MASS EMISSION TESTS
CONDUCTED ON THE
BAGHOUSE FOR THE #9 BATTERY
IN
BIRMINGHAM, ALABAMA
FOR
U.S. STEEL
ON

-------
TABLE OF CONTKNTS
Page
I.	V	Introduction
II.	Sampling and Analytical	2
Procedures
III.	Test Results
Summary of Test Results	10
Nomenclature	12
Equations	15
Detailed Results	17
Back Half Analysis	27
IV.	Field Data	28
V.	Calibrations	36
Tables
1	Tabular Test Results	11
Figures
1	Sample Point Location	8
2	Particulate Sampling Train	9

	y

-------
INTRODUCTION
On August 18-21, 1900, Guardian Systems, Inc., conducted a series of
mass emission measurements on the Wheelabrator-Frye Baghouse for the #9
Coke Battery located at Fairfield, Alabama. Measurements were made only
during coke pushes. Each point tested represents one push.
The following personnel represented the companies listed below:
Pat Hester	U.S. Steel Corporation
Paul Thomas	U.S.. Steel Corporation
Jerry Anderson	U.S. Steel Corporation
Clyde D. Kepple	Wheelabrator-Frye, Inc.
Jim Manning	Environmental Protection Agency
Tom Lotz	Guardian Systems, Inc.
Hark Wilson	Guardian Systems, Inc.

-------
SAMPLING AND ANALYTICAL PROCEDURES
General
Stack temperature, pressure, range of velocity heads, and moisture
content' were determined to correctly set the nomograph and proper nozzle
size for isokinetic sampling. The meter box was leak checked from the
pump through the orifice as outlined in Method 5. The equipment used in this
test was manufactured by Research Appliance Corporation and was properly
calibrated before these tests (See Calibrations).
The stack was sampled at 24 points. The sample point location can be
found in Figure 1.
Sampling Techniques
The particulate determinations were wade by utilizing the sampling
train in Figure 2. Initial and final leak checks of the sampling systems
and pitot lines were performed as outlined in Method 5 and these were recorded
on the individual data sheets. The nozzles were calibrated before and after
each test using a micrometer and were also recorded on the individual data
sheets.
The particulate samples were taken by sampling each point for 3
minutes. The gases were drawn through a heated glass lined probe. The probe
heater was maintained at the proper setting to obtain an exit temperature of
24b + 25°F. (See Calibrations) The gases then passed through a glass cyclone
for removing particulate matter approximately 10 microns and greater in size,
then through a glass fiber filter (Gelman, Class A) of 0.3 microns retention
to remove any remaining particualte matter. The cyclone and filter were
n.aintained at a temperature of 248 +• 25°F. The sample box temperatures were
recorded at each point on the data sheets.
The gases then passed through four (4) Greenburg-Smith impingers. The
first and second impingers contained 150 milliliters of distilled water each,
while the third was empty and the fourth contained approximately 220 grams
of indicating silica gel. These impingers were placed in an ice bath during
the test to maintain a maximum exit temperature from the last impinger of
Cb°F. This temperature is also recorded on the data sheets. The clean and cool
g.-::cs then entered the meter box where the gas flow and temperature was

-------
Gas analysis for CO^ and were determined for each run by using
Fyrite Gas Analyzers. These samples were taken approximately five times
during the testing sequence and were averaged. This was approved by Mr.
Jim Manning. Particulate catches were placed in sealed petri dishes. The
acetone washes of the nozzle, probe and cyclone were combined and placed in
sealed Containers also. For each run an acetone blank of approximately
300 milliliters was placed in a sealed container. These containers were
transported to the laboratory for analysis. In our laboratory, the back-half
train, {everything between and including the back-half of the filter holder
to the third impinger) was prepared for analysis by first measuring the volume
of liquid in the first three impingers and then transferring the liquid to a
.sample container. All parts of the back-half were rinsed with distilled water
and the rin,sings were added to the same sample container. The back half was
u£u.iti rinsed with acetone and these rinsings were placed in another container.
Analysis - Front-Half
The filters (Gelrnan, Class A, without organic binder, minimum 99.9%
retention for particles of 0.3 microns as determined by DOP tests) were
prepared for the field test by desiccating at 68 ~ 10 °F at ambient pressure for
hours and weighing at intervals of at least six (6) hours to a constant weight
(less than 0.5 milligrams change from previous reading). Upon return to the
laboratory, the filters were again subjected to the same procedures as outlined
above. The weights arc recorded in a bound laboratory book and were transferred
to the laboratory sheets in this report. During each weighing the filter was
not exposed to laboratory atmosphere for more than two (2) minutes and the
relative humidity of the laboratory was less than fifty percent (50%).
The acetone washings, along with the acetone blank for the group of tests,
were evaporated to dryness in tared glass beakers. They were then desiccated
for twenty four (24) hours and weighed to a constant weight.
The moisture content was determined for each run by measuring the increase
in the amount of water collected in the impingers and the increase in weight
of the silica gel. These weights were combined to give the total amount of
water collected.
Analysis - Back-Half
The water and water rinsings were first filtered, then extracted with
ether and Chlbroform. The organic portion was evaporated and weighed. The
aqueous portion was evaporated and a sulfate analysis was performed on the
residue. The acetone rinsings were evaporated and weighed. These weights wore
combined to determine total back-half catch. A more thorough procedure	,

-------
1')
P.. In addition to the analytical procedure' found
in 12PA t1othod '3, the condensible materials found in
the back-half (everything between and including the
oack-half of the filter ho 1 dor to the third imp inger)
will be included in the test results. The following
procedures and calculation." apply only to the
back-half of the sampling train:
(a) Procedures for back-half particulate analysis.
(i)	Identify and desiccate for 2M hours
sufficient filters to filter all liquid
collectors and washings.
(ii)	Weigh and record the weights of
the filters in addition to the identifi-
cation number.
(iii)	Before filtering, measure to the
nearest milliliter the volume of liquid in
each impinger and record.
(iv)	Place the imp i nger solutions in a
labeled container and wash any residue in
the impingcr into the container using
distilled water and a policeman.
(v)	Add the water washings from the back
half of the filter holder and intercon-
necting glassware to the container in (iv).
(vi)	Wash the imp infers and the components
in step (iii) with acetone and place in a
labeled container.
(vii)	Filter the solutions from steps (iv)
and (iii) using prcwcighed and fUentified
'	mi 11ipore filters. Use suction on all

-------
2"
( v i i i ) Ho-inure tlx; I'll Irate from (vii)
to the nearest milliliter and record the
volume.
{ ix ) Air dry , then desiccate for 2*1
hours all filters ur.ed in the above steps.
Weigh to the ncarerjt ,1 nig. and record the
weight. As an alternative, the filters can
be oven dried at 105 degrees C for 2 hours,
cooled in a desiccator, arid weighed to a
constant weight.
(x)	Identify and dry for ? hours at 105
degrees C as many 350 milliliter evaporating
dishes as are needed to evaporate the
filtrates. Then desiccate until cool and
weigh to the nearest .1 mg. Record each
weight with its identi fication number.
(xi)	Take the filtrate from step (viii)
arid extract organic particulate using three
25 milliliter portions of chloroform and
three 2 5 milliliter portions of ethyl
ether. Combine the ether and chloroform
extract?-., and transfer to a tared beaker.
(!) Organic Portion - evaporate at
about 70 degrees F until no solvent,
remain.-.. Desiccate for 2'i hours arid
weigh to a constant weir.ht. Hoport
the results to the nearest .1 nj.
Place a measured quantity of unused
ether into a prewcighed evaporating
dish. This is the ether blank.
Do the same to obtain a chloroform
blank, llecord both weights to the
nearest .1 mg.

-------
(J.l) Water Portion - fol low'stops
(xii) and (xiii) below.
(xii)	Evaporate, using an evaporating
dish prepared in (x), the filtrates from
(xi ) (II) and an equal amount of distilled
water separately to constant weight at 105
degrees C, Desiccate the residue until
eool and weigh to the nearest .1 mg. and
record the weights.
(xiii)	Perform a sulfate analysis (turbi-
mcric) of the impinger residue from step
(xii). Follow steps an given in Standard
Methods For the Examination of Water and
Wastewater, l'lth Edition, published by the
American Public Health Association, Washing-
ton, I). 0.. 20036, pages 'IQ6 - 'I fj 8.
(xiv)	Transfer the acetone washing from
step (v.i) into a preweighed evaporating
diyh after measuring and recording the
volume of acetone.
(xv)	Place a measured quantity of unused
acetone into a proweighed evaporating dish.
Thin .is the acetone blank.
(xvi)	Evaporate both the blank (xiv) and
unknowns (xiii) at less than 60 degrees C in
a vacuum.
(xvii)	Dit. iceato to constant weight and
roweJgb. Then, record the weight to the
nearest .1 mg.	—
(b) Addendum to procedures for back-half
particulate analysis.

-------
o?
t. 4L
(i)	After filtration, the filters are to
be handled carefully to prevent loss of
mate rju I.
(ii)	Store used filters in separate
petri dishes for* transportation.
(iii)	When filtering using the Hillipore
filters, it may be necessary to start with
an . 0 yx filter, then a . 'i 5 y-t filter, and .
finally a .2? jn. filter.
Hill ipore ' .2?,/a Catalog //GGUP-0'17-00
Catalog ffHAWP-CMlY-OO
.80jx	Catalog ,7AAWP-017-00
(iv)
(I) Solvent/water blank concentration
Ca = in
a
Vn (? a
ra s Mas?: of residue of solvent
after evaporation
Va s Vo3i.icio of solvent or water blank
(?a = DciKiily of solvent/water
Ca = Sol vent/water concentration
(11) Solvent/Water wash b.l'ink
Wa = Ca Vaw (?a
Wa = We irlit of sol vent/water residue
in so I vent/water wash
Vas = Volume of sol vent/water wash blank
(c) Calculation of baek-ha.li' particulate catch.
determine the total back-haIf particulate
catch from the sum of the weights obtained from
steps (xi)( .!), (xii), and (xvii) less the
acetone, ether and chloroform blanks, and the
sulfate determined from (xiii).

