FINAL REPORT
EMISSION COMPLIANCE TEST PROGRAM
AT
EAST SHORE WASTEWATER TREATMQ1T PLANT
NEW HAVQi, CONNECTICUT
CONDUCTED ON
AUGUST 26. 1982
FOR
ZIMPRO, INC.
MILITARY ROAD
ROTHSCHILD. WISCONSIN 54474
BY
YORK SERVICES CORPORATION
ONE RESEARCH DRIVE
STAMFORD, CONNECTICUT 06906
-------
f
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
1.0 INTRODUCTION
2.0 SUMMARY AND DISCUSSION OF TEST RESULTS
3.0 PROCESS DESCRIPTION
4.0 SAMPLING LOCATION
5.0 SAMPLING AND ANALYTICAL PROCEDURES
5.1 Preliminary Measurements
5.2 Flue Gas Composition
5.3 Particulate Concentrations
5.4 Sludge Samples
6.0 APPENDIX
6.1 Field Data Sheets
6.2 Emission Data Calculations
6.3 Process Data
6.4 Calibration Data
6.5 Scale Calibration Certification
6.6 Laboratory Data
-------
LIST OF FIGURES
'»
\
/
Multiple Hearth Incineration System
Scrubber Outlet - Teat Port and Sampling
Point Locations
Integrated Gas Sampling Train and Orsat
Analyzer
-------
LIST OF TABLES
-------
1.0 INTRODUCTION
York Services Corporation (YSC) was contracted by Zimpro
Pollution Control Systems to conduct an emission test program
on the multiple hearth sludge incinerator at the East Shore
Wastewater Treatment Plant in New Haven, Connecticut. The pur-
pose of the test program was for the collection of data needed
by the Connecticut Department of Environmental Protection
(DEP) to determine compliance for particulate emissions
according to the DEP New Source Performance Standards (NSPS).
The testing was conducted on August 26, 1982.
2.0 SUMMARY AND DISCUSSION OF TEST RESULTS
The results of the emission test program, conducted on the
incinerator at the East Shore Wastewater Treatment Plant are
presented in this section. All testing was conducted in
accordance with methods outlined by the Environmental
Protection Agency.
Particulate Results
A total of three particulate emission tests were performed.
The average emission rate calculated in pounds of particulate
per 1,000 pounds of flue gas corrected to 50% excess air is
0.0321. Table 2-1 summarizes the particulate test data and
results.
Section 19-508-18 of the Connecticut Air Pollution Rules states
that for existing incinerators "No person shall use or cause to
be used for any existing incinerator which will emit more than
four-tenths pound of particulates per one thousand pounds of
flue gas adjusted to fifty percent excess air." The results of
the test program indicate that the sludge incinerator was in
-------
TABLE 2-1
SUMMARY OF PARTICULATE TEST DATA AND RESULTS
EAST SHORE WASTEWATER TREATMENT PLANT
NEW HAVEN, CONNECTICUT
General Data
Test 1
Test 2
Test 3
Average
Date
Time
Isokinetic Ratio (%)
Gas Data
Average Stack Temperature, (*F)
Volumetric Flow Rate (acfm)
Volumetric Flow Rate (scfmd)
Moisture by Volume (%)
Gas Composition (Dry Percent Basis)
Carbon Dioxide
Oxygen
Carbon Monoxide
Sludge Calculations
Wet Sludge (TPH)
Percent Solids
Dry Solids (TPH)
Particulate Emission Results
Pounds per Hour
Lb/1,000 lb of Flue Gas Corrected
to 50% Excess Air
Pounds per Ton of Dry Sludge
8/26/82
1430-1536
98.04
184.6
15079
11829
4.44
6.17
11.43
0.0
3.991
31.93
1.2743
1.3177
0.0381
1.0341
8/26/82
1940-2045
100.10
170.8
13660
10848
5.34
6.80
10.93
0.0
4.414
32.24
1.4230
1.3322
0.0401
0.9362
8/26/82
2120-2235
99.59
166.3
13978
11204
5.14
8.73
8.40
0.0
4.800
28.25
1.3560
0.8229
0.0182
0.6069
99.24
173.9
14239
11294
4.97
7.23
10.25
0.0
4.402
30.81
1.3511
1.1576
0.0321
-------
3.0 PROCESS DESCRIPTION
The Zirapro multiple hearth incinerator system is designed to
accomodate approximately 126 tons per day of sludge cake.
The Zimpro multiple hearth incinerator has seven circular
hearths, stacked one on top of the other in a cylindrical con-
tainment vessel. A central rotating shaft has rabble arms
attached. The incinerator system is shown schematically in
Figure 3-1.
Sludge enters the incinerator at the top and is dropped direct-
ly to Hearth 1, via a peripheral drop hole on Hearth 0 (Hearth
0 is used only for burning of combustible gases). The sludge
cake is rabbled inwardly across Hearth 1, drops onto Hearth 2,
moves outwardly across Hearth 2, drops onto Hearth 3, and con-
tinues alternately until the residual ash is rabbled outwardly
across Hearth 6 to a single peripheral ash outlet.
The residual ash that is discharged at the bottom of the incin-
erator is conveyed to a storage hopper until it is hauled away
by truck. The exhaust gases produced by incineration are burn-
ed on Hearth 0 and are cleaned and cooled by the gas handling
system (series of scrubbers) prior to discharging them to the
environment.
The following are scrubber design parameters:
• The scrubber is designed to meet the 1.3 lb of par-
ticulate per dry ton of sludge emission regulation
• The design pressure drop across the scrubber is 25"
-------
Th« scrubber is designed to use 1300 gpm of water
3jj|k
Th«?scrubber gas temperature - 1400*F inlet, 105#F
-------
Sludg* to
Incinerator via
conveyor
Auxiliary
ha at. (via
gas/oil fired
burners) and
air
Multiple
Hearth
Incinerator
Scrubber
* Exhaust
I
a
to atmosphere
Air recycle
Induced Draft Fan
Air
Ash to
disposal
Scrubbers
Ash Slurry to
filtration and
ash disposal
MULTIPLE HEARTH INCINERATION SYSTEM
-------
4.0 SAMPLING LOCATIONS
Scrubber Outlet
Particulate and gas composition samples were taken at the
scrubber outlet stack. The location of the sampling points was
determined in accordance with EPA Method 1.1
The scrubber outlet stack is 4.0 feet in diameter. Two test
ports, 90 degrees apart, are located 8.38 stack diameters from
the downstream disturbance, and 2.08 diameters from the stack
exit. A total of twelve traverse points, six per port, is
required at this location in a gas stream (Figure 4-1).
