EPA/540/5-90/002
January 1990
VOLUME II
TECHNOLOGY EVALUATION REPORT
CF SYSTEMS ORGANICS EXTRACTION SYSTEM
NEW BEDFORD, MASSACHUSETTS
RISK REDUCTION ENGINEERING LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
FOREWORD
The Superfund Innovative Technology Evaluation (SITE) program was
authorized in the 1986 Superfund amendments. The program is a joint effort
between EPA's Office of Research and Development and Office of Solid Waste and
Emergency Response. The purpose of the program is to assist the development
of hazardous waste treatment technologies necessary to implement new cleanup
standards that require greater reliance on permanent remedies. This is
accomplished through technology demonstrations that are designed to provide
engineering and cost data on selected technologies.
This project consists of an analysis of CF Systems' proprietary organics
extraction process. The technology demonstration took place at the New
Bedford Harbor Superfund site, where harbor sediments are contaminated with
polychlorinated biphenyls and other toxics. The demonstration effort was
directed at obtaining information on the performance and cost of the process
for use in assessments at other sites. Documentation will consist of two
reports. This Technology Evaluation Report describes the field activities and
laboratory results. An Applications Analysis will follow and provide an
interpretation of the data and conclusions on the results and potential
applicability of the technology.
Additional copies of this report may be obtained at no charge from EPA's
Center for Environmental Research Information, 26 West Martin Luther King
Drive, Cincinnati, Ohio 45268, using the EPA document number found on the
front cover of the report. Once this supply is exhausted, copies can be
purchased from the National Technical Information Service, Ravensworth Bldg.,
Springfield, VA 22161, (703) 487-4600. Reference copies will be available at
EPA libraries in their Hazardous Waste Collection. You can also call the SITE
Clearinghouse hotline at 1-800-424-9346 or 382-3000 in Washington, DC to
inquire about the availability of other reports.
E. Timothy Oppelt, Director
Risk Reduction Engineering Laboratory
VOLUME II CONTENTS^
Page
i i
Foreword
Abstract "; iv
Acknowledgements v
Abbreviations and Svmbols. . . . . • • .-_i_i_ •. : _• _:.•._: ' '-^—i——' ' L—
C E Environmental-:" E."c. Jordan "Corp. Analysis Report •;;;;;;; 73
Radian Corporation Analysis Report ....••••• . 146
Operating Log Data
1 1
-------
ABSTRACT
The SITE Program demonstration of CF Systems' organics extraction
technology was conducted to obtain specific operating and cost information
that could be used in evaluating the potential applicability of the technology
to Superfund sites. The demonstration was conducted concurrently with pilot
dredging studies managed by the U.S. Army Corps of Engineers at the New
Bedford Harbor Superfund site in Massachusetts. Contaminated sediments were
treated by CF Systems' Pit Cleanup Unit (PCU) that used liquefied propane/
butane as the extraction solvent. The PCU was a trailer-mounted system with a
design capacity of 1.5 gpm (20 bbl/day). CF Systems claimed that the PCU
would extract organics from contaminated soils based on solubility of organics
in liquefied propane/butane.
The objectives included an evaluation of (1) the unit's performance, (2)
system operating conditions, (3) health and safety considerations, and (4)
equipment and system materials handling problems. Extensive sampling and
analyses were performed showing that polychlorinated biphenyl (PCB) extraction
efficiencies of 90 percent were achieved for sediments containing PCBs ranging
from 350 to 2,575 ppm. In Test 2, sediments containing 350 ppm were reduced
to 40 ppm after 10 passes, or recycles, through the PCU. In Test 3, a 288 ppm
feed was reduced to 82 ppm after 3 passes. In Test 4, a 2,575 ppm feed was
reduced to 200 ppm after 6 passes. Some operating problems occurred, such as
the intermittant retention of solids in system hardware and foaming in the
treated sediment collection tanks. These problems did not affect extraction
efficiency but could affect operation of a full-scale unit. Corrective
measures will be addressed by the developer and EPA. A mass balance
established over the entire demonstration showed excellent accountability for
96 percent of the total mass. Operation of the unit did not present any
threats to the health and safety of operators or the local community.
iii
-------
ACKNOWLEDGMENTS
This report was prepared under the direction and coordination of Richard
Valentinetti, EPA SITE Program Manager in the Risk Reduction Engineering
Laboratory, Cincinnati, Ohio. Contributors and reviewers for this report were
Frank Ciavattieri of EPA Region I, Remedial Project Manager for the New
Bedford Harbor Superfund site; Jim Cummings and Linda Galer from the Office of
Solid Waste and Emergency Response; Paul Desrosiers, Diana Guzman, Paul de
Percin, and Laurel Staley from the Office of Research and Development;
Christopher Shallice and Thomas Cody, Jr. from CF Systems Corporation..
Logistics at the site was coordinated by Mark Otis, U.S. Army Corps of
Engineers; and Alan Fowler and Siegfried Stockinger of EBASCO Services, Inc.
This report was prepared for EPA's Superfund Innovative Technology
Evaluation (SITE) Program by Science Applications International Corporation
(SAIC), McLean, VA for the U.S. Environmental Protection Agency under Contract
No. 68-03-3485, by Don Davidson, Richard Hergenroeder, Kim Gotwals, Jorge
McPherson and Fernando Padilla. Laboratory analyses were conducted by E.C.
Jordan, Inc., Portland, ME, and Radian Corporation, Austin, TX.
-------
ABBREVIATIONS AND SYMBOLS
amps amperes
ASTM American Society for Testing and Materials
bbl/day barrels per day
BNAs base/neutral and acid extractable compounds
Cd cadmium
COE U.S. Army Corps of Engineers
cP centipoise
Cr chromium
CR column reboiler
Cu copper
CWA Clean Water Act
dPa.s decapascal.seconds
ECD electron capture detector
EPA Environmental Protection Agency
EPT extract product tank
EP Tox Extraction Procedure Toxicity Test - leach test
F Fahrenheit
FK feed kettle
g grams
GC gas chromotography
gpd gallons per day
gpm gallons per minute
kw-hr kilowatt hours
Ibs pounds
Ib/gal pounds per gallon
Ib/min pounds per minute
max maximum
MBAS methylene blue active substances
mg milligrams
mg/kg milligrams per kilogram
min minimum
ms mass spectrometry
MSA method of standard additions
MS/MSD matrix spike/matrix spike duplicate
-------
ND not detected
NIOSH National Institute of Occupational Safety and Health
NR not reported
ORD Office of Research and Development
OSWER Office of Solid Waste and Emergency Response
OVA organic vapor analyzer
oz ounces
PAHs polyaromatic hydrocarbons
Pb lead
PCBs polychlorinated biphenyls
PCU Pit Cleanup Unit
ppm parts per million
psig pounds per square inch gauge
QA quality assurance
QC quality control
RCRA Resource Conservation and Recovery Act of 1976
RPD relative percent difference
RREL Risk Reduction Engineering Laboratory
RSD relative standard deviation
SARA Superfund Amendments and Reauthorization Act of 1986
SBT still bottoms tank
SITE Superfund Innovative Technology Evaluation Program
SRC solvent recovery column
TDS total dissolved solids
TS total solids
TSS total suspended solids
VAC volts, alternating current
VOAs volatile organic analytes
Zn zinc
< less than
vi
-------
SUPERFUND INNOVATIVE TECHNOLOGY
EVALUATION (SITE) PROGRAM
CF SYSTEMS CORPORATION PROCESS EVALUATION
Final Report
Prepared for:
SAIC
(Science Applications International Corporation)
by:
C-E Environmental: E.G. Jordan Co.
MAY 1989
EPA Contract No. 68-03-3485, No. 0-9
SAIC Project No. 1-830-07-781-00
5.89.26
0001.0.0
-------
Section
TABLE OF CONTENTS
Title
Page No.
1.0 BACKGROUND :: 4 ;
1.1 PROJECT BACKGROUND |. 4 I
1.2 DEVELOPER TECHNOLOGY AND CLAIMS ''4 :
1.3 LABORATORY EVALUATION '4
1.4 PREPARATION OF QUALITY ASSURANCE PLAN j 4 \
1.5 CRITICAL OBJECTIVES I 6
1.6 OTHER OBJECTIVES j 6 - '
2.0 SAMPLING ' 6
2.1 SAMPLING PERSONNEL i 6
2.2 SAMPLE RECEIPT AND CUSTODY ' 6
2.3 SAMPLE IDENTIFICATION KEY ' 6 ;
3.0 ANALYTICAL METHODS ,7 ,
/ i
3.1 PCB ANALYSIS < 7 ;
3.1.1 Spittle Screen (Gas Chromatography) ;• 7
3.1.2 USEPA Method 8080 (Gas Chromatography) . . . . j 7
3.1.3 USEPA 680 (GC/MS) 7 >
3.2 OTHER ANALYSES i 8 ,
4.0 DISCUSSION OF ANALYSIS BY PHASE j 8 ;
4. 1 BENCH SCALE TEST 1 : 8 '
4.2 BENCH SCALE TEST 2 \ 9
4.3 BENCH SCALE TEST 3 9
4.4 DRUM ANALYSES (PRE-DEMONSTRATION) ; 9 ;
4.5 DEMONSTRATION TEST 1 ' 10 '
4.6 DEMONSTRATION TEST 2 ! 10 ':
4.7 DEMONSTRATION STUDY 3 ' 11 i
4.8 DEMONSTRATION STUDY 4 • 11 !
4.9 DEMONSTRATION STUDY 5 \ 12 •
4.10 SITE CHARACTERIZATION ; 12 '
4.11 CLEAN-UP PHASE [ 12 '
I '
REFERENCES ; i
APPENDICES I i
APPENDIX A - METHODS OF ANALYSIS
APPENDIX B - POLYCHLORINATED BIPHENYL (PCB) RESULTS BY PHASE
APPENDIX C - TOTAL RESIDUE PCB, OIL AND GREASE, pH, CYANIDE, TOTAL SUSPENDED
SOLIDS, TOTAL DISSOLVED SOLIDS AND METHYLENE BLUE ACTIVE
SUBSTANCES RESULTS
5.39.26
0002.0.0
-------
jSection
TABLE OF CONTENTS
(continued)
Title
'APPENDIX D - ELEMENTAL RESULTS OF ANALYSIS
SEMIVOLATILE ORGANICS RESULTS OF ANALYSIS
PARTICLE SIZE ORGANICS RESULTS OF ANALYSIS
APPENDIX E - RAW DATA
PCB RAW DATA
VOLATILE ORGANICS RAW DATA
SEMIVOLATILE RAW DATA
ELEMENTS RAW DATA
WET CHEMISTRY RAW DATA
TECHNICAL SYSTEMS REVIEW
VISUAL SAMPLE DESCRIPTIONS
* APPENDIX F
*'APPENDIX G
*Appendices E, F, and G are not included in Volume II of the Technical
Evaluation Report because of their size.
5.39.26
0003.0.0
3
-------
1.0 BACKGROUND
1.1 Project Background
The U.S. Environmental Protection Agency has established a program to acceler-
ate the development of new and innovative technologies to address hazardous
waste problems. This program is known as the Super fund Innovative Technology
Evaluation (SITE) Program. The site selected for demonstration of this tech-
nology was New Bedford Harbor in New Bedford, Massachusetts. This site is
ranked Number 80 on the National Priority List and covers over 1,800 acres.
The site is contaminated primarily with polychlorinated biphenyls (PCBs) and
several heavy metals (copper, chromium, lead, and zinc). PCB contamination
ranges from a few ppm to over 30,000 ppra. A flow chart listing the key parties
involved in this project and their responsibilities is provided in Figure 1-1.
1.2 Developer Technology and Claims
Technology developed by the CF Systems Corporation of Walthara, MA uses propane,
liquefied under pressure, to selectively extract complex organics from slurried
sediments or sludges. The developer claims that the treatment unit can extract
over 90 percent of the organics from the waste matrix.
1.3 Laboratory Evaluation
All laboratories involved with SITE projects are subject to pre-program as well
as a Technical Systems Review (TSR) during the course of specific projects.
This includes providing results of the Water Pollution Studies (WP) adminis-
tered by USEPA's Environmental Monitoring Support Laboratory (EMSL) in Cincin-
nati to the SAIC Quality Assurance Officer.
The C-E Environmental Laboratory was initially evaluated by an audit team of
SAIC and RTI personnel prior to actual project assignment (RTI served as RREL
subcontractor). The general laboratory review determined that project specific
QA/QC requirements could be implemented. A copy of the draft review summary
from RTI is found in Appendix F. A technical Systems Review (TSR) was con-
ducted after project inception by S-Cubed personnel for RREL. As identified in
the project specific QAPP, Aroclor and polychlorinated biphenyls (PCBs) were
the only critical measurements for the project. The TSR determined several
critical concerns existed. However, those specific critical analytical and
project QA/QC requirements identified initially were corrected as noted in the
follow up TSR from S-Cubed. The corrections resulted in a satisfactory rating.
Copies of the TSR reports and correspondence appear in Appendix F.
1.4 Preparation of Quality Assurance Plan
As part of the overall Quality Assurance Program Plan (QAPP) a project specific
analytical QAPP was developed. This project-specific QAPP was developed in
accordance with the requirements for Category II RREL projects and incorporated
into the overall QAPP. Analytical data generated for the demonstration project
were to be used to quantify CF Systems' claims of PCB removal. Accordingly,
the only critical parameter identified in the analytical QAPP, Method 8080 from
SW-846, Test Methods for Evaluating Solid Waste, 3rd edition was the analytical
5.59.26
OCO~.0.0 4
-------
-------
S-Cubed
I. Overall project QA/QC
2. Laboratory audits
EMSI
I. Perform limited elemental
analysis
Headquarters EPA
I. Overall management of
New Bedford SITE project
Region I EPA
I. Overall management of remedial
action for New Bedford Harbor
Array Corp of Engineers
1. Prepare site
2. Provide sediments for analysis
SAIC
I. Prepare test plan
2. Conduct sampling
3. Oversee site logistics
4. Provide test oversight
5. Dispose of all treatment residues
6. Prepare final project report
E.G. Jordan
I. Perform sample analysis
2. Contribute to QA project plan
Radian
1. Perform Method 680 analyses
Figure 1-1. Key Parties Involved in (he New Bedford Harbor SITE Demonstration.
-------
protocol chosen to evaluate the developer's claims. Other analyses were
intended for process control and/or ultimate disposal of project residue and
were not critical measurements for the project.
1.5 Critical Objectives
The primary objective is to test CF Systems treatment claim for PCB removal
from New Bedford Harbor sediments. The secondary objective is to determine the
chemical composition of treatment system residues.
1.6 Other Objectives
Other parameters of interest are present at significant concentration in New
Bedford Harbor sediments. These parameters include polyaromatic hydrocarbons
(PAHs), cadmium, chromium, copper, zinc and lead. Analysis of New Bedford
Harbor sediments for these parameters is an additional objective of this study.
2.0 SAMPLING
2.1 Sampling Personnel
CF Systems conducted the sampling for Bench Tests 1, 2 and 3. SAIC conducted
the sampling for the remainder of the project. Samples were delivered to
E.G. Jordan or shipped via overnight courier.
2.2 Sample Receipt and Custody
Samples were received by E.G. Jordan personnel in accordance with the sample
receipt and custody procedures as outlined in the Quality Assurance Project
Plan, Revision No. 2, Section 4.3.4, Reference No. 1.
2.3 Sample Identification Key
Sample name abbreviations were adopted by SAIC and these abbreviations were
employed throughout the entire project (sampling through reporting). These
abbreviated sample names can be traced, along with their corresponding E.C
Jordan Laboratory Numbers, back to the original chain-of-custody. The abbrevi-
ations described here do not apply to the Bench Scale Phases which were sampled
by C.F System's personnel. Descriptions of the sample points can be found in
the Quality Assurance Project Plan.
Abbreviation Full Name
FK Feed Kettle
RPT Raffinate Product Tank
EPT Extract Product Tank
S-l Basket Strainer
F-l Multi-Mode Filter
F-2 Cartridge Filter
CC Carbon Canister
R Replicate
LOG Location
6
-------
Sediment drum samples were given identifications by SAIC. Three replicate
samples were taken from each drum and can be identified by the last digit in
the sample name.
3.0 ANALYTICAL METHODS
3.1 PCB Analysis
Three different methods of PCB analysis of sediments were utilized.
o Spittler Method (3)(4)
o L'SEPA Method 3550/8080 (2)
o USEPA Method 680 (5)
3.1.1 Spittler Screen (Gas Chromatography). The Spittler Screen was utilized
to identify the approximate level of PCBs in a sample to aid analysts in
choosing dilution factors and provide a rapid analytical turnaround for large
volumes of samples to optimize those subject to further analyses. This screen-
ing procedure was not used for any critical measurements. The advantage to the
screen method is that the linear calibration range is expanded to 0-500 mg/kg.
This reduces the number of dilutions necessary to attain the dynamic range of
the GC. Less sample (2g) is required for extraction, and results are generally
possible within 24 to 48 hours of sample submittal. The results of the screen
method will be utilized to determine the exact range. This in turn will reduce
the number of dilutions and potential error.
3.1.2 USEPA Method 8080 (Gas Chromatography). The critical analytical method
is the measurement of PCBs. Analytical data generated by this demonstration
project will be utilized to quantify the developer's claims of PCB removal by
the technology. Generation of valid, defensible data is critical for evalua-
tion of Comprehensive Environmental Response Compensation and Liability
Act/Superfund Amendments Reauthorization Act (CERCLA/SARA) technologies,
mandating the use of standard, approved analytical methods. Accordingly, USEPA
method 8080 was used throughout the demonstration project for PCB. This method
is capable of quantifying PCB to about 160 yg/Kg in sediments and will ade-
quately quantify the level of PCB remaining in the treated soils.
3.1.3 USEPA Method 680 (GC/HS). Method 8080 utilizes identification and
quantitation by the recognition of arochlors. Aroclors are standard mixes of
individual PCBs or congeners. Several manufacturers have produced commercial
PCBs; however, Aroclor, a Monsanto tradename, is the type found in New Bedford
Harbor sediments. Method 680 employes a gas chromatograph/mass spectrometer to
determine individual congeners. This analysis can be accomplished whether the
PCBs are in the form of Aroclor mixes or as individual congeners.
If fractionation or selective extraction of Aroclors had occurred to the
extent that quantitative analysis by method 3080 was deemed inadequate,
5.39.26
0007.0.0
-------
method 680 was to be employed. After discussion and several split sample
analyses between Radian and E.G. Jordan, it was determined that fractionation
and selective extraction was not significant. This decision was made by
James R. Payne, Ph.D. (SITE Program QA Manager). This decision was documented
in the 9 November 1988 letter from Dr. Payne to Dr. Davidson (SAIC).
3.2 Other Analyses
A table listing all other analyses and the methods used can be found in
Appendix A.
4.0 DISCUSSION OF ANALYSIS BY PHASE
A tabulated summary of PCB results of analysis by project phase can be found in
Appendix B. A summary of PCB, total solids, oil and grease, pH, total dis-
solved solids, total suspended solids, MBAS, and cyanide results of analysis
can be found in Appendix C. Elemental, volatile organics, semivolatile organ-
ics and particle size results of analyses can be found in Appendix D. All raw
data can be found in Appendix E. Bench Scale Tests 1, 2 and 3 were conducted
by CF Systems as a pre-demonstration test of similar materials on a smaller
bench scale magnitude. The drum analyses were conducted to characterize the
New Bedford harbor sediment which was the starting material for all of the
following demonstration tests. Demonstration Tests 1 through 5 were actual
tests of CF System's full scale unit at New Bedford Harbor utilizing the
sediments from the previous drum study. Site characterization was accomplished
by sampling soil samples at the New Bedford Harbor demonstration site before
and after the demonstration tests. The Clean-up Phase consisted of washing CF
Systems unit with toluene. This toluene was later tested for PCBs.
4.1 Bench Scale Test 1
A total of 24 samples were received June 3 and 4, 1988. Sample matrices
included both sediment and oil, and the analyses consisted of PCBs only.
During Bench Scale I, limitations to method SW846 8080 were discovered. The
amount of sample collected for extraction and analysis was inadequate for both
the soil and oil extract fractions. The levels of PCBs found also presented
some problems due to the large dilutions required to bring the analysis into
the working calibration ranges for method 8080. The dilutions caused two
problems. The first problem was the loss of Aroclor 1254 information caused
by performing sufficient dilutions to quantitate Aroclor 1242. The second
problem was the higher uncertainty associated with each analytical result due
to the additive error of serial diluting. The oil extracts were received in
40 ml VOA vials as thin films of residue dried on the sides of the vials. To
recover the extract required that the vials be preweighed before adding hexane.
The vials were vortexed with a known amount of hexane and then decanted for
acid washing. The VOA vials were then air dried and reweighed. The amount of
oil was then calculated by difference and in some cases was in the low milli-
gram range. When these low milligram masses are multiplied through the serial
dilution, the margin of error increases for the final analytical result.
-------
All of the samples run during Bench Scale I contained Aroclor 1242 with a
smaller percentage of Aroclor 1254. There was also some question as to the
presence of Aroclor 1248, which elutes between the two other Aroclors. A
megabore DB 608 column was used to enhance information pertaining to pattern
recognition of the Aroclors present in the sample. This information was
needed to determine if selective removal of PCB congeners was taking place.
After completion of Bench Scale I, a meeting between representatives from SAIC,
CF Systems, and E.G. Jordan was held to discuss the limitations of the method,
sample amounts, and turnaround required for the Bench Scale analysis. The
Spittler PCB Screening method was accepted as the method of choice for the
second and third bench scale tests which were to follow. Method 8080 was
chosen for the following Demonstration Tests (critical objective).
4.2 Bench Scale Test 2
A total of 15 samples were received for Bench Test 2. The sample receipt
schedule is as follows:
Number
of Samples Date Received
2 7 July 1988
2 15 July 1988
1 18 July 1988
1 19 July 1988
2 20 July 1988
1 21 July 1988
2 22 July 1988
4 11 August 1988
All sample matrices were sediments. Analyses performed on all or a portion of
the samples were PCBs, oil and grease, and total solids.
4.3 Bench Scale Test 3
A total of 12 samples were received for Bench Test 3. Four were received on
4 September 1988 and eight were received on 13 September 1988. These samples
were analyzed for PCBs, total solids, and on a portion of the samples, oil and
grease. The sample matrices were sediment and oil.
4.4 Drum Analyses (Pre-demonstration)
New Bedford Harbor sediment, which was the demonstration project starting
material, was collected in drums. Twenty-nine samples were sent to the labora-
tory for analysis. Nine samples were received on 18 August 1988 and the
remaining 20 were received on 23 August 1988. The analyses performed on these
samples were total solids, PCBs, oil and grease, cyanide, EP toxicity metals,
pH, seraivolatile organics and volatile organics. PCB results ranged from
100 ppra dry weight to 58,000 ppm dry weight.
5.89.26
0009.0.0
-------
4.5 Demonstration Test 1
A total of three samples (two sediments and one oil matrix) were received on
7 September 1988. The laboratory was instructed to expect similar total solids
in the Demonstration Study as was in the Bench Study (20 to 70 percent).
E.G. Jordan sample 8251001 (RPT-1) contained 1.6 percent solids. SAIC made the
decision to treat the sample as a solid by adding sodium sulfate and extracting
using method 30502. Analyses included in all or a portion of the samples were
PCBs (method 8080) and total solids.
Analytical work on Demonstration 1 had just begun when an audit was held at
E.G. Jordan by L'SEPA and S-Cubed see Appendix F. Some problems were identified
by the audit team and work was placed on hold until the areas of concern were
addressed. Several changes were immediately implemented to the laboratory
procedures. Surrogate 2,4,5-6-tetrachloro-meta-xylene (TCMX) was added to
replace di-b-butylchlorendate (DEC) which coeluted with Aroclor 1254. Inde-
pendent check standards were run after each calibration to confirm the validity
of the calibration. Hexane was replaced with iso-octane as the solvent for PCS
standard preparation. Aroclor 1242 was chosen as the spiking compound for
matrix spikes since it was the primary Aroclor in the samples. Since
E.G. Jordan was charged with following method 8080, no acid washes were em-
ployed as a method for sample clean-up. Jim Payne, Ph.D (SAIC) advised
E.G. Jordan, in a letter dated 28 September 1988, to modify method 8080 by the
addition of the acid wash technique. All samples which were extracted to this
point were re-extracted using all the suggestions made by Dr. Payne and the
S-Cubed audit team. Demonstration 1 samples were highly contaminated with
hydrocarbons.
4.6 Demonstration Test 2
Thirty-two samples were received on the following dates:
Number
of Samoles Date Received Matrix
1 9 September 1988 Sediment
2 12 September 1988 Sediment
4 13 September 1988 Sediment/Oii/Water
4 14 September 1988 Sediment
3 15 September 1988 Sediment
6 16 September 1988 Sediment
10 19 September 1988 Sediment/Oil
2 26 September 1988 Gasoline
The analyses performed on these samples were total solids, PCBs, oil and
grease, pH, total suspended solids, total dissolved solids, rnethylene blue
active substances, semivolatile organics and elements. Not all samples were
analyzed for all parameters. Demonstration 2 samples were highly contaminated
with hydrocarbons.
10
-------
4.7 Demonstration Study 3
Twenty-four samples were received as the following schedule indicates:
Number
of Samples Date Received Matrix
6 19 September 1988 Sediment
5 20 September 1988 Sediment
7 21 September 1988 Sediment/Oil
6 26 September 1988 Oil
The analyses performed on these samples were: PCBs, total solids, elements,
oil and grease, and pH. Not all samples were analyzed for all parameters.
Unlike Demonstration 1 and 2, Demonstration 3 samples contained lower levels of
hydrocarbons. PCB chromatograms had significantly reduced levels of hydrocar-
bon baseline shifts.
4.8 Demonstration Study 4
Thirty-four samples were received as indicated in the following schedule:
Number
of Samples Date Received Matrix
7 21 September 1988 Sediment
2 22 September 1988 Sediment
2 23 September 1988 Sediment
10 27 September 1988 Oil/Sediment
5 29 September 1988 Sediment/Oil
5 30 September 1988 Sediment/Oil
2 1 October 1988 Sediment
1 24 October 1988 (Extract from Radian Corp.)
These samples were similar to Demonstration 3 with regards to hydrocarbon
contamination. One sample, E.G. Jordan no. 8265064, had analysis placed on
hold by SAIC. The analysis for this sample was cancelled at a later date.
Three samples, E.G. Jordan no. 8273004, 8273005, 8273003, were sent to Radian
Corporation for analysis. Final results of analysis were never transmitted to
E.G. Jordan Co. by Radian Corporation.
Demonstration 4 samples were analyzed for PCBs, total solids, oil and grease,
pH, elements, and semivolatile organics. Not all samples were analyzed for all
parameters.
5.89.26
00 11. 0.0
-------
4.9 Demonstration Study 5
Three oil matrix samples were received on 1 October 1988. These samples were
analyzed for PCBs only. This was the last of the demonstration studies. No
PCBs were found in these samples (detection limit 200 ppm wet weight).
4.10 Site Characterization
Twenty-one samples were received for this study. Soil samples were taken at
varoius locations on the work site adjacent to New Bedford Harbor. Ten samples
were taken before Demonstration Study 1 to determine initial site contamina-
tion. These samples were received on 12 August 1988. Eleven soil samples were
taken after Demonstration Study 5 to determine if additional site contamina-
tion occurred. These samples were receibed on 7 October 1988. Total solids
and PCBs were the only analyses performed on these samples.
4. 11 Clean-up Phase
After Demonstration Study 5, the CF System's demonstration equipment was rinsed
with toluene. Sixteen samples of the toluene rinsate were received on
5 October 1988. The samples were analyzed for PCBs only.
r ~
\
5 .59 .26
0012.C.O
-------
REFERENCES
1. SAIC; Liquified Gas Extraction of Polychlorinated Biphenyls Quality
Assurance Project Plan, 26 August 1988.
2. USEPA-SW-846; Test Methods for Evaluating Solid Waste, Third Edition,
November 1986.
3. Fowler, Bruce A. and Bennett, Joseph T.; Screening for Characterization of
PCB-containing Soils and Sediments, Proceedings of the National
Conference on Hazardous Wastes and Hazardous Materials, March 1987.
4. Spittler, T.M.; Field Measurement of Polychlorinated Biphenyls in Soil and
Sediment Using a Portable Gas Chromatograph, Environmental Sampling
for Hazardous Wastes, American Chemical Society, 1984.
5. USEPA; Determination of Pesticides and PCBs in Water and Soil/Sediment by
Gas Chroraatography/Mass Spectrometry, November 1985.
6. USEPA-600/4-79-020; Methods for Chemical Analysis of Water and Wastes,
Revised March 1983.
7. ASTM; Standard Method for Sieve Analysis of Fine and Coarse Aggregates,
December 1984.
5.39.26
13
-------
APPENDIX A
Parameter
Matrix
Method
PCBs
PCBs
PCBs
Elements
Elements
EP Toxicity
(Elements)
Volatile Organics
Semivolatile Organics
Semivolatile Organics
Cyanide
Oil and Grease
pH
Total Solids
Particle Size
Non-filterable
Residue
Filterable Residue
Methylene Blue
Substances
Sediment
Water
Oil
Sediment
Oil
Soils/Sediments
Sediment
Sediment
Oil
Sediment
Sediment
Sediment
Sediment
Sediment
Water
Water
Water
35502/80802/Spittler1)fc
(see Section 3.1)
35102/80802
35802/80802
30502/60102
30402/=> Cd-"7130, Cu-»7210, Zn-"7950
Cr-7190, Pb-7420
13102/30102/60102->Ba, Cd, Cr, Se,
Ag, Pb (only); 7060-As, 7470-"Hg,
7421-Pb, 7740-"Se
82402
82702
Dissolution/82702
CLP-M 335.2 (CLP-CIP SOW No. 787)
90712 (SW846 Gravimetric, Solvent
Extraction)
90452 (SW846 Electrometric)
13102
ASTM-C-13684a7
160.2s Gravimetric 103-1050C
160. I6 Gravimetric 180oC
425. I6 Colorimetric, Solvent
Extraction
5.89.26
0014.0.0
14
-------
Appendix B
Polychlorinated Biphenyl (PCB) Results
of Analysis by Phase
-------
TABLE 1
BENCH 1 STUDY
PCB Results by Method 8080 (1)
Date
Received
03-Jun-88
03-Jun-88
03-Jun-88
03-Jun-88
03-Jun-88
03-Jun-88
03-Jun-88
03-Jun-88
E.G. Jordan SAIC PCB
Sample ID. Sample ID. (ppm wet wt.)