-------
SAMPLE POINT LOCATION

Point #	Distance from Wall (inches)
1.	2.0
2.	6A
3.	11.3
4.	17.0
5.	2l\ .0
6.	3't. 1
7.	61.9
8.	72.0
9.	79.0
10.	84.7
11.	89.6
12.	94.0
/
Figure 1
-H-
	y

-------
THERMOMETER^
HEATED AREA
FILTER HOLDER
CHECK
VALVE
STACK
WALL
THERMOCOUPLE
PITOT JMNQuiETER
VACUUM
LIME
IKPINGERS
I CYCLONE
Uuiui»»
ICE BATH
VACUUM
GAUGE
BY-PASS VALVE
o
ORIFICE

MAIN VALVE
0RY TEST BETER
AIR-TIGHT
PUMP

-------

A
SUMMARY OF 1EST RESULTS
The following table is a summary of the tests performed for
U.S. Steel Corporation on August 18-21, 1980. Four complete tests were
run during the testing period. The first test was performed using a condenser
instead of the impingers. Guardian Systems, Inc., was then requested by
U.S. Steel to use impingers on the back half of the train. Therefore, the
next three tests were done using impingers.
Sampling was done at each of the 2k points for three minutes at each
point. Each sampling point contains one coke push. A representative from
U.S. Steel with a radio would tell Guardian Systems, Inc., when they were
ready to push. The technicians from Guardian would turn on and set the meter
box and then the representative from U.S. Steel would tell the coke battery
to go ahead and push the coke. The meter box was turned off at the end
cf 3 minutes until the next push. Therefore, each test consists of 24 coke
pushes.
V
-10-

-------
TABLE 1
TABULAR TEST RESULTS
Test liumber
Type
1
Condenser
2
Imp.
3
Imp. .
4
Imp.
Average
(Runs 2-
Da te
8-18-80
8-19-80
0-20-80
8-21-80

Tine
7:45-2:14
7:49-2:27
7:09-2:08
7:38-4:11

Moisture, %
2.78
2.67
2.71
2.66
2.68
Gas Temperature,
°F
129
132
132
133
132
Gas Velocity
62.63
61.31
59.15
57.73
59.40
Volumetric Flow,
AuFH
188,877
184,919
178,405
174,118

Wlur.etric Flow,
PSCFM
166,313
161,877
155,291
151,315
156,161
Concentration,
i-rainii/ACF
0.004
0.008
0.007
0.008

Concentration,
trains/DSCF
0.005
0.010
0.008
0.009
0.00?
Emissions,
lbs/hr
6.62
13.33
9.94
11.85
11.71
Ccke Pushed,
tons/test
324.0
324.0
324.0
324.0
324.0
Emissions,
ibs/tcn of coke
pushed

0.05
0.04
0.04
0.04
h Ilou-able,
lb;;/ton of coke
'.if lied




0.03
Irckinetic, %
91.33
90.20
94.54
93.62

V
r—i an rir^i n ni

-------
NOMENCLATURE
ACF - Actual Cubic Feet
ACFH - Actual Cubic Feet per minute
ACM - Actual Cubic Meters
ACMS - Actual Cubic Meters per second
2
An - Cross sectional area of nozzle, (ft )
As - Area of Stack, (ft2)
Bws - Water vapor in the gas stream, proportion by volume
(dimensionless)
Ca - Acetone blank residue concentration, mg/g
c - Particulate Concentration, ACF
a
CFM - Cubic feet per minute
Cp - Pitot tube coefficient, {dimensionless}
c - Particulate Concentration, grains/DSCF
s
Cso? - Concentration of sulfur dioxide (dry basis) corrected
to standard conditions, lb/DSCF
C - Particulate concentration (c adjusted to 12% excess air),
c grains/DSCF
C,-.. - Particulate concentration (c adjusted to 50% excess air),
grains/DSCF	s
DSCF - Dry Standard Cubic Feet
DSCFM - Dry Standard Cubic Feet per minute
DSCM - Dry Standard Cubic Meters
DSCMS - Dry Standard Cubic Meters per second
EA - Excess Air, %
I - Isokinetic Sampling, %
Km - Or if ice Correction Factor , (dimensionless)
Kp - Pitot tube constant, 85.49
(1b/lb-mole ) (in. Hg )
(°R) (in. H20)
1/2

-------
NOMENCLATIVE - continued
La - Max imum acceptable leakage rate for either a pretest
leak check or for a leak check following a component
change; equal to 0.02 CFM or h percent of the average
sampling rate, whichever is less.
Li - Individual leakage rate observed during the leak check
conducted prior to the "ih" component change
(i = 1,2,3, . . .n) , CFM.
Lp - Leakage rate observed during the post test leak check,
ft3/min, (cfrn).
Ma - Mass of residue of acetone after evaporation, mg.
Md - Molecular weight of stack gas; dry basis, lb/lb-mole.
Mn - Total amount of particulate matter collected, mg.
Ms - Molecular weight of stack gas; wet basis, lb/lb-mole.
Mw - Molecular weight of water, 18.0 g/g-mole (18.01 lb/lb-mole)
AP - Velocity head of stack gas, in. !I_ 0
C
Pa - Density of acetone, mg/ml
Pbar - Barometric pressure at the sampling site, in. Hg
Pg - Stack static pressure, in. HgO
Pm - Meter pressure, in. llg
PMR - Particulate Mass Rate, lbs per hour
Ps - Absolute stack pressure, in. Hg
Pstd - Standard absolute pressure, 29.92 in. Hg
Pw - Density of water, 0.99S2 g/ml (0.002201 lb/ml )
Qa - Volumetric flow rate, ACFM
Qs - Volumetric flow rate, DSCFM
R - Ideal gas constant, 0.06236 mm lig - m3/°K-g-mole
(21.85 in. Hg-ft3/°R-lb-mole)
SCF - Standard Cubic Foot
ta - Ambient, Temperature, °F
tm - Average Temperature of meter, °F
t - Average Temperature of stack, °F
s
			J

-------
NOMENCLATURE
- continued
tstd - Standard Temperature, 68°F
NOTE: Capital "T" denotes degrees Rankin
Va - Volume of acetone blank, ml
Vaw - Volume of acetone used in wash, ml
Vic - Total volume of liquid collected in condenser and silica
gel, ml
Vm - Volume of gas sample, as measured by the dry gas meter, ACF
Vine - Volume of gas sample, corrected for leak, ACF
Vm(std) - Volume of gas sample measured by the dry gas meter,
corrected to standard conditions, DSCF
Vn - Volume collected at stack conditions through nozzle, ACF
Vs - Average stack gas velocity, ft/sec.
Vw(std) - Volume of water in the gas sample, corrected to
standard conditions, SCF
Wa - Weight of residue in acetone wash, mg
Y - Dry gas meter calibration factor, (d imensionless)
AH - Average pressure differential across the calibrated orifice,
in. H2O
AH - Value of AH measured for a specific orifice when operated
under the following conditions: 0.75 cfm of dry air
(M.W. = 29) at 68 F, 29.92 in. Hg.
/hT - Average of the square roots of the velocity pressure,
in. H,,Q
0- - Total sampling time, ruin.
0^ - Sampling time interval from the beginning of a run
until the first component change, min.
0^ - Sampling time interval between two successive component
changes, beginning with the interval between the first
and second changes, min.
th
0p - Sampling time interval from the final (n } component
change until the end of the sampling run, min.
"ACOgt %0», %Ng, %C0 - Number percent (%) by vo)ume (dry basis)
of each compound in the stack gas.
-1/1-
	y

-------
11.
12.
V.
ps = Pbar +_Lj2_
13.6
P s P. + AH
in bar
13.6
V
m(std )
V Y (2L®kd_
» Tm
Pbar + AH
13.6
Pstd
4. Vw(std) = 0.04707 Vlc
5. B
V
ws
w(std }
Vm(std) + Vw{std )
6.	Md = 0.44 (%C02) + 0 .32 (%02 ) + 0.28 (%N2 + %C0)
7.	He = M. (1 - Bu ) + 18(B )
s d	ws	ws
8. v s K C ,	
a	p p (/Ap) avg.
9. Qa = CvJ (A ) (60)
cl	S	S
H P
s s
10. Q = CT (1 - B ) ( m
s a	ws t
528
•) (-
29.92
EA =
0.0154 (Mn/Vmstd)
%02 - 0.5 %C0
0.264 %N„ (%0o - 0.5 %C0)
tL	c
100
13. c
50
21
14. c12 = C
12
% CO,

(1.5)(%02 ) - 0.133(%N2 ) - 0.75 (%C0)
1r>-

-------
EQUATIONS - continued
15
PMR * <=SI(V '"iBo
16.	V
V
m
(0.002669)(Vlc) +
m

-------
b - 1 6 ~d 0
u •
1 J *
1 1 .
I i, .
1 0 •
1 7 .
Run Number
Date
30 * 2 7 Barometric Pressure (in. Hg.)
-*3 8 static Pressure (in. H^O)
7 2 • 0 0 Time ' (minutes)
7 3 * 0 3 S Meter Volume (corrected)
1 2 9 * 00 Stack Temperature (°F)
1 16*00 Meter Temperature (°F)
3*60 Meter Pressure (in. HjO)
1	• 0 4 2 SI* Root Velocity Pressure
2	0 • 6 0 Mg of Particulate
4 t • 5 0 HI °f water condensed
19*25^0,
• 0 0 % co2
5 0 * 26 56 Stack Area (Ft^)
• 3 5
000 3 14
Pitot Correction Factor
Nozzle Area (Ft^)
;lack Pressure
3 0 * 24 inches Hg
7 6 3 * 1 0 Millimeters Hg
h eter Pressure
3 0 * 5 3 inC||es Hg
7 7 5 * 4 6 Millimeters Hg
t'.eter Volume
6 i3 • 3 0 0 pry standard Cubic Feet
1*934 j)ry standard Cutic Meters
l.'atcr Volume
1	* 9 5 3 Standard Cubic Feet
*055 Standard Cubic Meters
Koisture Content
* 0 2 7 8 (Convert to % X 100)
!olecular Wright Dry
2	rj * 7 7
!olecular l.'eif.ht Wet
2 o * k 7
-¦tack Velocity
5 *63
19*09
Volumetric Flow
1 (i Ut:j 7 7 *
J 9 • 1 4 J 5
Volumetric Flow
1 6 i!, 3 1 3 *
7 4 * 4 J 1 4
Concentration
0 0 4 o
0 10 5
Feet per Second
Meters per Second
Actual Cubic Feet per Minute
Actual Cubic Motors per Second
Dry SUnul.'ird Cubit: Feet per Minute
Dry standard Cubic Meters per Second
Grains per Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
Particulate Mass Rate
6 » 6 2 Pound:
per Hour
Volume at Nozzle
7 7 • !i 6 o
2*196
Concentration
•	004 1
•	0 "J 9 4
% Isokinetic
9 1*33
Actual Cubic Feet
Actual Cubic Meters
Grains per Actual Cubic Foot

