&ERA
United States       Industrial Environmental Research  EPA 600/2 80-075c
Environmental Protection   Laboratory           AonligSO
Agency         Research Triangle Park NC 27711
Research and Development	
Assessment of
Atmospheric Emissions
from Petroleum Refining:
Volume 3. Appendix  B

-------
                 RESEARCH REPORTING SE31ES


Research reports of the Office of Research and Development, U.S. Environmenlat
Protection Agency, have been grouped into nine series These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional  grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

    1. Environmental Health Effects Research

    2. Environmental Protection Technology

    3. Ecological Research

    4. Environmental Monitoring

    5. Socioeconomic Environmental Studies

    6. Scientific and Technical Assessment Reports  (STAR)

    7. Inleragency Energy-Environment Research and Development

    8. "Special" Reports

    9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series.  This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to  repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
                             REVIEW MCTDCE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                    EPA-600/2-80-075c

                                              April 1980
      Assessment of Atmospheric
Emissions from Petroleum  Refining
           Volume 3.  Appendix B
                          by

             R G. Wetherold, L.P. Provost, and C.D. Smith

                     Radian Corporation
                       P.O. Box 9948
                     Austin, Texas 78766
                Coniract No. 68-02-2147. Exhibit B
                  Program Element No 1AB604
               EPA Project Officer Bruce A Tichenor

             Industrial Environmental Research Laboratory
           Office of Environmental Engineering and Technology
                 Research Triangle Park, NC 27711
                       Prepared for

             U.S. ENVIRONMENTAL PROTECTION AGENCY
                Office of Research and Development
                    Washington, DC. 20460

-------
                             ABSTRACT

   Atmospheric emissions from petroleum refineries were measured as
part of a three-year program to assess the environmental impact of petrol-
eum refining.  Appendix B contains a detailed compilation of the data and a
summary of the results obtained from measurements taken at 13 refineries
throughout the U.S.  The sampled sources include valves, flanges, pump
seals,  compressor seals , pressure relief valves , drains , cooling towers ,
oil/water separators , dissolved air flotation units, and various process
stacks.  Nonmethane hydrocarbon emission factors for the various fugitive
emission sources are presented. Nomographs illustrating the relationship
between screening (monitoring) values and emission rates are included.
Correlations of leak rates with various process and equipment parameters
are graphically displayed. The estimated frequency and distribution of  emis-
sion sources in refineries are given. The  effect of simple valve maintenance
operations on the valve leak rates is described. Many of the individual
organic species present in liquid process streams and vapor emissions were
identified and quantified.  These species and their concentrations in the var-
ious streams are listed.
                                  11

-------
                       TABLE OF CONTENTS


                                                           Page

1.0  INTRODUCTION		     1

2.0  FUGITIVE HYDROCARBON EMISSIONS FROM BAGGABLE SOURCES.     3
     2.1  Leak Rate Data	     4
     2.2  Screening Data	    22
     2.3  Leak Rates/Screening Relationships 	    48
     2.4  Distribution of Emissions and Sources Based on
          Screening Values	    83
     2.5  Correlation of Variables	131
          2.5.1  Correlation of Leak Rate with Continuous
                 Process Variables 	   131
          2.5.2  Relationships Between Discrete Variables
                 and Leak Rates	136
          2.5.3  Effect of Process Variables on Percent
                 of Sources Leaking	222
     2.6  Emission Factors 	   265
          2.6.1  Emission Factors for Baggable Sources .  .   265
          2.6.2  Effect of Process Variables on Emission
                 Factors	274
     2.7  The Number and Distribution of Baggable Fugi-
          tive Emission Sources	285
          2.7.1  The Number of Sources in Selected
                 Refinery Units	286
          2.7.2  Distribution of Fugitive Emission
                 Sources	291
                              in

-------
                 TABLE OF CONTENTS (Continued)

                                                           Page
          2.7.3  Fugitive Hydrocarbon Emissions from a
                 Hypothetical Refinery	295
     2.8  References	299

3.0  COOLING TOWERS AND WASTEWATER TREATMENT SYSTEMS.  ...  300
     3.1  Cooling Towers	  300
          3.1.1  Methodology	300
          3.1.2  Results	  304
     3.2  Wastewater Systems	321

4.0  STACK EMISSIONS	328

5.0  SPECIES CHARACTERIZATION 	  381
     5.1  Organic and Inorganic Species Characterization.  .  381
     5.2  Experimental Comparison of Composition of
          Leaking Vapor with Composition of Liquid in
          Pipes .  .  .	450
          5.2.1  Experimental System	451
          5.2.2  Testing Results	455
          5.2.3  Conclusions	459

6.0  MAINTENANCE STUDIES	460
     6.1  Short-Term Maintenance Results	460
     6.2  Long-Term Maintenance Studies 	  504
     6.3  Confidence Intervals for Percent Reduction.  .  .  .  504
     6.4  References	506

7.0  GENERAL SURVEY INFORMATION 	  507
     7.1  Maintenance Practices 	  507
     7.2  Process Unit Turnaround Procedures	509
                               IV

-------
            TABLE OF CONTENTS'(Continued)
                                                      Page
7.3  Blind Changing	511
7.4  Sampling Procedures	511
7.5  Blending Operations 	  513
7.6  Conversion Factors. .	515

-------
                        LIST OF FIGURES
Figure                       Title                         Page

B2-1      Distribution of Leak Rates for Valves - Gas/
          Vapor Streams	10

B2-2      Distribution of Leak Rates for Valves - Light
          Liquid/Two-Phase Streams 	 11

B2-3      Distribution of Leak Rates for Valves - Heavy
          Liquid Streams	12

B2-4      Distribution of Leak Rates for Valves -
          Hydrogen Service 	 13

B2-5      Distribution of Leak Rates for Open-Ended Valves  . 14

B2-6      Distribution of Leak Rates for Pumps - Light
          Liquid Streams	 15

B2-7      Distribution of Leak Rates for Pumps - Heavy
          Liquid Streams 	 16

B2-8      Distribution of Leak Rates for Flanges	17

B2-9      Distribution of Leak Rates for Compressors -
          Hydrogen Streams 	 18

B2-10     Distribution of Leak Rates for Compressors -
          Hydrogen Service 	 19

B2-11     Distribution of Leak Rates for Drains	20

B2-12     Distribution of Leak Rates for Relief Valves  ... 21

B2-13     Distribution of Screening Values for Valves -
          Gas/Vapor Streams	27

B2-14     Distribution of Screening Values for Valves -
          Light Liquid Streams	28

B2-15     Distribution of Screening Values for Valves -
          Heavy Liquid Streams	29

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-16     Distribution of Screening Values for Valves -
          Hydrogen Streams	30

B2-17     Distribution of Screening Values for Valves -
          Open-Ended Valves 	  31

B2-18     Distribution of Screening Values for Pumps -
          Light Liquid Streams	32

B2-19     Distribution of Screening Values for Pumps -
          Heavy Liquid Streams	33

B2-20     Distribution of Screening Values for Flanges. .   .  34

B2-21     Distribution of Screening Values for Compressors -
          Hydrocarbon Streams 	  35

B2-22     Distribution of Screening Values for Compressors -
          Hydrogen Streams	36

B2-23     Distribution of Screening Values for Drains ...  37

B2-24     Distribution of Screening Values for Relief
          Valves	38

B2-25     Quality Control Daily TLV Sniffer Readings at
          the Source - Valve 82	39

B2-26     Quality Control Daily TLV Sniffer Readings at
          the Source - Pump Seal 75	40

B2-27     Quality Control Daily TLV Sniffer Readings at
          the Source - Valve 78	41

B2-28     Quality Control Daily TLV Sniffer Readings at
          the Source - Valve 212	42

B2-29     Quality Control Daily TLV Sniffer Readings at
          the Source - Valve 231	43

B2-30     Quality Control Daily TLV Sniffer Readings at
          the Source - Valve 263	44

B2-31     Quality Control Daily TLV Sniffer Readings at
          the Source - Valve 999	45
                               vii

-------
                  LIST OF FIGURES (Continued)
Figure                       Title

B2-32     Leak Rate/Screening Relationship - Pump Seals
          (light liquid streams),  Compressor Seals and
          Relief Valves (gas/vapor streams)	56

B2-33     Leak Rate/Screening Relationship - Valves and
          Compressor Seals, Hydrogen Streams 	 57

B2-34     Leak Rate/Screening Relationship - Valves,
          Gas/Vapor Streams	58

B2-35     Leak Rate/Screening Relationship - Valves, Light
          Liquid/Two-Phase Streams 	 59

B2-36     Leak Rate/Screening Relationship - Drains	60

B2-37     Leak Rate/Screening Relationship - Flanges .  .  .   . 61

B2-38     Leak Rate/Screening Relationship - Pump Seals,
          Heavy Liquid Streams	62

B2-39A    Nomograph for Predicting Total Hydrocarbon Leak
          Rates from Maximum Screening Values - Pumps
          (light liquids), Compressors, Relief Valves
          (gas/vapor streams) (Part I:  Screening Values
          from 0-10,000 ppm)	63

B2-39B    Nomograph for Predicting Total Hydrocarbon Leak
          Rates from Maximum Screening Values - Pumps
          (light liquids), Compressors, Relief Valves
          (gas/vapor streams) (Part II:  Screening Values
          from 0-100,000 ppm)	64

B2-40A    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves and Compressors in Hydrogen
          Service  (Part I:  Screening Values from 0-
          10,000 ppm)	65

B2-40B    Nomograph for Predicting Total Nonmethane
          Hydrocarbon-Leak Rates from Maximum Screening
          Values - Valves and Compressors in Hydrogen
          Service  (Part II:  Screening Values from 0-
          100,000 ppm)	66
                             viii

-------
                  LIST OF FIGURES (Continued)


Figures                      Title

B2-41A    tomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves, Gas/Vapor Streams (Part I:
          Screening Values from 0-10,000 ppm)	67

B2-41B    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves, Gas/Vapor Streams (Part II:
          Screening Values from 0-100,000 ppm) 	 68

B2-42A    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves, Light Liquid/Two-Phase
          Streams (Part I:  Screening Values from 0-
          10,000 ppm)	69

B2-42B    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves, Light Liquid/Two-Phase
          Streams (Part II:  Screening Values from
          0-100,000 ppm)	70

B2-43     Nomograph for Predicting Total Methane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Drains	71

B2-44     Nomograph for Predicting Total Nonmethan
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Flanges	72

B2-45A    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Pumps, Heavy Liquid Streams (Part I:
          Screening Values from 0-10,000 ppm 	 73

B2-45B    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Pumps, Heavy Liquid Streams
          (Part II:   Screening Values from 0-100,000
          ppm)	74
                                IX

-------
                  LIST OF FIGURES (Continued)


Figures                      Title                         Page

B2-46A    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves, Light Liquid/Two-Phase Streams
          (Part I:  Screening Values from 0-10,000 ppm) . .   81

B2-46B    Nomograph for Predicting Total Nonmethane
          Hydrocarbon Leak Rates from Maximum Screening
          Values - Valves, Light Liquid/Two-Phase Streams
          (Part II:  Screening Values from 0-100,000 ppm) .   82

B2-47A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Valves -
          Gas/Vapor Streams 	   84

B2-47B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Valves -
          Gas/Vapor Stream  	   85

B2-47C    Inverse Cumulative Distribution Function for
          Valves - Gas/Vapor Streams	86

B2-47D    Cumulative Distribution of Total Emissions by
          Screening Values for Valves - Gas/Vapor Streams .   87

B2-48A    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Valves -
          Light Liquid/Two-Phase Streams	88

B2-48B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Valves -
          Light Liquid/Two-Phase Streams	89

B2-48C    Inverse Cumulative Distribution Function for
          Valves - Light Liquid/Two-Phase Streams .....   90

B2-48D    Cumulative Distribution of Total Emissions by
          Screening Values for Valves - Light Liquid/Two-
          Phase Streams 	91

B2-49A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Valves -
          Heavy Liquids Stream	92

-------
                  LIST OF FIGURES (Continued)
Figures                      Title                         Page

B2-49B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Valves -
          Heavy Liquid Streams	93

B2-49C    Inverse Cumulative Distribution Function for
          Valves - Heavy Liquid Streams 	  94

B2-49D    Cumulative Distribution of Total Emissions by
          Screening Values for Valves - Heavy Liquid
          Streams	95

B2-50A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Valves -
          Hydrogen Service  	  96

B2-50B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Valves -
          Hydrogen Service	97

B2-50C    Inverse Cumulative Distribution Function for
          Valves - Hydrogen Service 	  98

B2-50D    Cumulative Distribution of Total Emissions by
          Screening Values for Valves - Hydrogen Service.  .  99

B2-51A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Pump Seals -
          Light Liquid Streams	100

B2-51B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Pump Seals -
          Light Liquid Streams	101

B2-51C    Inverse Cumulative Distribution Function for
          Pump Seals - Light Liquid Streams 	 102

B2-51D    Cumulative Distribution of Total Emissions by
          Screening Values for Pump Seals - Light Liquid
          Streams	103

B2-52A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Pump Seals -
          Heavy Liquids	104

-------
                  LIST OF FIGURES (Continued)


Figures                      Title                         Page

B2-52B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Pump Seals -
          Heavy Liquids	105

B2-52C    Inverse Cumulative Distribution Function for
          Pump Seals - Heavy Liquids	  106

B2-52D    Cumulative Distribution of Total Emissions by
          Screening Values for Pump Seals - Heavy Liquids.  107

B2-53A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Flanges. . .  .  108

B2-53B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Flanges. . .  .  109

B2-53C    Inverse Cumulative Distribution Function for
          Flanges	110

B2-53D    Cumulative Distribution of Total Emissions by
          Screening Values for Flanges 	  Ill

B2-54A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Compressor
          Seals - Hydrocarbon Service	112

B2-54B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Compressor
          Seals - Hydrocarbon Service	113

B2-54C    Inverse Cumulative Distribution Function for
          Compressor Seals - Hydrocarbon Service 	  114

B2-54D    Cumulative Distribution of Total Emissions by
          Screening Values for Compressor Seals -
          Hydrocarbon Service	115

B2-55A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Compressor
          Seals - Hydrogen Service	116

B2-55B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Compressor
          Seals - Hydrogen Service	117
                               xii

-------
                  LIST OF FIGURES -(Continued)


Figures                      Title                         Page

B2-55C    Inverse Cumulative Distribution Function for
          Compressor Seals - Hydrogen Service	118

B2-55D    Cumulative Distribution of Total Emissions by
          Screening Values for Compressor Seals - Hydro-
          gen Service	119

B2-56A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Drains ....  120

B2-56B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Drains ....  121

B2-56C    Inverse Cumulative Distribution Function for
          Drains	122

B2-56D    Cumulative Distribution of Total Emissions by
          Screening Values for Drains	123

B2-57A    Cumulative Distribution of Sources and Total
          Emissions by Screening Values for Relief Valves.  124

B2-57B    Cumulative Distribution of Source and Total
          Emissions by Screening Values for Reliev Valves.  125

B2-57C    Inverse Cumulative Distribution Function for
          Relief Valves	  126

B2-57D    Cumulative Distribution of Total Emissions by
          Screening Values for Relief Valves 	  127

B2-58     Scatter Diagrams and Correlation Coefficients.   .  135

B2-59     Leak Rate vs. Pressure - Valves, Gas/Vapor
          Streams	  137

B2-60     Leak Rate vs. Temperature - Valves, Gas/Vapor
          Streams	  138

B2-61     Leak Rate vs. Line Size - Valves,  Gas/Vapor
          Streams	  139

B2-62     Leak Rate vs. Age - Valves, Gas/Vapor Streams.  .  140
                             xiii

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-63     Leak Rate vs. Pressure - Valves, Light Liquid
          Two-Phase Streams	141

B2-64     Leak Rate vs. Temperature - Valves, Light
          Liquid/Two Phase Streams 	  142

B2-65     Leak Rate vs. Line Size - Valve, Light Liquid/
          Two Phase Streams	143

B2-66     Leak Rate vs. Age - Valves, Light Liquid/Two-
          Phase Streams	144

B2-67     Leak Rate vs. Pressure - Valves, Heavy Liquid
          Streams	145

B2-68     Leak Rate vs. Temperature - Valves, Heavy
          Liquid Streams	146

B2-69     Leak Rate vs. Line Size - Valves, Heavy Liquid
          Streams	147

B2-70     Leak Rate vs. Age - Valves, Heavy Liquid Streams  148

B2-71     Leak Rate vs. Pressure - Valves, Hydrogen
          Service.	149

B2-72     Leak Rate vs. Temperature - Valves, Hydrogen
          Streams	150

B2-73     Leak Rate vs. Line Size - Valves, Hydrogen
          Streams	151

B2-74     Leak Rate vs. Age - Valves, Hydrogen Streams  .  .  152

B2-75     Leak Rate vs. Pressure - Open-Ended Valves  .  .  .  153

B2-76     Leak Rate vs. Temperature - Open-Ended Valves.  .  154

B2-77     Leak Rate vs. Line Size - Open-Ended Valves.  .  .  155

B2-78     Leak Rate vs. Age - Open-Ended Valves	156

B2-79     Leak Rate vs. Pressure - Pump Seals, Light
          Liquid Service 	  157
                                XIV

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-80     Leak Rate vs. Temperature - Pump Seals, Light
          Liquid Service	158

B2-81     Leak Rate vs. Age - Pump Seals, Light Liquid
          Service	"	159

B2-82     Leak Rate vs. Diameter - Pump Seals, Light
          Liquid Service	160

B2-83     Leak Rate vs. RPM - Pump Seals, Light Liquid
          Service	161

B2-84     Leak Rate vs. Pressure - Pump Seals, Heavy
          Liquid Service	162

B2-85     Leak Rate vs. Temperature - Pump Seals, Heavy
          Liquid Service	163

B2-86     Leak Rate vs. Age - Pump Seals, Heavy Liquid
          Service	164

B2-87     Leak Rate vs. Diameter - Pump Seals, Heavy
          Liquid Service	165

B2-88     Leak Rate vs. RPM - Pump Seals, Heavy Liquid
          Service	166

B2-89     Leak Rate vs. Pressure - Compressor Seals,
          Hydrocarbon Service 	 167

B2-90     Leak Rate vs. Temperature - Compressor Seals,
          Hydrocarbon Service 	 .... 168

B2-91     Leak Rate vs. Age - Compressor Seals, Hydro-
          carbon Service	169

B2-92     Leak Rate vs. Diameter - Compressor Seals,
          Hydrocarbon Service 	 170

B2-93     Leak Rate vs. Load - Compressor Seals, Hydro-
          carbon Service	171

B2-94     Leak Rate vs. Stroke Length - Compressor Seals,
          Hydrocarbon Service 	 172

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-95     Leak Rate vs. Capacity - Compressor Seals,
          Hydrocarbon Service	173

B2-96     Leak Rate vs. Log 10 RPM - Compressor Seals,
          Hydrocarbon Service	174

B2-97     Leak Rate vs. Pressure - Compressor Seals,
          Hydrogen Service	175

B2-98     Leak Rate vs. Temperature - Compressor Seals,
          Hydrogen Service 	  176

B2-99     Leak Rate vs. Age- Compressor Seals, Hydrogen
          Service	  177

B2-100    Leak Rate vs. RPM - Compressor Seals, Hydrogen
          Service	178

B2-101    Leak Rate vs. Capacity - Compressor Seals,
          Hydrogen Service 	  179

B2-102    Leak Rate vs. Diameter - Compressor Seals,
          Hydrogen Service	180

B2-103    Leak Rate vs. Load - Compressor Seals, Hydro-
          gen Service	181

B2-104    Leak Rate vs. Stroke Length - Compressor Seals,
          Hydrogen Service 	  182

B2-105    Leak Rate vs. Pressure - Flanges	183

B2-106    Leak Rate vs. Temperature - Flanges	184

B2-107    Leak Rate vs. Age - Flanges	185

B2-108    Leak Rate vs. Line Size - Flanges	186

B2-109    Leak Rate vs. Pressure - Relief Valves	187

B2-110    Leak Rate vs. Temperature - Relief Valves.  .  .  .  188

B2-111    Leak Rate vs. Line Size - Relief Valves	189

B2-112    Leak Rate vs. Temperature - Drains	190
                               xvi

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-113    Leak Rate vs. Area - Drains	191

B2-114    Leak Rate vs. Diameter - Drains	192

B2-115    Schematic Plot for Valves by Block/Control
          Variable	194

B2-116    Schematic Plot for Valves by in Line/End of
          Line Variable	195

B2-117    Schematic Plot for Valves by Valve Type
          Variable	196

B2-118    Schematic Plot for Valves by Stem Movement
          Variable	197

B2-119    Schematic Plot for Valves by Vibration
          Variable	  198

B2-120    Schematic Plot for Valves by Manufacturer
          Variable	199

B2-121    Schematic Plot for Pumps by Pump Type Variable  .  200

B2-122    Schematic Plot for Pumps by Seal Variable. .  .   .  201

B2-123    Schematic Plot of Pumps by Service Variable.  .   .  202

B2-124    Schematic Plot for Pumps by Quench Liquid
          Variable	203

B2-125    Schematic Plot of Pumps by Inboard/Outboard
          Seal Variable	204

B2-126    Schematic Plot for Pumps by Lubricant Variable  .  205

B2-127    Schematic Plot of Pumps by Attitude Variable .   .  206

B2-128    Schematic Plot for Pumps by Manufacturer
          Variable	207

B2-129    Schematic Plot of Flanges by Flange Type
          Variable	208
                              xvii

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-130    Schematic Plot for Flanges by Special Service
          Variable	209

B2-131    Schematic Plot of Flanges by Vibration Variable  . 210

B2-132    Schematic Plot for Flanges by Manufacturer
          Variable	211

B2-133    Schematic Plot for Flanges by Gasket Material
          Variable	212

B2-134    Schematic Plot for Compressor Seals by Seal
          Type Variable	213

B2-135    Schematic Plot for Compressor Seals by Single/
          Double Seal Variable	214

B2-136    Schematic Plot for Compressor Seals by Lubricant
          Variable	215

B2-137    Schematic Plot for Compressor Seals by Gland
          Type Variable	•	216

B2-138    Schematic Plot for Compressor Seals by Manu-
          facturer Variable	217

B2-139    Schematic Plot for Compressor Seals by Material
          Variable	218

B2-140    Schematic Plot of Drains by Visible Vapor
          Variable	219

B2-141    Schematic Plot of Drains by Active/Washup
          Variable	220

B2-142    Schematic Plot for Relief Valves by Single/
          Double Variable 	 221

B2-143    Selected Categories of Valves - Effect of Valve
          Type of Percent Leaking	232

B2-144    Selected Categories of Valves - Effect of
          Process Unit Type on Percent Leaking	233
                             xviii

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-145    Selected Categories of Valves - Effect of Stem
          Movement on Percent of Valves Leaking	234

B2-146    Selected Categories of Valves - Effect of Valve
          Function on Percent of Valves Leaking	234

B2-147    Selected Categories of Valves - Effect of
          Materials of Construction on Percent of Valves
          Leaking	235

B2-148    Selected Categories of Valves - Effect of Valve
          Vibration on Percent of Valves Leaking 	   235

B2-149    Selected Categories of Valves - Effect of Valve
          Brand on Percent of Valves Leaking	236

B2-150    Selected Categories of Valves - Effect of Pres-
          sure on Percent of Valves Leaking	237

B2-151    Selected Categories of Valves - Effect of Line
          Size on Percent of Valves Leaking	238

B2-152    Selected Categories of Valves - Effect of Age
          on Percent of Sources Leaking	239

B2-153    Pumps - Effect of Gland Type on Percent of Pump
          Seals Leaking	240

B2-154    Pumps - Effect of Seal Position on Percent of
          Pump Seals Leaking	240

B2-155    Pumps - Effect of Pump Attitude on Percent of
          Seals Leaking	241

B2-156    Pumps - Effect of Pump Seal Type on Percent of
          Seals Leaking	241

B2-157    Pumps - Effect of Seal Lubricant Type of Percent
          of Seals Leaking	242

B2-158    Pumps - Effect of Seal Type on Percent of Seals
          Leaking	242

B2-159    Pumps - Effect of Manufacturer on Percent of
          Pump Seals Leaking	243
                             xix

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B2-160    Pumps - Effect of Discharge Pressure on Percent
          of Pump Seals Leaking	   244

B2-161    Puiaps - Effect of Operating Temperature on
          Percent of Seals Leaking 	   245

B2-162    Pumps - Effect of Shaft Diameter on Percent of
          Seals Leaking	   246

B2-163    Pumps - Effect of Pump Speed on Percent of Pump
          Seals Leaking	247

B2-164    Pumps - Effect of Age on Percent of Seals
          Leaking	248

B2-165    Pumps - Effect of Size (Capacity) on Percent
          of Seals Leaking	249

B2-166    Compressors - Effect of Gland Type on Percent
          of Seals Leaking	250

B2-167    Compressors - Effect of Material of Construction
          of Percent of Seals Leaking	250

B2-168    Compressors - Effect of Seal Type on Percent of
          Seals Leaking	251

B2-169    Compressors - Effect of Seal Number of Percent
          of Seals Leaking	251

B2-170    Compressors - Effect of Operation on Percent of
          Seals Leaking	252

B2-171    Compressors - Effect of Compressor Discharge
          Pressure on Percent of Seals Leaking 	   253

B2-172    Compressors - Effect of Operating Temperature on
          Percent of Seals Leaking 	   254

B2-173    Compressors - Effect of Age on Percent of Seals
          Leaking	255

B2-174    Compressors - Effect of Capacity on Percent of
          Compressor Seals Leaking 	   256

-------
                  LIST OF FIGURES (Continued)
Figure                       Title

B2-175    Compressors - Effect of Compressor Speed on
          Percent of Seals Leaking	257

B2-176    Compressors - Effect of Compressor Loading
          on Percent of Seals Leaking	258

B2-177    Compressors - Effect of Shaft Diameter on
          Percent of Seals Leaking	259

B2-178    Flanges - Effect of Flange Type on Percent of
          Flanges Leaking 	 260

B2-179    Flanges - Effect of Gasket Material on Percent
          Leaking	261

B2-180    Drains - Effect of Process Unit Type on Percent
          of Drains Leaking	262

B2-181    Drains - Effect of Drain Activity on Percent
          Leaking	263

B2-182    Drains - Effect of Vapor Visibility of Percent
          of Drains Leaking	263

B2-183    Relief Valves - Effect of Single Versus Double
          Action on Percent of Relief Valves Leaking to
          Atmosphere	 . 264

B2-184    Effect of Line Size on Emissions from Flanges  . . 283

B3-1      Cooling Tower Water Balance 	 301

B3-2      Display of A ppm Hydrocarbon Concentration from
          TOC Analyses	318

B3-3      Display of A ppm Hydrocarbon Concentration from
          Purge Analyses	319

B3-4      Display of A ppm Hydrocarbon Concentration from
          All Analyses	320

B5-1      Diagram of Experimental Set-up	453

B5-2      Change in the Vapor Toluene Concentration Versus
          Time for a Step Change in Liquid Toluene Con-
          centration	457
                               XXI

-------
                  LIST OF FIGURES (Continued)


Figure                       Title                         Page

B6-1      Directed Maintenance - Leak After Maintenance
          Versus Leak Before Maintenance	485

B6-2      Undirected Maintenance - Leak After Maintenance
          Versus Leak Before Maintenance.	  486

B6-3      Histograms for Percent Reduction in Leak Rate
          Directed Versus Undirected Maintenance	488

B6-4      Directed Maintenance - Percent Reduction Versus
          Screening Values	491

B6-5      Undirected Maintenance - Percent Reduction
          Versus Screening Value	492

B6-6      Directed and Undirected Maintenance - Leak After
          Maintenance Versus Leak Before Maintenance -
          Block Valves	496

B6-7      Directed and Undirected Maintenance - Leak After
          Maintenance Versus Leak Before Maintenance -
          Control Valves	497

B6-8      Directed and Undirected Maintenance - Percent
          Reduction Versus Screening Value - Block Valves .  498

B6-9      Directed and Undirected Maintenance - Percent
          Reduction Versus Screening Value - Control.  .  . .
          Valves                                            499

B6-10     Histograms for Percent Reduction in Leak Rate  -
          Undirected Maintenance	500

B6-11     Histograms for Percent Reduction in Leak Rate  -
          Directed Maintenance	501
                               xxii

-------
                        LIST OF TABLES




Table                        Title                         Page

B2-1      Categories of Baggable Sources	   5

B2-2      Distribution of Nonmethane Leak Rates from
          Sampled Sources 	   6

B2-3      Distribution of Maximum Screening Values Among
          Screened Sources  	  23

B2-4      Variance Components for TLV Sniffer Readings
          Measured at the Source	47

B2-5      Correlations of Screening Variables and Non-
          methane Leak Rates (Ib/hr) - Valves	49

B2-6      Correlations of Screening Variables and Non-
          methane Leak Rates (Ib/hr) - Pumps	50

B2-7      Regression of Log Leak Rate on Log Maximum
          Rescreening Value by Source and Stream Type  ...  51

B2-8      Confidence Intervals for Mean and Individual
          Leak Rates - Pump Seals (Light Liquid/Two-
          Phase Streams),  Compressor Seals and Relief
          Valves (Gas/Vapor Streams)	76

B2-9      Confidence Intervals for Mean and Individual
          Leak Rates - Valves and Compressor Seals
          (Hydrogen Streams)	77

B2-10     Confidence Intervals for Mean and Individual
          Leak Rates - Valves (Gas/Vapor Streams) 	  78

B2-11     Confidence Intervals for Mean and Individual
          Leak Rates - Valves (Light Liquid/Two-Phase
          Streams)	79

B2-12     Confidence Intervals for Mean and Individual
          Leak Rates	79
                              XXlll

-------
                  LIST OF TABLES  (Continued)





Table                        Title                          Paee
B2-13

B2-14

B2-15
B2-16

B2-17

B2-18

B2-19

B2-20

B2-21

B2-22

B2-23

B2-24

B2-25

B2-26

B2-27

B2-28

Confidence Intervals for Mean and Individual
Leak Rates - Flanges 	
Confidence Intervals for Mean and Individual
Leak Rates - Pump Seals (Heavy Liquid Streams) . .
Summary of Distribution of Measured Leak Rates. .
Percent of Total Mass Emissions Released by
the Upper Ten Percent of Screened Sources ....
Correlations Between Continuous Variables and
Log ID 	
Effect of Process Variables on Percent of
Values Leaking 	
Effect of Process Variables on Percent of Pump
Seals Leaking 	
Effect of Process Variables on Percent of Com-
pressor Seals Leaking 	
Effect of Process Variables on Percent of
Flanges Leaking 	
Effect of Process Variables on Percent of Relief
Valves Leaking 	
Estimated Vapor Emission Factors for Nonmethane
Hydrocarbons from Baggable Sources 	
Summary of Emissions Data by Process Unit-
Valves 	
Summary of Emissions Data by Process Unit -
Compressor Seals 	
Summary of Emissions Data by Process Unit -
Relief Valves 	
Summary of Emissions Data by Process Unit -
Pump Seals 	
Summary of Emissions Data by Process Unit -
Flanges 	

80

80
129

130

133

223

225

228

230

231

266

268

269

270

271

272
                               XXIV

-------
                  LIST OF TABLES (Continued)


Table                       Title

B2-29     Summary of Emissions Data by Process Unit -
          Drains	272

B2-30     Valve Types Data Summary - Percent Leaking
          and Emission Factors	275

B2-31     Pump Seal Types Data Summary - Percent Leaking
          and Emission Factors	276

B2-32     Compressor Seal Types Data Summary - Percent
          Leaking and Emission Factors	279

B2-33     Relief Valve Data Summary - Percent Leaking
          and Emission Factors.' 	  280

B2-34     Flanges Data Summary - Percent Leaking and
          Emission Factors	281

B2-35     Distribution of Valves by Unit and Stream
          Grouping	284

B2-36     Summary of Hydrocarbon Emission Sources Counted
          in Selected Refinery Process Units	287

B2-37     Estimated Number of Individual Emission Sources
          in 15 Specific Refinery Process Units 	  289

B2-38     Average Number and Estimated Distribution on
          Valve and Pump Seals in Refinery Process Units. .  292

B2-39     Major Process Units in Hypothetical Refinery.   . .  296

B2-40     Hypothetical Refinery:  Non-Methane Hydrocarbon
          Emissions	297

B3-1      Summary of Cooling Tower Emissions	306

B3-2      Raw Data for Cooling Tower Calculations	307

B3-3      Calculation of Emissions for Individual Towers. .  308

B3-4      Calculation of Average Difference in Hydrocarbon
          Concentration (APPM) for Emitting Towers	309
                              XXV

-------
                   LIST OF TABLES (Continued)


Table                        Title                         Page

B3-5      Calculation of Average Hydrocarbon Concentration
          Difference (APPM)	  310

B3-6      Calculation of Average Hydrocarbon Concentration
          Difference (APPM)	311

B3-7      Calculation of Average Hydrocarbon Concentration
          Difference (APPM) for TOC Analysis and Purge
          Analysis Samples 	  312

B3-8      Calculation of Emitting Tower Emission Rate. .   .  313

B3-9      Calculation of Emission Rate for TOC Analysis
          Samples.	  314

B3-10     Calculation of Emission Rate for Purge Analysis
          Samples	  3i5

B3-11     Calculation of Emission Rate for TOC Analysis
          and Purge Analysis Samples 	  316

B3-12     Description of Sampled Devices - Waste Oil/
          Water Systems	  323

B3-13     Wastewater System Hydrocarbon Emissions at
          Refinery 1	  324

B3-14     Wastewater System Hydrocarbon Emissions at
          Refinery 2	  324

B3-15     Wastewater System Hydrocarbon Emissions at
          Refinery 3	325

B3-16     Wastewater System Hydrocarbon Emissions at
          Refinery 4	325

B3-17     Wastewater System Hydrocarbon Emissions at
          Refinery 5	  326

B3-18     Wastewater System Hydrocarbon Emissions at
          Refinery 6	326

B3-19     Wastewater System Hydrocarbon Emissions at
          Refinery 7	327
                               xxvi

-------
                  LIST OF TABLES (Continued)


Table                        Title                         Page

B3-20     Wastewater System Hydrocarbon Emissions at
          Refinery 8	327

B4-1      Summary of Sampled Stacks 	 328

B4-2      Stack Gas and Particulates - Resin Fume Oxida-
          tion Unit	330

B4-3      Methane/Nonmethane Hydrocarbons and Fixed
          Gases - Resin Fume Oxidation Unit	330

B4-4      Sulfur Species - Resin Fume Oxidation Unit. .  .   . 331

B4-5      Aldehydes - Resin Fume Oxidation Unit	332

B4-6      Stack Gas and Particulates - Crude Unit Process
          Heaters	333

B4-7      Methane/Nonmethane Hydrocarbons and Fixed
          Gases - Crude Unit Process Heaters	334

B4-8      Sulfur Species - Crude Unit Process Heaters .  .   . 335

B4-9      Aldehydes - Crude Unit Process Heaters	336

B4-10     Oxides of Nitrogen - Crude Unit Process Heaters  . 337

B4-11     HCN and HN3 - Crude Unit Process Heaters	338

B4-12     Methane/Nonmethane Hydrocarbons and Fixed
          Gases - Sulfur Recovery Units	339

B4-13     Sulfur Species - Sulfur Recovery Units	340

B4-14     Aldehydes - Sulfur Recovery Units 	 341

B4-15     Oxides of Nitrogen - Sulfur Recovery Units. .  .   . 342

B4-16     HCN - Sulfur Recovery Units	343

B4-17     NH3 - Sulfur Recovery Units	344

B4-18     Stack Gas and Particulates - TCCU CO Boiler
          Stack	345
                             xxvn

-------
                  LIST OF TABLES (Continued)


Table                        Title                         Page

B4-19     Methane/Nonmethane Hydrocarbons and Fixed
          Gases - TCCU CO Boiler Stack	346

B4-20     Sulfur Species - TCCU CO Boiler Stack	347

B4-21     Aldehydes - TCCU CO Boiler Stack	348

B4-22     Oxides of Nitrogen - TCCU CO Boiler Stack .... 349

B4-23     HCN and NH3 - TCCU CO Boiler Stack	.   . 350

B4-24     Stack Gas and Particulates - Fluid Coker CO
          Boiler Stack	351

B4-25     Methane/Nonmethane Hydrocarbons and Fixed
          Gases - Fluid Coker CO Boiler Stack	351

B4-26     Sulfur Species - Fluid Coker CO Boiler Stack. .   . 352

B4-27     Aldehydes - Fluid Coker CO Boiler Stack 	 353

B4-28     Oxides of Nitrogen - Fluid Coker CO Boiler.  . .   . 354

B4-29     HCN and HN3 - Fluid Coker CO Boiler Stack .... 355

B4-30     Stack Gas and Particulates - Fluid Coker
          Scrubber - Inlet and Outlet	356

B4-31     Methane/Nonmethane Hydrocarbons and Fixed
          Gases - Fluid Coker Scrubber - Inlet and Outlet  . 356

B4-32     Sulfur Species - Fluid Coker Scrubber - Inlet
          and Outlet	357

B4-33     Aldehydes - Fluid Coker Scrubber - Inlet and
          Outlet	358

B4-34     Oxides of Nitrogen - Fluid Coker Scrubber -
          Inlet and Outlet	359

B4-35     HCN and NH3 - Fluid Coker Scrubber - Inlet and
          Outlet	360

B4-36     Stack Gas and Particulates - FCCU CO Boiler
          Stacks	362
                              XXVlll

-------
                  LIST OF TABLES  (Continued)


Table                        Title                         Page

B4-37     Methane/Nonmethane Hydrocarbons and Fixed
          Gases - FCCU CO Boiler  Stacks	363

B4-38     Sulfur Species - FCCU CO Boiler Stacks	365

B4-39     Aldehydes - FCCU CO Boiler Stacks	366

B4-40     Oxides of Nitrogen - FCCU CO Boiler Stacks .  .   .  367

B4-41     HCN and NH3 - FCCU CO Boiler Stacks	  368

B4-42     Stack Gas and Particulates - FCCU CO Boiler
          Scrubber Stacks	  369

B4-43     Methane/Nonmethane Hydrocarbons and Fixed
          Gases - FCCU CO Boiler Scrubber Stacks	  370

B4-44     Sulfur Species - FCCU CO Boiler Scrubber Stacks.  371

B4-45     Aldehydes - FCCU CO Boiler Scrubber Stacks ...  371

B4-46     Oxides of Nitrogen - FCCU CO Boiler Scrubber
          Stacks	  372

B4-47     Stack Gas and Particulates - FCCU CO Boiler
          Stack - Inlet and Outlet	  373

B4-48     Fixed Gases - FCCU CO Boiler Stack - Inlet
          and Outlet	  373

B4-49     Sulfur Species - FCCU CO Boiler - Inlet and
          Outlet	  374

B4-50     Aldehydes - FCCU CO Boiler - Inlet and Outlet.  .  375

B4-51     Oxides of Nitrogen - FCCU CO Boiler - Inlet
          and Outlet	  376

B4-52     HCN and NH3 - FCCU CO Boiler CO Boiler Stack -
          Inlet and Outlet	  377

B4-53     Stack Gas and Particulates - FCCU Compressor
          Exhaust Stack	  378

B4-54     Methane/Nonmethane Hydrocarbons and Fixed Gases
          - FCCU Compressor Exhaust Stack  	  378
                              XXIX

-------
                  LIST OF TABLES (Continued)


Table                        Title                         Page

B4-55     Sulfur Species - FCCU Compressor Exhaust Stack.  . 379

B4-56     HCN and NH3 - FCCU Compressor Exhaust Stack  .  .  . 380

B5-1      Organic Species in FCCU CO Boiler Flue Gas
          (Stack No. 11)	382

B5-2      Organic Species in FCCU CO Boiler Flue Gas
          (Stack No. 14)	383

B5-3      Organic Species in FCCU CO Boiler Flue Gas
          (Stack No. 15)	384

B5-4      Organic Species in FCCU CO Boiler Flue Gas
          (Stack No. 16)	384

B5-5      Organic Species in FCCU CO Boiler Flue Gas
          (Stack No. 13)	385

B5-6      Organic Species in FCCU CO Boiler Flue Gas
          from Scrubber (Stack No. 12).  .  .	386

B5-7      Organic Species in TCC CO Boiler Flue Gas
          (Stack No. 9)	388

B5-8      -Organic Species in Fluid Coker  Scrubber  Inlet
          (1) (Stack No. 19)	389

B5-9      Organic Species in Fluid Coker  Scrubber  Outlet
          (2) (Stack No. 19)	390

B5-10     Organic Species in Fluid Coker  Scrubber  Outlet
          (2) (Stack No. 19)	391

B5-11     Organic Species in Fluid Coker  CO Boiler Flue
          Gas (2) (Stack No. 10)	392

B5-12     Organic Species in Resin Fume Oxidation  Flue
          Gas (Stack No. 1)	392

B5-13     Crude Distillation Unit:  Flashed Crude  	 393

B5-14     Crude Distillation Unit:  Atmospheric Tower
          Overhead Accumulator Gas	394
                               XXX

-------
                  LIST OF TABLES (Continued)


Table                        Title                         Page

B5-15     Crude Distillation Unit:  Intermediate Naphtha
          Product, Bulk Liquid	395

B5-16     Crude Distillation Unit:  Full Range Straight
          Run Naphtha, Bulk Liquid	397

B5-17     Crude Distillation Unit:  Virgin Middle Distil-
          late Product, Bulk Liquid	398

B5-18     Crude Distillation Unit:  Atmospheric Gas Oil,
          Bulk Liquid	400

B5-19     Crude Distillation Unit:  Light Vacuum Gas Oil,
          Bulk Liquid	401

B5-20     Crude Distillation Unit:  Vacuum Gas Oil, Bulk
          Liquid	402

B5-21     Crude Distillation Unit:  Vacuum Gas Oil	 403

B5-22     Crude Distillation Unit:  Heavy Vacuum Gas Oil,
          Bulk Liquid . .  .	404

B5-23     Crude Distillation Unit:  Vacuum Residue, Bulk
         .Liquid	404

B5-24     API Separator:  Surface Oil Skimmed from Inlet
          Bay, Bulk Liquid	405

B5-25     API Separator:  Surface Oil Skimmed from Inlet
          Bay, Bulk Liquid	406

B5-26     API Separator:  Surface Oil Skimmed from Outlet
          End, Bulk Liquid	407

B5-27     API Separator:  Oil from the Skim Oil Sump,
          Bulk Liquid	409

B5-28     Crude Desalter:   Effluent Water,  Bulk Liquid. .  . 410

B5-29     Crude Desalter:   Effluent Water,  Bulk Liquid. .  . 411

B5-30     Crude Desalter:   Effluent Water,  Bulk Liquid. .  . 413

B5-31     Sour Water Stripper:   Sour Water Feed,  Bulk
          Liquid	413
                             XXXI

-------
                   LIST OF TABLES (Continued)


Table                        Title                         Page

B5-32     Fluid Catalytic Cracker:  Compressor Discharge
          (Gas to the Absorbers)	414

B5-33     Fluid Catalytic Cracker:  Low Pressure Separa-
          tor Gas (Compressor Suction)	415

B5-34     Fluid Catalytic Cracker:  Low Pressure Separa-
          tor Liquid, Bulk Liquid	416

B5-35     Fluid Catalytic Cracker:  Low Pressure Separa-
          tor Liquid	418

B5-36     Fluid Catalytic Cracker:  Low Pressure Separa-
          tor Liquid	419

B5-37     Fluid Catalytic Cracker:  Light Cycle Gas Oil,
          Bulk Liquid	420

B5-38     Fluid Catalytic Cracker:  Light Cycle Gas Oil .   . 423

B5-39     Fluid Catalytic Cracker:  Heavy Cycle Gas Oil,
          Bulk Liquid	424

B5-40     Fluid Catalytic Cracker:  Heavy Cycle Gas Oil .   . 427

B5-41     Thermofor  Catalytic Cracker:  Heavy Cycle Gas
          Oil, Bulk  Liquid	428

B5-42     Catalytic  Reformer:  Hydrogen (H2) Recycle Gas.   . 430

B5-43     Catalytic  Reformer:  Naphtha Feed  	 431

B5-44     Catalytic  Reformer:  Naphtha Feed  	 432

B5-45     Catalytic  Reformer:  Product Naphtha  (De-
          pentanizer Bottoms) 	 433

B5-46     Catalytic  Reformer:  Product Naphtha, Bulk
          Liquid	434

B5-47     Catalytic  Reformer:  Product Naphtha, Bulk
          Liquid	435

B5-48     Catalytic  Reformer:  Product Naphtha, Bulk
          Liquid	436
                              xxxii

-------
                  LIST OF TABLES (Continued)


Table                        Title                         Page

B5-49     Catalytic Reformer:  Product Naphtha, Bulk
          Liquid	437

B5-50     Catalytic Reformer:  Product Naphtha, Bulk
          Liquid	438

B5-51     Alkylation Unit:  Crude Alkylate, Organic
          Species on Tenax	440

B5-52     Alkylation Unit:  Alkylate Gasoline, Bulk
          Liquid	440

B5-53     Alkylation Unit:  Crude Alkylate	441

B5-54     Alkylation Unit:  Crude Alkylate, Bulk Liquid .   . 442

B5-55     Naphtha Hydrodesulfurization:   Desulfurized
          Naphtha Product, Bulk Liquid	443

B5-56     Hydrodesulfurization Unit:  Desulfurized Gas
          Oil, Bulk Liquid	444

B5-57     Gasoline Sweetening Unit:  Mixed Naphtha Feed,
          Bulk Liquid	445

B5-58     Gas Absorbtion Unit:  Lean Oil (Naphtha), Bulk
          Liquid	446

B5-59     Solvent Dewaxing Unit:  Slack Wax 	 447

B5-60     Elemental Analysis of FCCU CO Boiler Flue Gas
          Particulates (Stack No. 15)	448

B5-61     Elemental Analysis of FCCU CO Boiler Flue Gas
          Particulates (Stack No. 11)	449

B5-62     Comparison of Vapor and Liquid Compositions:
          Hexane-Toluene System 	 458

B6-1      Summary of Maintenance and Leak Rate Information. 462

B6-2      Summary of Maintenance Reduction by Leak Rate
          Level	489
                              xxxiii

-------
                   LIST OF TABLES (Continued)


Table                        Title                         Page

B6-3      Statistical Summary of Maintenance Data -
          Percent Reduction. 	  493

B7-1      Shutdown Frequency 	  510
                              xxxiv

-------
                           SECTION 1
                         INTRODUCTION
          This appendix contains a detailed summary of the
results obtained while measuring emissions to the atmosphere at
13 petroleum refineries.  These refineries were located through-
out the continental United States.  The emissions sampling
program was performed for the U.S. Environmental Protection
Agency under Contracts 68-02-2665 and 68-02-2147, Exhibit B.

          The data and results of the sampling program are dis-
played in tables and figures.  The results have been explained
and discussed in the main body of the report.   For that reason,
discussions have been minimized in this appendix.

          Section 2 of this appendix contains the results
obtained during the screening and sampling of baggable emission
sources in refineries.  These sources include valves,  flanges,
pump seals, compressor seals, drains, and relief valves.   Emis-
sion factors, screening relationships, and correlations are
presented.

          The results of measuring hydrocarbon emissions  from
non-baggable sources such as cooling towers and units  of  the
wastewater treating system are given in Section 3.

          Several stacks were sampled in refineries.  These
included sulfur recovery unit stacks, process heater stacks,

-------
and flue gas stacks of the fluid catalytic cracking regenerator
system.   The data are tabulated in Section 4.

          Individual species were identified in several samples
of representative liquid streams and gaseous emissions.  The
results  are presented in Section 5.

          The effect of valve maintenance operations on the leak
rate from valves was studied.  The results are contained in
Section 6 of this appendix.

          Refiners were surveyed to obtain qualitative informa-
tion concerning atmospheric  emissions which might be caused by
refinery operations such as  sampling, maintenance, turnarounds,
and blending.  This information is summarized in Section 7.

-------
                          SECTION 2
      FUGITIVE HYDROCARBON EMISSIONS FROM BAGGABLE SOURCES
          The data obtained during the screening and sampling of
baggable sources  (valves, flanges, pump seals, compressor seals,
drains, and relief valves) are presented and analyzed in this
section.  The emissions sources were most conveniently grouped
for analyses into twelve categories of source types and process
stream classifications:

          Section 2.1 contains a summary of the leak rate data.
The results of the screening program are presented in Section
2.2.  Included in this section are distributions of the total
leak rate as a function of the screening value ranges.

          The relationships between leak rates and screening
values as functions of source types and process stream groups
are presented in Section 2.3.  Also included in this section are
nomographs which relate screening values to predicted leak rates
of the various source types.

          Section 2.4 includes the distributions of emissions
and sources as a function of screening values.  The leak rates
of the various source types were correlated with process varia-
bles.  These results are presented in Section 2.5.

          The emission factors for the six baggable source types
are given in Section 2.6.  Finally, the number and distribution
of baggable emission sources in various refinery process units
are presented and discussed in Section 2.7.
                               3

-------
          Information on the correlating variables presented
in Section 2 could not be obtained, in some cases, for all
sources.  Therefore, the total number of each source type
may differ slightly from one tabulation to the next.

2.1       LEAK RATE DATA

          The baggables emission data have been grouped into
the 12 categories in Table B2-1 for presentation and emission
factor development.

          Table B2-2 gives the distribution (by order-of-
magnitude categories) of the leak rates for each of the above
categories.  The leak rates for sources screened but not
included in these tabulations are assumed to be negligible.
The leak rate data include all sampled emission rates as well
as additional rates estimated from screening measurements.
(This estimation of leak rates is discussed in Appendix C,
Section 6.1.)  Figures B2-1 through B2-12 give the frequency
histograms for the leak rates for each of the twelve
categories.

          It is obvious from these tables and figures that the
bulk of emissions emanate from a small percentage of the
fittings.  For example,- 93 percent of the total measured
leakage for valves in gas/vapor streams is attributable to
4.4 percent of the screened sources.  Eighty-nine percent of
the leakage from flanges comes from less than 1 percent of
the screened flanges, while 95 percent of the emissions from
pump seals in light liquid streams comes from 20 percent of
the screened seals.

-------
TABLE B2-1.   CATEGORIES OF BAGGABLE SOURCES
Category
1
2
3
4
5
6
7
/
8
9
10
11
12
Source
Description
Valves, Gas/Vapor Streams
Valves, Lipht Liquid/Two-Phase Streams
Valves, Heavy Liquid Streams
Valves, Predominantly Hydrogen Streams
Open-ended Valves (all streams)
Pump Seals, Light Liquid Streams
Pump Seals, Heavy Liquid Streams
Compressor Seals, Hydrocarbon Service
Compressor Seals, Hydrogen Service
Flanges (all streams)
Drains (all streairs)
Relief Valves (venting to atmosphere)
Number of Sources
Screened
553
91.3
485
135
129
470
292
142
33
2094
257
148

-------
       TABLE B2-2.
DISTRIBUTION  OF NONMETHANE LEAK RATES
FROM  SAMPLED  SOURCES
Leaking Sources
Within Range
Leak Range
(Ib/hr) No.
% of % of Total
Leaking Sources
Sources Screened
Valves, Gas/Vapor
>1.0
0.1 - 1
0.01 -
0.001 -
0.00001

.0
.1
0.01
- 0.001
7
18
43
49
37
4.6
11.7
27.9
31.8
24.0
Total Leakage
Within Range
Total
Leakage % of Total
(Ib/hr) Source of Leakage
Streams = 563 Screened
1.2
3.2
7.6
8.7
6.6
17.7654
5.9187
1.4867
0.2052
n.0133
70.0
23.3
5.c,
0.8
0.1
                 154
   100%
20.3%
25.3893
100Z
          Valves,  Light Liquid/Two-Phase Streams = 913  Screened
0.1 - 1.0

0.01 - .1

0.001 - 0.01

0.00001 - 0.001
1
31
105
121
72
0.3
9.4
31.8
36.7
21.8
0.1
3.4
11.5
13.3
7.8
2.2297
9.3351
3.3877
0.5028
0.0266
14.4
60.3
21.9
3.2
0.2
                 330
   100*
36.1%
15.4819
100%
               Valves,  Heavy Liquid Streams = 485 Screened
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001

0
0
5
13
14
32
0.0
0.0
15.6
40.6
43.8
100%
0.0
0.0
1.0
2.7
2.9
6.6%
0.0
0.0
0.1773
0.0569
0.0051
0.2393
0.0
0.0
74.1
23.8
2.1
100%
                                                     Continued

-------
TABLE B2-2.   Continued
Leaking Sources
Within Range

Leak Range
(Ib/hr)

No.
r: of
Leaking
Sources
Valves, Predominantly
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001
0
3
19
18
19
59
0.0
5.1
32.2
30.5
32.2
100%
Open-Ended Valves,
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001
0
1
9
12
8
30
0
4
12
28
18
62
0.0
3.3
30.0
40.0
26.7
100%
Flanges
0.0
6.4
19.4
45.2
29.0
100%
% of Total
Sources
Screened
Hydrogen Streams
0.0
2.2
14.1
13.3
14.1
43.7%
Total Leakage
Within Range
Total
Leakage
(Ib/hr)

% of Total
Source of Leakage
= 135 Screened
0.0
0.3789
0.6691
0.0532
0.0059
1.1071
0.0
34.2
60.5
4.8
0.5
100°;
All Streams = 129 Screened
0.0
0.3
7.0
9.3
6.2
23.3%
= 2094 Screened
0.0
0.19
0.57
1.33.
0.86
2.95%
0.0
0.1242
0.3475
0.0576
0.0031
0.5326
0.0
0.8655
0.4117
0.0820
0.0096
1.3688
0.0
23.3
65.3
10.8
0.6
100°;
0.0
63.2
30.1
6.0
0.7
100%
                           Continued
            7

-------
TABLE B2-2.   Continued
Leaking Sources
Within Range


Leak Range
(Ib/hr) No.
Pump
>1.0
O.L - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001
Pump
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001
% of
Leaking
Sources
Seals, Light
19
73
107
77
20
296
6.4
24.7
36.1
26.0
6.8
100%
Seals, Heavy
0
16
28
17
5
66
0.0
24.2
42.4
25.8
7.6
100 7.
% of Total
Sources
Screened
Liquid Streams =
4.0
15. -5
22.7
16.4
4.3
62.9%
Liquid Streams =
0.0
5.5
9.6
5.8
1.7
22.6%
Total Leakage
Within Range
Total
Leakage % of
(Ib/hr) Source
470 Screened
63.1913
. 22.0347
3.9^30
0.3274
0.0086
89.5051
292 Screened
0.0
4.3139
1.5089
0.0699
0.00178
5.8995


Total
of Leakage
70.6
24.6
4.4
0.4
0.0
100%
0.0
73.2
25.6
1.2
0.0-
100%
Drains = 257 Screened
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.001
4
12
17
13
3
49
8.2
2 A. 5
34.7
26.5
6.1
100%
1.6
4.7
6.6
5.1
1.1
19.1%
7.3953
3.9615
0.5939
0.0630
0.0013
12.0155
61.6
33.0
4.9
0.5
0.0
100%
                            Continued
             8

-------
TABLE B2-2.  Continued


Leak Range
(Ib/hr)
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.
>1.0
0.1 - 1.0
0.01 - .1
0.001 - 0.01
0.00001 - 0.



No.
5
15
22
12
001 4
58
Compressor
23
48
24
7
001 3
105
Leaking
Within
% of
Leaking
Sources
Relief
8.6
25.9
37.9
20.7
6.9
100%
Sources
Range
Z of Total
Sources
Screened
Total Leakage
Within Range
Total

Leakage % of Total
(Ib/hr) Source of Leakage
Valves = 148 Screened
3.4
10.1
14.7
8.1
2.7
39.0%
Seals, Hydrocarbon Service
21.9
45.7
22.9
6.6
2.9
1002
Compressor Seals,
>1.0
0.1 - 1.0
0,01 - .1
0.001 - 0.01
0.00001 - 0.
0
14
22
21
001 12
69
0.0
20.3
31.9
30.4
17.4
100?;
16.2
33.8
16.9
4.9
2.1
73.9 7,
Hydrogen Service
0.0
16.9
26.5
25.3
14.5
83.2
15.5333
3.9313
0.9121
0.0580
0.3022
20.4419
= 142 Screened
67.9440
22.2482
1.3014
0.0224
0.0013
91.5172
= 83 Screened
0.0
3.3954
1.0105
0.0794
0.006A
4.4917
76.0
19.2
4.5
0.3
0.0
100%
74.3
24.3
1.4
0.0
0.0
100S
0.0
75.6
22.5
1.8
0.1
100%

-------
30-
25-
20-
15
 10
     N-89
                            ..I     .1
tl"> \f) tf) U^ tf> tO
O »— CNJ f"> *t O
o o o o o c>

o o o o o o

V
                  in
                  o
                                                 in
                                                 in
                                 Midpoint of

                          Non Methane Leak Rate (Ibs/hr)
    Figure  B2-1.
Distribution  of leak rates  for

valves -  gas/vapor  streams.

-------
         N-197
   30-
UJ
I
   25-
   20-
   15-
   10-
    5-
                         Midpoint of Nonmethane Leak Rate (Ibs/hr)
      Figure B2-2.
Distribution  of leak  rates for  valves
light  liquid/two-phase  streams.

-------
                       30 -i
                       25-
                       20-
                   I
IVi
                       10-
                       5-
1,1
                             JJ44-
                              u> in i/>
                          o«— CM n ^ ui
                          oo o o o o

                          ooo o o o
                           in
                           o
                           CM
                                  rvl

                                  o
in
o
                                            Midpoint of Non Methane Leak Rate (Ibs/hr)
                             Figure  B2-3.  Distribution of leak rates  for

                                             valves - heavy liquid streams.

-------
30-|
25-
20-
15-
10-
 5-
  in tft tft in in
  .-CM «T» u>
  oo o o o

o od o o o
    S.-CM
    o
o
^-*

o
                                in
                                o
o
«*

o
o
o
in

o

A
                         Midpoint of Non Methane Leak Rate (Ibs/hr)
   Figure B2-4
                      Distribution of leak rates for

                      valves -  hydrogen  service.

-------
   20-1
   15-
3
bJ
e
    5-
                  • I.   •
         m «n tn in
      o f-i ca n«* ui
      cao ood o

      o o o o o o

      V
in
in
tM


O
vn
o
o
o
in

o
                        Midpoint of Non Methane Leak Rate (Ibs/hr)
            Figure B2-5.  Distribution  of  leak rates  for

                            open-ended valves.

-------
      N-104
   30-
   25-
   20-
B
Ul
e
   10-
    5-
                  IlIlLi
           ll
mm...  i.   11
ii
     in i— CM «*l ^t in
     o o o o o o
o


o
 in
 o
 CSJ
                                                   in
                                                   o
                                         in
                                         in
            O
            o
                                                              o
                                                              A
                      Midpoint of Non Methane Leak Rate (Ibs/hr)



          Figure B2-6.  Distribution  of leak rates  for

                      pumps - light liquid streams.

-------
I
   25'
   20-
   15-
   10-
    5-
        Liillilii     i  .   I
ll    •     I      .       .              I
     vti uf> yn ura »f> *rt      **"*      un       *f>      u>      tin      in       t/f      to     to
       8«p- csp «n it *«
       ocSooo      •-*      •"*       *^      <^i      *^      <**
             300       o      o      o      o

                            Midpoint of Non Methane Leak Rate (Ibs/hr)
                                                                             o
         Figure  B2-7.   Distribution  of  leak rates for
                         pumps  -  heavy liquid streams.

-------
30-
25-
20 -
15-
10-
 5-
     N-47
     ll
    I
JLL
o *-
o oo o
   O O €3 O OC3

   V
                 o
                 -<

                 O
                                               8
                                               m
                        Midpoint of Non Methane Leak Rate (Ibt/hr)
    Figure B2-8.   Distribution  of leak  rates  for flanges.

-------
00
                     30 n
                     25-
                     20-
                     15-
                     10-
lll.ll ll. ..lull.. .
1 II 1,1 1 , 1 ,1 1,1
                                                                                              N-42
                                                                               in
                                                                               o
                        o o oo o o
o
g

c>
A
                                          Midpoint of Hon Itethane Leak Rate (Ibs/hr)
                       Figure B2-9.  Distribution of  leak rates for  compressors -

                                      hydrocarbon streams.

-------
30 -i
25-
20-
15-
10-
 5-
     lll.ll  III.  ..  .
              I,
   in in in in in in
   Or- CM n «r in
   o 
-------
20-1
15-
10-
 5-
      III!
i

1
   in r- fxj ro ^f in
   CD r> oo oo
   O O O O O CD
   V
       IT)

       O
                                       in
                                       O
                                                         O
                                                          A
                      Midpoint of Non Methane Leak Rate (Ibs/hr)
    Figure  B2-11.   Distribution  of leak rates for drains.

-------
20-
15-
10-
 5-
       1111
ll.   .I..I
    min in in m in
     §w— cvjro « m
     o oo o o

    oo oo o o
                  in
                  o
                  
-------
          This highly skewed distribution of leak rates, which
spans more than five orders of magnitude, has many implications
concerning the measurement and control of fugitive emissions
from these sources.

2.2       SCREENING DATA

          The screening of sources during this program was
accomplished with sensitive portable hydrocarbon detectors.
The principal device used in this study was the J.W.  Bacharach
Instrument Co. "TLV Sniffer".  The Century Instrument Co.
Organic Vapor Analyzer (Model OVA-108) was used for some
screening, but these readings were not included in the correla-
tions which follow.  The instruments were calibrated with
standard mixtures of hexane in air.  The OVA-108 and TLV Sniffer
give direct readings of hydrocarbon concentrations in ppm by
volume.  In this report, the terms "screening values" and "TLV
screening values" refer to the maximum hydrocarbon concentration
detected at selected baggable sources.
          Section 2.3 of this report discusses the relationship
between leak rates and screening values for the various source
types.  Table B2-3 shows the distribution of screening values
grouped into five screening value ranges.  The distribution of
the  total leak rate  (both measured and estimated) as a function
of the screening value ranges is also p, ivcn.

          As can be  seen from the table, a large percentage of
the  total leakage can be attributed to the small percentage of
sources with screening values greater than 10,000 ppmv.  For ex-
ample, those 13 percent of the valves in gas/vapor streams with
                              22

-------
    TABLE B2-3.
DISTRIBUTION  OF MAXIMUM SCREENING
VALUES  AMONG  SCREENED SOURCES
(craning rang*
Valvii - Gai/Vapor
Klaalnf*
0
1 - 200
201 - 1000
1001 - 10000
>10000
Screwed Sourc«d
Within Kan**
Aamtor f«rtent
Scrrama
1 0.2
277 49.1
13* 21.8
33 3.8
47 8.1
71 12.6
563 1001
Nuafcar Saaplad
0
1
5
11
46
154
Total LMkJf,!
(lha/hr)

0.0011
0.0007
0.0689
3.9395
21.3791
25.3891
Parent of Total

0.0
0.0
0.1
15.5
84.2
1001
Talvaa - Light. Llquld/Tvo-Ptmg Strttoa
maalat
0
1 - 200
201 - 1000
1001 - 10000
>10000

1
185
211
70
142
104
913
0.1
42.2
23.1
7.7
15.5
11.4
1001
                                    0
                                    4
                                    13
                                    U
                                   141
                                   104
                                   310
                                            0.0
                                            0.1
                                            0.3
                                            37.1
                                            62.0
                                            1001
Valvet - Haavy Liquid Strtamt
0
1-200
201 - 1000
1001 - 10000
>10000

335
121
21
7
_i
4(5
69.1
25.0
4.3
1.4
0.2
100Z
                                     2
                                     2
                                    20
                                     7

                                    12
                          0.0045
                          0.0466
                          0.0748
                          0.1113
                          0.0001
                          0.2392
 1.9
19.3
31.3
47.3
 0.0
1001
Valvea -Hydrogen Sarvlea
0
1 - 200
201 - 1000
1001 - 10000
> 10000

47
30
8
22
_28
135
16. 8
22.2
5.9
16.3
20. B
too:
1
1
7
22
28
59
0.00015
0.00076
0.00694
0.13455
0.96477
1.10717
0.0
0.1
0.6
12.2
87.1
1001
                                                 Cootloucd
                                   23

-------
TABLE  B2-3.  Continued
Screening range
( ppav)
Val'.-es - Open-ended
0
1 - 200
201 - 1000
1001 - 1030C
>100CO
Flangeg (All Stream*
Hissing a
0
1 - SCO
201 - looa
1001 - 10000
>1000C
Screened Sourcad
Within Range
Number Percenc
(All Streams)
74 57.4
26 20.2
7 5.i
12 9.3
10 7. 7
12S 10CZ
'?
64 3.1
1748 83.5
225 10.7
29 1.4
17 0 . 3
11 0.5
2094 1007,
PIUDDS Seals - Llehc Liquid Stream
0
1 - 200
201 - 1000
looi - looao
> 10000
?utp 39o Is - H««w
c
1-230
201 - 1000
1001 - 10000
>10000
67 14,3
107 22.3
79 16.8
104 22.1
113 24. C
470 100X
Llcuid Streams
114 39.0
115 39.4
24 B.2
28 9.6
11 3.8
292 1001
Number Sampled
or Estimated

0
1
7
12
10
30

2
4
29
17
_!£
62
C
7
75
104
110
296
C
4
23
28
11
66
Total L«akag«
(lha/hr)

.
0.0013
0.0220
0.2985
3.2108
0.5326

0.0050
0.0338
0.1265
0.1B18
1.0216
1.3687
0.0375
3.C242
0.2424
78.2313
£9.5051

0.0020
O.f.123
3.5191
1.7660
5.H995
Percent of Total
Lea Lane

_
0.2
4.1
56.1
•J9.6
1005!

0.4
2.5
9.2
13.3
74.6
1001
0.0
1.4
9.2
87 .4
IOOT.

0.0
13.4
59.7
29.9
100:
                         Conclnuad
           24

-------
                      TABLE  B2-3.     Continued
$cf**ninft range
(pfwv)

Mis»tng*
0
1 - 200
201 * 1000
1001 - 10000
HOOOO

Cowpre*»or Seals -
niMing*
0
1 - 200
201 - 1000
looi - loooo
> 100 00
Drain* (All Str«™
Hisotng *
0
1-200
201 - 1000
1001 - 10000
»10000

Relief Valvfs (All
Miming
0
1-200
201 - 1000
1001 - 10000
>1MOO
Scr*OB*d
wlihU
ItumtK-r
SouTcfd
•jut*
P*rc*nl
*u«t
-------
screening values greater than 10,000 ppmv contributed 84 per-
cent of the total emissions.  Seventy-five percent of the
measured emissions from flanges was attributable to the one-
half percent of flanges with screening values greater than
10,000.

          Histograms displaying the distribution of screening
values for the various sources can be seen in Figures B2-13
through B2-24.  The large spike at 10,000 ppmv for most graphs
is due to the limited range of the screening device prior to
obtaining dilution probes.

          As described in Appendix C, a quality control plan
was implemented to identify sources of variation in screening
methods.  At most refineries, one or more sources were
screened once a day by at least one screening team for several
days.  Figures B2-25 through B2-27 show the screening results
from the three "best case" sources screened.  TLV Sniffer
measurements generally stayed within one order of magnitude,
and no distinct pattern is apparent in the data.  More typical
results from the daily screenings can be seen in Figures B2-28
through B2-31.  The range of the screening values may be
as great as 3 orders of magnitude.  Reasons for these vari-
ations in the daily screening values could not be determined
from the data obtained during this program.  However, factors
which might possibly affect the screening value include chang-
ing of the valve position by plant personnel, the continuous
stem movement associated with control valves, and changes
in process conditions such as temperature, pressure, or fluid
type inside the valve.  In addition, external factors such
as wind velocity and direction may also affect the screening
values to some degree.
                             26

-------
  280-



  260-



  240 -



  220 -



  200 -



  180 -



_ 160-




I 14°"


  120-



  100-



   80-



   60 -



   40-



   20-
          ll
o o o
 o o
 in o
o
o
o
o
o
o
                    o
                    o
                    o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
                                          \r
                            •  1   •  I
                                         -i—i—i—i-
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
00
o  o
o  o
o  o
              Screening Value, ppmv (TLV Sniffer Calibrated  to hexane)
        Figure  B2-13.   Distribution of  screening values  for

                         valves  -  gas/vapor streams.

-------
00







z
llj
=3
cr
UJ
err
U-







300-
280-
260 -
240 -
220-
200 -
180-
160-
140 -
120-
100-
80-
60-
40-
20-
« 10-
N-386


























1 1 1 1 1 1 1 1 K I I 	 I
OOO O O OO O O O O OO O O O O O O OO
ooo ooo oo ooo oo ooo o ooo
tnoo ooo oo ooo oo ooo o ooo
V^^es*f*»«»m M3i^. oo«rfto oooog o ooo
                               Screening Value,  pprav (TLV Sniffer Calibrated to hexane)
                        Figure  B2-14.   Distribution of screening values  for
                                        valves  -  light liquid  streams.

-------
N5
VD
300-
280 -
260 -
240 -
220 -
200-
180 -
2JJ 160 -
3
uj
120 -
100 -
80 -
60 -
40 -
20 -
no -













t


a
H-335 .


1

'•'.;








1 1 1 i 1 i I i i IK i i 1 l i 1 ill
oSOooooogoo^ooooo o oo o
ooooooooOooooooooooo
">ooooooooooooooooooo
                              Screening Value, ppmv (TLV  Sniffer Calibrated to hexane)
                          Figure B2-15.   Distribution of screening values for
                                          valves  -  heavy liquid  streams.

-------
LO

O
60-
56-
52-
48-
44-
40-
36-
32-
28-
24-
20-
16-
10-
8-
4-
2-


























III. . .1






K • 	 1 •
°s §
                            O
                            o
                            O
O
o
O
O
o
O
O
o
O
O
o
CD
O
o
O
O
o
C3
O
o
O
O
o
O
O
o
O
O
o
O
o
CD
O
o
O
O
o
CD
                 o
                 O
O
o
O
                                Screening Value,  ppmv (TLV Sniffer Calibrated to hexane)
                         Figure  B2-16.  Distribution of  screening values  for
                                         valves  - hydrogen  streams.

-------
N-74
58-



54-



50-




46 -



42 -



38-



34-



30 -








22-




18-



14-



10-



 6-



 2-
  I
          •  •   •  •   •
                                       J	L
                                                      J	L
o o o   o
  o o   o
  mo   o

  * ^   rJ
         8
         o
                 o
                 o
                 o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o  o   o
o  o   o
000
                                                        o
                                                        CO
                                                                    o
                                                                    o
       Screening Value,  ppmv  (TLV Sniffer Calibrated  to hexane)
  Figure B2-17.   Distribution  of screening values  for

                   valves  - open-ended valves.

-------
UJ
180-



168-



156-



144-



132-



120-



108-



 96-



 84



 72-



 60-



 48-



 36-



 24-



 12-

< 6-
                                  1  1   I   1   I   1  I   L i   1  I   I   I
                                  o
                                  0
                                  O
                  o
                  0
                  O
o
0
O
                                                            V
0
O
o^Q
0   o
O   O
O
o
O
oo
oo
C3O
oo
oo
OO
                                Screening  Value, ppmv (TLV Sniffer Calibrated to hexane)
                          Figure B2-18.   Distribution of screening values  for

                                           pumps -  light  liquid  streams.

-------
CO
Co
120-
112-
104-
96-
88-
80-
72-
5 64-
3 56-
e
48-
40-
32-
24-
16-
12-
8-
4-
















o














III! . , . . L .
V
oooooooooooo
oooo oo oo o o o o
*^OOO OO OCDOOo O














1 1 1 1 1 1 1 1 1
oo QOOOOO
oo o o o o o o
oo oooooo
                              Screening Value,  ppmv (TLV Sniffer Calibrated  to hexane)
                          Figure  B2-19.   Distribution of screening values  for
                                          pumps  -  heavy liquid  streams.

-------
  300



  280



  260



  240



  220



  200



  180




C 160

u

3- 140
Ul

e





  100



   80



   60



   40




   20

  f 10
    N-1748
      1
             1   1  1   1
           1
So
o
             00
             oo
             oo
                        0
                        o
                        o
00
oo
oo
o
o
     S^
                                      o
                                      o
o
o
o


9
o
o
o
                     o
                     o
                                                       o
                                                       •a
o
o
o
o
o
o
 •

o
CO
§   §
o   o

O   o
*   o
            Screening Value,  ppmv  (TLV Sniffer Calibrated to hexane)
Figure B2-20.   Distribution of  screening values  for  flanges.

-------
u>
Ul
30 -
28 -
26 •
24 -
22-
20 -
18 -
16 -
14-
12 -
10-
8-
6-
4 -
2-
















o















00 C
o o c
in o c














, , 1 ,
P O O O O O O OC
DO OOOOO OC
DOOOOOO OC
N-S5













Kill 	
N
3OOOOOOOO C
3OOOOOOOO t
aoooooooo e















3
                                                                s
o
to
s
                              Screening  Value,  ppmv (TLV Sniffer Calibrated to hexane)
                        Figure  B2-21.  Distribution of screening values  for

                                        compressors - hydrocarbon streams.

-------
U)




o
UJ
s
Of






20-
18-
16-
14-
12-
10-

8-
6-
4-
2-
o













0 C
c
u












n
i ,









1,
i.i
3OOO OO OOOC
3OOO OO O OOC
3OOOOO O OOC
-tfsi. co^»c










ill
NJ
3 O O o O O OOO O
3 OOOOO OOO O
3 OOOOO OOO O
3 OOOOO OOO O
                               Screening Value,  ppmv (TLV Sniffer Calibrated  to hexane)
                         Figure B2-22.   Distribution  of screening values for
                                         compressors  - hydrogen streams.

-------
87-



81-



75-



69-



63-



57-



54-








42-



36-



30-



24-




18



12

 9-

 6-

 3-
   N-138
                                     I
     g
          o
          o
          o
o

S
o
o
o
                   8
o
o
o
S
o
o
g
o
                                       N
o
o
o
o
o
o
o
o
o
o
o
o
o  o   o
o  o   o
o  o   o
 •   •    »
O  Q   O
OO  O>   ^3
         Screening  Value, pprav (TLV Sniffer  Calibrated to hexane)
Figure B2-23.   Distribution of  screening values  for drains.

-------
u>
00
 58-



 54-



 50-



 46-



 42-



 38-



,34-



.30-



 26-



 22-



 18-



 14-



 10-



 6-



 2-
                        °g
                               I
           o
           o
           o
o
o
o
o
o
o
o
o
o
§
o
o
o
                                                       o
                                                       o
                                        N
o
o
o
o
o
o
o
o
o
o   o
o   o
o   o
§
                                                                  8  S   S
                                Screening Value,  ppmv  (TLV Sniffer Calibrated to hexane)
                       Figure B2-24.   Distribution of screening  values  for relief valves

-------
                                         Symbol is value of operator


   100000 +	
        t
        1


T       *
L       t
V  1UOOO +	2	2	2...	2.

A       *  1        I                          I        \                 2
T       *  i        A        3        1
        *  2        1        1        3         *        3        1
T       X  1        2        1                 1
H       *                                             1
L   1000 +	
m
S       *
0       t
U       /
K       *
C       t
t    100 +
        *
p       *
p
        *
v       *
                                            DAT
           Figure B2-25.   Quality control  daily TLV  Sniffer readings
                            at  the source  -  valve 82.

-------
                                         Symbol is value of operator
        /
   luoonn +	
        t
        t
        1
        t
T       *
L       /
v  looon 4	
        t
A       t
T       *
        t
T       /
H       *   2                                                               1
i.   1000 *	1	2	2	.....1	2	2	^.
        #
S       *             2                        i!         I         1
Or             122                   2                   2
U       *
K       /
C       /
E    100 ^	
$       '
m       *
v       *
       o +

             1    2    3    •»    5    6     7     «    9    10   11   12   13   1"»    15

                                             DAT
             Figure B2-26.   Quality  control daily TLV Sniffer readings
                              at the source - pump seal 75.

-------
                                         Symbol is value of operator

        /
   100000
T
L
V  10000

A
T

r
n
L   1000

s
0
u
R
c
E    100

P
P
m
v

t
t
t
t
t
t
t
t
t 3
t 3
* 2
* 1
t
t
t
t
t
t
t
*
*
t
\


3 3222
2
3


2 3 <• b 6 7
                                            DAT
            Figure B2-27.   Quality  control daily TLV  Sniffer readings
                            at the source - valve 78.

-------
               xooonn *,
                    *
                                                     Symbol is value of operator
ND
T
L
V

A
T

T
H
E

S
0
u
R
C
E
               10000
                1000
                 100
            P
            P
            m
            v
        t
        *
        t
        t
      0 +
                                  3    •»    5    b     7    8    9   10   11    12    13   it   IS

                                                        DAT
                        Figure  B2-28.   Quality  control daily TLV Sniffer  readings
                                        at the  source - valve 212.

-------
                                        Symbol is value of operator
T
L
V

A
T

T
H
t

S
0
u
R
C
L

P
P
m
v
  100000
10000
 1000
  100
                                                  9   10    11    12   13   1H
                                            UAT
          Figure B2-29
                       Quality control  daily TLV Sniffer  readings
                       at  the source -  valve 231.

-------
                                        Symbol  is value  of operator


   1UOOOO +	
        t
        t
        t
        t
T       t
L       t
v  mono +	2	<:.

A       t                                                                      \i
T       *
        /
T       t                                                                 ?.
H       *
E   1000 +	
        t
0       t
u       t
R       t
C       t        1                                 1222
L    100 *	
        *             1                                           1
        t   2         2         2    *
        *                 2
        *                                     a

      o +

            1    2     3    1    5    b    7     8    9   10   11    12    13    I1*   1^

                                            DAT
            Figure B2-30.   Quality control daily TLV  Sniffer readings
                            at the source  - valve 263.

-------
                                         Symbol  is value of operator
T
L
V

A
T

T
II
L

S
O
U
l(
C
L

P
P
in
v
   luonoo +.
        t
        t
        t
10000
 100U
  100
            1     2     3    •*    5    b     7    U    9   10   11    12    13

                                            DAT
         Figure B2-31.
                            Quality  control daily  TLV Sniffer  readings
                            at the source - valve  999.

-------
          Observation variance within a source type can be
resolved into independent components.  Component variance may
result from both the true differences in emission rates and
from observational error.  Specifically, differences may re-
sult due to emission rate differences between different sources,
from daily changes in emissions from the same source, from
observational differences due to variations between screening
instruments, and from observational errors for replicate
screenings.  A variance component analysis was done on the
daily screening values to determine the sources and percentages
of variation (Table B2-4).