Conveyor Belt
All sludge samples were taken from the conveyor belt after the
dewaterization process.
1 40 CFR 60, Appendix A, Method - 1 - Sample and Velocity
-------
TRAVERSE
POINT
1
2
3
4
5
6
DISTANCE FROM
STACK WALL (inches)
2.11
7.01
14.21
33.79
40. 99
45.89
33.54* £
to
downstream
disturbance
24.69'
8.33'
77777777///S/f/'rf
Scrubber Outlet
Stack
SCRUBBER OUTLET
TEST PORT AND SAMPLING POINT LOCATIONS
-------
5.0 SAMPLING AND ANALYTICAL PROCEDURES
Measurement procedures, sample recovery, handling techniques
and laboratory analytical procedure were conducted in accord-
ance with United States Environmental Protection Agency (USEPA)
NSPS guidelines.^
5.1 Preliminary Measurements
Preliminary flow characteristics had been determined by YSC
during previous test programs. A check, however, was made
before each test run to confirm the conditions.
5 .2 Flue Gas Composition
The gas composition was determined in accordance with EPA
Method 3.3 a gas sample was collected during each particulate
test. A sample line was attached to the sampling probe. A gas
sample was drawn by a vacuum pump into an evacuated tedlar bag
at a rate proportional to the stack velocity. The contents of
the bag were analyzed for 02, CO2 and CO with an Orsat
Analyzer® immediately after collection. Figure 5-1 illustrates
the sampling train and analyzer.
2 "Standards of Performance for New Stationary Sources, Sub-
part 0"-"Standards of Performance for Sewage Treatment
Plants", Appendix A, 40 CFR 60, November 9, 1979.
3 40 CFR 60, Appendix A, Method 3 - Gas Analysis for Carbon
-------
Integrated Gas Sampling Train
and
Orsat Analyzer
Ann «Mt n t, i
/ /mjb mM ¦
i ea. >imu
-------
5.3 Particulate Concentrations
Particulate concentrations were determined in accordance with
EPA Method 5.4 This method calls for isokinetic sampling of
the flue gas to ensure a representative particulate sample.
Sampling Apparatus
The particulate sampling apparatus consisted of a probe, pitot
tube, filter holder, four impingers, dry gas meter, vacuum pump
and flow meter, as shown in Figure 5-2. A calibrated nozzle
was attached to the sampling end of the probe which had a heat-
ed stainless steel liner. After passing through the nozzle and
probe, the sample was drawn through the tared fiberglass filter
which was encased in an oven to maintain a temperature of
250*F. The sample then passed through the impinger system
which was contained in an ice bath.
The first and second impingers were initially filled with 250
ml each distilled water. The third impinger was left dry and
the fourth impinger contained 300 g of indicating type silica
gel. The temperature at the exit of the last impinger was
monitored with a thermometer that measured to the nearest 1*F.
A sample line connected the last impinger to the meter box.
Sampling Procedures
Initial and final leak checks were performed on each sampling
train to confirm the presence of a leak-free system (leakage
rates did not exceed 0.02 cfm per EPA Standards).
4 40 CFR 60, Appendix A - Reference Method 5 - Determination
-------
HIGH VOLUME SAMPLING TRAIN
VTYPE
PITOT
STAOK T.C
PVEH
^FILTER
HEATEO PROBE
lAAA
MP. T.C
PROBE
OVEN
&
PITOT AP
MAONEHELIC
IMPINQER TRAIN
GAS METER T.C
FINE ADJ
VALVE
\
VACUUM GA8E
COARSE AOJ.
VALVE
ORIFICE P
MAGNEHELIC
ORY 0A8 METER
VACUUM PUMP
-------
The proper nozzle size was determined using data obtained from
the preliminary tests. The probe and filter assemblies were
heated to 248 ± 25*F to prevent condensation.
A programmable calculator was used to correlate all of the
sampling variables such that a direct relationship between Ap
and AH was made and the sampling rate could quickly be adjusted
when the gas velocity pressure changed.
During the test, the following data were recorded for each tra-
verse point:
Point designation
Sampling time (min)
Clock time (24 hour clock)
Dry gas meter reading (Vm, ft3)
Ap (in. H2O)
Desired AH (in. H2O)
Actual Ah (in. H2O)
Stack temperature (Ts, *F)
Dry gas meter temperature, inlet and outlet (Tm, *F)
Vacuum gauge reading (in. Hg)
Sample box temperature (*F)
Dry gas temperature at exit of last impinger (*F)
At the beginning and end of each particulate test, the total
sludge feed rate (tons) was recorded:
Sample Recovery
At the completion of each test the samples were recovered in
-------
The probe, nozzle and the front half of the
filter holder were brushed and rinsed with
acetone until clean. The sample was sealed
in a glass sample jar.
The filter was removed from the filter
holder, sealed in a covered petri dish and
placed in a plastic zippered bag.
The silica gel from the fourth impinger was
weighed to the nearest 0.1 gram. The
weight was recorded on the field data
sheet.
A sample of acetone from the field supply
was collected in a glass jar to be used as
a blank.
All glass sample jars had Teflon-lined lids. Each sample con-
tainer was labeled with the date, contents and test number and
sealed with tape.
Sample Analysis
Each sample was analyzed in the following manner:
Filter - the filter was removed from its sealed container and
placed on a tared watch glass. The filter and watch glass were
dessicated over anhydrous CaSC>4 for 24 hours and weighed to a
constant weight. The weight was recorded to the nearest 0.01
mg.