-------
* f
(
2 •
19-80
4	•
5	•
6	*
7	•
d •
1 0
1 1 <
J 5«
1 6 •
17-
1 8 •
^ 30•24
Run Number
ate
arometric Pressure (in. Hg.)
Static Pressure (in. H->0)
7 2 * 0 0 » , . .	*
„ . Time (minutes)
6 9*847
. , „	Meter Volume (corrected)
1 3 2 • 0 0	o »
. , ^ _ _ Stack Temperature	( F)
¦112*00 . _	.	,o„.
,	Meter Temperature	( F)
3 • 3 0	„	.. „
1*017 Meter Pressure 'in- h20'
*	Jsq- Root Velocity Pressure
4 0 * 9 5 f
Mg of Particulate
*	3 0 Q|- water condensed
19*50 Xc.j /i
*% Op
•	00,
e „ „	% CO?
5 0 * 2656 Us tack Area (Ft2)
• 0 5
•000314
Pitot Correction Factor
Nozzle Area (Ft^)
~ •
1 *
* • •
irtack Pressure
3 0*18
7 6 6*57
f-eter Pressure
30*48
7 7 4*19
Meter Volume
6 5*660
1*859
l.'ater Volume
1	* a o 3
• 0 5 1
Moisture Content
• 0 2 6 7
t'olecular Weight
2	3*78
Folecular Weight
2 8*49
Stack Velocity
6 1*31
18*69
Volumetric Flow
1 8 4,9 1 9 *
8 7*2725
Volumetric Flow
1 6 1,8 7 7 *
7 6*3979
Concentration
Inches Hg
Millimeters Hg
Inches Hg
Millimeters Hg
Dry Standard Cubic Feet
Dry Standard Cubic Meters
Standard Cubic Feet
Standard Cubic Meters
(Convert to % X 100)
Dry
Wet
0096
* 0 2
Particulate
'•lass
13*33
Volume at Nozzle
7 5*007
Concenfrat*i§n*
• 008 4
% IsokirftlJit 2
Feet per Second
Meters per Second
Actual Cubic Feet per Minute
Actual Cubic Meters per Second
Dry Standard Cubic Feet per Minute
Dry Standard Cubic Meters per Second
Grains per Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
Rate
Pounds per Hour
Actual Cubic Feet
Actual Cubic Meters
Grains per Actual Cubic Foot
Grams per Actual Cubic Meter
90*20
•••••#

-------
fiC^r litW of-J . .
n	7 Hun Nuflifcor
£. *
0-19-90	Q)ate
3 0 • 2 4 %aroraetric Pressure (in. Hg.
-*7 5 Cgtatic Pressure (In. UjO)
7 2 * 00 Slime' (minutes)
6 9*847 Meter Volume (corrected)
1 3 2 * 00 stack Temperature (°F)
1 12*00 Meter Temperature (°F)
3*30 Meter Pressure (in. H20)
1*017 Root Velocity Pressure
1 4 • 1 0 iMg of Particulate
3 8 • 3 0 Ml of water condensed
1 9 • 5 0 % 0?
• 0 0 % C02
Stock Area (Ft^)
5 0*2656
_ Pitot Correction Factor
Nozzle Area (Ft^)
•000 33 6
1 * Stack Pressure
3 0*18 inches Hg
7 6 6 * 5 7 Millimeters Hg
^ * feter Pressure
3 0 * 48 inches Hg
7 7 4 * 1 9 Millimeters Hg
^ * Meter Volume
6 5 • 6 6 0 Dry standard Cubic Feet
1 * 8 59 pry standard Cubic Meters
4	• Water Volume
1 * 00 3 standard Cubic Feet
* 0 5 1 Standard Cubic Meters
5	• Koisture Content
•	0 2 6 7 (Convert to % X 100)
6	* Molecular Weight Dry
28*78
7	* Molecular Weight Wet
28*49
8	• Stack Velocity
6 1*31 feet per Second
18*69 Meters per Second
9	• Volumetric Flow
1 8 4,9 1 9 *	Actual Cubic Feet per Minute
8 7 * 2 7 2 5	Actual Cubic Meters per Second
] Q . Volumetric Flow
16 18 7 7*	Dpy Standard Cubic Feet per Minute
7 6 * 3 9 7 9	Dpy Standard Cubic Meters per Second
j 1 . Concentration
•	0 0 3 3	Grains Per Dry Standard Cubic Foot
^ „ Grams per Dry Standard Cubic Meter
•	0 0 7 6	*
~f g ~Partrcuiate-Mass Rate
* 4*59 Pounds Per Hour
i c. . Volume at Nozzle
lb®
7 5*007
1 7 " *"
2*124
Concentration
•00 29
• 0 0 6 6
. „ % Isokinetic
18*
90*20
Actual Cubic Feet
Actual Cubic Meters
Grains per*Actual Cubic Foot

-------

t	()vJiy
• ••••• i
2 *
0-19-80
Run Number
Date
¦Jf rt	M >
*	Barometric Pressure (in. Hg.>
17 C	°
Static Pressure (in. H^O)
7 2 * 0 0Time ' (minutes)
6 9 * 8 4 7f,jeter Volume (corrected)
1 3 2 • 0 0stack temperature (°F)
112*0 0 Meter Temperature (°F)
3*3 0Meter Pressure (in. H^O)
1*01 7sq. Root Velocity Pressure
2	6 • 0 5Mg of Particulate
3	8 • 3 0M1 of water condensed
19*50%0?
•0 0% C02
5 0 * 2 6 5 6 -tack Area (Ft2)
•	8 5 pitot Correction Factor
* 0 0 0 3 1 4 f,'ozzle Area (ft2)
1	*
S tack Pressure .
J 0 • 1 8
766 . 5 7 InCheSHg
2	#	Millimeters Hg
f^ter Pressure
30*48
7 7 4-19
Meter Volume
6 5*660
Inches Hg
Millimeters Hg
Dry Standard Cubic Feet
Dry Standard Cutic Meters
1*859
4 * Kater Volume
1	* 803 standard Cubic Feet
*051 standard Cubic Meters
^ * Moisture Content
* 026 7 (Convert to % X 100)
6	* Jolecular Weight Dry
2	8*78
7	* Molecular Weight Wet
2 8*49
J * Stack Velocity
6 1*31 Ffiet per Second
18*69 Meters per Second
9 • Volumetric Flow
1 8 4,9 1 9 • Actual Cubic Feet per Minute
8 7 * 2 7 2 5 Actual Cubic Meters per Second
I q . Volumetric Flow
1 6 1 8 7 7 * Dpy Standard Cubic Feet per Minute
7 6 * 3 9 7 9 Dry Standard Cubic Meters per Second
I j . Concentration
• 0 0 6 3
1 5 *
1 6 •
1 7 *
t e •
*0144.
Has:
Grains per Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
Particulate"Mas3~Rate
'	Pounds per Hour
Volume at fiozzle*
Actual Cubic Feet
7 5 * 007 Actual Cubic Meters
Concentra?ioil ^ 4
Grains per Actual Cubic Foot
0 0 5 5 Grams per Actual Cubic Meter
% Isokinetic 2 6
90*20

-------
2 . ~f£>/7T<—	Hun Numtx r
a -2 0 -3 0	Date
30 * 0 7 Barometric Pressure (in. Hg. )
-•6 2 Static Pressure (in. H^O)
7 2 * 00 Time ' (minutes)
7 0 » 6 1 *3 Meter Volume (corrected)
1 3 2 * 0 0 Stack Temperature (°F)
1 12*00 Mcter Temperature (°F)
j , -j q Meter Pressure (in. H20)
•	9 7 3 Sq' Ooot Velocity Pressure
3 2 * 0 0 ^ oI Parl iculnte
, „ _ _ Ml of water condensed
3 9*00
1 a * 7 5 % °?
.ft n * co?
Stack Area (Ft^)
^0*2656 pitot correction Factor
* ^ 5 Nozzle /\rca (Ft^)
•00031A
1	* ^ ,;ick Pressure
3 0 * 02 Inches Hg
7 6 2 * 5 1 Millimeters Ug
2	* f oter Pressure
3 0*31 Inches Hg
7 5 9 • 6 b Millimeters Hg
3	* Meter Volume .
6 6*016 Dry Standard Cubic Feet
1*i3 6 9 Dry Standard Cutic Meters
, Later Volume
4	*
1 * «j 35 Standard Cubic Feet
•	052 Standard Cubic Meters
3 . !-oisture Content
• 0271 (Convert to % X 100)
Iolecular Weight Dry
o
2 J * 7 5
, ! olecular './eight Wet
"j •
¦r* ~
2 d • A G
•'"•tack Velocity
y "J • 1 'j	^cr Second
1 .> • (} i Meters per Second
Volumetric Flow
1 7 oj'i 0 5 . Actual Cubic Feet per Minute
d 4 * 1 J 6 S 'sc,-ual Cubic Meter." per Second
j j # Volumetric Flow
1 b 'i 2 J 1 * Rry Standard Cubic Feet per Minute
7 3 • ' Jii-j t>ry Standard Cubic: Motern per Second
, , Concentration
1 1 •
* 0 0 7 5
Grains per Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
•0 172
, _ Particulate Mass Rate
r . Pounds per Hour
9 * 9 4
, . Volume at Nozzle
1 b *
•	Actual Cubic Feet
Actual Cubic Meters
2*148
. _ Concentration
1 7 *
Grains per Actual Cubic Foot
•	0 0 6 5 Qrams per Actual Cubic Meter
•	0 1 4 9
% Isokinetic ' *
1 3 •

-------
r
. MKf. -'1
3 •
J -2
Run Number
o-oo
3 0
D
0 7 cDate
b •
o •
ii •
1 0
1 1
1 5
1 6 ¦
1 7 <
1 6 «
, ~ ^Barometric Pressure (in. Hg. )
— •621.
„ -Static Pressure (in. lUO)
7 2 •00'-. ... t	^
Time (minutes)
7 ® ^ Meter Volume (corrected)
1 3 2 * 0 0 , , -
12*00 Stack Temperature (^F)
*	Meter Temperature (°F)
3*30
t „ „ Meter Pressure (in. HpO)
* ^ sq• Root Velocity Pressure
7*00
Mp of Particulate
4 # n i
Ml of water condensed
1 8 • 75, „
% Op
•	0 0 '
% C02
5 0 * 26 5 6 ^tack Area (Fo )
•	B5pitot Correction Factor
• 0 0 0 3 1 4Kozzle Area (Ft2)
t *
2 .
3 •
. c.ack ?ressyr,e
0*02
7 6 2 * 5 1
f- eter Pressyi^e# ^
7 6 9 • 3 d
Meter Volume , ,
a o • 0 1 6
1*069
'..'ater Volume
1 •
Inches Hg
Millimeters Hg
Inches Hg
Millimeters Hg
Dry Standard Cubic Feet
Dry Standard Cubic Meters
^ ^ **	Standard Cubic Feet
' ^ ^ ^	Standard Cubic Meters
Noisture Content
' 0 2 7 1	(Convert to % X 100)
tolecular Weight Dry
2 0*75
iiolecular Weight Wet
2 d * 4 6
Stack Velocity
5 J • ? 5 F^et per Second
' 0 * 3 Meters per Second
Volumetric Flow
1 7 0/4 0 5*
d 4 • I O'j j
Volumetric Flow
1 '5 5,2 1 •
7 3 • 2 i) 3 a
Concentration
•	0 0 1 o
*	0 0 3 /
Particulate Mass Rate
* 2*17 Pounds per Hour
Volume at Nozzle
Actual Cubic Feet per Minute
Actual Cubic Meters per Second
Dry Standard Cubic Feet per Minute
Dry Standard Cubic Meters por Second
Grains per Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
7 5*342
2*148
Concentration
*	0 0 1 4
•	0 0 3 2
% Isokinetic
94*54
Actual Cubic Feet
Actual Cubic Meters
Grains per Actual Cubic Foot
Grams per Actual Cubic Meter
-22-

