EPA-9QS/4-87-002
1985 OPEN LAKE WATER QUALITY CONDITIONS FOR LAKE ERIE'S
CENTRAL AHO EASTERN BASINS
PREPARED BY
LAURA A. FAY
AMD
DAVID E. RATHKE
PREPARED FOR
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
GREAT LAKES NATIONAL PROGRAM OFFICE
230 S, DEARBORN
CHICAGO, ILLINOIS
GRANT NO.; R005859-01
DAVID ROCKWELL
PROJECT OFFICER
JANUARY 198?
-------
TECHNICAL REPORT DATA
(HttK rttd liutntcrioiit on ttil rtvtru btfoncotnp'
PlEPWRT NO.
EPA-9C5/4-S7-QQ?
TITLE ANO SUITITLE 8. REPORT DATE
1985 Open Lake Water Quality Conditions for Lake Erie's
Central and Eastern Basins
January 1987
S. PERFORMING ORGANIZATION CODE
AUTHORS)
PERFORMING ORGANIZATION REPORT NO.
Laura A. Fay and David E. Rathke
ri'.'PO Peoort N'o. ."7-C7
10. PROCBAM ELEMENT NO.
. PERFORMING ORGANIZATION NAME ANO AOORESS
Center for Lake Erie Area Research
The Ohio State University
484 West 12th Ave.
Columbus, OH 43210
11. CONTRACT/GRANT NO.
R-005859-01
2. SPONSORING AGENCY NAME ANO AOORESS
Great Lakes National Program Office
United States Environmental Protection Agency
230 South Dearborn Street
Chicago, Illinois 60604
13. TYPE OF REPORT ANO PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
fireat Lakes National Program
Office-IJSEPA, Region V
z. SUPPLEMENTARY NOTES
David Rockwell, Project Officer
ABSTRACTTne ^955 |_a|. OlSTRItUTION STATEMENT
Docunent is available to public through the
'Jational Information Service (MTIS),
Springfield, YA 22161
10 SECURITY CLASS (ThttKlporl/
21. N(T OF PAGES
2O SECURITY
33. PRICE
f*rm 2229-1 («•». 4-77) iHCVieu* COITION n OMOLCTC
REPRODUCED BY
US DEPARTMENT OF COMMERCE
-------
DISCLAIMER
The Information in this doument has been funded wholly or in part by the
United States Environmental Protection Agency under assistance agreement
number R-005859-01 to The Ohio State University; it has been subject to the
Agency's peer and administrative review; and it has been approved for
publication. The mention of trade names or conmerical products does not
constitute endorsement or recommendation for use.
-------
PAGE 2
TABLE OF CONTENTS
PAGE NO.
LIST OF TABLES 4
LIST OF FIGURES 5
ACKNOWLEDGMENTS 8
EXECUTIVE SUMMARY 9
INTRODUCTION AND METHODS 10
PROGRAM OBJECTIVES 10
SAMPLING PROGRAM DESCRIPTION 11
METHODS 11
DATA ANALYSIS 11
QUALITY CONTROL 12
PHYSICAL DATA 13
THERMAL STRUCTURE 14
TEMPERATURE PATTERNS 14
DISSOLVED OXYGEN 17
WATER QUALITY PARAMETERS 21
NUTRIENTS 21
PHOSPHORUS 21
NITROGEN 23
DISSOLVED SILICA 25
ANOXIC REGENERATION OF NUTRIENTS 26
PARTICULATES 28
CORRECTED CHLOROPHYLL A 28
SUSPENDED SOLIDS 28
PRINCIPLE IONS 30
CONDUCTIVITY 30
CHLORIDE 31
TOTAL ALKALINITY 32
pH 33
-------
PAGE 3
PAGE NO.
BASIN COMPARISON 35
OPEN LAKE SAMPLING REGIONS 36
TROPHIC CLASSIFICATION 38
QUALITY CONTROL SUMMARY 40
STANNOUS CHLORIDE PHOSPHORUS METHOD VERSUS 43
ASCORBIC ACID PHOSPHORUS METHOD
REFERENCES CITED 46
TABLES 48
FIGURES 102
APPENDIX A - CENTRAL BASIN DATA SUMMARY BY PARAMETER 145
APPENDIX B - EASTERN BASIN DATA SUMMARY BY PARAMETER 162
APPENDIX C - SURVEY 8 CONTOURS 179
APPENDIX 0 - QUALITY CONTROL SUMMARY BY PARAMETER
(DIFFERENCES BETWEEN DUPLICATE ANALYSIS) 190
-------
PAGE 4
LIST OF TABLES
PAGE NO.
1. 1985 Lake Erie Open Lake Water Quality Survey Schedule 49
2. Geographic Coordinates for the 1985 Lake Erie Stations SO
3. Synopsis of Methods 51
4. 1985 Central Basin Mean/Median Mater Quality Measurements 53
5. 1985 Eastern Basin Mean/Median Mater Quality Measurements 77
6. Lake Erie Central Basin Representative Area Limnion,
Oxygen and Temperature Data, 1985 95
7, Lake Erie Eastern Basin Representative Area Limnion,
Oxygen and Temperature Data, 1985 96
8. Lake Erie Central Basin Volume Weighted Total Phosphorus
and Corrected Chlorophyll A Data, 1985 97
9. Lake Erie Eastern Basin Volume Weighted Total Phosphorus
and Corrected Chlorophyll A Data, 1985 98
10. Central Basin Representative Area Means and Standard
Deviations Compared With the Means of the Individual
Stations Comprising the Area. 99
11. Eastern Basin Representative Area Means and Standard
Deviations Compared With the Means of the Individual
Stations Comprising the Area. 100
12. Quality Control Summary by Parameter
(Differences Between Duplicate Analysis) 101
-------
PAGE 5
LIST OF FIGURES
PAGE NO.
1. 1985 Lake Erie Open Lake Sampling Locations 103
2 Explanation of Median Plots (after Reckhow, 1980) 104
3. Central Basin Hypolimnion Thickness (M), 1985 105
4. Eastern Basin Hypolimnion Thickness (M), 1985 106
5. Median Central Basin Epilimnion Temperature (°C), 1985 107
6. Median Central Basin Hypolimnion Temperature (°C), 1985 108
7. Median Eastern Basin Epilimnion Temperature CO, 1985 109
8. Median Eastern Basin Hypolimnion Temperature CO, 1985 110
9. Median Central Basin Hypolimnion Dissolved Oxygen
Concentration (mg/1), 1985 111
10. Median Central Basin Hypolimnion Dissolved Oxygen
Percent Saturation, 1985 112
11. Central Basin Hypolimnion Oxygen Depletion Rates for 1985 113
12. Central Basin Mean Hypolimnion Oxygen Depletion Rates
from 1929 to 1985 114
13. Median Eastern Basin Hypolimnion Dissolved Oxygen
Concentration (mg/1), 1985 115
14. Median Eastern Basin Hypolimnion Dissolved Oxygen
Percent Saturation, 1985 116
15. Eastern Basin Hypolimnion Oxygen Depletion Rates for
July from 1970 to 1985 117
16. Median Central Basin Total Phosphorus Concentrations for 1985 118
17. Percent Composition of Particulate and Total Dissolved
Phosphorus in Central Basin, 1985 119
18. The Median Central Basin Epilimnion and Hypolimnion
Total Phosphorus, Total Filtered Phosphorus and
Soluble Reactive Phosphorus Concentrations for 1985 120
-------
PAGE 6
PAGE NO.
19, Central Basin Limnion Distribution of Total Phosphorus
In Metric Tons and Percent for 1985 121
20. Median Eastern Basin Total Phosphorus Concentrations
for 1985 122
21. The Median Eastern Basin Epilimnion and Hypolimnion
Total Phosphorus, Total Filtered Phosphorus, and
Soluble Reactive Phosphorus Concentrations for 1985 123
22. Percent Composition of Particulate and Total Dissolved
Phosphorus in Eastern Basin, 1985 124
23. The Median Central Basin Epilimnion and Hypolimnion
Nitrite and Nitrite, Ammonia and Kjeldahl Nitrogen
Concentrations for 1985 125
24. The Median Eastern Basin Epilimnion and Hypolimnion
Nitrate and Nitrite, Ammonia and Kjeldahl Nitrogen
Concentrations for 1985 126
25. The Median Central Basin Epilimnion and Hypolimnion
Soluble Reactive Silica Concentrations for 1985 127
26. The Median Eastern Basin Epilimnion and Hypolimnion
Soluble Reactive Silica Concentrations for 1985 128
27. The Median Central Basin Hypolimnion Nitrate and Nitrite
(ug/1), Ammonia (ug/1) and Dissolved Oxygen (ng/1)
Concentrations for 1985 129
28, The Median Central Basin Hypolimnion Total Filtered
Phosphorus (ug/1), Soluble Reactive Silica (ug/1),
and Dissolved Oxygen Concentrations for 1985 130
29, The Median Central Basin Epilimnion and Hypolimnion
Total Suspended Solids (mg/15, Volatile Solids (mg/1)
and Chlorophyll A (ug/1), Concentrations for 1985 131
30. The Median Eastern Basin Epilimnion and Hypolimnion
Total Suspended Solids (mg/1). Volatile Solids (mg/1)
and Chlorophyll A (ug/1), Concentrations for 1985 132
31. Percent Composition of Volatile and Residual Solids
Central Basin. 1985 133
32. Percent Composition of Volatile and Residual Solids
Eastern Basin, 1985 134
-------
PAGE 7
PAGE NO.
33. The Median Central Basin Epilimnion and Hypoliinnion
Conductivity and Chloride Concentrations for 1985 135
34. The Median Eastern Basin Epilimnion and Hypolimnion
Conductivity and Chloride Concentrations for 1985 136
35. Statistical Summary of the Stannous Chloride (SO
Total Phosphorus Data Used For the Method Comparison 137
36. Statistical Summary of the Ascorbic Acid (AA)
Total Phosphorus Data Used For the Method Comparison 138
37. Comparison of Stannous Chloride {SO and Ascorbic
Acid (AA) Total Phosphorus Analysis, 1985 139
38. Statistical Summary of the Computed Difference Between
Paired Stannous Chloride CSC) and Ascorbic Acid (AA)
Total Phosphorus 140
39, Statistical Summary of the Stannous Chloride (SO
Total Filtered Phosphorus Data Used For the Method
Comparison 141
40. Statistical Summary of the Ascorbic Acid (AA)
Total Filtered Phosphorus Data Used For the Method
Comparison 142
41. Comparison of Stannous Chloride (SO and Ascorbic
Acid (AA) Total Filtered Phosphorus Analysis, 1985 143
42, Statistical Summary of the Computed Difference Between
Paired Stannous Chloride (SO and Ascorbic Acid (AA)
Total Filtered Phosphorus 144
-------
PAGE 8
ACKNOWLEDGMENTS
The authors of this report would like to express their appreciation to the
CLEAR stiff who helped in completing this project, especially to the crew of
the Research Vessel Hydra. In particular, we would like to thank Mr. Cheng-Mu
Shaio, Ms. Helen Kundtz and Mr. Todd Parfitt for their technical support. In
addition, we would like to thank Mr. Fernando Rosa of the Canada Centre for
Inland Waters (CCIW/NWRI) for providing the 1929 - 1984 corrected oxygen
depletion rates for the representative area and for reviewing the 1985 rate
calculations.
We would alsc like to acknowledge the financial support provided by the
U.S. Environmental Protection Agency - Great Lakes National Program Office,
especially our Project Officer, Mr. David C. Rockwell.
-------
PAGE 9
EXECUTIVE SUMMARY
The 1985 Lake Erie open lake surveillance/monitoring program followed the
recommended study plan sanctioned by the Water Quality Board of the
International Joint Commission, Great Lakes Regional Office. Eight surveys
were conducted on the central basin and five on the eastern basin.
Concentrations of oxygen, phosphorus, nitrogen, silica, chloride, chlorophyll,
suspended solids and several additional parameters were determined. Detailed
results and data interpretation are presented in this report.
The 1985 central basin data indicated a significantly longer stratified
period than is generally recorded for the basin. The mean annual oxygen
depletion rate calculated was 3.7 mg/1/month, which was slightly greater than
rates recorded 1n recent years. By early f'jgust the nypolimnion waters
contained less than 2 mg/1 of dissolved oxygen. At.nxic conditions were present
through much of late August and into September The anoxia resulted in
significant sediment regeneration of phosphorus into the overlying waters. In
contrast, the epilimnion concentrations of phosphorus and chlorophyll were low
through much of the stratified period.
The eastern basin data indicated an oxygen rich hypolimnion through the
entire stratified period. Epilimnion and hypolinnion nutrient concentrations
were similar and did not fluctuate significantly during the field season. The
eastern basin epilimnion water quality is better than that recorded for the
central basin however, the difference in phosphorus and chlorophyll
concentrations is becoming less as a result of central basin improvements.
-------
PAGE 10
INTRODUCTION AND METHODS
PROGRAM OBJECTIVES
The open lake surveillance/monitoring program implemented during 1985 was
designed specifically to comply with the Great Lakes Water Quality Agreement of
1978. The plan was developed in 1984 by the Lake EMe Task Force under the
direction of the Surveillance Work Group and subsequently endorsed by the Water
Quality Board of the International Joint Commission,
Under Annex 3 of the Agreement, 1wo goals specific to Lake Erie concerning
the phosphorus control program are put forward:
1. The restoration of year-round aerobic conditions in the bottom
waters of the central basin of Lake Erie
2. The reduction in algal bionwss.
Under Annex 11, the Agreement specifies the purpose of surveillance/monitoring
activities, calling for a program designed to identify non-achievement of the
Agreement objectives, evaluation of trends, and a program to provide baseline
open lake data collection, sample analysis and evaluation. The current program
provides the data necessary to comply with the open lake considerations of the
Agreement.
Since 1973, the open lake surveillance/monitoring prog*am has been focused
on obtaining seasonal data for total phosphorus, corrected chlorophyll and
dissolved oxygen. Total phosphorus and chlorophyll concentrations have been
tracked as eutrophication Indices for long term trend analysis and to evaluate
the effectiveness of remedial actions designed to curb the eutrophication of
the Great Lakes. Since one of the most serious results of eutrophication is
the depletion of oxygen in the bottom waters, oxygen data is utilized to
calculate hypolimnetic oxygen depletion rates. Ultimately, as the phosphorus
and chlorophyll concentrations are reduced, the seasonal rate at which oxygen
is depleted from the hypolimnion is expected to be reduced. In addition,
several other limnological parameters have also been evaluated to help explain
variations in parameter concentrations due to lake processes and for the
development and refinement of lake models.
-------
PAGE 11
SAMPLING PROGRAM DESCRIPTION
Scheduling, sampling strategies, and parameters used for the 1985 open
lake study conformed to the revised Great Lakes International Surveillance Plan
(SUSP) developed by the Lake Erie Task Force U986) under the Surveillance
Work Group of the International Joint Commission.
Eight open lake surveys were conducted in the central basin during the
1985 field season beginning on May 15th and ending on November 15th, Survey
dates and survey durations are presented in Table 1. Due to the stability and
less eutrophic nature of the eastern basin, relative to the central basin, only
five surveys were conducted in this basin. A total of 14 stations were located
throughout the central (n=10) and eastern (n=4) basins (Figure 1). A listing
of the geographic coordinates, bottom depths and basin designations are
presented in Table 2.
METHODS
A summary of the methods employed for the 1985 season can be seen in Table
3. A detailed description of the methods are presented in Letterhos (1982). A
copy of this methods manual is on file with the 1JC Great Lakes Regional
Office, Windsor, Ontario and with US-EPA Region V, Chicago, Illinois as well as
with the Center for Lake Erie Area Research, Columbus, Ohio.
During the 1985 field season, three forms of phosphorus, three forms of
nitrogen and dissolved silica were measured at all stations and depths within
the central and eastern basin representative areas. The soluble nutrients were
examined within 12 hours of filtration while the remaining forms were analyzed
after returning to the land based laboratory.
DATA ANALYSIS
Raw data analysis was accomplished utilizing Biomedical Computer Programs
(BMDP) that calculate limnion Means and medians with the appropriate variance
statistics. Analyisis of data over the last few years has indicated that
medians are the most relevant indicator of the actual conditions in Lake Erie.
Generally, mean and median values are very similar, however, when extremely
high or low values are encountered (i.e., during anoxic conditions) and account
for only a small percent of the data set (< IDS), the median value best
illustrates the overall data being presented.
A modified version of the notched block plot (Reckhow, 1980J as explained
in Figure 2 is used to present seasonal concentrations. The median point is
not usually in the center of the box indicating that several high values are
skewing the means upward. Tables for the central and eastern basins are
presented with the limnlon means and medians for those who find it difficult to
adjust to the use of medians (Tables 4 and 53.
-------
PAGE 12
Volume weighted data for nutrients, chlorophyll and dissolved oxygen that
are presented 1n Tables 6-9 are derived from the Survey 8 volume weighting
program (Hanson et al,1978). Dissolved oxygen depletion rate calculations were
made following the procedure that adjusts for vertical mixing (Rosa and Burns,
1986], Additional rate calculations, adjusting for temperature, hypolimnion
thickness, an initial dissolved oxygen were provided by F. Rosa (CCIW-NWRI).
BMDP programs were also used to examine the relative significance when
comparisons were made between data sets. This type of analysis was carried out
for inter and intra basin comparisons.
QUALITY CONTROL
A quality control program is routinely followed for all pertinent
parameters, constituting approximately ten percent of the total sampling
effort. This program utilizes a series of known standards, duplicates and
spikes, as suggested by the International Joint Commission, to monitor accuracy
and precision and to provide estimates of standard deviations.
A detailed description of the quality control program (Quality Assurance
Project Plan - Open Lake Surveillance Monitoring Program; May 1» 1985 to June
30, 1986) is on file with the U.S. Environmental Protection Agency - Great
Lakes N»tional Program Office and Quality Assurance Office.
-------
PAGE 13
PHYSICAL DATA
Lake Erie is comprised of three basins {western, central, and eastern)
which are unique both physically and chemically, with much of their unique
nature attributed to their distinct individual morphologies. Lake Erie in
itself is unique among the Great Lakes. The Sreat Lakes all have mean depths
greater than 60 meters, while Lake Erie has a mean depth of less than 20
meters. In particular, the central basin has a mean depth of only 18.5 meters
making it extremely susceptible to the effects of eutrophication, which in this
case has resulted in extensive anoxic hypolimnion conditions.
The central basin is just deep enough to form and maintain a stable
hypoHmnion through the summer months but not of sufficient depth to establish
a hypolimnion which has an adequate oxygen reserve. Due to the increase in
oxygen demand rates over time (from 1929 through the mid 1970's), periods of
hypolimnion anoxia have betn routinely reported since the early 196Q's (Rathke
1984). The degree/duration of the anoxic period is largely dependent upon the
annual hypolimnion oxygen reserve which is governed by the annual variability
in hypolimnion thickness and temperature.
The thickness of the hypolimnion is a major consideration when developing
a hypolimnion oxygen budget. The establishment and subsequent seasonal changes
in the thermocline thickness are attributed to meteorological conditions and
events which take place during the spring and through the stratified period.
Since the initial quantity of oxygen found in the hypolimnion during formation
serves as a reservoir for the remaining stratified season, seasonal changes in
hypolimnion volume (both increases and decreases) are of critical importance to
the seasonal changes in hypolimnion oxygen concentrations.
The water temperature also has a significant effect on the hypolimnion
oxygen budget. The temperature during initial hypolimnion formation largely
determines the initial oxygen concentration. Prior to the on-set of thermal
stratification, spring dissolved oxygen concentrations throughout the water
column are generally greater than 1001 saturation. Hypolimnion temperatures
continue to exert a physical influence on the concentration as they increase
through the stratified period. In addition, the bottom water temperatures also
effects the rate of biological metabolic activity (Q10) which is associated
with hypolinmion oxygen consumption. Since the central basin hypolimnion
temperature is known to increase as much as 10 *C through the stratified
period, temperature is an important factor effecting the depletion of oxygen.
The concerns about the central basin hypolimnion oxygen do not apply to
the eastern basin. Since the hypolimnion is generally 4 to 5 times thicker
than the central basin, the eastern basin oxygen reservoir is significantly
greater. This, in addition to the fact that the eastern basin oxygen demand
rate is one-fifth that of the central basin, explains why oxygen concentrations
do not reach critical levels (< 5.0 mg/1) in the eastern basin. The eastern
basin hypolimnion thickness and temperature information is being presented only
for comparison purposes.
-------
PAGE 14
THERMAL STRUCTURE
CENTRAL BASIN. The on set of thermal stratification fn the central basin
was first observed on May 1st (David Rockwell, personal communication) and
remained stratified through September 21st. The observed stratified period
spanned 144 days, approximately 33 days longer than the average annual
stratified period. Stable stratification generally is not established before
late May and frequently the central basin destratifies by mid-September. Thus
the 1985 stratified period was protracted both during the spring and fall.
A mean hypolimnfon thickness of 8.4 meters was observed during the first
survey (May 15th) after which the hypolimnion thickness decreased throughout
the remaining season. One exception was noted between Surveys 3 (July 2) and 4
(July 24) when an increase of 1.6 meters occurred. The basin remained
partially stratified through Survey 7 (September 19 - 21) but the stratified
area was limited in geographical expanse. Central basin hypolimnion thickness
data is presented in Table 6 and Figure 3 and contours are presented in
Appendix C,
EASTERN BASIN. The observed eastern basin stratified period extended from
July 2 through September 19, an observed period of only 80 days. The actual
stratified period generally ranges from 145 to 170 days, however, due to the
limited eastern basin survey schedule the observed period was much shorter than
the probable period.
The mean hypolimnion thickness was observed to be greatest during Survey 3
(July 2) at 17.8 meters. The hypolimnion thickness decreased by 3.9 meters
between the early July and early August survey and then increased in thickness
by 2.8 meters between the early August and mid September survey. Hypolimnion
thickness data is presented in Table 7 and Figure 4 and contours are presented
in Appendix C.
TEMPERATURE PATTERNS
The seasonal temperature pattern characteristic of the central and eastern
basin is very similar. The most striking difference is in the initial spring
warming and the fall cooling cycle. The shallower central basin warms sooner
and cools faster than the deeper eastern basin. A comparison of the mean
annual epilimnion temperature indicated no significant difference between the
two basins.
EPILIMNION TEMPERATURE CO
CENTRAL BASIN EASTERN BASIN
N 225 57
MEAN 17.82(ST.ERR 1.62) 15.46(ST.ERR 3.32)
MIt» 10.87 4.42
MAX 22.27 21.54
ST.DEV 4.59 7.42
No significant difference between these basins at a = 0.1.
-------
PAGE 15
In contrast, the central and eastern basin hypolitnnions did show a
significant difference in the mean annual temperatures as would be expected
from the difference 1n the basin morphologies.
HYPOLIHNION TEMPERATURES ("O
CENTRAL BASIN EASTERN BASIN
N 84 33
MEAN 12.68
-------
PAGE 16
The stability of the thermal structure varied seasonally. The difference
between mean epllimnlon (Te) and mean hypolimnion temperatures (Th) Indicates
the durability of stratification. This simplification of stratified layer
stability Is based on the fact that density Is temperature dependent. To
determine precise stability values It Is necessary to calculate the difference
In density resulting from the different temperatures 1n the eplllmnion and
hypollmnion. The calculation of stability must also Include sounding depth and
thermocllne depth according to Schmidt's formula for the stability of
stratification (Ruttner, 1963). The simplified determination of stratification
stability 1s as follows:
SURVEY
1
2
3
4
5
5
7
SURVEY MID POINT
May 16
June 12
July 3
July 24
August 7
August 28
September 20
(Te - Th)
CO
3.2
5.6
6.7
8.1
7.9
6.8
3.6
The most stable thermal stratification occurred during Survey 4
5 (early August).
[late July} and
EASTERN BASIN. The epllimnlon wanned between Surveys 3 (July 35 and 5
(August 7! and exhibited slight cooling between Surveys 5 (August 7) and 7
(September 20):
SURVEY INTERVAL
July 3 - August 7
August 7-September 20
TEMPERATURE
3.4
- 1.1
DAYS
36
45
TEMP/DAY
+ 0.09
- 0.02
The warming of the epIUmnlon occurred at a much slower rate (+ 0.09 °C/day) 1n
the eastern basin than In the central basin (+ 0.15 to + 0.20 °C/day) (Figure
7).
The mesolimnlon and the hypolimnion both warmed consistently throughout
the season. The mesollmnlon warmed from 10.1 *C to 13.8 °C while the
hypollmnion increased from 4.7 "C (July 3) to 6.0 *C (September 20th). The
measured hypolimnion temperature increase (Figure 8) was 1.3 'C or 13,1% of the
observed central basin increase (9.9 *C). The warming of 1.3 °C over the 80
day observed stratified period represents a daily hypolimnion warming of
0.01625 "C.
-------
PAGE 17
The stability of eastern basin stratification also varied through the
season as was noted for the central basin. The difference between the mean
epilimnlon (Te) and the mean hypolimnion temperature (Th) is as follows:
SURVEY SURVEY MID POINT (Te - Th)
CO
3 July 3 13.5
5 August 7 16.4
"* September 20 14.5
Using this criteria to demonstrate stability, the eastern basin thermal regime
is 2 times more stable than the central basin. The combination of a thick
hypolimnion water miss and the stability of the temperature differential help
explain the longer duration of eastern basin stratification.
DISSOLVED OXYGEN
The surface waters of Lake Erie remain well oxygenated throughout the year
with very little difference evident between basins. A comparison of the mean
annual epilimnion dissolved oxygen concentrations indicated that there was no
significant difference between the basins. When differences do appear they can
generally be attributed to temperature or photosynthetic production.
EPILINNION DISSOLVED OXYGEN CONCENTRATIONS (MG/1)
CENTRAL BASIN EASTERN BASIN
N 225 57
MEAN 9.39(ST.ERR 0.56) 9.96(ST.ERR 0.84)
M1N 7.49 8.23
MAX 12.57 13.08
ST.DEV 1.57 1.88
No significant difference between these basins at a * 0,1.
-------
PAGE 18
As would be expected, a significant difference did exist between the mean
annual hypollmnion dissolved oxygen concentrations for the two basins. Since
the central basin hypolimnion storage capacity and depletion rate are very
different from the eastern basin, the resulting concentrations would also
greatly differ.
HYPOLIMNION DISSOLVED OXYGEN CONCENTRATIONS (MG/1)
CENTRAL BASIN EASTERN BASIN
N 84 33
MEAN 4,64(ST.ERR 1,60) 9.24(ST.ERR 0.92)
MIN 0.2 7.47
MAX 12.11 10.55
ST.DEV 4.45 1.59
There is a significant difference between these basins at a = 0.1.
CENTRAL BASIN. The epllimnion dissolved oxygen (DO) concentration
decreased from 12.3 mg/1 (May 16) to a minimum of 8.3 rag/1 (August 28). The
decrease in concentration is attributed to decreased solubility of oxygen in
water as the temperature increases through the summer. Although the
concentration decreased 4 rag/1 throughout the season, the 00 did not drop below
93? saturation (Tables 4 and 7).
The hypolimnion 00 decreased from 11.9 mg/1 on May 16 to 0,33 mg/1 on
August 28 (Figure 9). Between August 28th and September 20th a partial
destratification of the hypolimnion occurred leaving the remaining hypolimnion
region anoxic (0.1 mg/1). Unlike the epllimnlon, the hypolimnion 00 I
saturation decreased continually throughout the stratified season reaching a
median low of 0.5S during the late September survey (Figure 10).
Dissolved oxygen depletion rates (adjusted for vertical mixing) were
calculated for each stratified survey interval. The Adjusced Oxygen Depletion
Rates for the stratified period are as follows:
SURVEY INTERVAL DAYS DAILY RATE MONTHLY RATE
MG 02/L/DAY MG 02/L/MO
MAY 16 - June 12 28 0.150 4.51
June 12 - July 3 22 0.173 5.19
July 3 - July 24 22 0,110 3.30
July 24 - August 7 15 0.184 5.52
August 7 - August 28 22 0,134 4.02
August 28 - September 20 24 0.015 0.45
-------
PAGE 19
The 1985 rates presented in Figure 11 Indicated two major deviations from a
seasonally uniform rate. First, the rate decreased during the July interval.
This is consistent with the documented increase in hypolimnion volume,
hypolimnion area and quantity of oxygen over the previous interval. Second,
the rate for the last stratified interval decreased dramatically. Due to the
lack of oxygen present in the hypoliranion during the last interval, the rate at
which oxygen can be lost naturally decreases.
An additional set of calculations was prepared (Corrected 02 Depletion
Rates) that adjusts the depletion rates for temperature, hypolironion thickness,
and seasonal variation. This calculation procedure was employed by Rosa and
Burns (1986) when they calculated the central basin representative region's
depletion rates for 1929 through 1984 (Figure 12). Using the 1985 CLEAR data
base, Rosa calculated the annual mean depletion rate applying the corrections
previously mentioned. The late August to September rate was not included in
this wean since it does not represent normal conditions. The 1985 mean rate
was 0.124 mg/l/day or 3.73 mg/1/mo. This rate was included in Figure 12 with
rates calculated over the historcal record. Clearly, the 1985 rate was one of
the highest depletion rates calculated in recent years. The reason for the
high 1985 rate is not apparent. It is thought that the extremely windy
conditions encountered throughout the field season, resulted in the repeated
resuspension of oxygen demanding sedimented material into the hypolimnion
waters, thereby accelerating the 1985 rate.
The 1985 Corrected 02 Depletion Rates are as follows:
SURVEY INTERVAL DAYS
May 16 - June 12 28
June 12 - July 3 22
July 3 - July 24 22
July 24 - August 7 15
August 7 - August 28 22
DAILY RATE
MG 02/L/DAY
0.150
0.120
0.093
0.153
0.110
MONTHLY RATE
MG 02/L/MQ
4.50
3.60
2,79
4.59
3.30
During the 1983 and 1984 field season, oxygen depletion rates were
calculated only for the month of July due to a modified survey plan (Rathke and
Fay 1984). The adjusted depletion rate calculated for the mid sunnier (July) of
1985 was 0.110 mg/l/day or 3.3 mg/l/mo. The 1985 rate is slightly higher than
those found in the preceeding two years. 2.92 and 3.16 mg/1/mo (1983 and 1984
respectively), however it was the lowest 1985 interval rate and well below the
mean rate. As is evident from Figure 11, the depletion rate changes during
each interval throughout the season, thus using a rate based upon a single
interval, I.e. July, is not a reliable means for tracking oxygen depletion
rate trends.
-------
PAGE 20
EASTERN BASIN. Typically, the eastern basin exhibits an orthograde
vertical profile through most of the summer. As the stratification process
extends into September the hypolimnion oxygen concentrations decrease to a
level below those in the epilimnion however, never reaching critical levels
{Table 7 and Figure 13).
SURVEY MID POINT DISSOLVED OXYGEN CONCENTRATIONS *
EPILIMNION MESOLIMNION HYPQLIMNION
July 2 9.5 10.2 10.4
August 7 8.8 8.9 10.0
September 20 8.3 5.6 7.8
* - Survey 8 Volume Weighted Concentrations
The epilimnion oxygen concentrator decreased 1.2 mg/1 between July 2 and
September 20th, while the hypolimnion concentration decreased by 2.6 mg/1 over
the same period. This hypolimnion decrease represents a decline of only 25S
compared with the dissolved oxygen loss recorded for the c*ntr
-------
PAGE 21
WATER QUALITY PARAMETERS
Since 1970 the open lake surveillance/monitoring program has routinely
measured forms of phosphorus and nitrogen, chlorophyll, pH, alkalinity,
conductivity, and chloride. In addition, dissolved silica and suspended solids
have also been measured but not as routinely, The information base has been
used to track trends over the period of record as well as aid in the
development of ecosystem models. The following presentation provides a summary
and limited interpretation of the 1985 data base.
NUTRIENTS
PHOSPHORUS. Phosphorus concentrations (total, total filtered and soluble
reactive) were routinely measured on all surveys. Trends in total phosphorus
concentrations are used to evaluate the success of the remedial action plans
designed to reduce phosphorus loading to Lake Erie. Figure 16 presents the
central basin median total phosphorus concentrations through the field season.
Seasonal changes are evident for both the epilimnion and the hypolimnion with a
definite upward concentration shift occurring during the end of the stratified
sea son.
The fractions comprising total phosphorus also demonstrate substantial
shifts during the field year. Together, the total filtered (dissolved)
fraction and the particulate phosphorus fraction comprise total phosphorus,
with each fraction contributing a variable percentage. The relationship
between these two fractions is dependent upon the quantity of organic and
inorganic material suspended in the water column. Figure 17 shows the seasonal
changes in the central basin epilimnion and hypolimnion phosphorus
concentrations and percent contribution of the two fractions. The percent
contribution by the dissolved and particulate fractions shifted back and forth
through the field season with each form contributing SOS +-10%.
Total filtered and soluble reactive phosphorous provide information on the
amount of phosphorus most readily available for biological processing.
Epilimnion and hypolimnion concentrations remain fairly stable until late in
the summer at which time the* increase and continue to increase through fall
turnover {Survey 7, September 20), (Figure 18).
The greatest seasonal changes in phosphorus concentration took place in
the hypolimnion. Central basin hypolimnion phosphorus concentrations also
remained fairly stable through Survey 5 but due to the development of anoxic
conditions, the concentrations increased four fold during the interval between
Surveys 5 and 6 (Figures 16 and 18). This anoxic regeneration of sediment
bound phosphorus increased the hyoolimnion total phosphorus concentrations from
23 ug/1 to nearly 100 ug/1 in a twenty day period. As is evident by the
percent contribution of the dissolved and particulate fractions (Figure 17),
regeneration of the soluble phosphorus dominated the increase in concentration.
Not only did the anoxic regeneration of phosphorus result in a
concentration increase, but more importantly it resulted in doubling the
quantity of total phosphorus found in the entire central basin sampling region.
Between Surveys i and 6 the metric tons (MT) of phosphorus increased from 1205
to 2503 (Figure 19, Table 9) which weans an internal loading of 1300 MT
-------
PAGE 22
occurred during the interval. Considering that the volume of the
representative region accounts for approximately 33X of the central basin, a
conservative estimate of the total internal loading to the basin would be at
least 2600 MT.
By mid-November {Survey 8), phosphorus concentrations had reached a
seasonal peak. Since fall turnover was nearly complete by Survey 7, the
further increase between Surveys 7 and 8 was due to storm Induced resuspension
of unconsolidated sediments. Figure 17 shows the shift to a particulate
phosphorus dominated fraction during Survey 7, The total quantity of
phosphorus increased to over 2800 MT which was 2,5 times the quantity recorded
during the mid-May Survey (1).
The eastern basin phosphorus concentrations followed a pattern more
typical for the Great Lakes (Figure 20). Concentration differences between the
epilimnion and the hypolimnion for all the phosphorus forms measured were
minimal (Figures 20 and 21). During the three stratified surveys the
concentrations were fairly uniform (7 to 10 ug/13. Both the first and last
surveys (unstratified) also had very similar concentrations (11.7 ug/1 and 11.3
ug/1 respectively) but were somewhat higher than the summer values. The
percent contribution of the soluble and particulate fractions were close to 501
+_ 10S for both limnions. Only during Survey 5 (August 7) did this pattern
deviate when particulate phosphorus increased to 80* of the total. This trend
is supported by the volatile solids fraction comprising 70% of the total solids
(Figure 22).
Annual mean epilimnion total phosphorus concentrations indicate a
significant difference between the central and eastern basins. Due to the near
proximity ci the central basin to the major external phosphorus loading sources
and the pronounced sediment interactions characteristic of the basin, central
basin concentrations would be expected to be greater than the eastern basin.
EPILIMNION TOTAL PHOSPHOROUS CONCENTRATIONS (UG/L)
CENTRAL BASIN EASTERN BASIN
N 217 54
MEAN 12.63{ST.ERR 0.39) 10.15(ST.ERR 0.41)
MIN 3.8 6.4
MAX 34.5 22.4
ST.DEV 5.85 3.03
There is a significant difference between these basins at o » 0,1.
Hypolimnion concentration were also found to be significantly greater in
the central basin than the eastern. This was primarily lue to the central
basin anoxic phosphorus regeneration which occurred during the latter portion
of the stratified period.
-------
PAGE 23
HYPQLIMNION TOTAL PHOSPHORUS CONCENTRATIONS (UG/L)
CENTRAL BASIN EASTERN BASIN
N 81 22
MEAN 34.4(ST,ERR 6.55) 9,62(ST.ERR 0.37)
MIH 4.9 6.2
MAX 316.0 12.6
ST.DEY 58,97 1.74
There is a significant difference between these basins at a = 0.1.
NITROGEN. Three forms of nitrogen were measured during the 1985 field
season; nitrate plus nitrite, ammonia and total kjeldahl nitrogen. The total
kjeldahl nitrogen data reported represents total dissolved organic nitrogen
plus dissolved ammonia. Both nitrate plus nitrite and ammonia have been
measured routinely since 1970. Kjeldahl nitrogen has been less consistently
measured over this period.
As with phosphorus, the rationale for the measurement of nitrogen forms is
to enable the development of trend data and for the calibration of ecosystem
models. Unlike phosphorus, sources of nitrogen in the lake include a large
atmospheric contribution as well as agricultural and municipal. This coupled
with the numerous biological and chemical transformations associated with the
forms make nitrogen a very difficult nutrient to quantify.
Central basin nitrate plus nitrite, ammonia and total kjeldahl nitrogen
all indicated significant concentration differences between the epilimnion and
hypolimnion. Seasonal fluctuations were also evident for each of the nitrogen
forms. In general, the epilimnion concentrations were most stable, showing
only modest changes through the field season. This was most clearly evident
with the ammonia nitrogen data, having a mean concentration of 7.4 ug/1 + 3,9
ug/1 for the season. Since ammonia is considered to be the preferred nitrogen
form for phytoplankton, these low concentrations would be expected. Epilimnion
nitrate plus nitrite concentration were also uniform until mid-September when
the concentration decreased. This decline coincided with a doubling of the
chlorophyll concentrations, indicating possible biological uptake. Epilimnion
kjeldahl nitrogen concentrations were more erratic than ammonia or nitrate plus
nitrite, possibly reflecting changes in the plankton populations (Figure 23).
Hypolimnion concentrations of ammonia and nitrate plus nitrite indicated a
gradual increase through Survey 5. Between Surveys 5 {August 7) and 6 (August
28) oxygen concentrations decreased sufficiently to create reducing conditions
in the hypoliBmion which persisted through the remaining stratified period
(Survey 7, September 20). As a result, nitrate plus nitrite concentrations
were reduced to detection limits while ammonia concentrations were greatly
increased due to regeneration from the sediments. During this same period the
kjeldahl nitrogen concentrations increased to peak levels. An actual increase
in organic nitrogen was Indicated between Surveys 5 and 6, but a decrease was
evident from Surveys 6 to 7 (Figure 23).
-------
PAGE 24
The forms of nitrogen measured in the eastern basin epillmnlon were found
to have similar seasonal patterns as were described for the central basin
(Figure 24). Ammonia concentrations remained close to detection limits,
nitrate plus nitrite were steady following a spring maximum and kjeldahl
nitrogen peaked with chlorophyll. Since the eastern basin hypolimnion remains
well oxygenated throughout the summer and reducing conditions do not develop,
the forms of nitrogen measured in the hypolimnion do not fluctuate as was the
case for the central basin hypolimnion.