Front-half Acetone - the acetone was transferred to a tared
beaker. The acetone was evaporated at ambient temperature and
pressure. The beaker was dessicated for 24 hours and weighed
to a constant weight. The weight was recorded to the nearest
0.01 mg.
Container No.- 1:
Container No. 2:
Container No. 3:
-------
Acetone Blank'- the acetone blank was transferred to a tared
beaker. Th« acetone was evaporated at ambient temperature and
pressure. Tfti^beaker was dessicated for 24 hours and weighed
to a constant weight. The weight was recorded to the nearest
0.01 mg. This weight along with each sample volume was used to
determine the blank value to be subtracted from each sample
weight. However, in no case was an acetone blank of greater
than 0.001% used.
5.4 Sludge Samples
Two sludge samples were taken during each particulate test, one
at the beginning and one at the end. The sludge was sampled
from the conveyor belt after the dewatering device, before the
incinerator. The samples were analyzed for percent solids, in
accordance with EPA methods^.
5 "Standards of Performance for New Stationary Sources, Sub-
part 0" - "Standards of Performance for Sewage Treatment
-------
REVIEW FORM
Prepared By:
Warren.D. Hopkins
Director
York Services Corporation
Reviewed By:
Abraham J."Kurtz
Vice President
-------
-------
-------
1 YdO
p»9*
FIELD DATA
PROBE I.D.
PROM I.EHCTH AND
NOZZLE I.D
iNO TYPE
ASSUMED MOISTURE,»
SAMPLE KX.I.O.
UTTER MX.I.D.
mren ~
Vol. HjO (•
Final
Initial
la)
f
Mat Cain
Leak Check
InitialjL^
5»Or
rlnal ,6Q
k
K^3- 'Hq
>~B '"9
READ MO RECORD ALL OATA EVERY
mutes
Schematic of Port Locations'
(Indicate north.Label Forte A,B etc.)
~T£y\p,
w
fyi-
(^3 •
'•37'
/3/-
ISO'
l^»
f2-2-
1^1
12-S
JOS. NO.
PLANT j
DATS
SAMPLINQ LOCATION
SAMPLE TYPE
RUN NUMBER /«"\t _
a OCX TBE
s. ««*
\aocni
itH£:
\M5°-
kiH MHU
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
v\a^en
COMMENTS:
SAMPLING TMC (24-W CLOCK) Te^
h \
SAMPLING LOCATION 0<_rV \ e
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) _
ANALYTICAL METHOD T
AMBIENT TEMPERATURE ^ O
OPERATOR feglj/jjft
RUN
GAS
1
2
3
AVERAGE
NET
VOLUME
MULTIPLIER
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj, ft/ft-Mole
ACTUAL
READING
NET
ACTUAL
READING
NET
ACTUAL
READING
NET
co2
(O.(o
{0. Ld
(0. H
(oM
ss
s.s"
G>.I7
44/100
2. 7i5"
02
-------
of
field data
joe. no.
PLANT _
DAT*
SAMPLING
SAMPLE TYPE
mm NUMBER
OPERATOR
y- -9tfV
LOCATION
PROSE I.D.
PROBE 1£MCTH AND TYPE
MOTILE I.D. »V49Q "
amsiekt ttweratvre
barometric ruessun*
STATIC pressure
PILTCR MJMBERU
TAR(a)
ASSUMED MOISTURE,«
SAMPLE BOX,I.D
METER BOX.I.D.
ERUL
'• b' 'I'g.fo
Vol. HjO (
Final
Inltl«l_
N«t Cain
L«*k Ch*ck
tniti
rinal
3E ~
'«> jTlt t I ft -H9
ITER SETTING
BOB SITTING J
if
" r
READ AM) RECORD ALL DATA EVERT
nS*
MUTES
^"Schematic of Port Location*
(Indicate north,Label Ports A,B etc.)
TRAVERSE
POMT
CAS KTER REAWRC
WJ.rf
a OCR T
CLOCK)
¦&>
Q±
&.
jasa
& 2352:
2=<2
2o ftPiQ
2g>i s
35 QQ2-C
i
Ao 3o
Q. «P-° VT
Io > C) 11
\JxAcp ,.2T-
bi3>. i
n io.o
~rfc>.4
1"Sl . 1 17
fit .lSby
VELOCITT
HEAD
(A*,).
.HjO
A
^S1
'O^
¦Ofr
_J_
^29.
Irw^
57935
ORIFICE PRESSURE
MFFEREHTIAL
(AM). ». HjOl
OCSttED ACTUAL
^4.
AH
-34
S~
l3=L
.g.T
^251
j£h
m.
3}±
&
5S
£51
,ff*r
5E
Sl
355
STACK
TEMPERATURE
(T ).f
L22=
1^3
aa.
BS
\-JZ?
1 -17
I ~7
_LHL2-
AZL2x-
-L2A
I7Q.1
DRY CAS KTtR
TUrEP«TV«
DILET
|T>to).f
123.
n 2^-
H2_
12-
32.
^UL
~7^-
172=
rzs2»
rzi
521
TT
RTl
OUTLET
2j-C
2^SZ
SAflPll KX
TtSPMATURf,
•f
4-
hC-
asz
^¦S"/
^S4
MPMCER
TUTtRATURE,
f
-^b
^U_
"7 Q
/C>
¦0^
04-4-80
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE _
c
T/O-C, /*£
SAMPLING TWE (24-br CLOCIO
SAMPLING LOCATION (Du-rt-f X
SAMPLE TYPE (BAG. INTEGRATED. CONTINUOUS).
ANALYTICAL METHOD CXsm
AMBIENT TEMPERATURE
OPERATOR JJQ
COMMENTS:
RUN
GAS
1
2
3
AVERAGE
NET
VOLUME
MULTIPLIER
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Mj. Mb-aolt
ACTUAL
READING
NET
ACTUAL
READING
NET
ACTUAL
READING
NET
C02
7 O
?o
Co- %
Co
Gp. (&
G?. Gp
Q?.%
M/100
2. TO
02(NET IS ACTUAL 0?
