v>EPA
United States
Environ menta! Protection
Agency
Office of Radiation Programs
Nonionizing Radiation Branch
P.O. Box 18416
Las Vegas NV 89114-8416
EPA-520/6-85-018
June 1985
Radiation
Numerical Modeling Study
of Gain and Downward
Radiation For Selected
FM and VHF-TV
Broadcast Antenna
Systems
-------
/50373-101
REPORT DOCUMENTATION
PAGE
1. REPORT NO.
EPA 520/6-85-018
3. Recipient's Accession
PB85
4. Title «nd Subtitle
Numerical Modeling Study of!G&in and Downward Radiation for
Selected FM and VHF-TV Broadcast Antenna Systems
5. Report Date
7. Authortt)
Richard W. Adler and Stephan Lament
8. Performing Organization Rept. No:
9. Performing Organization Name and Address
AGL, Inc.
P.O. Box 253
Pacific Grove, CA 93950
10. ProJect/Taak/Work Unit No.
11. Contraet(O or Grant(G) No.
(C)
(G)
12. Sponsoring Organlzntlon Name and Address
U.S. Environmental Protection Agency
Office of Radiation Programs, Nonionizing Radiation Branch
P.O. Box 18416
Las Vegas, NV 89114-8416
13. Type of Report & Period Covered
14.
15. Supplementary Notes
06. Abstract (Limit: 200 words)
^A modeling study was conducted for the purpose of examining RF radiation
exposure levels caused by downward pointing radiation from commercial FM and
TV broadcast antenna arrays. The Numerical Electromagnetic Code was used for
radiation pattern calculations. Manufacturers' data and measurements were
used to provide dimensional information for the computer models.
Generic types of FM antennas were identified and their radiation
characteristics were presented with emphasis on the reconfiguration of array
geometries for purposes of reducing downward directed radiation fields. The
popular super-turnstile VHF TV element was also modeled. Gain curves for
various interelement spacings were developed for arrays containing 2 through
16 elements.
Results demonstrate that downward radiation may not be insignificant.
Variations occur with different antenna element types and for different array
sizes. Reconfiguring arrays can be used to reduce downward directed energy
but only an associated lower gain for a given number of elements. Substantial
variation from the ideal circularly polarized omnidirectionl radiation is
?how» for mnst ant.pnnas rmrrpntly in use.
17. Document Analysis a. Descriptors
b. (dentlflers/Optin-Ended Ter.ns
c. GOSATI Held/Group
18. Availability Statement
from NTIS
19. Security Class Ohis Report)
2O, Security Class Ohis Page)
21. No. of Pages
22. Price
(SMANSI-Z39.18)
Set Instruction* on Rwarse
OPTIONAL FORM 272 (4-77)
(Formerly NTIS-35)
Department of Commerce
-------
NUMERICAL MODELING STUDY
OF GAIN AND DOWNWARD RADIATION
FOR SELECTED FM AND VHF-TV
BROADCAST ANTENNA SYSTEMS
15 MARCH 1984
Richard W. Adler
Stephan Lament
This report was prepared for the Environmental Protection Agency
Nonionizing Radiation Branch
by AGL, Inc., PO Box 253, Pacific Grove, CA 93950.
-------
DISCLAIMER
Although the work described in this document has been funded wholly by the
United States Environmental Protection Agency it has not been subjected to the
Agency's required peer and policy review and therefore does not necessarily
reflect the views of the Agency. No official endorsement should be inferred.
3<
-------
TABLE OF CONTENTS
ABSTRACT 1
EXECUTIVE SUMMARY 2
A. Purpose of the Study 4
B. Historical Background 6
C. Scope and Limitations 9
D. Numerical Antenna Modeling 11
E. Description of Models 15
F. Assumed Parameters and the Real World 19
G. Modeling Studies 23
H. FM Array Gain Study 25
I. FM Array Bay Spacing Study 27
J. TV Array Bay Spacing Study 29
K. FM Element Gain/Spacing Curves 31
L. Conclusions and Re commend at ions 33
-------
Abstract
A model ing study was conducted for the purpose of examining RF
radiation exposure levels caused by downward pointing radiation from
commercial FM and TV broadcast antenna arrays. The Numerical
Electromagnetic Code was used for radiation pattern calculations.
Manufacturers' data and measurements were used to provide dimensional
Information for the computer models.
Generic types of FM antennas were identified and their radiation
characteristics were presented with emphasis on the reconfiguration of
array geometries for purposes of reducing downward directed radiation
fields. The popular super-turnstile VHP TV element v/as also modeled. Gain
curves for various intere!ement spacings were developed for arrays
containing 2 through 16 elements.
Results demonstrate that downward radiation may not be insignificant,
Variations occur with different antenna element types and for different
array sizes. Reconfiguring arrays can be used to reduce downward directed
energy but only an associated lower gain for a given number of elements.
Substantial variation from the ideal circularly polarized omnidirectional
radiation is shown for most antennas currently in use.
-------
EXECUTIVE SUMMARY
Objective of the Study
Representative FM broadcast transmitting antennas were modeled using
the Method of Moments for the purpose of predicting downward radiation for
the EPA. Additional calculations predicted the amount of downward
radiation reduction that could be achieved by several mitigation
techniques applied to the arrays. Attendant loss of main beam gain was
also determined.
The popular VHP TV "super-turnstile" antenna was also subject to
similiar analysis. These studies will assist the EPA in assessing the
level of RF radiation field intensities that may exist at many
broadcasters' installations and in estimating the cost of mitigation
approaches.
Summary of Models and Results
Four FM element types identified (cycloid, skewed vee dipole, twisted
loop and segmented twisted loop) were the subject of three modeling
exercises:
1. Gain and pattern shape vs. full (normal) and half-wave (reduced)
element spacing - to maintain main beam gain, arrays must expand
-------
from 1.7 to 2 times in element numbers. The half-wave spacing did
provide the expected reduction in downward radiation.
2. FM arrays of 4,6 and 8 elements were split into two bays, with the
with the upper half (bay) of the array spaced one, 3/2 and two
wavelengths from tiie lower bay. Only one of the four element
types achieved any notable reduction in downward radiation at the
wider spacing. The 3/2 wave spacing was detrimental to all models
tested.
3. Standard handbook "gain vs. element spacing" curves for short
dipoles were investigated and extended to half wave dipoles,
cycloids and segmented twisted loops. The FM element curves
show that they behave more like col linearly arrayed dipoles
than like broadside arrayed dipoles.
4. The TV super-turnstile was subjected to the split-bay concept with
generally favorable results (reduced downward radiation for 3/2
wave bay spacing.
Conclus ions
The numerical models developed and exercised revealed noticeable
discrepancies between realworld and assumed/advertised performance.
Downward radiation field reduction by element spacing reduction is a
feasible wu tigation technique for FM arrays and holds definite promise for
TV super-turnstiles. Bay spacing studies suggest that 3/2 wavelengths
-------
between bays is of little value for FM antennas but could improve the
super-turnstile's downward radiation. FM antennas modeled followed the
standard gain vs. element spacing curves of col I inear dipole arrays.
s<
-------
A. Purpose of the Study
The EPA is required to assess the potential for RF radiation exposure
to the general civilian populace from broadcast transmitting antennas.
This study supports that effort by providing piedictions, based on
numerical electromagnetic models, of radiation characteristics of popular
FM and TV antennas. Particular emphasis is placed on energy radiated down
towards the ground, near the base of the supporting tower or structure. It
is in this zone where the most likely radiation to humans would exist.
In addition to assessing downward radiation potential, the EPA must
address the financial impact on broadcasters of possible mitigation
schemes in cases where proposed standards would be violated. One candidate
technique for reduction of downward radiation which has been suggested
involves changing the element numbers and spacings in FM and TV arrays.
This study adds to earlier EPA ca!culations(which summed measured
individual element patterns to establish downward radiation trends) by
looking at the same configurations, but including full electromagnetic
interaction between elements for more accurate pattern predictions.
If all commercially-available FM antennas are examined, 4 generic
types evolve. Samples of these four are used throughout the study and as
such provide a comparative look at existing radiation patterns,
particularly in zones where downward radiation might occur for the FM
station community.
9<
-------
B. Historical Backgrounu
When a study of FM and TV broadcast antenna radiation characteristics
is launched, one first seeks out available manufacturers' antenna
specifications and data sheets from catalogs. An interesting trend
evolves. Virtually all competing antennas show the same performance:
Circular polarization
Equal Vertical(V) and Horizontal(H) polarization gains
Omnidirectional azimuth patterns
Unity gain (0 dB) with respect to a halfwave dipole
for a 2-bay model, for V and H polarizations
Zero radiation in the downward direction
(Perfect dipole or loop elevation plane patterns)
Nominally 1.0 wavelength vertical spacing between bays
Such published specs are not totally unexpected, for the Federal
Communications Commission (FCC) has rules and regulations which require
any V polarization not exceed the H polarization. The reason for those
2-bay unity gain figures is simply that that value is the maximum possible
for idealized purely omni-directional elements. Since the FCC has no
provision for "type-approval" testing of antennas, manufacturers are
allowed to submit antenna descriptions and data for acceptance. Once any
manufacturer has submitted a claim for theoretically maximum performance,
market-place competition dictates that all others submitting for
acceptance will meet those same numbers or suffer consequences in the
-------
sales arenaV
Early EPA investigations into downward radiation from FM and TV
arrays prompted a sponsored program of radiation pattern measurement of
selected single element FM types. From these elemental patterns, array
patterns were produced using the principle of Pattern Multiplication.
These results neglect mutual interactions among elements in an array and
are acceptable as first order predictions. If mutual effects are
appreciable enough to alter the element patterns from their isolated
values, then a full electromagnetic calculation, including interaction
effects should be undertaken.
There has been very little work done in the area of computer modeling
of FM and TV antennas, judged by the lack of published results. A poll of
major manufacturers revealed that element patterns were almost always
measured as carefully as possible, but that very few arrayed pattern
measurements were ever made. Multiple element gains were simply calculated
in the same manner as described in the EPA study. Elevation plane patterns
are derived from idealized point source array equations.
Thus, from previously available information, the conclusion is drawn
that FM and TV arrays do not radiate measurable downward energy. On-site
measurements by EPA teams have shown that the converse is true. The
results of this effort aids in quantifying that potential for radiation
-------
beneath the antennas.
-------
C. Scope and Limitations
The accuracy of any mathematical or computer model of an antenna
depends in part on the dimensional information available for all
conducting pieces of the structure. This includes all feed lines, feed
line supports and brackets, baluns or other matching devices and of course
the structure supporting the antenna.
Antenna array performance is closely tied to the complex power
distribution of the transmitters' output along the array's elements. Power
distribution/division is a complex phenomena unless all ports along the
line are identical and ideally matched to the feed line. Array designers
for antenna manufacturers apparently make these simplifying assumptions.
In establishing a set of limitations and bounds on the models
developed for this study, these assumptions and limits were in effect:
1. All models were constructed from manufacturers drawings and
additional dimensional information, as needed, obtained from
engineers at the factories.
2. Feedlines, mounting brackets and baluns, were Included as
scatterers of radiation, but not as functioning transmission lines
3. Feed points were excited directly with voltage sources of
equal amplitude. This duplicates the designers' assumption about
-------
power distribution.
4. No supporting structures were included because of the wide
variation of mounting methods in use. In essence, al I models
can be assumed to be suspended by a sky hook.
if all antennas under investigation exhibited equal V and H radiation, a
measure of downward radiation potential could be obtained from either
polarization. Since equal polarizations is not the case, V, H and "total"
radiation is presented. "Total" is the phasor sum of the vertical and
horizontal radiation, a quantity of practical importance for studies
involving RF radiation exposure to humans, since it establishes maximums
of performance.
10
-------
D. Numerical Antenna Modeling
Antenna patterns, the most sought after performance factor, can be
obtained by both measurement and by calculation. A full-size real antenni
can be placed on an outdoor antenna pattern range and its transmission
characteristics measured. The quality of the range is the key to good
results. A good antenna pattern range approximates free space, I.e. it
produces patterns as if the test antenna were isolated from all of its
surroundings (no appreciable reflections from nearby structures or the
earth under the antenna are allowed.) Such ranges are expensive to
establish and generally do not exist, even at most FM antenna
manufacturers' facilities. Scale model measurements of an antenna also can
provide radiation characteristics but generally require expensive indoor
antenna ranges (anechoic chambers.)
The laws of physics dictate that in order to calculate radiation
patterns one must know the amount of current flowing on all metal parts of
the antenna and its supporting and nearby structures. For simple antennas
(such as dipoles and loops) a method is employed whereby the current shape
is assumed. If the assumption is correct, the results are good. This
method is seldom applicable to commercial FM antennas because they are
more complicated than dipoles and loops, containing support brackets and
vertical feed line sections for which those simple assumptions are
incorrect.
11
-------
In recent years, the advent of high-speed digital computers have made
it possible to use the Method of Moments to calculate the currents on an
antenna, regardless of the structure's complexity. To apply this
technique, an experienced antenna engineer who is thoroughly grounded in
the theoretical limitations of the method can construct an accurate
numerical (computer) model of the antenna. The results of this kind of
analysis have been validated for a wide range of antenna types, which
encompass structures operating in the same frequency range and
environments as FM transmitting antennas, during the past 10 years.
The Numerical Electromagnetic Code (NEC) has been under development
with TriService sponsorship for over 10 years and is the most widely-used
of all Method of Moments antenna programs. In NEC, the structure (the word
"structure" connotes an antenna with all of its nearby conducting
surroundings and appendages) under investigation is divided into small
sections (segments), usually less than 1/10 wavelength long. The physical
laws of electromagneti sm are applied to all segments. This is in the form
of calculating the electromagnetic interaction between each individual
segment and all other segments in the structure, one at a time. The
resulting mutual interaction matrix represents how the structure will
react to any chosen sets of "excitations" (incoming received signals or
transmitter outputs). By applying the excitation which represents a
specific antenna application, NEC calculates the currents flowing on all
12
-------
parts of the structure.
Current represents a measureable physical quantity which is a
structure's response to an excitation. With a knowledge of the current, it
is a straightforward exercise to calculate the feed point impedance,
radiation pattern, near fields, scattered fields, radar cross section,
coupling between structure connection points, efficiency and resonances.
For this study, radiation patterns are the desired output characteristic.
A numerical model of an FM or TV antenna provides the engineer with a
valuable inexpensive tool for examining variations in the geometry of a
particular antenna model. This allows rapid changes in antenna parameters
such as spacing between elements, power distribution over in array,
location of feed points, etc. Each change can produce a different response
and these differences can quickly be seen from NEC runs. Thus, a NEC model
can provide design information much more easily and rapidly than lashing
up many new antenna configurations on a model range and running tests to
determine what each change does to the pattern, etc.
The role of a measurement program is then reduced to validating the
numerical model and accounting for the small but sometimes significant
differences between the computer model and the physical model. Moving the
measurement phase of a design program to this position is a more efficient
use of resources and provides a more thorough design since a greater
13 .~*"\S.
-------
number of perturbations can be examined within the fixed time and cost
limits usually present in antenna design projects.
14
-------
E« Description of Models
At the initiation of this project, decisions had to be made as to the
generic types of FM antennas modeled ind which particular manufacturer's
model would represent each generic type. Four generic types emerged from
the stages of literature collected from both antenna manufacturers and
from FM broadcast equipment manufactuercs who do not make the antennas
they sell. Two of the largest broadcast equipment suppliers, Harris and
Continental, purchase antennas from Electronics Research, Inc. (ER1).
CETEC owns and distributes JAMPRO antennas, in addition to other broadcast
products. Several other companies such as Phelps Dodge, Comark, Shively,
Dielectric Communications and Bognar produce and sell antennas themselves
and through smaller broadcast suppliers. The EPA compiled a list of FM
antenna types in use by examining FM license applications. This list
determined which generic types would be studied and the cooperation of
manufacturers and broadcast consultants in supplying the necessary
drawings dictated the specific model numbers that were used in developing
the numerical models.
The four classes of FM antennas identified are:
1. A cycloid - A horizontal loop with a gap opposite the feed and
support point. At the gap, two vertical stubs, one pointing up
and one pointing down, act as a vertical dipole.' (Figure 1)
The loop is intended to provide azimuthaily omnidirectional, H
is '":lj-;
-------
polarized radiation. The vertical stubs are expected to radiate
a V polarized omnidirectional signal. Pure CP depends upon equal
amplitudes of V and H polarization plus a 90 degree (quarter
wave) phase shift between the two polarizations. Hopefully the
phase shift will occur as the current on the loop travels toward
the gap at the ends. Both ERI and Shively produce versions of
the cycloid.
2. Skewed Vee Dipoles - two vee shaped dipoles are mounted on
opposite ends of a horizontal boom and then each dipole is
twisted 30 degrees with respect to the boom axis. (Figure 2)
This twist provides a vertical component to the radiation field.
Feed stubs or segments extend from the boom to the top arms of
each vee. CETEC and Dielectric Communications offer this antenna.
3. Twisted loops - a fat horizontal loop is opened at the far end
(much like the loop in a cycloid). The inner quarter circles of
the loop (nearest the feed point and support point) remain in the
horizontal plane, while the outer quarter circles are rotated up
and down, respectively, so the open ends are no longer In the
horizontal plane but have a vertical searation. Then two straight
line extensions are added to the outer loop ends to provide a
vertical component to the radiation. (Figure 3) In comparison
to the cycloid which has the total loop in the horizontal plane
16
-------
and vertical stubs, this twisted loop uses the outer half of the
loop and its extensions for additional horizontal radiating
conductor as well as a controlled amount of vertical radiating
element. Comark and Phelps Dodge offer versions of the twisted
loop
4. Segmented Twisted Loop - characterized by two halves of a loop
(polygonal rather than circular) separated by a horizontal support
bar, twisted about the support axis 30 degrees to excite a
vertical radiation component and then with another horizontal
support bar at right ingles to the separator bar. (Figure 4)
ER1 and CETEC manufacture these antennas.
The only TV antenna element studied was the "super-turnstile11. It is
the most popular one found at VHP TV stations, having been designed almost
40 years ago. It consists of four batwing radiators mounted radially
around a center support mast. (Figure 5} The dominant polarization is
horizontal, with fairly good pattern circularity. Because of lowV
polarization radiation, the central mast is transparent to the operation
of the rad iator.
Throughout this report, the antenna types are labeled in part by
manufacturer and/or model numbers:
Cycloid FM Cycloid
Skewed Vee Dipole FM JSCP
17 ' ; .-' .
-------
Twisted Loop FM CMK or Comark
Segmented Twisted Loop FM FMH or ERI FMH
Super-turnstile VHF TV JAT or CETEC JAT
18
-------
F. Assumed Parameters and the Real World
There are noticeable differences between the idealized antenna
patterns of the FCC regulations (and manufacturers data sheets) and those
of the real world of tower mounted arrays with significant mutual
interactions. These differences are important for this study:
1. NEC references gain to an isotrope (point radiator) while the
broadcaster uses a half-wave dipole. The dipole is 2.1 dB with
respect to an isotropic antenna, so that NEC gain values should be
be dropped by 2.1 dB when comparing to publish data.
2. Industry rates V and H polarization gains equal and uniform (n
azimuth, but as seen from Figures 69, radiation from isolated
elements (including feed lines) varies with azimuth by 6 to 8 dB
for V polarization and 1 to 5 dB for H polarization. V/H ratio
exceeds the allowed unity value (0 dB) by as much as 8 dB. If the
total gain (of prime concern for this investigation) is examined
it varies from 2 to 6 dB in azimuth.
3. Total gain values for single elements should average 0 dB with
i
respect to a dipofe (2.1 dB isotropic) but are observed to be shy
by about 1/2 to 1 dB.
4. Circular polarization is sold to the broadcaster but from the
ratios of V and H shown on Figures 6-9, 3 of 4 models investigated
cannot produce CP within 3 dB for at least 120 degrees of.the
compass. This argument is a generous one, since CP requires a
19
-------
quadrature phase relationship between V and H and we have
discussed amplitude only. It is possible to have equal V and H
fields and be completely linearly polarized (V in phase with
H), missing CP by the same amount as if one polarization were
completely absent! For example, the JSCP element meets the V/H
ratio test for 165 degrees in azimuth, but is within 3 dB of
CP for only 142 degrees.
5. Nominal spacing between elements in FM arrays is cited as one
wavelength. Installation documents dictate that the spacing varies
from 3% to 16 % short of one wavelength for the samples available
in this study. One reason for this variation could be that
manufacturers build several sizes of elements to cover the 88
to 108 MHz FM band of frequencies. The examples available during
this investigation could have been for edges of the frequency
range of a particular element size.
6. In most cases, FM arrays are assumed to be fed with equal,
inphase power through a bottom-fed series transmission line.
The elements are placed in parallel with the 50 ohm line and
if each element presents N x 50 ohms to the line, all N elements
in parallel receive equal, inphase power (assuming one wave-
length electrical spacing between junctions of element locations.)