-------
3
a
Mac tjfru- o/o^y
1*	( Run Numb- r
2 0-30
Date
1 •
4 •
O •
D *
j •
1 J
1 1
1-5
J 6
1 7
1 b
3 0*07 Barometric Pressure (in. Hg.)
~^ 2 static Pressure (in. HgO)
7 2 * 00 xime '(minutes)
7 0*619 Meter Volume (corrected)
1 3 2 * 00 stack Temperature (°F)
1 12*00 Meter Temperature (°F)
3 • 3 0 Meter Pressure (in. ^0)
* ^ 7 3 sq. Root Velocity Pressure
2	5 * 0 0 Ij^jg of particulate
3	9 * 0 0 *M1 of water condensed
1 3 • 7 5 ,% 0?
* 0 0 % C02
5 0 * 2656 j-tack- Area (Ft2)
. y 5 Pitot Correction Factor
• 0 0 0 3 1 4 Kozzle Area (Ft**)
*3Cr
Pressure „ ^
3 U • 0 2
7 6 2*51
Inches Hg
Millimeters Hg
Inches Hg
Millimeters Hg
Dry Standard Cubic Feet
Dry Standard Cubic Meters
Standard Cubic Feet
Standard Cubic Meters
teeter Pressure
3 0*31
7 6 9*88
Meter Volume
6 6*016
1*869
Uater Volume
1*836
• 052
t-'oisture Content
•	0 2 7 1 (Convert to % X 100)
f olecular VJeight Dry
2 8*75
iiolecular VJeight Wet
2 8*46
Stack Velocity
5 'j • 1 5 Feet per Second
1 3 * U 3 Meters per Second
Volumetric Flow
1 ? J,4 0 5* Actual Cubic Feet per Minute
d -i * 1 9 J 2 Actual Cubic Meters per Second
Volumetric Flow
1 3 5,2 0 1 * Dry Standard Cubic Feet per Minute
7 3*209 5 Dry Standard Cubic Motors per Second
Concentration
•	0 J l> d Groins per Dry Standard Cubic Foot
•	0 1 3 3 Grams Per Dry Standard Cubic Meter
Particulate Miss Rate
* 7 • 7 6 Pounds per Hour
Volume at Nozzle
Actual Cubic Feet
Actual Cubic Meters
7 5*342
2*148
Concentration
• 005 1
' 0 1 1 7
% Isokinetic
9 4*54
Grains per Actual Cubic Foot
Crams per Actual Cubic Meter
	
-23-

-------
7~or * Static Pressure (in. H20)
6 7* 9 7 3 Time'(minutes)
. , , „ Meter Volume (corrected)
1 3 3 * 0 0	.Op,
. .	Stack Temperature ( F)
Meter Temperature (°F)
^ Meter Pressure (in. H20)
*	SQ. Root Velocity Pressure
3 7 * 80	. , ..
Mg of Particulate
Hi of water condensed
19*375
^ D % Op
•	0 0
% COo
5 0 * 2 6 5 6 .'ctaCj; ,\rca (Ft^)
*	a 5 pitot Correction Factor
*0 00 314 Kozzle Area (Ft^)
i .nek Pressure
3 0*01
7 6 2*26
ieter Pressure
3 0*26
7 6 9*11
Meter Volume
6 3 * 7 0 2 Dry standard Cubic Feet
1 * 3 0 4
Inches Hg
Millimeters Hg
Inches Hg
Millimeters Hg
Water Volume
1*742
« 0 4 y
Foisture Content
* 0 2 6 6
I olecular Weight Dry
2 d • 7 3
! .olecular Height Wet
2	0 • 4 9
Stack Velocity
3	7-73
17*60
Volumetric Flow
1 7 4,1 U*
:3 2 * 1 7 5 0
Volumetric Flow
Dry Standard Cubic Meters
Standard Cubic Feet
Standard Cubic Meters
(Convert to % X 100)
Feet per Second
Meters per Second
Actual Cubic Feet per Minute
Actual Cubic Meters per Second
1 b 1,3 1 I, .
7 1 • 4 1 3 1
Concentration
*	0 0 13 1
« o 2 o a
Particulate Mass
J A * l\5
Volume at Nozzle
7 3*303
2*076
Concentration
*	0 0 7 9
% Isokinetic ** '
J 3 * 2
Dry Standard Cubic Feet per Minute
Dry Standard Cubic Meters per Second
Grains per Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
Rate
Pounds per Hour
Actual Cubic Feet
Actual Cubic Meters
Grains per Actual Cubic Foot
Grams per Actual Cubic Meter

-------

^ *	Run Numb- r
0	-i - a o
Date
^ ^ Barometric Pressure (in. Hg. )
— * 0 A
Static Pressure (in. HpO)
7 2 * 0 0 • (minutes)
6	7 * 9 7 3 |„.eter v0xurT,e (corrected)
1 3 3 • 0 0	_ . /On v
Stack Temperature ( F)
' 1^*00 Meter Temperature (°F)
¦^ * 0 3 nj0^er pressure (in. f^O)
4 sq. Root Velocity Pressure
^ ^ ^ Mf; of Particulate
3 7 * U 0 mi Qf water condensed
190 7 5 7,0,
*	° 0 % C02
5 0*2 b lj 6 ctacU Area (Fo )
*	^ ^ pitot Correction Factor
• 0 0 0 3 1 4 Nozzle Area (Ft^)
1	' : '.ac'.c Pressure
3 0*01 Inches Hg
7	6 2 * 2 6 Millimeters Hg
^ * teter Pressure
3 0 * 2 0 Inches Hg
7 6 9 * 1 1 Millimeters Hg
^ * ticter Volume
6	3 * 7 0 2 Dry Standard Cubic Feet
1*804 Dry Standard Cubic Meters
4	. l.'ater Volume
1	* 7 4 2 Standard Cubic Feet
*049 Standard Cubic Meters
5	* toisturo Content
•	0 2 6 6 (Convert to % X 100)
6	* Iolecular Weight Dry
2	c3 • 7 t3
7	• I'olecular Weight Wet
2 3*40
:'j • -"tncU Velocity
5 7*73 Feet per Second
17*60 Meters per Second
y • Volumetric Flow
17 4 1 1 6 * Actual Cubic Feet per Minute
3 2* 1 7 '3 0 Actual Cubic Motorr. per Second
) 3 . Volumetric Flow
1 '3 1 3 1 'J • Dry Standard Cubic Feet per Minute
7 1 • -4 1 3 1 Dl-y ''tandard Cubic Meters par Second
1 j , Concentration
0 0 0 7 Grains I)Cr Dry Standard Cubic Foot
Grams per Dry Standard Cubic Meter
•	0 0 1 b
•— Fartim!atfti Mas? nat,°
'	#94 Pounds per Hour
, , Volume at Nozzle
lb*
Actual Cubic Feet
7	3 • 3 0 3 flctuni Cubic Meters
2*076
. „ Concentration
IT®
Grains per Actual Cubic Foot
•	0 0 0 6 Grams per Actual Cubic Meter
% Isokinet*i
-------
f
\
V.
f- . #
4 •	Run Numb- r
d - 21 -BO	Date
3 0 • 0 6 Barometric Pressure (in. Hg.)
-*64 static Pressure (in, HgO)
7 2*00 Time ' (minutes)
6	7*973 Meter Volume (corrected)
1 3 3 * 0 0 stack Temperature (°F)
110* 0 0 Meter Temperature (°F)
3*0 3 Meter Pressure (in. H20)
• 9 5 4 sq. Root Velocity Pressure
3 4 • 0 0 Hg of Particulate
3 7 * 00 Ml of water condensed
1 9 • 3 7 3 % Op
*00% C02
3 0 * 26 5 6 Stack Area (Ft2)
. j 13 Pitot Correction Factor
• 0 0 0 3 1 4 Kozzle Area (Ft2)
^ : jack Pressure
3 0*01 Inches Hg
7	6 2 * 2 t> Millimeters Hg
2	• feter Pressure
3 0 * 2 a inches "6
7 6 9*11 Killimeters He
3	. t'.eter Volume
6 3 * 7 0 2 Dry Standard Cubic Feet
1 . mi Dry Standard Cubic Meters
Uater Voluitfe a J *
4	*
1 * 7 4 2 Standard Cubic Feet
-> , , Standard Cubic Meters
*049
Foisture Content
5 *
* 0^66 ^onvert to % X 100)
Iolecular Weight Dry
d * 7 d
- u * ' L\
!olecular Weight wet
2 0 * 4 )
¦tack Velocity
Volumeti
3 7*73
• U * b 0
'ic How
17 4.116*
F
-------
Hun li
BACK liai.F ANAI.Y:5I:;
#2	113
Initial filtering of	1.2	0.9	2.9
water collected with
.22 micron filter, wig
Organic Portion, mg	2.3	0,7	1-5
v'lilorofom Blank, mg	-.1	-.1
Ether Blank, mg	-.2	-.2
: •.,:j erat.ioii of	53.7	43.0	53.0
er Portion, mg
-.1	-.1
f.ulfute Analysis, r„g	-32,2'j	-31.b0
one iUnne, mg	2.3	11'.A	13.
/•.cot one r.lai.k, n;g	~0.0	—, I
: ,i 1 b.j. k ii.i] f	«?i-. i>?>	.t/O

-------
PLANT
U.S. Steel
PIELD DATA fSHLET
1
LOCATION
C. cV I (3'"\s^0^SC
run #
DATE
j^dJSUSO
f;)W M L'T-lo
GUARDIAN SYSTEMS,
2Q09 Control Avonuo-
Girminqhnm, AbibnmH 3!S209
c'OQ/O'h) 1QUO
B ARO PKCS.
30, .n
TIME
GL
'OlNT ,
HO.
TIMC !
METER
VOL PT - S
STACK
tcmi* f
METER TEMP. *F
IMP
TtMl'
F
oox
TEMP
r
MCTTH
V»l VjUHf.
"HjO
vrLOCirv 1 V.ituun*
rrM r.-ii wr • P'Ciiu»e
H ,3 1 H.|
miN | Duf< ;
IN
OUT
A VC
A
• > i
1 1 1 ' T -
imaa
-Hie?


