05 w
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD REAGENT BLANK PREPARATION DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Blank(s) Prepared By: y/tfurOhj c^i C /£ Date: Q_
Weights below are in grams.
Sample Bottle Tare Bottle Gross Net Sample
Reagent Blank Description Number Weight Weight Weight
Acetone to be archived
Volume needed: 700 mLs
Lot Number: &' ''-> / 027
Methylene chloride to be archived
Volume needed: 700 mLs
Lot Number: &'<-* tf&( /028
Toluene to be archived
Volume needed: 700 mLs ,
Lot Number: BU 7dc{ /02g Y^ /'& / ( 3-C.2> Q ±3 ,.£
Filter to be archived
Type: Whatman QM-A
Lot Number: <^^35" /03O
XAD Cartridge to be archived
Cartridge Number: '^3 /O31
ASTM Type II Water to be archived
Volume needed: 200 mLs
Lot Number: •&- /(^ ft///?? /032 /&$• 3 33/•
NOTE: Lots may be identified above by a manufacturer's lot number or by the date of reagent preparation. If different lots of
a particular reagent are used, indicate the applicable test and/or run number(s) and sampling location(s) where the train(s)
loaded and/or recovered with that reagent are used (i.e., list each reagent blank sample number with the applicable test
and/or run number(s) and sampling location(s) below).
Sample Number For Test and/or Run Number(s) For Sampling Location(s)
COMMENTS:
M23BLX.WPD July 10, 1997 (rev. M23BLK9.WPD July 30, 19991
-------
Run No.
Date ~
Project No. 104951.1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Location
Operator tJ
Outlet Stack
Record data every
Barometer No.
/f?
minutes
Barometric Pressure tr '• '7
Elevation to Meter Boxes ^
Meter Box Pb.
Elevation to Sampling
Sampling Location
Static Pressure ••
Hg
.ft
Hg
>v>£
FIELD SAMPLING DATA FOR METHOD B TYPE TRAINS
Train A Type/No.
Probe No.
Lme^Tyqe
Nozzle
*S>V - }
Length: J ft
Heated? (^ n
No. "*/J "j Tip^Dia. ' I'J^f
n
Pitot Tube No.
Stack Thermocouple No..
Filter No.
<'-'. & 'f&
Sample Box No. _
Umbilical/lmpinger Hookup
Umbilical Nos._^//'/
Meter Box No.
- 3
/V.'
DGM Correction (Y)
Orifice Meter AH@
/- ?'•' '
Train B Type/No.
Probe No.
Liner Type
Nozzle No.
Pitot Tube No.
Stack Thermoc
Filter No.
Length:
Heated? y n
. Tip Diay/_ in
Sample Box Nc
Umbilical/lmpinger Hookup.
Umbilicaj/Nos.
Meter/Box No.
DC
Correction (Y)
fifice Meter AH@
in H,O Assumed Moisture
//•'/
% Assumed %CO2
?.j" %o, /TTr
page 1 of.
Traverse Point Layout
Compass Direction *> |^
Nozzles are quartz-glass.
Time (24 Hr)
Pass or Fail
Train A Pitot Tube Pressure Measurement System Leak Checks
Initial
HWf
Final
//»7
faf
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Train A Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
10- Yo
*I5"M
.ft 3
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
J3:?.\
ll.f'H*
/ >
<6,5'V^,
, 9
-------
Run No. i_
Train Type/No..
Date.
r/-
e-n-^i
Sampling Location AHRC Incinerator Outlet Stack
Project No. 104951.1.009.04.01
Operator.
page
X
of
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
Dry Gas Meter Reading
(VJ, ft3
Initial
773
Desired
Actual
Velocity
Head
(Ap),
in. H20
Orifice Pressure
Differential
(AH),
in. H20
Desired Actual
Stack
Temp.
(ts),
°F
Dry Gas Meter
Temperature
Inlet
Outlet
Pump
Vacuum,
in. Hg
Silica Gel
Impinger
Outlet
Temp.,
°F
Probe
Liner
Outlet
Temp.,
°F
Filter
Holder
Temp.,
STL
Outlet
Temp.,
°F
XAD
Inlet
Temp.,
°F
c-/
foi
/o'f
//So
0.7V
/0&
/O*]
in
a si
7?6,
.'&&
r
Ofc
o.i Y
3
11*0
Ob
o.7i-
/. 3 r
//V
#<>
f/S
Hi
/•*..»»
0 '
7,0
G31.1W
n
fro
99
."Y
sr
13
fl-7
7'*
S/
£-/
• 01
6. #7
"1
67
Mir
861.7.1!
.07
0.$-;
>
^67.77?
ti.cb
rf
813-
.C'l
S3
3
.01
o .
/MO
is 3
SJ
60
^^5, •;>-
#$3.110
•jo
381 .
/r/0
.'H
8*
. 757
81S.OW
0. W
si
. we
/'So
loo
7of.
,07
O.S'f
7?*
6-0
51
frTo
AST;-
ft. 7
Remarks and Notes:
M5PG2.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No. / Date & ' ' ' /y
Project No. SOY^S*'' /• c>c>7. o'-f-Q *
•<•—* ~~^\.
Sample Type {Mjjjt[-Poirrp Sinylu PuinL)
Flow Control Device {^/ajyg) Critical Qfrffce*)
Method 5 Meter Box No.
MSB Pump Type
MSB Pump No.
Client/Source
Sampling Location
Operator
Bag Type
Sample No. ID))
# AgMethod 3B Train No.
-^r^'^fTCn. DfAJ>MA*\
M3B Flow Meter Type
MSB Flow Meter No.
&V7
V74 /»
///
Desired Sampling Rate !**°
Leak Check Before Sam
Total Sampling Time
Flow Rate, cc/min: Average //?/?
Estimated Total Sample Volume
cc/min
After Sampling
Average Flow Meter Reading
Highest _
X
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
///J
•s
//Jo
•J
v/
tvrJ-3
•X
•J
i/
•y
ll
v/
SsSs-' "
M3BSAMP.WPO June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project No,
Sampling Location _
Analysis Start Time
Sample Type (Bag,
Analyst _
. Date
e No,
Orsat Leak Check Before Analysis:
Burrete s^c Change in 4 Minutes
Pipettes A/o Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete JYo Change in 4 Minutes
Pipettes /V0 Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 4?
2 4.3
3
1>>2*
2 j9-9
3
1
2
3
Net
Value
y.7
/£,$
2
Actual
Reading
1^
2 y/?
3
1 /9,9
2 /£^
3
1
2
3
Net
Value
&3
/^Z&
3
Actual
Reading
1 4^,^
2 *^
3
^ /^^
2 /92
3
1
2
3
Net
Value
4/^
J&tO
Average
Net
Value
(% v/v)
$t.f
/5^
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
O2 ^15% 0.2% v/v
<15% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
J.O
104951-009 AHRC
M23 ORSAT BAG
EMISSION TEST SAMPLE
For disposal calli A.Carender
MIDWEST RESEARCH INSTITUTE
M31ANALVWD May 28, 1999
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Set-up person(s):
Transfer to Sampler/
Relinquished By.
Sampling Train No.
PM*.
__3\' '
Sample Box No.
if.
Date:
Received By
J &J
/W?
Date/Time
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with Teflon®-
coated 316 SS Filter Support
Short 90° Connector
Condenser (Standard)
XAD-2 Resin Cartridge (Standard)
V—/
Initial Weights (grams)**
Empty _ _ Loaded
Filter Type: Whatman QM-A
Thermocouple No.
//•"//
-65 grams XAD-2 Resin + Surrogates
(Documentation of standards injection is separate]; resin spiked on D $ ''/£ ~ $7
— ^
and maintained near 4°C until use.
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (Mod-GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
Impinger Outlet Connector
Empty
IQQ.mLs.
ASTM Type II Water
100mLs
ASTM Type II Water
Empty
7 O -* '
_-
D / ' ->
^ '' • /
U n ~
"200 g indicating silica gel
"200 g indicating silica gel
.
(0 ' / • 5
• (f)
* Before and after sampling: Nozzle inlet opening covered with toluene/acetone-rinsed aluminum foil. Probe liner outlet sealed
with glass female blank-off. Bypass inlet covered (not sealed) with toluene/acetone-rinsed aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with toluene/acetone-rinsed aluminum foil or as described above.
* * * Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and
sampling.
Component Changes after Set-up and before Recovery and Other Comments:
M23SUBX.WPD April 26, 1996 (rev. M23SUP9.WPD July 30, 19991
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. •' Samplina Train No.
Transfer for Recovery:, ,-
Relinquished By — sJ\j/ /rtf
Sample Box No. /0^-t/O
fy}i»^£>'vC/i/C-£- Date/Time 0//~l/f?<:7 /(ff/^>~
Date: 8//7/ff*f
vr'fy Date: £>//~>/'7ff
f
RESIN CARTRIDGE AND IMPINGERS RECOVERY
Impinger:
Final Wt.
Initial Wt.
Net Wt.
XAD-2
Cartridge*
(JtfJ-.Z
^»3
1st ^-?nd
V^?,.5" Si* fl.
^/y/9 #'£'
^3rd^, 4th 5th _
b'Tj.s 5II.C} ^1^.'^ (.
-6,-L, j,5
,fh
'*&*.(,:
/;,y
aramsl
,
\' fa
Description
and/or color:
Sample Recovery: Cartridge*
Sample Number: '009
6
Dispose of properly
% Blue
FILTER RECOVERY AND TRAIN RINSES
FILTER:
Sample Number: /007 Description/Color:
TRAIN RINSES: FRONT RINSES
Sample Number: /006
Sample Bottle Tare Wt. " 7 7. J
-<>A/6 /4 -zsw
/
BACK RINSES
/008
/^
QA RINSES
/010
Back -- filter support, filter holder back, short 90° connector, condenser
Sample Bottle Final Wt.
Net Sample Wt.
o
* Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.
** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean,
and acetone rinses of back components 3 times. Follow with methylene chloride rinses in the same manner, but without
brushing, and include 5-minute soaks of underlined components 3 times.
For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the methylene chloride rinses.
COMMENTS:
M23RCBX.WPD June 5, 1996 (rev. M23RCV9.WPD July 30, 1999]
-------
Run No..
Date
Project No. 104951.1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Location Outlet Stack
Train Type/No. ~' V ' f~
Operator ^2
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
"-J Length: •> ft Orifice Meter AH@
Heated?(y) n Barometer No.
1 *" ' Barometric Pressure
page 1 of.
Probe No.
Liner Type
Pitot Tube No.
Stack Thermocouple No.
Sample Box No. 3tlf J I
Filter No. •*//
'l_%yw **>.*.
c
• >
Elevation to Meter Box .
Meter Box Pbar
. in Hg
ft
.in Hg
ft
Record data every
to
minutes
Nozzle No./2£Zl^Type: quartz glass
Nozzle Tip Diameter 0• i(
Umbilical/lmpinger Hookup
Umbilical Nos. A>
Meter Box No.
Elevation to Sampling Loc.
Sampling Location Pbar j-' • * '• in Hg
Static Pressure *' ° • ^3
Assumed Moisture //• i
in H20 D
in DGM Correction (Y)
Assumed %CO,
'3 < J %O, / 7, b
Traverse Point Layout
Compass Direction > ,V
Pitot Tube Pressure Measurement System Leak Checks
Time (24 Hr)
Pass or Fail
Initial
///>J
Final
/•» i_*»
t S°
frx
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Sampling Train Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
//.'Hi
$/£"&.
,00$
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
/yjfl
7o"
f^.y;-?
0.3 f 8
Final
/ 7t#
5//o"^7
,004 "
Initial
Final
Initial
Final
Initial
Final
Remarks and Notes:
Meter Volume at Start of Run / • •
Meter Volume at End of Run /Q7'3 •
Total Leak Check Volume Q_
Adjusted Final Volume _
M5pr;i WPD June
1998
-------
Run No.
P~
Train Type/No.
Date_
3V-
s-
?~
Sampling Location AHRC Incinerator Outlet Stack
Project No. 104951.1.009.04.01
Operator.
<&•
page.
of
Traverse
Point
Sampling
Time,
min.
O
Clock
Time
(24-Hr)
Dry Gas Meter Reading
?
S
sec
/y/o
•??.
//So
//j"
- /
'ft*
A
"f
A/ 7
ill
/o.
tct$.
//r
ffO
/A
£8
/.
//'O
"•$
A ^j"
/^7
•y
S.") si
./O
/.
A
ri-
i'fo
A/o
.to
//fit?
//>
A
/n
/o.o
>$(,
//?
Remarks and Notes: (£)
M5PG2.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No.
Date
Project No. /OY9S', /.
Sample Type (Multi-Poinj) Single Point)
Flow Control Device <^ajye>.
Method 5 Meter Box No..
MSB Pump Type
MSB Pump No._
Client/Source
Sampling Location
Operator
Bag Type
Method SB Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Sample No.
A//9
/1/ • ~>
*»• ^
S
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No._
Project N(
Sampling Location _:
Analysis Start Time
Sample Type (Bag, Gratff
Analyst _
Date
Sample No.
Orsat Leak Check Before Analysis:
Burrete /Vy Change in 4 Minutes
Pipettes x^> Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete /So Change in 4 Minutes
Pipettes At? Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 4.?
2 9.t
3
1 /£»
2 //, #
3
1
2
3
Net
Value
y, ?
S3 /
2
Actual
Reading
1 4$
2 'Sfs
3
1 ,£V
2 tf*
3
1
2
3
Net
Value
4.*>
S3 )
3
Actual
Reading
1 y.f
2 ^
3
1 //.P
2 ^i>
3
1
2
3
Net
Value
9,1
JJ,)
Average
Net
Value
(% v/v)
^^
/J",/
Acceptance Criteria per Method 3B
CO2 >4% 0.3% v/v
<4% 0.2% v/v
O2 >15% 0.2% v/v
<15% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
M3BANAL.WPD May 28, 1999
104951-009 AHRC
M23 ORSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
-------
MRI Project No.
Client/Source:
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY TRAIN SET-UP DATA
104951.1.009.04.01
U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampjing Train No..
5T/-2
Set-up person(s):
Transfer to Sampler:
Relinquished By
Sample Box No.
Date:
Received By.
Date/Time
IQQO
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with Teflon®-
coated 316 SS Filter Support
Short 90° Connector
Condenser (Standard)
XAD-2 Resin Cartridge (Standard)
(Documentation of standards injection is separate); resin spiked on.
Initial Weights (grams)**
Empty Loaded
Filter Type: Whatman QM-A
Thermocouple No. // ' '
-65 grams XAD-2 Resin + Surrogates
and maintained near 4°C until use.
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (Mod-GBS)
U-Connector(B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
Impinger Outlet Connector
UH'ID
Empty
100 mLs
ASTM Type II Water
100 mLs
ASTM Type II Water
Empty
"200 g indicating silica gel
"200 g indicating silica gel
6303
* Before and after sampling: Nozzle inlet opening covered with toluene/acetone-rinsed aluminum foil. Probe liner outlet sealed
with glass female blank-off. Bypass inlet covered (not sealed) with toluene/acetone-rinsed aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with toluene/acetone-rinsed aluminum foil or as described above.
*** Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and
sampling.
Component Changes after Set-up and before Recovery and Other Comments:
M23SUBX.WPD April 26, 1996 {rev. M23SUP9.WPD July 30, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Transfer for Recover
Relinquished By
Sampling Train No.
C/li'C
5V
Sample box recovery person(s):
Probe recovery person (s):
Weights below are in grams.
^=T
Received By
Sample Box No. 0(1 ^ 11
^> U^^^tf,^ r>atP/Timp / 7 ' -^
Date/Time
#/*'/??
RESIN CARTRIDGE AND IMPINGERS RECOVERY
Date:
Date:
Impinger:
Final Wt.
' Initial Wt.
Net Wt.
Description
and/or color:
XAD-2
Cartridge* .1st
.£&*sZ3^io- ^-> ^-> *-* •-* ^> :
2nd 3rd
57^£.;; S'86.5
6 .3 —&•!
[ Total
fllu^ (U^
-• nicnrtiiia rtf nrnnprlu <-
,4th
5 37 '
^/,
Condensate
U'^M
+_ ^ J^
5th
A 120, 1
(& 6^7. 7
C, J2^ .-?
Collected: ^6-7
(-' ^
4 °/
. 6th
6£?^'--^
/-?. X
aramsl
10
. Rlup
Sample Number: - 009
FILTER RECOVERY AND TRAIN RINSES
FILTER:
Sample Number:
TRAIN RINSES:
•^007 Description/Color:
FRONT RINSES
frfr /^/ -i
V I
BACK RINSES
QA RINSES
••3)10
Sample Number:
Sample Bottle Tare Wt. _
Components Rinsed**: Front — nozzle, probe liner, bypass, filter holder front;
Back -- filter support, filter holder back, short 90° connector, condenser
Sample Bottle Final Wt.
Net Sample Wt.
it
*
* Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.
** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean,
and acetone rinses of back components 3 times. Follow with methylene chloride rinses in the same manner, but without
brushing, and include 5-minute soaks of underlined components 3 times.
For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the methylene chloride rinses.
COMMENTS:
M23RCBX.WPD June 5, 1996 (rev. M23RCV9.WPD July 30. 1999)
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
page 1
Run No. •*
Project No. 104951.1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Location Outlet Stack
Train Type/No. •& V- f
Operator D • Ar£* I*
minutes
Probe No. &J£.3-$ Length: -* ft Orifice Meter AH@
Liner Type <-!#4~t. Heated?^) n Barometer No.
Pitot Tube No.
A 9e I
Stack Thermocouple No.
Sample Box No.
Filter No.
5
Barometric Pressure
Elevation to Meter Box
Meter Box Ph,, 2
jn
0
ft
in Hg
ft
Record data every /O
Nozzle No. lh}3-l Type: quartz glass
Nozzle Tip Diameter d
Umbilical/lmpinger Hookup
Umbilical Nos. A
Meter Box No.
-3
in
DGM Correction (Y) /, O ir
Elevation to Sampling Loc.
Sampling Location Pbar »*• ' • .>/" in Hg
Static Pressure "f d^b in H2O
Assumed Moisture I /• '&i %
Assumed %CO: /• /
D
\
13.1
Traverse Point Layout
Compass Direction ^(^j
Pitot Tube Pressure Measurement System Leak Checks
Time (24 Hr)
Pass or Fail
Initial
t>9£3
Final
/.•r^
fefS
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Sampling Train Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
9;£3
15
Final Meter Volume
Initial Meter Volume
Leak Check Volume
>
Final
ilid S*
A// .x^
^
Initial
Pffif
rf
,00
, t- \ r ' **- f.
/^f y • u
6
Final
!'}}•}-
<• 7 " ffo.
• OC'f
" W"1
Initial
fj-t/S
±? 1 $"'//.
«c to
.'ft -'16 '
/£~c -JT/y
d> . j & 7
Final
/5'>f
$ 6 S>fH~<\
. Oof '
Initial
Final
Initial
Final
Remarks and Notes:
Meter Volume at Start of Run
Meter Volume at End of Run
Total Leak Check Volume &
Adjusted Final Volume
WPQ Junp 1Q 1998
-------
x £
v?
fx
tx
_| JJ Q.
t— *5 P l
IT. -l C c
03
o>
(D
Q.
S2 P".
i£°J°
w-
A
s?
U
3 .I^E-
A
u
£
c
tt-
"*>
o
00
-S
A,
u
CX
X
ClC.
r^«
CX
xO
Cx
-^s
O
ID .x
Q.-1
•S s
-1 *
U t- ,
0
o
V-,
X
5-
V
o
a
X
X
s
a
•o
c
10
i^
§2
EC H-
« 4-
« .E
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Date »
',/.(*>?>
Run No.
Project No.
Sample Type wlulti-Poin^. .SinoJe-Poirrt)
Flow Control Device {xgjvg} Critical Oriftcel
Method 5 Meter Box No.
/»
MSB Pump Type _
MSB Pump No. //f
Client/Source
Sampling Location
Operator
Bag Type
Sample No. 30 jj
Method SB Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
AJ?
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time _
cc/min
After Sampling
Flow Rate, cc/min: Average /c?o C<-'-/r*iJ Highest
Estimated Total Sample Volume _ 2-f _ liters
min Average Flow Meter Reading /o
Lowest
Time
(24-Hr)
fJOr/
/>?
/0>0
./Oj^
fo^o
/ofr
/(C3
H /D
f/J-o
//3o
'/Ho
//go
f)-&y
/A/0
/3/f
fW
/ 3 Jf
/jy$
/ J 5'3~
/ftf
/'$
/w
/w
/tvf
sW
/5*i~
Flow
Meter
Reading
/-
t 4
/'
• '
1 1
i 1
.'
'1
/I
<1
'•
• r
1 r
(\
;i
-
/"
i «
'V
M
'I
't
fl
//
(I
li
Start
Purge
S
Start
Sampling
I/
y
Stop
Sampling
•
Sampling
•S
•
•
/
•/
•s
/
s
•
I/
s
-/
J
(/
y
/
•s
•
V/
s
S
Remarks and Notes
Sh/hiCt '^i FsLor^ vIV 7£4f*J
f%i?T CH«*Jt,£
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project No.
Sampling Location _
Analysis Start Time
Sample Type (Bag, Gfati)
Analyst
Date
Sample No.
Orsat Leak Check Before Analysis:
Burrete A^> Change in 4 Minutes
Pipettes A^) Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete yVa Change in 4 Minutes
Pipettes //j> Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 &£>
2 *?.£>
3
1 /&?
2 y/:;2
3
1
2
3
Net
Value
^,i>
S3 '3.
2
Actual
Reading
1 &o
2 'jT.d
3
1 tf.s.
2 s£. Z-^
3
1
2
3
Net
Value
S-O
;3- z-
3
Actual
Reading
1 &
2 3~-i>
3
1 X5//2-
O y * —»
3
1
2
3
Net
Value
^c>
?2 2-
Average
Net
Value
(% v/v)
^>-°
; 3. z-
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
>15% 0.2% v/v
< 1 5% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
C30 i. J.
1O4951-OO9 AHRC
M23 QRSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
M3BANAL.WPD May 28. 1999
-------
MRI Project No.
Client/Source:
Source Location:
Sampling Location:
Run No. «-^
Set-up person(s):
Transfer to Sampler:
Relinquished By
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY TRAIN SET-UP DATA
104951.1.009.04.01 '
U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
The University of Georgia, Athens, Georgia
Outlet Stack
Sampling Train No.
SV-t
Sample Box No.
Date:
I
Received By.
Date/Time
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
- )
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with Teflon®-
coated 316 SS Filter Support
Short 90° Connector
Condenser (Standard)
XAD-2 Resin Cartridge (Standard)
(Documentation of standards injection is separate/; resin spiked on.
Initial Weights (grams)**
Empty Loaded
Filter Type: Whatman QM-A
Thermocouple No. _
-65 grams XAD-2 Resin + Surrogates
B
and maintained near 4°C until use.
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (Mod-GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
Impinger Outlet Connector
Empty
::10Q;mLs::
ASTM Type II Water
lOOrnls
ASTM Type II Water
Empty
"200 g indicating silica gel
"200 g indicating silica gel
- 7
* Before and after sampling: Nozzle inlet opening coveqed with toluene/acetone-rinsed aluminum foil. Probe liner outlet sealed
with glass female blank-off. Bypass inlet covered {not sealed) with toluene/acetone-rinsed aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with toluene/acetone-rinsed aluminum foil or as described above.
*** Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and
sampling.
Component Changes after Set-up and before Recovery and Other Comments:
M23SUBX.WPD April 26, 1996 (rev. M23SUP9.WPD July 30, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No.
Sample Box No.
Transfer for Recovery: , ,
Relinquished By D/V &U
Received By.
Date/Time
Sample box recovery person(s):
Probe recovery person(s):
Weights below are in grams.
RESIN CARTRIDGE AND IMPINGERS RECOVERY
Date:
Date:
Impinger:
Final Wt.
Initial Wt.
Net Wt.
XAD-2
Cartridge*
1st
2nd 3rd, 4th / 5th
6th
37,# #•«". 7 5"15'.^ 51V- <* jT/y.V 70'! .* (tfO.S
So/. &
0.0
ysr.3
3^1 . fa
5& . «/ ..£ 73 • $' $t /• 2- C-&0.7
fo. & C'< ' -^-.-i- Q_?, (o
I Total Condensate Collected: /Qs^
&~7rf , 1
1 / . -i
-^ aramsl
Description
and/or color:
3o
Dispose of properly
Blue
Sample Number: .5009
FILTER RECOVERY AND TRAIN RINSES
FILTER:
Sample Number:
TRAIN RINSES:
Description/Color:
FRONT RINSES
BACK RINSES
-500£
QA RINSES
3010
Sample Number:
Sample Bottle Tare Wt. _
Components Rinsed**: Front -- nozzle, probe liner, bypass, filter holder front;
Back -- filter support, filter holder back, short 90° connector, condenser
Sample Bottle Final Wt.
Net Sample Wt.
7'5 0.C1
* Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.
** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean,
and acetone rinses of back components 3 times. Follow with methylene chloride rinses in the same manner, but without
brushing, and include 5-minute soaks of underlined components 3 times.
For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the methylene chloride rinses.
COMMENTS:
M23RCBX.WPD June 5. 1996 (rev. M23RCV9.WPD July 30, 1999)
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
page 1 of.
Run No.
Pat.
Project No. 104951.1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Location Outlet Stack
Train Type/No. Sy-J~
Operator <& ' ^'V*l~
Probe No.
Liner Type
Pitot Tube No.'
Stack Thermocouple No.
Sample Box No. O .'(>
Filter No.
Length:
Heated?
CD _£
_ft
n
Orifice Meter AH@
Barometer No. >
/, ?o *
/ . •*
Barometric Pressure _
Elevation to Meter Box £
Meter Box Pha, 3-? • 3i-
in Hg
_ ft
Record data every _
Nozzle No.ft?i£.3 "2* Type: quartz glass
Nozzle Tip Diameter / " Ji jn
-tj^, Umbilical/lmpinger Hookup ^/V--
inute^ 3TJmbilical Nos. //-/>PJ
/ minute
Umbilical Nos..
Meter Box No.
DGM Correction (Y)
Elevation to Sampling Loc.
s\C
Sampling Location Pbar >fl • ^
Static Pressure *" ^-^^
Assumed Moisture .//. 7
Assumed %CO2 5*^ %02
in Hg
ft
•_ in Hg
. in H2O
Traverse Point Layout
Compass Direction >
Pitot Tube Pressure Measurement System Leak Checks
Time (24 Hr)
Pass or Fail
Initial
0737
Final
/6/7
/V.'/
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Sampling Train Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
0?3o
*:IS"M.
,O^>i
Final Meter Volume
Initial Meter Volume
Leak Check Volume
i ^
Final
lfi!b
5 10 "fa.
• oc>$ '
Initial
/VH
-------
H
u
< »'E-
x-s.s0
(0
c-
-\
A,
Cx
(x-x6
CD Q.
*= C I
~1 C <
fi
Va
o
O)
ra
Q.
I H
h
c-L
xO
A
S
H
— «
VA
Ox
E
•-O
CU
a
O
Q. £ D)
E §i
,? ° r-'
Q. (O .E
Si
o
I-
(5 a>
s =5
s is .
=
ex.
OD
jxOO
D. .
E ^.U-
00
.
X.
X.
X
X.
C
O
"*-•
co
u
o
—' d
?^
t*
I S
CO CL
« TO
I 1 5'
o. c: -i- .
it: Q
O
O
.V-
x
'
c-
••a.
V
V
x.
X,
v..
" "
.O
y .
-
u
0
CJ
Vi
'•-n
Q.
*£
is
CC H-
en
cC.
'su
CD
2 ~
o
ro Q_
V.
V)
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No. " Date
Project No. /<^
Sample Type (^/Tulti-PoinJ. Single-Point)
Flow Control Device (Valve} Critical Orifice)
Method 5 Meter Box No. /AT
MSB Pump Type
MSB Pump No._
Client/Source
Sampling Location
Operator
Bag Type
Method 3B Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Sample No.
/(///I
//r
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time _
cc/min
Flow Rate, cc/min: Average /
Estimated Total Sample Volume 3 7
-^^ After Sampling
min Average Flow Meter Reading
"o £«.//* iu Highest f£& *"*
/J>"c> CC//WIAJ
Lowest
liters
Time
(24-Hr)
l>31
!2-
/jya
I3H7.3*
'5iT
/y***3°
/Y'O
fiio
."/We
/
/^"r? >'o
ISM
/S '} '*,?<>
iStfr
ffvn*
'ttf
/*>--. 7a
Flow
Meter
Reading
Aj'
K
A
;/
.'(
n
. i
M
<•
ti
*i
I,
€.»
'I
K
/>
i/
vi
'I
/<
<<
Start
Purge
/
Start
Sampling
•/
^
N
^
/
Stop
Sampling
« '
^
>%
\,
^ -T^
-^
-*^
^
Sampling
•/
/
i/
i/
•
v/
\S
S
s
^
-/
I/
y
v>
>s
S
I/
/
•/
v/
•/
Remarks and Notes
Stir-i/) t-"->£. /vfrv*\ JJV 7(Z*>fiJ
Pc/21 6t/«;>~it£
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project No.
Sampling Location
Analysis Start Time
f
Sample Type (Bag, GfobY.
Analyst J. *'
Orsat Leak Check Before Analysis:
Burrete S/b Change in 4 Minutes
Pipettes /^o Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete //t> Change in 4 Minutes
Pipettes //v Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 &.)
2 g~.)
3
1 J?,'J
2 s?.$
3
1
2
3
Net
Value
5^ t
i >sj L«
*^**&^
2
Actual
Reading
1 -r,;
2 g~.)
3
1 ;?.
2 jyy
3
1
2
3
Net
Value
•£> />
/-?/
3
Actual
Reading
1 sry
2 jy: )
3
1 /29
2 /?<;
3
1
2
3
Net
Value
&J
S*?
Average
Net
Value
(% v/v)
.57 }
J£>.f
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
02 >15% 0.2% v/v
<15% 0.3% v/v
Remarks and Notes:
M3BANAL.WPD May 28, 1999
CO 0.3% v/v
104951-OQ9 AHRC 4 O 1 J.
M23 ORSAT BAB
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. ^-f Sampling Train No. .5^-^. _ Sample Box No. J I II //
Set-up persons): /W^u/gAfcXr _ Date:
Transfer to Sampler: /} .
Relinquished By / Aw'Du W ( <£ Received By p,Wl#J _ Date/Time
TRAIN COMPONENT __ COMPONENT NO. _ LOADING DATA
Sampling Nozzle (Quartz) /&&- 2 — * Initial Weights (grams)**
Water-cooled Probe (Liner-Quartz) _ * _ Empty _ _ Loaded
Female Probe Outlet Blank-Off _ _
90° Bypass _ *
Filter Holder Front _
Filter Holder Back with Teflon®- Filter Type: Whatman QM-A
coated 316 SS Filter Support _
Short 90° Connector _ <^<7 /,
Condenser (Standard) _ Thermocouple No. yl "// ( '
XAD-2 Resin Cartridge (Standard) YA.Q ^'f -65 grams XAD-2 Resin + Surrogates €>'
(Documentation of standards injection is separate}; resin spiked on fJf~J2 " J / and maintained near 4°C until use.
1st Impinger (Mod-GBS) Empty y 66. /
U-Connector (A)
2nd Impinger (Mod-GBS) 100 mLs
U-Connector (B) ASTM Type II Water -
3rd Impinger (GBS) 100 mLs
U-Connector (C) ASTM Type II Water
4th Impinger (Mod-GBS) Empty
U-Connector (D)
5th Impinger (Mod-GBS) . "200 g indicating silica gel
U-Connector (E)
6th Impinger (Mod-GBS) "200 g indicating silica gel
Impinger Outlet Connector If H~ /O
V £?£?• 7 5^ 7-
' /*? O
rf'l
* Before and after sampling: Nozzle inlet opening covered with toluene/acetone-rinsed aluminum foil. Probe liner outlet sealed
with glass female blank-off. Bypass inlet covered (not sealed) with toluene/acetone-rinsed aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with toluene/acetone-rinsed aluminum foil or as described above.
*** Cartridge weighed with blank-offs in place; then, cartridge covered with aluminum foil to seal out light during storage and
sampling.
Component Changes after Set-up and before Recovery and Other Comments:
M23SUBX.WPD April 26, 1996 (rev. M23SUP9.WPD July 30, 19991
-------
40 CFR 60, APPENDIX A, METHOD 23 -
MODIFIED SEMIVOLATILE ORGANICS TRAIN (M23) FOR PCDDs/PCDFs
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
/ / / / ' ci 1
Samolina Train No. ~>v ^ Samole Box No. C//7/ / /
Transfer for Recovery: ,
Relinquished Bv £>Aj£t->(
Sample box recovery person(s):
Probe recovery person(s):
Weights below are in grams.
Impinger: XAD-2
Cartridge*
Final Wt. j?®^' ^
Initial Wt. f/A^-^C^ • ^~ *itf
Net Wt/^ 9-rfrffl
/
Received By ' ^
frivol' tffi /£./£
O tJteJ /> dltrt^
RESIN CARTRIDGE AND
1 st 2nd
779.? 5-03.7
|>
r^ato* /^*v «i- -*/ f/
LJdLC. ft ' ' *
Date: ^/J-3/^f
5th 6th
£>?.~7 ^-'7,'?
^.v. ^ ^-^
///f.j^.t u. ."7" aramsl
Description
and/or colorics
of
Blue
Sample Number:
46
09
FILTER RECOVERY AND TRAIN RfNSES
FILTER:
Sample Number:
TRAIN RINSES:
•^007 Description/Color:
FRONT RINSES
006
BACK RINSES
608
QA RINSES
4610
Sample Number:
Sample Bottle Tare Wt.
Components Rinsed**: Front — nozzle, probe liner, bypass, filter holder front;
Back -- filter support, filter holder back, short 90° connector, condenser
Sample Bottle Final Wt.
Net Sample Wt.
5'?£?.7
ftOb.b
* Replace blank-offs and remove aluminum foil, then weigh the cartridge; replace aluminum foil to cover the entire cartridge.
** For TRAIN FRONT/BACK RINSES: Acetone rinses with brushing of front components 3 times or more until perceivably clean,
and acetone rinses of back components 3 times. Follow with methylene chloride rinses in the same manner, but without
brushing, and include 5-minute soaks of underlined components 3 times.
For QA RINSES: Follow with toluene rinses and soaks in the same manner as above for the methylene chloride rinses.
COMMENTS:
M23RCBX.WPD June 5, 1996 (rev. M23RCV9.WPD July 30, 1999)
-------
Section 2
EPA Method 26A for Particulate/HCI/CI2 Sampling
and Recovery
MRI-AED\R4951 -09-05. wpd
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD REAGENT BLANK PREPARATION DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
/ Alu
Blank(s) Prepared By: vt _ Date:
Weights below are in grams.
Sample Bottle Tare Bottle Gross Net Sample
_ Reagent Blank Description _ Number Weight Weight Weight
Acetone for particulate matter
Volume needed: 200 mLs . __ ^
Lot Number: Bl/-ll'3 /023 /8- $ $20 , D .'5'/.^
Filter for particulate matter
Type: Whatman QM-A
Filter Number:
Lot Number: (»633 fb /024
ASTM Type I water for particulate matter
Volume needed: 200 mLs P'\« .
Lot Number: • J.^/0 - #n /
-------
FIELD SAMBLING DATA FOR METHOD 5 TYPE TRAINS
page 1 of.
Run No.
Date
Project No. 104951.1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Location^t Outlet Stack
Operator _
Record data every
Barometer No. X
minutes
Barometric Pressure
Elevation to Meter Boxes.
Meter Box Pbar
Elevation to Sampling L
Sampling Location Pbar
Static Pressure "ty
.in Hg
ft
.in Hg
ft
inH,O
Train A Type/No. farf-ft-klltf*-
Probe No.V6?-7 Lenath: ~f ft
Liner Tvpe (Jlfrffc Heated ISv) n
Nozzle No. MtA/H Tip Dia. .V?!i-- in
Pitot Tube No. 1~1 > CD ffW
Stack Thermocouple No. H?£ V>
Filter No. (^
Sample Box No. (2^
Umbilical/lmpinger Hookup Un*
Umbilical Nos. A/ /Z&'' 7
Meter Box No. ^/•'S'
DGM Correction (Y) /. O&*)
Orifice Meter AH@ /,*ft-f
Train B Tvoe/No. /#«!W *
Probe No. l*JC> 1*6 Lenath: "3 ft
Liner Tvoe (JvcaVli- Heated? ^n
Nozzle No. i*vZ^ */ Tip Dia. '*/5V in
Pitot Tube No. 5-^a c .'Tl^'
Stack Thermocouole No. HC"J- »
Filter No. A/"
Sample Box No. 0/l/ty
Umbilical/lmpinaer Hookup £/fr ?'
Umbilical Nos. flJl1?f''9
Meter Box No. A)~I
DGM Correction (Y) f-°H
Orifice Meter AH@ /-^2-
Assumed Moisture ((• ' % Assumed %CO, 3^7 %0, J~f . i
Cc
Nozzle
(fjr f ^ 2 /
v ^ y
\ ^ /
Traverse Point Layout
>mpass Direction > t
s are quartz-glass.
7
^
Time (24 Hr)
Pass or Fail
Train A Pitot Tube Pressure Measurement System Leak Checks
Initial
I0i-t
Final
(Ia6&
pt**
Y
Initial
Final
Initial
Final
Initial
Train
Final
Initial
Final
A Sampling System
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
[61%
LeakC
Final
((*<&
a»
-------
Run No..
/
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC Incii
Train A Type/No. _
erator Outlet Stack
Operator
page.
of
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
II >D
Dry Gas Meter Reading
(VJ, ft3
Initial
Ufa
Desired
Actual
Velocity
Head
(Ap),
in. H2O
Orifice Pressure
Differential
(AH),
in. H2O
Desired Actual
Stack
Temp.
(ts),
°F
Dry Gas Meter
Temperature
(tj,
"F
Inlet
Outlet
Pump
Vacuum,
in. Hg
Silica Gel
Impinger
Outlet
Temp.,
°F
Probe
Liner
Outlet
Temp.,
°F
Filter
Holder
Temp.,
°F
STL
Outlet
Temp.,
°F
XAD
Inlet
Temp.,
°F
/U-
/u.
l£
m.
JL
/-v
It?
-V-
±
&S-
\\
&7
A M
lie;
zf*/
10 [0
n*
//(f
$>&_
o,r\
Tf
4-T7
A t.
10 fi
5*1
AJ^L.
K
Train B Tvoe/No.
/KA
2s
1,1-
(77
M-7
fc
[00
r
±o_
(eft
10*)
n
1o
a ,i
f.tf-f
ft
H|
n.to
I'Olt
\r)1-1
lot
d. 10
loo
n
J^_
1,01
[0*7
-5"
5=1
ft ID
\\D
0.10
If1)
i^-
Remarks and Notes:'
M5DPG2.WPD May 19, 1999
*3 fsvpt
-------
Run No.
/
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC_ Incinerator Outlet Stack
Train A Type/No. _
Operator.
page
of
Traverse
Point
Sampling
Time,
min.
_Ufi_
Clock
Time
(24-Hr)
Dry Gas Meter Reading
(VJ, ft3
Initial
, \6*
Desired
Actual
Velocity
Head
(Ap),
in. H20
Orifice Pressure
Differential
(AH),
in. H2O
Desired
Actual
Stack
Temp.
(ts),
°F
Dry Gas Meter
Temperature
(U.
°F
Inlet
Outlet
Pump
Vacuum,
in. Hg
Silica Gel
Impinger
Outlet
Temp.,
°F
Probe
Liner
Outlet
Temp.,
°F
Filter
Holder
Temp.,
°F
STL
Outlet
Temp.,
°F
W
XAD
Inlet
Temp.
°F
**-
Ikt-tf
(.£>!
1,0
ft*
ffo
12*
V
£&_
100*1
Zl
0,90
tin
4-
(aO
A
0,0%
6.<\6
5L
ML
W,/1/
I.GI
l.o
\6 in
Mi-
frll
fl-T.
0,10
LIT-
I.I
00^
-1-
I'l
O.G1
0,1$
joi±
6. of.
Train B Tvoe/No.
Al
A^L
i^oA
oAl
0.0(1
l!$-
5"
2&L
Hif
D.tft
fact
M^L
0,10
oc,
6.(0
(,0*7
1.0
no
r
(so
A -
1.02
Iff
()
257
1.0%
I.I
Iff id
W
tTL
A-1*
\°10
, tl
[007
ff?
179
A-H
6.10
L\0
^1L
1/L0
ton
llti.'Cft
00 5
1(8
CH
0,10
1°U-
Remarks and Notes:
MSC 'D Ml ' '399
(U
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Date
-1- O<>9 - e*4~0/
Run No. /
Project No.
Sample Type^dvTulti-Point^Sii igle-Poii it)
Flow Control Device
Method 5 Meter Box No.
MSB Pump Type *(?'&
MSB Pump No. A/ f
Client/Source
Sampling Location
Operator (.
Bag Type "(
Method SB Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Sample No.
AM-
Desired Sampling Rate
Leak Check Before Sampling
Total Sampling Time
cc/min
Flow Rate, cc/min: Average
Estimated Total Sample Volume
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Date
Project No. Sf *<&&&.t>*J.Vj Sample No.
Sampling Location _,
Analysis Start Time
Sample Type (Bag, £wbt j
Analyst ' -
Orsat Leak Check Before Analysis:
Burrete /rf> Change in 4 Minutes
Pipettes wo Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete >/w*> Change in 4 Minutes
Pipettes ^O Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 *?
O Aj £%
3
1 /?/
2 /.}
3
1
2
3
Net
Value
y. s
Sr-p
2
Actual
Reading
1 V.9
2 *^*)
3
1 07
2 /#/
3
1
2
3
Net
Value
^,^
SlJ.f
3
Actual
Reading
1 ^
2 4>*j
3
1 /#;?
2 ;9;7
3
1
2
3
Net
Value
&^
Jtyfr
Average
Net
Value
(% v/v)
•#^
/y,<8
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
£15% 0.2% v/v
< 1 5% 0.3% v/v
Remarks and Notes:
CO 0.3% v/v
104951-009 AHRC J. O O S
M26A ORSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
M3BANAL.WPD May 28, 1999
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
/
Run No.
Set-up person(s):
Sampling Train No.
PM-
Sample Box No.
Date:
Transfer to Sampler^
Relinquished By / /*t
Received By.
81 it? hi
Date/Time
e/n/9
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector(D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger (Mod-GBS)
U-Connector(G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
CtU-fr
Initial Weights (grams)**
Emotv Loaded
Filter Type: Whatman QM-A
Filter Number: / y
50 mLs ± 1 ml
0.1 N H2S04
100 mLs ±2 mLs
0.1 N H2SO4
100 mLs ±2 mLs
0.1 N H2SO4
Empty
100 mLs ±2 mLs
0.1 N NaOH
100 mLs ±2 mLs
0.1 N NaOH
~200 g indicating silica gel
"200 g indicating silica gel
* Before and after sampling: Nozzle inlet opening covered with aluminum foil or Teflon® tape. Probe liner outlet sealed with
glass female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with aluminum foil, Teflon® tape or as described above.
Component Changes After Set-up And Before Recovery And Other Comments:
Lei
O.I A/
^ - B
M26ASUBX.WPD July 25, 1997 [rev. M26ASUP9.WPD August 2. 19991
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY SAMPLE RECOVERY DATA
MR1 Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
/
Sampling Train No.
Sample Box No.
/z
Train Purge with Ascarite-filtered Air if condensate is observed:
Condensate in front-half? Monts Purged By f//¥
Date/Start Time: Stop Time
Transfer for Recovery:. x~
Relinquished By s/ oV^Vn^'-i ^ Received By
Purge Rate: [AH =
in. H,0]
Moisture Removed?
r /Yl\
Date/Time
Sample box recovery pers
Probe recovery pers
Weights below are in gram
Impinger:
Final Wt.
Initial Wt.
Net Wt.
Description
and/or color:
Rponwprv
1st
ftCXff-b
$y%.z
*^& %.
ion(s): fMb
ion(s): D 4
IS.
,2nd
(fftl.O
6^7.£
•*>.*
^&t-^cJli(-
Ib^rfr,
/£.
D /(ftdl
Date:
Date:
£?//.£•'/ <7
ft/f ~r/?f/
BACK HALF RECOVERY
3rd
Ce £.£ t-Sff.t
— 0;A~ /*?, (
f . * . [ Total Condensate Collected: 3^B<
(iJcl^
st£/_.^-»^-*-^-»- Di«:i*irts;p rtf nrnnprlv 4-^ *-^ *^ *->
8th ,
7 -»->-+-. /004
Sample Bottle Tare Wt. _ 1t>~> V
Sample Bottle Final Wt. I C'£J- -^ ,9 II . (f
Net Sample Wt. fTr-.^^ fl b''>
After Aliquoting
FRONT HALF RECOVERY
RINSES: Sample Number:
Sample Bottle Tare Wt.
Components Rinsed**:
Sample Bottle Gross Wt.
Net Acetone Sample Wt.
/001
FILTER: Sample Number:
Description/color:
/002
nozzle, probe liner, bypass,
filter holder front
^? ^>ta .f with Acetone Rinses
Sample Bottle Final Wt. M/ V-^ j/yith added Water Rinses
Net Water Sample Wt. Z/j
J
* Using a total of 100 mLs ±2 mLs ASTM Type I water, rinse components twice. Thoroughly mix the sample before
aliquoting.
** Acetone rinses with brushing 3 times or more until perceivably clean. If any residue remains in a component, follow with
ASTM Type I water rinses with brushing until perceivably clean. Do not add any water rinses to the sample bottle until after
the bottle is weighed with all of the acetone rinses.
COMMENTS:
M26ARCBX.WPD October 19, 1998 (rev. M26ARCV9.WPD July 30, 19991
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
Run No.
Date
Project No. 104951.1.009.04.0V
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Location
Operator 6f'V
Outlet Stack
Record data every
Barometer No.
minutes
Barometric Pressure
Elevation to Meter Boxes _
Meter Box Pbar /U(.
Elevation to Sampling Loc.
Sampling Location Pbar 2
Static Pressure
. in Hg
ft
. in Hg
ft
_ in Hg
. in H2O
Length:
Heated?
Train A Type/No.
Probe No.
Liner Type
Nozzle No'.^/. Tip Dia.
Pitot Tube No. U)C.\-1 A C
Stack Thermocouple No.
Filter No.
in
Sample Box No. _
Umbilical/lmpinger Hookup
Umbilical Nos.
Meter Box No.
DGM Correction (Y)
Orifice Meter AH@
Train B Type/No.
Probe No. kJt *)-
Liner Type
Length:
Heated?
Nozzle No./*t2.f-2 Tip Dia.
Pitot Tube No.^>^. "*>-(* A C
in
Stack Thermocouple
Filter No.
Sample Box No. <$/( ($7
Umbilical/lmpinger Hookup
Umbilical Nos.
Meter Box No.
DGM Correction (Y)
Orifice Meter AH@
2.2.
page 1 of.
3 Z / ;]
Assumed Moisture
Assumed %CO,
Traverse Point Layout
Compass Direction ~^£
Nozzles are quartz-glass.
Time (24 Hr)
Pass or Fail
Train A Pitot Tube Pressure Measurement System Leak Checks
Initial
1 1 \^f
\ \ \Q
Final
l?ft
W4A
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
(rz-f
Final
17 fi
fwM
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Train A Sampling System Leak Ch
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
(Ulf
(tj
,tti$
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
(•Wr
T
Initial
11*70
I?
,00*"
?%'?n/
&\k< wi
.Mf
Final
l1\1
cs
, off1)
Initial
Final
Initial
Final
Initial
Final
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
/!«
* J
00^{
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
If*
10
.00^
Initial
^3
^ *
,00-b
M.lttf
4O-'
-------
Run No.
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC lncineratpr_Outlet Stack
Train A Type/No.
Operator.
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
Dry Gas Meter Reading
.0&
0,91
98
(^o^
n.ft
241
(>(*
(60
I"
jo_
(Ot
7
252-
Q.tf
(00
(01-
-7
2-5
(60
ff.fr
1.6
(Ob
ft
H5_
Wfl*-
Kfc
lQ]e_
-7
Remarks and Notes:
M5"""" "'PD M- '" 1999
-------
Run No.
Date
Project No. 104951.1.009.04.01
Sampling Location
Train A Type/No..
AHRC Incinerator Outlet Stack
Ooerator
page
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
Dry Gas Meter Reading
(0?
*7*
in
no
116
o.n
('ltd
_&£-
(Zc?
fc-4
UtlA-
Slit.
fy.l1
ft-M
Ln
0
ft-?
&t-
1
5*)
Remarks and Notes:
M5DPG2.WPD May 19, 1999
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No. Z- Date
Project No. /&¥?&'/•*
Sample Type
Flow Control
Method 5 Meter Box No.
MSB Pump Type
MSB Pump No._
Single Point)
Client/Source
Sampling Location
Operator
Bag Type
Sample No.
Method SB Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
46*- &
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time _
cc/min
Flow Rate, cc/min: Average _
Estimated Total Sample Volume
0 After Sampling
min Average Flow Meter Reading
Highest
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
/.o
/
A*
/•
Wo I
/•*
in*
/.*
me
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No. 3?
Project No. /
Sampling Location
Analysis Start Time
Sample Type (Bag, Gfat5f_
Analyst J.
Date
Sample No.
Orsat Leak Check Before Analysis:
Burrete <#b Change in 4 Minutes
Pipettes rft> Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete /frfr Change in 4 Minutes
Pipettes -^ Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 '/?
2 y.9
3
1 /Jv
2 yfc/2?
3
1
2
3
Net
Value
7 >
'$•>)
2
Actual
Reading
1 W
2 Jc>
3
1 sf-V
2 y/i?
3
1
2
3
Net
Value
y s
/3 J
3
Actual
Reading
1 *^
2 ^ ^
3
1 yJ-v
2 //D
3
1
2
3
Net
Value
tj.*?
J3J
Average
Net
Value
(% v/v)
y,^5
j3,/
Acceptance Criteria per Method 3B
CO2 >4% 0.3% v/v
<4% 0.2% v/v
02 >15% 0.2% v/v
<15% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
M3BANAL.WPD May 28. 1999
104951-009 AHRC
M26A ORSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
2-
SamplinoTrain No.
Set-up person(s):
Transfer to Sampler;
Relinquished By
Sample Box No.
Date:
ftlt
Received By.
Date/Time
iOOO
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (GBS)
U-Connector(B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector(D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger (Mod-GBS)
U-Connector (G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
C///-T
Initial Weights (grams)**
Emotv Loaded
Filter Type: Whatman QM-A
Filter Number:
50 mLs + 1 mL
0.1 N H2S04
100 mLs ±2 mLs
0.1 N H2S04
1 00 mLs ± 2 rnLs
0.1 N H2SO4
Empty
L/
S8/.H
100 mLs ±2 mLs
0.1 N NaOH
100 mLs ±2 mLs
0.1 N NaOH
"200 g indicating silica gel
"200 g indicating silica gel
6
75^7
* Before and after sampling: Nozzle inlet opening covered with aluminum foil or Teflon® tape. Probe liner outlet sealed with
glass female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with aluminum foil, Teflon® tape or as described above.
Component Changes After Set-up And Before Recovery And Other Comments:
M26ASUBX.WPD July 25, 1997 (rev. M26ASUP9.WPD August 2, 1999)
-------
40 CFR 60, AERENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No.
Sample Box No.
fi//
Train Purge with Ascarite-filtered Air if condensate is observed:
Condensate in front-half? A/hsr.*, Purged By SVffi
Date/Start Time: Stop Time
Transfer for Recovery:
Relinquished By & Ajf-S.A „ Received By
Purge Rate: [AH =
in. H,0]
Moisture Removed?
Date/Time
Sample box recovery person(s):
Probe recovery person(s):
Weights below are in grams.
/' A't'js-f^t/?. £&
r>tj&iji /.) ,4/t\ ,-A*
Date: >
Date: t
3/2 •*/'}?
i/i / /
BACK HALF RECOVERY
Impinger:
Final Wt.
Initial Wt.
Net Wt.
Description
and/or color:
Recovery:
1st
£
-3r
.JL
wn
4th
-/frg-3
5th
6th
7th
8th
V
H.
7.9
I Total Condensate Collected:
/o
. grams]
^» •-» ^> ^> Impingers 1-3
Sample Number: cP-003
Sample Bottle Tare Wt.
Sample Bottle Gross Wt.
Components Rinsed*: filter sup
Sample Bottle Gross Wt. l_*
Net Sample Wt. 13 fr.
Of properly
Blue
/ /
Before Rinses
ort, filter holder back, short 90° connector, 1st-3rd impingers, U-connectors A-B
After Rinses
for Mass Collected Calculations
Sample mixed, then aliquot taken for HCI analysis
Aliquot Sample Number: -.->-*-»-. J3004
Sample Bottle Tare Wt. , *?'J'~3
Sample Bottle Final Wt. l/C'J-3
Net Sample Wt. bC/V,'*-
After Aliquoting
FRONT HALF RECOVERY
/
RINSES: Sample Number:
Sample Bottle Tare Wt.
Components Rinsed**: nozzle, probe liner, bypass,
FILTER: Sample Number:
Description/color:
-^002
filter holder front
Sample Bottle Gross Wt. 20 fj <(j> with Acetone Rinses
Net Acetone Sample Wt. ^£,7]
Sample Bottle Final Wt. j3(f-C£> with added Water Rinses
Net Water Sample V\
I (Hi
* Using a total of 100 mLs ±2 mLs ASTM Type I water, rinse components twice. Thoroughly mix the sample before
aliquoting.
* * Acetone rinses with brushing 3 times or more until perceivably clean. If any residue remains in a component, follow with
ASTM Type I water rinses with brushing until perceivably clean. Do not add any water rinses to the sample bottle until after
the bottle is weighed with all of the acetone rinses.
COMMENTS:
M26ARCBX.WPD October 19. 1998 (rev. M26ARCV9.WPD July 30, 19991
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
Run No. C?
Project No. 104951.1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Locatio
Operator.
Outlet Stack
Record data every.
Barometer No.
minutes
Barometric Pressure ^T>
Elevation to Meter Boxes
Meter Box Pbar
Elevation to Sampling Loc.
Sampling Location Pbar 1
Static Pressure
in Hg
ft
. in Hg
ft
in Hg
Length:
Heated?
Train A Type/No,
Probe No. {JL} tl'7
Liner Type <$***&
Nozzle No./yfU'a-/ Tip Dia. A
Pilot Tube NoV6?-^fl- Cp
Stack Thermocouple No.
Filter No.
Sample Box No. / 2-
Umbilical/lmpinger Hook
Umbilical Nos.
Meter Box No.
DGM Correction (Y)
Orifice Meter AH@
Length:
Heated?
Train B Type/No.
Probe No.
Liner Type
Nozzle No.£t££r_/_ Tip Dia. ^Y2/ in
Pitot Tube No. <*/£• ^~(t
Stack Thermocouple No..
Filter No. AM-
Sample Box No.
Umbilical/lmpinger Hookup.
Umbilical Nos. \info
Meter Box No.
DGM Correction (Y)
Orifice Meter AH@
-o\\
page 1 of.
12
2-
I
in H20
Assumed Moisture
Assumed %CO,
Traverse Point Layout
Compass Direction > l£
Nozzles are quartz-glass.
Time (24 Hr)
Pass or Fail
Train A Pitot Tube Pressure Measurement System Leak Checks
Initial
cm
Final
1*72-1
0*&&
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
o^ll
Final
(5V
F*
Initial
Final
Initial
Final
Initial
Final
Initial
Final
Train A Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
oQcft
(<>
.00*
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
(1?P\
%
,7>c>
Initial
rH
1*7
.001
(0ti..m6-
(bkO'0\0
'LMot*
Final
lf2-l
1
r&(y
Initial
Final
Initial
Final
Initial
Final
Train B Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
0<\\*>
1?
.nO<*
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
tt#1
-7
t
on
Initial
\V\C>
\<
\0(fr
-tfitafi. a in ft
]v
-------
Run No.
-3
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack.
Train A Type/No.
Operator.
page.
.of.
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
1010
Dry Gas Meter Reading
ti
97
2X1
lloo
t-W
/*
(OVL, &
ML
Iffl
lot
10Z-
-fci.
Ufi
l±L
M3-
-2-
^-
JO4
KG
(oe
O.fi
lo<\
(TAG
Oj^L
do
•*?
fl-\0
I't
Oil-
Train B Tvoe/No.
(M'0
3-
i-i
JH-
o.ft
t.li-
to
4^
MM
7
Z.W
2X5
A^2,
SH
2*1
Vf?
zl
£L
n\L
in*
16
1(22-
o.rt
te
%L
, 1,1
jL*=_
J00_
11 ft.
X'2-'
lio
M-
O.n,
fr-
Hi
ZJfg
Remarks and Notes:
MSDPG2.WPD May 19, 1999
-------
Run No.
<>
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack
Train A Type/No..
Operator.
page
Traverse
Point
Sampling
Time,
min.
(Iff
Clock
Time
(24-Hr)
Dry Gas Meter Reading
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No.
Date
Project No. A?
Sample Type flfffulti-Epjm, Single-Point)
Flow Control Device ffiafiZs? Critical Orifice)
Method 5 Meter Box No. S/~&
MSB Pump Type r
M3B Pump No. A/'-f
Client/Source
Sampling Location
Operator
Bag Type
Sample No.
Method 3B Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time 23ff~
cc/min
Flow Rate, cc/min: Average
Estimated Total Sample Volume
<2 After Sampling
min Average Flow Meter Reading
Highest
/.
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
/*'
t.c
/u
HVI
//ft
tiff
/-<*
/.
(&/
/.o
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project No.
Sampling Location _
Analysis Start Time
Sample Type (Bag,
Analyst
Orsat Leak Check Before Analysis:
Burrete /*£ Change in 4 Minutes
Pipettes /n? Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete ^b Change in 4 Minutes
Pipettes /y^ Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 ,5>
2 &j)
3
1 /&?
2 x/.^Z
3
1
2
3
Net
Value
3~,D
S3-1Z.
2
Actual
Reading
1 &
2^^* •">
^s,ts
3
1 /£s?
2 J&iZ
3
1
2
3
Net
Value
£>,L>
':/. z—
3
Actual
Reading
1 37*
2 57*?
3
1 >#2-
2 /<^,-2-
3
1
2
3
Net
Value
^
;3,z~
Average
Net
Value
(% v/v)
•-*
yX 2-
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
02 >15% 0.2% v/v
<15% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
C3OO
104951-009 AHRC
M26A QRSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
M3BANAL.WPD May 28, 1999
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No.
Set-up person(s):
ransfer to Sam
Relinquished By
Sample Box No.
Date:
Transfer to Sampler: \.
/
Received By P.
Date/Time
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector(C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger (Mod-GBS)
U-Connector (G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
Initial Weights (grams)**
Empty Loaded
Filter Type: Whatman QM-A
Filter Number: £* /
50 mLs ± 1 mL
0.1 N H2S04
100 mLs ±2 mLs
0.1 N H2S04
100 mLs ± 2 mLs
0.1 N H2S04
Empty
i/9 3. o
5VY. 8
100 mLs ±2 mLs
0.1 N NaOH
100 mLs ±2 mLs
0.1 N NaOH
"200 g indicating silica gel
"200 g indicating silica gel
6
* Before and after sampling: Nozzle inlet opening covered with aluminum foil or Teflon® tape. Probe liner outlet sealed with
glass female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with aluminum foil, Teflon® tape or as described above.
Component Changes After Set-up And Before Recovery And Other Comments:
M26ASUBX.WPD July 25, 1997 (rev. M26ASUP9.WPD August 2, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. Sampling Train No. r/yi" / Sample Box No.
Train Purge with Ascarite-filtered Air if condensate is observed:
Condensate in front-half? /yfisT/s Purged Bv b8-7 £(*7.&, 6
7-7
aramsl
///
A-B
Sample mixed, then aliquot taken for HCI analysis
Aliquot Sample Number: -»-.-.->-> ,.^004
Sample Bottle Tare Wt. ~
Sample Bottle Final Wt. /6'V^.O .^/5^.±i After Aliquoting
Net Sample Wt. ^/fc. ( //f,^/ ~
FRONT HALF RECOVERY
RINSES: Sample Number: _j 001 FILTER: Sample Number: c5 002
Sample Bottle Tare Wt. /&$_ ^ Description/color:
Components Rinsed**: nozzle, probe liner, bypass,
filter holder front
Sample Bottle Gross Wt. ^Qfc-'J with Acetone Rinses
Net Acetone Sample Wt. 37. 7
Sample Bottle Final Wt. 35"1> 1 with added Water Rinses
Net Water Sample Wt. 1*50. f)'
* Using a total of 100 mLs ±2 mis ASTM Type I water, rinse components twice. Thoroughly mix the sample before
aliquoting.
** Acetone rinses with brushing 3 times or more until perceivably clean. If any residue remains in a component, follow with
ASTM Type I water rinses with brushing until perceivably clean. Do not add any water rinses to the sample bottle until after
the bottle is weighed with all of the acetone rinses.
COMMENTS:
M26ARCBX.WPD October 19. 1998 [rev. M26ARCV9.WPD July 30, 1999)
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
page 1 of.
Run No. ^
Date ff-2-t-^f
Proiect No. 104951
1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Loc
Ooerator **'
Record data e
Barometer No
Barometric Pr
Elevation to IV
Meter Box Pba
Elevation to S
Sampling Loc;
Static Pressur
Time (24 Hr)
Pass or Fail
ation Outlet Stack
very
X
assure
/&
frtf
2ff^t
leter Boxes
ampling
ation Pbar
e •*
lA'W
Loc.
2C *
Liner Typ
Nozzle N<
Pitot Tub
e /vu.
fL*,\
1-1 L
aY-K-
3 AI2<»-3. Tio
eNoA/
6?-"73.
Stack Thermocouple No
Filter No. 1?)
Sample Box No.
Umbilical/Impinge
Umbilical Nos.
^//
jr Hook
/«
.Jife.
ength: _
Heat
Dia.^Jl
CP-
!*}(-'
W6
JD /*"/
^"-V
W24±
u
j2 ft
ed?^>n
^ in
.'?7b
?'7
^y
I
Meter Box No.
Pitot Tube 1
e/No. /
J^"^"
©Cdr-*
SJoA^
Stack Thermocoup
Filter No. A
Sample Box
Umbilical/In
Umbilical N
No.
ipinger
OS.
toi/f
(/ Lena
z^ \
^ip Dia
<$i
tH23
th: 3 ft
Heated? (y>n
. G>jtfl in
C. -7
K
e No.lu>c 1-t>
JA-
&(//$
Hookup
(ZG—e.
>7
//ft I
?
n^
Meter Box No. /l/~
DGM Correction (Y) /-//
Orifice Meter AH@
cr 71
% Assumed %CO, V
Train A Pitot Tube Pressure Measurement System Leak Checks
Initial
01V
Final
ntf
taAA
Initial
Final
Initial
Final
Initial
Final
Initial
Final
/-%
72-
4L2- %o, '3=*4 ''~
Iff * 3 2 /
\
t
1
n
Traverse Point Layout
Compass Direction > £"
Nozzles are quartz-glass.
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
<*T"?f
Final
Initial
j£#1
\X>\
Final
Initial
{T-.ll
Final
/QA*
Initial
Final
Initial
Final
Train A Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
0
Initial
Final
Initial
Final
Initial
Final
Train B Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
0$
i<5
.^7-
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
Initial
CUT
1^
,OC%
Hl.Vl(r
\CLrOl3>
^fl
Final
w
8
,#£-
Initial
i
-------
V Date g'fl-ff
Run No..
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack
Train A Type/No..
page
of
Operator.
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
Dry Gas Meter Reading
M£
5L
//A
^L
99
an
M3
U.
ft
mo
l-tt
o.tt
2£L
inn
0-6
i~±-
1*1
H-6
&A
i^_
MSk-
III
AH
M3_
Ilk
ZJel,
^L
Iff
JM-
51
1.24
\\t
I'
mo_
&J?L
f-9
Train B Tvoe/No.
/M 2-3
ft-i
-£&
-7
Zrf Z55
1,1
%
IS-. 2-1
IK, 60
f-H-
it
7
Zfl
91 -
til,?/
±%L
1M-
(6$
9
OJi
(01
7,5
2^_
I01*
\A
(Ok
Ol
2&O
&
7,6
(M
LG°(
lo H
M-
Remarks and Notes:
M5r°"" "TD Mr"1 999
-------
.
Date
Run No
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack
Train A Type/No.
Operator
- */)
&/H!
12-01
£±_
tL S
JL%_
12SL
2£f
1,1-
12.1
/H
ti'LJlA
Ul.'VM
I)/
•zfr
fw
&
_//£_
Train B Type/No.
trt.o*
11-70
A/A
&±.
&
6-2.
it;
(.7
91
8-2-
t.1
no
to -7
o.tt
IfvtA
(I*-
3-
(.21
nz.
-7
wo
±1L
ta-
7
riff
il z-
'7
JL
(ft
\
Remarks and Notes:
M5DPG2.WPD May 19, 1999
-------
Run No.
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Client/Source
Project No.
Sample Type (jSfluJti-Pom
Sampling Location
Operator
Flow Control Device^Talvg^Critical Orifice) Bag Type
Method 5 Meter Box No.
MSB Pump Type
MSB Pump No._
Sample No.
Desired Sampling Rate _
Leak Check Before Sampling
Total Sampling Time
min
Flow Rate, cc/min: Average
Estimated Total Sample Volume
Method SB Train No.
MSB Flow Meter Type
MSB Flow Meter No. _
. cc/min
After Sampling
Average Flow Meter Reading
Highest
JV-
Lowest /£
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
/3V
/.*
SV&
A?
/.ff
/6V/
/•#
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project No. /
Sampling Location _
Analysis Start Time
Sample Type (Bag, QtabT_
Analyst Change in 4 Minutes
Pipettes A/E> Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 3^S
2 g.j
3
1 x-7,9
2 J7.c?
3
1
2
3
Net
Value
,2>//
/^^
2
Actual
Reading
1 X/
2 <>-/
3
1 ^7?
2 /J7)
3
1
2
3
Net
Value
£~'S
Sj.J?'
3
Actual
Reading
1 &J
2 g-,j
3
1 S79
2 j7,^
3
1
2
3
Net
Value
S~.J
SJ2&
Average
Net
Value
(% v/v)
v5T- V
J&.j-
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
02 ^15% 0.2% v/v
< 1 5% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
4OOS
104951-009 AHRC
M26A ORSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
M3BANAL.WPD May 28, 1999
-------
40 CFFt 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No.
Client/Source:
Source Location:
Sampling Location: Outlet Stack
4
104951.1.009.04.01
U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
The University of Georgia, Athens, Georgia
Run No.
Set-up person(s):
Transfer to Sampler:
Relinquished By
Sampling Train No.
fffl "
Sample Box No.
Date:
:/?
1
Received By.