If the elements are all identical in construction and impedance
matching circuitry, this assumption can be in error for elements
near the top and borrom of the array line because the mutual
20
-------
coupling environment Is different from that of elements "buried"
within the array, (Mutual coupl ing modifies the feed point
impedance from the idealized isolated Input impedance.)
7. Azimuthally uniform (omnidirection) radiation is not achieved
by any of these "side mounted" elements studied for the simple
reason that even without supporting structures present, horizontal
plane symmetry does not exist. This is due to the necessary evil
of a metallic feed line structure nearby the elements. The
predominance of V polarization field is largely due to the
interaction of the vertical conductors of the feed line.
Additionally, the typical tower upon which FM arrays are mounted
scatters V polarization more readily than H polarization. One more
factor in the deteriation of omnidirectional patterns is the fact
that dual-fed elements such as the JSCP vee dipoles and the FMH
segmented loop are supported by and fed from metal lie conductors
which are spaced closer to the "inboard" arm than to the
"outboard" one. NEC calculations show up to 20% differences In
feed point impedance between the inboard and outboard elements.
This effect accounts for the FMH elements' lop-sided H
polarization pattern in the azimuth plane. An obvious question
in the case of the FMH element is "Why not run the feedline up
through the center of the element where it would be equidistant
from both radiating arms?" A quick NEC model reveals that this
attempt does produce more symmetric results but with much poorer
21
-------
radiation impedance properties and even greater differences
between V and H polarization. This was confirmed by contact with a
manufacturer who tried it and failed.
There are FM antenna designs which do not'suffer most of the
disadvantages described in this section. These elements control their
radiation and scattering environment (not being subject to the feedlines
and supporting towers) by incorporating their environment as an integral
part of the antenna. One such element type is a "panel" radiator, named
for its large flat reflecting screen. (Figure 10) The CP crossed dipoles
in front of the reflector produce 120 degrees of azimuth coverage. For
omnidirectional patterns, 3 such panels are wrapped around a tower. The
reflectors are much larger than the tower cross section and extend
vertically 1 to 2 wavelengths, completely blocking any tower effects on
the pattern. Such installations are quite broadband, very heavy and
expensive, thus appears only in larger cities where several stations share
in their use, multiplexing their transmitters into a single broadband
panel array. ERI also produces what could be described as "selected
dipoles wrapped around a pole". These are intended to be top-mounted and
as such contain their own radiating environment. Other manufacturers
produce variations on these two ideas.
22
-------
G. Modeling Studies
Four popular FM antennas and one VHF TV were modeled during this
project. Numerous radiation patterns were produced and are included in
Appendices for reference, with several sample patterns displayed in the
discussions to follow. The modeling is logically divided into four
sect ions:
1. FM Array Gain. During this effort, the effect of changing
element-to-e!ement spacing from the usual one wavelength to 1/2
wavelength was demonstrated. Reduced spacing held promise for
lower downward radiation, hence reduction of radiation to humans.
-v
2. FM Array Bay Spacing. Since multiple element arrays spaced at 1/2
wavelength suffer reduced gain, it was anticipated that splitting
an array of M elements into two equal halves, N = M/2t would
produce two "bays" of N elements each and would permit interbay
spacing changes from the standard one wavelength which could prove
a boon to RADHAZ reduction, without the inherent loss of gain
suffered by 1/2 wavelength element spacing. Figure 11 demonstrates
a 6 element cycloid (3 x 3) spaced at the standard one wavelength
and an 8 element (4 x 4) spaced at two wavelengths (TW) between
the two bays of 4 elements.
23
-------
3. TV Bay Spacing. A similar modeling exercise was conducted for a
Channel 2 and a Channel 10 CETEC JAT super-turnstile array of 4,
6 and 8 elements.
4. FM Element Gain/Spacing. The EPA, in looking for suggested
mitigation techniques, observed that the curves of gain vs.
element spacing in the "Antenna Engineering Handbook" by Jasik
(Ch 5) imply that, at least for short dipole elements, gain does
not drop sharply as spacing is reduced from one wavelength. Since
broadcast antenna manufacturers use these kinds of handbook curves
to drive their designs, it was decided that a full-interaction
modeling effort should be done to see if the idealized "Jasik
Curves" hold for a rigorous model of short dipoles, half wave
dipotes and then determine if those trends apply to FM arrays.
-------
H. FM Array Gain Study
Three element types were selected for examination of array gain vs.
number of elements when spaced at the industry standard of one wavelength
and at a "downward radiation reducing" spacing of 1/2 wavelength.
Appendix A contains radiation patterns used in the study. For the JSCP
(skewed vee dipoles), reducing spacing to 1/2 wave did not reduce downward
radiation appreciably, but for the FMH (segmented loop) and cycloid, the
expected reduction did occur.
Figures 12-14 show a loss of from 2 to 3 dB gain with the reduced
spacing. The cycloid suffers most from 1/2 wave spacing. Note that the
total gains shown (V plus H polarizations) are maximums in azimuth, and as
such exceed the expected ideal values for pure omnidirectional radiation
by 1-2 dB. Nominal total gain for ideal arrays is:
No. of Elements Total Gain (dBi)
2 5.1
4 8.1
8 11.1
16 14.1
In spite of the higher-than-omni gains, if an RMS gain were calculated,
the value would be 1/2 to 1 dB below the nominal. This is further
indication that each antenna type shows azimuthal preferences, which may
25
-------
or may not be desirable, depending on the stations desired coverage in
azimuth. The JSCP seems to be a lower gain array but azimuth patterns of
Appendix A show its pattern to be the most circular of the 3 studied.
If reduced element spacing were selected as a downward radiation
mitigation approach, cycloid arrays would need to be doubled In size,
white FMH and JSCP systems would be increased by 1.7 times.
26
30<
-------
I. FM Array Bay Spacing Study
All four elements were subjected to a downward radiation (60 to 90
degrees below the horizon) study. The arrays were 4, 6 and 8 elements with
the upper and lower half (bay) of the array spaced at 1, 3/2 and 2
wavelengths. The 1 wavelength is standard spacing and indicates the
present RF radiation potential to humans for isolated, elevated arrays.
Spacing increase to 3/2 wave gives some measure of cancellation of
downward fields while hopefully not reducing gain as much as an element
spacing change to 1/2 wave would. An increase to 2 waves spacing between
bays was included also.
Appendix B contains the detailed patterns for this section. The
maximum azimuthal total gain and total downward radiation results are
summarized in Figures 15-18. Bay spacing increases to 3/2 and 2
wavelengths causes only minor main beam gain changes, less than 1 dB. The
hoped-for reduction in downward radiation did not take place for 3/2 wave
spacing; it was in fact detrimental, increasing prospects for radiation to
humans beneath the arrays. The 2 wave spacing improved conditions for only
the JSCP, reducing downward fields 2 to 4 dB. It worsened the CYCLOID
appreciably, 2 to 9 dB for different size arrays. The FMH and COMARK
arrays had down-going radiation within 1 dB of the standard spacing.
The patterns of Appendix B show that 3/2 wave bay spacing does
"swing" the downward lobes more toward the horizon, but in some cases
27
-------
increases the value of that lobe, negating any hoped-for improvements,
28
-------
J. TV Array Bay Spacing Study
CETEC JAT turnstile arrays were modeled for 4, 6 and 8 elements in an
upper/lower bay arrangement identical to the FM arrays. Since the VHF TV
band Is split into a low (Ch. 2-6} and high (Ch. 7-13} portion, a
representative channel from each portion was modeled. Channels 2 and 10
were chosen to represent the VHF station downward radiation situation. Bay
spacing: were limited to standard one wavelength and 3/2 wavelengths for
cost considerations. The super-turnstile elements are quite massive
electrically and tax computer resources heavily.
Appendix C presents azimuth (horizontal) and elevation (vertical)
plane patterns and also downward radiation characteristics. Figures 19-21
show the summary of those radiation charts. Maximum gain is virtually the
same for standard and extended (3/2 wave) spacings but downward radiation
improves at the wider spacing. Since the geometry in units of wavelengths
is different for Channel 2 JAT models than for Ch. 10 ynits, the
differences revealed in Figures 19 and 20 are somehow tied to the
different element designs. For Ch. 2 models the trend is for slightly
reduced downward radiation as the number of elements increases. Figure 19
shows that at 4 elements, potential for radiation to humans is identical
for both bay spacings, and for 6 and 8 elements, the wider spacing is 1.2
and 2.6 dB better respectively. Ch. 10 models show the opposite trend vs.
element numbers, but with greater spread in downward radiation levels.
29
33<
-------
Figure 20 shows over 5 dB downward radiation improvement for 4 elements,
dropping to 3.6 dB advantage for 3/2 wave spacing for 8 elements.
One additional exercise was conducted to see results for reduced
ELEMENT spacing for these turnstile antennas. Figure 21 suggests that for
small arrays (2 element Ch, 2 antennas were modeled here) an almost 10 dB
reduction in downward emission without appreciable maximum gain drop is
achieved at 5/6 wave spacing. A limited test for 6 elements shows similar
downward radiation improvement but with the unacceptable drop in azimuth
coverage of almost 4 dB. These trends are based on a limited "quick look"
study and may not hold for a more in-depth modeling exercise.
VHF-TV Super-turnsti1e antennas respond to an increased bay spacing
change to 3/2 wave in a generally favorable manner and show interesting
trends for element-to-element spacing reductions.
so
-------
K. FM Element Gain/Spacing Curves
EPA conversations with FM and TV broadcast antenna manufacturers
suggest that their design engineers relay on "standard handbook concepts",
one in particular being that the arrays in question behave as collineer
spaced elements. The array gain vs. spacing curves in Jasik's "Antenna
Engineering Handbook" (Ch. 5) are held in high regard.
A model ing study using NEC was conducted for elemental and half wave
dipoles arrays, both broadside and coaxially (co I IineerIy) arranged, to
compare with the "no mutual coupling" cases of Jasik. Two FM antenna
models were also exercised at the "Jasik spacings" for comparison to the
dipole cases. Appendix D contains radiation patterns for these "Jasik
Studies".
Very good correlation was found for short dipole arrays calculated by
NEC and by the standard antenna pattern methods of Jasik. (Figures 22 and
23) NEC includes all coupling effects and determines antenna currents,
from which gain is calculated. The usual approximations for the Jasik
results are no interaction effects and assumed current distributions. The
excellent agreement indicates that the small antennas (<0.1 wavelengths
long) do not couple appreciably and that the linear current distribution
assumption is valid.
For half-wave long dipoles, the gain curves are well within 1/2 dB of
the short antenna curves. (Figures 24 and 25). Thus, design engineers can
use the Jasik curves if their antenna elements behave like half-wave
31
-------
dipoles arrayed broadside and/or collinearly.
If FM broadcast antenna elements are considered as equivalent to a
combination of half wave vertical elements and loop horizontal elements,
the "Jasik curves" for them should be a composite of both col linear and
broadside dipole curves. Figures 26-28 show FMH and cycloid elements in 2,
4, 8 and 16 element arrays. The shape of these 8 element curves matches
those for half wave dipole col linear arrays within 1 dB. The collinear
arrangement of elements corresponds to the vertical dipoles of an
idealized FMCP antenna. The reason for such good correlation with
collinear and not with broadside arrays is because all of the FM antennas
investigated had substantially stronger V polarized radiation than H
polarized radiation. This correlation between Jasik coliinear elemental
antennas, half wave dipoles and FM antennas confirms, in part, initial EPA
insights and allows a measure of prediction of gain/spacing trade offs.
36<
32
-------
L. Conclusions and Recommendations
The performance calculations of this study (gain and downward
radiaion) provide the EPA wf th information wh ich wi1 I allow them to:
1. Assess the possibility of downward radiation for candidate FM
and VHF-TV broadcast transmitting installations
2. Examine the cost in gain of mitigation schemes involving array or
subarray spacing changes.
Comparison of real-world FM antenna performance as determined by numerical
models is in contrast to assumed, idealized, and often, advertised
character i st i c s.
Full vs. half-wave spacc-d FM arrays show 23 dB gain loss for the
three types modeled. The FMH and cycloid show lower downward radiation at
reduced spaaing but not so for the JSCP skewed vee dipoles.
When the FM arrays were split into 2 bays with 3/2 and 2 wave
interbay spacing, 2 models showed little improvement in downward raadiated
fields (FMH and CQMARK), one was worse (CYCLOID) and only one (JSCP)
improved measureably (24 dB drop) for 2 wave spacing. No worthwhile
effects were found with 3/2 wave spacing. Apparently the bay spacing
concept is of limited value and general trends cannot be established.
Modeling must be done on a case-bycase basis.
For the single VHF-TV model (super-turnstile) investigation 3/2
wavelength bay spacing shows promise but differences between Ch. 2 and
Ch. 10 models suggests caution in trying to formulate trends from the
33
-------
limited study conducted here. Element spacing changes for super-turnstiies
should be investigated for a wider range of variables than in this
"quick-look" study.
If reliable pattern measurements can be obtained or conducted, they
would provide validation benchmarks for NEC numerical models. The models
developed for this project were done using all available guidelines and
recommendations amassed over the past 10 years during which numerous
military antenna systems were modeled and compared to measurements* Since
the investigators do not regularly design FM and TV broadcast antennas,
some of the details concerning feed systems are not known and not
available. The pattern shapes calculated via NEC are considered quite
accurate. The absolute gain values, which depend upon a good
representation of the feed mechanism, were checked by a necessary but not
sufficient method of calculating radiated power from both patterns and
input power. Additional confidence can be obtained only through accurate
gain measurements.
Additional modeling in the areas of downward radiation for variable
element spacings of less than one wavelength should reveal the range of
useful spacings suggested by the Jasik curves and by the limited JAT
element study. The added effects of tower mounting should be looked at for
a few typical installations. All work in this study was for "sky-hook"
supported arrays, and should not be continued without knowledge of the
amount of influence towers have on downward radiated field levels.
Jasik curve studies reveal that uniformly spaced FM arrays perform,
38< 34
-------
for gain/spacing considerations, like half-wave col Iinear dipole arrays,
betraying the fact that they are not radiators of equal V and H
polarization fields. This fact is confirmed by the modeling of single
elements done early in this study.
35
39-
-------
LOOP-DIPOLE CP ANTENNA
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE 1A
-------
THE CYCLOID LOOP-DiPOLE ELEMENT
THCTA s 60.00 PHI » 60.00 ETA = 90.00
FISURE IB
-------
THE CYCLOID ELEMENT WITH SUPPORTING BALUN
THCTA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE 1C
-------
THE CYCLOID ELEMENT WITH FEEDUNE
THETA = 60.00 PHI = 60.00 ETA = 90.00
FI6URE ID
-------
^
60.00
-------
SKEWED
THET*-
-------
OIPOUSV«TH SUPPORT
I^EDSRB**5
. 60.00
46-
-------
THE SKEWED VEE DIPOLE WITH FEEDUNE
THETA a 45.00 PHI« 60.00 ETA a fO.OO
FIBURE 2D
-------
TWISTED LOOP ELEMENT
THETA s 30.00 PHI = 60.00 ETA = 90.00
FIGURE 3A
-------
TWISTED LOOP ELEMENT
THETA a 45.00 PHI = 60.00 ETA = §0.00
49<
FIBURE 3B
-------
TWISTED LOOP ELEMENT
WETA = 75.00 PHI = W.OO ETA = 90.00
FIGURE 3C
5O<
-------
TWISTED LOOP WITH HORIZONTAL SUPPORTS
THETA = 39.00 PHI » 60.00 ETA = 90.00
FIGURE 3D
-------
TWISTED LOOP WITH HORIZONTAL SUPPORTS
THETA = 75.00 PHI * 60.00 ETA = 90.00
FISURE 3E
-------
TWISTED LOOP ELEMENT WITH FEEDUNE
THETA a 30.00 PHI = 60.00 ETA = 90.00
FIBURE 3F
-------
TWISTED LOOP ELEMENT WITH FEEDUNE
THETA = 45.00 PW = 60.00 ITA = 90.00
FISURE 36
-------
TWISTED LOOP ELEMENT WITH FEEDUNE
THiTA = 75.00 PHI = 60.00 ETA = 90.00
FIGURE 3H
-------
SEGMENTED TWISTED LOOP ELEMENT
THETA = 45.00 PHI » 60.00 ETA = 90.00
FIGURE 4A
-------
SEGMENTED TWISTED LOOP WITH HORIZONTAL SUPPORTS
THETA = 45.00 PHI = 60.00 ETA = 90.00
FIBURE 4B
-------
SEGMENTED TWISTED LOOP WITH FEEDUNE
THETA = 45.00 PHI » 60.00 ETA = 90.00
FIGURE 4C
58-
-------
SEGMENTED TWISTED LOOP WITH FEEDUNE
1HETA= 60.00 PHI =$0.00 ETA=fO.OO
FIBURE 4D
-------
THE SUPER-TURNSTILE VHP TV ELEMENT
THETA = 60.00 PH! = 60.00 ETA = 90.00
FISURE
-------
ONE FMH ELEMENT ALONE
AZIMUTH PATTERN AT HORIZON
o
530
50
.100
0
FIGURE 6A
-------
ONE FUH ELEMENT ALONE
VERTICAL PATTERN AT BORESTE
o
330
30
3OO,
0
Z70
FIGURE 6B
-------
ONE JSCP
ALONE
300
270
AZIMUTH PATTERN AT HORIZON
o
930
30
QQD
FISURE 7A
-------
ONE JSCP ELEMENT ALONE
VERTICAL PATTERN AT BORESfTE
0
_-^~TT
330,
300
M
FISURE 7B
-------
ONE JSCP ELEMENT ALONE
AZIMUTH PATTERN AT HORIZON
o
330
30
300
270
FIGURE 7C
65-
-------
ONE JSCP ELEMENT ALONE
VERTICAL PATTERN AT BORESFTE
0
300.
o
270
no
no
TOTM.
AMOUS IN OCWtt* IMW
ISO
FIGURE 7D
-------
300
Z70
ONE CYCLOID ELEMENT ALONE
AZIMUTH PATTERN AT HORIZON
o
330
0
FIBURE 8A
-------
ONE CYCLOID ELEMENT ALONE
VERTICAL PATTERN AT lORESTTE
330
30
300
0
270
FIGURE SB
68<
-------
270
ONE CYCLOID ELEMENT ALONE
AZIMUTH PATTERN AT HORIZON
o
0
190
eeo
FIGURE BC
-------
ONE CYCLOID ELEMENT ALONE
VOTCAL PATTERN AT BORESITE
300.
0
FIGURE 8D
-------
300
Z70
ONE COMARK ELEMENT ALONE
AZIMUTH PATTERN AT HORIZON
0
330
30
TOTU.
Amusm HOMES muc
FIBURE 9A
-------
QNECQMARK ELEMENT ALONE
VERTICAL PATTERN AT BORESfTE
o
350
10
300.
270
120
190
PATO
AMUSI
M MID IN DM
VOtDCAL
NBEOMBniK
»0
FIBURE 9B
72<
-------
PANEL ANTENNA ELEMENT
THETA = 85.00 PHI = 30.00 ETA = 90.00
FIGURE 10A
-------
PANEL ANTENNA ELEMENT
THETA = 85.00 PHI = 85.00 ETA = 90.00
FISURE 10B
74-
-------
CYC3X3
ffcr
ftr-
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE 11A
-------
CYC4X4TW
WETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE liB
-------
t 0
(ffO) NI₯D TVlOi
FIGURE 12
-------
I
(IQQ) NIVD 1V101
t o
FIGURE 13
78<
-------
i
5
(110) NI₯D TV101
FIGURE 14
-------
o
I
flO
Qi
9 Q
(180) NIY9
i-
01"
FISURE IS
80<
-------
E
z
o
Q
a o
(iac) NIVO
01-
FIGURE 16
-------
RADIATION FROM JSCP (NXN)
GJ
3J
in
GO.
W
A
m
a
MAX OAJNj,
LEGEND
2X2 MAIN BEA
02X2DOWN
.A.3X
x"4X4
WN
5WI
MAW
"
M.
[RE
WARP
hr.r.r.:
1,1
BAY SPACING IN WAVELENGTHS
-------
G)
RADIATION FROM COMARK (NXN)
9"
CD
A
3
o
1
*
' O
[,,,,^« , «
,
| _
>- ~ "
Jf
^^
.::: ; *
^^-'
u...
"
1
,^^ -
MAX
'....It. ..!....<
o 2X2 MAIN
o 2X2 DOWh
A 3X3
rfxl
x 4)^4
« 4X4 C
IAIN*
iOWh
GAIN ft
Bl»...ini»mi
p
BEAM
WARD
IEAM
WAA£>
BAY SPACING
DOWNV
NABDH
i - ..