¦W


1 „	
i 4-
1 _
1 i -
< 'Bin
i;o
m

\0S
»o
^so
3.6
1 ^c4 H
'/ ' 1 ! (. 'ci3i. \
DO
114-
%
YX

"240

l.^/«
5
3 : ' -f )
I0S
ioif
ICQ
loz
it 250
3-1

3
^ i h; he 3
no
w
lo.:
)0S
33 ! 2So


!]-
1 Kbitf.**
IIS
>(%
|0if
IK

2^0
3.6

f
£ i i iih^^
US
10?
)(j&
Yf)
38
2(50
?$


n i
:•< i i-o 1
' )3S
1)0
\m
)(SR
3?
2 HO
2.0

9
•' I
I^S. A.
J : O
1)1
no
\i\
¥)
2S"2
? 1
,00
?
"i 1 ! ;:n
1M
I3S
IM
VI
II?
Tl

LS
^3°
1
,, i
.i

15?. 3
I3S
)I4
,,!i
U!t
l(0
¦250
7. )
AO"
3
i
' ; ] '
'Ui
'3S
))b

"o
J?
26 "2
3-\
j.D -
3


- c
«''ao%
135
l»?
m
II'/
?!
2C/,
2.4
,V0
'2
1
i

%1.7

wt
no
m
40
220

1,6

' ...

, N
. L*
VI3
137
\:o

iri
lfCj


7-Vr

t /•

uc
i
^i.)
130
\2Z

1 A3
'tQ

7.?

/O
t •'


l?i-S
I3S
w?
IX
Uk
HO

7.0
z,2

I **"'

r •
j,-1

i
|
il
! .'4
130
IK
I2C
) >6
to

M
.35-
)
"••• 1

^33
i 3°)
\?.o
!>^
'21

KO
;. \

1
* '•
K.l
w.s
f ifO
\x

%
to
2 50

c?
A '

l
• ¦' '¦ 1

TM

! 26
Ul
U4

o
VI
c,0
1
1

2.0
i
~ .>

\*o
m
~q
2!»0
1/7

n
1 /
«k
f.i
*t.l C)
13^

|l.l
)v?
'H)
250
1.6 •
,K-
n
^ -
i


.
/
y





/
£~->7

i

74.53
IM.I7


115.1


i.fet
1.0+2

i 1
i
1

XJ.e4-
-n3i_£JL_




'
-28-



STATIC PRESSURE "M-O
- -35?
PROBE TIP SIZE
BCFORE	AFTER
. 21^0
-21*0
• 21*0
.*H0
• ^0
zo.o
		.^1
Jfe
OPERATOR
/^C4 K \'0\ 1 9>\
sample box no
METER BOX NO
ICQ
\.
-------
GUARDIAf! SYSTEMS
COOtl Central Avov*,
Oirmlr.yhnm, Al«l»---%m 3QSDe
£OS'07911100
Run Number	j
Date	^-P"— //*- 	
Location /J.S.
Amount liquid lost during transport_
Acetone blank volume, ml	>C&
Acetone wash volume, ml	/* "2Q

Acetone blank concentration, mg/mg	3. JfV
-------
Pi.\M
o. < 
^ r* 1
&6.S77




i
!


. 1

FR08E
8£ FORE
tip size
AFTER
i !
\w*
y.3
I.S~

. '.3»3
13 7
//o
/OX
/O&,
S~i-\j3o
¦V. 1-
/.1
rs

j. 4

3



!4. v / 7 - 7
/if
WATER
i
.r 1

1
>c jd.i2-(*
/JS0
}tb
.Hk
//if

Z-'f0
z „
/• '
i
m, ->r
¦- i- \'S
o^n
!3&
ff>
)Hv
f/1

tP3S

hi
3

!3 g3
- s.
1 i
;• i r- \
e>2£. 0
"/ 34
//a
)/$
)$
6°


M
2
TouJ.^1.1
*
,
-. ¦!
030,/,
/33
/P0
t?o
iM
LI
a^r
a .3
.n$
X







j.

?.n

/ VV
)?0
'W
>?o
si
aro
5.B

3
OPERATOR
! ••%
• -s


;j4
/#
)'$
m
s~8

6j[

3
jL4vv

\
• IV
3 5
o3i-<1

3-1
M
3
V
SAMPI F ROX NO.
MPTFR ROX NO ?/J"*' ,
MFTFR AHM '*»V ^
i ;
i



/PS
!?o


cllO

i.i
3
1
¦ ; } f<








•.saai:


PlTriT CP - .
temp Device Z- w /J
i i 'i
*s ;
5 "1

•55"
Ux
ai
\>3
(oO
9-S°

^ .D
(r>
PHDBF 1 f.TH J ;
PHOBE LINER L 0i>*S+&
PIU^RP HTfl CfT $07-	
•J

<-a
Q>£\«
/'?o

i£U>

Go
XV 0
tp, y
i)»
7
T
3

OS S
I3i

)f&
//?


&. <4

7
AMBIFNTTEMP tf'-'J.f
- 1,
V- ' %
j;*
£>s g,1
/So

IN
A3
(*}

ST.1!

/,
MOTES
fi 0^-»v " / 0 ^ C
N

5''
olJ • i
/;?5"
1
//>
/'A



a ¦'/
f-jt>
6
y.\ZM 9".c<
£?£>&. i-7 7
^-'6 -iT5^
S
"s
c
06G.O
/.*T
//.9
I/O
tto
&
^35"

U
3
'¦**
S
c 1
r~, J)
00 '* '
,26
}oi
/oi
!S%


ui

1

0 t ")<£>/#
t ¦'Hn,
1 •
1



/, j.
1. ¦;'
i€3
a

1 -f

/
- rt s-%
I ~
'
? -*s
U' jv
r;?/« ?
/X£-\
/
fiV
!(P


! ¦ 'r

/
('0\ -O^c
' X
V

* *»
/'»»*./

ftj)
tot


' '?
, 

t
/zr
! '
. fCs
1°^
5*«

/. /
0
!
c
' # - />
/
;


¦ i:r


¦



; % /


;
¦


V
/ / / -» ' 7
// / • //-
/ • 2




30-
•
j.. )'i
i
K'r^rx\H^
«? -
r
132.54
112,21

-------
GUARDIAE3 SYSTEMS
H009 Centfn< Awcm jo-
CHrminrjhrtm, Alt*b"- »* 35?Ofl
SO^/ITTS m&o
Run Number_
Date
z
&l/5/fo
t oca t ion <£/,1.S. ff/}y/jv>-e,	
Amount liquid lost during transport	/LAmJ^.
Acetone blank volume, ml	
Acetone wash volume, ml_ /Zo	
Acetone blank concentration, mq/mq 3. 6YX' Q "
Acetone-wash blank, mg		o!	
Filter Collections (mq)
Probe and Cyclone Mash (mq)
Dish II	X
Cross 2-
Gross
9*9T/ r>
Tare 2 L~7, /
Tare
Jyjsr. 6
Net ' /. 7
Acetone
Blank ~

Net

-------
F'l.ANT
iJX. Sir,'/
FIELD DATA SHEET
J
L0CA7 iO'>J _
o,\nr- Pi;r;:
¦?o# 01
RUN #
DATE .
£ l%o lAb
GUARDIAN SYSTEMS.
200f) C»»ntrnl Avo^un-
Uiroiiiir^inn*, Alnb>>ir>n 3020D
R05 079 TOGO
TIME
7! 6?-
OINT
iC)
MIN I OUR
j METER
• VOI- FT 3
STACK
TEMPT
METER TEMP. *F
IMP | BOX
TEMP T EMP
F I
METCN Ivi-LOCIT v I Vocuym
FRE'JSUNE PRCtGl^WC I PrCSSure
H jO I h,o	| ' Hg

STATIC PRESSURE H-O
— fx
jAas
.iL01

PROBE TIP SIZE
OEFOBE	AFTER
L
3 v$i>'n
I2£

S3
2*

^ ! i
¦9
IT#
/a
// 0
"!

//>
//"
/(»
srs"
3-1"
2u2-

£»r
2 ¥5"


/a
/"
5
//0
//t/
/a,
st
270
/(o
I'O
l(t»
111
fro
PC
Ht
Hi
M

rn
\lb
\fL
ri
at

SB

!jo
l>0
/*ow>.
y$
zi,o
2_JL
2.o
a3°
h
yr
• /




12£.
/fx
H'o
51

/' ^
,3S

/.3
o
!!0
!/2
III
1,0
D-'/o
} '3

/3J
ij
..:J_

j/2

/.a

,3
AS*
ill
//'/
// "
jn
LW.
M
ill
ifl
Co
J V
!sit.
ID. ot,o | ^ D
./,•• /1
IL2-
»ii.«
.^4.
_r32l-


W-A
,2^

G>39
A
'
''i i
• / - /
3/3
3
* f f t
;cj 77^v-
NOTES
c, - i 0
C^L
O *7 $ J 3-6 7
n> i »^
^ <5 '"Aj /o / •^~'N
Ov.'	^
A»'	^-/^h
± 'j> . r t v
I S O .

-------
mmmm systems.
PnOQ Cpatrnl Avu «Jff
Oirmhr|M»*», Alnb * ¦ m 3£i*?09
C0*3/070 -»ODO
Run Number_
Date
Jr/io/fp
location j/. J. S>\ I'i'hrifjJse	
Amount liquid lost during transport^
Acetone blank volume, ml	
Acetone wash volume, ml /S.O
A><*&
Acetone blank concentration, mq/mq S . C, ^Xfo "7
Acetone_ wash blank, mq	Q. /
Total Particulate Capture
Filter If
^•X />""
Dish //
s
Cross
2(,9. '/
Gross
f ?JsTy /
Tare
JGf.S
Tare

Net
/./
Acetone
Blank -—


Net
5:9
7. 0
mg.
Water
Silica Gel
F inal
20
Initial^
Net .
<9
-2 O
Total Water
F inal
lnitial_
Net
3% 6
/?. 0
Approved Hy
-33-

-------
PLANT
[J 5 .
* ~ *yi	"' V
i.e. CAT I ON .
¦>."> p;;cs
Is, ' <*¦&££•—
30.06
FIELD DATA SHEET
1
TftTlJo
74,M- VI
HUN »
DATE
GUARDIAN SYSTEMS,
52ClOt)	Av'intm'
Df-mlridhciiii, A(r»bnmrt 32^00
S?00'079 la'iO
TIME
¦rt iltf"
II..T : T,s,c 1
METER
vol r-r. 3
STACK
tcmt F"
ME f El} TEMP. T
IMP | QOX
T (.MC j TEMP
F |
METtR 1
^reusuhe
w2o
vr locir y
rr 1

	/
)c(3.7
1
m
w
112
~iX
20
?.o
/.e
1
! \

1*77.3
13?
ii4
10$

%
250
"+.(»
/.5
\
: \
;""" ! i

201/0
)3S
!H
m
in

24S
5.0
l.e
1
r- ! !