8155054 F-l 55
8155055 F-2 42
8155056 F-3 38
8155057 F-4 1900
8155058 F-5 1100
8155059 F-6 1700
8155060 W-l 10
8155061 W-2 0.52
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
-------
TABLE 2
BENCH 1 STUDY
PCB Results by Method 8080 (1)
Date
Received
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun-88
E.C.Jordan
Sample ED.
8156001
8156002
8156003
8156004
8156005
8156006
8156007
8156008
8156009
8156010
8156011
8156012
8156013
8156014
8156015
8156016
SAIC
Sample ED.
E1-1A
El-IB
E1-1C
El-ID
El-IE
E1-1F
E1-1G
E2-2A
E2-2B
E2-2C
E2-2D
E2-2E
E2-2F
E2-2G
E2-2H
E2-2I
PCB
(ppm wet wt.)
18000
20000
<530
<2000
15000
15000
16000
240000
180000
140000
*
16000
170000
29000
45000
78000
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCEs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
* Sample lost due to vial breakage.
17
-------
TABLE 1
BENCH 2 STUDY
PCB Results by Spittler Method(l)
Date
Received
05-Jul-88
05-Jul-88
15-Jul-88
15-Jul-88
18-Jul-88
19-Jul-88
19-Jul-88
20-Jul-88
20-Jul-88
21-Jul-88
22-Jul-88
22-Jul-88
1 l-Aug-88
1 l-Aug-88
1 l-Aug-88
1 l-Aug-88
E.G. Jordan
Sample ID.
8189022
8189021
8197004
8197005
8200001
8201007
8201008
8202007
8202008
8203035
8204016
8204017
8224020
8224021
8224022
8224023
SAIC
Sample ID.
Feed J-13-2
Feed WQL 3309
Sludge 1
Sludge 2
Sludge 3
Sludge 4
Sludge 5
Sludge 6
Sludge 7
Sludge 8
Sludge 9
Sludge 10
Sludge 1 1
Sludge 12
Sludge 13
Sludge 14
PCB
(ppm dry wt.)
220
3400
6200
4600
3800
3300
3400
210
170
23
68
54
5300
4000
1600
430
(1) Fowler,B.A. and Bennet.J.T., "Screening for Characterization of
PCB-Containjng Soils and Sediments" E.G. Jordan Co. 1987
18
-------
TABLE 2
Date
Received
19-Jul-88
19-Jul-88
19-M-88
19-Jul-88
19-Jul-88
19-Jul-88
19-Jul-88
19-Jul-88
19-Jul-88
25-Jul-88
25-Jul-88
25-Jul-88
25-Jul-88
25-Jul-88
25-Jul-88
22-Jul-88
22-Jul-88
22-Jul-88
22-Jul-88
ll-Aug-88
ll-Aug-88
ll-Aug-88
BENCH 2
PCB Results by
E.G. Jordan
Sample ID.
8201009
8201010
8201011
8201012
8201013
8201014
8201015
8201016
8201017
8207001
8207002
8207003
8207004
8207005
8207006
8204018
8204019
8204020
8204021
8224017
8224018
8224019
STUDY
Oil Method(l)
SAIC
Sample ID.
Oil 1
Oil 2
Oil 3
Oil 4
Oil5
Oil 6
Oil 7
Oil 8
Oil 9
Oil 10
Oil 11
Oil 12
Oil 13
Oil 14
Oil 15
Oil 16
Oil 17
Oil 18
Oil 19
Oil 20
Oil 21
Oil 22
PCB
(ppm dry wt.)
70000
280000
170000
390000
47000
390000
260000
160000
50000
19000
7700
37000
38000
46000
27000
6600
2400
1300
850
81000
660000
350000
(1) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
-------
BENCH 3 STUDY
PCB Results
Date
Received
02-Sep-88
02-Sep-88
02-Sep-88
02-Sep-88
13-Sep-88
13-Sep-88
13-Sep-88
13-Sep-88
02-Sep-88
02-Sep-88
13-Sep-88
13-Sep-88
13-Sep-88
13-Sep-88
i
E.G. Jordan
Sample ID.
8246001
8246002
8246003
8246004
8257019
8257020
8257021
8257022
8246005-6
8246007-10
8257026
8257023
8257024
8257025
SAIC
Sample ID.
Sludge 15
Sludge 16
Sludge 17
Sludge 18
Sludge 19
Sludge 20
Sludge 21
Sludge 22
Oil 23A,B *
Oil24A,B,C,D *
Oil 25
Oil 26
Oil 27
Oil 28
PCB(ppm dry weight)
Spittler(l)/Oil(2) Method
210
340
57
17
11000
5800
940
220
33000
67000
54000
13000
150000
140000
PCB(ppm dry weight)
Method 8080(3)
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS
QNS - Quantity not sufficient.
* - These samples were composited.
(1) Fowler,B.A and Bennett.J.T., "Screening for Characterization of
PCB-Contaming Soils and Sediments" E.G. Jordan Co. 1987
(2) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
(3) U.S. EPA-SW846, "Method 8080-Organochlorine Pesticides and PCBs,"
3rd Ed., U.S. EPA. Washington, D.C., 1986
-------
Table 1
DRUM STUDY
PCB Results by Method 8080 (1)
Date
Received
18-Aug-88
18-Aug-88
18-Aug-88
18-Aug-88
18-Aug-88
18-Aug-88
18-Aug-88
18-Aug-88
18-Aug-88
E.G. Jordan
Sample ID.
8231011
8231012
8231013
8231014
8231015
8231016
8231017
8231018
8231019
. SAIC
Sample ID.
L-7-1
L-7-2
L-7-3
J-7-1
J-7-2
J-7-3
H-22-1
H-22-2
H-22-3
PCB
(ppm dry weight)
360
312
640
13600
50000
57900
530
460
930
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
21
-------
Table 2
DRUM
STUDY
PCB Results by Method 8080 (1)
Date
Received
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
E.G. Jordan
Sample ID.
8236007
8236008
8236009
8236010
8236011
8236012
8236013
8236014
8236015
8236016
8236017
8236018
8236019
8236020
8236021
8236022
8236023
8236024
8236025
8236026
SAIC
Sample ID.
1-11-1
1-11-2
1-11-3
L-9-1
L-9-2
L-9-3
H-21-1
H-21-2
H-21-3
H-20-1
H-20-2
H-20-3
L-8-1
L-8-2
L-8-3
H-23-1
H-23-2
H-23-3
Composite 1
Composite 1R
PCB
(ppm dry weight)
32000
27800
37300
2910
3100
4100
360
290
350
470
295
450
330
300
270
100
234
150
8800
990
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
-------
DEMONSTRATION 1 STUDY
PCB Results
Date
Received
E.G. Jordan
Sample ID.
SAIC
Sample ID.
PCB (ppm dry wt.)
Spittler (l)/Oil (2)
PCB (ppm dry wt.)
Method 8080 (3)
07-Sep-88 8251002 FK-1
07-Sep-88 8251001 RPT-1
07-Sep-88 8251003 EPT-1
340
560
<5
360
<840
<200
(1) Fowler,B.A and Bennett,J.T., "Screening for Characterization of
PCB-Containing Soils and Sediments" E.G. Jordan Co. 1987
(2) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
(3) U.S. EPA, "Method 8080-Organochlorine Pest'icides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
-------
TABLE 1
DEMONSTRATION 2 STUDY
Date E.G. Jordan
Received Sample ID.
09-Sep-88 8253002
13-Sep-88 8257029
12-Sep-88 8256003
14-Sep-88 8258029
15-Sep-88 8259022
15-Sep-88 8259023
16-Sep-88 8260004
16-Sep-88 8260005
16-Sep-88 8260008
19-Sep-88 8263010
19-Sep-88 8263011
19-Sep-88 8263012
19-Sep-88 8263015
19-Sep-88 8263005
19-Sep-88 8263008
19-Sep-88 8256002
19-Sep-88 8263009
PCB Results
SAIC
Sample ID.
FK-1 Pass 1
Resi Feed Low Pass 2
RPT-1 Pass 1
RPT-1 Pass 2
RPT-1 Pass 3
FK-1 Pass 4
RPT-1 Pass 4
RPT-1 Pass 5
RPT-1 Pass 6
RPT-1 Pass 7
RPT-1 Pass 8
RPT-1 Pass 9
FK-1 Pass 10
RPT-1 Pass 10
RPT-1 Pass 10
Feed 3
PCB (ppm dry wt.)
Method 8080 (1)
350
218
77
52
10.1
30
66
59
41
36
29
7.8
QNS
46
35
220
330
QNS - Quantity Not Sufficient
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
?A
-------
Date
Received
13-Sep-88
14-Sep-88
19-Sep-88
12-Sep-88
13-Sep-88
14-Sep-88
15-Sep-88
16-Sep-88
16-Sep-88
16-Sep-88
19-Sep-88
19-Sep-88
23-Aug-88
13-Sep-88
14-Sep-88
26-Sep-88
26-Sep-88
08-Dec-88
E.G. Jordan
Sample ID.
8257027
8258031
8263016
8256002
8257028
8258030
8259024
8260006
8260007
8260009
8263013
8263014
8236027
8257030
8258028
8270016
8270017
8263016
TABLE 2
DEMONSTRATION 2 STUDY
PCB Results
SAIC PCB (ppm dry wt.) PCB (ppm dry wt.) PCB (mg/1)
Sample ID. Oil Method(l) Method 8080 (2) Method 608 (3)
EPT-1 Pass 1 <510
EPT-lPass3 <200
EPT-1 Pass 10 190
S- Pass 1 217
S- Pass 2 < 166
S- Pass 3 31
S- Pass 4 28
S- Pass 5 28
S- Pass 6 6.8 J
S- Pass 7 26
S-l Pass 8 28
S-l Pass 10 24
Harbor Water < 1
Tap Water- 1 < 1
Harbor Water < 1
Gasoline Wash EPT W-l 580
Gasoline Wash EPTW20-1 570
EPT-1, P-10 190 J
(1) U.S. EPA, "The Determination of Polychlorinated Biphenyls in Transformer Fluid
and Waste Oils,"EPA-600/4-81-045, U.S. EPA Washington, D.C., 1982
(2) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
(3) U.S. EPA, "Method 608-Organochlorine Pesticides and PCBs" Federal
Register 40 CFR Part 136 Friday Oct. 26, 1984
(4) Flagged values (J) indicates the arochlor sum as being < 2X (RL 1242 +RL 1254)
where RL represents the reporting limit.
-------
DEMONSTRATION 3 STUDY
Date
Received
19-Sep-88
19-Sep-88
19-Sep-88
19-Sep-88
20-Sep-88
20-Sep-88
20-Sep-88
21-Sep-88
21-Sep-88
21-Sep-88
21-Sep-88
21-Sep-88
26-Sep-88
26-Sep-88
26-Sep-88
26-Sep-88
19-Sep-88
20-Sep-88
20-Sep-88
21-Sep-88
26-Sep-88
E.G. Jordan
Sample ID.
8263006
8263017
8263027
8263028
8264022
8264020
8264021
8265069
8265070
8265071
8265072
8265067
8270010
8270011
8270012
8270013
8263007
8264023
8264024
8265068
8270018
PCS Results
SAIC PCB (ppn
Sample ID. Oil Me
FK-1 Pass 1
FK-1 Pass 1
FK-1R Pass 1 Grab 2
FK-1R Pass 1 Grab 3
FK-1 Pass 2
RPT-1 Pass 1
RPT-1 Pass 2
RPT-1 Pass 3
RPT-1 Pass 3 Grab 2
RPT-1 Pass 3 Grab 3
RPT-1 Pass 3 Grab 4
a dry wt.) PCB (ppm dry wt.)
thod (1) Method 8080 (1)
204
212
360
340
< 112
47
72
< 134
529
49
66
EPT-1 Pass 1 910
EPT-1 Pass 3 Grab 1 2910 .
EPT-1 Pass 3 Grab 2 2300
EPT-1 Pass 3 Grab 3 2100 :
EPT-1 Pass 3 Grab 4 1880
S-l Pass 1
S-l Pass 2
S-l Pass 3
F2-1 Pass 3
113
<74
< 74
12 J
Still Bottom Residue Pass 1 3400
(1) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
(2) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
(3) Flagged values (J) indicate the arochlor sum as being < 2X (RL 1242 + RL 1254)
where RL represents the reporting limit.
-------
TABLE 1
DEMONSTRATION 4 STUDY
Date
Received
21-Sep-88
21-Sep-88
21-Sep-88
21-Sep-88
22-Sep-88
23-Sep-88
27-Sep-88
27-Sep-88
29-Sep-88
29-Sep-88
30-Sep-88
30-Sep-88
E.G. Jordan
Sample ID.
8265059
8265060
8265061
8265062
8266022
8267013
8271008
8271009
8273001
8273002
8274027
8274029
PCB Results
SAIC
Sample ID.
FK-1 Pass 1 Grab 1
FK-1 Pass 1 Grab 2
FK-1 Pass 1 Grab 3
FK-1 Pass 1 Grab 4
RPT-1 Pass 1
RPT-1 Pass 2
RPT-1 Pass 3
RPT-1 R Pass 3
RPT-lRPass4
RPT-1 Pass 4
RPT-1 Pass 5
RPT-1 Pass 6
PCB (ppm dry wt.)
Method 8080 (1)
3150
3080
1950
2030
1000
990
820
523
290
360
240
<220
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
2,1
-------
DEMONSTRATION 4 STUDY
PCB Results
Date E.G. Jordan SAH
Received Sample ID. Sample
27-Sep-88 8271015 EPT-1 Pass
27-Sep-88 8271016 EPT-1 Pass
27-Sep-88 8271017 EPT-1 Pass
27-Sep-88 8271018 EPT-1 Pass
2 PCB (ppm dry wt.) PCB (ppm dry wt.)
ID. Oil Method (1) Method 8080 (2)
4 Grab 1 5400
4 Grab 2 5400
4 Grab3 6000
4 Grab 4 5383
30-Sep-88 8274031 EPT-1 Pass 6 5000
21-Sep-88 8265063 S-l Pass 1 2320
22-Sep-88 8266023 S-l Pass 2 1380
23-Sep-88 8267014 S-l Pass 3 730
27-Sep-88 8271010 S-l Pass 4 1720
27-Sep-88 8271011 S-lRPass4 547
30-Sep-88 8274028 S-l Pass 5 389
Ol-Oct-88 8275002 S-l Pass 6 170 J
Ol-Oct-88 8275001 F-2-1 Pass 6 175
(1) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
(2) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
(3) Flagged values (J) indicate the arochlor sura as being < 2X (RL 1242 + RL 1254)
where RL represents the reporting value.
-------
DEMONSTRATION 4 STUDY
RADIAN LABORATORY EXTRACT
PCB Results By Method 8080 (1)
Date
Received
E.G. Jordan
Sample ID.
SAIG
Sample ID.
PCB
(ppm dry weight)
02-Oct-88 8298001
FK-1
8400
(1) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
-------
DEMONSTRATION 5 STUDY
PCB Results
Date
Received
E.G. Jordan
Sample ED.
SAIC
Sample ED.
PCB (ppm dry wt.)
Oil Method (1)
Ol-Oct-88
Ol-Oct-88
Ol-Oct-88
8275004
8275005
8275003
RPT-1 Pass 3
RPT2-1 Pass 3
EPT-1 Pass 3
<200
<200
<200
(1) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
30
-------
SITE CHARACTERIZATION STUDY
Date
Received
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
12-Aug-88
First Sampling
PCB Results by Spittler Method(l)
E.C.Jordan SAIC PCB
Sample ID. Sample ID. (PPm dry wt.)
8225013 1 26
8225015 2 6.7
8225017 3 37
8225019 4 <5
8225021 5 6.8
8225023 6 < 5
8225025 7 18
8225027 8 15
8225029 9 30
8225031 10 .11
(1) Fowler,B. A. and Bennet.J.T., "Screening for Characterization of
RGB-Containing Soils and Sediments" E.G. Jordan Co. 1987
3i
-------
SITE CHARACTERIZATION STUDY
Second Sampling
PCB Results by Spittler Method(l)
Date
Received
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
E.G. Jordan
Sample ID.
8281005
8281006
8281007
8281008
8281009
8281010
8281011
8281012
8281013
8281014
*
SAIC PCB
Sample ED. (ppm dry wt.)
Loc-1 5.4
Loc-2 < 0.5
Loc-3 1.8
Loc-4 4.9
Loc-5 1 1
Loc-6 < 0.5
Loc-7 2.3
Loc-8 < 0.5
Loc-9 23
Loc-10 4.8
(1) Fowler,B.A. and Bennett,J.T.,"Screening for Characterization
of PCB-Containing Soils and Sediments" E.G. Jordan Co. 1987
-------
CLEAN UP STUDY
PCB Results
Date
Received
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
05-Oct-88
07-Oct-88
E.G. Jordan
Sample ID.
8279013
8279014
8279015
8279016
8279017
8279018
8279019
8279020
8279021
8279022
8279023
8279024
8279025
8279026
8279027
8279028
8281015
SAIC
Sample ED.
RPT-1-1
RPT-1-2
RPT-1-3
RPT-1-4
RPT-2-1
RPT-2-2
RPT-2-3
RPT-2-4
EPT-1
EPT-1-2
EPT-1 -3
EPT-1 -4
EPT-1A-1
EPT-1 A-2
EPT-1 A-3
EPT-1 A-4
CC-1
PCB (ppm dry wt.)
OU Method (1)
200
190
170
180
I
34
32
37
33
970
800
770
830
72
55
56
56
1.2 *
(1) U.S. EPA-SW846, Method 3580/8080, 3rd Ed., 1986
(*) U.S. EPA, "Method 8080-Organochlorine Pesticides and PCBs,"
EPA SW-846 Test Methods for Evaluating Solid Waste,
3rd Ed., U.S. EPA. Washington, D.C., 1986
-------
Appendix C
Total Residue, PCB, Oil & Grease, pH, Cyanide,
Total Suspended Solids, Total Dissolved Solids,
and Methylene Blue Active Substances Results
of Analysis
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
Bench 1
SAIC/CF System.
Sample ID
F-l
F-2
F-3
F^
F5
F-6
El IA
El-IB
EI-IC
El-ID
El-IE
EI-IF
EI-IG
E2-2A
E2-2B
E2-2C
E2-2D
E2-2E
E2-2F
E22G
E.CJordan
Sample ID
8155054
8155055
8155056
8155057
8155058
8155059
8156001
8156002
8156003
8156004
8156005
8156006
8156007
8156008
8156009
8156010
8 15601 1
8156012
8156013
8156014
Receipt
Date
03 Jun-88
03-Jun-88
03 Jun 88
03 Jun 88
03 Jun 88
03-Jun-88
04 Jun 88
04-Jun-88
04 Jun 88
04-Jun 88
04-Jun-88
04-Jun-88
04-Jun-88
04-Jun 88
04-Jun-88
04 Jun 88
04-Jun-88
04 Jun-88
04-Jun-88
04-Jun-88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Total
Residue
(*)
PCB
•pfcfevMdlml
(ppradry)
Anx*fcrl241
IMnIMM
(ppradry)
An»Uarl2J4
tfalkodMM
(ppm diy)
Total PCB
IfafedtOM
(ppm dry)
56
42
38
1900
1100
1700
18000*
20000*
< 530*
< 2000*
15000*
15000*
16000*
250000*
180000*
140000*
Oil*
Orea«c
(*<«ry)
PH
Cyanide
<«8)
Vial broken at lime of receipt
16000*
170000*
29000*
TSS
<*T>
TDS
(PP»)
MB AS
(mg/1)
CO
@ QNS indicates quantity not sufficient.
* Units for oil samples are ppm wet wt
Extraction Method used for oil samples is described in U.S.EPA
SW846, Method 3580/8080. 3rd Ed . 1986
# Units for waicr/gasoline/loluene samples'ore mg/l.
Page 1
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Bench 1
Bench 1
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
SAIC/CF System*
Sample ID
E2-2H
E2-2I
Feed WQL 3309
Feed M3-2
Sludge 1
Sludge 2
Sludge 3
Sludge 4
Sludge 6
Sludge 7
Sludge 8
Sludge 9
Sludge 10
Sludge 1 1
Sludge 12
Sludge 13
Oil 1
Oil 2
Oil 3
Oil 4
E.CJonUn
SunplelD
8156015
8156016
8189021
8199022
8197004
8197005
8200001
8201007
8202007
8202008
8203035
8204016
8204017
8224020
8224021
8224022
8201009
8201010
8201011
8201012
Receipt
Dote
04 Jun-88
04-Jun-88
07 Jul 88
07-Jul-88
15 Jul 88
lS-Jul-88
18 Jul 88
19-Jul-88
20 Jul 88
20-Jul-88
21 Jul 88
22 Jul 88
22-Jul-88
ll-Aug-88
ll-Aug-88
ll-Aug-88
19-Jul-88
19-Jul 88
19 Jul-88
19 Jul 88
Sample
Matrix
Oil
Oil
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Oil
Oil
Oil
Oil
Total
Roiduo
(*)
49
63
48
49
51
SO
64
61
65
62
65
48
54
53
XPCB
(ppradry)
3400
220
6200
4600
3800
3300
210
170
23
68
54
5300
4000
1600
70000
280000
170000
390000
tUvMatlVa
iiidniitrtn
(ppmdry)
Anxtlot I2M
MobodMM
(ppradry)
Total PCB
Mahal MM
(ppradry)
45000*
78000*
Oil*
Grease
(*dry)
PH
Cyanide
(ug)
TSS
(PT>
TDS
v'i
(ppm)
MB AS
(mg/1)
to
O:
@ QNS indicates quantity not sufficient.
* Units for oil samples are ppm wet wt.
Extraction Method used for oil samples is described in U.S.EPA
SW846, Method 3580/8080. 3rd Ed., 1986
tt Units for walcr/gasoline/loluene wimples are rng/l.
Page 2
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 2
Bench 3
SAIC/CF Systems
Sample ID
Oil 5
Oil 6
Oil 7
Oil 8
Oil 9
Oil 10
Oil II
Oil 12
Oil 13
Oil 14
Oil IS
Oil 16
Oil 17
Oil 18
Oil 19
Oil 20
Oil 21
Oil 22
Sludge 14
Sludge IS
B.C Jordan
Sample ID
8201013
8201014
8201015
8201016
8201017
8207001
8207002
8207003
8207004
8207005
8207006
8204018
8204019
8204020
8204021
8224017
8224018
8224019
8224023
8246001
Receipt
Date
19 Jul-88
!9-Jul-88
!9-Jul-88
19 Jul-88
19 Jul-88
25 Jul 88
25 Jul-88
2S-Jul-88
25 Jul 88
25-Jul-88
25-Jul-88
22 Jul-88
22-Jul 88
22 Jul 88
22-Jul-88
ll-Aug-88
ll-Aug-88
ll-Aug-88
ll-Aug-88
02-Sep-88
Sample
Matrix
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Sediment
Sediment
Total
Residue
(*)
54
35
PCB
Opfcfv bfatarf
(ppmdry)
47000
390000
260000
160000
50000
19000
7700
37000
38000
46000
27000
6600
2400
1300
850
81000
660000
350000
430
210
Alwttx 1142
MtfMfOM
(ppndry)
AraMorllM
MakadMtO
(ppradry)
Total PCB
MatudUM
(ppmdry)
OU&
Grease
(*dry)
0.088
PH
Cyanide
<«8>
TSS
•$*f
TDS
ft'
MB AS
-------
05-May-89
SA1C/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Bench 3
Bench 3
Bench 3
Bench 3
Bench 3
Bench 3 +
Bench 3 +
Bench 3 +
Bench 3 +
Bench 3 +
Bench 3 +
Bench 3 +
Bench 3 +
Demo 1
Demo 1
Demo 1
Demo 2
Demo 2
Demo 2
Demo 2
SAIC/CF Systems
Sample ID
Sludge 16
Sludge 17
Oil 23A.B
Oil 24A.B.C.D
Sludge 18
Sludge 19
Sludge 20
Sludge 21
Sludge 22
Oil 23
Oil 26
Oil 27
Oil 28
EPT 1
FK-I
RPT-I
EPT-I Pass 1
EPT-I Pass 3
EPT-I Pass 10
Feed 3
E.CJordan
Sample ID
8246002
8246003
8246005-6
8246007-010
8246004
8257019
8257020
8257021
8257022
8257026
8257023
8257024
8257025
8251003
8251002
8251001
8257027
8258031
8263016
8263009
Receipt
Dale
02-Sep-88
02-Sep-88
02 Sep-88
02-Sep-88
02-Sep-88
!3-Scp-88
13 Sep-88
!3-Sep-88
!3-Sep88
!3-Sep-88
13 Sep-88
!3-Sep-88
!3-Sep-88
07-Sep-88
07-Sep-88
07-Sep-88
)3-Sep-88
14 Sep-88
!9-Scp88
19. Sep-88
Sample
Matrix
Sediment
Sediment
Oil
Oil
Sediment
Sediment
Sediment
Sediment
Sediment
Oil
Oil
Oil
Oil
Sediment
Sediment
Sediment
Oil
Oil
Oil
Sediment
Total
Residue
(*)
35
35
37
29
27
27
30
N/A
27
1.6
N/A
N/A
N/A
17
PCB
(ppmdry)
340
57
33000
67000
17
II 000
5800
940
220
54000*
13000*
150000*
140000*
Aiadtolia
Mrifarf MM
(ppradry)
< 100
260
<420
< 100*
< 100*
190*
220
And*»IU4
MflhodHM
(pprodry)
< 100
100
<420
<4IO*
< 100*
< 1000*
110
Total PCB
MuluJKBO
(ppmdry)
QNS@
QNS@
QNS@
QNS@
QNS@
QNS@
QNS@
QNS®
<200
360
<840
< 510*
< 200*
190*
330
Oil*
Greue
(*dry)
0358
6.6
1.0
0.21
0.71
81
71
PH
Cyanide
("g)
TSS
(pjm)
TDS
(pp™)
MB AS
(mg/1)
cc
oc
@ QNS indicates quantity not sufficient
* Units for oil sample* are ppm wet wt
Extraction Method used for oil samples is described in U.S.EPA
SW846, Method 3580/8080, 3rd Ed , 1986
# Units for water/gasolme/toluene camplci are mg/l.
Pago 4
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
SAIC/CF System!
Sample ID
FK-I Pass 1
FK-I Pass 4
FK-1 Pass 10
Harbor Water
Resi Feed Low 2 Pass
RPT-I Pass 1
RPT-I Pass 2
RPT-1 Pass 3
RPT-I Pass 4
RPT-I Pass 5
RPT-I Pass 6
RPT-1 Pass?
RPT-I Pass 8
RPT-I Pass 9
RPT-I Pass 10
RPT-I Pass 10
S-l Pass 1
S-l Pass 2
S-l Pass 3
S-l Pass 4
E.CJonlan
Sample ID
8253002
8259023
8263015
8258028
8257029
8256003
8258029
8259022
8260004
8260005
8260008
8263010
8263011
8263012
8263008
8263005
8256002
8257028
8258030
8259024
Receipt
Date
09-Sep-88
!5Sep-88
19 Scp88
14-Sep-88
!3-Sep-88
l2-Sep-88
l4-Sep-88
!5-Sep88
!6Scp-88
!6-Sep88
!6-Sep-88
!9-Sep-88
19-Sep-88
!9-Sep88
!9-Sep-88
19 Sep88
12-Sep-88
!3-Sep-88
14 Scp88
15-Sep-88
Sample
Matrix
Sediment
Sediment
Sediment
Water
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Total
Residue
(*)
23
15
57
14
15
14
18
8
9
9
69
9.1
9
9
9
19
8
19
14
PCB
IpMa Mated
(ppmdiy)
AiwUoiiia
UodnltOtO
(ppra dry)
250
18
170
47
33
48
32
26
18
16
15
< 7.4
56
10
150
< 83
18
18
AraMorllM
MahodWM
(ppra dry)
100
12
48
30
19
53
34
33
23
20
14
7.8
29
36
67
< 83
13
10
Total PCB
MafcotfMM
(ppra dry)
350
30
QNS@
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
SAIC/CF Systems
Sample ID
S-l Past 5
S-l Pass 6
S-l Pass?
S-l Pass 8
S-l Pass 10
Tap Water- 1
EPT-I Pass 1
EPT-1 Pass 3
EPT-I Pass 3 Grab 1
EPT-I Pass 3 Grab 2
EPT-I Pass 3 Grab 3
EPT 1 Pass 3 Grab 4
F2-I Pass 3
FK-I Pass 1
FK-IR Pass 1 Grab 2
FK-IR Pass 1 Grab 3
FK-I Pass 1
FK-I Pass 1
FK-I Pass 2
RPT-I Pass 1
E.CJordon
Sample ID
8260006
8260007
8260009
8263013
8263014
8257030
8265067
8270015
8270010
8270011
8270012
8270013
8265068
8263006
8263027
8263028
8263017
8263018
8264022
8264020
Receipt
Date
!6-Sep-88
)6-Sep-88
!6Sep88
!9-Sep-88
l9-Sep-88
!3-Sep-88
2l-Sep-88
26.Sep.88
26-Sep-88
26Sep88
26-Sep-88
26Sep-88
2l-Sep-88
l9-Sep-B8
!9-Sep-88
IQ.Sep.88
!9-Sep-88
!9-Sep-88
20-Sep-88
20-Sep-88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Sediment
Water
Oil
Oil
Oil
Oil
Oil
Oil
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Total
Residue
(»)
17
13
14
11
14
N/A
N/A
N/A
N/A
N/A
54
16
13
11
13
18
12
15
PCB
*r**rM*M
(ppmdiy)
AnxMorll«2
Mob* MM
(ppndiy)
15
68
7.7
15
5.6
580«
2000*
1200*
1300*
1200*
7.2
140
240
220
150
< 56
28
Aiodfcvlltt
UMkrfMM
(ppmdry)
13
< 52
18
13
18
330*
910*
1100*
800*
680*
4.7
64
120
120
62
< 56
19
Total PCB
Motet MM
(ppmdiy)
28
68
26
28
24
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 3
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
SAIC/CF System*
Sample ID
RPT-IPass2
RPT 1 Pass 3
RPT-I Pass 3
RPT 1 Pass 3 Grab 2
RPT-I Pass 3 Grab 3
RPT-I Pass 3 Grab 4
Still Bot. Res. Pass 1
S-l Pass 1
S-l Pass 2
S-l Pass 3
EPT-I Pass 4
EPT-I Pass 4
EPT-I Pass 4
EPT-I Pass 4 Grab 1
EPT-I Pass 4 Grab 2
EPT-I Pass 4 Grab 3
EPT-I Pass 4 Grab 4
EPT 1 Pass 6
FK-1 Pass 1
FK-I Pass 1
E.CJordan
Sample ID
8264021
8265065
8265069
8265070
8265071
8265072
8270018
8263007
8264023
8264024
8271013
8271014
8273004
8271015
8271016
8271017
8271018
8274031
8273005
8265066
Receipt
Date
20-Sep-88
2l-Sep-88
21 -Sep-88
2l-Scp88
21 -Sep-88
21 -Sep-88
26-Sep-88
!9-Sep-88
20-Sep-88
20-Sep-88
27-Sep-88
27-Sep-88
29-Sep-88
27-Sep-88
27-Sep-88
27-Sep-88
27-Sep-88
30-Sep-88
29-Sep-88
21 -Sep-88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Oil
Sediment
Sediment
Sediment
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Sediment
Sediment
Total
Residue
<*)
12
10
10
12
II
12
N/A
40
18
18
PCB
(ppmdry)
AnxMollO
Ui*ml tftfl
(ppmdry)
36
< 67
440
29
42
2300*
77
< 37
< 37
AioMarllM
MtdnliatO
(ppmdry)
36
< 67
89
20
24
1100*
36
< 37
< 37
Sent to Radian Method ((680))
N/A
N/A
N/A
N/A
N/A
3100*
3100*
3700*
3100*
2900*
2300*
2300*
2300*
2300*
2100*
Sent to Radian Method ((680))
16
Total PCB
MakaIMM
(ppmdry)
72
< 130
530
49
66
3400*
110
< 74
<74
5400*
5400*
6000*
5400*
5000*
OU&
Grease
<*«Jry)
<0025
77
75
3.3
PH
81
8.2
Cyanide
(«g>
TSS
(pptn)
TDS
5i|f«n)
MB AS
(»g/l)
@ QNS indicates quantity not sufficient.