ADIAH-C3
i«.».»^«,»
"T.'T.!1:::-
1 - ._»_,
IN
^1 K-T,
ti :
IN WAVELENGTHS
1
-------
04
*
U
o
£
o
i
D
9 0
(IQG) NIVD
a-
01-
FIGURE 19
S4<
-------
o
E
o
i
i
0
(I9Q) NIVD
9-
01-
85<
FISURE 21
-------
CD
»
m
to
03
RADIATION FROM CH. 2 JAT ARRAYS
-
e-
i
o-
Q
*_
-
2-
«
i
HO
>
***»
'
\y
K-"
-|
^
X"..
!"' ,,--1
-"*"" ' « ! <---; -
&
,}
-if-
s
/*
;
-
₯
X
s
*
f
''
MAX
/
X
4
X
0
t
GAM
i
/
/
jf.....*.
«
f
t
t
/
- -*
&D
i *
>..,....j
X
^ ji
,...»;j]
OWh
pt
L... -. ....
*"*
WAF
_.
--
-
a a
o
&
J
<
i
+ 1
.1
I
1 1
4
OR/
w ^
IDIA1
TON
. 4
- J!
H
4..,,...
LEGEND
AY MAIN BEAM
AY DOW
&SS
AJNB
WABfi.
0.76 0.10 O.IB O.M O.M 1 1.O8 1.10 11*
ELEMENT SPACING (WAVELENGTHS)
-------
s
cc
DC
<
a
o
gu
Q
IE
O
91 H 61
II OL 6 8 i 9 9 » 8 Z
(I8Q) 1N3W313 31DNIS H3AO NIV9
87<
FIBURE 22
-------
a
g
O
fe
O
CO
fll *t
Zl U 01
(tea)
L 9 9 * G
JIDNIS yiAo NIVD
88<
FIGURE 23
-------
s
DC
DC
LU
d
&
Q
oc
I
O
u
H
UJ
UJ
LU
GO
0'9i OH 0'tl OH 0"U 0*01 0*« O't Q'i 0*0 0fl 0> O'C 01 0*1 O'O
(9Q) JLNaNill 31DNIS V U3AO NIVD
89'
FIBURE 24
-------
til
g
CO
1
CC
m
uy
LU
a
8
Q
o91 cm oei on on 0*01 0*0 o*i o^ 0-0 0*1 o'» o*t o*z 0*1 0*0
(iQ) 1N3W313 J1DNIS V H3AO NIVO
FIGURE 25
-------
§
oc
oc
to
3
DC
DD
g
ID
a
o
o*ti
ou O-QI o*t oi o^ oe o*a o> o-g 0*2 o*t
(SO) 1N3W3T3 310NIS V U3AO NIVD
-djfi
-o
o
6
FIBURE 26
-------
CO
DC
3
k
§
oc
CO
/I
71'
r
11
H
!\
.\i.
!
\
XT
(9.
a-
2I
(9
«
d
F4
d
q
d
0 91 O'ftt O'tl O'tt O'll O'Ol 06 0'8 0 L 0"9 0'9 O'V O'G O'Z 01 0*0
(80) 1N3WJT3 J1DNIS V U3AO NIVD
FIBURE 27
-------
te
<
u
O
QC
CO
9
u
ai
a
o
"O
O'Sl O'tt O'Kl Oil O'il O'Ol 08 O't O'l O'S O't 0> 0*t O't O'l 00
-o
3
6*
O
1
O
-o
q
6
-------
NUMERICAL MODELING STUDY
OF GAIN AND DOWNWARD RADIATION
FOR SELECTED FM AND VHF-TV
BROADCAST ANTENNA SYSTEMS
APPENDICES A - D
15 MARCH 1984
Richard W. Adler
Stephan Lament
This report was prepared for the Environmental Protection Agency
NonIonizing Radiation Branch
*'y AGL, Inc., PO Box 253, Pacific Grove, CA 93950.
94<
-------
APPENDIX A
FM ARRAY GAIN STUDY
RADIATION PATTERNS
95<
-------
ONE FMH ELEMENT W/ FgDUNE HALF WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
o
300
0
270
FIBURE A 1
96<
-------
ONE FMH ELEMENT W/ FEEDUNE HALF WAVELENGTH LONG
VERTICAL PATTERN AT BORESJTE
o
330
M
300
270
FIGURE A "2.
97<
-------
ONE FMH ELEMENT W/ FEEDUNE ONE WAVELENSTH LONG
AZIMUTH PATTERN AT HORIZON
o
330
MO
0
170
sen
F1BURE A 3
98<
-------
ONE FMH ELEMENT W/ PEEDUNE ONE WAVELENGTH LONG
VERTICAL PATTERN AT BORESTTE
0
MO.
FIGURE A 4
99<
-------
TWO FMH ELEMENTS W/ FEEDUNE HALF WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
0
3M ^f^\ \ I I / /^T*"-^ 50
300
to
FIGURE A 5
-------
TWO FMH ELEMENTS W/ FEEPUNE HALF WAVELENGTH LONG
VERTICAL PATTERN AT BORESTTE
0
900,
270
550
M
FIGURE A 6
-------
TWO FMH ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
o
330
30
300
M
270
OQD
FIGURE A 7
-------
TWO FMH ELEMENTS W/ FiEPUNE ONE WAVELENGTH LONG
VERTICAL PATHRN AT BORESIE
o
309
270
FIGURE A 8
103-
-------
FOUR FMH ELEMENTS W/ FEEDUNE HALF WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
o
330
30
900
0
Z70
FIGURE A 9
-------
FPUP fuu EiJEMENTS W/ FEEDUNE HALT WAVELENGTH LONG
VERTICAL PATTERN AT 1QRESTE
0
330
30
300,
eo
270
120
CQD
FIGURE A IB
105-
-------
FOUR F14H ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
0
*io ^-*T\T 1 I / / T""^ so
300
0
270
FISURE All
106<
-------
POUR FMH ELEMENTS W/ FIEDUNE ONE WAVELENGTH LONG
VERTICAL PATTERN AT iORESTE
so
270
FIBURE A 12
107
-------
SIX FKH ELEMENTS W/ FEEDUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
^B
330 ^-T \ \ I / / / "7-*^ 30
300
0
270
FIGURE A 13
-------
SIX FMH ELEMENTS W/ FEEDUNE HALF WAVE SPACING
VERTICAL PATTERN AT 10RESITE
330
WO.
FIGURE A 14
109-
-------
SIX FMH ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
o
390
90
270
FIGURE A 15
-------
SIX FMH ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
VERTICAL PATTERN AT BORESTTE
9
300.
W
270
FIGURE A 16
-------
BGHT FMH ELEMEKTS W/ FHDUNE HALF WAVELENGTH LONG
AZMUIH PATTERN AT HORIZON
0
330
SO
300
270
FIGURE A 17
112-
-------
BGHT FMH ELEMENTS W/ FEEDUNE HALF WAVELENGTH LONG
VERTICAL PATTERN AT BORESHE
o
330
30
300.
770
FIGURE A 18
113-
-------
BGHT FMH BJMENTS W/ FEEDUNE ONE WAVELENGTH LONG
AZMUTH PATTERN AT HORIZON
o
MO
M
270
FIGURE A 19
114
-------
DGHT FMH ELEMENTS W/ FEEDUKE ONE WAVELENGTH LONG
VERTICAL PATTERN AT WRESITE
o
330
SO
900,
270
FliURE A 20
115-
-------
IEN FMH ELEMENTS W/ FEEDUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
ISO ^*Z~ \ \ \ III ~~f**^ 30
MO
270
F18URE A 21
-------
TEN FVtti ELEMENTS W/FgDUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESTTI
o
900
0
270
FIGURE A 22
117 <
-------
TEN FUH ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
0
300
0
Z70
FIGURE A 23
-------
TEN FMH ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
VERTICAL PATTERN AT BORESfTE
0
300.
«9
270
FIGURE A 24
-------
FOURTEEN FMH ELEMENTS W/ FEH3UNE ONE WAVELD4GTH LONG
AZIMUTH PATTERN AT HORIZON
o
3SO ^TTTT / / ^*^ 30
300
270
FIGURE A 25
-------
FOURTEEN FMH ELEMENTS W/ FEEDUNE ONE WAVELENGTH LONG
VERTICAL PATTERN AT BORESITE
o
330
30
300,
60
120
CCD
FIGURE A 26
-------
SIXTEEN FMH ELEMENTS W/ FEEDUNE HALF WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
o
330
30
300
270
MTTWH «A» IX Oil
....... HOniOKTAL
»" vomcAL
TOTAi
120
FIGURE A 27
-------
SIXTEEN FMH ELEMENTS W/ FEEOUNE HALF WAVELENGTH LONG
VERTICAL PATTERN AT iORESTTE
o
330
30
300,
190
PATIDWt 8MN IN BII
HeMZBKU
» VOTBCM.
180
FIGURE A 28
-------
S8CTBEN FI4H ELEMENTS W/ FEEPUNE ONE WAVE SPACING
AZMUTN PATTERN AT HORIZON
o
390
30
Z70
FIGURE A 29
124-
-------
SIXTEEN FMH ELEMENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESTE
0
SOO
0
zra
FZOURE A 30
-------
TWO CYCLOID ELEMENTS W/ FEEDUNE HALF WAVE SPAONS
AZIMUTH PATTERN AT HORIZON
0
30
300
0
270
190
FIGURE A 31
-------
TWO CYCLOID ELEMENTS W/ FEEDUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORES1TC
o
330
900
W
270
FIGURE A 32
127
-------
TWO CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
33Q
30
300
270
FIGURE A 33
128<
-------
TWO CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT 80RESTTE
o
300
270
190
QQD
FIGURE A 34
-------
FOUR CYCLOID ELEMENTS W/ FIEDUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
330
300
0
Z70
FISURE A 35
130<
-------
TOUR CYCLOID ELEMENTS W/ FEEPUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESFTE
9
0
FieURE A 36
-------
FOUR CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
0
330
30
300
270
FIBURE A 37
-------
POUR CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
PATTERN AT BORESfTE
0
530
300,
Z70
W
FIGURE A 3B
133
-------
EIGHT CYCLOID ELEMENTS W/ FEEDUNE HALF WAVE SPACING
PATTERN AT HORIZON
0
30
300
H
zra
FIGURE A 39
134<
-------
DGHT CYCLOID ELEMENTS W/ FEEDUNE HALF WAVE SPACING
VERTICAL PATTERN AT eORESITE
330
300,
270
FIGURE A 40
135<
-------
EIGHT CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
B
330
30
300
0
270
FIGURE A 41
136<
-------
EIGHT CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESITE
0
930
90
900.
M
Z70
FI6URE A 42
137
-------
OGHT CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESTE
300,
FISURE A 43
-------
TWELVE CYCLOID ELEMENTS W/ FEEDUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
0
MO
270
ua
30
0
FI6URE A 44
-------
TWELVE CYCLOP ELEMENTS W/ FEEDUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESITE
o
^r-TT
«0.
NO.
U
J70
FIGURE A 45
-------
TWELVE CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
300
170
AZIMUTH PATTERN AT HORIZON
o
330
MTT0MMMM0M
«"»««» NQNEQNMI.
" OUItCAL
MMUS M KMflS UNI
30
ao
100
FIGURE A 46
141-
-------
TWELVE CYCLOID ELEMENTS W/ FEBDUNE ONE WAVE SPACING
VERTICAL PATTERN AT iORESITE
o
^r-rr
330.
MO,
270
0
FIBURE A 47
142-
-------
SIXTEEN CYCLOP 6I..FMENTS W/ FEFPUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
M
JOQ
270
FIGURE A 48
-------
SOOEEN CYCLOID ELEMENTS W/ FEEDLJNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESJTE
0
300,
Z70
eo
M
tzo
QSD
FIGURE A 49
-------
SIXTEEN CYCLOID ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
930
900
170
ISO
MtUMMlNINMI
......... HOKZONTAL
*"" KBHIUU.
' TOTAI.
MMUS HI KOHSS nut
iao
so
120
FIGURE A SB
145'
-------
SXTIEM CYCLOP ELEMENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT iORESlTE
0
190
30
900
0
120
150
PATTOMMMIMOI!
........ MOttZOMTM.
*"» MJUIOU.
^""^TOTM.
imua m KMBS IMMC
WO
FIGURE A 51
-------
ONE JSCP ELEMENT W/ FEEDUNE HALF WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
o
330
30
300
0
Z70
FIGURE A 52
147
-------
ONE JSCP ELEMENT W/ FHPUNE HALF WAVELENGTH LONG
VERTICAL PATTERN AT iORESlTE
0
330
300
to
270
130
vomew.
TCT*».
Mwn IN Mtni IMI
FI6URE A 53
-------
ONE JSCP ELEMENT W/ FEEPUNE ONE WAVELENGTH LONG
AZIMUTH PATTERN AT HORIZON
0
MO _*-"T"\Y 1 III ~7*^ 30
270
FIGURE A 54
149<
-------
ONE JSCP ELEMENT W/ FEEDUNE ONE WAVELENGTH LONG
VERTICAL PATTERN AT BORESITE
338
300
270
FIGURE A 55
ISO-
-------
TWO JSCP ELEMENTS W/ FEEDUNE HALF WAVE SPACING
A2MUTH PATTERN AT HORIZON
o
310
30
300
0
270
120
150
M1tfm««MINON
"-»«» HO«IZOWAl
voneu.
1BO
FieURE A 56
-------
TWO JSCP ELEMENTS W/ FUDUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESITE
0
330
30
300
270
FIBURE A 57
-------
TWO JSCP ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
0
330
MO
FIGURE A 58
153-
-------
TWO JSCP BJMENTS W/ FBEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESITE
500
270
SO
80
FIBURE A 59
-------
FOUR
ELEMENTS W/ FEEDUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
330
300
0
770
FISURE A 60
155-
-------
FOUR JSCP ELEMENTS W/ FgDUNE HALF WAVE SPACING
VERTICAL PATTERN AT 10RESITE
o
390
30
300
M
IfQ
FI6URE A 61
156<
-------
AZIMUTH PATTERN AT HORIZON
o
330
30
300
M
190
FIGURE A 62
157
-------
FOUR JSCP EUEMEKTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORER!
0
330
JOO,
W
270
FISURE A 63
-------
OGHT JSCP ELEMENTS W/ FEEDONE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
330
300
270
180
OSD
FieURE A 64
159-
-------
EIGHT JSCP " EUFMTK W/ FiEPUNE HALF WAVE SPAaNG
VERTICAL PATTERN AT BORESTE
390
900,
M
170
FISURE A 65
160<
-------
OCHT JSCP ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
MO ^3&3£t^-KX?+*t^ 30
300
0
270
FISURE A 66
-------
DGHT JSCP ELEMENTS W/ FUDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESITE
0
^r-rr
350.
300,
M
270
Qsn
FI6URE A 67
162<
-------
WELVE JSCP ELEMENTS W/ FtEDUNE HALF WAVE SPACING
AZIMUTH PATTERN AT HORIZON
0
930
SO
900
M
270
FIGURE A 68
-------
TWELVE JSCP ELEMENTS W/ FEEDUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESTE
330
SO
30O
370
FIGURE A 69
-------
TWELVE JSCP ELEMENTS W/ FEEDUNE ONE WAVE SPACING
AZMUTH PATTERN AT HORIZON
o
sx
300
270
FI8URE A 70
165<
-------
TWILVE JSCP B1MENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESTTC
330
SO
300
0
xro -
FIGURE A 71
166
-------
SDCTHNJSCP ELEMENTS W/FEEDUNE HALF WAVE SPAQNG
AZWUIH PATTERN AT HORIZON
o
ISO
30
300
M
270
FIBURE A 72
-------
SOCTEEN JSCP ELEMENTS W/ FEEDUNE HALF WAVE SPACING
VERTICAL PATTERN AT BORESITE
330
X
300,
0
Z70
FIGURE A 73
168<
-------
SIXTEEN JSCP EUEMENTS W/ fEEOUNE ONE WAVE SPACING
AZIMUTH PATTERN AT HORIZON
o
30
FISURE A 74
169-
-------
SOCTEEN JSCP ELEMENTS W/ FEEDUNE ONE WAVE SPACING
VERTICAL PATTERN AT BORESJTE
330
30
300.
270
FISURE A 75
170-
-------
APPENDIX B
FM ARRAY BAY SPACING STUDY
RADIATION PATTERNS
-------
FMH2X2
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 1
172<
-------
THE ERI FMH 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
330 ^<\\\ I I ">-*. 30
300
270
150
PATTtUN GAIN IN Oil
....... HOUrZOMTAL
"" VIBTICM.
'"" TOTAI.
ANGUS IN DtOKCtS THUI
180
60
120
FieURE B 2
-------
THE ER1 FMH 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
120 ^j^CxX \ III 7^ i§
150
180
f ATTTIIH CAIN IN OBI
TOTAL
rUVATlOH AHCLI
30
-SO
-30
-60
FIGURE B 3
-------
THE ERI FMH 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-W-.
-10-,
-s-
o-
-8-
te £ "1"5'°°
on
"O
a-
Ik
-W-,
5.0"
175-
FZ6URE B 4
-------
THE ERi FMH 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
*»
CD
TJ
-s-
0-
s
-10-
-3-
0-
s-
-10
OJ
"O
-8-
0-
-In' 225.0°
-to
i- &"" 270.0'
-te
-to-.
-§-
"O
-io
0-
.
-«4
-s-
i,;"""24b.0°
0-
-18
-10
ffl
l«
0-
-5-
9",
-l«
CD
"O
0-
-§§
,
- ^""'345.0'
FIBURE B 5
-------
FMH2X2TH
THETA = 60.00 PHI = SO.OO ETA = 90.00
FIGURE B
-------
THE FMH2X2 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
o
330
30
300
270
PATTOM CAIN IN Oil
........ HORIZONTAL
"""*"» VERTICAL
^"~"^""" TOT »L
ANCLES m KBMEIS nuc
1SO
180
0
120
FIBURE B 7
178<
-------
THE FMH2X2 ARRAY
3/2 WAVELENGTH SPACING
90
120
BAYS
60
30
180
-30
-60
PATTDIM GAIN IN Oil
....... HORIZONTAL
TOTAL
UVATIONAMWC
-90
179<
FIGURE B 8
-------
o-
THE ERI FMH2X2 ARRAY
3/2 WAVELENGTH SPACING BETWEEN 1AYS
e
>
J-V-,
0-
-n
'\
""%.0'
-W-i
0-
......... :;--";1b.O-
.»-
-»-»
- -""Wo.o»
"""£0.0'
-»-
^"*"«5.0-
FIGURE B 9
180<
-------
& "Y- ~s 1
HE ERI FMH2X2 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
ttf -W-» -10-t
S
ti
HI
-§-
5
-rf
o
*
I-
-t-
s
\
\
...-..-, 180.0- ».
V 1
\
\ s
\ o-
» -' 1L " *_i
\ .-
"M Z70.0- «.
r -»i
^
.^\
^
im iw »*
W -H
\ r
x
^ -» W3«O
L -. "*
V* *^x *
\ ....L,
.£ 330.0* i.
M "W %
\
s...^0.
I
V
\
» *»t
»
.....-r: 300.0*
« '"
.....|4
\ ...^
FIGURE B
-------
FMH2X2TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 11
-------
THE FMH 2X2 ARRAY
2 WAVELENGTH SPACING
o
^*-^T
330
SAYS
30
0
183
FIGURE B 12
-------
THE FMH 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
o
120
M
ttO
FIGURE B 13
184'
-------
-10
«
>
-»
\
THE ERI FMH 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
-io-v
0.0"
8-
5.0°
9
*
c-
o-
«
-.o
?5.o«
185<
FIGURE B 14
-------
1
-M-i
THE ERI FMH 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
ib.o-
0-
i:
o-
i
0-
0-
:I
0-
-n
186<
FIGURE B 15
-------
FMH3X3
THETA = 60.00 PHI = 60.00 ETA = 90.00
187-
FISURE B 16
-------
THE ERi FMH 3X5 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
330 ^<\\\ If / / ^>-s. 30
300
60
270
120
ISO
PATTERN CAIN IN Oil
TOTAL
AKCU3 IN OIOMaS TXUI
180
FISURE B 17
188<
-------
THE ERI FMH 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
120
io
150
30
JZJS
-30
-to
PATTON OMH IM Oil
...... HORIZONTAL
TOT At
OJCVATIOH ANOUt
-80
189
FIGURE B IB
-------
THE ER! FMH 3X3 ARRAY
STANDARD SPAC'NG OF ONE WAVELENGTH BETWEEN BAYS
-10-
o
-5-
6-
-10
-10
-B-
8-
.10
m
"O
o-
w"»
*"
-8-
o-
-»
-5-
0-
-71
-
8.
- -f
a
e
8-
%o.c
m
o
8-
».» -"
190<
FieURE B
-------
THE ERI FMH 3X3 ARRAY
STANDARD SPACIG OF ONE WAVELENGTH BETWEEN BAYS
-10
o-
o
-S-
0-
-I*
-o
0-
, -"" 2780.0°
10?