XS. \
\30
la
112
)I2
52
230
s.°i
1.1

1 i
? 1

-M-c\

jix
10'/
HO
CP
2W
5.0
if-,
7.
v 1
y

2H-C1
BO
in
111
11.3
n
l£0
1
'?.Z
l.o
1
1 » !
^ M !
^rS
BO
V)
ua
113


1.1
• 3S
I
i
s , I
'... 		1

iis.1
152

)I4
HI
^0
2fS
n
,3G
1


2)7.'/
111
irz
iii
111

23S
i.n
• 1^
1
». : !
' ! i
! 2 (9.
130
|0G
lot
lofc

2.5D
12
AO
I
! 1
-r-y


ft#
HO
1)0
llo
Co
250
u
AO

— —
«3'ai
l?o
DO
no
lip

¦2ft?
/II
. J





ill 1



/
/
t * •
1
1


!2o


'J
IID



. nil
X ..
/	-	
y
STATIC PRESSURE H,0
-.CA
PROBE TIP SIZE
0E FORE	ATTER
X
-------
GUARD!An SYSTEMS.
rooo c|phrtm,AI*»**.'. ^ 3ti^CM3
gOfj/ITTO lOSO
±L
Run Number	
Date	 fr/n/Pb
Location i/.S.S 64r,/£
Acetone vash volume, ml
A€.
zoo
Acetone blank concentration, mq/mq 3. (# 4 Y/g ~ ?
Acetone wash blank, mq 	1. /	
Acetone Blank *—
Net	^ 3
5.0
mg.
Silica Col
F inal
Initial^
Net
/70
£7> o
Approved Hy


-------
V. CALIPKATIONS
General
The meter box was recalibrated upon return to the laboratory from
this test. The box was recalibrated at 2.5 "HgO, the highest limit of *
our wet test meter. This calibration produced a single point MCF and
t H@ ehich was compared to the original calibration. All were within the
5/i allowed at the highest vacuum seen. This calibration sheet is located
behind the original calibration sheets.
The equipment used on both ports was as follows:
Probe; 8' - 1
Box: 300
Stack Temperature: L&N 1
S:i;.,ple Box: 2 & 3
The average temperature of the stack wa3 131.5 °F. The Pyro 1
was recalibrated at 135 °F and agreed within 1.5% of the initial calibration
value.
	J

-------

05as<
Iypa A
ciOwi' L*i]yOirc#
r im
aJ
FEATURES
j
:..s
s
I.
ft
7 3 I
i - * ; i _
t C w
( - a c
n tc-!•••:• .0 strcng'.h. o Excellent handling ch.irnclur-
c Gc; J v.ctlir.Q properties. * Minimum of 99 9%
i.e.r, for pjrticlos of 3 jiffl as dolormmcd by OOP
;j c n r.C2! ti'CO.
i ire cr G'oal Q'as-i fiUcr filter pioneered by Gelinan
.'-.jnt Company over 15 years ago. »l continues lo
yied icr high volumo sampling 5m»:e /me is
« r.e raw moteruls incorporated in thuglu:.* IiIums,
a t	h.-iu'j v.m.it'lc/me cutHi'iil An 'i! i t '.'in
-1 c! t*e f.iter. sulfuric jctd, is uivd ns ii tfir.porsion
r-aK r.g tna sheets unsuitable for measurement
- w » ~ J
a Fiter Filters «ua loss lihoty to develop sialic
£'; • or tei' tv.n omor glass fibor media types, Thuy aro
.,:c»::r.!', o/tn nppiicat.ons v/horozinc and iron con-
$ r.ct — - c;:^nt, cr whoro sulfatu contont is not being
:.C'-ir.c2.
Z :»
t rc.zt H2
( :*»» foj.
2Fn-n 4? mm 103 mm ®"*1Q**
efns citw C1G06 C1701
IZl ' 100	ICO	100
1 YP£ A GIA0U riUCnflLtCfl
£f£C!rICATIOH RCPOHT
tl t f *t# »« 1'jucl ivnonn^i	u.finj
• t i » "». I ; < #	J) I	(('•(« Iftf	> I'M	n*.W? t/t
ELEMENTS:
' Z -'t
		:o
M.inganoso	
	200
'
	33
f.^crcury 			
	100
. -n ......
	1
Mriyiifiunum....
.........10

	13
(JiCHitl	
	10

	5
r.c'^r.iym	
6003
. — „•! 	
	to
T.ri	
to
.1
	13
tiSu'liym 	
	1/3
cr
	2
V.irij'Jium 		
	to
. .
	
Zinc 	

•
	23

to 25,000
1
OTii:n physicals:	
	522 rio«Ht5is1anc«|Mj<|
	05 ti>320cin/min. .	DUmin
Hav< ftai«(ftin
.*•'.< .Vtf:r.i5 2;:j ...S39%	Ipnu'cm* P TO ...» h«j
.	Ma* UioTomy
: 5 „ i; L-fjIjj ,..7£0gr	Stciic Prupprt «¦. . .
;	A&:Ii!y O
'n'!	4 3: 3G',	Fold	
1". T. J1H5
, . 	tco	cwcrir.*...
	id	Flu^riJo .. ..
	20
:,o
,DOPi-.iis. • u r.J-
cr Ireu
Typt; A/i: Gla>s Fiboi Fillers ;tio camp; :td ot iC.J \j-
lublt! gl.iv.. liber Tfioy ccM.-.m to.v Irwdi cl lj:;» it.': . j
iiun ili.- Mh'isrto reJCl v/iUi ,*ilinfiL;Jti.f.c: LvHwf a.-*> .t.r.
;uhI lluTt Ion*, wliiiil futiii Ii vi-l-. !•! :.i,i!ur ^r.»	I. il.
ll/llu! • • tins tc.uI'U «f
Typo A.I C.U>s litjer Fiili'ia .'uc Uiiutcr Iil'U in J :Jcji I-r
graviiiuilnc analysis ol Cif p(jlWit£MS. '(r„$ pyra,
Irco tiller tr. tho basis for piocodurcs wiicly tn c.ia.'-
mining muriicipal incl industrial u>r pslluiin^ sutst^r.Cwi.
Elto
Product No.
FlUuis/Hty.
1VPE A.'£ C.Lr.SS FIDHR riLTEil
SPtCIFlCAflOM nCPOAT
Tin'	j J.f mi ,*• i	jl I'H'i Ml v'»*i ,* i-l 11 j* i«l §tf ^ j 11 Jk>t +* *•> m
II	« n-Hi iifil |»U J Ik*1 f\.U - J'» l(>t| 4i. i 11 f '•* *	f
%^tiAl-«in> I ,»'»•	o	*. « k«* '• 9 I"*'/* * Lt)	* 4 % 1
» AffvCvCMtaf'*.;*.',,'"'"* ^ « 'J *'•*#!.
ELtMfNIS:
»
25 mm
37 mm
47 mm
102 mm
S"*!3'
61010
Gii.1,2
61031
jBtt j3_
Oti.i
•jQU
LUO
tea
Vj3__
t;a
Anlmiony 	?J
Aisunic 	20
Uuiylliiim 	 1
Dismutn 	10
C.iJmiun) 	?
Chruiniuin 	V3
Cobalt 	1j
Coppur	 2
Iron	. .1Q3-t.'';,J
I li.ni	... \.i
r, r 	 2
t.U i; s,ii 		 . . t j
	
t, -i „» 			 tj
b. .l:.**n 		<10
Tin		 Ii
Tiii.-s.-m 		13
VVi«ii,n 	
	 %.j
uso ... 	t:-.»
•pit	'jU
DOt" t^'KiPU'i m.'iiiin
ASf M McttioUi t JOU) . 03 v..
Tenuis Jitrenijili
CFi-«l ;.i.uu UUI'JItl) . UiOyf
VVokjIU
0"ft10"shcel ... 40» 3q(
oitttn I'.rr'.iOAi
	i:\> i ,. ,
!<•" .lii.if ii (f.
C- —	.» 	
f It. .J
ij ... i i". - O . Kj
J.'. i« u r«.r h 	
Li,.:.i. i-iir.iiii.
AS- u
K.. ...
il
tJ.
i
M.d -
. C. .
__	WATER EXTMAC fAiJiC lD\i;
Sullal<« . 	C:J Cliu.r.Ju .. .
Nilf.U.'				MS	.
Ait'.inorn.i		1'J
•(.M t l, till in I till V }.
A i it-i i» j K..} *• ii, i
Ii A.m	,i. MiirXu-1* i -
• I ««•~!* * 1,1 k.l I	| •«' * ~ .*. • U.
iv-;
tl
c
o n-
. I »l ,.l t »»i U

-------


T_1_1_[_ri_r
j-mproue (joia imiupj
(W
:3
~ P5
o
tf «
UILET. F
IIIUT ASOlCNI.
P°F
/
GUI IW"I
J	I	!	1	I	I	L
13 a m
poctmTATStnmc.i
3U>
0	m
UJ
pl*J
1	-
•t
tc
IU y.t
ru
Ll
ISO
103
o

w
"T i i ( I T f 1
4 H, f ((0D£ (13 Q'« VA.ltt'jP) -
inur, ja®f
V
o
im i T m cf
IKIET WMhT.
u°f
J—1	I	J—L
10 (3 u u
P0CER5TAT SETtlfC,*

- ;:o .
5 I
r.*»
w
i-*
Iw
-3 13
o
tC
AV
"ii ii i r~r
S-ll PilOtE (13-CJ 0AR2UP)
ttlEt.
IflLtT /UiQfEMf
inLti.ii.a°r
L-l I I I I i
m
ifc.
323
y
sf*»
u#
688
I jy>
o ISO
Ul
fc' «
a.
mui, iiD f
<*3	43	U
FCsEWTAT SETTING,*
"MINI
tumuli!!™ babqu-i
IKLET, 2tf cf
IhLtl teu.Eftf,
W'l
?J	«	12	U
PuURSIAl Stlfil,:,*.
)»
fi* WO
Ml
Tim
¦c>.
M
3
I
' 100
a y
IX
Ih.
0 ¦
rrrrrrr
Ml PfiGOE CISf'n ttAMOPi
IHIET.W0*
\
IfilE! AY UI LIU'.
®/	u °i-"
INLET. ISO °F	_
J—I.	I	I	J	L_J	I
<0	(0	t'J	UJ
IQaEIlSTAT seihng.%
HOfi: fUiljlifei.'i aciU.nl ilO IS;	in lr;v> u!e fji	c.i put
i'itjtue 10
,	Probe Temperul.ui v:;

