PARTICULATE EVALUATION
OF
COKE OVEN BATTERY NO. 4 COMBUSTION STACK
AT
SHENANGO INCORPORATED
NEVILLE ISLAND PLANT
PITTSBURGH, PENNSYLVANIA 15225
BCM NO. 00-4810-11
DECEMBER 27, 1984
PREPARED BY:
PAUL JADLOWIEC
SCIENTIST II
REVIEWED BY:
RICHARD G. BEER, P.E.
SECTION MANAGER
BCM EASTERN INC.
5777 BAUM BOULEVARD

-------
TABLE OF CONTENTS
1.0 EXECUTIVE SUMMARY
2.0 SCOPE AND OBJECTIVES
3.0 PROCEDURES
3.1	Field Work
3.2	Analysis
3.3	Calibrations
3.4	Process Data
4.0 SUWARY OF RESULTS
APPENDICES
Appendix
Appendix
Appendix
Appendix
Appendi x
A	BCM Proposal
B	Field Data
C	Calculations
D	Calibrations

-------
BCMj
SHENANGO INCORPORATED	-1-	December 27, 1984
1.0 EXECUTIVE SUMMARY
Shenango Incorporated retained BCM Eastern Inc. (BCM) to perform a
particulate emission tests on the Coke Oven Battery No. 4 Combustion
Stack. Testing and analyses were conducted according to EPA Methods 1
through 5 and 9 of the Federal Register, Volume 42, August 1977, latest
revision, with the exception of the use of a heated flexible probe
extension. The test results are to be used to demonstrate compliance
with limitations set forth by the Allegheny County Health Department.
The compliance limits and measured particulate emissions were as follows:
Test No.
Compliance Limit
Measured Concentration
0.03 gr/dscf
0.03 gr/dscf
0.03 gr/dscf
0.0147 gr/ascf
0.0139 gr/dscf
0.0151 gr/dscf
2.0 SCOPE AND OBJECTIVES
The scope of this proposal was outlined in BCM Proposal No. 10-8000-06-47
which is contained in Appendix A. The following parameters were
determined for each test:
Gas Flow
Gas Temperature
Gas Moisture
Particuate Concentration
Opaci ty
DSCFM
°F
1. by Vol ume
gr/dscf
%
3.0 PROCEDURES
The field sampling program was performed on December 11, and 12, 1984.
The BCM test personnel consisted of Messrs. Richard G. Beer, P.E., Paul
Jadlowiec, and Ms. Maria Buss. Messrs. James Schlaegle and George Manown
served as plant coordinators. The tests were witnessed by Messrs. John

-------
INCORPORATED
Shenango
January 4, 1985
Allegheny County Health Department
Bureau of Air Pollution Control
301 - 39th Street
Pittsburgh, PA 15201-1891
Attention: Mr. Ronald J. Chleboski
Deputy Director
Dear Mr. Chleboski:
Enclosed is one (1) copy of the BCM Eastern Inc. final
report on the "Particulate Evaluation of Coke Oven
Battery #4 Combustion Stack".
Should you have any questions regarding this report,
please call me at (412) 777-6654.
Very truly yours

\
J
James R
James R. Zwikl
Director of Environmental Control
JRZ/bsl
Enclosure

-------
SHENANGO INCORPORATED
-2-
December 27, 1984
3-1 FIELD WORK
All test and analytical procedures and field data sheets, including
visual emissions data, are contained in Appendix B.
3.2 ANALYSIS
All analytical data sheets and calculations are contained in Appendix C.
3-3 CALIBRATIONS
Field equipment calibrations are contained in Appendix D.
3.4 PROCESS DATA
All process data are contained in Appendix E.
4.0 SUMMARY OF RESULTS
Table 1 presents a summary of the results of the particulate testing.
The opacity observations are contained in Appendix B. The particulate
grain loading ranged from 0.0137 gr/dscf to 0.0151 gr/dscf. The average
of the three test runs was 0.0146 gr/dscf. The compliance limit was 0.03

-------
BCM j
SHENANGO INCORPORATED	-3-	December 27, 1984
TABLE 1
SUMMARY OF RESULTS
COKE OVEN BATTERY NO. 4 COMBUSTION STACK
Parameter	Test #1	Test #2	Test #3
Gas Flow (DSCFM)	22,338	23,624	26,420
Gas Temp. (°F)	429	421	445
Gas Moisture (*)	12.5	11.7	13.5
Isokinetic (S)	98	94	98
Part. Emission

-------
[BCM!
APPENDIX A

-------
PROPOSAL
TO
SHENANGO INCORPORATED
FOR
BATTERY NO. 4
COMBUSTION STACK
BCM PROPOSAL NO. 10-8000-06-47
NOVEWER 8, 1984
PREPARED BY
c$\rx\rO < 6n	-x
	RICHARD ft.
SECTION MANAGER
BCK EASTERN INC.
5777 BAUH BOULEVARD

-------
BCM
SHENANGO INCORPORATED	- 1 -	NOYEKBER 8, 1984
TECHNICAL PROPOSAL
Shenango Incorporated requires testing on their coke oven battery at
their Neville Island plant. The data collected will be used for com-
pliance with County regulations. BCM Eastern Inc. (BCK) will evaluate
the particulate loading and opacity during the sampling program. The
following proposal presents BCK's approach to fulfilling Shenango's needs.
1.0 PROJECT PLANNING
BCK will contact Shenango's personnel upon bid approval to:
Establish lines of communication
Finalize the project objectives
Ensure that requirements for sampling will be completed by the
scheduled testing
2.0 FIELD TESTING PROGRAM
BCM will supply three (3) men for up to two (2) days to conduct the
sampling program. A total of three (3) particulate samples will be
collected. Opacities will be determined simultaneously during each
particulate test run.
This program will yield the following data:
Gas flow rates - ACFK I SCFK
Gas temperature - °F
Gas moisture content - % ty volume
Gas analysis - * by volume COp, 0^, CC, and N?
Particulate emissions - grains/dscf and Ibs/hr

-------
BCM
SHENANGO INCORPORATED	- 2 -	NOVEMBER 8, 1984
5.0 DATA EVALUATION AND REPORT PREPARATION
BCM personnel will review and will incorporate Into their written report
all pertinent operating data. This report will include, but will not be
limited to, the following:
Description of work undertaken
Discussion of the sampling and analytical techniques employed
Tabulation of field and laboratory data
All calibration sheets for each apparatus used in the program
Shenango will receive five (5) copies of the final report.
4.0 SAFETY
BCM personnel always endeavor to conduct field activities In such a
manner as to protect themselves and others from accidents and Injury.
When special safety equipment is required, the client should so specify.
BCM personnel use their own safety equipment (hard hats, goggles, etc.)
unless otherwise instructed.
BUSINESS PROPOSAL
5.0 COMPENSATION
We propose that the outlined project scope be performed on a lump sum
basis. This fee is firm and cannot be changed unless it is mutually
agreed that the scope of work has changed from that outlined 1n this
proposal.
LUMP SUM COST
Coke Oven Battery Sampling Program ....
Each additional hour (as per delays/overtime paragraph) will be billed at

-------
BCM
		y
SHENANGO INCORPORATED	- 3 -	NOVEMBER 8, 1984
6.0 INVOICES
Invoices will be submitted on a monthly basis for work completed. Terms
are net thirty (30) days with past-due balances subject to interest at
the rate of one-and-one-half percent (1-1/2%) interest charge per month,
effective forty-five (45) days after date of invoice. This represents an
annual interest charge of eighteen percent (181).
7.0 WORK SCHEDULE
Upon receipt of your notification that BCM has been selected, we will
meet with personnel from your company to finalize the project scope (if
necessary) and determine a performance schedule and a target completion
date which meet your needs.
8.0 DELAYS/OVERTIME
Delays caused by conditions beyond BCM's control, such as partial or
complete process shutdowns or irregularities, strikes, floods or fires
which delay the project's completion, constitute a Change-of-Scope.
Also, unfavorable weather conditions which BCM's Field Project Engineer
considers a threat to crew safety and/or sample quality constitute a
Change-of-Scope and will be charged at the delay/overtime rate. In
addition, the field work 1s based on a 10-hour day (excluding travel).
Any hours necessary for the successful completion of the project In
excess of 10 per day will be charged at the delay/overtime rate described
in the compensation section. Any expenses incurred as a result of
project delays/overtime will be billed at cost plus 10%. The BCM Field
Project Engineer will notify you of such Changes of Scope. At your
request, BCM will outline the type of shelter, as required, to minimize
weather delays. If the project is postponed within 72 hours of the
scheduled start date, you may be subject to a change not to exceed the
mobilization fee.
9.0 VALIDITY
This proposal is valid for 60 days. Subsequent to that date, BCM may
review the basis of payment to allow for changing costs and adjust start-