K
-*-
-If
I-."" "3*15.0°
-18
^"""195.0°
e-
o-
£""'28*5.0°
g.
8 -'"""33*0.0°
e-
"v.- "-«
1
o-
s -""25*5.0°
0-
».
-""36*0.0°
"*
-0
o.
-to
FIGURE B 20
-------
FMH3X3TH
THETA = 60.00 PHI = 60.00 ETA = 90.00
192<
FIGURE B 21
-------
THE TO FMH 3X3 ARRAY
SPACING OF 3/2 WAVELJENGTHS BETWEEN iAYS
o
330 ^-fTTT f / / T*^ 30
300
M
270
ISO
FATTOM OA1N IN Oil
MOttZOMTAL
T8T/U.
MINUS IM KOtOB INI
WO
FIGURE B 22
-------
THE ERI FMH 3X3 ARRAY
RACING OF 3/2 WAVELENGTHS BETWEEN BAYS
o
120
ISO
TOTM
OJCVATIOHAMCU
60
50
-30
-60
FIGURE B 23
194<
-------
0-
THE ERI FMH 3X3 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN BAYS
--
--
FISURE B 24
-------
-10-y
-.-
-w-»
I
1
0-
THE ERI FMH 3X3 ARRAY
SPACING OF 3/2 WAVELINGTHS BETWEEN BAYS
"\
0.
-.«
\
-10-.
V
, .^"SSb.o*
345.0'
FIGURE B 25
196<
-------
FMH3X3TW
THETA a 60.00 PHI = 60.00 ETA s 90.00
137
FIBURE B 26
-------
THE mi FMH 3X3 ARRAY
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
o
n
330
300
270
PATTON 8AM IN Oil
...... HDiGtOKTAL
150
TOT At
ANMJD m pumas nut
180
ffO
FI6URE B 27
-------
THE ERI FMH 3X3 ARRAY
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
90
120
60
150
SO
vprncAi.
TOTAL
aEVATiBNAMM*
-30
F1SURE B 28
-------
THE ERI FMH 3X3 ARRAY
\
0-
\
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
£'" 90.0"
-
-w
.
\\\
\ \
-\J
A
; -»§
I £ 135.0-
-« "
i;-"«o.
-w
FIGURE B 29
-------
THE ERI FMH 3X3 ARRAY
-M
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
'°'
225.0'
A
e-
t
........ jr.-" " 3fo.O"
0-
T:
J
0-
-to-
0-
o-
^ 'JSb.o"
%"
FIGURE B 30
-------
FMH4X4
THETA = 60.00 PH! = 60.00 ETA = 90.00
FISURE B 31
-------
THE ERI FMH 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
330
300
MTram OMN IN MI
"""«-"- MOtaONTAL
»« HHIICM.
1 ' "I'" "T8TJU.
MMUS IN MOIItS 1CUI
180
30
80
120
190
FISURE B 32
-------
THE ERI FMH 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
120
60
so
100
-so
-00
MtTOM AUH IN Oil
........ HOtttOKTAL
»« vnmou.
TOTM.
UVAUONMMU
FISURE B 33
-------
Q^n THE ERI FMH 4X4 ARRAY
STANDARD SPACING OF ONE WAVElfNGTH BETWEEN BAYS
-wi
..: ~**fi n«
«. u«u »
I *' ^u« "^
^
,
45.0'
"fo.o«
jjsS'
^.
"
-f»
-
»
....... ;;"'*" iSb.o*
-10
......
..... --""fo.0-
-ra
-W-1
FIGURE B 34
-------
THE ERI FMH 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
li. -»
-10-
»»'.
o-
»
s
o-
-«~l*
1
-' 240.0'
-ioT"
-wJ
o-
, ;;T"'2&.0-
-101
o-
0-
345.0'
FIGURE B 35
206
-------
FMH4X4TH
THETA 35 60.00 PHI = 60.00 ETA ss 90.00
FIBURE B 36
-------
THE ERI FHH 4X4 ARRAY
SPACING OF 3/2 WAVBJNGTHS BETWEEN iAYS
o
330
30
300
270
0
»TOT*t
MNICS m Beano TIUC
120
FISURE S 37
-------
THE ERI FMH 4X4 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN BAYS
90
120
0
150
30
WO
-30
-0
PATTDW OAIN IN Dll
"""" HOmZOMTU.
TOTAL
HXV ATIOH ANOU
-90
FI6URE B 38
-------
THE ERI FMH 4X4 ARRAY
SPACING Of 3/2 WAVELENGTHS iETWEEN iAYS
o
£. i;-""1b.§*
s
-w-
e«
--"""lb.o*
-M
FISURE B 39
-------
THE ER1 FMH 4X4 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN BAYS
1*
».,
-
«
tw......^--"ib.O- i ... -;-""Ws.O'
-«-. -10?
-104
1
o-
£ z/u,0*
1
9-
.5
.4
-18,
k
-1
'.0'
^
FIGURE B 40
-------
FMH4X4TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 41
-------
THE ERI FMH 4X4 ARRAY
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
o
330 ^<*TT 1 III T--^ 30
300
270
60
120
150
HORIZONTAL
TOTte
AMMO M MOMB 1WI
FIGURE B 42
-------
THE ERI FMH 4X4 ARRAY
no
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
«o
120
0
30
-30
-80
Mtiom BAIN IN on
...... HORIZONTAL
TBTAi
.90
FX6URE B 43
-------
THE ERI FMH 4X4 ARRAY
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
.A
8-...V
-$.
I
0-
-10
e-
FieURE B 44
-------
THE ERI FMH 4X4 ARRAY
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
0--
I-...... -2-,"' 225.0°
V
£" iTo.O*
9-
a-
_»-...;-.,
o-
9-
o-
FIGURE B 45
-------
CYC2X2
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE B 46
-------
THE CYCLOID 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
300
270
330
30
PATTON CAIN IN Oil
........ MOHIZOKTAL
»« ' vomcAi.
»"" TOTAL
ANMCS IN OteHftS TUMI
150
180
60
120
FISURE B 47
-------
THE CYCLOID 2X2 ARRAY
-------
f=V-H~] E CYCLOID 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-10-1
o>
o
0-
10"
-9-
S
D
0-
s-
-10"-
...
5
TJ
0-
-'
-*-
m
o
a-
i -10*| -10-
\, M
i '*. 5
^\..A.
; \ «"
.'..""' " ft rtO
k10"
\
^1 x "
^V'" \ o-
* -1
.ffl.
'\\ -*
«X!.;" \ " o-
> "** -i
V ~
>5\ i
! ~l§ ' -"l
% * r
k ""
...^ . _9.
JA S
*«/{ \ o-
* "" -if-'
...'\'*.. _§.
U" ", S
i '
V-" \ o-
\..-- "iffe <,
". 103.0 9.
0 "" -1
| ?
i/:,--'\ 9.
>" "7* * -"«
k
3(\
;..-"" ~1?n n«
-^jg OU.U
"'^"\
Jr\
* "**
H
3f\
,'-" 120.0°
t
'*. '
I, \
V \
0 "f*
FIGURE S 49
-------
^V-T] THE CYCLOID 2X2 ARRAY
>» -*^~ -~ '
^^fS^^
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
«B.
IB
-1
1
t
\» *.
*"J* % ""
t ';
;, \ 1
* ,-""*
'"":"" \ o-
~w\
». i*\
-.* % » § .
?.:. f'.:.
...,- . _i-
i -,
i *
I. . a
f '. \ ~
* '. .-",
*..---' x. ,.
..., -.
i
% "*
.*! x
/ .
/..--.- \
'''' W0«0° j. ".'. isra.u~ 5. ;;:". xiu.u^
If "'' -t» "T" -f«
-W-« -16-m
I, I-. NX
fa}- . 1). . \X
**S* "i-i ". «» *-ii -. a»
S
0-
9-
^ \ - fl X
" I- -. IB // a
y\...x * ^v..x
/.-V \ B-
lit 225.0* (.
\ \ °"
\ ..-£«
-j§ 240.0 §.
!\ X
""*" «t
>-""2^5.0°
-»'i" -«F\* -19^"
_.
'
^ . -
^;\ '-
s :;". z/u,u- t-
.«« T> _i
-W-i -I0-i
Iv,
. I',.:-,
-j/a .. -*-
r»|. % j-
K - *
/v\
v"" ^
(D 1- m 1 »-. B
o
0-
y\ A ' w\ x *
/-V" \ o-
.l--"ff5.o«
^* »***," \ 0*
.l--il8o.o-
r
lv\
*
*-,
*\
* '.
^T \
l.""i&.0«
1"M -»« -- -»
FIGURE B 50
-------
CYC2X2TH
WETA= 60.00 PHI =60.00 ETA * 90.00
FIGURE B 51
-------
THE CYCLOID 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS iETWEEN UPPER & LOWER BAYS
0
530 ^-*T \ \ I I / / ^>*^ SO
300
270
fATTDW OAIH IN Oil
...... HORIZONTAL
TOTAL
*N«ttS IN OEOMCS THUI
190
180
BO
FISURE B 52
-------
THE CYCLOID 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER iAYS
to
120
0
150
30
PATTUW C*!N l« Oil
........ HOMZONTM.
KUIICAt
_____ TOTA1
UVATIONANOUE
-90
-30
FIGURE B 53
-------
THE CYCLOID 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
a.
0.0«
s
k
!.
I .
5.0«
-w-
H&*
k
«.
»
-,.-?
--
J?
3
.0'
I
\
3
FIGURE B 54
-------
1
^£-S~] E CYCLOID 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
.-»!
_§.
TJ
0-
-1
i
0-
-»1
%
:"-. -»
i \ S
.-»
' l/\
^ .,'
:l 180.0* ».
« -i
V,
/ V. *
/ : T-. '
y\
-«»
1\,
-V\ -*fr\
\ \ s
j
*.** *
\ \
....-!.
'. \\ o v » -,
^V \ c^f \
* "'IS ' '"MMI
......"-r. 195.0 §.
V
l\ :
*^ ', ,'. W^"
.:.**'* *i*je no _}.»'"'* fj^tn n*
»
X
W .
'.."*"'" 5?K n«
"..,§ **<««« 1- -_f§ *-»«.»* -_,§ *~-.~.w
.,0?*
-
0-
y -i
W>, S
x\ \
4: k""^>.0' ,
-«*T
«*-
B
i-
_10-
\
Wx *
fj \ e-
%
:A
^ \ ₯/\ \
' ***^flA * »**«HMI
;..-*' ope n« }.-"' nfi n«
*,. 4D9.U - "*M OUU.U
! ** .«
rw ww -jk "
% -IC-% -10-
V I,
Jf -Wx
/' i- s
A-j
X
<:
FIBURE B 55
-------
CYC2X2TW
TOETA s 60.00 PHI = 60.00 ETA = 90.00
FieURE B 56
-------
THE CYCLOID 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN iAYS
o
ISO
300
270
PATTDM OWN IN Oil
...... HOirZOHTAL
TOTAL
AN0UHI M OffOHBi IMC
30
190
iae
80
120
FISURE B 57
228<;
-------
THE CYCLOID 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN BAYS
90
120
60
150
30
IftO
1&5
-20
-eo
PATTERN OAIN IN Dll
....... HORIZONTAL
' " i vomcAi
TOTAL
UVAtlONAMOK
-90
FIGURE B 58
-------
THE CYCLOID 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
0-
-tO-i
).0'
a-
-
o-
-to-,
V
"\
>
\
«
-"\
~\
.-
-10
o-
-iff
V
-t»
IV,
FIGURE B 59
230^
-------
WE CYCLOID 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
»
'» ".
..:V-
o-
: '.
IB
a
0-
-"\
3T*
1.0'
0-
-w-4
o
8.
0-
-
":v^
e-
ti.
FIGURE B
-------
CYC3X3
THETA = SO.OO PHI iO.OO ETA = 90.00
232<
FIGURE B 61
-------
THE CYCLOID 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
^-t*rC2C
330 ^^C^^TT I ^T**^2^^ 30
300
270
PATT8IN OAIN IN Oil
........ HORIZONTAL
»' vpmc/u.
" TOT At
AHOLES IN DCOMECS HUI
150
180
60
120
FIGURE B 62
-------
THE CYCLOID 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
^*-TT
120
ISO
180
TOTAL
CUVATIONANQIX
30
-30
-80
FISURE B 63
-------
TOE CYCLOID 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-10-
-5.
0-
-s-
0-
s-
-a-
-a
-o
s
-10-
-*
0-
§0.0"
-«-\
"O
0-
-10
o-
a-
-i
-10-
o-
t
10-
o
8-
. -
0-
s
o-
e
o-
o-
FIGURE 1 64
-------
THE CYCLOID 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-10
0-
5
-«T
a U;
-,o-r
-8-
a-...
-10
-lO-i
-5
0-
0-
8-
-10-1-
5
o
8 ^-""s'ls.o0
-fO
-10-1
0-
;;-""240.0e
-10"!'
-5-
0-
-"
"\
0-
-;"""285.0°
0
0-
-10
-9-
0-
;-:""255.0°
FIGURE B 65
-------
CYC3X3TH
THCTA =s 60.00 PHI =60.00 ETA a 90,00
237-
FIGURE B bb
-------
THE CYCLOID 3X3 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
. o
330
300
270
30
so
(20
ISO
FieURE B 67
-------
THE CYCLOID 3X5 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
120
60
ISO
30
-30
-60
PATTERN OAIN IN Oil
........ HORIZONTAL
KUIIICAL
TOTAL
IUVATION ANOU
-90
£39'
FIGURE B 68
-------
THE CYCLOID 3X3 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
-18-t
-§.
-ie-%
-«
S
-w-
S
8- ';
-10-1
" "fo.o«
&
8- '.
120.0"
o
..
...m
-tt
FIGURE B 69
-------
QfH~| THE CYCLOID 3X3 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
-«»
-a-
*
.£.. -ii" 2&.o-
.10-
_
5
"
'"
9-
..:*-.
*.».
. t
. i
'-;;
FIGURE 1 70
-------
CYC3X3TW
,br
fir
THETA = 60.00 PHI = 80.00 ETA = 90.00
FISURE B 71
-------
THE CYCLOID 3X3 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN BAYS
o
330
300
270
30
120
ISO
FISURE B 72
-------
THE CYCLOID 3X3 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN BAYS
90
T-r^^
o
ISO
180
.BLS
-SO
Mrram OMN IN on
...... HORIZONTAL
VOmCAL
TOTM.
-0
FIGURE B 73
244-
-------
THE CYCLOID 3X3 ARRAY
-»
-19-
-S--
-10".
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
-10-
-»
0-
-«M
..... "*»«
"
FliURE B 74
-------
THE CYCLOID 3X3 ARRAY
SPACING OF 2 WAVELENGTHS BETWEEN BAYS
0-
-10
*. t
'. *.
i'".
i
*
1O-»
N
- \V,
Jtf
s
o
^lVi&.o-
"\
' *
y\\
, -^' 270.0-
t.
-4^
Jfl\
»-'
-10
-10-
240.0'
-lO-i
5fo.o-
-10-
0-
-10-
V.'.
..-
- 345.0-
FIGURE B 75
-------
CYC4X4
THETA = 60.00 PHI = §0.00 ETA = 90.00
FliURE B 76
-------
THE CYCLOID 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
^-«TT
330
300
0
270
»*«** HOI30NTAL
"" VCTT1CU.
ANSUS IN MOMXX tRUI
120
130
FIBURE B 77
-------
THE CYCLOID 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH
90
120
iAYS
o
150
30
-30
-0
PATTON OAIN IN DM
........ HOMZONTU.
»' i vnmcAt
i" TOTAL
IUV ATION ANOU
-90
249'
FieURE B 78
-------
THE CYCLOID 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
9-
Kb.o'
i
»«-*
Cv
a-
IB
"**
e-
"
o-
§
-
,.
-10-«
-10
"i'o.o*
..........,-.""" «b.e>'
.-*»
0-
FIGURE B 79
-------
THE CYCLOID 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
t
0-
i
i
-
-to-%
l\
1
o-
*Vi
-10"
*
It
s
.
\\
s
o-
o-
-10-
-"'300.0'
"
i
.--
-
251<
FIGURE B B0
-------
CYC4X4TH
THEJA=:60.00 PHI =60.00 ETA =90.00
FIGURE B 81
-------
THE CYCLOID 4X4 ARRAY
SPACING OF 3/2 WAVQJENGTHS BETWEEN UPPER & LOWER BAYS
0
130
300
270
pATtnm BAIN IN on
....... HORIZONTAL
TOTAL
Anaifs IK Btancs nut
150
180
SO
120
253'
FISURE B 82
-------
THE CYCLOID 4X4 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
to
so
ISO
30
-30
-iO
TOTAL
UVATtONANeif
FIGURE B 83
-------
THE CYCLOID 4X4 ARRAY
SPACING OF 3/2 WAVELENGTHS iETWEEN UPPER & LOWER iAYS
1
0-
:"\
0-
>
i
r
-V;-' tSb-O-
»p
-
*J
S
4-"" 1&.0*
FI3URE B 84
-------
THE CYCLOID 4X4 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
i
J >-"""2fe.o*
0-
;'
J
/
i
-10-1
i
-10i
M
-M
FIGURE B 85
-------
CYC4X4TW
THETA = 60.00 PHI a 60.00 ETA = §0.00
£57-
FIGURE B 66
-------
THE CYCLOID 4X4 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
100
330
30
1SO
PATtmt9AININOII
....... MOIIZONTM.
" i VUTICAL
1BO
so
120
FIGURE B 87 ' " 258*
-------
THE CYCLOID 4X4 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
120
150
30
-SO
PA now SAIN IN DM
«*»«" NOIIZOKTAL
TOT*!.
SIXVATIONAKOU
-to
FI6URE B 88
-------
WE CYCLOID 4X4 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LjOWER BAYS
.|«- _lO-»
9-
a*
c-
-w-
i
WW
10*4
-V.'" 105.0* 9 :'"" Ufa
-n ^w -f»
-tt
FIB1IRE B 89
-------
f^VHl THE CYCLOID 4X4 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER It LOWER BAYS
. -HH
-§
o
0*
1-
-,£
Hi-
fi
0-
f.
1 -18-
t
-"'*(-, -»
1 \ *
*«»*;"' \
""I
V fe
";*. f .*'.
v\
.**
» "** *-it "fi .J5
i -»» -10^
V, K
\\ « W :>. §
x-r \ «-
^- \ «-
"" A4M M>
't \
*
4\
ZZS.U g. i. i^u.u^ f ri **w«v
w " - -
-«% -W-*
V ^ A
i . s
J\.A
.< .; ,, o-
* "** -rf!
A.X *
^K-V % 8-
,...,. i* 2OO.O f.
* -«i
I*"'- !»'*'"
1-
-(
*j\ 1 "
^c \
M "?* -1
'-;V\ --
'« \ §
i ' *
^ -\
' -" * "1
\\
> ~f*
>
";*.
*! '.
';* \
IP**"
» "f"
FIBURE B 90
-------
JSC2X2
THETA = 60.00 PH! = 60.00 ETA = 90.00
FIGURE i 91
-------
THE JSCP 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
330 _x-"*T ^ 1 L - .' -CJ ~7-^ 30
300
270
PATTERN OAIM IN Oil
........ HORIZONTAL
VCRTieAi
' i i TOTAI.
ANCLCJ IN OIQRfXS TRUC
60
120
150
180
FieURE B 92
-------
THE JSCP 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
120
60
150
30
180
-30
.60
PATTERN GAIN IN Oil
HORIZONTAL
^' VERTICAL
^^^TOTAL
CUVATION ANOII
-90
FIGURE B 93
-------
f=V->n THE JSCP 2X2 ARRAY
^ ^»_^__J
N^-n,jirX
STANDARD SPACING OF ONE WAVELENGTH BETWEEN iAYS
-WT
-s-
m
0-
8-
_,o'
-$-
m
TJ
0-
3-
-10-
-0-
s
0-
-i
18"!
_».
m
8-
S-
-
(.
^ -»-
\ '"'. *
\ 8-
1 '"I
V
%
\j-._ s
V"' \ 8-
* "** -1
t -«h
k
V*
-V'\ ' -
...; " "gn 0°
_f» 3U.U 3.
IS * -1
V,
%-9-
\ ":: *
0-
10 "Ti * -"|
> -18-,
"^Jj. "'
: "". S
o
V" \ 8-
1* ~7S -(
1 _10l
v>
%
\i\ i
; \ 8-
" ~cn n"
...... .,. 60.0
-18-
V \ 8-
'"' 105.0* 3.
0 ~ -I
^ -18-,
1
-N^n _§.
\ \ 5
V'" \ 8-
0 "Ti -1
Ix
%
Xl\
""
a ~Ti
;
\ .