-------
METER CALIBRATION FORM
Oate fl-1- 	 Box No.	3PO	
Pbar a 30. Off	in. Hg Calibrated by /HorX Ljilson
Orifice
Manometer Set-
tine ;,H fin. H?0)
A wtm
fin. H?0)
Gas Volume
Wet Test Meter
Gas Volume
Dry Gas Meter
Temperc
Wet Tesl
iture
Meter
Avg. Temp.
Dry Gas Meter
Initial
Final
Initial
Final
Initial
Final
Inlet
Outlet
. 1

iich.it
311s.cn
m,a%
m v)
71.1
27-7
)>OS

):0
£
3)js.£ii
3m,m
MO. 3D
m,m
21.1
27.^


I. S
7
3)H 3W
3W.W
w.m
m w
27.1
27-*)
\oZ^
yn\o
/ 7o
20
-.3
m.w
3)m»
WW
vi. w
27.^
27-"}
ms
X
2.S
-).)
mrm
3Kim
m m
125,31}
21.1
27.°)
)\}y^
ynn
X
P«np trust be operated for at least 15 minutes at each AH setting (.5, 1, 1.5, 2 arid 3)
Tdgm = average temperature of dry gas meter (inlet and outlet) + 460°F
Twtn = average temperature of wet test meter + 460°F
Pwu, « ^bar - '$J
I.002O
J, OPS 2

O.^SC
J.OOS*
pdsm = Pbar +
J.wttn = pressure on wet test meter in inches of H2O
Y = meter calibration factor
26.316 conversion factor when using a wet test meter calibrated in liters
Calculations
Y	= (wet final - wet initial)(THnm)(PWfm)
(dry final - dry initial )(28?3iW^TPdW"
or (1)
:;y
Y	= —
3
'•'oter Tolerance = 1.00 ± 0.01
If the meter calibration factor is not within the allowable tolerance, the
cal it-ration factory Y may be used to mathematically correct the gas meter dial
recdings to the proper values instead of physically adjusting the dry gas meter
Mi a 1 s ;q correspond to the wet test meter readings.
Y

-------
Po$t
METER CALIBRATION FORM
Date August 26 . mO
Pbar = "^0- i O	in- Hg
Box No.
300
Calibrated by PlarK {JiUon
Orifice
Manometer Set-
tinq AH (i n. H?C)
A wtm
fin. H?0)
Gas Volume
Wet Test Meter
Gas Volume
Ory Gas Meter
Temperature
Wet Test Meter
Avg. Temp.
Dry Gas Meter
Initial
Final
Initial
Final
Initial
Final
Inlet
Outlet
2. J5
-1.1
tOG.ltf.
ion. m
m xi

2$. 5
25T.S


i.S
-1.)
TO. 342
m.s%
QWM
cm/v
28.5
a?.|

J&m
2.5
-u
lOUttif

taut
cx.m
H.)
2X1






















7*f
*
"X" t GO^t'C
¦K*r * '-:Fjinp must be operated for at least 15 minutes at each AH setting (.5, 1, 1.5, 2 and 3)
Tdgm = average temperature of dry gas meter (inlet and outlet) + 460°F
Twtm = average temperature of wet test meter + 460°F
^bar
pwtm
^dgm " pbar +
Atitm
13.6
AH
13.6
.HVOS
- 3 -. to? = .^r
Awtm = pressure on wet test meter in inches of HgO
Y = meter calibration factor
28.316 =conversion factor when using a wet test meter calibrated in liters
Calculations
Y 3 (wet final - wet initial)(THgm)(Pw»m)
(dry final - dry initialH28.316)(T„tm)(Pdgm)
or (1)
IY
ys	r
Meter Tolerance = 1.00 ± 0.01
If the meter calibration factor is not within the allowable tolerance, the
calibration factory Y may be used to mathematically correct the gas meter dial
readings to the proper values instead of physically adjusting the dry gas meter
dials to correspond to the wet test meter readings.
-40-

-------
Date
bar
~ go
30.02
ORIFICE CALIBRATION FORM
Meter Box No.
30O
Calibrated By /^crX UA )sor\
11 H
Vl
v2
0
tl
*2
v2 - Vl
Qm
Km
in. K?0
CF
CF
Sec.
°F
°F
CF


.S

w. 3)}
°jCO
m
%
6. "26S
0.414-0
O.WT
1.0

mm
°)0O
107
%
2,633
0. b%)
0.1212
l.s
wh
mn
w
\o%
%
|0. E6^
O.GW
0.7/16
2 .c>
tnn

0
cv\
cr
m 1

12. W
0. Wl
o.ioco
2.S
UB
12S.5S)
^OO
1)2

a 4 S3
o.fito
o.W)


-




Average Km
0.^2
V1 = Dry gas meter reading at the start of each test
V2 - Dry gas meter reading at the end of each test
tl = Dry gas meter inlet temperature
t2 = Dry gas meter outlet temperature
Calculations
— t2 + 460 	
1. Qn =
(for each AH)
2- ^ =
(for each AH)
h - V1
0
tl + t2 + 460
'm
¦v.
AH
3. Calculate the average as follows:
5
Calculate A Ha as follows:
1
Km'
= 0.921
Km2
i = Q02 P@ MQ
TG>
Q3 = 0.75 cfm
T0 = 5280R
P(? = 29.92 in.Hg
kg = 29
Orifice Tolerance = 1.84 ± .25
A He. = ). SO
(60)(Y)
29
t2 + 460
Pbar + AH
Mm
o"1
Pm
13.6
Y = meter calibration factor

-------
Date /Qu^uS*b 1^0
¦?o. '0	
bar
Test
ORIFICE CALIBRATION FORM
N^ter Box No.
300
Calibrated By Pig r K UJ > ISQr\
A H
Vi
V2
0
tl
*2
V2 - Vi
On

in. H?0,
CF
CF
Sec.
Op
°F
CF


2. 5
5W

%Q
126
US
is. m
.mi
. im
2.S

en, ac
100
I2G
M
a m


2.S
mM

/0$0
m
lit
17. m
.=1551
¦ mi


















Average %
.nvyi
V| = Dry gas meter reading at the start of each test
* Dry gas meter reading at the end of each test
tl = Dry gas meter inlet temperature
t2 = Dry gas meter outlet temperature
Calculations
^2 ~ V] t2 + 460
= l. CI
Cm =
(for each AH)
2« ^ =
(for each AH)
0
tl + t2 + ^60
(60)(Y)
'm
Mm
AH
Mm = 29
Tm = t2 + 460
Pm = Pbar + AH
Calculate the average ^ as follows;
Ki, =
13.6
Y = meter calibration factor
Calculate A Ha as follows;
1
a Ha = Q32 P@ M3
T@
Q9 = 0.75 cftn
TO = 528°R
P? = 29.92 in.Hg
M? = 29
Km''
0.921

-------
l::!
- H-H-rt-rri-
ll
i I : s 1 i i t i ]
Tfi
1 - V '	 					 *-4-!——• I	>
• :" -*4 HTPl-

Lii:. LLiJJL.fr
¦Ub±jM
•) ¦	i • ii
:™——nrnri
* *	-*«¦*»	t ¦ £ * Mt M • J*M .
	:-H—r-: --fr-
' :•• • rHti|1 4.r(i:
::: :nrr-rp:	nif/tllt
:	: :-fr fl m'fr Wiv
i-Ll.i-l	L—	ZZ	!
,i _ ...	% ~ >•*	¦
Z rr.7': 'NSI~ —«y—i
.r„. . --^-s —~ Vj.	«
* j_z.		"r
.... :~~..-..j?U-
:.i
'	i • ' •• :¦ i * rf.i. f#>: j': i ; ; i i »
• . ¦ • , I t ' j M M J | I !
• • ; ! • : 1	: ; ' •
-'I'I

-------
1'ITOT CALTIIKATION ItlKli
Date Q- 2S	,	l'robc. it 5>~ \
Calibrated By	) i \r>\	\			
ND2 = le Size	<\g.	
SIDE A
Run {'
^ ^ntd
(In. H20)
Standard
A P(u)
(in. H20)
Type "s"
Vo)
Deviation 1
C. (a) - C (A)
l' p
I
I
. ss
. %

~ ,oo~i
I *m
.ss
¦ lb

0C2
I 3
• 5S
.nn
. <253
1.003

-
VA>
.230
. OO }


SIDE
.1%^-
3

( 	
Run (/

p »'
1
AS
• OV

r . Or
i
.SS
.ns>
,«iVv<
~ • C'
3
I -Ss
%

- . £ CO. ;

V»>
.«so
. • . CO 1
«2S
CALCULATIONS
cP*fl) " cpr3td) —JA *Vd
(or 0.99)	M A P(s)
Average Deviation » £ | Cp(s) - ^p(A or B)|
3	^	Must be < o. 01
| C (A) -Z (B) | Must be < 0.01

-------
QTTEOD S SOURCE TEST FO* PARTI CUIATB
co^>«oy U 5 STB EL.
Todaya Date APKIL z, mi
.Date of Teat
tm So.
Ave
it.
Total
loctto BlGMiHGUAh J Ml
Teat Performed aa (atack, boiler, etc.)	CX>H~F" fiATYB^Y BAGHDUSfc
EUtB:
I 0I~7 Avc
I'y' ' i. Calculator pilot* entry.
All
. Calculator print* entry.
3.30
112. * 3 TW-aetar teapcratm *V
Calculator prints entry aad
abaolute t«p«rature.
J32.S .Ta-atack temperature *F
Calculator prist* catty aad
at*elate temperature.
Cp-pitot tube co-efficiast
Calculator prist* entry.
. 0 slmitca la na
Calculator prist* estry.
.SUM S02XU IB XM3ZS
Calculator prist* entry and
Bottle area. ¦*.
. OK sortie area la a^oarc feet
Calculator prist* entry.
-Fbar-tiaroaetrlc prtaaure is
iscbea is mercury
Calculator prist* aatry.>
.24-
30.24-
¦a7ir
JL
. Fa-praaawr* of atack is
loehea of inter. Calculator
prist* entry aad almoin**
taperator*.
-OB absolute presaure of
•tack is iscbea of aercoty
Calculator prist* entry.

.nun ma n zsoses
' Calculator prist* tatty Mi
area fa *Tii>a>iflr
priata otry.
.X COj
Calculator prista aatry.
.! 02
Calculator priata entry.
	-0	* 00
. Calculator priata aatry.
	