-------
BCM
SHENANGO INCORPORATED
- 4
NOVEMBER 8, 1984
10.0 INSURANCE
BCM will maintain insurance coverage in the following amounts and, upon
request of the client, will provide a Certificate of Insurance so
indicati ng:
Type of Policy
(a)	Standard Workers' Compensation
Employer's Liability
(b)	General Liability
Bodily Injury
Property Damage
(c) Automobile Liability
Combined Single Limit
(Bodily Injury and Property Damage)
Limits of Liability
Statutory
$100,000
$500,000 Each Occurrence
and Aggregate
$500,000 Each Occurrence
and Aggregate
$1,000,000 Each Occurrence
PROJECT MANAGEMENT
BCM will assign key personnel to the project who are experienced in
conducting similar studies. Their duties are briefly described below.
PROJECT MANAGER
Mr. Richard Beer, Section Manager, is responsible for all field testing
activities involving the Air Quality Section. Mr. Beer will be the
primary plant contact.
CLIENT RESPONSIBILITY
To ensure that the proposed project is completed successfully, it will be
the responsibility of Shenango Incorporated to provide the following:
1.	Plant liaison for the BCM field team for the duration of the
program
2.	Safe access to the sampling locations and electric power {110V,

-------
APPENDIX B

-------
BO vi
1.0 SAMPLING PROCEDURES
1.1	Testing Station and Traverse Locations
The following is an explanation of the sampling points to be
utilized during the project.
The test location is situated on the Number 8 stack of the Number 4
coke oven battery. The internal diameter as obtained from Shenango
is 9.19'. The test station is 7 diameters downstream and approxi-
mately 20 diameters upstream from the nearest flow disturbance,
which yields a requirement of 20 traverse points. We choose to use
28 points, 7 traverse points per each of 4 test ports.
1.2	Gas Flow and Gas Temperature Measurements
The flow rate and temperature profiles for the gas streams is
measured by conducting sinultaneous velocity and temperature
traverses. Gas velocity head is measured with a calibrated "S"-type
Pitot tube which is connected to an inclined manometer. The static
pressure is measured using the same Pitot tube and manometer. The
static pressure is measured using the same Pitot tube and manometer.
A Chrome-Al unel thermocouple attached to a THERMO-ELECTRIC
CORPORATION digital potentiometer is used to measure the gas
temperature at each of the traverse points. The gas flow and gas
temperature measurements follow Method Two of the Federal Register*.
1.3	Molecular Weight Determination
A Fisher-type B, No. 10-605 Orsat analyzer 1s used to determine the
molecular weight of the flue gas. The following parameters are
measured 1n order to calculate nolecular weight: volume percent
carbon dioxide (CO2), volume percent oxygen (O2), and volume
percent carbon monoxide (CO); the vol line percentage of nitrogen
(N?) is determined by difference. These parameters are measured
using the principle of gas absorption in specific absorbing solu-
tions. A 100 ml flue gas sample is drawn through the glass manifold
to the sample chamber by tfce use of the leveling bottle following
aspiration of the sampling line. The system is then closed by
adjusting the stopcock at the inlet of the manifold.
The sample is bubbled tfirough three absorbing solutions which
selectively collect different gaseous components of the stack gas in
the following manner: carton dioxide is collected 1n a potassium
hydroxide solution 1n the first absorber, oxygen 1s collected in a
potassium pyrogallate solution in the second absorber, and carbon
monoxide 1s collected in a saturated cupric chloride solution in the
third absorber. The volume of a specific gaseous component collected
~Federal Register, Vol. 42, No. 16C, August 18, 1977

-------
EO±.
1n an Individual absorbing solution 1s determined by the change 1n
volune of sample gas 1n the sample chamber after the bubbling
process is complete. Since the original sample volume was 100 ml,
any change 1n vol une 1s also the percentage of the specific gaseous
component found in the stack gas stream. Temperature effects 1n the
sample chamber are minimized by a water jacket which surrounds it,
maintaining the temperature at a constant level throughout the dura-
tion of the Orsat analysis.
1.4 Moisture Content Sampling
Moisture sampling 1s conducted employing the principles presented in
EPA Method Four and concurrently with particulate sampling. Para-
meters evaluated 1n order to determine the gas stream moisture
content are: sample gas volume, sample gas temperature, sample gas
pressure, 1mp1nger moisture gain, and silica gel moisture gain.
Some minor modifications are made to the Method Four train to allow
concurrent particulate and moisture content sampling; these modifi-
cations involve no deviations from sampling principles. Modifica-
tions such as the substitution of a glass fiber filter for Pyrex
wool as a filtering mediun and the substitution of a calibrated
orifice for a rotameter as a flow metering device are incorporated.
1 *5 Determination of Particulate E»1ss1on
The following method will be used in this test program. Sampling
procedures follow those described 1n Method Five of the Federal
Register*. Due to space constraints, one exception to the method
will exist. A heated teflon flex line will be used to connect the
rigid stainless steel-lined probe with the heated filter box.
Approximately 200 grams of silica gel are weighed 1n a sealed
impinger prior to each test. Glass fiber filters** (3-inch
diameter) are desiccated for at least 24 hours and weighed to the
nearest 0.1 mg on an analytical balance. One hundred ml of
distilled water is placed in each of the first two impingers; the
third impinger 1s Initially empty; and the impinger containing the
silica gel is placed next in series. The train 1s set up with the
probe as shown in Figure A-l. The sampling train is leak checked at
the sampling site prior to each test run by plugging the inlet to
the nczzle and pulling a 15-inch Hg vacuum, and at the conclusion of
the test by plugging the inlet to the nozzle and pulling a vacuur
equal to the highest vacuum reached during the test run.
The Pitot tube and lines are leak checked at the test site prior to
and following the Initial velocity traverse. The check is made by
blowing into the Impact opening of the Pitot tube until 3 or more
inches of water are recorded on the manometer and then capping the
impact opening and holding it for 15 seconds to assure it 1s leak
* Federal Register, Vol. 42, No. 160, August 18, 1977
** Whatman Type 934 AH

-------
BCM
free. The static pressure side of the Pitot tube 1s leak checked
using the same procedure, except suction 1s used to obtain the
3-1nch H?0 nanometer reading. Crushed 1ce 1s placed around the
iirpingers to keep the temperature of the gases leaving the last
impinger at 68°F or less.
During sampling, stad gas and sampling train data are recorded at
each sampling point and when significant changes in stack flow
conditions occur. Isokinetic sampling rates are set throughout
the sampling period with the aid of a nomograph or calculator.
All sampling data are recorded on the Particulate Field Data Sheet.
Sar.ple Recovery Procedure
The sampling train 1s moved carefully from the test site to the
cleanup area. Samples of the acetone and distilled water used in
the sample recovery are taken for use as blanks. The volume of
water from the first three impingers is measured. Sample frac-
tions are recovered as follows:
Container No. 1 - The filter 1s removed from its holder and placed
in a petri dish and sealed.
Container No. 2 - Loose particulate and acetone washings from all
sample-exposed surfaces prior to the filter are placed 1n a glass
jar, and sealed and labeled. Particulate 1s reooved from the
probe with the aid of a brush and acetone rinsing. The liquid
level 1s marked after the container 1s sealed.
Container No. 3 - A minimnc of 200 ml of acetone 1s taken for the
blank analysis. The blank 1s obtained and treated in a similar
manner as the acetone washing.
The silica gel froc. the fourth impinger is weighed and recorded on
the Sample Recovery and Integrity Data Sheet with other pertinent
data.
T'5.2 Analytical Procedures
Container No. 1 - The filter and any loose particulate matter from
this sample container are placed into a tared glass weighing dish,
desiccated for 24 hours to a constant weight, and weighed to the
nearest 0.1 mg.
Container No. 2 - The acetone washings are transferred to a tared
beaker and evaporated to dryness at ambient temperature and
pressures, desiccated for 24 hours to a constant weight, and
weighed to the nearest 0.1 eg.

-------
,BCM
Container No. 3 - The acetone blank Is transferred to a tared
beaker and evaporated to dryness at ambient temperature and
pressure. The blank 1s then desiccated for 24 hours to a constant
weight and weighed to the nearest 0.1 *ig.
The term "constant weight" weans a difference of no more than 0.5
ng or 1 percent of total weight less tare weight, whichever 1s
greater, between two consecutive readings, with t*o less than 6
hours of desiccation between weighings. All analytical data are
recorded on the Analytical Particulate Data Sheet. Acetone blank
data are recorded on the Acetone Blank Data Sheet.
1	Visible Emissions
During compliance testing, visible emission observations will be made
simultaneously by a certified observer using EPA Method 9.
1.7 Process Data
The following operational data will be gathered and Inserted Into the
final report.
Stack smoke density chart
Waste heat pusher side chart
Waste heat coke side chart
Stack draft pusher side chart
Stack draft coke side chart
Crossover coke side pressure chart
Crossover pusher side pressure chart
Fuel gas pusher side pressure chart
Fuel gas coke side pressure chart
Fuel gas flow to battery chart
Waste heat oxygen level chart
Offtake main temperature chart
Pusher's report

-------
CPA MO HOD 5
fiao OATA
Pi ANT
BAIT Dauil./K*
lAl
SAMPLING LOCATION k.
s ample type e'r*'*r
RUN NUMBER _J	
OPERATOR P*"1 J« ^ c

hi-co
H,0 - cov
7.0 "Ox,
PROBE LENGTH ANO TYPE 7^r ^l(l6s
NOZZLE 1.0.		