\&
\J
\
9
;.;"*" \
...... :;""" 12*0.0°
a
$*':
\ \
....«.*"'*' '*"
9
FIGURE B 94
-------
THE JSCP 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
-s-
0-
*"'
-,ot
-a-
T3
V
o
s >" 225,0°
_«o r*
-10-*
\
0-
-s-
0-
_§
0-
-f«
-10-^
-*
"10\
s- ^""240.0"
-10-,"
"**
-0
o-
10
\
»-.. si" 300-°'
-10-
0-
\
o-
-It
FISURE B 95
266 <
-------
JSC2X2TH
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 76
-------
THE JSCP 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS iETWEEN UPPER & LOWER 1AYS
o
330
300
270
PATTON MIN IN en
TOTAL
uma IN KOMZI mui
150
180
80
120
d
FI8URE B 97
-------
THE JSCP 2X2 A3RAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
120 ss*r \ \ \ I /T>"^ so
130
180
PA TTCTH CAIN IN 911
....... HOUIZONTAL
VERTICAL
'TOTAL
tUV ATION A.NQIC
-30
-60
-0
FISURE B 98
-------
^S^^j-j
THE JSCP 2X2 ARRAY
SPACING Of 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
-10-!
5
D
a*
-5
s
o
0-
-1
-*
5
0-
_§.
5
0-
i-
H
k -W-,
\
%.
"' \, **
\ \ 9"
* ~n -1
^ -w^
\_..
*.* V" \ o-
'*..-'*'* *"^C rt<
-.. 45.0
V
vs. * ""
v" \ «
w ~w -1
^ "10*
'\
:;\ -»
': . 5
"O
V'" \ o-
M "7* -J
^ -'«
\
\ ^ ^
V" \ o-
V." " 15.0" §-
* -»^
V
\ --
JA ' ,.
-?» * H
V
V'" \ o-
" £
...";\ _|.
' . 5
"O
V"' \ o-
it "fi -1
k
"\\
.«"*" \
« "**
i
"\
3,
k
"\\
V,
\ \
:.;"" \
ii "**
1
FIGURE B 99
-------
THE JSCP 2X2 ARRAY
^^^1
SPACING OF 3/2 WAVEL£NGTHS BETWEEN UPPER ft LOWER BAYS
-10-
-§-
i
-£
...
5
o
o-
-«
5
B
0-
-«
0-
H
I *10"1
\
\ S
\ ,*«
? "" -,*
\
K
« ., 5
\ \ °"
\. " """
'^k.
\
.; \ o-
t -!«"-
'*»
\\ i
M "** * -"
X
...\ -1-
\ ."'".
V" \
^ *"t(H*i
^
:At "
\ \ «
V"" \ o-
n 24U.O .
* -rf
*%L
K
\ -, *
; - *° Ji
"t\ . *
A^, ;
v
-:;\
}.
<
%
\\
i
A
\ ^
~r*
"\\
FIGURE B
-------
JSC2X2TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 101
-------
300
270
THE JSCP 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN iAYS
o
MWMP
J30 ^-X" \ \ I III ^T^^ SO
Tom
MM&2S IN MBtm 1KVE
ISO
60
120
FIGURE B 102
-------
THE JSCP 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
90
120
60
ISO
30
-30
-60
PATTON OAIN m on
........ HORIZONTAL
"« VERTICAL
1 TOTAL
SLCVATIONAMttX
-90
FIGURE B 103
-------
f*V~-S~] THE JSCP 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
-«-
i
8-
_».
m
TJ
~""
S
8-
-
^ ;;
\ \ i
: \ *
V - - "Hi ft«
- _f. U.U ,.
K
%
': \ ?
\ X
« "T* " ^J
v ;
; \
': \ 0-
l.-""Hfc n»
i" "
\ S
\ \ 9-
* ~T* «
L -W-»
% A
\ \, S
\
- -i
V r
.; *-. o-
n '" *H
v ;j
\ \ «
V -.. o-
C" !
\ \ 1
A:^ ^
^ **
V
\
*
\ \
\
"*"* **&§
\ **
\^ik
FIGURE B 104
-------
THE JSCP 2X2 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
-10-
0-
V
-. ...^
i$b.o-
0-
\
$
-wJJ
A
_~%
tk-'"2§5.0-
-n
"V
A
-..\J
\
o-
'\
}"-""300.0-
T\
FIGURE B 105
-------
JSC3X3
THETA = SO.OO PHI = SO.OO ETA = 90.00
FISURE B
-------
THE JSCP 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
330
30
300
60
270
120
150
PATTERN 0AIN IN Bit
--«*"»« HORIZONTAL
._.«_ VERTICAL
TOTAL
ANGUS IN OCfittCS f*UC
180
FIGURE B 107
-------
THE JSCP 5X5 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
120 ^\ \ \ 1 III T**^ 60
150
180
PATTCT* GAIN IN Dtl
........ HOKIZQNTM.
" VCITICAi.
TOTAL
EUVATfONANOLC
-90
-30
60
PISURE 3 IBS
-------
JSCP 3X3 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-10
-5.
0-
-*
0-
-
10-.
K
-M
-
45.0°
-5
-
-10
-S-
-?i
3.0°
a
9-
..-*-«
-it
-
.10-,
8-
-to
60.0°
o-
»--«.
'"I
a-
i§b.o°
-to
-10-
-
-10-»
\\
m
o
0-
5.0"
-,o-°
s- ;.""'l20.0-
-
-10\
to
T3
o-
-IB
'»_
FIGURE B 11219
-------
THE JSCP 3X3 ARRAY
o
-s-
o-
s-
-9.
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
'\
o
5....
-11
-18-1
0-
-*»
-S-
^ »-" 3%.0»
-101
g.
»- »"" W5.0'
-»
o-
,.
240.08
w4
4
;-" 330.0"
-to
-10-fc
"O
o-
,.
0-
-«-«'
2*55.0°
"3~8b.o°
-t*
FIGURE B 110
-------
JSC3X3TH
THCTA = 60.00 PHI = 60.00 ETA = 90.00
FI6URE B ill
-------
THE JSCP 3X3 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
o
330 ^x-r\\ I I I I I "T"**^ 30
300
Z70
PATTOMOAININPIf
....... MRCZOKTAt
TOTAL
«WUS IN M3«ta TMI
ISO
0
283-
FIBURE B 112
-------
THE JSCP 3X3 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
to
120 ^<\\ 1 ill ^~r^ so
ISO
30
180
-30
'TOTAL
CUV ATIOM AMOUC
FIGURE B 113
284-
-------
a-
\:
-*
a-
a-
V
THE JSCP 3X3 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
-I*^ H
285<
-MI
o-
'^""-ye
_ -
FIBURE B 114
-------
Q.-
"WP
'\
0-
-
7l
0-
»^j -n
THE JSCP 3X3 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
~\
0-
A
0-
-
o-
li- -?'
-w^
o-
-M-»
»-
-!«»
t
0-
FISURE B 115
286s-
-------
JSC3X3TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 116
-------
THE JSCP 3X3 ARRAY
300
270
2 WAVELENGTH SPACING BETWEEN BAYS
o
330
30
130
PA mm OAIN IN DM
HOIKZONTAL
TOTAL
AHOXS IN MMIO TRUI
110
M
120
FIBURE B 117
288<
-------
THE JSCP 3X3 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
00
120
60
ISO
.tZ-5
-30
-00
PATTB
MBBIBM
(UVATK
M4MNINDM
""»TQf*t
WA*WU
-to
289<
FIGURE 5 lie
-------
THE JSCP 3X3 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
W"*
1
0-
0-
s-
e-
*-wv
*
o-
1
.
........ -- to.o- -
FIGURE 1 119
-------
THE JSCP 3X3 ARRAY
V
i
-**
2 WAVELENGTH SPACING BETWEfN BAYS
-*\
""
V
TB
8-
"9
o
S
0-
0
0-
o-
FIGURE B 120
-------
JSC4X4
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 121
-------
THE JSCP 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
o
330
30
300
60
270
PATTERN OAIN IN Oil
....... HORIZONTAL
TOTAt
AM6US IN DEQRttS TlUt
120
150
180
FIGURE B 122
-------
THE JSCP 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
120
150
PATTCTN OAIN 1H Oil
VHT1CAL
TOTAi
IIXV ATION ANOLE
-90
60
30
-30
-60
FIGURE B 123
294
-------
-"
THE JSCP 4X4 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-10-* -10-»
-«- v:
0-
o-
-i5r"
£
y. ^"""^0°
-10"
, ]::-" ibVo'
-te
-B-
o-
-tt
).0°
s
"95.0"
-
o-
.:'" 120.0°
......... -""'165.0'
-10
FIGURE B 124
-------
4X4
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
*'\
v
-5.
0'
-9
0-
Jr
-5-
a
.0"
o-
s
-
-10-
9-
"'"
Ti
0-
.0"
.0°
... ""300.0°
,
-s-
o-
3-
-«-
8-
^."'330.0'
-»
FIGURE B 125
-------
JSC4X4TH
THETA = 60.00 PHI s 60.00 ETA = 90.00
FIGURE B 126
-------
THE JSCP4X4 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
0
3so ^X^r^&ZJ^T'i*^^^ so
300
270
150
PATTIIM OAIH IN DM
' HOtaONTAL
OUIICAl
i TOTAL
AMUSINDCmm'TMC
180
60
120
FIGURE B 127
-------
THE JSCP 4X4 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
so
120
90
150
30
-30
PATTOM OAJN IN DM
....... HOfttZONTAt.
TOTAt
UVAT)ONAM«lf
-90
FIGURE B 128
-------
-M
\
a-
1
"WP
\
THE JSCP 4X4 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
-.0,
\
_J»JL..\ <
-4-»\
s
,0"
1
---:'»
0-
,0"
, ^""""^.o-
....... -"' .
-WiT
.
FI6URE B 129
300<
-------
-*-%
THE JSCP 4X4 ARRAY
3/2 WAVELENGTH SPACING BETWEEN BAYS
-io-V -«-V
'
5
o
0-
-10^
i
B^. i;;- "225.0*
\
-IOM?
_M_*... \tffl
,.
-10
'
i
......... -"'i&.o- , -
-,.T -,5r
o-
, ;" 3^0.0-
- 7i
o-
..
iw -"
FIGURE B 130
301-
-------
JSC4X4TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 131
-------
THE JSCP 4X4 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
o
330
30
300
270
SO
120
190
PATTDMMHMMOm
....... MO*IZOM7AL
TOTAL
MMtfS IN MOtOa fWf
180
FI8URE B 132
303<
-------
THE JSCP 4X4 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
90
TT-^
80
190
30
180
-30
HORIZONTAL
TOTAL
tUCVATWNAMU
FIGURE S 133
304<
-------
THE JSCP 4X4 ARRAY
2 WAVELENGTH SPACING BETWEEN iAYS
"" ~ib.o*
-IM
-IflJ
i
-10-1
0-
-10
_...
FIGURE B 134
305<
-------
Qfjl
V
8-
0-
.' -Ti
0-
THE JSCP 4X4 ARRAY
2 WAVELENGTH SPACING BETWEEN BAYS
-\
-»\
1-
9
o-
- ..... »'"1l%-0"
«-
,0*
0-
-w-
o-
.0*
-" '-»
"
8.
,......^-"ISb.o-
-
,o-
FIGURE B 135
306^
-------
CMK2X2
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE B 136
307 <
-------
THE COMARK 2X2 ARRAY
STANDARD SPACING OF. ONE WAVELENGTH BETWEEN BAYS
o
330 ^Z**^ \ ~~ I ~T"S2>^ 30
300
60
270
120
ISO
PATTERN CAIN IN OBI
---- HORIZONTAL
VERTICAL
^ TOTAL
ANCLES IN DEOREES TRUE
180
FIGURE B 137
-------
THE COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN IAYS
90
150
120
60
30
-30
-60
PATTERN CAIN IN OBI
....... HORIZONTAL
i H VERTICAL
TOTAL
EUVATION ANCLE
-iO
309'
FIGURE B 131
-------
COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
ra
§
m
w
-0
CO
/I
-*
I
,.._ , -'to.o-
^ S'^.0-
1,
-------
CO
COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-M-.
«i" -M
a
m
IB
s
i, Tv>.o-
* »""^°"
-w
»-»
h
i
-wf
.>"""^b.o*
>;;- s.0*
k,
V,,
-------
CMK2X2TH
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE 1 141
-------
THE COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
300
270
330
30
SO
150
PATTERN
,
ANGLES IN
OAIN IN OBI
* HORIZONTAL
-VERTICAL
DECREES TRUE
180
120
313<
FI6LJRE 8 142
-------
THE COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
§o
150
180
120
60
PATTERN CAIN IN Oil
....... HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANOLt
-90
-§0
30
-30
FIGURE B 143
-------
ft
A
en
35
m
(0
COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
~"\
\\
".0"
-»,.
1*3S.O' §.
-«»
\
\\
..'*"''
-------
FIGURE
W
»*
en
Jf
p=y j-j COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
-W-,
-1-
*
»-
-1
5
!
5
"';>. , *
.:.. Vi 270.0* ,.
V -
T*%
N^ , »-
. ~ ''^^ .
v
'"' >i 1*
"-" " *1
t.
^ s
;- .**'-M
* '* -ll-
v. -»
^ 1
-';X - «
i-"ko-
I ""
... -x ,.
» "'* -«
I
\
i ,.-"""2'fo.O'
t
"k
-'"'m°'
^^
f\
.... ->""'ioo.oe
*
V
\ .
,. ;,. "345.0-
-------
CMK2X2TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FISURE 8 146
-------
THE COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
330
300
60
270
150
PATTERN CAIN IN OBI
....... HORIZONTAL
VERTICAL
TOTAL
ANCLES IN DECREES TRUE
180
FIGURE B 147
318<
-------
THE COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
120
60
150
30
180
PATTERN CAIN IN oai
....... HORIZONTAL
"VERTICAL
TOTAL
ELEVATION iNOLE
-90
-30
-iO
FISURE B 148
-------
COMARK 2X2 ARRAY
QGD
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER- BAYS
«
ra
m
CO
-tev
5 l>-\
H
V
co
?0
o
/\
: «
* *
-*«.
-§e
- ""Till'
'.-.. i- 6M-
,\
lA
-'-;.'
'""Sb.o-
1-,
-»-"
\,
;" 120.0°
!
-------
COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER it LOWER BAYS
s
-W-V
Cl
30
m
00
m
s
\
-\
I
2^0.0-
-1»-.
U'
" '*Be n»
285'°
\
\
\
^""'360.0'
-------
THE COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
330
300
270
tiO
PATTERN GAIN IN DBI
....... HOBIZONTAI.
VERTICAL
fOTAt
ANCLES IN DECREES TRUE
180
FIGURE B 151
-------
THE COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
150
120
60
30
PATTERN CAIN IN OBI
........ HORIZONTAL
VERTICAL
TOTAL
ELEVATION AN5U
-30
-60
-90
323-
FIBURE B 152
-------
i
<
s
sc
(C
O
u
o
» ,.?S
< ..--'
m ..-
.;" ,.f ':""" \
a f" ^ A ^tg
£ I8P
O
> O
1 ,.-,f
z '*'"' ''
o ,^-:." \ a
o .-(. /V""" \
O ^^ : i : ':» ,
Z i^ A i" i-i
U 7 T
fe lip
Q
OC
1 ,§
q
,-S
_.- '\ \f
£££ V" ' \
? i «!f
IBP
q
_o
810
.«"' *
..'"C ...\?
)>M*J|^ *^ : '
m Mi M 'a
1 T
IIP
q
ISP
IflP
IBP
IBP
A?
i-
'2
IIP
IIP
ISP
,!§
FIGURE B 15:
-------
Q
09
W
COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-»*: t
'JJb.0-
;"'" 210.0*
-~1
-K).
' "240.0*
i
Is
-!
-------
THE COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
330
30
300
SO
270
150
PATTERN GAIN IN OB!
....... HORIZONTAL
111 « VERTICAL
-^ TOTAL
ANKLES IN DEGREES TRUE
180
FIGURE B 1S5
326<
-------
THE COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
120
60
150
30
PATTERN GAIN IN OBI
*""»" HORIZONTAL
VERTICAL
' TOTAL
ILtVATIOH ANCLE
-90
30
-60
FIGURE 1 156
-------
1
Q
C
m
CD
I-*
Ul
Nl
w
to
00
/I
^--J-| COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
I
a
TJ
*-
I-
-w-
_(.
a
n
'
*"!
\
X '
V'"^1. t-
--j" 0.0* i
' " .,.-
v
.»'
; * *
" »',
V v
-'"' ': . *
.. "-"' "^"5 r.»
S.
\
\x ^
\" \ »
^-"iife.o« ,.
-IB"
k
"V-.
V-
"", *»' "*"
i \ m
a
... ' '.._ «.
.-' '" "Jfn n*
v
"*
" " *\
\\
,!-*"
i;""iSb.Q'
'
i
***-.
\v.
\ *
, \
I-,.- ''"*?«; n«
£».!* ^M -»*»« J_,«... - ^Jp » »» ,J» . -- Jg *
-!%'
ai
t>
*
Ml "
y
*
*"
V
*
"9
" ' '-""\ "
\ ,.:M
.' *90.0* «.
w ~n
t *
*
*',
%%
. na
o
,....-- \ fi.
*'-
,...- 105.0' ..
*
.«*
*"
.**»
-;:" »20.0»
VM - -»» - .11
-«!
-1
__
IB
*
1
k -18,
*
f''
* '
*» -
ft
** IT,
% »
- " f-
' -M
§ . '35.0-
~ig-<
%'-.
.'*»' -i-
- t *
% "~
'; *%
"-."" \ »
* "** -i
v
*".
'.* ''
,..*-
* "
\\
:
» "**
-------
w.
Cfr-
A
ti
Ml
G)
C
m
to
Ul
m
£=*£-~f~l COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
-i-
m
*
-
-it-
's
>
-i
-i-
i-
t-
-""'
.§.
5
»-
i
k -«-
..:V-. -i-
» '
\ «
" .X
.... -. . -
"' ifio.o* i.
m
\ --'
^ '
... ^ '
* " -!«'
V,
K^
v »
....':'X.
l,t-""270.0' ,.
-,.1
\i
*
. -,.*" .,
v
'^v- i
\ \ *'
* ~" -i
k .-
v^k s
\ \
"" 240"° -£
V*. -
v > 9-
':"' 285.0* ,.
' ,»"
I.
* v«t S3
, \N "o
... -X »
. ... "' 330,0* |.
-i
b
^\.
\>^
r\
!» ~?*
K
v >.
],,* 3'ob.o0
"
v .
V\S
. .. .=--X ^
t...;,.-3-y5.o-
-------
THE COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
_j_
330 ^-"C-Ar" i ~~ ""r--£^>-^ 30
300
60
270
150
PATTERN CAIN IN Oil
......... HORIZONTAL
' " VERTICAL
' i TOTAL
ANCLES IN DECREES TRUE
180
120
FIBURE B 159
330<
-------
THE COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
120 ^"T \ \ 1 I //>*"->. 60
150
180
PA HERN CAIN IN Oil
""«"« HORIZONTAL
.VERTICAL
"- TOTAL
tUVATION ANSLC
-90
-SO
30
-30
331<
FIGURE B 160
-------
^1
3
c
m
to
t-*
CO
co
10
A
f^yfl COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
**W"
i
»
V "1
...- * -§-
4,
'. \
^-So-
.-* .,»:
l\
"P-
*'
: " 11
. - -"" . a.
\
'-- " "?« ft«
1--
. « . «
i *
». »-* t.
-. *-.
""*^>. "
\ \
9 ~n ^-1
t
t
23\ _ ""
: V
...... - "to.O-
\;.
' »
' ' i
....>"-x
:. ....-"» .
!-...-- '"Ve n»
-M -»» -
-111
V.
Ki -i
KV --
_ ""if-?'' _ 1^
*
-.
. -
»
... -
... .. "sb.o- ,.
» " -,-'
* -. 01
Q
" ''. f
...... . . ,.
i:..
!*«"
F»^ ,
f\ \
V; ' 120.0°
* "
""1 "1 "1
\
« i « i >
- \ \ -f-,.
m ir-»»* o> U«^- a
*
»
..
135.0* «.
T «
..-.-,
... ' 150,0* §.
.-%
~ t.
. I*.
i \
*«# \
''-fi
.- ;. 165.0'
-M ' -it - ~««
-------
w
A
m
CD
0"
M
COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER * LOWER BAYS
\
=
*
-,.,
..
270.0'
, ........ \; 2B5.0'
-^.0-
- :» ' 210-0"
m
36*0.0°
>.