Calcalator priata entry i
aolecular weight dry.
as
vass
E
l/S
*/s

-------
ROH <
!gfej«-- 57&--$| .
¦
pgj^sl.
J-ypy^l f
^pgo3iji'ft?a|
$i($||;;3Q![- in' ¦
30.1 8485254"^
50.265482^1
SW'iMiisii :«'-.*• *$5i|
. y500.:-5
^"&f^i^:'-'''*•" 38.:"34'


04095*
izxZZt.'zi,
U'fUtKjy
Hi.	ifs*


¦•^--"S0*5
-2%. 7Sn

•4ii^-Y:- - 61?. J 5 V>|i'" jjSCF~ .r .•";*:
^ig'.'" :. 2. 54.X WATER ¦' .".
reS^* 2S.51 M/S - :
lllf#:?- 61.32 V/S -"••'¦ :'¦ "v- ?•-.•¦'
¥ |.1P9?P'65..,56" flCFH •• •••'.• ' :'.v
5^:.9Zi92lp;:49. DSCFH	";"
EXCESS filR
r^V*^T-C4,-• V*«» .v?§ - •	. •, ¦
pltg0p^21^8| GM/CUFT v . V
^P^l^ii'2-r .69iB/HR. •.?'
2. 68?S?29 LB/MMBTU
^. 012401706 i ,tB/Mt1BTU  -.0 .>•••• i-"• i'r.: •*• ;•-• ,;
V
-------
HTTBOD 5 SOW 1ST FOB FAKtlCOIAt*
Todays Bate APRIL 3, if&f
Coapeay Ut$ S TTi ilJ
taction	M j) Ak.-——.
Test Performed «n (stack, boiler, etc.) CP/ffc
Bate of Teat A^G SO,. /f&Q
«ua 3 TDffcL
BATTtkX *«7
jlIIL
AtlL
oiils:
132.
.er
7,2-
.Zi-
«c fT
Calculator prist* entry.
*«
. Calculates print* entry.
, Tfc-«*ter t«^eratur* *f
Calculator prist* entry and
absolute temperature.
. Ts-atsck tenperatsre *F
Calculator prists catty sad
^ fr-lfl r*tTTft
. Cp-pltot tab* co-efficient
Calculator print* nttf.
. 0	in (qb
Calculator prlata entry.
.SUM V0Z2U IB INCHES
Calrolator prints entry and
nossle uti.
. OK aotzle area is square feet
Calculator prist* entry.
no. of . Fbar-tsroaetrlc pleasure 1b
lache* la aereary
Calculator prist* entry. >
.iZ
¦ If (?	
. F*-pr***ure of *t*ek la
of vstcr*
print* catty and ahaolot*
teaperatere.
>9) ebaolote pressure of
stack Is Inches of aercsry
Calculator prlata entry.
.BUM SXftCK IB ISCHES
Calculator prist* catty «j
araa in square feet
. OK-area of Stack Is square fact
Calculator prlata catty.
3S&0.
.m BTO/HR(enter beat estiaates
available or eater 1 and dis-
regard calculated remit i
Calculator prlata catty,
. r. factor wcrfm tin (Federal
teglster 60,65, laboratory
factor, or cater 9S00 and dl»-
regard calculated result*).
Calculator prist* entry.
mss
A
S/S
s/i
a/s
s/»
i/s
s/s
ca osi
*/s
S/S
sbk on
s/s
sn om
s/s
s/s
JiTBUUIJ
mss
A
SB 008
sb on
SB 022
SB1 033
tn 036
SB 060
cat 052
SB 056
SB 060
SB 070
SBK 074
SB 086
SB 090
SB OM
39.
i&32
lia312.
.Total nllltletera of water
(vater plus alllca (el)
Calculator prists entry and
NloK of water vapor *t
standard condition*.
. (Otal eras* particulate
collected (Subtract blank
Calcalator print* oat entry.
.Ttotal	(a* «etered (lea*
•Honed leaks end sa* lost at
filter change*) Calculator
prist* (Biff*
jg.7>r
o
.1 C0j
Calculator prist* antry.
-*oa
Calculator print* catty.
.S CO
Calculator prlata catty.
Calculator prist* eatty
¦olecalar weight dry.
FIBSS
E
S/S
S/S

-------
Hum 3
g£ 0, 9?
mm-xm

» -' 6fC*?W«
¦MM:
? : fs 0pO3141
^f^ff-^lv-^rii-' /h»
F>, 30. c
*0. &
i^^p^'30;?Q7|
:l"17m
mmlm§$mS Hi
t:^k^35oo^
gr* . ",'.*'"**tr^;,yv,. -f'^v../ * * • 2 • ¦': ¦
«•¦ « ' *	•"' v -.v">_ ; ^". -. _ ¦
u 33573
p.^;^-..v-'P« °^1
*, "'•¦•;•: •>»"~•• • '.- ¦•'' v 'i
Er^j- •^•-'^ -ifabfivv i- i^V^ig
...., ^
p. KSrpfggat	*"jjNP
^.. jisp^^sir
h* .--.> -i.-..S .5-. j*i--.-	-
-B'&S0M>k 7n
3 2 V/M DSCF
~5% UflTER
$*^^*•56; 49'V/S -¦¦¦ • -
i-i-'J 0222608. 72 BCFH
3912296, 91 DSCFH
EXCESS AIR
^OT4563SCitlGM/CUFT
ppm -
.^P^:'8--'971b/hr	¦
*»; 8. 966533107 LB/MMSTU
f^095578127 fi/MMBTU 
| : 4024. 8405891
e<3&
WMM


ISOKINETIC

0
0}


-------
ARtL 2 lib t
MUWI ft PMIKPV 
y', -	. Koda. « jDate
Cpaponj U3 SlT£?£lL	fate of Test
Location
Test Performed on (stack, boiler, etc.) fp/ff	^ ? &F\GH&LX£j^
AVG
"2 1 , 11 GO
¦4*
/
w>t*l
J5±_
3.03
133,?
.sr"
7a
>240
WTO
«C fF
Criwt»tM (rlati entry.
AS
, Calculator prist* atr;,
. T*-oeter teaperatar* *F
Calculator print* entry «I
Awliitc tagitntim.
. Ts-«t*ck tenperatare *F
Calculator prist* entry aad
abaolote teaperature.
, Cp-pltot t(iN co-efficient
Calculator print* entry.
r 0 •rffHtfrfy |g TO
Calculator print* entry.
-DIMS BOZZU IB »CBES
Calculator prist* entry mi
nocsXe area.
. OR noule area is annate fast
Calculator prist* entry.
• 3P*	fbar-barowstrlc pressure la
laches Is screwy
Calrelator print* entry.'
X4
JZ&_
. Fa-preseure of stock la
Incite* of water. Calculator
prist* entry mai absolute
tenpemtuss.
-OK absolute pressure of
•tack Is lscbes of sercury
Calculator prist* entry.
.cum stack ix mass
Calculator prlnta entry Mi
area In o^uar* feet
CB~area of stack Is sqttare Cast
Calculator prist* entry
¦ —¦ I		 W BTO/HR(enter fceat eatlaate*
available or ester 1 and dis-
regard calculated remit J
Calculator print* entry.
..3,$?® | r, FACT0R dsctA« BTC (Federal
Ke&lster U.4i, lsboysrery
factor, or ester 9SOO aid dis-
regard calculated result*).
Calculator print* entry.
A
«/S
¦ V
a/s
t/s
*/s
m
s/s
SB 032
l/S
i/S
OK 070
B/S
tM 006
m
K/S
ALTSHHAXB
mss
A
sb oos
SBS 012
SB 022
SB 032
SB 036
SBR 0*0
sea 0S2
SBS 056
sat 060
SB 0V0
SS& 0?4
SB 086
SBR 0M
SB 096
2L
fo 376
72.13*
.Total oillllater* of water
(water plus allies gel)
Calculator prist* entry and
voluaa of water vapor at
•taadaxd conditions.
. Tftj1*!	piZtlfltl'UM
collected (Subtract Mont wi^k)
Calculator print* out entry.
.Total voUae gas wetered *leaa
allowed leaka and £aa loat at
f lite? duttget) Cilmlitor
JNTlS&P
0	-»o>2
Calculator prints entry.
02
Calculator prlsta entry.
Q » CO
. Calculator print* entry.
flo-rar.-,
Calculator prlsta entry a
¦olccular weight dry.
FBESS
X
i/S
K/S

-------

jMVjt •"« S-f r- ^» -V.V4
592^j
/>is
#» -iV'f.A,
I#. 000344ipSf
K^^&^x.-rr ¦ r
';n .?•*£ •*
VU» Di
^^oVoliasMll
r||5pt;2|548|^l
IppfrPil
Jlpliiii
KHKlw" 0,0378!

Itsllili^
l#ife?3 9'. 3.|^
*•"* "•¦'"Siyfit? 1ifts»yf 5"*.c*"gj-v^V^vr«* '.' uw
&4^;s!|#«yKsfa5'Sfe'»f.;, *i >SX
<••.?**>*¦?»** •"-»h.-- «•* 4
fe.^-10- 6251

PKSf&y*-.-,.-	 -
&w:Z}g££-] 67. 63.V/M DSCF
i * UfiTER
^^:,||,So.!i/s,,,	:;.
kil 0443231V 39 fiCFH
|fv9Q91425.2bBSCFH
£IM3» excess AIR ;'.^
¦'¦¦'¦¦ ¦••¦• •....•...•:=.v .. . :
^000558958? GM/CUFT '
:-4§.PPM ¦	... / .:. .
JMW& -1 IV 20.LB/HR - .:' . -: ¦
f^t|^0g£4l 12LB/MHBTU	¦./
|f;i 0 i 1^06536 I LB/flMBTUCF FfiO
Kf3.985i'956'#tl
^3 : v ^*l&- "U

-------
. . _5£- 'L	°3UjH
_____	-X		»—WV/—T—		¦ - "
fQ '	i'i> . 'V&u/d
_ -bisQQO'9 .	?'! _
#T £>?z "9' !"jj u/CL -/ vjf.- t>Q(f

-------

'''''' . .*¦«¦* '^''h * ' '¦ ¦¦¦*>>•¦ ^

.^«u
TO "
A - ;
fsjl

xx>^\
' ""
^ V v:; '
. - •
;.. :¦#:»' ••
* 20*1 v ¦ -
- ""*_ •:


P = 3A.ID ~ irkb ) - 3d.lt

(0Tf7) £>C~
P/ * %&tfO + f 3, fa, ~ :£& 	

JlpL__				——
1 fl IA it*

' (u.O*) .?Cel -frHr- /Ot-

b,zt.e (20.fi-) 4mih

^2

- i.n.$ 3d. 72. • 5-^2. _ /. <* • SO.lZ ' 5*^3 - /./0^
^ £
*" 30.I9 ' &-Z-
V
NO


S2.4SZ • So.fjT • £6,4
/£.44 ' 36.22, ' <&2. " f °T



/S, fosT * .?
<•_*
t $ 0

J V		
¦ .

-------