          In Table B2-4, the degrees of freedom represent the
number of independent comparisons available from the data to
estimate the variance component.  The variance component is
calculated from the natural logs of the screening values within
each set of individual comparisons.  And, each variance com-
ponent can be expressed as a percentage of the total variance.
Repeatability and reproducibility are estimates of the varia-
tion inherent in multiple screenings of individual sources.
Both are statistical functions based on the variance component
of specific variance sources.  The 90 percent repeatability is
proportional to the square root of the "repeat" variance
component and is defined as the maximum difference expected
between two screenings by the same operator within a short
period of time.  A difference greater than the repeatability
statistic would be expected less than 10 percent of the time.
The 90 percent reproducibility is proportional to the square
root of the sum of the "repeat" and "operator" variance com-
ponents and is defined as the maximum difference between two
screenings by different operators within a short period of
time.
                              46

-------
TABLE B2-4.  VARIANCE COMPONENTS FOR TLV SNIFFER READINGS
             MEASURED AT THE SOURCE
Variance Source

Individual Valves
Day
Operator
*
Repeat
Total



Individual Pumps
Day
Operator
Repeat
Total


Degrees of Freedom
Valves
5
70
39
41
155
90% Repeatability
90% Reproducibility
Pump Seals
1
27
10
8
46
90% Repeatability
90% Reproducibility
Variance Component

1.
1.
0.
0.
2.
- 121%
- 134%

-0.
0.
0.
0.
0.
95%
- 113%

384
134
060
269
847



0008
192
068
167
427


Percent

48.6
39.8
2.1
9.5
100.0



0.0
44.9
15.9
39.2
100.0


                           47

-------
2.3       LEAK RATES/SCREENING RELATIONSHIPS

          This section describes the relationship between
leak rate and screening values.  Screening values were ob-
tained when the source was first located, and rescreening
values were taken at the time each source was sampled.  The
rescreening values are generally more highly correlated with
leak rates than are the original screening results.  For ex-
ample, the correlation coefficient for the original screening
values and nonmethane hydrocarbon leak rates of all valves
is 0.63.  A correlation coefficient of 0.72 is obtained for the
maximum rescreening values and nonmethane hydrocarbon leak
rates of valves.  Tables B2-5 and B2-6 give correlation co-
efficients for various screening values for valves and pump
seals.

          Appendix C contains detailed descriptions of the
least-squares linear regression equations developed for pre-
dicting leak rates from unsampled sources in the data base.
For potential prediction purposes outside this data base, a
statistical analysis of covariance was done to determine
whether different linear equations are required for each
baggable source and stream type.  The first step was to de-
velop separate regression equations for each source-process
stream combination.  These regressions are presented in Table
B2-7.  Separate results are given for gas/vapor, light liquid/
two-phase, hydrogen, and heavy liquid streams, and also for
cases in which the stream information was missing.

          It can be seen that the results for flanges, drains,
and pump seals for heavy liquid streams are based on small
sample sizes.  For this reason, equations for these three
cases were developed from the original maximum screening
                              48

-------
    TABLE  B2-5.
CORRELATIONS  OF SCREENING VARIABLES  AND NONMETHANE  LEAK RATES
(Ib/hr)  - VALVES (All  Correlations Based on  Log of  Variable)

1
2
3
4
5
6
7

(2) (3)
Variable Max SC Max RSC
. Nonroethane Leak (Ib/hr) .628(584) .715(260)
. Maximum Screening Value - .745
. Maximum Rescreening Value ' -
. Average Rescreening Value
. Avg of Maximum 5-CM Reading
. North Stem Reading
. North Gland Reading
Tabulated values are r (m)
Z(X
r - Simple correlation coefficient - — —
(4)
Avg RSC
.739(260)
.748
.978
-



i - X) (Yi -
(5)
5-CM
.685(246)
.593
.804
.837
-


Y)
(6)
N. STM
.703(251)
.677
.858
.890
.733
-


(7)
N. GL
.511(195)
.434
.633
.693
.722
.545
-

                                               Z(Xi - X)  Z(Yi - YK

               where  X and Y are the paired variables


           m = number of pairs of data observations used  in computing correlation coefficient


SC  =  Screening value, pprav (TLV Sniffer Calibrated to hexane)
RSC =  Rescreening vlue, ppmv (TLV Sniffer Calibrated to hexane)
STM =  Stem reading,  ppmv  (TLV Sniffer Calibrated to hexane)
GL  =  Gland reading, ppmv (TLV Sniffer Calibrated to hexane)

-------
    TABLE B2-6.   CORRELATIONS OF  SCREENING VARIABLES AND  NONMETHANE LEAK RATES
                   (Ib/hr)  - PUMPS  (All Correlations  Based  on Log of  Variable)

1.
2.
3.
4.
01 q
o 5.
6.
Variable
Nonme thane Leak Rate (Ib/hr)
Maximum Screening Value
Maximum Rescreening Value
Average Rescreening Value
Avg of Maximum 5 -CM Reading
North Shaft Reading
(2) (3)
Max SC Max RSC
.636(418) .678(169)
.766
-


(4)
Avg RSC
.700(169)
.753
.987
—

(5)
5-CM
.731(160)
.618
.825
.858

(6)
N. Shaft
.716(164)
.765
.940
.958
.835
-
  Tabulated values are r  (m)
           r = Simple  correlation coefficient =
Z(Xi -  X)(Yi - Y)	

 (Xi -  X")2 Z(Yi - Y)2
               where X  and Y are the paired variables
           m = number  of  pairs of data observations used  in computing correlation coefficient
SC  =  Screening value  (TLV Sniffer Calibrated to hexane)
RSC =  Rescreening value  (TLV Sniffer  Calibrated to hexane)

-------
     TABLE  B2-7.
REGRESSION  OF  LOG  LEAK RATE ON LOG
MAXIMUM RESCREENING VALUE  BY
SOURCE  AND  STREAM  TYPE
Process Stream Type3
Cas/Vapor

Light Liquid/
Two-Phase




Hydrogen





Heavy Liquid





Stream
Information
Hissing



Bo
SE(B,)
Bi
SE(Bi)
R2
N
DC
SE(B0)
Bi
SE(B|)
R2
N
Bo
SE(Br)
BI
SE(BI)
R2
N
Be
SE(Ba)
Bi
SE(BI)
R2
N
Bo
SE(B0)
Bi
SE(BI)
R2
N
Valves
-7.
0.
1.
'0.
0.
79
-4.
0.
0.
0.
0.
119
-7.
0.
1.
0.
0.
32
-9.
1.
2.
0.
0.
4
-5.
0.
0.
0.
0.
21
04
56
23
12
57

90
22
80
06
63

45
90
14
20
51

32
12
26
34
96

68
54
95
17
75

Flanges


-2
1
0
0
0
12












-5
0
0
0
0
6


.93
.01
.22
.31
.05













.08
.88
.89
.24
.78

Funp
Seals


-4
0
0
0
0
13C






-3
0
0
0
0
17
-4
1
0
0
0
18


.59
.32
.89
.08
.48







.08
.77
.57
.23
.29

.77
.50
.70
.45
.13

Coapressor Relief
Seals Drains Valves
-3.97
0.74
0.71
0.16
0.23
69
-2.
1.
0.
0.
0.
13
-5.30
0.72
0.72
0.36
0.24
15
-3.
0.
0.
0.
0.
17






-4.41
0.45
0.87
0.10
0.5B
54
38
64
60
55
10







35
31
51
11
60







Log]: (lea/, rate) • Bo H- BI logioCmax rescreening value)
SE(Bo)  " standard error of BO
SE(Bi)  • standard error of BI
N     ~ number of data pairs
R2     • coefficient of determination or correlation coefficient squared
                                  51

-------
values rather than the maximum rescreening values.   A small
sample size (less than 20) was available for valves handling
heavy liquids with either type of screening data; hence, an
equation was not developed for this case.

          Analyses of covariance were performed to determine
which source and process stream types would be combined for
prediction purposes.  It was found that the source and stream
types could be grouped such that seven equations were adequate
for predicting leak rates from screened sources.  The seven
groups are as follows:

          •   Pumps in light liquid/two-phase streams,
              compressors and relief valves in gas/
              vapor streams

          •   Valves and compressor seals in hydrogen
              service

          •   Valves in gas/vapor streams

          •   Valves in light liquid/two-phase
              streams

          •   Flanges

          •   Drains

          •   Pump seals in heavy liquid streams.

          The equations for flanges, drains, and pump seals
in heavy liquid streams were developed from the original
maximum screening values.  This is because small sample sizes
                              52

-------
(less  than 20) would have  been available in each of the three
cases  if the rescreening values had been used.   No equation  was
developed for valves in heavy liquid  streams; a  sample size  of
less than 20 was  available with either  the maximum screening or
maximum rescreening values.

            The resulting seven equations are summarized as
follows (NMLEAK = leak rate in Ib/hr) .-

            A.  Pump Seals  (Light Liquid/Two-Phase Streams) Com-
                pressors and Relief Valves (Gas/Vapor Streams)

                Log,c (NMLEAK) = -4.4 + 0.83 Log,D (Max Rescreening)
                Correlation Coefficient = 0.68
                Number of Data Pairs = 259
                Standard Error Estimate = 0.76 Log1() (NMLEAK.)
                95% Confidence Interval for Intercept = (-4.9, -3.9)
                95% Confidence Interval for Slope = (0.72, 0.94)
                Scale Bias Correction Factor = 4.58

            B.  Valves and  Compressor  Seals,  Hydrogen Streams

                Log10 (NMLEAK) = -7.0 + 1.06 Log,0 ( Max Rescreening)
                Correlation Coefficient = 0.67
                Number of Data Pairs = 47
                Standard Error of Estimate = 0.98 Log10  (NMLEAK)
                95% Confidence Interval for Intercept = (-8.5, -5.5)
                95% Confidence Interval for Slope = (0.72, 1.40)
                Scale Bias Correction Factor = 10.67

            C.  Valves,  Gas/Vapor Streams

                LogiQ (NMLEAK) = -7.0 + 1.23 Loglc (Max Rescreening)
                Correlation Coefficient = 0.76
                                  53

-------
     Number of Data Pairs =  79
     Standard Error of Estimate -.78 Log, 0 (NMLEAK)
     95%  Confidence Interval for Intercept = (-8.1, -5.9)
     95%  Confidence Interval for Slope =  (0.99, 1.47)
     Scale Bias  Correction Error = 4.81

D.   Valves,  Light Liquids/ Two- Phase

     Loglc (NMLEAK) = -4.9 + 0.80 Logl D  (Max Rescreening)
     Correlation Coefficient = 0.79
     Number of Data Pairs =  119
     Standard Error of Estimate = 0.60 Log: c  (NKLEAK)
     95%  Confidence Interval for Intercept = (-5.3, -4.5)
     95%  Confidence Interval for Slope =  (0.69, 0.91)
     Scale Bias  Correction Factor = 2.53

E.   Drains
           (NMLEAK)  =  -4.9 +  1.10 Log, 0  (Screening)
     Correlation  Coefficient  =  0.68
     Number of  Data  Pairs = 61
     Standard Error  of Estimate = 0.86 Log10  (NMLEAK)
     95%  Confidence  Interval  for Intercept =  (-5.8, -4.0)
     95%  Confidence  Interval  for Slope (0.80, 1.40)
     Scale Bias Correction Factor =  6.53

F.   Flanges

     Loglc  (NMLEAK)  =  -5.2 +  0.88 Logj „  (Screening)
     Correlation  Coefficient  =  0.77
     Number of  Pairs =52
     Standard Error  of Estimate = 0..52 Log,0  (NMLEAK)
     95%  Confidence  Interval  for Intercept =.  (-5.9, -4.5)
     95%  Confidence  Interval  for Slope (0.68, 1.08)
     Scale Bias Correction Factor =2.02
                        54

-------
           G.   Pump Seals, Heavy  Liquid Streams

               Log10 (NMLEAK) =  -5.1 + 1.04 Logt„ (Screening)
               Correlation Coefficient = 0.75
               Number of Data Pairs = 61
               Standard Error of Estimate = 0.59 Log10  (NMLEAK)
               95% Confidence Interval for Intercept  =  (-5.8, -4.3)
               95% Confidence Interval for Slope = (0.80, 1.27)
               Scale Bias Correction Factor = 2.44

           The data used to develop these equations are shown  in
Figures  B2-32 through B2-38.   The one obvious  outlier at the
bottom right  in the graph of flange  data (Figure B2-37) was
eliminated.

           The equations were used to  develop nomographs which
relate the predicted leak rate to the screening values for the
various  source and stream types.   These nomographs are shown  in
Figures  B2-39 through B2-A5.

           Each nomograph gives the predicted mean leak rate as
a  function of the maximum TLV  Sniffer screening readings taken
directly  at the source of the  leak with the TLV Sniffer cali-
brated to hexane.

           Although the  equations  were developed on a logarithmic
scale, the nomographs are shown  on an arithmetic scale for ease
in reading and interpolation.  Predicting  the  arithmetic mean
leak rate for a given screening value  is  similar to predicting
the mean  from a lognormal distribution  (as  discussed in Appendix
C).  The  mean leak rate  for a given screening  value on the
nomograph was computed  as follows:
                                55

-------
                                                      :  A = 1  UUSt  U - Z  ()t»S«  L I L .
Ul
                1
             l.b »
                t
                t
                t
             O.d *
                t
          £ -l-o
            -3.2
            -1.0
                                                      A A
                     3.2  1 . ^  1 . «
                                   2.1   2.M   2.7   3.0   3.3   3.6  3.9  .4.2

                                      Logio of Maximum Screening Value at the  Source
q.a
                                                                                         5.4
                Figure B2-32.   Leak  Rate/screening relationship  -  pump seals  (light
                                liquid streams),  compressor seals and relief valves
                                (gas/vapor streams).

-------
                                         LtliEMU: A = ] DUS«  G = 2 (ibS, Lit.
  O.B »
      1
      •t
      t
      t
  \ .
-------
                                                         A =
                                                                 U =
Ul
00
                                           of Maximum Screening Value at the Source
           Figure  B2-34.   Leak  rate/screening relationship  -  valves,  gas/vapor  streams

-------
                                                                  6 = *
                                                                           LIL.
              0.0
Ln
                      n.u
                                        Logic of Maximum Screening Value at the Source
                                                                   '4.8
Figure  B2-35
                               Leak  rate/screening relationship  -  valves,  light liquid/
                               two-phase streams.

-------
                              l.tlil-.NO:  A  =  1 (JUS.  H  = i! UpS.  L.II-.
  O.f>    U.'J    1.2    1.5    1.8    2.1    2.'«    i?. 7    .1
                   Logio of Maximum Screening Value at the Source
3.3    3.6    3.9
Figure B2-36.   Leak race/screening  relationship  -  drains.

-------
                                        Ltt;«-Mu: A =  i
                                                          = ?_ unSi tr<-.
-3.0 +
-3-f, *
-q.2
-1 .0
-5.H
          1.2
  2.U   ?.*  2.M   2.h   2.M   3.0   5
Login of Maxim* Screening Value at  the  Source
3.ft
         Figure  B2-37.   Leak  rate/screening relationship  - flanges.

-------
                   *
               O.U +
                                                                    u = i!
ro
               -1.2
              -l.O  +
              -3.6
                   -f -•
                   O.f,
-.4-
 3.f.
1.5     1.0    ?.)     2. 'I     2.f     3.n
   Logio of Maximum Screening Value at the Source
                                                                                             3.9    4.2
           Figure B2-38.   Leak rate/screening relationship - pump  seals,  heavy  liquid  streams

-------
         0.45  -
         0.40  .
         0.35  -
       " 0.30  -
       z
       n
       u
       e
       TJ

       01
       C
       •9
         0.25  -
0.25  -
       c
       o
       TJ
       01
       L.
       CL
0.15 -
0.10 -
         0.05
                                                    Upp«r Limit of 90S Confidence
                                                  / Interval for Mean
                                                    Mean
                                                    Lower Limit of 90% Confidence
                                                    Interval for Mean
                           Losi, (*l leak Hate) • -4.4 + 0.83 Loot, (Max Screening Value)
                           Correlation Coefflclsnt « 0.68
                           Numinr of Data Pairs = 259
                           Stanisnl Error of Estimate - 0.76 Log-t (N1 Leak Rate)
                           Scale Bias Correction Factor = 4.58
                1   i    I    I
               1,030
                     5,000
10,000
              Maximum Screening Value  (ppmv,  calibrated to hexane)
              Usinp J.K.Bacharach TLV  Sniffer at the Source.
Figure  B2-39A.
           Nomograph for  predicting  total  hydrocarbon  leak
           rates  from maximum screening values -  pumps
           (light liquids),  compressors,  relief valves
           (gas/vapor streams)  (Part  I:   Screening values
           from  0-10,000  ppm).
                                      63

-------
          4.0
          3.5
       £ 3.0
        IB
        OJ
        o
        fl
        u
        IB
        U
        O
        QJ
        C
        4J
        OJ
        «-
        a.
2.5
          2.0
          1.5
1.0
          0.5
                                          Upper Limit of 90% Confidence
                                          Interval  for Mean
                                                     Mean
                                                    Lower Limit of 90Z Confidence
                                                    Interval  for Mean
                        Logu (KM LecJc 3ate) - -4.4 + 0.33 Login (Kax Screening Value)
                        Correlition Coefs1cient = 0.6S
                        Nu-ier of Data Pairs - 259'
                        Standard Error of Estimate - G.76 Logio (NM Leak Rate)
                        Seal* Bias Correction Factor = 4.58
                10,00:
                    50,000
100,000
                Maximum  Screening Value (ppmv, calibrated  to hexane)
                Using J.W.Bacharach TT..V Sniffer at  the  Source.
Figure  B2-39B.  Nomograph for  predicting  total hydrocarbon  leak
                   rates from maximum screening values -  pumps
                   (light liquids),  compressors,  relief valves
                   (gas/vapor streams)(Part  II:   Screening values
                   from  0-100,000 ppm).
                                      64

-------
                                    ' Upper Limit of 90S Confidence
                                   /  Interval for Mean
                                                Mean
                                                 Lower Limit of 90S Confidence
                                                 Interval for Mean
                                  loqs, (NK Leak Rate) - -7.0 + 1.06 Leg,, (Hai Screening Value)
                                  Correlation Coefficient = 0.67
                                  (limber of Data Pairs =• 47
                                  SUntiird error of Estimate • C.93 Logio (NM Leak Rate)
                                  Scale Bias Correction Factor - 10.67
            1.000
       5,000
                                             10,000
              Maximum Screening  Value (ppmv, calibrated to hexane)
              Using J.W.Bacharach TLV Sniffer at the Source.
Figure  B2-40A.
Nomograph for predicting  total nonmethane
hydrocarbon  leak rates from maximum
screening values - valves and compressors
in  hydrogen  service  (Part I:   Screening
values  from  0-10,000  ppm).
                                  65

-------
      0.45
      0.40
      0.35
    -M 0.30
    IB
    «J
    —1

    C




    S 0.25

    £
    •a
    v
      0.20
    E

    o



    "8 0.15
    AJ
    u


    01



      0.10
      0.05
Log:, (W Leak Rate) • -7.0 + 1.06 Log,, (Max Screening Valje)

Correlation Coefficient « C.67
Number of Data Pairs = 37
Standara Error of Estimate « 0.98 logit (NM Leak Rate)

Scile Bias Correction Factcr - 10.67
                                                , Upper Limit of 90% Confidence
                                               ' Interval fcr Mean
                                                 Mean
                               Lower Limit of 90% Confidence
                               Interval for Mean
                 I    J	I    I   I	!    I	I
            10,000
         50,000
100.000
             Maximum Screening  Value (pprcv, calibrated  to hexane)

             Using J.W.Bacharach  TLV Sniffer at the  Source..
Figure  B2-40B.
  Nomograph for predicting total  nonmethane

  hydrocarbon  leak rates  from  maximum

  screening values -  valves and compressors

  in  hydrogen  service (Part II:   Screening

  values  from  0-100,000 ppm).
                                   66

-------
     0.07
   £ 0.06
     0.05
   I
   o
   u
   •a
I 0.03 '
|
i

3 0.02 r
y
     o.oi -
              Logic (NM Leak Rate) = -7.0 + 1.23 LogI: (Kax Screening Value)
              Correlation Coefficient » 0.75
              Number of Data Pairs » 0.79
              Standard Error o* Estimate = 0.76 Logu (NK Leak Rats)
              Scale Bias Correction Factor • 4.81
                                                Upper Limit of 90S Confidence
                                              / Interval  for Mean
                                                 Mean
                                                Lower Limit of 901 Confidence
                                                Interval  for Mean
           1,000
                        5,000
10,000
           Maximum Screening Value (ppmv, calibrated to hexane)
           Using J.W.Bacharach TLV Sniffer at  the Source.
Figure  B2-41A.
                 Nomograph  for predicting total  nonmethane
                 hydrocarbon leak rates  from maximum
                 screening  values -  valves,  gas/vapor
                 streams  (Part I:  Screening values  from
                 0-10,000 ppm).
                                  67

-------
     0.95 -
     0.85 -
                                               / Upper Limit of 90% Confidence
                                               '  Interval for Mean
                                                 Mean
                                              /  Lower L1.-U of 90% Confidence
                                                 Interval for Mean
                                Log,,, (N* leak Rcte) =• -7.0 + 1.23 Loglc (hax Screening Value)
                                Correlation Coefficient - 0.75
                                Nur.ber of Data Pairs = 0.79
                                Standee Error of Esti-«te • C.78 Log?, (NH, Leak Rat«)
                                Scale Bias Correction Tactor • 4.81
     0.05  -
           10,000
       50,000
                                             100,OOC
           Maximum Screening Value  (ppmv,  calibrated to hexane)
           Usine  J.W.Bacharach TLV  Sniffer aL the Source.
Figure  B2-41B.
Nomograph  for  predicting total  nonmethane
hydrocarbon leak rates  from maximum
screening  values -  valves,  gas/vapor
streams  (Part  II:   Screening values from
0-100,000  ppm).
                                    68

-------
      0.07
    = 0.06
    S 0.05
     0.04
    at
    c
   5 0.03
   •o
   * o.oz
     0.01
              Logi, (NM Leak Rate) • -4.9 4 0.8J Logi, (Hax Screening Value)
              Correlation Coefficient = 0.79
              Nur.ber o? Data Pairs = 119
              Standard Error of Estimate « 0.60 Login (NM Leak Rate)
              Scale Bias Correction Factor =2.53
                            Upper Limit of 901 Confidence
                            Interval for He*n
                                                Mean
                            Lower Limit of 901 Confidence
                            Interval for Hean
                i    i    i
           1.000
      5,000
10,000
           Maximum  Screening Value  (pprav,  calibrated to hexane)
           Using J.W.Bacharach TLV  Sniffer at the Source.
Figure  B2-42A.
Nomograph  for  predicting  total  nonmethane
hydrocarbon leak rates  from maximum
screening  values -  valves,  light  liquid/
two-phase  streams  (Part I:   Screening
values  from 0-10,000 ppm).
                                  69

-------
    0.45  -
     0.40  -
     0.35  -
     0.30  -
  -? 0.25  -
  
-------
 o>
 4J

 Of.
 s
 L>
 O
I
O
O

•O
V
    4.5
    4.0
    3.5
    3.0
    2.5
   2.0
   1.5
   1.0
   o.s
         1,000
5,000
                        Upper Limit of 90%
                     /  Confidence Interval
                        for Mean
                Log,, (m Leak Rate) • -4.9 + 1.10 1.091. (Nan Scr*«n1nq Value!
                Correlation Coefficient = D.S8
                dumber of Data Pain = 61
                Standard Crror of ErtTrote * 0.86 Logi, (NH Leak Rate)
                    9lA* Correction Factor • 6.53
                                                 Mean
                      Lower Limit of 90S
                      Confidence Interval
                      for Mean
10.000
         Maximum Screening Value  (ppmv, calibrated to  hexane)
         Using J. W.  Bacharach  TLV Sniffer  at the Source.
      Figure  B2-43.   Nomograph  for predicting  total nonmethane
                         hydrocarbon  leak rates  from maximum
                         screening  values -  drains.
                                        71

-------
    0.07 '
-   0.06 '
OL

Jt
to
QJ
U
O
i
0)
E
O>
+J
u
    0.05 -
    0.04 -
    0.03 •
    0.02 •
    0.01 '
               Logn (NM Leak Rate) • -5.2 + 0.88 Log,, (Man Screening Value)
               Correlation Ccefficient - 0.77
               Number of 3ata Pairs - 52
               Standard Error cf Estimate = 0.52 Log,, (NH Leak Rate)
               Scale Bias Correction Factor • 2.02
                                                  Upper Limit of 90S Confidence
                                                / Interval for Mean
      Mean
                                                   Lower Limit of 90% Confidence
                                                   Interval for Mean
           1,000
                           5,000
i    i
  10,000
            Maximum  Screening Value (pprav,  calibrated  to hexane)
            Using J.  W.  Bacharach  TLV Sniffer at the  Source.
Figure B2-44. Nonograph  for  predicting total  nonmethane
                  hydrocarbon Leak  rates  from maximum
                  screening values  -  flanges.
                                   72

-------
     0.45 -
                            Upper Limit of 905 Confidence
                            Interval for Mean
                                               Mean
                                                Lower Limit of 901 Confidence
                                                Interval for Mean
                                Log,, (NH Leak Rate) = -5.1 + 1.0« Log,, (Max Screening Value)
                                Correlation Coefficient • 0.75
                                Nunber of Data Pairs » 61
                                Standard Error of Estinate » 0.59 Logu (NM Leak Rate)
                                Scale Bias Correction Factor - 2.44
               2,000   4,000    6,000   8.000    10.000

            Maximum Screening Value (ppmv, calibrated  to hexane)
            Using J. W. Bacharach TLV Sniffer at the  Source.
Figure  B2-45A.
Nomograph  for predicting total  nonmethane
hydrocarbon leak rates  from maximum
screening  values -  pumps, heavy liquid
streams  (Part I:  Screening values  from
0-10,000 ppm).
                                   73

-------
     o
     •O
     V.
     V
     c
     •a
     01
     k
     O-
        3,5 -
        2.5 '
       1.5
        0.5 -
                 Logn, (JIM Leak Rite) « -5.1 » 1.0« Uji» (N«x Scrwtning Value)
                 Correlation Coefficient • 0.75
                 Nu-ber of Dili Pairs - 61
                 Standard Error of Estimate = O.SS Logu (NH Leak iUU)
                 Scale Bias Correction Factor « Z.M
                                                  Upper Limit of 9CX Confidence
                                                  Interval for Mean
                              Mean
                              Lower limit of 901 Confidence
                              Interval for Kean
            10,000
       50,000
100,000
            Maximum Screening Value  (pprav,  calibrated to hexane)
            Using J.  W. Bacharach TLV  Sniffer at the Source,
Figure  B2-45B.
Nomograph  for predicting total  nonmethane
hydrocarbon leak rates  from  maximum
screening  values -  pumps, heavy liquid
streams  (Part II:   Screening values  from
0-100,000  ppm).
                                    74

-------
                                         CF
   Mean = explQ  [30 + Ba LoglD  (screening)] g (=>cLn/2)
             T)                 -n _
        =  (10)   (screening value)   (scale bias correction factor)    ,
          where    Be    =  Log regression intercept,
                  Bi    =  Log regression slope,
                  SET   =  Standard error of estimate in natural
                    Ln
                          log scale, and
                  g(t)  =  Series described in Appendix C.

          The 90  percent confidence  intervals shown on the
nomographs  for  the predicted mean leak for a given screening
value were  computed in a similar manner to the confidence in-
tervals  for  the mean leak rate as described in Appendix C.
These confidence  limits are for the  mean  leak rate and should
not be confused with confidence intervals  for individual leak
rates for given screening values.  Tables  B2-8 through B2-14
compare  the  90  percent confidence intervals for the mean leak
rate and the 90 percent confidence intervals for individual
leaks for selected screening values  for each of the seven equa-
tions .

          Figures B2-46A and B graphically compare the con-
fidence  intervals for individual leak rates with the confidence
interval for the  mean leak rate for  valves (light liquid/two-
phase streams).
                                75

-------
   TABLE B2-8.
CONFIDENCE  INTERVALS FOR MEAN AND INDIVIDUAL
LEAK RATES  -  PUMP SEALS (LIGHT LIQUID/TWO-
PHASE STREAMS),  COMPRESSOR SEALS AND RELIEF
VALVES  (GAS/VAPOR STREAMS)
Value
(ppmv) x
1
200
500
1,000
' 3,000
5,000
10,000
20,000
50,000
100,000
Predicted
Mean
Leak Rate
(Ib/hr)
0.00018
0.015
0.032
0.057
0.14
0.22
0.39
0.70
1.5
2.7
90% Confidence Interval
Mean Leak
(Ib/hr)
(7.3x10'%
(0.0096,
(0.022,
(0.042,
(0.11,
(0.18,
(0.32,
(0.58,
(1.2,
(2.1,
0.00045)
0.023)
0.047)
0.078)
0.18)
0.27)
0.47)
0.83)
1.8)
3.4)
Individual Leak
(Ib/hr)
(8.8xlO-6
(0.00081,
(0.0018,
(0.0032,
(0.0079,
(0.012,
(0.222,
(0.039,
(0.083,
(0.15,
, 0.0037)
0.28)
0.59)
1.0)
2.6)
3.9)
7.0)
12.5)
27.0)
48.0)
1  ILV Sniffer Screening Value, ppmv (calibrated to hexane)
                               , 76

-------
  TABLE B2-9.
CONFIDENCE  INTERVALS FOR MEAN AND INDIVIDUAL
LEAK RATES  -  VALVES AND COMPRESSOR SEALS
(HYDROGEN  STREAMS)
Value
(pprav) l
1
200
500
1,000
3,000
5,000
10,000
20,000
50,000
100,000
Predicted
Mean
Leak Rate
(Ib/hr)
io-s
0.00028
0.00074
0.0015
0.0049
0.0085
0.018
0.037
0.097
0.20
90% Confidence Interval
Mean Leak
(Ib/hr)
CIO'7,
(6.2xlO~5,
(0.00021,
(0.00052,
(0.0022,
(0.0041,
(0.0096,
(0.021,
(0.055,
(0.10,
2. 0x10- 5)
0.0013)
0.0026)
0.0045)
0.011)
0.017)
0.032)
0.064)
0.17)
0.40)
Individual Leak
(Ib/hr)
(0.0,
(5.1xlO~5 ,
(1.5xlO~5,
(3.2xlO~5,
(0.00011,
(0.00019,
(0.00041,
(0.00087,
(0.0023,
(0.0047,
0.00012)
0.015)
0.037)
0.073)
0.22)
0.37)
0.75)
1.6)
4.1)
8.8)
1  TLV Sniffer Screening Value, ppmv  (calibrated to hexane)
                               77

-------
  TABLE B2-10.
CONFIDENCE  INTERVALS FOR MEAN AND INDIVIDUAL
LEAK RATES  -  VALVES  (GAS/VAPOR STREAMS)
Value
(ppnv) l
1
200
500
1 000
3,000
5,000
10,000
20,000
50,000
100,000
Predicted
Mean
Leak Rate
(lb/hr)
4xlO~ 7
0.00030
0.00094
0.0022
0.0085
0.016
0.038
0.089
0.27
0.64
90% Confidence Interval
Mean Leak
(lb/hr)
(10~7,
(0.00010,
(0.00038,
(0.0010,
(0.0048,
(0.0097,
(0.025,
(0.063,
(0.19,
(0.43,
3.6xlO~6)
0.00089)
0.00023)
0.0048)
0.015)
0.026)
0.057)
0.13)
0.39)
0.96)
Individual Leak
(lb/hr)
(0.0,
(1.3xlO~E
(4.3xlO~5
(0.00010,
(0.00042,
(0.00080,
(0.0019,
(0.0045,
(0.014,
(0.032,
1.67x10 5)
, 0.0071)
, 0.021)
0.047)
0.17)
0.32)
0.75)
1.75)
5.4)
13.0)
lrTLV Sniffer Screening Value,  ppmv (calibrated to hexane)
                                 78

-------
  TABLE B2-11.
CONFIDENCE  INTERVALS FOR MEAN  AND INDIVIDUAL
LEAK RATES  -  VALVES (LIGHT  LIQUID/TWO-PHASE
STREAMS)
Value
(ppmv)1
1
200
500
1,000
3,000
5,000
10,000
20,000
50,000
100,000
!TLV Sniffer
TABLE B2-
Value
(ppmv) l
1
200
500
1,000
3,000
5,000
10,000
Predicted
Mean
Leak Rate
(Ib/hr)
3. 2x10" 5
0.0022
0.0046
0.0079
0.019
0.029
0.050
0.087
0.18
0.31
90% Confidence
Mean Leak
(Ib/hr)
(1.4xlO~5, 7.5xlO~5)
(0.0015, 0.0032)
(0.0033, 0.0063)
(0.0061, 0.010)
(0.015, 0.024
(0.023, 0.035)
(0.040, 0.062)
(0.069, 0.11)
(0.14, 0.24)
(0.23, 0.44)
Interval
Individual Leak
(Ib/hr)
(2.9xlO~£, 0.00036)
(0.00022, 0.022)
(0.00047, 0.045)
(0.00082, 0.077)
(0.0020, 0.19)
(0.0030, 0.28)
(0.0052, 0.48)
(0.0090, 0.84)
(0.019, 1.8)
(0.032, 3.1)
Screening Value, ppmv (calibrated to hexane)
12. CONFIDENCE INTERVALS FOR MEAN
LEAK RATES - DRAINS
Predicted
Mean
Leak Rate
(Ib/hr)
S.lxlO"5
0.028
0.077
0.16
0.55
0.97
2.1
90% Confidence
Mean Leak
(Ib/hr)
(1.5xlO~s, 0.00045)
(0.016 0.048)
(0.050 0.12)
(0.11, 0.25)
(0.32, 0.95)
(0.51, 1.8)
(0.96, 4.5)
AND INDIVIDUAL
Interval
Individual Leak
(Ib/hr)
(2.0xlO~6, 0.0032)
(0.0010, 0.76)
(0.0029, 2.1)
(0.0061, 4.4)
(0.020, 15.0)
(0.035, 27.0)
(0.073, 59.0)
'iLV Sniffer Screening Value, ppmv  (calibrated to hexane)

-------
TABLE B2-13.
CONFIDENCE INTERVALS FOR MEAN AND INDIVIDUAL
LEAK RATES - FLANGES


Value
(ppmv) -
1
200
500
1,000
3,000
5,000
10,000
l'\LV Sniffer
TABLE B2-



Valvc
(ppmv) 1
1
200
500
1,000
3,000
5,000
10,000
Predicted
Mean
Leak Rate
(Ib/hr)
1.2xlO"5
0.0013
0.0029
0.0053
0.014
0.022
0.040


90% Confidence Interval
Mean Leak
(Ib/hr)
(3.4xlO~5, 4.5xlO~
(0.00083, 0.0020)
(0.0021, 0.0041)
(0.0040, 0.0071)
(0.010, 0.019)
(0.016, 0.031)
(0.027, 0.061)
Screening Value, ppmv (calibrated
Individual Leak
(Ib/hr)
3) (1.2xlO"e, 0.00013)
(0.00017, 0.0099)
(0.00039, 0.022)
(0.00072, 0.040)
(0.0019, 0.10)
(0.0029, 0.16)
(0.0053, 0.30)
to hexar.e)
14. CONFIDENCE INTERVALS FOR MEAN AND INDIVIDUAL
LEAK
Predicted
Mean
Leak Rate
(Ib/hr)
2.0x10"'
0.0048
0.012
0.025
0.079
0.13
0.28
RATES - PUMP SEALS

90% Con
Mean Leak
(Ib/hr)
(4. 6x10" 5, 8.4xlO~
(0.0030, 0.0077)
(0.0087, 0.018)
(0.019, 0.034)
(0.058, 0.11)
(0.093, 0.20)
(0.17, 0.44)
(HEAVY LIQUID STREAMS)

fidence Interval
Individual. Leak
(Ib/hr)
5) (1.4xlO~5, 0.00028)
(0.00049, 0.047)
(0.0013, 0.12)
(0.0027, 0.24)
(0.0083, 0.75)
(0.014, 1.3)
(0.028, 2.7)
I'LV Sniffer Screening Value, ppmv (calibrated to liexane)
                              80

-------
   0.35
~  0.30
"  0.25

|

-------
  3.5
   3.0
  2.5
   2.0
   i c
   « .9
   1.0
   0.5
          log:, (NX leak Rate) • -4.9 + 0.60 Logn (Hax Screening Value)
          Correlation Coefficient • 0.79
          Number of Data Pairs ' 119
          Standard Error cf Estimate - 0.60 Logi, (NM Leak Rat«)
          Scale Bias Correction Factor -2.53
                 Upper Unit of 9« Confidence
                 Interval for Mean Leak Rite
                                             Upper Limit of 902 Confidence
                                             Interval for Individual Values
                                                       Me«n
                                    Lower Limit of 9OT
                                    Confidence Interval
                                    for Mean Leak Rite
                                                 Lower Limit of 901 Confidence
                                                 Interval for Individual Values
       10.000
  50,000
                                         100,000
         Maximum  Screening Value,  ppmv  (calibrated to  hexane)
         Using J. W.  Bacharach  TLV Sniffer  at the Source.
Figure B2-46B .
Nomograph for predicting  total nonmethane
hydrocarbon  leak rates  from maximum
screening values -  valves,  light  liquid/
two-phase streams  (Part II:   Screening
values from  0-100,000 ppm).
                                  82

-------
2.4       DISTRIBUTION OF EMISSIONS AND SOURCES BASED ON
          SCREENING VALUES

          A convenient tool both for monitoring hydrocarbon
emission sources and estimating source leak rates is the porta-
ble hydrocarbon detector.  From the results of this study,
nomographs have been prepared relating hydrocarbon concentration
at the source (screening value) to the percentage of each source
type expected to have screening values above any selected value.
Other nomographs have been prepared relating screening values to
the percentage of total mass emissions which can be expected
from sources with screening values greater than any given value.
(See Appendix C for a discussion of nomograph development.)

          These nomographs for the six source types (and stream
groups for valves, compressors, and pump seals) are presented
in Figures B2-47 through B2-57.  The "A" figures relate the
percent of sources to screening values.  The "B" figures relate
the percent of total mass emissions for a given source category
to screening values.  The "C" and "D" figures are the same
curves as in the "A" and "B" figures except the actual data
are also included.

          Confidence intervals are included on each of these
nomographs.  The statistical procedures used to develop these
intervals are discussed in Section 6.3 of Appendix C.   The
confidence intervals for both types of nomographs indicate how
well the cumulative function has been estimated from the data
collected in this program.
                              83

-------
   V
   o
   u
100



 90 h




 80




 70




 50




 50




 40




 30




 30




 10




 0

   1  2 345  10     50 100      1.000      10,000     100.000    1.000.000



  Screening  Value, ppmv  (calibrated  to  hexane)  (Logic Scale)



 Percent of Sources - Indicates the percent of sources with screening


                  values greater than the selected value.
                        Upper Limit of 951 Confidence Interval





                          \^
                            •s.

                                    Estimated Percent of Sources
               Lower Limit af 95X

               Confidanc* Interval
Figure  B2-47A.  Cumulative  distribution of  sources  and  total

                   emissions by screening  values  for valves  -

                   gas/vapor streams.

-------
       100


        90


        BO
     *rt
     S

     S   70

     3
     «   60
     I*
     2

     ^   50
     W
     a

     a   40
     *j
     c
     •»

     jj   30
     a.

        20


        10
Estimated Percent of
Total Mass Emissions
                       Upper Limit of 901
                       Confidence Interval
     Lower Limit of the
     90S Confidence Interval
                         j	I
          1  2 345  10     50 100       1.000      10.000      100.000    1,000.000

       Screening Value,  ppmv  (calibrated  to hexane)  (Logi0 Scale)


       Percent of ToUl Miss Eolsilons • Indicates tht percent  of toUl emissions
                                  attMbutabli  to sources with screening values
                                  greater than  the selected value.
Figure  B2-47B.  Cumulative distribution of source and total
                   emissions by screening  values  for valves  -
                   gas/vapor stream.
                                   85

-------
CO


01
•o

•o
HI
4-*
(J
01
\n
A
V)
Ol
«
*
tT>
C
C
Ol
Ol
t-
u
i/>
JZ
"s
V)
Ol

t-
3
O
<•_
o
C
Ol
u
t-
Ol
o.

t
r
t *
t

r
mi +
r
1
t
32 +
i
X
*
2-4 +
^
t
<
16 +
i
*
X

n +
^
/
<
n +
<

t

y

-p +
....

." " ' * - Estimated Inverse Cumulative Distribution
. * . . ft/\ 	 Function
» * * » AA • . • •
» *» Aft A ... .. - Upper and Lower
• * * * * • • •

95* Confidence Intervals

flnAft, A.B.etc.. represent the numbers of discrete screen-
* * _ *** 1ng values in each screening interval
" " 8*** *•• where A=l . B=2. etc. These values do not
. ... ARO««» .1 represent the actual number of data
.... A »«» .. points having
• ..AAB •** ... value.
. . . AAA *** . . .
. .AADAAA* ..
•••• A •* ••
. .BA ** ...
.ABB **
,B C ** ..
..ABOBBA ...
... ABR ...
. .. *RBRA...
... *B*A ..
... *BBAAA...
.. . *** . .

••' 4t$4 .
.... **«
A ....

A A A







any particular screening














. .
* .. .
*** ». . •
	 ** •» . .
AA A ... * *
A






                     -r.5    o.O   0.5    1.0    1.5   ?.0   2.5    3.0    3.5   •». 0    0.5    -5.0   5.5   6.0

                                 Log 10 Screening Value,  ppmv  (calibrated to hexane)
                 Figure  B2-47C.  Inverse cumulative distribution  function  for valves  -
                                  gas/vapor streams.

-------
               11? *

            o>      t
            £      t   »     *  «  « *A» AA AA*AAA/\/\BABORAPA/\RAOA/\DUBRR»CABDBBBBnBnOC»»»»**»»»»
            £   96 *                                                                  C&A     *** ***
            £      *                                                                     A           » *•
            to      t                                                                                      *
            c.      X                                                                      A                  •
            ~   80 *
            „?    *
            S«    *
            t >•    x
            O -O f.H *
            (/I Ol
              +•*    t                                                                                               *
            O O
            «-> Ol    /
            Ol Ol    /
            S1" MB *                                                                      A
            •O 01

            a**    t           * - Estimated Cumulative Function                                A A   A AA
            £ J?    *       A.B.etc.. represent the numbers of discrete screen-
            *J *• 32 +               ^ng vaiues in each screening interval
^j          
-------
                           Upper Unit of 95* Confidence Interval
            Lover Limit of 95*
            Confidence Interval
                                   Eitlmjtad Percent of Sources
       1  2  345  10     50 100      1,000     10,000    100,000    1.000.000

    Screening  Value,  ppmv  (calibrated to hexane)(Logjo  Scale)


     Percent of Sources - indicates the percent of sources with screening

                     values greater than the selected value.
Figure  B2-48A.  Cumulative distribution of  source  and total
  °                emissions  by  screening  values  for  valves -
                   light  liquid/two-phase  streams.
                                 88

-------
     100


      90


      80


      70


      60


      50


      40


      301-


      20 -


      10 -
                               Upper Limit of 90S
                               Confidence Interval
Estimated Percent df
Total Mass Emissions
           I  11 i  i
         Lower Limit of the
         901 Confidence Interval
        1   2 345  10     50 100       1,000      10,000     100,000    1,000,000


       Screening Value, ppmv  (calibrated  to hexane)(Logjc Scale)


     Percent of Total Mass Emissions  - Indicates the percent of total  emissions
                                attributable to sources with screening values
                                greater than the selected value.
Figure  B2-48B.  Cumulative distribution  of source and total
                   emissions  by  screening values for valves -
                   light  liquid/two-phase streams.
                                   89

-------
VO
O
Percent of Sources with Screening Values > Selected Value
H* \> LH f 3^ -g
o ro -c T« CD o r\j
• » •
• + •
-0.5 0.0
* - Estimated Inverse Cumulative Distribution
Function
•• - Upper and Lower 95% Confidence Interval
*rt A.B.etc., represent the numbers of discrete screen-
!!.!* Ing values in each screening interval
"A*: where A=l. B=2, etc. These values do not
* »nnunn.... represent the actual number of data
• • •« »»»« ... points having any particular screening
.... rtBQ**« .. value.
...DnA*« ...
. .AC *• ...
. . AB«o». .
.CB»* ...
. . .BCRB. .
.. «OAA.
... *DE..
.. *CCD.
... * AFC . .
...*Arc...
...****..
...****...
A ... .*** *. .
A ...****. .
BAA/\ AA B . . * *
n.5 1.0 1.5 ?.n 2.5 3.0 3.5 4.0 M.5 5.0 5.5 6.0 6.5
                                Logio  Screening Value,  ppmv (calibrated  to hexane)
               Figure  B2-48C.  Inverse cumulative distribution  function for valves -
                               light liquid/two-phase streams.

-------
   n?
o "
oo  flf) 4

„«    '
—     t
«•«!    *
a **  61 4

?s    *
       '
            *     *    *A« /VAAAABBAOBBCDAOAnCnBCACpnCCCDCCCenD
                                                      «***ABDDECA

                                                              **6EC
                                                                  A*«*
                                                                     **»
                                                                       »•
            '                                                      A       ..
                                                                  AB        *
                                                                  BC        **
                                                                   CB          *
g*
*
    3? «
       '
       /
       /
    \(. 4
     0 4
     * - Estimated Cumulative Function

 A.B.etc.. represent the numbers of discrete screen-
        Ing values In each screening interval
        where A»l, B=2, etc.  These values do not
        represent the actual number of data
        points having any particular screening                    A
        value.


                                                       ABAAA AA
                                                                     B
. • +	4 ------»---_-- + --.___+----_-t-_.___»______t_-____ + _._... + _._.__ + ..
 f.n     n.5    i.n    1.5    p.o    ?.5    3.0     3.5    u.o    M.S    ^.0


              Logio Screening  Value, ppmv (calibrated  to hexane)
                                                                                        5.5
                                                                                              6.0   6.5
      Figure B2-48D.  Cumulative  distribution  of  total emissions by screening
                          values  for  valves- light  liquid/two-phase  streams.

-------
      TOO


       90


       80


       70


       60


       SO


       40


       30


       20


       10
Upper  Limit of 95%  Confidence Interval
       Estimated Percent of Sources
          Upper Unit of 95*
          Confidence Interval
         1 2 345  10     50 100      1,000     10,000    100,000   1.000,000

       Screening Value,  ppmv  (calibrated  to  hexane)(Logio  Scale)

       Percent of Sources - indicates the percent of sources with screening
                        values greater than the selected value.
Figure  B2-49A.  Cumulative distribution  of sources and total
                   emissions  by  screening values  for  valves  -
                   heavy liquids stream.
                                  92

-------
     L>
     1.
     OJ
     CL
100


 90


 80


 70


 60


 50


 40


 30


 20


 10
             Total Mass  Emissions    \  \   >
                                         Upper Linlt of 90t
                                         Confidence Interval
                     \  \ \
                      N  \  \
Lower Limit of the        \  \ \
901 Confidence Interval     \  \ \
            1 I i i
                          i   i
          I  2 34.5 10     50 100      1,000      10.000     100.000    1,000.000


         Screening Value,  ppmv (calibrated to  hexane)(Logic  Scale)


       Percent of Total Mass Emissions - Indicates the percint of total  missions
                                  attributable to sources with screening values
                                  greater than the selected value.
Figure  B2-49B.  Cumulative distribution  of  source  and  total
                   emissions  by  screening values  for  valves  -
                   heavy  liquid  streams.
                                  93

-------
  MH +
  3n
     t
  25 +
     t
     t
     t
  20 +
c
01
01
o>
"
3
O
01
u
t-
01
10 4
   r
   <
   *
     *
   o +
     - f --
    -n.n
             *   «  •  A     a       ••.
                      t* «*            ...
                           ***A AA       ..
                               ,<4fl
                                          '
                                 * * *
                                   A**A
                                                  * - Estimated Inverse Cumulative Distribution
                                                     Function
                                                 •• - Upper and Lower 95% Confidence  Intervals
                                              A.B.etc. . represent the numbers of discrete screen-
                                                      Ing values in each screening interval
                                                      where A=l . B=2, etc.  These values  do not
                                                      represent the actual number of data
                                                      points having any particular screening
                                                      value-
                        «»•      .
                        A **      . .
                    ,    AQ  »*     ..
                             *•
                      ...  AD  *»     ..
                        ...  AACA*     . .
                          ..      ABA     .
                            ..     *A*
                             ...      BAA    ..
                               ...      AC     ..
                                  ...     AA*    ...
                                   ...   A»«*
                                      ... ABB  **     ...
                                        ...  B   ***     . •
                                           ...  BAA  A***    .  .
                                              ....    A  ••  BAAA.    .
                                                  	  AA  A*     A
n.O    ti.i»    0.«    1 .?    1 .€.    ?.0
                                                              2. "4
                                                                          3.2    3.6    "» . 0    <».«•
                                                                                                         «.8
                           Logio Screening Value,  ppmv  (calibrated to  hexane)
      Figure  B2-A9C.  Inverse  cumulative  distribution  function  for valves  -
                           heavy  liquid  streams.

-------
                112  +
            oi
            Ol
            u
            O
            5    pfl
    *   *  * *A •***AA*AAAA**AnARR
       ,                    *«**««*.
                                   «*»*
                                  ABAACAAI3AARARDB
                                         *«*    ABBA
                                            • *     A BA
                                              **       A
                                               »*
                                                 »»
                                                  **»    A A
                                                    »*
                                                     *»
            fO 01
            «J JC
             U 10  »?
             «J JC  3'
Ol
            O 10
            •F- 01
            VI U
            VI CD
     * - Estimated Cumulative Function

 A.B.etc.. represent the numbers of discrete screen-
        Ing values In each screening Interval
        where A=l, B=2. etc. These values do not
        represent the actual number of data
        points having any particular screening
        value.
                                                                                          ...

                                                                                          *
            o       t
            2   -16  *
            01       j
            o
            i
            a-      -O.o
                                                                                                  A*     A
-".1     n.C    O.U    O.B    1.2    1.6    2.0    2.U    ?.8    3.2     3.6     H.O    <».<•   H.B
                                       Logic  Screening Value,  ppmv  (calibrated  to hexane)
                  Figure  B2-49D.   Cumulative  distribution of total emissions  by  screening
                                      values  for  valves - heavy  liquid  streams.

-------
   01
   0
   I.
       100 -


        90 -


        80 -
        70 -
        60 -
        50


        40


        30


        20


        10
                                   Upper Limit of 951 Confidence Interval
                              Estimated Percent of Sources
Lower limit of the 955   \  \  \
Confidence Interval       v  \  ^
          1 Z 345 10     50 100      1.000     10,000     100.000   1.000,000

          Screening Value, ppnv (calibrated to hexane)(Logio Scale)


       Percent of Sources  - Indicates the percent of sources with screening
                       values greater than the selected value.
Figure  B2-50A.  Cumulative  distribution of  sources  and total
                   emissions by screening  values  for  valves  -
                   hydrogen service.
                                   96

-------
     100


      90


      30


      70


      60


      SO


      40


      30


      20


      10
                                    Upper Unit of 90»
                                \    Confidence Interval
Estimated Percent of
Total Mass Emissions
          I ill
          Lower Limit of the 901
          Confidence Interval
        1  2 345  10     50 100       1.000      10,000     100.000    1,000,000


        Screening Value, ppmv  (calibrated to hexane)(LogiD Scale)


     Percent of Total Mass  Emissions - Indicates tha  percent of total emissions
                                attributable to sources with screening values
                                greater than the selected value.
Figure  B2-50B.  Cumulative distribution of source and total
                   emissions by  screening  values  for valves  -
                   hydrogen  service.
                                  97

-------


dl
3
(O
•o
4-1
0
,—
l/l
A
l/l
01
.2
10
0>
c
c
o>
o>
t-
0
in
.c
•vO ~
00 *
01
t-
o
l/l
0
*J
01
t-
01
CL


flO *
*
70 +

/
i
60 +

t
t
50 +
*
i
t
40 »
^
t
/
30 *
t
t
t
20 *
t
t
t
10 +
t
t

t
0 +
n .0


* - Estimated Inverse Cumulative Distribution
Function
... •• - Upper and Lower 95t Confidence Intervals
» A * ...
»g» ** ,. A.B.etc. „ represent the numbers of discrete screen-
fl fl , <4 1ng values in each screening interval
"** where A=l, B=2. etc. These values do not
fl ** *' represent the actual number of data
• • ' a ft** •"« points having any particular screening
.... AA*** ... value.
... A*** ..
... A ** ..
... AA **« . .
. . . AAA *** . .
. . AA ** . .
... AD ** . .
... A B . .
. . ** • . .
. . •* B . .
. . ***BA . . .
.. *** BAA..
... ** A. ..A
. • . *** . AA
... *** ...
... «»* A . .
.... *** ...
... *** . .
.... »•»» .,

.•••• *** * 9
A .A..... A *
n.'l n.P 1.2 1.6 ?.0 ?.<» 2.8 3.2 3.6 4.0 '».4 4.8 5.2 5.6
                 Log10 Screening Value, ppmv  (calibrated to hexane)
Figure  B2-50C.  Inverse cumulative distribution  function for valves -
                hydrogen service.

-------

IpB
c
c
Ol
Ol
o 112
i/>

*~
+>
~
./> 3 96
01 •—
U XI
i; *•
l/> 0)
oo 80
4J ^o>
Of Of
!Z
10 01
*-* -c ~ ».
3 4-» 61*
J3
t- C
t- ia
4J ^:
*J 4-*
«t
^
u> 01 MR
o «
vO " *
VO u! 
o
£
««- 16
o
4-*
C

-------
                              Upper Limit of 951 Confidence Interval
                                          Estimated Percent of Sources
       30
       2Q
       10
I-
        Lower Limit of the 95S
        Confidence Interval
         1   I 345  10     50100      1,000     10,000     100,000   1,000,000

          Screening Value,  ppmv (calibrated  to hexane)(Log\o  Scale)

        sercent of Sources - indicates the  percent of sources with  screening
                        values greater than the selected value.
Figure  B2-51A.  Cumulative distribution of sources and total
                   emissions  by  screening values  for  pump seals
                   light liquid  streams.
                                   100

-------
       5
       *
       *
100


 90


 ao


 70


 60


 50


 40


 30


 20


 10
                                                          Upper Llmrt of 901
                                                          Confidence Interval
Estimated Percent of
Total Mass Emissions
               1111   i
                            _L
                                       Lower Limit of the
                                       901 Confidence Interval
            1  2 345 10
                  SO LOO
       1,000
10,000
100,000    1.000.000
             Screening  Value, ppnv  (calibrated  to hexane)  (Lopio Scale)

          Percent of Total Mass Emissions -  Indicates the percent of total emissions
                                     attributable to  sources wKh screening values
                                     greater than the selected value.
Figure  B2-51B.  Cumulative distribution  of  source  and  total
                   emissions  by  screening values  for  pump seals
                   light  liquid  streams.
                                      101

-------
  00
01
u
3?
     n.n
            • /»'»  . .
            *  *  AA .  ...
            •  .  . AARA« ....

                    ..  ABARA* ...

                        ....B«*» ..
                            .ARCA* ...

                              ..AABA*...
                                      ,ACA»  ..
                                        . .CC*  . .
                                          .ADA«  ..
                                            .ACA*. .
    *  - Estimated Inverse Cumulative Distribution
       Function

   ••  - Upper and Lower 95% Confidence Intervals

A.B.etc.. represent the numbers of discrete screen-
       ing values in each screening interval
       where A=l, B=2, etc.  These values do not
       represent the actual number of data
       points having any particular screening
       value.
                                                .CB*  ..
                                                 .ABRB..
                                                   ,.AA*. .

                                                     .BCC  .
                                                      • • • CC • t
                                                        . .*DB, .
                                                          . .*BF. .
                                                              . .*** .
                                                               A  AAAACB
                                                                 .**»...
                                                                 ....***..  .
                                                                     • . .**  »»  .  .
                                                                          ...***
                                                                        AB
                                                                             B
                 1.0    J.5    2.0    2.5    3.0    3.5    M.O    <».5    5.0    5.5     6.0

                            Logic  Screening Value,  ppmv  (calibrated to  hexane)
                                6.5
                                                                                                        7.P
       Figure B2-51C.  Inverse  cumulative  distribution  function  for pump seals -
                           light liquid  streams.

-------
0)       /
0)

Z   112 »
£       *
£       *
» a,     <     *   .  /*«   AAAAnnBABABABCBABAOCACDDBA*****»
S,E  96 »                                       BDFCCBBCA»»*»*
E5     <                                               BCCCC *»•»*
o-o     *                                                    DBBF *•*»

2S  80 »                                                              *»*
a.1     t                                                                 *
S"1     /
55     *                                                                    *
5~  f,M *                                                                     *
TI 5     <                                                                       *
«£     /                                                                        *
"* u     t                                                                          *
SS  UB «
S3     t
S&     i           * - Estimated Cumulative Function
5 w     '       A.B.etc.. represent the nunters of discrete screen-                                 *
^_ 3  32 »               ^ng values In each screening Interval              rt
2"™     *               where A*l. B-2, etc.  These values do not
o       /               represent the actual number of data                                        *
*~       i               points having any particular screening             A  AA
o    16 +               value.                                          AACBAR
«->       t
£       /
if       <                                                                      A
5!      o •                                                                      A               •
        .»	<	4-_.-._4-_.._- +	-__»----_- + -._.__ + __.	4.	...4..._._.+	..^......-f.--....^.-....^.
        O.P    °.'i    1.0    1.5    2.0     2.?    3.0    3.5    <«.0    1.5    5.0    5.5    6.0    6.5   7.0

                            Logio  Screening Value,  ppmv (calibrated  to hexane)
       Figure B.N51D.   Cumulative  distribution of total  emissions by  screening
                            values  for  pump  seals  - light  liquid streams.

-------
                     Uppax Limit of 95»  Confidence Interval
              Lower Limit of
              the 95% Confidence
              Interval
                                  Estimated Percent of Sources
           1  2 345 10     50 100      1.000     10,000    100,000    1.000,000

           Screening Value, pprav  (calibrated  to hexane)  (Logio  Scale)

         Percent of'Sources - Indicates the percent of sources with screening

                         values greater than the selected value.
Figure  B2-52A.   Cumulative distribution of  sources and total
                    emissions  by  screening  values for pump seals
                    heavy liquids.
                                   104

-------
c
o
        100


         90


         80


         70


         60


         50


         40


         30


         20


         10
                                         Upper Limit of 902
                                         Confidence Interval
              Estimated Percent of
              Total Man Emissions
             i  ill
                   901 Confidence Interval
          1  Z 345 10     50  100      1,000     10.000     100.000   1.000.000


           Screening Value,  ppmv  (calibrated to  hexan'e)  (Logio Scale)


        Percent of Total Mass Emissions - Indicates the percent of total emissions
                                   attributable to sources *1th screening values
                                   greater than the selected value.
Figure  B2-52B.  Cumulative distribution  of  source  and  total
                   emissions  by  screening values  for  pump seals
                   heavy  liquids.
                                    105

-------




-------
       t

o.      '
=      t
£  112 +
*      t
o      j
1/1      x           «    »  * »A» AA*A*A*A»AA*nA»AAABAAADABC  BCCAB  A
£   96 +                                                   •«»»••«*  BA
5      t                                                           ***ABB
*> =>    1                                                               *AAB
0£    /                                                                  *A*

g^ fl° *                                                                    ***
€/> OJ    /                                                                      *
  4J
O O    /                                                                       **
4J 01
• "ai    *                                                                    A      *
^ t^ gij >                                                                     A      **
«~    X                                                                      AA    *
3~    X                                                                        A      .

ZS    *                                                                        A
j;^ <»fl +                                                                          AB    *
1 ,_    X                                                                           AA     «

g 5    »           * - Estimated Cumulative Function                                       AR

So 32 *       A.B.etc.. represent the numbers of discrete screen-                                      A  *
•£ „,    x              Ing values 1n each screening Interval                                         A
•5 3    ,              Mhere A«l. B-2. etc. These values do not
.-3    t              represent the actual number of data                                               »
35 if. +              points having any particular screening
£      f              value.
H-      ^

°      '                                                                                    A
S     0 *                                                                                    A        •
o      f
v      - +	«	--*	+	»	*	+	+	+	+	+	»	*	«•	*
      -O.P   -P.M    0.0    n.i4    0.8    1.2    1.6    2.0     2.i»    ?.fl     3.?    3.6   1.0     M.I    «».B


                           Logic  Screening Value, ppmv (calibrated  to hexane)
       Figure  B2-52D.   Cumulative  distribution  of  total  emissions by  screening
                            values for  pump seals -  heavy liquids.

-------
      VI
  100




   90





   ao





   70





tf  60
3
o
l/>


"5  50

4J
c
u

£  40





   30





   20





   10
             Upper Limit of 951 Confidence Interval





                             Estimated Percent of Sources
                                          Lower Limit of 951 Confidence Interval

                                          _-~ _   i	i	I
           1  Z  345 10     50 100      1,000      10,000     100,000    1,000,000



           Screening Value,  ppmv  (calibrated  to hexane)  (Login Scale)



         Percent of Sources - Indicates the percent of sources with screening


                         values greater than tht selected value.
Figure  B2-53A   Cumulative distribution  of  sources  and total

                   emissions  by  screening values  for  flanges.
                                  108

-------
     
-------
I7.fi
Ol
3
£ 15.0
TJ
01
4J
0
•="•*
CO
A
W>
1)
^ in. n
«O
>
CT
C
£ 7.5
Of
t.
u
CO
£ 5.0
X
*/»
Ol
u
1 *.*
i/1
<•_
o
£ o.o
o
I.
HI
0.
•2.5
4
t
t
t
4
f
*
t
4
t
t
t
4
*
*
t
4
t
t
/
4-
*
f
t
4
I
t
t
4
*
*
t
4

•
••*.-• * - Estimated
•••' Function
• • •
... •• - Upper and
A.B.etc.. represent
. . . " ' 1"9 value*
* * * * A fl A .. JSreA-1.
***** •• represent
*A»AA . . points hav
*»*B .. value.
*** • .
••
. . AftR*** ..
• .... DA*** • .
.... ** .»
.... BCA ** .
... AC *** . .
• . . BCA** . .
. . AA** . .
.. CB»* ...
.. AA** ..
.. flABB* ..
. . . *** . .
... AB A*** ...
... ABR*A« ...
.... RAC*AAAA..
.... ** AA
• .
-n.it -n.l 0.0 0.<» 0.8 1.2 1.6 2.0 2.1 ?.B 3.2
Inverse Cumulative Distribution
Lower 95% Confidence Intervals
the numbers of discrete screen-
In each screening Interval
B=2, etc. These values do not
the actual number of data
1ng any particular screening
BBBA .
* »0
•
3.6 l.n <«.<« <4.8
                  T,ogio Screening Value,  ppmv (calibrated to hexane)
Figure  B2-53C. Inverse  cumulative distribution function for flanges.

-------
    12
.y   96
SJ«"
o  Ol
•— I/I
    64 +
                                                *»«*«****   o  RCBA  A  ACA AA
                                                        *****            A
                                                           *»**            CA AAA
                                                               ***               AA
                                                                  **                ABBA
                                                                  »•*                   0
                                                                     »*
                                                                         **
                                                                          *
jj *• 48 «•

I j    *
•M 4J
  I-    *
M Ol X? 4
C «J 3<= *
O 1C    £
       X
•»- 01
E 
c
Ol

-------
  100




  90




  80




  70


Vt

5 60
a
o
«/i


* 50

*j
c

-------
    s
    wi
    wi
    S
100


 90


 SO


 70


 60


 50


 40


 30


 20


 10
                                                       Upper Limit of 90S
                                              \s     Confidence Interval
Estimated Percent of
Total Mass Emissions
            i  11
                          I	I
                                                             \
                                                          \   \
                                      Lower Limit of the      \ \ \
                                      90S Confidence Interval
          1  Z 345 10     50 100      1.000     10,000     100.000    1,000.000


           Screening  Value, ppmv (calibrated  to hexane)  (Logic Scale)

       Percent of Total Mass Emissions - Indicates the percent of total enliilons
                                  attributable to sources with screening values
                                  greater than the selected value.
Figure  B2-54B.  Cumulative distribution  of  source and  total
                   emissions  by  screening values for compressor
                   seals  - hydrocarbon  service.
                                  113

-------
«     t                                                               * -  Estimated Inverse Cumulative Distribution
•^     t.    •    .                                                          Function
•O
*     J,    ,       ''"...                                      "* "  uPPer and Lower 95% Confidence Intervals
S eo  t     A   */v  A  «  •         ...                                A.B.etc.,  represent the numbers of discrete screen-
aJ     t.    .       0  A  »*«       ...                                     Ing values 1n each screening Interval
"S     x         ...      AAA  »A      ...                                  Khere A-l. B-2, etc.  These values do not
""     j                ...      /\»*      B..                               represent the actual nunber of data
A     ^                 *  *a><  ^     ^4.    ftft..                             points having any particular screening
« feu  +                         ..      ••*   A  ..  ABA                      value.
•5     *                           ....    *••     • •   B
=~     t                              ...»**.. BB A
°>*                                 ..»*..    A B
•^     <                                   ...*»..
«J 18  *                                     ...    •••   . .
{j     *                                       . . «    •••   . .
«"     *                                         . . .    •••  A. .
5     *                                            . «   ••*  • . .
•;     t                                              ..»*...
M 32  +                                                ..   ••    ...
*     t                                                  ..   •**  ...
^     *                                                    • «   •*•   . .
°     t                                                      ...
^_     t                                                        • •
o 1ft  i                                                    AAA    ...    «**   ....
£     *                                                      A   BAA ....  ••»*   ..
«     <                                                               A.R.    •••* A..
      t                                                                        ......  »••
    0-f                                                                            A
      l.fl     ?.l     P.1*     ?.7     3.0     ?.!     3.6    3.9    <».2    '1.5    M.B    5.1    5.«»    5.7    6.0

                               Logio  Screening Value,  ppmv (calibrated  to hexane)
      Figure B2-54C.  Inverse  cumulative  distribution function  for  compressor
                          seals - hydrocarbon  service.

-------
        t
£   112 +

1       '
t-       **   *A  »A Art* *A *AAA * A************
    96 +                          A       PAAA****A***«*
.c       t                                           BA   *****
£       t                                                     ****
  o>     X                                                         ***
m r-  flO »                                                            ***
" 5     *                                             BB                **
o -o     *                                               B                 **
*" "     X                                                 AA A              **
o o
4-> 41  gl| +                                                    A                *•
O» Ol     ^                                                                       **
^a "*     t                                                                         **
10 O)
•M £     X                                                                           *
3 4->
-o    i|B »                                                                              *
t!     '                                                                              *
*; ^     *           * - Estimated Cumulative Function                                          *
  £  3? *      A.B.etc.. represent the nunfcers of discrete screen-
  S     *              Ing values In each screening Interval
  £                    where A-l. B-2. etc.  These values do not
                       represent the actual number of data
  £     *              points having any particular screening
  ^  16 *              value.                                 A
                   iHerTA-K B-YTeter fhese'values do not                                       *
    *              represent the actual number of data
                   points having any particular screening
ID
                                                         AB                                    *
    /                                                        BAA   A B          A
    /                                                                           A
  0 +                                                                           A                   *
    *
    t

-16 +

    l.H    ?.l    2.1*    2.7    3.0    3.3    3.6    3.9    "«.2    "«.5    1.8    S.I     5.U    3.7    6.0

                         Logio Screening Value, ppmv (calibrated  to hexane)
      Figure  B2-54D.  Cumulative  distribution of  total  emissions by screening
                           values for  compressor  seals- hydrocarbon  service.

-------
     100


     90

     80



     70


     60


     50


     40


     30


     20


     10
                        Upper Limit of 95% Confidence
                        Interval
Lower Limit of the 951
Confidence Interval
          Estimated Percent of Sources
        1  2  345  10        100      1.000     10,000    100,000   1,000.000


         Screening Value,  pprav (calibrated  to hexane)  (Log 10 Scale)

       Percent of Sources - Indicates  the percent of sources with screening
                       values greater than the selected value.
Figure  B2-55A.  Cumulative distribution of sources and total
                   emissions  by  screening values  for  compressor
                   seals -  hydrogen  service.
                                116

-------
3

1

2
«_
o
     100


      90


      80


      70


      50


      50


      40


      30


      20


      10
          Estimated Percent of
          Total Mass Emissions
           I	LJ
                                    Upper Limit of 901
                                    Confidence Interval
           Lower Limit of the
           90S Confidence Interval
        1   Z  345  10
50  100
                                1,000
10,000
100.000    1.000.000
       Screening Value, ppmv (calibrated to hexane)  (Log i o  Scale)

     Percent of Total Mass Emissions - Indicates the percent of total Missions
                                attributable to sources with screening values
                                greater than the selected value.
Figure  B2-55B.  Cumulative distribution  of  source  and  total
                   emissions  by  screening values  for  compressor
                   seals  - hydrogen  service.
                                    117

-------
00
Ol
3
•o
U
Ol
"oi
in
A
v\
01
m
c
c
Ol
f
+J
s
Ol
u
3
0
Percent
100 »
* /\ *
80 »
X
X
X
X
60 +
X
X
1
-t-
1»0 4
X
X
X
X
20 +
X
t
t
t
0 +
X
X
X
X
-?o +
• • * - Estimated Inverse Cumulative Dlstrlbutlo
	 	 Function
* A * ....
A* **A * .... .. - Upper and Lower 95% Confidence Intervals
. «• A A* * * ...
. ... A AA*«»* ... A.B.etc., represent the nunfcers of discrete screen-
. A AA«* ^n" v*!1** *n Mclt screening Interval
*""* • PA ** where A«l, B«2. etc. These values do not
• * ' ' * ' • represent the actual number of data
•••• **B •• points having any particular screening
... ***AA ... value.
... ***BAA..
**»RA ..
. . ABA . .
• . ***B . .
. . * * * . .
. . »A* . .
... .*** ••»
. . A *** ...
A*A*
... ***** ...
	 A •*** . ,

                 U.r   J.?   l.f    2.0   2.1    2.0    3.2   3.f.    "».0   i».i«   4.8    5.2   3.6   6.0   6.M

                                     Logio Screening Value,  ppmv  (calibrated to hexanc)
               Figure B2-55C.  Inverse cumulative distribution  function for  compressor
                                seals - hydrogen service.

-------
   112
  * 96
01 t—

O 
-------
       100


       90


       80


       70

      I

      : so
      I


       50


       40


       30


       20


       10


        0
    Upper Limit of 951 Confidence Interval
                      Estimated Percent of Sources
Lower Limit of
Confidence Interval
          1  2 345  10     50 100      1.000      10,000     100,000    1,000,000

         Screening Value,  ppmv (calibrated to hexane) (Logia  Scale)

        Percent of Sources - Indicates the percent of sources with screening
                         values greater than the selected value.
Figure  B2-56A.  Cumulative distribution  of  sources  and  total
                   emissions  by  screening values for drains.
                                   120

-------
   a
   *A
   Ifl
   3
100


 90


 30


 70


 60


 50


 40


 30


 20


 10
                                          \\ \       Upper Limit of 90*
                                           \ \ \      Confidence Interval
                                            \   \
                                             \
Estimated Percent of
Total Mass Emissions
           f  til
                        j	i
                          Lower Limit of the
                          901 Confidence Interval
        1   2 345 10     50 100       1.000     10.000     100.000    1.000.000

         Screening Value, ppmv (calibrated to  hexane)  (Log i o  Scale)


      Percent of Total Mass Emissions - Indicates tha percent of total emissions
                                 attributable to sources with screening values
                                 greater than the selected value.
Figure B2-56B.  Cumulative  distribution  of  source  and total
                    emissions by  screening values  for  drains.
                                   121

-------
ZZl
Percent of Sources with Screening Values > Selected Value
36 *
^ . .
t
t
tfl 4-
t « •
t
-t
t
f • .
t
32 *
t
t
t
t
If. *
t
t
t
fl *
t
t
t
0 +
t
t
1
-8 +
-n.9 -P. 4
"'-.... * - Estimated
Function
.... •• - Upper and
• »«« ... Ing values
**** .. "here A-l.
•**• ... represent
rtA ** points hav
* " * ..* yg J yg ^
.... A A * * ...
..... *** ...
.... B **# ...
.... A A A*»* . .
... AA ••• . .
.... AAAA** ...
.... AB*** ...
... AA*** ..
... B*** ...
... AAAA*** ...
.... AB*»* . .
... AABA** ..
... A RAA
*AB
• • • • • '
• • • • •

n.O C.t 0.6 1.2 1.6 2.0 2.H ?.8 3.2
Inverse Cumulative Distribution
Lower 95* Confidence Intervals
the numbers of discrete screen-
in each screening Interval
B*2. etc. These values do not
the actual number of data
1ng any particular screening
ft "...
•*C** A. ..
4*» * A . .
....A. . . *
3.fi U.O H.H 14.
*
e
                  Log 10 Screening Value, ppmv (calibrated  to hcxane)
Figure  B2-56C. Inverse cumulative distribution function for drains.

-------
        t
JT   112  f
c       ?
01
01       '
u       t    *      »    ******  **A*****AA*AA8**A*A*nAAAARB*AABAAAAA*
•"    96  »                                                            BAAA*«**»
5       /                                                               AB  BAA*A»»
"ft                                                                          ***
« 3     *                                                                .        A    ,*
g-5  no  *                                                                        A A    *
a *     t                                                                           A    * »
S"S     *                                                                           B     A  *
oo     t
"2  6-4  *                                                                                     *
01 01

•S*     t                                                                                    A   »

I!  ,e:
u 0
** **
„ %     t           * - Estimated Cumulative Function

° S  32  *       A.B.etc.. represent the nurtwrs of discrete screen-
Zia     *               Ing values 1n each screening Interval
•g OT     *               where A-l. B-2. etc.  These values do not
u 01     <               represent the actual number of data
r- r-  16  *               points having any particular screening
2$     t               value.

**-       ?
0     0  +                                                                                    A             •
+>
c       *
Ol
Si       *

*   -16:
        *

       -O.o   -P.'i    0.0     P.H    0.6    1.?     1.6     2.0     2.<»     2.8     3.2     3.6     <».0     M.<»   <».8
                              Log10  Screening  Value,  ppmv (calibrated  to hexane)
      Figure  B2-56D.  Cumulative  distribution of total emissions  by  screening
                          values  for  drains.

-------
                 Upper Limit of 951 Confidence Interval
         r   Lower Limit of 95S
             Confidence Interval
                                   Estimated Percent of Sources
          1  2 345 10     SO 100       1,000     10,000    100,000   1,000,000

          Screening Value,  ppmv (calibrated  to hexane)  (Log i o Scale)

        Percent of Sources -  Indicates the percent of sources with screening
                         values greater than the selected value.
Figure  B2-57A.  Cumulative  distribution of  sources  and total
                   emissions by screening  values  for  relief
                   valves.
                                  124

-------
        3
        a
100


 90



 30



 70



 60



 50



 40



 30



 20



 10
                                                           Upper Limit of 90X
                                                           Confidence Interval
                    Estimated Percent of
                    Total Mas* Emissions
                  III   l
                             I   J
                                                          \  \  \
                                    Lower Limit of the        \   \  \
                                    901 Confidence Interval    \  \  \
             1   2 345  10      50 100      1.000      10.000     100,000    1.000,000


              Screening Value,  ppmv  (calibrated  to hexane)  (Log i o Scale)


          Percent of Total Mass Ealsslon* -  Indicates the percent of total emissions
                                      attributable to sources with screening values
                                      greater than the  selected value.
Figure B2-57B.    Cumulative  distribution  of  source  and  total
                     emissions by screening values for  relief
                     valves.
                                       125

-------
   70
   50
   mi

                   *   *  *  *
** *ft n        ••
     **ft*A       •••
         n**        «*
           A**A       ...
...          */\*A      ...
    * - Estimated Inverse Cumulative Distribution
        Function

    •• - Upper and Lower 95% Confidence Intervals

A,B,etc., represent the nunbers of discrete screen-
        Ing values In each screening Interval
        where A-1, B«2, etc.  These values do  not
        represent the actual number of data
        point! having any particular screening
        value.
   30
o,

0
   20
   10
o   0
                                                    **B
                                                       ..
                          BAA*     ...
                            A*AA     ..
                          ,      ***A    ..
                                  ***
                            . . .    ***     . .
                               ...  AB  **     . . •
                                 ...     AA**    •••«
                                   ...  B   A**     ...
                                      «•••      ••A    ...
                                        ....      *****    . .
                                             	B    A** * *   t   •
                                                  	A A*   *
U
l_
Ol
  -10
     -1.0   -n.ri    0.0     0.5     1.0     1.5    2.0    2.5    3.0    3.5    <•. 0     «. 5     5.0    3.5   6.0


                                Log 10  Screening Value, ppmv (calibrated to  hexane)
  Figure  B2-57C.  Inverse  cumulative  distribution  function for  relief valves.

-------
£       X       *     t  »  «  » AA  *A*AA*B*A**AA*AAAAA*AACBA*
'«   Ik  >•                                                  8»AA*»A*«
  01
in ™     *                                                          »»*•
S *-u     /                                                         AB    ****
5*     t                                                                 *«*
S^S RO  *                                                                    »*
O M     *                                                             A       **
"»     t                                                              C   ft    A .
.2 X     t                                                                        **
« HI f,'t  f                                                                           *
** a
        t                                                                             *

        *        .                                                                     *
*•* *-*   „
-c w «8  »
in a»     t                                                                                *
c •>->
o a     t
J*£     '           * - Estimated  Cumulative Function                                            *
•^   52  »                                                                      A
,§ S     #       ft.l.etc., represent the  numbers of discrete screen-
_ ^     f              1ng values 1n  each screening interval                                             ^
2"™     .              where A»1, B=2, etc. These values do not                          ft
o                     represent the  actual number of data
*~   lfc  *              points having  any particular screening                                  A      A
"S       *              value.
•*-»
£       *
u     0  +                                                                                     A    »
0!       *
        .,	t	4	--,	*,	t	*-	t	4	+	*	*	+	*	„_._*.--	4
       -l.f    -*.*    P.O     0.5    1.0     1.5    2.0     2.5     3.0     3.5    i».0     l».5    5,0    5,5   fc.O
                                Logio  Screening Value,  ppmv  (calibrated to  hexane)
        Figure  B2-57D.  Cumulative  distribution of  total emissions  by screening
                            values for  relief valves.

-------
          The 95 percent confidence intervals for the cumulative
percent of sources can be interpreted as ranges of values which
contain the actual percent from the population of sources studied.
Note that these intervals apply to the entire population of sources
(i.e., a composite of all United States refineries),  and are not
necessarily applicable to a finite number of sources  at any par-
ticular refinery.  Because of the nature of the function, the con-
fidence intervals will be approximately valid any time a random
sample of greater than 100 sources is being considered.

          The 90 percent confidence intervals for the cumulative
percent of total emissions function can be interpreted as ranges
of values which contain the actual percent of total emissions
function for the entire population of sources.  Again, these in-
tervals describe how well the function has been estimated for the
entire population and are not directly applicable to  a particular
refinery situation with a finite number of sources.  The variation
of the function for a particular sample of sources is a complex
function of the number of sources.