Si's.o"
-------
CMK2X2
THETA = eO.OO PH! = 60.00 ETA = 90.00
FIGURE B 163
334^
-------
CMK2X2TH
THETA = 60.00 PHI = 60.00 ETA = 90.00
335
FIGURE B 164
-------
CMK2X2TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE B 165 336<
-------
THE COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH iETWEEN BAYS
o
~T"
330 ^**Z>f\ \ I T-#*»?-^ 30
300
270
PATTERN CAIN IN OBI
....... HORIZONTAL
' VERTICAL
'' nl" TOTAl
ANGUS IN DECREES TRUE
150
180
so
120
337<
FIGURE B 166
-------
THE COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
90
150
180
120
60
30
FISURE B 167
338-
-------
n
1-4
ra
x
m
m
o-
CD
*
I
1
-4
COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
-M
1
"]
.... ... 135.0-
"1
1
tw -"
'"" 120 0*
_« I*.V«W
-------
n
Q
m
to
o
CO
tf*
O
= l'\
' .P&2K
COMARK 2X2 ARRAY
STANDARD SPACING OF ONE WAVELENGTH BETWEEN BAYS
I
^ *" W5'°'
= I
:,\ '29b.O' J > '285.0-
t.
""300.0-
-10 ^
-fe.
V."" iSo.0'
-------
THE COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
330
30
300
270
PATTERN GAIN IN Oil
'**""" HORIZONTAL
"" VERTICAL
' TOTAL
ANCLES IN DECREES TRUE
SO
150
180
FIBURE B 170
-------
THE COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
150
120
60
30
-30
-60
PATTERN CAIN IN OBI
.....c.. HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANGLE
-90
FIGURE B 171
-------
w.
A
CD
i
to
COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
\ "\ '"\
\
a
0.0*
' ' -n
'"90.0'
135.0'
%.0'
iSb.ii'
..**.
:v. i5b.o»
"\
.
-------
COMARK 2X2 ARRAY
SPACING OF 3/2 WAVELENGTHS BETWEEN UPPER & LOWER BAYS
-w^
V
GJ
yj
m
m
N|
w
X:
~"\
-iff
. . : 270.0' ,
-^
'195.0* §.
-
' 2&.0'
**
V
\
-------
THE COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
o
Zr-r->^
30
300
270
PATTERN GAIN IK OBI
....... HORIZONTAL
_.VERTICAL
' j tarn
ANCLES IN DECREES TRUE
SO
ISO
180
QSP
120
345<
FIGURE B 174
-------
THE COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
90
150
120
PATTERN CAIN IN DII
....... HORIZONTAL
"VERTICAL
" ' " TOT At
iO
ILEVATtON ANCIC
-90
-60
-30
FISURE B 175
346-c
-------
w
A
Gl
m
o
COMARK 2X2 ARRAY
SPACING OF TWO WAVELENGTHS BETWEEN UPPER & LOWER BAYS
'\
' *
1 K:V-,
.W
-wt'
ft\
-
5 "V*
V
,1
-ID
..... i,-' 90.0*
_-*
A .\
I
*-» -"
"I''-
-k
1,
ir^wr
, ^""'lOS.O'
.-"-§
120.0"
-rrv
' -"150.0*
......^"ws-o-
-------
G)
3D
m
to
CO
00
A
COMARK 2X2 ARRAY
SPACING OF TWO WAVEIOIGTHS BETWEEN UPPER & LOWER BAYS
^
I LJ\
i
-ti-V
I
, %' 225.0-
\
,.. . -^ '270.0-
s
-tt
-«!»
l«.
' ^
>-"'5ib.o«
I
-,. " "iSb.0*
-------
CMK2X2
THETA = 60.00 PHI = 60.00 ETA = 90.00
349-
FIBURE 1 178
-------
CMK2X2TH
THETA = 60.00 PHI = SO.OO ETA = SO.OO
FIGURE B 179
-------
CMK2X2TW
THETA = 60.00 PHI = 60.00 ETA = 90.00
351<
FIGURE B 180
-------
APPEhDIX C
TV ARRAY BAY SPACING STUDY
RAD IATION PATTERNS
352<
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT CHANNEL 2
o
330
300
270
240
210
PATTERN GAIN IN OB!
HORIZONTAL
____ VERT IC AL
TOTAL
ANGLES IN DEGREES TRUE
180
FIGURE C 1
353<
30
150
60
120
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT CHANNEL 2
90
120
60
150
180
30
-30
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
-60
ELEVATION ANCLE
-90
FIBURE C 2
354*=
-------
-5-r
-3-*
-so
-75
mm'J «.
-5-
-7.
-5-
-3
-to
-75
-60
0.0
-so
45.0
-SO
90.0
-fO
135.0
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT
m
TJ
-7-
-5-1
-7-
-5-
-7.
-a-
-7.
-5-
-iQ
-7S
-SO
15,0
' -so
60.0
-so
105.0
-co
150.0
-3-
-90
-75
-SO
30.0
165.0
FISURE C 3
355<
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT
CD
~a
-7-
-5-r
-60
180.0
CD
13
-7-
-5-
-»0
' -so
225.0
-S-
-so
270,0
m
-3
-7-
-5-
~3J-
-75
-SO
315.0
ffl
13
-7.
-5-
-*0
330.0
-9-
-7-
-5-
-10
210.0
-7-
-5-
-3-1
-75
-SO
255.0
.7,
-5-
' -f 0
300.0
-7 -
-5-
-3-J
-;;"' 345.0
-to
-75
P A
-------
CETEC JAT TURNSTILE ANTENNA
4 BAYS STANDARD SPACING CHANNEL 2
o
330
300
270
240
210
PATTERN CAIN IN OBI
., HORIZONTAL
VERTICAL
TOTAL
ANGLES IN DEGREES TRUE
30
60
120
150
ISO
357<
FIGURE C 5
-------
CETEC JAT TURNSTILE ANTENNA
4 BAYS STANDARD SPACING CHANNEL 2
90
120
150
180
-150
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
-90
FIGURE C 6
358<
60
30
-30
-60
-------
1
J
CETEC JAT TURNSTILE ANTENNA
4 BAYS STANDARD SPACING CHANNEL 2
-10
-75
0.0
-6-
-4-
-2J
1 -iO
-75
15.0
-6-
-4.
-75
30.0
-6-
-4-
.""-iO
CD
-a
-BI
-6-
-4-
-co
5.0
-6-
m
-2-1
-75
-CO
20.0
-6-
m
T3
-2J
-so
-75
.. -10
35.0
FIBURE C 7
CO
a
-6-
-4.
-SO
-SO
-75
10.0
m
a
-6-
-4-
.-'-JO
25.0
a
T3
HB-
-4-
-2J
-iO
-75
40.0
45.0
-------
CETEC JAT TURNSTILE ANTENNA
6 BAYS STANDARD SPACING CHANNEL 2
o
330
300
270
240
PATTERN CAIN IN DBI
HORIZONTAL
VERTICAL
TOTAL
30
60
ANCLES IN DECREES TRUE
-------
CETEC JAT TURNSTILE ANTENNA
6 BAYS STANDARD SPACING CHANNEL 2
90
120
150
180
-150
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAI
ELEVATION ANCLE
60
30
-30
-60
90
FIQURE C 9
361<
-------
CETEC JAT TURNSTILE ANTENNA
6 BAYS STANDARD SPACING CHANNEL 2
CB
-6-
-3-
0-
-' -iO
0.0
-6-
I
CO
-o
0-
r _ _ ,
-to
-6-
5.0
m
-3-
0-
' -iO
-6-
-to
-75
10.0
m
-a
-3-
0-
-90
-75
15.0
m
TO
-3-
o-
-to
-75
30.0
m
m
0-
^o -
-3.
0-
-i 0
20.0
to
"35.0
CD
T3
-3.
0-
3J
-iO
-75
25.0
0-
40-°
00
0-
-to
-75
..' -SO
45.0
FIGURE C 10
-------
CEtEC JAT TURNSTILE ANTENNA
8 BAYS
330
STANDARD SPACING CHANNEL 2
o
30
300
270
240
210
PATTERN CAIN IN DBI
HORIZONTAL
VERTIC AL
TOTAL
ANGLES !N DEGREES TRUE
130
FI6URE C 11
60
120
150
-------
CETEC JAT TURNSTILE ANTENNA
8 BAYS STANDARD SPACING CHANNEL 2
90
120
150
180
-150
-120
PATTERN GAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANGLE
60
30
-30
-60
-90
FIBURE C 12
-------
CETEC JAT TURNSTILE ANTENNA
8 BAYS STANDARD SPACING CHANNEL 2
9 ^
m
-0
'-iO
5'°
-10
10.0
CD
-3-
0-
-10
15-0
0-
so
20.0
m
T3
0-
.' -*0
" 25.0
-so
CD
-3-
0-
0-
' -60
35.0
o-
-10
-75
40.0
m
"O
-3-
0-
FIGURE C 13
-------
CETEC JAT TURNSTILE ANTENNA
2X2 BAYS
330
1.5 LAMBDA SPACING CHANNEL 2
o
30
300
270
240
210
PATTERN CAIN IN OBI
. HORIZONTAL
VERTICAL
TOTAL
ANCLES IN DECREES TRUE
180
FIBURE C 14
60
120
150
-------
CETEC JAT TURNSTILE ANTENNA
2X2 BAYS 1,5 LAMBDA SPACING CHANNEL 2
90
60
150
180
-150
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
30
30
-SO
-90
FIBURE C 15
367<
-------
CETEC JAT TURNSTILE ANTENNA
2X2 BAYS 1.5 LAMBDA SPACING CHANNEL 2
-6-
GO
m
-6-
-4-
-90
m
-8-
-6-
-4-
..- -to
-75
-75
0.0
15.0
' -CO
30.0
CD
-6-
-4-
5.0
m
-6-
-4-
..-' -to
20.0
m
-6-
-4-
' -co
35.0
m
-co
10.0
CD
-6-
-4-
..-' -so
-75
25.0
CD
-6-
-4-
40.0
-6-
m
368<
.'-io
45.0
FIGURE C
-------
CETEC JAT TURNSTILE ANTENNA
3X3 BAYS 1.5 LAMBDA SPACING
o
330
CHANNEL 2
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ANGLES IN DEGREES TRUE
180
FISURE C 17
30
60
120
150
369<
-------
CETEC JAT TURNSTILE ANTENNA
3X3 BAYS 1.5 LAMBDA SPACING CHANNEL 2
90
120
150
180
-150
-120
PATTERN CAIN IN OBI
--HORIZONTAL
VERTICAL
, TOTAL
ELEVATION ANCLE
-90
370<
FIBURE C IP
60
30
-30
-60
-------
CETEC JAT TURNSTILE ANTENNA
3X3 BAYS 1.5 LAMBDA SPACING CHANNEL 2
m
-a
-6-
-4,
' -ifl
0.0
m
T3
-5-
-4-
5.0
CD
TJ
-81
-6-
-4-
-CO
10.0
03
15.0
CQ
-a
-6-
-4-
' '-iO
20.0
ffl
T3
.."' -SO
25.0
m
0
-6-
-4-
-7S
m
-4-
-2J
30.0
-to
-75
45.0
-4-
,.-'"-10
-75
35.0
FIGURE C 19
m
T3
-6-
-4-
-2J
-90
-75
. ' '-*0
40.0
371<
-------
CETEC JAT TURNSTILE ANTENNA
4X4 BAYS 1.5 LAMBDA SPACING CHANNEL 2
o
330
300
270
240
210
PATTERN CAIN IK DB1
HORIZONTAL
VERTICAL
: TOTAL
ANGLES IN DEGREES TRUE
180
30
60
120
150
FieURE C 20
-------
CEIEC JAT TURNSTILE ANTENNA
4X4 BAYS 1.5 LAMBDA SPACING CHANNEL 2
90
120
150
180
-ISO
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
60
30
-30
-60
FI8URK C 21
-------
CETEC JAT TURNSTILE ANTENNA
4X4 BAYS 1.5 LAMBDA SPACING CHANNEL 2
45.0
CO
T3
m
T>
m
13
-4-
-21.
-so
-6-
-4.
-2J
-so
-6-
-4.
-75
-75
5.0
20.0
35,0
374"
FieURE C 22
m
"D
-2J
." -to
-8
-fO
-75
10.0
ffi
-
25.0
-6-
m
"O
.-''-so
40.0
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT CHANNEL 10
o
330
300
270
240
210
PATTERN GAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ANCLES IN DECREES TRUE
180
30
150
375<
FISURE C 23
60
120
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT CHANNEL 10
90
120
150
180
-150
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTIC AL
TOTAL
ELEVATION ANCLE
30
-30
-60
-90
37<
FIBURE C 24
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT CHANNEL 10
m
-8-
-6-
-10
-10
-9Q
ffi
"0
m
"C
-8-
-6-
m
-a
-8
-6-
-4-1
-75
0.0
-co
45.0
-CO
-75
90.0
-SO
-75
' -CO
135.0
m
ffi
-8-
-6-
-tfl
ffi
T3
-10
-8-
-------
CETEC JAT TURNSTILE ANTENNA
SINGLE ELEMENT CHANNEL TO
-10
CD
-6-
-10
-90
m
-a-
*M*£ - -
m
T3
-6-
-8-
m
T3
-75
180.0
-75
225.0
. ' -40
270.0
.- -so
315.0
m
0
-10
.
-*- ~;" 195.0
-JO
a
-6-
-4J
-10
CQ
13
-10
-8-
-6-
CO
o
-8-
-6-
-4J
-7S
-CO
V." 240.0
-75
-75
285.0
378<
.- -to
-.., -il- 330.0
.-7*
-to
-SO
-6-
-B-
-5-
-4J
-10
-10
-§-
-6-
-75
..'-10
210.0
255.0
'-'"" 300.0
-75
:V."" 345.0
-------
CETEC JAT TURNSTILE ANTENNA
4 BAYS STANDARD SPACING CHANNEL 10
o
330
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ANGLES IN DECREES TRUE
180
FIGURE C 27
30
60
120
150
-------
CETEC JAT TURNSTILE ANTENNA
4 BAYS STANDARD SPACING CHANNEL 10
90
120
150
180
-150
-120
PATTERN GAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
-90
380<
FIGURE C 28
60
30
-30
-SO
-------
CETEC JAT TURNSTILE ANTENNA
4 BAYS STANDARD SPACING CHANNEL 10
m
-3.
03
03
13
-3-
-2-
m
"O
-3-
-2-
-so
0.0
-*0
15.0
m
0
m
"D
m
13
-2-
5.0
35.0
FISURE C 29
CO
0
CD
TJ
-10
10.0
-75
40.0
381-
-to
-75
-------
CETEC JAT TURNS! I L ANTENNA
6 BAYS STANDARD SPACING CHANNEL 10
o
330
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
__ VERTICAL
TOTAL
ANGLES IN DECREES TRUE
180
30
60
120
150
FIGURE C 3B
-------
CETEC- JAT TURNSTILE ANTENNA
6 BAYS STANDARD SPACING CHANNEL 10
90
120
150
180
-150
-120
PATTERN CAIN ;N oil
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
-90
FIGURE C 31
60
30
30
-60
-------
CETEC JAT TURNSTILE ANTENNA
6 BAYS STANDARD SPACING CHANNEL 10
m
*
0-
CD
a
0-
m
-0
0-
-75
0.0
15.0
. . ' ' -10
30.0
-i-
CD
"O
CD
T3
-1-
0-
-ts
CO
"O
3-
-75
-75
-CO
5.0
. '" -tO
20.0
m
TJ
0-
03
T3
0-
m
o-
-iO
-iO
10.0
25.0
-75
.- -so
40,0
-1-
m
"O
384-
0-
-75
-iO
45.0
FIBURE C 32
-------
CETEC JAT TURNSTILE ANTENNA
8 BAYS STANDARD SPACING CHANNEL 10
o
330
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ANGLES IN DEGREES TRUE
30
60
120
150
1SO
FIGURE C 33
385*:
-------
CETEC JAT TURNSTILE ANTENNA
8 BAYS STANDARD SPACING CHANNEL 10
90
120
150
180
-120
PATTERN CAIN IN OBI
-HORIZONTAL
, VERTICAL
TOTAL
ELEVATION ANCLE
-90
386<
FIGURE C 34
60
30
30
-iO
-------
CETEC JAT TURNSTILE ANTENNA
8 BAYS STANDARD SPACING- CHANNEL 10
m
-o
-1-
0-
ca
m
a
m
TJ
-40
-75
0.0
15.0
CD
T»
m
o
CO
TJ
-10
-so
5.0
-75
FISURE C 35
CD
-a
m
0
CO
T3
-10
. -so
10.0
-75
.-' -SO
40.0
-10
-75
387^
-------
CCTLC JAT TURNSTILE ANTENNA
2X2 BAYS 1.5 LAMBDA SPACING CHANNEL 10
0
330
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
VERT ICAL
TOTAL
ANGLES IN DECREES TRUE
ISO
388<
FIGURE C 36
30
60
120
150
-------
CETEC JAT TURNSTILE ANTENNA
2X2 BAYS 1.5 LAMBDA SPACING CHANNEL 10
90
120
150
180
-150
-120
PATTERN CAIN IN OBI
HORIZONTAL
ViRTICAL
TOTAL
ELEVATION ANCLE
60
30
-30
-60
FIBURE C 37
-------
CETEC JAT TURNSTILE ANTENNA
2X2 BAYS -- 1.5 LAMBDA SPACING CHANNEL 10
CD
TJ
-9-
-7-
ffl
TJ
-9-
-7-
m
TJ
-9-
-7H
CD
Tl
-9-
-7-
-CO
0.0
15.0
30.0
m
TJ
-9-
-7-
-11
5.0
m
TJ
-9-
-7-
' -to
20.0
-9-
ffl
TJ
-5J
-90
-75
35.0
m
o
-5J
.' -60
-fO
-75
10.0
CQ
a
-H
-9-
-7-
-5J
-10
-75
'-to
25.0
-9-
ffl
TJ
-90
-75
40.0
45.0
FIGURE C 38
-------
CETEC JAT TURNSTILE ANTENNA
3X3 BAYS 1.5 LAMBDA SPACING CHANNEL 10
o
330
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
; TOTAL
ANCLES IN DEGREES TRUE
30
60
120
150
180
FIGURE C 39
-------
CETEC JAT TURNSTILE ANTENNA
3X3 BAYS 1.5 LAMBDA SPACING CHANNEL 10
90
120
150
180
-150
PATTERN GAIN !N Oil
HORIZONTAL
VERTICAL
TOTAL
-90
ELEVATION ANCLE
F I SURE C 40
60
30
-30
60
-------
CETEC JAT TURNSTILE ANTENNA
3X3 BAYS 1.5 LAMBDA SPACING CHANNEL 10
CD
0.0
m
a
-e-
-4.
-75
5.0
CD
"O
10.0
-6-
m
-iO
-75
15.0
£0
T3
-6-
mm A. v
-75
-CO
30.0
a
T3
-6-
-4-
a
-6-
-4.
.10
-75
-CO
20.0
co
"O
-6-
-4-
-75
35.0
-6-
m
g
-75
-to
25.0
CO
"O
--
-4-
..' -iS
40.0
-to
-75
45.0
FIGURE C 41
-------
CETEC JAT TURNSTILE ANTENNA
4X4 BAYS 1.5 LAMBDA SPACING CHANNEL 10
o
330
300
270
240
210
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ANGLES IN DECREES TRUE
180
394<
FIOURE C 42
30
80
120
150
-------
CETEC JAT TURNSTILE ANTENNA
4X4 BAYS 1.5 LAMBDA SPACING CHANNEL 10
90
120
150
180
-150
-120
PATTERN CAIN IN OBI
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
60
30
-30
-60
-90
395 <
FIBURE C 43
-------
CETEC JAT TURNSTILE ANTENNA
4X4 BAYS 1.5 LAMBDA SPACING CHANNEL 10
-fil
CD
CD
"a
m
-a
-3-
0-
3J
-90
-6
-3-
0-
3J
-10
-3-
0-
3J
-iO
., -so
-75
-75
5.0
20.0
35-°
FISURE C 44
CO
a
-61
-3-
0-
3-
-so
-90
-75
10.0
m
T3
-6
-3-
0-
25.0
m
-3.
0-
3J
-fO
-75
. " -iO
40.0
-to
-75
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF .75 LAMBDA BETWEEN BAYS
o
330
30
300
270
150
PAfTEUM OAIH IN OBI
»""-" HOmZONTAS.