The annual mean epilimnion concentrations of nitrate plus nitrite and
ammonia were not significantly different for the two basins.
EPILIMNION NITRATE PLUS NITRITE CONCENTRATIONS (UG/L)
CENTRAL BASIN EASTERN 8ASIN
N 222 57
MEAN 185.95(ST.ERR 18.5) 210.22(ST.ERR 20.94)
MIN 121.5 174.3
MAX 283.4 288.0
ST.DEV 52.31 46.83
No significant difference between these basins at o * 0.1.
EPILIMNION AMMONIA CONCENTRATIONS (UG/1)
CENTRAL BASIN EASTERN BASIN
N 200 57
MEAN 10.2(ST,ERR 2.29) 6.72?ST.ERR 2.13)
MIN 2.10 2.00
MAX 21.33 14,7
ST.OEV 6.48 4.78
No significant difference between these basins at a* 0.1.
In contrast, the annual hypolimnion mean concentrations wer<» significantly
different for the two basins. The concentration differences between the two
basins were due to the anoxic conditions which developed in the central basin.
As was previously discussed, central basin nitrate plus nitrite levels are
reduced nearly to the detection limit while ammonia concentrations increase
dramatically.
-------
PAGE 25
HYPOLINNION NITRATE PLUS NITRITE CONCENTRATIONS (UG/l)
CENTRAL BASIN EASTERN BASIN
N 81 33
MEAN 178.4KST.ERR 38.76S 346.8(ST.ERR 15.4)
MIN 2.5 319.5
MAX 262,6 372.8
ST.DEV 102.55 26.6?
There 1s a significant difference between these basins at o » 0.1.
HYPOLIMNION AMMONIA CONCENTRATIONS (UG/L)
CENTRAL BASIN EASTERN BASIN
N 82 33
MEAN 62.3KST.ERR 29.62) 8.50CST.ERR 0.21)
MIN 6.7 8.1
MAX 228.3 8.80
ST.DEV 78.37 0.36
There is a significant difference between these basins at a = 0.1,
DISSOLVED SILICA. Dissolved silica serves as an important nutrient for
diatom populations in Lake Erie. Diatoms contribute up to SOS of the
phytoplankton biomass during much of the year {Munawar and Munawar, 1970), with
the major population base present during the spring and fall. In both the
central and eastern basins the concentrations measured in the epilimnion were
consistently below 500 ug/1, indicating a depletion and continual demand
through the field season (Figures 25 and 26). Hypolimnion concentrations
showed a marked increase through the stratified period. The increase noted for
the first four central basin surveys and the entire eastern basin season was
due primarily to dissolution of diatom frustults. The rapid concentration
increase evident through August and September was a result of anoxic
regeneration from the sediments. An Increase in the water column dissolved
silica concentration was expected following turnover (Survey 8), however no
increase was evident. During Survey 7 (September 20) there was approximately
55,000 metric tons (MT) of dissolved silica in the entire water column and
approximately 44,000 MT during Survey 8 (November 19). Over the survey
interval (7 to 8) 10,000 MT were lost from the system, which is attributed to
biological uptake.
-------
PAGE 26
As was evident with both phosphorus and nitrogen, mean annual epilimnion
concentrations of dissolved silica show no significant difference between
basins.
EPILIMNION SOLUBLE SILICA CONCENTRATIONS (UG/L)
CENTRAL BASIN EASTERN BASIN
N
MEAN
M1N
MAX
ST.DEV
219
376.29(ST.ERR 70.93)
120.30
819.00
200.62
57
326.86(ST.ERR 62.56)
219.80
555.8
139.89
No significant difference between these basins at o = 0.1.
Mean annual hypolimnion concentrations were significantly different. As with
the other nutrients discussed, the central basin concentrations increased
substantially during the anoxic period.
HYPOLIMNION SOLUBLE SILICA CONCENTRATIONS SUG/L)
N
MEAN
MIN
MAX
ST.OEV
CENTRAL BASIN
81
2246.49(ST.ERR 670.78!
320.7
4740.8
1774.71
EASTERN BASIN
33
733.40(ST.ERR 133.11)
553.2
993.2
230.55
There is a significant difference between these basins at a = 0.1.
ANOXIC REGENERATION OF NUTRIENTS. The first documented accounts of
extensive oxygen depletion of the central basin hypolimnion were during the
late 1950's and early 1960's» however, anoxic conditions likely existed many
years before (Rathke 1984). Due to the shallow nature of the basin, the mean
annual hypolimnion thickness is rarely over five meters and is frequently
closer to three. As a result, the reservoir of oxygen contained in the
hypolimnion is not sufficient to supply the demand encountered over the
stratified period. Consequently, by the latter portion of the stratified
period (mid to late August) the oxygen reservoir has been depleted.
-------
PAGE 27
Two Important consequences result from the central basin becoming anoxic.
First, an extensive benthic region Is made uninhabitable for organisms
requiring oxygen levels greater than 2 mg/1. This is particularly important
for oxygen dependent benthic organisms having a life cycle that would be
interrupted and/or eliminated by anoxic conditions. This in turn adversely
effects other organisms such as bottom feeding fish. Second, the development
of reducing conditions (0.0 mg/1 dissolved oxygen) results in a very
significant pulse of nutrients being released from the sediments and
interstitial waters. Figures 27 and 28 illustrate the dramatic Increase in
concentrations of phosphorus, silica and ammonia once the oxygen levels have
been depleted. The critical issue involves the increased internal loading of
these primary nutrients. The exception to this should be pointed out, nitrate
+ nitrite concentrations reach levels below detection limits during this time
due to the reducing conditions.
Thus, once fall turnover has taken place these nutrients freely mix
throughout the water column and become available to the plankton community.
For example, between the first survey in May and the fifth survey in early
August concentrations and quantities of total phosphorus and chlorophyll
changed only slightly but following turnover {survey 7) a dramatic increase was
evident.
DATE
MAY
SURVEY
1
WHOLE WATER COLUMN
AUGUST 5
(EARLY)
AUGUST 6
(LATE)
SEPTEMBER 7
TOTAL PHOSPHORUS
(UG/L) (MT)
10.0 (1128)
10.2 (1205)
22.4 (2503)
19.5 (2169)
CHLOROPHYLL
(UG/L) (MT)
2.3 (254)
2.8 (316)
2.4 (269)
5.9 (655)
HYPQLIMNION
DISSOLVED OXYGEN
(MG/L)
11.9
1.8
0.2
3.6
As is indicated by this table, a substantial increase in chlorophyll
results from the mixing of previously sediment bound nutrients (anoxic
regeneration) into the overlying water column during the fall. This process
aids in replenishing the supply of oxygen demanding organic material, further
contributing to the central basin oxygen depletion problem. The anoxia induced
internal loading cycle will be interrupted only if the measures to further
reduce external nutrient sources are successful.
-------
PAGE 28
PARTICULATES
In order to determine the quantity of participate material suspended in
the water column, measurements of total suspended solids, residual solids,
volatile solids and chlorophyll were measured at all stations and depths.
Information from total suspended solids can be divided into the organic
fraction (volatile solids) and inorganic fraction (residual solids). The
chlorophyll values reported are corrected chlorophyll or chlorophyll which is
reported to be photosynthetically active.
CORRECTED CHLOROPHYLL A. Central and eastern basin epilimnion chlorophyll
concentrations indicated a somewhat different seasonal pattern and
concentration range (Figures 29 and 30). Central basin concentrations declined
following the spring peak, reaching minimum levels by mid summer. During the
late summer and fall the highest concentrations attained were associated with
fall turnover. In contrast, eastern basin concentrations showed a steady
increase through the summer with peak values developing during the fall.
The mean annual epilimnion central basin chlorophyll levels were
significantly higher than those measured for the eastern basin. Higher
concentrations were evident throughout the year but most dramatically different
during the last two fall surveys.
EPILIMNION CHLOROPHYLL CONCENTRATIONS (UG/L)
CENTRAL BASIN EASTERN BASIN
N 223 56
MEAN 3.62(ST.ERR 1.07) 1.29(ST.ERR 0.16)
MIN 1.18 0.89
MAX 7.24 1.81
ST.DEV 2.39 0.35
There is a significant difference between these basins at a= 0.1.
In both basins the hypolimnion is either below the photic zone or very close,
so that minimal primary production is associated with this region.
SUSPENDED SOLIDS. Total suspended solids show similar seasonal patterns
in the epilimnion waters of the two basins, however, eastern basin
concentrations were somewhat lower. In general, concentrations are highest
during unstratified periods (spring and fall) while summer values are lowest
(Figures 29 and 30). The composition of organic versus inorganic fractions
also changes with the season (Figures 31 and 32). Due to resuspension of
unconsolidated sediments during the spring and fall, residual solids comprised
the major portion {> 70t) of the total solids. In contrast, the organic
fraction contributes a higher percentage (> 70S) during the summer months
(stratified period).
-------
PAGE 29
The concentration of paniculate material suspended in the hypolimnion is
primarily affected by two processes, settling and resuspension. The flux of
material settling through the overlying water column provides a continuous
supply of participate material to the hypolimnion and during the stratified
summer months detritus comprises a significant portion. In addition, an upward
flux of unconsolidated material from the sediment water interface can occur
during severe storm periods. This process is more common in the central basin
due to the shallow depth of the basin and the resulting shallow thickness of
the hypolimnion. The result is a higher percentage of inorganic material found
suspended in the hypolimnion than is generally found in the epilimnion (Figure
31).
EPIL1MHIOH TOTAL SUSPENDED SOLIDS CONCENTRATIONS (MG/L)
CENTRAL BASIN EASTERN BASIN
N 215 56
MEAN 1.1Q(ST.ERR 0.23) 1.44(ST.ERR 0.49)
M!N 0.70 0.56
MAX 1.64 3.23
ST.OEV 0.46 1.11
No significant difference between these basins at o = 0.1.
HYPOLIMNION TOTAL SUSPENDED SOLIDS CONCENTRATIONS (MG/L)
CENTRAL BASIN EASTERN BASIN
H 81 34
MEAN 2.55(ST.ERR 0.17) 2.09(ST.ERR 0.19)
MIN 2.22 1.72
MAX 3.14 2.37
ST.DEV 0.39 0.33
No significant difference between these basins at a = 0.1.
-------
PAGE 30
PRINCIPAL IONS
Both conductivity (umhos) and chloride (mg/1) concentrations were measured at
all stations and sampling depths throughout the field season. Conductivity is
a measure of the total ionic strength with each of the major ions contributing
proportionately. In Lake Erie the system Is dominated by the carbonate ion
contributing over 50$, while chloride accounts for approximately 12% (Rathke,
1984).
CONDUCTIVITY. Conductivity values for the central basin ranged from 251
to 288, having a median of 269. Values between 264 and 271 accounted for 58%
of the data recorded. Epilimnion values Indicated an increase following Survey
1 (Hay 16) and remained fairly stable through *:he remainder of the field season
(Figure 33). The hypolimnion values showed a steady increase through the
entire stratified period. Maximum values were reached during the last
stratified survey (7) when the hypolimnion was anoxic and a free exchange
between the sediments and overlying waters existed.
Eastern basin conductivity ranged from 257 to 289 with a median value of
274.5 umhos. The values between 270 and 280 accounted for 63Z of the data
base. A similar seasonal trend was apparent for the epHimnion and hypolimnion
in the eastern basin as was observed for the central basin {Figure 34). Since
the eastern basin remaind oxic throughout the stratified period increases were
attributed to normal processes.
The following table provides a detailed summary of the data for the two
basins and Tables 4 and 5 show the individual survey results.
CENTRAL BASIN EASTERN BASIN
N 313 106
MEAN 269.3 (ST.ERR. 0.34) 274.4 (ST.ERR. 0.61)
MEDIAN 269.0 (ST.ERR 0.29) 274.5 (ST.ERR. 0.87)
MAXIMUM 288.0 289.0
MINIMUM 251.0 257.0
RANGE 37.0 32.0
ST. OEV. 6.4 6.3
25S 266.0 271.0
75X 273.0 279.0
-------
PAGE 31
Nhen the annual means for the epilimnion and hypolimnion were examined for
differences between the basins, no statistically significant difference was
determined.
EPILIMNION CONDUCTIVITY (umhos)
CENTRAL BASIN EASTERN BASIN
N 225 57
MEAN 266.96{ST.ERR 1.11) 270.9KST.ERR 1.91)
MIN 263.25 263.25
MAX 269.40 274.83
ST.OEV 2.48 4.28
No significant difference between these methods at o " O.I.
HYPOLIMNION CONDUCTIVITY (umhos)
CENTRAL BASIN EASTERN BASIN
N 84 33
MEAN 274.99(ST.ERR 3.60) 279.76(ST.ERR 1.70)
MIN 265.40 277.09
MAX 282.83 282.91
ST.DEV 7.20 2.94
No significant difference between these basins at a =0.1.
CHLORIDE. Chloride concentrations were very stable through the field
season showing a slight increase (0.5 mg/1) in both basins from Survey 1
through 7 {Figures 33 and 34 and Tables 4 and 5). Considering that the eastern
basin has a slightly higher conductivity than the central basin, a difference
in chloride concentration may have been expected. The following table provides
a comparison between the two basins and no concentration difference is evident.
CENTRAL BASIN EASTERN BASIN
N 312 106
MEAN 15,0 (ST.ERR 0.04) 15.3 (ST.ERR. 0.11)
MEDIAN 15.0 (ST.ERR. 0.02) 15.0 (ST.ERR. 0.00)
MAXIMUM 20.0 20.0
MINIMUM 13.5 14.4
RANGE 6.5 5.6
ST. OEV 0.7 1.1
25* 14.7 14.8
75X 15.3 15.3
No significant difference in the annual mean concentration was apparent between
the basins for either the epillmnion or the hypoliwnion.
-------
PAGE 32
EPILIMNION CHLORIDE CONCENTRATION (MG/L)
N
MEAN
WIN
MAX
ST.OEV
CENTRAL BASIN
225
15.02(ST.ERR 0.18)
14.6
15.6
0.39
EASTERN BASIN
5?
15.22(ST.ERR 0.30)
15.6
16.4
0.67
No significant difference between these basins at a = 0.1.
HYPOLIMNION CHLORIDE CONCENTRATION (MG/L)
N
MEAN
MIN
MAX
ST.OEV
CENTRAL BASIN
84
EASTERN BASIN
33
14.83(ST.ERR 0.19)
14.3
15.2
0.39
15.30CST.E8R 0.30)
15.0
15.9
0.52
No significant difference between these basins at a =0.1.
TOTAL ALKALINITY. Central and eastern basin values were examined
separately, with no significant difference apparent. The following table
presents the data summary and Tables 4 and 5 provide the individual survey
results.
N
MEAN
MEDIAN
MAXIMUM
MINIMUM
RANGE
ST. DEV
25S
75%
CENTRAL BASIN
313
95.7 (ST. ERR.
96.5 (ST. ERR.
111.6
90.4
21.2
8.4
94.7
0.47)
0.17S
EASTERN BASIN
106
97.6 (ST. ERR.
97.4 (ST. ERR.
103.6
93.1
10.5
2.5
95.7
0.24)
0.26)
97.5
98.6
-------
PAGE 33
In addition, no significant difference was found between the annual mean values
for either the epilimnion or hypollmnfon.
EPILIMNION ALKALINITY (MG/L)
CENTRAL BASIN EASTERN BASIN
N 225 56
MEAN 95.49(ST.ERR 1.30) 97.25(ST.ERR 1.27}
MIN 90.91 95.17
MAX 98.48 102.13
ST.DEV 2.90 2.83
No significant difference between these basins at a * 0.1.
HYPOLIMNION ALKALINITY (MG/L)
CENTRAL BASIN EASTERN BASIN
N 84 33
MEAN 95.68(ST.ERR 5.08) 98.25(ST.ERR 0.66)
MIN 83.22 97.07
MAX 108.10 99.34
ST.DEV 10.16 1.14
No significant difference between these basins at a » 0.1.
pH, pH values are determined on a routine basi during all surveys. pH
data was examined for the central and eastern basins separately, with no
significant differences. The following table presents the data summary and
Tables 4 and 5 provide the individual survey results.
CENTRAL 8ASIN EASTERN BASIN
N 313 106
MEAN 8.1 (ST.ERR. 0.02) 7.9 (ST.ERR. 0.03)
MEDIAN 8.2 (ST.ERR. 0.02) 7.9 (ST.ERR. 0.02)
MAXIMUM 8.9 8.5
MINIMUM 7.0 7.3
RANGE 1.8 1.2
ST.OEV 0.4 0.3
25t 7.9 7.7
75X 8.4 8.3
-------
PAGE 34
In addition, no significant difference was found between the annual mean values
for either the epilimnion or hypolimn ion.
EPILIMNIQN pH
CENTRAL BASIN EASTERN BASIN
N 225 56
MEAN 8.25(ST.ERR 0.06) 8.20(ST,ERR 0.13)
MIN 8,02 7.89
MAX 8,35 8.48
ST.OEV 0.14 0,29
Mo significant difference between these methods at a = 0.1.
HYPOLIMNIQN pH
CENTRAL BASIN EASTERN BASIN
N 84 33
MEAN 7.S2(ST.ERR 0.17) 7.67(ST.ERR 0.07)
MIN 7.21 7.56
MAX 8.00 7.79
ST.DEV 0.35 0.12
No significant difference between these basins at a = 0.1.
-------
PAGE 35
BASIN COMPARISON
Throughout the physical data and water quality parameters sections.
comparisons between the central and eastern annual mean values were presented.
Epilimnlon comparisons only indicated a significant difference between basins
for total phosphorus and chlorophyll. In both cases, the central basin values
were found to be greater than the eastern.
In order to better understand the similarities and dissimilarities of the
basins, a comparison was made on a survey by survey basis using variables known
to show strong seasonality.
LAKE ERIE EPI LIMN I ON - BASIN COMPARISON
Parameter SURVEY 1 SURVEY 3 SURVEY 5 SURVEY 7 SURVEY 8
CB EB CB EB CB EB CB EB CB EB
TEMPERATURE
X 11.0 4.7 19.2 20.7 22.1 21.6 21.4 20.6 12.3 11.5
t -15.99 2.59 -7.24 -5.86 -5.40
Result > * > > >
TOTAL SUSPENDED SOLIDS
X 1.4 2.4 0.6 0.6 0.8 0.6 1.6 1.0 3.7 1.3
t 4.47 0.10 -1.53 -2.71 -4.22
Result < * > > >
CORRECTED CHLOROPHYLL
X 1.9 1.3 1.2 0.6 2.9 1.4 5.8 1.9 4.5 1.2
t -1.44 -1.33 -3.73 -8.53 -10.11
Result > > >
TOTAL PHOSPHORUS
X 10.2 12.9 7.2 10.2 10.3 8.9 16.3 8.5 21.5 10.9
t 2.39 2.27 -1.47 -5.66 -7.09
Result = = = > >
COMPARISON BASED ON TWO-TAILED T-TEST WITH a » 0.05
X = MEAN t = t STATISTIC
> - SIGNIFICANTLY GREATER.
< - SIGNIFICANTLY LESS.
= - NOT SIGNIFICANTLY DIFFERENT.
-------
PAGE 36
Temperature Indicated a strong basin difference during the first survey
and showed a statistically significant difference during the last two surveys.
Even though temperature was reported to be statistically different for the last
surveys, from a limnological perspective these basin differences could be
considered not to be significantly different. The remaining parameters all
indicated significant basin differences during the late summer and early fall.
This result would be expected considering the effect turnover and fall
resuspension have on the central basin.
OPEN LAKE SAMPLING REGIONS
The station pattern for both the central and eastern basins was based upon
studies carried out by F. Rosa and A. El-Sharrawi (CCIW-NWRI), These studies
were reviewed by the Lake Erie Task Force (IJC) and the current sampling
program resulted. The central and eastern basin sampling regions were
recommended because these regions were shown to represent the open lake water
quality of the respective basin.
Since 1985 was the first year for the Implementation of the new
surveillance plan, it was deemed necessary to test the variability of the
stations within each basin. The null hypothesis was that individual stations
within the oasin would have equal means for each of the variables tested. An
analysis of variance was used to examine each basin data set. Temperature
(TEMP), total suspended solids (TSS), corrected chlorophyll (CHLACORR), total
phosphorus (CORRTP), and nitrate + nitrite (NITNIT) were the variables
examined.
Results from the central basin and eastern basin analysis showed that
there were no significant differences between individual station means within a
basin as compared with the overall mean for the representative region {a »
0.05). The following table shows the means and standard deviations calculated
for the representative regions {all stations and epiliiirion depths included):
THE EPILIMNION MEANS AND STANDARD DEVIATIONS FOR THE CENTRAL (N
AND EASTERN BASIN REGIONS (N = 57)
TEMP
CENTRAL BASIN
MEAN 18.3
ST. 0V. 4.2
EASTERN BASIN
MEAN 14.9
ST.DV. 6.9
TSS
1.3
1.4
1.2
0.9
CHLACORR
2.9
1.9
1.3
0.5
CORRTP
12.4
6.1
9.5
3.9
221)
NITNIT
182,6
80.5
213.2
45.5
-------
PAGE 37
The following table shows the maximum range of the mean and standard deviation
calculated for each of the ten stations comprising the central basin data base
and the four stations comprising the eastern basin data base:
RANGE OF STATION MEANS AND STANDARD DEVIATIONS FOR
THE CENTRAL BASIN (N * 20 TO 23)
AMD EASTERN BASIN STATIONS (N « 14 TO 15)
TEMP
CENTRAL BASIN
MEAN 17.9 - 18.6
ST.DV. 4,1 - 4.5
EASTERN BASIN
MEAN 14.2 - 15.3
ST.DV 6.7 - 7.3
TSS
0.8 - 1.8
0.4 - 2.4
1.1 - 1.4
0.5 - 1.4
CHLACORR
2.2 - 3.4
1.4 - 2.9
1.1 - 1.4
0.4 - 0.7
CORRTP
10.3 - 14.2
3.2 - 8.1
8.7 - 10.9
2.2 - 5.9
NITNIT
148.5 - 230.5
30.2 - 109.4
207.3 - 223.5
42.6 - 52.1
Tables 10 and 11 present the individual station means plotted cgainst the means
and standard deviations for the representative area. The individual station
means did not exceed + 1 standard deviation of the area mean in either basin.
In fact, in only one case (NITNIT) at central basin station 43 did the
individual mean exceed *; 0.5 standard deviation of the area mean. The fact
that the individual station means {for all variables) were not significantly
different from the area means, indicated the central and eastern basin sampling
program provides a uniform picture of the open lake epilimnion waters.
-------
PAGE 38
TROPHIC CLASSIFICATION
Reviews of the numerous trophic classifications and trophic indlcies have
been prepared by Rawson (1956), Zafar (1959), Dobson (1976) Carlson (1977),
Rast and Lee (19785, Gregor and Rast (1979}, Naloney (1979), and Steinhart et
al, (1981).
Dobson1s index was selected for presentation because it was designed to
evaluate Great Lakes offshore summer trophic conditions. Summer condition were
defined based on the disappearance of the thermal bar. The summer period for
central Lake Erie is considered to extend from June 15 to September 5th.
Oobson did not determine specific dates for the eastern basin however since the
basin resembles the deeper Great Lakes, a similar summer period was used. The
eastern basin summer period would include July, August and September. The
Oobson index uses summer mean secchi reciprocals, total chlorophyll a,
participate organic carbon and total phosphorus, from the offshore near-surface
waters. To calculate the summer mean values, the individual survey means are
plotted. The summer mean is then calculated by using values interpolated from
the graph on a 10 day interval. These interpolated values are then averaged to
determine the summer mean. Dobson's 1976 trophic index is as follows:
OLIGOTROPHIC
MESOTROPHIC
EUTROPHIC
HYPEREUTROPHIC
SECCHI
RECIPROCALS
30/SD (m)
0-5
5-10
10 - 30
> 30
TOTAL
CHLOROPHYLL
ug/1
0 - 2.5
2.5 - 5.0
5.0 - 15.0
> 15
SO = SECCHI DEPTH
PARTICIPATE
ORGANIC
CARBON
ug/1
0 - 250
250 - 500
500 - 1500
> 1500
TOTAL
PHOSPHORUS
ug/1
0-9
9-18
18 - 50
> 50
-------
PAGE 39
The 1985 summer results for the offshore near-surface waters of tl
-------
PAGE 40
QUALITY CONTROL SUNMARV
During each day of a survey, wate» *»as collected to be used for quality
control samples. Two terms are used to describe the types of quality control
sample being examined. First, replicate water samples are collected as two
separate samples (XI and X2) taken from the same selected depth. The
submersible pump is lowered to the designated depth for XI and then lowered
again for X2. Second, splits or two sub-samples of each replicate are prepared
for analysis.
XI < Replicates > X2
\ ^
Xll <--$p1its—> X12 X21 <—Splits—> X22
The quality control program determines the PRECISION and ACCURACY of the
analytical methods employed. Precision is a measurement of the agreement among
duplicate analysis. The standard deviation of the difference between
replicates or the difference between splits represents the precision
(uncertainty) of the method. Standard deviations are estimated for each
analytical method by summing the differences between duplicate analysis,
calculating the mean and dividing by 1.128. An acceptable limit for the range
of differences is determined by multiplying the standard deviation by 3.686
(Clark, 1981).
The 1985 results are presented in Table 10. The range limit of 40.46 ug/1
for soluble silica seems high when compared to the range limits of the other
parameters. However, the silica range limit is acceptable because the smallest
increment on che Auto Analyzer chart paper is SO ug/1. All parameters have
greater than 881 of the quality control samples within the range limits.
Almost half of the parameters have greater than 95S of the samples within the
range limits. Appendix D contains the BMDP statistical computer outputs for
each parameter.
Auto Analyzer quality control checks are performed repeatedly throughout
the sampling period. Fresh standards are used in a daily linearity series.
Standards near the sample concentrations are run before and after a group of
samples (n»lC) as a concentration check. In addition, at each quality control
station a distilled water sample is run as a blank for ill Auto Analyzer and
suspended solid parameters.
-------
PAGE 41
1985 BLANK VALUES
PARAMETER
Total Phosphorus
Total Filtered Phosphorus
Soluble Reactive Phosphorus
Nitrate + Nitrite
Ammonia
Soluble Reactive Silica
Chloride
Total Suspended Solids
Residual Solids
Volatile Solids
UNITS
ug/1
ug/1
ug/1
ug/1
ug/1
ug/1
ig/1
mg/1
mg/1
mg/1
12
10
9
9
10
10
3
12
12
12
MEAN
1.30
1.70
0.31
0.12
2.70
22.90
0.00
0.10
-0.09
0.19
The mean blank value of 22.9 ug/1 for silica is acceptable because the
smallest increment on the Auto Analyzer chart paper is 50 ug/1. The values of
the 1985 blanks indicate the distilled waters used for making standards and
rinsing filter units contains minimal organic and inorganic material. The low
blank values also indicate very little sample bottle contamination.
The quality control program also includes the spiking of splits with a
known concentration in a 1:1 ratio to determine the accuracy of the method.
Accuracy is a measure of the difference between a true value and a measured
value, and it is expressed through the spike difference and the percent
recovery.
Spike Difference: The difference between the actual spike value and
the theoretical spike value:
SPIKE DIFFERENCE » ACTUAL - THEORETICAL
Percent Recovery:
PERCENT RECOVERY =
ACTUAL X IOCS
THEORETICAL
Where:
ACTUAL = Actual Spike Value of the Sample
THEORETICAL = Spike Standard + Original Sample Value
2 *
* Division by 2 because of a 1:1 spike to sample ratio
-------
1985 CALCULATED SPIKE DIFFERENCES
PAGE 42
PARAMETER
TP
TFP
SRP
N+N
NH3
SRS
CL
UNITS
MEAN
ST OEV
RANGE LIMIT
LOWER UPPER
ug/1
ug/1
ug/1
ug/1
ug/1
ug/i
mg/1
-.64
-.92
1.33
.17
-.75
-3.97
-.16
.72
.77
1.47
11.04
6.39
118.51
.23
59
46
49
46
43
56
29
-2.80
-3.21
-3.06
-32.93
-19.93
-359.50
-.84
1.52
1.38
5.73
33.28
18.43
351.56
.52
% SAMPLES
WITHIN RANGE
100%
100%
100%
97.81
100%
100%
100*
1985 PERCENT RECOVERY RESULTS
PARAMETER N MEAN PERCENT RECOVERY
TP 59 98.05*
TFP 46 96.91*
SRP 49 105.33%
N+N 46 100.151
NH3 43 95.SOS
SRS 56 100.06$
CL 29 99.30%
PERCENT RECOVERY RANGE
91.78* -
89.98% -
97.861 -
95.95* -
73.97% -
92.09% -
102.97%
100.90%
128.71%
112.36*
148.57%
109.43%
97.99% - 102.57%
Overall, the 1985 results indicate very good quality control. Once again,
the high silica spike difference values are acceptable because of the 50 ug/1
chart paper increment. However, the large percent recovery range of 73.97% to
148.57% indicates a slight problem with ammonia. More effort will be taken to
decrease airborne ammonia contamination and therefore increase the quality
control of ammonia.
-------
PAGE 43
STANMOUS CHLORIDE VERSUS ASCORBIC ACID PHOSPHORUS METHOD
From 1970 through 1977 all open lake phosphorus measurements made by the
Canada Centre for Inland Waters and Ohio State University - CLEAR (Under
contract to the US-EPA), utilized only the stannous chloride procedure. During
the 1978 and 1979 Lake Erie Intensive Study both stannous chloride (CCIW) and
ascorbic acid (US-EPA GLNPO) methods were employed on the open lake phosphorus
analysis. Upon comparing the data bases, it was found that a significant
difference was apparent between the two data sets (Rathke 1984).
In order to resolve this discrepancy between the data bases, a program was
implemented during the 1985 field season designed to compare the two methods.
The protocol was as follows:'
1, All phosphorus samples {total, total filtered, and soluble reactive 1 ware
analyzed using the conventional stannous chloride procedure as was employed
during the 1970 through 1977 open lake studies, 1978 and 1979 western basin
nearshore, and the 1980 through 1982 open lake program.
2. All total phosphorus samples would be re-analyzed using the ascorbic acid
procedure employed by US-EPA GLNPO. The initial digestion of the raw sample
was that used for the stannous chloride procedure, A comparison of the
digestion procedure was not part of the plan.
3. During two surveys (Surveys 5 and 8) total filtered phosphorus samples
would be re-analyzed using the protocol as described for total phosphorus.
The central and eastern basin data sets were combined and treated as one
file. Only the paired phosphorus data was used i.e., samples which were
analyzed by both stannous chloride and ascorbic acid methods. The BMDP
statistical summaries are presented in Figures 35 and 36 with a summary table
provided below:
COMPARISON OF THE STANNOUS CHLORIDE AND ASCORBIC ACID
TOTAL PHOSPHORUS DATA
STANNOUS CHLORIDE ASCORBIC ACID
N 372 372
MEAN 12.0 (ST. ERR. 0.27) 11.9 (ST. ERR. 0.29)
MEDIAN 10.6 (ST. ERR. 0.23) 10.4 (ST. ERR. 0.26)
MAXIMUM 34.5 39.0
MINIMUM 3.8 3.3
RANGE 30.7 35.8
ST. DEV. 5.3 5.6
25» 8.6 8.2
75t 13.8 13.7
-------
PAGE 44
It is evident from this Initial evaluation of the two data bases that the
two methods produced nearly Identical results, A survey by survey summary of
the total phosphorus data was made and is presented as a modified notch block
graph {Figure 37) which also shows the similarity of the two methods.
Next, a data file was created by using the difference between the notched
pairs:
STANNOUS CHLORIDE - ASCORBIC ACID = DIFFERENCE (+)
COMPARISON OF THE COMPUTED DIFFERENCES BETWEEN PAIRED STANNOUS CHLORIDE
AND ASCORBIC ACID TOTAL PHOSPHORUS VALUES
N 363
MEAN 0.18 (ST.ER. 0.095
MEDIAN 0.20 (ST.ER. 0.06)
MAXIMUM 7.6
MINIMUM -6.0
RANGE 13.6
ST. DEV. 1.8
25% -0.8
75S 1.1
A 0.0 difference between the two methods (distinct value = 0.0) was reached
when the cumulative percent of observations equaled 44.9% (Figure 38). In
other words the negative values (ascorbic acid values greater than stannous
chloride) represented 44.9% of the data, while for 55.1% of the data the
reverse was true. The positive mean and median results indicated that the
stannous chloride values were slightly greater than the ascorbic acid values
(0.18 ug/1).
A t-test was used to determine if the two data sets were statistically
significantly different (a= 0.05).
The null hypothesis was: H - X - Y
The test showed that these two methods were not statistically different. The
results of the t-test indicated that total phosphorus data employing these two
procedures could be used interchangeably. However, this would be true only if
the digestion procedure employed in this test was utilized.
-------
PAGE 45
Analyses from two surveys were used to test the compatibility of the
methods for determining total filtered phosphorus. In general, total filtered
phosphorus concentrations are approximately half the concentrations of total
phosphorus. The procedure used to analyze the total phosphorus data was also
employed to examine the total filtered phosphorus. Figures 39 and 40 present
the BMDP statistical summaries for total filtered phosphorus data bases while
the following table presents a summary of the statistical information.
COMPARISON OF THE STANNQUS CHLORIDE AND ASCORBIC ACID
TOTAL FILTERED PHOSPHORUS DATA
STANNQUS CHLORIDE
N
MEAN
MEDIAN
MAXIMUM
MINIMUM
RANGE
ST. DEV.
25%
75*
103
6.4 (ST.
6.1 (ST.
14.7
0.3
14.4
3.6
3.5
8.9
ERR. 0.36)
ERR. 0.43)
ASCORBIC ACID
103
5.6 (ST. ERR.
4.5 (ST. ERR.
15.5
0.3
14.8
3.4
3.1
8.1
0.34)
0.31)
A survey by survey comparison is presented in Figure 41. It is evident that
the difference noted in the two mean/median concentrations can be accounted for
in the last survey. The stannous chloride results are 1 ug/1 greater than
those determined using the ascorbic acid procedure.
The computed difference between paired samples is shown in the following
table. Figure 42 presents the complete BMDP file output, further illustrating
the difference between the two data sets. Two thirds of the data (66.7S5
showed that the stannous chloride procedure yielded higher concentrations than
the ascorbic acid method.
COMPARISON OF THE COMPUTED DIFFERENCES BETWEEN PAIRED STANNOUS CHLORIDE
AND ASCORBIC ACID TOTAL FILTERED PHOSPHORUS VALUES
N
MEAN
MEDIAN
MAXIMUM
MINIMUM
RANGE
ST. DEV.
25:
75*
102
0.74 (ST.ER.
0.80 (ST.ER.
3.6
-3.3
6.9
1.3
-0.2
1.8
0.13}
0.115
A t-test indicated that a statistically significant difference existed between
the two methods for the total filtered phosphorus analysis. The positive mean
(0.74 ug/1} indicatd that the stannous chloride method produced total filtered
phosphorus concentrations higher than the ascorbic acid method. The difference
between the methods was only apparent during the last survey (Figure 41).
-------
PAGE 46
REFERENCES CITED
Burns, N.M., 1976. Oxygen Depletion In the Central and Eastern Basins of
Lake Erie,1970. J. Fish. Res. Bd Can. 33:512-519.
Burns, M.M. and C. Ross, 1972. Project Hypo: An intensive study of Lake
Erie central basin hypolimnion and related surface water phenomena.
Canada Centre for Inland Waters Paper No. 6, U.S.- EPA Technical
Report TS-05-71-208-24. Ottawa, Ont. 182p.
Carlson, R.E., 1977. A Trophic State Index for Lakes. Limnol. Oceanog.
Vol. 22 (2) 361-368.
Clark, J.L., 1981. Guidelines for Control of Analytical Procedures in
an Intralaboratory Quality Control Program. International Joint
Commission In-House Mimeo. 11 p.
Oobson, H.F.H., 1976, Eutrophication Status of the Great Lakes.
Canada Centre for Inland Maters (Environment Canada)
Unpublished Manuscript. 124 p.
Gregor, D.J., and Rast, W.. 1979. Trophic Characterization of the
U.S. and Canadian Nearshore Zones of the Great Lakes. International
Joint Commission, PLUARG. 38p.
Hanson,B,, Rosa.F., and Burns,N., 1978. Survey 8: A Budget Calculation
Program for Lake Erie. Canada Centre for Inland Waters. In-House
Document, Unpublished Mimeo. 54 p.
Lake Erie Task Force, 1986. Lake Erie Surveillance Plan. Part 5. IN:
Great Lakes International Surveillance Plan (GLISP), International
Joint Commission, Great Lake Program Office, Windsor, Ontario.
Letterhos,J.A.,1982, CLEAR Analytical Methods Manual. The Ohio State
University. CLEAR Technical Report No. 205. 142 p.
Maloney, T.E. (ed). 1979, Lake and Reservoir Classification Systems.
EPA 600/3-79-074. 241 p.
Rast.W. and Lee, G.R., 1978. Summary Analysis of the North America OFCO
Eutrophication Project: Nutrient Loading-Lake Response Relationships
and Trophic State Indicies. EPA 600/3-78-008. 454 p.
Rathke, O.E. (ed), 1984. Lake Erie Intensive Study 1978-1979, Final Report,
EPA 905/4-84-001. 484 p.
Rawson, D.S., 1956. Algal Indicators of Trophic Lake Types. Limnol. and
Oceanogr. Vol 1(1) 18-25.
-------
PAGE 17
Reckhow, K.H., 1980. Techniques for Exploring and Presenting Data Applied
to Lake Phosphorus Concentrations. Can. J. Fish. Aquat, Sci.
37:290-294.
Rosa, F. 1987. Appendix B. International Joint Commission (In Preparation*])
Rosa, F. and Burns, N.H.,1986. Lake Erie Central Basin Oxygen Depletion
Changes from 1929-1980. J. Great Lakes Research (In Press).
Ruttner, F.,1963. Fundamentals of Limnology. University of Toronto Press.
Toronto. 307 pages.
Steinhart, C.E., Schelrow, L.J., and Chesters, G.,1981. An Environmental
Quality Index for the Nearshore Waters of the Great Lakes. Great
Lakes Environmental Planning Study Contribution No. 42. Hater
Resources Center University of Wisconsin. 83 p.
Zafar, A.R., 1959. Taxonomy of Lakes. Hydrobiologia. 13:287-299.