-v
AMBIENT TEAftPERATURE
BAROMfTRIC PRESSURE
STATIC PRESSURE. IP I
FILTER NUMBER (si _llL
ULJL
ma
hER
i^\i
PITOTTUBCN* i C*.JLL
Ofi
:n°
ASSUMED M01 STURE, * > o
SAMPLE BOX NUMBER 	
METER BOX NUMBER
METER AM»		
K fACTOR	
-f-
1££L
ft
PRE-TEST LEAK CHECK **it .<*10 CJum if
POST TEST LEAK CHECK RATIi£2rLOH#
BfgtfNff Ap & iso r-
SCHEMATIC OF TRAVERSE POINT LAYOUT
READ ANO RECORO AU OATA EVERY
MINUTES
1 tlAVtlll
Otf»0
SAMPlllfi
tltt(.ahi
o
4
tlOCX VIMC
«i4 hi. aoai
oft 37
CAS MCTCI
KAOINC
IV Jt«>
it/
vaocirrMiAO
(J^l. in, NjO
Miner PMssuM
OlfffMNVIAl
i Ami. in. H2
Q
A (ol

&H
3
IX
0%S<
$co,-¥i
^ -3 <
/•f
frY

<¦/

0
M3

4*3
a <

OHM
mi
•,?


7?
n
f
Z6'l
1

3
i
* <


87C.9 /
.Ol


HI
7?
w

JS3


i <
3c>
CQHI
f/M7
.0/
b.H
o.y
*99
S3
4*3
A
is/

air










































-------
PUNT ShfftWfiU	DATE	'1 ¦ 	RUN NO 	L
U? -f % 5 rto.'<
t*M*U
mm NUMMfl
cww
SAMPLING
TtMt.Mil
0
a (XX TIMC
114 hr. aoau
0*$O
CAS MOT*
•CAOING
VflOCtTY ICAO
U^l.ln. MjO
oniric* mkssum
0IWf«*T»Al
I4MI.I*. H^OI
STACK
TIMPfXATWC
ntK*§
0«V CAS MCTIft
TlMPfRAIUH
PUMP
VACUUM^
in. N|
SAMPlf §0M
TWPt«A!U«.
IMffNCf*
KMPftATlMt,
V
ma
mm*
IMLCT
OUTUT
« O
KSIRfO
ACTUAl

(o
OCfSio

,02
Q.%

HIS
!(
2
IC02
m*7
fS^.OlS'
o>&
O.G
HSf

Qt
H
OlH7


3
'tf
fOOK
M.91

0> G
0-6
HS-b"
Kl
6J
•/
515*3

<22.
X

,0H

,0'f
O. (o
o,&
V/3
'jV
G?

Xf9

2Z
I
to
io)C
W.Hlf
,Ot
c.*i
CW
30!
V
C- 1
3
ACS

23

O
10*1

/









P <¦
6
la'SO
PJZJ2P
~t * >
r

937
3
n
\0H*

. o3


461
9)
0(
Q>
asy
,
43 S
a
an
m*
Ho^lt
,C>2
IA
lt
mi
c/5"
Gf(
£
act









































































































































































-------
CPA MCI HOD 5
fiao OAIA
PtAUT ^htrtQnc,^
PATE 0m, //„ tffH
SAMPLING LOCATION ft-VArf - & X S^S-
SAMPLE TYPE af^	
RUN NUMBER ^
OPERATOR		
AM8I£NT TEMPERATURE ^ Yf F
BAROMETRIC PRCSSURC
SI ATI C PRESSURE, IP K
2
vaocirv was
la^i.tn. N^O
(Miner nasuMt
oimaunAi
1 A HI, la. HjOl
STACK
KJiHtAfUM
11,1*
MYCASMCTU
iUtf(8Am«(
KM*
VACUUM,
hi. H|
SAMftI MI
lU^IAAIMi,
IMflMCO
WMHMAim,
%
MOM
WIAAIMK.
% !
INLTI
•. 1%
¦n
OUIUT
%
OCIIKO
ACTUM.
Q
6
nn
41200
.oH
1. (o
h&

6/
S /
£
26/
^3*'P
ar-r
jj
11




?,o
T73
£6




A13
3
/fr
44M

.03
If?

*

aes
A
ay
-S&* '

.o3-r
'¦if

>130
n


QW



si
,ft3
1'^
A3l

CQ

£
aw

935

*1
mo
412. QO
.o*>
ho
IfO
ttm
cj i
f7

mi

&S9
/
30
IZHL
mr>o
.oof
(?•?
07
AO
-}q
f"7
31
as7

ZS1




























¦













-------

1
a
C.CH
yp.iu
.01
1,2
>•?,
HJfi
V?
£1
s


22w
,1
->
i<
1 ?>iO
—



n-n

Q>7
(¦!
<
IM
hi


C>5




V
JX
i

.03
1 • A
1.9*
^.O

G'l

AV?

3
/O
)
\%
im
VIM*
.0>
1,2.
J.2-
V/7


-------
EPAMElHQO 5
• FIELD DATA
PLANT
DAIE-i
J
r *>
i '
SAMPLING LOCATION ±a.
SAMPLE IYPE i" '
RUN NUMBER _
OPERATOR .Li

	)¦ 1'
AMBIENT TEAAPERATURE .
BAROMETRIC PRCSSURC
STATIC PRESSURE, IP L
NITER NUMBER If) 1
PITOT TUBE N* ft <* —
i ' ^

' J'.
PROBE LENGTH ANO TYPE
N07?lf i D . ?, '
ASSUMED MOISTURE.*
SAMPLE BOX NUMBER _
METER BOX NUMBER	
METER Am .<
K FACTOR
I ? ,
JL£LL
PRE-TESTLEAK CHECX RATE.
POST TEST LEAK CHECK RATE
RfggfMtf Ap
.010
CM9
CM 9
/*¦
"H|
SCHEMATIC Of TRAVERSE POINT LAYOUT
READ AND RECORD All OATA EVERYMINUTES
MAVflU
PttHI NJMCft
1
(uruo
SAMHIMC
111*.**
aoa tiMc
04 hi. aoat
CAS M(1(l
HADING
VQOCITV Ml AO
14^1, in. NjO
otina mcssum
OlIHMNIlAi
( dMI, in. HjOl
SIACX
«I»Lf
MTV CAS MOM
(IMPIRAIIM
rwr
VACUUM^
In. H|
SAMfUMW
KNHtAIUai,
*
IMflNGCt
imuiuif,
>
I
MKMC
«m*aimk.
INLTI
% ^
n
QUIUT
o
DC it WO
ACTUAL


'jil











f

t(: i 1


¦ -J

V67


IO
P /i"
'•-i 3
2 <23

•
u.; >
n?s,io
C
in
/•
P " 7/

33/


; ;.-7
¦itt-%7
.S3
'¦ s
/.S
HS1
8^
,fr
7


<£37
t

• " .

.^3.5"


W7
9/
6/
?
P/
*•«/
hi?
97
£ /






MSI
100^'S j
.0*
?.g
3.0.
L!C>1



-^ss'

apv


110 3
lOflMl
.07,6
M
///
"151
/o3

£
953,

033 I
A
¦
1109
ml' 7^
.oa
o-H
0-S6
Hsy>
9/
7^5"

ZSI

d33 »
«

1315
foiiX
•005'

D.^l
3t> f
%1>
/y
P


A ^7 (














-------
	" ' ' ' • '	RUN NO	A
kVft sc
NUMHR
tLAPsro
VAMHINC
TI«C.»a
a oat nMf
IWhr. a OCX)
CAS M(TI«
RCAOINC
VtlOCllY WAD
U*#l.ln. MjO
otiria pikssuk
OlfflRfNTIAl
ldM».»n. N^OI
STACK
TDNPOtATUK

0«Y CASMHIR
TWWMUH
PUMT
VACUUM
Hi. H|
SAM HI MM
TIM* RANK,
%
IMPfNCfl
TONPfWAYWt.
*%
%
INLTf
V*
ounn
" CI
Ml
OCSItfD
ACTUAL


11? 1













HP '
lor)***
,ouf
1.1
A 7

'9f
77
7
wr



•
1 ' '
~
10x1.0%
¦ 03
lf">
'•J

91
77
h<£O
,03

) 3

lol
"77
£
a

0~'t

-
rus
(op y-tr/
,o?r
/•'
hi
&3
1° 7
7 V
.r
2 "if

If!
1

nst
loio.trv
<0//
•£«V

261
101

y
/?