* Units for oil samples are ppm wet wt
Extraction Method used for oil samples is described in U.S.EPA
SW846, Method 3580/8080, 3rd Ed.. 1986
H Units for water/gasoline/loluene samples are mg/l.
Page 7
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
SAIC/CF Systems
Sample ID
FK-I Pass 1 Grab 1
FK-I Pass 1 Grab 2
FK-I Pass 1 Grab 3
FK-I Pass 1 Grab 4
FK-I Radian Extract
F-2-1 Pass 6
PCB Removal High Feed
RPT-I Pass 1
RPT-I Pass 2
RPT 1 Pass 3
RPT-lRPass3
RPT-I Pass 4
RPT-IR Pass 4
RPT-I Pass 4
RPT-1 Pass 5
RPT-I Pass 6
RPT-I Pass 6
SI Pass 1
S-l Pass 2
S-l Pass 3
E.CJordan
Sample ID
8265059
8265060
8265061
8265062
8298001
8275001
8265064
8266022
8267013
8271008
8271009
8273002
8273001
8273003
8274027
8274030
8274029
8265063
8266023
8267014
Receipt
Dale
2l-Sep-88
2l-Sep-88
2l-Sep-88
2l-Sep-88
24-Oct-88
OI-Oct-88
2l-Sep-88
22-Sep-88
23-Sep-88
27-Scp-88
27-Sep-88
29 Sep-88
29 Sep-88
29-Sep-88
30 Sep-88
30-Sep-88
30-Sep-88
21 -Sep-88
22-Sep-88
23-Sep-88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Hexane Ext.
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Total
Residue
(*)
13
17
17
18
14
19
PCB
IjMatfcfcd
(ppmdiy)
AnxAkMll42
MaboJMM
(pprodry)
2200
2700
1200
1300
8300
120
AnxtfetllM
MokrfMM
(ppmdry)
950
380
750
730
< 3600
55
This sample is on hold
13
12
10
11
6.9
7.6
860
850
650
450
360
290
140
140
170
73
<97
<88
Sent to Radian Method ((680))
7.2
56
6.5
17
10
10
240
< 100
1600
1200
630
<93
< 100
720
180
100
Total PCB
Mated MM
(ppmdiy)
3200
3100
2000
2000
8300
180
1000
990
820
520
360
290
240
<200
2300
1400
730
Oil&
Grease
(•dry)
0.48
PH
Cyanide
(ug)
TSS
$$',
TDS
^
MBAS
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Demo 4
Demo 4
Demo 4
Demo 4
Demo 5
Demo S
Demo S
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
SAIC/CF System*
Sample ID
S-l Pass 4
S-1R Pass 4
S-l Pass 5
S-l-l Pass 6
EPT-I Pass 3
RPT2-I Pass 3
RPT-1 Pass 3
Composite 1
Composite IR
H-20-1
H-20-2
H-20-3
H-21-1
H-21-2
H-21-3
H-22 1
H-22-2
H-223
H-23-1
H-232
E.CJordan
Sample ID
8271010
827 101 1
8274028
8275002
8275003
8275005
8275004
8236025
8236026
8236016
8236017
8236018
8236013
8236014
8236015
8231017
8231018
8231019
8236022
8236023
Receipt
Date
27-Sep-88
27-Sep88
30-Sep-88
Ol-Oct-88
Ol-Oct-88
Ol-Oct-88
Ol-Oct-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
18-Aug-88
18-Aug-88
l8-Aug-88
23-Aug-88
23.Aug.88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Oil
Oil
Oil
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Total
Residue
(*)
12
13
II
7
N/A
N/A
N/A
35
36
28
29
30
34
34
35
30
30
29
42
43
PCB
(ppmdry)
Anx*k»ll«2
IMxriKKO
(ppmdry)
940
460
320
170
< 100*
< 100*
< I00«
5800
630
340
220
310
200
180
210
270
240
500
52
140
AiadfarllM
MOM SON
(ppmdry)
780
87
69
<95
< 100*
< I00»
< 100«
3000
360
130
75
130
160
110
140
260
220
430
50
94
Total PCB
MahodMtO
(ppmdry)
1700
550
390
170
<200»
< 200»
< 200*
8800
990
470
300
440
360
290
350
530
460
930
too
230
OU&
Oreaac
(%dry)
2.7
3.8
15
1.5
1.3
1.1
PH
Cyanide
(ug)
8.6
TSS
GJM,
TDS
W
MB AS
("8/1)
& QNS indicates quantity not Mifficienl.
* Units Tor oil samples are ppm wet wt.
Extraction Method used for oil samples is described in U.S.EPA
SW846, Method 3580/8080. 3rd Ed.. 1986
# Units for water/gasoline/lolucne'sampleS'are mg/1.
Page 9
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Drum Char
Site Char
Site Char
Site Char
Site Char
SAIC/CF System*
Sample ID
H-233
1 11 1
1-11-2
1-11-3
J-7-1
J-7-2
J-7-3
L-7-1
L-7-2
L-7-3
L-8 1
L-8-2
L-8-3
L-9-1
L-9-2
L-9-3
1
2
3
4
E.CJortUn
Sarnie ID
8236024
8236007
8236008
8236009
8231014
8231015
8231016
8231011
8231012
8231013
8236019
8236020
8236021
8236010
8236011
8236012
822S013
8225015
8225017
8225019
Receipt
Date
23-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
l8-Aug-88
18-Aug-88
18 Aug 88
18-Aug-88
18 Aug 88
l8-Aug-88
23-Aug-88
23-Aug-88
23-Aug-88
23 Aug-88
23-Aug-88
23-Aug-88
!2-Aug-88
1 2- Aug-88
12-Aug-88
12-Aug-88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Total
Residue
<*)
44
45
29
30
28
27
30
39
38
40
34
43
46
58
50
52
94
90
84
80
PCB
SfMKMrikol
(ppmdiy)
26
6.7
37
<5
AnxttoilMl
MoMUM
(ppmdiy)
85
28000
25000
32000
6900
<4900
6900
260
230
480
250
230
210
2200
1900
2600
AnxMorIZM
IliJiiil"—
(ppradry)
66
3900
2800
5300
6700
50000
51000
100
82
160
83
73
62
710
1200
1500
Total PCB
UafcudlCU
(ppradry)
150
32000
28000
37000
14000
50000
58000
360
310
640
330
300
270
2900
3100
4100
OU&
Grease
(*dry)
6.7
76
06
1.2
0.7
1.3
1.2
pH
6.9
Cyanide
(»g)
TSS
*£»v
TDS
'(ppffl)
MB AS
(mg/1)
& QNS indicates quantity not sufficient.
* Units for oil samples are ppm wet wt
Extraction Method used Tor oil samples is described in U.S.EPA
SW846, Method 3580/8080, 3rd Ed., 1986
# Units for walcr/gasoline/toluene samples are mg/1.
Page 10
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Site Char
Site Char
Site Char
Site Char
Site Char
Site Char
Site Char.
Site Char.
Site Char.
Site Char.
Site Char.
Site Char.
Site Char.
Site Char.
Site Char.
Site Char.
Demo 2
Demo 2
Clean-up
Clean-up
SAIC/CF Systems
Sample ID
5
6
7
8
9
10
Loc-l
Loc-2
Loc-3
Loc-4
Loc-5
Loc-5
Loc-7
Loc-8
Loc-9
Loc-IO
EPTW-1
EPT W20-I
EPT 1
EPT-IA-I
E.CJordan
SmnmielD
8225021
8225023
8225025
8225027
8225029
8225031
8281005
8281006
8281007
8281008
8281009
8281010
828101 1
8281012
8281013
8281014
8270016
8270017
8279021
8279025
Receipt
Date
)2-Aug-88
!2-Aug-88
!2-Aug-88
!2-Aug-88
!2-Aug-88
!2-Aug-88
07-Oct-88
07-Oct-88
07-Ocl-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Oct-88
07-Ocl-88
07-Oct-88
26-Sep-88
26Sep-88
05-Oct-88
OS-Oct-88
Sample
Matrix
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Sediment
Gasoline
Gasoline
Toluene
Toluene
Total
Reodue
(*)
81
85
79
91
76
87
92
91
89
87
87
93
90
92
89
93
N/A
N/A
N/A
N/A
PCB
(ppmdry)
6.8
< 5
18
15
30
II
5.4
<05
1.8
4.9
II
<0.5
23
<0.5
23
4.8
An»Ma>ll42
Mated MO
(ppmdry)
360 H
140 ff
790 U
57*
AnxMottZM
ifcAoiiaso
(ppmdry)
200 «
430 «
180 »
15*
Total PCB
MtfMHM
(ppmdry)
560 H
570 #
970 H
TlU
Oil*
Orcaao
(%diy)
61
PH
Cyanide
(«K)
TSS
,
-------
05-May-89
SAIC/CF Systems Summary (Excluding Metals & GC/MS Parameters)
Project
Phase
Clean up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
Clean-up
SAIC/CF Systems
Sample ID
EPT-IA-2
EPT-IA-3
EPT-1A4
EPT-l-2
EPT-l-3
EPT-M
RPT-l-l
RPT-l-2
RPT-1-3
RPT-M
RPT-2-1
RPT-2-2
RPT-2-3
RPT-2-4
CC-I
E.CJordaa
Sample ED
8279026
8279027
8279028
8279022
8279023
8279024
8279013
8279014
8279015
8279016
8279017
8279018
8279019
8279020
8281015
Receipt
Date
OS-Oct-88
OS-Oct-88
OS-Ocl-88
OSOcl 88
OS-Ocl-88
05-Ocl-88
05X)ct-88
05-Ocl-88
OS-Oct-88
OS-Ocl-88
OS-Oct-88
OS-Oct-88
OS-Ocl-88
05-Ocl-88
07-Oct-88
Sample
Matrix
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Sediment
Total
Residue
(*)
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
71
PCB
(ppmdry)
1.2
AKMtfe>l342
lining turn
(ppmdry)
44*
56*
56*
660*
630*
660 #
200 *
190 #
170*
180*
19*
18 »
18*
16 *
Aiodfc»IU4
MgftniSOM
(ppmdry)
II *
< 10*
< 10*
140*
140*
170*
< 100*
< 100*
< 100*
< 100*
IS*
14*
19*
17*
Total PCB
Mated tO«0
(ppmdiy)
55*
56*
56*
800*
770 *
830*
200*
190*
170*
ISO*
34*
32*
37*
33*
OU&
Oreace
(%diy)
34
21
pH
Cyanide
(ug)
TSS
(Ppn)
TDS
(PJ»)
MB AS
(mg«)
@ QNS indicates quantity not sufficient.
* Units for oil samples are ppm wet wt.
Extraction Method used for oil samples is described in U.S.EPA
SW846, Method 3580/8080, 3rd Ed , 1986
* Units for water/gasoline/toluene samples arc mg/l.
Page 12
-------
Appendix D
Elements, Semi volatile Organics
and Particle Size Results of Analysis
-------
Elemental Results of Analysis
-------
DRUM CHARACTERIZATION
Date
Received
E.C. Jordan
Sample ID.
SAIC
Sample ID.
Analyte
Concentration
(mg/kg) dry wt.
02-Sep-88
8266025
Composite 1
02-Sep-88
8266026
Composite 1R
Silver
Aluminum
Arsenic
Barium
Beryllium
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
Mercury
Potassium
Magnesium
Manganese
Sodium
Nickel
Lead
Antimony
Selenium
Thallium
Vanadium
Zinc
Silver
Aluminum
Arsenic
Barium
Beryllium
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
Mercury
Potassium
Magnesium
Manganese
Sodium
Nickel
Lead
Antimony
Selenium
Thallium
Vanadium
Zinc
4.4
10000
20
140
7
2700
32
10
430
1100
16000
1.1
2100
5100
220
11000
130
600
66
<0.23
<0.11
100
1900
46
10000
41
140
0.57
2400
25
7.7
420
700
17000
1.6
2300
5400
150
11000
130
570
9.1
<0.23
<0.1I
39
1800
Additional sample qualifiers can be found in the appendix.
-------
SAIC/CF Systems Summary (Metals)
03-May-89
Project
Phaac
Dcnio 2
Demo 2
Demo 2
Demo 2
Demo 2
Demo 3
Demo 3
Demo 3
Demo 4
Demo 4
Demo 4
Demo 4
Demo 4
Drum Char
Drum Our
Wash/Tol
Wash/Tol
Wash/Tol
SAIC/CP Systems
Simple ID
tPT- 1 Pass 10
KK-1 Pass 4
KK-I Pass-l
RPT-I Pass 10
RPT-I Pass 3
IIPT-I Pass 3
IK- 1 Pass 1
RPT-I Pass 3
BPT-! Pass 4
EPT-I Pass 6
FK-I Pass 1
RPT-I Pass A
RPT-I Pass 6
Composite 1
Composite 1R
1-PT- 1
RPT-I- 1
RPT-I -4
IL C. Jordan
Sample ID
8263016
8259023
8253002
8263005
8259022
8270015
8263018
8265065
8271014
8274031
8265066
8274030
8274029
8236025-5
8236026
8279021
8279013
8279016
Receipt
Dale
!9-Sep-88
!5-Sep-88
09-Sep-88
19-Sep-88
IS-Scp-88
26-Scp-88
!9-Scp-88
2l-Scp-88
27-Scp-88
M-Scp-88
2l-Scp-88
JO-Scp-88
30- Sen- 88
23-Aug-88
23-Aug-88
05-Oci-88
05-Ocl-88
Sample
Main I
Oil
Sedimenl
Sedimenl
Sediment
Sedimenl
Oil
Sediment
Sediment
Oil
Oil
Sedimenl
Sediment
Sediment
Sediment
Sediment
Oil
Oil
Oil
Cadmium
(ing/kg)
NR
44.0
357
42.8
32 5
56
32.0
62 3
5.0
51
875
120
27
091/2.7
<0 15
Chromium
(mg/ke)
33
761
596
816
581
20
525
1020
26
31
1480
1790
25
01 SAC 15
< 1.5
Copper
(tug/kg)
47
1990
1790
1740
1650
6
1320
2570
4.8
39
2650
3700
II
2.6/30
<0.60
Lead
(mg/kg)
NR
792
619
892
587
NR
520
1100
35
40
1300
1800
92
46/42
NR
Zinc
(mg/kg)
47
2680
2150
2610
2220
7.6
1900
3550
13
15
5370
7260
7.7
< 015/1 3
22
Areenic
EPTo»
(nig/1)
<0005
0011
0.008
Barium
EPTox
(mg/l)
036
0 16
0 15
Cadmium
EPTo*
(mg/l)
0.30
Oil
0 12
Chrooium
EPToi
(mg/l)
0053
0 18
0098
Lead
EPTox
(mg/l)
0.16
0.34
0.23
Mercury
EPTo«
(mg/l)
<0.20
<020
<020
Selenium
EPToi
(mg/l)
< 0.020
< 0.005
<0005
Silver
EPToi
(mg/l)
< 0.01 5
<0015
-------
Semivolatile Organics Results of Analysis
51
-------
PREDEMONSTRATION SEMIVOLATILES ANALYSES
Dnj« OruR Drun Orun
K-20 H-20 H-21 B-21
Pollutant Sxrplt 1 Svipl* 2 Swell 1 Safflplt 2 Si
Phtnol |
bll(2-Chlor«thyl) nh.r |
2-Ctilorophenol |
1.3-DicMorobeniene | <
1,t-Dlchlorobenten» | |<
Icniyl alcofcol | |
1.2-Olchlorobeniene | | |
2-P*thylf*eool I
bl«-<2-CMorol«opropyl)«th«r| |
»-»«thylp»ienol |< 630 <
»-mtro«o-df-n-propyl»lne | |
•uicMorMthan* | |
• Itrobcnttne | |
lM0-Oli»t>lylp*i«lX)l | ! <
Mniolc «cld |< 7400 <
bli(2-Chloro«tho»y>ii«eth«n* | 1
2,t-0ichlorophcnol | |
1,2,t-Tr« | |
2-lltrotnltln* |
OlWthylptlthlllt* |
ItcoupMhyltn* |< 940
2.4-Olnitrotolutn* |
3-lltroanUln* |
Dri^i Drun Oron ( OrLlH DTLMI OrUB
H-22 «-22 M-2J | M-JJ |-ii i-it
npl* 1 Samoie 2 Sample 1 | Swnpli I s«r>l« i swnpl* 2
1 1
1 1
| 1.7E-M
280 III 9.31*0* •.«•«
600 < 510 I 2.5I»05
1 1
1 1 1
1 1 1
1 1 1
1500 < 1500 | | |
1 1
II II
1 1
980 < 610 | | |
III 1
UO < *ZO | ||
woo < "oo | | < noo | |
1 1
1 1 1 1
1200 | | | |< Z300 |
7900 < 1300 < 1900 |< MOO | |< 570 |
II II
1 1 1
1 1 1
3200 < 1.0E-03 |< 1100 |< 910 | | |
1 1 1 1 1
1 1 1 1
1 1 1 1 1
I |< 820 |< UOO |
1 1 1 1 1
1 |« 1800 | |
4700 9900 | |< HOO |< 1900 |
I I I I
I I I I 1
Note: Blank indicates not detected.
"<" indicates detected less than the detection limit shown.
"E+" indicates base ten exponent.
-------
PREDEMONSTRATION SEMIVQLATILES ANALYSES (Continued)
Pollutant
Orvjg
M-20
Sample 1
I DruB
I H-20
| Sample 2
Drm
H-21
Sample 1
Orm
H-21
Simple 2
Dru>
H-22
Sanple 1
Drui
H-22
Sample 2
Orin
H-23
Sample 1
DrL0
H-23
Sample 2
Orun
1-11
Simple 1
Drui
1-11
Sanple 2
dcenaphthene
|< 1100 |< 1200 |< 940 |< 2700 |
3.0E-03
<
4600 <
840 |< 1600 |
2,4-Dlnltrophenol
5200
1
I
4-Nttrophenel
I I I _ I
|< 840 | < 740 | < 2600 | 4800
I
0
-------
Particle Size Results of Analysis
54
-------
en
en
100
• 0
• 0
ro
i-
z
o tO
hi
•
hi
Z
u 10
w
4.
to
10
0
*
US STANDARD SlEvE OPENING IN INthE S U •
• 43 » 1 ^ 1 5/4 '/2 */, 3 4^ 6 8 10 1
I
1
-
-
-
--
-
-
-
—
-
-
-
f
...
-
—
1 II
-
V
_
-
-r-
-
^<
-•
-
)<
SIA
416 2
r r'
^^ «
_ .
MDARO
0 SO 4<
*
s
)0 IOO SO 10 9 1
CHAIN SIZE
COMLES
GNAVEL
COARSE
FINE
COARSE 1
SAMPLE NO.
ELEV OH DEPTH
CLASSIFICATION
- -
---
JtA OOl
»^» It
S
0
«
1
~
—
SIEv/b NUMUtHS HVUNOMCTEM
} SO TO IOOI-JO 2OO
\
i
-
^ r^
\
1
\
a
AILLlMtltHb
SAND
MEDIUM
NAT WVo
1
LL
---
FINE
PL
-
^
-
IK
-
-
-
--
—
•O
-'
...
...
N
i
-
-
-
t
-~.
^
5 -<
Ol OOS OOl O.OO9 O.O
-
-1 SILT ICLAV
PI
O
10
I
to
I
• 0 X
0
Ml
•
• 0
•o
re
•e
•e
too
01 .
GRAIN SIZE DISTRIBUTION CURVES
SAIC
L-V IK.
?"rC°" KM
CHfCMOIV t
GWC
o*n
///7/^1
5657-01
JOMOAN 6O«MltL AttOCIATI*
•COf ftMMICAL COMSULTAHIt
-------
IOO
to
to
ro
X
o to
kl
ft
•
IU
Z
o >0
c
a
to
10
0
91
US STANDARD SIEVE OPENING IN INCHES US SIANOAR
• 41 t l^2 1 % '^5/§ J 4^ 6 t 10 1416 20 SO
'
-
-
-
-
- —
i ii
-
JO IOO 90 10
cot
1
GRAVEL
COARSE | FINE
SAMPLE MO.
ELEV OR OE
-
V
-
-
-
\
--
-
*"S
—
-
—
>^
-
-
_..
- •
-
CHAIN
COAI
»SE
L:
PTH CLASSIFICATION
--
1
™
-
SI
~s
s
It
N
O
ft
U
41
T
T-
-
-
SIEvt NUMUtRS HYDROMETER
) so ro too MO coo
s
-
-
1
—
i
1
»
S
3
4111 IMt Uhi
AND
MEDIUM |
NAT
LL
' ~
--
— -
FINE
PL
O 1
i
- • •
-
•>
--
...
^
'
-
-
^
I
-
-
-
i>
)—
C
003 001 0.00ft O.O
SILT
PI
-
CLAV
O
1 A
1
*° ,
«* • m » t»
c e e e e
PERCENT COARSER tT WEIGHT
• 0
to
IOO
01 .
GRAIN SIZE DISTRIBUTION CURVES
SAIC
J-l-\
\IUIOH
KM
CNIOIOIf f
GWC
04tf
^"5657-01
J*» 001
**»oci*rit
-------
CA
'EIGHT
» «* • • O
O O O O O
CftCENT PINE* tr M
M * »
O O O
t
to
• n
Q
US STANDARD SIEVE OPENING IN INOItS tl '
• 4 S » 1 Vj 1 3/4 '^ '/, 3 4 6 0 10
-
-
-
•-
—
ill
V
-
-
t*
-
^»
—
—
1
><
~
-
-
>V
• SIA
416 2
rr
_. .
-
NOAH
O SO
SOO IOO 30 10 9 1
CHAIN -Jilt
CO!
.. .. 1 GRAVEL
1 COARSE
PINE
COARSE
SAMPLING.
ILEVOUDE
L.
PTH CLASSIFICATION
-
-
J*» OOI
• *P« •!
0
41
T
^
-
-
SIEVE NUMUtNS HYDROMETER
) so ro 100140 eoo
•s
-
i
Os
-
•-
--
1
i
' ,
.. .: _
OS
MILLIMLUHb
SANO
MEDIUM | FINE
NAT V
-
LL
--
-—
PL
1
k
S
£ •
- • -
-
-
•-
-2k
--
—
«
t^
( )
- -
n
-
-
I
-
-
-
\
I
-
<
•^
r •<
01 OO5 OOI O.OOft O.G
1
PI
-
-
CLAY
O
i
10 ,
BO x
tl
kl
•
.. s
Z
M
U
** w
, • t
• B
• 0
IOO
'99 •
GRAIN SIZE DISTRIBUTION CURVES
SAIC
i- u- \
KM
CMfCllOtf t
GWC
0*11
"^"'sesT-oi
JOAOAN 60««ltt •StOCIATII
•lOICCHMICAk CONtUtrANl*
-------
IOO
• 0
• 0
70
OS. STANDARD SlEvE OPENING IN INCHES US SIANOAHO SIEVE NUMUkKS
• 49 2 1^2 I 3/4 tf2*'» >4 6 BIO 1416 2O 3O 4O SO 7O IOO I4O itOO
HVUNOMCTCN
to
o 10
*
kl
&
iO
10
-^
_
o
•»
o
«•»
eo
WEIGHT
«•
o
MS
COA
•° ^
Z
M
u
?0 «
to
to
IOO
soo
IOO SO
10
I OS 01 DOS
GHAlN SIZE MIlLIMtltNb
001 0.009
O.OOI
COMLES
GRAVEL SAND
COARSE | FINE COARSE] MEDIUM | FINE
SILT
CLAV
SAMPLE MO.
ELEV OR DEPTH
CLASSIFICATION
NAT
LL
PL
PI
GRAIN SIZE DISTRIBUTION CURVES
SAIC
H- Zo -
lUflOtl
KM
CNlCllOtf
GWC
0411
001
JOBOAII ftOMMILl. AMOCIAfd
aCOKCHHKAL COMSWlTANlt
-------
CA
cr
U.S. STANDARD SlCvE OPENING IN INCHES OS SIANDAHO SIEvf NitWUtHS
IOO
• 0
to
70
tO
t 41 t
z
o 10
«
hi
O.
to
10
PTf^
14 16 2O JO 4O SO TO IOO MO ZOO
~rr
soo
100 90
10
I 03
GHAiN 'JIZt MILLIMtUHb
COMLCS
CNAVEL
COARSE | FINE
SAND
COARSE]" MEDIUM| FiNt
SAMPLE MO.
ELEV Oft DEPTH
CLASSIFICATION
NAT
LL
PL
itkS MVDROMCTEN
MO ZOO
(
t
O 1
zv.
- - -
-
-
-
...
^
DOS 001
-
O
\
-
-
*
-
-
-
X
^
>
>—
0.00ft O.C
SILT
PI
~
CLAV
O
10
to
i
•o z
Ml
•
•• 5
u
•o •-
z
w
u
TO «
) ft.
• O
•0
IOO
Ol .
GRAIN SIZE DISTRIBUTION CURVES
SAIC
H - 22.- t
ictrioi*
KM
CMICMOB* »
owe
04 f C
"*"*$657-01
JfcA 001
ttCOfCCMM4CAL COMSUtfANlt
-------
too
• 0
•0
ro
H
X
u AO
lu
Z
Ul _
o 10
*
kl
0.
to
10
0
S(
US. S TANDAHD SIEVE OPENING IN INCHE S li-
ft 4 S t 1 V2 1 5/4 \ % 5 1 6 • I0
9
-
-
--
-
-
-
...
-•
--
• -
I/
.»
_
i-
_
•n
-
—
jr-
-
.. SIA
416 2
rn
1
NOAH
O JO
•s
0
41
n
-
SIEVE NUMbthS HVOHOMCTER
3 SO TO IOOI4O 2OO
'X
-
1
^
-
i i
X
JO IOO SO 10 S 1 OS
CHAIN SUE MILLIMtltftb
COBBLES
GNAVCL
COAHSC
FINE
: .
COAHSEJ
SAMPLE MO.
CLEV OR DEPTH
CLASSIFICATION
-
....
• -
JtA OOI
1 *»• II
SAND
MtOIUM
NAT w—
t
S OOI O.OOft O.O
i
PI
--
-.
CLAY
1 A
1
• A
• 0 x
o
kl
40 *
40 >
m
• 0 M
^~
X
M
u
TO «
• 0
• 0
too
IOI .
GRAIN SIZE DISTRIBUTION CURVES
SAIC
H-2-i
iftrcotr
KM
'
CNlOfOft* 9
G\*/C
0411 '/I^/M
^"5657-01
JORDAN 6o>«ut ••>oci«rf»
4COf(CMMICAl COMSWiTANft
-------
. 1H9I3* Al M3SUVO3 1M33M34
t. - « • • * .^ • 0-
M313MOMOA
nOHS U.S. SIANUARO SIEVE NUMUtKS H
4 « B 10 1416 20 SO 40 30 70 100140 200
ANOARO SIEVE OPENING IN II
s t ik, i % %VB s
M »
•t
3 •
<
i
i
1
i
!
,
i
J1
/I
; ; • ' / •
_.
|^
V
A\
1
1
/^
I
• 1
; ' • / '• i ;
^
-
r
•
f
f
L
/
: , : • !^^
1 ' &^ : ! ;
- / •''''•
P Vi t : .
i^ ....
i • i
1 i
. i '
|
1
1
111'
'
1 • 1 • :
1
i i
; ; : • [
i
1 1
i • i ! i
1 1 1
p ...
- i
.
i
•
3
3
1
1
i
i
i
'
O O O O 0
1M9I3« X« II
1
i
i
i
\
0 O O O C
3NI4 1N33M34
9
6
o
o
oi
o
0
o
3
•ft
a
S
UJ
Z
z
•o
o
0
n
§
O
0
) •»
5
w
— r™
i
UJ
. Z
iZ
I
*'3
5
in
5
S
I CNAVCL
w
z
I^H
oc
o
u
M
O
V
GRAIN SIZE DISTRIBUTION CURVES
O
CO
(0
I
9
(0
i"
f
'i
&
o
z
NX
AlOllf 91
5
o
111 1
• 1 1 41
• • • .
; ; ; .
: ' '. • i ;
ji 1
. I !
, 1
a? :
^
<
z
z
21
M
W
j
1 SAMPLCNO. I
1
f
1 ;
i
i
• «•
r*
li
j««
if
•ti
is
?s
o •
o ^
bl
-------
c:
IOO
• 0
•0
70
Z
0 «0
u
• 80
w
Z
u __
o 10
kl
a
to
10
0
S(
US. STANDARD SlEvE OPENING IN INOHt S
1
1
-
-
-
-
—
-
-
-
i
—
...
i II
—
)O IOO 30 10
COMLES
I
GRAVEL
COARSE | FINE
V
-
-
-
-
i
T
-
...
-
...
COARSE
SAMPLE NO.
ELEV OR DEPTH
—
US SIANOAHO Sltvt NUMUtKS HYDROMETER
0 M 16 2O 3O 4O SO 7O IOO MO 2OO
;-«
...