-------
PAGE 48
TABLES
-------
PAGE 49
TABLE 1
1985 LAKE ERIE OPEN LAKE WATER QUALITY SURVEY SCHEDULE
8ASIN
EB.CB
CB
EB.CB
CB
EB.CB
CB
CB
EB.CB
E8.CB
SURVEY
1
2
3
4
5
INTER
COMPARISON
6
7
8
DATE JULIAN DATE JULIAN MID POINT
MAY 15-MAY 17
JUNE 12-JUNE 13
JULY 2-JULY 4
JULY 24-JULY 25
AUGUST 6- AUGUST 8
AUGUST 27
AUGUST 28-AUGUST 29
SEPTEMBER 19-SEPTEMBER 21
NOVEMBER 12-NOVEMBER 15
135-137
163-164
183-185
205-206
218-220
239
240-241
262-264
316-319
136
163
184
205
219
239
240
263
318
EB • EASTERN BASIN
CB - CENTRAL BASIN
-------
PAGE 50
TABLE 2
GEOGRAPHIC COORDINATES FOR THE 1985
LAKE ERIE STATIONS
STATION
9
10
15
63
30
31
32
36
37
38
42
43
73
78
BASIN
EB
EB
EB
EB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
LATITUDE
(N)
423218
424048
423100
422500
422548
421512
420454
415606
420636
421654
415754
414718
415840
420700
LONGITUDE
(H)
793700
794130
795336
794800
801218
810624
810042
312842
813430
814018
820230
815642
814525
811500
WATER DEPTH
Cm)
46.6
31.8
60.2
45.3
20.5
21.3
21.5
22.9
23.9
21.6
22.2
22.6
24.1
22.5
EB = EASTERN BASIN
CB = CENTRAL BASIN
-------
TABLE 3
SYNOPSIS OF METHODS
PAGE 51
PARAMETER
Specific
Conductance
Suspended
Solids
Temperature
Transparency
Turbidity
Alkalinity
Chloride
Ammonia
Nitrate +
Nitrite
pH
Dissolved
Oxygen
Soluble
Reactive
Phosphorus
Total
Phosphorus
Total
Filtered
Phosphorus
METHOD
In situ probe (Interocean)
Electrode (Beckman, YSI)
Gravimetric, using Whatman
GF/C glass fiber filters
Thermistor {InterOcean)
Mechanical Bathythermograph
MBS Calibrated Thermometer
Secchi Disk
Hach Turbidimeters
(Model 2100A and Ratio)
Titrimetn'c (.02N HC1)
Ferricyanide, AAII
Phenate Method, AAII
Cadmium Reduction, AAII
Electrode (InterOcean,
Martek, Orion)
Electrode (InterOcean,
Titrimetric (Hinkler azide
modification)
Stannous Chloride, AAII
Persulfate Digestion,
Stannous Chloride
Persulfate Digestion,
Stannous Chloride, AAII
RANGE
0-1000umhos/cm
1-10,000 mg/1
0-35 degrees'C
NA
0-1000 MTV
0-250 mg/1 CaC03
.5-50 mg Cl/1
0.5-100 ug N/l
1.0-200 ug N/l
2.0-400 uf N/l
.005-1 mg N/l
0-14
0-20 mg 02/1
.5-50 ug P/l
.5-50 ug/1
1.0-100 ug
DETECTION
LIMIT
2 umhos
If
.01 mg
0.2 degrees'C
.Olm
.02 NTV
.5 mg/1
.5 mg/1
.5 ug/1
1.0 ug/1
2.0 ug'l
.005 mg/1
0.1
0.05 nig 02/1
.5 ug/1
.5 ug/1
1.0 ug/1
Expanded further by Machine
or Manual Dilutions
-------
TABLE 3 (CONTINUED)
SYNOPSIS OF METHODS
PAGE 52
PARAMETER
METHOD
RANGE
DETECTION
LIMIT
Dissolved
Reactive
Silicate
Chlorophyll
Pheopigment
Kjeldahl
Nitrogen
Participate
Organic
Nitrogen
Participate
Organic
Carbon
Phyto-
pi a nk ton
Zooplankton
Molibdosilicate-Ascorbic .03-5.00 mg .03 mg/1
Acid-Oxalic Acid, AAII S102/1
Acetone extinction 0-50 ug/1 .02 ug/1
Varian Spectrophotometer
Acetone extinction
Varian Spectrophotometer 0-50 ug/1 .04 ug/1
Analysis performed by
USEPA
Perkin-Elmer Model 240 0-5000 mg N .002 mg
Elemental Analyzer
Perkin-Elmer Model 240 0-5000 mg C .005 mg
Elemental Analyzer
Optical examination macro * species
(Collected «/ Niskin bottle, nanoplankton
Preserved w/ Lugols)
Optical examination .075 mm species
(64 u net, CaC03 formalin +
sucrose)
-------
PAGE 53
TABLE 4
1985 CENTRAL BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
PH
(SU)
ALK
PHEN
(MG/L)
ALK
TOT,
(MG/L)
SURVEY 1
MAY 15 - MAY 17
EPI
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.22
0.02
8.25
8.19
8.27
20
8.00
0.02
7.99
7.91
8.09
20
0.00
0.00
0.00
0.00
0.00
0
0.00
0.00
0.00
0.00
0.00
0
95.54
0.34
95.70
94.80
98.60
20
95.69
0.39
96.15
94.40
96.60
20
SURVEY 2
JUNE 12 - JUNE
13
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
01
Q3
N
8.19
0.02
8.18
8.14
8.27
21
7.68
0.06
7.61
7.57
7.74
9
0.00
0.00
0.00
0.00
0,00
0
0.00
0.00
0.00
0.00
0.00
0
93.13
0.43
93.10
91.40
94.00
21
94.56
0.41
94.00
94.00
95.70
9
-------
TABLE 4 (CONTINUED}
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH
SURVEY 3
JULY 2 - JULY 4
EPI
HYPO
STATISTICS
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
PH
(SU)
8.33
0.01
8.35
8.32
8.37
30
7.52
0.03
7.55
7.42
7.59
12
ALK
PHEN
IMG/L)
4.94
0.35
5.20
4.40
6.10
9
0,00
0.00
0.00
0.00
0.00
0
ALK
TOT.
CMG/L)
95.14
0.25
95.70
94.00
95.90
30
95.92
0.49
95.70
94.85
97.00
12
SURVEY 4
JULY 24 - JULY 25
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.43
0.02
8.48
8.32
8.52
30
7.41
0.02
7.41
7,
7,
19
34
49
5.
0.
5.
4.
6.
30
20
22
30
40
20
0.
0.
.00
.00
0.00
0.00
0.00
0
95.65
0.30
95.90
95.00
96.80
30
97.69
0.22
97.70
96.80
98.60
19
-------
PAGE 55
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
PH
CSU)
ALK
PHFN
(MG/L)
ALK
TOT.
(MG/L)
SURVEY 5
AUG. 6 - AUG. 8
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.33
0.01
8.34
8.28
8.39
30
7.21
0.06
7.14
7.09
7.23
8
0.33
4.10
3.00
5.10
28
00
00
00
00
0.00
0
90.91
3.19
94.40
92.40
95.40
30
83.22
12.05
95.40
92.40
96,90
8
SURVEY 6
AUG. 28 - AUG. 29
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
01
03
N
8.58
0.02
8.57
8.53
8.61
30
7.44
0.03
7.43
7.38
7.50
10
4.
0.
4.
4.
5.
30
50
16
00
00
00
0.00
0.00
0.00
0.00
0.00
0
96.87
0.22
96.50
96.50
97.50
30
104.00
0.64
104.00
102.50
105.50
10
-------
PAGE 56
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
PH
(SU)
ALK
PHEN
(MG/L)
ALK
TOT.
(MG/L)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.35
0.07
8.47
8.37
8.56
34
7.33
0.02
33
30
38
3.
0.
3.
2.
4.
29
07
31
00
00
00
0.
0.
0.
.00
.00
.00
0.00
0.00
0
98.48
0.71
97.00
96.50
99.50
34
108.10
0.85
107.10
106.60
109.60
6
SURVEY 8
NOV. 12 - NOV.
15
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.02
0.01
8.01
7.98
8.05
30
1.71
0.20
1.
1
2
27
50
00
00
97.37
0.26
97.50
97.00
98.50
30
-------
PAGE 57
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH
SURVEY 1
MAY 15 - MAY 17
EPI
HYPO
STATISTICS
MEAN
STD. ERR.
MEDIAN
01
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
TEMP
CO
10.87
0.14
10.95
10.40
10.24
2U
7.45
0.15
7.35
6.95
7.85
20
00
(M6/L)
^2.57
0.20
12.50
11.85
12.95
20
12.11
0.15
12.20
11.60
12.60
20
00 SAT.
(«)
112.01
1.62
111.65
105.80
114.39
20
101.42
1.30
101.33
98.04
104.92
20
COND.CR
(UMHOS)
263.25
0.86
264.00
261.50
265.50
20
265.40
0.70
264.50
263.50
267.00
20
SURVEY 2
JUNE 12 - JUNE 13
i-PI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
f€».N
STD. ERR.
MEDIAN
Ql
Q3
N
14.79
0.12
14.60
14.40
15.40
21
9.77
0.47
9.50
8.70
10.10
9
10.04
0.13
10.00
9.60
10.20
21
8.38
0.27
8.60
7.80
9.00
9
96.54
1.10
95.84
93.51
98.18
21
73.27
2.61
73.82
67.80
77.70
9
269.52
1.37
270.00
269.00
272.00
21
273.22
2.39
273.00
270.00
277.00
9
-------
PAGE 58
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH
SURVEY 3
JULY 2 - JULY 4
EPI
HYPO
STATISTICS
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO, ERR.
MEDIAN
01
Q3
N
TEMP
CO
18.31
0.18
18,60
17.60
19.00
30
12.10
0.34
11.95
11.00
13.20
12
00
(MG/L)
9.18
0.06
9.30
9.10
9.40
30
5.66
0.21
5,65
5.35
6.10
12
DO SAT.
U)
95.22
0.74
96.42
92.82
98.84
30
il.74
2.13
50.54
47.99
56.97
12
COND.CR
(UMHOS)
269.40
0.52
270.00
268.00
271.00
30
275.25
0.74
275.50
273.50
277.50
12
SURVEY 4
JULY 24 - JULY 25
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
21.70
0.10
21.50
21.40
21.90
30
13.61
0.16
13.30
13.00
14,40
19
8.99
0.05
8.95
8.80
9.20
30
4.13
0.28
4.20
3.00
5.40
19
100.52
0.57
100.38
100,31
103.31
30
38.85
2.68
38.92
28,69
50.63
19
268.43
1.04
268.00
265.00
271.00
30
276.95
0.84
277.00
276.00
279.00
19
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
PAGE 59
SURVEY /DATE DEPTH STATISTICS
TEMP
CO
DO
(MG/L)
DO SAT.
m
COND.CR
(UMHOS)
SURVEY 5
AUG. 6 - AUG. 8
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
22.03
0.03
22.00
22.00
22.20
30
14.15
0.25
14.30
13.50
14.50
8
8.40
0.29
8.70
8.50
8.80
30
1.75
0.33
1.45
1.10
2.30
8
i4.68
3.29
98.09
95.72
99.10
JO
16.68
3.24
13.68
10.37
21.82
8
267.10
0.79
267.00
264.00
269.00
30
276.50
1.02
277.00
275.00
278.50
8
SURVEY 6
AUG. 28 - AUG. 29
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
01
Q3
N
22.27
0.03
22.30
22.20
22.40
30
15.66
0.51
15.65
14.70
17.00
10
8.23
0.04
8.20
8.00
8.50
30
0.33
0.11
0.20
0.10
0.60
10
93.32
0.49
93.11
90.73
96.18
30
3.29
1.07
1.93
0.97
5.88
10
267.20
O.SO
267.00
266.00
269.00
30
279.80
1.03
280.50
276.00
282.00
10
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
PAGE 60
SURVEY /DATE DEPTH STATISTICS
TEMP
TO
00
(MG/L)
DO SAT,
(*)
COND.CR
(UMHOS)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
01
03
N
MEAN
STD. ERR.
MEDIAN
01
03
N
20.36
0.32
20.90
20.70
21.10
34
15.57
0.18
15.56
15.30
16.00
6
7.49
0.48
8.40
8.00
8.60
34
0.10
0.05
0.05
0.00
0.20
6
82.49
5.29
92.41
87.40
95.94
34
0.98
0.51
0.49
0.00
1.97
6
268.97
1.18
268.00
267,00
269.00
34
282.83
1.25
282.50
281.00
284,00
6
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STO. ERR.
MEDIAN
01
Q3
N
12.26
0.05
12.25
12.20
12.50
30
10.19
0.44
10.20
10.00
10.40
30
93.26
0.36
93.61
91.80
95.08
30
266.10
0.88
267.00
264.00
269.00
30
-------
PAGE 61
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
TSS
(MG/L)
RS
(MG/L)
VS
(MG/L)
PERVS
(*)
SURVEY 1
MAY 15 - MAY 17
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
01
Q3
N
MEAN
STD. ERR.
MEDIAN
01
03
N
1.33
0.07
1.25
1.17
1.47
18
2.43
0.66
1.63
1.21
1.80
18
0.63
0.05
0,55
0.51
0.73
18
1.63
0.53
0.95
0.64
1.19
18
0.70
0.03
0.68
0.58
0.80
18
0.80
0.14
0.63
0.52
0.75
18
53.00
1.72
52.67
56.91
45.70
18
40.87
2.76
41.28
30.06
47.22
18
SURVEY 2
JUNE 12 - JUNE 13
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
03
N
1.06
0.09
1.00
0.69
1.35
20
3.08
0.38
2.96
2.23
4.00
9
0.47
0.08
0.31
0.14
0.79
20
2.18
0.37
2.52
1.24
3.11
9
0.60
0.03
0.50
0.51
0.67
20
0.94
0.06
0.89
0.79
1.06
9
62.15
4.61
59.84
40.19
79.12
20
33.86
4.04
27.36
23.65
47.53
9
-------
TABLE 4 (CONTINUED)
1988 CENTRAL IAS1M MEAN/MEDIAN HATER QUALITY MEASUREMENTS
PAGE 62
SURVEY /DATE DEPTH STATISTICS
TSS
{MG/L)
RS
(MG/L)
VS
(MG/L)
PERVS
(I)
SURVEY 3
JULY 2 - JULY 4
EP!
HYPO
MEAN
STO, ERR.
MEDIAN
Q3
N
MEAN
STD. ERR.
MEDIAN
01
03
N
0.70
0.06
0.57
0.48
0.83
29
2.22
0.20
2.38
1.70
2.78
12
0.28
0.05
0.19
0.12
0.38
29
1.49
0.16
1.49
0.97
1.98
12
0.42
0.03
0.42
0.34
0.47
29
0.73
0.09
0.72
0.53
0.84
12
64.61
3.28
65.06
55.42
73.53
29
33.53
2.94
31.13
27.62
35.58
12
SURVEY 4
JULY 24 - JULY 25
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
03
N
MEAN
STD. ERR.
MEDIAN
Ql
03
N
0.63
0.04
0.57
0.48
0.67
27
3.22
1.20
2.06
1.63
2.45
19
0.17
0.02
0.12
0.10
0.19
27
2.40
1.03
1.41
1.04
1.75
19
0.46
0,03
0.46
0.34
0.55
27
0.82
0.19
0.62
0.49
0.64
19
74.41
2.38
75.61
69.78
83.61
"7
30.85
2.64
26.54
24.02
36.47
19
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
PAGE 63
SURVEY /DATE DEPTH STATISTICS
TSS
(MG/L)
RS
(MG/L)
VS
(MG/L)
PERVS
SURVEY 5
AUG. 6 - AUG. 8
EPI
HYPO
(CAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
0.73
0.05
0.68
0.58
0.80
29
2.76
0.48
2.46
2.18
3.32
7
0.16
0.02
0.12
0.08
0.20
29
1.96
0.46
1.76
1.49
2.51
7
0.17
0.05
0.55
0.47
0.64
29
0.81
0.05
0.81
0.69
0.93
7
78.11
2.83
83.33
72.97
87.50
29
36.75
8.93
30.58
24.40
37.80
7
SURVEY 6
AUG. 28 - AUG. 29
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
0.95
0.04
0.95
0.87
1.08
30
2.15
0.41
1.89
1.12
2.68
10
0.20
0.02
0.19
0.12
0.27
30
1.46
0.37
1.20
0.58
1.91
10
0.75
0.03
0.72
0.63
0.86
30
0.70
0.08
0.59
0.53
0.77
10
79.02
1.77
80.71
72.59
86.73
30
36.88
3.23
34.80
28.73
48.21
10
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
PAGE 64
SURVEY
/DATE
DEPTH
STATISTICS
TSS
(MG/L)
RS
(MG/L)
VS
(MG/L)
PERVS
(*)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
MEAN
STO. ERR.
MEDIAN
QI
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
1.64
0.11
1.56
1.12
2.03
34
2.24
0.40
1.93
1.63
2.39
6
0.80
0.10
0.67
0.41
1.00
34
1.45
0.38
1.29
1.10
1.44
6
0.84
0.10
0.86
0.60
1,04
34
0.79
0.14
0.88
0.62
1.03
6
55.08
2.96
54.28
44.00
65.87
34
38.21
8.65
37.28
22.76
47.23
6
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STD. ERR.
MEDIAN
Ql
03
N
4.15
0.37
4.01
2.10
5.40
30
3.14
0.32
2.76
1.55
3.84
30
1.01
0.08
0.84
0.66
1.41
30
26.92
1.61
24.67
20.47
34.44
30
-------
PAGE 65
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH
SURVEY 1
HAY 15 - MAY 17
EPI
HYPO
STATISTICS
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
01
03
N
CHLA
CORR,
(UG/L)
2.18
0.15
2.25
1.96
2.55
20
2.16
0.13
2.20
1.73
2.42
20
PHEO.
(UG/L)
0.56
0.13
0.38
0.21
0.68
20
0.59
0.11
0.41
0.34
0.73
20
TURBID
(NTU)
1.22
0.07
1.10
1.00
1.45
20
2.63
1.05
1.35
1.10
1.70
20
SECCHI
(METER)
3.66
0.28
3.55
3.10
3.80
8
tJA
NA
NA
NA
NA
NA
SURVEY 2
JUNE 12 - JUNE 13
EP!
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MIAN
STD. ERR.
MEDIAN
01
03
N
1.00
0.09
1.09
0.69
1.35
21
1.14
0.19
0.90
0.80
1.67
9
0.85
0.14
0.61
0.35
1.26
21
2.25
0.50
1.97
1.66
2.27
9
0.96
0.13
0.60
0.50
1.50
21
3.03
0.40
3.50
2.30
3.80
9
90
21
80
60
30
NA
NA
NA
NA
NA
NA
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH
SURVEY 3
JULY 2 - JULY 4
EPI
HYPO
STATISTICS
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
CHLA
CORR.
(UG/L)
1.18
0.19
0.95
0.64
1.29
28
0.91
0.14
0.79
0.58
1.22
12
PHEO.
(UG/L)
0.60
0.16
0.39
0.16
0.82
30
1.12
0.22
0.96
0.56
1.55
12
TURBID
(NTU)
0.64
0.10
0.45
0.30
0.60
30
2.28
0.23
2.35
1.85
2.75
12
SECCHI
(METER)
7.53
0.87
7.30
7.00
9.30
7
NA
NA
NA
NA
NA
NA
SURVEY 4
JULY 24 - JULY 25
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
2.14
0.16
1.93
1.48
2.58
30
1.64
0.89
1.80
1.50
2.10
19
0.50
0.10
0.34
0.20
0.65
30
2.44
1.03
1.21
0.75
1.92
19
0.46
0.04
0.40
0.20
0.60
30
2.68
0.89
1.80
1.50
2.10
19
7.88
0.41
7.55
6.90
8.70
8
NA
NA
NA
NA
NA
NA
-------
PAGE 67
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
CHLA
CORR.
(UG/U
PHEO.
(UG/L5
SURVEY 5
AUG. 6 - AUG. 8
TURIIO
(NTU)
SECCHI
(METER)
EPI
HYPO
1C AN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
2.81
0.14
2.
2.
3.
30
61
24
18
2.49
0.88
1,17
0.81
01
0.80
0.10
0.63
0.44
0.94
30
4.55
0.79
4.37
2.77
55
0.40
0.01
0.40
0.40
0.40
30
0.51
2,45
1.60
3.65
8
6.73
0.23
6.65
6.30
7.20
6
NA
NA
NA
NA
NA
NA
SURVEY 6
AUG. 28 - AUG. 29
EPI
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
2.70
0.14
2,68
2.31
3.14
30
0.58
0.11
0.53
0.31
0.69
10
1.46
0.18
1.05
0.79
1.67
30
1.66
0.44
1.33
0.51
2.31
0.49
0.02
0.50
0.40
0.60
30
2.43
0.57
2.
0.
3.
10
10
80
30
4.33
0.27
4.
3.
4.
7
NA
NA
NA
NA
NA
NA
20
90
50
-------
PAGE 68
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
CHLA
CORK.
(UG/U
PHEO.
(UG/L)
TURBID
(NTU)
SECCHI
(METER)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
7.24
2.03
5.16
3.94
6.03
34
2.07
0.51
1.76
1.29
a.31
6
1.76
0.39
i.32
1.13
1.55
34
1.34
0.49
0.88
0.81
1.30
6
1.01
0.92
0.85
0.70
1.20
34
1.38
0.27
1.05
l.OC
1.50
6
4
0
4
4
4
5
NA
NA
NA
NA
NA
NA
.40
.20
.40
,20
.60
SURVEY 8
MOV. 12 - NOV. 15
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
70
36
90
1.80
4.40
30
4.39
0.45
4.20
2,45
5.04
30
3.50
0.36
2.90
1.80
4.40
30
2.72
0.61
3.15
1.85
3.60
4
-------
PAGE 69
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJELDAHL SOLUBLE
NITRITE NITROGEN NITROGEN SILICA
(UG/L) (UG/L1 (UG/L) (UG/L)
SURVEY 1
MAY 15 - MAY 17
EPI
HYPO
SURVEY 2
JUNE 12 - JUNE 13
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
177.1
6.5
170.0
158.0
197.0
20
183.0
5.9
180.0
166.5
187.0
20
2.1
0.6
1.5
1.0
2,5
19
6.7
1.2
7.3
0.5
10.5
19
255.0
75.0
255.0
180.0
330.0
2
NA
NA
NA
NA
NA
NA
120.3
13.8
104.5
75.0
138.5
20
150.4
20.6
150.0
75.0
224.0
19
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
283.4
31.3
177.0
164.0
465.0
21
253.8
25.6
202.0
199.0
281.0
9
11.2
1.5
9.6
7.9
14.7
21
25.3
4.0
22.4
20.2
28.1
9
248.6
17.0
220.0
200.0
270.0
21
308.9
32.9
280.0
260.0
310.0
9
320.7
22.9
300.0
288.0
349.0
21
627.3
108.7
744.0
450.0
855.0
9
-------
PAGE 70
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJELDAHL SOLUBLE
NITRITE NITROGEN NITROGEN SILICA
(UG/L) (UG/L) (UG/L) (UG/L)
SURVEY 3
JULY 2 - JULY 4
EPI
HYPO
SURVEY 4
JULY 24 - JULY 25
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
01
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
215.3
18.8
162.5
145.0
252.0
30
228.0
11.8
216.5
194.0
273.5
12
8.4
1.7
6.7
4.4
8.2
30
53.1
28.4
25.9
18.1
32.0
12
126.9
10.9
130.0
80.0
170.0
29
179.2
24.4
160.0
120.0
240.0
12
268.4
17.6
254.0
205.0
284.0
30
1216.9
60.3
1224.0
1084.5
1366.0
12
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
198.0
10.8
180.0
157.0
200.0
30
244.2
9.8
242.0
215.0
250.0
19
5.2
0.7
4.3
2.5
5.8
30
25.7
2.4
28.0
20.7
29.5
19
212.3
11.5
215.0
170.0
240.0
30
237.8
31.2
220.0
170.0
240.0
18
410.1
16.9
423.5
350.0
475.0
30
1664.5
91.0
1767.0
1435.0
1910.0
19
-------
PAGE 71
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJELOAHL SOLUBLE
NITRITE NITROGEN NITROGEN SILICA
(UG/L) (UG/L5 (UG/L) (UG/L)
SURVEY 5
AUG. 6 - AUG. 8
EPI
HYPO
SURVEY 6
AUG. 28 - AUG. 29
EPI
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
197.2
5.3
200.5
186.0
218.0
30
26?. 6
10.6
267.5
239.0
283.0
8
7.3
0.5
6.8
5.4
8.0
29
9.6
0.8
10.6
8.2
11.4
8
154.3
12.0
160.0
110.0
180.0
30
167.5
16.2
160.0
150.0
170.0
8
312.0
12.2
310.0
265.0
375.0
27
2740.0
93.0
2765.0
2557.0
2974.0
7
MEAN
STO. ERR.
MEDIAN
Ql
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
173.5
6.9
175.5
163.0
199.0
32
69.8
24.6
21.0
15.0
153.0
9
18.1
8.4
7.8
5.7
10.7
32
87.5
16.2
76.4
45.5
118.9
9
219.6
20.3
200.0
170.0
260.0
25
348.8
48.2
345.0
260.0
440.0
8
819.0
169.4
590.0
502.5
651.5
32
4415.2
223.4
4466.0
4229.0
4822.0
9
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
PAGE 72
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJELDAHL SOLUBLE
NITRITE NITROGEN NITROGEN SILICA
(UG/L) (UG/L) (UG/L) (UG/L)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
121.6
5.1
125.0
114.0
135. 0
29
2.5
0.9
2.0
1.5
3.5
4
8.0
0.7
7.7
5.4
10.4
29
228.3
23.0
211.4
181.1
291.1
6
312.4
27.0
320.0
240.0
410.0
25
266.7
12.0
260.0
250.0
290.0
3
370.0
22.1
360.0
280.0
460.0
29
4740.8
266.1
4919.0
4167.0
4980.0
6
MEAN
STD. ERR.
MEDIAN
Ql
0.3
N
121.5
4.4
128.0
115.0
133.0
30
21.3
4.9
15.1
13.1
18.0
30
199.3
17.3
195.0
150.0
240.0
30
389.8
23.3
393.0
312.0
491.0
30
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
PAGE 73
SURVEY /DATE
DEPTH STATISTICS TOTAL TOTAL
PHOSPHORUS FILTERED
PHOSPHORUS
(UG/L) (UG/L)
SOLUBLE TOTAL
REACTIVE CHLORIDE
PHOSPHORUS
(UG/L) (MG/L)
SURVEY 1
MAY 15 - MAY 17
EPI
HYPO
SURVEY 2
JUNE 12 - JUNE 13
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
03
N
9.9
0.4
9.7
8,7
11.2
20
10.4
0.6
9.8
9.0
11.1
^0
4.6
0.2
4.6
3.9
5.3
20
5.3
0.2
5.0
4.6
6,0
20
4.5
1.0
4.0
1.4
5.9
14
5.7
1.5
4.0
0.9
6.8
17
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
10.7
0.6
9.8
8.9
13.0
21
17.7
1.2
17.2
15.3
21.0
8
5.6
0.6
4.1
3.4
7.9
21
7.2
0.9
6.0
5.6
9.9
9
2,5
0.2
2.9
1.8
3.2
21
4.3
0.9
2.5
2.2
7.2
9
14.6
0.2
14.4
14.0
15.0
20
14.3
0.2
14.1
13.8
14.9
20
15.1
0.2
15.0
14.0
16,0
21
15.0
0,
15,
14
15
9
-------
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
PAGE 74
SURVEY /DATE
DEPTH STATISTICS TOTAL TOTAL SOLUBLE TOTAL
PHOSPHORUS FILTERED REACTIVE CHLORIDE
PHOSPHORUS PHOSPHORUS
(UG/L) (UG/L) (UG/L) (MG/L)
SURVEY 3
JULY 2 - JULY 4
EPI
HYPO
SURVEY 4
JULY 24 - JULY 25
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
01
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
7.8
0.5
7.8
6.4
8.4
30
13.5
0.8
13.9
12.7
15.0
10
4.9
0.3
4.7
3.7
5.6
27
6.5
0,5
5.6
5.2
8.0
11
1.0
O.I
0.8
0.5
1.0
30
1.7
0.1
1.5
1.4
2.0
12
15.1
0.1
14.9
14.6
15.7
30
15.0
0.2
14.8
14.5
15.3
11
MEAN
STD. ERR.
MEDIAN
01
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
9.9
0.9
9.1
7.9
10.8
30
13.6
1.4
13.2
10.1
14.6
19
4.4
0.2
4.2
3.7
4.8
29
6.0
0.3
5.8
5.0
7.1
19
1.2
O.I
l.l
0.9
1.4
30
2.0
0.2
2.0
1.4
2.4
19
14.8
0.1
14.9
14.7
15.0
30
14.8
0.1
14.7
14.6
15.0
19
-------
PAGE 75
TABLE 4 (CONTINUED)
198S CENTRAL BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE
DEPTH STATISTICS TOTAL TOTAL
PHOSPHORUS FILTERED
PHOSPHORUS
(UG/L) (UG/L)
SOLUBLE TOTAL
REACTIVE CHLORIDE
PHOSPHORUS
(UG/L) (HG/L)
SURVEY 5
AUG. 6 - AUG. 8
EPI
HYPO
SURVEY 6
AUG. 28 - AUG. 29
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
9,9
0.3
9.4
8.6
11.2
30
21.6
3.0
23.3
14.3
27.1
8
22.6
8.9
12.2
11.1
14.2
32
120.5
29.0
101.4
52.4
158.0
9
4.2
0.3
4.0
3.2
4.7
30
9.8
1.5
10.4
5.6
13.4
8
14.9
6.7
7.6
6.0
8.4
32
86.1
19.8
66.6
45.8
127.2
9
1.2
0.2
1.3
0.3
1.5
26
3.3
0.7
3.1
1.6
5.3
8
6.4
3.6
2.2
2.0
2.6
32
50.2
11.5
40.2
28.0
72.8
9
15.1
0.1
15.0
14.9
15.5
30
14.8
0,1
14.8
14.7
15.0
8
15,
0,
15.3
15.0
15.5
32
15.
0,
15,
15.0
15.2
-------
PAGE 76
TABLE 4 (CONTINUED)
1985 CENTRAL BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE
DEPTH STATISTICS TOTAL TOTAL
PHOSPHORUS FILTERED
PHOSPHORUS
(UG/L) (UG/L)
SOLUBLE TOTAL
REACTIVE CHLORIDE
PHOSPHORUS
(UG/L) (MG/L)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Qi
Q3
N
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
16.0
0.6
15.9
14.8
17.3
26
141.6
41.7
118.5
68
196
6.7
0.6
7.2
5.6
8,4
26
118.6
32.0
107.5
62.6
182.7
6
1.9
0.2
1.8
1.1
2.4
29
59.0
17
59
16
99.4
15.6
0.2
15.3
15.1
15.5
30
15.2
0.2
15.3
14.7
15.7
6
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STD. ERR,
MEDIAN
Ql
03
N
23.0
1.0
23.5
18.9
26.6
30
10.3
0.4
9.8
8.9
11.9
30
4.2
0.2
4.3
3.8
4.8
30
14,
0,
14.8
14.4
15.0
30
-------
PAGE 77
TABLE 5
198i EASTERN BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
PH
(SU)
ALK
PHEN
(MG/LJ
ALK
TOT,
(MG/L)
SURVEY 1
MAY 15 - MAY 17
EPI
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
7.90
0.04
7.90
7.88
7.96
13
0.00
0.00
o.no
0.00
0.00
0
95.17
0.38
95.70
94.80
96.60
13
SURVEY 3
JULY 2 - JULY 4
EPI
ME SO
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.48
0.02
8.48
8.44
8.53
8
8.10
0.07
8.13
7.90
8.26
8
7.79
0.01
7.78
7.76
7.82
11
5.50
0.49
5.75
4.40
6.60
8
1.78
0.35
1.80
1.35
2.20
4
0.0
0.0
0.0
0.0
0.0
0
97,14
0.34
9?, 70
96.80
97.70
8
96.80
0.24
96.80
96.35
97.25
8
98.33
0.51
98.60
97.70
99.40
11
-------
PAGE 78
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
PH
(SU)
ALK
PHEN
(MG/L)
ALK
TOT.
EMG/L)
SURVEY 5
AUG. 6 - AUG.8
EPI
I€SO
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
8.31
0.02
8.31
8.25
8.36
12
7.55
0,10
7.51
7.38
7.72
4
7.56
0.05
7,60
7.40
7.75
11
3.88
0.37
4.10
3.00
5.10
11
0.00
0.00
0.00
0.00
0.00
0
0.00
0.00
0.00
0.00
0.00
0
96.34
0.62
96.40
94.40
97.50
12
97.70
0.78
97.45
96.40
99.00
4
97.07
0.48
97.40
95.40
98.50
11
-------
PAGE 79
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
PH
(SU)
ALK
PHEN
(MG/L)
ALK
TOT,
(MG/LS
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
ME SO
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
8.43
0.03
8.45
8.40
8.49
12
7.73
0.03
7.70
7.69
7.76
4
7.65
0.02
7.65
7.64
7.70
11
2.75
0.43
2.50
1.50
4.00
12
0,00
0.00
0.00
0.00
0.00
0
0.00
0.00
0.00
0.00
0.00
0
95.50
0.35
95.50
94.50
96.00
12
98.25
0.63
98.50
97.50
99.00
4
99.34
0.67
98.50
97.50
100.50
11
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
7.89
0.01
7.89
7.87
7.92
12
1.00
0.13
1.00
0.75
1.25
8
102.13
0.25
102.25
101.50
102.50
12
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN MATER QUALITY
SURVEY /DATE DEPTH STATISTICS
TEHP
CO
DO
(MG/L)
00 SAT.
(I)
CONO.CR
(UMHOS)
SURVEY 1
MAY 15 - MAY 17
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
4.42
0.18
4.30
4.00
4.50
13
13.08
0.08
13.10
12.80
13.20
13
104.11
0.93
103.13
101.78
105.14
13
263.85
1.20
264.00
261.00
265.00
13
SURVEY 3
JULY 2 -JULY 4
EPI
ME SO
HYPO
MEAN
STO. ERR.
MEDIAN
01
Q3
N
MEAN
STD.ERR.
MEDIAN
Ql
03
N
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
19.70
0.48
19.30
18.65
20.80
8
12.28
1.19
13.15
9.65
15.25
8
5.15
0.28
5.00
4.50
5.30
11
9.46
0.24
9.40
9.15
9.70
8
9.95
0.25
9.70
9.45
10.55
8
10.55
0.37
11.10
10.10
11.30
11
101.14
2.73
100.40
97.94
105.97
8
91.31
2.54
92.26
84.53
94.69
8
84.93
2.81
88.26
80.45
90.31
11
270.63
1.03
271.00
268.50
273.00
8
274.00
0.60
274.00
273.00
275.50
8
277.09
0.58
277.00
275.00
278.00
11
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE
SURVEY 5
AUG. 6 - AUf,. I
DEPTH STATISTICS
5
EPI MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
ME SO MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
HYPO MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
TEMP
CO
21.54
0.06
21.60
21.45
21.70
12
14.52
1.32
14.80
12.35
16.70
4
5.82
0.44
5.10
4.90
7,70
11
00
(MG/L)
8.89
0.05
8.85
8.80
9.05
12
8.35
0.62
8.50
7.55
9.15
4
9.70
0.40
10.30
9.40
10.50
11
00 SAT.
(X)
99.06
0.65
98.96
97.37
101.08
12
79.96
6.03
77.97
71.63
88.29
4
78.89
2.83
82.21
79.10
84.48
11
CONO.CR
(UMHOS)
273.67
2.35
272,00
269.00
274.50
12
279.00
2.52
280.00
276.00
282.00
4
279.27
0.75
280.00
278.00
281.00
11
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
TEMP
DO
(MG/L)
DO SAT,
(I)
CONO.CR
(UMHOS)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
ME SO
MEAN
STO. ERR.
MEDIAN
Cl
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
20.47
0.08
20.60
20.40
20.60
12
11.65
1.37
11.80
9.70
13.60
4
8.23
0.11
8.35
8.15
8.50
12
6.15
0.55
6.10
5.30
7.00
4
89.41
1.32
91.01
88.54
92.11
12
55.55
4.67
56.81
48.04
63.06
4
271.58
0.80
271.50
270.00
272.50
12
281.50
1.19
281.50
279.50
283.50
4
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
6.19
0.29
6.00
5.40
6.70
11
7.47
0.27
7.§0
7.30
8.00
11
01.16
2.01
63,35
f.0.37
05.36
11
282.91
1.02
283.00
281.00
285.00
11
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
11.18
0.16
11.40
It. IS
11.55
12
10.14
0.01
10.10
10.10
10.20
12
90.94
0.31
91.03
90.69
91.50
12
274.83
1.10
275.00
271.50
278.00
12
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
TSS
(MG/L)
RS
(MG/L)
VS
(MG/L)
PERVS
U)
SURVEY 1
MAY 15 - MAY 17
EPI
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
3.23
0.85
2.47
1.87
2.87
12
1.86
0.33
1.41
1.34
1.89
12
1.37
0.54
0.77
0.61
1.09
12
36.41
3.53
31.32
27.99
43.22
12
SURVEY 3
JULY 2 - JULY 4
EPI
ME SO
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
0.66
0.06
0.63
0.53
0.77
8
0.93
0.10
0,93
0.73
1.01
8
2.17
0.31
1.76
1.61
2.81
11
0.30
0.06
0.23
0.17
0.42
8
0.43
0.10
0.38
0.22
0.56
8
1.50
0.33
1.28
0.53
2.31
11
0.37
0.04
0.39
0.27
0.45
8
0.50
0.02
0.51
0.47
0.55
8
0.67
0.15
0.47
0.40
0.73
11
56.62
6.21
60.10
42.07
71.79
3
57.42
5.76
59.17
44.96
69.43
8
34.54
7.57
23.81
17.79
47.00
11
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
TSS
(m/i)
RS
(M6/L)
VS
(MG/L)
PERVS
(*)
SURVEY 5
AUG. 6 - AUG. 8
EPI
ME SO
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
0.56
0.01
0.58
0.54
0.60
12
1.14
0.26
1.07
0.80
1.48
4
2.37
0.22
2.41
1.84
3.05
11
0.16
0.01
0.16
0.13
0.19
12
0.74
0.24
0.66
0.41
1.07
4
1.54
0.25
1.48
0.63
2.12
11
0.40
0.01
0.39
0.38
0.45
12
0.40
0.04
0.41
0.34
0.47
4
0.83
0.23
0.52
0.40
0.74
11
71.58
1.81
70.37
67.43
76.92
12
39.60
6.65
38.84
28.84
50.35
4
34.13
7.59
21.76
18.93
38.83
11
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY
/DATE
DEPTH
STATISTICS
TSS
(MG/L)
RS
(MG/L)
VS
(MG/L)
PERVS
(*)
SURVEY 7
MOV, 12 - HOY. 15
EPI
MESO
HYPO
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
0.94
0.05
0.91
0.78
1.11
12
0.91
0.10
0.87
0.76
1.06
4
1.72
0.29
1.45
1.26
1.95
10
0.41
0.05
0.42
0.26
0.51
12
0.43
0.07
0.44
0.32
0 65
4
1,29
0.27
1.16
0.87
1.50
10
0.53
0.05
0.53
0.42
0.67
12
0.48
0.09
0.52
0.34
0.62
4
0.42
0.05
0.37
0.33
0.45
10
57.41
4.46
60.57
45.01
70.41
12
51.97
7.55
55.75
41.68
62.26
4
28.16
4.75
21.70
19.57
30.95
10
SURVEY 8
MAR. 3 - APR. 5
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
1.81
0.30
1.42
1.29
1.52
12
1.34
0.29
0.97
83
08
0
1
12
0.47
0.03
0.47
0.38
0.56
12
29.59
2.43
30.29
26.01
37.60
12
-------
PAGE 86
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
SURVEY 1
MAY 15 - MAY 17
CHLA
CORR.
(UG/L)
PHEO.
(UG/L)
TURBID
(NTU)
SECCHI
(METER)
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
1.17
0.17
0.99
0.75
1.44
12
0
0
12
0.50
0.12
0.40
26
80
2.