9 6V

<
W if
I9VV5 7

hi
1.7

101
~7°f
9
2S?

fl73

* '
hicl
tin 63
•03.T
If
hf
HSci
icq

. ?
2$1

£67
•

l«7
I6S/.&0
.03
!¦ 3
1,3
H3°1
101
&2>
6


aes*


















































































































































	







-------
5A=-;:_i-£ sample recovery and integrity ShEET
Plant Sh&f\aQ	;	Sample date
Sar.ple location Ccfc* Qi^cKflZ/Sfftecovery date^		
Run nur>er /		Recovered by feu I \]*x>)IWC*+ & &£#r
Pi Iter njr~e-'! s) 3*"^/ ,		
MOISTURE
Impingers	Silica gel
Final volume (wt) 	3(TC	ml (g)	Final wt	£ t (y g
Initial volume (wt)	__ ml (g)	Ini tial wt	g
Net volume (wt) 	I 6C	ml (g)	Net wt 	„ I C « 
-------
PARTICULATE	SAMPLE RECOVERY AND INTEGRITY SHEET
Plant Sh'dartCjrt Sample date /3//f/frV
Sample location /Ua. Mlf Recovery date RjufZY
Run number &	Recovered by
Filter number(s)
3TT"
MOISTURE
Impingers	Silica gel
Final volume (wt) _ £	ml (g) Final wt __ a-7-7 ,fr- g
Initial volume (wt) 900	_ ml(g) Initial wt
Net volume (wt) 	I C £	ml (g) Net wt 		 I "7, ft g
Description of impinger water		1 "C " spent
Total moisture
RECOVERED SAMPLE
Filter container number(s)	^	Sealed
Description of particulate on filter I'
Probe rinse
container no.
	 blank
container no.
Impinger contents
container no.
bl ank
container no. 	
Samples stored and locked
Rer^arscs
Liquid level
marked
Liquid levet
marked
Liquid level
marked
Liquid level
marked
Received by
Rer.arks
LABORATORY CUSTODY

-------
PARTICULATE SAMPLE RECOVERY AND INTEGRITY Zr.il'
Plant
Sample date ? ~ '
Sample location l': '' Ua"?- /'a 9 £'f*t K Recovery date
f
Run number
Filter nur.ter(s)
/
Recovered by

Impmgers
Final vo'ume (wt) _
Initial volume (wt)
Net volume (wt)
Hoi
a Q7
MOISTURE
. mHg)
_ ml(g)
		ml(g)
Description of impinger water CI put
Silica gel
Final wt
Initial wt
Net wt
cfO


l spent
g
g
fatal moisture
- > ^
Filter container number(s)
Description of particulate on filter
RECOVERED SAMPLE
u	Sealed
1 - S
Probe rinse
container no.
blank
container no.
Impinger contents
container no.
bl ank
container no.
_
Samples stored and locked
Remarxs
Liquid level
marked
Liquid levef
marked
Liquid level
marked
Liquid level
marked
-X-X
Received by
Remarks
LABORATORY CUSTODY

-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT		 COMMENTS:
DATE	.
SAMPLING THie (24-Jir CLOCK) _/£i£T	
SAMPLING LOCATION X C^tr lUcf ^/ack	
SAMPLE TYPE (BAG, INTEGRATED. CONTINUOUS) 2.		
ANALYTICAL METHOO OC-<*J~T	
AMBIENT TEMPERATURE £Y 	
OPERATOR jO*lui	It x<-	
RUN
GAS
1
2
3
AVERAGE
NET
VOLUME
MULTIPLIER
MOLECULAR HEIGHT OF
STACK GAS (DRY BASIS)
M4, Ife/lbwieU
ACTUAL
REAOING
NET
ACTUAL
REAOING
NET
ACTUAL
REAOING
NET
C02
q,G
H.O





44/IOO

02
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
piamt		
DATE te fc^-a	
SAMPLING LOCATION 5H, *2		
INSIDE OF FAR *ALL TO
OUTSIDE OF NIPPLE. (OlSTANCE A)	
INSIDE OF NEAR WALL TO
OUTSIDE OF NIPPLE. (DISTANCE B)		
STACK li).. (DISTANCE A • OlSTANCE B)	 q •'
t
r+
^ s
1 -3
. \*4>o


\ltj.C>l© Vo

M
ct-
' -vA



<3>\ 7/&

M VY *
-S

1
/
?n s/s<
•4/
11 s/v'


















































































































n,... *•>¦>
c a .a

-------
VISIBLE EMISSIONS OBSERVATION FORM
/sr test
observer Maria Riks	
..¦ i t IZjll ]%4-	
facility 'snrimtl&n - 4 mnZV SlHCK
.•3SERVATION PERIOD: START:
FINISH:
J4+
C2SCRVATI0N POINT: mRMA/G LOT P»rt"-f» 0
 20%:
. OF REALINCS t 60%: Q
OPACITY: 45 Vo
.'ITRE:
LOR OF EMISSIONS: SLACK
:vlMENTS:
X
0
15
30
45
* 0
0
0
0
0
l
o
0
0
0
2
to
10
fO
to
3
10
(0
(0
to
4
10

10
JO
5
10
IS
IS
/S
6
IS
IS
IS
/S
7
if
if
/r
%
8
If
If
iff
ts
9
tS
IQ
to
tf
10
/5
/S\
a?
IS
11
if
If
if
IS
12
if
10
to
to
13
fO
to
10
10
14
/o
)0\
to
to
15
10
10
to
to
l<>
id
10
to
10
1?
j
f


:r
3
s
f
*5"
19
5
5
f
f
20
0
0

£
21
&
v5~
f
0
22
f
sT
5
l.f
23
3

v5
v5"
24
v5
>5
f
sf
l*>


5
O
26
0
0
0
0
21
0
0
vT
5
->«
5
S
3

- 0
5
s
3
S
P*3
e / /
X
0
i «j
¦\r
&
5
30
sT
v5~
s
"n
*5
f
s
32
v5~
15
&
in
33
45

3a
IS
v3C
IS
3-
<20
40
35
/61
/SMS
/s
36

If
If
*5]
37
AT
IS
If
tf
38
IS
10
IQ
to
39
IQ
10
10
to
40
/O
to
yf
<5
41
f
S
A3
47
IS
If
10
10
48
to
<5
s~
f
49
S
s5
er
S
50
s
S
ID
!(D
51
10
IV
14
ir?
52
IS)
/s
If
yf
?3
AO
ZO
IS
AS
5^
15
is
ts
'S
55
IS
IS\IS
IS
56
13
2d[<&
o?6"
57
ao
aD\J&
IS

15
IS
ac
JjO
sr.
QO
IS
is,

-------
VISIBLE EMISSIONS OBSERVATION FORM
ftqtjc X, vi t
Maria Pjks
observer.	
.mx /2J/1/84-	
facility- 4 BAm/lM Sm(K
.liSERVATION PERIOD: START: Ql&l
FINISH: l031
;2SERVATION POINT: PAPMaIG kOT
\MH OF PlHDT VJf.Cr OF U6S
sr'JRCE:
DISTANCE FROM:_ 350'	
DIRECTJON FROM: A/ttJ	
HEIGHT:	lOO'	
-LSD:
SPEED:	0_Z. S HPH
DIRECTION^
iDiPERATURE:
IA/ESr
4-Z°F
:KY CONDITION: CtOUDy
¦ACKGROUND:

HADING CONDITIONS:
Fair
JMMENTS:
,351
. Oi READINGS* 20%:
. OF READINGS £ 60X:	
MA* OPACITY: "75*7,
/
Lb :
¦NATLTvE^&V&L/ ^(AAA^
-OR OF EMISSIONS: P>U\CU.
X
0
15
}0
45
0
//?
'5

/5~
1
/5"
*S
/s
/5'
2
AT
>5
If
/>5"
3
/J"
ZQ
20

4

tfC
J/T
(5-
5
A5~
'S
IS
/S"
6
<£0
ZD
/S
7
/5*
'S
j/T~
fq

B
/5"
to
to
/O
9
>0
s
£

10
10
to
10
tO
11
10
10
10
10
12
(0
10
lO
10
13
10
1ST
as
4-0
14
So
35
35
tS
15
'S
AT
IS
/S
16
40
7'&
*53]
SQ
17
35
35
<30

:n
20
OX)

/5~
19
15
(0
lo
/0
20
tO
fO
10
fO
21

5
*5"

22
s
5
\T

23

5


24
5
0
f?