-
— -
^ i
i
(iHAlN M
n
CLASSlFICAIION
... .. .
s
S
0
2t k
1
-
\
--
-
1
H
—
r
i
\
3
AILLIMt 11Kb
SAND
MEDIUM |
NAT W
"Vo
LL
FINE
PL
1
^
S
-
S
-
—
S
*
—
...
N"
--
v^
^.
-
O
-
-
-
-
-
-
4
-
-
--
\
\
>s
^
01 OO3 OOI O.OOS O.C
H - 1-
PI
...
--
o
10
1
• A
»««•«• * • 1
> e e o e e i
PERCENT COARSER BY WEIGHT '
• 0
IOO
GRAIN SIZE DISTRIBUTION CURVES
SAIC
L-e>- z-*
utreotr
KM
£NitMO-dwc '
OAFf
5657-01
J«* O0>
i *?• •!
JOBOJtH MMMItt AMOCIAff*
• COTICMMKAL COM»UtTAM1t
-------
w.
CO
too
to
• 0
70
H
Z
0 «O
hi
hi
Z
hi _-
u JO
*
hi
&
to
to
o
s<
US S TANOARO SIEVE OPENING IN INCHE S U.'
6 4 S > 1 k2 1 9/4 */2 S/v 3 4^ 6 8 IO 1
1
-
--
--
-
—
-
-
...
( 1 i
JO IOO SO 10
CO!
• I 9 •
If
-
-r
-
-*<
-•
-
-
«s
> blA
416 2
n~]
i
- _ ._.
_ . - .
Ml) AH
O SO
S
S
S
u
4(
T
*
_
Sl£«/t NDMUkHS HVOflOMCTEN
3 9O TO IOOI4O 2OO
-
S
-
i
--
..._
r r
»
9 109
(jHAlN tilZE MILLlMtUHb
GNAVEL
COARSE | FINE
COARSE]
SAMPLE NO.
ELEv ON DEPTH
CLASSIFICATION
—
---
SANO
T
-
£..,
-
—
• -»,
—
...
•^B.
-
-
•-
-
-
-
— ©
>••«•••«••»_
Deeeoo o o o o o
PERCENT COAKSEN IT WEIGHT
01 009 OOI O.OOft O.OOI .
MEDIUM ] FINE
NAT WK,
LL
PL
SILT
PI
-
-
CLAV
GRAIN SIZE DISTRIBUTION CURVES
SAIC
J- T - Z.K-
KSffDBV 4
KM
i
MltMD'dwc *
"" l/M/51
^"•5657-01
J6» 001
i »'• •»
JOMO4M 60««ltt AttOCI4fCf
4COT(CHMICAL COMStHTAMlt
-------
C";
too
to
•0
ro
X
0 ftO
US STANDARD SltvE OPENING IN INCI It S U V SIANOAHO bltvt NMMUthS
6 43 2 lb I 3/4 '^''i ?
HYDROMETER
z
UJ _
u 10
to
IO
ii i
« 6 a 10 1416 20 jo 40 so ro too 140 200
TH*fjJT~ri~ T ~mi—I—ir"T~~ilTTi
^€
\
SOO
IOO 30
10
I 0.9 O
(,HAlN 'JlZt MILLIMtUHS
OO3
OOI O.OOft
COMLCS
CRAVCL
COARSE j FINE
SAND
COARSE]" MEDIUM" | FINE
«H
-
e
M
e
»
e
GH
«
e
•»
eo
COARSER
•*
ee
FCR
•
e
too
O.OOI
SILT
CLAV
SAMPLE MO.
ELEV OR DEPTH
CLASSIFICATION
NAT
LL
PL
PI
GRAIN SIZE DISTRIBUTION CURVES
SAIC
- 2
lltTtoir
KM
£MIC'"
dwC
• 1 i
5657-01
J«« 00*
JO«D«M AOMMItt •§§OCI«fI§
. COMSWLMMI t
-------
'81
100
• 0
• 0
ro
t-
x
o to
u
ft
: BO
u
|40
z
u JO
m
w
a
to
IO
0
31
US STANDARD SIEVE OPENING IN
• 41 t ljr2 1 V4 '/j% ^
I
1
-
-
-
-
-
—
—
-
i
i i
u
)0 IOO 30 10
COMLES
II
1
GMAVEL
COAMSC
FINE
«CIIM
4 6
fftCTI
_
_
-
8 1
T
-1
-
V
US SIANDAH
O 1416 2O SO
5<
....
1 1
^,
- -
_..
i
CHAIN :i
COARSf |
SAMPLE MO.
fLCVOHOCPTH
CLASSIFICATION
- -
--
--
i
' «
ize
s,
O
k
0
4(
n
G
-
~
Sltvt NUMUkHS HVOMOMCTEH
3 SO 7O IOOI4O 2OO
"»,
•-
-
i
Os
—
S
mtiMt i
1
^
-_!
\
_ ^
S
O.I
SANO
MEDIUM
NAT WVU
I
FINE
LL
-
.....
PL
PI
S -
-
S
-
-
...
>.
-
-
—
Q"
-
V
^
-
t
-
-
H
-
H
s
009 001 O.OOft O.O
SILT
— |
-
-
-
CLAV
O
~ O ••«*•«• A • W .
.eoeeeooeee
PERCENT COAKSCM it WEIGHT '
GRAIN SIZE DISTRIBUTION CURVES
SAIC
I- n - zt
IClfCOl*
KM
tMIC""GWC '
o*n
**"*5657 -01
OOI
tt
JOMPAH MMAItl A»»OCI*rit
aCOfCtMMKAk COMSUlfAMlft
-------
IOO
• 0
•0
ro
z
o to
kl
*
kl
t-
s »o
hi
&
to
10
0
S<
US STANDARD SIEVE OPENING IN INIHIS U.S. SI ANUAHO bit vE NUMUtKS HVOROMCTEH
« 41 t I\f2 1 5/4 '/j1/, ^4 6 BIO 1416 20 SO 4O SO 70 IOOI4O2OO
• 1
-
-
—
-
i ii
L>
1 »
-
-
)0 IOO SO 10 3
CO!
- 1 GRAVEL
*L" | COARSE | FINE
...
...
....
-A<
--
*s
r i
.. . <
-
1
CHAIN 1.1 7 £
COARSE
SAMPLE MO.
tLEVOMOE
PTH CLASSIFICATION
~
....
S
0
»
i
~~
3
m
-
\
•-
1
\
....
r
\
_.. —
i
\
i
—
* >
X
-
-
--
-•
H.
—
....
--
•©•
--
T
%
<\
V X -
' 1
^
-
i,
(
s
>—
• . u
01 009 001 O.OOS 0.0
LIMEIEHb
SANO
MEDIUM | FINE
NAT WVo
LL
-
Pt
I
1
Pi
....
. ...
SILT
CLAY
»•««•»*«•».
teeeeeeeee
PERCENT COAMSEM iY WEIGHT '
IOO
GRAIN SIZE DISTRIBUTION CURVES
SAIC
L- -) - |
iisifoir
KM
tMIC"lo
-------
IOO
• 0
• 0
ro
X
o tO
u
• 90
lu
h-
Z
o >0
kl
4.
to
10
0
91
US. STANDARD SlEvE OPENING IN II
• 4 ) I lt>2 1 9/4 l/2*/i 3
•
-
-
-
-
-
...
-
-
.._
...
- -
xc
b.
-
its O.S SIANOAHO SIEVE NUMUENS HYDROMETER
6 8 10 1416 20 JO 40 SO TO IOO I4O BOO
•*,
-•
,1
._.
-
k
^
....
<
s
s
I
tz
—
\
—
-•
-
1
*
I I
X
S
... ....
)O IOO 9O 10 3 1 OS
I.HAlN SIZE MIlLIMtlHO
CO!
• I ffft
GRAVEL
COARSE
FINE
COARSE |
SAMPLE MO.
ELEV OR DEPTH
CLASSIFICATION
- -
:-.-.::
j*» ooi
• •»• t<
SAND
MEDIUM
1 FINE
1
«r.
• •
--
•Q
-•
—
...
...
Ss
•—
(•I
^^T
' '
-
^(
-
-
h
^
>—
"^=s
Ol OOS OOI 0.006 O.C
SILT
NAI WVo
LL
-
•-
-_..
PL
PI
....
—
CLAV
0
1 A
1
• a -r
o
w
•
• 0 M
I
U
•0 i-
z
M
U
ro «
A.
• 0
IOO
GRAIN SIZE DISTRIBUTION CURVES
SAIC
L-1-2-
iftriotf
KM
CMI CilO •• f
GWC
0*11
^M5657-01
JORDAN MMILt AttOCIArit
4COTCCMMICAI COMS«M.TAMtt
-------
NOAHO SIEVE NUMUtHS HVOROMCTCN
tO SO 4O SO 7O IOOUO2OO
* 2
- o
•ft
X »
5 •*
.9 .
ANOARO SIEVE OPENIN
J » l|r2 1 % '^V,
M »
•i
3 •
<
I
. J.H9I3* At M3SMVO3 J.N33K34
^ - O
i
i
1 I
i
i
!
,
i
!
I
i
(
•i (•
L/
J !
r/
JT
-r—
+- —
^-
l
i
: , (I !
: i-1 ;
i . . . JV i i . . i
"
! jy^ ! ' ;
^^ ' '
r
- —
••
(*
i i Ji) i . li 1
jr •.. i
s
A i
L
. i
i
, i
• • i i i i
r ;
| , |
k i .... , ,
•
i
•
»
>
*
i
1
!
i
i
I
i
*
.
l
i
i
oooooooooc
1H9I3* AC «3NI4 1N33H34
o
6
0
o
0
_
o
6
o
o
OS O 1
• tit MILllMt IH
.
kVCL I 5ANO 1 11
| FINI 1 COARSE) MEDIUM | FINE | Sl 1 *
•E
O |y
in
K
4
O
O
•^•^^H
•
M
•
0
U
GRAIN SIZE DISTRIBUTION CURVES]
g
a
1
-------
en
to
100
• 0
to
ro
H
X
o to
w
ft
: «o
«
U
|40
»-
z
Ul __
u 10
*
w
a
to
10
0
9<
OS STANDARD SIEVE OPENING IN INCHES 11 '
• 4 S t 1 \f2 \ 3/4 Vl % 3 J_« • I0 '
f
- —
- -
-
-
-
_..
-*<
-
--
^
. SIA
416 2
rin
N
10 IOO 30 10 S 1
GHAiN *-.
CO!
• I ffft
CNAVEL
COANSe | FINE
COARSE
SAMPLE NO.
CLEVOftOCPTH
L:
CLASSIFICATION
- -
I:
.... ...
.16* OO1
• *• •!
NOA
0 5
' '
s
S
IZt
H
O
S
o
k
0
41
n
^
-
SIEVE NUMUtHS HVUMOMCTCM
0 SO 7O IOOI4O ZOO
\
-
i
\
1
—
\
••
3
MLLIMtUKS
SAND
MEDIUM |
NAT WVa
LL
FINE
PL
- —
s
1
S
-
)
s
—
-
-
fex
—
-
•cx
<^
^
"
-
-
°>
1
r
H
S
O
I A
1
• A
i
• 0 I
o
HI
«« :
K
|U
• O ••
i
" 5
M
u
ro «
• A
AA
>
I0.A
01 009 OOI O.OOft O.OOI .
|
PI
-
:•
CLAV
GRAIN SIZE DISTRIBUTION CURVES
SAIC
L- 1
If illOSf
KM
Z.
CM|C«IOt« f
GWC
o*ri ,
i»lit>ie>6
5657-01
JO* DAM Mftftlll. «ltOCI«rit
• lOlfCMMICAk COMSUifAMlt
-------
c
100
• 0
•0
70
Z
o 40
hi
*
: 50
•r
bl
|40
t-
Z
u SO
*
w
a.
to
10
0
SI
US. STANDARD SIEVE OPENING IN INOltS U!
• 4 S t 1 \2 t 5/« \ */§ 3 4^ 6 8101
I
1
-
--
-
-
-
-
•--
.._.
1 II
V
-
3O IOO SO 10 9
CO!
• • mm
GMAVEL
COARSE
FINE
r
...
-
-*X
._.
-
...
^S
SI/I
416 2
rr
N
. . \
(,HAiN
NL
to
ir
••
^12
>AHO SIEvt NOMUfcHS HYDROMCTEM
SO 4O SO TO IOOI4O2OO
«
e
S
o
»
1
t
-
S
1
^
I
X
1
\
\
y
S
fllLUMt UIO
SAND
COARSE
[ MEDIUM
SAMPLE MO.
KLEV on DEPTH
CLASSIFICATION
- - -
: :
NAT WVo
_L_
LL
._.
FINE
PL
^
S
t-
-•
^
--
—
—
Cx
^
-<
^"\
o
10
1
.
•o x
40 *
fcl
• o «
X
u
70 "
)
tan
01 005 OOI O.OOft O.OOI .
PI
|
;
-
CLAV
GRAIN SIZE DISTRIBUTION CURVES
SAIC
N - 10 - IK.
utrtoiT
KM
£HfCBIO'dwc '
5657-01
J6« 001
LL «t»OCI*rit
4COIKMMICAL COMtWlTAMll
-------
' I
IOO
to
• 0
70
t-
X
o to
M
*
• 50
a
bl
£ 30
ft
M
a
to
10
O
3(
US. 3 TANOARO SiCvE OPENING IN INCMFS
6 43 * 1 r2 1 % '/J % J^ 4 6
• V
--
-
•-
-
-
F II
n y
)0 IOO SO 10
cot
• l Ft -
!>
._
•-
<
...
e
T
>
...
—
--
OMAVEL 1
COARSE | FINE | COAI
SAMPLE MO.
ELEV OH OE
»SE
UT.. SI ANOARO SIEVE NUMBERS HVOROMETEM .
0 1416 20 3O 40 90 70 IOOI4OffOO
*s
T 1
X
--
(.IIAIN
1"
PTM CLA3SIFICAIION
... . ...
1
- V
'•11
\
;
_
1
G
-
\
—
-
-
-
1
.._.
S
--
—
l
X
—
\
»
t
--
09
E MILLIMEURS
SAND
-
\
K
• - - -
= ©
-
X^.
CX^N
\\
•
^
r
•^
^
s
y •<
O.I 0.09 O.OI O.O09 O.C
MEDIUM | FINE
NAT WVo
LL
PL
PI
SILT
CLAY
1
0
• 10 : .
,0 i
i 1
•0 *
M
40 *
"5
.. »
K
M
1 U
?0 «
P! s
'•••'*•:
'. l :
'1
IOO
»t , '
I •;
! . ;,
Mi '
GRAIN SIZE DISTRIBUTION CURVES
SAIC '
H- 2-t,
If ttfOif
KM
- L.
R
CMfCMD if 9
GWC
04 f I
T"*5e57-01
1
JG* 001
JOIOAN MNMIlt. • •lOCIAUt
•(OriCMMKAt CMMViTANI*
-------
too
to
•0
TO
X
0 «0
w
t
a
IX
Z
IX _-
u SO
a
w
a
to
10
0
3(
US STANDARD SlEVF OPENING IN INCIifS U '
6 43 t 1 V2 1 % '/» % 3 4^ 6 B 10 1
¥
-
-
-
-
-
-
--
-
-
--
-
-
1
...
1 II
>0 IOO 3O 10
COMLES
GRAVEL
V
J
-T"
—
COARSE 1 FINE 1 COARSE
SAMPLE NO.
ELEV OR DEPTH
—
_
^
. SIA
416 2
r i
^,
1
(.MAIN •'
c.
CLASSIFICATION
...
NOARO SIEVE NUMBERS MVDROMETEH .
0 30 «O SO TO IOOI4OtOO
I
sc
-
-
S
-
1
Tl
A
-•
-
—
i
1
X
—
03
I7C MILLIMETERS
SAND
MEDIUM | FINE
MAf W«K»
LL
—
...
PL
--
V
• -
s
....
y
....
^
V
\>
f
<
01 DOS 0.01 O.OOS O.O
PI
SILT
CtAV
-«•'•«• * •» • -
_.eo e o e o e o
PERCENT COARSER iY WEI6MT 7' —
• A '
•o ;
i
IOO
>v" 1
«l :,
1 : :i
i • ,
1 1 i . '•• '
i : . • •
GRAIN SIZE DISTRIBUTION CURVES
SAIC '
r* " 2 I - £,
IM"0" KM
CMICMB >jiyy£ I**** ^5^57^) \
""l»l*\*> \
J6» 00>
i «»• it
JOMOAM ««HMIi.t. AttOCIAftt
•COfCCMMKAk CMMMtANtt
-------
SAIC SITE PROGRAM
POLYCHLORINATED BIPHENYL ANALYSES
NEW BEDFORD HARBOR
Prepared For:
Science Applications International Corp.
8400 Westpark Drive
McLean, VA 22102
Prepared By:
Patrick W. Meehan
Radian Corporation
8501 MoPac Blvd.
P. 0. Box 201088
Austin. TX 78720-1088
9 December 1988
-------
TABLE OF CONTENTS
Pace
1.0 OVERVIEW 1
2.0 SAMPLE DESCRIPTION 2
3 .0 ANALYTICAL METHODOLOGY A
3 .1 Extraction A
3.2 Analysis 5
3.2.1 EPA Method 680 (GC/MS) 5
3.2.2 EPA Method 8080 (GC/ECD) 6
3.2.3 NIOSH Method P&CAM 253 (Perchlorination) 6
A.O RESULTS AND DISCUSSION .' 8
A.I Phase One - Demo One (GC/MS) 8
A.2 Phase Two - Demo A, Pass A 21
A.2.1 Method 680 - GC/MS 21
A.2.2 Method 8080 - GC/ECD 53
A.3 Phase Three - Florisil Tubes 53
A.A Phase Four - Analysis of EC Jordan Sample Extract 57
A.A.I Method 680 - GC/MS 57
A.A.2 Method 8080 - GC/ECD 57
5.0 CONCLUSIONS 66
Appendix A - Chain-of-Custody Records
Appendix B - GC/ECD Chromatograms and Raw Data
74
-------
LIST OF TABLES
Table
Page
2-1 SAIC SAMPLE DESCRIPTION AND CODING 3
4-1 SAIC PCB DATA BY ISOMER CLASS - DEMO 1 15
4-2 SAIC MATRIX SPIKE/MATRIX SPIKE RECOVERY DATA 16
4-3 METHOD 680 DATA COMPARISON BY DRY WEIGHT 5-POINT
CALIBRATION CURVE - DEMO 1 17
4-4 SAIC SURROGATE RECOVERIES (%) - DEMO 1 18
4-5 TENTATIVE IDENTIFICATION AND RELATIVE AMOUNTS OF
AROCLORS - DEMO 1 19
4-6 METHOD 680 PCB ISOMER GROUP RATIO COMPARISONS 5-POINT
CALIBRATION CURVE - DEMO 1 20
4-7 SAIC PCB CONCENTRATION BY ISOMER CLASS - DEMO 4. PASS 4
4-8 SAIC MATRIX SPIKE/MATRIX RECOVERY DATA FOR 49
DEMO 4. PASS 4 - GC/MS 50
4-9 FEED, RAFFINATE AND OIL CONGENER CLASS RATIOS FOR DEMO
4. PASS 4 - GC/MS 51
4-10 SURROGATE % RECOVERIES FOR DEMO 4. PASS 4 - GC/MS 52
4-11 TENTATIVE IDENTIFICATION AND RELATIVE AMOUNTS OF AROCLORS
FOR DEMO 4, PASS 4 - GC/MS 54
4-12 METHOD 680 ISOMER GROUP RATIO COMPARISONS FOR
DEMO 4, PASS 4 - GC/MS 55
4-13 SAIC 8080 DATA IN ug/g BY AROCLOR (ASSUMING 100%
AROCLOR 1242) FOR DEMO 4 GC/ECD 56
4-14 SAIC FLORISIL TUBE DATA 58
4-15 EC JORDAN EXTRACT PCB CONCENTRATION BY ISOMER CLASS (ug/g).. 64
4-16 EC JORDAN SAMPLE EXTRACT 8080 DATA IN ug/g BY AROCLOR 65
75
-------
LIST OF FIGURES
Page
1 Total Ion Current Chromatogram for SAIC Feed Sample 9
2 Extracted Ion Current Profile Chromatograms for SAIC
Feed Sample 10
3 Total Ion Current Chromatogram for SAIC Raffinate Sample.... 11
4 Extracted Ion Current Profile Chromatograms for SAIC
Raffinate Sample 12
5 Total Ion Current Chromatogram for SAIC Reagent Blank 13
6 Extracted Ion Current Profile Chromatograms for SAIC
Reagent Blank 14
7 Total Ion Current (TIC) Chromatogram of Blanks and
5 ppm St andard 22
8 TICs of Duplicate Feed and Raffinate Matrix Spike/Matrix
Spike Duplicate Samples 23
9 TICs of Duplicate Raffinate and Oil Samples 24
10 Extracted Ion Current Profiles (EICPs) for Mono- Through
Penta- Isomers of 5 ppm Standard 25
11 EICPs of Hexa- Through Deca- Isomers of 5 ppm Standard 26
12 EICPs of Mono- Through Penta- Isomers of Feed Sample 27
13 EICPs of Hexa- Through Deca- Isomers of Feed Sample 28
14 EICPs of Mono- Through Penta- Isomers of Duplicate
Feed Sample 29
15 EICPs of Hexa- Through Deca- Isomers of Duplicate
Feed Sample 30
16 EICPs of Mono- Through Penta- Isomers of Raffinate Sample... 31
17 EICPs of Hexa- Through Deca- Isomers of Raffinate Sample.... 32
18 EICPs of Mono- Through Penta- Isomers of Duplicate
Raffinate Sample 33
19 EICPs of Hexa- Through Deca- Isomers of Duplicate
Raffinate Sample 34
20 EICPs of Mono- Through Penta- Isomers of Raffinate Matrix
Spike Sample 35
21 EICPs of Hexa- Through Deca- Isomers of Raffinate Matrix
Spike Sample 36
-------
LIST OF FIGURES (Continued)
22 EICPs of Mono- Through Penta- Isomers of Raffinate Matrix
Spike Duplicate Sample ...................................... 37
23 EICPs of Hexa- Through Deca- Isomers of Raffinate Matrix
Spike Duplicate Sample ...................................... 38
24 EICPs of Mono- Through Penta- Isomers of Extract Oil Sample. 39
25 EICPs of Hexa- Through Deca- Isomers of Extract Oil Sample.. 40
26 EICPs of Mono- Through Penta- Isomers of Duplicate Extract
Oil Sample .................................................. 41
27 EICPs of Hexa- Through Deca- Isomers of Duplicate Extract
Oil Sample .................................................. 42
28 EICPs of Mono- Through Penta- Isomers of Reagent Blank ...... 43
29 EICPs of Hexa- Through Deca- Isomers of Reagent Blank ....... 44
30 EICPs of Mono- Through Penta- Isomers of Reagent Blank #2... 45
31 EICPs of Hexa- Through Deca- Isomers of Reagent Blank #2.... 46
32 EICPs of Mono- Through Penta- Isomers of Reagent Blank #3... 47
33 EICPs of Hexa- Through Deca- Isomers of Reagent Blank #3 ____ 48
34 TIC of EC Jordan Sample Extract. With and Without
Acid Clean-up ............................................... 59
35 EICPs of Mono- Through Penta- Isomers of EC Jordan Extract,
Untreated [[[ 60
36 EICPs of Hexa- Through Deca- Isomers of EC Jordan Extract,
Untreated. .................................................. 61
37 EICPs of Mono- Through Penta- Isomers of EC Jordan Extract,
Acid Washed ................................................. 62
38 EICPs of Hexa- Through Deca- Isomers of EC Jordan Extract,
-------
1.0 OVERVIEW
This report contains the results of the analysis of feed, raffinate.
extract oil. and Florisil tube samples from the SITE Program from New Bedford
Harbor. Work Assignment #0-9 for EPA Contract No. 68-03-3485. These samples
were examined to determine if detectable levels of polychlorinated biphenyls
(PCBs) could be found. These data were obtained by employing EPA Method 8080.
gas chromatography/electron capture detection (GC/ECD); EPA Method 680, gas
chromatography/mass spectrometry in the multiple ion detection mode (GC/MS—
-MID); and NIOSH Method P&CAM 253, GC/ECD with perchlorination to decachlcro-
biphenyl. This project was performed under four main sections. The first
phase involved the GC/MS analysis of samples obtained for the Demo 1, Pass 1
test. In this experiment, PCBs were not found in the extract oil. It would
appear that they were retained in the liquid propane extractor. The second
phase involved the analysis of samples from Demo 4, Pass 4. In this phase, of
the demonstration, all of the samples were extracted and analyzed in duplicate
by both Methods 680 and 8080. In third phase of this project, sorbent tubes
were extracted and analyzed to determine if detectable levels of PCBs could be
detected. These tubes contained Florisil that had been exposed to the air
over the collection bins of the extract oil. The final phase of this project
involved the analysis of the feed sample from Demo 4 that had been extracted
by EC Jordan Co. This extract was split and one half was subjected to an acid
wash cleaning while the remaining half was left as received. Each fraction of
the EC Jordan extract was analyzed by both GC/ECD and GC/MS.
-------
2.0 SAMPLE DESCRIPTION
The sample coding can be found in Table 2-1. The samples were
accompanied by chain-of-custody records which were signed by the sample
custodian upon inspection of the samples. The feed, raffinate and extract oil
samples were received cold but all three of the extract oil samples had some
leakage. The oil spills from both of the Demo 1 samples were contained by the
secondary container but the spill from Demo 4. Pass 4 oil sample contaminated
the ice chest. The sample extract from EC Jordan as well as all of the
Florisil tubes were received at ambient temperature. All samples were logged
in and transferred to a secured facility for storage. Copies of the chain-
of—custody records are provided under separate cover as Appendix A.
79
-------
TABLE 2-1. SAIC SAMPLE DESCRIPTION AND CODING
SoiEile Description
DQO ONE
FK-1
FK-1R
RPT-1
RFT-1R
EPT-1
EPT-1R
DEH) HOUR
RPT-1
EPT-1
FK-1
EBO 1
DEH) 1
CE>0 1
EDO 1
Matrix Spike
Matrix Spike Dup.
EDO 1
UK) 1
Reagent ELaric.
BCJ S/N 827300B
Matrix Spike
Mstrix Spike Dup.
ECJ S/N 8273004
BCJ S/N 8273005
Reagent KLait
Reagent ELark
Reagent Blank
5.0 ppa KB Stnd.
Radian Simple Mater
Mass Spec GC/BCD
A809029-01
Duplicates Mixed
AB09029-02A
Duplicates Mixed
A809029-02B MS
A809029-02C MSJ
AB09029-03
Duplicates Mind
A809029-RBS
A810033-01A
A810035-01B-DUP
A810035-01D-S
A810035-01C-S
A810035-02A
A810035-02B-0
A810035-03A
A810035-03B-0
A810035-03E-*
A810035-f
-------
3.0 ANALYTICAL METHODOLOGY
3.1 Extraction
Due to the high level of PCBs expected in the Demo 1 samples, some
modifications were made to the extraction method suggested in the third
edition of SW-846. The surrogates that are used at the Radian Laboratories
for Method 680 analyses are C-labelled PCBs. This choice of surrogates
would appear to be far superior to the pesticides that are recommended in the
GC/MS method. However, it becomes cost prohibitive to add enough surrogate
standards to the matrix when there are high levels of PCBs present. If a
representative sample size is chosen, then the sample extract must be diluted
to bring the analytes into the calibration range of the instrument. This puts
the surrogates at a concentration that is below the detection limit. To .
alleviate this problem, the high level samples were first diluted in acetone.
and then an aliquot was removed and spiked with the C-labelled surrogates.
Acetone was chosen as the dilution solvent since it could mix with any water
in the sample, yet still dissolve any oil and other organics that were
present. The acetone/sample mixture was thoroughly shaken before the aliquot
was removed to insure a representative sampling of the suspended particles.
In an attempt to obtain a representative aliquot of the sediment
samples that contained high levels of PCBs, the sample jar'was vigorously
shaken and a portion of the sample was removed from the center of the jar with
a pipette that has a 2 mm opening. The sample was removed before the
particulate matter could settle out.
When the estimated concentration of PCBs in the sample was expected
to be at a level within the calibration range of the mass spectrometer, the
water was removed from the sample aliquot with sodium sulfate and the sample
was extracted by Method 3550 (ultrasonic). The extract oil samples were
prepared by Method 3580 (waste dilution).
u
-------
A- full scan mass spectral analysis of the extract of the oil sample
from Demo I revealed that there were exceptionally high levels of polycyclic
aromatic hydrocarbons (PAHs) present in the sample. These compounds were
interfering with the analysis of the PCBs due to source suppression. This
phenomenon occurs whenever there is a large concentration of any other
compound in the source at the same time the analytes of interest are present.
The finite number of electrons that are available in the source for ionization
are depleted, resulting in a reduction in the ionization of the analyte of
interest. Consequently, subsequent extractions involved the use of sulfuric
acid to remove most of the interfering compounds. (This acid wash is
described in "The Determination of Polychlorinated Biphenyls in Transformer
Fluid and Waste Oils." EPA-600/4-81-045. U.S. EPA. September. 1982.) The use
of this acid wash is further supported by the good surrogate recoveries that
were obtained by both Methods 680 and 8080.
3.2 Analysis
3.2.1 EPA Method 680 (GC/MS)
The concentrations of PCBs described in the results section of this
report for GC/MS were calculated according to EPA Method 680 (Nov. 1985). The
only significant variation from the method was in the use of the C-labelled
surrogates as previously discussed. All values are reported as the concen-
trations of each congener group. That is. the amount of monochlorobiphenyls
is reported as total of all three isomers. The amount of dichlorobiphenyl is
reported as the sum total of all 12 possible dichloro-isomers. By reporting
the PCB concentrations by isomer group, we avoid the need to have the Aroclor
pattern (that is necessary for quantitation by Method 8080) . Even if the
Aroclor pattern is chemically altered. Method 680 will still afford the proper
quantitation of the polychlorinated biphenyls.
-------
3.2.2 EPA Method 8080 (GC/ECD)
The Aroclor concentrations described in the results section of this
report for GC/ECD were calculated according the EPA Method 8080 (SW-846. Third
Edition). The only significant deviation from this method is the use of two
columns, a SPB-5 primary column and a DB-17 megabore column as a secondary
column. By having two columns and detectors, the necessity of having a second
column conformation analysis is eliminated. The injected sample is split
between the two columns and both analyses are run simultaneously.