0,
2.
2.
3.
13
57
18
10
10
00
3.28
0.23
3.20
3.00
3.55
4
SURVEY 3
JULY 2 -
JULY 4
EPI
ME SO
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
0.89
0.12
0.84
0.63
1.10
8
1.57
0.38
1.30
0.73
2.38
0.41
0.07
0.40
0.25
0.55
8
1.73
0.20
1.76
1.25
2.20
8
0.62
0.22
0.38
0.27
0.85
10
2.44
0.47
2.58
1.36
3.04
3
2.11
0.34
1.81
1.32
3.18
10
0.61
0.11
0.55
0.40
0.75
8
2.35
0.42
1.90
1.60
3.00
11
7.86
0.78
7.90
50
20
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
-------
PAGE 87
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
SURVEY 5
AUG. 6 - AUG. 8
EPI MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
ME SO MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
HYPO MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
CHLA
CORR.
(UG/L)
1.47
0.05
1.45
1.40
1.53
12
0.65
0.17
0.69
0.40
0.92
4
-0.01
0.14
-0.11
-0.38
0.21
11
PHEO.
(UG/L)
0.81
0.14
0.60
0.43
1.78
12
1.65
0.30
1.90
1.31
2.00
4
2.68
0.54
2.76
0.93
3.46
11
TURBID
(NTU)
0.53
0.02
0.50
0.50
0.60
12
1.13
0.17
1.05
0.90
1.35
4
2.93
0,39
2.80
2.40
2.30
11
SECCHI
(METER)
8.40
0,00
8.40
8.40
8.40
1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
-------
TABLE 5 (CONTINUED}
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
CHLA
CORR.
(UG/L)
PHEO.
(UG/L)
TURBID
(NTU)
SECCHI
(METER)
SURVEY 7
SEPT. 19 - SEPT. 21
EP1
ME SO
HYPO
MEAN
STD. ERR.
MEDIAN
Qi
03
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
1.81
0.11
1.91
1.66
2.11
12
1.09
0.13
1.15
0.89
1.29
4
0.46
0.08
0.38
0.28
0.73
11
0.51
0.08
0.43
0.31
0.66
12
0,65
0.27
0.44
0.33
0.98
4
0.82
0.24
0.48
0.37
0.91
11
0.60
0.03
0.60
0.50
0.70
12
0.50
0.07
0.45
0.40
0.60
4
1.65
0.20
1.50
1.10
2.00
11
4.90
0.44
5.00
4.10
5.60
3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STD. ERR.
fCDIAN
Ql
Q3
N
1.10
0.06
1.10
1.04
1.25
12
1.78
0.28
1.55
1.16
1.96
12
1.82
0.35
1.30
1.20
1.60
12
3.67
0.28
3.90
3.10
4.00
3
-------
PAGE 89
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN HATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJELOAHL SOLUBLE
NITRITE NITROGEN NITROGEN SILICA
CUG/L) (UG/L) (UG/L) (UG/L)
SURVEY I
MAY 15 - MAY 17
EPI
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
288.0
3.0
283.0
280.0
300.0
13
2.0
0.4
1.8
0.8
3.5
11
NA
NA
NA
NA
NA
NA
250.1
10.1
256.0
231.0
280.0
13
SURVEY 3
JULY 2 -
JULY 4
EPI
ME SO
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
185.8
4.3
182.5
178.0
194.0
8
237.8
11.0
233.0
210.0
270.5
8
315.9
3.9
319.0
305.0
321.0
11
5.7
0.9
4.8
3.6
7.6
8
16.8
3.6
13.3
8.9
27.2
8
8.8
1.5
7.4
4.6
11.5
11
227.5
45.4
215.0
135.0
275.0
8
195.0
17.1
185.0
170.0
205.0
8
319.1
145.7
180.0
60.0
230.0
11
243.1
15.6
242.5
222.5
280.0
8
210.6
19.9
202.5
170.0
247.5
8
553.2
39.4
550.0
475.0
670.0
11
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
PAGE 90
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJELDAHL SOLUBLE
NITRITE NITROGEH NITROGEN SILICA
(UG/L) (UG/L) (UG/L) (UG/L)
SURVEY 5
AUG. 6 - AUG.8
EPI
ME SO
HYPO
MEAN
STD. ERR.
MEDIAN
01
Q3
N
MEAN
STO. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
01
Q3
N
183.0
3.9
179.0
173.5
192.5
12
327.0
10.7
325.0
313.0
341.0
4
348.1
3.7
345.0
335.0
360.0
11
4.7
0.4
4.7
3.8
5.7
12
3.7
1.2
3.2
1.8
5.6
4
8.1
1.6
8.'
2.3
12.7
11
155.0
11.8
155.0
120.0
180.0
12
145.0
21.0
140.0
115.0
175.0
4
130.0
8.9
120.0
110.0
140.0
11
219.8
8.2
216.0
197.0
242.0
12
451.0
113.8
468.0
265.5
636.5
4
653,8
56.6
658.0
605.0
747.0
11
-------
PAGE 91
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
SURVEY /DATE DEPTH STATISTICS
NITRATE AMMOMIA KJEtDAHl
NITRITE NITROGEN NITROGEN
(UG/U (UG/L) (UG/L)
SOLUBLE
SILICA
(UG/L)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
HYPO
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
01
Q3
N
174.3
3.5
172.0
168.0
174.0
12
327.3
34.6
357.0
289.0
365.5
372.8
1.9
372.0
370.0
380.0
11
6.5
1.9
4.6
2.8
7.2
12
7.2
5.0
2.5
1.8
12,6
8.6
2.9
6.8
3.2
9.0
11
286.7
35.0
320.0
180.0
370.0
9
457.5
239.7
290.0
165.0
750.0
4
184.1
19.4
200.0
170.0
220.0
9
365.8
11.2
367.5
337.5
380.0
12
575.0
44.2
545.0
512.5
637.5
4
993.2
48.0
980.0
900.0
1040.0
11
SURVEY 8
NOV. 12 -
NOV.
15
EPI
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
219
3
219.0
208,
221,
12
14.7
0.5
14.9
14.1
16.1
12
169.2
27.6
150.0
115.0
190.0
12
555.8
39.1
543.0
519.0
628.5
12
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN MATER QUALITY MEASUREMENTS
PAGE 92
SURVEY /DATE
DEPTH STATISTICS TOTAL TOTAL SOLUBLE TOTAL
PHOSPHORUS FILTERED REACTIVE CHLORIDE
PHOSPHORUS PHOSPHORUS
(UG/L) (UG/L) (UG/L) (MG/L)
SURVEY 1
MAY 15 - MAY 17
EPI MEAN
STD. ERR.
MEDIAN
Ql
03
N
SURVEY 3
JULY 2 - JULY 4
EPI MEAN
STO, ERR.
MEDIAN
Ql
Q3
N
ME SO MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
HYPO MEAN
STD. ERR.
MEDIAN
01
Q3
N
11.5
0.6
11.8
10.1
12.9
13
8.9
1.4
7.5
7.4
7.9
3
10.1
0.5
9.8
9.6
10.0
8
9.5
0.6
8.9
7.5
11.2
11
6.4
0.4
6.2
5.6
7.2
10
3.8
0.1
3.7
3.7
4.2
6
15.2
0.7
4.7
3.6
6.1
8
4.3
0.3
3.7
3.4
5.2
11
7.6
1.5
4.8
4.0
13.1
13
0.7
0.1
0.5
0.4
1.0
8
1.2
0.2
1.4
0.8
1.5
8
1.5
0.2
1.5
1.3
1.8
il
14.9
0.1
14.6
14.5
15.1
13
14.8
0.0
14.8
14.7
14.9
8
14.7
0.1
14.6
14.6
14.8
8
15.0
0.2
14.9
14.6
15.0
11
-------
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WATER QUALITY MEASUREMENTS
PAGE 93
SURVEY /DATE
DEPTH STATISTICS TOTAL TOTAL SOLUBLE TOTAL
PHOSPHORUS FILTERED REACTIVE CHLORIDE
PHOSPHORUS PHOSPHORUS
(UG/L) (UG/L) (UG/L) (MG/L)
SURVEY 5
AUG. 6 - AUG. 8
EPI
ME SO
HYPO
MEAN
STD, k'RR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
Q3
N
MEAN
STD. ERR.
MEDIAN
qi
Q3
N
9.9
1.2
9.0
8.1
9.8
12
8.8
0.5
9.0
8.3
9.4
4
9.4
0.3
8,9
8.6
10.5
11
2.9
0.4
2.6
1.7
3.5
12
2.6
1.3
2.1
0.6
4.7
4
3.2
0.5
3.1
1.9
4.2
11
0.6
0.1
0.5
0.4
0.8
12
0.8
0.1
0.8
0.6
0.9
4
1.3
0.1
1.1
1.0
1.8
11
15.1
0.1
15.0
15.0
15.1
12
16.2
1.3
14.9
14.9
17.5
4
15.
0.
15.
14.9
15.0
11
.0
.0
.0
-------
PAGE 94
SURVEY /DATE
TABLE 5 (CONTINUED)
1985 EASTERN BASIN MEAN/MEDIAN WAT^S QUALITY MEASUREMENTS
DEPTH STATISTICS TOTAL TOTAL SOLUBLE TOTAL
PHOSPHORUS FILTERED REACTIVE CHLORIDE
PHOSPHORUS PHOSPHORUS
(UG/L) (UG/L) (UG/L) (MG/L)
SURVEY 7
SEPT. 19 - SEPT. 21
EPI
ME SO
HYPO
MEAN
STD. ERR,
MEDIAN
Ql
Q3
N
MEAN
STD. ERR,
MEDIAN
01
Q3
N
MEAN
STD. ERR.
MEDIAN
Ql
03
N
6.7
0.2
6.9
6.3
0
9.4
0.8
9.
8.
11.
8
3.5
0.2
3.7
3.0
3.9
12
4.5
0.6
4.5
3.5
5.5
4
5.0
0.4
5.0
3.5
6.5
11
1.9
1.0
1.4
0.3
3.5
4
0.5
0.0
0,
0.
0,
1
I,
0,
0,
0,
2
10
16.4
0.5
15.5
15.4
17,0
12
17.3
1.2
17.0
15.3
19.3
15.9
0.3
15.4
15.1
16.8
11
SURVEY 8
NOV. 12 - NOV. 15
EPI
MEAN
STO. ERR.
MEDIAN
Ql
Q3
11.6
0,
11,
10
12,
12
6.3
0.2
6.3
6.0
6.6
12
2.2
0.1
2.1
1.9
2.4
12
14.9
0.1
14.9
14.7
15.0
12
-------
TABLE 6
LAKE ERIE CENTRAL BASIN REPRESENTATIVE AREA
LIMNION, OXYGEN AND TEHPERATURE DATA, 1985*
PAGE 95
DATE
SUR STRAT
L1HNION VOLUME HYPO AREA THICKNESS OXYGEN TEMP
(km35 (kmZ) (m) (mg/1) CO
5/15-5/17 1 STRAT
6/12-6/13 2 STRAT
7/2-7/4 3 STRAT
7/24-7/25 4 STRAT
8/6-8/8 5 STRAT
8/28-8/29 6 STRAT
9/19-9/21 7 STRAT
EPI
MESO
HYPO
TOTAL
EPI
MESO
HYPO
TOTAL
EPI
MESO
HYPO
TOTAL
EPI
MESO
HYPO
TOTAL
EPI
MESO
HYPO
TOTAL
EPI
MESO
HYPO
TOTAL
EPI
MESO
HYPO
TOTAL
64.8
8.8
39.3 4,680
112.9
99.0
5.2
8.8 3,670
113.0
92.9
9.1
10.5 4,200
112.5
87.0
6.0
19.5 4,760
112.5
98.6
6.9
6.4 3,560
111.9
100.1
4.3
7.6 4,000
112.0
107.0
2.0
2.4 2,000
111.4
13.5
1.9
8.4
20.6
1.2
2.4
19.3
1.9
2.5
18.1
1.3
4.1
20.5
1.5
1.8
20.8
1.0
1.9
22.3
0.8
1.2
12.3
12.2
11.9
10.0
8.8
8.3
9.2
7.3
5.6
9.0
6.3
4.1
8.7
5.8
1.8
8.3
3.3
0.2
8.5
3.4
3.6
10.7
9.0
7.5
14.8
10.8
9.2
18.4
14.0
11.7
21.7
17.5
13.6
22.0
18.6
14.1
22.4
18.8
15.6
21.0
17.0
17.4
11/12-11/15 8
UNSTR.
TOTAL 112.0
23.3
10.2 12.3
* THIS DATA HAS DERIVED FROM THE SURVEY 8 VOLUME WEIGHTING PROGRAM
-------
PAGE 96
TABLE 7
LAKE ERIE EASTERN BASIN REPRESENTATIVE AREA
LIMMION, OXYGEN AND TEMPERATURE DATA. 1985*
DATE
5/15-5/17
7/2-7/4
8/6-8/8
9/19-9/21
SUR STRAT LIMMION
1 UNSTR TOTAL
3 STRAT EPI
ME SO
HYPO
TOTAL
5 STRAT EPI
ME SO
HYPO
TOTAL
7 STRAT EPI
ME SO
HYPO
TOTAL
VOLUME HYPO AREA 1
(km3) Um2)
72.1
26,0
18,1
27.8 1,560
71.9
31.3
19.4
21.0 1,510
71.7
38.4
7.4
28.5 1,540
71.6
miCKNESS
M
45.9
16.6
11.5
17.8
19.9
12.4
13.9
24.4
4.7
16.7
OXYGEN
(mg/l )
13.1
9.5
10.2
10.4
8.8
8.9
10.0
8.3
6.6
7.8
TEMP
CO
4.3
18.2
10.1
4.7
21.6
12.6
5.2
20.5
13.8
6.0
11/12-11/15 8 UNSTR TOTAL 71.8 - 45.7 10.1 11.2
THIS DATA MAS DERIVED FROM THE SURVEY 8 VOLUME WEIGHTING PROGRAM
-------
TABLE 8
PAGE 97
LAKE ERIE CENTRAL 8ASIM REPRESENTATIVE AREA
VOLUME WEIGHTED TOTAL PHOSPHORUS AND CORRECTED CHLOROPHYLL A DATA,
1985
DATE
5/15-5-17
6/12-6/13
7/2-7/4
7/24-7/25
8/6-8/8
8/28-^/29
9/19-9/21
11/12-11/15
SUR STRAT LIMN ION
1 STRAT EPI
MESO
HYPO
TOTAL
2 STRAT EPI
MESO
HYPO
TOTAL
3 STRAT EPI
MESQ
HYPO
TOTAL
4 STRAT EPI
MESO
HYPO
TOTAL
5 STRAT EPI
NESO
HYPO
TOTAL
6 STRAT EPI
MESO
HYPO
TOTAL
7 STRAT EPI
MESO
HYPO
TOTAL
8 UNSTR TOTAL
VOLUME TOTAL PHOSPHORUS
(km3) metric cone.
tons (ug/1)
64.8
8.8
39.3
112.9
99.0
5.2
8.8
113.0
92.9
9.1
10.5
112.5
87.0
6.0
19.5
112.5
98.6
6.9
6.4
111.9
100.1
4.3
7.6
112.0
107.0
2.0
2.4
111.4
112.0
645.6
82.9
399.3
1127.8
1098.5
79.4
163.2
1341 . 1
782.4
90.5
135.6
1008.5
827.7
57.6
250.6
1135.9
959.9
97.4
148.0
1205.3
1264.6
506.3
732.1
2503.0
1711.3
166.6
290.6
2168.5
2824.2
10.0
9.4
10.2
10.0
11.1
15.2
18.7
11.9
8.4
9.9
13.0
9.0
9.5
9.6
12.9
10.1
9.7
14.1
23.0
10.2
12.6
116.8
96.6
22.4
16.0
81.3
120.8
19.5
25.2
CORR CHL A
metric cone.
tons (ug/1)
152.6
20.6
80.9
254.1
102.3
5.0
12.6
119.9
121.6
7.8
8.5
137.9
192.9
12.6
29.9
235.4
281.5
14.3
20.0
315.8
261.1
4.0
3.5
268.6
639.5
6.2
9.0
654.7
550.1
2.4
2.3
2.0
2.3
1.0
1.0
1.4
1.1
1.3
0.9
0.8
1.2
2.2
2.1
1.5
2.1
2.8
2.1
3.1
2.8
2.6
0.9
0.5
2.4
6.0
3.0
3.7
5.9
5.0
-------
PAGE 98
TABLE 9
LAKE ERIE EASTERN BASIN REPRESENTATIVE AREA
VOLUME WEIGHTED TOTAL PHOSPHORUS AND CORRECTED CHLOROPHYLL A DATA,
1985
DATE
5/15-5/17
7/2-7/4
8/6-8/8
9/19-9/21
il/12-11/15
SUR STRAT LIMN ION
1 UNSTR TOTAL
3 STRAT EPI
MESO
HYPO
TOTAL
5 STRAT EPI
MESO
HYPO
TOTAL
7 STRAT EPI
MESO
HYPO
TOTAL
8 STRAT TOTAL
VOLUME
(km3)
72.1
26.0
18.1
27.8
71.9
31.3
19.4
21.0
71.7
38.4
7.4
25.8
71.6
71.8
TOTAL PHOSPHORUS
metric cone.
tons (ug/1)
837.0
212.2
1,'3.6
253.6
639.4
323.7
178.5
211.4
713.6
284.4
50.0
234.2
568.6
810.7
11.7
8.2
9.5
9.1
8.9
10.3
9.2
10.1
10.0
7.4
6.7
9.1
7.9
11.3
CORR. CHL.A
metric cone.
tons (ug/1 )
68.6
26.2
37.6
18.7
82.5
48.2
11.9
14.6
74.7
74.9
9.7
13.1
97.7
83.8
0.9
1.0
2.1
0.7
1.2
1.5
0.6
0.7
1.0
2.0
1.3
0.5
1.4
1.2
-------
TABLE 10
PAGE 99
VARIABLE TEMP
MEAN
ST.DV.
STATION
32.0
78.0
31.0
30.0
38.0
37.0
36.0
73.0
42.0
43.0
*- S
* 3
* )
* 3
* )
* 3
* 3
* 3
* 3
* 3
* 3
18.3502
4.251
SMS
B
B
B
B
B
B
B
B
B
B
VARIABLE
TSS
1.3332
1.452
+*
( *
( *
( *
( *
( *
( *
( *
( *
{ *
( *
*_
*
*
*
*
*
*
*
*
*
*
S
3
)
3
3
3
3
3
3
3
3
S M
B
B
B
B
8
B
B
B
B
B
S
+*
[ *
( *
[ *
[ *
[ *
[ *
[ *
[ *
I *
f *
VARIABLE
ST.DV.
STATION *_
32
78
31
30
38
37
36
73
42
43
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
*
*
*
*
*
*
*
*
*
*
3
3
)
3
)
3
)
)
)
3
CHLACORR
2.8772
B
B
B
B
B
VARIABLE CORRTP
12.3792
6.090
(
(
(
(
(
(
(
(
(
(
$•*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
- S
3
3
3
)
)
)
)
)
3
3
S M
B
B
B
B
B
8
B
B
B
B
+*
(
(
(
(
(
(
(
{
(
f
*
*
*
*
*
*
*
*
*
*
VARIABLE
NITNIT
STATION ,
32.0
78.0
31.0
30.0
38.0
37.0
36.0
73.0
42.0
43.0
"- S S M S S +*
3 B ( *
3 8 { *
3 B ( *
3 8 ( *
3 B { *
3 B { *
3 B ( *
) B ( *
3 B ( *
3 8 ( *
-------
TABLE 11
PAGE 100
MEAN
ST.OV.
STATION
63.0
9.00
10.0
15.0
VARIABLE
MEAN
ST.OV.
STATION *-
63.0 * )
9.00 * )
10.0 * )
15.0 * )
TEMP
14.9702
6.945
M S
A
A
A
A
S
{
(
{
(
+*
*
*
*
*
*_
* }
* )
* )
* )
VARIABLE
CHLACORR
1.2760
0.563
M S S
A
A
A
A
+*
( *
( *
( *
( *
VARIABLE
*- S S
* }
* )
* )
* )
VARIABLE
*- S S
* )
* )
* )
* )
TSS
1.2193
0.981
M S
A
A
A
A
CORRTP
9.5614
3.872
M S
A
A
A
A
•»•*
( *
( *
( *
( *
+*
( *
( *
( *
( *
MEAN
STD.DEV.
STATION
63.0
9.00
10.0
15.0
VARIABLE NITNIT
213.2632
45.543
S S M S
A
A
A
( *
( *
( *
-------
PAGE 101
TABLE 12
QUALITY CONTROL SUMMARY FOR 1985
Difference Between Duplicate Samples
PARAMETER
TEMPERATURE
DISSOLVED OXYGEN
CONDUCTIVITY 25 "C
pH
ALKALINITY TOTAL
ALKALINITY
PHENOLPHTHALEIN
SECCHI
TURBIDITY
TOTAL SUSPENDED
SOLIDS
RESIDUAL SOLIDS
VOLITILE SOLIDS
CORR CHLOROPHYLL A
PHEOPHYTIN
PHOSPHORUS:
TOTAL PHOSPHORUS
TOTAL FILTERED
SOLUBLE REACTIVE
NITRATE + NITRITE
AMMONIA
SOLUBLE SILICA
CHLORIDE
UNITS
•c
mg/1
umhos
SU
mg/1
mg/1
M
MTU
mg/1
mg/1
mg/1
ug/1
ug/1
ug/1
ug/1
ug/1
ug/i
ug/1
ug/1
mg/1
N
8
15
19
27
18
18
4
24
15
15
15
17
17
35
34
35
33
33
36
36
MEAN
.03
.12
1.84
.02
1.11
.56
.13
.18
.16
.21
.15
.40
.68
.32
.41
.28
1.24
.84
12.39
.08
STANDARD RANGE PERCENT OF SAMPLES
DEVIATION LIMIT WITHIN RANGE LIMIT
.02
.11
1.63
.02
.98
.50
.11
.16
.15
.18
.14
.35
.60
.29
.36
.25
1.10
.75
10.98
.69
.10
,39
6.02
.07
3.63
1.33
.41
.60
.53
.67
.50
1.30
2.22
1.06
1.33
.92
4.06
2.76
40.46
.26
100*
100*
100*
92.6*
94.4*
88.9*
100*
95.81
93.3*
93.3*
100*
94.1*
94.1*
97.1*
91.2*
97.1*
97.0*
93.9*
97.2*
91.7*
-------
PAGE 102
FIGURES
-------
OCTROI!
NEW YORK
PENNSYLVANIA
ClfVflAMO
LAKE ERIE MAIN LAKE
SAMPLING LOCATIONS
OHIO
Figure 1 1985 Lake Erie Open Lake Sampling Locations
£75
O
Ul
-------
»— »
1-
1
z
yj
u
o
CJ
50
45
40
35
30
25
20
15
10
5
a
-
-
•
7STH PFHfTHTTI F — ~~
• /Jin ru\ucni ILC. ~-
-
•
• MEDIAN-—.
-
: 25TH PQCENTILE-^
•
'-
i i i i
^
— ^
«
-MAXIMUM
^•^NUMBEROF SAMPLES
-MINIMUM
i i i i
APR MAY JUN JUL AUG
MONTH
SEP
OCT
EXPLANATION OF MEDIAN PLOTS
(After Reokhow, 1980)
Figure 2
-------
PAGE 105
a
i
"
§
1-4
m
OO SS3NX3IH1 NOINHIlOdAH
-------
PAGE 1G6
co to -«*• r\j
co co •*• csi
I
i
i
CW SS3N>I3IH1 NOINWI1CWAH
-------
u
23
22
21
20
19
18
17
16
15
14
13
12
11
10
Q
•
•
r
•
•
•
•
<••
r
L
•M
21
ffl
I
a
]
J
C
X
i f
_ a
]
L c
mm
3
31
i-i"*
T
J»,
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
MONTH
FIGURE 5 MEDIAN CENTRAL BASIN EPILIMNION TEMPERATURE, 1965
•a
3*
-------
PAGE 108
vr-ri \
IL-U I
ii
Is
ft
1_ X
£~ >-«
<
a ) 3ynivy3dH3i
-------
IH
PAGE 109
u
t-H
_J
(M
a > 3aniva3dH3i
-------
PAGE 110
_•„. „ -A >_ a.._. .. . A_.
I
S
i
^^
i
i
2
ffi
i
in CB in
cx9 GD c^**
tn
of
in
irf
in
a >
-------
PAGE 111
h*&H
i i i i .. ,i. , i
*.!.. II I I
§
1-1
O/3N> N30AXO OaMOSSIQ
-------
PAGE 112
•s-
I
x
3
m
NOUVaniVS lN33*Bd N39AXO 03A10SSIQ
-------
PAGE 113
s
i
tof
i
irl
ea
P! ol
-J el
CON/VOW 31VM
N3SAXO
-------
p
£
5.0
45
4,0
as
3.0
2.5
2.0
1.5
1.0
0.5
0.0
lES TO l«i DATA FWM NBA. 1MB
10W TO 1885 DATA BW RDM. #WOK • IN HC9S
kjj
1825 1930 1935 1940 1945 1950 1955 I960 1965 1970 1975 1980 1985
FIGURE 12 MEAN CENTRAL BASIN HYPOLIMNION CORRECTED OXYGEN DEPLETION
RATES FROM 1029 THROUGH 1965
-------
12. 5r
12. 0[
11.5
11.8
^ 10-5
5 10.0
! 9.5
x 9.0
a a5
1 7.5
3 7.0
6.5
•
p
•
•
>
>
11
^hL«
•
•
6.0L
q q| i- -*-».-. . . i . . . i
-
r
i
|i
••
»iii.
11
ij
MONTH
FIGURE 13 MEDIAN EASTERN BASIN HYPOLIMNION DISSOLVED OXYGEN
CONCENTRATION CMG/U. 1985
-------
n i
in s> in
ps» p** 10
i
PAGE 116
a
i
lN33d3d N33AXO Q1A10SSIQ
-------
PAGE 117
§
GO 31V« NOI13Td3Q N33AXO
-------
PAGE 118
45
41
m
m
a
m
is
if
s
1
tfiuIMHUM
•
' L
J L
<•
•
R '
. £
Ml
M
•
m
][
B
<•
M
< E
]
•
t
•
•
]
«M
«
•
1
M
MY DEC
in sis
175
191
m
»
75
WfOLMOTN
9
FIGURE 18 MEDIAN CENTRAL BASIN TOTAL PHOSPHORUS CONCENTRATIONS
FOR 1985
-------
PAGE 119
HI
a
u
i
OTUTM.
71
a
11
o W*L aumm
JWKAY,nHJULAUC9B>OCT«YOE
FIGURE 17 PERCENT COMPOSITION OF PARTIOJLATE AND TOTAL DISSOLVED
PHOSPHORUS IN CENTRAL BASIN, 1085
-------
PAGE 120
2
24
22
a
if
IB
14
12
If
I
a
4
2
I
OTDTILP
® TDIW. FH.TBB) P
* 30LULE REACTIVE P
i:--«"'®" ••»-«'
121
111
rnnumiai
o TOTAL P
OTOTM.F1LTBB3P
if
I
FIGURE 18 THE MEDIAN CENTRAL BASIN EPILINNION AND HYPOUMN10N TOTAL
PHOSPHORUC, TOTAL FILTERED PHOSPHORUS AND SOLUBLE REACTIVE
PHOSPHORUS CONCENTRATIONS FOR 1865
-------
PAGE 121
I -
H im
71
B-B—a—a-
DTDTOL
•
n
ii
•
^ f\ fi.iirai
i* \ f 9 N9BhJyNIQOf
• 4. — ,. • • +• . . ^ ^ %
FIGURE 18 CENTRAL BASIN LIMNION DISTRIBUTION OF TOTAL PHOSPHORUS IN
METRIC TONS AND PERCENT FOR 1985
-------
PAGE 122
S
M
24
mjwooi
18
18
14
12
11
B
24
22
a
It
18
14
12
11
t
APRNAYJHJULAUGSEPOCrNOVOEC
HmLDtmw
IS
AWXAYJUNJULAUCSffOCTWHOEC
FIGURE n MEDIAN EASTERN BASIN TOTAL PHOSPHORUS CONCENTRATIONS
FOR 1065
-------
PAGE 123
It
11
If
I
•
7
I
S
4
a
i
t
DTOTALP
O TOTM. FILTBH) F
A9DUBJEWCTIWP
MNkYJUNJULMB^OCTNOViK
12
11
11
0
I
7
I
S
4
3
2
1
I
B-
-H-
••«*
OTDPTM. FH.1B0P
APtmYJ«JU.AIJCSB>QCTHOVDEC
FIGURE 21 THE MEDIAN EASTERN BASIN EPILIMNIQN AND HYPOLIHNION TOTAL
PHOSPHORUS, TOTAL FILTERED PHOSPHORUS AND SOLUBLE REACTIVE
PHOSPHORUS CONCENTRATIONS FOR 1985
-------
PAGE 124
m
a
11
OMLMB itwww
71
21
11
OTOTM. (H3BCLVHJ MWHWt
Ml MY XM JL MS
OCT MOV
FIGURE 22 PERCENT COMPOSITION OF PARTICULAR AND TOTAL DISSOLVED
PHOSPHORUS IN EASTERN BASIN, 1885
-------
PAGE 125
VOJMOON
19
Uliult
OMNKA
>**=*
ur
OHTTIWTt
APRNAYJIKJULAUC3B'QCTWVDB:
FIGURE 23 THE MEDIAN CENTRAL BASIN EPIUMNION AND HYPOLINNION
NITRATE AND NITRITE, AMMONIA AND KJELQAM. NITROGEN
CONCENTRATIONS FOR 1985
-------
PAGE 126
131
!•
0 KTTWUE + KTIRITE
(• mmam
M« NAYJMJI. AUC 9B> OCT HOY DEC
5 m
19
APR«YJUHJULAUC3B»OCTMtWDEC
FIGURE 24 THE MEOIAM EASTERN BASIN EPILIHNION AND HYPQUHNHM
NITRATE AND NITRITE AMNONIA AND KJELDAHL NITROGEN
CONCENTRATIONS FOR 1965
-------
PAGE 127
MtNAYJHJULME^QCTNOVOB
FIGURE 25 THE MEDIAN CENTRAL BASIN EPIUHNIQN AND HYPOLINNION
SOURf REACTIVE SILICA CONCENTRATIONS FOR 1085
-------
PASE 128
AffiKAYJUJULAUGSffOCTNOVOEC
AffiWYJUHJULAU63B>OCTNDVDB:
FIGURE 26 HE MEDIAN EASTERN BASIN EPIUNNION AND HYPOLIHNION
SOLUBLE REACTIVE SILICA CONCENTRATIONS FOR 1965
-------
DISSOLVED OXYGEN
APR MAY JUN JUL AUG SEP QCT NOV DEC
13
12
11
10
9
8
7
9
5
4
3
2
1
0
FIGURE 27 MEDIAN CENTRAL BASIN HYPOLIMNION NITRATE AND NITRITE
OJG/U, AMMONIA CUG/U AND DISSOLVED OXYGEN
-------
CONCENTRATION OC/U
PAGE 130
m
-------
PAGE 131
7.!
7.1
fl.!
fl.1
1!
11
1!
41
I!
II
2,!
2.1
1.!
LI
L!
LI
Bier*.
MAY
JUN JU. MJC 9B> OCT HOY DE
7.5
7.1
fl.!
fl.1
3.!
11
4!
41
1!
II
2.!
2.1
L!
Li
i.:
LI
wmuwoi
onm.
ovcunif
AOUBOWU.A
®—
APRMYJIKJU.AUC9B'OCTNDVDEC
FIGURE 29 THE MEDIAN CENTRAL BASIN EPILINNIQN AND HYPOLINNION TOTAL
SUSPENDED SOLIDS QC/U. VOLATILE SOLIDS OCA), AND
CHLOROPHYLL A CUGA). CONCENTRATIONS FOR 1965
-------
'
LI
i;
I!
L;
GJ TTJTM. 3UBPBOBJ 3DLDB
® WUTH£ 30LHB
tfRIMYJIMJILMBSB>OCTNaVflB:
D TOTAL SU»DIE) 90UD8
O WUTILE SDLUB
FIGURE 31 THE MEDIAN EASTERN BASIN EPILIMNION AND HYPOLIMNION TOTAL
SUSPENDED SOLIDS OCA). VOLATILE SOLIDS OC/U. AND
CHLOROPHYLL A 0£/y, CONCENTRATIONS FOR 1085
-------
PAGE 133
0
oxiesnm. scum
tfKNAYJUNJULMJCaffOCTNOYQEC
'"€>
9
II
I
BXWUTH£90UD5
e j
FIGURE 31 PERCENT COMTOSITION OF VQUTIUE AN) RESIDUAL SOLIDS
CENTRAL BASIN, 1885
-------
PAGE 134
mumm
BS VOLATILE OJOi
© S WOUM. 80UOB
If
I
mfOJKIM
71
o—
21
II
I
of voumi
OS
FIGURE 32 PERCENT COMPOSITION OF VOLATILE AND RESIDUAL SOLIDS
EASTERN BASIN. 1085
-------
PAGE 135
271
271
274
272
271
264
<§-*'
noMJUcnvm
OOUMQE
Ml mi JW JUL MB
ncr NW nc
U.I
17.1
ULI
lil g
14.1 2
13.1 C
12.1
ILl
HI
271
271
274
272
271
BomcnvnY
eotaan
MY XM XL MB
QCT NOV DEC
FIGURE 33 THE MEDIAN CENTRAL BASIN EPIUNNION AND HYPOLIMNION
CONDUCTIVITY AND CHLORIDE CONCENTRATIONS FOR 1085
-------
PAGE 136
mi
284
m my " jw ju. MB
ocr «v off
34
274
272
27I>
wpounaai
e-
/WMAYJUIJULMJCaCPOCTWYOEC
ULI
HI
S7.I
IB. I
111
141
HI
12.1
1LI
ULI
FIGURE 34 THE MEDIAN EASTERN BASIN EPILIMNION AND HYPOLIMNION
CMUCTIVnY AND CHLORIDE CONCENTRATIONS FOR 1985
-------
HTDKA8! UCU (PMREB CftSFJl If ANA IFF PTl fti.1
*l«llt»llt*
* HCTf I
mmiaim
PAGE 137
VARIAtlt HtlHKE* ......
NUHBCR OF DISTINCT VM.UFS ,
NUHtCK OF VAUIKS COUHTkD, ,
NUHIEft OF VALUES HfU COUNTED
MEAN
HFliUN
2
141
372
47
MAXIMUM
RBNCF
VARIANCE
ST.fiFV.
tu.t-illl/2
34,5000000
3.soooooo
3.3337772
10.4004404
9.2765175
O.X.WV400
HH
MMH
HHH
HHH
HHHH
MHHHHM
HHHHHH
MHHHMHHH
HHMMHMHHHHHMHHHHHHMHH
f.ff.H 'H'
REPRFSFHTS
nu
S
H
N
'J4 '.!!•" I'llltri 1
J.KOO 2
4 9.. 5 1
4,900
3.030
i.A''l
5.7»0
s.»eo
4. "'00
6.2CO
4. WO
i.*f<0
4. SCO
4.700
7,000
7,110
7. 704
7.360
7 . 100
7.T--0
7..-.30
7 .700
7.S00
7, 700
8.400
8.150
6.^00
B.300
8,409
8.580
a,. '.co
8,730
3 POO
8,760
9.600
9 ,1(10
».*»
i
1
;
1
1
;>
1
1
S
i
1
.1
4
•,'
1
3
10
4
1
y
12
A
3
A
i
t
2
A
5
:•
?
;i
3
1
lit
0
1
n H
s n
i t
PERCENT?
lift • t;u»
0.5 0,5
0..1 O.S
0.1
ft. 3
o.:.
0,4
0.3
0.15
0.3
o.n
1.3
O.A
0.3
O.S
1 .1
o.:.
9.3
O.H
T 7
1,1
0.3
«.:>
3,2
1.4
0.1
1.4
0.5
'.'.4
0.3
1.4
1,3
o.r,
2.4
0.*
o.e
«.*
1.1
1.3
1.9
2.2
2.4
1.0
3,2
4.0
3.4
5,4
5.9
4.7
7.8
8.1
8.4
9.4
17.1
13,2
13.4
14.0
17.2
1R.8
19.4
,'1 .2
71. R
-'4.2
24.7
74.3
77.7
•>fl.J
30, »
,U.5
37.3
.U.I
li.lY*»TT«l
a
n 3
1*
*
N
VALUE ClWHl
.J60 2
,4f>0 U
.500
,400
.700
,HOO
.900
10,000
10.100
10.500
10.300
;o.'.oo
IO.MIO
10.700
10. BOO
10.900
11.000
11.100
11.700
11.300
11.400
it.soo
11.400
11.700
ii.wo
M.ViO
12.000
17.700
12.380
15.500
12,400
12.700
12.900
n.ooo
13.100
13.700
i
;i
3
1.5
4
.1
9
•t
3
3
3
*l
12
,i
2
4
14
1
1
V
1
fi
1
;>
2
4
1
4
4
;'
1
1
4
t
S
t
EKEWNESS
KURTOSIS
FERCfHTS
f.n i I:UM
0,7 33,4
1,4
0,'
0,8
x.s
1.1
0.8
7,4
0 5
O.B
O.H
0.8
o.:;
3,7
O.rt
0.3
1.4
3.K
0.,?
0.3
o.s
0.3
1.3
0,1
O.f.
0,3
1.4
0.3
l.l
1,1
0.5
C.fl
0,3
l.l
0.'.
3t),4
39.0
39.8
43.3
44,4
45.2
47,4
W.I
111,9
49,7
50,5
til. 1
r,'. , 3
j!i . 1
55,4
r,7.3
Al.O
41.3
41,4
47.1
4T.4
43,7
44,0
44.5
45.1
4*. 7
44.9
48,0
49,1
49,4
70,4
/0.7
71.8
72.3
UAUlf lUHlHf
1J.MO 2
1 3 , 'iOO 1
J3.AM
13,700
13-Ri'O
tl.fOO
14,0«0
14. IOC
14,200
11.. 100
14.100
14,400
14,700
14,800
15.000
15.100
15.100
15.100
15.5(10
is , ;oo
IS. 900
14.000
14.360
14.500
1 4 . 4!tO
14,000
14.900
17.900
17.100
17, SCO
17,3(10
17.100
17. BOO
18.000
18.300
15.500
4
1
2
1
2
^
i
?
3
;<
1
1
5
,!
i
1
1
•i
4
1
1
V
1
1
1
.1
1
1
3
1
2
1
1
1
t —
EftCH
VALUE
1.77
3.4"
I:-«CH
me* NT?
I:EU run
0.1 73.1
i li
G.8
('.I
n.3
P.S
'.1
ii.3
0."
(>,8
0,!i
(I,,*
0.1
!>,"
O.P
0.3
0.3
0.3
0.5
l.l
8.3
H.3
0.5
».S
D.I
(l.l
0.8
0.3
0.3
0.8
0.1
O.fi
0.3
0.3
0.3
71.?
75 . 0
/" , 5
7f,.3
74.3
77,4
77.7
/B.2
79.0
/9.4
y?.R
80.1
HO.*
HI. 5
81. /
H"1.*)
H7.1
if.8
C7. .9
84.1
»4.4
HI, 9
«'.?
fl',.5
K'.H
-•16,4
H4.fi
H7.1
87.9
Ofi.2
SB. 7
H9.0
89.?