0
O
O
32
o
O
0
O
33
0
O
0
O
34
o
O
0
O
35
0
0
0
f)
36
o
0
0
O
37
o
0
r?
O
38
0
0
0
0
?9
Q
0
0
c
40
o
Q
0
0
41
Q
O
0
0
42
0
O
0
0
43
o
n
0
0
44
o
0
0
0
45
o
0
0
0
4f.
0
&
10
(0
47
to
*5
sr
/r
48
0
0
0
0
49
0
0
0
0
50
0
0
s

51
/0
10
to
tO
52
to
to
to
to
53
(O
to
(0
A5~

AT


X5"
¦>1
iS
is
ts\
15

w
zo
20\£0
7
20
in
JLO

-------
VISIBLE EMISSIONS OBSERVATION FORM
pag c 3 of
OBSERVER. Mama Pg/ss
j.Mii J3jt! /%4-	
rAClLITY^ wtMk£c - 4. to-mey smcK-
jBSCRVATION PERIOD: START: '038
FINISH: iQSS
;-SERVATION POINT: toR£/HG LOT
v9RTH or FLA^T, uJEST OF IA5S
r'JRCE:
DISTANCE FROMASo'
KlUJ
DIRECTJ'ON FROM:	
HEIGHT:	I 00
.1SD:
SPEED:	 OS HP ft
tOesr
DIRECTION:_
TEMPERATURE: 43 * f
CONDITION: CLOUDV
:ACKGROUND:
££f_
•EADING CONDITIONS:_ FAIR
".03 OF H>*.ISS IONS BLACK
-^•.ENTS:
0! READINGS» 20Z:_
¦ OF READINGS * 60*
MAX OPACITY:	
' . v."b:
'•AT-JF.E:
X
0
15
30
45
0
AO
2,0
«?.p
AO
l
3LO
/5~
/S
/f
2
IS
'S
iS
0.0
3
20
20
iS
IS
4
JS
is
(S
/S
5
20
0.0
QlO
zo
6





\1




:n




19




20




21




22




23




24




25




7$




21




2fi




1 c.




X
0
15

L "
30




31




32




33




34




35




36




37




38




39




40




41




42




43




44




45









47




4B




49




50




51




52




53




54




S5




56




57




58




KO




-------
bserver Maria
ml /a./// /a.'4
VISIBLE EMISSIONS OBSERVATION FORK
2>jd Tesr
facility $U£AJ/m?> - 4 6A7f€£y sSTtfCX
vSCRVATION PERIOD: START: J_
i£0_
FINISH: /ZL40
ISCRVATION POINT: PAMM& LOT	
,ITH OF PUHfJTf utFST OF USS	
¦ JKCE:
DISTANCE FROM:
350'
DIRECTION FROM: A/ IAj
HEIGHT:	tOO *
SPEED:
Q-5 Mrn
DIRECTION
TEMPERATURE:

45°F
CONDITION:
CWLtpy
: AC KGROUND
CD: SKlj
•IADING CONDITIONS:
M
;ts :
o
L.OR OF EMISSIONS:_ BIAQL
01 Rr.AXNCS > 20*:_ as
¦ CF READINGS 4 60X:	
M/\X OPACITY: 45V.
I Ji.;
pa a e / of Ju
X
0
15
30
45

x
0
) 5
¦\r

0
A5~
tS
IS
iS
20
A5"
OuJ
4o
45
l
IS
ts
IS
IS
21
40
4Q
40

2
15

/Q
iO
32
40
^30
QJ)
«2(9
3
10
IO
fO
10
33
Qa
2o
HO
JO
0-0
£C
4
10
fO
(0

34
ao
Oo
5
fO
fS
15
!5
35
Zd
2jO
^.Q
2 C
6
/5
15
&
15
36
ao
*5
/s
'5
7
1$
J3
*5
IS

37
&
/S
'5
/s
8
15
IS
15
/S"
38
/O
fO
/O
IO
9
tf"
5

o
?9
IO
to
e
S
10
o

c
0
40
sT
>o
IO
(0
11
0
>5
$
s
41
10
IO
s

12
£
$
5
f)
42
>6
s If
!Q
to
13
>5
si

/f
43

s
IO
to
14
S

0
0
44
s-T
s5"
v5*
0
15
0
o
Q
0
45
r>
0
o
o
16
0
0
0
0

<9

Q
o
17
0
o
O
o
47
O
(D
O
o
:r
0
o
0
0
48
o
O
o
v5
19
0
o
n
n
49
s
IQ
(Q
/O
20
0
0
0
0
50
to
IO
15
AT
21
0

o
Q
51
/S
IS
fS
/5"
22
o
0
o
o

ID
(O
to
/

5 5 11 0 0 57 S S v5 10 ~>a O Q o s IP IO (5 *> r. to <25 .251,25 c.Q IS JS / *c /vj .


-------
VISIBLE EMISSIUNi) Ufl5t.ivvni.tun . ¦
r a
.»SERVER_ Mas/a
a/n/g*
LTY<$H ¥KHAJG
MU*StfgKHAkHh 4 BftTF^Y SmuC
.s:RVATION PERIOD: START: }^4 !
FINISH: JS *rl
X
0
15
?o
45
s mi vat ion POINT .£h(2tilLj6 LOT
0
IS
IS
/s
IS
ITa OF PtAtiT. uJ&T cf ass
l
/5
IS
<2 Q
QjO
¦;rce:
2
3.S
25
UQ
3J>
DISTANCE FROM: 3 &0
3
40
IX)

12

IS
10
to
/
13
to
0
0
o
-vDING CONDITIONS: FA i R
14
0
0
0
o

15
0
0
0
n
LOR OF EMISSIONS: BLACK.
16
0
0
0
o

J7
0
0
Q
n
EVENTS:
IB
0
o

0

19
0
0
0


20
o
0
o
0

21
Q
0
0


22
0
0
a
o

23
o
a
o
0
0! READINGS>202: 5$
24
0
0
0
Q
CF READINGS * 60%: 4"
3*
0
0
0
0
MAX OPACITY: (oS%
?6
o
Q
0
0

27
o
O
0
n


o
o
0
0

1 C
o
o
0
O
x
0
15
30
L '
3P
0
o
0
o
31
0
0
0
c
32
0
0
a
o
33
0
0
o
o
34
0
o
0
o
35
o
0
a
fO
36
0
o
n
o
37

0
G
<9
38
0
o
Q
o
39
0
o
O
o
40
0
o
0

41
o
0
0
o
42
Q
0
0
0
43
0
s
s
s
44
S

5
YT
45
tO
IQ
10
(0

10
10
10
to
LI
10
10
(S
IS
48
AJI
IS
60
SS'
49
bo
ss
iss
ss
50

*351
ss
35'
51


as
5?
S5
£S
351
9S
£3
2S
25
05
00
su
ID
20
IS
tS

15
*S
IS
ZIO
56
X)
IS
IS
15
S7
to
IS
&
'<1

IS
IS
/s
is
*.0
Jts
IS
ATI

-------
VISIBLE EMISSIONS OBSERVATION FORM
OBSERVER
DATE
IZ-/H
Mftph	Auss
'AM.
J&L
WlLlTt'StflMdeo- 4 &TTprM
OBSERVATION PERIOD: START:
ZmcK
FINISH: l$-Q3
ODSERVATION POINT: /M^/Us u>r
fJofirH of Plaht tjesr oF uti
SOURCE:
DISTANCE TROM:
3^0'
DIRECTION FROM:_ All/0
HEIGHT:	}00 '
WIND:
SPEED: O ~ 5
DIRECTION^
TEMPERATURE:
Mir
43* F
SKY CONDITION:
CLOODy
BACKGROUND:

READING CONDITIONS:
?AlR
.OLOR OF EMISSIONS:
MACK-
COMMENTS:
. or REA'JlNCS > 205::_ / 3
. OF READINGSt 601: O
MAX OPACITY:_ lQ°7o
¦ "¦; L'S :

X
0
15
30
45
0
<20
ZQ
20
w
1
50
XO
20
10
2
AC
ZQ
20
15
3

0
0
0
A
0
O
O
Q
5
(9
O
0
S*)
6
O
0
0
0
7
0
0
0
0
8
O
0
IQ
to
9
A5"
/&
ts
/if
10

20
10
10
11
10
(0
10
10
12
,r
0
0
0
13
0
0
Q
0
14
0
0
0
0
15
0
0
O
0

0

0
0
V
Q
0
0
0
:n
O
0
0
0
19
0
0
0
0
20
0
0
0
0
21




22




23




24




*5









21




?P




*) 0




-------
|BSERVER_ MaRJA A/ss
 - 4 ftmpen Stuck
lilSERVATION PERIOD: START: ISLlV
FINISH: 13 ID
.3SCRVATI0N POINT: fr)f?^/Ai^ LOT
p» f)F PLAtfr ujtctt /)F uss
T
)URCE:
DISTANCE FROM:
350
DIRECTION FROM: A/lAJ
HEIGHT: " /QQ '
1ND:
SPEED: O- £ MPti
DIRECTION: U)£S T
EMP ERATURE:	
•-Y CONDITION: CLOUd
ACKCROUND
¦ND:_ SKf
vfT /	
. Or READINGS > 207.:		
¦ OF READINGS 4 602:	Q_
MPtY OPACITYS£°7q
1 iJb:
¦LADING CONDITIONSFAIR
:L0R OF EMISSIONS: SC/jC/C
:^ENTS:
.ATURC: 91h\Ut
X
0
15
?o
4?
0
Q
o
o
0
l
O
o
o
o
2
o
o
o
o
3
O
o
o
o
4
0
o
o
o
5
0
o
0
o
6
0
0
0
o
7
o
0
o
0
8
o
Q
0
o
9
0
o
r?
n
10
0
o
r?
o
11
0
0
o
n
12
Q
0
n
fQ
13
15
/s
'S
&
1A
is
/S
IS
15
15
/S

IS
/5
l*
IO
lO
15
IS
17
IS

'S
IS
:n
j5
is
IS
20
19
ZO
w
IS
IS
20
fS
/S
(S
/.f
21
IS
15
zo

22
AO
W
zo
ZO
23
ZO
ZO
?Q

24
20
zo
2Q
ZQ
V>
10
)0
10
5
7$
5
5
5
0
21
0
0
S
sf)
?«
5
s
)0
>0
?G
lO
tf

ft
¦u1
v>
XN
0
15
20
uy
30
IS
IS
IS
10
31
/
-------
VISIBLE EMISSIONS UBSUtVATlUK HJKM
page u of v5
OBSERVER Maria B>u<;<,
FACILITY- 4 titlTMl SVWL
OBSERVATION PERIOD: START: /3 U
FINISH: 14 11
OBSERVATION POINT: FAtfK(>V6 WT
X
0
15
?o
<•?