3.2.3 NIOSH Method P&CAM 253 (Perchlorination)
The levels of PCBs detected in the Florisil tubes collected over the
extract oil drums, were determined by using NIOSH Method P&CAM 253 with tne
following variations:
• Method P&CAM 253 requires that a new standard curve be
generated on each day of analyses. Radian analyzes a midpoint
check standard at the beginning of each 12 hour analytical day
which must agree within +15 percent of the previously
established average response factor, or the instrument is
recalibrated. This approach is defined in our QAPP and is the
same as standard EPA Method 8080.
• Although this method does not require the use of any surrogates
to determine the extraction and analysis efficiencies, most of
the Florisil tubes included the use of both dibutylchlorendate
(DBC) and 2.4,5,6-tetrachloro-m-xylene (TCMX).
• These analyses also included the analysis of a matrix spike and
matrix spike duplicate. This additional QA is also described
in the QAPP.
33
-------
Method P&CAM states that the hexane should not be allowed to go
to dryness during the chloroform exchange of the perchlorina-
tion procedure. The first time these samples were analyzed,
the hexane that remained caused several analytical interference
problems. In the final analysis, the samples were brought just
to dryness. and then immediately removed from the bath.
The final sample was concentrated from the recommended 10 mL to
1 mL to bring the concentration into the calibration range of
the instrument.
-------
4.0 RESULTS AND DISCUSSION
4.1 Phase One - Demo One (GC/MS)
The extracted ion current profile (EICP) chromatograms for the major
ion of each isomer class, dichlorobiphenyl through hexachlorobiphenyl, and the
total ion current (TIC) chromatograms for the samples are included as Figures
1 through 6. Figures 1 and 2 are the TIC and EICP. respectively, for the feed
sample. Figures 3 and 4 are the raffinate sample, while Figures 5 and 6 are
from the reagent blank. Table 4-1 lists the amount of PCBs found in each
sample by isomer class (for both wet and dry weights). These data are
calculated on a five—point calibration curve, using the isomers recommended in
Method 680 to obtain the response factors. The matrix spike/matrix spike.
duplicate (MS/MSD) data are presented in Table 4-2. Table 4-3 is the data
comparison of the feed and raffinate samples based on a dry weight
determination. The feed sample was 26% solids and the raffinate sample was
1.89% solids. According to these determinations, the liquid propane removed
70% of the total PCBs that were present in the feed. The percent recoveries
of the C-labelled surrogates are given in Table 4-4. The values for the oil
sample listed on Tables 4-1 and 4-4 are estimates based on the average
response of the internal standard (IS) for the date of the analyses.
Interferents in the sample masked the recovery of the IS. making the
estimation necessary.
Table 4-5 is a listing of the tentative identification and the
relative percentages of the Aroclors present in these samples. These data
were obtained by using a computer program developed by L.E. Slivon at
Battelle for Ann Alford-Stevens (at EMSL). Since it is apparent from the
large relative percent differences in Table 4-6. the isomer group ratio
comparisons, and the feed to raffinate ratios from Table 4-3, that the lower
1. Lawrence E. Slivon - Battelle Columbus Division Aroclor - A Computer
Program for the Estimation of Aroclor Content from GC/MS Level of
Chlorination Data - Version 2.4, July 26, 1988, for Ann
Alford-Stevens Environmental Monitoring and Support Laboratory.
35
-------
30
SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKZ DUPLICATE RECOVERY
Lab Name: Tnrrian_
Contract: A«-ufl-nm7
Lab Code:
Case No. : SAIC 8236 SAS No. :
SDG No.:
Matrix Splice -
EPA Sample No. : r\-?,,m 1.11-7 PIT
(8236-008 DL)
Level:(low/med) Law
COMPOUND
Phenol
2-Ch.lorophenol
1, 4-DicJilorobenze'ne
N-Nitroso-di-n-prop. (1)
1,2, 4-Trichlorobenrene
4-Chloro-3-methylphenoI
Acenaphthene
4-Nitrophenol
2,4-Dinitrotolu«ne
Pentachlorophenol
Pyrene
SPIKE
ADDED
(ug/Kg)
22f??n
22^220
llf HO
11 i in
ll'llO
22r??n
11 i in
2 2 ',220
11.110
22.220
11,110
SAMPLE
CONCENTRATION
(ug/Kg)
n
0
436436
n
0
n
n
0
0
0
9873
MS
CONCENTRATION
(ug/Kg)
1R14Q
21636
17S8S?
7dm
22848
I7nfi9
1 1 7O9
8694
3545
0
36937
MS
*
REC *
S9
97
— *
71
206*
77
ins
39
32
0*
244*
-
1 QC
I LIMITS
I REC.
1 26- 9C
i 25-102
I2S-1C4
141-126
1 38-1C7
! 26-10:
1 31-13'
11-114
28- 3<>
t ^ . i *•. r.
i 35-142
COMTH3UND
Phenol
2-Chloropftenol
1, 4-Dichlorobenzene
N-Nitroso-di-n-prop. (1)
1,2, 4-Trichlorobenzene
4-Chloro-3-methylph«nol
Acenaphthene
4-Nitrophenol
2 , 4-Oinitrotoluene
Penta chl or opheno 1
Pyrene
SPIKE
ADDED
(ug/Kg)
227220
7? 970
tl'lLO
11.110
linn
22^220
11;110
T> 7?n
Ll' 110
2^ 220
n;no
MSO |
CONCENTRATION!
(ug/Kg) |
2Stn9fi 1
•>3^7?n 1
189087 1
13440 1
?6An9 !
21251 1
17373 !
7Q13R !
8160 1
0 1
23046 1
1
MSD
*
REC «
11 1*
in?*
— A
121
718*
96
1S6*
1 31 *
73
0*
119
1
* i QC
RPD i ! RPD
•\2 ' 35
q i 5C
— * I 2"
ST« 1 3 3
! L i 23
^2 ! 33
39* 1 19
ma* 1 50
79* 1 47
£1 1 47
69* 1 36
1
LI.MITS I
: REC. 1
i 26- 9C'
I2S-1C2
I 2S-104 '
: 4i-i25;
; 33-ic-
! 26-103 '
; 31-137
1 11-114 .
123- 39;
1 17-109!
1 35-1421
1 :
(1) N-Nitroso-di-n-propylaaine
I Column to be used to flag recovery and RPD values with an asterisk
• Values outside of QC limits
RPD:
out of
//
outside liaits
SpiXe Recovery:
COMMENTS:
cry: //
Samel?
-f-han -n.,
out of ^2
in .-'~-.fr '• 1~
outs
,-r~ -
ide
liaits
:i aTrijf
„* ™c{ *>^
FORM .III SV-:
1/37 Rev.
-------
Flla >39O93 999Q. O-O. O amu. SAIC A8OQQ29-O1 (2>8Qm DBS. 9/12/88. EDH. 65-14O03O. 14O-31O01O
TIC
19OOOQ
1BOOOO
17OOOO]
ieooooi
150OOO]
14OOOO1
1300O01
1200O01
iiooool
1OOQOOl
9OOOO1
BOOOOl
700001
eooooi
5OOO01
4OOOO]
3OOOO]
i
2OOOO1
iooool
0
13. O 13. 514. O 14. 5 15. O15. SIB. O IB. 5 17. O 17. 5 18. O IB. 5 IB. O 19. 52O. O2O. 5 21. O 21. 522. O 22. 523. O
Figure 1. Total Ion Current Chromatogram for SAIC Feed Sample
-------
Flla >3909:
O
13
Flla >3909:
O
13
Flla »3909:
O
13
Flla »39O9.
0
13
Flla >3909
O
13
3 221.7-222.7 amu. SAIC
EIP
-
A8O9O29-0 1 <2> 6Om DBS. 9/ 1 2/88. EOH. 65- 1 4O83O. 1 4O-3 1 OB 1 0
_^_^JWkJ^A^^-J^ -,
. O 13. 5 14. O 14. 5 15. O IS. 5 16. O 16. 5 17.
3 255.7-256.7 amu. SAIC
EIP
A8O9O29-01
A_JWLAA_
1
0 17. 5 IB. O 18. 518. O18. 520. O2O. 521.O21.S22. O22. 523.
<2> 60m DBS. O/ 1 2/88. EDH. 65- 1 4OB3O. 1 4O-3 1 OB 1 0
-A A« AA. _.«._. A A ......
. 0 13.514. 0 14. 515. O 15. 516. O 16. 517. O 17. 5 IB. O IB. 5 IB. O 19. 5 2O. O 2O. 5 21. O 21. 522. O 22. 5 23.
3 291.7-292.7 amu. SAIC
EIP
. O 13. 5 14. O 14. 5 15. O 15. 5
3 325.6-326.6 amu. SAIC
EIP
. O 13. 5 14. O 14. 5 15. O 15. 5
3 359. 5-36O. 5 amu. SAIC
EIP
. 0 13. 5 14. 0 14. 5 15. 0 15. 5
ABO8O29-01
16. O 16. 5 17.
AB0802Q-01
16.016.317.
A8OBO2B-O1
16. 016. 5 17.
<2> 00m OB5. B/ 1 2/88. EDH. 65- 1 4OB3O. 1 4O-3 1 OB 1 0
017. 5 IB. O18. 519. O19. 52O. 02O. 521. O21. 522. O22. 523.
<2> BOw DBS. 9/ 1 2/88. EDH. 65- 1 4OB3O. 1 4O-3 1 OB 1 0
__ AA JJL A. JL \ A A-
0 17. 5 18. O 18. 5 19. O 19. 52O. O2O. 321. O21. 522. O 22. 523.
<2> 6Om DBS. O/ 1 2/88. EDH. 63- 1 4OB3O. 1 4O-3 1 OB 1 0
A JuJ\ AJL^ /V ~ *
-nrn/ i „ Fm,m»,,,,, u,, „
017. 518. O1B. 519. O 19. 52O. O2O. 521. O21. 522. O 22. 523.
O
O
O
O
0
l-'i(iiiru 2. ICxl r.-ic.tcd Ion Current. 1'rofile Clironiatogr.ims tor SAIC Tctjcl Sample-
-------
05
File >3B094 9999. O-O. O amu. A8O8O2O-O2 <2> SAIC OOm DBS.65-310. 9/12/88. OSL/EOH
TIC
340OOO
320OOO
3OOOOO
28OOOO
2BOOOD
240OOO"
22OOOO
2OOOOO
18OOOO"
1OQOOO
14OOOO
120OOO-
1QOOOO
aopoo
aoooo
4OOOO
20000
i|iii»lii»i|ii'U'"M'''n'"1^
13. O13. 314. O 14. 5 15. D 15. 3 1O. O IB. 5 17. O 17. 5 IB. O 18. S 19. O IB. 52O. O2O. 521. O21. 522. O22. 523. O
l''igiiri_- 3. Total Lon Current Cliromato^rum for SAIC Raffinate Sample
-------
Film >30094 221.7-222.7 amu. A8OOO2Q-O2 C2> SAIC BOm DB3. BS-310. 9/12/8B. DSL/EDH
EIP
13. O 13. 5 14. O 14. 3 13. O 13. 5 IB. O IB. 5 17. O 17. S IB. O 18. S 19. O 19. 52O. O2O. 321. O21. 522. O22. 323. O
Film >39084 233. 7-2SB.7 anu. A8O8O29-O2 <2> SAIC BOn DBS. B5-3ID. 8/12/88. DSL/EDH
EIP
13. O13. 314. O 14. 3 IS. D 1 S. SIB. O IB. 3 17. O 17. 3 18. O 18. 3 18. O 18. S2O. O2O. 321. O21. 322. O22. 323. O
Fll« >39094 281.7-282.7 amu. ABO8O28-O2 <2> SAIC 8Om DBS. 85-310. 8/12/88. DSL/EDH
EIP
ii|iiii|iiii|m
13. O13. 914. O14. 315. O13. SIB. O 18. 517. O 17. 318. O 18. SIB. O 19. S2O. O2O. 321. O21. 322. O 22. 323. O
Film >39094 323.6-326.6 amu. ABO9O29-O2 <2> SAIC BOm DBS. 89-310. 8/12/88. DSL/EDH
EIP
D Jfrtit|hii|mi|lill|iiHltlitH«t**t¥^ll'Ml*'M'"MIM^^
13. O 13. 5 14. O 14. 3 15. O 15. 3 IB. O IB. 5 17. O 17. S 18. O 18. S 18. O 18. 52O. O2O. 521. O21. 522. O22. 523. O
Fil« >39094 359.5-380.5 amu. ABO8O28-O2 <2) SAIC BO* DBS. 85-310. 8/12/BB. DSL/EDH
EIP
O ptHptlililtt|IH»lllM)ltH|
-------
Film >39O92 8999. O-O. O omo. SA1C A8OBO29-RBS <2>6O« DBS. 9/12/88. EDH. B3-1 4O03O. 14O-31OS1O
TIC
180000
18QOQO
14OOOO
12OOOO"
1DOOOO
aoooo
eoooo
400OO
2OOOO
13. O 13. 5 14. O 14. 5 IS. O IS. 5 IB. O 16. 5 17. O 17. 5 IS. O IB. 9 1O. O 19. 320. O2O. 321. O21. 522. O22. 323. O
-------
Flla
Flla
Flla
Flla
Flla
>39QQ2 221.7-222.7 amu. SAIC A8Q9O29-RBS <2> BOm DBS. 8/1 2/88. EDH. 85-1 4QO3O. 1 4O-31O81 O
EIP
r f^f^ff^. . -.TTT.^.-w-^O,'', ( '. IV" •"*'^W»W^"/1 «>"* * »«rl~.
13. 0 13. 5 14. O 14. 3 15. O 15. 5 18. O 18. 3 17. O 17. 5 18. O 18. 5 19. O 19.
>39O92 255.7-258.7 amu. SAIC A8O9O29-RBS <2>8Om OB5. 9/12/BB, EC
EIP
' - ->_ T_ - - , - - --- — V "— ' —- "~ ' " ' " ' "" "**
13. O 13. 5 14. 0 14. 5 15. O 13. 5 16. O 18. 5 17. O 17. 518. O 18. 3 IB. O 19.
52O.O 2O. 521.021.522. 022. 523. O
3H. 85-14O030. 14O-31OS1O
~-~- ^ 1
5 2O. 020. 521. O21. 522. O22. 523. O
>39O92 291.7-292.7 amu. SAIC A8O9O28-RBS <2> 8Om OB5. 9/12/88. EOH. 85-1 4OS3O. 1 4O-31Q«1O
EIP
.
1 3. O 1 3. 5 1 4. O 1 4. 5 1 5. O 1 5. 5 1 8. O 1 8. 5 1 7. O 1 7. 3 1 8. O 1 8. 5 1 9. O 1 9.
5 2O. O 2O. 5 21 . O 21 . 5 22. O 22. 5 23. O
>39O92 325.8-328.8 amu. SAIC A809O29-RBS <2) BOm DBS. 9/12/88. EOH. 83-1 4O«3O. 1 4O-31O«1O
EIP
13. O 13. 514. 014. 5 15. O 15. 518. O 18. 517. O 17. 518. O 18. 519. O 19.
5 2O. O 2O. 5 2 1 . O 2 1 . 5 22. O 22. 5 23. O
> 39092 359.5-380.5 amu. SAIC ABO9O2B-RBS <2) 8Om DBS. 9/12/88. EOH. 65-1 4OO3O. 1 4O-31 OS 1O
EIP
13. 013. 514. O 14. 5 15. 015. 516. 018. 517. O 17. 518. Ol 8.519.019.
5 2O. 0 2O. 521. 021. 522. O 22. 523. O
Figure 6. Extracted Ion Current Profile Chrotnatograms for SAIC Reagent Blank
-------
TABLE 4-1. SAIC PCB DATA BY ISOMER CLASS - DEMO 1
Feed
Isomer
Class
Mono-
Di-
Tri-
Tetra-
Penta-
Hexa-
Hepta-
Octa-
Nona-
Deca-
TOTALS
Wet Wt.
ng/g
-------
TABLE 4-2. SAIC MATRIX SPIKE/MATRIX SPIKE RECOVERY DATA - DEMO 1
Isomer Group
Monochlorobiphenyl
Dichlorobiphenyl
Trichlorobiphenyl
Tetrachlorobiphenyl
Pentachlorobiphenyl
Hexachlorobiphenyl
Heptachlorobiphenyl
Octachlorobiphenyl
Nona chlo rob iphenyl
Decachlorobiphenyl
Matrix Spike
0.5%3
12%a
38%a
36%a
77%
80%
80%
88%
83%
94%
Matrix Spike
Duplicate
8.2%a
34%
56%
54%
83%
87%
87%
92%
87%
95%
Relative
%
Difference
177a
96a
38
40
7.5
8.4
8.4
4.4
4.7
1.1
Outside QC limits.
-------
TABLE 4-3. METHOD 680 DATA COMPARISON BY DRY WEIGHT 5-POINT
CALIBRATION CURVE - DEMO 1
Di-
Tri-
Tetra-
Penta-
Hexa-
Feed
(ng/g)
15000
80000
100000
71000
15000
Raffinate
(ng/g)
ND
18000
33000
26000
6000
Feed to
Raffinate Ratio
4.4
3.0
2.8
2.5
Totals
280000
83000
3.4
-------
TABLE 4-4. SAIC SURROGATE RECOVERIES (%) - DEMO 1
Surrogate
C,-Monochlorobiphenyl
C 2-Tetrachlorobiphenyl
C 2-Octachlorobipheny 1
C- _-Decachlorobiphenyl
Feed
28b
72
74
93
Raff inate
7b
73
87
96
Oil3
21b
58
73
107
Blank
18b
90
79
94
.Internal Standard not recovered. Recoveries based on an average IS response.
Outside QC limits.
-------
TABLE 4-5. TENTATIVE IDENTIFICATION AND RELATIVE AMOUNTS
OF AROCLORS* - DEMO 1
Feed Raffinate
Aroclor 1016 and/or 1242 34% 15%
Aroclor 1248 49% 63%
Aroclor 1254 17% 22%
Estimated using the program developed by L. E. Silvon, Battelle.
37
-------
TABLE 4-6. METHOD 680 PCB ISOMER GROUP RATIO COMPARISONS
5-POINT CALIBRATION CURVE - DEMO 1
Di:Tri Ratio
Di:Tetra Ratio
Di:Penta Ratio
Di:Hexa Ratio
TrirTetra Ratio
Tri:Penta Ratio
Tri:Hexa Ratio
Tetra:Penta Ratio
Tetra:Hexa Ratio
Penta:Hexa Ratio
Feed
0.186
0.146
0.209
1.01
0.786
1.12
5.45
1.43
6.92
4.85
Raf f inate
C
0
0
0
0.547
0.706
3.07
1.29
5.60
4.34
Relative
% Diff
35.8
45.6
55.9
10.2
21.1
11.0
38
-------
level chlorinated PCBs appear to be extracted more efficiently from the feed
samples by the liquid propane, the use of Aroclor mixtures to represent the
PCBs present in the oil or raffinate is probably an oversimplification. The
computer program may also be biased in the ability to determine the Aroclors
present as the concentrations of the isomer group found in the sample are
compared to a matrix table of concentrations from native Aroclor mixtures.
4.2 Phase Two - Demo 4. Pass 4
4.2.1 Method 680 - GC/MS
The extracted ion current profile (EICP) chromatograms for the major
ion of each isomer class, monochlorobiphenyl through decachlorobiphenyl. and
the total ion current (TIC) chromatograms are included as Figures 7 through
33. Figure 7 shows the TICs of the three blanks and the 5 ppm standard.
Figures 8 and 9 are the TICs of the duplicate feed, raffinate, and oil samples
along with the MS/MSD of the raffinate sample. Figure 10 is the EICPs for the
mono— through penta- isomers for the 5 ppm standard. The hexa- through deca-
isomers are shown in Figure 11. All of the remaining figures are EICPs of
samples or reagent blanks. Table 4—7 lists the amount of PCBs found in each
duplicate pair of samples by isomer class (for both wet and dry weights) along
with the relative percent differences (RPD) in the duplicate samples. These
data show very little differences in the duplicates. The RPD for the feed
ranges from 0 to 4.2 percent. The raffinate RPDs range from 0 to 7.4 percent,
while the extract oil ranges from 5.0 to 12 percent. The matrix spike/matrix
spike duplicate data are presented in Table 4-8. Table 4-9 is the data
comparison of the feed, raffinate and extracted oil samples on a dry weight
determination. These values are based on the average of the duplicate
analyses. The feed sample was 18.3% solids and the raffinate sample was 10.2%
solids. According to these determinations, the liquid propane removed 96% of
the total PCBs that were present in the feed. The percent recoveries of the
C—labelled surrogates are given in Table 4-10.
-------
Fll« >3Q37Z QOOB. 0-0.0 amu. SAIC A81OO33-O3E-B 1O/18/88. EDH
I TIC
i ooooc
[_
-A , A Ac
BO
~AO
TD
14.0 13.0 IB. O 17.0 18.0 IB. O 2O. D 21.0 22. O 23. O 24.0 23. O 26. O 27. O 28. O 28. O SO. O
a »3B37B BBBB. O-O. O amu. SAIC AB1OO33-RBDMS 10/18/88. EDH
TIC
4OOOOO
20OOOO
0
—I
JUL
Mii,i,ii|i.nti
,,.i,.|,...|iM.|.i.Miiii|»ii,li..li...1...T1.,i.l,,,,|nn|.ii.|ini)i..r1rTTT1r
BO
-4O
™»lT)
ii|r,il|iiii|iiii|iiii|iiii|iiir|i
14.0 IS. O IB. O 17.0 18.0 IB. O 2O. O 21.0 22. O 23.0 24. O 25. O 2B. O 27.0 28. O 2B. O 30. O
>3B377 BBBB O-O.O amu. SAIC A810033-RBMS 1O/18/88. EDH
TIC
40000O
200000
ll
i i Ji* flfl »
f\
. —A — : , . A A
BO
•40
.
14. O 13.0 18.0 17. O 18.0 IB. O 20. O 21.0 22. O 23. O 24. O 23.0 28. O 27.0 28. O 28. 0 30. O
'File >393B8 BBBB.0-0. O amu. 5.O PPM PCS STD
I TIC
10/18/88, EDH
2OOOOOQ-
i
i oooooo
o
.11
BO
•40
*lTJ
i.|..Ml,,.,l,ii.,.ii.|..iM,n.r...|i..,,....|f..nnn|,l
14.0 13.0 IB. 0 17. O 18.0 IB. O 2O. O 21. O 22. O 23. O 24. O 23. O 28. O 27. O 28. O 26. O 3D. O
figure 7. Total Ion Current (TIC) Chromatogram oi Blanks (top J) and 5 ppm Standard.
-------
File »3B371 9999.0-0. O amu. SAIC A810035-03A
TIC
10/18/88. EOH
200000'
1OOOOO
jLJyiAj^^—v
BO
4O
0 iiii|Mii|iiii|iiii|iiii]iiii|iiii|iiii|iiii|iiii|iiii|ifiqiiii|itU|M393B9 9999. O-O.O anu. SAIC A81OO3S-O1O-S 10/18/68. EOH i
TIC 1
BO |
20000001 ill i
utnn|nj -|it.; -.il:..;...^.^^ t !
I 14. O 15.0 IB. O 17. O 18.0 19. O 20. O 21.0 22. O 23. O 24. O 25.0 20.0 27.0 28. O 29. O 30. O j
Fllo >39370 9999. O-O. O amu. SAIC A81OO35-O1C-S 1O/18/88. EDH
TIC j
' 40000011 §•
I BO !
I J, f. ...;.4....i.^ r.p.^n.J^.^^.^r I
j 14. O 15.0 IB. O 17. O 18. O 19. O 20. O 21. O 22. O 23.0 24. O 25. O 20. O 27. O 28. O 28. O SO. O j
Figure 8. TICs of Duplicate Feed (top) and Raffinate Matrix Spike/Matris Spike Duplicate (bottom)
Samples.
-------
Tile '-3936- 99G9. 0 0. 3 c;mu. SAIC f K ; 303b- U 1 /» i 0. 1 B. 88. K.'.1:;
^ 1C
1000000^
F."
EBQ
. i
Q ' iiii|iiii|iiii|iiii|Mii|iii3837
8000002*
-
400OOO1-
Qj
°
i
Flla >3837!
BOODOO2*
4OOOO01*
nJ
» VUUM. u-u. u amu. *>"»- '
TIC
I
. 1 - l| . /U
14. O 15.0 16.0 17.0 18. C
4 9B88. O-O. O amu. SAIC /
TIC
• . lA .A,
14. O 15.0 16. O 17. O 18. C
5 8888. O-D. O amu. SAIC /
TIC
14. O 15.0 16. O 17. O 18. C
A
I 18.0 20. O 21.0 22.0 23. O 24. O 25.0 26. O 27. O 28. O 28. O 30.
V8 1 0035-02A 1 0/ 1 8/88. EDH
A kAl/Ulk fe, 4A..A* - A A .
) 18.0 20.0 21.0 22.0 23. O 24.0 25.0 26. O 27.0 28. O 28. O 30.
18 1 OO33-02B-D 1 0/ 1 8/88. EDH
. kRljalk u. u» ... 1 .
) 18.0 20.0 21.0 22. 0 23.0 24. O 25. O 26. O 27.0 28. O 28. O 30.
BO
"4O
TJ
0
BO
"40
u
0
BO
"4O
0
i
i
1
i
i
i
i
i
i
1
1
i
i
i
i
j
i
j
...j
Kigure 9. TICs of Duplicate Kaffinate (top) and Oil Samples (bottom).
-------
.K1J. >393B8 187. 7-I8B. 7 arnu. 5. O PPM PCB STD 1O/1B/88. EUH
! , ,
1-;. O 15. O 10. C 17. O 18.0 19. D 2G. O 21. D 22. O 23. O 24. D 25. D 26. O 27. O 28. O 29. D 3D. 0
L .. _ ._ . _.. . . ._.
,FU« >39366 221.7-222.7 amu. 5.
D PPM PCB STD 10/18/88. EDH
EIP
•I
D
14. O IS. O 18. 0 17. O 18.0 19. O 20. O 21. Q 22. O 23. O 24. O 25. O 26. O 27. O 28. O 28.0 30.0 j
L_ ...._ 1 I
LA IFM. "30300 2S7. 7-258. 7 amu. S. O PPM PCB STD 1O/IB/88. EDH j
X I EIP i
O | .
•
1
14.0 IS. O IB. O 17.0 18.0 18. O 20. O 21. O 22. O 23. O 24. O 23. O 2O. O 27. O 28. O 28. O 30. O j
..... |
la »3938B 291.7-292.7 amu. 5. O PPM PCB STD ID/18/88. EDH
EIP
14. O 15. O 16. O 17. O IB. O 19. O 2O. 0 21. O 22.0 23. O 24. O 23. 0 26. O 27. O 28. O 29.0 3D. O |
.._... ..,• ... _.._ ...... ....._. ._ „. .._ . -J
>3Q3OO 325.8-32B.6 amu. 5.0 PPM PCB STD 10/18/88. EDH •
CJP !
I Q niii|liii|iiii]iiii|iiii]iiii1iiiiIiiii|iifi|iiii|iiii]-iiiiyiin]iiii]nii|rlll|llll]illiiiillplil|illi|illlviiMiitlllllll'1'rr'[<<<>1
-------
Fll« »30366 359.5-360.3 amu. 3-0 PPM PCB STO
EIP
10/1B/BB. EOH
1
l|l¥ll|»¥¥|¥
¥|ll¥IJInl|l
22.0 23.0 24. O 23. O 2O. O 27. O 28.0 29. O SO. O 31. O 32.0 33.0 34.0 39. O 36.0 37. O
Flit
"39388 393. 5-394. 5 amu. 3- O PPM PCS STD
EIP
10/1B/BB. EOH
22.0 23. O 24. O 25.0 26. O 27. O 28.0 29.0 30. O 31. O 32.0 33. O 34. O 33.0 36. O 37. O
10/18/88. EDH
Film »39366 429.4-430.4 amu. 3. O PPM PCS STD
EIP
• •11| I IIl|I I••!fI•l||lfl|••••]••¥•|1II.|III¥|¥¥¥¥|I1¥¥|¥1¥¥|....|....|I¥¥¥|IIflllll^lII•|¥l¥I|>¥¥ir¥'¥¥|I1¥¥|¥¥¥l|¥¥II|«fl|III>|¥T¥1|I<¥I,....,....,....,....
22.0 23.0 24.0 23. O 26. O 27.0 28. O 29. O 3D. O 31. O 32.0 33. O 34. O 35. O 36. O 37. O
Fiji
••39366 463. 4-464. 4 amu. 3. O PPM PCB STD
EIP
IO/IB/88. EOH
J
|
'film
22.0 23.0 24.0 25. O 26. O 27. O 26. 0 29. O 3D. O 31. O 32.0 33. O 34. O 35. O 36. O 37. O
IO/1B/B8. EDH
-39366 497.3-49B.3 amu. 3-0 PPM PCB STD
EIP
._.. _. ..._ |
A
22.0 23.0 24.0 25. O 26. O 27.0 28. O 2B. O 3D. O 31. O 32. O 33.0 34. O 35. O 36. O 37. O
Figure 11. EICPs of Hcxa- Through Dcca- Isomers of 5 ppm Standard.
-------
Plla >39371 187.''--IBB. 7 amu. SAIC AB1DO35-O3A 1O/]8/BB. EDH
EIP
O
D"" 'M.1tilil.ili1.ii.|.iii|i.iilMiiliiii|.iii|7.iMiiii|iii.1iii<|tiii1iiii|Mi.|iiii|iiil|iiii|it|t|IUI|IIH|llll]llll|ll»|lill|IIH|HII|llll|llll)t»M<38371 237.7-25B. 7 amu. SAIC AB1OO35-O3A 10/16/68. EDH
EIP
14. a is. o le. o 17. o IB. o IB. o 20.0 21.0 22.0 23.0 24.0 23.0 26. o 27.0 28. o 29.0 so. o
F1J« >3937; 291.7-292.7 amu. SAIC A81CO35-O3A 1O/18/BB.EDH
Q- r,,.,.,,,]!,!,!,,,,,,,,,!,!,. ,,,, II.|II|I|M|>III|IIII] 1111 ]IHI| 1111)1 lll| III! 1 1 • 1 1 1 1 1 I 1 1 1 1 1 I | 1 1 1 1 | 1 1 I I ] 1 1 1 1 1 1 1 1 1 1 1 1 1 I ] 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 1 ) 1 1 1 ^
14.0 15. O 1O. O 17.0 18. O 19.0 2O. O 21. O 22. C 23. O 24.0 23.0 26. O 27. O 28.0 28.0 30. O
-• - ...... - - - ............. - ........... - ........... - ...... - - -
>3B371 325.6-326.6 amu. SAIC A810O35-03A 10/18/BB.EDH
EIP
-i
1
14.0 15. C 16.0 17. O 18. O 19.0 2C. 0 21. O 22. C 23.0 24. O 23. O 26. O 27, O 28. O 2B. C 3O. C
Figure 12. lilCPs oi Mono- Through I'enta- Isomers of Feed Sample.
