-------
TABLE B4-39. ALDEHYDES3 - FCCU CO BOILER STACKS
(-0
Stack
15
13
18
16
14
11
Time
1050-1150
1245-1345
1558-1658
1504-1604
1627-1727
1544-1644
0920-1020
1049-1149
1552-1652
2045-2130
0855-0955
1137-1237
1540-1640
1035-1135
1330-1430
1550-1650
Gas Sample
Volume (£)
@ STPb
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
8.42
10.92
11.51
11.51
11.51
11.51
11.51
Aldehyde
Collected
(us)
220.5
292.5
111.91
113.68
101.25
83.48
81.72
147.0
52.5
76.88
172.2
1.58
1.18
0.1§
d
Concentration
ppm(Vol . )
14.77
19.60
7.50
7.62
6.79
5.60
5.48
9.87
3.52
7.34
12.68
0.11
0.08
o.ogs
d
lb/SCFb
1.144xlO~6
1.517x10 6
5.82 xlO~7
5.92 xlO~7
5.27 xlO 7
4.34 xlO"7
4.25 xlO 7
7.65 xlO~7
2.73 xlO 7
5.70 xlO~7
9.85 xlO 7
8.52 xlO~9
6.43 xlO 9
6.243x10 10
d
Sample rate = 200 m /min. Bisulfite method used.
^Corrected to 70°F and 29.92 inches Hg.
'Dry basis.
Blue color developed during sample collection; interference(s) unknown.
-------
TABLE 40. OXIDES OF NITROGEN - FCCU CO BOILER STACKS
UJ
Stack Time
13 1823
1406
1755
18 1659
10A7
15 1125
1130
16 1410
1517
1640
14 2020
0900
1000
NOX (as N02
ppm (Vol.)
306
297
170
181
269
94.1
105.8
453
378
415
164.3
190.0
200.4
) Concentration3
lb/SCFb
3.64 xlO~
3.53 xlO~
2.00 xlO~
2.16 xlO~
3.20 xlO~
1.12 xlO~
1.26 xlO~
5.38 xlO~
4.49 xlO~
4.93 xlO~
1.395x10"
1.514xlO~
1.66 xlO~
5
5
5
5
5
5
5
5
5
5
5
5
5
Dry basis.
DSTP = 70°F and 29.92 inches Hg.
-------
TABLE B4-41. HCN AND NH3 - FCCU CO BOILER STACKS
cr>
oo
NH3 Concentrations
Stack Time
15a
1305-1336
1515-1545
1315-1345
1215-1247
i/f iiio°
' (1300
13a
1257-1331
1425-1455
1613-1643
1750-1820
1Ra (0952-1052
(1706-1736
16a
lla
1345-1420
1115-1145
1455-1525
1015-1045
12:40 PM
14:10 PM
16:40 PM
ppm (Vol . )
15.36
6.64
0.75
0.70
0.511
—
d
<0.3
8.2
1.0
0.6
1.0
lb/SCFc
6
2
5
4
2
3
43
2
4
.76 x
.92 x
.24 x
.89 x
.25 x
—
—
<1 x
. 6 x
.7 x
.62 x
.37 x
10'7
10"'
ID' 8
10 8
10~8
10~8
10~7
10'8
10 8
10~8
HCN Concentrations13
ppm (Vol.)
19
19
1
1
0
-
0
< 1
0
0
0
0
.0
.1
.00
.05
.023
e
.005
x 10~3
.406
.9
.6
.9
lb/SCFc
1
1
6
7
1
4
6
2
6
4
6
.33
.33
.96
.31
.6
.0
.5
.84
.18
.12
.18
x
x
X
X
X
—
X
X
X
X
X
X
IO"6
l(f5
10~8
10 fl
10~9
10" 10
10'11
10~8
10~b
10~8
10~e
Sampling performed using LSI Method 5 train and acidic or basic impinger solutions, as required.
Dry Basis.
CCorrected to 70°F and 29.92 inches Hg.
Not detectable, less than 0.01 ppm in solution.
eNot detectable, less than 0.005 ppm in solution.
f Infrared Analysis at 3.01 y (HCN) and 10.4 \i (NH3)
-------
TABLE B4-42.
STACK GAS AND PARTICULATESa - FCCU
CO BOILER SCRUBBER STACKS
Total Cas
Sample0
Stack Time
1? 1516-1641
1811-19??
17 1612-1741
1821-1929
Meter
(ft1)
41.67
4?. 08
40.55
40.24
STP
(SCF)'
41.09
41 .77
39.2?
39.45
Avg Avg
Meter Stack Avg
Temp
78
75
93
87
Temp
185
185
180
180
Dry
(HW)
29.11
29.19
29.71
29.81
PnrllculBtes
Molnture
Collected
(g)
751 .2
261.1
260.3
266.3
Fraction
0.22r-
0.229
0.239
0.247
Filter Probe Imp. 11
n.nv.2 0
0.0348 0.0111 0
0.0112 0.0084 0
0.0300 0.0145 0
.OlflO
. 0000
,0230
.OlO;
Crnln
Loading
Total (gr/SCF)
0.0522 0.020
0.0479 0.018
0.0676 0.025
0.0552 0.022
Avg
Stnck
Velocity
(ft/ser)
55.32
55.88
52.57
52.15
I
look In.
107.6
103.6
100.7
103. 1
'Sampled with LSI F.PA-5 train.
Tot.il p.ns flow rates: Stack No. 12 - 9.08 x 10' SCFM; Stack No. 17 - 8.53 x 10s SfFH
Corrected to 70'F nnd 29.92 Inches Hg.
-------
TABLE B4-43. METHANE/NONMETHANE HYDROCARBONS3 AND FIXED
GASESb - FCCU CO BOILER SCRUBBER STACKS
St.ick Time
12 1547
1556
1818
1825
1212
1' 1803
1810
2049
2057
2339
2348
1732
1740
1930
1937
1943
1949
By
(ppm)
—
40.75
—
39.40
67.00
4.26
—
15.42
—
12.10
__
5.59
__
5.20
__
3.65
Hu thane
Weight
(Ug/D
—
49.24
—
47.61
80.97
5.25
—
19.01
_-
14.92
__
6.89
__
6.41
—
4.50
Concent rations
Ub/SCF)
__
3.08x10
--
2.97x10
5.06x10
3.28x10
—
1.19x10
—
9.32x10
4.30x10
__
4.00x10
__
2.81x10
d Bj> Volume
Tppm)
' 74.27
—
s 71.81
* 122.11
' 7.92
—
6 28.67
—
7 22.50
7 10.39
' 9.67
__
' 6.79
By
(ppm)
__
75.80
—
68.40
106.00
__
9.78
—
39.60
__
145.84
10.12
__
8.50
__
6.90
Nonnu! thane
(As
Weight
(l'B/1)
„
91.60
--
R2.66
128.10
..
12.06
—
48.82
__
179.81
12.48
__
10.48
__ •
8.51
Concentrations
Hexane)
(lh/SCF)d
__
5.72x10 '
—
5.16x10"*
8.00x10 *
..
7.53x10"'
__
3.05x10"*
__
1.12x10"'
__
7. 79x10"'
__
6.5xlO~'
_-
5.31x10 '
By Volume
(ppm)
25.70
—
23.19
35.94
._
3.38
__
13.70
._
50.45
__
3.50
2.94
__
2.39
CO,
CO
12.')
13.0
17.0
16.0
15.8
16.2
16.3
16.2
02
CO
6.0
5.5
2.5
3.0
3.0
2.5
2.1
2.5
Fixed
(Dry
Nj
76.0
76.0
76.0
78.0
77.5
77.4
77.3
77.2
Gases
Basis)
CO
00
1.5
1.5
0.1
0.2
0.4
0.4
0.5
0.6
11
(*)
0.5
0.5
0.4
0.4
0.2
0.2
0.2
0.2
Hoi. Wt.
(riry)
29.13
29.19
29.60
29.90
29.73
29.7]
29.81
29. 72
Byron hydrocarbon annlyzer using fljme ioniration detector.
Ftocher Model 1200 gas partltloner.
Dry basin.
Corrected to 70°F and 29.92 Inches Hg.
-------
TABLE B4-44. SULFUR SPECIES - FCCU CO BOILER SCRUBBER STACKS
so,"
St.'ick
12
17
Time
1516-16/.3
1609
1811-1922
1832
1219
1612-1741
1MO
1821-1929
1949
ppm
(Vol)
0. 19
0.13
—
—
0.23
0.'.7
—
Ih/SCFC
«.01xJO~"
2.6SxlO~"
—
—
«.67xlO~"
9.77x10""
—
S0jh SO/ MiS COS
ppm
(Vol)
0.73
9.53
—
—
11.98
13.10
—
Ib/SCF ppm Ib/SCF ppm Ib/SCF ppm Jh/SCF
(Vol) (Vol) (Vol)
1.20x10"'
I.b8xl0"s
—
--
1.98x10""
2.17x10''
—
CSj
ppm ]h/SCF
(Vol)
—
—
—
—
—
"rPA rmp(nf>er, BaCClOi.h Titratton.
67. HjO? Tmplngcrn, Ba(C10»)z Tltratlon.
'corrected to 70° and 29.92 Inches Hg. , d
dry hanle.
SO? onjy detected In samples from heater duct. Due to Mfih moisture content in rep,ener,it or sLnck, no appreciable concentration of sulfur ypccles deterred
in samples.
TABLE B4-45. ALDEHYDES3 - FCCU CO BOILER SCRUBBER STACKS
Stack
12
17
Time
1438-1538
1707-1807
1229-1329
1614-1714
1816-1916
Cas
Volu
(ST
12
11
12
11
12
Sample
me (I)
t')fb
.04
.97
.??
.87
.25
Aldehyde Caseous Aid.
Collected Volume 9 STP
(Ug) (Hi)
635
691
761
582
497
.0
.25
.75
.5
.5
510
556
612
468
400
.8
.0
.7
.5
.2
Concentr.itionsc
ppm(Vol. )
42.42
46.45
50.14
39.47
32.67
By Wclg
(ug/JU
52.74
57.75
62.34
49.07
40.61
llit
@ STP
(lb/SCK)l'
3
3
3
3
2
.29xlO"6
.61xlO~6
.89xlO-6
.06xlO-6
.54x10"'
Corrected to 70°F and 29.92 Indies llg.
Dry basis.
-------
TABLE B4-46. OXIDES OF NITROGEN* - FCCU CO BOILER SCRUBBER STACKS
Stack
Time
NO Concentration
N02 Concentration
Volume
B Weiht
Volume
By Weight
(ppm) (yg/1) (lb/SCF)c (ppm) (yg/1) (lb/SCF)c
12
1830
11.34 21.62 1.35x10 6
1158
1359
70.89 135.14 8.44x10
LO
17
1845
77.98 148.65 9.28x10 G
1929
283.55 540.54 3.38x10
A modified Phenoldisulfonic Acid method was used for analysis of NOX as N02.
Dry basis.
"Corrected to 70°F and 29.92 inches Hg.
Not detected.
-------
U)
^1
U)
TABLE B4-47. STACK GAS AND PARTICIPATES3 - FCCU CO BOILER
STACK - INLET AND OUTLET
Totnl Gas Avg Avg Participates Avg
Sample** _ Metier Stock Avg Moisture Cr.iln Stark
Meier STP Temp Temp Dry Collected Loading Velocity X
St.ick Time Ut') (SCF)C (°K) (°F) (HU) (g) Fraction Filter Probe Imp. J] Totnl (gr/SCF) (ft/sec) Isokln.
IS 1745-1857 31.68 31.81 96 538 30.38 185.0 .216 0.0425 0.0282 0.1290 0.1997 0.09C.9 48.98 IK'.O
1015-1127 32.71 32.03 107 ViO 30.58 186.2 .216 0.0372 0.038'. 0.0081 U.083/ O.O'iOl M.9J 107.1
^Sampled ulth LSI EPA-5 train.
Total gas flow rates: CO Boiler Outlet (St.ick No. 15) - 6.53 x 106 SCFM; Prpcipl tator Tnlet - Undetei mined
CCorrected to 70CF
TABLE B4-48. FIXED GASES3 - FCCU CO BOILER STACK - INLET AND OUTLET
% Composition
Stack
15
Precipitator Inlet
Time
1615
1915
1030
1215
1600
1945
C02
14.89
15.23
13.52
14.01
10.88
10.11
H2
0.00
0.00
0.00
0.00
0.49
0.69
02
3.55
3.39
4.35
3.75
3.21
3.31
N2
81.98
81.21
82.67
81.63
77.64
78.14
CO
0,00
0.00
0.00
0.00
7.78
7.74
^Fisher Model 1200 gas partitioner.
Dry basis.
-------
TABLE B4-49. SULFUR SPECIES - FCCU CO BOILER - INLET AND OUTLET
Stark
SO,"
ppra lb/SCFc
Time (Vol)
15 1745-1B57 0.781 1.61x10"'
1015-1127 1.1?6 .2.31x10-'
10'.0
Prrr Ipl
t.itor
Inlet
1215
1525
1530
S0,h SO, tt,S d COS CSj
ppm Ib/SCF ppm Ih/SCF ppm Ib/SCF ppm Ib/SCF ppm Ih/SCK
(Vol) (Vol) (Vol) (Vol) (Vol)
289 4.7flxlO~5
708 1.17x10'"
841 1.39x10"" n.d. n.d. n.d. n.d. n.H. n.d.
871 1.44xlO~" n.d. n.d. n.H. n.d. n.d. n.H.
321 5.30x10"^ n.H. n.d. n.H. n.d. n.d. n.H.
344 5.68x10"'' n.H. n.d. n.d. n.d. n.d. n.H.
II'A ImvtnKcr. B,i(C10«)2 Tttrntton.
61. IbO; Implngci, BnCClO,,)! Tltratlon.
^SIT - 70"F «nd 29.92 Inches HR.
n.d. •= not detecltd.
-------
TABLE B4-50. ALDEHYDES*
FCCU CO BOILER - INLET AND OUTLET
U1
otcicK lime
15 1050-1150
1245-1345
Precipitator 1720-1820
Inlet
Gas Sample Aldehyde
Volume (£) Collected Concentration
@ STPb (jag) ppm(Vol.) lb/SCFh
12.0 220.5 14.77 1.144x10-
12.0 292.5 19.60 1-517x10"
12.0 3105 208.0 1.611xlO~
.6
6
•5
Sample rate = 200 m£/min. Bisulfite method used.
bSTP = 70°F and 29.92 inches Hg..
cDry basis. Calculated as formaldehyde.
-------
TABLE B4-51. OXIDES OF NITROGEN - FCCU CO BOILER - INLET AND OUTLET
Stack
NOX (a.s N02) Concentration3
Time
ppm (Vol.)
lb/SCFb
15
1125
94.1
1.12x10 5
u>
Precipitator
Inlet
1130
1700
105.8
36.4
1.26x10
4.32x10"
1700
46.5
5.52x10
Dry basis.
DSTP = 70°F and 29.92 inches Hg.
-------
TABLE B4-52. HCNa AND NH3b - FCCU CO BOILER CO BOILER STACK - INLET AND OUTLET
HCN Concentration0
Stack Time ppra (Vol.)
15 1515-1545 19.0
1215-1247 19.1
Precipitator
Inlet 1617-1645 109.5
Sampling performed using LSI Method
Sampling performed using LSI Method
c
Dry basis.
lb/SCFd
1.33 x 10~6
1.33 x 10~6
7.65 x 10~6
5 train and 2 N H2SOi,
5 train and O.IN NaOH
Time
1305-1336
1315-1345
1530-1603
NHa Concentration0
ppm (Vol.)
15.36
6.64
3.99
lb/SCFd
6.76 x 10~7
2.92 x 10~7
1.76 x 10~7
irapinger solutions.
impinger solutions.
Corrected to 70°F and 29.92" Hg.
-------
LO
--J
OO
TABLE B4-53. STACK GAS AND PARTICIPATES3 - FCCU COMPRESSOR EXHAUST STACK
Total Gas
Sample ^
Stnck Time
10/.f|-t2'.8
20
1100-1700
Meter
(ft')
62.92
66.81
STP
(SCF)C
59.18
62.76
Avg
Heter
Temp
(*F)
114.9
115.6
Avg
Stack Avg
Temp Dry
("F) (HM)
600 78.39
660 27.42
Purtleulatea
Moisture
Collected
(R) Fraction
1B5.8 0.129
190.'- 0.125
Filter Probe
O.O020 0.2674
0.0011 0.02R7
Imp. {1
0.0173
0 . 004 7
Total
0.2867
0.0367
Grain
Loading
(gr/SCF)
0.075
0.009
Avg
Stnck
Velocity
(ft/sec)
89. 17
91.11
Z
Inokln.
105
9H
Sampled uLth I,S1 F.PA-5 train.
''Total BBS flow - 0.055 x 10* SCFH
r«np = ?0°F and 29.92 Inchon Hg.
TABLE B4-54. METHANE/NONMETHANE HYDROCARBONS3 - AND FIXED GASESb
- FCCU COMPRESSOR EXHAUST STACK
Methane
Concent rat ions
By Height
Stack.
20
Tine
0930
1145
1530
0810
0945
1045
(ppm)
™..
..
—
NC
NC
(Pg/1)
—
—
NC
NC
"-
(Ih/SCF)
--
—
NC
NC
~~
j!y Voliiffle
(ppm)
~-
—
—
4.00
4.00
~-
Nonmethane Concentrations
(As Hexane)
By Weight
(l'l"») (Mg/1) (Ib/SCF)
—
—
NC NC NC
NC NC NC
--
By Volume
(ppm)
...
—
—
75
68
"-
Fined Cases
(Dry Basis)
CO;
(%>
4.0
'..0
6.8
9.0
9.0
8.0
Oj
(X)
10.3
12.5
10.0
7.0
6.5
8.0
NI
«)
76.5
77.0
75.3
76.5
76.0
77.0
CO
(X)
0.5
0.5
0.5
0.5
0.5
0.4
Hoi . Wt
(Dry)
26.62
27.46
27.42
27.76
27.46
27.75
Byron hydrocarbon analyzer using flume lontzation detector.
Fisclmr Modul 1700 gas port It loner.
rNC - Hot Calculated.
-------
(^)
TABLE B4-55. SULFUR SPECIES - FCCU COMPRESSOR EXHAUST STACK
Stack Time
20 0930
1048-1248
1145
1500-1.700
1530
SO
ppm
(Vol)
0.69
0.523
a
3
Ib/SCF
@ STP
1.4 xlO~7
1.04xlO~7
S
ppm
(Vol)
0.66
0.33
o2b
Ib/SCF
@ STP
1.08xlO~
5.29xlO~
7
8
flPA Impinger, BaC10^ Titration.
b.
6% H20 Impinger, BaClOi* Titration.
-------
TABLE B4-56. HCN AND NH3 - FCCU COMPRESSOR EXHAUST STACK
00
o
Source Time
20 1200
1515
1710
20 1200
1515
1710
Baseline
(A)
0.
0.
0.
0.
0.
0.
0058
0065
0068
0060
0075
0074
Measured Net
Absorb Absorb
(A) (A)
0.
0.
0.
0.
0.
0.
0600
0720
0850
0320
0550
0310
HCN
0
0
0
NH3
0
0
0
.0542
.0655
.0782
.0260
.0475
.0236
. Concentration
Volume
(ppra)
1.8
2.1
2.5
1.0
2.4
0.9
By Weight @
(Mg/D
1
2
2
0
1
0
.99
.32
.76
.70
.39
.63
STP
(lb/SCF)u
1
1
1
4
8
3
.24x10 7
.45xlO~7
.72xlO~7
.37xlO~8
.68xlO~°
.93xlO~B
.Infrared analysis at 3.01)J(HCN) and 10.4y(NH3). Path length = 20.25m; cell temperature = 75°C.
STP = 70°F and 29.92 inches Hg.
-------
SECTION 5
SPECIES CHARACTERIZATION
5.1 ORGANIC AND INORGANIC SPECIES CHARACTERIZATION
The characterization and measurement of organic
emissions from controlled and uncontrolled sources were con-
ducted at several petroleum refineries. The controlled sources
under study included the flue gas from carbon monoxide (CO)
boilers (that are charged with flue gas from fluidized catalytic
cracking regenerators) and from a fluidized coking unit. The
uncontrolled sources included wastewater treatment systems,
valves, pumps, flanges, compressors, and drains.
Tables B5-1 through B5-12 and Tables B5-60 and B5-61
list the aromatic species and inorganics contained in emissions
from controlled sources.
Tables B5-13 through B5-59 present the species identi-
fied in various refinery process streams and/or the fugitive
emissions from fittings in service on those process streams.
Each of these sources is identified by the process unit name
followed by the stream name. An effort was made to generalize
these stream names so that similar streams from different
refineries could be compared.
Each process source was sampled in two ways when
possible. A sample of the material in the line was taken
directly for analysis by GC-MS. For liquid streams, a small
381
-------
TABLE B5-1.
ORGANIC SPECIES Hi FCCU CO BOILER
FLUE GAS (STACK NO.11)
Compound
XAD-2
Concentration (ppb)
Particulates
Total
Ace naphthalene
Anthracene/Phenanthrene
GS - Benzene
Benzo (a)pyrcnc
Benzo(ghi)perylene
Chrysene
Fluoranthene
Fluorene
Methyl Anthracene/Phenanthrene
Methyl-2,4-dichlorobenzoic acid
Methyl Fluorene
Methyl naphthalene
Naphthalene
C^ - Naphthalene
Pyrene
0.06
0.1
0.0
0.005
0.01
0.005
0.02
0.05
0.1
0.0
0.05
0.08
0.1
0.1
0.04
0.0
0.0
0.009
0.0
0.0
0.0
0.0
0.0009
0.0
0.04
0.0
0.03
0.03
0.0
0.001
0.06
0.1
0.009
0.005
0.01
0.005
0.02
0.05
0.1
0.04
0.05
0.1
0.1
0.1
0.04
382
-------
TABLE B5-2.
ORGANIC SPECIES IN FCCU CO BOILER
FLUE GAS (STACK NO. 14)
Concentration (ppb)
Compound
Acenaphthene
Acetophenone
Cz-Alkyl acetophenone
Cz-Alkyl anisole
Cz-Alkylbenzaldehyde
C3-Alkylbenzene
C2-Alkylnaphthalene
Benzaldehyde
Benzole acid
Biphenyl
Cresol
Cyclohexane diol
Cyclohexanol
Cyclohexanone
Cyclohexene oxide
Cyanobenzene
Diphenyl oxide
Fluoranthene
FLuorene
1-Methoxy naphthalene
Methyl cyclohexanone
1-Methylnaphthalene
2-Methylnaphthalene
Naphthalene
Phenanthrene/ Anthracene
Phenol
Phenyl benzoate
XAD-2
0.048
0.028
0.015
0.009
0.002
0.013
0.13
0.034
3.5
0.34
0.22
0.13
0.12
0.18
0.80
0.001
0.018
0.011
0.041
0.063
0.0
0.15
0.16
0.43
0.061
0.038
0.013
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.61
0.0
0.0
0.0
0.0
0.0
0.0
Total
0.048
0.028
0.015
0.009
0.002
0.013
0.13
0.034
3.5
0.34
0.22
0.13
0.12
0.18
0.80
0.001
0.018
0.011
0.041
0.063
0.61
0.15
0.16
0.43
0.061
0.038
0.013
333
-------
TABLE B5-3. ORGANIC SPECIES IN FCCU CO BOILER
FLUE GAS (STACK NO. 15)
Concentration (pph)
Compound XAD-2 Particulates Total
Benzaldehyde
Cyclohexanone
Ethyl toluene
Naphthalene
Phthaldehyde3
Phenanthrane/ Anthracene
0.2
0.0
0.0
0.04
0.01
0.01
0.0
0.13
0.01
0.006
0.0
0.0
0.2
0.13
0.01
0.046
0.01
0.01
Q
Sun of two or more isomeric species.
TABLE B5-4. ORGANIC SPECIES IN FCCU CO BOILER
FLUE GAS (STACK NO. 16)
Concentration (ppb)
Compound XAD-2 Particulates Total
a.
Benzoic acid 1.5 0.0 1.5
Naphthalene 0.02 0.0 0.02
PhenolJ 0.003 0.0 0.003
a
Rased on idor.rif ication of corresponding nethyl oster.
Based on identification of corresponding phenol ether.
384
-------
TABLE B5.5.
ORGANIC SPECIES IN FCCU CO BOILER
FLUE GAS (STACK NO.13)
Compound
Concentration (ppb)
XAD-2
Particulate
Total
Acenaphthene
Biphenyl
Chrysene
Dibenzofuran
g
Dimethyl naphthalene
Fluoranthene
Fluorene
Methyl dimethoxybenzoate
Naphthalene
Phenanthrene/ Anthracene
Pyrene
<0.001
0.003
0.0
0.0
0.02
0.006
0.008
0.02
0.025
0.02
0.0
0.0
0.002
0.008
0.0
0.006
0.009
0.08
0.05
0.003
<0.001
0.003
0.002
0.008
0.02
0.012
0.017
0.54
0.10
0.075
0.023
Sum of two or more isomeric species.
385
-------
TABLE B5-6.
ORGANIC SPECIES IN FCCU CO BOILER
FLUE GAS FROM SCRUBBER (STACK NO. 12)
Concentration (ppb)
Compound
Acenaphthene
Acenaphthylene
Anthracene/Phenanthrene
Benzo(a)pyrene
Benzo(g,h, i)perylene
Benzof luorene
Benz (a) anthracene/Chrysene
C2-Alkylnaphthalene
C2-Alkyl phenols
Ca-Alkyl phenols
Dibenzof uran
Fluorene
Fluoranthene
Indanol
Methnaphthalene
Methyl phenols
Methyl indanol
Methyl epoxyoctadecanoate
Methyl hexadecanoate
Methyl octadecanoate
Methyl oleate
Naphthalene
n-Tridecane
n-Tetradecane
n-Pentadecane
n-Hexadecane
n-Heptadecane
n-Octadecane
n-Nonadecane
n-Eicosane
n-Uncosane
n-Docosane
n-Tricoscane
n-Tetracosane
n-Pentacosane
n-Hexacosane
n-Heptacosane
n-Octacosane
n-Nonacosane
n-Triacontane
n-Untriacontane
n-Dotriacontane
XAD-2
0.20
0.42
0.46
0.07
0.03
0.08
0.10
1.25
0.29
1.65
0.29
0.18
0.25
0.16
1.14
0.20
0.07
2.68
3.20
2.23
1.25
1.43
0.09
0.17
0.19
0.23
0.44
0.56
0.61
0.71
0.65
0.63
0.59
0.60
0.46
0.38
0.35
0.30
0.28
0.18
0.10
0.05
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Total
0.20
0.42
0.46
0.07
0.03
0.08
0.10
1.2
0.29
1.6
0.29
0.18
0.25
0.16
1.1
0.20
0.07
2.7
3.2
2.2
1.2
1.4
0.09
0.17
0.19
0.23
0.44
0.56
0.61
0.71
0.65
0.63
0.59
0.60
0.46
0,38
0.35
0.30
0.28
0.18
0.10
0.05
Continued
386
-------
TABLE B5-6. CONTINUED
Concentration (ppb)
Compound XAD-2 Particulates Total
n-Tritriacontane
Ncnyl phenol
Octyl Phenol
Pyrene
0.03
0.66
0.21
0.11
0.0
0.0
0.0
0.0
0.03
0.66
0.21
0.11
387
-------
TABLE B5-7.