><
0
15
30
L S
0

0
0
0
30
/S

3iO
SLQ
LOUTH cF PUWT UJfftO '
2
0
0
0
0
32
to
to
10
tQ
3
0
Q
0
o
33
f0
10
tc
!C
DIRECTION FROM: Aj K/
4
0
0
m

3 4
tO
10
lO
 7
£5
70
4>0

37
>5
&0
£Q
AC
DIRECTION: lAlEST
8
AO
3lQ
3Q
*0
38
3jD


25
TEMPERATURE: ~4 <5 ' P
9
QjO
2Q
/$"
jS
?9
£5

<35
¦An
SKY CONDITION: P.LOtff) if
10
AT
10
to
fO
a—\
< \
AO

*10

3-?
J
11
/o
10
10
10
41
¦tt
>T0
65
60
BACKGROUND: 5KU
12

10
10
5~
*42
40
40
45
V
i
13


A5
25"
43
70
(oO
4*0
40
READING CONDITIONS: pf\ l&
14

-?5
OjQ

44

JG

%5

15
Qg
aG
A0

45
fS
jO
fO
to
w3LOR OF EMISSIONS: BiAOC
J6
2Q
SP
IP
AO
W
10
10
5


] 7

2jQ
oy>

U 7
s
c
lJ
o
O
COMMENTS:
:n
Z.0
IjQ
4JQ
AG
48
0
0
0
O

19
<%r
as
AS
35
49
0
0
c
C

20
2.S
35"
£5
<35
50
0

0
O

21
<25
3S
%5

51
Q
o
o
O

22
as*
a?
15
£5"
52
o
o
o
O

23
<20
A?
«?0
as
?3
0
0
0
o
• . 01 READINGS> 20X:
7U

35
45
35

p
o
o
0
' OF READINGS * 60%:

35
<25
as
;lq

0
o
o
0
Mf\Y OPACITY: 10^°


ao
,30
/5

0
o
o
n
¦ i L;i>:
27

5
5
5

o
o
o
0

Zfi

5
5
f)
¦jP
o
n
c

-------
k W. • • \Si\J I
n
e o oi~
SSERVER	U™"} l\ f'<5	
ri:	72//Sl ' 20%:	
OF READINGS 4 60X:	
OPACITY:	IQ %
6>


0
15
?o

0
0
0
O
o
1
o
o
c
0
2
Q
o
o
o
3
O
0
o
0
A
0
r
0
Q
5
o
0
o
O
6
o
o
0
O
7
0
0
o
CJ
B
o
0
0
O
9
o
g
0
0
10
o
0
0
o
11
o
o
o
0
12
r?

5
(Q
13

5
O
o
14

-------
BCM
APPENDIX C

-------
bcm]
EPA METHOD 5 CALCULATIONS
Vm(std)«17.64(y) (Vm) Pb+(0.07355) (AH)
Tir, + 460
Vw(std)*0. 04 71 Vwc
Bws = Vw(std)	
Vw (std ) ~ Viti (std )
Md«0.44(%CO2 )+0.32 (102 ) +) 0. 28 (IN2+%CO)
Ms«Md(1-Bws)+18(Bws)
Vs-85
.49	/Ts+460
V Ps Ms
2
As-Tt (Ds)
( 4 ) (14 4 )
Qs«60 Vs As
Qs(std)«Qs(1-Bws)17.64 Ps
Ts+460
An- TT(Dn)2
(4) (144)
1*1 .667 (Ts + 460) |(0.00267 Vwc) + ( ( Vm ) (Pb+0 . 07355Z\H ) )]
® Vs Ps An
C's-0.0154	Wt
Vm(stdl
Ec0.00857 C's Qs(std)
lb/mir.BTU-lb/hr
nur.BTU

-------
BCM]
Plant	-S)l<>fvingrt		Calculator Pg\j\ Jajlpu^iet
Location \], <-\ ^	Date	P«l M iqr ^ -V ^
* £. 5 * C
scf
Pb
«tn. Hg
Bws
« a ^ r

AH
.O.Wf in. H20
Md
* r J ' I
wet-lb/lb-mole
Tm
« 70.0 Op
Ms

dry-lb/lb-roole
Vwc

Vs
m , C
-------
bcmI
Plant- 5
Location-	( A/* ?
Calculator-
Date- o*«- 'VrW
Test date- n tCft
Run No.- /
EPA METHOD 5 CALCULATIONS
Vm ( std 5 = 17 . 64 ( loot) (	^ .3 7+ ( Q . 07 355 ) (Q.cgf ) = 50.3dscf
"70.0 + 4 60
Vw(std)=0.0471 ( llC.^ )= F.3 SP scf
Bws= 	<332	g , t £ $	
ar.33^ +-S"8'3^
Md=0.44 ( V^> 5 + 0.32( /g.o )+0.28( — + ffO )= ys ^//(?	acfir.
Qs ( std } = ( Hl^K* HI ~0.:;r ) 17.64	9 2 /?«? ft d s c f m
: = 1 . 667 ( ^r-t +460 ) I 0. 00 267 ( 17 C.Cf ) >+[ _£**£*_(*f/1 T) + ( 0 . 0 7 3 5 5 (p.li
u, l >+460
An= (tt )(.$*£ )2_ .ooi»m ft2
(4 ) (144 )
( /To j ( l/.QCf ) n*7ci ) (.OON1 5"
7O»460
C " s = 0.0154
gr/dscf
E=0.00857(
) (
> =
lb/hr
I b/nur,BTU =
lb/hr=
lb/mrrBTU

-------
[bcm]
Plant
Location
Test Date
Run No.
Calculator
Date
SUMMARIZED DATA
Y
Vm
Fb
AH
Tm
Vwc
ico2
io2
fco
IHZ
Cp
iZTp
Ts
Ps
Ds
Dn
©
Wt
IS-
. V. I
cf
1n. Hg
in. H^O
ml h2o
h2o
°F
1n. Hg
In.
in.
«ii n.
ng.
Vm (std)	* J
Vw (std)	»
Bws	*
m
Ms
Vs	- .
As	*
Qs	«
0S C stcl)	« -
An	= l
1	«
C's
E
Ib/mnBTU	*
dscf
scf
wet-lb/lb-mole
dry-lb/lb-mole
fps
ft2
acfm
dscfm
ft2
gr/dscf
Ibs/hr

-------
rBCMj
Plant- •. . •	Calculator- * • 1
Location-	¦ -	*	Date- ;
Test date-
Run No.-
EPA METHOD 5 CALCULATIONS
Vm(std)= 17.64 ( .	)	+(0.07355 ) (	)=	. dscf
; +460
Vw(std )=0 . 0471 ( . ... )=		scf
Bws=	=	¦ *'
Md = 0 . 4 4 (	) +0. 32 ( . . 5+0.28( - + !. ' )= - • > lb/lb/mole
Ms=( - - )(1_ - ) + 18( ' "• )=	lb/lb-mole
Vs=85. 49 (	)( .. ) f ~ +460 = •: . ft/sec
1/ ( - •• )(•--.)
As= (TT)( )2=	ft2
{45(1445
Qs = 60( . . )( . ,	5 = "' k •	acfin
Qs (std ) = ( •	) (1 — ' ) 17.64	" 	= - 	dscfm
+ 460
kn= (ir)( )2_	. ft2
(4 5(144)
I = 1 . 667( 1 +460 5 Fo.00267(	. . • ) 5+f Ci . jr- ( " •)+ { o . 0 7 3 5 5 ( ~ 1
L	1 ¦ +4 6C /
( ' ) (	. TT~- ~ PI : I
-	' s = 0.0154 -	= 	 qr/dscf
-	= 0.00857 (	)( - : ;	>»	lb/hr
i b/minBTU=	lb/hr =		lb/mmBTU