READING MINUS ACTUAL
CO; READING)
12 0
II
11 G?
)o.%
n (o
no
yo.93
32/100
C0(NET IS ACTUAL CO
REAOING MINUS ACTUAL
O; REAOING)
rz. o
O
17 lo
O
n.c?
O
o
a/ioo
O
N2(NH IS 100 MINUS
ACTUAL CO READING)
&2.H
?2.M
22X]
a/wo
23.OSS
ES-043
-------
QAF S04 2
R*-»*sio,i i
Pa op
7 Effective Date: 8/18/77
CLOCK TIME
?< M
CLOCm
TRAVERSE
POINT
NUVBER
CAS METER REAOINC
IV i. I|J
ORIFICE PRESSURE
DIFFERENTIAL
lAMI. in HjOl
vELOCirr
H£ AO
iAp.1 in HjO
DRY CAS METER
TEMPERATURE
STACK
TEMPERATURE
SAMPLE BOX
temperature.
IJtflNCER
TEMPERATURE.
F
SAMPLING
TIME am
iT.l.f
OUTLET
DESIRED
ACTUAL
is'r, ^
t
/ (z> n
1Q,^ /
3
I
aais:
-*w.?
s
ass
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE _
COMMENTS:
vsc
SAMPLING THE (24* CLOCK).
SAMPLING LOCATION
Ton-* ^
.CuLs
&
W: T
SAMPLE TYPE (BAG. l(UECSil(0. CONTINUOUS)
ANALYTICAL METHOO OfcSlflT
AMBIENT TEMPERATURE ^72,
OPERATOR
RUN
GAS
I
2
3
AVERAGE
NET
VOLUME
MULTIPLIER
MOLECULAR (EIGHT OF
STACK GAS (DRY BASIS)
1^, ft/li-aole
ACTUAL
REAOING
NET
ACTUAL
READING
NET
ACTUAL
REAOING
NET
C02
B.M
<\ 0
.o
z.%
z.%
?.73
44/100
02(NET IS ACTUAL O;
READING MINUS ACTUAL
CO; READING)
no
nh
no
^/lOO
CO(NET IS ACTUAL CO
REAOING MINUS ACTUAL
0; REAOING)
)7 0
O
n.M
O
no
o
o
a/lQO
O
N2(NET is IN MINUS
ACTUAL CO READING)
S3
%lfo
Z2>
H231
a/10Q
2.^.102,
ES-043
-------
YORK
York Research Corporation
ONE RESEARCH DRIVE. STAMFORD. CONNECTICUT 06906
~ engineering notes
~ REPORT DRAFT
REFERENCE
So. Y-
•AGE
of
PAOK8
CLIENT:
SUBJECT:^
ea/L+c./^ 0+-
S/uJi*- +~
ke>/T T&]Z''2fr'
7W
Ji^ T
M-lf &¦#)
Sf36&
t±j£riL
B.
l_?£& (jjfi
SSSTO
rf.f?
LSV# OM
£2
IS~3€>
(, I o xc
m
ts.3
-------
-------
HP-4 1 DATA ENTRY FORM
PROGRAM 'STACK'
Job Number
0/' V/90- OO
Plant
4/nrr JHotc
~Vtvr/*
Unit
St t/06tf
Test Location
STAC*
Test Condition
/V Oft r*/ft.
Test Date
A*G 2k, 52-
Test Number
TfiAT ol
Test Engineer
AJ«, JJ6, d***
Barometric
Pressure (in. Hg)
3 o.o/
Ah (in. H20>
Dry Gas Meter
volume (cf)
mv
Meter Temp (°F)
SiV
v.eter Y Factor
. w
volume of Water
Condensed (ml)
739
Stack Temp (°F)
JM6
Ave ragej&'E
Mi*. :nr,,.
J<» IWKI
•1-4188-41 Pjk
HAKT
fOST SH0#E ^.k
U*ll
St.UK* 1*tl«€tdT.j» K-
USi ioc»rinn
STOCK
TEST COHtlTIOM
NMJW. w*
TEST NTE
OUCUST 2i. IW ttjk
TEST HO.
MHICWWTE »1 >UM
TEST EHCIHEEt
ax. jjt. en k-
MTA EXIST
MWKTUt
n 'i* *>
X
».»1
e.-i
KLTfl h
W <1* «0>
I
V3
tU'
"ETEB vol.
flVH >
"""rs=s
c
>8.831)
' W",
«TE» 'E«r"
——'
?n .
KM
Wk
KFTE* i
FCTS V* ¦
.981
*¦«
W. V H20
¦
.'3.*
Sti*
STOCK TEI».
TS
s
IM.M
W*
SWT ovt.
KUA P .
• 3H
lux
*«K21.E
IIMEW 'Id
h i
.~M
*.•*
¦: co: =
i.l?
Silk
•. (> ¦- •
11.43
fill.
« =
»:in- ;.7f
• •
m«e =
STATIC
< 1* H;"> :
ST* lis. Ff>
4.H
PU*
*l.li W>
COLCAOTIOHS
*TW IE# <»>«M?.4»
»«. ST»«?4.W
ST#Ct W
WOISIUSEM.m
WiM.«4
w<«T).M.v
ST* f»ESS.=M.M
vaOCITr t».M
STT AtfA »I2.V
ISOKINETIC ««.»4
-------
HP-41 DATA ENTRY FORM
PROGRAM -STACK"
Job Numb«r
0/"//S9'09
Plant
CAST 5rt9tC
w^rr
Unit
SiuOtf /tfetrt
Test Location
STAC*
Test Condition
t/iAM4c
Test Date
Wi/jr HtIl~
Test Number
fAAI. 01
Test Engineer
*?*. JJO. W
Barometric
Pressure (in. Hg)
30. 0/
Ah (in. HjO)
.SOL
Dry Gas Meter
Volume (cf)
7/
Meter Temp (°F)
71/
Meter Y Factor
.9//
Volume of Water
Condensed (ml)
. Mo
Stack Temp (°F)
170. g
Average.//\p'
.212.