ORGANIC SPECIES IN TCC CO BOILER
FLUE GAS (STACK NO. 9)
Concentration (ppb)
Compound
C2-Alkyl biphenyl
C2-Alkyl naphthalene
Cs-Alkyl naphthalene
Cz-Alkyl phenanthrene
C3-Alkyl phenol
Azulene
Benz (a) anthracene
Benzaldehyde
Benzofluoranthene
Benzo(g,h, i)perylene
Benzole acid
Benzopyrene
Biphenyl
Carbazole
Chlorocresol
Chloroxylenol
Chrysene
Cresol
Ethyl phenol
Ethyl toluene
Ethyl xylene
Fluoranthene
Fluorene
Indeo (1, 2 , 3-c , d)pyrene
Methyl fluoranthene
Methyl naphthalene
Methyl phenanthrene
Methyl pyrene
Naphthalene
Phenanthrene/ Anthracene
Phenol
Phthaldehyde3
Phthalic acid°
Pyrene
Xylenol
XAD-2
0.02
0.03
0.02
0.09
0.56
0.01
0.003
1.2
07 02
0.005
15.0
0.02
0.01
0.01
0.07
0.02
0.03
0.02
1.7
0.036
0.054
0.09
0.008
0.007
0.01
0.02
0.15
0.07
0.08
0.17
0.11
0.26
0.20
0.06
1.3
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Total
0.02
0.03
0.02
0.09
0.56
0.01
0.003
1.2
0.02
0.005
15.0
0.02
0.01
0.01
0.07
0.02
0.03
0.02
1.7
0.036
0.054
0.09
0.008
0.007
0.01
0.02
0.15
0.07
0.08
0.17
0.11
0.26
0.20
0.06
1.3
SUID of two or more isomeric species.
Based on identification of corresponding phenol ether.
"Based on identification of corresponding methyl ester.
388
-------
TABLE B5-8.
ORGANIC SPECIES IN FLUID COKER
SCRUBBER INLET (1), (STACK NO. 19)
Concentration (ppb)
Compound
Jt
Ci-Alltyl naphthalene
Azuleae
Benzaldehyde
Benzamlde
Benzofuran
Bcnzoic acid
Benzoaitrile
Benzothiophene
Bipheayl
Butyl benzene
Cyanobenzochiophene
Cyanothiophene
Cyclone xanone
n-Decane
Dibenzofuran
Dibenzothiophene
Diethyl benzene
Diiaethyl ethyl benzene
n-Dodecane
Dodeceae
Ethyl quiniline
Ethyl toluene
Ethyl xylene
Hydroxymethyl quinoline
Methoxy dipehnyl ether
Methyl benzonitrile
Methyl Indan
Methyl naphthalene
Methyl phenyl pyridine
Methyl quinoline
Naphthalene
Naphthonitrile
n-Sonane
Phenaruihrene/ Anthracene
Phenol6
Phthaldehydea
Phthalic acid
Phthalonitrile3
Propyl benzene
Quinoline
Styrene
n-Tridecane
Trideceny
n-Undecane
Undeeene
Xylene3
XAD-2
0.1
5.0
9.0
0.36
9.8
21.08
107.7
5.5
4.5
0.0
7.28
4.2
1.3
0.0
3.0
0.51
0.0
0.0
0.0
0.0
0.0
0.03
0.0
1.8
0.24
3.5
0.0
0.37
0.0
1.1
4.1
10.5
0.0
0.83
6.0
0.10
1.5
10.85
0.0
1.7
0.40
0.03
0.0
0.0
0.0
0.34
Partlculates
0.0
0.0
0.0
0.0
0.0
0.007
8.5
0.16
0.35
0.02
0.03
0.0
0.0
1.1
0.17
0.0
0.11
0.04
0.54
0.31
0.12
1.46
0.28
0.0
0.0
0.0
0.02
0.02
0.06
0.0
0.62
0.29
2.0
0.08
0.0
0.0
0.0
0.0
0.30
0.0
0.0
0.24
0.09
0.87
0.77
0.17
Total
0.1
5.0
9.0
0.39
9.8
21.0
116.
5.7
4.8
0.02
7.3
4.2
1.3
1.1
3.2
0.51
0.11
0.04
0.54
0.31
0.12
1.5
0.28
1.8
0.24
3.5
0.02
0.39
0.06
1.1
4.7
11.
2.0
0.91
6.0
0.10
1.5
11.
0.30
1.7
0.40
0.27
0.09
0.87
0.77
0.51
Sum of two or more isomeric species.
Based on identification of corresponding phenol ether.
Based on identification of corresponding methyl ester.
Baaed on identification of corresponding dimethyl diestei.
389
-------
TABLE B5-9
ORGANIC SPECIES IN FLUID COKER
SCRUBBER OUTLET (2) (STACK NO. 19)
Compound
Azulene
Benzofuran
c
Benzole acid
Benzonitrile
Benzothiophene
Biphenyl
Cresol
Cyanobenzothiophene
Cyanothiophene
Cyclohexane
n-Decane
Dibenzofuran
Dibenzothiophene
Dimethyl naphthalene
Ethyl toluene
Indan
Methyl benzonitrile
Methyl indan
Methyl naphthalene
Naphthalene
Naphthonitrile
Pnenaiiihrene/ Anthracene
Phenol
Phthaldehyde
Quinoline
Xylene
Styrene
XAD-2
3.2
3.4
21.0
110.0
5.5
3.4
0.11
0.06
2.26
0.12
0.0
1.0
0.03
0.02
0.20
0.02
1.6
0.05
0.33
3.6
0.36
0.03
3.04
0.59
0.40
0.93
0.61
Concentration (p
Particulates
0.0
0.0
0.11
-0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.0
0.0
0.0
0.06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
pb)
Total
3.2
3.4
21.0
110.0
5.5
3.4
0.11
0.06
2.3
0.12
0.02
1.0
0.03
0.02
0.26
0.02
1.6
0.05
0.33
3.6
0.36
0.03
3.0
0.59
0.40
0.93
0.61
Sum of two or more isomeric species.
Based on identification of corresponding phenol ether.
"Based on identification of corresponding methyl ester.
390
-------
TABLE B5-10
ORGANIC SPECIES IN FLUID COKER
SCRUBBER OUTLET (2) (STACK NO. 19)
Concentration (ppb)
Compound
C2-Alkyl benzole acid
C2- Alkyl naphthalene
Azulene
Benzaldehyde
Benzofuran
Q
Benzole acid
Benzonitrile
Benzothiophene
Biphenyl
Butyl benzene
Cresol
Cyanobenzothiophene
Cyanothiophene
Cyclohexanone
Dibenzofuran
Dibenzothiophene
Ethyl toluene
Ethyl xylene
Indan
Isoquinoline
Methyl benzonitrile
Methyl indan
Methyl napthalene
Methyl quinoline
Naphthalene
Naphthonitrile
Pehnanlhrene/ Anthracene
Phenol
Phthaldehyde3
Phthalic acid
Propyl benzene
Quinoline
Styrene
Xylene
XAD-2
1.2
0.03
0.68
2.3
1.1
11.0
37.0
1.87
0.54
0.0
0.02
0.067
1.57
0.19
0.41
0.0
0.13
0.02
0.033
0.01
0.21
0.03
0.18
0.13
1.75
0.16
0.01
1.11
0.009
0.05
0.02
0.27
0.16
0.16
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.65
0.02
0.07
0.003
0.0
0.0
0.0
0.0
0.07
0.008
0.11
0.02
0.0
0.0
0.21
0.03
0.008
0.0
0.37
0.06
0.02
0.0
0.0
0.0
0.02
0.0
0.0
0.02
Total
1.2
0.03
0.68
2.3
1.1
11.0
37.6
1.9
0.61
0-003
0.02
0.067
1.57
0.19
0.48
0.008
0.24
0.04
0.033
0.01
0.42
0.06
0.188
0.13
2.12
0.22
0.03
1.11
0.009
0.05
0.04
0.27
0.16
0.18
Sum of two or more isomeric species.
Based on identification of corresponding phenol ether.
"Based on identification of corresponding methyl ester.
Based on identification of corresponding dimethyl diester.
391
-------
TABLE B5-11.
ORGANIC SPECIES IN FLUID COKER
CO BOILER FLUE GAS (2) (STACK NO. 10)
Concentration (ppb)
Compound
Benzaldehyde
Benzofuran
Q
Benzole acid
Benzonitrile
Benzothiophene
Biphenyl
Chrysene
Cyclohexanone
Dibenzofuran
Fluoranthcnc
Fluorene
Q
Methyl naphthalene
Naphthalene
Naphthonitrile
Phenanthrene/ Anthracene
Phenol
Phthaldehyde3
Pyrene
XAD-2
9.8
0.03
58.0
3.2
0.04
0.02
0.0
0.11
0.04
0.01
0.01
0.05
0.44
0.0
0.03
0.009
0.02
0.008
Particulates
0.0
0.0
0.0
0.55
0.0
0.16
0.003
0.22
0.15
0.002
0.0
0.006
0.03
0.07
0.02
0.0
0.0
0.005
Total
9.8
0.03
58.1
3.8
0.04
0.18
0.003
0.33
0.19
0.012
0.01
0.011
0.47
0.07
0.05
0.009
0.02
0.013
Sura of two or nore isomeric species.
Based on identification of corresponding phenol ether.
"Based on identification of corresponding methyl ester.
TABLE B5-12.
ORGANIC SPECIES IN RESIN FUME OXIDATION
FLUE GAS, (STACK NO. 1)
Compound
Biphenyl
Methyl naphthalene
Naphthalene
Phenanthrene /Anthracene
Pyrene
Concentration (ppb)
XAD-2
0.017
0.0011
0.0059
0.0097
0.011
Particulates
0.0066
0.0
0.0
0.0
0.0
Total
0.024
0.001
0.006
0.010
0.011
392
-------
TABLE B-13. CRUDE DISTILLATION UNIT: FLASHED CRUDE
Compound
Benzene
Toluene
Echylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propyl benzene
3 or 4-Ethyl toluene
1,3, 5-Tr imetnylbenzene
2-Ethyl toluene
1,2, 4-Trimethylbenzene
Isobutylbenzene
1,2, 3-Tr imethylbenzene
Me thylpropyl benzene
Methylpropylbenzene
Diethvlbenzene
Die thylbenzene
Dimethylethylbenzene
Methyl indan
Dimethylethylbenzene
Tetramethylbenzene
Methyl indan
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
Cs-Alkylbenzene
2-Methylnaphthalene
1-Methy] naphthalene
Biphenyl
C2~Alkylnaphchalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C?. -Naphthalene
Cs-Naphthalene
C 3 -Naphthalene
C 3 -Naphthalene
Fluorene
Phenanthrene/ Anthracene
Bulk Liquid
ppm
60
680
220
640
240
60
—
580
400
310
680
80
280
240
160
120
200
290
18
80
120
21
90
860
40
30
1000
860
320
160
1100
1700
540
160
320
860
710
390
80
140
Vapor on
XAD, Mg
78
600
160
460
110
42
130
370)
220)
160
320
18
84
54
154
440
66
78
—
36
32
—
—
120
—
—
50
25
—
—
T--
—
Vapor on
Tcnax, Ug
0.10
0.47
0.09
0.24
0.11
0.34
—
0.15
0.14
0.13
0.08
0.08
—
0.05
0.06
—
0.05
—
0.02
0.15
—
—
0.01
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
393
-------
TABLE B5-14.
CRUDE DISTILLATION UNIT:
ACCUMULATOR GAS
ATMOSPHERIC TOWER OVERHEAD
Peak
Number
1
(is)a
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
(IS)
Compounds
(In Retention Order)
Benzene
de-Benzene
CsHioO, possibly Tetrahydropyran
CeHizO, possibly a Dimethyl tetrahydrof uran
CeHizO, possibly a Methyl pentanol
C5Hi202, or C6Hi20
Toluene
CyHiaO, possibly a Trimethyl dihydrofuran
Ethylbenzene
m- + p- Xylene
o-Xylene
3- + 4- Ethyltoluene
1,3, 5-Trimethylbenzene
1 , 2 ,4 -Trimethyl benzene
Isobutylbenzene
Indan
Ci»-Alkylbenzene
Ci»-Alkylbenzene
Ci, -Alky Ibenzene
Cs-Alkylbenzene
Naphthalene
di o-Anthracene
Vapor on XAD
(ug)
606.0
—
—
230.0
210.0
770.0
1,220.0
690.0
70.2)
430.0)
120.0
7.5}
18.0)
28.5
—
—
—
—
—
—
—
(600.0)
Vapor on Tenax
(Mg)
0.100
(0.035)
0.010
—
—
—
0.036
—
0.054
0.032
0 065
' 0.068
0.031
0.010
0.052
0.050
0.046
0.021
0.140
IS = Internal Standard
-------
TABLE B5-15. CRUDE DISTILLATION UNIT: INTERMEDIATE
NAPHTHA PRODUCT, BULK LIQUID
Compound ppm
Benzene 26.3
Toluene 64.0
Ethylbenzene 153.0
ir./p-xy]enes 204.0
o-xylenes 40.3
i-propylbenzene 3.74
n-propylbenzene. 45.9
m/p-ethyltoluene 236.0
o-ethyltoluenc 47.6
1,2,4-Trimethylbenzene 105.0
1,2,3-Trimethylbenzene 9.52
Cn-Alkylbenzene 3.42
Cn- Alkylbenzene 70.0
n-butylbenzene 88.0
Cii-Alkylbenzene '24.0
Ci,-A1.kylbenzene 2^.0.
Methylindan 10.8
Methylindan 94.0
Cn-Alkylbenzene 60.0
Ci4-Alkylbenzene 36.0
Ct-Alkylbenzene 3.04
Cs-Alkylbenzene 8.05
Cu-Alkylbeuzene 13.6
Cs-Alkylbenzene 6.56
Cs-Alkylbenzcne 20.8
Cb-A.lkyl benzene ^^-O
Cs-Alkylbenzene 70.0
Tetralin 74.0
Cj-Alkylbcnzene 27.5
Naphthalene 24.2
Cz-Alkyl Tndan/Methyltetralin 140.0
C2-Alkyl Indan/Methyltetralin 115.0
2-Methyl te.tralir. 96.1
Cz-Alkyl Tndan/Mothyltetralin 102.0
C2-Alkyl Indan/Methyltetralin 112.0
C2-Alkyl Indan/Methyltetralin 52.7
2-MethyInaphthalcne 32.3
1-Methylnaphthalene 16-°
C2-Alky! naphthalene 5-25
C2-Alkyl naphthalene 25-°
B.Phenyl 7.70
C2-Alkyl naphthalene 23-8
Cz-Alkyl naphthalene 12.3
Continued
395
-------
TABLE B5-15. Continued
Compound ppni
Methylbiphenyls 13.6
Cj-Alkyl naphthalene 2.67
Cj-Alkyl naphthalene 9.28
Cs-Alkyl naphthalene 13.1
C3-Alkyl naphthalene 9.86
Cs-Alkyl naphthalene 5.80
C2-Alkyl biphenyls 36.0
Phenanthrene/anthracene 5.50
Methyl phenanthrene/anthracene 14.0
C?-Alkyl phenanthrene/anthracene 14.8
Fluorenthene 3.10
Pyrene 7.50
Methyl fluoranthene/pyrene 10.8
Methyl fluoranthene/pyrene 15.6
Ci-Alkyl fluoranthene/pyrene 26.0
Ci-Alkyl chrysenes/Benzointhracines 0.533
396
-------
TABLE B5-16. CRUDE DISTILLATION UNIT: FULL RANGE
STRAIGHT RUN rtAPHTHA, 5ULK LIQUID
Compound PPM
Benzene 57.5
Toluene 139.0
Ethylbenzene ' 300.0
Tn/p-xylenes 229.0
o-xylene 228.0
i-propylbenzene 21.6
n-propylbenzene 63.8
m/p-ethyltoluene 284.0
1 , 3, 5-Triniethylbenzene 74.8
o-ethyltoluene 49.3
1,2,4-Trimethylbenzene 257.0
sec-Butylbenzene 26.0
1,2,3-Trimethylbenzene 21.B
C^-Alkylbenzene 28.8
Inden 4.38
C4-Alkylbcnzene 68.0
n-Butylbenzene 28.0
CVAl.kylhenzene 72.0
C4-Alkylbenzene 90.0
Methylindan 30.0
Methylindan 18.4
CM-Alkylbenzene 26.0
C,,-Alkylbenzene 8.40
Cs-Alkylbenzene 47.31
C5-Alkylbenzene 7.00
(VAlkylbenzene 24.0
Cs-Alkylbensjene 17.4
Methylindan 7.00
Cs-Alkylbenzene 8.25
C5-Alkylbenzene 15.0
C5-Alkylbenzene 37.5
Methylindan 9.10
Cj-Alkylbenzena 45.0
Cs-Alkylbenzene 11.5
Cs-Alkylbenzene 6.00
Naphthalene 12.1
Cz-Alkylincene/methyltetralin 17.4
397
-------
TABLE B5-17.
CRUDE DISTILLATION UNIT: VIRGIN
MIDDLE DISTILLATE PRODUCT, BULK LIQUID
Compound
ppm
To lu e ne
ELhylbenzene
m/p-xylenes
o-xylene
n-propylbenzene
m/p-ethyltoluene
1,3,5-Trimethylbenzcne
o-ethyltoluene
1,2,4-Trimethylbenzene
1,2,3-Trimethylbenzene
Indan
C^-Alkylbenzene
Ci+-Alkylbenzene
Cu-Alkylbenzene
Methylindan
C^-Alkylbenzene
Ci+-Alkylbenzene
Methylindan
C5-Alky!benzene
Cs-Alkylbenzene
Methylindan
Cs-Alkylbenzenc
Cs-Alkylbenzene
Naphthalene
Benzothiophene
Cs-Alkylbenzene
Mcthylbenzothiophene
2-Methylnaphthelene
Me thylbenzothiophene
1-Methylnaph thalene
Cz-Alkylbcnzothiophene
Cz-Alkylbenzothiophenc
C2-AlkyInaphthalene
Cz-Alkylbenzothiophene
C2~Alkylnaphthalene
Cj-Alkylbtnzothiophene
C2-Alkylnaphthalene
C2-Alkylbenzothiophene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Acenaphthcne
C 3-Alkylbenzothiophene
C3-Alkylnaphthalene
4.48
9.10
40.3
11.7
7.80
27.3
22.1
5.85
89.8
14.0
11.4
48.0
38.0
106.0
28.0
70.0
80.0
26.0
27.5
65.0
29.9
80.0
32.5
100.0
38.0
25.0
129.0
760.0
114.0
89.9
80.0
36.0
62.5
205.0
400.0
64.0
700.0
54.0
143.0
32.5
19.6
215.0
241.0
Continued
398
-------
TABLE B5-17. Continued
Compound
C3-Alkylnaphthalene
Cq -Alky Inaph thalene
Ca-Alkylnaphthalene
Fluorene
C 3-Alkylnaph thalene
Methylacenaphthene
Cu-Alkylbenzothiophene
Cu-Alkylnaph thalene
Me thy If luorene
Ca-Alkylacenapthene
Methylfluorene
Methylfluorene
Dibenzothiophene
Phenanthrene./ Anthracene
C?- Alky If lucrene
Methyldibenzothiophcne
Methyl dibenzothiophene
Methyl phenanthrene/anthracene
Methyl phenanthrene/anthracene
C 2- Alky Idibenzothiophene
Cz-Alkyl phenan threne /anthracene
Cz- Alky Idi hen znthiophene
Cz-Alkyl phenanthrene/anthracene
C2-Alkyl p lie nan threne /anthracene
Cz-Alky] dihenxothiophene
Cn- Alky Idi ben zothiophene
C2~Alkyl phenanthrene/anthracene
Fluoranthene
C3-Alkyldibenzothlophcne
Ca-Alkyl plienan threne /anthracene
C s-Alkyl phenanthrene/anthracene
Cs-Alkyl phenanthrene/anthracene
Pyrene
Cs-Alkyl phenanthrene/anthracene
C 4- Alky! dibenzothiophene
C 3-A1 kyJ phenanthrene/anthracene
Methyl f luoranthen/pyrene
Methyl f ] uoran then/pyrene
249.0
235.0
171.0
34.5
69.6
86.0
100.0
348.0
18.7
126.0
30.6
10.4
32.0
56.1
62.0
27.2
51.0
51.8
40.6
12.6
4.75
4.60
18.0
40.0
36.3
22.0
92.5
3.30
65.0
5.22
4.93
10.73
4.80
24.9
13.3
8.41
2.99
3.51
399
-------
TABLE B5-18. CRUDE DISTILLATION UNIT:
ATMOSPHERIC GAS OIL, BULK LIQUID
Compound
Toluene
Ethylbenzcne
m/p-xylenes
c-xylene
m/ p- e thy 1 to lu ene
1, 3, 5-Trimetnylbenzene
o-ethyltoluene
Ci»- Alky Ibenz ene
Ci,- Alky Ibenz ene
C^-Alkylbenzene
C 5- Alky "Ibenz ene
Naphthalene
2-Methylnapnthaiene
1-Methylnaphthplenc
GJJ_ Alky Inaph thai ene
Cj-Alkylnaphthalene
C?-Alkylnaphthalene
C^-Alkylnaphthalene
Cj-Alkylnaphthalene
Phenanthr ene /anthracene
Methyl phenanthrene/anthracene
Methyl phenanthrene/anthracene
C ? - Alk y 1 ph en a n th r ene / an t hr ac en e
C3~Alkyl phenanthrene/anthracene
7.60
5.46
11.1
4.68
15.1
5.27
18.7
4.40
7.20
4.80
5.25
3.52
4.75
3.48
9.75
0.750
13.8
8.25
14.5
3.30
10.6
14.0
80.0
60.9
400
-------
TABLE B5-19. CRUDE DISTILLATION UNIT: LIGHT
VACUUM GAS OIL, BULK LIQUID
Compound ppm
Toluene 5.04
Ethylbenzene 5.85
m/p-xylene 9.88
o-xylene 11.6
n-propylbenzene 3.22
m/p-ethyltoluene 17.0
1,3,5-Trimethylbenzene 7.48
o-ethy1toluene 9.01
1,2,4-Trimethylbenzene 12.4
Indan 4.50
Cu-Alkylbenzene 10.2
C^-Alkylbenzene 16.0
C4-Alkylbenzene 6.80
Methylindan 5.20
Methylindan 5.00
C,,-Alkylbenzene 8.80
C^-Alkylbenzene 80.0
Methylindan 4.20
C5-Alkylbenzene 45.0
C5-Alkylbenzene 3.5
C5-Alkylbenzene 3.25
Methylindan 11.3
C5-Alkylbenzene 5.00
Cs-Alkylbenzene 5.00
Tetralin 1.60
Naphthalene 27.5
C2-Alkylindan/methyltetralin 27.3
C5-Alkylbenzene 14.0
C2-Alkylindan/methyltetralin 19.2
C5-Alkylbcnzene 15.3
C2-Alkylindan/methyltetralin 15.2
C2-Alkylindan/tnethyltetralin 18.3
2-Methylnaphthalene 68.4
1-Methylnaphthalene 18.9
C2-Alkylnaphthalene 25.0
C2~Alkylnaphthalene 72.5
Biphenyl 8.80
C2-Alkylnaphthalene 113.0
C2-Alkylnaphthalene 70.0
C2-Alkylnaphthalene 18.0
Methylbiphenyls 13.6
Cj-Alkylnaphthalene 34.8
C3-Alkylnaphthalene 43.5
401
-------
TABLE B5-19. Continued
Compound ppm
C 3- Alky 1 naphthalene
Cs-Alkylnaphthalene
Fluorene
C3-Alkylnaph thai ene
Methyl acenaphthalene
Cz -Alkylbiphenyls
Methylfluorene
Paenanthr ene/ anthracene
C2 -Alkylf luorene
Methyl phenanthrene/anthracene
Methyl phenanthrene/anthracene
Cg-Alkyl phenanthrene/anthracene
C3-Alkyl phenanthrene/anthracene
55.1
31.9
9.36
4.93
13.6
28.0
9.35
12.1
9.40
6.30
5.18
9.50
2.9
TABLE Bb-20. CRUDE DISTILLATION UNIT: VACUUM
GAS OIL, BULK LIQUID
No Aromatic Species Detected.
402
-------
TABLL B5-21. CRUDE DISTILLATION UNIT; VACUUM GAS OIL
Compound
Benzene
Toluene
Ethylbenzene
T., p-Xylene
o-Xylene
Isopropylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethylbenzene
2-Ethyl toluene
sec-Buty Ibenzene
1, 2 , 4-TriTr.ethylbenzene
Di ethyl benzene
Methylisopropylbenzene
Methylpropylbenzene
.Methylpropylbenzene
Methylpropylbenzene
Diethylbenzene
Die thy]. benzene
Diir.ethyle thy Ibenzene
Dimethylethy Ibenzene
Dimethyl ethy Ibenzene
Diir.ethylethylbenzene
C 5 -Alky Ibenzene
Dime thy le thy Ibenzene
Tetramethy] benzene
Tetrame thy Ibenzene
Tetramethy Ibenzene
Cs -Alky Ibenzene
Cs-Alky Ibenzene
Naphthalene
Cs-Alky Ibenzene
Cs-Alky Ibenzene
Ci -Alky Ibenzene
Bulk Liquid, Vapor on
ppm XAD,yg
1.5
29.0
8.9
42.0
34.0
11.0
49.0
38-0
30.0
73.0
17.0
55.0
13.0
10.0
4.2
25.0
14.0
19.0
17-0
20.0
11.0
10.0
5.6
10.0
4.7
7.0
17.0
4.9
31.0
5.8
59.0
6.7
2.8
2.6
Vapor on
Tenax,pg
0.00046
0.0070
0.0030
0.0099
0.0046
0.0017
0.0096
0.0052
0.0039
0.0099
0.0029
0.0062
0.0031
—
O.OOU49
0.0068
—
0.0029
0.0039
0.0044
—
—
—
0.0034
0.0034
0.0024
0.0065
0.0018
0.014
0.0016
—
—
aNone of the listed vapor species were found in the bulk liquid. The vapor
species, therefore, must have been adsorbed from the ambient air or resulted
from cross-contamination with other samples due to residue in the sampling
train.