-------
plant--V	.	Calculator- ^ 1
Location-'- •: »\ .*	•	Date-	i • '•*"
Test date- JL\ , i ' .» -¦
?un No.-
EPA METHOD 5 CALCULATIONS
Vrr. ( std ) = 17 . 64 ( . )( " V . . . ) : +1(0. 07355) (	))= . / dscf
U~ )2= v.", . ft2
(4 ) (144)
,s = 60(. v s )( v*	) = T -" •* •	acfrr.
.Mstd)= (<-• -." )(1- ¦ V ) 17 . 6 4	. = ; v .-?> dscfm
< +460
(ir) ( -	^ ft2
(4 3(144)
-1 . 667 (• +460) f 0.00267 ( > V'. ) )+f 7.v-\ y U-r-.'H ( 0 . 0 7 3 5 5 («¦--]
	L	1 v ; + 4 6 0		Jj
( , • . )(-.,. )('..«)(.; , .^\ )
's = 0.0154 ," • •> ' =	' qr/dscf
-C . 00857 (	)(	'	)=J	lb/hr
••'•/mir.BTU=	lb/hr =	lb/nunBTU

-------
BLANK ANALYTICAL DATA
Plant x * „ , ... 	
Sample location A,	T a .
Relative humidity - -v 	
Type of blank 	7s» ^ ~	
Liquid level at mark and container sealed
Density of blank (pa) 7-~ > ^

g/ml
Blank volume (Va)

ml ' '
Date and time of wt. ; ~v
( « 1 / t
Gross wt. i;
Date and time of wt. :
\ ¦" '
Gross wt. j: 1 <7/. v'
Average gross wt. i>" ^ "V,,»T** mg
Ca " vTT~ ' ( ' K	" 	i-	m,3/9
Note: In no case shall a blank residue greater than (0.01
mc/g) or 0.001% of the weight of blank used be subtracted
from the sample weight.
Remarks: — . ;	•• 7o k \ - r ,v r
Signature of analyst > , / / Js^{. (i^^-

-------
Plant
METHOD 5 TRAIM ANALYTICAL PARTICULATE DATA
ACETONE RINSE
•>, - r •, ¦	Run No.
JL
i
Sample location _/»
Relative humidity
Density of acetone (pa)
¦ > J*
g/ml
Sample
Sample
Liquid level at mark
type
identifiable
and/or container sealed
Acetone rinse
u «
^ >
filter (s)

^ V \
Acetone rinse container no.
/ A)
Acetone rinse volume (Vaw)

ml

Acetone blank residue concentration (Ca)


mg/g
Wa « Ca Vaw pa - ( )( )( ) «


mg
Date and time of wt ! ^ Gross
wt
-
/ N ^ .
mg
Date and time of wt Gross
wt
^ ' i
, i '« •
7 m
Average gross
wt
» •»' !
> mg
Tare
wt
I~ « •
a
Less acetone blank wt (Wa)
<¦>>
mg
Weight of particulate in acetone rinse

mg
Filter (s) container no. ^ 7 /



Date and "time of wt C- • v-- . Gross
wt
'/"> V \
ma
Date and time of wt v:. v Gross
Wt
t;: r ;;
ma
s" (
^ : Is
Average gross wt
Tare wt
Weight of particulate on filter(s)
Weight of particulate in acetone rinse
Total weight of particulate
Note: In no case shall a blank residue greater than (.01 mg/g) or
.001% of the weight of acetone used be subtracted from the sample
we:aht.
Rertar ks:
mg
mg
mg
mg
mg
Signature of analyst
Signature of reviewer

-------
METHOD 5 TRAIN ANALYTICAL PARTICULATE DATA
ACETONE RINSE
Plant s/„•
f\ , ,N (
Run No.
Sample location A ¦J <
Relative humidity 	--
Density of acetone (pa)
N 7-t ; K
g/ml
Sample
Sample
Liquid level at mark
type
identifiable
and/or container sealed
Acetone rinse
V
~ »' \
filter(s)

~ s
Acetone rinse container no.
Acetone rinse volume (Vaw)
/ I N
ml
Acetone blank residue concentration (Ca) 	
Wa ¦ Ca Vaw pa • (	) (	)(	) « 	
Date and time of wt >,r-* - - •j	t ¦ ; .¦>¦¦/ Gross wt
Date and time of wt ti-
ll.
N -f
_L
Gross wt i
mg/a
mg
mg
v ®g
Average gross wt m
Tare wt
Less acetone blank wt (Wa)
Weight of particulate in acetone rinse
Filter (s) container no.
<>v;
* S~~mg
mg


mg
mg
-time of wt 12-'~j Gross wt
ti ^ s.

ma
time of wt ^Gross wt
>r, *
*
ma
Average gross wt


mg
Tare wt
» t w
* '%
mg
Weight of particulate on filter (s)

7 ?
ma
v.'eight of particulate in acetone rinse
	*1
"S
mc
Total weight of particulate
r
-N *
•7
mg
Note: In no case shall a blank residue greater than (.01 mg/g) or
.001% of the weight of acetone used be subtracted from the samole
wezaht,
Remarks:
Signature of analyst
Signature of reviewer

-------
Plant
METHOD 5 TRAIN ANALYTICAL PARTICULATE DATA
ACETONE RINSE
•< 4. n o -	Run No,
Sample location
A.. /'>•.*
K
Relative humidity -
Density of acetone (pa)
•>'i g/ml
Sample
Sample
Liquid level at mark
type
identifiable
and/or container sealed
Acetone rinse
^ - s

filter(s)

Vfs
Acetone rinse container no,
Acetone rinse volume (Vaw)
¦ 1

- r~-
ml
Acetone blank residue concentration (Ca) 	
Wa « Ca Vaw pa • (	)(	)(	) ¦ 	
Date and time of wt	->> -/	Gross wt

mg/g
mg
/
Date and
time of wt -W /<; ?-/ Gross wt
iC 's~ ? i' :s>
mg

Average gross wt

mg

Tare wt
i o s 
mg

Less acetone blank wt (Wa)
0
mg

Weight of particulate in acetone rinse
Hi "
mg
Filter(s)
container no.


Date and
-time of wt Gross wt

ma
Date and
time of wt •>- ^ i < '' Gross wt
u \ \ ¦;
ma

Average gross wt

ma

Tare wt
t 1. •>
mg

Weight of particulate on filter(s)
^
ma

V.'eight of particulate in acetone rinse
- ', %
mc

Total weight of particulate
' > C' c
C ' s ^
mg
Note: In no case shall a blank residue greater than (.01 mg/g) or
.001% of the weight of acetone used be subtracted from the samole
we:aht.
Rer.arks:
Signature of analyst
Signature of reviewer

-------
out gas wrro» *»o omricc systpi cju-iphatiow
^T»Xrr /X/ /a'V,	(JU.- I ¦	l_	 CONMU WW *> "• ^
•
Orlfloa
NMSMUr
¦atttnf
l*. NjO
AM
ftlniaua
Voluaw
of Gas
ft'
wrr TUT METER Ml VOLUMES
AM) TtMPCMTUMS
DRY TEST METE* CM VOUMES
mo nwiMivni
Total
Taat
Tiaa
Klnutaa
•
kroaaUt
ftaadln?,
InoHaa
»»
»b
Initial
final
Mat
VOluM
ft'
V
w
»««•
Tw|>,
•r
%
Initial
rinai
•r
T',
THp«
•p
Td
o
Mat
VollM
ft1
Vd
tVf.
T&mf.
"P
Td
ft'
V
•l
•r
T
"l
ft»
V
"f
THp.
•r
T
Wf
ft*
\
ft*
vd
o
O.S
S
rtn


*W'
5-P V/
'¦-w
•mm
loiy
mot

%.v*

i H <.' <
51
O.TJ
s
-i , i *
•>« • -



j ^«r
•' +k '
170., \7
;?>>*
S<
,, -*
VI /
i "•
7f
//¦ -
-7 <1
1.00
s


lVf>

i > r''
ft. 3
3; ^
JR'J
1 w"/

'iSsJ
'rf7

-W
w\ C
/C'.-'-T
Ltf<»
7th*i
iV u"
i! y
V "•>
h

!<$<-
J? ' s~-
a. oo
10


/VA't
>w


Jii.zr?

i

,• •

tw:>
- '5-w
2. SO
to














t	/	i ,t *M	i K >	^ * ¦
• Ot«at at Utlt a vary 2 almitaa and adjuat If rvaadad.
T/i.	r> fCir-KV 5
'VV'd * 4i°®	« «!»•» "«» I ,T- * M0) *1	CmU- **'
AM#
. o.om (m [ l\ * 4t0> *1
«V «*«.~ ««» L IVw) J
 I «v I 1	Chackod Byi
d	*	b 4,	I.	w *
Data ¦
iM
SKWtt CALCUX>TIOMi
T
AM# CALCUtATIOM
ARf
O.J
«;.* s • )l .'.r. ~ «60)
. ?Y7
0.0J17 (r i j
"< ~ 460)1 v„ r
I
i t*
* • fC
« », V ^ : ~ «0'
1 l J.i
(.: rt )( /S ' ~ <»0)
1 )
0.71
j«:" <^)( «*o)
. lffO
0.0J17 (,"
"t » ~ 460)(;? V'?2- r
i

s > , i ' . 1. !\ « ¦ I ~ «<»
1 iiV
( -w so M V •' * 460'
< S" J)
) 00
«u;v^' )( )( a"7.' ~ «W)
i.f»\
o.on? 
{ .j |
1.S0
)( 'f* • ~ «W)
t ri
1 ' «
0.0Jl? ( i, V )
"i • ~ 460) (f)'.Si T
I
i -.r
t . iJL,« ^ ' ~ 4W»
1J.»
~ 460)
( . • )
1.00
{,. '.)< )( - ~ «M)

0.0J17 < Ju/ )
-( J (/ ~ 460) ( •- -i'r\
4.
.» v s
v v,^,! ' • «0)
i > - 
( •)
J.so
I )( )( ~ «*0)

0.0117 ( )
~ 460) ( r


( ) t * 460)
' n.s
( )( ~ 460)
1 )
(>) Cmh - ratio to
T*>1. • 1.01
AVTHAGE
I1, v" /
AH9 • orlflca praarura dlffarantlal that «l*a»
0.7j etm of III at M'r and «.»J* M«.
Avara«a valua batwaon 1.S9-J.0* la aceaptabta
tha 4H# auit not vary by aora than tO.lS ovar tha
calibration of 0.S-2.S0" M,Q.
AVIMCC
-% • <,
. v

In i44itiOK.