          The nomographs must be used with caution when comparing
these estimates to actual measured emissions  (sampled sources).
As discussed earlier, the correlation between screening values
and actual leak rates is imperfect.  Because of this, values ob-
tained from the nomographs for percent of total emissions caused
by a specific percent of total sources may not exactly match simi-
lar values for measured leak rates as in Table B2-2.   Table B2-15
gives a summary of measured leak rates.  In most cases, the nomo-
graphs will indicate a higher percentage of sources being responsi-
ble for a given percentage of total emissions.  In this sense, when
actual leak rates can be measured, the nomographs are conservative
(i.e., they will identify more sources than necessary to achieve
a given level of reduction of total emissions).  In a practical
sense, however, it is unreasonable to expect that every source
                               128

-------
   TABLE  B2-15.   SUMMARY OF DISTRIBUTION OF MEASURED LEAK  RATES3
Leak R*nge
Ub/hr)
»1.0
0.1-1.0
0.01-0.1
0.001-0.01
O.OGOOl-0.001
> 0.00031
Leak Hange
Clb/tir)
>1.0
0.1-1.0
0.01-0.1
0.091-0.01
U. 00001-0. 001
JU. 00001
Leak &ange
(Ib/hr)
>1.0
0.1-1.0
0.01-0.1
0.001-0.01
0.00001-0.001
>O.OU001
A - Percent of total

Caa/Vnpor
StreaiBS
A B
1.2 70.0
3.2 23.3
7.6 5.3
8.7 0.8
6.6 0.1
20.3 103.0
Pump
Light Liquid
St reama
A B
4.0 70.6
15.5 24.6
22.7 4.4
16.4 0.4
4.3 0.0
62.9 100.0
Flanges
All Strea,?
Croup a
A B
0.0 0.0
0.2 63.2
0.6 30.1
1.3 6.0
0.9 0.7
3.0 100.0

Light Liquid
Two-Phase Streams
A B
0.1 14.4
3.4 60.3
11.5 21.9
13.3 3.2
7.8 0.2
36.1 100.0
Seals
Heavy Liquid
Streams
A B
0.0 0,0
5.5 73.2
9.6 25.6
5.8 1.2
1.7 0.0
22.6 100.0
Valves
Heavy Liquid
3 Streams
A B
C.O 0.0
0.0 0.0
1.0 74.1
2.7 23. B
2.9 2.1
6.6 100.0
Draina
All Stre&n
Croupa
A B
1.6 61.6
4.7 33.0
6.6 4.9
5.1 0.5
1.1 0.0
19.1 100.0

Hydrogen
Streams
A B
0.0 C.O
2.2 34.2
14.1 60.5
13.) 4.8
14.1 0.5
4TT7" 1515715
Compressor
Hydrocarbon
Service
A B
16.2 74.3
33.8 24.3
16.9 1.4
4.9 0.0
2.1 0.0
73.9 100.0

Open-Ended
Valves
A B
0.0 0.0
0.8 23.3
7.0 65.3
9.3 10.8
6.2 0.6
7177 T07J75
Seals
Hydrogen
Service
A B
0.0 0,0
16.9 75.6
26.5 22.5
25.3 1.3
14.5 0.1
83.2 1CO.O
Relief Valves
All Stream
Croupa
A B
3.4 76.0
10.1 19.2
14 . 7 4.5
3.1 0.3
2.7 0.0
39.0 100.0
aourcea screened with soapled leak rates within leak range.
•us ealsiiona attributable to source* within leak range.
 *Hoit source! wcr* bagged and stapled to obtain leak rates; gone were estimated ualng procedure* described In Section b of
  Appendix C.
with  a  screening value exceeding  a  specific level could be  bagged
and sampled.   Since at this time  there is no better method  than
screening  for identifying sources for maintenance, the nomographs
are appropriate for evaluating maintenance and control options.

           The nomographs are therefore useful in evaluating  the
potential  effectiveness of maintaining and repairing sources  for
reducing emissions.   For example, approximately 5 percent of
valves  in  gas vapor stream service  can be expected to have  screen-
ing values  above 50,000 ppmv (Figure  B2-47A).   However, these 5
percent of  the valves are responsible for an estimated 95 percent
of the mass emissions (Figure B2-47B).   Similarly, for a screening
                                 129

-------
value of 10,000  ppmv,  the percent of sources  and percent of
sions are  9 percent  and 99 percent, respectively.

           Analyses,  using the nomographs,  can also be done for
other sources  and process streams.  For  example,  Table B2-16
shows the  percent of emissions for various  sources and process
streams when  the upper 10 percent of screened sources are con-
sidered.   Confidence intervals are also  shown.   Table B2-16 is
presented  only to illustrate the use of  the nomographs and to
emphasize  the  fact that a small fraction of the sources within
any one source category account for the  majority of emissions
in that category.   There is no intent here  to prejudge that a
reasonable level of  control is 10 percent of  sources, or any
other specific number.  Ultimately, the  decision regarding
reasonable control will be based on relative  levels of emission
reduction  and  the cost of achieving these levels.   Therefore,
percentage reduction goals for each source  category may be
different.
   TABLE  B2-16.   PERCENT OF TOTAL MASS  EMISSIONS RELEASED BY
                  THE UPPER3 TEN PERCENT OF  SCREENED SOURCES
Mini&UB
Screening Value
(ppnv)b
Valves
Can/Vapor
LlRht L|rlUio7Tvo-P»llse
Heavy Liquid
Hydrogen Service
Funp Scale
Light Liquid
H«avy Liquid
Compressor Sealt*
Hydrocarbon Service
Hydrogen Service
Fl ange •
Drains
Relief Valves

9,200
11,000
120
1,400

47,000
1.100

63,300
76,000
14
1,100
4,700
95* Confidence
Interval for
Percent o[ Source

(6.
(7.
(5,
(J,

(7,
(5,

(4,
(3.
(6,
(4,
(3.

13)
13)
15)
16)

13)
15)

15)
17)
14)
16)
17)
Percent of Total ^alsalana
e Mean

99
85
90
93

75
si

59
77
99
94
83
90Z Confidence
Interval

(98,
(82,
(74.
(70,

(71,
(76.

(46,
(64,
(98,
(92,
(78,

100)
87)
67)
91)

79)
86)

72)
87)
100)
96)
90)
      * The upper ten percent of screened sources IB defined as the tea perc«ot ol sources having th«
       highest screening values.

       Screening Value with TLV Sniffer calibrated to hejune.
                               130

-------
          In summary,  Figures. B2-47 through B2-57 present con-
tinuous distributions of the percent of emissions and sources
versus specific screening values.  These figures can be used to
estimate the reduction in emissions which could ideally occur
if, after .screening, the emissions from a selected percentage
of leaking sources were reduced to zero after repair.  It is
emphasized that these figures represent an amalgamation of data
from nine refineries (thirteen for compressor seals and relief
valves) and do not represent any single refinery.  Therefore,
these results must be used with caution when analyzing a specific
refinery or process unit.

2.5       CORRELATION OF VARIABLES

2.5.1     Correlation of Leak Rate with Continuous
          Process Variables

          At the beginning of this program it was hypothesized
that the leak rates from baggable sources would be affected by
process variables such as temperature, pressure, and size.   The
study of the correlation of process variables is complicated by
three factors:

          1)  The degree of skewness in the leak
              rate data and the inherent vari-
              ability of the leak rate measurement
              procedures,

          2)  The dominating effect on leak rate
              of the composition of the process
              stream,  and
                             131

-------
          3)    Inaccuracies and missing information when
               "measuring" process variables.

          To examine the correlations, the logarithm (base 10)
of the leak rate (Ib/hr) was related to the process variables
to minimize the effect of skewness and variability of the leak
rate measurement.   The data were grouped by the important pro-
cess stream classifications to minimize the effect of the stream
composition.                    -.

          The inaccuracies in determining some of the process
variables reduce the sensitivity of the correlation analysis.
For instance, the variable "age" recorded was usually the age of
the unit.  A more useful age determination would have been the
years in service of each individual source, or possibly the time
since last maintenance was done, but it was impractical to
obtain this information for the large number of sources studied.
Therefore, the conclusions concerning process variables pertain
to the variables as measured or determined in this study.

          Table B2-17 lists the simple correlation coefficients
between the log leak rate and the appropriate independent
variables for each source type and stream classification.
Correlations significantly different than zero are noted.  The
simple correlation coefficient is a statistical measure of the
linear relationship between two variables.  The correlation
between "X" and "Y" is computed as :

                          E (Xi-X) (Yi-Y)
                   XY
and is bounded:
                             132

-------
TABLE  B2-17.     CORRELATIONS BETWEEN  CONTINUOUS  VARIABLES  AND LOG10  LEAK  RATE


Valves
Gas/Vapor Streams
Light Liquid Streams
Heavy Liquid Streams
Hydrogen Service
Open-Ended
Pump Seals
Light Liquid Service
Heavy Liquid Service
Flanges
Compressor Seals
Hydrocarbon Service
Hydrogen Service



.230*
.103*
-.351*
-.088
.236

.088
.097
.072

.346*
.398*



.077
.051
.146
.129
.242

-.012
-.098
.021

.218*
.312*


_
.263*
.096
.220
-.531*
.230

.062
.237
-.180

.105
.052
Line


.150* - -
.143* -
.046 _____
.288* --_.-
-.078 -

.021 - -.064
.128 - -.182
.336* -----

.278* - -.J43* -.138 -.087
.343* - -.034 .218 -.099
St ruke


-
-
-
-
-

-
-
-

-.012
-.074
Drains                 -      -.408*      -        -      -.039     -.191

Relief Valves           .045      .096       -      -.075


* Correlation Coefficient statistically different from zero (P > .90).
  Log it  RPH was correlated with logic  leak rnte.

-------
                         -1 < rxy < 1.

Figure B2-58 is a schematic diagram which shows typical data
associated with various values of the correlation coefficient,
r.  For values of r near +1,  as one variable increases, the
other increases.  For values of r nearly -1, as one variable
increases the other decreases.  For data which show a random
scatter pattern, the value of r will be zero.

          The value of r? indicates the approximate percentage
of the total variation in the log leak rate that is accounted
for by the relationship of the leak rate with the correlating
variable.  For instance if r = 0.50, then r2 = 0.25 and about
25 percent of the variation in the leak rate is attributable to
the relationship with the process variable.  The remaining 75
percent of the variation is due to other variables and random
variation.

          The sampling distribution of values of r is highly
dependent on the sample size.  Small values of r (0.1-0.2) may
be statistically significant for large sample sizes while large
values of r  (0.4-0.7) may not be significant for small sample
sizes.  Statistically significant refers to a statistical test
of the hypothesis that the correlation is equal to zero, i.e.,
no relationship between the variables.   A significant correla-
tion therefore does not imply a large value of r, since values
of r < 0.2 may be significant for large sample sizes.

          The correlation coefficient,  r, can sometimes be
misleading for the following reasons:
                              '134

-------
             r =
r =  +.9
             r  = .+.5
 r  =  0
             r  =  -.7
 r  =  -1
Figure B2-58.   Scatter diagrams  and  correlation coefficients
                             135

-------
          •    r does not describe how much Y changes for
               a given change in X, what the shape of the
               curve connecting Y and X is,  or how
               accurately Y can be predicted from X.

          •    A correlation between X and Y nay be due to
               their common relation to other variables.

          •    Outliers and highly skewed data can distort
               the frequency distribution of r.

          c    Selecting values of X at which Y is measured
               can distort the frequency distribution of r.

          •    r may be unduly high because of sampling
               from two different populations instead of
               one.

In order to examine the actual data used in calculating the
correlations presented here, scatter plots of the log leak rate
data (in pounds per hour) and the process variables are shown
in Figures B2-59 through B2-114.  The correlation coefficient
(r) and the number of data pairs are shown on each plot.
Statistically significant correlations are noted with a "*".

2.5.2     Relationships Between Discrete Variables and Leak
          Rates.

          Unlike continuous variables, correlation coefficients
are not easily interpreted  for discrete variables, i.e.,
manufacturer, material, and seal type versus leak rate.  A
visual method for comparing the relationships between levels of
the variable and leak rate  is the  schematic plot.  Figures
                              136

-------
                                                          Lt.i>t-Nu: A = i
                                                          Correlation Coefficient  (r) = 0.230*
                                                          Number of Data Pairs       = 157
                  1 «
                    t
LO
L   II  *
U     /
G     t
IX
il  -I  *
      t
L     *
t     *
A  -2  +
K     t
      /
H     /
K  -*,  ^
I     /
L     *
                                            A A
A
A   '»  /\
 «  AA A  AA
  I'. A A A
l\l\  L/\/\
i\   t'
 « 13 I!
 LI  U
A A »A
 II  l\
  A
     A
    /> I.'
                                                   AA
                                                 AL A
                                                 AL A
                                               UAA U
                                                  A
                                              AH/*  »AA
                                                AA b A
H
/U\
                                         A  A
                                         « A
                                                            A/\
                      ttfj
                      A   A
                      A

                       A
                      « A
                 -S
                                                               _4 --
                                                               JUU
                                                                          ^un
                                                                                           550
                                                                                                      650
                    Figure B2-59.   Leak  rate vs.  pressure  - valves, gas/vapor streams.

-------
                                                        A  = 1 ObS, H =
                                                 Correlation Coefficient (r) = 0.077
LO







L
0
l.
1
0

L
L
A
K

H
A
1
L










t
'S «
X
1 *
X
t
t
11 *
X
t
t
-\ »
X
X
/
-? +
X
/
X
-.') *
X
X
X
-'1 •»
*
X
X
-r. *
X
J
-b »
-i:'i<

Number of Data Pairs = 157


A
A
iv n n
A U |l
A
fliv B
A A A A
UA A 11 AA A A
L bA A A
AIV U AA A A A
b«HU A A A A
UtAMA U A ft H
HAJt. H
A AUt A A « A AA
^ ALb/\ AA
A HOC A
A ML A l\
A AH A A A
AAHA AA A
AA A
AA
(.A

A
U
A

•< -jt.u -:\0 0 til) Ifjll «?'«(' J2U 400 40U bbO 61U 720 BOU B80 l*bU
                                                           1  f I
                Figure B2-60.   Leak  rate vs.  temperature - valves,  gas/vapor streams.

-------
                                                 A = 1  OUS. U = ? UbS«  Lit.
                                          Correlation Coefficient (r) = 0.150*
    >  4.                                    Number of Data Pairs      = 156
      t
      t                     A
      /                 n   i\              ft
L   I)  *          'lAA         A              A
U     t
(,     /        ft    n           A
                  A             U   A
                i  n A   /t   u      A
      t        fi D  b A   rt
L     /        A U  A L   A                  0
L     X        A   L C       U              t)
A  -2  *         AH  L A   L              II
K     X        /i I  i) A   L   A
      t         HO  ll«    />   AH       A   B
l<     X        A MAO U   O          A       II
A  - j  f         ;u\AU n   A   U          n   A
f     X         I!   H   L       A
L     X          '»  A I)       U          A
      X        AA  U     H   A
   -<»  *          A  A A
      X                 K
      /         All   A
      X
   -5  +             A
      X          /I
      X
   -b  »


                                                    I1NCMLS)
       Figure  B2-61.   Leak  rate vs.  line size  -  valves,  gas/vapor  streams.

-------
                                                  A r i oust  M  = 2 uns, IT«-.

      t                                     Correlation Coefficient (r) = 0.263*

    2  +                                     Number of Data Pairs      = 82
      t
      t
      t
    1  +
      x
      *
      *                                                A
L   I)  +                                   A
0     t                                                                       n
(,     t                                                  A                    U
1     <
u  -1  +         n   n               A       A              a                    A
      /         H     l\                                 AM                    fl
L     /               A              A     A                                   B
L     /               A              A            BAA
A  -2+         Abo            A            AAAA                  [>
K     *         U     rt              '>              A                          A
      *         I!     (\                    tt              A                    A
K     *         A   «                                     U                    B
A  -J  *           U   A         A     -                                                      A
I     /         tl                   «                                                      A
E     /                                   ti              U
      1       A A                                        A
   -<*  »                        rt
      /         A
   -6  +

             1   3    b   7   9  11   U  Ib  17  19  ^i  i?3  i!5  17  i?V  ^1  id  35

                                                 AbL (YEARS)
           Figure B2-62.   Leak rate  vs.  age  - valves, gas/vapor  streams

-------
                                             LEbLNu: A = 1 (JUS,  H  = '
-------
                                                          = 1 Oti.St U - 2  UF3i>» LI>-.
                                                 Correlation Coefficient (r) = 0.051
N>








L
U
G
1
U

L
t
A
K

K
A
1
L









1 »
t
1
/
U *
t
1
t
-1 +
t
t
t
-,: *
t
t
t
-3 *
t
t
t
-ii +
/
/
*
~ t" *
t
t
-t. +
X
t
-7 *
-<•'•(
Number of Data Pairs = 333


A
A A A
A A A A A
n i\ A a A
AA L l\ A A
« nan i> n i\ u A A A
A AMACI.AI.1U b H A A A A
n AAL'HHJAUU'I A A A A AA A A
AH^Lt-'VAA « H A A A A
/\ AAAAAUHULC UAAAI3 HA A
A Ab a UDUb A AAAA A AbAA
KtULbE)l-)l)t> bbA AA A A A
f( A A«IUU»A A A A
A A El)»- A A A U A A A A A A
A A A Abb AAAA A A
A Al-Lbw A A AA BbA
UAH b A A
n DAA
AbA A
"A A A
A A
A
All

A



-J'JU -12(1 -bl) 0 f-l) 120 1»0 <^MO ,M)U ibO 4^0 M/(0 5'»0 b()0 bbU
         Figure B2-64.  Leak rate vs.  temperature - valves, light liquid/two  phase streams

-------
                                                 LLI'LUU: A = I (IDS, 0 =  2 Ub<;« Lit.
                                                 Correlation Coefficient (r)  = 0.143*
LO






L
0
b
1
U

L
L
A
K

H
A
T
L









1 »
t
n »
/
t
t
-1 »
/
/
/
-2 »
<
/
t
-5 »
*
t
i
-l| 4
*
/
/
~'j *
J
*
t
t
-74




/>
/\ /(

/\
(t /I 13
LI A U
,1 C, A K
L t_ 1
A A l» A 1
A »> u II
L • H
A u A H
A U L L
A A " Li 11
A « U L
L 1)
U A A
L
A
A






i; ^



A

0
n A
A
H
L) A
G A
H A
t
"( A
C
r
u
U
A


H
A
A
1)
A



'1



A
A
A
C
t
\-
u
F
L
L
0
C
E
U
A
U

A



A




6

Number of
A

A


C
t
H
A
A
A
U
H
0
A
U
A










»
LI ML SI
Data Pairs = 326


A
A
A
A A
A
It

A

U
A A


A


A
A







10 li! m Ifc IB
IlL (1UCHLS)
          Figure B2-65.  Leak rate  vs. line size  -  valves,  light  liquid/two phase  streams

-------
/
1 •
1! *
/
t
t
L -I »
0 /
G /
1 /
o -;: f
/
L t
\. 1
A -5 +
K t
t
l< /
A -U *
I *
L t
t
-5 +
/
t
t
-b +
t
t
-7 +

I'Uiiciaiii'ii vucii iv,iciit \i / w.uju
Number of Data Pairs = I8l
A A
A
A /> A
A A A A
A A A A H |1
A t H L A A |) A
A II t Ah IJAA 0
L. l\ l\ A A « A L A U A A
(L bLULlA C
U i( A A 11 A A A
A J A U b 0 U A A H C
I A A b A A
t 1' /I b A (!
A A C A A A A B
i\ 11 b A A U A
b A B
A A
1) A


n
i\






1 .^ 3 7 9 11 U 15 17 19 X 1 
-------
L  -l.U ^
U      /
b      /
1      t
n  -?.<« *
A  - .5. f>
I
L
               f A
             I,
L      /     A  <\  l\
L      t     A    »
A  -,\.() 4     ft
K      y       »
                    A  A
                                                A = 1  0«S. rt = OH    750   1UOU
                                                                                2750   3UUU
     Figure B2-67.   Leak  rate  vs.  pressure  -  valves,  heavy  liquid streams.

-------
                                          LLbtfJU: A = 1 UBSt H = 2 UnS,  tT»-.

                                          Correlation Coefficient (r) = 0.144
                                          Number of Data Pairs      = 33
   -1.2+                                                  A
        /                                    A             A
        t
        f
L  -1.0  +            A
0       /                       A
G       /                     A                           A
1       r                                    A
0  - 2 . '»  +              A        A                 AA
        f
L       «              n               A                    A
L •      t                  /<
ft  - A . 0  +                                            A
K     •  /                             _             A
        /                             "
H       /            A                 A           A    A
A  -3.6  4                                    A
T       /                      A                  A
L       /                 A
        /              A
   -M .?  4
        t
             ')    f,U    ii>U    illl)   ^^p   JHU   Jt,0   ^^u   ^00   bMU   bUO
                                            1 L*H'LKA1UKL (
  Figure  B2-68.    Leak  rate  vs.  temperature  -  valves,  heavy liquid  streams.

-------
   -ll.f, *

       r
       /
   -1 .i! +
       1
       1
       t
L  -1.0 +
0      /
G      x
1      /
   -,?.<« *
       r
L      r
L      /
-i.n  +
     t
     i

-3.6  +
     t
     1
     t
-•4.2  t
                                         LF.GI.Nli: A = 1 (JUS, b = ? Ubs«  LTt.
                                         Correlation Coefficient (r) = 0.046
                                         Number of Data Pairs      = 33
                                                        A
                                                        b
	f	
  .  9

 S1ZL I1NCMLS)
                                                                12
                                                                            15
18
   Figure B2-69.   Leak rate vs.  line size  -  valves,  heavy liquid  streams.

-------
                                      : n = i oos,  H = 2
                                Correlation Coefficient (r) = 0.22





L
0
G
1
0

L
t
a
K
M
-P- R
0° A
t
L







-D.fc » Number of Data Pairs = 18
-1.2 •
1 /'. L)
1
1
-l.fl *
•t
1
1 A
-•>.'« + A
r
/ A
»
- j . f) + »
1 n
1 A
;
-J.ft + n
r « A
•t
t
- '» . 2 4
y
- 'I . U +
y
y /\
-5.4 +






A


B

A



A




A






                                          (YEARS)
Figure B2-70.   Leak rate  vs. age  - valves, heavy liquid streams

-------
                                                :  A = 1 OHSt  0  = 2 U(jS.
                                          Correlation Coefficient (r) = -0.088
    O.n 4                                  Number of Data Pairs      = 59
       1      ft                  A       A
       7          «Al) A»I                      A
L  - 1 . 6 4            t  «   «
0      *          A A
fc      y                A        rt
1      /        «   A
U  -2.'» *                 A                             A
       /            A    A
L      *     /\A  tt    A n AU             A               A
L      *                                      A
A  -3.2 *      A     A   H
K      /        A   A  A
       1                                      A
H      *           A   A
A  -H.O +        A    A                         A
I      *        «   AA         A
L      ^                                      A
       /
   -'(.(I 4
       /
       1
       t
   -6.'» +

                         SOU    7bl)   iMnn   12SU   liOU   175U   PUUO   2^5U   2500   Z7bO   30UU

                                            PWE.SSUKL  
       Figure  B2-71.   Leak  rate  vs.  pressure  - valves,  hydrogen  service.

-------
                                                        LtbLNDI A = 1 UbS.  H =  2
                                                        Correlation Coefficient (r) =  0.130
                    i
                u.n  +                                    Number of Data Pairs       =  59
                                                                   A
                    i                                               t)
                    /             n  A n
                    7            A A       IIA      A             A
            L  - 1 . f> +            A          It    A       A
            0       y                A     • n
            b       /              A
            1       /         A                                    l\
            0  -<:•<* 4                 A A
                    1                     A A                  A
            L       <          A  AI.A A A I! A
            t       r                      A
            A-j.?+           'i/\       n               A
            K       /             A tt
I—i                   1                A
Ul           K   '    /         A     A
O           A  - 't. 0 +                      I)                       A
            T       t         AO
            L       *                      A

               -4.8 4
                                      ]t>U     :><4(l    J^U    <4UU    <4(IU    b6U    b<40    7i>U    6UO    HOO

                                                          ILMPLKAIU«t.( I- )
                 Figure B2-72.    Leak  rate vs.  temperature  - valves, hydrogen streams

-------
                                         LCGL«U:  A  = i ous,  u  = 2

                                         Correlation Coefficient (r) = 0.?88*
    d.n *                                 Number of Data Pairs       = 58
       t
       /
       /
   -O.B *
       /
       / il   A    />
       1     n    i\   n       0         •                           A
L  -1.6 «                    t                                    A
0      /                    A              A
G      ' 1         A                  A
1      *     A       A
0  -2.4 +     H
       1         H                  A
L      r
E      J
A  - j. ? +       A  A           A                                    A
K      *            A       A                                    A
       /                                  A
H      1         A   A
A-'|.0+AA                                            A
T      t A     A     A              A
L      /       A

   -4.8 +
       r
       *
       1
   -'j.6 *
                                 fl.UO   9.'S   11.50   13.?i  lti.00  16.75  18.50  20.25  22.00

                                           L1ML
       Figure  B2-73.   Leak  rate  vs.  line size -  valves,  hydrogen  streams.

-------
                                                                 A = 1 ObS, H = 2 OnS .  LT»-.
                                                         Correlation Coefficient (r) = -0.531*

                 u.o  4                                    Number of Data Pairs       = 33
                     i
                     I
                     I
                -ll.H  4              A
                                   l<
                                                       A
                                   l\                         H
             L  -l.b  4              L II
             U       *              A
             G       /
             it                                         (I
             0  -t'.U  +                                  A
                     /A                   A
             L       /              A                   A       A                                    A
             L       v                                        />
             A  -J.2  +                O
(_,•<*                A                        A
Ln                   /
K>           K       /                «                        A
             A  -'».n  4                                        «                                      A
             T       /                                        A                                      A
             f.       /                                        A
                     *
                 S.fi  +
                                                  -» --- t---i---« --- * --- » --- •»---» --- •»_--* --- 4 --- 4
                                                  IP   1L1   I'l  16  10  20  i!2  24   *6   i^O   ^0  52
                                                                 AbL (YEARS)
                        Figure  B2-74.   Leak  rate vs.  age  -  valves,  hydrogen  streams

-------
   -U.M
   -1.?
L  -J.fi 4
O      /
G      1
\      1
0  -,> .0 +

L      /
L      /
                                              : A = 1 UUS, H  r ^

                                        Correlation Coefficient (r) = 0.242
                                        Number of Data Pairs      = 30
_.!-_ ---- 4 ------ + ------ 4 ------ + --- --- 4 ------ 4 ------ 4 ------ 4-_ ---- 4 ------ 4
 U     1?')    ?MU    A6U   MRU   600    7?U    OtU    ^60   1U8U   1200
                                                                                      +--
                                                                                    JHMU
           Figure  B2-75.   Leak rate vs.  pressure -  open-ended  valves.

-------
                                              : ft =  i UBS, »  = i?
                                         Correlation Coefficient (r) = 0.242
                                         Number of Data Pairs      = 30
                             A
                           A
                                  «
                           A
                              n
                           A
1      *                  A  A
0  -2.0 «
       /                 b A A
L      r                   A  ft
L      1
A  -?_.<\ t                    A
K      /
       <
H      t
A  -2 .fl +                 A
T      /                    A
L      «                          A
       /
   -3.? *                   A A
       t                    A    A
       /                   A
       «                A   A
   -4.0 *

            -SO    U    'JO    100   1^0   2UU   *50   SOU

                                           ItMPLKATUKLt
         Figure B2-76.   Leak  rate  vs.  temperature  - open-ended valves

-------
                    t
                    i
                    /
               - 1 . 2 *
                    /
                    1
                    r
            L  -1.6 +
            U       /
                                                            >: A = 1  OUi>, t> = 2 Ut)s«  LIC<
                                                       Correlation Coefficient (r) = -0.078
                                                       Number of Data Pairs      = 22
             0  -i>.0 t
t_n
             A  -2.8 +
               -3.?
               -3.6 »
               -4.0 I
0.0
                                         0.8
1.6             2.4

   t S1ZL  I1NCHLSI
3.2
                                                                                                     4.0
                       Figure B2-77.   Leak  rate vs.  line size  - open-ended valves.

-------
 n
— u •
   -1.2
                                                   A = 1 OOS.  H =  2  OftS, LT>-.
                                            Correlation Coefficient (r) =  0.230
                                            Number of Data Pairs       =11
                                                       A
R
A  -2.H
F
L

   -3.2
   -3.f.
   -M . 0  •»

                   H   b    h   10  12  m  lb  111  20  
-------
  t
<> +
  /
  /
  (
1 *
/    A  /\  A
» A  A   /V
t   «  /I
*A  AALiA I)
              A
             H AH
                A
             A   1 1
             HC  '\  H
               Bb/\
                       A

                     A A

                      A A
 -1
 -3
t  fi>  I re A f. A (.till A A /\ U  A
«•      AACAb  UOA AbAll
    A (V tlA AtlttL C A A 0
    A tAA A  UHAA  AA b   A
    'rCftH AOAAHMAA AAft  A
»    AK(_AA A C H/>  bA
/    A  LHA AA« ARCb AA
/AHAA  ti AA  A A     AA
tt    AACAAb M/t-NU:  A =  1  ObSt H r 2
                                         Correlation Coefficient (r) = -0.012
                                         Number of Data Pairs      = 291
 -b
        A /v

        A
                                  bMO
                                         UOO

                                          HHtSSUHL O'SIb)
                                                               1*80
                                                                               IftOO
                                                                                      1760
Figure  B2-79.   Leak  rate  vs.  pressure  -  pump seals,  light  liquid  service.

-------
                                            A = 1 U"S. B = / 0(iS,
                                      Correlation Coefficient (r) = -0.012
*
* ;
r
1 +
t
t
t
u *
L /
0 t
(j t
1 -1 +
U 1
t
L /
L -t *
A *
I-1 K t
01
00 *
ft *
1 i
L *
-M +
I
*
-5 +
r
*
-f, *

Number of Data Pairs = 294
t\
n
A
A lit ' A
A A A A
AA IIAA A A A
A A Aft H A A A A A
li A CLU AAA A A
A CA UDLtJ AAABA A A A
A A Ob A C A AAA A A A
A A I'Ub AA A A A AA AA
ULAUALUA A AA A BA A
(1 A CCCL t!HA ftA « AAUA A A ft
A A AAUAU» A A A AAA A
A A U (, UAU A A H A A
All LAA A A A A A
A »• MlU A A A
AH A A A A
AABDA A A
HAA ft
H A
ft


A A
A


                      bll
                                          3UU
                                                                   600
                                                                             720
Figure  B2-80.   Leak rate vs.  temperature  - pump  seals, light liquid service

-------
01
                                                              A =  1 (IBSi  U = i!
                                                       Correlation Coefficient (r) = 0.062








L
U
t,
1
0

L
t
A
K

It
A
T
L







r
? *
t
|
*
r
i
(i *
x
/
*
-1 *
t
r
t
~i' *
/
*
<
-J *
1
t
1
-1 *
r
t
"j *
*
t
-b +
v>u>i^iaii i\ l\ A A u H n
<\ i> n A i\ i\ A n H
L b b A A U A
n H A n b A A A U
AHA A H R ft A
A A A f! HA C A t-
H A A A A A
A 11 AA B A A Ab
<> A A H H b
A A B U A A
A A U A
A H A A A
A A




A








A

A A
A

A A


A A


B

ft


A








                                    h.'j   9.b  12.b  Ib.b  l<>.5  21.b  ?i.p  ?7.b  30.5  -S3.5  Jf.5  3V.b
                                                             At,t_ (YEARS)
                     Figure B2-81.   Leak rate vs.  age  - pump seals,  light liquid  service

-------





L
0
b
1
U

L
L
A
K

K
A
T
I.








t
^ 4
t
1 * A
<
/ A
/ />
0 + U
r u
* h
< U
-1 * t
/A 1 M
/ ''
«L) ^
- < * L;
* n
XA t
t A 1
-3 + A
/ 1'
/ L
t l\
-i* *
t
t
1
- 5 * />
J
*
f


A



U
K
t
I!
K
L
•J
C
A
A












\j\J 1 1 C t
Number
A

t)

c
u
u
G
C
b
L
J
G
1
F
G
H
L
A
A








U1.IIMI IrUCI 1 1 V- 1 CM I,
of Data Pairs

A
A
A
H
A
C
L
1)
U
1)
L
L

A
B
b

A








\ 1 / ~ \J . \Jt_ 1
= 295
A
A
A
A

b
L
U
A
b

L
b
A










A





A

A
R

A H
A
A
A
A


A A
A

A

A



A



   0.8
                  1.4
2.0            2.6



   OIAMETLK  UNChLSI
3.2
3.8
Figure B2-82.   Leak rate vs.  diameter - pump  seals, light  liquid service.

-------
                                LEGEND: a = i oRs. R = ? CBS. ETC.
                                Correlation Coefficient (r) = -0.064
                                Number  of Data pairs = 281
'


1 4

1

I 0
0
G
1
0 -1

I
E
A -?
K

H
A -J
T 1
C 1
1
-n <
1
1

-5



-(, i

t
t
[
V
t
r A
A A
A
A A
A n
R C
A AC,
f. AC
A n
fi AD
A n
A A A

A
A
A
A
t A
^ A
(
1
[
v
1
I A

>
n IAIJO


A
A
A
C A
0
G
II
N
SA A
H
BPft
bS
OPA A
DP
BT
AK A
no
DA A
AAEA
OB
AA




A



-
3?oo Hono 6ino sono 9ftnn 11200 ueoo mion 16000 17600
                                     RPM
.Figure B2-83.   Leak rate  vs.  RPM  -  pump  seals, light liquid service

-------
                                               i; ft = 1  UbS, I* = 2  (JRS, LTC.
                                          Correlation Coefficient (r) =  0.097
                                          Number of Data Pairs      =  66
       +      i\        A A
       f        A       A A       A
       7                       AA     A
       7        UMA             A      A
   -1 .2 t     A All HI' AA A      A
L      i          I'  A    A             A
U      i      A  IV
b    .  f      A       A
1  -1 . (1 <      A                   ft     A
0      »                      AA
       /                            A  A A
L      /      A          A
L  -?.<4 f      A  A A
Ay                          n     A
K      r                    A      A
       r                  A
K  -3.0 +           A   A            A
A      -f                      A
T      /                           A
L      /          I'
   -3.6 4
                 II'1'     ^UU      3UO      MOO      bllU      bOO      fUO     800     1QU     1UUQ
  Figure  B2-84.   Leak  rate  vs.  pressure  - pump seals,  heavy liquid  service.

-------
                                               ):  A  = i DNS,  b  = z
                                          Correlation  Coefficient (r) = -0.099
        i                                  Number of Data Pairs      = 66
    u.n  4                                 n
        /                                          A

                                                                    A
                                     A          A      A             A
        1              A          /\                      l\ A  A
        '                   ft                            A       A
        *             A'»        A                       AAAA
   - I • ?  4            A »      A          A             0   IX b        A
L       /              l>              A                A              A
0       1              «                             «
G       >                               A    A
1  -l.H  «           A                     A                 A
0       /     A                                                           A
        1           >\  l\                           A
L       /                                 A                     A
L  - 2.4  4                            A                   A    A
A       /                           /.              fl
K       /                         A                                  A
        /      •                      A
H  - i. 0  •              '>          A                       A
A       /                                                                 A
I       /                                                       A
f-       I                                                                       A
   -i.f,  «
   -'•.H
             n   C.U    1?0   18U   2'lf    JOU   i60   '»;0   MIJO   b'lO   600   66>0   7?0   780   HMO

                                            1LMPLN/UUNL (  F)
Figure  B2-85.    Leak rate vs.  temperature  - pump  seals,  heavy  liquid service,

-------
 0 . II  I
                                              A r 1  (j«S. U ~  ?  0(;S, L T I- .
                                       Correlation Coefficient (r) =  0.237
                                       Number of Data Pairs      =  39
     1
     t
 0.6  *
     1
     1
                                          A A U
                                           A A
                                             A
                                             A
                                             A
-;>.'t  t
                                              A tit (YCARS)
                                                                                  Mfl
  Figure  B2-86.   Leak  rate  vs.  age  -  pump seals, heavy  liquid service.

-------
                          Ul LLLI\f,«Ul AM   l_tt>k-NU:  A = 1 0«S . H = 'I U|)S, LT*-i
                                         Correlation Coefficient (r) = 0.128
li.O +
1
t
1
-u ,(i +
1 A
/
* V.
-1.2 » "
L *
0 /
G 1 A
1 -l.H »
u r
r
L /
L - ,> . 4 +
A /
K /.
/
K - j . 0 + A
A t
r * «
L *
-i.fi <•
y
y
-«.«? +
•t
Number of Data Pairs = 63
A
A

A
A C
A A
A A
L A
U C A
MA A
A A
A
A b
A A
a A
0
b A
b
A A
A
b
A

A


A
A

          u.t    U.H    \..?   i.b    l.B    *.l    2.M    2.'   3.0    3.3    3.*    3.9

                                          U1AHEILK
Figure B2-87.   Leak rate  vs.  diameter  -  pump  seals,  heavy liquid  service.

-------
                               LEGEND: A = i pPs. B=2 ons. ETC.
                               Correlation Coefficient >0.182








L
0
G
1
0

L
E
A
K

R
A
T
E








0.0 *
/
t
1
-n.fr 4
1
t
i
-1.2 •
t
1
t
-1 .8 «
,
,
t
-?.u *
t
t
1
-J. 0 «
/
t
1
-J.6 «
*
-4.2 <
f
-n.fl *


Number or Data Frs.=6U A
A

A
B AA
A A AA
PA
A AOC
A ACS
A A AA
A
A A
AB
AA
AH
A A
B A
AA
A
A
A A A
A
A
A

A
A


r> too ADO 1?00 1600 ?000 2M<10 2RnO 1200 JfOO UOOO UMOn itBOO
RPh
Figure  B2-88.   Leak rate  vs.  RPM  -  pump seals,  heavy  liquid service

-------
      l.f,
                                                : A =  1 OUS. II - i VJpS«
                                           Correlation Coefficient (r) = 0.346
                                           Number of Data Pairs      = 102
    II. I
L
0
('
1  - 0 « '
0
L
L
A
K

H
A
(
L
         1
         I
     -1.6 +
         r
         t
         i
                    A
                  A   A A
                    t   (
              A/I   A A
                   A
                              HA
                              A C
                                 A Ll
                              A    A
                                U  A
                              A    A
                              0  1
A  A U
 A AL1
b  OA
A  C
AA
   AA
H  HA
 n H
   A
   A
   A
                                                       A
                                                       b
     -'t.U
     -4 .H
                   'in
                                   IfaO   2UU
                                            i! 4 r   2 P u

                                            KKLSSUKI.
                                                              jr.U   MOO   MMO   '400
                                                                                         bfaU
Figure B2-89.   Leak rate vs.  pressure  -  compressor seals, hydrocarbon  service

-------
                                           Lf.bt.NO:  l\ = 1 (Hi Si U = if  UnS, LTL.
                                           Correlation Coefficient (r) =  0.218
                                           Number of Data Pairs      =102
   I  -II.M  i




M
&
CO

L
L
A
K
K
A
I
/
- l . r, t
/
/
- ,' . M t
/
/
t\ A
A A
13 H
A A
A
A U
A A b
b
A




A
l\
U

A
/(
0

C

A

r.



A L
« A L
ii
U
A A A
A
H
U

A
A
A
A
     - .1 . ,?  «
     -'1.0
     -'I.M  4
                           GO
                                 BU
                                      l(JU
                                             tLMPL"AT(J«t I  h )
                                                                           2MO
Figure B2-90.   Leak rate  vs.  temperature -  compressor  seals,  hydrocarbon  service

-------
                                          LLt.MIU:  fl  = 1 OUS,  b  =
                                          Correlation  Coefficient (r)  = 0.105
                                          Number of Data Pairs       = 88
    0 . -1  +                                                M
        1'A                                       A
        t                                              AC
        1                                                I.              A     A A
    0.0  +      C A              Ij              M      A A                H
L/C              A«                         t)              tiA
0       /      L<                              /I        A A                     A          A
G       *      A                              AAAA                             A
1  -U.fl  +      I'               A                       B A                   A A
0       t               A                 A              A                   b
        /                      ALL                       A         b
L       /      A            A   A              A
L  -1.6  *                      A              A
A       t                                     A          A

        1                      A
K  -2.<*  +      '                               A
A/                                     A
I       t        A
E       *
   -3.2  t                                                                              A
   -<*.'!  +
        /

              I    j   5   7   «   11  IS  15   17  19  21  iM  *5  i>7   ^9  31  -»3  35  37  3*  <«1
                                                  AliL (YEARS)
  Figure  B2-91.   Leak rate vs.  age -  compressor seals,  hydrocarbon  service

-------
                                          lL(7t_nl>: A - 1  ObS. H =
                                          Correlation Coefficient (r)  = 0.278
                                          Number of Data Pairs      = 88
1
1
U.« t
r
r
/
u.o +
L /A
0 1
b r
1 -0.0 <
u *
7
L *
t -1 .IS t
A 1 A
K *
/
rt -2.1* »
A /
f /
L /
-3.2 *
r
i
1
-u.o +
*
- 't . a -i



/•. A
A C
« r, A <-
b A A B
L (1 B
CCA U
C |! A n
Li 1) A A
L A
H 1)
L1 . ft
A A
A

A
(i
A A



n





           I . '.>      f.H      ?.t>      3.0       J.t>       a. U      4.5      5.0       b.5

                                           U1«MLILK I1NCHLS)
Figure B2-9Z   Leak  rate  vs. diameter - compressor seals,  hydrocarbon  service

-------
                                         l.LbLNl):  A  - 1 OMS,  H = i! OpS.
                                         Correlation  Coefficient (r) = -0.087
                                         Number of Data Pairs      = 44
    u .rt
L
U
b
1
u

L
L
A
K
    0 • 0
-u-n
                                                                               b
                                                                               A
                                                                               b
   -'». U
              ?"   i!^   it)   JT>   HO   Hb   30   55   bo   feb   /O   /b   bU   BO   9f)   ^t)   100

                                               LUAU  (k)
  Figure  B2-93.   Leak  rate  vs.  load  -  compressor seals,  hydrocarbon  service

-------
                U.8
               -1.8
                                                             A  = 1 i)l>i.  b) = V. U()i>, tT>-.
                                                      Correlation  Coefficient (r) = -0.012
                                                      Number of Data Pairs      = 70
NO
L
0

1
U

L
L
ft
K

K
A
I
L
                u.o
               - 1 . f, «
                    y
                    /
                    /
u
G
L
L
I)
I)
U
M
c
A
A
                                                              10
                                                                      1?
                                                                                     Jf.
                                                                                              in
         Figure B2-94.   Leak  rate vs. stroke  length - compressor  seals,  hydrocarbon service

-------
     t
 i.6  4
     1
     1
     t
 (1.1  «•
     t
                                                : A = 1 UB.S. H = 2
                                           Correlation Coefficient (r) =  -0.139
                                           Number of Data Pairs      =  42
L
0
b
1
0

L
t
A
K

K
A
T
t
 d.O  *  'i.lll fl
     *   1:11
     f   /m
     1    t\         A

     *   II    A         A
     /   i:  />.
     /   A/»
•; ."» *

    r

-5.? *

    f
                                                           fall
                                                LAHAl.ll Y (W SCFO)
                                                                        --*"
                                                                        BO
-*_--
5000
Figure  B2-95.   Leak  rate  vs,  capacity  - compressor  seals,  hydrocarbon  service

-------
     1.6  +
         1
         1
         }
     (I . fl  +
       7
    0.0 +
L      /
0      t
b      J
1  - U .)) »
0      y
                                     A
                                   tt A
                                     C
                                     A
                                   n A
                                     B
                                     A
                                                 A = 1  0"S. B = 2 OO5'  f-T»-.
                                          Correlation Coefficient (r) = -0.143
                                          Number of Data Pairs      = 92
                                              H b
« U   A
  BAA
  A  A
  CA
  B
  B  L
A A  A
    A
  A  A
                                          A

                                          AA
                                                                                          A  A

                                                                                           A
    -<4 . 0
     » . n 4
        *
                      1.0
                                                    MKM
               3.0
                                                                             3.6
• - -f - "
3.B
Figure B2-96.   Leak  rate  vs.  log 10  RPM  -  compressor seals, hydrocarbon  service

-------
                                               :  A  = i cms,  u =
                                          Correlation  Coefficient (r) = 0.398*
        /                                  Number of Data Pairs      = 62
    o .n  +                  A
        t
        t
        1                           n
   - ti . f.  4             ft                             A
        /                  AA                                                 A
        r                  b                                                  A
        /AHt)                        A
   - L .2  «                 A bA
L                          n
U       /
G       /     A             A
1-1.8<         A          U    A
U       /                 A
        *                    A
L       /               «  H      ' C
L-2.M4             AAAAA
A       <               b  A  A
K       y                 A
        *               LA
l<  -.1.0  +               n    n   «
ft       /               "         b
I       /
L       /                   A
   -J.b  +
        /
        t               U
        -t     A
                  .sou    boo    VOD   ii?no   isuo   IBOU   iJiou   siou   ^7ou   aouo   SSUQ
Figure B2-97.   Leak rate vs.  pressure  - compressor  seals,  hydrogen  service

-------
CT>
              ll . II 4
                                                   LLbt-NL>: A =  1 (JHS.  'I r 2 UflS.
                                                   Correlation Coefficient (r) = 0.311
                                                   Number of Data Pairs      = 59
1
t
- I) . A 4 A
/ A
;
•> rt
-1 .? + « n b
L / A
0 f U
G » A A
1 - 1 . M < A A t)
(1 / A
r A
L > C A »
L -.?.'» f AA A A
A ( B A
K f
t A C
n - .5 . n i « n A A
A / 0 A .
\ 1
L / » '
-i.6 <
y
/ b
,
- U . 2 « A
*
-'I.H ^
y
'IM r,'l t<0 96 1.1.2 12O IM'I IbU 1 7f, 192 ^
lLMHtr
-------
                                           A = 1 OHS, H =  * ORS, FTC.
                                    Correlation Coefficient (r) = 0.052







L
0
b
1
0

L
t
A

R
A
T
t




/
o.n +
-0.6+ i\
t ft
7 ft
/ Ob
-1.2 +
/
t It
1
-1.8 * A
1
t
t LJ
-2.4 * A
1 C
1
- j.U * A
/ A
t
1
-0.6 +
1 T'
/ A
-.el
Number of Data Pairs = 46


A

A
A


A
A P

A
C
A C

A
B
B

A




10  11  12  13  14  Ib  lb  17  Ifl  19  20

             AOL (YEARS)
                                                                       22
Figure B2-99.   Leak rate  vs. age  - compressor  seals,  hydrogen service.

-------
                                                              ft = 1 OUSt « = 2 OftSi LTV-
                                                       Correlation Coefficient (r) = -0.034
                                                       Number of Data Pairs      = 59
OO
L
o
G
1
II

L
f.
A
K

K
A
T
f.
    /
    /
    /
1.?  4
    y
    /
    i
l.n  <
    »
    r
i.O  «
    r
                                                    Ab
                                                     A
                                                    A A A
                                      CA
                                      B
                                    A  (3
                                                       A/\
                                                       BA
                                                            n
                                                            A
                                                            A
                                                            A
                "4.2
                •4. n  +
                     i
             --»
              in')
                                                +
                                               juo
                                                       <4nu
                                                               boo
                                                                                rou
                                                                                       sou
               Figure  B2-100.   Leak rate vs.  RPM  - compressor  seals,  hydrogen service

-------
                                           i: A = 1  ObS. »3 = ^
                                      Correlation Coefficient (r) = 0.218
' Number of Data Pairs - 34
0.0 »
t
-11.6 *
t
t b
-1.2 »
L i
(J 1
ti > A
1 -1.8+
U <
/ A
L / /» A
L -2.t * A A A
A / r A
K < a
* C A
K -S.I) + P A A A
A 1 A
T /
L /
-3.6 4
/ A
-1.2 + A
y
- q . « +










A


C
A A




U







                                           i6     q?     MO
Figure  B2-101.   Leak rate vs. capacity - compressor  seals, hydrogen service.

-------
                                               A = J OhS. U - i!  URS. Ell,
                                        Correlation Coefficient (r) =0.343
                                        Number of Data Pairs      =27
00
O
L
0
G
1
0

L
El
A
K
   -L .6 •»
       1

       t
   •I.? 4
              • 1 . « 4           A
                  1     A
                  I     A
                  /     A      L
              • e . '< 4     A      H
            />
            A     A
                  H
                                                    J.i;5   3.50   3.7

                                                    Ul«MLTtK (1NCMLSI
                                                           t.OO
                                                                                   i.UU
Figure B2-102.   Leak  rate vs.  diameter  -  compressor  seals,  hydrogen service

-------
                                                        A = 1 013S, H = 2
                                                 Correlation Coefficient (r) = 0.099
00










L
O
t,
1
I)

L
L
A
K

K
A
1
L








/ Number of Data Pairs = 32
U • G +
1
I
I
-u.f> +
•t
1
t b
-1.? +
/
/
/ (\
- 1 . H + A
/
/
' C
-?."» + A A
/
t
t
-J.O + A
r B
t
t
-i.r, +
y
\
-'t.i! *
r
-
-------
                                         LC {i«-Mll:  A = 1  OH.St H =
                                         Correlation Coefficient (r) = -0.074







L
(J
G
1
ij

L
L
A
(-• K
00
CO K
A
T
L




') . n +
7
- J.*i *
/
/
/
-1 .2 » A
i
t
1 I*
-1.0+ A
i A
/
/ A
- J ."* +
/
/
t
-3.0 +
1
i
<
-i.f, »
'

:• «? M fa
Number of Data Pairs = 54
A

A
t
L
() b
C
A
b
A
C

A
A U
A A « A A
A L
A
A
A A A
t

0

1)
A
B ID 12 1<« 16 18 2U
Figure  B2-104.  Leak rate vs.  stroke length -  compressor  seals,  hydrogen  service

-------
                                                              i:  A  =  i cms, u = *
                                                         Correlation  Coefficient (r) = 0.072
                                                         Number of Data Pairs      = 63
         L          ;

         0     -0..1  »                  A            A
         G          *                       «
                    /    i\
         I          '                                  «     .
         0          *   A                                   A
               -l.o  +                    A                         A
         y          *                        A     A

         E
         A          '                    U    A
         .,  •   -2.U  +        f>        A      AAA   A AA A
                    /    \\        «    A         A
         p          t             l\          A    A
         K          *                    AA   A      0
         A          *        A«   «     HA
£!       T     -3.2  »                A  A      A    B      A
S       F          *                                   n
         n          *        A       A"
                    *                                     A
                    t
               •4.13  +


                    <
                    t
                    t
               -5.6  +
                               i'ju      2uu      iou     nno      son     6uu      ?uo     eoo      yuo     luuu

                                                          KKtSSUKE
                               Figure B2-105 .  Leak  rate  vs.  pressure  -  flanges.

-------
                                                       Correlation Coefficient (r) = 0.021
                u.n  f                                   Number of Data Pairs       = 63
               - U • 0  *                               '* A
                    ;                        A
                    1                       l\                  A
                    r                n
                    7                                          A
            L  - 1 . ^  «•                »        n
            0       /                   A                      A
            tj       /                  A  A.A
            1       r
            U       /                         UA
               - J . '»  »                  A A     A «     A      A     B
            L       /                A           A           A    A
            L       t.                AAA                      A
            A       /                  AA     B                 A   A
I— >           K       /                (t     A         A            no
OO              -3.^«                AAA                    B
*"   '        R       /                  A
            A       t              I)             A
            T       *                                 A
            L
                    I
               -U.3  +
                    i
                    t
                                                                                        + __-_.-«. --- --- 4
                                                                                       /20    SOU    bBO
                                                         ILMPLHAIllKH I- )
                             Figure B2-106.  Leak rate  vs.  temperature  - flanges.

-------
                                    : A - i until  n  = 2 URS» tit.
                              Correlation Coefficient = -0.180
'J-n » Number of Data Pairs = 39
/ A
i
- 11 . H 4- A A
/ A
/ l\
t
/ A
L - 1 . ft * A
0 / A
G / «
0 X A A
-;'.'!+ A /\ A
L 1
t 1 A
A / MA
K / A A
t-1 -j.? + M
00 H 1 A
01 A / A A
r /
L /
"4.0 +
'
r
» A
-M.U +
'
<
X






A

A

A

B
A

n
A
n



A



A


n     10     ?u     ju     'in     t>u    bii     in     n u     -3u     iuo    nn

                                      AOL (YEARS)
        Figure B2-107.  Leak  rate, vs.  age  -  flanges.

-------
                                                             >: A = i uusi  b =  ?  UBS« tio
                                                        Correlation Coefficient (r) =  0.336*
                                                        Number of Data Pairs       =  60
        L
        0
        G
                                 A                           A
        T     - 1 . £, +    •      l\                                   A

        0         *  "                n
        u         *       A                                 A            •  fl

        L         *                       ft                 A
        E     -2.1 +     A II  «   H              A                               A
        A         /    A  A           «                                         A
        ^         *       ,v  H   n
        1^         t     A        A     I)    A    A
                  /     A A           H                  A
        R     -3.<- *       A  H It  A         A
£      A
g^      rr,         t:     l\    H                 A
        _         '                       A
                  .4	-*-	---4.
                   0           b          1')
                                                        LlNt. Sl/Tt (1MCMLSI
                              Figure  B2-108.   Leak rate  vs.  line size  - flanges

-------
                                                             : A = i  obSi b = «> or;i>.  t.
                                                        Correlation Coefficient (r) = 0.045
                 l.ft  <                                   Number of Data Pairs      = 17
                    r                 A
                    /                     A  A
                    /                                A

             L   0 . U <                                    A
             1       /                     A
             0       ,     rt      A
                - U.«  <           AC      A
             L       .'            U
             t   .    /    A       A        A               A
             A       r            A        A
             K       r         A
I-"              "i*ft  *
00           K       r            A  A
••J           A       /    A    A   (V                       A
             T       /            A                          A
             I.       1    n       U              A A
                                                                 A
                                                             A
                              .- +	+	«	f	_4	f	_- +	+	+	+ ..
                               tj
-------
                                                         LFbt-ND: A = 1 Ot>S.  U  =  i!  OR^ < t T<-.
                                                         Correlation Coefficient (r)  =  0.096
                 !•*•• *                                    Number of Data Pairs       =  47
                     1
                     t
                     1
                     r
                 I) . " 4
                     i                                               A
                     /                       l\     l\
                                          n
                     1
             L   II . (I *                    A
             0       *
             0       /                                               A
             1       /                                            A
             0       /                A                H
                -j.O •»             A  b        AA                       A
             L       *             A  A
             L       *             A          A        A          A
             A       f                A                           A
             K       r                                                      A
                -1 .(, *
(_i           H       7                    A  A  A
OO           A       /                A              A     A                 A
00           r       r                A      A
             t.       /             A  A   A      A
                -C'.4 4
                     /
                     /
                     1                MA
                     r                    A
                -3.2 *                       A
                     ?                             A
                -'(.0  4

                        ('       t>U       lllll      1DU      ?PU      2'jU      ^UU      4bU      MOD

                                                           ILMPLHATUKL (  F|
                          Figure  B2-110.  Leak  rate vs.  temperature  - relief valves

-------
                                                              j; A =  1  ObS, 0 = 2 Ults» LTt.
                                                         Correlation Coefficient  (r) = -0.075
                  i.b i                                   Number of Data Pairs       = 51
                  n. >» *
              L
              o
              b
              1       /
              (i       r                                      u A       A
                 -;|.H <                        A             I- A       A
              L       r                        ft             rt
              L       /                             BAA
              A       r              A                       «
              K       t
                 -1 .£> +                               A         C
,_,             K       *                        A                       A
CO             A       /                             A         O A
VD             r       /                               A       «
              C       t              «              P    A    A A
                      ^
                      I                                      0 A
                      /                                      «
                      +                                        A
                      t
                 -u.n +

                                    0.8            3.8            6.8            9.8           12.8

                                                                SIZL llNCMLSt
                           Figure  B2-111.  Leak rate  vs.  line size  - relief valves

-------
 u. n
                                                 ): A - 1 l.'Hh,  I)  r  ? uilSt L11-.
                                            Correlation Coefficient (r) = -0.408*
                                            Number of Data Pairs       = 40
L
0
G
1
0

L
L
A
K

K
A
T
L
 0.0  +
     t
     t
     •t
     t
-0.8  +
     1
     t
     1
     t
-1.6  •»
-,>.<*
-* . n
-14." 4
              M)
                    bb
                       80
                                     Hi.)
                                                 1'tU
                                                         1/0   J85

                                                      (  F »
                                                                    2UO
215   23U
                                                                                        2^5
              Figure  B2-112.  Leak rate  vs.  temperature -  drains.

-------
                                             I Mil-Nil: A = 1 (JUS.  U  =  ;> DpS. t T«- ,
                                             Correlation Coefficient (r) = -0.191
                                             Number of Data Pairs       = 13
- 1' . « +
-i.i!
- 'I . C-  »
                                       1"P(>   Ik'JH   IbdU    1 ;'-ll   ;>inii|   i!iT)U    2500

                                                "Kf.A in nit j;i  (RECTANGULAR DRAINS ONLY)
                                                                                                 3UUU
                     Figure  B2-113 .   Leak  rate  vs.  area -  drains.

-------
                                                            i.iijtrju:  A = i  oi'Si  M = 2 IT.^'
                                                            Correlation Coefficient (r) = -0.039
                  ii.t  *.                                      Number of Data Pairs       = 36
                      1               A
              L   -1). 8  +
              0        I                           A        A
              G        7                              A
              I                                A                 A
              or                     />A
                 -1 .f>  «•                              L)
              L        X                     A     A  A      A
              L        /                              A
              ft        /                     A  A
              K        r                           A
^—i                - i! • •»  +                              A            A
VO             H        /                     A
N5             A        ,                              
-------
 B2-115  through  B2-120  are  schematic  plots  for valves  describing
 the  variables block/control,  in  line/open-ended,  valve  type,
 stem movement,  vibration,  and manufacturer.  On any particular
 plot,  each level of  the variable is  represented by a  "box  and
 whisker"  figure that identifies  the  mean,  median, upper and
 lower  quartile,  and  range  of  values.   The  number  of  leaking
 sources is also listed.  Taking  sample size  into  consideration,
 there  appears  to be  no significant  difference  in  leak rate
•between the levels  of  any  of  the variables.

           Figures B2-121 through B2-128 describe  the  discrete
 variables for  pumps:  pump type, single/double  seal,  in service/
 out  of service,  quench,  inboard/outboard,  lubricant,  attitude,
 and  manufacturer.  Differences  can  be  seen between single  and
 double  seals for heavy liquid streams  (Figure B2-122);  however,
 the  small sample sizes prevent any  firm conclusions from being
 drawn.

           Discrete variables  for flanges are displayed  in
 Figures B2-129  through B2-133.   Small  differences can be seen
 between the leak rates of  flange types,  special service, and
 vibration.   Because  of small  sample  sizes, these  differences
 cannot  be considered significant.

           Figures B2-134 through B2-139 describe  discrete
 variables for compressors;  Figures  B2-140  and B2-141, discrete
 variables for drains;  and  Figure B2-142, single or double
 configuration for relief valves.  A  slight difference between
 variables appears in Figure B2-140  for drains where drains
 without visible  vapor  emissions  tend to have higher leak rates
 than those with  visible  vapor.
                              193

-------
- 0 . i
 -7.00
                 0
                N=108
                        N'50
                                N=268

                        * .-- +
                        <   *
                        <   <
                        >   «
                                                <   <     *   <
                                                         N=8
                                                                 NO9
                  Gas/Vapor
                Block    Control
 Light Liquids
Block    Contr
 Heavy Liquids
Block    Control
   Hydrogen
Block     Control
                                                                                     KEY
                                                                                               Drtjciied »dlue (1 in ?CO)
                                                                                                Upper qudrt1Ic
                                                                                                Moan
                                                                                                Median


                                                                                                Lower quartiIc
                                                                                             0  Outside vdlue (1  in ?0)
                                                                                             0
    Figure  B2-115.    Schematic plot  for valves by  block/control  variable.

-------
(-n
1.0-1



•0.333



T
^
C, -1.67

*
5


-,
£
£
g - 3 , UO
c
5
z
o
5T
_j
•* 33






-5.67
— 7.00

0
0
3
-
f - — *
*
2 <
* 	 * t
t .--+ * ---
t t
t t »_+-•
--- t
-.. .-- +---* y
* -»- < t •-*-






+ . — + t t
+ --- +

0
P
0
o
*MS7
1
" * 0 N=60
•
N-330
Gas/Vapor Light Liquids Heavy Liquids Hydrogen Service
In End of In End of In End of In End of
L 1 rw Line L 1 ne L 1 ne Line L 1 ne L 1 ne Line


•



KEY

* Holdciied vd'-uf (1 in

1
|

r--- -. 'Jpper gi,»rt • i e
t Mean
.
c

. irt : )*»
" [ rfL
]
!
0 OutsiJc v=lue (1 m
o









           Figure B2-116.   Schematic plot for valves by in line/end of line variable,

-------
 l.llf
-5.67
-7.JO
                              N=23
 0
 0
 0

 0
 c

N-398
                            Butterfly
                                         Gate
                                                    Globe
                                                                NO3
                                                               Plug
                                                                                      *  Detached value (1 in ?00)
                                                                                         Upper quartilc

                                                                                         Mean

                                                                                         Median


                                                                                         Lower quartile
                                                                                      0 Outside vdlue (1 in ?0)
                                                                                      0
    Figure B2-117 .    Schematic plot  for valves  by  valve  type  variable.

-------
- 0 . 3 .i .1
 -1.6T
 •5.00
 -i.bT
 -7.(10
                                    N'42
                                  Combination
                                               Stem Movement

                                                 In/Dut
                                                               N=57
                                                               Rotation
                                                                                 KEY
                                                                                         •  Detachpd va''uc (1 in ?00)
                                                                                            Upper qusrtilc

                                                                                            Mean

                                                                                            Mrdidn


                                                                                            Lower qujrti1e
                                                                                         0  Outiide vaKic (1 in ?n)
                                                                                         0
  Figure  B2-118 .   Schematic  plot  for valves  by stem  movement variable.

-------
CO
J . JO


-n.jjj





•£•
£ -1.67
—
a
£
Z
c
5

i
0
ST
3


-t . 3J




-5.67
.7 . nn
0 0 c •
0 0 o
0 < o
<
*
»
t
t
t
t
«
- --+ 4 	 	
t t
t - + - 	
X
— * • <* • . .
' i *
X --- +
*
*—
*

#
n
0
0 /
t
N-77 N-125 * N=29
n o •
t








.
—
* Der.^chf»d volue (1 in 200)



- - i Upper qu-^rti le
* Mean

L- -J Lower quarti le

0 Outside value (1 In 20)
0









                                      High
                                              Medium
                                                       Slight
                                                                 None
                  Figure B2-119 .   Schematic plot  for valves  by  vibration  variable.

-------
-1.61
-s.00
-".33
-5.67
-7.00
            '  t   t   t
<   >    I  »
f	•    *  r
 (     >  *
       t... *
             N-88     N-94
                          N-16
                                N-IJ
                                             *.-.»   *   <
                                             »  r   *   t
                                             it   t   l
                                              00
                                                                                    Detacher vii'ue El in L'CD)
                                                                                    .  Lpyer lUdrli

                                                                                   * '  ,'tfMH
                                                                                   0 Outside v.lur { ". in -*0)
                                              6     7
 Figure  B2-120.   Schematic plot  for  valves  by  manufacturer variable.

-------
0.067

~ -0.667
£
^
3

91 -2.00
I
o
f
-5-35

-M.67

~fc • 00
1
u
0
0
*
*
0
c
*
t *. —
---* / * *
* #-.-* --. ---#
^ t t ---+ ^
/ * * * * * .--
t t t * t * t *
X < * / X ---*
t f t t f
1
t
0


0
N=l7 N-18
0 0
N=48
•
Ltght Liquids Heavy Liquids
CH CP RP CM CP RP

KEY
• Oetachpd valur (1 in 200)
r- --. Upper quartile
* Mean
Mp/J i a n

L- -J Lower qudrtiiB
0 Outside value (1 in 20)
0



CM • Centrifugal Mechanical
CP .» Centrifugal Packed
RP » Reciprocating Packed

                            Punp Type
Figure B2-121 .   Schematic plot for pumps by pump  type  variable

-------



0.667


-0.667



~

•^
' a
• —
3 -2. OP
oc
J
3
N5 £
O S
I—1 *
g
£ -3.55
o
pj°
s





0
0
0




--- +--- t
t 0 ---

* ---
-*- t

* t
t t

t + «
* *"""
t t
t
---* *
* 0
0 *
0 *
0
N-9

N-38 0
"-231 N-54

Light Liquids Heavy Liquids
Doubl e SI ngl e Doubl e Single
Seal Seal Scal Seal




•
KEY
* Detached value (1 in 700)



p- --. Upper quartile
+ Mean

	 Median


L- -J Lower quartile


0 Outside value (1 in 20)
0












Figure B2-122 .   Schematic plot for pumps by seal variable

-------
              I
ro
O
                 -3.J1
                                             t
                                            +--•
                                                          *
                                                        + --•
                                                                      N=3
                                                                                                      KEY
                                                                                                             • Detached value (1 in 200)
                                                                                                                Upper quartile


                                                                                                                Mean


                                                                                                                Median




                                                                                                                Lower quartile
                                                      0 Outside value (1 in 20)

                                                      0
                                    Light Liquids


                                     In    Out of

                                   Service  Service
     Heavy Liquids


  In           Out of

Service        Service
                        Figure  B2-123.   Schematic  plot of  pumps by  service  variable

-------
   O.C.6T
  -O.fe&T
3
a
     00
o
3
   "*»• 67
                                tf«tf
                                        »  #
                         H-113     1*49
                                          o
                                         H-S4
                                                        * » t
                                                        t   *
                                                        t   t
                                                         *
                                                         N-H
        H-2
                                                                                            •  Detached value (1 in 200)
                                       Upper njartile
                                       Mean
                                       Median

                                       Loner quart He
                                    0  Outside value (1 in 20)
                                    0
                              Light Liquids
                         None     Oil      Mater
     Heavy Liquid!
tent      Oil      Niter
        Figure  B2-124.   Schematic  plot  for pumps  by  quench  liquid variable.

-------
o

O.fcfrT



-O.fafc?
*— .
L.
f
•—
_.
•2

_j ™ ? • 0 0
 <
* *„— <
^ ^ _-_ ^
« »
t * ---
» »
»-«. » » «

« « *
» .... ...»
» * <
»-.. * --- »
» <
» <
N'9


N-41
<
»
"•I9S H-JS

•


KEY
* Detached value (t in 200)




,-- --, Upper qudrtile
t ; Mean

	 -j Median
i
L- -^ Lower quartilc


0 Outside value (1 in 20)









                                     light Liquids
                                   Inboard     Outboard
  Heavy Liquid]
In&oird   Outboard
             Figure  B2-125.   Schematic  plot  of pumps by  inboard/outboard  seal  variable

-------
                 0.667
                -0.667
                 -j.no
o
                 -S.13
                 -6.00
C
0
< <
•
0
*
t
t 1
»---» t t
t t »..-« s
t t t t
* t t
t t *---
-».« * t
» -..« «
t > t it

t * « — -«
< »
...» /
*
I
1
<
0
*
« N-25
0
•
•
•
y
r
•t
»
t
<
t
t t 1
r t
t t
1 >
t « •
/ » >
---» x *
.-- « .-•» >
.-_ .... > t
t *
» » <
+ « <

» t
> *
/
r
<
--- t
t
t
o •
»
N-23 T
»
0 t
t
t
H»13 t
*
*
»
<
»
»
<
«
*
                                                                                                             •  Detached valjc (1 in TOO)
                                                                                                                Upper quartile
                                                                                                                tcan
                                                                                                                MedlJn

                                                                                                                Lo^er quartllc
                                                                                                             C  Outside value (1 in 70}
                                                                                                             C
                                            Light Liquids
                                      Hydrocarbon  Product    Water
      Heavy Eiquids
Hydrocarbon  Product
                                                                                        Water
                        Figure  B2-126.    Schematic  plot for  pumps  by  lubricant  variable.

-------


O.of.7


•£ -0.667
£
3
s
•£
« -P. 00
s
1
^^ 2
o> o
~*
-J.33




-fc.TP
P
0
0
t
t
t
t
t *
--. t t
* t
*- --
-*. .-- + *
* 4
t t
* t
t t * •--.
t t
t *
t
t
t
t
1
t
t
0 N-59 *
0 N'« I —
i
"
'






















ttjr
• Detached value (1 in 200)


.-- --. Upper quartile
+ Mean
	 Median

L_ _J Lower quartile
0 Outside value {1 in 20)
0









                     Light Liquids
                 HoHtontal   Vertical
   Heavy Liquids
Horizontal    Vertical
Figure  B2-127 .   Schematic plot of pumps  by attitude variable.

-------
1X3
               O.fcfc?
               -3.33
                -b.OO
t 0
» t 1
t t t t
t t t t t
t 1 t t t


t
t

t t
t t
t t
*-* t * t
t t *-* t t

ftf *„• •-* f f
"-" *** * * * *
*


+

*. *
* t

t t t
* ! '
                          ttittttit
                                                      X
                                                      X
                                                      X

                                                      N=9
                           »  M-29
                                  "'37 N'Z6 "'M
                                              «•?'
                                                   o
                                                  N-2*
* -
t
t
»-
*+
t













* «-«
< < <
« » »
t t t
** t t
t t»t
t •-•
-« < «
t X
*" *
•« »
* •-
* <
X •-
X >
> >
-• »
> »
» 0
* --,








jl
1
•


«

k-



***

N=3







                                                                 »-5
                                                                                 N'18
                                     Light Liquids
                                                                        Heavy Liquids
                                                                                               *  err
                                                                                                           Detached va'uj (1 in 2K]
                                                                                                          -i  Upppr quart i It:
                                                                                                         » '  Mean
                                                                                                            I.owpr quarl^ 1 e
0 Outside volUP (1 i* 2C
0
                                                      Nanufacturers
                   Figure  B2-128 .    Schematic  plot  for  pumps by  manufacturer  variable.

-------


-O.Dfe?


1 "l"73
£»
*""*
S
s
«»
01

8 *? » 60
2
ffl
e
i
./2
Isj S
0 3
(»



-*.ss


* *


p

w"

*
--*»

*
« ---
• »-•
1
1
---•,




N-'a



Hjn9e Type
rr m



f

}
V
t
I
*

-»«»
^
«
*
< .*•»
* 1
' *
*
---«
~4>*»

1*12

NO
RF IN




• (touched value !1 in 200)


, — , Uiiper quirtile
* Hean



^•- -*• Uwer qudrtUe



0 Oulside »a1ue [1 In ?0|
0



FF » FUt Faced
FH = Floating Head Tube Sdeet
RF » Raised Face
TH « Threaded

Figure B2-129.  Schematic plot of flanges by flange type variable

-------
                 0.0
NJ
O
                -0.531
                 -1.07
.*
S  -1.40
2
i
              S
              3  -,.i
                                                                    H-3
                                                                                N»n
                                                                                                KEY
                                                                                                       • Detached value (1 In 200)
                                                                                                           Upper quartile
                                                                                                           Mean
                                                                                                           Median

                                                                                                           Lower quartile
                                                                                                        0  Outside value (1 in 20)
                                                                                                        0
                                                              Orifice Plate     Vessel/Exchange
                Figure  B2-130.   Schematic  plot  for  flanges  by  special  service variable

-------
  -1.15
3
£
g -».«
s
  -3,«7
                               *
                               *


                              H-4
                                                                              ttr
                                                      »
                                                     • --*
                                                     *
                                                     •
                                                                                     *  Dctsctiei) value (1 in 200!
                                                                                        Upper Q

                                                                                        f^eao

                                                                                        Nedt'in



                                                                                        Lower ^
                                                                                     0 Outside value (1 in ?0)
                                                                                     0
                            Nigh
                                       Nedlwi
                                                             Nan
        Figure B2-131 .   Schematic  plot of flanges by vibration variable

-------
iO
            -1.71
          I .,.„
t
1
1
1
/
t
,
1

t t
r t t
* --- 1
r *
/ ,.----
?
r
/ /
j / • -• *
i --•»
* # -.. .. + -
*
f -*- r
x -•-*
T t 	 *
7 --- * 	 	
y
< . tt-3
/
»
r
/
* --•
f i N*46
/ »
> / 0
1 >
• » N-6
i /
/ >
» /
> /
r 1
y <
, , N-8







KE_T
• Detached value (1 in 200)




- --] Upper quartlle
• Mean
	 Median


- --* LOMer quarti le



0 Outside value (1 in 20)
0



















                                          Mnuificturtr
                                       2          3
               Figure B2-132.  Schematic  plot for flanges by manufacturer variable.

-------
O.J
-0.867


T -1.73
£
2
a
s
s
91
I
CO o
, 	 1 £-
to S
- ^ . <* 7

-.33



.
•
•

•*•--.
<
.
t
» — •• »™™

.
<
*
N»7
N-17
t
0 *

KEY
• Detached value (1 in 200}

-- _, Upper quarti le
*• Mean
	 Median

L- -J lower quartile
0 Outside value (1 in 2Q)
Q




                               Other
                                            Steel
Figure  B2-133.  Schematic  plot for flanges by  gasket material variable

-------
   0.833
~ -0.3JJ
2
I
S
   -1.50
   •1.1,7
   -3.85
                   i.on
                                   N-7
                                           N-ai
                             Hydrocarbon Streams
                            III      RH      RP
                                                            H.I
        K=l
   Hydrogen Streams
RL       RN       RP
                                                   Type
                                                                                                • Detached value (1 in 200)
                                                                                                    Upper quartile
                                                                                                    Mean
                                                                                                    Median

                                                                                                    Lower quartiIc
                                     0 Outside value (1 in 20}
                                     0
                                                                                              RL =• Rotating Labyrinth
                                                                                              RH - Rotating Mechanical
                                                                                              RP • Reciprocating Packed
  Figure B2-134.    Schematic  plot  for compressor seals  by  seal  type  variable.

-------
? . nil
0.833


_ -0.333
f
s
a
n
41
• 1 »SO
I
S
£
O
oT
3
-2.67

"
-1.83




"























...







--»

N-3


0


—

...
*
£
# ~ — .
4
»
---
0 -»-
o
0 --.
0 <
* --.

N-76 •
N-21 N=?3



KEY
• Detached value (1 in ?00)

r- --i Upper quartile
* Mean
	 Median
L- -J Lower quartHe

0 Outside value (1 in 20)
0








                            Hydrocarbon Streams
                            Double      Single
  Hydrogen Streams
Double      Single
Figure B2-135.  Schematic plot for  compressor  seals  by single/double  seal variable.