403
-------
TABLE B5-22. CRUDE DISTILLATION UNIT: HEAVY
VACUUM GAS OIL, BULK LIQUID
No Aromatic Species Detected
TABLE B5-23. CRUDE DISTILLATION UNIT: VACUUM
RESIDUE, BULK LIQUID
No Aromatic Species Detected.
404
-------
TABLE B5-24,
API SEPARATOR: SURFACE OIL SKIMMED
FROM INLET BAY, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1,3 ,5-Trimethy Ibenzene
2-Ethyl toluene
1, 2 ,4-Trimethy Ibenzene
Isobutylbenzene
1,2, 3-Trimethylbenzene
Methylpropylbenzene
Indan
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dime thyle thy Ibenzene
Methyl indan
Dime thyle thy Ibenzene
Tetrame thy Ibenzene
Tetramethylbenzene
Methyl indan
€5 -Alky Ibenzene
Cs -Alky Ibenzene
Naphthalene
C 5 -Alky Ibenzene
Cs -Alky Ibenzene
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
Ca-Alkylnaphthalene
C2-Alkylnaphthalene
Ca-Alkylnaphthalene
C2-Alkylnaphthalene
C2~Alkylnaphthalene
C2 -Biphenyl
C 3 -Naphthalene
C$ -Naphthalene
C3 -Naphthalene
C 3 -Naphthalene
Fluorene
Phenanthrene/Athracene
di c -Anthracene
Concentration
(ppm)
230
1800
480
1300
390
100
240
1000
500
460
1000
60
330
180
60
470
130
300
370
120
130
140
60
150
50
160
2000
100
80
2200
1700
620
390
1800
3000
700
240
840
390
1200
860
470
160
220
—
405
-------
TABLE B5-25. API SEPARATOR: SURFACE OIL SKIMMED
FROM INLET BAY, BULK LIQUID
Concentration
Compound (ppm)
Benzene 24
Toluene 460
Ethylbenzenc 30
ro,p-Xylene 350
o-Xylene 210
Isopropylbenzene 72
n-Propylbenzene 160
3 or 4-Ethyl toluene 710
1,3,5-Trimethylbenzene 490
2-Ethyl toluene 145
1,2,4-Trimethylbenzene 730
1,2,3-Trimethylbenzene 160
Methylpropylbenzene 79
Methylpropylbenzene 14
Diethylbenzene 31
Dimethylethylbenzene 170
Dimethylethylbenzene 78
Diethylbenzene 190
Dimethylethylbenzene 25
Dimethylethylbenzene 180
Cs-Alkylbenzene 140
Cs-Alkylbenzene 65
Cs-Alkylbenzene 90
Cs-Alkylbenzene 20
Dimethylethylbenzene 145
Tetramethylbenzene 250
Cs-Alkylbenzene 35
Tetramethylbenzene 260
Cs-Alkylbenzene 80
Cs-Alkylbenzene 100
Cs-Alkylbenzene 165
Cs-Alkylbenzene 120
Cs-Alkylbenzene 190
Cs-Alkylbenzene 55
Cs-Alkylbenzene 55
Cs-Alkylbenzene 165
Cs-Alkylbenzene 70
dio-Anthracene
406
-------
TABLE B5-26
API SEPARATOR: SURFACE OIL SKIMMED
FROM OUTLET END, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 .
43
44
Compound
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbcnzenc
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethy Ibenzene
2-Ethyl toluene
see-But ylbenzene
1,2, 4-Trimethy Ibenzene
Diethylbenzene
Me thy lisop ropy Ibenzene
Me thylpropy Ibenzene
Diethylbenzene
Dimethylethylbenzene
Dime Chyle thy Ibenzene
Tetramethy Ibenz ene
Tetrame thy Ibenzene
Cs -Alky Ibenzene
Naphthalene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylnaphthalene
2-Methylnaphthalene
C -Alkylbenzene
1-Methylnaphthalene
Cs-Alkylnaphthalene
Biphenyl
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
Ca-Alkylnaphthalene
Acenaphthene
C 3 -Alky Inapht ha lene
Ca-Alkylnaphthalene
C? -Alkylnaphthalene
Cs-Alkylnaphthalene
Fluorene
C 3 -Alkylnaphthalene
Concentration
(ppm)
280
200
2,400
950
250
2,500
1,200
950
3,800
280
1,600
210
85
700
600
900
850
1,100
120
6,500
1,200
210
430
180
120
140
160
23,000
140
14,000
70
380
4,100
18,000
22,000
4,500
1,100
600
6,000
10,000
11,000
3,200
1,200
240
Continued
407
-------
TABLE B5-26. Continued
Peak.
No.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Compound
03 -Alkylnaphthalene
Methylbiphenyl
Ci» -Alkylnaphthalene
Cu -Alkylnaphthalene
Ci4 -Alkylnaphthalene
Cu -Alkylnaphthalene
Ci* -Alkylnaphthalene
C ^-Alky Inaphthalene
Methyl fluorene
Methyl fluorene
Ci>-Alky 1 naphthalene
Ci* -Alkylnaphthalene
Phenanthrene /Anthracene
di o-Anthracene
Concentration
(ppm)
500
4,600
1,700
1,600
220
800
1,300
850
1,300
240
1,300
380
1,800
408
-------
TABLE B5-27
API SEPARATOR: OIL FROM THE SKIM
OIL SUMP, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1 , 3 ,5-Trimethylbenzene
2-Ethyl toluene
1 , 2 ,4-Triraethylbenzene
Isobutylbenzene
1,2, 3-Trimethylbenzene
Methylpropylbenzene
Indan
Methylpropylbenzene
Diethylbenzene
Dicthylbenzene
Dime thy lethylbenzene
Methyl indane
Dime thy lethylbenzene
Tetraraethylbenzene
Tetramethylbenzene
Methyl indan
C5-Alkylbenzene
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
C5-Alkylbenzene
2-Methylnaphthalene
1-Methylnaph thalene
Biphenyl
C2 -Alky Inaph thalene
C2 -Alky Inaph thalene
C2 -Alkylnaphthalene
C 2 -Alky Inaph thalene
C2 -Alky Inaph thalene
C 3 -Naphthalene
C3-Naphthalene
C 3 -Naphthalene
C3-Naphthalene
Fluorene
Phenanthrene/ Anthracene
d j c-Anthracene
Concentration
(ppm)
70
1400
540
1600
450
130
480
1700
720
630
1600
100
480
240
120
740
220
320
520
220
240
320
60
260
280
240
690
120
130
4000
2700
840
390
2400
4500
1200
390
760
2000
1400
700
250
260
—
409
-------
TABLE B5-28. CRUDE DESALTER: EFFLUENT
WATER, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Compound
Benzene
Toluene
Ethylbenzene
m.p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1, 3,5-Trimethylbenzene
2-Ethyl toluene
1,2, 4-Tr imethylbenzene
1,2, 3-Trimethylbenzene
Diethylbenzene
Naphthalene
Carbazole
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
Ci-Alkylnaphthalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C 3 -Naphthalene
C3-Naphthalene
Ca-Naphthalene
Fluorene
Phenanthrene/ Anthracene
di o-Anthracene
Acenaphthene
Concentration
(ppb)
6.6
3.4
7.3
2.2
9.9
1.4
4.8
15.0
1.2
5.9
18 0
12.0
3.8
450.0
51.0
150.0
140.0
100.0
20.0
67-0
120.0
36-0
10.0
48-0
37.0
23-0
22.0
50.0
—
100.0
410
-------
TABLE B-29. CRUDE DESALTER: EFFLUENT
WATER, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene/p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
1 ,3,5-Trimethylbenzene
2-Ethyl toluene
1 ,2,4-Trimethylbenzene
(\-Alkylbenzene
Indan
Ci, -Alkylbenzene
Ci, -Alkylbenzene
Ct, -Alkylbenzene
Ci, -Alkylbenzene
C4 -Alkylbenzene
Methyl indan
C4 -Alkylbenzene
Methyl indan
C 5 -Alkylbenzene
C^ -Alkylbenzene
C,, -Alkylbenzene
C^ -Alkylbenzene
C 5 -Alkylbenzene
C5-Alkylbenzene
Naphthalene
Ci, -Alkylbenzene
2-Methylnaphthalene
1-Me thy Inaph thai ene
Biphenyl
Dime thylnaphthalene
Dime thy Inaph thalene
Dime thylnaphthalene
Dime thylnaphthalene
Dime thylnaphthalene
C3-Alkylnaphthalene
Methyl biphenyl
Methyl biphenyl
C 3-Alkylnaphthalene
Methyl biphenyl
C 3 -Alky Inaph thalene
C 3 -Alky Inaph thalene
Concentration
(ppb)
3.1
11.0
1.1
6.9
2.4
0.10
0.12
0.62
0.44
0.25
0.14
0.06
0.19
0.05
0.03
0.14
0.23
0.14
0.07
0.14
0.11
0.15
0.13
0.04
0.07
0.10
0.05
8.1
0.17
0.49
0.32
0.02
0.02
0.07
0.15
0.05
0.01
0.01
0.14
0.04
0.03
0.03
0.03
0.03
Continued
411
-------
TABLE B5-29. Continued
Peak
No.
45
46
47
48
49
50
51
52
Compound
Cs -Alkylnaphthalene
C-j -Alkylnaphthalene
GS -Alkylnaphthalene
Fluorene
Methyl fluorene
Methyl fluorene
Dibenzothiophene
Phenanthrene
Concentration
(ppb)
0.04
0.04
0.01
0.004
0.006
0.006
0.03
0.01
412
-------
TABLE B5-30. CRUDE DESALTER: EFFLUENT
WATER, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
1,3, 5-Trimethylbenzene
Methylethylbenzene
1,2, 4-Tr inte thylbenzene
sec-Butylbenzene
Methylpropylbenzene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
C2-Alkylnaphthalene
Fluorene
di o -Anthracene
Concentration
(ppb)
36
2600
290
250
130
24
120
110
60
56
100
1200
220
210
40
140
21
—
TABLE B5-31. SOUR WATER STRIPPER: SOUR
WATER FEED, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
Compound
Dime thy Id isul fide
Phenol
Methylphenol3
Methylphenol
Methylquinoline
Dimethylphenol3
Dimethylphenol
Dimethylphenol
Methylquinoline
di o-Anthracene
Concentration
(ppm)
100.0
120.0
14.0
46.0
4.8
5.6
3.6
2.1
3.3
Identification based on corresponding methyl ether.
413
-------
TABLE B5-32
FLUID CATALYTIC CRACKER:
(GAS TO THE ABSORBERS)
COMPRESSOR DISCHARGE
Compound
Benzene
Toluene
Ethylbenzene
ra,p-Xylene
o-Xylene
Isopropylbenzene
n-Propyl benzene
3 or 4-Ethyl toluene
1,3, 5-Trimethylbenzenc
2-Ethvl toluene
1, 2 , 4 -Tr ime thy 1 benzene
1 , 2,3-Trimethylbenzene
Methylpropylbenzene
Diethylbenzene
Dime thy Ibenzene
Dime thy let hylbenzcne
Tetranethylbenzene
Tetranethylbenzene
C 5 -Alky Ibenz ene
C5-Aklybenzene
Naphthalene
2-Methylnaph thai ene
1-Methylnaphthalene
Vapor on XAD
Resin (]-g)
21.0
93-0
13.0
46.0
14-0
—
—
12.0
6.0
2.4
13-0
2.3
3.8
1.6
4.1}
0.4)
—
2.0
—
—
23.0
1.9
.0.3
Vapor on
Tenax (Ug)
0.54
2.5
0.68
1.6
0.58
0.05
0.30
0.74
0.55
0.31
0.94
0.28
0.40
0.22
0.48
0.08
0.26
0.16
0.13
0.01
—
—
414
-------
TABLE B5-33.
FLUID CATALYTIC CRACKER: LOW PRESSURE
SEPARATOR GAS (COMPRKSSOP. SUCTION)
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
u-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethylbenzene
2-Ethyl toluene
see-But ylbenzene
1 , 2 , 4-Trimethylbenzene
Methylpropylbenzene
Dime thy lethly benzene
Diethylbenzene .
C5-Alkylbenzene
Tetramethylbenzene
Cs-Alkylbenzene
Naphthalene
Vapor on
XAD, ug
— _
8.5
—
—
—
0.55
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Vapor on
Tenax, ug
0.028
0.054
0.0085
0.019
0.059
0.0010
0.0049
0.014
0.0096
0.0065
0.022
0.0086
0.0052
0.013
0.018
0-0083
0.0049
0.014
0.011
0.059
-------
TABLE B5-34.
FLUID CATALYTIC CRACKER: LOW PRESSURE
SEPARATOR LIQUID, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene /p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
1 ,3 ,5-Triniethylbenzene
2-Ethyl toluene
Ci^-Alkylbenzene
1 , 2,4-Trimethylbenzene
C^-Alkylbenzene
Indan
Ci^-Alkylbenzene
Ci^-Alkylbenzene
Ci^-Alkylbenzene
Ci^-Alkylbenzene
Ci,-Alkylbenzene
Methyl indan
(\-Alkylbenzene
Methyl indan
C5-Alkylbenzene
Cit-Alkylbenzene
Ci,-Alkylbenzene
Cc-Alkylbenzene
Cs-Alkylbenzene
Methyl indan
Methyl indan
C L -Alky Ib en 2 en e
Cs-Alkylbenzene
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
C2-Alkyl indan
Cz-Alkyl indan
C.»-Alkylbenzene
C2-Alkyl indan
Cs-Alkylbenzene
C 5 -Alky 1 benzene
Cs-Alkylbenzene
Cs-Alkylbenxene
Cj-Alkylbenzene
Cs-Alkylbenzene
Concentration
(P?b)
4,300
5,000
7,300
55,000
32,000
5,600
44,000
66,000
14,000
82,000
1,300
20,000
2,000
15,000
15,000
14,000
19,000
4,600
24,000
7,000
24,000
1,200
2,200
4,000
20,000
18,000
4,700
16,000
16,000
7,000
14,000
16,000
15,000
3,000
21,000
28,000
13,000
15,000
15,000
4,300
1,200
2,100
2,500
8,800
Continued
416
-------
TABLE B5-34. Continued
Peak
No.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Compound
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
C2-Alkyl indan
Cs-Alkylbenzene
CG-Alkylbenzene
Cz-Alkyl indan
Cs-Alkylbenzene
C2-Alkyl indan
Cs-Alkylbenzene
Ce-Alkylbenzene
C s -Alky Ibenzene
C2-Alkyl indan
Methyl benzothiophene
Ce -Alky Ibenzene
C2-Alkyl indan
Methyl benzothiophene
2-Me Chylnaphthalene
Methyl benzothiophene
Methyl benzothiophene
1-Methylnaphthalene
Methyl benzothiophene
Ca-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Ca-Alkylnaphthalene
Concentration
(ppb)
5,200
4,800
1,300
11,000
7,500
8,100
11,000
7,500
14,000
3,900
7,500
5,000
9,700
500
2,500
5,000
1,400
16,000
1,400
1,200
15,000
1,600
700
1,400
1,100
300
417
-------
TABLE B5-35.
FLUID CATALYTIC CRACKER: LOW
PRESSURE SEPARATOR LIQUID
Peak
Number
1
(IS)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
• 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
(IS)
Compounds
(In Retention Order)
Benzene
dg-Benzene
Toluene
Ethylbenzene
n— f-p-Xylene
o-Xylene
Isopropylbenzene
n-Propyl benzene
3- + 4-Ethyltoluene
1,3, 5-Trimethylbenzene
2-Ethyltoluene
1, 2 ,4-Trimethylbenzene
1,2, 3-Trimcthylbenzene
C i, -Alkylbenzene
Indan
Ci, -Alkylbenzene
Cu -Alkylbenzene
Cu -Alkylbenzene
C i, -Alkylbenzene
Ci, -Alkylbenzene
2- +- Methylindan
Cu- Alkylbenzene
dt -Alkylbenzene
Methyl indan
Methylindan
Ci,- Alkylbenzene
C 5 -Alkylbenzene
C 5 -Alkylbenzene
Naphthalene
C^-Alkylbenzene
C2-Alkylindane
C^-Alkylbenzene
Cs-Alkylbenzene
C 5 -Alkylbenzene
C2-Alkylindan
C2-Alkylindan
C2-Alkylindan
C2 -Alkylbenzene
C5- Alkylbenzene
2-Methylnaphthalene
1-Methylnaphthalene
d i o-Anthracene (IS)
Bulk Liquid Vapor on XAD Vapor
(ppm) (wg)
6,600 260
—
47,700 8,100
10,600 4,400
57,200 8,000
21,300 7,500
130
3,000 850
32,500 7,100
15,100 2,800
7,100 1,280
46,000 6,150
9,600 880
72
4,000 250
17,200 1,000
19,600 960
2,400 210
13,200 520
13,600 480
2,500 85
2,000 32
19,600 340
2,500 10
2,800 30
2,800
27,000
2,700
15,600 66
1,200
2,400
600
4,000
1,700
400
600
400
100
1,000
8,700
3,600
0
(o'.
25
4
21
8
0
19
13
3
0
1
7
4
0
0
2
0
0
0
1
0
0
0
1
0
0
0
on Tenax
(yg)
.72
035)
.3
.0
.3
.7
.21
.8
.3
.2
.33
.2
.8
.1
.41
. 74
.3
.22
.24
.49
.2
.44
.03
—
.11
—
.2
.46
—
—
—
—
—
,03
.01
(100) (1000)
418
-------
TABLE B5-36. FLUID CATALYTIC CRACKER: LOW PRESSURE SEPARATOR LIQUID
Compound
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
1, 3 ,5-Trimethylbenzene
Methylethylbenzene
1,2 ,4-Trimethylbenzene
sec-Butylbenzene
Methylisopropylbenzene
Ci.-Alkylbenzene
Cij-Alkylbenzene
Ci, -Alkylbenzene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
Bulk
Fraction 1
160,000
39,000
250,000
68,000
150,000
6,700
24,000
84,000
22,000
—
—
—
6,000
320
170
Liquid, ppm
Fraction 2
2,400
380
7,800
8,200
3,300
3,100
3,400
11,000
5,600
1,300
620
1,100
8,600
3,600
590
Total
160,000
39,000
260,000
76,000
150,000
10,000
27,000
95,000
28,000
1,300
620
1,100
15,000
3,900
760
Fraction 1
300
91
220
26
99
—
—
—
—
—
—
—
—
—
—
Vapor, ug
Fraction 2
19
5
93
32
60
27
18
42
—
—
—
—
—
—
—
Total
320
96
310
58
160
27
18
42
— .
—
—
—
—
—
—
-------
TABLE B5-37. FLUID CATALYTIC CRACKER: LIGHT
CYCLE oAS OIL, BULK LIQUID
Compound ppra
Benzene 1.75
Toluene 13.6
F.thylbenzene 8.97
m/p-xylenes 19.5
o-xylene 8.58
i-propylbenzene 0.578
n-propylbenzene 11.9.
n/p-ethyltoluene 76.5.
1,3, 5-Trimethylbenzene 22. L
o-ethyitoluene A.08
1,2,4-Trimethylbfcazene 30.1.