H9.5
t«
U=
WLUf/S.F.
13.48
.' SFLC'J -
Vftl.UF!
18.
13.
IS,
19.
19,
1?,
19.
7.1,
20.
?0.
21.
?1 .
22 •
72.
22 .
?.».
23.
71.
24.
.14.
25.
?'."i,
24.
7-4,
74.
74.
27,
7S.
29.
79
;o.
31
J3.
31,
34.
700
BOO
9!>0
000
1 IV f,
100
9r>0
160
tr.p
soo
CO
15C
fldfl
IOO
fr.f
-00
7M
10fr
r,<>o
ROO
roc
ȣ>G
?<>0
"00
5PO
•iOO
*>(>:•
100
(.(•0
900
.SCO
900
500
SCO
r,oo
1
01
03
e.
£4
1
I
I
i
1
I
I
I
1
?
I
?
1
1
1
I
1
1
T
1
1
1
1
1
I
1
1
1
1
t
2
1
;
1
1
-i«
P.43O30C4
f'€SC
Cci •
c.1
(•,3
c.1
( ,7
6.1
<• 1
C.I
< , 3
0 . r.
|, _ T
0."
1'. 3
0.3
n, j
1,3
('•.?
i.'
;!. "^
r,.3
• V ^
c.1
ri.3
O."1
r> , 3
u.1
>. J
9.1
(• :'
0,1
<•.•:
0.3
(>,T
0.1
O.S
rj M
<=: .'~
$*.,-.
T *! . ?
'' . 1
'• '. . -
il . "
y i . -
13 ~ . l
"~. "
n -:
SJ.*
?'.£
-•>. '
V4.4
•>' .f.
•I » . '.
*j,4
?r .">
'i . ••
9* '/
-------
HfBMSS NEW (FAlREB CASES) IP ftKD TFP P!B AIL HAT*
PAGE 138
WflMISSISS
t HCTPAS 1
SSSItMlttSt
HAXIKUH
i NfMIXtlM
n.MOfloeo
HUNK* OF DISTINCT VALUES . 133 KAHOfc. 35,7V¥9992
NUHtEH Uf VAUIt'S COUNTED. . 172 MftKlftHCI 31.5Z.U400
HUn»ER OF VALUES NtlT COUMTfD 47 ST.flFM. S.AM!,473
(QJ-qi)/2 2. 7500008
LOCATION ESTIHftllS ST.CMkOR
WEAN 11.8965044 0.2*11007
HCDIAM 10..1590004 Q.2S?H07V
N
N
nuut
S Q
1 K
8
I
H K
D 8
I N
a
3
s
PERCENTS
VAl Uf
Z.V-tJ
3. '03
1.700
S.OSi
5.1CO
5. 'JO
5.300
5.140
1.31-C
5«*>CO
3. SOU
5.95C
6.3GC
6. IOC
4,300
S,"»C
6.600
7.500
7.2CO
7.100
7.500
7.-.C3
7.800
7 . *.V>
3.200
8.120
8.7CO
S.100
B.400
3, '00
3,400
B.730
B.S66
S , Vjfl
flKIH '
i
1
I
1
1
I
1
;>.
t
;,
1
••
i
u
1
/
I
A
4
.t
14
r,
9
r.'
2
4
.(
9
'.>
J
r,
2
14
i>:i i
9.3
0.3
0.3
0..*
J.3
9 . f.
0.3
0,5
fl.3
',.,!
C.3
(5.1,
0.3
l.,i
0.3
1 ,»
0.3
l.A
1 .1
O.H
,1.8
i .3
1,3
,i . 7
1.,!
1.1
O.ti
7.4
6.5
o.r,
1.3
0.5
;i.»
CUB
0.3
0.5
O.R
1.1
1.3
1.9
7.2
,!,?
3.0
4.3
1.6
', I
5.4
A. 7
7.0
8,9
9.1
10, 8
11 .R
17.4
16.4
17.7
19.1
',"! . 3
,'4.2
75.3
7A.t
2S.5
,'9.0
79,4
.iO.*.
31.5
.C..2
VAI (IF
9.mo
9, roo
9,300
*,MO
9.AOO
9.'»»
9. BOO
9, ¥00
10.000
1 1) , 1 00
10. 2M
ia.«flo
lO.iSCO
10,760
10.HOO
10,?00
H.OOO
11,100
» i . ?oo
11,300
11 ,4(0
11, "CO
ll.AOP
11 ,700
11 .900
17, 000
12 . j 00
17,?00
12.300
1?,100
12, (-00
12.700
12.900
i3,ooa
LIH;H r
2
1
A
IV
3
s
8
A
5
4
4
A
2
1
9
I
2
1
9
'.!
S
a
2
'}
•j
H
1
I
1
;!
6
,'
1
?
SKEUNES5
XURTOSIS
PERCF.HTS
I:FI i.
o.r,
o..<
o.r.
r,.i
0.8
0,,<
"1.1
I, ft
1.3
1.1
1.1
J .*
o,:.
0.3
S.4
1.9
(>.r.
O..I
51.4
0.5
1.3
O.S
C.5
0.5
O.H
l.A
0,3
1,9
0.3
Q.'.i
l.A
0,3
(1.3
0,5
CUH
35. H
3A.9
3A.A
41.7
42,5
43,7
44.9
46.5
17. R
4H.*
v,o . o
51.4
'.1? .':'
',i7,4
54.?
:.*.?
57.3
57.5
KV.V
A0.5
Al.S
A.1, 4
*3.»
A3. 4
A4.7
AS.?
&A.1
Aft. A
SB. 3
AH. 3
/0.4
/l.O
71. J
n,9
Wftl.ltf.
13,100
)3,700
13.300
u,*oo
13.700
13,808
13.900
14,900
14, K'O
1 4 . 400
14.500
14 100
II, '.'00
15.100
15,700
13.100
15.700
i'j.»00
16,000
14.700
16.300
1 4 . 400
14. WO
1 S , VOO
14* BOO
16,900
17.090
1 7 , 700
17.300
17,400
17.MiG
17.900
18.000
18.7,00
cmiMT
1
1
5
4
2
/
1
;,
1
?
.<
2
1
1
.1
1
1
;'
1
'J.
1
;>
^
1
3
,'
1
.1
3
J
7
*
H
HM
HMH
HUH TftCH 'H'
HHHHH 7
HHMHHH COUNT' 7! »
HHHHHHHHH
HHHMMHHHMH
hHHHHKHMHHMHHHMHHHHHHH H
EACH
VAIUF
1.R3
4.01
EACH
"-' ABlWE " 1,'f.iO
L« i.rooo
01. ?. 5999598
14.38 S-- A.:8!*??!
15.80 E4« 17.5M0512
',' PFLOU " 0.30C j
FERCEMIR
TFU
0.3
0.3
1..)
1.1
03
B-Ti
0.3
1.3
(. , t
0.3
v.t
«. a
(,.r
0,3
0 . .*,
0.3
(1.3
o.r.
0.3
0,3
0.3
0.3
0.3
8.3
0.3
0,3
O.R
o.r,
0.3
0,8
0,8
0,3
P.S
o.r,
RUN
73.0
,'3,3
>"U?
M.7
7r, . '
/'>,J
7A.1
?7,4
.' " . '
/ i , 0
?*.".
."i."
/'.'
Hu.l
tc" , •)
SI. 2
F1.5
S^.O
p~ _ i
»•;. 3
1)3. 1
an.s
S3. 9
M4.4
B1 ,9
HA.O
a^,6
RA.R
«7.a
Hf .4
B8.7
R9.7
B9.8
MAI l)F
IS,
m.
i».
19,
19,
7H,
70,
rs.
;'. .
71.
H? ,
.'^ .
72,
71.
21.
73,
74,
74,
25.
.H.
27.
77,
28.
79.
30 «
39,
31.
T.
7-4.
34,
39.
X
f CfvCEN'i
cnuwT rf i , r^
7"0 2 0,' 5-J."
•?'}0 7 £•.*" «:••.»
105 1 •', .?
700 1 C.3 Jl.,t
•','0 1 t-,7 •". . "
000 1 0.3 •' • '
l^'O 2 '.>.' «".'
"*00 t C,' «"."
.,,,-, 1 '..i ..: , ,
i , j 1 C . 7 - ; . •
• i 1 - .
1 C-i ' '.'• *~ •
• '•': 2 '>,' ' ' • =
i'o 1 c.1 =;.-,
t.-'j i . ,^ •'.'
9-39 1 C," '•";..
7!>n r o.r •'."
730 ' •:.•» " .
Ai.O 1 "'.'. '•..
.'00 1 •:.» 'i-.:
100 1 (.,* -».•
TOO I 0.3 ?'.:
nt.o 2 o r *".•
"60 t e.'. *~..-.
i -in 1 ( i •» - n
400 1 0.3 »^.!.
AC'O i ;•' *. <•? . "
'CO 7 O." "?,
3i'0 1 0.3 ••-.r
909 1 3.1 '?.'
100 1 0.7, !•";...
FIGURE 36 STATISTICAL SUMMARY OF THE ASCORBIC ACID (AA)
TOTAL PHOSPHORUS DATA USED FOR THE METHOD COMPARISON
-------
PAGE 139
«h
o
M
3
U
3H
« H
-*&
m
« i—*i—n i
g
^~t
!S
i
CV3TD
-------
HYHRA85 TPPIF ST Cl. VS AS ftfID
t TPDIF t
lltlKltllt*
MUHICR ......
NUMBER DF DISTIMCT V«LUFS .
NimBFH UK UAH)** rniiHTto. .
NUMBER OF VALUES NOT cnuNTEO
LORATIIIN ESTIMATES
HEftN
HF.KIAN
HODE
4
157
372
47
IMXJHUH
HfHIMUH
RMiRF
VARIANCE
ST.DFV.
r, 5999994
-n.OOnoocO
13.5999991
j, ?y3.iio21
t ,8l17ir,B
». 10IMM04
S.OOQOOOO
ST.t.KKfiK
0.0940YO'.>
O.OHAA026
PAGE 140
H
HH
HH
fWM
HHM
HHMi
HHHHH H
MHHHHHHH
HHHHHHHHM
KHHHHHHHIIHhKHHH HH .-
SKEiMESS
KUKTOSIS
O.OB
1 .44
3,61
I. Af.
CACH ' , ' RFL'MJ '
N
t
N
vfti in-' I'.nuNr
-4
-5
-4
-4
-4
-4
-4
-4
-3
-1
-3
-.1
-2
_^i
-
-
-
-
-
-
-1
-
-'
-
-
-
-2
— ";
-1
-t
-I
-1
-1
-1
-1
-1
-1
-1
-1
-1
.SGQiO
,,10000
,10000
.'•'luQO
. 70COO
,40000
.30000
,70000
,30000
.AilOOO
.40000
, jfvioo
.90000
. yoooo
.aoooo
.70300
.70000
.AOOOO
.50000
.sonoo
.'•oooo
.40000
.30000
. 30000
•?cooo
, t-inoo
.JOOOO
,0'tr.oo
.90805
. itnooo
.70000
, 70000
.70000
.AOOOO
.(•0000
.50000
.50000
.50006
.40000
.40000
1
1
1
1
1
n
1
1
1
1
1
1
I
f
1
1
3
1
1
J
2
I
3
1
I
A
S
1
1
.(
1
1
2
1
2
1
2
1
4
s
PERCENTS
f.fl t.
3.3
O..S
0.3
0.1
O.I
(I.1,
0.3
0.3
0.3
O..I
0.3
O..I
0.3
0.5
0.3
O.J
0.3
0.1
0,3
A, a
o.r,
0.3
0.8
0.3
0,3
•l.A
3,3
0 . ^
0.3
O.A
0.3
0.3
0.5
0..!
0.5
o.r,
1,3
0.15
0.3
1.1
CUK
0.3
0,5
0,*
1,1
1 .3
1 .9
1 1
3.4
•*,7
3.0
1.2
3.5
s.a
4.3
4.6
1,8
5.6
r,,9
A. 2
7.6
7.5
7,8
a. A
8.9
9.1
to. a
11 .0
11.3
11 .A
1.'.4
12. A
12. 9
13.4
13,7
H.2
14,1
1A.1
1A.7
16.7
18.0
Mftl.UF COUNT
-1,40000
-1.30ftOO
- ,30000
- ,?Qt>00
- .10000
- ,10000
- .10000
- , iMOQO
-l.OOflOO
-0,90000
-0, 90000
-0.90000
-O.iOOOO
-0.80000
-o. aoooo
-9,7«''>QO
-0,70000
-0,70500
-0.70000
-0 , AOOOO
-0 . AOOOO
-i). AOOOO
-0.30000
-O.SOOOO
-0.4JOOO
-i>,4
j
;
1
1
e
i
I
:,
3
1
2
1
1
•>
t
.1
J
2
10
1
1
.1
S
4
1
1
1
1
5
J
2
14
1
5
ft
1
0
1
nn
B S
2 ^
DA
EN
PERCEHTS
ITI 1.
0.8
0,,»
O.J
0.5
000
0,90000
1.10000
1.10030
1,10000
T.DOOO
1,20000
1,70000
i.joeoo
1 . 30000
1,300«0
1 , 40000
1.40(100
t.r.oooo
1.500(0
1.M004
1 . AOOM
1 , 70000
1.700*0
1.10000
l.POono
1 . 90000
3
1
7
1.J
2
;,
4
12
1
A
4
3
,1
j
^
2
(
1
1
1
4
3
1
4
3
1
I
A
I
1
4
1
1
1
1
1
j
3
PERCFMTS
I:FH
(i.B
0,3
19
.i.r.
o.r.
1.3
1.1
j.?
•:t.J
\ .1
0.3
o.s
o.s
1,3
0.3
O.R
0,3
t.9
P. 3
0,3
V.I
O.J
t a
0,3
0,3
l.A
O.J
0.3
1.1
0,3
0.3
0.3
0.3
0.3
0.5
O.S
I'.HH
".1,7
III .4
53."
;, ' , o
r.?,f,
;,j(, ?
%".9
A3,;
f>3.4
A*.l
AA.4
A?.?
AH.O
A».B
/o.:
70,'
^l ,5
/t ,8
/J.7
/"», 9
74. r
7S.3
'/*.!
?A,3
7P.?
''8,S
so'.*
HG..1,
'HO ,9
6?.P
ft?.".
S2.8
B3.1
S3. 3
H1.4
H
X
g»i! OF COUNT i:f'. •
1.9MOO
2.00I f-0
''.*. 1130
:, lO'.'OP
?,)"500
2,roi »o
•"."acoo
?.?1<>OO
J.S'i.'.JO
?."•". "00
?.*c.<.oo
?.7C10C
2.sonoo
"•-^""lOO
">.90i«'"i
3.110-10Q
3,0f>
3^?010C
., T^f.f, «
3.40000
3.4000C
'.AOinn
3.7ASOO
* B0(.01
1 .10*00
4.30«00
5. 50500
A. COCAO
A. 4.1300
•> i. - s : 3
' « . •". 551" ". '
i « 3 : , '
-t f\ f*t * .
2 '•.' " .
1 D . 3 r -. . :
1 C , ' ^ " , :
1 I-.1 '"'.•
4 • . ! » j , '
, , I . " -.
3 C- . 3 ^ ' . i
1 • • . * «'',"»
•» ./'! •»'' =
•J ^. ^ ^ 4 , •
] •'' , 1 ^ 1 . *
1 0.1 yr , T
•i i -•-" ;
• . 2 T
1 'i ' V . " t.
\ '• i »»' -
.* \ 3 _ ' r
i - i > * '
< "i ?- '
" 3 ' '
I .• . 3 T 7 , ;r
1 C.I r. - , 1
1 D . T " • . "
i 5,1 ? ? . ^
1 i1 3 9S . 1
i '"!'•> • f, - ' -,
FIGURE 38 STATISTICAL SUMMARY OF THE COMPUTED DIFFERENCE BETWEEN
PAIRED STANNOUS CHLORIDE (SC) AND ASCORBIC ACID (AA)
TOTAL PHOSPHORUS
-------
S NEU (FAIRED CASF5) TF AND 1FP t?V Ml tlftTA
PAGE 141
» MCTFP *
*mt*tt*ssi
NAXIHUN 14.699999R
YAR1A8LF. MIIHDF.K 4 MIN1HU* 0.3000000
HUWFR OF DISTINCT MfttUFS , 49 RRH6E 14,39*9994
N1II1BER OT VrtllOS ClillilTtn. . 103 VARIANCE 13. 053K70
NUMBER OF VALUES NOT milNTF.D 316 ST. HEM. 1.6179791
LOCATION FSFIHAfES ST.ERRBR
HiAN 6,3S?J«3i» 0»33599?S
HFDlftN 4,0»f¥*99 4.4J)10t?f
nyut
H
S
l.ovuuvvu
n
I
N HH
H
PEKCENTS
VfM.tl* CtlUitr KFU.
0.3000
O.A'tOO
0,5000
1 ,?ODO
1.4000
I.'.IOOO
1.6000
l.HOOO
1.9000
7.1000
2.3000
2.*000
2.8000
3.1000
3.2900
3.3000
3.4000
3.DOCO
1 l.C
1 1.0
1 1.0
1 1.0
i 1.0
1 1.0
1 1.0
I 1,0
3 2.9
1 1.0
1 1.9
1 1,0
2 1.9
i' 1.9
2 1.9
.1 J.»
1 1.0
7 1,9
CUM
1.0
1.9
J.9
3.9
4,9
".a
6.8
7.8
10,7
11.7
13.4
14.4
16.5
18.4
?0.4
X3.3
21.3
7.4.2
WAI UC ClIIINT
3.6000
.? , 7000
3.fO«0
4 , .'000
4.3000
4,4000
4.5000
4.AOOO
4 , 70W
•.,.1)000
5.1000
H.jaoo
5.4000
:i,naoo
6.0000
is.ioco
6.2000
A. 3 DOO
2
J>
1
1
;
1
2
1
3
,1
1
t
I
;>
1
,1
2
'
SKEUMESS
KURTOSIS
Q S
3 t
D An
I HE
rcRCtirts
CEl.l
1.9
1.9
1.0
1.0
1.9
1.0
I.*
1.0
7.9
2.9
1.0
1.0
1.0
1.9
t.O
2,9
1.9
1.9
nun
?8.;
.W.I
31.1
.JI.O
34,0
.W.9
36.9
3?.?
40.*
43.7
44.7
45.6
44.6
48. 5
49. S
S2.4
'-4.4
SA.J
uni tit: i:t
6,4000
6. '000
6.AOOO
7 . 0000
7.JOOQ
/.-,)000
7.7000
7,9000
8,7000
.4000
,6000
. HCOO
.9000
.1000
,50*0
.4000
.8000
10,0000
WHI
2
4
1
'.'
1
.1
1
1
1
1
1
t
1
1
1
2
3
1
H H
H H
H H H
riHH H H
HHHHH HH H
HHHMHHHHHHHHH HH
HHHHHHHHHHHHHHHHHHHH
E.1CH
VALUE
-C.I4
EACH
'-' «>OWF «
L*
U=
VALUF/S.F.
2.30
-l.l?
' . ' JFLCm -
PERCFNTS
I:R i
1,9
3,9
1,0
1.9
1.0
.'.9
,0
.0
.0
.0
,0
,0
,0
.0
,0
1.9
2.9
l.fl
nun
TiH, J
A3, 1
*.!.!
*r,.o
6A.O
AR,9
A9.9
70.9
71. S
??.. a
7X.R
?4,8
'/S.7
^6,7
77, J
79.6
8?.f.
R3.S
U.M.IIC t'
10,1010
10,4000
1 ft , '000
10.AOOO
n.rntoo
n. woo
12,3000
12,4000
12.8<>0!>
11,1000
13.JMW
13,4000
13.7f>00
14.4000
1 4 , 7!IOC1
FWH •*'
REmSfMIS
COU«T(5S
0,7'00
O.&OJO
l».ViOfl
£-- J.T.H-jll
O.ISOO
,A
X
PER*
'IIWT tn i
i uc
) t.i)
1 1 0
1 1.0
i i.o
1 1.0
1 1,0
1 »,(!
1 l.t
1 l.C
1 t.O
3 2.9
1 1,0
1 1,0
1 1.0
EN!?
r'JI"
M.T
»=:,<
fit . '
f." ,t
R?.'
S > . H
V.1,1
9).
911.
91.
9".
9'.!
V* , '
99. C
K.'i.f.
FIGURE 39 STATISTICAL SUHMARY OF THE STANNOUS CHLORIDE (SC)
TOTAL FILTERED PHOSPHORUS DATA USED FOR THE METHOD COWARISON
-------
PAGE 142
MYDMBS NEli « i
MSSIliStHt
MAXIHUM IS. 3000000
VARIAM1 HUMES ...,,, S MINIMUM 0, 7009000
NUNIER OF DISTINCT VAI UFS . 47 RANGF. 14.800000:?
HIIHftER UF VALUES COUNT 1-0, . 101 VARIANCE 11.:>A01S87
mUMF* OF VALUfS NOT C1UMITF8 314 3T.KFV. 3,4000175
tO.I-OH/2 2.5000902
LOCATION FSTIHATES ST. ERROR
WAII S.*4'»'719J O.JI50IJ7
HFBIA* 4.SOOIWOO 0.1173129
MODE
S
M
N
vAuit :i
0,7000
I. 0000
1.1000
1. 6000
1.8000
t.»OIO
2,0000
7.1000
2.1000
7, WOO
2.4000
2.SOOO
2.9000
I. oooo
J.1000
I.l'OOO
3.3COO
tl«T
1
?
1
1
2
}
I
I
2
•.'
1
4
2
.1
1
y
2
Q
1
F-ERCENTS
CEt L
1,0
1,9
1.0
t . (i
) .9
1.9
1.0
1,0
1.9
1 ,9
1.0
3.9
) .9
',1,9
1.0
1.9
l.f
CUH
1.0
3.9
3.9
4.9
t.R
8.7
9,7
10.7
13. A
14.4
15.5
19.4
21.4
74.3
21. 2
?7.2
29.1
nw i unj VUE
K
D
1
K
A
N
Vftl UF COUNT
S.4000
,<.MOO
3.8000
.»,»OM
,0000
.1000
.2000
.MOO
.4000
.MOO
,4000
.HUGO
.9000
5.HOOO
5.1000
li.SOOO
5.3000
1
,(
1
1
1
\
4
.i
2
•}
\
\
1
•J
2
1
1
B
3
SKEUNCSS
KURTOSIS
S
F-ERCFNfS
CEl I.
1.0
2.9
1.0
3.9
S,9
t .n
J.9
?.,?
l.»
1.9
1.0
1,0
1.0
I ,*
l.¥
1.0
1.0
tun
10.1
.13,0
.14. P
.17.?
.59, B
40.8
44,7
*7.4
4V.5
r,i,5
57,4
V.1.4
:,4.4
5* . 3
SH.J
!i9.2
A0.7
Uftl UF I'l
5 . MKlO
'.i.VOOO
r.Hooo
*>,S»0(
4 . 4000
A.-.COO
4, MOO
A, 7000
7.0000
7.SOOO
a. oooo
3.1000
8.3000
a i 4000
g.r.ooo
9.HOOO
9.1000
IIHT
2
1
1
.(
1
-.'
1
1
1
1
1
)
1
'},
J
1
1
H
H
H
H
H M
HHHH
HHHHH H H
NHHHHHH HH
HHHHHHHH HHH H
HriHrtHHHHHHHHMHMHHHH
M»iuE
0,15
E«CH
L»
U*
'J»t UF/S.F,
0.32
F-ERCF.HTS
ceit.
1,9
1,0
' .1
2.9
1.0
1.9
1.0
1.0
1.0
1 ,0
1.0
1.0
1.0
?.»
1,9
1.0
1,0
f.'M
42.1
M.!
*,".'
47.0
dR.Ci
M ."i
70,9
XL 3
7". a
n.a
/4.B
?'. 7
7*. 7
79,4
ffl.A
87.5
B3.3
Vftl UF r.<
9 , fl.pft
9.Svf C
9.4!."
9.Afi(-Ci
10.3MO
lO.'.v'jO
10.7«i>
11.1 '(00
i;.Af,fo
17.HCCO
12,90' 0
n.oooo
IS.''**!*
Jl 9000
1 4 . 200ft
IS.'iOOO
FftCH 'h'
REPWSfMTs
COUHTiS)
H
C . 7',00
0.0000
)9.*.OOC
03= B. 10050-34
S*» 9.C427S70
0.150'.-
H
X
fERCEKTS
)UHT r.FI I
1 IP
1 1 . J
1 1 .0
1 1 .•
2 1 f
1 1 .0
1 t !•
1 l.'i
1 . .Q
1 l.'l
1 I r
1 1.0
1 1 .0
1 1 t;
1 1 .0
1 1.0
Cl;"
'n.r
9". ",
O.l
•• s .
t.-.'
vr.. '
•" ."
".?
9 ' ,
C4..
V, .1
"s. :
9" .'
91.!
^9.f.
100.0
FIGURE 40 STATISTICAL SUMMARY OF THE ASCORBIC ACID (AA)
TOTAL FILTERED PHOSPHORUS DATA USED FOR THE METHOD COMPARISON
-------
PAGE 143
* h
«h
i—I
i—I
CM
10
IfM
GO (D ^T CM
01
15
NOI1VHXN33N03
-------
MYDRAB3 TPOIF AMB TFPDIF P2B ALL DAT*
PAGE 144
* TFFBtF *
**tt»ss*m*
HMIKUH
1 NIJIlHUft
-3.3000000
NUHIER DF DISTINCT VALUES . 41 RAN8E 6.9000001
NUHKR OF VALUES COUNTED, . 102 VftRIAHCI 1,7097346
NUHKR OF VALUES NOT COUNTED 317 ST.IEM. 1. 307373*
(Q1-UD/2 1.0000000
LOCATION ESTIMATES ST .ERROR
HEM) 0.7401960 0.12*44*3
MEDIAN 0.8000000 0.1134701
ItQDC
N
N
& . TVVWVVV
PERCENTS
V»LUf
-3.30000
-2.40000
-2,10800
-i.aocoo
-l.SOOOO
-1.20000
-0.90000
-0,30000
-0.60000
-0.30C03
-0.40GOO
COUNT
1
\
1
I
1
2
2
t
5
1
«
OEM
1.0
1,0
1.0
2,0
1.0
2.0
2.0
i.*
4.9
1.0
3,»
CUB
1.0
2.0
2,f
4.9
C.9
7.1
9.8
10.1
IS. 7
14.;
20.6
VA1 (If.
-0.30000
-0,20000
-0.10000
0.00000
0.20000
0.3'>000
0,40000
O.WOO
0.60000
0,70000
0.80000
CIIIIHT
3
1
2
4
t
2
"
2
3
;;
3
S
Q
1
SKEWNESS
KURTOSIS
HH
FE
AD
NI
fERCENTS
ecu
',',1
!,•»
2,0
J.»
1.0
.,0
2,0
2,0
J.9
4.9
4,9
CUN
23,5
77.5
2f.4
33.3
.14,3
36.3
38,2
40.2
4.5.1
48,0
52,?
VALUE
0.90000
1 , 00000
1.10000
1.4i)SOO
1.50000
t.&DSOO
1.70000
1. 9DOOO
1. 90000
; , nnnoo
2. WOO
CmiMT
2
4
4
'I
5
;i
3
.1
6
1
3
H
H H H
HH HHHHHH
HHH HHHNHHH
HHHHHHHHHHH
H HHHHHHHHHHHHHHHKHHHHH
VALUE
-0.37
0.03
EACH
D S
3 H t
. ,..o. .....
ft
E
EMH 'H'
COUNT(S)
'-' *»0«E * 0,3000
L« -3.4COO
U- 4,?000
Ql» -0,2000000
VALUE/S.E. 03' l.BOOCOCO
-1.52 S-» -O.S47J798
0.07 S*' 2.047771?
'.' 8ELDU - 0.0730
H
X
CEMENTS mC£«TS
KI.I.
2.0
1,9
3,9
i,0
4.9
a.o
2.9
2,f
5.9
1,0
29
CUH
III. 9
'iS,S
*•>.?
A4.7
69,6
71.4
74.3
77,3
• 3.3
!I4,3
87.3
WftiUE COUNT
2.JOOOO 4
2.40000 2
2.600GO 1
2.70COO
2,80000
3.. '0000
3,30000
3.40000
CELL CUM
3.9 v;.:
2,0 93.1
1,0 V4.1
1.0 9'. . '
2.0 9"".;
1,0 93.0
1.0 9V . •',
1,0 I'i'i.v
FIGURE 42 STATISTICAL SUMMARY OF THE COMPUTED DIFFERENCE BETWEEN
PAIRED STANNOUS CHLORIDE (SC) AND ASCORBIC ACID (AA)
TOTAL FILTERED PHOSPHORUS
-------
PASE 145
APPENDIX A
-------
NTMMS M.L 0*1* CDITtM MSI*
PAGE 146
mtntitm
UMIMLC MIMIC!
NIMH! or oifiNCT v*iur« .
NUMM OF VM.UC* OUNTIil, .
OF tMLIlt* MT OMMTI*
MXIHUH
14
si;
i
LDCOTIM UTlMTtl
MMI
NEIIM
MM
UftlUftNGE
IT.Dfo.
iu-B.ii/3
:s. soooooo
Q.MOMOO
15.1000000
I.OMlttl
B.fMtftl
1.3147430
«.ROCOCO!
».500000*
MMM m
MKHMHHMH N
M6H '*'
f
COUNT(S>
-u
IftCH '-• *10« *
L"
U*
0.7364
0.0000
tl.OOOO
IMIMCH
KUXTOSI*
VM.W
•1.17
J.33
[*CH
VM.UC/S.E.
ai> s.ooooooc
n* t.iftftf*
I-* 5.?»»«*«2
14* 11.141*433
0.1500
*
ft
f
FEMENTS
M.IH Cfl
a.ooofto
9.10«90
9. 20008
O.J0090
0.40000
0.80000
.10000
.noose
.toooo
..10090
.50000
.70010
.40000
,10000
.40008
,90000
,20000
.MOW
.40090
.MOM
.40000
.70000
um ctu
< 1.3
9 1.4
4 1.3
1 O.J
J 0.4
1 0.1
< 1.3
1 0.1
1 0.3
? 1.4
: 0.4
1 3.3
1 0.3
1 0.3
t 0.3
: 1.4
: «.4
.; i.o
1 Q .3
1 ft. 3
1 0.3
1 0.3
CUM VHtUt
1.3 S. 30000
2,9 5,40000
4.2 S. WOM
4.3 5.70000
5.1 S. 10000
5.4 4.00000
.7 4.20000
4.30000
4.tOOOO
7,10000
7.20000
7.50000
, 7.70000
7.KOOOO
. 7 . 90000
10. .00000
U. ,10000
12. .70400
If. .30000
t:. .4ooeo
11,1 ,50000
13. S .49000
r.ouxr
2
I
3
4
1
^
i
i
i
5
2
1
1
3
3
11
3
f
3
9
It
13
a
1 K N N
* 1 1
N E I
a t
3 »
PERCENT! KtCfNTS
MIL
1.4
0.4
1.9
1.3
9.3
8.4
0.3
o.S
0.3
9.3
0.4
t.l
0,3
1,0
1.8
S.9
1,4
?»?
1.0
2,*
(.1
3.1
CM
14,1
14.7
IS,
17.
17.
17.
It.
11.
11.
IV.2
If.f
W.I
*o.s
51.3
22.4
74,
27,
?•»,
11,
Tit.
40,
M.I
VM.UE
R. 70000
fl. 80000
i.teow
t. 00000
». 10000
t. 20000
t. 30000
t. 40000
(.30000
1.60800
f. 70000
t.MOBO
t. toooo
10. 00000
10.10000
10.20000
10,30000
t«, 40000
to. 30000
10.10000
10, tOOOO
11.00000
COUNT CELL CUM
7 2
It 4
10 3
» 2
t 2
10 3
IS 4
t 2
3
S
3
3
9
4
S
7
3
9
4
1
1
1
44. S
30.4
33.1
54.7
St. 4
42.1
47.4
70.2
71.2
72.1
73.7
74,7
74.3
77,4
7t,2
11.4
12.4
IH.Q
n.f
3 14.2
3 14. S
3 «*.»
VALUE
11.10000
11.20000
11.30*00
11.40000
11.70000
11.80000
11 .toooc
12.00000
12.10008
12,28080
12. 30000
i:. 40000
12.70000
12. MOM
12. f BOM
13,00090
13,30000
13.16000
13,7000V
13,30000
•~
N
I
fEKCENTS
CtXINT CELL CUH
2 0.
2 0.
2 0.
2 0.
7 0.
3 1.
2 0.
1 0.
1 0.
4 1.
1 S.
1 1.
4 1.
2 8.
2 0.
2 0.
1 0.
1 8.
1 0.
1 0.
17 .S
M.I
81. «
It. 4
10.1
tl.O
tl .7
W.O
W.3
»4.2
•4,4
ts.s
f4.l
t?.4
tf.l
?!.?
ff .0
It. 4
M.7
100.0
-------
NtMMS 4U. CmilSt CINTtM. MilN
tfUUnlllt
PAGE 147
iMti««r
wmn or
ItltHKT VALUC!
mmifi or VALUES r.antnrt. .
12
lot
MUM* Or V*UitS NOT COUNTED 7
LKATtM
tlTtMTtl
MXIHUH 314.
HIMIMUM 3.
MMK 112,
VIWtflHCE I2»t.
IT.KM, U.
1011-01 1/2 J.
ST. EMM
0000000
•0*0000
2000122
2t7Utl
»437»4t
4»t»tti
H
H
H
H
H
H
HH
NH
£ACH 'N'
itntfiMTs
21
COUNT! t)
MM If.tOSSSli 2. 0405" 3 «H
MUM
NBK
tl,44f***l 0.404HS3
11 *iW!lWH
HMDM"
EACH
HUM NH H
•-' AMWE •
I"
HUH
13.0000
0.0*0*
U* 140.0OOO
t 0 D
II II 311
I H
UK
MUK COUHT CtLL
I.(00 2 .7
4.000 1 .3
4, MO 1 .3
>
.000 1 .3
3.400 2 .7
3.700 1 .1
3. TOO 1 .3
4,200 1 .3
4.400 1 .3
4.500 3 l.t
f»T«
CIM
0.7
1.0
1.1
1.4
2.3
2.4
2.t
3.3
3.4
3.2
4,100 1 4.3 3.4
7,000 2 0.7
7.100 ? 0.7
4.2
t.t
7.2*0 t ,3 7.2
7.400 1 .3
7.300 4 .3
7.4*0 I ,7
7, to* 2 .7
7, tOO * .t
,000 t .0
.200 3 ,A
.30* 1 .3
.400 * .4
.300 2 .7
.40* J ,0
.70* i .0
.100 1 .3
.to* S .t
.000 1 .}
.too i ,0
.200 2 .7
.100 2 .7
.400 U .3
.530 4 ,3
.400 7 .7
.100 1 .4
10.000 I .»
10.100 J .4
7.5
1,1
t.S
10,1
12.7
14,7
14.3
If. 7
It, 3
It.t
SW.t
21. t
22.2
23. t
Z4.2
23.2
23.1
24.5
»,7
11.0
31.7
14.1
15.3
3t.t
f
*
VM.IK
10.200
10.300
10.300
10. too
10,700
10.160
10. tOO
11.00*
It. 100
11.200
11.400
11.500
11.700
12.00C
13.200
12.300
12.300
12.400
12,706
12. tOO
11.000
11.100
11.290
13.300
13.30*
13.400
11.700
13.100
13. »00
14.000
14.100
14.200
14. 3*0
14. 500
14.40*
14.100
13.000
13.100
PfUCEHTS
COUNT CELL CUM
1
t
1
3
I
f
4
2
4
13
I
2
6
2
4
t
1
3
2
2
3
4
2
3
I
2
3
2
1
2
4
1
2
2
7
1
2
1
.1 37.3
.1 17. t
.7 M,2
.0 It. 2
.1 It. 3
.4 42,2
,3 43,3
,7 M.I
,3 49,4
.2 4t,7
.4 M,0
.7 50,7
.0 32.4
•7 11,1
.1 54.4
.3 S4,t
,] 53.3
•0 54.2
.7 S*.t
.7 37.5
.0 •».:
.1 5t.»
.7 M.S
.0 41,4
..1 41 .1
.7 42.4
.0 41.4
,7 M.I
.3 44.4
,7 13,11
.1 44.3
.1 44.7
,7 41,1
.7 4(1.0
.7 4*.;,
,S 4t.«
.7 4t.i
.0 70.4
fKCWICH
Kiitmis
VALUE
4,13
tl.tl
EACH
VALUE/I. C,
43. t4
14t.lt
'.• MUM *
PEKCCNTS
MALIK rOUNT CtU.
13.20* 1
13.401 1
13.300 1
tS.700 2
13.1100
15. t
14.000
l*.3*0
14.300
14. MO
14.MO
14.t*9
17.000
17,109
17.2*0
17.JOO
17,400
17.100
n.oeo
11.300
11.500
tl.700
Il.tOO
It. 000
It, 1*0
It, 404
it. too
20.10*
20.100
20.40*
21, 1ft*
21.100
J2.SO*
n.7»o
33.2*0
23.790
34.100
24.500 2
.1
.3
.1
.7
.3
«t
.3
.1
,J
.)
.1
• 1
.0
.>
.3
.1
.3
.7
.1
,1
,3
,7
.3
.3
.1
.3
.3
,1
..!
,7
.1
,7
,1
.3
.1
.}
.3
,7
am
70. t
71.2
71.4
72.2
72,3
74.2
74.3
74.*
75.3
73. »
74.1
7*.S
77.3
77. »
71.1
7t.l
7t,4
(0,1
H.4
(0.7
(1.0
01,7
(2.0
(7,4
82.7
(3.9
(1.3
(3,7
(4.0
(4.4
n.9
(3.4
K.t
14.3
»4.4
U.t
«7.1
17 .t
V*UK
24.109
73.200
Ji.tO*
24.200
24.10*
21.SOO
2*. *00
27.400
21,30*
2t.OO*
Jt.tO*
10.100
31.100
31, tO*
31.300
33. MO
14.30*
33. MO
41.400
44 .MO
44. tOO
32.400
42.400
tt.4*e
tt,7M
101.400
tot. o«o
117 .MO
lil.OOO
151.000
171,100
It 4.700
Jt7.1*0
312. 10«
314.000
•1« t,l<,M004
OJ« 14. 1C 00000
i-« -It. 1403111
»4- SS.tSl'J206
J.OOOO
H
t
FfRCENTS
CM*! CELL MM
1 0.3 t(. 2
1 0.3 H.4
1 0,3 M.t
1 0.3 lt.2
I O.I «t,3
1 0.3 (t.t
2 0.7 tl».S
1 0.3 tO.l
1 0.3 11.2
1 0,1 tl.3
1 0.1 tl.l
2 0.7 t2.3
t 0.3 t2,l
1 0.3 t3.l
1 ft. 3 t3.S
1 0.1 fl.t
I 0,3 t«,l
1 0.3 t4.4
1 0.1 t«,a
1 e.3 tS.I
1 0..1 W.4
1 «,3 f5.8
1 0.3 t4.1
1 0.3 T4.4
1 0.3 t4,7
1 0.3 t7.1
I ». t7.4
1 *, t7.7
t 0. tl.O
1 0. tt,4
t 0. M.7
t 0, tt.O
1 0. tt.S
1 0,1 tt.7
1 0.3 100.0
-------
HYMl*M (H.L t*f«
PAGE 148
VMIAht 4I1HIKI) ......