-------
7 m nn
0.63 S

'
•0.3*3

|
I
•J -1.50
3
Ol
I
O
3

•3. A3

•i.OO
a
*
t
t
i
t
t
t

" * V
»
X
~~~ +
«
0
0
0 --.
0
0
N-88

H-S3
t


KEY
• Detached value (1 in 200)

r- --i Upper quartile
-t Mean
	 Median
L- -J Lower quartile
•
0 Outside value (1 in 20}
0





                              Hydrocarbon Streams
                             Hydrocarbon Lubricant
  Hydrogen Streams
Hydrocarbon Lubricant
Figure  B2-136 .   Schematic plot  for  compressor seals by lubricant  variable.

-------
^.DC?


O.H35



-0.33^
|
Ol
a
•5
.3 -i.it
a
=
1
1
o
f





-3.63

-5.00

c
(
•
'

.*.. -'.-• ,.!.»
* t t
t t
...I "'*,
• « • * >
« < » * »

> » »
/ * /
t »
*--- * i
t t t
*t t
.... <
* •---»
0 -»- « * « »
0 t t t
0 * ---» t t
0 » « »
+--- t *
„:, M 	
""" »-7

H-S2
••JO
c



KEr
* Detached value (1 in ?00)


Upper quart-He
+ Mean
	 Median

L-T-J Loner guarti It


0 Outside value (1 in 20}
0






N ' No Quench
0 ^ Oil Quench
M * Water Quench

                    Hydrocarbon Streams
                   N       0
  Hydrogen Streams
N      0      u
Figure B2-137.   Schematic plot  for compressor  seals by  gland type variable.

-------
  o.c;?
 -0.33^
« -1.5P
  -f.kl
t
1


r t »---
ft t
t t t
t t
t t
t t
« t *
t •-»-
> i
t t
t t
t i
% t
...» t
t
t
t
»---
t
t t
t H-J
N-19






* 0
0
...
•
t
t ... ...
..-• ...
*
... ...
•

... ...
IM1





0

N-16

0
0 •
n
> 0
N-5 N-16
                                                                             KEY
                                                                                    •  Detached value (1 in 200)
                                                                                       Upper quartile
                                                                                       Mean
                                                                                       Median

                                                                                       Lower quarti)e
                                                                                    0  Outside value (1 in 20)
                                                                                    0
                                       Manufacturer
Figure B2-138 .    Schematic  plot  for compressor seals  by manufacturer variable.

-------
? . U r
O.B33


^ -0.333
L.
|


S
~" -1.50
V
I
|— ' O
f
-P.fcT





-3. 115


" S • 0 n

"
t
t
..!.
j
*
»-.. *
^ ^


*-.
»
^
0 ^
0 *
n »«•- «.-.
n
o .—
*
. N'<
n-)2
•
N-6C
N«57
Hydrocarbon Stream Hydrogen S trows
Other Steel Other Steel

K[_Y_
• Drldchfd value l'l -r 2

,-- — | Upper quartile
* Mean

-j LOMLT quartile

0 Outside value (1 (r 23
0












Figure B2-139.  Schematic plot for compressor seals by material variable.

-------
0 . s .1 n
-0.217


L,
*

3
a
j
~* -i &•*
s
I

M ft
1 ' o
•-0 5
z




.-__.-_-.,__-._.-_,..-..-_-._._.....---.-__.



















r
t
-i






..
^





•




N-




.

9 *
t t
t
*
" *
4
t
* 4
*..
f
*
<
<
*
t
33
_





««





















t














N-16




KEY
* Detached value (1 In 200)


r- ~, Upper quartfle
+ nean
j. 	 HcdUn

L. _J Lower quart He


0 Ou tiide value (1 \n ZO)
0







                                 Visible Vapor Emissions
                              No              r«s
Figure  B2-1AO.   Schematic plot of  drains by  visible  vapor variable

-------
U . °i J it
...,„


f -n.9J3
2
2
a
M
5
4 "I * 6"i
1
IS I
o
-? . JT





-3. OS




1
, '
0






-*•-


*
/
*
4
/
T
y
/
*
/
0
M-37


u

/
».-.



"
-+ m














N-12





























KEY
* fJrUched value (1 IP 7DO)


r- --i Jppcr quartile
•* Mean

«•- -J LOMCT quarlile
0 Outside value [1 in ?D)
0














                             Active
                                          Mavhup
Figure B2-141 .   Schematic plor.  of drains by active/washup variable.

-------
W , Ml U


£
i -0.800
3
a
•
_i
f
2 -1.55
I
|
ro
>— ••
-J.SO

-3.05



-3.AO -
' 0
0





.





0
H-31
0




...


•
• ««




N-Z7





















KEY
• Detached value (1 In 200)

r- --i Upper quartlle
+ Hean
	 Median
*•- -J Lower quartlle
0 Outside value (1 In 20)
0

Single • Single Relief Valve
Double » Dual Relief Valves With
One Always Out of Service




                       Double
                                         Single
Figure B2-142 .   Schematic plot  for  relief valves by single/double variable.

-------
2.5.3     Effect_qf Process Variables on Percent of Sources
          Leaking

          Previous analysis has shown that the percent of
sources leaking varies due to source type and process stream
composition.  This subsection examines the effect of other
process variables on the percent of sources leaking.  A leak-
ing source is defined, for the purpose of this report, as a
source with a screening value greater than 200 ppmv and/or a
measured leak rate of greater than 10"5 Ib/hr.

          Tables B2-18 through B2-22 give the percent of
sources leaking for the baggable source types grouped by the
various process variables recorded during the study.  The data
are grouped by process stream type whenever appropriate.  Note
that the sura of the sources listed for each variable is not
the same for all variable groups due to missing data for some
sources.  In some cases, the hydrogen stream data were omitted
because of the small -number of data points.

          The data in Tables B2-18 through B2-22 are presented
graphically for selected variables in Figures B2-143 through
B2-183.  Ninety-five percent confidence intervals are included
in these graphs to define the precision of the percent leaking
estimates.  Source groupings with overlapping confidence inter-
vals should not be considered statistically different in per-
cent of sources leaking.  A dotted line connecting the percent
leaking estimate is shown on the graphs whenever it is
appropriate to examine the trends portrayed.
                              22:

-------
               TABLE B2-18.   EFFECT OF PROCESS VARIABLES ON PERCENT OF  VALVES LEAKING
N5
LO
Gas/Vapor Streams

Variable
Discrete Variables
Manufacturer Code -
1
2
3
'<
5
6
7
8
9
10
Vibration -
High
Moderate
Slight
None
Type of Valve -
Butterfly
Gate
Globe
Plug
Stem Type -
Comblnat Ion
In/Out
Rotation
Material -
Other
Steel
Purpose -
Block
Control
Number
Screened


53
102
12
7
23
10
226
87
22
12

54
104
269
48

20
309
156
72

37
425
94

43
518

390
172
Number
Leak 1 ng


16
25
3
3
9
1
61
25
6
5

22
19
69
14

8
91
41
14

5
128
21

15
138

105
48
Percent
Lcakl ng


30.2
24.5
25.0
42.9
39.1
5.2
27.0
28.7
27.3
41.7

40.7
18.3
25.6
29.1

40.0
29.4
26.3
19.4

13.5
30.1
22.3

34.9
26.6

26.9
27.9
Light Llquid/Tuo-Phase
Number
Screened


131
142
21
19
46
5
367
137
35
10

99
235
374
20

15
593
262
35

70
781
53

60
847

650
258
Number
Leaking


62
43
8
6
19
0
129
50
13
0

37
77
127
7

5
223
89
9

21
291
15

24
304

237
91
Percent
Leaking


47.3
30.2
38.1
31.6
41.3
0.0
35.2
36.5
37.1
0.0

37.4
32.7
34.0
35.0

33.3
37.6
34.0
25.7

30.0
37.3
28.3

40.0
35.9

36.5
35.3
Heavy Liquid Streams
Number
Screened


92
62
12
8
31
3
182
76
18
1

67
84
196
26

7
331
110
23

24
423
29

21
460

353
129
Number
Leaking


1
4
1
0
1
0
16
7
2
0

6
7
11
2

0
1
4
0

0
30
2

3
29

24
8
Percent
Leaking


1.1
6.4
8.3
0.0
3.2
0.0
8.9
9.2
11.1
0.0

9.0
8.3
5.6
7.7

0.0
0.3
3.6
0.0

0.0
7.1
6.9

14.3
6.3

6.8
6.2
Hydrogen Streams
Number
Screened


8
24
7
3
8
2
56
13
2
12

7
32
78
6

11
70
36
17

6
102
26

6
129

114
21
Number
Leaking


5
11
4
2
4
0
25
5
2
1

3
13
34
1

10
32
15
2

1
47
11

4
55

47
12
Percent
Leaking


62.5
45.8
57.1
66.7
50.0
0.0
44.6
38.5
100.0
8.3

42.9
40.6
43.6
16.7

90.9
45.7
41.7
11.8

16.7
46.1
42.3

66.7
42.6

41.2
57.1
Open End Valves
Number
Screened


6
1
0
0
0
0
102
16
3
1

12
21
12
61

0
102
6
19

46
62
20

3
126

128
1
Number
Leaking


0
0




26
4



8
6
4
7


22
3
5

12
12
6

0
30

30
0
Percent
Leaking


0.0
0.0




25.4
25.0



66.7
28.6
33.3
11.5


21.5
50.0
26.3

26.1
19.4
30.0

0.0
23.8

23.4
0.0
                                                                                   Continued

-------
                                          TABLE B2-18.  Continued
S3
Gas/Vapor Streams
Number
Variable * Screened
Continuous Variables
Pressure flange (pslg) -
0-51
51-100
101-150
151-200
. 201-250
251-300
301-400
401-500
>WO
Tev^erature ftnogo (*P) -
<30
31-HO
81-100
101-150
151-200
201-300
301-500
>5W
Age Hange (years) -
'I
2.1-10
10.1-22
>22
Line Size Range (Inches) -
0-1.0
1.1-2.0
2.1-3.0
3.1-5.0
5.1-9.0
9.1-U.O
>1J.1


247
71
44
91
37
31
16
21
3

8
207
130
107
38
48
17
8

19
63
80
142

47
121
91
79
114
33
43
Number
Leaking


49
20
16
35
12
11
3
6
2

5
45
40
24
12
17
8
3

13
17
16
35

7
31
28
22
37
10
18
Percent
Leaking


19.3
28.2
36.4
38.5
32.4
35.5
18.8
28.6
66.7

62.5
21.7
30.7
22.4
31.6
35.4
47.1
37.5

68.4
21.0
20.0
24.6

14.9
25.6
30.8
27.9 -
32.5
30.3
41.9
Light 1.
Number
Screened


161
156
111
131
97
77
96
23
59

28
204
278
198
57
54
91
2

39
91
175
123

51
221
216
182
171
40
5
1 quid /Two-Phase
Number • Percent
Leaking Leaking


35
41
46
59
44
31
46
g
20

10
69
82
69
23
29
45
2

23
46
55
55

13
67
70
77
79
13
J


26
26
41
45
45
40
47
34
33

35
33
29
34
40
53
49
100

59
50
31
44

25
30
32
42
46
32
60


.7
. 3
.4
.0
.4
.3
.9
.8
.9

.7
.8
.5
.9
.4
.7
.5
,0

.0
.6
.4
.7

.5
.3
.4
.3
.2
.5
.0
Heavy Liquid Streams
Number
Screened


172
76
79
43
28
22
20
5
26

3
39
56
39
44
60
153
88

25
22
61
106

31
93
96
87
119
45
7
Number
Leaking


9
6
5
2
4
1
1
0
2

0
1
4
2
4
2
14
4

1
2
5
9

2
3
7
5
10
4
0
Percent
\ LeRklng


5.2
7.9
6.3
4.7
14.3
4.6
5.0
0.0
7.7

0.0
2.6
7.1
5.1
9.1
3.3
9.2
4.6

4.0
9.1
8.2
8.5

6.5
3.2
7.3
5.8
8.4
8.9
0.0
Hydrogen Streams
Number Nuabcr Percent
Screened Leaking Leaking


9
19
5
0
11
19
13
13
45

0
16
27
21
39
9
14
8

10
8
48
8

6
35
38
14
27
2
9


4
3
2
0
9
12
8
6
4

0
5
9
12
12
8
9
3

10
5
15
3

2
11
11
8
15
2
8


44.4
15.8
40.0
0.0
81.8
63.2
61.5
46.2
8.9

0.0
31.3
33.3
57.1
30.8
83.9
64.3
37.5

100.0
62.5
31.3
37.5

33.3
31.4
29.0
57.1
55.6
100.0
88.9
Open End V.ilves
Number Number Percent
Screened Lo.iklng Leaking


53
19
11
13
10
8
7
1
5

1
37
35
18
12
12
7
5

5
9
23
35

76
19
8
1
0
0
0


13
8
3
1
1
2
2
0
0

0
12
8
6
1
2
1
0

1
2
1
7

17
3
2
0





24.5
42.1
27.3
7.7
10.0
25.0
28.6
0.0
0.0

0.0
33.4
22.9
33.3
8.3
16.7
14.3
0.0

20.0
22.2
4.4
28.0

22. A
15.8
25.0
0.0




-------
                   TABLE B2-19.
EFFECT OF PROCESS  VARIABLES ON PERCENT  OF
PUMP SEALS LEAKING
ro
Variable
Discrete Variables
Pump Seal Attitude

Type of Seal -


Seal -

Seal Lubricant -


Manufacturer Code







Seal -

Gland Type -




-Horizontal
Vertical
Centrifugal /Mechanical
Centrifugal/Packed
Reciprocat ing/Packed
Double Seal
Single Seal
Hydrocarbon
Product Leakage
Water
- A
B
C
D
E
F
G
H
Inboard Seal
Outboard Seal
No Quench Gland
Oil Quench
Water Quench
Light
Number
Screened

378
90
404
37
25
73
356
122
285
42
39
43
68
87
117
49
13
8
327
45
186
84
103
Liquid Streams
Number
Leaking

237
63
264
17
17
38
233
87
176
25
24
29
36
54
88
23
9
7
198
26
115
50
63
Percent
Leaking

62.7
70.0
65.4
46.0
68.0
52.0
65.4
71.3
61.8
59.5
61.5
67.4
52.9
62.1
75.2
46.9
69.2
87.5
60.6
57.8
61.8
59.5
61.2
Heavy
Number
Screened

253
31
217
50
23
69
198
112
107
57
14
20
45
59
68
22
23
3
187
42
59
35
125
Liquid
Number
Leaking

59
6
48
15
3
9
54
23
24
13
6
5
5
14
18
3
1
0
41
8
14
2
27
Streams
Percent
Leaking

23.3
19.4
22.1
30.0
13.0
13.0
27.3
20.5
22.4
22.8
42.9
25.0
11.1
23.7
26.5
13.6
4.4
0.0
21.9
19.0
23.7
5.7
21.6
                                                                         Continued

-------
TABLE  B2-19.  Continued
Variable
Continuous Variables
Discharge Pressure
Range (psig) -







Temperature Range (°F) -





Capacity Range (GPM) -







Shaft Diameter Range
(inches) -






0-50
51-100
101-150
151-200
251-300
301-350
351-400
401-500
>500
<80
81-100
101-150
151-300
301-500
>500
0-100
101-200
201-400
401-800
801-1000
1001-1500
1501-2500
>2500

0-0.5
0.6-1.0
1.1-1.5
1.6-2.0
>2.0
Light
Number
Screened

73
54
59
39
47
67
64
18
40
138
127
86
55
54
4
64
39
109
84
20
33
28
26

142
59
148
83
24
Liquid Streams
Number
Leaking

27
31
42
23
33
50
47
14
25
78
86
49
37
42
3
35
27
69
51
12
25
19
22

98
40
82
60
16
Percent
Leaking

37.0
57.4
71.2
59.0
70.2
74.6
73.4
77.8
62.5
56.5
67.7
57.0
67.3
77.8
75.0
54.7
69.2
63.3
60.7
60.0
75.8
67.9
84.6

69.0
67.8
55.4
72.3
66.7
Heavy
Number
Screened

61
49
53
34
18
21
25
4
21
29
24
27
43
79
85
29
27
20
42
45
19
0
30

63
25
81
108
4
Liquid St reams
Number
Leaking

11
13
10
6
5
5
13
1
2
4
8
1
14
23
16
6
5
9
11
8
4
2
9

9
3
26
24
I
Percent
Leaking

18.0
26.5
18.9
17.6
27.8
23.8
52.0
25.0
9.5
13.8
33.3
3.7
32.6
29.1
18.8
20.7
18.5
45.0
26.2
17.8
21.0
22.2
30.0

14.3
12.0
32.1
22.2
25.0
                                      Continued

-------
                       Variable
                  RPM or Strokes PM Range. -
                  Age Range (years)
                                              TABLE B2-19.   Continued



0-1000
1001-2000
2001-4000
4001-7000
7001-10,000
>10,000
0-2.0
2.1-3.0
3.1-8.0
8.1-15
>15
Light
Number
Screened
9
46
232
1
2
2
23
16
36
137
16
Liquid Streams
Number
Percent
Leaking Leaking
9
33
154
1
2
2
9
13
20
94
12
100.
71.
66.
100.
100.
100.
39.
81.
55.
68.
75.
0
7
4
0
0
0
1
2
6
fc
0
Heavy/Liquid Streams
Number
Screened
20
35
145
0
0
0
18
0
30
68
17
Number
Leaking
3
10
34



5

7
19
8
Percent
Leaking
15
28
23



27

23
27
47
.0
.6
.4



.8

.3
.9
.1
N)

-------
                TABLE B2- 20.
EFFECT OF PROCESS VARIABLES ON PERCENT OF COMPRESSOR
SEALS LEAKING
to
K>
00
Hydrocarbon Streams
Variable.
Material -

Lubricant -
Gland Type -


Seal -

In/Out Service -

Seal Type -


Cylinder Load
Range (%) -


RPM or Strokes PM
Range -




Other
Steel
Hydrocarbon
• No Quench
Oil Quench
Water Quench
Double
Single
In-Service
Out -of -Service
Rotating/Labyrinth
Rotat ing/Mechanical
Reciprocal /Packed

0-85
86-95
96-100

0-200
201-400
401-600
601-800
>800
Number
Screened
12
103
125
62
44
14
5
111
85
2
10
21
93

17
13
15

33
50
8
0
31
Number
Leaking
12
66
88
52
24
7
3
76
74
2
1
7
81

17
13
14

28
46
7
0
12
Percent
Leaking
100.0
64.1
70.4
83.9
54.6
50.0
60.0
68.5
87.1
100.0
10.0
33.3
87.1

100.0
100.0
93.3

84.9
92.0
87.5
0.0
38.7
Hydrogen Streams
Number
Screened
4
68
61
34
9
10
27
26
40
9
1
2
52

13
0
21

0
48
8
1
11
Number Percent
Leaking Leaking
4
55
51
28
8
7
20
21
36
8
1
0
46

6

0


45
8
0
4
100.0
80.9
83.6
82.4
88.9
70.0
74.1
80.8
90.0
88.9
100. 0
0.0
88.5

46.2

0.0


93.8
100.0
0.0
36.4
                                                                        Continued

-------
                                    TABLE B2-20.  Continued
ro
Hydrocarbon Screams
Variable
Sliuft Diameter
Range (inches)



Capacity Range
(MM SCFD)




Pressure Range
(psig)





Temperature Range
(°K)



Age Range (years)




<1.5
1.6-2.0
2.1-3.0
>3.1

0-20
21-40
41-60
61-80
>80

0-100
101-200
201-300
301-500
501-700
>700

0-100
101-150
151-200
>200
0.-3.0
3.1-20
20-30
>30
Number
Screened

2
50
27
21

52
4
3
0
3

44
38
53
1
1
0

17
45
39
38
16
32
30
22
Number
Leaking

2
42
26
18

37
1
1

3

30
28
43
1
0


8
39
29
26
16
25
25
22
Percent
Leaking

100.0
84.0
96.0
85.7

71.2
25.0
33.3

100.0

68.2
73.7
81.1
100.0
0.0


47.1
86.7
74.4
68.4
100.0
78.1
83.3
100.0
Hydrogen Streams
Number
Screened

0
9
15
7

20
9
3
9
0

2
1
0
15
24
26

7
23
25
14
13
18
19
0
Number
Leaking


7
14
6

16
7
1
8


1
1

13
23
22

6
20
18
13
11
15
18

Percent
Leaking


77.8
93.3
85.7

80.0
77.8
33.3
89.9


50.0
100.0

86.7
95.8
76.6

85.7
87.0
72.0
92.9
84.6
83.3
94.7


-------
TABLE B2- 21.
EFFECT OF PROCESS VARIABLES ON PERCENT OF
FLANGES LEAKING
Gas/Vapor Streams
Variable
Special Service -
Orifice Plate
Vessel /Exchange
Vibration -
High
Moderate
Slight
None
Type -
Flat Face
Floating Head
Raised Face
Threaded
Weld
Gasket Material -
Other
Steel
Manufacturer Code -
A
B
C
D
E
F
G
H
I
J
K
L
Number
Screened

6
33

27
54
200
72

182
3
124
29
2

167
73

40
13
4
12
12
14
15
0
13
14
30
23
Number
Leaking

0
2

1
3
3
1

2
0
5
1
0

0
2

0
1
0
0
0
0
0

0
0
2
0
Percent
Leaking

0.0
6.1

3.7
5.6
1.5
1.4

1.1
0.0
4.0
3.5
0.0

0.0
2.7

0.0
7.7
0.0
0.0
0.0
0.0
0.0

0.0
0.0
6.7
0.0
Light I
Number
Screened

29
74

20
197
305
46

273
33
182
78
9

160
277

101
15
22
7
54
0
32
17
3
0
111
11
,iqu id/Two-Phase
Number
Leaking

2
6

2
8
9
5

13
5
5
2
0

6
12

3
0
0
0
0

0
0
0

4
0
Percent
Leaking

6.9
8.1

10.0
4.1
3.0
10.9

4.8
15.2
2.8
2.6
0.0

3.8
4.3

3.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0

3.6
0.0
Heavy
Number
Sc reened

14
30

9
52
203
43

192
17
64
30
1

222
32

40
13
15
3
35
0
15
15
2
1
62
8
Liquid Streams
Number
Leaking

1
0

1
0
1
1

1
0
2
0
0

1
1

0
0
0
0
1

0
0
0
0
0
0
Percent
Leaking

7.1
0.0

11.1
0.0
0.5
2.3

0.5
0.0
3.1
0.0
0.0

0.5
3.1

0.0
0.0
0.0
0.0
2.9

0.0
0.0
0.0
0.0
0.0
0.0

-------
TABLE B2-22.  EFFECT OF PROCESS VARIABLES ON PERCENT OF
              RELIEF VALVES LEAKING
Variable
All Stream Types
Vent to Atmosphere
Vent to Flare
Gas/Vapor Streams
Dual Valve
Single Valve
Light Liquid/Two-Phase Streams
Dual Valve
Single Valve
Heavy Liquid Streams
Dual Valve
Single Valve
Pressure Range (psig)
0-50
51-100
101-200
>200
Temperature Range (°F)
0-100
101-200
>200
Line Size Range (inches)
<4.0
>4.0
Number
Screened

109
16

26
66

8
20

17
6

39
29
26
25

43
36
37

53
82
Number
Leaking

53
2

21
21

2
5

8
0

7
16
12
9

17
19
10

13
37
Percent
Leaking

48.6
12.5

80.8
31.8

25.0
25.0

47.1
0.0

18.0
55.2
46.2
36.0

39.5
52.8
27.0

24.5
45.1
                           231

-------
          Gas/Vapor Streams   Light Liquid/Two-Phase Streams  Heavy Liquid Streams
    100
u> 80^
•S
cd
« 60_
I 4°-

-------
100 -
If 80-
•H
J3 60-
u
o 40 -
u
20-
0
Ga a /Vapor Str tarns

y*
^
6
^ M

j_ X
J

f*
q-66 Nr" ^5 *
N-185 x :: Ny.26 i
: sf3 i 1
r18
N-63 T
;;_ t
i -
1 5 11 L3 S IS 22 23 27 33~ 36 2,4,8 12,34,35

lOO-i
J-80-
.2
4
3 60-
c
o 40 -
u
a.
20-
0 _
Light

N-79
L N"
i
.

'Process Unit Codea
Liquid/Two-Phas« Screama
fH4 " ^y2
r29


S-58 Np3
H=.223 T H-138N1
i 1 " N-26 I ,
•^ ' J- T* ^- ^
r
!
i1
.23 N-22
: ^-109
1 T S-147
-ill
"
it i j i" i r i f i i
i 5 11 U U 17 22 23 27 33 36 2,4,8 32,34,35

100 -
eti
C80 -
a
J60 _
u
C
u ~
01
a.
20 -
0
Heavy



ifr





Proceas Upic Codea
Liquid SCranaa L-i
	 	


•L


U «f

K-14 :




t^"Z5
t | -^r Y'T ,.

». --
i r
1   5   11   13   15
 17   22  23   27

Procesi Unit Cede3
                                             33  36  2,4,8  32,34,35
        N = Number of Sources Screened
    Figure  B2-144.   Selected Categories of Valves -  effect of
                      process  unit type on percent leaking.

lSee Table  B2-24 for unit codes.
                               233

-------

60-
c
3 5°~
o
_j
Percent 1
U> i>
0 0
20-
10.
0
Light Liquid/
Gas/Vapor Streams Two Phase Streams Heavy Liquid




N
H-425
T N-94
N-37 [ Nj-9
1
1 -1
1.
HydroRen Service
Streams M<



-
-70 N=53
T!

, . ,


-6 N,1noN"26
a




i.u
-------
 100-
g

-------
          :oo.
         » 8CJ
     ^ 60.

     s «>•
     a.
       2C-
               Gas/Vapor Streans
                          N-7
                      N-L2
                  N-102
                                                 H-12
                                              N-22
                                          N-87
                                      N-226
                          1
                                              1
                                  -*-
          100-



         c 80"
         ^
         nj
         _2 60-

         4_J

         S 40-
         >-)
         a»
         uL.
           20-
               A    B    C   D   E   F  Other G
                          Manufacturer's Codea

               Light Liquid/Two-Phase Screar.s

          100.
         ^

         J  60J
               A   B    C    D    E    F  Other G
                           Manufacturer's Code3
               Heavv Liauid Screar-.s
           ABC


umber of Sources Screened
                           D    E   ?  Other C   H
                           Manufacturer's Code3
     Figure B2-149.    Selected  Categories  of Valves -  effect;
                         of valve  brand  on percent  of valves
                         leaking.
Codes are  arbitrary  as to  not  identify particular manu-
facturers.   Only manufacturers with  a  significant number of
valves are broken out.
                                  236

-------
                CAa/V«3or Streams

2
5
a
&j
e
i*
u
id
91
1.


90
C
•H
j;
9
400

Liquid/Two-Phasa Straams



MJT
r


^-13!^^ Hj
>-— F"f"-






I96 fe23
t^






     100      200      300
         Pr*aaur« (pslg)


Heavy Liquid Scriamg
                                           >40Q
80 .
sc
5 60 .
'fl
V
"* 40
u
c
y
a.
0 -



N-5
r
s

N-l72Nf ?5 Mf?9 I ':
1 — ±— £—*•'' •
•23 ;
M-22 N-20 i
U [ T 1
-Sr-4-;
                    iOO      200      300     >400
                         Pressure (palg)
          N » Number of Sources Screened
Figure B2-150.
    'Selected Categories of Valves
    effect of  pressure on  percent
    of valves  leaking.
                          237

-------
          100-





        y  so.

        _i


        *•  60-




        3  40-
        M
        IU
        a.

           20.
               Gaa/Vagor Screams
                                   N-114
                                            N-33
       N-47


        r
    H-*I   s-/y           -r
-121 f      T            T

  -—  - — —    —
                                            -
             0   1.0  2.0  3.0  ^.0  5.0  6.0  7.0  3.0 >9.1

                             Line Size (inches)


               Light Liquid/Two-Phase Streams
a
e.
          100.




           30,




           60.




           40.




           2C_
                                   N-171
                N-2L6
                                            N-40
                                             1
             0  1.0 2.0  3.0   4.0  5.C  6.0  7. C  80 >9.1

                             Line Size (inches)
          100.
           50 J
           20.
                Heavy Liquid Screams
               N-3I
                                         -.--
                r - - -ir- -i" — 'i	      i
              0   1.0  2.0  3.0  4.0  5.0  6.0  7.0  3.0


                              Line Size (inches)





            N - Number of Sources Screened
Figure  B2-151.  Selected  Categories  of  Valves  -  effect

                   of  line size  on  percent of valves

                   leaking.
                             238

-------
      100.
     eo
     c
     f4


     3 80-
       40.




       20.




        0,
            Sai/Vapor Streams
N-J.9
   \




    T                 N^.80
             1.0
                   5.0

                Age (years)
 100.




1 80.

2



g 60
o


£ 40.




  20.
            Light Liquid/Two-Phase Strearns
          N-39
               N-91
           1   r
                                                   N-123
                     N-175
.—-I
             1.0
                              5.0

                           Age (years)
      100
     oo  H

     •»4


     2 30-1
     g soJ
     o
     u

     £ io_
            Heavy Liquid Screams
              N-22
20_ N-25
n Jt"'-
N-61
L. -L
N-1C6
i_
                          Age (years)



         N - Number of  Sources Screened
Figure  B2-152.   Selected Categories  of  Valves  - effect

                    of age  on percent of sources  leaking.
                               239

-------
      Light Liquid Streams
                                        Heavy Liquid Streams
    100-
  50  an -I
  C  SO-
  iu
  IX
     60n
    20 -
N=186 N=34
I I


N=103
I




N=59
IN=125
"f I
         y     u      w                        q      o     w



        Pump Gland Type (Cj = No Quench.  0 = Oil Quench,  W = Water Quench)


         N = Number of Sources Screened



Figure B2-153.   Pumps  - effect of gland type  on  percent  of

                   pump  seals  leaking.
      Light Liquid Screams
   100-
 £P  80-
    60-
U

£  40

1-1
3)
p,

   20
                                       Heavy Liquid Streams
         H=237
                                                        N=42
                                               N=187

                                                I
          10                            10


                 Seal Position (I = Inboard. 0 =  Outboard)



         N = Number of Pump Seals Screened



 Figure B2-154.   Pumps - effect  of  seal position  on

                    percent of pump  seals leaking.
                                240

-------
        Light Liquid Streama
                                 Heavy Liquid Streams
     100.
    £80.
      60-
      40-
      20,
r
       N-90
                                                N-253
                                                       tfe.31
             H      V                             H      V

               Pump Seal AtLitude  (H = Horizontal, V • Vertical)


         N •= Number of  Sources  Screened


 Figure B2-155.   Pumps -  effect  of pump attitude on  percent
                    of  seals  leaking.
         Light Liquid  Streams
                                Heavy Liquid Streams
      100-
             CM
                         N=25
oc
c
•H
ifl
HI

a
0)
U

01
0,

80


60.


40'

20-


N— 4 04

I "i




_37






N=50


N-217
I -

N=23




•L
                   CP
                          RP
                                                CM
                                           CP
                                                              RP
                    Pump Seal Type (CM = Centrifugal/Mechanical,
                CP = Centrifugal/Packed, RP = Reciprocating/Packed)
         N = Number of  Sources  Screened

Figure B2-156.   Pumps -  effect of pump  seal  type on percent  of
                   seals leaking.
                                   241

-------
         Light Liquid Streams
Heavy Liquid Streams
100-
g> 80-
-H
IB
11
iJ 60-
U
c
o
o 40 "
PH
20-

N=122 N=42
I N=285 -r
1 I :.


^
N=112






N=57
T I
                         w
                                            H
                 Seal Lubricant (H = Hydrocarbon Lubricant.
                      P - Product Leakage, W = Water)



            N = Number of Sources Screened



 Figure B2-157.   Pumps  - effect of  seal  lubricant type on

                    percent of  seals  leaking.
        Light Liquid Streams
Heavy Liquid Streams
      100.
     C3 80
     c
     n)
     01
       60-
N=73
«L.

N=356




N-69

N=198
I
     S  40
     P
     0)
     IX

       20H
              D      S                          D      S


                 Seal  Type (D = Double, S = Single Seal)



            N =  Number  of Sources Screened


Figure B2-158.   Pumps  -  effect of  seal  type  on percent of

                   seals  leaking.
                                 242

-------
               100
            S  60
            S  ^o
            o
            31
            *•  20
                     Light  Liquid  Streams
    N-43          N-117
N=39  T
                                                 N-8
                                            S-13
                               K-87   T

                           N'68  T    I
                   A    3    C    D    E   F
                          Manufacturer's Code3
                     Heavy Liquid Streams
100 -
u 30 •
c
2 60 •
Percent
ro o
D O 0
iii

N=14


N=20

N»59 N=68 N=22
. N-45 | N-23
                        3   C    D    E   F   G    H
                          Manufacturer's Code3
              N - Number of Sources Screened
Figure B2-159.   Pumps  - effect of manufacturer on percent of
                  pump  seals  leaking.
      aCodes  are arbitrary as  to not  identify  particular
       manufacturers.
                               243

-------
                    100
                   £ 80.
                   «
                   .3 60.
                   I 40
                     20 ^
                          Light Liquid Streams
l'N-54
N-73
                                             58
                         50  150     300      >400
                               Pressure  (psig)
                          Heavy Liquid Streams

SO
a
Percent
100.
80.
60.
40.
20.
n



N-
I'
49
^ I
34
/
f
-N«
» I7 N-
iaL

k
\
\
. \ N-25
125 \f
                         50  150    300       500
                               Pressure (psig)
             N = Number of Sources Screened
Figure B2-160.   Pumps  -  effect of  discharge pressure  on percent
                   of pump  seals  leaking.
                                   244

-------
              100.
             to

             JS 60
             § 40
             t-i
             u
             ft.
              100.
               eo-
               60-
             o 40-
             ii
             CU
               20.




                0
                    Light Liquid Screams
      "r86.-?  .-
                         • N,,.
                    -500 -300     0    >300


                         Temperature (°F)
                    Heavy Liquid  Streams
                        S-24
N-29

 Y*v
                              N-43

                               T      N-79
                   -500  -300     0     300 >500


                        Temperature (°F)



       N •* Number of Sources  Screened
Figure B2-161.   Pumps - effect of  operating temperature on

                  percent of  seals leaking.
                               245

-------
             100-
80-
           1  60
           S  40
           LI
              20 H
                   Light Liquid Streams
N=142 a~3y

 H-T
                                     -r

                                     T-~
                 0   0.50 I.00 1.50 2.00 2.50 >3,1

                    Shaft Diameter (inches)
                   Heavy Liquid Streams

to
c
m
«
~
0)
o
!H
U


100-
80-

60-

40-


20-
0,




N=ai
N=25 T M-112
N-63 T- /f* ^ j

\--/' ^1
^" I
                 0   0.50 L.OO 1.50 2.00 >2.1

                    Shaft Diameter (inches)
       N = Number of Sources Screened
Figure  B2-162.   Pumps -  effect of  shaft diameter on
                  percent  of seals leaking.
                             246

-------
                    00
                    c
                    9)
                      100-
                       80-
                       60.
                    c  40
                    QJ
                    •J
                    M
                       20-
                                  Liquid Streams
       N-9

        -^
         ' ^,
          \ N-46

            \
                                     N=237
c
-^
j;

V
J

tJ
                      100 •
                       80 .
                       60 •
   40 .
                      20 -
                            1000      2000


                            Pump Speed (RFM)





                            Heavy Liquid Screams
                               N-35
                          N-20
                                     K-145
                            LOGO      2000


                            Ptuap Speed (RPM)





              H - Number of Sources Screened
Figure B2-163.   Pumps  -  effect of pump  speed on  percent
                   of  pump  seals leaking.
                               247

-------
      100-
    so
^
a
•j
>->
c

-------
ioo-

ao 80'
eg
j 60-
iJ
e
§ 40-
y
DM
20.
OJ







Light Liquid

N-39

/
t
> m
N-109 N-
^""-i_
- ^~".


btreams

S-26
»-ao T «a J
84




^' ^" "•" — «» j-
*'"* ^^ — __ — ^_ -^^

r " J_ I


N-64 —









          100
500
                              1000        1500

                                Capacity  (GPM)
                                 2000   >2500
            Heavy Liquid Streams
      100-
       80-
               N-20
^c,
<3
3 60-
u
c
u
PL,
20-

0-



N


=2"
• _
N,

7
/
r


N-19 N-39
^ * m
V.
M
•
N=29
42
N-45
^-— ^

.__ — *~ —

' T
r-l


           100
500
1000       >1500

  Capacity  (G?K)
N = Number of  Sources  Screened
Figure B2-165.   Pumps  -  effect of  size  (capacity) on  percent
                   of pump  seals leaking.
                                  249

-------
           100.
         c  80-
            60.
         c

         S  4OJ
         u
         HI
         D-,
            20.
                Hydrocarbon Scrvic«
     Hydrqgan Sarvlca
        N-9
         T  N-10
                 Gland Type (Q = No Quench Gland, 0 = Oil Quench,
                              W =• Water Quench)



         N = Number of Sources Screened



 Figure B2-166.   Compressors  -  effect of  gland  type on  percent

                    of  seals  leaking.
                   Hydrocarbon Service
Hydrogen Service

00
0)
41
_1
u
c
0)
I


100.
80.
60.


40.
20 .
0
N;

12
Nl






N-A
J.03




N-68






                     OT   ST
   OT  ST
                Material of Construction (OT = All Other Materials,
                                  ST = Steel)
               N  = Number of Sources Screened



Figure B2-167.    Compressors  -  effect of material of  construction

                   on percent of  seals leaking.
                                    250

-------
            100
          u  80 -j
          c
            60.
          S 40 .
          o
          ii
          OH
             20 .
                 Hydrocarbon Service
                         N-93

                     N-21
                 RL   RM   RP
Hydrogen Service
      T
       RP
                 Seal Type  (RL - Rotating Labyrinth. RM = Rotating

                     Mechanical, RP = Reciprocating Packed)



            N = Number of Sources Screened




 Figure  B2-168.   Compressors -  effect  of seal  type on percent

                    of  seals  leaking.
                 Hydrocarbon Service
Hydrogen Service
            100.
                  N-5

80.
60-
40,
20.
0





N;
N-lll
,• i :
•27


r
t




                   D      S                        D      S


                  Seal Type (D = Double Seal,  S = Single Seal)
      N = Number  of Sources Screened
Figure B2-169.   Compressors  - effect of seal  number on percent

                   of seals leaking.
                                  251

-------
        100.
         BO .
      W>
      «  60 .
      
-------
                100.
                 80.
              3  60J
              £  40.
              o

              o

              -  20J
                                       Hydrocarbon Service
                   0   100  200  300  400  500  600  700

                          Discharge Pressure (psig)
              V
              o
10Q_



 80.



 60.



 40.



 20.
                                    Hydrogen Sarvica
                                                  N-Z3
                                                N
                       100  200  300  400  500  600  700

                          Discharge Pressure (psig)
          N - Number of Sources Screened



Figure B2-171.   Compressors  - effect of compressor discharge

                   pressure on  percent of  seals  leaking.
                                  253

-------
           100.
            80
         J  60,
         u
         C
         4)
         °  40
         W
         ii
         0,

            20
                   Hydrocarbon Serviea
                             N-45
                N-17
                                       N-39
                50       100       150       200      250
                           Operating Temperature (°F)
                                                >300
           LOO.
          CO

          •H
          ^
          9)
          HI
         4J
         c
         4)
         O
         I-
         01
         Oi
            80
            60
40.
            20.
                   Hydrogen Service
                N-7
                             N-23
                                       N-25
                50       100       150      200       250
                            Operating Temperature (*F)
                                                 >300
  N « Number of Sources Screened
Figure B2-172.   Compressors  -  effect  of operating temperature
                   on  percent of  seals leaking.
                                    254

-------
             100.
              80J
           -i  60-
           c

           u  40
           Ul
           a
              20
                  Hydrocarbon Service
N-16
 fx   N-32

 1  XT
                                     N-3
                                          N-22
                        10       20       30


                        Compressor Age (yrs)
                  Hydrogen Service
             100,
           ao  80.
           C
              60.
           S   40 J
           u
           i-
           u
           CL
              20 .




              0
N-l
                        ^-18
                        10       20       30


                       Compressor Age (yrs)
    N = Number of Sources Screened
Figure B2-173.   Compressors  -  effect of  age on  percent

                   of seals leaking..
                              255

-------
                    100 .
                  M  ao .
                  j  60 .
                  S  40 J
                  CJ
                  O-,
                     20.
                          Hydrocarbon Service
                                 N-3
¥
/
                                  50         LOO

                            Capacity (MM SCFD)
                          Hydrogen Service


BO
e

31
U

ij
a
cu

100.
80.



60.


40-
20.
0
N-






^20 N;

" -J






.9 N-
^ N-3


i
\
\
^

\
\
u \
i


/'
f
i

/
1
r9






"""""
/
/


                                  50         100

                            Capacity (MM SCFD)
         N = Number of  Sources Screened
Figure B2-174.   Compressors - Effect  of capacity on  percent
                  of  compressor seals leaking.
                                 256

-------
       to
       c
       a
       OJ
£
u
i-i
OJ
   100-
          80-
   60-
          40
          20
                Hydrocarbon Screams
              N-33
                                                        N-31
              100  200  300 400  500   600  700  800  900  >1000


                       Compressor Speed  (RPM)
         100-
       e   80 •
          60-
       c
       
       o   40
       i-i
       IV
       a.

          20
                Hydrogen Streans


                       N-A8       N-8
                                                       N-ll
              100  200  300  400   500  600   700  800  900 >1001


                       Compressor Speed (RPM)
N •  Number of Sources Screened
  Figure B2-175.   Compressors  -  effect of compressor speed

                      on  percent of  seals leaking.
                                 257

-------
                     Hydrocarbon Streams
               100.
              90
             •5  80 J
                60.


                40.


                20.


                 0
               100.
                             50          100
                         Compressor Load  (7=)
                     Hydrogen Streams
•H
-J
u
C
o
u
M
0)
C-,


80.
60.

40.



20.
0
M


•




ri3


"x
\
X
X
SN^ N-21
s N 1
                             50          100

                         Compressor Load  ("'.)
       N = Number of Sources Screened
Figure B2-176.   Compressors  -  effect of  compressor loading
                   on percent of  seals  leaking.
                              258

-------
               100-
               80-
               60
            4J

            C
            o
            u
               40-
               20-
         Hydrocarbon Service




                     N-50
                                           N-21
                          1.0      2.0       3.0



                        Shaft Diameter (inches)
so
c

^
a
01
            cu
            CL,
               100-
               80-
               60-
               40-
               20-
                     Hydrogen Service
                                       N-27
                 0        1.0      2.0       3.0



                        Shaft Diameter (inches)
      N  = Number of Sources Screened
Figure B2-177.   Compressors -  effect  of  shaft  diameter on

                   percent of seals leaking.
                              259

-------
N)
CT<
O
  100 .


   80 -
                  3 60 .
g  40
o
N
0)
*  20 .
          Gas/Vapor Streams
Light  Liquid/Two-Phaee  Streams
                                                                                   Heavy Liquid Streams
                                           N=2
                             N=3
                Tl
                                       N=29
                         FF   FH   RF   TH   WE
                              Flange Type
               N = Number of Sources Screened
                                                         H=33
                                                                   N=78
                                   TK.
                              N-192 I
  FF   FH   RF  TH   WE

       Flange Type
                                                                FF   FH   RF   TH   WE

                                                                    Flange Type
                                                                 Flange  Type Code.  FF = Flat  Faced
                                                                                  FH = Floating Head Tube  Sheet
                                                                                  RF = Raised Face
                                                                                  TH = Threaded
                                                                                  WE = Welded
             Figure B2-178.    Flanges -  effect of flange  type on  percent of flanges  leaking.

-------
      Gas/Vapor Streams          Light Liquid/Two-Phaae Streams          Heavy Liquid Streams

00

s
R
01
0
n
(V,


25.
20.

15.

10.

5
0.


N-32


Ny-73 N-160 N_277

167 N-222
I -. : I






OT ST OT ST OT ST
                       Gasket Material (OT = Other Materials, ST = Steel)
N = Number of Sources Screened
Figure  B2-179.   Flanges  - effect of gasket material  on percent  leaking.

-------
           100
           £80
           §40
           1-1
           0
           CL.

             20 -
                        Light  Liquid/Tvo-Phaae  Streams
H-7
                         N-8
    NX24
                                  N-J.5
                                           H-7
                                               N-16
                     13   15   22  27   33 (2,4,8)(32.34.35)


                             Process  Unit Code3
             100.
                              Heavy Liquid Screams
                                  N-7
ov.
2 60.
•H
id
" 40-
u
c
u ~
Ll
11
PL.
CL
It
It






,
•7







tf
Nl

t






> '











I«








19 Ni


; N=I4




.





J.O
N:







5 11 13 15 22 23 27 (2. 4, 8) (
r6






,
32, 33,
                             Process Unit Code
          N » Number of Sources  Screened
   Figure B2-180.   Drains  - effect of  process  unit  type on

                      percent of drains  leaking.



See Table B2-24 for process unit  code  definitions.
                                 262

-------
      as
      o
4-1
C
-l

-------






N3
ON
-P-



00
.9
J>f
,J
Percent

100 „
80 .


60 .

40 .
20 .
0
N-26

N=17
N=8 1
-L
N-66
I


N-20




N=6

"^


      Single/Double Action
Single/Double Action
Single/Double Action
N = Number of Sources Screened
   Figure B2-183.  Relief valves  - effect of single versus  double action on
                    percent of  relief valves leaking to atmosphere.

-------
          Some significant differences in percent leaking are
noted for valves due to age and unit type and vibration.  Valves
less than one year old have a higher percent leaking for gas/
vapor and light liquid streams, but not for heavy streams.  A
trend of increasing percent leaking with larger line sizes is
indicated for all stream groupings.  No significant differences
are noted for the different valve manufacturers.

          For pump seals in light liquid service, the percent
of seals leaking appears to increase as the pressure and tem-
perature increase.  No significant differences are noted for
the discrete variables, including manufacturer.  Single seals
have a higher percent leaking than double seals for both light
and heavy liquid streams ,  although the confidence intervals do
overlap.

          For compressors  in hydrocarbon service, significant
differences in the percent of seals leaking were noted for
gland type and seal type.   The percent leaking also appeared
to be increasing as discharge pressure increased.

2.6       EMISSION FACTORS

2.6.1     Emission Factors forBaggable Sources

          The estimated emission factors for nonmethane
hydrocarbon emissions for  the six types of baggable sources
are summarized in Table B2-23.  Twelve emission factors are
presented representing the twelve cases discussed in Section
2.1.   Confidence intervals are given in each case for both
the percent of sources leaking and the estimated emission
                              265

-------
  TABLE B2-23.
ESTIMATED  VAPOR EMISSION FACTORS  FOR NONMETHANE
HYDROCARBONS FROM BAGGABLE  SOURCES
      Source Category
                 Emission
                  Factor
                 Estimate
              (Ib/hr/source)l
  95% Confidence
   Interval  for
 Emission Factor
 (Ib/hr/source)2
Valves
    Gas Vapor Streams

    Light Liquid/Two-Phase
    Heavy Liquid

    Hydrogen
                  0.059
                  0.024
                  0.0005
                  0.018
 (0.030, 0.110)
 (0.017, 0.036)
 (0.0002, 0.0015)
 (0.007, 0.045)
Open-Ended Lines
                  0.005
'(0.0016, 0.016)
Pump Seals
    Light Liquid Streams

    Heavy Liquid Streams
                  0.25
                  0.046
 (0.16, 0.37)
 (0.019, 0.11)
Drains
                  0.070
 (0.023, 0.20)
Flanges
                  0.00056
 (0.0002, 0.0025)
Relief Valves
                  0.19
 (0.070, 0.49)
Compressor Seals
    Hydrocarbon Service

    Hydrogen Service
                  1.4
                  0.11
 (0.66, 2.9)
 (0.05, 0.23)
 The estimated mean level  of emissions from all sources of this type in
 United States refineries.  This  factor is an average and incorporates the
 fact that a significant number of sources have no emissions.
f\
"The statistical procedures used  to  construct these intervals account for
 both systematic and random errors in experimental design, sampling, chemical
 analysis, and statistical analysis.  The procedures used are such that at
 least 95% of the intervals will  include the true emission factor.
                                   266

-------
factor.  The confidence interval for the percent leaking gives
the range of values expected with 95 percent confidence to
include actual average percent leaking from all U.S. refiner-
ies if they could be tested.  The confidence interval for
the emission factors represents the range of values which is
expected with 95 percent confidence to include the average
emission rate for all sources of the particular type in all
U.S. refineries.  The confidence intervals include considera-
tion of both potential biases and random variation as
discussed in Appendix C.

          The emission factors listed in Table B2-23 are
slightly different than those published in a previous report
(EPA 600/2-79-044)."  The results given here are based on
further refinements of the data base and the formation of
emission factors for values in hydrogen service which were
previously incorporated in other valve service categories.

          Tables B2-24 through B2-29 contain a division of the
emissions data by process unit type.  The data within each unit
are the composite of data collected for that unit during the
sampling program.  Since a random sample of sources was not
selected within each unit, the emission factors and estimated
percent leaking may be biased.  This is particularly true
because of the influence of process stream composition as
previously discussed.  Tables B2-24 through B2-29 should be
considered as a summary of the emissions data collected in
this program.  The unit emission factor should be used with
caution.

-------
                      TABLE B2-24.   SUMMARY OF EMISSIONS  DATA  BY  PROCESS  UNIT  - VALVES
K)
Nonme thane Hydrocarbons
Unit
Code
15
13
22
1
27
17
2.4.8
33
23
32.
34,35
18
5
11
36

Unit
Identification
Atmospheric Distillation
Fuel Gas/Light Ends
Processing
Catalytic Cracking
Catalytic Reforming
Alky lat Ion
Vacuum Diet Illation
Catalytic Hydrotreatlng/
Refining
Aroma tics Extraction
Delayed Coking
Dewaxlng, Treating
Sulfur Recovery
Hydrocracking
Hydrogen Production
Hydrodealkylatlon
Other1
Number
Screened
278
460
190
153
227
57
285
45
86
289
10
83
49
36
11
Number
Leaking
62
158
49
86
85
0
69
15
9
44
0
27
9
14
0
Percent
Leaking
22.
34.
25.
56.
37.
0.
24.
33.
10.
15.
0.
32.
18.
38.
0.
3
3
8
2
4
0
2
3
5
2
0
5
4
9
0
95% Confidence
Interval for
Percent Leaking
(17,
(30,
(20,
(46,
(31,
( 0.
(19,
(20,
( 5,
(11,
( 0,
(23,
( 9.
(23,
( 0.
27)
39)
33)
67)
44)
6)
29)
49)
19)
19)
3D
44)
32)
57)
28)
Estimated 95% Confidence
Emission Interval for
Factor Emission Factor
(Ib/hr/source) (Ib/hr/source)
0.
0.
0.
0.
0.
0023
046
047
029
031
neg
0.
0.
0.
0.

0.
0.
0.

0051
0053
0019
Oil
*
057
0013
013
*
(0.001
(0.026
(0.015
(0.015
(0.015
(neg,
(0.002
(0.001
(0.001
(0.003

(0.01,
(neg.
(0.001

, 0.005)
, 0.084)
, 0.14)
, 0.059)
, 0.065)
0.009)
, 0.012)
, 0.03)
, 0.02)
. 0.04)
*
0.30)
0.02)
, 0.09)
*
             * Insufficient data
             1 Unit Identification of "other" Includes all valves
               identification data were missing.
for which the unit

-------
                     TABLE B2-25.
ro
SUMMARY OF  EMISSIONS DATA  BY PROCESS UNIT  -
COMPRESSOR  SEALS
Unit
Code
15
13
22
1
27
17
2.4.8
33
23
32.
34,35
18
5
11
36
29
Unit
Identification
Atmospheric Distillation
Fuel Gas/Light Ends
Processing
Catalytic Cracking
Catalytic Reforming
Alky lat ion
Vacuum Distillation
Catalytic Hydrot resting/
Refining
Aroma tic s Extraction
Delayed Coking
Dewaxlng/Treatlng
Sulfur Recovery
Hydrocracking
Hydrogen Production
Hydrodealkylat Ion
Blending
Number
Screened
6
59
34
42
10
-
25
5
14
19
-
9
-
2
2
Number
Leaking
6
34
26
37
9
-
19
5
14
19
-
7
-
1
2
Percent
Leaking
100.
57.
76.
88.
90.
-
76.
100.
100.
100.
-
77.
-
50.
100.
0
6
5
1
0

0
0
0
0

8

0
0

Nonmethane Hydrocarbons
Estimated 95% Confidence
95% Confidence Emission Interval for
Interval for Factor Emission Factor
Percent Leaking (Ib/hr/source) (Ib/hr/source)
(54
(44
(59
(74
(56

(57
(48
(77
(82

(40

(13
(16
, 100) * *
, 70) 1.28 (.3, 4.6)
, 89) 1.233 (0.335, 4.154)
, 96) 0.064 (0.022, 0.186)
, 100) * *
- . -
.91) * *
, 100) * *
, 100) * *
, 100) * *
_
.97) * *
_
, 99) * *
. 100)
            * Insufficient data

-------
TABLE B2-26.  SUMMARY OF EMISSIONS  DATA BY PROCESS UNIT - RELIEF VALVES
Unit
Code
15
13
22
1
27
17
2,4,8
2
23
32,
34,35
18
5
11
36
Unit
Identification
Atmospheric Distillation
Fuel Gas/1. ight Ends
Processing
Catalytic Cracking
Catalytic Reforming
Alkylat ion
Vacuum Distillation
Catalytic llydrotreat 1ng/
Kef intng
Aromatics Extraction
Delayed Coking
Devaxing, Treating
Sulfur Recovery
Hydrocracking
Hydrogen Production
Hydrodealkylat ion
Number
Screened
17
67
19
7
20
1
7
4
4
0
0
4
2
0

Nonmetbane Hydrocarbons
Estimated 953! Confidence
95% Confidence Emission Interval for
Number Percent Interval for Factor Emission Factor
Leaking Leaking Percent Leaking (Ib/hr/source) (Ib/hr/sourco)
2 14.3 (1.
37 55.2 (43
3 15.8 (3,
2 28.6 (3.
10 50.0 (27
0 0.0 (0,
2 28.6 (4,
1 25.0 (1,
1 25.0 (1,
-
-
0 0.0 (0,
0 0.0 (0.
-
5, 36) * *
, 67) 0.107 (0.035, 0.299)
40) * *
7, 71) * *
,73) * *
99) * *
71) * *
81) * *
81) * *
* *
_ A *
60) * *
84) * *
* *
* Insufficient data

-------
     TABLE  B2-27.    SUMMARY OF EMISSIONS  DATA BY  PROCESS  UNIT -  PUMP  SEALS
Nonmc thane Hydrocarbons
Unit
Code
15
13
22
1
27
17
2,4,8
33
23
32,
34,35
5
11
36

Unit
Identification
Atmospheric Distillation
Fuel Gas/Light Ends
Processing
Catalytic Cracking
Catalytic Reforming
Alkylatlon
Vacuum Distillation
Catalytic Hydrotreatlng/
Refining
Aroma tics Extraction
Delayed Coking
Dewaxlng, Treating
Hydrocracking
Hydrogen Production
Hydrodealkylatlon
Other '
Number
Screened
149
156
77
41
76
25
61
43
37
65
40
7
5
5
Number
Leaking
65
83
31
32
60
3
23
25
10
26
20
0
4
0
Percent
Leaking
43.
53.
40.
78.
78.
12.
37.
58.
27.
40.
50.
0.
80.
0.
6
2
3
0
9
0
7
1
0
0
0
0
0
0
95% Confidence
Interval for
Percent Leaking
(36.
(45,
(29,
(62,
(68,
( 3,
(26,
(42,
(14,
(26,
(34,
( o,
(28,
( 0,
52)
61)
52)
89)
87)
3D
51)
73)
44)
56)
66)
41)
99)
52)
Estimated
Emission
Factor
(Ib/hr/source)
0.022
0.19
0.081
0.18
1.3
*
0.033
0.20
0.020
0.056
0.053
*
*
*
95% Confidence
Interval for
Emission Factor
(Ib/hr/source)
(0.
(0.
(0.
(0.
(0.

(0.
(0.
(0.
(0.
(0.



001, 0.023)
09, 0.40)
02, 0.29)
06, 0.51)
51, 3.5)
*
01, 0.13)
05, 0.73)
002, 0.15)
02, 0.20)
01, 0.20)
*
*
*
* Insufficient data
1 Unit identification of "other" includes all
  Identification data were missing.
pump seals for which unit

-------
              TABLE B2-28.   SUMMARY OF EMISSIONS DATA BY  PROCESS UNIT  -  FLANGES
N3
Nonmcthane Hydrocarbons
Unit
Code
15
13
22
1
27
17
2,4,8
33
23
32,
34,35
18
5
11
36
Unit
Identification
Atmospheric Distillation
Fuel Gas/Light Ends
Processing
Catalytic Cracking
Catalytic Reforming
Alkylation
Vacuum Distillation
Catalytic Hydrotreat ing/
Refining
Aromatics Extraction
Delayed Coking
Dewnxing, Treating
Sulfur Recovery
Hydroc racking
Hydrogen Production
llydrodeolkylat ion
Number
Screened
407
148
224
245
264
77
245
15
32
300
6
33
19
15
Number
Leaking
6
11
0
19
8
0
9
1
0
5
0
2
1
0
Estimated 95X Conf Jilenre
95% Confidence Emission Interval foe
Percent Interval for Factor Emission Factor
Leaking Percent Leaking (Ib/lir/source) (Ib/lir/soiiccr)
1.
7.
0.
7.
3.
0.
3.
6.
0.
1.
0.
6.
5.
0.
47
43
00
76
03
00
67
67
00
67
00
06
26
00
(0
(3
(0
(«
(1
(0
(1
(0
(0
(0
(0
(1
(0
(0
, 3.0) 0.0001
.0, 12) 0.00085
, 1-5) neg
.0, 11) 0.0034
.0, 5.0) 0.00014
, 4.6) neg
.0, 6.0) 0.00042
.2, 32) *
, ID ncg
, 30) 0.00003
, 46) *
.0, 20) 0.0028
.1. 26) *
. 22) *
(neg, 0.
(neg, 0.
(neg, 0.
(0.0005,
(neg, 0.
(neg, 0.
(neg, 0.
*
(neg, 0.
(neg, 0.

(neg, 0.
*
*
001)
005)
0005)
0.019)
001)
0020)
OO/i )

004)
001)

25)


            * Insufficient data

-------
       TABLE  B2-29.   SUMMARY OF  EMISSIONS DATA  BY PROCESS UNIT  - DRAINS
Nonrae thane Hydrocarbons
Unit
Code
15
13
22
1
27
ro 17
W 2,4,8
33
23
32,
34,35
18
5
11
36

Unit
Identification
Atmospheric Distillation
Fuel Gas/Light Ends
Processing
Catalytic Cracking
Catalytic Reforming
Alkylation
Vacuum Distillation
Catalytic Hydrotreat ing/
Refining
Aromatlcs Extraction
Delayed Coking
Deuaxing, Treating
Sulfur Recovery
Hydrocracking
Hydrogen Production
Hydrodealkylat Ion
Other '
Number
Screened
23
57
18
21
33
2
27
7
11
26
3
12
8
5
2
Number
Leaking
5
8
5
4
4
2
5
2
3
5
0
3
2
1
0
Percent
Leaking
21.7
14.0
27.8
19.0
12.1
100.0
18.5
2.7
27.3
19.2.
0.0
25.0
25.0
20.0
0.6
95Z Confidence
Interval for
Percent Leaking
( 7,
( 6,
( 9,
( 4,
( 3,
(16,
( 6.
( 4,
( 6.
( 7,
( 0,
( 5,
( 3,
( 5,
( 0,
44)
26)
53)
42)
29)
100)
38)
71)
61)
39)
71)
57)
65)
72)
84)
Estimated 952 Confidence
Emission Interval for
Factor Emission Factor
(Ib/hr/eource) (Ib/hr/source)
*
0.026
*
*
0.027
*
*
*
*
*
*
*
*
*
*
*
(0.001, 0.45)
•*
*
*
(0.0004, 0.98)
*
*
*
*
*
*
*
*
*
*
* Insufficient data
1 Unit Identification of "other" includes all drains for which unit
  Identification data were missing.

-------
2.6.2     Effect of Process Variables onEmission Factors

          Section 2.5 presented a breakdown of the emissions
data by the various process variables measured or recorded at
the time that emissions data were obtained from each source.
Both the effect on the percentage of sources leaking and the
leak rate of the leaking sources was discussed.  Any dis-
cussion of the effect of process variables is complicated by
the confounding between variables in the data base.  This
confounding is due to the lack of independence between process
variables as they naturally occur and the fact that all combi-
nations of levels of many variables could not be obtained in
the study.

          A fractional factorial experimental design was
followed in selecting sources with selection based on key
process variables.  The design allowed the estimation of the
main effects of important variables, but not all variable
interaction effects could be estimated.  Most second order
interactions (e.g., stream type by line size by source type)
and higher order interactions are either confounded or there
are not enough replicate data to quantify their effects with
any precision.  This means that it is difficult to break
sources down by more than two variables at a time to deter-
mine emission factors or effects.

          Tables B2-30 through B2-34 give emission factors
and confidence intervals for selected classifications of
the baggable sources.  Emission factors for valves, pump
seals and compressor seals have previously been given for
                             274

-------
          TABLE B2-30.  VALVE TYPES DATA SUMMARY - PERCENT LEAKING AND EMISSION FACTORS
ho
Valve Valve
Function Type
Block Butterfly
Gate
Globe
Plug
Control Butterfly
Gate
Globe
Plug
Number
Screened
14
1390
81
123
39
17
499
43
Number
Leaking
5
384
22
21
18
7
136
11
Percent
Leaking
35.
27.
27.
17.
46.
41.
27.
25.
7
6
2
1
1
2
2
6
95% Confidence
Interval for
Percent Leaking
(13,
(25,
(17,
(10,
(30,
(18,
(23,
(13,
65)
30)
37)
24)
62)
67)
31)
39)
Emission
Factor
(Ib/hr/source)
0
0
0
0
0
0
0
0
.0060
.023
.0057
.0077
.019
.014
.020
.0077
95% Confidence
Interval for
Emission Factor
(Ib/hr/source)
(neg, 0
(0.
(0.
(0.
(0.
(0.
(0.
(0.
016,
Oil,
0016
003,
0005
01,
0007
.19)
0.034)
0.023)
, 0.03C)
0.09)
, 0.25)
0.04)
, 0.06)

-------
           TABLE  B2-31.   PUMP  SEAL  TYPES  DATA SUMMARY - PERCENT LEAKING AND EMISSION FACTORS
N>
Number Number Z Leaking
Pump Seal Screened Leaking (95% Confidence Interval)
All Stream Service
Centrifugal/Mechanical 621 312
Centrifugal/Packed 87 32
Reciprocating/Packed 48 20
Light Liquid Service
Centrifugal/Mechanical 404 264
Centrifugal/Packed 37 17
Reciprocating/Packed 25 17
Heavy Liquid Service
Centrifugal/Mechanical 217 48
Centrifugal/Packed 50 15
Reciprocating/Packed 23 3

51.0
(46.5, 55.5)
36.8
(24.6, 47.8)
41.7
(24.8, 60.0)

65.3
(59.9, 70.6)
45.9
(26.3, 66.6)
68.0
(41.9, 87.8)

22.1
(15.7, 28.4)
30.0
(15.6, 47.9)
13.0
( 1.8, 38.5)
95% Confidence
Estimated Interval for
Emission Factor Emission Factor
(lb/!ir/seal) (Ib/hr/seal)

0.20 (0.13, 0.29)
0.07 (0.02, 0.22)
0.15 (0.06, 0.69)

0.27 (0.18, 0.41)
0.08 (0.01, 0.34)
0.26 (0.04, 1.20)

0.05 (0.02, 0.12)
0.04 (0.008, 0.17)
0.01 (neg, 7.2)
(Continued)

-------
TABLE  B2-31.   Continued
Pump Seal
Light Liquid Streams
In-Service
Out-of-Servlce
Heavy Liquid Streams
-o
-J
"J In-Service
Out-of-Servlce
Centrifugal/Mechanical
In-Scrvlce
Out-of-Servlce
Double Seal
Single Seal
Estimated
Number Number % Leaking Emission Factor
Screened Leaking (95Z Confidence Interval) (Ib/hr/seal)

86 54 62.8 0.17
(52, 73)
69 30 A3. 5 0.29
(32, 56)
48 12 25.0 0.05
(14, 40)
28 3 10.7
( 2, 28) 0.002

95 51 53.7 0.13
68 23 33.8 0.14
(23, 46)
106 41 38.7 0.15
(30, 49)
474 247 52.1 0.19
(46. 58)
95% Confidence
Interval for
Emission Factor
(Ib/hr/seal)

(0.06, 0.4)
(0.06, 1.2)
(0.005, 0.26)
(neg., 0.16)

(0.05, 0.3)
(0.02, 0.7)
(0.05. 0.4)
(0.12. 03)
                                                   (Continued)

-------
                                       TABLE B2-31.   Continued
oo
Pump Seal
Centrifugal/Packed
In-Service
Out-of-Service
Double Seal
Single Seal
Number Number % Leaking
Screened Leaking (951 Confidence Interval)

35 13 37.1
(21, 55)
21 7 33.3
(15, 57)
23 5 21.7
( 5. 39)
62 26 41.9
(30, 55)
Estimated
Emission Factor
(Ib/hr/seal)

0.05
0.06
0.005
0.07
95% Confidence
Interval for
Emission Factor
(Ib/hr/seal)

(0.006. 0.3)
(0.001, 1.5)
(neg., 0.17)
(0.02, 0.2)

-------
TABLE B2-32
COMPRESSOR SEAL TYPES DATA SUMMARY - PERCENT
LEAKING AND EMISSION FACTORS
Compressor
Seal Type
All Streams:
Reciprocal Packed
Rotating Mechanical
Rotating Labyrinth
Seal Type Not
Identified
Hydrocarbon Streams:
Reciprocal Packed
Rotating Mechanical
Seal Type Not
Identified
Hydrogen Streams:
Reciprocal Packed
Seal Type Not
Identified
Number Number Percent Leaking
Screened Leaking (953! Confidence ^Interval)

153 136 88.9
(83. 94)
24 8 33.3
(15. 55)
11 2 18.2
( 2. 52)
42 32 76.2
(60. 88)

93 81 87.1
(78, 93)
21 7 33.3
(14. 57)
16 14 87.5
(61. 98)

52 47 90.4
(78. 97)
25 18 72.0
(50. 88)
95% Confidence
Estimated Interval for
Emiusion Factor F.mlssion Factor
(Ib/hr/seal) (Ib/hr/seal)

1.24 (0.70, 2.3)
0.21 (0.01, 3.0)
0.02 (0.01, 6.5)
2.86 (0.77, 9.8)

1.10 (0.59, 2.03)
1.03 (0.018, 40.9)
8.88 (1.21, 49.2)

0.038 (0.016, 0.084)
0.79 (0.13. 4.06)

-------
                        TABLE B2-33.
OO
O
RELIEF VALVE DATA SUMMARY - PERCENT LEAKING
AND EMISSION FACTORS
Relief Valve
Category
Type;
Single Relief Valve
Double Relief Valve
Venting:
To Atmosphere
To Header or Flare
Process Stream:
Gas/Vapor
Light Liquid/Two-Phase
Heavy Liquid
Number
Screened

68
189

155
16

92
28
23
Number
Leaking

31
27

54
2

42
7
8
Percent
Leaking

45.6
14.3

34.8
12.5

45.6
25.0
34.8
95% Confidence
Interval for
Percent Leaking

(34, 57)
(9.3, 19)

(27, 42)
(0.1, 40)

(35, 56)
(11, 45)
(16. 59)
Emission
Factor
(Ib/hr/valve)

0.22
0.067

0.19
0.002

0.36
0.013
0.019
95% Confidence
Interval for
Emission Factor
(Ib/hr/volve)

(0.06, 0.77)
(0.01, 0.28)

(0.07, 0.51)
(neg, 2.0)

(0.10. 1.30)
(0.001. 0.23)
(0.001, 0.20)

-------
           TABLE B2-34.  FLANGES DATA  SUMMARY  -  PERCENT LEAKING AND EMISSION FACTORS
fs)
oo

Process Stream Type:
Gas/Vapor
Light Liquid/Two-Phase
Heavy Liquid
Line Size:
<2 inches
2-4.9 inches
5-9.9 inches
10 - 16.9 inches
217 inches
Number
Screened

369
616
325

247
1189
340
86
118
Number Number
Leaking Leaking

10 2.7
33 5.4
6 1.9

30 12.1
23 1.9
14 4.1
10 11.6
9 7.6
95Z Confidence
Interval for
Percent Leaking

(0.8,
(3-3,
(0.2.

(7.5,
(1.2,
(2.0,
(4.9.
(2.8,

4.6)
7.4)
3.5)

17)
2.8)
6.2)
18)
13)
95Z Confidence
Emission Interval for
Factor Emission Factor
(Ib/hr/flange) (Ib/hr/f lange)

0.0005 (10~5, 0.
0.0005 (0.0002,
0.0007 (8xlO~5.

0.0019 (0.0005,
0.00039 (10~5. 0.
0.00016 (3xlO~s,
0.0017 (0.0001,
0.0030 (0.0003,

005)
0.001)
0.02)

0.006)
002)
0.0005)
0.013)
0.018)

-------
process stream groups.  An important observation from these
tables is the width of most of the emission factor confidence
intervals.  Because'leak rates in any category span three
or more orders of magnitude, it is impossible to precisely
estimate the emission factor with a relatively small number
of sources screened and sampled.  Hence, these values should
not be used as emission factors.  Since most of the con-
fidence intervals overlap, differences between emission
factors for the various categories of a source may not be
real.  Differences between emission factors with overlapping
confidence intervals should be treated only as trends and
not absolute differences.

          The effect of a process variable on emissions rate
is difficult to study because of the distribution of leak
rates.  The effect of line size on flange emissions is a good
example.  In Section 2.5.1, line size was shown to have a
significant positive correlation with leak rate.  In Section
2.5.2, the percent of flanges leaking was significantly
different for different line sizes.  Figure B2-18A summarizes
these findings and shows emission factors for five different
line size ranges.  Although there are significant differences
in percent leaking and a significant effect of line size on
leak rate, the confidence intervals for the emission factors
all overlap.

          Table B2-35 demonstrates the other difficulty in
developing emission factors for subgroups of the data.  The
amount of data for valves is broken down by process stream
                              282

-------
      15.C
      1C.O I
       3.C
       3.C
  -£  -1.0
               T
                                                                           2.96 Overal I
                                                                           Percint
                                                                           Leaking
                    In (Leak Hate) * -6.69 * 0.103 (Line Size)

                    Correlation Coefficient (r)  - 3.34
                    Standard Error of Estimate • 0.87 In(leak),
                                                                       x - estimate

                                                                       I - 95« confidence
                                                                          Interval
      -6.0
0.02
c.oi L
0.007
0.006

0.005
0.004
0.003
0.002

0.001
0.0
^
>
•










i
i
1
i
i
!
1
i I
T |
1 !
1 f ; i
I






[




l:ne Size Range  0   2    4    6   S

Number Screened  I 2471 1189  1    340
                                 LINE SIZE  (INCHES)
                             10   12  14  16  18  20  22  24  25   28   30
                                    86
                                                      113
Figure B2-184.    Effect  of  line  size  on  emissions
                        from  flanges.

-------
                      TABLE B2-35.   DISTRIBUTION  OF VALVES BY UNIT  AND STREAM GROUPING
IS)
oo
•e-
Caa Streams
Unit
Catalytic Re fora log
Catalytic Hydro treat Ing/
Refining
Bydrocracklng
Hydrogen Production
Fuel Gas/Light End a
Processing
Atoogpherlc Distillation
Vacuum Distillation
Catalytic Cracking
Delayed Coking
Alky let Ion
Dcvaxlng/Treat Ing
AroBatlea Extraction
Hydrodealkylat Ion
Number
Screened
36
107
34
30
185
68
13
50
27
59
37
18
12
Number
Leaking
19
32
11
7
46
23
0
19
4
20
11
5
4
Percent
Leaking
52.8
30.0
32.4
23.3
24.9
33.8
0.0
38.0
14.8
33.9
29.7
27.8
33.3
LlRht Llquld/Tuo-Phase
Number
Screened
104
121
32
4
246
63
2
59
29
151
159
24
24
Number
Leaking
56
30
11
1
109
28
0
26
5
62
26
8
10
Percent
Leaking
53.8
24.8
34.4
25.0
44.3
44.4
0.0
44.1
17.2
41.1
16.3
33.3
41.7
Heavy Streams
Number
Screened
0
57
15
15
27
143
42
80
30
4
93
2
0
Number
Leaking
0
7
4
1
2
11
0
4
0
0
7
1
I
0
Percent
Leaking
0.0
12.3
26.7
6.7
7.4
7.7
0.0
5.0
0.0
0.0
7.5
50.0
0.0
All Streams
Percent Leaking
56.2
24.2
32.5
18.4
34.3
22.3
0.0
25.8
10.5
37.4
15.2
33.3
18.9
            All Units
                               676
                                     203
                                            30.0
                                                    1018
                                                           372
                                                                 32.3
                                                                          508
                                                                                 37
                                                                                       7.3
                                                                                                 27.8

-------
group (hydrogen streams and open-ended valves are not broken
out) and unit.  This categorization is desirable in order to
ascertain unit effects beyond that due to the distribution of
process streams within a unit.  In only eight of the 39 cases
do the categories have 100 or more valves screened, so obtaining
precise emission factor estimates for these categories is not
possible.

2.7       THE NUMBER AND DISTRIBUTION OF BAGGABLE FUGITIVE
          EMISSION SOURCES

          The analyses of the emission rate data showed that the
emission rates of hydrocarbons from valves, pump seals, and
compressor seals were functions of the process stream properties.
To estimate total hydrocarbon emissions from these sources in a
complete refinery or in individual process units within refin-
eries, the distributions and number of the sources among the
various types of process streams must be available.

          As part of the refinery assessment program, three
objectives were achieved.   These were:

          •    To count the number of fugitive hydrocarbon
               emission sources in a number of selected
               refinery process units,

          •    To estimate the relative number of each source
               type that is associated with selected process
               streams, and

          •    To estimate the total fugitive hydrocarbon
               emissions from the six baggable source types
               in a hypothetical refinery.
                              285

-------
The results of this work are described in this section.

2.7.1     The Number of Sources in Selected Refinery Units^

          The total number of individual sources of fugitive
hydrocarbon emissions were counted in various types of refinery
process units.  The number of individual sources were estimated
in those units where actual counting was not done.

2.7.1.1   Source Coun ting

          Individual fugitive emission sources were physically
counted in a number of process units within five different
refineries.  Valves, flanges, pumps, compressors, drains,  and
relief valves (only those venting directly to the atmosphere)
were counted.  The counted sources are listed in Table B2-36.