Sec-Butylbenzene 18.4
Indan 15.0
Cit-Alkylbenzenc 46.0
d.-Alkylbenzene 34.0
Ci»-Alkylbenzene 26.0
Methylindan 28.0
Ci,-Alkylbenzcne 32.0
Ci,-Alky] benzene 8.00
Cs-Alkylbenzcne Al.5
Metliylindan 30.0
C5-Alkylben^ene 10.8
Cs-Alkylbcnzene 20.0
Methylindan 32.5
Cs-Alkylbenzene 22.0
C^-Alkylbenzene 27.5
Tetralin 1.6
Naphthalene 96.8
C2-A]kylindan/methyltetralin 58.9
Cj-Alkylbenzene 45.0
Cz-Alkylindan/methyltetralin 55.8
C2-Alkylindan/me.thyltetralin 96.1
C2-Alkylindan/nethyltatralin 19.2
Methylbenzothiophene 2.89
Methylbenzothiophene 25.5
2-Methylnaphthalene 616.0
Methylbenzothiophene 37.4
1-Methylnaplithalene . 71,1
C?-Alkylbenzothiophene 28.0
Ca-Alkylnapbthalene 485.0
Cz-Alkylbenzothiophene 65.0
Continued
420
-------
TABLE B5-37. Continued
Compound ppm
C2-Alkylnaphthalene 825.0
Biphenyl 5.72
C?-Alkylbenzothiophene 28.0
Cz-Alkylnaphthalene 550.0
C2-Alkylbenzothiophene 17.3
Cj-Alkylnaphthalene 185.0
C2-Alkylnaphthalcne 87.5
Acenaphthene 8.40
Methylbiphenyl s 15.5
Cs-Alkylbenzothiophene 92.5
C3-Alkylnaphthalene 43.5
Ca-Alkylnaphthnlene 218.0
Cs-Alkylnaphthalene 203.0
C3-Alkylnaphthalene 249.0
Fluorene 18.2
C2-Alkylnaphthalene 148.0
Methylacenaphthenes 62.0
C2-Alkylbiphenyls 48.0
C^-Alkylnaphthalene 328.0
Methylfluorene 17.0
Methylfluorene 23.8
Methylf1uorene 7.14
Phenanthrene/anthracene 97.9
Cz-Alkylfluorenes 52.0
Methyldibenzothiophene 74.8
Kethyldibenzothiophene 51.0
Methyl phenanthrene/anthracene 71.4
Methyl phenanthrene/anthracene 42.0
Cz-Alkyl dibenzothiophene 10.8
C2-Alkyl Dhenanthrene/anthracene 2.35
C2-Alkyl diben?.othinphene 70.0
C2-Alkyl phenanthrene/anthracene 96.3
C2-Alkyl dihenzothiophene 44.0
C2-Alkyl dibenzothiophene 72.5
C?-Alkyl dibensothiophene 30.0
C2-Alkyl phenanthrene/anthracene 20.0
Fluorarithene 3.50
C3-Alkyl dibenzothiophene 65.0
C3-Alkyl phenanthrene/anthracene 1.45
C3-Alkyl phenanthrene/anthracene 4.64
C3-Alkyl phenanthrene/anthracene 11.6
Pyrene 4.30
C3-Alkyl phenanthrene/anthracene 37.7
Continued
421
-------
TABLE B5-3.7. Continued
Compound ppm
Ct»-Dibenzothiophene 13-. 0
C3-Alkyl phenanthrene/anthracene 15.4
Cs-Alkyl phenanthrene/anthracene 6.67
Methyl fluorenthene/pyrene 0.429
Methyl fluorenthene/pyrene 0.871
Methyl fluorenthene/pyrene 1.82
Methyl fluorenthene/pyrene 1.82
Ci,-Alkyl phenanthrene/anthracene 13.1
422
-------
TALBE B5-38. FLUID CATALYTIC CRACKER: LIGHT CYCLE GAS OIL
ro
OJ
Bulk
Compound Fraction 1
Benzene
Toluene
Ethylbenzene
p ,m-Xyle.ne
o-Xylene
Methylethylbenzene
1, 3 , 5 -Trimethyl benzene
Methylethylbenzene
1,2 ,4 -Trimethyl benzene
see-But yl benzene
Methylisopropylbenzene
Diethylbenzene
Dime thylc thy Ibenzene
C^-Mkylbenzene
Ci,- Alky Ibenzene
0.,-Alky Ibenzene
Ci,- Alky Ibenzene
1,2 , 3, 5-Tetrame thy Ibenzene
1,2,3 , 4-Te trarae thy Ibenzene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
C2~Naphthalene
C2-Naphthalene
Ca-Naphthalene
Cz-Naphthalene
C[ -Biphenyl
Ca-Naphthalene
Cs-Naphthalene
C3-Naphthalene
Ca-Naphthalene
Ca-Naphthalene
Phenanthrcne/ Anthracene
40
—
360
270
1,400
950
470
—
14,000
950
1,800
1,100
1,100
1,500
2,400
940
—
—
40,000
52,000
44,000
—
9,900
20,000
27,000
8,100
—
—
—
—
—
—
—
Liquid, ppm
Fraction 2
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
12,000
90,000
39,000
4,600
3,500
69,000
78,000
28,000
2,100
8,800
2,400
19,000
28,000
18,000
7,400
Vapor, pg
Total
40
—
360
270
1,400
950
470
—
14,000
950
1,800
1,100
1,100
1,500
2,400
940
—
—
52,000
140,000
83,000
4,600
13,000
89,000
110,000
36,000
2,100
8,800
2,400
19,000
28,000
18,000
7,400
Fraction 1
230
250
840
270
—
800
210
68
220
15
22
63
64
—
—
—
180
8
31
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Fraction 2
2
1
—
19
24
7
22
9
68
16
4
11
6
2
2
—
—
22
—
50
4
—
—
—
—
—
—
—
—
—
—
—
—
—
Total
2
230
250
860
290
7
820
220
140
240
19
33
69
66
2
—
—
200
8
81
4
—
—
—
—
—
—
—
—
—
—
—
—
—
-------
TABLE B5-39. FLUID CATALYTIC CRACKER: HEAVY
CYCLE GAS OIL, BULK LIQUID
Compound ppm
Benzene
Toluene
Ethylbenzcne
Wp-xylenes
o-xylcne
n-propylbonzene
m/p-ethyltoluene
o-ethyltol uene
1, 2, 4-Trimethylbenzene
Sec-Butylbenzene
Tndan
n-Butyl benzene
Ci,-Alkylbenzene
C^-Alkylbenzenc
Methylindan
Csi-Alkylbenzene
Cu-Alkylbenzene
Methylin dan
Cj-Alkylbenzene
Cs-Alkylbenzcne
Methylindan
Cs-Alkylbenzene
Naphthalene
Cz-Alkylindan/methyltetralin
Benzothiophene
Cs-Alkylbenzene
Ca-Alkylindan/methyltetralin
Cs-Alkylbenzene
C2-Alkylindan /methyl tetralin
C2-Alkylindan/inethyltetralin
Methylbenzothiophene
Cs-Alkylbenzene
Methylbenzothiophene
2-Methylnaphthalene
Methylbenzothiophene
1-Methylnaphthalene
Ca-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
Acenaphthene
C3-Alkylnaphthalene
4.75
15/4
4/29
27.0
13.1
3.91
21.8
2.72
38.3
4.80
6.13
3.60
6.80
11.2
11.4
16.2
8.80
6.40
4.00
3.25
4.81
15. ;5
19/0
20.2
2. -70
5/50
10.2
3.75
7.44
13.6
6.29
8.25
6.29
45.4
13.6
30.7
25.0
73.3
82.0
57.8
21.8
3.08
36.5
Continued
424
-------
TABLE B5-39. Continued
Compound ppra
C3-Alkylnaphthalene 115.0
Cj-Alkylnaphthalene 52.2
C3-Alkylnaphthalene 49.3
G 3-Alk.ylnaphthnlene 10.4
Fluorene 8.97
C3-Alkylnaphthalene. 4.93
Methylacenaphthenes 51.0
C^-Alkylnaphthalene 151.0
Methylfluorene 18.7
Methylfluorene . 27.2
Methylfluorene 14.3
Diben7.othiophene 55.0
Phenanthrene/anthracene 143.0
C?-Alkylfluorene 107.0
Methyldibenzothiophene 126.0
Methyldibenzothiophene 258.0
Methyl phenanthrene/anthracene 333.0
Methyl phenanthrene/anthracene 256.0
C2~Alkyl dibenzothiophene 127.0
C?.-Alkyl phenanthrene/anthracene 25.0
C2-Alkyl dibenzothiophene 306.0
Ca-Alkyl phenanthrene/anthracene 510.0
C2-Alkyl phenanthrene/anthracene 943.0
Cz-Alkyl dibenzothiophene 232.0
C2-Alkyl dibenzothiophene 173.0
C2-Alkyl dibenzothiophene 49.0
C2-Alkyl phenanthrenK/anthracene 37.5
C2-Alkyl phenanthrene/anthracene 35.0
Cs-Alkyl dibenzothiophene 818.0
Ca-Alkyl phenanthrene/anthracene 21.2
Cj-Alkyl phenanthrene/anthracene 26".4
Pyrene 5.60
Cs-Alkyl phenanthrene/anthracene 409.0
Cn-Alkyl dibenzothiophene 370.0
Cs-Alkyl phenanthrene/anthracene 87.0
Ca-Alkyl phenanthrene/anthracene 87.0
Methyl fluorenthene/pyrene 18.2
Methyl fluorenthene/pyrene 32.5
Methyl fluorenthene/pyrene 68.9
Methyl f]uorenthene/pyrene 107.0
Cs-Alkyl dibenzothiophene ' 90.0
Ci4-Alkyl phenanthrene/anthracene 334.0
Continued
425
-------
TABLE B5-39. Continued
Compound ppm
C2-Alkyl fluorenthene/pyrene 7g Q
C'2-Alkyl fluorenthene/pyrene 45 Q
C?-Alkyl fluorenthene/pyrene 64.0
Natphthabenzothiophene JQ Q
C2-Alkyl fluorenthene/pyrene g^ Q
Cz-Alkyl fluorenthene/pyrene 5g Q
Ca-Alkyl fluorenthene/pyrene 215*0
C5-Phenant"riTene/anthracene 128. C
C^-Alkyl fluorenthene/pyrene 78.3
C2-Alkyl chrysenes/benzanthracenes 2.0
C,-Alkyl chrysenes/benzanthracenes 25.8
426
-------
TABLE B5-40. FLUID CATALYTIC CRACKER: HEAVY CYCLE GAS OIL
Compound
Benzene
Toluene
Echylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trinethylbenzene
2-Ethyl toluene
1 ,2 , 4-Trimethylbenzene
Diethylbenzene
Methylisopropylbenzene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dime thyle thy Ib en zene
Dime thyle thy Ibenzene
Dime thy lethylbenzene
Dime thyle thy Iben zene
Cs-Alkylbenzene
Tetraaiethylbenzene
Tetrame thy Ibenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cj-Alkylbenzene
Cs-Alkylbenzene
2-Methylnaphthalene
1-Methylnaphthalene
Cz-Alkylnaphthalene
Bulk Liquid,
ppm
740
10,000
1,200
8,800
3,000
120
900
6,900
2,700
1,500
7,200
1,800
320
—
2,100
1,800
440
2,300
2,000
320
1,700
2,000
390
200
1,400
360
14,000
500
840
200
210
12,000
5,500
5,000
Vapor on
XAD, ug
15.0
34.0
66-0
190.0
120.0
7.6
59-0
250-0
42.0
24.0
140-0
34.0
23-0
17.0
9.8
17.0
7.6
20.0
14.0
—
—
—
1.4
—
9.2
—
13.0
—
—
—
—
—
—
—
Vapor on
Tenax, pg
0.10
0.83
0.16
0.54
0.15
—
—
0.25
0.10
—
0.057
0.19
—
—
0.036
0.017
—
—
—
—
—
—
0.0058
0.016
0.015
—
—
—
—
—
—
—
—
—
427
-------
TABLE B5-41,
THERMOFOR CATALYTIC CRACKER:
CYCLE GAS OIL, BULK LIQUID
HEAVY
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene/o-Xylene
3-Ethyl toluene
1 , 3 ,5-Trimethylbenzene
2-Ethyl toluene
1,2, 4-Tr imethylbenzene
Indan
C it- Alkyl benzene
C^-Alkylbenzene
Ci^-Alkylbenzene
Methyl indan
Methyl indan
Methyl indan
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C2~Alkylnaphthalene
Ca-Alkylnaphthalene
Acenaphthylene
C2-Alkylnaphthalene
C2~Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C 3-Alkylnaphthalene
C2-Alkylnaphthalene
C2- Alky 1 naphthalene
Fluorene
C2-Alkylnaphthalene
Methyl fluorene
Methyl fluorene
Methyl fluorene
Dibenzothiophene
Anthracene
Methyl anthracene
Methyl anthracene
Methyl anthracene
Pyrene
Methyl pyrene
Methyl pyrene
Methyl fluoranthene
Concentration
(ppb)
80
540
200
1,100
940
500
200
200
350
350
500
400
250
150
250
920
2,200
1,400
2,700
4,200
1,700
740
200
390
1,300
1,700
1,900
2,300
1,600
200
150
500
250
250
200
650
180
4,800
4,900
5,200
5,200
420
2,900
2,100
Continued
423
-------
TABLE B5-41. Continued
Peak Concentration
Ko. Compound (ppb)
45 Methyl fluoranthene 260
46 Chrysene 2,400
47 Methyl chrysene 200
48 Methyl chrysene 1,400
49 Methyl chrysene 1,600
50 Methyl chrysene 600
51 Methyl chrysene 900
52 Methyl chrysene 480
53 Dimethyl chrysene 190
54 Dimethyl chrysene 1,000
55 Dimethyl chrysene 900
56 Dimethyl chrysene 1,100
57 Dimethyl chrysene 620
58 Dimethyl chrysene 880
59 Dimethyl chrysene 1,100
429
-------
TABLE B-5-42. CATALYTIC REFORMER: HYDROGEN (H2) RECYCLE GAS
Compound
Vapor on
XAD, pg
Vapor on
Tenax Ug
Benzene 130.0
Toluene 350.0
Kthylbenzene 25.0)
m.p-Xylene 100.0)
o-Xylene 36.0
I sopropylbenzene 4.8
n-Propylbenzene 18.3
3 or 4-Ethvl toluene 61.0
1,3
, 5-Trimethylbenzene 42.0
2-Ethvl toluene 11.0
1,2
1,2
,4-Trimethylbenzene 63-0
, 3-Trimethylbenzene 11-0
Diniethylethylbenzene 5.0
Tetranethylbenzene 6.6
0.010
0.34
0. 38
0.38
0.38
0.38
0.88
0.88
0.88
430
-------
TABLE B5-43. CATALYTIC REFORMER: NAPHTHA FLED
Bulk Liquid Vapor on Vapor on
Compound (ppm) XAD, Ug Tenax, p
Benzene
Toluene
Ethylbenzene
m, p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1,3, 5-TTitnethylbenzene
2-Ethyl toluene
1 , 2,4-Triinethylbenzene
1,2, 3-Trimethylbenzene
Methylpropylbenzene
Diethylbenzene
1040
1800
. 550
4500
1700
420
690
3200
2600
520
2600
190
65
19
59
670
88
640
260
48
90
330
200
33
180
11
-
-
0.098
2.9
0.55
2.6
1.6
0.38
0.52
2.70
1.9
0.24
1.19
0.077
-
0.013
431
-------
TABLE B5-44. CATALYTIC REFORMER: NAPHTHA FEED
Compound
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzenc
1, 3 ,5-Trimethylbenzene
Mechylethylbenzene
1,2, 4-Trimethylbenzene
sec-BuLylbenzcnc
Methylpropylbcnzene
Cj-Alkylbcnzcnc
Ci-Alkylbenccne
Ci.-Alkylbcn:cnc
Ci.-Alkylbenzcne
C".-Alkylbcnzene
Ci.-Alkylbcnzcnc
Ci«- Alky Iben zone
Naphthalene
2 -Methyl naphthalene
1-Me thy] naphthalene
Biphenyl
C2-Alkylnaphthalene
C2-Alkylnaphtlialene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Methylblphenyl
Methylbiphenyl
Methylbiphenyl
Anthracene/phenanthrene
Cs-Alkyl naphthalene
C j-Alky Inaphthalene
C 3-Alkylnaphthalene
C 3-Alky Inaphthalene
Cz-Alkylbiphenyl
Cj-Alkylbiphenyl
Ci. -Alky Inaphthalene
Ci, -Alky Inaphthalene
Bulk.
Fraction 1
2,400
2,500
6,600
3,000
900
2,700
7,500
2,200
8,300
5,900
4,000
3,500
—
—
—
5,000
2,600
43,000
30,000
36,000
—
—
6,400
12,000
27,000
3,700
—
—
—
—
—
—
—
—
—
—
—
—
Liquid, ppm
Fraction 2
4.8
—
3.9
7.2
—
11
—
—
58
18
—
—
—
—
—
—
—
800
4,000
1,800
1,300
230
1,600
2,500
920
130
1,200
460
290
19
500
1,500
260
260
740
410
300
110
Total
2,400
i, 500
6,600
3,000
900
2,700
7,500
2,200
8,400
5,900
4,000
3,500
—
—
—
5,000
2,600
44,000
34,000
38,000
1,300
230
4,000
14,000
28,000
3,800
1,200
460
290
19
500
1,500
260
260
740
410
300
110
Fraction 1
95
120
280
38
—
—
110
—
19
70
—
—
—
—
—
—
00
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Vapor, ug
Fraction 2
2
—
3
18
—
10
45
6
58
28
7
20
8
3
5
22
7
31
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Total
97
120
280
56
—
10
160
6
77
98
7
20
8
3
5
22
7
31
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
— —
-------
TABLE B5-45.
CATALYTIC REFORMER: PRODUCT
NAPHTHA (DEPENTANIZER BOTTOMS)
Compound
Benzene
Toluene
Ethylbenzene
o, p-Xylene
o-Xyiene
I nop ropy 1'nenzene
Propylbcnzcne
ttethylethyl benzene
Mechylechylbenzene
Tr i me Uiyl benzene
Mechy let'.iy] bt-nzenc
Tritoc thylbenzene
Dtaetnyl benzene
Dlethylbenzcne
Indane
Dine chyle thy Ibcntene
Dine thylechy Ibtnzene
Dime chyle thyl benzene
Dine thyle thy Ibenzene
Te traracthyLbenzene
TetratneUr/1 benzene
Mcchy Id tc thyl benzene
Dt-iaopropylbenzen€
Methyl Indane
Methyl InJjne
Dl-lsnpropyl benzene
TK t ramc thyl bent ene
Cs-AJitylbenzcne
Cs-Al'Kylbfnzcne
C»-Al'ny 1 benzene
Naphi tinier i!
2-MeLliylm.v)hthfller.e
1 -Methyl naphthalene
Ca-Alkyln.iphtlinlene
Ci -Al*yln..phthalene
C;-AlltylnnphthAlenc
Cz-AIkyln.iphthfllene
C:-Alkylmphthalene
d-Alkyl naphthalene
Blphcnyl
Fluorene
Anthracene
Bulk
Fraction 1
„
85,000
15,000
74, COO
30,000
—
—
18,000
11,000
3,600
15,000
5,900
—
—
220
—
—
51
--
230
180
—
—
50
70
—
59
14
10
20
410
81
J7
6
34
40
22
13
)
—
—
—
Liquid, PFB
Fraction 2
_
480
49
8CO
570
—
—
78
78
45
440
140
14
—
33
<1
9
14
11
30
15
23
14
—
B
14
9
—
—
—
28D
120
62
—
31
41
18
14
--
54
54
4
Total
_—
85,000
15,000
75,000
30,000
—
—
18,000
11,000
3,630
15.000
6,000
14
— . •
250
—
60
65
11
260
300
23
14
50
80
14
68
—
—
—
720
200
100
6
65
81
40
27
3
54
54
4
Fraction 1
21
190
140
160
95
5
20
82
22
16
24
—
—
—
4
1
—
—
—
3
—
2
—
—
1
—
—
—
—
—
—
—
—
—
—
--
--
—
—
—
—
—
Vapor, v-g
Fraction 2
0.3
68
4
130
72
—
—
15
19
10
55
—
—
15
5
3
—
5
3
1
6
6
—
—
2
—
4
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—
Total
21
260
140
290
170
5
20
97
41
26
79
—
—
15
9
4
-- -
—
—
6
a
8
—
—
3
—
—
—
—
—
10
—
—
--
—
—
— -
—
—
—
—
--
433
-------
TABLE B5-46
CATALYTIC REFORMER: PRODUCT
NAPHTHA, BULK LIQUID
Compound
Benzene
Toluene
Ethylbenzene
m, p-Xylene
o-Xyiene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Tr imethylbenzene
1,3, 5-Triraethylbenzene
2-Ethyl toluene
see-But ylbenzene
1, 2, 4-Tr imethylbenzene
Diethylbenzene
Methylisopropylbenzane
Methylpropylbenzene
Methylpropylbenxene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dixethylethylbenzene
Diirethylechylbenzene
Dime thy lethylbenzene
Dime Chyle thy Ibenzene
Cs-Alkylbenzene
Tetramethylbenzene
Tctramethylbenzene
Tetramethylbenzene
Cs-Alkylbenzene
C j-Alkylbenzene
Naphthalene
C 5-Alkylbenzene
Cs-Alkylbenzcne
2-MethylnaphLhalene
1-Methylnaphthalene
C2~Alkylnaphthalenc
C2-Alkylnaphthalene
Bulk Liquid
(ppm)
440
4,900
2,000
7,000
2,000
310
1,400
5,500
2,400
1,600
260
6,500
300
1,400
95
120
1,600
1,300
450
960
360
1,100
140
—
60
330
1,200
1,100
900
350
400
2,800
460
310
2,200
2,600
700
1,300
Vapor on XAD
(yg)
8.4
74.0
32.0
120-0
50.0
2.3
20-0
48-0
38-0
22.0
—
74-0
5.2
20-0
1.6
2.2
15-0
10-0
9.1
11.0
4.0
12.0
11.0
1.6
2.2
0.8
7.6
7.4
1.6
3.2
1.6
7.4
1.6
1.0
—
•
—
—
Vapor on Tenax
(Mg)
0.22
1.0
1.1
0.81
0.81
0.11
0.78
2.4
.
—
—
1.1
—
0.52
--
—
0.76
—
—
0.52
0.21
0.71
—
—
—
—
—
0.35
—
—
—
0.65
—
—
—
—
—
—
434
-------
TABLE B5-47. CATALYTIC REFORMER: PRODUCT
NAPHTHA, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene/p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
1, 3,5-Trimethylbenzene
2-Ethyl toluene
Ci4-Alkylbenzene
1,2, 4-Trimethylbenzene
Indan
C 4. -Alky 1 benzene
Cu.-Alkylbenzene
Concentration
(ppb)
80
2,100
440
4,100
1,200
200
780
620
180
80
140
230
86
320
69
435
-------
TABLE B5-48. CATALYTIC REFORMER: PRODUCT
NAPHTHA, BULK LIQUID
Compound ppm
Benzer.e
Toluene
Ethylbenzene
r/p-xyl er.es
o-xvlene
i-propyl benzene
n-propyl berzene
T./p-e thy 1 toluene
1, 3, 5-Triir.ethylbenzcnc
o- ethyl toluene
1,2, 4-Trrnethylbenzene
sec-Butylbcnzene
i-Butylbenzene
Tncton
C L, - Alky 1 benzene
Ci^-Alkylbenzene
C^-Alkylbenzene
Methylindan
Mcthylindar.
Ci^-Alkyl benzene
C\-Alkyl benzene
Methylind.Tn
C^-Alkylbenzene
C^-Alkylbenzene
Cs-Alkylbenzene
Methylindan
Tetralin
Naphthalene
C 2-Alky lind an/me thy Itetral in
Cs-Alkylbcnzene
83.8
840.0
142.0
632.0
31.2
35.7
210.8
207.0
71.4
64.6
184.0
46.0
56.0
17.5
98.0
11.8
104.0
28.0
8.00
11.2
20.0
6.00
18.3
6.50
13.0
5.20
4.60
9.02
11.2
2.50
436
-------
TABLE B5-49
CATALYTIC REFORMER: PRODUCT
NAPHTHA, BULK LIQUID
Compound
ppra
Benzene
Toluene
Ethylbe.nzene
m/p-xylenes
o-xylene
i-propylbenzene
n-propylbenzene
tn/p-ethyl toluene
1,3,5-Trimethylbcnzene
o-ethyl tol nene.
1,2,4-Triine thylbenzene
sec-Butylbenzene
Indan
Ci,-Alkylbenzene
n-Butylbenzene
Ci^-Alkylbenzene
Ci,-Alkylbenzene
Ci4-Alkylbenzene
Ci,- Alky 1 benzene
05-AlkyIbenzene
Cs-Alkylbenzene
Methylindan
C5-Alkylbenzene
C5-AlkyIbenzone
Cs-Alkylbenzene
Methylindan
Naphthalene
C5-Alky1benzene
Cs-Alky1benzene
2-McthyInaphthaiene
1-Methylnaphthalene
C'/-Alkylnaphthalene
Cj-Alkylnaphth,Tlene
Biphcnyls
Ca-Alkylnaphthalene
C?-Alkylnaphthalene
C2-AlkyInaph tha1en e
Methylbiphenyls
C a-AlkyInaphthalene
C3-Alkylnaphthalene
C3-Alky]naphthalene
C3-AlkyInaphthalene
Fluorene
826.0
445.0
581.0
1160.0
315.0
44.2
182.0
1560.0
493.0
168.0
952.0
32.0
58.8
548.0
144.0
322.0
336.0
284.C
400.0
166.0
41.5
76.0
90.0
22.
92.
107.0
82.5
87.5
17.5
277.0
47.9
5.25
23.8
0.660
45.0
15.75
.00
,04
.74
.93
.48
.32
.13
7,
2,
1
4,
3
2.
437
-------
TABLE B5-50. CATALYTIC REFORMER: PRODUCT
NAPHTHA, liULK LIQUID
Compound
ppm
Benzene
Toluene
Ethylbenzene
m/p-xylenes
o-xylene
i-propyIbenzene
n-propylbenzene
m/p-ethyltoluene
1,3,5-Trimethylbenzene
o-ethyl toluene
1,2, 4-Trinethylbenzene
sec-Butylbenzene
I- B u ty 1 b en 7. en e
1,2,3-Trimethylbenzene
Ci,-Alkylbenzene
Indan
Ct4-AJ kylbenzene
n-Butylbenzene
Cu-Alkylbenzene
Cu-Alkylbenzene
Cu-Alkylbenzene
Methylinuan
Methylindan
C\-A1 kylbenzene
Cu-AIkylbenzene
d.-Alkylbenzene
C5-Al.kyI benx.ene
C14-Alkyl benzene
Methylindan
C5-Alkylbenzene
C 5-Alkyl benzene
Methylindan
C5-A1kylbenzene
C5-Alkylbenzene
Cs-Alkylbenzene
C5-AIkylbenze.ne
C5-Alkylbenzcne
Cs-Alkylbenzene
Naphthalene
Cz-Alkylindan/methyltetralin
C 5- Al kylb enz ene.
C2-Alkyl indan/inethyltetralin
Cs-Alky1 benzene
150.0
396.0
451.0
1950.0
85.8
59.5
204.0
1020.0
340.0
42.5
1390.0
32.0
30.0
143.0
56.3
36.3
280.0
220.0
300.0
68.0
300.0
70.0
44.0
340.0
32.0
40.0
83.0
200.0
58.0
100.0
160.0
94.9
75.0
27.5
100.0
45.0
125.0
12.5
228.0
7.13
40.0
34.1
27.5
Continued
438
-------
'TABLE B5-50. Continued
Compound ppm
C:.-Alkylindan/mechyltetralin 12. 4
C?-Alkylindan/nethyitetralin 55. 8
Co-Alkylbenzene 21.0
2-Methylnap'nthalene 106. A
1-Methylnaphthaiene 81-2
C -Alkylnaphthalene 7-°°
C -Alkylnaphthalene 32-5
C -Alkylnaphthalcne ^5.0
C -Alkylnaphthalene 21-°
Phenanthrene/Anthracene 0.924
Methyl ohenanthrene/anthracene 1.18
439
-------
TABLE B5-51. ALKYLATION UNIT: CRUDE ALKYLATE,
ORGANIC SPECIES ON TENAX
No Aromatic Species Detected.
TABLE B5-52. ALKYLATION UNIT: ALKYLATE
GASOLINE, BULK LIQUID
No Aromatic Species Detected
440
-------
TABLE B5-53. ALKYLATION UNIT: CRUDE ALKYLATE
Compound
Benzene
Toluene
Ethylbenzene
n,p-Xylene
o-Xylene
n-Propyl benzene
3-Ethyl toluene
1,2,3-Trimethylbenzene
1.3, 5-Trimethylbenzene
2-Ethyl toluene
1,2, 4-Tr imethylbenzene
Diethylbenzene
Methylisopropylbenzene
Methylpropylbenzene
Methylpropylbenzene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dimethylethylbenzene
Dimethylethylbenzene.
Dimethylethylbenzene
Tetramethylbenzene
Tetramethyl benzene
Tetramethylbenzene
Cs-Alkylbenzene
C 5 -Alkyl benzene
Naphthalene
Cs-Alkylbenzene
2-Methylnaphthalene
Hulk Liquid, V;ipor on
ppm XAD, ng
0.69
3.3
5.2
42.0
22.0
48.0
36.0
96.0
54 -0
230-0
72-0
6.0
2.6
26-0
72-0
47-0
65-0
22-0
72-0
66.0
17.0
32.0
48.0
30.0
10.0
12.0
140.0
14.0
36.0
Vnpor on
Ten ax, MP,
0.0044
0.067
0.064
0.20
0.094
—
0.86
--
—
0.73
0.22
0.14
0.0088
0.35
—
—
0.083
—
0.15
0.11
—
0.12
0.15
—
—
—
0.57
—
0.12
None of the vapor species were found in the bulk liquid. The vapor species,
therefore, must have been adsorbed from the ambient air or from cross-
contamination with other samples from residue in the sampling train.
-------
TABLE B5-54. ALKYLATION UNIT: CRUDE
ALKYLATE, BULK LIQUID
Peak Concentration
No. Compound (ppb)
1 Benzene 120
2 Toluene 200
3 Ethylbenzene 77
4 m-Xylene/p-Xylene 370
5 o-Xylene 370
6 Isopropylbenzene 280
7 n-Propylbenzene 160
8 3-Ethyl toluene 100
9 1,3,5-Trimethylbenzene 420
10 1,2,4-Trimethylbenzene 300
11 Indan 100
12 C^-Alkylbenzene 100
13 Cu-Alkylbenzene 300
14 Methyl indan 100
15 Methyl indan 200
16 d.-Alkylbenzene 450
17 Naphthalene 200
18 2-Methylnaphthalene 300
19 1-Methylnaphthalenc 250
20 C2-Alkylnaphthalene 50
21 C2-Alkylnaphthalene 200
22 Cj-Alkylnaphthalene 450
23 C2-Alkylnaphthalene 250
442
-------
TABLE B5-55. NAPHTHA KYDRODESULFURIZATIOX: DESULFURIZED
NAPHTHA PRODUCT, BULK LIQUID
Compound ppm
Benzene 18.8
Tulue.ne 5836.0
Ethylbenzene 299.0
m/p-xylenes 260.0
o-xylenes 195.0
±-propylbenzene 49.3
n-propylbcnzene 51.0
m/p-ethyltolucnc 272.C
i, 3, .b-Trimethvlbenzenc 150.0
o-ethyltoluene 170.0
1 , 2, 4-TriTr.ethy 1 benzene 136.0
i-Butylbenzene 24.0
1 , 2, 3-Tr'i^iethyl.benzene 98.0
C^-Alkylbenzene 80.4
Indan 15.0
(\-Alkylbenzene 174.0
C^-Alkylbcnzene . 70.0
C..-A1 rcyLhen/.ene. 42.0
Methylindan 24.0
Methylindan 22.0
C^-Alkylhenzene 10.0
C.s-Alkylbenzene 55.6
Ci,-Alkylbenzenc 16.8
Cr-Alkylbenzcnc 23.2
Methylindan J3.4
C^-Alkylbenzene. 7.50
Cs-Alkylbenzenc 27.5
Methylindan 16.9
Cs-Alkylbenzene 40.0
Cj-Alkylbenzene 42.5
Tetralin 44.0
C5-Alky1benzene 12.5
C2-Alkv1 indan/methyl tetralin 34.1
C2-Alkyl indan/mcthyl tetralin 31.0
C7-Alkyl indan/methyt tetralin 4.96
Cj-Alkyl indan/methyl tetralin 1.71
443
-------
TABLE B5-56. HYDRODESULFURIZATION UNIT: DESULFURIZED
GAS .'OIL, BULK LIQUID
Compound PPm
Toluene
Ethyl benzene
m/p-xylenes
o-xylene
n-propylbenzene
m/p-ethyltol-iiene
1, 3, 5-Trimethylbenzene
o- ethyl toluene
1,2, 4- Tr ime thy 1 benzene
C^-AIkylbenzene
C 1,-Alkylbenzenc
Cn-Alkylbenzene
Ci|-Al!