NUMK* OF ttlTIN'T VM.UES .
PtUHIER (If VHIMt* COIINTFO. ,
KUMflt OF VALUES NOT COUDTCtl
1
US
fit
52
IflHIHUN
tftME
VttiliWCC
IT.trv.
(OJ-Oll'I
MHH
HUH
LWftTMH (W
MCN 'H1
t
COUKT(?)
HUD
KMIMI
nDDE
12.44-.S524
n>,8w»?4
?,J»W?4
St.PSIWK
O.SSJJ'j*
9.317S424
WMNHNHHMH
HMKKMHHMXHHHHHMHHHHrtHH M
SWYNESS
KlMTOStS
t*CH '-' MOWS «
L«
u«
VtLUf iMlUf/S.E.
1.11 11.91
J.i2 4.84
i*en '.• mo» •
1.3*09
3.00.90
W.oeco
ai« s.soooooo
33« 13,1350004
H
tt
S
0
1 H
n
1 I
t !
rEMENTS
VIM IK MIWT
3.300
3,700
4.7*0
5.000
S.400
s.too
5.300
S.900
4.100
4.*09
7.000
7.200
7.300
7.500
7,400
7.100
7. ?90
i.ooc
8.100
8, ?OQ
S.300
.400
.509
,400
.700
,900
,100
.409
.100
I
1
1
1
I
4
1
1
4
4
3
J
t
7
|
S
4
1
3
4
2
II
1
?
4
t;
i
14
2
cm.
9.4
0.4
0,4
0,4
9.7
1,4
0,4
0. 4
1.4
1,1
1 ,1
J.I
1 .1
2.3
1,1
i.a
2,1
9,4
1.1
1 ,4
0.7
2.1
0,4
0,7
i ,4
4.3
9,4
5,0
0,7
CUB
9.4
0,7
1,1
1,4
2.1
1.4
3,9
4.3
3.7
7,8
l.f
19.0
11.0
13. S
14.4
14.4
it.:
H.9
19.9
71 .*
22.1
24.9
M.J
J4.Q
27.4
.11.7
32,0
17.0
37,7
II
N
0
3
1*1 (IF Mlmr
9
9
9
10
10
10
10
10
10
It
u
11
11
11
11
It
11
12
12
\z
12
12
12
12
13
13
12
13
11
. 700
.dOO
,fo«
.900
.100
.300
.400
•00
.900
,100
• ZOO
.100
.400
,100
.400
.700
.700
,009
.100
,'00
,300
,400
.409
.900
.000
.100
,2P9
,300
.toe
i
;
3
4
2
4
2
1
5
I
4
?
4
2
2
2
2
4
I
7
1
I
4
1
1
I
1
4
1
S
t
HKCEMTS
1*1 1 <:u
0.4 ,t«.
3.5 40,
J.i 41.
1,4 41,
0.7 41.
1.4 43 .
0,7 «.
I.? It.
l.« 50.
0.4 St.
2.1 M.
0,7 '>4 .
1.4 S3 .
0,7 -M,
9.7 5*.
9.7 57,
9,7 *»f,
1,4 5».
9.4 »0.
2.5 42
9.4 *3,
9.4 41.
2,1 45.
0,4 45.
9.4 44,
0,4 44
9,4 40,
1.4 91,
1.1 *».
KEKEHTF
H
1
&
i
1
P
2
f
I
9
2
4
f.
2
f
7
4
9
1
4
0
I
*
a
2
S
f
3
4
V!>t UF
13.
IS-
IS.
14.
14.
14
IS.
15
IS.
IS
IS,
15
U,
u,
14.
14
14,
14
14.
17
17.
17
17.
17
17 .
1*
1*,
19,
11,
a
700
noo
?OP
946
SMI
300
000
100
3*0
400
790
'00
000
•>oo
3»0
105
590
700
•00
ooc
290
390
490
noo
990
000
21*9
799
WO
IWtt CULL
1 9 4
? 5. ,
» 9.4
Tl I.*
J •!».?
1 I.
1 t".
1 9,
1 ».
J «,
1 0.
2 0.
1 t.
1 9.
1 0.
3 »,?
1 ft«*
2 9.7
2 9,7
1 I, I
1 9.4
1 9,4
3 1,1
J 1.1
1 0.4
2 9.7
1 9.7
2 4,7
2 9.7
run
&;.*
70, £
70. f
72.4
7J.3
74.4
74.7
71,1
75,4
M.S
74, f
77,,
77. »
7H.3
78,*
79.4
7».7
»1,4
11.1
S2 ,2
82,4
82.9
11.9
K.I
63,4
84.1
S4.B
t?,!
W.3
VM l>
It
If
M
JO
20
7!
21
?2
22
?2
21
23
23
?4
24
•^
2S
77
;•»
-9
79
30
30
11
32
,11
»4
.19
f C
. 19ft
.290
,0.*
it.o
fl9,3
fO.O
•10.4
9'».7
91 . !
9' .*
9 ,f
9 .:
9 ,9
9 .2
9 .rt
9 .J
* .~
9 .0
1 .4
9 -^
9i,l
94 . 3
9^.:
97 , *
97.9
93. 2
*? .9
99.3
9* .6
lOn.fl
-------
KYWM3 »U
CMTMi MS IN
PAGE 149
Mtnnnut
sia»st*»i»
VMUIU Nimitt ......
WHO or linnet VMIM ,
•imitu or vmtm enuiiTti, .
Mmm or VM.IICI NOT cnnnn
4
11?
J87
tiMlfMCE
IT.KV.
(BS-OU/S
2s:,3toa»t
o , ooooeoc
7*2,77*54*1
27.A1B4044
LDCATIIW C1TIMTM
IttM
muw
MK
S.Sffmt
It.EKIOI
1.57*2*3*
0,1712931
WCM 'H'
•CftrSENI!
»
UUNT(f)
I*e» '-' MOWt
L*
U>
it.>«««
o.oew
IKCMfH
MMTOSH
VM.UT
UM.UC/S.C.
42.M
14.t« 132,17
14CK '.' MUW *
t 1 • t
H H JK *
* t *
I N
mecNTi rncnn «*KN?t maNTS
MM.UE COUNT Efl.1 CIM UM.M COOKT CtU CUH UM.IK COUNT CtU GIM VM.UC COUNT CELL CUB
0.40* 4
1.000 1
l.JOO 1
1.70* I
l.*9* 2
2. 19* 1
1.408 1
2. SO* :
2.40* 2
2.M* 1
2,tM 2
.09* 4
,1*0 t
,2M i
.M* 4
.40* 1
.SO* I
,M* *
.79* 19
.nee 2
.TOO 2
.009 i
.toe 4
.200 S
• 390 3
.3
,3
t
t
t
,
,
,
t
,
,
,
,
t
t
,
t
,
.
.40* * 2,
.SO* I 2.
.M8 4 1.
./OS 14 4.
.3
(
t
,
,
.
.
,
9
,
,
.
f
7.
f.
11.
12.
IX.
IS.
11.
H,
I*.
I*.
21.
a.
w.
27 .
Sf .
JO.
33.
.18* 2 0-7 U.I 7. POO
,t«t 4 1
.90* 7 J
.100 SI
.28* 7 2
.30* 1
.400 2
.30* *
.MS 13
.700 3
.19* 3
,tte 2
.90* 2
.190 3
.90* 3
.399 1
.4** 2
.50* t
.*oo :
.700 2
.IM 1
.fOO 2
7.0*0 I
7. tat i
7.20* S
7.390 2
7.400 1
7.30* 1
7.400 i
7.700 2
17.1 7,»0»
St.J
11.4
41,*
44.*
44.*
U.*
!*.«
31.*
52 tt .
53.4
54.4
33.4
54.4
S*.?
37.3
,8ft*
.20*
,300
,49*
.M*
,790
.•O8
,nt
.*09
.190
.20*
.409
.M*
.10*
.TO*
»,t 10.004
60.* It. 104
il.2 10.34*
41,1 10.40*
12.2 10.500
43,7 !•.*«*
44,2 10.708
iS.l 11.1*8
41.4 It. 20*
tl.l 11.7*0
4*.* 11 .t*9
70.4 12. M*
7 7t.O 11.59*
0
2
71.7 12.31* 1 0.1 »0.
74.1 12.408 1 0.3 tt.
74.f 12.M* 1 0.3 tl.
79.* 13.10* 1 0.
75,? 13.2M
71.
Tt.
7f .
7J»
M.
n.
it.
13.
t3»
n.
M.
ta.
M.
04,
t4.
17,
•7*
*7.
W.
on.
tv.
n.
n.
13.49*
13.70*
14.20*
14.M*
14.79*
tf.2M
20,48*
33.***
J4.000
4S.OO*
51. 4*0
42.400
44.499
43.SOQ
tJ.70*
121.3*0
127.2*9
141.2*0
It2,799
Ifl.TM
221.108
237.360
0.
1.
«.
a.
9.
0.
0.
e,
0.
a.
0,
9,
M
9.
0.
ft.
a.
9.
fl.
»?.
fi.
W.
*3.
*4.
T4.
94.
fS»
ts.
n.
H,
M.
fi.
f7,
f7.
*7,
4H,
VI.
0.3 ft. 7
9.S f».»
*.S t*,3
O.J TT.7
0.3 199.0
TO. 2
f*.*
-------
NTMMS *LL MT4 CEHTHM »*SIN
PAGE 150
<«(*>»»»>
i Mr •
IlllltltllX
nAXIHim 11», 400001', H
VARUHE min»tt ; H Ml nun o.ooooooo M
HUMlfR OF gilTINCT VALUCS . «0 RAIWf US. 4000013 N
NIINIER IIF VALUES COIIIITEB. . 303 VARIANCE 210.720*013 N tACB "H"
wmifR OF VALUES NOT rmiinrn i ir.rrv. is. 1730311 « REPRESENTS
(03-VD/2
.1SOOOOO H 27
N COUNTIS)
LOCATION EITINATEI ST. EMM
HEM 9.2042A77 O.I4MOS3
HCTtAN I.tOOOOOO 0.0(4*024
HOBT l.SOOOOOO
M
M
MH HHHH H H MH H MM HH
L —II
1
AC* •-' AMIVE • S.OOOO
L> 0.0000
U* 120.0000
HI- 1.1000000
VALUF VALUF/S.F. 03. 3.4000001
SKEUNEIS S
KURTMII 33
4,* 40.71 !•• -1.1611741,1
IS IX. 14 «+• 30.377:145
EACH '.• IFLOU ' 1.0000
S Q Q »
BlH 3B +
H D A
I N
PERCENT* PtKEKTI
PERCENT*
H
X
PERCEirS
V4MIF milNT CELL CUM VALUE CMIIIT CELL CUM VALUE COUNT CELL CUB VALUE COUNT CELL CUM
0.00000 12 3,1 3.1 2.00000 IS
0.10000 3 1.0 4.1 2.10000 5
0.20000 3 1.0 5.1 2.20000
0.30000 4 1.3 7.2 2.30000
0.40000 1 0.3 7.9 2.40000
0.30000 14 4.4 12.1 2.30000
0.40000 2 0,7 12.1 3.40000
«. 70000 4 1.3 14.1 3.70000
0.10000 11 3.4 17.7 2.10000
0.10000 t 2.0 If. 7 2.fOOOO
1.00000 14 4.4 74.3 3.00000
1.10000 f .1.0 ?7.2 .1.10000
1.20000 3 1. 2)1.2 3.20000
1.30000 11 3. .11.1 3.30000
1.40000 12 3. 39.7 3.40000
1.30000 17 S. 41.) 3.30000
1.40000 4 2, 43.3 3.40000
1.70000 1 2. 4!t.1 .1.70000
1.10000 11 3. 4t.J 3.10000
l.fOOOO 11 3. 33.1 UfOOOO
.? SI.O ,00000
.4 3V. 7 .10000
.4 41.
.0 43.
.4 IS.
.4 41.
.0 4t.
.3 4*.
.3 70.
.3 71.
.3 71.
.3 73.
.0 74.
.7 74.
.0 75.
.3 77.
.7 77.
.3 7«.
.4 71.
.7.0000
.30000
.40000
.30000
.40000
.70000
.(0000
.10000
.10000
S. 20000
9.30000
3. 40000
3.50000
5. 40000
S.feooo
A. 10000
7.70000
.0 12.
.7 13.
,7 13.
.3 B4.
.7 14.
.7 SS.
.3 M.
.0 «4.
.3 17.
.7 «7.
.7 It.
.3 M.
.3 M.
.0 TO.
.7 TO.
.0 Tl.
.1 *2.
d. 10000
l.iOOOO
15.4OOOO
14.30000
17.00000
11.10000
20.10000
27.30000
J*. 00000
32.90000
33.20000
40.70000
52. 30000
72.10000
71.10000
14.10000
*«. 40000
.3 13.3 103.00000
0.3 17.
1 US. 00000
.0 80.7 7.4*000 2 0.7 f3.4 111.40000
0.3 13. «
0.3 14.1
0.3 11.4
0.3 14. i
0.3 TS.l
0.3 13.4
0.3 15.7
0.3 14.1
0.3 1*.4
0.3 14.7
0.3 17.0
0.3 17.4
0.3 17.7
0.3 11.0
0.3 m.4
O.J 11.7
c.3 n.o
0.3 11.3
0.3 H.7
0.3 100.0
-------
WHIMS *U MTA Cf NttM. l«Itt
PAGE 151
i wn i
mtintnni
MMtMU
mart « IIITIMCT VM.VFI .
utMtci of VM.UCI cmiNTti. .
Nvm»c* OP WM.W* MI cwmri
lOMTIM tSTIMTII
7
!IC
111
IMKlHim
MINlmiN
MMt
104. Iff WSt
0.300 no oc
»4,»tttM
IT.KV.
< 03-91 )/2
».<4M!t4l
3.34f*f*f
O.SOCOOOO
tl.IMO*
:,:3*»i33
O.*43»331
H
M
M
H
M
H
MM
f»CH 'H'
IEPWVNTI
23
CDUMTdt
HH H MHH
I 0 « 3
PI in IN »
Ml*
1 N
rCKCNti
CftCM '-' AMVC • 13.9000
l« O.OMO
tt» 340.09M
-------
MTIRM9 ALL DATA cmit«. MSI*
wsntnin*
t mt*IT *
nsnsnnn
WARURtt MMK1 ......
mntUR or BIITINCT WM.UM .
mmicR OF VM.IHI ownm, .
Mint* Of VM.MS MT OMMTU
PAGE 152
MXIMIN
1
m
•31!
I
VMIM*CE
IT.WV.
(U3-OD/2
471,0000000
0.0000000
47», (1(100000
»«l*./42*73l
H
HHHH
HKHH
UOC.1TIM MTIMTtl
t»CH -H-
RtMEim*
t
COUNT!I)
•KM
MEDIAN
MOW
U3.4T03»70
174.0000060
JO*.0000000
4.47S279J
1.7SS7713
mums*
Kuitmis
N
E*CN
1,07
2,4)
EACH
NNNMmtMW
'-' AiWf •
L*
U«
UftLUF/I.t.
7.10
*.40
• . • trLOti •
20.0000
0.0000
410,0000
SI* 113.0000000
DI» 291,0000000
i»« 192.90163H
!». ?»«, 8721110
3.0090
IB 1 1
H - 1 » « U + II
* • A I X
I II E
rCTKdTi rncnrra rtuctNT* KKENTI
VAIilf COUNT CZU CIM VALUC C(H)»T tXU CIW VM.UE CWNt CfLl CUB VALUE COUNT CEIL CUH
a.
i.
2.
3.
11.
13.
71.
30.
SI.
19.
M.
42.
70.
»4.
ts.
103.
194.
IB?.
113.
111.
114. '
US.
It*.
in.
120.
m.
123.
m.
129.
12*.
lit.
ne.
in.
112.
111.
1X9.
117.
1)1.
lit.
140.
142.
«.* 141. 1
1.2 1«3. *
l.f 144. 1
2,4 147. 1
2.f 141. I
3.2 14f. 2
1.1 ISO. 4
4.2 132. 1
4.5 131. S
4.
5.
S.
4,
4.
«.
J.
7.
t.
f.
f ,
t.
10.
11.
tl.
12.
12.
13.
13.
11.
14.
IS.
IT.
17.
1*.
20.
31.
22.
22.
!S4, S
199. 2
ISJ, 2
131, t
1*0. *
1*1. t
i*:. 2
1*1. 2
144. 4
149. *
144, 1
1*7. I
14*. j
14*. 1
170. 1
171. 3
172. 1
173. 4
174. 2
179. 1
174, 2
177. 1
171. 1
IK. *
111. 2
113. 2
1M, 1
119. 2
114. 4
23.4 117. 2
1.* 24.4 tUt. 1
0.1 24.7 If*. 1
29,4 1TO. 4 1.3 41,3 J4f.
S7.4 1*1. J
27.* 1*2. I
21.2 m. i
2f.2 1*4. 2
2*. I 1*9. 2
31.1 1*4. 1
11.4 l*t. 4
n.o m. s
14.4 200. 7
1S.1 201 . 2
is.* 20:. i
14.2 2*1. 2
lt.1 204. 1
11. S 209. I
a*.i 20*. i
1*.7 207. 1
41.7 201. 1
41.* ill. t
44.2 211. 1
49,2 J1S. 2
44.2 21*. 2
47.1 217. 1
47.4] 2tl, 1
41.1 11*. 1
41.4 220. 2
4*. 7 221. t
M.I 222. 1
31.1 227. I
31.* HO. 1
32.4 517. 1
53.9 239, 2
99.4 "217. I
94.1 in. 1
94.7 »?. I
97.1 240. 2
S7.7 241. I
5*.« 242. 1
3*.* 749. 1
.3 !*.» 24*. 2
3 40.3 74». t 0
.4 42.2 ISO.
1 42.9 232.
41.S 23S.
44.1 241.
44.7 2*2.
4S.7 270,
47,* 271.
«?.* 271.
70.2 274.
7*.l 27*.
71.1 27*.
72.4 2S1.
72.1 212.
73.7 2*1.
74.* 2*9.
74.4 2*0.
79.9 2*2.
78.4 100,
74. I 3*4,
74.4 320.
77. 3 3«.
77,4 141.
7*. 3 MI,
71.1 37*.
TVS HU
•".« 313.
•0.1 S»0.
10.4 1*7.
•0,1 402.
•1,1 WJ.
•1.7 411.
07.1 410.
tV4 US.
•2.7 440.
tl.J 472.
•3.7 47*.
M.I 47*.
*
1
85.
1*.
U.
17.
i?.
17.
BA
N.
0*.
R*.
1*.
W.
to.
*0.
«.
»».
fl.
»J.
»2.
n.
»3.
n.
»4.
*4.
»s.
n.
ft.
*4.
f*.
*7.
*7.
»7.
**.
M,
*».
**.
.
»».?
100.0
•4,1
*4.*
H.I
-------
HTMAIS ALL MT* CEMTRAl. HASIN
PAGE 153
t KJCL 1
mutism*
11
HM1NUH
HIM! HUH
7:0.0000000
i o . onanaac
NUHIER W DISTINCT VMUft , 4» RANK 710.0000000
NtMMI OF VALUES COUHTEO. . 5S3 VARIANCE 11211.4734321
HUNK* OF VMLUEI NOT CnUNTKD SI 9T.DFV. 109.«7l44tt
(03-811/2 55.0000000
LOCATION EITIMril ST.ERROR
MAN 21S.*4313t4 4.4344401
NCB1AN
NOIE
H
N
S
•cww . wwvvv
220 0004000
• *«nm9«4
« 0
1 UN 1
1
4
KUtTOtll
H
N
H
H H
EACH
VALUE
1.21
EACH
H
H H
NMNNNNMNNHHMHI
•-' AMVt •
L*
U-
VALUE/t.E.
1.32
».79
'.• KLW •
1 •
1 II
PERCtNTI
VAI.UC
10.
20.
10.
40.
SO.
to.
10.
90.
100.
110.
120.
130.
140.
COUNT
1
1
I
I
1
4
I
2
S
S
f
10
10
CELL
0.4
0.4
1.2
1.2
0.
1.
1.
0.
5.
3.
3.
3.
3.
CUM
0.4
O.I
7.0
3.1
l.S
S.I
4.3
7.1
4.0
12.2
1S.7
It. 4
23. S
VALUE
ISO.
140.
170.
IN.
ito.
200.
210.
220.
230.
240,
290.
240.
270.
coimr
10
14
11
1
11
11
f
17
»
IS
t
f
1
PERCENT*
CELL
3.t
S.S
4.3
3.1
4.3
4.3
3,9
4.7
3.9
S.f
2.4
3.3
3.1
CUM
27.S
R.t
3». 7
42.4
44.7
51.0
34. S
«1.2
44.7
70.*
72. f
74.S
7T.4
VALUE COUNT
210.
2tO»
1*0.
31«.
320.
330.
MO.
1*0.
370.
310.
370.
400. 1
410. 1
(ACM •"•
S
COUNTIt)
*
30.0000
0.0000
726*0000
01. 130.0000000
03* 740.0000000
1— 10». 1444*43
l+« 321.M1777S
7.3000
A
A
1
PERCENT*
CELL
2.4
2.0
1.4
O.I
1.2
2.7
C.I
1.2
0.4
t.4
0.4
0.4
1.2
CUM
17.0
13. t
IS. 5
«4.3
17. S
to. 2
VI .0
T2.2
t?.S
f2.t
(3.3
tl.7
»4.t
VALUE C
420.
430.
4SO.
4*0.
soo.
no.
S40.
170.
400.
720.
IUNT
1
2
2
1
1
1
1
2
1
1
PERrtKTS
CELL CUH
0. n.3
, n.i
. VA.V
. »7.3
»7.4
n.o
• VH.4
* W«2
. M.4
. 100.0
-------
NTD*AI3 *U CKUIMS CEKTHAL IAS1N
PAGE 154
tunimitt
t IM <
«munii»*
VAIIAM.C mwrai
NUMER OF DISTINCT VALUE* .
MMMI Of VM.UM COUNTED. .
MMK* OF VALVES MIT CINWTtB
204
301
5
LOCUTION
HIM
MHAN
74A.t4732*S
UO.OOOMOO
290.0000000
IMXINUN 3445.0000000
mmmw o.ooooooo
HANK S44S.OOOOOOC
VAHANCE II 47.143.1730000
IT.KV. lfl»».l>4»0773
COJ-01)/: t7«.OOi>00
ST. IIRO*
40.*147241
10,7*4*201
H
H
H
H
HH
HH
HN
tACK -H'
IEMK1ENT1
13
COUNT (I I
EACH ••'
AIDVE •
I-
U«
SKEWCM
KUHTOZII
VALUE VAlUT/t.F.
2.7* 1*.**
7.4* 24.14
EACH
IELCW •
530. 0000
0.0000
4000. MOO
01- 234.0000000
Q3- 414.0000000
I-. -303.M1S436
It- 1IM, 01*4014
30.0000
S 0
II H
It II
c
VM.UC COUM
0.
40.
90.
32.
41.
73.
T*.
10.
too.
S04.
109.
no.
us.
no.
140.
147.
HO.
133.
IS*.
IS*.
1*7.
14*.
170.
110.
1(4.
11*.
IfO.
m.
in.
200.
:os.
311.
214.
213.
sir.
220.
224.
223.
210.
241.
247.
290.
231.
234.
29*.
240.
34S.
271.
374.
37S.
2*0.
. 2*4,
C
N !
>
i
M
t CEI
0
0
1
I
I
*
N +
A
N
KCtNTl H
L CUB VAtUE COUNr CEI
o.J :«». i
0.4 2fO. t
l.t 2T1. 1
2.1 :v4. i
2.4 2fl. 1
3.» .100. J
4.2 10V. 1
4.3 310. 4
.3 112. 1
.3 313. 1
.1 JU. 1
.3 no. i
.1 323. 2
.4 3J». J
.1 333. 2
.1 333. 3
.4 340. 1
.7 343. 3
10.1 34*. 1
11. 0 330. 3
11.4 331. 1
11.7 333. 1
12.0 357. 1
12.7 340. )
11.0 145. 1
U.I 371. 1
11.4 373. 4
14.0 3*0. 3
14.1 111. 1
13. t MS. 4
17.2 HO. 1
17. » 3T3. 1
11.5 400. 1
K.I 4*3. 1
If. 2 410. I
If.l 41*. 1
20.1 423. 2
24.3 47*. I
20.1 42*. 1
21.4 433. 7
21.1 437. 1
24.4 43*. 1
24.7 443. 1
K.I 444. 1
24.3 430. 2
27.1 433. 1
21.2 440. 2
7.1.1 441. 1
2*. 2 444. 1
10.3 443. 1
M.} 44*. 1
12.1 470. 1
(.CfNTI
.L CHI
1 32.9
13.
33.
33.
14.
U.
3*.
It.
31.
».
3*.
If.
I*.
40.
41.
12.
n.
43.
«J.
44.
n.
43.
43.
U.
47.
47.
4*.
30.
M.
31.
32.
32.
53.
n.
M.
34.
33.
34.
U.
57.
37.
37.
5*.
5*.
3*.
3*.
to.
40.
40.
41.
41.
3 41.'
v«LUi cnur
473. :
4*3.
4M. ;
-------
NVMMS M.L MT» CINTIM M«!N
PAGE 155
usiawtust
S CHL»COtt »
IillllIIIIIl
VMIMLI moot »,....
MUMU OF llfnKCT VM.UES .
*UHK> or VM.UM eminm. .
MONK* Or V*lUf t NOt CtUWTID
LOCATION IST1MTII
mm
Kit 4*
00
,47M
.4IM
,4MO
,!BM
.MM
.5700
.9M«
.s»oo
.MM
.4\B«
.4300 2
.MD« 1
.430* t
.4*00 1
.*»« 3
,70M t
.7100
,72M
,7tM
.MM
tllM
.MM
.1700
.moo
.ITW
.MM
.•tot
.KM
.f4M
.1400
.tTM
.W«
.WOO
.OOM
.MM
. M«
.WO
.13*0
.14M
.ISM
aiM
.!8M
.I2M
.21M
.14»*
.29«t
.2*M
.NM
.2fM
.1 0.1
.3 *.£
.3 1.9
.1 1.3
.3 1.4
.i 2.3
.1 3.4
.1 J.t
.1 i.:
.1 3.5
.1 3,1
.t 4.5
.3 4.1
.< 5.«
.4 *.S
.J009
.31M
.3i«e
.3300
.1400
.1300
.1700
*3*vft
.ties
.430*
.4JO»
.4364
.4700
.4MW
.3400
.1 4.1 1.4M4
•1 7.1 1.4tM
•1 7.4 1.4300
.3 7.7 l.MOA
.} 1.1 1.440*
.1 1.4 1.47S4
.4 f.9
,1 r.4
.3 f.7
.3 10.0
.4 IB. 4
.1 11 ,(
.$ ll.il
.1 11. t
.3 11. f
.4 11. S
.3 13.*
.4 (4,9
.4 IS. 2
.« 14. t
.1 14.S
.1 U.I
.J 17.1
.1 17.4
,J 17.?
.4MO
»A9tM
.7MO
.7ZM
.7300
.754*
.7MO
.7704
.7100
.roo
.a«*o
.13M
.I4M
.no*
.1400
.»MO
.ttM
.t3oe
.mo
.1 11. 1 5.0500
. . 11.7 3.07(10
.« 1*.7 2.0490
.1 JO.O J.15M
.1 M.3 2.13M
.S W.4 2.14M
.1 21.* 2.13X
.1 21. J 1.14M
.4 21. f 2.17M
.1 22. » J.210*
.3 W.J 2.23M
.» 7*.2 2.24M
.1 M.S 2.Z3M
.1 54. t 2.24M
.3 73. J 2.27M
.4 25. • J.2tM
.1 24,1 2.34M
.1 2HS 2.31M
.3 2*J 2.23M
.* 27.4 J.34»» *
.3 V7.7 ?.3SM 1 0.3 55.!
.1 21.1 2.3400 2 0.4 54.1
.4 tt.7 J.3700
.3 2*.
.3 J».
.4 3*.
.3 30.
.( 31.
.1 31.
.3 31.
.4 32.
.3 31.
.3 32.
• 9 33.
.1 34.
.4 3S.
.1 33.
.0 34.
.1 34.
.1 37.
.i 37.
.4 II.
.4 3t.
.4 It.
.3 40,
.3 M.
.3 40.
.3 41.
.3 41.
.3 41.
.3 11.
.3 M.
.3 42.
.4 43.
.3 43,
.1 43.
.4 44.
.3 44.
.3 «!.
.4 41.
.0 44.
.3 47.
.3 47.
.4 41.
.3 41.
.4 *f.
.3 4f,
.4 30.
.3 50.
}.3fM
2,4700
2.43M
2,4AM
2.4700
2.4HO
2.S1M
2.5JM
2.S4M
2.S4M
2.MM
2.SMO
?.4IOO
2.4300
2.47M
2.MM
2.77M
2.7100
2.74M
2.T7M
2.I1M
2.MOO
J.I100
2.HMO
2. ISM
?.moo
a. MM
2.IOM
i, not
3.»«M
i.tSOO
2.f7M
3.0JM
3,0*00
l.MM
3.10M
3.I3M
J.14M
I. I'M
3.IHOO
1.22M
3.3300
3.ZSM
l.UOO
1.1700
I.4«09
.4 Sl.O I.J4M
.3 SI. 3 I.MCO
.3 31.4 I.SMO
.3 St.* 3. MM
.3 32.3 J.4!W
.3 3J.4 J,4«0v
.0 53.5 3.4700
.3 33. T 3.4IM
.4 34. S 3.7MO
,1 54.1 3.00M
.1 SS.i 3.I1M
0,3 54.3
0.4 S7.1
0.4 57.7
1.0 31.7
1. St.?
0. 40.0
0. M.3
0. M.4
0. 41.0
0. 41 .3
0. 41.4
0.1 41. »
0.4 42.4
0.4 41.2
0.3 43.5
O.J 43.*
0.3 44.2
0,3 44.S
0.3 44.1
«. 45.2
«, 4S.S
0. 4S.I
0, 44.S
0. M.I
.11400 1
,?4M 2
.»IOO 1
.?WO 2
.0100 I
.03M 2
,0500 i
.11M 1
.3100 1
.320* I
.SHOO 1
.4000 1
.4200 t
.4100 t
,MOO 1
.4100 1
.4000 1
.73M 1
.7»M 1
.MM I
.*790 I
.IfM 1
.flOO 1
.»7M 1
,04M 1
.0*M 1
0. 47.1 S.13M 1
47.4 5. I TOO 1
,1 47.7 5.3440 1
.1 41.1 S.4SM t
.S 41.4 3.4400 i
.3 M.7 9.4300 2
.1 4»,0 S.44M 2
.1 41.4 S.4fM f
.1 4«.7 3.7790 1
.3 70.0 5.150* |
,3 70,3 3, MOO 1
.4 71,0 J.ttM 1
.1 n.3 S.MM 1
.] 71,4 4.01M 1
.0 72.4 4.0300 1
.3 72.* 4.I4M 1
.0 73. t 4.2100 t
.4 74, S 4.4040 1
.3 74.1 4.43M i
,3 75.2 4,tS«> 1
.3 73, S 7.0300 t
.3 n.t ',esc» i
.3 74.1 7.1109 1
.1 5 .S 7.30M 1
.3 74,1 7.4110 1
,4 77.4 7.4400 1
.3 77.7 7.3WO t
.1 71.1 1.4100 1
.3 71.4 1,3700 1
B
B
B
f
a
t
B
t
B
4
t
t
t
f
t
.
4
^
t
(
t
f
t
,
%
t
t
t
t
t
f
t
^
t
<
f
f
t
^
t
t
.
t
s
^
t
f
i
B
(
t
M.3
11.0
11.3
fl.f
12.3
12. t
H.2
13.5
•3.T
04.?
14. S
14,1
K.2
K-..S
K.t
M.I
•4.S
14.1
17,1
17.4
17.7
•1.1
11.4
M.7
If.O
If .4-.
W.7
fO.O
»c.J
M.4
tl.O
tl.4
«.l
f7.4
fS.t
»3.2
n.s
ts.t
?4,2
f».S
»4,1
t5.2
ts.j
ts.t
n.i
t*.s
•4.1
»7.1
»7.4
*7.7
VI. 1
t«.4
W.7
ft.O
tt.4
.1 70.7 12.SMO 1 0.3 Vf.7
.3 71.0 13.0700 1 0.3 1*0.0
,3 7»,4
.3 7».7
.3 M.O
-------
MTMIMS M.L I«T« CFHim I«»W
PAGE 156
t TM *
Mtnmsillt
VMUMt NIH1ICT ......
mmtfR or IISTIIICT UM.UV* .
mmift or IWLUSS cmturci. .
KUKMI Or IMLUIt NUT NHINTCD
I
17f
IMXIIHM
MtNtNUN
VMIMICE
IT.DFW.
(01-01)/:
24,«*»*»3
O.KSOOOOO
24.4WWH
1 . »»S»»7»
C.iOOQOOO
LOCATTMI tltlMTCS
**»
MEH
wtt
1.7S7W7*
1.1300000
0.110*000
RT.IMtl
0.114*413
snwcw
UM.UF V*LOE/S.f.
t.14 43.4?
SI.** 20*.**
EACH
II-
1 !
- H 1
II
V«
(
!
(
!
1 «
i n HI
i i *
f X
JK eawr
,5300
I.J400
.1700
.4000
.4100
J.4100
1.4! 00
1.4*00
1.4100
1,4*00
.5000
.3100
.3300
.3100
-3400
.3500
.5*00
.5700
.5100
.4100
.4100
.4300
.4400
.4500
.4400
.4700
.MM
.AtOO
.7000
.7200
.7300
.7400
.7700
.7100
.•000
«ttoo
.1300
.1*00
.woo
.•700
.MOO
»|900
.f«00
.not
.*400
i
»
mtctmt
r CtLL COM MM.UC CMIK
O.I .3 O.fSO*
0.3 .7 O.fAOO
0.3 .0 O.TFOO
0.7 .7 O.ttOO
0,"? .J 1.0000
0.7 .9 1.0700
1.0 .0 1.0100
*.J .3 l.MOO
1.0 .S 1.0700
0.7 ,f 1.0100
0.3 ,1 l.0»00
0.7 .» 1.1000
1.0 .t 1.1100
0.1 .1 1.1700
1.0 ,1 1.110*
1.0 10.2 1.1400
0.1 It,* 1.1700
7.0 i;.j i.imo
1,1 13. » 1.2000
1.0 14. f 1.2100
1.1 U.3 1.2100
0.1 14. S 1.2900
0.7 17.2 1.2*00
0.1 17. S 1.2700
0.1 17.1 1.2tH
1.0 li.t 1.5000
1.0 If. >1 1.3100
1.7 21.9 1,1300
O.I 21.1 1.3400
0.3 72.1 1.1300
1.0 21.1 l.MOO
0.7 23.1 1.1700
«.l 24.1 l.jnoo
1,3 21.4 l.SfftO
1,1 :*.? 1.4100
O.J 27,1 1.4200
5.4 2f.7 1.4*00
1.0 30.7 1.4700
1.0 31.7 1,410*
0.7 32.1 1.4*00
I.I 31.7 1.3100
1.0 14.7 1.3400
0.3, 3S.O 1.5500
0,7 IS.* 1.SIOO
0,1 U.O l.MOO
n
! en
a
Rctmi
LI tm vw
M.4 1
X7.9
31.0
3f.l
40.1
40. t
41.1
-------
PAGE 157
NVMMS M.L CMItt CtmtM. M1IH
SMMMtSlt*
* runiB <
tti»n»ai»i
VMIUHC MMUII
miMMH or OISTllKt VM.UC! ,
MM** Of VM.UH CUMTE*. .
WHKI OF MLUtt »0t COUNTED
LKitnw MIIMTII
4f
•U3
6
MIIMHt
HI HI HUM
MNK
V*ltl*MCC
IT.MV.
22.ooooe**
0.2000000
2t.7W»t2
4.3I713M
2.07777M
H
H
H
Ml
HH
I»CH 'H'
KPMKHT*
i;
COUM1I5)
HCIIM
HUM
mm.
t • «
- Ml H 113
»» D A
C 1 H
vw,uf COURT
Q.2QOQ
o.looa
,4000
.JOOO
,4009
iTOOO
.MM
.1000
.0600
.1690
.2000
.3000
.4000
12
11
41
13
22
12
12
I
S
4
ratcturt
CELL r.u«
3*11
3.1
U.I
to. i
7.0
3.1
3,«
2.'
».«
4.2
2.4
:.4
2.f
3.1
*.*
72.7
11.2
40.3
44,1
47. t
SO.t
S3.?
57.1
40. 4
42. t
43.1
O.TOQOOOt
0.4000000
0.0144021
JKCIWCSS
KMTMIt
»«.« COUNT
I.MM
1.4004
1.7000
i.iooe
i.tooo
3.0000
3.1000
2.2000
2.1000
2.4990
2.3000
2.4090
2.7000
1*
t
11
4
4
3
J
3
S
1
3
t
4
rincttm
CELL CUM
3.1
l.f
J.I!
1.3
t.3
1,4
0,4
,
t
.:
3*.
75.
74.
77.
7*.
•6.3
HI. 2
112. 1
•3.7
M.O
*9.t
•7.S
M.I
HMHMI MHH 1
t*CM
UM.UC
S. 43
M,5f
t«CH
mctwi
v*iut COUNT criL cim
2,f»»«
1.9(100
3.1090
3.3040
3.4000
1.900*
3.109*
3.1000
4.S60Q
4,4000
4.3000
«.»OM
9.0000
1 «,3
3 1.0
J UO
2 .4
1 .3
1 ,3
7
2 .t
2 .4
4 .3
1 .1
1 ».l
1 0.3
lf.1
90.1
fl.l
ft. 7
»2.0
W.J
»J.«
f S.*
t4.2
K.S
f5,§
M.2
ft. 9
I-
U»
U»LUf/?.t.
40.it
141.04
••• KLOH *
H N
1 , 0000
03* 1.7000000
1»« ifSnin:
0.20M
KRCCHTJ
WLVE CDUKT CfLl CUN
1.7800
4,4000
4,4900
4,»0t>0
7.0000
7. 1WO
7,3000
lO.tOOO
IK. 4000
22.0000
1 0.3
1 0,3
2 0.4
1 O.J
' 1 0.3
1 0.3
1 O.J
1 0.)
1 0,1
1 ».J
f4.1
»7,l
f7.l
fl.l
*«,4
fi.7
•n.t
f».4
ff .?
too. a
-------
PAGE 158
HTMMJ ALL CKUISC CEKIItM. HAS1N
I COHKOM «
VMI.tll.E KUHIEK ......
OF DISTINCT VALUES .
OF VALUES COUH'FD. .
MMIKft OF VALUES NOT COUHTED
2
34
113
0
KAN6E
ST.KV.
( 0:1-01 in
lit.0000000
111.0000000
17.0000000
.17.7200831
4.1416A7K
1.3000000
LOCnTIDM C 511 MATES
WAN
HCOIAf
HOVE
Sl.fRKCS
».34714/4
24? .00011000
2*1.ooooooo
HHHHH H
C!»:H
VALUE
4.15
0.18
•-• n»ovt •
L"
U-
VALUF/S.E.