The capacities of each unit in which sources were counted are
also presented.

          Some sources are not included in this tabulation.
Only those valves in hydrocarbon service on process, vent,
or fuel lines were counted.  Valves in auxiliary services such
as steam, water, air, compressor lubrication, and pump seal
flushing were not included in the source numbers listed in
Table B2-36.

          Pumps and compressors operating on non-hydrocarbon
streams such as water and air were not counted.  Only those
relief valves that were venting directly to the atmosphere
were included as emission sources.  Those relief valves venting
into blowdown and flare systems were not included in the
numbers given in Table B2-36.  All  drains in  a unit were
counted.
                              286

-------
           TABLE B2-36.   SUMMARY OF HYDROCARBON  EMISSION SOURCES COUNTED IN
                          SELECTED REFINERY PROCESS  UNITS
Process (lull
Atmospheric Distillation: Unit A
Unit B
Fuel Cos/Light Gas Processing: Unit A
Unit B
Cntalytlc llydroproceoslng: Unit A
Unit B
Fluid Catalytic Crncklng: Unit A
llydrocracklng: Unit A
Catalytic Reforming: Unit A
Unit B
Unit C
Alkylatlon: Unit A
Unit B
Fluid Coking: Unit A
Dewaxlng/Trcatlng: Unit A
Unit B
Unit C
Unit D
Hydrogen Plant: Unit A
Unit
Capacity
BPSD
50,000
10,000
—
--
16,000
10,000
9.000
14.000
11,000
5,000
3.000
6.000
2,000
7,000
=4.000
"•4,000
^4,000
--
20 MMCFD
Valves
1032
754
J52
210
632
658
1314
931
660
943
470
571
782
304
3BO
855
700
459
182
Flanges
3720
4274
658
630
3410
2076
4212
1955
2279
3334
3270
1992
2821
1047
1950
3435
--
14R1
635
Pumps
33
28
0
5
11
8
30
22
18
16
8
11
14
9
16
19
25
11
5
Compressors
0
1
4
0
2
3
4
3
4
3
3
0
0
4
0
4
0
0
-
Relief
Vslves'
0
4
30
3
16
0
16
4
0
-
0
1
15
6
4
0
-
0
4
Drains
102
16
/
14
24
--
65
58
70
54
23
28
54
28
43
43
45
--
17
1 Relief valves venting to  the atmosphere.

-------
          All the counting was done solely within the battery
limits of each process unit.

          The relationship between the capacity or size of a
process unit and the number of sources in the unit was investi-
gated.  The pump counts fron this study,  as well as an EPA
study,7 were correlated with the volumetric capacities of crude
distillation, catalytic hydroprocessing,  catalytic reforming,
and alkylation units.  The correlation coefficients were all
very low indicating that the degree of correlation was insignifi-
cant.  Thus, the number of pumps in a process unit is not
directly related to the size of the unit.  This is not surprising
The leak rates from all sources including pump seals and valves
are effectively independent of the size of the source.  Larger
process units will have larger sizes of the individual leak
sources.  However, the larger units do not necessarily have
nore sources.  The number of sources is a function of the com-
plexity of the refinery unit rather than the unit capacity.

          The number of valves (and other sources) are related
to the number of pumps.  This was identified in this current
study and by EPA.3  Therefore, the number of valves, flanges,
and drains also appear to be unrelated to the capacity of a
process unit.

2.7.1.2   Estimation of Source Numbers in Selected Refinery
          Units

          The visual source counts were used as a basis for
estimating the total source populations in some of the major
types of refinery process units.  These estimated source
populations are presented in Table B2-37.
                              288

-------
CO
                       TABLE  B2-37.   ESTIMATED  NUMBER  OF  INDIVIDUAL EMISSION  SOURCES2
                                         IN  15  SPECIFIC REFINERY  PROCESS  UNITS

Estimated Number
Process Unit
Atmospheric Distillation
Vacuum Distillation1
Fuel Gas/Light Ends Processing
Catalytic Hydroproceaslng
Catalytic Cracking
Hydrocracklng
Catalytic Reforming
Aromatlcs Extraction1
Alkylatlon
Delayed Coking1
Fluid Coking
Hydroealkylatlon1
Treatlng/Devaxlng
Hydrogen Production
Sulfur Recovery1
Valves
893
500
181
645
1314
931
691
600
677
300
304
690
599
182
200
Flanges
3997
1785
644
2743
4212
1955
2961
2142
2407
1071
1047
2463
2289
635
714
of Sources Within Battery Limits
Pumps'
31
16
3
10
30
22
14
18
13
9
9
14
18
5
6
Compressors*
1
0
2
3
4
3
3
0
0
0
4
3
1
31
0
of Process Units
Drains
69
42
11
24
65
58
49
47
41
23
28
36
44
17
16
Relief
Valves
6
6
6
6
6
6 .
6
6
6
6
6
6
6
6
6
                1Sources were not counted In process units  of this type.  The number of sources was estimated.
                'Only thoae sources  In hydrocarbon (or organic compound) service.
                'Number of pump seals - 1.4 * number of pimps.
                ''Number of compressor seals - 2.0 * number  of compressors.

-------
          Sources were not counted in some types of process
units including vacuum distillation, aromatics extraction,
delayed coking, hydrodealkylation,  and sulfur recovery units.
The number of valves, pumps, and compressors in these units
were estimated from source counts obtained in similar types
of units.

          The number of flanges and drains in uncounted process
units were based on the average number of valves and pumps,
respectively, in counted process units.   Specifically, the
ratio of flanges to valves for counted units was 3.6.  This
ratio was multiplied by the estimated number of valves in
each uncounted unit to obtain estimates of the number of
flanges.  The ratio of drains to pumps for all counted process
units was 2.6.  This ratio was multiplied by the estimated
number of pumps in each uncounted process unit to obtain an
estimate of the number of drains.

          Table B2-36 shows that the number of relief valves
venting to the atmosphere varies widely among counted process
units.  These differences are noted between different types
of process units as well as units of the same type.  This
appears to be the result of individual refinery practice; that
is, the degree to which emission are collected from relief
valves varies from one refinery to the next.  Therefore, the
average of six atmospherically vented relief valves, determined
from the counted units listed in Table B2-36, was used as the
estimate for  the number of relief valves for all of the process
un its.

          Open-ended valves were not counted during this
program and no estimate for the number of these fittings is
offered.
                             290

-------
2.7.2     Distribution of Fugitive Emission Sources

          Emission factors for fugitive hydrocarbon sources
have been developed.  These are given in Section 2.6 of this
Appendix.  These factors are a function of the process stream
service of the individual sources.  An estimate of the number
of valves, pump seals, and compressor seals in various process
stream services is required to develop total hydrocarbon
emission rates from refinery process units.  These source
distributions were determined for pumps and compressors
during the field sampling program in refineries.  Stream
service distributions were not established for valves, however,
Thus, the valve distributions were estimated by indirect means,

2.7.2.1   Estimation of Valve^ and Pump Stream Service
          Distributions

          The number of valves in any given refinery process
unit should be related' to the total number of pumps and com-
pressors.  Consequently, the total number of valves in each
of the counted process units were divided by the total number
of counted pumps.   These values are shown in Table B2-38.  The
average valve-to-pump ratio determined from field counts was
41 with a standard deviation of ± 10.  In the Los Angeles
Joint Study in 1958, l approximately 45 valves were counted
for each pump.

          In the Los Angeles Joint Study, it was found that
23.6 percent of all refinery valves were in hydrocarbon gas
service.   Similarly, 44.8 percent of the valves were in liquid
service processing gasoline and lighter liquids (Radian's
"light liquid" stream designation).  About 31.6 percent of the
                              291

-------
TABLE B2-38.  AVERAGE NUMBER AND ESTIMATED DISTRIBUTION OF VALVE
              AND PUMP SEALS IN REFINERY PROCESS UNITS



rrnc... lh.lt


VflcmM niBtllloMm.


n>drocr*cMn|

Ni
V£) Mkrl.llon
DMoyrd Oktn||
Fluid Cnt liw
•,d,oo,.url.,l~,
Dewsilng/Tmt Infl
Itydiogrn f rmfact l•*?

Ur«9 1 *••»!* 1*11 0 I
*
O1 11 10 90


1 47 55 45
01 JJ JQl |Ql

0 57 100 0
0' 11 71' 79'
4 )4 71 79
]' 49 90' 10'
1 1) 19 «l
I W 60 40
O1 11 «4' !«'


V.lve.. *„

Vipor Rrdrogen


50' 0'


174 /5
6O1 0*

774 0
W' 0'
1O 0
179' 77'
60 0
1? •
70' 0'




Llould tl,.,ld l.l,nld


*V *oi' J1





401 0 11
57' 1111 1"
VI 716 1
191' 41' !•'
110 119 10
91 6? 4
151' 19' 7


I.lo.ul4
S*rvlr*


70'


14


0
10'
10
?'
15
1
1


r.T
Se*lu

II1


11


18
11"
11
70'
75
7
II

FXlMtiteil nintrllxrt loi
Huihfi

R,dror.lk™

0'


O
o1

n
o1
i
o'
7
0
0

•/Unit '

, Hydro,-,
' — ' -
o'





. 0
o'
0
6'
0
6
0


-------
valves handled hydrocarbon liquids that were heavier than
gasoline.  This latter valve service corresponds to Radian's
"heavy liquid" stream category.

          The distribution between light and heavy liquid
service was determined for all pump seals screened in this
current study.  These distributions were developed as a
function of the type of process unit.  The pump stream service
distribution are presented in Table B2-38.  For some types of
units, the data were insufficient and the distributions were
estimated using the information from similar process units.

          The overall ratio of pump seals to pumps was 1.4 in
the Joint Study.  This ratio was used to estimate the number
of seals associated with the pumps for the various process
units.  The estimated number of pump seals in each type of
refinery process unit and stream service is shown in Table
B2-38.

          In the current study it was found that 62 percent of
all of the screened pump seals were in light liquid service
and 38 percent of the seals were in heavy liquid service.
The valve liquid service distribution was assumed to be the
same as that of the pumps.  In the Los Angeles Joint Study
Report the stream services of pumps were not reported.   How-
ever, it was found that 59 percent of the valves in liquid
service were in lines processing light hydrocarbon liquids
(lighter than kerosene)  and 41 percent were in heavy liquid
service.   This valve liquid stream service compares favorably
with the Radian pump service distribution.

          The number and stream group distributions of valves
in each process unit were estimated using the procedure
                             293

-------
described  below.  Since  24 percent of  all valves were  found
to be in gas  service  in  the Joint Study,  76 percent  of the
average of 41 valves  per pump or 31 valves per pump  were
assumed to be in liquid  service.


           The remaining  valve distribution for hydrocarbon
vapor service, hydrogen  service and light and heavy  liquid
service was determined as follows:


1)  Valves in liquid service = 31 x  (number of pumps  in the process unit).
2)  Valves in gas service    = Total counted valves—valves in  liquid
                            service (Step 1).  It was assumed that
                            at  least 10% of the valves in a  process
                            unit are in gas stream  service.  The
                            number of valves calculated in this step
                            can amount to less than 107e of the total
                            valves.  If so, the number of gas valves
                            is  set at 10?0 of the total number of
                            valves.

3)  Valves in hydrogen service=3d7o of the total number of valves in gas
                            service for units which utilize  signifi-
                            cant quantities of hydrogen (reforming,
                            HDS, hydrocracking).

4)  Valve liquid distribution =Ratio of pump liquid stream service as
                            determined from this study.
2.7.2.2    Estimation  of C omp r e s s o r  Sea1 Distribution

           The compressor seal emission factors have been
developed for two stream types; predominantly hydrogen streams
and predominantly hydrocarbon streams.   All compressors and
seals were counted and  screened in  those refineries involved
in the current study.   Of the screened compressor  seals, 63
percent  were processing hydrocarbons  and 37 percent were com-
pressing a gas consisting primarily of hydrogen.
                                 294

-------
          The distribution of hydrocarbon and hydrogen service
was done on a unit basis.  That is, the compressors in process
units utilizing substantial amounts of hydrogen in the
processing scheme generally are in hydrogen service.  Thus,
for each unit, the compressors have been classified as either
hydrocarbon service or hydrogen service.

          In the Los Angeles Joint Study, a ratio of 2.14
compressor seals per compressor was noted.  In this report,
a ratio of 2.0 seals per compressor was used to estimate the
number of seals in the various refinery process units.

2.7.3     Fugitive Hydrocarbon Emissions from a Hypothetical
          Refinery

          An estimate was made of the total fugitive hydro-
carbon emissions from six source types in a hypothetical
refinery.  The Texas Gulf Coast Cluster Model Refinery,
developed by Arthur D. Little, Inc.2, was used for this purpose,
The major process units are shown in Table B2-39.  These
process units were developed from the block flow diagram of
the ADL Gulf Coast Model Refinery.  Two atmospheric distilla-
tion units,  two reformers, and a hydrogen plant are included
in the list of process units.  The capacities of each unit are
also shown in Table B2-39; however, they have been included
only for completeness and have little if any bearing on total
emissions.

          An estimate of the total number of.each source type
and their total hydrocarbon emissions are given in Table B2-40.
Where applicable,  the number of sources and the total emis-
sions from sources in the various stream services are also
presented.
                              295

-------
                        TABLE  B2-39.   MAJOR PROCESS UNITS  IN HYPOTHETICAL REFINERY
                ADL  - Texas Gulf Cluster Model:  330,000 BPCD
                     Refinery  Process Unit                                             Capacity,  BPCD

                Atmospheric Distillation #1                                                200,000
                Atmospheric Distillation #2                                                131,000
                Vacuum Distillation                                                        134,000
                Light Ends/Gas  Processing                                                   12,000
                HDU:  Reformer  Feed    '                                                     57,000
                HDU:  Light Gas Oil                                                         11,000
^               HDU:  Heavy Gas Oil                                                         15,000
0%               HDU:  Light -Cycle Oil                                                       15,000
                HDU:  Vacuum Gas Oil                                                        17,000
                HDU:  Coker Naphtha                                                          3,000
                Hydrocracker                                                                15,000
                FCCU                                                                       93,000
                Catalytic Reformer: #1                                                      41,000
                Catalytic Reformer: #2                                                      30,000
                Aromatics Extraction                                                        16,000
                Alkylation                                                                  18,000
                Coker                                                                   .    17,000
                Hydrogen Plant                                                                	

-------
TABLE B2-40.   HYPOTHETICAL REFINERY:  NON-METHANE HYDROCARBON EMISSIONS1
Nuatttr of Valve. In Unit*
Procesa Unit
Atmospheric DUt Illation »1
Acioapherlc Out Illation »2
Vacuum) Dl»t Illation
Light Cndi/Ca* Proceaalog
HDU: Reforaer Feed
KM: Ught Ca« Oil
HDU: Heavy Caa Oil
HDU: Ught Cycle Oil
HDS: Vacuuai Gas Oil
HDS: Cokar Naphtha
ItXD
Hydrocracklng
Catalytic Reforaer No. 1
Catalytic Rcforaer No. 2
Aromatic* Extraction
Alky l«t loo
Coking
Hydrogen Production
CM
Vapor
Service
89
69
50
88
23J
235
235
235
235
235
384
174
180
180
60
274
30
19
1017
Hydrogen
Service
0
0
0
0
101
101
101
101
101
101
0
75
77
77
0
0
0
8
84J
Light
Liquid
Service
281
281
45
77
208
208
208
208
208
208
409
375
391
391
486
403
57
93
4J37
Heavy
Liquid
Service
523
523
405
16
102
102
102
102
102
102
521
307
43
43
54
0
213
62
3122
Tool
893
839
500
181
645
645
645
645
645
645
1314
931
691
691
600
677
300
182
11723
Caa
Vapor
Service
5.25
5.25
2.95
5.19
13.9
13.9
13.9
13.9
13.9
13.9
22.7
10.3
10.6
10.6
1.54
16.2
1.77
1.12
178. 87
Valva EBladona. Ib./hr.
Hydrogen
Service
0.0
0.0
0.0
0.0
1.82
1.82
1.82
1.82
1.82
1.82
0.0
1.3}
1.39
1.39
0.0
0.0
0.0
0.14
15.19
Light
Liquid
Service
6.74
6.74
1.08
1.85
4.99
4.99
4.99
4.99
4.99
4.99
9.82
9.00
9.38
9.38
11.7
9.67
1.37
2.23
108.90
Heavy
Liquid
Service
0.26
0.26
0.20
0.01
0.05
0.05
0.0}
0.05
0.05
0.0}
0.26
0.1}
0.02
0.02
0.03
0.0
0.11
0.01
0.11
Total
12.2}
12.25
4.23
7.05
20.76
20.76
20.76
20.76
20.76
20.76
32.78
20.80
21.39
21.39
15.27
25.87
3.25
3.52
104.41
l*ll«f Valvea
Total
R.V.
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1M
Eal«a Ion*
Ib./hr.
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
1.14
20.52
riaaga*
Total
Flangee
1997
1997
178}
644
2741
2741
2741
2741
2741
2741
4212
195}
29*1
2961
2142
2407
1071
• J»
4522}
tmltttoaf
Ib./hr.
2.24
2.24
1.00
0.36
1.J4
1.5*
l.M
1.5*
1.5*
1.5*
2.1*
l.M
l.M
1.6*
1.20
1.1}
O.M)
O.M
25. J*

-------
              TABLE B2-40.   CONTINUED
ho
^o
CO
ConprwaoTt
Proceaa Unit
ttenapherlc W»tlllatlo« 11
Ate»apharlc Dl.t Illation »2
tacuu*> Dletlllatloo
Light End»/Caa Processing
UDU: kforacr Peed
8W)i Light Cat oil
•Wi Heavy Cae Oil
•Wi U|ht Cycle Oil
BBS: Vacuuai Cat Oil
HDSi Cokar Naphtha
rcco
Brdrocraeklaf
Catalytic lafoTMr Mo. 1
Catalytic Isforaer lo. 2
Arovstlce extraction
Alkrlatton
Coking
•yaroger, Product im
Nuaber
Light
Liquid
Service
IS
IS
2
3
9
9
9
9
9
9
18
17
18
18
2)
18
3
^
206
of Pump Seals
Heavy
Liquid
Service
28
28
20
1
S
5
S
S
S
5
23
1A
2
2
3
0
10
3
1«3
Total .
43
43
22
4
14
14
14
14
14
14
42
31
20
20
2S
18
13
7
372
Pump Seal
Light
Liquid
Service
3.75
3.75
O.SO
0.75
2.25
2. 25
2.25
2.25
2.25
2.25
4.50
4.25
4.50
4.50
5.73
4.50
0.75
1.00
52.0
Bnlmlona
Heavy
Liquid
Service
1.29
1.29
0.92
0.05
0.23
0.23
0.23
0.23
0.23
0.23
1.10
0.64
0.09
0.09
0.14
0.0
0.46
0.14
7.J9
,lb./hr.
Total
5.04
5.04
1.42
0.80
2.48
2.48
2.48
2.48
2.48
2.48
5.60
4.89
4.59
4.59
5.89
4.50
1.21
1.14
59.59
Number of Seala
Hydro-
carbon
Service
2
2
0
4
0
0
0
0
0
0
8
0
0
0
0
0
0
0
16
Hydrogen
Service
0
0
0
0
6
6
6
6
6
6
0
6
6
6
0
0
0
6
60
E.l»8lon».lb./hr.
Hydro-
Cflrbon
Service
2.80
2.80
0.0
5.60
0.0
0.0
0.0
0.0
0.0
0.0
11.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
22.4
Hydrogen
Service
0.0
0.0
0.0
0.0
0.66
0.66
0.66
0.66
0.66
0.66
0.0
0.66
0.66
0.66
0.0
0.0
0.0
0.66
6.60
Drains
Drains
69
69
42
11
24
24
24
24
24
24
65
58
49
49
47
41
28
17
689
^lasloaa
Ib./hr.
4.83
4.83
2.94
0.77
1.68
1.68
1.68
1.68
1.68
1.68
4.55
4.06
3.43
3.43
3.J9
2.87
1.96
1.19
48.23
         Emissions from v/ithin  the battery  limits  of the respective process units.

-------
          It must be emphasized that all of the source counts
and stream service distributions given in Section 2.7 are, at
best, rough estimates.  Even those values based on actual
source count data should be considered rough estimates since
only a small number of process units were counted.  In addi-
tion, source counts for similar types of process units showed
large variations.  Therefore, reliable estimates for emissions
source counts and distributions should be obtained for the
particular process unit in question rather than using the
estimates which are designed to characterize typical refinery
operation.

2.8       REFERENCES

1.   Air Pollution Control District, County of Los Angeles,
    Emissions to the Atmosphere from Petroleum Refineries
    in Los Angeles County, Final Report No. 9, 1958.

2.   Arthur D. Little,  Inc., The Impact of SOX Emissions
    Control on the Petroleum Refining Industry.  EPA Contract
    No.  68-02-1332, 1976.

3.   Powell, D.,  et al., Development of Petroleum Refinery Plot
    Plans, EPA-450/3-78-025,  Pacific Environmental Services,
    June 1978.

4.   Wetherold,  R. G.,  and Provost, L. P., Emission Factors
    and Frequency of Leak Occurrence for Fittings in Refinery
    Process Units.  Interim Report, EPA-600/2-79-044,  Radian
    Corporation, Austin,  Texas, February 1979.
                             900

-------
                           SECTION 3
                 COOLING TOWERS AND WASTEWATER
                       TREATMENT SYSTEMS

3.1       COOLING TOWERS

3.1.1     Methodology

          Hydrocarbon emissions  from  cooling  towers were
determined from hydrocarbon material  balances  around  each
tower.  Water from two  sources  enters a cooling  tower:  make-
up water and the hot water from  process heat  exchangers.
Water leaves the tower  as vapor  from  the top  of  the tower,
as cooled water returning to  the process heat  exchangers,
and as blowdown.  Drift and windage losses  also  occur but  they
are insignificant in relation  to these other  factors.   The
water balance is schematically  illustrated  in  Figure  B3-1.
The hydrocarbon balance is therefore:

      HC, ,   + HC . ,    = HC:   ,    + HCL,,   .    +  HC,,
       Inlet    Makeup     Outlet    Blowdown    Evaporation

          The make-up rate is  controlled to exactly balance
blowdown plus evaporation; however, the hydrocarbon content of
the make-up water was negligible.   The above  balance  may
therefore be written:
                              300

-------
Inlet H20
Outlet H20
                         Evaporative Losses
Make-Up H20
                            Slowdown
Figure  B3-1.  Cooling tower  water balance,
                    301

-------
           HP           =  f H P     —" T-J P     ^  — HP
            Evaporation     Inlet    'Outlet     'Blowdown
or, to be more  specific:
Evaporative Emissions, Ib/hr = (Circulation, GPM) (8. 33 — 7) (ppm. -ppm   )
                                               gal     in    out
                           (Blowdown, GPM) (8.33 Ib/gal) (ppmQ  )
                                                   (10-')
At some refineries,  the blowdown rate was not  available,  and
was therefore  eliminated from the calculations.

          Two  analysis methods were used to  determine the
hydrocarbon  content  of the inlet and outlet  streams.   With
the first method,  the total organic carbon  content (TOC)  was
determined with the  use of a Dohrman Total  Organic Carbon
Analyzer.  Quality  control studies reported  in Appendix C
questioned the accuracy of this technique.   Accuracy  at low
TOC levels is  important since a difference  of  1 ppm in the
organic carbon content of the inlet and outlet streams can be
equivalent to  as much as 2 - 5 Ib/hr of hydrocarbon emissions.

          All  nonmethane hydrocarbons were  represented as
hexane.  Since the  readout of the TOC analyzer is in  ppm
organic carbon, the  following conversion was used;
                                                     8fi
           Total Hydrocarbons    = Total Organic Carbon   (—)
                          ppm         °          ppn  72
                               302

-------
where  the  ratio  (86/72)  represents the molecular weight of
hexane over  the  molecular weight of the carbon contained  in
the hexane.

           With the  second analytical method, water samples were
analyzed by  purging only volatile organics from the water.
Values obtained  by  the purge method were found to be much more
precise in absolute value than those obtained by  TOG analysis
although a bias  of  about - 15 percent of the concentration was
observed.  Both  methods  were used on the water samples from
one of the refineries.

           In order  to  compensate for the difference in precision
of the two analytical  methods and the different number of sam-
ples analyzed for each tower, a weighting technique was used  to
determine  mean values  for groups of tower estimates.   The tech-
nique used is as follows:
            M    v i    WAXA + VB + Vc
            Mean Value =	—
                               WB
 .     t,    Number of Analyses for Tower A     .,...„
where, W  = -7-	;	j	r——:	n    ,  ,— = tfeignting Factor,  and
       a   (Variance for Analytical Method
           used  for Tower A)

      X. = Average value reported for Tower A.
The variance for each  analytical method was estimated by pooling
the between-day variances  for  the individual towers evaluated
using each method.   These  variances include variability due to
analysis, sampling,  and  process  variations.  The pooled values
were as follows:
                              303

-------
          Method      Standard Deviation     Variance
          TOG              3.61 ppm            13.0
          Purge            0.118 ppm           0.014

The  confidence  intervals for the average emission estimates  were
computed  by  first calculating the variance between towers  for
each method  and  then pooling these calculated variances  (o2) as
follows:
                     TOC (aTOC) + WPurge  (°Purge)
                           W „  + W
                            TOC   Purge
where,   W   = Sum of weighting factors for TOC towers.
         J. Utj

      W     = Sum of weighting factors for purge towers
Confidence intervals for  the  estimated mean values were then
calculated using:
                  Mean Value -
                                number of towers
3.1.2     Results

          Thirty-one cooling towers were sampled, eight of which
had statistically  significant emissions.  Streams from a  total
of 21  towers were  analyzed by TOC and streams from 15 towers
were analyzed  by purging.   Therefore, stream's from five towers
were analyzed  by both TOC analysis and purge analysis.  The
purge  values were  judged to be the more precise of the two
methods  used and they were chosen to represent the towers
analyzed by both methods in the calculations of mean emissions
for all  towers.  A summary of the emissions and the A ppm values,
                               304

-------
defined as the difference between the inlet and outlet
hydrocarbon concentrations, for these towers is given in
Table B3-1.  Raw data for the above values are given in
Table B3-2 and calculations for the above in Tables B3-3
through B3-11.

          The magnitude of the sampling/analytical variation
caused some problems in quantifying the low levels of emis-
sions from the towers.  In Appendix B it was reported that the
standard deviation for replicate TOC analyses was 4.2 ppm.  If
two tests were run each day the standard deviation for the
average would be 3.0 ppm.  The between day standard deviation
(after averaging replicate samples and analyses) reported here
using the TOC analyses was 3.61 ppm.  Since this is close to the
analytical standard deviation when replicate samples are aver-
aged, it appears most of the variation in the TOC data is due
to the analytical technique in the homogenity of replicate
samples.

          The analytical standard deviation for the purge method
was reported in Appendix B as 80 percent of the concentration
(averaging about 0.1 ppm).  The between day standard deviation
calculated here was 0.12 ppm so again most of the variation in
the purge data is due to the analytical method.  But,  since the
levels reported by the purge method were at least an order of
magnitude smaller than the TOC values,  the absolute variation
is much smaller for towers evaluated using the purge technique.

          Since sampling was only done over five to seven days
for most towers, and emissions from the towers were found to be
relatively low,  it was not surprising to get some negative
values as estimates of emissions for a particular tower.   The
negative estimates are as follows:
                             ins

-------
                       TABLE B3-1.    SUMMARY OF  COOLING TOWER EMISSIONS
        Cooling Towers Sampled
        Cooling Towers Having Statistically Significant Emissions
        Range of Cooling Tower Circulation Rates	
                                        31
                                        714 to 58,000 GPM
                                           Results (estimate with 95%  confidence  interval)
Mean Cooling Tower A HC Concentration
     From Emitting Towers
          Both Analyses
0.101 ± 0.19 ppm
     From All Towers Sampled
          TOC Analysis
          Purge Analysis
          Both Analyses3

Mean Cooling Tower Emissions
     From Emitting Towers
          Both Analysis

     From All Towers Sampled
          TOC Analysis
          Purge Analysis
          Both Analyses
1.25 ± 1.24 ppm
0.0130 ± 0.0299 ppm
0.0173 ± 0.058 ppm
0.00088 ± 0.0016 lb/1000 gal
0.0124 i 0.0123 lb/1000 gal
0.000108 ± 0.00025 lb/1000 gal
0.000151 ± 0.00051 lb/1000 gal
Range of Measurable Emissions    0.36  to  8.46  Ib/hr
(negligible,  0.29 ppm)
(0.01,  2.5 ppm)
(negligible,  0.043  ppm)
(negligible,  0.075  ppm)
(negligible,  0.0025  lb/1000  gal)
(0.0001,  0.025  lb/1000  gal)
(negligible,  0.000261 lb/1000 gal)
(negligible,  0.00066 lb/1000 gal)
 Calculated for 15 towers analyzed  by  TOC  only  plus  16  towers  analyzed by purge.  The 5 towers
 analyzed by both methods were  represented only by the  purge values, considered more accurate
 than TOC values.

-------
            TABLE B3-2.   RAW  DATA  FOR  COOLING TOWER  CALCULATIONS

Number
1
2
3

4
5
6
7
8
9
10

11
12
13
14
15
16
17
18

19
20

21
22

23

24
25

26
27
28
29
30
31

Service
Catalytic Cracker
Catalytic Cracker
I.sonax

MEK Deuaxlng
Atmospheric Distillation
AronaLlca Extraction
Alky la t Ion
Aror-aclcs Reformer
Hydrocreatlng
Alkane

Vacuum Distillation
Fuel Reformer
Crude Distillation
Gas Hydrogenatlon
Gas Hydrogenatlon
Hydrocreating
Crude Distillation
Hydrogen Plant
and Hydrocrackcr
Catalytic Cracker
Catalytic Cracker

Phenol Treating
Gas Plant and Crude
Distillation
Hydrotreatlng

Naphtha Hydrotreatlng
Cat Reformer

Aikylatlon
1 TCC Cracking,
1 Fluid Coker,
1 Crude
Cat Cracker
Distillation
Analytical
Method
Purge
Purge
TOC
Purge
TOC
TOC
TOC
TOC
TOC
TOC
TOC
Purp.e
TOC
TOC
TOC
Purge
Purge
TOC
TOC
Purge

TOC
TOC
Purge
TOC
Purge

TOC
Purge
TOC
TOC
Purge
Purge
Purge
Purge
Purge
TOC
TOC
1
n*
1
1
2
1
2
2
1
1
1
2
2
1
2
1
2.
3
1
2
1
1

1
3
1
-
1

2
1
1
-
-
1
1
1
1
2
1
Pay 1
A PPM
0.030
0.040
-2.7
-0.021
0
2.0
-0.1
4 . 3
1.2
-2.7
-6.4
0.049
-1.2
3.4
3.2
0.076
0.034
-1.1
-
0.013

0.7
3.8
-0.026
-
0.019

-1.4
-0.012
-
-
-
0.082
0.006
0.011
0.024
1.9
-3.4

n
1
1
2
1
4
2
1
1
2
2
1
2
1
4
1
1
2
1


1
2
1
2


2
1
1
2
1
1



3
1
Day 2
A PPM
0.014
0.011
3.4
0.060
3.6
1.7
1.0
3. 6
0.5
-1.6
-9.8
0.009
4.5
1.9
4.0
0.013
0.052
-0.1
0.8


0.6
1.9
0.149
0.5


5.2
0.007
0.6
5.4
-0.037
-0.001



1.5
0.6

n
1
1
2
1
2
4
1
1
3
-
1
2
1
4
1
2
3
1


1
2
1
4


2
1
1
2
1
1



2
1
Day 3
A PPM
-0.020
0.012
0.3
-0.047
2.6
1.0
-1.4
1.4
5.3
-
0.063
6.5
-1.5
5.6
0.00
0.019
2.1
0.3


0.5
-4.2
0.160
2.1


0.4
-0.712
0.8
3.3
-0.083
-0.010



-1.6
1.4

n
1
1
2
1
2
2
1
1
2
2
1
2
1
2
1
2
1
1


1
2
1
2


2
1
1
2
1
1



2
1
Day 4
A PPM
-0.010
0.007
0.4
0.012
3.6
-6.7**
-1.4
-2.3
4.3
-9.9
0.020
28.4
1.6
5.3
-0.012
0.018
7.7**
3.9


0.8
4.4
0.176
1.8


-0.1
0.097
-2.7
-3.3
0.016
0.009



-2.9
-0.6

n
1


1
2
2
1
1
2
2
1
2
1
2
1
1
2
1


1
1
2
2


2
1
1
2
1
1



5
1
Day 5
A PPM
-0.002


0.299
0.9
2.9
-4.4
1.7
-3.5
6.0
0.043
14.7
-0.9
1.6
-0.003
0.047
-1.4
0.2


0.3
5.2
0.197
1.4


3.2
-0.156
0.3
8.4
0.006
0.002



-2.1
-1.0
Day 6 Day 7
n A PPM n A PPM





2 1.5 2-1.6
1 -0.7
1 1.9 1 -0.1
1 0.5


2 0.8 2 16.9
1 -2.9 1 0.4



1 -0.2
1 0.4 1 0.6


1 -1.0 1 0.5







1 -1.3 1 -1.3






2 -6.0 2 -5.4
1 0.2 1 1.1
 * n - Number of analyses per sample
*• outlier (Dlzoo's criteria, a - 0.5)

-------
     TABLE  B3-3.
CALCULATION  OF EMISSIONS FOR
INDIVIDUAL TOWERS
Tower
Number
1
2
3

4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

21
22
23

24
25
26
26
27
28
29
30
31
Analysis
Method
Purge
Purge
TOC
Purge
TOC
TOC
TOC
TOC
TOC
TOC
TOC
Purge
TOC
TOC
TOC
Purge
Purge
TOC
TOC
Purge
TOC
TOC
Purge
TOC
Purge
TOC
Purge
TOC
TCC
Purge
Purge
Purge
Purge
Purge
TOC
TOC
Average
A PPM
0.002
0.018
0.35
0.061
2.14 •
1.25
-1.17
1.61
0.51
0.38
-5.03
-0.008
10.09
0.29
3.94
0.015
0.034
-0.14
0.83
O.C13
-0.03
2.22
0.131
1.45
0.019
1.46
-0.155
-0.80
3.45
-0.025
0.016
0.006
0.011
C.024
-2.09
-0.24
Standard
Deviation
0.020
0.015
2.49
0.139
1.63
1.53
1.82
2.12
1.46
3.69
7.53
0.046
10.49
2.19
1.63
0.035
0.016
1.37
1.57

0.72
3.79 •
0.090
3.70

2.68
0.324
1.26
4.96
0.045
0.037



3.05
1.64
Student
t Test
0.24
2.00
0.24
0.87
2.63**
1.32**
-1.43
1.86**
'1.03
0.23
-1.16
-0.35
2.35**
0.32
4.83**
0.84
4.36**
-0.20
1.19

-0.10
1.17
2.92**
3.61**

1.09
-0.96
-1.42
1.20
-0.94
0.88



-1.67
-0.36
Circulation
(CPM)
1,000
5,000
58,000
58,000
5,250
5,000
5,500
5,900
6,900
9,000
1,300
1,800
714
6,200
3,597
2,850
21,150
25,000
6,700

3,900
48,000
48,000
3,500

5,000
5,000
10,000
15,000
15,000
29,600



8,570
8,300
Slowdown
(CPM)


155.0
155.0
28.5
10.0
15.7
12.5
24.8

30.0
30.0
1.4
23.3
9.7



14.3

15.4
131.7
131.7


50.0
50.0
16.9
106.7
106.7




17.1
106.0
Emissions
(Ib/hr)




6.47^4.44
3.73±3.27

5.5b±5.24




4.30+3.20

8. 46+3.15

0.3610.18





3.14*2.32
3.03±1.56



~








**  Statistically significant
                          303

-------
        TABLE  33-4.  CALCULATION OF  AVERAGE DIFFERENCE IN

                      HYDROCARBON CONCENTRATION  (APPM) FOR

                      EMITTING TOWERS
Emitting
Tower
4
5
7
11
13
15
20
21
Total
Total Number
of Analyses
12
16
7
14
14
7
6
10
Analysis
Method
TOC
TOG
TOC
TOC
TOC
Purge
Purge
TOC
Weighting Factor
A PPM v)i
2.14
1.25
1.61
10.09
3.94
0.034
0.131
1.45
.02
1.23
0.54
1.08
1.08
500.
428.6
0.77
934.2
(A PPM)(W.)
2.33
1.54
0.87
10.90
4.2
17.0
56.1
1.12
94.06
           .   .         PPM)(Wi)   94.06   n ._.
Estimated Emission = ——„ ••——- = -  ,-  - = 0.101  ppm




Average Weighted  A PPM for Emitting Towers = 0.101 ± 0.19 ppm
                                 309

-------
 TABLE B3-5.   CALCULATION  OF AVERAGE HYDROCARBON  CONCENTRATION
               DIFFERENCE  (A  PPM) FOR TOG ANALYSIS  SAMPLES
Tower
Number
3
4
5
6
7
8
9
10
11
12
13
16
17
19
20
21
23
24
25
30
31
Total
17o 1- -1 ma t- orl T
Total Number
of Analyses
8
12
16
6
7
7
12
8
14
7
14
11
7
7
10
10
10
7
8
18
7
'm^CC^rmo = 	 	 	
A PPM
0.35
2.14
1.25
-1.17
1.61
0.61
0.38
-5.03
10.09
0.29
3.94
-0.14
0.83
-0.03
2.22
1.45
1.46
-0.80
3.45
-2.09
-0.24
PPM) (Wi)
Weighting Factor
Wi
.62
.92
1.23
.46
.54
.54
.92
.62
1.08
.54
1.08
.85
.54
.54
.77
.77
.77
.54
.62
1.38
.54
15.84
"•88 = . „
(A PPM) (W.j_)
0.22
1.98
1.54
-0.54
0.87
0.33
0.35
-3.09
10.90
0.16
4.26
-0.12
0.45
0.02
1.71
1.12
1.12
-0.43
2.12
-2.88
-0.13
19.88

ij J U ' t'lT*- U^U UUl.i.^k'^l/U.^      rv. -        ICQ/    J- • ^ -*




Average Weighted A PPM for  All Towers = 1.25  ± 1.24
                               310

-------
 TABLE B3-6.   CALCULATION OF  AVERAGE HYDROCARBON CONCENTRATION
               DIFFERENCE (A PPM)  FOR PURGE ANALYSIS SAMPLES
Tower
Number
1
2
3
10
14
15
18
20
22
23
25
26
27
28
29
Total
n - Z
-------
  TABLE B3-7.   CALCULATION OF  AVERAGE HYDROCARBON CONCENTRATION
                DIFFERENCE  (A PPM)  FOR TOC ANALYSIS AND PURGE
                ANALYSIS SAMPLES
Tower
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Total Number Analysis
of Analyses Method
5
4
5
12
16
6
7
7
12
5
14 .
7
14
7
7
11
7
1
7
6
10
1
5
7
4
5
1
1
1
18
7
Purge
Purge
Purge
TOC
TOC
TOC
TOC
TOC
TOC
Purge
TOC
TOC
TOC
Purge
Purge
TOC
TOC
Purge
TOC
Purge
TOC
Purge
Purge
TOC
Purge
Purge
Purge
Purge
Purge
TOC
TOC
Weighting Factor
A PPM W±
0.002
0.018
0.061
2.14
1.25
-1.17
1.61
0.61
0.38
-0.008
10.09
0.29
3.94
0.015
0.034
-0.14
0.83
0.013
-0.03
-0.131
1.45
0.019
-0.155
-0.80
-0.025
0.016
0.006
0.011
0.024
-2.09
-0.24
357.14
285.71
357.14
.923
1.23
.46
.54
.54
.92
357.14
1.08
.54
1.08
500.00
500.00
.85
.54
71.43
.54
428.57
.77
71.43
357.14
.54
285.71
357.14
71.43
71.43
71.43
1.38
.54
(A PPM)(W.)
.71
5.14
21.78
1.98
1.54
-.54
.87
-33
.35
-2.86
10.90
.16
4.26
7.50
17.00
-.12
.45
0.93
.02
56.14
1.12
1.36
-55.36
-.43
-7.14
5.71
.43
.79
1.71
-2.88
-.13
                                           4155.31
71.72
       PPM)(Wj)    71.72  _
       ZW        4155.31
Average Weighted A PPM for All Towers = 0.0173 ± .0585
                               312

-------
    TABLE  B3-8.   CALCULATION OF EMITTING  TOWER  EMISSION RATE
Tower
Number
4
5
7
11
13
15
20
21
Analysis
Method
TOC
TOG
TOC
TOC
TOC
Purge
Purge
TOC
A PPM
2.14
1.25
1.61
10.09
3.94
0.034
0.131
1.45
lb/1000 gal
0.0213
0.0124
0.0160
0.1004
0.0392
0.00028
0.00110
0.0144
X = Weighted A PPM for emitting towers = 0.101  =0.19  PPM





     r- •   •           ,-^£(A PPM)(Wj)  for TQC  samples \ /TOC Conversion \ a
Mean Emission Rate = (X)?>. P'^'/T, (	r,	 i	       17   _
                        \Z(A PPM)(Wjj  ror all  samples/ V   .Factor     /





                       /£(A__P_PM) (Wj)  for purge  samples\/Purge Conversion'


                       VI(A PPM)(Wi)  for all samples   A     Factor







                   => (0.101 ± 0.19)(|^||)(9.946)  +  (0.101 r 0.19)






                     (Z3 ».!_ \ (Q 33F-3)

                     ^94.06M       ;






                   = 0.000878 ± .00165 lb/1000  gal
  TOC Conversion Factor = (8.33)(1.194)(10~3)  =  9.946E-3



  Purge Conversion Factor = (8.33)(10~3)  =  8.33E-3
                                   313

-------
      TABLE  B3-9
CALCULATION OF EMISSION RATE FOR  TOC
ANALYSIS  SAMPLES
Tower
Number
3
4
5
6
7
8
9
10
11
12
13
16
17
19
20
21
23
24
25
30
31
X = Weighted A PPM
Mean Emission Rate


A PPM
0.35
2.14
1.25
-1.17
1.61
0.61
0.38
-5.03
10.09
0.29
3.94
-0.14
0.83
-0.03
2.22
1.45
1.46
-0.80
3.45
-2.09
-0.24
for TOC Analysis Samples = 1.25 ± 1.24
= (X) (TOC Conversion Factor)3
= (1.25 ± 1.24)(9.946E-3)
= .0124 ± .0123 lb/1000 gal
Emission Rate
(lb/1000 gal)
0.0035
0.0213
0.0124
-0.0116
0.0160
0.0061
0.0038
-0.0500
0.1004
0.0028
0.0392
-0.0014
0.0083
-0.0003
0.0221
0.0144
0.0145
-0.0080
0.0343
-0.0208
-0.0024




3 TOC Conversion Factor =  (8.33)(1.194)(10~3) = 9.946E-3
                                314

-------
      TABLE  53-10.  CALCULATION OF EMISSION RATE FOR  PURGE
                     ANALYSIS  SAMPLES
Tower
Number
1
2
3
10
14
15
18
20
22
23
25
26
27
28
29
A PPM
0.002
0.018
0.061
-0.008
0.015
0.034
0.013
0.131
0.019
-0.155
-0.025
0.016
0.006
0.011
0.024
Emission Rate
(lb/1000 gal)
0.000017
0.00015
0.00051
0.000067
0.00013
0.00028
0.00011
0.00110
0.00016
-0.00130
-0.00021
0.00013
0.00005
0.000092
0.00020
X = Weighted A PPM for Purge Analysis Samples =» 0.0198 ±  0.000219

Mean Emission Rate = (X)(Purge Conversion  Factor)3

                  = (0.0130 ± 0.0299)(8.33E-3)

                  = 0.000108 ± 0.00025  lb/1000 gal
                                 315

-------
  TABLE B3-11.
                  CALCULATION OF  EMISSION RATE  FOR TOG ANALYSIS
                  AND PURGE ANALYSIS SAMPLES
Tower Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Analysis Method
Purge
Purge
Purge
TOC
TOC
TOC
TOC
TOC
TOC
Purge
TOC
TOC
TOC
Purge
Purge
TOC
TOC
Purge
TOC
Purge
TOC
Purge
Purge
TOC
Purge
Purge
Purge
Purge
Purge
TOC
TOC
A PPM
0.002
0.018
0.061
2.14
1.25
-1.17
1.61
0.61
0.38
-0.008
10.09
0.29
3.94
0.015
0.034
-0.14
0.83
0.013
-0.03
0.131
1.45
0.019
-0.155
-0.80
-0.025
0.016
0.006
0.011
0.024
-2.09
-0.24
lb/1000 sal
0.000017
0.00015
0.00051
0.0213
0.0124
-0.0116
0.0160
0.0061
0.0038
0.000067
0.1004
0.0028
0.0392
0.00013
0.00028
-0.0014
0.0083
0.00011
-0.0003
0.00110
0.0144
0.00016
-0.00130
-0.0080
-0.00021
0.00013
0.00005
0.000092
0.00020
-0.0208
-0.0024
X = Weighted  A PPM for All Towers = 0.0207  r 0.325
     „ .       „  _     /^
Mean Emission Rate =  (X)
,
(A
                            PPM)(Wj)  for  TOC samples\ /TOC Conversion
                                     - -  --
.-           i
for all  samples
\  /
  I
/  \
                                                          ^
                                                          Factor
                                                                    /
                       /I(A PPM)(Wj) for purge  samples\ /Purge
                       \I(A PPMKWi) for all  samples  / (
                                                             Conversion\
                                                            Factor      /
                     (0.0173 ± .00585)(.^-SS)(9.946E-3) + (0.0173 ±  0.0585)

                     (|p||)(8.33E-3)  - 0.000151 ± 0.00051 lb/1000 gal
* TOC Conversion Factor = (8.33)(1.194)(10~3) = 9.946E-3
b Purge Conversion Factor =  (8.33)(10~3)  =  8.33E-3
                                  316

-------
Analytical       Number of       Towers with Negative Estimate
  Method           Towers            Number        Percent
TOC                  21                 7           33.3
Purge                15                 2           13.3
Combined             31                 8           25.8

          The negative estimates are due primarily to the ana-
lytical variation.  In order not to bias the average emission
calculation for cooling towers,  these negative values have been
used rather than setting the estimate to zero.

          The mean emissions for the 16 towers analyzed by TOC
only and the 15 analyzed by purge were 0.00015 lb/1000 gal with
957, confidence interval of = 0.00051 (negligible, 0.00066 lb/
1000 gal).  Mean emissions for the eight towers with statistic-
ally significant emissions were 0.00088 ± 0.0016 lb/1000 gal.
(negligible, 0.0025 lb/1000 gal).  Mean emissions for the 21
towers analyzed by TOC were 0.0124 ± 0.0123 lb/1000 gal (0.0001,
0.025 lb/1000 gal).  For the 15 towers analyzed by the purge
method, mean emissions were 0.000108 ± 0.00025 lb/1000 gal
(negligible, 0.00026 lb/1000 gal).

          Values  obtained by the purge method were much more
precise  than those obtained from TOC measurements.  This fact
is  illustrated in Figures B3-2 through B3-4.  Figure B3-2 is a
graph of the results of the TOC analyses; Figure B3-3, the
results  of  the purge analyses.  When the results are combined
on  Figure B3-4, the difference in precision of the two methods
is  apparent.
                               317

-------
A PPM
      10.0 - 10.49
      8.50 - 8.99
      6.50 - 6.99
4.SO - 4.99

3.50 - 3.99


2.50 - 2.99

1.50 - 1.99
      -5.0 - -5.49
                                      56   7   8   9   10

                                      Number of Cooling Towers.
                                                      i
                                                      11
12   13
-I
 14
                                                                 02-5210-1
  Figure  B3-2.   Display of  A ppm hydrocarbon  concentration
                   from TOC analyses.
                                   318

-------
        0.150 - 0.159





        0.100 - 0.109





        0.050 - 0.059


        0.020 - 0.029

        0.000 - 0.009

        0.020 - 0.029

        0.040 - 0.049
      -0.090 -  -0.099 —
      -0.140 -  -0.149
      -0.190 -  -0.999 	
                         I    I    I    111*1*    I

                         123456   7   8   9   10
                                Number of Cooling Towers
                                                                 02-5209-1
Figure  B3-3.   Display  of  A  ppm hydrocarbon concentration
                  from purge  analyses.
                                  TI O

-------
A PPM
10.50 -  10.99  	




  8.50 - 8.99  	




  6.50 - 6.99  	




  4.50 - 4.99

  3.50 - 3.99


  2.50 - 2.99

  1.50 - 1.99


  3.50 - 0.99


 0.00 - -0.49


 -1.0 - -1.49

 -2.0 - -2.49


 -3.0 - -3.49




 -5.0 - -5.49  	
                                                            Key
                                                        T.O.C.  Sampling Method

                                                        Purge Sampling Method
                      1   I   3   4   5   6   7   8   9   10   11  12   13   14  15

                                    Number of Cooling Towers


                                                                       02-5211-1
   Figure  B3-4.   Display of A  ppm hydrocarbon  concentration
                     from  all  analyses.
                                      320

-------
          Because of the varying precision of  the methods,  the
upper confidence limit for each estimate may be a more useful
value than the estimated average for many purposes.  These
values which give a "worst-case" estimate for  the magnitude
of hydrocarbon emissions from cooling towers are as follows:

       Analytical        "Worst-case" Estimate of Average
      Method Used          Emissions from Cooling Towers
      TOG  '                     0.025 lb/1000 gal
      Purge                     0.0003 lb/1000 gal
      Combined                  0.0007 lb/1000 gal

          We recommend the use of the combined emission factor
(0.0007 lb/1000 gal) for estimating cooling tower hydrocarbon
emissions.  Thus, a cooling tower with a circulation rate of
50,000 GPM would have the following emissions rate.
          O.OOOTlb)  f50,000_gal]  f60_min]   , ,
           lOOQ  galj  I - min*  J  iTr" j = 2'1

This emissions rate is relatively  small compared to other
sources of emissions from refineries .

3.2       WASTEWATER SYSTEMS

          Wastewater treatment is usually accomplished in three
stages:  primary, secondary, and tertiary treatment.  Primary
treatment facilities are principally involved in physically
upgrading the wastewater by removal of oil, oily sludge, and
grit.  Thus, primary treatment facilities will be the principal
sources of fugitive hydrocarbon emissions from the waste treat-
ment plant.  Oil removal equipment includes API separators,
corrugated plate interceptors, flocculation units, and dissolved
                               321

-------
air flotation units.  The latter are also used for suspended
solids removal.

          API separators, corrugated plate interceptors, and
dissolved sir flotation (DAF) units were sampled to determine
atmospheric emissions of hydrocarbon.  The emissions were esti-
mated from a hydrocarbon material balance around each unit.
There is a great deal of scatter and uncertainty in the data
and results, particularly in the determination of emissions
from the oil phase.  Negative values are even indicated for
some emissions.  The one conclusion that can be made regarding
these results is that the material balance approach, as imple-
mented in this program, is inadequate for defining emission
rates.  The composition of the incoming stream varies widely,
and grab samples are not generally representative.  For this
reason,  emission factors for oil-water separators and DAF units
were not developed from experimental results.

          Table B3-12 summarizes the average emissions per
gallon of material throughput for all sampled devices by
refinery.  Tables B3-13 through B3-20 show daily emissions
for each device sampled at individual refineries.
                              322

-------
               TABLE  B3-12.   DESCRIPTION OF SAMPLED  DEVICES  - WASTE OIL/WATER SYSTEMS
ho
Average Hydrocarbon Emissions
Refinery
1
2
3
it
5
6
7
8
Device
Rectangular API Separator
Circular DAF
Rectangular API Separator
Corrugated Plate Interceptor
Corrugated Plate Interceptor
Rectangular API Separator
Forebay Covered
Surge Tank
Two Rectangular Separators
Rectangular DAF
Rectangular API Separator
Rectangular API Separator
Rectangular DAF
Circular Separator
Circular DAF
Refinery
Size1
Large
Large
Large
Large
Large
Small
Large
Small
Covered/
Uncovered
C
U
C
C
C
U
U
U
U
U
U
U
U
U
Losses from
Oil Phase,
Ib/gal slop oil
1.6 + 2
0.073 1 0.4
1.84 + 1.11
-1.5 + 0.08
-0.11 + 0.06
0.12 + 1.3
0.45
-1.1 + 0.74
0.14 + 0.4
0.48 + 0.61
Losses from
Water Phase,
Ib/gal water
2,7x10"" +
8.2xlO~5 +
-3.0LxlO~6
—
2.2xlO~" +
1.6xlO"s +
-2.4xlO~5 H
' 1.5xlO~" +
6.5x10"" +
1.1x10"" +
3.4x10"" +
1.4xlO"5 +
1.8x10""
1.5xlO~"
+ lxlO~s

2.7x10""
3xlO~6
h 2.7x10 s
2.4xlO~"
1.9xlO~"
1.3x10 "
1.8x10""
1.7xlO~5
          'Small refinery £ 50,000 bbl/day capacity.  Large refinery > 50,000 bbl/day capacity.

-------
                  TABLE  B3-13.  WASTEWATER SYSTEM HYDROCARBON  EMISSIONS AT  REFINERY 1
u>
ISJ
•p-

Day
Sampled
1
2
3
4
5
Separator
Oil Phase,
Ib/gal slop oil
0.20
0.36
-0.34
a
	 b
Emissions
Water Phase,
Ib/gal water
2.6xlO~"
4.2x10 "
1.2x10 "
c
c
DAF Emissions
Water Phase
Ib/gal
-l.OxlO^14
2,7x10 5
2.0x10 "
2.0x10 "
__b
            Bay not sampled
            Points eliminated by Dixon's Outlier Criteria.

            Invalid samples.
                  TABLE  B3-14.  WASTEWATER SYSTEM  HYDROCARBON EMISSIONS AT  REFINERY 2
Day
Sampled
1
2
3
4
5
Separator
Oil Phase,
Ib/gal slop oil
0.75
2.23
2.54
0.59
3.07

Water Phase,
Ib/gal water
-3.4xlO~7
2.6x10 6
-1.8x10 5
3,7x10 6
a
           L)ay not sampled.

-------
       TABLE B3-15.   WASTEWATER SYSTEM HYDROCARBON EMISSIONS AT  REFINERY  3
    Day
  Sampled
  Corrugated Plate  Interceptor Emissions from Oil Phase	
CPI A (Ib/gal slop  oil)	CPI B (Ib/gal slop oil)
    1
    2
    3
         -1.5
         -1.46
         -1.52
-0.05
-0.15
-0.12
Average of  two analyses.
       TABLE B3-16.   WASTEWATER SYSTEM HYDROCARBON EMISSIONS AT  REFINERY 4


Day
Sampled
1
2
3
6
7


Oil Phase,
Ib/gal slop oil
-0.05,6

-1.27
1.84
-0.04
a
Separator
Water Phase,
Ib/gal water
-1.8xlO~5
4.6x10 "
5.4x10 "
9.9x10 5
2.3x10 5
.Average of multiple analyses.
 Points eliminated  by Dixon's Outlier Criteria.

-------
                  TABLE B3-17.   WASTEWATER SYSTEM  HYDROCARBON  EMISSIONS AT  REFINERY  5
Day
Sampled
1
2
5
6
7
8
16
Surge Tank
Emissions,
Ib/gal slop oil
b
b
b
b
b
b
0.45
Separator Water3
Phase Emissions
Ib/gal
1


1
1
1

.9xlO~5
	 "
c
.6xlO~5
.2x10 5
.6x10 5

DAK Water
Phase Emissions
Ib/gal
5
-2
-1
-6
-6
1

.2x10 6
.1x10 5
.7x10 5
.5x10 5
.2x10 5
.3x10 b

          .Sum of two separators.
           Day not sampled.
           Points eliminated by Dixon's Outlier  Criteria.
to
                  TABLE B3-18.   WASTEWATER SYSTEM HYDROCARBON EMISSIONS AT  REFINERY 6

Day
Sampled
1
2
3
4
5
6
16
17
18
19
Separator Emissions
Oil Phase3
Ib/gal slop oil
b
b
b
b
b
b
-1.3
0.24
-0.93
-2.4

Water Phase3
Ib/gal water
7.6x10""
1.04x10""
2.6x10 5
5.9x10 5
-1.6x10 5
-8.0x10 6
5
b

b
b

           Average of two analyses.
           Day not sampled.

-------
              TABLE  B3-19.   WASTEWATER  SYSTEM HYDROCARBON EMISSIONS AT  REFINERY 7

Day
Sampled
1
3
4
5
6
19
22
Separator
Oil Phase,
Ib/gal slop oil
b
0.5
-0.22
	 b
0.13
__b
b
Emissions
Water Phase,
Ib/gal water
-3. 4x10'"
__b
1.2xlO~ 5
8,4x10 5
-1.6x10 5
_b
b
DAF Water3
Phase Emissions
Ib/gal
5.27xlO~5
2.37x10 5
-6.6x10 5
-1.3x10 5
2,2x10 "
4,32x10 *
1.2x10 *
          Average of multiple analyses.
          Day not sampled.
OJ
TABLE B3-20.  WASTEWATER SYSTEM HYDROCARBON  EMISSIONS AT REFINERY  8
Day
Sampled
1
3
4
5
6
Separator Emissions
Oil Phase,
Ib/gal slop oil
-0.22
1.58
0.5
0.11
0.4

Water Phase,
Ib/gal water
8.9xlO~ 5
3.3x10 *
2.3x10 *
3.9x10 "
6.4x10 "
DAF Water
Phase Emissions
Ib/gal
3.5xlO~5
3.5x10 5
5.8x10 6
-5.8x10 6
1.9x10 6

-------
                             SECTION 4

                         STACK EMISSIONS
           Table  B4-1 lists  the stacks  sampled  during this
prograrr. along with a brief  description of the  associated  refin-
ery process or unit.  Tables  B4-2 through B4-56  contain the
detailed results  of analyses  for specific components in the gas
streams.   These  are grouped according  to the kind of processing
units  the stacks  are associated with.
             TABLE B4-1.   SUMMARY OF  SAMPLED STACKS
        Stack Number
        Description
            1
            2
            3
            4
            5
            6
            7
            8
            9
            10
            11
            12
            13
            14
            15
            16
            17
            18
            19
            20
Resin  Fume Oxidation Unit Stack
Crude  Process Heater Stack
Crude  Process Heater Stack
Crude  Process Heater Stack
Crude  Process Heater Stack
Crude  Process Heater Stack
Tail Gas Treating Unit (SRU)  Stack
Sulfur Recovery Unit Stack
TCC CO Boiler Stack
Fluid  Coker CO Boiler Stack
FCCU CO Boiler Stack
FCCU CO Boiler Scrubber Stack
FCCU CO Boiler Stack
FCCU CO Boiler Stack
FCCU CO Boiler Stack
FCCU CO Boiler Stack
FCCU CO Boiler Scrubber Stack
FCCU CO Boiler Stack
Fluid  Coker Scrubber
FCCU Compressor Exhaust Stack
                                 328

-------
          Tables B4-2 through B4-5 include the sampling results
of emissions from a resin fume oxidation unit.

          The sampling results for five heater stacks are given
in Tables B4-6 through B4-11.  These units were fired with mixed
refinery fuel gas and fuel oil.  No external emission controls
were in use during any of the sampling activities.

          The stack gases from the tail gas treating processes
of two sulfur recovery units were sampled and analyzed.  And,
the results are given in Tables B4-12 through B4-17.  The
accuracy of the hydrocarbon and S0y analyses of the gas from
Stack No. 7 is uncertain.  The concentration of hydrocarbons
in the gas is very high.  At the same time, almost no S02 was
found.   No satisfactory explanation of these results has been
put forward.

          Tables B4-18 through B4-23 give the sampling results
for emissions from the CO boiler stack of a Thermofor Catalytic
Cracking (TCC) unit.

          Tables B4-24 through B4-29 show the sampling results
from the CO boiler of a fluid coking unit.  This unit was also
equipped with a scrubber upstream of the CO boiler.  And,
sampling results for the inlet and outlet of the scrubber are
given in Tables B4-30 through B4-35.   Hydrocarbon samples were
the only results obtained at the scrubber outlet.   Hence, the
effect of the scrubber or the CO boiler alone cannot be evalu-
ated for any speciescexcept hydrocarbons.  A comparison of data
from these tables does, however, show the combined effect of the
scrubber and the CO boiler on reducing emissions of particulates,
methane and nonmethane hydrocarbons,  aldehydes,  HCN, and NH3.
N0x emissions, however, were higher at the CO boiler outlet.
                              329

-------
                     TABLE  B4-2.   STACK  GAS AND  PARTICULATES01  - RESIN  FUME  OXIDATION  UNIT
           Stack  Time
  Total Gaa     Avg   Avg
   Sampleb	 Meter  Stack Avg
Meter   STP  .  Temp  Temp  Dry
(ft1)  
-------
                               TABLE  B4-4.   SULFUR SPECIES  -  RESIN  FUME OXIDATION  UNIT
LO
LO


Stack
1








Time
1907-2007
1930
2103-2203
2150
2246
1443
1610
SOs8
ppn lb/SCFC
(Vol)
0.29 6.11x10"'
	 	
0.56 1.15x10"'
—
	 —
—
—
so,b
ppm Ib/SCF^
(Vol)
27.97 4.63x10"'

19.44 3.22x10"'
	 	
	
—
—

PP"
(Vol)

23.99

19.05
12.59
10.47
15.14
S02d H2S
Ib/SCF" ppn Ib/SCF"
(Vol)

3.97x10 '
	 	 ' 	
3.15x10"'
2.09x10"'
1.74x10"'
2.51x10"'
COS CS,
ppn lb/SCFC ppa lb/SCFC
(Vol) (Vol)

	 	 	 	
	 	 	 	
	
	
	
	
           bIPA Iraplnger, Ba(C10Oz Tltrallon.
           61 ll?0 Traplngera, Ba(C10<.)z TlLratlon.
           dCorrcctcd to 70°F and 29.92 Inches Hg, dry baale.
           CC analysis of grab samples yielded comparable results for SOi; other species not detected.

-------
                           TABLE  B4-5.  ALDEHYDES*  - RESIN FUME OXIDATION  UNIT
LO
LO
Gas Sample
Volume (£)
Stack Time (55°F)
1 2016-2116 12.0
2215-2240 12.0
2305-2340
(STP)R
11.82
11.82

Aldehyde
Collected
(us)
1275
300

Gaseous Aid. Conc.entration.sc
Volume Cd STP By Weight @ STP
(yJi) ppm(Vol.) (yg/Ji) (Ib/SCF)
1025.5 86.76 107.86 6.74x10"
241.3 20.41 25.38 1.59x10"


6
6

           Sample Rate - 200 mJi/min.  Bisulfite method used.

          Corrected to 70°F and 29.92 inches Hg.
          "Dry basis.

-------
   TABLE B4-6.    STACK  GAS  AND  PARTICULATES   -  CRUDE  UNIT  PROCESS  HEATERS
Total Can
Sample n






OJ
OJ
OJ
Stack Time
4 1119-1446
1742-1916
5 1255-1730
1155-1433
2 1142-1512
2 1230-1424
3 1929-1943°
Meter
(ft1)
36.68
35.42
39.17
54.17
31.21
24.14
5.83
AVR
Meter
STP Temp
(SCF)C (°F)
36 . 1 3
35.12
17.82
52.74
13. 18
24. 57
5.83
84
81
100. 1
95.4
89
78
80
Avg
Stack
Temp
418
420
492
490
345
344
350
Partlculaten
Avg
Dry
(HU)
27.56
26.04
28.06
28.87
27.59
27.92
30.11
Moisture
Collected
87.
78
719.
271.
139.
96.
74,
7
5
.6
.9
.3
.5
,8
Fract Ion
o . i n \
0.094
0.714
0. 196
0.166
0.157
0. 168
Filter Probe
0.0491 0
0.0807 0.
0.0247 (1
0.0181 0
0.0049 0.
0.0049 0
0.0016 0
.0374
.0490
.1092
.3925
.0790
.0165
.0127
Imp. fl
0.077?
0 . 0000
0.0182
0.0090
0.0592
0.0'. 70
0.0002
Crnln
Loading
Total (gr/SCF)
0.
0,
0,
0
0,
0,
0
,1639 0.070
1297 0.057
.1521 --d
.4196 --A
.0911 0.0411
,0634 0.0398
.0143 0.0378
Avg
Stnck
Velocity
(ft/sec)
58.01
58.03
17.70
76.39
16.63
11.05
10. 19
I
I.sokln.
102.6
99.0
19.6
30.1
9/.6
107.5
114.6
 Sampled with LSI EPA-5 train.
 Total gas flow rates:  Stack No. 2 - 3.26 x 10* SCKM; Stack No. 3 - 2.34  x 10e SCFM; Stack No.  4 - 7.03 x 10* SCKH; Stack No. 5 -
 2.78 x 10s SCFM; Stack No. 6 - Undetermined.
CCorrccted to 70°F and 1'9.92 Inches Hg.
 Partlculate sampling done under nonisokinetir  conditions.  Oraln loading  not reported.
 F.lectrlcol problems curtailed sampling.

-------
                    TABLE B4-7.
u>
METHANE/NONMETHANE HYDROCARBONS3 AND FIXED
GASESb - CRUDE UNIT PROCESS HEATERS
No nme thane ('one en t rat Jons
M r-l r r l c '^s H*-'xanc)

Stack
4
6
6
Amblrnt
5



1

:)
Ambient
2
a
Byron
«y
Time (ppm)
1458
1730 0.08
1955
1957 0.10
1439 0.47
1453 0./.4
1803 0.25
1813
2127 --£
2130
2130 3.6/i

1145 2.60
1520 0.90
1100 1.80
1230 0.59
1612 0.038
1921 0.0
1927 0.867

1608 0.0
Uclcht B>
(lb/SCF)J
5.55x10''
6.94x10-'
3.26x10'"
3.05x10'°
1.9 xl()'e
2.73x10''

1.92x10''
6.68x10'"
1 .33x10''
4.37x10'"
2.37x10-'
0.0
5.41x10'"

0.0
' Volume By UMp.ht
(ppm)
0.13
0.17
0.78
0.7/1
0.45
6.59

/, .7
1.63
3.26
1.07
0.057
0.0
1.31

0.0
hydrocarbon analyzer using flame
(ppm)
3.55
0.51
5.30
4.33
5.78
5.50
8.11

21.0
24.6
10.0
18.8
4 . 74
1.54
0.305

2.76
tont7al Ion
c
By Volume CO-
(Ib/SCF)11 (ppm)
2.46x10''
3. 54x10'"
3.68x10"'
3.00x10''
3.91x10''
4.07x10"'
6.0flxlO~'

1.55x10''
1.82x10'*
7.40x10''
1.39x10''
2.96xlO~'
9.61x10'"
1.90x10-'

1.72x10''
detector .
Fl.qchcr Model 1200 gas part 1C loner.
1.11
0.16
1.65
1.35
1.76
1.83
2.73

7.07
8.28
3.37
6. 33
1 . 33
0.432
0.086

0.774
m (
7.6 9
5.5 9
10.0 5
10.3 4

12.0 2
8.3 5
14.5 2
11.2 3
11.7 6
11.7 6


11.1 6
Corrected to 70°F and
^Results
quest lonable .
Flxrd C.isrs
(Dry Basis)
07
Z)
.2
.5
.3
.8

.0
.8
r.
.5
.2
.0
_

.3
29.
not
N2
(*)
76.0
73.5
80.1
80.7

79.4
80.2
79.5
79.5
82.1
82.0
	

82.6
CO 11 2
m m
0.0 --"'
0.0 --
0.0
o.o — e

e



0.0 0.0
0.0 0.0
	

0.0 0.0
Mol . lit.
(Dry)
27.56
26.04
28.53
28.67

28.15
27.96
29.44
28.31
10.12
—
	

28.29
92 Inches MC.
reported.

-------
                     TABLE  B4-8.    SULFUR  SPECIES -  CRUDE  UNIT  PROCESS  HEATERS


Stack Time
2 1342-1532
1230-1424
3 1923-1943

6 1637
1918
2000
5 1255-1730
1520
1155-1433
4 1319-1446
1510
1742-1916
1959
1310
1445
SO,'
ppm In/SCF*-
(Vol)
0.51 1.063x10-'
0.70 1. '.36x10-'
0.146 3.03 xlO-'




34.14 7.06 xlO-'

8.25 1.68 xlO-«
0.93 1.93 xlO-'
—
0.51
1.05 xlO-'
—
—
S02b (EPA-5) S02 (HP)6 H2S6 COS* CS2°
ppm Ih/SCF1- ppra lb/SCFf ppm lh/SCFC ppm lb/SCFC ppm lb/SCFC
(Vol) (Vol) (Vol) (Vol) (Vol)
2.33 3.854x10-'
1.97 3.248x10-'
2.11 3.479x10-'

0.2 3.0x10- -' - -A - -\
O.O/. 7.0 xlO-' —A - -° - -A
0.3 5.0x10-' -A - -A - -''
82.62 1.4 xlO-'

108.84 1.8 xlO-5
328.3 5.4 xlO-'
302.0 5.01x10-'
314.1 5.2 xlO-'
302.0 5.01x10-'
251.2 4.17x10-'
275.4 4.-J6xlO-5
*IPA IraplnRpr, Ba(C10«)2 Tltratlon.
 67. Ilj02 Iroplnger Ba(C10,)l Tltratlon.
dSTP = 70°F and 79.92 Inches Hf>.
 No Rprclea detected.
 Caseous SOj determined using a Heulltt Packard Gas Chronatograph equipped with a flame photonetrlc detector.

-------
                          TABLE B4-9.   ALDEHYDES - CRUDE UNIT  PROCESS HEATERS
U)
U)
Stack
2a
3a
6a

4d


5d


Time
1453-1553
1620-1723
1646-1746
2021-2121
1149-1255
1326-1426
1524-1624
1620-1720
1223-1328
1400-1500
Gas Volume i_!g
(£) 0 SIP Aldehyde
12
12
12
12
12
11
11
10
12
11
.0
.0
.0
.0
.88
.70
.68
.55
.47
.51
98.
102.
120.
145.
0.
0.
0.
1.
2.
0.
7
0
79
66
79
385
94
84
95
0
Q
Concentration
ppm(Vol . )
6
6
8
9
0
0
0
0
0
0
.62
.84
.10
.76
.049
.026
.065
.14
.19
.0
5.
5.
6.
7.
3.
2.
5.
1.
1.
0.
Ib/SCF
12
29
29
58
83
06
03
xlO
xlO~
xlO~
xlO~
xlO~
xlO~
xlO~
7
7
7
7
9
9
9
086xlO~8
480xlO~
0

8

          Bisulfite method.
          STP = 70°F and 29.92  inches Hg.
          Dry Basis.  Calculated as formaldehyde.
              method.

-------
            TABLE  B4-10.  OXIDES OF  NITROGEN  - CRUDE  UNIT PROCESS HEATERS
                                                         NOX (as N02) Concentration3
    Stack                Time                          ppm (Vol.)
                        1825                              98.0               1.17xlO~5

                        2136                              87.7               1.04xlO~5
.Dry basis.
 STP =  70°F and 29.92  inches Hg.

-------
                      TABLE  B4-11.   HCN  AND NH3  -  CRUDE UNIT PROCESS HEATERS
00
-1
Stack Time





a
b
c
d
e
5° 1630
1000
2d'e 0951-1112
1452-1621
3d'e 1541-1825
HCN
ppra (Vol
0.8
0.9
<1 xlO~
4.16x10"
<1 xlO~
Dry basis.
STP = 70°F and 29.92 inches Hg.
Infrared analysis at 3.01u(HCN)
NHs sampling performed using LSI
Concentration3
.) Ib/SCF"
5.49xlO~8
6.18xlO~8
3 6.5x10.""
2 2.91xlO~9
3 6.5xlO~n
and 10.4u(NH3). Path
train with impingers
NHs Concentration3
ppm (Vol.) Ib/SCF b
0.95 4.12xlO~8
1.5 6.49xlO~8
<0.3 <1 xlO~8
<0.3 <1 xlO~8
<0.3 <1 xlO~8
length = 20.25m; cell temperature = 75°C.
containing 0.1N foSOu.
„_ 	 4 — -: _ -: .~ ~ 1 Q n 1 ~ £ OM M«r*u nAAu

-------
u>
                                   TABLE  B4-12.
METHANE/NONMETHANE  HYDROCARBONS3  AND
FIXED  GASESb  - SULFUR RECOVERY UNITS


Methane Concentration



By Welgtu Ib/SCF" By Volume
Stack
8


Ambient


7
Ambient
Time
1455
11*0
1515
1505
1556
1613
1645
1908
(wm)
.213
1.30
0.062
0.822

3135
4120
0.43

1.33x10"'
8.11x10 "
3.87x10"'
5.13x10 '

2.10x10 "
2.76x10""
3.22x10 '
(ppm)
.321
1.96
0.094
1.24

5075
6669
0.78
Nonmc thane Co
(As He

By Welgl
(ppm)
4.745
51.065
4.87
1.155

7170
6650
1.40

it

7
3.
3
7,

*
*
1.

Ih/SCF

.96x11)"
.19x10
.04x10
.21x10

.81x10
.46x10"
.05x10
nc<
xar


7
C
7
•

<<
ii
7
jnt rat ton
ie)

By Volume
(ppm)
1.35
14.32
1.37
0.32*

2159
2003
0.47
Fixed Cases
(Dry Basla)
CO 0
tt> (%)
5.1 8.7
4.9 9.3
5.1 8.6

14.0 1.4



N
U>
86.2
85.8
86.3

83.2



CO 11 Mol. Wt.
(X) (%) (Dry)
0.0 0.0 27.03
0.0 0.0
0.0 0.0

1-4 -- 30.30



                       NOTE:  Gas flow rate from Stark No. 8 = 2.02 x 10* SCFH; this value provided hy plant personnel.
                       "hyron hydrocarbon analyzer using flame lolziitlon detector.
                       hFlschcr Model 1200 gas partltloner.
                        Dry basis.
                        STP = 70°F and 29.92 Inches Hg.
                        CResultfl qurstlonable, not reported.
                        Nor detectable, less than 0.01 ppm hy weight.

-------
                      TABLE  B4-13.    SULFUR  SPECIES -  SULFUR RECOVERY  UNITS
so,"
ppm Ib/SCF^
Stack Time (Vol)
8 1005-1035 0.61 1.263xlO"7
1115-1145 0.72 1.481x10-'
1318
1452
1553
1020
1055
1238
7 1644
1700
1540
S02b
S02
ppm Ib/SCK1" ppm
(Vol) (Vol)
319.72 5.282x10-'
315.18 5.207x10-'
444
491
528
582
509
510
_
0
0


.0
.0
.0
.0
.0
.Q

.2
.2


7.
8.
8.
•).
R.
8.

1.
3.

lb/SCFc


34xlO"5
llxlO-5
72x10-'
62xlO-5
41x10"'
42x10-'
	
0x10"°
0x10 "

ppm
(Vol)


- Not
- Not
- Not
- Not
- Not
- Not


—
HjS
Ib/SCF1-


Dotected -
Detected -
Detected -
Detected -
Detected -
Detected -
	
	
—
COS
ppm
(Vol)


0.6
0.5
0.4
0.45
Not Run
0.5
8.6
3.0
7.7
lb/SCFl


9.30x10"'
7.75x10-"
6.0 xlO-8
7.0 xlO-"
Not Run
8.0 xlO-9
1.3x10" s
5.0x10 '
1.2x10 6
CSj
PP"
(Vol)


1.
2.
2.
1.
Not
1.
15.
0
12,


3
9
6
1
Run
4
0
.04
.0
Ib/SCF1-


2.55x10"'
5.69x10-'
5.1 xlO-'
2.2 xlO-'
Not Run
2.7 xlO-'
2.91x10"'
8.0x10 '
2.36x10 k
"iPA Implnger, Ba(C10i,)2 Tltratlon.
 61 11,02 Implnger, Ba(C10»)2 Tltratlon
^STP -  70°F and 29.92 Inches Hg,  dry basis.
 No species detected.
 Rmultfl questionable, not reported.

-------
                 TABLE B4-14.   ALDEHYDES3 -  SULFUR  RECOVERY UNITS
                             Gas Sample         Aldehyde             Concentratiotf

                             Volume (£)         Collected
<-_  i           v                                                                  - .  ,„-„
Stack          Time             @ STp£             ^  .         ppm(Vol.)           Ib/SCF







  8         1525-1625            12.0              59.7           4.01             3.11xlO~7






            1120-1220            12.0              61.5           4.13             3.20xlO~7






            1315-1415            12.0              57.0           3.83             2.97xlO~7
aSample Rate  =  200 m£/min.  Bisulfite Method




bSTP = 70°F and 29.92  inches Hg.




CDry basis.   Calculated as formaldehyde.

-------
                       TABLE  4-15.   OXIDES OF NITROGEN - SULFUR RECOVERY UNITS
                                                                  NOX (as N02) Concentration3
                                                                                           "
Stack
Time
ppm (Vol.)
                                                                                    lb/SCFb
   8

   7
1732

1626
   16.7

   15.0
                                                                                    1.98xlO~6
                                                                                    1.70xlO
                                                                                           ~6
S3
         Dry basis.
         STP = 70°F and 29.92 inches Hg.

-------
UJ
•p-
UJ
                                TABLE B4-16.  HCNa -  SULFUR  RECOVERY UNITS
              „                          _.                                    HCN  Concentrations
              Stack                      Time
                                                                     ppm (Vol.)           lb/SCFc
                                       1551-1625                     <1 x 10  3          <6.5 x 10
                                       1305-1340                    <1 x 10  3          <6.5 x 10
          a
           Sampling performed  using LSI train with 3  impingers containing 250 ml  of  2N NaOH each.

           Dry basis.

          CSTP = 70°F  and 29.92  inches Hg.

-------
                        TABLE  B4-17.   NH33  -  SULFUR RECOVERY UNITS
                                                                   NH3  Concentration
   Stack
                                                           ppm(vol.)
                           1505-1540                        <0.3                    <1 x 10
                           1405-1440                        <0.3                    <1 x 10  8
 Sampling performed  using LSI train with impingers containing 0.1 N  HjSOi,.
 Dry Basis.
CSTP = 70°F and 29.92  inches Hg.

-------
                   TABLE B4-18.
STACK  GAS AND  PARTICULATES'
- TCCU CO BOILER STACK
Total Cns
Sample
Stack Time
9 1118-1450
1011-1125
1018-1 110
1503-1615
Meter
(ft1)
40.38
40. 32
27. 14
11.90
(SCF)C
19.27
38.80
26.73
31.25
Avg
Meter
Temp
82
81
76
79
Avg
Stack
Temp
446
458
474
458
Partlculntca
Avg
Dry
(MV)
78.47
28.38
28.56
28.17
Hot nture
Collected
106
107.
78
68
.0
9
.3
.9
Fraction
0.113
0.116
0.122
0.095
Filter
0.0363
0.0402
0.0305
0.028?
Probe
0.0484
0.0028
0.0457
0.0099
Imp. 11
0.0000
o.oooo
0.0220
0.0284
Total
0.0847
0.0430
0.098?
0.0665
Grain
Loading
(gr/SCF)
0.0333
0.0171
0.0567
0.0328
Avg
Stack
Velocity
(ft/sec)
51.67
Vt .77
36.69
40.%
I
Isokln.
105.6
101. 3
1115. 1
10V 9
 Sampled with LSI EPA-5 train.

bTotal gas flow - 3.10 x 10* SCFM

'corrected to 70°F and 29.92 Inches Hg.

-------
                  TABLE  B4-19.
METHANE/NONMETHANE  HYDROCARBONS'
GASESb  - TCCU CO BOILER STACK
AND FIXED



Stack Time
9 1345
1405
1525
1535
Ambient
UJ 9 1710
-P-
0^ 9 1415
1425
1535
1545
0930
1050
1410
1415
1520
1525
Ambient
9 1530

Methane
By Volume
(ppm)

4.6

2.32

6.22


0.24
0.0




0.0

0.0

0.87

Concent rat ion
lb/SCFa


3.4x10 '

1.71xlO~7

4.66xlO~7


1.8x10""
0.0




0.0

0.0

6.5xlO~8


By Volume
(ppm)

8.2

4.13

11.3


0.43
0.00




0.00

0.00

1.6
Noruae thane
(As
By Weight
(ppm)

30.7

27.83

9.36


1.38
0.0




1.96

0.85

0.99
Concentration
Hexane)
lb/SCFd By


2.26xlO~6

2.05xlO~6

7.01x10"'


1.01x10"'
0.0




1.44x10"'

6.2x10 "

7.4x10"'
c

Volume
(ppm)

10.2

9.21

3.15


0.455
0.0




0.646

0.28

0.33


C02
(Z)
10.8

11.4




10.5


11.5
11.3
10.8
10.0

11.4





02
(Z)
7.0

6.6




7.4


6.6
6.9
7.3
6.7

6.5




Fl_xed Canes
N2
(Z)
76.3

76.6




75.7


76.4
76.7
76.3
76.3

76.2





CO
(Z)
0.0

0.0




0.0


0.0
0.0
0.0
0.0

0.0





H2
U)
0.0

0.0




0.0


0.0