-------
TABLE B5-57. GASOLINE SWEETENING UNIT: MIXED
NAPHTHA FEED, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropy Ibenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethylbenzene
2-Ethyl toluene
sec-Butylbenzene
1, 2, 4-Trime thy Ibenzene
Diethylbenzene
Methylisopropylbenzene
Methylpropylbenzene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dime thy le thy Ibenzene
Dime thyle thy Ibenzene
Dine thy le thy Ibenzene
C 5 -Alky 1 benzene
Dime thyle thy Ibenzene
Tetrame thy Ibenzene
Tetrame thy Ibenzene
Tetrame thy Ibenzene
C 5 -Alky Ibenzene
C 5 -Alky Ibenzene
Naphthalene
C 5 -Alky Ibenzene
Cs-Alkyl benzene
C 5 -Alky Ibenzene
Methylnaphthalene
C2-Alky 1 naphthalene
C2-Alkylnaphthalene
d i a -Anthracene
Concentration
(ppm)
130
8,500
1,100
7,000
1,700
1,100
1,800
4,200
2,900
1,800
5,000
650
2,000
800
130
1,100
550
900
230
900
650
340
290
150
600
600
600
80
200
1,600
200
120
160
300
300
190
445
-------
TABLE B5-58.
GAS ABSORB!ION UNIT: LEAN
OIL (NAPHTHA), BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
.'10
11
12
.13
.14
-.15
16
17
:is
..19
.20
21
.22
"23
24
25
26
27
28
Compound
Benzene
Toluene
ELhylbenzene
m-Xylene/p-Xylene
o-Xylene
I sopropyl benzene
•n-Eropylbenzene
3-Ethyl toluene
1 , 3 ,5-TriTnethylben2ene
2, Ethyl toluene
Cu-Alkylbenzene
1 ,2 ,4-Trimethylbenzene
.Indan
C^-Alkylbenzene
C^-Alky'lbenzene
CM-Alkylbenzene
.Ci4-Alkylbenzene
C4-Alkylbenzene
Methyl indan
Methyl indan
Ci«^Alkylhenzene
Ci«-Alkylbenzene
Cv-Alkylbenzene
Cj-Alkylbenzene
-Methyl indan
'.Methyl indan
C 5— Alkylbenzene
Naphthalene
Concentration
(ppb)
1,600
10,000
2,200
:22,000
.5,000
980
9,500
•9,300
1,400
3,500
300
2,400
2,100
1,200
1,800
400
.1,300
1,300
560
1,100
450
600
840
250
400
500
800
100
446
-------
TABLE B5-59. SOLVENT DEWAXING UNIT: SLACK WAX
Compound
Bulk Gas
Liquid, ppm
Vapor on
XAD-.Ug
Benzene
Toluene
Ethylbenzene/n or p-Xylenc
o-Xylene
3 or 4-Ethy.l toluene
1,3, 5-Tri:nethylbenzene
2-Ethyl toluene
1,2,4-Trimcthylbenzene
1,2,3-Trimethylbenzene
Di-ethylbenzene
Di-methyl ethylbenzene
Di-niethylethylbenzene
Tetramethylbenzene
Tetramethylbenzene
73
17000
4100
Vapor on
Tenax.yg
0.022
23.8
0.033
0.064
0.059
0.035
0.013
0.071
0.024
0.033
0.014
0.034
0.020
0.024
447
-------
TABLE B5-60. ELEMENTAL ANALYSIS OF FCCU CO BOILER
FLUE GAS PARTICUiATES (STACK NO. 14)
co
Element
Uranium
Thorium
Bismuth b
Lead
Thallium
Mercury
Gold
Platinum
Ir idium
Osmium
Rhenium
Tungsten
Ta n t a 1 um
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Holmium
Dysprosium
Cone ."
5
6
54
5
<1
3
1
5
0.9
22
24
230
Element
Terbium
Gadolinium
Europium
Samarium
Neodymium
Praseodymium
Cerium
Lanthanum
B a r i um
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmi um
Silver
Palladium
Rhodium
Cone .
29
150
14
490
MCC
MC
MC
MC
790
0.2
0.9
5
STD
<0.5
0.5
Element
Ruthenium
Molybdenum
Niobium
Zirconium
Yttrium
Strontium
Rubidium
Bromine
Selenium
Arsenic
Germanium
Gal 1 ium
Zinc
Copper
Nickel
Cobalt
Iron
Manganese
Chromium
Cone .
66
15
48
240
120
<0.5
<3
36
4
<0.7
10
260
40
300
50
MC
300
840
Element
Vanadium
Titanium
Scandium
Ca.l c ium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Nitrogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
Cone .
150
MC
17
MC
MC
22
MC
MC
MC
MC
MC
MCC
MC
NRd
NR
NR
69
1
280
NR
a,.
Concentration in
Al 1 elements not
ppra by weight.
reported £0.3 ppm
by weight.
'"MC - major component.
NR - not reported.
-------
TABLE B5-61. ELEMENTAL ANALYSIS OF FCCU CO BOILER
FLUE GAS PARTICULATES (STACK NO. 11)
Element
Uranium
Thorium
Bismuth b
Lead
Thallium
Mercury
Gold
Platinum
Iridium
Osmium
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Holmium
Dysprosium
a_
a
Cone.
5
19
—
29
—
NR
—
—
—
—
—
2
1
4
0.4
2
0.6
.12
10
30
Element
Terbium
Gadolinium
Europium
Samarium
Neodymium
Praseodymium
Cerium
Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmium
Silver
Palladium
Rhodium
Cone .
7
94
9
930
MC -
MC ~
MC -
MC -
860
1
0.4
--
3
4
ST1)
<0.3
-------
amber bottle was filled, sealed, and kept refrigerated until
analyzed. The results of this type of sampling/analysis are
labeled "Bulk Liquid." An attempt was made to get line material
samples for vapor phase streams, but no reliable results were
obtained because of leakage (glass bombs) or contamination
(metal bombs). The fugitive emissions from fittings on these
streams were also analyzed by adsorbing the organics on a solid
resin. The resin packed tubed were then capped, refrigerated,
and transported to Austin under refrigeration. The adsorbed
organics were then extracted from the resin and analyzed by
GC-MS. The results of this type of sampling/analysis are
labeled either "Vapor on XAD" or "Vapor on Tenax," depending
on which type of resin was used.
5.2 EXPERIMENTAL COMPARISON OF COMPOSITION OF LEAKING
VAPOR WITH COMPOSITION OF LIQUID IN PIPES
The scope of the refinery program included the deter-
mination of the location and concentration of hazardous materials
contained in fugitive hydrocarbon emissions. To meet this
objective, corresponding liquid and fugitive vapor samples were -
obtained during the field portion of the program.
The liquid samples were obtained from selected process
streams at locations such as sample lines, drain lines, or other
appropriate equipment.
Corresponding fugitive vapor samples were obtained
from leaking valves on the process line in question. The vapors
were collected using either activated charcoal, Tenax resin, or
XAD-2 resin adsorption medias, These materials were contained
in packed tubes.
450
-------
Both the liquid and the vapor samples were analyzed
by Radian. The analysis procedures are discussed in detail in
Appendix A.
The sampling and analyses of vapor samples is time-
consuming . The analysis of liquid hydrocarbons is considerably
simpler. Corresponding vapor and liquid samples were analyzed
to compare their compositions. The results were inconclusive
in defining the relationship between the liquid in the pipe and
the leaking vapor.
5.2.1 Experimental System
An experiment was conducted to determine the relation-
ship between the liquid and fugitive vapor compositions.
5.2.1.1 Exp er iment a1 Equ ipmen t--
In the experiment, a valve, similar to those used in
refineries, was installed in a system designed to duplicate
conditions found within refinery process streams. The system
consisted of equipment which circulated hydrocarbon liquid
through the valve at elevated temperature and pressure. The
valve packing material was adjusted to produce a relatively low
vapor leak. Samples of this vapor were analyzed and compared
to the liquid in the system.
Two different hydrocarbon mixtures were used during
the experiment. The first consisted of roughly equivalent
amounts of hexane and toluene. The selection of these materials
was based on the following factors:
• Both materials are relatively volatile and
would remain in the vapor phase. That is, as
451
-------
these hydrocarbons leave the seal, they do
not condense on cooler surfaces at the low
concentrations involved.
• There are considerable differences between
the physical and chemical properties of
hexane and toluene. And, separation of the
materials by GC is not difficult.
• Both materials are available in bulk quantities
at low cost.
The second hydrocarbon mixture used consisted of
hexane, toluene, and naphthalene. This system was selected
after the results of earlier testing indicated that the compo-
sitions of the liquid and vapor were identical. The boiling
point of naphthalene (218"C) is considerably higher than either
hexane or toluene. And, the presence of significant quantities
of naphthalene in the vapor leak would provide additional
evidence for a conclusion of identical composition.
A simplified diagram of the valve assembly used in
this experiment is given in Figure B5-1. This diagram indicates
important equipment and gives other information on the operation
of the system.
Pressure within the system was maintained with a small
gear pump. The pump was capable of producing pressures in
excess of 100 psig at flow rates of approximately 5 GPM.
From the pump, the hydrocarbon liquid circulated
through a section of 1" pipe wrapped with electrical heating
tape. The heating tape was used to raise the hydrocarbon tem-
perature of the pump. The liquid then entered a section of 6"
452
-------
Liquid Fill Lino
O* Pressure Gauge
- Liquid Level indicator
Vapor Space
-* * Elevated Surge Vesse
Liquid Flow Indicator
Temperature Gauge
Pressure Gauge
Safety Relief
Valve
o
Tl
6" Crane Gate Valve
Ice-Water
Cooled
Sample Line
1" Line Wrapped in Electrical
Heating Tape
Positive Displacement
Gear Pump
Figure B5-1. Diagram of experimental set-up.
-------
pipe which contained the valve from which fugitive emission
samples were obtained. Temperature and pressure indicators were
also located on this section of pipe.
Liquid samples were obtained from a sample line
located after the 6" valve assembly. Following the liquid
sample line was a. flow control ylobe valve. This valve was
used to regulate the pressure within the 6" valve assembly.
From the control valve, liquid passed to a small elevated surge
tank from which the pump took suction.
5.2.1.2 Collection and Analysis of Vapor Samples--
The fugitive emission vapor samples were obtained from
the 6" Crane gate valve. The packing gland was adjusted to
give a leak rate of approximately 0.015 Ib/hr. The leak rate
was determined by measuring the gas concentration at the seal
with a Bacharach "TLV Sniffer". The leak rate was estimated
from the correlations presented in Section 2.4 of this appendix.
The packing gland and valve stem were enclosed within
a small Mylar plastic shroud (or tent). Zero air (air with an
extremely low concentration of hydrocarbons) was injected into the
tent to keep the hydrocarbon concentration at low levels.
Vapor samples for the hexane-toluene system were taken
from within the tent using a 1 ml gas-tight syringe. The sample
was immediately injected into the sample port of an AID portable
gas chromatograph.
Analysis of vapor samples for the hexane-toluene-
naphthalene system was accomplished using a Hewlett-Packard
temperature programmable gas chromatograph.
454
-------
5.2.1.3 Collection and Analysis of Liquid Samples--
Liquid samples were taken from an ice-water cooled
sample line. The sample line was cooled to prevent flashing
of the liquid.
Liquid samples from the hexane-toluene system were
analyzed on the portable AID gas chromatograph while samples
from the hexane-toluene-naphthalenc system were analyzed on the
Hewlett-Packard temperature programmable gas chromatograph.
5.2.2 Testing Results
The following tests were conducted:
1) The response time of the system was determined,
that is, the time required for the vapor
composition to equilibrate after a change in
the liquid composition.
2) Vapor and liquid compositions were determined
for the hexane-toluene systems.
3) Vapor and liquid compositions were determined
for the hexane-toluene-naphthalene system.
4) The effect of temperature and pressure on the
vapor composition of the hexane-toluene system
was investigated.
455
-------
5.2.2.1 Equilibration Test Results
The response Lime of the system was determined to
insure that adequate time was allowed for the system to reach
equilibrium before testing was initiated.
The results of this test are shown graphically in
Figure B5-2, The concentration of toluene in the vapor as a
function of time in response to a step change in the concentra-
tion of toluene in the liquid is shown. The concentration
values have been normalized to show the percentage of the total
required concentration change. The actual toluene concentration
was changed from 43.1 percent to 57.2 percent. These results
indicated that at least eight hours were required after a change
in the system composition before steady state operation was
achieved.
5.2.2.2 Vapor-LLquid Compositions: Hexane-Toluene System--
After completion of the equilibration test, numerous
vapor and liquid samples were taken. The results of this test
are given in Table B5-62. Operating conditions for the test
were :
Temperature = 200°F
Pressure = 80 psig
456
-------
Final Toluene
Liquid Concentration
100
Initial Toluene °
Liquid Concentration
4 5
Time (hours)
Figure 135-2. Change in the vapor toluene concentration versus time for
a step change in liquid toluene concentration.
-------
TABLE B5-62. COMPARISON Or VAPOR AND LIQUID COMPOSITIONS:
HEXANE-TOLUENE SYSTEM
Concentration of Toluene
Sample Type (%) Number of Samples
Vapor 56.9 ± 0.8 7
Liquid 57.2 ± 1.2 15
5.2.2.3 Vapor-Liquid Compositions : Hexane-Toluene-Naphthalene
Systcm--
Naphthalene was added to the hexane-toluene system to
determine the emission characteristics of a much heavier com-
ponent. A mixture of hexane and toluene containing 8 percent
naphthalene was used. The naphthalene vapor concentrations
obtained ranged from 2-6 percent, somewhat lower than the liquid
concentration. It was observed, however, that small amounts of
solid naphthalene had accumulated within the sampling syringe.
5.2.2.4 Effect: of Temperature and Pressure--
Vapor and liquid concentrations were measured for the
hexane-toluene system at the following operating conditions:
1)
2)
3)
4)
T = 130°F, P = 40 psig
T = 130°F, P = 100 psig
T = 200°F, P = 40 psig
T = 200°F, P = 100 psig
In all cases, the vapor and liquid concentrations
remained constant at the levels given in Table B5-63.
458
-------
5.2.3 Conclusions
Based on the results obtained during the course of
this experiment, the following conclusions are offered:
1) The composition of fugitive emissions from
refinery process equipment appears to be
identical to the composition of the liquid
within the leaking equipment.
2) The temperature and pressure of the process
stream have no effect on the composition of
the leak.
3) Heavier components within the liquid process
stream may leak at concentrations equivalent
to that of the line concentration. However,
they may condense on cooler external surfaces.
Hence, only a portion of these heavier components
will constitute air emissions.
459
-------
SECTION 6
MAINTENANCE STUDIES
To evaluate control technologies for valves and to
develop parameters for "off-set" analyses using valve mainte-
nance programs, data on the effectiveness of various types of
maintenance activities are needed. In this section of the
report, the short-term effects of maintenance are described.
No long-term effects are available. However, an ongoing program
is described.
6.1 SHORT-TERM MAINTENANCE RESULTS
A short-term maintenance study was performed on 86
valves at four refineries. Three variables were considered in
selecting valves for the study: leak rate, process stream, and
valve type. A selective experimental design based on categories
of the above variables was used to minimize the number of
required valves in the study.
Eligible valves were first located by screening with
a TLV Sniffer. Variable information was recorded. Each valve
was then rescreened and sampled. Routine maintenance, such as
tightening the packing gland or adding grease, was performed on
the valve. Maintenance was described as directed or undirected.
Directed maintenance involved simultaneous maintenance and
screening of the valve until no further reduction in TLV Sniffer
reading could be obtained. Undirected maintenance was not
460
-------
monitored with the TLV Sniffer. Finally, the valve was
rescreened or resampled after the maintenance had been per-
formed. Table B6-1 summarizes all maintenance and leak rate
information.
The effect of the type of maintenance performed,
either directed or undirected, can be seen in Figures B6-1 and
36-2. The leak rate of the valve before maintenance is plotted
against the leak rate for the valve after maintenance for both
the directed and the undirected maintenance efforts. Valves
that exhibited a reduction in leak rate are indicated by those
points that fall below Lhe diagonal line drawn in each figure.
Those valves whose leak rate increased are shown as the points
plotted above the line. Valves whose leak rates show no change
after maintenance are represented by points on the line. It
appears that the directed maintenance produces a greater reduc-
tion in leak rate in a larger percentage of valves. This indi-
cates that the directed maintenance method is more effective
than undirected maintenance in reducing emissions from valves.
The percentage reduction in leak rates after mainte-
nance was calculated using the following equation:
_ , Leak Rate Before Maint. - Leaf. Rate Alter haint.
Percentage Reduction = ; :— —; *7~.
6 Leak Rate Before Maint.
Negative percentage reductions are possible in cases where the
leak rate increases after maintenance. The highest potential
reduction in emissions is 100 percent. However, it is possible
to get negative percentage reductions that are much greater
than 100 percent, particularly if the original leak rate is
very low.
461
-------
TABLE B6-1. SUMMARY OF MAINTENANCE AND LEAK RATE INFORMATION
The data in this table are first sorted into directed and undirected
maintenance groups. Within the type of maintenance group, the valves are first
sorted by valve function (block or control) and then in descending order by percent
reduction due to maintenance. The valves selected as "control sources" (no main-
tenance performed) are the last valves listed in each valve type group.
The following is a description of the variables listed on the printouts:
ID - Unit code and source number for each valve (refinery ID is not included so
there may be some replication of ID).
BLK - B - Block valve
C - Control valve
PRSI- Process stream code (see below for description).
TLV - Maximum screening value when source was first located.
DATE- Date (month, day, year) when valve was sampled and/or screened.
SAMP- Sample type: BC - Sample for source selected as control.
BS - Sample before maintenance.
MI - Sample after maintenance
BQ - Quality control sample - before or after maintenance.
ES - Estimated leak rate based on maximum rescreening value.
Screening information:
MEAN STEM - Average of four screening values at the valve stem.
MAX STEM - Maximum of four screening values at the valve stem.
MEAN GLAND- Average of four screening values at the valve gland.
MAX GLAND - Maximum of fpur screening values at the valve gland.
NON-METH LK RATE - Measured or estimated nonmethane leak rate (Ib/hr).
% REDUC - Percent reduction due to maintenance.
°i DT7TMT/- i AA /Lk rate before maintenance - Ik rate after maintenance\
/o KhJJUL = IUU x i I
\ Lk rate before maintenance /
Continued
-------
TABLE B6-1. Continued
Stream
AAAX
AABX
AACX
AADX
AAEX
AAFX
ABAA
ABAB
ABBA
ABBB
ABCX
ABDA
ABDB
ABDC
ABDD
ABDE
ABEX
• Process Stream Classifications ,
Gas/Vapor Streams
Stream Description""
Ci - C2 Hydrocarbons
C} - Ci, Hydrocarbons
C5 - C9 Hydrocarbons
CIQ+ Hydrocarbons
Mixed Molecular Weight Hydrocarbons
Aromatic Hydrocarbons
Streams Containing 10 - 50% Hydrogen
Streams Containing >50?0 Hydrogen
Streams Containing 5 - 50% H2S
Streams Containing >50% H2S
Streams Containing >50% H20
Hydrofluoric Acid
Methyl Ethyl Ketone
Sulf olane
Monoethanolamine
Sulfuric Acid
Miscellaneous Gas Streams
-The most volatile stream component present at a concentration of 2070
or more determines the stream classification.
Continued
-------
TABLE B6-1. Continued
Stream
BCAX
BCBX
BCCX
BCDX
BCEX
BCFX
BCGX
BCHX
BCIX
BCJA
BCJB
BDAX
BDBX
BDCA
BDCB
BDCC
BDCD
BDCE
CAAX
CBAB
Process Stream Classifications
Liquid Streams
Stream Description
Ct - C2 Hydrocarbons
C3 - C.« Hydrocarbons
C5 - C6 Hydrocarbons
C7 - C9 Hydrocarbons
Naphtha
Kerosene/Diesel/Heating Oil
Gas Oil
Atmospheric Bottoms/Vacuum Gas Oil
Vacuum Residual/Asphalt
Low Molecular Weight Aromatics
Polynuclear Aromatics
Streams Containing >50% H20
Streams Made up of Mixed Molecular Weight
Components
Hydrochloric Acid
Methyl Ethyl Ketone
Sulfolane
., Monoethanolamine
Sulfuric Acid
Two-Phase Stream containing methane gas and
light liquid hydrocarbons
Two-Phase Stream Containing >50% Hydrogen
-------
TABLE B6-1. Continued
II.
b
L
HKbl
DAI t
S
/\
M
Mb AIM
SILM
JltgG INf-UKMATlUM
(^ax MLAI'J MAX
SILM bLANU GLAND
LK KA-|L KLUUt
MAINTENANCE
PERFORMED
Undirected Maintenance
2 1 V A 1 '>
21VA 1M
21V/> 12
21VA 1?
21VA 13
21VA 13
13VA 11
13VA U
13VA 1]
13VA 11
13VA It
13VA l>
13VA 6
13VA f,
13VA 6
13VA f.
13VA 3
13VA 3
13VA 3
13VA 3P
13VA 3U
13VA "«9
13VA "«9
13VA 1
13VA 1
i;
b
H
U
b
B
U
B
b
U
b
b
H
b
U
b
H
b
U
b
b
H
b
H
I)
AAAX
AAAX
AAAX
AAAX
AAAX
AIXAX
bV-UX
HLtfX
bUJX
btUX
bUIX
HV-bX
bLBX
Ht-BX
Bt-HX
BLbX
AABX
A«UX
A«BX
ULBX
bLIJX
bLHX
HLBX
AAKX
A/»t)X
2h
2b
120
120
220
220
100000
luuuuu
luouuu
luuuuu
1000UO
luouou
100000
100000
1UQUUU
1UOOOO
luuuuu
luooou
lUOuuu
IbUO
IbOU
400
400
10000
lOuoo
102670
11U670
1U26/0
110670
102fc7b
110670
12 12 7 1)
12 m 7O
1217 70
1 2 1 (1 7 O
121970
121278
1211 70
1215/0
121870
121978
11227U
1201 /O
120i» /B
110678
HUf 70
110670
11U670
1122'H
121)170
US
Ml
bS
Ml
bS
Ml
bS
Ml
LS
LS
LS
bS
Ml
LS
LS
LS
bS
Ml
LS
US
Ml
BS
HI
OS
Ml
49730
U
66?bO
13
1 03PO
b<5
82^00
1*30
St.3
1*08
778
79750
'»20
13*3
2198
1550
65000
39bU
14M6
1U39
133
27730
7U5
282SO
1HOO
1UIIUUU
0
10000U
30
24000
7oy
100000
7t>0
10UO
90U
1000
lUUUUU
300
24UO
3700
2300
100000
1UOUU
bOUO
26WO
2UU
100000
1300
10000U
uuun
u
13
0
0
.
30
3273
90
86*
103U
280
10730
4423
4230
300U
1923
600
8400
2123
1223
3W
U
32b
U
3600
U
50
U
30
.
150
3300
270
280U
3bOO
900
21000
10000
0800
0400
2700
20UU
14UUU
2900
1400
120
U
1100
0
10000
U.032U'
U.OOOQl 99. 11
0.04if>7
O.OOOQ2 99.^5
0 • 0 13Q2
O.OOU^O 98.i!5
0.147&1
O.OObQ7 96.37
0.01752
0.021flb
0.0070"
O.t>37l 7
0.023ll 96.48
0.04801
0 . 04bO^
0.01697
O.bBOlO
0.04810 91.71
0.0291*
o.ooieo
O.UU013 91 .67
0.03263
U .0031^ 90 ,43
0.087J2
0.00937 89.25
>i turn top nut; Vs turn
bottom nut.
Vs turn top nut; 1 turn
bottom nut.
Vi turn top nut; >j turn
bottom nut.
1>5 turn each, top and
bottom nuts .
l»i turn each, top and
bottom nuts.
l
-------
TABLE B6-1. Continued
II'
I:
L
I'KSl
l\
M
UATt H
SL'KttNlNti 1MFOHMAI1OM
MLAIM MAX MLAM MAX MON-MtTM *
Sltf SHI*1 (iLAI.'U GLAill) LK HAit HLUUC
MAINTENANCE
PERFORMED
Undirected Maintenance (Continued)
13VA
13VA
1 3 V A
A S V A
X ^ V A
15V,\
15V A
21V/V
21VA
21VA
21VA
13V A
13V A
13V.-,
13V A
13v/»
3VA
3VA
3V A
3W
15VA
i^v,--
1
13
1}
2
7
?
Ib
1 j
1'j
1M
Hi
1M
14
I'l
03
l< *
65
(J.I
n
u
It
V
H
L;
ti
u
U
()
t'
H
b
U
D
L;
u
u
i-
i-
t-
ii
li
I!
L>
t)
AAHX
I'l-LX
MLCX
Ul-t_X
luuuo
1U 1)111) U
lunuou
1 uouuu
AAtX 1UQUUU
AALX 1UUUUU
UAtX 1UUOUU
AAt X 1'JOUUU
A (MX 1UQOUU
AAAX
ftAAX
AMAA
AAAX
AAUX
AAIJX
AAI1X
A«HX
AABX
uctx
ULl.X
t!l-tX
LLLX
ULtX
I. LI X
H9UUU
4 ri U U U
49UUU
49UUU
uuoo
f.UUU
ft U U U
BUUU
bUUU
43UU
430(1
4DUU
4DUU
ouu
huu
12UU7B LS
112?7M US
12U1 78 Ml
121?70 BS
1 21 4 /U Ml
1212/8 US
li-l?>7U LS
121M7U Ml
1217 7« LS
1218 IO tS
12197B tS
12127b OS
J21U to Ml
121778 tS
1216/0 tS
121978 tS
lU2t,7« US
102770 HI
lUiO/O UU
11U370 HU
12127B bS
1 i1. 1 3 / II t S
M?5 24UU
me oo 300110
33ii3 BOOO
i'3f>0 3buU
297bU lUOOUO
33bO 7UUO
IhUb 3UUU
)2>»U ?bOO
1M13 "4200
10HB8 24000
20 2U
^0 20
54UU 6400
'»*b BIO
293 b30
bbj 100U
b/B 90U
2'IOU 3bUU
. ,
AB 1UO
U20 700
, .