-------
>39371 3SH. 3 -3flO. 3 aim.. SAIC A9JDU35 O3A : U/1 8/88. IIDM
: AjJLJL^A.
22. O 23. Q 24. O 25. Q 26. 0 27. 0 28. Q 29. O 3D. O 31 . O 32. O 33. O 34. 0 33. O 3O. D 37. O 38. 0 39. O 4O. 0 ;
IFUa >3B371 393.3-394.3 amu. SAIC A910035-Q3A 1O/ 18/88. EDH '
EIP :
Q
22. O 23. 0 24. O 25. 0 26. O 27. Q ZB. Q 28. 0 30. O 31 . O 32. Q 33. Q 34. 0 35. O 36. O 37. Q 38. O 38. 0 4Q. Q ;
I p I i ______ . __ . . _.. * •» A T f» AB- nn-AD ira A 4 ^ ^« a ^aA crnu I
I• -38371 429. 4-430. 4 amu. SAIC AB10033-03A 1O/18/BB. EDH
i EIP
..— .. .-. - i n p~m>hVTfin
,
_
O qill|l1ll|llll]IIM|irll|llll1lll.|ini|iiiirMipiii1iMi1nii|liup>ii|iiii|iiii|38371 -163. 4-.J6-i. 4 amu. SAIC .-.81 OO3S-O3A 1O/18/8B. EDH !
EJP :
22. a ?.3. D 24. D 23. O 26. n 27. 0 28. D 28. O 30. O 31. 0 32. O 33. D 34. D 35. O 38. Q 37. O 38. 0 39. O 40. O
i- - - • -
Fllo >393?1 .107.3-498.3 amu. SAIC AaiOO35-O3A 1O/18/88. €UH
0 IUI|,UI,Uo|.In lhlllU,)^M|,,H|l^|lunMU,jlUI|(UIMUI!llll)ll^tin)]MMI.i..|Mi.11MMin,1n..).M.,.Mi|uii|1i.,:i.M1M..|i.uiH.M.ii.,1iM1|iM.:i..,,,,,,,,,,,)
?.?.. a ?,3. a 2'-.. n 35. n 30. a ;>:'. o 20. 020.030.031.0 32. o 33. o 31. o 3s. o so. o 31.'. o SB. a 39. o co. o
Figure 13. ElCPs of Hexa- Through Deca- Isomers of Feed Sample.
.......a
-------
(Fjla >39373 1B7. 7-1B8. 7 amu. SAJC A81OO35-D3B-a 1O/18/88. EDH
EJP
I
D •Jpiii|iiiiii»ii|iiiiliit;|iiii)iiii|'1iii']«iii|iii^7rn|iitr1iinv"i|'i«»|i"qiiiiiiiTr;»iiipTiipiii;iiiqittiYiiifjtiii;nii|trnpiitYiiii|iii^i3B373 221.7-222.7 amu. SAIC A81OO35-O3B-D 1O/18/88. EDH !
i EIP i
! -J I i
[FI la
H _ ^
Ak A.VA . *V
0^riM|i..iii..i|iMi|iiiivi"i''"i"'M''''i''''r'''i''''i''''i''''i''''r''li''"i''''i''''l't'|lll''llll'1tl|lll1l|lrlfll'll'ln|'l''lll'll'lT'"l''l'l'llMl>"1
1 4. O 15. O IB. O 17. O 18. O 19. O 2O. O 21. O 22. O 23. O 24. O 23. O 26. O 27. O 28. O 29. O 3D. O
Fll« >39373 257.7-258.7 amu. SAIC A810O35-O3B-D 10/1B/B8.EDH
EIP
5OOOO1
. LAWUA
O^piii|iiii|Mii|iiii|iiii|iiii|iMivrii|iiiM>nl'inInlM'>P>nt>'i^l|Hlll1^nfPn'Tlll'llulrlllll1l>Tlrnl'ml1mllllllllllllllll
14. O IS. O 16. O 17.0 18. O 19. O 2O. O 21. O 22. O 23. O 24.0 29. O 28. O 27. O 28. O 29. O 30. O j
>3S373 291.7-292.7 amu. SAIC AB10O33-O3B-D 10/18/88. EDH ;
EIP i
Q- ;,i,,],, i,,, ,i, |MiMiiM). in ,111.,.nip in,!.. t,iiii|iiii|iii<|iiii>iiii)ini|ini|iiil|l
1 4. O 13. O 16. O 17.0 18.0 19. O 2O. O 21. O 22. O 23.0 24. O 23. 0 26.0 27. O 28. O 29. O 3D. 0 j
. ... . _ ._.. .. j
>38373 325.8-326.6 amu. SAIC A81O035-O3B-D 10/18/88. EDH
tIP
20000^
q
JL_
M.i.M.i.i|iniiiin,,.1111111)11111111,tiiiiiiiii]!!!!!.,,,,..,,,,,.,,,,,.,,..,,,,..,,.,.^,,. ,.,„,„„,„„,,,„,•..•)..i.p.••)..••!•...]...Mrr,n
14. O 15. O 16. O 17. O 18. O 19. O 2O. O 21. O 22. O 23. O 24. O 25.0 26. O 27. O 28.0 29. O 3D. O }
. ...J
i
figure 14. EICl's of Mono- Through Penta- Isomers of Duplicate Feed Sample.
-------
K-
O
00
3*" r • i • nn i ^ »~ (3 A I *"" AO^f'i'lT'>--'n41-*ri ' 11 * 1 H 'OR
JT»»"J~"-J*M'»»"; Offll '• •*' • ' *» ^VO«*»**..T^ *.# VJI» tJ «US1O/OO»I
ll \ I
^/LA/I—.-J
2.?. U .73. Li 24. O 2U. C 26. O 27. D 2B. 0 29. 0 3D. 0 31. O 32. O 33. C 34. O 33. Q 38. 0 37. O 30. O 39. 0 4O. O
Vila >383V3 393. 5-384. S amu. SAIC AB10O3S-O3B--D IQ/iB/BB. CUM ;
•^ - ^ ,4^ ii i—f ji_n I* 1-1 - _-*--* r -~i_ T*'" 1- ' LI- -~-Mf-T--—Tj J Ti- - . -- *-•-.- r- -- _~. T J
^•']iiii|iiii|iiii>iiil]illi|lli*|iMi;i>|i|liiiiiiii;illi|iiii|iin|iili|iiii]iiii]iiii;iiii|iiiijiiii|liit|iiii)iiii]tiii>iili]iiii|iiii]iiilplir|
?r.. u :>.3. o 24. a 23. o 20. c 27. o 28. a 29. o so. o 31. o 32. a 33. a 34. o 35. a SB. o 3". o SB. o 39. a 40. o
Klla >3B373 42B. 4-43O. 4 amu. SAIC ABJOO33-O3B-D 10/18/88. EDH
tIP
1 ,, «. . ^w •..«. . „ ... . +H .• .^ .+ ..» . » ..».> •» .. i
. 22. O 23. Q 24. 0 29. O 2O. O 2". O 28. Q 29. O 30. O 31. O 32. O 33. 0 34. 0 33. 0 36. 0 37. 0 38. 0 39. 0 40. Q
^-•Jlo >3B373 483. 4-404. 4 emu. SAJC AB10033-D3B-D 1C/J B.'efl. EDH
tIP
J j- -U--1-- - •— -.-•—• • — •-
O" IIII|UM|I,I. Mill. lllllllhllHlll. Ill, I. l,llll|lhl|,l,l!UII|l|ll|llll|ll,l]IIMMIII;l,,,,,M .,,„,,. „,,, .,!],.I.,.!..,.Ill,HIM ! l.l|l...,l|..1I.IM.II.].IM|,lin
22. C 23. C 24. Q 25. C ?.K. 0 27. U 29. C 29. O 3D. O 3i. O 32. O 33. O 34. D 33. O 36. C 37. C 3B. O 39. 0 4O. C
f-lla >3B373 497.3-498.3 amu. SAIC AB1CO35-03B-O 1O/1B/BB. EDH
Q -1 IM.;,,MMI..:.lllM.li;.lll<.«i;....M.II]|...]llll. I.. ,|l.IMI,,MI...]..mllll;...I'll,.,,,n|l.,,]|..M...M,..,|.l..|lM,:lM.:MI.|l...:.MM.l..J...I.,,.,,,!., ;,„,.,„,,, „ ,,
22. O 23. C 2^. L 25. O 2H. C 27. C 2B. O 29. O 3O. O 31. O 32. D 33. O 3-i. O 35. O 3B. 0 37. C 38. O 39. Q 40. O
Kigure 15. EICPs ot Hexu- Through Deca- Isomers of Duplicate Feed Sample.
-------
K-
O
CO
Ft la >393B7 187. 7-1 68. 7 amu.
^ » - A
14. O IS. O IB. O 17.
Flla J-39367 221.7-222.7 amu.
, .ll
14. O IS. O IB. O 17.
Flla >393B7 257.7-238.7 amu.
mi jii....... ,...., ....,....,....,
14. O 15. O 18. O 17.
Flla >38387 281.7-282.7 amu.
14. O IS. O IB. O 17.
Flla >38387 325.8-328.8 amu.
SAIC A8 10035-0 1 A 1O/ 1 8/88. EOH
EIP
. MA uAh
O IB. O 18. O 2O. O 21.0 22.0 23. O 24. O 25. O
SA I C A8 1 DD35-0 1 A 1 0/ 1 B/BB. EOH
EIP
J _ . .ML LJ«LJ^L_,
O 18. O 18. O 2O. O 21. O 22. O 23. O 24.0 25. O
SA I C A8 1 OO35-0 1 A 1 0/ 1 B/BB. EOH
EIP
O IB. O 18. O 2O. O 21. O 22. O 23. O 24. O 25. O
SA I C AS 1 OO3S-0 1 A 1 0/ 1 B/88. EOH
EIP
,luJ 4 .
0 18.0 18.0 20. O 21. O 22. O 23.0 24.0 25. O
SAIC A81O035-01A 1O/ 18/88. EOH
EIP
14. O 15. O 18. O 17.0 18.0 18.0 2O. O 21. O 22. O 23. O 24. O 25. O
28. O 27. O 28. O 28. O 3O. O
2B. O 27. O 28. O 28. O 3D. O
2O. O 27. O 28. O 28. O 3D. O
28. O 27. O 28. O 28. O 3D. O
|II1I| I1II|IIM |llll|f in|MII|HII|llltfTTTT]
28. O 27. 0 28. O 28. O 3O. O
Figure 16. KICl's of Mono- Through Penta- Isomers of Raffinate Sample.
-------
K-
H
O
Pl la >393rt7 359. tv-360. 5 emu. SAIC AB1OO35-OJA 10/J 9/88. EDH
tIP
Fllo
r?2. D 23. C 24. C 25. O 28. D 27. O 28. O 29. O SO. D 31. O 32. D 33. D 34. O 3b. O 38. O 37. C 38. 0 38. O 4O. O
• ..... . ..... . - .- - ..... ... ...... . . ..... . ..... .......
383fl7 393. S--394. S amu. SAIC A8l DOSS-CIA 1O/J 8. B8. EDH
EJP
A^JuLJU^
22. O 23. O 24. C 25. O 28. O 27. O 28. O 29. 0 3D. O 31. O 32. O 33. O 34. O 35. O 38. O 37. O 38. 0 38. O 4C. O
1O/18/88. COM
»383B7 428. 4-43O. 4 amj. SAIC A81OO35-O1A
EIP
11 trtiji t
Flle
22. O 23. O 24. O 23. O 28. O 27. 0 28. 0 28. O 3D. O 91. O 32. O 33. O 34. 0 39. O 38. O 37. O 38. O 38. O
>39387 483.4-484.4 amu.. SAIC A81OD3S-O1A 10/18/88. EOH
4O
!
]
Q j
-I
Vila
22. O 23. 0 24. O 25. O 28. D 27. 0 28. O 29. 0 3O. O 31. O 32. O 33. O 34. O 33. O 38. O 37. O 38. O 38. 0 4O. 0
"-39387 4S7.3-498. 3 amu. SAIC A81OO35-O1A 1O/18/B8. EDH
EIP
.
22. O 23. O 24. O 25. O 28. O 27. O 28. Q 29. O 3O. O 3J. 0 32. O 33. O 34. O 35. O 38. Q 37. O 38. O 38. D 4D. O
Figure 17. EICPs of Hexa- Through Deca- Isomers of Raffinate Sample.
-------
Ft la >3936I
9 1B7. 7-188.7 amu. SAIC A81OD35-O1B-DUP1O/ 18/88. EDH
EIP
MA Jii
14. O 15. O 18. O 17. O 18. O 19.0
Flla >3936I
O
Fila >393BI
O
Flla >3B3B
O"
Flla >393B
j ^
2O. O 21. O 22. O 23. O 24. O 25.0 28. O 27. O 28. O 29. O 3D. O
3 221.7-222.7 amu. SAIC AS 1O035-O1B-DUP1O/ 18/88. EDH
EIP
A ~All jA - .. -M* iiA.jU *.
14. O 15. O 16.0 17. O 18. O IB. O
20. O 21.0 22.0 23. O 24. O 25.0 28. O 27. O 28. O 29. O 3D. O
B 257.7-258.7 amu. SAIC A81OO35-O1B-DUP ID/ 18/88. EDH
EIP
, I
hAffl% — * — —
14.0 15. O IB. O 17.0 18. O IB. O
20. O 21. O 22. O 23. O 24. O 23. O 26. 0 27.0 28. O 28.0 30. O
9 291.7-292.7 amu. SAIC A81 0033-O1 B-DUP1O/ 18/88. EDH
EIP
14.0 15. O 16. O 17.0 18. O 19.0
2O. O 21.0 22. O 23.0 24.0 25.0 2B. O 27.0 28.0 28. 0 3D. 0
9 325. 8-328. B amu. SAIC A8 1OO35-018-DUP 10/1 8/88. EDH
EIP
1
14. O 15. O 18. O 17.0 18. O IB. O
20. O 21.0 22. O 23. O 24.0 25.0 28.0 27. O 28. O 28.0 30. O
Figure 18. EICPs of Mono- Through Penta- Isomers of Duplicate Kaffinate Sample.
-------
to
Fill
»39.1flB 3S9. 5--360. 3 amu. SAJC A911)1)33-01 B-DUH1O/1 8/88. EDH
tiJP
MMMIMMliM.,iiii,ii.i1iii,;.,ii|MiMiiiiIiiii|iiii|riii]iiniriii|iiii)ini|iiii]iHi|ini|iiii|nii)iiii|iiii!iiii]iiii]iiu)ii(i^
22: O 23. D 24. O 25. O 26. O 27. O 28. D 28. Q SO. 0 31. D 32. O 33. O 34. O 35. O 3B. O 37. 0 38. O 38. O 4O. O
--3930B 393. 5-394. S amu. SA1C AB1 aO35-OlB-DUPlO/l 8/89. EDH
EIP
I
A. .llA .AA^L A
22. O 23. O 24. O 25. O 20. O 27. O 2B. O 29. D 3O. O 31. O 32. O 33. O 34. O 35. O 30. Q 37. O 38. Q 38. O 383BB 429. 4-43O. 4 amu. SAIC AB1OO35-O1B-DUP1O/1B/B8. EDH
EIP
]
"1
J.
; 22. O 23. O 24. O 25. O 20. O 27. O 28. 0 28. O 3O. O 31. O 32. O 33. 0 34. O 35. O 38. 0 37. O 38. O 38. O 4O. 0
Vila "39308 463.4-464.4 amu. SAIC A81CO33-O1B-DUP:0/1B/BB. tDH
Q"]IMI|llll|lllllllll;lllllllti;illl]llll|IIIIJIIIII
-------
Co
hllo
-39370 187. 7- IBB. 7 amu. SAIC AO 1 OO35--O1 C--S :0/18/BR. EUH
3 I
. ...
Q pTityiTirjtM ijiinjitiipiiipiiijliii) iiiljuiipi ti |i lit pin piiit,ilii|iiiip*rllj
I
14. D 15. C 18. D 17.0 18. O 19. O 2O. O 21. O 22. O 23. O 24. O 25. O 26. O 27. O 28. O 29. O 3D. 0
>-39370 221.7-222.7 amu. SAIC AB1OO35-D1C-S ID/18/88. EUH
EIP
4
-j
-I
* . AA J A. A LA. At .
t|1,,i|ll.i|,n,!,••.,,••,pi,,]•.up.,,,,!,•,iir-jmum
|F1
14. O IS. O 10. O 17.0 IB. O 19. O 2O. O 21.0 22. O 23. O 24. O 25. O 26. O 27. O 28. O 29. O 3D. O
>38370 257.7-25B. 7 amu. SAIC AB1OO35-O1C-S 10/19/89. EDH
EIP
9. O 3D. O I
H
Ipll
Q^piirpiiipriipriiprripiiipiiipii^iiifTl^V'HpM^iiiiirtApitij^ !
14.O 15. O 10. O 17. O 18. O 19.0 2O. D 21. O 22. O 23. O 24. O 23. O 2O. O 27. O 28. O 28. O 3D. O
>39370 291.7-292.7 amu. SAIC AB1O035-O1C-S 10/18/88. EDH
EIP
10. O I
JL
„„. . iiA.*m\ mjLuJwi A -*»
O IIIIIJH npiup 111 pit ipn niiiijiii jpmpiiipiti i11111111111111 p 111111 M j i iit|ilii ji illpliipiii|iiii]iiiipiiipiii|iliipill]ilii)iillplllJiiiiptH]iiTr|
14.0 IS. O 16. O 17. O 18.0 19. O 20. O 21. O 22. O 23. O 24. O 23. O 26. O 27. O 28. O 29. O 3D. O
> 39370 325. e-320. 0 amu. SAIC A81O035-O1C-S 1O/ 18/88. EDH
EIP
-I
i pill] i iiijiiii) in ipiii
-------
H-
;-3<.:«-ij T;<-».'..-i(;;j. •: ^m-s. s*.;r: AuaiM's--:.! L- •?; in. iB.'oa. K.MI
ITP
: i
^'..n.....A.-A..rA.m.M^ '.I r.ft ..,..,., ,,...- ...; ....,
.?.•'. u :•:».:) .?.;. c ;;s. a .?a. o 2:'. o ?.a. c ?.a. a 3D. a :i;. o :i2. o 33. u 34. o 'J'J. a 38. c 3". a 38. o 38. o 40. o
i
•••39:383"O 42B. 4--430. 4 amu. SAIC A810035-D1 C-S 30/18/88. EDH
:,, "',1
r-n. o S3. u r^;. a 25. a ?.a. o ?:.•. o ?.B. o zo. o 30. a sj. o 3?. o 33. o 34. o as. o aa. o 3". o 38. o 39. a 40. a
•-3S3~o -;e3. ,---.5-;'. . omu-. SAi'" »8:uc3:>--!:j!:--s :c.-:e/B8. KPH
! J .. . A .
?:•.. a ;:j. c ; .. L. ••>. c; ::«. n ;,•-. o ;:B. L, :>.«. u 10. a 3i. u :»:>. i- -.1.1. i; 3-'.. o 3:j. 0 38. c 3". i; :?n. G 39. o -to. L;
iiriizizii *
2.-. c :ri. c .?--..:.. .'5. n ?fl. ^ ?". t; ?e. a 29. c 3C. o i:. u 3?.. c i»3. c; 3-;. c 35. G 3«. c 3". c 38. c SB. o :r~. o
Figure 2J. EICPs of Hexa- Through Duca- Isomers of Kaffinatc Matrix Spike Sample.
-------
Kllu >393PS 1B7.7-JHW.7 um-j. SAIC ABH)m5-OlO--S in/18/OB.EUH
j-
Fi
14.0 15.0 16.0 17.0 1B.O 1 B. O 2O. O 21. O 22. O 23. O 24. O 25. O 26. O 27. O 28. O 29. O 3D. O
39369 221. 7-222. 7 amu. SAIC AB1O035-O1 D-S ID/ 18/88. EDH
HIP
IF 1i<
0-*;itli;.ll|.|ll.|llll1ll,l| 1111,1111111111111111111(11111111
14. O 15. O 16.0 17.0 18. O IB. O 2O. O 21. O 22. O 23. O 24. O 25. O 2B. O 27. O 28. O 29. O 3D. O
>3B36B 2S7.7-25B.7 amu. SA1C AB1OO35-O1D-S ID/18/88. EDH
E1P
DJfT
! 14. 0 IS. 0 18. 0 17.0 18.0 10. O 2O. O 21. O 22. O 23. O 24. O 23.0 2O. O 27. O 28. O 29.0 30.0
F13a >39369 291.7-292.7 amu. SAIC A810035-O1D-S 1O/18/88. EDH
KIP
j
14. D 13. C 10. C i7. C 18. O 19.0 2C. O 21.0 22. C 23. O 24.0 23.0 ZO. 0 27. C 28. O 28. O 3D. O
»-llc -3B309 325. fl-320. B amu. SAIC ABIDHSS-OI D-S 1O/18/B8. EDH
E7P
14.0 15. C 10.0 17. O 18. O 19.0 2O. O 21. O 22. O 23. O 2V.. O 23. C 2B. C 27. O 28. O 28. O 3D. D
Figure 22. ETCPs of Mono- Through Penta- Lsomcrs of Raffinate Matrix Spike Duplicate Sample.
-------
:« --3W.1P9 35«. 'T--:iii|Mii|iHiMii,lmiiMii|mipii^^ ;
^a. D 23. n 2*. c as. D 20. o 2?. o 20. ti 2«. o sc. o 31. o 32. n 33. o 34. c ss. o 38. o 37. o SB. o 39. c 40. p :
t- • • • •• - ......... .................... ........... • ........ ....... - -'•• -• •-•
KJJa "38389 393. 5-3B4. 5 emu. SAJC A81OO35-O 1D-S 10/1 8/88. EOH
F.IP
22. D 23. 0 24. U 25. O SB. O 27. D 28. O 29. O 3O. O 31. O 32. O 33. O 34. O 35. 0 38. O 37. O 3B. O 39. O 4O. O
\~~~ - • ~"
Fll« >3B388 428.4-430.4 omu. SA1C A810O33-O1D-S 10/19/89.EDH
O -'iii]iiiMiiii]iiii|iiii|iiii]iiii|iiiiiiiii|iiii]iiif]iiii|iiii|iMi|iiii|i.ii|tiii|iiii|iiii]iiii|iin]iiii]ini|iin|iiii|iiii|iiii|iiii|iiii|.iM)Mn|i.ii|iin|iiii|iin|ii
22. O 23. O 24. O 25. O 28. O 27. 0 28. O 28. O 30. O 31. O 32. O 33. 0 34. O 33. 0 36. O 37. O 38. O 30. O 4O. O ;
w . . . - J
rMa >S8389 483. '.--48 ;. 4 ami*. SMC A 81 0033-.T: J-S 10/1 8/88. EDH
HJP
•t
.??. O ^3. C 24. O 25. O .i6. G 27. C 28. O 20. O 3D. O 3: . O 32. H 33. 0 34. O 33. 0 38. 0 37. C 38. O 39. O 4O. 0
t-. . . ... - . . ...
K1J« -'3B3B9 49V. 3--V9B. 3 amu. SAJ'J ABIOU3S--O1 D--S 10/18/88. KDH
HI I'
n ''HIi li.ixlii.iiillMM, h<>lii:illlliUI|llli|lill|lill)Ull>llll|lill|hlMIIIITiii>jiiii|iri;Mit!iiii:iiii|iiiiliuii'iii:initiiii:ilil|iiii|iMi>iiii;iiii]iiii;iiii[iiin
.'.2. c .?.i. n ?.;.:; r:s. n ?.a. c .r.*. o ?a. o ?.Q. o so. o si. o 32. o 33. n 34. o ss. o 3B. a 3". o SB. o 39. c 40. o
Figure 23. EICPs of Hcxa- Through Ueca- Isomers of Kaffiriate Matrix Spike Duplicate Sample.
-------
"3Q374 187.7-188.7 amu. SAIC A81QQ39-Q2A 1O/1B/BB.EDH
E1P
.. . ... WA JIM* .,
14. O 15. O IB. O 17. O 18. O 19.0 2O. O 21. O 22. O 23. O 24. O 25. O 26.0 27. O 28. O 29. O 3O. O
Flly >39374 221.7-222.7 amu. SAIC AB1OO35-02A 1O/18/88.EDH
EIP
tiMiniiiiMipMtp.irptrTpT^priip^iinpiMpofl^^pT^pSTTi^iprTfliMrii.iitttntrrT
14. O IS. O IB. O 17. O IB. O 19. O 2O. O 21.0 22. O 23. O 24. O 25. O 28. O 27. O 28. O 29. O 3D. O
I• -39374 257.7-258. 7 amu. SAIC AB10033-02A 10/16/68. EOH
EIP
14. O 19. O 18. O 17. O 18.0 19. O 2O. O 21. O 22. O 23. O 24. O 25. O 28. O 27. O 28. O 29. O 3D. O
Fll« v3Q374 291.7-292.7 amu. SAIC A810O33-02A 1O/18/88. EDH
EIP
JUUU
14.0 15.0 18.0 17.0 18.0 19. O 2O. O 21. O 22.0 23. O 24. O 23.0 28. O 27. O 28. O 29. O SO. O
Flla >39374 325.8-326.8 amu. SAIC AB1OO35-O2A 10/18/88. EDH
EIP
JJLJl
14.0 15.0 10. O 17.0 18.0 IB. O 20. O 21. O 22. O 23. O 24. D 23. O 26. O 27. O 28. O 29. O 3D. O
Figure 24. EICPs of Mono- Through Penta- Tsomers of Extract Oil Sample.
-------
/. 359. 5"3fln. 5
i C/l 8. 88.
2. O 23. G 2v. C 23. C 2fl. C 27. O 28. O 2S. C 3D. O 31. C 3?.. Q 33. D 34. C 35. C 3O. O 37. D 38. O 39. O -JO: C
Flla >39374 393. 5--30-;. S a«u. SAlC A81OO35--02A 1 C/18/88. CDH
HJP
00
22. Q 23. C 24. C 23. O 2R. 0 27. D 28. O 29. O 3D. O 31. O 32. O 33. O 34. O 35. O 3B. O 37. O 38. O 39. O 4O. O
iFlla >39374 429. 4-43O. 4 onu. SAIC AB10033-02A 1O/1B/B8. EDH 1
EIP i
- i--U. ,-i.-"-.TV -i \.rnAA~-ru-'---^1-J-f>rLjA> " Jl> >|JU>>l>irn^ '*V»"'- inr m^mm-fiu (ttiifrV |
U V...p».p...p...p...p...p.l , ,- .,„ , , „ ,.„ nm ,„ „,. ,„, „., „,. „., ,, .... „ m '
i 22. 0 23. O 24. 0 25. O 2O. O 27. O 28. O 28. 0 30. O 31. O 32. 0 33. O 34. O 33. O SO. O 37. O 38. O 38. O 4O. O .'
!-••-• -I
Ft la >3B374 483.4-484.4 amu. 3AJC ABJDO35-O2A 1C/1B/B8.EDH
Elf
-J ,* . ^ ~~~-~~~~
22. C ?.3. O 34. 0 23. U 2O. C ?.?. D ?.B. C 29. O 3D. D 31. D 32. O 33. O 34. D 35. D 3B. D 37. O 38. O 39. O 4O. O
;Kllo --39374 4B7. 3-498.3 omu. SAlC A81RQ35-D2A 10/l B.'BB. EDH
E2P
• 1 ^»«ltaAAw»«*^MM«h^k*^«»AMM»^*»«B>*«^M«>Ntf*AM«M^Mte^^M«M^^rt^««k4Wta«M«*^k*lA^VBtfa
22. C 23. O .'•;•;. C 25. O 2fl. O 27. O 28. O 29. O 30. 0 31. O 32. O 33. O 34. O 35. Q 38. O 37. O 38. O 39. Q 4O. O '
l '
Figure 25. EICPs of Hexa- Through Deca- Isomers of Extract Oil Sample.
-------
>33375 1B7.7-1BB.7 amo. SAIC AB1 0035-028-0 I O/18/BB. EOH
F. IH
1
-t
-A-*A_
1 4. O 15. O IB. O 17.0 IB. O 1 9. O 2O. 0 21. O 22.0 23.0 24. O 25. O 28. O 27.0 28. O 29. O 3D. O
a >39375 221.7-222.7 amu. SAJC A81 O035-O2B-Q ID/ 18/88. EDH
EJP
'-\
U. L. „
I,,.,,,,.1,,..,.,..,.tmT,,,.,,.,..,....,....,11.ip,,.,....,.,,.,..^,
14. 0 15. 0 18. O 17.0 18.0 19. O 20. O 21. a 22.0 23. a 24. a 25. 0 2O. 0 27.0 28. O 29. Q 3O. O
|F11« >38373 237.7-258.7 amu. SAJC A810O33-O2B-D 1O/18/8B.EOH
EJP
i|inilim,llli|
14. a 13. o 18.0 17.0 IB. o is. a 20. a 21.0 22.0 23.0 24.0 23.0 20.0 27.0 28. o 29. a so. o
|Fllo >39375 291.7-292.7 amu. SAJC A81OO35-O2B-O 1O/18/88.EOH
I EIP
3O. O I
O '*ii i, i in, it ii 11 in,.. 1.11 ii 1,1 ii 11 M. 1,1111 ji lit jilt i,. iii, .i ii,iin,iiii,iiii,i 111,1111,1111,1111,1111,1111,1111,111 tin iijiii ijtiii, 1111,1 ii i,iiti,iiii,nU,iH^ j
14.0 15.0 IS. 0 17.0 18.0 19. O 2O. O 21.O 22.O 23. O 24.O 25.O 26.O 27.O 28. 0 29. O 30. O
la >39375 325.6-320.8 amu. SAJC A810O35-O2B-D 1O/18/88. EOH
EIP
0 •i'iirini|iiU|iiii|iiiipiii|nil|llll|UII|llll|llll|IIU|iiiniiii|im|iiiipiii|nu-|iiii|iniiiiii|iiii|iiii|iiii|Mii|iiii|iiiifiiitpiri|iiii1,iii|t,,,,1T
14. O 15.0 1O. O 17.0 18. O IB. O 2O. O 21. O 22. O 23. O 24. O 25. O 26. O 27. O 28. O 29. O 3D. O
Figure 26. ElCl's of Mono- Through Peuia- Isomers of Duplicate Extract Oil Sample.