VERTICAL
"" I' i TOTAl
ANCLES IN BCORtXS THUE
180
SO
120
FIGURE C 45
397^
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF .75 LAMBDA BETWEEN BAYS
so
120
60
150
PATTtKM OAIH IN OBI
cuv km
VCRTICAl
m AHOU
-30
-60
-§o
398<
FISURE C 46
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF .75 LAMBDA BETWEEN BAYS
90
PATTERN CAIN IN Oil
....... HORIZONTAL
^^ VERTICAL
i TOTAl
ELEVATION AMOLE
-90
FISURE C 47
399<
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF .875 LAMBDA BETWEEN BAYS
o
--r-r
330
300
60
270
120
tso
FAT7CTH 6AIN IN Oil
........ HORIZONTAL
"" VtHTICM,
tOTAl
ANGUS IN DECREES TRUE
180
400 <
FIGURE C 48
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF .875 LAMBDA BETWEEN BAYS
90
120
60
150
30
180
-30
-60
PATTERN GAIN IN Oil
- HORIZONTAL
«^^ VERTICAL
TOTAL
CUV ATION ANCLE
-90
FIGURE C 49
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF .875 LAMBDA BETWEEN BAYS
90
120
60
-60
PATTERN OAIN IN Oil
....... HOmZONTAL
"^^» VERTICAL
' TOTAL
ELEVATION ANCLE
-90
FI SURE C 50
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF 1.0 LAMBDA BETWEEN BAYS
o
330 ^-T \ \ 1 I I / / T^w 30
300
60
270
150
f ATTCHN CAIN IN Oil
....... HORIZONTAL
. . VERTICAL
TOTAL
ANCLES IN OCCMCES THUC
180
. FIBURE C 51
403-
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF 1,0 LAMBDA BETWEEN BAYS
90
4G4<
FIGURE C 52
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF 1.125 LAMBDA BETWEEN BAYS
o
330 ^T \ \ 1 T_ I / / 1\ 30
300
60
270
120
150
PATTERN GAIN IN OBI
....... HORIZONTAL
VERTICAL
TOTAL
ANGLC3 IN DEGREES TRUE
180
FIGURE C 53
405-
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF 1.125 LAMiDA BETWEEN BAYS
90
120
60
150
30
PATTEUM OAIH IN Oil
....... HORIZONTAL
TOTAL
CLEV ATION ANCLE
-90
-30
-60
406"
FIGURE C S4
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF 1.125 LAMBDA BETWEEN BAYS
90
150
120
60
-SO
PATTERN CAIN IN DBI
....... HORIZONTAL
VERTICAL
TOTAL
£ LEV ATION ANGLE
-90
-30
FISURE C 55
407^
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
SPACING OF 1.125 LAMBDA BETWEEN BAYS
90
HORIZONTAL
VERTICAL
TOTAL
ELEVATION ANCLE
-90
4CS<
FIGURE C 56
-------
CETEC JAT TURNSTILE ANTENNA 4 BAYS CHANNEL 2
..SPACING OF 1.125 LAMBDA BETWEEN BAYS..
»-.,. ^ 7 -""«
FIGURE C 37
409-;
-------
JAT6DG
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE C 58
-------
FIGURE C 59
iN|
IV
^
f=Y~ JtSETEC JAT TURNSTILE ANTENNA S BAYS CHANNEL 2
SPACING OF .8333 LAMBDA BETWEEN DAYS
1 1 -»!
-10
E
Q
-"
-"u-
-10
CD ' *
D .
-1*
-^
-**
S
0
-tf
-II
Id
*.
A ->
\4 i
\J -H-
.. "iSb.o- .«,.
" -
v\ -
.....So- .,,
l\
^JT iji
\J -w
. -» 270.0- ..
I
\
\J -,
... 3%0' ..
Vk-"- -H-
^b ' ...
__;
I.
V"
... . V. MO-O* -i«-
v" *
\4 i
Nj -«
. ... :V, 285.0' .,..
t
i
i
\4 i
\J
330.0* »(B
* ""* -1
*-*'
AT-.
v Nr "
-XJ\
* "**
I.
w .
.-'i-*
I.
Vj
, ;,, *
I
V
\J
34*
-------
CETEC JAT TURNSTILE ANTENNA 6 BAYS CHANNEL 2
SPACING OF .8333 LAMBDA BETWEEN SAYS
330
30
300
270
PATTERN CAIN IN OBI
....... HORIZONTAL
TOTAL
ANCLES IN DECREES TRUE
150
180
60
FIGURE C 60
-------
CETEC JAT TURNSTILE ANTENNA 6 BAYS CHANNEL 2
150
SPACING OF .8333 LAMBDA BETWEEN BAYS
90
120
SO
PATTERN CAIN IN OBI
........ HORIZONTAL
-~ VERTICAL
TOTAL
CLCVAHON ANCLE
-90
-60
30
-30
FIGURE C 61
-------
-n-i
i
It
C JAT TURNSTILE ANTENNA 6 BAYS CHANNEL 2
SPACING OF .8333 LAMBDA BETWEEN PAYS
. i"" ~*0.0« . >"""~%.0* _». £""~$Q.Q*
-u-.
\.
-»-i
414<
FIGURE C 62
-------
APPENDIX D
FM ARRAY GAIN/SPACING CURVES
RADIATION PATTERNS
-------
JAS1K SHORT DIPOLES AT 0.5 WAVE SPACING
THETA = 90.00 PHI = 90.00 ETA = §0.00
FIGURE D i
-------
BGHT SHORT DIPOLES COAX1AU.Y ARRAYED 1.2 WAVE SPACING
VERTICAL PATTERN AT BORESJTE
90
120
0
ISO
90
-30
-80
PATT»H OAIN IN Oil
...... HORIZONTAL
-90
41V1
FIGURE D 2
-------
BGHT SHORT DIPOLES COAXIALLY ARRAYED 1.0 WAVE SPACING
VERTICAL PATTERN AT BORESITE
00
^r-rr
120
60
ISO
-30
-60
PATIOM OMM IN on
...... HORIZONTAL
WAI
OIV AHON AMOLC
-90
418<
FIGURE D 3
-------
EIGHT SHORT DIPOLES COAXIALLY ARRAYED 0.7 WAVE SPACING
VERTICAL PATTERN AT BORESITE
90
150
PATTON OAIN IN Oil
HMIZONTAt.
TOTAL
UVATIQNAMOU
-90
60
30
-30
-60
FIGURE D 4
-------
BGHT SHORT DIPOLES COAXIALLY ARRAYED 0.7 WAVE SPACING
VERTICAL PATTERN AT BORESfTE
90
120
60
150
30
180 -
-30
-50
PATTON 8MN IN Oil
....... HORIZONTAL
HIV AT10N AHOLC
-90
420-
FISURE 0 5
-------
OGHT SHORT D1POLES COAXIALLY ARRAYED 0.5 WAVE SPACING
VERTICAL PATTERN AT BORESm
o
330
270
PA7TON OAIN IN Oil
**»»*» HOUCtOWTAL
"» " vtunou.
| torn
ANOUESiNMMttSTRUf
30
1SO
1SO
80
120
421'
FIGURE D 6
-------
EIGHT SHORT DIPOLES COAXIALLY ARRAYED 0.1 WAVE SPACING
VERTICAL PATTERN AT BORESITE
to
"n*-^
60
ISO
-30
PA TTOm OAIN IN Ml
**« MOIIKONTAI.
VUT1CAL
TOTAL
OJCV ATOM AM01C
FieURE D 7
-------
SIXTEEN SHORT DIPOLES COAXIALLY ARRAYED 0.5 WAVE SPACING
VERTICAL PATTERN AT BORESfTE
90
«0
30
-60
PAT7OIN MINIM Oil
...... HORIZON?AL
-to
FIGURE D 8
-------
JASIK SHORT DIPOLJES AT 0.5 WAVE SPACING
THETA = 90.00 PHI = 0.00 ETA = 90.00
NI"SM>*"iwl P
FieURE D 9
424
-------
BSHT SHORT DIPQLES BROADSIDE ARRAYED 1.2 WAVE SPACING
VERTICAL PATTERN AT BORESITE
to
120
o
ISO
-30
-80
PAT1UHI OUH IN Oil
...... HOIBONTAL
TOTW.
UVAtlONMI*!!
-10
FIGURE D IB
-------
EIGHT SHORT DIPOIXS BROADSIDE ARRAYED 1.0 WAVE SPACING
VERTICAL PATTERN AT BORESITE
o
120
60
150
-30
-SO
PATTDW AIM IN Oil
........ HOII1ZONTAL
' ii i KlII'ICM.
TOTAL
CUVATIOMAMOU
-0
FIGURE D 11
426
-------
DGHT SHORT DIPOLES BROADSIDE ARRAYED 0.95 WAVE SPACING
VERTICAL PATTERN AT BORESITE
o
120
190
PATTDWI OAIM IN Oil
HOIIZONTM.
<"' vnmcAi.
"TBTM.
atVATIOHANOLI
60
-30
-iO
-10
FIBURE D 12
-------
BGHT SHORT DIPOLES BROADSIDE ARRAYED 0.9 WAVE SPACING
VERTICAL PATTERN AT BORESITE
o
120
t50
180
(ATTUN OAIK IH Oil
....... HOtQONTAl.
»* ' " vorncAi.
TOTAL
HXVAT10KANOU.
-io
60
30
-30
-iO
FIGURE D 13
-------
BGHT SHORT DIPOLES eROADSPE ARRAYED 0.7 WAVE SPACING
VERTICAL PATTERN AT BORESITE
o
120
ttO
180
PATTERH SAIN IN Oil
...... HORIZONTAL
TOT At
EUVAHON AKOLC
-SO
0
30
-30
-0
429*-
FX8URE D 14
-------
BGHT SHORT DIPOLES BROADSIDE ARRAYED 0.5 WAVE SPACING
VERTICAL PATTERN AT BORESITE
so
tzo
60
ISO
PA maw SAIN IN DII
........ MOWEONTAL
vnmcAL
"-"^TOT At
(LEV ATION ANOU
-iO
30
-SO
FI8URE D 15
-------
BGHT SHORT DIPOLES BROADSIDE ARRAYED 0.1 WAVE SPACING
VERTICAL PATTERN AT BORESITE
o
120
CO
ISO
-30
-60
MTH1N 0*IN IN Oil
VCTT1CAL
TOTM.
CJVAT10M AN0I£
-90
(oJMIltfpJ
FIGURE D
-------
JASIK HALF WAVE DIPOUES AT 0.5 WAVE SPACING
THETA = 90.00 PHI = 0.00 ETA = 90.00
432-
FIGURE D 17
-------
EIGHT HALF-WAVE DIPQLES COAXIAtLY ARRAYED 1.2 WAVE SPACING
VERTICAL PATTERN AT BORESfTE
90
120
0
150
-60
MTfOm MM IN Oil
HORIZONTAL
VORICAL
1 i TOTAL
Utf AtlON AKOU
-90
30
-JO
433<
FIGURE D IB
-------
BGHT HALF-WAVE DIPOLES COAXIALLY ARRAYED 1.0 WAVE SPACING
VERTICAL PATTERN AT BORESITE
90
120
60
150
30
-30
-SO
PAtTON AAIN IN Dll
........ NOIfZONTAi.
' 11 vnmou.
TOTM.
IUV ATIOM AHOLC
90
FIBURE D J9
-------
BGHT HALF-WAVE DIPOLES COAXIALLY ARRAYED 0.7 WAVE SPACING
VERTICAL PATTERN AT BORESJTE
to
120
60
150
30
-30
-0
PATTDIN 9AM IN Oil
"»« HORIZONTAL
TOTAL
ILCVATtOM AMOLt
-90
465-
FIBURE 0 2B
-------
EIGHT HALf-WAVE DIPOLES COAXIALLY ARRAYED 0.7 WAVE SPACING
VERTICAL PATTERN AT BORESITE
90
120
60
150
30
-30
-60
PATTERN CAIN IN Oil
...... HORIZONTAL
« VERTICAL
CLCVATION ANOU
-90
436
FIGURE D 21
-------
BGHT HALF-WAVE D1POLES COAXIALLY ARRAYED 0.5 WAVE SPACING
VERTICAL PATTERN AT iORESFTE
so
120
150
FXBURE D 22
-------
JASIK HALF WAVE DIPOLES AT 0.5 WAVE SPACING
THETA as 90.00 PHI = 0.00 ETA = 90.00
438<
FIGURE D 23
-------
EIGHT HALF-WAVE DiPOLES BROADSIDE ARRAYED 12 WAVE SPACING
VERTICAL PATTERN AT BORESITE
90
120
60
150
SO
-30
-r60
PATTON OAIN IN Oil
...... HORIZONTAL
TOTAL
DZVATIONANOLC
-90
439'
FIGURE D 24
-------
QGHT HALF-WAVE DIPOLES BROADSIDE ARRAYED 10 WAVE SPACING
VERTICAL PATTERN AT BORESm
to
120
130
FATTON OA1N I* Oil
....... HORIZONTAL
TOTAL
BJEVATIOHAHOU
30
-90
-ao
-to
440<
FIGURE D 25
-------
BGHT HALF-WAVE DIPOLES BROADSIDE ARRAYED 0.85 WAVE SPACING
VERTICAL PATTERN AT BORESITE
so
120
80
150
iO
180
-30
-60
PATTHIX a*M IN Oil
mmmmam HOIIZONTAL
TOT*!.
HIV ATION ANOU
-0
FIBURE D 26
-------
r
BGHT HALF-WAVE DIPOLES BROADSIDE ARRAYED 0.9 WAVE SPACING
VERTICAL PATTERN AT iQRESITE
90
120
60
150
-30
_eo
PATTUNOAlNlMOil
........ MOIIZONTAL.
_.__ vmnou.
TOT*!.
CUVAT10NAMOLC
-90
FX8URE D 27
-------
DGHT HALF-WAVE DIPOIES BROADSIDE ARRAYED 0.7 WAVE SPACING
VERTICAL PATTERN AT BORES1TE
90
120
ISO
180
MT1DIN CAIN IN DII
...... M01IZOKTAL
tUVAHONANOU
0
30
-30
-0
443<
FIGURE D 28
-------
EIGHT HALF-WAVE DIPOLES BROADSIDE ARRAYED 0.5 WAVE SPACING
VERTICAL PATTERN AT BORESfTE
o
no ^x^r \ \ \ ill ~7~*^ to
150
-eo
30
-so
FI8URE D 29
444<
-------
DGHT HALF-WAVE PIPOLES BROADSIDE ARRAYED 0.1 WAVE SPACING
VERTICAL PATTERN AT BORESITE
90
120
80
ISO
SO
180
PATH
_~
IUVAT1
KM OAIM IN Oil
vnmcAi
9N&MOLC
-so
-30
-0
445<
FIGURE D 38
-------
THE FMH ELEMENT
THETA= 45.00 PHI =45.00 ETA =90.00
(Si UWS
F16URE D 31
446
-------
THE FMH ELEMENT
AZIMUTH PLANE PATTERN AT THE HORIZON
o
^-T-r
330
300
270
120
150
PA mom CAIN IN on
...... HOUIZOHTAl.
TOT*!.
MOUCS IN DCQRXCS TWC
ISO
.. 447<
FIGURE D 32
-------
150
THE FMH ELEMENT
VERTICAL PLANE PATTERN AT "BORESIGHT"
90
120
so
-eo
PArtlHN QAIN IN Oil
........ HORIZONTAL
""» ,mm^~ VERTICAL
"""""""-TOTM.
OTV AT10S AHOUE
-to
FIGURE D 33
448-
-------
THE FMH ELEMENT
DEPRESSION ANGLE COVERAGE
-W-j
-U-.
_i-.
-18-
B
-M
-10
-18-
-U*
-to-
-10
-w-
-w-
449'
FIGURE D 34
-------
THE FMH ELEMENT
-1O-
fl-
-to
.> -
225.0"
_».
o-
-w-
-M
DEPRESSION ANGLE COVERAGE
-1»4
-
"*"
,
V
t
.
ll*5.0a
240.0°
.0"
-w-
_§
CD
o
-10-
FIGURE D 35
450<
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN ELEMENTS
o
330 ^^C\\ 111// T^ 10
300
270
120
ISO
FATTON MM IN DM
...... HOII10NTM.
-" ' ' VCTTTQU.
?8T*L
M etmos TDUC
180
451<
FIGURE D
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN ELEMENTS
«o
120
60
150
30
PATttUN OAIN IN ON
TOTAL
(UEVAHOMAN6U
-0
-50
-60
FISURE D 37
-------
THE FWH 2 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN ELEMENTS
o
^-T-T
330
300
0
270
150
fATmX 0MN IN Oil
TOTM.
ANOKS iM OCOKD TWC
180
453-
FIGURE D 38
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS iETWEEN ELEMENTS
90
J_r-T
120
ISO
SO
110
vomou.
TOTAL
BIVAtlON UIOLE
FIGURE D 39
454<:
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0 J WAVELENGTHS BETWEEN
o
^*-rT"
330
300
270
80
120
190
PATWIM a«N IN Mi
........ H«tZOMTAL
' VOmCAL
1 I" TOTAL
MaifSINKMftSTMIt
180
455<
FIBURE D 40
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN ELEMENTS
90
120
0
30
-30
-60
PATTUMOUNMeil
........ HORIZONTAL
'* ' VPHICM.
"""^^^-» TOTAL
LEV *HON MOLE
-90
FIGURE D 41
456<
-------
THEFMH 2 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS
o
^-*r-r
330
ELEMENTS
50
500
60
270
vtmcAi.
TOTAL
ANMCS IM MOMZS TCUC
120
150
100
457
FIGURE D 42
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN
90
120
60
150
ISO
-SO
-60
PA TON CMIN IN DPI
........ MOmZONTAL
« vamou.
" TOTM.
CUVAHOH MfSlC
-0
FIGURE D 43
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN ELEMENTS
o
330 ^x<\\ 1 / / 7^-w 30
300
0
270
ISO
PATTON OAIN IN Oil
TO? At
AMOUS IN DCOMXS tMI
110
459'
PieURE D 44
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN
90
^r-r
120
SO
fSO
30
-30
-80
PA1TOM «AIN 191 Oil
....... HOtlZONTAL
VtirT»CAL
T8TM.
-to
FI8URE D 45
460-c
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN ELEMENTS
o
330
30
300
60
270
120
150
PATORH 6AIN IN DM
...... HORIZONTAL
Tom
AKOU1 IN PCO«tt3 TCUt
tao
461<
FIGURE D 46
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN ELEMENTS
o
120 ^^T \ \ \ III ~7-s^ 60
ISO
FA TTDII* GAIN IN DM
...... HORIZONTAL
TOT At
aXVATIOHAMOtX
-90
30
-30
FIBURE D 47
462-
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN ELEMENTS
o
330 J***<\\ \ III 7"^ 30
300
270
150
PATTERN 0*IM IN DM
...... MOIUZOHTAL
^^ vmnco.
MOyCSINKeRCESttUt
180
«o
120
463<
FISURE D 48
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN
§o
^r-r-T
120
190
30
180
-50
-80
PATTON OAIN IN Ml
HOKZONTM.
TOTAL
IUY AtlOM ANOLI
-0
464^
FIBURE D 49
-------
THE FMH 2 QjEMENT ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN ELEMENTS
o
-*-r-r
330
300
0
120
ISO
FATTZHM OAIK IN en
....... HOMZQNTAL
TOTAL
MOiCS IN OCOMC9 T*Ut
180
FIPURE D 50
-------
THE FMH 2 ELEMENT ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN
00
-*--r~T
120
80
ISO
50
180
-0
PATTON OAiN IN Oil
MOiBONTM.
'T8TM.
O£V AT10M *M6tI
-90
FI6URE D 51
466
-------
FWH4P2
WETA= 60.00 PHI =60.00 ETA =90.00
46*7
FZBURE D 52
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN
o
350
30
300
60
270
120
150
PA mm OAIN IN DII
* ttORIZONTAI.
TOTAL
AMUS m DCOKCS TtUI
180
468^
FIGURE D 53
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN ELEMENTS
o
120
BO
-90
-30
469<
FIGURE 0 54
-------
FMH4P4
THETA = 60.00 PHi= 60.00 ETA = 90.CO
470<
FIGURE D 55
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN ELEMENTS
o
300
270
330
30
120
130
PATfOM BAM IN Oil
........ HORIZONTAL
« "" VOTKAL
1 TOT Ad
AMOIIS IN oicttn twc
180
FIBURE D 56
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN
tio
o
30
-so
-to
PA TTCJMI GAIN IN DM
........ HORIZONTAL
vtmtCM.
" tBTAi
HIV AT10K ANSU
472-:
FIGURE 0 57
-------
FMH4P5
THETA= 60.00 PHI =60.00 ETA = 90.00
473<
FISURE D SB
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN
o
^«rT
330
300
270
ISO
PA mm QUO IN on
....... HOItZONTAL
» vnmou.
AMMfSINBIBIOSttUC
WO
60
120
FIGURE D 59
474
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN ELEMENTS
so
~r~r~^
o
80
so
-M
-60
MTTDIM MM IH Oil
TOTM.