Nozzle Diameter (in.)
.9?
co2 (*)
I/O
o2 (X)
fo.93
N'2 (X)
$7.H
Pitot Tube C
P
.gSf
Elapsed Time (nun.)
60.0
Static Pressure (in. HjO)
-.!$
Type of Stack
QovK>o
Stack Diameter (ft.)
*/.o
Stack Lenght (ft.)
Stack Width (ft.)
a/a
Total Particulate (mg)
6S.z/; :4.tio
i»'SCF CWECTEI
to I?', CD2'«.825J
i.t/Oi:F<4.tl|4
Mia €Mm
joe nwki
'LQNI
COST SM9E WT» ;ij.
UMIT
UUKf INCIHCC-OTiX
TEST LOO) 11 ON
STOCK (u*
TEST CONIITIOh
"Ml
TEST HTE
a«usi 24, 118; niN
TEST M.
wicuute k h'w
TEST ENCIMEE*
AJK. JJ8- BM M|
iUf-
KLTfl N
M •
.ttt
J'.W
*tei va..
aw »
HM
*TE» TE».
TK <(EOEE F> >
72.1«
W*
«TE» r
FCT» YW .
.Ml
w».
va. OF WO
V* <«.-«> .
44.M
K.#i
STOCK TEW.
'S >
U8.W
sm avc.
KLTfl f >
.*•2
WWZU
IIOHITEV <|n- z
.4*8
Run
>. C02 •
(rt>
>. 02 '
li.SJ
* *? '
*2.2 7
PITOT fCW
CP =
.^l
ElBPSU
TIHE 'A|*> r
M.M
Run
STATIC PtESS.
(IN M20) •
Ri>
STK HO. fP
4.*
tUK
CfltCUlflTlONS
H»T!0;iflTE
Wfll .532.11
Vd ST»-7«. i?
STOCK TEW
W0ISTU««?.J4
«KI8T>«?1.?3
WKHET>«2t.ll
ST* rtESS.'M.W
VELOCITY »18.12
Stt WEB » 12.5?
ISOKINETIC U>«IW.U
8ff«M3.W«.24
-------
hp- 41 pmA EETRT fORrt
PROGRAM 'STACK-
Job Number
0/- V/S9-QO
Plant
e/ttr
Unit
MOtf /*e/M
Test Location
STACK
Test Condition
Test Date
At/GUif Si, ft-
Test Number
?*A7 Oi
Test Engineer
AJU, JJ$, 6A*
Barometric
Pressure (in. Hg)
10.0/
A" (in. h2o)
• Jlo
Dry Gas Meter
Volume (cf)
13. 3/7
Meter Temp (°F)
(V
Meter Y Factor
. It/
Volume of Water
Condensed (ml)
. n?
Stack Temp (°F)
Ut.3
Averaqe.//\pl
. 3o/
Nozzle Diameter (in.)
. y?r
co2 (X)
f.13
o2 (*)
{.*/<>
n2 (X)
{2.S7
Pitot Tube C
P
. fs/
Elapsed Time (min.)
**
Static Pressure (in. HjO)
-./f
Type of Stack
Houno
Stack Diameter (ft.)
*/.o
Stack Lenght (ft.)
A'/t
Stack Width (ft.)
rtA
'
Total Particulate (mg)
*/0. 0«.82>
i.g'SrPM.22«^.-«>
MT« EKTIT
XX wrntut
II-4IW-W
MINT
EBST SXOft WT»
UNIT
SlUKf INCI«MT0»
frit
TEST 10CBH0M
s»«o
TEST COMMON
r,N
TEST MTE
MUST ft, im;
TEST NO.
PSBMCIMTE »J
Ri.'.t
TEST EMCIHEEP
fljr. jje. en
MTO E«T»)
MWNETtIC
n
.4*
* C02 «
8.7 J
«tw
X 02 «
8.4$
Jl*
\ N2 «
8T.87
Run
PHOT FCTS
CP «
.851
ElBPSfl
'I* (MM) «
44.88
PO*
STATIC P*ESS.
'!M H20) =
-.15
&<•¦*
STI lit. ff>
4.M
VJ*
rJUCUOTIOMS
NRTfCtlflTC
¦im. <«>«
«.M »U*
wm temp <»>«5M.a
VOL STI»72.«
SI** Ul»
«wi$m««5.14
WKI8VW8.73
M**T>«2VU
STMT ntESS.'M.M
VtLOCITY «!8.V
S« atfa «I2.S7
ISOKINETIC <*>«*.59
0CfM|J.V7.«
-------
6? = (/*<>; f fi)
{4s) ( 4°) (do)
a(o rr o.ooJts'n (wj)
£AgSo&fr * f/tf( H- *°)/{^ ^
udL, : £/ r ftdUJJi )
,, ,^as*?h
">¦ (v/sf)
~-7^-££-'*¦'
r, t.1 n
•Sfe "'• c* til""
£ s°"' \aS~p-^ ^
Nt.- n&g1"
°" *-%•"
"1>* &*%,$
-------
S/QZO 0 = &^
[ttf/w]
ithio
( seeuo fi)(°*)(s/ 678/>?
=
( Ll/£•/)(oooj )
J£-6z)e6fzWV = 7*
(>fjetjro0p 'f
r/> •// *
z0
fyui
J/ ACS//
-
LLItf
-------
~7~c5 r /jo. z.
P ¦¦* /
(3s "•
Afu/{ 21 a
/vi- - 92.Z7
Oi. - /o93
d, * 0. OOLSfi (Ofo/j )
do = 0. 00 2 S93 for.s-3)
c/. = 0. 076S7/
- (/oooJC^
(/Of/7. 9fJ{do )(0 07t37/)
(?£ - 0. 02.67
#.**« ' 0 >""["¦''/£%]
-------
Tcsr ajo. 3
P' /) P? ? 9
/ - o. F 2 2 1 f
rfs** //2o$.f?