Date/Time 08-J13 JM
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger {Mod-GBS)
U-Connector (G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
Initial Weights (grams)**
Empty Loaded
Q-H-
Filter Type: Whatman QM-A
Filter Number:
50 mLs ±1 mL
0.1 N H2SO4
100 mLs +2 mLs
0.1 N H2S04
100 mLs ± 2 mLs
0.1 N H2S04
Empty
100 mLs ±2 mLs
0.1 N NaOH
100 mLs ±2 mLs
0.1 N NaOH
"200 g indicating silica gel
"200 g indicating silica gel
Y7/.3
7.37,0
* Before and after sampling: Nozzle inlet opening covered with aluminum foil or Teflon® tape. Probe liner outlet sealed with
glass female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with aluminum foil, Teflon® tape or as described above.
Component Changes After Set-up And Before Recovery And Other Comments:
M26ASUBX.WPD July 25, 1997 Irev. M26ASUP9.WPD August 2, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 26A -
MODIFIED PARTICULATE MATTER AND HCI TRAIN (M26A)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No.
Sample Box No.
Train Purge with Ascarite-filtered Air if condensate is observed:
Condensate in front-half? /fnftt- Purged By /f&
Date/Start Time: Stop Time
Purge Rate: [AH =
in. H,0]
Moisture Removed?
Transfer for Recovery:
Relinquished By Z5 W &J
Sample box recovery person(s):
Probe recovery person(s):
Weights below are in grams.
Received By rMc^uc/i-
f'' F) (,-sW cJl, cfc
/.) /!//xr,y ft A'fbt^-h,,
J
ic-k- Date/Time riv 5/7'?' / L>CC-
Date: #/*//$-
Date: fi/J^/f,
BACK HALF RECOVERY
Impinger: 1st^
Final Wt. '/iff1/' 7
Initial Wt. <"?
Net Wt. J3 °f • &
Description ,
and/or color:^-"^-^?
2nd . . 3rd
& vV.^ 'olQ. 1
£'?$."/ 5~ 8 (.'.
' '-ik. 2 n 7
f f
^-» Imninnprc 1 -3 «->«-- 4-- «-> <-*
, 4th 5th
foft.& ^"75' /
&£.A ^~7J/.JL
tt 6" A ^
, 6th
^?i 3
^ft.g)
Ci. 6
1 TotaJ Condensate Collected:
7th
7?, 7,0
/ 7 .3
"•? "^ ~
/G
— — — • ^-* D'lQnnQA rtf nrnnprlv «-^ <-^ *-^ 4-^ °/
.8tl\ -
fo(f'7.1
S~^b
3>& aramsl
*/£
•: RIlIP
Sample Number:
Sample Bottle Tare Wt.
Sample Bottle Gross Wt.
Components Rinsed*:
Sample Bottle Gross Wt.
Net Sample Wt.
Before Rinses
filter support, filter holder back, short 90° connector, 1st-3rd impingers, U-connectors A-B
'T" After Rinses
O for Mass Collected Calculations
Sample mixed, then aliquot taken for HCI analysis
Aliquot Sample Number: — — — — — 4^004
Sample Bottle Tare Wt. _. V^W
Sample Bottle Final Wt. /C^^>.^ -£c&. 7
Net Sample Wt. 6*-7.& //5..4
After Aliquoting
FRONT HALF RECOVERY
RINSES: Sample Number:
Sample Bottle Tare Wt.
Components Rinsed**: nozzle, probe liner, bypass.
filter
Sample Bottle Gross Wt.
Net Acetone Sample Wt.
Sample Bottle Final Wt.
Net Water Sample Wt.
older front
' *? with Acetone Rinses
FILTER: Sample Number:
Description/color:
i
7
002
with added Water Rinses
* Using a total of 100 mLs ±2 mLs ASTM Type I water, rinse components twice. Thoroughly mix the sample before
aliquoting.
** Acetone rinses with brushing 3 times or more until perceivably clean. If any residue remains in a component, follow with
ASTM Type I water rinses with brushing until perceivably clean. Do not add any water rinses to the sample bottle until after
the bottle is weighed with all of the acetone rinses.
COMMENTS:
M26ARCBX.WPD October 19, 1998 (rev. M26ARCV9.WPD July 30, 1999)
-------
Section 3
EPA Method 29 for Multiple Metals Sampling and
Recovery
MRI-AED\R495t-09-05.wpd
-------
40 CFR 60, APPENDIX A, Method 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD REAGENT BLANK ASSEMBLY DURING PREPARATION FOR ANALYSIS
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Reagent blank samples are assembled for analysis by the analyst in the analytical laboratory. The Field Laboratory Leader
prepares those samples in the field and completes the information on this form. The information below represents the actual
reagent usage in the field for loading the sampling trains prior to sampling and for sample recovery after sampling. Field
reagent blank samples are prepared accordingly (i.e., the volume of each reagent blank sample provided is adequate to provide
the analyst enough volume needed for assembling samples to be analyzed for each group). Each train is identified by run
number and sampling location. The run number(s) and sampling location(s) indicated for each reagent blank group below are
the same ones that are used to identify each train used for sampling. This is important because more than one reagent blank
sample of a particular reagent will be prepared if different lots of the reagent are used in different trains at the test site. Then
this occurs, adequate numbers of reagent blank samples will be submitted to the analytical laboratory, and those samples
will be properly identified with sample numbers to facilitate blank assembly prior to digestion and subsequent analysis.
Instructions to Analyst: Assemble each reagent blank group below for separate analysis in the same manner used for
assembling the individual source samples. Each group represents a specific set of run numbers/sampling locations.
Reagent Blank Group I - Combine components.
For Run Number(s)/Sampling Location(s):.
Group Component Sample
Filter
0.1 N HN03
Sample Number
/035
/ 034
Quantity To Use
One filter
150 mLs
Reagent Blank Group II - Combine components.
For Run Number(s)/Sampling Location(s):,
Group Component Sample
5% HNO3/10% H2O2
0.1 N HN03
Sample Number
/ 036
/ 034
Quantity To Use
200 mLs (entire sample)
100 mLs
Reagent Blank Group III
For Run Number(s)/Samplinq Location(s):
Group Component Sample | Sample Number
Quantity To Use
0.1
N HN03
/034
100
mLs
Reagent Blank Group IV - Combine components.
For Run Number(s)/SamDlinq Location(s):
Group Component Sample
4% KMn04/10% H2S04
ASTM Type I Water
Sample Number
/ 037
/ 038
Quantity To Use
100 mLs (entire sample)
33 mLs
Reagent Blank Group V - Dilute.to 500 mLs with water.
For Run Number(s)/SamDlina Location(s):
Information Completed By.
Group Component Sample
25 mLs 8 N HCI in 200 mLs
ASTM Type I Water
Sample Number
/ 039
Quantity To Use
Entire Sample
J
Date:
m29bcx.wpd May 27, 1999 (rev. M29BC9.WPD August 2, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD REAGENT BLANK PREPARATION DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Blank(s) Prepared By:
Weights below are in grams.
Sample
Number
Group Number and Reagent Blank Description
Date:
Group I
f 035 4.9-inch diameter Whatman QM-A Filter (5 filters)
/034
Groups I. II. and
mLs 0.1 N HNO3
UIUUU II
/ 036 200 ±2 mLs 5% HNO3/10% H^
Group IV
/ 037 100 ±2 mLs 4% KMnO4/10% H2SO4
Group IV
/038 100 ±2 mLs ASTM Type I Water
Group V
/ 039 25 ±0.5 mLs 8 N HCI added to
200 ±2 mLs ASTM Type I Water
For Run Number(s)
Lot Number
For Run Number(s)
-3
Lot Number Sct^i,^
Sample Bottle Tare Wt. f''/
Sample Bottle Final Wt. "£/'?
Net Sample Wt. -3-**
For Run Number(s)
Lot Number L//>/ 2.0/••/_/U
Sample Bottle Tare Wt. .'&&• .x
Sample Bottle Final Wt. -•> ~7 7. '7
Net Sample Wt. .
For Run Number(s)
Lot Number
Sample Bottle Tare Wt.
Sample Bottle Gross Wt.
Net Sample Wt.
For Run Number(s)
Lot Number
Sample Bottle Tare Wt.
Sample Bottle Gross Wt.
Net Sample Wt.
For Run Number(s)
8 N HCI Lot Number
Sample Bottle Tare Wt.
Sample Bottle Gross Wt.
Net Sample Wt.
-70C-
'/UMtj-j
'-77. /
f-,.
/Of?. I
NOTE: If a new lot of any reagent is prepared and used, a reagent blank sample of the new lot, plus additional reagent blank
samples of all other reagents being used and belonging to the same reagent blank group(s) of which the new reagent is a part, must
be prepared and designated for the applicable run number(s) and sampling location(s) where the train(s) loaded and/or recovered
with those reagents are used. Lots may be identified above by a manufacturer's lot number or by the date of reagent preparation.
Use more than one data form if necessary. Reagent blank samples will be combined and processed in the laboratory in the same
manner as the samples recovered from the source sampling trains according to the groups specified above. Therefore, adequate
numbers of reagent blank samples of the specific volumes described above must be obtained and be properly identified so that
each train will be represented (i.e., by reagent blank for run number and sampling location).
COMMENTS:
M29BLX.WPD October 13, 1998 (rev. M29BLK9.WPD August 2, 1999)
-------
FIELD SAMPLING DATA FOR
METHOD 5 TYPE TRAINS
/CtdSt
page 1 of.
Run No. Date 2f~/(~i'
Project No. 104951.
1.009.04.01
Client U.S. EPA OAQPS'EMAD SMTG
Source AHRC Incinerator
Sampling LOCE
Ooerator &
Record data e
Barometer No
Barometric Pr<
Elevation to IV
Meter Box Pb,
Elevation to S
Sampling Locz
Static Pressur
Time (24 Hr)
Pass or Fail
ition Cutlet Stack
*v5^-
very
*
assure
fl
tftif)
minutes
-£%& in Ha
su
eter Boxes fa't
ampling
ition Pbw
e •*•
tS> ft
in Ha
LocfiZb ft
/^» C/1/ . . .
27 "Y in HP
Train A Type/No
Probe No.W6?-7
Liner Typ
Nozzle Nc
e wift
>. M2A
Pitot Tube No.
fai
L
IH Tip
1-1 *
Stack Thermocouple No.
Filter No. l9
Sample Box No.
Umbilical/Impinge
Umbilical Nos.
d
:r Hook
fi/fc
* J «i
•tt,k,l-aA
sngth: _
Heat«
Dia. _A
Cp_
^
W
_2_ft
2d?^)n
1*- in
rW
•^
M uft*
*" */
Meter Box No. N'tf
DGM Correction
(Y)
f.00*)
Orifice Meter AH® /.fa-/
O'OJ in H?O Assumed
Moisture ((• »
Train B Typ
Probe No. I*
e/No.
Jc 1*6
Liner Tvoe (JvJW
Nozzle No. i*vZ^-l
Pitot Tube No. 7-
Stack Thermocoup
Filter No. N^
Sample Box
Umbilical/In
Umbilical N
Meter Box 1
No.
ipinger
OS.
^Jo.
/&£/>
<
Lenath: 3
ft
fa- Heated? /v>n
Tip Dia
^ a
e No. HC
r
///• c
Nozzles are quartz-glass.
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
(OIK
Final
l(*05
0>4A
Initial
Final
Initial
Final Initial Final
Initial
Final
Train A Sampling System Leak
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
\oVt
15
,oot
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
Initial
(0H
ll<5
,**
Tf$*«
Final
ryw
*f
•<70/
Initial
fTW
1*5
,Dd3
-7>"A /^^
-iS^^^
.219
Final
/4£>^>
?
.00 1
Initial
Final
Initial
Final
Train B Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
|0^f
IT
.^•M
Final Meter Volume
Initial Meter Volume
Leak Check Volume
j Final
I'VH
ri
JO*)
Initial
CW9
,r^
. .0(71
CtV *?^l
Uu\^i>8
§ j~ ^ f
Final
l^o'L-
fa
fO0$
Initial
Final
Initial
Final
Initial
Final
Remarks and Notes: List STL T/Cs, pyrometers, and any other equipment requiring calibration below.
Meter Volume at Start of Run
Meter Volume at End of Run
Total Leak Check Volume
M5DPG1.WPD Mav is, 1999 Adjusted Final Volume
TRAIN A
TRAIN B
-------
Run No. I Date S'('
Project No. 104951.1.009.04.01
Sampling Location AHRC Inci
Train A Type/No.
erator Outlet Stack
Ooerator
page.
Traverse
Point
Af,
A
A
Sampling
Time,
min.
1C
__Ho_
_$•_
Clock
Time
(24-Hr)
IrtL
31*.
Dry Gas Meter Reading
\
\\\l-
Train B Tvoe/No.
a /
III*
LL
B 2,
ftj^-
to
M^iL
ft_H
1°
H-
fe
(ftd, 11
MO, Hl>
o.cft
0. (\
O'ft
6.\0
n.io
(-IP
(.0$
.clt
4^L
1.6$
I'Otf
\r)l-1
4*1-
t*-\
Ft
5-
pr*
At*
d.10
loo
(.0*1
(••*
1,06
M&-
ft_le no
no
(O4?
(01
5
I2a
Remarks and Notes:
-Mr tfs*
/n-?SAst+r>-''*3tj , J?jt/ fn>t~ S"Cf?)s '^
M60t—- WpD
10 1999
-------
Run No.
/
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC^ Incinerator Outtet Stack
Train A
Operator
page
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
Dry Gas Meter Reading
*i
6.0*
J*Wk
0,0%
tfo
It
_^o_
2*9
/L±
0,6
74,0
l.o
Win
fi
MO_
1,1
JZL
O-fO
_&L
o.ol
jy±
fii
to
O.Olf
btf.llfl
Train B Tvoe/No.
/I
A±L
IV
O.tft
&_
foe*
j^£
&£.
If?
&L
A^±
0,10
6.0
f.O^J
010
1(0
joe.
r
25 (
1.09
tito
1(1
5^7
1.0%
1-1
Iff id
111
m
0, 11
(00*)
(H
A -4
6.10
l\0
Ml
(01%
ill*
11*}
A-^—
11*.
ion
[aQt>L
1(8
Hi
5-55-
o,\o
Remarks and Notes:
M5DPG2.WPD May 19, 1999
-------
Run No.
Project No.
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Client/Source
Sample Type
Flow Control
Method 5 Meter Box No.
MSB Pump Type
MSB Pump No.
7
Sampling Location
Operator
Bag Type
Method 3B Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Sample No.
X/A
Desired Sampling Rate (0'&
cc/min
Leak Check Before Sampling.
Total Sampling Time
Flow Rate, cc/min: Average
Estimated Total Sample Volume
After Sampling
min Average Flow Meter Reading
Highest J °$
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
1//L
//V
/.a
S/Z.4-
/.o
X2//
/.a
/-c
/.O
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project No.
Sampling Location
Analysis Start Time S7Z
Sample Type (Bag, Qiab).
Analyst As Sits*
Date
Sample No.
2**
Orsat Leak Check Before Analysis:
Burrete Jrv Change in 4 Minutes
Pipettes /ft> Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete tfo Change in 4 Minutes
Pipettes "O Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 <*?
2 #9
3
•i y^3 £
\ s s»&
2 S9.&
3
1
2
3
Net
Value
'
/y.x
2
Actual
Reading
1 y,?
2 &.*?
3
1 /?J
2 /9.£
3
1
2
3
Net
Value
^x
Svy
3
Actual
Reading
1 4?
2 4.
3
1 ;9.S-
2 s9.p
3
1
2
3
Net
Value
5^! "9
S>*,9
Average
Net
Value
(% v/v)
&*?
;¥.
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
02 >15% 0.2% v/v
<15% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
JL O JL -Bl
1O4951-OOS AHRC
M29 QRSAT BAG
EMISSION TEST SAMPLE
For disposal call: A. Carender
MIDWEST RESEARCH INSTITUTE
M3BANAL.WPD May 28, 1999
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY TRAIN SET-UP DATA
MR! Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No.
Set-up person(s): ' />
Sample Box No. O« I
Date:
Transfer to Sampler:
Relinquished By
Recejved By
Date/Time
TRAIN COMPONENT
COMPONENT NO.
LOADING DATA
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (Mod-GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger (Mod-GBS)
U-Connector (G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
Initial Weights (grams)**
Empty Loaded
Filter Type: Whatman QM-A
Empty
77
UH -
100 mLs ±2 mLs
5% HNO3/10% H2O2
100 mLs ±2 mLs _
5% HN03/10% H2O2
Empty
100 mLs ±2 mLs*** _
4% KMn04/10% H2S04
100 mLs ±2 mLs*** _
4% KMnO4/10% H2SO4
"200 g indicating silica gel
~200 g indicating silica gel
-577.7
7
* Before and after sampling: Nozzle inlet opening covered with Parafilm® or Teflon® tape. Probe liner outlet sealed with glass
female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with Parafilm®, Teflon® tape, or as described above.
*** If the reagent was exhausted before the end of a previous run, use a larger volume (e.g., 200 mLs ±2 mLs) and document
below. Prepare additional reagent blanks accordingly.
Component Changes after Set-up and before Recovery and Other Comments:
c
'•' O
2 5 C- «/ {_ 0 -f
i^i Lot
t/
M29SUBX.WPD July 8, 1997 (rev. M29SUP9.WPO August 2, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. / Sampling Train No. fnfli - 1
Transfer for Recovery- <~ *
Relinquished By ^J ^U^rrtftJ Received By r/Yl
Sample box recovery person(s): {* /ilUf~0iiUCn ((. /c
Probe recovery person(s): O A/&/ O A /&L
Weights below are in grams.
Sample Box
^l/SOUictif'c^
^-fr>
No. O H/^(
Date/Time
7
0//7/7?
Date:
Date:
/^/6-
Q// 7/3*7
ft/n/ ^ "^
/Ax7/i f>
- , .-' . /
/ 016
/?/. 7
Wv7/V tfL^/Z/f
-+ Impingers 5-6 *-
/017
~/7^.'^
^ /O
% Blue
/018
/ is? fc/ • 3
Before Rinses
Rinse Solutions: 0.1 N HN03 0.1 N HN03
Components Rinsed*: filter support, filter holder back, **4th impinger
short 90° connector, 1st-3rd impingers, U-connectors A-C
Sample Bottle Final Wt. /I3te' b?
Net Sample Wt. /?-3#. > ^i/'ij
FRONT HALF RECOVERY
KMn04/H20, then 8 N HCI
***5th-6th impingers, U-connectors D-E
After Rinses
FILTER:
Sample Number:
/014 Description/Color:
TRAIN RINSES:
Sample Number: / 013
Sample Bottle Tare Wt. I(ff 9-. .'-^
Rinse Solution: 0.1 N HNO3
Components Rinsed****: nozzle, probe liner, bypass, filter holder front
Sample Bottle Final Wt.
Net Sample Wt.
* Using a total of 100 mLs ±2 mLs of 0.1 N HNQ, rinse components twice.
** Using a total of 100 mLs ±2 mLs of 0.1 N HNQ, rinse the impinger twice.
* * * Using a total of 1 00 mLs ± 2 mLs of 4% KMn04/1 0% H2SO4, rinse components 3 times; then, using a total of 1 00 mLs ±2
mLs of ASTM Type I water, rinse components 3 times to remove all purple color. Next, using a total of 25 mLs ±0.5 mLs
of 8 N HCI, remove any residue from components; transfer these rinses to a separate bottle containing one half of 200 mLs
±2 mLs of ASTM Type I water; rinse components with the balance of the water and transfer to bottle.
**** Using a total of 15€TVnLs ±2 mLs of 0.1 N HNQ, rinse components 3 times or more with brushing until perceivably clean.
COMMENTS:
/
/>-
M29RCBX.WPD October 13, 1998 (rev. M29RCV9.WPD August 2, 19991
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
page 1 of.
Run No. 2- Date {T'2-Mf
Project No. 104951
1.009.04.0V
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Loc;
Operator
Record data e
Barometer No
Barometric Pr<
Elevation to IV
Meter Box Pba
Elevation to S
Sampling LOCE
Static Pressur
Time (24 Hr)
Pass or Fail
Jtion Outlet Stack
3»H»-
very
assure
I'
[otf
eter Boxes
ampling
ition Pbar
e
f/M
Loc.
minutes
in
0
in
V in
Hg
ft
Hg
ft
Hg
•+(J.05 in H,O
Train A T
Probe No
Liner Typ
/f
Nozzle Nc
ype/No. JQi
l/JC^rf
e /^Mft-ytt-
^tubk
Length:
n/tfU
3 ft
Heated? (0n
l.1f£l. Tio Dia. 0,
Pitot Tube No./<^£, '
Stack Thermocouple
Filter No. 1
Sample B
Umbilical
Umbilical
Meter Bo
ox No.
'Impinger H
Nos. f(
xNo.
DGM Correction (Y)
Orifice Meter AH@
Assumed
Moisture
Train A Pitot Tube Pressure Measurement
Initial
Hft
Final
I-M
fl*/W
Initial
Final
Initial
Final Ini
~1 A c
No. /{/<^ '
Iff
01(44
ookuo //f
7/2.<-y
y^.
l-OOl
/'^2/
^-7
^ M 'n
'Tllf
!>-•?
/9
H
Train B Typ
Probe No. UC J-
Liner Tvoe <^puA*^
/T\2- /I
£ Lena
A h
Nozzle No.y2-f'2 Tip Dia
Pitot Tube No./c/>/«Wf
th: j
leated?
^r'/*?
c. .^
wtf
L_ft
/ in
'7^
e No.ftSs' •%'&
1/4
J'K?'
7
Hookup ^/// 22,
X/2*
A; -4
DGM Correction (Y) /*?
Orifice Meter AH@
% Assumed %CO2 ^
System Leak Checks
tial Final
Initial
Final
^-^
1
ll
'mpass Direction >^~
.^ %02 /^-^ Nozzles are quartz-qlass.
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
d^l
Final
(1ft
p*iX
Initial
Final
Initial
Final Initial Final
Initial
Final
Train A Sampling System Leak Cnecks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
UN*
tf
r#*5
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
(W
*
.00$
Initial
\^y&
15
,oo\
'm.tu
tfk'WI
.im
Final
Il\1
^
foff$
Initial
Final
Initial
Final
Initial
Final
Train B Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
/!«
'* i
offH
Final Meter Volume
Initial Meter Volume
Leak Check Volume
1 Final
iM
(o
.(301
Initial
^3
15
,0o^>
*rt,H5
<2\Mi4
.•71*
Final
(W
In
.06^
Initial
Final
Initial
Final
Initial
Final
Remarks and Notes: List STL T/Cs, pyrometers, and any other equipment requiring calibration below.
Meter Volume at Start of Run
Meter Volume at End of Run
Total Leak Check Volume
ME VPD v 1999 A " 'id Fir '''ilum
TRAIN A
TRAIN B
8
70
-------
Run No. _4-
Project No. 104951.1.009.04.01
Sampling Location AHRC Incineratpr^Outlet Stack
Train A Type/No.
Ooerator
page
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
Dry Gas Meter Reading
(Vm , ft3
Initial
Desired
Actual
Velocity
Head
(Ap).
in. H2O
Orifice Pressure
Differential
(AH),
in. H20
Desired
Actual
Stack
Temp.
,
°F
Dry Gas Meter
Temperature
(U,
°F
Inlet
Outlet
Pump
Vacuum,
in. Hg
Silica Gel
Impinger
Outlet
Temp.,
"F
Probe
Liner
Outlet
Temp.,
°F
Filter
Holder
Temp.,
STL
Outlet
Temp.,
7WF
XAD
Inlet
Temp.,
°F
J°-
OA^L
I'll
V
\ri°
!
-zxt
<*£
% 5
(til-
1
&-
V
$&l
-UL
•it
ko
OdQ-
(.00
UL
iO^L
It
10
0.H
fri
iu.
jp-
\60
\\0
0-lk
Jd
(Mlfi
o,n
m~
^ZL
50
ztf
dll
Al
M-
Train B Tvoe/No.
44-
4^1
&*oJL
93
ft
(oo
3Q_
I.I
(OH
(0$
7
too
{60
\\0
\2o
Q.\<<
(01-
6.1L
1LC
(05
o.tt
rti
Kfo
Remarks and Notes:
-------
Run No.
Date.
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet^Stack
Train A Type/No. rjlt^Tt
fa
l^
Traverse
Point
Sampling
Time,
min.
lie
Clock
Time
(24-Hr)
Dry Gas Meter Reading
(Vm), ft3
Initial
Desired
Actual
Velocity
Head
o.H
_£**_
Vjo
ni
ZfC,
7X1
&L
nt,
zn
Train B Type/No.
MM ^
QL2L
Z2J>,01
±*L
nt
-&L
Tfe
SL^
l&L
in
.liO-
lot
(.(,1
mi
^L
£tJL
JlL
o.rt
J22-
(20
/.a i
LLL.
pa.
JLO_
I"?
Cb
40-
AJL
1ft
Vbo
\1oi-
(.*
OL_
UZL
7
Remarks and Notes:
M5D D Mai 39
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No. *- Date
Project No. /£?
Sample Type ffifujti-Point)
Flow Control Device {(yajyjy, CrrtfeaJ-©»ftce)
Method 5 Meter Box No. w~/
MSB Pump Type
MSB Pump No..
Client/Source
Sampling Location
Operator.
Bag Type
Sample No.
Method 3B Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time .
cc/min
Flow Rate, cc/min: Average
Estimated Total Sample Volume
G After Sampling
min Average Flow Meter Reading
Highest
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
\.o
f.c
ItSt
M3BSAMP.WPD June 18. 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Project
J*
Date
',/.
2-
/tJ' $
3
1
2
3
Net
Value
j/t?
/J>s
3
Actual
Reading
1 49
2 ^^7
3
1 /f.v
2 j£, 0
3
1
2
3
Net
Value
4% 0.3% v/v
<4% 0.2% v/v
0 >
0.2% v/v
CO 0.3% v/v
<15% 0.3% v/v
Remarks and Notes:
M3BANAL.WPD May 28, 1999
104951-OO9 AHRC 2:0 J. ^>
M29 ORSAT BAB
EMISSION TEST SAMPLE
Fa->- disposal call: A. Carender-
MIDWEST RESEARCH INSTITUTE
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. 2,
Set-up person(s):
Sampling/Train No.
/v
-z
Sample Box No.
Date:
Transfer to Sampler:/;
Relinquished By r /
Received By
TRAIN COMPONENT
COMPONENT NO.
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (Mod-GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector (C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger (Mod-GBS)
U-Connector (G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
Date/Time
/COO
LOADING DATA
Initial Weights (grams)**
Empty Loaded
Filter Type: Whatman QM-A
Empty
100 mLs ±2 mLs
5% HN03/10% H202
100 mLs ±2 mLs
5% HNO3/10% H2O2
Empty
100 mLs ±2 mLs*** _
4% KMn04/10% H2S04
100 mLs ±2 mLs*** _
4% KMn04/10% H2S04
"200 g indicating silica gel
~200 g indicating silica gel
* Before and after sampling: Nozzle inlet opening covered with Parafilm® or Teflon® tape. Probe liner outlet sealed with glass
female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with Parafilm®, Teflon® tape, or as described above.
*** If the reagent was exhausted before the end of a previous run, use a larger volume (e.g., 200 mLs ±2 mLs) and document
below. Prepare additional reagent blanks accordingly.
Component Changes after Set-up and before Recovery and Other Comments:
M29SUBX.WPD July 8, 1997 (rev. M29SUP9.WPD August 2. 19991
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. *- Semolina Train No. MA-1 -'b k • fj 5"%"- 9
Net Wt '^OO.b &£>-.*> lO.O
Description
and/or color: filf^ ('- "£-.^ /('-.-—
_ I • 1 O
Sample Number: ^015
Sample Bottle Tare Wt. Y'/ 7-3
Sample Bottle Gross Wt. / ^ ' '^
Samole Box No. &(/(&
fj/IUSO L^C/1, C* Date/Time
,/^r
s
HALF RECOVERY
4th 5th 6th
'/^-Y 5~&£.J~ ^'H-gJhJ-
D-, ±> *j . 1 33
[ Total Condensate
&*, b,^ fr,/>/f
>1+U 1 I ' C C
^016 -^017
/49-7 'iftl'O
1
fi/>il *-'
Net Sample Wt. (t 1 fi-^
KMn04/H20, then 8 N HCI
***5th-6th impingers, U-connectors D-E
After Rinses
FRONT HALF:RECOVERY
FILTER:
Sample Number:
^014 Description/Color:
-^
013
TRAIN RINSES:
Sample Number:
Sample Bottle Tare Wt.
Rinse Solution: 0.1 N HNO3
Components Rinsed****: nozzle, probe liner, bypass, filter holder front
Sample Bottle Final Wt. *JO3 •*/
Net Sample Wt.
* Using a total of 100 mLs ±2 mLs of 0.1 N HNQ, rinse components twice.
** Using a total of 100 mLs ±2 mLs of 0.1 N HNOj, rinse the impinger twice.
*** Using a total of 100 mLs ±2 mLs of 4% KMnO4/10% H2S04, rinse components 3 times; then, using a total of 100 mLs ±2
mLs of ASTM Type I water, rinse components 3 times to remove all purple color. Next, using a total of 25 mLs ±0.5 mLs
of 8 N HCI, remove any residue from components; transfer these rinses to a separate bottle containing one half of 200 mLs
±2 mLs of ASTM Type I water; rinse components with the balance of the water and transfer to bottle.
**** Using a total ofjJ*0"mLs ±2 mLs of 0.1 N HNQ, rinse components 3 times or more with brushing until perceivably clean.
COMMENTS: ,vv,"
M29RCBX.WPD October 13, 1998 Irev. M29RCV9.WPD August 2. 1999)
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
page 1 of.
Run No. J Date #'/>£"'$T
Project No. 104951
1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling LOG;
XI
Operator c#
Record data e
Barometer No
Barometric Pr
Elevation to IV
Meter Bo^ Pbi
Elevation to S
Sampling LOCE
Static Pressur
Time (24 Hr)
Pass or Fail
ation/) Outlet Stack
-IJL
ftffat^
verv
• V*
assure
*•
/i^ minutes
frtf
"73 1/1^
*• (» T*-^
eter Boxes ^
ampling
ition Pbaf
e
Zt-V^
Loc. ^
in Hg
ft
in Hg
ft
' in Hg
Train A Type/No
Probe No. IJL) L\
Liner Typ
Nozzle Nc
e £?U*
Pitot Tube NoV
/l^Jafx/^i
'7 L
*X*
I'l Tip
£7-"7s
Stack Thermocouple No.
Filter No. £-/
Sample Box No.
Umbilical/Imping*
Umbilical Nos.
/2~
jr Hook
sngth: 4 ft
Heated? ft) n
Dia. A *i
' CP-
pjC.".
•P *(.
'3t- in
O.TI(>
\'"7
rt%
Meter Box No. /Vo
DGM Correction (Y) I '00^
Orifice Meter AH@ (• T^-l
^9 in H,O Assumed
Moisture
lt-1
Train B Typ
Probe No. I*
Line
Noz
r Type
zle No./
e/No.
1^3-
/5Wf
-vtZ?-/
Pitot Tube No. <^^
Stack Thermocoup
Filter No. Ni
Sample Box
Umbilical/In
Umbilical N
Meter Box I
No.
ipinger
OS.
^Jo.
ttftfafa
f Lena
-k ^
Tip Dia
•v^
eNo._^
r
Af2'
1
th: ^ ft
Heated? $}n
. e.Mi in
c^ o.11tt
UC*>-(,
entfo
Hookup
\^" / x tf
j/^rO
• V 7
4/r"!
^
DGM Correction (Y) ' '0 1 1
Orifice Meter AH@
(/
% Assumed %CO2 "? *6 °/
Train A Pitot Tube Pressure Measurement System Leak Checks
Initial
0W
Final Ini
fifcL
tial Final
Initial
Final
Initial
Final
Initial
Final
\6V
)Uj i
*'f
1
Cc
Nozzle
If*
4-
3
^
2-
I
N
2. 1
S
\
/
»
Traverse Point Layout
impass Direction > /£
s are quartz-glass.
Train B Pitot Tube Pressure Measurement System Leak Checks
Initial
o^t)
Final
1 5V
f"V
Initial
Final
Initial Final Initial
Final
Initial
Final
Train A Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
6<\(ft
(4"
.00*
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
[ISft
C^
Initial
\\ti\l
\5
.00^
iQ\g1.,<-([(f
[tlk&'0\0
'L.yot*
Final
(tf'Z'l
7
f&n
Initial
Final
Initial
Final
Initial
Final
Train B Sampling System Leak Checks
Time (24 Hr)
Vacuum-, in Hg
Leak Rate, cfm
Initial
d\ft
IS
.no?
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
W#1
-7
'
off*
Initial
12-%
i<;
\0l
Final
Initial
Final
Initial
Final
Remarks and Notes: List STL T/Cs, pyrometers, and any other equipment requiring calibration below.
Meter Volume at Start of Run
(V Meter Volume at End of Run
*i^ /> ' Total Leak Check Volume
M5DPG1.WPD May 19.1999 ' Adjusted Final Volume
TRAIN A
TRAIN B
-------
Run No..
-3
Date
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack.
Train A Type/No.
Operator.
page.
of
Traverse
Point
Sampling
Time,
min.
Clock
Time
(24-Hr)
1010
Dry Gas Meter Reading
Initial
Desired
Actual
Velocity
Head
(Ap),
in. H;O
Orifice Pressure
Differential
(AH),
in. H2O
Desired Actual
Stack
Temp.
(t.).
°F
Dry Gas Meter
Temperature
41
^L
Ml
lloo
J^L.
AlXL
(&VL
O.tf
t-t
im
_(H.
&L
JIM.
j8ai.
, 11
i^-
lfr\1r#
int,
nit
1(0
1
toe
J$L
A£L
lo<\
ML
[100
JbAlL
fi.°n
\\ii-
((o
11*
A_LL
4^L
-^
(QLl^
h^L
Train B Tvoe/No.
r?
.
-------
Run No.
Data
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack
Train A Type/No..
Remarks and Notes:
M5DPQ2.WPD May 19. 1999
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No. 7 Date.
Project No. /&yfff'&/~
Sample Type <3mJJti-PolpP,
Flow Control DevicedSali
i /Critical Orifice)
Method 5 Meter Box No. /C/- T
MSB Pump Type _
MSB Pump No.
Client/Source
Sampling Location
Operator
Bag Type
Sample No.
Method SB Train No. _
MSB Flow Meter Type
MSB Flow Meter No.
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time _
cc/min
After Sampling O
Flow Rate, cc/min: Average
Estimated Total Sample Volume
min Average Flow Meter Reading
Highest
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
Ac
/•*
/•*
Off
/It?
till
/•<*
/•a
/.O
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No. 3
Project No.
Sampling Location _
Analysis Start Time
Sample Type (Bag, Gf«rtf).
Analyst _
Date
Sample No.
Orsat Leak Check Before Analysis:
Burrete /^o Change in 4 Minutes
Pipettes /^h Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete //& Change in 4 Minutes
Pipettes Syp Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual CO2 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 -&
J33
2
Actual
Reading
1 ?>&
2-** ~\
*>• Is
3
1 /^2-
2 X^£-
3
1
2
3
Net
Value
Jy.t?
sj.'2-
3
Actual
Reading
1 ^'o
2 &:*
3
1 ^2.
2 y/. 2^
3
1
2
3
Net
Value
-ST^
/£.£•
Average
Net
Value
(% v/v)
J>-£?
/• j; z_
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
O2 >15% 0.2% v/v
<15% 0.3% v/v
CO 0.3% v/v
Remarks and Notes:
C3O1
104951-O09 AHRC
M29 ORSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
M3BANAL.WPD May 28, 1999
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No. A/I A/I "
Set-up person(s):
Transfer to Sampler:
Relinquished By _
Sample Box No. OlfCjO
Date:
Received By.
TRAIN COMPONENT
COMPONENT NO.
Sampling Nozzle (Quartz)
Water-cooled Probe (Liner-Quartz)
Female Probe Outlet Blank-Off
90° Bypass
Filter Holder Front
Filter Holder Back with
Teflon® Filter Support
Short 90° Connector
1st Impinger (Mod-GBS)
U-Connector (A)
2nd Impinger (Mod-GBS)
U-Connector (B)
3rd Impinger (GBS)
U-Connector(C)
4th Impinger (Mod-GBS)
U-Connector (D)
5th Impinger (Mod-GBS)
U-Connector (E)
6th Impinger (Mod-GBS)
U-Connector (F)
7th Impinger (Mod-GBS)
U-Connector (G)
8th Impinger (Mod-GBS)
Impinger Outlet Connector
D
Date/Time
LOADING DATA
Initial Weights (grams)**
Empty Loaded
Filter Type: Whatman QM-A
Empty
100 mLs ±2 mLs
5% HN03/10% H202
100 mLs ±2 mLs
5% HN03/10% H2O2
Empty
100 mLs ±2 mLs***
4% KMn04/10% H2S04
100 mLs ±2 mLs*** _
4% KMn04/10% H2S04
~200 g indicating silica gel
"200 g indicating silica gel
1
57 3.?
* Before and after sampling: Nozzle inlet opening covered with Parafilm® or Teflon® tape. Probe liner outlet sealed with glass
female blank-off. Bypass inlet covered (not sealed) with aluminum foil.
** Initial weights of additional components exchanged during the run also entered here. All exchange component openings
covered with Parafilm®, Teflon® tape, or as described above.
*** If the reagent was exhausted before the end of a previous run, use a larger volume (e.g., 200 mLs ±2 mLs) and document
below. Prepare additional reagent blanks accordingly.
Component Changes after Set-up and before Recovery and Other Comments:
M29SUBX.WPD July 8. 1997 (rev. M29SUP9.WPD August 2. 1999)
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No. 1 0495 1 . 1 .009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
-3
Sampling Train No.
Sample Box No.
Transfer for Recovery: /
Relinquished By ^ r\/tA-(
Sample box recovery person(s):
Probe recovery person(s):
Weights below are in grams.
Received By
P /flufOL-'cJii't
/)/(/£*/ ft /•
BACK
fl/fluroi»jcAi'<.
f
llbv.-h*
HALF RECOVERY
^ Date/Time &/3*/?'7
Date:
Date:
s*#r
s,/**/??
el*? /?-/
1st
2nd
3rd
(
,/C 1 i A •-,
7V--2
Impinger:
Final Wt.
Initial Wt.
Net Wt.
Description
and/or color:
Recovery:
Sample Number:
Sample Bottle Tare Wt.
Sample Bottle Gross Wt.
Rinse
Components Rinsed
short 90° connector, 1st-3rd impingers, U-connectors A-C
Sample Bottle Final Wt. // V £'-A
Net Sample Wt. » ff C. 5"
4th
5th
6th
7th
8th
7/7
7-
3.6
[ Total Condensate Collected: *~?'2'/i"?
,cittL, 1/tlLA-*
1 • 1O
sr: -3 01 5
yt. mj
uh*-, cA
A . , . /
-£016
^ Q^
-» Impingers 5-6 <
^017
1 $ 'i /"~>
W> 3 ('
% Blue
-:3018
i/t. /*^ ^.tT,3 /"73.<^ i4$7.t> Before Rinses
is: 0.1 N HN03
support, filter holder back.
0.1 N HN03
**4th impinger
KMn04/H20
***5th-6th
, then 8 N HCI
impingers, U-connectors D-E
^70 -B
4 2 X.D
After Rinses
FRONT HALF:RECOVERY
FILTER:
Sample Number:
J 014
Description/Color:
013
TRAIN RINSES:
Sample Number:
Sample Bottle Tare Wt.
Rinse Solution: 0.1 N HNO3
Components Rinsed****: nozzle, probe liner, bypass, filter holder front
Sample Bottle Final Wt.
Net Sample Wt.
* Using a total of 100 mLs ±2 mLs of 0.1 N HNOj, rinse components twice.
** Using a total of 100 mLs ±2 mLs of 0.1 N HNOj, rinse the impinger twice.
*** Using a total of 100 mLs ±2 mLs of 4% KMn04/10% H2S04, rinse components 3 times; then, using a total of 100 mLs ±2
mLs of ASTM Type I water, rinse components 3 times to remove all purple color. Next, using a total of 25 mLs ±0.5 mLs
of 8 N HCI, remove any residue from components; transfer these rinses to a separate bottle containing one half of 200 mLs
±2 mLs of ASTM Type I water; rinse components with the balance of the water and transfer to bottle.
**** Using a total of 150 mLs ±2 mLs of 0.1 N HNOj, rinse components 3 times or more with brushing until perceivably clean.
COMMENTS:
M29RCBX.WPD October 13, 1998 (rev. M29RCV9.WPD August 2, 1999}
-------
FIELD SAMPLING DATA FOR METHOD 5 TYPE TRAINS
page 1 of.
/.
Run No. i
Dale {T'lf-tf
Project No. 104951
1.009.04.01
Client U.S. EPA OAQPS EMAD SMTG
Source AHRC Incinerator
Sampling Loc;
Operalor **'
Record data e
Barometer No
Barometric Pr
Elevalion to IV
Meter Box Pb3
Elevation to S
Sampling Loc<
Static Pressur
Time (24 Hr)
Pass or Fail
ation Outlet Stack
•rA£/.
very
assure
/ & minutes
ffef
H1*-- in Ha
leter Boxes u ft
ampling
ition Pba,
e +
^' /*- in Ha
Loc. 0 ft
2ft to/' in Ha
Train A Type/No
Proba No. k>C *t
Liner Typ
Nozzle Nc
e M**
)M74z.
Pitol Tube No&Z
Slack Thermocoi
Filler No.
Sample Box No.
Umbilical/Impinge
Umbilical Nos.
/Lrfrcukte. **»2^a.
'-7 Length: "5 ft
L/f1- Heated? {y5n
-1- Tio Dia. /t V^1/ in
^-^ cp .f^
jple No. U) £."3-7
1?)
0/tWl/
?r Hookup ^/^ V
/ZZ-tf '
Meier Box No. /"$2/
" 0,0% in H2O Assumed
Train B Typ
Probe No. A
JJne
fj/p8-
Pitol Tube f
e/No. SMefa
/f ^/Z?
J^^C Lenath: 3
Gk&t^Ci.
ilrlf 1 -
*f /CI *• ^1 n
go/v'^i
Slack Thermocouple Nc
Filler No. A/1^"
Sample Box
Umbilical/In
Umbilical N
Meier Box
DGM Corre
Orifice Met
No. ^^
ipinger Hoo
OS. {2*
Mo. A7-
clion (Y)
Heated?
Dia. £>./f5
CP '^
//£"?
cup ^///^
1*~~ Q
Q
/*&{/
ft
<5>n
7^
--^
arAH© /.ttTl-
Moisture //- 7 % Assumed 'fcCO/V^-i
Train A Pilot Tube Pressure Measurement System Leak Checks
Initial
01V
Final Initial Final
1 Lit
to***
Initial
Final
Initial Final Initial Final
-. %07 "ifr
I
Cc
(mpass Direction > £
•^ Nozzles are quartz-glass.
Train B Pilot Tube Pressure Measurement System Leak Checks
Initial
Wfi
Final Ini
ZZ
\~
tial Final
tf
^
Initial
17-17
Final Initial Final
/&fe4
(<•$
Initial
Final
Train A Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
04V
^iflpW tf
.004
Final Meter Volume
Initial Meter Volume
Leak Check Volume
Final
(4/fr
rf.5
,ffOlf
Initial
&VI
p
,90tf
IW
Initial
Final
Initial
Final
Initial
Final
Train B Sampling System Leak Checks
Time (24 Hr)
Vacuum, in Hg
Leak Rate, cfm
Initial
01^
i<5
.
-------
Run No.,
Project Nc
Date
Sampling Location AHRC Incinerator Outlet Stack
Train A Type/No.
page
Remarks and Notes:
M5DPG2.WPD May 19. 1999
-------
Date ff-23-??
Run No..
Project No. 104951.1.009.04.01
Sampling Location AHRC Incinerator Outlet Stack
Train A Type/No..
Remarks and Notes:
-------
40 CFR 60, APPENDIX A, METHOD 3B
INTEGRATED GAS SAMPLING DATA
Run No. Date
Project No.
Sample Type
Flow Control Deviceffiafve^Gritioal Orifice)
Method 5 Meter Box No.
MSB Pump Type
MSB Pump No.
Client/Source
Sampling Location
Operator
Bag
Sample No.
Desired Sampling Rate
Leak Check Before Sampling.
Total Sampling Time _
cc/min
Method SB Train No. _
MSB Flow Meter Type
MSB Flow Meter No. <*$jtr 5V2j^>
Flow Rate, cc/min: Average _
Estimated Total Sample Volume
&_ After Sampling
min Average Flow Meter Reading
Highest
Lowest
liters
Time
(24-Hr)
Flow
Meter
Reading
Start
Purge
Start
Sampling
Stop
Sampling
Sampling
Remarks and Notes
/•&
M/t-
££=_
/ssx-
M3BSAMP.WPD June 18, 1998
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Date
Project No. yiV&frT,/et&.ey.e)Sample No.
Sampling Location _
Analysis Start Time
Sample Type (Bag, Gwtbl.
Analyst ^1> Change in 4 Minutes
Pipettes y/p Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual O2 reading)
1
Actual
Reading
1 j£V
2 &/
3
1 /~7rf
2 S7 9
3
1
2
3
Net
Value
5./
/#*
2
Actual
Reading
1 £"J
2 .)
3
1 j-7.f?
2 /?„*>
3
1
2
3
Net
Value
<£~~)
/£<$*
3
Actual
Reading
1 *r.>
2 3T;
3
1 x'x7.^
2 /^^
3
1
2
3
Net
Value
*£^ )
;3,£
Average
Net
Value
(% v/v)
S7J
SZ.tf
Acceptance Criteria per Method 3B
C02 >4% 0.3% v/v
<4% 0.2% v/v
0
0.2% v/v
< 1 5% 0.3% v/v
Remarks and Notes:
M3BANAL.WPD May 28, 1999
CO 0.3% v/v
1O4951-OO9 AHRC -4 O 1 -3
M29 QRSAT BAG
EMISSION TEST SAMPLE
For disposal call: A.Carender
MIDWEST RESEARCH INSTITUTE
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY TRAIN SET-UP DATA
MRI Project No.
Client/Source:
104951.1.009.04.01
U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No.
Sampling Train No.
Set-up person(s): f Mi>'C^ch, i
/fl/tt -
Sample Box No.
Date:
Transfer to Sampler/?
Relinquished By ' /n
~\ • I
/-\
-------
40 CFR 60, APPENDIX A, METHOD 29 - MODIFIED MULTIPLE METALS TRAIN (M29)
FIELD LABORATORY SAMPLE RECOVERY DATA
MRI Project No.
Client/Source:
104951.1.009.04.01
U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Run No. / Sampling Train No.
Transfer for Recovery: , ,
Relinquished By /CVV-^A,/'
Sample box recovery person(s): ' fll
Probe recovery person(s): /O /
Weights below are in grams.
Impinger:
1st 2nd
Final Wt. >^^> ^3#. /
Initial Wt. y^V.5" £>~ll.%
/'7/7-A Sample Box No. O///27
Received Bv ' MVdt*-}c/)t'e.^ Date/Time <5>/P?/?^ I~JO O
'<"~fli*jr/,t'cfc' Date: i~l£^ %fo
'\/JUL.( £> &./rwd^ Date: 8 A ^^
BACK HALF RECOVERY
3rd 4th ^ 5th 6th 7th 8th
(c/0.3> :-f^/7- / j? //, / ^*73, ^ ~J 3b .2^ (0 ^f $ .(&
C'O/ 2- Wl & 68(*.te ^&'8-& /'?/ s~ 6?ctv,y~
Netwt. A^?/. & 6-b.'^ ^.i G.I -* ^ri -fmpinger *-*
V016
fof.7
/7G,'^
Impingers 5-o ^
#17^
3^/7
#>18
% Blue
/^.3 ^'/35-
Before Rinses
Rinse Solutions: 0.1 N HNO3 0.1 N HNO3
Components Rinsed*: filter support, filter holder back, **4th impinger
short 90° connector, 1st-3rd impingers, U-connectors A-C
Sample Bottle Final Wt. iO 9 >
Net Sample Wt. 3 f?
KMnO4/H2O, then 8 N HCI
***5th-6th impingers, U-connectors D-E
After Rinses
FRONT HALF: RECOVERY
FILTER:
Sample Number:
7
014 Description/Color:
/7/.y
TRAIN RINSES:
Sample Number:
Sample Bottle Tare Wt.
Rinse Solution: 0.1 N HNO
Components Rinsed****:
Sample Bottle Final Wt.
Net Sample Wt.
nozzle, probe liner, bypass, filter holder front
06» 7
* Using a total of 100 mLs ±2 mLs of 0.1 N HNQ, rinse components twice.
** Using a total of 100 mLs ±2 mLs of 0.1 N HNQ, rinse the impinger twice.
*** Using a total of 100 mLs ±2 mLs of 4% KMnO4/10% H2SO4, rinse components 3 times; then, using a total of 100 mLs ±2
mLs of ASTM Type I water, rinse components 3 times to remove all purple color. Next, using a total of 25 mLs ±0.5 mLs
of 8 N HCI, remove any residue from components; transfer these rinses to a separate bottle containing one half of 200 mLs
±2 mLs of ASTM Type I water; rinse components with the balance of the water and transfer to bottle.
**** Using a total of 150 mLs ±2 mLs of 0.1 N HNClj, rinse components 3 times or more with brushing until perceivably clean.
COMMENTS:
M29RCBX.WPD October 13, 1998 (rev. M29RCV9.WPD August 2. 19991
-------
Appendix D
Modified Method 5 Calculations
MRI-AEDVR49S 1-W-OS.wpd
-------
Section 1
MM5-SV Computer-Generated Calculations
MRI-AEDNR4951-OMB.wpd
-------
FILE NAME: - RISV PRDG.=VER os/os/s9
RUN # 1 Method 23 Train for PCDDs and PCDFs OS 17-1999 18:31:06
L0CATION Incin e r at or 0u11 e t 81 a c k
1) A T E 0 8 / 17/99 T i m e:; 11 10 i 3 i 0 / 1 3 5 2 1552
PROJECT ft •••- 104951.1.O09.04.01
..Initial Meter Volume (Cubic Feet)- 731 ,,773
Final Meter Volume (Cubic Feet)-- 916. 438
Meter Factor^ 1,022
'v!..(11 i n 1 e lea k c h e c k s, s e e e n c:! o f p r i. n t o u t L e a k C o r r e c t i o n ~ 0. 0 0 0 0
"Met Meter Volume (Cubic Feet) = 137.628
3as Volume (Dry Standard Cubic Feet)-- 123.S52
Bar o m e t r i c F' r e s s u re ( i n l-l g ) ~
31 a t i c P r e s s u r e (I n c h e s '-' 2 0):::-
Percent Water—
b a m p 1 ing T i m e (M i. n u t e s) -•-
Stack Axis #2 ( I neb BE.) --
Circular Stack
31 a c '••: A r e a C S q u a re Feet) "-
Stack Velocity (Actual, Feet /min) - ., s,
Flow Rate (Actual,, Cubic ft/min)- 4,747
-"low rate (Standard, Wet, Cubic ft/min)" 1,717
Flow Rate (Standard, Dry, Cubic ft/min)- 1,5.13
Particulate Weight (g)~ 0..0000 Corr. to 7X 02 S/ :!.2X I:C
':::' articulate Loading, D r y S t d ., (g r / s c f ):::- 0., 0 0 O 0
P a r• t i c u 1 a b e i.... o a d i n g , Ac: t u a 1 (q r / c: u f t ) •-" 0 „ 0 0 00
E m i s s i C' n R ate (1 b / h r ) = o „ 0 0
No Back Hal f Analysis:-.
-------
* * METRIC UNITS *• *
FILE NAME R1SV
RUN *' 1 M. !!,..' 21 Trj.n f.:.r PiTDs and PCDFs
K
, ,-.'
DATE
P K0JE CT ft 10 4951. 1.009.04.01
Initial Meter Volume (Cubic Meters)--- 22.137
F i n a 1 I"! e t e r V o 1 u m e C C u b i c Meters) = 2 5.95 0
Meter Factor- 1.022
Multiple leak c h e c k s y see e n d o f p r i n t o u t
Met Met er Vol. ume f. Cub i c Met er B ) == 3. 897
Sas Volume (Dry Standard Cubic Meters)-- 3,,507
Leak Cor r ec t ion-- 0.0000
Barometric Pressure (mm H g)~
B t a t i c P r e s s u r e (m m H 2 0) ••-•
74B
1
Percent Oxygen=:
r~< i i—- _ i T"> • " i
i- e r '_. e r i Y, L- i.-.i r u ;.j r: .t./ :i.'..; s j. L:: e
Mo i st ur e Col 1 (•:::• c". t ed (inl ]j ::~
F'ercenfc Water™
i 1 1
rim
L s :l:r 1 (Meter s) ==
Is :K2 (Meters)-
240,, 0
1 :!. , 02'
0.597
0. 597
S t a i: k V e 1 o city (A c t u a 1 , m / m i n ) =
F1 ci w r a t s (A c t u a 1 ~ '..'• i.-. b :i. c \ n / "n::.: ~\ .'• -~
Flow rate (Standard, Wet, Cubic m/'min)"
Flow rate (Standard,, Dry, Cubic m/niin)-
Par t icul ate Loading •- Front Half
Particulate Weight (g>-
F"'ar t icul ate Loading, Dry Std. (mg/cu nn):
F::' a r t i c: u late L. o a d i. n y y A c t u a 3. (rn g / c u m)::;:
Emission Rate ( kg/hr )-•-
••i '"^
'-r ^...,
Hack Half Analysis
-------
i-"ILE NAME
RUN ft 1 ;•••• Method 23 Train for PCDDs and PCDFs
LOCATION Incinerator Outlet Stack
D A T E 0 8 / 17 / 9 9 T i rr, e ; 1 1 :! 0 1310 / 13 5 2 - 1552
"' R 0 J E C T ft 1 0 4 951.1. 0 0 9 „ O 4 . 0 1
P R 013. -= V E R 0 6 / 0 9 / 3 3
Uo"'" 1 / —• .1. '3y.":J 1 o u o 1 11 \.
h'oint #
Delta P Delta H Stack T
(in,, H2CO (in. H20)
CF:>
Meter T
InCF) Qut(F:>
0.
0 .
0 ,.
0 .
0 .
0 .
1 „
1 „
1 :,
1 ..
1 .
74 925
74 95'-)
74 Qr_,.-!
74 9V5
73 9~"."
72 935
~j i™' ~, •" t r "
50 l"1'"1' -
-- r— iti r-
'.-.' >..i '
70 'J'-1"1' •
65 9' -5
10
i
1
1
:i.
l
1
1
l
l
l
/
OS
o
1
1
4
1
.J.
•1
.!.
•j
2
•!
.1.
8
1
*'"'
f$
izr
-..f
~'7
r\
'2.
4
J.
1
H
.1.
1
1
1
-I
J.
•1
1
1
•1
j.
i
04
07
07
09
10
i -i
1 4
15
.1. /
19
1 4
!)RY CATHH
FILTER
Final Wt „ Tars Wt. Blank Wt,, Net Wt .,
•: 9 •'
0,, 0000
O,. on On
"raction Final Wt. Tare Wt. Vol. Net Wt „
(g ) (g > (m 1 ) (g )
PROBE RINSE O..OOOO O..OOOO 0.0 0.0000
IMPINGERS 0.0000 0.0000 0.0 0.0000
:' r o b e R i n s e B1 a n k (m g / m 1 )::::: 0. 0 0 0 0
Impinger Blank (mg/rnl > =• O.OOOO
lultiple leak checks used. Final readings for each segment are listed below
-------
rber Factor-
lit i p Is 1 s a k :::!" i s •:: k s,, s e e en c! o f p r :i. n t c:< LI i
t M e t e v V o 3. u T> e (C u ta i c F e e t) =
•. s V c. 1 ui m & (D r v B t a n d a r d C L •, b i c F" e e t-: • ==
-------
* * METRIC UNITES
RUN It 2: •- ":-H-t!,od 23 "'rain for PCDDs and F
'.... 0 C A 7 10 r i I ~ •-.: :, •*, s f a t o r ill u 11 s t S t a c: k
ft - • :i. 0 4 9 5 1 ,. 1 ., 0 0 S ,, 0 4 „ 0 '?.
IA. e 11? r F a c t o r -~
>1 i.i 1t i p 1 e lea k c: h e c k s» see? s n d o f p r i rt t o u t
v.vvt Meter Volume (Cubic Meters)-
7 4 4
], OW V" at Q '-. :::> I1; S I"; d a i' u y Dv" y ? L.'L.ib j. i." !fi / Tf; 1 n .' •
„ - ^ .1- J T - .[ i - J .: .... ~ r™... ....... .t- ; i _ -i .r
o ;• t- 11.. J. i *.'.•-f i...i..iciu .(. I i i_! r r i_ii i L n-et.!. 1
' a r t i c u 1 a t e !... o a d i n g ? D r y S t c! „ (: ri g / c u .m!
av t i cul ate Loading,, Actual (.ir.g/cu MJ •-
. r i: i s £ i o n R ate ( k q / h r ) --•-
-------
1st hod 20 Train for F'CDDs and ° CDF's
i.::::;. iterator Outlet Stack
9 9 T i m a• j. 2 3 0 1 4 3 0 / 15 '•. 0 17.10
0495 1 „ 1 ,, 009,. 04 . 01
IMPING ERG 0,, 000:"
:' • •::.' b s R i n s s B 1 a n k '•. m g /ml ) ~:
:-::iryer B'ank (mg/;nl)^ 0.
!v ; .r;^a 1 ,oa^: ::: hecks used,,
-------
-;eter Factor=
••ultiple leak checks, see end of printout
'•; :!. cul ate Loading, Dry Std. (gr/scf):
' t :i cul s t;e '.,.;.:.•• • ••.c,i in;:j ? -'C.fcua! (gv/cu ft)
-------
RUN « 3 Method 23 Train -''or !':"CDDs ar-d
:...iJCAT10N Inc i P er a16r Gu11 st S1 ac: k
D A "r E 0 8 / 2 2 / S S Time:: 10 i 0 1210 / 13 :!. 5 :! 5:!. 5
I r- :.. t i a 1 M e t e ••• V o I u m e (C u b i. c !v! e t e r s) ==
'" i n a 1 Mete r V o 1 u rn e ( C a b i c Mete r •;::>) -
'•' et er Fac t or "••-
':< '_• 11 i pie lea k i:: h a c: k s ,, s e e s n d o f p r :i. n t o u t
hi. ..i- Ivj,.--.-I- ,--,..;• ! I-,'! , ...-.-..-. ••• r-, ,!•- ; .- M..-.-I- r-..- .-• 'i
. •• '.•.-.-.• '_- i i e L- e , v '...i .:. '...'., i i t.-.: -. -...• '...'. ..-• .L •... • !;:;:.- L- i:r : .:.:- -•
.'•!; a 3 V o 1 u ;n e (D r v S t a n d a r d C u b ::. c N e t s r s) ~
B a r o m e t r i c F' r e s s u r e (m m !-' g ) -~
" a t e C A c: t;..: a I , ''.'• u c :i.:;
ate C Standard, Wev ,,
ate (Standard,, Dry^
t i c u 1 a t e L o a d
(.nig
-------
FROG- =~VER Oo/03/S1
' .-"_: Train for PCBDs
< L.. Outlet Stack
•,(!,•• 1010-1210/1315-
and PCDFs
34
CD /
38
A) t :: ; « C ':::: !/
( C[ )
i"! „ 0000
0 * Cs 0 0 0
0 „ OC^'OO
0 O O •:";
-------
-------
-------
-------
Section 2
MM5-PHCL Computer-Generated Calculations
MRI-AED\R4951-09-05.wpd
-------
Leak Correction= 0.0000
FILE NAME - R1PM PROG.=VER 06/27/89
RUN # - 1 - Method 26A Train for Particulate Matter and HCl
09-02-1999 08:55:04
LOCATION - Incinerator Outlet Stack
DATE - 08/17/99 Time: 1110-1310/1352-1552
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Feet)= 680.188
Final Meter Volume (Cubic Feet)= 818.221
Meter Factor= 1.003
Multiple leak checks, see end of printout
Net Meter Volume (Cubic Feet)= 138.447
Gas Volume (Dry Standard Cubic Feet)= 123.708
Barometric Pressure (in Hg)= 29.44
Static Pressure (Inches H20)= 0.05
Percent Oxygen= 14.8
Percent Carbon Dioxide= 4.9
Moisture Collected (ml)= 348.6
Percent Water= 11.7
Average Meter Temperature (F)= 123
Average Delta H (in H20)= 1.03
Average Delta P (in H20}= 0.093
Average Stack Temperature (F)= 995
Dry Molecular Weight= 29.38
Wet Molecular Weight= 28.04
Average Square Root of Delta P (in H20)= 0.3038
% Isokinetic= 100.1
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 240.0
Nozzle Diameter (Inches)= 0.432
Stack Axis #1 (Inches)= 23.5
Stack Axis #2 (Inches)= 23.5
Circular Stack
Stack Area (Square Feet)= 3.01
Stack Velocity (Actual, Feet/min)= 1,605
Flow Rate (Actual, Cubic ft/min)= 4,834
Flow rate (Standard, Wet, Cubic ft/min)= 1,727
Flow Rate (Standard, Dry, Cubic ft/min)= 1,524
Particulate Loading - Front Half
Particulate Weight (g)= 0.1285
Particulate Loading, Dry Std. (gr/scf)= 0.0160
Particulate Loading, Actual (gr/cu ft) = 0.0050
Emission Rate (lb/hr)= 0.21
Corr. to 7% O2 & 12% C02
0.0361 0.0392
No Back Half Analysis
-------
* * METRIC UNITS * *
FILE NAME - R1PM PROG.=VER 06/27/89
RUN # - 1 - Method 26A Train for Particulate Matter and HCl
09-02-1999 08:55:04
LOCATION - Incinerator Outlet Stack
DATE - 08/17/99 Time: 1110-1310/1352-1552
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Meters)= 19.260
Final Meter Volume (Cubic Meters)= 23.169
Meter Factor= 1.003
Multiple leak checks, see end of printout Leak Correction= 0.0000
Net Meter Volume (Cubic Meters)= 3.920
Gas Volume (Dry Standard Cubic Meters)= 3.503
Barometric Pressure (mm Hg)= 748
Static Pressure (mm H20)= 1
Percent Oxygen= 14 . 8
Percent Carbon Dioxide= 4 . 9
Moisture Collected (ml)= 348.6
Percent Water= 11.7
Average Meter Temperature (C)= 50
Average Delta H (mm H20)= 26.1
Average Delta P (mm H20)= 2.4
Average Stack Temperature (C)= 535
Dry Molecular Weight= 29.38
Wet Molecular Weight= 28.04
Average Square Root of Delta P (mm H20)= 1.5311
% Isokinetic= 100.1
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 240.0
Nozzle Diameter (mm)= 10.97
Stack Axis #1 (Meters)= 0.597
Stack Axis #2 (Meters)= 0.597
Circular Stack
Stack Area (Square Meters)= 0.280
Stack Velocity (Actual, m/min)= 489
Flow rate (Actual, Cubic m/min)= 137
Flow rate (Standard, Wet, Cubic m/min)= 49
Flow rate (Standard, Dry, Cubic m/min)= 43
Particulate Loading - Front Half
Particulate Weight (g)= 0.1285 Corr. to 7% O2 & 12% CO2
Particulate Loading, Dry Std. (mg/cu m)= 36.7 82.8 89.8
Particulate Loading, Actual (mg/cu m)= 11.6
Emission Rate (kg/hr)= 0.09
No Back Half Analysis
-------
FILE NAME - R1PM PROG.=VER 06/27/89
HUN # - 1 - Method 26A Train for Particulate Matter and HCl
09-02-1999 08:55:04
LOCATION - Incinerator Outlet Stack
DATE - 08/17/99 Time: 1110-1310/1352-1552
PROJECT # - 104951.1.009.04.01
Point #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Delta P
in
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0 .
0.
0.
0.
0 .
0.
0 .
0 .
0.
0.
0.
. H20)
050
120
130
120
120
120
080
100
090
090
090
090
090
090
090
080
080
080
090
110
100
100
070
060
Delta H
(in
0
1
1
1
1
1
0
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
. H20)
.56
.30
.40
.30
.30
.30
.87
.10
.97
.99
.06
.00
.00
.00
.99
.90
.90
.87
.00
.20
.10
.10
.78
.71
Stack
(F)
930
995
988
987
1005
1010
1003
1033
1030
1015
912
992
980
990
1004
988
990
1034
1010
993
1002
1044
1017
922
T Meter T
In(F)
106
109
111
115
115
119
116
122
122
125
123
124
123
124
121
127
130
129
132
129
128
132
131
128
Out (F)
106
110
110
112
112
115
113
120
122
124
124
125
125
128
125
128
129
130
132
132
130
132
133
131
Fraction
DRY CATCH
FILTER
Fraction
Final Wt. Tare Wt. Blank Wt. Net Wt
(g) (g) (g) (g)
0.0000 0.0000 0.0000 0.0000
1.1348 1.0474 0.0000 0.0874
Final Wt. Tare Wt.
Vol.
(g)
PROBE RINSE 66.3486
IMPINGERS 0.0000
Probe Rinse Blank (mg/ml)=
Net Wt.