0.0
0.0
0.0

0.0





Mol. Wt.
(Dry)
28.35

28.58




28.19


28.56
28.66
28.45
27.90

28.44



rByron hydrocarbon analyzer using flame lonization detector.
 Fischer Model 1200 gas partitloner.
 Dry basis.
 STP - 70' and 29.92 inches Hg.

-------
LO
                                     TABLE  B4-20.    SULFUR  SPECIES  -  TCCU  CO  BOILER  STACK
so,a

Stark
9




Time
1338-1450
1013-1125
1018-1130
1503-1615
ppm
(Vol)
	
0.66
1.5
0.48
lb/SCFc

	
1.4x10-'
3.1x10"'
9.9x10-"
S0ib S02d H2S COS CSj
pp«
(Vol)
603.5
923.6
670.4
464.3
lb/SCFc ppm lb/SCFc ppm Ib/SCF c ppn lb/SCFc ppm ]b/SCFc
(Vol) (Vol) (Vol) (Vol)
9.99x10-'
1.53x10-"
1.11x10-*
7.68x10-'
            IPA  Iraptnp.er, Ba(C10»)2 Tltratlon.   S02 not reported on Run II  (2/6/78) due  to transfer of In^lnger contents yielding higher thnn expected SO?  results.
           bResults calculated as SO2.
                   ___________________ _
               H20j Implnger, Ba(C10«)2 Tltrntlon.
            STP - 70°F and 29.92 Inches Hg.
            Sulfur species (S02 , H2S, COS, and CS2) not reported due to problems with Hewlett Packard GC.

-------
                  TABLE  B4-21.  ALDEHYDES3 - TCCU CO BOILER STACK
Gas Sample Aldehyde „ c
v i,,m- rn r-llP-i-Pi Concentration
_ , _. Volume (Jc) Collected , .
Stack Time @ ^ (yg) ppm(Vol..)
9 1415-1515 12.0 121.9 8.17
1605-1705 12.0 121.8 8.16
1430-1530 12.0 117.0 7.84
0940-1040 12.0 129.0 8.65
UJ
-P-
°° 1120-1220 12.0 204.0 13.70
1415-1515 12.0 231.0 15.50
lb/SCFD
6.34xlO~7
6.34xlO~7
6.08xlO~7
6.71xlO"7
1.06xlO~6
1.20xlO~6
 Sample rate = 200 mH/min.  Bisulfite Method Used.




DSTP = 70°F and 29.92  inches Hg.




"Dry basis.  Calculated as formaldehyde.

-------
                        TABLE  B4-22.   OXIDES  OF NITROGEN -  TCCU CO  BOILER  STACK
            Stack
Time
                                                                  NOX (as NOz)  Concentration3
ppm (Vol.)
lb/SCF°
                                  1543
                                120
                      1.43x10
                                  1308
                                123
                      1.46x10
LO
                                  1405
                                  1555
                                121
                                125
                      1.44x10  5
                      1.48x10
                                                                                            -5
                                  1137
                                126
                      1.51x10  5
          Dry basis.
         bSTP = 70°F and 29.92 inches Hg.

-------
                  TABLE  B4-23.   HCNa AND  NH3a - TCCU CO BOILER STACK
HCNb Concentration
Stack Time ppm (Vol.)
1645-1715 d—
9 1431-1502
1336-1406
1112-1142
Ul
o a
Sampling performed using LSI Method
b~ , .
Dry basis.
lb/SCFc Time
1603-1634
1330-1440
1251-1322
1155-1225
5 train and acidic or basic impinger
NHs Concentration
ppm (Vol.)
1.96
2.75
2.21
2.70
solutions, as
lb/SCFc
8.61 x 10~8
1.21 x 10~7
9.72 x 10~8
1.19 x 10~7
required .
Corrected to 70°F  and 29.92 inches Hg.
 Not  detectable,  less than 0.005  ppm in solution.

-------
       TABLE B4-24.    STACK  GAS AND PARTICULATES*  -  FLUID COKER  CO BOILER  STACK
                                                                          PnrtlculHten
                                                                                                   Avg
                                                                                                  Stack
              Total Gas     Avg   Avg	
               Sample"	 Mctet  Stuck  Avg   Moloture                                      Crnln
             Meter  STP    Temp  Temp   Dry   Collected                                    Loading   Velocity     Z
Stack  Time    (ft1)  (SCF)C  (°F)  (°F)   (HV)     (g)    Fraction  Filter  Probe   Imp. Jl  Totol  (gr/SCF)  (ft/sec)   laokln
     10  2035-2145  38.33  37.16   115

        1135-1245  18.99  38.41   109
                               57?   29.61    207.0

                               570   30.17    206.4
0.208   0.0242 0.6500  0.0187  0.6929   0.2862

0.701   0.0263 0.1511  0.0000  0.179'.   0.0/21
/2.47     108.^

72.11     10').9
      Sampled with LSI F.PA-5 train.

     Notal gas  flow - 2.4'. x 10s SCFN.

     CCorrected  to 70"F and 29.92 Inches Hg.
                 TABLE  B4-25.
                                 METHANE/NONMETHANE  HYDROCARBONS3 -  AND  FIXED
                                 GASESb -  FLUID  COKER  CO  BOILER STACK
Methane

Stack Tlmr.
10 1255
1600
1820
1330
1515
1630

(ppm)
7.78
3.7
1.62
—
2.7
24.0
B
Concent rat lonsc
y Weight
A
(lb/SCF)"
6
2
I

2
1
.02x10 '
-9x10 '
.25x10
—
.1x10"'
.84x10-*
By Volume
(ppm)
I/.. 5
6.9
3.01
—
5.0
44.4
Nonmothane
(As
Concentrations rl . ,,
,, . Fixed Cases
Hexane) ,_ _ . >
By Weight
(ppm)
73.9
19.5
32.9
—
6.04
3.93
(Ib/SCF)
•i.
1.
2.
-
4.
3.
72x10 *
51x10 6
55xlO"s
-
63xlO~'
OlxlO-7
Ky Volume C02 0? Nj CO H2
(ppm) (I) (Z) (X) (Z) (Z)
25
6
11
_
2

.7
.78 11.5 5.49 81.4 0.0
.4
11.7 4.79 83.9 0.00
.08
.35 12.2 4.9 81.0 0.0
Mo I.
. Ut.
(Dry)

29

30,

29

.61

.17

.62
 Byron hydrocarbon analyzer unlng flame lonlzatlon detector.
cFlscher Model 1200 gas partltloner.
.Dry banlg.
 STP - 70* and 29.92 inches Hg.

-------
                              TABLE  B4-26.    SULFUR  SPECIES  -  FLUID  COKER  CO  BOILER  STACK
          Stack
             10
        Time

        1400
        1605
       2035-2145
       1135-1245
                                SO,"
                           ppm
                          (Vol)
                          0.31
                          1.9
                                  Ih/SCF '
6.5xlO_
4.0x10


ppm
(Vol)
_.
	
233
229
h
S02
Ib/SCF c

._
	
3.86xlO"5
3.79x10 5


ppm
(Vol)
106
314



S02
Ib/SCF c

5.07xl(f 5
5.20x10 5



HjS
ppm Ib/SCF c
(Vol)
d
d


                                                                                                           COS
                                                                                                                               CS2_
ppm
(Vol)
d
d
Ib/SCF c
—
ppm Ib/Sl
(Vol)
d
d
LO
Ln
to
.IPA Implngvr, Ba(C10»)2 Tltratlon.
C6Z H20  Implngcre, Ba(C10,)2 Tltratlon.
dCorrected to 70°F and  29.92 Inches Hg, dry bonls.
 No species detected.

-------
                          TABLE B4-27.  ALDEHYDES -  FLUID  COKER  CO BOILER STACK
LO

Ln

LO
                                          Gas  Sample        Aldehyde               _,            c
                                          tr  i     /n\a       „ , ,  '   ,               Concentration     _
           c..  ,            „.              Volume  (£)        Collected       - rn— : — r ---   .
           Stack           Time                   g            ^  .          ppm(Vol.)           lb/SCF
            10         1500-1600             25.0             91.4           2.94             2.28xlO~7





                       1610-1710             25.0             70.4           2.27             1.76xlO~7





                       1710-1810             25.0            106.5           3.43             2.66xlO'7
            CO Boiler  Stack samples flow = 417 mJ,/min.   Bisulfite

            method  used.




          bSTP = 70°F and 29.92 inches Hg.


          Q

           Dry basis.   Calculated as  formaldehyde.

-------
                      TABLE B4-28.   OXIDES OF NITROGEN  -  FLUID COKER CO  BOILER
                                                                  NOX  (as N02)  Concentration3

             Stack                 Time                          ppra  (Vol.)              lb/SCFb
               10                  1515                             209                2.49x10 5





                                   1630                             239                2.85xlO~5
LO
         a
          Dry basis.


         bSTP = 70°F and 29.92 inches Hg.

-------
                      TABLE B4-29.   HCN  AND NH3  - FLUID COKER  CO BOILER STACK
HCN Concentration 3'
Stack
10
Time
1515-1545
1540-1610
ppm (Vol.)
3.15
2.56
lb/SCFc
2.20 x 10~7
7
1.78 x 10"
Time
1701-1733
1705-1735
a ,b
NHa Concentration
ppm (Vol.)
<0.05
1.79
lb/SCFc
<2.3 x 10~9
8
7.85 x 10
££     3Sampling performed using LSI Method 5 train and  acidic or basic impinger solutions, as  required.
Cn     fj
       Dry basis.
      c
        orrected to  70°F and 29.92 inches Hg.

-------
                             TABLE B4-30.
STACK GAS AND PARTICIPATES   - FLUID  COKER
SCRUBBER -  INLET AND OUTLET
Total Can Avg


Stack
19

B


Time
2015-2)15

1 130-1210
Sara]
Meier
(ft1)
24.2'>

37.59
pic Meter
STP 1' Temp
(SCF)C (°F)
71.% 86

37.53 /9
Avg
Stack Avg
Temp Dry
(°F) (MTJ)
10R9 29.09

109R 79.09
Par t iculates
Moisture
Collected

115.9

199. 1


Fraction
0.1 87

0.201


Filter
O.RI65

1.0r,2H


Probe
0. 1013

0.1972


Imp. Hi
0.0401

0.6/70


Total
0.9601

1 .9220
Grain
Loading
(gr/SCF)
O.C.209

0.7902
Avg
Stack
Velocity
(Ft/sec)
113.10

174. 19


Z
Isnkln
102.0

I0h. 7
                Sampled wUh LSI F.PA-5 train.

                "Total gas flow • (scrubber inlet) - 1.77 x 10s SCFH

                CCorrected to 70"F and 29.92  Inches Hg.
LO
                     TABLE  B4-31.   METHANE/NONMETHANE HYDROCARBONS  AND  FIXED GASES
                                       - FLUID  COKER SCRUBBER -  INLET AND OUTLET
Nonnethane Concentrations '
Methane Concentrations"^
Source
19 - Inlet A

19 - Outlet A

19 - Inlet B





(ppm)
3360
3310
3400
3350
—
2050
3292
—
—
3250
By Weight
(lh/SCF)a
2.53xlO~"
2.49x10 *
2.56xlO~'1
2.52x10 '
—
1. 54x10""
2.48x10 "
—
—
2.45xlO~"
By Volume
(PP")
6110
6020
6180
6090
__
3730
5985
—
—
5910
(ppm)
394
402
382
3nf,
—
285
31B
—
—
636
(An llexanc)
By Weight
(Ib/SCF)
2.54xlO~5
3.03x10 b
2.88xlO~'1
2. 76x10 5
__
2.15x10 5
2.39x10 5
—
—
4.79x!0"5

By Volume CO?
(|>pra)
113
136
129
124
9.5
96.4
108
9.46
10.05
215
Fixed
(Dry
Oj
(Z)




2.11


2.45
2.13

Cases
Basis)
N, CO
(T) (%)




81.6 6.9


78.9 7.22
76. fl 7.06



1I2 Hoi. Wt. .
(7.) (Ory)




7.9.64


29.05
28.58

          .Byron hydrocarbon analyzer using flnmo lonlzatlon detector.
           Fischer Model 1200 gas partltloner.
           Dry basis.
           STP - 70"F and 29.92 Inches Hg.

-------
LO
                  TABLE B4-32.   SULFUR  SPECIES -  FLUID  COKER SCRUBBER -  INLET  AND OUTLET


Source

19
Inlet
B

«> • en b
SO] SO2
ppm Ib/SCF ppn Ib/SCF
Tine (Vol) e STP (Vol) ? STP
2015-2115
1130-1230
1633
1824
2018
S02 HjS COS CS2
ppm Ib/SCF ppa Ib/SCF ppa Ib/SCF ppn Ih/SCF
(Vol) (3 STP (Vol) £ STP (Vol) g STP (Vol) g STP


	 	 	 	 	 	 	
— 	 __ 	 	 	 	
— — __ —
         ||lPA lapinger. Bo(C10.)i Tltration.
         ^61 H;O; luplngers, Ba(C10>)2 Titration.
         ^Corrected to 70*F and 29.92 Inches Kg, dry basis.
          No species delected.

-------
                  TABLE B4-33.   ALDEHYDES -  FLUID COKER SCRUBBER -  INLET AND OUTLET
.CO
Ln
Co
Gas Sample
c, , T- ' Volume (£)a
Stack Time @ STpb
19- Inlet B 1644-1744 12.0
1838-1938 12.0
Aldehyde „ . c
_ , , , Concentration
LoJ locted /T. -i \ T i_ /r*/-n-.
/ , ppm(Vol.) Ib/SCF
(Mg)
180.0 12.10 9.37xlO~7
102.0 6.84 5.31xlO~7
          Gas flow through  impingers = 200 mfc/min.  Bisulfite method used.


         DSTP = 70°F and 29.92 inches Hg.


         'Dry basis.  Calculated as formaldehyde.

-------
               TABLE B4-34.   OXIDES  OF NITROGEN - FLUID COKER SCRUBBER - INLET  AND OUTLET
U)
Ul
                                                                    NOX  (as NOz) Concentration3
               Stack                 Time                         ppm (Vol.)            Ib/SCF @ STPb
            19  -  Inlet B             1645                             4.8                5.70x10 7


                                    1650                            22.6                2.69xlO~6
            Dry basis

           bSTP = 70°F and 29.92  inches Hg.

-------
         TABLE  B4-35.   HCN  AND NH3  - FLUID COKER SCRUBBER  -  INLET AND  OUTLET

                             HCN Concentration3'15                          NH3 Concentration a •b
Stack        Time        ppra (Vol.)    Ib/SCF @ STPC         Time        ppm (Vol.)    Ih/SCF @  STPC

  19         1530-1600       141.3       9.87 x 10~6        1700-1730       175.4        7.71  x 10~6
 Inlet                                            6                                             _6
  B         1530-1600       102.5       7.16 x 10~         1700-1730       195.8        8.61  x 10
3Sampling  performed using LSI Method  5  train and acidic or basic  impinger solutions, as required.
b.
 Dry Basis.
Corrected  to  70°F, and 29.92 inches Hg.

-------
          Sampling results from six stacks in five different
Fluid Catalytic Cracking  (FCC) units are given in Tables B4-36
through B4-<'-l.  The units were all equipped with electrostatic
precipitatiors and CO boilers.  Stack No.'s 13 and 18 were from
separate CO boilers on the same FCC unit.

          Tables B4-42 through B4-46 give the sampling results
obtained from an FCC unit whose flue gases passed through a CO
boiler and then through a scrubber.  Two scrubber units were
utilized, each handling one-half of the flue gas.  Both
particulates and S0y were removed in the scrubbers.

          The results for FCC unit CO boiler Stack No. 15 were
given in Tables B4-36 through B4-41.  However, grab samples were
obtained from this unit upstream of the ESP-CO boiler control
devices.  These results are listed, together with the results
from the CO boiler stack, in Tables B4-47 through B4-52.  These
results show the CO boiler is effective in removing carbon
monoxide, aldehydes, and HCN.

          Tables B4-53 through B4-56 show the sampling results
for a FCC unit compressor exhaust stack.  The emissions from
these internal combustion engines were relatively low compaired
to other refinery process emissions sources.

          Many of the sampling results listed in this section
compare favorably with published emission factors.  However,
these results should not be used in updating or developing
new emission factors due to the low number  of samples obtained
from each stack.
                              361

-------
         TABLE  B4-36.    STACK GAS AND  PARTICIPATES3  -  FCCU  CO BOILER  STACKS
Total Gas
Samplcb
Stack Time
13 1477-1854
0859-1230
18 1110-1536
14 1000-1100
1945-7.111
If) 1605-1755
1415- 1625
15 1745-1857
1015-112/
11 1045-1245
1500-1700
Meter
(ft1)
70.99
28.96
29.1 3
46.60
57.50
37.41
35.69
31.68
32.71
36.61
30.97
Avg
Meter
STP Temp
(SCF)C <°F)
73. /y
29.16
30.55
40.10
51.25
37.14
34.92
31.81
32.03
36.56
30.20
/8
94
75
1 I/
97
90
98
96
107
81 .4
93.6
Avg
Stack Avf>
Temp Dry
("F) (HW)
391
392
386
585
577
719
727
518
540
460
460
29.95
28.65
29.46
30.94
30.94
28.47
28.21
30.58
30.58
29.11
10. 39
Partlculates
Moisture
Collected
(B)
293
103
126
88
106
213
218.
185
186.
112.
85.
.3
.3
.4
.4
.8
.3
.21
.0
2
. 7
1
Frac t ion
0. J 59
0.144
0.161
0.09/.4
0.0897
0.214
0.278
0.216
0.216
0.127
0. 117
Filter
0.1296
0.0654
0.0728
0.1H64
0.1767
0.0714
0.0154
0 . 04 2 5
0.0372
0.0624
O.OR80
Probe
0.0679
0.0122
0.0174
0. 1001
0.37.19
0.0166
O.U127
0.0282
0.0384
0.0773
0. S007
Imp. 11
0.0110
0.0027
0.0075
__H
--
0.0060
0.0020
0. 1290
0.0081
0.0113
0.0071
Total
0.7035
0.0803
0.0977
0.4865
0.5006
0.0440
0.0781
0.1997
0.0837
0.510
0.5958
Avg
Grain Stack
Loading Velocity
(gr/SCF) (fl/nec)
0
0
0


0
0
0
0
0
0
.0/76
.0425
.0493
c
--
.0181
.0174
. OP69
.0403
.064
.10/1
47.57
44.21
43.1?
49. 7/i
52. 17
49.97
49.74
48.98
51.93
66.29
68.94
I
Tnok In .
105. 3
90.4
98.8
59. 1
50.8
106.8
104. 5
112.0
10/.1
115.4
90.6
'Sampled with LSI F.PA-5 train.
bTotal gas flow rates;  Stack No. 11 -  7.70 * 106 SCFH;  Slack No. 13 - 9.15 x 10* SCFM: Stack No.  14 - 1.26 x 10* SCFH;
 Stack No. 15 - 6.53 x 10'  SCFM; Stack  No. 16 - 8.97 x 10* SCFH; Sl.irk No.  18 - 8.58 x 106 SCFH
CCorrnrtcd to 70°F nnd 29.92 Inches HG.
 Not determined.
 Partlculate sampling conducted under nontsokinerIc conditions.  Grain loading not required.

-------
                       TABLE B4-37.
METHANE/NONMETHANE HYDROCARBONS'
GASESb - FCCU CO BOILER STACKS
AND FIXED
LO
•T>
LO
Hotliane Concent laL tony
By Weight

Stack
13
Ambient
13
18
14

*


Ambient
14
16


Ambient
16
16



Time
1440
1711
1335
1614
1500
1508
0844
0936
1042
1533
1035
1150
1373
1559
2000
2020
0900
1000
1030

1030
1034
1323
1531

1537
177?
2150
1950

(ppm)
f
__£
3.98
0.49
_ f
£
..
4.10
0.22
0.50
0.15

1.15
0
0
0

0.898
0.248
0
0
lb/SCFd By Volume

2.98x10"'
3.7x10"°
__
3.22x10"'
1.73x10 "
3.9x10""
1.18x10 '

8.62x10""
0
0
0

5.6x10"'
1.55x10"'
0
0
(ppra)
7.20
0.89
..
7.78
0.42
0.95
0.28

2.08
0
0
0

1.35
0. 374
0
0
Nonmetlmne Concentrations
(As Hexane)
By Wei glit
(ppm)
1.94
19.95
19.92
19.73
10.63
0.83
_.
66.00
32.62
4.20
4.87

13. 5T
23.7/5
2.655
1.446

1.986
8.065
13.9
10.58
lb/SCFd By Volume

1.50xlO~'
1.54x10"'
1.49x10"'
1.48x10 '
7.88xlO~'
6.3x10"°
._
5.19x10"'
2.56x10 '
3.30x10 '
3.83x10"'

1.01x10"'
1.48x10""
1.6frxlO
9.02x10"'

1.24xlO~'
5.03x10"'
8.67x10 7
6.60x10 '
(ppm)
0.68
6.92
6.71
6.64
3.54
0.28
..
23.31
11.52
1.48
1.72

5.45
6.67
0.745
0.406

0.557
2.26
3.90
2.97
C02 " "
(Z)
15.1
14.8
14.3
14.4
15.0
15.6
15.5
13.5
14.1
16.1
14.1
14.2



14.5
13.6
14.9

14.9



Fixed (Ja.ses

(Z)
3.5
3.8
3.5
3.3
5.0
3.7
3.5
3.'.
7.0
6.7
6.3
6.3



4.2
5,0
3.7

3.3



(%)
79.2
79.0
73.9
73.8
77.1
77.4
77.7
78.4
77.0
77.5
77.3
77.5



81.4
SI. 4
81.9

81.7



CO II Mol. Wt.
(Z) (7.) (Dry)
0.0 — ° 29.95
0.0 — e 29.85
0.0 --e 28.10
0.0 --e 28.06
0.0 --e 29.79
0.0 — e 29.71
0.0 — e 29.70
0.0 — ° 28.98
1.0 — C 30.24
0.0 --f 30.94
0.0 --' 29.76
0.0 --e 29.93



0.0 0.0 2B.47
0.0 0.0
0.0 0.0

0.0 0.0



                                                                                    Cnnr inued

-------
                                             TABLE B4-37.    Continued


Stack Time
15 1615
1915
1030
1215
11 1530
1615
1740
1100
1230
1625
Amb irnl
11 1 7 30







0
0
0
0
0
0

3
Methane Concen
3y Weight


(ppm)




30
30
98
10
70
12

20

lb/SCFd

-



2.25x10"
2.7.5x10
7.24x10
7.49x10
1.50x10
8.74x10

2.37xlO~'
t rations
By Volume
(ppm)




0.54
0.54
1.77
0.18
0.36
0.2?

5.79
Nonmethanc Concentrations
(Ar, Hexano)

By Weight
(ppm)




75.0
17.0
1H.O
31.5
23.4
25.5

37.1

Ib/SCF"





5.55xlO~6
1.26x10" n
8.43x10"'
2.33x10 '
1.73x10 '
1.89x10 f

2.74xlO~f'

By





75
5
38
10
7
8

12

Volume
ppm)




.25
.72
.38
.60
.88
.58

.49
Fixed Cases
(Dry Basis)
CO,

14.89
15.23
13.52
14.01

16.0
15.0
15.5
15. 0
15. 0


0
(
3
3
4
3

4
4
7
6
6


2
%)
53
39
35
75

0
0
0
5
7


Nj CO II
«) U) U)
81.98 0.0 0.0
81.21 0.0 0.0
82.67 0.0 0.0
81.63 0.0 0.0

75.0
75.5
77.0
77.0
77.0


Mol Wt .
(Dry)





29.32
28.88
30.62
30.24
30 . 30


 Byron hvdrocflrbon analyzer using flame ionization detector.
 Fischer Hodpl 1200 gas parrlrloncr.
LDry basis.
RTP = 70°F and 29.92  Inches Hg.
Results questionable, not reported.
Hot detectable, less  than 0.01 ppm by weight.

-------
                         TABLE  B4-38.    SULFUR  SPECIES  -  FCCU  CO  BOILER  STACKS


Stack Time
13 1427-1854
1720
1346
1622
0859-1230
18 1130-1536
1210
1341
1515
16 1605-1755
1415-1625
1045
1340
1550
15 1745-1857
1015-1127
1040
1115
14 1000-1300
1945-2133
2020
11 1045-1245
1500-1700



ppm
SO,"
Ib/SCF'
(Vol)
0



I
1



1
1



0
1


13
1

9
7
.65



.62
.B9



.18
.11



.781
.126


.46
.07

.71
.39
1.34 xlO"'



3.36 xlO-'
3.90 xlQ-'



2.434x10-'
2.298x10"'



1.61 xlO"7
2.32 xlO"7


2.78 xlO-6
2.51 xlO'7

1.87 ilO-'
1.52 xlO"'



ppm
S07h


lb/SCFc
(Vol)
368



528
605



14
20



289
708


644
606

92
101
.5



. 7
.0



.4
.9



.0
.0


.09
, 76

.11
.42
6.



8.
1.



2.
3.



4.
1.


1.
1.

1.
1.
10 xlO"*



75 xlO"5
00 xlO"*



374x10"'
446x10"'



78 xlO"'
17 xlO"°


06 xlO"'
00 xlO"'

5 xlO"'
654xlO-5

ppm
(Vol)

416.0
330.0
390.0


314.0
145.0
245.0


<0.5
17.0
14.0


841.0
871.0
..
	
251.0°


SO 2



6
5
6


5
2
4



-------
                              TABLE  B4-39.   ALDEHYDES3 -  FCCU CO  BOILER STACKS
(-0
Stack
15

13


18

16

14

11



Time
1050-1150
1245-1345
1558-1658
1504-1604
1627-1727
1544-1644
0920-1020
1049-1149
1552-1652
2045-2130
0855-0955
1137-1237
1540-1640
1035-1135
1330-1430
1550-1650
Gas Sample
Volume (£)
@ STPb
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0
8.42
10.92
11.51
11.51
11.51
11.51
11.51
Aldehyde
Collected
(us)
220.5
292.5
111.91
113.68
101.25
83.48
81.72
147.0
52.5
76.88
172.2
1.58
1.18
0.1§
d
Concentration
ppm(Vol . )
14.77
19.60
7.50
7.62
6.79
5.60
5.48
9.87
3.52
7.34
12.68
0.11
0.08
o.ogs
d
lb/SCFb
1.144xlO~6
1.517x10 6
5.82 xlO~7
5.92 xlO~7
5.27 xlO 7
4.34 xlO"7
4.25 xlO 7
7.65 xlO~7
2.73 xlO 7
5.70 xlO~7
9.85 xlO 7
8.52 xlO~9
6.43 xlO 9
6.243x10 10
d
          Sample rate = 200 m  /min.  Bisulfite method used.
          ^Corrected to 70°F and 29.92 inches Hg.
          'Dry basis.
          Blue color  developed during sample collection; interference(s)  unknown.

-------
                     TABLE 40.  OXIDES  OF NITROGEN  -  FCCU CO BOILER STACKS
UJ

Stack Time
13 1823
1406
1755
18 1659
10A7
15 1125
1130
16 1410
1517
1640
14 2020
0900
1000
NOX (as N02
ppm (Vol.)
306
297
170
181
269
94.1
105.8
453
378
415
164.3
190.0
200.4
) Concentration3
lb/SCFb
3.64 xlO~
3.53 xlO~
2.00 xlO~
2.16 xlO~
3.20 xlO~
1.12 xlO~
1.26 xlO~
5.38 xlO~
4.49 xlO~
4.93 xlO~
1.395x10"
1.514xlO~
1.66 xlO~


5
5
5
5
5
5
5
5
5
5
5
5
5
          Dry basis.
         DSTP = 70°F  and 29.92 inches Hg.

-------
                            TABLE B4-41.   HCN AND  NH3  -  FCCU  CO BOILER STACKS
cr>
oo
NH3 Concentrations
Stack Time
15a

1305-1336
1515-1545
1315-1345
1215-1247
i/f iiio°
' (1300

13a


1257-1331
1425-1455
1613-1643
1750-1820
1Ra (0952-1052
(1706-1736

16a



lla

1345-1420
1115-1145
1455-1525
1015-1045
12:40 PM
14:10 PM
16:40 PM
ppm (Vol . )
15.36
6.64

0.75
0.70
0.511

—

d
<0.3
8.2


1.0
0.6
1.0
lb/SCFc
6
2

5
4
2





3


43
2
4
.76 x
.92 x

.24 x
.89 x
.25 x

—

—
<1 x
. 6 x


.7 x
.62 x
.37 x
10'7
10"'

ID' 8
10 8
10~8




10~8
10~7


10'8
10 8
10~8
HCN Concentrations13
ppm (Vol.)
19
19
1
1

0

-
0


< 1
0
0
0
0
.0
.1
.00
.05

.023

e
.005


x 10~3
.406
.9
.6
.9
lb/SCFc
1
1
6
7

1


4


6
2
6
4
6
.33
.33
.96
.31

.6


.0


.5
.84
.18
.12
.18
x
x
X
X

X

—
X


X
X
X
X
X
IO"6
l(f5
10~8
10 fl

10~9


10" 10


10'11
10~8
10~b
10~8
10~e
          Sampling  performed using LSI Method 5 train and  acidic  or  basic impinger solutions,  as  required.
          Dry Basis.
         CCorrected to  70°F and 29.92 inches Hg.
          Not detectable,  less than 0.01 ppm in solution.
         eNot detectable,  less than 0.005 ppm in solution.
         f Infrared  Analysis at 3.01 y (HCN) and 10.4 \i (NH3)

-------
               TABLE  B4-42.
STACK  GAS  AND PARTICULATESa -  FCCU
CO  BOILER  SCRUBBER  STACKS
Total Cas
Sample0
Stack Time
1? 1516-1641
1811-19??
17 1612-1741
1821-1929
Meter
(ft1)
41.67
4?. 08
40.55
40.24
STP
(SCF)'
41.09
41 .77
39.2?
39.45
Avg Avg
Meter Stack Avg
Temp
78
75
93
87
Temp
185
185
180
180
Dry
(HW)
29.11
29.19
29.71
29.81
PnrllculBtes
Molnture
Collected
(g)
751 .2
261.1
260.3
266.3
Fraction
0.22r-
0.229
0.239
0.247
Filter Probe Imp. 11
n.nv.2 0
0.0348 0.0111 0
0.0112 0.0084 0
0.0300 0.0145 0
.OlflO
. 0000
,0230
.OlO;
Crnln
Loading
Total (gr/SCF)
0.0522 0.020
0.0479 0.018
0.0676 0.025
0.0552 0.022
Avg
Stnck
Velocity
(ft/ser)
55.32
55.88
52.57
52.15
I
look In.
107.6
103.6
100.7
103. 1
'Sampled with LSI F.PA-5 train.

 Tot.il p.ns flow rates:  Stack No.  12 - 9.08 x 10' SCFM; Stack No. 17 - 8.53 x 10s SfFH

 Corrected to 70'F nnd 29.92 Inches Hg.

-------
              TABLE B4-43.   METHANE/NONMETHANE HYDROCARBONS3  AND  FIXED
                                GASESb  - FCCU  CO BOILER SCRUBBER  STACKS


St.ick Time
12 1547
1556
1818
1825
1212
1' 1803
1810
2049
2057
2339
2348
1732
1740
1930
1937
1943
1949


By
(ppm)
—
40.75
—
39.40
67.00
	
4.26
—
15.42
—
12.10
__
5.59
__
5.20
__
3.65

Hu thane
Weight
(Ug/D
—
49.24
—
47.61
80.97
	
5.25
—
19.01
_-
14.92
__
6.89
__
6.41
—
4.50



Concent rations
Ub/SCF)
__
3.08x10
--
2.97x10
5.06x10
	
3.28x10
—
1.19x10
—
9.32x10
	
4.30x10
__
4.00x10
__
2.81x10
d Bj> Volume
Tppm)
	
' 74.27
—
s 71.81
* 122.11
	
' 7.92
—
6 28.67
—
7 22.50
	
7 10.39
	
' 9.67
__
' 6.79
By
(ppm)
__
75.80
—
68.40
106.00
__
9.78
—
39.60
__
145.84
	
10.12
__
8.50
__
6.90
Nonnu! thane
(As
Weight
(l'B/1)
„
91.60
--
R2.66
128.10
..
12.06
—
48.82
__
179.81
	
12.48
__
10.48
__ •
8.51
Concentrations
Hexane)
(lh/SCF)d
__
5.72x10 '
—
5.16x10"*
8.00x10 *
..
7.53x10"'
__
3.05x10"*
__
1.12x10"'
__
7. 79x10"'
__
6.5xlO~'
_-
5.31x10 '

By Volume
(ppm)
	
25.70
—
23.19
35.94
._
3.38
__
13.70
._
50.45
__
3.50
	
2.94
__
2.39

CO,
CO
12.')

13.0


17.0

16.0

15.8

16.2

16.3

16.2


02
CO
6.0

5.5


2.5

3.0

3.0

2.5

2.1

2.5

Fixed
(Dry
Nj
76.0

76.0


76.0

78.0

77.5

77.4

77.3

77.2

Gases
Basis)
CO
00
1.5

1.5


0.1

0.2

0.4

0.4

0.5

0.6



11
(*)
0.5

0.5


0.4

0.4

0.2

0.2

0.2

0.2



Hoi. Wt.
(riry)
29.13

29.19


29.60

29.90

29.73

29.7]

29.81

29. 72

Byron hydrocarbon annlyzer using fljme ioniration detector.
Ftocher Model 1200 gas partltloner.
Dry basin.
Corrected to 70°F and 29.92 Inches Hg.

-------
                TABLE B4-44.    SULFUR SPECIES -  FCCU  CO  BOILER  SCRUBBER STACKS
so,"
St.'ick
12



17


Time
1516-16/.3
1609
1811-1922
1832
1219
1612-1741
1MO
1821-1929
1949
ppm
(Vol)
0. 19
0.13
—
—
0.23
0.'.7
—
Ih/SCFC
«.01xJO~"
2.6SxlO~"
—
—
«.67xlO~"
9.77x10""
—
S0jh SO/ MiS COS
ppm
(Vol)
0.73
9.53
—
—
11.98
13.10
—
Ib/SCF ppm Ib/SCF ppm Ib/SCF ppm Jh/SCF
(Vol) (Vol) (Vol)
1.20x10"'
I.b8xl0"s
—
--
1.98x10""
2.17x10''
—
CSj
ppm ]h/SCF
(Vol)

—
—
—

—
—
"rPA rmp(nf>er, BaCClOi.h Titratton.
 67. HjO? Tmplngcrn, Ba(C10»)z Tltratlon.
'corrected to 70°  and 29.92 Inches Hg. , d
                             dry hanle.
SO? onjy detected In samples from heater duct.  Due to Mfih moisture content in rep,ener,it or sLnck, no appreciable concentration of sulfur ypccles deterred
in samples.
                    TABLE  B4-45.   ALDEHYDES3  - FCCU CO  BOILER SCRUBBER  STACKS
Stack
12


17


Time
1438-1538
1707-1807
1229-1329
1614-1714
1816-1916
Cas
Volu
(ST
12
11
12
11
12
Sample
me (I)
t')fb
.04
.97
.??
.87
.25
Aldehyde Caseous Aid.
Collected Volume 9 STP
(Ug) (Hi)
635
691
761
582
497
.0
.25
.75
.5
.5
510
556
612
468
400
.8
.0
.7
.5
.2
Concentr.itionsc
ppm(Vol. )
42.42
46.45
50.14
39.47
32.67
By Wclg
(ug/JU
52.74
57.75
62.34
49.07
40.61
llit
@ STP
(lb/SCK)l'
3
3
3
3
2
.29xlO"6
.61xlO~6
.89xlO-6
.06xlO-6
.54x10"'
                Corrected to 70°F and 29.92  Indies llg.
                Dry basis.

-------
                 TABLE B4-46.   OXIDES  OF NITROGEN*  - FCCU CO BOILER SCRUBBER STACKS
         Stack
Time
                                                 NO Concentration
                                                     N02 Concentration
                                             Volume
                                                           B  Weiht
                                                  Volume
                                            By Weight
(ppm)     (yg/1)  (lb/SCF)c       (ppm)     (yg/1)  (lb/SCF)c
          12
1830
                                11.34     21.62  1.35x10 6
                           1158
                           1359
                                                   70.89    135.14   8.44x10
LO
          17
                           1845
                                                   77.98    148.65   9.28x10 G
                           1929
                                                  283.55    540.54   3.38x10
          A modified Phenoldisulfonic  Acid method was used for analysis of NOX as N02.



          Dry basis.




         "Corrected to 70°F and  29.92  inches Hg.




          Not detected.

-------
U)
^1
U)
                          TABLE B4-47.    STACK GAS AND  PARTICIPATES3  -  FCCU CO  BOILER
                                              STACK -  INLET  AND  OUTLET

                              Totnl Gas    Avg   Avg	Participates	    Avg
                               Sample**  _ Metier  Stock  Avg    Moisture                                     Cr.iln    Stark
                             Meier  STP    Temp  Temp   Dry    Collected                                    Loading  Velocity     X
                St.ick   Time   Ut') (SCF)C  (°K)  (°F)   (HU)      (g)    Fraction   Filter  Probe  Imp.  J]  Totnl  (gr/SCF)  (ft/sec)   Isokln.
                 IS  1745-1857  31.68  31.81   96   538   30.38    185.0      .216    0.0425  0.0282  0.1290 0.1997  0.09C.9   48.98     IK'.O

                     1015-1127  32.71  32.03   107   ViO   30.58    186.2      .216    0.0372  0.038'.  0.0081 U.083/  O.O'iOl   M.9J     107.1



                ^Sampled ulth LSI EPA-5 train.

                 Total gas flow rates:  CO Boiler Outlet (St.ick No.  15) - 6.53 x 106 SCFM; Prpcipl tator Tnlet - Undetei mined

                CCorrected to 70CF
                    TABLE  B4-48.   FIXED  GASES3  -  FCCU  CO BOILER STACK  -  INLET AND OUTLET
% Composition
Stack
15



Precipitator Inlet

Time
1615
1915
1030
1215
1600
1945
C02
14.89
15.23
13.52
14.01
10.88
10.11
H2
0.00
0.00
0.00
0.00
0.49
0.69
02
3.55
3.39
4.35
3.75
3.21
3.31
N2
81.98
81.21
82.67
81.63
77.64
78.14
CO
0,00
0.00
0.00
0.00
7.78
7.74
                    ^Fisher  Model  1200  gas  partitioner.
                     Dry basis.

-------
              TABLE  B4-49.   SULFUR  SPECIES  -  FCCU  CO  BOILER -  INLET  AND OUTLET

Stark
SO,"
ppra lb/SCFc
Time (Vol)
15 1745-1B57 0.781 1.61x10"'
1015-1127 1.1?6 .2.31x10-'
10'.0

Prrr Ipl
t.itor
Inlet
1215
1525
1530

S0,h SO, tt,S d COS CSj
ppm Ib/SCF ppm Ih/SCF ppm Ib/SCF ppm Ib/SCF ppm Ih/SCK
(Vol) (Vol) (Vol) (Vol) (Vol)
289 4.7flxlO~5
708 1.17x10'"
841 1.39x10"" n.d. n.d. n.d. n.d. n.H. n.d.
871 1.44xlO~" n.d. n.d. n.H. n.d. n.d. n.H.
321 5.30x10"^ n.H. n.d. n.H. n.d. n.d. n.H.
344 5.68x10"'' n.H. n.d. n.d. n.d. n.d. n.H.

 II'A ImvtnKcr. B,i(C10«)2 Tttrntton.
 61. IbO; Implngci, BnCClO,,)! Tltratlon.
^SIT - 70"F «nd 29.92 Inches HR.
 n.d. •= not detecltd.

-------
                    TABLE B4-50.   ALDEHYDES*
FCCU  CO BOILER - INLET AND OUTLET
U1

otcicK lime
15 1050-1150
1245-1345
Precipitator 1720-1820
Inlet
Gas Sample Aldehyde
Volume (£) Collected Concentration
@ STPb (jag) ppm(Vol.) lb/SCFh
12.0 220.5 14.77 1.144x10-
12.0 292.5 19.60 1-517x10"
12.0 3105 208.0 1.611xlO~


.6
6
•5
          Sample rate = 200 m£/min.  Bisulfite method used.




         bSTP = 70°F and 29.92  inches Hg..




         cDry basis.  Calculated as formaldehyde.

-------
                  TABLE B4-51.   OXIDES OF  NITROGEN - FCCU CO BOILER -  INLET AND OUTLET
               Stack
                                                                     NOX  (a.s N02) Concentration3
Time
ppm (Vol.)
 lb/SCFb
                 15
1125
   94.1
1.12x10 5
u>
           Precipitator
               Inlet
                                     1130
1700
                               105.8
   36.4
                      1.26x10
4.32x10"
                                    1700
                                46.5
                      5.52x10
            Dry basis.
           DSTP = 70°F and 29.92  inches Hg.

-------
  TABLE B4-52.  HCNa AND  NH3b  - FCCU CO BOILER  CO  BOILER STACK - INLET  AND OUTLET
HCN Concentration0
Stack Time ppra (Vol.)
15 1515-1545 19.0
1215-1247 19.1
Precipitator
Inlet 1617-1645 109.5
Sampling performed using LSI Method
Sampling performed using LSI Method
c
Dry basis.
lb/SCFd
1.33 x 10~6
1.33 x 10~6
7.65 x 10~6
5 train and 2 N H2SOi,
5 train and O.IN NaOH
Time
1305-1336
1315-1345
1530-1603
NHa Concentration0
ppm (Vol.)
15.36
6.64
3.99
lb/SCFd
6.76 x 10~7
2.92 x 10~7
1.76 x 10~7
irapinger solutions.
impinger solutions.
Corrected to 70°F and 29.92" Hg.

-------
LO
--J
OO
                 TABLE B4-53.   STACK GAS AND PARTICIPATES3  -  FCCU COMPRESSOR EXHAUST STACK
Total Gas
Sample ^

Stnck Time
10/.f|-t2'.8
20
1100-1700
Meter
(ft')
62.92

66.81
STP
(SCF)C
59.18

62.76
Avg
Heter
Temp
(*F)
114.9

115.6
Avg
Stack Avg
Temp Dry
("F) (HM)
600 78.39

660 27.42
Purtleulatea
Moisture
Collected
(R) Fraction
1B5.8 0.129

190.'- 0.125


Filter Probe
O.O020 0.2674

0.0011 0.02R7


Imp. {1
0.0173

0 . 004 7


Total
0.2867

0.0367
Grain
Loading
(gr/SCF)
0.075

0.009
Avg
Stnck
Velocity
(ft/sec)
89. 17

91.11


Z
Inokln.
105

9H
                 Sampled uLth I,S1 F.PA-5 train.

                ''Total BBS flow - 0.055 x 10* SCFH

                r«np = ?0°F and 29.92 Inchon Hg.
                       TABLE B4-54.   METHANE/NONMETHANE HYDROCARBONS3  - AND FIXED GASESb
                                        -  FCCU  COMPRESSOR EXHAUST STACK



Methane
Concent rat ions
By Height
Stack.
20





Tine
0930
1145
1530
0810
0945
1045
(ppm)
™..
..
—
NC
NC

(Pg/1)

—
—
NC
NC
"-
(Ih/SCF)
	
--
—
NC
NC
~~
j!y Voliiffle
(ppm)
~-
—
—
4.00
4.00
~-
Nonmethane Concentrations
(As Hexane)
By Weight
(l'l"») (Mg/1) (Ib/SCF)
	 	 	
—
—
NC NC NC
NC NC NC
--
By Volume
(ppm)
...
—
—
75
68
"-
Fined Cases
(Dry Basis)
CO;
(%>
4.0
'..0
6.8
9.0
9.0
8.0
Oj
(X)
10.3
12.5
10.0
7.0
6.5
8.0
NI
«)
76.5
77.0
75.3
76.5
76.0
77.0
CO
(X)
0.5
0.5
0.5
0.5
0.5
0.4
Hoi . Wt
(Dry)
26.62
27.46
27.42
27.76
27.46
27.75
            Byron hydrocarbon analyzer using flume lontzation detector.

            Fisclmr Modul 1700 gas port It loner.

           rNC - Hot Calculated.

-------
(^)
                    TABLE  B4-55.  SULFUR SPECIES - FCCU  COMPRESSOR  EXHAUST  STACK

Stack Time
20 0930
1048-1248
1145
1500-1.700
1530
SO
ppm
(Vol)
0.69
0.523

a
3
Ib/SCF
@ STP
1.4 xlO~7
1.04xlO~7

S
ppm
(Vol)
0.66
0.33

o2b
Ib/SCF
@ STP
1.08xlO~
5.29xlO~



7
8

             flPA Impinger, BaC10^  Titration.
             b.
              6% H20  Impinger,  BaClOi* Titration.

-------
                         TABLE B4-56.   HCN  AND NH3   - FCCU  COMPRESSOR EXHAUST STACK
00
o
Source Time

20 1200
1515
1710

20 1200
1515
1710
Baseline
(A)

0.
0.
0.

0.
0.
0.

0058
0065
0068

0060
0075
0074
Measured Net
Absorb Absorb
(A) (A)

0.
0.
0.

0.
0.
0.

0600
0720
0850

0320
0550
0310
HCN
0
0
0
NH3
0
0
0

.0542
.0655
.0782

.0260
.0475
.0236
. Concentration
Volume
(ppra)

1.8
2.1
2.5

1.0
2.4
0.9
By Weight @
(Mg/D

1
2
2

0
1
0

.99
.32
.76

.70
.39
.63
STP
(lb/SCF)u

1
1
1

4
8
3

.24x10 7
.45xlO~7
.72xlO~7

.37xlO~8
.68xlO~°
.93xlO~B
           .Infrared analysis at 3.01)J(HCN)  and 10.4y(NH3).  Path length =  20.25m; cell temperature = 75°C.
            STP  =  70°F and 29.92 inches Hg.

-------
                          SECTION 5
                   SPECIES CHARACTERIZATION


5.1       ORGANIC AND INORGANIC SPECIES CHARACTERIZATION

          The characterization and measurement of organic
emissions from controlled and uncontrolled sources were con-
ducted at several petroleum refineries.  The controlled sources
under study included the flue gas from carbon monoxide (CO)
boilers (that are charged with flue gas from fluidized catalytic
cracking regenerators) and from a fluidized coking unit.   The
uncontrolled sources included wastewater treatment systems,
valves, pumps, flanges, compressors, and drains.

          Tables  B5-1  through  B5-12  and Tables  B5-60  and  B5-61
 list  the  aromatic species  and  inorganics  contained  in emissions
 from  controlled  sources.

          Tables  B5-13  through B5-59 present  the  species  identi-
 fied  in various  refinery process  streams  and/or  the fugitive
 emissions from fittings  in service  on  those process streams.
 Each  of these sources  is identified by the process unit name
 followed  by the  stream name.   An  effort was made  to generalize
 these stream names  so  that similar  streams from  different
 refineries could  be  compared.

          Each process source  was sampled in  two  ways  when
 possible.  A  sample  of the material in the line was taken
 directly  for analysis by GC-MS.   For liquid streams,  a small
                               381

-------
  TABLE  B5-1.
ORGANIC  SPECIES Hi  FCCU CO BOILER
FLUE GAS (STACK NO.11)
Compound
           XAD-2
                                  Concentration (ppb)
Particulates
Total
Ace naphthalene
Anthracene/Phenanthrene
GS - Benzene
Benzo (a)pyrcnc
Benzo(ghi)perylene
Chrysene
Fluoranthene
Fluorene
Methyl Anthracene/Phenanthrene
Methyl-2,4-dichlorobenzoic acid
Methyl Fluorene
Methyl naphthalene
Naphthalene
C^ - Naphthalene
Pyrene
0.06
0.1
0.0
0.005
0.01
0.005
0.02
0.05
0.1
0.0
0.05
0.08
0.1
0.1
0.04
0.0
0.0
0.009
0.0
0.0
0.0
0.0
0.0009
0.0
0.04
0.0
0.03
0.03
0.0
0.001
0.06
0.1
0.009
0.005
0.01
0.005
0.02
0.05
0.1
0.04
0.05
0.1
0.1
0.1
0.04
                          382

-------
TABLE B5-2.
ORGANIC SPECIES IN FCCU CO BOILER
FLUE GAS (STACK NO. 14)
Concentration (ppb)
Compound
Acenaphthene
Acetophenone
Cz-Alkyl acetophenone
Cz-Alkyl anisole
Cz-Alkylbenzaldehyde
C3-Alkylbenzene
C2-Alkylnaphthalene
Benzaldehyde
Benzole acid
Biphenyl
Cresol
Cyclohexane diol
Cyclohexanol
Cyclohexanone
Cyclohexene oxide
Cyanobenzene
Diphenyl oxide
Fluoranthene
FLuorene
1-Methoxy naphthalene
Methyl cyclohexanone
1-Methylnaphthalene
2-Methylnaphthalene
Naphthalene
Phenanthrene/ Anthracene
Phenol
Phenyl benzoate
XAD-2
0.048
0.028
0.015
0.009
0.002
0.013
0.13
0.034
3.5
0.34
0.22
0.13
0.12
0.18
0.80
0.001
0.018
0.011
0.041
0.063
0.0
0.15
0.16
0.43
0.061
0.038
0.013
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.61
0.0
0.0
0.0
0.0
0.0
0.0
Total
0.048
0.028
0.015
0.009
0.002
0.013
0.13
0.034
3.5
0.34
0.22
0.13
0.12
0.18
0.80
0.001
0.018
0.011
0.041
0.063
0.61
0.15
0.16
0.43
0.061
0.038
0.013
                    333

-------
         TABLE B5-3.   ORGANIC SPECIES IN  FCCU CO  BOILER
                        FLUE  GAS  (STACK NO.  15)

                                  	Concentration (pph)
          Compound                 XAD-2       Particulates       Total
Benzaldehyde
Cyclohexanone
Ethyl toluene
Naphthalene
Phthaldehyde3
Phenanthrane/ Anthracene
0.2
0.0
0.0
0.04
0.01
0.01
0.0
0.13
0.01
0.006
0.0
0.0
0.2
0.13
0.01
0.046
0.01
0.01
Q
 Sun of two or more isomeric species.
         TABLE B5-4.   ORGANIC SPECIES IN  FCCU CO  BOILER
                        FLUE  GAS  (STACK NO.  16)
                                           Concentration (ppb)
          Compound                XAD-2        Particulates       Total

           a.
Benzoic  acid                        1.5            0.0           1.5
Naphthalene                         0.02           0.0           0.02
PhenolJ                             0.003          0.0           0.003
a
 Rased  on  idor.rif ication of corresponding  nethyl oster.

 Based  on  identification of corresponding  phenol ether.
                                  384

-------
            TABLE B5.5.
ORGANIC SPECIES  IN FCCU  CO  BOILER
FLUE  GAS (STACK  NO.13)
      Compound
                                       Concentration  (ppb)
    XAD-2
Particulate
Total
Acenaphthene
Biphenyl
Chrysene
Dibenzofuran
g
Dimethyl naphthalene
Fluoranthene
Fluorene
Methyl dimethoxybenzoate
Naphthalene
Phenanthrene/ Anthracene
Pyrene
<0.001
0.003
0.0
0.0
0.02
0.006
0.008

0.02
0.025
0.02
0.0
0.0
0.002
0.008
0.0
0.006
0.009

0.08
0.05
0.003
<0.001
0.003
0.002
0.008
0.02
0.012
0.017
0.54
0.10
0.075
0.023
Sum of two or more isomeric species.
                               385

-------
TABLE B5-6.
ORGANIC SPECIES IN FCCU CO  BOILER
FLUE GAS FROM SCRUBBER  (STACK  NO.  12)
Concentration (ppb)
Compound
Acenaphthene
Acenaphthylene
Anthracene/Phenanthrene
Benzo(a)pyrene
Benzo(g,h, i)perylene
Benzof luorene
Benz (a) anthracene/Chrysene
C2-Alkylnaphthalene
C2-Alkyl phenols
Ca-Alkyl phenols
Dibenzof uran
Fluorene
Fluoranthene
Indanol
Methnaphthalene
Methyl phenols
Methyl indanol
Methyl epoxyoctadecanoate
Methyl hexadecanoate
Methyl octadecanoate
Methyl oleate
Naphthalene
n-Tridecane
n-Tetradecane
n-Pentadecane
n-Hexadecane
n-Heptadecane
n-Octadecane
n-Nonadecane
n-Eicosane
n-Uncosane
n-Docosane
n-Tricoscane
n-Tetracosane
n-Pentacosane
n-Hexacosane
n-Heptacosane
n-Octacosane
n-Nonacosane
n-Triacontane
n-Untriacontane
n-Dotriacontane
XAD-2
0.20
0.42
0.46
0.07
0.03
0.08
0.10
1.25
0.29
1.65
0.29
0.18
0.25
0.16
1.14
0.20
0.07
2.68
3.20
2.23
1.25
1.43
0.09
0.17
0.19
0.23
0.44
0.56
0.61
0.71
0.65
0.63
0.59
0.60
0.46
0.38
0.35
0.30
0.28
0.18
0.10
0.05
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Total
0.20
0.42
0.46
0.07
0.03
0.08
0.10
1.2
0.29
1.6
0.29
0.18
0.25
0.16
1.1
0.20
0.07
2.7
3.2
2.2
1.2
1.4
0.09
0.17
0.19
0.23
0.44
0.56
0.61
0.71
0.65
0.63
0.59
0.60
0.46
0,38
0.35
0.30
0.28
0.18
0.10
0.05
                                                 Continued
                      386

-------
           TABLE B5-6.   CONTINUED
                                  Concentration (ppb)
Compound                    XAD-2      Particulates      Total
n-Tritriacontane
Ncnyl phenol
Octyl Phenol
Pyrene
0.03
0.66
0.21
0.11
0.0
0.0
0.0
0.0
0.03
0.66
0.21
0.11
                         387

-------
         TABLE B5-7.
ORGANIC SPECIES IN TCC CO BOILER
FLUE  GAS (STACK NO.  9)
Concentration (ppb)
Compound
C2-Alkyl biphenyl
C2-Alkyl naphthalene
Cs-Alkyl naphthalene
Cz-Alkyl phenanthrene
C3-Alkyl phenol
Azulene
Benz (a) anthracene
Benzaldehyde
Benzofluoranthene
Benzo(g,h, i)perylene
Benzole acid
Benzopyrene
Biphenyl
Carbazole
Chlorocresol
Chloroxylenol
Chrysene
Cresol
Ethyl phenol
Ethyl toluene
Ethyl xylene
Fluoranthene
Fluorene
Indeo (1, 2 , 3-c , d)pyrene
Methyl fluoranthene
Methyl naphthalene
Methyl phenanthrene
Methyl pyrene
Naphthalene
Phenanthrene/ Anthracene
Phenol
Phthaldehyde3
Phthalic acid°
Pyrene
Xylenol
XAD-2
0.02
0.03
0.02
0.09
0.56
0.01
0.003
1.2
07 02
0.005
15.0
0.02
0.01
0.01
0.07
0.02
0.03
0.02
1.7
0.036
0.054
0.09
0.008
0.007
0.01
0.02
0.15
0.07
0.08
0.17
0.11
0.26
0.20
0.06
1.3
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Total
0.02
0.03
0.02
0.09
0.56
0.01
0.003
1.2
0.02
0.005
15.0
0.02
0.01
0.01
0.07
0.02
0.03
0.02
1.7
0.036
0.054
0.09
0.008
0.007
0.01
0.02
0.15
0.07
0.08
0.17
0.11
0.26
0.20
0.06
1.3
 SUID  of two or more isomeric species.
 Based on identification of corresponding phenol ether.
"Based on identification of corresponding methyl ester.
                                 388

-------
  TABLE  B5-8.
ORGANIC  SPECIES  IN  FLUID  COKER
SCRUBBER INLET  (1),  (STACK NO.  19)
Concentration (ppb)
Compound
Jt
Ci-Alltyl naphthalene
Azuleae
Benzaldehyde
Benzamlde
Benzofuran
Bcnzoic acid
Benzoaitrile
Benzothiophene
Bipheayl
Butyl benzene
Cyanobenzochiophene
Cyanothiophene
Cyclone xanone
n-Decane
Dibenzofuran
Dibenzothiophene
Diethyl benzene
Diiaethyl ethyl benzene
n-Dodecane
Dodeceae
Ethyl quiniline
Ethyl toluene
Ethyl xylene
Hydroxymethyl quinoline
Methoxy dipehnyl ether
Methyl benzonitrile
Methyl Indan
Methyl naphthalene
Methyl phenyl pyridine
Methyl quinoline
Naphthalene
Naphthonitrile
n-Sonane
Phenaruihrene/ Anthracene
Phenol6
Phthaldehydea
Phthalic acid
Phthalonitrile3
Propyl benzene
Quinoline
Styrene
n-Tridecane
Trideceny
n-Undecane
Undeeene
Xylene3
XAD-2
0.1
5.0
9.0
0.36
9.8
21.08
107.7
5.5
4.5
0.0
7.28
4.2
1.3
0.0
3.0
0.51
0.0
0.0
0.0
0.0
0.0
0.03
0.0
1.8
0.24
3.5
0.0
0.37
0.0
1.1
4.1
10.5
0.0
0.83
6.0
0.10
1.5
10.85
0.0
1.7
0.40
0.03
0.0
0.0
0.0
0.34
Partlculates
0.0
0.0
0.0
0.0
0.0
0.007
8.5
0.16
0.35
0.02
0.03
0.0
0.0
1.1
0.17
0.0
0.11
0.04
0.54
0.31
0.12
1.46
0.28
0.0
0.0
0.0
0.02
0.02
0.06
0.0
0.62
0.29
2.0
0.08
0.0
0.0
0.0
0.0
0.30
0.0
0.0
0.24
0.09
0.87
0.77
0.17
Total
0.1
5.0
9.0
0.39
9.8
21.0
116.
5.7
4.8
0.02
7.3
4.2
1.3
1.1
3.2
0.51
0.11
0.04
0.54
0.31
0.12
1.5
0.28
1.8
0.24
3.5
0.02
0.39
0.06
1.1
4.7
11.
2.0
0.91
6.0
0.10
1.5
11.
0.30
1.7
0.40
0.27
0.09
0.87
0.77
0.51
Sum of two or more isomeric species.
Based on identification of corresponding phenol ether.
Based on identification of corresponding methyl ester.
Baaed on identification of corresponding dimethyl diestei.
                           389

-------
          TABLE B5-9
ORGANIC SPECIES IN FLUID COKER
SCRUBBER OUTLET (2)  (STACK NO.  19)

Compound
Azulene
Benzofuran
c
Benzole acid
Benzonitrile
Benzothiophene
Biphenyl
Cresol
Cyanobenzothiophene
Cyanothiophene
Cyclohexane
n-Decane
Dibenzofuran
Dibenzothiophene
Dimethyl naphthalene
Ethyl toluene
Indan
Methyl benzonitrile
Methyl indan
Methyl naphthalene
Naphthalene
Naphthonitrile
Pnenaiiihrene/ Anthracene
Phenol
Phthaldehyde
Quinoline
Xylene
Styrene

XAD-2
3.2
3.4
21.0
110.0
5.5
3.4
0.11
0.06
2.26
0.12
0.0
1.0
0.03
0.02
0.20
0.02
1.6
0.05
0.33
3.6
0.36
0.03
3.04
0.59
0.40
0.93
0.61
Concentration (p
Particulates
0.0
0.0
0.11
-0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.0
0.0
0.0
0.06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
pb)
Total
3.2
3.4
21.0
110.0
5.5
3.4
0.11
0.06
2.3
0.12
0.02
1.0
0.03
0.02
0.26
0.02
1.6
0.05
0.33
3.6
0.36
0.03
3.0
0.59
0.40
0.93
0.61
 Sum of two or more isomeric species.
 Based on identification of corresponding phenol ether.
"Based on identification of corresponding methyl ester.
                                 390

-------
         TABLE B5-10
ORGANIC SPECIES IN  FLUID  COKER
SCRUBBER OUTLET (2)   (STACK NO.  19)
                                          Concentration (ppb)
Compound
C2-Alkyl benzole acid
C2- Alkyl naphthalene
Azulene
Benzaldehyde
Benzofuran
Q
Benzole acid
Benzonitrile
Benzothiophene
Biphenyl
Butyl benzene
Cresol
Cyanobenzothiophene
Cyanothiophene
Cyclohexanone
Dibenzofuran
Dibenzothiophene
Ethyl toluene
Ethyl xylene
Indan
Isoquinoline
Methyl benzonitrile
Methyl indan
Methyl napthalene
Methyl quinoline
Naphthalene
Naphthonitrile
Pehnanlhrene/ Anthracene
Phenol
Phthaldehyde3
Phthalic acid
Propyl benzene
Quinoline
Styrene
Xylene
XAD-2
1.2
0.03
0.68
2.3
1.1
11.0
37.0
1.87
0.54
0.0
0.02
0.067
1.57
0.19
0.41
0.0
0.13
0.02
0.033
0.01
0.21
0.03
0.18
0.13
1.75
0.16
0.01
1.11
0.009
0.05
0.02
0.27
0.16
0.16
Particulates
0.0
0.0
0.0
0.0
0.0
0.0
0.65
0.02
0.07
0.003
0.0
0.0
0.0
0.0
0.07
0.008
0.11
0.02
0.0
0.0
0.21
0.03
0.008
0.0
0.37
0.06
0.02
0.0
0.0
0.0
0.02
0.0
0.0
0.02
Total
1.2
0.03
0.68
2.3
1.1
11.0
37.6
1.9
0.61
0-003
0.02
0.067
1.57
0.19
0.48
0.008
0.24
0.04
0.033
0.01
0.42
0.06
0.188
0.13
2.12
0.22
0.03
1.11
0.009
0.05
0.04
0.27
0.16
0.18
 Sum of two or more isomeric species.
 Based on identification of corresponding  phenol ether.
"Based on identification of corresponding  methyl ester.
 Based on identification of corresponding  dimethyl diester.
                                 391

-------
            TABLE B5-11.
        ORGANIC  SPECIES IN FLUID COKER
        CO BOILER  FLUE GAS (2)  (STACK NO.  10)
Concentration (ppb)
Compound
Benzaldehyde
Benzofuran
Q
Benzole acid
Benzonitrile
Benzothiophene
Biphenyl
Chrysene
Cyclohexanone
Dibenzofuran
Fluoranthcnc
Fluorene
Q
Methyl naphthalene
Naphthalene
Naphthonitrile
Phenanthrene/ Anthracene
Phenol
Phthaldehyde3
Pyrene
XAD-2
9.8
0.03
58.0
3.2
0.04
0.02
0.0
0.11
0.04
0.01
0.01
0.05
0.44
0.0
0.03
0.009
0.02
0.008
Particulates
0.0
0.0
0.0
0.55
0.0
0.16
0.003
0.22
0.15
0.002
0.0
0.006
0.03
0.07
0.02
0.0
0.0
0.005
Total
9.8
0.03
58.1
3.8
0.04
0.18
0.003
0.33
0.19
0.012
0.01
0.011
0.47
0.07
0.05
0.009
0.02
0.013
 Sura of two  or nore isomeric species.

 Based on identification of corresponding phenol ether.

"Based on identification of corresponding methyl ester.
    TABLE B5-12.
ORGANIC  SPECIES IN  RESIN FUME  OXIDATION
FLUE GAS,  (STACK NO.  1)
Compound
Biphenyl
Methyl naphthalene
Naphthalene
Phenanthrene /Anthracene
Pyrene
Concentration (ppb)
XAD-2
0.017
0.0011
0.0059
0.0097
0.011
Particulates
0.0066
0.0
0.0
0.0
0.0
Total
0.024
0.001
0.006
0.010
0.011
                               392

-------
TABLE B-13.  CRUDE DISTILLATION UNIT:  FLASHED CRUDE
Compound
Benzene
Toluene
Echylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propyl benzene
3 or 4-Ethyl toluene
1,3, 5-Tr imetnylbenzene
2-Ethyl toluene
1,2, 4-Trimethylbenzene
Isobutylbenzene
1,2, 3-Tr imethylbenzene
Me thylpropyl benzene
Methylpropylbenzene
Diethvlbenzene
Die thylbenzene
Dimethylethylbenzene
Methyl indan
Dimethylethylbenzene
Tetramethylbenzene
Methyl indan
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
Cs-Alkylbenzene
2-Methylnaphthalene
1-Methy] naphthalene
Biphenyl
C2~Alkylnaphchalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C?. -Naphthalene
Cs-Naphthalene
C 3 -Naphthalene
C 3 -Naphthalene
Fluorene
Phenanthrene/ Anthracene
Bulk Liquid
ppm
60
680
220
640
240
60
—
580
400
310
680
80
280
240
160
120
200
290
18
80
120
21
90
860
40
30
1000
860
320
160
1100
1700
540
160
320
860
710
390
80
140
Vapor on
XAD, Mg
78
600
160
460
110
42
130
370)
220)
160
320
18
84
54
154
440
66
78
—
36
32
—
—
120
—
—
50
25
—

—
T--
	
	
	
	
—
	
	
	
Vapor on
Tcnax, Ug
0.10
0.47
0.09
0.24
0.11
0.34
—

0.15
0.14
0.13
0.08
0.08
—
0.05
0.06
—
0.05
—
0.02
0.15
—
—
0.01
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
                         393

-------
       TABLE B5-14.
CRUDE DISTILLATION  UNIT:
ACCUMULATOR GAS
ATMOSPHERIC TOWER  OVERHEAD
Peak
Number
1
(is)a
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
(IS)
Compounds
(In Retention Order)
Benzene
de-Benzene
CsHioO, possibly Tetrahydropyran
CeHizO, possibly a Dimethyl tetrahydrof uran
CeHizO, possibly a Methyl pentanol
C5Hi202, or C6Hi20
Toluene
CyHiaO, possibly a Trimethyl dihydrofuran
Ethylbenzene
m- + p- Xylene
o-Xylene
3- + 4- Ethyltoluene
1,3, 5-Trimethylbenzene
1 , 2 ,4 -Trimethyl benzene
Isobutylbenzene
Indan
Ci»-Alkylbenzene
Ci»-Alkylbenzene
Ci, -Alky Ibenzene
Cs-Alkylbenzene
Naphthalene
di o-Anthracene
Vapor on XAD
(ug)
606.0
—
—
230.0
210.0
770.0
1,220.0
690.0
70.2)
430.0)
120.0
7.5}
18.0)
28.5
—
—
—
—
—
—
—
(600.0)
Vapor on Tenax
(Mg)
0.100
(0.035)
0.010
—
—
—
0.036
—
0.054

0.032
0 065

' 0.068
0.031
0.010
0.052
0.050
0.046
0.021
0.140

IS = Internal Standard

-------
     TABLE  B5-15.   CRUDE DISTILLATION  UNIT:   INTERMEDIATE
                      NAPHTHA PRODUCT,  BULK LIQUID
        Compound                                                ppm

Benzene                                                        26.3
Toluene                                                        64.0
Ethylbenzene                                                  153.0
ir./p-xy]enes                                                   204.0
o-xylenes                                                      40.3
i-propylbenzene                                                 3.74
n-propylbenzene.                                                45.9
m/p-ethyltoluene                                              236.0
o-ethyltoluenc                                                 47.6
1,2,4-Trimethylbenzene                                        105.0
1,2,3-Trimethylbenzene                                          9.52
Cn-Alkylbenzene                                                 3.42
Cn- Alkylbenzene                                               70.0
n-butylbenzene                                                 88.0
Cii-Alkylbenzene                                               '24.0
Ci,-A1.kylbenzene                                                2^.0.
Methylindan                                                    10.8
Methylindan                                                    94.0
Cn-Alkylbenzene                                                60.0
Ci4-Alkylbenzene                                                36.0
Ct-Alkylbenzene                                                 3.04
Cs-Alkylbenzene                                                 8.05
Cu-Alkylbeuzene                                                13.6
Cs-Alkylbenzene                                                 6.56
Cs-Alkylbenzcne                                                20.8
Cb-A.lkyl benzene                                                ^^-O
Cs-Alkylbenzene                                                70.0
Tetralin                                                       74.0
Cj-Alkylbcnzene                                                27.5
Naphthalene                                                    24.2
Cz-Alkyl Tndan/Methyltetralin                                 140.0
C2-Alkyl Indan/Methyltetralin                                 115.0
2-Methyl te.tralir.                                               96.1
Cz-Alkyl Tndan/Mothyltetralin                                 102.0
C2-Alkyl Indan/Methyltetralin                                 112.0
C2-Alkyl Indan/Methyltetralin                                  52.7
2-MethyInaphthalcne                                            32.3
1-Methylnaphthalene                                            16-°
C2-Alky! naphthalene                                            5-25
C2-Alkyl naphthalene                                           25-°
B.Phenyl                                                        7.70
C2-Alkyl naphthalene                                           23-8
Cz-Alkyl naphthalene                                           12.3

                                                      Continued
                                   395

-------
                        TABLE B5-15.   Continued

        Compound                                                 ppni
Methylbiphenyls                                                 13.6
Cj-Alkyl naphthalene                                             2.67
Cj-Alkyl naphthalene                                             9.28
Cs-Alkyl naphthalene                                            13.1
C3-Alkyl naphthalene                                             9.86
Cs-Alkyl naphthalene                                             5.80
C2-Alkyl biphenyls                                              36.0
Phenanthrene/anthracene                                          5.50
Methyl phenanthrene/anthracene                                   14.0
C?-Alkyl phenanthrene/anthracene                                 14.8
Fluorenthene                                                     3.10
Pyrene                                                           7.50
Methyl fluoranthene/pyrene                                       10.8
Methyl fluoranthene/pyrene                                       15.6
Ci-Alkyl fluoranthene/pyrene                                     26.0
Ci-Alkyl chrysenes/Benzointhracines                               0.533
                                   396

-------
      TABLE B5-16.   CRUDE  DISTILLATION UNIT:  FULL RANGE
                       STRAIGHT RUN rtAPHTHA,  5ULK  LIQUID

        Compound                                                 PPM


Benzene                                                         57.5
Toluene                                                        139.0
Ethylbenzene                           '                        300.0
Tn/p-xylenes                                                    229.0
o-xylene                                                       228.0
i-propylbenzene                                                 21.6
n-propylbenzene                                                 63.8
m/p-ethyltoluene                                               284.0
1 , 3, 5-Triniethylbenzene                                          74.8
o-ethyltoluene                                                  49.3
1,2,4-Trimethylbenzene                                         257.0
sec-Butylbenzene                                                26.0
1,2,3-Trimethylbenzene                                          21.B
C^-Alkylbenzene                                                 28.8
Inden                                                            4.38
C4-Alkylbcnzene                                                 68.0
n-Butylbenzene                                                  28.0
CVAl.kylhenzene                                                 72.0
C4-Alkylbenzene                                                 90.0
Methylindan                                                     30.0
Methylindan                                                     18.4
CM-Alkylbenzene                                                 26.0
C,,-Alkylbenzene                                                  8.40
Cs-Alkylbenzene                                                 47.31
C5-Alkylbenzene                                                  7.00
(VAlkylbenzene                                                 24.0
Cs-Alkylbensjene                                                 17.4
Methylindan                                                      7.00
Cs-Alkylbenzene                                                  8.25
C5-Alkylbenzene                                                 15.0
C5-Alkylbenzene                                                 37.5
Methylindan                                                      9.10
Cj-Alkylbenzena                                                 45.0
Cs-Alkylbenzene                                                 11.5
Cs-Alkylbenzene                                                  6.00
Naphthalene                                                     12.1
Cz-Alkylincene/methyltetralin                                    17.4
                                   397

-------
        TABLE B5-17.
CRUDE DISTILLATION UNIT:   VIRGIN
MIDDLE DISTILLATE PRODUCT,  BULK  LIQUID
      Compound
                                        ppm
To lu e ne
ELhylbenzene
m/p-xylenes
o-xylene
n-propylbenzene
m/p-ethyltoluene
1,3,5-Trimethylbenzcne
o-ethyltoluene
1,2,4-Trimethylbenzene
1,2,3-Trimethylbenzene
Indan
C^-Alkylbenzene
Ci+-Alkylbenzene
Cu-Alkylbenzene
Methylindan
C^-Alkylbenzene
Ci+-Alkylbenzene
Methylindan
C5-Alky!benzene
Cs-Alkylbenzene
Methylindan
Cs-Alkylbenzenc
Cs-Alkylbenzene
Naphthalene
Benzothiophene
Cs-Alkylbenzene
Mcthylbenzothiophene
2-Methylnaphthelene
Me thylbenzothiophene
1-Methylnaph thalene
Cz-Alkylbcnzothiophene
Cz-Alkylbenzothiophenc
C2-AlkyInaphthalene
Cz-Alkylbenzothiophene
C2~Alkylnaphthalene
Cj-Alkylbtnzothiophene
C2-Alkylnaphthalene
C2-Alkylbenzothiophene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Acenaphthcne
C 3-Alkylbenzothiophene
C3-Alkylnaphthalene
                                      4.48
                                      9.10
                                     40.3
                                     11.7
                                      7.80
                                     27.3
                                     22.1
                                      5.85
                                     89.8
                                     14.0
                                     11.4
                                     48.0
                                     38.0
                                     106.0
                                     28.0
                                     70.0
                                     80.0
                                     26.0
                                     27.5
                                     65.0
                                     29.9
                                     80.0
                                     32.5
                                     100.0
                                     38.0
                                     25.0
                                     129.0
                                     760.0
                                     114.0
                                     89.9
                                     80.0
                                     36.0
                                     62.5
                                     205.0
                                     400.0
                                     64.0
                                     700.0
                                     54.0
                                     143.0
                                     32.5
                                     19.6
                                     215.0
                                     241.0
                                                      Continued
                                   398

-------
            TABLE B5-17.  Continued
Compound
C3-Alkylnaphthalene
Cq -Alky Inaph thalene
Ca-Alkylnaphthalene
Fluorene
C 3-Alkylnaph thalene
Methylacenaphthene
Cu-Alkylbenzothiophene
Cu-Alkylnaph thalene
Me thy If luorene
Ca-Alkylacenapthene
Methylfluorene
Methylfluorene
Dibenzothiophene
Phenanthrene./ Anthracene
C?- Alky If lucrene
Methyldibenzothiophcne
Methyl dibenzothiophene
Methyl phenanthrene/anthracene
Methyl phenanthrene/anthracene
C 2- Alky Idibenzothiophene
Cz-Alkyl phenan threne /anthracene
Cz- Alky Idi hen znthiophene
Cz-Alkyl phenanthrene/anthracene
C2-Alkyl p lie nan threne /anthracene
Cz-Alky] dihenxothiophene
Cn- Alky Idi ben zothiophene
C2~Alkyl phenanthrene/anthracene
Fluoranthene
C3-Alkyldibenzothlophcne
Ca-Alkyl plienan threne /anthracene
C s-Alkyl phenanthrene/anthracene
Cs-Alkyl phenanthrene/anthracene
Pyrene
Cs-Alkyl phenanthrene/anthracene
C 4- Alky! dibenzothiophene
C 3-A1 kyJ phenanthrene/anthracene
Methyl f luoranthen/pyrene
Methyl f ] uoran then/pyrene
249.0
235.0
171.0
34.5
69.6
86.0
100.0
348.0
18.7
126.0
30.6
10.4
32.0
56.1
62.0
27.2
51.0
51.8
40.6
12.6
4.75
4.60
18.0
40.0
36.3
22.0
92.5
3.30
65.0
5.22
4.93
10.73
4.80
24.9
13.3
8.41
2.99
3.51
                     399

-------
       TABLE B5-18.   CRUDE  DISTILLATION UNIT:
                      ATMOSPHERIC GAS OIL,  BULK LIQUID
Compound
Toluene
Ethylbenzcne
m/p-xylenes
c-xylene
m/ p- e thy 1 to lu ene
1, 3, 5-Trimetnylbenzene
o-ethyltoluene
Ci»- Alky Ibenz ene
Ci,- Alky Ibenz ene
C^-Alkylbenzene
C 5- Alky "Ibenz ene
Naphthalene
2-Methylnapnthaiene
1-Methylnaphthplenc
GJJ_ Alky Inaph thai ene
Cj-Alkylnaphthalene
C?-Alkylnaphthalene
C^-Alkylnaphthalene
Cj-Alkylnaphthalene
Phenanthr ene /anthracene
Methyl phenanthrene/anthracene
Methyl phenanthrene/anthracene
C ? - Alk y 1 ph en a n th r ene / an t hr ac en e
C3~Alkyl phenanthrene/anthracene
7.60
5.46
11.1
4.68
15.1
5.27
18.7
4.40
7.20
4.80
5.25
3.52
4.75
3.48
9.75
0.750
13.8
8.25
14.5
3.30
10.6
14.0
80.0
60.9
                          400

-------
          TABLE B5-19.   CRUDE DISTILLATION UNIT:   LIGHT
                           VACUUM GAS  OIL,  BULK  LIQUID


    Compound                                                   ppm


Toluene                                                        5.04
Ethylbenzene                                                   5.85
m/p-xylene                                                     9.88
o-xylene                                                      11.6
n-propylbenzene                                                3.22
m/p-ethyltoluene                                              17.0
1,3,5-Trimethylbenzene                                         7.48
o-ethy1toluene                                                 9.01
1,2,4-Trimethylbenzene                                        12.4
Indan                                                          4.50
Cu-Alkylbenzene                                               10.2
C^-Alkylbenzene                                               16.0
C4-Alkylbenzene                                                6.80
Methylindan                                                    5.20
Methylindan                                                    5.00
C,,-Alkylbenzene                                                8.80
C^-Alkylbenzene                                               80.0
Methylindan                                                    4.20
C5-Alkylbenzene                                               45.0
C5-Alkylbenzene                                                3.5
C5-Alkylbenzene                                                3.25
Methylindan                                                   11.3
C5-Alkylbenzene                                                5.00
Cs-Alkylbenzene                                                5.00
Tetralin                                                       1.60
Naphthalene                                                   27.5
C2-Alkylindan/methyltetralin                                  27.3
C5-Alkylbenzene                                               14.0
C2-Alkylindan/methyltetralin                                  19.2
C5-Alkylbcnzene                                               15.3
C2-Alkylindan/methyltetralin                                  15.2
C2-Alkylindan/tnethyltetralin                                  18.3
2-Methylnaphthalene                                           68.4
1-Methylnaphthalene                                           18.9
C2-Alkylnaphthalene                                           25.0
C2~Alkylnaphthalene                                           72.5
Biphenyl                                                       8.80
C2-Alkylnaphthalene                                          113.0
C2-Alkylnaphthalene                                           70.0
C2-Alkylnaphthalene                                           18.0
Methylbiphenyls                                               13.6
Cj-Alkylnaphthalene                                           34.8
C3-Alkylnaphthalene                                           43.5
                                 401

-------
             TABLE B5-19.  Continued
Compound                                           ppm
C 3- Alky 1 naphthalene
Cs-Alkylnaphthalene
Fluorene
C3-Alkylnaph thai ene
Methyl acenaphthalene
Cz -Alkylbiphenyls
Methylfluorene
Paenanthr ene/ anthracene
C2 -Alkylf luorene
Methyl phenanthrene/anthracene
Methyl phenanthrene/anthracene
Cg-Alkyl phenanthrene/anthracene
C3-Alkyl phenanthrene/anthracene
55.1
31.9
9.36
4.93
13.6
28.0
9.35
12.1
9.40
6.30
5.18
9.50
2.9
  TABLE Bb-20.   CRUDE DISTILLATION UNIT:  VACUUM
                 GAS OIL, BULK  LIQUID
             No Aromatic  Species Detected.
                         402

-------
    TABLL  B5-21.   CRUDE  DISTILLATION  UNIT;   VACUUM  GAS OIL
Compound
Benzene
Toluene
Ethylbenzene
T., p-Xylene
o-Xylene
Isopropylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethylbenzene
2-Ethyl toluene
sec-Buty Ibenzene
1, 2 , 4-TriTr.ethylbenzene
Di ethyl benzene
Methylisopropylbenzene
Methylpropylbenzene
.Methylpropylbenzene
Methylpropylbenzene
Diethylbenzene
Die thy]. benzene
Diir.ethyle thy Ibenzene
Dimethylethy Ibenzene
Dimethyl ethy Ibenzene
Diir.ethylethylbenzene
C 5 -Alky Ibenzene
Dime thy le thy Ibenzene
Tetramethy] benzene
Tetrame thy Ibenzene
Tetramethy Ibenzene
Cs -Alky Ibenzene
Cs-Alky Ibenzene
Naphthalene
Cs-Alky Ibenzene
Cs-Alky Ibenzene
Ci -Alky Ibenzene
Bulk Liquid, Vapor on
ppm XAD,yg
1.5
29.0
8.9
42.0
34.0
11.0
49.0
38-0
30.0
73.0
17.0
55.0
13.0
10.0
4.2
25.0
14.0
19.0
17-0
20.0
11.0
10.0
5.6
10.0
4.7
7.0
17.0
4.9
31.0
5.8
59.0
6.7
2.8
2.6
Vapor on
Tenax,pg
0.00046
0.0070
0.0030
0.0099
0.0046
0.0017
0.0096
0.0052
0.0039
0.0099
0.0029
0.0062
0.0031
—
O.OOU49
0.0068
—
0.0029
0.0039
0.0044
—
—
—
0.0034


0.0034
0.0024
0.0065
0.0018
0.014
0.0016
—
—
aNone of  the listed vapor species were found in the  bulk liquid.  The vapor
 species,  therefore, must have been adsorbed from the ambient air or resulted
 from cross-contamination with other samples due to  residue in the sampling
 train.
                                   403

-------
 TABLE B5-22.   CRUDE DISTILLATION UNIT:   HEAVY
                VACUUM GAS OIL, BULK  LIQUID
             No Aromatic Species Detected
TABLE B5-23.   CRUDE DISTILLATION  UNIT:   VACUUM
               RESIDUE, BULK LIQUID
             No Aromatic Species Detected.
                       404

-------
TABLE B5-24,
API SEPARATOR: SURFACE OIL SKIMMED
FROM INLET BAY, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1,3 ,5-Trimethy Ibenzene
2-Ethyl toluene
1, 2 ,4-Trimethy Ibenzene
Isobutylbenzene
1,2, 3-Trimethylbenzene
Methylpropylbenzene
Indan
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dime thyle thy Ibenzene
Methyl indan
Dime thyle thy Ibenzene
Tetrame thy Ibenzene
Tetramethylbenzene
Methyl indan
€5 -Alky Ibenzene
Cs -Alky Ibenzene
Naphthalene
C 5 -Alky Ibenzene
Cs -Alky Ibenzene
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
Ca-Alkylnaphthalene
C2-Alkylnaphthalene
Ca-Alkylnaphthalene
C2-Alkylnaphthalene
C2~Alkylnaphthalene
C2 -Biphenyl
C 3 -Naphthalene
C$ -Naphthalene
C3 -Naphthalene
C 3 -Naphthalene
Fluorene
Phenanthrene/Athracene
di c -Anthracene
Concentration
(ppm)
230
1800
480
1300
390
100
240
1000
500
460
1000
60
330
180
60
470
130
300
370
120
130
140
60
150
50
160
2000
100
80
2200
1700
620
390
1800
3000
700
240
840
390
1200
860
470
160
220
—
                       405

-------
TABLE B5-25.  API SEPARATOR:  SURFACE  OIL SKIMMED
                FROM  INLET  BAY, BULK LIQUID
                                               Concentration
       Compound                                    (ppm)

 Benzene                                             24
 Toluene                                            460
 Ethylbenzenc                                        30
 ro,p-Xylene                                         350
 o-Xylene                                           210
 Isopropylbenzene                                    72
 n-Propylbenzene                                    160
 3 or 4-Ethyl toluene                               710
 1,3,5-Trimethylbenzene                              490
 2-Ethyl toluene                                    145
 1,2,4-Trimethylbenzene                              730
 1,2,3-Trimethylbenzene                              160
 Methylpropylbenzene                                 79
 Methylpropylbenzene                                 14
 Diethylbenzene                                      31
 Dimethylethylbenzene                               170
 Dimethylethylbenzene                                78
 Diethylbenzene                                     190
 Dimethylethylbenzene                                25
 Dimethylethylbenzene                               180
 Cs-Alkylbenzene                                    140
 Cs-Alkylbenzene                                     65
 Cs-Alkylbenzene                                     90