^ - jf2. /7
^"7 (/<*>«)(O.Zzlf )
(/ao-b.S 9) (6°)(<
£/L " . //"//
*#«*« • ««'*f[l/-7o/Kg
-------
-------
o o
3S
JPSEI?
o
oPPDP
Tine
Pt. No. 1
Heirth 0
Pt. Ho. 2
Heirth 1
Pt. No. 3
Hearth 2
Pt. No. 4
Heirth 2
Pt. No. 5
Heirth 4
Pt. No. 6
Heirth 5
Pt. No. 7
Heirth 6
Pt. No. 8
Off Gis
Pt. No. 1 /2
1.0. Inlet °F
Pt. No. 777
Cool 1 ng Air Ext.
Pt. No. 3 n
Scrubber Inlet F
Inc1neritor
Drift ' U.C.
Venturl Scrubber
P " U.C.
Japlngnent Scrubber
AP/Interaediite
Fuel Consumed
(Hourly Olfferencf)
Sludge Feed
Rite (#/hour)
Cool1 ng Air
Return
o
ft
m
»
-------
»SJ|fVI
o
olo
o o
m
^ s
III
1*
a
Seii't?
jj
o»
U Nl
¦¦*
k»
saf
^K.
£
5*
3^
Hr*
T1»e
II
III
mm
. No. 1
• rth 0
.Ho .2
• rth 1
. No. 3
• rth 2
. No. 4
irth 2
. No. 5
irth 4
. No. 6
• rth 5
. No. 7
• rth 6
. No . 8
f G*s
.No. 1 /2
D. Inlet °F
Pt. No. 2 /2
Cooling A1r Ext.
. No. 3 /2
rubber Inlet F
c i ner» tor
•ft " W.C,
nturl Scrubber
• W.C.
plngnent Scrubber
/Interned1•te
Fuel Consuaed
(Hourly Difference)
Sludge Feed
R«te (#/hour>
Cool 1ng Air
Rtturn
t
tvATPL ® /MP Sc/J
iA ©
n n
V\
*
~C
m
z
C
o
X
z
>
m
<
»
m
>
z
—«
•
o
3D
n
o
o
Z
>
z
—<
m
>
o
-H
c*
X
n
m
c
m
-H
i
*4
L «\
¦I
-------
-------
-------
HV Stack Sampler, Box # {T2Q Q%c(
v.
C.VI4B RATION OF THE ORIFICE METER A.VD CaLCVLaTION OF THE jHOlSl.NG THE
DRY.CAS METER
Fractdutt
i*< up ih* back-half of th« uaplwi inn iumn< with th« fourth uspvnftr. Th« uopinftr
inoutd b* pUctd u> nd A8«d with 200—J00t of ttlia [«L
• Optnu tfc« pump 'jabI the tn. i mchtt u»d 6 mch*t HjO.
• CalcuUt^ for tadl onflc* iHj
• Com put* in »m|i rmlu* of boa th« four Jt ficton obtained.
• R«p«tt th« proetu (or »U onflow.
CiicuUu J tea U>« folio-inc rquxdoa:
Allowwf for th« tpproprat* uniu iad consuau
A AH# can then b« altulmd from
-
"0.00117S
Nomiaduun
<3bo - iimpUrn (lo«nu
-------
AEROTHERM MLTEH llOX OH II' I CI. CONSTANT CAIXTULATIONS
Meter Box t Date \/2—
Calibrated By dd
o ¦ * 5TB"
o
A H .
1
Meter Reading
Time
(min)
Sample
Flow Rate
®mo (c,ml
Meter
Pressure
P (in Hg)
m
Meter
Temperature
T (°R)
ra
4"(
0.5
Final: ?C»"2. iG 1
Initial:^ tqfr
Total cf:^-
3
1 W!>
iU.oiT
ao 5"
1 .'612-6
1.0
Final: Jn.-?-2S~
Initial^Q ^02_
Total cf-.^y^Sb
3
iO.oSs
.WG?
.OlUi
2.0
Final .-3$ 9
Initial .j-7 jHOST
Total cf: //.5~IR'-|
3>
3
30.129
ri"?
.0~H5"
• 0
Final: <-40?. iS'i-
Initial:
Total cf:/£ <£5-|
3
S.2-?S7
30 iT-/
s^o
_ .0
Final: H S J 1}?
Initial: q/f
Total cf:2.I.M33>
3
"?.WS
io.rw
J
Q J p
mo J ra
J. - 0.1924
l
o 2 J (t ) (Ah.)
-------
AEROTUERM MKTIIN BOX 011111(1: CONSTANT CALCULATIONS
Meter Box t 7^0* tfSS * Date 3 W?Z Calibrated By jsidU
D - . \
o
A«i
Meter Reading
Time
(ain)
Sajnple
Flow Rate
Q (cfm)
wo
Meter
Pressure
P (in Hg)
m
Meter
Temperature
T (°R)
f*
J.
l
ih.
0.5
Final :3 2 |
Initial: {jq c. j
Total cf: 2 ACf$
3
io.on
Slio
• TH^
1.0
Final: i1""7 • 1 J5"
Initial:£^\ 1^
Total
3
i.^z
30.
SI-C,
. ^ 1 2.^
2.0
Final ?M3
Initially ?rr
Total d
3
\.%c\b
30- '2.9
S" "L H
.'7? 11
. 3.0t-n
4 .0
Finaljjqs.li?
Initial 5
Total cf :""7 *^5^
3
2 .(o^n
t,o zn M
¦iin
H(oS0
3x20
6.0
Final: >U?0.U*7 1
Initial
TO"1 ct'l0
3
\ 3
10. SW
S-i-9
,7M(oH
.V5>«5
~\
®b»o J P«n 0.00117 5
J. - 0.1924 / Ah
1 2 / 0
D J it j (Ah.)