CLCVATIOM ANOLC
-90
475<
FIGURE D 60
-------
FMH4P7
THETA= 60.00 PHI =60.00 ETA =90.00
476
FIGURE D 61
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN ELEMENTS
o
530
300
270
PATTIRN OAIN IN Oil
........ HO*IZONTAL
»» vomcAi
«TOTAI,
AMBUS IN Mams fnui
ISO
30
a
120
ISO
477 <
FIGURE D 62
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN ELEMENTS
*o
"TT-^
eo
SO
-30
-60
PATTON OAIM IN Dll
...... HORIZONTAL
IUV ATIOW AN&E
-0
FI6URE 0 63
478-
-------
FWH4P9
TOETA= 60.00 PHI =60.00 ETA =90.00
FliURE D 64
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN ELEMENTS
o
ISO
30
60
270
PATT0N OAJN IN Oil
»« HOIIZOMTAL
««"»'VUTlCAi
TBTAi
120
ISO
180
FIGURE D 65
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN
so
^TT
120
150
PATTCTH OMN IN Oil
...... HORIZONTAL
TOTAL
WATIONANMf
80
30
SO
-90
-0
??*8t
481'
FIGURE D 66
-------
FMH41PO
THETA= 60.00 PHI =60.00 ETA =90.00
482<
FIQURE D 67
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN ELEMENTS
o
330
30
270
120
150
(ATTdNOAlNiNDM
...... HORIZONTAL
TBTAi
ANeifS IN OK WOES tttll
ISO
483<
FIGURE D 6B
-------
THE FMH 4 EHMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN ELEMENTS
so
120
60
150
PATTON OAIN IM ill
....... HOItZONTAL
TOTAL
UV AT10N ANtUt
-90
30
-SO
FIGURE D 69
484<
-------
FMH41P1
THETA = 60.00 PHI = 60.00 ETA = 90.00
485<.
FIGURE D 70
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 11 WAVELENGTHS BETWEEN ELEMENTS
o
330 ^-xT" \ \ J III ~7-^ 50
300
60
190
FieURE D 71
486^
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN ELEMENTS
90
T~r-^
0
ISO
-30
-to
PATTWN BAIN IN 911
...... HORIZONTAL
'TOTAL
OCV ATTOH AMOU
-to
487<
FIGURE D 72
-------
FMH41P2
THETA = 60.00 PHI = 60.00 ETA = 90.00
488<
FIGURE D 73
-------
THE FMH 4 ELEMENT ARRAY
SPACING OF 12 WAVELENGTHS BETWEEN
o
^-~rr
330
SOD
270
PA nnm OAIN IN on
...... HORIZONTAL
-TOT At
aNeics IN OIQMX] TWI
ISO
ISO
0
120
FIGURE D 74
-------
THEFMH4
ARRAY
SPACING OF t2 WAVELENGTHS
o
-*-TT
120
ELEMENTS
ISO
MTTOHieAININBIl
woman.
fatal.
UVAH0NANSU
-to
30
-SO
-60
FI6URE D 75
490^
-------
FMH8P2
"THETA = 60,00 PHI = 60.00 ETA = 90.00
FIBURE D 7&
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN
o
ISO
so
300
SO
120
ISO
rATTDM WIN IM MM
AMUSIHOCMOSTMC
492<
FIGURE D 77
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN ELEMENTS
90
T~r-^
«o
ISO
TOTM.
OIVAtlMANOU
-90
-30
F1BURE D 78
-------
FMH8P4
THETA s 60.00 PHI = 60.00 ETA = 90.00
FIGURE D 79
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF (U WAVELENGTHS BETWEEN ELEMENTS
o
330 ^x
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN ELB4ENTS
o
120
«0
150
SO
-30
-0
TOT*!
JVAH0NANHK
-to
FIGURE D 81
496
-------
FMH8P5
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE D B2
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN ELEMENTS
0
^-Tr
330
100
270
120
150
PATTON UUN IN am
«»*» N9MZ0N7M.
VPflCAl
AMUS IN MIKm IWlf
130
FIGURE D..83
498-
jyjjjL^j-giy^
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN
M
120
60
150
30
-30
.80
PATTON OAIN IN Bit
........ HOBBOHTAL
" """" vnmcAt
TOTAl
mVAtlOHANOIJC
-90
FIGURE D 84
-------
FMH8P7
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE D OS
500-
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN ELEMENTS
o
300
270
330
30
Mimm MINIM ait
...... NOMEOMTAL
ANM0INDUMIS1tUE
180
ISO
0
120
-SGI
FISURE D 86
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN
a
^~tT
120
ISO
-30
-60
TOm
IUVATIOMAMOU
-to
&
FI8URE D B7
502-
-------
FMH8P9
THETA = 60.00 PHI = 60.00 ETA « 90.00
FIGURE D 88
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN ELEMENTS
330
30
300
SO
PATfDM OAIH IN 0||
....... HORTZOKTAL
TOTAL
ANtmiNKMIESIMI
120
ISO
110
FIGURE D 89
504
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN ELEMENTS
90
120
0
150
505-
-00
30
-30
alHllya
FIGURE D 90
-------
FMH81PO
THETA = 80.00 PHI = 60.00 ETA = 90.00
FIBURE D 91
506
-------
THE FMH 8 EUEMENT ARRAY
SPACING OF tO WAVELENGTHS BETWEEN ELEMENTS
§
330
300
270
MTHMtAININPtl
»**« HORIZONTAL
"" mneiu.
TOTM.
wous IN BtmasiKut
30
150
SO
120
FISURE D 92
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 1,0 WAVELENGTHS BETWEEN ELEMENTS
«o
120
60
150
10
-30
.{0
PATTSUN CAIN IN Oil
...... HORIZONTAL
TOTAL
tUVAHONANCLt
-90
FI6URE D 93
508
-------
FMH81P1
THETA = 60.00 PHI« 60.00 ETA = 90.00
509<
FIGURE D 94
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN ELEMENTS
o
330
30
300
270
190
PATTDM CAIN IN DM
........ HMIZONTAL
-vomcAt
» TOT At
AMUSIM NMDBS TRUC
180
60
120
FIGURE D 95
S10
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN ELEMENTS
iO
120 ^x-T \ \ I III J^^ 60
150
SO
ISO
-30
-60
f »rrtiN GAIN w DII
...... HOtlZONTAi.
TOTAL
OtVATIONANGU
-90
FIGURE D 96
-------
FHM81P2
TOETA= 60.00 PHI s 60.00 ETA =90.00
FIGURE D 97
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 12 WAVELENGTHS BETWEEN ELEMENTS
o
^r-iT
330 ^*T\ \ 1 III T^ 30
300
80
190
PATTtm OAitt IN Oil
........ HOUttOPCTAt
*" ' HUI11CAI.
" TOT At.
AMOin m KOMtSTMII
110
FIGURE D 98
-------
THE FMH 8 ELEMENT ARRAY
SPACING OF 12 WAVELENGTHS BETWEEN ELEMENTS
to
120
150
PATTCHNQAlNINOil
....... HORIZONTAL
TOTAL
tLEVATlOHANOLC
-0
SO
-so
-60
FIBURE D 99
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN ELEMENTS
o
330 ^*<" \ \ 1 I //"r-Sw 30
300
ISO
PATTtXN OAIM IN Oil
...... HORIZONTAL
vnmcAL
ANOUES IN OteUXSHUE
180
SO
120
FIGURE 0 100
-------
FMH16P2
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE D 101
516
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN
90
120
130
MfTOMMMmMI
....... HORIZONTAL
TOTAL
UVAHONANMI
eo
-80
-90
30
57.5
-30
517<
FIGURE D 102
-------
FMH16P4
THETA= 60.00 PHI =f0.00 ETA =90-00
FZ6URE 9 103
sis-
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN
o
^r-T-T
330
300
270
30
MTUBM CAIN IN 091
........ MOIOOKTM.
* VCTTICAL
'" "Tom
AttOUCS IN OtttOB TNUI
ISO
tBO
60
120
FIGURE D 104
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN ELEMENTS
90
^*rT
120
ISO
30
180
-10
-60
FIGURE D IBS
520-
-------
FMH16P5
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIGURE D
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN ELEMENTS
o
300
270
330
30
80
FIGURE D 107
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN ELEMENTS
90
120 ^--T \ \ V I / / 7---K. «o
150
30
-30
-iO
FATTON CAIN IN Oil
....... WMUZOHTAL
> vpmcAL
i "'TOTAL
OXVATIOM ANBU
-SO
FieURE D 108
-------
FMH16P7
THETA = 60.00 PHI = 60.00 ETA = 90.00
m
FI6UR1 D 139
524
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN ELEMENTS
o
^r-TT
330
300
270
150
MTTCTH CAIH IN Oil
........ HORIZONTAL
-« vtUTICAL
TOTAL
ANCLU IN DEGHCCS TRUE
180
0
120
525-
FIGURE D 110
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN ELEMENTS
90
TT*^
so
30
-00
PATTON QAIM IN Ml
...... HORIZONTAL
TOTAL
WAItOHAMOU
-90
FliURE D 111
526
-------
FMH16P9
THETA = 60.00 PHI = 60.00 ETA = 90.00
527-
FIGURE D 112
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN ELEMENTS
o
530
so
300
60
270
120
150
PATTERN OAIN IN Oil
........ HORIZONTAL
VERTICAL
^^ TOTAL
ANCLES IN DCOROS TRUC
180
FIBURE D 113
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN ELEMENTS
so
120
60
150
30
180
.173
-30
-to
FATTCTN BAIN IN DM
........ HQMZOMTAL
__.__ VERTICAL
TOTAi
tL£V ATION AHOIX
-to
FIGURE D 114
-------
FMH16
THETA = 60.00 PHI = 60.00 ETA = 90.00
FIBURE D US 53CK
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN ELEMENTS
o
330 ^-T \ \ ill T*-^ 30
300
270
PATTERN OAIH IN Oil
........ HORIZONTAL
VERTICAL
TOTAL
ANCLES IN DEOMX3 TftUC
SO
120
150
180
FIGURE D 116
-------
THE FMH16 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN
flO
120
SO
ISO
so
-30
PATTDM SAIN IN Bit
........ HOIIZOHTAL
vomcAt
1111 -TOfAt
IUV AT10X AMOU
-90
FIGURE D 117
-------
FMH161P1
THETA = 60.00 PHI = 60.00 ETA = 90.00
533-
FI6URE D 11B
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN ELEMENTS
o
330 .x-T \ \ 1 III ~7~^ 30
300
Z70
190
10
FIBURE D 119
534^
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN ELEMENTS
90
120
SO
150
30
-30
-80
JA Troth CAIN IN Oil
........ HORIZONTAL
MI """VtffnCAL
""""'TOT At
dVATIONANOLC
-90
535
FIGURE D 120
-------
FMH161P2
THETA a 60.00 PHI = 60.00 ETA = 90.00
FIBURE D 121
-------
THE FMH 16 ELEMENT ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN ELEMENTS
o
330
30
300
270
150
PA TTCIM< CAIN IN Oil
-- HORIZONTAL
VERTICAL
TOTAL
ANOLCS IN OCORCCS TRUE
iao
60
120
537
FIGURE D 122
-------
THE FMH 16 ELEMENT ARRAY
SPACING Of 1.2 WAVELENGTHS BETWEEN ELEMENTS
o
120
o
PATTO
-------
300
270
ONE CYCLOID ELEMENT W/ FEEDUNE
AZIMUTH PATTERN AT HORIZON
o
330
PATTON 0AIN IN Oil
VOITICAI
TOTM.
AN«ja W ONMB TRUE
30
150
180
60
539'
FIGURE D 124
-------
150
ONE CYCLOID ELEMENT W/ FEEDUNE
VERTICAL PATTERN AT BGRESITE
90
120
-30
-60
PATTOW flAIH IN Oil
........ HOUIZOKTAL
- m "i VCTTICAL
i ' T8TM.
OIVATIOH AMOLI
-90
FIGURE D 125
-------
ONE CYCLOID ELEMENT W/ FEEDUNE
VERTICAL PATTERN AT BORESlTE
.-»-»
0-
-T
-»S--
S ^
O-
fl,
0-
3
-10-
...-; 105.0°
135.0
-I*
0-
»-
-
m v '
O L^..
J.
a
-w"
o-
-«
541<
FIGURE D 126
-------
f^V-S"] ONE CYCLOID ELEMENT W/ FEEDLJNE
VERTICAL PATTERN AT BORESITE
-10i
&
0-
-S
.
,
-5-
S
0-
-£
^D
o
§-
l -10-
P-
^
^\
--":, '
\ \ "
* " -io'i* " -I
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN BAYS
o
330 ^r"r\l I I I I 7*^ 30
300
60
270
120
150
PATTOM OAIN IN Oil
........ HORIZONTAL
« VERTICAL
TOTAL
ANGUS IN ONRECS7IUE
ISO
543<
FIGURE D 128
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGTHS BETWEEN BAYS
so
ao ^--r \ \ I / / / T^ so
30
IMTTtlH MIN IN Oil
........ HOBI20KTAL
mmmm- VtKTlCAL
TOT At
OXVAIIONANOtC
-M
-30
-60
FIGURE D 12
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN BAYS
90
120
60
150
-30
-SO
PATTERN CAIN IN Oil
....... MOilZONTAl
viimcAt
i TOT At
ttJVATION ANOLT
-90
545 <
FIGURE D 130
-------
WE CYCLOiD 2 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN BAYS
90
120
fO
10
vorncAL
torn
OCVATIOHANOU
FX6URE D 131
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN iAYS
o
330 ^\^r~^~\" T-
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN BAYS
90
120 ^T \ \ I / / / ~>>w 60
150
30
180
-30
-60
PATTON OAIN IN Oil
........ HORIZONTAL
" VERTICAL
TOTAL
RUVATIONANOLC
-90
FIGURE D 133
548-
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN BAYS
o
300
270
330
30
150
PATTERN GAIN IN !»i
........ HORIZONTAL
VCimCAL
' TOTAL
ANBLIS IN eiOMES THUC
180
60
120
549-
FZSURE D 134
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN BAYS
90
^rr
120
180
-60
mtneu.
TOTM.
OXVATtON AMOLt
30
-30
FZ6URE D 135
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN BAYS
o
330 ^x-<"llZ5-', I iS*L T^w 30
300
270
PATTERN CAIN IN DM
........ HORIZONTAL
"" i VIWTICM.
TOTM.
AMQlTf IN DKORD31RUI
60
120
150
180
551<
FI6URE 0 136
-------
150
180
THE CYCLOtP 2 ELEMENT ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN BAYS
90
tzo
60
-60
PATTERN GAIN IN Oil
....... HORIZONTAL
" " ' VCTTICAI.
^TOTAL
EUVATIONAMOUE
-90
FieURE 0 137
SS2'
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN BAYS
o
^r-TT
330
300
60
270
150
PATTCTN CAIN IN OS)
........ HORIZONTAL
_._ VERTICAL
TOTAL
AIIOLtS IN DECREES TRUE
180
553<
FIGURE D 138
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEtN BAYS
90
120 ^^*C*\T I I / / T*-w 60
150
30
180
-30
-60
PATTEM OAIH IN Oil
....... MOtrZOMTAL
VCimCAL
TOTAL
HCVATIONANOLX
-90
FIGURE D 139
.SS4-
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN BAYS
o
300
270
330
30
150
PA1TON GAIN IN Oil
...... HORIZONTAL
TOTAL
AN610 IN DUKES IMit
iao
60
555<
FIGURE D 140
-------
150
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN BAYS
90
120 ^<\\ I / / 7^%. 60
-30
-60
PATTERN CAIN IH Oil
........ HORIZONTAL
"« VERTICAL
; TOTAL
OJEVAtlONANUX
-90
FIGURE D 141
556 <
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN BAYS
o
330 ^<\\ I I I / / 7"-^ 30
300
270
PATTERN CAIN IN 811
mmmmmmmm HOWZOMTAL
"^^ VERTICAL
TOT At
ANeun IN Dce*as mm
150
180
60
120
557<
FIGURE D 142
-------
THE CYCLOID 2 ELEMENT ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN BAYS
90
120
60
ISO
30
-30
-SO
PATTCTH CAIN IH Dtl
........ HOmZONTAL
ii VERTICAL
"TOT At
OEV AT10N ANOU
-90
FIGURE D 143
558'
-------
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.2 WAVEUENGHTS BETWEEN BAYS
o
-n~
330
300
270
PATTERN GAIN IN Oil
........ HORIZONTAL
VERTICAL
" TOTAL
ANQICS IN OCCMIS TRUE
ISO
180
SO
120
FI8URE D 144
-------
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGHTS BETWEEN BAYS
90
120 ^"T" \ \ I I / / ^7-^ so
150
30
180
-30
-60
PATTCXN GAIN IN DM
........ HORIZONTAL
VERTICAL
. TOTAL
UVATIONANOLC
-90
560^
FIGURE D 145
-------
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.2 WAVEl£NGHTS BETWEEN BAYS
-WT
TJ
0-
"V
-X&
0-
o.c
0-
9-
0-
-,n
_?.
0-
5-
1^5.0°
o-
-10-.
-iyi«i
o-
§.
o-
-8^-- ':-'..
o-
I
CD
o
8-
a
-o
-
o-
' 120.0°
561-
FISURE D 146
-------
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.2 WAVELENGHTS BETWEEN BAYS
IB
o
8-
~10-
I* -"
-s-/-.- .
0-
-" -»»
-10-
-ft
-W-
-»
-w-»
\
o-
1
o-
-10-f
.
-JO
o-
-10-
,o«
o-
. -*-«o
.0°
1
o-
I-.*
-10-,
\
o-
FISURE D 147
-------
300
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGHTS BETWEEN BAYS
o
^r-TT
330
120
150
PATTERN CAIN IN OBI
........ HOIMZONTAI.
vcuncAi.
"" TOTAL
ANOLCS IN OtORECStMUE
180
S63<
FIGURE 0 148
-------
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.4 WAVELENGTHS BETWEEN BAYS
90
120
60
ISO
-SO
FATTON OAIN IN 99'
»**"-" NOHIZOinrM.
VfWTtCAl
TOTAL
-90
30
FIBURE D 149
-------
THE CYCLOID 4 ELEMENT ARRAY
SPACING OF 0.5 WAVELENGTHS BETWEEN BAYS
o
330 ^af^rTT i / "rsc^ so
300
60
270
120
150
PATTERN CAIN IN DBI
........HORIZONTAL
>» ' VOttlCAL
"i TOTAL
AMOLO IN OCORCn TRUE
180
FIGURE D 150
-------
THE CYCLOID 4 ELEMENT ARRAY
ISO
SPACING OF 0.5 WAVELENGTHS BETWEEN BAYS
90
120
60
30
PATTWN OAIN IN Bit
........ HORIZONTAL
-VERTICAL
" TOTAL
BJCVATIOMAHQU
-30
-60
-90
FIGURE D 151
566 <
-------
THE 4 El£MENT CYCLOID ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN BAYS
o
^-*tT
330
300
270
150
PATTON CAIN IN Oil
AMeurs IN DtoMccs nut
180
120
56*7^
FIGURE D 152
-------
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 0.7 WAVELENGTHS BETWEEN BAYS
90
120 ^*C\\ \ I / / ~>*w 90
tao
-30
-iO
TOTAL
tUEVATTOMAIlOU:
FIBURE D 1S3
-------
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 0.9 WAVELENGTHS BETWEEN BAYS
o
330
300
00
270
PATTCXM MM IN Oil
........ HOIIIZOXTAi.
' """- VtltlCM.
' " ' TOTAL
AMOUS IN KOMKS TKUt
ISO
5S9'
FIGURE D 154
-------
THE 4 ELEMENT CYCLOID ARRAY
ISO
ISO
SPACING OF 0.9 WAVELENGTHS BETWEEN BAYS
90
120
00
so
PA mm* CAIN i M en
»«« HOIIZONTAL
» "' VCTT1CAL
TOTA4.
-30
.60
-to
FieURE D 155
570-
-------
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 1.0 WAVB£NGTHS BETWEEN BAYS
o
330 ^-T \ \ / / ~7-w^ 30
300
270
MTfOW SAW IN Oil
..-...*. HORIZONTAL
'" "- VfRlfCAi.
TOTAL
ANOLCI IN M8Mn TCUC
180
ISO
0
120
FI6URE D 156
-------
60
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 1.0 WAVELENGTHS BETWEEN iAYS
to
-t-T
120
PATTEtK OAIM IN Oil
««-«-" ttO*fZONTAL
TOT/U.
OCVAHONAMOU:
-90
-30
.to
FieURE D 157
-------
300
27»J
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN BAYS
o
330 ^x<*T \ / / / 7--w 30
ISO
60
573-
FISURE D 158
-------
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 1.1 WAVELENGTHS BETWEEN BAYS
o
120
CO
30
PATTERN OAIM IN Oil
...... HOIIIZONTAI.
' TflTM.
-90
FIGURE 0 159
.5'
-------
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN BAYS
o
330 ^-"T \ \ 1 / / T-v. 30
300
270
190
PATTON SAIN IN Oil
TOTM.
ANSUS IN DCCMX3 TRUE
1BO
0
120
575<
FIGURE D 160
-------
a mineu
00-
os-.
09
021
SAV8 N33AU38 SHiONTQAVM 71 JO ONOVdS
QIOTOAD ihQW3T3 t IHi
576 <
-------
THE 4 ELEMENT CYCLOID ARRAY
SPACING OF 1.2 WAVELENGTHS BETWEEN BAYS
to
120
60
ISO
180
.124
-30
PA Him OMNIUM!
...... MORQOMTM.
TOTM.
-90
FIGURE D 161
------- |