Impinger Blank (mg/ml)= 0.0000
(g) (ml) (g)
66.3054 273.4 0.0411
0.0000 0.0 0.0000
0.0121 High Acetone Blank
- Limit .0079
Multiple leak checks used. Final readings for each segment are listed below
Lk Rate (cfm) Time (min)
0.0010 120.0000
0.0010 120.0000
-------
FILE NAME - R2PM PROG.=VER 06/27/89
RUN # - 2 - Method 26A Train for Particulate Matter and HC1
09-02-1999 08:56:36
LOCATION - Incinerator Outlet Stack
DATE - 08/21/99 Time: 1230-1430/1510-1710
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Feet)= 818.934
Final Meter Volume (Cubic Feet)= 982.588
Meter Factor= 1.003
Multiple leak checks, see end of printout
Net Meter Volume (Cubic Feet)= 164.145
Gas Volume (Dry Standard Cubic Feet)= 147.573
Barometric Pressure (in Hg)= 29.31
Static Pressure (Inches H20)= 0.05
Leak Correction= 0.0000
Percent Oxygen= 13.1
Percent Carbon Dioxide= 4 . 9
Moisture Collected (ml)= 428.5
Percent Water= 12.0
Average Meter Temperature (F)= 117
Average Delta H (in H20)= 1.45
Average Delta P (in H20}= 0.145
Average Stack Temperature (F)= 1164
Dry Molecular Weight= 29.31
Wet Molecular Weight= 27.95
Average Square Root of Delta P (inH20)= 0.3800
% Isokinetic= 100.3
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 240.0
Nozzle Diameter (Inches)= 0.434
Stack Axis #1 (Inches)= 23.5
Stack Axis.#2 (Inches)= 23.5
Circular Stack
Stack Area (Square Feet)= 3.01
Stack Velocity (Actual, Feet/min)= 2,129
Flow Rate (Actual, Cubic .ft/min)= 6,413
Flow rate (Standard, Wet, Cubic ft/min)= 2,043
Flow Rate (Standard, Dry, Cubic ft/min)= 1,797
Particulate Loading - Front Half
Particulate Weight (g)= 0.0600
Particulate Loading, Dry Std. (gr/scf)= 0.0063
Particulate Loading, Actual (gr/cu ft)= 0.0018
Emission Rate (lb/hr)= 0.10
No Back Half Analysis
Corr. to 7% O2 & 12% C02
0.0111 0.0153
-------
* * METRIC UNITS * *
FILE NAME - R2PM PROG.=VER 06/27/89
RUN # - 2 - Method 26A Train for Particulate Matter and HC1
09-02-1999 08:56:36
LOCATION - Incinerator Outlet Stack
DATE - 08/21/99 Time: 1230-1430/1510-1710
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Meters)= 23.189
Final Meter Volume (Cubic Meters)= 27.823
Meter Factor= 1.003
Multiple leak checks, see end of printout Leak Correction= 0.0000
Net Meter Volume (Cubic Meters)= 4.648
Gas Volume (Dry Standard Cubic Meters)= 4.179
Barometric Pressure (mm Hg)= 744
Static Pressure (mm H20)= 1
Percent Oxygen= 13.1
Percent Carbon Dioxide= 4.9
Moisture Collected (ml)= 428.5
Percent Water= 12.0
Average Meter Temperature (C)= 47
Average Delta H (mm H20)= 36.9
Average Delta P (mm H20)= 3.7
Average Stack Temperature (C)= 629
Dry Molecular Weight= 29.31
Wet Molecular Weight= 27.95
Average Square Root of Delta P (mm H20)= 1.9150
% Isokinetic= 100.3
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 240.0
Nozzle Diameter (mm)= 11.02
Stack Axis #1 (Meters)= 0.597
•Stack Axis #2 (Meters) = 0.597
Circular Stack
Stack Area (Square Meters)= 0.280
Stack Velocity (Actual, m/min)= 649
Flow rate (Actual, Cubic m/min)= 182
Flow rate (Standard, Wet, Cubic m/min)= 58
'Flow rate (Standard, Dry, Cubic m/min)= 51
Particulate Loading - Front Half
Particulate Weight (g)= 0.0600 Corr. to 7% O2 & 12% C02
Particulate Loading, Dry Std. (mg/cu m)= 14.3 25.4 35.1
Particulate Loading, Actual (mg/cu m)= 4.0
Emission Rate (kg/hr)= 0.04
No Back Half Analysis
-------
FILE NAME - R2PM PROG.=VER 06/27/89
RUN # - 2 - Method 26A Train for Particulate Matter and HCl
09-02-1999 08:56:36
LOCATION - Incinerator Outlet Stack
DATE - 08/21/99 Time: 1230-1430/1510-1710
PROJECT # - 104951.1.009.04.01
Point #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Delta P
(in
0.
0.
0.
0 .
0 .
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0.
. H20)
100
100
120
160
150
100
140
160
160
170
130
130
170
170
170
170
150
150
170
160
170
140
120
130
Delta H
(in.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1 .
H20)
10
10
20
50
40
00
40
60
60
70
30
30
70
70
70
70
50
50
70
60
70
40
20
30
Stack
(F)
942
948
1112
1200
1268
1139
1185
1134
1131
1193
1179
1162
1168
1172
1203
1185
1187
1200
1207
1198
1206
1196
1222
1188
T Meter T
In(F)
90
93
96
101
104
107
109
112
114
113
115
118
120
122
126
130
131
134
135
136
136
136
137
137
Out (F)
90
91
93
96
98
101
103
106
108
109
111
113
120
121
123
126
127
130
132
134
134
135
136
136
Fraction
DRY CATCH
FILTER
Fraction
PROBE RINSE
IMPINGERS
Final Wt. Tare Wt. Blank Wt. Net Wt.
(g) (g) (g) (g)
0.0000 0.0000 0.0000 0.0000
1.0728 1.0367 0.0000 0.0361
Final Wt. Tare Wt. Vol. Net Wt.
(g) (g) (ml) (g)
68.1775 68.1520 209.5 0.0239
0.0000 0.0000 0.0 0.0000
Probe Rinse Blank (mg/ml)= 0.0131 High Acetone Blank - Limit .0079
Impinger Blank (mg/ml)= 0.0000
Multiple leak checks used. Final readings for each segment are listed below
Lk Rate (cfm) Time (min)
0.0050 120.0000
0.0050 120.0000
-------
FILE NAME - R3PM PROG.=VER 06/27/89
RUN # - 3 - Method 26A Train for Particulate Matter and HC1
09-08-1999 08:08:07
LOCATION - Incinerator Outlet Stack
DATE - 08/22/99 Time: 1010-1210/1315-1515
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Feet)=
Final Meter Volume (Cubic Feet)=
Meter Factor=
Multiple leak checks, see end of printout
Net Meter Volume (Cubic Feet)=
Gas Volume (Dry Standard Cubic Feet)=
Barometric Pressure (in Hg)=
Static Pressure (Inches H20)=
Percent Oxygen=
Percent Carbon Dioxide=
Moisture Collected (ml)=
Percent Water=
Average Meter Temperature (F)=
Average Delta H (in H20)=
Average Delta P (in H20)=
Average Stack Temperature (F)=
Dry Molecular Weight=
Wet Molecular Weight=
Average Square Root of Delta P
% Isokinetic=
;in H20) =
983.009
1139.031
1.003
156.490
141.435
29.32
0.05
13.2
5.0
363 .1
10.8
114
1.36
0.136
1172
29.33
28.11
0.3682
99.3
Leak Correction^ 0.0000
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 240.0
Nozzle Diameter (Inches)= 0.432
'Stack Axis #1 (Inches) = 23.5
Stack Axis #2 (Inches)= 23.5
Circular Stack
Stack Area (Square Feet)= 3.01
Stack Velocity (Actual, Feet/min)= 2,062
Flow Rate (Actual, Cubic ft/min)= 6,212
Flow rate (Standard, Wet, Cubic ft/min)= 1,969
Flow Rate (Standard, Dry, Cubic ft/min)= 1,757
-Particulate Loading - Front Half
Particulate Weight (g)= 0.0905
.Particulate Loading, Dry Std. (gr/scf)= 0.0099
Particulate Loading, Actual (gr/cu ft) = 0.0028
Emission Rate (Ib/hr)= 0.15
Corr. to 7% O2 & 12% C02
0.0177 0.0236
"No Back Half Analysis
-------
Leak Correction= 0.0000
* * METRIC UNITS * *
FILE NAME - R3PM PROG.=VER 06/27/89
RUN # - 3 - Method 26A Train for Particulate Matter and HCl
09-08-1999 08:08:07
LOCATION - Incinerator Outlet Stack
DATE - 08/22/99 Time: 1010-1210/1315-1515
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Meters)= 27.835
Final Meter Volume (Cubic Meters)= 32.253
Meter Factor= 1.003
Multiple leak checks, see end of printout
Net Meter Volume (Cubic Meters)= 4.431
Gas Volume (Dry Standard Cubic Meters)= 4.005
Barometric Pressure (mm Hg)= 745
Static Pressure (mm H20)= 1
Percent Oxygen= 13 . 2
Percent Carbon Dioxide= 5 . 0
Moisture Collected (ml)= 363.1
Percent Water= 10.8
Average Meter Temperature (C)= 46
Average Delta H (mm H20)= 34.5
Average Delta P (mm H20)= 3.5
Average Stack Temperature (C)= 633
Dry Molecular Weight= 29.33
Wet Molecular Weight= 28.11
Average Square Root of Delta P (mm H20)= 1.8558
% Isokinetic= 99.3
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 240.0
Nozzle Diameter (mm)= 10.97
Stack Axis #1 (Meters)= 0.597
Stack Axis #2 (Meters)= 0.597
Circular Stack
Stack Area (Square Meters)= 0.280
Stack Velocity (Actual, m/min)= 629
Flow rate (Actual, Cubic m/min)= 176
Flow rate (Standard, Wet, Cubic m/min)= 56
Flow rate (Standard, Dry, Cubic m/min)= 50
Particulate Loading - Front Half
Particulate Weight (g)= 0.0905
Particulate Loading, Dry Std. (mg/cu m)= 22.6
Particulate Loading, Actual (mg/cu m)= 6.4
Emission Rate (kg/hr)= 0.07
No Back Half Analysis
Corr. to 7% O2 & 12% CO2
40.5 54.2
-------
FILE NAME - R3PM PROG.=VER 06/27/89
RUN # - 3 - Method 26A Train for Particulate Matter and HC1
09-08-1999 08:08:07
LOCATION - Incinerator Outlet Stack
DATE - 08/22/99 Time: 1010-1210/1315-1515
PROJECT # - 104951.1.009.04.01
Point #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Delta P
(in
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 .
0.
0 .
0.
0.
0.
0.
0.
0.
. H20)
140
150
160
150
140
150
130
140
130
130
100
110
130
130
120
120
110
110
150
160
160
160
170
120
Delta H
(in
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
. H20)
.40
.50
.60
.50
.40
.40
.30
.40
.30
.30
.97
.10
.30
.30
.20
.20
.10
.10
.50
.60
.60
.60
.70
.20
Stack
(F)
1063
1091
1097
1126
1150
1187
1181
1172
1176
1173
1182
1159
1160
1168
1221
1193
1198
1212
1191
1194
1195
1192
1241
1210
T Meter T
In(F)
88
90
95
97
105
108
112
113
116
113
114
115
114
119
122
124
126
126
126
130
132
131
137
137
Out (F)
86
89
91
92
99
102
106
107
110
109
110
111
111
116
117
121
121
122
122
125
128
131
133
133
Fraction
DRY CATCH
FILTER
Fraction
Final Wt. Tare Wt. Blank Wt. Net Wt
(g) (g) (g) (g)
0.0000 0.0000 0.0000 0.0000
1.0915 1.0342 0.0000 0.0573
Final Wt. Tare Wt.
Vol.
Net Wt.
(g)
PROBE RINSE 74.5711
TMPINGERS 0.0000
Probe Rinse Blank (mg/ml)=
(g) (ml) (g)
74.5363 207.1 0.0332
0.0000 0.0 0.0000
0.0108 High Acetone Blank - Limit .0079
Impinger Blank (mg/ml)= 0.0000
Multiple leak checks used. Final readings for each segment are listed below
Lk Rate (cfm) Time (min)
0.0130 120.0000
0.0150 120.0000
-------
Leak Correction= 0.0000
FILE NAME - R4PM PROG.=VER 06/27/89
RUN # - 4 - Method 26A Train for Particulate Matter and HCl
09-08-1999 08:09:41
LOCATION - Incinerator Outlet Stack
DATE - 08/23/99 Time: 1240-1410/1440-1610
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Feet)= 141.976
Final Meter Volume (Cubic Feet)= 261.182
Meter Factor= 1.003
Multiple leak checks, see end of printout
Net Meter Volume (Cubic Feet)= 119.564
Gas Volume (Dry Standard Cubic Feet)= 107.569
Barometric Pressure (in Hg)= 29.32
Static Pressure (Inches H20)= 0.05
Percent Oxygen= 12 . 8
Percent Carbon Dioxide= 5.1
Moisture Collected (ml)= 323.8
Percent Water= 12.4
Average Meter Temperature (F)= 117
Average Delta H (in H20)= 1.37
Average Delta P (in H20)= 0.138
Average Stack Temperature (F)= 1169
Dry Molecular Weight= 29.33
Wet Molecular Weight= 27.92
Average Square Root of Delta P (inH20)= 0.3701
% Isokinetic= 100.6
Pitot Coefficient= 0.78
Sampling Time (Minutes)= 180.0
Nozzle Diameter (Inches)= 0.434
Stack Axis #1 (Inches)= 23.5
Stack Axis #2 (Inches)= 23.5
Circular Stack
Stack Area (Square Feet)= 3.01
Stack Velocity (Actual, Feet/min)= 2,078
Flow Rate (Actual, Cubic ft/min)= 6,258
Flow rate (Standard, Wet, Cubic ft/min)= 1,988
Flow Rate (Standard, Dry, Cubic ft/min)= 1,741
Particulate Loading - Front Half
Particulate Weight (g)= 0.0522
Particulate Loading, Dry Std. (gr/scf)= 0.0075
Particulate Loading, Actual (gr/cu ft)= 0.0021
Emission Rate (Ib/hr)= 0.11
Corr. to 7% O2 & 12% C02
0.0127 0.0176
No Back Half Analysis
-------
* * METRIC UNITS * *
FILE NAME - R4PM PROG.=VER 06/27/89
RUN # - 4 - Method 26A Train for Particulate Matter and HC1
09-08-1999 08:09:41
LOCATION - Incinerator Outlet Stack
DATE - 08/23/99 Time: 1240-1410/1440-1610
PROJECT # - 104951.1.009.04.01
Initial Meter Volume (Cubic Meters)= 4.020
Final Meter Volume (Cubic Meters)= 7.396
Meter Factor= 1.003
Multiple leak checks, see end of printout Leak Correction= 0.0000
Net Meter Volume (Cubic Meters)= 3.386
Gas Volume (Dry Standard Cubic Meters)= 3.046
Barometric Pressure (mm Hg)= 745
Static Pressure (mm H20)= 1
"Percent Oxygen= 12.8
Percent Carbon Dioxide= 5.1
Moisture Collected (ml)= 323.8
•Percent Water= 12.4
Average Meter Temperature (C)= 47
Average Delta H (mm H20)= 34.8
Average Delta P (mm H20)= 3.5
Average Stack Temperature (C)= 632
'Dry Molecular Weight= 29.33
Wet Molecular Weight= 27.92
Average Square Root of Delta P (mm H20)= 1.8651
% Isokinetic= 100.6
Pitot Coefficient= 0.78
"Sampling Time (Minutes) = 180.0
Nozzle Diameter (mm)= 11.02
Stack Axis #1 (Meters)= 0.597
•Stack Axis #2 (Meters) = 0.597
Circular Stack
Stack Area (Square Meters)= 0.280
Stack Velocity (Actual, m/min)= 633
Flow rate (Actual, Cubic m/min)= 177
Flow rate (Standard, Wet, Cubic m/min)= 56
'Flow rate (Standard, Dry, Cubic m/min)= 49
Particulate Loading - Front Half
Particulate Weight (g)= 0.0522 Corr. to 7% O2 & 12% C02
Particulate Loading, Dry Std. (mg/cu m)= 17.1 29.2 40.3
Particulate Loading, Actual (mg/cu m)= 4.8
"Emission Rate (kg/hr)= 0.05
No Back Half Analysis
-------
FILE NAME - R4PM PROG.=VER 06/27/89
RUN # - 4 - Method 26A Train for Particulate Matter and HC1
09-08-1999 08:09:41
LOCATION - Incinerator Outlet Stack
DATE - 08/23/99 Time: 1240-1410/1440-1610
PROJECT # - 104951.1.009.04.01
Point #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Delta P
(in
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
. H20)
130
120
110
110
130
110
150
160
140
140
130
130
160
160
160
160
150
160
130
150
130
140
120
120
Delta H
(in.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
H20)
30
20
10
10
30
10
40
60
40
40
30
30
60
60
60
60
50
60
30
50
30
40
20
20
Stack
(F)
1084
1095
1084
1112
1120
1127
1216
1186
1189
1171
1178
1197
1170
1192
1186
1198
1189
1197
1198
1189
1201
1194
1203
1181
T Meter T
In(F)
94
99
99
105
105
110
112
117
116
115
118
120
116
121
123
123
122
130
129
132
133
129
129
131
Out (F)
94
99
100
103
104
107
107
111
112
111
114
116
114
120
122
122
122
127
126
129
132
129
129
131
Fraction
DRY CATCH
FILTER
Fraction
Final Wt. Tare Wt. Blank Wt. Net Wt
(g) (g) (g) (g)
0.0000 0.0000 0.0000 0.0000
1.0620 1.0316 0.0000 0.0304
Final Wt. Tare Wt. Vol. Net Wt.
(g) (g) (ml) (g)
PROBE RINSE 69.6529 69.6291 259.8 0.0218
IMPINGERS 0.0000 0.0000 0.0 0.0000
Probe Rinse Blank (mg/ml)= 0.0107 High Acetone Blank - Limit .0079
Impinger Blank (mg/ml)= 0.0000
Multiple leak checks used. Final readings for each segment are listed below
Lk Rate (cfm) Time (min)
0.0060 90.0000
0.0030 90.0000
-------
Section 3
MM5-MM Computer-Generated Calculations
MRI-AED\R4951-09-05.wpd
-------
'"ILE NAME Rl METALS
,^:UN t - 1 Method 29 Train for Metals
LOCATION Incinerator Out 1st Stack
PROG.==VER 06/O3/SS
03-17--1939 18;: 33s 00
Multiple leak checks, see end of printout
\st Meter Volume (Cubic Feet)~
3(a£ Volume (Dry Standard Cubic Feet)--
Barometric Pressure (in rig)--
Static Pressure (Inches H20/=
144.600
* f", -~, ,-", t~, |™
1 o.,;. „ a •.;> -..J
"' e r c e n t C a r b ct n D i o >^ i ti e -::
,1o i Btur 3 Col 1 BC t ed C ml ) -
Percent Water==
€'; ac \< Vel oc i t y (Ac t ual , Feet /rn i n ) =
~1 ow Rate (Actual, Cubic f t / m :l. n ) ••==
'"low rate (Standard, Wet, Cubic ft/min) =
_:• 1 ow Rat &/ '. 51 'rtndar' d j, I!-'- y ? ;._'- ib i c ft ' <(\ i r; J ;-
"'articulate Loading, Dry Std. (gr/scf>-~
Particulate Loading, Actual (gr/cu ft)=
•Emission Rate (1 b / h r > =
-------
* * METRIC UNITS # *
FILE NAME - R:i.METALS
RUN # 1 Method 29 Train for Metals
L 0 C A T' 10 M I n c :i. n s r a t o r 0 u 11 e t S t a c k:
PROJECT ft 104951.1„COS„04,01
I r; i t i a 1 Meter V o 1 u me (C u ta i c M e t e r B ') =
F" i n a 1 Meter V o 1 u, me (C u b i c Meter s)::-
Meter Fact or ~:
Multiple leak checks, sera end of printout
Net Meter Volume (Cubic Meters)~-
G as V o 1 u in a (I) r y Stan d a r d C u b i c Meters)=
B a r o m e t i" i c F' r e s B u. r e C mm H g )-~
S tat i c P r e ir; s i i r a -! m (;; !•• 12 0 } --:
16.735
20.7S5
1 ,- 01 1
4 ,,095
3. 761
L. e a k C o r r e c t i o n:-:: 0« C) 0 O C
f A.... J.. , , .-. l
'""low rate (Actual y Cubic ;?i / nt i n ) =-
'" 1 ow rate (St an day d, Wet, Cuta i c m / IT; :i. n ':• —
Plow rate (Standard, Dry, Cubic rn/mLn):=
148
52
4-6
Particulate Weight (g)^
F"1 a,-1 i c u 1 a t e !... o a d i. n g , D r y S t d „ (m g / c u. rn ':> - •
"'articulate Loading, Actual ung/cu rn)=-
-------
-IL.E NAME: RI METALS
•:UM # 1 Method 23 Train for Metals
...QCAT I ON I n c i n er a !; or 0u 11 et 3t ac k
'.< A T E •- 0 3 / 17 / 93 T i ;n s s 1 1 '2-1312/135 4 1!
^ROJECT *!: -•• 104951,. 1 . 009. 04. Ol
:''oint # Delta P Delta H Sback '
1
PRQG.=VER 06/09/8
OS™ .1.7—1939 13s 38
0» 090
0 , 1 10
0.37
1 „ 20
1 „ 40
113
7IL.TER
5'SOEE RINSE
Final Wt , Tare Wt
<• 9 •'
O..OOOO
0 .00 0 0 0 . 0 0 0 0
P robe; R i n s e Blank ( : ' -a / < r i 1 ':> •••• 0 « 0 0 0 0
-------
' "••;"•• ;;.~; ""!\j ... r ......... .: ... ».,.,. .-,.!..,....-. i-J! ,+. i ,-.-[•• o-i- _-;.- !..-
'"' ~: D J E C: T S •••• i 0 4 3 51 .. 1 „ 0 0 9 „ 0 4.. 01
lv!ster Facto-^
K;^.t Meter Volume (Cubic Feet)--
-------
II I r f I ./;.
r L
(81 anda yd, Wet, Cub1c
-------
0 „ 1 40
-------
-. 1 lv\ e t e r v o 1 u fn e (C: i...i b 1 c: F e s t > -•-
:LpI e lt~ak cheiiks, see end of pri;
-------
* v- METRIC UMFTB
'r 11...!~. }•-' A M1 "": 3 M E 7 A I... 3
R'Jiv I;: •- 3 •••• r'krlhoc 29 Train for Metals:
L. 0 C A TI i: N I n c i n e r a t d r C) i.i b ?. <:* 1; ' S '''• s c !••:
'""low rate (Actual,
F". ow rate (Pt anciar .::!, Dry, Cubic in/iiii n ) ••-•
-------
• 1 '-
-------
-------
,t. ^ ,,.•< ^
- .).. .: ... , , i ., J.. _..
-------
1 „ :;. 0 .1.131
-------
Appendix E
Calibration Data for Sampling Equipment
MRl-AED\R4951-09-05.wpd
-------
REQUEST FOR POST TEST CALIBRATION
Project No. 104951.1.009.04.01
Date:
08/24/99
Requested By J. Surman
M5 Console
Number
N5
N8
N9
Average
Dctta-H
1.25
1 .30
1.32
;
Temperature
Meier Number
N5
i
N8
N9
L
XAD T/C
Number
L 91-11
.
j
Sample Box
Number
10285
12
11190
11191
11996
11187
J
-• - —
Gooseneck *
Number j
Ui-l-6
UH-8
UH-39
UH-10
UH-4
UH-22
I
! Probe
i Number
< WC3-S
i VVC3-7
i VVC3-.S
( WC3-6 "^
1
'
'
i
JVOST Console
i Niimher
1
1
*
i ,
! Rarnrnftte
; x-4
i
Average Stack j ! Stack Temp. Pilot Tube
femperalure.Ti i T/C Number Number
1106 i j WC'3-5 WO3-6A
1125 j WC3-7 ! WC3-7A
1015 j WC3-S I WC3-7A
1183 j WC36 I | WC3GA
_. . ! _.__ ! !
i i i
i i • *
i i i
i i it
VOST liain j VOST
Number i i !"/(; Number i
1 i !
i !
» t
.. , i —
r Ni imber 1
029 J
i
£L Equipiitcnt to be Calibrated:
Comments:
i
PTHAl RFQ.WK't 11/13/95 (rev. PTOAL200.WK-1 08/24/99 10:18 AM}
-------
SAMPLING NOZZLE CALIBRATION CHECK DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Nozzle I.D. Number or
Dedicated Sampling
Train Number
S9-J9-J
Remarks or Notes
Three Measured Diameters, inches
D1 D2 D3
Average
Diameter
inches
0,
Measured Bv
Date
COMMENTS: All nozzles are constructed of quartz glass and are of the gooseneck design.
NOZZLCAX.WPD April 29, 1996 [rev. NOZZLCA9.WPD July 3O, 1999)
-------
40 CFR 60, APPENDIX A, METHOD 3B, GAS ANALYSIS BY ORSAT
Run No.
Date
Analyst
No. S£>tf967>/.0D9oy-e) Samole No.
a Location X^c'f^vv &VCTI
/y/9
a ' /•
> Start Time /3J?c?
Type (BaefT Grab) G^^s - /3*??2>.
J, Si,s-^>&*
>1'S7J-S3-J>^
Orsat Leak Check Before Analysis:
Burrete /to Change in 4 Minutes
Pipettes Sfo Change in 4 Minutes
Orsat Leak Check After Analysis:
Burrete />£ Change in 4 Minutes
Pipettes Sfff Change in 4 Minutes
Analysis
Gas
C02
02 (Net is actual reading
minus actual C02 reading)
CO (Net is actual reading
minus actual 02 reading)
1
Actual
Reading
1 O,o
2 £>>O
3
1 fft>.5
2 #o, ')
3
1
2
3
Net
Value
0.0
•jpo,c;
2
Actual
Reading
1 6.V
2 0.0
3
1 ^«?
2j?tf^
3
1
2
3
Net
Value
0. 0
J?0-/>
3
Actual
Reading
1 d.v
f\
3
1 ffv.$
£^$ *>*
3
1
2
3
Net
Value
O,&
<£%•'?
Average
Net
Value
(% v/v)
, l?
*&£>,?'
Acceptance Criteria per Method 3B
CO2 >4% 0.3% v/v 02 >15% 0.2% v/v CO
<4% 0.2% v/v <15% 0.3% v/v
0.3% v/v
Remarks and Notes:
M3BANAL.WPD May 28, 1999
-------
METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE
MRI Project No.
Date:
Operator:
104951.1.008
8/5/99
D. Neal
Metering Console No.
Previous Dry Gas Meter Factor (Y):
Calibrated Critical Orifice No.
Critical Orifice Coefficient in English Units (K1):
(I Ambient Temperature Meter No.
N5
0.995
D16
0.44410
Y-0815
CALIBRATION GAS VOLUME DATA
Initial Dry Gas Meter Gas Volume, ft.3
Final Dry Gas Meter Gas Volume, ft.3
Net Dry Gas Meter Gas Volume (Vm), ft.3
CALIBRATION CONDITIONS DATA
Dry Gas Meter Temperature, °F:
Initial Inlet Temperature, °F
Final Inlet Temperature, °F
Initial Outlet Temperature, °F
Final Outlet Temperature, °F
Average Dry Gas Meter Temperature (tm), °F
Time, seconds
Orifice Meter Delta-H, inches w.c.
Barometric Pressure, in. Hg
Critical Orifice Inlet (Ambient) Temperature, °F:
Initial Ambient Temperature, °F
Final Ambient Temperature, °F
Avg. Critical Orifice Inlet Temperature (tamb), °F
Pump Vacuum, in. Hg
COMPUTED CALIBRATION RESULTS
Critical Orifice Gas Volume (Vcr (std)), std. ft.3
Dry Gas Meter Gas Volume (Vm (std)), std. ft.3
Dry Gas Meter Calibration Factor (Y)
Orifice Meter Delta-H@
AVERAGE CALIBRATION RESULTS
Average Dry Gas Meter Calibration Factor (Y)
Average Orifice Meter Delta-H@
CALIBRATION RESULTS COMPARISON
Criterion: Y Must Be Within 2% Of Average Y
Percent Difference Of Y From Average Y
Tolerance Result
COMPARISON WITH PRETEST RESULTS
Criterion: Y Must Be Within 5% Of Previous Y
% Difference Of Average Y From Previous Y
Tolerance Result
Y= 1.022244143947615 |
Run1
764.398
770.055
5.657
72.0
73.0
71.0
71.0
7178
600
1.100
29.21
71.6
71.2
71.4
"18
5.629
5:499
i"024
1.903
1.022
17901
0.14%
PASS
2.74%
PASS
Run 2
770.055
775.747
5.692
''V • '" ', '-?v V
74.0"
75.0
72.0
72.0
7373"
600
1.100
29.21
71.8
72.4
72.1
18
5.625
57517
l7d20
17901
0.26%
PASS
Run3
, , ^
775.747
781.423
5.676
V * ,
76.0
76.0
72.0
73.0
7473
600
1.100
29.21
73.8
" 72.4
73.1
18
5.620
57491
l'.023
1.901
0.12%
PASS
Remarks:
CRORCALB.WK4 10/24/96 (rev. BRONXPTC.WK4 08/09/99 01:22PM)
-------
METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE
MRI Project No.
Date:
Operator:
104951.1.009
8/9/99
D. Neal
Metering Console No.
Previous Dry Gas Meter Factor (Y):
Calibrated Critical Orifice No.
Critical Orifice Coefficient in English Units (K1):
Ambient Temperature Meter No.
N8
0.993
D16
0.44410
Y-0815
CALIBRATION GAS VOLUME DATA
Initial Dry Gas Meter Gas Volume, ft.3
Final Dry Gas Meter Gas Volume, ft.3
Net Dry Gas Meter Gas Volume (Vm), ft.3
CALIBRATION CONDITIONS DATA
Dry Gas Meter Temperature, °F:
Initial Inlet Temperature, °F
Final Inlet Temperature, °F
Initial Outlet Temperature, °F
Final Outlet Temperature, °F
Average Dry Gas Meter Temperature (tm), °F
Time, seconds
Orifice Meter Delta-H, inches w.c.
Barometric Pressure, in. Hg
Critical Orifice Inlet (Ambient) Temperature, °F:
Initial Ambient Temperature, °F
Final Ambient Temperature, °F
Avg. Critical Orifice Inlet Temperature (tamb), °F
Pump Vacuum, in. Hg
COMPUTED CALIBRATION RESULTS
Critical Orifice Gas Volume (Vcr (std)), std. ft.3
Dry Gas Meter Gas Volume (Vm (std)), std. ft.3
Dry Gas Meter Calibration Factor (Y)
Orifice Meter Delta-H@
AVERAGE CALIBRATION RESULTS
Average Dry Gas Meter Calibration Factor (Y)
Average Orifice Meter Delta-H@
CALIBRATION RESULTS COMPARISON
Criterion: Y Must Be Within 2% Of Average Y
Percent Difference Of Y From Average Y
Tolerance Result
COMPARISON WITH PRETEST RESULTS
Criterion: Y Must Be Within 5% Of Previous Y
% Difference Of Average Y From Previous Y
Tolerance Result
Y= 1.002662945352118 |
Run 1
661 .601
667.393
5.792
''•,'•' *
76.0
76.0
74:6
74.6
75.0
600
Tioo
29.02
76.6
77.2
7679
18
5.564
5.559
lobi
1.924
1.003
1.921
0.19%
PASS
0.97%
PASS
Run 2
K
f S **
667.393
673.188
5.795
!• ; ' . 4
77.0
78.0
75;o
75.0
76.3
600
lT66
29.02
77.6
76.0
76T8
18
5.564
5.549
1003
1.919
0.00%
PASS
Run 3
!
673.188
678.976
5.788
78.0
78.0
75.6
76.0
76.8
600
iloo
29.02
77.4
76.8
77:i
18
5.563
5.538
ijbos
1.918
0.19%
PASS
Remarks:
CRORCALB.WK4 10/24/96 (rev. GEORGPRE.WK4 08/09/99 04:05 PM)
-------
METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE
MRI Project No.
Date:
Operator:
104951.1.008
8/5/99
D. Neal
Metering Console No.
Previous Dry Gas Meter Factor (Y):
Calibrated Critical Orifice No.
Critical Orifice Coefficient in English Units (K1):
Ambient Temperature Meter No.
N9
0.990
D16
0.44410
Y-0815
CALIBRATION GAS VOLUME DATA
Initial Dry Gas Meter Gas Volume, ft.3
Final Dry Gas Meter Gas Volume, ft.3
Net Dry Gas Meter Gas Volume (Vm), ft.3
CALIBRATION CONDITIONS DATA
Dry Gas Meter Temperature, °F:
Initial Inlet Temperature, °F
Final Inlet Temperature, "F
Initial Outlet Temperature, °F
Final Outlet Temperature, °F
Average Dry Gas Meter Temperature (tm), °F
Time, seconds
Orifice Meter Delta-H, inches w.c.
Barometric Pressure, in. Hg
Critical Orifice Inlet (Ambient) Temperature, °F:
Initial Ambient Temperature, °F
Final Ambient Temperature, °F
Avg. Critical Orifice Inlet Temperature (tamb), °F
Pump Vacuum, in. Hg
COMPUTED CALIBRATION RESULTS
Critical Orifice Gas Volume (Vcr (std)), std. ft.3
Dry Gas Meter Gas Volume (Vm (std)), std. ft.3
Dry Gas Meter Calibration Factor (Y)
Orifice Meter Delta-H@
AVERAGE CALIBRATION RESULTS
Average Dry Gas Meter Calibration Factor (Y)
Average Orifice Meter Delta-H@
CALIBRATION RESULTS COMPARISON
Criterion: Y Must Be Within 2% Of Average Y
Percent Difference Of Y From Average Y
Tolerance Result
COMPARISON WITH PRETEST RESULTS
Criterion: Y Must Be Within 5% Of Previous Y
% Difference Of Average Y From Previous Y
Tolerance Result
Y= 1.011071874784609 |
Run 1
558.802
564.558
5.756
81.0
82.0
" 7576
76.0
7875
600
T.T66
29.21
77.0
79.4
78.2
18
5.593
5.525
1.012
17904'
1.011
17902
0.13%
PASS
2.13%
PASS
Run 2
" ' ' ^ '(JS 't
564.558
570.338
5.780
(V
82.0
83.0
7676
77.0
7975"
600
iTioo
29.21
80.0
78.4
79.2
18
5.588
""5.538"
1.009
17964
0.19%
PASS
Run 3
570.338
576.118
5.780
83.0
84.0
7876"
78.0
8678
" 600
r.Td'6
29.21
78.2
79.8
79.0
18
5.589
5.525
1.012
17898
0.06%
PASS
Remarks:
CRORCALB.WK4 10/24/96 (rev. BRONXPTC.WK4 08/09/99 01:23PM)
-------
GOOSENECK THERMOCOUPLE CALIBRATION DATA FORM
Job No.
Date
104951.1.008
Pyrometer No.
Y-0815
8/3/99
Ambient Temp.(°F)
69
Reference Thermometer ASTM 63F
Serial Number 1979299
Performed By Steve Poandl Barometer
29.34
in. Hg
Calibration Method: Ambient water bath with ASTM thermometer.
Goose-neck
T.C. No.
UH-4
UH-6
UH-7
UH-8
UH-10
UH-22
UH-39
Leak Check & Check
Valve Pass/No-pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Ref. Thermometer
Temperature (°F)
63 .0
63.0
63.0
63.0
63.1
63.1
63 .1
Pyrometer Temp.
(°F)
61.8
62.0
61.8
61.8
62.2
61.8
62.0
Temp. Difference
Tolerance: +/- 2 "F
-1.2
-1.0
-1.2
-1.2
-0.9
-1.3
-1.1
Calibration RecordsVCalibration Forms\Gntccal.doc
Revised 10/28/98
-------
SAMPLE BOX FILTER THERMOCOUPLE CALIBRATION DATA FORM
Job No.
Date
104951.1.008
Console Pyrometer No.
N-7
8/3/99
Ambient Temp.(°F)
69
Reference Pyrometer No. Y-0815
Reference TC No.
TC-008
Performed By Steve Poandl Barometer
29.34
In. Hg
Calibration Method: Heat sample box to 250 F with M5 Console.
Then, check filter box temperature by comparing M5 console
temperature meter against calibrated pyrometer and
thermocouple.
Sample Box
No.
011996
12
011187
011190
011191
012003
010288
012002
55
011192
010286
010285
Reference Pyrometer
Temp.(°F)
246.4
249.4
246.6
247.8
247.4
248.2
244.8
246.8
247.6
247.0
245.8
246.2
Console Pyrometer
Temp. ( "F )
249
250
249
249
250
249
249
250
250
248
249
249
Temperature Difference
Tolerance: +/- 5.4 ( "F )
+2.6
+ 0.6
+2.4
+ 1.2
+2.6
+ 0.8
+4.2
+ 3 .2
+ 2.4
+ 1.0
+ 3.2
+ 2.8
Calibration RecordsVCalibration Forms\Sbtccal.doc
Revised 10/29/98
-------
XAD THERMOCOUPLE CALIBRATION DATA FORM
Job No.
Date
104951.1.008
Pyrometer No.
Y-0815
8/3/99
Ambient Temp.(°F)
69
Reference Thermometer ASTM 63F
Serial Number 1979299
Performed By Steve Poandl Barometer
29.34
in. Hg
Calibration Method: Water bath with ASTM thermometer © ambient
and ice temperatures.
XAD Thermocouple
Number
91-11
XAD-3
Reference Thermometer
Temp. ( °F )
63.1
63 .1
Pyrometer Temperature
(°F)
62.4
63.4
Temperature Difference
Tolerance: +/-2"F
-0.7
+ 0.3
Calibration RccordsVCalibration FormsV\adtccaI.doc
Revised 10/29/98
-------
Type S Pitot Tube Inspection Data Form
Pitot Tube #: WC3-5A Date:
Probe #: WC3-5 Job #:
Pitot tube assembly level?
Pitot tube openings damaged?
= A sin 0
', 6 -
0.052
0.026
2
8/9/99
Performed By:
104951.1.009
_X Yes
Yes (explain below)
A =
.752
(in)
PA= 0.375
(in); (< 0.125 in)
(in); (< 0.03125 in)
(in), PB = 0.377 (in), DT =
Calibration required?
Comments:
Yes
No
Joy McCann
.25
No
X No
(in)
-••Iky
^r-
^.-i
I"
Longitudinal
A Tube Axis —
Longitudinal a
Tube Axis —»•—<—
A - Side Plane |
=^n—Note:
S \Vt- f 1.05Dt
-------
Type S Pitot Tube Inspection Data Form
PitotTube#: WC3-6A Date: 8/9/99 Performed By:
Probe #: WC3-6 Job #: 104951.1.009
Pitot tube assembly level?
Pitot tube openings damaged?
a, = 2 ° (<10°),
P, = 1 ° (<5 °),
Y = 1 °, 8 =
z = Asinv 0.013
X Yes
Yes (explain below)
_° (<5°)
(in)
P2 = 2
°, A = .754
cp = A sin 6
PA = 0.362
(in); (< 0.125 in)
(in); (< 0.03125 in)
(in), PB = 0.392 (in), DT =
0.013
Calibration required?
Comments:
Yes
X
No
Joy McCann
.25
No
X No
(in)
Longitudinal
A Tube Axis
Longitudinal
Tube Axis
0.48 CM < DT < 0.95 CM
(3/16 in.) (3/8 in.)
Transverse
Tube Axis
B-Side Plane
/*" ^\ __
Aor B V^ _J~
Transverse L
TubeAxis ~* ^
I i
Calibration Rccords\Calibration Forms\newpitot.doc
01/18/99
-------
Type S Pitot Tube Inspection Data Form
Pitot Tube #: WC3-7A Date: 8/9/99 Performed By:
Probe #: WC3-7 Job #: 104951.1.009
Pitot tube assembly level?
Pitot tube openings damaged?
a, = 3 ° (<10°),
P, = 1 ° (<5°),
Y = 1 °. 9 = 2
z = AsinY 0.013
X Yes
Yes (explain below)
«2 = 2 °
A =
.765
(in)
0) = A sin 9
PA= 0.376
(in); (< 0.125 in)
(in); (< 0.03125 in)
(in), PB= 0.389 (in), DT =
0.026
Calibration required?
Comments:
Yes
X No
Joy McCann
.25
No
X No
(in)
Longitudinal D B Flow •
ubeAxis —TT -^Z"
0.48 CM
-------
TR4NSGIT Calibration Summary
Please review the information listed below and indicate any changes on the line provided and fill in any
missing information. Please fax this information to 1-800-395-0543. This information will be used to
update our recall notification files.
Customer: MIDWEST
Address 1: 425 VOLKER BLVD
Address2:
City: KANSAS CITY
State/Prov: MO
Zip/P.C.: 64110
Contact: DAN MEAL
Phone: 8167537600
Fax: 0
Person Responsible for Test and Measurement
Equipment Specifications:
Name:
Title:
Phone:
Customer:
Address:
City:
State/Province:
Zip/P.C.:
Contact:
Title:
Phone:
Fax:
Recalibration Contact for this unit if different from above:
Name:
Title:
Phone:
Mfg: OTHER MFC
Model: TYPE K
Description: TYPE K THERMOCOUPLE PROBE
Guaranteed Date: 8/6/99
Serial:
RA#:
E>#:
PO#:
WC3-5
6-LE294-17-1
WC3-5
CREDIT CARD
Customer Remarks:
As part of our Quality Review and improvement system, we would like you to review our performance on the
order and unit listed above and the service you received from Transcat.
The information on the certificate is accurate and complete.
The unit was returned to you clean and in excellent working order.
The lab performed all the work you expected.
The turn-around time met your needs.
Communications with the labwere clear, concise, timely, and effective.
Strongly
Agree
5
5
5
5
5
Agree
4
4
4
4
4
Strongly
No opinion Disagree Disagree
2
2
2
2
2
Please identify any other areas that we should be addressing that will further Transcats relations with you:
Fax: 1-800-395-0543
ATTN: National Lab Manager
-------
TMNSGfT Certificate of Calibration
TRANSCAT will maintain and document the traceability of all its standards to the National Institute of Standards and Technology,
NIST(formerly NBS), or the National Research Council, NRC, of Canada, or to other recognized national or international standard
bodies, or to measurable conditions created in our laboratory using established physical constants and/or natural physical
phenomena, or by the ratio type of self-calibration techniques and recognized procedures. The TRANSCAT calibration system,
when applicable, conforms to the requirements of ML-STD-45662A, ANSI/NCSL Z540-1-1994 and IS010012-1-1992.
10CFR21 applies if specified contractually.
Complete records of work performed are maintained by TRANSCAT and are available for inspection. Laboratory assets used in
the performance of this calibration are shown below thecertified instrument description.
The results in this report relate only to the item calibrated or tested.
All calibrations have been performed using the standards having an accuracy of four or more times greater than the unit calibrated,
unless otherwise noted. Limitations on the uses of this instrument are detailed in the manufacturer's operating instructions.
TEMPERATURE: 69°F
RELATIVE HUMIDITY OF: 51%
Customer:
Manufacturer:
Model Number:
. Serial Number:
Description:
Calibrated:
Date Due:
RA#:
ID No.:
PO#:
Verification Proc:
Calibration Proc:
Item I
MIDWEST
OTHER MFC
TYPEK
WC3-5
TYPE K THERMOCOUPLE PROBE
8/6/99
8/6/00
6-LE294-17-1
WC3-5
CREDIT CARD
6-10053-0
MAN06-2805
deceived In Tolerance
( Customer Use Only) NotCS C
ASSETS MANUFACTURER
MODEL #
DESCRIPTION
CALIBRATED DATE DUE
J110 AZONLX A1011/CT41/CT40/CTRTD THERMOMETER
J174 KAYE INSTRUMENTS K140 ICE POINT REFERENCE
J627 KEITHLEY 2000 6.5 DIGIT MULTIMETER
J635 OMEGA ENGINEERING, I 172321-JKTE J,K,T,E Half Junction TC
J659 AMETEK M&G PRODUCT 1200SE High Temperature Furnance
J666 AMETEK M&G PRODUCT 650SE-2 TEMPERATURE CALIBRATOR
3/26/99
5/17/99
7/12/99
9/1/98
1/21/99
5/5/99
3/26/00
5/17/00
7/12/00
9/1/99
1/21/00
5/5/00
Calibrated at:
2 Executive Drive
Moorestown, NJ 08057
By Warren Rhodes
Manny Cabanas
Lab Manager
This certifica te may not be reproduced except in full, without the written approval of Transcat.
Additional information if applicable may be included on serparate page(s).
F0013R9 5/KV99
-------
TC4NSC4T
CALIBRATION LAB DATA
RA Nbr: 6-LE294-17-1
Description: TYPE K THERMOCOUPLE PROBE
Customer: MIDWEST
Calibrated: 8/6/99
Date due: 8/6/00
Service Type: R6
Mfg: OTHER MFC
Model: TYPE K
Serial: WC3-5
PO Nbr: CREDIT CARD
ID Nbr: WC3-5
Verification Procedure: 6-10053-0
-328 TO 2282°F
Range;
I--I/O--I-
-Accuracy-
-Low /High Limits As Rec'd
As Shipped
AVERAGE STACK TEMP
575.9
0 ±2.2°C or 0.75%rdg
571.8
580.1
576.2
576.2
Range:
AVERAGE STACK TEMP
1502
0 ±2.2°C or 0.73%rdg
1491
1513
1502
1502
Remarks:
Page 1 of 1
-------
TMNSGfT Calibration Summary
Please review the information listed below and indicate any changes on the line provided and fill in any
missing information. Please fax this information to 1 -800-3 95-0543. This information will be used to
update our recall notification files.
Customer: MIDWEST
Address 1: 425 VOLKER BLVD
Address!:
City: KANSAS CITY
State/Prov: MO
Zip/P.C: 64110
Contact: DAN NEAL
Phone: 8167537600
Fax: 0
Person Responsible for Test and Measurement
Equipment Specifications:
Customer:
Address:
City:
State/Province:
Contact:
Title:
Phone:
Fax:
Recalibration Contact for this unit if different from above:
Name:
Title:
Phone:
Name:
Title:
Phone:
Mfg: OTHER MFC
Model: TYPE K
Description: TYPE K THERMOCOUPLE PROBE
Guaranteed Date: 8/6/99
Serial:
RA#:
ID#:
PO#:
WC3-6
6-LE294-20-1
WC3-6
CREDIT CARD
Customer Remarks:
As part of our Quality Review and improvement system, we would like you to review our performance on the
order and unit listed above and the service you received from Transcat.
The information on the certificate is accurate and complete.
The unit was returned to you clean and in excellent working order.
The lab performed all the work you expected.
The turn-around time met your needs.
Communications with the labwere clear, concise, timely, and effective.
Strongly
Agree
5
5
5
5
5
Agree
4
4
4
4
4
Strongly
No opinion Disagree Disagree
2
2
2
2
2
Please identify any other areas that we should be addressing that will further Transcats relations with you:
Fax: 1-800-395-0543
ATTN: National Lab Manager
-------
TR4NSG4T Certificate of Calibration
TRANSCAT will maintain and document the traceability of all its standards to the National Institute of Standards and Technology,
NIST(formerly NBS), or the National Research Council, NRC, of Canada, or to other recognized national or international standard
bodies, or to measurable conditions created in our laboratory using established physical constants and/or natural physical
phenomena, or by the ratio type of self-calibration techniques and recognized procedures. The TRANSCAT calibration system,
when applicable, conforms to the requirements of MIL-STD-45662A, ANSI/NCSL Z540-1-1994 and IS010012-1-1992.
10CFR21 applies if specified contractually.
Complete records of work performed are maintained by TRANSCAT and are available for inspection. Laboratory assets used in
the performance of this calibration are shown below the certified instrument description.
The results in this report relate only to the item calibrated or tested.
All calibrations have been performed using the standards having an accuracy of four or more times greater than the unit calibrated,
unless otherwise noted. Limitations on the uses of this instrument are detailed in the manufacturer's operating instructions.
TEMPERATURE: 69°F
RELATIVE HUMIDITY OF: 51%
Customer:
Manufacturer:
Model Number:
Serial Number:
MIDWEST
OTHER MFG
TYPEK
WC3-6
Description: TYPE K THERMOCOUPLE PROBE
Calibrated: 8/6/99
Date Due: 8/6/00
6-LE294-20-1
WC3-6
CREDIT CARD
6-10053-0
MAN06-2805
RA#:
ID No.:
PO#:
Verification Proc:
Calibration Proc:
Item Received In Tolerance
( Customer Use Only) Notes:
ASSETS MANUFACTURER
MODEL #
DESCRIPTION
CALIBRATED DATE DUE
J110
J174
J&27
J635
J666
J682
AZONLX A101 1/CT41/CT40/CTRTD THERMOMETER
KAYE INSTRUMENTS K140
KEITHLEY 2000
OMEGA ENGINEERING, I 172321-JKTE
AMETEK M&G PRODUCT 650SE-2
ROSEMOUNT AEROSPAC 162CE
ICE POINT REFERENCE
6.5 DIGIT MULTIMETER
J,K,T,E Half Junction TC
TEMPERATURE CALIBRATOR
SPRT
3/26/99
5/17/99
7/12/99
9/1/98
5/5/99
5/12/99
3/26/00
5/17/00
7/12/00
9/1/99
5/5/00
5/12/00
Calibrated at:
2 Executive Drive
Moorestown, NJ 08057
By Warren Rhodes
This certifica te may not be reproduced except in full, without the written approval of Transcat.
Additional information if applicable may be included on serparate page(s).
Manny Cabanas
Lab Manager
F0013R95/1CV99
-------
TR4NSOJT
CALIBRATION LAB DATA
RA Nbr: 6-LE294-20-1
Description: TYPE K THERMOCOUPLE PROBE
Customer: MIDWEST
Calibrated: 8/6/99
Date due: 8/6/00
Service Type: R6
Mfg: OTHER MFC
Model: TYPE K
Serial: WC3-6
PO Nbr: CREDIT CARD
ED Nbr: WC3-6
Verification Procedure: 6-10053-0
-328 TO 2282°F
Range:
—[—I/O—| Accuracy 1 Low /High Limits As Rec'd
AVERAGE STACK TEMP
As Shipped
609.5
±2.2°C or 0.75%rdg
605.1
613.8
608.6
608.6
Remarks:
Page 1 of 1
-------
TR4NSGTT Calibration Summary
Please review the information listed below and indicate any changes on the line provided and fill in any
missing information. Please fax this information to 1 -800-395-0543. This information will be used to
update our recall notification files.
Customer: MIDWEST
Address 1: 425 VOLKER BLVD
Address2:
City: KANSAS CITY
State/Prov: MO
Zip/P.C.: 64110
Contact: DAN NEAL
Phone: 8167537600
Fax: 0
Person Responsible for Test and Measurement
Equipment Specifications:
Customer:
Address:
City:
State/Province:
Zip/P.C.:
Contact:
Title:
Phone:
Fax:
Recalibration Contact for this unit if different from above:
Name:
Title:
Phone:
Name:
Tide:
Phone:
Mfg: OTHER MFC
Model: TYPE K
Description: TYPE K THERMOCOUPLE PROBE
Guaranteed Date: 8/6/99
Serial:
RA#:
ED#:
P0#:
WC3-7
6-LE294-23-1
WC3-7
CREDIT CARD
Customer Remarks:
As part of our Quality Review and improvement system, we would like you to review our performance on the
order and unit listed above and the service you received from Transcat.
The information on the certificate is accurate and complete.
The unit was returned to you clean and in excellent working order.
The lab performed all the work you expected.
The turn-around time met your needs.
Communications with the labwere clear, concise, timely, and effective.
Strongly
Agree
5
5
5
5
5
Agree
4
4
4
4
4
Strongly
No opinion Disagree Disagree
2
2
2
2
2
Please identify any other areas that we should be addressing that will further Transcats relations with you:
Fax: 1-800-395-0543
ATTN: National Lab Manager
-------
TRdNSGfT Certificate of Calibration
TRANSCAT will maintain and document the traceability of all its standards to the National Institute of Standards and Technology,
NIST(formerly NBS), or the National Research Council, NRC, of Canada, or to other recognized national or international standard
bodies, or to measurable conditions created in our laboratory using established physical constants and/or natural physical
phenomena, or by the ratio type of self-calibration techniques and recognized procedures. The TRANSCAT calibration system,
when applicable, conforms to the requirements of ML-STD-45662A, ANSI/NCSL Z540-1-1994 and ISO10012-1-1992.
10CFR21 applies if specified contractually.
Complete records of work performed are maintained by TRANSCAT and are available for inspection. Laboratory assets used in
the performance of this calibration are shown below the certified instrument description.
The results in this report relate only to the item calibrated or tested.
All calibrations have been performed using the standards having an accuracy of four or more times greater than the unit calibrated,
unless otherwise noted. Limitations on the uses of this instrument are detailed in the manufacturer's operating instructions.
TEMPERATURE: 69°F
RELATIVE HUMIDITY OF: 51%
Customer:
Manufacturer:
Model Number:
Serial Number:
Description:
Calibrated:
Date Due:
RA#:
ID No.:
PO#:
Verification Proc:
Calibration Proc:
Item I
MIDWEST
OTHER MFC
TYPEK
WC3-7
TYPE K THERMOCOUPLE PROBE
8/6/99
8/6/00
6-LE294-23-1
WC3-7
CREDIT CARD
6-10053-0
MAN06-2805
deceived In Tolerance
( Customer Use Only) NotCS :
1
1
ASSETS MANUFACTURER
MODEL #
DESCRIPTION
CALIBRATED DATEDUL
J174 KAYE INSTRUMENTS K140
J284 NATIONAL BASIC SENSONBS: 172321
J627 KEITHLEY 2000
J635 OMEGA ENGINEERING, I 172321-JKTE
J659 AMETEK M&G PRODUCT 1200SE
ICE POINT REFERENCE
Standard Type S Probe
6.5 DIGIT MULTIMETER
J,K,T,E Half Junction TC
High Temperature Furnance
5/17/99
5/11/99
7/12/99
9/1/98
1/21/99
5/17/00
5/11/01
7/12/00
9/1/99
1/21/00
Calibrated at:
2 Executive Drive
Moorestown, NJ 08057
By Warren Rhodes
This certificate may not be reproduced except in full, wilhoutthe written approval of Transcat.
Additional information if applicable may be included on serparate page(s).
Manny Cabanas
Lab Manager
F0013R9 5/KV99
-------
TMNSGfT
CALIBRATION LAB DATA
RA Nbr: 6-LE294-23-1
Description: TYPE K THERMOCOUPLE PROBE
Customer: MIDWEST
Calibrated: 8/6/99
Date due: 8/6/00
Service Type: R6
Mfg: OTHER MFC
Model: TYPE K
Serial: WC3-7
PO Nbr: CREDIT CARD
ID Nbr: WC3-7
Verification Procedure: 6-10053-0
-Input I-I/O-I-
—Accuracy-
Low /High Limits-
> As Rec'd As Shipped
*28 TO 2282°F
Range:
AVERAGE STACK TEMP
1444
±2.2°C or 0.75%rdg
1432
1454
1444
1444
Remarks:
Page 1 of 1
-------
~c5T CAUBPATiON
Project No. 104051.1.009.04.01
08/24/90
Requested By J.
M5 Console i Average i
Number ' Delta-H
\N5 , 1.25
\ N8 ' 1.30 »
\j N9 I 1.32
i
I
i i |
1
|
! 1
1 t
1 !
i i j
1 1
! 1
1
Probe 'Average Stack,1
Number (Temperature, *F
WC3-5 1 1106
WC3-7 J_ 1125
WC3-5 I 1015
WC3-6 i 1183
i
i
j |
i
VOST Console! VOST Train j
Number i Number
i
i
i i
i '
! i
Barometer Number
X XA029
Surman
i Temperature i XAO TlC < I Sample Box i (Sooseneck j
| Meter Number ! ! Number ' ' Number j Number }
MS i , X 91-11 i i X10285 , ^ UK-6
N8 i i ! ^ 12 i ^ UH-H
N9 [ ; J | ^11 190 | "MjH-09 j
i i . i ^ 11 191 .i ^UH-10 i
! ! ^11996 ' ! \UH-4 i
, j , i | ^ 11137 , , *-> UH-22
! ! ' !
I i {
i l i j
! • ! !
; ; i !
i j * ! i
i i i ' i
Stack Temp. j Pftot Tube
T/C Number j Number
\ WC3-5 1 \ WC3-5A
\ WC3-7 { X WC3-7A
X WC3-5 j X WC3-7A j
x WC3-8 | \WC3-6A
j
i |
|
VOST
T/C Number i
i
i
i
i
Other Equipment to be Calibrated:
Comments:
PTCALREQ.WK4 11/13/95 'rov.PTCAL209.WK4 ^3/21/99 ^0:1P, AM)
-------
Remarks:
ANEROID BAROMETER CALIBRATION CHECK
Location: Kansas City, Missouri
Altitude Above Sea Level: 850 feet
Latitude: 3i° 05.8' north
Meteorological Gravity: 32.1551 feet/second2
Mercury Barometer Description: Sargent Weich, Cat. S-4519, Lot 791
MRI Project No. 104951.1.008
Date: 8/4/99
Time: 11:00
Readings Obtained By: D. Neal
Observed Barometer Reading: 29.36 in. Hg
Mercury Column Temperature: 72 °F
Correction For Temperature: -0,11 in. Hg
Correction For Gravity: -0.02 in, Hg
Corrected Barometric Pressure: 29.23 in. Hg
Aneroid Barometer I.D. No.: X-4029
Reading Before Adjustment: 29.32 in. Hg
Calibration Check Result: within 0.1 in. Hg
s*i /"* "x *>
Reading After Adjustment: ? t • <&" •) in. Hg
BAROMETR.WK4 10/19/98 (rev. A 9/22/99 +)
-------
METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE
MRI Project No.
Date:
Operator:
1
104951.1.008
8/5/99
D. Neal
Metering Console No.
Previous Dry Gas Meter Factor (Y):
Calibrated Critical Orifice No.
Critical Orifice Coefficient in English Units (K1):
|| Ambient Temperature Meter No.
N5 j
0.995
D16
0.44410
Y-0815
CALIBRATION GAS VOLUME DATA
Initial Dry Gas Meter Gas Volume, ft.3
Final Dry Gas Meter Gas Volume, ft.3
Net Dry Gas Meter Gas Volume (Vm), ft.3
CALIBRATION CONDITIONS DATA
Dry Gas Meter Temperature, °F:
Initial Inlet Temperature, °F
Final Inlet Temperature, °F
Initial Outlet Temperature, °F
Final Outlet Temperature, °F
Average Dry Gas Meter Temperature (tm), °F
Time, seconds
Orifice Meter Delta-H, inches w.c.
Barometric Pressure, in. Hg
Critical Orifice Inlet (Ambient) Temperature, °F:
Initial Ambient Temperature, °F
Final Ambient Temperature, °F
Avg. Critical Orifice Inlet Temperature (tamb), °F
Pump Vacuum, in. Hg
COMPUTED CALIBRATION RESULTS
Critical Orifice Gas Volume (Vcr (std)), std. ft.3
Dry Gas Meter Gas Volume (Vm (std)), std. ft.3
Dry Gas Meter Calibration Factor (Y)
Orifice Meter Delta-H@
AVERAGE CALIBRATION RESULTS
Average Dry Gas Meter Calibration Factor (Y)
Average Orifice Meter Delta-H@
CALIBRATION RESULTS COMPARISON
Criterion: Y Must Be Within 2% Of Average Y
Percent Difference Of Y From Average Y
Tolerance Result
COMPARISON WITH PRETEST RESULTS
Criterion: Y Must Be Within 5% Of Previous Y
% Difference Of Average Y From Previous Y
Tolerance Result
Y = 1.022244143947615 |
Run 1
764.398'
" 770.055
5.657
72.0
73.0
71.0
TTo
7T.8
600
1.100
29721
71.6
71.2
717*
18
5.629
5.499
1.024
1".903
1.022
1.901
0.14%
PASS
2.74%
PASS
Run 2
(
770.055
"775.747"
5.692
74.0
75.0
72.0
72.0'
73:3
600
1.100
29721 """
71.8
72.4
72.1 '
18
5.625
5.517
1.020
i79'bi
0.26%
PASS
Run 3
775.747
781 "423 " I
5.676
76.0
76.0 j
72.0
7376 "
74.3"
600 !
1.100 j
29721 " i
73.8
72.4
73'7i ""
18
5.620
5.491 j
1.023
17901 "'
0.12%
PASS !
Remarks:
CRORCALB.WK4 10/24/96 (rev. BRONXPTC.WK4 08/09/99 01:22PM)
-------
METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE
MRI Project No.
Date:
Operator:
104951.1.009
8/9/99
D. Neal
Metering Console No.
Previous Dry Gas Meter Factor (Y):
Calibrated Critical Orifice No.
Critical Orifice Coefficient in English Units (K1):
Ambient Temperature Meter No.
N8
0.993
D16
0.44410
Y-0815
CALIBRATION GAS VOLUME DATA
Initial Dry Gas Meter Gas Volume, ft.3
Final Dry Gas Meter Gas Volume, ft.3
Net Dry Gas Meter Gas Volume (Vm), ft.3
CALIBRATION CONDITIONS DATA
Dry Gas Meter Temperature, °F:
Initial Inlet Temperature, °F
Final Inlet Temperature, °F
Initial Outlet Temperature, °F
Final Outlet Temperature, °F
Average Dry Gas Meter Temperature (tm), °F
Time, seconds
Orifice Meter Delta-H, inches w.c.
Barometric Pressure, in. Hg
Critical Orifice Inlet (Ambient) Temperature, °F:
Initial Ambient Temperature, °F
Final Ambient Temperature, °F
Avg. Critical Orifice Inlet Temperature (tamb), °F
Pump Vacuum, in. Hg
COMPUTED CALIBRATION RESULTS
Critical Orifice Gas Volume (Vcr (std)), std. ft.3
Dry Gas Meter Gas Volume (Vm (std)), std. ft.3
Dry Gas Meter Calibration Factor (Y)
Orifice Meter Delta-H@
AVERAGE CALIBRATION RESULTS
Average Dry Gas Meter Calibration Factor (Y)
Average Orifice Meter Delta-H@
CALIBRATION RESULTS COMPARISON
Criterion: Y Must Be Within 2% Of Average Y
Percent Difference Of Y From Average Y
Tolerance Result
COMPARISON WITH PRETEST RESULTS
Criterion: Y Must Be Within 5% Of Previous Y
% Difference Of Average Y From Previous Y
Tolerance Result
Y= 1002662945352118 |
Run1
661.601
667.393
5.792
76.0
76:o""
74.0
74.0
75.0
600
1.100
29.02
76.6
77.2
7679'
18
5.564
5.559
Tool
17924
1.003
1.921
0.19%
PASS
0.97%
PASS
Run 2
667.393
673.188
5.795
77.0
7870"
75.0
75.0
76.3
600
1.100
29.02
77.6
76.0
7678
" 18
5.564
5.549
i7663
1"79"1"9
0.00%
PASS
Run 3
673.188
678.976
5.788
78.0
78.0"
75.0
76.0 I
7678
600
1.100
29.02
77.4
76.8
" 7771
18
5.563
5.538
1.005
T.91~8
0.19% j
PASS
Remarks:
CRORCALB.WK4 10/24/96 (rev. GEORGPRE.WK4 08/09/99 04:05 PM)
-------
METHOD 5 METERING CONSOLE CALIBRATION WITH CRITICAL ORIFICE
MRI Project No.
Date:
Operator:
104951.1.008
8/5/99
D. Neal
Metering Console No.
Previous Dry Gas Meter Factor (Y):
Calibrated Critical Orifice No.
Critical Orifice Coefficient in English Units (K1):
Ambient Temperature Meter No.
N9
0.990
D16
0.44410
Y-0815
CALIBRATION GAS VOLUME DATA
Initial Dry Gas Meter Gas Volume, ft.3
Final Dry Gas Meter Gas Volume, ft.3
Net Dry Gas Meter Gas Volume (Vm), ft.3
CALIBRATION CONDITIONS DATA
Dry Gas Meter Temperature, °F:
Initial Inlet Temperature, °F
Final Inlet Temperature, °F
Initial Outlet Temperature, °F
Final Outlet Temperature, °F
Average Dry Gas Meter Temperature (tm), °F
Time, seconds
Orifice Meter Delta-H, inches w.c.
Barometric Pressure, in. Hg
Critical Orifice Inlet (Ambient) Temperature, °F:
Initial Ambient Temperature, °F
Final Ambient Temperature, °F
Avg. Critical Orifice Inlet Temperature (tamb), °F
Pump Vacuum, in. Hg
COMPUTED CALIBRATION RESULTS
Critical Orifice Gas Volume (Vcr (std)), std. ft.3
Dry Gas Meter Gas Volume (Vm (std)), std. ft.3
Dry Gas Meter Calibration Factor (Y)
Orifice Meter Delta-H@
AVERAGE CALIBRATION RESULTS
Average Dry Gas Meter Calibration Factor (Y)
Average Orifice Meter Delta-H@
CALIBRATION RESULTS COMPARISON
Criterion: Y Must Be Within 2% Of Average Y
Percent Difference Of Y From Average Y
Tolerance Result
COMPARISON WITH PRETEST RESULTS
Criterion: Y Must Be Within 5% Of Previous Y
% Difference Of Average Y From Previous Y
Tolerance Result
Y= 1.011071874784609 |
Run 1
'558.802
564.558
5.756
81.0
827b~~~
"" 7576"""
76.0
78.5
600
1.100
29721
77.0
79.T
78.2
18
5.593
5.525
Toil"
1.904
1.011
1.902
0.13%
PASS
2.13%
PASS
Run 2
; •"
564.558
570.338
5.780
82.0
8376
7676
77.0
79.5
600
1.100
29721 '
80.0
7874
732
18
5.588
5.538
17669
1.904
0.19%
PASS
Run 3
570.338
576.118
5.780
83.0
8476'"
7876'"
78.0
80.8 {
600 j
1.100
"29721
78.2
7978
79.6
18
5.589
5.525
I.'6'i2
1 .898
0.06%
PASS
Remarks:
CRORCALB.WK4 10/24/96 (rev. BRONXPTC.WK4 08/09/99 01:23PM)
-------
GOOSENECK THERMOCOUPLE CALIBRATION DATA FORM
Job No.
Date
104951.1.008
Pyrometer No.
Y-0815
8/3/99
Ambient Temp.(°F)
69
Reference Thermometer ASTM 63F
Serial Number 1979299
Performed By Steve Poandl Barometer
29.34
in. Hg
Calibration Method: Ambient water bath with ASTM thermometer.
Goose-neck
T.C. No.
\UH-4
\ UH-6
UH-7
UH-8
N UH-10
X-UH-22
N UH-39
Leak Check & Check
Valve Pass/No-pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Ref. Thermometer
Temperature (°F)
63 .0
63 . 0
63 .0
63.0
63 .1
63.1
63.1
Pyrometer Temp.
CF)
61.8
62 .0
61.8
61.8
62 .2
61.8
62.0
Temp. Difference
Tolerance: +/- 2 °F
-1.2
-1.0
-1.2
-1.2
-0 .9
-1.3
-1.1
Calibration Rccords\Calibration Fornis\Gntccal.doc
Revised 10/28/98
-------
SAMPLE BOX FILTER THERMOCOUPLE CALIBRATION DATA FORM
Job No.
Date
104951.1.008
Console Pyrometer No.
N-7
8/3/99
Ambient Temp.(°F)
69
Reference Pyrometer No. Y-0815
Reference TC No.
TC-008
Performed By Steve Poandl Barometer
29.34
In. Hg
Calibration Method: Heat sample box to 250 F with M5 Console.
Then, check filter box temperature.by comparing M5 console
temperature meter against calibrated pyrometer and
thermocouple.
Sample Box
No.
^ 011996
X 12
X 011187
\ 011190
X 011191
012003
010288
012002
55
011192
010286
N010285
Reference Pyrometer
Temp. (°F)
246.4
249.4
246.6
247.8
247.4
248 .2
244.8
246 .8
247.6
247.0
245.8
246.2
Console Pyrometer
Temp." ("Ft
249
250
249
249
250
249
249
250
250
248
249
249
Temperature Difference
Tolerance: +/- 5.4 ( °F )
+ 2.6
+ 0.6
+ 2.4
+ 1.2
+ 2 .6
+ 0 .8
+4.2
+ 3.2
+ 2.4
+ 1.0
+ 3.2
+ 2.8
Calibration Rccords\Calibration Forms\Sbtccal.doc
Revised 10/29/98
-------
XAD THERMOCOUPLE CALIBRATION DATA FORM
Job No.
Date
104951.1.008
Pyrometer No.
Y-0815
8/3/99
Ambient Temp.(°F)
69
Reference Thermometer ASTM 63F
Serial Number 1979299
Performed By Steve Poandl Barometer
29.34
in. Hg
Calibration Method: Water bath with ASTM thermometer @ ambient
and ice temperatures.