O V TO 1
-------
AKHOTHCfUl Ml II I' IJOX OIUFICIi CONSTANT CALCULATIONS
Meter Box I ^0-6^ Date 3 /'t /iL Calibrated By
D - . 1^0
o
Meter Reading
Time
(min)
Sample
Flow Rate
0 (cfm)
"mo
Meter
Pressure
P (in Hq)
D
Meter
Temperature
T (°R>
m
j.
i
4"(
0.5
1
Final: ^Q\ h
Initial:
Total cf: | Z.~L\
3
. HOT
• 7S3S
I
1.0
Final: "}£)<*> .
Initial :3o^
Total cf: | ^,7 1
1.7 ioi^o
1 2*°
Final: 20^
Initial :iab yj(^
Tota! c£:2
—»
J>
.TiM
io. m
S'2_(oT
.7V1-L
I ,7S^5
4 .0
I
Final: 3i 2_ So"?
Initial
Total
J
1.0^5"
jzU-
1
9.0
Final: ^ /I llQ
Initial:I/V3M^
Total cf : (_j ^~2.*^
J
\.(;oci
5i0
.101Z
1.^3
-*
®mo J Pm 0.001175
J. - 0.1924 /
1 2 / 9
o J (t ) ( Ah.)
o V m l
-------
>93
METER BOX CALIBRATION DATA AND CALCULATION FORM
(English units)
Date
9h/8.
Barometric pressure, P. " ^3 la. Hg.
Meter box number Sio-089
Calibrated by
M/<
Orifice
manometer
in. HjO
.So
. 9o
'•*
MS
2Jo
XT2 •/
1*3.\
4.0
Wet test
meter
Cvw).
ft3
s.tae
5 .ootf
10. 6!*/
10 .0*0
10 . .
¦pf.r
79.
£lo
jtf
fo-3
ISO
Dry gas meter
Inlet Outlet Averaje
b /to
Si 0 ffi-S
Sfo //./
ihS
Time
(0),
mln
% /.fv-
<>/g
H.ix
n.sY
tort
1-v
Average
%
m
m
AH®,
/.9/
!J7
/V
Jr f.
/.17
ma
AH
.. Vw VCd + 460)
An0 - °'0317 AH
(tw + 460) 0
AH
13.6
1 Vb + lfii'
-------
»
NOZZLE CALIBRATION
Dat« ~*1 - f-Q
Calibrated by
HI
Nozzle
identification
number
l/-L
//
in-
• MQ
Dj» in.
• H9S
D^, in.
•wq?
AD, in.
Coo
avg
where:
0. , - * nozzle diameter measured on a different diameter, in.
' ' ' Tolerance « measure within 0.001 in.
AD ¦ maximum difference in any two measurements, in.
Tolerance - 0.004 in.
>av^ ¦ average of D^, D2, and D^.
-------
PIT' "jT C.\^I 3P,-\T [QN
A ?s z¦ J A ^std
A. TJ . I 3 V A O . . I > D > n
£ Pstd •
* -si
i
?s 1
• A ?st"j (
A ?s
A Pc - -
^ b t -j
.n
. 2 3
i
1
. 131
J60
. fi
. 7
•7// I
1
./7
¦l!
¦"\
. ISO
J 66
. 77
7.1
¦ 7o
,P7
¦ 31
¦ /*
. 7
. fS
(.10
7 S
. 1?>3
' . 57
.57
. 72 S
JSl-
[.10
/, 70
.-jo7,
¦ W*
-0-
. .Tf
.7/2-
. tff
s =
j
-
Fc -
f
FLOW J
r -
^•FLOW
J P;LJ
0SI
^std = 1.00
Pitot Tube No. ~~ /^£-Z> Calibrated bV: ,
-------
V-Z-. "7/y-t jr*-
RAIN # s- IP acq
AEROTHERM SAMPLING TRAIN
CALIBRATION DATA
Temperature Sensors
Gas Meter Inlat
Gas Meter Outlet
Digital
Readout
77
Mercury
Thermometer _
1*Z
Digital
Readout
11
Mercury
Thermometer
17
Imoinger ThermocouDle
Stack ThermocouDle
Mercury
Thermometer
ID
Sensor
Readout
Mercury
Thermometer
2.1 1
^•82.
Sensor
Readout
z no
2. 80
COMMENTS :
-------
-------
POSTTEST CACIBRATION CHECKS
Job No. : . • , i -JOI-VlfX Date:
Client: Checked By:
• Pitot Tube
Pretest pitot tube coefficient
15
Any damage to pitot tube prior to start of any test run?
Pitot tube coefficient for calculations /St
Stack Thermocouple
Was a pretest temperature correction used?
Average stack temperature during test HH" .
Temperature of reference thermometer during recalibration /7-2-~
Temperature of stack thermocouple during recalibration 17.Q
Do values agree within - 1.5%?
Impinger Thermometer
Was a pretest Temperature correction used? AW
Posttest reference thermometer reading
Posttest impinger thermometer reading 7f '
Do values agree within - 4°F? __
Dry Gas Meter Thermometers
Was a pretest temperature correction used? /\/Q
Posttest thermometer reading at ambient temperature 73 73,
Posttest reference thermometer reading *7^
Do they agree within - 10.8°F7 V£S
Dry Gas Meter
Pretest calibration factor, Y
Posttest calibration factor, Y •322
-------
V93
METER BOX CALIBRATION DATA AND CALCULATION FORM
(English units)
Dace
3lll
Barometric pressure, P. " in. Hg.
Meter box number 5 2.0 - Q % 7
Calibrated by M
Orifice
manometer
setting
(AH),
in. H^O
Wet test
meter
lb
s.\\
^7;
3.0
10-Ol
5 £"?£>
~?
An
VFb + lW (tw + 460)
AH0, -
0.0317 AH
Pb (td + 460)
S« Q7c+
cn/^^V.O^) 5"SH
(t + 460) e
0.5
0.036£
1.0
0.0737
S~« 7A.*uC
g-6)717^ C7H
5£>
1.5
0.110
3HH5Z5H]3l
'if 71
2.0
0.147
agy.iq (s-scQ
5TuBZZ233Zz±jtyi
™_T55577n5Z3: ~
,0 s~3*>~
III
n.