49B 7*0
1 b t " 3 U U U U , U 1 B (\ i"
3M2DO 70UOO 0.1^b?3
3265 /JOO O.U2BJ5 Bb.ib
B2UU 13UUO 0.0b76^«
9125 12UOU 0.107o^»
7300 1/000 O.oib7^» BM.J2
4980 IcJUUU 0.6b3o^
1715 bUOO 0.034?/
538** 10'JOO O.U5373
43 90 (I. lib I1*
41 90 U.UUO'gS 82.01
20 2U U.UUUji
20 20 O.UOO^O
20 20 U.UUU2-J
3325 3UOO 0.010r,9
bO« d5U 0.00191 B2.4G
4bW b90 0*004(45
bH3 970 II.UU7n«
b20 H4U O.UObq5
3025 4500 U.lh7^1
0.03b^2 /H.17
3KU bOO U.Ulbq4
1«OU 2«00 U.UIBJB
• . o.ooi9<:
2O 20 U .00575
1 torn on both nuts .
1% turn west nut;
turn east nut.
1 torn each, west
east nuts.
2 turns each, top
bottom nuts.
J/a turn top nut;
bottom nut (could
tighten further).
.%
and
and
Vs turn
not
Continued
-------
TABLE B6-1. Continued
II.'
L
A
M
UATL H
SCKLLN1NG INFOKMAItOM
MC'^N MAX MtA|j MAX
K!L" SHf1 bLAlJU GL'Uin
LK KAfL KtlJUt
MAINTENANCE
PERTORMED
Undirected Maintenance (Continued)
ISVft
IbVft.
ISV.A
AbV/.
13V/,
l.iV/i
1VA
1(M
l\ll\
13V/>
i3V/\
HVA
IVfl
1 VA
1 Vfl
13vr
13V/1
13V/\
IV ft
IV/i
lv/>
15VA
15V/\
M
M
l|
"
'tf,
Mf
7f)
?e>
/b
15
10
15
33
3?
33
14
It
1M
,,p
4(1
*u
7
1
U
ti
b
I'.
b
U
b
b
IJ
H
11
b
L)
U
1!
Ll
H
U
U
n
H
U
H
H
t)
(_>i-t X OUU
liH X OUU
ULt X OUU
Hi-LX QUO
u«-tx inuuu
lj<-LX 1CIUUU
AALtX 1UOUUU
A«HX 1UUUUU
AAHX 1UOUUU
AU|lX lUdUUU
HLF x enuou
MLLX bOUOU
ULLX faUUUO
Ul-Hx ^UUU
Hl-HX 9UUU
b<-['x SUUU
tiUHX "4UUU
MUpX l»UUl)
HUlix UUUU
M/VLX tUUQ
A«tX UUUO
A(\CX 4UUU
A«tX 4UUU
ULLX 1-»UU
I;LLX 1MUU
li!l'(/B Ml
12177B LS
1210 /O LS
li!19/O LS
llUb/e us
110B7B Ml
iu 1 7 re> us
1U277B Ml
103078 BU
11U3/0 UU
11?2'«* US
12U170 Ml
lilUM /B LS
12070 US
1237O HU
2U77B Ml
112?'U dS
lilUl lo Ml
12U<4 /B LS
lU2fa70 BS
1U?77O Ml
1U3U/B UU
11U3/H BO
lU2f,/0 BS
11U4 7B Ml
2u i:u
2U <:u
27 ^8
*:i *:2
b30U 9UUO
5^8 1UUO
M02bU 1UUUUU
67bU ^600
67bUU 10UUUU
??2b 33UO
•tW 5bO
IB1* 44U
253U 33UQ
13 7U 22UU
1370 22UU
2bUU 6UUO
"»JU HbU
103 3BU
3VJU bOUO
1113 2UUU
5hi!b JOUUU
3b3l) <»600
B 3U
2U 2u
UU 1UU
3-4 bS
tt<* 1UU
<4B2b BBUu
bOt< 110U
^ B
350UO 7UOUU
272b 32UU
3bbOU 72UUU
HBUU bZUU
126D 24UO
2'*0fc
3A turn top nut; 3A turn
bottom nut.
1 turn each nut.
1 turn top nut; ?/j turn
bottom nut.
1>S turns on both nuts.
Tightened packing.
2 turns on both nuts.
Vs turn each nut (no
thread on packing nuts).
l'/3 turn south nut; Vj
turn north ni/t.
Continued
-------
TABLE B6-1. Continued
00
Ill
ti
L
K
Undirected
fvn
MVA
1VA
1 V/>.
IV A
13V I-
itvr
15VA
13V//1
,13VA
i3V*\
ISV/i
13w*
13V/ A
13VA
13V/ />
1 3 V /•
13V,i
i? i£ \/ *•
«?i? V /*
22VA
13VA
13V/A
13V A
15V,.
• -'i
Ml
ill.
?f-
i1!
13
1 .<
1 .',
J .^
13
1 'J
1 n
1(1
in
i it
in
i f
i n
^
«?T>
^
-,
q
Q
i ;•
U
b
b
b
U
n
u
b
b
b
H
b
b
b
u
b
u
b
b
b
b
b
s
A SCHtLNlNli INFUKMn 1 1UN
l'*<;l
1 l.V
UATL
M MEAN MAX
H STLM STLM
MEAIJ MAX
bLAlIU OLIVNC1
N0r|-Ml -[-H %
LK Kft^L KtUUL
MAINTENANCE
PERFORMED
Maintenance (Continued)
bLf X
I'Lh X
AAf.X
A«AX
AMAX
A»I5 113 3BO
fll 2U ^U
tS 10 31
tS 43 *8
tS 21 31
bS ". .
tS ?4U 1UO
Ml BU 2<:0
US IbOU 3UUo
Ml 3^b bOU
tS *1 273 31UU
7b2t) 1HJUU
?4 30
20 20
i3 2b
21 23
20 20
t ~
3?b boo
lib 30U
3U« IbOU
9lU 200U
295B bBUU
1UU 120
0. 02&UO
O.U197t> i!''.!^
U.l/60b
U.lBljU
U.l327b 2<..a^»
0.0015^
O.OOliB 22. 4b
0 • U 31 71
U • U 1 1 7 3
O.UUbsb
U.0bl<47
U • U D U ^ 3 1 / • ^ ?
U U / ^ 3 b
U.UUOq1^
U. UUU54 -1U.4
u. 00051
U .OUU<92
U.UUO^b
O.UU3.1U
U , U U 3M **
U UUI^b ~ i^9
U.UUBpB
0.01 f 142 -110
U.U3B2b
O.U1B?1
'/j turn each nut (not
much packing left).
Tightened packing.
1 turn each, top and
bottom nuts.
1% turn on right nut;
1 turn on left nut.
% turn each, north and
south nuts.
1\» turns on top nut; 1H
turns on bottom nut.
1 turn on both nuts.
Continued
-------
TABLE B6-1. Continued
II-
1,
L
r*sl
11 v
UATL
:>
A
M
SLKLLNlNb INfOKMA 1 1OU
ME AM MAX MLAN MAX NON-MLy" % MAINTENANCE
Sltm Sit" OLAr,U bL«UO LK HAyL HLUUL PERFORMED
Undirected Maintenance (Continued)
!5VA
3V.-V
3V*
3V A
3V/\
22V.'.
15V,
1-iVA
13VA
HVA
15VA
13V A
1 5V A
ISV.'l
1SVA
13V.",
13V,\
13VA
1 3 V h
IS U
V 'j b
U' L
bS tl
3 tt
lit f
11 b
11 H
33 b
35 H
? b
'1 H
'( U
r b
i> L>
U II
1 ] N
J C. 11
If- H
HL,,X
I3L||X
ljL(iX
tiUbX
bUHX
IJUHX
bLHX
HLMX
tttttX
JWVAX
AAAX
bLLX
t',Lt X
ntux
I-.LUX
louu
10UUU
10UOO
L l'i U U U
luuuu
2U
b-jU
56U U
5bUU
40UUU
12UUU
lunuuu
1UDUUU
i u o u u u
l|bUU
'K.UU
^uuu
/nuuu
7 u u u u
12U27B
1U26'0
1U2770
1030/f
11U3/0
11U670
11U6/B
1U267U
11U6/B
1106/8
llOalb
1121 to
1122/B
12UM 10
1121/0
1122'O
11P2/0
1122")
Ml
bS
bL
«L
ts
OL
t)L
bL
bS
bL
LS
bL
LS
UL
LS
'•Id
25750
13/bU
300 U U
2U
163
103H
ISVis
9V38
350UU
3HOOU
M5
HC.3
1IIUU
^3^u
33/5
"u25
6UU
10UUUU
66UUU
3POUO
fcUUoO
•a
boo
liuo
500UO
2BUUU
1UUUUU
euuun
170U
i n u ii
auuo
72UO
1UOUUU
180UO
23«
2U50U
OlOUU
2U
33"
102b
2"«/3
2773
373
60
l"
1173
1323
"45U
293
<»3UOU
31USO
2 turns on both nuts ,
could not turn more
3uu u.uM6?3 -133 (packing needs replacing).
liiunuu u. 13^76 -3/7 Vj turn top; 1 turn
luuuuu . bottom.
luuuuu u. 12 71 1
2U U%UUU2U
b5U 0 . UU293
22UU U . 01<4 1 1
MUUU U . Ul / f.'£
3400 0.0450"
HOU U.023^1*
iou u . 03053
MUU U«U13]^
12U U.Ull?'*
IbOU O.Ul^yJ
iv>uu o.oiifl/
1>4U(J U«U^Ut43
3HU U.UMUpt
U Oil 00 U.U4373
7400U U.3129B
Continued
-------
TABLE B6-1. Continued
11.
I
*
Undirected
13V\ V\\
13VA •',
ir.v/-.
1 bv f\
1 5 V i\
IbVA
ibVA
I3VA 7
i3Vrt 7
13V/1 7
I3VA 7
13V A 7
13V. IT
1VA 24
1VA ?4
1 VA 2'
1VA 7'l
ivc ?i
UVA 2?
13 »//\ >"i
13VA 2.
13V A V'l
13V A '-"I
13VA 94
b
13
'
tl
h
B
b
"
tt
U
tl
U
H
b
U
H
U
B
L<
L
L
L
c
L
L
H»Sl
ILV
UATL
S
n
M
r
StKLLNiNt, INFUMhAl 1UM
ML AN
STLI*
MAX
SIL"
ML AM
bLAIJU
MAX
GLAIJO
Mur>
LK
-ML|H x MAINTENANCE
HAjL KLUUC PERFORMED
Maintenance (Continued)
AALX
AALX
A A A X
A«LX
A/»LX
A/It X
AALX
AAUX
AAbX
AAUX
AAbX
AALX
AALX
AAL>
IJV-LX
I'LCX
DLLX
b<^ U U
f,^ U u
3UU
'4 3 u u 0
•MUUO
4 J U 0 0
'I300U
13UUU
U4UUO
f^l OU U
tii uu o
aiuuu
C4UOO
1UO
ieuo
leuo
J00II
1(500
l«oo
100000
luouuu
l u c o u o
1UOOO
inuuo
10UOU
113U7B
1201 7B
12U?70
12127SJ
1^14 10
1^17 If
12107B
12197b
1212'e
li;14 7U
12177SJ
I«!ie70
1219/b
12127B
1^1376
1214 7tt
121 77B
1210 7«
121970
113070
12111 /«
Iif027tt
12U7b
1267H
12b'0
bL
LS
tlL
bL
LS
LS
LS
LS
bL
LS
LS
LS
LS
bL
UC
LS
LS
LS
LS
bS
LS
Ml
bS
bu
LIU
.
1375
'2
5H75
152b
113B
3fi25
19/5
11)730
13i!OU
27b3
3330
9317
•
b30
»<2B
91
2b7b
3075
m
H o on o
3b
653UO
97bllO
97500
.
2bUU
bO
9000
2700
2200
6000
300(1
3bOOO
IbOOU
5100
0000
220UO
•
1200
2bOO
230
7BOO
9UOO
^
100000
30
n&ooo
100000
1000UO
.
1900
37
192'J
52bO
17bOH
11 7i;U
*9bb3
3350
Ib
-------
TABLE B6-1. Continued
11
L
K
HI- si
U V
s
A
UATL K
SCHLtNING INF
CLnN MAX
Slf M SI*-"
UHMM 111
bLANU
IN
MAX I
NUM-«LIM * MAINTENANCE
LK HATL KLUUC PERFORMED
Undirected Maintenance (Continued)
13VA
1V\
1VA
1\/A
1 VA
13VA
13tf/\
13VA
13VA
13\M
13VA
13VA
13Vo
13VA
13\//,
1 Jv/A
13\/A
13VA
13V A
MVA
MtfTt
4V A
19VA
y'i t
77 L
77 L
77 L
77*-
77 L
24 *-
i; 4 *-
2<4 L
5 L
* L
'J t
17 L
1 7 L
1 7 L
l'< L
l'i L
iy t
27 I
27 C
fP L
71' t
/r L
1 i, L
HCLx
l!t«X
LU-IJX
IJ^-liX
b*-rJX
«/>BX
««UX
AAHX
LlLLX
u«-tx
Ltl-LX
Ul-LX
HLLX
bctx
AAAX
AAAX
AOAX
flAAX
n«Ax
LIUAX
1 0 U U 0
900U
901'')
90UO
90UO
20 UO
?otu
j-UUU
lonuoo
looooo
IUH'100
iiuOU
duuu
HUOO
10UUOO
1 0 i) U U 0
100UOO
•)OU
too
.
•
noon
*07/M Ml
102678 BS
1027/« UU
1027 7tt Ml
lOJO 7B Da
1103/b bU
11307B bS
1*017B LS
1^0270 Kl
112?78 bS
1*01 to Ml
1204/0 LS
11227B bS
1*01 7O Ml
1*04/0 LS
1122/b US
1/0 I 78 Ml
1*04 7b LS
11067M HS
110Q70 Ml
102678 BS
1 (IP 7 fO f,l
1U 30 7b H(J
J*li'/B US
.1JUU
PO'IOO
82SO
30250
20
i n o o o o
378
3HOO
6700
413
87
100000
5750
9525
28575
43
54900
3^50
11000
•
48UU
100000
1400
18UO
14000
50000
*0
100000
400
37UO
8000
4JO
110
looouo
94UU
26000
BOOUO
30
looouo
bouu
14000
.
11
400
1650
20
2034
1000
418
500
340
60
1UOOOU
10850
13050
1*0
31
/4000
63O
300U
•
14
50000
1100
400
•jOO
4IJOO
20
4000
iuou
ortu
1200
340
150
100000
24UOO
36000
160
33
100000
1200
4UOO
.
«•
0
0
I
0
0
0
0
u
0
0
0
0
0
0
0
u
0
0
u
.00450 yv. *B Tightened packing.
.00174 99. *3 'A turn north nut; 1H
.uuifoO turn south nut.
.09*3* 3 turns on west nut; 3
,
-------
TABLE B6-1. Continued
IP
I)
L
h
Undirected
1 9 V P. If
i y v A it
19V* 1(
1 9 V A It
19Vrt If,
1VA 73
1 V n 7.5
iv* '3
1VA 77,
1V/' '1
1 V/\ 7J
1VA 71
1 V A 71
lV/\ 71
1 V <\ /I
i VA 71
2 1 V A Hi
21V". 1 '
i; 1 V A 11'
21V A 111
4.32 1 turn each, west and
ouu?* east nuts.
UOUjb
uoo ?e
OOUfD
IbMf 7
00-^50
0737^ 33.01 Tightened packing.
0^750 1 turn each, west and
umn7 ^H.'jy east nuts.
Continued
-------
TABLE B6-1. Continued
in
L'
L
K
Undirected
1 V/\
1VA
IVrt
1VA
13VA
13V/A
13VA
13VA
13VP
13Vf.
HV.-V
13V A
15VA
15V//V
15VA
13V\
13VA
1VA
1VA
1VA
1VA
1VA
IVft
1VA
i VA
1VA
1- L
1<- L
191
lc' L
r L
r L
l< L
,1 L
H L
t I
2') t
L''l L
0 L
1 L
9 U
bf L
be- L
PI L
21 L
^1 L
21 L
?1 C
t ] L
211 C
?l! L
i»r L
HKS1
1LV
UATt
A
M
H
SCH'LNlNb 1NKJKMAUUM
Pi[ AN
SILW
MAX
STLM
MLAfj
bLANU
MAX
GLAun
MOM-MLT" * MAINTENANCE
LK
KATL HLUUC PERFORMED
Maintenance (Continued)
AAf.X
/1«LX
AAFX
rtALX
AAHX
AAbX
AAHX
AAt5 1*5 turn each nut.
0126'
on«;i 9.17 \ turn each, west and
0.40/90 ' east nuts; ^ turn west
0.
u.
0.
0.
Ot
0.
407gO nut.
4U 790
lbl9U
U23J3
02Mja -4.20 1 turn each, west and
37ip4 east nuts.
Continued
-------
TABLE B6-1. Continued
I.
H
L
*
Undirected
IVA
IVA
IVA
IVA
IVA
IVA
IVA
1 VA
IV;'.
"»VA
'(V<\
'IVA
I»VA
"»VA
i3VA
33VA
33VA
-i3VA
33VA
33VA
13V A
13VA
13VA
13VA
13VA
13VA
13VA
2.)
2C
2P
1 *»
c. e
22
2?
2?
2?
22
b1Ax
S1LM
Mtflrl
bLANU
MAX
GL«IJO
NUN-MLJH * MAINTENANCE
LK HATL Ktuuc PERFORMED
Maintenance (Continued)
AALX
AALX
AAF.X
A/»LX
AAf_X
AA^X
AAtX
/UVLX
AALX
AbAU
AbAB
OBAU
AOAB
ABAU
AAF X
AAF X
AAFX
AAFX
AAFX
AAFX
UCLX
btf.X
HCLX
bl-t X
MtLX
BtEX
AABX
luuuuu
luuuuu
loouou
luouou
luouuu
1UOUUU
luouuu
luouuu
luouou
^bUUO
95UUU
95UUO
95UUU
95UUU
1UO
MUU
•*uo
4UU
4UU
•*UI)
]bUU
IbUU
IbUO
IbtO
IbUU
IbUO
MUO
1217/8
12187B
1219/6
1213/8
1 2 1<4 7 B
12] 5/B
1217/B
121870
1219/B
1U26/6
1U?77B
1U30/8
11027B
1103/B
12137B
121M7B
121J.7B
1217/B
12187B
121S7B
121271)
12147U
1215/8
12] 7/B
121H/B
1219/B
113076
LS
LS
LS
BS
Ml
LS
LS
LS
LS
BS
Ml
BU
BU
BU
BS
Ml
LS
LS
LS
LS
BS
Ml
LS
LS
LS
LS
US
7HUU
5323U
?lbOU
30/UO
.
buuu
3023
10730
5B/5
30/30
2U73
11SUO
.
izun
0
.
20
1/0
2U
20
1BJ
.
5bl
ri2a
"•23
613
•
17UUU
1UUUUO
52UUO
7BOUO
.
6uun
qUUU
230UO
100UO
bbUUO
3UUU
23oun
.
22UO
0
.
20
1/0
^0
«!0
2i!0
.
910
fcOU
blO
9*»0
•
•*325u
b62bU
b53UU
161CU
.
1723U
29123
'*^8^U
1300U
25UCO
/OU
IbOU
.
210U
10
.
2U
.
2U
20
bfa
.
H"»
bB
2b
3d
•
1 uuuuu
10UUOU
luuoou
3000U
.
1|3UUU
U3UUU
luuouu
2/OUU
2bUOU
iuuu
20UU
•
22UU
33
.
2U
.
2U
PU
12U
.
SB
9B
33
b-*
•
U.HU798
O.^U/gB
O.MU/gB
U.Ullfl9
O.oi3?s -11. ti V» turn east nut; 1 turn
u.2U|c^ west nut.
U.333s^
U.<40 Jfjti
U ^ 1 td tJ f\ A
0 0 0 ^ t V
U.uu3i4b -28. b "» turn east nut; 1 turn
u.uui>2i west nut.
O.OU1J2
O.UU122
0.ool5^
u.uu2i)i -ba.4 Vn turn east nuts.
u.uuu^J
U . DUlIf**
u.uuupa
u.uuupi
O.UUlQb
O.UU26? -i'*9 1 turn each, west and
O.uUb^i east nuts.
O.UUbo1*
O.UU4g3
O.UUbyU
U.UUUjl
Continued
-------
TABLE B6-1. Continued
Ill
b
L
I'KS1
1LV
UATL
S
n
H
H
SCKLLN1NG INUJKMAIIUH
MLAN MAX MEAN MAX
STIW STLM bLANU CL«HU
NUN-MLTH * MAINTENANCE
LK KATL HLUUL PERFORMED
Undirected Maintenance (Continued)
13VA
1 5V A
«:?««
2? V.I
13VA
UVA
13VA
13V/V
•MM
15V*
15VA
13VA
13VA
13VA
15VA
15VA
15V/<
15V<\
15Vfl
15VA
15VA
15VA
15V A
21
i-'l
1
J
7
7
7
•M
(.7
C
f,
1M
i"
27,
i
3
»
3
3
X
c
S
*j
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
/KIIJX
AAHX
AAAX
00
H25
^
100000
2^30
uvuu
7650
.
225
205
Ib3
1/U
120
"23
IbB
3HO
0
20
^0
20
bOO
bbUO
100000
t /oo
1000
f
looouo
4HUU
bboo
100UO
.
JHO
2HO
3UO
230
130
1*0
2<:d
340
0
2b
20
2U
.
.
obooo
x«
^b
,
12300
10
Hi)3
700
t
IfaO
153
20
00
/I
I/1*
21
1M
0
32
20
20
.
.
100000
5U
^o
m
23UOO
50
blO
1000
.
220
IbO
20
90
00
290
33
210
.
0.00070 -132 3 torns on both nots.
0.00013
O.OOOQ3 -bbo 1 torn on each not.
O.OOlQ*
O.lb731* -e7*«b 3 torns on both nots.
O.M07gO
O.OOblO
O.OOOJ2
1.04320
0.40 790
0.02U12
0.03b7/
0.0177*
0.002?0
0.00271*
0.002G1
0.002i,3 '
O.OOlg1*
U. 001,5
O.OOb^O
0.001p7
o.oonji
Continued
-------
TABLE B6-1. Continued
IP
1
1
r\
Undirected
ibvrt
lbv/\
21V<\
^ 1 Vfl
.?! Vfl
,'1V A
^1V/ \
',
'•
17
1 7
17
1 7
I 7
L
I.
I
I.
L
(.
L
I'"1; 1
It*
DATL
s
A SC>(C-LN
ll ML OH
f S 1 f i'1
IIO(, IMF UKMA 1 1UIJ
NAX MLrtu MAX DON-MI yn * MAINTENANCE
Sit" C.LAIIU GLAIIU LK KAjt. HLUUC PERFORMED
Maintenance (Continued)
I.V 1 X.
|ii.l X
AAAX
A'lAX
AAAX
A A AX
AMAX
3HU
JMU
?UUl)
i'UUII
?uuu
puuu
?uun
li-Ul/b
1 2 1 •) 1 «
12137U
121M to
1217'H
i i' i e i o
121 V'o
LS bU
LS Ihi
UL 2U
LS 41
LS 2U
LS ^0
LS i'1)
1 JU At 1 / U .UUl 1 /
100 mj su o.oui^b
-------
TABLE B6-1. Continued
If
Directed
1 i V ^
1 3 V
b
t)
H
l<
t.<
It
l)LL(X
Ltl-IIX
bt-HX
OLIJX
HLBX
HLKX
AMHX
AHMX
A«MX
A » 1 1 X
ft/U'.X
AAAX
I»«AX
A A A X
A»/\X
AAAX
/\AAX
IlLLX
bLCX
li(-(.X
ULCX
1>I-CX
ULCX
MttO
HHO
GOOD
8UOO
nooo
CM (10
nuuo
lonuoo
IOQOOU
1 O {i O L1 U
loouuo
i u r u u u
luuouu
i onooo
1UCOUO
i ULIWHO
IOC UUO
1UOOUII
32UO
3^00
3^00
3200
i^ U 0
3200
11979
12279
11179
11879
11979
122^
1?379
l?4/9
11179
11 779
11979
1?2 /9
12379
11179
1177U
11779
1197^»
122/9
123'9
11179
11B79
119/9
1P279
123'9
12'U*
US
Ml
LS
I S
LS
bS
LS
ts
ts
LS
bS
Hi
LS
LS
LS
bS
Ml
LS
LS
LS
LS
bS
Ml
LS
LS
LS
LS
63 00
24 ^5
49fb 6faOO
2U iiO
?U iiO
23 50
B70UU 1UOUOU
IfctiH ?4UO
63i?t) 9UOO
7bU 12UU
1200 if.UO
B25(IU lUUUUU
. .
713 1400
411 7UU
5b3 050
I2*i l^UO
90 1«!0
. .
21 <:2
31 ^^>
26 42
;>9 au
2U
3D
2U
2U
2U
1025
4 30
310U
390
4fe3
265
,
663
83»
22bU
117D
863
.
ma
0 I
12D
143
40
20
25
40
20
20
20
2"
12UU
91HJ
55UU
bUO
hOO
400
.
90U
IbUO
3400
i!2(IO
11UO
.
2.1U
i")U
3UO
26U
0.
(j
0.
u.
o •
0.
u.
0.
u .
0.
0.
y<
c.
0.
0.
u .
0.
u.
u.
0.
0 .
0.
°-
UUUn.0 1 UU
UUl7«i
OUOj5 9H.h2
UOU?3
UOOjk:
009l«i
001^(5 9H 12
0*40^7^
OUB jl
0107U
139f,U
002ft«? 97.90
U09s«!
010] 1
U^07M
om^
007^0
000]9 9 7.45
U0191*
002()9
UU245
UO^.,1
1 turn north not; 1 torn
south nut.
5>s turns east nut; 5^
turns west nut.
% turn top nut; 4 turn
bottom nut.
1 turn north nut; 1 turn
south nut.
3 turns top nut ; 3'j turns
bottom nut.