-------
THERMOCOUPLE CAUBW>7JON data sheet
Pile: 9jatjgH		 Thermocouple No.: 7"/	
jtmbient Teir.periture: "77.JT T Barometric pressure: 2Q.10	Hg
r*!ibr*tor : ftiul	Reference: Mercury-in-class		
Other:
Reference
poi nt
Ko •
Source*,
(speci fy)
Reference
thermometer
temperature,
•r
Thermocouple
potentiometer
temperature,
• jr
Di fIerenct.
y.
|
Q
Its'
7
sod
to
3
Ct
352
3.57
rj3
















































Average
% differ-
ence

* Source: 1) Ice bath ») Bo.uno water Bath
_	A**,fwT	4) Ht ATC Oil BM *
Percent difference
Itef. temp. T - thermocouple temp. T «ft0

-------
THtRMOCOUPLl CAUiVMlON DAT* SHttT
t>.te: 9j2tjt»		 ThtrinocoupJe No.: 7-3.
>*i>ient Temperature: 77^ T Barometric pressure: 2q.i/9	- Hg
Calibrator : feu/ JaA\ouJt&L Reference: Mercury- in-glass :		
Other:
Reference
pea nt
KC.
Source*,
(specify)
Reference
thermometer
temperature.
•r
Thermocouple
potentiometer
temperature.
•r
Di f f erence.
%
1
12>
77..r
18,V
/. 7
A

Ate
a/9
3.3

Q>
3i>&
zen
OS-






































*









Average
% difftr-
•nce
'S
• Source: 1) Ice bath *> B©n.«Ht> *mteR Bath
Am»iCwT	^	oiw &At»*
Fercent difference
»ef. temp. T - thermocouple tewp. *T «0D

-------
_rv - i ¦ u/-j/
• k •.:-••• ;ta k.-k
»	f U H. f J
. * . >1 1 i:Vo	My ]. v.'] ?	;/ yr-s	_ no
• < "l ' (	d?	j ¦ '3 ('/plain 1 • ' .:)	no
! - O.O.c <^c), o 2 = -	?! ^ Oc.° <<>°>,
p2 "= ¦ V?-C' (^r)
- [_ o °. o ¦¦ i c." > A = _ 9 C cir' (1 n -)
- A sin y = ,C't 7 __ cm (in.); <0.32 cm (<1/8 )n.),
w - A sin 0 =	_ cn"' (^n • ) -' <-08 err. (<1/32 in.)
•'A . . _ _ / .	cm (in • ) pt> -- - 	 -- crr (ln-)
Dt = __ ^ \J CfT: ( 1 n • )
Corrjnents:
'alibi ation required7 _ 	 yes	no

-------
, , , r; c .	" k	:i '• • Th YC?K
L n *£ ¦ '¦/•••
Tlx H. ' /'
. i'-M.	1.:'o	¦ h 1 y ]. v.>1? X . V'S _	. 110
; - a	!•*,.. , t.	• ... ,i? _ \. i (• / plain	»••*) ^_ no
• j -	(*;ue), o2 - . c?.p_° (
-------


T-
I	
"/
i r
. l'-'
- i-:-i
^ i" A >
O'ooo'oS | Q'ooo'0! 31 ; A bbh j 9'bbl	L.&A . £.7?
ooo'oj
oop 'oI \ a oo 'f
i
ooS
T
OOV
oot
OS

-r—>	— . -i
: /
tyhtjb
or


-------
BAROMETER CALIBRATION LOG
MERCURY	TEST	ADJUSTED
DATE	BAROMETER	BAROMETER	(YES/NO)
*>'//£

2 V
r l s
*11 "7 / 5- V
Q y. .c c
2 7. £"6
Vf- i
1(ilM

a.7. Q H
bJo
CH-- > }<•> • i
P-i ; c
P s"
tt.s
















































































-------
N022LE CALIBRATION
Date

C») ibnteS tyiguf JuAto<*jl ef
Noizle
identification
number
Dj , an,
D^. in.
Dj, in. I LD, in.
eve
Probe 7-/
frek-e. "7-2
frkthl?'?' \
7 1
,57?	:.5-aa ,o©v .^ao
where:
Di . 2 , 3.
AD
D
avg
r»o22le diameter measured on a different diameter, in
Tolerance ¦ measure within 0.001 in.
maximum difference in any two measurements, in.
Tolerance * 0.004 in.
average of D^ , D?, and Dy

-------
BQVP;
APPENDIX E

-------
""TiiiiiiiiMii;-:
!: I • I •! i
i ¦ ¦ ,
i!'1
' ! • r'fVi 1 i!''! |^1 i!
: 11

»I

: l ' I
I I 1
,1 ,	I
IhirJ.::-!
"! ---
» ' •	I • '
! i ;'
I ¦ ¦

: M
•20

r-
: * •
r
m
¦\l i i [\
; i
* t . !
~4-i t ¦ j * ~ i
1 !l*i_Zv{T_J
I • I h
"M •
.".W

. I

. : ! - ¦
40
~T~
"}.iL :
!;j*,.| /3k
60
I	I
! ¦ /0!r
jo	¦	K>?
"T..
"t . I	I . \ :
¦ ''I - | ' I '
! I
, f
>4
r t
r^r
1 * f*
!?. I
1*1
! ¦ f]} 1 ; •
'Mi ¦
! = i I
11
I.
H
1 I ¦ I I I
• *r: i: I
' '* J: sivi?
TpT
t F»>
I I ;; I - I I . J
^=r
A
!H
?ii
I '
I I
i : i
• i 1
1 l
, i
I i
«: U
iijiffii
lUU
•ui->

f »	.
%	;
;	i
» (
>!
!&»*/
'~ir* ;
' /
&
li'l ;
» i
f I	¦ ¦ I .	I : I I 1*1 ~T	.1	I
!i!
I I > *
"1!
i!
1-29
!!i

ilM
t ! i'
j ! ¦ '
! i' i
Ui
t -»
•4
J*
Pi
1 ' , ' *»'
I 100 o
%fl
i . i

'!'!/
v
L
-"I'
		 G<~iv
j

-------
i I
ffl
Cl'-ARGt
srn.i-ACE
KORi.rAN
*¦$»
. •. c :
QIA kC.l
];r: i.lac
fo;u:man
R -¦.' fO'.i
(¦A l.
j CHARCF ^
I spi'llace
;' FOREMAN v:
_ Rt>jARK5_:

p^unu t > -1 4 "

-------

-------
N0 4 battery
CRQjSQVFr j>g£
; COKE SID;

-------
^/V-OIS. 3bOO

-------

-------

-------
^ 4 6;IIfRv

-------

-------

-------
I I • ; 1 !
W
W-.> oe


!.ir ; ! i ¦


-------
SATTI'V
±L
v.
SHENANCO INCORPORATED
"EVU: E
P'JSHEr.::
pl: : ?
KtPCTiT

1

JLzIL
UVL
PUSKt
IIIX
I'HAkCC D
C WtN
mr
r>
t uSM >
fcC? )
»USK j
pJjP^
yae> mo
1 32 C
t wjt
? v i ?
>:«2

Si/ir; ȣ
yiQo
QgiM-a q&pj2
ypifr'.s-re&a^g.
'JLLAj
jttv
nzxx&in
. /r?
mici!
I0ii;ClipIZTo.
LI. liis .LLVJ _ .. I-ID .
12_E^.fev-J35_.£-. <±i^£ L
e vTfa. v c

'JZill
1
~
€2ll^n£^±dL±
H

..uAi.
COAL
CHARGE
SPILLAGE
FOREMAN
REMARKS
CHARGE
^ S PI LUGE
| FORE!
REMARKS
COAL
CHAKC'E
spiLlag
FORKKAN

-------
NOON

-------

-------

-------

-------

-------

-------

-------

-------