3.0
0.221
.- m
4.0
0.294
£
If there is only one thermometer on the dry gas meter, record the temperature
-------
AEROTHERM SAMPLING TRAIN
CALIBRATION DATA
Temperature Sensors
Gas Meter Inlet
Gas Meter Outlet
Digital
Readout
0
73
Mercury
Thermo meter- _
O
7H
Digital
Readout
o
i-b
Mercury
Thermometer
O
7H
Imoinger Thermocouple
Stack TheraocouDle
Mercury
Thermometer
d
7H
Sensor
Readout
V
1%~-
Mercury
Thermometer
0
IU
Sensor
Readout
no"
COMMENTS:
-------
-------
hi11 i\ oor '.u mru. i
TEST REPORT, ^ lQ_ _
USER £KfolJ MODEL SERIAL I \H2 2.Q'
Rale Display ~ % Or O Engl Uhits
Integrator Registration:.
Counts/Ft. . izog
a/.?
For
I
Belt Rev.
ZO M«\
UC Excitation
Analog Rate Output
_V UC Tare Output . o _ MV
y1!
r 2000 J
Electronic Catib. Output
Long Tons
2240
(As Found)
Metric Tons
2205
MV MV
(Alter Adjustment)
Kilograms
2205
COMPUTATION I (Test Chain or Wt. must be in position)
Belt Meas
ion)
I70r) |8~7. 610
Test Results - ICv^ Count*7Ft. ¦
. Ft. o< Bett
•zzsr/^-?—
COMPUTATION II (Number ot Totalized Lbs lor Calibration)
ot Beit k
Test Chain Equivalent ¦
B6'2^0G3
Total Lb*.
COMPUTATION IIA
Total Lbs. -3000 (F) - ,co) Integrator Registration > *PM.Q3S-
Counts
COMPUTATION ill (Theoretical Wt. Oisplay with Load)
H"- *5^ Test Chain Equivalent - ^^
Design Load x 100
, G3.69
% Test Load
Paris Used From Merrick Slock:
TEST CHAIN OR WEIGHT CALIBRATION
r
Tm
. CiM*. CmhIi
I R*K0<«#Ur
WLWiflli
| SpMtfWMW,
% IftW
I A4)»tf4
-t/Z%
AiM
Tfitl
-t.06Zl
TmII
-,t»V
*.oqz>?o
V?)
V)
66 3
7*8
7o.$
ys. /
63?
6?.?
-2
S03 V
/oZ "S
/OZ. 7
' ay*>'9
-¦OP* %
1
"'V
materUltest
T««M TtMl (Hit
Reported By
MttorUJ W(M.
loUcmwTaul
«trim
A4h»**4
/
z/1
r
J/
/
/
nat. <9
-------
-------
|YWW..|
YOfh ConiulllAli hx
C —ni^. Wiw
'»«¦»*— |N» Mi ¦»»'
JOB# ^ 416^
"HirrTPao
PARTICULATE Analysis Form
TYPE OF SAMPLE _EH£
DATE *7 /'(?£-
1
I_» unii l\ VJ •
SW 5
FHA *'
/oy.?v/?y
lOl.Cyff-ft
O-fcW/6?
Sl5"0
. W
It'll fuse.
o.oolM
<60
# ape/las
j>y*/ ¦
57
F.lfcc *1
y.l 5i3?o
[-/0O5"?
0 -0Q3JI
0 ~ 0^33>\
s7 lis
Filtec
¦/.oVVofo
/-Of 1,$io
OOaHSO
O
s7H7
F; He
-------
CORRECTION OF ACETONE RESIDUE FOR BLANK
Client: Zi#t//tO , /yvc.
Job Number: 0/~ /ff
Date:_
ARC = AR - ((VA)(DA)(AAB))
WHERE: ARC = Acetone Residue Corrected for Blank (grams)
AR = Acetone Residue (grams)
VA = Sample Volume of Acetone (milliliters)
DA = Density of Acetone (grams/milliliter)
AAB = Allowable Acetone Blank (0.00001%)
Tut *1 i
o.otw ~l<**•)(¦"*)<
fine' o. OH&7 -
fifiC - O. 031S9
Tjj/t. # i* -i
, 0.
fitt » 0. Otfw/ - 0. 0O751
fific. - O.OtfO7V
TmC
fifiC ' 0. onil - 0.DV3!
-------
O/'L/fG*
<3
%
ShdzQ. &z^" I to 3^.^.0
is
3A 33.9o
& 3o.g?
3A za^s
-------
-------
FEED RATE CALCULATIONS
Tons of Sludge ¦ Tons Per Hour Sludge (Wet)
Time
Tons of Sludge Per Hour (feet.) x ISolids ¦ Tons Per Hour Sludge
Pounds P«r Hour Particulate ¦ Pounds of Particulate Per Ton
Tons of Dry Sludge Per hour Of Dry Sludge
Time * Total recorded time of sludge input data, during
Tons of Sludge ¦ Sludge input during test run (tons)
%Solids ¦ Percent solids of sludge sampled during test
test run
-------
£V SLi/Otir CtccvcAr/o»J /d'ir
Si.
-------
4
I
Dft.y S in Q&t CfliCuuAT /orJ
TcJ/ X
St*0G
/DL/fii
-To/*/ of PA/ smote /M<
Lai af /t^r/cut-Are/t>
/ 31* *¦
JCV0G 3 '
/. t/ZJ
-------
D&y Si c# oCu c/t r/o TCjr *jo. 3
1 '//)(£ StvOC? flflr /Ifftp/"Mr
2/it>
ZX3S
ys **'*>. (.0 79/Si //if
/, 2- C H#S
ft So
- 2*.-2 J"
Tttm «, >a/ '(+>>(¦*>")' !¦>!"
It] tf MJ/CUIK /Tt" If l*Y s""e " J> "-2J
'
------- |