Continued
-------
TABLE B6-1. Continued
CO
in
L>
L
K
I'KJjl FLV
UATL
S
A
M
H
STLM
JiNO INF UKMA 1 1UN
MflX MLflN MAX
SiL" GLAND GLAMU
NOM-MLTH * MAINTENANCE
LK KAyt- KtuuL PERFORMED
Directed Maintenance (Continued)
1 5V<\
J3VA
13V,.
1 AV^
i3vn
ISVft
13VA
13VA
13V/\
13V A
V3V/\
13VA
1 ^V A
13v/\
27V/V
2 7 V ,-,
27Vrt
i; 7v (\
<-7V/\
13VA
1 3Vf,
i3vn
13VA
I3vn
':* L:
<• H
'/ t,
V H
ll li
1 U
' b
., It
t. H
f. 1.1
I. It
1? H
It. b
i? it
\y H
ir u
i f ('•
b4 i;
^>4 U
'114 h
bit t.
*~>H U
i '< u
1< H
H I'
1 VI li
1 il U
LJl-lX '«l»UUO
HLCX UUUUU
ItLCX "4l»UOO
HLCX 'mouu
r.tcx 4'iuuu
ULHX uuuu
HLHX 'IUUO
m_[jx 4uuu
H(-BX MUUU
tlL«X MUOII
hn.,ix uiiuu
1801)0
AAAX 16UUO
AHAX lODUO
A » A X 1 0 " (1 0
AHAX louuU
A«AX IPUOO
ni-r, x louuul)
WLUX 1HQUUU
HLhX lUOUUU
ULIU 1UUUUU
rjnix i uuunu
1(1-1 X ?JUH
BLLX 23UH
HLCX ?JUU
LH-CX ?^>uo
LH-tX 23UU
11J7V
131 /V
1117V
1107V
119'V
1^2 7V
1237V
124/V
line
111 7V
117/V
1197V
1227V
1237V
1127V
11C, 7V
1197V
122 /V
123/9
11 17V
1 1 7 'V
1197V
1?2 fV
1237V
Liii
LS
Ml
LS
LS
BS
.11
LS
LS
LS
LS
US
LS
!«1
LS
ts
t S
bS
Ml
L-S
LS
ES
bS
Ml
LS
LS
LS
llbU
73H
1 70U
2^uu
.
Ib9
21
1"*0
bU
.
2525
211
2UOO
3'
«=b
905
55UUU
2b5
33
23
525
33
Ib3
JU
3b
bUUUU
58UUU
IbUU
2300
3100
.
0"*0
t>4
300
I'll
.
touo
20
2UUU
00
30
2000
10UUOO
buu
bO
«!5
VUU
'0
200
bO
00
2650
3/3
vuo
bi».s
.
ObO
202
233
•450
,
,
20
22'JO
i»V
15b
.
U
.
.
•
271
10
10U
20
3*
btiUU
b30
770
1200
BOO
.
1200
420
b80
tuu
.
.
?0
*4UOU
f-3
1UU
.
0
.
.
•
/2U
2u
260
3b
52
0
0
u
0
(1
0
0
u
0
0
0
u
0
0
0
u
u
u
u
0
0
u
0
0
0
,uoif,v ^b.o^ 2 turns top nut; 2
.Oiuyo turns bottom nut.
.om73
.U12bO
.ooun/ V3.07 5's turns north nut; B1,
.uuoji turns south nut.
.00330
.uot^u
,OU5j '
.01150
. Ud3qb
,ooun3 92.00 5 turns each nut.
,Uii3
-------
TABLE B6-1. Continued
vD
i:
Di rected
2 7 V A ') I"1
2 7 V /, bl1
2 7 V A ^ f
27Vr. '(U
d7Vr '.Ml
2 r v .'. -4 '
27w 'ir,
2 7 v n 4fc
2 7 V ,". 21
27V.', 2]
27 v A 2]
2 7VA ->!
27v A 21
1 3 V A 1 .'.
1 3 V A 1 .'.
UVA 1.'.
i 3 V A 1 /
1 3 V A 1 '
J3VA I'l
1 3 V A 1 'I
1 3 V A I "
13VA iu
13v« I'l
13VA 2(,
13V A 2 '•
1
L
K
I'KSl
IL«
UATI.
S
A
MLAM
INb INfUKMAIlUM
MAX MLA(J MAX
SlLfi bLAUU f,LAI>|L)
MOM-MLTH * MAINTENANCE
L«. KArL KLU"L PERFORMED
Maintenance (Continued)
i)
O
P
b
H
t'.
LI
li
Li
e
u
b
H
H
1!
Li
L!
U
II
K
L'
II
1
i;
13
U
AAAX lOOl'OO
AM AX 1UOUOO
A«AX 100000
AAAX 100000
AAAX JUOOOO
HLHX
HtHX
Ill-HX
IJLHX
ni-nx
HLUX
Hi-BX
A/VAX
AAA*
AAAX
AHA A
AAAX
AAAX
IVAAX
AAAX
AAAX
AAAX
AM AX
AM AX
2bOOO
24000
240011
24000
2 '( 0 0 0
24000
.M.OO
3bi:u
JbOU
3b(JO
3bOO
7000
7000
7000
7»00
7000
230C
;• t> o u
1 197*
111 "
llf"
1 19 "
1?2 f<
1237-*
1117^
1177^
119"
1?2"
123"
111"
117"
1 1 ') "
1?? "
123"
111"
117"
Ml
LS
LS
LS
hS
Ml
LS
LS
LS
bS
Ml
LS
LS
LS
US
Ml
LS
LS
t S
HS
«1
LS
LS
LS
US
Ml
P97SO 100000
54 100 . •
28/bO 70000
22785 BOOOO .
1 5b5n
1 *34 t>o
4bOO
4bOO
20
20
2u
2bb
K25
<;5
54
2b
31
103PO
57
73
101
20
t14b
*25
45000
7000
3300
fibUO
"o
£ 0
<^ 0
bOU
1400
36
'2
30
•*?
29000
bO
lao
200
«;p
1LOO
1100
40fa2S 7bOOO
537t) 12000
t)4 3 1^00
2725 8^00
20 20
20 CO
20 ?U
137bU 18000
?0 20
. .
4 1 50
32 33
2fa ?b
245PO 34000
30 30
. .
.
•
5H3 1000
j y o t 'i o o
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
o .
0.
0.
o.
0.
c.
0.
0.
o.
0 .
004ub
ooo^b Bb.ib 95 pomps of grease.
00093
33b?l
oi2jb B4.35 52 pumps of grease; 3
Ob3u* torns per not.
000^,6
ouoj3 BO. 40 3A torns each nut.
000?3
ooo?3
0^013
OOl^b
oooj1^ 7i. 10 40 pomps of grease; 1
ouo7o turn each nut.
00030
00074
00078
00032 59.30 35 pumps of grease.
00133
00172
OUU;>3
ooiqf 3 turns north nut; 3
Ooi(]b 45. ^7 turns sooth nut.
Continued
-------
TABLE B6-1. Continued
oo
o
L
in K,
rusl
TLV
UAFf
S
It
M
SCKLIN1NG INfl
PLAN MAX
STtM STLN
JKMA F 1C
MLAM
M
MAX
GL«NU
NOM-MLT" > MAINTENANCE
LK KAfL HI DUC PERTORMEO
Directed Maintenance (Continued)
1 3 V A 2 ( b
27VA :>;•• c
27Vn '>3 |:
2 7 V A ' > .' H
27Vrt '.).' h
27vM '.'< H
2 7Vf M b
d 7 V A -1 1 b
27>'A "i] l<
2 7 V A lj 1 IS
27V/. si f
13VA 1 l>
\ 3 >/ A i i ;
13VA ) b
13VA 1 H
13V A 1H
13V A 4 f<
13Vf 'i t
1 3 V A ') 1 '.
1.3V A ': H
1 3 V ft 'i t'
13VA 1 ] l.i
13V A 11 tl
1 3 W A 11 1 •
13V/, 1] h
AAAX
A A AX
LAAX
LA AX
L AAA
L/IAX
LAAX.
L A A X
L t\ A X
LA AX
LA AX
L A A X
bLIJX
l(Lt',X
t'.LljX
rtLHX
>IL*X
A/>I!X
A/M'X
AAHX
Ann*
A A HA
ULLX
IJLLX
I1L(.'»
ilLC X
2 b'l U
23U U
J3UU
30UU
3 b 1! 0
Jal'U
JbUU
i unuuu
1UOUUU
i u n u ii u
1 u 0 u u u
i u n u u u
1 2 !J (1
l«;uu
12UU
l^UII
12UU
bbU U U
b!j U U 0
bSU u U
b b UH n
b 5 U U U
730(1
7.111(1
7JUO
73HU
1227V
123/V
112/V
J 167V
1 197V
122 7V
1237V
1127V
1 17 7V
1 19 7V
122 7V
1237V
11^7V
1167V
1177V
1197V
1227V
1157V
1 lf-7V
1 177V
1 197V
1227V
llb7V
1 1^ 7V
1] 7 7V
J 197V
LS
LS
LS
HS
Ml
LS
LS
LS
bS
Ml
LS
LS
LS
LS
tlL
LS
LS
LS
LS
UL
LS
LS
LS
LS
HL
LS
LS
IIM'U
3V9
2HH
24HUU
1238
214
512bU
4300
7IIUU
3UUU
1050
*U
4 a
123
12U
31
5UOU
b225
4H7b
51511
382SO
420
3 7(IU
140 J
lV7b
ifeuu
IbUO
8UO
6SO
bUO
4 U U U 11
44UU
bUO
(JUUUO
4 bull
8UUU
5UUII
32UU
20
luu
2UU
IbU
35
70UO
V2UO
7VUO
73UU
98UUQ
7UU
41.UU
4 2 u (I
45UO
92U
w
145U
.
.
•
17UU
3BUU
5bOU
2bt U
1V05
2i'
U
2V
21*
*«;
230U
31UU
345U
4320
312S
45tU
430U
12f 7S
492S
.J2UU
IbOU
,
i;uuu
.
.
•
28UU
bbOU
»buu
4UUU
31UU
2b
u
3b
31
22
2VUU
jouu
ObUU
36011
4HUU
BOUU
bbUU
41UUu
1UI1UU
u
u
u
u
u
u
u
0
u
u
u
u
u
u
u
u
0
0
u
u
u
u
u
u
u
u
u
.U1U 7U
. o u u <, b
.uuuau -e>2.b 18 pumps of grease.
.1«2PV
. u 2 1, n o
. UU4c,l
, UU5}3
.U13Q4 -145 V? turn north nut; % turn
.U4uni south nut.
, U2 Vj V
.oiv7u
.UUUpB
. UUU^b
. UUl7
-------
TABLE B6-1. Continued
oo
I'
Directed
1 3 V A 11
13VA ;
1 3 v ft «' ;.
13Vft <•?
13VA 2 (•
13V ft "-"i.
13V 7i '/I.
1 3 V ft ? (
13V A 27VA b,"
«;7VA rj?
i?7vA f>?
X
n«-rx
n LUX
MM,*
7300
9UUU
90UO
9UOU
9UUU
9UOU
J 5 U 0 0
3SUOU
IbOHO
350UO
J300M
br.uon
58UUU
b ('. U U 0
380 0 U
cj t\ U 0 0
hf.UUO
HbUOII
M500U
M 5 o i) n
HbOOP
M 5 0 0 0
IUOI'00
1 I) P 0 0 0
lupooo
111 00 HO
] U Ij U U 0
12279
llb/9
1 16 79
11779
11979
1P279
11579
11679
11779
11979
1?2 79
11L79
1 1 r. 7 9
11779
11979
1?2 79
12379
11279
1 15 79
11779
11979
12279
1 11 79
11779
119/9
12T 79
12379
LS
LS
HL
LS
LS
LS
LS
bL
LS
LS
LS
bL
LS
LS
LS
LS
LS
bL
ts
LS
LS
LS
bS
M
LS
LS
LS
2775
m>*,3
19HO
<«250
OP/5
3b50
5MPO
52i^5
812^
36230
53/5
B3750
35MUO
12750
3350
infcpb
1775U
ennuo
luo'uio
S623U
1UOUUU
365UO
11250
27B
2ire
335
?UbO
MbUO
aooo
2bOO
7UOO
1 1000
10000
IUOUP
7800
IbOOO
60UUO
7000
1 0 0 C 0 0
50000
20000
bOOO
IbOOO
MUUUO
louoou
i o u o u o
1 0 0 (1 U U
1000UO
1000UO
ioooo
300
2MO
6UO
3MUO
M 7 ^3
.
200UU
2500
1 2 1 0 U
6373
37CO
230U
3073
322b
2773
lMi?b
9'jtl
M3o
10bO
105U
13?b
1600
2000
1150
2euo
loou
eb
500
273
MSb
HA
brtou
.
? u u o o
3000
3uouo
1 7000
3000
320U
3BOO
3HOU
MOOU
^oou
.
u .
0.
0.
u .
o.
o.
0.
u.
o.
u.
0.
0.
0.
0.
o.
u.
U M fl p 1
UHH 1 3
im i p b
039jb
1M1J3
OB573
Obj73
uiapi
0 7b70
2bU?l
039?3
Pdbpii
^i^lb^
O98gii
029J9
U7b7»
lH2n^»
01B7U
MU7qt)
MU7gB
M U 7 Q «
MU7g«
U U 9 ", 1
UUO()0 loo 1 turn east nut; 1 turn
00357 west nut.
UUbq3
0«.U7«
Continued
-------
TABLE B6-1. Continued
00
N>
in
Directed
1 3 V A
1 5VA
1 3 v A :
L WA 1
HVA -
t'7V^ 'lb
i; 7 v A 4 r>
^7VA '^
't^\l^ n ;.
i?7VA 4b
1 5 V /\ 'I J
15VA 'U
15VA 41
l"5Vrt 4 i
15VA 'M
15VA 4]
15VA 4 ]
1'jV.-. 1 ".
I'iV-. If
IbVA U
1'JVA !;•
15VA If
13V A V
13V A >
livr. ''
13VA '•
13VA ;
M
L
K
rt-MX 92UOO
trU-LlX 92°UO
11LHX 9?UUO
Ht-flX 9?UOO
l)Ct-.X 92UUO
UCHX 3UUO
IjLlIX 3UUO
M«-HX 3UUU
KLHX 3UUII
ht-UX 3UUO
b>-HX 1400
tjcnx 14 u n
LS«-HX 14UU
U«-h(X 14IJO
tJ>-l'.X 14DU
111/9
12279
129 /9
130/9
1M/9
111/9
11779
119/9
122/9
123/9
112/9
112/9
119/9
12? 79
123/9
124/9
129/9
112/9
119/9
122/9
12379
124 /9
111/9
117/9
119/9
122/9
123/9
US
cs
Ml
LS
ES
HS
Ml
LS
LS
LS
US
LS
LS
LS
ES
LS
Ml
OS
Ml
LS
ES
LS
OS
Ml
LS
LS
ts
40/5
53*5
46
23
iy
3'«UOO
370
200
593
47SUU
.
52500
47
H5
52*5
1?00
*
2fc75
;?u
23
i»U
21
1//5
245
?6t>
160
4i4
eouu
6300
90
30
40
73000
bun
i>40
1UUO
1UUUUO
,
5BOOO
49
92
58UO
14UO
•
peon
<:n
AC
in
*4
20UII
4UQ
330
33U
12UO
13SU
232b
y.2.0
34b
3*3
2U
.
.
.
•
.
i!1750
30
3S
50U
30b
•
73H
20
20
31H
?u
bl
!-»
150
20
29
1BUU
4500
310
b40
b40
?u
.
.
•
'
.
320UU
3*
4U
6>UO
370
•
lucu
20
20
1000
?0
10U
3U
200
20
4i!
0
0
0
0
0
u
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
u
0
0
0
0
0
.01013
.0357 '
,oooi>o 97.01 2>s turns north nut; 2'5
.00470 turns south nut.
. UUl<1 1
.OOf-,3
.uoojj 95.00 VB turn west nut.
.00201
. 007(18
.407ga
.01/3'«
. 2b25b
,00050
.OOUfl /
,U332fe
,0095«!
.00096 94. 4f, i!, turns each nut.
.0126*
.001)1 91. *2 8 turns north nut; 8
.00032 turns south nut.
. U07flM
.0002 '
.00249
.00029 UP. 40 3>j turns north nut; 3>s
.uui-fU turns south nut.
.O02ni
.UUtMl
Continued
-------
TABLE B6-1. Continued
co
If
Directed
UWrt
13VA
13 v.i
1 JVf,
I 3V«
l3V/>
13V «
13V/<
13V1
13V/V
15VA
I'lV /\
15v/\
15V-*
1-jVrt
13VA
1 3W
J 3VA
13V <\
13V A
^7VA
;'7V,\
«>7V(\
«r 7 V 1
,-7V/>
«!7tf;,
<>7VA
1 1-
) «•
1 (
1 i.
1'-
!••-
] '.
i :
I s
i ^
)U GLAliU
MOM-Mti" » MAINTENANCE
LK
NftTL Hf-UUL PERFORMED
Maintenance (Continued)
L
L
L
L
L
L
L
L
C
L
L
L
L
L
L
C
L
L
L
L
L
L
L
L
I
L
L
AAAX lUUUUU
AAAX lUUUUU
"A AX lUUUUU
/WVAX lUUUUU
AAAX 1UCUUU
/i»/\X p.uut)
«AAX (1UUU
AAAX 6UUI)
/uiflx auwu
A /(AX dUUU
L>*-r_ x iiuu
I:LI.X 1.1 uo
i-IM X 1 iUU
'J L L X 1 1 U IJ
t-"-LX llt.'U
AAAX ?i?UO
A/VAX 2*!UU
/I « A X ? «! U U
A« AX 2«^un
A A A X 2 ^ U U
ULUX ltll'0
HL;)> 16IM)
ULtJX ItJUU
b>-UX 10UU
liLDX 10UU
A/U5X iff.UUU
A/.LIX hUUU
11?7-J
1197*
1^^ 1?
1 ? 37*
12U7V
1127*
1197*
122 /*
1^3 /*
1?'.7*
1127V
122 7*
1?* /*
130 7*
131 ;*
n?/9
lib?*
11 7 /*
1 IB /*
1197*
ii5?y
IK, 7V
11 77V
119/*
l->^/*
1 1 17U
1117*
MS
Ml
LS
LS
LS
bS
Ml
LS
ES
LS
US
LS
Ml
LS
LS
uc
LS
LS
LS
LS
LS
riL
LS
LS
LS
UC
LS
9bou pouuu 335u bbuu
2b50 26UII IbUU i!lUU
1 It* 2UU 1.J9U iUIIU
130U 1MUO lf>UU .J1UU
2bbH 3^011 13UU «ibUU
HbU 12UU . .
MMb biu . •
"«i?b 7UU , .
1 4UU 22UU . •
10fi3 13UO . .
700 i uoo 30 ta
if>i!b i /on 3ib iau
l?25 l^UO ^23 12U
1U50 11UU b^b 1UUU
7^0 11IUO f, ; 7-2
bb3 UUO . .
13*b 37UU . .
2M5U b2UU . •
IflbU 2UUO
l"2b UUO
f>^3 dUO M3 5*
iVb 3UU U U
7h3 a^U 4b Hu
'*UU bUO 7b» ^2UU
T33 300 71 IUU
, . .
2UbO 3UUO u*uu Mi?OU
u.
U.
U .
U .
u.
u.
u.
u.
Ui
u.
0.
u .
u.
u.
u.
0.
u.
u.
p .
0,
u.
0 .
u.
u .
"•
n.
u.
UU21-*
uuuu* 77.1* 4 turn east nut; '5 turn
uiBf,*? west nut.
u 2 u 70
U19/U
U U U 5 U
UUU?f "»b./l l"a turn on nut.
UUbj /
uini /
uu«9a
UUl 5*
0 1 Ip*
uu3u<> -119 Z'a turns west nut; 2*j
uu77" turns east nut.
UU I(]O
ouinb
U*i?3*
OJUpl
0130^
uu2-»
UUSljl
uu2n^
UUbi3
(iit\t
uu^,,u
OU'J,-,1*
U-»bi*
Continued
-------
TABLE B6-1. Continued
s
I' A SCKLLN1NG IMI-UKMAllUN
It-
Directed
c!7Vft
H7Vf
?7v/i
s.TM r
•4 7
'< 7
>4 /
•. 7
L
h l-«^l
Maintenance
C A A U X
L UUU 1147^
oUUU I'SZf'J
M KQAN M/\x
P 5ILM STL"
E.S 350 ^30
LS 33UU 3bUO
Lb b3U 7"U
tb ibu <;<:o
MLAM MAX
(JLAIMU GLAND
eob luou
31b3 OBUU
Tbtt
U.U1M] /
O.U^2.^
CO
-p-
-------
LLL>LNL): A = 1 UbSt H = 1 OUSi LlL,
CO
Ul
l.uUll <
t
t
4
A
A A
A
AA
AA
A A
A
u.nui
Leak rate before =
— Leak rate after
maintenance
u.uiu
LtAK KAIL ULt-Uht MAIN!., LB/HR
l.QUO
Figure B6-1. Directed maintenance - leak after maintenance
versus leak before maintenance.
-------
Ltt>ENU: A =' 1 UDSi H = * ObS. t. ft .
-P-
00
L
L
A
K
l(
A
r
E
A
F
1
t
rl
M
A
I
N
1
•
L
B
/
H
t
1.000 *
1
1
1
1
1
1
.U.I 00 ^
1
4.
4
i
*
i
^
u.ul.t +
/
/
/
/
/
/
t
U . U 0 1 ^
^
4
1
1
f
1
/
. j 0 U
II. 'MIL
Leak rate before =
Leak rate after
maintenance
A A
U.Ulil
U.U1U U. }QU
HAFL ULUWL .lAlNT., (LB/HR)
1 .QUO
Figure B6-2. Undirected maintenance - leak after maintenance
versus Leak before maintenance.
-------
Figure B6-3 summarizes the percent reduction data
with histograms comparing directed and undirected maintenance.
The effectiveness of directed versus undirected maintenance is
obvious when comparing the distributions of percent reduction.
The effects of the valve maintenance studies are
summarized in Table B6-2. The results are shown for both the
directed and the undirected maintenance programs, and are
grouped according to the level of emission rates. Two results
are noteworthy. It is evident that the percentage leak reduc-
tion for those valves that were subjected to directed mainte-
nance is considerably greater than that of the valves that had
undirected maintenance. It is also apparent that the level of
the initial leak rate has a marked effect on the percentage
reduction in emission rate for both directed and undirected
maintenance. The percentage reduction achieved by maintenance
is lower for the initially small leak rates. In the very low
initial leak range, £ 0.001 pounds per hour, the average and
weight percent reduction was actually negative.
It should be noted that as the magnitude of the leak
rate becomes smaller, both the mean percent reduction and weight
percent reduction decrease rapidly. Both of these parameters
are dependent on the magnitude of the leak rate and are highly
influenced by extremes within the leak rate range. The median
percent reduction, however, is a more robust measure of central
tendency and cannot be affected by the very large negative values
of percent reduction encountered at low leak rates with undirected
maintenance.
487
-------
lo-
g-
s'
7-
x 6-
U
c
1 5"
*-
3-
2-
Undirected Maintenance
—
1 1
_• i 1 i I I 1 1
I
VI
\
^
P75
1
1
^
\
I
1
£T
i
1
%
\
f
^
\
!
i
O 23 O O
Percent Reduction
IS-
9.
«
3-
7-
x5-
^
Is-
OJ
L.
4-
3-
2-
i
1-
Dlrected Maintenance
P
i * M
x ^ ^tyy^/
^oo d^^-o o d '6 6eA36^^^g
^
|
1
o
1
I
!
i
i
o
1)11
Percent deduction
Figure B6-3. Histograms for percent reduction in
leak rate directed vs. undirected
maintenance.
488
-------
TABLE B6.-2. SUMMARY OF MAINTENANCE REDUCTION BY LEAK RATE LEVEL
Original Leak Kate
Level Range (Ib/lir)
1 £0.001 n
P"
pw
pm
2 0.001 - 0.01 n
pw
pm
3 0.01 - 0.1 n
P
pm
4 >0.1 n
P"
pw
pm
n = Number of valves maintained
77 — Axr^» T n o£» np>T^*3nt" -roHn^ f- n rm — VP • /n
Directed Maintenance
4
30.7
35.2
52.6
12
48.7
56.9
86.2
10
93.8
93.0
93.8
1
98.0
98.0
98.0
_ _ (leakage before - leakage
Undirected Maintenani
6
-105.5
-26.3
5.6
16
-530.0
-276.4
30.4
22
31.7
45.1
60.9
15
73.4
83.5
85.4
after maintenance)
-= - -. - :— H - ^ - : -- — =- x 100
leakage before maintenance
pw =
,, . . ,_ ... Eleakage before maintenance - Zileakagc after maintenance
Weight percent reduction = fi =- ;- ,— r-— •
)lc*'-*Lrr*rrf*i'\airr\-vt~* m ^ i nf"/inon«-»ri
pm = Median percent reduction
L\_ 1I1C-1 _!_*.! l_V~lLCLl.lt_*_ L-i ±.\— Cl L*-dfZj*~- Cl -I- I
Zleakage before maintenance
_n
x 100
-------
The median percent reduction does show the same
patterns as the average and weight percent reductions. The
comparison between the median percent reductions for the two
types of maintenance indicates that directed maintenance yields
a higher reduction in leak rate. Undirected maintenance appears
to be less reliable at low leak rate levels ( 0.001 Ib/hr) with
the potential for causing more increases in leakage.
The individual percent reduction from the two mainte-
nance methods was plotted against the original screening value
in Figures B6-4 and B6-5. It appears on these graphs that the
positive percent reductions for directed maintenance are generally
higher than for undirected maintenance. Also, a greater per-
centage of the undirected maintenance valves appears to have
increased in leak rate after being maintained than for the
directed maintenance. Table B6-3 bears out these observations.
The median percent reduction for directed maintenance (91.2
percent) is significantly higher than that for undirected mainte-
nance (53.8 percent).
In Table B6-3 the valves are grouped according to the
categories of the three variables used in the experimental design
for selecting valves. One of these variables was valve function
(block or control). Control valves which had directed maintenance
had a slightly higher median percent reduction in leak rate than
block vlaves which had the same type of maintenance. However,
the opposite is true for valves which underwent undirected mainte-
nance. Again, even within the block/control groupings, directed
maintenance appears to yield a higher percent reduction in leak
rate than undirected maintenance.