-------
0 J.
SA I'- A»; L)Ii3.')-n2B"U JO/1B/BB. KOH
HIP
:>:•. o ?3. u ;;-;. o 215. o P.O. o ?.:\ o ZB. o ?.B. Q 30. a 31. o 33. o 33. o 34. o ss. o 30. o 3V. Q SB. o SB. o 40. o
.-• ......
rlla >-39375 3O3. 5-394. 5 amu. SAIC AB1D03S-02B-U 1O/1 8/88. EDH
HIP
JU-jJlA A^AuJL AL.
?2. O 33. D 24. C 25. O nfl. C 27. O 28. O 29. O 3O. O 31. O 32. O 33. a 34. O 33. D 30. O 37. O 38. D 39. a 4fl. U
r • • ' .... 4
Flia >3B37S 429. 4-43O. 4 anu. SAIC /».83 DO35-O2B-D 10/18/88. EOH
elp
', , ,„..„..„...(,.
22. Q 23. O 24. O 23. 0 26. 0 27. Q 28. 0 29. 0 3D. O 31. O 32. O 33. 0 34. 0 35. O 30. Q 37. O 38. 0 38. O 4C. O
37!5 .;B3. .i--4fli. 4 am-.i. SA ;C A8 j 17035- O2H-P 1 C/I B/88. i-DM
O'-M-|MIMIM,nM,.,UI,,;nl,,IM:,,U,|lll,;. MM IM.UI.OCI.JMII VMM,MIMMIpnlMIII.M.IMltllMI,,,.,.;!.,i:i.,.Ji.II],.,•.,,.,!•,,.,,,,,,,,,,,.M.;i,,.|,.ll|.,.,;,.,,,,,TT,
22. D .?T. n 2^. i-. :'.y. r. ?n.:; 2v. n 28. n 29. o 10. D 33. o 32. o 33. a 34. o 35. o 30. n 37. o 38. D 39. c 40. o
... . ..._........
>3S373 49-1. 3-498. 3 amu. SAIC A8H)t;35--DaQ-D JO/18/8B.E3H
HIP
u,..1,1,i,n |,..,;,..,;.,|||.,M.Iilll..,.,11.111,,Illllll.nilllitlliUIIUIIl[[[„,
:\'.. n ::n. n .? i. n :>•?. n :>.H. n 27. n ^B. n ;>.». n ?n. n 3:. D 32. a 33. n 34. o 33. o 38. n 37. n SB. n nn. n ;n. n
-------
'Klla >39372 187.7-188.7 amu. SAIC AB1OQ35-Q3E-B 1O/18,'BB. EDH
EIP
i
Q "'•Ml l|,III |l Ml,llll]ll II) 1111)1111)1111 ]ll ll| Irll^MtllllllllllJIIIIlllll!! 11111111)1111)1111] IIIIJIIII^IIIplll^lllllllllllMplllIltllltllllllllllllllMIIIUTT]
14.0 15.0 10.0 17.0 18.0 18.0 2O. O 21. O 22. O 23. O 24. O 23. O 26. O 27. O 28. O 28. O 3O. O j
i ....._ ...._ ...._.. ..._._r:._U
Flla >3Q372 221.7-222.7 amu. SAIC AB1OO35-O3E-B 10/18/88. EDH !
EIP
iFl
0" 'It Mill I 1)1 III|lIII]111111111)1111|llll|llll|1111)111 I)llflllll>JMII|IIIIJIIII|ll11)1111|llII]1111)1111]llll|llll|llll]lIII]IIIl|llll]llll|lll1|lllllllll]llll]l
14. O 15.0 IB. O 17. O 18. O IS. O 2O. O 21. O 22. O 23. O 24. O 25.0 2B. 0 27. O 28. O 28. O 3D. O
39372 237.7-238.7 amu. SAIC AB1O035-O3E-B 10/18/88. EOH
KIP
14.0 19.0 10.0 17.0 IB. 0 IB. 0 2O. 0 21. O 22. O 23. O 24. O 23. O 2B. O 27. O 28. O 28. O 3O. O
Kilo >3B37?. 281.7-292.7 amu. SAIC AB1OO33-O3E-8 10/18/88. EDH
HIP
Q •|lll]MII)llll|lltl|IMI|MM|MII|llll*IMIJIIIMMII)Mtl|IIIIJIIIi;illlJIIII)1HIJIIM|lll I] II M ) II1111II I] IIII J IIII |l III111111111111111( 1111J IIII | II11111II | III TJ
i 4. D 15.0 IB. O 17.0 IB. O 19.0 2O. O 21. C 22. O 23. O 24. O 25. O 2B. O 27.0 28. O 29. 0 3D. O
\— • • • ....... . ..... ... . ....
Fl]«a >39372 325. B-32B. B amu. SAIC AB1OO35-O3E--B 1O/18/88. EDH
EIP
O •llll|llll|llll|(lll|.ll.|IIIIJIlll]llHHtlt|llll|llll|lllt|llll|lMI IMIH1.M1MM1,,,1,M..|MII|MI,|,1M|M,,;.M,,M,,|,M,|MM;, 11 , . 11 . ) .. . . 111 ir,
14. D 15.0 IB. O 17. C :B. O 19. O 2O. 0 21. D 22.0 23. O 24.0 25.0 2B. 0 27. D 28. C 29. O 30. O
Figure 28. EICPs of. Mono- Through Penta- Isomers of Reagent 'Blank.
-------
c ••;:...I.,,..,,,,,,,.,,,,,.,.,.,,, ...;.,,m...|....;„„.....,,..., ;,,,, ...i.^im.iiu.i.uiiiiujiitiiimmiii.miMiii'i i]i'i>li<t>i''"ll'>M'''Ml'iMlll'l
?.:'.. u ?.?. c :M. c 2r«. n 26. D 27. c za. a ?.&. a 30. o 3:. o 3?.. o 33. c 34. o 35. o 3«. o 37. o 39. c SB. n .;p. o
r - • •• -• • •• •••- - • - •
K'Ju >3t>372 393.5-39;. 5 u^vj. SAIC AB;OC33-03e-B 1 U.'1 B/3B. COM
KI?
O |'un.uituiiiii,M....Iii.M.,,,;..M|,,,,1.it.,,M.|...iIi.i.:.iii]ii.l|i.i,|M,.,....1.ii.]i...p.ii;,Hi|.inM.M,i.ii|iMMi,.,nM.:n..|.,.M,n.M,,,,Mi,|.,,ij,,.,|i,,,,,iiM
.?.?. C :?3. L 1-4. O 25. C 2fl. C 27. H .-?8. O 26. O 3D. U 31. O 32. O 33. O 34. O 33. C 38. O 37. D 38. O 3B. 0 4D. O
r - • - - - - -I
'riln ^38372 429.4-430.4 amu. SAJC A81OO35-O3E-B 10/18/88. EOH
H* ; eip
10 1 ^ , , , rr-r-jt-.-nj-i-r.-inv.,'-.-— f 1 .--n nv-t- r-tur - '
10 ' •- ^ !• L -•• ' — ' ' - ' ' ---in-i-.. ,
22. O 7.3, O 24. O 29. O 29. O 27. O 28. 0 28. O 30. O 31. 0 32. O 33. O 34. O 39. O 38. O 37. O 38. 0 39. Q 40. Q j
i.. - . .. - • .... - —i
F!iQ >3ty37?! .!f33. i - iD J. 4 Q.I.U. SAJC A8: nO3S-G3£-R ' O/ 1 8/'8B. HI3
Q* *IIMII
?Z. fi ?-1. C 34. O ->5. O .?n. C .>?. D S8. C 30. D 3D. C 3:. O 33. D 33. D 34. 0 35. D 38. O 37. 0 3B. O 3&. C 4O. O
FJJcs -^39372 ',97. 3- .;»8. 3 a*:>. SA'C A81 nO3S-O3l<--n 1 O/ 1 B.'BB. ECU
?2. U .?3. O 24. C .15. il ??6. O 2". C 2B. H r?fl. C 30. O 3J. 0 32. O 33. C 3-1. O 35. 0 35. 0 37. O 38. Q 39. C 40. O
1
Figure 29. EICPs of Hcxa- Through Deca- Isomers of Reagent Blank.
-------
Flla >39376 1B7.7-1BH.7 amu. SAIC A81OO35-aaDMS ID/18/88. EDH
1 e;p
CO
14.0 13.0 16. O 17.0 18.0 19. O 2O. O 21.0 22.0 23.0 24. O 25. O 28. O 27. O 28. O 29. O 3O. O
JFlla >39376 221. 7-222. 7 amu. SA 1C A810O35--R8DMS 1O/18/88.EDH
1 EIP
-H
d
IL..,. .....
14. O 15.0 16.0 17. O 18. O 19. O 2O. O 21. O 22.0 23. O 24. O 23. O 26. O 27. O 28. O 29. O 3D. O
•39376 297.7-258.7 amu. SAIC AS10033-RBDMS 10/18/88. EDH
EIP
|
i
14.0 13.0 16.0 17.0 18.0 IB. O 2O. O 21. O 22. O 23.0 24.0 29.0 26.0 27. O 28. O 29.0 3D. D I
I
-38376 291.7-292.7 amu. SAIC A81O035-RBDMS 10/18/88. EDH
EIP
•4,
o-1-.,
•I"11!""!""!""!""!'
la
M. O IS. O 16. O 17. O 18.0 19.0 2O. 0 21. O 22.0 23.0 24. O 25.0 26. O 27. O 28. O 28. O 3D. O i
_.._ ..._._ .....__. J
-39376 325.6-326.6 amu. SAIC AB1OO35-RBDMS 10/18/88. EDH !
EIP
T^i,.|iniTilM|iill|iii.|li..|.iii)Mii|i
iiniiiiMilliiiliintiiiiiiiniiTirpiiqi.iijnMpiTTi
1 4. O 15. O 18. O 17. O 18. O 19. O 2O. O 21.O 22.0 23.0 24. O 25.0 26. O 27. O 28. O 28. O 3D. O
Figure 30. EICPs of Mono- Through Penta- Isomers of Reagent'Blank //2.
-------
-r-a. '.>--'ir.;i. I ^m.j. '•••"
\i>. i a. SB. i'u
t I....®
?<;. n 2t5. i; ?.--. a *H. u ,?u. o 30. 031.0 32. o 33. o 3-1. n as. c. 30. u 37. c 38. o 3H. o to. o
j
c.iuj. SMC ABUnSS-RflUMS 1 O.' 1 8/09. tllH
::.?. o 23. o ^;. ^ r-s. a 20. o ::?. o 28. o ?u. o 3n. 031.0 32. o 33. (! 3-;. o 35. o an. n 37. o 39. o 3». o 40. o
r • • • - • <
FJlo >393?a 4?9. .1-43O. 4 amu. SAJC A910035-R9DHS 1O/18/B8. EDH
o-
22. C 23. a 24. O 25. O ?8. 0 27. O 28. 0 28. 0 30. 031.0 32. O 33. O 34. 0 33. 0 3fl. O 37. O 38. 0 39. 0 40. O .
t_ . i
.??. o : 3. L: .7,. .j -.'. j. o 20. u ;v/. i: .^o. G :'9. o 30. c 31. n 3^. o 33. ;: 3-;. o 35. c 3H. j 3"'. Q 3H. u 3». H -uj. u
t:1l« 39.376 ..=". :«- -.fO. T o-»^. SA.JC .*.8iUU3r5--.o.H;JM5 1 '^. 1 8. 88. fIJH
••: i P
.?.'. r e:i. r. ?.-,. c :rj. c 2f>. c ?.~. c r>e. o :'.y. c 30. c 31. c 32. c 33. t; 3*. 2 35. c 30. o 37. u 'JB. o 30. o ;c. o
Figure 11. EICPs of Hexa- Through Deca- Isomers of Reagent Blank //2.
-------
, Fll
"39377 187.7-188.7 amu. SAIC A810035-RBMS
EIP
ID/19/88. EDH
i 1
i D-.
! °
j
1
;F1 la >39377
1
j
o~-
I -
|Fll« *3B377
K j .j
Cfi . 1*
; °J
i- ...
Klla > 39377
j
0"-
14.0 IS. O 16.0 17.0 IB.
221.7-222.7 amu. SAIC
EIP
1 1
14.0 IS. O 16. O 17. O IB.
257. 7-25B. 7 amu. SAIC
EIP
14. O IS. O 16. O 17. O IB.
291. 7-282. V emu. SAIC
1 1 1 1 1 1 1 1 1 ] 1 1 1 1 1 1 1 1 1 1 J 1 1 1 • 1 II 1 1 1 l 1 1 ] H 11 1 1 ' 1 1j
1
0 IB. 0 20.0 21.0 22.
AB1OO35-RBMS 1O/1B/
^Jj^~J-~>-
O 19. O 2O. O 21.0 22.
A810033-R8MS 1O/1B/
0 IB. O 2O. O 21. O 22.
A81O035-RBMS ID/ IB/
O 23. O 24. O 25. O 26. O
88. EOH
JL_
O 23. O 24. O 29. O 26. O
88. EOH
O 23. O 24. O 23. O 26. O
88. EDH
•**|'
i
11 i , mm '
27. 0 28. 0 2B. O 3D. O j
(
|
I
l
27. 0 2B. O 28. O 3D. O j
1
n
i
27. 0 28. O 2B. O 3D. O j
14.0 15. O 16. O 1".O 18. 0 10. 0 20.0 21.0 22.0 23.0 24. D 23. O 26.0 27. O 2B. O 2Q. O 3D. 0
Kl]e >39377 325.6-328.6 amu. SAJC A81OO35--HBMS 1O/1B/BB. EDM
EIP
0'"
iiii-llii-i ill ]i MI. MM1.iii,iiM|ill<;iMI|UII|IU|IUU|llll|,,,,,,,,,I,,,,[l,ii|i»ilMii|iiii1iiii|lMM.i.iIiMiliiiiIi.>.,M,i:..ii,ii,i|ln.;i.,.,,,,,,,^1^
14. D IS. O 16. O IV. C IB. D 19.0 2O. O 21.0 22.0 23.0 24.0 25. O 26. O 27. O 28. O 29. O 30. O
Figure 32. EICPs of Mono- Through Penta- Isomers of Reagent. Blank //3.
-------
\Fllm >38377 350.3-380.3 amu. SAIC ABJDD33-RBMS 1O/JB/BB. EOH
1 EIP
r~
Q •mi|HMpiii|iMi|Mii|HiipiiipiiipMlfiillpiif|iitlp«ii|llMpiiiplllpiiipitfl
22. O 23. O 24. O 25. O 20. O 27. O 28. O 20. O 3D. O 31. O 32. O 33. O 34. O 39. O 3O. O 37. O 3B. O 39. O 4O. O
Film "30377 383. 5-384. S amu. SAIC A81OO35-RBMS 1O/ 18/88. EDH
EJP
"l""l""l
• |1Mlpl
«|""|nii|ii
iipiii|iiiipiiipiiipmp>
ipiiipliipiiipnipi
ipnipiiipimimpTTipnipiiipiiipMniiiipi.!!
22. O 23. O 24. O 25. O 28. O 27. O 28. O 28. O 3D. O 31. O 32. O 33. O 34. O 39. O 36. O 37. O 38. O 38. O 4O. O
Film "30377 428. 4-43O. 4 amu. SAJC AB1O039-RBHS 1O/ IB/SB. EOH
EIP
A~
»»»I»I«MH«M«'» 38377 483. 4-484. 4 amu. SAIC AB1OO35-RBMS 1O/IB/88. EDH
EIP
O 'i»ii|n
22. O 23. O 24. O 25. O 28. O 27. O 28. O 20. O 3D. O 31. O 32. O 33. 0 34. 0 35. O 36. O 37. 0 3B. O 30. O 40. O
'Flla >30377 487.3-498.3 amu. SAIC AB10O35-RBMS JO/1B/BB.EOH
EIP
I
22. O 23. O 24. O 25. O 26. O 27. O 2B. O 28. O 3D. O 31. O 32. O 33. O 34. O 35. O 38. O 37. 0 38. O 38. 0 4O. 0
Figure 33. EICl's of Hexa- Through Deca- Isomers of Reagent Blank //3.
-------
TABLE 4-7. SA1C I'CB CXWCKNTRATION BY ISOMER CROUP - DEMO 4, PASS 4
Feed
Wet Dry
ug/g Mg/g
Kfcno-
Di-
Tri-
Tetra-
teita-
ffexa-
Hepta-
Octa-
Nona-
Deca-
7.1
210
520
540
250
49
<30
<30
<30
<50
39
1100
2800
2950
1370
270
<160
<160
<160
<270
Dup
Wet
ug/g
7.1
210
520
550
260
47
<30
<30
<30
<50
Feed Rel
Dry Z
ug/g Diff
39 0
1100 0
2800 0
3000 1.8
1420 3.9
260 4.2
<160 —
<160 —
<160 —
<270 —
Raffinate
Wet Dry
ug/oL ug/g
0.06
3.0
10
13
7.1
1.8
0.12
<0.07
<0.07
<0.12
0.60
29
98
127
70
18
1.2
<0.7
<0.7
<1.2
Dup. Raffinate
Wet Dry
ug/nL ug/g
0.06
3.1
10
14
7.0
1.8
0.12
<0.07
<0.07
<0.12
0.57
30
98
137
69
18
1.2
<0.7
<0.7
<1.2
Rel Oil
Diff ug/g
5.0 60
3.3 1900
0 4800
7.4 5100
1.4 2600
0 660
0 59
— <28
— <28
— <46
Dup.
ug/g
67
2100
5400
5600
2900
730
62
<28
<28
<46
Rel
Diff
11
10
12
9.3
11
10
5.0
—
—
Totale
1600
8600
1600
8600
35
350
36
360
2.8 15000 17000
12
-------
TABLE:-4-8. SAIC MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY DATA
FOR DEMO 4. PASS 4 - GC/MS
Isomer Group Matrix Spike Matrix Spike Rel. %
Duplicate Diff.
Konochlorobiphenyl 37% 32% 14
Dichlorobiphenyl 44% 38% 15
Trichlorobiphenyl 53% 48% 9.9
Tetrachlorobiphenyl 64% 59% 8.1
Pentachlorobiphenyl 73% 68% 7.1
Hexachlorobiphenyl 72% 68% 5.7
Heptachlorobiphenyl 50% 47% .6.2
Octachlorobiphenyl 58% 56% 3.5
Nonachlorobiphenyl NSa NS NA
Decachlorobiphenyl 54% 50% 7.7
fNot spiked.
Not applicable.
128
-------
TABLE 4-9. FEED. RAFFINATE AND OIL CONGENER CLASS RATIOS
FOR DEMO A. PASS 4 - GC/MS
Mono-
Di-
Tri-
Tetra-
Penta-
Hexa-
Hepta-
Totals
Feed
(mean)
ug/g
39
1150
2800
3000
1400
260
NDa
8700
Raff inate
(mean)
ug/g
0.58
30
98
130
69
18
12
350
Oil
(mean)
ug/g
64
2000
5100
5400
2800
700
61
16000
FD.-RAF
Ratio
66.5
38.4
29.0
22.5
20.2
14.9
NCb
24.9
FD:OIL
Ratio
0.611
0.574
0.557
0.557
0.507
0.377
NC
0.544
RAF:OIL
Ratio
0.00919
0.01495
0.01922
0.02474
0.02513
0.02539
0.01945
0.02188
fNot detected.
Not calculated.
129
-------
TABLE 4-10. SURROGATE % RECOVERIES FOR DEMO 4. PASS 4 - GC/MS
C-13
Surrogate
Mono-
Tetra-
Octa-
Deca-
Feed
66
72
81
96
Feed
Dup.
66
71
84
100
Raf finate
61
86
102
131
Raff.
Dup.
53
80
94
116
Oil
74
105
105
145a
Oil
Dup.
86
115
112
150a
Outside QC limits.
13O
-------
As was described for the Demo 1 samples in Section 4.1, Table 4-11
is a listing of the tentative identification and the relative percentages of
the Aroclors present in the Demo 4. Pass 4 samples. The isomer group ratio
comparisons can be found on Table 4-12. As in the Demo 1 samples, there are
large relative percent differences in these ratios. These data, along with
the feed to raffinate, feed to oil, and raffinate to oil ratios from Table 4-9
support the conclusion that the liquid propane is extracting the lower
chlorinated biphenyls more efficiently. This is further supported by the
relatively higher concentrations of the lower chlorinated species found in the
extract oil.
4.2.2 Method 8080 - GC/ECD
The chromatograms for all of the samples, standards and blanks run
for this project are included under separate cover as Appendix B. Table 4-13
lists the amount of PCBs found in each duplicate pair of samples, reported as
Aroclor 1242 (for both wet and dry weights) along with the relative percent
differences (RPD) in the duplicate samples. These data show the RPD for the
feed sample to be 18 percent, the raffinate 2.7 percent, and the extract oil
RPD was 19 percent. Table 4-13 also reveals the surrogate recoveries for each
of these analyses. The matrix spike/matrix spike duplicate recoveries are 161
and 157 percent, respectively. According to average of the duplicate analyses
by GC/ECD, (dry weight determination) the liquid propane removed 96% of the
PCBs (quantitated as Aroclor 1242) that were present in the feed.
4.3 Phase Three - Florisil Tubes
Air monitoring for PCBs was carried out using a modified Method
P&CAM 253 with Florisil tubes. (Modifications were discussed in Section
3.2.3.) Both the front and back sections of the tubes were extracted in
hexane and analyzed by GC/ECD. With the exception of sample HIRAF-02, no PCBs
were found in the back sections. The actual concentration of PCBs in this
sample were below the method quantification limit and therefore, are not
reported. The PCBs that were detected in the fronts of the Florisil tubes did
131
-------
TABLE 4-11. TENTATIVE IDENTIFICATION AND RELATIVE AMOUNTS OF AROCLORS
FOR DEMO 4, PASS 4 - GC/MS3
Feed Raffinate Oil
Aroclor 1016 and/or 1242 57% 41% 56%
Aroclor 1248 26% 39% 25%
Aroclor 1254 17% 40% 19%
Estimated using the program developed by L. E. Silvon. Battelle.
132
-------
TABLE 4-12. METHOD 680 ISOMER GROUP RATIO COMPARISONS
FOR DEMO 4. PASS 4 - GC/MS
Relative % Difference
Mono:Di Ratio
MonorTri Ratio
Mono:Tetra Ratio
Mono:Penta Ratio
Mono:Hexa Ratio
Mono:Hepta Ratio
Di:Tri Ratio
Di:Tetra Ratio
DirPenta Ratio
Di:Hexa Ratio
Di:Hepta Ratio
Tri:Tetra Ratio
TrirPenta Ratio
Tri:Hexa Ratio
Tri:Hepta Ratio
Tetra:Penta Ratio
Tetra:Hexa Ratio
Tetra:Hepta Ratio
PentarHexa Ratio
Penta:Hepta Ratio
Hexa:Hepta Ratio
Feed
0.0338
0.0137
0.0130
0.0278
0.148
NCa
0.404
0.385
0.824
4.38
NC
0.954
2.04
10.8
NC
2.14
11.4
NC
5.31
NC
NC
Raffinate
0.0195
0.0059
0.0044
0.0084
0.0331
0.496
0.305
0.226
0.433
1.69
25.4
0.741
1.42
5.56
83.3
1.91
7.50
113
3.92
58.8
15.0
Oil
0.0318
0.0125
0.0119
0.0231
0.0914
1.05
0.392
0.374
0.727
2.88
33.1
0.953
1.85
7.34
84.3
1.95
7.70
88.4
3.96
45.5
11.5
Fd-Raf
53.6
78.6
98.9
107
127
NC
27.9
52.2
62.2
88.3
NC
25.2
35.9
64.4
NC
11.0
40.9
NC
30.2
NC
NC
Fd-Oil
6.28
9.22
9.31
18.7
47.3
NC
2.94
3.03
12.4
41.3
NC
0.09
9.49
38.5
NC
9.40
38.4
NC
29.3
NC
NC
Raf-Oil
47.8
70.7
91.7
92.9
93.7
71.7
25.0
49.3
50.8
51.8
26.1
25.1
26.6
27.7
1.15
1.58
2.60
24.0
1.02
25.5
26.5
Not calculable.
133
-------
CO
TABLE 4-13. SMC 8080 DATA IN ug/g BY ARDQjOR (ASaMNG 100% AROCLOR 1242) FOR D3O 4. OC/ECD
Rel Rel
FEED DUP FEED % RAFFINA1E DUP RAFF. %
Wet Dry Wet Dry Diff. Wet Dry Wet Dry Diff.
Rel
OIL DUP OIL %
Diff.
1800 9836 1500 8197 18.2 36 353
Mean 1650 9016 36.5 358
Surroj^te Recoveries (%)
37 363 2.7 17000 14000 19.4
15500
DEC
imc
91
106
104
92
104
86
97
119
D5
93
109
-------
not display a typical Aroclor pattern. The results shown in Table 4-14 are
reported assuming that the PCBs are present as Aroclor 1242. The perchlori-
nation data are also reported here. The matrix spike and matrix spike dupli-
cate tubes were spiked with Aroclor 1242 and revealed recoveries of 105 and
97% respectively. The surrogate recoveries of TCMX ranged from 87 to 106%.
The recoveries of the DEC were 1 to 9%. Since this method does not call for
the use of any surrogates, there are no acceptance criteria for these recov-
eries. However, the excellent recoveries of the TCMX are very representative
of the MS/MSD recoveries. TCMX is recommended as the only surrogate for
future Florisil tube studies.
4.4 Phase Four - Analysis of EC Jordan Sample Extract
4.4.1 Method 680 - GC/MS
The total ion current (TIC) chromatograms of the EC Jordan sample
extract (with and without acid wash) are included as Figure 34. The extracted
ion current profile (EICP) chromatograms for the major ion of each isomer
class, dichlorobiphenyl through decachlorobiphenyl, are included as Figures 35
through 38. Table 4-15 lists the amount of PCBs found in each sample by
isomer class assuming a 30 gram sample (that was 13 percent solids) was
extracted and then concentrated to 20 mL. Nineteen mL of the extract was used
for the semivolatile analysis by EC Jordan and the remaining one mL was used
for the PCB analysis. The extract received by Radian contained 720 uL of
hexane. There was no way to determine how much of the missing 280 uL was due
to concentration and how much was removed for analysis by EC Jordan. Conse-
quently, the assumption was made that all of the missing sample was removed
for analysis, and there was no solvent evaporation. All of the concentrations
are calculated based on a 1.5 gram/mL sample size.
4.4.2 Method 8080 - GC/ECD
The chromatograms for the EC Jordan extracts are also included under-
separate cover as Appendix B. Analysis of the extract revealed a total
Aroclor concentration of 4100 ppm in the untreated extract and 3400 ppm in the
acid washed fraction on a dry weight determination. These data are listed on
Table 4-16. ' ' /
135
-------
TABLE 4-14. SAIC FLORISIL TUBE DATA
Sample
HIRAF-01
HIRAF-02
HIRAF-03
HIRAF-03 Dup
HIRAP-04
Trip Blank
F923-A1
F923-A2
Trip Blank
WDE0988-0
WDE0988-0
F923-P1
T927-01
T927-01 Dup
T928-A1
Trip Blank
PCB-1242
PCB-1242
(Total ug)
0.47
0.87
0.78
0.75
0.25
ND3
0.16
0.23
ND
0.54
ND
ND
ND
ND
ND
ND
DEC
Recovery
NS3
NS
NS
NS
NS
NS
NS
NS
NS
2%
4%
8%
1%
1%
9%
2%
TCMX
Recovery
NS
NS
NS
NS
NS
NS
NS
NS
NS
104%
106%
105%
87%
93%
96%
99%
P&CAM
Cone.
(Total ug)
0.45
0.66
0.66
—
0.2
0.15
0.21
— —
0.39
—
— :
—
— '
—
spiked.
Not detected.
-------
Flla >394B7 9999. O-O. O
-
7OOOOO2"
600000 1 *
500000 1 -
400000^
3000000"
200000Q-
-
10OOOOQ-
O
I .
amu. SAIC UNTREATED ECJ 11/3/88. EDH
TIC
Jl
JL
JL
1
1
1
i
III
ttl 1 Jl
yuWi
I
JuLjL___
TOO
-
BO
BO
-
"40
"
•zo
-
1O 12 14 IB 18 2O 22 24 26 28
Flla >394BB 9999.0-0.0
7OOO002"
6OOODO1'
sooooo r
400O001*
300OOOO"
2OOOOOQ-
1OODOOO'
O
I .
amu. SAIC A81D079 ACID W 11/3/88. EDH
TIC
n
I.
n
1'
k
ill
JijL.. ...
10 12 14 IB 18 20 22 24 26 28
100
BO
-
BO
-4O
-zo
T)
•'igurc 3A . TIC of F.C Jordan Sample Extract, With (above) and. Without (below), and Clean-up.
-------
Flla >39487 187.7-188.7 amu. SAIC UNTREATED ECJ
SMT EIP
..111 .
11/3/88. COM
.
1O 12 14 IB IB 2O 22 24 2B 28
Flla >394B7 221.7-222.7 amu. SAIC UNTREATED ECJ
1
SMT EIP
,J,...
11/3/88. EON
1O 12 14 16 18 2O 22 24 2B 28
Flla >39487 257.7-258.7 amu. SAIC UNTREATED ECJ
EIP
-
. l.l Jill . . .
1 1 /3/8B. EDH
1
1O 12 14 16 18 2O 22 24 26 28
Flla >39487 291.7-292.7 amu. SAIC UNTREATED ECJ
SMT EIP
.kl,
11/3/88. EDH
1O 12 14 IB 18 2O 22 24 28 28
Flic >394B7 325.8-326.6 amu. SAIC UNTREATED ECJ
"
SMT EIP
Ll
11/3/88. EDH
,ll :
1O 12 14 IB 18 2O 22 24 28 28
Figure 35. KICPs, ot Mono- Through Penta- Fsomers of EC Jordan Kxtract. Untreated.
-------
CO
(£>
Flla >39487 359.5-360.5 amu. SAIC UNTREATED ECJ
SMT EIP
ID 12 14 16 18
Flla >39487 393.5-394.5 amu. SAIC UNTREATED ECJ
SMT EIP
•
U | 1 i I i | i I i 1 1 II I 1 | V 1 1 1 b;-r r n | * 1 1 1 | i 1 II | b 1 1 PI, 1 1 • r| T
1O 12 14 16 18
Flla =-39487 429. 4-43O. 4 amu. SAIC UNTREATED ECJ
SMT EIP
j
10 12 14 18 18
Flla "39487 463.4-464.4 amu. SAIC UNTREATED ECJ
SMT EIP
•
r i < 1 1 1 1 ...,....,....,....,.,. 1 1 ...... ; .. i .... i .