XAD Thermocouple
Number
^ 91-11
XAD-3
Reference Thermometer
Temp.(°F)
63.1
63 .1
Pyrometer Temperature
CF)
62.4
63.4
Temperature Difference
Tolerance: +/- 2 °F
-0.7
+ 0.3
Calibration RccordsVCalibration Forms\Xadtccal.doc
Revised 10/29/98
-------
Type S Pitot Tube Inspection Data Form
Pitot Tube #: WC3-5A Date: 8/9/99 Performed By: Joy McCann
Probe #: WC3-5 Job #: 104951.1.009
Pitot tube assembly level?
Pitot tube openings damaged?
a, = 2 °
Pi = 1 °
_X Yes
Yes (explain below)
Y = 4 °, 8 = 2 °, A = .752 (in)
z = A sin Y _ 0.052 _ (in); (< 0. 125 in)
a) = A sin 9 _ 0.026 _ (in); (< 0.03 125 in)
PA= 0.375 (in), PB= Q.377 (in), DT =
Calibration required? _ Yes X No
Comments:
.25
No
X No
(in)
Longitudinal
TuBeAxis -»—
0.48 CM < DI < 0.95 CM
(3/16 in.) (3/8 in.)
Transverse
Tube Axis
Transverse
Tube Axis
1.05Dt
-------
Type S Pitot Tube Inspection Data Form
Pitot Tube #: WC3-6A Date: 8/9/99 Performed By:
Probe #: WC3-6 Job #: 104951.1.009
Pitot tube assembly level?
Pitot tube openings damaged?
a, = 2 ° (<10°),
P. = * °
Y = 1 °
X Yes
Yes (explain below)
4 °
0.2 =
O O
A =
.754 (in)
1 °, 9 = ,1
z = A sin Y 0.013 (in); (< 0.125 in)
o> = A sin 6 0.013 (in); (< 0.03125 in)
0.362 (in), PB = 0.392 (in), DT =
PA =
Calibration required?
Comments:
Yes
X No
Joy McCann
.25
No
X No
(in)
Longitudinal
A Tube Axis
Longitudinal trrxr
TuBeAxis -» _eJ£.
0.48 CM < DT < 0.95 CM
(3/16 in.) (3/8 in.)
1.50Dr u _ —"
B-Side Plane
Transverse
Tube Axis
Q A or B
Face
nin9-|
i rtanes !
Transverse I
Calibration Records\Calibration Fornis\ncwpitot.doc
01/18/99
-------
Type S Pitot Tube Inspection Data Form
PitotTube#: WC3-7A Date:
Probe #:
8/9/99 Performed By:
WC3-7 Job #: 104951.1.009
Pitot tube assembly level?
Pitot tube openings damaged?
30
Pi = _J_°
°, 9 = 2
0.013
_X Yes
Yes (explain below)
Y = _J
z = A sin Y
A =
.765
(in)
0) = A sin 6
PA= 0.376
(in); (< 0.125 in)
(in); (< 0.03125 in)
(in), PB= 0.389 (in), DT =
0.026
Calibration required?
Comments:
Yes
X No
Joy McCann
.25
No
X No
(in)
1 h/
Longitudinal (] " ' '"••' ^/
A Tube Axis —TT -=^r
Longit
Tul
' I
A - Side Plane |
_f^ Note:
•1.05Dt
-------
TR4NSGCT
CALIBRATION LAB DATA
RA Nbr: 6-LE294-17-1
Description: TYPE K THERMOCOUPLE PROBE
Customer: MIDWEST
Calibrated: 8/6/99
Date due: 8/6/00
Service Type: R6
Mfg: OTHER MFG
Model: TYPE K
Serial: WC3-5
PO Nbr: CREDIT CARD
ID Nbr: WC3-5
Verification Procedure: 6-10053-0
Input |--I/O—| Accuracy 1—
328 TO 2282°F
Range: AVERAGE STACK TEMP
Low /High Limits-
As Rec'd
As Shipped
I 575.9
±2.2°C or 0.75%rdg
571.8
580.1
576.2
576.2
Range: AVERAGE STACK TEMP
1502
±2.2°C or 0.75%rdg
1491
1513
1502
1502
Remarks:
Page 1 of 1
-------
TR4NSGIT
CALIBRATION LAB DATA
RANbr:
Description:
Customer:
Calibrated:
Date due:
Service Type:
6-LE294-20-1
TYPE K THERMOCOUPLE PROBE
MIDWEST
8/6/99
8/6/00
R6
Mfg:
Model:
Serial:
PONbr:
IDNbr:
Verification Procedure:
OTHER MFG
TYPEK
WC3-6
CREDIT CARD
WC3-6
6-10053-0
Input |~I/O~| Accuracy 1 Low/High Limits—
-328 TO 2282°F
Range: AVERAGE STACK TEMP
I 609.5
±2.2°C or 0.75%rdg
605.1
613.8
— As Rec'd
608.6
As Shipped
608.6
Remarks:
Page 1 of 1
-------
TR4NSC4T
CALIBRATION LAB DATA
RA Nbr: 6-LE294-23-1
Description: TYPE K THERMOCOUPLE PROBE
Customer: MIDWEST
Calibrated: 8/6/99
Date due: 8/6/00
Service Type: R6
Mfg: OTHER MFG
Model: TYPE K
Serial: WC3-7
PO Nbr: CREDIT CARD
ID Nbr: WC3-7
Verification Procedure: 6-10053-0
Input I-I/O-I Accuracy
-328 TO 2282°F
Range: AVERAGE STACK TEMP
—Low /High Limits-
As Rec'd
As Shipped
1444
±2.2°C or 0.75%rdg
1432
1454
1444
1444
Remarks:
Page 1 of 1
-------
TMNSGff
CALIBRATION LAB DATA
RANbr: 6-LV814-1-1 Mfg: OMEGA ENGINEERING, INC.
Description: TYPE K THERMOCOUPLE PROBE Model: TYPEK
„ t x^T^.inrc-r Serial: WC3-5
Customer: MIDWEST
r ru .A 0/1/1/00 PO Nbr: CREDIT CARD
Calibrated: 9/14/99
r, * A o/n/nn ID Nbr: WC3-5
Date due: 9/14/00
„ . _ _., Verification Procedure: 6-10053-0
Service Type: R6
| Input I-I/O-I Accuracy 1 Low /High Limits As Rec'd As Shipped
-328 TO 2282°F
Range: AVERAGE STACK TEMP
| 1000.3 aF Q ^2.2°Cor0.75%rdg 96J.Q 1Q39.6 °F 1QQ3.1 1QQ3.1
Range: AVERAGE STACK TEMP
| 1099.4 °F Q =2.2°CorQ.75%rdg 1059.4 1139.4 °F 1099.6 1099.6
Remarks:
Page 1 of 1
-------
TR4NSGTT
CALIBRATION LAB DATA
RANbr: 6-LV814-5-1 Mfg: OMEGA ENGINEERING, INC.
Description: TYPE K THERMOCOUPLE PROBE Model: TYPE K
Customer: MIDWEST Senal; WC3'6
P° ^ CREDIT CARD
Calibrated: 9/14/99
, ,nn IDNbr: WC3-6
Date due: 9/14/00
Verification Procedure: 6-10053-0
Service Type: R6
Input I-I/O-I Accuracy 1 Low /High Limits As Rec'd As Shipped
-328 TO 2282°F
Range: AVERAGE STACK TEMP
| 1Q99.4 3F 0 ±2.2°CorQ.7S%rdg 1059.4 1139.4 °F 1100.8 1100.8
Remarks:
Page 1 of 1
-------
TR4NSGIT
CALIBRATION LAB DATA
RANbr: 6-LV814-3-1 Mfg: OMEGA ENGINEERING, INC.
Description: TYPE K THERMOCOUPLE PROBE Model: TYPEK
/- ivrfTnwTCCT Serial: WC3-7
Customer: MIDWEST
/> ru j
-------
Appendix F
Particulate Matter Analysis Results
MRI-AED\R4951-09-05.wpd
-------
SAMPLE CONDITION AT RECEIVING LABORATORY
MRI Project No. 104951.1.009.04.01
Sample Type: Sample components recovered from M26A sampling trains and field reagent blank samples.
Target Analytes: Front half particulate matter by 40 CFR 60, Appendix A, Method 5. See analysis request
memo from A. Carender
Field Sample Condition Information Documented By / f'lUsts^tW-'— Date:
r M
Field Weight, Lab Weight,
Sample grams, grams, Received and
No. or Condition or Condition Comments Checked Bv Date
1001
1002
1023
1024 t'l~k
-------
PARTICULATE MATTER ON FILTER ANALYSIS DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Sampling Team Leader: Jim Surman Analyst:
Filter Size and Type: 4.9-inch diameter, Whatman QM-A quartz filter^,/ <
Filter Lot No. '
Filter Treatment: Heated at 105 °C for 3 hours, desiccated, and weighed to a constant weight.
Weight Unit: grams
Run No. J Filter No. /9 Sample No.
Gross Wt. Date Time Comments:
Filter Gross Weight used for data entry: /-
Filter Tare Weight from Tare Weight Data:
Run No. £? Filter No. £?& Sample No.
Gross Wt. Date Time Comments:
Filter Gross Weight used for data entry:
Filter Tare Weight from Tare Weight Data:
Run No. C _ Filter No. Sample No.
Gross Wt. Date Time Comments:
Filter Gross Weight used for data entry: .X.
Filter Tare Weight from Tare Weight Data: S>
NOTE: Control and blank filter weight data and balance check data are on other forms.
PMFILTEX.WPD June 11, 1996 (rev. PMFILT9.WPD May 27, 1999)
-------
PARTICULATE MATTER ON FILTER ANALYSIS DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Sampling Team Leader: Jim Surman Analyst:
SZ&Swr&r-'
_______
Filter Size and Type: 4.9-inch diameter, Whatman QM-A quartz filter/
Filter Lot No. &&33S*
Filter Treatment: Heated at 105 °C for 3 hours, desiccated, and weighed to a constant weight.
Weight Unit: grams
Run No. Filter No. ^ Sample No.
Gross Wt. Date Time Comments:
Filter Gross Weight used for data entry:
Filter Tare Weight from Tare Werght Data:
Run No. _ Filter No. _ Sample No.
Gross Wt. Date Time Comments:
Filter Gross Weight used for data entry:
Filter Tare Weight from Tare Weight Data:
Run No. Filter No. Sample No.
Gross Wt. Date Time Comments:
Filter Gross Weight used for data entry:
Filter Tare Weight from Tare Weight Data:
NOTE: Control and blank filter weight data and balance check data are on other forms.
PMFILTEX.WPD June 11, 1996 (rev. PMFILT9.WPD May 27, 1999)
-------
PARTICULATE MATTER (FRONT-HALF TRAIN) RINSES ANALYSIS DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Sampling Team Leader: Jim Surman Analyst:
Beaker Size and Type: 150-mL borosilicate glass
Acetone Lot No. %& J>?3 Water Lot No.
Sample Treatment: Acetone and water samples evaporated at ambient temperature and pressure in an
enclosure with HEPA-filtered air; then, desiccated and weighed to a constant weight.
Weight Unit: grams
Run No. / Beaker No. J Sample No.
Sample Volume + Acetone Rinses of Bottle Beaker + Sample Residue Weiahts
start ^ end __ Gross Wt. Date Time
Beaker + Sample + Rinses Wt. /98-f
Beaker Tare Wt. &6,3 '/f/3 t>6.SVtffr t£-3t> -49
A. Sample + Rinses Wt. _
B. - Water Wt. from Recovery Data: _
C. Acetone Wt. (A - B): _
D. Acetone Wt./0.79 = mLs Acetone:
Beaker + Residue Gross Weight used for data entry: .
Beaker Tare Weight from Tare Weight Data: &&- 'J&5V
Combined Blank = ((Water Blank x B) + (Acetone Blank x D))/(B + D) = t?< &J& ) mg/mL
Volume (B + D) for data entry = l&73j*J mLs
Comments:
Run No. y? Beaker No. ^ Sample No.
Sample Volume + Acetone Rinses of Bottle Beaker + Sample Residue Weiahts
start. end ^ Gross Wt. . Date Time
Beaker + Sample + Rinses Wt.
Beaker Tare Wt. 6i5f2 &£,'3* &A./7'7^ &f'3V- 99
A. Sample + Rinses Wt.
B. Water Wt. from Recovery Data: _
C. Acetone Wt. (A - B): .
D. Acetone Wt./0.79 = mLs Acetone:
Beaker + Residue Gross Weight Used for data entry:
Beaker Tare Weight from Tare Weight Data:
Combined Blank = ((Water Blank x B) + (Acetone Blank x D))/(B + D) = A #S&/ mg/mL
Volume (B + D) for data entry = S?£>5?jS mLs
Comments:
Run No. 3 Beaker No. 3 Sample No.
Sample Volume + Acetone Rinses of Bottle Beaker + Sample Residue Weiahts
start end , Gross Wt. .Date Time
Beaker + Sample + Rinses Wt.
Beaker Tare Wt.
A. Sample + Rinses Wt.
B. - Water Wt. from Recovery Data:
C. Acetone Wt. (A - B):
D. Acetone Wt./0.79 = mLs Acetone:
Beaker + Residue Gross Weight used for data entry:
Beaker Tare Weight from Tare Weight D
Combined Blank = ((Water Blank x B) + (Acetone Blank x D))/(B + D) ^
Volume (B + D) for data entry =/i 'r' mLs
Comments:
NOTE: Control beaker weights, reagent blank weights, and balance check data are on other forms.
PMRINSEX.WPD April 29, 1996 (rev. PMRINS9.WPD May 27, 1999)
-------
PARTICULATE MATTER (FRONT-HALF TRAIN) RINSES ANALYSIS DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Sampling Team Leader: Jim Surman Analyst: *.
Beaker Size and Type: 150-mL borosilicate glass _ < /
Acetone Lot No. &l) J)3 Water Lot No.
Sample Treatment: Acetone and water samples evaporated at ambient temperature and pressure in an
enclosure with HEPA-filtered air; then, desiccated and weighed to a constant weight.
Weight Unit: grams
Run No. V Beaker No. ^ _ Sample No. V^//'
Sample Volume + Acetone Rinses of Bottle Beaker + Sample Residue Weights
start end Gross Wt. Date Time
Beaker + Sample + Rinses Wt. &£>&>& S7&& (t9.6£'3$ £>f'3l>
Beaker Tare Wt. 6V/7
A. ............. Sample + Rinses Wt.
B. - - - --- Water Wt. from Recovery Data:
C. .............. Acetone Wt. (A - B):
D. ---- Acetone Wt./0.79 = mLs Acetone:
. Beaker + Residue Gross Weight used for data entry:
Beaker Tare Weight from Tare Weight Data:
Combined Blank = ((Water Blank xB) + (Acetone Blank x D))/(B + D) =%?&&>.
-------
PARTICULATE MATTER (FRONT-HALF TRAIN) REAGENT BLANK ANALYSIS DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Sampling Team Leader: Jim Surman Analyst:
Beaker Size and Type: 150-mL borosilicate glass
Acetone Lot No. 3& JJ3 Water Lot No.
Sample Treatment: Acetone and water samples evaporated at ambient temperature and pressure in an
enclosure with HEPA-filtered air; then, desiccated and weighed to a constant weight.
Filter Size and Type: 4.9-inch diameter, Whatman QM-A quartz filter
Filter Lot No. &>-£'3333- mg/mL
Comments:
Water Blank Determination: For Run No.(s) /.'" Beaker No. & Sample No..
Water Reagent Blank Sample Volume Beaker -f Sample Residue Weights
fnA ^_ Gross Wt. Date Time
Beaker + Water Sample Wt.
Beaker Tare Wt.
Water Sample Wt.
A. - Water Wt. = mLs Water:
Beaker + Residue Gross Weight used for blank determination:
Beaker Tare Weight from Tare Weight Data:
B. - - Net Weight of Residue in beaker:
Water Blank (B x 1000/A) for data entry or for computing Combined Blank: £>. 0/69 mg/mL
Comments:
Filter Blank Determination: For Run No.(s) J' *r Filter No. ?£* Sample No..
Gross Wt. Date Time Comments:
A. - - - Filter Gross Weight used for blank determination:
B. - - - - Filter Tare Weight from Tare Weight Data:
Net Filter Weight Difference (A - B) for data entry: #
[retain minus sign if value is negative]
NOTE: Control beaker weights, control filter weights, and balance check data are on another form.
PMBLANKX.WPD April 29, 1996 (rev. PMBLK9.WPD August 2, 1999)
-------
PARTICULATE MATTER (FRONT-HALF TRAIN) CONTROLS ANALYSIS DATA
MRI Project No. 104951.1.009.04.01
Client/Source: U.S. EPA OAQPS EMAD SMTG / AHRC Incinerator
Source Location: The University of Georgia, Athens, Georgia
Sampling Location: Outlet Stack
Sampling Team Leader: Jim Surman Analyst: S/6
Balance: Mettler AE200, MRI #10586 /'<'
Weight Unit: grams
Control Filter Weights & Balance Checks:
Filter No. /?» NIST Weight(s): Filter No. 3& ^ NIST Weight(s):
Original Tare Wt.: X- &3ar!£r Original Tare Wt.:
Current Wt. Date Time Balance Reading Current Wt. Date Time Balance Reading
Comments:
Control Beaker Weights & Balance Checks:
Beaker No. *7 NIST Weight(s): Beaker No, NIST Weight(s):
Original Tare Wt.: &P>v'3'Js ^. Original Tare Wt.: •__
Current Wt. Date Time Balance Reading Current Wt. Date Time Balance Reading
Comments:
Controls are filters and beakers selected from the original prepared lots that are used for sampling and analysis. They are
processed along with the filters and beakers containing samples during analysis, i.e., they are heated, desiccated, and weighed
along with the filters and beakers containing samples. The results are not used for correcting analytical data, but are useful in
monitoring changes between original tare weights and weights obtained during analysis of samples. Significant changes could
indicate problems in maintaining relatively constant environmental conditions in the laboratory, processing procedures not
replicating those used when tare weights were obtained, instrumentation calibration drift, and desiccant deterioration.
Each time filters or beakers are weighed, the balance is checked for accuracy by weighing NIST certified weights approximating
the weights of the filters or beakers.
PMCONTRX.WPD April 29, 1996 (rev. PMCONT9.WPD August 2, 1999)
-------
BEAKER TARE WEIGHT DATA
MRI Project No. 104951.1.009 04.01
Sampling Team Leader: Jim Surman Analyst
f -*•
Beaker Size and Type: 150-mL borosilicate glass
Beaker Treatment: Following cleaning according to the test protocol, heat at 105 *C for 3 hours, desiccate,
and weigh to a constant weight.
Weight Unit: grams
Date:
Time Started:
Balance Check before beakers are weighed:
Balance Used: Mettler AE200, MRI #10586
Weight Value: 50 and 20 grams 50 and 20 grams 50 and 20 grams
Balance Reads: ^f- £>&&£? '7&.S0&&
Average Weight
or Weight to be
Beaker ID. No. First Weighing Second Weighing Third Weighing Used _as_the Tare
Balance Check after beakers are weighed:
Balance Reads *7P,0i>0Q *?£>, £>0QQ
COMMENTS:
aE.iX-'.TW Vi?D Jiiy'). '39T Jjv. 3E.WRT?YiTO 'ugust 26. 'Tiy
-------
FILTER TARE WEIGHT DATA
MRI Project No. 104951.1.009.04.01
Sampling Team Leader: Jim Surman Analyst:
Filter Size and Type: 4.9-inch diameter, Whatman QM-A quartz filter
Filter Lot No. (t? &"33-5>
Filter Treatment: Heat at 105 °C for 3 hours, desiccate, and weigh to a constant weight.
Weight Unit: grams
Date: 9'H'11 _
Time Started: QW.1
Balance Check before filters are weighed:
Balance Used: Mettler AE200, MRI #10586
Weight Value: 1 gram
Balance Reads: (' W&0
trio
Filter I.D. No.
to
n
1 gram
/, C- <:
First Weiahina
A/A
I,****
otoo
Balance Check after filters are weighed:
Balance Reads: (<00*0
COMMENTS:
Second Weiahina
X/rV
(.****>
/•
1 gram
Third Weiahina
Average Weight
or Weight to be
Used as the Tare
I. <
A/A
FILTRTAX.WPD July 9. 1997 (rev. FILTRT9.WPD July 30. 1999)
-------
Appendix G
Galbraith Laboratory Chloride Analysis Results
MR[-AED\R495 l-09-05.wpd
-------
Galbraith Laboratories, Inc.
Accuracy with Speed - Since 1950
LABORATORY REPORT
April Carender
Midwest Research Institute
425 Volker Boulevard
Kansas City MO 64110-2299
SAMPLE ID LAB ID ANALYSIS
Report Date:
Sample Received:
Purchase Order #:
Fax Number:
RESULT(S)
09/24/99
08/31/99
039575
816-753-8420
DUPLICATE
RESULT(S)
5071
D-0951 Chloride
71.1
Hg/mL
72.0
Hg/mL
5072
D-0952 Chloride
426
Hg/mL
401
ug/mL
Authorized Release of Data
y IAJ
Darryl W^Hendricks, Technical Manager
This report shall not be reproduced, except in full, without the written approval of the laboratory.
U. S. Mail: P. O. Box 51610 • Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive • Knoxville, TN 37921-1750
Tel: 423/546-1335 • Fax: 423/546-7209 • Internet: www.galbraith.com • e-mail: labinfo@galbraith.com
-------
AUG271993
SAMPLE CONDITION AT RECEIVING LABORATORY
MRI Project No. 104951.1.009.04.01
Sample Type: Sample components recovered from M26A sampling trains and field reagent blank samples.
Target Analytes: Chloride by 40 CFR 60, Appendix A, Method 26A.
See analysis request memo from A. Carender
Field Sample Condition Information Documented By.
Date:
Sample
No.
Field Weight,
grams,
or Condition
Lab Weight,
grams,
or Condition
Comments
Received and
Checked Bv
Date
"faft.
. 7
I
The purpose of this form is to document the condition and to verify the integrity of samples received by the analytical
laboratory. The Field Laboratory Leader completes the first two columns with sample numbers and final gross field sample
weights of liquid samples or the condition of other samples as applicable. The analytical laboratory sample custodian, the
analytical coordinator, the analyst, or a designee observes all samples received, reweighs liquid samples that do not have
contents level marks or that are suspect, notes the condition of other samples, and documents all observations on this form.
SCM26ACX.WPD July 8, 1997 (rev. SCM26AC9.WPD August 2, 19991
-------
Galbraith Laboratories, Inc.
Accuracy with Speed - Since 1950
LABORATORY REPORT
April Carender
Midwest Research Institute
425 Volker Boulevard
Kansas City MO 64110-2299
SAMPLE ID
1004
2004
3004
1026
4004
LAB ID
D-0451
D-0452
D-0453
D-0454
D-0455
ANALYSIS
HC1 (EPA 26)
HC1 (EPA 26)
HC1 (EPA 26)
HC1 (EPA 26)
HC1 (EPA 26)
Report Date:
Sample Received:
Purchase Order #:
Fax Number
RESULT(S)
152
96.8
140
< 2.5
84.5
09/17/99
08/27/99
039575
816-753-8420
ug/mL
ug/mL
ug/mL
ug/mL
ug/mL
DUPLICATE
RESULT(S)
152
97.2
139
< 2.5
85.0
i i
ug/mL
ug/mL
ug/mL
ug/mL
ug/mL
b8 This report shall not be reproduced, except in full, without the written approval of the laboratory.
U. S. Mail: P. O. Box 51610 • Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive • Knoxville, TN 37921-1750
Tel: 423/546-1335 » Fax: 423/546-7209 • Internet: www.galbraith.com • e-mail: labinfo@galbraith.com
-------
Galbraith Laboratories, Inc.
Accuracy with Speed - Since 1950
LABORATORY REPORT
April Carender Report Date: 09/17/99
Midwest Research Institute Labl.D.: D-0451-55
TECHNICAL INFORMATION:
1. The results are reported in ug/mL of chloride, per your instructions.
2. The spike recovery for Lab I.D. D-0455 is 103.6% and 102.1%.
3. The samples were analyzed according to procedures in 40 CFR 60, Appendix A, Method 26.
4. The analyses were performed on 9/7/99.
Authorized Release of Data
o/wji
•yl W.«e
Darryl W. Wendricks, Technical Manager
DWH:le This report shall not be reproduced, except in full, without the written approval of the laboratory. Page 2
U. S. Mail: P. O. Box 51610 • Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive » Knoxville, TN 37921-1750
Tel: 423/546-1335 • Fax: 423/546-7209 « Internet: www.galbraith.com • e-mail: labinfo@galbraith.com
-------
Galbraith Laboratories, Inc.
Accuracy with Speed - Since 1950
September 24,1999
Ms. April Carender
Midwest Research Institute
425 Volker Boulevard
Kansas City, MO 64110
Dear Ms, Carender:
Enclosed please find the raw data that you requested for samples D-0451 through
D-0455 and D-0951 through D-0952 (your samples 1004, 2004, 3004, 1026, 4004, 5071
and 5072).
If we can be of any further assistance, please do not hesitate to call.
Sincerely,/
. Lescher
Report Coordinator
U.S. Mail: P. O. Box 51610 • Knoxviile, TN 37950-1610
Other Carriers: 2323 Sycamore Drive « Knoxviile, TN 37921-1750
Tel: 423/546-1335 • Fax: 423/546-7209 • Internet: www.galbraith.com « e-mail: labinfo®galbraith,com
-------
9/24/99
10:32:21
Galbraith Laboratories, Inc
Accuracy with Speed - Since 1950
Summary of Results and QC Runs
Galbraith Sample Numbers D-0451 to D-0455
Midwest Research Institute
G
S
N
p-1711
p-1711
a-0000
a-0000
D-0451
D-0451
D-0452
D-0452
D-0453
D-0453
D-0454
D-0454
D-0455
D-0455
D-0455
D-0455
I
D
CONTROL STD
CONTROL STD
METHOD BLK
METHOD BLK
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
MATRIX SPK
MATRIX SPK
D
A
T
E
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
99/09/07
•ic u.iiw
98
99
152
151
96
97
139
138
64
66
84
85
103
102
\J. £• U
F
0
U
N
D
.5
.7
.5
.5
.2
.9
.8
.2
.7
.7
.5
.6
.1
%REC
%REC
ug
ug
ug
ug
ug
ug
ug
ug
ug
ug
ug
ug
%REC
%REC
s
p
L
S
I
z
E
. OOmg
.OOmg
.OOmg
.OOmg
. OOmg
. OOmg
. OOmg
.OOmg
.OOmg
.OOmg
.OOmg
.OOmg
. OOmg
.OOmg
.OOmg
.OOmg
I
N
I
T
S
S
S
s
s
s
s
s
s
s
s
s
s
s
s
s
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
I
N
S
T
830
830
830
830
830
830
830
830
830
830
830
830
830
830
830
830
C
0
M
M
P E
A N
G T
E S
15
15
15 <
15 <
15
15
15
15
15
15
15
15
15
15
16
16
U. S. Mail: P. O. Box 51610 « Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive » Knoxville, TN 37921-1750
Tel: 423/546-1335 • Fax: 423/546-7209 • Internet: www.galbraith.com • e-mail: labinfo@galbraith.com
-------
9/24/99
10:32:21
Galbraith Laboratories, Inc.
Accuracy with Speed - Since 1950
Listing of Control Standards
Galbraith Sample Numbers D-0451 to D-Q455
Midwest Research Institute
p-1711 Chloride ICS 100.00 R
U. S. Mail: P. O. Box 51610 • Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive * Knoxville, TN 37921-1750
Tel: 423/546-1335 • Fax; 423/546-7209 * Internet: www.galbraith.com * e-mail: labinfo@galbraith.corn
-------
9/24/99
10:33:37
Galbraith Laboratories, Inc.
Accuracy with Speed - Since 1950
Summary of Results and QC Runs
Galbraith Sample Numbers D-0951 to D-0952
Midwest Research Institute
ANALYTE=163 HC1; Method 26
S C
P 0
L M
F M
D 0 S I I P E
G AU INNAN
SI TN ZISGT
ND E D E T T E S
p-1711 CONTROL STD 99/09/07 98.5 %REC .OOmg S D 830 15
p-1711 CONTROL STD 99/09/07 99.7 %REC .OOmg S D 830 15
a-0000 METHOD BLK 99/09/07 .5 ug .OOmg S D 830 15 <
a-0000 METHOD BLK 99/09/07 .5 ug .OOmg S D 830 15 <
D-0951 SAMPLE 99/09/07 71.1 ug .OOmg S D 830 16
D-0951 SAMPLE 99/09/07 72 ug .OOmg S D 830 16
D-0952 SAMPLE 99/09/07 426.5 ug .OOmg S D 830 16
D-0952 SAMPLE 99/09/07 400.8 ug .OOmg S D 830 16
U.S. Mail: P. O. Box 51610 • Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive • Knoxville, TN 37921-1750
Tel: 423/546-1335 » Fax: 423/546-7209 » Internet: www.galbraith.com • e-mail: labinfo@galbraith.com
-------
9/24/99
10:33:37
Galbraith Laboratories, Inc
Accuracy with Speed - Since 1950
Listing of Control Standards
Galbraith Sample Numbers D-0951 to D-0952
Midwest Research Institute
p-1711 Chloride ICS 100.00 R
U. S. Mail: P. O. Box 51610 « Knoxville, TN 37950-1610
Other Carriers: 2323 Sycamore Drive « Knoxville, TN 37921-1750
Tel: 423/546-1335 » Fax: 423/546-7209 * Internet: www.galbraith.com « e-mail; labinfo«galbraith.com
-------
run date:
matrix: \r
inst. # 83o
method/std: ~lf£-\
run # std.cone, area 1 area 2
Method 26, 421, 9057
enter date:
analyst:
015
>'5 pfn-.
'•>
-8
^vn
£g731
5^505
1471^
1 1
avg,
13
ICS Recovery:
run-ai? n rt Vt.'V
Spike Recovery:
C= A
r
-!&-
ns
]>~
r
33
/CO
EXACT COPY OF/
«)ATA
//<
U
.INSPECTED
-------
Method 26, 421, 9057
run date:
matrix:
inst. #
method/std:
enter date:
analyst:
pg:
016
run # std.cone, area 1 area 2
avg.
ICS Recovery:
Spike Recovery:
Spl #
area
avg.
dilution
volume
el
HC1
per SD!
E. "
[00
lllf
"71.
•i-7-IJ
EXACT
RAW ATA
-------
Line Sample
Sample Type Level
Method
1
2
"3
&
5
6
7
8
9
10
11.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3r
1 ^
32^
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
peakid
di
di
D-451x10
0-452x10
D-453x10
0-454x10
0-455x10
0-951x10
0-952x10
D-454x5neut
di
O.Sppm
1ppm
2ppm
5ppm
di
ics
ics
a-0000
a-OOOOdup
0-451x100
D-451x100b
0-452x100
0-452x1 OOb
0-453x100
0-453x1 OOb
D-454x5neut
D-454x5neutB
di
1 ppmstd
0-455x100
0-455x1 OOb
0-455x1 OOspk
D-455x100spkB
di
0-951x50
0-951 x50b
0-952x250
D-952x250b
di
1 ppmstd
di
di
O.Sppm
1ppm
2ppm
5ppm
di
sd
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Calibration St 1
Calibration St 2
Calibration St 3
Calibration St 4
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Sample
Calibration St 1
Calibration St 2
g Calibration St 3
Calibration St 4
Sample
Sample
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met /1
m26h2so4.met \A
m26h2so4.met 1 '
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met ^
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met l\J]
m26h2so4.met I
m?fih?<;n4 rrmt
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
m26h2so4.met
shutdown. met
PeakNet 5.01
Page 1 of 3
EXACT COPY OF
RAW DATA
-------
DataFile : ...\peakid_001.DXD
Sample Name: peakid
Inject #: 1
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected: 9/7/99 12:13:17PM
Updated : 9/7/99 12:13:19 PM
Calibrated : 7/9/99 7:26:39 AM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.50
Chloride
2.087
192176
38920
10.0
T
8.0 +
6.01
4.0 +
2.0 -r
I 1 - Chloride
I
peakid
23, 456 78 910123 1415
!i I iililifi
2.00
4.00
6.00
Minutes
8.00
10.00
12.00
£XACT COPY OF
RAW DATA
-------
Data File : ...\di_002.DXD
Sample Name: di
Inject #: 2
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 12:15:29 PM
Updated: 9/7/99 12:25:32 PM
Calibrated : 9/7/99 12:13:5 8 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Heigl
1.52
Chloride
0.153
3645
431
10.0 T
8.0-
6.0 -
4.0
2.0
1 -Chloride 23
di
18
19
^ — .
I : I
' I ^ I
i '
; I
! i ! i |li II R
i h i |
.'
ll
i
I I
^•"~\_ i
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT COPY OF
RAW DATA
-------
Data File :., .\di_003 .DXD
Name: di
#: 3
Method File : e:\peaknet\method\rn26h2so4.met
System Name: Instr, 830 DX500
Collected; 9/7/99 12:26:29 PM
Updated: 9/7/99 12:36:31 PM
Calibrated : 9/7/99 12:13:58 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
2.95
0.000
1088
61
10.0
8.0+
6.0
4.0-
T
2.0
di
1 2
2.00
3 4
i! i
,5
4JO
Minutes
8,910
6.00
1^123, 14 15 16
8.00
iOJO
COPY OF
-------
Data File : ...\di_012.DXD
Sample Name: di
Inject #: 12
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 2:05:15 PM
Updated : 9/7/99 2:15:19 PM
Calibrated : 9/7/99 12:13:58 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
2.87
0.000
794
93
10.0 T
j.
8.0
6.0-
t
1
4.0J
2.0--
di
345, 6 7
89 10 11
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT COPY OF
-------
Data File : ...\05ppm_013.DXD
Sample Name: O.Sppm
Inject #: 13
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 2:17:00 PM
Updated : 9/7/99 2:27:06 PM
Calibrated : 9/7/99 2:27:05 PM
Operator: sd
Peak#
RT
Peak Information : All Peaks
Component Concentration
Area
Height
1
2
3
4
5
6
7
8
9
10
11
12
13
1.53
3.27
3.72
4.23
4.75
4.95
5.18
5.38
5.82
6.33
6.58
6.73
8.37
Chloride 0.500
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
48015
223
6486
1749
1482
670
1129
1997
1170
458
249
224
6956139
11899
75
236
216
127
145
116
112
80
47
28
40
214632
8.0
6.0
4.0
2.0-
0 -
O.Sppm
1 - Chloride
2 , 3 ,4 5Q78 9 ,101
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT
-------
Data File : ...\lppm_014.DXD
Sample Name: Ippm
Inject #: 14
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 2:27:59 PM
Updated : 9/7/99 2:38:00 PM
Calibrated : 9/7/99 2:38:00 PM
Operator: sd
Peak#
1
2
3
4
5
6
7
8
9
10
11
RT
1.53
3.02
3.25
3.75
4.88
5.90
6.42
6.95
7.52
7.87
8.37
Peak Information : All Peaks
Component Concentration
Chloride 1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Area
84510
1007
1675
11641
6270
2108
487
151
479
133
7187426
Height
22184
87
177
231
138
105
55
30
38
29
219292
CO
8.0
6.0
4.0-
2.0
Ippm
1 - Chloride
234 ,5
K i "T
/I 111
I
i| ||
u c
li
li
7 JVJ
||| /
I . J
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT
-------
Data File : ...\lppm_014.dxd
Sample Name: Ippm
Inject #: 14
Method File : M26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 2:27:59 PM
Updated : 9/8/99 12:34:36 PM
Calibrated : 9/8/99 12:02:55 PM
Operator: sd
Peak Information : All Peaks
Peak# RT Component Concentration
1 1.53 Chloride 1.000
2 3.02 ' 0.000
3 3.25 0.000
4 3.75 0.000
5 4.88 0.000
6 5.90 0.000
7 6.42 . ,.. - 0.000
8 6.95 , . , -= , . ' ' . • ' . ':OD).QOO
9 7.52 •.••-> ^ /v --,"/-, °-000
10 7.87 U.--'\ ' >~\ 0.000
11 8.37 0.000
Ippm
10.0-
l
!
8.0-
6.0
w
n
4.0
2.0-
0-
u
1 - Chloride
j
i 23,4 5 6 7, 8 9 10
u /^ -VL ; ! ' '
/ i I ! j i j -
. / .... f . , . .1 _ . 1 . L_ .. '.!.._ . - , '_
Area Height
88739 22249
1007 87
1675 177
11641 231
6270 138
2108 105
487 55
151 30
479 38
133 29
7187426 219292
i
i
j
i
1
! i
i
t
i
i
\
\
\
1 \ |
J ^~ i- 9
0 2.00 4.00 6.00 8.00 10.00
Minutes
EXACT COPY
RAW HATA
-------
Data File : ...\2ppm_015.DXD
Sample Name: 2ppm
Inject #: 15
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 2:38:58 PM
Updated : 9/7/99 2:49:04 PM
Calibrated : 9/7/99 2:49:03 PM
Operator: sd
Peak#
1
2
3
4
5
6
7
8
9
10
11
12
RT
1.53
3.28
3.77
4.20
5.07
5.87
6.25
6.78
7.22
7.60
7.78
8.38
Peak Information : All Peaks
Component Concentration
Chloride . 2.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Area
184360
1492
4599
10900
6600
1145
1943
867
312
460
354
7076543
Height
44743
174
240
249
167
120
87
68
65
73
41
216864
2ppm
10.0
8.0
6.0
4.0
2.0
0 -
1 - Chloride
2 3, 4
67 ,89 101
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT COPY
RAW DATA
-------
Data File : ...\5ppm_016.DXD
Sample Name: 5ppm
Inject #: 16
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr, 830 DX500
Collected: 9/7/99 2:49:57 PM
Updated : 9/7/99 3:00:01 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak Information : All Peaks
Peak#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
RT Component
1.53 Chloride
2.98
3.23
3.75
4.22
4.90
5.57
5.93
6.12
6.38
6.88
7.60
7.82
8.37
Concentration
5.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Area
509803
1825
2671
6823
3548
3654
1964
1004
909
931
387
200
96
7088712
Height
111005
113
247
240
218
131
139
99
93
70
32
32
25
216567
10,0
5ppm
23 4 ,5 , 6 7 8910 11, 123
i i : ! . i i A
2.00
4.00 6.00
Minutes
8.00
10.00
fcXACT COPY G
RAW DATA
-------
Data File : ...\di_017.DXD
Sample Name: di
Inject #: 17
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 3:00:56 PM
Updated : 9/7/99 3:11:01 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
0.164
3352
493
10.0 T
8.0-
6.0
4.0
2.0-
0 -
di
1 -Chloride 2 3 , 45 67 8
If,
1213
14
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT
RAW DATA
-------
Data File : ...\ics_018.DXD
Sample Name: ics
Inject #: 18
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 3:11:56 PM
Updated: 9/7/99 3:22:03 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.55
Chloride
0.985
86190
18267
ICS
10.0
8.0
6.0-
4.0
2.0
1 - Chloride
2 34,56 7890112134,1361718
11 ri
ih i • •
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT COPY OF
RAW DATA
-------
Data File : ...\ICS_019.DXD
Sample Name: ics
Inject #: 19
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 3:22:53 PM
Updated: 9/7/993:35:58PM
Calibrated : 9/7/99 3:34:02 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.58
Chloride
0.997
87444
24043
10.0 r
8.0-
T
6.01
4.0 T
I
2.0-
^ - Chloride
tcs
2,3 .4 , 56? ,8 ,9 ,10, 11
, i I . ' . i . . ; ( . i !
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT XQPY
RAW DATA
-------
Data File : ...\blk_020.DXD
Sample Name: a-0000
Inject #: 20
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 3:41:22 PM
Updated: 9/7/99 3:41:23PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
3.08
0.000
530
41
10.0 T
8.0
6.0
4.0 +
j
2.0
a-0000
1 2
2.00 4.00 6.00 8.00 10.00
Minutes
EXACT COPY
RAW DATA
-------
Data File : ...\blk_021.DXD
Sample Name: a-OOOOdup
Inject #: 21
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 3:42:41 PM
Updated: 9/7/99 3:52:43 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
0.147
1634
259
10.0 T
8.0-
I
6.0 -j-
4.0
2.0
s 0
1 - Chloride
2.00
a-OOOOdup
-X
v
9, 1011 12314 156
II 1
r
I 1 , 1 — ,. — , , :. ; , —
Ml i 1
1- '• \ \j it i AN^ * ' I >*w
r r ,• i
il i! :i; . -i
, ! , ! , '. . i , ,
i i {
4.00
6.00
8.00
10.00
Minutes
EXACT
RAW DATA
-------
Data File : ...\451_022.DXD
Sample Name : D-451x100
Inject #: 22
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 3:53:40 PM
Updated : 9/7/99 4:03:47 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
1.522
140396
30436
10.0 T
8.0
D-451xlOO
6.0
4.0
2.0
1 - Chloride
18
A
2 34 5. 6 7.89 10121314156,17
i i i.
2.00
4.00
6.00
8.00
Minutes
10.00
EXACT CO
RAW DATA
-------
Data File : ...\451_023.DXD
Sample Name: D-451xlOOb
Inject #: 23
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 4:04:39 PM
Updated : 9/7/99 4:14:49 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
1.519
140164
26086
lO.Or
8.0-
6.0
4.0
2.0 -
1 - Chloride
D-451xlOOb
23 ,4 5, 6
7,8
121314
2.00
4.00
6.00
Minutes
8.00
10.00
RAW DATA
-------
Data File : ...\452_024.DXD
Sample Name: D-452xlOO
Inject #; 24
Method File : c:\peaknet\method\m26h2so4.met
System Name: Instr. 830 DX500
Collected : 9/7/99 4:15:38 PM
Updated: 9/7/99 4:25:41 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information ; All Components
Component Concentration
Area
Height
1.52
Chloride
0,968
84561
17402
10.0
8.0
D-452xlOO
6.0 ~
4.0
2.04
T
1 - Chloride
I
2 3 4 56 ,78
15
9 1011 12 1314
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT OOPY OF
RAW DATA
-------
Data File : ...\452_025.DXD
Sample Name: D-452xlOOb
Inject #: 25
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 4:26:38 PM
Updated : 9/7/99 4:36:42 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
0.972
84922
16050
w
ZL
10.0 T
8.0
6.0
4.0-
2.0-
0 -
1 - Chloride
D-452xlOOb
16
2 34 56 7 ,8,910 11. 12314
15
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT COPY OF
RAW DATA
-------
Data File : ...\453_026.DXD
Sample Name: D-453xlOO
Inject #: 26
Method File : c:\peaknet\method\m26h2so4.rnet
System Name: Instr. 830 DX500
Collected : 9/7/99 4:37:37 PM
Updated: 9/7/99 4:47:38 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
1,397
127851
28537
10.0 -
D-453xlOO
8.0
1
6.0-
1 - Chloride
17
2,34, 5 67,8 9,101231415,16
J_
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT C
RAW DATA
-------
Data File : ...\453_027.DXD
Sample Name: D-453xlOOb
Inject #: 27
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 4:48:37 PM
Updated : 9/7/99 4:58:38 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
1.387
126807
26507
CO
10.0
8.0--
6.0
4.0
2.0
1 - Chloride
2.00
D-453xlOOb
2 . 3 45 6 78 91
. |JT !. .
011 121314
4.00 6.00
Minutes
8.00
10.00
EXACT COPY OF
-------
Data File : ...\454_028.DXD
Sample Name: D-454x5neut
Inject #: 28
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 4:59:36 PM
Updated : 9/7/99 5:09:37 PM
Calibrated : 9/7/99 3:00:OOPM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.48
Chloride
0.184
5401
934
10.0 T
8.0
6.0-
4.0-
2.0
D-454x5neut
-Chloride 234 56 7 89 10 11
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT COPY OF
RAW DATA
-------
Data File : ...\454_029.DXD
Sample Name: D-454x5neutB
Inject #: 29
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 5:10:36 PM
Updated : 9/7/99 5:20:41 PM
Calibrated : 9/7/99 3:00:OOPM
Operator: sd
Peaktf RT
Peak Information : All Components
Component Concentration
Area
Height
1.48
Chloride
0.188
5832
916
10.0
8.0
6.0
4.0 +
2.0-
D-454x5neutB
- Chloride 2 3
45 .6 7 8
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT
RAW DATA
-------
Data File : ...\di_030.DXD
Sample Name: di
Inject #: 30
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected: 9/7/99 5:28:21 PM
Updated : 9/7/99 5:28:22 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1,52
Chloride
0.174
4398
1832
w
OL
10.0 T
8.0
6.0 +
4.0
2.0-
1 - Chloride
2.00
di
3 45
4.00
6.00
Minutes
8.00
10.00
EXACT CC
RAW DATA
-------
Data File : ...\std_031.DXD
Sample Name: Ippmstd
Inject #: 31
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 5:42:56 PM
Updated: 9/7/99 5:53:01PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
1.014
}
lot.
89167
18350
10.0
8.0
6.0
4.0
2.0
1 - Chloride
Ippmstd
23, 4
5p789 1011© 14 15
. . ! :.!.!.'. i
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT
RAW DATA
-------
Data File : ...\455_032.DXD
Sample Name: D-455xlOO
Inject #: 32
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 5:53:57 PM
Updated : 9/7/99 6:03:59 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
0.845
72093
13698
10.0 y
i
8.0-
6.0
4.0
2.0-
0 -
1 - Chloride
D-455xlOO
2 3
456. 7 8910111213 14 15
i .i i • , ' . . i . * . F
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT COPY
RAW DATA
-------
Data File : ...\455_033.DXD
Sample Name: D-455xlOOb
Inject #: 33
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 6:04:56 PM
Updated : 9/7/99 6:15:02 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
0.850
72606
16245
10.0 j
1
8.01
D-455xlOOb
6.0
4.01
2.0 f
j
i
0
1 - Chloride
3 45
37^910.112316 1617
li I | I
! I/
0
2.00
• I '• ;
4.00
i 1 i j
i ' '
6.00
8.00
10.00
Minutes
EXACT
>Y G
-------
Data File : ...\455_034.DXD
Sample Name: D-455xlOOspk
Inject #: 34
Method File : c:\peaknet\method\m26h2so4,met
System Name: fostr. 830 DXSGO
Collected: 9/7/99 6:15:56 PM
Updated: 9/7/99 6:26:00 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
2.919
28145?
61607
10.0 T
8.0-
1 1 - Chloride
6.0 f
j
•*>
4.0-
2.0
o-f
D-455xlOOspk C
156
16
3I45
2.00
4.00 6.00
Minutes
8.00
10.00
EXACT
-------
Data File : ...\455_035.DXD
Sample Name: D-455xlOOspkB
Inject #: 35
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 6:26:56 PM
Updated : 9/7/99 6:36:57 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
2.890
278488
61320
10.0 T
8.0
6.0-
4.0 -
2.0-
1 - Chloride
D-455xlOOspkB
2 34
567 , 8 90 112 134 15
2.00
4.00
6.00
8.00
10.00
Minutes
RAW DATA
-------
Data File : ...\di_036.DXD
Sample Name: di
Inject #: 36
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 6:37:55 PM
Updated: 9/7/99 6:47:57 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
0.148
1748
318
di
10.0 T
:
8.0-
6.0
4.0-
2.0-
1 - Chloride
2 3,45,67 8,9 1011213 14 15
16
2.00
4.00
6.00
8.00
Minutes
10.00
fl
EXACT COPY OF
RAW DATA
-------
Data File : ...\951_037.DXD
Sample Name : D-951x50
Inject #: 37
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 6:48:56 PM
Updated : 9/7/99 6:58:58 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.52
Chloride
1.421
130268
23248
10.0-r
8.0-
6.0
4.0
2.0 +
0-r
1 - Chloride
D-951x50
2 3 ,4567
89011
I III'
1617322(222 23
2.00
4.00
6.00
8.00
10.00
Minutes
EXACT
RAW DATA
-------
Data File : ...\951_038.DXB
Sample Name :D-951x50b
Inject #: 38
Method File : c:\peaknet\method\m26h2so4.met
System Name : Ihstr. 830 DX500
Collected : 9/7/99 6:59:55 PM
Updated : 9/7/99 7:09:58 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
1.439
132051
25236
10.0-
8.0-^
6.0
4.0
2.0-
1 - Chloride
D-951x50b
2 3 , 45 678010 1112 13 , 14
2.00
4,00
6.00
8.00
10.00
Minutes
EXACT
-------
Data File : ...\952_039.DXD
Sample Name: D-952x250
Inject #: 39
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 7:10:54 PM
Updated : 9/7/99 7:20:58 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
1.706
158949
31413
10.0
8.0J-
6.0-
-1.0-
2.0-
1 - Chloride
D-952x250
4 56 789131121314 15 16. 17
2.00
4.00
6.00
8.00
Minutes
10.00
EXACT COPY
RAW DATA
-------
Data File : ...\952_040.DXD
Sample Name: D-952x250b
Inject #: 40
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected: 9/7/997:21:55PM
Updated : 9/7/99 7:31:58 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
1.603
148618
31995
10.0-
8.01
!
t
6.0 j
4.0
I
2.o!
1 - Chloride
2.00
D-952x250b
3 433 7 890-j 1 1213
14 15
0-
J^_
3 I i I; I (I |
i I
f . i i ,:
I! H ! i i
!
I
4.00
6.00
8.00
10.00
Minutes
Gfl
-------
Data File : ...\di_041.DXD
Sample Name: di
Inject #: 41
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 7:32:55 PM
Updated : 9/7/99 7:42:59 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
1.55
Chloride
0.167
3672
174
di
10.0
8.0-
6.0 i
•4.0-
2.0
1 - Chloride
234
56 78 910111213
11 ! ii
141516 17 , 1£
2.00
4.00 6.00
Minutes
8.00
10.00
-—v~ A/OT /f"*r"MP'V I
tXACT GUri
RAW DATA
-------
Data File : ...\stdJ)42.DXD
Sample Name: Ippmstd
Inject #: 42
Method File : c:\peaknet\method\m26h2so4.met
System Name: festr. 830 DX500
Collected: 9/7/99 7:43:55 PM
Updated : 9/7/99 7:54:00 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1,55
Chloride
1.040
91804
22851
10.0-
8.0
6.0-
4,0-f
2.0-
i
1 - Chloride
Ippmstd
2345 ,6,78
9 131213,14 15 16
2,00
4.00 6.00
Minutes
8.00
10.00
EXACT
DATA
-------
Data File : ...\di_043.DXD
Sample Name : di
Inject #: 43
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 7:54:56 PM
Updated : 9/7/99 8:05:00 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak # RT
Peak Information : All Components
Component Concentration
Area
Height
3.03
0.000
405
58
10.0
8.0 +
|
6.0 j
4.0-
2.0-
di
1,23 4 567 8 9 10 , 1112 134
hi i! i
15
2.00
4.00 6.00
Minutes
s.oo
10.00
-------
Data File : ...\di_044.DXD
Sample Name: di
Inject #: 44
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 8:05:56 PM
Updated : 9/7/99 8:16:00 PM
Calibrated : 9/7/99 3:00:00 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1,55
Chloride
0.152
2188
207
10.0
di
8.0 1
T
40
4.0
2.0--
1 -Chloride 2 3 4 5 678 9,1(11 ;!2
3 14 1516 17 ,18
2.00
4.00 6.00
Minutes
S.OO
10,00
EXACT CT OF
RAW DATA
-------
Data File : ...\05ppm_045.DXD
Sample Name: O.Sppm
Inject #: 45
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 8:16:57 PM
Updated: 9/7/99 8:27:01 PM
Calibrated : 9/7/99 8:27:00 PM
Operator: sd
Peak Information : All Peaks
Peak#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RT Component
1.53 Chloride
2.87
3.20
3.85
4.18
5.00
5.50
5.63
6.18
6.48
7.02
7.18
7.42
7.80
8.43
Concentration
0.500
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Area
44750
1349
2091
9143
5180
1923
1106
3788
1386
1713
759
311
630
188
7130661
Height
9180
78
226
282
240
158
134
151
94
110
56
54
76
32
219458
10.0 T
8.0
6.0
4.0
2.0-
O.Sppm
1 - Chloride
2 3 45
6 78 £10
2.00
4.00 6.00
Minutes
8.00
10.00
iiXACT COPY
RAW DATA
-------
Data File : ,,,\lppm_Q46.DXD
Sample Name: Ippm
Inject #: 46
Method File : c:\peaknet\method\m26h2so4.met
System Name: fastr. 830 DX500
Collected : 9/7/99 8:27:58 PM
Updated: 9/7/99 8:37:59 PM
Calibrated : 9/7/99 8:37:58 PM
Operator: sd
Peak#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
RT
1.55
3.15
3,87
4.47
4.77
5.12
5.35
5.60
5.88
6.15
6.32
6,53
6.68
6.78
7.07
7.28
7.55
7.85
8.42
Peak Information : All Peaks
Component Concentration
Chloride 1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
Area
92457
1341
6097
1147
2812
595
1073
1978
1145
820
580
882
207
878
324
659
426
110
7393877
Height
22971
130
257
180
150
123
112
147
111
109
85
89
70
83
55
59
46
21
225024
£XACT
DATA
-------
10.0
8.0
6.0 f
1 - Chloride
Ippm
2 3 4567,8910112641961718
i
!
! •
\
I
i
HIM
! I :
2.00
4.00
6.00
8.00
10.00
Minutes
f?
DATA
-------
Data File : ...\2ppm_047.DXD
Sample Name: 2ppm
Inject #: 47
Method File : c:\peaknet\method\m26h2so4.met
System Name; Instr, 830 DX500
Collected: 9/7/99 8:38:59 PM
Updated : 9/7/99 8:49:00 PM
Calibrated : 9/7/99 8:48:59 PM
Operator: sd
Peak Information : All Peaks
Peak#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
RT Component
1,53 Chloride
3.17
3,65
3.88
4.82
4,97
5.18
5,55
5.70
6.23
6.55
6,67
7.05
7.57
7.70
8.45
Concentration
2.000
0.000
0,000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
Area
185666
1081
3007
2400
856
1317
1988
615
2223
746
67
478
539
202
85
7303977
Height
42468
127
202
246
121
142
94
104
116
69
18
52
34
36
13
223462
10 JT
8.0-
6.0-
4.0
1
ro-f
2ppm
1 - Chloride
2, 34 567 89 10112,13 116
' ' ilii ll ill : • lh!
t V
0
2.00
1 \ \
4,
!
i .! !!
00 6.00
i
!
8,00
10.00
Minutes
-------
Data File : ...\5ppm_048.DXD
Sample Name: 5ppm
Inject #: 48
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected : 9/7/99 8:49:59 PM
Updated : 9/7/99 9:00:01 PM
Calibrated : 9/7/99 8:59:59 PM
Operator: sd
Peak Information : All Peaks
Peak#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RT Component
1.57 Chloride
3.15
3.58
3.78
4.15
4.82
5.23
5.48
5.72
5.92
6.47
6.58
6.92
7.28
8.43
Concentration
5.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Area
522199
1380
2081
1758
2389
2494
2652
1374
718
2601
283
905
1661
630
7292714
Height
129625
112
196
235
225
154
173
132
101
98
61
66
97
46
222703
10.0
5.0-[
6.0-
4.0
5ppm
2 34 5 6 ,78910 ,112,1314
^
I '; |i I
I
I
2.00
4.00 6.00
Minutes
8.00
t-A
10.00
-------
Data File : ...\di_049.DXD
Sample Name; di
Inject #: 49
Method File : c:\peaknet\method\m26h2so4.met
System Name : Instr. 830 DX500
Collected; 9/7/99 9:01:00 PM
Updated : 9/7/99 9:11:05 PM
Calibrated : 9/7/99 8:59:59 PM
Operator: sd
Peak# RT
Peak Information : All Components
Component Concentration
Area
Height
1.53
Chloride
0.175
3589
869
10.0
di
8,0 +
6,0
2.0
1-Chloride 2 3 ,45 6 789 113112, 1314 15,1617
i [
18
2,00
4.00 6.00
Minutes
§,00
10.00
-------
tO\M26H2S04.MET Updated:9/8/99 3:20:49 PM Total:!
1. Component:Chloride
Standard:External Fit Type:Linear
origin:Ignore Calibration:Area
rr=0.998473
Amt=9.484e-006*Resp+0.1381
5x105-
4x105-)
3x10-
2x1O5-
1x10=
1.000
2.000 3.000
Amount
4.000 5.000
RAW DATA
.01
Page 1 of 1
9/8/99 3:28:01 PM"
-------
Appendix H
Metals Analysis Results
MRJ-AED«495l-<»-OS.wpd
-------
Appendix H:
Emission Test Evaluation of a Pathological Waste
Incinerator at the University of Georgia—
Metals Emission Results
1 Sample Receipt
The metals emission test evaluation of a pathological waste incinerator at the
University of Georgia consisted of sampling train samples collected using EPA Method
29 in Appendix A of 40 CFR 60. The sampling train samples from four runs plus the
corresponding field reagent blanks were received intact and cold at Midwest Research
Institute (MRI) on August 26,1999.
Before sample preparation, the weight of each sample container (excluding filters)
was measured and recorded to verify that sample losses did not occur during shipment.
Also, the pH of each front-half rinse sample and each back-half nitric acid/hydrogen
peroxide impinger sample was measured and found to be less than 2. All samples were
stored at approximately 4°C until sample preparation.
2 Sample Preparation
The sampling train, samples were prepared for metals analysis according to the Site-
Specific Test Plan for the Emission Test Evaluation of a Pathological Waste Incinerator
at the University of Georgia, dated August 3, 1999. Quality control samples were also
prepared as specified in Table 2.5.2-1 of the associated Quality Assurance Project Plan
(QAPP), dated August 3,1999. The samples were digested according to the procedures
in Method 29 as specified in Section 2.4.2 of the QAPP. Method 29 incorporates
analytical methods published in "Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods" (EPA SW-846). Additional sample preparation for mercury
was conducted according to MRI Standard Operation Procedure (SOP) ASF-420, based
on SW-846 Method 7470A, as specified in the QAPP.
3 Sample Analysis
The samples were analyzed for cadmium (Cd) and lead (Pb) using graphite furnace
atomic absorption spectrometry (GFAA). Mercury (Hg) was analyzed using cold vapor
atomic absorption spectrometry (CVAA). The analyses were conducted as specified in
Section 2.4.2 of the QAPP.
H-l
-------
3.1 GFAA Analysis
Two Varian SpectrAA-300Z GFAA spectrometers, with Zeeman background
correction, were used for GFAA analysis according to MRI SOP ASF-602, based on SW-
846 Method 7000A and the respective 7000-series methods. The quality control (QC)
procedures listed in SOP were implemented, including initial calibration, initial and
continuing calibration verifications (ICVs and CCVs), initial and continuing calibration
blanks (ICBs and CCBs), and the analysis of post-digestion spikes to test for matrix
interferences. The front-half samples were analyzed by the method of standard additions.
The method of standard additions was not required for the back-half samples, based on
the results of the interference tests.
3.2 CVAA Analysis
A PSA Merlin Plus Mercury CVAA was used for mercury analysis according to
MRI SOP ASF-603, based on SW-846 Methods 7000A and 7470A. The QC procedures
listed in the SOP were implemented, including initial calibration, ICVs, CCVs, ICBs, and
CCBs. All samples were analyzed in duplicate, according to the Method 29 procedures.
4 Sample Results
The attached tables summarize the metals emission test results for cadmium, lead, and
mercury, as follows:
• Table H-l presents the metals analysis results for each component of the sampling
trains as well as for the field reagent blanks, in units of total ug.
» Table H-2 presents a summary of the sample quality control data, including spike
recoveries, filter reference material recoveries, and spike duplicate precision results.
The simulated train method blank results are also shown in this table.
5 Quality Contol Results and Data Quality Assessment
The instrument analysis and sample analysis QC objectives and results, defined in
Table 2.5.2-1 of the QAPP and in the respective SOPs and SW-846 methods, are
discussed below.
5.1 Instrument Analysis Quality Control
The instrument analysis QC specifications were met for cadmium, lead, and mercury
as follows:
• The ICV recoveries were within 90% to 110% on each of the respective instruments.
H-2
-------
• The CCV recoveries were within 80% to 120% on each of the respective instruments.
• The instrument blanks (ICBs and CCBs) were all near or below their respective
detection limits.
5.2 Sample Analysis Quality Control
Reference the attached Table H-2 for a summary of the sample analysis QC. The
field reagent blank results are summarized as part of Table H-l. The sample analysis QC
specifications were met for cadmium, lead, and mercury as follows:
• The cadmium and mercury results were below the detection limit in the simulated
train front-half and back-half method blanks (laboratory reagent blanks). Lead was
detected in these method blanks between one and four times the corresponding
detection limit.
• All cadmium and mercury results in the field reagent blanks were below the detection
limit with the exception of cadmium in the rinse and filter reagent blank, which had a
result only slightly above the corresponding detection limit. The field reagent blank
results for lead were between approximately one and four times the respective
detection limit.
• The results from the front-half and back-half simulated train spikes and spike
duplicates (spiked laboratory reagent blanks) were within the 65% to 135% recovery
specification. Also, all the spike sets met the 40% relative percent difference
criterion.
• The results from the filter reference material were within the typical 75% to 125%
recovery criterion for cadmium and lead in the filter. Note that mercury was not an
analyte in the filter reference material.
• The mercury matrix spike and matrix spike duplicate results were all within the 75%
to 125% recovery criterion. Also, the spike set results met the 20% relative percent
difference specification of the method.
H-3
-------
Table H-l. Metals Analysis Results for Method 29 Emission Test Samples
Run No./Description
Runl
Rinse and filter, ug
HNO3 impingers, ug
Fourth impinger, ug
KMnO4 impingers, ug
HC1 rinse, ug
Run 2
Rinse and filter, ug
HNO3 impingers, ug
Fourth impinger, ug
KMnO4 impingers, ug
HC1 rinse, ug
Run3
Rinse and filter, ug
HNO3 impingers, ug
Fourth impinger, ug
KMnO4 impingers, ug
HC1 rinse, ug
Run 4
Rinse and filter, ug
HNO3 impingers, ug
Fourth impinger, ug
KMnO4 impingers, ug
HC1 rinse, ug
Field Reagent Blank
Rinse and filter, ug
HNO3 impingers, ug
Fourth impinger, ug
KMnO4 impingers, ug
HC1 rinse, ug
Lab
Field Barcode
Sample ID No.
1013/1014 17361
1015 17341
1016 17346
1017 17351
1018 17369
2013/2014 17362
2015 17342
2016 17347
2017 17352
2018 17370
3013/3014 17363
3015 17343
3016 17348
3017 17353
3018 17371
4013/4014 17364
4015 17344
4016 17349
4017 17354
4018 17372
1034/1035 17360
1034/1036 17340
1034 17345
1037/1038 17350
1039 17368
Cd
Flag (ug)
5.12
0.298
NA
NA
NA
5.92
0.152
NA
NA
NA
6.00
0.480
NA
NA
NA
2.60
0.348
NA
NA
NA
0.120
< 0.075
NA
NA
NA
Pb
Flag (ug)
500
0.762
NA
NA
NA
446
0.573
NA
NA
NA
442
0.819
NA
NA
NA
286
1.36
NA
NA
NA
0.740
0.180
NA
NA
NA
Hg
Flag (ug)
< 0.400
< 1.28
< 0.190
< 1.00
1.07
< 0.400
< 1.36
< 0.195
< 1.00
< 1.00
< 0.400
< 1.38
< 0.201
< 1.00
< 1.00
< 0.400
< 1.20
< 0.194
< 1.00
< 1.00
< 0.400
< 3.00
< 0.200
< 0.800
< 1.00
A "<" flag indicates a result less than the detection limit, corrected for any digestion, dilution and aliquot factors.
NA = Not applicable
-------
Table H-2. Metals Sample Quality Control Results for Method 29 Emission Test Samples
Sample QC Summary
QC Type:
Barcode:
Analyte
Cd
Pb
Hg
Spiked laboratory reagent blanks
17356 17357 17356/57
Front Half
Front Half Duplicate
Recovery Recovery RPD
(%) (%) (%)
118.0% 110.0% 7.0%
113.3% 98.9% 13.5%
100.0% 99.8% 0.2%
17366 17367 17366/67
Back Half
Back Half Duplicate
Recovery Recovery RPD
(%) (%) (%)
90.5% 89.5% 1.1%
92.1% 92.5% 0.4%
NA NA NA
SRM
17359
SRM
Recovery
(%)
104.0%
96.2%
NA
Laboratory Reagent Blank Summary
Barcode:
Analyte
Cd
Pb
Hg
17355
Front Half
Method
Blank
(Hi)
< 0.100
0.720
< 0.400
17365
Back Half
Method
Blank
(ug)
< 0.050
0.100
< 1.20*
: This is the Batch Hg-1 method blank result, calculated using nominal values to simulate actual back-half Impingers 1-3 field volumes.
Hg Matrix Spike Summary
Barcode:
Sample:
Analyte
Hg
17342S 17342D 17342S/D
2015 2015 2015
Spike Spike Dup Spike Set
Recovery Recovery RPD
(%) (%) (%)
106.2% 104.3% 1.8%
17347S 17347D 17347S/D
2016 2016 2016
Spike Spike Dup Spike Set
Recovery Recovery RPD
(%) (%) (%)
102.7% 104.7% 2.0%
17352S 17352D 17352S/D
2017 2017 2017
Spike Spike Dup Spike Set
Recovery Recovery RPD
(%) (%) (%)
105.0% 105.4% 0.4%
17370S 17370D 17370S/D
2018 2018 2018
Spike Spike Dup Spike Set
Recovery Recovery RPD
(%) (%) (%)
104.4% 103.6% 0.8%
RPD = Relative percent difference
SRM = Standard reference material (QC filter: High Purity QC-TMFM-B)
NA = Not applicable
-------
SAMPLE CONDITION AT RECEIVING LABORATORY
MR! Project No. 1O4951.1.009.04.03
Sample Type: Sample components recovered from M29 sampling trains and field reagent blank samples.
Target Anaiytes: Multiple metals (Cd, Hg, and Pb) by 40 CFR 60, Appendix A, Method 29.
See analysis request memo from A. Carender
Field Sample Condition Information Documented By.
Date:
Sample
No.
Field Weight,
grams,
or Condition
Lab Weight,
grams,
or Condition
Comments
Received and
Checked Bv
Date
1012
1013
1014
1015
1016
1017
1018
1033
1034
1035
1036
1037
1038
1039
2012
2013
2014
2015
2016
2017
2018
3012
3013
3014
3015
3016
3017
3018
. fl
3m. 5
P7?./
103.
, 0
. c
3ft?
IOC/1.3
The purpose of this form is to document the condition and to verify the integrity of samples received by the analytical
laboratory. The Field Laboratory Leader completes the first two columns with sample numbers and final gross field sample
weights of liquid samples or the condition of other samples as applicable. The analytical laboratory sample custodian, the
analytical coordinator, the analyst, or a designee observes all samples received, reweighs liquid samples that do not have
contents level marks or that are suspect, notes the condition of other samples, and documents all observations on this form.
SCM29X.WPO July 8. 1897 (rev. SGM29_9.WPD August 2, 1999)
-------
Appendix I
PCDDs/PCDFs Analysis Results
MRI-AED«495I-0»-
-------
TECHNICAL NARRATIVE
Emission Test Evaluation of a Pathological Waste Incinerator
at the University of Georgia
Dioxin Test Results
MRI Project: 104951.1.009
The attached tables provide a summary of the dioxin emission test data.