The screening value range was also used in selecting
valves for the study. For directed maintenance, the median percent
reduction stays approximately constant across the screening value
490
-------
Lt(.L»ni: « - i OU.-J, I- r S III-.';* LT(.
-p-
vO
I-1
i
t
I ii U f i\ A « A A A AC
I1 ' A A « « A A ,|
L ; A U /\
K ' ' />
t '.)U . A i\
L /
fM ,
f
K
t
1 J /
U -'jd 1
t / ;,
1 ,
1
U - 1 jU <
juil lui'u luuuP luuniju
MAX SCREENING VALUE, PPMV
Figure B6-4. Directed maintenance - percent reduction
. versus screening values.
-------
loll
i: A = 1 OKbt U : ? UUSi L1L.
100 f ,\
/
•j(l
A A
C A
A A
AA
-lull
- 1 L) 0 t
A A
(-550)
--A---
(-8745)
----A- *
icon
MAX SCREENING VALUE, PPMV
(-377)
.--A---
1 U IH> 0
luu
Note: 3 values were out of range
Figure B6-5. Undirected maintenance - percent reduction
versus screening value.
-------
TABLE B6-3. STATISTICAL SUMMARY OF MAINTENANCE DATA - PERCENT REDUCTION
LO
Screening
Block Valves
Directed Halnte_nancc
Control Valves
Range
(ppojv)
<5K
5K-50K
>50K
C/V
Stream
2 58.8
56.5
58.8
2 76.1
90.7
76.1
3 93.8
97.8
98.0
LL
Stream
5 6:) . 1
90.5
93.1
4 89.8
89.0
90.1
2 -?.b. '<
56. 7
-26. 'i
HI.
Stream
0
0
0
Total*
Block
7 61.8
86.5
87.3
6 85.2
89.1
88.7
5 65.7
92.3
91.7
G/V
Stream
0
1
1
18 64.2 (12.96)
91.0 (82,99)
86.2 (75,97)
45.7
45.7
45.7
77.2
77.2
77.2
1,1.
S t ream
4 39.5
84.9
89.8
1 95.0
95.0
95.0
2 97.2
96.4
97.2
HL
Si ream
0
0
0
Total
Control
4 39.5
84.9
89.8
2 70.4
91.5
70.4
3 90.5
95.0
94.5
All
Valves
11 53. 74
85.6
88.4
8 81.5
89.2
88.7
8 62.5
92.6
93.1
9 66. 8 (12.100)
80.7 (79,99)
91.2 (9.3,98)
CJ.7,100)
(77,99)
(IB, 98)
(65,98)
(69,100)
(-55,96)
(-7.9,100)
(81,100)
(-31,99)
21 64.6 (38,91)
90.7 (83,98)
91.2 (79,9.'))
*Numbers in parentheses Indicate an approxlra.ite 95Z confidence Interval for the average reduction for the three different estimations.
(ContInuod)
Code for
Kach Cell
In Table
1 = Number of valves maintained
100 x (leak before - leak after maintenance)
2 = Average of percent reduction where percent reduction - "ITak before maTntenaW
£ leak rate before maintenance Lleak rate aftrr maintenance
3 - Weielir_ percent reduction D -TT, — • , . ~ -
* ' }. l<>.ik int e hpfure ma inlcnance
/i a Median percent reduction
-------
TABLE B6-3. Continued
Undirected Maintenance
Screening Block Valves Control Valvc6
Value
Range
(ppmv)
<5K
5K-50K
1
>50K
fi/V
Strcuu '•
6 54.0
52.2
65.2
4 69.8 ;
47.8
82.6
3 75.3
88.4
84.3
I.I.
Stream '
6 42.6
58.9
76.9
4 -64.9
- 9-°
28.2 ;
4 81.3
93.0
90.9
Hi.
Stream '•
4 -26.1
-43.4
7.37
0
o ;
MD
-P-
Total*
Block
16 29.7
48.5
33.1
8 2.4
20.2 '
50.1 '
7 78.7
91.1
85.4
'
(;/;v ;
Stream :
7 -1320
- 717
-58.4
2 54.2
53.8
54.2
8 29.4
81.3
19.3
LL
St ream
5 5.2
91.1
26.56
4 87.8
96.9
95,6
1 90.6
90.6
90.6
IIL :
Stream '•
0
1 ,8.2.1 :
82.1
82.1
.0
31 33.7 (-1.8.69)
68.7 (48,89)
61.1 .(31.85)
Total*
Total All
Coutrol Valves
12 - 769
-50.5
24.1
7 77.4
90.2
82.1
9 36.2
87.0
29.5
28 -312 C-950.100)
33.0 (-39,100)
28.9 (-0.5, 79)
15 37.4 (-28.100)
67.4 (34.100)
82.1 (42,88)
16 54.8 (31,78)
89.6 (81,98)
67.0 (21,92) :
28 298 (-940.100) 59 -124 (-410,100)
81.0 (64,98) /3.9 (69,88)
51.4 (13,85) 53.0 (29,82)
*Nur.ibcrs In parcnthcscc Indicate an approximate 95X confidence Interval for the average percent reduction fnr the three different estimations.
Cudc for 1 2 1 - Number of valves maintained
* 3 2 - Average of percent reduction where percent reductl
4
3 - Weight percent reduction =
100 x (leak before - leak after maintenance)
Leak before maintenance
£leak rate before maintenance - £leak rate after maintenance x ,QQ
l^leak rate before maintenance
4 a Median percent reduction
-------
range. However, for the undirected maintenance group the median
percent reduction increases dramatically with increasing screen-
ing values. Within the low screening value range the median
percent reduction is very low, only 28.9 percent. This may
indicate that undirected maintenance at this screening level
is not effective at all. For the middle screening value range,
the median percent leak reduction increases to 82.1 percent,
almost as high as the value for directed maintenance (88.7
percent). However, the median percent leak reduction drops
again for the high screening value range (67.0 percent). The
effectiveness of the maintenance program appears to be much
more consistent when the directed method is used rather than
the undirected method.
The differences in percent reduction discussed above
should be considered as trends. Confidence intervals were cal-
culated for the key values in Table B6-3. Differences in per-
cent reduction cannot be considered statistically significant
if confidence limits for the estimates overlap. The statistical
procedures used to calculate the confidence intervals are dis-
cussed in subsection 6.3.
A graphic representation of the differences between
the effect of maintenance on block and control valves is shown
in the next several figures. The leak rates before and after
maintenance are plotted for block and control valves in Figures
B6-6 and B6-7. The percent reduction in leak rate for each
valve is plotted against the original screening value for block
and control valves in Figures B6-8 and B6-9.
Finally, Figures B6-10 and B6-11 are histograms of
percent reduction for block and control valves for directed
and undirected maintenance. The differences described in Table
495
-------
J.'il.n •)
L
L
K U.IOO
K
A
T
L
/
/
/
u.C id «
I
t
I
I
t
1
t
U.uDl «
t
I
i
t
I
I
l
u.udU »
U = Undirected
I = Directed
II II
U ,UU1
u.Ulu
l_t«(N KAIL ULI-UKL i^AiUl., LB/HR
• - - _ * -
1 . 01' 0
i i...is ilium ,i
Figure B6-6. Directed and undirected maintenance .r, leak, after• maintenance'
versus leak before maintenance - block valves.
-------
L
L
ft
K
K
n
I
£
A
I
T
L
K
M
A
1
N
T
1 . 0 0 0 *
t
I
U. 1UU
U.OlU
O.HOO
U = Undirected
• = Directed
II .IIUl
U.U1U
Ll Ar. HAIL ULl-UKL ilAINT.,' LB/HR
Figure B6-7. Directed and undirected maintenance - leak after maintenance
versus leak before maintenance - control valves.
-------
CO
/ U = Undirected
lbu * 1 = Directed
luU » i. u u ft
H ; u
I t
L /
N 1
-------
•Ut) *
t
U = Undirected
I = Directed
1UO
"
'
1) t
I
t
t
/
'
UK) +
/
II •
• •
U U •
• UU
III
a
(-550)
(-8745)
1UU
1UUU
MAX SCREENING VALUE, PPMV
5 OBS hidden
10UOO
Figure B6-9. Directed and undirected maintenance - percent reduction
versus screening value - control valves.
-------
Undirected Maintenance Control Valves
1
o
~*
)
VI
oooooo o o
t t t t t t * t
i
o
I
o
1
o
1
i
s
o o o o
Percent Seductlc
I
|_!
1
1
o o o o o
n
5-1
q
Frequency
>— • r*o i*j ^> t.
1 I 1 I
Undirected Maintenance Block Valves
!
Y/
o o o o o o •:
~^ i i t t i
i
VI
Figure E6-10.
i
VAWi ^
i
%
//
3000-00000
1 t t I
1
1
0
£J
I
\
\
0 =3 0 0 0
00 O
Percent Reduction
Histograms for percent reduction in
leak rate - undirected maintenance.
500
-------
5-
4-
§• 3
airected Maintenance Control Valves
Percent Reduction
5-
4-
3
-------
B6-2 can be seen on these histograms. While no large differences
between valve function are obvious, the differences between the
percent reduction in emissions for valves undergoing directed
and undirected maintenance can be seen. The advantages of
directed maintenance are usually apparent.
The data from this study can be used to assess the
short term effectiveness of maintenance in a leak reduction
program. In extrapolating the data from the study to a general
population of valves, it is important to review how the valves
x^ere selected for study. The selection of valves was not random;
rather, a specific experimental design was attempted. This
design called for at least four valves in each cell in Table B6-3
(directed versus undirected maintenance was not considered in the
original design).
In extrapolating the percent reduction estimates from
this study to a general population of valves, the following
factors must be considered:
• Will directed or undirected maintenance be
employed?
• For what screening values will maintenance be
required?
Note that the type of valve and the type of process
fluid need not be considered since no consistent differences were
found for these factors in this study.
Suppose directed maintenance for all valves with
screening values greater than 5,000 ppmv is required. Estimates
of the short term effectiveness of maintenance can be obtained
502
-------
by appropriately weighing the percent reduction statistics for
valves in the 5k to 50K and >50K screening ranges which under-
went maintenance.
From Table B6-3, the appropriate statistics for directed
maintenance are as follows:
,, . Percent Reduction in Emissions
Screening
range Average Weight Median
5,000 - 50,000 81.5 89.2 88.7
> 50,000 62.5 92.6 93.1
All three of the percent reduction statistics are
potential estimates for the population percent reduction. Perhaps
the most useful of these statistics, however, is the weight
percent reduction since it allows an estimation of the total mass
emissions reduction resulting from a valve maintenance program.
Continuing the above example, assume that for a random sample of
valves, 70 percent of all valves that will require maintenance
are in the 5K to 50K screening range and 30 percent of the valves
requiring maintenance are in the >50K screening range. Using the
weight percent reduction statistics and the percentage of valves
in each screening group, an estimate of the mass reduction for the
the population would be:
Estimated effectiveness (total mass reductions)
= (0.7 X 89.2%) + (0.3 X 92.6%)
= 90.2%
An appropriate confidence interval for this estimate would
be (72%, 100%).
503
-------
6.2 LONG-TERM MAINTENANCE STUDIES
The effect of maintenance procedures on the long-term
reduction of .emissions is currently being studied for a limited
number of valves. The staffs of three refineries are monitor-
ing several of those valves that were sampled and maintained as
part of Radian's refinery field study. Approximately 60 valves
are being screened with TLV Sniffers at intervals of one week to
one month for a total period of 6 months. The program has not
been completed. The results will be published in a separate
Technical Note when they are available.
6.3 CONFIDENCE INTERVALS FOR PERCENT REDUCTION
Approximately 95 percent confidence intervals were
calculated for the three types of estimates of percent reduction
presented in Table B6-3. The statistical procedures used to
develop these intervals are discussed below.
The mean percent reduction in leak rate, being an
average of identically distributed random variables, was
assumed to be approximately normally distributed by the central
limit theorem. Thus, the 95 percent confidence limits are:
where x is the mean,
s— is the standard error of x, and
A.
t is the critical t-value obtained from a table.
-------
The calculation of the confidence limits for the
median percent reduction in leak rate did not require an assump-
tion regarding the type of distribution. The method, which is
valid for all continuous distributions, is described briefly as
follows.
Suppose the data for which the median has been calcu-
lated are ordered so that
P, £ P2 < P3 1 ....<. Pm
where P. is the i value of percent reduction, and m is the
number of values. Then the two points whose indices are
m+1 . 1.96/ln"
2
are the desired confidence limits. Since these two indices are
actually not integers, interpolation between values was per-
formed to achieve slightly increased accuracy.
Confidence limits were also computed for the percent
total reduction in leak rate,
100 CB~A)
B
where B is the total leak rate before maintenance, and A is the
total leak rate after maintenance.
'I'll*- c- .» j I I c-::;:: i i ij 1 I ill I tie- V.-tl i.;l!Ji t* I'll ;l I -1 I I •'• C-Ul'li UG
I. l)f ,'tl«,VI- | r; ||li| 1'UiiWII >;»..-||-| 1%' hill l/.-lfl l_if_i ;l [ i [i f < i :'.;j III ^ (' p> | MFJIIK ?
second-order Taylor's series expansion, as is discussed by
Mood, et al. -1
505
-------
The type of distribution of this ratio is unknown.
,\
It was felt, however, that ±2a confidence limits provide a
reasonable indication of the uncertainty. If the ratio were
normally distributed, these would be 95 percent confidence
limits.
6.4 REFERENCES
1. Mood, et al. Introduction 'to the Theory of Statistics,
Third Edition, 1974, p. 180-181.
506
-------
SECTION 7
GENERAL SURVEY INFORMATION
There are many factors in a refinery which might
contribute directly to the fugitive emission load or indirectly
affect the overall emission level. However, they do not lend
themselves to direct sampling. Among these factors are mainte-
nance practices, laboratory techniques, unit shutdown proce-
dures, blind changing procedures and blending operations. In
order to evaluate these items, a general survey form for each
of them was submitted to the refiner. In this way, the informa-
tion necessary to compare these factors froni one refinery to the
next was obtained.
7.1 MAINTENANCE PRACTICES
It is widely acknowledged that good preventive
maintenance is one of the best ways to minimize fugitive emis-
sions. If the effectiveness of maintenance plans in reducing
fugitive emissions can be characterized, a valuable correlation
could be obtained. This correlation could be used when applying
the results of this study to other refineries.
Generally speaking, the refineries used combinations
of in-house and contract maintenance personnel. The in-house
maintenance people did much of the routine maintenance, and
supplemental contract labor, was used during turnarounds and
larger maintenance projects.
507
-------
None of the refineries sampled during this study were
utilizing an extensive valve maintenance program during the period
when sampling was conducted. That is, routine screening of large
numbers of valves for the purpose of preventing or reducing hydro-
carbon emissions was not encountered.
Some form of preventive maintenance program was in
force at five of the six refineries responding to this survey.
The extent of these programs varied, however, among refineries.
In one refinery an inspection of each unit is performed once a
year. Piping, furnace tubes, etc., are replaced if it is felt
that they might fail during the following year. Maintenance
records are not kept for extended periods of time; work orders
are held for one year. These work orders cover pump repairs
and seal replacement. Pumps, valves, flanges, etc., are in-
spected and adjusted/replaced only when a problem is reported.
At another refinery, however, a preventive maintenance
program is practiced on instrumentation, electric motors and
pumps. This includes a prescribed maintenance schedule for each
piece of equipment. The program is supplemented by an equipment
file. These records are maintained of failures and service life
of various equipment items. The packing and seals of pumps,
valves, etc. are routinely inspected by operating personnel.
Some minor adjustments may be made when the need is observed.
More extensive work, as well as minor work on critical pieces
of equipment, is done by maintenance personnel after they
receive requirest by the operator.
In five of the six refineries, equipment files are
kept on pumps and compressors. Seal failures and packing leaks
are recorded. However, valve maintenance records were kept at
only one refinery.
508
-------
Maintenance personnel were generally not assigned
permanently to a particular unit in the smaller refineries.
They could be assigned to specific refinery areas which might
include several process units. Some maintenance people are
assigned to major process units in large refineries.
Three of the six refineries reported that 17 percent,
18 percent and 20 percent of the operating budget is devoted to
maintenance. One reported that 44 percent of its manpower was
devoted to maintenance. No information on the criteria used to
establish these numbers was available.
Significant differences in emission rates were not
found amont the refineries. This would indicate that the
variations in maintenance programs found do not affect the
emissions rates.
7.2 PROCESS UNIT TURNAROUND PROCEDURES
Most normal maintenance in a refinery can be performed
while running, but some major items require that the unit be
shut down and opened. Since maintenance personnel must physi-
cally enter the vessels to work, the entire unit must be purged
of all hydrocarbons and tested to insure that it is "gas free".
This large scale overhaul of a processing unit is called a
"turnaround". A survey was made to determine the frequency of
turnarounds on various process units as well as the disposition
of the purged hydrocarbons.
The following purging procedure is typical of industry
practice. The unit is shut down and process gases are vented to
a vapor recovery system, if available, or to the flare. Then
steam is charged to the unit to strip out the remaining hydro-
carbons. Most of this steam is vented to a closed blowdown
509
-------
system which will remove condensed water and route the gases to
the flare. A few "high-point" vents are opened to the atmos-
phere during the latter stages of steaming out, but it is felt
that there is little significant hydrocarbon evolution by that
time. Then the steam flow is stopped and the unit is cooled,
thus condensing the steam. The condensate is drained off.
Atmospheric vents must be open at this stage to prevent the
formation of a destructive vacuum. Then the vessel manways are
opened and the interiors are gas tested. This procedure is
thorough and effective, and its overall impact on fugitive
emissions is negligible, especially in light of the infrequent
nature of its occurrence.
The frequency of shutdowns for various units at one
refinery is pres.ented below. These frequencies are typical of
the refining industry.
TABLE B7-1. SHUTDOWN FREQUENCY
Times Down in Scheduled Period
Unit Last 12 Months Between Turnarounds
Crude Unit
Crude Unit
Catalytic Cracker
Fuel Reformer
Naphtha HDS
Alkylat iun
Aronatics Reformer
Aromatics Extraction
1
1
1
0
0
1
2
1
1 year
1 year
1 year
1 year
3 years
1 year
1 year
3 years
Only the Aromatics Reformer had exceeded its scheduled down times
with one unscheduled shutdown for catalyst regneration.
510
-------
7.3 BLIND CHANGING
A blind changing survey was included in this study
largely because of the results of the Los Angeles County study.
It was initially believed that the. practice of routinely changing
pipeline blinds is unusual. This belief has been substantiated
in Refineries "A" through "I". Only when handling very expensive
and exotic materials, such as some lube oil stocks, would the use
of blinds be warranted as a means of controlling direction of
flow to prevent any cross-contamination. The refineries reported
that they do not routinely change a significant number of blinds.
Most blind changing takes place during the start-up or shutdown
of a unit, and at these times, the unit has generally been purged
of hydrocarbons. The refineries were unable to supply any detailed
information on the times, the hydrocarbon properties, or amounts
spilled during the limited amount of blind changing they did.
7.4 SAMPLING PROCEDURES
Quality control sampling in a modern refinery can
potentially add significantly to the overall fugitive emissions.
It is very difficult to quantify the emissions from sampling
because of their irregular and transient nature. General surveys
were made of sampling, flushing and sample waste disposal proce-
dures. It was hoped that this information could be correlated
into a sampling emission factor.
At one large refinery, laboratory personnel were observed
while drawing routine liquid samples in the field. Line flushings
were routed to a covered oily water drain system with a maximum
of 18 inches free fall and minimum exposed retention time (i.e.,
less than 2 minutes). Readings were taken with the J. W. Bacharach
"TLV Sniffer" at the drain entrance immediately before and after
sampling. No significant difference in readings was discernible,
511
-------
and the absolute parts per million readings were below the
selected sampling limit of 200 ppm. Thus, it was concluded that
the flushing of liquid samples did not significantly contribute
to the fugitive emission load at this refinery.
A common control test for light hydrocarbon fraction-
ators, the reflux end-point, or "boil-away end-point", may cause
significant emissions. In this test, 100 milliliters of column
reflux are collected in a graduated vessel with a conical
bottom. Since the reflux of these "stabilizer" towers is
primarily butane and lighter hydrocarbons, the sample will begin
to evaporate at ambient conditions. The vessel is then fitted
with a two-hole stopper, one side of which held a thermometer.
The sample is allowed to boil away, and the temperature noted
when 5 milliliters remain. This value is the reflux end-point,
or more precisely, the 95 percent point on the distillation
curve. At one refinery, it was observed that approximately
400 milliliters were flushed to the atmosphere in order to
obtain a sample representative of current operations. A survey
of the operating units revealed that this test was routinely run
33 times per day at one large refinery. Therefore, 16.5 liters
of light hydrocarbon were lost to the atmosphere per day.
Assuming that this material may be characterized as butane, this
would represent an emission of 0.87 pounds per hour or 21 pounds
per day. The number of reflux end-point tests reported by the
refineries varied from 6 to 33 per day. Thus, the losses from
this test varied from 4 to 21 pounds per day.
The overall sample load at one large refinery was
approximately 200 samples per day. Of these, about 40 percent
were gas samples for chromatographic analysis, about 24 percent
were volatile liquids (naphtha or lighter), and about 36 percent
were nonvolatile liquids. Sample wastes were emptied into one
-------
of two slop oil collection systems, one for naphtha and one for
heavier materials.
The six refineries responding to the survey reported
sample loads of 50 to 200 samples per day.
7.5 BLENDING OPERATIONS
Although blending operations were not considered for
sampling as a refinery process module, they do employ many of
the same pieces of equipment and are therefore subject to fugi-
tive emissions. The only unique piece of equipment would be the
mechanical tank mixers. This emission source consists of a low-
pressure seal on a rotating shaft. The pump emission factors
should not be used as estimates of emissions from this source
for two reasons: (1) only a few samples were obtained from these
sources and there are no data to suggest that the pump emission
factors would be appropriate, and (2) these seals are often
exposed to vapor rather than liquid, particularly when vertical
mixers are employed. A portion of the survey included questions
to determine what facilities are allocated to blending at each
refinery.
One large refinery uses only batch blending. This is
done in two parallel systems, one for leaded gasolines and one
for unleaded. These two share no common facilities. Agitation
in the blending tanks is provided by side-entering mechanical
mixers. Emissions control on the leaded system is by floating
roof, while the unleaded system uses a vapor recovery system.
This is a conventional compression-absorption-stripping system
using light cycle gas oil from the catalytic cracker as the
absorption medium. There are nine tanks involved in this
operation, six in the leaded system and three in the unleaded.
513
-------
Another large refinery blends all gasoline using in-
line blending. Both pump-around loops and mechanical mixers are
used to agitate tanks. There are eight tanks used in blending
service, and they are all equipped with floating roofs. Two
independent, parallel blending systems are employed.
A small refinery reported using batch blending. They
employ only two tanks in blending service. Both are equipped
with vapor recovery systems, and pump-around loops are used to
agitate these tanks.
Another refiner employs six tanks in their single
train, batch blending system. All six tanks are equipped with
floating roofs.
514
-------
7.6
CONVERSION FACTORS
To Convert j'rom
Btu
bbl
gal
ton
Ibs
cm
ft3
psi
g/gal
Btu/bbl
kWh/bbl
Ib/bbl
lb/106 Btu
grain/ft3
gal/MMcf
gpm
lb/1000 gal
To
kcal
a
a
kg
kg
in
m3
kg/cm2
g/*
kcal/£
kWh/£
kg/A
g/Mcal
g/m3
£/(hm)3
m3/hr
mg/£
Multiply By
0.252
159.0
3.785
907.2
0.454
0.394
0.0283
14.223
0.264
0.0016
0.0063
0.0285
18.0
2.2.9
133.7
0.227
119.8
515
-------
TECHNICAL REPORT DATA
st: rcsd /niisiic lions or she reverse it/ore completi
. RFPOST NO.
EPA-600/2-80-075c
13. RECIPIENT'S AC
4, T:7LE AND SUSTITLc
Assessment of Atmospheric Emissions from
Petroleum Refining: Volume 3. Appendix B
5. REPORT DATE
April 1980
7. ALi
8. PERFORMING ORGANIZATION REPORT NO.
E.G. Wetherold, L. P. Provost, and C.D. Smith
•3. PERFORMING ORGANIZATION NAME AND ADDRESS
Radian Corporation
P.O. Box 9948
Austin. Texas 78766
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
5. PERFORMING ORGANIZATION CODE
10. PROGRAM ELEMENT NO.
1AB604
iTcONTRACf/GHIANT NO.
68-02-2147, Exhibit B
13. TYPE OF REPOH~ AND PERIOD COVERED
Final; 3/76-6/79
14. SPONSORING AGENCY CODE
EPA/600/13
. SUPPLEMENTARY NOTFS
919/541-2547.
IERL-RTP project officer is Bruce A. Tichenor, Mail Drop 62,
16. ABSTRACT
The report gives results.of-a 3-year program to assess the: environmental.
impact of petroleum refining atmospheric emissions. This volume contains a de-
tailed compilation of the data and a summary of the results obtained from measure-
ments taken at 13 refineries throughout the U.S. The sampled sources included
valves, flanges, pump and compressor seals, relief valves, drains, cooling towers,
oil/water separators, dissolved air flotation units, and various process stacks.<^—~
Nonmethane hydrocarbon emission factors for the various fugitive emission sources
arc presented. Nomographs illustrating the relationship between screening (monitor-
ing) values and emission rates are included. Correlations of leak rates with various
process and equipment parameters are graphically displayed. The frequency and
distribution of emission sources in refineries are estimated. The effect of simple
valve maintenance on valve leak rates is described. Many organic species present
in liquid process streams and vapor emissions were identified and quantified. These
species and their concentrations in the various streams are listed.
17.
KEY WORDS AND DOCUMENT ANALYSIS
Pollution Maintenance
Petroleum Refining Organic Compounds
Assessments
Sampling
I Analyzing
Hydrocarbons
b.lDENTIFIt.HS/UPEN cNU = D TF RMS
Pollution Control
Stationary Sources
Nonmethane Hydro-
carbons
c. COSATI FieUl/Group
13B
13H
14B
07C
15E
D I S f H i " \j r I <_• \ STATEMENT
Release to Public
i?A Form ZZ21-1 ('i•^^^
19 SECURITY CLA5S (This Report)
Unclassified
21. NO. OF
20. SECURITY CLASS (Tins page)
Unclassified
22. PRiCE
-------