 Cs-Alkylbenzene                                     20
 Dimethylethylbenzene                               145
 Tetramethylbenzene                                 250
 Cs-Alkylbenzene                                     35
 Tetramethylbenzene                                 260
 Cs-Alkylbenzene                                     80
 Cs-Alkylbenzene                                    100
 Cs-Alkylbenzene                                    165
 Cs-Alkylbenzene                                    120
 Cs-Alkylbenzene                                    190
 Cs-Alkylbenzene                                     55
 Cs-Alkylbenzene                                     55
 Cs-Alkylbenzene                                    165
 Cs-Alkylbenzene                                     70
 dio-Anthracene
                           406

-------
TABLE B5-26
API SEPARATOR: SURFACE  OIL  SKIMMED
FROM OUTLET END, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 .
43
44
Compound
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbcnzenc
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethy Ibenzene
2-Ethyl toluene
see-But ylbenzene
1,2, 4-Trimethy Ibenzene
Diethylbenzene
Me thy lisop ropy Ibenzene
Me thylpropy Ibenzene
Diethylbenzene
Dimethylethylbenzene
Dime Chyle thy Ibenzene
Tetramethy Ibenz ene
Tetrame thy Ibenzene
Cs -Alky Ibenzene
Naphthalene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylnaphthalene
2-Methylnaphthalene
C -Alkylbenzene
1-Methylnaphthalene
Cs-Alkylnaphthalene
Biphenyl
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
Ca-Alkylnaphthalene
Acenaphthene
C 3 -Alky Inapht ha lene
Ca-Alkylnaphthalene
C? -Alkylnaphthalene
Cs-Alkylnaphthalene
Fluorene
C 3 -Alkylnaphthalene
Concentration
(ppm)
280
200
2,400
950
250
2,500
1,200
950
3,800
280
1,600
210
85
700
600
900
850
1,100
120
6,500
1,200
210
430
180
120
140
160
23,000
140
14,000
70
380
4,100
18,000
22,000
4,500
1,100
600
6,000
10,000
11,000
3,200
1,200
240
                                            Continued
                        407

-------
TABLE B5-26.  Continued
Peak.
No.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
Compound
03 -Alkylnaphthalene
Methylbiphenyl
Ci» -Alkylnaphthalene
Cu -Alkylnaphthalene
Ci4 -Alkylnaphthalene
Cu -Alkylnaphthalene
Ci* -Alkylnaphthalene
C ^-Alky Inaphthalene
Methyl fluorene
Methyl fluorene
Ci>-Alky 1 naphthalene
Ci* -Alkylnaphthalene
Phenanthrene /Anthracene
di o-Anthracene
Concentration
(ppm)
500
4,600
1,700
1,600
220
800
1,300
850
1,300
240
1,300
380
1,800

           408

-------
TABLE B5-27
API SEPARATOR: OIL FROM THE SKIM
OIL SUMP, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1 , 3 ,5-Trimethylbenzene
2-Ethyl toluene
1 , 2 ,4-Triraethylbenzene
Isobutylbenzene
1,2, 3-Trimethylbenzene
Methylpropylbenzene
Indan
Methylpropylbenzene
Diethylbenzene
Dicthylbenzene
Dime thy lethylbenzene
Methyl indane
Dime thy lethylbenzene
Tetraraethylbenzene
Tetramethylbenzene
Methyl indan
C5-Alkylbenzene
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
C5-Alkylbenzene
2-Methylnaphthalene
1-Methylnaph thalene
Biphenyl
C2 -Alky Inaph thalene
C2 -Alky Inaph thalene
C2 -Alkylnaphthalene
C 2 -Alky Inaph thalene
C2 -Alky Inaph thalene
C 3 -Naphthalene
C3-Naphthalene
C 3 -Naphthalene
C3-Naphthalene
Fluorene
Phenanthrene/ Anthracene
d j c-Anthracene
Concentration
(ppm)
70
1400
540
1600
450
130
480
1700
720
630
1600
100
480
240
120
740
220
320
520
220
240
320
60
260
280
240
690
120
130
4000
2700
840
390
2400
4500
1200
390
760
2000
1400
700
250
260
—
                     409

-------
TABLE B5-28.   CRUDE DESALTER: EFFLUENT
              WATER, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Compound
Benzene
Toluene
Ethylbenzene
m.p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1, 3,5-Trimethylbenzene
2-Ethyl toluene
1,2, 4-Tr imethylbenzene
1,2, 3-Trimethylbenzene
Diethylbenzene
Naphthalene
Carbazole
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
Ci-Alkylnaphthalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C 3 -Naphthalene
C3-Naphthalene
Ca-Naphthalene
Fluorene
Phenanthrene/ Anthracene
di o-Anthracene
Acenaphthene
Concentration
(ppb)
6.6
3.4
7.3
2.2
9.9
1.4
4.8
15.0
1.2
5.9
18 0
12.0
3.8
450.0
51.0
150.0
140.0
100.0
20.0
67-0
120.0
36-0
10.0
48-0
37.0
23-0
22.0
50.0
—
100.0
                   410

-------
TABLE B-29.  CRUDE  DESALTER:   EFFLUENT
             WATER,  BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene/p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
1 ,3,5-Trimethylbenzene
2-Ethyl toluene
1 ,2,4-Trimethylbenzene
(\-Alkylbenzene
Indan
Ci, -Alkylbenzene
Ci, -Alkylbenzene
Ct, -Alkylbenzene
Ci, -Alkylbenzene
C4 -Alkylbenzene
Methyl indan
C4 -Alkylbenzene
Methyl indan
C 5 -Alkylbenzene
C^ -Alkylbenzene
C,, -Alkylbenzene
C^ -Alkylbenzene
C 5 -Alkylbenzene
C5-Alkylbenzene
Naphthalene
Ci, -Alkylbenzene
2-Methylnaphthalene
1-Me thy Inaph thai ene
Biphenyl
Dime thylnaphthalene
Dime thy Inaph thalene
Dime thylnaphthalene
Dime thylnaphthalene
Dime thylnaphthalene
C3-Alkylnaphthalene
Methyl biphenyl
Methyl biphenyl
C 3-Alkylnaphthalene
Methyl biphenyl
C 3 -Alky Inaph thalene
C 3 -Alky Inaph thalene
Concentration
(ppb)
3.1
11.0
1.1
6.9
2.4
0.10
0.12
0.62
0.44
0.25
0.14
0.06
0.19
0.05
0.03
0.14
0.23
0.14
0.07
0.14
0.11
0.15
0.13
0.04
0.07
0.10
0.05
8.1
0.17
0.49
0.32
0.02
0.02
0.07
0.15
0.05
0.01
0.01
0.14
0.04
0.03
0.03
0.03
0.03
                                     Continued
                  411

-------
TABLE B5-29.  Continued
Peak
No.
45
46
47
48
49
50
51
52
Compound
Cs -Alkylnaphthalene
C-j -Alkylnaphthalene
GS -Alkylnaphthalene
Fluorene
Methyl fluorene
Methyl fluorene
Dibenzothiophene
Phenanthrene
Concentration
(ppb)
0.04
0.04
0.01
0.004
0.006
0.006
0.03
0.01
          412

-------
     TABLE B5-30.  CRUDE  DESALTER:   EFFLUENT
                   WATER,  BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
1,3, 5-Trimethylbenzene
Methylethylbenzene
1,2, 4-Tr inte thylbenzene
sec-Butylbenzene
Methylpropylbenzene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
C2-Alkylnaphthalene
Fluorene
di o -Anthracene
Concentration
(ppb)
36
2600
290
250
130
24
120
110
60
56
100
1200
220
210
40
140
21
—
       TABLE B5-31.  SOUR  WATER STRIPPER: SOUR
                     WATER FEED,  BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
Compound
Dime thy Id isul fide
Phenol
Methylphenol3
Methylphenol
Methylquinoline
Dimethylphenol3
Dimethylphenol
Dimethylphenol
Methylquinoline
di o-Anthracene
Concentration
(ppm)
100.0
120.0
14.0
46.0
4.8
5.6
3.6
2.1
3.3

Identification based on corresponding methyl ether.
                       413

-------
TABLE B5-32
FLUID CATALYTIC CRACKER:
(GAS TO THE ABSORBERS)
COMPRESSOR DISCHARGE
Compound
Benzene
Toluene
Ethylbenzene
ra,p-Xylene
o-Xylene
Isopropylbenzene
n-Propyl benzene
3 or 4-Ethyl toluene
1,3, 5-Trimethylbenzenc
2-Ethvl toluene
1, 2 , 4 -Tr ime thy 1 benzene
1 , 2,3-Trimethylbenzene
Methylpropylbenzene
Diethylbenzene
Dime thy Ibenzene
Dime thy let hylbenzcne
Tetranethylbenzene
Tetranethylbenzene
C 5 -Alky Ibenz ene
C5-Aklybenzene
Naphthalene
2-Methylnaph thai ene
1-Methylnaphthalene
Vapor on XAD
Resin (]-g)
21.0
93-0
13.0
46.0
14-0
—
—
12.0
6.0
2.4
13-0
2.3
3.8
1.6
4.1}
0.4)
—
2.0
—
—
23.0
1.9
.0.3
Vapor on
Tenax (Ug)
0.54
2.5
0.68
1.6
0.58
0.05
0.30
0.74
0.55
0.31
0.94
0.28
0.40
0.22

0.48
0.08
0.26
0.16
0.13
0.01
—
—
                            414

-------
TABLE B5-33.
FLUID CATALYTIC CRACKER: LOW PRESSURE
SEPARATOR GAS (COMPRKSSOP. SUCTION)
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
u-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethylbenzene
2-Ethyl toluene
see-But ylbenzene
1 , 2 , 4-Trimethylbenzene
Methylpropylbenzene
Dime thy lethly benzene
Diethylbenzene .
C5-Alkylbenzene
Tetramethylbenzene
Cs-Alkylbenzene
Naphthalene
Vapor on
XAD, ug
— _
8.5
—
—
—
0.55
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Vapor on
Tenax, ug
0.028
0.054
0.0085
0.019
0.059
0.0010
0.0049
0.014
0.0096
0.0065
0.022
0.0086
0.0052
0.013
0.018
0-0083
0.0049
0.014
0.011
0.059

-------
TABLE B5-34.
FLUID CATALYTIC CRACKER:   LOW PRESSURE
SEPARATOR LIQUID, BULK  LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene /p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
1 ,3 ,5-Triniethylbenzene
2-Ethyl toluene
Ci^-Alkylbenzene
1 , 2,4-Trimethylbenzene
C^-Alkylbenzene
Indan
Ci^-Alkylbenzene
Ci^-Alkylbenzene
Ci^-Alkylbenzene
Ci^-Alkylbenzene
Ci,-Alkylbenzene
Methyl indan
(\-Alkylbenzene
Methyl indan
C5-Alkylbenzene
Cit-Alkylbenzene
Ci,-Alkylbenzene
Cc-Alkylbenzene
Cs-Alkylbenzene
Methyl indan
Methyl indan
C L -Alky Ib en 2 en e
Cs-Alkylbenzene
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
C2-Alkyl indan
Cz-Alkyl indan
C.»-Alkylbenzene
C2-Alkyl indan
Cs-Alkylbenzene
C 5 -Alky 1 benzene
Cs-Alkylbenzene
Cs-Alkylbenxene
Cj-Alkylbenzene
Cs-Alkylbenzene
Concentration
(P?b)
4,300
5,000
7,300
55,000
32,000
5,600
44,000
66,000
14,000
82,000
1,300
20,000
2,000
15,000
15,000
14,000
19,000
4,600
24,000
7,000
24,000
1,200
2,200
4,000
20,000
18,000
4,700
16,000
16,000
7,000
14,000
16,000
15,000
3,000
21,000
28,000
13,000
15,000
15,000
4,300
1,200
2,100
2,500
8,800
                                                   Continued
                         416

-------
TABLE B5-34.  Continued
Peak
No.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Compound
Cs-Alkylbenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
C2-Alkyl indan
Cs-Alkylbenzene
CG-Alkylbenzene
Cz-Alkyl indan
Cs-Alkylbenzene
C2-Alkyl indan
Cs-Alkylbenzene
Ce-Alkylbenzene
C s -Alky Ibenzene
C2-Alkyl indan
Methyl benzothiophene
Ce -Alky Ibenzene
C2-Alkyl indan
Methyl benzothiophene
2-Me Chylnaphthalene
Methyl benzothiophene
Methyl benzothiophene
1-Methylnaphthalene
Methyl benzothiophene
Ca-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Ca-Alkylnaphthalene
Concentration
(ppb)
5,200
4,800
1,300
11,000
7,500
8,100
11,000
7,500
14,000
3,900
7,500
5,000
9,700
500
2,500
5,000
1,400
16,000
1,400
1,200
15,000
1,600
700
1,400
1,100
300
        417

-------
TABLE B5-35.
FLUID CATALYTIC CRACKER:  LOW
PRESSURE SEPARATOR LIQUID
Peak
Number
1
(IS)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
• 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
(IS)
Compounds
(In Retention Order)
Benzene
dg-Benzene
Toluene
Ethylbenzene
n— f-p-Xylene
o-Xylene
Isopropylbenzene
n-Propyl benzene
3- + 4-Ethyltoluene
1,3, 5-Trimethylbenzene
2-Ethyltoluene
1, 2 ,4-Trimethylbenzene
1,2, 3-Trimcthylbenzene
C i, -Alkylbenzene
Indan
Ci, -Alkylbenzene
Cu -Alkylbenzene
Cu -Alkylbenzene
C i, -Alkylbenzene
Ci, -Alkylbenzene
2- +- Methylindan
Cu- Alkylbenzene
dt -Alkylbenzene
Methyl indan
Methylindan
Ci,- Alkylbenzene
C 5 -Alkylbenzene
C 5 -Alkylbenzene
Naphthalene
C^-Alkylbenzene
C2-Alkylindane
C^-Alkylbenzene
Cs-Alkylbenzene
C 5 -Alkylbenzene
C2-Alkylindan
C2-Alkylindan
C2-Alkylindan
C2 -Alkylbenzene
C5- Alkylbenzene
2-Methylnaphthalene
1-Methylnaphthalene
d i o-Anthracene (IS)
Bulk Liquid Vapor on XAD Vapor
(ppm) (wg)
6,600 260
—
47,700 8,100
10,600 4,400
57,200 8,000
21,300 7,500
130
3,000 850
32,500 7,100
15,100 2,800
7,100 1,280
46,000 6,150
9,600 880
72
4,000 250
17,200 1,000
19,600 960
2,400 210
13,200 520
13,600 480
2,500 85
2,000 32
19,600 340
2,500 10
2,800 30
2,800
27,000
2,700
15,600 66
1,200
2,400
600
4,000
1,700
400
600
400
100
1,000
8,700
3,600
0
(o'.
25
4
21
8
0

19


13
3
0
1

7

4

0
0
2
0
0
0
1
0
0

0

1
0





0
0
on Tenax
(yg)
.72
035)
.3
.0
.3
.7
.21

.8


.3
.2
.33
.2

.8

.1

.41
. 74
.3
.22
.24
.49
.2
.44
.03
—
.11
—
.2
.46
—
—
—
—
—
,03
.01
(100) (1000)
                       418

-------
TABLE B5-36.   FLUID CATALYTIC CRACKER:  LOW PRESSURE SEPARATOR LIQUID
Compound
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
1, 3 ,5-Trimethylbenzene
Methylethylbenzene
1,2 ,4-Trimethylbenzene
sec-Butylbenzene
Methylisopropylbenzene
Ci.-Alkylbenzene
Cij-Alkylbenzene
Ci, -Alkylbenzene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
Bulk
Fraction 1
160,000
39,000
250,000
68,000
150,000
6,700
24,000
84,000
22,000
—
—
—
6,000
320
170
Liquid, ppm
Fraction 2
2,400
380
7,800
8,200
3,300
3,100
3,400
11,000
5,600
1,300
620
1,100
8,600
3,600
590

Total
160,000
39,000
260,000
76,000
150,000
10,000
27,000
95,000
28,000
1,300
620
1,100
15,000
3,900
760

Fraction 1
300
91
220
26
99
—
—
—
—
—
—
—
—
—
—
Vapor, ug
Fraction 2
19
5
93
32
60
27
18
42
—
—
—
—
—
—
—

Total
320
96
310
58
160
27
18
42
— .
—
—
—
—
—
—

-------
          TABLE B5-37.   FLUID  CATALYTIC  CRACKER:  LIGHT
                           CYCLE  oAS OIL, BULK LIQUID


     Compound                                                    ppra


Benzene                                                         1.75
Toluene                                                        13.6
F.thylbenzene                                                    8.97
m/p-xylenes                                                    19.5
o-xylene                                                        8.58
i-propylbenzene                                                 0.578
n-propylbenzene                                                11.9.
n/p-ethyltoluene                                               76.5.
1,3, 5-Trimethylbenzene                                         22. L
o-ethyitoluene                                                  A.08
1,2,4-Trimethylbfcazene                                         30.1.
Sec-Butylbenzene                                               18.4
Indan                                                          15.0
Cit-Alkylbenzenc                                                46.0
d.-Alkylbenzene                                                34.0
Ci»-Alkylbenzene                                                26.0
Methylindan                                                    28.0
Ci,-Alkylbenzcne                                                32.0
Ci,-Alky] benzene                                                 8.00
Cs-Alkylbenzcne                                                Al.5
Metliylindan                                                    30.0
C5-Alkylben^ene                                                10.8
Cs-Alkylbcnzene                                                20.0
Methylindan                                                    32.5
Cs-Alkylbenzene                                                22.0
C^-Alkylbenzene                                                27.5
Tetralin                                                        1.6
Naphthalene                                                    96.8
C2-A]kylindan/methyltetralin                                   58.9
Cj-Alkylbenzene                                                45.0
Cz-Alkylindan/methyltetralin                                   55.8
C2-Alkylindan/me.thyltetralin                                   96.1
C2-Alkylindan/nethyltatralin                                   19.2
Methylbenzothiophene                                            2.89
Methylbenzothiophene                                           25.5
2-Methylnaphthalene                                           616.0
Methylbenzothiophene                                           37.4
1-Methylnaplithalene                     .                       71,1
C?-Alkylbenzothiophene                                         28.0
Ca-Alkylnapbthalene                                           485.0
Cz-Alkylbenzothiophene                                         65.0

                                                       Continued
                                    420

-------
                       TABLE B5-37.   Continued
      Compound                                                     ppm

 C2-Alkylnaphthalene                                            825.0
 Biphenyl                                                         5.72
 C?-Alkylbenzothiophene                                          28.0
 Cz-Alkylnaphthalene                                            550.0
 C2-Alkylbenzothiophene                                          17.3
 Cj-Alkylnaphthalene                                            185.0
 C2-Alkylnaphthalcne                                             87.5
 Acenaphthene                                                     8.40
 Methylbiphenyl s                                                 15.5
 Cs-Alkylbenzothiophene                                          92.5
 C3-Alkylnaphthalene                                             43.5
 Ca-Alkylnaphthnlene                                            218.0
 Cs-Alkylnaphthalene                                            203.0
 C3-Alkylnaphthalene                                            249.0
 Fluorene                                                        18.2
 C2-Alkylnaphthalene                                            148.0
 Methylacenaphthenes                                             62.0
 C2-Alkylbiphenyls                                               48.0
 C^-Alkylnaphthalene                                            328.0
 Methylfluorene                                                  17.0
 Methylfluorene                                                  23.8
 Methylf1uorene                                                   7.14
 Phenanthrene/anthracene                                         97.9
 Cz-Alkylfluorenes                                               52.0
 Methyldibenzothiophene                                          74.8
 Kethyldibenzothiophene                                          51.0
 Methyl phenanthrene/anthracene                                  71.4
 Methyl phenanthrene/anthracene                                  42.0
 Cz-Alkyl dibenzothiophene                                       10.8
 C2-Alkyl Dhenanthrene/anthracene                                 2.35
 C2-Alkyl diben?.othinphene                                       70.0
 C2-Alkyl phenanthrene/anthracene                                96.3
 C2-Alkyl dihenzothiophene                                       44.0
 C2-Alkyl dibenzothiophene                                       72.5
 C?-Alkyl dibensothiophene                                       30.0
 C2-Alkyl phenanthrene/anthracene                                20.0
 Fluorarithene                                                     3.50
 C3-Alkyl dibenzothiophene                                       65.0
 C3-Alkyl phenanthrene/anthracene                                 1.45
 C3-Alkyl phenanthrene/anthracene                                 4.64
C3-Alkyl phenanthrene/anthracene                                11.6
Pyrene                                                           4.30
C3-Alkyl phenanthrene/anthracene                                37.7
                                                        Continued
                                    421

-------
                     TABLE B5-3.7.   Continued
       Compound                                                 ppm


Ct»-Dibenzothiophene                                             13-. 0
C3-Alkyl phenanthrene/anthracene                                15.4
Cs-Alkyl phenanthrene/anthracene                                6.67
Methyl fluorenthene/pyrene                                      0.429
Methyl fluorenthene/pyrene                                      0.871
Methyl fluorenthene/pyrene                                      1.82
Methyl fluorenthene/pyrene                                      1.82
Ci,-Alkyl phenanthrene/anthracene                                13.1
                                  422

-------
                     TALBE B5-38.  FLUID CATALYTIC CRACKER:  LIGHT  CYCLE  GAS  OIL
ro
OJ

Bulk
Compound Fraction 1
Benzene
Toluene
Ethylbenzene
p ,m-Xyle.ne
o-Xylene
Methylethylbenzene
1, 3 , 5 -Trimethyl benzene
Methylethylbenzene
1,2 ,4 -Trimethyl benzene
see-But yl benzene
Methylisopropylbenzene
Diethylbenzene
Dime thylc thy Ibenzene
C^-Mkylbenzene
Ci,- Alky Ibenzene
0.,-Alky Ibenzene
Ci,- Alky Ibenzene
1,2 , 3, 5-Tetrame thy Ibenzene
1,2,3 , 4-Te trarae thy Ibenzene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
Biphenyl
C2~Naphthalene
C2-Naphthalene
Ca-Naphthalene
Cz-Naphthalene
C[ -Biphenyl
Ca-Naphthalene
Cs-Naphthalene
C3-Naphthalene
Ca-Naphthalene
Ca-Naphthalene
Phenanthrcne/ Anthracene

40
—
360
270
1,400
950
470
—
14,000
950
1,800
1,100
1,100
1,500
2,400
940
—
—
40,000
52,000
44,000
—
9,900
20,000
27,000
8,100
—
—
—
—
—
—
—
Liquid, ppm
Fraction 2

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
12,000
90,000
39,000
4,600
3,500
69,000
78,000
28,000
2,100
8,800
2,400
19,000
28,000
18,000
7,400
Vapor, pg
Total

40
—
360
270
1,400
950
470
—
14,000
950
1,800
1,100
1,100
1,500
2,400
940
—
—
52,000
140,000
83,000
4,600
13,000
89,000
110,000
36,000
2,100
8,800
2,400
19,000
28,000
18,000
7,400
Fraction 1

230
250
840
270
—
800
210
68
220
15
22
63
64
—
—
—
180
8
31
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Fraction 2
2
1
—
19
24
7
22
9
68
16
4
11
6
2
2
—
—
22
—
50
4
—
—
—
—
—
—
—
—
—
—
—
—
—
Total
2
230
250
860
290
7
820
220
140
240
19
33
69
66
2
—
—
200
8
81
4
—
—
—
—
—
—
—
—
—
—
—
—
—

-------
   TABLE B5-39.   FLUID CATALYTIC CRACKER:   HEAVY
                  CYCLE GAS OIL, BULK LIQUID
Compound                                            ppm
Benzene
Toluene
Ethylbenzcne
Wp-xylenes
o-xylcne
n-propylbonzene
m/p-ethyltoluene
o-ethyltol uene
1, 2, 4-Trimethylbenzene
Sec-Butylbenzene
Tndan
n-Butyl benzene
Ci,-Alkylbenzene
C^-Alkylbenzenc
Methylindan
Csi-Alkylbenzene
Cu-Alkylbenzene
Methylin dan
Cj-Alkylbenzene
Cs-Alkylbenzcne
Methylindan
Cs-Alkylbenzene
Naphthalene
Cz-Alkylindan/methyltetralin
Benzothiophene
Cs-Alkylbenzene
Ca-Alkylindan/methyltetralin
Cs-Alkylbenzene
C2-Alkylindan /methyl tetralin
C2-Alkylindan/inethyltetralin
Methylbenzothiophene
Cs-Alkylbenzene
Methylbenzothiophene
2-Methylnaphthalene
Methylbenzothiophene
1-Methylnaphthalene
Ca-Alkylnaphthalene
Cz-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Cz-Alkylnaphthalene
Acenaphthene
C3-Alkylnaphthalene
4.75
15/4
4/29
27.0
13.1
3.91
21.8
2.72
38.3
4.80
6.13
3.60
6.80
11.2
11.4
16.2
8.80
6.40
4.00
3.25
4.81
15. ;5
19/0
20.2
2. -70
5/50
10.2
3.75
7.44
13.6
6.29
8.25
6.29
45.4
13.6
30.7
25.0
73.3
82.0
57.8
21.8
3.08
36.5
                                           Continued
                          424

-------
                      TABLE  B5-39.   Continued
     Compound                                                   ppra

C3-Alkylnaphthalene                                           115.0
Cj-Alkylnaphthalene                                            52.2
C3-Alkylnaphthalene                                            49.3
G 3-Alk.ylnaphthnlene                                            10.4
Fluorene                                                        8.97
C3-Alkylnaphthalene.                                             4.93
Methylacenaphthenes                                            51.0
C^-Alkylnaphthalene                                           151.0
Methylfluorene                                                 18.7
Methylfluorene                                 .                27.2
Methylfluorene                                                 14.3
Diben7.othiophene                                               55.0
Phenanthrene/anthracene                                       143.0
C?-Alkylfluorene                                              107.0
Methyldibenzothiophene                                        126.0
Methyldibenzothiophene                                        258.0
Methyl phenanthrene/anthracene                                333.0
Methyl phenanthrene/anthracene                                256.0
C2~Alkyl dibenzothiophene                                     127.0
C?.-Alkyl phenanthrene/anthracene                               25.0
C2-Alkyl dibenzothiophene                                     306.0
Ca-Alkyl phenanthrene/anthracene                              510.0
C2-Alkyl phenanthrene/anthracene                              943.0
Cz-Alkyl dibenzothiophene                                     232.0
C2-Alkyl dibenzothiophene                                     173.0
C2-Alkyl dibenzothiophene                                      49.0
C2-Alkyl phenanthrenK/anthracene                               37.5
C2-Alkyl phenanthrene/anthracene                               35.0
Cs-Alkyl dibenzothiophene                                     818.0
Ca-Alkyl phenanthrene/anthracene                               21.2
Cj-Alkyl phenanthrene/anthracene                               26".4
Pyrene                                                          5.60
Cs-Alkyl phenanthrene/anthracene                              409.0
Cn-Alkyl dibenzothiophene                                     370.0
Cs-Alkyl phenanthrene/anthracene                               87.0
Ca-Alkyl phenanthrene/anthracene                               87.0
Methyl fluorenthene/pyrene                                     18.2
Methyl fluorenthene/pyrene                                     32.5
Methyl fluorenthene/pyrene                                     68.9
Methyl f]uorenthene/pyrene                                    107.0
Cs-Alkyl dibenzothiophene                   '                   90.0
Ci4-Alkyl phenanthrene/anthracene                              334.0


                                                      Continued
                                  425

-------
                     TABLE  B5-39.   Continued
     Compound                                                   ppm
C2-Alkyl fluorenthene/pyrene                                    7g Q
C'2-Alkyl fluorenthene/pyrene                                    45 Q
C?-Alkyl fluorenthene/pyrene                                    64.0
Natphthabenzothiophene                                         JQ Q
C2-Alkyl fluorenthene/pyrene                                    g^ Q
Cz-Alkyl fluorenthene/pyrene                                    5g Q
Ca-Alkyl fluorenthene/pyrene                                   215*0
C5-Phenant"riTene/anthracene                                    128. C
C^-Alkyl fluorenthene/pyrene                                    78.3
C2-Alkyl chrysenes/benzanthracenes                               2.0
C,-Alkyl chrysenes/benzanthracenes                              25.8
                                   426

-------
TABLE B5-40.   FLUID CATALYTIC CRACKER:   HEAVY CYCLE GAS OIL
Compound
Benzene
Toluene
Echylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trinethylbenzene
2-Ethyl toluene
1 ,2 , 4-Trimethylbenzene
Diethylbenzene
Methylisopropylbenzene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dime thyle thy Ib en zene
Dime thyle thy Ibenzene
Dime thy lethylbenzene
Dime thyle thy Iben zene
Cs-Alkylbenzene
Tetraaiethylbenzene
Tetrame thy Ibenzene
Cs-Alkylbenzene
Cs-Alkylbenzene
Naphthalene
Cs-Alkylbenzene
Cs-Alkylbenzene
Cj-Alkylbenzene
Cs-Alkylbenzene
2-Methylnaphthalene
1-Methylnaphthalene
Cz-Alkylnaphthalene
Bulk Liquid,
ppm
740
10,000
1,200
8,800
3,000
120
900
6,900
2,700
1,500
7,200
1,800
320
—
2,100
1,800
440
2,300
2,000
320
1,700
2,000
390
200
1,400
360
14,000
500
840
200
210
12,000
5,500
5,000
Vapor on
XAD, ug
15.0
34.0
66-0
190.0
120.0
7.6
59-0
250-0
42.0
24.0
140-0
34.0
23-0
17.0
9.8
17.0
7.6
20.0
14.0
—
—
—
1.4
—
9.2
—
13.0
—
—
—
—
—
—
—
Vapor on
Tenax, pg
0.10
0.83
0.16
0.54
0.15
—
—
0.25
0.10
—
0.057
0.19
—
—
0.036
0.017
—
—
—
—
—
—
0.0058
0.016
0.015
—
—
—
—
—
—
—
—
—
                            427

-------
TABLE B5-41,
THERMOFOR CATALYTIC CRACKER:
CYCLE GAS OIL, BULK LIQUID
HEAVY
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene/o-Xylene
3-Ethyl toluene
1 , 3 ,5-Trimethylbenzene
2-Ethyl toluene
1,2, 4-Tr imethylbenzene
Indan
C it- Alkyl benzene
C^-Alkylbenzene
Ci^-Alkylbenzene
Methyl indan
Methyl indan
Methyl indan
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C2~Alkylnaphthalene
Ca-Alkylnaphthalene
Acenaphthylene
C2-Alkylnaphthalene
C2~Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C 3-Alkylnaphthalene
C2-Alkylnaphthalene
C2- Alky 1 naphthalene
Fluorene
C2-Alkylnaphthalene
Methyl fluorene
Methyl fluorene
Methyl fluorene
Dibenzothiophene
Anthracene
Methyl anthracene
Methyl anthracene
Methyl anthracene
Pyrene
Methyl pyrene
Methyl pyrene
Methyl fluoranthene
Concentration
(ppb)
80
540
200
1,100
940
500
200
200
350
350
500
400
250
150
250
920
2,200
1,400
2,700
4,200
1,700
740
200
390
1,300
1,700
1,900
2,300
1,600
200
150
500
250
250
200
650
180
4,800
4,900
5,200
5,200
420
2,900
2,100
                                              Continued
                        423

-------
               TABLE B5-41.   Continued
Peak                                        Concentration
 Ko.                      Compound                (ppb)

 45              Methyl  fluoranthene               260
 46              Chrysene                       2,400
 47              Methyl  chrysene                   200
 48              Methyl  chrysene                 1,400
 49              Methyl  chrysene                 1,600
 50              Methyl  chrysene                   600
 51              Methyl  chrysene                   900
 52              Methyl  chrysene                   480
 53              Dimethyl chrysene                 190
 54              Dimethyl chrysene               1,000
 55              Dimethyl chrysene                 900
 56              Dimethyl chrysene               1,100
 57              Dimethyl chrysene                 620
 58              Dimethyl chrysene                 880
 59              Dimethyl chrysene               1,100
                           429

-------
TABLE B-5-42.   CATALYTIC  REFORMER: HYDROGEN (H2) RECYCLE  GAS
  Compound
Vapor on
XAD, pg
Vapor on
Tenax  Ug
Benzene 130.0
Toluene 350.0
Kthylbenzene 25.0)
m.p-Xylene 100.0)
o-Xylene 36.0
I sopropylbenzene 4.8
n-Propylbenzene 18.3
3 or 4-Ethvl toluene 61.0
1,3
, 5-Trimethylbenzene 42.0
2-Ethvl toluene 11.0
1,2
1,2
,4-Trimethylbenzene 63-0
, 3-Trimethylbenzene 11-0
Diniethylethylbenzene 5.0
Tetranethylbenzene 6.6
0.010
0.34

0. 38
0.38
0.38
0.38


0.88


0.88
0.88
                             430

-------
        TABLE B5-43.   CATALYTIC  REFORMER:   NAPHTHA  FLED

                          Bulk Liquid       Vapor on        Vapor on
Compound                      (ppm)          XAD, Ug         Tenax, p
Benzene
Toluene
Ethylbenzene
m, p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3 or 4-Ethyl toluene
1,3, 5-TTitnethylbenzene
2-Ethyl toluene
1 , 2,4-Triinethylbenzene
1,2, 3-Trimethylbenzene
Methylpropylbenzene
Diethylbenzene
1040
1800
. 550
4500
1700
420
690
3200
2600
520
2600
190
65
19
59
670
88
640
260
48
90
330
200
33
180
11
-
-
0.098
2.9
0.55
2.6
1.6
0.38
0.52
2.70
1.9
0.24
1.19
0.077
-
0.013
                                431

-------
TABLE B5-44.   CATALYTIC REFORMER:  NAPHTHA FEED

Compound
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropylbenzenc
1, 3 ,5-Trimethylbenzene
Mechylethylbenzene
1,2, 4-Trimethylbenzene
sec-BuLylbenzcnc
Methylpropylbcnzene
Cj-Alkylbcnzcnc
Ci-Alkylbenccne
Ci.-Alkylbcn:cnc
Ci.-Alkylbenzcne
C".-Alkylbcnzene
Ci.-Alkylbcnzcnc
Ci«- Alky Iben zone
Naphthalene
2 -Methyl naphthalene
1-Me thy] naphthalene
Biphenyl
C2-Alkylnaphthalene
C2-Alkylnaphtlialene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
C2-Alkylnaphthalene
Methylblphenyl
Methylbiphenyl
Methylbiphenyl
Anthracene/phenanthrene
Cs-Alkyl naphthalene
C j-Alky Inaphthalene
C 3-Alkylnaphthalene
C 3-Alky Inaphthalene
Cz-Alkylbiphenyl
Cj-Alkylbiphenyl
Ci. -Alky Inaphthalene
Ci, -Alky Inaphthalene
Bulk.
Fraction 1
2,400
2,500
6,600
3,000
900
2,700
7,500
2,200
8,300
5,900
4,000
3,500
—
—
—
5,000
2,600
43,000
30,000
36,000
—
—
6,400
12,000
27,000
3,700
—
—
—
—
—
—
—
—
—
—
—
—
Liquid, ppm
Fraction 2
4.8
—
3.9
7.2
—
11
—
—
58
18
—
—
—
—
—
—
—
800
4,000
1,800
1,300
230
1,600
2,500
920
130
1,200
460
290
19
500
1,500
260
260
740
410
300
110

Total
2,400
i, 500
6,600
3,000
900
2,700
7,500
2,200
8,400
5,900
4,000
3,500
—
—
—
5,000
2,600
44,000
34,000
38,000
1,300
230
4,000
14,000
28,000
3,800
1,200
460
290
19
500
1,500
260
260
740
410
300
110

Fraction 1
95
120
280
38
—
—
110
—
19
70
—
—
—
—
—
—
00
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Vapor, ug
Fraction 2
2
—
3
18
—
10
45
6
58
28
7
20
8
3
5
22
7
31
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Total
97
120
280
56
—
10
160
6
77
98
7
20
8
3
5
22
7
31
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—
—
—
— —

-------
TABLE B5-45.
CATALYTIC REFORMER:  PRODUCT
NAPHTHA (DEPENTANIZER BOTTOMS)
Compound
Benzene
Toluene
Ethylbenzene
o, p-Xylene
o-Xyiene
I nop ropy 1'nenzene
Propylbcnzcne
ttethylethyl benzene
Mechylechylbenzene
Tr i me Uiyl benzene
Mechy let'.iy] bt-nzenc
Tritoc thylbenzene
Dtaetnyl benzene
Dlethylbenzcne
Indane
Dine chyle thy Ibcntene
Dine thylechy Ibtnzene
Dime chyle thyl benzene
Dine thyle thy Ibenzene
Te traracthyLbenzene
TetratneUr/1 benzene
Mcchy Id tc thyl benzene
Dt-iaopropylbenzen€
Methyl Indane
Methyl InJjne
Dl-lsnpropyl benzene
TK t ramc thyl bent ene
Cs-AJitylbenzcne
Cs-Al'Kylbfnzcne
C»-Al'ny 1 benzene
Naphi tinier i!
2-MeLliylm.v)hthfller.e
1 -Methyl naphthalene
Ca-Alkyln.iphtlinlene
Ci -Al*yln..phthalene
C;-AlltylnnphthAlenc
Cz-AIkyln.iphthfllene
C:-Alkylmphthalene
d-Alkyl naphthalene
Blphcnyl
Fluorene
Anthracene
Bulk
Fraction 1
„
85,000
15,000
74, COO
30,000
—
—
18,000
11,000
3,600
15,000
5,900
—
—
220
—
—
51
--
230
180
—
—
50
70
—
59
14
10
20
410
81
J7
6
34
40
22
13
)
—
—
—
Liquid, PFB
Fraction 2
_
480
49
8CO
570
—
—
78
78
45
440
140
14
—
33
<1
9
14
11
30
15
23
14
—
B
14
9
—
—
—
28D
120
62
—
31
41
18
14
--
54
54
4

Total
_—
85,000
15,000
75,000
30,000
—
—
18,000
11,000
3,630
15.000
6,000
14
— . •
250
—
60
65
11
260
300
23
14
50
80
14
68
—
—
—
720
200
100
6
65
81
40
27
3
54
54
4

Fraction 1
21
190
140
160
95
5
20
82
22
16
24
—
—
—
4
1
—
—
—
3
—
2
—
—
1
—
—
—
—
—
—
—
—
—
—
--
--
—
—
—
—
—
Vapor, v-g
Fraction 2
0.3
68
4
130
72
—
—
15
19
10
55
—
—
15
5
3
—
5
3
1
6
6
—
—
2
—
4
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—

Total
21
260
140
290
170
5
20
97
41
26
79
—
—
15
9
4
-- -
—
—
6
a
8
—
—
3
—
—
—
—
—
10
—
—
--
—
—
— -
—
—
—
—
--
                  433

-------
TABLE B5-46
CATALYTIC REFORMER:   PRODUCT
NAPHTHA,  BULK LIQUID
Compound
Benzene
Toluene
Ethylbenzene
m, p-Xylene
o-Xyiene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Tr imethylbenzene
1,3, 5-Triraethylbenzene
2-Ethyl toluene
see-But ylbenzene
1, 2, 4-Tr imethylbenzene
Diethylbenzene
Methylisopropylbenzane
Methylpropylbenzene
Methylpropylbenxene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dixethylethylbenzene
Diirethylechylbenzene
Dime thy lethylbenzene
Dime Chyle thy Ibenzene
Cs-Alkylbenzene
Tetramethylbenzene
Tctramethylbenzene
Tetramethylbenzene
Cs-Alkylbenzene
C j-Alkylbenzene
Naphthalene
C 5-Alkylbenzene
Cs-Alkylbenzcne
2-MethylnaphLhalene
1-Methylnaphthalene
C2~Alkylnaphthalenc
C2-Alkylnaphthalene
Bulk Liquid
(ppm)
440
4,900
2,000
7,000
2,000
310
1,400
5,500
2,400
1,600
260
6,500
300
1,400
95
120
1,600
1,300
450
960
360
1,100
140
—
60
330
1,200
1,100
900
350
400
2,800
460
310
2,200
2,600
700
1,300
Vapor on XAD
(yg)
8.4
74.0
32.0
120-0
50.0
2.3
20-0
48-0
38-0
22.0
—
74-0
5.2
20-0
1.6
2.2
15-0
10-0
9.1
11.0
4.0
12.0
11.0
1.6
2.2
0.8
7.6
7.4
1.6
3.2
1.6
7.4
1.6
1.0
—
•
—
—
Vapor on Tenax
(Mg)
0.22
1.0
1.1
0.81
0.81
0.11
0.78
2.4
.
—
—
1.1
—
0.52
--
—
0.76
—
—
0.52
0.21
0.71
—
—
—
—
—
0.35
—
—
—
0.65
—
—
—
—
—
—
                    434

-------
TABLE B5-47.  CATALYTIC REFORMER:  PRODUCT
              NAPHTHA, BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Compound
Benzene
Toluene
Ethylbenzene
m-Xylene/p-Xylene
o-Xylene
Isopropylbenzene
n-Propylbenzene
3-Ethyl toluene
1, 3,5-Trimethylbenzene
2-Ethyl toluene
Ci4-Alkylbenzene
1,2, 4-Trimethylbenzene
Indan
C 4. -Alky 1 benzene
Cu.-Alkylbenzene
Concentration
(ppb)
80
2,100
440
4,100
1,200
200
780
620
180
80
140
230
86
320
69
                    435

-------
       TABLE B5-48.  CATALYTIC  REFORMER:   PRODUCT
                     NAPHTHA, BULK LIQUID


Compound                                             ppm
Benzer.e
Toluene
Ethylbenzene
r/p-xyl er.es
o-xvlene
i-propyl benzene
n-propyl berzene
T./p-e thy 1 toluene
1, 3, 5-Triir.ethylbenzcnc
o- ethyl toluene
1,2, 4-Trrnethylbenzene
sec-Butylbcnzene
i-Butylbenzene
Tncton
C L, - Alky 1 benzene
Ci^-Alkylbenzene
C^-Alkylbenzene
Methylindan
Mcthylindar.
Ci^-Alkyl benzene
C\-Alkyl benzene
Methylind.Tn
C^-Alkylbenzene
C^-Alkylbenzene
Cs-Alkylbenzene
Methylindan
Tetralin
Naphthalene
C 2-Alky lind an/me thy Itetral in
Cs-Alkylbcnzene
83.8
840.0
142.0
632.0
31.2
35.7
210.8
207.0
71.4
64.6
184.0
46.0
56.0
17.5
98.0
11.8
104.0
28.0
8.00
11.2
20.0
6.00
18.3
6.50
13.0
5.20
4.60
9.02
11.2
2.50
                           436

-------
           TABLE B5-49
CATALYTIC REFORMER:   PRODUCT
NAPHTHA,  BULK  LIQUID
    Compound
                                                                ppra
Benzene
Toluene
Ethylbe.nzene
m/p-xylenes
o-xylene
i-propylbenzene
n-propylbenzene
tn/p-ethyl toluene
1,3,5-Trimethylbcnzene
o-ethyl tol nene.
1,2,4-Triine thylbenzene
sec-Butylbenzene
Indan
Ci,-Alkylbenzene
n-Butylbenzene
Ci^-Alkylbenzene
Ci,-Alkylbenzene
Ci4-Alkylbenzene
Ci,- Alky 1 benzene
05-AlkyIbenzene
Cs-Alkylbenzene
Methylindan
C5-Alkylbenzene
C5-AlkyIbenzone
Cs-Alkylbenzene
Methylindan
Naphthalene
C5-Alky1benzene
Cs-Alky1benzene
2-McthyInaphthaiene
1-Methylnaphthalene
C'/-Alkylnaphthalene
Cj-Alkylnaphth,Tlene
Biphcnyls
Ca-Alkylnaphthalene
C?-Alkylnaphthalene
C2-AlkyInaph tha1en e
Methylbiphenyls
C a-AlkyInaphthalene
C3-Alkylnaphthalene
C3-Alky]naphthalene
C3-AlkyInaphthalene
Fluorene
                                   826.0
                                   445.0
                                   581.0
                                  1160.0
                                   315.0
                                    44.2
                                   182.0
                                  1560.0
                                   493.0
                                   168.0
                                   952.0
                                    32.0
                                    58.8
                                   548.0
                                   144.0
                                   322.0
                                   336.0
                                   284.C
                                   400.0
                                   166.0
                                    41.5
                                    76.0
                                    90.0
                                    22.
                                    92.
                                   107.0
                                    82.5
                                    87.5
                                    17.5
                                   277.0
                                    47.9
                                     5.25
                                    23.8
                                     0.660
                                    45.0
                                    15.75
                                       .00
                                       ,04
                                       .74
                                       .93
                                       .48
                                       .32
                                       .13
7,
2,
1
4,
3
2.
                                  437

-------
           TABLE B5-50.   CATALYTIC  REFORMER:   PRODUCT
                            NAPHTHA, liULK LIQUID
    Compound
   ppm
Benzene
Toluene
Ethylbenzene
m/p-xylenes
o-xylene
i-propyIbenzene
n-propylbenzene
m/p-ethyltoluene
1,3,5-Trimethylbenzene
o-ethyl toluene
1,2, 4-Trinethylbenzene
sec-Butylbenzene
I- B u ty 1 b en 7. en e
1,2,3-Trimethylbenzene
Ci,-Alkylbenzene
Indan
Ct4-AJ kylbenzene
n-Butylbenzene
Cu-Alkylbenzene
Cu-Alkylbenzene
Cu-Alkylbenzene
Methylinuan
Methylindan
C\-A1 kylbenzene
Cu-AIkylbenzene
d.-Alkylbenzene
C5-Al.kyI benx.ene
C14-Alkyl benzene
Methylindan
C5-Alkylbenzene
C 5-Alkyl benzene
Methylindan
C5-A1kylbenzene
C5-Alkylbenzene
Cs-Alkylbenzene
C5-AIkylbenze.ne
C5-Alkylbenzcne
Cs-Alkylbenzene
Naphthalene
Cz-Alkylindan/methyltetralin
C 5- Al kylb enz ene.
C2-Alkyl indan/inethyltetralin
Cs-Alky1 benzene
 150.0
 396.0
 451.0
1950.0
  85.8
  59.5
 204.0
1020.0
 340.0
  42.5
1390.0
  32.0
  30.0
 143.0
  56.3
  36.3
 280.0
 220.0
 300.0
  68.0
 300.0
  70.0
  44.0
 340.0
  32.0
  40.0
  83.0
 200.0
  58.0
 100.0
 160.0
  94.9
  75.0
  27.5
 100.0
  45.0
 125.0
  12.5
 228.0
   7.13
  40.0
  34.1
  27.5
                                                       Continued
                                    438

-------
                      'TABLE B5-50.  Continued
      Compound                                                  ppm
C:.-Alkylindan/mechyltetralin                                     12. 4
C?-Alkylindan/nethyitetralin                                     55. 8
Co-Alkylbenzene                                                 21.0
2-Methylnap'nthalene                                            106. A
1-Methylnaphthaiene                                             81-2
C -Alkylnaphthalene                                              7-°°
C -Alkylnaphthalene                                             32-5
C -Alkylnaphthalcne                                             ^5.0
C -Alkylnaphthalene                                             21-°
Phenanthrene/Anthracene                                           0.924
Methyl ohenanthrene/anthracene                                    1.18
                                  439

-------
TABLE B5-51.  ALKYLATION UNIT:  CRUDE ALKYLATE,
              ORGANIC SPECIES ON TENAX
         No Aromatic Species Detected.
    TABLE B5-52.  ALKYLATION UNIT:  ALKYLATE
                  GASOLINE, BULK LIQUID
         No Aromatic Species Detected
                      440

-------
        TABLE B5-53.   ALKYLATION UNIT:   CRUDE ALKYLATE
Compound
Benzene
Toluene
Ethylbenzene
n,p-Xylene
o-Xylene
n-Propyl benzene
3-Ethyl toluene
1,2,3-Trimethylbenzene
1.3, 5-Trimethylbenzene
2-Ethyl toluene
1,2, 4-Tr imethylbenzene
Diethylbenzene
Methylisopropylbenzene
Methylpropylbenzene
Methylpropylbenzene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dimethylethylbenzene
Dimethylethylbenzene.
Dimethylethylbenzene
Tetramethylbenzene
Tetramethyl benzene
Tetramethylbenzene
Cs-Alkylbenzene
C 5 -Alkyl benzene
Naphthalene
Cs-Alkylbenzene
2-Methylnaphthalene
Hulk Liquid, V;ipor on
ppm XAD, ng
0.69
3.3
5.2
42.0
22.0
48.0
36.0
96.0
54 -0
230-0
72-0
6.0
2.6
26-0
72-0
47-0
65-0
22-0
72-0
66.0
17.0
32.0
48.0
30.0
10.0
12.0
140.0
14.0
36.0
Vnpor on
Ten ax, MP,
0.0044
0.067
0.064
0.20
0.094
—
0.86
--
—
0.73
0.22
0.14
0.0088
0.35
—
—
0.083
—
0.15
0.11
—
0.12
0.15
—
—
—
0.57
—
0.12
None of the  vapor species were found in  the bulk liquid.   The  vapor  species,
therefore, must have been adsorbed from  the ambient air or from cross-
contamination with other samples from residue in the sampling  train.

-------
     TABLE  B5-54.   ALKYLATION  UNIT:   CRUDE
                      ALKYLATE,  BULK  LIQUID
Peak                                        Concentration
 No.                     Compound                (ppb)
  1              Benzene                          120
  2              Toluene                          200
  3              Ethylbenzene                      77
  4              m-Xylene/p-Xylene                370
  5              o-Xylene                         370
  6              Isopropylbenzene                 280
  7              n-Propylbenzene                  160
  8              3-Ethyl toluene                  100
  9              1,3,5-Trimethylbenzene           420
 10              1,2,4-Trimethylbenzene           300
 11              Indan                            100
 12              C^-Alkylbenzene                  100
 13              Cu-Alkylbenzene                  300
 14              Methyl indan                     100
 15              Methyl indan                     200
 16              d.-Alkylbenzene                  450
 17              Naphthalene                      200
 18              2-Methylnaphthalene              300
 19              1-Methylnaphthalenc              250
 20              C2-Alkylnaphthalene               50
 21              C2-Alkylnaphthalene              200
 22              Cj-Alkylnaphthalene              450
 23              C2-Alkylnaphthalene              250
                          442

-------
   TABLE  B5-55.   NAPHTHA  KYDRODESULFURIZATIOX:   DESULFURIZED
                   NAPHTHA  PRODUCT, BULK LIQUID
    Compound                                                     ppm


Benzene                                                         18.8
Tulue.ne                                                       5836.0
Ethylbenzene                                                   299.0
m/p-xylenes                                                    260.0
o-xylenes                                                      195.0
±-propylbenzene                                                 49.3
n-propylbcnzene                                                 51.0
m/p-ethyltolucnc                                               272.C
i, 3, .b-Trimethvlbenzenc                                         150.0
o-ethyltoluene                                                 170.0
1  , 2, 4-TriTr.ethy 1 benzene                                         136.0
i-Butylbenzene                                                  24.0
1  , 2, 3-Tr'i^iethyl.benzene                                          98.0
C^-Alkylbenzene                                                 80.4
Indan                                                           15.0
(\-Alkylbenzene                                                174.0
C^-Alkylbcnzene                                  .               70.0
C..-A1 rcyLhen/.ene.                                                 42.0
Methylindan                                                     24.0
Methylindan                                                     22.0
C^-Alkylhenzene                                                 10.0
C.s-Alkylbenzene                                                 55.6
Ci,-Alkylbenzenc                                                  16.8
Cr-Alkylbenzcnc                                                 23.2
Methylindan                                                     J3.4
C^-Alkylbenzene.                                                  7.50
Cs-Alkylbenzenc                                                 27.5
Methylindan                                                     16.9
Cs-Alkylbenzene                                                  40.0
Cj-Alkylbenzene                                                  42.5
Tetralin                                                        44.0
C5-Alky1benzene                                                  12.5
C2-Alkv1 indan/methyl tetralin                                   34.1
C2-Alkyl indan/mcthyl tetralin                                   31.0
C7-Alkyl indan/methyt tetralin                                    4.96
Cj-Alkyl indan/methyl tetralin                                    1.71
                                   443

-------
TABLE B5-56.  HYDRODESULFURIZATION UNIT:   DESULFURIZED
              GAS .'OIL,  BULK LIQUID
 Compound                                              PPm
Toluene
Ethyl benzene
m/p-xylenes
o-xylene
n-propylbenzene
m/p-ethyltol-iiene
1, 3, 5-Trimethylbenzene
o- ethyl toluene
1,2, 4- Tr ime thy 1 benzene
C^-AIkylbenzene
C 1,-Alkylbenzenc
Cn-Alkylbenzene
Ci|-Al!
-------
TABLE B5-57.  GASOLINE SWEETENING UNIT:   MIXED
              NAPHTHA FEED,  BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Compound
Benzene
Toluene
Ethylbenzene
m,p-Xylene
o-Xylene
Isopropy Ibenzene
n-Propylbenzene
3-Ethyl toluene
4-Ethyl toluene
1,2, 3-Trimethylbenzene
2-Ethyl toluene
sec-Butylbenzene
1, 2, 4-Trime thy Ibenzene
Diethylbenzene
Methylisopropylbenzene
Methylpropylbenzene
Methylpropylbenzene
Diethylbenzene
Diethylbenzene
Dime thy le thy Ibenzene
Dime thyle thy Ibenzene
Dine thy le thy Ibenzene
C 5 -Alky 1 benzene
Dime thyle thy Ibenzene
Tetrame thy Ibenzene
Tetrame thy Ibenzene
Tetrame thy Ibenzene
C 5 -Alky Ibenzene
C 5 -Alky Ibenzene
Naphthalene
C 5 -Alky Ibenzene
Cs-Alkyl benzene
C 5 -Alky Ibenzene
Methylnaphthalene
C2-Alky 1 naphthalene
C2-Alkylnaphthalene
d i a -Anthracene
Concentration
(ppm)
130
8,500
1,100
7,000
1,700
1,100
1,800
4,200
2,900
1,800
5,000
650
2,000
800
130
1,100
550
900
230
900
650
340
290
150
600
600
600
80
200
1,600
200
120
160
300
300
190

                      445

-------
TABLE B5-58.
GAS ABSORB!ION UNIT:  LEAN
OIL (NAPHTHA),  BULK LIQUID
Peak
No.
1
2
3
4
5
6
7
8
9
.'10
11
12
.13
.14
-.15
16
17
:is
..19
.20
21
.22
"23
24
25
26
27
28
Compound
Benzene
Toluene
ELhylbenzene
m-Xylene/p-Xylene
o-Xylene
I sopropyl benzene
•n-Eropylbenzene
3-Ethyl toluene
1 , 3 ,5-TriTnethylben2ene
2, Ethyl toluene
Cu-Alkylbenzene
1 ,2 ,4-Trimethylbenzene
.Indan
C^-Alkylbenzene
C^-Alky'lbenzene
CM-Alkylbenzene
.Ci4-Alkylbenzene
C4-Alkylbenzene
Methyl indan
Methyl indan
Ci«^Alkylhenzene
Ci«-Alkylbenzene
Cv-Alkylbenzene
Cj-Alkylbenzene
-Methyl indan
'.Methyl indan
C 5— Alkylbenzene
Naphthalene
Concentration
(ppb)
1,600
10,000
2,200
:22,000
.5,000
980
9,500
•9,300
1,400
3,500
300
2,400
2,100
1,200
1,800
400
.1,300
1,300
560
1,100
450
600
840
250
400
500
800
100
                   446

-------
          TABLE B5-59.   SOLVENT DEWAXING  UNIT:   SLACK WAX
     Compound
 Bulk Gas
Liquid,  ppm
Vapor on
 XAD-.Ug
Benzene
Toluene
Ethylbenzene/n or  p-Xylenc
o-Xylene
3 or 4-Ethy.l  toluene

1,3, 5-Tri:nethylbenzene
2-Ethyl toluene
1,2,4-Trimcthylbenzene
1,2,3-Trimethylbenzene
Di-ethylbenzene

Di-methyl ethylbenzene
Di-niethylethylbenzene
Tetramethylbenzene
Tetramethylbenzene
    73
 17000
 4100
Vapor on
Tenax.yg
  0.022
 23.8
  0.033
  0.064
  0.059

  0.035
  0.013
  0.071
  0.024
  0.033

  0.014
  0.034
  0.020
  0.024
                                     447

-------
                           TABLE B5-60.   ELEMENTAL ANALYSIS OF FCCU CO BOILER
                                          FLUE  GAS PARTICUiATES (STACK NO.  14)
co
Element
Uranium
Thorium
Bismuth b
Lead
Thallium
Mercury
Gold
Platinum
Ir idium
Osmium
Rhenium
Tungsten
Ta n t a 1 um
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Holmium
Dysprosium
Cone ."
5
6

54







5
<1
3
1
5
0.9
22
24
230
Element
Terbium
Gadolinium
Europium
Samarium
Neodymium
Praseodymium
Cerium
Lanthanum
B a r i um
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmi um
Silver
Palladium
Rhodium

Cone .
29
150
14
490
MCC
MC
MC
MC
790
0.2


0.9
5
STD
<0.5
0.5



Element
Ruthenium
Molybdenum
Niobium
Zirconium
Yttrium
Strontium
Rubidium
Bromine
Selenium
Arsenic
Germanium
Gal 1 ium
Zinc
Copper
Nickel
Cobalt
Iron
Manganese
Chromium

Cone .

66
15
48
240
120
<0.5
<3
36
4
<0.7
10
260
40
300
50
MC
300
840

Element
Vanadium
Titanium
Scandium
Ca.l c ium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Nitrogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
Cone .
150
MC
17
MC
MC
22
MC
MC
MC
MC
MC
MCC
MC
NRd
NR
NR
69
1
280
NR
                 a,.
                 Concentration  in
                 Al 1 elements not
ppra by weight.
reported £0.3 ppm
by weight.
'"MC - major component.
 NR - not reported.

-------
         TABLE  B5-61.   ELEMENTAL  ANALYSIS OF  FCCU CO  BOILER
                         FLUE GAS PARTICULATES  (STACK NO.  11)
Element
Uranium
Thorium
Bismuth b
Lead
Thallium
Mercury
Gold
Platinum
Iridium
Osmium
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Holmium
Dysprosium
a_
a
Cone.
5
19
—
29
—
NR
—
—
—
—
—
2
1
4
0.4
2
0.6
.12
10
30

Element
Terbium
Gadolinium
Europium
Samarium
Neodymium
Praseodymium
Cerium
Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmium
Silver
Palladium
Rhodium


Cone .
7
94
9
930
MC -
MC ~
MC -
MC -
860
1
0.4
--
3
4
ST1)
<0.3

-------
amber bottle was filled, sealed, and kept refrigerated until
analyzed.  The results of this type of sampling/analysis are
labeled "Bulk Liquid."  An attempt was made to get line material
samples for vapor phase streams, but no reliable results were
obtained because of leakage (glass bombs) or contamination
(metal bombs).   The fugitive emissions from fittings on these
streams were also analyzed by adsorbing the organics on a solid
resin.  The resin packed tubed were then capped, refrigerated,
and transported to Austin under refrigeration.  The adsorbed
organics were then extracted from the resin and analyzed by
GC-MS.  The results of this type of sampling/analysis are
labeled either "Vapor on XAD" or "Vapor on Tenax," depending
on which type of resin was used.

5.2       EXPERIMENTAL COMPARISON OF COMPOSITION OF LEAKING
          VAPOR WITH COMPOSITION OF LIQUID IN PIPES

          The scope of the refinery program included the deter-
mination of the location and concentration of hazardous materials
contained in fugitive hydrocarbon emissions.  To meet this
objective, corresponding liquid and fugitive vapor samples were  -
obtained during the field portion of the program.

          The liquid samples were obtained from selected process
streams at locations such as sample lines, drain lines, or other
appropriate equipment.

          Corresponding fugitive vapor samples were obtained
from  leaking valves on the process line in question.  The vapors
were  collected using either activated charcoal, Tenax resin, or
XAD-2 resin adsorption medias,  These materials were contained
in packed tubes.
                              450

-------
          Both the liquid and the vapor samples were analyzed
by Radian.  The analysis procedures are discussed in detail in
Appendix A.

          The sampling and analyses of vapor samples is time-
consuming .  The analysis of liquid hydrocarbons is considerably
simpler.  Corresponding vapor and liquid samples were analyzed
to compare their compositions.  The results were inconclusive
in defining the relationship between the liquid in the pipe and
the leaking vapor.

5.2.1     Experimental System

          An experiment was conducted to determine the relation-
ship between the liquid and fugitive vapor compositions.

5.2.1.1   Exp er iment a1 Equ ipmen t--

          In the experiment, a valve, similar to those used in
refineries,  was installed in a system designed to duplicate
conditions found within refinery process streams.  The system
consisted of equipment which circulated hydrocarbon liquid
through the valve at elevated temperature and pressure.  The
valve packing material was adjusted to produce a relatively low
vapor leak.   Samples of this vapor were analyzed and compared
to the liquid in the system.

          Two different hydrocarbon mixtures were used during
the experiment.  The first consisted of roughly equivalent
amounts of hexane and toluene.  The selection of these materials
was based on the following factors:

          •    Both materials are relatively volatile and
               would remain in the vapor phase.  That is, as
                              451

-------
               these hydrocarbons leave the seal,  they do
               not condense on cooler surfaces at  the low
               concentrations involved.

          •    There are considerable differences  between
               the physical and chemical properties  of
               hexane and toluene.   And, separation  of the
               materials by GC is not difficult.

          •    Both materials are available in bulk  quantities
               at low cost.

          The second hydrocarbon mixture used consisted of
hexane,  toluene, and naphthalene.  This system was selected
after the results of earlier testing indicated that  the compo-
sitions  of the liquid and vapor were identical.  The boiling
point of naphthalene (218"C) is considerably higher  than either
hexane or toluene.  And, the presence of significant quantities
of naphthalene in the vapor leak would provide additional
evidence for a conclusion of identical composition.

          A simplified  diagram of the  valve assembly used in
this experiment  is given in Figure B5-1.  This diagram indicates
important equipment and gives other  information on the operation
of the  system.

          Pressure within  the system was maintained with a small
gear pump.  The  pump was capable of  producing  pressures  in
excess  of 100 psig at flow rates of  approximately 5 GPM.

          From  the pump, the hydrocarbon liquid circulated
through a section of 1" pipe wrapped with electrical heating
tape.   The heating tape was used to  raise the  hydrocarbon tem-
perature of the  pump.   The  liquid then entered a  section of 6"
                              452

-------
              Liquid  Fill Lino

             O* Pressure Gauge
               - Liquid Level  indicator
                Vapor Space
            -*  * Elevated Surge Vesse
Liquid  Flow  Indicator
                                                     Temperature Gauge
                                                   Pressure Gauge
                                Safety Relief
                                   Valve
                                                            o
                                                         Tl
                                                     6"  Crane Gate Valve
                          Ice-Water
                          Cooled
                          Sample Line
1" Line  Wrapped in Electrical
  Heating Tape
                           Positive Displacement
                                 Gear  Pump
                   Figure B5-1.  Diagram of  experimental  set-up.

-------
pipe which contained the valve from which fugitive emission
samples were obtained.   Temperature and pressure indicators were
also located on this section of pipe.

          Liquid samples were obtained from a sample line
located after the 6" valve assembly.  Following the liquid
sample line was a. flow control ylobe valve.  This valve was
used to regulate the pressure within the 6" valve assembly.
From the control valve, liquid passed to a small elevated surge
tank from which the pump took suction.

5.2.1.2   Collection and Analysis of Vapor Samples--

          The fugitive emission vapor samples were obtained from
the 6" Crane gate valve.  The packing gland was adjusted to
give a leak rate of approximately 0.015 Ib/hr.  The leak rate
was determined by measuring the gas concentration at the seal
with a Bacharach "TLV Sniffer".  The leak rate was estimated
from the correlations presented in Section 2.4 of this appendix.

          The packing gland and valve stem were enclosed within
a  small Mylar plastic  shroud  (or tent).   Zero  air  (air with  an
extremely  low concentration of hydrocarbons) was  injected  into  the
tent to keep the hydrocarbon  concentration at  low  levels.

          Vapor samples for the hexane-toluene system were taken
from within the tent using a 1 ml gas-tight syringe.  The sample
was immediately injected into the sample port of an AID portable
gas chromatograph.

          Analysis of vapor samples for the hexane-toluene-
naphthalene system was accomplished using a Hewlett-Packard
temperature programmable gas chromatograph.
                               454

-------
5.2.1.3   Collection and Analysis of Liquid Samples--

          Liquid samples were taken from an ice-water cooled
sample line.  The sample line was cooled to prevent flashing
of the liquid.

          Liquid samples from the hexane-toluene system were
analyzed on the portable AID gas chromatograph while samples
from the hexane-toluene-naphthalenc system were analyzed on the
Hewlett-Packard temperature programmable gas chromatograph.

5.2.2     Testing Results

          The following tests were conducted:

          1)   The response time of the system was determined,
               that is, the time required for  the vapor
               composition to equilibrate after a change in
               the liquid composition.

          2)   Vapor and liquid compositions were determined
               for the hexane-toluene systems.

          3)   Vapor and liquid compositions were determined
               for the hexane-toluene-naphthalene system.

          4)   The effect of temperature and pressure on the
               vapor composition of the hexane-toluene system
               was investigated.
                              455

-------
5.2.2.1   Equilibration Test Results

          The response Lime of the system was determined to
insure that adequate time was allowed for the system to reach
equilibrium before testing was initiated.

          The results of this test are shown graphically in
Figure B5-2,  The concentration of toluene in the vapor as a
function of time in response to a step change in the concentra-
tion of toluene in the liquid is shown.   The concentration
values have been normalized to show the percentage of the total
required concentration change.  The actual toluene concentration
was changed from 43.1 percent to 57.2 percent.   These results
indicated that at least eight hours were required after a change
in the system composition before steady state operation was
achieved.

5.2.2.2   Vapor-LLquid Compositions:  Hexane-Toluene System--

          After completion of the equilibration test, numerous
vapor and liquid samples were taken.  The results of this test
are given in Table B5-62.  Operating conditions for the test
were :

                     Temperature =  200°F
                     Pressure    =  80 psig
                              456

-------
Final Toluene
Liquid Concentration
           100
Initial Toluene    °
Liquid Concentration
 4        5
Time (hours)
Figure 135-2.   Change in  the vapor toluene concentration versus  time for
                a  step change in  liquid  toluene concentration.

-------
  TABLE B5-62.  COMPARISON Or VAPOR AND LIQUID  COMPOSITIONS:
                HEXANE-TOLUENE SYSTEM
                        Concentration of Toluene
 Sample Type                      (%)               Number of  Samples
   Vapor                     56.9 ± 0.8                     7
   Liquid                    57.2 ± 1.2                    15
5.2.2.3   Vapor-Liquid Compositions :   Hexane-Toluene-Naphthalene
          Systcm--

          Naphthalene was added  to  the hexane-toluene  system to
determine the emission characteristics of  a  much  heavier com-
ponent.  A mixture of hexane and toluene containing  8  percent
naphthalene was used.  The naphthalene vapor concentrations
obtained ranged from 2-6 percent, somewhat lower  than  the liquid
concentration.  It was observed,  however,  that  small amounts of
solid naphthalene had accumulated within the sampling  syringe.

5.2.2.4   Effect: of Temperature  and Pressure--

          Vapor and liquid concentrations  were  measured for the
hexane-toluene system at the following operating  conditions:
          1)
          2)
          3)
          4)
T = 130°F, P =  40 psig
T = 130°F, P = 100 psig
T = 200°F, P =  40 psig
T = 200°F, P = 100 psig
           In  all  cases,  the vapor and liquid concentrations
remained  constant at  the levels given in Table B5-63.
                              458

-------
5.2.3     Conclusions

          Based on the results obtained during the course of
this experiment,  the following conclusions  are offered:

          1)    The composition of fugitive  emissions from
               refinery process equipment appears  to be
               identical to the composition of the liquid
               within the leaking equipment.

          2)    The temperature and pressure of the process
               stream have no effect on the composition  of
               the leak.

          3)    Heavier components within the liquid process
               stream may leak at concentrations  equivalent
               to that of the line concentration.   However,
               they may condense on cooler  external surfaces.
               Hence, only a portion of these heavier components
               will constitute air emissions.
                              459

-------
                          SECTION 6
                     MAINTENANCE STUDIES
          To evaluate control technologies for valves and to
develop parameters for "off-set" analyses using valve mainte-
nance programs,  data on the effectiveness of various types of
maintenance activities are needed.   In this section of the
report, the short-term effects of maintenance are described.
No long-term effects are available.  However, an ongoing program
is described.

6.1       SHORT-TERM MAINTENANCE RESULTS

          A short-term maintenance study was performed on 86
valves at four refineries.  Three variables were considered in
selecting valves for the study: leak rate, process stream, and
valve type.  A selective experimental design based on categories
of the above variables was used to minimize the number of
required valves in the study.

          Eligible valves were first located by screening with
a TLV Sniffer.  Variable information was recorded.  Each valve
was then rescreened and sampled.  Routine maintenance, such as
tightening the packing gland or adding grease, was performed on
the valve.  Maintenance was described as directed or undirected.
Directed maintenance involved simultaneous maintenance and
screening of the valve until no further reduction in TLV Sniffer
reading could be obtained.  Undirected maintenance was not
                              460

-------
monitored with the TLV Sniffer.  Finally,  the valve was
rescreened or resampled after  the maintenance had been per-
formed.  Table B6-1 summarizes all maintenance and leak  rate
information.

          The effect of the type of maintenance  performed,
either directed or undirected, can be seen in Figures B6-1 and
36-2.  The leak rate of the valve before maintenance is  plotted
against the leak rate for the valve after maintenance for both
the directed and the undirected maintenance efforts.  Valves
that exhibited a reduction in  leak rate are indicated by those
points that fall below Lhe diagonal line drawn in each figure.
Those valves whose leak rate increased are shown as the  points
plotted above the line.  Valves whose leak rates show no change
after maintenance are represented by points on the line.  It
appears that the directed maintenance produces a greater reduc-
tion in leak rate in a larger  percentage of valves.  This indi-
cates that the directed maintenance method is more effective
than undirected maintenance in reducing emissions from valves.

          The percentage reduction in leak rates after mainte-
nance was calculated using the following equation:
         _  ,        Leak Rate Before Maint. - Leaf. Rate Alter haint.
Percentage Reduction = 	;	:—	—;	*7~.	
       6                      Leak Rate Before Maint.
Negative percentage reductions are possible  in  cases where  the
leak rate increases after maintenance.  The  highest potential
reduction in emissions is 100 percent.  However,  it is  possible
to get negative percentage reductions that are  much greater
than 100 percent, particularly if the original  leak rate  is
very low.
                              461

-------
         TABLE B6-1.  SUMMARY OF MAINTENANCE AND LEAK RATE INFORMATION
          The data in this table are first sorted into directed and undirected
maintenance groups.  Within the type of maintenance group, the valves are  first
sorted by valve function (block or control) and then in descending order by percent
reduction due to maintenance.  The valves selected as "control sources"  (no main-
tenance performed) are the last valves listed in each valve type group.

          The following is a description of the variables listed on the  printouts:

ID  - Unit code and source number for each valve (refinery ID is not included so
      there may be some replication of ID).
BLK - B - Block valve
      C - Control valve
PRSI- Process stream code (see below for description).
TLV - Maximum screening value when source was first located.
DATE- Date (month, day, year) when valve was sampled and/or screened.
SAMP- Sample type:  BC - Sample for source selected as control.
                    BS - Sample before maintenance.
                    MI - Sample after maintenance
                    BQ - Quality control sample - before or after maintenance.
                    ES - Estimated leak rate based on maximum rescreening  value.

Screening information:

      MEAN STEM - Average of four screening values at the valve stem.
      MAX STEM  - Maximum of four screening values at the valve stem.
      MEAN GLAND- Average of four screening values at the valve gland.
      MAX GLAND - Maximum of fpur screening values at the valve gland.

NON-METH LK RATE - Measured or estimated nonmethane leak rate (Ib/hr).
% REDUC - Percent reduction due to maintenance.

      °i DT7TMT/-   i AA   /Lk rate before maintenance - Ik rate after maintenance\
      /o KhJJUL = IUU x i	I
                      \              Lk rate before maintenance               /

                                                       Continued

-------
                      TABLE  B6-1.   Continued


Stream
AAAX
AABX
AACX
AADX
AAEX
AAFX
ABAA
ABAB
ABBA
ABBB
ABCX
ABDA
ABDB
ABDC
ABDD
ABDE
ABEX
• Process Stream Classifications ,
Gas/Vapor Streams
Stream Description""
Ci - C2 Hydrocarbons
C} - Ci, Hydrocarbons
C5 - C9 Hydrocarbons
CIQ+ Hydrocarbons
Mixed Molecular Weight Hydrocarbons
Aromatic Hydrocarbons
Streams Containing 10 - 50% Hydrogen
Streams Containing >50?0 Hydrogen
Streams Containing 5 - 50% H2S
Streams Containing >50% H2S