The samples were received in good condition on August 26, 1999, under chain-of-
custody. The samples were extracted on August 30, 1999 and analyzed September 7,
1999.
TECHNICAL REVIEW PROCESS
Technical review included the examination and/or verification of the following:
• Chain-of-custody records and sample identification numbers.
• Sample extraction records and analysis logs.
• QC spiking concentrations from the standard and sample preparation records.
• Recalculation of relative response factors for representative compounds.
• Isomer identification by mass ratio and retention times for representative compounds.
• Theoretical isomer ratios vs. Method 23 specifications.
• Recalculation of surrogate recoveries for representative data.
• Recalculation of chemical concentration for representative data.
• Recalculation of total results for representative congeners.
• Assessment of IQS and field surrogate recoveries.
• Assessment of method blank and laboratory control spike data.
• Completion of the technical review checklist form.
• Inspection of representative chromatograms, including diphenyl ether interference
and lock-mass data.
• Assessment of data quality objectives specified in the QAPP.
-------
COMMENTARY
Recoveries were outside the 70-130% criteria for the HxCDF (53-65%), HpCDF 139-
294%), and TCDD (43-49%) field surrogates. These values were consistent with the
method blank and control spike field surrogate recoveries. The field surrogates are
calculated the same as the native congeners (i.e. by isotope dilution technique) and the
recoveries based relative to the theoretical spiked amounts. The implication is that
corresponding native values may have similar precision and accuracy qualifications.
However, with few minor exceptions, the IQS recoveries were all within the criteria of
the method.
The laboratory method blank and all field reagent blanks exhibited non-detect or very
trace levels of PCDD/PCDF, an order of magnitude lower than concentrations determined
in the composite train samples and slightly less than the toluene QA rinse samples.
Data for TCDF, PeCDF, and TCDD isomers on the XAD reagent blank were lost due to
lock-mass variance during the analysis run; however, the remaining data are consistent
with the other reagent blanks and the method blank for the batch.
Laboratory control spike recoveries were within objectives for all native analytes. IQS
recoveries were low for this sample, but the isotope dilution calculations corrected the
native concentrations to within the required accuracy.
An independent spike check was analyzed to validate the accuracy of the calibration
curve and QC spike concentrations.
The majority of PCDD/F data from the Toluene QA Rinse samples were non-detect,
indicating that the train recoveries were effectively performed. Reagent blank results
were also generally below method detection limits indicating emission results are not
biased by any background levels.
Method detection limits are based on 2.5 times signal-to-noise response. Estimated
Maximum Possible Concentrations (EMPCs) are values that were above the MDL but did
not meet the ion ratio criteria.
Native 2,3,7,8-TCDF values were confirmed by re-analysis of the extracts on an
alternative column. These values are comparable with the initial analysis; however, the
values for the sample trains are reported as EMPCs because of diphenyl ether
interference. Both sets of data are reported, the user may elect to use the higher of the
two values (i.e., primary or confirmation data) in rendering conservative regulatory
decisions.
-------
Table 1. Native Summary Results (total pg)
Field ID
Description
Extract ID
MS File
Matrix
Isomer
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
123789HXCDF
234678HXCDF
1234678HPCDF
1234789HPCDF
123467890CDF
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
Totals
Total TCDF
Total TCDD
Total PeCDF
Total PeCDD
Total HxCDF
Total HxCDD
Total HpCDF
Total HpCDD
NA
Method Blank
43687
I07V5:1
XAD
U 2.61
1.81
U 1.28 EMPC
U 1.56 EMPC
2.34
U 1.69 EMPC
1.58
2.88
U 3.08
5.27
U 2.12
U 3.14
U 2.89 EMPC
1.76
1.88
7.32
58.0
U 2.35
U 2.12
2.07
2.18
4.25
3.64
4.09
13.2
1006-1009
Run 1
43682
I07V5:7
M23 Train
19.6
16.3
37.3
18.2
27.5
85.0
23.1
U 111 EMPC
44.1
41.5
U 3.57 EMPC
U 9.46 EMPC
11.1
20.5
30.8
118
308
96.2
50.2
163
184
235
325
47.3
333
2006-2009
Run 2
43683
I07V5:8
M23 Train
74.9
75.8
153
66.9
99.1
492
159
261
199
78.6
7.71
21.8
12.7
30.1
U 31.6 EMPC
160
320
887
99.4
764
325
1220
303
393
438
3006-3009
Run3
43684
I07V5:9
M23 Train
U 17.8 EMPC
17.7
43.7
18.3
25.4
65.3
18.7
87.2
37.3
53.2
U 3.27 EMPC
11.7
14.4
27.4
27.9
179
254
237
94.9
199
514
206
938
117
551
4006-4009
Run 4
43685
I07V5:10
M23 Train
35.5
32.9
64.3
32.8
44.3
140
48.6
101
51.3
35.4
U 4.48 EMPC
12.5
8.89
15.0
17.2
69.6
172
430
79.2
357
240
427
222
119
178
1010
Run 1
43672
I07V5:3
Toluene Rinse
U 4.75
2.29
2.26
U 3.46 EMPC
4.56
4.47
3.50
U 6.75 EMPC
U 4.57 EMPC
6.32
U 2.55
2.72
U 2.20 EMPC
2.92
U 3.08 EMPC
6.55
18.7
U 3.98
U 2.55
4.56
2.72
12.5
2.92
U 1.21
6.24
NC - Not calculated due to lock mass fluctuation.
a- These values should be considered a maximum possible concentration.
U- Undetected above the corresponding noise-based detection limit.
J- Value calculated from a 13C-IQS with recovery outside of 40%-130% (tetra-hexa) and 25% - 130% (hepta-octa)
EMPC - Estimated Maximum Possible Concentration.
-------
Table 1. Native Summary Results (total pg)
Field ID
Description
Extract ID
MS File
Matrix
Isomer
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
123789HXCDF
234678HXCDF
1234678HPCDF
1234789HPCDF
12346789OCDF
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
Totals
Total TCDF
Total TCDD
Total PeCDF
Total PeCDD
Total HxCDF
Total HxCDD
Total HpCDF
Total HpCDD
2010
Run 2
43673
I07V5:4
Toluene Rinse
U 3.68
U 1.20
U 1.45
U 2.67
U 2.42 EMPC
3.98
U 3.38
U 5.26
U 7.41
U 3.63 EMPC
U 3.13
U 2.85
U 2.15
U 2.05
U 2.11
U 5.30 EMPC
15.4
U 3.73
U 3.13
1.39
U 2.85
7.35
1.97
4.62
U 4.25
3010
Run3
43674
I07V5:5
Toluene Rinse
U 3.19
U 1.72 EMPC
U 1.73 EMPC
U 1.83 EMPC
U 3.24 EMPC
U 3.75 EMPC
2.70
4.84
U 4.41 EMPC
U 5.42 EMPC
U 2.20
U 3.94
U 1.98
U 1.88
U 1.94
U 5.23 EMPC
22.4
U 3.22
U 2.20
U 1.13
U 3;94
2.70
U 1.93
3.79
6.44
4010
Run 4
43675
I07V5:6
Toluene Rinse
U 2.98
U 0.800
U 0.970
U 2.43
U 2.09
U 2.79 EMPC
U 3.07
4.13
U 3.83
U 2.26 EMPC
U 2.81
U 2.30
U 2.08
U 1.98
U 2.03
U 3.51 EMPC
U 14.1 EMPC
U 2.91
U 2.81
U 0.880
U 2.30
2.39
U 2.03
3.23
U 3.21
1027
Reagent Blank
43677
I07V5:15
Acetone
U 2.90
U 0.650
U 0.790
U 0.770
U 0.660
U 0.850
U 0.970
U 0.920
U 1.30
U 1.49
U 2.66
U 1.32
U 1.33
U 1.27
U 1.31
U 1.96
U 18.6 EMPC
U 2.58
U 2.66
U 0.710
U 1.32
U 0.800
U 1.30
U 0.95
3.10
1028
Reagent Blank
43678
I07V5:16
Methylene chloride
U 2.18
U 0.390
U 0.470
U 0.640
U 0.550
U 0.710
U 0.810
U 0.930
U 1.31
U 1.45
U 1.96
U 1.72
U 1.68
U 1.60
U 1.65
U 2.13 EMPC
13.4
U 1.98
U 1.96
U 0.430
U 1.72
U 0.670
U 1.64
U 0.82
U 1.46
1029
Reagent Blank
43676
I07V5:14
Toluene
U 3.46
2.17
1.39
U 1.17 EMPC
1.72
1.31
U 1.36 EMPC
2.26
U 1.90
2.93
U 3.18
2.21
U 0.993
1.38
1.54
3.80
29.4
U 3.06
U 3.18
3.63
2.21
3.03
2.92
3.22
3.90
-------
Table 1. Native Summary Results (total pg)
Field ID
Description
Extract ID
MS File
Matrix
Isomer
2378TCDF
12378PECDF
23478PECDF
123478HXCDF
123678HXCDF
123789HXCDF
234678HXCDF
1234678HPCDF
1234789HPCDF
12346789OCDF
2378TCDD
12378PECDD
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDD
12346789OCDD
Totals
Total TCDF
Total TCDD
Total PeCDF
Total PeCDD
Total HxCDF
Total HxCDD
Total HpCDF
Total HpCDD
1030
Reagent Blank
43680
I07V5:18
Filter
U 2.40
U 0.950
U 1.15
U 2.46
U 2.12
U 2.74
U 3.12
U 3.52
U 4.97
U 1.50
U 2.96
U 3.66
U 2.65
U 2.52
U 2.59
2.41
15.8
U 3.30
U 2.96
U 1.04
U 3.66
U 2.56
U 2.58
U 0.88
5.05
1031
Reagent Blank
43681
I07V5:19
XAD
NC
NC
NC
U 1.20
U 1.03
U 1.33
U 1.52
U 1.46
U 2.06
U 1.43
NC
U 0.240
U 1.59
U 1.52
U 1.56
3.54
30.6
NC
NC
NC
U 0.240
U 1.25
U 1.56
U 0.580
4.89
1032
Reagent Blank
43679
I07V5:17
Type II water
U 1.56
U 0.790
U 0.950
U 0.390
U 0.408
U 0.440
U 0.500
U 1.19
U 1.68
U 1.49
U 2.01
U 2.24
U 2.16
U 2.06
U 2.11
U 2.64
17.7
U 1.65
U 2.01
U 0.860
U 2.24
U 0.410
U 2.11
U 0.99
U 3.10
NA
LCS
43686
I07V5:2
XAD
200
837
684
544
802
716
638
909
1015
1856
162
836
810
811
893
905
1895
209
162
1536
836
2700
1628
1508
925.0
NA
Spike Ckeck
43688
NA
(%Rec)
191 96
805 81
751 75 b
788 79 b
891 89
853 85
764 76 b
894 89
891 89
1901 95
159 80
832 83
846 85
792 79 b
844 84
910 91
1915 96
NA
NA
NA
NA
NA
NA
NA
NA
-------
Table 2. Surrogate Recovery Results
(% of Theoretical Amount)
Field ID
Description
Extract ID
MS File
Matrix
Isomer
13C2378TCDF
13C12378PeCDF
13C123678HxCDF
13C1234678HpCDF
13C2378TCDD
13C12378PeCDD
13C123678HxCDD
13C1234678HpCDD
13C12OCDD
13C23478PeCDF
13C123478HxCDF
13C1234789HpCDF
37CL2378TCDD
13C123478HxCDD
NA
Method Blank
43687
I07V5:1
XAD
84.5
146 J
118
79.6
88.8
90.1
111
108
113
58.4 J
60.5 J
124.0
97.4
82.4
1006-1009
Run 1
43682
I07V5:7
M23 Train
65.2
62.5
43.0
25.6
48.0
43.2
54.2
85.1
94.2
106
56.7 J
192 J
97.4
80.4
2006-2009
Run 2
43683
I07V5:8
M23 Train
61.9
86.9
36.7 J
23.9 J
60.1
62.6
76.5
108
107
84.7
58.5 J
294 J
97.2
83.0
3006-3009
Run3
43684
I07V5:9
M23 Train
62.4
95.6
72.1
46.9
58.5
72.8
89.4
108
107
72.6
52.6 J
139 J
85.6
79.1
4006-4009
Run 4
43685
I07V5:10
M23 Train
78.6
98.8
54.3
39.8
73.8
70.8
80.2
109
108
81.6
65.4 J
191 J
94.8
85.9
1010
Run 1
43672
I07V5:3
Toluene Rinse
51.8
102
67.3
50.0
56.6
76.8
99.3
116
109
NA
NA
NA
NA
NA
NC - Not calculated due to lock mass fluctuation.
J - Recovery outside criteria: 70%-130% (field surrogates), 40%-130% (tetra-hexa IQS), 25%-130% (hepta-octa IQS)
NA - not applicable
-------
Table 2. Surrogate Recovery Results
(% of Theoretical Amount)
Field ID
Description
Extract ID
MS File
Matrix
Isomer
13C2378TCDF
13C12378PeCDF
13C123678HxCDF
13C1234678HpCDF
13C2378TCDD
13C12378P6CDD
13C123678HXCDD
13C1234678HpCDD
13C12OCDD
13C23478PeCDF
13C123478HxCDF
13C1234789HpCDF
37CL2378TCDD
13C123478HxCDD
2010
Run 2
43673
I07V5:4
Toluene Rinse
48,0
84.3
45,8
32.1
48.3
58.3
71.1
81.9
82.7
NA
NA
NA
NA
NA
3010
Run3
43674
I07V5:5
Toluene Rinse
56.3
98.1
60.9
45.0
59.3
69.0
95.8
106
97.8
NA
NA
NA
NA
NA
4010
Run 4
43675
I07V5:6
Toluene Rinse
60.0
92.4
68.1
59.8
62.6
72.7
96.4
109
104
NA
NA
NA
NA
NA
1027
Reagent Blank
43677
I07V5:15
Acetone
50.4
96.5
138 J
102
50.2
81.4
103
110
105
NA
NA
NA
NA
NA
1028
Reagent Blank
43678
I07V5;16
Methylene chloride
59.2
99.2
115
89.4
61.5
80.6
104
120
102
NA
NA
NA
NA
NA
1029
Reagent Blank
43676
I07V5:14
Toluene
40.8
90.2
99.7
68.4
42.3
68.7
93.6
101
106
NA
NA
NA
NA
NA
-------
Table 2. Surrogate Recovery Results
(% of Theoretical Amount)
Field ID
Description
Extract ID
MS File
Matrix
Isomer
13C2378TCDF
13C12378PeCDF
13C123678HXCDF
13C1234678HpCDF
13C2378TCDD
13C12378PeCDD
13C123678HxCDD
13C1234678HpCDD
13C12OCDD
13C23478PeCDF
13C123478HxCDF
13C1234789HpCDF
37CL2378TCDD
13C123478HxCDD
1030
Reagent Blank
43680
I07V5:18
Filter
46.0
67.9
32.6 J
24.6 J
44.6
51.6
58.7
88.2
90.1
NA
NA
NA
NA
NA
1031
Reagent Blank
43681
I07V5:19
XAD
NC
NC
62.5
39.3
NC
NC
91.2
117
111
NC
55.5 J
213 J
NC
83.9
1032
Reagent Blank
43679
I07V5:17
Type II water
50.7
96.7
126
80.8
52.4
72.1
89.7
96.1
97.1
NA
NA
NA
NA
NA
NA
LCS
43686
I07V5:2
XAD
16.6 J
35.6 J
40.6
25.8
18.2 J
24.1 J
31.0 J
30.7
29.8
66.1 J
63.5 J
110.0
96.2
86.4
NA
Spike Check
43688
NA
62.4
81.2
80.2
70.4
69.0
65.4
78.4
80.9
66.8
71.7
90.5
98.5
98.8
85.4
-------
Table 3. Lab Control Spike Results
Isomer
2378TCDF
2378TCDD
12378PECDF
23478PECDF
12378PECDD
123478HXCDF
123678HXCDF
234678HXCDF
123789HXCDF
123478HXCDD
123678HXCDD
123789HXCDD
1234678HPCDF
1234789HPCDF
1234678HPCDD
12346789OCDF
12346789OCDD
Spike Level Field ID
(Total pg) Extract ID
MS Rle
Matrix
200
200
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
2000
2000
LCS
43686
I07V521
XAD
200
162
837
684
836
544
802
716
638
810
811
893
909
1014
905
1855
1895
% Recovery
100.0
81.0
83.7
68.4
83.6
54.4 (J)
80.2
71.6
63.8 (J)
81.0
81.1
89.3
91
101.4
90.5
92.8
95
J - Recovery outside MRI adopted criteria of 75-125%,
-------
Table 4. Confirmation Analysis Results for 2,3,7,8-TCDF and TCDF Totals.
Field ID
Description
Extract ID
MS File
Matrix
Isomer
2378TCDF
Totals
Total TCDF
NA
Method Blank
43687
I13V381
XAD
1.58
1.58
1006-1009
Run 1
43682
I13V3101
M23 Train
25.7 EMPC
181.0
2006-2009
Run 2
43683
I13V3111
M23 Train
90.6 EMPC
1111
3006-3009
Run 3
43684
I13V3121
M23 Train
24.3 EMPC
306
4006-4009
Run 4
43685
I13V3131
M23 Train
50.8 EMPC
538
1010
Run 1
43672
I07V5:3
Toluene Rinse
U 4.75
U 3.98
NA
LCS
43686
I13V391
XAD
230
242
NC - Not calculated due to lock mass fluctuation.
a- These values should be considered a maximum possible concentration.
U- Undetected above the corresponding noise-based detection limit.
J- Value calculated from a 13C-IQS with recovery outside of 40%-130% (tetra-hexa) and 25% -130% (hepta-octa)
EMPC - Estimated Maximum Possible Concentration (due to diphenyl ether interference).
-------
Table 5. TCDF Confirmation Surrogate Recovery
Field ID
Description
Extract ID
MS File
Matrix
Isomer
13C2378TCDF
NA
Method Blank
43687
I13V381
XAD
78.7
1006-1009
Run 1
43682
I13V3101
M23 Train
62.0
2006-2009
Run 2
43683
I13V3111
M23 Train
62.7
3006-3009
Run3
43684
I13V3121
M23 Train
62.8
4006-4009
Run 4
43685
I13V3131
M23 Train
77.1
NA
LCS
43686
I13V391
XAD
17.8 J
NC - Not calculated due to lock mass fluctuation.
J - Recovery outside criteria: 70%-130% (field surrogates), 40%-130% (tetra-hexa IQS), 25%-130% (hepta-oc
NA - not applicable
-------
Table6. IQS Spike Checks
Labeled Anlog
Lab Surrogates
13C2378TCDF
13C2378TCDD
13C12378PeCDF
13C12378PeCDD
13C123678HxCDF
13C123678HxCDD
13C1234678HpCDF
13C1234678HpCDD
13C12OCDD
Field Surrogates
37CL2378TCDD
13C23478PeCDF
13C123478HxCDF
13C123478HxCDD
13C1234789HpCDF
Spike Check b1
90
86.4
120
91.9
104
99.6
113
114
116
107
71.5
102
95.6
98
Spike Check b2
89.1
101
112
99
102
111
103
110
115
97.9
73.9
102
95.7
102
-------
Appendix J
Continuous Emission Monitoring Data
MRI-AED\R4951-09-OS.wpd
-------
Test Report
Continuous Emissions Monitoring
and Visible Emissions Evaluation
Conducted at the University of Georgia
Athens, Georgia
For Midwest Research Institute
Kansas City, Missouri
Test Dates: August 17-23, 1999
Report Date: August 31, 1999
ETS, INC.
ETS, Inc. Air Compliance Division
1401 Municipal Road, N. W. 449 Veit Road
Roanoke, VA 24012 Huntingdon Valley, PA 19006
540-265-0004 215-364-8940
540-265-0131 fax 215-364-4596 fax
Pollution Control Consultants
Specializing In
Toxic Emission Measurement and Control
ETS CONTRACT NO. 99-580-T
-------
TABLE OF CONTENTS
Page
1.0 Introduction 1
1.1 Background 1
1.2 Objective 1
1.3 Test Program 1
2.0 Summary of Results 2
3.0 Discussion of Results 2
4.0 Continuous Emissions Monitoring for O2, CO2, SO2,
NOX and CO - Instrumental Methods 4
4.1 Sampling System Description 4
4.2 Data Acquisition System 6
4.3 System Calibration 6
5.0 Visible Emissions Evaluation • EPA Method 9 7
5.1 Visible Emissions Determination Procedures 7
5.1.1 Observer Position 7
5.1.2 Opacity Observations 7
6.0 Data Analysis 8
7.0 Equipment Calibration 8
-------
LIST OF TABLES
Table 1 - Summary of Results 3
LIST OF FIGURES
Figure 1 - Continuous Emissions Monitoring System for EPA Methods 3A, 6C,
7E and 10 (O2, CO2> SO2, NOX and CO) 5
LIST OF APPENDICES
Appendix A - Test Log
Appendix B - Data and Results for Continuous Emissions Monitoring
Appendix C - Equations
Appendix D - Raw Field Data for EPA Method 9
Appendix E - Equipment Calibration Data
-------
1.0 Introduction
1.1 Background An air emissions test program was conducted for Midwest
Research Institute (MRI) on the pathological waste incinerator in the Animal Health
Research Center (AHRC) at the University of Georgia at Athens, College of Veterinary
Medicine. The test program was conducted on August 17-23, 1999 by ETS,
Incorporated (ETS) of Roanoke, Virginia. ETS personnel participating in the test
program were David Vecellio and Pete Brown.
1.2 Objective The objective of the test program was to evaluate the opacity of
visible emissions from the stack serving the pathological waste incinerator unit, and to
measure emissions of O2, CO2, SO2, NOX and CO from the unit during the incineration
process.
1.3 Test Program Four test runs were conducted at normal operating conditions.
The test condition (normal) reflected the operating temperature of the incinerator's
secondary combustion chamber, which was 1800°F. Each test run consisted of
continuous emissions monitoring for the pollutants described in Section 1.2 above, plus
a concurrent visible emissions evaluation. The first three test runs were conducted for
four hours. The fourth test run was conducted for three hours due to a shortage of
pathological waste. Appendix A contains a test log detailing the date and time of each
test run.
-------
2.0 Summary of Results
Table 1 summarizes the results of the continuous emissions monitoring and visible
emissions evaluations. Only the raw EPA Method 9 data sheets are provided in the
appendices since all opacity readings taken during the visible emissions evaluations
were zero. Detailed data and results can be found in Appendices B and D.
3.0 Discussion of Results
The SO2 monitor occasionally recorded gas concentration spikes that exceeded the 100
ppmdv span. The linearity of the analyzer at higher concentrations was demonstrated
by using a 905 ppm calibration gas in addition to the normal three-point calibration prior
to each test (see Section 4.2). The concentration of this calibration gas was greater than
the highest one-minute average spike measured during the test program. Linearity was
demonstrated to meet the accuracy and calibration error requirements of Method 6C in
Appendix A to 40 CFR 60. Linearity check data are contained in Appendix E.
The span of the NOX monitor was 250 ppmdv for the first run, but was changed to 500
ppmdv before the second run in anticipation of higher NOX concentrations resulting from
incinerator burner maintenance. NOX concentrations during the second test run were
higher than those measured during the first, but were well within span, so the span was
lowered to 250 ppmdv for runs three and four. The NOX monitor demonstrated linearity
for both the 250 ppmdv and 500 ppmdv spans during calibrations prior to runs two,
three and four. Data from the linearity checks are contained in Appendix E.
-------
Table 1 - Summary of Results
Analyte
Oxygen (%dv)
Carbon dioxide (%dv)
Sulfur dioxide (ppmdv)
Nitrogen oxides (ppmdv)
Carbon monoxide (ppmdv)
Visible emissions (% opacity)
max. 6-min. value
run average
Run 1
13.84
4.57
45.65
66.48
0.04
0.00
0.00
Run 2
12.70
4.88
46.16
119.27
0.00
0.00
0.00
Run 3
12.98
4.95
51.23
55.89
0.02
0.00
0.00
Run 4
12.61
5.16
45.97
92.92
0.05
0.00
0.00
Average
13.03
4.89
47.25
83.64
0.03
0.00
0.00
-------
4.0 Continuous Emissions Monitoring for O2, CO2, SO2, NOX and CO -
Instrumental Methods
Oxygen, NOX, SO2, CO and CO2 were sampled simultaneously at a single point in the
centroidal area of the incinerator stack. Instrumental monitoring of the stack gases was
performed as follows:
Gas Reference Method Instrument Type
O2 EPA Method 3A Teledyne Model 320A Chemical Cell Portable O2 Analyzer
CO2 EPA Method 3A HORIBA Model PIR-2000 ND1R CO2 Analyzer
SO2 EPA Method 6C Western Research 721 AT SO2 Analyzer
NOX EPA Method 7E TECO Model 10AR Chemiluminescence NOX Analyzer
CO EPA Method 10 TECO Model 48 NDIR CO Analyzer
4.1 Sampling System Description An integrated, remote instrumental system
housing the pollutant gas analyzers and the diluent gas (O2 and CO2) monitors was
used. Figure 1 outlines the general schematic of the dry extractive system. All of the
instruments were housed in a trailer at ground level.
The sampling system consisted of a stainless steel probe dt the stack test location. A
heated glass-fiber filter was attached to each probe for rough particulate removal, and
heated Teflon sample line delivered the sample to an ice-cooled condenser for removal
of flue gas moisture. An unheated Teflon sample line transported the dry gas sample
from the condenser to the instrumental system. The sample gas exiting the Teflon
sample line was pumped to the SO2, NOX, CO, O2 and CO2 monitors, which all measure
gas concentration on a dry volume basis.
-------
Flowmeter
Heated stainless
steel probe
3-way valve
Heated
filter
O2 analyzer
* * * *
o
* *
* •
CO2 analyzer
o
CO analyzer
o
SO. analyzer
o
NOX analyzer
o
Heated Teflon
sample line
Condensate
Dual-pass
refrigerative
condenser
Unheated Teflon
sample line
Teflon
diaphragm
pump
Data acquisition
To individual analyzer
calibration manifold
&
Figure 1 - Continuous Emissions Monitoring System for EPA Methods
3A» 6C, 7E and 10 (O2, CO2, SO2, NOX and CO)
-------
4.2 Data Acquisition System The response outputs of the monitors were
recorded digitally by a Campbell Scientific model CR10WP multichannel data-
acquisition system, which sampled at 60 Hz, and stored one-minute average values.
4.3 Dry System Calibration At the beginning of each test day, the NOX, SO2, O2
and CO2 monitors on the sampling system were zeroed using zero nitrogen, and
spanned using a certified calibration gas with a concentration of 80-100% of the
instrument span. Following calibration, a mid-range gas (40-60% of the instrument
span) was introduced into each monitor. The mid-range response did not exceed 2% of
the instrument span, as required by EPA reference Method 6C.
The CO monitor was zeroed using zero nitrogen, and spanned using a known
concentration of CO in nitrogen. Following calibration, the CO monitor was challenged
with two additional gas concentrations corresponding to approximately 60% and 30% of
instrument span. All calibration gases were EPA Protocol 1 certified.
After calibrating the SO2, NOX, O2 and CO2 monitors, calibration gas was introduced
remotely through the probe to verify the absence of sampling system bias. The bias
error did not exceed 5% of the instrument span, as required by EPA Method 6C.
After each test run, zero nitrogen and either a mid- or high-range calibration gas were
introduced remotely through the sampling train system to each monitor to check for
-------
calibration drift error. In accordance with Method 6C, the calibration drift did not exceed
3% of the instrument span for all valid test runs.
5.0 Visible Emissions Determination
All visible emissions readings were performed using EPA Method 9 procedures
contained in USEPA 40 CFR 60, Appendix A. Appendix D of this report contains the
raw field data for the tests.
5.1 Visible Emissions Determination Procedures Evaluations of visible
emissions from the incinerator stack were made by an observer who was certified in
accordance with Section 3.12.1, Subsection 1.3 of the Quality Assurance Handbook for
Air Pollution Measurements Systems: Volume III (EPA-600/4-77-027b, August 1977).
The observer's certification is at the back of Appendix D.
5.1.1 Observer Position The observer stood at a distance that provided a clear
view of the emissions with the sun oriented in the 140° sector to his back. In addition,
the observer made observations from a position at which the line of vision was
approximately perpendicular to the plume direction. For more detailed information on
the observer position, see Appendix D.
5.1.2 Opacity Observations Opacity observations were made at the point of
greatest opacity in the portion of the plume where condensed water vapor was not
-------
present. Opacity was read at 15-second intervals, and readings were made to the
nearest 5 percent opacity with a minimum of 24 observations being recorded. Readings
were taken against a clearly visible background which gave the highest degree of
contrast. See Appendix D for more detailed information on the observations.
6.0 Data Analysis
All calculations related to this test program are shown in Appendix C.
7.0 Equipment Calibration
Field equipment was calibrated in accordance with the requirements of the applicable
EPA Methods, and with those recommended within the Quality Assurance Handbook for
Air Pollution Measurement Systems: Volume III (EPA-60074-77-027b, August 1977).
Appendix E contains records for all of the calibrations.
8
-------
Appendix A
Test Log
-------
TEST LOG
PATHOLOGICAL WASTE INCINERATOR
Continuous Emissions Monitoring and
Visible Emissions Evaluation at Outlet Stack
MRI - University of Georgia, College of Veterinary Medicine
Animal Health Research Center
Athens, Georgia
Run I.D.
IU-CEMS-R1
IU-CEMS-R2
IU-CEMS-R3
IU-CEMS-R4
AHRC-M9-R1
AHRC-M9-R2
AHRC-M9-R3
AHRC-M9-R4
Test
Parameters
02
C02
S02
NOX
CO
EPA Methods
3A, 6C, 7E, 10
Opacity of
Visible Emissions
EPA Method 9
Date
8/17/99
8/21/99
8/22/99
8/23/99
8/17/99
8/21/99
8/22/99
8/23/99
Start
Time
1110
1230
1010
1240
1110
1230
1010
1240
End
Time
1554
1710
1517
1612
1554
1710
1517
1612
-------
Appendix B
Data and Results for Continuous Emissions Monitoring
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
ll:
11:
11:
11:
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
O2
%dv
14
12
13
13
14
14
13
13
14
13
13
13
13
13
13
13
14
14
13
14
13
13
13
13
14
12
12
13
13
13
13
13
14
15
12
12
13
13
13
14
13
.79
.15
.80
.90
.14
.00
.78
.96
.38
.06
.46
.79
.88
.63
.72
.77
.16
.40
.05
.00
.77
.73
.80
.72
.93
.97
.32
.89
.67
.72
.66
.84
.54
.13
.73
.22
.47
.53
.83
.66
.44
CO2
%dv
3
5
4
4
4
4
4
4
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
4
5
4
4
4
4
4
3
3
5
5
4
4
4
3
4
.72
.23
.41
.32
.15
.23
.31
.19
.91
.71
.59
.45
.34
.49
.42
.38
.05
.04
.75
.23
.41
.39
.36
.40
.53
.83
.13
.24
.40
.41
.43
.32
.92
.49
.12
.41
.71
.70
.41
.85
.65
SO2
ppmdv
57.
85.
27.
14.
10.
9.
8.
7.
45.
68.
39.
19.
15.
15.
13.
13.
14.
65.
50.
19.
17.
15.
14.
13.
12.
45.
136.
23.
22.
21.
20.
20.
90.
37.
85.
157.
31.
26.
24.
47.
57.
32
60
88
20
93
25
07
38
95
81
69
90
73
19
81
07
07
67
32
32
21
04
37
71
60
02
70
26
43
69
79
83
00
71
30
00
89
87
20
62
14
NOx
ppmdv
45.
55.
55.
53.
54.
56.
56.
55.
46.
63.
64.
71.
72,
72.
69.
66.
55.
57.
61.
69.
71.
66.
63.
62.
58.
82.
67.
42.
52.
58.
64.
65.
45.
44.
92.
75.
75.
78.
72.
55.
55.
55
41
24
28
57
53
20
01
94
37
55
80
20
50
80
97
68
24
03
16
20
34
71
84
26
80
22
16
61
85
06
69
74
25
20
10
60
60
30
38
77
CO
ppmdv
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
o.
0.
0.
07
06
33
10
03
05
05
18
17
06
43
15
34
06
39
16
25
21
20
30
49
46
03
31
26
30
04
03
16
34
38
04
18
57
46
36
27
30
34
29
50
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
11:
11:
11:
11:
11:
11:
11:
11:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
52
53
54
55
56
57
58
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
02
%dv
13.
13.
13.
13.
13.
14.
13.
13.
13.
13.
13.
13.
13.
14.
12.
12.
13.
13.
13.
13.
13.
13.
14.
12.
13.
13.
13.
13.
13.
14.
15.
12.
12.
13.
13.
13.
13.
14.
13.
13.
13.
38
51
50
54
67
13
68
46
46
41
62
55
56
62
61
81
77
79
80
83
81
73
71
89
04
64
66
88
94
06
17
65
92
63
63
72
82
07
16
75
85
CO 2
%dv
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
3.
5.
4.
4.
4.
4.
4.
4.
4.
3.
4.
4.
4.
4.
4.
4.
4.
3.
5.
4.
4.
4.
4.
4.
4.
5.
4.
4.
66
62
64
59
54
20
53
63
68
71
55
64
60
84
17
99
46
44
39
41
43
47
73
95
83
52
51
38
29
20
41
03
78
45
44
37
32
36
09
64
51
S02
ppmdv
41
35
32
30
29
39
104
64
46
41
32
31
29
34
116
133
32
28
26
28
27
28
65
116
118
32
30
27
26
24
20
76
115
30
29
29
28
44
39
29
26
.58
.39
.23
.27
.29
.26
.80
.10
.27
.12
.23
.21
.90
.21
.10
.90
.77
.68
.96
.14
.54
.02
.99
.10
.60
.61
.06
.57
.08
.72
.79
.70
.30
.15
.05
.03
.96
.01
.36
.68
.55
NOX
ppmdv
66
73
79
82
82
63
57
45
60
61
70
76
78
51
93
71
75
75
74
81
81
81
51
97
69
85
87
83
80
74
64
99
63
42
47
52
53
50
73
80
78
.17
.50
.60
.40
.50
.95
.14
.04
.30
.60
.50
.50
.10
.70
.90
.30
.90
.40
.20
.10
.10
.90
.76
.70
.90
.80
.90
.90
.50
.70
.04
.80
.14
.17
.79
.80
.52
.90
.90
.50
.50
CO
ppmdv
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
27
26
24
39
17
07
16
52
27
26
42
49
26
28
22
19
27
26
30
36
43
29
30
27
25
38
17
17
38
37
27
29
39
37
29
19
22
30
27
29
33
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
12:33
12:34
12:35
12:36
12:37
12:38
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
13:12
13:13
O2
%dv
14.00
14.15
14.06
14.03
13.97
14.26
13.34
13.68
13.49
13.67
13.99
14.02
14.16
14.56
14.51
13.95
13.37
13.55
13.66
13.93
13.89
14.25
13.21
13.50
13.88
13.99
14.05
14.21
14.15
14.15
14.26
14.44
14.30
14.67
13.70
13.27
13.44
13.76
13.88
13.99
14.18P
CO2
%dv
4.35
4.26
4.29
4.28
4.30
4.23
4.82
4.64
4.80
4.60
4.41
4.34
4.19
4.00
4.22
4.61
4.96
4.79
4.64
4.47
4.46
4.33
5.16
4.84
4.50
4.45
4.33
4.23
4.26
4.21
4.11
4.01
4.10
3.80
4.92
5.17
4.96
4.71
4.64
4.48
4.36P
SO2
ppmdv
24.38
23.08
21.97
21.60
21.95
101.40
101.10
49.43
35.47
29.52
27.60
25.42
23.77
29.46
34.09
33.35
39.22
33.06
29.86
27.68
26.12
30.64
38.66
32.93
29.58
28.18
26.85
26.33
25.51
24.95
24.15
23.72
23.45
20.54
29.56
38.07
35.92
33.88
31.68
28.33
28.18P
NOX
ppmdv
77.30
76.50
75.10
72.80
70.80
49.16
55.98
75.60
69.83
69.88
71.60
72.30
72.00
54.73
32.44
58.57
72.00
79.20
82.20
82.20
80.50
56.42
72.30
79.70
81.60
82.80
81.60
82.40
82.90
82.20
82.00
82.20
81.60
65.85
64.02
79.10
79.40
80.30
81.90
79.00
71. OOP
CO
ppmdv
0.24
0.26
0.16
0.29
0.13
0.17
0.09
0.42
0.27
0.24
0.19
0.07
0.00
0.08
0.10
0.06
0.20
0.13
0.03
0.01
0.01
0.00
0.01
0.17
0.12
0.19
0.50
0.27
0.44
0.44
0.60
0.46
0.33
0.32
0.29
0.36
0.36
0.43
0.46
0.37
0.3 IP
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
13:53
13:54
02
%dv
12.39P
12.30P
12.90P
13.52P
13.89P
14.01P
14.32P
14.27P
14.53P
14.66P
14.60P
14.58P
14.74P
14.71P
14.73P
14.67P
14.77P
14.75P
14.86P
14.74P
14.83P
14.94P
14.90P
14.88P
14.96P
15.01P
15.07P
15.06P
14.99P
14.97P
14.96P
14.88P
14.94P
14.89P
14.68P
14.89P
13.69P
14.26P
14.36P
14.53
14.74
C02
%dv
6.57P
6.23P
5.52P
4.98P
4.70P
4.51P
4.29P
4.28P
4.03P
3.95P
3.99P
3.95P
3.83P
3.85P
3.84P
3.85P
3.77P
3.79P
3.72P
3.78P
3.71P
3.64P
3.68P
3.67P
3.60P
3.57P
3.55P
3.58P
3.61P
3.61P
3.61P
3.67P
3.64P
3.67P
3.77P
3.85P
4.93P
4.37P
4.23P
4.03
3.86
S02
ppmdv
254. 20P
216. 40P
68.32P
42.43P
33.39P
27.87P
23.42P
21.45P
19.54P
18.33P
17.33P
16. SOP
15.53P
14.95P
14.29P
13.96P
13.54P
13.32P
13. OOP
12.89P
12.44P
12.04P
11.89P
11.35P
11.01P
10.93P
10.55P
10.48P
10.43P
10.16P
10.04P
9.97P
9.81P
10.09P
11.01P
21.03P
30.69P
22.43P
18.93P
16.64
14.80
NOX
ppmdv
107. 40P
48.16P
35.01P
58.94P
66.63P
70.10P
71.90P
70.70P
68.18P
67.87P
67.63P
67.05P
65.95P
66. SOP
65.44P
65.22P
65.45P
65.51P
63.64P
63.25P
62.57P
62.56P
62.14P
60.29P
59.61P
59.47P
59.59P
59.44P
59.51P
58.54P
60.18P
61.13P
60.46P
59.29P
57.93P
46.51P
60.38P
79.70P
77. OOP
73.70
70.60
CO
ppmdv
0.27P
0.32P
0.39P
0.51P
0.30P
0.43P
0.4 IP
0.32P
0.45P
0.33P
0.37P
0.27P
0.46P
0.30P
0.4 IP
0.37P
0.56P
0.38P
0.38P
0.48P
0.49P
0.80P
1.08P
0:75?
0.59P
0.60P
0.69P
0.63P
0.40P
0.58P
0.80P
0.62P
0.64P
0.66P
0.72P
0.86P
0.82P
0.66P
0.90P
0.76
0.82
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
14:17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
14:34
14:35
02
%dv
14.91
14.90
14.90
13.26
13.72
14.06
14.38
14.42
14.36
14.68
14.92
14.12
13.92
13.96
13.97
14.08
14.15
14.20
14.85
13.95
13.96
14.32
14.55
14.61
14.56
14.73
14.91
14.30
13.33
12.79
12.82
12.89
13.24
13.33
13.85
13.76
12.96
12.92
13.07
13.38
13.40
CO 2
%dv
3.75
3.75
3.91
5.62
4.94
4.56
4.27
4.24
4.21
3.95
3.82
4.36
4.48
4.47
4.45
4.34
4.33
4.26
3.77
4.96
4.70
4.30
4.11
4.05
4.03
3.89
3.78
4.41
5.14
5.53
5.57
5.43
5.17
5.12
4.66
4.64
5.33
5.40
5.22
5.04
5.01
SO2
ppmdv
13.80
13.07
17.67
37.59
22.25
19.17
18.36
17.95
17.33
17.80
26.02
24.36
24.66
24.78
24.54
24.70
24.73
24.08
20.63
31.85
27.45
22.35
20.00
18.30
17.18
15.99
15.14
135.40
157.80
141.50
203.10
163.70
85.40
62.14
67.92
75.90
90.90
75.30
63.13
56.27
51.95
NOx
ppmdv
68.88
67.62
56.37
48.23
72.50
71.50
70.40
67.10
67.77
58.54
43.48
62.70
70.70
73.80
76.80
79.60
81.60
79.70
60.51
47.02
74.70
75.90
75.20
72.00
69.56
68.33
63.22
68.47
39.85
31.69
32.97
27.90
30.96
34.95
30.42
52.06
30.59
30.40
36.61
52.82
66.02
CO
ppmdv
0.85
0.78
0.93
0.78
0.94
0.95
0.87
1.14
0.93
1.21
0.91
0.96
0.98
1.31
1.02
1.21
1.14
0.81
0.69
0.74
0.74
0.56
0.66
0.95
0.81
0.83
0.95
0.92
0.88
0.99
0.94
0.99
1.07
1.02
1.11
0.96
0.88
0.92
1.01
1.15
1.03
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
14:58
14:59
15:00
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15:10
15:11
15:12
15:13
15:14
15:15
15:16
O2
%dv
13.57
14.20
13.16
13.12
13.45
13.73
13.86
13.96
14.20
14.27
13.31
13.48
13.36
13.59
13.62
13.67
14.55
13.88
13.51
13.55
13.38
13.43
13.44
13.42
14.50
13.92
13.54
13.70
13.82
13.78
14.04
14.09
14.66
13.77
13.24
13.40
13.67
13.79
13.74
13.91
14.72
CO2
%dv
4.83
4.53
5.43
5.33
5.03
4.84
4.71
4.58
4.42
4.53
5.11
5.01
5.05
4.89
4.89
4.82
4.18
4.68
4.89
4.91
5.02
4.99
5.03
4.98
4.17
4.67
4.87
4.76
4.69
4.71
4.49
4.47
4.03
4.74
5.14
5.04
4.79
4.74
4.75
4.61
4.02
SO2
ppmdv
47.62
53.76
69.68
54.94
47.60
43.64
39.71
37.27
35.09
47.06
50.63
46.67
46.24
45.00
44.22
43.50
37.80
39.62
44.17
45.58
46.73
48.98
50.57
49.73
44.82
41.71
46.19
45.52
44.69
43.80
42.20
42.02
37.38
47.65
78.70
63.80
53.69
50.25
48.05
46.76
38.85
NOX
ppmdv
69.36
45.67
35.80
35.57
50.10
64.11
69.17
72.50
63.60
36.31
47.82
57.52
53.05
59.62
59.50
59.87
36.91
53.76
64.30
64.73
60.10
56.58
54.83
54.03
33.66
58.35
69.53
72.50
76.90
77.20
76.90
78.70
38.38
47.51
45.75
55.68
73.90
81.30
83.20
83.30
41.81
CO
ppmdv
1.02
1.11
1.04
1.31
1.14
1.11
1.17
1.27
1.07
1.15
1.31
1.30
1.33
1.26
1.55
1.28
1.47
1.32
1.40
1.36
1.24
1.62
1.39
1.50
1.28
1.59
1.33
1.52
1.35
1.60
1.48
1.45
1.55
1.36
1.25
1.52
1.45
1.30
1.38
1.45
1.45
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
15:17
15:18
15:19
15:20
15:21
15:22
15:23
15:24
15:25
15:26
15:27
15:28
15:29
15:30
15:31
15:32
15:33
15:34
15:35
15:36
15:37
15:38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
284 MinAvg
02
%dv
13.65
13.41
13.68
13.69
13.85
13.76
13.75
13.91
14.60
13.52
13.58
13.54
13.65
13.85
13.99
14.74
13.56
13.21
13.58
13.81
14.03
14.22
14.88
14.20
13.86
13.92
14.00
13.94
14.08
14.38
14.88
13.57
13.57
13.76
13.76
13.82
13.83
14.04
13.83
CO 2
%dv
4.85
4.95
4.80
4.74
4.66
4.73
4.67
4.58
4.09
4.86
4.85
4.86
4.75
4.64
4.48
3.95
4.86
5.13
4.83
4.68
4.46
4.32
3.80
4.27
4.59
4.54
4.50
4.56
4.40
4.18
3.87
4.83
4.80
4.70
4.66
4.62
4.64
4.49
4.54
SO2
ppmdv
44.79
53.20
49.48
48.64
47.19
47.25
46.08
44.93
65.02
70.30
61.94
58.96
57.34
54.46
52.47
60.71
65.55
74.90
59.04
52.86
48.97
46.35
38.98
38.51
43.39
43.20
43.12
43.21
42.55
43.73
52.50
58.11
54.46
51.61
50.12
50.21
50.47
50.39
43.86
NOx
ppmdv
33.94
53.42
65.42
67.81
70.40
72.10
64.00
58.07
31.98
53.95
61.17
68.67
76.00
82.40
67.70
36.68
59.21
40.82
58.32
68.19
76.70
70.20
31.51
60.83
80.50
84.40
87.10
88.90
87.60
66.74
37.61
70.10
73.20
82.10
83.80
82.30
83.70
84.80
65.08
CO
ppmdv
1.15
1.30
1.30
1.22
1.24
1.15
1.30
1.29
1.61
1.84
1.31
1.44
1.37
1.53
1.65
1.55
1.39
1.13
1.71
1.49
1. 05
1.14
1.44
1.28
1.18
1.33
1.15
1.43
1.28
1.11
1.30
1.29
1.31
1.25
1.20
1.13
1.00
1.13
0.73
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
02
%dv
CO 2
%dv
SO2
ppmdv
NOx
ppmdv
CO
ppmdv
Data Corrected for Calibrations
284 MinAvg 13.84 4.57
45.65
66.48
0.04
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
12:31
12:32
12:33
12:34
12:35
12:36
12:37
12:38
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
O2
%dv
14.39
11.84
12.13
13.50
13.09
13.28
13.24
13.29
14.27
11.88
11.90
12.34
13.22
12.93
13.01
14.47
11.54
11.11
11.30
11.36
11.55
11.52
14.37
11.64
10.38
10.88
12.66
12.57
11.41
14.71
13.34
12.54
12.46
12.36
12.31
12.27
12.35
12.33
11.96
14.18
13.41
C02
%dv
3.81
5.48
5.14
4.26
4.52
4.39
4.41
4.34
4.01
5.79
5.49
5.11
4.58
4.73
4.66
3.62
5.63
5.71
5.61
5.56
5.47
5.49
3.59
5.49
6.17
5.81
4.78
4.83
5.50
3.39
4.37
4.82
4.84
4.88
4.91
4.93
4.89
4.91
5.13
3.66
4.31
SO2
ppmdv
3.99
28.29
63.24
12.52
6.59
6.24
5.95
5.78
7.09
36.39
67.42
63.00
12.22
7.35
6.37
4.80
23.44
51.53
57.06
60.39
62.63
66.75
16.87
32.27
65.92
59.28
42.90
39.37
43.23
15.45
22.75
36.74
33.71
32.00
31.09
30.36
29.78
29.33
30.44
25.95
60.82
NOx
ppmdv
50.45
84.30
70.70
33.68
35.13
33.15
33.20
34.43
59.22
102.90
154.40
88.30
43.68
42.31
44.54
44.75
103.60
158.60
165.90
170.30
174.80
142.70
47.78
128.60
185.30
180.10
164.50
169.80
174.00
38.52
123.10
166.10
174.40
178.60
182.80
183.00
183.10
183.70
198.10
60.99
135.70
CO
ppmdv
0.03
0.55
0.63
0.63
0.60
0.46
0.75
0.58
0.64
0.41
0.31
0.39
0.44
0. 19
0.40
0.19
3.25
4.89
0.17
0.22
0.08
0.11
0.20
0.49
0.22
0.18
0.19
0.00
0.22
2.62
2.05
0.61
0.87
1.67
1.70
2.74
3.03
4.04
3.77
6.10
6.03
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
13:12
13:13
13 : 14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
O2
%dv
12.34
12.24
11.27
11.83
12.24
12.36
12.76
13.82
11.57
12.24
12.35
12.48
12.32
13.86
11.71
12.45
12.52
12.59
12.61
12.49
12.53
14.03
11.80
12.43
12.49
12.68
12.67
12.21
13.98
12.18
12.27
12.48
12.54
12.56
12.35
14.15
11.55
11.39
11.73
11.78
11.87
CO2
%dv
4.92
4.99
5.63
5.33
5.11
5.05
4.69
4.11
5.47
5.05
5.04
4.97
5.07
4.09
5.50
5.02
5.00
4.95
4.93
4.99
4.95
3.91
5.37
4.97
4.93
4.82
4.84
5.15
3.82
5.12
5.03
4.91
4.87
4.85
5.00
3.69
5.51
5.47
5.31
5.29
5.21
SO2
ppmdv
63.37
54.60
63.89
56.88
48.26
44.72
40.79
21.52
50.29
47.40
49.66
50.79
56.06
43.00
97.90
76.70
66.39
62.76
61.99
62.53
65.39
24.25
53.55
63.84
62.50
62.43
63.98
71.90
32.93
46.26
74.30
72.50
71.10
68.92
71.20
25.98
40.82
63.78
59.58
59.47
60.03
NOx
ppmdv
198.20
200.30
227.30
225.60
216.40
211.30
144.80
56.22
202.50
203.00
214.60
215.60
195.00
63.65
220.40
224.50
222.30
219.50
219.60
219.50
195.80
40.36
191.40
218.80
222.00
222.80
225.90
239.90
45.23
153.60
232.90
232.80
216.80
227.30
222.90
39.47
167.90
241.20
237.20
236.60
237.10
CO
ppmdv
2.02
1.30
1.49
4.43
2.73
1.30
0.81
0.76
0.50
0.40
0.41
0.41
0.56
0.24
0.30
0.35
0.62
0.61
0.30
0.59
0.34
0.40
0.05
0.25
0.23
0.08
0.28
0.18
0.24
0.54
0.35
0.45
0.36
0.29
0.29
0.40
0.01
0.03
0.30
0.18
0.14
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
13:
13:
13:
13:
13:
13:
13:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
53
54
55
56
57
58
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
O2
%dv
11
13
12
11
11
12
12
12
11
13
12
11
12
12
12
12
12
11
13
12
11
12
12
12
12
12
14
11
11
12
12
12
12
12
13
11
12
12
12
12
12
.86
.30
.63
.38
.76
.02
.10
.06
.95
.76
.40
.84
.02
.18
.09
.16
.14
.98
.40
.49
.74
.07
.10
.25
.10
.12
.05
.45
.91
.03
.17
.24
.27
.39
.68
.37
.05
.16
.25
.40
.37P
CO 2
%dv
5.
4.
4.
5.
5.
5.
5.
5.
5.
3.
4.
5.
5.
5.
5.
5.
5.
5.
4.
4.
5.
5.
5.
5.
5.
5.
3.
5.
5.
5.
4.
4.
4.
4.
4.
5.
5.
5.
4.
4.
4.
24
18
80
45
25
11
11
15
26
97
99
27
18
07
08
03
02
13
12
91
31
14
12
01
07
02
65
44
10
05
99
97
97
88
12
54
11
03
99
92
89P
SO2
ppmdv
62.
39.
32.
69.
64.
62.
62.
63.
67.
34.
34.
65.
63.
61.
59.
60.
62.
65.
38.
33.
70.
65.
62.
61.
61.
62.
15.
46.
62.
60.
58.
58.
59.
65.
65.
97.
76.
66.
63.
62.
62.
33
76
92
44
95
34
66
62
35
53
00
87
42
07
92
57
25
24
84
66
70
69
75
20
91
61
86
42
39
71
61
66
71
62
08
90
00
55
39
50
36P
NOx
ppmdv
242
78
112
228
231
228
232
233
237
56
125
224
230
227
225
225
227
238
70
127
240
242
245
243
247
212
46
200
235
238
240
242
244
177
64
237
247
249
251
251
248
.40
.70
.10
.70
.00
.40
.50
.90
.60
.50
.70
.20
.80
.80
. 10
.90
.00
.60
.40
.90
.10
.40
.40
.20
.10
.40
.86
.10
.90
.50
.10
.10
.60
.60
.34
.80
.90
.00
.90
.90
.40P
CO
ppmdv
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
22
25
29
22
34
15
29
19
23
13
13
21
19
03
24
49
23
36
21
31
13
20
20
19
21
34
42
10
02
01
14
31
30
30
20
17
19
18
18
14
18P
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
14:58
14:59
15:00
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15:10
15:11
15:12
15:13
15:14
O2
%dv
12.53P
12.59P
12.68P
12.72P
12.73P
12.75P
12. SOP
12.73P
12.87P
12.88P
12.74P
12.76P
12.65P
12.87P
12.90P
12.96P
13.04P
12.94P
13. OOP
12.98P
12.96P
12.99P
12.87P
12.88P
12.97P
12.98P
13.17P
13. 13P
13. IIP
12.99P
12.86P
12.83P
12.98P
12.86P
12.96P
12.98P
12.93P
14.09
12.91
12.72
12.93
CO 2
%dv
4.86P
4.86P
4.84P
4.84P
4.85P
4.84P
4. SOP
4.79P
4.68P
4.70P
4.77P
4.73P
4. SOP
4.70P
4.70P
4.69P
4.65P
4.69P
4.61P
4.60P
4.57P
4.53P
4.60P
4.62P
4.60P
4.63P
4.53P
4.56P
4.53P
4.58P
4.62P
4.62P
4.56P
4.57P
4.52P
4.54P
4.64P
3.83
4.66
4.76
4.59
SO2
ppmdv
63.20P
64.38P
65.36P
66.26P
67.33P
68.02P
67.54P
68.07P
62.37P
35.63P
28.26P
25.78P
24.85P
23.84P
23.05P
22.70P
22.34P
22.47P
21.96P
21.75P
21.79P
21.49P
2 1.3 IP
21.31P
21.34P
21. OOP
20.82P
20.59P
20.28P
20.44P
20.75P
20.50P
20.30P
20.05P
19.57P
19.63P
22.50P
15.27
19.62
19.12
18.75
NOx
ppmdv
250. OOP
250. 60P
250. SOP
250. 40P
251. 50P
249. 70P
246. 90P
246. 70P
130. 60P
48.69P
44.06P
39.03P
37.92P
35.12P
33.39P
32.58P
31.74P
31.32P,
30.98P
30.72P
30.34P
30.33P
30.52P
31.05P
30.89P
31.17P
31.89P
32.20P
32.14P
32.57P
32.82P
32.74P
33.54P
34.29P
36.21P
35.58P
45.61P
38.35
33.28
32.08
31.61
CO
ppmdv
0.11P
0.09P
0.40P
0.28P
0.03P
0.11P
0.19P
0.01P
0.12P
0.22P
0.30P
0.18P
0.19P
0.16P
0.01P
0.04P
0.03P
0.05P
0.11P
0.09P
0.01P
0.15P
0.29P
0.03P
0.30P
0.30P
0.03P
0.03P
0.02P
0.17P
0.18P
0.06P
0.12P
0.24P
0.30P
0.02P
0.03P
0.23
0.24
0.29
0.17
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
15:15
15:16
15:17
15:18
15:19
15:20
15:21
15:22
15:23
15:24
15:25
15:26
15:27
15:28
15:29
15:30
15:31
15:32
15:33
15:34
15:35
15:36
15:37
15:38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
02
%dv
12.92
12.95
13.00
12.84
14.13
13.03
12.93
13.04
13.23
13.30
13.24
14.11
13.39
12.69
12.81
12.98
13.00
13.15
13.36
14.07
11.53
12.21
12.46
12.38
12.48
12.71
13.12
12.21
12.44
12.53
12.64
12.66
12.67
12.76
12.89
12.27
12.36
12.37
12.46
12.52
12.40
CO 2
%dv
4.57
4.52
4.46
4.56
3.59
4.41
4.52
4.49
4.40
4.38
4.40
3.69
4.21
4.61
4.52
4.39
4.41
4.37
4.24
3.89
5.51
5.11
4.92
4.94
4.84
4.71
4.51
5.15
5.12
5.20
5.11
5.09
5.05
4.88
4.76
5.21
5.15
5.14
5.08
5.07
5.20
S02
ppmdv
18.96
18.79
18.76
19.88
10.27
15.60
16.61
17.41
17.40
17.92
18.28
16.99
19.56
21.43
17.90
16.89
16.92
16.95
17.64
14.00
146.60
148.40
118.00
105.10
95.60
78.10
191.20
223.70
121.60
86.30
70.70
62.45
57.75
48.85
42.04
52.44
52.60
53.10
52.42
52.35
53.04
NOX
ppmdv
31.47
31.69
32.10
42.55
41.62
37.33
33.70
32.23
31.65
31.43
33.62
42.48
46.79
42.64
36.08
32.36
32.29
32.05
41.94
49.93
252.10
264.90
261.00
264.00
246.70
61.39
102.50
96.50
90.60
100.60
88.10
79.80
77.50
60.32
90.80
88.40
86.20
85.50
83.90
82.60
75.50
CO
ppmdv
0.01
0.04
0.29
0.25
0.08
0.11
0.22
0.06
0.24
0.29
0.30
0.24
0.18
0.25
0.22
0.17
0.19
0.15
0.03
0.21
0.03
0.40
0.17
0.42
0.39
0.18
0.19
0.03
0.11
0.20
0.11
0.02
0.30
0.01
0.12
0.03
0.02
0.18
0.17
0.01
0.13
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
15:56
15:57
15:58
15:59
16:00
16:01
16:02
16:03
16:04
16:05
16:06
16:07
16:08
16:09
16:10
16:11
16:12
16:13
16:14
16:15
16:16
16:17
16: 18
16: 19
16:20
16:21
16:22
16:23
16:24
16:25
16:26
16:27
16:28
16:29
16:30
16:31
16:32
16:33
16:34
16:35
16:36
O2
%dv
13.40
12.47
12.68
12.72
12.75
12.87
12.85
13.16
13.40
12.55
12.88
12.95
12.92
12.87
13.09
14.56
12.77
12.55
12.80
12.95
12.96
12.97
12.95
14.11
12.55
12.84
12.92
12.92
12.90
12.95
14.23
12.66
12.89
12.91
12.93
12.91
12.87
14.08
12.56
12.67
12.84
CO2
%dv
4.41
5.16
5.06
5.06
5.03
4.98
4.99
4.71
4.58
5.12
4.95
4.91
4.91
4.93
4.72
3.62
4.95
5.06
4.93
4.85
4.84
4.83
4.84
3.98
5.08
4.89
4.86
4.86
4.88
4.81
3.85
4.95
4.81
4.82
4.81
4.83
4.85
3.92
5.01
4.95
4.85
SO2
ppmdv
35.32
39.42
43.43
43.59
43.63
43.28
41.91
35.16
28.13
33.10
34.27
33.30
32.97
33.30
30.28
16.30
26.55
30.98
31.31
31.17
31.14
30.86
31.34
22.15
29.18
31.04
30.87
31.47
31.77
32.57
20.16
31.12
32.55
31.79
31.02
31.21
32.66
19.92
29.13
32.17
32.40
NOx
ppmdv
73.90
80.80
79.60
77.20
75.60
73.50
73.10
51.26
66.21
69.15
67.07
65.74
63.81
62.26
48.44
49.55
44.15
45.50
44.88
41.90
40.99
40.35
40.31
45.94
43.97
43.51
41.44
41.03
41.95
41.90
38.78
38.96
37.59
37.63
36.85
38.99
42.43
47.04
54.95
58.15
57.98
CO
ppmdv
0.02
0.12
0.04
0.02
0.13
0.05
0.14
0.30
0.19
0.29
0.23
0.39
0.35
0.38
0.43
0.47
0.63
0.57
0.54
0.65
0.74
0.59
0.76
0.74
0.85
0.87
0.90
1.05
1.03
0.86
1.23
1.14
0.82
1.17
1.40
1.56
1.26
1.40
1.38
1.36
1.33
-------
Starting
08-21-99
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Time
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
03
04
05
06
07
08
09
10
280 MinAvg
02
%dv
12
12
12
14
12
12
12
12
12
12
13
12
12
12
12
12
12
13
12
12
12
12
12
12
14
13
13
13
12
13
13
13
13
13
12
.86
.82
.83
.23
.60
.81
.85
.89
.84
.94
.86
.38
.68
.69
.81
.87
.67
.94
.55
.78
.83
.87
.90
.82
.10
.18
.03
.16
.99
.17
.18
.18
.14
.19
.68
C02
%dv
4
4
4
3
4
4
4
4
4
4
4
5
5
5
5
5
5
4
5
4
4
4
4
5
3
4
4
4
4
4
4
4
4
4
4
.84
.87
.85
.80
.97
.86
.83
.82
.86
.81
. 18
.22
.11
. 12
.05
.00
. 14
.08
.14
.99
.97
.94
.93
.00
.94
.66
.77
.69
.77
.68
.70
.71
.73
.70
.83
S02
ppmdv
32.
32.
32.
19.
32.
34.
34.
34.
34.
35.
91.
69.
65.
78.
77.
66.
60.
23.
26.
31.
32.
33.
34.
35.
19.
16.
22.
23.
31.
24.
24.
25.
25.
25.
45.
31
47
75
44
46
36
36
26
60
85
20
63
67
60
30
99
49
40
95
95
96
71
52
57
71
54
19
93
04
89
99
38
55
99
29
NOX
ppmdv
57.
56.
48.
42.
48.
49.
47.
46.
47.
41.
73.
69.
81.
82.
79.
76.
66.
45.
57.
60.
58.
57.
56.
49.
38.
36.
34.
47.
53.
37.
34.
33.
33.
32.
116.
24
54
44
70
28
02
55
72
50
71
70
95
70
50
40
80
57
63
13
46
35
05
92
99
83
19
14
97
61
97
59
33
17
68
95
CO
ppmdv
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
0.
40
35
52
65
37
41
86
98
57
65
57
30
57
86
85
93
88
85
88
86
76
75
76
80
71
75
84
89
93
87
86
82
79
83
75
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
O2 CO2
%dv %dv
SO2
ppmdv
NOx
ppmdv
CO
ppmdv
Data Corrected for Calibrations
280 MinAvg 12.70 4.88
46.16
119.27
-0.00
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
02
%dv
13
13
12
13
13
13
13
12
12
12
13
13
13
13
13
12
12
12
12
12
12
13
12
12
12
12
12
12
13
12
12
12
12
12
12
13
13
12
12
12
12
.58
.20
.78
.06
.27
.34
.81
.82
.69
.99
.18
.33
.43
.51
.89
.85
.93
.76
.73
.79
.82
.56
.16
.50
.76
.85
.93
.97
.83
.91
.78
.81
.90
.97
.89
.66
.50
.76
.82
.83
.86
C02
%dv
4
4
4
4
4
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
.13
.45
.80
.58
.42
.36
.15
.26
.10
.83
.66
.52
.41
.35
.22
.88
.79
.93
.92
.88
.82
.59
.48
.16
.95
.87
.79
.76
.25
.84
.90
.86
.78
.73
.77
.15
.40
.84
.81
.80
.76
S02
ppmdv
29
13
14
10
8
7
9
26
13
9
8
7
6
7
118
104
61
29
23
19
17
49
86
29
19
16
15
15
71
49
30
23
19
17
17
22
29
27
25
24
23
.81
.06
.00
.58
.45
.66
.21
.57
.65
.93
.48
.30
.74
.01
.40
.80
.44
.44
.61
.11
.19
.31
.90
.28
.16
.20
.03
.59
.30
.35
.80
.13
.52
.96
.60
.62
.06
.84
.45
.54
.38
NOx
ppmdv
35
48
44
50
51
53
54
52
35
45
49
50
50
51
64
32
35
32
31
32
37
66
53
32
31
34
36
41
57
30
30
30
30
30
33
40
35
32
30
29
29
.42
.99
.35
.29
.86
.28
.03
.90
.61
.78
.69
.27
.26
.94
.77
.41
.26
.46
.99
.86
.17
.36
.73
.49
.92
.07
.06
.96
.19
.52
.02
.20
.69
.36
.95
.28
.35
.52
.75
.54
.69
CO
ppmdv
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
40
29
18
38
34
31
27
10
18
08
13
18
29
31
07
11
13
28
27
24
00
15
08
08
10
19
01
19
05
00
20
01
06
08
01
00
05
05
08
02
05
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
10:52
10:53
10:54
10:55
10:56
10:57
10:58
10:59
11:00
11:01
11:02
11:03
11:04
11:05
11:06
11:07
11:08
11:09
11:10
11:11
11:12
11:13
11:14
11:15
11:16
11:17
11:18
11:19
11:20
11:21
11:22
11:23
11:24
11:25
11:26
11:27
11:28
11:29
11:30
11:31
11:32
O2
%dv
12.85
13.11
13.60
13.13
13.62
12.32
11.54
11.48
12.04
12.17
12.18
12.93
11.63
12.13
12.24
12.32
12.33
12.40
12.38
13.46
12.22
12.38
12.48
12.56
12.63
12.56
13.12
12.34
12.08
12.26
12.53
12.74
12.79
12.80
13.14
11.97
12.42
12.50
12.53
12.70
12.85
CO 2
%dv
4.79
4.55
4.34
4.55
4.34
5.20
5.81
5.84
5.47
5.37
5.32
5.26
6.12
5.62
5.48
5.39
5.33
5.27
5.28
4.64
5.40
5.23
5.14
5.07
5.00
5.05
4.75
5.61
5.51
5.35
5.13
4.99
4.93
4.91
5.13
6.01
5.46
5.31
5.23
5.07
4.96
S02
ppmdv
23.27
21.96
20.44
31.83
121.30
68.12
201.30
267.40
200.30
145.50
104.70
102.60
181.50
127.80
90.80
60.79
40.91
29.91
24.16
38.33
37.59
23.72
21.23
19.72
18.59
18.12
22.08
105.40
36.35
23.31
19.99
18.19
17.57
17.60
70.70
142.90
54.57
21.79
15.10
13.23
12.32
NOX
ppmdv
30.21
33.51
45.00
49.26
47.95
56.50
104.70
106.00
96.70
89.80
67.28
104.30
95.80
81.60
71.20
57.97
45.64
36.08
37.11
76. 10
57.95
38.63
32.34
30.37
30.75
32.57
58.60
91.70
61.03
42.45
32.24
30.18
30.98
38.53
93.90
84.80
60.04
40.28
31.78
32.11
33.85
CO
ppmdv
0.20
0.01
0.03
0.03
0.18
0.25
0.34
0.29
0.41
0.42
0.30
0.18
0.18
0.30
0.31
0.30
0.18
0.30
0.19
0.19
0.19
0.18
0.31
0.05
0.09
0.14
0.19
0.05
0.04
0.05
0.02
0.19
0.07
0.02
0.08
0.02
0.03
0.06
0.10
0.09
0.14
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
11:33
11:34
11:35
11:36
11:37
11:38
11:39
11:40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
11:49
11:50
11:51
11:52
11:53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
12:01
12:02
12:03
12:04
12:05
12:06
12:07
12:08
12:09
12:10
12:11
12:12
12:13
O2
%dv
13.10
12.67
12.23
12.49
12.49
12.61
12.55
12.56
13.30
12.10
12.41
12.55
12.67
12.61
12.71
13.07
11.97
12.27
12.30
12.40
12.34
12.48
12.50
12.55
13.48
12.53
12.22
12.53
12.60
12.72
12.97
14.01
12.18
11.98
12.35
12.44
12.50
12.61
12.61
12.72
12.71P
CO2
%dv
4.83
5.29
5.41
5.23
5.22
5.12
5.16
5.17
4.76
5.42
5.19
5.10
5.02
5.04
4.98
5.06
5.69
5.41
5.33
5.22
5.22
5.12
5.12
5.10
4.44
5.17
5.30
5.11
5.07
4.98
4.78
4.12
5.40
5.52
5.32
5.24
5.17
5.09
5.08
4.97
4.92P
SO2
ppmdv
39.56
123.80
47.89
28.20
22.93
20.20
18.80
22.49
109. 10
48.25
25.80
22.10
20.74
20.67
27.39
124.10
124.60
75.10
47.53
31.12
24.98
23.10
22.38
21.87
35.88
31.24
26.53
23.93
23.52
22.97
28.87
160.60
82.60
72.10
75.60
59.84
45.41
35.58
32.10
30.82
30.08P
NOX
ppmdv
62.12
89.50
67.63
57.47
53.65
45.41
38.94
37.30
88.00
61.60
47.95
37.94
33.88
33.13
37.22
99.60
88.30
76.30
68.03
58.13
50.88
43.85
39.77
35.93
56.35
50.16
45.23
37.48
34.32
32.15
41.95
100.50
90.40
94.80
90.60
83.70
76.90
68.11
64.58
59.88
56.60P
CO
ppmdv
0.02
0.09
0.03
0.01
0.01
0.10
0.10
0.37
0.23
0.02
0.45
0.00
0.19
0.26
0.24
0.01
0.04
0.21
0.23
0.14
0.11
0.06
0.19
0.02
0.23
0.06
0.11
0.05
0.13
0.06
0.05
0.02
0.06
0.01
0.01
0.03
0.05
0.07
0.04
0.02
-0.43P
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
O2
%dv
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
.65P
.66P
.66P
.66P
.68P
.74P
.78P
.82P
.84P
.84P
.84P
.83P
.83P
.83P
.83P
.84P
.84P
.82P
.77P
.74P
.71P
.70P
.69P
.70P
.76P
.80P
.83P
.86P
.87P
.88P
.88P
.89P
.88P
.86P
.84P
.83P
.83P
.83P
.84P
.89P
.95P
CO2
%dv
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
.67P
.63P
.61P
.59P
.58P
.57P
.55P
.53P
.49P
.46P
.44P
.42P
.40P
.39P
.39P
.38P
.38P
.38P
.38P
.38P
.37P
.37P
.37P
.37P
.37P
.36P
.36P
.36P
.36P
.36P
.36P
.36P
.34P
.35P
.34P
.33P
.32P
.32P
.31P
.30P
.30P
S02
ppmdv
28.