ID 12 14 18 18
Fllo >39487 497.3-498.3 amu. SAIC UNTREATED ECJ
SMT EIP
ID 12 14 16 18
1 1/3/88. EDH
J1.L.
2O 22 24 2
11/3/88. EDH
Lljftlj .
2O 22 24 2
1 1/3/88. EDH
20 22 24 2
11/3/88. EDH
A
f
2O 22 24 2
1 1 /3/BB. EDH
20 22 24 2
. ,. J
6 28
6 28
r
^
8 28
r
, , ,
6 28
6 28
Figure 36. KlCPs of Hexa- Through Ueca- Isomcrs of EC Jordan Extract, Untreated.
-------
Fl la »3948
O
Flla >3948I
O
Fila >3948
O
Fila >3948
O
Fila >3948
O
9 187.7-188.7 amu. SAIC
SMT
1 . . .. . M
10 12 14
3 221.7-222.7 amu. SAIC
SMT
, .J J
1O 12 14
9 257.7-258.7 amu. SAIC
SMT
" fl'1
1O 12 14
9 291.7-292.7 amu. SAIC
SMT
1O 12 14
9 325.8-326.8 amu. SAIC
SMT
1O 12 14
A81OO79 ACIO M 11/3/88. EOH
EIP
1 . [
16 18 2O 22 24 26 28
A810O79 ACID W 11/3/88. EDH
EIP
__JllUA^w . r
16 18 2O 22 24 26 28
A810O79 ACID W 11/3/88. EDH
EIP
16 18 2O 22 24 26 28
A81OO79 ACID W 11/3/88. EOH
EIP
III 4 f
H"JuUH . j- | , , i u - TI
16 18 20 22 24 26 28
A8 10079 ACID M 11/3/88. EDH
EIP
16 18 2O 22 24 26 28
Figure- 37. F.ICl's of Mono- Through I'enta- Isomcrs of EC Jordan Extract, Acid Washed.
-------
Flla >3948
Flla >3948I
Flla >3948I
File >394B
Film >3949
1
-
^
9 359. 5-36O. 5 amo. SAIC A81OO79
SMT EIP
1O 12 14 IB
3 393.5-394.5 amu. SAIC A81OO79
SMT EIP
ID 12 14 IB
3 429. 4-43O. 4 amo. SAIC A81DD79
SMT EIP
ID 12 14 IB
9 463.4-464.4 amu. SAIC A810O79
SMT EIP
10 12 14 IB
9 497.3-498.3 amo. SAIC A81DD79
SMT EIP
ID 12 14 IB
ACIO W 11/3/88. EOH
Jl.1 .. I
18 2O 22 24 2B 28
ACIO W 11/3/68. EOH
,-jJuklj ^
18 2O 22 24 2B 28
ACIO W 11/3/88. EOH
p^JLu— [•
18 2O 22 24 26 28
ACIO H 11/3/88. EOH
ctizzzl
[[[ u
18 2O 22 24 2B 28
ACID W 11/3/88. EOH
I f
18 20 22 24 2B 28
-------
TABLE 4-15. EC JORDAN EXTRACT PCB CONCENTRATION BY ISOMER CLASS (ug/g)
EC Jordan Sample Extract
A£ Received Acid Washed
Wet Dry Wet Dry
Mono—
Di-
Tri-
Tetra-
Penta-
Hexa-
Hepta-
Octa-
Nona-
Deca-
2.0
60
160
200
94
26
2.8
0.3
<0.3
<0.3
16
460
1300
1500
720
200
22
2.6
<2.6
<2.6
1.6
57
170
210
100
29
3.0
0.4
<0.3
<0.3
12
440
1300
1600
800
220
23
3.3
<2.6
<2.6
Rel
%
Diff
26
6.1
0.8
6.2
10
9.4
7.1
24
: —
__
Totals
550
4200
570
4400
4.1
142
-------
TABLE 4-16. EC JORDAN SAMPLE EXTRACT 8080 DATA IN ug/g BY AROCLOR
PCB-1242
PCB-1254
PCB-1260
Totals
Surrogate
EC Jordan Extr
Reagent As Received
Blank Wet Dry
ND3 390 3000
ND 140 1000
ND 12 91
ND 540 4100
Recoveries (%)
act Rel
Acid Washed %
Wet Dry Diff.
320 2500 19.3
120 910 13.6
10 74 21.0
450 3400 17.8
DBC
TCMX
100
93
106
126
85
88
detected.
143
-------
5.0 CONCLUSIONS
For the GC/ECD analysis, assignments of Aroclor compositions to the
extracts of the raffinate. extract oil and Florisil samples were complicated
by the modification of the PCB pattern from the original isomer distribution.
Since it is apparent from the mass spectral data that the lower chlorinated
isomers of the PCBs are more efficiently extracted from the feed by the liquid
propane, the raffinate samples displayed a pattern of PCBs that is apparently
enriched in the higher chlorinated species. The extract oil samples were
enriched in the lower chlorinated isomers. Analysis of the Florisil tubes
revealed an even larger distortion of the original Aroclor pattern, probably
due to the differences in volatility of the individual isomer groups. Due to
this distortion, it was necessary to perform the perchlorination procedure on
the Florisil tube samples. Quantification of PCBs by level of chlorination
avoids this difficulty in assignment of composition and has the potential for
generating more efficient and reliable data on PCB contaminated samples.
However, if perchlorination will be used for any future studies, it is
recommended that the modifications discussed in this report are followed, and
TCMX is used as a surrogate standard.
The Demo A, Pass 4 sample analyses revealed excellent precision both
between the sample duplicates (mean 9.2 RPD) and between the two methods (mean
3.1 RPD). In the Demo 4 test, both the mass spectral analysis and the GC/ECD
analysis indicated a 96% removal efficiency of the available PCBs. In the
Demo 1 test, the liquid propane removed 70 percent of the available PCBs.
Although the analysis of these samples by isomer group reveals that
there is a preferential extraction of the lower chlorinated PCB isomers by the
liquid propane, this biasing is most pronounced in the extreme lower and upper
levels of chlorination. Since the New Bedford Harbor is well characterized to
contain mostly Tri- through Penta— isomers, it appears that analysis by Method
8080 (GC/ECD) is sufficient, and the preferential removal of the lower
chlorinated isomers will not significantly affect the data. However, the
144
-------
Florisil tubes or treated samples and future studies to determine the PCB
concentrations in a matrix that has been subjected to a thermal or chemical
treatment, quantification by isomer group or the perchlorination procedure
must be considered. In addition, if the samples that are to be treated are
not as well characterized as they are at this site, Method 680 should be
employed to see if Method 8080 is a reasonable method to estimate the PCBs
present.
145
-------
OPERATING LOG DATA
146
-------
PROCESS DATA
9/ 8/88 2
Time Extractor #1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
1443 <-- START
1453
1503
1513
1523
1533
1543
1551 <--END
Mean:
Max i mum:
Minimum:
Net Change:
252
275
265
238
240
243
252
275
238
243
247
235
237
232
239
239
247
232
10.00
76 12.00
76 14.00
76 15.75
76 18.25
76 20.50
76 24.50
76
76
76
0.910
0.860
0.700
1.000
0.740
1.160
0.9
1.2
0.7
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flow Feed Power water In Uater Out water Flow Water Flow
(Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99 gal) (gal/min)
18.0
2.4
4.5
2.0
0.0
5.6
5.4
18.0
0.0
666.5
2.0
0.3
0.6
0.2
0.0
0.5
782.0
0.6
2.0
0.0
115.5
70
71
70
71
71
71
71
71
70
78
83
84
84
84
84
83
84
78
45
43
44
42
42
42
43
45
42
5.3
5.6
5.4
5.7
5.7
5.7
5.6
5.7
5.3
Feed Temperature: * deg F
Viscosity:
Run Time:
170 cP
68 min
pH: •
* Lost Data
-------
PROCESS DATA
9/12/88
OC
Time Extractor #1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
1307 <-- START
1317
1327
1337
1347
1357
1359 <--END
Mean:
Max i nun:
Minimum:
Net Change:
275
255
218
217
210
235
275
210
238
211
218
217
210
219
238
210
12.75
70 15.00
70 17.00
70 19.50
71 22.25
70 27.50
70
71
70
0.9
0.8
0.9
0.8
0.9
0.9
0.9
0.8
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flow Feed Power Water In Water Out Water Flow Water Flow
(Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99 gal) ;
-------
PROCESS DATA
9/13/88
CD
Time Extractor #1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
1202 •<-- START
1212
1224
1232
1242
1248 <--END
Mean:
Maximum:
Minimum:
Net Change:
260
260
235
245
250
260
235
235
230
222
220
227
235
220
13.00
67 16.00
70 19.50
72 22.00
73 26.50
71
73
67
1.2
1.1
0.9
0.9
1.0
1.2
0.9
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flow Feed Power Water In Water Out Water Flow Water Flow
(Ib/min) Ratio (ku-hr) (deg F) (deg F) (sec/3.99 sal) (gal/min)
11.7
16.4
16.3
6.9
12.8
16.4
6.9
1006.5
1.0
1.5
1.9
0.8
1025.0
1.3
1.9
0.8
18.5
69
70
70
70
70
70
69
72
79
81
79
78
81
72
45
43
44
44
44
45
43
5.3
5.6
5.4
5.4
5.4
5.6
5.3
Feed Temperature: 61 deg F
Viscosity:
40 cP
pH:8.4
-------
PROCESS DATA
9/U/88
Cl
o
Time Extractor #1 Extractor #2 Extractor *1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
1238 <-- START
1248
1258
1308
1318
1328
1331 <--END
Hean:
Max i mm:
Hininun:
Net Change:
265
270
255
245
274
262
274
245
245
235
240
240
240
240
245
235
12.75
• 15.25
* 17.00
70 19.75
70 23.00
70 **
70
70
70
1.0
0.7
1.0
0.9
0.9
1.0
0.7
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flow Feed Power Water In Water Out Water Flow Water Flow
(Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99 gal) (gal/din)
19.4
8.7
20.0
4.1
14.9
13.4
20.0
4.1
1209.0
2.1
1.4
2.2
0.5
1212.5
1.5
2.2
0.5
3.5
68
69
69
68
69
69
69
68
77
81
82
83
82
81
83
77
41
41
42
41
41
34
42
41
5.8
5.8
5.7
5.8
5.8
5.8
5.8
5.7
Feed Temperature: 63 deg F
Viscosity:
Run Time:
30 cP
53 min
pH: 8.34
* Incorrect gage read
** Water added to feed kettle
-------
PROCESS DATA
Date Test Pass Time Extractor f1 Extractor f2 Extractor #1 Depth
Pressure . Pressure Temperature to Feed
(psig) (psig) (deg F) (in.)
9/14/88
1754 <-- START
1804 275
1814 250
1824 232
1834 222
230
229
224
218
76
79
87
90
13.00
15.50
18.00
21.00
24.00
id
>M
'min)
1.0
1.0
1.4
0.9
Solvent
Flow
(Ib/min)
5.4
9.3
6.6
18.3
Solvent/
Feed
Ratio
0.6
1.1
0.6
2.5
Electric
Power
(kw-hr)
1316.5
Cooling Cooling Cooling Cooling
Water In Water Out Water Flow , Water Flow
(deg F) (deg F) (sec/3.99 gal) (gal/min)
69
67
67
67
78
78
79
78
41
41
41
41
5.8
5.8
5.8
5.8
1843 <--END
ca
1336.5
Mean:
Maximum:
Minimum:
Net Change:
245
275
222
225
230
218
83
90
76
1.1
1.4
0.9
9.9
18.3
5.4
1.2
2.5
0.6
20
68
69
67
78
79
78
41
41
41
5.8
5.8
5.8
Feed Temperature: 64 deg F
Viscosity:
Run Time:
25 cP
49 min
pH: 8.46
-------
PROCESS DATA
9/15/88
Time Extractor #1 Extractor #2 Extractor #1
934 <--
944
954
1004
1014
1020 <--
Mean:
Maximum:
Minimum:
Net Change:
Pressure
(psig)
START
268
210
190
271
END
235
271
190
Pressure
(psig)
220
192
189
250
213
250
189
Temperature
(deg F)
64
60
60
60
61
64
60
Depth Feed
to Feed Flow
(in.) (gal/min)
13.50
16.50 1.2
18.00 0.6
21.50 1.1
25.75 1.0
1.0
1.2
0.6
Solvent
Flow
(Ib/min)
9.5
8.7
11.2
13.3
10.7
13.3
8.7
Solvent/
Feed
Ratio
0.9
1.6
1.1
1.5
1.3
1.6
0.9
Electric Cooling
Power Water In
(kw-hr) (deg F)
1407.5
67
66
67
68
1427.0 67
67
68
66
19.5
Cooling
Water Out
(deg F)
77
76
77
77
78
77
78
76
Cooling
Water Flow
(sec/3.99 gal)
41
41
43
43
43
42
43
41
Cooling
Water Flow
(gal /mi n)
5.8
5.8
5.6
5.6
5.6
5.7
5.8
5.6
Feed Temperature: 45 deg F
Viscosity:
<25 cP
pH: 8.27
-------
PROCESS DATA
9/15/88
1338 <-- START
1348
1358
U08
C/l
Co
1417 <--END
Mean:
Maximum
Minimum
Net Change:
Feed Temperature: 46 deg F
ctor #1
ssure
sig)
ART
255
250
253
253
255
250
Extractor #2
Pressure
(psig)
230
234
232
232
234
230
Extractor 01
Temperature
(deg F)
64
62
64
63
64
62
Depth
to Feed
(in.)
15.00
18.00
20.50
24.00
Feed
Flow
(gal/min)
1.2
0.8
1.0
1.0
1.2
0.8
Solvent
Flow
(Ib/min)
16.8
10.4
3.7
10.3
16.8
3.7
Solvent/
Feed
Ratio
1.7
1.5
0.4
1.2
1.7
0.4
Electric Cooling
Power Water In
(kw-hr) (deg F)
1593.5
67
67
66
1611.5
67
67
66
Cooling
Water Out
(deg F),
75
76
79
77
79
75
Cooling
Water Flow
(sec/3.99 g
42
41
39
41
42
39
Viscosity:
Run Time:
<25 cP
39 min
pH: 8.28
18
-------
PROCESS DATA
9/15/88
cn
Time Extractor #1 Extractor #2 Extractor #1
1808 <--
1818
1828
1838
1848
1857 <--
Mean:
Maximum:
Minimum:
Net Change:
Pressure
(psig)
START
260
245
251
245
END
250
260
245
Pressure
(psig)
235
230
230
230
231
235
230
Temperature
(deg F)
62
61
60
60
61
62
60
Depth
to Feed
(in.)
13.25
16.00
18.00
20.50
24.00
10.75
Feed
Flow
(gal/min)
1.1
0.8
0.8
1.0
0.9
1.1
0.8
Solvent
Flow
(Ib/min)
21.0
14.8
6.3
5.4
11.9
21.0
5.4
Solvent/
Feed
Ratio
2.4
2.4
1.0
0.7
1.6
2.4
0.7
Electric Cooling
Power Water In
(kw-hr) (deg F)
1608.0
67
66
66
67
1628.0
67
67
66
20
Cooling
Water Out
(deg F)
74
75
76
76
75
76
74
Cooling
water Flow
(sec/3. 99 g
45
39
39
39
41
45
39
Feed Temperature: 52 deg F
Viscosity: 55 cP
Run Time: 49 min
pH: 8.31
-------
PROCESS DATA
9/16/88
K'
C/l
C/l
Time Extractor #1 Extractor #2 Extractor #1
934 <--
944
954
1004
1014
1024
1027 <--
Mean:
Maximum:
Minimum:
Net Change:
Pressure
(psig)
START
263
262
254
252
247
END
256
263
247
Pressure
(psig)
240
240
238
234
234
237
240
234
Temperature
(deg F)
57
57
57
57
58
57
58
57
Depth Feed
to Feed Flow
(in.) (gal/min)
12.50
15.00 1.0
17.00 0.8
19.25 0.9
22.00 0.8
27.00 1.0
0.9
1.0
0.8
Solvent
Flow
(Ib/min)
14.4
16.5
11.3
10.5
0.0
10.5
16.5
0.0
Solvent/
Feed
Ratio
1.6
2.3
1.5
1.5
0.0
1.4
2.3
0.0
Electric Cooling
Power Water In
(kw-hr) (deg F)
1696.5
65
65
66
66
67
1718.6
66
67
65
22.1
Cooling
Cooling
Water Out Water Flow
(deg F)
74
76
78
78
78
77
78
74
,(see/3.99 g
39
40
41
42
42
41
42
39
Feed Temperature: 43 deg F
Viscosity:
<25 cP
pH: 8.03
-------
PROCESS DATA
Date Test Pass Time
Extractor #1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
9/16/88 2 10 1343 <-- START
1353 280
1403 263
1413 254
U23 240
H33 257
Solvent Solvent/
Flow Feed
(Ib/min) Ratio
238
244
231
225
227
64
66
65
65
66
12.50
14.75
16.75
19.00
22.50
25.50
0.9
0.8
0.9
1.0
0.7
13.0
8.8
2.0
13.4
3.5
1.6
1.2
0.2
1.5
0.6
Electric
Power
(kw-hr)
1773.0
Cooling Cooling Cooling Cooling
Water In Water Out Water Flow Water Flow
(deg F) (deg F> (sec/3.99,gal),.
67
67
68
67
67
74
80
81
81
80
39
40
39
39
39
6.1
6.0
6.1
6.1
6.1
C/l
1440 <--END
1795.1
Mean:
Maximum:
Minimum:
Net Change:
259
280
240
233
244
225
65
66
64
0.9
1.0
0.7
8.1
13.4
2.0
1.0
1.6
0.2
22.1
67
68
67
79
81
74
39
40
39
6.1
6.1
6.0
Feed Temperature: 46 deg F
Viscosity:
Run Time:
<25 cP
57 min
pH: 8.18
-------
PROCESS DATA
9/17/88
1245 <-- START
1255
1305
1315
1325
1335
1345
1356
1356 <--END
Mean:
Maximum:
Minimum:
Net Change:
Feed Temperature: 70 deg F
ctor #1 Extractor #2 Extractor #1
ssure Pressure Temperature
sig) (psig) (deg F)
ART
257
255
230
251
262
233
260
250
262
230
250
241
215
241
234
230
240
236
250
215
70
70
70
70
70
70
70
70
70
70
Depth Feed
to Feed Flow
(in.) (gal/min)
10.50
12.75
14.75
16.50
19.00
21.75
25.50
*
1.0
0.8
0.7
1.0
0.8
0.9
0.9
1.0
0.7
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flow Feed Power Water In Water Out Water Flow water Flow
(Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99 gal) (gal/min)
14.0
15.0
10.0
8.2
0.0
5.1
8.7
15.0
0.0
1915.0
1.4
1.9
1.4
0.8
0.0
0.6
1943.0
1.0
1.9
0.0
66
66
66
66
66
66
66
66
66
66
74
79
78
79
79
79
79
78
79
74
41
42
41
42
42
42
41
42
42
41
5.8
5.6
5.8
5.7
5.6
5.7
5.8
5.7
5.8
5.6
28
Viscosity:
Run Time:
55 cP
71 min
pH: 7.80
* Water added to feed kettle
-------
PROCESS DATA
9/18/88
C/l
00
Time Extractor 011 Extractor #2 Extractor #1
Pressure Pressure Temperature
(psig) (psig) (deg F)
1057 <-- START
1107
1117
1127
1137
1147
1200
1207
1213 <--END
Mean:
Maximum:
Minimum:
Net Change:
285
274
210
230
242
223
235
243
285
210
250
240
205
228
236
223
235
231
250
205
67
67
67
67
68
69
69
68
69
67
Depth Feed
to Feed Flow
(in.) (gal/min)
7.75
10.50
12.50
14.25
17.00
18.50
22.50
24.00
1.3
0.9
0.7
1.1
0.6
0.9
0.6
0.9
1.3
0.6
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flou Feed Power Water In Water Out Water Flow Water Flow
(Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99 »al)(9al/min)
9.3
12.8
10.4
9.3
2.5
13.6
6.6
9.2
13.6
2.5
2086.0
0.8
1.6
1.6
1.0
0.5
1.7
1.2
2116.0
1.2
1.7
0.5
30
66
66
66
66
66
65
66
66
66
65
78
77
78
77
79
78
79
78
79
77
42
42
42
43
42
42
41
42
43
41
5.8
5.7
5.7
5.5
5.7
5.7
5.8
5.7
5.5
5.8
Feed Temperature: 60 deg F
Viscosity:
Run Time:
30 cP
76 min
pH: 8.31
-------
PROCESS DATA
Date Test Pass Time Extractor #1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
Solvent Solvent/
Flow Feed
Ub/min) Ratio
9/19/88
1057 <-- START
1107 223
1117 231
1127 267
1137 250
216
231
240
233
79
79
79
79
13.00
15.50
18.00
20.00
22.50
1.0
1.0
0.7
0.7
9.4
12.2
0.0
10.3
1.1
1.4
0.0
1.7
Electric
Power
(kw-hr)
2231.0
Cooling Cooling Cooling Cooling
Water In Water Out Water Flow Water Flow
(deg F) (deg F) (sec/3.99 gal) (gal/min)
67
67
67
67
81
81
79
80
40
41
41
41
6.0
5.8
5.8
5.8
CT
1143 <--END
2259.0
Mean:
Max i nun:
Minimum:
Net Change:
243
267
223
230
240
216
79
79
79
0.9
1.0
0.7
8.0
12.2
0.0
1.0
1.7
0.0
28
67
67
67
80
81
79
41
41
40
5.9
6.0
5.8
Feed Temperature: 64 deg F
Viscosity:
25 cP
pH: 7.4
-------
PROCESS DATA
9/20/88
CO
o
Time Extractor #1 Extractor #2 Extractor #1
1201 <-
1211
1222
1231
1241
1246 <-
Mean:
Maximum:
Minimum:
Net Change
Pressure
(psig)
- START
270
223
266
237
-END
249
270
223
:
Pressure
(psig)
216
213
231
235
224
235
213
Temperature
(deg F)
72
72
72
72
72
72
72
Depth Feed
to Feed Flow
(in.) (gal/min)
14.50
17.00 1.0
20.00 1.0
22.25 0.8
*
0.9
1.0
0.8
Solvent Solvent/
Flow Feed
(Ib/min) Ratio
21.0 2.5
14.1 1.7
5.1 0.8
5.0
11.3 1.7
21.0 2.5
5.0 0.8
Electric Cooling
Power Water In
(kw-hr) (deg F)
2417.5
67
66
66
66
2435.0
66
67
66
17.5
Cooling
Water Out
(deg F)
74
78
78
79
77
79
74
Cooling
Water Flow
(sec/3. 99 gal)
40
40
41
41
41
41
40
Cooling
Water Flow
.'(gal/min)
6.0
6.0
5.8
5.8
5.9
6.0
5.8
Feed Temperature: 70 deg F
Viscosity:
Run Time:
120 cP
45 min
pH: 7.47
Water added to feed kettle
-------
PROCESS DATA
9/21/88
en
Time Extractor *1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Temperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
1005 <-- START
1015
1025
1037
1045
1052 <--END
Mean:
Maximum:
Minimum:
Net Change:
270
250
247
247
254
270
247
255
230
243
241
242
255
230
14.00
76 16.50
75 19.00
75 22.25
75 25.25
75
76
75
1.0
1.0
0.8
0.9
0.9
1.0
0.8
Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Flow Feed Power Water In Water Out Water Flow Water Flow
(Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99, gal) ;(g«l/min)
' •(• '" '" '*'"•'
17.0
4.3
6.1
2.9
7.6
17.0
2.9
2531.0
2.0
0.5
0.9
0.4
2550.0
1.0
2.0
0.4
19
66
67
67
66
67
66
81
82
83
82
82
83
81
57
58
57
57
57
58
57
4.2
4.1
4.2
4.2
4.2
4.2
4.1
Feed Temperature: 69 deg F
Viscosity:
Run Time:
40 cP
47 min
pH: 8.12
-------
PROCESS DATA
9/22/88
0-5
Time Extractor #1 Extractor 82 Extractor #1 Depth Feed Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Pressure Pressure Temperature to Feed Flow Flow Feed Power Water In Water Out Water Flow Water Flow
(psig) (psig) (deg F) (in.) (gal/min) (Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99 gal), (gal/min)
1034 <-- START
1044
1054
1104
1114
1124
1129 o-END
Mean:
Maximum:
Minimum:
Net Change:
241
260
255
245
239
248
260
239
226
245
240
232
230
235
245
226
13.00
65 15.00
66 17.00
66 20.00
66 22.25
67 27.00
66
67
65
0.8
0.8
1.1
0.7
0.9
0.8
1.1
0.7
17.5
15.1
5.8
0.0
15.8
10.8
17.5
0.0
2706.0
2.4
2.1
0.6
0.0
2.0
2728.0
1.4
2.4
0.0
22
65
66
66
66
66
66
66
65
71
78
79
79
80
77
80
71
42
41
41
41
41
41
42
41
5.7
5.8
5.8
5.8
5.8
5.8
5.8
5.7
Feed Temperature: 60 deg F
Viscosity:
26 cP
pH: 7.60
-------
PROCESS DATA
Date Test Pass Time Extractor #1 Extractor #2 Extractor #1 Depth
Pressure Pressure Temperature to Feed
(psig) (psig) (deg F) (in.)
9/22/88
1550 <-- START
1601 265
1610 265
1620 260
1631 250
246
245
250
235
64
67
69
63
14.00
16.75
19.00
21.50
26.25
d
IW
min)
1.0
1.0
1.3
0.9
Solvent
Flow
(Ib/min)
14.0
4.2
12.9
11.1
Solvent/
Feed
Ratio
1.6
0.5
1.1
1.3
Electric Cooling
Power Water In
(kw-hr) (deg F)
2823.0
66
66
66
65
Cooling
Water Out
(deg F)
70
74
76
76
Cooling Cooling
Water Flow Water Flow
(sec/3.99-gal>|(gal/mi n)
39
39
41
54
6.1
6.2
5.8
4.4
1634
<--EMD
CO
2833.0
Mean:
Max i nun:
Minimum:
Net Change:
260
265
250
244
250
235
66
69
63
1.1
1.3
0.9
10.6
14.0
4.2
1.1
1.6
0.5
10
66
66
65
74
76
70
43
54
39
5.6
6.2
4.4
Feed Temperature: 61 deg F
Viscosity:
Run Time:
<25 cP
44 min
pH: 7.69
-------
PROCESS DATA
9/27/88
Time Extractor #1 Extractor #2 Extractor #1 Depth Feed Solvent Solvent/ Electric Cooling Cooling Cooling Cooling
Pressure Pressure Temperature to Feed Flow Flow Feed Power Water In Water Out Water Flow Water Flow
(psig) (psig) (deg F) (in.) (gal/min) (Ib/min) Ratio (kw-hr) (deg F) (deg F) (sec/3.99, gal) (gal/rain)
1814 <-- START
1824
1834
1848
1854
1904
1908 <--END
Mean:
Max i nun:
Minimum:
Net Change:
Feed Temperature:
255
255
240
212
232
239
255
212
61 deg F
225
230
200
200
220
215
230
200
12.75 3139.0
65 15.00 0.9 15.1 1.9 64 69 30
65 17.00 0.8 12.8 1.9 65 74 30
65 20.00 0.8 10.9 1.6 65 77 31
65 22.00 1.0 6.5 0.8 65 74 32
65 26.50 0.9 6.5 0.8 65 74 31
3159.0
65 0.9 10.4 1.4 65 61 31
65 1.0 15.1 1.9 65 77 32
65 0.8 6.5 0.8 64 69 30
20
Viscosity: • cP pH: 7.83
Run Time: 54 min
7.9
8.0
7.7
7.5
7.7
7.8
8.0
7.5
* Lost Data
-------
PROCESS DATA
Date Test Pass Time Extractor #1 Extractor #2 Extractor #1 Depth Feed
Pressure Pressure Tenperature to Feed Flow
(psig) (psig) (deg F) (in.) (gal/min)
Solvent Solvent/
Flow Feed
(Ib/min) Ratio
9/28/88
1203
1213
1223
1233
START
255
245
255
230
225
220
70
71
73
16.00
18.25
20.75
24.50
0.9
0.8
1.1
17.5
7.2
10.9
2.4
1.1
1.2
Electric
Power
(kw-hr)
3229.0
Cooling
Water In
(deg F)
65
66
65
Cooling Cooling Cooling
Water Out Water Flow Uater Flow
(deg F) (sec/3.99 gal)<'(gal/min)
74
79
79
41
39
40
5.8
6.1
6.0
1243
<--END
Feed Temperature: 60 deg F
3245.0
65
80
40
Viscosity:
Run Time:
cP
40 min
pH: 7.40
6.0
Mean:
Max i mum:
Minimum:
Net Change:
252
255
245
225
230
220
71
73
70
0.9
1.1
0.8
11.9
17.5
7.2
1.6
2.4
1.1
16
65
66
65
78
80
74
40
41
39
6.0
6.1
5.8
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
\. REPORT NO.
2.
4. TITLE AND SUBTITLE
5. REPORT DATE
Technology Evaluation Report: SITE Program,
CF Systems Organics Extraction System
New Bedford,, Massachusetts (Vol. I & II)
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Richard Valentinetti
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Science Applications International Corp.
8400 Westpark Dr.
McLean, VA 22102
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-3485
12. SPONSORING AGENCY NAME AND ADDRESS
Risk Reduction Engineering Laboratory
Office of Research and Development
U.S. EPA
Cincinnati, OH 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
Steve James, (513)-569-7684
FTS:684-7684 Contact for further information.
16. ABSTRACT
This report summarizes the results of a Superfund Innovative Technology Evaluation
(SITE) demonstration of the CF Systems critical fluid organics extraction system
at the New Bedford Harbor, Massachusetts Superfund site. The technology depends
on the ability of organic pollutants to solubilize in the process solvent, a
liquefied gas. The pollutants treated include polychlorinated biphenyls (PCBs) &
polynuclear aromatic hydrocarbons. The report examines the performance of the
process in terms of PCB extraction efficiency, variation in process operating
conditions, potential health and safety impacts, equipment and handling problems,
and projected system economics.-^toJUjmel ^oy^ers process design, field activities,
sampling and analytical program, and resull"s~a"n"d=dT"s=cuT?fo'n7^)Volume II contains
sampling and analytical reports and operating log data.c
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
18. DISTRIBUTION STATEMENT
Release to Public
19 SECURITY.CL.ASS (T/ns Report)
I SECURITY.CL.ASS
Unclassified
171
20. SECURITY CLASS /Tills page/
Unclassified
22. PRICE
EPA Form 2220-1 (R«v. 4-77) PREVIOUS EDI TION is OBSOLETE
------- |