Streams Containing >50% H20
Hydrofluoric Acid
Methyl Ethyl Ketone
Sulf olane
Monoethanolamine
Sulfuric Acid
Miscellaneous Gas Streams
-The most  volatile  stream component  present  at  a concentration of 2070
 or more determines  the  stream classification.

                                                Continued

-------
                       TABLE B6-1.   Continued
Stream
 BCAX
 BCBX
 BCCX
 BCDX
 BCEX
 BCFX
 BCGX
 BCHX
 BCIX
 BCJA
 BCJB
 BDAX
 BDBX

 BDCA
 BDCB
 BDCC
 BDCD
 BDCE
 CAAX

 CBAB
Process Stream Classifications
        Liquid Streams
                    Stream Description
         Ct - C2 Hydrocarbons
         C3 - C.« Hydrocarbons
         C5 - C6 Hydrocarbons
         C7 - C9 Hydrocarbons
         Naphtha
         Kerosene/Diesel/Heating Oil
         Gas Oil
         Atmospheric Bottoms/Vacuum Gas Oil
         Vacuum Residual/Asphalt
         Low Molecular Weight Aromatics
         Polynuclear Aromatics
         Streams Containing >50% H20
         Streams Made up of Mixed Molecular Weight
           Components
         Hydrochloric Acid
         Methyl Ethyl Ketone
         Sulfolane
        ., Monoethanolamine
         Sulfuric Acid
         Two-Phase Stream containing methane gas  and
           light liquid hydrocarbons
         Two-Phase Stream Containing >50% Hydrogen

-------
TABLE  B6-1.  Continued
II.
b
L
HKbl

DAI t
S
/\
M
Mb AIM
SILM
JltgG INf-UKMATlUM
(^ax MLAI'J MAX
SILM bLANU GLAND
LK KA-|L KLUUt
MAINTENANCE
PERFORMED
Undirected Maintenance
2 1 V A 1 '>
21VA 1M
21V/> 12
21VA 1?
21VA 13
21VA 13
13VA 11
13VA U
13VA 1]
13VA 11
13VA It
13VA l>
13VA 6
13VA f,
13VA 6
13VA f.
13VA 3
13VA 3
13VA 3
13VA 3P
13VA 3U
13VA "«9
13VA "«9
13VA 1
13VA 1
i;
b
H
U
b
B
U
B
b
U
b
b
H
b
U
b
H
b
U
b
b
H
b
H
I)
AAAX
AAAX
AAAX
AAAX
AAAX
AIXAX
bV-UX
HLtfX
bUJX
btUX
bUIX
HV-bX
bLBX
Ht-BX
Bt-HX
BLbX
AABX
A«UX
A«BX
ULBX
bLIJX
bLHX
HLBX
AAKX
A/»t)X
2h
2b
120
120
220
220
100000
luuuuu
luouuu
luuuuu
1000UO
luouou
100000
100000
1UQUUU
1UOOOO
luuuuu
luooou
lUOuuu
IbUO
IbOU
400
400
10000
lOuoo
102670
11U670
1U26/0
110670
102fc7b
110670
12 12 7 1)
12 m 7O
1217 70
1 2 1 (1 7 O
121970
121278
1211 70
1215/0
121870
121978
11227U
1201 /O
120i» /B
110678
HUf 70
110670
11U670
1122'H
121)170
US
Ml
bS
Ml
bS
Ml
bS
Ml
LS
LS
LS
bS
Ml
LS
LS
LS
bS
Ml
LS
US
Ml
BS
HI
OS
Ml
49730
U
66?bO
13
1 03PO
b<5
82^00
1*30
St.3
1*08
778
79750
'»20
13*3
2198
1550
65000
39bU
14M6
1U39
133
27730
7U5
282SO
1HOO
1UIIUUU
0
10000U
30
24000
7oy
100000
7t>0
10UO
90U
1000
lUUUUU
300
24UO
3700
2300
100000
1UOUU
bOUO
26WO
2UU
100000
1300
10000U
uuun
u
13
0
0
.
30
3273
90
86*
103U
280
10730
4423
4230
300U
1923
600
8400
2123
1223
3W
U
32b
U
3600
U
50
U
30
.
150
3300
270
280U
3bOO
900
21000
10000
0800
0400
2700
20UU
14UUU
2900
1400
120
U
1100
0
10000
U.032U'
U.OOOQl 99. 11
0.04if>7
O.OOOQ2 99.^5
0 • 0 13Q2
O.OOU^O 98.i!5
0.147&1
O.OObQ7 96.37
0.01752
0.021flb
0.0070"
O.t>37l 7
0.023ll 96.48
0.04801
0 . 04bO^
0.01697
O.bBOlO
0.04810 91.71
0.0291*
o.ooieo
O.UU013 91 .67
0.03263
U .0031^ 90 ,43
0.087J2
0.00937 89.25
>i turn top nut; Vs turn
bottom nut.
Vs turn top nut; 1 turn
bottom nut.
Vi turn top nut; >j turn
bottom nut.

1>5 turn each, top and
bottom nuts .



l»i turn each, top and
bottom nuts.



l
-------
TABLE  B6-1.  Continued
II'

I:
L
I'KSl

l\
M
UATt H
SL'KttNlNti 1MFOHMAI1OM
MLAIM MAX MLAM MAX MON-MtTM *
Sltf SHI*1 (iLAI.'U GLAill) LK HAit HLUUC
MAINTENANCE
PERFORMED

Undirected Maintenance (Continued)
13VA
13VA
1 3 V A
A S V A
X ^ V A
15V,\
15V A
21V/V
21VA
21VA
21VA
13V A
13V A
13V.-,
13V A
13v/»
3VA
3VA
3V A
3W
15VA
i^v,--
1
13
1}
2
7
?
Ib
1 j
1'j
1M
Hi
1M
14
I'l
03
l< *
65
(J.I
n
u
It
V
H
L;
ti
u
U
()
t'
H
b
U
D
L;
u
u
i-
i-
t-
ii
li
I!
L>
t)
AAHX
I'l-LX
MLCX
Ul-t_X
luuuo
1U 1)111) U
lunuou
1 uouuu
AAtX 1UQUUU
AALX 1UUUUU
UAtX 1UUOUU
AAt X 1'JOUUU
A (MX 1UQOUU
AAAX
ftAAX
AMAA
AAAX
AAUX
AAIJX
AAI1X
A«HX
AABX
uctx
ULl.X
t!l-tX
LLLX
ULtX
I. LI X
H9UUU
4 ri U U U
49UUU
49UUU
uuoo
f.UUU
ft U U U
BUUU
bUUU
43UU
430(1
4DUU
4DUU
ouu
huu
12UU7B LS
112?7M US
12U1 78 Ml
121?70 BS
1 21 4 /U Ml
1212/8 US
li-l?>7U LS
121M7U Ml
1217 7« LS
1218 IO tS
12197B tS
12127b OS
J21U to Ml
121778 tS
1216/0 tS
121978 tS
lU2t,7« US
102770 HI
lUiO/O UU
11U370 HU
12127B bS
1 i1. 1 3 / II t S
M?5 24UU
me oo 300110
33ii3 BOOO
i'3f>0 3buU
297bU lUOOUO
33bO 7UUO
IhUb 3UUU
)2>»U ?bOO
1M13 "4200
10HB8 24000
20 2U
^0 20
54UU 6400
'»*b BIO
293 b30
bbj 100U
b/B 90U
2'IOU 3bUU
. ,
AB 1UO
U20 700
, .
49B 7*0
1 b t " 3 U U U U , U 1 B (\ i"
3M2DO 70UOO 0.1^b?3
3265 /JOO O.U2BJ5 Bb.ib
B2UU 13UUO 0.0b76^«
9125 12UOU 0.107o^»
7300 1/000 O.oib7^» BM.J2
4980 IcJUUU 0.6b3o^
1715 bUOO 0.034?/
538** 10'JOO O.U5373
43 90 (I. lib I1*
41 90 U.UUO'gS 82.01
20 2U U.UUUji
20 20 O.UOO^O
20 20 U.UUU2-J
3325 3UOO 0.010r,9
bO« d5U 0.00191 B2.4G
4bW b90 0*004(45
bH3 970 II.UU7n«
b20 H4U O.UObq5
3025 4500 U.lh7^1
0.03b^2 /H.17
3KU bOO U.Ulbq4
1«OU 2«00 U.UIBJB
• . o.ooi9<:
2O 20 U .00575


1 torn on both nuts .
1% turn west nut;
turn east nut.
1 torn each, west
east nuts.

2 turns each, top
bottom nuts.



J/a turn top nut;
bottom nut (could
tighten further).


.%
and

and




Vs turn
not



                       Continued

-------
TABLE  B6-1.  Continued
II.'

L

A
M
UATL H
SCKLLN1NG INFOKMAItOM
MC'^N MAX MtA|j MAX
K!L" SHf1 bLAlJU GL'Uin
LK KAfL KtlJUt
MAINTENANCE
PERTORMED
Undirected Maintenance (Continued)
ISVft
IbVft.
ISV.A
AbV/.
13V/,
l.iV/i
1VA

1(M
l\ll\
13V/>
i3V/\
HVA
IVfl
1 VA
1 Vfl
13vr
13V/1
13V/\
IV ft

IV/i
lv/>
15VA
15V/\
M
M
l|
"
'tf,
Mf
7f)

?e>
/b
15
10
15
33
3?
33
14
It
1M
,,p
4(1

*u
7
1
U
ti
b
I'.
b
U
b
b
IJ
H
11
b
L)
U
1!
Ll
H
U
U
n
H
U
H
H
t)
(_>i-t X OUU
liH X OUU
ULt X OUU
Hi-LX QUO
u«-tx inuuu
lj<-LX 1CIUUU
AALtX 1UOUUU
A«HX 1UUUUU
AAHX 1UOUUU
AU|lX lUdUUU
HLF x enuou
MLLX bOUOU
ULLX faUUUO
Ul-Hx ^UUU
Hl-HX 9UUU
b<-['x SUUU
tiUHX "4UUU
MUpX l»UUl)
HUlix UUUU
M/VLX tUUQ
A«tX UUUO
A(\CX 4UUU
A«tX 4UUU
ULLX 1-»UU
I;LLX 1MUU
li!l'(/B Ml
12177B LS
1210 /O LS
li!19/O LS
llUb/e us
110B7B Ml
iu 1 7 re> us
1U277B Ml
103078 BU
11U3/0 UU
11?2'«* US
12U170 Ml
lilUM /B LS
12070 US
1237O HU
2U77B Ml
112?'U dS
lilUl lo Ml
12U<4 /B LS
lU2fa70 BS
1U?77O Ml
1U3U/B UU
11U3/H BO
lU2f,/0 BS
11U4 7B Ml
2u i:u
2U <:u
27 ^8
*:i *:2
b30U 9UUO
5^8 1UUO

M02bU 1UUUUU
67bU ^600
67bUU 10UUUU
??2b 33UO
•tW 5bO
IB1* 44U
253U 33UQ
13 7U 22UU
1370 22UU
2bUU 6UUO
"»JU HbU
103 3BU
3VJU bOUO

1113 2UUU
5hi!b JOUUU
3b3l) <»600
B 3U
2U 2u
UU 1UU
3-4 bS
tt<* 1UU
<4B2b BBUu
bOt< 110U
^ B
350UO 7UOUU
272b 32UU
3bbOU 72UUU
HBUU bZUU
126D 24UO
2'*0fc
3A turn top nut; 3A turn
bottom nut.



1 turn each nut.

1 turn top nut; ?/j turn
bottom nut.


1>S turns on both nuts.



Tightened packing.

2 turns on both nuts.


Vs turn each nut (no
thread on packing nuts).

l'/3 turn south nut; Vj
turn north ni/t.
                         Continued

-------
                                     TABLE B6-1.  Continued
00


Ill



ti
L
K
Undirected
fvn
MVA
1VA
1 V/>.
IV A
13V I-
itvr
15VA
13V//1
,13VA
i3V*\
ISV/i
13w*
13V/ A
13VA
13V/ />
1 3 V /•
13V,i
i? i£ \/ *•
«?i? V /*
22VA
13VA
13V/A
13V A
15V,.
• -'i
Ml
ill.
?f-
i1!
13
1 .<
1 .',
J .^
13
1 'J
1 n
1(1
in
i it
in
i f
i n
^
«?T>
^
-,
q
Q
i ;•
U
b
b
b
U
n
u
b

b

b
H
b
b
b

u
b
u
b
b
b
b
b
s
A SCHtLNlNli INFUKMn 1 1UN

l'*<;l

1 l.V

UATL
M MEAN MAX
H STLM STLM
MEAIJ MAX
bLAlIU OLIVNC1
N0r|-Ml -[-H %
LK Kft^L KtUUL
MAINTENANCE
PERFORMED
Maintenance (Continued)
bLf X
I'Lh X
AAf.X
A«AX
AMAX
A»I5 113 3BO
fll 2U ^U
tS 10 31
tS 43 *8
tS 21 31
bS ". .
tS ?4U 1UO
Ml BU 2<:0
US IbOU 3UUo
Ml 3^b bOU
tS *1 273 31UU
7b2t) 1HJUU
?4 30
20 20
i3 2b
21 23
20 20
t ~
3?b boo
lib 30U
3U« IbOU
9lU 200U
295B bBUU
1UU 120
0. 02&UO
O.U197t> i!''.!^
U.l/60b
U.lBljU
U.l327b 2<..a^»
0.0015^
O.OOliB 22. 4b
0 • U 31 71
U • U 1 1 7 3
O.UUbsb
U.0bl<47
U • U D U ^ 3 1 / • ^ ?
U U / ^ 3 b
U.UUOq1^
U. UUU54 -1U.4
u. 00051
U .OUU<92
U.UUO^b
O.UU3.1U
U , U U 3M **
U UUI^b ~ i^9
U.UUBpB
0.01 f 142 -110
U.U3B2b
O.U1B?1
'/j turn each nut (not
much packing left).


Tightened packing.

1 turn each, top and
bottom nuts.



1% turn on right nut;
1 turn on left nut.

% turn each, north and
south nuts.



1\» turns on top nut; 1H
turns on bottom nut.

1 turn on both nuts.


Continued

-------
TABLE  B6-1.   Continued
II-
1,
L
r*sl
11 v
UATL
:>
A
M
SLKLLNlNb INfOKMA 1 1OU
ME AM MAX MLAN MAX NON-MLy" % MAINTENANCE
Sltm Sit" OLAr,U bL«UO LK HAyL HLUUL PERFORMED
Undirected Maintenance (Continued)
!5VA
3V.-V
3V*
3V A
3V/\
22V.'.
15V,
1-iVA
13VA
HVA
15VA
13V A
1 5V A
ISV.'l
1SVA
13V.",
13V,\
13VA
1 3 V h
IS U
V 'j b
U' L
bS tl
3 tt
lit f
11 b
11 H
33 b
35 H
? b
'1 H
'( U
r b
i> L>
U II
1 ] N
J C. 11
If- H
HL,,X
I3L||X
ljL(iX
tiUbX
bUHX
IJUHX
bLHX
HLMX
tttttX
JWVAX
AAAX
bLLX
t',Lt X
ntux
I-.LUX
louu
10UUU
10UOO
L l'i U U U
luuuu
2U
b-jU
56U U
5bUU
40UUU
12UUU
lunuuu
1UDUUU
i u o u u u
l|bUU
'K.UU
^uuu
/nuuu
7 u u u u
12U27B
1U26'0
1U2770
1030/f
11U3/0
11U670
11U6/B
1U267U
11U6/B
1106/8
llOalb
1121 to
1122/B
12UM 10
1121/0
1122'O
11P2/0
1122")
Ml
bS
bL
«L
ts
OL
t)L
bL
bS
bL
LS
bL
LS
UL
LS
'•Id
25750
13/bU
300 U U
2U
163
103H
ISVis
9V38
350UU
3HOOU
M5
HC.3
1IIUU
^3^u
33/5
"u25
6UU
10UUUU
66UUU
3POUO
fcUUoO
•a
boo
liuo
500UO
2BUUU
1UUUUU
euuun
170U
i n u ii
auuo
72UO
1UOUUU
180UO
23«
2U50U
OlOUU
2U
33"
102b
2"«/3
2773
373
60
l"
1173
1323
"45U
293
<»3UOU
31USO
2 turns on both nuts ,
could not turn more
3uu u.uM6?3 -133 (packing needs replacing).
liiunuu u. 13^76 -3/7 Vj turn top; 1 turn
luuuuu . bottom.
luuuuu u. 12 71 1
2U U%UUU2U
b5U 0 . UU293
22UU U . 01<4 1 1
MUUU U . Ul / f.'£
3400 0.0450"
HOU U.023^1*
iou u . 03053
MUU U«U13]^
12U U.Ull?'*
IbOU O.Ul^yJ
iv>uu o.oiifl/
1>4U(J U«U^Ut43
3HU U.UMUpt
U Oil 00 U.U4373
7400U U.3129B
                      Continued

-------
TABLE  B6-1.  Continued


11.

I
*
Undirected
13V\ V\\
13VA •',
ir.v/-.
1 bv f\
1 5 V i\
IbVA
ibVA
I3VA 7
i3Vrt 7
13V/1 7
I3VA 7
13V A 7
13V. IT
1VA 24
1VA ?4
1 VA 2'
1VA 7'l
ivc ?i
UVA 2?
13 »//\ >"i
13VA 2.
13V A V'l
13V A '-"I
13VA 94
b
13
'
tl
h
B
b
"
tt
U
tl
U
H
b
U
H
U
B
L<
L
L
L
c
L
L


H»Sl


ILV


UATL
S
n
M
r
StKLLNiNt, INFUMhAl 1UM
ML AN
STLI*
MAX
SIL"
ML AM
bLAIJU
MAX
GLAIJO
Mur>
LK
-ML|H x MAINTENANCE
HAjL KLUUC PERFORMED
Maintenance (Continued)
AALX
AALX
A A A X
A«LX
A/»LX
A/It X
AALX
AAUX
AAbX
AAUX
AAbX
AALX
AALX
AAL>
IJV-LX
I'LCX
DLLX
b<^ U U
f,^ U u
3UU
'4 3 u u 0
•MUUO
4 J U 0 0
'I300U
13UUU
U4UUO
f^l OU U
tii uu o
aiuuu
C4UOO
1UO
ieuo
leuo
J00II
1(500
l«oo
100000
luouuu
l u c o u o
1UOOO
inuuo
10UOU
113U7B
1201 7B
12U?70
12127SJ
1^14 10
1^17 If
12107B
12197b
1212'e
li;14 7U
12177SJ
I«!ie70
1219/b
12127B
1^1376
1214 7tt
121 77B
1210 7«
121970
113070
12111 /«
Iif027tt
12U7b
1267H
12b'0
bL
LS
tlL
bL
LS
LS
LS
LS
bL
LS
LS
LS
LS
bL
UC
LS
LS
LS
LS
bS
LS
Ml
bS
bu
LIU
.
1375
'2
5H75
152b
113B
3fi25
19/5
11)730
13i!OU
27b3
3330
9317
•
b30
»<2B
91
2b7b
3075
m
H o on o
3b
653UO
97bllO
97500
.
2bUU
bO
9000
2700
2200
6000
300(1
3bOOO
IbOOU
5100
0000
220UO
•
1200
2bOO
230
7BOO
9UOO
^
100000
30
n&ooo
100000
1000UO
.
1900
37
192'J
52bO
17bOH
11 7i;U
*9bb3
3350
Ib
-------
TABLE  B6-1.  Continued
11
L
K
HI- si
U V
s
A
UATL K
SCHLtNING INF
CLnN MAX
Slf M SI*-"
UHMM 111
bLANU
IN
MAX I
NUM-«LIM * MAINTENANCE
LK HATL KLUUC PERFORMED
Undirected Maintenance (Continued)
13VA
1V\
1VA
1\/A
1 VA
13VA
13tf/\
13VA
13VA
13\M
13VA
13VA
13Vo
13VA
13\//,
1 Jv/A
13\/A
13VA
13V A
MVA
MtfTt
4V A
19VA
y'i t
77 L
77 L
77 L
77*-
77 L
24 *-
i; 4 *-
2<4 L
5 L
* L
'J t
17 L
1 7 L
1 7 L
l'< L
l'i L
iy t
27 I
27 C
fP L
71' t
/r L
1 i, L
HCLx
l!t«X
LU-IJX
IJ^-liX
b*-rJX
«/>BX
««UX
AAHX
LlLLX
u«-tx
Ltl-LX
Ul-LX
HLLX
bctx
AAAX
AAAX
AOAX
flAAX
n«Ax
LIUAX
1 0 U U 0
900U
901'')
90UO
90UO
20 UO
?otu
j-UUU
lonuoo
looooo
IUH'100
iiuOU
duuu
HUOO
10UUOO
1 0 i) U U 0
100UOO
•)OU
too

.
•
noon
*07/M Ml
102678 BS
1027/« UU
1027 7tt Ml
lOJO 7B Da
1103/b bU
11307B bS
1*017B LS
1^0270 Kl
112?78 bS
1*01 to Ml
1204/0 LS
11227B bS
1*01 7O Ml
1*04/0 LS
1122/b US
1/0 I 78 Ml
1*04 7b LS
11067M HS
110Q70 Ml
102678 BS
1 (IP 7 fO f,l
1U 30 7b H(J
J*li'/B US
.1JUU
PO'IOO
82SO
30250
20
i n o o o o
378
3HOO
6700
413
87
100000
5750
9525
28575
43
54900
3^50
11000
•
48UU
100000
1400
18UO
14000
50000
*0
100000
400
37UO
8000
4JO
110
looouo
94UU
26000
BOOUO
30
looouo
bouu
14000
.
11
400
1650
20
2034
1000
418
500
340
60
1UOOOU
10850
13050
1*0
31
/4000
63O
300U
•
14
50000
1100
400
•jOO
4IJOO
20
4000
iuou
ortu
1200
340
150
100000
24UOO
36000
160
33
100000
1200
4UOO
.
«•
0
0
I
0
0
0
0
u
0
0
0
0
0
0
0
u
0
0
u
.00450 yv. *B Tightened packing.
.00174 99. *3 'A turn north nut; 1H
.uuifoO turn south nut.
.09*3* 3 turns on west nut; 3
,
-------
TABLE  B6-1.  Continued


IP
I)
L
h
Undirected
1 9 V P. If
i y v A it
19V* 1(
1 9 V A It
19Vrt If,
1VA 73
1 V n 7.5
iv* '3
1VA 77,
1V/' '1
1 V/\ 7J
1VA 71
1 V A 71
lV/\ 71
1 V <\ /I
i VA 71
2 1 V A Hi
21V". 1 '
i; 1 V A 11'
21V A 111
4.32 1 turn each, west and
ouu?* east nuts.
UOUjb
uoo ?e
OOUfD
IbMf 7
00-^50
0737^ 33.01 Tightened packing.
0^750 1 turn each, west and
umn7 ^H.'jy east nuts.
                        Continued

-------
TABLE  B6-1.   Continued


in
L'
L
K
Undirected
1 V/\
1VA
IVrt
1VA
13VA
13V/A
13VA
13VA
13VP
13Vf.
HV.-V
13V A
15VA
15V//V
15VA
13V\
13VA
1VA
1VA
1VA
1VA
1VA
IVft
1VA
i VA
1VA
1- L
1<- L
191
lc' L
r L
r L
l< L
,1 L
H L
t I
2') t
L''l L
0 L
1 L
9 U
bf L
be- L
PI L
21 L
^1 L
21 L
?1 C
t ] L
211 C
?l! L
i»r L


HKS1


1LV


UATt
A
M
H
SCH'LNlNb 1NKJKMAUUM
Pi[ AN
SILW
MAX
STLM
MLAfj
bLANU
MAX
GLAun
MOM-MLT" * MAINTENANCE
LK
KATL HLUUC PERFORMED
Maintenance (Continued)
AAf.X
/1«LX
AAFX
rtALX
AAHX
AAbX
AAHX
AAt5 1*5 turn each nut.
0126'
on«;i 9.17 \ turn each, west and
0.40/90 ' east nuts; ^ turn west
0.
u.
0.
0.
Ot
0.
407gO nut.
4U 790
lbl9U
U23J3
02Mja -4.20 1 turn each, west and
37ip4 east nuts.
                        Continued

-------
TABLE  B6-1.  Continued


I.



H
L
*
Undirected
IVA
IVA
IVA
IVA
IVA
IVA
IVA
1 VA
IV;'.
"»VA
'(V<\
'IVA
I»VA
"»VA
i3VA
33VA
33VA
-i3VA
33VA
33VA
13V A
13VA
13VA
13VA
13VA
13VA
13VA
2.)
2C
2P
1 *»
c. e
22
2?
2?
2?
22
b1Ax
S1LM
Mtflrl
bLANU
MAX
GL«IJO
NUN-MLJH * MAINTENANCE
LK HATL Ktuuc PERFORMED
Maintenance (Continued)
AALX
AALX
AAF.X
A/»LX
AAf_X
AA^X
AAtX
/UVLX
AALX
AbAU
AbAB
OBAU
AOAB
ABAU
AAF X
AAF X
AAFX
AAFX
AAFX
AAFX
UCLX
btf.X
HCLX
bl-t X
MtLX
BtEX
AABX
luuuuu
luuuuu
loouou
luouou
luouuu
1UOUUU
luouuu
luouuu
luouou
^bUUO
95UUU
95UUO
95UUU
95UUU
1UO
MUU
•*uo
4UU
4UU
•*UI)
]bUU
IbUU
IbUO
IbtO
IbUU
IbUO
MUO
1217/8
12187B
1219/6
1213/8
1 2 1<4 7 B
12] 5/B
1217/B
121870
1219/B
1U26/6
1U?77B
1U30/8
11027B
1103/B
12137B
121M7B
121J.7B
1217/B
12187B
121S7B
121271)
12147U
1215/8
12] 7/B
121H/B
1219/B
113076
LS
LS
LS
BS
Ml
LS
LS
LS
LS
BS
Ml
BU
BU
BU
BS
Ml
LS
LS
LS
LS
BS
Ml
LS
LS
LS
LS
US
7HUU
5323U
?lbOU
30/UO
.
buuu
3023
10730
5B/5
30/30
2U73
11SUO
.
izun
0
.
20
1/0
2U
20
1BJ
.
5bl
ri2a
"•23
613
•
17UUU
1UUUUO
52UUO
7BOUO
.
6uun
qUUU
230UO
100UO
bbUUO
3UUU
23oun
.
22UO
0
.
20
1/0
^0
«!0
2i!0
.
910
fcOU
blO
9*»0
•
•*325u
b62bU
b53UU
161CU
.
1723U
29123
'*^8^U
1300U
25UCO
/OU
IbOU
.
210U
10
.
2U
.
2U
20
bfa
.
H"»
bB
2b
3d
•
1 uuuuu
10UUOU
luuoou
3000U
.
1|3UUU
U3UUU
luuouu
2/OUU
2bUOU
iuuu
20UU
•
22UU
33
.
2U
.
2U
PU
12U
.
SB
9B
33
b-*
•
U.HU798
O.^U/gB
O.MU/gB
U.Ullfl9
O.oi3?s -11. ti V» turn east nut; 1 turn
u.2U|c^ west nut.
U.333s^
U.<40 Jfjti
U ^ 1 td tJ f\ A
0 0 0 ^ t V
U.uu3i4b -28. b "» turn east nut; 1 turn
u.uui>2i west nut.
O.OU1J2
O.UU122
0.ool5^
u.uu2i)i -ba.4 Vn turn east nuts.
u.uuu^J
U . DUlIf**
u.uuupa
u.uuupi
O.UUlQb
O.UU26? -i'*9 1 turn each, west and
O.uUb^i east nuts.
O.UUbo1*
O.UU4g3
O.UUbyU
U.UUUjl
                        Continued

-------
TABLE  B6-1.  Continued
Ill

b
L
I'KS1
1LV
UATL
S
n
H
H
SCKLLN1NG INUJKMAIIUH
MLAN MAX MEAN MAX
STIW STLM bLANU CL«HU
NUN-MLTH * MAINTENANCE
LK KATL HLUUL PERFORMED
Undirected Maintenance (Continued)
13VA
1 5V A
«:?««
2? V.I
13VA
UVA
13VA
13V/V
•MM
15V*
15VA
13VA
13VA
13VA
15VA
15VA
15V/<
15V<\
15Vfl
15VA
15VA
15VA
15V A
21
i-'l
1
J
7
7
7
•M
(.7
C
f,
1M
i"
27,
i
3
»
3
3
X
c
S
*j
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
/KIIJX
AAHX
AAAX
00
H25
^
100000
2^30
uvuu
7650
.
225
205
Ib3
1/U
120
"23
IbB
3HO
0
20
^0
20
bOO
bbUO
100000
t /oo
1000
f
looouo
4HUU
bboo
100UO
.
JHO
2HO
3UO
230
130
1*0
2<:d
340
0
2b
20
2U
.
.
obooo
x«
^b
,
12300
10
Hi)3
700
t
IfaO
153
20
00
/I
I/1*
21
1M
0
32
20
20
.
.
100000
5U
^o
m
23UOO
50
blO
1000
.
220
IbO
20
90
00
290
33
210
.
0.00070 -132 3 torns on both nots.
0.00013
O.OOOQ3 -bbo 1 torn on each not.
O.OOlQ*
O.lb731* -e7*«b 3 torns on both nots.
O.M07gO
O.OOblO
O.OOOJ2
1.04320
0.40 790
0.02U12
0.03b7/
0.0177*
0.002?0
0.00271*
0.002G1
0.002i,3 '
O.OOlg1*
U. 001,5
O.OOb^O
0.001p7
o.oonji
                        Continued

-------
TABLE B6-1.  Continued


IP



1
1
r\
Undirected
ibvrt
lbv/\
21V<\
^ 1 Vfl
.?! Vfl
,'1V A
^1V/ \
',
'•
17
1 7
17
1 7
I 7
L
I.
I
I.
L
(.
L


I'"1; 1


It*


DATL
s
A SC>(C-LN
ll ML OH
f S 1 f i'1
IIO(, IMF UKMA 1 1UIJ
NAX MLrtu MAX DON-MI yn * MAINTENANCE
Sit" C.LAIIU GLAIIU LK KAjt. HLUUC PERFORMED
Maintenance (Continued)
I.V 1 X.
|ii.l X
AAAX
A'lAX
AAAX
A A AX
AMAX
3HU
JMU
?UUl)
i'UUII
?uuu
puuu
?uun
li-Ul/b
1 2 1 •) 1 «
12137U
121M to
1217'H
i i' i e i o
121 V'o
LS bU
LS Ihi
UL 2U
LS 41
LS 2U
LS ^0
LS i'1)
1 JU At 1 / U .UUl 1 /
100 mj su o.oui^b

-------
TABLE  B6-1.  Continued
If

Directed
1 i V ^
1 3 V 
b
t)
H
l<
t.<
It
l)LL(X
Ltl-IIX
bt-HX
OLIJX
HLBX
HLKX
AMHX
AHMX
A«MX
A » 1 1 X
ft/U'.X
AAAX
I»«AX
A A A X
A»/\X
AAAX
/\AAX
IlLLX
bLCX
li(-(.X
ULCX
1>I-CX
ULCX
MttO
HHO
GOOD
8UOO
nooo
CM (10
nuuo
lonuoo
IOQOOU
1 O {i O L1 U
loouuo
i u r u u u
luuouu
i onooo
1UCOUO
i ULIWHO
IOC UUO
1UOOUII
32UO
3^00
3^00
3200
i^ U 0
3200
11979
12279
11179
11879
11979
122^
1?379
l?4/9
11179
11 779
11979
1?2 /9
12379
11179
1177U
11779
1197^»
122/9
123'9
11179
11B79
119/9
1P279
123'9
12'U*
US
Ml
LS
I S
LS
bS
LS
ts
ts
LS
bS
Hi
LS
LS
LS
bS
Ml
LS
LS
LS
LS
bS
Ml
LS
LS
LS
LS
63 00
24 ^5
49fb 6faOO
2U iiO
?U iiO
23 50
B70UU 1UOUOU
IfctiH ?4UO
63i?t) 9UOO
7bU 12UU
1200 if.UO
B25(IU lUUUUU
. .
713 1400
411 7UU
5b3 050
I2*i l^UO
90 1«!0
. .
21 <:2
31 ^^>
26 42
;>9 au
2U
3D
2U
2U
2U
1025
4 30
310U
390
4fe3
265
,
663
83»
22bU
117D
863
.
ma
0 I
12D
143
40
20
25
40
20
20
20
2"
12UU
91HJ
55UU
bUO
hOO
400
.
90U
IbUO
3400
i!2(IO
11UO
.
2.1U
i")U
3UO
26U
0.
(j
0.
u.
o •
0.
u.
0.
u .
0.
0.
y<
c.
0.
0.
u .
0.
u.
u.
0.
0 .
0.
°-
UUUn.0 1 UU
UUl7«i
OUOj5 9H.h2
UOU?3
UOOjk:
009l«i
001^(5 9H 12
0*40^7^
OUB jl
0107U
139f,U
002ft«? 97.90
U09s«!
010] 1
U^07M
om^
007^0
000]9 9 7.45
U0191*
002()9
UU245
UO^.,1
1 turn north not; 1 torn
south nut.
5>s turns east nut; 5^
turns west nut.


% turn top nut; 4 turn
bottom nut.



1 turn north nut; 1 turn
south nut.




3 turns top nut ; 3'j turns
bottom nut.



                       Continued

-------
                                        TABLE B6-1.   Continued
CO
in
L>
L
K
I'KJjl FLV
UATL
S
A
M
H
STLM
JiNO INF UKMA 1 1UN
MflX MLflN MAX
SiL" GLAND GLAMU
NOM-MLTH * MAINTENANCE
LK KAyt- KtuuL PERFORMED
Directed Maintenance (Continued)
1 5V<\
J3VA
13V,.
1 AV^
i3vn
ISVft
13VA
13VA
13V/\
13V A
V3V/\
13VA
1 ^V A
13v/\
27V/V
2 7 V ,-,
27Vrt
i; 7v (\
<-7V/\
13VA
1 3Vf,
i3vn
13VA
I3vn
':* L:
<• H
'/ t,
V H
ll li
1 U
' b
., It
t. H
f. 1.1
I. It
1? H
It. b
i? it
\y H
ir u
i f ('•
b4 i;
^>4 U
'114 h
bit t.
*~>H U
i '< u
1< H
H I'
1 VI li
1 il U
LJl-lX '«l»UUO
HLCX UUUUU
ItLCX "4l»UOO
HLCX 'mouu
r.tcx 4'iuuu
ULHX uuuu
HLHX 'IUUO
m_[jx 4uuu
H(-BX MUUU
tlL«X MUOII
hn.,ix uiiuu
1801)0
AAAX 16UUO
AHAX lODUO
A » A X 1 0 " (1 0
AHAX louuU
A«AX IPUOO
ni-r, x louuul)
WLUX 1HQUUU
HLhX lUOUUU
ULIU 1UUUUU
rjnix i uuunu
1(1-1 X ?JUH
BLLX 23UH
HLCX ?JUU
LH-CX ?^>uo
LH-tX 23UU
11J7V
131 /V
1117V
1107V
119'V
1^2 7V
1237V
124/V
line
111 7V
117/V
1197V
1227V
1237V
1127V
11C, 7V
1197V
122 /V
123/9
11 17V
1 1 7 'V
1197V
1?2 fV
1237V
Liii
LS
Ml
LS
LS
BS
.11
LS
LS
LS
LS
US
LS
!«1
LS
ts
t S
bS
Ml
L-S
LS
ES
bS
Ml
LS
LS
LS
llbU
73H
1 70U
2^uu
.
Ib9
21
1"*0
bU
.
2525
211
2UOO
3'
«=b
905
55UUU
2b5
33
23
525
33
Ib3
JU
3b
bUUUU
58UUU
IbUU
2300
3100
.
0"*0
t>4
300
I'll
.
touo
20
2UUU
00
30
2000
10UUOO
buu
bO
«!5
VUU
'0
200
bO
00
2650
3/3
vuo
bi».s
.
ObO
202
233
•450
,
,
20
22'JO
i»V
15b
.
U
.
.
•
271
10
10U
20
3*
btiUU
b30
770
1200
BOO
.
1200
420
b80
tuu
.
.
?0
*4UOU
f-3
1UU
.
0
.
.
•
/2U
2u
260
3b
52
0
0
u
0
(1
0
0
u
0
0
0
u
0
0
0
u
u
u
u
0
0
u
0
0
0
,uoif,v ^b.o^ 2 turns top nut; 2
.Oiuyo turns bottom nut.
.om73
.U12bO
.ooun/ V3.07 5's turns north nut; B1,
.uuoji turns south nut.
.00330
.uot^u
,OU5j '
.01150
. Ud3qb
,ooun3 92.00 5 turns each nut.
,Uii3
-------
                                        TABLE  B6-1.  Continued
vD
i:
Di rected
2 7 V A ') I"1
2 7 V /, bl1
2 7 V A ^ f
27Vr. '(U
d7Vr '.Ml
2 r v .'. -4 '
27w 'ir,
2 7 v n 4fc
2 7 V ,". 21
27V.', 2]
27 v A 2]
2 7VA ->!
27v A 21
1 3 V A 1 .'.
1 3 V A 1 .'.
UVA 1.'.
i 3 V A 1 /
1 3 V A 1 '
J3VA I'l
1 3 V A 1 'I
1 3 V A I "
13VA iu
13v« I'l
13VA 2(,
13V A 2 '•
1
L
K
I'KSl
IL«
UATI.
S
A
MLAM
INb INfUKMAIlUM
MAX MLA(J MAX
SlLfi bLAUU f,LAI>|L)
MOM-MLTH * MAINTENANCE
L«. KArL KLU"L PERFORMED
Maintenance (Continued)
i)
O
P
b
H
t'.
LI
li
Li
e
u
b
H
H
1!
Li
L!
U
II
K
L'
II
1
i;
13
U
AAAX lOOl'OO
AM AX 1UOUOO
A«AX 100000
AAAX 100000
AAAX JUOOOO
HLHX
HtHX
Ill-HX
IJLHX
ni-nx
HLUX
Hi-BX
A/VAX
AAA*
AAAX
AHA A
AAAX
AAAX
IVAAX
AAAX
AAAX
AAAX
AM AX
AM AX
2bOOO
24000
240011
24000
2 '( 0 0 0
24000
.M.OO
3bi:u
JbOU
3b(JO
3bOO
7000
7000
7000
7»00
7000
230C
;• t> o u
1 197*
111 "
llf"
1 19 "
1?2 f<
1237-*
1117^
1177^
119"
1?2"
123"
111"
117"
1 1 ') "
1?? "
123"
111"
117"
Ml
LS
LS
LS
hS
Ml
LS
LS
LS
bS
Ml
LS
LS
LS
US
Ml
LS
LS
t S
HS
«1
LS
LS
LS
US
Ml
P97SO 100000
54 100 . •
28/bO 70000
22785 BOOOO .
1 5b5n
1 *34 t>o
4bOO
4bOO
20
20
2u
2bb
K25
<;5
54
2b
31
103PO
57
73
101
20
t14b
*25
45000
7000
3300
fibUO
"o
£ 0
<^ 0
bOU
1400
36
'2
30
•*?
29000
bO
lao
200
«;p
1LOO
1100
40fa2S 7bOOO
537t) 12000
t)4 3 1^00
2725 8^00
20 20
20 CO
20 ?U
137bU 18000
?0 20
. .
4 1 50
32 33
2fa ?b
245PO 34000
30 30
. .
.
•
5H3 1000
j y o t 'i o o
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
o .
0.
0.
o.
0.
c.
0.
0.
o.
0 .
004ub
ooo^b Bb.ib 95 pomps of grease.
00093
33b?l
oi2jb B4.35 52 pumps of grease; 3
Ob3u* torns per not.
000^,6
ouoj3 BO. 40 3A torns each nut.
000?3
ooo?3
0^013
OOl^b
oooj1^ 7i. 10 40 pomps of grease; 1
ouo7o turn each nut.
00030
00074
00078
00032 59.30 35 pumps of grease.
00133
00172
OUU;>3
ooiqf 3 turns north nut; 3
Ooi(]b 45. ^7 turns sooth nut.
                                                                Continued

-------
                                          TABLE  B6-1.   Continued
oo
o
L
in K,
rusl
TLV
UAFf
S
It
M
SCKLIN1NG INfl
PLAN MAX
STtM STLN
JKMA F 1C
MLAM
M
MAX
GL«NU
NOM-MLT" > MAINTENANCE
LK KAfL HI DUC PERTORMEO
Directed Maintenance (Continued)
1 3 V A 2 ( b
27VA :>;•• c
27Vn '>3 |:
2 7 V A ' > .' H
27Vrt '.).' h
27vM '.'< H
2 7Vf M b
d 7 V A -1 1 b
27>'A "i] l<
2 7 V A lj 1 IS
27V/. si f
13VA 1 l>
\ 3 >/ A i i ;
13VA ) b
13VA 1 H
13V A 1H
13V A 4 f<
13Vf 'i t
1 3 V A ') 1 '.
1.3V A ': H
1 3 V ft 'i t'
13VA 1 ] l.i
13V A 11 tl
1 3 W A 11 1 •
13V/, 1] h
AAAX
A A AX
LAAX
LA AX
L AAA
L/IAX
LAAX.
L A A X
L t\ A X
LA AX
LA AX
L A A X
bLIJX
l(Lt',X
t'.LljX
rtLHX
>IL*X
A/>I!X
A/M'X
AAHX
Ann*
A A HA
ULLX
IJLLX
I1L(.'»
ilLC X
2 b'l U
23U U
J3UU
30UU
3 b 1! 0
Jal'U
JbUU
i unuuu
1UOUUU
i u n u ii u
1 u 0 u u u
i u n u u u
1 2 !J (1
l«;uu
12UU
l^UII
12UU
bbU U U
b!j U U 0
bSU u U
b b UH n
b 5 U U U
730(1
7.111(1
7JUO
73HU
1227V
123/V
112/V
J 167V
1 197V
122 7V
1237V
1127V
1 17 7V
1 19 7V
122 7V
1237V
11^7V
1167V
1177V
1197V
1227V
1157V
1 lf-7V
1 177V
1 197V
1227V
llb7V
1 1^ 7V
1] 7 7V
J 197V
LS
LS
LS
HS
Ml
LS
LS
LS
bS
Ml
LS
LS
LS
LS
tlL
LS
LS
LS
LS
UL
LS
LS
LS
LS
HL
LS
LS
IIM'U
3V9
2HH
24HUU
1238
214
512bU
4300
7IIUU
3UUU
1050
*U
4 a
123
12U
31
5UOU
b225
4H7b
51511
382SO
420
3 7(IU
140 J
lV7b
ifeuu
IbUO
8UO
6SO
bUO
4 U U U 11
44UU
bUO
(JUUUO
4 bull
8UUU
5UUII
32UU
20
luu
2UU
IbU
35
70UO
V2UO
7VUO
73UU
98UUQ
7UU
41.UU
4 2 u (I
45UO
92U
w
145U
.
.
•
17UU
3BUU
5bOU
2bt U
1V05
2i'
U
2V
21*
*«;
230U
31UU
345U
4320
312S
45tU
430U
12f 7S
492S
.J2UU
IbOU
,
i;uuu
.
.
•
28UU
bbOU
»buu
4UUU
31UU
2b
u
3b
31
22
2VUU
jouu
ObUU
36011
4HUU
BOUU
bbUU
41UUu
1UI1UU
u
u
u
u
u
u
u
0
u
u
u
u
u
u
u
u
0
0
u
u
u
u
u
u
u
u
u
.U1U 7U
. o u u <, b
.uuuau -e>2.b 18 pumps of grease.
.1«2PV
. u 2 1, n o
. UU4c,l
, UU5}3
.U13Q4 -145 V? turn north nut; % turn
.U4uni south nut.
, U2 Vj V
.oiv7u
.UUUpB
. UUU^b
. UUl7
-------
                                         TABLE  B6-1.   Continued
oo


I'
Directed
1 3 V A 11
13VA  ;
1 3 v ft «' ;.
13Vft <•?
13VA 2 (•
13V ft "-"i.
13V 7i '/I.
1 3 V ft ? (
13V A 27VA b,"
«;7VA rj?
i?7vA f>?
X
n«-rx
n LUX
MM,*
7300
9UUU
90UO
9UOU
9UUU
9UOU
J 5 U 0 0
3SUOU
IbOHO
350UO
J300M
br.uon
58UUU
b ('. U U 0
380 0 U
cj t\ U 0 0
hf.UUO
HbUOII
M500U
M 5 o i) n
HbOOP
M 5 0 0 0
IUOI'00
1 I) P 0 0 0
lupooo
111 00 HO
] U Ij U U 0
12279
llb/9
1 16 79
11779
11979
1P279
11579
11679
11779
11979
1?2 79
11L79
1 1 r. 7 9
11779
11979
1?2 79
12379
11279
1 15 79
11779
11979
12279
1 11 79
11779
119/9
12T 79
12379
LS
LS
HL
LS
LS
LS
LS
bL
LS
LS
LS
bL
LS
LS
LS
LS
LS
bL
ts
LS
LS
LS
bS
M
LS
LS
LS
2775
m>*,3
19HO
<«250
OP/5
3b50
5MPO
52i^5
812^
36230
53/5
B3750
35MUO
12750
3350
infcpb
1775U
ennuo
luo'uio
S623U
1UOUUU
365UO
11250
27B
2ire
335
?UbO
MbUO
aooo
2bOO
7UOO
1 1000
10000
IUOUP
7800
IbOOO
60UUO
7000
1 0 0 C 0 0
50000
20000
bOOO
IbOOO
MUUUO
louoou
i o u o u o
1 0 0 (1 U U
1000UO
1000UO
ioooo
300
2MO
6UO
3MUO
M 7 ^3
.
200UU
2500
1 2 1 0 U
6373
37CO
230U
3073
322b
2773
lMi?b
9'jtl
M3o
10bO
105U
13?b
1600
2000
1150
2euo
loou
eb
500
273
MSb
HA
brtou
.
? u u o o
3000
3uouo
1 7000
3000
320U
3BOO
3HOU
MOOU
^oou
.
u .
0.
0.
u .
o.
o.
0.
u.
o.
u.
0.
0.
0.
0.
o.
u.
U M fl p 1
UHH 1 3
im i p b
039jb
1M1J3
OB573
Obj73
uiapi
0 7b70
2bU?l
039?3
Pdbpii
^i^lb^
O98gii
029J9
U7b7»
lH2n^»
01B7U
MU7qt)
MU7gB
M U 7 Q «
MU7g«
U U 9 ", 1
UUO()0 loo 1 turn east nut; 1 turn
00357 west nut.
UUbq3
0«.U7«
                                                                 Continued

-------
                                          TABLE  B6-1.  Continued
00
N>
in
Directed
1 3 V A
1 5VA
1 3 v A :
L WA 1
HVA -
t'7V^ 'lb
i; 7 v A 4 r>
^7VA '^
't^\l^ n ;.
i?7VA 4b
1 5 V /\ 'I J
15VA 'U
15VA 41
l"5Vrt 4 i
15VA 'M
15VA 4]
15VA 4 ]
1'jV.-. 1 ".
I'iV-. If
IbVA U
1'JVA !;•
15VA If
13V A V
13V A >
livr. ''
13VA '•
13VA ;
M
L
K
rt-MX 92UOO
trU-LlX 92°UO
11LHX 9?UUO
Ht-flX 9?UOO
l)Ct-.X 92UUO
UCHX 3UUO
IjLlIX 3UUO
M«-HX 3UUU
KLHX 3UUII
ht-UX 3UUO
b>-HX 1400
tjcnx 14 u n
LS«-HX 14UU
U«-h(X 14IJO
tJ>-l'.X 14DU
111/9
12279
129 /9
130/9
1M/9
111/9
11779
119/9
122/9
123/9
112/9
112/9
119/9
12? 79
123/9
124/9
129/9
112/9
119/9
122/9
12379
124 /9
111/9
117/9
119/9
122/9
123/9
US
cs
Ml
LS
ES
HS
Ml
LS
LS
LS
US
LS
LS
LS
ES
LS
Ml
OS
Ml
LS
ES
LS
OS
Ml
LS
LS
ts
40/5
53*5
46
23
iy
3'«UOO
370
200
593
47SUU
.
52500
47
H5
52*5
1?00
*
2fc75
;?u
23
i»U
21
1//5
245
?6t>
160
4i4
eouu
6300
90
30
40
73000
bun
i>40
1UUO
1UUUUO
,
5BOOO
49
92
58UO
14UO
•
peon
<:n
AC
in
*4
20UII
4UQ
330
33U
12UO
13SU
232b
y.2.0
34b
3*3
2U
.
.
.
•
.
i!1750
30
3S
50U
30b
•
73H
20
20
31H
?u
bl
!-»
150
20
29
1BUU
4500
310
b40
b40
?u
.
.
•
'
.
320UU
3*
4U
6>UO
370
•
lucu
20
20
1000
?0
10U
3U
200
20
4i!
0
0
0
0
0
u
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
u
0
0
0
0
0
.01013
.0357 '
,oooi>o 97.01 2>s turns north nut; 2'5
.00470 turns south nut.
. UUl<1 1
.OOf-,3
.uoojj 95.00 VB turn west nut.
.00201
. 007(18
.407ga
.01/3'«
. 2b25b
,00050
.OOUfl /
,U332fe
,0095«!
.00096 94. 4f, i!, turns each nut.
.0126*
.001)1 91. *2 8 turns north nut; 8
.00032 turns south nut.
. U07flM
.0002 '
.00249
.00029 UP. 40 3>j turns north nut; 3>s
.uui-fU turns south nut.
.O02ni
.UUtMl
                                                                  Continued

-------
                                         TABLE  B6-1.   Continued
co


If



Directed
UWrt
13VA
13 v.i
1 JVf,
I 3V«
l3V/>
13V «
13V/<
13V1
13V/V
15VA
I'lV /\
15v/\
15V-*
1-jVrt
13VA
1 3W
J 3VA
13V <\
13V A
^7VA
;'7V,\
«>7V(\
«r 7 V 1
,-7V/>
«!7tf;,
<>7VA
1 1-
) «•
1 (
1 i.
1'-
!••-
] '.
i :
I s
i ^
)U GLAliU


MOM-Mti" » MAINTENANCE
LK
NftTL Hf-UUL PERFORMED
Maintenance (Continued)
L
L
L
L
L
L
L
L
C
L
L
L
L
L
L
C
L
L
L
L
L
L
L
L
I
L
L
AAAX lUUUUU
AAAX lUUUUU
"A AX lUUUUU
/WVAX lUUUUU
AAAX 1UCUUU
/i»/\X p.uut)
«AAX (1UUU
AAAX 6UUI)
/uiflx auwu
A /(AX dUUU
L>*-r_ x iiuu
I:LI.X 1.1 uo
i-IM X 1 iUU
'J L L X 1 1 U IJ
t-"-LX llt.'U
AAAX ?i?UO
A/VAX 2*!UU
/I « A X ? «! U U
A« AX 2«^un
A A A X 2 ^ U U
ULUX ltll'0
HL;)> 16IM)
ULtJX ItJUU
b>-UX 10UU
liLDX 10UU
A/U5X iff.UUU
A/.LIX hUUU
11?7-J
1197*
1^^ 1?
1 ? 37*
12U7V
1127*
1197*
122 /*
1^3 /*
1?'.7*
1127V
122 7*
1?* /*
130 7*
131 ;*
n?/9
lib?*
11 7 /*
1 IB /*
1197*
ii5?y
IK, 7V
11 77V
119/*
l->^/*
1 1 17U
1117*
MS
Ml
LS
LS
LS
bS
Ml
LS
ES
LS
US
LS
Ml
LS
LS
uc
LS
LS
LS
LS
LS
riL
LS
LS
LS
UC
LS
9bou pouuu 335u bbuu
2b50 26UII IbUU i!lUU
1 It* 2UU 1.J9U iUIIU
130U 1MUO lf>UU .J1UU
2bbH 3^011 13UU «ibUU
HbU 12UU . .
MMb biu . •
"«i?b 7UU , .
1 4UU 22UU . •
10fi3 13UO . .
700 i uoo 30 ta
if>i!b i /on 3ib iau
l?25 l^UO ^23 12U
1U50 11UU b^b 1UUU
7^0 11IUO f, ; 7-2
bb3 UUO . .
13*b 37UU . .
2M5U b2UU . •
IflbU 2UUO
l"2b UUO
f>^3 dUO M3 5*
iVb 3UU U U
7h3 a^U 4b Hu
'*UU bUO 7b» ^2UU
T33 300 71 IUU
, . .
2UbO 3UUO u*uu Mi?OU
u.
U.
U .
U .
u.
u.
u.
u.
Ui
u.
0.
u .
u.
u.
u.
0.
u.
u.
p .
0,
u.
0 .
u.
u .
"•
n.
u.
UU21-*
uuuu* 77.1* 4 turn east nut; '5 turn
uiBf,*? west nut.
u 2 u 70
U19/U
U U U 5 U
UUU?f "»b./l l"a turn on nut.
UUbj /
uini /
uu«9a
UUl 5*
0 1 Ip*
uu3u<> -119 Z'a turns west nut; 2*j
uu77" turns east nut.
UU I(]O
ouinb
U*i?3*
OJUpl
0130^
uu2-»
UUSljl
uu2n^
UUbi3
(iit\t
uu^,,u
OU'J,-,1*
U-»bi*
                                                                 Continued

-------
                                      TABLE B6-1.   Continued
s
I' A SCKLLN1NG IMI-UKMAllUN

It-


Directed
c!7Vft
H7Vf
?7v/i
s.TM r
•4 7
'< 7
>4 /
•. 7
L
h l-«^l
Maintenance
C A A U X
L UUU 1147^
oUUU I'SZf'J
M KQAN M/\x
P 5ILM STL"

E.S 350 ^30
LS 33UU 3bUO
Lb b3U 7"U
tb ibu <;<:o
MLAM MAX
(JLAIMU GLAND

eob luou
31b3 OBUU
Tbtt 
U.U1M] /
O.U^2.^
CO
-p-

-------
                                                   LLL>LNL):  A = 1 UbSt H = 1 OUSi LlL,
CO
Ul
              l.uUll <
                   t
                   t
                   4
                                           A
                                         A   A
                                           A
                                                            AA
                                                            AA
A        A
   A
                                       u.nui
                                                                                    Leak rate before =
                                                                                    — Leak rate after
                                                                                      maintenance
                                                          u.uiu

                                                 LtAK KAIL ULt-Uht MAIN!., LB/HR
                                                                                                l.QUO
                       Figure B6-1.   Directed maintenance - leak after  maintenance
                                       versus leak  before  maintenance.

-------
                                                   Ltt>ENU:  A =' 1  UDSi H = * ObS. t. ft .
-P-
00





L
L
A
K

l(
A
r
E

A
F
1
t
rl

M
A
I
N
1
•

L
B
/
H
t
1.000 *
1
1
1
1
1
1
.U.I 00 ^
1
4.
4
i
*
i
^
u.ul.t +
/
/
/
/
/
/
t
U . U 0 1 ^
^
4
1
1
f
1
/
              . j 0 U
                  II. 'MIL
                                                                      Leak rate before =
                                                                       Leak rate after
                                                                       maintenance
                                                                A  A
                                      U.Ulil
    U.U1U                U. }QU


HAFL ULUWL .lAlNT., (LB/HR)
                                                                                                1 .QUO
                     Figure  B6-2.   Undirected maintenance - leak after  maintenance
                                     versus  Leak before maintenance.

-------
          Figure B6-3 summarizes the percent reduction data
with histograms comparing directed and undirected maintenance.
The effectiveness of directed versus undirected maintenance is
obvious when comparing the distributions of percent reduction.

          The effects of the valve maintenance studies are
summarized in Table B6-2.  The results are shown for both the
directed and the undirected maintenance programs,  and are
grouped according to the level of emission rates.   Two results
are noteworthy.  It is evident that the percentage leak reduc-
tion for those valves that were subjected to directed mainte-
nance is considerably greater than that of the valves that had
undirected maintenance.   It is also apparent that the level of
the initial leak rate has a marked effect on the percentage
reduction in emission rate for both directed and undirected
maintenance.   The percentage reduction achieved by maintenance
is lower for the initially small leak rates.  In the very low
initial leak range, £ 0.001 pounds per hour, the average and
weight percent reduction was actually negative.

          It should be noted that as the magnitude of the leak
rate becomes smaller, both the mean percent reduction and weight
percent reduction decrease rapidly.  Both of these parameters
are dependent on the magnitude of the leak rate and are highly
influenced by extremes within the leak rate range.  The median
percent reduction,  however, is a more robust measure of central
tendency and cannot be affected by the very large negative values
of percent reduction encountered at low leak rates with undirected
maintenance.
                             487

-------
lo-
g-
s'
7-
x 6-
U
c
1 5"
*-
3-
2-
Undirected Maintenance

—




1 1

_• i 1 i I I 1 1
I
VI



\







^




P75



1
1
^




\
I



1







£T


i
1
%
\
f
^
\

!
i




O 23 O O


Percent Reduction
IS-
9.
«
3-
7-
x5-
^
Is-
OJ
L.
4-
3-
2-
i
1-


Dlrected Maintenance


P
i * M
x ^ ^tyy^/
^oo d^^-o o d 	 '6 6eA36^^^g


^
|
1

o


1
I
!
i
i
o







           1)11
                    Percent deduction
Figure B6-3.   Histograms for percent  reduction in
               leak rate directed vs.  undirected
               maintenance.
                        488

-------
            TABLE B6.-2.   SUMMARY OF  MAINTENANCE REDUCTION BY LEAK RATE LEVEL
Original Leak Kate
Level Range (Ib/lir)
1 £0.001 n
P"
pw
pm
2 0.001 - 0.01 n
pw
pm
3 0.01 - 0.1 n
P
pm
4 >0.1 n
P"
pw
pm
n = Number of valves maintained
77 — Axr^» T n o£» np>T^*3nt" -roHn^ f- n rm — VP • /n
Directed Maintenance
4
30.7
35.2
52.6
12
48.7
56.9
86.2
10
93.8
93.0
93.8
1
98.0
98.0
98.0

_ _ (leakage before - leakage
Undirected Maintenani
6
-105.5
-26.3
5.6
16
-530.0
-276.4
30.4
22
31.7
45.1
60.9
15
73.4
83.5
85.4

after maintenance)
                                                            -= - -. - :— H - ^ - : -- — =- x 100
                                                            leakage before maintenance
pw =
     ,, .  . ,_           ...     Eleakage before maintenance - Zileakagc after maintenance
     Weight percent reduction =	fi	=-	;-	,—	r-—	•	
                                              )lc*'-*Lrr*rrf*i'\airr\-vt~* m ^ i nf"/inon«-»ri




pm = Median percent reduction
L\_  1I1C-1 _!_*.! l_V~lLCLl.lt_*_   L-i ±.\— Cl L*-dfZj*~- Cl -I- I


 Zleakage  before maintenance
                                                                                             _n
                                                                                         x 100

-------
          The median percent reduction does show the same
patterns as the average and weight percent reductions.   The
comparison between the median percent reductions for the two
types of maintenance indicates that directed maintenance yields
a higher reduction in leak rate.   Undirected maintenance appears
to be less reliable at low leak rate levels ( 0.001 Ib/hr)  with
the potential for causing more increases in leakage.

          The individual percent reduction from the two mainte-
nance methods was plotted against the original screening value
in Figures B6-4 and B6-5.  It appears on these graphs that  the
positive percent reductions for directed maintenance are generally
higher than for undirected maintenance.   Also, a greater per-
centage of the undirected maintenance valves appears to have
increased in leak rate after being maintained than for the
directed maintenance.  Table B6-3 bears out these observations.
The median percent reduction for directed maintenance (91.2
percent) is significantly higher than that for undirected mainte-
nance (53.8 percent).

          In Table B6-3 the valves are grouped according to the
categories of the three variables used in the experimental design
for selecting valves.  One of these variables was valve function
(block or control).  Control valves which had directed maintenance
had a slightly higher median percent reduction in leak rate than
block vlaves which had the same type of maintenance.  However,
the opposite is true for valves which underwent undirected mainte-
nance.  Again, even within the block/control groupings, directed
maintenance appears to yield a higher percent reduction in leak
rate than undirected maintenance.

          The screening value range was also used in selecting
valves for the study.  For directed maintenance, the median percent
reduction stays approximately constant across the screening value
                              490

-------
                          Lt(.L»ni: « -  i OU.-J, I- r S III-.';* LT(.

-p-
vO
I-1
i
t
I ii U f i\ A « A A A AC
I1 ' A A « « A A ,|
L ; A U /\
K ' ' />
t '.)U . A i\
L /
fM ,
f
K
t
1 J /
U -'jd 1
t / ;,
1 ,
1
U - 1 jU <
                juil                lui'u                 luuuP               luuniju

                            MAX SCREENING VALUE, PPMV
Figure B6-4.   Directed maintenance -  percent  reduction
              .  versus screening  values.

-------
 loll
                                           i:  A  = 1 OKbt  U : ? UUSi L1L.
 100  f       ,\
     /
  •j(l
                           A  A
                         C    A
                                                                    A A
                                                                    AA
-lull
- 1 L) 0  t
                                               A A
           (-550)
           --A---
 (-8745)
----A-	*		
       icon

 MAX SCREENING VALUE, PPMV
  (-377)
.--A---
 1 U IH> 0
                          luu
Note:  3 values were out of range
         Figure  B6-5.   Undirected maintenance  - percent  reduction
                          versus  screening  value.

-------
                      TABLE B6-3.    STATISTICAL  SUMMARY  OF  MAINTENANCE  DATA  -  PERCENT  REDUCTION
LO
                  Screening
                                      Block Valves
                                                                       Directed Halnte_nancc
                                                                                Control Valves
Range
(ppojv)

<5K


5K-50K


>50K

C/V
Stream
2 58.8
56.5
58.8
2 76.1
90.7
76.1
3 93.8
97.8
98.0
LL
Stream
5 6:) . 1
90.5
93.1
4 89.8
89.0
90.1
2 -?.b. '<
56. 7
-26. 'i
HI.
Stream
0


0


0





Total*
Block
7 61.8
86.5
87.3
6 85.2
89.1
88.7
5 65.7
92.3
91.7







G/V
Stream
0
1


1


18 64.2 (12.96)
91.0 (82,99)
86.2 (75,97)
45.7
45.7
45.7
77.2
77.2
77.2
1,1.
S t ream
4 39.5
84.9
89.8
1 95.0
95.0
95.0
2 97.2
96.4
97.2
HL
Si ream
0


0


0





Total
Control
4 39.5
84.9
89.8
2 70.4
91.5
70.4
3 90.5
95.0
94.5







All
Valves
11 53. 74
85.6
88.4
8 81.5
89.2
88.7
8 62.5
92.6
93.1
9 66. 8 (12.100)
80.7 (79,99)
91.2 (9.3,98)



CJ.7,100)
(77,99)
(IB, 98)
(65,98)
(69,100)
(-55,96)
(-7.9,100)
(81,100)
(-31,99)







21 64.6 (38,91)
90.7 (83,98)
91.2 (79,9.'))
                  *Numbers in parentheses Indicate an approxlra.ite  95Z confidence  Interval for the average reduction for the three different  estimations.
                                                                                                                                     (ContInuod)
                    Code for
                    Kach Cell
                    In Table
1 = Number of valves maintained
                                                   100 x (leak before - leak after maintenance)
2 = Average of percent reduction where percent reduction -  	   "ITak before maTntenaW

                           £ leak rate before maintenance  Lleak rate aftrr maintenance
3 - Weielir_ percent  reduction D	-TT,	— •	 ,      .   ~ 	-	
      *  '                              }. l<>.ik int e hpfure ma inlcnance

/i a Median percent  reduction

-------
             TABLE B6-3.   Continued
Undirected Maintenance
Screening Block Valves Control Valvc6
Value
Range
(ppmv)










<5K


5K-50K

1
>50K


fi/V
Strcuu '•
6 54.0
52.2
65.2
4 69.8 ;
47.8
82.6
3 75.3
88.4
84.3

I.I.
Stream '
6 42.6
58.9
76.9
4 -64.9
- 9-°
28.2 ;
4 81.3
93.0
90.9

Hi.
Stream '•
4 -26.1
-43.4
7.37
0


o ;


MD
-P-






Total*
Block
16 29.7
48.5
33.1
8 2.4
20.2 '
50.1 '
7 78.7
91.1
85.4





'




(;/;v ;
Stream :
7 -1320
- 717
-58.4
2 54.2
53.8
54.2
8 29.4
81.3
19.3

LL
St ream
5 5.2
91.1
26.56
4 87.8
96.9
95,6
1 90.6
90.6
90.6

IIL :
Stream '•
0


1 ,8.2.1 :
82.1
82.1
.0


31 33.7 (-1.8.69)
68.7 (48,89)
61.1 .(31.85)
Total*
Total All
Coutrol Valves
12 - 769
-50.5
24.1
7 77.4
90.2
82.1
9 36.2
87.0
29.5









28 -312 C-950.100)
33.0 (-39,100)
28.9 (-0.5, 79)
15 37.4 (-28.100)
67.4 (34.100)
82.1 (42,88)
16 54.8 (31,78)
89.6 (81,98)
67.0 (21,92) :









28 298 (-940.100) 59 -124 (-410,100)
81.0 (64,98) /3.9 (69,88)
51.4 (13,85) 53.0 (29,82)

*Nur.ibcrs In parcnthcscc Indicate an approximate 95X confidence Interval for the average percent reduction fnr the three different estimations.
Cudc for 1 2 1 - Number of valves maintained
* 3 2 - Average of percent reduction where percent reductl
4
3 - Weight percent reduction =
100 x (leak before - leak after maintenance)
Leak before maintenance
£leak rate before maintenance - £leak rate after maintenance x ,QQ
l^leak rate before maintenance


4 a Median percent reduction

-------
range.  However, for the undirected maintenance group the median
percent reduction increases dramatically with increasing screen-
ing values.  Within the low screening value range the median
percent reduction is very low, only 28.9 percent.  This may
indicate that undirected maintenance at this screening level
is not effective at all.  For the middle screening value range,
the median percent leak reduction increases to 82.1 percent,
almost as high as the value for directed maintenance (88.7
percent).   However, the median percent leak reduction drops
again for the high screening value range (67.0 percent).  The
effectiveness of the maintenance program appears to be much
more consistent when the directed method is used rather than
the undirected method.

          The differences in percent reduction discussed above
should be considered as trends.  Confidence intervals were cal-
culated for the key values in Table B6-3.  Differences in per-
cent reduction cannot be considered statistically significant
if confidence limits for the estimates overlap.  The statistical
procedures used to calculate the confidence intervals are dis-
cussed in subsection 6.3.

          A graphic representation of the differences between
the effect of maintenance on block and control valves is shown
in the next several figures.  The leak rates before and after
maintenance are plotted for block and control valves in Figures
B6-6 and B6-7.  The percent reduction in leak rate for each
valve is plotted against the original screening value for block
and control valves in Figures B6-8 and B6-9.

          Finally,  Figures B6-10 and B6-11 are histograms of
percent reduction for block and control valves for directed
and undirected maintenance.   The differences described in Table
                              495

-------
   J.'il.n  •)
L
L

K  U.IOO

K
A
T
L
        /
        /
        /
   u.C id  «
        I
        t
        I
        I
        t
        1
        t
   U.uDl  «
        t
        I
        i
        t
        I
        I
        l
   u.udU  »
                U = Undirected
                I = Directed
                                                     II  II
                           U ,UU1
                                              u.Ulu

                                      l_t«(N KAIL ULI-UKL i^AiUl., LB/HR
                                                                                   • - - _ * -
                                                                                    1 . 01' 0
         i  i...is ilium ,i
   Figure B6-6.   Directed and undirected maintenance  .r, leak, after• maintenance'
                  versus leak  before  maintenance - block valves.

-------
L
L
ft
K

K
n
I
£

A
I
T
L
K

M
A
1
N
T
  1 . 0 0 0 *
       t
       I
U. 1UU
U.OlU
   O.HOO
              U = Undirected
              • = Directed
                         II .IIUl
                                           U.U1U

                                   Ll Ar. HAIL ULl-UKL ilAINT.,' LB/HR
   Figure B6-7.   Directed and undirected maintenance - leak after  maintenance
                  versus leak before maintenance  -  control valves.

-------
CO
/ U = Undirected
lbu * 1 = Directed
luU » i. u u ft
H ; u
I t
L /
N 1 
-------
•Ut) *
    t
           U = Undirected
           I = Directed
1UO
"
    '
  1) t
    I
    t
    t
    /
    '
 UK) +
    /
                                                             II   •
                                                            •   •
                                                             U  U  •
                                                           •   UU
                                                                                 III
                                                                                   a
                        (-550)
                                      (-8745)
                        1UU
                                           1UUU

                                    MAX SCREENING VALUE, PPMV

                                     5 OBS hidden
                                                              10UOO
  Figure B6-9.   Directed and  undirected maintenance  - percent reduction
                  versus screening value - control valves.

-------
Undirected Maintenance Control Valves
1
o
~*
)
VI

oooooo o o
t t t t t t * t

i
o

I
o

1
o

1
i

s
o o o o
Percent Seductlc
I
|_!
1
1

o o o o o
n
5-1
q
Frequency
>— • r*o i*j ^> t.
1 I 1 I

Undirected Maintenance Block Valves
!
Y/
o o o o o o •:
~^ i i t t i
i
VI
Figure E6-10.
i
VAWi ^
i

%
//
3000-00000
1 t t I

1
1
0



£J
I

\

\



0 =3 0 0 0
00 O


Percent Reduction
Histograms for percent reduction in
leak rate - undirected maintenance.
              500

-------
    5-
    4-
  §• 3
                   airected Maintenance Control Valves

                    Percent Reduction
    5-
    4-
  3
  
-------
B6-2 can be seen on these histograms.   While no large differences
between valve function are obvious,  the differences between the
percent reduction in emissions for valves undergoing directed
and undirected maintenance can be seen.  The advantages of
directed maintenance are usually apparent.

          The data from this study can be used to assess the
short term effectiveness of maintenance in a leak reduction
program.  In extrapolating the data from the study to a general
population of valves,  it is important to review how the valves
x^ere selected for study.  The selection of valves was not random;
rather, a specific experimental design was attempted.  This
design called for at least four valves in each cell in Table B6-3
(directed versus undirected maintenance was not considered in the
original design).

          In extrapolating the percent reduction estimates from
this study to a general population of valves, the following
factors must be considered:

          •    Will directed or undirected maintenance be
               employed?

          •    For what screening values will maintenance be
               required?

          Note that the type of valve and the type of process
fluid need not be considered since no consistent differences were
found for these factors in this study.

          Suppose directed maintenance for all valves with
screening values greater than 5,000 ppmv is required.  Estimates
of the short term effectiveness of maintenance can be obtained
                            502

-------
by appropriately weighing the percent reduction statistics for
valves in the 5k to 50K and >50K screening ranges which under-
went maintenance.

          From Table B6-3, the appropriate statistics for directed
maintenance are as follows:
  ,,      .                    Percent Reduction in Emissions
  Screening
    range	             Average       Weight        Median

5,000 - 50,000              81.5         89.2          88.7
   > 50,000                 62.5         92.6          93.1

          All three of the percent reduction statistics are
potential estimates for the population percent reduction.  Perhaps
the most useful of these statistics, however, is the weight
percent reduction since it allows an estimation of the total mass
emissions reduction resulting from a valve maintenance program.
Continuing the above example, assume that for a random sample of
valves, 70 percent of all valves that will require maintenance
are in the 5K to 50K screening range and 30 percent of the valves
requiring maintenance are in the >50K screening range.  Using the
weight percent reduction statistics and the percentage of  valves
in each screening group, an estimate of the mass reduction for the
the population would be:

          Estimated effectiveness (total mass reductions)

               = (0.7 X 89.2%) + (0.3 X 92.6%)

               = 90.2%

An appropriate confidence interval for this estimate would
be (72%,  100%).
                             503

-------
6.2       LONG-TERM MAINTENANCE STUDIES

          The effect of maintenance procedures on the long-term
reduction of .emissions is currently being studied for a limited
number of valves.  The staffs of three refineries are monitor-
ing several of those valves that were sampled and maintained as
part of Radian's refinery field study.  Approximately 60 valves
are being screened with TLV Sniffers at intervals of one week to
one month for a total period of 6 months.  The program has not
been completed.  The results will be published in a separate
Technical Note when they are available.

6.3       CONFIDENCE INTERVALS FOR PERCENT REDUCTION

          Approximately 95 percent confidence intervals were
calculated for the three types of estimates of percent reduction
presented in Table B6-3.  The statistical procedures used to
develop these intervals are discussed below.

          The mean percent reduction in leak rate, being an
average of identically distributed random variables, was
assumed to be approximately normally distributed by the central
limit theorem.  Thus, the 95 percent confidence limits are:
          where x is the mean,
          s—  is the standard error of x, and
           A.
          t   is the critical t-value obtained from a table.

-------
           The  calculation of the confidence  limits  for  the
median percent reduction in leak rate did not require an  assump-
tion regarding the type of distribution.  The method, which is
valid for  all  continuous distributions, is described briefly as
follows.

           Suppose  the  data for which the median has been  calcu-
lated are  ordered  so  that
                     P,  £ P2  < P3 1  ....<. Pm

where P.  is  the  i    value of percent reduction, and m is the
number of values.   Then the  two points whose indices are
                         m+1 .  1.96/ln"
                                   2
are the desired  confidence limits.   Since these two indices  are
actually not  integers,  interpolation between values was per-
formed to achieve  slightly increased accuracy.

          Confidence  limits were also computed for the percent
total reduction  in leak rate,

                           100 CB~A)
                               B

where B is  the  total  leak rate before maintenance, and A  is  the
total leak  rate after maintenance.

          'I'll*- c- .» j I I c-::;:: i i ij 1  I ill  I tie- V.-tl i.;l!Ji t* I'll ;l I -1 I  I •'•  C-Ul'li  UG
I. l)f ,'tl«,VI-  | r; ||li|  1'UiiWII  >;»..-||-| 1%' hill  l/.-lfl l_if_i ;l [ i [i f < i :'.;j III ^ (' p> | MFJIIK  ?
second-order Taylor's series  expansion, as is discussed by
Mood, et al. -1
                             505

-------
          The type of distribution of this ratio is unknown.
                             ,\
It was felt, however, that ±2a confidence limits provide a
reasonable indication of the uncertainty.  If the ratio were
normally distributed, these would be 95 percent confidence
limits.

6.4       REFERENCES

1.  Mood, et al.  Introduction 'to the Theory of Statistics,
    Third Edition, 1974, p. 180-181.
                              506

-------
                          SECTION 7
                  GENERAL SURVEY INFORMATION
          There are many factors in a refinery which might
contribute directly to the fugitive emission load or indirectly
affect the overall emission level.  However, they do not lend
themselves to direct sampling.  Among these factors are mainte-
nance practices, laboratory techniques, unit shutdown proce-
dures, blind changing procedures and blending operations.  In
order to evaluate these items, a general survey form for each
of them was submitted to the refiner.  In this way, the informa-
tion necessary to compare these factors froni one refinery to the
next was obtained.

7.1       MAINTENANCE PRACTICES

          It is widely acknowledged that good preventive
maintenance is one of the best ways to minimize fugitive emis-
sions.  If the effectiveness of maintenance plans in reducing
fugitive emissions can be characterized, a valuable correlation
could be obtained.  This correlation could be used when applying
the results of this study to other refineries.

          Generally speaking,  the refineries used combinations
of in-house and contract maintenance personnel.  The in-house
maintenance people did much of the routine maintenance, and
supplemental contract labor, was used during turnarounds and
larger maintenance projects.
                             507

-------
          None of the refineries sampled during this study were
utilizing an extensive valve maintenance program during the period
when sampling was conducted.  That is,  routine screening of large
numbers of valves for the purpose of preventing or reducing hydro-
carbon emissions was not encountered.

          Some form of preventive maintenance program was in
force at five of the six refineries responding to this survey.
The extent of these programs varied, however, among refineries.
In one refinery an inspection of each unit is performed once a
year.  Piping, furnace tubes, etc., are replaced if it is felt
that they might fail during the following year.  Maintenance
records are not kept for extended periods of time; work orders
are held for one year.  These work orders cover pump repairs
and seal replacement.  Pumps, valves,  flanges, etc., are in-
spected and adjusted/replaced only when a problem is reported.

          At another refinery, however, a preventive maintenance
program is practiced on instrumentation, electric motors and
pumps.  This includes a prescribed maintenance schedule for each
piece of equipment.  The program is supplemented by an equipment
file.  These records are maintained of failures and service life
of various equipment items.  The packing and seals of pumps,
valves, etc. are routinely inspected by operating personnel.
Some minor adjustments may be made when the need is observed.
More extensive work, as well as minor work on critical pieces
of equipment, is done by maintenance personnel after they
receive requirest by the operator.

          In five of the six refineries, equipment files are
kept on pumps and compressors.  Seal failures and packing leaks
are recorded.  However, valve maintenance records were kept at
only one refinery.
                             508

-------
          Maintenance personnel were generally not assigned
permanently to a particular unit in the smaller refineries.
They could be assigned to specific refinery areas which might
include several process units.   Some maintenance people are
assigned to major process units in large refineries.

          Three of the six refineries reported that 17 percent,
18 percent and 20 percent of the operating budget is  devoted to
maintenance.  One reported that 44 percent of its manpower was
devoted to maintenance.  No information on the criteria used to
establish these numbers was available.

          Significant differences in emission rates were not
found amont the refineries.  This would indicate that the
variations in maintenance programs found do not affect the
emissions rates.

7.2       PROCESS UNIT TURNAROUND PROCEDURES

          Most normal maintenance in a refinery can be performed
while running, but some major items require that the  unit be
shut down and opened.  Since maintenance personnel must physi-
cally enter the vessels to work,  the entire unit must be purged
of all hydrocarbons and tested to insure that it is "gas free".
This large scale overhaul of a processing unit is called a
"turnaround".   A survey was made to determine the frequency of
turnarounds on various process units as well as the disposition
of the purged hydrocarbons.

          The following purging procedure is typical  of industry
practice.   The unit is shut down and process gases are vented to
a vapor recovery system,  if available,  or to the flare.   Then
steam is charged to the unit to strip out the remaining hydro-
carbons.  Most of this steam is vented to a closed blowdown
                              509

-------
system which will remove condensed water and route the gases  to
the flare.  A few "high-point" vents are opened to the atmos-
phere during the latter stages of steaming out, but it is  felt
that there is little significant hydrocarbon evolution by  that
time.  Then the steam flow is stopped and the unit is cooled,
thus condensing the steam.  The condensate is drained off.
Atmospheric vents must be open at this stage to prevent  the
formation of a destructive vacuum.  Then the vessel manways  are
opened and the interiors are gas tested.  This procedure is
thorough and effective, and its overall impact on fugitive
emissions is negligible, especially in light of the infrequent
nature of its occurrence.

          The frequency of shutdowns for various units at  one
refinery is pres.ented below.  These frequencies are typical  of
the refining industry.

               TABLE B7-1.  SHUTDOWN FREQUENCY
                         Times Down in          Scheduled Period
      Unit               Last 12 Months         Between Turnarounds
Crude Unit
Crude Unit
Catalytic Cracker
Fuel Reformer
Naphtha HDS
Alkylat iun
Aronatics Reformer
Aromatics Extraction
1
1
1
0
0
1
2
1
1 year
1 year
1 year
1 year
3 years
1 year
1 year
3 years
Only the Aromatics Reformer had  exceeded  its  scheduled down times
with one unscheduled shutdown  for  catalyst  regneration.
                              510

-------
7.3       BLIND CHANGING

          A blind changing survey was included in this study
largely because of the results of the Los Angeles County study.
It was initially believed that the. practice of routinely changing
pipeline blinds is unusual.  This belief has been substantiated
in Refineries "A" through "I".  Only when handling very expensive
and exotic materials, such as some lube oil stocks, would the use
of blinds be warranted as a means of controlling direction of
flow to prevent any cross-contamination.  The refineries reported
that they do not routinely change a significant number of blinds.
Most blind changing takes place during the start-up or shutdown
of a unit, and at these times, the unit has generally been purged
of hydrocarbons.  The refineries were unable to supply any detailed
information on the times, the hydrocarbon properties, or amounts
spilled during the limited amount of blind changing they did.

7.4       SAMPLING PROCEDURES

          Quality control sampling in a modern refinery can
potentially add significantly to the overall fugitive emissions.
It is very difficult to quantify the emissions from sampling
because of their irregular and transient nature.  General surveys
were made of sampling, flushing and sample waste disposal proce-
dures.  It was hoped that this information could be correlated
into a sampling emission factor.

          At one large refinery, laboratory personnel were observed
while drawing routine liquid samples in the field.  Line flushings
were routed to a covered oily water drain system with a maximum
of 18 inches free fall and minimum exposed retention time (i.e.,
less than 2 minutes).  Readings were taken with the J. W. Bacharach
"TLV Sniffer" at the drain entrance immediately before and after
sampling.  No significant difference in readings was discernible,
                             511

-------
and the absolute parts per million readings were below the
selected sampling limit of 200 ppm.  Thus, it was concluded that
the flushing of liquid samples did not significantly contribute
to the fugitive emission load at this refinery.

          A common control test for light hydrocarbon fraction-
ators, the reflux end-point, or "boil-away end-point", may cause
significant emissions.  In this test, 100 milliliters of column
reflux are collected in a graduated vessel with a conical
bottom.  Since the reflux of these "stabilizer" towers is
primarily butane and lighter hydrocarbons, the sample will begin
to evaporate at ambient conditions.  The vessel is then fitted
with a two-hole stopper, one side  of which held a thermometer.
The sample is allowed to boil away, and the temperature noted
when 5 milliliters remain.  This value is the reflux end-point,
or more precisely, the 95 percent  point on the distillation
curve.  At one refinery, it was observed that approximately
400 milliliters were flushed to the atmosphere in order to
obtain a sample representative of  current operations.  A survey
of the operating units revealed that this test was routinely run
33 times per day at one large refinery.  Therefore, 16.5 liters
of light hydrocarbon were lost to  the atmosphere per day.
Assuming that this material may be characterized as butane, this
would represent an emission of 0.87 pounds per hour or 21 pounds
per day.  The number of reflux end-point tests reported by the
refineries varied from 6 to 33 per day.  Thus, the losses from
this test varied from 4 to 21 pounds per day.

          The overall sample load at one large refinery was
approximately 200 samples per day.  Of these, about 40 percent
were gas samples for chromatographic analysis, about 24 percent
were volatile liquids (naphtha or  lighter), and about 36 percent
were nonvolatile liquids.   Sample wastes were emptied into one

-------
of two slop oil collection systems, one for naphtha and one for
heavier materials.

          The six refineries responding to the survey reported
sample loads of 50 to 200 samples per day.

7.5       BLENDING OPERATIONS

          Although blending operations were not considered for
sampling as a refinery process module, they do employ many of
the same pieces of equipment and are therefore subject to fugi-
tive emissions.   The only unique piece of equipment would be the
mechanical tank mixers.   This emission source consists of a low-
pressure seal on a rotating shaft.   The pump emission factors
should not be used as estimates of emissions from this source
for two reasons:  (1) only a few samples were obtained from these
sources and there are no data to suggest that the pump emission
factors would be appropriate, and (2) these seals are often
exposed to vapor rather than liquid, particularly when vertical
mixers are employed.   A portion of the survey included questions
to determine what facilities are allocated to blending at each
refinery.

          One large refinery uses only batch blending.  This is
done in two parallel systems, one for leaded gasolines and one
for unleaded.  These two share no common facilities.  Agitation
in the blending tanks is provided by side-entering mechanical
mixers.  Emissions control on the leaded system is by floating
roof,  while the unleaded system uses a vapor recovery system.
This is a conventional compression-absorption-stripping system
using light cycle gas oil from the catalytic cracker as the
absorption medium.  There are nine tanks involved in this
operation,  six in the leaded system and three in the unleaded.
                             513

-------
          Another large refinery blends all gasoline using in-
line blending.   Both pump-around loops and mechanical mixers are
used to agitate tanks.  There are eight tanks used in blending
service, and they are all equipped with floating roofs.   Two
independent, parallel blending systems are employed.

          A small refinery reported using batch blending.   They
employ only two tanks in blending service.  Both are equipped
with vapor recovery systems, and pump-around loops are used to
agitate these tanks.

          Another refiner employs six tanks in their single
train, batch blending system.  All six tanks are equipped with
floating roofs.
                             514

-------
7.6
CONVERSION FACTORS
          To Convert j'rom
          Btu
          bbl
          gal
          ton
          Ibs
          cm
          ft3
          psi
          g/gal
          Btu/bbl
          kWh/bbl
          Ib/bbl
          lb/106 Btu
          grain/ft3
          gal/MMcf
          gpm
          lb/1000 gal
To
kcal
a
a
kg
kg
in
m3
kg/cm2
g/*
kcal/£
kWh/£
kg/A
g/Mcal
g/m3
£/(hm)3
m3/hr
mg/£
Multiply By
0.252
159.0
3.785
907.2
0.454
0.394
0.0283
14.223
0.264
0.0016
0.0063
0.0285
18.0
2.2.9
133.7
0.227
119.8
                              515

-------
                                 TECHNICAL REPORT DATA
                             st: rcsd /niisiic lions or she reverse it/ore completi
  . RFPOST NO.
  EPA-600/2-80-075c
                                                      13. RECIPIENT'S AC
 4, T:7LE AND SUSTITLc
  Assessment of Atmospheric Emissions from
  Petroleum Refining: Volume 3. Appendix B
             5. REPORT DATE
            April 1980
 7. ALi
                                                      8. PERFORMING ORGANIZATION REPORT NO.
  E.G. Wetherold, L. P. Provost, and C.D. Smith
 •3. PERFORMING ORGANIZATION NAME AND ADDRESS
  Radian Corporation
  P.O. Box 9948
  Austin. Texas  78766
 12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC  27711
             5. PERFORMING ORGANIZATION CODE
             10. PROGRAM ELEMENT NO.
             1AB604      	
             iTcONTRACf/GHIANT NO.
             68-02-2147, Exhibit B
             13. TYPE OF REPOH~ AND PERIOD COVERED
             Final; 3/76-6/79	
             14. SPONSORING AGENCY CODE
              EPA/600/13
  . SUPPLEMENTARY NOTFS
 919/541-2547.
                    IERL-RTP project officer is Bruce A. Tichenor,  Mail Drop 62,
 16. ABSTRACT
          The report gives results.of-a 3-year program to assess the: environmental.
  impact of petroleum refining atmospheric emissions. This volume contains a de-
  tailed compilation of the data and a summary of the results obtained from measure-
  ments taken at 13 refineries throughout the U.S.  The sampled sources included
  valves, flanges, pump and compressor seals, relief valves,  drains, cooling towers,
  oil/water separators, dissolved air flotation units, and various process stacks.<^—~
  Nonmethane hydrocarbon emission factors for the various fugitive emission sources
  arc presented. Nomographs illustrating the  relationship between screening (monitor-
  ing) values  and emission rates are included.  Correlations of leak rates with various
  process and equipment parameters are graphically displayed.  The frequency and
  distribution of emission sources in refineries are estimated.  The effect of simple
  valve maintenance on  valve leak rates  is  described.  Many organic species present
  in liquid process streams and vapor emissions were identified and quantified.  These
  species and their concentrations in the various streams are listed.
17.
                             KEY WORDS AND DOCUMENT ANALYSIS
 Pollution           Maintenance
 Petroleum Refining Organic Compounds
 Assessments
 Sampling
I Analyzing
 Hydrocarbons
                                          b.lDENTIFIt.HS/UPEN cNU = D TF RMS
Pollution Control
Stationary Sources
Nonmethane Hydro-
 carbons
                        c.  COSATI FieUl/Group
                         13B
                         13H
                         14B
                        07C
15E
  D I S f H i " \j r I <_• \ STATEMENT
 Release to Public
i?A Form ZZ21-1 ('i•^^^
                                          19 SECURITY CLA5S (This Report)
                                          Unclassified
                                                                  21. NO. OF
20. SECURITY CLASS (Tins page)
Unclassified
                                                                  22. PRiCE

-------