28.
28.
28.
28.
28.
28.
28.
28.
29.
29.
29.
29.
29.
29.
29.
29.
29.
29.
29.
29.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
27.
27.
27.
27.
27.
27.
27.
27.
27.
4 IP
58P
62P
7 IP
67P
75P
84P
SOP
97P
01P
06P
06P
OOP
16P
16P
18P
09P
17P
10P
09P
04P
89P
83P
SOP
71P
60P
56P
45P
44P
27P
29P
06P
96P
9 IP
87P
72P
67P
61P
43P
44P
33P
NOx
ppmdv
53.
51.
42.
14.
13.
13.
13.
12.
12.
12.
12.
12.
12.
12.
11.
10.
8.
7.
7.
7.
7.
7.
7.
7.
6.
7.
7.
7.
6.
6.
6.
6.
6.
6.
7.
6.
6.
6.
6.
6.
6.
93P
86P
36P
93P
65P
20P
09P
98P
89P
78P
68P
65P
6 IP
52P
97P
54P
82P
76P
37P
16P
IIP
03P
01P
07P
99P
01P
06P
01P
93P
92P
95P
9 IP
84P
87P
01P
87P
82P
85P
84P
7 IP
69P
CO
ppmdv
-0
-0
-0
-0
-0
-0
-1
-0
-0
-0
-0
-0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-0
0
0
0
0
0
-0
0
.55P
.49P
.21P
.22P
.38P
.37P
.06P
.32P
.57P
.81P
.31P
.09P
.18P
.01P
.IIP
. 19P
. 02P
. 18P
. 41P
.IIP
. 17P
.IIP
.29P
.02P
. 02P
. 19P
. 19P
. 12P
. 03P
. 18P
. 03P
. 01P
. 18P
. 13P
. 02P
.02P
. 19P
. 19P
.29P
.07P
.27P
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
13:12
13:13
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
O2 CO2
%dv %dv
13. OOP
13.04P
13.07P
13.09P
13.10P
13.12P
13.12P
13.09P
13.07P
13.06P
13.06P
13.07P
13.10P
13.16P
13.24P
13.31P
13.37P
13.42P
14.50P
13.62P
13.75P
13.35
12.49
12.81
12.90
13.08
13.18
13.15
14.14
12.90
13.10
13.23
13.28
13.33
13.32
14.25
12.87
13.03
13.23
13.35
13.32
4.28P
4.28P
4.26P
4.26P
4.25P
4.24P
4.23P
4.21P
4. 2 IP
4.20P
4. 19P
4.17P
4.16P
4.16P
4.14P
4.13P
4. IIP
4.09P
3.49P
4.08P
4.01P
4.39
4.93
4.75
4.68
4.55
4.47
4.50
3.72
4.63
4.46
4.40
4.36
4.34
4.35
3.66
4.66
4.53
4.41
4.34
4.35
SO2
ppmdv
27.23P
27.18P
27.03P
26.91P
26.99P
26.86P
26.84P
26.68P
26.59P
26.55P
26.49P
26.47P
26.35P
26.34P
26.26P
26.12P
26.16P
26.05P
14.08P
11.48P
32.87P
74.50
36.41
37.04
27.02
22.34
19.75
19.99
21.37
27.10
25.15
24.35
23.97
22.98
23.74
28.67
40.54
32.39
29.30
27.19
26.41
NOx
ppmdv
6.70P
6.63P
6.60P
6.62P
6.60P
6.55P
6.53P
6.52P
6.54P
6. SOP
6.46P
6.43P
6.46P
6.36P
6.35P
6.41P
6.37P
6.32P
32.47P
55.43P
54.95P
47.52
40.25
36.88
30.94
30.76
33.51
41.89
38.20
34.02
30.81
30.50
32.03
32.87
38.68
42.73
34.84
30.26
29.37
29.55
30.53
CO
ppmdv
-0.16P
0.18P
0.12P
0.29P
0.18P
0.17P
0.18P
0.18P
-0.14P
0.18P
0.30P
-0.16P
0.10P
0.10P
0.01P
0.29P
0.29P
0.28P
0.57P
0.23P
0.11P
0.01
0.32
0.02
0.18
0.35
0.46
0.46
0.35
0.35
0.74
0.85
0.58
0.75
0.87
0.68
0.79
0.63
1.02
1.19
1.10
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
13:53
13:54
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
O2
%dv
13.32
14.39
12.66
12.78
12.90
12.93
12.98
12.99
14.13
12.33
12.63
12.79
12.81
12.87
13.06
14.42
12.46
12.59
12.87
12.95
13.10
13.12
13.07
13.29
13.80
12.54
12.92
13.05
13.08
12.99
13.07
14.19
12.66
12.91
13.02
12.98
12.98
12.97
13.97
12.82
12.66
CO 2
%dv
4.36
3.54
4.82
4.73
4.69
4.68
4.64
4.64
3.73
5.10
4.91
4.82
4.78
4.74
4.53
3.54
4.97
4.85
4.69
4.63
4.53
4.51
4.54
4.34
4.04
4.86
4.64
4.57
4.56
4.62
4.55
3.70
4.82
4.66
4.60
4.64
4.64
4.66
3.84
4.76
4.85
SO2
ppmdv
26.06
14.75
25.06
29.80
31.10
31.50
30.86
29.60
22.18
49.25
61.77
56.52
44.38
36.87
33.04
33.85
38.43
30.18
27.60
26.78
25.13
24.84
24.79
24.37
24.71
29.78
27.68
27.29
27.92
28.65
28.48
26.16
41.49
37.30
35.87
35.72
35.57
35.56
22.41
26.21
33.45
NOx
ppmdv
39.47
36.39
34.28
36.25
36.29
36.02
34.62
36.38
38.74
67.47
72.20
69.97
60.81
54.22
43.10
51.44
47.25
38.34
35.55
31.99
30.72
30.86
31.71
41.97
41.37
35.26
32.89
32.39
32.77
33.34
35.28
38.65
32.25
31.01
31.01
31.74
32.28
35.75
35.73
40.49
41.02
CO
ppmdv
0.94
1.18
1.01
0.91
1.09
0.92
0.70
0.59
0.64
0.18
0.52
0.73
0.74
0.84
0.79
0.78
0.81
1.03
0.93
1.03
1.19
1.35
1.01
0.87
1.35
1.26
1.27
1.10
1.11
1.26
1.77
1.36
1.04
1.36
1.27
1.60
1.62
1.78
1.44
1.70
1.85
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
14:17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
02
%dv
12.86
12.93
12.93
12.96
14.05
12.57
12.54
12.62
12.74
12.86
12.76
13.62
12.46
12.66
12.70
12.80
12.84
12.86
12.90
13.65
12.55
12.74
12.76
12.81
12.81
12.62
13.60
12.39
12.68
12.73
12.78
12.73
12.87
13.86
12.10
12.50
12.74
12.79
12.76
12.77
12.72
CO2
%dv
4.73
4.68
4.69
4.68
. 3.78
4.95
5.02
5.02
4.93
4.85
4.92
4.20
5.12
5.00
4.97
4.88
4.84
4.83
4.73
4.20
4.98
4.90
4.89
4.85
4.85
4.99
4.19
5.11
4.92
4.89
4.86
4.89
4.75
4.01
5.34
5.12
4.95
4.90
4.94
4.92
4.97
S02
ppmdv
34.12
33.85
34.11
34.12
20.99
29.95
76.70
124.50
141.70
118.30
89.10
47.88
79.40
87.50
78.50
68.54
67.95
68.51
46.89
39.09
61.71
63.75
59.15
54.11
51.35
50.32
49.59
64.88
57.17
52.98
49.09
47.65
44.22
77.80
114.90
105.40
90.30
83.60
80.40
76.10
71.70
NOx
ppmdv
37.98
35.86
35.07
38.63
36.82
54.81
79.00
82.60
81.10
77.90
73.80
75.00
84.30
81.40
79.20
75.40
75.60
73.60
58.37
78.10
87.30
85.00
83.50
80.70
79.90
75.90
77.40
86.10
80.50
77.00
73.90
72.00
69.05
89.50
103.90
93.20
87.40
86.20
85.70
84.00
79.80
CO
ppmdv
1.71
1.52
1.86
1.70
1.52
1.68
1.86
1.69
1.95
1.93
2.04
1.91
1.89
2.06
1.89
1.90
1.19
1.29
1.12
1.04
1.28
1.53
1.13
1.47
1.36
1.27
1.18
1.03
1.63
1.30
1.30
1.14
1.47
1.16
1.10
1.18
1.66
1.53
1.63
1.53
1.36
-------
Starting
08-22-99
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Time
14:
14:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
58
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
307 MinAvg
O2
%dv
13
12
12
12
12
12
12
13
12
12
12
12
12
12
12
12
12
12
12
12
12
.65
.42
.72
.68
.68
.69
.67
.05
.61
.79
.89
.83
.83
.89
.90
.85
.81
.73
.82
.85
.85
C02
%dv
4
5
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
.18
.10
.93
.97
.98
.98
.01
.26
.87
.39
.23
.18
.14
.07
.04
.05
.08
.11
.03
.00
.86
S02
ppmdv
55.
74.
73.
62.
61.
62.
64.
200.
333.
211.
162.
131.
111.
94.
83.
77.
74.
71.
67.
65.
50.
76
70
20
59
56
18
32
70
50
70
70
60
50
20
40
70
70
70
43
19
96
NOX
ppmdv
73
81
82
83
82
82
76
173
165
91
83
83
82
82
81
81
81
79
77
75
55
.50
.70
.60
.20
.70
.80
.40
.40
.70
.90
.80
.00
.30
.30
.40
.10
.00
.30
.00
.10
.55
CO
ppmdv
l
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
.29
.10
.27
.28
.29
.45
.29
.28
.70
.70
.96
.45
.54
.80
.61
.52
.45
.53
.54
.44
.68
Data Corrected for Calibrations
307 MinAvg 12.98 4.95
51.23
55.89
0.02
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
13:12
13:13
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
02
%dv
12.38
12.70
12.82
13.05
13.12
13.21
13.23
13.27
13.28
13.31
13.43
13.38
13.62
13.50
12.44
12.36
12.08
12.27
12.34
12.47
12.80
13.92
12.80
12.75
12.77
12.82
12.81
12.85
13.14
14.24
13.12
12.67
12.79
12.76
12.79
12.76
13.92
13.92
10.11
9.97
10.88
CO 2
%dv
5.09
4.88
4.77
4.59
4.53
4.46
4.43
4.41
4.40
4.37
4.28
4.31
4.15
4.62
5.03
5.15
5.34
5.22
5.16
5.05
4.75
4.07
4.79
4.82
4.80
4.76
4.76
4.74
4.46
3.77
4.51
4.82
4.74
4.78
4.77
4.80
3.91
4.17
6.50
6.54
5.97
S02
ppmdv
19.58
15.72
14.32
12.40
11.51
11.02
10.77
10.51
10.32
10.13
9.65
9.48
9.16
54.58
40.42
25.84
31.19
29.30
24.57
20.18
17.39
18.01
20.47
18.47
17.08
16.44
16.04
15.65
14.63
20.34
34.14
40.17
31.53
26.96
25.88
25.54
16.61
28.64
123.00
127.30
108.40
NOx
ppmdv
33.45
37.19
39.38
44.68
46.24
45.70
46.18
46.76
46.38
45.60
45.31
45.86
43.28
62.70
36.47
34.96
50.99
44.39
32.86
27.14
28.78
31.79
27.16
27.30
28.01
30.18
32.11
34.30
38.43
36.76
33.89
43.09
31.08
33.02
35.18
34.67
30.53
71.70
229.10
247.80
249.90
CO
ppmdv
0.88
0.04
0.98
0.42
0.38
0.54
0.65
0.39
0.87
'0.69
0.71
0.86
0.04
0.71
0.88
0.60
0.98
0.06
0.87
0.86
0.17
0.26
0.20
0.64
0.53
0.36
0.70
0.56
0.53
0.70
0.70
0.56
0.56
0.54
0.73
0.89
1.06
0.89
0.88
0.56
1.11
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
14:
14:
14:
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
O2
%dv
11
11
11
11
11
11
11
11
11
11
11
12
13
10
11
11
12
12
12
12
12
12
12
12
12
12
13
13
12
12
12
12
12
12
14
13
11
11
11
11
11
.30
.35
.47
.62
.74
.64
.69
.77
.74
.71
.85
.28
.86
.94
.80
.98
.09
.08
.09
.05
.13
.09
.14
.44
.58
.46
.55
.15
.50
.48
.55
.51
.55
.55
.02
.30
.51
.43
.41
.81
.90
CO2
%dv
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
4.
6.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
4.
4.
5.
5.
5.
5.
5.
5.
3.
4.
5.
5.
5.
5.
5.
72
69
62
54
47
53
51
44
47
48
40
09
21
12
53
42
33
33
34
35
30
33
30
12
08
14
31
74
13
14
09
14
11
11
95
69
88
95
97
72
67
SO2
ppmdv
95.
88.
80.
73.
68.
65.
61.
58.
56.
54.
52.
48.
29.
81.
63.
57.
54.
52.
51.
49.
49.
49.
48.
43.
27.
25.
22.
29.
26.
25.
23.
23.
23.
22.
15.
25.
45.
54.
56.
50.
48.
50
10
80
80
47
01
68
36
53
68
28
81
73
00
85
28
82
45
19
64
09
25
28
37
69
31
79
15
29
02
59
69
25
66
13
48
75
81
02
89
07
NOx
ppmdv
249.
249.
249.
249.
248.
248.
248.
247.
248.
247.
243.
182.
72.
242.
248.
249.
249.
249.
249.
249.
249.
249.
247.
127.
38.
34.
37.
36.
30.
30.
30.
31.
30.
29.
38.
70.
101.
103.
104.
99.
99.
10
50
40
70
90
60
80
40
30
70
50
00
80
70
30
20
10
20
40
50
50
50
60
40
08
44
85
66
97
79
63
13
82
93
07
90
40
10
90
50
10
CO
ppmdv
0.
0.
1.
0.
1.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
85
91
00
93
20
86
89
33
25
21
05
27
22
07
20
21
50
22
49
38
21
32
04
20
04
11
04
21
30
11
13
10
47
38
55
47
16
48
37
49
56
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14: 11
14:12
14:13
14:14
14:15
14:16
14 : 17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
O2
%dv
12.09
12.11
12.12
12.10
12.11
12.19
12.22
12.16
12. 16
12.28
12.33P
12.36P
12.42P
12.46P
12. SOP
12.52P
12.54P
12.56P
12.57P
12.57P
12.57P
12.56P
12.56P
12.56P
12.55P
12.54P
12.54P
12.53P
12.52P
12.52P
12.53P
12.52P
12.52P
12.52P
12.10P
10.09P
6.82P
6.54P
13.81
13.53
12.01
C02
%dv
5.57
5.52
5.53
5.52
5.51
5.46
5.44
5.47
5.46
5.39
5.34P
5.13P
5.09P
5.05P
5.02P
4.99P
4.97P
4.95P
4.91P
4.87P
4.83P
4. SOP
4.77P
4.75P
4.73P
4.72P
4.71P
4.70P
4.70P
4.71P
4.71P
4.71P
4.71P
4. 7 IP
5.83P
10.04P
6.30P
3.07P
4.26
4.52
5.50
S02
ppmdv
47.67
44.58
42.56
41.49
40.36
39.49
37.98
37.59
38.02
35.56
33.78P
32.51P
32.54P
32.55P
32.55P
32.48P
32.47P
32.40P
32.34P
32.23P
32.17P
32.14P
32.05P
31.93P
31.90P
31.77P
31.65P
31.50P
31.36P
31.14P
31.02P
30.71P
30.65P
30.53P
24.22P
1.70P
0.44P
6.46P
28.21
47.92
42.52
NOx
ppmdv
98.50
94.60
92.50
91.40
89.80
86.90
84.50
85.30
83.90
79.10
77.40P
75.40P
72.90P
61.71P
18.25P
16.26P
15.64P
15.35P
15.19P
15.08P
14.93P
14.79P
14.75P
14.55P
14.41P
13.77P
11.53P
8.75P
7.03P
6.50P
6.29P
5.92P
5.69P
5.73P
5.38P
-0.74P
45.31P
56.23P
70.90
89.80
79.30
CO
ppmdv
1.41
1.72
1.46
1.67
1.56
1.55
1.90
1.57
1.54
1.88
1.61P
1.73P
1.65P
1.73P
1.56P
1.89P
1.90P
1.90P
1.90P
1.91P
1.89P
1.78P
1.86P
1.92P
1.91P
1.90P
1.71P
1.91P
1.02P
1.78P
1.87P
1.84P
1.25P
1.13P
1.09P
1.02P
0.59P
1.37P
1.46
1.20
1.60
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
O2
%dv
12
12
12
12
12
12
12
12
12
12
12
12
13
12
12
12
12
12
13
14
13
12
12
12
12
12
12
12
12
12
12
12
12
12
13
12
12
12
12
12
12
.19
.52
.50
.57
.60
.66
.64
.59
. 63
.76
.77
.84
.89
.49
.35
.46
.59
.63
.13
.68
.20
.82
.71
.77
.71
.74
.82
.88
.87
.89
.92
.90
.96
.97
.18
.64
.50
.56
.54
.58
.61
CO2
%dv
5
5
5
5
5
5
5
5
5
5
5
4
4
5
5
5
5
5
4
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
.41
.22
.23
.18
.16
.13
.13
.16
.13
.04
.03
.95
.20
.22
.28
.20
.14
.10
.70
.52
.65
.88
.95
.93
.96
.96
.90
.87
.87
.86
.85
.85
.82
.80
.65
.55
.35
.31
.32
.30
.24
SO2
ppmdv
36
31
27
25
24
23
23
22
22
21
21
21
22
26
23
22
22
22
21
11
11
14
16
17
18
18
18
19
19
18
19
19
18
18
38
325
163
101
83
72
62
.04
.04
.57
.93
.45
.53
.21
.84
.35
.58
.52
.14
.08
.48
.57
.61
.19
.27
.01
.30
.80
.91
.66
.89
.34
.58
.96
.32
.07
.97
.10
.00
.80
.76
.57
.30
.20
.00
.40
.20
.32
NOx
ppmdv
72.
65.
58.
52.
46.
42.
42.
42.
41.
40.
39.
41.
54.
48.
46.
45.
43.
44.
53.
36.
33.
33.
34.
33.
32.
31.
31.
30.
29.
29.
28.
28.
28.
28.
46.
134.
93.
91.
90.
89.
88.
50
35
24
57
58
95
99
31
35
23
06
26
90
57
58
12
92
57
70
61
41
44
55
66
55
78
82
33
73
54
83
95
72
68
06
20
50
70
60
60
70
CO
ppmdv
1.
1.
1.
1.
1.
1.
1.
2.
1.
1.
1.
1.
2.
2.
2.
1.
1.
1.
1.
1.
2.
2.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
1.
1.
1.
1.
62
52
70
38
54
72
77
01
71
83
69
82
10
21
06
86
70
85
68
79
12
04
78
65
70
63
86
87
42
98
85
70
64
90
76
64
03
72
89
85
80
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
15:25
15:26
15:27
15:28
15:29
15:30
15:31
15:32
15:33
15:34
15:35
15:36
15:37
15:38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
15:59
16:00
16:01
16:02
16:03
16:04
16:05
02
%dv
12.64
12.60
12.55
12.66
12.73
12.64
12.73
12.63
12.91
12.55
12.32
12.52
12.46
12.58
12.60
12.55
12.66
12.67
12.65
12.63
12.67
12.64
12.93
13.95
12.15
12.35
12.51
12.54
12.61
12.67
12.61
12.62
12.64
12.57
12.58
12.64
12.71
12.68
12.81
13.09
12.52
CO2
%dv
5.19
5.21
5.22
5.15
5.10
5.16
5.08
5.14
4.89
5.41
5.58
5.41
5.43
5.32
5.29
5.30
5.24
5.23
5.23
5.24
5.21
5.23
4.96
4.20
5.60
5.48
5.39
5.34
5.31
5.25
5.31
5.30
5.30
5.37
5.35
5.32
5.25
5.28
5.18
4.95
5.51
S02
ppmdv
54.30
49.43
43.27
38.52
35.67
34.13
31.68
30.19
35.64
128.30
105.60
75.60
67.01
60.16
56.91
53.25
50.59
49.08
47.70
46.71
45.50
46.27
43.62
55.55
95.40
72.30
62.43
58.17
56.63
54.66
55.35
54.15
53.97
56.33
54.98
55.47
52.19
53.36
52.14
149.30
201.60
NOx
ppmdv
86.10
85.60
82.40
77.90
74.30
73.20
69.08
67.66
68.91
155.80
135.30
101.10
95.00
93.90
96.40
96.40
96.40
95.70
96.50
96.70
95.40
94.80
90.30
105.40
119.20
97.40
93.10
93.40
93.50
92.00
91.60
89.40
88.40
90.10
88.80
89.10
86.90
89.80
86.40
139.30
201.50
CO
ppmdv
1.69
2.15
1.70
1.89
1.67
1.69
1.59
1.57
1.87
1.57
1.47
1.69
1.71
2.03
1.69
1.69
1.88
1.53
1.55
1.73
1.53
1.60
1.66
1.52
1.55
2.03
1.70
1.87
1.71
1.75
1.84
1.77
1.60
1.94
1.57
1.73
1.73
1.71
1.87
1.75
2.01
-------
Starting
08-23-99
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Time
16:06
16:07
16:08
16:09
16:10
16:11
16:12
212 MinAvg
O2
%dv
12
12
12
12
12
12
12
12
.53
.73
.76
.67
.66
.67
.61
.58
CO 2
%dv
5.
5.
5.
5.
5.
5.
5.
5.
57
42
35
38
37
34
37
11
SO2
ppmdv
112.
86.
76.
72.
70.
68.
66.
45.
00
50
40
80
20
33
24
06
NOx
ppmdv
244.
197.
145.
124.
107.
94.
89.
91.
40
60
50
10
70
50
90
72
CO
ppmdv
1.
1.
2.
2.
1.
1.
1.
1.
99
90
03
06
69
72
90
38
Data Corrected for Calibrations
212 MinAvg 12.61 5.16
45.97
92.92
0.05
-------
Appendix C
Equations
-------
INSTRUMENT ANALYZER CALCULATIONS
1. Analyzer Calibration Error is determined by:
A - C
E = -2 2 x 100
2. System Bias is determined by:
Bs = - x 100
3. Calibration Drift is determined by:
Df = -£—^ x 100
4. The Adjusted Data Value is determined by:
Caas = (C-C0) x _E
-------
Nomenclature:
A,. = the analyzer response for calibration gas standard
Bs = Sampling system bias, % analyzer span
C = the average gas concentration of the analyte indicated by the gas
analyzer
Cg = the actual gas cylinder concentration value
Cgas = the adjusted gas concentration of the analyte
Cm = the average of initial and final system calibration responses for the
upscale calibration gas
Cma = the actual concentration of the upscale calibration gas used for
system calibration
C0 = the average of initial and final system calibration responses for the
zero gas
Cs = the system response for calibration gas introduced remotely at the
sample probe (zero or upscale)
Dc = Calibration drift, % analyzer span
Ec = Analyzer calibration error, % analyzer span
Fc = Final system calibration response value
lc = Initial system calibration response value
Vs = Span value of analyzer
-------
Appendix D
Raw Field Data for EPA Method 9
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
One)
203A
203B
Other
Company Name
Sreet Address
EAST
flTHEMS
State
Zip
Process
Control Equpnent
UrtT*
I
Operattno Mode
NloME
Cpeiaflng Mode
Ni/A
Oesatoe Emb*xi Point
TOPPED
of
HeigM o< Emiss. Pi.
|He
Direction to Emis. Pt. (Degrees)
3^ S
Start
3(O
°
End
Vented Angte to Ots. Pt.
Start I fc° End
precHontoOOs. Pt.
Start 310°
Distance and Direction to Odse.'vcsion Point trom £nnte»on Point
sort
End
EmtsionCo
aort
Describe Emtaons
Water Droplet Pkjne
plet Pkjne /
O DetachedF! NorxA/l
Oescnbe PLme Backonxnd
start SK/
&X5
Backoroind Color
Start &LO£ End
3cyCooc»onj
Start /0%
Wnd Speed
Start /VC.
End
Ambient lemp
Start
Bx,
— i „<••/'
76/
Wind OecBoo
Start
End
WetBUblemp.
RHPefoent
Draw Norm Arrow
RTN RWN
nrormanon
FofmNLTnter
K
Continued on VEO Form Nunber
z:
OF»
Odoervcrtion Dote
1 . 1 Af\
O 1 t * 1 ""
\Sec
1
2
3
4
5
6
7
8
9
10
11
12
13
U
IS
v>
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
O
o
o
0
O
0
o
o
o
o
o
o
o
o
0
o
o
o
o
0
o
0
o
o
0
0
o
o
o
0
15
O
0
o
o
0
o
0
o
o
o
o
o
o
0
0
o
o
o
o
0
o
o
o
o
0
o
0
o
0
o
IllrneZone
EST
30
O
c>
0
o
o
o
o
o
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
45
o
0
o
o
o
o
o
o
o
o
Start Time jEndTtne
Comments
0
0
o
0
0
o
0
0
0
o
o
o
o
0
o
o
o
o
0
0
ers
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Form Number
PI
POO.
Continued on VEO Fo
5 [2-b
^i/\
Urrt* Operattno Mode
OpmaMno Mode
He^hit o> Erms. Pt. Rel. to Otaerver
ISrart End
Direction to Emiss. Pt. (Degrees)
ISrart End
precKon to Obs. Pt. (Deore«&)
iStort End ".
nr trom Errtaon Point
End
End
Water Droptet Plume
Attached LJ Detached i 1 None 1 1
End
SkyConcMom
Start End
Wind Oectkxi
Start End
Wet Bulb temp. RHPeroent
^L IN
O
otonPoW
ru TO
IE n
fEET
M-I Po«»non so.v«-
Stock
~~^. wmi CT
— ^^^ PkjDe —
^"X"1^^ A n /T\
^^**"^fc. *§• >t'
Wnd i^
Dednatton
OteefvatJonrDaK
'Bin
\Sec
Mn\
1
2
3
4
5
6
7
8
9
0
O
o
o
o
o
o
o
o
0
.a 0
11
12
13
14
IS
V6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
o
o
o
o
o
o
o
0
o
o
o
0
0
0
0
o
o
o
o
o
j^
15
o
o
0
o
0
o
0
o
0
0
0
o
0
o
o
0
o
0
0
o
0
o
o
o
0
o
o
0
0
o
UmeZa
€^>
30
o
o
o
o
o
0
o
o
o
o
o
o
o
0
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
-ia
f"~
45
o
o
o
o
o
o
o
o
o
0
o
0
0
o
o
0
o
0
o
o
0
o
o
o
o
o
0
o
o
o
Start Time j£nd Time
into* ! ISSH-
Comments
CertffledEv
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
MethodJJseoXQrcle One)
-^"^ -% 203A 203B Othec
Company Name
CoUE/ifc V£T
9reetAddnBS
-
fcfc
Process
Uhft*
Control Equpment
Operating Mode
Operating Mode
Describe ErrtsSoo PoW
Height o< trrtss. p,
Start End
Dtstonce to Errto. Pt.
Start &id
Hwaht o( Erriss. Pt
Start
Direction to Emiss.
Stort
Rel.toOCaeiver
End
Pt. (Degrees)
End
Vertical Ano»9 to Otos. Pt.
Start End
prectiontoOds. PI. CDegre«s)
jstgrt End
Ootance and Direction to OCseivaiionPoWtiwTrE/rtsaDn Po(n»
Stort End
OesotDe Emtesons
Start End
Emission Cokx
Stort End
Wate/ OropMt PUne
Attached Lj Deft^hed [ 1
NooeD
Descnbe Pkjne Backaioirid
Stort End
Badg^nxnd Color
Start
VWnd Speed
Stort
Ambient lemp.
Start
End
End
End
ScyConaWons
Start
End
WindCNrecton
Stort End
Wet Bab lemp.
RH Percent
Aocrnonai rwcxmancn
M
Continued on VEO Fomn Mmber
0
p
Observation Dote
•&. n-^
\Sec
Mn\
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
a
o
0
o
o
o
o
0
0
o
o
o
0
o
o
o
o
o
o
o
o
o
0
o
o
0
o
o
o
o
15
O
o
O
o
O
O
O
0
0
G
O
O
0
o
o
o
o
0
c
0
o
0
o
o
o
o
0
o
o
o
Time Zone
€A5T
30
o
o
o
o
o
o
o
o
0
o
o
0
o
o
o
0
0
o
0
o
0
o
o
o
o
o
o
0
o
o
45
o
0
o
o
o
o
o
o
o
a
a
o
0
0
o
0
o
o
o
0
o
o
0
o
o
0
o
o
o
o
Start Time (End Time
i ma* ! »5£
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
QrcJe One)
(Method) 203A
2038
Other
veT
Street Address
Zip
Process
Unit*
CorrtKX EqJpment
Opetattno Mode
Operating Mode
Oesalbe Embston Point
Height of Errte. Pt.
Start
Dtstonce to Errtss. Pt.
Start
End
End
tte^W of Eniss. Pt
Start
Re(. to Observer
End
Direction to Emiss. Pt. (Degrees)
Stcirt End
Verrtca Anf>e to Otss. Pt.
Stcirt End
(Direction to Obs. Pt. (Degrees)
jstart End
Distance and Direction to Otxervarioo Point from Errttaon Point
Start End
Oncrloe Emtsaons
Start
End
Start
End
Water Droplet pkme
AnoctwdQ DotachedD NooeO
Descnoe Pkjrte Backonxnd
Start
Adarflonai normabon
H
Continued on VEO Form
q-
ID
S\o\£\\ |o
Observation Dale
«-n-^-
\Sec
Mn\
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Jo
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
O
o
0
0
0
0
o
o
o
0
o
0
0
0
0
o
o
o
o
o
0
0
0
o
0
o
0
0
o
o
15
O
o
o
o
0
o
o
V
o
o
o
0
0
0
0
0
o
0
o
o
o
o
0
o
o
o
o
o
o
6
IllmeZone
eti-r
30
G
o
o
D
o
G
O
O
O
G
0
0
O
o
0
a
o
0
o
o
0
0
o
o
o
t>
0
o
o
0
45
D
CD
o
o
o
o
o
0
a
o
0
0
o
0
0
D
o
o
o
o
o
0
0
o
o
0
o
o
o
o
Start Time Endllme,__
lllofc (554-
CoavnenS
Obe*vei-» Name (Print)
""""*"*
ers
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
d
Start End
BackorouTd Color
Start
Wind Speed
Start
Ambient Jemp.
Start
End
End
End
Scy Conations
Start End
Wind Direction
Start
WetBabfemp.
End
RHPeioenr
Foan Number
Continued on VEO Form Hjrtxt
/0
0
|6
Observation Dote
n-n-l«v
\Sec
Mn\
1
2
3
4
s
6
7
8
9
10
11
12
13
14
IS
lo
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
o
o
<9
O
o
0
o
0
o
o
o
o
o
o
o
o
o
0
0
o
o
o
o
o
o
0
o
o
o
15
o
o
o
o
o
o
0
o
0
o
o
o
0
o
o
o
o
o
o
o
0
o
o
0
o
o
o
o
o
o
lime Zone
esf
30
0
o
o
D
0
O
0
o
o
o
o
o
o
o
0
o
0
o
0
o
o
0
o
0
o
0
o
o
o
o
4S
o
o
c>
o
0
D
o
o
o
o
o
o
o
0
o
o
o
0
o
o
o
0
o
o
o
o
o
0
o
o
Start Time . End Time _
lilOfe 1554-
Coavrwnts
Oc»*(v»r j Mcme (Prtnt) ^
ptfTe s<£ot/vHNj
Obser/w-.Sorolure /V/7 «**• ^ ,-, qq
f%2&u^ £ • n • t0! _
aoancc"on ETS £«c.
ce^,, ^^ ua,. ^^^
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
2D3A
208B Other
fodltyName
Compcny Name
Street Address
A
Stole
Zip
Process
Control EcMpmert
Urrr*
Ope lattno Mode
Operating Mode
Describe Embston Point
•
Height of Emiss. Pt.
Start End
Dtstonce to Errto. Pi.
Start End
Height of Emiss. Pt
Sort
Rel. to Observe*
End
Direction to Emis. Pt. (Degrees)
Start End
Vertical Anow to Oas. Pt.
Start End
Dtrecton to OCs. Pt. (Degreeti
Start End
Distance and Direction to Observation Point from Errtsson PdnJ
Start End
Dwaloe Emfesons
Start
EmbslonCokx
Start
End
End
Water Droplet Pkrr»
Attached O Detached [~1
None^l
OescobePkme Bockgrcujxl
Start End
BackorouTd Color
Start
Wnd Speed
Start
Amtlentlemp.
Start
End
End
End
Sky Goodmans
Start
WndOroclloo
Start
Wet EUb Temp.
End
End
RHPeioert
Acxtflonci
Fotm Number
K
Continued on VEO Form NLmtoer
10
1
ii )0
Observation Dale
^a-^
\Sec
MnV^
]
2
3
4
5
6
7
8
9
10
n
12
13
14
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
0
0
0
o
o
0
o
0
o
o
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
MemocUiod,<-arcte One)
203B
neb
State
Pieces
Unrt*
Control Equipment
Ope rattno Mode
Operating Mode
Describe Emtekxi Po*Tt
•
Height ofEmra.Pt.
Start
Distance to Ento. Pt.
Start
End
End
Height at &ms. Pt
Start
Director) to Emis.
Srort
Rel.toOCaervef
End
Pt. (Degrees)
End
Vertical Anew to Obs
Stort
Pt.
End
Orecaon to OOs. Pt. (Degrees)
Start End
Ootonce and Direction 10 Observation Pomr trcm Errfcaon Point
Start End
Describe Emtesons
Start
Start
End
End
Water Droplet PLme
Attached O Detached [~|
NoneD
Oescobe Pkxne Background
Start End
BackgroLnd Color
Start
WndSpeed
Start
Ambient temp.
Start
End
End
End
SkyConcttons
Start End
WindDifecfcm
Start End
Wet Bab lemp.
RH Percent
Acxiivooa rv ormcoon
Form Number
AttRc
M ^
Continued on VEO Form NLmoer
7
/O
OJf j I |o
Observation Date
Dat* not
^^ P&tfM*. s-n-??
OrDOrtxatton -->• ^
^"^ f?5 UA.C
*•*'*' £••« - 5/ff __
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
{QrcJe One)
203A
203B
omec
Company Name
FotdrryName
Street Address
dry
2p
Process
Unit*
Control EcMpment
Operohno Mode
Operating Mode
Describe £rrts*an Point
•
MeioMo
o
0
o
0
o
0
o
o
o
0
o
0
0
0
0
o
0
15
0
o
o
0
o
o
o
0
o
o
0
o
0
o
o
o
0
0
o
o
o
€?
o
o
o
o
0
o
n
o
IllmeZone
*r5T
30
O
o
0
o
o
o
o
o
o
o
0
o
0
o
(9
O
0
O
O
6?
O
0
o
o
o
o
o
0
o
a
45
O
o
o
O
0
O
o
o
0
o
o
0
0
o
(9
o
0
o
o
o
0
o
o
0
o
o
o
o
0
o
Start Time u End time _ _
idol 1554-
Comments
Ooerver'j ^4om» (Print)
6TS
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Method 9y 203A 203B Other,
£5
State
Zip
Process
Unit*
Control Eojupment
Ope rattro Mode
OperartnoMode
Oesatoe EmSSoo Pc*Tt
•
Height o<&nis. Pt.
Start
Dsscnce to &riss. Pt.
Start
End
End
H«oht of Eniss. Pt
Start
Direction to Efniss.
Start
Rsl. to Observer
End
Pt.CDegrees)
End
Vertical Ano>5 To Obs. Pt.
Start End
IDIrectton to Obs. Pt. (DeaieaO
jstoff End
Distance and Direction to Observation Point frorn Emeaon Poftf
Start End
OojcKbe Errtelons
Start End
Efntston Cokx
Start End
Water OropMt PLrne
Attached l_! Detached \]
None CD
Descnbe PILTTKI Backoroind
Start End
Bocfcgnxnd Color
Start
Wnd Speed
Strjrt
Ambient lemp.
Si art
End
End
End
SkyCorxttons
Start End
VMnd Director)
Start End
WetBUbfemp.
RHPwoent
Aoarnonci
^K
Continued on VEO Form NUriber
io\o\f\t \o
Observation Date
ff-n-r)
\Sec
Mn\
)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
lo
17
18
1°
20
21
22
23
24
25
26
27
28
29
30
0
0
o
o
c
o
O
0
o
o
/->
o
O
0
o
o
MO
KiO
o
G
o
o
o
o
0
O
O
0
0
o
o
15
O
o
o
o
o
o
o
o
0
o
o
o
0
0
o
t>f\-
t>m
D
O
O
O
o
O
O
0
o
o
0
o
o
lime Zone
e^T
30
o
o
o
o
0
o
o
o
0
o
o
o
o
o
o
fa
^
o
(9
0
o
o
d
o
0
o
o
o
o
o
45
o
0
0
o
o
o
o
o
o
o
0
o
o
0
o
o
o
o
o
<±>
o
o
o
o
o
0
o
n
StartTime . Endltme , _.-
((164 (Sbf
Convnents
HoVSb ?aS(Tici-sJ To
^Ef SUM A^" Srf^K
ObMrvwfiNcnw (Print) _ _
PET
-------
VISIBLE EMISSION
EPA
OBSERVATION FORM 1
Method Used (Circle One)
Method 9 203A 203B Other
Company Name , . ,- ,
FoalltyName .
Street Address ^-
^ ArfHen^S
Process
Control Equipment
S V3>
Stoto /* * 2p
Unit* Qperatlno Mode
Operating Mode
Descttoe Emission Part
•
Height of Erriss. Pi.
Start End
Distance to Erriss. Pi.
Start End
vertical Antfe to Otx. Pt.
Start End
Heoht of Erms. Pt. Pel. to Observer
Start End
Direction to Emiss. Pt. (Degrees)
Start End
Direction to Otu. Pt. (Degrees)
Start End
Distance and Direction to Observation Pofnf Horn Emsson Poht
Start End
Describe Embsons
Start
Emission Cokx
Start End
Descobe Pkxrte Background
Start
Backrjrouxl Color
Start End
Wnd Speed
Start End
AmUent Jemp.
Start End
Source
X Otoe
Jk?*3'*'
End
Water Droplet Pkme
Anoched D Detached £U None D
End
ScyCondDons
Start End
WindDireclon
Start End
Wet Bcto lemp. RH Peicent
Layout Sxetch Draw North Aiow
QN OMN
O
rvatl on Point
ru tff\
III n
j ran
ver-j Portion So.v»»
^^^ Stock
^^^-^ an A
Stn Location Une
Wna ^
Lonrjltude Latitude
DecanoMon
Addrtlonai Informabon
FonnfvLmber
AHra:
K
^
- i
e- I
*""/£> "to
^^^^^^^^^C N/ft i i !
Observcrtxxi Dote
\Sec
1
2
3
4
s
6
7
8
9
0
O
0
G
O
O
O
0
Time Zone
15
6
O
O
0
0
0
Q
o i o
0
10 Q
n
12
13
14
15
lo
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
0
o
0
o
0
30
0
(5
O
o
0
O
o
o
o
o
O
o
o
o
45
O
o
o
o
o
o
0
0
o
o
Start Time tndnme -
VUOfe K^&-
Comrnents
o
0 0
o
0
o
Q
Otworver-j Nome (Print)
Ootervar't SgnotiMe
?&k /Stfo^j/i
.fln^ Dote
Di^fOTuo&ori f\ j«— r-». >
f^^^t ^^ I
certtfledB/ erfA ^ ^^
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Form Number
m.
10
•Z-o'f i Uo
Company Name
VET
ap
Process
mrw.
Urtl*
Contra* Equipment
Opeiatlno Mode
Operotlno
Kf
AHKC
Height o^ End
Distance and Direction to Oteervanon Port rrom Errbion Port
Stat S.V\W^ End
End
EmtatonCckx
Start U 0 /^C End MO Kl
MOM 6
Wafer OropMt Pune
AnochediZ)
Descabe HLTDO Badcoxxnd
Start S(CY
Badcoratrid Color
SJcy Concttons
Stort'Z^'j'C)
Mnd
Start
0«&
End
End
^ ,
/O
RH
rvofmo&on
Otoeryation Dote
\S»c
Mn\
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
V6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
0
o
o
o
0
o
o
o
o
o
G
o
o
0
o
o
0
o
o
0
o
o
0
0
0
o
e?
o
o
o
15
O
0
O
o
0
O
o
0
C
0
C
o
0
o
C
0
0
0
0
0
0
o
o
0
0
0
o
o
o
o
Time Zone
£-rs
30
0
o
o
6
0
o
0
o
0
0
o
0
o
o
o
o
o
o
0
o
0
0
0
0
o
0
o
o
o
0
45
0
o
0
0
0
0
o
o
0
0
o
0
o
o
o
c>
0
o
0
o
0
0
0
0
o
o
<9
o
0
o
sms> ""11(6
Comments
ObMrver-s Name (Print)
Certtriedb/
««•
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Meltjod-USecKClrcle One)
^Metnod9y 203A 2038 Otnet
Company Name .
FodrtyName
c3 LJ r
Street Address .—
tf . CpTv^"\CuS
Uty SJoto
Process
Uritt
Control Eajuipment
^A ap
Ope rattna Mode
Opeiatlno Mode
Desatoe £rrts*xi Point
•
Height of Emss. Pi.
Slart End
Distance to Errtss. ft.
Start End
Hoght of Ermi. Pt
Start
Direction to Emcss.
Stort
Rel.toCt»e
0
0
a
0
0
o
<9
O
O
o
o
o
0
o
f)
15
c>
o
o
o
o
0
o
o
o
0
a
o
0
0
o
o
o
o
o
o
o
o
o
0
o
o
o
0
o
r)
IllmeZone
C^T
30
O
o
o
o
o
o
o
o
o
o
Q
0
o
o
o
o
o
o
o
0
0
o
o
o
o
o
0
0
n
n
45
O
o
0
o
o
o
o
o
o
o
o
o
0
o
o
o
D
o
o
o
0
c>
0
o
0
o
0
0
n
n
Sort Time End Time
(L?>& (1(0
Comments
Coervor'tSOnoture
0
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
MemeilJJSed-CQrcie One)
' 2OJA 203B Other:
Compcrry Nome
. .
U^A - COLL. WET.
Street Addross
Crty
State
Zip
Process
Control Equipment
Urit*
Ope ration Mode
Operating Mode
Desatoe Emraoo Point
Height ofErriss. Pt.
Start End
DoSance to Erriss. Pi.
Start End
H«ant ot Emiss. Pt. Rel. to Obsejver
Siart End
CXrection to bmss. Pt
Start
(Degrees)
End
Vented Anew to Obs
Start
Pt.
End
Dlrecton to OCtt. Pt. CDegreeO
Start End
Distcnce and Direction to Observation PoW from En-toon Point
Start End
DrncflDe Emraoro
Start
EmbstonCcfcx
Start
End
End
Water Droplet FVmo
Anoched 1 1 Oetachad ( 1
None( 1
Descnbe Pkme Backaroux)
Start End
Background Color
Start
Wnd Speed
Start
Am&tont Temp.
Start
End
End
End
SkyCorxMons
Start End
WndDifec»on
Start End
Wet Btlb Temp.
RH Percent
form Number
Continued on VEO Form Number
j |
1 i lo
Observation Dale
^X
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
O
o
o
o
0
o
u
O
C
o
o
0
O
o
o
0
0
o
6
O
0
0
0
b
o
0
G
o
0
d
15
0
o
0
0
o
0
o
o
c
o
o
o
o
0
0
0
o
o
o
0
o
o
0
0
o
o
o
0
n
o
lime Zone
esr
30
O
0
o
o
o
0
o
0
c
o
o
o
o
o
0
o
o
o
o
o
o
0
o
0
0
o
0
0
n
0
45
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
o
o
0
o
0
o
o
o
o
0
0
0
o
Start Time JEndTlme
Comments
•3+
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Meltjad I >»^l CCIrrte One)
/' 233A
203B
Ottier
Company Ncroe
FoalttyName
Street Address
Pieces
IWt*
Control Equpment
Operattrxj Mode
Operotlno Mode
Describe Emtestco Point
Height o< Errtss. Pi.
Stort End
Distance to Erriss. Pi.
Start End
H«oht ol Emss
Start
Pt. Rel. to Ctoerver
End
Direction to Emiss. Pt. (Degrees)
Stort End
Vertlcd Anew to Obs. Pt.
Start End
jarecvmtoObs. Pt. (Degrees)
Start End
Distance and Direction to Observation Point from EmSson Pc*rt
Start &id
Dtticilbe Emissions
Start End
Emission Gator
Stort End
Water Droplet Plume
AnochedD Detached
D NoneD
Oescnbe FVroe Backonxnd
Start End
Backonxnd Color
Start
\Mnd Speed
Start
Ambient Jemp.
Start
End
End
End
ScyCorxttons
Start End
WndOrocflon
Start End
Wet BUb lemp.
RH Percent
foim Number
FHftC
SortTlme EndTlme
(Z.3C3 H(0
Cownerrts
Ct»arver's Name (Print)
Certified &r
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
One)
2D3A
203B
Otnec
Sh-tAdd""
e .
Stote
2p
Process
Unit*
Control Equipment
OperaMng Mode
Operating Mode
Describe Ertisstoo PoM
•
Height o< Erriss. Pi.
Start End
Distance to Enrtss. Pi.
Start End
Height o( Errtss. Pt
Sort
Direction to Emts.
Sfort
Rel.toOCaervef
End
Pt. (D6or««s)
End
Vefflcd Anj>e to Ofas. Pt.
Start Crtd
(Direction to ODs. Pt. (Degrees)
(start End
Distance and Direction to Otoen/arton Pout Horn Entosan Port
Start End
Describe Emissions
Start End
Emtskxi Color
Start End
Water Oroptet Plume
Attached LJ Detached! 1
Nooe^l
Descnbe Pfcme Backanxnd
Start
WndSpeed
Start
End
Backoroind CalOf
Start End
ScyCondlons
Start
End
AmbtentTemp.
Start
End
End
WndDracSon
Start
End
RHPeroenr
Source Layout Sketch
DN [>IN
O
X OtaervaHon Point
Aaarnonci mrofmanon
FormUjmOer
ioottnoed'on VEO forni Mmber
R Z
^|o|p| i io
Observation Datex' '
•S-fg;-^
\Sec
Mn\
I
2
3
4
5
6
7
8
9
10
1!
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
0
o
O
o
o
0
o
a
0
G
o
0
o
o
o
0
0
0
o
o
o
o
o
0
o
o
0
0
D
O
o
15
0
o
o
o
D
0
(7
0
o
0
o
o
o
0
0
o
o
o
0
0
o
o
0
0
o
o
o
0
o
o
lime Zone
esr
30
O
O
0
o
o
O
0
0
O
D
0
0
O
o
0
o
o
o
0
0
o
o
0
o
o
o
e?
o
0
0
45
0
o
o
0
o
o
0
0
0
o
Sir3o r"™nro
Correnents
A
\ Vtr^
C^A<:CM £yt
/ ^
0
0
D
o
0
o
0
<3
o
o
o
0
0
0
o
o
c?
o
0
o
:
I
!
1
/
;
i
i
(/
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
203B
Other.
Company Nome
C»y
ATfeMS
ap
Pieces
Unit*
Control EqJpment
Opercttno Mode
OperottnoMooe
DesolOe ErrtsSoo PoW
Heigh! o< Errto. PI.
Start End
Datcnce to Errtss. Pt.
Start End
He>oht of Ernes. Pt. Bel. to Otaotvet
Start End
Direction to Emis. Pt. (Degrees)
Start End
Vertical Anew lo Ots. Pt.
Start End
Direction to OOs. PI. (Dear««s)
Start End
Distance end Direction 10 Observation Point horn £rrte»on Point
Start End
Describe EfrtOons
Start End
EmbScoCciof
Start End
Water Droplet pume
Anached dl Detached [~J
None^l
Oescnbe PlLme Backonxnd
Start End
Bodconxnd Color
Start
Wnd Speed
Start
Ambient lemp.
Start
End
End
End
ScyCondftons
Start End
WndDrecfton
Start End
Wet BUD temp.
RHPeioent
i rvonrtcnon
Form Number
m
Continued on VEO Fomi Mjnber
o
f 1 ( b
Observation OiSte <
<6-^-C^
\Sec
Mn\
1
2
3
4
5
6
7
8
9
10
11
12
13
U
15
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
O
a
o
o
0
0
o
0
o
0
O
0
0
0
O
0
o
0
e>
o
a
<9
0
0
o
0
o
D
O
o
15
O
o
0
o
0
0
O
o
0
o
0
0
o
o
0
0
0
o
o
o
0
o
o
ft
o
0
o
0
0
(7
(Time Zone
£ST
30
O
0
o
O
O
O
o
0
o
o
o
0
o
0
0
o
0
0
o
o
0
a
o
0
o
o
o
0
0
o
45
o
o
o
o
c?
o
o
0
o
0
o
0
o
0
0
o
o
o
0
o
o
o
o
o
0
o
6
n
o
o
Sort Time 1 End Time _-.,,.
fZ3c? ! HfO
Coavnents
t
\
\
i
i
\VvV~ cUtfuvuV?
!
^
S^jnature
Oraantzatton
ers
Certified By
etA
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Method UsedjOrcte One)
(TfothodV) 2O3A 203B Oner
Compcrr/ Nome
LKtA- COLL.
H£$>
FocJItyName
Street Address
Oty
3P
Process
Unit *
Control Eojijpment
Operating Mode
Opening Mode
Desatoe Ermbion PoW
Height of &T*SS. Pi.
Start End
OsJance to Errto. Pt.
Start &id
Haohl or Enrcs. Pt. Rel . to Observet
Start End
Direction to Emis. PI. (Degrees)
Start End
Vertical Angw to Obs. Pt.
Start End
JOrecdon to Obs. Pt. (Degrees)
'Start End
Dsfanoe and DtrecOoo lo OOsorvatton Pdnf trom Emtsson Port
Start End
DescrlDe Embaons
Start End
Embskn Color
Start End
Water Dropfet Pitme
Attached 1 1 Dofachad ^)
NonB^l
Describe Pkme Bockonxnd
Start End
Background Color
Start
Wnd Speed
Start
AjnUent lemp.
Start
End
End
End
Sky Conations
Start End
Wnd Direction
Start End
Wet BOt> lamp.
&H Percent
Form Njrnber
Atftfc
- k
*"•
0
Continued on VEO Form Nimber
Observation Dale/' '
\Sec
1
2
3
4
s
6
7
8
9
10
n
12
13
14
15
Jo
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
O
0
0
o
0
o
0
o
0
0
o
o
o
0
o
o
o
0
o
o
o
o
o
0
o
o
0
o
o
0
15
O
o
0
o
o
a
o
o
0
O
d
0
o
0
0
o
0
0
o
0
o
o
0
o
o
o
ft
o
o
0
(Time Zone.
f~ S'l
30
O
0
O
O
o
o
o
o
£>
o
0
0
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
MetnodJiacUOrcto One)
^"Method 9_J} 2D3A
203B
Other
Company Name
Pieces
Uit*
Comtek Equipment
OperattTQ Mode
Operating Mode
Descttoe Emtatoo Po*rt
HeigMofErrtss.pl.
Start End
Distance to Embs. pi.
Start End
Hognt of Erms. Pt. Rel. to Oo»xvef
Start End
Direction to Emtss. Pt
Start
(Degrees)
End
Vertical Anew to Obs. Pt.
Start End
jDlrectionto Obs. Pt. (Degrees)
IStort End
[Sort
End
CKMCdoe Errtsxons
Start frid
Emtsskxi Color
Start End
Water Droplet Pune
Attached 1 1 O>toc(w-l [J
NoneD
Oescnbe PUrw Backoroind
Start End
Backoroind Color
Start
Wind Speed
Start
Ambient femp.
Start
End
End
End
ScyCorxnons
Start End
WndDirocton
Start End
Wet BUD femp.
RHPeicent
Aocrttonci rvornxioort
AHRC
Continued on VEO Form Njriber
Pooe
1715
Observation Dae'
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
2038 Other
e O •
Street Addras
State
2p
Process
Urtt*
Contrd Equipment
Opeiattno Mode
Operating Mode
Desatoe Emtatoo Point
•
Height <* Emiss. Pi.
Start
Distance to Ento. PI.
Start
End
End
Height of Erms
Start
Pt.Rei.toOoservef
End
Direction to Emis. Pt. (Degrees)
Stort End
Vemcd Anew to Obs. Pt.
Start tna
preclioo to Obs. Pt. (Deo»ei)
[staff End
Distance and Doocflon to Oteenratlon Point tram Enfeaon Point
Start End
Describe Emfcgkxa
Start
EmbslcnCotof
Stort
End
End
Water Oroptet Plume
Attached 1 1 Detached 1 1 hkra 1
Descobe FVj-no Bocko^x-nd
Start End
Backonxnd Color
Start
Wnd Speed
Stort
Ambient lemp.
Start
End
End
End
SkyCondMons
Start End
Wnd Director)
Start End
Wet &Jb Jemp.
RHPeic«nt
Form f-Lmtier
/me
W\<\
-
(^ 2.
Pooe ^a{c?
Continued on VEO Form Mjnoer 1 /^ ! 1
AHKOi/^- £2. 10 0|FI l jo
•2 A
Observation Dote '
S-ft-lT
\Sec
Mn~\
1
2
3
4
5
6
7
8
9
10
11
12
13
U
15
Jo
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
0
o
0
o
o
o
o
0
0
0
0
o
0
o
o
o
0
o
O
o
O
0
Q
O
O
O
O
O
o
o
15
0
o
o
0
0
o
0
0
0
o
0
o
0
0
o
o
o
o
o
o
o
o
o
0
o
o
o
0
o
o
UmeZcoe
esr
30
o
0
o
0
0
0
0
o
0
o
o
o
o
o
0
0
o
0
O
0
O
0
O
0
o
o
o
o
o
o
45
o
o
o
o
0
o
0
o
o
o
0
0
o
o
o
o
o
o
o
0
o
o
o
o
C)
o
o
o
o
o
stortume EndTtme ,^ .
]?*>o (](0
Convneots
C^N™™ -p^ ^^^ ^
—»***" pfhwrA- -tf./r^
Ooortzofion /•» ^f^-jf* /
£^(±> (MZ-
c~m*at" <2TK ""
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Metnod Usea 203A
203B
Ottwc
. ver.
Street Address
Piocess
Unrt*
Control Equipment
Oporattno Mode
Opefotino Mode
Oesctoe EmtsSon Point
• •
Heighl at Erriss. Pi.
Start End
Dtsicnce to fcriss. Pi.
Start End
HesjW o( Errcs. PI. Rei. to Observer
Start End
Direction to Emiss. Pt. CDentees)
Sort End
Vsrttcot Ancte to Obs. Pt.
Sort End
prectontc Obs. Pt. CDeareeO
jstort End
Distance and OtfecBon 10 Observation Point horn EmSaoo Pdnf
Start End
Ottscribe Emteiors
Start
End
EmtsionColor
Start
End
Water Droplet PUn»
Attached O Detached f~l None f~l
FormNLinber
MRC,
IA
*i
-
/e
2.
"~ /O a /O
Continued on V£O form Mrrtoer
I
Observation Date--'^-
\Sec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
»
17
18
19
20
21
22
23
24
25
26
27
28
29
X
0
O
o
o
o
0
o
o
0
o
o
15
o
o
&
o
o
o
o
o
o
o
Time Zone
30
c
o
o
0
o
o
o
o
o
o
45
o
o
a
o
o
0
o
0
0
o
Start Time End TJme
\22>O n (0
Corrvnents
Addrtionc* W ormabon
Obsefvof i Nome (Print)
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
RxmNLmber
*HKC
Continued on VEO Rxm Umber
MettjodJLIsadjQrcie One)
^Method 9 J) 203A
203B
Other:
Company Name
Street Address
State
Zip
(. UlAflE
Unit
Control Equpment
Operatlno
Descdte Embdon Port
se
of AH£C
Heioht o< Emfcs. Pi.
Start ^ fcO End
^ jHeiaritofernss. Pt. Bel. to Observer
Start •- t-O End "-t
Distance to Erriss. Pt.
Start ** 2 SO End
Direction to Emiss. Pt. CDeorees)
Start SIC0 Eod
VectteO Any) to Obs. Pt.
Stat ((-)° ^
*r«-
precucn to OCs. Pt. CDegreei)
istort 310° End
Distance and Dtoectkxi Jo Observation Port from Emtsaon Port
S.ort 5AV^€- End
OocrtDe
Start
Emission Cotoc
start
Water Droplet PUne
Attached 1 1 Detnf-.h«d 1
Oascabe PKme
start
start BLUE
3cyConcttons
Start
EM
End
_ .
S%
Stort
End
tBapiemtt
Obswvc
<
^
i
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
sT/Ti-
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Mettv^Usediprck) One)
(Methbd9^ 203A
203B
Other
^ CVMA
Street Address
2p
Unit*
Control EqJpmer*
Operating Mode
Opeiatlno Mode
Desatoe ErrtsSon PoW
•
Heiohto9 to Obs. Pt.
Start End
Direction to Ofcs. Pt. (Degrees)
Start End
distance and Dtrecnon to Ooee.-votloo Point tram Emaon Point
Start End
OocflDe Embaore
Start
Embsion Cotof
Sort
End
End
Water Droptot Puiw
Attached 1 1 Detached P None LI
DescubefVroe Bockgrocrxl
Start End
BackgraLnd Color
Start
\MndSpeod
Start
AmWent Teinp.
Stort
End
End
End
ScyConottora
Start
WndOrecttoo
Start
WetBtlbfemp.
End
End
RH Percent
Aodraona Motmcoon
Form Mrnber
r?
Continued on VEO form Number
Page
Observation Dote
£-22-^
\Sec
Mn\
1
2
3
4
5
6
7
8
9
)0
11
12
13
14
IS
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
o
0
o
o
0
o
o
o
0
0
o
o
o
0
o
o
o
o
o
0
o
o
o
0
0
o
o
o
o
15
O
0
0
o
o
o
o
0
o
o
0
0
o
o
o
0
o
0
0
o
o
o
o
o
0
o
o
0
o
o
IllmeZone
£$T
30
o
0
o
o
0
o
o
o
o
o
0
0
o
o
o
o
0
0
o
6
0
o
o
o
o
o
o
o
0
0
45
o
0
o
o
o
o
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
o
o
o
o
o
o
Start Time 1 End Time
(oio ! ISK
Comments
OrQQTucnon
CerttrtedEv
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Mattel 1 rxvl (f~Uci« One)
Ottwr
UQA-CViAX
9h~Ad*-
ap
Process
Irtt*
Control EqJpment
Operating Mode
Operating Mode
Describe EmtaJofi Port
•
Heighlof Enio.Pi.
Start End
Distance to Errtss. Pi.
Sfart End
HaoW of Erms. Pt
Start
Direction to Emis.
Start
Bel.toOtMwvet
End
Pt.CD&orees)
End
Verttca Anew 10 Obs. Pt.
Start End
pnecnon to OCX. Pt.
[Start End
Ootanoe and Oitecdon to Ocse.-varton Point tram Embooo Point
Start &id
Describe Emtaons
Start
Efrtslon Cokx
Start
End
End
Water Droplet Pume
Attached [Zl Deto
ihadfl Nonal 1
Descnbe FVrno BcckorouTd
Start End
Badcgnxnd Color
Start
Wild Speed
Start
Amt*enJ Jemp.
Start
End
End
End
3cy Coodtonj
Start End
Wra Dimeter,
Start End
WetB^blernp.
RH Percent
Fon-nNLrnber
\v\
Continued on
Mr
Obser/aSon Dote
\O 1*15"
Coovnents
.
Od»erv«('s Name (Print)
Observe f-« Signature
Organttaaon
Certtft»dBy
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Form Mjntier
AttKC
W. °( ~ fc
Continued on VE
5
rcle One)
2Q3A
203B
Offer
State
Process
Control Equipment
2)p
Lrtt#
Ope rottro Mode
Operating Mode
Desctlte ErrteJon Po*rt
Height
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
One)
2D3A 2CBB Other
Compcny Nome
FociltyName
Street Address
ftiivCC
Oty
2p
Process
Unit*
Control Equipment
Ope rottna Mode
Operating Mode
Describe Enteton Port
•
Start End
Distance to Enrte. Pi.
Start End
HeKJfit of Emss. Pt. Rel
Start
Direction to Emiss. Pt. (
Start
. toOOserver
End
PeO'ees)
End
Vetflca Anew to Ots. Pt.
Start End
Direction to Ots. Pt. (Degrees)
Start End
Distance and Oroctlon 10 Observation Point from Errtoon Point
Sort frid
OoscdOe Emtolons
Start
Emission Cokx
Start
End
frid
Water Droplet Plane
Attached I I rx»«rr^h«d [l
NoneD
Descobe PlLrne Backorocnd
Start End
Background Color
Start
Wnd Speed
Start
AmUent lemp.
Start
End
End
End
3ty Corxttons
Start End
Wind Direction
Start End
WetBOblemp.
OH Percent
Acx*flonci notmanon
form NLmber
m
(C
Continued on VEO Form M/nber
Avnee
Observation Dote
S-2.2-^
\Sec
Mn\
1
2
3
4
5
6
7
8
9
10
n
12
13
14
15
lo
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
0
0
0
0
(9
0
o
0
o
o
0
o
o
0
0
o
o
0
o
0
o
o
o
G
o
o
o
o
o
0
is
O
0
0
o
o
o
0
0
o
O
o
0
o
o
o
o
o
o
o
o
o
o
0
o
o
0
o
0
0
o
ITImeZone
esr
30
O
o
o
o
o
o
o
0
o
0
0
0
0
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
0
o
45
o
o
(9
o
o
o
0
6
o
o
0
0
o
0
0
o
o
0
o
0
o
0
o
o
o
0
o
o
o
o
Slot Time | End Time
(0(0 ! ,si^
Comments
P<5Y-f cJ-A^JUvcx^
^CUA^A ^S>
u/2/o~
w
1
/J —
V
Certtfledby
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
j r^MethodjTi) 203A 203B
Other
Company Nome ,. -^ .^ ,-, .
LJ~7p\ C_A
^lA^
FocJItyName l\-4 \ f> /^
Street Address
^ ArrvfeiJS
Process
Control Equipment
State^^
Unit*
Zip
Opeiattno Mode
Operating Mode
FcKmNLmber
rVH^\C
H
°i
-
K
Conttnoed on VEO Form N^nber
sP008
4-K3
Observation Date
\Sec
1
2
3
4
5
6
0
0
o
o
o
o
o
15
0
o
o
0
o
o
Time Zone
30 45
o o
0
0
o
o
o
0
o
o
0
o
6°\N^
1
-H//!^
StartUme _
(0(0
End lime
\6\ 5
Comments
Desalt* Emtston Point
•
Height o< Ernes, ft.
Start
DotcncetoErrtss.pt.
Start
End
End
Height o(Emss
Start
Pt. Rel.toObswvef
End
Direction to Emiss. Pt. CDearees)
Stort End
VerttcaJ Anew to Obs. Pt.
Start End
Direction to Ott. Pt. (Degreed
Start End
Ctetcnce and Ddectkxi to Observation Point from Errfcaon Point
Start End
Describe EmsSons
Start
Emission Color
Stort
End
End
Water Droplet Puna
AttoehedO De1oched{~) None £1
Oescnbe fvme Backgnxr>d
Start End
Backofdnd Color
Stort
Wnd Speed
Stort
AmU«nt temp.
Start
End
End
End
SkyConcMcns
Start End
Wind Director)
Start End
WetBUbfemp.