1.06
0.65
:.oooo
2U.OOOO
?»4.0l)00
01« 261.0000000
33- 273.HOOCOOC
S-- 243.2513123
$»• 275.S3«6175
EACH '.' IELOU
H
N
S
FERCENTS
VAI.IK ooimr
231. 1
233, i
284. 1
2!3. 1
234. 2
557. 2
231. ]
23». 4
240. I
CF.U
0.3
0.3
0.4
0.3
0.4
0.*
1.0
l.-l
1.0
CUD
0.3
0.4
1.3
1.4
2.2
?•?
3.1
3*1
4.1
UAH 1C
241.
242.
243.
244.
245.
2A6 .
247.
2411.
24*.
COUHT
3
8
*
1*
10
34
23
j*
24
a
i
g i
K KK 3 »
g HA
E III
FERCENTS
r.«.i i
1.4
?iA
?.*
V*
3.2
1.3
7,3
11.3
7.7
FEKCEHTS
cu» urn IK COUNT CELL CUB vni.uE
7.7 270. 22
10.2 271, 23
13.1 272.
18.8 273.
2?.0 274.
10.4 .VS.
17.7 274,
41.2 J77. 14
14. » 27S. »
7.0 43.? 27T.
7.3 71.2 210.
2. 74.1 211.
2. 74.7 212.
2. 7V,: 213.
1. 10. 1 214.
2. 83.4 288.
4. IS »7. t
2.» »0.7
cniMT
10
4
2
4
2
2
]
M
X
FERCENTS
CELL CUh
3.2 ?3.»
l.t 1-.3
0.6 f4.^
1.* »8.4
0.4 ?«.0
0.* »'.7
0.3 100.0
-------
PAGE 159
HTMMS ALL CRUISE CENTRAL HASIN
VARIA1IE NUNKR 11
NUHIER OF tISTINCT VALUES . 36
NUNKR OF VAIUES COUNTED. . 112
NUNIER OF VALUES NOT COUNTED 1
HAXIIWII
NtNimjN
RANK
VARIANCE
ST.DEV.
tO.I-UII/2
20.0000000
13.3000000
1.3000000
O.S»1540t
0.76JSMJ
0.1000002
COUHT<5)
LOCMH1N ESTINHTES
NEAN
NWIAN
NOIIE
13.00tt344
11.0000000
13.0000000
ST.F.ItROR
0.04317S1
0. t
H H H H
—U
EACH '-' MOVE • O.JOOO
L- 13.2090
U" 20.4000
SKEVNCIS
KUKTOSI5
VALUE UALUF/S.F.
l.«4 11.77
1.17 5».4«
S--
st-
EACH
KLOU
N
VALIK
13.30
11.40
13.70
1.1.10
13. tO
14.00
14.10
14.20
14.30
3
COUNT
j
5
J
7
3
10
2
7
t
0
1
FERC
CfU
1.0
t.A
1.0
2.2
1.0
.1.2
0.4
2.3
2.t
II
t
N
ENTS
CUIt
1.0
2.4
3.3
3.1
4.7
t.t
10.4
12.1
IS. 7
« S
3 4
VALUE T
14.40
14.30
14.40
14.70
14.10
14. tO
13.00
13.10
IS. 20
HINT
1
J
12
21
22
2?
49
Ik
13
FERC
r.El.1.
2.4
2.2
3.1
4.7
7.1
7.1
14.4
1.1
4.1
ENTS
CUN
11.3
JO. 3
24.4
11.1
M.I
43.2
3t.4
47. t
72. «
VM.IK
13.30
IS. 40
19.30
13. to
13.70
15. 10
13. to
14.00
14.10
M
r.llUNT CE
12
1.1
13
3
4
4
^ o
* i
i 1
ERCENTS
L CUM
8 74.6
.2 DO. 8
i 14. t
.6 44.3
•1.3
tO. 4
tl.O
. t2.t
»5.S
VALUE
It
14
It
It
17
17
17
It
20
COUNT
.30 2
.40 ;
.r.o >
.to t
.00 7
.70 1
.to i
.00 1
.00 1
H
I
FERCENTS
CELL HUN
0.4 t4.2
0.4 1A.8
1.0 t7.1
0.3 tl.l
0.4 t«.7
0.1 tt.O
0.3 tt.4
0.3 tt.7
0.3 100.0
-------
HTte»eT *u MU
tttUMSMSI
t M.KTBT I
""'"""'
VMIMLE MMHt ....
HM1MIH
1C HININUIt
111
»«
HUNK! Of HST1WT UMUM , S3 MMIT ?l
mwm or mum CMWTCI
. Ill UMIAlir
NUfltFt DT UM.UEI NOT rOtWtfJ 2 IT.DEV.
f f
3
103-HU/2 1
IOCATIM cirimiti
Mt*N
-------
M1WMS AIL DATA CFHTROl
•tntntittt
i m <
tmstumi
MINIK* Or DISTINCT UHLUF5 .
WIHICK Uf VM.UC*10
7,430
7,440
7.410
7.730
7,740
7.D30
7.140
7,»70
7,»0
7, MO
7, HO
7 ,?30
7.t40
7.9SO
7 ,940
7 ,*7Q
7.WO
7, WO
.000
.CIO
.020
.030
.040
,03»
.040
.0(0
2 0.4
:. 1,4
2 O.i
2 0.4
1 0,3
I ft. 3
0.3
0.3
O.A
0.3
0.3
0. .i
0,3
1,4
: (1.4
i «,,<
1 0.3
? «.*
2 o.n
3 1.0
3 1,8
7 l,Z
2 0, j>
3 0.4
2 0,4
J 0.*
2 0,*
5 1.4
2 0,4
1 0.4
0
I
«*C
r.jr, YMUF limn1 i>ti
!*.«
in.:
|g ,g
Jt.S
It,*
31,1
20.4
•Hl.l
21,1
'.'1.7
23.0
.'2.4
3? , 7
^4,3
J4,»
?V2
25,4
.M,2
24 .f
,'7.8
28. S
31,0
31, ft
M.3
37. t
33,5
J4,J
15,8
3*. 4
17.1
.»to
,100
.110
.120
.130
,140
,140
.170
.110
.'to
.200
.210
.220
. -36
.240
.250
.240
,??0
, JHO
.7*0
.300
,.110
.3:0
.130
,340
.150
.Jrt
, 376
.310
.W
1
_,
^
.1
2
.1
2
3
4
2
1
j
3
S
4
4
5
;
J
^
3
?
4
S
11
4
1
4
2
3
1.0
0.1
*>,4
t.o
(1.4
! .1
O.i
0.3
l.t
3.*
0.3
1 .11
1,0
u*
1.3
1 .3
1.4
3.2
1.0
1.1
1.4
O./i
I.J
1.4
3,3
S.?
l.t
t. .1
Or A
1.4
«*tur
-9.3V
£*CM
1
M 3
t
E
EHTS
nun
JB.9
31,3
39.0
39 .9
".0.4
41,5
42..
13.5
44,4
4'S.O
15.4
4».3
47.5
49. f
*,o. ;
-il.4
•3.0
ti:.3
54.:
57.5
59.1
'.it. 7
41.0
42.4
44.1
A8.1
70.*
71 .f
77. r,
71.1
-5,85
-1.40
. ' tfLQU •
S»- 8. :! 44513
0.01$0
K
PERMUTE
'l*i lit COOK? Ct! L
H.4«0
3,119
».4J«
9.430
1.440
a. «9
P,1(S»
9.4JO
1.4HO
B.4tO
8.500
9.110
S.T20
S.I38
ft, 34ft
«.:so
8.540
3.570
9.SBO
8.*?9
S.4W
t.elO
B.iZf'
9.430
(.440
S.450
tt.4HO
*.7«0
I.SSO
5 l.t
1 9.3
3 1.0
I 0.3
2 O.i
! 0.4
2 0,4
1 1.3
4 1.3
4 1.3
: 0.4.
4 ,t
: ,«
^ .4
2 .4
4 .5
4 J
4 1.3
J 1.0
« l.S
2 «,4
2 0.4
2 0.4
T 1.0
2 P.*
1 0,3
J 0.4
1 O.J
i 0.3
cm
7S.7
/4.0
77.0
77.3
71.0
7**4
;f.:
DO,!
81 .8
1*3.1
93.7
HS.C
»6.e
W.2
91,1
tl .4
»7.7
91.*
94, f
«.S
94,!
9c. 9
97,8
5K.4
W.7
9t,4
f*.7
100,0
-------
PAGE 162
APPENDIX B
-------
NYMMS M.L Rmiisn KMTCKN
PAGE 163
t W t
tnimsttasi
VARIAB1 F NIIMCFft
HMCIMM
Numf* or ti«Tmr.T WHIM • <7
MIMIII or VM.UES rnuHTft. , 104
NUMHII or uM.urt Mir cmiNrn *
UKAItm ISTIIMTCl
MM
H
N
flRBlNH
1S.A000004
t.flOAAQO?
MUM l.lteooe?
VMIMiCt 3.47*40:5
IT.KV. 1.M4S113
(03-ni)/j i.ooooooo
1T.CMM
t.StJIWt O.lllOTM
9 . 44f Wf •
1
meant
VM.UE COUNT CEU
4, BOO
3.700
3.100
4.400
4.700
7.100
7,2**
7*369
7.40*
7.400
7.fBt
1.000
i «.
1 0.
2 1.
1 0.
t 0.
2 1.
1 0.
1 8.
t 0.
2 1.
* 3.
J 2.
run
O.f
l.t
3.1
4.7
5,7
7.5
I.S
f .4
10.4
12.3
14.0
11. f
0 « dl 734 27
*
1
tunwcss
XUHTDtlR
B
IN K 3
rOKfMTI
UIIL1K r.OUMT r.tLL
.200
.30*
.46*
.SO*
,404
.70*
.•00
.too
.00*
IB*
.500
,300
1 0,
3 2.
4 3,
1 2.
2 1.
1 0.
4 3,
2 1.
1 7.
3 :.
i ».
7 1.
em
it.t
W.4
711,3
11.1
13.0
34,0
Z7.7
If .4
47.3
43.3
44.5
4«.l
1 * 1
IK t
V1IUX COIJKT
f.*0«
t.soo
I.7M
f ,»e«
10.100
10.200
15.300
10.400
10.50*
10,40*
10.7BO
16. to*
2
3
1
1
t
7
2
1
2
1
I
t
H
L*
t»CM
0.23
-0.64
t»CH
1
t
menrrt
TIU. ew
. :*.«
. 92.1
, 5S.7
. s*.*
. *r..i
. 71.7
. 71.4
. 55.S
77.4
. 71.3
7*.!
, «l.l
H
N
H
X N
•-• num *
L»
8,t7
-0.0*
-.• iruw »
HM
i tmn>
3
COUNT CD
0.3000
4.3000
14. MAC
1— 7.7JM21f
»*• 11.4454444
«,*759
H
VM.IK eniwT
11.100
It .200
11.300
13.400
12.7**
12.100
13.000
13.100
11.20*
13.300
13.40*
1
t
7
1
2
2
2
2
7
1
7
X
Mil etm
5. 14.0
0. 14. t
M.I
17.7
. It.*
. fl.S
. ¥3.4
. W.3
. »7,2
0. W.I
1. 10».»
-------
PAGE 164
OTMMS MX eiUIK EMTIRM MltN
1 CMITP I
•vnminn
VMIMLC MMIER 12
mmtEK or BISTIHCT VM.UCS . i:
MMKX or VM.MS wi*ro, . ft
mime* v u4iurs NOT COURTED 7
LKATlfl* (SfUMTES
nCM
NCIIM
DDK
NMtlHM
ftUllHM
IMMC
VMIIHKE
IT.ICV.
22,Wftt*
4.l»»Wt
u.ittttif
»,JMI7S7
].»*?ow
»,77«M7»
sr.cMim
«,2S4IMI
0.;HI1«733
HMH
mti
HMMW4MH
£»CH •-• .MOVE «
L»
U*
S.OOOO
4,9400
24.0040
I I
H -Ml
* 1
1
'EKCEMT!
VK.W CWMT KSll C1
.200 1.0 1
.140 l.d 2
.400 :.0 4
.7M 1,0 3
.tog i.c 4
7.44« t.« 7
7-100 !,0 t
7.290 I.C t9
7.300 1.0 11
7,400 7- J.fl 13
7.900 t 4.1 If
7.490 2 2»fi ?!
7.7«4 i i.» ::
i t
UK I «
M
IM
fOtCMTS
IN KM lit CiHwr CELL I'-Uh
» 7,f40 4 4,0 J«,J
0 «,104 3 3.0 St.J
4 .204 1 1,5 SS.J
i ,10ft 1 1.9 11.1
,400 1 1,0 12,3
.400 I 1,1 », 4
,700 2 2.0 17.4
,190 ? 2,1} It. 4
.too 4 4,1 41,4
,400 1 2,0 43,5
1 ,V» \ 1.0 '4.J
2 T.400 2 7.» 4(1,3
i t.3»4 2 2.0 39.3
HEWtSS
KUKTOJ1S
VMM COUNT
1.740 3
t .894 3
t.teo 4
ie.100 1
19.290 1
10.300 1
10,300 1
19.790 1
1C. 100 4
11. ISO t
11.200 2
11.100 1
11.4CO 1
» 12.I424S34
. ' ML8K « 0.1300
H
S
rEliCENT!
VALUE COUHt CCI L CUB
11.199 1 1.0 *?,
11. >00 2 2.0 »«•
12.294 t 2,0 14.
12,300 1 .9 lit.
12.404 ,0 tt.
U.t09 .0 tl.
13.100 ,9 *:,
13.400 iQ t* ,
13.700 ,0 ft, 3
14,3*0 0 t7,0
14.700 .0 tn.o
11. «00 .9 »».0
22.400 1 .0 100.0
-------
PAGE 165
MTWMS M.L 1*7• EAITOtK Ittltt
liliiaiiltlt
« COITf*S 1
HIIHMK
WUMKR Of DISTINCT MM.UES
3
41
LOCAtnm iSlllWtfM
KMHIt CD i * ^3* VftBIfWtt ?,3?*30l?
MOT CnUKTE)' 2 ST.BfJ. 2»7tV41«3
X5iHMM)4 8. .1173424
HQBC ? « S900000
WMNEM
KIHtTOm
19 g s
H H UK ] t
M H F^CH 'H'
HH HMH KEWSEN1S
HHHHHM J
H HHHMWi CttUMT
HHHHMUHMH
HHHHHHHHHH H
HttHWIHHIIHMHHH MM It
Iff.n •-' ABOVE « 5.,T,00
i* o.::a«
U« 30, .TOO
01" :,;?»?«««
y»LtiF v^tuE/s.f. ac* lo.?*?";:^
O.tJ J.S7 1— t.KK'lt
1.25 2.40 Si- 1?,:»74»97
EKH ' , JE'.OU * 0.1?no
R
X
PEDCtNTS
V»1.U€
s.too
s.:oo
5.JOO
5.S40
;.too
s.too
4.000
4.100
4.100
4.300
4.400
7,060
7 '00
7,500
7.««
7. tQt
COURT
1
a
i
i
i
i
i
i
i
2
1
1
t
7
:\
l
GEU
1 .3
l.t
l.i)
1,0
1.0
t.O
t.n
1.0
1,0
l.t
1.0
l.t
1.0
*.7
7»*
1.*
CUH
1.0
?.t
1.1
4.»
1.1
4.7
7,7
1.7
t.4
11. S
13.5
13,4
14. S
23.1
?*.o
21, f
rESCEMTS
VM.UE fOUKT C.ELl
7. WO
.000
,180
", »0
.400
,r»oo
.700
,1100
S 3.1)
1.0
' 1,»
i.d
1.0
1 .0
1 .0
1 I.*
CUR
3!, 7
.15. 7
15.4
J7.5
M.S
.If .4
10, •
42.3
.too 4 j.8 <«.:
,too
.:oo
,300
t uo
1 1,5
' 1,1
.400 i 9.8
,400
.too
1 1.0
1 1,0
47.1
411.1
nu.o
55,0
S4.7
57,7
fCKWNT*
«*WF eeu*T
t.«0 .1
10.000 1
10,100 f
13.400 4
IQ'^QO 1
10. MX }
1 1 . 700 1
iOiRCO 1
1 13 . 700 1'
11.000 J
11, 'SO ,«
11.400 1
11,700 1
11. t!>0 1
12,000 ?
15.1*0 1
CU.I
2.J
1,0
1 . t
3.8
t ,0
s.»
1.0
1.0
l.t
2 - 1
?.»
1,0
1.0
t.O
«,»
1,0
aw
«o.t
^?
A3.S
ft?, 3
*H.3
71.2
73.4
yj.i
/5.0
77. f
HO. 8
lit. 7
*5.7
M.7
«J.4
M.S
WSCINTS
W.Bf
t"!.
>J.
13,
13.
)».
13.
14.
14.
f5.
14.
14,
17,
It.
CBUNT CEI t
100 1 1.0
700 2 l.t
09< t 1.0
JBO
400
7CO
198
400
000
t.O
1 .**
1.0
1.0
1.0
1.0
?P0 1 1.0
'00 1 l.i
;oo i t.o
400 1 i.il
tun
•7.5
Bt. 4
fl),4
tl.J
t2. 3
»S.3
t4,2
n.z
4A.C!
«7, j
M.I
tt.o
100.0
-------
PAGE 166
NYMAI3 ALL CRUISE EASTERN Id!IX
< COHtTFP <
»*»****•*•
VARIAILE NUNIER
•UHICR OF DISTINCT VALUES .
MMIK* OF VM.IK1 COUNTED. .
MINKR Of VALUES HOT COUNTED
NAXINUN
13
47
101
3
».3»f»W
0.3000000
VMIIANCE
ST.BEV.
IUJ-01>/2
1.2*23343
1.1117??)
i.nooooi
LOCATION ESTIMATES
MEAN
NEtlAN
NODE
4.407*20*
4.1WWO
HOT UNIOUE
3T.EMO*
0.11027(4
0.317542*
SKEMNESS
KURTOSIS
VALUE VALUE/S.E.
0.22 O.l»
-0.11 -0.22
EACH
IELOU
0.0750
N
N
VALUE CHUN
0.3000
0.4000
o.tooo
1.2000
1.4000
1.3000
1.4000
1.0000
i.tooo
2.0000
2.4000
2.SOOO
PCRCENTS
r CELL cu
.0 l.<
2.
. 3.
4.
. 3.
3.
4.
1.0 7.
2.0 ».
1.0 10.
1.0 11.
1.0 12.
S
t VM
i i
>
i
i
UE CHIJN1
.4000
.7000
.OOOO
i.VOOO
.1000
.1000
.4000
.3000
.4000
.7000
.vooo
.2000
1
r.
i
1
•El
•LI
.(
,
,
(
.
,
.
.
',.
I.
N
A
N
CENTS
. CUI
13.
14.
13.
14.
22.
24.
10.
14.
37.
43.
4*.'
31.
0 S
3 « N
X
PERCENTS PERCENTS
1 VALUE COUNT CELL CUR VALUE COUNT CELL CUH
4.3000 2 7.0 33.3 4.2000 4 4.0 13.2
4,4000 3 1.0 34.4 4.3000 3 3.0 4«.
4.70*0 i 2.0 St.4 4.3000 3 3.0 tit.
4.«000 3 1.0 41.4 4.4000 1 1.0 to.
3.0000 S i.O 44.3 4.7000 2 2.0 »?.
3.1FOO 1 t.O 47.3 7.1000 1 1.0 «3.
3.2000 2 2.0 4t.3 7.20OO 2 2.0 fC.O
1.3000 3 J.O 72.3 7.3000 2 2.0 t/.O
3.4000 2 2.0 74.3 7.1000 1 1.0 f«.0
3.11000 2 2.0 74.2 ».2000 1 1.0 «.0
1 4.0000 1 1.0 77.2 f.4000 1 1.0 100.0
1 4.1000 2 2.0 7V. 2
-------
HTIRAtt MX CHUIWS FKFnFdN
PAGE 167
IIHtltHUI
t 5«f 1
tssnnsitxt
MR tiki
t * Kiutftl
MUnlE* DF tUTIHCT VM.HTt .
mmmt
MURIM
nr MU
K8 CO UK TED. ,
Or VttUICt MIT
COUNTCg
5
]2
19:
4
LOC»TlttH EfTIMTtl
NtM
KtlM
HOI1
VM.UC
o.ooooo
0.10000
O.iOOM
.39090
.400*0
.50000
.*00»0
.70000
i
H -
town
12
i
i
S
8
11
1
2
t
n
D
c
ntctHtt
(•ILL am
11.* tt.t
1.0 12.7
1,0 13,7
4.f 11.4
4.» 23.3
12.7 34. J
1.8 37. J
2.0 Jf.2
1.404t02(
*'*f****j
H n
t »
I II
IWIIMIM
NIHlKUf
«»H(!t
0 . 0060090
MM
NN
MM N
VMIMKt l.MIKtU
IT.KV.
103-011
Sf
g
*
E
1
n
.trnm
1 . J0073S2
0.7009004
HH N
KM N
4H Hfl
IN MM H
HHIUHtlUI
* 1 7V7V37 HHHMHHHN
.1*434
/*
SKtVNtll
uniton*
t
4
mcmt
Muur
.taeoo
.toooo
.00009
.10000
.10000
.40000
.30000
.10000
awm
!
2
i
2
3
1
»
S
CILL
2,
2.
?.
}.
%
3.
t.
4.
LUH WLUf eMMT
M.: i.toooo 3
43. 2.00000 3
31. t.lOOOB 2
52. 2.40004 I
93. 1.30008 2
ST. 1.00004 2
M. 1.1000* 1
7J.S 3.40004 I
L
C*CN
IHH.W
1.2*
o.n
MCM
KXCEV*
CCLL am
2, 7*.S
J. 7».4
2. 11.4
7. i4.3
2. M.I
7. M.2
1. tf.2
1. TO.:
•-• (VlOWt •
L*
U«
«M.w/t.r.
9.11
t.n
'.' WLM *
[»r.H 'H'
tCMMfCNT*
*
COUNt (t)
M N
0.3000
0.0900
t.oooo
01- 0
BJ. 1
I-. 0
It. 7
o.osoo
M
1
.3000000
,f 000*00
.10414Tt
.705*141
niccnif
WM.BF
J. 79000
3.MOOO
4.00000
4.400*0
4.50COB
4.MOOO
5.00000
S.10000
OHMt CEIL
1 I.
1 t.
1 I.
i 1.
2 2.
1 1,
2 2,
ra*
n.2
«.2
M.I
W.I
tt.t
??.!
ff.O
1 1.0 100.0
-------
HYMMS M.L CKU1IC1 EMTMWI MSIM
PAGE 168
t ma t
titanium
WWf* Or IIIT1HCT Vt'.ICS .
MUMKt OF VAllIM CWIHTtt. ,
Clf MM.UH MT ettWfTtt
T
70
10*
t
MKIKW
MMF
VMIMCt
IT ,WV.
0.0000000
M.ntftt?
4I.327TOU
*.fsitt2?
<.iaeoo«2
LOCATION CITIMTM
KM
DEISM
MK
r.MSMH
5.1300003
1.20040*0
IT .EMHN
J.475ZW7
0.731 AH?
IMN '-• ftMNI •
z.oooo
MIIMttt
KWTMII
5.3S
U« 40.
91*
VMUf/ft.E, «J»
4.33 I—
S.2» 14*
J. 3000000
n.ioooooj
0.tJ«OJ5l
14.M7M1?
irtDM *
9, IB«
u«.ut cnmi
o.oooo
0.3000
o.MM
1.0000
l.40«0
1.3000
1 .1400
2*0000
7.1000
2.3800
2 . 3000
3*0000
3.1000
1.2000
3.. 1009
3.3000
I.M09
1.7000
fV
< cm
i
t
,
t
i
I 2.
J 1,
!•
0.
gs
1.
1.
a.
4.
t.
i 1.
I 1.
t 0.
CENTS
. CUM
j .
J.
4.
4.
7.
to.
13.
17,
17.
11.
M.
27.
W.
2§«
2f ,
31.
31.
34.
mtCEHTI
WLut CMMT eni cm
4,0000
4,1000
4,2000
4,1000
4.3000
4. MOO
4.*000
3.0000
5.4400
3.3000
3.1090
l.fooo
A.IHHW
4.1000
4. MOO
4.»000
7,0000
7.2000
:
t
4
2
2
I
I
1
1
2
1
2
1
33.1
34.1
40 «•
47.3
44.1
4S.1
44.2
4t.l
30.9
SI.*
32.1
S4,7
S5.'
54,4
M.I
S>.4
40.4
41.1
itMUt cmmi
7.1000
7.40CO
7.11000
I.JOOO
1.4004
t.oooo
10.200*
10.40X
11.2000
11*3000
11. lOOt
li.tOM
12,7006
11.30*0
14.0000
14.2000
14.1000
14.M44
n
OQ
.KCWTI
.1 ClHt
«2.1
44.}
6^*1
47.0
47.
M.
AY.
70,
71.
74.
7*.
71.
7t,
M.
II.
n.
13.
»'.
UALUC COIW1
14.4400
14. tM*
13.1000
11.4000
13.5000
1S.4MO
14.4000
14.7000
14.1*00
It. 4000
22*2000
23.3440
24.4000
27.7440
31.2000
14*1009
Wl
CfU
0.
0.
0.
0.
1.
a.
0.
4.
0.
0.
0,
4.
9.
4,
0.
0.
CIMTI
CUT
14, t
03.1
*4.f
17.7
if ,4
?«.*
t].5
W.S
»3.4
»4.J
f3.3
•ft. 2
f 7.2
••.. }
ft. I
100.0
-------
PAGE 169
HVMMH «Ll CMIK IMtCM IMIN
mMUMttt
1 HITNIT <
******!**•**
MI I HUH 313.0000000
VM1AN.E mi«»E« . • ,
. . , 4 Nf»IHUH 143.0000000
HUNK* Of II1TIHCT VM.IKS . 44 *MNK 120,00*0000
MHttn OF (MUIES CMMTEl. , 104 VIMIMCE 5W1.4t70701
WHirt Or VM.UES »0t CatHtni 0 IT.BtV. 73.2*04f»«
(U.l-Ul>/2 A7.300000fi
LOCRTION nriN*rct
KM 244. f 014702
•jT.fRKOR
7.HI4023
RE1IM S7'5. 0000000 H.0732fS4
HOOC HOT UNIQUE
H
H
1 •
1
PERCENT5
«KEIWEI«
KUHT081S
K N
* 1
N t
KICtNTS
H
N
N
M
M H
H HM H H
H HH H HMHHH
H HM N HHHHH
HHHHH HHKMKNHM
E*CH 'M'
REPRESENTS
2
couim*)
HKMHMMHMMHMHHHHH
E»I:H •-• niotft « 1S.OOOO
L- 135
U- 43S
«t»
UM.UC VM.UE/S,t. 03-
0.10 0,40 I-*
-1.30 -3.13 84-
t«CT ".' KMM « 2
OJ
3*
FERCtNTS
.0000
.0000
300.0000000
335.0000COO
1?1. 4131733
33».lf»1470
,0000
II
X
PCDCEHTS
KIHIIf I'.illWT Cfl.t CUM VAIIIE r.nilHT CEIL CUM VAI US COUNT C.EU. CUR IMI 1* COUNT CELL CUB
U3»
149,
141.
171.
172.
173.
174.
175.
174.
171,
110.
114.
IM,
200.
203.
204,
203. 2
, O.f 201.
l.f 20*.
4.7 212.
3.7 211.
. f.4 21».
12.3 220.
. 13.2 221.
14.2 222,
. 17.0 224.
, 17. t 221.
2, 20. i 231.
0, 51,7 J4I.
2. 34,3 2M.
5. 57.4 273.
0. 21.3 273.
0, Jf,2 ITU,
1, 31,1 210.
2,1 34,0 211.
O.f 14. t 2*3.
,f 35,1 H4.
.t 14. 1 -*»5.
,f 11.7 2*».
.f It, 4 100.
41,3 Ml,
42.3 102.
43.4 303.
44.3 103.
44,1 112.
47.2 314.
41,1 Jit.
•f 4f.l 320.
.f 30. » ill.
.f 51, t 323.
2.1 34.7 327,
-f 55.7 315. 3
.f t4,4 340. 1
ST.! S4J. l
54. S 34S. ?
5f. 344, 1
. 40. 334. 1
. 42. 353, 1
43. 340. 4
43. 345. 2
M, 170. 4
. 47, 371, 1
, 47. 372. 1
. 41. 310. 1
70. 312. t
11. 313. t
71,
, 74,5
2. 77.4
0, 7H.3
0. 71.5
1. *1.1
0. 12,1
0. 13,0
0. 14,0
1. 87,7
1. it. 4
1. M.4
». f4,3
2. »7,2
0. M.I
0. »»•!
0. 100.0
-------
PAGE 170
H10«»t3 M.L CUtlltt EMTtftN WW1*
t*il*a«l»M
I KJtL I
ttmiituti
VMIMI.E main*
mime* or DISTINCT VM.UCI .
NVHK* (If UALUC* COUHTEO. ,
MMMR Of VALUES WT CMMttD
IMXIHUIt
14
14
18
RANK
WMtlAMCS
51. WW.
fOI-OD/t
1700.0000000
«o.ooooooo
1*40.00*0000
43«24,»7421«7
J14.0U3*??.
WTIHATil
KM)
NEdM
KOBE
214.MMNI
170,0000000
NOT UKIBUC
tl.5470114
HHH
NNN
SKEtWCtl
KUtTHSIS
VM.UE
4,11
Si. 2?
100.0000
c.oooo
1000.0000
91«
03-
*-•
1:0.0000000
230.000000(1
0.2H505*
42l,14t*7»4
S «
- II IN
II I
1
VM.tif rniiMT r.
48. 1
17. I
M. 2
70. 1
19. 1
to. i
tea. s
114. 7
1:0. 4
1RCEHTS
II CU
.1 t.
a 2,
,i 4,
.1 3.
.1 ».
.1 I.
.7 IS.
.a 21.
.1 21.'
s
t
rCMEKTS
1 VMUt GRUNT Ctl.l CU
uo. 4 4,3 aj. (
t««, S 3.7 JH.
ISO. 2 7.3 40.
UO. 3 .7 4*.
tT8. « .5 51.
ii«. 7 ,e at.
1»0. 4 .5 IS3.
200, » .* 70.
210. 2 2.1 7!,
rti
t VM.Uf COUNT Cfl
I 229, 3 5.
230. J J,
940. 2 2.
230. ^ I,
210. 1 t.
300, 2 2.
120. I I.
340. 1 t.
HO. 1 1.
CENTS
CUM UM.UC CWNT t
7*.t J70. 2
Tt.S 419.
•I.I 440,
(4.1 4tO.
13.2 MO.
*7.S 1UO.
•R.t 1700.
»•>.»
»0.f
K
X
PERCCMTi
tl.L CUh
2,3 M.J
t. f4,3
, 43. S
««.*
»7,7
t«.t
. 100.0
-------
PAGE 171
ItrMMS M.L CW1K EMIUH 1*1 111
tiunn«i«
t MS I
IMWfMtttl
UMtUM MWKI ......
NUMC* Or MtTIHCT VM.UCS .
MINKR V VM.IKS C01MTEI. ,
MMIR Or VMJCi NOT COUKTE3
MM I HUN
*
17
104
II
LOCATIIM unmttt
HI Ml
ftf&IM
(UK
t*MC
VMIIMCC
sr.itv.
(03-011/2
1273. 0000000
131.0000000
1 HO, 0000000
*f 151.31 JSWW
w. 5000000
Ml. 17t:»03
1*7.5000000
J 73.0000000
IT. FtBOH
35.S7J2f75
•>4.»4«J047
H
N
m
MM
NHH HHHH H H
SUCH 'H'
KPttUNTI
3
«Wlf *
i.*
u*
73.9001
0.3000
1JOO.OOOO
VMUt CWMT
133. 1
1!3. 1
140. 1
1*1. 1
in. 2
114. 2
US. 1
lit. i
200. 1
203. 3
210. t
211. 2
21S. 1
22 1. 1
231. 1
212. 1
23S. 1
217. 1
240. I
241, 1
243, 2
24*. 1
EC Ll
0,
0,
9.
0.
1.
t.
*.
a.
9.
2.
*,
1,
0.
«.
9.
».
*,
9,
0.
9,
|,
9,
CUB
9.t
l.t
?.l
1.1
5.7
7.5
1.3
f,4
10.4
11.2
14.2
14. •
I/ «
17. »
11, *
tt.«
2t.l
21.7
22.*
23.*
25.3
24.4
mwKSt
KIWTDS1I
UM.UC
».IS
0.20
t»CH
n
4.90
0.«2
24S.«00«9«0
*2t. ooooooo
* 1»7.8««0«7«
•" 714.47S4731
10.0000
I
-
t
1
nn
N
It
1 t
N 3 «
ft
N
ft
I
ic r.aim
247,
110,
214.
2SI.
240.
244,
2J»,
2*Q.
212.
in.
W.
109.
MS.
JOt.
310,
320.
13g.
313,
}4S.
HI.
154.
319.
1
C
;
El
Et
,
.
.
,
f
,
f
.
,
t
.
,
CtNTi
CUM
S7.4
29.3
10.2
31.1
32,1
33. 0
M. a
34. f
13.1
34.1
17.7
39,*
40.4
41.9
43.3
43.4
44,]
43,3
4t.2
17.2
41,1
50.0
fERCEKtE
VHUt CDUHT CtlL r.un
17S.
MS,
429.
440.
475.
SW,
510.
219.
5I».
9M.
5*1.
SM.
H3.
173.
91*.
*05,
iif.
*75.
»Jl.
«2t.
«».
*42.
4
t
1
1
1
1
1
I
3
3
I
i
1
1
1
5
1
I
1
1
{
1
U.*
54.7
35.7
I*.*
57,3
31. S
(.0.4
41.3
41. J
A3.1
M.O
*7.0
*7,»
tl.T
«*.«
71,7
W.»
71.*
74,5
75.S
74.4
77.4
UE COUNT
439 >
470.
M4.
7oe.
793.
71?.
72S.
747.
750.
?n.
1*3 ,
M4.
too.
tis.
t43.
TIO.
1094,
1010.
IfiiA
Iw*wt
1240.
1275.
1:1
<
:i.t
5,
9.
,
,
,
.
•
,
,
CUM
7«,3
7*. 2
11.1
D3.0
M.e
14. f
t^fl
»4.3
*7.7
M.7
M.t
to.*
f2.S
t3.4
f4.J
f5.3
M.2
»7.2
1 **.l
1 100,0
-------
HTBRMS *U. CMlim tMTMM in tin
PAGE 172
Mssmtssu*
i cxutcott *
NUH1I1 Or BUTIHCI VM.UCI . 77
NUNKII nr VM.UIS emmet
ft
WMKt or VM.UM NOT couHTta it
LOCATION tiniMTII
*HIA*
RC9IAI
NOII
1.
MXIMHI S.tltftff
H1N1NUN 0.0409099
«*Nif !,571»»ft
VARIANCE ti3>D7t:i
ST.HV. 0.3»037«0 M H 1
(OJ-U1U7 0.37JOOOO H H
M HMHMMN
•T.ltWl* HNMII1MCIMNN M H
f«CN -H-
FPKEStHT?
2
COUNT(l)
EACH *-' .tmVI * 0,1300
L- 0.0000
U* 3. MM
ai*
v»LUf vALUf't.f. HI*
IKCHKEt* t.S4 1.14 I—
KUflOIII -8.57 -1.93 l*«
0.7JOOOOO
i , 41*0090
0.337442*
l.TUSti*
EACH '.' KLW • O.C200
H
X
t *
1
MKCINTt
0 1
H R } t
t 4
I «
H
n
Kiccurt , rncxm rneiNTi
UMUt ttlUKT CELL OIH VM.UC COUHT C(U. CUD VALUE COUNT RELL CUM VALUt CDUN1 BILL CUM
9.04000 1.0 1.0 0.74008
O.lfOOO 1,1
0.21000 1.
0.12000 1 .
0.23000 1.
O.:3000 1.
0.27000 1.
0. 211000 1.
0. 34000 3.
0.33909 1.
0.3*000 1.
0.11000 1.
0.47000 1*
0.5*009 1 1.
0.34900 1 1.
0, 51099 2 2,
0.40009 1 1.
0.41000 2 2.
9.4490* t 1.
0.73000 3 3.
t 2.1
3.1
4.2
3.2
4.2
7.3
A. 3
tl.S
12.5
J3.5
14.4
J3.A
14.7
W.7
11.1
20. »
52. t
.73009
,74909
.77000
. 70000
.7*000
.1190*
.11000
.IS009
.94000
.rjooo
.vnooo
.ttooo
.00000
.0300*
.03SOO
,94*90
.9500*
24.9 1.01090
27.1
.at ooo
1.
1.
1.
1.
t.
1.
1,
1.
1.
1.
3,
1,
^.
1.
1.
1.
2.
1.
1,
1.
it.i i.iiaoo t l.
2t,2 1.14000 1 1.
30.7 1,1100* 1 1.
It. 2 l.lflOO 2 7..
17.1 1,23900 1
ll.i 1.23000 >
34.4 1.24004 1
33.4 l.JAOOO 2
34.; 1.27*00 2
37. S 1.30900 1
<0.» 1,11900 1
tl,7 1.33000 1
42.7 l.JMOC 1
43.7 1.3fOO» 1
44.1 1.40000 2
<3.l 1.4490* 3
f>.t 1.43000 1
4t.S 1.4COM 2
JO.O 1.31900 S
51.1 1.54000 1
,
.
.
,
,
,
,
,
.
.
S!.l 1. 44*00 1.
53.1 1.73000 1.
34.2 1.74000 1.
Si.2 1.100*0 1,
S7.3 1.11000 1.
M.I 1.170*0 1.
Sf,4 1.1MOO U
41. S l.»1000 2.
*3.3 1.1700* 1.
44.* 2.190*0 1.
43.4 2.1100* 2.
44,7 2.14000 1.
47.7 7.17000 1,
41.7 3.29000 1.
70.1 2.24*00 1,
77. T I.SJflOO 1.
74,* 2.4IMO t.
74,0
7^.2
10.2
81.
12.
H.
14.
IS.
14.
•7,
If.
fO.
«.
M.
T4.
f5.
f 4.
*7.
?f .
100.
-------
XTMMS ALL CKUISfS FttTrM MI1N
PAGE 173
mnmmi
IllllttlXII
mmtm
NUNItl OF HtSTlNCT UM.UU
MHIKt AT VMli
mine* v mutt mi
MX! HUH
it
105
1
«»MBF
VIMIlMtCt
IT .MM.
i:.3«0000)
o.moonoc
u.tooooo*
S.4W15S7
1.57*7313
0.54SOOOO
M
H
M
NH
KM
MHH
tMX 'M'
MWHTSIMT*
4
COUNT!!)
LOUTtflM IITIMTtt
HC»N
NItlMI
mtt
I.*771t07
i.iMeooo
HOT UMIOUF
ST.imot
0.1540703
tMM '-' MOVE
-.(I
0.739*
0.0000
IS.0000
KtWKIl
VM.1W
4.04
:i.t4
WM.IK/I.F.
14.t*
4S.M
01.