RHPeicent
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
T^rlHrJ'0^* 2CSB
Ottwr
' —
Compony Nome /• I x- ,i ^ /•
cjCf /\ - C\/YV\
FodltyNome AfW> £
Street Address ,, x- ^a Oi C
Ay^t^\-W^-w t *v
/\ V \ X^- ^O J
Process Urtt*
Control Equipment
>
^\A\ 2P
Cperotlno Mode
Cpeiatlno Mode
Oescitoa Emisston Point
•
Height oCEmiss. Pi. He
0
IrneZcne
£5T
30
<9
O
0
0
O
O
D
O
O
O
O
O
0
c
O
O
O
O
O
O
0
O
O
O
0
0
0
O
O
O
45
o
o
o
o
0
o
o
o
D
o
6
0
(]
o
o
o
o
o
o
o
o
0
o
0
o
o
o
o
o
o
SJartTlme (Endllme
(oio ! isis
Comments
V /
V
^VL^_ (faftdMUAd
f> tits
a^.N«a«, pe7E toc,jn
"-""**" ^tfc/7^ ""ft.W-r?
aocrtK38on £rfS kxo
<*"—* £^r* ^ ^,/^9
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
FormNtmtier
AtfKC
04
Continued on VEO Form lumber
1 MethodUj&diiQrcb
| (J^etnodJ^
3 One)
203A
203B Other
Company Nome
Facility Name
U^A-Cx/M
AHRC
Street Address /* A. A A \f)
°* ArvtewAS ***£-
Process
Unit*
Control Equipment
S
A ap
OperaHrxj Mode
Operating Mode
Oesatoe Emtakxi Port
•
HetgM of Enniss. Pr.
Start End
Dotcnce to Erriss. Pt.
Start End
Height ot &ms. Pt
Start
Direction to Emiss.
Start
Rel.toOt»e- Stock _
•^^^>^ with Oednatton
Observation Dale
•g-ZZ-^
\SK
Mn\
1
2
3
4
S
6
7
8
9
10
11
12
13
U
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
O
0
o
o
O
o
0
o
0
o
O
0
0
o
0
0
o
o
o
a
o
o
O
0
0
0
0
o
0
15
O
o
o
0
0
0
o
0
o
0
0
o
o
o
0
o
o
0
0
o
o
0
o
0
o
0
o
0
o
0
llmeZcne
esr
30
O
o
o
o
o
o
O
O
o
0
o
o
o
o
o
0
0
o
o
0
o
o
o
0
0
o
0
o
o
0
45
o
f)
o
o
o
o
0
o
o
0
o
o
o
o
o
0
o
o
o
0
o
o
0
0
o
o
o
o
0
@
Startnme EndTlme _ .,
1 (0(0 .l£l5
Conrvnents
.
OteervoriStgnoture
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
MettraUfeecttQrcte One)
(^Method?) 2D3A
203B
Other
CompcnyNome
Faculty Name
Street Addles;
Qty
e, A
Zip
Urrt*
Control Eqiipment
Operating Mode
Operating Mode
Describe Emtaton PaW
Height o< EfTte. Pi.
Start End
Distcnce to Errte. PI.
Start End
H»ght o( Ems. Pt
Start
Oirection to Emiss.
Stort
Pjet.toOtaerver
End
PI. (Decrees)
End
Venice* Anc*e to Obs. Pt.
Start End
|Dlrec»ontcOC5. Pt. (Degiees)
jstort End
Distance and Dwecaon lo Obsejvanon Pow trom Errtsson Point
! Start End
OMCitoe Emsaons
Emission Color
Start
End
Water Droplet Phme
Attached l~l Detached I I None Fj
Descnbe FVme Background
Start
Badconxnd Color
tStort End
Wnd Speed
i Start End
| Ambient Jemp.
S» art End
End
Sey Concttons
Start
"wndDredlon
Start
"Wet Bat) Temp.
Source Layout Sketch
End
End
"RHPeicert
Diow North Anow
QTN QMN
X Observation Port
_n
-FEE!
Longfluoe
iAddrtloncI Wo
o
o
0
0
0
0
0
0
o
0
0
o
o
0
o
o
o
o
o
o
0
o
o
o
o
o
o
o
ITImeZone
GST
30
o
o
o
o
0
o
0
0
0
0
0
0
0
o
o
o
o
o
0
o
o
0
0
o
o
o
o
o
o
o
45
o
0
0
0
D
,9
o
o
0
D
o
o
0
o
o
o
o
o
o
0
o
o
o
o
o
o
o
o
o
o
Start Time tnd Ifrne ^
Comments
OCeerven Name (Print"
VEOF1.1
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Form Number
One)
201A
2CCB
Other
FaciWyName
.. ,.
Artec
„-,***.
Zip
Pieces
Unit*
Control Equpmert
Operating Mode
Operating Mode
Describe ErrisJoo Potrt
•
Heioht o* Erriss. Pt.
Start
Otstonce to Errtss. R.
Sort
End
End
Height ol Emsi
Start
Pt. Rei.toOt»e
r)
0
0
O
o
o
o
o
o
0
45
o
o
o
o
o
0
o
o
0
0
StartUme jEndttne _ _
(D(o ! ISiS
Conments
o
D
0
o
o
o
0
p
o
o
0
o
o
a
o
0
0
o
o
0
«MMr.Nm0»0
Otoe«v«r» Signature
CHQarfeaaon
CerttrtedEy
VEOFl.l
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Mett>od-Upe3~Carcte One)
f Method9 } 203A 203B Other
L ^
Company Nome , . r* A >-v
FocJUyName A-V-r-/? x''1
Stree
IA~ ^.. CmviPo
^ ATft£Nl3 aafe
Piocess irit*
Control Eajupment
S
^A ap
Cpe rating Mocte
Operattng Mode
DesciU» Emission Point
Height at Eria. Pi. Heigrn
Start End Start
Dstonce to Errts. PI. Direct
Start End Start
o( Erms. Pt. Bel. to Ooserver
End
ion to Emus. Pt. (Degrees)
End
Vertical Anew to Ots. Pt. t>rec«oo to Ods. F
Start End Start
Distance and DttecHonio Observation Point from Enfeaon Point
Start End
Oncfloe Emoons
Start End
Etnbslon Color Water Droplet Plur
Start End Attached Q C
Descnbe FVme Backgroind
Start End
Bockoroijxl Color 3cy CooaVBcns
Start End Start
vwnd Speed Wnd Direction
Start End Start
Ambient lemp. Wet Bulb lemp.
Start End
Source Layout Sketch
X Observation Point
ru
U
^ oewKveri PatMon
X&f^^^^^^
|PrT/ Sun location Une
Lonoltude LaKhjde Do
1. (Degrees)
End
ne
totcKhedjn NoneD
End
End
RH Percent
Draw North Anew
QN QMN
o
tm
n
ftn
SO.V*,
Stack
\Mtti Q
Hume
Wind ^
cHncrtlon
Oroantalton
Observation Dote
U-VL-^
\Sec
Mn\
I
2
3
4
5
t>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
o
o
a
o
15
O
o
0
O
O
IllmeZone,
30
0
O
o
o
o
45
0
o
o
o
o
StartTlnie lEndllme
/o/o ! (S/S"
Corrvnents
uc
*"
VEOF1.1
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
2Q3B
Other
Company Nome _ ,, _
Fbcillty Nome
Street Address
RRRC,
E,
CfTMPaS
^ ATH£MS SWI*^
A 3p
Process
Control Equipment
Lhrt* |Opeia«noMode
ICperoHna Mode
Describe Errbion Pent
se
o
HoiohtofErriss.pt.
Start ^60'
End
|He>orrt ol Emss. Pt. Pel. to Ocuwver
IStort ^60 End ^^O'
Distance to Ente. Pt.
Sort -2'40''
Direction to Emiss. Pt. (Decrees)
Sort 20° End &
VerttcolAnoWtoOds.Pt. I Direction to CDS. Pt. (Degrees)
Start 1 fc° &xl ( 6 Isiart 2£>6 && 2&
Distance cod Dtwcflon to Otose.-vcston PoW rrom Errtsson Point
Start S*^»wt End SA*^-^-
Describe Embgiore
Star, MOWE
End <=SV<\YV\t
Emission Cokx
Start MOMfe End
Water Droptet Pkme
Attached I I Detached D None (
Describe fVme
Start
BocHortxnd Colof1
End
End
WlndSpeeil
Start
3cy Coodmcns
Start fj%
&id
0 ~ O
Amttera Temp.
Start 1?,
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
rcle One)
203A
203B
Other.
AtiRC
e. cm/vtPus
State
Zip
Process
Urtt*
Control Equipment
Ope rottro Mode
Operating Mode
Describe tmfcioo Pc*U
•
Height of Erriss. Pt.
Start End
Dotanco to Ertte. Pt.
Start End
Heoht
o
45
o
o
o
o
0
o
o
0
o
0
Start Time EndTlme , ,•
1240 /6/0
Coavnents
o
0
o
o
0
o
o
o
o
o
o
0
0
o
0
o
o
o
0
o
Oawvoi-jNcnw (Print) .-V^-TV" -9 /7
HETE sfooon
— ' *"-" /^y^jTC ""^tS'??
^"^ e^u±.
o— """ ^T?\ ^ 3/^9
VEOF1.1
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Memod_LJaagh(€Jrcie One)
' 203A
203B
Ottier
6,
*""
ap
Process
Unit*
Control Equipment
Operating Mode
Operating Mode
Dwcilt* £nr*s*x> Port
Height of Eniss. Pi.
Sfort End
Distance to Brtos. PI.
Start End
Height of Ernes. Pt
Start
Direction to Ernis.
Start
Rel. to Observer
End
Pt. (Degrees)
End
Vertical Anew to Obs. Pt.
Start End
(Direction to Obs. Pt. (Degrees)
'start End
Dtstonoe and Dtwctton Jo OCsavarton Pont Irom EmSson Port
Start End
Dmcrlbe Errtesoro
Start
tmisiori Color
Start End
Describe Rune Background
Start
Badconxnd Color
Start End
\MndSpeed
Start End
Ambient femp.
Start End
Sourc
X Ot
,,Ob
End
Water Droplet PUne
Attached CD Detached 0 Nnoe Q
End
Sky CondHons
Start
\Mnd Direction
Start
WetBUMemp.
» Layout Sketch
aervaHon Part
0!
server j Postdon
^^
Sen Location Une
Lonrjnude Lotttudi
> De
End
End
RH Percent
QN D^N
O
cm I
-, r
~«~ 1
Stack
HLrne
Sin -0-
cttnotlon
Adcfrnooc* Mormabon
Form Number
AHRC
IK
°l
—
£
<<-
Pace ^ CX _ ,
Continued on VEO Form NLjnber
AKKC-ito^- fcH-
f
I«FI 7
Observotion Dote
g.Z3-*tt
\Sec
Mn\
1
2
3
4
5
t>
7
a
9
10
11
12
13
14
15
V>
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
o
o
o
0
0
o
o
0
0
o
o
o
0
o
o
o
o
o
d
o
o
0
o
o
0
0
n
o
C)
15
0
o
o
o
0
o
o
o
0
o
o
o
o
o
0
o
o
a
o
o
o
o
o
o
o
o
o
o
0
o
IllmeZcne IStortTlme endllme i r , ^
E^T IZ^O IbfO
30
O
O
O
O
O
o
o
o
o
o
o
0
o
o
o
o
o
o
o
o
0
0
o
0
0
o
o
0
(9
o
45
0
o
o
o
o
0
o
o
COTTYTWOtS
0
o
0
a
0
o
0
o
o
CD
o
o
0
0
o
o
o
0
o
o
0
0
VEOFl.l
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Ivtethod UsftdXOrcie Qns}
^"~MethodVb 2O1A, 203B Other
ICompcnyNome , r\//M
UH n (— V (M
oomyNome ^J££
h*^"* E. CfrMPuS
^ fiTftr>iS r*q/\ ap
[Process Unit* Operating Mode
Control Equipment Operating Mode
i
J Describe Emission Port
Height ofEmiss. Pt. Height o( Erriss. Pt. Rel.toOoserver
'Start End IStart End
DotancetoEmlss.pt. Direction to Eaiss. Pt. (Dearees)
.Start End iSfort End
(Verttcol Any* to Obs. Pt. IDirecHon to ODs. Pt. (Degrees)
•Start End Start End
Distance and Direction lo Ot*e.-va!ion Point from Embson Point
(start End
Describe Errtaons
Start End
Emission Color Water Droplet PXme
Start End AttachedCD Detached f~l None | 1
fogri Number
M q
~!R 4-
Pane ^a ^
Continued on VEO Form Nurrtoer
si ki n
Observation Date
\Sec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
0
0
0
0
o
0
o
O
o
o
o
o
o
o
o
o
f"->
15
0
0
0
0
0
o
o
0
o
o
o
0
O
o
o
r\
Time Zone
30
0
0
0
O
o
0
o
o
o
0
o
o
o
0
o
/-I
4&
o
0
Q
o
o
o
o
o
o
o
o
o
0
o
o
r*i
Start Time [Endllmei/
( 2-£f0 j /0/C7
Convnents
&emM povt cWtua-
/p) 1 1 It?
Describe Pkjne BockgroLnd
Start End
Backorouxl Color
Start
Wind Speed
Start
Amtdenl lemp.
Stan
End
End
End
Sey Condttoru
Start End
WndDrectton
Start End
WetBUblemp.
RHPeicant
VEOF1.1
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
203B
Otf»r
2p
Control Equipment
Opeiattng Mode
Operating Mode
Descitoe Emtaton Point
Height
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Memodlbaswqtcle One)
(^aethod9j 203A 203B Omen
c"w~"(Jc1A-cviKS -
Process Unit*
Control Equipment
4A- 3P
Operating Mode
Operating Mode
Describe Emte*on Point
•
Heightof Errte. Pt. Hetgrrt {
Start End IStort
* Emss. Pt. Rel. to Obsetvef
End
Distance to Emlo.Pl. Direction to Erniss. Pt. (Degrees)
Sort End IStart End
Vertical fin&i to OOs. Pt. [Direction to Ocs. Pt. CDeQroes)
Start End 'start End
Distance and Direction 1o Observation PC*T» from Errtsson Point
Start End
Dmcitbe Emtesors
iSort End
Emission Color
Start End
Water Droplet PUne
Altocned D Detached
n
NoneQ
Oescobe Pkxne Badcanxnd
Start End
Bacfcoroind Color
Start
\MndSpeed
Start
Ambient Jemp.
Start
End
End
End
Sky CorxJflons
Start End
Wind Direction
Start End
Wet BUt> Temp.
RH Percent
[AcxTDonci nonmoDon
VEOF1.1
Form Number
AHRC |IA
(jontmjeG on VEO Fofm Nunber
AH«L-
7
FT?
Observation Date
<•/ "J 3 a Ci
\Sec
1
2
3
4
S
6
7
8
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
0
O
o
o
o
D
O
o
o
0
o
o
6
o
o
o
0
o
(9
0
0
0
0
-o
0
o
o
o
0
o
o
15
o
0
o
o
0
0
o
a
o
o
0
0
o
0
o
o
o
(9
o
D
o
0
o
o
0
o
o
o
o
o
lime Zone
esr
30
O
o
o
o
o
o
o
o
o
0
o
0
o
o
o
o
o
o
o
o
o
o
0
o
o
o
0
o
o
n
45
o
0
o
D
O
o
o
o
o
o
StartTime lEndllme / / .
(2M:0 ! /6/0
Commenfc
0
0
o
o
0
o
o
0
o
o
o
o
o
o
o
o
g
o
o
n
Otaetvar's Name (Print) i"}^- «-rr_ f? /~> S\
OOservwr-* Signature /rV7 D0** xx ? 7 QO
rl£ltfltflA~ o • £-S • 77
HHJT • i?i w* 1 1 ^^ ^^*f^~~* y*
cefflneaBir £rTA ^ S/7?
-------
EPA
VISIBLE EMISSION OBSERVATION FORM 1
Foo"tyNam9
CVtM
State
x~ 1
MA
Zip
Process
Unit*
Control EcjLjpmenf
Ope rating Mode
Operating Mode
Descnoe Emission PoM
•
Height crfEmss. PI.
Start End
DotancetoErrte.pt.
Start End
Heflht ot Erriss. Pt. Bel. to Otaeiver
Start End
arBCtontoEfmss.Pt
Start
(Degrees)
End
Vertical Anew to Obs. Pt.
Start End
DirecKn to Ocs. PI. (Degrees)
Start End
Distance end DiiecSon to Observation Point from Emeson PoW
Start End
Daoalbe EmSsons
Start
EmteJon Color
Start
End
End
Water Droplet Puns
Attached O Detached d
NooeD
Descnbe FVrrw Background
Start End
Background Color
Start
Wind Speed
Start
Ambient Temp.
Start
End
End
End
ayCoocWons
Start
End
Wnd Direction
Start End
Wet 8<-to Temp.
RH Percent
Observation Date
^•23,-^
\Sec
Mri\
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
o
o
o
o
o
o
o
0
o
o
o
0
o
o
0
o
o
o
0
0
o
o
o
0
o
o
o
o
o
o
IS
O
0
o
o
o
o
0
o
o
o
0
o
0
o
o
o
o
o
0
o
o
o
o
0
o
o
o
a
o
o
IllmaZone
£ST
30
o
0
c
o
0
0
0
0
o
0
0
o
o
o
o
0
o
o
o
o
0
o
0
c
o
0
o
o
o
o
46
o
o
o
o
(9
0
0
O
O
o
Sort Time End Time
\'Lt*0 ItIO
Comments
0
O
o
0
0
O
O
O
(9
O
0
o
o
o
o
0
o
o
0
o
oat.
VEOF1.1
-------
VISIBLE EMISSIONS
EVAIJMTION
I> 'A* " nt * •"
This is to certify ihat
- •- *
Pete
- •
C?M/ complete a course in the methods of deiermitimffipacity of visible emissions from sources
as specified by Federal Reference. Methojd^^SMucfM^ty Eastern Technical Associates of
Raleigh, North Carolina.* •'' ' •> '\.\ t^/f | 'M-- . f
"
'Evan
Course Moderator,^ .^'«
f-
'Roanoke,, Virginia
Location
Date
UITMO.IN U.S.A.
-------
VISIBLE EMISSIONS
EVALUATOR
This is to certify that
met the specifications of Federal Reference Method 9
and qualified as a visible emissions evaluator.
Maximum deviation on white and black smoke did not
exceed 7,5% opacity and no single error exceeding
15% opacity was incurred during the certification test
conducted by Eastern Technical Associates of Raleigh,
North Carolina. This certificate is valid for six months
from date of issue.
269024 Xpanofa Virginia March 18,1339
Certificate Number Location Date of Issue
Prbsidenf Director of Training
-------
Appendix E
Equipment Calibration Data
-------
Marker Description Display Average
A Data was Absent from original raw data file. V"
H HIGH CAL GAS STABLE V"
L LOW CAL GAS STABLE V
M MID CAL GAS STABLE V"
P PORT CHANGE V"
Z ZERO CAL GAS STABLE V"
h HIGHER RANGE CAL GAS TO SHOW LINEARITY ABOVE TEST SPAN {
* Data was not used in calculated parameter averages.
-------
Starting
08-17-99
UNIVERSITY OF GEORGIA - AHRC
INCINERATOR UNIT
REFERENCE METHOD DATA
CALIBRATION DATA
Time
08:20
08:21
08:22
08:23
08:24
08:25
08:26
08:27
08:28
08:29
08:30
08:31
08:32
08:33
08:34
08:35
08:36
08:37
08:38
08:39
08:40
08:41
08:42
08:43
08:44
08:45
08:46
08:47
08:48
08:49
08:50
02
%dv
0.01Z
0.06
0.13
0.00
0.00
0.00
-0.00
0.08
-0.00
-0.00
0.15
0.21
0.00
-0.00
0.00
0.03
0.00
0.00
0.02
-0.00
0.15
-0.01
-0.01
-0.01
0.09
-0.01
10.53
20.22
21.93H
16.54
10.03M
C02
%dv
0.11Z
0.11
0.11
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.11
0.11
0.11
0.11
0.11
0.11
0.10
0.10
0.11
0.11
0.10
0.10
0.10
0.10
0.10
9.57
16.92
16.97H
13.68
10.10M
S02
ppmdv
0.20Z
0.21
0.21
0.18
0.16
0.20
0.22
0.30
0.32
0.26
0.18
0.25
0.17
0.23
0.13
0.39
0.23
0.25
0.31
0.23
325.10
906. 90h
566.20
85.90H
56.02
49.40M
22.19
0.51
0.54
0.58
0.58
NOx
ppmdv
-O.OOZ
-0.02
-0.05
-0.06
-0.02
-0.03
-0.01
0.01
-0.03
-0.02
0.02
0.02
-0.03
-0.01
2.27
243.20
251.10
248. 80H
183.70
101. 20M
9.24
0.43
0.41
0.40
1.02
0.88
0.91
0.48
0.92
0.29
0.20
CO
ppmdv
0.62Z
0.93
149.20
288.70
298.20
314.40
308. 20H
280.70
184.90
181. 50M
181.70
179.30
109.90
92.60L
92.40
45.37
0.80
0.66
0.85
0.80
0.85
0.84
0.62
0.19
0.73
0.75
0.24
-1.22
-1.50
-1.71
-1.52
-------
Starting
08-21-99
UNIVERSITY OF GEORGIA - AHRC
INCINERATOR UNIT
REFERENCE METHOD DATA
CALIBRATION DATA
Time
11:12
11:13
11:14
11:15
11:16
11:17
11:18
11:19
11:20
11:21
11:22
11:23
11:24
11:25
11:26
11:27
11:28
11:29
11:30
11:31
11:32
11:33
11:34
11:35
11:36
02
%dv
0.02Z
0.22
0.00
0.00
0.08
0.01
-0.01
0.05
-0.01
0.03
-0.01
0.01
-0.01
0.18
-0.01
0.17
-0.01
0.11
0.06
10.22
21.97H
13.33
10.09M
0.12
0.11
C02
%dv
0.05Z
0.06
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.07
12.74
16.92H
11.56
10.09M
0.04
0.04
S02
ppmdv
0.16Z
0.22
0.05
0.07
0.09
0.05
0.03
0.07
0.07
0.46
0.22
0.22
0.23
68.64
85.60H
72.70
50.08M
499.10
906. 90h
334.30
0.86
0.61
0.53
0.65
1.14
NOx
ppmdv
-0.10Z
0.08
-0.12
-0.13
-0.14
-0.10
-0.17
-0.09
-0.12
242.00
249. 80H
189.00
101. 70M
17.70
0.27
0.35
0.16
0.45
1.22
-0.10
-0.10
-0.07
-0.07
482.80
499. 80h
CO
ppmdv
0.53Z
77.20
303.00
309. OOH
309.00
235.20
181. 90M
158.50
93.50L
62.92
1.06
0.35
0.37
0.29
0.18
0.18
0.29
0.31
0.18
-1.17
-1.83
-1.65
-1.65
0.17
0.17
-------
Starting
08-22-99
UNIVERSITY OF GEORGIA - AHRC
INCINERATOR UNIT
REFERENCE METHOD DATA
CALIBRATION DATA
Time
08:25
08:26
08:27
08:28
08:29
08:30
08:31
08:32
08:33
08:34
08:35
08:36
08:37
08:38
08:39
08:40
08:41
08:42
08:43
08:44
08:45
08:46
08:47
08:48
08:49
08:50
08:51
02
%dv
0.02Z
0.45
0.01
0.20
0.00
0.15
0.01
-0.00
0.07
0.13
-0.01
0.00
-0.01
0.01
-0.01
0.48
-0.01
0.06
-0.01
0.02
0.01
11.30
21.97
21.84
22.01H
13.70
10.10M
C02
%dv
0.04Z
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.05
0.04
0.04
0.04
9.00
16.99
17.08
16.94H
11.66
10.09M
S02
ppmdv
0.07Z
0.13
0.04
0.08
0.04
0.03
0.05
-0.00
0.01
0.43
0.04
0.25
0.04
0.08
-0.00
73.30
85.60H
65.69
50.10M
467.30
906. 60h
294.10
0.14
0.01
0.03
-0.00
0.04
NOx
ppmdv
-0.03Z
1.26
-0.05
-0.08
-0.09
-0.07
-0.13
-0.16
20.47
493.20
499. 50h
352.90
249. 50H
173.90
101. 30M
19.14
0.26
4.08
0.12
0.16
0.30
1.47
-0.20
-0.21
-0.22
-0.20
-0.25
CO
ppmdv
0.78Z
39.02
307. 40H
282.10
182. 40M
182.30
119.00
92. SOL
92.70
49.12
0.71
0.75
0.87
0.33
0.76
0.75
0.40
0.76
0.55
0.62
0.53
0.22
-1.11
-1.01
-1.43
-1.32
-0.98
-------
Starting
08-23-99
UNIVERSITY OF GEORGIA - AHRC
INCINERATOR UNIT
REFERENCE METHOD DATA
CALIBRATION DATA
Time
08:23
08:24
08:25
08:26
08:27
08:28
08:29
08:30
08:31
08:32
08:33
08:34
08:35
08:36
08:37
08:38
08:39
08:40
08:41
08:42
08:43
08:44
08:45
08:46
08:47
02
%dv
0.02Z
0.50
0.01
0.21
0.00
0.16
0.00
0.22
-0.01
0.01
-0.01
0.00
-0.01
0.00
0.27
-0.01
0.16
-0.01
-0.00
-0.01
16.20
21.34
21.96H
14.02
10.11M
C02
%dv
0.01Z
0.03
0.01
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.05
0.00
0.00
0.00
12.84
16.36
16.97H
11.92
10.10M
S02
ppmdv
0.28Z
0.33
0.19
0.15
0.18
0.26
0.08
0.58
0.35
0.37
0.21
0.13
0.12
3.28
84.00
85.30H
64.62
49.95M
510.50
906. 30h
425.80
0.25
0.19'
0.29
0.16
NOx
ppmdv
0.17Z
0.69
0.16
0.17
0.16
0.12
0.11
203.90
249. 20H
106.00
100. 30M
402.30
499. 40h
119.60
0.76
0.66
1.95
0.55
0.21
0.17
1.08
0.19
0.11
0.19
0.17
CO
ppmdv
0.64Z
82.90
308. 20H
285.70
182. 80M
163.60
92.40L
71.10
0.79
0.51
0.40
0.07
0.10
0.22
0.02
0.08
0.19
0.23
0.22
0.28
0.57
-0.61
-0.61
-0.95
-0.63
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Calibrations:
[SO2 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.08 HIGH Cal. Response = 47.12
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 2.05 HIGH Cal. Response = 48.39
LOW System Drift = 1.97 % HIGH System Drift = 1.27 %
[C02 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.12 HIGH Cal. Response = 9.91
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 0.10 HIGH Cal. Response = 9.81
LOW System Drift = -0.09 % HIGH System Drift = -0.51 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.32 HIGH Cal. Response = 180.14
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 1.05 HIGH Cal. Response = 181.26
LOW System Drift = 0.24 % HIGH System Drift = 0.36 %
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Calibrations:
[NOx ] Span Value = 500
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 101.70
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.33 HIGH Cal. Response = 100.38
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 0.27 HIGH Cal. Response = 98.42
LOW System Drift = -0.01 % HIGH System Drift = -0.39 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.03 HIGH Cal. Response = 10.02
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 0.00 HIGH Cal. Response = 9.99
LOW System Drift = -0.12 % HIGH System Drift = -0.14 %
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Calibrations:
[SO2 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.67 HIGH Cal. Response = 48.31
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 2.98 HIGH Cal. Response = 49.12
LOW System Drift = 2.31 % HIGH System Drift = 0.81 %
[CO2 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.09 HIGH Cal. Response = 9.92
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 0.08 HIGH Cal. Response = 9.85
LOW System Drift = -0.03 % HIGH System Drift = -0.31 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.00 HIGH Cal. Response = 181.09
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 1.50 HIGH Cal. Response = 183.75
LOW System Drift = 0.48 % HIGH System Drift = 0.86 %
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Calibrations:
[NOx ] Span Value = 500
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 249.00
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.15 HIGH Cal. Response = 248.15
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 0.00 HIGH Cal. Response = 239.99
LOW System Drift = -0.03 % HIGH System Drift = -1.63 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.03 HIGH Cal. Response = 10.02
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 0.03 HIGH Cal. Response = 9.98
LOW System Drift = 0.01 % HIGH System Drift = -0.16 %
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Calibrations:
[SO2 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.37 HIGH Cal. Response = 48.96
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 2.14 HIGH Cal. Response = 50.20
LOW System Drift = 1.77 % HIGH System Drift = 1.25 %
[CO2 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.00 HIGH Cal. Response = 9.95
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 0.02 HIGH Cal. Response = 9.76
LOW System Drift = 0.10 % HIGH System Drift = -0.96 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.01 HIGH Cal. Response = 182.60
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 1.30 HIGH Cal. Response = 182.95
LOW System Drift = 0.41 % HIGH System Drift = 0.11 %
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Calibrations:
[NOx ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 101.70
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.13 HIGH Cal. Response = 101.80
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 0.27 HIGH Cal. Response = 100.06
LOW System Drift = 0.06 % HIGH System Drift = -0.70 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.04 HIGH Cal. Response = 10.03
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 0.01 HIGH Cal. Response = 9.79
LOW System Drift = -0.09 % HIGH System Drift = -0.96 %
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Calibrations:
[SO2 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.48 HIGH Cal. Response = 48.69
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.50 HIGH Cal. Response = 48.86
LOW System Drift = 0.02 % HIGH System Drift = 0.17 %
[C02 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.01 HIGH Cal. Response = 9.86
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.04 HIGH Cal. Response = 10.01
LOW System Drift = 0.13 % HIGH System Drift = 0.72 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.61 HIGH Cal. Response = 181.20
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 2.04 HIGH Cal. Response = 183.00
LOW System Drift = 0.46 % HIGH System Drift = 0.58 %
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Calibrations:
[NOx ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 101.70
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.56 HIGH Cal. Response = 102.03
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.17 HIGH Cal. Response = 98.67
LOW System Drift = -0.16 % HIGH System Drift = -1.34 %
[O2 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.01 HIGH Cal. Response = 10.01
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.02 HIGH Cal. Response = 9.98
LOW System Drift = 0.03 % HIGH System Drift = -0.12 %
-------
^•i"'/
SPECTRA GASES
277 Colt St. • Irvington. NJ 07111 USA Tel.: (973) 372-2060 • (800) 932-0624 • Fax: (973) 372-8551
Shipped From: 80 Industrial Drive • Alpha, N.J. 08865
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE #: G1
CUSTOMER:
SGI ORDER #:
ITEM#:
P.0.# :
ETS, INC
130859
2
6670
CYLINDER # : CC84968
CYLINDER PRES: 2000 PSiG
CGA OUTLET: 590
CERTIFICATION DATE: 2/9/98
EXPIRATION DATE: 2/9/2001
CERTIFICATION HISTORY
COMPONENT
Oxygen
Carbon Dioxide
DATE OF
ASSAY
2/9/98
2/9/98
MEAN
CONCENTRATION
22.0 %
16.93 %
CERTIFIED
CONCENTRATION
22.0 %
16.93 %
ANALYTICAL
ACCURACY
+/- 1%
+/-1%
BALANCE
Nitrogen
REFERENCE STANDARDS
COMPONENT
Oxygen
Carbon Dioxide
SRM/NTRM#
SRM-2659a
SRM-2745
CYLINDER*
CLM006747
CAL010437
CONCENTRATION
20.72 %
15.69 %
INSTRUMENTATION
COMPONENT
Oxygen
Carbon Dioxide
MAKE/MODEL
Horiba MPA-510
HoribaVIA-510
SERIAL*
570694081
571417045
DETECTOR
PM
NDIR
CALIBRATION
DATE(S)
2/9/98
1/15/98
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST:
DATE:
2/9/98
FRED PIKULA
-------
SPECTRH GRSES INC.
3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
L
\
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE n: G1
CUSTOMER:
SGI ORDERS:
ITEMS:
P.0.#:
ETS, INC
142592
7
7212
CERTIFICATION DATE: 5/14/99
EXPIRATION DATE: 5/14/2002
CYLINDERS: CC91039
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 590
CERTIFICATION HISTORY
COMPONENT
Carbon Dioxide
Oxygen
DATE OF
ASSAY
5/14/99
5/14/99
i
MEAN
CONCENTRATION
10.06 %
10.01 %
CERTIFIED
CONCENTRATION
10.06%
10.01 %
ANALYTICAL
ACCURACY
+/- 1%
+/-1%
I
J
J
J
J
J
J
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Carbon Dioxide
Oxygen
SRM/NTRM#
NTRM-82745X
NTRM-82659X
CYLINDERS
CC79944
CC83900
CONCENTRATION
20.00 %
22.80 %
INSTRUMENTATION
COMPONENT
Carbon Dioxide
Oxygen
MAKE/MODEL
HoribaVIA-510
HoribaMPA-510
SERIALS
571417045
570694081
DETECTOR
NDIR
PM
CALIBRATION
DATE(S)
5/3/99
5/3/99
J
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST:
sy?
DATE:
5/14/99
FRED PIKULA
-------
SPECTRR GRSES INC
3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
CERTIFICATE OF ANALYSIS EPA PROTOCOL MIXTURE
PROCEDURE # : G1
CUSTOMER: ETS, INC CYLINDERS: CC99123
SGI ORDERS: 143365 CYLINDER PRES: 2000 PSIG
ITEMS: 2 CGA OUTLET: 660
P.O.# : 7250
CERTIFICATION DATE: 4/30/99
EXPIRATION DATE: 4/30/2001
CERTIFICATION HISTORY
COMPONENT
Nitric Oxide
NOx
DATE OF
ASSAY
4/21/99
4/30/99
MEAN
CONCENTRATION
101.2ppm
102.2 ppm
CERTIFIED
CONCENTRATION
101. 7 ppm
102.4 ppm
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Nitric Oxide
SRM/NTRM#
GMIS-1
CYLINDERS
CC60240
CONCENTRATION
254.6 ppm
INSTRUMENTATION
COMPONENT
Nitric Oxide
MAKE/MODEL
Teco 10
SERIALS
10AR-34979-249
DETECTOR
Cheml
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG'. '
ANALYST: •" SV . DATE:
L.
FRED PIKULA
ANALYTICAL
ACCURACY
+/- 1%
Reference Value Only
CALIBRATION
DATE(S)
4/13/99
6/3/99
•^
-------
SPECTRR GRSES INC.
3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
CERTIFICATE OF ANALYSIS
CUSTOMER:
SGI ORDER #:
ITEM#:
P.O.#:
ETS, INC
139104
1
7305
CERTIFICATION DATE: 1/25/99
EXPIRATION DATE: 1/25/2001
EPA PROTOCOL MIXTURE
PROCEDURE #: G1
CYLINDER*: CC65953
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 660
CERTIFICATION HISTORY
COMPONENT
Nitric Oxide
NOx
DATE OF
' ASSAY
1/18/99
1/25/99
MEAN
CONCENTRATION
248.4 ppm
249.5 ppm
CERTIFIED
CONCENTRATION
249 ppm
249 ppm
ANALYTICAL
ACCURACY
+/-1%
Reference Value Only
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Nitric Oxide
SRM/NTRM#
NTRM-81685
CYLINDER*
LL2994
CONCENTRATION
245.2 ppm
INSTRUMENTATION
COMPONENT
Nitric Oxide
MAKE/MODEL
TecolO
SERIAL #
10AR-34979-249
DETECTOR
Cheml
CALIBRATION
DATE(S)
1/4/99
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST:
DATE:
FRED PIKULA
1/25/99
-------
SPECTRR GRSES INC.
3434 Route 22 West • Branchburg. NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
CERTIFICATE OF ANALYSIS EPA PROTOCOL MIXTURE
PROCEDURE # : G1
CUSTOMER: ETS. INC CYLINDER*: CC73846
SGI ORDERS: 142592 CYLINDER PRES: 2000 PSIG
ITEM#: 1 CGA OUTLET: 660
P.O.# : 7212
CERTIFICATION DATE: 5/25/99
EXPIRATION DATE: 5/25/2001
CERTIFICATION HISTORY
COMPONENT
Nitric Oxide
NOx
DATE OF
ASSAY
5/14/99
5/25/99
«
MEAN
CONCENTRATION
498.8 ppm
500.6 ppm
CERTIFIED
CONCENTRATION
500 ppm
501 ppm
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Nitric Oxide
.
SRM/NTRM#
NTRM-81687
CYLINDER*
CC57126
CONCENTRATION
1009 ppm
INSTRUMENTATION
COMPONENT
Nitric Oxide
MAKE/MODEL
Teco 10
SERIAL*
10AR-34979-249
DETECTOR
Cheml
ANALYTICAL
ACCURACY
+/-1%
Reference Value Only
CALIBRATION
DATE(S)
5/18/99
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST:
DATE:
5/25/99
FRED PIKULA
-------
U
SPECTRR GHSES INC.
3434 Route 22 West • Branchburg. NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
*1
u
1
u
CERTIFICATE OF ANALYSIS
CUSTOMER:
SGI ORDER # :
ITEMS:
P.0.# :
ETS, INC
139104
3
7305
EPA PROTOCOL MIXTURE
PROCEDURE # :
CYLINDER # :
CYLINDER PRES:
CGA OUTLET:
G1
CC85122
2000 PSIG
660
CERTIFICATION DATE: 1/25/99
EXPIRATION DATE: 1/25/2001
CERTIFICATION HISTORY
COMPONENT
Sulfur Dioxide
DATE OF
' ASSAY
1/18/99
1/25/99
MEAN
CONCENTRATION
49.72 ppm
49.82 ppm
CERTIFIED
CONCENTRATION
49.8 ppm
ANALYTICAL
ACCURACY
+/- 1%
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Sulfur Dioxide
SRM/NTRM*
NTRM-R81694
CYLINDER*
CC53339
CONCENTRATION
96.0 ppm
INSTRUMENTATION
COMPONENT
Sulfur Dioxide
MAKE/MODEL
Horiba VIA-510
SERIAL*
851221093
DETECTOR
NDIR
CALIBRATION
DATE(S)
1/18/99
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST:
-------
SPECTRR GHSES INC.
3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha. NJ 08865
CERTIFICATE OF ANALYSIS
CERTIFICATION DATE: 5/6/99
EXPIRATION DATE: 5/6/2001
EPA PROTOCOL MIXTURE
PROCEDURE #: G1
CUSTOMER:
SGI ORDERS:
ITEM# :
P.O.# :
ETS, INC
143365
1
7250
CYLINDER # :
CYLINDER PRES:
CGA OUTLET:
CC85189
2000 PSIG
660
CERTIFICATION HISTORY
COMPONENT
Sulfur Dioxide
DATE OF
ASSAY
4/29/99
5/6/99
MEAN
CONCENTRATION
85.28 ppm
85.32 ppm
CERTIFIED
CONCENTRATION
85.3 ppm
ANALYTICAL
ACCURACY
+/- 1%
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Sulfur Dioxide
SRM/NTRM*
GMIS-1
CYLINDER*
CC53353
CONCENTRATION
96.0 ppm
INSTRUMENTATION
COMPONENT
Sulfur Dioxide
MAKBMODEL
Horiba VIA-510
SERIAL #
851221093
DETECTOR
NDIR
CALIBRATION
DATE(S)
4/29/99
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST:
DATE:
FRED PIKULA
6/3/99
-------
SPECTRR GRSES INC.
3434 Route 22 West • Branchburg. NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
L
L
L
L
J
II
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE #: G1
CUSTOMER:
SGI ORDER #
ITEM*:
P.0.#:
ETS, INC
139104
5
7305
CYLINDERS: CC99028
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 660
CERTIFICATION DATE: 1/25/99
EXPIRATION DATE: 1/25/2002
CERTIFICATION HISTORY
COMPONENT
Sulfur Dioxide
t DATE OF
' ASSAY
1/19/99
1/25/99
MEAN
CONCENTRATION
904.6 ppm
905.2 ppm
CERTIFIED
CONCENTRATION
905 ppm
ANALYTICAL
ACCURACY
+/- 1%
BALANCE Nitrogen
;J
il
I
I
I
I
L
t-
L
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Sulfur Dioxide
SRM/NTRM*
NTRM-R81662
CYLINDER*
CC55791
CONCENTRATION
1040 ppm
INSTRUMENTATION
COMPONENT
Sulfur Dioxide
MAKE/MODEL
HoribaVIA-510
SERIAL #
851221093
DETECTOR
NDIR
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST: S/-S. DATE:
FRED PIKULA
•
CALIBRATION
DATE(S)
1/25/99
1/25/99
g^
-------
SPECTRH GRSES INC.
3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE #: G1
CUSTOMER:
SGI ORDER # :
ITEMS :
P.O.#:
ETS, INC
142592
6
7212
CYLINDER # : CC98876
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 350
CERTIFICATION DATE: 5/21/99
EXPIRATION DATE: 5/21/2002
CERTIFICATION HISTORY
COMPONENT
Carbon Monoxide
DATE OF
ASSAY
5/14/99
5/21/99
t
MEAN
CONCENTRATION
92.61 ppm
92.67 ppm
CERTIFIED
CONCENTRATION
92.6 ppm
ANALYTICAL
ACCURACY
+/-!%
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Carbon Monoxide
SRM/NTRM#
NTRM-81679
CYLINDER*
CC88366
CONCENTRATION
97.4 ppm
INSTRUMENTATION
COMPONENT
Carbon Monoxide
MAKE/MODEL
HoribaVIA-510
SERIAL #
570423011
DETECTOR
NDIR
CALIBRATION
DATE(S)
5/14/99
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.
ANALYST: ^ ' DATE:
FRED PIKULA
5/21/99
-------
SPECTRfl GHSES INC.
3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
CERTIFICATE OF ANALYSIS EPA PROTOCOL MIXTURE
PROCEDURE # : G1
CUSTOMER: ETS. INC CYLINDERS: CC98875
SGI ORDERS: 142592 CYLINDER PRES: 2000 PSIG
ITEMS: 5 CGA OUTLET: 350
P.O.S : 7212
CERTIFICATION DATE: 5/21/99
EXPIRATION DATE: 5/21/2002
CERTIFICATION HISTORY
COMPONENT
Carbon Monoxide
DATE OF
ASSAY
5/14/99
5/21/99
4
MEAN
CONCENTRATION
182.9 ppm
183.1 ppm
CERTIFIED
CONCENTRATION
183.0 ppm
BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None
REFERENCE STANDARDS
COMPONENT
Carbon Monoxide
SRM/NTRM#
GMIS-1
CYLINDERS
CC88505
CONCENTRATION
493.6 ppm
INSTRUMENTATION
COMPONENT
Carbon Monoxide
MAKE/MODEL
HoribaVIA-510
SERIALS
570423011
DETECTOR
NDIR
ANALYTICAL
ACCURACY
+/- 1%
CALIBRATION
DATE(S)
5/12/99
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 1 50 PSIG. '
»
Jr
-I
ANALYST:
DATE:
5/21/99
FRED PIKULA
-------
SPECTRA GASES
277 Coit St.- Irvington, NJ 07111 USA Tel.: (201) 372-2060 • (800) 932-0624 • Fax: (201) 372-8551
Shipped From: 80 Industrial Drive • Alpha, N.J. 08865
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE #: G1
•r i
CUSTOMER:
SGI ORDER #:
ITEM#:
P.0.#:
ETS. Inc.
127593
1
6607
CYLINDER #: CC65921
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 350
CERTIFICATION DATE: 9/10/97
EXPIRATION DATE: 9/10/2000
CERTIFICATION HISTORY
COMPONENT
Carbon Monoxide
DATE OF
ASSAY
8/28/97
9/10/97
MEAN
CONCENTRATION
307.8 ppm
307.8 ppm
CERTIFIED
CONCENTRATION
308 ppm
ANALYTICAL
ACCURACY
+/-1%
BALANCE
Nitrogen
REFERENCE STANDARDS
COMPONENT
Carbon Monoxide
SRM/NTRM*
SRM-1680b
CYLINDER*
CLM-010013
CONCENTRATION
490.4 ppm
INSTRUMENTATION
COMPONENT
Carbon Monoxide
MAKE/MODEL
Horiba-VIA-510
SERIAL #
570423011
DETECTOR
NDIR
CALIBRATION
DATE(S)
8/26/97
THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 160 PSIG.
%*• ANALYST:
DATE:
LYN GAMESON
9/10/97
-------
ETS, Inc
NOx ANALYZER CONVERTER CHECK
TEST INFORMATION
Analyzer Manufacturer.
Model No.:
Serial No:
Span Setting (ppm):
NO Gas Value:
NO2 Gas Value:
Date:
Technician:
10
ANALYZER RESPONSE
Prepared Sample
time
(min)
.1
2
3
4
' 5
. 6
7
a
9
10
11
12
13
14
15
response
(ppm)
5S.3
•$=2i3
/>3,<3
•3?v^
r5S2.3
£2.2
58.3
-&J
.55. /
«?J
,59, /
&A
&.Q
&,O
&.fj
time
(min)
16
17
18
19
20
21
22
23
24
25
26
- 27
28
29
30
response
(ppm)
v5^.D
^0
r^?,o
r5&.0
,55.0
<£?>A
5S?^>
^^>
uSW
,55o
52.3
^/.q
^l,
^i.q
.5L^
Highest
Resonse
Final
Response
(pom)
NO2 Gas
NO2 Gas (ppm):
Stable Response (ppm):
Conversion Eff. (%):
-------
1
CflL
»o ?^.^sS?«5V>?<*
8.5
It?
-------
EPA METHOD 20
INTERFERENCE RESPONSE TABLE
Date:
Analyzer Type:
Serial Number:
Span Value:
04/16/93
Nitrogen Oxides "^
10A/R-27458-229
250 ppm
Test Gas Type
02
CO
C02
S02
Total
Concentration
(ppjndv)
21.9
488
9.98
231
Analyzer
Output
-0.024
-0.167
-0.116
-0.057
% of Span
0.0001
0.0007
0.0005
0.0002
0.0015
% of Span = (Analyzer output response / Instrument span) x 100
The sum of the (% of Span) values should not exceed 2%.
-------
METHOD 20
INTERFERENCE RESPONSE TABLE
DATE:
ANALYZER TYPE:
SERIAL NUMBER:
TEST GAS TYPE
3°^ /*
o,/. *,«AC T-\SC-
J^OK
-------
REFERENCE METHOI "ALTERATION DATA
OF
ANALYZER
UillTS:
ID: /)
z
,5-c^J ^ JOS. Wg
SPAN: ? \/ //•
DATE(S) :
01 1
=>3 7 ?5
ANALYZER CALIBRATION
RANGE
ZERO
LOW
HIGH
OTHER
GAS
CYLINDER ID
/Ju AX-X^to*/
O_ Alh 0LO
/O.ol
Lino
ERROR
% SPAN
O, S»o
<£>. /L
O
TIME
/(,.'V5
74 : 5<
/C,-^
SYSTEM BIAS AND' DRIFT
RUN ID
RANGE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO.
UPSCALE
ZERO
UPSCALE
ANALYZER
RESPONSE
SYSTEM BIAS
SYSTEM
RESPONSE
ABSOLUTE
ERROR
ERROR
% SPAN
.
TIME
SYSTEM DRIFT
SYSTEM
RESPONSE
ABSOLUTE
ERROR
ERROR
% SPAN
TIME
F:\WPDOC\JTH\FORMS\CEM1.DOC
-------
METHOD 20
INTERFERENCE RESPONSE TABLE
DATE:
ANALYZER TYPE: Co^
SERIAL NUMBER: ?£/O/2.
TEST GAS TYPE
0^
/JO
C&
<%
TOTAL
CONCENTRATION
(ppmdv)
U.I
Ja^
&y
32^
ANALYZER
OUTPUT
ft, 63^
o, olL
o.fTfe
«.;&»
^,35^
% 0? SPAN
^.//r
(7/o5t>
0. ffSo
<5.75o
A 795
% OF SPAN = (ANALYZER OUTPUT RESPONSE/INSTRUMENT SPAN) Z 100
The sum of the (% of Span) values should not: exceed 2%.
-------
REFERENCE MET
CALIBRATION DATA
PAGE OF
ANALYZER ID: £#
UNITS: >£
SOURCE
ID:
101013 ^H
SPAN: ££?
LOCATION: r-r^
TECHNICIAN: T> \/
J^l V ,
DATE(S)
/(? 1
o C- / ^
ANALYZER CALIBRATION
RANGE
ZERO
LOW
HIGH
OTHER
GAS
CYLINDER ID
4V- -fr$?6
^l-W^j
ALft-OW/fsZ
GAS
VALUE
e>
7, 2#
/?,0'30p
TIN
/£•'£
'&: ,
/Lit
SYSTEM BIAS AND' DRIFT
RUN ID
•
RANGE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO
UPSCALE
ZERO
UPSCALE
ANALYZER
RESPONSE
SYSTEM BIAS
SYSTEM
RESPONSE
ABSOLUTE
ERROR
ERROR
% SPAN
.'•
1
TIME
SYSTEM DRIFT
SYSTEM
RESPONSE
I
ABSOLUTE
ERROR
ERROR
% SPAN
TII^
F,: \WPDOC\JTH\FORMS\CEM1. DOC
-------
EPA METHOD 20
INTERFERENCE RESPONSE TABLE
Date:
Analyzer Type:
Serial Number:
Span Value:
01/17/94 ,,
Carbon Monoxide "3
48-28884-233
5 ppm
Test Gas Type
O2
C02
SO2
NOx
Total
Concentration
(ppmdv)
19.24
12.13
74.2
1000
Analyzer
Output
0.18
0.002
0
1.081
% of Span
0.0360
0.0004
0.0000
0.2162
0.2526
% of Span = (Analyzer output response / Instrument span) x 100
The sum of the (% of Span) values should not exceed 2%.
\\
-------
EPA METHOD 6C INTERFERENCE CHECK RESULTS
2-
Source Type:
Location:
Analyzer Type:
Manufacturer/Model:
Serial Number:
MSW-Fired Incinerator
York Resource Energy Systems - Unit 3
S02
Western Research Model
89-721AT2-7615-1
RUN ID
DATE
TIME STARTED
TIME ENDED
U3-M6-R1
05/10/94
10:03
11:03
U3-M6-R2
05/10/94
11:48
12:48
U3-M6-R3
05/10/94
13:48
14:48
Average
GAS PARAMETERS
DGM Calibration Factor
Avg. DGM Temp. - °F
Barometric Press. - in. Hg.
Initial Sample Volume - liters
Final Sample Volume - liters
Volume Sampled - liters
Corrected Sample Volume - dscm
Corrected Sample Volume - dscf
0.9935
78
29.52
566.93
688.24
121.31
0.117
4.120
0.9935
86.5
29.52
689.97
801.61
111.64
0.106
3.732
0.9935
87
29.52
802.09
928.77
126.68
0.120
4.231
0.9935
83.8
29.5
686.33
806.21
119.9
0.114
4.028
SO2 ANALYTICAL DATA
Sample Solution Volume - ml
Titrant Normality - meq/ml
Aliquot Volume - ml
Sample Titrant Volume - ml
Blank Titrant Volume - ml
100
0.0087
20
0.55
0.1
100
0.0087
20
2.3
0.1
100
0.0087
20
0.7
0.1
100
0.0087
20
1.2
0.10
METHOD 6 - SO2 EMISSIONS
Concentration - Ib/dscf
Concentration - ppmdv
3.34E-07
2.007
1.80E-06
10.828
4.33E-07
2.605
8.56E-07
5.146
METHOD 6C -SO2 EMISSIONS
Concentration - ppmdv
2.37
2.96
0.44
1.92
INTERFERENCE CHECK RESULTS
Absolute Difference - ppmdv
Percent Difference - % M6 Results
0.36
18.01
7.87
72.71
2.16
83.11
3.47
57.94
-------
Revision 1
PROJECT:
LOCATION:
DATE:
METER BOX I.D.:
METER BOX GAMMA: 0.
METHOD 2& SAMPLING DATA SHEET
"NOMINAL SAMPLING RATE (i/min):
"NOMINAL SAMPING dH (in. w.c.):
"BAROMETRIC PRESSURE on. Hg):
"OPERATOR:
RUN
NUMBER
U3-
44.
at
START
TIME
07:53
END
TIME
/m
liters
INITIAL
METER
VOLUME
(0^776
liters
FINAL
METER
VOLUME
deg.F
INITIAL
METER
TEMP.
(,7
fo
fx
deg.F
FINAL
METER
TEMP.
t*
fV
SAMPLE
I.D.
o. -
7, //
-------
E T S , INC.
FIELD SAMPLE LOG
Contract No. 94-137
Job I.D.
Test Method SO2
Print Date 05/16/94 Time 16:28:21
Page 1
Sample
No.
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
Container
No.
Fl
F2
F3
Fl
F2
F3
Fl
F2
F3
Fl
F2
F3
Fl
F2 - -
F3 . . .
Fl
F2
F3 .. -
Fl
F2
F3
Other
I.D.
Run
I.D.
U3 -SO2-R1
U3 -S02-R1
U3 -S02-R1
U3 -S02-R2
U3 -SO2-R2
U3 -S02-R2
U3 -S02-R3
U3 -S02-R3
U3 -S02-R3
Ul -SO2-R4
Ul -S02-R4
Ul -S02-R4
Ul -S02-R5
Ul -SO2-R5
Ul -S02-R5
Ul -S02-R6
Ul -S02-R6
Ul -SO2-R6
BLANK-S02-RO
BLANK-SO2-RO
BLANK- SO2-RO
Sample
Type
IMPINGER 1 CONTENTS
IMP 2 & 3 CONTENTS
SILICA GEL
IMPINGER 1 CONTENTS
IMP 2 & 3 CONTENTS
SILICA GEL
IMPINGER 1 CONTENTS
IMP 2 & 3 CONTENTS
SILICA GEL
IMPINGER 1 CONTENTS
IMP 2 & 3 CONTENTS
SILICA GEL
IMPINGER 1 CONTENTS
IMP 2 & 3 CONTENTS
SILICA GEL
IMPINGER 1 CONTENTS
IMPINGER 2 & 3
SILICA GEL
IMPINGER 1 CONTENTS
IMPINGER 2 S 3
SILICA GEL
Volume, ml
no Rinses
Volume, ml
w/ Rinses
Analyst
PJb
PJb
PJb
PJb
PJb
PJb
pjb
PJb
PJb
PJb
PJb
PJb
PJb
PJb
PJb
PJB
Plb
PJB
PJB
PJB
PJB
Date
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
05/16/94
Comments
-------
NETHOD 8 ANALYSIS
Project
Contract-
Page
.of
tote of Anal ipi3:
1
| Run ID
Vfoln
Tot.^l Liquid
Volume ml
V*
Aliquot Volume
rnl
N
Tit rant
Normality
— ^— ^— — i
Yt
Titrant used ml i
Initial
Final
Her
6.7 |7.4 i 0.7
:U3-m(cC-RI i
9-"7 10. j
100
20
/a
(oo
OD
p.r
5.A
/OO
ISA
loo
a? ;
0.7
PO
/co
l
. 8
/7.2
(7.2
/7.S"
R2
COP
100
0.
loo
^.7 :
3-8
100
\00
/ '
INITIALS
-------
TITRANT STANDARDIZATION
Project: N/ORX.
Contract:
Date of Anal V313:
Stock Number
Ml
Normality of Standard
.01 ti ^S0
-------
DATA AND RESULTS FOR
EPA METHOD 6C
UNIT 3 OUTLET
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U30-M3A,6C,7E-R1
Starting
05-10-94
Time
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
O2
9
9
9
10
10
9
9
9
9
9
9
10
11
9
8
7
7
7
7
8
8
8
9
9
9
9
9
9
10
10
11
10
9
8
7
8
8
9
10
10
10
dv
.910
.500
.380
.060
.170
.780
.160
.150
.580
.180
.820
.940
.190
.980
.970
.810
.710
.090
.•910
.270
.150
.830
.490
.530
.310
.810
.660
.990
.350
.780
.150
.500
.600
.580
.820
.450
.990
.330
.290
.550
.810
S02
ppmdv
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
287
187
421
599
632
655
610
098
276
465
555
410
321
042
209
187
365
298
120
254
076
009
009
020
031
009
165
265
054
009
098
054
065
065
054
209
009
020
131
376
365
NOx
ppmdv
87.
84.
97.
102.
91.
85.
70.
71.
70.
63.
76.
92.
91.
82.
69.
63.
68.
53.
46.
58.
70.
80.
78.
84.
79.
79.
87.
90.
91.
97.
97.
95.
89.
80.
71.
79.
77.
74.
. 85.
' 87.
85.
200
900
300
500
900
100
000
900
900
740
300
000
800
200
780
500
640
900
820
010
700
200
200
600
600
700
200
100
800
800
500
400
200
400
000
400
300
80.0
800
500
300
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U30-M3A,6C,7E-R1
Starting
05-10-94
Time
10:45
10:46
10:47
10:48
10:49
10:50
10:51
10:52
10:53
10:54
10:55
10:56
10:57
10:58
10:59
11:00
11:01
11:02
11:03
60 MinAvg
O2
% dv
10.910
10.370
10.690
11.360
11.180
10.740
10.190
9.900
10.380
9.940
9.840
9.470
9.530
10.210
10.790
10.460
10.300
10.840
11.350
9.766
SO2
ppmdv
4.566
4.599
4.443
4.332
4.399
4.287
4.365
4.465
4.265
4.588
4.588
4.599
4.577
4.566
4.477
4.677
6.454
6.131
6.120
4.393
NOX
ppmdv
89.400
76.000
80.400
86.700
92.400
87.600
93.800
91.700
90.000
93.100
86.500
101.500
107.200
102.200
100.500
100.500
99.300
91.300
85.300
84.121
Data Corrected for Calibrations
60 MinAvg 9.819 2.368
80.608
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U3O-M3A,6C,7E-R1
Calibrations:
[02 OUT ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 9.96
INITIAL CALIBRATION TIME —> 901
LOW Cal. Response = 0.10 HIGH Cal. Response = 9.82
FINAL CALIBRATION TIME > 1133
LOW Cal. Response = 0.03 HIGH Cal. Response = 9.99
LOW System Drift = -0.29 % HIGH System Drift = 0.70 %
[NOx OUT ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 125.00
INITIAL CALIBRATION TIME —> 901
LOW Cal. Response = 0.08 HIGH Cal. Response = 128.37
FINAL CALIBRATION TIME > 1133
LOW Cal. Response = 0.15 HIGH Cal. Response = 132.40
LOW System Drift = 0.03 % HIGH System Drift = 1.61 %
[S02 OUT ] Span Value = 150
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 250.00
INITIAL CALIBRATION TIME —> 901
LOW Cal. Response = -0.29 HIGH Cal. Response = 238.65
FINAL CALIBRATION TIME > 1133
LOW Cal. Response = 1.46 HIGH Cal. Response = 230.33
LOW System Drift = 1.17 % HIGH System Drift = -5.55 %
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U30-M3A,6C,7E-R2
Starting
05-10-94
Time
11:49
11:50
11:51
11:52
11:53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
12:01
12:02
12:03
12 : 04
12:05
12:06
12:07
12:08
12 : 09
12:10
12:11
12:12
12:13
12:14
12:15
12:16
12 : 17
12:18
12:19
12:20
12:21
12:22
12:23
12:24
12:25
12:26
12:27
12:28
12:29
O2
% dv
9.650
8.970
8.690
8.990
9.430
9.950
9.820
10.040
10.240
10.230
9.900
10.190
9.130
8.490
9.080
9.210
9.320
9.940
10.690
10.470
10.190
9.780
10.050
9.700
9.450
9.570
10.200
10.470
10.270
9.010
8.050
8.490
7.790
7.720
8.600
10.360
11.440
11.530
11.260
10.870
10.360
S02
ppmdv
5.340
5.340
5.340
5.340
5.340
5.340
5.340
5.380
5.630
5.370
5.370
5.370
5.340
5.360
5.340
5.360
5.500
5.410
5.050
5.860
5.660
5.360
5.380
5.410
5.340
5.480
5.370
5.360
5.340
5.370
5.380
5.340
5.340
5.340
5.340
5.340
5.340
5.360
5.360
5.320
5.200
NOX
ppmdv
88.300
79.800
86.900
91.600
100.300
95.800
89.900
93.500
105.600
100.100
95.700
80.200
89.800
73.700
83.200
83.400
102.000
98.900
98.200
95.400
95.000
81.100
85.900
87.200
95.100
89.100
82.100
95.200
89.500
95.900
85.200
97.700
91.700
86.900
96.100
100.500
103.000
100.70.0
• 99.300
' 91.400'
91.000
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U30-M3A,6C,7E-R2
Starting
05-10-94
Time
12:30
12:31
12:32
12:33
12:34
12:35
12:36
12:37
12:38
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
60 MinAvg
02
% dv
9.770
9.300
9.000
9.380
9.810
10.260
9.620
8.550
8.530
8.670
8.750
9.530
9.630
9.870
10.440
10.400
9.060
8.290
7.700
9.569
SO2
ppmdv
4.977
5.170
5.340
5.340
5.320
5.180
5.210
5.210
5.070
5.240
5.260
5.110
6,810
6.677
6.677
6.799
7.100
6.822
6.810
5.510
NOX
ppmdv
95.500
74.000
64.770
92.800
106.300
96.800
80.500
74.200
78.400
76.100
69.300
70.600
79.100
78.200
81.500
73.300
77.700
73.900
66.720
88.026
Data Corrected for Calibrations
60 MinAvg 9.656 2.955
83.970
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U30-M3A,6C,7E-R2
Calibrations:
[O2 OUT ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 9.96
INITIAL CALIBRATION TIME —> 1133
LOW Cal. Response = 0.03 HIGH Cal. Response = 9.99
FINAL CALIBRATION TIME > 1323
LOW Cal. Response = 0.03 HIGH Cal. Response = 9.75
LOW System Drift = 0.01 % HIGH System Drift = -0.98 %
[NOx OUT ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 125.00
INITIAL CALIBRATION TIME —> 1133
LOW Cal. Response = 0.15 HIGH Cal. Response = 132.40
FINAL CALIBRATION TIME > 1323
LOW Cal. Response = 0.07 HIGH Cal. Response = 129.57
LOW System Drift = -0.03 %' HIGH System Drift = -1.13 %
[S02 OUT ] Span Value = 150
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 250.00
INITIAL CALIBRATION TIME —> 1133
LOW Cal. Response = 1.46 HIGH Cal. Response = 230.33
FINAL CALIBRATION TIME > 1323
LOW Cal. Response = 1.02 HIGH Cal. Response = 232.41
LOW System Drift = -0.29 % HIGH System Drift = 1.39 %
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U3O-M3A,6C,7E-R3
Starting
05-10-94
Time
13:49
13:50
13:51
13:52
13:53
13:54
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
14:17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
02
% dv
10.320
10.940
10.400
9.670
8.830
8.650
8.630
8.310
8.990
10.020
10.890
9.940
8.590
8.170
9.640
9.840
10.220
11.020
10.890
9.660
8.520
8.340
8.240
8.430
8.780
9.250
9.300
9.190
9.730
10.070
10.290
9.780
9.200
8.700
8.370
7.560
7.960
8.910
10.510
10.590
9.430
S02
ppmdv
4.020
4.020
4.030
4.020
4.020
3.780
3.090
3.650
3.360
3.810
3.550
3.970
4.010
4.020
4.020
4.030
4.060
4.070
4.070
4.060
4.290
4.120
4.290
4.110
4.060
4.020
4.030
4.310
4.810
4.350
4.350
4.350
4.530
4.660
4.650
4.430
4.580
4.900
4.980
4.680
4.690
NOX
ppmdv
89.200
96.500
88.600
80.800
72.300
79.300
74.300
71.900
84.300
94.800
97.700
101.000
81.100
68.760
78.900
83.300
86.800
100.300
93.000
93.000
76.300
69.390
64.860
67.660
80.300
85.400
91.600
92.000
101.100
101.500
97.800
94.600
84.500
80.100
73.200
70.200
87.700
100.700
. .96.400
" -.93.500
86.900
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U3O-M3A,6C,7E-R3
Starting
05-10-94
Time
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
60 MinAvg
02
% dv
. 9.320
9.480
9.240
9.930
9.620
9.900
9.590
8.180
7.290
7.620
8.550
8.650
8.670
9.860
10.960
11.190
11.400
11.410
10.640
9.438
S02
ppmdv
4.600
4.900
4.250
4.700
4.730
4.010
4.000
4.880
4.380
4.470
4.800
4.760
4.690
4.150
4.450
4.090
4.100
4.100
4.180
4.251
NOx
ppmdv
82.400
81.100
87.600
92.300
87.900
89.700
87.500
78.200
70.900
75.800
69.830
71.100
74.600
80.600
87.800
88.300
97.300
95.800
99.700
85.167
Data Corrected for Calibrations
60 MinAvg 9.797 0.440
81.886
-------
YORK WRES
PART 60 COMPLIANCE
REFERENCE METHOD
U3O-M3A,6C,7E-R3
Calibrations:
[O2 OUT ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 9.96
INITIAL CALIBRATION TIME —> 1323
LOW Cal. Response = 0.03 HIGH Cal. Response = 9.75
FINAL CALIBRATION TIME > 1520
LOW Cal. Response = -0.00 HIGH Cal. Response = 9.44
LOW system Drift = -0.13 % HIGH System Drift = -1.22 %
[NOx OUT ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 125.00
INITIAL CALIBRATION TIME —> 1323
LOW Cal. Response = 0.07 HIGH Cal. Response = 129.57
FINAL CALIBRATION TIME > 1520
LOW Cal. Response = -0.02 HIGH Cal. Response = 130.42
LOW System Drift = -0.04 % HIGH System Drift = 0.34 %
[S02 OUT ] Span Value = 150
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 250.00
INITIAL CALIBRATION TIME —> 1323
LOW Cal. Response = 1.02 HIGH Cal.. Response = 232.41
FINAL CALIBRATION TIME > 1520
LOW Cal. Response = 0.36 HIGH Cal. Response = 232.58
LOW System Drift = -0.44 % HIGH System Drift = 0.11 %
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
02
%dv
C02
%dv
S02
ppmdv
NOx
ppmdv
CO
ppmdv
Data Corrected for Calibrations
284 MinAvg 13.84 4.57
45.65
66.48
0.04
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Calibrations:
[S02 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.08 HIGH Cal. Response = 47.12
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 2.05 HIGH Cal. Response = 48.39
LOW System Drift = 1.97 % HIGH System Drift = 1.27 %
[CO2 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.12 HIGH Cal. Response = 9.91
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 0.10 HIGH Cal. Response = 9.81
LOW System Drift = -0.09 % HIGH System Drift = -0.51 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.32 HIGH Cal. Response = 180.14
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 1.05 HIGH Cal. Response = 181.26
LOW System Drift = 0.24 % HIGH System Drift = 0.36 %
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Calibrations:
[NOx ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 101.70
INITIAL CALIBRATION TIME —> 1035
LOW Cal. Response = 0.33 HIGH Cal. Response = 100.38
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 0.27 HIGH Cal. Response = 98.42
LOW System Drift = -0.03 % HIGH System Drift = -0.78 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME --> 1035
LOW Cal. Response = 0.03 HIGH Cal. Response = 10.02
FINAL CALIBRATION TIME > 1605
LOW Cal. Response = 0.00 HIGH Cal. Response = 9.99
LOW System Drift = -0.12 % HIGH System Drift = -0.14 %
-------
barker Description Display Average
A Data was Absent from original raw data file. {
H HIGH CAL GAS STABLE V"
L LOW CAL GAS STABLE V"
M MID CAL GAS STABLE V"
P PORT CHANGE V"
Z ZERO CAL GAS STABLE V"
h HIGHER RANGE CAL GAS TO SHOW LINEARITY ABOVE TEST SPAN V"
* Data was not used in calculated parameter averages.
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
11:11
11:12
11:13
11:14
11:15
11:16
11:17
11:18
11:19
11:20
11:21
11:22
11:23
11:24
11:25
11:26
11:27
11:28
11:29
11:30
11:31
11:32
11:33
11:34
11:35
11:36
11:37
11:38
11:39
11:40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
11:49
11:50
11:51
02
%dv
14.79
12.15
13.80
13.90
14.14
14.00
13.78
13.96
14.38
13.06
13.46
13.79
13.88
13.63
13.72
13.77
14.16
14.40
13.05
14.00
13.77
13.73
13.80
13.72
14.93
12.97
12.32
13.89
13.67
13.72
13.66
13.84
14.54
15.13
12.73
12.22
13.47
13.53
13.83
14.66
13.44
C02
%dv
3.72
5.23
4.41
4.32
4.15
4.23
4.31
4.19
3.91
4.71
4.59
4.45
4.34
4.49
4.42
4.38
4.05
4.04
4.75
4.23
4.41
4.39
4.36
4.40
3.53
4.83
5.13
4.24
4.40
4.41
4.43
4.32
3.92
3.49
5.12
5.41
4.71
4.70
4.41
3.85
4.65
S02
ppmdv
57.32
85.60
27.88
14.20
10.93
9.25
8.07
7.38
45.95
68.81
39.69
19.90
15.73
15.19
13.81
13.07
14.07
65.67
50.32
19.32
17.21
15.04
14.37
13.71
12.60
45.02
136.70
23.26
22.43
21.69
20.79
20.83
90.00
37.71
85.30
157.00
31.89
26.87
24.20
47.62
57.14
NOx
ppmdv
45.55
55.41
55.24
53.28
54.57
56.53
56.20
55.01
46.94
63.37
64.55
71.80
72.20
72.50
69.80
66.97
55.68
57.24
61.03
69.16
71.20
66.34
63.71
62.84
58.26
82.80
67.22
42.16
52.61
58.85
64.06
65.69
45.74
44.25
92.20
75.10
75.60
78.60
72.30
55.38
55.77
CO
ppmdv
0.07
0.06
0.33
0.10
0.03
0.05
0.05
0.18
0.17
0.06
0.43
0.15
0.34
0.06
0.39
0.16
0.25
0.21
0.20
0.30
0.49
0.46
0.03
0.31
0.26
0.30
0.04
0.03
0.16
0.34
0.38
0.04
0.18
0.57
0.46
1.36
0.27
0.30
0.34
0.29
0.50
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
11:52
11:53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
12:01
12:02
12:03
12:04
12:05
12:06
12:07
12:08
12:09
12:10
12:11
12:12
12:13
12:14
12:15
12:16
12:17
12:18
12:19
12:20
12:21
12:22
12:23
12:24
12:25
12:26
12:27
12:28
12:29
12:30
12:31
12:32
02
%dv
13.38
13.51
13.50
13.54
13.67
14.13
13.68
13.46
13.46
13.41
13.62
13.55
13.56
14.62
12.61
12.81
13.77
13.79
13.80
13.83
13.81
13.73
14.71
12.89
13.04
13.64
13.66
13.88
13.94
14.06
15.17
12.65
12.92
13.63
13.63
13.72
13.82
14.07
13.16
13.75
13.85
CO2
%dv
4.66
4.62
4.64
4.59
4.54
4.20
4.53
4.63
4.68
4.71
4.55
4.64
4.60
3.84
5.17
4.99
4.46
4.44
4.39
4.41
4.43
4.47
3.73
4.95
4.83
4.52
4.51
4.38
4.29
4.20
3.41
5.03
4.78
4.45
4.44
4.37
4.32
4.36
5.09
4.64
4.51
SO2
ppmdv
41.58
35.39
32.23
30.27
29.29
39.26
104.80
64.10
46.27
41.12
32.23
31.21
29.90
34.21
116.10
133.90
32.77
28.68
26.96
28.14
27.54
28.02
65.99
116.10
118.60
32.61
30.06
27.57
26.08
24.72
20.79
76.70
115.30
30.15
29.05
29.03
28.96
44.01
39.36
29.68
26.55
NOx
ppmdv
66.17
73.50
79.60
82.40
82.50
63.95
57.14
45.04
60.30
61.60
70.50
76.50
78.10
51.70
93.90
71.30
75.90
75.40
74.20
81.10
81.10
81.90
51.76
97.70
69.90
85.80
87.90
83.90
80.50
74.70
64.04
99.80
63.14
42.17
47.79
52.80
53.52
50.90
73.90
80.50
78.50
CO
ppmdv
0.27
0.26
0.24
0.39
0.17
0.07
0.16
1.52
0.27
0.26
0.42
0.49
0.26
0.28
0.22
0.19
0.27
0.26
0.30
0.36
0.43
0.29
0.30
0.27
0.25
0.38
0.17
0.17
0.38
0.37
0.27
0.29
0.39
0.37
0.29
0.19
0.22
0.30
0.27
0.29
0.33
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
12:33
12:34
12:35
12:36
12:37
12:38
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
13:12
13:13
02
%dv
14.00
14.15
14.06
14.03
13.97
14.26
13.34
13.68
13.49
13.67
13.99
14.02
14.16
14.56
14.51
13.95
13.37
13.55
13.66
13.93
13.89
14.25
13.21
13.50
13.88
13.99
14.05
14.21
14.15
14.15
14.26
14.44
14.30
14.67
13.70
13.27
13.44
13.76
13.88
13.99
14.18P
C02
%dv
4.35
4.26
4.29
4.28
4.30
4.23
4.82
4.64
4.80
4.60
4.41
4.34
4.19
4.00
4.22
4.61
4.96
4.79
4.64
4.47
4.46
4.33
5.16
4.84
4.50
4.45
4.33
4.23
4.26
4.21
4.11
4.01
4.10
3.80
4.92
5.17
4.96
4.71
4.64
4.48
4.36P
S02
ppmdv
24.38
23.08
21.97
21.60
21.95
101.40
101.10
49.43
35.47
29.52
27.60
25.42
23.77
29.46
34.09
33.35
39.22
33.06
29.86
27.68
26.12
30.64
38.66
32.93
29.58
28.18
26.85
26.33
25.51
24.95
24.15
23.72
23.45
20.54
29.56
38.07
35.92
33.88
31.68
28.33
28.18P
NOx
ppmdv
77.30
76.50
75.10
72.80
70.80
49.16
55.98
75.60
69.83
69.88
71.60
72.30
72.00
54.73
32.44
58.57
72.00
79.20
82.20
82.20
80.50
56.42
72.30
79.70
81.60
82.80
81.60
82.40
82.90
82.20
82.00
82.20
81.60
65.85
64.02
79.10
79.40
80.30
81.90
79.00
71. OOP
CO
ppmdv
0.24
0.26
0.16
0.29
0.13
0.17
0.09
0.42
0.27
0.24
0.19
0.07
0.00
0.08
0.10
0.06
0.20
0.13
0.03
0.01
0.01
0.00
0.01
0.17
0.12
0.19
0.50
0.27
0.44
0.44
0.60
0.46
0.33
0.32
0.29
0.36
0.36
0.43
0.46
0.37
0.31P
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
13:53
13:54
02 C02
%dv %dv
12.39P
12. SOP
12.90P
13.52P
13.89P
14.01P
14.32P
14.27P
14.53P
14.66P
14.60P
14.58P
14.74P
14.71P
14.73P
14.67P
14.77P
14.75P
14.86P
14.74P
14.83P
14.94P
14.90P
14.88P
14.96P
15.01P
15.07P
15.06P
14.99P
14.97P
14.96P
14.88P
14.94P
14.89P
14.68P
14.89P
13.69P
14.26P
14.36P
14.53
14.74
6.57P
6.23P
5.52P
4.98P
4.70P
4.51P
4.29P
4.28P
4.03P
3.95P
3.99P
3.95P
3.83P
3.85P
3.84P
3.85P
3.77P
3.79P
3.72P
3.78P
3.71P
3.64P
3.68P
3.67P
3.60P
3.57P
3.55P
3.58P
3.61P
3.61P
3.61P
3.67P
3.64P
3.67P
3.77P
3.85P
4.93P
4.37P
4.23P
4.03
3.86
S02
ppmdv
254. 20P
216. 40P
68.32P
42.43P
33.39P
27.87P
23.42P
21.45P
19.54P
18.33P
17.33P
16. SOP
15.53P
14.95P
14.29P
13.96P
13.54P
13.32P
13. OOP
12.89P
12.44P
12.04P
11.89P
11.35P
11.01P
10.93P
10.55P
10.48P
10.43P
10.16P
10.04P
9.97P
9.81P
10.09P
11.01P
21.03P
30.69P
22.43P
18.93P
16.64
14.80
NOx
ppmdv
107. 40P
48.16P
35.01P
58.94P
66.63P
70.10P
71.90P
70.70P
68.18P
67.87P
67.63P
67.05P
65.95P
66. SOP
65.44P
65.22P
65.45P
65. SIP
63.64P
63.25P
62.57P
62.56P
62.14P
60.29P
59.61P
59.47P
59.59P
59.44P
59.51P
58.54P
60.18P
61.13P
60.46P
59.29P
57.93P
46.51P
60.38P
79.70P
77. OOP
73.70
70.60
CO
ppmdv
0.27P
0.32P
0.39P
0.51P
0.30P
0.43P
0.41P
0.32P
0.45P
0.33P
0.37P
0.27P
0.46P
0.30P
0.41P
0.37P
0.56P
0.38P
0.38P
0.48P
0.49P
0.80P
1.08P
0.75P
0.59P
0.60P
0.69P
0.63P
0.40P
0.58P
0.80P
0.62P
0.64P
0.66P
0.72P
0.86P
0.82P
0.66P
0.90P
0.76
0.82
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
14:17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
14 : 34
14:35
02
%dv
14.91
14.90
14.90
13.26
13.72
14.06
14.38
14.42
14.36
14.68
14.92
14.12
13.92
13.96
13.97
14.08
14.15
14.20
14.85
13.95
13.96
14.32
14.55
14.61
14.56
14.73
14.91
14.30
13.33
12.79
12.82
12.89
13.24
13.33
13.85
13.76
12.96
12.92
13.07
13.38
13.40
C02
%dv
3.75
3.75
3.91
5.62
4.94
4.56
4.27
4.24
4.21
3.95
3.82
4.36
4.48
4.47
4.45
4.34
4.33
4.26
3.77
4.96
4.70
4.30
4.11
4.05
4.03
3.89
3.78
4.41
5.14
5.53
5.57
5.43
5.17
5.12
4.66
4.64
5.33
5.40
5.22
5.04
5.01
S02
ppmdv
13.80
13.07
17.67
37.59
22.25
19.17
18.36
17.95
17.33
17.80
26.02
24.36
24.66
24.78
24.54
24.70
24.73
24.08
20.63
31.85
27.45
22.35
20.00
18.30
17.18
15.99
15.14
135.40
157.80
141.50
203.10
163.70
85.40
62.14
67.92
75.90
90.90
75.30
63.13
56.27
51.95
NOx
ppmdv
68.88
67.62
56.37
48.23
72.50
71.50
70.40
67.10
67.77
58.54
43.48
62.70
70.70
73.80
76.80
79.60
81.60
79.70
60.51
47.02
74.70
75.90
75.20
72.00
69.56
68.33
63.22
68.47
39.85
31.69
32.97
27.90
30.96
34.95
30.42
52.06
30.59
30.40
36.61
52.82
66.02
CO
ppmdv
0.85
0.78
0.93
0.78
0.94
0.95
0.87
1.14
0.93
1.21
0.91
0.96
0.98
1.31
1.02
1.21
1.14
0.81
0.69
0.74
0.74
0.56
0.66
0.95
0.81
0.83
0.95
0.92
0.88
0.99
0.94
0.99
1.07
1.02
1.11
0.96
0.88
0.92
1.01
1.15
1.03
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14 : 44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
14:58
14:59
15:00
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15:10
15:11
15:12
15:13
15:14
15:15
15:16
02
%dv
13.57
14.20
13.16
13.12
13.45
13.73
13.86
13.96
14.20
14.27
13.31
13.48
13.36
13.59
13.62
13.67
14.55
13.88
13.51
13.55
13.38
13.43
13.44
13.42
14.50
13.92
13.54
13.70
13.82
13.78
14.04
14.09
14.66
13.77
13.24
13.40
13.67
13.79
13.74
13.91
14.72
C02
%dv
4.83
4.53
5.43
5.33
5.03
4.84
4.71
4.58
4.42
4.53
5.11
5.01
5.05
4.89
4.89
4.82
4.18
4.68
4.89
4.91
5.02
4.99
5.03
4.98
4.17
4.67
4.87
4.76
4.69
4.71
4.49
4.47
4.03
4.74
5.14
5.04
4.79
4.74
4.75
4.61
4.02
S02
ppmdv
47.62
53.76
69.68
54.94
47.60
43.64
39.71
37.27
35.09
47.06
50.63
46.67
46.24
45.00
44.22
43.50
37.80
39.62
44.17
45.58
46.73
48.98
50.57
49.73
44.82
41.71
46.19
45.52
44.69
43.80
42.20
42.02
37.38
47.65
78.70
63.80
53.69
50.25
48.05
46.76
38.85
NOx
ppmdv
69.36
45.67
35.80
35.57
50.10
64.11
69.17
72.50
63.60
36.31
47.82
57.52
53.05
59.62
59.50
59.87
36.91
53.76
64.30
64.73
60.10
56.58
54.83
54.03
33.66
58.35
69.53
72.50
76.90
77.20
76.90
78.70
38.38
47.51
45.75
55.68
73.90
81.30
83.20
83.30
41.81
CO
ppmdv
1.02
1.11
1.04
1.31
1.14
1.11
1.17
1.27
1.07
1.15
1.31
1.30
1.33
1.26
1.55
1.28
1.47
1.32
1.40
1.36
1.24
1.62
1.39
1.50
1.28
1.59
1.33
1.52
1.35
1.60
1.48
1.45
1.55
1.36
1.25
1.52
1.45
1.30
1.38
1.45
1.45
-------
8/17/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 1 (IU-CEMS-R1)
Starting
08-17-99
Time
15:17
15:18
15:19
15:20
15:21
15:22
15:23
15:24
15:25
15:26
15:27
15:28
15:29
15:30
15:31
15:32
15:33
15:34
15:35
15:36
15:37
15:38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
284 MinAvg
02
%dv
13.65
13.41
13.68
13.69
13.85
13.76
13.75
13.91
14.60
13.52
13.58
13.54
13.65
13.85
13.99
14.74
13.56
13.21
13.58
13.81
14.03
14.22
14.88
14.20
13.86
13.92
14.00
13.94
14.08
14.38
14.88
13.57
13.57
13.76
13.76
13.82
13.83
14.04
13.83
CO2
%dv
4.85
4.95
4.80
4.74
4.66
4.73
4.67
4.58
4.09
4.86
4.85
4.86
4.75
4.64
4.48
3.95
4.86
5.13
4.83
4.68
4.46
4.32
3.80
4.27
4.59
4.54
4.50
4.56
4.40
4.18
3.87
4.83
4.80
4.70
4.66
4.62
4.64
4.49
4.54
S02
ppmdv
44.79
53.20
49.48
48.64
47.19
47.25
46.08
44.93
65.02
70.30
61.94
58.96
57.34
54.46
52.47
60.71
65.55
74.90
59.04
52.86
48.97
46.35
38.98
38.51
43.39
43.20
43.12
43.21
42.55
43.73
52.50
58.11
54.46
51.61
50.12
50.21
50.47
50.39
43.86
NOx
ppmdv
33.94
53.42
65.42
67.81
70.40
72.10
64.00
58.07
31.98
53.95
61.17
68.67
76.00
82.40
67.70
36.68
59.21
40.82
58.32
68.19
76.70
70.20
31.51
60.83
80.50
84.40
87.10
88.90
87.60
66.74
37.61
70.10
73.20
82.10
83.80
82.30
83.70
84.80
65.08
CO
ppmdv
1.15
1.30
1.30
1.22
1.24
1.15
1.30
1.29
1.61
1.84
1.31
1.44
1.37
1.53
1.65
1.55
1.39
1.13
1.71
1.49
1.05
1.14
1.44
1.28
1.18
1.33
1.15
1.43
1.28
1.11
1.30
1.29
1.31
1.25
1.20
1.13
1.00
1.13
0.73
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
02
%dv
CO2
%dv
S02
ppmdv
NOx
ppmdv
CO
ppmdv
Data Corrected for Calibrations
280 MinAvg 12.70 4.88
46.16
119.27
-0.00
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Calibrations:
[S02 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.67 HIGH Cal. Response = 48.31
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 2.98 HIGH Cal. Response = 49.12
LOW System Drift = 2.31 % HIGH System Drift = 0.81 %
[C02 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.09 HIGH Cal. Response = 9.92
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 0.08 HIGH Cal. Response = 9.85
LOW System Drift = -0.03 % HIGH System Drift = -0.31 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.00 HIGH Cal. Response = 181.09
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 1.50 HIGH Cal. Response = 183.75
LOW System Drift = 0.48 % HIGH System Drift = 0.86 %
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Calibrations:
[NOx ] Span Value = 500
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 249.00
INITIAL CALIBRATION TIME —> 1153
LOW Cal. Response = 0.15 HIGH Cal. Response = 248.15
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 0.00 HIGH Cal. Response = 239.99
LOW System Drift = -0.03 % HIGH System Drift = -1.63 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME --> 1153
LOW Cal. Response = 0.03 HIGH Cal. Response = 10.02
FINAL CALIBRATION TIME > 1721
LOW Cal. Response = 0.03 HIGH Cal. Response = 9.98
LOW System Drift = 0.01 % HIGH System Drift = -0.16 %
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
12:31
12:32
12:33
12:34
12:35
12:36
12:37
12:38
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
02
%dv
14.39
11.84
12.13
13.50
13.09
13.28
13.24
13.29
14.27
11.88
11.90
12.34
13.22
12.93
13.01
14.47
11.54
11.11
11.30
11.36
11.55
11.52
14.37
11.64
10.38
10.88
12.66
12.57
11.41
14.71
13.34
12.54
12.46
12.36
12.31
12.27
12.35
12.33
11.96
14.18
13.41
C02
%dv
3.81
5.48
5.14
4.26
4.52
4.39
4.41
4.34
4.01
5.79
5.49
5.11
4.58
4.73
4.66
3.62
5.63
5.71
5.61
5.56
5.47
5.49
3.59
5.49
6.17
5.81
4.78
4.83
5.50
3.39
4.37
4.82
4.84
4.88
4.91
4.93
4.89
4.91
5.13
3.66
4.31
S02
ppmdv
3.99
28.29
63.24
12.52
6.59
6.24
5.95
5.78
7.09
36.39
67.42
63.00
12.22
7.35
6.37
4.80
23.44
51.53
57.06
60.39
62.63
66.75
16.87
32.27
65.92
59.28
42.90
39.37
43.23
15.45
22.75
36.74
33.71
32.00
31.09
30.36
29.78
29.33
30.44
25.95
60.82
NOx
ppmdv
50.45
84.30
70.70
33.68
35.13
33.15
33.20
34.43
59.22
102.90
154.40
88.30
43.68
42.31
44.54
44.75
103.60
158.60
165.90
170.30
174.80
142.70
47.78
128.60
185.30
180.10
164.50
169.80
174.00
38.52
123.10
166.10
174.40
178.60
182.80
183.00
183.10
183.70
198.10
60.99
135.70
CO
ppmdv
0.03
0.55
0.63
0.63
0.60
0.46
0.75
0.58
0.64
0.41
0.31
0.39
0.44
0.19
0.40
0.19
3.25
4.89
0.17
0.22
0.08
0.11
0.20
0.49
0.22
0.18
0.19
0.00
0.22
2.62
2.05
0.61
0.87
1.67
1.70
2.74
3.03
4.04
3.77
6.10
6.03
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
13:12
13:13
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
02
%dv
12.34
12.24
11.27
11.83
12.24
12.36
12.76
13.82
11.57
12.24
12.35
12.48
12.32
13.86
11.71
12.45
12.52
12.59
12.61
12.49
12.53
14.03
11.80
12.43
12.49
12.68
12.67
12.21
13.98
12.18
12.27
12.48
12.54
12.56
12.35
14.15
11.55
11.39
11.73
11.78
11.87
C02
%dv
4.92
4.99
5.63
5.33
5.11
5.05
4.69
4.11
5.47
5.05
.5.04
4.97
5.07
4.09
5.50
5.02
5.00
4.95
4.93
4.99
4.95
3.91
5.37
4.97
4.93
4.82
4.84
5.15
3.82
5.12
5.03
4.91
4.87
4.85
5.00
3.69
5.51
5.47
5.31
5.29
5.21
S02
ppmdv
63.37
54.60
63.89
56.88
48.26
44.72
40.79
21.52
50.29
47.40
49.66
50.79
56.06
43.00
97.90
76.70
66.39
62.76
61.99
62.53
65.39
24.25
53.55
63.84
62.50
62.43
63.98
71.90
32.93
46.26
74.30
72.50
71.10
68.92
71.20
25.98
40.82
63.78
59.58
59.47
60.03
NOx
ppmdv
198.20
200.30
227.30
225.60
216.40
211.30
144.80
56.22
202.50
203.00
214.60
215.60
195.00
63.65
220.40
224.50
222.30
219.50
219.60
219.50
195.80
40.36
191.40
218.80
222.00
222.80
225.90
239.90
45.23
153.60
232.90
232.80
216.80
227.30
222.90
39.47
167.90
241.20
237.20
236.60
237.10
CO
ppmdv
2.02
1.30
1.49
4.43
2.73
1.30
0.81
0.76
0.50
0.40
0.41
0.41
0.56
0.24
0.30
0.35
0.62
0.61
0.30
0.59
0.34
0.40
0.05
0.25
0.23
0.08
0.28
0.18
0.24
0.54
0.35
0.45
0.36
0.29
0.29
0.40
0.01
0.03
0.30
0.18
0.14
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
13:53
13:54
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
14:17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
02 C02
%dv %dv
11.86
13.30
12.63
11.38
11.76
12.02
12.10
12.06
11.95
13.76
12.40
11.84
12.02
12.18
12.09
12.16
12.14
11.98
13.40
12.49
11.74
12.07
12.10
12.25
12.10
12.12
14.05
11.45
11.91
12.03
12.17
12.24
12.27
12.39
13.68
11.37
12.05
12.16
12.25
12.40
12.37P
5.24
4.18
4.80
5.45
5.25
5.11
5.11
5.15
5.26
3.97
4.99
5.27
5.18
5.07
5.08
5.03
5.02
5.13
4.12
4.91
5.31
5.14
5.12
5.01
5.07
5.02
3.65
5.44
5.10
5.05
4.99
4.97
4.97
4.88
4.12
5.54
5.11
5.03
4.99
4.92
4.89P
S02
ppmdv
62.33
39.76
32.92
69.44
64.95
62.34
62.66
63.62
67.35
34.53
34.00
65.87
63.42
61.07
59.92
60.57
62.25
65.24
38.84
33.66
70.70
65.69
62.75
61.20
61.91
62.61
15.86
46.42
62.39
60.71
58.61
58.66
59.71
65.62
65.08
97.90
76.00
66.55
63.39
62.50
62.36P
NOx
ppmdv
242.40
78.70
112.10
228.70
231.00
228.40
232.50
233.90
237.60
56.50
125.70
224.20
230.80
227.80
225.10
225.90
227.00
238.60
70.40
127.90
240.10
242.40
245.40
243.20
247.10
212.40
46.86
200.10
235.90
238.50
240.10
242.10
244.60
177.60
64.34
237.80
247.90
249.00
251.90
251.90
248. 40P
CO
ppmdv
0.22
0.25
0.29
0.22
0.34
0.15
0.29
0.19
0.23
0.13
0.13
0.21
0.19
0.03
0.24
0.49
0.23
0.36
0.21
0.31
0.13
0.20
0.20
0.19
0.21
0.34
0.42
0.10
0.02
0.01
0.14
0.31
0.30
0.30
0.20
0.17
0.19
0.18
0.18
0.14
0.18P
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
14:58
14:59
15:00
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15:10
15:11
15:12
15:13
15:14
02
%dv
12.53P
12.59P
12.68P
12.72P
12.73P
12.75P
12. SOP
12.73P
12.87P
12.88P
12.74P
12.76P
12.65P
12.87P
12.90P
12.96P
13.04P
12.94P
13. OOP
12.98P
12.96P
12.99P
12.87P
12.88P
12.97P
12.98P
13.17P
13.13P
13. IIP
12.99P
12.86P
12.83P
12.98P
12.86P
12.96P
12.98P
12.93P
14.09
12.91
12.72
12.93
C02
%dv
4.86P
4.86P
4.84P
4.84P
4.85P
4.84P
4. SOP
4.79P
4.68P
4.70P
4.77P
4.73P
4. SOP
4.70P
4.70P
4.69P
4.65P
4.69P
4.61P
4.60P
4.57P
4.53P
4.60P
4.62P
4.60P
4.63P
4.53P
4.56P
4.53P
4.58P
4.62P
4.62P
4.56P
4.57P
4.52P
4.54P
4.64P
3.83
4.66
4.76
4.59
S02
ppmdv
63.20P
64.38P
65.36P
66.26P
67.33P
68.02P
67.54P
68.07P
62.37P
35.63P
28.26P
25.78P
24.85P
23.84P
23.05P
22.70P
22.34P
22.47P
21.96P
21.75P
21.79P
21.49P
21.31P
21.31P
21.34P
21. OOP
20.82P
20.59P
20.28P
20.44P
20.75P
20. SOP
20.30P
20.05P
19.57P
19.63P
22. SOP
15.27
19.62
19.12
18.75
NOx
ppmdv
250. OOP
250. 60P
250. 80P
250. 40P
251. SOP
249. 70P
246. 90P
246. 70P
130. 60P
48.69P
44.06P
39.03P
37.92P
35.12P
33.39P
32.58P
31.74P
31.32P
30.98P
30.72P
30.34P
30.33P
30.52P
31.05P
30.89P
31.17P
31.89P
32.20P
32.14P
32.57P
32.82P
32.74P
33.54P
34.29P
36.21P
35.58P
45.61P
38.35
33.28
32.08
31.61
CO
ppmdv
0.11P
0.09P
0.40P
0.28P
0.03P
0.11P
0.19P
0.01P
0.12P
0.22P
0.30P
0.18P
0.19P
0.16P
0.01P
0.04P
0.03P
0.05P
0.11P
0.09P
0.01P
0.15P
0.29P
0.03P
0.30P
0.30P
0.03P
0.03P
0.02P
0.17P
0.18P
0.06P
0.12P
0.24P
0.30P
0.02P
0.03P
0.23
0.24
0.29
0.17
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
15:15
15:16
15:17
15:18
15:19
15:20
15:21
15:22
15:23
15:24
15:25
15:26
15:27
15:28
15:29
15:30
15:31
15:32
15:33
15:34
15:35
15:36
15:37
15:38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
02
%dv
12.92
12.95
13.00
12.84
14.13
13.03
12.93
13.04
13.23
13.30
13.24
14.11
13.39
12.69
12.81
12.98
13.00
13.15
13.36
14.07
11.53
12.21
12.46
12.38
12.48
12.71
13.12
12.21
12.44
12.53
12.64
12.66
12.67
12.76
12.89
12.27
12.36
12.37
12.46
12.52
12.40
C02
%dv
4.57
4.52
4.46
4.56
3.59
4.41
4.52
4.49
4.40
4.38
4.40
3.69
4.21
4.61
4.52
4.39
4.41
4.37
4.24
3.89
5.51
5.11
4.92
4.94
4.84
4.71
4.51
5.15
5.12
5.20
5.11
5.09
5.05
4.88
4.76
5.21
5.15
5.14
5.08
5.07
5.20
S02
ppmdv
18.96
18.79
18.76
19.88
10.27
15.60
16.61
17.41
17.40
17.92
18.28
16.99
19.56
21.43
17.90
16.89
16.92
16.95
17.64
14.00
146.60
148.40
118.00
105.10
95.60
78.10
191.20
223.70
121.60
86.30
70.70
62.45
57.75
48.85
42.04
52.44
52.60
53.10
52.42
52.35
53.04
NOx
ppmdv
31.47
31.69
32.10
42.55
41.62
37.33
33.70
32.23
31.65
31.43
33.62
42.48
46.79
42.64
36.08
32.36
32.29
32.05
41.94
49.93
252.10
264.90
261.00
264.00
246.70
61.39
102.50
96.50
90.60
100.60
88.10
79.80
77.50
60.32
90.80
88.40
86.20
85.50
83.90
82.60
75.50
CO
ppmdv
0.01
0.04
0.29
0.25
0.08
0.11
0.22
0.06
0.24
0.29
0.30
0.24
0.18
0.25
0.22
0.17
0.19
0.15
0.03
0.21
0.03
0.40
0.17
0.42
0.39
0.18
0.19
0.03
0.11
0.20
0.11
0.02
0.30
0.01
0.12
0.03
0.02
0.18
0.17
0.01
0.13
-------
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Starting
08-21-99
Time
15:56
15:57
15:58
15:59
16:00
16:01
16:02
16:03
16:04
16:05
16:06
16:07
16:08
16:09
16:10
16:11
16:12
16:13
16:14
16:15
16:16
16:17
16:18
16:19
16:20
16:21
16:22
16:23
16:24
16:25
16:26
16:27
16:28
16:29
16:30
16:31
16:32
16:33
16:34
16:35
16:36
02
%dv
13.40
12.47
12.68
12.72
12.75
12.87
12.85
13.16
13.40
12.55
12.88
12.95
12.92
12.87
13.09
14.56
12.77
12.55
12.80
12.95
12.96
12.97
12.95
14.11
12.55
12.84
12.92
12.92
12.90
12.95
14.23
12.66
12.89
12.91
12.93
12.91
12.87
14.08
12.56
12.67
12.84
CO2
%dv
4.41
5.16
5.06
5.06
5.03
4.98
4.99
4.71
4.58
5.12
4.95
4.91
4.91
4.93
4.72
3.62
4.95
5.06
4.93
4.85
4.84
4.83
4.84
3.98
5.08
4.89
4.86
4.86
4.88
4.81
3.85
4.95
4.81
4.82
4.81
4.83
4.85
3.92
5.01
4.95
4.85
SO2
ppmdv
35.32
39.42
43.43
43.59
43.63
43.28
41.91
35.16
28.13
33.10
34.27
33.30
32.97
33.30
30.28
16.30
26.55
30.98
31.31
31.17
31.14
30.86
31.34
22.15
29.18
31.04
30.87
31.47
31.77
32.57
20.16
31.12
32.55
31.79
31.02
31.21
32.66
19.92
29.13
32.17
32.40
NOx
ppmdv
73.90
80.80
79.60
77.20
75.60
73.50
73.10
51.26
66.21
69.15
67.07
65.74
63.81
62.26
48.44
49.55
44.15
45.50
44.88
41.90
40.99
40.35
40.31
45.94
43.97
43.51
41.44
41.03
41.95
41.90
38.78
38.96
37.59
37.63
36.85
38.99
42.43
47.04
54.95
58.15
57.98
CO
ppmdv
0.02
0.12
0.04
0.02
0.13
0.05
0.14
0.30
0.19
0.29
0.23
0.39
0.35
0.38
0.43
0.47
0.63
0.57
0.54
0.65
0.74
0.59
0.76
0.74
0.85
0.87
0.90
1.05
1.03
0.86
1.23
1.14
0.82
1.17
1.40
1.56
1.26
1.40
1.38
1.36
1.33
-------
Starting
08-21-99
8/21/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 2 (IU-CEMS-R2)
Time
16:37
16:38
16:39
16:40
16:41
16:42
16:43
16:44
16:45
16:46
16:47
16:48
16:49
16:50
16:51
16:52
16:53
16:54
16:55
16:56
16:57
16:58
16:59
17:00
17:01
17:02
17:03
17:04
17:05
17:06
17:07
17:08
17:09
17:10
280 MinAvg
02
%dv
12.86
12.82
12.83
14.23
12.60
12.81
12.85
12.89
12.84
12.94
13.86
12.38
12.68
12.69
12.81
12.87
12.67
13.94
12.55
12.78
12.83
12.87
12.90
12.82
14.10
13.18
13.03
13.16
12.99
13.17
13.18
13.18
13.14
13.19
12.68
C02
%dv
4.84
4.87
4.85
3.80
4.97
4.86
4.83
4.82
4.86
4.81
4.18
5.22
5.11
5.12
5.05
5.00
5.14
4.08
5.14
4.99
4.97
4.94
4.93
5.00
3.94
4.66
4.77
4.69
4.77
4.68
4.70
4.71
4.73
4.70
4.83
S02
ppmdv
32.31
32.47
32.75
19.44
32.46
34.36
34.36
34.26
34.60
35.85
91.20
69.63
65.67
78.60
77.30
66.99
60.49
23.40
26.95
31.95
32.96
33.71
34.52
35.57
19.71
16.54
22.19
23.93
31.04
24.89
24.99
25.38
25.55
25.99
45.29
NOx
ppmdv
57.24
56.54
48.44
42.70
48.28
49.02
47.55
46.72
47.50
41.71
73.70
69.95
81.70
82.50
79.40
76.80
66.57
45.63
57.13
60.46
58.35
57.05
56.92
49.99
38.83
36.19
34.14
47.97
53.61
37.97
34.59
33.33
33.17
32.68
116.95
CO
ppmdv
1.40
1.35
1.52
1.65
1.37
1.41
1.86
1.98
1.57
1.65
1.57
1.30
1.57
1.86
1.85
1.93
1.88
1.85
1.88
1.86
1.76
1.75
1.76
1.80
1.71
1.75
1.84
1.89
1.93
1.87
1.86
1.82
1.79
1.83
0.75
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Calibrations:
[S02 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME --> 936
LOW Cal. Response = 0.37 HIGH Cal. Response = 48.96
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 2.14 HIGH Cal. Response = 50.20
LOW System Drift = 1.77 % HIGH System Drift = 1.25 %
[C02 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.00 HIGH Cal. Response = 9.95
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 0.02 HIGH Cal. Response = 9.76
LOW System Drift = 0.10 % HIGH System Drift = -0.96 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.01 HIGH Cal. Response = 182.60
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 1.30 HIGH Cal. Response = 182.95
LOW System Drift = 0.41 % HIGH System Drift = 0.11 %
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Calibrations:
[NOx ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 101.70
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.13 HIGH Cal. Response = 101.80
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 0.27 HIGH Cal. Response = 100.06
LOW System Drift = 0.06 % HIGH System Drift = -0.70 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME —> 936
LOW Cal. Response = 0.04 HIGH Cal. Response = 10.03
FINAL CALIBRATION TIME > 1534
LOW Cal. Response = 0.01 HIGH Cal. Response = 9.79
LOW System Drift = -0.09 % HIGH System Drift = -0.96 %
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
10:11
10:12
10:13
10:14
10:15
10:16
10:17
10:18
10:19
10:20
10:21
10:22
10:23
10:24
10:25
10:26
10:27
10:28
10:29
10:30
10:31
10:32
10:33
10:34
10:35
10:36
10:37
10:38
10:39
10:40
10:41
10:42
10:43
10:44
10:45
10:46
10:47
10:48
10:49
10:50
10:51
02
%dv
13.58
13.20
12.78
13.06
13.27
13.34
13.81
12.82
12.69
12.99
13.18
13.33
13.43
13.51
13.89
12.85
12.93
12.76
12.73
12.79
12.82
13.56
12.16
12.50
12.76
12.85
12.93
12.97
13.83
12.91
12.78
12.81
12.90
12.97
12.89
13.66
13.50
12.76
12.82
12.83
12.86
C02
%dv
4.13
4.45
4.80
4.58
4.42
4.36
4.15
5.26
5.10
4.83
4.66
4.52
4.41
4.35
4.22
4.88
4.79
4.93
4.92
4.88
4.82
4.59
5.48
5.16
4.95
4.87
4.79
4.76
4.25
4.84
4.90
4.86
4.78
4.73
4.77
4.15
4.40
4.84
4.81
4.80
4.76
S02
ppradv
29.81
13.06
14.00
10.58
8.45
7.66
9.21
26.57
13.65
9.93
8.48
7.30
6.74
7.01
118.40
104.80
61.44
29.44
23.61
19.11
17.19
49.31
86.90
29.28
19.16
16.20
15.03
15.59
71.30
49.35
30.80
23.13
19.52
17.96
17.60
22.62
29.06
27.84
25.45
24.54
23.38
NOx
ppmdv
35.42
48.99
44.35
50.29
51.86
53.28
54.03
52.90
35.61
45.78
49.69
50.27
50.26
51.94
64.77
32.41
35.26
32.46
31.99
32.86
37.17
66.36
53.73
32.49
31.92
34.07
36.06
41.96
57.19
30.52
30.02
30.20
30.69
30.36
33.95
40.28
35.35
32.52
30.75
29.54
29.69
CO
ppmdv
0.40
0.29
0.18
0.38
0.34
0.31
0.27
0.10
0.18
0.08
0.13
0.18
0.29
0.31
0.07
0.11
0.13
0.28
0.27
0.24
0.00
0.15
0.08
0.08
0.10
0.19
0.01
0.19
0.05
0.00
0.20
0.01
0.06
0.08
0.01
0.00
0.05
0.05
0.08
0.02
0.05
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
10:52
10:53
10:54
10:55
10:56
10:57
10:58
10:59
11:00
11:01
11:02
11:03
11:04
11:05
11:06
11:07
11:08
11:09
11:10
11:11
11:12
11:13
11:14
11:15
11:16
11:17
11:18
11:19
11:20
11:21
11 : 22
11:23
11:24
11:25
11:26
11:27
11:28
11:29
11:30
11:31
11:32
02
%dv
12.85
13.11
13.60
13.13
13.62
12.32
11.54
11.48
12.04
12.17
12.18
12.93
11.63
12.13
12.24
12.32
12.33
12.40
12.38
13.46
12.22
12.38
12.48
12.56
12.63
12.56
13.12
12.34
12.08
12.26
12.53
12.74
12.79
12.80
13.14
11.97
12.42
12.50
12.53
12.70
12.85
C02
%dv
4.79
4.55
4.34
4.55
4.34
5.20
5.81
5.84
5.47
5.37
5.32
5.26
6.12
5.62
5.48
5.39
5.33
5.27
5.28
4.64
5.40
5.23
5.14
5.07
5.00
5.05
4.75
5.61
5.51
5.35
5.13
4.99
4.93
4.91
5.13
6.01
5.46
5.31
5.23
5.07
4.96
S02
ppmdv
23.27
21.96
20.44
31.83
121.30
68.12
201.30
267.40
200.30
145.50
104.70
102.60
181.50
127.80
90.80
60.79
40.91
29.91
24.16
38.33
37.59
23.72
21.23
19.72
18.59
18.12
22.08
105.40
36.35
23.31
19.99
18.19
17.57
17.60
70.70
142.90
54.57
21.79
15.10
13.23
12.32
NOx
ppmdv
30.21
33.51
45.00
49.26
47.95
56.50
104.70
106.00
96.70
89.80
67.28
104.30
95.80
81.60
71.20
57.97
45.64
36.08
37.11
76.10
57.95
38.63
32.34
30.37
30.75
32.57
58.60
91.70
61.03
42.45
32.24
30.18
30.98
38.53
93.90
84.80
60.04
40.28
31.78
32.11
33.85
CO
ppmdv
0.20
0.01
0.03
0.03
0.18
0.25
0.34
0.29
0.41
0.42
0.30
0.18
0.18
0.30
0.31
0.30
0.18
0.30
0.19
0.19
0.19
0.18
0.31
0.05
0.09
0.14
0.19
0.05
0.04
0.05
0.02
0.19
0.07
0.02
0.08
0.02
0.03
0.06
0.10
0.09
0.14
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
11:33
11:34
11:35
11:36
11:37
11:38
11:39
11:40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
11:49
11:50
11:51
11:52
11:53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
12:01
12:02
12:03
12:04
12:05
12:06
12:07
12:08
12:09
12:10
12:11
12:12
12:13
02 C02
%dv %dv
13.10
12.67
12.23
12.49
12.49
12.61
12.55
12.56
13.30
12.10
12.41
12.55
12.67
12.61
12.71
13.07
11.97
12.27
12.30
12.40
12.34
12.48
12.50
12.55
13.48
12.53
12.22
12.53
12.60
12.72
12.97
14.01
12.18
11.98
12.35
12.44
12.50
12.61
12.61
12.72
12.71P
4.83
5.29
5.41
5.23
5.22
5.12
5.16
5.17
4.76
5.42
5.19
5.10
5.02
5.04
4.98
5.06
5.69
5.41
5.33
5.22
5.22
5.12
5.12
5.10
4.44
5.17
5.30
5.11
5.07
4.98
4.78
4.12
5.40
5.52
5.32
5.24
5.17
5.09
5.08
4.97
4.92P
S02
ppmdv
39.56
123.80
47.89
28.20
22.93
20.20
18.80
22.49
109.10
48.25
25.80
22.10
20.74
20.67
27.39
124.10
124.60
75.10
47.53
31.12
24.98
23.10
22.38
21.87
35.88
31.24
26.53
23.93
23.52
22.97
28.87
160.60
82.60
72.10
75.60
59.84
45.41
35.58
32.10
30.82
30.08P
NOx
ppmdv
62.12
89.50
67.63
57.47
53.65
45.41
38.94
37.30
88.00
61.60
47.95
37.94
33.88
33.13
37.22
99.60
88.30
76.30
68.03
58.13
50.88
43.85
39.77
35.93
56.35
50.16
45.23
37.48
34.32
32.15
41.95
100.50
90.40
94.80
90.60
83.70
76.90
68.11
64.58
59.88
56.60P
CO
ppmdv
0.02
0.09
0.03
0.01
0.01
0.10
0.10
0.37
0.23
0.02
0.45
0.00
0.19
0.26
0.24
0.01
0.04
0.21
0.23
0.14
0.11
0.06
0.19
0.02
0.23
0.06
0.11
0.05
0.13
0.06
0.05
0.02
0.06
0.01
0.01
0.03
0.05
0.07
0.04
0.02
-0.43P
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
12:14
12:15
12:16
12:17
12:18
12:19
12:20
12:21
12:22
12:23
12:24
12:25
12:26
12:27
12:28
12 : 29
12:30
12:31
12:32
12:33
12:34
12:35
12:36
12:37
12:38
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
02 C02
%dv %dv
12.65P
12.66P
12.66P
12.66P
12.68P
12.74P
12.78P
12.82P
12.84P
12.84P
12.84P
12.83P
12.83P
12.83P
12.83P
12.84P
12.84P
12.82P
12.77P
12.74P
12.71P
12.70P
12.69P
12.70P
12.76P
12. SOP
12.83P
12.86P
12.87P
12.88P
12.88P
12.89P
12.88P
12.86P
12.84P
12.83P
12.83P
12.83P
12.84P
12.89P
12.95P
4.67P
4.63P
4.61P
4.59P
4.58P
4.57P
4.55P
4.53P
4.49P
4.46P
4.44P
4.42P
4.40P
4.39P
4.39P
4.38P
4.38P
4.38P
4.38P
4.38P
4.37P
4.37P
4.37P
4.37P
4.37P
4.36P
4.36P
4.36P
4.36P
4.36P
4.36P
4.36P
4.34P
4.35P
4.34P
4.33P
4.32P
4.32P
4.31P
4. SOP
4. SOP
S02
ppmdv
28.41P
28.58P
28.62P
28.71P
28.67P
28.75P
28.84P
28. SOP
28.97P
29.01P
29.06P
29.06P
29. OOP
29.16P
29.16P
29. ISP
29.09P
29.17P
29.10P
29.09P
29.04P
28.89P
28.83P
28. SOP
28.71P
28.60P
28.56P
28.45P
28.44P
28.27P
28.29P
28.06P
27.96P
27.91P
27.87P
27.72P
27.67P
27.61P
27.43P
27.44P
27.33P
NOx
ppmdv
53.93P
51.86P
42.36P
14.93P
13.65P
13.20P
13.09P
12.98P
12.89P
12.78P
12.68P
12.65P
12.61P
12.52P
11.97P
10.54P
8.82P
7.76P
7.37P
7.16P
7. IIP
7.03P
7.01P
7.07P
6.99P
7.01P
7.06P
7.01P
6.93P
6.92P
6.95P
6.91P
6.84P
6.87P
7.01P
6.87P
6.82P
6.85P
6.84P
6.71P
6.69P
CO
ppmdv
-0.55P
-0.49P
-0.21P
-0.22P
-0.38P
-0.37P
-1.06P
-0.32P
-0.57P
-0.81P
-0.31P
-0.09P
0.18P
0.01P
0.11P
0.19P
0.02P
0.18P
0.41P
0.11P
0.17P
0.11P
0.29P
0.02P
0.02P
0.19P
0.19P
0.12P
0.03P
0.18P
0.03P
0.01P
0.18P
-0.13P
0.02P
0.02P
0.19P
0.19P
0.29P
-0.07P
0.27P
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
13:12
13:13
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
02 C02
%dv %dv
13. OOP
13.04P
13.07P
13.09P
13.10P
13.12P
13.12P
13.09P
13.07P
13.06P
13.06P
13.07P
13.10P
13.16P
13.24P
13.31P
13.37P
13.42P
14. SOP
13.62P
13.75P
13.35
12.49
12.81
12.90
13.08
13.18
13.15
14.14
12.90
13.10
13.23
13.28
13.33
13.32
14.25
12.87
13.03
13.23
13.35
13.32
4.28P
4.28P
4.26P
4.26P
4.25P
4.24P
4.23P
4.21P
4.21P
4.20P
4.19P
4.17P
4.16P
4.16P
4.14P
4.13P
4. IIP
4.09P
3.49P
4.08P
4.01P
4.39
4.93
4.75
4.68
4.55
4.47
4.50
3.72
4.63
4.46
4.40
4.36
4.34
4.35
3.66
4.66
4.53
4.41
4.34
4.35
S02
ppmdv
27.23P
27.18P
27.03P
26.91P
26.99P
26.86P
26.84P
26.68P
26.59P
26.55P
26.49P
26.47P
26.35P
26.34P
26.26P
26.12P
26.16P
26.05P
14.08P
11.48P
32.87P
74.50
36.41
37.04
27.02
22.34
19.75
19.99
21.37
27.10
25.15
24.35
23.97
22.98
23.74
28.67
40.54
32.39
29.30
27.19
26.41
NOx
ppmdv
6.70P
6.63P
6.60P
6.62P
6.60P
6.55P
6.53P
6.52P
6.54P
6. SOP
6.46P
6.43P
6.46P
6.36P
6.35P
6.41P
6.37P
6.32P
32.47P
55.43P
54.95P
47.52
40.25
36.88
30.94
30.76
33.51
41.89
38.20
34.02
30.81
30.50
32.03
32.87
38.68
42.73
34.84
30.26
29.37
29.55
30.53
CO
ppmdv
-0.16P
0.18P
0.12P
0.29P
0.18P
0.17P
0.18P
0.18P
-0.14P
0.18P
0.30P
-0.16P
0.10P
0.10P
0.01P
0.29P
0.29P
0.28P
0.57P
0.23P
0.11P
0.01
0.32
0.02
0.18
0.35
0.46
0.46
0.35
0.35
0.74
0.85
0.58
0.75
0.87
0.68
0.79
0.63
1.02
1.19
1.10
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
13:53
13:54
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
02
%dv
13.32
14.39
12.66
12.78
12.90
12.93
12.98
12.99
14.13
12.33
12.63
12.79
12.81
12.87
13.06
14.42
12.46
12.59
12.87
12.95
13.10
13.12
13.07
13.29
13.80
12.54
12.92
13.05
13.08
12.99
13.07
14.19
12.66
12.91
13.02
12.98
12.98
12.97
13.97
12.82
12.66
C02
%dv
4.36
3.54
4.82
4.73
4.69
4.68
4.64
4.64
3.73
5.10
4.91
4.82
4.78
4.74
4.53
3.54
4.97
4.85
4.69
4.63
4.53
4.51
4.54
4.34
4.04
4.86
4.64
4.57
4.56
4.62
4.55
3.70
4.82
4.66
4.60
4.64
4.64
4.66
3.84
4.76
4.85
S02
ppmdv
26.06
14.75
25.06
29.80
31.10
31.50
30.86
29.60
22.18
49.25
61.77
56.52
44.38
36.87
33.04
33.85
38.43
30.18
27.60
26.78
25.13
24.84
24.79
24.37
24.71
29.78
27.68
27.29
27.92
28.65
28.48
26.16
41.49
37.30
35.87
35.72
35.57
35.56
22.41
26.21
33.45
NOx
ppmdv
39.47
36.39
34.28
36.25
36.29
36.02
34.62
36.38
38.74
67.47
72.20
69.97
60.81
54.22
43.10
51.44
47.25
38.34
35.55
31.99
30.72
30.86
31.71
41.97
41.37
35.26
32.89
32.39
32.77
33.34
35.28
38.65
32.25
31.01
31.01
31.74
32.28
35.75
35.73
40.49
41.02
CO
ppmdv
0.94
1.18
1.01
0.91
1.09
0.92
0.70
0.59
0.64
0.18
0.52
0.73
0.74
0.84
0.79
0.78
0.81
1.03
0.93
1.03
1.19
1.35
1.01
0.87
1.35
1.26
1.27
1.10
1.11
1.26
1.77
1.36
1.04
1.36
1.27
1.60
1.62
1.78
1.44
1.70
1.85
-------
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Starting
08-22-99
Time
14:17
14:18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
02
%dv
12.86
12.93
12.93
12.96
14.05
12.57
12.54
12.62
12.74
12.86
12.76
13.62
12.46
12.66
12.70
12.80
12.84
12.86
12.90
13.65
12.55
12.74
12.76
12.81
12.81
12.62
13.60
12.39
12.68
12.73
12.78
12.73
12.87
13.86
12.10
12.50
12.74
12.79
12.76
12.77
12.72
C02
%dv
4.73
4.68
4.69
4.68
3.78
4.95
5.02
5.02
4.93
4.85
4.92
4.20
5.12
5.00
4.97
4.88
4.84
4.83
4.73
4.20
4.98
4.90
4.89
4.85
4.85
4.99
4.19
5.11
4.92
4.89
4.86
4.89
4.75
4.01
5.34
5.12
4.95
4.90
4.94
4.92
4.97
S02
ppmdv
34.12
33.85
34.11
34.12
20.99
29.95
76.70
124.50
141.70
118.30
89.10
47.88
79.40
87.50
78.50
68.54
67.95
68.51
46.89
39.09
61.71
63.75
59.15
54.11
51.35
50.32
49.59
64.88
57.17
52.98
49.09
47.65
44.22
77.80
114.90
105.40
90.30
83.60
80.40
76.10
71.70
NOx
ppmdv
37.98
35.86
35.07
38.63
36.82
54.81
79.00
82.60
81.10
77.90
73.80
75.00
84.30
81.40
79.20
75.40
75.60
73.60
58.37
78.10
87.30
85.00
83.50
80.70
79.90
75.90
77.40
86.10
80.50
77.00
73.90
72.00
69.05.
89.50
103.90
93.20
87.40
86.20
85.70
84.00
79.80
CO
ppmdv
1.71
1.52
1.86
1.70
1.52
1.68
1.86
1.69
1.95
1.93
2.04
1.91
1.89
2.06
1.89
1.90
1.19
1.29
1.12
1.04
1.28
1.53
1.13
1.47
1.36
1.27
1.18
1.03
1.63
1.30
1.30
1.14
1.47
1.16
1.10
1.18
1.66
1.53
1.63
1.53
1.36
-------
Starting
08-22-99
8/22/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 3 (IU-CEMS-R3)
Time
14:58
14:59
15:00
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15:10
15:11
15:12
15:13
15:14
15:15
15:16
15:17
307 MinAvg
02
%dv
13.65
12.42
12.72
12.68
12.68
12.69
12.67
13.05
12.61
12.79
12.89
12.83
12.83
12.89
12.90
12.85
12.81
12.73
12.82
12.85
12.85
C02
%dv
4.18
5.10
4.93
4.97
4.98
4.98
5.01
5.26
5.87
5.39
5.23
5.18
5.14
5.07
5.04
5.05
5.08
5.11
5.03
5.00
4.86
S02
ppmdv
55.76
74.70
73.20
62.59
61.56
62.18
64.32
200.70
333.50
211.70
162.70
131.60
111.50
94.20
83.40
77.70
74.70
71.70
67.43
65.19
50.96
NOx
ppmdv
73.50
81.70
82.60
83.20
82.70
82.80
76.40
173.40
165.70
91.90
83.80
83.00
82.30
82.30
81.40
81.10
81.00
79.30
77.00
75.10
55.55
CO
ppmdv
1.29
1.10
1.27
1.28
1.29
1.45
1.29
1.28
1.70
1.70
1.96
1.45
1.54
1.80
1.61
1.52
1.45
1.53
1.54
1.44
0.68
Data Corrected for Calibrations
307 MinAvg 12.98 4.95
51.23
55.89
0.02
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Calibrations:
[S02 ] Span Value = 100
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 49.80
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.48 HIGH Cal. Response = 48.69
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.50 HIGH Cal. Response = 48.86
LOW System Drift = 0.02 % HIGH System Drift = 0.17 %
[C02 ] Span Value = 20
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.06
INITIAL CALIBRATION TIME ~> 1220
LOW Cal. Response = 0.01 HIGH Cal. Response = 9.86
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.04 HIGH Cal. Response = 10.01
LOW System Drift = 0.13 % HIGH System Drift = 0.72 %
[CO ] Span Value = 310
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 183.00
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.61 HIGH Cal. Response = 181.20
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 2.04 HIGH Cal. Response = 183.00
LOW System Drift = 0.46 % HIGH System Drift = 0.58 %
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Calibrations:
[NOx ] Span Value = 250
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 101.70
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.56 HIGH Cal. Response = 102.03
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.17 HIGH Cal. Response = 98.67
LOW System Drift = -0.16 % HIGH System Drift = -1.34 %
[02 ] Span Value = 25
LOW Calibration Gas = 0.00 HIGH Calibration Gas = 10.01
INITIAL CALIBRATION TIME —> 1220
LOW Cal. Response = 0.01 HIGH Cal. Response = 10.01
FINAL CALIBRATION TIME > 1622
LOW Cal. Response = 0.02 HIGH Cal. Response = 9.98
LOW System Drift = 0.03 % HIGH System Drift = -0.12 %
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13:10
13:11
13:12
13:13
13:14
13:15
13:16
13:17
13:18
13:19
13:20
13:21
02
%dv
12.38
12.70
12.82
13.05
13.12
13.21
13.23
13.27
13.28
13.31
13.43
13.38
13.62
13.50
12.44
12.36
12.08
12.27
12.34
12.47
12.80
13.92
12.80
12.75
12.77
12.82
12.81
12.85
13.14
14.24
13.12
12.67
12.79
12.76
12.79
12.76
13.92
13.92
10.11
9.97
10.88
C02
%dv
5.09
4.88
4.77
4.59
4.53
4.46
4.43
4.41
4.40
4.37
4.28
4.31
4.15
4.62
5.03
5.15
5.34
5.22
5.16
5.05
4.75
4.07
4.79
4.82
4.80
4.76
4.76
4.74
4.46
3.77
4.51
4.82
4.74
4.78
4.77
4.80
3.91
4.17
6.50
6.54
5.97
S02
ppmdv
19.58
15.72
14.32
12.40
11.51
11.02
10.77
10.51
10.32
10.13
9.65
9.48
9.16
54.58
40.42
25.84
31.19
29.30
24.57
20.18
17.39
18.01
20.47
18.47
17.08
16.44
16.04
15.65
14.63
20.34
34.14
40.17
31.53
26.96
25.88
25.54
16.61
28.64
123.00
127.30
108.40
NOx
ppmdv
33.45
37.19
39.38
44.68
46.24
45.70
46.18
46.76
46.38
45.60
45.31
45.86
43.28
62.70
36.47
34.96
50.99
44.39
32.86
27.14
28.78
31.79
27.16
27.30
28.01
30.18
32.11
34.30
38.43
36.76
33.89
43.09
31.08
33.02
35.18
34.67
30.53
71.70
229.10
247.80
249.90
CO
ppmdv
0.88
0.04
0.98
0.42
0.38
0.54
0.65
0.39
0.87
0.69
0.71
0.86
0.04
0.71
0.88
0.60
0.98
0.06
0.87
0.86
0.17
0.26
0.20
0.64
0.53
0.36
0.70
0.56
0.53
0.70
0.70
0.56
0.56
0.54
0.73
0.89
1.06
0.89
0.88
0.56
1.11
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
13:22
13:23
13 : 24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13:36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
13:44
13:45
13:46
13:47
13:48
13:49
13:50
13:51
13:52
13:53
13:54
13:55
13:56
13:57
13:58
13:59
14:00
14:01
14:02
02
%dv
11.30
11.35
11.47
11.62
11.74
11.64
11.69
11.77
11.74
11.71
11.85
12.28
13.86
10.94
11.80
11.98
12.09
12.08
12.09
12.05
12.13
12.09
12.14
12.44
12.58
12.46
13.55
13.15
12.50
12.48
12.55
12.51
12.55
12.55
14.02
13.30
11.51
11.43
11.41
11.81
11.90
C02
%dv
5.72
5.69
5.62
5.54
5.47
5.53
5.51
5.44
5.47
5.48
5.40
5.09
4.21
6.12
5.53
5.42
5.33
5.33
5.34
5.35
5.30
5.33
5.30
5.12
5.08
5.14
4.31
4.74
5.13
5.14
5.09
5.14
5.11
5.11
3.95
4.69
5.88
5.95
5.97
5.72
5.67
S02
ppmdv
95.50
88.10
80.80
73.80
68.47
65.01
61.68
58.36
56.53
54.68
52.28
48.81
29.73
81.00
63.85
57.28
54.82
52.45
51.19
49.64
49.09
49.25
48.28
43.37
27.69
25.31
22.79
29.15
26.29
25.02
23.59
23.69
23.25
22.66
15.13
25.48
45.75
54.81
56.02
50.89
48.07
NOX
ppmdv
249.10
249.50
249.40
249.70
248.90
248.60
248.80
247.40
248.30
247.70
243.50
182.00
72.80
242.70
248.30
249.20
249.10
249.20
249.40
249.50
249.50
249.50
247.60
127.40
38.08
34.44
37.85
36.66
30.97
30.79
30.63
31.13
30.82
29.93
38.07
70.90
101.40
103.10
104.90
99.50
99.10
CO
ppmdv
0.85
0.91
1.00
0.93
1.20
0.86
0.89
1.33
1.25
1.21
1.05
1.27
1.22
1.07
1.20
1.21
1.50
1.22
1.49
1.38
1.21
1.32
1.04
1.20
1.04
1.11
1.04
1.21
1.30
1.11
1.13
1.10
1.47
1.38
1.55
1.47
1.16
1.48
1.37
1.49
1.56
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
14:03
14:04
14:05
14:06
14:07
14:08
14:09
14:10
14:11
14:12
14:13
14:14
14:15
14:16
14:17
14 : 18
14:19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
02
%dv
12.09
12.11
12.12
12.10
12.11
12.19
12.22
12.16
12.16
12.28
12.33P
12.36P
12.42P
12.46P
12. SOP
12.52P
12.54P
12.56P
12.57P
12.57P
12.57P
12.56P
12.56P
12.56P
12.55P
12.54P
12.54P
12.53P
12.52P
12.52P
12.53P
12.52P
12.52P
12.52P
12.10P
10.09P
6.82P
6.54P
13.81
13.53
12.01
C02
%dv
5.57
5.52
5.53
5.52
5.51
5.46
5.44
5.47
5.46
5.39
5.34P
5.13P
5.09P
5.05P
5.02P
4.99P
4.97P
4.95P
4.91P
4.87P
4.83P
4. SOP
4.77P
4.75P
4.73P
4.72P
4.71P
4.70P
4.70P
4.71P
4.71P
4.71P
4.71P
4.71P
5.83P
10.04P
6.30P
3.07P
4.26
4.52
5.50
S02
ppmdv
47.67
44.58
42.56
41.49
40.36
39.49
37.98
37.59
38.02
35.56
33.78P
32.51P
32.54P
32.55P
32.55P
32.48P
32.47P
32.40P
32.34P
32.23P
32.17P
32.14P
32.05P
31.93P
31.90P
31.77P
31.65P
31. SOP
31.36P
31.14P
31.02P
30.71P
30.65P
30.53P
24.22P
1.70P
0.44P
6.46P
28.21
47.92
42.52
NOx
ppmdv
98.50
94.60
92.50
91.40
89.80
86.90
84.50
85.30
83.90
79.10
77.40P
75.40P
72.90P
61.71P
18.25P
16.26P
15.64P
15.35P
15.19P
15.08P
14.93P
14.79P
14.75P
14.55P
14.41P
13.77P
11.53P
8.75P
7.03P
6. SOP
6.29P
5.92P
5.69P
5.73P
5.38P
-0.74P
45.31P
56.23P
70.90
89.80
79.30
CO
ppmdv
1.41
1.72
1.46
1.67
1.56
1.55
1.90
1.57
1.54
1.88
1.61P
1.73P
1.65P
1.73P
1.56P
1.89P
1.90P
1.90P
1.90P
1.91P
1.89P
1.78P
1.86P
1.92P
1.91P
1.90P
1.71P
1.91P
1.02P
1.78P
1.87P
1.84P
1.25P
1.13P
1.09P
1.02P
0.59P
1.37P
1.46
1.20
1.60
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
14:44'
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
14:55
14:56
14:57
14:58
14:59
15:00
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15:10
15:11
15:12
15:13
15:14
15:15
15:16
15:17
15:18
15:19
15:20
15:21
15:22
15:23
15:24
02
%dv
12.19
12.52
12.50
12.57
12.60
12.66
12.64
12.59
12.63
12.76
12.77
12.84
13.89
12.49
12.35
12.46
12.59
12.63
13.13
14.68
13.20
12.82
12.71
12.77
12.71
12.74
12.82
12.88
12.87
12.89
12.92
12.90
12.96
12.97
13.18
12.64
12.50
12.56
12.54
12.58
12.61
C02
%dv
5.41
5.22
5.23
5.18
5.16
5.13
5.13
5.16
5.13
5.04
5.03
4.95
4.20
5.22
5.28
5.20
5.14
5.10
4.70
3.52
4.65
4.88
4.95
4.93
4.96
4.96
4.90
4.87
4.87
4.86
4.85
4.85
4.82
4.80
4.65
5.55
5.35
5.31
5.32
5.30
5.24
S02
ppmdv
36.04
31.04
27.57
25.93
24.45
23.53
23.21
22.84
22.35
21.58
21.52
21.14
22.08
26.48
23.57
22.61
22.19
22.27
21.01
11.30
11.80
14.91
16.66
17.89
18.34
18.58
18.96
19.32
19.07
18.97
19.10
19.00
18.80
18.76
38.57
325.30
163.20
101.00
83.40
72.20
62.32
NOx
ppmdv
72.50
65.35
58.24
52.57
46.58
42.95
42.99
42.31
41.35
40.23
39.06
41.26
54.90
48.57
46.58
45.12
43.92
44.57
53.70
36.61
33.41
33.44
34.55
33.66
32.55
31.78
31.82
30.33
29.73
29.54
28.83
28.95
28.72
28.68
46.06
134.20
93.50
91.70
90.60
89.60
88.70
CO
ppmdv
1.62
1.52
1.70
1.38
1.54
1.72
1.77
2.01
1.71
1.83
1.69
1.82
2.10
2.21
2.06
1.86
1.70
1.85
1.68
1.79
2.12
2.04
1.78
1.65
1.70
1.63
1.86
1.87
1.42
1.98
1.85
1.70
1.64
1.90
1.76
1.64
2.03
1.72
1.89
1.85
1.80
-------
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Starting
08-23-99
Time
15:25
15:26
15:27
15:28
15:29
15:30
15:31
15:32
15:33
15:34
15:35
15:36
15:37
15:38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
15:59
16:00
16:01
16:02
16:03
16:04
16:05
02
%dv
12.64
12.60
12.55
12.66
12.73
12.64
12.73
12.63
12.91
12.55
12.32
12.52
12.46
12.58
12.60
12.55
12.66
12.67
12.65
12.63
12.67
12.64
12.93
13.95
12.15
12.35
12.51
12.54
12.61
12 . 67
12.61
12.62
12.64
12.57
12.58
12.64
12.71
12.68
12.81
13.09
12.52
C02
%dv
5.19
5.21
5.22
5.15
5.10
5.16
5.08
5.14
4.89
5.41
5.58
5.41
5.43
5.32
5.29
5.30
5.24
5.23
5.23
5.24
5.21
5.23
4.96
4.20
5.60
5.48
5.39
5.34
5.31
5.25
5.31
5.30
5.30
5.37
5.35
5.32
5.25
5.28
5.18
4.95
5.51
S02
ppmdv
54.30
49.43
43.27
38.52
35.67
34.13
31.68
30.19
35.64
128.30
105.60
75.60
67.01
60.16
56.91
53.25
50.59
49.08
47.70
46.71
45.50
46.27
43.62
55.55
95.40
72.30
62.43
58.17
56.63
54.66
55.35
54.15
53.97
56.33
54.98
55.47
52.19
53.36
52.14
149.30
201.60
NOx
ppmdv
86.10
85.60
82.40
77.90
74.30
73.20
69.08
67.66
68.91
155.80
135.30
101.10
95.00
93.90
96.40
96.40
96.40
95.70
96.50
96.70
95.40
94.80
90.30
105.40
119.20
97.40
93.10
93.40
93.50
92.00
91.60
89.40
88.40
90.10
88.80
89.10
86.90
89.80
86.40
139.30
201.50
CO
ppmdv
1.69
2.15
1.70
1.89
1.67
1.69
1.59
1.57
1.87
1.57
1.47
1.69
1.71
2.03
1.69
1.69
1.88
1.53
1.55
1.73
1.53
1.60
1.66
1.52
1.55
2.03
1.70
1.87
1.71
1.75
1.84
1.77
1.60
1.94
1.57
1.73
1.73
1.71
1.87
1.75
2.01
-------
Starting
08-23-99
8/23/99
UNIVERSITY OF GEORGIA - AHRC
REFERENCE METHOD DATA
INCINERATOR UNIT RUN 4 (IU-CEMS-R4)
Time
16:06
16:07
16:08
16:09
16:10
16:11
16:12
212 MinAvg
02
%dv
12.53
12.73
12.76
12.67
12.66
12.67
12.61
12.58
C02
%dv
5.57
5.42
5.35
5.38
5.37
5.34
5.37
5.11
S02
ppmdv
112.00
86.50
76.40
72.80
70.20
68.33
66.24
45.06
NOx
ppmdv
244.40
197.60
145.50
124.10
107.70
94.50
89.90
91.72
CO
ppmdv
1.99
1.90
2.03
2.06
1.69
1.72
1.90
1.38
Data Corrected for Calibrations
212 MinAvg 12.61 5.16
45.97
92.92
0.05
------- |