03*
0.7*90000
;.1700000
EACH ',• JTLOM •
0.1030
0
« 3 •
KKCNTI PEUCFMT! K*CF«T» mCENTI
VM.UC COUNT CCU MM VMJJt COUNT CELL CINI VMUF CWINI CtU CUH MUlf COUNT CEU. CIM
.4*00
.4*00
.=700
.3100
.MOO
.5400
.3900
.stoo
.«oco
.4100
.*3GO
,4400
.MOO
.*too
1.
1.
1.
1.
5.
1.
1.
2.
1.
2.
1,
I,
1.
1,
.7000 1 1 ,
.7190 1 1.
,7100 1 1.
.7590 i 1*
.7700 1 1 .
.2*00 1 1.
1.
2.
H,
4..
7.
1.
t.
12*
11.
1*.
17.
tt.
It.
20.
21.
21.
22*
JS.
74.
0.1400 1 1
O.ISOO 1 t
a.itoo i
0.1400 2
O.f700 I
O.ffOO t
O.ttOO 2
1.0090 1
1.0100 1
1.0100 2
1.0700 1
1.6»00 }
1.1000 1
1.120* 1
1.1*00 1
1,170* 1
1.1*90 1
1.229* 1
1.2300 1
25.7 1,2900 1
.1190 1 1.0 M.7 1.2*90 1
.1390 1 1.0 27.* 1.3?00 1 1
?*.*
St.S
10.3
32.4
13.3
34.3
3*. 2
37.1
M.I
40,0
41.0
41. 9
42. t
4B.7
M.7
47.4
40.4
4V.S
10.5
31.4
32.4
.3300
.3*0*
.3700
.3100
.4760
.4tO*
.3000
.320*
,3300
.MOO
.4100
.taoo
.4*00
.4 tOO
.7*60
.1040
.1400
.1500
.MOO
.1700 1
.T300 1
S3.1 2,0400 1
0 34.
0 33.
0 3*.
0 57.
31.
St.
M.
41.
42.
43.
M.
AS*
**.
47.
M.
*t.
72.
75.
74.
73,
7*.
77.
2.0*90
2.14*0
2.3100
2.4100
2.4499
2.4*09
2.4t*0
i,S700
2«*3*9
2.1100
2. (409
2.tOOO
3.0300
1.4*00
1.4300
1.3300
3.*tOO
4. 1WO
4.3WO
4,3100
f.*MO
1.
1,
I.
1,
1.
1.
1.
1.
1.
1.
1.
1,
1,
1,
1.
1.
1.
1.
t.
1.
1.
12.3*00 1 1,
Tft.l
Tt.O
11.0
11 .t
t2.t
13.1
14.1
*3.7
14.7
17.4
n.t
tt.S
to. 3
t2.4
t3.3
94, ,3
tS.2
M.2
t7.l
tl.i
tt.O
100.0
-------
PAGE 174
MVMMSS *U. CTUIPl EASTERN 1*6IK
IlIltJIllMt
• TIMII I
ttiistxitx
WRKR OF DISTINCT
-------
PAGE 175
NTWMH MX CKUISi EASTERN "151H
I CmKQM *
SIKKMXtl
UMIMI.C MNIKIt
MMKI W itlTIHCT UMUCt .
MMKIt « WM.UES COWIICt, .
MUHKt Or VM.UH WT COUKIFP
LOCdTinn CSTIKATCS
2
V
lit
0
NINUHM
MMU
WMlANCt
2IT.0000000
55J.0000000
32.0000040
?7<.5000000
Ml UK I DUE
H
HKH M.
HHH N
IWH 'H'
ItNtfSENTS
COUHT(S)
IACN
(llOtft
L«
U«
2.0000
214.00««
114.0000
R
VM.UI It
IKEHIKSS -«, J«
KUtTOSIS -0.10
UM ','
I * It
i m i +
»o
m
ai
iLUF/s.f. a:
-1.4Z 5-
-«.21 »4
KIM *
* 271.0000000
« J7». 0000090
* ?48.0Mlt38
• 2*0.447*440
5.2500
n
i
*M1K
2S7.
Mli
24}.
264.
US.
244.
mcciiTf
r.mnn
i
i
j
I
1
3
2
cn.i.
o.»
I.t
1 > t
0.9
0,9
S.d
l.f
CUM
9.f
2.8
4,7
5.7
4.4
*.4
11.3
247,
2»«.
270.
37J.
27J.
37J.
3
9
3
t
*
7
7
2.1
4,7
1.7
7.5
5.7
*,*
4.1
M.2
11. f
29.4
1(>1
34. »
41.4
50.0
275.
274.
277.
271.
27f.
21*.
HI.
K4UK1 «U
7,5
4.4
l.f
4.7
S,7
4.4
4,7
37.S
A4.2
M.O
70.1
74.4
m.o
t7.7
KKENTS
K CDUIIf CELL
282.
211.
2*4.
3tS.
SI*.
2tf .
4 3.8
J
4
I
1
1
.«
.1
.»
.»
,f
CUh
ft. 5
f 1.4
?7,Z
W.I
n.i
t§6>d
-------
PAGE 176
*U CftUtK EASTERN MSIH
SS»*mi*l»
mttntnn
VMIMtl PJHK* 11
MMM* a* »ISTf»el (MUKt . J2
MINK* OF VftUltS CIHIHTEI). . 104
NUKIC* OF VM.IKS NOT iujHTfn o
MX I nun
mmmw
MNK
UMIMKE
ST.ntv.
5.4000904
1.2M7427
H
K
H
H
UN
BUCK -H-
KPKESFNtS
LOCMIOH ESTIIMTEi
ST.EIMOR
».U08f5?
o.winoooo
IWK
15.00.0000
L u
fM '-' *1DVE * 0. '
V44.JI
2.10
UkLW/S.C.
11.7f
16.10
03-
14.900000?
i:.300000:
IMM
IELDII *
is. oo
15.10
IS. 20
13.30
15.40
13.90
«au*r
!3
4.7
7.1
4.7
3.1
«.*
CW
44.2
71.7
74.4
DO.2
It.I
VM.\K
13.10
ts.oo
U.20
it. to
17.00
17.»0
rEtCEUTt
eat BUN
».f i7.7
«.» «i.7
9.f If,*
l.t »J.«
VMIIE
11.00
K.iO
It. to
;o.oo
COUNT
1
1
1
1
PCKCNTt
C£1L CUIt
O.I »'>.!
».» »7.J
100.0
-------
PAGE 177
HYWMM *U CRUISE IMTCM IMIN
»ltni»Sltt
> M.KTOT «
«l*H
t«
II
MXtKUH
HIMIHIM
MN*C
VANIANCE
ST.JCV.
(113-011/3
IM.Sftftt!
tl.OfftMS
H
HH H
MMH M
H HHHHH
EACH 'M'
HlFtFSFItrS
COUHt(S>
(*CM •-'
«.?soo
H
SXMNCSS
KURTOSI3
It B 1
i Rum *
I • 0
I N E
VM.Uf u»LUt/S.E. 03- ?«.S9T»f8S
g, 34 2,2? 8-* 45.0473433
-0.24 -0.50 !*• 100.0114157
EACH '.' ICUtl • 0.1000
ft
I
VM.UC
fi.ll
r.rtllHT
1
fi.so
3.1
*,?
f .4
12.9
13.1
17.1
It.?
VMUE
ts.
93
n.
f».
ft.
»7.
Cl
70
50
40
10
40
HINT
9
}
*
3
4
7
4
n*£
MIL
3.*
3.7
2.1
1.*
».»
I.I
WT5
CUH
74,4
34.0
M.t
40.*
47.2
50. t
COUNT CELL CUH
47,50
ff.SO
ft. 40
W.30
100.10
100.SO
4
in
11
i
i
s
i
i
3.1
10.<
2.1
6.f
4.7
54,7
«*.:
7*.5
77,4
n.3
m.o
2.1 «*,•
iw.ut
101,20
101.30
10J.OO
105.3*
102.40
103. 50
'.03.40
CIIUMT
i
4
1
4
1
1
ecu
0.
i.
0.
0.
0.
CUH
17.7
»*.:
«7.J
»f .1
100.0
-------
PAGE 178
HTMM3 *U DAT* EASTERN BdSIh
mtifttnit
I PH I
VMtTAW.e Minuet ......
mMICF OF DISTINCT VAlL'E3 .
»Ui1iU> (IF VM.UES CflllHTED, ,
mmteR or WM.KS MOT COUHTEJ
MX I HUH
It IN MIDI
43
tos
t,3*ooeo4
5. .M«»*'»
1.110900S
VM'MICC
ST.lfV,
(BJ-UtI/2
7.»?!S?83
7.nc:>wo3
MOT UH1BUC
£*i'H -,
• •'•S'SE'ilS
HHMHM
i^HHHM
H HHHNH
'-' .1HO"E
VfiUJs
o,:t
•: ,oi>
BtLOU
yftl.U*
7.JSO
7. no
7,400
7,440
7.470
7,;*o
7.570
7 . AOO
7.41C
7.435
7,i40
7.450
7»6?9
7,708
7,730
7.730
COUNT
2
1
•t
\
1
*
1
3
1
3
t
5
4
2
1
1.
CELL
1.9
O.f
• ,t
0.?
o.»
0.?
o.»
Q,^
0.?
l.S
9.9
4.;
1,1
1.1
o,«
i.t
CUM
t.»
3.8
»,?
1.7
4,4
7,5
I.S
»,4
10.4
U,3
i.*«2
7.?
1.7
1.4
4,5
4.«
7.740
7.7«
7.7*0
7.770
7,780
7,7f9
7,SJO
7.H59
7,840
7 aw
;, wo
7,1*0
7 »«0
7,flO
7,«3»
1 ».»
1 9.V
: i.»
i *>.*
: i,»
i «,»
j ?.•
3 ».»
4 3.»
! il, »
'i 4.7
2 ),»
3 4.7
: i.t
I ,O
•51. »
'.A.»
•>a.r
W,4
?
7
?
,94»
,»;o
,n»
.J30
.0*0
,100
.170
> 1 10
.300
,j:0
.no
.300
,J10
.3:0
,330
! 0,
1 0
l a.
l 0
I ft.
I 1
1 0
? t
i 0
i 1)
I 1
t "
2 1
! <•
1 f»
t
7
»
f
9
»
f
»
9
^
9
?
f
f
9
»e
Al
4^
t]
*.<
M
»7
M
*»
'•S
/J
/«
7*
77
'»
,4
,3
, .1
^ ^
,2
.5
.0
,!
.S
,J
,6
,;:
.4
,4
.1
A* S.3S3aS4!
0 • 01C 3
S »
« l A H
H S ft
I H
SO
»J
i.jr,(> i (i.<
3.180 1 0,
,3»i J :.i
.410 1 0.
,«« ? t.
.130 " 1.
,440 1 0,
,450 i g.
.4«d s ;.
.410 1 «,
.500 t ».
, ?2I> I !• ,
fl."!0 ' l.
«,s*o i o.
79
?<)
13
14
SS
«7
BS
!-»
93
n
94
«•»
9<
' 100
4 ^
,2
.0
,•1
.9
,?
,7
.t
.5
.4
_ ^
. }
• 1
.»
-------
APPENDIX C
-------
iOU
EFI
THE SEASONAL PATTERN OF EPILIMNION CORRECTED CHLORQPHVLL a (ug/l)
IN THE CENTRAL AND .EASTERN BASINS OF LAKE ERIE DURING 198f.
-------
rmac. J.O1
CRUISE 8
Novwnbw 12-18
EP1
THE SEASONAL PATTERN OF EPILIMNION CORRECTED CHLOROPHYLL a (ug/1)
IN THE CENTRAL AND EASTERN BASINS OF LAKE ERIE DURING 198f.
-------
THE SEASONAL PATTERN OF HYPQLIfWiQN THICKNESS (m) IN THE
CENTRAL AND EASTERN BASINS OF LAKE ERIE DURING 1986,
-------
CRUISE 1
M«y 13-17
HYPO
CRUISE S
August 8-3
HYPO
CRUISE 7
Scptwn&w 19-21
HYPO
THE SEASONAL PATTERN OF HYPOLIMNION DISSOLVED OXYGEN (mg/1) IN
THE CENTRAL AND EASTERN BASINS OF LAKE ERIE DURING 1986.
-------
CRUISE 1
May 18-17
HYPO
CHUISE 3
July 2-4
HYPO
THE SEASONAL EPILIHNION AND HYPOLIMNION TOTAL PHOSPHORUS (ug/1)
DISTRIBUTION PATTERNS FOR THE CENTRAL AND EASTERN BASINS OF
LAKE ERIE DURING 1986.
-------
cauise r
S«pt«mb«r 19-21
EPI
CHUISE 7
3«ptwnb«r 18-21
HYPO
THE SEASONAL EPILIHNION AND HYPOLIMNION TOTAL PHOSPHORUS (ug/1)
DISTRIBUTION PATTERNS FOR THE CENTRAL AND EASTERN BASINS OF"
LAKE ERIE DURING 1986.
-------
12-15
EP1
THE SEASONAL EPILIMNION AND HYPOLIMNION TOTAL PHOSPHORUS (ug/1)
DISTRIBUTION PATTERNS FOR THE CENTRAL AND EASTERN BASINS OF
LAKE ERIE DURING 1986.
-------
CRUISE 1
M«y 18-17
HYPO
eauisi a
July 2-4
HYPO
THE SEASONAL EPILIMNION AND HYPOL1MNION TEMPERATURE (°C) PATTERNS
FOR THE CENTRAL AND EASTERN BASINS OF LAKE ERIE DURING 1986.
-------
CRUISE S
August 8-8
HYPO
CRUISS 7
S«pt«ni6*r 19-21
EPI
CSUtag 7
3«pt«mb«r 19-21
HYPO
THE SEASONAL EPILIMNION AND HYPOLIMNION TEMPERATURE (°C) PATTERNS
FOR THE CENTRAL AND EASTERN BASINS OF LAKE ERIE DURING 1986.
-------
CRUISE 8
Novwnbw 12-18
EPI
THE SEASONAL EPILIMNION AND HYPOLIWION TEMPERATURE (°C) PATTERNS
FOR THE CENTRAL AND EASTERN BASINS OF LAKE ERIE DURING 1986.
-------
PAGE 190
APPENDIX D
-------
PAGE 191
Appendix D contains the BMDP statistical computer outputs for the
quality control data. The data 1n the BMDP outputs were generated through a
CLEAR computer program (CALDIF) containing the following options.
OPTION 1
Option 1 calculates the absolute difference (ABS) between splits (Xll.
X12, X21. X22) using the following formula:
A8S(X11 - X12) AND ABS(X21 - X22)
Option I was used on all parameters having split measurements.
OPTION 2
Option 2 calculates the absolute difference (ABS) between replicates
(XI, X2) using the following formula.
ABSCX1 - X2)
Option 2 was used on all parameters which had replicates but no splits.
See the quality control section for the explanation for the terms split and
replicate.
-------
PAGE 192
2 WTRICNTS
«»ita*t»ti
* Tin? •
it*itt*tt«**
MIMIC* OF 1ISTWCT UMJIF! ,
NU«m (IF MUKS CPWTKO. .
MMICR or WM.UCI urn COUNTED
ESTfMTCS
0.9WWO
sr.irv.
COUNT IS
HIM 9.0:30000 O.OHJS4J
HIM** a.OOO'WW 0 ,0-,'«SS73
HS&E 0.0000000
EACH
viiur
SKIIWCSS l,0»
KUHTOilS -«.»*
EACH
SO * 5
* ft 3 *
H
M
L*
U»
VM.Uf/l>f .
1.2S
-9.5S
• . • ma» «
H
H
o.oioo
O.JOOC
0.1300
ni« fi.oooo;-;
03» O.OSOCOC
s-» -o.o'i;".
st« <>.iS7i:*-.
0.0010
n
rencEKTS meant
KBIIKT rai.l. nW( KW (If CIKWT CEI I. RUB
0.00000 t 77.0 70,0 0.10000 2 73.0 100.0
-------
PAGE 193
HPT tOM I
M*»*IUtM*
t SECCHI 1
tltftmmtt
NUHUI! Of DISTINCT VM.UCS .
WIMKt flf VAUIM r,8UNfF0. .
*UMl« Of MUSS HOT C91WTFB
HEAD
KF.»t
mtf
MX1WH
NfMINUH
0.1000000
O.lOOfOOO
VARIANCE
/3
ST.fRROS
J. Of ODOOO
countcsi
fr.lJSOOOO
».i»»»iM>e
0.1000000
—U
o.otoo
0.0*00
O.Z200
5
-
1
K
N
SXEIWISS
KUHTOSIS
B
II 3
•i- o.iooooc:
VM.M «*tUF/S.f. 03- 0.150090''
I.M o,82 s-« a.o?:co''"
-J.2S -«.5! S+» 8.17500f
E«H -.' iruon • o.ooto
s
t N
r.o(i»»r
0.10060 I
tn.t
7J.O
nun
VM.UR MIU»T CIl.L CUH
0.10000 1 73.0 1M.O
-------
PAGE 194
OPTION :
MXIMIM
VMIMI.C miHttt .,
wmm or minuet
»U«»t!t W VW.IIfS CDIIHTfft. .
MMKK Of VALUES MOT C3UHTE3
WMI
WO I OK
HIDE
4
5
13
5
MHOi
VARIANCE
ST.WU,
(l.noonnoo
0.4000000
0.9174-^86
0,132(1173
O.I 000000
0.1:00000
4,1000000
0,0000000
ST.tKftOR
0.^3403*7
O.OS77J81
H
H
HH
HM
HH H H
HH H H
-II
EACH '-'
'MLUF
8.73
0.0500
5.0000
4.*500
in-
02-
0.00000
0.100CO
5 0
• n
w
HKCEHTS
H
ft
I
N
*
N
IT r.fu. KUB VM.nt I'.fttiKf
*
4
M>.0 40,0
?*.? **,?
O.IOOOO
»,:WOOO
2
J
t
S
PEKCEMTS
KEl.t CUH
13.3 RO.O
11.1 M.3
KUKTOSIS
S
*
"111 lit CtMIHT
0.40000 1
-«,75 -4.
EACH •.' ici.au
n
t
«RKNTI
nfi.i. nun VALUE
A. 7 100.0
!»
B
1
4.^00000
-O.OirOl--
•.25201?
0.0050
cmrnr «u.
-------
PAGE 195
WT1B* I MTRlCMTt
mxtttimi
« TP «
(UMIIHttt
VWtlMie WINUI! ......
HUMCR or KST met muss .
NUNICK (IF ijAiuts cnimttn. .
*U«KR OF VALUES NAT CWJKTED
NMIMHt
!M-ai;/2
CtTUMTCS
ItCDIAM
noes
0.3?!»S71 0.05WW*
O.JOfWWO (l,0?a»*7!
C.I 000000
H
H
HH
m
HH
HH KM
MH HHHH H H
L (|
EWH 'H'
IKEWIItS
KURTOS1S
EACH '-' StQ"f »
(.«
U»
VALUE
l.W «.33
EACH ',' 1E(.OH
O.'.OOO
s.oooo
I.4000
O.JOOOOOC
03.
S-"
s
M
M
B
B
E
9
I
H
*
N
a 5
j »
PERCENT* PEHCEHT*
105
W»
too
ntidr
t
13
f
Ss
J7,
IS,
i. cyH
.t ?.T
. I 4*S . 9
.7 45.7
M»Ulf CODHT CTl.t
0,4$&dd 2 3,7
O.TOMO J 1.7
0.40OTO 3 *.i
Run
?!,*
7?, I
»0. 7
H
X
PIKCFOTS PI
vw.iw r.(Mwi m i
i>.7orf>C' 3 i.*
».fOOO» 1 2,»
).*OPO[i | ?,?
e:y«
§4.3
W.I
:ofi.O
VAi.UC COUNT rn
O.CJM
PESCENTS
-------
PAGE 196
OPT1DH t miTHIENTS
mttsntn*
VMUMLF
WMIC* OF DISTINCT UMUFS .
NtMW* Of VM.IKS CgyjITU. ,
or VALUES NOT COUNTO
MEAN
IWOIMI
HOSE
I
12
34
ItnttmjN
1M*6E
VMIANCf
ST.Dfw.
2.5000000
O.MOOOOO
2.3900000
O.ISOWM
o.?oaa«o«
0.2040000
HT.EItM*
O.«f*!f.*3
0.97TO475
9KEHMEIS
KUKTHSIS
2. 58
..35
EMM
HHHHH
• ' AAOV
£
HH
E "
t«
u«
.13
H
0
«
1
S-.
.5000
.0000
•nioo
0.
0.
-0.
100080',1
4»000'>"
1:035;"
S II
« I
M
H
1
1
0 S
H t
A
H
1C
WKXMT3
U*l llf COUNT CFl I CUD
0.48606 1 2.» 3.»
9.100M t :*.3 !f.<
o.:oooo it s:.< ti.t
FtRCFHIS
VMI1E KMIMT CFtl CUR
0.30000 3 ',.1 *7.»
1.«oooo ] «.fl T*,;
0.50000 ? 3,* »?.*
r.niwT cm i
. 60000 I J.T
J.f 91.?
PERCENT;
tfAUIB CMHT Cfll. HUH
l.SOOOO ; 7.9 »4.l
'. .70009 t 3.9 *7.l
2.50000 I 7.9 100.'1
-------
PAGE 197
OPTION
t S»f
VMIAKE MIHKft ......
MNIIER Of IISUNCT VM.UM .
NUNICtt OF VM.IItft nOUNTfl. .
OF VALUES WIT COUNTED
4
t
3!
3
HkXIHUM
H1KIKUK
0.0000000
MARI.1NCE
ST.WV.
0.' 0000 00
LMAT10N MT1HMES
HI AN
NEDtAN
KOBE
9.2121571
o.jooonoo
0.0090000
0.134MU
H
H
H
H
H
H
H
HN
HHH
3
COUHTif;
3KIHKESS
KURTOSIS
EARN '-'
VM.UT
14,«
EACH
12. or:
Jt.74
8.0000
4. 800'5
m> o.ooooooo
83»
$-• -
cnuxr
0.00004 U
0.10400 N
i a
H It 3N
...I.t..F...
N t *
I M
PERCENT!
eru cu*
4S.7 45.7
21. f M.4
o.:o«oo
0.4.1000
«.*
2.*
nun
77.1
l»,0
PMCfHIS ««CE*T5
CI1UNT CELL CUh VW.UE COUNT CELL fUM
4 11,4 fl.4 O.flOft** I ?.t »7.i
1 7.? f4,3 4.70400 1 2-' 100.0
-------
PAGE 198
ems*
isttiiitnti
I K1TN11 t
tMItttttttl
VMIMI.C
MIHICT OF DISTINCT VALUES .
MHtKX Of VALUES nWHTKB. ,
NUMM* Of VALUfS HOT COUHTtB
5
5
35
7
MITMUM
KIHIIHIN
0.0030100
LBMTIflfl
HfXIM
DOM
VARIANCE
5T.KV,
(B3-UD/J
1.2474242
I ,
-------
PAGE 199
OPTION 1 NUTRIENTS
ttfttittMM
I KM »
ItttUtlMtt
MX (HUM
NUH*E* or (tinner VM.UTS
HUH«FR OF VALUES
HUNK* or «*L«K *»T
4
I?
33
LOCATION «miMTES
n*i iir
0.000000
0.190000
IV. 'IAN
KXCEHT9
0.300000
f.fu.
24.2
!!.!
J.O
euH
34.2
27,J
43,;
57,4
tO.t
RMMf
VARIANCE
JT.JW.
Sr.EMOk
«.SIlf?20
O.HS176J
M
N
H
H
H
H
HH
HHHHH
Eflf.H 'H'
CCUNTISS
0.3000000
300 S
M N n 4
HP A
I N
£«CH '-' MOVE * fl.7'09
i» 0.0000
U* I2.0000
8l« t
VAUlf MM.UF/S.F, «3« 0
SKEtWEiS 3.8* ».»« S-« -3
MffiTosii is,i« 18.40 :•»* r
EACH '.' IFLOII - 0.1809
H
X
,0100000
,?
-------
PAGE 200
OPTION
rtittttistti
I SIS t
tttiittmtii
MUHHi ...... 7
WINK* or DISTINCT wiuit > 17
NUHIt* or VftLlIM tmiHTKB. . 34
OF VALUES HflT COUNTfB 4
MM! NUN
NtNINUN
MNBE
VMIANCt
ST.DFM.
(oi-ui>/;
30.0000000
S.TSMOOfl
ST.fRKCIK
(WAN i:.3B«8B«3
MCDIM 10.000WOO
IWOE o.ooooooo
N
H
H
MM
HHM
tauntcf
fftCM '-' »»0VE *
L»
u»
•'I
s.eooo
fl.8800
W. WO 4
SKEUHE5S
KUKTOJIS
1.23
1.S3
WW.UF/S.F,
],9J
83«
s.aocwc
U.509CO-''
1.1:0?:;-
1
•* -
H
a
i
B
I
H
A
N
a «
j »
N
X
«M.(C COUHt
», 7
5. »
4. I
f. I
r.yn
S*.i
si.t
5.8
14,
9 11.f 55.6
11.
n,
15.
li.
17.
ttU,
3.1
8.3
1.6
;.*
run
7-5.0
77.«
VW.UB
is.
27.
1ft.
COUNT
i
1
t
1
cn.t r.m
:.i no.*
3.4 M.I
2.8 M.»
!.» H.7
2.9 *«.*
KiCtHTS
VMM COUNT CCI I. >°UH
3*. I J.O f7.?
19. I J.« (90.0
-------
PAGE 201
OPTION 2 NUTRIENTS
• CNLMOMI i
ItOIlllIlK
VMfMtE NWUK
NUHIEK OF DISTINCT U*l IIIS .
NUNIKK IW VM.IIE!) CBUHTFt, .
OF VM.UU NOT rOUMTFD
HMIHUft
S
IS
I?
HANK
VARIANCE
ST.KU.
(OJ-UD/S
1. 400(1000
0.9000100
1.4000000
0. IBM? 34
1.Z730008
UlCftTIflH f.5T!«fiTEf
BF nun
HODE
ST.ERffit
0.1"30H3
o.«o»oe«
NOT IINIOUf
H
H
K
HM
HMHHHH
COUNT!S)
E*M
VALUE
SKEVNCIS i.H
KOTTOSIS 1.3?
EACH
SI (1
-B1W II 3 »
N D *
I N
'-• «MVE «
L«
U«
WAi.ur'S.E.
2.12
1.14
'.• KLOU *
O.l'OO
0.0000
S.?-5«0
03> o.»;oooo
$»» 0.8?41J5
O.C150
h
X
Ktcmti
u*iue
0.00«00
«T CELL CUN
: ti.i U.B
t S.f 17.4
t S.f ?3.3
0.1:000
9.20409
0.2ZOOO
0.1)000
court
t
1
2
t
f.fl I
r,,t
II. I
5.?
CUK
S3.J
5?.f
MAI.1IC
0.I2WMI
A.32000
H.750CO
mcFNis
CFU CUN
I S.f M.7
1 3.V 74.4
1 S.f 74.5
HICEilTS
VAIUC COUNT CEIL f.UK
0.87000 1 S.f 11,2
O.AMftO t ^.? *1.1
I S.f )00.n
-------
PAGE 202
ornm : MITRIEHTI
mumttti
» «KO I
mtlSHMtt
VMMILE MMKR
HUME* OF HSriHCT VMUCS .
m*ICT Or IMI.tlF 5 nlWHTfn. ,
MIME* 3f VALUES NOT CDUKTFD
IS
17
I
SST1IWTES
HEAN
*«•»!**
HOTC
IMXIHUIt
MIHIHUH
MH8C
VMI^NCE
sr.oru.
1.93*1141
ST.FRKOS
».!
I). 2
H
H
H
H
N
H
H
HH
NN M
HHNH
tftCH
8.0100000
-—u
0.1000
0,0100
4.5400
KUkTOSIS
V»M!F
J.J5
'MMIt/S.E,
3.7«
s
0
NiH It
* « •
t I
« }
N
S
4
PERCENT 5 HKENTS
«*I.Ut
o.aooooo
0.311000
0.050000
0.970090
COUNT
I
I
I
\
cm.
S.f
S.»
S.t
3.»
CUD
s»?
U.8
17,^
M.S
VMUC
O.OIOOGO
*.»f»M«
0.220000
O..I»Hi>00
mum
i
3
1
1
eeii cw
?.» 5»
13,4 »7
5.» 32
S,f !>•
.4
a
,9
••
VftUlF filWKT
o.s^owo i
o.ati»o«o i
O.WOOO I
1.3290W) 1
KRCrMTS
r.n i CUM
5,9 *4,7
S.9 ?«.»
S.» 7*. 5
3,» «'',*
H
X
V«l IIF 1
1
I
•
. J40000
.'.ittOOO
aj»
-------
PAGE 203
1 IIS
1MR1MI.C WNIKR , . , , .
mmnx of DISTINCT WMUCS
NUNKR OF MLICS ROIINrm.
HUNK* Or VM.UEI »OT
7
13
i!
5
IMXIMVM
NINtmiN
Mfttt
MRIMWE
.1NSI!?
inr.ftTTTO fsmMis
KitId*
mttE
ST,E**e»
1,034*411
H
H
H
M H
H NX
MHHNH
HOT
1 B
HI * ft 3
M » »
I *
VAUUC
IKCHICSS 1.37
KURT05IS 1.20
etCM
1
*
L«
u«
VULUr/S.F,
2*4A
«,ts
-.' IFLOM *
H
I
O.O'iOO
t.nsoo
ai«
03>
5—
S+.
O.IMCOO
«.35125*-
0,0073
KMCNTt
WI.IH COMKT Cll.1 M«
0.010000 2 U.3 13.J
1 A,7 ?«,$
t ».7 ;«.?
4.070090 2 13,1 40.0
OIUMT Cftt CUR
0.0*0000 t ...7 4*.7
«.130900 S 4.7 SS.J
0.140000 1 *,? M.«
D.IMOM 1 *.7 «*,T
VM.ut r.nunT
9,»7W»« i
<>,W900« 1
0.2509*0 1
A.S*«0«0 i
re»cf*Ts
MU. BUH
t.7 7S.3
4.7
4.7
«*I.UC ffOUNT TEI I. C'JK
0.
-------
PAGE 204
2 NUTKICNTS
MMnllttt*
I VI t
t»lf(t»tlt
VMIAH.E WMICII ......
MMKK OF BISttNCl 0000
o.otcftnoo
COUNT'S)
kOf.*TttlH (EITIHATES
ST.FMOK
NIBIM
NOSE
NOT UNIQUE
H
H H H
I II
t«
U»
9, MOO
9.0300
>KtlW£SS
KUKTOSIS
i.IT
-o.r.
EACH '.' IfLOM •
0.0030
9
»-
a
i
H
I
» $
H J »
ft
H
H
I
VAUlf
O.OJOOO
9.9SW9
Cfll f,\»
1 *.7 t,7
2 U,S ».0
2 13.3 SS. S
VMUF, tOUHt CELL CUM
«. 07000 t *.7 49.0
D.1000C 1 A.? 4*.?
0.11000 t k.7 33,J
COUNT cert HUN
I 6.7 *0,0
O.lflOOO 1 *,? M,7
0.71000 1 *.7 71.J
UAtUE COUNT
t.ZiMO I
O..TIOOO ;
0.41000 1
KRCtMTS
ceui. CUM
0,7 40.0
11.3 M.3
».7 100,0
-------
PAGE 205
WHO* 2 NUTHItMTS
miittims
t us i
mmtr.it ......
HUME* Of IISTINCT UM.UGS .
NuniER of U»IIIFS eMMTtA. ,
HUNK)! Of VALUES HOT COUNTED
11
i:
3
HININUN
«*H6f
IMRtMICi
ST.BF'J.
O.ifOOOOO
0.0100000
0.410(1000
O.OS40U4
0.232403*
0.1OOOOO
LOCATION CilTtlMTCt
HIM
HE DIM
BODE
»,20*4000
9,0700000
NOT IMIOUE
ST.tRROd
0.04000*^
H
H
H
H
H
H
H H
H NHHH
EACH -H-
KEPIFSEMT"
1
COUHT(5>
SKCHNESS
EACH '-' flWWE »
VM.Uf/I.F<
i.n
•a. i*
0.07SS
O.BOOO
0,»?5C
1.11
-o.ti
01-
93«
S-.
0.03000C
«.320««0
-O.OJS403
B.43S««:
CKH
O.C075
s
«
H 1
N
N
1
I
ft
*
H
PERCENT!
VMM
0.010000
0.020000
O.OIOMO
0.070000
tOtlHT
1
}
1
2
CEl.l.
».7
13. J
4.7
11.3
r.uh
4.7
74.0
2*.7
40.0
0
0.129000
0.4400«0
O.M4000
I:OIIHT
t
1
1
1
CFI.L
ft. 7
A. 7
4.7
4.7
CUD
73,3
10,0
**.7
tl.J
VIU.IIF. emu
0.4fOOO«
CELL CUH
*.T 100.0
-------
PAGE 206
OPTIIM i
»«mt*m
> rumtn t
>SItt»tft»
VMIMtC
HUME* Or IISTINCT VALUE! .
NUKRCft (IF VM.UFS r.llUHTfn. .
Or VALUES MT COUDTEI
t
t
34
14
HIM I NUN
2.00MAOO
Q.OOf/0000
ST.MV.
k
EACH ••• MLQM • O.CCJO
0,3000f
-0.2217
0.58B37
s
-
B
N
N
H
n
I
B S
HJ +
A
N
(1
1
PEICENTS
M»t HE CmwT CEIL RUH W»l lit
».0000« » 37,S 37.5 0.20000
O.l»9«» * JJ.J 7».» H.J«M)ftO
I'.FLI. CUM
».7 117.5
4.3 »1.7
re* emit
MM .DC lO'.IHT fFI I r.UH
0.360*0 I 4.2 tS.I
i 4.5 to«,o
KRCENTS
CSI.L tun
-------
PAGE 207
OPTION 1 NUTRIENTS
t cowcoMt i
ntiitisttit
VM1MU NIHMER ..,,,
w KSTIUCT vw.nes
nr UAI IIKS
or VALUES NOT
17
21
MMIIWH
(KM I MM
HMttt
VMIAMCC
JT.IFM.
S,««fl»00«
wen -M-
K'UFSMH
LOKHTTBK
WAN
10DE
i,a»?iosi
3, ft<»<5<>09
o.ocooooo
S. JiWrff,
o.m.not
H *
,f...r.
* n
N t
SKEVNCSE
KVK10S1I
H
HH M
KM M H
HH H H N
HH H H H H
•' ADQWE •
L"
U»
VM.UF./S.E.
4.74
9
0
n
01-
OJ.
.-•ltd
,0000
.0900
o.ooooocc
3.006000C
«(:34S71:;
EACH
BELCH
0,0509
roccns
COtlMT PP.1. KUH
0. 5 2fi,2 24.5
i. « 21.I 47,4
2.
J.
CB.I.
21.1
10. S
KOHWT
J
KRCEMTS
CHI BUB
VMM r.otmf KILL cun
-------
PAGE 208
Of TtCI!< 1 KUTItEMTl
imtmtsts
I CL I
«*t»t»tttl
VMIMLC MimCR ...... 10
WINtER Of DISTINCT VMUCS . S
mjniKi? OF DmtiKS COUNTED. , 34
WM1EK V VALUES MT COUNfCD 4
lOMflON ESTIMATES
MAXIMIHI
HIMIWItt
MMf
VARIANCE
IT.Bf").
(OI-1D/2
St.
g.sooooco
0.050DOOO
S.1JS43K
».95(K«MSO
HEM
MLBUN
H01E
H
H
M
MM
HH
HH
MH
COUHTIS)
H H H
0,0000005
EftCH •-• fiHOVf «
O.MtO
SKEUNE3S
KWTSSIS
VM.UE
3.13
J.3S
EACH
ti*
B3«
S—
UMtlt COUNT
O.MD60 21
0.11040 f.
r.tl.l
St.Z
M.4
RUM
St. 3
M.f
coum
i
1.4MOO I
mcnt<
ntu. cu«
2.1 »1.7
a.* t«.4
UMW CfflINT
4.00000 J
KKtHTS
CEtl RUN
!.(. \0».0
«.lt»000'
-o.os/sstt
O.J1J22"
»(tt,ui cowrr CFI L CUH
-------
PAGE 209
OPT I OH 2 NUTRICNTl
uisisttiit*
« M.KTOT <
«M*t»l*t*l
VMIMLC MWKI! .,..,,
NUHKR Of IISTINCT VALUES .
mmiER OF vaults cmmTED. ,
MUHIER Or VALUES NOT COUNTEB
HC*M
NEOIM
HODt
3.30000(12
o.ooonooo
3.3000002
IB
2
VMIANCE
5T.HFV.
coa-ois/2
J,»M*3U
0.1000KOO
St.KdROR
1.1111112
l.OOOOIMO
t.0000000
H
H
H
H
M
M
HH
HM
MH H
WHHH
1
COl)NT(E)
-U
CflCM '-' WOWS
SKEIMfSS
KUDTOSIS
vault
2.43
EMM
L--
U«
4.21
0.3100
0.0000
4,9000
0,9000000
l.OOOOOOC
-0.07S3402
0.0500
a
i
a t
N H +
0 »
I H
H
X
VMIIC rniiNr
0.0000 *
o.oooo i
FERCENTS
cti.i. I:IM
22.2 29.2
:>.* 27.1
MiM IIS UDUIIT
0.9000 2
t.0400 7
fERCEHIS
I'.PU. CUB
11.1 ».?
31. f 77.8
VM.1K UMKt
1.30OO 1
1,8000 2
PERCENT?
KCI.L CUM
3.* 13,3
II. t V4.4
PERCENTS
count CCI.L CUH
I 3i« 100.0
-------
PASE 210
of no* :
I MLKM I
miiisim*
VMIOM.E mmmt
MIMKft OF DIStlHCT
mrnnn or wmties CMMTH. .
*»H»f* tf VALUES MT COUNTED
MEDtM
NO DC
2
I
II
2
IMlXIKWt
NfMlMUM
IMMf
VARIANCE
ST.JfV,
J.SWW
ft,5*11112
«,0
-------
PAGE 211
Of T 7 ON 1 MimCNTS
ftMIIlSSltt
VMIMIE WIXIF.Ft ,,,,,,
HOMER OF HSTZNCr VN.UCI ,
Df WIIIEI cmmri-a. .
OF VM.UM NOT COURTED
2
t
J7
11
MIIHUM
HI MI RUN
MNW
MMIMICE
1T.WV.
Wf.ftTION *S1IHATtS
MCAN
MUM
NODE
0,0211111
».»t««iN>0
».0000000
8.M4J4W
H
H
HH
HH H
HH H
HH K H H
MN M H X
MM H H N
COUNT<»)
EiWH '-' AMHW «
L«
U«
WEWCW
KlttTMIS
VM.UT
1.2C
CWM
1.55
s a
0.0050
O.dOOO
ni« o.oojoov
|-« -4.M1477'
9.0008
o.oooooo
O.Ol'IOOO
A J2.S 31, »
WH.UC cmwiT
o.omw 3
«.AMIM)» J
mcnn
«i.t am
11. t tj.c
tl.l 74.1
VALUC CMMT
o.o»ooo« s
S.MO«0<) 2
raiatMfs
ecu rue
IB.S »;,*
7.4 1M.4
MUK COIMT CCLI.
------- |